1 /* 2 * Copyright (c) 2003, 2023, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved. 4 * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved. 5 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 6 * 7 * This code is free software; you can redistribute it and/or modify it 8 * under the terms of the GNU General Public License version 2 only, as 9 * published by the Free Software Foundation. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 * 25 */ 26 27 #include "precompiled.hpp" 28 #include "asm/macroAssembler.inline.hpp" 29 #include "gc/shared/barrierSet.hpp" 30 #include "gc/shared/barrierSetAssembler.hpp" 31 #include "interp_masm_riscv.hpp" 32 #include "interpreter/interpreter.hpp" 33 #include "interpreter/interpreterRuntime.hpp" 34 #include "logging/log.hpp" 35 #include "oops/arrayOop.hpp" 36 #include "oops/markWord.hpp" 37 #include "oops/method.hpp" 38 #include "oops/methodData.hpp" 39 #include "prims/jvmtiExport.hpp" 40 #include "prims/jvmtiThreadState.hpp" 41 #include "runtime/basicLock.hpp" 42 #include "runtime/frame.inline.hpp" 43 #include "runtime/javaThread.hpp" 44 #include "runtime/safepointMechanism.hpp" 45 #include "runtime/sharedRuntime.hpp" 46 #include "utilities/powerOfTwo.hpp" 47 48 void InterpreterMacroAssembler::narrow(Register result) { 49 // Get method->_constMethod->_result_type 50 ld(t0, Address(fp, frame::interpreter_frame_method_offset * wordSize)); 51 ld(t0, Address(t0, Method::const_offset())); 52 lbu(t0, Address(t0, ConstMethod::result_type_offset())); 53 54 Label done, notBool, notByte, notChar; 55 56 // common case first 57 mv(t1, T_INT); 58 beq(t0, t1, done); 59 60 // mask integer result to narrower return type. 61 mv(t1, T_BOOLEAN); 62 bne(t0, t1, notBool); 63 64 andi(result, result, 0x1); 65 j(done); 66 67 bind(notBool); 68 mv(t1, T_BYTE); 69 bne(t0, t1, notByte); 70 sign_extend(result, result, 8); 71 j(done); 72 73 bind(notByte); 74 mv(t1, T_CHAR); 75 bne(t0, t1, notChar); 76 zero_extend(result, result, 16); 77 j(done); 78 79 bind(notChar); 80 sign_extend(result, result, 16); 81 82 // Nothing to do for T_INT 83 bind(done); 84 addw(result, result, zr); 85 } 86 87 void InterpreterMacroAssembler::jump_to_entry(address entry) { 88 assert(entry != NULL, "Entry must have been generated by now"); 89 j(entry); 90 } 91 92 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) { 93 if (JvmtiExport::can_pop_frame()) { 94 Label L; 95 // Initiate popframe handling only if it is not already being 96 // processed. If the flag has the popframe_processing bit set, 97 // it means that this code is called *during* popframe handling - we 98 // don't want to reenter. 99 // This method is only called just after the call into the vm in 100 // call_VM_base, so the arg registers are available. 101 lwu(t1, Address(xthread, JavaThread::popframe_condition_offset())); 102 andi(t0, t1, JavaThread::popframe_pending_bit); 103 beqz(t0, L); 104 andi(t0, t1, JavaThread::popframe_processing_bit); 105 bnez(t0, L); 106 // Call Interpreter::remove_activation_preserving_args_entry() to get the 107 // address of the same-named entrypoint in the generated interpreter code. 108 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry)); 109 jr(x10); 110 bind(L); 111 } 112 } 113 114 115 void InterpreterMacroAssembler::load_earlyret_value(TosState state) { 116 ld(x12, Address(xthread, JavaThread::jvmti_thread_state_offset())); 117 const Address tos_addr(x12, JvmtiThreadState::earlyret_tos_offset()); 118 const Address oop_addr(x12, JvmtiThreadState::earlyret_oop_offset()); 119 const Address val_addr(x12, JvmtiThreadState::earlyret_value_offset()); 120 switch (state) { 121 case atos: 122 ld(x10, oop_addr); 123 sd(zr, oop_addr); 124 verify_oop(x10); 125 break; 126 case ltos: 127 ld(x10, val_addr); 128 break; 129 case btos: // fall through 130 case ztos: // fall through 131 case ctos: // fall through 132 case stos: // fall through 133 case itos: 134 lwu(x10, val_addr); 135 break; 136 case ftos: 137 flw(f10, val_addr); 138 break; 139 case dtos: 140 fld(f10, val_addr); 141 break; 142 case vtos: 143 /* nothing to do */ 144 break; 145 default: 146 ShouldNotReachHere(); 147 } 148 // Clean up tos value in the thread object 149 mv(t0, (int)ilgl); 150 sw(t0, tos_addr); 151 sw(zr, val_addr); 152 } 153 154 155 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) { 156 if (JvmtiExport::can_force_early_return()) { 157 Label L; 158 ld(t0, Address(xthread, JavaThread::jvmti_thread_state_offset())); 159 beqz(t0, L); // if [thread->jvmti_thread_state() == NULL] then exit 160 161 // Initiate earlyret handling only if it is not already being processed. 162 // If the flag has the earlyret_processing bit set, it means that this code 163 // is called *during* earlyret handling - we don't want to reenter. 164 lwu(t0, Address(t0, JvmtiThreadState::earlyret_state_offset())); 165 mv(t1, JvmtiThreadState::earlyret_pending); 166 bne(t0, t1, L); 167 168 // Call Interpreter::remove_activation_early_entry() to get the address of the 169 // same-named entrypoint in the generated interpreter code. 170 ld(t0, Address(xthread, JavaThread::jvmti_thread_state_offset())); 171 lwu(t0, Address(t0, JvmtiThreadState::earlyret_tos_offset())); 172 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), t0); 173 jr(x10); 174 bind(L); 175 } 176 } 177 178 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) { 179 assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode"); 180 lhu(reg, Address(xbcp, bcp_offset)); 181 revb_h(reg, reg); 182 } 183 184 void InterpreterMacroAssembler::get_dispatch() { 185 ExternalAddress target((address)Interpreter::dispatch_table()); 186 relocate(target.rspec(), [&] { 187 int32_t offset; 188 la_patchable(xdispatch, target, offset); 189 addi(xdispatch, xdispatch, offset); 190 }); 191 } 192 193 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index, 194 int bcp_offset, 195 size_t index_size) { 196 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); 197 if (index_size == sizeof(u2)) { 198 load_unsigned_short(index, Address(xbcp, bcp_offset)); 199 } else if (index_size == sizeof(u4)) { 200 lwu(index, Address(xbcp, bcp_offset)); 201 // Check if the secondary index definition is still ~x, otherwise 202 // we have to change the following assembler code to calculate the 203 // plain index. 204 assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line"); 205 xori(index, index, -1); 206 addw(index, index, zr); 207 } else if (index_size == sizeof(u1)) { 208 load_unsigned_byte(index, Address(xbcp, bcp_offset)); 209 } else { 210 ShouldNotReachHere(); 211 } 212 } 213 214 // Return 215 // Rindex: index into constant pool 216 // Rcache: address of cache entry - ConstantPoolCache::base_offset() 217 // 218 // A caller must add ConstantPoolCache::base_offset() to Rcache to get 219 // the true address of the cache entry. 220 // 221 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, 222 Register index, 223 int bcp_offset, 224 size_t index_size) { 225 assert_different_registers(cache, index); 226 assert_different_registers(cache, xcpool); 227 get_cache_index_at_bcp(index, bcp_offset, index_size); 228 assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below"); 229 // Convert from field index to ConstantPoolCacheEntry 230 // riscv already has the cache in xcpool so there is no need to 231 // install it in cache. Instead we pre-add the indexed offset to 232 // xcpool and return it in cache. All clients of this method need to 233 // be modified accordingly. 234 shadd(cache, index, xcpool, cache, 5); 235 } 236 237 238 void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache, 239 Register index, 240 Register bytecode, 241 int byte_no, 242 int bcp_offset, 243 size_t index_size) { 244 get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size); 245 // We use a 32-bit load here since the layout of 64-bit words on 246 // little-endian machines allow us that. 247 // n.b. unlike x86 cache already includes the index offset 248 la(bytecode, Address(cache, 249 ConstantPoolCache::base_offset() + 250 ConstantPoolCacheEntry::indices_offset())); 251 membar(MacroAssembler::AnyAny); 252 lwu(bytecode, bytecode); 253 membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 254 const int shift_count = (1 + byte_no) * BitsPerByte; 255 slli(bytecode, bytecode, XLEN - (shift_count + BitsPerByte)); 256 srli(bytecode, bytecode, XLEN - BitsPerByte); 257 } 258 259 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, 260 Register tmp, 261 int bcp_offset, 262 size_t index_size) { 263 assert_different_registers(cache, tmp); 264 get_cache_index_at_bcp(tmp, bcp_offset, index_size); 265 assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below"); 266 // Convert from field index to ConstantPoolCacheEntry index 267 // and from word offset to byte offset 268 assert(exact_log2(in_bytes(ConstantPoolCacheEntry::size_in_bytes())) == 2 + LogBytesPerWord, 269 "else change next line"); 270 ld(cache, Address(fp, frame::interpreter_frame_cache_offset * wordSize)); 271 // skip past the header 272 add(cache, cache, in_bytes(ConstantPoolCache::base_offset())); 273 // construct pointer to cache entry 274 shadd(cache, tmp, cache, tmp, 2 + LogBytesPerWord); 275 } 276 277 // Load object from cpool->resolved_references(index) 278 void InterpreterMacroAssembler::load_resolved_reference_at_index( 279 Register result, Register index, Register tmp) { 280 assert_different_registers(result, index); 281 282 get_constant_pool(result); 283 // Load pointer for resolved_references[] objArray 284 ld(result, Address(result, ConstantPool::cache_offset_in_bytes())); 285 ld(result, Address(result, ConstantPoolCache::resolved_references_offset_in_bytes())); 286 resolve_oop_handle(result, tmp, t1); 287 // Add in the index 288 addi(index, index, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop); 289 shadd(result, index, result, index, LogBytesPerHeapOop); 290 load_heap_oop(result, Address(result, 0), tmp, t1); 291 } 292 293 void InterpreterMacroAssembler::load_resolved_klass_at_offset( 294 Register cpool, Register index, Register klass, Register temp) { 295 shadd(temp, index, cpool, temp, LogBytesPerWord); 296 lhu(temp, Address(temp, sizeof(ConstantPool))); // temp = resolved_klass_index 297 ld(klass, Address(cpool, ConstantPool::resolved_klasses_offset_in_bytes())); // klass = cpool->_resolved_klasses 298 shadd(klass, temp, klass, temp, LogBytesPerWord); 299 ld(klass, Address(klass, Array<Klass*>::base_offset_in_bytes())); 300 } 301 302 void InterpreterMacroAssembler::load_resolved_method_at_index(int byte_no, 303 Register method, 304 Register cache) { 305 const int method_offset = in_bytes( 306 ConstantPoolCache::base_offset() + 307 ((byte_no == TemplateTable::f2_byte) 308 ? ConstantPoolCacheEntry::f2_offset() 309 : ConstantPoolCacheEntry::f1_offset())); 310 311 ld(method, Address(cache, method_offset)); // get f1 Method* 312 } 313 314 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a 315 // subtype of super_klass. 316 // 317 // Args: 318 // x10: superklass 319 // Rsub_klass: subklass 320 // 321 // Kills: 322 // x12, x15 323 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, 324 Label& ok_is_subtype) { 325 assert(Rsub_klass != x10, "x10 holds superklass"); 326 assert(Rsub_klass != x12, "x12 holds 2ndary super array length"); 327 assert(Rsub_klass != x15, "x15 holds 2ndary super array scan ptr"); 328 329 // Profile the not-null value's klass. 330 profile_typecheck(x12, Rsub_klass, x15); // blows x12, reloads x15 331 332 // Do the check. 333 check_klass_subtype(Rsub_klass, x10, x12, ok_is_subtype); // blows x12 334 335 // Profile the failure of the check. 336 profile_typecheck_failed(x12); // blows x12 337 } 338 339 // Java Expression Stack 340 341 void InterpreterMacroAssembler::pop_ptr(Register r) { 342 ld(r, Address(esp, 0)); 343 addi(esp, esp, wordSize); 344 } 345 346 void InterpreterMacroAssembler::pop_i(Register r) { 347 lw(r, Address(esp, 0)); // lw do signed extended 348 addi(esp, esp, wordSize); 349 } 350 351 void InterpreterMacroAssembler::pop_l(Register r) { 352 ld(r, Address(esp, 0)); 353 addi(esp, esp, 2 * Interpreter::stackElementSize); 354 } 355 356 void InterpreterMacroAssembler::push_ptr(Register r) { 357 addi(esp, esp, -wordSize); 358 sd(r, Address(esp, 0)); 359 } 360 361 void InterpreterMacroAssembler::push_i(Register r) { 362 addi(esp, esp, -wordSize); 363 addw(r, r, zr); // signed extended 364 sd(r, Address(esp, 0)); 365 } 366 367 void InterpreterMacroAssembler::push_l(Register r) { 368 addi(esp, esp, -2 * wordSize); 369 sd(zr, Address(esp, wordSize)); 370 sd(r, Address(esp)); 371 } 372 373 void InterpreterMacroAssembler::pop_f(FloatRegister r) { 374 flw(r, Address(esp, 0)); 375 addi(esp, esp, wordSize); 376 } 377 378 void InterpreterMacroAssembler::pop_d(FloatRegister r) { 379 fld(r, Address(esp, 0)); 380 addi(esp, esp, 2 * Interpreter::stackElementSize); 381 } 382 383 void InterpreterMacroAssembler::push_f(FloatRegister r) { 384 addi(esp, esp, -wordSize); 385 fsw(r, Address(esp, 0)); 386 } 387 388 void InterpreterMacroAssembler::push_d(FloatRegister r) { 389 addi(esp, esp, -2 * wordSize); 390 fsd(r, Address(esp, 0)); 391 } 392 393 void InterpreterMacroAssembler::pop(TosState state) { 394 switch (state) { 395 case atos: 396 pop_ptr(); 397 verify_oop(x10); 398 break; 399 case btos: // fall through 400 case ztos: // fall through 401 case ctos: // fall through 402 case stos: // fall through 403 case itos: 404 pop_i(); 405 break; 406 case ltos: 407 pop_l(); 408 break; 409 case ftos: 410 pop_f(); 411 break; 412 case dtos: 413 pop_d(); 414 break; 415 case vtos: 416 /* nothing to do */ 417 break; 418 default: 419 ShouldNotReachHere(); 420 } 421 } 422 423 void InterpreterMacroAssembler::push(TosState state) { 424 switch (state) { 425 case atos: 426 verify_oop(x10); 427 push_ptr(); 428 break; 429 case btos: // fall through 430 case ztos: // fall through 431 case ctos: // fall through 432 case stos: // fall through 433 case itos: 434 push_i(); 435 break; 436 case ltos: 437 push_l(); 438 break; 439 case ftos: 440 push_f(); 441 break; 442 case dtos: 443 push_d(); 444 break; 445 case vtos: 446 /* nothing to do */ 447 break; 448 default: 449 ShouldNotReachHere(); 450 } 451 } 452 453 // Helpers for swap and dup 454 void InterpreterMacroAssembler::load_ptr(int n, Register val) { 455 ld(val, Address(esp, Interpreter::expr_offset_in_bytes(n))); 456 } 457 458 void InterpreterMacroAssembler::store_ptr(int n, Register val) { 459 sd(val, Address(esp, Interpreter::expr_offset_in_bytes(n))); 460 } 461 462 void InterpreterMacroAssembler::load_float(Address src) { 463 flw(f10, src); 464 } 465 466 void InterpreterMacroAssembler::load_double(Address src) { 467 fld(f10, src); 468 } 469 470 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() { 471 // set sender sp 472 mv(x19_sender_sp, sp); 473 // record last_sp 474 sd(esp, Address(fp, frame::interpreter_frame_last_sp_offset * wordSize)); 475 } 476 477 // Jump to from_interpreted entry of a call unless single stepping is possible 478 // in this thread in which case we must call the i2i entry 479 void InterpreterMacroAssembler::jump_from_interpreted(Register method) { 480 prepare_to_jump_from_interpreted(); 481 if (JvmtiExport::can_post_interpreter_events()) { 482 Label run_compiled_code; 483 // JVMTI events, such as single-stepping, are implemented partly by avoiding running 484 // compiled code in threads for which the event is enabled. Check here for 485 // interp_only_mode if these events CAN be enabled. 486 lwu(t0, Address(xthread, JavaThread::interp_only_mode_offset())); 487 beqz(t0, run_compiled_code); 488 ld(t0, Address(method, Method::interpreter_entry_offset())); 489 jr(t0); 490 bind(run_compiled_code); 491 } 492 493 ld(t0, Address(method, Method::from_interpreted_offset())); 494 jr(t0); 495 } 496 497 // The following two routines provide a hook so that an implementation 498 // can schedule the dispatch in two parts. amd64 does not do this. 499 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) { 500 } 501 502 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) { 503 dispatch_next(state, step); 504 } 505 506 void InterpreterMacroAssembler::dispatch_base(TosState state, 507 address* table, 508 bool verifyoop, 509 bool generate_poll, 510 Register Rs) { 511 // Pay attention to the argument Rs, which is acquiesce in t0. 512 if (VerifyActivationFrameSize) { 513 Unimplemented(); 514 } 515 if (verifyoop && state == atos) { 516 verify_oop(x10); 517 } 518 519 Label safepoint; 520 address* const safepoint_table = Interpreter::safept_table(state); 521 bool needs_thread_local_poll = generate_poll && table != safepoint_table; 522 523 if (needs_thread_local_poll) { 524 NOT_PRODUCT(block_comment("Thread-local Safepoint poll")); 525 ld(t1, Address(xthread, JavaThread::polling_word_offset())); 526 andi(t1, t1, SafepointMechanism::poll_bit()); 527 bnez(t1, safepoint); 528 } 529 if (table == Interpreter::dispatch_table(state)) { 530 mv(t1, Interpreter::distance_from_dispatch_table(state)); 531 add(t1, Rs, t1); 532 shadd(t1, t1, xdispatch, t1, 3); 533 } else { 534 mv(t1, (address)table); 535 shadd(t1, Rs, t1, Rs, 3); 536 } 537 ld(t1, Address(t1)); 538 jr(t1); 539 540 if (needs_thread_local_poll) { 541 bind(safepoint); 542 la(t1, ExternalAddress((address)safepoint_table)); 543 shadd(t1, Rs, t1, Rs, 3); 544 ld(t1, Address(t1)); 545 jr(t1); 546 } 547 } 548 549 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll, Register Rs) { 550 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll, Rs); 551 } 552 553 void InterpreterMacroAssembler::dispatch_only_normal(TosState state, Register Rs) { 554 dispatch_base(state, Interpreter::normal_table(state), true, false, Rs); 555 } 556 557 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state, Register Rs) { 558 dispatch_base(state, Interpreter::normal_table(state), false, false, Rs); 559 } 560 561 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) { 562 // load next bytecode 563 load_unsigned_byte(t0, Address(xbcp, step)); 564 add(xbcp, xbcp, step); 565 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll); 566 } 567 568 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) { 569 // load current bytecode 570 lbu(t0, Address(xbcp, 0)); 571 dispatch_base(state, table); 572 } 573 574 // remove activation 575 // 576 // Apply stack watermark barrier. 577 // Unlock the receiver if this is a synchronized method. 578 // Unlock any Java monitors from synchronized blocks. 579 // Remove the activation from the stack. 580 // 581 // If there are locked Java monitors 582 // If throw_monitor_exception 583 // throws IllegalMonitorStateException 584 // Else if install_monitor_exception 585 // installs IllegalMonitorStateException 586 // Else 587 // no error processing 588 void InterpreterMacroAssembler::remove_activation( 589 TosState state, 590 bool throw_monitor_exception, 591 bool install_monitor_exception, 592 bool notify_jvmdi) { 593 // Note: Registers x13 may be in use for the 594 // result check if synchronized method 595 Label unlocked, unlock, no_unlock; 596 597 // The below poll is for the stack watermark barrier. It allows fixing up frames lazily, 598 // that would normally not be safe to use. Such bad returns into unsafe territory of 599 // the stack, will call InterpreterRuntime::at_unwind. 600 Label slow_path; 601 Label fast_path; 602 safepoint_poll(slow_path, true /* at_return */, false /* acquire */, false /* in_nmethod */); 603 j(fast_path); 604 605 bind(slow_path); 606 push(state); 607 set_last_Java_frame(esp, fp, (address)pc(), t0); 608 super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), xthread); 609 reset_last_Java_frame(true); 610 pop(state); 611 612 bind(fast_path); 613 614 // get the value of _do_not_unlock_if_synchronized into x13 615 const Address do_not_unlock_if_synchronized(xthread, 616 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); 617 lbu(x13, do_not_unlock_if_synchronized); 618 sb(zr, do_not_unlock_if_synchronized); // reset the flag 619 620 // get method access flags 621 ld(x11, Address(fp, frame::interpreter_frame_method_offset * wordSize)); 622 ld(x12, Address(x11, Method::access_flags_offset())); 623 andi(t0, x12, JVM_ACC_SYNCHRONIZED); 624 beqz(t0, unlocked); 625 626 // Don't unlock anything if the _do_not_unlock_if_synchronized flag 627 // is set. 628 bnez(x13, no_unlock); 629 630 // unlock monitor 631 push(state); // save result 632 633 // BasicObjectLock will be first in list, since this is a 634 // synchronized method. However, need to check that the object has 635 // not been unlocked by an explicit monitorexit bytecode. 636 const Address monitor(fp, frame::interpreter_frame_initial_sp_offset * 637 wordSize - (int) sizeof(BasicObjectLock)); 638 // We use c_rarg1 so that if we go slow path it will be the correct 639 // register for unlock_object to pass to VM directly 640 la(c_rarg1, monitor); // address of first monitor 641 642 ld(x10, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes())); 643 bnez(x10, unlock); 644 645 pop(state); 646 if (throw_monitor_exception) { 647 // Entry already unlocked, need to throw exception 648 call_VM(noreg, CAST_FROM_FN_PTR(address, 649 InterpreterRuntime::throw_illegal_monitor_state_exception)); 650 should_not_reach_here(); 651 } else { 652 // Monitor already unlocked during a stack unroll. If requested, 653 // install an illegal_monitor_state_exception. Continue with 654 // stack unrolling. 655 if (install_monitor_exception) { 656 call_VM(noreg, CAST_FROM_FN_PTR(address, 657 InterpreterRuntime::new_illegal_monitor_state_exception)); 658 } 659 j(unlocked); 660 } 661 662 bind(unlock); 663 unlock_object(c_rarg1); 664 pop(state); 665 666 // Check that for block-structured locking (i.e., that all locked 667 // objects has been unlocked) 668 bind(unlocked); 669 670 // x10: Might contain return value 671 672 // Check that all monitors are unlocked 673 { 674 Label loop, exception, entry, restart; 675 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; 676 const Address monitor_block_top( 677 fp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 678 const Address monitor_block_bot( 679 fp, frame::interpreter_frame_initial_sp_offset * wordSize); 680 681 bind(restart); 682 // We use c_rarg1 so that if we go slow path it will be the correct 683 // register for unlock_object to pass to VM directly 684 ld(c_rarg1, monitor_block_top); // points to current entry, starting 685 // with top-most entry 686 la(x9, monitor_block_bot); // points to word before bottom of 687 // monitor block 688 689 j(entry); 690 691 // Entry already locked, need to throw exception 692 bind(exception); 693 694 if (throw_monitor_exception) { 695 // Throw exception 696 MacroAssembler::call_VM(noreg, 697 CAST_FROM_FN_PTR(address, InterpreterRuntime:: 698 throw_illegal_monitor_state_exception)); 699 700 should_not_reach_here(); 701 } else { 702 // Stack unrolling. Unlock object and install illegal_monitor_exception. 703 // Unlock does not block, so don't have to worry about the frame. 704 // We don't have to preserve c_rarg1 since we are going to throw an exception. 705 706 push(state); 707 unlock_object(c_rarg1); 708 pop(state); 709 710 if (install_monitor_exception) { 711 call_VM(noreg, CAST_FROM_FN_PTR(address, 712 InterpreterRuntime:: 713 new_illegal_monitor_state_exception)); 714 } 715 716 j(restart); 717 } 718 719 bind(loop); 720 // check if current entry is used 721 add(t0, c_rarg1, BasicObjectLock::obj_offset_in_bytes()); 722 ld(t0, Address(t0, 0)); 723 bnez(t0, exception); 724 725 add(c_rarg1, c_rarg1, entry_size); // otherwise advance to next entry 726 bind(entry); 727 bne(c_rarg1, x9, loop); // check if bottom reached if not at bottom then check this entry 728 } 729 730 bind(no_unlock); 731 732 // jvmti support 733 if (notify_jvmdi) { 734 notify_method_exit(state, NotifyJVMTI); // preserve TOSCA 735 736 } else { 737 notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA 738 } 739 740 // remove activation 741 // get sender esp 742 ld(t1, 743 Address(fp, frame::interpreter_frame_sender_sp_offset * wordSize)); 744 if (StackReservedPages > 0) { 745 // testing if reserved zone needs to be re-enabled 746 Label no_reserved_zone_enabling; 747 748 ld(t0, Address(xthread, JavaThread::reserved_stack_activation_offset())); 749 ble(t1, t0, no_reserved_zone_enabling); 750 751 call_VM_leaf( 752 CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), xthread); 753 call_VM(noreg, CAST_FROM_FN_PTR(address, 754 InterpreterRuntime::throw_delayed_StackOverflowError)); 755 should_not_reach_here(); 756 757 bind(no_reserved_zone_enabling); 758 } 759 760 // restore sender esp 761 mv(esp, t1); 762 763 // remove frame anchor 764 leave(); 765 // If we're returning to interpreted code we will shortly be 766 // adjusting SP to allow some space for ESP. If we're returning to 767 // compiled code the saved sender SP was saved in sender_sp, so this 768 // restores it. 769 andi(sp, esp, -16); 770 } 771 772 // Lock object 773 // 774 // Args: 775 // c_rarg1: BasicObjectLock to be used for locking 776 // 777 // Kills: 778 // x10 779 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, .. (param regs) 780 // t0, t1 (temp regs) 781 void InterpreterMacroAssembler::lock_object(Register lock_reg) 782 { 783 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1"); 784 if (UseHeavyMonitors) { 785 call_VM(noreg, 786 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 787 lock_reg); 788 } else { 789 Label count, done; 790 791 const Register swap_reg = x10; 792 const Register tmp = c_rarg2; 793 const Register obj_reg = c_rarg3; // Will contain the oop 794 795 const int obj_offset = BasicObjectLock::obj_offset_in_bytes(); 796 const int lock_offset = BasicObjectLock::lock_offset_in_bytes (); 797 const int mark_offset = lock_offset + 798 BasicLock::displaced_header_offset_in_bytes(); 799 800 Label slow_case; 801 802 // Load object pointer into obj_reg c_rarg3 803 ld(obj_reg, Address(lock_reg, obj_offset)); 804 805 if (DiagnoseSyncOnValueBasedClasses != 0) { 806 load_klass(tmp, obj_reg); 807 lwu(tmp, Address(tmp, Klass::access_flags_offset())); 808 andi(tmp, tmp, JVM_ACC_IS_VALUE_BASED_CLASS); 809 bnez(tmp, slow_case); 810 } 811 812 if (UseFastLocking) { 813 ld(tmp, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 814 fast_lock(obj_reg, tmp, t0, t1, slow_case); 815 j(count); 816 } else { 817 // Load (object->mark() | 1) into swap_reg 818 ld(t0, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 819 ori(swap_reg, t0, 1); 820 821 // Save (object->mark() | 1) into BasicLock's displaced header 822 sd(swap_reg, Address(lock_reg, mark_offset)); 823 824 assert(lock_offset == 0, 825 "displached header must be first word in BasicObjectLock"); 826 827 cmpxchg_obj_header(swap_reg, lock_reg, obj_reg, t0, count, /*fallthrough*/NULL); 828 829 // Test if the oopMark is an obvious stack pointer, i.e., 830 // 1) (mark & 7) == 0, and 831 // 2) sp <= mark < mark + os::pagesize() 832 // 833 // These 3 tests can be done by evaluating the following 834 // expression: ((mark - sp) & (7 - os::vm_page_size())), 835 // assuming both stack pointer and pagesize have their 836 // least significant 3 bits clear. 837 // NOTE: the oopMark is in swap_reg x10 as the result of cmpxchg 838 sub(swap_reg, swap_reg, sp); 839 mv(t0, (int64_t)(7 - (int)os::vm_page_size())); 840 andr(swap_reg, swap_reg, t0); 841 842 // Save the test result, for recursive case, the result is zero 843 sd(swap_reg, Address(lock_reg, mark_offset)); 844 beqz(swap_reg, count); 845 } 846 847 bind(slow_case); 848 849 // Call the runtime routine for slow case 850 call_VM(noreg, 851 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 852 UseFastLocking ? obj_reg : lock_reg); 853 854 j(done); 855 856 bind(count); 857 increment(Address(xthread, JavaThread::held_monitor_count_offset())); 858 859 bind(done); 860 } 861 } 862 863 864 // Unlocks an object. Used in monitorexit bytecode and 865 // remove_activation. Throws an IllegalMonitorException if object is 866 // not locked by current thread. 867 // 868 // Args: 869 // c_rarg1: BasicObjectLock for lock 870 // 871 // Kills: 872 // x10 873 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs) 874 // t0, t1 (temp regs) 875 void InterpreterMacroAssembler::unlock_object(Register lock_reg) 876 { 877 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1"); 878 879 if (UseHeavyMonitors) { 880 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 881 } else { 882 Label count, done; 883 884 const Register swap_reg = x10; 885 const Register header_reg = c_rarg2; // Will contain the old oopMark 886 const Register obj_reg = c_rarg3; // Will contain the oop 887 888 save_bcp(); // Save in case of exception 889 890 if (UseFastLocking) { 891 Label slow_case; 892 // Load oop into obj_reg(c_rarg3) 893 ld(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes())); 894 895 // Free entry 896 sd(zr, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes())); 897 898 // Check for non-symmetric locking. This is allowed by the spec and the interpreter 899 // must handle it. 900 Register tmp = header_reg; 901 ld(tmp, Address(xthread, JavaThread::lock_stack_current_offset())); 902 ld(tmp, Address(tmp, -oopSize)); 903 bne(tmp, obj_reg, slow_case); 904 905 ld(header_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 906 fast_unlock(obj_reg, header_reg, swap_reg, t0, slow_case); 907 j(count); 908 909 bind(slow_case); 910 } else { 911 // Convert from BasicObjectLock structure to object and BasicLock 912 // structure Store the BasicLock address into x10 913 la(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes())); 914 915 // Load oop into obj_reg(c_rarg3) 916 ld(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes())); 917 918 // Free entry 919 sd(zr, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes())); 920 921 // Load the old header from BasicLock structure 922 ld(header_reg, Address(swap_reg, 923 BasicLock::displaced_header_offset_in_bytes())); 924 925 // Test for recursion 926 beqz(header_reg, count); 927 928 // Atomic swap back the old header 929 cmpxchg_obj_header(swap_reg, header_reg, obj_reg, t0, count, /*fallthrough*/NULL); 930 } 931 932 // Call the runtime routine for slow case. 933 sd(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes())); // restore obj 934 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 935 936 j(done); 937 938 bind(count); 939 decrement(Address(xthread, JavaThread::held_monitor_count_offset())); 940 941 bind(done); 942 943 restore_bcp(); 944 } 945 } 946 947 948 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, 949 Label& zero_continue) { 950 assert(ProfileInterpreter, "must be profiling interpreter"); 951 ld(mdp, Address(fp, frame::interpreter_frame_mdp_offset * wordSize)); 952 beqz(mdp, zero_continue); 953 } 954 955 // Set the method data pointer for the current bcp. 956 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() { 957 assert(ProfileInterpreter, "must be profiling interpreter"); 958 Label set_mdp; 959 push_reg(RegSet::of(x10, x11), sp); // save x10, x11 960 961 // Test MDO to avoid the call if it is NULL. 962 ld(x10, Address(xmethod, in_bytes(Method::method_data_offset()))); 963 beqz(x10, set_mdp); 964 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), xmethod, xbcp); 965 // x10: mdi 966 // mdo is guaranteed to be non-zero here, we checked for it before the call. 967 ld(x11, Address(xmethod, in_bytes(Method::method_data_offset()))); 968 la(x11, Address(x11, in_bytes(MethodData::data_offset()))); 969 add(x10, x11, x10); 970 sd(x10, Address(fp, frame::interpreter_frame_mdp_offset * wordSize)); 971 bind(set_mdp); 972 pop_reg(RegSet::of(x10, x11), sp); 973 } 974 975 void InterpreterMacroAssembler::verify_method_data_pointer() { 976 assert(ProfileInterpreter, "must be profiling interpreter"); 977 #ifdef ASSERT 978 Label verify_continue; 979 add(sp, sp, -4 * wordSize); 980 sd(x10, Address(sp, 0)); 981 sd(x11, Address(sp, wordSize)); 982 sd(x12, Address(sp, 2 * wordSize)); 983 sd(x13, Address(sp, 3 * wordSize)); 984 test_method_data_pointer(x13, verify_continue); // If mdp is zero, continue 985 get_method(x11); 986 987 // If the mdp is valid, it will point to a DataLayout header which is 988 // consistent with the bcp. The converse is highly probable also. 989 lh(x12, Address(x13, in_bytes(DataLayout::bci_offset()))); 990 ld(t0, Address(x11, Method::const_offset())); 991 add(x12, x12, t0); 992 la(x12, Address(x12, ConstMethod::codes_offset())); 993 beq(x12, xbcp, verify_continue); 994 // x10: method 995 // xbcp: bcp // xbcp == 22 996 // x13: mdp 997 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), 998 x11, xbcp, x13); 999 bind(verify_continue); 1000 ld(x10, Address(sp, 0)); 1001 ld(x11, Address(sp, wordSize)); 1002 ld(x12, Address(sp, 2 * wordSize)); 1003 ld(x13, Address(sp, 3 * wordSize)); 1004 add(sp, sp, 4 * wordSize); 1005 #endif // ASSERT 1006 } 1007 1008 1009 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, 1010 int constant, 1011 Register value) { 1012 assert(ProfileInterpreter, "must be profiling interpreter"); 1013 Address data(mdp_in, constant); 1014 sd(value, data); 1015 } 1016 1017 1018 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 1019 int constant, 1020 bool decrement) { 1021 increment_mdp_data_at(mdp_in, noreg, constant, decrement); 1022 } 1023 1024 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 1025 Register reg, 1026 int constant, 1027 bool decrement) { 1028 assert(ProfileInterpreter, "must be profiling interpreter"); 1029 // %%% this does 64bit counters at best it is wasting space 1030 // at worst it is a rare bug when counters overflow 1031 1032 assert_different_registers(t1, t0, mdp_in, reg); 1033 1034 Address addr1(mdp_in, constant); 1035 Address addr2(t1, 0); 1036 Address &addr = addr1; 1037 if (reg != noreg) { 1038 la(t1, addr1); 1039 add(t1, t1, reg); 1040 addr = addr2; 1041 } 1042 1043 if (decrement) { 1044 ld(t0, addr); 1045 addi(t0, t0, -DataLayout::counter_increment); 1046 Label L; 1047 bltz(t0, L); // skip store if counter underflow 1048 sd(t0, addr); 1049 bind(L); 1050 } else { 1051 assert(DataLayout::counter_increment == 1, 1052 "flow-free idiom only works with 1"); 1053 ld(t0, addr); 1054 addi(t0, t0, DataLayout::counter_increment); 1055 Label L; 1056 blez(t0, L); // skip store if counter overflow 1057 sd(t0, addr); 1058 bind(L); 1059 } 1060 } 1061 1062 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, 1063 int flag_byte_constant) { 1064 assert(ProfileInterpreter, "must be profiling interpreter"); 1065 int flags_offset = in_bytes(DataLayout::flags_offset()); 1066 // Set the flag 1067 lbu(t1, Address(mdp_in, flags_offset)); 1068 ori(t1, t1, flag_byte_constant); 1069 sb(t1, Address(mdp_in, flags_offset)); 1070 } 1071 1072 1073 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in, 1074 int offset, 1075 Register value, 1076 Register test_value_out, 1077 Label& not_equal_continue) { 1078 assert(ProfileInterpreter, "must be profiling interpreter"); 1079 if (test_value_out == noreg) { 1080 ld(t1, Address(mdp_in, offset)); 1081 bne(value, t1, not_equal_continue); 1082 } else { 1083 // Put the test value into a register, so caller can use it: 1084 ld(test_value_out, Address(mdp_in, offset)); 1085 bne(value, test_value_out, not_equal_continue); 1086 } 1087 } 1088 1089 1090 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1091 int offset_of_disp) { 1092 assert(ProfileInterpreter, "must be profiling interpreter"); 1093 ld(t1, Address(mdp_in, offset_of_disp)); 1094 add(mdp_in, mdp_in, t1); 1095 sd(mdp_in, Address(fp, frame::interpreter_frame_mdp_offset * wordSize)); 1096 } 1097 1098 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1099 Register reg, 1100 int offset_of_disp) { 1101 assert(ProfileInterpreter, "must be profiling interpreter"); 1102 add(t1, mdp_in, reg); 1103 ld(t1, Address(t1, offset_of_disp)); 1104 add(mdp_in, mdp_in, t1); 1105 sd(mdp_in, Address(fp, frame::interpreter_frame_mdp_offset * wordSize)); 1106 } 1107 1108 1109 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, 1110 int constant) { 1111 assert(ProfileInterpreter, "must be profiling interpreter"); 1112 addi(mdp_in, mdp_in, (unsigned)constant); 1113 sd(mdp_in, Address(fp, frame::interpreter_frame_mdp_offset * wordSize)); 1114 } 1115 1116 1117 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) { 1118 assert(ProfileInterpreter, "must be profiling interpreter"); 1119 1120 // save/restore across call_VM 1121 addi(sp, sp, -2 * wordSize); 1122 sd(zr, Address(sp, 0)); 1123 sd(return_bci, Address(sp, wordSize)); 1124 call_VM(noreg, 1125 CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), 1126 return_bci); 1127 ld(zr, Address(sp, 0)); 1128 ld(return_bci, Address(sp, wordSize)); 1129 addi(sp, sp, 2 * wordSize); 1130 } 1131 1132 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, 1133 Register bumped_count) { 1134 if (ProfileInterpreter) { 1135 Label profile_continue; 1136 1137 // If no method data exists, go to profile_continue. 1138 // Otherwise, assign to mdp 1139 test_method_data_pointer(mdp, profile_continue); 1140 1141 // We are taking a branch. Increment the taken count. 1142 Address data(mdp, in_bytes(JumpData::taken_offset())); 1143 ld(bumped_count, data); 1144 assert(DataLayout::counter_increment == 1, 1145 "flow-free idiom only works with 1"); 1146 addi(bumped_count, bumped_count, DataLayout::counter_increment); 1147 Label L; 1148 // eg: bumped_count=0x7fff ffff ffff ffff + 1 < 0. so we use <= 0; 1149 blez(bumped_count, L); // skip store if counter overflow, 1150 sd(bumped_count, data); 1151 bind(L); 1152 // The method data pointer needs to be updated to reflect the new target. 1153 update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset())); 1154 bind(profile_continue); 1155 } 1156 } 1157 1158 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) { 1159 if (ProfileInterpreter) { 1160 Label profile_continue; 1161 1162 // If no method data exists, go to profile_continue. 1163 test_method_data_pointer(mdp, profile_continue); 1164 1165 // We are taking a branch. Increment the not taken count. 1166 increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset())); 1167 1168 // The method data pointer needs to be updated to correspond to 1169 // the next bytecode 1170 update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size())); 1171 bind(profile_continue); 1172 } 1173 } 1174 1175 void InterpreterMacroAssembler::profile_call(Register mdp) { 1176 if (ProfileInterpreter) { 1177 Label profile_continue; 1178 1179 // If no method data exists, go to profile_continue. 1180 test_method_data_pointer(mdp, profile_continue); 1181 1182 // We are making a call. Increment the count. 1183 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1184 1185 // The method data pointer needs to be updated to reflect the new target. 1186 update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size())); 1187 bind(profile_continue); 1188 } 1189 } 1190 1191 void InterpreterMacroAssembler::profile_final_call(Register mdp) { 1192 if (ProfileInterpreter) { 1193 Label profile_continue; 1194 1195 // If no method data exists, go to profile_continue. 1196 test_method_data_pointer(mdp, profile_continue); 1197 1198 // We are making a call. Increment the count. 1199 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1200 1201 // The method data pointer needs to be updated to reflect the new target. 1202 update_mdp_by_constant(mdp, 1203 in_bytes(VirtualCallData:: 1204 virtual_call_data_size())); 1205 bind(profile_continue); 1206 } 1207 } 1208 1209 1210 void InterpreterMacroAssembler::profile_virtual_call(Register receiver, 1211 Register mdp, 1212 Register reg2, 1213 bool receiver_can_be_null) { 1214 if (ProfileInterpreter) { 1215 Label profile_continue; 1216 1217 // If no method data exists, go to profile_continue. 1218 test_method_data_pointer(mdp, profile_continue); 1219 1220 Label skip_receiver_profile; 1221 if (receiver_can_be_null) { 1222 Label not_null; 1223 // We are making a call. Increment the count for null receiver. 1224 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1225 j(skip_receiver_profile); 1226 bind(not_null); 1227 } 1228 1229 // Record the receiver type. 1230 record_klass_in_profile(receiver, mdp, reg2, true); 1231 bind(skip_receiver_profile); 1232 1233 // The method data pointer needs to be updated to reflect the new target. 1234 1235 update_mdp_by_constant(mdp, 1236 in_bytes(VirtualCallData:: 1237 virtual_call_data_size())); 1238 bind(profile_continue); 1239 } 1240 } 1241 1242 // This routine creates a state machine for updating the multi-row 1243 // type profile at a virtual call site (or other type-sensitive bytecode). 1244 // The machine visits each row (of receiver/count) until the receiver type 1245 // is found, or until it runs out of rows. At the same time, it remembers 1246 // the location of the first empty row. (An empty row records null for its 1247 // receiver, and can be allocated for a newly-observed receiver type.) 1248 // Because there are two degrees of freedom in the state, a simple linear 1249 // search will not work; it must be a decision tree. Hence this helper 1250 // function is recursive, to generate the required tree structured code. 1251 // It's the interpreter, so we are trading off code space for speed. 1252 // See below for example code. 1253 void InterpreterMacroAssembler::record_klass_in_profile_helper( 1254 Register receiver, Register mdp, 1255 Register reg2, 1256 Label& done, bool is_virtual_call) { 1257 if (TypeProfileWidth == 0) { 1258 if (is_virtual_call) { 1259 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1260 } 1261 1262 } else { 1263 int non_profiled_offset = -1; 1264 if (is_virtual_call) { 1265 non_profiled_offset = in_bytes(CounterData::count_offset()); 1266 } 1267 1268 record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth, 1269 &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset, non_profiled_offset); 1270 } 1271 } 1272 1273 void InterpreterMacroAssembler::record_item_in_profile_helper( 1274 Register item, Register mdp, Register reg2, int start_row, Label& done, int total_rows, 1275 OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn, int non_profiled_offset) { 1276 int last_row = total_rows - 1; 1277 assert(start_row <= last_row, "must be work left to do"); 1278 // Test this row for both the item and for null. 1279 // Take any of three different outcomes: 1280 // 1. found item => increment count and goto done 1281 // 2. found null => keep looking for case 1, maybe allocate this cell 1282 // 3. found something else => keep looking for cases 1 and 2 1283 // Case 3 is handled by a recursive call. 1284 for (int row = start_row; row <= last_row; row++) { 1285 Label next_test; 1286 bool test_for_null_also = (row == start_row); 1287 1288 // See if the item is item[n]. 1289 int item_offset = in_bytes(item_offset_fn(row)); 1290 test_mdp_data_at(mdp, item_offset, item, 1291 (test_for_null_also ? reg2 : noreg), 1292 next_test); 1293 // (Reg2 now contains the item from the CallData.) 1294 1295 // The item is item[n]. Increment count[n]. 1296 int count_offset = in_bytes(item_count_offset_fn(row)); 1297 increment_mdp_data_at(mdp, count_offset); 1298 j(done); 1299 bind(next_test); 1300 1301 if (test_for_null_also) { 1302 Label found_null; 1303 // Failed the equality check on item[n]... Test for null. 1304 if (start_row == last_row) { 1305 // The only thing left to do is handle the null case. 1306 if (non_profiled_offset >= 0) { 1307 beqz(reg2, found_null); 1308 // Item did not match any saved item and there is no empty row for it. 1309 // Increment total counter to indicate polymorphic case. 1310 increment_mdp_data_at(mdp, non_profiled_offset); 1311 j(done); 1312 bind(found_null); 1313 } else { 1314 bnez(reg2, done); 1315 } 1316 break; 1317 } 1318 // Since null is rare, make it be the branch-taken case. 1319 beqz(reg2, found_null); 1320 1321 // Put all the "Case 3" tests here. 1322 record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows, 1323 item_offset_fn, item_count_offset_fn, non_profiled_offset); 1324 1325 // Found a null. Keep searching for a matching item, 1326 // but remember that this is an empty (unused) slot. 1327 bind(found_null); 1328 } 1329 } 1330 1331 // In the fall-through case, we found no matching item, but we 1332 // observed the item[start_row] is NULL. 1333 // Fill in the item field and increment the count. 1334 int item_offset = in_bytes(item_offset_fn(start_row)); 1335 set_mdp_data_at(mdp, item_offset, item); 1336 int count_offset = in_bytes(item_count_offset_fn(start_row)); 1337 mv(reg2, DataLayout::counter_increment); 1338 set_mdp_data_at(mdp, count_offset, reg2); 1339 if (start_row > 0) { 1340 j(done); 1341 } 1342 } 1343 1344 // Example state machine code for three profile rows: 1345 // # main copy of decision tree, rooted at row[1] 1346 // if (row[0].rec == rec) then [ 1347 // row[0].incr() 1348 // goto done 1349 // ] 1350 // if (row[0].rec != NULL) then [ 1351 // # inner copy of decision tree, rooted at row[1] 1352 // if (row[1].rec == rec) then [ 1353 // row[1].incr() 1354 // goto done 1355 // ] 1356 // if (row[1].rec != NULL) then [ 1357 // # degenerate decision tree, rooted at row[2] 1358 // if (row[2].rec == rec) then [ 1359 // row[2].incr() 1360 // goto done 1361 // ] 1362 // if (row[2].rec != NULL) then [ 1363 // count.incr() 1364 // goto done 1365 // ] # overflow 1366 // row[2].init(rec) 1367 // goto done 1368 // ] else [ 1369 // # remember row[1] is empty 1370 // if (row[2].rec == rec) then [ 1371 // row[2].incr() 1372 // goto done 1373 // ] 1374 // row[1].init(rec) 1375 // goto done 1376 // ] 1377 // else [ 1378 // # remember row[0] is empty 1379 // if (row[1].rec == rec) then [ 1380 // row[1].incr() 1381 // goto done 1382 // ] 1383 // if (row[2].rec == rec) then [ 1384 // row[2].incr() 1385 // goto done 1386 // ] 1387 // row[0].init(rec) 1388 // goto done 1389 // ] 1390 // done: 1391 1392 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver, 1393 Register mdp, Register reg2, 1394 bool is_virtual_call) { 1395 assert(ProfileInterpreter, "must be profiling"); 1396 Label done; 1397 1398 record_klass_in_profile_helper(receiver, mdp, reg2, done, is_virtual_call); 1399 1400 bind(done); 1401 } 1402 1403 void InterpreterMacroAssembler::profile_ret(Register return_bci, Register mdp) { 1404 if (ProfileInterpreter) { 1405 Label profile_continue; 1406 1407 // If no method data exists, go to profile_continue. 1408 test_method_data_pointer(mdp, profile_continue); 1409 1410 // Update the total ret count. 1411 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1412 1413 for (uint row = 0; row < RetData::row_limit(); row++) { 1414 Label next_test; 1415 1416 // See if return_bci is equal to bci[n]: 1417 test_mdp_data_at(mdp, 1418 in_bytes(RetData::bci_offset(row)), 1419 return_bci, noreg, 1420 next_test); 1421 1422 // return_bci is equal to bci[n]. Increment the count. 1423 increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row))); 1424 1425 // The method data pointer needs to be updated to reflect the new target. 1426 update_mdp_by_offset(mdp, 1427 in_bytes(RetData::bci_displacement_offset(row))); 1428 j(profile_continue); 1429 bind(next_test); 1430 } 1431 1432 update_mdp_for_ret(return_bci); 1433 1434 bind(profile_continue); 1435 } 1436 } 1437 1438 void InterpreterMacroAssembler::profile_null_seen(Register mdp) { 1439 if (ProfileInterpreter) { 1440 Label profile_continue; 1441 1442 // If no method data exists, go to profile_continue. 1443 test_method_data_pointer(mdp, profile_continue); 1444 1445 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant()); 1446 1447 // The method data pointer needs to be updated. 1448 int mdp_delta = in_bytes(BitData::bit_data_size()); 1449 if (TypeProfileCasts) { 1450 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1451 } 1452 update_mdp_by_constant(mdp, mdp_delta); 1453 1454 bind(profile_continue); 1455 } 1456 } 1457 1458 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) { 1459 if (ProfileInterpreter && TypeProfileCasts) { 1460 Label profile_continue; 1461 1462 // If no method data exists, go to profile_continue. 1463 test_method_data_pointer(mdp, profile_continue); 1464 1465 int count_offset = in_bytes(CounterData::count_offset()); 1466 // Back up the address, since we have already bumped the mdp. 1467 count_offset -= in_bytes(VirtualCallData::virtual_call_data_size()); 1468 1469 // *Decrement* the counter. We expect to see zero or small negatives. 1470 increment_mdp_data_at(mdp, count_offset, true); 1471 1472 bind (profile_continue); 1473 } 1474 } 1475 1476 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) { 1477 if (ProfileInterpreter) { 1478 Label profile_continue; 1479 1480 // If no method data exists, go to profile_continue. 1481 test_method_data_pointer(mdp, profile_continue); 1482 1483 // The method data pointer needs to be updated. 1484 int mdp_delta = in_bytes(BitData::bit_data_size()); 1485 if (TypeProfileCasts) { 1486 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1487 1488 // Record the object type. 1489 record_klass_in_profile(klass, mdp, reg2, false); 1490 } 1491 update_mdp_by_constant(mdp, mdp_delta); 1492 1493 bind(profile_continue); 1494 } 1495 } 1496 1497 void InterpreterMacroAssembler::profile_switch_default(Register mdp) { 1498 if (ProfileInterpreter) { 1499 Label profile_continue; 1500 1501 // If no method data exists, go to profile_continue. 1502 test_method_data_pointer(mdp, profile_continue); 1503 1504 // Update the default case count 1505 increment_mdp_data_at(mdp, 1506 in_bytes(MultiBranchData::default_count_offset())); 1507 1508 // The method data pointer needs to be updated. 1509 update_mdp_by_offset(mdp, 1510 in_bytes(MultiBranchData:: 1511 default_displacement_offset())); 1512 1513 bind(profile_continue); 1514 } 1515 } 1516 1517 void InterpreterMacroAssembler::profile_switch_case(Register index, 1518 Register mdp, 1519 Register reg2) { 1520 if (ProfileInterpreter) { 1521 Label profile_continue; 1522 1523 // If no method data exists, go to profile_continue. 1524 test_method_data_pointer(mdp, profile_continue); 1525 1526 // Build the base (index * per_case_size_in_bytes()) + 1527 // case_array_offset_in_bytes() 1528 mv(reg2, in_bytes(MultiBranchData::per_case_size())); 1529 mv(t0, in_bytes(MultiBranchData::case_array_offset())); 1530 Assembler::mul(index, index, reg2); 1531 Assembler::add(index, index, t0); 1532 1533 // Update the case count 1534 increment_mdp_data_at(mdp, 1535 index, 1536 in_bytes(MultiBranchData::relative_count_offset())); 1537 1538 // The method data pointer need to be updated. 1539 update_mdp_by_offset(mdp, 1540 index, 1541 in_bytes(MultiBranchData:: 1542 relative_displacement_offset())); 1543 1544 bind(profile_continue); 1545 } 1546 } 1547 1548 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) { ; } 1549 1550 void InterpreterMacroAssembler::notify_method_entry() { 1551 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1552 // track stack depth. If it is possible to enter interp_only_mode we add 1553 // the code to check if the event should be sent. 1554 if (JvmtiExport::can_post_interpreter_events()) { 1555 Label L; 1556 lwu(x13, Address(xthread, JavaThread::interp_only_mode_offset())); 1557 beqz(x13, L); 1558 call_VM(noreg, CAST_FROM_FN_PTR(address, 1559 InterpreterRuntime::post_method_entry)); 1560 bind(L); 1561 } 1562 1563 { 1564 SkipIfEqual skip(this, &DTraceMethodProbes, false); 1565 get_method(c_rarg1); 1566 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), 1567 xthread, c_rarg1); 1568 } 1569 1570 // RedefineClasses() tracing support for obsolete method entry 1571 if (log_is_enabled(Trace, redefine, class, obsolete)) { 1572 get_method(c_rarg1); 1573 call_VM_leaf( 1574 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), 1575 xthread, c_rarg1); 1576 } 1577 } 1578 1579 1580 void InterpreterMacroAssembler::notify_method_exit( 1581 TosState state, NotifyMethodExitMode mode) { 1582 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1583 // track stack depth. If it is possible to enter interp_only_mode we add 1584 // the code to check if the event should be sent. 1585 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) { 1586 Label L; 1587 // Note: frame::interpreter_frame_result has a dependency on how the 1588 // method result is saved across the call to post_method_exit. If this 1589 // is changed then the interpreter_frame_result implementation will 1590 // need to be updated too. 1591 1592 // template interpreter will leave the result on the top of the stack. 1593 push(state); 1594 lwu(x13, Address(xthread, JavaThread::interp_only_mode_offset())); 1595 beqz(x13, L); 1596 call_VM(noreg, 1597 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit)); 1598 bind(L); 1599 pop(state); 1600 } 1601 1602 { 1603 SkipIfEqual skip(this, &DTraceMethodProbes, false); 1604 push(state); 1605 get_method(c_rarg1); 1606 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 1607 xthread, c_rarg1); 1608 pop(state); 1609 } 1610 } 1611 1612 1613 // Jump if ((*counter_addr += increment) & mask) satisfies the condition. 1614 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr, 1615 int increment, Address mask, 1616 Register tmp1, Register tmp2, 1617 bool preloaded, Label* where) { 1618 Label done; 1619 if (!preloaded) { 1620 lwu(tmp1, counter_addr); 1621 } 1622 add(tmp1, tmp1, increment); 1623 sw(tmp1, counter_addr); 1624 lwu(tmp2, mask); 1625 andr(tmp1, tmp1, tmp2); 1626 bnez(tmp1, done); 1627 j(*where); // offset is too large so we have to use j instead of beqz here 1628 bind(done); 1629 } 1630 1631 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point, 1632 int number_of_arguments) { 1633 // interpreter specific 1634 // 1635 // Note: No need to save/restore rbcp & rlocals pointer since these 1636 // are callee saved registers and no blocking/ GC can happen 1637 // in leaf calls. 1638 #ifdef ASSERT 1639 { 1640 Label L; 1641 ld(t0, Address(fp, frame::interpreter_frame_last_sp_offset * wordSize)); 1642 beqz(t0, L); 1643 stop("InterpreterMacroAssembler::call_VM_leaf_base:" 1644 " last_sp != NULL"); 1645 bind(L); 1646 } 1647 #endif /* ASSERT */ 1648 // super call 1649 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); 1650 } 1651 1652 void InterpreterMacroAssembler::call_VM_base(Register oop_result, 1653 Register java_thread, 1654 Register last_java_sp, 1655 address entry_point, 1656 int number_of_arguments, 1657 bool check_exceptions) { 1658 // interpreter specific 1659 // 1660 // Note: Could avoid restoring locals ptr (callee saved) - however doesn't 1661 // really make a difference for these runtime calls, since they are 1662 // slow anyway. Btw., bcp must be saved/restored since it may change 1663 // due to GC. 1664 save_bcp(); 1665 #ifdef ASSERT 1666 { 1667 Label L; 1668 ld(t0, Address(fp, frame::interpreter_frame_last_sp_offset * wordSize)); 1669 beqz(t0, L); 1670 stop("InterpreterMacroAssembler::call_VM_base:" 1671 " last_sp != NULL"); 1672 bind(L); 1673 } 1674 #endif /* ASSERT */ 1675 // super call 1676 MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp, 1677 entry_point, number_of_arguments, 1678 check_exceptions); 1679 // interpreter specific 1680 restore_bcp(); 1681 restore_locals(); 1682 } 1683 1684 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr, Register tmp) { 1685 assert_different_registers(obj, tmp, t0, mdo_addr.base()); 1686 Label update, next, none; 1687 1688 verify_oop(obj); 1689 1690 bnez(obj, update); 1691 orptr(mdo_addr, TypeEntries::null_seen, t0, tmp); 1692 j(next); 1693 1694 bind(update); 1695 load_klass(obj, obj); 1696 1697 ld(t0, mdo_addr); 1698 xorr(obj, obj, t0); 1699 andi(t0, obj, TypeEntries::type_klass_mask); 1700 beqz(t0, next); // klass seen before, nothing to 1701 // do. The unknown bit may have been 1702 // set already but no need to check. 1703 1704 andi(t0, obj, TypeEntries::type_unknown); 1705 bnez(t0, next); 1706 // already unknown. Nothing to do anymore. 1707 1708 ld(t0, mdo_addr); 1709 beqz(t0, none); 1710 mv(tmp, (u1)TypeEntries::null_seen); 1711 beq(t0, tmp, none); 1712 // There is a chance that the checks above (re-reading profiling 1713 // data from memory) fail if another thread has just set the 1714 // profiling to this obj's klass 1715 ld(t0, mdo_addr); 1716 xorr(obj, obj, t0); 1717 andi(t0, obj, TypeEntries::type_klass_mask); 1718 beqz(t0, next); 1719 1720 // different than before. Cannot keep accurate profile. 1721 orptr(mdo_addr, TypeEntries::type_unknown, t0, tmp); 1722 j(next); 1723 1724 bind(none); 1725 // first time here. Set profile type. 1726 sd(obj, mdo_addr); 1727 1728 bind(next); 1729 } 1730 1731 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) { 1732 if (!ProfileInterpreter) { 1733 return; 1734 } 1735 1736 if (MethodData::profile_arguments() || MethodData::profile_return()) { 1737 Label profile_continue; 1738 1739 test_method_data_pointer(mdp, profile_continue); 1740 1741 int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size()); 1742 1743 lbu(t0, Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start)); 1744 if (is_virtual) { 1745 mv(tmp, (u1)DataLayout::virtual_call_type_data_tag); 1746 bne(t0, tmp, profile_continue); 1747 } else { 1748 mv(tmp, (u1)DataLayout::call_type_data_tag); 1749 bne(t0, tmp, profile_continue); 1750 } 1751 1752 // calculate slot step 1753 static int stack_slot_offset0 = in_bytes(TypeEntriesAtCall::stack_slot_offset(0)); 1754 static int slot_step = in_bytes(TypeEntriesAtCall::stack_slot_offset(1)) - stack_slot_offset0; 1755 1756 // calculate type step 1757 static int argument_type_offset0 = in_bytes(TypeEntriesAtCall::argument_type_offset(0)); 1758 static int type_step = in_bytes(TypeEntriesAtCall::argument_type_offset(1)) - argument_type_offset0; 1759 1760 if (MethodData::profile_arguments()) { 1761 Label done, loop, loopEnd, profileArgument, profileReturnType; 1762 RegSet pushed_registers; 1763 pushed_registers += x15; 1764 pushed_registers += x16; 1765 pushed_registers += x17; 1766 Register mdo_addr = x15; 1767 Register index = x16; 1768 Register off_to_args = x17; 1769 push_reg(pushed_registers, sp); 1770 1771 mv(off_to_args, in_bytes(TypeEntriesAtCall::args_data_offset())); 1772 mv(t0, TypeProfileArgsLimit); 1773 beqz(t0, loopEnd); 1774 1775 mv(index, zr); // index < TypeProfileArgsLimit 1776 bind(loop); 1777 bgtz(index, profileReturnType); 1778 mv(t0, (int)MethodData::profile_return()); 1779 beqz(t0, profileArgument); // (index > 0 || MethodData::profile_return()) == false 1780 bind(profileReturnType); 1781 // If return value type is profiled we may have no argument to profile 1782 ld(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset()))); 1783 mv(t1, - TypeStackSlotEntries::per_arg_count()); 1784 mul(t1, index, t1); 1785 add(tmp, tmp, t1); 1786 mv(t1, TypeStackSlotEntries::per_arg_count()); 1787 add(t0, mdp, off_to_args); 1788 blt(tmp, t1, done); 1789 1790 bind(profileArgument); 1791 1792 ld(tmp, Address(callee, Method::const_offset())); 1793 load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset())); 1794 // stack offset o (zero based) from the start of the argument 1795 // list, for n arguments translates into offset n - o - 1 from 1796 // the end of the argument list 1797 mv(t0, stack_slot_offset0); 1798 mv(t1, slot_step); 1799 mul(t1, index, t1); 1800 add(t0, t0, t1); 1801 add(t0, mdp, t0); 1802 ld(t0, Address(t0)); 1803 sub(tmp, tmp, t0); 1804 addi(tmp, tmp, -1); 1805 Address arg_addr = argument_address(tmp); 1806 ld(tmp, arg_addr); 1807 1808 mv(t0, argument_type_offset0); 1809 mv(t1, type_step); 1810 mul(t1, index, t1); 1811 add(t0, t0, t1); 1812 add(mdo_addr, mdp, t0); 1813 Address mdo_arg_addr(mdo_addr, 0); 1814 profile_obj_type(tmp, mdo_arg_addr, t1); 1815 1816 int to_add = in_bytes(TypeStackSlotEntries::per_arg_size()); 1817 addi(off_to_args, off_to_args, to_add); 1818 1819 // increment index by 1 1820 addi(index, index, 1); 1821 mv(t1, TypeProfileArgsLimit); 1822 blt(index, t1, loop); 1823 bind(loopEnd); 1824 1825 if (MethodData::profile_return()) { 1826 ld(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset()))); 1827 addi(tmp, tmp, -TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count()); 1828 } 1829 1830 add(t0, mdp, off_to_args); 1831 bind(done); 1832 mv(mdp, t0); 1833 1834 // unspill the clobbered registers 1835 pop_reg(pushed_registers, sp); 1836 1837 if (MethodData::profile_return()) { 1838 // We're right after the type profile for the last 1839 // argument. tmp is the number of cells left in the 1840 // CallTypeData/VirtualCallTypeData to reach its end. Non null 1841 // if there's a return to profile. 1842 assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type"); 1843 shadd(mdp, tmp, mdp, tmp, exact_log2(DataLayout::cell_size)); 1844 } 1845 sd(mdp, Address(fp, frame::interpreter_frame_mdp_offset * wordSize)); 1846 } else { 1847 assert(MethodData::profile_return(), "either profile call args or call ret"); 1848 update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size())); 1849 } 1850 1851 // mdp points right after the end of the 1852 // CallTypeData/VirtualCallTypeData, right after the cells for the 1853 // return value type if there's one 1854 1855 bind(profile_continue); 1856 } 1857 } 1858 1859 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) { 1860 assert_different_registers(mdp, ret, tmp, xbcp, t0, t1); 1861 if (ProfileInterpreter && MethodData::profile_return()) { 1862 Label profile_continue, done; 1863 1864 test_method_data_pointer(mdp, profile_continue); 1865 1866 if (MethodData::profile_return_jsr292_only()) { 1867 assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2"); 1868 1869 // If we don't profile all invoke bytecodes we must make sure 1870 // it's a bytecode we indeed profile. We can't go back to the 1871 // beginning of the ProfileData we intend to update to check its 1872 // type because we're right after it and we don't known its 1873 // length 1874 Label do_profile; 1875 lbu(t0, Address(xbcp, 0)); 1876 mv(tmp, (u1)Bytecodes::_invokedynamic); 1877 beq(t0, tmp, do_profile); 1878 mv(tmp, (u1)Bytecodes::_invokehandle); 1879 beq(t0, tmp, do_profile); 1880 get_method(tmp); 1881 lhu(t0, Address(tmp, Method::intrinsic_id_offset_in_bytes())); 1882 mv(t1, static_cast<int>(vmIntrinsics::_compiledLambdaForm)); 1883 bne(t0, t1, profile_continue); 1884 bind(do_profile); 1885 } 1886 1887 Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size())); 1888 mv(tmp, ret); 1889 profile_obj_type(tmp, mdo_ret_addr, t1); 1890 1891 bind(profile_continue); 1892 } 1893 } 1894 1895 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2, Register tmp3) { 1896 assert_different_registers(t0, t1, mdp, tmp1, tmp2, tmp3); 1897 if (ProfileInterpreter && MethodData::profile_parameters()) { 1898 Label profile_continue, done; 1899 1900 test_method_data_pointer(mdp, profile_continue); 1901 1902 // Load the offset of the area within the MDO used for 1903 // parameters. If it's negative we're not profiling any parameters 1904 lwu(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()))); 1905 srli(tmp2, tmp1, 31); 1906 bnez(tmp2, profile_continue); // i.e. sign bit set 1907 1908 // Compute a pointer to the area for parameters from the offset 1909 // and move the pointer to the slot for the last 1910 // parameters. Collect profiling from last parameter down. 1911 // mdo start + parameters offset + array length - 1 1912 add(mdp, mdp, tmp1); 1913 ld(tmp1, Address(mdp, ArrayData::array_len_offset())); 1914 add(tmp1, tmp1, - TypeStackSlotEntries::per_arg_count()); 1915 1916 Label loop; 1917 bind(loop); 1918 1919 int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0)); 1920 int type_base = in_bytes(ParametersTypeData::type_offset(0)); 1921 int per_arg_scale = exact_log2(DataLayout::cell_size); 1922 add(t0, mdp, off_base); 1923 add(t1, mdp, type_base); 1924 1925 shadd(tmp2, tmp1, t0, tmp2, per_arg_scale); 1926 // load offset on the stack from the slot for this parameter 1927 ld(tmp2, Address(tmp2, 0)); 1928 neg(tmp2, tmp2); 1929 1930 // read the parameter from the local area 1931 shadd(tmp2, tmp2, xlocals, tmp2, Interpreter::logStackElementSize); 1932 ld(tmp2, Address(tmp2, 0)); 1933 1934 // profile the parameter 1935 shadd(t1, tmp1, t1, t0, per_arg_scale); 1936 Address arg_type(t1, 0); 1937 profile_obj_type(tmp2, arg_type, tmp3); 1938 1939 // go to next parameter 1940 add(tmp1, tmp1, - TypeStackSlotEntries::per_arg_count()); 1941 bgez(tmp1, loop); 1942 1943 bind(profile_continue); 1944 } 1945 } 1946 1947 void InterpreterMacroAssembler::get_method_counters(Register method, 1948 Register mcs, Label& skip) { 1949 Label has_counters; 1950 ld(mcs, Address(method, Method::method_counters_offset())); 1951 bnez(mcs, has_counters); 1952 call_VM(noreg, CAST_FROM_FN_PTR(address, 1953 InterpreterRuntime::build_method_counters), method); 1954 ld(mcs, Address(method, Method::method_counters_offset())); 1955 beqz(mcs, skip); // No MethodCounters allocated, OutOfMemory 1956 bind(has_counters); 1957 } 1958 1959 #ifdef ASSERT 1960 void InterpreterMacroAssembler::verify_access_flags(Register access_flags, uint32_t flag_bits, 1961 const char* msg, bool stop_by_hit) { 1962 Label L; 1963 andi(t0, access_flags, flag_bits); 1964 if (stop_by_hit) { 1965 beqz(t0, L); 1966 } else { 1967 bnez(t0, L); 1968 } 1969 stop(msg); 1970 bind(L); 1971 } 1972 1973 void InterpreterMacroAssembler::verify_frame_setup() { 1974 Label L; 1975 const Address monitor_block_top(fp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 1976 ld(t0, monitor_block_top); 1977 beq(esp, t0, L); 1978 stop("broken stack frame setup in interpreter"); 1979 bind(L); 1980 } 1981 #endif