1 /* 2 * Copyright (c) 2003, 2023, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved. 4 * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved. 5 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 6 * 7 * This code is free software; you can redistribute it and/or modify it 8 * under the terms of the GNU General Public License version 2 only, as 9 * published by the Free Software Foundation. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 * 25 */ 26 27 #include "precompiled.hpp" 28 #include "asm/macroAssembler.inline.hpp" 29 #include "gc/shared/barrierSet.hpp" 30 #include "gc/shared/barrierSetAssembler.hpp" 31 #include "interp_masm_riscv.hpp" 32 #include "interpreter/interpreter.hpp" 33 #include "interpreter/interpreterRuntime.hpp" 34 #include "logging/log.hpp" 35 #include "oops/arrayOop.hpp" 36 #include "oops/markWord.hpp" 37 #include "oops/method.hpp" 38 #include "oops/methodData.hpp" 39 #include "prims/jvmtiExport.hpp" 40 #include "prims/jvmtiThreadState.hpp" 41 #include "runtime/basicLock.hpp" 42 #include "runtime/frame.inline.hpp" 43 #include "runtime/javaThread.hpp" 44 #include "runtime/safepointMechanism.hpp" 45 #include "runtime/sharedRuntime.hpp" 46 #include "utilities/powerOfTwo.hpp" 47 48 void InterpreterMacroAssembler::narrow(Register result) { 49 // Get method->_constMethod->_result_type 50 ld(t0, Address(fp, frame::interpreter_frame_method_offset * wordSize)); 51 ld(t0, Address(t0, Method::const_offset())); 52 lbu(t0, Address(t0, ConstMethod::result_type_offset())); 53 54 Label done, notBool, notByte, notChar; 55 56 // common case first 57 mv(t1, T_INT); 58 beq(t0, t1, done); 59 60 // mask integer result to narrower return type. 61 mv(t1, T_BOOLEAN); 62 bne(t0, t1, notBool); 63 64 andi(result, result, 0x1); 65 j(done); 66 67 bind(notBool); 68 mv(t1, T_BYTE); 69 bne(t0, t1, notByte); 70 sign_extend(result, result, 8); 71 j(done); 72 73 bind(notByte); 74 mv(t1, T_CHAR); 75 bne(t0, t1, notChar); 76 zero_extend(result, result, 16); 77 j(done); 78 79 bind(notChar); 80 sign_extend(result, result, 16); 81 82 // Nothing to do for T_INT 83 bind(done); 84 addw(result, result, zr); 85 } 86 87 void InterpreterMacroAssembler::jump_to_entry(address entry) { 88 assert(entry != NULL, "Entry must have been generated by now"); 89 j(entry); 90 } 91 92 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) { 93 if (JvmtiExport::can_pop_frame()) { 94 Label L; 95 // Initiate popframe handling only if it is not already being 96 // processed. If the flag has the popframe_processing bit set, 97 // it means that this code is called *during* popframe handling - we 98 // don't want to reenter. 99 // This method is only called just after the call into the vm in 100 // call_VM_base, so the arg registers are available. 101 lwu(t1, Address(xthread, JavaThread::popframe_condition_offset())); 102 andi(t0, t1, JavaThread::popframe_pending_bit); 103 beqz(t0, L); 104 andi(t0, t1, JavaThread::popframe_processing_bit); 105 bnez(t0, L); 106 // Call Interpreter::remove_activation_preserving_args_entry() to get the 107 // address of the same-named entrypoint in the generated interpreter code. 108 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry)); 109 jr(x10); 110 bind(L); 111 } 112 } 113 114 115 void InterpreterMacroAssembler::load_earlyret_value(TosState state) { 116 ld(x12, Address(xthread, JavaThread::jvmti_thread_state_offset())); 117 const Address tos_addr(x12, JvmtiThreadState::earlyret_tos_offset()); 118 const Address oop_addr(x12, JvmtiThreadState::earlyret_oop_offset()); 119 const Address val_addr(x12, JvmtiThreadState::earlyret_value_offset()); 120 switch (state) { 121 case atos: 122 ld(x10, oop_addr); 123 sd(zr, oop_addr); 124 verify_oop(x10); 125 break; 126 case ltos: 127 ld(x10, val_addr); 128 break; 129 case btos: // fall through 130 case ztos: // fall through 131 case ctos: // fall through 132 case stos: // fall through 133 case itos: 134 lwu(x10, val_addr); 135 break; 136 case ftos: 137 flw(f10, val_addr); 138 break; 139 case dtos: 140 fld(f10, val_addr); 141 break; 142 case vtos: 143 /* nothing to do */ 144 break; 145 default: 146 ShouldNotReachHere(); 147 } 148 // Clean up tos value in the thread object 149 mv(t0, (int)ilgl); 150 sw(t0, tos_addr); 151 sw(zr, val_addr); 152 } 153 154 155 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) { 156 if (JvmtiExport::can_force_early_return()) { 157 Label L; 158 ld(t0, Address(xthread, JavaThread::jvmti_thread_state_offset())); 159 beqz(t0, L); // if [thread->jvmti_thread_state() == NULL] then exit 160 161 // Initiate earlyret handling only if it is not already being processed. 162 // If the flag has the earlyret_processing bit set, it means that this code 163 // is called *during* earlyret handling - we don't want to reenter. 164 lwu(t0, Address(t0, JvmtiThreadState::earlyret_state_offset())); 165 mv(t1, JvmtiThreadState::earlyret_pending); 166 bne(t0, t1, L); 167 168 // Call Interpreter::remove_activation_early_entry() to get the address of the 169 // same-named entrypoint in the generated interpreter code. 170 ld(t0, Address(xthread, JavaThread::jvmti_thread_state_offset())); 171 lwu(t0, Address(t0, JvmtiThreadState::earlyret_tos_offset())); 172 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), t0); 173 jr(x10); 174 bind(L); 175 } 176 } 177 178 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) { 179 assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode"); 180 lhu(reg, Address(xbcp, bcp_offset)); 181 revb_h(reg, reg); 182 } 183 184 void InterpreterMacroAssembler::get_dispatch() { 185 ExternalAddress target((address)Interpreter::dispatch_table()); 186 relocate(target.rspec(), [&] { 187 int32_t offset; 188 la_patchable(xdispatch, target, offset); 189 addi(xdispatch, xdispatch, offset); 190 }); 191 } 192 193 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index, 194 int bcp_offset, 195 size_t index_size) { 196 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); 197 if (index_size == sizeof(u2)) { 198 load_unsigned_short(index, Address(xbcp, bcp_offset)); 199 } else if (index_size == sizeof(u4)) { 200 lwu(index, Address(xbcp, bcp_offset)); 201 // Check if the secondary index definition is still ~x, otherwise 202 // we have to change the following assembler code to calculate the 203 // plain index. 204 assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line"); 205 xori(index, index, -1); 206 addw(index, index, zr); 207 } else if (index_size == sizeof(u1)) { 208 load_unsigned_byte(index, Address(xbcp, bcp_offset)); 209 } else { 210 ShouldNotReachHere(); 211 } 212 } 213 214 // Return 215 // Rindex: index into constant pool 216 // Rcache: address of cache entry - ConstantPoolCache::base_offset() 217 // 218 // A caller must add ConstantPoolCache::base_offset() to Rcache to get 219 // the true address of the cache entry. 220 // 221 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, 222 Register index, 223 int bcp_offset, 224 size_t index_size) { 225 assert_different_registers(cache, index); 226 assert_different_registers(cache, xcpool); 227 get_cache_index_at_bcp(index, bcp_offset, index_size); 228 assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below"); 229 // Convert from field index to ConstantPoolCacheEntry 230 // riscv already has the cache in xcpool so there is no need to 231 // install it in cache. Instead we pre-add the indexed offset to 232 // xcpool and return it in cache. All clients of this method need to 233 // be modified accordingly. 234 shadd(cache, index, xcpool, cache, 5); 235 } 236 237 238 void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache, 239 Register index, 240 Register bytecode, 241 int byte_no, 242 int bcp_offset, 243 size_t index_size) { 244 get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size); 245 // We use a 32-bit load here since the layout of 64-bit words on 246 // little-endian machines allow us that. 247 // n.b. unlike x86 cache already includes the index offset 248 la(bytecode, Address(cache, 249 ConstantPoolCache::base_offset() + 250 ConstantPoolCacheEntry::indices_offset())); 251 membar(MacroAssembler::AnyAny); 252 lwu(bytecode, bytecode); 253 membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 254 const int shift_count = (1 + byte_no) * BitsPerByte; 255 slli(bytecode, bytecode, XLEN - (shift_count + BitsPerByte)); 256 srli(bytecode, bytecode, XLEN - BitsPerByte); 257 } 258 259 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, 260 Register tmp, 261 int bcp_offset, 262 size_t index_size) { 263 assert_different_registers(cache, tmp); 264 get_cache_index_at_bcp(tmp, bcp_offset, index_size); 265 assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below"); 266 // Convert from field index to ConstantPoolCacheEntry index 267 // and from word offset to byte offset 268 assert(exact_log2(in_bytes(ConstantPoolCacheEntry::size_in_bytes())) == 2 + LogBytesPerWord, 269 "else change next line"); 270 ld(cache, Address(fp, frame::interpreter_frame_cache_offset * wordSize)); 271 // skip past the header 272 add(cache, cache, in_bytes(ConstantPoolCache::base_offset())); 273 // construct pointer to cache entry 274 shadd(cache, tmp, cache, tmp, 2 + LogBytesPerWord); 275 } 276 277 // Load object from cpool->resolved_references(index) 278 void InterpreterMacroAssembler::load_resolved_reference_at_index( 279 Register result, Register index, Register tmp) { 280 assert_different_registers(result, index); 281 282 get_constant_pool(result); 283 // Load pointer for resolved_references[] objArray 284 ld(result, Address(result, ConstantPool::cache_offset_in_bytes())); 285 ld(result, Address(result, ConstantPoolCache::resolved_references_offset_in_bytes())); 286 resolve_oop_handle(result, tmp, t1); 287 // Add in the index 288 addi(index, index, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop); 289 shadd(result, index, result, index, LogBytesPerHeapOop); 290 load_heap_oop(result, Address(result, 0), tmp, t1); 291 } 292 293 void InterpreterMacroAssembler::load_resolved_klass_at_offset( 294 Register cpool, Register index, Register klass, Register temp) { 295 shadd(temp, index, cpool, temp, LogBytesPerWord); 296 lhu(temp, Address(temp, sizeof(ConstantPool))); // temp = resolved_klass_index 297 ld(klass, Address(cpool, ConstantPool::resolved_klasses_offset_in_bytes())); // klass = cpool->_resolved_klasses 298 shadd(klass, temp, klass, temp, LogBytesPerWord); 299 ld(klass, Address(klass, Array<Klass*>::base_offset_in_bytes())); 300 } 301 302 void InterpreterMacroAssembler::load_resolved_method_at_index(int byte_no, 303 Register method, 304 Register cache) { 305 const int method_offset = in_bytes( 306 ConstantPoolCache::base_offset() + 307 ((byte_no == TemplateTable::f2_byte) 308 ? ConstantPoolCacheEntry::f2_offset() 309 : ConstantPoolCacheEntry::f1_offset())); 310 311 ld(method, Address(cache, method_offset)); // get f1 Method* 312 } 313 314 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a 315 // subtype of super_klass. 316 // 317 // Args: 318 // x10: superklass 319 // Rsub_klass: subklass 320 // 321 // Kills: 322 // x12, x15 323 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, 324 Label& ok_is_subtype) { 325 assert(Rsub_klass != x10, "x10 holds superklass"); 326 assert(Rsub_klass != x12, "x12 holds 2ndary super array length"); 327 assert(Rsub_klass != x15, "x15 holds 2ndary super array scan ptr"); 328 329 // Profile the not-null value's klass. 330 profile_typecheck(x12, Rsub_klass, x15); // blows x12, reloads x15 331 332 // Do the check. 333 check_klass_subtype(Rsub_klass, x10, x12, ok_is_subtype); // blows x12 334 335 // Profile the failure of the check. 336 profile_typecheck_failed(x12); // blows x12 337 } 338 339 // Java Expression Stack 340 341 void InterpreterMacroAssembler::pop_ptr(Register r) { 342 ld(r, Address(esp, 0)); 343 addi(esp, esp, wordSize); 344 } 345 346 void InterpreterMacroAssembler::pop_i(Register r) { 347 lw(r, Address(esp, 0)); // lw do signed extended 348 addi(esp, esp, wordSize); 349 } 350 351 void InterpreterMacroAssembler::pop_l(Register r) { 352 ld(r, Address(esp, 0)); 353 addi(esp, esp, 2 * Interpreter::stackElementSize); 354 } 355 356 void InterpreterMacroAssembler::push_ptr(Register r) { 357 addi(esp, esp, -wordSize); 358 sd(r, Address(esp, 0)); 359 } 360 361 void InterpreterMacroAssembler::push_i(Register r) { 362 addi(esp, esp, -wordSize); 363 addw(r, r, zr); // signed extended 364 sd(r, Address(esp, 0)); 365 } 366 367 void InterpreterMacroAssembler::push_l(Register r) { 368 addi(esp, esp, -2 * wordSize); 369 sd(zr, Address(esp, wordSize)); 370 sd(r, Address(esp)); 371 } 372 373 void InterpreterMacroAssembler::pop_f(FloatRegister r) { 374 flw(r, Address(esp, 0)); 375 addi(esp, esp, wordSize); 376 } 377 378 void InterpreterMacroAssembler::pop_d(FloatRegister r) { 379 fld(r, Address(esp, 0)); 380 addi(esp, esp, 2 * Interpreter::stackElementSize); 381 } 382 383 void InterpreterMacroAssembler::push_f(FloatRegister r) { 384 addi(esp, esp, -wordSize); 385 fsw(r, Address(esp, 0)); 386 } 387 388 void InterpreterMacroAssembler::push_d(FloatRegister r) { 389 addi(esp, esp, -2 * wordSize); 390 fsd(r, Address(esp, 0)); 391 } 392 393 void InterpreterMacroAssembler::pop(TosState state) { 394 switch (state) { 395 case atos: 396 pop_ptr(); 397 verify_oop(x10); 398 break; 399 case btos: // fall through 400 case ztos: // fall through 401 case ctos: // fall through 402 case stos: // fall through 403 case itos: 404 pop_i(); 405 break; 406 case ltos: 407 pop_l(); 408 break; 409 case ftos: 410 pop_f(); 411 break; 412 case dtos: 413 pop_d(); 414 break; 415 case vtos: 416 /* nothing to do */ 417 break; 418 default: 419 ShouldNotReachHere(); 420 } 421 } 422 423 void InterpreterMacroAssembler::push(TosState state) { 424 switch (state) { 425 case atos: 426 verify_oop(x10); 427 push_ptr(); 428 break; 429 case btos: // fall through 430 case ztos: // fall through 431 case ctos: // fall through 432 case stos: // fall through 433 case itos: 434 push_i(); 435 break; 436 case ltos: 437 push_l(); 438 break; 439 case ftos: 440 push_f(); 441 break; 442 case dtos: 443 push_d(); 444 break; 445 case vtos: 446 /* nothing to do */ 447 break; 448 default: 449 ShouldNotReachHere(); 450 } 451 } 452 453 // Helpers for swap and dup 454 void InterpreterMacroAssembler::load_ptr(int n, Register val) { 455 ld(val, Address(esp, Interpreter::expr_offset_in_bytes(n))); 456 } 457 458 void InterpreterMacroAssembler::store_ptr(int n, Register val) { 459 sd(val, Address(esp, Interpreter::expr_offset_in_bytes(n))); 460 } 461 462 void InterpreterMacroAssembler::load_float(Address src) { 463 flw(f10, src); 464 } 465 466 void InterpreterMacroAssembler::load_double(Address src) { 467 fld(f10, src); 468 } 469 470 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() { 471 // set sender sp 472 mv(x19_sender_sp, sp); 473 // record last_sp 474 sd(esp, Address(fp, frame::interpreter_frame_last_sp_offset * wordSize)); 475 } 476 477 // Jump to from_interpreted entry of a call unless single stepping is possible 478 // in this thread in which case we must call the i2i entry 479 void InterpreterMacroAssembler::jump_from_interpreted(Register method) { 480 prepare_to_jump_from_interpreted(); 481 if (JvmtiExport::can_post_interpreter_events()) { 482 Label run_compiled_code; 483 // JVMTI events, such as single-stepping, are implemented partly by avoiding running 484 // compiled code in threads for which the event is enabled. Check here for 485 // interp_only_mode if these events CAN be enabled. 486 lwu(t0, Address(xthread, JavaThread::interp_only_mode_offset())); 487 beqz(t0, run_compiled_code); 488 ld(t0, Address(method, Method::interpreter_entry_offset())); 489 jr(t0); 490 bind(run_compiled_code); 491 } 492 493 ld(t0, Address(method, Method::from_interpreted_offset())); 494 jr(t0); 495 } 496 497 // The following two routines provide a hook so that an implementation 498 // can schedule the dispatch in two parts. amd64 does not do this. 499 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) { 500 } 501 502 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) { 503 dispatch_next(state, step); 504 } 505 506 void InterpreterMacroAssembler::dispatch_base(TosState state, 507 address* table, 508 bool verifyoop, 509 bool generate_poll, 510 Register Rs) { 511 // Pay attention to the argument Rs, which is acquiesce in t0. 512 if (VerifyActivationFrameSize) { 513 Unimplemented(); 514 } 515 if (verifyoop && state == atos) { 516 verify_oop(x10); 517 } 518 519 Label safepoint; 520 address* const safepoint_table = Interpreter::safept_table(state); 521 bool needs_thread_local_poll = generate_poll && table != safepoint_table; 522 523 if (needs_thread_local_poll) { 524 NOT_PRODUCT(block_comment("Thread-local Safepoint poll")); 525 ld(t1, Address(xthread, JavaThread::polling_word_offset())); 526 andi(t1, t1, SafepointMechanism::poll_bit()); 527 bnez(t1, safepoint); 528 } 529 if (table == Interpreter::dispatch_table(state)) { 530 mv(t1, Interpreter::distance_from_dispatch_table(state)); 531 add(t1, Rs, t1); 532 shadd(t1, t1, xdispatch, t1, 3); 533 } else { 534 mv(t1, (address)table); 535 shadd(t1, Rs, t1, Rs, 3); 536 } 537 ld(t1, Address(t1)); 538 jr(t1); 539 540 if (needs_thread_local_poll) { 541 bind(safepoint); 542 la(t1, ExternalAddress((address)safepoint_table)); 543 shadd(t1, Rs, t1, Rs, 3); 544 ld(t1, Address(t1)); 545 jr(t1); 546 } 547 } 548 549 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll, Register Rs) { 550 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll, Rs); 551 } 552 553 void InterpreterMacroAssembler::dispatch_only_normal(TosState state, Register Rs) { 554 dispatch_base(state, Interpreter::normal_table(state), true, false, Rs); 555 } 556 557 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state, Register Rs) { 558 dispatch_base(state, Interpreter::normal_table(state), false, false, Rs); 559 } 560 561 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) { 562 // load next bytecode 563 load_unsigned_byte(t0, Address(xbcp, step)); 564 add(xbcp, xbcp, step); 565 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll); 566 } 567 568 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) { 569 // load current bytecode 570 lbu(t0, Address(xbcp, 0)); 571 dispatch_base(state, table); 572 } 573 574 // remove activation 575 // 576 // Apply stack watermark barrier. 577 // Unlock the receiver if this is a synchronized method. 578 // Unlock any Java monitors from synchronized blocks. 579 // Remove the activation from the stack. 580 // 581 // If there are locked Java monitors 582 // If throw_monitor_exception 583 // throws IllegalMonitorStateException 584 // Else if install_monitor_exception 585 // installs IllegalMonitorStateException 586 // Else 587 // no error processing 588 void InterpreterMacroAssembler::remove_activation( 589 TosState state, 590 bool throw_monitor_exception, 591 bool install_monitor_exception, 592 bool notify_jvmdi) { 593 // Note: Registers x13 may be in use for the 594 // result check if synchronized method 595 Label unlocked, unlock, no_unlock; 596 597 // The below poll is for the stack watermark barrier. It allows fixing up frames lazily, 598 // that would normally not be safe to use. Such bad returns into unsafe territory of 599 // the stack, will call InterpreterRuntime::at_unwind. 600 Label slow_path; 601 Label fast_path; 602 safepoint_poll(slow_path, true /* at_return */, false /* acquire */, false /* in_nmethod */); 603 j(fast_path); 604 605 bind(slow_path); 606 push(state); 607 set_last_Java_frame(esp, fp, (address)pc(), t0); 608 super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), xthread); 609 reset_last_Java_frame(true); 610 pop(state); 611 612 bind(fast_path); 613 614 // get the value of _do_not_unlock_if_synchronized into x13 615 const Address do_not_unlock_if_synchronized(xthread, 616 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); 617 lbu(x13, do_not_unlock_if_synchronized); 618 sb(zr, do_not_unlock_if_synchronized); // reset the flag 619 620 // get method access flags 621 ld(x11, Address(fp, frame::interpreter_frame_method_offset * wordSize)); 622 ld(x12, Address(x11, Method::access_flags_offset())); 623 andi(t0, x12, JVM_ACC_SYNCHRONIZED); 624 beqz(t0, unlocked); 625 626 // Don't unlock anything if the _do_not_unlock_if_synchronized flag 627 // is set. 628 bnez(x13, no_unlock); 629 630 // unlock monitor 631 push(state); // save result 632 633 // BasicObjectLock will be first in list, since this is a 634 // synchronized method. However, need to check that the object has 635 // not been unlocked by an explicit monitorexit bytecode. 636 const Address monitor(fp, frame::interpreter_frame_initial_sp_offset * 637 wordSize - (int) sizeof(BasicObjectLock)); 638 // We use c_rarg1 so that if we go slow path it will be the correct 639 // register for unlock_object to pass to VM directly 640 la(c_rarg1, monitor); // address of first monitor 641 642 ld(x10, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes())); 643 bnez(x10, unlock); 644 645 pop(state); 646 if (throw_monitor_exception) { 647 // Entry already unlocked, need to throw exception 648 call_VM(noreg, CAST_FROM_FN_PTR(address, 649 InterpreterRuntime::throw_illegal_monitor_state_exception)); 650 should_not_reach_here(); 651 } else { 652 // Monitor already unlocked during a stack unroll. If requested, 653 // install an illegal_monitor_state_exception. Continue with 654 // stack unrolling. 655 if (install_monitor_exception) { 656 call_VM(noreg, CAST_FROM_FN_PTR(address, 657 InterpreterRuntime::new_illegal_monitor_state_exception)); 658 } 659 j(unlocked); 660 } 661 662 bind(unlock); 663 unlock_object(c_rarg1); 664 pop(state); 665 666 // Check that for block-structured locking (i.e., that all locked 667 // objects has been unlocked) 668 bind(unlocked); 669 670 // x10: Might contain return value 671 672 // Check that all monitors are unlocked 673 { 674 Label loop, exception, entry, restart; 675 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; 676 const Address monitor_block_top( 677 fp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 678 const Address monitor_block_bot( 679 fp, frame::interpreter_frame_initial_sp_offset * wordSize); 680 681 bind(restart); 682 // We use c_rarg1 so that if we go slow path it will be the correct 683 // register for unlock_object to pass to VM directly 684 ld(c_rarg1, monitor_block_top); // points to current entry, starting 685 // with top-most entry 686 la(x9, monitor_block_bot); // points to word before bottom of 687 // monitor block 688 689 j(entry); 690 691 // Entry already locked, need to throw exception 692 bind(exception); 693 694 if (throw_monitor_exception) { 695 // Throw exception 696 MacroAssembler::call_VM(noreg, 697 CAST_FROM_FN_PTR(address, InterpreterRuntime:: 698 throw_illegal_monitor_state_exception)); 699 700 should_not_reach_here(); 701 } else { 702 // Stack unrolling. Unlock object and install illegal_monitor_exception. 703 // Unlock does not block, so don't have to worry about the frame. 704 // We don't have to preserve c_rarg1 since we are going to throw an exception. 705 706 push(state); 707 unlock_object(c_rarg1); 708 pop(state); 709 710 if (install_monitor_exception) { 711 call_VM(noreg, CAST_FROM_FN_PTR(address, 712 InterpreterRuntime:: 713 new_illegal_monitor_state_exception)); 714 } 715 716 j(restart); 717 } 718 719 bind(loop); 720 // check if current entry is used 721 add(t0, c_rarg1, BasicObjectLock::obj_offset_in_bytes()); 722 ld(t0, Address(t0, 0)); 723 bnez(t0, exception); 724 725 add(c_rarg1, c_rarg1, entry_size); // otherwise advance to next entry 726 bind(entry); 727 bne(c_rarg1, x9, loop); // check if bottom reached if not at bottom then check this entry 728 } 729 730 bind(no_unlock); 731 732 // jvmti support 733 if (notify_jvmdi) { 734 notify_method_exit(state, NotifyJVMTI); // preserve TOSCA 735 736 } else { 737 notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA 738 } 739 740 // remove activation 741 // get sender esp 742 ld(t1, 743 Address(fp, frame::interpreter_frame_sender_sp_offset * wordSize)); 744 if (StackReservedPages > 0) { 745 // testing if reserved zone needs to be re-enabled 746 Label no_reserved_zone_enabling; 747 748 ld(t0, Address(xthread, JavaThread::reserved_stack_activation_offset())); 749 ble(t1, t0, no_reserved_zone_enabling); 750 751 call_VM_leaf( 752 CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), xthread); 753 call_VM(noreg, CAST_FROM_FN_PTR(address, 754 InterpreterRuntime::throw_delayed_StackOverflowError)); 755 should_not_reach_here(); 756 757 bind(no_reserved_zone_enabling); 758 } 759 760 // restore sender esp 761 mv(esp, t1); 762 763 // remove frame anchor 764 leave(); 765 // If we're returning to interpreted code we will shortly be 766 // adjusting SP to allow some space for ESP. If we're returning to 767 // compiled code the saved sender SP was saved in sender_sp, so this 768 // restores it. 769 andi(sp, esp, -16); 770 } 771 772 // Lock object 773 // 774 // Args: 775 // c_rarg1: BasicObjectLock to be used for locking 776 // 777 // Kills: 778 // x10 779 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, .. (param regs) 780 // t0, t1 (temp regs) 781 void InterpreterMacroAssembler::lock_object(Register lock_reg) 782 { 783 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1"); 784 if (UseHeavyMonitors) { 785 call_VM(noreg, 786 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 787 lock_reg); 788 } else { 789 Label count, done; 790 791 const Register swap_reg = x10; 792 const Register tmp = c_rarg2; 793 const Register obj_reg = c_rarg3; // Will contain the oop 794 795 const int obj_offset = BasicObjectLock::obj_offset_in_bytes(); 796 const int lock_offset = BasicObjectLock::lock_offset_in_bytes (); 797 const int mark_offset = lock_offset + 798 BasicLock::displaced_header_offset_in_bytes(); 799 800 Label slow_case; 801 802 // Load object pointer into obj_reg c_rarg3 803 ld(obj_reg, Address(lock_reg, obj_offset)); 804 805 if (DiagnoseSyncOnValueBasedClasses != 0) { 806 load_klass(tmp, obj_reg); 807 lwu(tmp, Address(tmp, Klass::access_flags_offset())); 808 andi(tmp, tmp, JVM_ACC_IS_VALUE_BASED_CLASS); 809 bnez(tmp, slow_case); 810 } 811 812 // Load (object->mark() | 1) into swap_reg 813 ld(t0, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 814 ori(swap_reg, t0, 1); 815 816 // Save (object->mark() | 1) into BasicLock's displaced header 817 sd(swap_reg, Address(lock_reg, mark_offset)); 818 819 assert(lock_offset == 0, 820 "displached header must be first word in BasicObjectLock"); 821 822 cmpxchg_obj_header(swap_reg, lock_reg, obj_reg, t0, count, /*fallthrough*/NULL); 823 824 // Test if the oopMark is an obvious stack pointer, i.e., 825 // 1) (mark & 7) == 0, and 826 // 2) sp <= mark < mark + os::pagesize() 827 // 828 // These 3 tests can be done by evaluating the following 829 // expression: ((mark - sp) & (7 - os::vm_page_size())), 830 // assuming both stack pointer and pagesize have their 831 // least significant 3 bits clear. 832 // NOTE: the oopMark is in swap_reg x10 as the result of cmpxchg 833 sub(swap_reg, swap_reg, sp); 834 mv(t0, (int64_t)(7 - (int)os::vm_page_size())); 835 andr(swap_reg, swap_reg, t0); 836 837 // Save the test result, for recursive case, the result is zero 838 sd(swap_reg, Address(lock_reg, mark_offset)); 839 beqz(swap_reg, count); 840 841 bind(slow_case); 842 843 // Call the runtime routine for slow case 844 call_VM(noreg, 845 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 846 lock_reg); 847 848 j(done); 849 850 bind(count); 851 increment(Address(xthread, JavaThread::held_monitor_count_offset())); 852 853 bind(done); 854 } 855 } 856 857 858 // Unlocks an object. Used in monitorexit bytecode and 859 // remove_activation. Throws an IllegalMonitorException if object is 860 // not locked by current thread. 861 // 862 // Args: 863 // c_rarg1: BasicObjectLock for lock 864 // 865 // Kills: 866 // x10 867 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs) 868 // t0, t1 (temp regs) 869 void InterpreterMacroAssembler::unlock_object(Register lock_reg) 870 { 871 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1"); 872 873 if (UseHeavyMonitors) { 874 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 875 } else { 876 Label count, done; 877 878 const Register swap_reg = x10; 879 const Register header_reg = c_rarg2; // Will contain the old oopMark 880 const Register obj_reg = c_rarg3; // Will contain the oop 881 882 save_bcp(); // Save in case of exception 883 884 // Convert from BasicObjectLock structure to object and BasicLock 885 // structure Store the BasicLock address into x10 886 la(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes())); 887 888 // Load oop into obj_reg(c_rarg3) 889 ld(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes())); 890 891 // Free entry 892 sd(zr, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes())); 893 894 // Load the old header from BasicLock structure 895 ld(header_reg, Address(swap_reg, 896 BasicLock::displaced_header_offset_in_bytes())); 897 898 // Test for recursion 899 beqz(header_reg, count); 900 901 // Atomic swap back the old header 902 cmpxchg_obj_header(swap_reg, header_reg, obj_reg, t0, count, /*fallthrough*/NULL); 903 904 // Call the runtime routine for slow case. 905 sd(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes())); // restore obj 906 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 907 908 j(done); 909 910 bind(count); 911 decrement(Address(xthread, JavaThread::held_monitor_count_offset())); 912 913 bind(done); 914 915 restore_bcp(); 916 } 917 } 918 919 920 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, 921 Label& zero_continue) { 922 assert(ProfileInterpreter, "must be profiling interpreter"); 923 ld(mdp, Address(fp, frame::interpreter_frame_mdp_offset * wordSize)); 924 beqz(mdp, zero_continue); 925 } 926 927 // Set the method data pointer for the current bcp. 928 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() { 929 assert(ProfileInterpreter, "must be profiling interpreter"); 930 Label set_mdp; 931 push_reg(RegSet::of(x10, x11), sp); // save x10, x11 932 933 // Test MDO to avoid the call if it is NULL. 934 ld(x10, Address(xmethod, in_bytes(Method::method_data_offset()))); 935 beqz(x10, set_mdp); 936 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), xmethod, xbcp); 937 // x10: mdi 938 // mdo is guaranteed to be non-zero here, we checked for it before the call. 939 ld(x11, Address(xmethod, in_bytes(Method::method_data_offset()))); 940 la(x11, Address(x11, in_bytes(MethodData::data_offset()))); 941 add(x10, x11, x10); 942 sd(x10, Address(fp, frame::interpreter_frame_mdp_offset * wordSize)); 943 bind(set_mdp); 944 pop_reg(RegSet::of(x10, x11), sp); 945 } 946 947 void InterpreterMacroAssembler::verify_method_data_pointer() { 948 assert(ProfileInterpreter, "must be profiling interpreter"); 949 #ifdef ASSERT 950 Label verify_continue; 951 add(sp, sp, -4 * wordSize); 952 sd(x10, Address(sp, 0)); 953 sd(x11, Address(sp, wordSize)); 954 sd(x12, Address(sp, 2 * wordSize)); 955 sd(x13, Address(sp, 3 * wordSize)); 956 test_method_data_pointer(x13, verify_continue); // If mdp is zero, continue 957 get_method(x11); 958 959 // If the mdp is valid, it will point to a DataLayout header which is 960 // consistent with the bcp. The converse is highly probable also. 961 lh(x12, Address(x13, in_bytes(DataLayout::bci_offset()))); 962 ld(t0, Address(x11, Method::const_offset())); 963 add(x12, x12, t0); 964 la(x12, Address(x12, ConstMethod::codes_offset())); 965 beq(x12, xbcp, verify_continue); 966 // x10: method 967 // xbcp: bcp // xbcp == 22 968 // x13: mdp 969 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), 970 x11, xbcp, x13); 971 bind(verify_continue); 972 ld(x10, Address(sp, 0)); 973 ld(x11, Address(sp, wordSize)); 974 ld(x12, Address(sp, 2 * wordSize)); 975 ld(x13, Address(sp, 3 * wordSize)); 976 add(sp, sp, 4 * wordSize); 977 #endif // ASSERT 978 } 979 980 981 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, 982 int constant, 983 Register value) { 984 assert(ProfileInterpreter, "must be profiling interpreter"); 985 Address data(mdp_in, constant); 986 sd(value, data); 987 } 988 989 990 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 991 int constant, 992 bool decrement) { 993 increment_mdp_data_at(mdp_in, noreg, constant, decrement); 994 } 995 996 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 997 Register reg, 998 int constant, 999 bool decrement) { 1000 assert(ProfileInterpreter, "must be profiling interpreter"); 1001 // %%% this does 64bit counters at best it is wasting space 1002 // at worst it is a rare bug when counters overflow 1003 1004 assert_different_registers(t1, t0, mdp_in, reg); 1005 1006 Address addr1(mdp_in, constant); 1007 Address addr2(t1, 0); 1008 Address &addr = addr1; 1009 if (reg != noreg) { 1010 la(t1, addr1); 1011 add(t1, t1, reg); 1012 addr = addr2; 1013 } 1014 1015 if (decrement) { 1016 ld(t0, addr); 1017 addi(t0, t0, -DataLayout::counter_increment); 1018 Label L; 1019 bltz(t0, L); // skip store if counter underflow 1020 sd(t0, addr); 1021 bind(L); 1022 } else { 1023 assert(DataLayout::counter_increment == 1, 1024 "flow-free idiom only works with 1"); 1025 ld(t0, addr); 1026 addi(t0, t0, DataLayout::counter_increment); 1027 Label L; 1028 blez(t0, L); // skip store if counter overflow 1029 sd(t0, addr); 1030 bind(L); 1031 } 1032 } 1033 1034 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, 1035 int flag_byte_constant) { 1036 assert(ProfileInterpreter, "must be profiling interpreter"); 1037 int flags_offset = in_bytes(DataLayout::flags_offset()); 1038 // Set the flag 1039 lbu(t1, Address(mdp_in, flags_offset)); 1040 ori(t1, t1, flag_byte_constant); 1041 sb(t1, Address(mdp_in, flags_offset)); 1042 } 1043 1044 1045 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in, 1046 int offset, 1047 Register value, 1048 Register test_value_out, 1049 Label& not_equal_continue) { 1050 assert(ProfileInterpreter, "must be profiling interpreter"); 1051 if (test_value_out == noreg) { 1052 ld(t1, Address(mdp_in, offset)); 1053 bne(value, t1, not_equal_continue); 1054 } else { 1055 // Put the test value into a register, so caller can use it: 1056 ld(test_value_out, Address(mdp_in, offset)); 1057 bne(value, test_value_out, not_equal_continue); 1058 } 1059 } 1060 1061 1062 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1063 int offset_of_disp) { 1064 assert(ProfileInterpreter, "must be profiling interpreter"); 1065 ld(t1, Address(mdp_in, offset_of_disp)); 1066 add(mdp_in, mdp_in, t1); 1067 sd(mdp_in, Address(fp, frame::interpreter_frame_mdp_offset * wordSize)); 1068 } 1069 1070 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1071 Register reg, 1072 int offset_of_disp) { 1073 assert(ProfileInterpreter, "must be profiling interpreter"); 1074 add(t1, mdp_in, reg); 1075 ld(t1, Address(t1, offset_of_disp)); 1076 add(mdp_in, mdp_in, t1); 1077 sd(mdp_in, Address(fp, frame::interpreter_frame_mdp_offset * wordSize)); 1078 } 1079 1080 1081 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, 1082 int constant) { 1083 assert(ProfileInterpreter, "must be profiling interpreter"); 1084 addi(mdp_in, mdp_in, (unsigned)constant); 1085 sd(mdp_in, Address(fp, frame::interpreter_frame_mdp_offset * wordSize)); 1086 } 1087 1088 1089 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) { 1090 assert(ProfileInterpreter, "must be profiling interpreter"); 1091 1092 // save/restore across call_VM 1093 addi(sp, sp, -2 * wordSize); 1094 sd(zr, Address(sp, 0)); 1095 sd(return_bci, Address(sp, wordSize)); 1096 call_VM(noreg, 1097 CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), 1098 return_bci); 1099 ld(zr, Address(sp, 0)); 1100 ld(return_bci, Address(sp, wordSize)); 1101 addi(sp, sp, 2 * wordSize); 1102 } 1103 1104 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, 1105 Register bumped_count) { 1106 if (ProfileInterpreter) { 1107 Label profile_continue; 1108 1109 // If no method data exists, go to profile_continue. 1110 // Otherwise, assign to mdp 1111 test_method_data_pointer(mdp, profile_continue); 1112 1113 // We are taking a branch. Increment the taken count. 1114 Address data(mdp, in_bytes(JumpData::taken_offset())); 1115 ld(bumped_count, data); 1116 assert(DataLayout::counter_increment == 1, 1117 "flow-free idiom only works with 1"); 1118 addi(bumped_count, bumped_count, DataLayout::counter_increment); 1119 Label L; 1120 // eg: bumped_count=0x7fff ffff ffff ffff + 1 < 0. so we use <= 0; 1121 blez(bumped_count, L); // skip store if counter overflow, 1122 sd(bumped_count, data); 1123 bind(L); 1124 // The method data pointer needs to be updated to reflect the new target. 1125 update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset())); 1126 bind(profile_continue); 1127 } 1128 } 1129 1130 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) { 1131 if (ProfileInterpreter) { 1132 Label profile_continue; 1133 1134 // If no method data exists, go to profile_continue. 1135 test_method_data_pointer(mdp, profile_continue); 1136 1137 // We are taking a branch. Increment the not taken count. 1138 increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset())); 1139 1140 // The method data pointer needs to be updated to correspond to 1141 // the next bytecode 1142 update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size())); 1143 bind(profile_continue); 1144 } 1145 } 1146 1147 void InterpreterMacroAssembler::profile_call(Register mdp) { 1148 if (ProfileInterpreter) { 1149 Label profile_continue; 1150 1151 // If no method data exists, go to profile_continue. 1152 test_method_data_pointer(mdp, profile_continue); 1153 1154 // We are making a call. Increment the count. 1155 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1156 1157 // The method data pointer needs to be updated to reflect the new target. 1158 update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size())); 1159 bind(profile_continue); 1160 } 1161 } 1162 1163 void InterpreterMacroAssembler::profile_final_call(Register mdp) { 1164 if (ProfileInterpreter) { 1165 Label profile_continue; 1166 1167 // If no method data exists, go to profile_continue. 1168 test_method_data_pointer(mdp, profile_continue); 1169 1170 // We are making a call. Increment the count. 1171 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1172 1173 // The method data pointer needs to be updated to reflect the new target. 1174 update_mdp_by_constant(mdp, 1175 in_bytes(VirtualCallData:: 1176 virtual_call_data_size())); 1177 bind(profile_continue); 1178 } 1179 } 1180 1181 1182 void InterpreterMacroAssembler::profile_virtual_call(Register receiver, 1183 Register mdp, 1184 Register reg2, 1185 bool receiver_can_be_null) { 1186 if (ProfileInterpreter) { 1187 Label profile_continue; 1188 1189 // If no method data exists, go to profile_continue. 1190 test_method_data_pointer(mdp, profile_continue); 1191 1192 Label skip_receiver_profile; 1193 if (receiver_can_be_null) { 1194 Label not_null; 1195 // We are making a call. Increment the count for null receiver. 1196 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1197 j(skip_receiver_profile); 1198 bind(not_null); 1199 } 1200 1201 // Record the receiver type. 1202 record_klass_in_profile(receiver, mdp, reg2, true); 1203 bind(skip_receiver_profile); 1204 1205 // The method data pointer needs to be updated to reflect the new target. 1206 1207 update_mdp_by_constant(mdp, 1208 in_bytes(VirtualCallData:: 1209 virtual_call_data_size())); 1210 bind(profile_continue); 1211 } 1212 } 1213 1214 // This routine creates a state machine for updating the multi-row 1215 // type profile at a virtual call site (or other type-sensitive bytecode). 1216 // The machine visits each row (of receiver/count) until the receiver type 1217 // is found, or until it runs out of rows. At the same time, it remembers 1218 // the location of the first empty row. (An empty row records null for its 1219 // receiver, and can be allocated for a newly-observed receiver type.) 1220 // Because there are two degrees of freedom in the state, a simple linear 1221 // search will not work; it must be a decision tree. Hence this helper 1222 // function is recursive, to generate the required tree structured code. 1223 // It's the interpreter, so we are trading off code space for speed. 1224 // See below for example code. 1225 void InterpreterMacroAssembler::record_klass_in_profile_helper( 1226 Register receiver, Register mdp, 1227 Register reg2, 1228 Label& done, bool is_virtual_call) { 1229 if (TypeProfileWidth == 0) { 1230 if (is_virtual_call) { 1231 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1232 } 1233 1234 } else { 1235 int non_profiled_offset = -1; 1236 if (is_virtual_call) { 1237 non_profiled_offset = in_bytes(CounterData::count_offset()); 1238 } 1239 1240 record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth, 1241 &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset, non_profiled_offset); 1242 } 1243 } 1244 1245 void InterpreterMacroAssembler::record_item_in_profile_helper( 1246 Register item, Register mdp, Register reg2, int start_row, Label& done, int total_rows, 1247 OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn, int non_profiled_offset) { 1248 int last_row = total_rows - 1; 1249 assert(start_row <= last_row, "must be work left to do"); 1250 // Test this row for both the item and for null. 1251 // Take any of three different outcomes: 1252 // 1. found item => increment count and goto done 1253 // 2. found null => keep looking for case 1, maybe allocate this cell 1254 // 3. found something else => keep looking for cases 1 and 2 1255 // Case 3 is handled by a recursive call. 1256 for (int row = start_row; row <= last_row; row++) { 1257 Label next_test; 1258 bool test_for_null_also = (row == start_row); 1259 1260 // See if the item is item[n]. 1261 int item_offset = in_bytes(item_offset_fn(row)); 1262 test_mdp_data_at(mdp, item_offset, item, 1263 (test_for_null_also ? reg2 : noreg), 1264 next_test); 1265 // (Reg2 now contains the item from the CallData.) 1266 1267 // The item is item[n]. Increment count[n]. 1268 int count_offset = in_bytes(item_count_offset_fn(row)); 1269 increment_mdp_data_at(mdp, count_offset); 1270 j(done); 1271 bind(next_test); 1272 1273 if (test_for_null_also) { 1274 Label found_null; 1275 // Failed the equality check on item[n]... Test for null. 1276 if (start_row == last_row) { 1277 // The only thing left to do is handle the null case. 1278 if (non_profiled_offset >= 0) { 1279 beqz(reg2, found_null); 1280 // Item did not match any saved item and there is no empty row for it. 1281 // Increment total counter to indicate polymorphic case. 1282 increment_mdp_data_at(mdp, non_profiled_offset); 1283 j(done); 1284 bind(found_null); 1285 } else { 1286 bnez(reg2, done); 1287 } 1288 break; 1289 } 1290 // Since null is rare, make it be the branch-taken case. 1291 beqz(reg2, found_null); 1292 1293 // Put all the "Case 3" tests here. 1294 record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows, 1295 item_offset_fn, item_count_offset_fn, non_profiled_offset); 1296 1297 // Found a null. Keep searching for a matching item, 1298 // but remember that this is an empty (unused) slot. 1299 bind(found_null); 1300 } 1301 } 1302 1303 // In the fall-through case, we found no matching item, but we 1304 // observed the item[start_row] is NULL. 1305 // Fill in the item field and increment the count. 1306 int item_offset = in_bytes(item_offset_fn(start_row)); 1307 set_mdp_data_at(mdp, item_offset, item); 1308 int count_offset = in_bytes(item_count_offset_fn(start_row)); 1309 mv(reg2, DataLayout::counter_increment); 1310 set_mdp_data_at(mdp, count_offset, reg2); 1311 if (start_row > 0) { 1312 j(done); 1313 } 1314 } 1315 1316 // Example state machine code for three profile rows: 1317 // # main copy of decision tree, rooted at row[1] 1318 // if (row[0].rec == rec) then [ 1319 // row[0].incr() 1320 // goto done 1321 // ] 1322 // if (row[0].rec != NULL) then [ 1323 // # inner copy of decision tree, rooted at row[1] 1324 // if (row[1].rec == rec) then [ 1325 // row[1].incr() 1326 // goto done 1327 // ] 1328 // if (row[1].rec != NULL) then [ 1329 // # degenerate decision tree, rooted at row[2] 1330 // if (row[2].rec == rec) then [ 1331 // row[2].incr() 1332 // goto done 1333 // ] 1334 // if (row[2].rec != NULL) then [ 1335 // count.incr() 1336 // goto done 1337 // ] # overflow 1338 // row[2].init(rec) 1339 // goto done 1340 // ] else [ 1341 // # remember row[1] is empty 1342 // if (row[2].rec == rec) then [ 1343 // row[2].incr() 1344 // goto done 1345 // ] 1346 // row[1].init(rec) 1347 // goto done 1348 // ] 1349 // else [ 1350 // # remember row[0] is empty 1351 // if (row[1].rec == rec) then [ 1352 // row[1].incr() 1353 // goto done 1354 // ] 1355 // if (row[2].rec == rec) then [ 1356 // row[2].incr() 1357 // goto done 1358 // ] 1359 // row[0].init(rec) 1360 // goto done 1361 // ] 1362 // done: 1363 1364 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver, 1365 Register mdp, Register reg2, 1366 bool is_virtual_call) { 1367 assert(ProfileInterpreter, "must be profiling"); 1368 Label done; 1369 1370 record_klass_in_profile_helper(receiver, mdp, reg2, done, is_virtual_call); 1371 1372 bind(done); 1373 } 1374 1375 void InterpreterMacroAssembler::profile_ret(Register return_bci, Register mdp) { 1376 if (ProfileInterpreter) { 1377 Label profile_continue; 1378 1379 // If no method data exists, go to profile_continue. 1380 test_method_data_pointer(mdp, profile_continue); 1381 1382 // Update the total ret count. 1383 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1384 1385 for (uint row = 0; row < RetData::row_limit(); row++) { 1386 Label next_test; 1387 1388 // See if return_bci is equal to bci[n]: 1389 test_mdp_data_at(mdp, 1390 in_bytes(RetData::bci_offset(row)), 1391 return_bci, noreg, 1392 next_test); 1393 1394 // return_bci is equal to bci[n]. Increment the count. 1395 increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row))); 1396 1397 // The method data pointer needs to be updated to reflect the new target. 1398 update_mdp_by_offset(mdp, 1399 in_bytes(RetData::bci_displacement_offset(row))); 1400 j(profile_continue); 1401 bind(next_test); 1402 } 1403 1404 update_mdp_for_ret(return_bci); 1405 1406 bind(profile_continue); 1407 } 1408 } 1409 1410 void InterpreterMacroAssembler::profile_null_seen(Register mdp) { 1411 if (ProfileInterpreter) { 1412 Label profile_continue; 1413 1414 // If no method data exists, go to profile_continue. 1415 test_method_data_pointer(mdp, profile_continue); 1416 1417 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant()); 1418 1419 // The method data pointer needs to be updated. 1420 int mdp_delta = in_bytes(BitData::bit_data_size()); 1421 if (TypeProfileCasts) { 1422 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1423 } 1424 update_mdp_by_constant(mdp, mdp_delta); 1425 1426 bind(profile_continue); 1427 } 1428 } 1429 1430 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) { 1431 if (ProfileInterpreter && TypeProfileCasts) { 1432 Label profile_continue; 1433 1434 // If no method data exists, go to profile_continue. 1435 test_method_data_pointer(mdp, profile_continue); 1436 1437 int count_offset = in_bytes(CounterData::count_offset()); 1438 // Back up the address, since we have already bumped the mdp. 1439 count_offset -= in_bytes(VirtualCallData::virtual_call_data_size()); 1440 1441 // *Decrement* the counter. We expect to see zero or small negatives. 1442 increment_mdp_data_at(mdp, count_offset, true); 1443 1444 bind (profile_continue); 1445 } 1446 } 1447 1448 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) { 1449 if (ProfileInterpreter) { 1450 Label profile_continue; 1451 1452 // If no method data exists, go to profile_continue. 1453 test_method_data_pointer(mdp, profile_continue); 1454 1455 // The method data pointer needs to be updated. 1456 int mdp_delta = in_bytes(BitData::bit_data_size()); 1457 if (TypeProfileCasts) { 1458 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1459 1460 // Record the object type. 1461 record_klass_in_profile(klass, mdp, reg2, false); 1462 } 1463 update_mdp_by_constant(mdp, mdp_delta); 1464 1465 bind(profile_continue); 1466 } 1467 } 1468 1469 void InterpreterMacroAssembler::profile_switch_default(Register mdp) { 1470 if (ProfileInterpreter) { 1471 Label profile_continue; 1472 1473 // If no method data exists, go to profile_continue. 1474 test_method_data_pointer(mdp, profile_continue); 1475 1476 // Update the default case count 1477 increment_mdp_data_at(mdp, 1478 in_bytes(MultiBranchData::default_count_offset())); 1479 1480 // The method data pointer needs to be updated. 1481 update_mdp_by_offset(mdp, 1482 in_bytes(MultiBranchData:: 1483 default_displacement_offset())); 1484 1485 bind(profile_continue); 1486 } 1487 } 1488 1489 void InterpreterMacroAssembler::profile_switch_case(Register index, 1490 Register mdp, 1491 Register reg2) { 1492 if (ProfileInterpreter) { 1493 Label profile_continue; 1494 1495 // If no method data exists, go to profile_continue. 1496 test_method_data_pointer(mdp, profile_continue); 1497 1498 // Build the base (index * per_case_size_in_bytes()) + 1499 // case_array_offset_in_bytes() 1500 mv(reg2, in_bytes(MultiBranchData::per_case_size())); 1501 mv(t0, in_bytes(MultiBranchData::case_array_offset())); 1502 Assembler::mul(index, index, reg2); 1503 Assembler::add(index, index, t0); 1504 1505 // Update the case count 1506 increment_mdp_data_at(mdp, 1507 index, 1508 in_bytes(MultiBranchData::relative_count_offset())); 1509 1510 // The method data pointer need to be updated. 1511 update_mdp_by_offset(mdp, 1512 index, 1513 in_bytes(MultiBranchData:: 1514 relative_displacement_offset())); 1515 1516 bind(profile_continue); 1517 } 1518 } 1519 1520 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) { ; } 1521 1522 void InterpreterMacroAssembler::notify_method_entry() { 1523 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1524 // track stack depth. If it is possible to enter interp_only_mode we add 1525 // the code to check if the event should be sent. 1526 if (JvmtiExport::can_post_interpreter_events()) { 1527 Label L; 1528 lwu(x13, Address(xthread, JavaThread::interp_only_mode_offset())); 1529 beqz(x13, L); 1530 call_VM(noreg, CAST_FROM_FN_PTR(address, 1531 InterpreterRuntime::post_method_entry)); 1532 bind(L); 1533 } 1534 1535 { 1536 SkipIfEqual skip(this, &DTraceMethodProbes, false); 1537 get_method(c_rarg1); 1538 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), 1539 xthread, c_rarg1); 1540 } 1541 1542 // RedefineClasses() tracing support for obsolete method entry 1543 if (log_is_enabled(Trace, redefine, class, obsolete)) { 1544 get_method(c_rarg1); 1545 call_VM_leaf( 1546 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), 1547 xthread, c_rarg1); 1548 } 1549 } 1550 1551 1552 void InterpreterMacroAssembler::notify_method_exit( 1553 TosState state, NotifyMethodExitMode mode) { 1554 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1555 // track stack depth. If it is possible to enter interp_only_mode we add 1556 // the code to check if the event should be sent. 1557 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) { 1558 Label L; 1559 // Note: frame::interpreter_frame_result has a dependency on how the 1560 // method result is saved across the call to post_method_exit. If this 1561 // is changed then the interpreter_frame_result implementation will 1562 // need to be updated too. 1563 1564 // template interpreter will leave the result on the top of the stack. 1565 push(state); 1566 lwu(x13, Address(xthread, JavaThread::interp_only_mode_offset())); 1567 beqz(x13, L); 1568 call_VM(noreg, 1569 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit)); 1570 bind(L); 1571 pop(state); 1572 } 1573 1574 { 1575 SkipIfEqual skip(this, &DTraceMethodProbes, false); 1576 push(state); 1577 get_method(c_rarg1); 1578 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 1579 xthread, c_rarg1); 1580 pop(state); 1581 } 1582 } 1583 1584 1585 // Jump if ((*counter_addr += increment) & mask) satisfies the condition. 1586 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr, 1587 int increment, Address mask, 1588 Register tmp1, Register tmp2, 1589 bool preloaded, Label* where) { 1590 Label done; 1591 if (!preloaded) { 1592 lwu(tmp1, counter_addr); 1593 } 1594 add(tmp1, tmp1, increment); 1595 sw(tmp1, counter_addr); 1596 lwu(tmp2, mask); 1597 andr(tmp1, tmp1, tmp2); 1598 bnez(tmp1, done); 1599 j(*where); // offset is too large so we have to use j instead of beqz here 1600 bind(done); 1601 } 1602 1603 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point, 1604 int number_of_arguments) { 1605 // interpreter specific 1606 // 1607 // Note: No need to save/restore rbcp & rlocals pointer since these 1608 // are callee saved registers and no blocking/ GC can happen 1609 // in leaf calls. 1610 #ifdef ASSERT 1611 { 1612 Label L; 1613 ld(t0, Address(fp, frame::interpreter_frame_last_sp_offset * wordSize)); 1614 beqz(t0, L); 1615 stop("InterpreterMacroAssembler::call_VM_leaf_base:" 1616 " last_sp != NULL"); 1617 bind(L); 1618 } 1619 #endif /* ASSERT */ 1620 // super call 1621 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); 1622 } 1623 1624 void InterpreterMacroAssembler::call_VM_base(Register oop_result, 1625 Register java_thread, 1626 Register last_java_sp, 1627 address entry_point, 1628 int number_of_arguments, 1629 bool check_exceptions) { 1630 // interpreter specific 1631 // 1632 // Note: Could avoid restoring locals ptr (callee saved) - however doesn't 1633 // really make a difference for these runtime calls, since they are 1634 // slow anyway. Btw., bcp must be saved/restored since it may change 1635 // due to GC. 1636 save_bcp(); 1637 #ifdef ASSERT 1638 { 1639 Label L; 1640 ld(t0, Address(fp, frame::interpreter_frame_last_sp_offset * wordSize)); 1641 beqz(t0, L); 1642 stop("InterpreterMacroAssembler::call_VM_base:" 1643 " last_sp != NULL"); 1644 bind(L); 1645 } 1646 #endif /* ASSERT */ 1647 // super call 1648 MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp, 1649 entry_point, number_of_arguments, 1650 check_exceptions); 1651 // interpreter specific 1652 restore_bcp(); 1653 restore_locals(); 1654 } 1655 1656 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr, Register tmp) { 1657 assert_different_registers(obj, tmp, t0, mdo_addr.base()); 1658 Label update, next, none; 1659 1660 verify_oop(obj); 1661 1662 bnez(obj, update); 1663 orptr(mdo_addr, TypeEntries::null_seen, t0, tmp); 1664 j(next); 1665 1666 bind(update); 1667 load_klass(obj, obj); 1668 1669 ld(t0, mdo_addr); 1670 xorr(obj, obj, t0); 1671 andi(t0, obj, TypeEntries::type_klass_mask); 1672 beqz(t0, next); // klass seen before, nothing to 1673 // do. The unknown bit may have been 1674 // set already but no need to check. 1675 1676 andi(t0, obj, TypeEntries::type_unknown); 1677 bnez(t0, next); 1678 // already unknown. Nothing to do anymore. 1679 1680 ld(t0, mdo_addr); 1681 beqz(t0, none); 1682 mv(tmp, (u1)TypeEntries::null_seen); 1683 beq(t0, tmp, none); 1684 // There is a chance that the checks above (re-reading profiling 1685 // data from memory) fail if another thread has just set the 1686 // profiling to this obj's klass 1687 ld(t0, mdo_addr); 1688 xorr(obj, obj, t0); 1689 andi(t0, obj, TypeEntries::type_klass_mask); 1690 beqz(t0, next); 1691 1692 // different than before. Cannot keep accurate profile. 1693 orptr(mdo_addr, TypeEntries::type_unknown, t0, tmp); 1694 j(next); 1695 1696 bind(none); 1697 // first time here. Set profile type. 1698 sd(obj, mdo_addr); 1699 1700 bind(next); 1701 } 1702 1703 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) { 1704 if (!ProfileInterpreter) { 1705 return; 1706 } 1707 1708 if (MethodData::profile_arguments() || MethodData::profile_return()) { 1709 Label profile_continue; 1710 1711 test_method_data_pointer(mdp, profile_continue); 1712 1713 int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size()); 1714 1715 lbu(t0, Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start)); 1716 if (is_virtual) { 1717 mv(tmp, (u1)DataLayout::virtual_call_type_data_tag); 1718 bne(t0, tmp, profile_continue); 1719 } else { 1720 mv(tmp, (u1)DataLayout::call_type_data_tag); 1721 bne(t0, tmp, profile_continue); 1722 } 1723 1724 // calculate slot step 1725 static int stack_slot_offset0 = in_bytes(TypeEntriesAtCall::stack_slot_offset(0)); 1726 static int slot_step = in_bytes(TypeEntriesAtCall::stack_slot_offset(1)) - stack_slot_offset0; 1727 1728 // calculate type step 1729 static int argument_type_offset0 = in_bytes(TypeEntriesAtCall::argument_type_offset(0)); 1730 static int type_step = in_bytes(TypeEntriesAtCall::argument_type_offset(1)) - argument_type_offset0; 1731 1732 if (MethodData::profile_arguments()) { 1733 Label done, loop, loopEnd, profileArgument, profileReturnType; 1734 RegSet pushed_registers; 1735 pushed_registers += x15; 1736 pushed_registers += x16; 1737 pushed_registers += x17; 1738 Register mdo_addr = x15; 1739 Register index = x16; 1740 Register off_to_args = x17; 1741 push_reg(pushed_registers, sp); 1742 1743 mv(off_to_args, in_bytes(TypeEntriesAtCall::args_data_offset())); 1744 mv(t0, TypeProfileArgsLimit); 1745 beqz(t0, loopEnd); 1746 1747 mv(index, zr); // index < TypeProfileArgsLimit 1748 bind(loop); 1749 bgtz(index, profileReturnType); 1750 mv(t0, (int)MethodData::profile_return()); 1751 beqz(t0, profileArgument); // (index > 0 || MethodData::profile_return()) == false 1752 bind(profileReturnType); 1753 // If return value type is profiled we may have no argument to profile 1754 ld(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset()))); 1755 mv(t1, - TypeStackSlotEntries::per_arg_count()); 1756 mul(t1, index, t1); 1757 add(tmp, tmp, t1); 1758 mv(t1, TypeStackSlotEntries::per_arg_count()); 1759 add(t0, mdp, off_to_args); 1760 blt(tmp, t1, done); 1761 1762 bind(profileArgument); 1763 1764 ld(tmp, Address(callee, Method::const_offset())); 1765 load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset())); 1766 // stack offset o (zero based) from the start of the argument 1767 // list, for n arguments translates into offset n - o - 1 from 1768 // the end of the argument list 1769 mv(t0, stack_slot_offset0); 1770 mv(t1, slot_step); 1771 mul(t1, index, t1); 1772 add(t0, t0, t1); 1773 add(t0, mdp, t0); 1774 ld(t0, Address(t0)); 1775 sub(tmp, tmp, t0); 1776 addi(tmp, tmp, -1); 1777 Address arg_addr = argument_address(tmp); 1778 ld(tmp, arg_addr); 1779 1780 mv(t0, argument_type_offset0); 1781 mv(t1, type_step); 1782 mul(t1, index, t1); 1783 add(t0, t0, t1); 1784 add(mdo_addr, mdp, t0); 1785 Address mdo_arg_addr(mdo_addr, 0); 1786 profile_obj_type(tmp, mdo_arg_addr, t1); 1787 1788 int to_add = in_bytes(TypeStackSlotEntries::per_arg_size()); 1789 addi(off_to_args, off_to_args, to_add); 1790 1791 // increment index by 1 1792 addi(index, index, 1); 1793 mv(t1, TypeProfileArgsLimit); 1794 blt(index, t1, loop); 1795 bind(loopEnd); 1796 1797 if (MethodData::profile_return()) { 1798 ld(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset()))); 1799 addi(tmp, tmp, -TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count()); 1800 } 1801 1802 add(t0, mdp, off_to_args); 1803 bind(done); 1804 mv(mdp, t0); 1805 1806 // unspill the clobbered registers 1807 pop_reg(pushed_registers, sp); 1808 1809 if (MethodData::profile_return()) { 1810 // We're right after the type profile for the last 1811 // argument. tmp is the number of cells left in the 1812 // CallTypeData/VirtualCallTypeData to reach its end. Non null 1813 // if there's a return to profile. 1814 assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type"); 1815 shadd(mdp, tmp, mdp, tmp, exact_log2(DataLayout::cell_size)); 1816 } 1817 sd(mdp, Address(fp, frame::interpreter_frame_mdp_offset * wordSize)); 1818 } else { 1819 assert(MethodData::profile_return(), "either profile call args or call ret"); 1820 update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size())); 1821 } 1822 1823 // mdp points right after the end of the 1824 // CallTypeData/VirtualCallTypeData, right after the cells for the 1825 // return value type if there's one 1826 1827 bind(profile_continue); 1828 } 1829 } 1830 1831 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) { 1832 assert_different_registers(mdp, ret, tmp, xbcp, t0, t1); 1833 if (ProfileInterpreter && MethodData::profile_return()) { 1834 Label profile_continue, done; 1835 1836 test_method_data_pointer(mdp, profile_continue); 1837 1838 if (MethodData::profile_return_jsr292_only()) { 1839 assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2"); 1840 1841 // If we don't profile all invoke bytecodes we must make sure 1842 // it's a bytecode we indeed profile. We can't go back to the 1843 // beginning of the ProfileData we intend to update to check its 1844 // type because we're right after it and we don't known its 1845 // length 1846 Label do_profile; 1847 lbu(t0, Address(xbcp, 0)); 1848 mv(tmp, (u1)Bytecodes::_invokedynamic); 1849 beq(t0, tmp, do_profile); 1850 mv(tmp, (u1)Bytecodes::_invokehandle); 1851 beq(t0, tmp, do_profile); 1852 get_method(tmp); 1853 lhu(t0, Address(tmp, Method::intrinsic_id_offset_in_bytes())); 1854 mv(t1, static_cast<int>(vmIntrinsics::_compiledLambdaForm)); 1855 bne(t0, t1, profile_continue); 1856 bind(do_profile); 1857 } 1858 1859 Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size())); 1860 mv(tmp, ret); 1861 profile_obj_type(tmp, mdo_ret_addr, t1); 1862 1863 bind(profile_continue); 1864 } 1865 } 1866 1867 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2, Register tmp3) { 1868 assert_different_registers(t0, t1, mdp, tmp1, tmp2, tmp3); 1869 if (ProfileInterpreter && MethodData::profile_parameters()) { 1870 Label profile_continue, done; 1871 1872 test_method_data_pointer(mdp, profile_continue); 1873 1874 // Load the offset of the area within the MDO used for 1875 // parameters. If it's negative we're not profiling any parameters 1876 lwu(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()))); 1877 srli(tmp2, tmp1, 31); 1878 bnez(tmp2, profile_continue); // i.e. sign bit set 1879 1880 // Compute a pointer to the area for parameters from the offset 1881 // and move the pointer to the slot for the last 1882 // parameters. Collect profiling from last parameter down. 1883 // mdo start + parameters offset + array length - 1 1884 add(mdp, mdp, tmp1); 1885 ld(tmp1, Address(mdp, ArrayData::array_len_offset())); 1886 add(tmp1, tmp1, - TypeStackSlotEntries::per_arg_count()); 1887 1888 Label loop; 1889 bind(loop); 1890 1891 int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0)); 1892 int type_base = in_bytes(ParametersTypeData::type_offset(0)); 1893 int per_arg_scale = exact_log2(DataLayout::cell_size); 1894 add(t0, mdp, off_base); 1895 add(t1, mdp, type_base); 1896 1897 shadd(tmp2, tmp1, t0, tmp2, per_arg_scale); 1898 // load offset on the stack from the slot for this parameter 1899 ld(tmp2, Address(tmp2, 0)); 1900 neg(tmp2, tmp2); 1901 1902 // read the parameter from the local area 1903 shadd(tmp2, tmp2, xlocals, tmp2, Interpreter::logStackElementSize); 1904 ld(tmp2, Address(tmp2, 0)); 1905 1906 // profile the parameter 1907 shadd(t1, tmp1, t1, t0, per_arg_scale); 1908 Address arg_type(t1, 0); 1909 profile_obj_type(tmp2, arg_type, tmp3); 1910 1911 // go to next parameter 1912 add(tmp1, tmp1, - TypeStackSlotEntries::per_arg_count()); 1913 bgez(tmp1, loop); 1914 1915 bind(profile_continue); 1916 } 1917 } 1918 1919 void InterpreterMacroAssembler::get_method_counters(Register method, 1920 Register mcs, Label& skip) { 1921 Label has_counters; 1922 ld(mcs, Address(method, Method::method_counters_offset())); 1923 bnez(mcs, has_counters); 1924 call_VM(noreg, CAST_FROM_FN_PTR(address, 1925 InterpreterRuntime::build_method_counters), method); 1926 ld(mcs, Address(method, Method::method_counters_offset())); 1927 beqz(mcs, skip); // No MethodCounters allocated, OutOfMemory 1928 bind(has_counters); 1929 } 1930 1931 #ifdef ASSERT 1932 void InterpreterMacroAssembler::verify_access_flags(Register access_flags, uint32_t flag_bits, 1933 const char* msg, bool stop_by_hit) { 1934 Label L; 1935 andi(t0, access_flags, flag_bits); 1936 if (stop_by_hit) { 1937 beqz(t0, L); 1938 } else { 1939 bnez(t0, L); 1940 } 1941 stop(msg); 1942 bind(L); 1943 } 1944 1945 void InterpreterMacroAssembler::verify_frame_setup() { 1946 Label L; 1947 const Address monitor_block_top(fp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 1948 ld(t0, monitor_block_top); 1949 beq(esp, t0, L); 1950 stop("broken stack frame setup in interpreter"); 1951 bind(L); 1952 } 1953 #endif