1 /* 2 * Copyright (c) 2003, 2023, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved. 4 * Copyright (c) 2020, 2023, Huawei Technologies Co., Ltd. All rights reserved. 5 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 6 * 7 * This code is free software; you can redistribute it and/or modify it 8 * under the terms of the GNU General Public License version 2 only, as 9 * published by the Free Software Foundation. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 * 25 */ 26 27 #include "precompiled.hpp" 28 #include "asm/macroAssembler.inline.hpp" 29 #include "gc/shared/barrierSet.hpp" 30 #include "gc/shared/barrierSetAssembler.hpp" 31 #include "interp_masm_riscv.hpp" 32 #include "interpreter/interpreter.hpp" 33 #include "interpreter/interpreterRuntime.hpp" 34 #include "logging/log.hpp" 35 #include "oops/arrayOop.hpp" 36 #include "oops/markWord.hpp" 37 #include "oops/method.hpp" 38 #include "oops/methodData.hpp" 39 #include "oops/resolvedFieldEntry.hpp" 40 #include "oops/resolvedIndyEntry.hpp" 41 #include "oops/resolvedMethodEntry.hpp" 42 #include "prims/jvmtiExport.hpp" 43 #include "prims/jvmtiThreadState.hpp" 44 #include "runtime/basicLock.hpp" 45 #include "runtime/frame.inline.hpp" 46 #include "runtime/javaThread.hpp" 47 #include "runtime/safepointMechanism.hpp" 48 #include "runtime/sharedRuntime.hpp" 49 #include "utilities/powerOfTwo.hpp" 50 51 void InterpreterMacroAssembler::narrow(Register result) { 52 // Get method->_constMethod->_result_type 53 ld(t0, Address(fp, frame::interpreter_frame_method_offset * wordSize)); 54 ld(t0, Address(t0, Method::const_offset())); 55 lbu(t0, Address(t0, ConstMethod::result_type_offset())); 56 57 Label done, notBool, notByte, notChar; 58 59 // common case first 60 mv(t1, T_INT); 61 beq(t0, t1, done); 62 63 // mask integer result to narrower return type. 64 mv(t1, T_BOOLEAN); 65 bne(t0, t1, notBool); 66 67 andi(result, result, 0x1); 68 j(done); 69 70 bind(notBool); 71 mv(t1, T_BYTE); 72 bne(t0, t1, notByte); 73 sign_extend(result, result, 8); 74 j(done); 75 76 bind(notByte); 77 mv(t1, T_CHAR); 78 bne(t0, t1, notChar); 79 zero_extend(result, result, 16); 80 j(done); 81 82 bind(notChar); 83 sign_extend(result, result, 16); 84 85 bind(done); 86 sign_extend(result, result, 32); 87 } 88 89 void InterpreterMacroAssembler::jump_to_entry(address entry) { 90 assert(entry != nullptr, "Entry must have been generated by now"); 91 j(entry); 92 } 93 94 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) { 95 if (JvmtiExport::can_pop_frame()) { 96 Label L; 97 // Initiate popframe handling only if it is not already being 98 // processed. If the flag has the popframe_processing bit set, 99 // it means that this code is called *during* popframe handling - we 100 // don't want to reenter. 101 // This method is only called just after the call into the vm in 102 // call_VM_base, so the arg registers are available. 103 lwu(t1, Address(xthread, JavaThread::popframe_condition_offset())); 104 test_bit(t0, t1, exact_log2(JavaThread::popframe_pending_bit)); 105 beqz(t0, L); 106 test_bit(t0, t1, exact_log2(JavaThread::popframe_processing_bit)); 107 bnez(t0, L); 108 // Call Interpreter::remove_activation_preserving_args_entry() to get the 109 // address of the same-named entrypoint in the generated interpreter code. 110 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry)); 111 jr(x10); 112 bind(L); 113 } 114 } 115 116 117 void InterpreterMacroAssembler::load_earlyret_value(TosState state) { 118 ld(x12, Address(xthread, JavaThread::jvmti_thread_state_offset())); 119 const Address tos_addr(x12, JvmtiThreadState::earlyret_tos_offset()); 120 const Address oop_addr(x12, JvmtiThreadState::earlyret_oop_offset()); 121 const Address val_addr(x12, JvmtiThreadState::earlyret_value_offset()); 122 switch (state) { 123 case atos: 124 ld(x10, oop_addr); 125 sd(zr, oop_addr); 126 verify_oop(x10); 127 break; 128 case ltos: 129 ld(x10, val_addr); 130 break; 131 case btos: // fall through 132 case ztos: // fall through 133 case ctos: // fall through 134 case stos: // fall through 135 case itos: 136 lwu(x10, val_addr); 137 break; 138 case ftos: 139 flw(f10, val_addr); 140 break; 141 case dtos: 142 fld(f10, val_addr); 143 break; 144 case vtos: 145 /* nothing to do */ 146 break; 147 default: 148 ShouldNotReachHere(); 149 } 150 // Clean up tos value in the thread object 151 mv(t0, (int)ilgl); 152 sw(t0, tos_addr); 153 sw(zr, val_addr); 154 } 155 156 157 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) { 158 if (JvmtiExport::can_force_early_return()) { 159 Label L; 160 ld(t0, Address(xthread, JavaThread::jvmti_thread_state_offset())); 161 beqz(t0, L); // if thread->jvmti_thread_state() is null then exit 162 163 // Initiate earlyret handling only if it is not already being processed. 164 // If the flag has the earlyret_processing bit set, it means that this code 165 // is called *during* earlyret handling - we don't want to reenter. 166 lwu(t0, Address(t0, JvmtiThreadState::earlyret_state_offset())); 167 mv(t1, JvmtiThreadState::earlyret_pending); 168 bne(t0, t1, L); 169 170 // Call Interpreter::remove_activation_early_entry() to get the address of the 171 // same-named entrypoint in the generated interpreter code. 172 ld(t0, Address(xthread, JavaThread::jvmti_thread_state_offset())); 173 lwu(t0, Address(t0, JvmtiThreadState::earlyret_tos_offset())); 174 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), t0); 175 jr(x10); 176 bind(L); 177 } 178 } 179 180 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) { 181 assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode"); 182 if (AvoidUnalignedAccesses && (bcp_offset % 2)) { 183 lbu(t1, Address(xbcp, bcp_offset)); 184 lbu(reg, Address(xbcp, bcp_offset + 1)); 185 slli(t1, t1, 8); 186 add(reg, reg, t1); 187 } else { 188 lhu(reg, Address(xbcp, bcp_offset)); 189 revb_h_h_u(reg, reg); 190 } 191 } 192 193 void InterpreterMacroAssembler::get_dispatch() { 194 ExternalAddress target((address)Interpreter::dispatch_table()); 195 relocate(target.rspec(), [&] { 196 int32_t offset; 197 la(xdispatch, target.target(), offset); 198 addi(xdispatch, xdispatch, offset); 199 }); 200 } 201 202 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index, 203 Register tmp, 204 int bcp_offset, 205 size_t index_size) { 206 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); 207 if (index_size == sizeof(u2)) { 208 if (AvoidUnalignedAccesses) { 209 assert_different_registers(index, tmp); 210 load_unsigned_byte(index, Address(xbcp, bcp_offset)); 211 load_unsigned_byte(tmp, Address(xbcp, bcp_offset + 1)); 212 slli(tmp, tmp, 8); 213 add(index, index, tmp); 214 } else { 215 load_unsigned_short(index, Address(xbcp, bcp_offset)); 216 } 217 } else if (index_size == sizeof(u4)) { 218 load_int_misaligned(index, Address(xbcp, bcp_offset), tmp, false); 219 } else if (index_size == sizeof(u1)) { 220 load_unsigned_byte(index, Address(xbcp, bcp_offset)); 221 } else { 222 ShouldNotReachHere(); 223 } 224 } 225 226 // Load object from cpool->resolved_references(index) 227 void InterpreterMacroAssembler::load_resolved_reference_at_index( 228 Register result, Register index, Register tmp) { 229 assert_different_registers(result, index); 230 231 get_constant_pool(result); 232 // Load pointer for resolved_references[] objArray 233 ld(result, Address(result, ConstantPool::cache_offset())); 234 ld(result, Address(result, ConstantPoolCache::resolved_references_offset())); 235 resolve_oop_handle(result, tmp, t1); 236 // Add in the index 237 addi(index, index, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop); 238 shadd(result, index, result, index, LogBytesPerHeapOop); 239 load_heap_oop(result, Address(result, 0), tmp, t1); 240 } 241 242 void InterpreterMacroAssembler::load_resolved_klass_at_offset( 243 Register cpool, Register index, Register klass, Register temp) { 244 shadd(temp, index, cpool, temp, LogBytesPerWord); 245 lhu(temp, Address(temp, sizeof(ConstantPool))); // temp = resolved_klass_index 246 ld(klass, Address(cpool, ConstantPool::resolved_klasses_offset())); // klass = cpool->_resolved_klasses 247 shadd(klass, temp, klass, temp, LogBytesPerWord); 248 ld(klass, Address(klass, Array<Klass*>::base_offset_in_bytes())); 249 } 250 251 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a 252 // subtype of super_klass. 253 // 254 // Args: 255 // x10: superklass 256 // Rsub_klass: subklass 257 // 258 // Kills: 259 // x12, x15 260 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, 261 Label& ok_is_subtype) { 262 assert(Rsub_klass != x10, "x10 holds superklass"); 263 assert(Rsub_klass != x12, "x12 holds 2ndary super array length"); 264 assert(Rsub_klass != x15, "x15 holds 2ndary super array scan ptr"); 265 266 // Profile the not-null value's klass. 267 profile_typecheck(x12, Rsub_klass, x15); // blows x12, reloads x15 268 269 // Do the check. 270 check_klass_subtype(Rsub_klass, x10, x12, ok_is_subtype); // blows x12 271 } 272 273 // Java Expression Stack 274 275 void InterpreterMacroAssembler::pop_ptr(Register r) { 276 ld(r, Address(esp, 0)); 277 addi(esp, esp, wordSize); 278 } 279 280 void InterpreterMacroAssembler::pop_i(Register r) { 281 lw(r, Address(esp, 0)); // lw do signed extended 282 addi(esp, esp, wordSize); 283 } 284 285 void InterpreterMacroAssembler::pop_l(Register r) { 286 ld(r, Address(esp, 0)); 287 addi(esp, esp, 2 * Interpreter::stackElementSize); 288 } 289 290 void InterpreterMacroAssembler::push_ptr(Register r) { 291 addi(esp, esp, -wordSize); 292 sd(r, Address(esp, 0)); 293 } 294 295 void InterpreterMacroAssembler::push_i(Register r) { 296 addi(esp, esp, -wordSize); 297 sign_extend(r, r, 32); 298 sd(r, Address(esp, 0)); 299 } 300 301 void InterpreterMacroAssembler::push_l(Register r) { 302 addi(esp, esp, -2 * wordSize); 303 sd(zr, Address(esp, wordSize)); 304 sd(r, Address(esp)); 305 } 306 307 void InterpreterMacroAssembler::pop_f(FloatRegister r) { 308 flw(r, Address(esp, 0)); 309 addi(esp, esp, wordSize); 310 } 311 312 void InterpreterMacroAssembler::pop_d(FloatRegister r) { 313 fld(r, Address(esp, 0)); 314 addi(esp, esp, 2 * Interpreter::stackElementSize); 315 } 316 317 void InterpreterMacroAssembler::push_f(FloatRegister r) { 318 addi(esp, esp, -wordSize); 319 fsw(r, Address(esp, 0)); 320 } 321 322 void InterpreterMacroAssembler::push_d(FloatRegister r) { 323 addi(esp, esp, -2 * wordSize); 324 fsd(r, Address(esp, 0)); 325 } 326 327 void InterpreterMacroAssembler::pop(TosState state) { 328 switch (state) { 329 case atos: 330 pop_ptr(); 331 verify_oop(x10); 332 break; 333 case btos: // fall through 334 case ztos: // fall through 335 case ctos: // fall through 336 case stos: // fall through 337 case itos: 338 pop_i(); 339 break; 340 case ltos: 341 pop_l(); 342 break; 343 case ftos: 344 pop_f(); 345 break; 346 case dtos: 347 pop_d(); 348 break; 349 case vtos: 350 /* nothing to do */ 351 break; 352 default: 353 ShouldNotReachHere(); 354 } 355 } 356 357 void InterpreterMacroAssembler::push(TosState state) { 358 switch (state) { 359 case atos: 360 verify_oop(x10); 361 push_ptr(); 362 break; 363 case btos: // fall through 364 case ztos: // fall through 365 case ctos: // fall through 366 case stos: // fall through 367 case itos: 368 push_i(); 369 break; 370 case ltos: 371 push_l(); 372 break; 373 case ftos: 374 push_f(); 375 break; 376 case dtos: 377 push_d(); 378 break; 379 case vtos: 380 /* nothing to do */ 381 break; 382 default: 383 ShouldNotReachHere(); 384 } 385 } 386 387 // Helpers for swap and dup 388 void InterpreterMacroAssembler::load_ptr(int n, Register val) { 389 ld(val, Address(esp, Interpreter::expr_offset_in_bytes(n))); 390 } 391 392 void InterpreterMacroAssembler::store_ptr(int n, Register val) { 393 sd(val, Address(esp, Interpreter::expr_offset_in_bytes(n))); 394 } 395 396 void InterpreterMacroAssembler::load_float(Address src) { 397 flw(f10, src); 398 } 399 400 void InterpreterMacroAssembler::load_double(Address src) { 401 fld(f10, src); 402 } 403 404 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() { 405 // set sender sp 406 mv(x19_sender_sp, sp); 407 // record last_sp 408 sub(t0, esp, fp); 409 srai(t0, t0, Interpreter::logStackElementSize); 410 sd(t0, Address(fp, frame::interpreter_frame_last_sp_offset * wordSize)); 411 } 412 413 // Jump to from_interpreted entry of a call unless single stepping is possible 414 // in this thread in which case we must call the i2i entry 415 void InterpreterMacroAssembler::jump_from_interpreted(Register method) { 416 prepare_to_jump_from_interpreted(); 417 if (JvmtiExport::can_post_interpreter_events()) { 418 Label run_compiled_code; 419 // JVMTI events, such as single-stepping, are implemented partly by avoiding running 420 // compiled code in threads for which the event is enabled. Check here for 421 // interp_only_mode if these events CAN be enabled. 422 lwu(t0, Address(xthread, JavaThread::interp_only_mode_offset())); 423 beqz(t0, run_compiled_code); 424 ld(t0, Address(method, Method::interpreter_entry_offset())); 425 jr(t0); 426 bind(run_compiled_code); 427 } 428 429 ld(t0, Address(method, Method::from_interpreted_offset())); 430 jr(t0); 431 } 432 433 // The following two routines provide a hook so that an implementation 434 // can schedule the dispatch in two parts. amd64 does not do this. 435 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) { 436 } 437 438 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) { 439 dispatch_next(state, step); 440 } 441 442 void InterpreterMacroAssembler::dispatch_base(TosState state, 443 address* table, 444 bool verifyoop, 445 bool generate_poll, 446 Register Rs) { 447 // Pay attention to the argument Rs, which is acquiesce in t0. 448 if (VerifyActivationFrameSize) { 449 Unimplemented(); 450 } 451 if (verifyoop && state == atos) { 452 verify_oop(x10); 453 } 454 455 Label safepoint; 456 address* const safepoint_table = Interpreter::safept_table(state); 457 bool needs_thread_local_poll = generate_poll && table != safepoint_table; 458 459 if (needs_thread_local_poll) { 460 NOT_PRODUCT(block_comment("Thread-local Safepoint poll")); 461 ld(t1, Address(xthread, JavaThread::polling_word_offset())); 462 test_bit(t1, t1, exact_log2(SafepointMechanism::poll_bit())); 463 bnez(t1, safepoint); 464 } 465 if (table == Interpreter::dispatch_table(state)) { 466 mv(t1, Interpreter::distance_from_dispatch_table(state)); 467 add(t1, Rs, t1); 468 shadd(t1, t1, xdispatch, t1, 3); 469 } else { 470 mv(t1, (address)table); 471 shadd(t1, Rs, t1, Rs, 3); 472 } 473 ld(t1, Address(t1)); 474 jr(t1); 475 476 if (needs_thread_local_poll) { 477 bind(safepoint); 478 la(t1, ExternalAddress((address)safepoint_table)); 479 shadd(t1, Rs, t1, Rs, 3); 480 ld(t1, Address(t1)); 481 jr(t1); 482 } 483 } 484 485 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll, Register Rs) { 486 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll, Rs); 487 } 488 489 void InterpreterMacroAssembler::dispatch_only_normal(TosState state, Register Rs) { 490 dispatch_base(state, Interpreter::normal_table(state), true, false, Rs); 491 } 492 493 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state, Register Rs) { 494 dispatch_base(state, Interpreter::normal_table(state), false, false, Rs); 495 } 496 497 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) { 498 // load next bytecode 499 load_unsigned_byte(t0, Address(xbcp, step)); 500 add(xbcp, xbcp, step); 501 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll); 502 } 503 504 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) { 505 // load current bytecode 506 lbu(t0, Address(xbcp, 0)); 507 dispatch_base(state, table); 508 } 509 510 // remove activation 511 // 512 // Apply stack watermark barrier. 513 // Unlock the receiver if this is a synchronized method. 514 // Unlock any Java monitors from synchronized blocks. 515 // Remove the activation from the stack. 516 // 517 // If there are locked Java monitors 518 // If throw_monitor_exception 519 // throws IllegalMonitorStateException 520 // Else if install_monitor_exception 521 // installs IllegalMonitorStateException 522 // Else 523 // no error processing 524 void InterpreterMacroAssembler::remove_activation( 525 TosState state, 526 bool throw_monitor_exception, 527 bool install_monitor_exception, 528 bool notify_jvmdi) { 529 // Note: Registers x13 may be in use for the 530 // result check if synchronized method 531 Label unlocked, unlock, no_unlock; 532 533 // The below poll is for the stack watermark barrier. It allows fixing up frames lazily, 534 // that would normally not be safe to use. Such bad returns into unsafe territory of 535 // the stack, will call InterpreterRuntime::at_unwind. 536 Label slow_path; 537 Label fast_path; 538 safepoint_poll(slow_path, true /* at_return */, false /* acquire */, false /* in_nmethod */); 539 j(fast_path); 540 541 bind(slow_path); 542 push(state); 543 set_last_Java_frame(esp, fp, (address)pc(), t0); 544 super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), xthread); 545 reset_last_Java_frame(true); 546 pop(state); 547 548 bind(fast_path); 549 550 // get the value of _do_not_unlock_if_synchronized into x13 551 const Address do_not_unlock_if_synchronized(xthread, 552 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); 553 lbu(x13, do_not_unlock_if_synchronized); 554 sb(zr, do_not_unlock_if_synchronized); // reset the flag 555 556 // get method access flags 557 ld(x11, Address(fp, frame::interpreter_frame_method_offset * wordSize)); 558 ld(x12, Address(x11, Method::access_flags_offset())); 559 test_bit(t0, x12, exact_log2(JVM_ACC_SYNCHRONIZED)); 560 beqz(t0, unlocked); 561 562 // Don't unlock anything if the _do_not_unlock_if_synchronized flag 563 // is set. 564 bnez(x13, no_unlock); 565 566 // unlock monitor 567 push(state); // save result 568 569 // BasicObjectLock will be first in list, since this is a 570 // synchronized method. However, need to check that the object has 571 // not been unlocked by an explicit monitorexit bytecode. 572 const Address monitor(fp, frame::interpreter_frame_initial_sp_offset * 573 wordSize - (int) sizeof(BasicObjectLock)); 574 // We use c_rarg1 so that if we go slow path it will be the correct 575 // register for unlock_object to pass to VM directly 576 la(c_rarg1, monitor); // address of first monitor 577 578 ld(x10, Address(c_rarg1, BasicObjectLock::obj_offset())); 579 bnez(x10, unlock); 580 581 pop(state); 582 if (throw_monitor_exception) { 583 // Entry already unlocked, need to throw exception 584 call_VM(noreg, CAST_FROM_FN_PTR(address, 585 InterpreterRuntime::throw_illegal_monitor_state_exception)); 586 should_not_reach_here(); 587 } else { 588 // Monitor already unlocked during a stack unroll. If requested, 589 // install an illegal_monitor_state_exception. Continue with 590 // stack unrolling. 591 if (install_monitor_exception) { 592 call_VM(noreg, CAST_FROM_FN_PTR(address, 593 InterpreterRuntime::new_illegal_monitor_state_exception)); 594 } 595 j(unlocked); 596 } 597 598 bind(unlock); 599 unlock_object(c_rarg1); 600 pop(state); 601 602 // Check that for block-structured locking (i.e., that all locked 603 // objects has been unlocked) 604 bind(unlocked); 605 606 // x10: Might contain return value 607 608 // Check that all monitors are unlocked 609 { 610 Label loop, exception, entry, restart; 611 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 612 const Address monitor_block_top( 613 fp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 614 const Address monitor_block_bot( 615 fp, frame::interpreter_frame_initial_sp_offset * wordSize); 616 617 bind(restart); 618 // We use c_rarg1 so that if we go slow path it will be the correct 619 // register for unlock_object to pass to VM directly 620 ld(c_rarg1, monitor_block_top); // derelativize pointer 621 shadd(c_rarg1, c_rarg1, fp, c_rarg1, LogBytesPerWord); 622 // c_rarg1 points to current entry, starting with top-most entry 623 624 la(x9, monitor_block_bot); // points to word before bottom of 625 // monitor block 626 627 j(entry); 628 629 // Entry already locked, need to throw exception 630 bind(exception); 631 632 if (throw_monitor_exception) { 633 // Throw exception 634 MacroAssembler::call_VM(noreg, 635 CAST_FROM_FN_PTR(address, InterpreterRuntime:: 636 throw_illegal_monitor_state_exception)); 637 638 should_not_reach_here(); 639 } else { 640 // Stack unrolling. Unlock object and install illegal_monitor_exception. 641 // Unlock does not block, so don't have to worry about the frame. 642 // We don't have to preserve c_rarg1 since we are going to throw an exception. 643 644 push(state); 645 unlock_object(c_rarg1); 646 pop(state); 647 648 if (install_monitor_exception) { 649 call_VM(noreg, CAST_FROM_FN_PTR(address, 650 InterpreterRuntime:: 651 new_illegal_monitor_state_exception)); 652 } 653 654 j(restart); 655 } 656 657 bind(loop); 658 // check if current entry is used 659 add(t0, c_rarg1, in_bytes(BasicObjectLock::obj_offset())); 660 ld(t0, Address(t0, 0)); 661 bnez(t0, exception); 662 663 add(c_rarg1, c_rarg1, entry_size); // otherwise advance to next entry 664 bind(entry); 665 bne(c_rarg1, x9, loop); // check if bottom reached if not at bottom then check this entry 666 } 667 668 bind(no_unlock); 669 670 // jvmti support 671 if (notify_jvmdi) { 672 notify_method_exit(state, NotifyJVMTI); // preserve TOSCA 673 674 } else { 675 notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA 676 } 677 678 // remove activation 679 // get sender esp 680 ld(t1, 681 Address(fp, frame::interpreter_frame_sender_sp_offset * wordSize)); 682 if (StackReservedPages > 0) { 683 // testing if reserved zone needs to be re-enabled 684 Label no_reserved_zone_enabling; 685 686 // check if already enabled - if so no re-enabling needed 687 assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size"); 688 lw(t0, Address(xthread, JavaThread::stack_guard_state_offset())); 689 subw(t0, t0, StackOverflow::stack_guard_enabled); 690 beqz(t0, no_reserved_zone_enabling); 691 692 ld(t0, Address(xthread, JavaThread::reserved_stack_activation_offset())); 693 ble(t1, t0, no_reserved_zone_enabling); 694 695 call_VM_leaf( 696 CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), xthread); 697 call_VM(noreg, CAST_FROM_FN_PTR(address, 698 InterpreterRuntime::throw_delayed_StackOverflowError)); 699 should_not_reach_here(); 700 701 bind(no_reserved_zone_enabling); 702 } 703 704 // restore sender esp 705 mv(esp, t1); 706 707 // remove frame anchor 708 leave(); 709 // If we're returning to interpreted code we will shortly be 710 // adjusting SP to allow some space for ESP. If we're returning to 711 // compiled code the saved sender SP was saved in sender_sp, so this 712 // restores it. 713 andi(sp, esp, -16); 714 } 715 716 // Lock object 717 // 718 // Args: 719 // c_rarg1: BasicObjectLock to be used for locking 720 // 721 // Kills: 722 // x10 723 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5, .. (param regs) 724 // t0, t1 (temp regs) 725 void InterpreterMacroAssembler::lock_object(Register lock_reg) 726 { 727 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1"); 728 if (LockingMode == LM_MONITOR) { 729 call_VM(noreg, 730 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 731 lock_reg); 732 } else { 733 Label count, done; 734 735 const Register swap_reg = x10; 736 const Register tmp = c_rarg2; 737 const Register obj_reg = c_rarg3; // Will contain the oop 738 const Register tmp2 = c_rarg4; 739 const Register tmp3 = c_rarg5; 740 741 const int obj_offset = in_bytes(BasicObjectLock::obj_offset()); 742 const int lock_offset = in_bytes(BasicObjectLock::lock_offset()); 743 const int mark_offset = lock_offset + 744 BasicLock::displaced_header_offset_in_bytes(); 745 746 Label slow_case; 747 748 // Load object pointer into obj_reg c_rarg3 749 ld(obj_reg, Address(lock_reg, obj_offset)); 750 751 if (DiagnoseSyncOnValueBasedClasses != 0) { 752 load_klass(tmp, obj_reg); 753 lwu(tmp, Address(tmp, Klass::access_flags_offset())); 754 test_bit(tmp, tmp, exact_log2(JVM_ACC_IS_VALUE_BASED_CLASS)); 755 bnez(tmp, slow_case); 756 } 757 758 if (LockingMode == LM_LIGHTWEIGHT) { 759 lightweight_lock(obj_reg, tmp, tmp2, tmp3, slow_case); 760 j(count); 761 } else if (LockingMode == LM_LEGACY) { 762 // Load (object->mark() | 1) into swap_reg 763 ld(t0, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 764 ori(swap_reg, t0, 1); 765 766 // Save (object->mark() | 1) into BasicLock's displaced header 767 sd(swap_reg, Address(lock_reg, mark_offset)); 768 769 assert(lock_offset == 0, 770 "displached header must be first word in BasicObjectLock"); 771 772 cmpxchg_obj_header(swap_reg, lock_reg, obj_reg, tmp, count, /*fallthrough*/nullptr); 773 774 // Test if the oopMark is an obvious stack pointer, i.e., 775 // 1) (mark & 7) == 0, and 776 // 2) sp <= mark < mark + os::pagesize() 777 // 778 // These 3 tests can be done by evaluating the following 779 // expression: ((mark - sp) & (7 - os::vm_page_size())), 780 // assuming both stack pointer and pagesize have their 781 // least significant 3 bits clear. 782 // NOTE: the oopMark is in swap_reg x10 as the result of cmpxchg 783 sub(swap_reg, swap_reg, sp); 784 mv(t0, (int64_t)(7 - (int)os::vm_page_size())); 785 andr(swap_reg, swap_reg, t0); 786 787 // Save the test result, for recursive case, the result is zero 788 sd(swap_reg, Address(lock_reg, mark_offset)); 789 beqz(swap_reg, count); 790 } 791 792 bind(slow_case); 793 794 // Call the runtime routine for slow case 795 if (LockingMode == LM_LIGHTWEIGHT) { 796 call_VM(noreg, 797 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter_obj), 798 obj_reg); 799 } else { 800 call_VM(noreg, 801 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 802 lock_reg); 803 } 804 j(done); 805 806 bind(count); 807 increment(Address(xthread, JavaThread::held_monitor_count_offset())); 808 809 bind(done); 810 } 811 } 812 813 814 // Unlocks an object. Used in monitorexit bytecode and 815 // remove_activation. Throws an IllegalMonitorException if object is 816 // not locked by current thread. 817 // 818 // Args: 819 // c_rarg1: BasicObjectLock for lock 820 // 821 // Kills: 822 // x10 823 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, ... (param regs) 824 // t0, t1 (temp regs) 825 void InterpreterMacroAssembler::unlock_object(Register lock_reg) 826 { 827 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1"); 828 829 if (LockingMode == LM_MONITOR) { 830 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 831 } else { 832 Label count, done; 833 834 const Register swap_reg = x10; 835 const Register header_reg = c_rarg2; // Will contain the old oopMark 836 const Register obj_reg = c_rarg3; // Will contain the oop 837 const Register tmp_reg = c_rarg4; // Temporary used by lightweight_unlock 838 839 save_bcp(); // Save in case of exception 840 841 if (LockingMode != LM_LIGHTWEIGHT) { 842 // Convert from BasicObjectLock structure to object and BasicLock 843 // structure Store the BasicLock address into x10 844 la(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset())); 845 } 846 847 // Load oop into obj_reg(c_rarg3) 848 ld(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); 849 850 // Free entry 851 sd(zr, Address(lock_reg, BasicObjectLock::obj_offset())); 852 853 if (LockingMode == LM_LIGHTWEIGHT) { 854 Label slow_case; 855 lightweight_unlock(obj_reg, header_reg, swap_reg, tmp_reg, slow_case); 856 j(count); 857 858 bind(slow_case); 859 } else if (LockingMode == LM_LEGACY) { 860 // Load the old header from BasicLock structure 861 ld(header_reg, Address(swap_reg, 862 BasicLock::displaced_header_offset_in_bytes())); 863 864 // Test for recursion 865 beqz(header_reg, count); 866 867 // Atomic swap back the old header 868 cmpxchg_obj_header(swap_reg, header_reg, obj_reg, tmp_reg, count, /*fallthrough*/nullptr); 869 } 870 871 // Call the runtime routine for slow case. 872 sd(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); // restore obj 873 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 874 875 j(done); 876 877 bind(count); 878 decrement(Address(xthread, JavaThread::held_monitor_count_offset())); 879 880 bind(done); 881 882 restore_bcp(); 883 } 884 } 885 886 887 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, 888 Label& zero_continue) { 889 assert(ProfileInterpreter, "must be profiling interpreter"); 890 ld(mdp, Address(fp, frame::interpreter_frame_mdp_offset * wordSize)); 891 beqz(mdp, zero_continue); 892 } 893 894 // Set the method data pointer for the current bcp. 895 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() { 896 assert(ProfileInterpreter, "must be profiling interpreter"); 897 Label set_mdp; 898 push_reg(RegSet::of(x10, x11), sp); // save x10, x11 899 900 // Test MDO to avoid the call if it is null. 901 ld(x10, Address(xmethod, in_bytes(Method::method_data_offset()))); 902 beqz(x10, set_mdp); 903 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), xmethod, xbcp); 904 // x10: mdi 905 // mdo is guaranteed to be non-zero here, we checked for it before the call. 906 ld(x11, Address(xmethod, in_bytes(Method::method_data_offset()))); 907 la(x11, Address(x11, in_bytes(MethodData::data_offset()))); 908 add(x10, x11, x10); 909 sd(x10, Address(fp, frame::interpreter_frame_mdp_offset * wordSize)); 910 bind(set_mdp); 911 pop_reg(RegSet::of(x10, x11), sp); 912 } 913 914 void InterpreterMacroAssembler::verify_method_data_pointer() { 915 assert(ProfileInterpreter, "must be profiling interpreter"); 916 #ifdef ASSERT 917 Label verify_continue; 918 add(sp, sp, -4 * wordSize); 919 sd(x10, Address(sp, 0)); 920 sd(x11, Address(sp, wordSize)); 921 sd(x12, Address(sp, 2 * wordSize)); 922 sd(x13, Address(sp, 3 * wordSize)); 923 test_method_data_pointer(x13, verify_continue); // If mdp is zero, continue 924 get_method(x11); 925 926 // If the mdp is valid, it will point to a DataLayout header which is 927 // consistent with the bcp. The converse is highly probable also. 928 lh(x12, Address(x13, in_bytes(DataLayout::bci_offset()))); 929 ld(t0, Address(x11, Method::const_offset())); 930 add(x12, x12, t0); 931 la(x12, Address(x12, ConstMethod::codes_offset())); 932 beq(x12, xbcp, verify_continue); 933 // x10: method 934 // xbcp: bcp // xbcp == 22 935 // x13: mdp 936 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), 937 x11, xbcp, x13); 938 bind(verify_continue); 939 ld(x10, Address(sp, 0)); 940 ld(x11, Address(sp, wordSize)); 941 ld(x12, Address(sp, 2 * wordSize)); 942 ld(x13, Address(sp, 3 * wordSize)); 943 add(sp, sp, 4 * wordSize); 944 #endif // ASSERT 945 } 946 947 948 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, 949 int constant, 950 Register value) { 951 assert(ProfileInterpreter, "must be profiling interpreter"); 952 Address data(mdp_in, constant); 953 sd(value, data); 954 } 955 956 957 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 958 int constant, 959 bool decrement) { 960 increment_mdp_data_at(mdp_in, noreg, constant, decrement); 961 } 962 963 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 964 Register reg, 965 int constant, 966 bool decrement) { 967 assert(ProfileInterpreter, "must be profiling interpreter"); 968 // %%% this does 64bit counters at best it is wasting space 969 // at worst it is a rare bug when counters overflow 970 971 assert_different_registers(t1, t0, mdp_in, reg); 972 973 Address addr1(mdp_in, constant); 974 Address addr2(t1, 0); 975 Address &addr = addr1; 976 if (reg != noreg) { 977 la(t1, addr1); 978 add(t1, t1, reg); 979 addr = addr2; 980 } 981 982 if (decrement) { 983 ld(t0, addr); 984 addi(t0, t0, -DataLayout::counter_increment); 985 Label L; 986 bltz(t0, L); // skip store if counter underflow 987 sd(t0, addr); 988 bind(L); 989 } else { 990 assert(DataLayout::counter_increment == 1, 991 "flow-free idiom only works with 1"); 992 ld(t0, addr); 993 addi(t0, t0, DataLayout::counter_increment); 994 Label L; 995 blez(t0, L); // skip store if counter overflow 996 sd(t0, addr); 997 bind(L); 998 } 999 } 1000 1001 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, 1002 int flag_byte_constant) { 1003 assert(ProfileInterpreter, "must be profiling interpreter"); 1004 int flags_offset = in_bytes(DataLayout::flags_offset()); 1005 // Set the flag 1006 lbu(t1, Address(mdp_in, flags_offset)); 1007 ori(t1, t1, flag_byte_constant); 1008 sb(t1, Address(mdp_in, flags_offset)); 1009 } 1010 1011 1012 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in, 1013 int offset, 1014 Register value, 1015 Register test_value_out, 1016 Label& not_equal_continue) { 1017 assert(ProfileInterpreter, "must be profiling interpreter"); 1018 if (test_value_out == noreg) { 1019 ld(t1, Address(mdp_in, offset)); 1020 bne(value, t1, not_equal_continue); 1021 } else { 1022 // Put the test value into a register, so caller can use it: 1023 ld(test_value_out, Address(mdp_in, offset)); 1024 bne(value, test_value_out, not_equal_continue); 1025 } 1026 } 1027 1028 1029 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1030 int offset_of_disp) { 1031 assert(ProfileInterpreter, "must be profiling interpreter"); 1032 ld(t1, Address(mdp_in, offset_of_disp)); 1033 add(mdp_in, mdp_in, t1); 1034 sd(mdp_in, Address(fp, frame::interpreter_frame_mdp_offset * wordSize)); 1035 } 1036 1037 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1038 Register reg, 1039 int offset_of_disp) { 1040 assert(ProfileInterpreter, "must be profiling interpreter"); 1041 add(t1, mdp_in, reg); 1042 ld(t1, Address(t1, offset_of_disp)); 1043 add(mdp_in, mdp_in, t1); 1044 sd(mdp_in, Address(fp, frame::interpreter_frame_mdp_offset * wordSize)); 1045 } 1046 1047 1048 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, 1049 int constant) { 1050 assert(ProfileInterpreter, "must be profiling interpreter"); 1051 addi(mdp_in, mdp_in, (unsigned)constant); 1052 sd(mdp_in, Address(fp, frame::interpreter_frame_mdp_offset * wordSize)); 1053 } 1054 1055 1056 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) { 1057 assert(ProfileInterpreter, "must be profiling interpreter"); 1058 1059 // save/restore across call_VM 1060 addi(sp, sp, -2 * wordSize); 1061 sd(zr, Address(sp, 0)); 1062 sd(return_bci, Address(sp, wordSize)); 1063 call_VM(noreg, 1064 CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), 1065 return_bci); 1066 ld(zr, Address(sp, 0)); 1067 ld(return_bci, Address(sp, wordSize)); 1068 addi(sp, sp, 2 * wordSize); 1069 } 1070 1071 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, 1072 Register bumped_count) { 1073 if (ProfileInterpreter) { 1074 Label profile_continue; 1075 1076 // If no method data exists, go to profile_continue. 1077 // Otherwise, assign to mdp 1078 test_method_data_pointer(mdp, profile_continue); 1079 1080 // We are taking a branch. Increment the taken count. 1081 Address data(mdp, in_bytes(JumpData::taken_offset())); 1082 ld(bumped_count, data); 1083 assert(DataLayout::counter_increment == 1, 1084 "flow-free idiom only works with 1"); 1085 addi(bumped_count, bumped_count, DataLayout::counter_increment); 1086 Label L; 1087 // eg: bumped_count=0x7fff ffff ffff ffff + 1 < 0. so we use <= 0; 1088 blez(bumped_count, L); // skip store if counter overflow, 1089 sd(bumped_count, data); 1090 bind(L); 1091 // The method data pointer needs to be updated to reflect the new target. 1092 update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset())); 1093 bind(profile_continue); 1094 } 1095 } 1096 1097 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) { 1098 if (ProfileInterpreter) { 1099 Label profile_continue; 1100 1101 // If no method data exists, go to profile_continue. 1102 test_method_data_pointer(mdp, profile_continue); 1103 1104 // We are taking a branch. Increment the not taken count. 1105 increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset())); 1106 1107 // The method data pointer needs to be updated to correspond to 1108 // the next bytecode 1109 update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size())); 1110 bind(profile_continue); 1111 } 1112 } 1113 1114 void InterpreterMacroAssembler::profile_call(Register mdp) { 1115 if (ProfileInterpreter) { 1116 Label profile_continue; 1117 1118 // If no method data exists, go to profile_continue. 1119 test_method_data_pointer(mdp, profile_continue); 1120 1121 // We are making a call. Increment the count. 1122 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1123 1124 // The method data pointer needs to be updated to reflect the new target. 1125 update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size())); 1126 bind(profile_continue); 1127 } 1128 } 1129 1130 void InterpreterMacroAssembler::profile_final_call(Register mdp) { 1131 if (ProfileInterpreter) { 1132 Label profile_continue; 1133 1134 // If no method data exists, go to profile_continue. 1135 test_method_data_pointer(mdp, profile_continue); 1136 1137 // We are making a call. Increment the count. 1138 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1139 1140 // The method data pointer needs to be updated to reflect the new target. 1141 update_mdp_by_constant(mdp, 1142 in_bytes(VirtualCallData:: 1143 virtual_call_data_size())); 1144 bind(profile_continue); 1145 } 1146 } 1147 1148 1149 void InterpreterMacroAssembler::profile_virtual_call(Register receiver, 1150 Register mdp, 1151 Register reg2, 1152 bool receiver_can_be_null) { 1153 if (ProfileInterpreter) { 1154 Label profile_continue; 1155 1156 // If no method data exists, go to profile_continue. 1157 test_method_data_pointer(mdp, profile_continue); 1158 1159 Label skip_receiver_profile; 1160 if (receiver_can_be_null) { 1161 Label not_null; 1162 // We are making a call. Increment the count for null receiver. 1163 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1164 j(skip_receiver_profile); 1165 bind(not_null); 1166 } 1167 1168 // Record the receiver type. 1169 record_klass_in_profile(receiver, mdp, reg2); 1170 bind(skip_receiver_profile); 1171 1172 // The method data pointer needs to be updated to reflect the new target. 1173 1174 update_mdp_by_constant(mdp, 1175 in_bytes(VirtualCallData:: 1176 virtual_call_data_size())); 1177 bind(profile_continue); 1178 } 1179 } 1180 1181 // This routine creates a state machine for updating the multi-row 1182 // type profile at a virtual call site (or other type-sensitive bytecode). 1183 // The machine visits each row (of receiver/count) until the receiver type 1184 // is found, or until it runs out of rows. At the same time, it remembers 1185 // the location of the first empty row. (An empty row records null for its 1186 // receiver, and can be allocated for a newly-observed receiver type.) 1187 // Because there are two degrees of freedom in the state, a simple linear 1188 // search will not work; it must be a decision tree. Hence this helper 1189 // function is recursive, to generate the required tree structured code. 1190 // It's the interpreter, so we are trading off code space for speed. 1191 // See below for example code. 1192 void InterpreterMacroAssembler::record_klass_in_profile_helper( 1193 Register receiver, Register mdp, 1194 Register reg2, Label& done) { 1195 if (TypeProfileWidth == 0) { 1196 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1197 } else { 1198 record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth, 1199 &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset); 1200 } 1201 } 1202 1203 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp, 1204 Register reg2, int start_row, Label& done, int total_rows, 1205 OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn) { 1206 int last_row = total_rows - 1; 1207 assert(start_row <= last_row, "must be work left to do"); 1208 // Test this row for both the item and for null. 1209 // Take any of three different outcomes: 1210 // 1. found item => increment count and goto done 1211 // 2. found null => keep looking for case 1, maybe allocate this cell 1212 // 3. found something else => keep looking for cases 1 and 2 1213 // Case 3 is handled by a recursive call. 1214 for (int row = start_row; row <= last_row; row++) { 1215 Label next_test; 1216 bool test_for_null_also = (row == start_row); 1217 1218 // See if the item is item[n]. 1219 int item_offset = in_bytes(item_offset_fn(row)); 1220 test_mdp_data_at(mdp, item_offset, item, 1221 (test_for_null_also ? reg2 : noreg), 1222 next_test); 1223 // (Reg2 now contains the item from the CallData.) 1224 1225 // The item is item[n]. Increment count[n]. 1226 int count_offset = in_bytes(item_count_offset_fn(row)); 1227 increment_mdp_data_at(mdp, count_offset); 1228 j(done); 1229 bind(next_test); 1230 1231 if (test_for_null_also) { 1232 Label found_null; 1233 // Failed the equality check on item[n]... Test for null. 1234 if (start_row == last_row) { 1235 // The only thing left to do is handle the null case. 1236 beqz(reg2, found_null); 1237 // Item did not match any saved item and there is no empty row for it. 1238 // Increment total counter to indicate polymorphic case. 1239 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1240 j(done); 1241 bind(found_null); 1242 break; 1243 } 1244 // Since null is rare, make it be the branch-taken case. 1245 beqz(reg2, found_null); 1246 1247 // Put all the "Case 3" tests here. 1248 record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows, 1249 item_offset_fn, item_count_offset_fn); 1250 1251 // Found a null. Keep searching for a matching item, 1252 // but remember that this is an empty (unused) slot. 1253 bind(found_null); 1254 } 1255 } 1256 1257 // In the fall-through case, we found no matching item, but we 1258 // observed the item[start_row] is null. 1259 // Fill in the item field and increment the count. 1260 int item_offset = in_bytes(item_offset_fn(start_row)); 1261 set_mdp_data_at(mdp, item_offset, item); 1262 int count_offset = in_bytes(item_count_offset_fn(start_row)); 1263 mv(reg2, DataLayout::counter_increment); 1264 set_mdp_data_at(mdp, count_offset, reg2); 1265 if (start_row > 0) { 1266 j(done); 1267 } 1268 } 1269 1270 // Example state machine code for three profile rows: 1271 // # main copy of decision tree, rooted at row[1] 1272 // if (row[0].rec == rec) then [ 1273 // row[0].incr() 1274 // goto done 1275 // ] 1276 // if (row[0].rec != nullptr) then [ 1277 // # inner copy of decision tree, rooted at row[1] 1278 // if (row[1].rec == rec) then [ 1279 // row[1].incr() 1280 // goto done 1281 // ] 1282 // if (row[1].rec != nullptr) then [ 1283 // # degenerate decision tree, rooted at row[2] 1284 // if (row[2].rec == rec) then [ 1285 // row[2].incr() 1286 // goto done 1287 // ] 1288 // if (row[2].rec != nullptr) then [ 1289 // count.incr() 1290 // goto done 1291 // ] # overflow 1292 // row[2].init(rec) 1293 // goto done 1294 // ] else [ 1295 // # remember row[1] is empty 1296 // if (row[2].rec == rec) then [ 1297 // row[2].incr() 1298 // goto done 1299 // ] 1300 // row[1].init(rec) 1301 // goto done 1302 // ] 1303 // else [ 1304 // # remember row[0] is empty 1305 // if (row[1].rec == rec) then [ 1306 // row[1].incr() 1307 // goto done 1308 // ] 1309 // if (row[2].rec == rec) then [ 1310 // row[2].incr() 1311 // goto done 1312 // ] 1313 // row[0].init(rec) 1314 // goto done 1315 // ] 1316 // done: 1317 1318 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver, 1319 Register mdp, Register reg2) { 1320 assert(ProfileInterpreter, "must be profiling"); 1321 Label done; 1322 1323 record_klass_in_profile_helper(receiver, mdp, reg2, done); 1324 1325 bind(done); 1326 } 1327 1328 void InterpreterMacroAssembler::profile_ret(Register return_bci, Register mdp) { 1329 if (ProfileInterpreter) { 1330 Label profile_continue; 1331 1332 // If no method data exists, go to profile_continue. 1333 test_method_data_pointer(mdp, profile_continue); 1334 1335 // Update the total ret count. 1336 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1337 1338 for (uint row = 0; row < RetData::row_limit(); row++) { 1339 Label next_test; 1340 1341 // See if return_bci is equal to bci[n]: 1342 test_mdp_data_at(mdp, 1343 in_bytes(RetData::bci_offset(row)), 1344 return_bci, noreg, 1345 next_test); 1346 1347 // return_bci is equal to bci[n]. Increment the count. 1348 increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row))); 1349 1350 // The method data pointer needs to be updated to reflect the new target. 1351 update_mdp_by_offset(mdp, 1352 in_bytes(RetData::bci_displacement_offset(row))); 1353 j(profile_continue); 1354 bind(next_test); 1355 } 1356 1357 update_mdp_for_ret(return_bci); 1358 1359 bind(profile_continue); 1360 } 1361 } 1362 1363 void InterpreterMacroAssembler::profile_null_seen(Register mdp) { 1364 if (ProfileInterpreter) { 1365 Label profile_continue; 1366 1367 // If no method data exists, go to profile_continue. 1368 test_method_data_pointer(mdp, profile_continue); 1369 1370 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant()); 1371 1372 // The method data pointer needs to be updated. 1373 int mdp_delta = in_bytes(BitData::bit_data_size()); 1374 if (TypeProfileCasts) { 1375 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1376 } 1377 update_mdp_by_constant(mdp, mdp_delta); 1378 1379 bind(profile_continue); 1380 } 1381 } 1382 1383 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) { 1384 if (ProfileInterpreter) { 1385 Label profile_continue; 1386 1387 // If no method data exists, go to profile_continue. 1388 test_method_data_pointer(mdp, profile_continue); 1389 1390 // The method data pointer needs to be updated. 1391 int mdp_delta = in_bytes(BitData::bit_data_size()); 1392 if (TypeProfileCasts) { 1393 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1394 1395 // Record the object type. 1396 record_klass_in_profile(klass, mdp, reg2); 1397 } 1398 update_mdp_by_constant(mdp, mdp_delta); 1399 1400 bind(profile_continue); 1401 } 1402 } 1403 1404 void InterpreterMacroAssembler::profile_switch_default(Register mdp) { 1405 if (ProfileInterpreter) { 1406 Label profile_continue; 1407 1408 // If no method data exists, go to profile_continue. 1409 test_method_data_pointer(mdp, profile_continue); 1410 1411 // Update the default case count 1412 increment_mdp_data_at(mdp, 1413 in_bytes(MultiBranchData::default_count_offset())); 1414 1415 // The method data pointer needs to be updated. 1416 update_mdp_by_offset(mdp, 1417 in_bytes(MultiBranchData:: 1418 default_displacement_offset())); 1419 1420 bind(profile_continue); 1421 } 1422 } 1423 1424 void InterpreterMacroAssembler::profile_switch_case(Register index, 1425 Register mdp, 1426 Register reg2) { 1427 if (ProfileInterpreter) { 1428 Label profile_continue; 1429 1430 // If no method data exists, go to profile_continue. 1431 test_method_data_pointer(mdp, profile_continue); 1432 1433 // Build the base (index * per_case_size_in_bytes()) + 1434 // case_array_offset_in_bytes() 1435 mv(reg2, in_bytes(MultiBranchData::per_case_size())); 1436 mv(t0, in_bytes(MultiBranchData::case_array_offset())); 1437 Assembler::mul(index, index, reg2); 1438 Assembler::add(index, index, t0); 1439 1440 // Update the case count 1441 increment_mdp_data_at(mdp, 1442 index, 1443 in_bytes(MultiBranchData::relative_count_offset())); 1444 1445 // The method data pointer need to be updated. 1446 update_mdp_by_offset(mdp, 1447 index, 1448 in_bytes(MultiBranchData:: 1449 relative_displacement_offset())); 1450 1451 bind(profile_continue); 1452 } 1453 } 1454 1455 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) { ; } 1456 1457 void InterpreterMacroAssembler::notify_method_entry() { 1458 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1459 // track stack depth. If it is possible to enter interp_only_mode we add 1460 // the code to check if the event should be sent. 1461 if (JvmtiExport::can_post_interpreter_events()) { 1462 Label L; 1463 lwu(x13, Address(xthread, JavaThread::interp_only_mode_offset())); 1464 beqz(x13, L); 1465 call_VM(noreg, CAST_FROM_FN_PTR(address, 1466 InterpreterRuntime::post_method_entry)); 1467 bind(L); 1468 } 1469 1470 { 1471 SkipIfEqual skip(this, &DTraceMethodProbes, false); 1472 get_method(c_rarg1); 1473 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), 1474 xthread, c_rarg1); 1475 } 1476 1477 // RedefineClasses() tracing support for obsolete method entry 1478 if (log_is_enabled(Trace, redefine, class, obsolete)) { 1479 get_method(c_rarg1); 1480 call_VM_leaf( 1481 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), 1482 xthread, c_rarg1); 1483 } 1484 } 1485 1486 1487 void InterpreterMacroAssembler::notify_method_exit( 1488 TosState state, NotifyMethodExitMode mode) { 1489 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1490 // track stack depth. If it is possible to enter interp_only_mode we add 1491 // the code to check if the event should be sent. 1492 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) { 1493 Label L; 1494 // Note: frame::interpreter_frame_result has a dependency on how the 1495 // method result is saved across the call to post_method_exit. If this 1496 // is changed then the interpreter_frame_result implementation will 1497 // need to be updated too. 1498 1499 // template interpreter will leave the result on the top of the stack. 1500 push(state); 1501 lwu(x13, Address(xthread, JavaThread::interp_only_mode_offset())); 1502 beqz(x13, L); 1503 call_VM(noreg, 1504 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit)); 1505 bind(L); 1506 pop(state); 1507 } 1508 1509 { 1510 SkipIfEqual skip(this, &DTraceMethodProbes, false); 1511 push(state); 1512 get_method(c_rarg1); 1513 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 1514 xthread, c_rarg1); 1515 pop(state); 1516 } 1517 } 1518 1519 1520 // Jump if ((*counter_addr += increment) & mask) satisfies the condition. 1521 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr, 1522 int increment, Address mask, 1523 Register tmp1, Register tmp2, 1524 bool preloaded, Label* where) { 1525 Label done; 1526 if (!preloaded) { 1527 lwu(tmp1, counter_addr); 1528 } 1529 add(tmp1, tmp1, increment); 1530 sw(tmp1, counter_addr); 1531 lwu(tmp2, mask); 1532 andr(tmp1, tmp1, tmp2); 1533 bnez(tmp1, done); 1534 j(*where); // offset is too large so we have to use j instead of beqz here 1535 bind(done); 1536 } 1537 1538 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point, 1539 int number_of_arguments) { 1540 // interpreter specific 1541 // 1542 // Note: No need to save/restore rbcp & rlocals pointer since these 1543 // are callee saved registers and no blocking/ GC can happen 1544 // in leaf calls. 1545 #ifdef ASSERT 1546 { 1547 Label L; 1548 ld(t0, Address(fp, frame::interpreter_frame_last_sp_offset * wordSize)); 1549 beqz(t0, L); 1550 stop("InterpreterMacroAssembler::call_VM_leaf_base:" 1551 " last_sp isn't null"); 1552 bind(L); 1553 } 1554 #endif /* ASSERT */ 1555 // super call 1556 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); 1557 } 1558 1559 void InterpreterMacroAssembler::call_VM_base(Register oop_result, 1560 Register java_thread, 1561 Register last_java_sp, 1562 address entry_point, 1563 int number_of_arguments, 1564 bool check_exceptions) { 1565 // interpreter specific 1566 // 1567 // Note: Could avoid restoring locals ptr (callee saved) - however doesn't 1568 // really make a difference for these runtime calls, since they are 1569 // slow anyway. Btw., bcp must be saved/restored since it may change 1570 // due to GC. 1571 save_bcp(); 1572 #ifdef ASSERT 1573 { 1574 Label L; 1575 ld(t0, Address(fp, frame::interpreter_frame_last_sp_offset * wordSize)); 1576 beqz(t0, L); 1577 stop("InterpreterMacroAssembler::call_VM_base:" 1578 " last_sp isn't null"); 1579 bind(L); 1580 } 1581 #endif /* ASSERT */ 1582 // super call 1583 MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp, 1584 entry_point, number_of_arguments, 1585 check_exceptions); 1586 // interpreter specific 1587 restore_bcp(); 1588 restore_locals(); 1589 } 1590 1591 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr, Register tmp) { 1592 assert_different_registers(obj, tmp, t0, mdo_addr.base()); 1593 Label update, next, none; 1594 1595 verify_oop(obj); 1596 1597 bnez(obj, update); 1598 orptr(mdo_addr, TypeEntries::null_seen, t0, tmp); 1599 j(next); 1600 1601 bind(update); 1602 load_klass(obj, obj); 1603 1604 ld(tmp, mdo_addr); 1605 xorr(obj, obj, tmp); 1606 andi(t0, obj, TypeEntries::type_klass_mask); 1607 beqz(t0, next); // klass seen before, nothing to 1608 // do. The unknown bit may have been 1609 // set already but no need to check. 1610 1611 test_bit(t0, obj, exact_log2(TypeEntries::type_unknown)); 1612 bnez(t0, next); 1613 // already unknown. Nothing to do anymore. 1614 1615 beqz(tmp, none); 1616 mv(t0, (u1)TypeEntries::null_seen); 1617 beq(tmp, t0, none); 1618 // There is a chance that the checks above 1619 // fail if another thread has just set the 1620 // profiling to this obj's klass 1621 xorr(obj, obj, tmp); // get back original value before XOR 1622 ld(tmp, mdo_addr); 1623 xorr(obj, obj, tmp); 1624 andi(t0, obj, TypeEntries::type_klass_mask); 1625 beqz(t0, next); 1626 1627 // different than before. Cannot keep accurate profile. 1628 orptr(mdo_addr, TypeEntries::type_unknown, t0, tmp); 1629 j(next); 1630 1631 bind(none); 1632 // first time here. Set profile type. 1633 sd(obj, mdo_addr); 1634 #ifdef ASSERT 1635 andi(obj, obj, TypeEntries::type_mask); 1636 verify_klass_ptr(obj); 1637 #endif 1638 1639 bind(next); 1640 } 1641 1642 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) { 1643 if (!ProfileInterpreter) { 1644 return; 1645 } 1646 1647 if (MethodData::profile_arguments() || MethodData::profile_return()) { 1648 Label profile_continue; 1649 1650 test_method_data_pointer(mdp, profile_continue); 1651 1652 int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size()); 1653 1654 lbu(t0, Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start)); 1655 if (is_virtual) { 1656 mv(tmp, (u1)DataLayout::virtual_call_type_data_tag); 1657 bne(t0, tmp, profile_continue); 1658 } else { 1659 mv(tmp, (u1)DataLayout::call_type_data_tag); 1660 bne(t0, tmp, profile_continue); 1661 } 1662 1663 // calculate slot step 1664 static int stack_slot_offset0 = in_bytes(TypeEntriesAtCall::stack_slot_offset(0)); 1665 static int slot_step = in_bytes(TypeEntriesAtCall::stack_slot_offset(1)) - stack_slot_offset0; 1666 1667 // calculate type step 1668 static int argument_type_offset0 = in_bytes(TypeEntriesAtCall::argument_type_offset(0)); 1669 static int type_step = in_bytes(TypeEntriesAtCall::argument_type_offset(1)) - argument_type_offset0; 1670 1671 if (MethodData::profile_arguments()) { 1672 Label done, loop, loopEnd, profileArgument, profileReturnType; 1673 RegSet pushed_registers; 1674 pushed_registers += x15; 1675 pushed_registers += x16; 1676 pushed_registers += x17; 1677 Register mdo_addr = x15; 1678 Register index = x16; 1679 Register off_to_args = x17; 1680 push_reg(pushed_registers, sp); 1681 1682 mv(off_to_args, in_bytes(TypeEntriesAtCall::args_data_offset())); 1683 mv(t0, TypeProfileArgsLimit); 1684 beqz(t0, loopEnd); 1685 1686 mv(index, zr); // index < TypeProfileArgsLimit 1687 bind(loop); 1688 bgtz(index, profileReturnType); 1689 mv(t0, (int)MethodData::profile_return()); 1690 beqz(t0, profileArgument); // (index > 0 || MethodData::profile_return()) == false 1691 bind(profileReturnType); 1692 // If return value type is profiled we may have no argument to profile 1693 ld(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset()))); 1694 mv(t1, - TypeStackSlotEntries::per_arg_count()); 1695 mul(t1, index, t1); 1696 add(tmp, tmp, t1); 1697 mv(t1, TypeStackSlotEntries::per_arg_count()); 1698 add(t0, mdp, off_to_args); 1699 blt(tmp, t1, done); 1700 1701 bind(profileArgument); 1702 1703 ld(tmp, Address(callee, Method::const_offset())); 1704 load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset())); 1705 // stack offset o (zero based) from the start of the argument 1706 // list, for n arguments translates into offset n - o - 1 from 1707 // the end of the argument list 1708 mv(t0, stack_slot_offset0); 1709 mv(t1, slot_step); 1710 mul(t1, index, t1); 1711 add(t0, t0, t1); 1712 add(t0, mdp, t0); 1713 ld(t0, Address(t0)); 1714 sub(tmp, tmp, t0); 1715 addi(tmp, tmp, -1); 1716 Address arg_addr = argument_address(tmp); 1717 ld(tmp, arg_addr); 1718 1719 mv(t0, argument_type_offset0); 1720 mv(t1, type_step); 1721 mul(t1, index, t1); 1722 add(t0, t0, t1); 1723 add(mdo_addr, mdp, t0); 1724 Address mdo_arg_addr(mdo_addr, 0); 1725 profile_obj_type(tmp, mdo_arg_addr, t1); 1726 1727 int to_add = in_bytes(TypeStackSlotEntries::per_arg_size()); 1728 addi(off_to_args, off_to_args, to_add); 1729 1730 // increment index by 1 1731 addi(index, index, 1); 1732 mv(t1, TypeProfileArgsLimit); 1733 blt(index, t1, loop); 1734 bind(loopEnd); 1735 1736 if (MethodData::profile_return()) { 1737 ld(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset()))); 1738 addi(tmp, tmp, -TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count()); 1739 } 1740 1741 add(t0, mdp, off_to_args); 1742 bind(done); 1743 mv(mdp, t0); 1744 1745 // unspill the clobbered registers 1746 pop_reg(pushed_registers, sp); 1747 1748 if (MethodData::profile_return()) { 1749 // We're right after the type profile for the last 1750 // argument. tmp is the number of cells left in the 1751 // CallTypeData/VirtualCallTypeData to reach its end. Non null 1752 // if there's a return to profile. 1753 assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type"); 1754 shadd(mdp, tmp, mdp, tmp, exact_log2(DataLayout::cell_size)); 1755 } 1756 sd(mdp, Address(fp, frame::interpreter_frame_mdp_offset * wordSize)); 1757 } else { 1758 assert(MethodData::profile_return(), "either profile call args or call ret"); 1759 update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size())); 1760 } 1761 1762 // mdp points right after the end of the 1763 // CallTypeData/VirtualCallTypeData, right after the cells for the 1764 // return value type if there's one 1765 1766 bind(profile_continue); 1767 } 1768 } 1769 1770 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) { 1771 assert_different_registers(mdp, ret, tmp, xbcp, t0, t1); 1772 if (ProfileInterpreter && MethodData::profile_return()) { 1773 Label profile_continue, done; 1774 1775 test_method_data_pointer(mdp, profile_continue); 1776 1777 if (MethodData::profile_return_jsr292_only()) { 1778 assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2"); 1779 1780 // If we don't profile all invoke bytecodes we must make sure 1781 // it's a bytecode we indeed profile. We can't go back to the 1782 // beginning of the ProfileData we intend to update to check its 1783 // type because we're right after it and we don't known its 1784 // length 1785 Label do_profile; 1786 lbu(t0, Address(xbcp, 0)); 1787 mv(tmp, (u1)Bytecodes::_invokedynamic); 1788 beq(t0, tmp, do_profile); 1789 mv(tmp, (u1)Bytecodes::_invokehandle); 1790 beq(t0, tmp, do_profile); 1791 get_method(tmp); 1792 lhu(t0, Address(tmp, Method::intrinsic_id_offset())); 1793 mv(t1, static_cast<int>(vmIntrinsics::_compiledLambdaForm)); 1794 bne(t0, t1, profile_continue); 1795 bind(do_profile); 1796 } 1797 1798 Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size())); 1799 mv(tmp, ret); 1800 profile_obj_type(tmp, mdo_ret_addr, t1); 1801 1802 bind(profile_continue); 1803 } 1804 } 1805 1806 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2, Register tmp3) { 1807 assert_different_registers(t0, t1, mdp, tmp1, tmp2, tmp3); 1808 if (ProfileInterpreter && MethodData::profile_parameters()) { 1809 Label profile_continue, done; 1810 1811 test_method_data_pointer(mdp, profile_continue); 1812 1813 // Load the offset of the area within the MDO used for 1814 // parameters. If it's negative we're not profiling any parameters 1815 lwu(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()))); 1816 srli(tmp2, tmp1, 31); 1817 bnez(tmp2, profile_continue); // i.e. sign bit set 1818 1819 // Compute a pointer to the area for parameters from the offset 1820 // and move the pointer to the slot for the last 1821 // parameters. Collect profiling from last parameter down. 1822 // mdo start + parameters offset + array length - 1 1823 add(mdp, mdp, tmp1); 1824 ld(tmp1, Address(mdp, ArrayData::array_len_offset())); 1825 add(tmp1, tmp1, - TypeStackSlotEntries::per_arg_count()); 1826 1827 Label loop; 1828 bind(loop); 1829 1830 int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0)); 1831 int type_base = in_bytes(ParametersTypeData::type_offset(0)); 1832 int per_arg_scale = exact_log2(DataLayout::cell_size); 1833 add(t0, mdp, off_base); 1834 add(t1, mdp, type_base); 1835 1836 shadd(tmp2, tmp1, t0, tmp2, per_arg_scale); 1837 // load offset on the stack from the slot for this parameter 1838 ld(tmp2, Address(tmp2, 0)); 1839 neg(tmp2, tmp2); 1840 1841 // read the parameter from the local area 1842 shadd(tmp2, tmp2, xlocals, tmp2, Interpreter::logStackElementSize); 1843 ld(tmp2, Address(tmp2, 0)); 1844 1845 // profile the parameter 1846 shadd(t1, tmp1, t1, t0, per_arg_scale); 1847 Address arg_type(t1, 0); 1848 profile_obj_type(tmp2, arg_type, tmp3); 1849 1850 // go to next parameter 1851 add(tmp1, tmp1, - TypeStackSlotEntries::per_arg_count()); 1852 bgez(tmp1, loop); 1853 1854 bind(profile_continue); 1855 } 1856 } 1857 1858 void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) { 1859 // Get index out of bytecode pointer, get_cache_entry_pointer_at_bcp 1860 // register "cache" is trashed in next ld, so lets use it as a temporary register 1861 get_cache_index_at_bcp(index, cache, 1, sizeof(u4)); 1862 // Get address of invokedynamic array 1863 ld(cache, Address(xcpool, in_bytes(ConstantPoolCache::invokedynamic_entries_offset()))); 1864 // Scale the index to be the entry index * sizeof(ResolvedIndyEntry) 1865 slli(index, index, log2i_exact(sizeof(ResolvedIndyEntry))); 1866 add(cache, cache, Array<ResolvedIndyEntry>::base_offset_in_bytes()); 1867 add(cache, cache, index); 1868 } 1869 1870 void InterpreterMacroAssembler::load_field_entry(Register cache, Register index, int bcp_offset) { 1871 // Get index out of bytecode pointer 1872 get_cache_index_at_bcp(index, cache, bcp_offset, sizeof(u2)); 1873 // Take shortcut if the size is a power of 2 1874 if (is_power_of_2(sizeof(ResolvedFieldEntry))) { 1875 slli(index, index, log2i_exact(sizeof(ResolvedFieldEntry))); // Scale index by power of 2 1876 } else { 1877 mv(cache, sizeof(ResolvedFieldEntry)); 1878 mul(index, index, cache); // Scale the index to be the entry index * sizeof(ResolvedIndyEntry) 1879 } 1880 // Get address of field entries array 1881 ld(cache, Address(xcpool, ConstantPoolCache::field_entries_offset())); 1882 add(cache, cache, Array<ResolvedIndyEntry>::base_offset_in_bytes()); 1883 add(cache, cache, index); 1884 // Prevents stale data from being read after the bytecode is patched to the fast bytecode 1885 membar(MacroAssembler::LoadLoad); 1886 } 1887 1888 void InterpreterMacroAssembler::get_method_counters(Register method, 1889 Register mcs, Label& skip) { 1890 Label has_counters; 1891 ld(mcs, Address(method, Method::method_counters_offset())); 1892 bnez(mcs, has_counters); 1893 call_VM(noreg, CAST_FROM_FN_PTR(address, 1894 InterpreterRuntime::build_method_counters), method); 1895 ld(mcs, Address(method, Method::method_counters_offset())); 1896 beqz(mcs, skip); // No MethodCounters allocated, OutOfMemory 1897 bind(has_counters); 1898 } 1899 1900 void InterpreterMacroAssembler::load_method_entry(Register cache, Register index, int bcp_offset) { 1901 // Get index out of bytecode pointer 1902 get_cache_index_at_bcp(index, cache, bcp_offset, sizeof(u2)); 1903 mv(cache, sizeof(ResolvedMethodEntry)); 1904 mul(index, index, cache); // Scale the index to be the entry index * sizeof(ResolvedMethodEntry) 1905 1906 // Get address of field entries array 1907 ld(cache, Address(xcpool, ConstantPoolCache::method_entries_offset())); 1908 add(cache, cache, Array<ResolvedMethodEntry>::base_offset_in_bytes()); 1909 add(cache, cache, index); 1910 } 1911 1912 #ifdef ASSERT 1913 void InterpreterMacroAssembler::verify_access_flags(Register access_flags, uint32_t flag, 1914 const char* msg, bool stop_by_hit) { 1915 Label L; 1916 test_bit(t0, access_flags, exact_log2(flag)); 1917 if (stop_by_hit) { 1918 beqz(t0, L); 1919 } else { 1920 bnez(t0, L); 1921 } 1922 stop(msg); 1923 bind(L); 1924 } 1925 1926 void InterpreterMacroAssembler::verify_frame_setup() { 1927 Label L; 1928 const Address monitor_block_top(fp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 1929 ld(t0, monitor_block_top); 1930 shadd(t0, t0, fp, t0, LogBytesPerWord); 1931 beq(esp, t0, L); 1932 stop("broken stack frame setup in interpreter"); 1933 bind(L); 1934 } 1935 #endif