1 /* 2 * Copyright (c) 1999, 2023, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, Red Hat Inc. All rights reserved. 4 * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved. 5 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 6 * 7 * This code is free software; you can redistribute it and/or modify it 8 * under the terms of the GNU General Public License version 2 only, as 9 * published by the Free Software Foundation. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 * 25 */ 26 27 #include "precompiled.hpp" 28 #include "c1/c1_LIR.hpp" 29 #include "c1/c1_MacroAssembler.hpp" 30 #include "c1/c1_Runtime1.hpp" 31 #include "classfile/systemDictionary.hpp" 32 #include "gc/shared/barrierSetAssembler.hpp" 33 #include "gc/shared/collectedHeap.hpp" 34 #include "interpreter/interpreter.hpp" 35 #include "oops/arrayOop.hpp" 36 #include "oops/markWord.hpp" 37 #include "runtime/basicLock.hpp" 38 #include "runtime/os.hpp" 39 #include "runtime/sharedRuntime.hpp" 40 #include "runtime/stubRoutines.hpp" 41 42 void C1_MacroAssembler::float_cmp(bool is_float, int unordered_result, 43 FloatRegister freg0, FloatRegister freg1, 44 Register result) { 45 if (is_float) { 46 float_compare(result, freg0, freg1, unordered_result); 47 } else { 48 double_compare(result, freg0, freg1, unordered_result); 49 } 50 } 51 52 int C1_MacroAssembler::lock_object(Register hdr, Register obj, Register disp_hdr, Label& slow_case) { 53 const int aligned_mask = BytesPerWord - 1; 54 const int hdr_offset = oopDesc::mark_offset_in_bytes(); 55 assert(hdr != obj && hdr != disp_hdr && obj != disp_hdr, "registers must be different"); 56 Label done; 57 int null_check_offset = -1; 58 59 verify_oop(obj); 60 61 // save object being locked into the BasicObjectLock 62 sd(obj, Address(disp_hdr, BasicObjectLock::obj_offset_in_bytes())); 63 64 null_check_offset = offset(); 65 66 if (DiagnoseSyncOnValueBasedClasses != 0) { 67 load_klass(hdr, obj); 68 lwu(hdr, Address(hdr, Klass::access_flags_offset())); 69 andi(t0, hdr, JVM_ACC_IS_VALUE_BASED_CLASS); 70 bnez(t0, slow_case, true /* is_far */); 71 } 72 73 // Load object header 74 ld(hdr, Address(obj, hdr_offset)); 75 76 if (UseFastLocking) { 77 fast_lock(obj, hdr, t0, t1, slow_case); 78 } else { 79 // and mark it as unlocked 80 jori(hdr, hdr, markWord::unlocked_value); 81 // save unlocked object header into the displaced header location on the stack 82 sd(hdr, Address(disp_hdr, 0)); 83 // test if object header is still the same (i.e. unlocked), and if so, store the 84 // displaced header address in the object header - if it is not the same, get the 85 // object header instead 86 la(t1, Address(obj, hdr_offset)); 87 cmpxchgptr(hdr, disp_hdr, t1, t0, done, /*fallthough*/NULL); 88 // if the object header was the same, we're done 89 // if the object header was not the same, it is now in the hdr register 90 // => test if it is a stack pointer into the same stack (recursive locking), i.e.: 91 // 92 // 1) (hdr & aligned_mask) == 0 93 // 2) sp <= hdr 94 // 3) hdr <= sp + page_size 95 // 96 // these 3 tests can be done by evaluating the following expression: 97 // 98 // (hdr -sp) & (aligned_mask - page_size) 99 // 100 // assuming both the stack pointer and page_size have their least 101 // significant 2 bits cleared and page_size is a power of 2 102 sub(hdr, hdr, sp); 103 mv(t0, aligned_mask - (int)os::vm_page_size()); 104 andr(hdr, hdr, t0); 105 // for recursive locking, the result is zero => save it in the displaced header 106 // location (NULL in the displaced hdr location indicates recursive locking) 107 sd(hdr, Address(disp_hdr, 0)); 108 // otherwise we don't care about the result and handle locking via runtime call 109 bnez(hdr, slow_case, /* is_far */ true); 110 // done 111 bind(done); 112 } 113 increment(Address(xthread, JavaThread::held_monitor_count_offset())); 114 return null_check_offset; 115 } 116 117 void C1_MacroAssembler::unlock_object(Register hdr, Register obj, Register disp_hdr, Label& slow_case) { 118 const int aligned_mask = BytesPerWord - 1; 119 const int hdr_offset = oopDesc::mark_offset_in_bytes(); 120 assert(hdr != obj && hdr != disp_hdr && obj != disp_hdr, "registers must be different"); 121 Label done; 122 123 if (UseFastLocking) { 124 // load object 125 ld(obj, Address(disp_hdr, BasicObjectLock::obj_offset_in_bytes())); 126 verify_oop(obj); 127 ld(hdr, Address(obj, oopDesc::mark_offset_in_bytes())); 128 fast_unlock(obj, hdr, t0, t1, slow_case); 129 } else { 130 // load displaced header 131 ld(hdr, Address(disp_hdr, 0)); 132 // if the loaded hdr is NULL we had recursive locking 133 // if we had recursive locking, we are done 134 beqz(hdr, done); 135 // load object 136 ld(obj, Address(disp_hdr, BasicObjectLock::obj_offset_in_bytes())); 137 verify_oop(obj); 138 // test if object header is pointing to the displaced header, and if so, restore 139 // the displaced header in the object - if the object header is not pointing to 140 // the displaced header, get the object header instead 141 // if the object header was not pointing to the displaced header, 142 // we do unlocking via runtime call 143 if (hdr_offset) { 144 la(t0, Address(obj, hdr_offset)); 145 cmpxchgptr(disp_hdr, hdr, t0, t1, done, &slow_case); 146 } else { 147 cmpxchgptr(disp_hdr, hdr, obj, t1, done, &slow_case); 148 } 149 // done 150 bind(done); 151 } 152 decrement(Address(xthread, JavaThread::held_monitor_count_offset())); 153 } 154 155 // Defines obj, preserves var_size_in_bytes 156 void C1_MacroAssembler::try_allocate(Register obj, Register var_size_in_bytes, int con_size_in_bytes, Register tmp1, Register tmp2, Label& slow_case) { 157 if (UseTLAB) { 158 tlab_allocate(obj, var_size_in_bytes, con_size_in_bytes, tmp1, tmp2, slow_case, /* is_far */ true); 159 } else { 160 j(slow_case); 161 } 162 } 163 164 void C1_MacroAssembler::initialize_header(Register obj, Register klass, Register len, Register tmp1, Register tmp2) { 165 assert_different_registers(obj, klass, len, tmp1, tmp2); 166 // This assumes that all prototype bits fitr in an int32_t 167 mv(tmp1, (int32_t)(intptr_t)markWord::prototype().value()); 168 sd(tmp1, Address(obj, oopDesc::mark_offset_in_bytes())); 169 170 if (UseCompressedClassPointers) { // Take care not to kill klass 171 encode_klass_not_null(tmp1, klass, tmp2); 172 sw(tmp1, Address(obj, oopDesc::klass_offset_in_bytes())); 173 } else { 174 sd(klass, Address(obj, oopDesc::klass_offset_in_bytes())); 175 } 176 177 if (len->is_valid()) { 178 sw(len, Address(obj, arrayOopDesc::length_offset_in_bytes())); 179 } else if (UseCompressedClassPointers) { 180 store_klass_gap(obj, zr); 181 } 182 } 183 184 // preserves obj, destroys len_in_bytes 185 void C1_MacroAssembler::initialize_body(Register obj, Register len_in_bytes, int hdr_size_in_bytes, Register tmp) { 186 assert(hdr_size_in_bytes >= 0, "header size must be positive or 0"); 187 Label done; 188 189 // len_in_bytes is positive and ptr sized 190 sub(len_in_bytes, len_in_bytes, hdr_size_in_bytes); 191 beqz(len_in_bytes, done); 192 193 // Preserve obj 194 if (hdr_size_in_bytes) { 195 add(obj, obj, hdr_size_in_bytes); 196 } 197 zero_memory(obj, len_in_bytes, tmp); 198 if (hdr_size_in_bytes) { 199 sub(obj, obj, hdr_size_in_bytes); 200 } 201 202 bind(done); 203 } 204 205 void C1_MacroAssembler::allocate_object(Register obj, Register tmp1, Register tmp2, int header_size, int object_size, Register klass, Label& slow_case) { 206 assert_different_registers(obj, tmp1, tmp2); 207 assert(header_size >= 0 && object_size >= header_size, "illegal sizes"); 208 209 try_allocate(obj, noreg, object_size * BytesPerWord, tmp1, tmp2, slow_case); 210 211 initialize_object(obj, klass, noreg, object_size * HeapWordSize, tmp1, tmp2, UseTLAB); 212 } 213 214 void C1_MacroAssembler::initialize_object(Register obj, Register klass, Register var_size_in_bytes, int con_size_in_bytes, Register tmp1, Register tmp2, bool is_tlab_allocated) { 215 assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, 216 "con_size_in_bytes is not multiple of alignment"); 217 const int hdr_size_in_bytes = instanceOopDesc::header_size() * HeapWordSize; 218 219 initialize_header(obj, klass, noreg, tmp1, tmp2); 220 221 if (!(UseTLAB && ZeroTLAB && is_tlab_allocated)) { 222 // clear rest of allocated space 223 const Register index = tmp2; 224 // 16: multiplier for threshold 225 const int threshold = 16 * BytesPerWord; // approximate break even point for code size (see comments below) 226 if (var_size_in_bytes != noreg) { 227 mv(index, var_size_in_bytes); 228 initialize_body(obj, index, hdr_size_in_bytes, tmp1); 229 } else if (con_size_in_bytes <= threshold) { 230 // use explicit null stores 231 int i = hdr_size_in_bytes; 232 if (i < con_size_in_bytes && (con_size_in_bytes % (2 * BytesPerWord))) { // 2: multiplier for BytesPerWord 233 sd(zr, Address(obj, i)); 234 i += BytesPerWord; 235 } 236 for (; i < con_size_in_bytes; i += BytesPerWord) { 237 sd(zr, Address(obj, i)); 238 } 239 } else if (con_size_in_bytes > hdr_size_in_bytes) { 240 block_comment("zero memory"); 241 // use loop to null out the fields 242 int words = (con_size_in_bytes - hdr_size_in_bytes) / BytesPerWord; 243 mv(index, words / 8); // 8: byte size 244 245 const int unroll = 8; // Number of sd(zr) instructions we'll unroll 246 int remainder = words % unroll; 247 la(t0, Address(obj, hdr_size_in_bytes + remainder * BytesPerWord)); 248 249 Label entry_point, loop; 250 j(entry_point); 251 252 bind(loop); 253 sub(index, index, 1); 254 for (int i = -unroll; i < 0; i++) { 255 if (-i == remainder) { 256 bind(entry_point); 257 } 258 sd(zr, Address(t0, i * wordSize)); 259 } 260 if (remainder == 0) { 261 bind(entry_point); 262 } 263 add(t0, t0, unroll * wordSize); 264 bnez(index, loop); 265 } 266 } 267 268 membar(MacroAssembler::StoreStore); 269 270 if (CURRENT_ENV->dtrace_alloc_probes()) { 271 assert(obj == x10, "must be"); 272 far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::dtrace_object_alloc_id))); 273 } 274 275 verify_oop(obj); 276 } 277 278 void C1_MacroAssembler::allocate_array(Register obj, Register len, Register tmp1, Register tmp2, int header_size, int f, Register klass, Label& slow_case) { 279 assert_different_registers(obj, len, tmp1, tmp2, klass); 280 281 // determine alignment mask 282 assert(!(BytesPerWord & 1), "must be multiple of 2 for masking code to work"); 283 284 // check for negative or excessive length 285 mv(t0, (int32_t)max_array_allocation_length); 286 bgeu(len, t0, slow_case, /* is_far */ true); 287 288 const Register arr_size = tmp2; // okay to be the same 289 // align object end 290 mv(arr_size, (int32_t)header_size * BytesPerWord + MinObjAlignmentInBytesMask); 291 shadd(arr_size, len, arr_size, t0, f); 292 andi(arr_size, arr_size, ~(uint)MinObjAlignmentInBytesMask); 293 294 try_allocate(obj, arr_size, 0, tmp1, tmp2, slow_case); 295 296 initialize_header(obj, klass, len, tmp1, tmp2); 297 298 // clear rest of allocated space 299 const Register len_zero = len; 300 initialize_body(obj, arr_size, header_size * BytesPerWord, len_zero); 301 302 membar(MacroAssembler::StoreStore); 303 304 if (CURRENT_ENV->dtrace_alloc_probes()) { 305 assert(obj == x10, "must be"); 306 far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::dtrace_object_alloc_id))); 307 } 308 309 verify_oop(obj); 310 } 311 312 void C1_MacroAssembler::inline_cache_check(Register receiver, Register iCache, Label &L) { 313 verify_oop(receiver); 314 // explicit NULL check not needed since load from [klass_offset] causes a trap 315 // check against inline cache 316 assert(!MacroAssembler::needs_explicit_null_check(oopDesc::klass_offset_in_bytes()), "must add explicit null check"); 317 assert_different_registers(receiver, iCache, t0, t2); 318 cmp_klass(receiver, iCache, t0, t2 /* call-clobbered t2 as a tmp */, L); 319 } 320 321 void C1_MacroAssembler::build_frame(int framesize, int bang_size_in_bytes, int max_monitors) { 322 assert(bang_size_in_bytes >= framesize, "stack bang size incorrect"); 323 // Make sure there is enough stack space for this method's activation. 324 // Note that we do this before creating a frame. 325 generate_stack_overflow_check(bang_size_in_bytes); 326 MacroAssembler::build_frame(framesize); 327 328 // Insert nmethod entry barrier into frame. 329 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 330 bs->nmethod_entry_barrier(this, NULL /* slow_path */, NULL /* continuation */, NULL /* guard */); 331 } 332 333 void C1_MacroAssembler::remove_frame(int framesize) { 334 MacroAssembler::remove_frame(framesize); 335 } 336 337 338 void C1_MacroAssembler::verified_entry(bool breakAtEntry) { 339 // If we have to make this method not-entrant we'll overwrite its 340 // first instruction with a jump. For this action to be legal we 341 // must ensure that this first instruction is a J, JAL or NOP. 342 // Make it a NOP. 343 IncompressibleRegion ir(this); // keep the nop as 4 bytes for patching. 344 assert_alignment(pc()); 345 nop(); // 4 bytes 346 } 347 348 void C1_MacroAssembler::load_parameter(int offset_in_words, Register reg) { 349 // fp + -2: link 350 // + -1: return address 351 // + 0: argument with offset 0 352 // + 1: argument with offset 1 353 // + 2: ... 354 ld(reg, Address(fp, offset_in_words * BytesPerWord)); 355 } 356 357 #ifndef PRODUCT 358 359 void C1_MacroAssembler::verify_stack_oop(int stack_offset) { 360 if (!VerifyOops) { 361 return; 362 } 363 verify_oop_addr(Address(sp, stack_offset)); 364 } 365 366 void C1_MacroAssembler::verify_not_null_oop(Register r) { 367 if (!VerifyOops) return; 368 Label not_null; 369 bnez(r, not_null); 370 stop("non-null oop required"); 371 bind(not_null); 372 verify_oop(r); 373 } 374 375 void C1_MacroAssembler::invalidate_registers(bool inv_x10, bool inv_x9, bool inv_x12, bool inv_x13, bool inv_x14, bool inv_x15) { 376 #ifdef ASSERT 377 static int nn; 378 if (inv_x10) { mv(x10, 0xDEAD); } 379 if (inv_x9) { mv(x9, 0xDEAD); } 380 if (inv_x12) { mv(x12, nn++); } 381 if (inv_x13) { mv(x13, 0xDEAD); } 382 if (inv_x14) { mv(x14, 0xDEAD); } 383 if (inv_x15) { mv(x15, 0xDEAD); } 384 #endif // ASSERT 385 } 386 #endif // ifndef PRODUCT 387 388 typedef void (C1_MacroAssembler::*c1_cond_branch_insn)(Register op1, Register op2, Label& label, bool is_far); 389 typedef void (C1_MacroAssembler::*c1_float_cond_branch_insn)(FloatRegister op1, FloatRegister op2, 390 Label& label, bool is_far, bool is_unordered); 391 392 static c1_cond_branch_insn c1_cond_branch[] = 393 { 394 /* SHORT branches */ 395 (c1_cond_branch_insn)&MacroAssembler::beq, 396 (c1_cond_branch_insn)&MacroAssembler::bne, 397 (c1_cond_branch_insn)&MacroAssembler::blt, 398 (c1_cond_branch_insn)&MacroAssembler::ble, 399 (c1_cond_branch_insn)&MacroAssembler::bge, 400 (c1_cond_branch_insn)&MacroAssembler::bgt, 401 (c1_cond_branch_insn)&MacroAssembler::bleu, // lir_cond_belowEqual 402 (c1_cond_branch_insn)&MacroAssembler::bgeu // lir_cond_aboveEqual 403 }; 404 405 static c1_float_cond_branch_insn c1_float_cond_branch[] = 406 { 407 /* FLOAT branches */ 408 (c1_float_cond_branch_insn)&MacroAssembler::float_beq, 409 (c1_float_cond_branch_insn)&MacroAssembler::float_bne, 410 (c1_float_cond_branch_insn)&MacroAssembler::float_blt, 411 (c1_float_cond_branch_insn)&MacroAssembler::float_ble, 412 (c1_float_cond_branch_insn)&MacroAssembler::float_bge, 413 (c1_float_cond_branch_insn)&MacroAssembler::float_bgt, 414 NULL, // lir_cond_belowEqual 415 NULL, // lir_cond_aboveEqual 416 417 /* DOUBLE branches */ 418 (c1_float_cond_branch_insn)&MacroAssembler::double_beq, 419 (c1_float_cond_branch_insn)&MacroAssembler::double_bne, 420 (c1_float_cond_branch_insn)&MacroAssembler::double_blt, 421 (c1_float_cond_branch_insn)&MacroAssembler::double_ble, 422 (c1_float_cond_branch_insn)&MacroAssembler::double_bge, 423 (c1_float_cond_branch_insn)&MacroAssembler::double_bgt, 424 NULL, // lir_cond_belowEqual 425 NULL // lir_cond_aboveEqual 426 }; 427 428 void C1_MacroAssembler::c1_cmp_branch(int cmpFlag, Register op1, Register op2, Label& label, 429 BasicType type, bool is_far) { 430 if (type == T_OBJECT || type == T_ARRAY) { 431 assert(cmpFlag == lir_cond_equal || cmpFlag == lir_cond_notEqual, "Should be equal or notEqual"); 432 if (cmpFlag == lir_cond_equal) { 433 beq(op1, op2, label, is_far); 434 } else { 435 bne(op1, op2, label, is_far); 436 } 437 } else { 438 assert(cmpFlag >= 0 && cmpFlag < (int)(sizeof(c1_cond_branch) / sizeof(c1_cond_branch[0])), 439 "invalid c1 conditional branch index"); 440 (this->*c1_cond_branch[cmpFlag])(op1, op2, label, is_far); 441 } 442 } 443 444 void C1_MacroAssembler::c1_float_cmp_branch(int cmpFlag, FloatRegister op1, FloatRegister op2, Label& label, 445 bool is_far, bool is_unordered) { 446 assert(cmpFlag >= 0 && 447 cmpFlag < (int)(sizeof(c1_float_cond_branch) / sizeof(c1_float_cond_branch[0])), 448 "invalid c1 float conditional branch index"); 449 (this->*c1_float_cond_branch[cmpFlag])(op1, op2, label, is_far, is_unordered); 450 }