1 /* 2 * Copyright (c) 1999, 2023, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, Red Hat Inc. All rights reserved. 4 * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved. 5 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 6 * 7 * This code is free software; you can redistribute it and/or modify it 8 * under the terms of the GNU General Public License version 2 only, as 9 * published by the Free Software Foundation. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 * 25 */ 26 27 #include "precompiled.hpp" 28 #include "c1/c1_LIR.hpp" 29 #include "c1/c1_MacroAssembler.hpp" 30 #include "c1/c1_Runtime1.hpp" 31 #include "classfile/systemDictionary.hpp" 32 #include "gc/shared/barrierSetAssembler.hpp" 33 #include "gc/shared/collectedHeap.hpp" 34 #include "interpreter/interpreter.hpp" 35 #include "oops/arrayOop.hpp" 36 #include "oops/markWord.hpp" 37 #include "runtime/basicLock.hpp" 38 #include "runtime/os.hpp" 39 #include "runtime/sharedRuntime.hpp" 40 #include "runtime/stubRoutines.hpp" 41 42 void C1_MacroAssembler::float_cmp(bool is_float, int unordered_result, 43 FloatRegister freg0, FloatRegister freg1, 44 Register result) { 45 if (is_float) { 46 float_compare(result, freg0, freg1, unordered_result); 47 } else { 48 double_compare(result, freg0, freg1, unordered_result); 49 } 50 } 51 52 int C1_MacroAssembler::lock_object(Register hdr, Register obj, Register disp_hdr, Label& slow_case) { 53 const int aligned_mask = BytesPerWord - 1; 54 const int hdr_offset = oopDesc::mark_offset_in_bytes(); 55 assert(hdr != obj && hdr != disp_hdr && obj != disp_hdr, "registers must be different"); 56 Label done; 57 int null_check_offset = -1; 58 59 verify_oop(obj); 60 61 // save object being locked into the BasicObjectLock 62 sd(obj, Address(disp_hdr, BasicObjectLock::obj_offset_in_bytes())); 63 64 null_check_offset = offset(); 65 66 if (DiagnoseSyncOnValueBasedClasses != 0) { 67 load_klass(hdr, obj); 68 lwu(hdr, Address(hdr, Klass::access_flags_offset())); 69 andi(t0, hdr, JVM_ACC_IS_VALUE_BASED_CLASS); 70 bnez(t0, slow_case, true /* is_far */); 71 } 72 73 // Load object header 74 ld(hdr, Address(obj, hdr_offset)); 75 // and mark it as unlocked 76 ori(hdr, hdr, markWord::unlocked_value); 77 // save unlocked object header into the displaced header location on the stack 78 sd(hdr, Address(disp_hdr, 0)); 79 // test if object header is still the same (i.e. unlocked), and if so, store the 80 // displaced header address in the object header - if it is not the same, get the 81 // object header instead 82 la(t1, Address(obj, hdr_offset)); 83 cmpxchgptr(hdr, disp_hdr, t1, t0, done, /*fallthough*/NULL); 84 // if the object header was the same, we're done 85 // if the object header was not the same, it is now in the hdr register 86 // => test if it is a stack pointer into the same stack (recursive locking), i.e.: 87 // 88 // 1) (hdr & aligned_mask) == 0 89 // 2) sp <= hdr 90 // 3) hdr <= sp + page_size 91 // 92 // these 3 tests can be done by evaluating the following expression: 93 // 94 // (hdr -sp) & (aligned_mask - page_size) 95 // 96 // assuming both the stack pointer and page_size have their least 97 // significant 2 bits cleared and page_size is a power of 2 98 sub(hdr, hdr, sp); 99 mv(t0, aligned_mask - (int)os::vm_page_size()); 100 andr(hdr, hdr, t0); 101 // for recursive locking, the result is zero => save it in the displaced header 102 // location (NULL in the displaced hdr location indicates recursive locking) 103 sd(hdr, Address(disp_hdr, 0)); 104 // otherwise we don't care about the result and handle locking via runtime call 105 bnez(hdr, slow_case, /* is_far */ true); 106 // done 107 bind(done); 108 increment(Address(xthread, JavaThread::held_monitor_count_offset())); 109 return null_check_offset; 110 } 111 112 void C1_MacroAssembler::unlock_object(Register hdr, Register obj, Register disp_hdr, Label& slow_case) { 113 const int aligned_mask = BytesPerWord - 1; 114 const int hdr_offset = oopDesc::mark_offset_in_bytes(); 115 assert(hdr != obj && hdr != disp_hdr && obj != disp_hdr, "registers must be different"); 116 Label done; 117 118 // load displaced header 119 ld(hdr, Address(disp_hdr, 0)); 120 // if the loaded hdr is NULL we had recursive locking 121 // if we had recursive locking, we are done 122 beqz(hdr, done); 123 // load object 124 ld(obj, Address(disp_hdr, BasicObjectLock::obj_offset_in_bytes())); 125 verify_oop(obj); 126 // test if object header is pointing to the displaced header, and if so, restore 127 // the displaced header in the object - if the object header is not pointing to 128 // the displaced header, get the object header instead 129 // if the object header was not pointing to the displaced header, 130 // we do unlocking via runtime call 131 if (hdr_offset) { 132 la(t0, Address(obj, hdr_offset)); 133 cmpxchgptr(disp_hdr, hdr, t0, t1, done, &slow_case); 134 } else { 135 cmpxchgptr(disp_hdr, hdr, obj, t1, done, &slow_case); 136 } 137 // done 138 bind(done); 139 decrement(Address(xthread, JavaThread::held_monitor_count_offset())); 140 } 141 142 // Defines obj, preserves var_size_in_bytes 143 void C1_MacroAssembler::try_allocate(Register obj, Register var_size_in_bytes, int con_size_in_bytes, Register tmp1, Register tmp2, Label& slow_case) { 144 if (UseTLAB) { 145 tlab_allocate(obj, var_size_in_bytes, con_size_in_bytes, tmp1, tmp2, slow_case, /* is_far */ true); 146 } else { 147 j(slow_case); 148 } 149 } 150 151 void C1_MacroAssembler::initialize_header(Register obj, Register klass, Register len, Register tmp1, Register tmp2) { 152 assert_different_registers(obj, klass, len, tmp1, tmp2); 153 // This assumes that all prototype bits fitr in an int32_t 154 mv(tmp1, (int32_t)(intptr_t)markWord::prototype().value()); 155 sd(tmp1, Address(obj, oopDesc::mark_offset_in_bytes())); 156 157 if (UseCompressedClassPointers) { // Take care not to kill klass 158 encode_klass_not_null(tmp1, klass, tmp2); 159 sw(tmp1, Address(obj, oopDesc::klass_offset_in_bytes())); 160 } else { 161 sd(klass, Address(obj, oopDesc::klass_offset_in_bytes())); 162 } 163 164 if (len->is_valid()) { 165 sw(len, Address(obj, arrayOopDesc::length_offset_in_bytes())); 166 } else if (UseCompressedClassPointers) { 167 store_klass_gap(obj, zr); 168 } 169 } 170 171 // preserves obj, destroys len_in_bytes 172 void C1_MacroAssembler::initialize_body(Register obj, Register len_in_bytes, int hdr_size_in_bytes, Register tmp) { 173 assert(hdr_size_in_bytes >= 0, "header size must be positive or 0"); 174 Label done; 175 176 // len_in_bytes is positive and ptr sized 177 sub(len_in_bytes, len_in_bytes, hdr_size_in_bytes); 178 beqz(len_in_bytes, done); 179 180 // Preserve obj 181 if (hdr_size_in_bytes) { 182 add(obj, obj, hdr_size_in_bytes); 183 } 184 zero_memory(obj, len_in_bytes, tmp); 185 if (hdr_size_in_bytes) { 186 sub(obj, obj, hdr_size_in_bytes); 187 } 188 189 bind(done); 190 } 191 192 void C1_MacroAssembler::allocate_object(Register obj, Register tmp1, Register tmp2, int header_size, int object_size, Register klass, Label& slow_case) { 193 assert_different_registers(obj, tmp1, tmp2); 194 assert(header_size >= 0 && object_size >= header_size, "illegal sizes"); 195 196 try_allocate(obj, noreg, object_size * BytesPerWord, tmp1, tmp2, slow_case); 197 198 initialize_object(obj, klass, noreg, object_size * HeapWordSize, tmp1, tmp2, UseTLAB); 199 } 200 201 void C1_MacroAssembler::initialize_object(Register obj, Register klass, Register var_size_in_bytes, int con_size_in_bytes, Register tmp1, Register tmp2, bool is_tlab_allocated) { 202 assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, 203 "con_size_in_bytes is not multiple of alignment"); 204 const int hdr_size_in_bytes = instanceOopDesc::header_size() * HeapWordSize; 205 206 initialize_header(obj, klass, noreg, tmp1, tmp2); 207 208 if (!(UseTLAB && ZeroTLAB && is_tlab_allocated)) { 209 // clear rest of allocated space 210 const Register index = tmp2; 211 // 16: multiplier for threshold 212 const int threshold = 16 * BytesPerWord; // approximate break even point for code size (see comments below) 213 if (var_size_in_bytes != noreg) { 214 mv(index, var_size_in_bytes); 215 initialize_body(obj, index, hdr_size_in_bytes, tmp1); 216 } else if (con_size_in_bytes <= threshold) { 217 // use explicit null stores 218 int i = hdr_size_in_bytes; 219 if (i < con_size_in_bytes && (con_size_in_bytes % (2 * BytesPerWord))) { // 2: multiplier for BytesPerWord 220 sd(zr, Address(obj, i)); 221 i += BytesPerWord; 222 } 223 for (; i < con_size_in_bytes; i += BytesPerWord) { 224 sd(zr, Address(obj, i)); 225 } 226 } else if (con_size_in_bytes > hdr_size_in_bytes) { 227 block_comment("zero memory"); 228 // use loop to null out the fields 229 int words = (con_size_in_bytes - hdr_size_in_bytes) / BytesPerWord; 230 mv(index, words / 8); // 8: byte size 231 232 const int unroll = 8; // Number of sd(zr) instructions we'll unroll 233 int remainder = words % unroll; 234 la(t0, Address(obj, hdr_size_in_bytes + remainder * BytesPerWord)); 235 236 Label entry_point, loop; 237 j(entry_point); 238 239 bind(loop); 240 sub(index, index, 1); 241 for (int i = -unroll; i < 0; i++) { 242 if (-i == remainder) { 243 bind(entry_point); 244 } 245 sd(zr, Address(t0, i * wordSize)); 246 } 247 if (remainder == 0) { 248 bind(entry_point); 249 } 250 add(t0, t0, unroll * wordSize); 251 bnez(index, loop); 252 } 253 } 254 255 membar(MacroAssembler::StoreStore); 256 257 if (CURRENT_ENV->dtrace_alloc_probes()) { 258 assert(obj == x10, "must be"); 259 far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::dtrace_object_alloc_id))); 260 } 261 262 verify_oop(obj); 263 } 264 265 void C1_MacroAssembler::allocate_array(Register obj, Register len, Register tmp1, Register tmp2, int header_size, int f, Register klass, Label& slow_case) { 266 assert_different_registers(obj, len, tmp1, tmp2, klass); 267 268 // determine alignment mask 269 assert(!(BytesPerWord & 1), "must be multiple of 2 for masking code to work"); 270 271 // check for negative or excessive length 272 mv(t0, (int32_t)max_array_allocation_length); 273 bgeu(len, t0, slow_case, /* is_far */ true); 274 275 const Register arr_size = tmp2; // okay to be the same 276 // align object end 277 mv(arr_size, (int32_t)header_size * BytesPerWord + MinObjAlignmentInBytesMask); 278 shadd(arr_size, len, arr_size, t0, f); 279 andi(arr_size, arr_size, ~(uint)MinObjAlignmentInBytesMask); 280 281 try_allocate(obj, arr_size, 0, tmp1, tmp2, slow_case); 282 283 initialize_header(obj, klass, len, tmp1, tmp2); 284 285 // clear rest of allocated space 286 const Register len_zero = len; 287 initialize_body(obj, arr_size, header_size * BytesPerWord, len_zero); 288 289 membar(MacroAssembler::StoreStore); 290 291 if (CURRENT_ENV->dtrace_alloc_probes()) { 292 assert(obj == x10, "must be"); 293 far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::dtrace_object_alloc_id))); 294 } 295 296 verify_oop(obj); 297 } 298 299 void C1_MacroAssembler::inline_cache_check(Register receiver, Register iCache, Label &L) { 300 verify_oop(receiver); 301 // explicit NULL check not needed since load from [klass_offset] causes a trap 302 // check against inline cache 303 assert(!MacroAssembler::needs_explicit_null_check(oopDesc::klass_offset_in_bytes()), "must add explicit null check"); 304 assert_different_registers(receiver, iCache, t0, t2); 305 cmp_klass(receiver, iCache, t0, t2 /* call-clobbered t2 as a tmp */, L); 306 } 307 308 void C1_MacroAssembler::build_frame(int framesize, int bang_size_in_bytes) { 309 assert(bang_size_in_bytes >= framesize, "stack bang size incorrect"); 310 // Make sure there is enough stack space for this method's activation. 311 // Note that we do this before creating a frame. 312 generate_stack_overflow_check(bang_size_in_bytes); 313 MacroAssembler::build_frame(framesize); 314 315 // Insert nmethod entry barrier into frame. 316 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 317 bs->nmethod_entry_barrier(this, NULL /* slow_path */, NULL /* continuation */, NULL /* guard */); 318 } 319 320 void C1_MacroAssembler::remove_frame(int framesize) { 321 MacroAssembler::remove_frame(framesize); 322 } 323 324 325 void C1_MacroAssembler::verified_entry(bool breakAtEntry) { 326 // If we have to make this method not-entrant we'll overwrite its 327 // first instruction with a jump. For this action to be legal we 328 // must ensure that this first instruction is a J, JAL or NOP. 329 // Make it a NOP. 330 IncompressibleRegion ir(this); // keep the nop as 4 bytes for patching. 331 assert_alignment(pc()); 332 nop(); // 4 bytes 333 } 334 335 void C1_MacroAssembler::load_parameter(int offset_in_words, Register reg) { 336 // fp + -2: link 337 // + -1: return address 338 // + 0: argument with offset 0 339 // + 1: argument with offset 1 340 // + 2: ... 341 ld(reg, Address(fp, offset_in_words * BytesPerWord)); 342 } 343 344 #ifndef PRODUCT 345 346 void C1_MacroAssembler::verify_stack_oop(int stack_offset) { 347 if (!VerifyOops) { 348 return; 349 } 350 verify_oop_addr(Address(sp, stack_offset)); 351 } 352 353 void C1_MacroAssembler::verify_not_null_oop(Register r) { 354 if (!VerifyOops) return; 355 Label not_null; 356 bnez(r, not_null); 357 stop("non-null oop required"); 358 bind(not_null); 359 verify_oop(r); 360 } 361 362 void C1_MacroAssembler::invalidate_registers(bool inv_x10, bool inv_x9, bool inv_x12, bool inv_x13, bool inv_x14, bool inv_x15) { 363 #ifdef ASSERT 364 static int nn; 365 if (inv_x10) { mv(x10, 0xDEAD); } 366 if (inv_x9) { mv(x9, 0xDEAD); } 367 if (inv_x12) { mv(x12, nn++); } 368 if (inv_x13) { mv(x13, 0xDEAD); } 369 if (inv_x14) { mv(x14, 0xDEAD); } 370 if (inv_x15) { mv(x15, 0xDEAD); } 371 #endif // ASSERT 372 } 373 #endif // ifndef PRODUCT 374 375 typedef void (C1_MacroAssembler::*c1_cond_branch_insn)(Register op1, Register op2, Label& label, bool is_far); 376 typedef void (C1_MacroAssembler::*c1_float_cond_branch_insn)(FloatRegister op1, FloatRegister op2, 377 Label& label, bool is_far, bool is_unordered); 378 379 static c1_cond_branch_insn c1_cond_branch[] = 380 { 381 /* SHORT branches */ 382 (c1_cond_branch_insn)&MacroAssembler::beq, 383 (c1_cond_branch_insn)&MacroAssembler::bne, 384 (c1_cond_branch_insn)&MacroAssembler::blt, 385 (c1_cond_branch_insn)&MacroAssembler::ble, 386 (c1_cond_branch_insn)&MacroAssembler::bge, 387 (c1_cond_branch_insn)&MacroAssembler::bgt, 388 (c1_cond_branch_insn)&MacroAssembler::bleu, // lir_cond_belowEqual 389 (c1_cond_branch_insn)&MacroAssembler::bgeu // lir_cond_aboveEqual 390 }; 391 392 static c1_float_cond_branch_insn c1_float_cond_branch[] = 393 { 394 /* FLOAT branches */ 395 (c1_float_cond_branch_insn)&MacroAssembler::float_beq, 396 (c1_float_cond_branch_insn)&MacroAssembler::float_bne, 397 (c1_float_cond_branch_insn)&MacroAssembler::float_blt, 398 (c1_float_cond_branch_insn)&MacroAssembler::float_ble, 399 (c1_float_cond_branch_insn)&MacroAssembler::float_bge, 400 (c1_float_cond_branch_insn)&MacroAssembler::float_bgt, 401 NULL, // lir_cond_belowEqual 402 NULL, // lir_cond_aboveEqual 403 404 /* DOUBLE branches */ 405 (c1_float_cond_branch_insn)&MacroAssembler::double_beq, 406 (c1_float_cond_branch_insn)&MacroAssembler::double_bne, 407 (c1_float_cond_branch_insn)&MacroAssembler::double_blt, 408 (c1_float_cond_branch_insn)&MacroAssembler::double_ble, 409 (c1_float_cond_branch_insn)&MacroAssembler::double_bge, 410 (c1_float_cond_branch_insn)&MacroAssembler::double_bgt, 411 NULL, // lir_cond_belowEqual 412 NULL // lir_cond_aboveEqual 413 }; 414 415 void C1_MacroAssembler::c1_cmp_branch(int cmpFlag, Register op1, Register op2, Label& label, 416 BasicType type, bool is_far) { 417 if (type == T_OBJECT || type == T_ARRAY) { 418 assert(cmpFlag == lir_cond_equal || cmpFlag == lir_cond_notEqual, "Should be equal or notEqual"); 419 if (cmpFlag == lir_cond_equal) { 420 beq(op1, op2, label, is_far); 421 } else { 422 bne(op1, op2, label, is_far); 423 } 424 } else { 425 assert(cmpFlag >= 0 && cmpFlag < (int)(sizeof(c1_cond_branch) / sizeof(c1_cond_branch[0])), 426 "invalid c1 conditional branch index"); 427 (this->*c1_cond_branch[cmpFlag])(op1, op2, label, is_far); 428 } 429 } 430 431 void C1_MacroAssembler::c1_float_cmp_branch(int cmpFlag, FloatRegister op1, FloatRegister op2, Label& label, 432 bool is_far, bool is_unordered) { 433 assert(cmpFlag >= 0 && 434 cmpFlag < (int)(sizeof(c1_float_cond_branch) / sizeof(c1_float_cond_branch[0])), 435 "invalid c1 float conditional branch index"); 436 (this->*c1_float_cond_branch[cmpFlag])(op1, op2, label, is_far, is_unordered); 437 }