1 // 2 // Copyright (c) 2003, 2024, Oracle and/or its affiliates. All rights reserved. 3 // Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved. 4 // Copyright (c) 2020, 2024, Huawei Technologies Co., Ltd. All rights reserved. 5 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 6 // 7 // This code is free software; you can redistribute it and/or modify it 8 // under the terms of the GNU General Public License version 2 only, as 9 // published by the Free Software Foundation. 10 // 11 // This code is distributed in the hope that it will be useful, but WITHOUT 12 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 // version 2 for more details (a copy is included in the LICENSE file that 15 // accompanied this code). 16 // 17 // You should have received a copy of the GNU General Public License version 18 // 2 along with this work; if not, write to the Free Software Foundation, 19 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 // 21 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 // or visit www.oracle.com if you need additional information or have any 23 // questions. 24 // 25 // 26 27 // RISCV Architecture Description File 28 29 //----------REGISTER DEFINITION BLOCK------------------------------------------ 30 // This information is used by the matcher and the register allocator to 31 // describe individual registers and classes of registers within the target 32 // architecture. 33 34 register %{ 35 //----------Architecture Description Register Definitions---------------------- 36 // General Registers 37 // "reg_def" name ( register save type, C convention save type, 38 // ideal register type, encoding ); 39 // Register Save Types: 40 // 41 // NS = No-Save: The register allocator assumes that these registers 42 // can be used without saving upon entry to the method, & 43 // that they do not need to be saved at call sites. 44 // 45 // SOC = Save-On-Call: The register allocator assumes that these registers 46 // can be used without saving upon entry to the method, 47 // but that they must be saved at call sites. 48 // 49 // SOE = Save-On-Entry: The register allocator assumes that these registers 50 // must be saved before using them upon entry to the 51 // method, but they do not need to be saved at call 52 // sites. 53 // 54 // AS = Always-Save: The register allocator assumes that these registers 55 // must be saved before using them upon entry to the 56 // method, & that they must be saved at call sites. 57 // 58 // Ideal Register Type is used to determine how to save & restore a 59 // register. Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get 60 // spilled with LoadP/StoreP. If the register supports both, use Op_RegI. 61 // 62 // The encoding number is the actual bit-pattern placed into the opcodes. 63 64 // We must define the 64 bit int registers in two 32 bit halves, the 65 // real lower register and a virtual upper half register. upper halves 66 // are used by the register allocator but are not actually supplied as 67 // operands to memory ops. 68 // 69 // follow the C1 compiler in making registers 70 // 71 // x7, x9-x17, x27-x31 volatile (caller save) 72 // x0-x4, x8, x23 system (no save, no allocate) 73 // x5-x6 non-allocatable (so we can use them as temporary regs) 74 75 // 76 // as regards Java usage. we don't use any callee save registers 77 // because this makes it difficult to de-optimise a frame (see comment 78 // in x86 implementation of Deoptimization::unwind_callee_save_values) 79 // 80 81 // General Registers 82 83 reg_def R0 ( NS, NS, Op_RegI, 0, x0->as_VMReg() ); // zr 84 reg_def R0_H ( NS, NS, Op_RegI, 0, x0->as_VMReg()->next() ); 85 reg_def R1 ( NS, SOC, Op_RegI, 1, x1->as_VMReg() ); // ra 86 reg_def R1_H ( NS, SOC, Op_RegI, 1, x1->as_VMReg()->next() ); 87 reg_def R2 ( NS, NS, Op_RegI, 2, x2->as_VMReg() ); // sp 88 reg_def R2_H ( NS, NS, Op_RegI, 2, x2->as_VMReg()->next() ); 89 reg_def R3 ( NS, NS, Op_RegI, 3, x3->as_VMReg() ); // gp 90 reg_def R3_H ( NS, NS, Op_RegI, 3, x3->as_VMReg()->next() ); 91 reg_def R4 ( NS, NS, Op_RegI, 4, x4->as_VMReg() ); // tp 92 reg_def R4_H ( NS, NS, Op_RegI, 4, x4->as_VMReg()->next() ); 93 reg_def R7 ( SOC, SOC, Op_RegI, 7, x7->as_VMReg() ); 94 reg_def R7_H ( SOC, SOC, Op_RegI, 7, x7->as_VMReg()->next() ); 95 reg_def R8 ( NS, SOE, Op_RegI, 8, x8->as_VMReg() ); // fp 96 reg_def R8_H ( NS, SOE, Op_RegI, 8, x8->as_VMReg()->next() ); 97 reg_def R9 ( SOC, SOE, Op_RegI, 9, x9->as_VMReg() ); 98 reg_def R9_H ( SOC, SOE, Op_RegI, 9, x9->as_VMReg()->next() ); 99 reg_def R10 ( SOC, SOC, Op_RegI, 10, x10->as_VMReg() ); 100 reg_def R10_H ( SOC, SOC, Op_RegI, 10, x10->as_VMReg()->next()); 101 reg_def R11 ( SOC, SOC, Op_RegI, 11, x11->as_VMReg() ); 102 reg_def R11_H ( SOC, SOC, Op_RegI, 11, x11->as_VMReg()->next()); 103 reg_def R12 ( SOC, SOC, Op_RegI, 12, x12->as_VMReg() ); 104 reg_def R12_H ( SOC, SOC, Op_RegI, 12, x12->as_VMReg()->next()); 105 reg_def R13 ( SOC, SOC, Op_RegI, 13, x13->as_VMReg() ); 106 reg_def R13_H ( SOC, SOC, Op_RegI, 13, x13->as_VMReg()->next()); 107 reg_def R14 ( SOC, SOC, Op_RegI, 14, x14->as_VMReg() ); 108 reg_def R14_H ( SOC, SOC, Op_RegI, 14, x14->as_VMReg()->next()); 109 reg_def R15 ( SOC, SOC, Op_RegI, 15, x15->as_VMReg() ); 110 reg_def R15_H ( SOC, SOC, Op_RegI, 15, x15->as_VMReg()->next()); 111 reg_def R16 ( SOC, SOC, Op_RegI, 16, x16->as_VMReg() ); 112 reg_def R16_H ( SOC, SOC, Op_RegI, 16, x16->as_VMReg()->next()); 113 reg_def R17 ( SOC, SOC, Op_RegI, 17, x17->as_VMReg() ); 114 reg_def R17_H ( SOC, SOC, Op_RegI, 17, x17->as_VMReg()->next()); 115 reg_def R18 ( SOC, SOE, Op_RegI, 18, x18->as_VMReg() ); 116 reg_def R18_H ( SOC, SOE, Op_RegI, 18, x18->as_VMReg()->next()); 117 reg_def R19 ( SOC, SOE, Op_RegI, 19, x19->as_VMReg() ); 118 reg_def R19_H ( SOC, SOE, Op_RegI, 19, x19->as_VMReg()->next()); 119 reg_def R20 ( SOC, SOE, Op_RegI, 20, x20->as_VMReg() ); // caller esp 120 reg_def R20_H ( SOC, SOE, Op_RegI, 20, x20->as_VMReg()->next()); 121 reg_def R21 ( SOC, SOE, Op_RegI, 21, x21->as_VMReg() ); 122 reg_def R21_H ( SOC, SOE, Op_RegI, 21, x21->as_VMReg()->next()); 123 reg_def R22 ( SOC, SOE, Op_RegI, 22, x22->as_VMReg() ); 124 reg_def R22_H ( SOC, SOE, Op_RegI, 22, x22->as_VMReg()->next()); 125 reg_def R23 ( NS, SOE, Op_RegI, 23, x23->as_VMReg() ); // java thread 126 reg_def R23_H ( NS, SOE, Op_RegI, 23, x23->as_VMReg()->next()); 127 reg_def R24 ( SOC, SOE, Op_RegI, 24, x24->as_VMReg() ); 128 reg_def R24_H ( SOC, SOE, Op_RegI, 24, x24->as_VMReg()->next()); 129 reg_def R25 ( SOC, SOE, Op_RegI, 25, x25->as_VMReg() ); 130 reg_def R25_H ( SOC, SOE, Op_RegI, 25, x25->as_VMReg()->next()); 131 reg_def R26 ( SOC, SOE, Op_RegI, 26, x26->as_VMReg() ); 132 reg_def R26_H ( SOC, SOE, Op_RegI, 26, x26->as_VMReg()->next()); 133 reg_def R27 ( SOC, SOE, Op_RegI, 27, x27->as_VMReg() ); // heapbase 134 reg_def R27_H ( SOC, SOE, Op_RegI, 27, x27->as_VMReg()->next()); 135 reg_def R28 ( SOC, SOC, Op_RegI, 28, x28->as_VMReg() ); 136 reg_def R28_H ( SOC, SOC, Op_RegI, 28, x28->as_VMReg()->next()); 137 reg_def R29 ( SOC, SOC, Op_RegI, 29, x29->as_VMReg() ); 138 reg_def R29_H ( SOC, SOC, Op_RegI, 29, x29->as_VMReg()->next()); 139 reg_def R30 ( SOC, SOC, Op_RegI, 30, x30->as_VMReg() ); 140 reg_def R30_H ( SOC, SOC, Op_RegI, 30, x30->as_VMReg()->next()); 141 reg_def R31 ( SOC, SOC, Op_RegI, 31, x31->as_VMReg() ); 142 reg_def R31_H ( SOC, SOC, Op_RegI, 31, x31->as_VMReg()->next()); 143 144 // ---------------------------- 145 // Float/Double Registers 146 // ---------------------------- 147 148 // Double Registers 149 150 // The rules of ADL require that double registers be defined in pairs. 151 // Each pair must be two 32-bit values, but not necessarily a pair of 152 // single float registers. In each pair, ADLC-assigned register numbers 153 // must be adjacent, with the lower number even. Finally, when the 154 // CPU stores such a register pair to memory, the word associated with 155 // the lower ADLC-assigned number must be stored to the lower address. 156 157 // RISCV has 32 floating-point registers. Each can store a single 158 // or double precision floating-point value. 159 160 // for Java use float registers f0-f31 are always save on call whereas 161 // the platform ABI treats f8-f9 and f18-f27 as callee save). Other 162 // float registers are SOC as per the platform spec 163 164 reg_def F0 ( SOC, SOC, Op_RegF, 0, f0->as_VMReg() ); 165 reg_def F0_H ( SOC, SOC, Op_RegF, 0, f0->as_VMReg()->next() ); 166 reg_def F1 ( SOC, SOC, Op_RegF, 1, f1->as_VMReg() ); 167 reg_def F1_H ( SOC, SOC, Op_RegF, 1, f1->as_VMReg()->next() ); 168 reg_def F2 ( SOC, SOC, Op_RegF, 2, f2->as_VMReg() ); 169 reg_def F2_H ( SOC, SOC, Op_RegF, 2, f2->as_VMReg()->next() ); 170 reg_def F3 ( SOC, SOC, Op_RegF, 3, f3->as_VMReg() ); 171 reg_def F3_H ( SOC, SOC, Op_RegF, 3, f3->as_VMReg()->next() ); 172 reg_def F4 ( SOC, SOC, Op_RegF, 4, f4->as_VMReg() ); 173 reg_def F4_H ( SOC, SOC, Op_RegF, 4, f4->as_VMReg()->next() ); 174 reg_def F5 ( SOC, SOC, Op_RegF, 5, f5->as_VMReg() ); 175 reg_def F5_H ( SOC, SOC, Op_RegF, 5, f5->as_VMReg()->next() ); 176 reg_def F6 ( SOC, SOC, Op_RegF, 6, f6->as_VMReg() ); 177 reg_def F6_H ( SOC, SOC, Op_RegF, 6, f6->as_VMReg()->next() ); 178 reg_def F7 ( SOC, SOC, Op_RegF, 7, f7->as_VMReg() ); 179 reg_def F7_H ( SOC, SOC, Op_RegF, 7, f7->as_VMReg()->next() ); 180 reg_def F8 ( SOC, SOE, Op_RegF, 8, f8->as_VMReg() ); 181 reg_def F8_H ( SOC, SOE, Op_RegF, 8, f8->as_VMReg()->next() ); 182 reg_def F9 ( SOC, SOE, Op_RegF, 9, f9->as_VMReg() ); 183 reg_def F9_H ( SOC, SOE, Op_RegF, 9, f9->as_VMReg()->next() ); 184 reg_def F10 ( SOC, SOC, Op_RegF, 10, f10->as_VMReg() ); 185 reg_def F10_H ( SOC, SOC, Op_RegF, 10, f10->as_VMReg()->next() ); 186 reg_def F11 ( SOC, SOC, Op_RegF, 11, f11->as_VMReg() ); 187 reg_def F11_H ( SOC, SOC, Op_RegF, 11, f11->as_VMReg()->next() ); 188 reg_def F12 ( SOC, SOC, Op_RegF, 12, f12->as_VMReg() ); 189 reg_def F12_H ( SOC, SOC, Op_RegF, 12, f12->as_VMReg()->next() ); 190 reg_def F13 ( SOC, SOC, Op_RegF, 13, f13->as_VMReg() ); 191 reg_def F13_H ( SOC, SOC, Op_RegF, 13, f13->as_VMReg()->next() ); 192 reg_def F14 ( SOC, SOC, Op_RegF, 14, f14->as_VMReg() ); 193 reg_def F14_H ( SOC, SOC, Op_RegF, 14, f14->as_VMReg()->next() ); 194 reg_def F15 ( SOC, SOC, Op_RegF, 15, f15->as_VMReg() ); 195 reg_def F15_H ( SOC, SOC, Op_RegF, 15, f15->as_VMReg()->next() ); 196 reg_def F16 ( SOC, SOC, Op_RegF, 16, f16->as_VMReg() ); 197 reg_def F16_H ( SOC, SOC, Op_RegF, 16, f16->as_VMReg()->next() ); 198 reg_def F17 ( SOC, SOC, Op_RegF, 17, f17->as_VMReg() ); 199 reg_def F17_H ( SOC, SOC, Op_RegF, 17, f17->as_VMReg()->next() ); 200 reg_def F18 ( SOC, SOE, Op_RegF, 18, f18->as_VMReg() ); 201 reg_def F18_H ( SOC, SOE, Op_RegF, 18, f18->as_VMReg()->next() ); 202 reg_def F19 ( SOC, SOE, Op_RegF, 19, f19->as_VMReg() ); 203 reg_def F19_H ( SOC, SOE, Op_RegF, 19, f19->as_VMReg()->next() ); 204 reg_def F20 ( SOC, SOE, Op_RegF, 20, f20->as_VMReg() ); 205 reg_def F20_H ( SOC, SOE, Op_RegF, 20, f20->as_VMReg()->next() ); 206 reg_def F21 ( SOC, SOE, Op_RegF, 21, f21->as_VMReg() ); 207 reg_def F21_H ( SOC, SOE, Op_RegF, 21, f21->as_VMReg()->next() ); 208 reg_def F22 ( SOC, SOE, Op_RegF, 22, f22->as_VMReg() ); 209 reg_def F22_H ( SOC, SOE, Op_RegF, 22, f22->as_VMReg()->next() ); 210 reg_def F23 ( SOC, SOE, Op_RegF, 23, f23->as_VMReg() ); 211 reg_def F23_H ( SOC, SOE, Op_RegF, 23, f23->as_VMReg()->next() ); 212 reg_def F24 ( SOC, SOE, Op_RegF, 24, f24->as_VMReg() ); 213 reg_def F24_H ( SOC, SOE, Op_RegF, 24, f24->as_VMReg()->next() ); 214 reg_def F25 ( SOC, SOE, Op_RegF, 25, f25->as_VMReg() ); 215 reg_def F25_H ( SOC, SOE, Op_RegF, 25, f25->as_VMReg()->next() ); 216 reg_def F26 ( SOC, SOE, Op_RegF, 26, f26->as_VMReg() ); 217 reg_def F26_H ( SOC, SOE, Op_RegF, 26, f26->as_VMReg()->next() ); 218 reg_def F27 ( SOC, SOE, Op_RegF, 27, f27->as_VMReg() ); 219 reg_def F27_H ( SOC, SOE, Op_RegF, 27, f27->as_VMReg()->next() ); 220 reg_def F28 ( SOC, SOC, Op_RegF, 28, f28->as_VMReg() ); 221 reg_def F28_H ( SOC, SOC, Op_RegF, 28, f28->as_VMReg()->next() ); 222 reg_def F29 ( SOC, SOC, Op_RegF, 29, f29->as_VMReg() ); 223 reg_def F29_H ( SOC, SOC, Op_RegF, 29, f29->as_VMReg()->next() ); 224 reg_def F30 ( SOC, SOC, Op_RegF, 30, f30->as_VMReg() ); 225 reg_def F30_H ( SOC, SOC, Op_RegF, 30, f30->as_VMReg()->next() ); 226 reg_def F31 ( SOC, SOC, Op_RegF, 31, f31->as_VMReg() ); 227 reg_def F31_H ( SOC, SOC, Op_RegF, 31, f31->as_VMReg()->next() ); 228 229 // ---------------------------- 230 // Vector Registers 231 // ---------------------------- 232 233 // For RVV vector registers, we simply extend vector register size to 4 234 // 'logical' slots. This is nominally 128 bits but it actually covers 235 // all possible 'physical' RVV vector register lengths from 128 ~ 1024 236 // bits. The 'physical' RVV vector register length is detected during 237 // startup, so the register allocator is able to identify the correct 238 // number of bytes needed for an RVV spill/unspill. 239 240 reg_def V0 ( SOC, SOC, Op_VecA, 0, v0->as_VMReg() ); 241 reg_def V0_H ( SOC, SOC, Op_VecA, 0, v0->as_VMReg()->next() ); 242 reg_def V0_J ( SOC, SOC, Op_VecA, 0, v0->as_VMReg()->next(2) ); 243 reg_def V0_K ( SOC, SOC, Op_VecA, 0, v0->as_VMReg()->next(3) ); 244 245 reg_def V1 ( SOC, SOC, Op_VecA, 1, v1->as_VMReg() ); 246 reg_def V1_H ( SOC, SOC, Op_VecA, 1, v1->as_VMReg()->next() ); 247 reg_def V1_J ( SOC, SOC, Op_VecA, 1, v1->as_VMReg()->next(2) ); 248 reg_def V1_K ( SOC, SOC, Op_VecA, 1, v1->as_VMReg()->next(3) ); 249 250 reg_def V2 ( SOC, SOC, Op_VecA, 2, v2->as_VMReg() ); 251 reg_def V2_H ( SOC, SOC, Op_VecA, 2, v2->as_VMReg()->next() ); 252 reg_def V2_J ( SOC, SOC, Op_VecA, 2, v2->as_VMReg()->next(2) ); 253 reg_def V2_K ( SOC, SOC, Op_VecA, 2, v2->as_VMReg()->next(3) ); 254 255 reg_def V3 ( SOC, SOC, Op_VecA, 3, v3->as_VMReg() ); 256 reg_def V3_H ( SOC, SOC, Op_VecA, 3, v3->as_VMReg()->next() ); 257 reg_def V3_J ( SOC, SOC, Op_VecA, 3, v3->as_VMReg()->next(2) ); 258 reg_def V3_K ( SOC, SOC, Op_VecA, 3, v3->as_VMReg()->next(3) ); 259 260 reg_def V4 ( SOC, SOC, Op_VecA, 4, v4->as_VMReg() ); 261 reg_def V4_H ( SOC, SOC, Op_VecA, 4, v4->as_VMReg()->next() ); 262 reg_def V4_J ( SOC, SOC, Op_VecA, 4, v4->as_VMReg()->next(2) ); 263 reg_def V4_K ( SOC, SOC, Op_VecA, 4, v4->as_VMReg()->next(3) ); 264 265 reg_def V5 ( SOC, SOC, Op_VecA, 5, v5->as_VMReg() ); 266 reg_def V5_H ( SOC, SOC, Op_VecA, 5, v5->as_VMReg()->next() ); 267 reg_def V5_J ( SOC, SOC, Op_VecA, 5, v5->as_VMReg()->next(2) ); 268 reg_def V5_K ( SOC, SOC, Op_VecA, 5, v5->as_VMReg()->next(3) ); 269 270 reg_def V6 ( SOC, SOC, Op_VecA, 6, v6->as_VMReg() ); 271 reg_def V6_H ( SOC, SOC, Op_VecA, 6, v6->as_VMReg()->next() ); 272 reg_def V6_J ( SOC, SOC, Op_VecA, 6, v6->as_VMReg()->next(2) ); 273 reg_def V6_K ( SOC, SOC, Op_VecA, 6, v6->as_VMReg()->next(3) ); 274 275 reg_def V7 ( SOC, SOC, Op_VecA, 7, v7->as_VMReg() ); 276 reg_def V7_H ( SOC, SOC, Op_VecA, 7, v7->as_VMReg()->next() ); 277 reg_def V7_J ( SOC, SOC, Op_VecA, 7, v7->as_VMReg()->next(2) ); 278 reg_def V7_K ( SOC, SOC, Op_VecA, 7, v7->as_VMReg()->next(3) ); 279 280 reg_def V8 ( SOC, SOC, Op_VecA, 8, v8->as_VMReg() ); 281 reg_def V8_H ( SOC, SOC, Op_VecA, 8, v8->as_VMReg()->next() ); 282 reg_def V8_J ( SOC, SOC, Op_VecA, 8, v8->as_VMReg()->next(2) ); 283 reg_def V8_K ( SOC, SOC, Op_VecA, 8, v8->as_VMReg()->next(3) ); 284 285 reg_def V9 ( SOC, SOC, Op_VecA, 9, v9->as_VMReg() ); 286 reg_def V9_H ( SOC, SOC, Op_VecA, 9, v9->as_VMReg()->next() ); 287 reg_def V9_J ( SOC, SOC, Op_VecA, 9, v9->as_VMReg()->next(2) ); 288 reg_def V9_K ( SOC, SOC, Op_VecA, 9, v9->as_VMReg()->next(3) ); 289 290 reg_def V10 ( SOC, SOC, Op_VecA, 10, v10->as_VMReg() ); 291 reg_def V10_H ( SOC, SOC, Op_VecA, 10, v10->as_VMReg()->next() ); 292 reg_def V10_J ( SOC, SOC, Op_VecA, 10, v10->as_VMReg()->next(2) ); 293 reg_def V10_K ( SOC, SOC, Op_VecA, 10, v10->as_VMReg()->next(3) ); 294 295 reg_def V11 ( SOC, SOC, Op_VecA, 11, v11->as_VMReg() ); 296 reg_def V11_H ( SOC, SOC, Op_VecA, 11, v11->as_VMReg()->next() ); 297 reg_def V11_J ( SOC, SOC, Op_VecA, 11, v11->as_VMReg()->next(2) ); 298 reg_def V11_K ( SOC, SOC, Op_VecA, 11, v11->as_VMReg()->next(3) ); 299 300 reg_def V12 ( SOC, SOC, Op_VecA, 12, v12->as_VMReg() ); 301 reg_def V12_H ( SOC, SOC, Op_VecA, 12, v12->as_VMReg()->next() ); 302 reg_def V12_J ( SOC, SOC, Op_VecA, 12, v12->as_VMReg()->next(2) ); 303 reg_def V12_K ( SOC, SOC, Op_VecA, 12, v12->as_VMReg()->next(3) ); 304 305 reg_def V13 ( SOC, SOC, Op_VecA, 13, v13->as_VMReg() ); 306 reg_def V13_H ( SOC, SOC, Op_VecA, 13, v13->as_VMReg()->next() ); 307 reg_def V13_J ( SOC, SOC, Op_VecA, 13, v13->as_VMReg()->next(2) ); 308 reg_def V13_K ( SOC, SOC, Op_VecA, 13, v13->as_VMReg()->next(3) ); 309 310 reg_def V14 ( SOC, SOC, Op_VecA, 14, v14->as_VMReg() ); 311 reg_def V14_H ( SOC, SOC, Op_VecA, 14, v14->as_VMReg()->next() ); 312 reg_def V14_J ( SOC, SOC, Op_VecA, 14, v14->as_VMReg()->next(2) ); 313 reg_def V14_K ( SOC, SOC, Op_VecA, 14, v14->as_VMReg()->next(3) ); 314 315 reg_def V15 ( SOC, SOC, Op_VecA, 15, v15->as_VMReg() ); 316 reg_def V15_H ( SOC, SOC, Op_VecA, 15, v15->as_VMReg()->next() ); 317 reg_def V15_J ( SOC, SOC, Op_VecA, 15, v15->as_VMReg()->next(2) ); 318 reg_def V15_K ( SOC, SOC, Op_VecA, 15, v15->as_VMReg()->next(3) ); 319 320 reg_def V16 ( SOC, SOC, Op_VecA, 16, v16->as_VMReg() ); 321 reg_def V16_H ( SOC, SOC, Op_VecA, 16, v16->as_VMReg()->next() ); 322 reg_def V16_J ( SOC, SOC, Op_VecA, 16, v16->as_VMReg()->next(2) ); 323 reg_def V16_K ( SOC, SOC, Op_VecA, 16, v16->as_VMReg()->next(3) ); 324 325 reg_def V17 ( SOC, SOC, Op_VecA, 17, v17->as_VMReg() ); 326 reg_def V17_H ( SOC, SOC, Op_VecA, 17, v17->as_VMReg()->next() ); 327 reg_def V17_J ( SOC, SOC, Op_VecA, 17, v17->as_VMReg()->next(2) ); 328 reg_def V17_K ( SOC, SOC, Op_VecA, 17, v17->as_VMReg()->next(3) ); 329 330 reg_def V18 ( SOC, SOC, Op_VecA, 18, v18->as_VMReg() ); 331 reg_def V18_H ( SOC, SOC, Op_VecA, 18, v18->as_VMReg()->next() ); 332 reg_def V18_J ( SOC, SOC, Op_VecA, 18, v18->as_VMReg()->next(2) ); 333 reg_def V18_K ( SOC, SOC, Op_VecA, 18, v18->as_VMReg()->next(3) ); 334 335 reg_def V19 ( SOC, SOC, Op_VecA, 19, v19->as_VMReg() ); 336 reg_def V19_H ( SOC, SOC, Op_VecA, 19, v19->as_VMReg()->next() ); 337 reg_def V19_J ( SOC, SOC, Op_VecA, 19, v19->as_VMReg()->next(2) ); 338 reg_def V19_K ( SOC, SOC, Op_VecA, 19, v19->as_VMReg()->next(3) ); 339 340 reg_def V20 ( SOC, SOC, Op_VecA, 20, v20->as_VMReg() ); 341 reg_def V20_H ( SOC, SOC, Op_VecA, 20, v20->as_VMReg()->next() ); 342 reg_def V20_J ( SOC, SOC, Op_VecA, 20, v20->as_VMReg()->next(2) ); 343 reg_def V20_K ( SOC, SOC, Op_VecA, 20, v20->as_VMReg()->next(3) ); 344 345 reg_def V21 ( SOC, SOC, Op_VecA, 21, v21->as_VMReg() ); 346 reg_def V21_H ( SOC, SOC, Op_VecA, 21, v21->as_VMReg()->next() ); 347 reg_def V21_J ( SOC, SOC, Op_VecA, 21, v21->as_VMReg()->next(2) ); 348 reg_def V21_K ( SOC, SOC, Op_VecA, 21, v21->as_VMReg()->next(3) ); 349 350 reg_def V22 ( SOC, SOC, Op_VecA, 22, v22->as_VMReg() ); 351 reg_def V22_H ( SOC, SOC, Op_VecA, 22, v22->as_VMReg()->next() ); 352 reg_def V22_J ( SOC, SOC, Op_VecA, 22, v22->as_VMReg()->next(2) ); 353 reg_def V22_K ( SOC, SOC, Op_VecA, 22, v22->as_VMReg()->next(3) ); 354 355 reg_def V23 ( SOC, SOC, Op_VecA, 23, v23->as_VMReg() ); 356 reg_def V23_H ( SOC, SOC, Op_VecA, 23, v23->as_VMReg()->next() ); 357 reg_def V23_J ( SOC, SOC, Op_VecA, 23, v23->as_VMReg()->next(2) ); 358 reg_def V23_K ( SOC, SOC, Op_VecA, 23, v23->as_VMReg()->next(3) ); 359 360 reg_def V24 ( SOC, SOC, Op_VecA, 24, v24->as_VMReg() ); 361 reg_def V24_H ( SOC, SOC, Op_VecA, 24, v24->as_VMReg()->next() ); 362 reg_def V24_J ( SOC, SOC, Op_VecA, 24, v24->as_VMReg()->next(2) ); 363 reg_def V24_K ( SOC, SOC, Op_VecA, 24, v24->as_VMReg()->next(3) ); 364 365 reg_def V25 ( SOC, SOC, Op_VecA, 25, v25->as_VMReg() ); 366 reg_def V25_H ( SOC, SOC, Op_VecA, 25, v25->as_VMReg()->next() ); 367 reg_def V25_J ( SOC, SOC, Op_VecA, 25, v25->as_VMReg()->next(2) ); 368 reg_def V25_K ( SOC, SOC, Op_VecA, 25, v25->as_VMReg()->next(3) ); 369 370 reg_def V26 ( SOC, SOC, Op_VecA, 26, v26->as_VMReg() ); 371 reg_def V26_H ( SOC, SOC, Op_VecA, 26, v26->as_VMReg()->next() ); 372 reg_def V26_J ( SOC, SOC, Op_VecA, 26, v26->as_VMReg()->next(2) ); 373 reg_def V26_K ( SOC, SOC, Op_VecA, 26, v26->as_VMReg()->next(3) ); 374 375 reg_def V27 ( SOC, SOC, Op_VecA, 27, v27->as_VMReg() ); 376 reg_def V27_H ( SOC, SOC, Op_VecA, 27, v27->as_VMReg()->next() ); 377 reg_def V27_J ( SOC, SOC, Op_VecA, 27, v27->as_VMReg()->next(2) ); 378 reg_def V27_K ( SOC, SOC, Op_VecA, 27, v27->as_VMReg()->next(3) ); 379 380 reg_def V28 ( SOC, SOC, Op_VecA, 28, v28->as_VMReg() ); 381 reg_def V28_H ( SOC, SOC, Op_VecA, 28, v28->as_VMReg()->next() ); 382 reg_def V28_J ( SOC, SOC, Op_VecA, 28, v28->as_VMReg()->next(2) ); 383 reg_def V28_K ( SOC, SOC, Op_VecA, 28, v28->as_VMReg()->next(3) ); 384 385 reg_def V29 ( SOC, SOC, Op_VecA, 29, v29->as_VMReg() ); 386 reg_def V29_H ( SOC, SOC, Op_VecA, 29, v29->as_VMReg()->next() ); 387 reg_def V29_J ( SOC, SOC, Op_VecA, 29, v29->as_VMReg()->next(2) ); 388 reg_def V29_K ( SOC, SOC, Op_VecA, 29, v29->as_VMReg()->next(3) ); 389 390 reg_def V30 ( SOC, SOC, Op_VecA, 30, v30->as_VMReg() ); 391 reg_def V30_H ( SOC, SOC, Op_VecA, 30, v30->as_VMReg()->next() ); 392 reg_def V30_J ( SOC, SOC, Op_VecA, 30, v30->as_VMReg()->next(2) ); 393 reg_def V30_K ( SOC, SOC, Op_VecA, 30, v30->as_VMReg()->next(3) ); 394 395 reg_def V31 ( SOC, SOC, Op_VecA, 31, v31->as_VMReg() ); 396 reg_def V31_H ( SOC, SOC, Op_VecA, 31, v31->as_VMReg()->next() ); 397 reg_def V31_J ( SOC, SOC, Op_VecA, 31, v31->as_VMReg()->next(2) ); 398 reg_def V31_K ( SOC, SOC, Op_VecA, 31, v31->as_VMReg()->next(3) ); 399 400 // ---------------------------- 401 // Special Registers 402 // ---------------------------- 403 404 // On riscv, the physical flag register is missing, so we use t1 instead, 405 // to bridge the RegFlag semantics in share/opto 406 407 reg_def RFLAGS (SOC, SOC, Op_RegFlags, 6, x6->as_VMReg() ); 408 409 // Specify priority of register selection within phases of register 410 // allocation. Highest priority is first. A useful heuristic is to 411 // give registers a low priority when they are required by machine 412 // instructions, like EAX and EDX on I486, and choose no-save registers 413 // before save-on-call, & save-on-call before save-on-entry. Registers 414 // which participate in fixed calling sequences should come last. 415 // Registers which are used as pairs must fall on an even boundary. 416 417 alloc_class chunk0( 418 // volatiles 419 R7, R7_H, 420 R28, R28_H, 421 R29, R29_H, 422 R30, R30_H, 423 R31, R31_H, 424 425 // arg registers 426 R10, R10_H, 427 R11, R11_H, 428 R12, R12_H, 429 R13, R13_H, 430 R14, R14_H, 431 R15, R15_H, 432 R16, R16_H, 433 R17, R17_H, 434 435 // non-volatiles 436 R9, R9_H, 437 R18, R18_H, 438 R19, R19_H, 439 R20, R20_H, 440 R21, R21_H, 441 R22, R22_H, 442 R24, R24_H, 443 R25, R25_H, 444 R26, R26_H, 445 446 // non-allocatable registers 447 R23, R23_H, // java thread 448 R27, R27_H, // heapbase 449 R4, R4_H, // thread 450 R8, R8_H, // fp 451 R0, R0_H, // zero 452 R1, R1_H, // ra 453 R2, R2_H, // sp 454 R3, R3_H, // gp 455 ); 456 457 alloc_class chunk1( 458 459 // no save 460 F0, F0_H, 461 F1, F1_H, 462 F2, F2_H, 463 F3, F3_H, 464 F4, F4_H, 465 F5, F5_H, 466 F6, F6_H, 467 F7, F7_H, 468 F28, F28_H, 469 F29, F29_H, 470 F30, F30_H, 471 F31, F31_H, 472 473 // arg registers 474 F10, F10_H, 475 F11, F11_H, 476 F12, F12_H, 477 F13, F13_H, 478 F14, F14_H, 479 F15, F15_H, 480 F16, F16_H, 481 F17, F17_H, 482 483 // non-volatiles 484 F8, F8_H, 485 F9, F9_H, 486 F18, F18_H, 487 F19, F19_H, 488 F20, F20_H, 489 F21, F21_H, 490 F22, F22_H, 491 F23, F23_H, 492 F24, F24_H, 493 F25, F25_H, 494 F26, F26_H, 495 F27, F27_H, 496 ); 497 498 alloc_class chunk2( 499 V0, V0_H, V0_J, V0_K, 500 V1, V1_H, V1_J, V1_K, 501 V2, V2_H, V2_J, V2_K, 502 V3, V3_H, V3_J, V3_K, 503 V4, V4_H, V4_J, V4_K, 504 V5, V5_H, V5_J, V5_K, 505 V6, V6_H, V6_J, V6_K, 506 V7, V7_H, V7_J, V7_K, 507 V8, V8_H, V8_J, V8_K, 508 V9, V9_H, V9_J, V9_K, 509 V10, V10_H, V10_J, V10_K, 510 V11, V11_H, V11_J, V11_K, 511 V12, V12_H, V12_J, V12_K, 512 V13, V13_H, V13_J, V13_K, 513 V14, V14_H, V14_J, V14_K, 514 V15, V15_H, V15_J, V15_K, 515 V16, V16_H, V16_J, V16_K, 516 V17, V17_H, V17_J, V17_K, 517 V18, V18_H, V18_J, V18_K, 518 V19, V19_H, V19_J, V19_K, 519 V20, V20_H, V20_J, V20_K, 520 V21, V21_H, V21_J, V21_K, 521 V22, V22_H, V22_J, V22_K, 522 V23, V23_H, V23_J, V23_K, 523 V24, V24_H, V24_J, V24_K, 524 V25, V25_H, V25_J, V25_K, 525 V26, V26_H, V26_J, V26_K, 526 V27, V27_H, V27_J, V27_K, 527 V28, V28_H, V28_J, V28_K, 528 V29, V29_H, V29_J, V29_K, 529 V30, V30_H, V30_J, V30_K, 530 V31, V31_H, V31_J, V31_K, 531 ); 532 533 alloc_class chunk3(RFLAGS); 534 535 //----------Architecture Description Register Classes-------------------------- 536 // Several register classes are automatically defined based upon information in 537 // this architecture description. 538 // 1) reg_class inline_cache_reg ( /* as def'd in frame section */ ) 539 // 2) reg_class stack_slots( /* one chunk of stack-based "registers" */ ) 540 // 541 542 // Class for all 32 bit general purpose registers 543 reg_class all_reg32( 544 R0, 545 R1, 546 R2, 547 R3, 548 R4, 549 R7, 550 R8, 551 R9, 552 R10, 553 R11, 554 R12, 555 R13, 556 R14, 557 R15, 558 R16, 559 R17, 560 R18, 561 R19, 562 R20, 563 R21, 564 R22, 565 R23, 566 R24, 567 R25, 568 R26, 569 R27, 570 R28, 571 R29, 572 R30, 573 R31 574 ); 575 576 // Class for any 32 bit integer registers (excluding zr) 577 reg_class any_reg32 %{ 578 return _ANY_REG32_mask; 579 %} 580 581 // Singleton class for R10 int register 582 reg_class int_r10_reg(R10); 583 584 // Singleton class for R12 int register 585 reg_class int_r12_reg(R12); 586 587 // Singleton class for R13 int register 588 reg_class int_r13_reg(R13); 589 590 // Singleton class for R14 int register 591 reg_class int_r14_reg(R14); 592 593 // Class for all long integer registers 594 reg_class all_reg( 595 R0, R0_H, 596 R1, R1_H, 597 R2, R2_H, 598 R3, R3_H, 599 R4, R4_H, 600 R7, R7_H, 601 R8, R8_H, 602 R9, R9_H, 603 R10, R10_H, 604 R11, R11_H, 605 R12, R12_H, 606 R13, R13_H, 607 R14, R14_H, 608 R15, R15_H, 609 R16, R16_H, 610 R17, R17_H, 611 R18, R18_H, 612 R19, R19_H, 613 R20, R20_H, 614 R21, R21_H, 615 R22, R22_H, 616 R23, R23_H, 617 R24, R24_H, 618 R25, R25_H, 619 R26, R26_H, 620 R27, R27_H, 621 R28, R28_H, 622 R29, R29_H, 623 R30, R30_H, 624 R31, R31_H 625 ); 626 627 // Class for all long integer registers (excluding zr) 628 reg_class any_reg %{ 629 return _ANY_REG_mask; 630 %} 631 632 // Class for non-allocatable 32 bit registers 633 reg_class non_allocatable_reg32( 634 R0, // zr 635 R1, // ra 636 R2, // sp 637 R3, // gp 638 R4, // tp 639 R23 // java thread 640 ); 641 642 // Class for non-allocatable 64 bit registers 643 reg_class non_allocatable_reg( 644 R0, R0_H, // zr 645 R1, R1_H, // ra 646 R2, R2_H, // sp 647 R3, R3_H, // gp 648 R4, R4_H, // tp 649 R23, R23_H // java thread 650 ); 651 652 // Class for all non-special integer registers 653 reg_class no_special_reg32 %{ 654 return _NO_SPECIAL_REG32_mask; 655 %} 656 657 // Class for all non-special long integer registers 658 reg_class no_special_reg %{ 659 return _NO_SPECIAL_REG_mask; 660 %} 661 662 reg_class ptr_reg %{ 663 return _PTR_REG_mask; 664 %} 665 666 // Class for all non_special pointer registers 667 reg_class no_special_ptr_reg %{ 668 return _NO_SPECIAL_PTR_REG_mask; 669 %} 670 671 // Class for all non_special pointer registers (excluding fp) 672 reg_class no_special_no_fp_ptr_reg %{ 673 return _NO_SPECIAL_NO_FP_PTR_REG_mask; 674 %} 675 676 // Class for 64 bit register r10 677 reg_class r10_reg( 678 R10, R10_H 679 ); 680 681 // Class for 64 bit register r11 682 reg_class r11_reg( 683 R11, R11_H 684 ); 685 686 // Class for 64 bit register r12 687 reg_class r12_reg( 688 R12, R12_H 689 ); 690 691 // Class for 64 bit register r13 692 reg_class r13_reg( 693 R13, R13_H 694 ); 695 696 // Class for 64 bit register r14 697 reg_class r14_reg( 698 R14, R14_H 699 ); 700 701 // Class for 64 bit register r15 702 reg_class r15_reg( 703 R15, R15_H 704 ); 705 706 // Class for 64 bit register r16 707 reg_class r16_reg( 708 R16, R16_H 709 ); 710 711 // Class for method register 712 reg_class method_reg( 713 R31, R31_H 714 ); 715 716 // Class for java thread register 717 reg_class java_thread_reg( 718 R23, R23_H 719 ); 720 721 reg_class r28_reg( 722 R28, R28_H 723 ); 724 725 reg_class r29_reg( 726 R29, R29_H 727 ); 728 729 reg_class r30_reg( 730 R30, R30_H 731 ); 732 733 reg_class r31_reg( 734 R31, R31_H 735 ); 736 737 // Class for zero registesr 738 reg_class zr_reg( 739 R0, R0_H 740 ); 741 742 // Class for thread register 743 reg_class thread_reg( 744 R4, R4_H 745 ); 746 747 // Class for frame pointer register 748 reg_class fp_reg( 749 R8, R8_H 750 ); 751 752 // Class for link register 753 reg_class ra_reg( 754 R1, R1_H 755 ); 756 757 // Class for long sp register 758 reg_class sp_reg( 759 R2, R2_H 760 ); 761 762 // Class for all float registers 763 reg_class float_reg( 764 F0, 765 F1, 766 F2, 767 F3, 768 F4, 769 F5, 770 F6, 771 F7, 772 F8, 773 F9, 774 F10, 775 F11, 776 F12, 777 F13, 778 F14, 779 F15, 780 F16, 781 F17, 782 F18, 783 F19, 784 F20, 785 F21, 786 F22, 787 F23, 788 F24, 789 F25, 790 F26, 791 F27, 792 F28, 793 F29, 794 F30, 795 F31 796 ); 797 798 // Double precision float registers have virtual `high halves' that 799 // are needed by the allocator. 800 // Class for all double registers 801 reg_class double_reg( 802 F0, F0_H, 803 F1, F1_H, 804 F2, F2_H, 805 F3, F3_H, 806 F4, F4_H, 807 F5, F5_H, 808 F6, F6_H, 809 F7, F7_H, 810 F8, F8_H, 811 F9, F9_H, 812 F10, F10_H, 813 F11, F11_H, 814 F12, F12_H, 815 F13, F13_H, 816 F14, F14_H, 817 F15, F15_H, 818 F16, F16_H, 819 F17, F17_H, 820 F18, F18_H, 821 F19, F19_H, 822 F20, F20_H, 823 F21, F21_H, 824 F22, F22_H, 825 F23, F23_H, 826 F24, F24_H, 827 F25, F25_H, 828 F26, F26_H, 829 F27, F27_H, 830 F28, F28_H, 831 F29, F29_H, 832 F30, F30_H, 833 F31, F31_H 834 ); 835 836 // Class for RVV vector registers 837 // Note: v0, v30 and v31 are used as mask registers. 838 reg_class vectora_reg( 839 V1, V1_H, V1_J, V1_K, 840 V2, V2_H, V2_J, V2_K, 841 V3, V3_H, V3_J, V3_K, 842 V4, V4_H, V4_J, V4_K, 843 V5, V5_H, V5_J, V5_K, 844 V6, V6_H, V6_J, V6_K, 845 V7, V7_H, V7_J, V7_K, 846 V8, V8_H, V8_J, V8_K, 847 V9, V9_H, V9_J, V9_K, 848 V10, V10_H, V10_J, V10_K, 849 V11, V11_H, V11_J, V11_K, 850 V12, V12_H, V12_J, V12_K, 851 V13, V13_H, V13_J, V13_K, 852 V14, V14_H, V14_J, V14_K, 853 V15, V15_H, V15_J, V15_K, 854 V16, V16_H, V16_J, V16_K, 855 V17, V17_H, V17_J, V17_K, 856 V18, V18_H, V18_J, V18_K, 857 V19, V19_H, V19_J, V19_K, 858 V20, V20_H, V20_J, V20_K, 859 V21, V21_H, V21_J, V21_K, 860 V22, V22_H, V22_J, V22_K, 861 V23, V23_H, V23_J, V23_K, 862 V24, V24_H, V24_J, V24_K, 863 V25, V25_H, V25_J, V25_K, 864 V26, V26_H, V26_J, V26_K, 865 V27, V27_H, V27_J, V27_K, 866 V28, V28_H, V28_J, V28_K, 867 V29, V29_H, V29_J, V29_K 868 ); 869 870 // Class for 64 bit register f0 871 reg_class f0_reg( 872 F0, F0_H 873 ); 874 875 // Class for 64 bit register f1 876 reg_class f1_reg( 877 F1, F1_H 878 ); 879 880 // Class for 64 bit register f2 881 reg_class f2_reg( 882 F2, F2_H 883 ); 884 885 // Class for 64 bit register f3 886 reg_class f3_reg( 887 F3, F3_H 888 ); 889 890 // class for vector register v1 891 reg_class v1_reg( 892 V1, V1_H, V1_J, V1_K 893 ); 894 895 // class for vector register v2 896 reg_class v2_reg( 897 V2, V2_H, V2_J, V2_K 898 ); 899 900 // class for vector register v3 901 reg_class v3_reg( 902 V3, V3_H, V3_J, V3_K 903 ); 904 905 // class for vector register v4 906 reg_class v4_reg( 907 V4, V4_H, V4_J, V4_K 908 ); 909 910 // class for vector register v5 911 reg_class v5_reg( 912 V5, V5_H, V5_J, V5_K 913 ); 914 915 // class for vector register v6 916 reg_class v6_reg( 917 V6, V6_H, V6_J, V6_K 918 ); 919 920 // class for vector register v7 921 reg_class v7_reg( 922 V7, V7_H, V7_J, V7_K 923 ); 924 925 // class for vector register v8 926 reg_class v8_reg( 927 V8, V8_H, V8_J, V8_K 928 ); 929 930 // class for vector register v9 931 reg_class v9_reg( 932 V9, V9_H, V9_J, V9_K 933 ); 934 935 // class for vector register v10 936 reg_class v10_reg( 937 V10, V10_H, V10_J, V10_K 938 ); 939 940 // class for vector register v11 941 reg_class v11_reg( 942 V11, V11_H, V11_J, V11_K 943 ); 944 945 // class for condition codes 946 reg_class reg_flags(RFLAGS); 947 948 // Class for RVV v0 mask register 949 // https://github.com/riscv/riscv-v-spec/blob/master/v-spec.adoc#53-vector-masking 950 // The mask value used to control execution of a masked vector 951 // instruction is always supplied by vector register v0. 952 reg_class vmask_reg_v0 ( 953 V0 954 ); 955 956 // Class for RVV mask registers 957 // We need two more vmask registers to do the vector mask logical ops, 958 // so define v30, v31 as mask register too. 959 reg_class vmask_reg ( 960 V0, 961 V30, 962 V31 963 ); 964 %} 965 966 //----------DEFINITION BLOCK--------------------------------------------------- 967 // Define name --> value mappings to inform the ADLC of an integer valued name 968 // Current support includes integer values in the range [0, 0x7FFFFFFF] 969 // Format: 970 // int_def <name> ( <int_value>, <expression>); 971 // Generated Code in ad_<arch>.hpp 972 // #define <name> (<expression>) 973 // // value == <int_value> 974 // Generated code in ad_<arch>.cpp adlc_verification() 975 // assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>"); 976 // 977 978 // we follow the ppc-aix port in using a simple cost model which ranks 979 // register operations as cheap, memory ops as more expensive and 980 // branches as most expensive. the first two have a low as well as a 981 // normal cost. huge cost appears to be a way of saying don't do 982 // something 983 984 definitions %{ 985 // The default cost (of a register move instruction). 986 int_def DEFAULT_COST ( 100, 100); 987 int_def ALU_COST ( 100, 1 * DEFAULT_COST); // unknown, const, arith, shift, slt, 988 // multi, auipc, nop, logical, move 989 int_def LOAD_COST ( 300, 3 * DEFAULT_COST); // load, fpload 990 int_def STORE_COST ( 100, 1 * DEFAULT_COST); // store, fpstore 991 int_def XFER_COST ( 300, 3 * DEFAULT_COST); // mfc, mtc, fcvt, fmove, fcmp 992 int_def FMVX_COST ( 100, 1 * DEFAULT_COST); // shuffles with no conversion 993 int_def BRANCH_COST ( 200, 2 * DEFAULT_COST); // branch, jmp, call 994 int_def IMUL_COST ( 1000, 10 * DEFAULT_COST); // imul 995 int_def IDIVSI_COST ( 3400, 34 * DEFAULT_COST); // idivsi 996 int_def IDIVDI_COST ( 6600, 66 * DEFAULT_COST); // idivdi 997 int_def FMUL_SINGLE_COST ( 500, 5 * DEFAULT_COST); // fmul, fmadd 998 int_def FMUL_DOUBLE_COST ( 700, 7 * DEFAULT_COST); // fmul, fmadd 999 int_def FDIV_COST ( 2000, 20 * DEFAULT_COST); // fdiv 1000 int_def FSQRT_COST ( 2500, 25 * DEFAULT_COST); // fsqrt 1001 int_def VOLATILE_REF_COST ( 1000, 10 * DEFAULT_COST); 1002 int_def CACHE_MISS_COST ( 2000, 20 * DEFAULT_COST); // typicall cache miss penalty 1003 %} 1004 1005 1006 1007 //----------SOURCE BLOCK------------------------------------------------------- 1008 // This is a block of C++ code which provides values, functions, and 1009 // definitions necessary in the rest of the architecture description 1010 1011 source_hpp %{ 1012 1013 #include "asm/macroAssembler.hpp" 1014 #include "gc/shared/barrierSetAssembler.hpp" 1015 #include "gc/shared/cardTable.hpp" 1016 #include "gc/shared/cardTableBarrierSet.hpp" 1017 #include "gc/shared/collectedHeap.hpp" 1018 #include "opto/addnode.hpp" 1019 #include "opto/convertnode.hpp" 1020 #include "runtime/objectMonitor.hpp" 1021 1022 extern RegMask _ANY_REG32_mask; 1023 extern RegMask _ANY_REG_mask; 1024 extern RegMask _PTR_REG_mask; 1025 extern RegMask _NO_SPECIAL_REG32_mask; 1026 extern RegMask _NO_SPECIAL_REG_mask; 1027 extern RegMask _NO_SPECIAL_PTR_REG_mask; 1028 extern RegMask _NO_SPECIAL_NO_FP_PTR_REG_mask; 1029 1030 class CallStubImpl { 1031 1032 //-------------------------------------------------------------- 1033 //---< Used for optimization in Compile::shorten_branches >--- 1034 //-------------------------------------------------------------- 1035 1036 public: 1037 // Size of call trampoline stub. 1038 static uint size_call_trampoline() { 1039 return 0; // no call trampolines on this platform 1040 } 1041 1042 // number of relocations needed by a call trampoline stub 1043 static uint reloc_call_trampoline() { 1044 return 0; // no call trampolines on this platform 1045 } 1046 }; 1047 1048 class HandlerImpl { 1049 1050 public: 1051 1052 static int emit_exception_handler(C2_MacroAssembler *masm); 1053 static int emit_deopt_handler(C2_MacroAssembler* masm); 1054 1055 static uint size_exception_handler() { 1056 return MacroAssembler::far_branch_size(); 1057 } 1058 1059 static uint size_deopt_handler() { 1060 // count auipc + far branch 1061 return NativeInstruction::instruction_size + MacroAssembler::far_branch_size(); 1062 } 1063 }; 1064 1065 class Node::PD { 1066 public: 1067 enum NodeFlags { 1068 _last_flag = Node::_last_flag 1069 }; 1070 }; 1071 1072 bool is_CAS(int opcode, bool maybe_volatile); 1073 1074 // predicate controlling translation of CompareAndSwapX 1075 bool needs_acquiring_load_reserved(const Node *load); 1076 1077 // predicate controlling addressing modes 1078 bool size_fits_all_mem_uses(AddPNode* addp, int shift); 1079 %} 1080 1081 source %{ 1082 1083 // Derived RegMask with conditionally allocatable registers 1084 1085 RegMask _ANY_REG32_mask; 1086 RegMask _ANY_REG_mask; 1087 RegMask _PTR_REG_mask; 1088 RegMask _NO_SPECIAL_REG32_mask; 1089 RegMask _NO_SPECIAL_REG_mask; 1090 RegMask _NO_SPECIAL_PTR_REG_mask; 1091 RegMask _NO_SPECIAL_NO_FP_PTR_REG_mask; 1092 1093 void reg_mask_init() { 1094 1095 _ANY_REG32_mask = _ALL_REG32_mask; 1096 _ANY_REG32_mask.Remove(OptoReg::as_OptoReg(x0->as_VMReg())); 1097 1098 _ANY_REG_mask = _ALL_REG_mask; 1099 _ANY_REG_mask.SUBTRACT(_ZR_REG_mask); 1100 1101 _PTR_REG_mask = _ALL_REG_mask; 1102 _PTR_REG_mask.SUBTRACT(_ZR_REG_mask); 1103 1104 _NO_SPECIAL_REG32_mask = _ALL_REG32_mask; 1105 _NO_SPECIAL_REG32_mask.SUBTRACT(_NON_ALLOCATABLE_REG32_mask); 1106 1107 _NO_SPECIAL_REG_mask = _ALL_REG_mask; 1108 _NO_SPECIAL_REG_mask.SUBTRACT(_NON_ALLOCATABLE_REG_mask); 1109 1110 _NO_SPECIAL_PTR_REG_mask = _ALL_REG_mask; 1111 _NO_SPECIAL_PTR_REG_mask.SUBTRACT(_NON_ALLOCATABLE_REG_mask); 1112 1113 // x27 is not allocatable when compressed oops is on 1114 if (UseCompressedOops) { 1115 _NO_SPECIAL_REG32_mask.Remove(OptoReg::as_OptoReg(x27->as_VMReg())); 1116 _NO_SPECIAL_REG_mask.Remove(OptoReg::as_OptoReg(x27->as_VMReg())); 1117 _NO_SPECIAL_PTR_REG_mask.Remove(OptoReg::as_OptoReg(x27->as_VMReg())); 1118 } 1119 1120 // x8 is not allocatable when PreserveFramePointer is on 1121 if (PreserveFramePointer) { 1122 _NO_SPECIAL_REG32_mask.Remove(OptoReg::as_OptoReg(x8->as_VMReg())); 1123 _NO_SPECIAL_REG_mask.Remove(OptoReg::as_OptoReg(x8->as_VMReg())); 1124 _NO_SPECIAL_PTR_REG_mask.Remove(OptoReg::as_OptoReg(x8->as_VMReg())); 1125 } 1126 1127 _NO_SPECIAL_NO_FP_PTR_REG_mask = _NO_SPECIAL_PTR_REG_mask; 1128 _NO_SPECIAL_NO_FP_PTR_REG_mask.Remove(OptoReg::as_OptoReg(x8->as_VMReg())); 1129 } 1130 1131 void PhaseOutput::pd_perform_mach_node_analysis() { 1132 } 1133 1134 int MachNode::pd_alignment_required() const { 1135 return 1; 1136 } 1137 1138 int MachNode::compute_padding(int current_offset) const { 1139 return 0; 1140 } 1141 1142 // is_CAS(int opcode, bool maybe_volatile) 1143 // 1144 // return true if opcode is one of the possible CompareAndSwapX 1145 // values otherwise false. 1146 bool is_CAS(int opcode, bool maybe_volatile) 1147 { 1148 switch (opcode) { 1149 // We handle these 1150 case Op_CompareAndSwapI: 1151 case Op_CompareAndSwapL: 1152 case Op_CompareAndSwapP: 1153 case Op_CompareAndSwapN: 1154 case Op_ShenandoahCompareAndSwapP: 1155 case Op_ShenandoahCompareAndSwapN: 1156 case Op_CompareAndSwapB: 1157 case Op_CompareAndSwapS: 1158 case Op_GetAndSetI: 1159 case Op_GetAndSetL: 1160 case Op_GetAndSetP: 1161 case Op_GetAndSetN: 1162 case Op_GetAndAddI: 1163 case Op_GetAndAddL: 1164 return true; 1165 case Op_CompareAndExchangeI: 1166 case Op_CompareAndExchangeN: 1167 case Op_CompareAndExchangeB: 1168 case Op_CompareAndExchangeS: 1169 case Op_CompareAndExchangeL: 1170 case Op_CompareAndExchangeP: 1171 case Op_WeakCompareAndSwapB: 1172 case Op_WeakCompareAndSwapS: 1173 case Op_WeakCompareAndSwapI: 1174 case Op_WeakCompareAndSwapL: 1175 case Op_WeakCompareAndSwapP: 1176 case Op_WeakCompareAndSwapN: 1177 case Op_ShenandoahWeakCompareAndSwapP: 1178 case Op_ShenandoahWeakCompareAndSwapN: 1179 case Op_ShenandoahCompareAndExchangeP: 1180 case Op_ShenandoahCompareAndExchangeN: 1181 return maybe_volatile; 1182 default: 1183 return false; 1184 } 1185 } 1186 1187 // predicate controlling translation of CAS 1188 // 1189 // returns true if CAS needs to use an acquiring load otherwise false 1190 bool needs_acquiring_load_reserved(const Node *n) 1191 { 1192 assert(n != nullptr && is_CAS(n->Opcode(), true), "expecting a compare and swap"); 1193 1194 LoadStoreNode* ldst = n->as_LoadStore(); 1195 if (n != nullptr && is_CAS(n->Opcode(), false)) { 1196 assert(ldst != nullptr && ldst->trailing_membar() != nullptr, "expected trailing membar"); 1197 } else { 1198 return ldst != nullptr && ldst->trailing_membar() != nullptr; 1199 } 1200 // so we can just return true here 1201 return true; 1202 } 1203 #define __ masm-> 1204 1205 // advance declarations for helper functions to convert register 1206 // indices to register objects 1207 1208 // the ad file has to provide implementations of certain methods 1209 // expected by the generic code 1210 // 1211 // REQUIRED FUNCTIONALITY 1212 1213 //============================================================================= 1214 1215 // !!!!! Special hack to get all types of calls to specify the byte offset 1216 // from the start of the call to the point where the return address 1217 // will point. 1218 1219 int MachCallStaticJavaNode::ret_addr_offset() 1220 { 1221 return 3 * NativeInstruction::instruction_size; // auipc + ld + jalr 1222 } 1223 1224 int MachCallDynamicJavaNode::ret_addr_offset() 1225 { 1226 return NativeMovConstReg::movptr2_instruction_size + (3 * NativeInstruction::instruction_size); // movptr2, auipc + ld + jal 1227 } 1228 1229 int MachCallRuntimeNode::ret_addr_offset() { 1230 // For address inside the code cache the call will be: 1231 // auipc + jalr 1232 // For real runtime callouts it will be 8 instructions 1233 // see riscv_enc_java_to_runtime 1234 // la(t0, retaddr) -> auipc + addi 1235 // sd(t0, Address(xthread, JavaThread::last_Java_pc_offset())) -> sd 1236 // movptr(t1, addr, offset, t0) -> lui + lui + slli + add 1237 // jalr(t1, offset) -> jalr 1238 if (CodeCache::contains(_entry_point)) { 1239 return 2 * NativeInstruction::instruction_size; 1240 } else { 1241 return 8 * NativeInstruction::instruction_size; 1242 } 1243 } 1244 1245 // 1246 // Compute padding required for nodes which need alignment 1247 // 1248 1249 // With RVC a call instruction may get 2-byte aligned. 1250 // The address of the call instruction needs to be 4-byte aligned to 1251 // ensure that it does not span a cache line so that it can be patched. 1252 int CallStaticJavaDirectNode::compute_padding(int current_offset) const 1253 { 1254 // to make sure the address of jal 4-byte aligned. 1255 return align_up(current_offset, alignment_required()) - current_offset; 1256 } 1257 1258 // With RVC a call instruction may get 2-byte aligned. 1259 // The address of the call instruction needs to be 4-byte aligned to 1260 // ensure that it does not span a cache line so that it can be patched. 1261 int CallDynamicJavaDirectNode::compute_padding(int current_offset) const 1262 { 1263 // skip the movptr2 in MacroAssembler::ic_call(): 1264 // lui, lui, slli, add, addi 1265 // Though movptr2() has already 4-byte aligned with or without RVC, 1266 // We need to prevent from further changes by explicitly calculating the size. 1267 current_offset += NativeMovConstReg::movptr2_instruction_size; 1268 // to make sure the address of jal 4-byte aligned. 1269 return align_up(current_offset, alignment_required()) - current_offset; 1270 } 1271 1272 //============================================================================= 1273 1274 #ifndef PRODUCT 1275 void MachBreakpointNode::format(PhaseRegAlloc *ra_, outputStream *st) const { 1276 assert_cond(st != nullptr); 1277 st->print("BREAKPOINT"); 1278 } 1279 #endif 1280 1281 void MachBreakpointNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const { 1282 __ ebreak(); 1283 } 1284 1285 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const { 1286 return MachNode::size(ra_); 1287 } 1288 1289 //============================================================================= 1290 1291 #ifndef PRODUCT 1292 void MachNopNode::format(PhaseRegAlloc*, outputStream* st) const { 1293 st->print("nop \t# %d bytes pad for loops and calls", _count); 1294 } 1295 #endif 1296 1297 void MachNopNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc*) const { 1298 Assembler::CompressibleRegion cr(masm); // nops shall be 2-byte under RVC for alignment purposes. 1299 for (int i = 0; i < _count; i++) { 1300 __ nop(); 1301 } 1302 } 1303 1304 uint MachNopNode::size(PhaseRegAlloc*) const { 1305 return _count * (UseRVC ? NativeInstruction::compressed_instruction_size : NativeInstruction::instruction_size); 1306 } 1307 1308 //============================================================================= 1309 const RegMask& MachConstantBaseNode::_out_RegMask = RegMask::Empty; 1310 1311 int ConstantTable::calculate_table_base_offset() const { 1312 return 0; // absolute addressing, no offset 1313 } 1314 1315 bool MachConstantBaseNode::requires_postalloc_expand() const { return false; } 1316 void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) { 1317 ShouldNotReachHere(); 1318 } 1319 1320 void MachConstantBaseNode::emit(C2_MacroAssembler* masm, PhaseRegAlloc* ra_) const { 1321 // Empty encoding 1322 } 1323 1324 uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const { 1325 return 0; 1326 } 1327 1328 #ifndef PRODUCT 1329 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const { 1330 assert_cond(st != nullptr); 1331 st->print("-- \t// MachConstantBaseNode (empty encoding)"); 1332 } 1333 #endif 1334 1335 #ifndef PRODUCT 1336 void MachPrologNode::format(PhaseRegAlloc *ra_, outputStream *st) const { 1337 assert_cond(st != nullptr && ra_ != nullptr); 1338 Compile* C = ra_->C; 1339 1340 int framesize = C->output()->frame_slots() << LogBytesPerInt; 1341 1342 if (C->output()->need_stack_bang(framesize)) { 1343 st->print("# stack bang size=%d\n\t", framesize); 1344 } 1345 1346 st->print("sd fp, [sp, #%d]\n\t", - 2 * wordSize); 1347 st->print("sd ra, [sp, #%d]\n\t", - wordSize); 1348 if (PreserveFramePointer) { st->print("sub fp, sp, #%d\n\t", 2 * wordSize); } 1349 st->print("sub sp, sp, #%d\n\t", framesize); 1350 1351 if (C->stub_function() == nullptr && BarrierSet::barrier_set()->barrier_set_nmethod() != nullptr) { 1352 st->print("ld t0, [guard]\n\t"); 1353 st->print("membar LoadLoad\n\t"); 1354 st->print("ld t1, [xthread, #thread_disarmed_guard_value_offset]\n\t"); 1355 st->print("beq t0, t1, skip\n\t"); 1356 st->print("jalr #nmethod_entry_barrier_stub\n\t"); 1357 st->print("j skip\n\t"); 1358 st->print("guard: int\n\t"); 1359 st->print("skip:\n\t"); 1360 } 1361 } 1362 #endif 1363 1364 void MachPrologNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const { 1365 assert_cond(ra_ != nullptr); 1366 Compile* C = ra_->C; 1367 1368 // n.b. frame size includes space for return pc and fp 1369 const int framesize = C->output()->frame_size_in_bytes(); 1370 1371 // insert a nop at the start of the prolog so we can patch in a 1372 // branch if we need to invalidate the method later 1373 { 1374 Assembler::IncompressibleRegion ir(masm); // keep the nop as 4 bytes for patching. 1375 MacroAssembler::assert_alignment(__ pc()); 1376 __ nop(); // 4 bytes 1377 } 1378 1379 assert_cond(C != nullptr); 1380 1381 if (C->clinit_barrier_on_entry()) { 1382 assert(!C->method()->holder()->is_not_initialized(), "initialization should have been started"); 1383 1384 Label L_skip_barrier; 1385 1386 __ mov_metadata(t1, C->method()->holder()->constant_encoding()); 1387 __ clinit_barrier(t1, t0, &L_skip_barrier); 1388 __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 1389 __ bind(L_skip_barrier); 1390 } 1391 1392 int bangsize = C->output()->bang_size_in_bytes(); 1393 if (C->output()->need_stack_bang(bangsize)) { 1394 __ generate_stack_overflow_check(bangsize); 1395 } 1396 1397 __ build_frame(framesize); 1398 1399 if (C->stub_function() == nullptr) { 1400 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 1401 if (BarrierSet::barrier_set()->barrier_set_nmethod() != nullptr) { 1402 // Dummy labels for just measuring the code size 1403 Label dummy_slow_path; 1404 Label dummy_continuation; 1405 Label dummy_guard; 1406 Label* slow_path = &dummy_slow_path; 1407 Label* continuation = &dummy_continuation; 1408 Label* guard = &dummy_guard; 1409 if (!Compile::current()->output()->in_scratch_emit_size()) { 1410 // Use real labels from actual stub when not emitting code for purpose of measuring its size 1411 C2EntryBarrierStub* stub = new (Compile::current()->comp_arena()) C2EntryBarrierStub(); 1412 Compile::current()->output()->add_stub(stub); 1413 slow_path = &stub->entry(); 1414 continuation = &stub->continuation(); 1415 guard = &stub->guard(); 1416 } 1417 // In the C2 code, we move the non-hot part of nmethod entry barriers out-of-line to a stub. 1418 bs->nmethod_entry_barrier(masm, slow_path, continuation, guard); 1419 } 1420 } 1421 1422 if (VerifyStackAtCalls) { 1423 Unimplemented(); 1424 } 1425 1426 C->output()->set_frame_complete(__ offset()); 1427 1428 if (C->has_mach_constant_base_node()) { 1429 // NOTE: We set the table base offset here because users might be 1430 // emitted before MachConstantBaseNode. 1431 ConstantTable& constant_table = C->output()->constant_table(); 1432 constant_table.set_table_base_offset(constant_table.calculate_table_base_offset()); 1433 } 1434 } 1435 1436 uint MachPrologNode::size(PhaseRegAlloc* ra_) const 1437 { 1438 assert_cond(ra_ != nullptr); 1439 return MachNode::size(ra_); // too many variables; just compute it 1440 // the hard way 1441 } 1442 1443 int MachPrologNode::reloc() const 1444 { 1445 return 0; 1446 } 1447 1448 //============================================================================= 1449 1450 #ifndef PRODUCT 1451 void MachEpilogNode::format(PhaseRegAlloc *ra_, outputStream *st) const { 1452 assert_cond(st != nullptr && ra_ != nullptr); 1453 Compile* C = ra_->C; 1454 assert_cond(C != nullptr); 1455 int framesize = C->output()->frame_size_in_bytes(); 1456 1457 st->print("# pop frame %d\n\t", framesize); 1458 1459 if (framesize == 0) { 1460 st->print("ld ra, [sp,#%d]\n\t", (2 * wordSize)); 1461 st->print("ld fp, [sp,#%d]\n\t", (3 * wordSize)); 1462 st->print("add sp, sp, #%d\n\t", (2 * wordSize)); 1463 } else { 1464 st->print("add sp, sp, #%d\n\t", framesize); 1465 st->print("ld ra, [sp,#%d]\n\t", - 2 * wordSize); 1466 st->print("ld fp, [sp,#%d]\n\t", - wordSize); 1467 } 1468 1469 if (do_polling() && C->is_method_compilation()) { 1470 st->print("# test polling word\n\t"); 1471 st->print("ld t0, [xthread,#%d]\n\t", in_bytes(JavaThread::polling_word_offset())); 1472 st->print("bgtu sp, t0, #slow_path"); 1473 } 1474 } 1475 #endif 1476 1477 void MachEpilogNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const { 1478 assert_cond(ra_ != nullptr); 1479 Compile* C = ra_->C; 1480 assert_cond(C != nullptr); 1481 int framesize = C->output()->frame_size_in_bytes(); 1482 1483 __ remove_frame(framesize); 1484 1485 if (StackReservedPages > 0 && C->has_reserved_stack_access()) { 1486 __ reserved_stack_check(); 1487 } 1488 1489 if (do_polling() && C->is_method_compilation()) { 1490 Label dummy_label; 1491 Label* code_stub = &dummy_label; 1492 if (!C->output()->in_scratch_emit_size()) { 1493 C2SafepointPollStub* stub = new (C->comp_arena()) C2SafepointPollStub(__ offset()); 1494 C->output()->add_stub(stub); 1495 code_stub = &stub->entry(); 1496 } 1497 __ relocate(relocInfo::poll_return_type); 1498 __ safepoint_poll(*code_stub, true /* at_return */, false /* acquire */, true /* in_nmethod */); 1499 } 1500 } 1501 1502 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const { 1503 assert_cond(ra_ != nullptr); 1504 // Variable size. Determine dynamically. 1505 return MachNode::size(ra_); 1506 } 1507 1508 int MachEpilogNode::reloc() const { 1509 // Return number of relocatable values contained in this instruction. 1510 return 1; // 1 for polling page. 1511 } 1512 const Pipeline * MachEpilogNode::pipeline() const { 1513 return MachNode::pipeline_class(); 1514 } 1515 1516 //============================================================================= 1517 1518 // Figure out which register class each belongs in: rc_int, rc_float or 1519 // rc_stack. 1520 enum RC { rc_bad, rc_int, rc_float, rc_vector, rc_stack }; 1521 1522 static enum RC rc_class(OptoReg::Name reg) { 1523 1524 if (reg == OptoReg::Bad) { 1525 return rc_bad; 1526 } 1527 1528 // we have 30 int registers * 2 halves 1529 // (t0 and t1 are omitted) 1530 int slots_of_int_registers = Register::max_slots_per_register * (Register::number_of_registers - 2); 1531 if (reg < slots_of_int_registers) { 1532 return rc_int; 1533 } 1534 1535 // we have 32 float register * 2 halves 1536 int slots_of_float_registers = FloatRegister::max_slots_per_register * FloatRegister::number_of_registers; 1537 if (reg < slots_of_int_registers + slots_of_float_registers) { 1538 return rc_float; 1539 } 1540 1541 // we have 32 vector register * 4 halves 1542 int slots_of_vector_registers = VectorRegister::max_slots_per_register * VectorRegister::number_of_registers; 1543 if (reg < slots_of_int_registers + slots_of_float_registers + slots_of_vector_registers) { 1544 return rc_vector; 1545 } 1546 1547 // Between vector regs & stack is the flags regs. 1548 assert(OptoReg::is_stack(reg), "blow up if spilling flags"); 1549 1550 return rc_stack; 1551 } 1552 1553 uint MachSpillCopyNode::implementation(C2_MacroAssembler *masm, PhaseRegAlloc *ra_, bool do_size, outputStream *st) const { 1554 assert_cond(ra_ != nullptr); 1555 Compile* C = ra_->C; 1556 1557 // Get registers to move. 1558 OptoReg::Name src_hi = ra_->get_reg_second(in(1)); 1559 OptoReg::Name src_lo = ra_->get_reg_first(in(1)); 1560 OptoReg::Name dst_hi = ra_->get_reg_second(this); 1561 OptoReg::Name dst_lo = ra_->get_reg_first(this); 1562 1563 enum RC src_hi_rc = rc_class(src_hi); 1564 enum RC src_lo_rc = rc_class(src_lo); 1565 enum RC dst_hi_rc = rc_class(dst_hi); 1566 enum RC dst_lo_rc = rc_class(dst_lo); 1567 1568 assert(src_lo != OptoReg::Bad && dst_lo != OptoReg::Bad, "must move at least 1 register"); 1569 1570 if (src_hi != OptoReg::Bad && !bottom_type()->isa_vectmask()) { 1571 assert((src_lo & 1) == 0 && src_lo + 1 == src_hi && 1572 (dst_lo & 1) == 0 && dst_lo + 1 == dst_hi, 1573 "expected aligned-adjacent pairs"); 1574 } 1575 1576 if (src_lo == dst_lo && src_hi == dst_hi) { 1577 return 0; // Self copy, no move. 1578 } 1579 1580 bool is64 = (src_lo & 1) == 0 && src_lo + 1 == src_hi && 1581 (dst_lo & 1) == 0 && dst_lo + 1 == dst_hi; 1582 int src_offset = ra_->reg2offset(src_lo); 1583 int dst_offset = ra_->reg2offset(dst_lo); 1584 1585 if (bottom_type()->isa_vect() != nullptr) { 1586 uint ireg = ideal_reg(); 1587 if (ireg == Op_VecA && masm) { 1588 int vector_reg_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 1589 if (src_lo_rc == rc_stack && dst_lo_rc == rc_stack) { 1590 // stack to stack 1591 __ spill_copy_vector_stack_to_stack(src_offset, dst_offset, 1592 vector_reg_size_in_bytes); 1593 } else if (src_lo_rc == rc_vector && dst_lo_rc == rc_stack) { 1594 // vpr to stack 1595 __ spill(as_VectorRegister(Matcher::_regEncode[src_lo]), ra_->reg2offset(dst_lo)); 1596 } else if (src_lo_rc == rc_stack && dst_lo_rc == rc_vector) { 1597 // stack to vpr 1598 __ unspill(as_VectorRegister(Matcher::_regEncode[dst_lo]), ra_->reg2offset(src_lo)); 1599 } else if (src_lo_rc == rc_vector && dst_lo_rc == rc_vector) { 1600 // vpr to vpr 1601 __ vmv1r_v(as_VectorRegister(Matcher::_regEncode[dst_lo]), as_VectorRegister(Matcher::_regEncode[src_lo])); 1602 } else { 1603 ShouldNotReachHere(); 1604 } 1605 } else if (bottom_type()->isa_vectmask() && masm) { 1606 int vmask_size_in_bytes = Matcher::scalable_predicate_reg_slots() * 32 / 8; 1607 if (src_lo_rc == rc_stack && dst_lo_rc == rc_stack) { 1608 // stack to stack 1609 __ spill_copy_vmask_stack_to_stack(src_offset, dst_offset, 1610 vmask_size_in_bytes); 1611 } else if (src_lo_rc == rc_vector && dst_lo_rc == rc_stack) { 1612 // vmask to stack 1613 __ spill_vmask(as_VectorRegister(Matcher::_regEncode[src_lo]), ra_->reg2offset(dst_lo)); 1614 } else if (src_lo_rc == rc_stack && dst_lo_rc == rc_vector) { 1615 // stack to vmask 1616 __ unspill_vmask(as_VectorRegister(Matcher::_regEncode[dst_lo]), ra_->reg2offset(src_lo)); 1617 } else if (src_lo_rc == rc_vector && dst_lo_rc == rc_vector) { 1618 // vmask to vmask 1619 __ vmv1r_v(as_VectorRegister(Matcher::_regEncode[dst_lo]), as_VectorRegister(Matcher::_regEncode[src_lo])); 1620 } else { 1621 ShouldNotReachHere(); 1622 } 1623 } 1624 } else if (masm != nullptr) { 1625 switch (src_lo_rc) { 1626 case rc_int: 1627 if (dst_lo_rc == rc_int) { // gpr --> gpr copy 1628 if (!is64 && this->ideal_reg() != Op_RegI) { // zero extended for narrow oop or klass 1629 __ zero_extend(as_Register(Matcher::_regEncode[dst_lo]), as_Register(Matcher::_regEncode[src_lo]), 32); 1630 } else { 1631 __ mv(as_Register(Matcher::_regEncode[dst_lo]), as_Register(Matcher::_regEncode[src_lo])); 1632 } 1633 } else if (dst_lo_rc == rc_float) { // gpr --> fpr copy 1634 if (is64) { 1635 __ fmv_d_x(as_FloatRegister(Matcher::_regEncode[dst_lo]), 1636 as_Register(Matcher::_regEncode[src_lo])); 1637 } else { 1638 __ fmv_w_x(as_FloatRegister(Matcher::_regEncode[dst_lo]), 1639 as_Register(Matcher::_regEncode[src_lo])); 1640 } 1641 } else { // gpr --> stack spill 1642 assert(dst_lo_rc == rc_stack, "spill to bad register class"); 1643 __ spill(as_Register(Matcher::_regEncode[src_lo]), is64, dst_offset); 1644 } 1645 break; 1646 case rc_float: 1647 if (dst_lo_rc == rc_int) { // fpr --> gpr copy 1648 if (is64) { 1649 __ fmv_x_d(as_Register(Matcher::_regEncode[dst_lo]), 1650 as_FloatRegister(Matcher::_regEncode[src_lo])); 1651 } else { 1652 __ fmv_x_w(as_Register(Matcher::_regEncode[dst_lo]), 1653 as_FloatRegister(Matcher::_regEncode[src_lo])); 1654 } 1655 } else if (dst_lo_rc == rc_float) { // fpr --> fpr copy 1656 if (is64) { 1657 __ fmv_d(as_FloatRegister(Matcher::_regEncode[dst_lo]), 1658 as_FloatRegister(Matcher::_regEncode[src_lo])); 1659 } else { 1660 __ fmv_s(as_FloatRegister(Matcher::_regEncode[dst_lo]), 1661 as_FloatRegister(Matcher::_regEncode[src_lo])); 1662 } 1663 } else { // fpr --> stack spill 1664 assert(dst_lo_rc == rc_stack, "spill to bad register class"); 1665 __ spill(as_FloatRegister(Matcher::_regEncode[src_lo]), 1666 is64, dst_offset); 1667 } 1668 break; 1669 case rc_stack: 1670 if (dst_lo_rc == rc_int) { // stack --> gpr load 1671 if (this->ideal_reg() == Op_RegI) { 1672 __ unspill(as_Register(Matcher::_regEncode[dst_lo]), is64, src_offset); 1673 } else { // // zero extended for narrow oop or klass 1674 __ unspillu(as_Register(Matcher::_regEncode[dst_lo]), is64, src_offset); 1675 } 1676 } else if (dst_lo_rc == rc_float) { // stack --> fpr load 1677 __ unspill(as_FloatRegister(Matcher::_regEncode[dst_lo]), 1678 is64, src_offset); 1679 } else { // stack --> stack copy 1680 assert(dst_lo_rc == rc_stack, "spill to bad register class"); 1681 if (this->ideal_reg() == Op_RegI) { 1682 __ unspill(t0, is64, src_offset); 1683 } else { // zero extended for narrow oop or klass 1684 __ unspillu(t0, is64, src_offset); 1685 } 1686 __ spill(t0, is64, dst_offset); 1687 } 1688 break; 1689 default: 1690 ShouldNotReachHere(); 1691 } 1692 } 1693 1694 if (st != nullptr) { 1695 st->print("spill "); 1696 if (src_lo_rc == rc_stack) { 1697 st->print("[sp, #%d] -> ", src_offset); 1698 } else { 1699 st->print("%s -> ", Matcher::regName[src_lo]); 1700 } 1701 if (dst_lo_rc == rc_stack) { 1702 st->print("[sp, #%d]", dst_offset); 1703 } else { 1704 st->print("%s", Matcher::regName[dst_lo]); 1705 } 1706 if (bottom_type()->isa_vect() && !bottom_type()->isa_vectmask()) { 1707 int vsize = 0; 1708 if (ideal_reg() == Op_VecA) { 1709 vsize = Matcher::scalable_vector_reg_size(T_BYTE) * 8; 1710 } else { 1711 ShouldNotReachHere(); 1712 } 1713 st->print("\t# vector spill size = %d", vsize); 1714 } else if (ideal_reg() == Op_RegVectMask) { 1715 assert(Matcher::supports_scalable_vector(), "bad register type for spill"); 1716 int vsize = Matcher::scalable_predicate_reg_slots() * 32; 1717 st->print("\t# vmask spill size = %d", vsize); 1718 } else { 1719 st->print("\t# spill size = %d", is64 ? 64 : 32); 1720 } 1721 } 1722 1723 return 0; 1724 } 1725 1726 #ifndef PRODUCT 1727 void MachSpillCopyNode::format(PhaseRegAlloc *ra_, outputStream *st) const { 1728 if (ra_ == nullptr) { 1729 st->print("N%d = SpillCopy(N%d)", _idx, in(1)->_idx); 1730 } else { 1731 implementation(nullptr, ra_, false, st); 1732 } 1733 } 1734 #endif 1735 1736 void MachSpillCopyNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const { 1737 implementation(masm, ra_, false, nullptr); 1738 } 1739 1740 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const { 1741 return MachNode::size(ra_); 1742 } 1743 1744 //============================================================================= 1745 1746 #ifndef PRODUCT 1747 void BoxLockNode::format(PhaseRegAlloc *ra_, outputStream *st) const { 1748 assert_cond(ra_ != nullptr && st != nullptr); 1749 int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()); 1750 int reg = ra_->get_reg_first(this); 1751 st->print("add %s, sp, #%d\t# box lock", 1752 Matcher::regName[reg], offset); 1753 } 1754 #endif 1755 1756 void BoxLockNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const { 1757 Assembler::IncompressibleRegion ir(masm); // Fixed length: see BoxLockNode::size() 1758 1759 assert_cond(ra_ != nullptr); 1760 int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()); 1761 int reg = ra_->get_encode(this); 1762 1763 if (Assembler::is_simm12(offset)) { 1764 __ addi(as_Register(reg), sp, offset); 1765 } else { 1766 __ li32(t0, offset); 1767 __ add(as_Register(reg), sp, t0); 1768 } 1769 } 1770 1771 uint BoxLockNode::size(PhaseRegAlloc *ra_) const { 1772 // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_). 1773 int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()); 1774 1775 if (Assembler::is_simm12(offset)) { 1776 return NativeInstruction::instruction_size; 1777 } else { 1778 return 3 * NativeInstruction::instruction_size; // lui + addiw + add; 1779 } 1780 } 1781 1782 //============================================================================= 1783 1784 #ifndef PRODUCT 1785 void MachUEPNode::format(PhaseRegAlloc* ra_, outputStream* st) const 1786 { 1787 assert_cond(st != nullptr); 1788 st->print_cr("# MachUEPNode"); 1789 if (UseCompressedClassPointers) { 1790 st->print_cr("\tlwu t1, [j_rarg0 + oopDesc::klass_offset_in_bytes()]\t# compressed klass"); 1791 st->print_cr("\tlwu t2, [t0 + CompiledICData::speculated_klass_offset()]\t# compressed klass"); 1792 } else { 1793 st->print_cr("\tld t1, [j_rarg0 + oopDesc::klass_offset_in_bytes()]\t# compressed klass"); 1794 st->print_cr("\tld t2, [t0 + CompiledICData::speculated_klass_offset()]\t# compressed klass"); 1795 } 1796 st->print_cr("\tbeq t1, t2, ic_hit"); 1797 st->print_cr("\tj, SharedRuntime::_ic_miss_stub\t # Inline cache check"); 1798 st->print_cr("\tic_hit:"); 1799 } 1800 #endif 1801 1802 void MachUEPNode::emit(C2_MacroAssembler* masm, PhaseRegAlloc* ra_) const 1803 { 1804 // This is the unverified entry point. 1805 __ ic_check(CodeEntryAlignment); 1806 1807 // Verified entry point must be properly 4 bytes aligned for patching by NativeJump::patch_verified_entry(). 1808 // ic_check() aligns to CodeEntryAlignment >= InteriorEntryAlignment(min 16) > NativeInstruction::instruction_size(4). 1809 assert(((__ offset()) % CodeEntryAlignment) == 0, "Misaligned verified entry point"); 1810 } 1811 1812 uint MachUEPNode::size(PhaseRegAlloc* ra_) const 1813 { 1814 assert_cond(ra_ != nullptr); 1815 return MachNode::size(ra_); 1816 } 1817 1818 // REQUIRED EMIT CODE 1819 1820 //============================================================================= 1821 1822 // Emit exception handler code. 1823 int HandlerImpl::emit_exception_handler(C2_MacroAssembler* masm) 1824 { 1825 // auipc t1, #exception_blob_entry_point 1826 // jr (offset)t1 1827 // Note that the code buffer's insts_mark is always relative to insts. 1828 // That's why we must use the macroassembler to generate a handler. 1829 address base = __ start_a_stub(size_exception_handler()); 1830 if (base == nullptr) { 1831 ciEnv::current()->record_failure("CodeCache is full"); 1832 return 0; // CodeBuffer::expand failed 1833 } 1834 int offset = __ offset(); 1835 __ far_jump(RuntimeAddress(OptoRuntime::exception_blob()->entry_point())); 1836 assert(__ offset() - offset <= (int) size_exception_handler(), "overflow"); 1837 __ end_a_stub(); 1838 return offset; 1839 } 1840 1841 // Emit deopt handler code. 1842 int HandlerImpl::emit_deopt_handler(C2_MacroAssembler* masm) 1843 { 1844 address base = __ start_a_stub(size_deopt_handler()); 1845 if (base == nullptr) { 1846 ciEnv::current()->record_failure("CodeCache is full"); 1847 return 0; // CodeBuffer::expand failed 1848 } 1849 int offset = __ offset(); 1850 1851 __ auipc(ra, 0); 1852 __ far_jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack())); 1853 1854 assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow"); 1855 __ end_a_stub(); 1856 return offset; 1857 1858 } 1859 // REQUIRED MATCHER CODE 1860 1861 //============================================================================= 1862 1863 bool Matcher::match_rule_supported(int opcode) { 1864 if (!has_match_rule(opcode)) { 1865 return false; 1866 } 1867 1868 switch (opcode) { 1869 case Op_OnSpinWait: 1870 return VM_Version::supports_on_spin_wait(); 1871 case Op_CacheWB: // fall through 1872 case Op_CacheWBPreSync: // fall through 1873 case Op_CacheWBPostSync: 1874 if (!VM_Version::supports_data_cache_line_flush()) { 1875 return false; 1876 } 1877 break; 1878 1879 case Op_StrCompressedCopy: // fall through 1880 case Op_StrInflatedCopy: // fall through 1881 case Op_CountPositives: // fall through 1882 case Op_EncodeISOArray: 1883 return UseRVV; 1884 1885 // Current test shows that, it brings performance gain when MaxVectorSize >= 32, but brings 1886 // regression when MaxVectorSize == 16. So only enable the intrinsic when MaxVectorSize >= 32. 1887 case Op_RoundVF: 1888 return UseRVV && MaxVectorSize >= 32; 1889 1890 // For double, current test shows that even with MaxVectorSize == 32, there is still some regression. 1891 // Although there is no hardware to verify it for now, from the trend of performance data on hardwares 1892 // (with vlenb == 16 and 32 respectively), it's promising to bring better performance rather than 1893 // regression for double when MaxVectorSize == 64+. So only enable the intrinsic when MaxVectorSize >= 64. 1894 case Op_RoundVD: 1895 return UseRVV && MaxVectorSize >= 64; 1896 1897 case Op_PopCountI: 1898 case Op_PopCountL: 1899 return UsePopCountInstruction; 1900 1901 case Op_ReverseBytesI: 1902 case Op_ReverseBytesL: 1903 case Op_ReverseBytesS: 1904 case Op_ReverseBytesUS: 1905 case Op_RotateRight: 1906 case Op_RotateLeft: 1907 case Op_CountLeadingZerosI: 1908 case Op_CountLeadingZerosL: 1909 case Op_CountTrailingZerosI: 1910 case Op_CountTrailingZerosL: 1911 return UseZbb; 1912 1913 case Op_FmaF: 1914 case Op_FmaD: 1915 case Op_FmaVF: 1916 case Op_FmaVD: 1917 return UseFMA; 1918 1919 case Op_ConvHF2F: 1920 case Op_ConvF2HF: 1921 return UseZfh; 1922 } 1923 1924 return true; // Per default match rules are supported. 1925 } 1926 1927 const RegMask* Matcher::predicate_reg_mask(void) { 1928 return &_VMASK_REG_mask; 1929 } 1930 1931 // Vector calling convention not yet implemented. 1932 bool Matcher::supports_vector_calling_convention(void) { 1933 return EnableVectorSupport && UseVectorStubs; 1934 } 1935 1936 OptoRegPair Matcher::vector_return_value(uint ideal_reg) { 1937 assert(EnableVectorSupport && UseVectorStubs, "sanity"); 1938 assert(ideal_reg == Op_VecA, "sanity"); 1939 // check more info at https://github.com/riscv-non-isa/riscv-elf-psabi-doc/blob/master/riscv-cc.adoc 1940 int lo = V8_num; 1941 int hi = V8_K_num; 1942 return OptoRegPair(hi, lo); 1943 } 1944 1945 // Is this branch offset short enough that a short branch can be used? 1946 // 1947 // NOTE: If the platform does not provide any short branch variants, then 1948 // this method should return false for offset 0. 1949 // |---label(L1)-----| 1950 // |-----------------| 1951 // |-----------------|----------eq: float------------------- 1952 // |-----------------| // far_cmpD_branch | cmpD_branch 1953 // |------- ---------| feq; | feq; 1954 // |-far_cmpD_branch-| beqz done; | bnez L; 1955 // |-----------------| j L; | 1956 // |-----------------| bind(done); | 1957 // |-----------------|-------------------------------------- 1958 // |-----------------| // so shortBrSize = br_size - 4; 1959 // |-----------------| // so offs = offset - shortBrSize + 4; 1960 // |---label(L2)-----| 1961 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) { 1962 // The passed offset is relative to address of the branch. 1963 int shortBrSize = br_size - 4; 1964 int offs = offset - shortBrSize + 4; 1965 return (-4096 <= offs && offs < 4096); 1966 } 1967 1968 // Vector width in bytes. 1969 int Matcher::vector_width_in_bytes(BasicType bt) { 1970 if (UseRVV) { 1971 // The MaxVectorSize should have been set by detecting RVV max vector register size when check UseRVV. 1972 // MaxVectorSize == VM_Version::_initial_vector_length 1973 int size = MaxVectorSize; 1974 // Minimum 2 values in vector 1975 if (size < 2 * type2aelembytes(bt)) size = 0; 1976 // But never < 4 1977 if (size < 4) size = 0; 1978 return size; 1979 } 1980 return 0; 1981 } 1982 1983 // Limits on vector size (number of elements) loaded into vector. 1984 int Matcher::max_vector_size(const BasicType bt) { 1985 return vector_width_in_bytes(bt) / type2aelembytes(bt); 1986 } 1987 1988 int Matcher::min_vector_size(const BasicType bt) { 1989 int max_size = max_vector_size(bt); 1990 // Limit the min vector size to 8 bytes. 1991 int size = 8 / type2aelembytes(bt); 1992 if (bt == T_BYTE) { 1993 // To support vector api shuffle/rearrange. 1994 size = 4; 1995 } else if (bt == T_BOOLEAN) { 1996 // To support vector api load/store mask. 1997 size = 2; 1998 } 1999 if (size < 2) size = 2; 2000 return MIN2(size, max_size); 2001 } 2002 2003 int Matcher::max_vector_size_auto_vectorization(const BasicType bt) { 2004 return Matcher::max_vector_size(bt); 2005 } 2006 2007 // Vector ideal reg. 2008 uint Matcher::vector_ideal_reg(int len) { 2009 assert(MaxVectorSize >= len, ""); 2010 if (UseRVV) { 2011 return Op_VecA; 2012 } 2013 2014 ShouldNotReachHere(); 2015 return 0; 2016 } 2017 2018 int Matcher::scalable_vector_reg_size(const BasicType bt) { 2019 return Matcher::max_vector_size(bt); 2020 } 2021 2022 MachOper* Matcher::pd_specialize_generic_vector_operand(MachOper* original_opnd, uint ideal_reg, bool is_temp) { 2023 ShouldNotReachHere(); // generic vector operands not supported 2024 return nullptr; 2025 } 2026 2027 bool Matcher::is_reg2reg_move(MachNode* m) { 2028 ShouldNotReachHere(); // generic vector operands not supported 2029 return false; 2030 } 2031 2032 bool Matcher::is_generic_vector(MachOper* opnd) { 2033 ShouldNotReachHere(); // generic vector operands not supported 2034 return false; 2035 } 2036 2037 // Return whether or not this register is ever used as an argument. 2038 // This function is used on startup to build the trampoline stubs in 2039 // generateOptoStub. Registers not mentioned will be killed by the VM 2040 // call in the trampoline, and arguments in those registers not be 2041 // available to the callee. 2042 bool Matcher::can_be_java_arg(int reg) 2043 { 2044 return 2045 reg == R10_num || reg == R10_H_num || 2046 reg == R11_num || reg == R11_H_num || 2047 reg == R12_num || reg == R12_H_num || 2048 reg == R13_num || reg == R13_H_num || 2049 reg == R14_num || reg == R14_H_num || 2050 reg == R15_num || reg == R15_H_num || 2051 reg == R16_num || reg == R16_H_num || 2052 reg == R17_num || reg == R17_H_num || 2053 reg == F10_num || reg == F10_H_num || 2054 reg == F11_num || reg == F11_H_num || 2055 reg == F12_num || reg == F12_H_num || 2056 reg == F13_num || reg == F13_H_num || 2057 reg == F14_num || reg == F14_H_num || 2058 reg == F15_num || reg == F15_H_num || 2059 reg == F16_num || reg == F16_H_num || 2060 reg == F17_num || reg == F17_H_num; 2061 } 2062 2063 bool Matcher::is_spillable_arg(int reg) 2064 { 2065 return can_be_java_arg(reg); 2066 } 2067 2068 uint Matcher::int_pressure_limit() 2069 { 2070 // A derived pointer is live at CallNode and then is flagged by RA 2071 // as a spilled LRG. Spilling heuristics(Spill-USE) explicitly skip 2072 // derived pointers and lastly fail to spill after reaching maximum 2073 // number of iterations. Lowering the default pressure threshold to 2074 // (_NO_SPECIAL_REG32_mask.Size() minus 1) forces CallNode to become 2075 // a high register pressure area of the code so that split_DEF can 2076 // generate DefinitionSpillCopy for the derived pointer. 2077 uint default_int_pressure_threshold = _NO_SPECIAL_REG32_mask.Size() - 1; 2078 if (!PreserveFramePointer) { 2079 // When PreserveFramePointer is off, frame pointer is allocatable, 2080 // but different from other SOC registers, it is excluded from 2081 // fatproj's mask because its save type is No-Save. Decrease 1 to 2082 // ensure high pressure at fatproj when PreserveFramePointer is off. 2083 // See check_pressure_at_fatproj(). 2084 default_int_pressure_threshold--; 2085 } 2086 return (INTPRESSURE == -1) ? default_int_pressure_threshold : INTPRESSURE; 2087 } 2088 2089 uint Matcher::float_pressure_limit() 2090 { 2091 // _FLOAT_REG_mask is generated by adlc from the float_reg register class. 2092 return (FLOATPRESSURE == -1) ? _FLOAT_REG_mask.Size() : FLOATPRESSURE; 2093 } 2094 2095 bool Matcher::use_asm_for_ldiv_by_con(jlong divisor) { 2096 return false; 2097 } 2098 2099 RegMask Matcher::divI_proj_mask() { 2100 ShouldNotReachHere(); 2101 return RegMask(); 2102 } 2103 2104 // Register for MODI projection of divmodI. 2105 RegMask Matcher::modI_proj_mask() { 2106 ShouldNotReachHere(); 2107 return RegMask(); 2108 } 2109 2110 // Register for DIVL projection of divmodL. 2111 RegMask Matcher::divL_proj_mask() { 2112 ShouldNotReachHere(); 2113 return RegMask(); 2114 } 2115 2116 // Register for MODL projection of divmodL. 2117 RegMask Matcher::modL_proj_mask() { 2118 ShouldNotReachHere(); 2119 return RegMask(); 2120 } 2121 2122 const RegMask Matcher::method_handle_invoke_SP_save_mask() { 2123 return FP_REG_mask(); 2124 } 2125 2126 bool size_fits_all_mem_uses(AddPNode* addp, int shift) { 2127 assert_cond(addp != nullptr); 2128 for (DUIterator_Fast imax, i = addp->fast_outs(imax); i < imax; i++) { 2129 Node* u = addp->fast_out(i); 2130 if (u != nullptr && u->is_Mem()) { 2131 int opsize = u->as_Mem()->memory_size(); 2132 assert(opsize > 0, "unexpected memory operand size"); 2133 if (u->as_Mem()->memory_size() != (1 << shift)) { 2134 return false; 2135 } 2136 } 2137 } 2138 return true; 2139 } 2140 2141 // Binary src (Replicate scalar/immediate) 2142 static bool is_vector_scalar_bitwise_pattern(Node* n, Node* m) { 2143 if (n == nullptr || m == nullptr) { 2144 return false; 2145 } 2146 2147 if (m->Opcode() != Op_Replicate) { 2148 return false; 2149 } 2150 2151 switch (n->Opcode()) { 2152 case Op_AndV: 2153 case Op_OrV: 2154 case Op_XorV: 2155 case Op_AddVB: 2156 case Op_AddVS: 2157 case Op_AddVI: 2158 case Op_AddVL: 2159 case Op_SubVB: 2160 case Op_SubVS: 2161 case Op_SubVI: 2162 case Op_SubVL: 2163 case Op_MulVB: 2164 case Op_MulVS: 2165 case Op_MulVI: 2166 case Op_MulVL: { 2167 return true; 2168 } 2169 default: 2170 return false; 2171 } 2172 } 2173 2174 // (XorV src (Replicate m1)) 2175 // (XorVMask src (MaskAll m1)) 2176 static bool is_vector_bitwise_not_pattern(Node* n, Node* m) { 2177 if (n != nullptr && m != nullptr) { 2178 return (n->Opcode() == Op_XorV || n->Opcode() == Op_XorVMask) && 2179 VectorNode::is_all_ones_vector(m); 2180 } 2181 return false; 2182 } 2183 2184 // Should the Matcher clone input 'm' of node 'n'? 2185 bool Matcher::pd_clone_node(Node* n, Node* m, Matcher::MStack& mstack) { 2186 assert_cond(m != nullptr); 2187 if (is_vshift_con_pattern(n, m) || // ShiftV src (ShiftCntV con) 2188 is_vector_bitwise_not_pattern(n, m) || 2189 is_vector_scalar_bitwise_pattern(n, m) || 2190 is_encode_and_store_pattern(n, m)) { 2191 mstack.push(m, Visit); 2192 return true; 2193 } 2194 return false; 2195 } 2196 2197 // Should the Matcher clone shifts on addressing modes, expecting them 2198 // to be subsumed into complex addressing expressions or compute them 2199 // into registers? 2200 bool Matcher::pd_clone_address_expressions(AddPNode* m, Matcher::MStack& mstack, VectorSet& address_visited) { 2201 return clone_base_plus_offset_address(m, mstack, address_visited); 2202 } 2203 2204 %} 2205 2206 2207 2208 //----------ENCODING BLOCK----------------------------------------------------- 2209 // This block specifies the encoding classes used by the compiler to 2210 // output byte streams. Encoding classes are parameterized macros 2211 // used by Machine Instruction Nodes in order to generate the bit 2212 // encoding of the instruction. Operands specify their base encoding 2213 // interface with the interface keyword. There are currently 2214 // supported four interfaces, REG_INTER, CONST_INTER, MEMORY_INTER, & 2215 // COND_INTER. REG_INTER causes an operand to generate a function 2216 // which returns its register number when queried. CONST_INTER causes 2217 // an operand to generate a function which returns the value of the 2218 // constant when queried. MEMORY_INTER causes an operand to generate 2219 // four functions which return the Base Register, the Index Register, 2220 // the Scale Value, and the Offset Value of the operand when queried. 2221 // COND_INTER causes an operand to generate six functions which return 2222 // the encoding code (ie - encoding bits for the instruction) 2223 // associated with each basic boolean condition for a conditional 2224 // instruction. 2225 // 2226 // Instructions specify two basic values for encoding. Again, a 2227 // function is available to check if the constant displacement is an 2228 // oop. They use the ins_encode keyword to specify their encoding 2229 // classes (which must be a sequence of enc_class names, and their 2230 // parameters, specified in the encoding block), and they use the 2231 // opcode keyword to specify, in order, their primary, secondary, and 2232 // tertiary opcode. Only the opcode sections which a particular 2233 // instruction needs for encoding need to be specified. 2234 encode %{ 2235 // BEGIN Non-volatile memory access 2236 2237 enc_class riscv_enc_mov_imm(iRegIorL dst, immIorL src) %{ 2238 int64_t con = (int64_t)$src$$constant; 2239 Register dst_reg = as_Register($dst$$reg); 2240 __ mv(dst_reg, con); 2241 %} 2242 2243 enc_class riscv_enc_mov_p(iRegP dst, immP src) %{ 2244 Register dst_reg = as_Register($dst$$reg); 2245 address con = (address)$src$$constant; 2246 if (con == nullptr || con == (address)1) { 2247 ShouldNotReachHere(); 2248 } else { 2249 relocInfo::relocType rtype = $src->constant_reloc(); 2250 if (rtype == relocInfo::oop_type) { 2251 __ movoop(dst_reg, (jobject)con); 2252 } else if (rtype == relocInfo::metadata_type) { 2253 __ mov_metadata(dst_reg, (Metadata*)con); 2254 } else { 2255 assert(rtype == relocInfo::none, "unexpected reloc type"); 2256 __ mv(dst_reg, $src$$constant); 2257 } 2258 } 2259 %} 2260 2261 enc_class riscv_enc_mov_p1(iRegP dst) %{ 2262 Register dst_reg = as_Register($dst$$reg); 2263 __ mv(dst_reg, 1); 2264 %} 2265 2266 enc_class riscv_enc_mov_byte_map_base(iRegP dst) %{ 2267 __ load_byte_map_base($dst$$Register); 2268 %} 2269 2270 enc_class riscv_enc_mov_n(iRegN dst, immN src) %{ 2271 Register dst_reg = as_Register($dst$$reg); 2272 address con = (address)$src$$constant; 2273 if (con == nullptr) { 2274 ShouldNotReachHere(); 2275 } else { 2276 relocInfo::relocType rtype = $src->constant_reloc(); 2277 assert(rtype == relocInfo::oop_type, "unexpected reloc type"); 2278 __ set_narrow_oop(dst_reg, (jobject)con); 2279 } 2280 %} 2281 2282 enc_class riscv_enc_mov_zero(iRegNorP dst) %{ 2283 Register dst_reg = as_Register($dst$$reg); 2284 __ mv(dst_reg, zr); 2285 %} 2286 2287 enc_class riscv_enc_mov_nk(iRegN dst, immNKlass src) %{ 2288 Register dst_reg = as_Register($dst$$reg); 2289 address con = (address)$src$$constant; 2290 if (con == nullptr) { 2291 ShouldNotReachHere(); 2292 } else { 2293 relocInfo::relocType rtype = $src->constant_reloc(); 2294 assert(rtype == relocInfo::metadata_type, "unexpected reloc type"); 2295 __ set_narrow_klass(dst_reg, (Klass *)con); 2296 } 2297 %} 2298 2299 enc_class riscv_enc_cmpxchgw(iRegINoSp res, memory mem, iRegI oldval, iRegI newval) %{ 2300 __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int32, 2301 /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register, 2302 /*result as bool*/ true); 2303 %} 2304 2305 enc_class riscv_enc_cmpxchgn(iRegINoSp res, memory mem, iRegI oldval, iRegI newval) %{ 2306 __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::uint32, 2307 /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register, 2308 /*result as bool*/ true); 2309 %} 2310 2311 enc_class riscv_enc_cmpxchg(iRegINoSp res, memory mem, iRegL oldval, iRegL newval) %{ 2312 __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int64, 2313 /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register, 2314 /*result as bool*/ true); 2315 %} 2316 2317 enc_class riscv_enc_cmpxchgw_acq(iRegINoSp res, memory mem, iRegI oldval, iRegI newval) %{ 2318 __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int32, 2319 /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register, 2320 /*result as bool*/ true); 2321 %} 2322 2323 enc_class riscv_enc_cmpxchgn_acq(iRegINoSp res, memory mem, iRegI oldval, iRegI newval) %{ 2324 __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::uint32, 2325 /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register, 2326 /*result as bool*/ true); 2327 %} 2328 2329 enc_class riscv_enc_cmpxchg_acq(iRegINoSp res, memory mem, iRegL oldval, iRegL newval) %{ 2330 __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int64, 2331 /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register, 2332 /*result as bool*/ true); 2333 %} 2334 2335 // compare and branch instruction encodings 2336 2337 enc_class riscv_enc_j(label lbl) %{ 2338 Label* L = $lbl$$label; 2339 __ j(*L); 2340 %} 2341 2342 enc_class riscv_enc_far_cmpULtGe_imm0_branch(cmpOpULtGe cmp, iRegIorL op1, label lbl) %{ 2343 Label* L = $lbl$$label; 2344 switch ($cmp$$cmpcode) { 2345 case(BoolTest::ge): 2346 __ j(*L); 2347 break; 2348 case(BoolTest::lt): 2349 break; 2350 default: 2351 Unimplemented(); 2352 } 2353 %} 2354 2355 // call instruction encodings 2356 2357 enc_class riscv_enc_partial_subtype_check(iRegP sub, iRegP super, iRegP temp, iRegP result) %{ 2358 Register sub_reg = as_Register($sub$$reg); 2359 Register super_reg = as_Register($super$$reg); 2360 Register temp_reg = as_Register($temp$$reg); 2361 Register result_reg = as_Register($result$$reg); 2362 Register cr_reg = t1; 2363 2364 Label miss; 2365 Label done; 2366 __ check_klass_subtype_slow_path(sub_reg, super_reg, temp_reg, result_reg, 2367 nullptr, &miss); 2368 if ($primary) { 2369 __ mv(result_reg, zr); 2370 } else { 2371 __ mv(cr_reg, zr); 2372 __ j(done); 2373 } 2374 2375 __ bind(miss); 2376 if (!$primary) { 2377 __ mv(cr_reg, 1); 2378 } 2379 2380 __ bind(done); 2381 %} 2382 2383 enc_class riscv_enc_java_static_call(method meth) %{ 2384 Assembler::IncompressibleRegion ir(masm); // Fixed length: see ret_addr_offset 2385 2386 address addr = (address)$meth$$method; 2387 address call = nullptr; 2388 assert_cond(addr != nullptr); 2389 if (!_method) { 2390 // A call to a runtime wrapper, e.g. new, new_typeArray_Java, uncommon_trap. 2391 call = __ reloc_call(Address(addr, relocInfo::runtime_call_type)); 2392 if (call == nullptr) { 2393 ciEnv::current()->record_failure("CodeCache is full"); 2394 return; 2395 } 2396 } else if (_method->intrinsic_id() == vmIntrinsicID::_ensureMaterializedForStackWalk) { 2397 // The NOP here is purely to ensure that eliding a call to 2398 // JVM_EnsureMaterializedForStackWalk doesn't change the code size. 2399 __ nop(); 2400 __ nop(); 2401 __ nop(); 2402 __ block_comment("call JVM_EnsureMaterializedForStackWalk (elided)"); 2403 } else { 2404 int method_index = resolved_method_index(masm); 2405 RelocationHolder rspec = _optimized_virtual ? opt_virtual_call_Relocation::spec(method_index) 2406 : static_call_Relocation::spec(method_index); 2407 call = __ reloc_call(Address(addr, rspec)); 2408 if (call == nullptr) { 2409 ciEnv::current()->record_failure("CodeCache is full"); 2410 return; 2411 } 2412 2413 if (CodeBuffer::supports_shared_stubs() && _method->can_be_statically_bound()) { 2414 // Calls of the same statically bound method can share 2415 // a stub to the interpreter. 2416 __ code()->shared_stub_to_interp_for(_method, call - (__ begin())); 2417 } else { 2418 // Emit stub for static call 2419 address stub = CompiledDirectCall::emit_to_interp_stub(masm, call); 2420 if (stub == nullptr) { 2421 ciEnv::current()->record_failure("CodeCache is full"); 2422 return; 2423 } 2424 } 2425 } 2426 2427 __ post_call_nop(); 2428 %} 2429 2430 enc_class riscv_enc_java_dynamic_call(method meth) %{ 2431 Assembler::IncompressibleRegion ir(masm); // Fixed length: see ret_addr_offset 2432 int method_index = resolved_method_index(masm); 2433 address call = __ ic_call((address)$meth$$method, method_index); 2434 if (call == nullptr) { 2435 ciEnv::current()->record_failure("CodeCache is full"); 2436 return; 2437 } 2438 2439 __ post_call_nop(); 2440 %} 2441 2442 enc_class riscv_enc_call_epilog() %{ 2443 if (VerifyStackAtCalls) { 2444 // Check that stack depth is unchanged: find majik cookie on stack 2445 __ call_Unimplemented(); 2446 } 2447 %} 2448 2449 enc_class riscv_enc_java_to_runtime(method meth) %{ 2450 Assembler::IncompressibleRegion ir(masm); // Fixed length: see ret_addr_offset 2451 2452 // Some calls to generated routines (arraycopy code) are scheduled by C2 2453 // as runtime calls. if so we can call them using a far call (they will be 2454 // in the code cache, thus in a reachable segment) otherwise we have to use 2455 // a movptr+jalr pair which loads the absolute address into a register. 2456 address entry = (address)$meth$$method; 2457 if (CodeCache::contains(entry)) { 2458 __ far_call(Address(entry, relocInfo::runtime_call_type)); 2459 __ post_call_nop(); 2460 } else { 2461 Label retaddr; 2462 // Make the anchor frame walkable 2463 __ la(t0, retaddr); 2464 __ sd(t0, Address(xthread, JavaThread::last_Java_pc_offset())); 2465 int32_t offset = 0; 2466 // No relocation needed 2467 __ movptr(t1, entry, offset, t0); // lui + lui + slli + add 2468 __ jalr(t1, offset); 2469 __ bind(retaddr); 2470 __ post_call_nop(); 2471 } 2472 %} 2473 2474 // arithmetic encodings 2475 2476 enc_class riscv_enc_divw(iRegI dst, iRegI src1, iRegI src2) %{ 2477 Register dst_reg = as_Register($dst$$reg); 2478 Register src1_reg = as_Register($src1$$reg); 2479 Register src2_reg = as_Register($src2$$reg); 2480 __ corrected_idivl(dst_reg, src1_reg, src2_reg, /* want_remainder */ false, /* is_signed */ true); 2481 %} 2482 2483 enc_class riscv_enc_divuw(iRegI dst, iRegI src1, iRegI src2) %{ 2484 Register dst_reg = as_Register($dst$$reg); 2485 Register src1_reg = as_Register($src1$$reg); 2486 Register src2_reg = as_Register($src2$$reg); 2487 __ corrected_idivl(dst_reg, src1_reg, src2_reg, /* want_remainder */ false, /* is_signed */ false); 2488 %} 2489 2490 enc_class riscv_enc_div(iRegI dst, iRegI src1, iRegI src2) %{ 2491 Register dst_reg = as_Register($dst$$reg); 2492 Register src1_reg = as_Register($src1$$reg); 2493 Register src2_reg = as_Register($src2$$reg); 2494 __ corrected_idivq(dst_reg, src1_reg, src2_reg, /* want_remainder */ false, /* is_signed */ true); 2495 %} 2496 2497 enc_class riscv_enc_divu(iRegI dst, iRegI src1, iRegI src2) %{ 2498 Register dst_reg = as_Register($dst$$reg); 2499 Register src1_reg = as_Register($src1$$reg); 2500 Register src2_reg = as_Register($src2$$reg); 2501 __ corrected_idivq(dst_reg, src1_reg, src2_reg, /* want_remainder */ false, /* is_signed */ false); 2502 %} 2503 2504 enc_class riscv_enc_modw(iRegI dst, iRegI src1, iRegI src2) %{ 2505 Register dst_reg = as_Register($dst$$reg); 2506 Register src1_reg = as_Register($src1$$reg); 2507 Register src2_reg = as_Register($src2$$reg); 2508 __ corrected_idivl(dst_reg, src1_reg, src2_reg, /* want_remainder */ true, /* is_signed */ true); 2509 %} 2510 2511 enc_class riscv_enc_moduw(iRegI dst, iRegI src1, iRegI src2) %{ 2512 Register dst_reg = as_Register($dst$$reg); 2513 Register src1_reg = as_Register($src1$$reg); 2514 Register src2_reg = as_Register($src2$$reg); 2515 __ corrected_idivl(dst_reg, src1_reg, src2_reg, /* want_remainder */ true, /* is_signed */ false); 2516 %} 2517 2518 enc_class riscv_enc_mod(iRegI dst, iRegI src1, iRegI src2) %{ 2519 Register dst_reg = as_Register($dst$$reg); 2520 Register src1_reg = as_Register($src1$$reg); 2521 Register src2_reg = as_Register($src2$$reg); 2522 __ corrected_idivq(dst_reg, src1_reg, src2_reg, /* want_remainder */ true, /* is_signed */ true); 2523 %} 2524 2525 enc_class riscv_enc_modu(iRegI dst, iRegI src1, iRegI src2) %{ 2526 Register dst_reg = as_Register($dst$$reg); 2527 Register src1_reg = as_Register($src1$$reg); 2528 Register src2_reg = as_Register($src2$$reg); 2529 __ corrected_idivq(dst_reg, src1_reg, src2_reg, /* want_remainder */ true, /* is_signed */ false); 2530 %} 2531 2532 enc_class riscv_enc_tail_call(iRegP jump_target) %{ 2533 Register target_reg = as_Register($jump_target$$reg); 2534 __ jr(target_reg); 2535 %} 2536 2537 enc_class riscv_enc_tail_jmp(iRegP jump_target) %{ 2538 Register target_reg = as_Register($jump_target$$reg); 2539 // exception oop should be in x10 2540 // ret addr has been popped into ra 2541 // callee expects it in x13 2542 __ mv(x13, ra); 2543 __ jr(target_reg); 2544 %} 2545 2546 enc_class riscv_enc_rethrow() %{ 2547 __ far_jump(RuntimeAddress(OptoRuntime::rethrow_stub())); 2548 %} 2549 2550 enc_class riscv_enc_ret() %{ 2551 __ ret(); 2552 %} 2553 2554 %} 2555 2556 //----------FRAME-------------------------------------------------------------- 2557 // Definition of frame structure and management information. 2558 // 2559 // S T A C K L A Y O U T Allocators stack-slot number 2560 // | (to get allocators register number 2561 // G Owned by | | v add OptoReg::stack0()) 2562 // r CALLER | | 2563 // o | +--------+ pad to even-align allocators stack-slot 2564 // w V | pad0 | numbers; owned by CALLER 2565 // t -----------+--------+----> Matcher::_in_arg_limit, unaligned 2566 // h ^ | in | 5 2567 // | | args | 4 Holes in incoming args owned by SELF 2568 // | | | | 3 2569 // | | +--------+ 2570 // V | | old out| Empty on Intel, window on Sparc 2571 // | old |preserve| Must be even aligned. 2572 // | SP-+--------+----> Matcher::_old_SP, even aligned 2573 // | | in | 3 area for Intel ret address 2574 // Owned by |preserve| Empty on Sparc. 2575 // SELF +--------+ 2576 // | | pad2 | 2 pad to align old SP 2577 // | +--------+ 1 2578 // | | locks | 0 2579 // | +--------+----> OptoReg::stack0(), even aligned 2580 // | | pad1 | 11 pad to align new SP 2581 // | +--------+ 2582 // | | | 10 2583 // | | spills | 9 spills 2584 // V | | 8 (pad0 slot for callee) 2585 // -----------+--------+----> Matcher::_out_arg_limit, unaligned 2586 // ^ | out | 7 2587 // | | args | 6 Holes in outgoing args owned by CALLEE 2588 // Owned by +--------+ 2589 // CALLEE | new out| 6 Empty on Intel, window on Sparc 2590 // | new |preserve| Must be even-aligned. 2591 // | SP-+--------+----> Matcher::_new_SP, even aligned 2592 // | | | 2593 // 2594 // Note 1: Only region 8-11 is determined by the allocator. Region 0-5 is 2595 // known from SELF's arguments and the Java calling convention. 2596 // Region 6-7 is determined per call site. 2597 // Note 2: If the calling convention leaves holes in the incoming argument 2598 // area, those holes are owned by SELF. Holes in the outgoing area 2599 // are owned by the CALLEE. Holes should not be necessary in the 2600 // incoming area, as the Java calling convention is completely under 2601 // the control of the AD file. Doubles can be sorted and packed to 2602 // avoid holes. Holes in the outgoing arguments may be necessary for 2603 // varargs C calling conventions. 2604 // Note 3: Region 0-3 is even aligned, with pad2 as needed. Region 3-5 is 2605 // even aligned with pad0 as needed. 2606 // Region 6 is even aligned. Region 6-7 is NOT even aligned; 2607 // (the latter is true on Intel but is it false on RISCV?) 2608 // region 6-11 is even aligned; it may be padded out more so that 2609 // the region from SP to FP meets the minimum stack alignment. 2610 // Note 4: For I2C adapters, the incoming FP may not meet the minimum stack 2611 // alignment. Region 11, pad1, may be dynamically extended so that 2612 // SP meets the minimum alignment. 2613 2614 frame %{ 2615 // These three registers define part of the calling convention 2616 // between compiled code and the interpreter. 2617 2618 // Inline Cache Register or methodOop for I2C. 2619 inline_cache_reg(R31); 2620 2621 // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset] 2622 cisc_spilling_operand_name(indOffset); 2623 2624 // Number of stack slots consumed by locking an object 2625 // generate Compile::sync_stack_slots 2626 // VMRegImpl::slots_per_word = wordSize / stack_slot_size = 8 / 4 = 2 2627 sync_stack_slots(1 * VMRegImpl::slots_per_word); 2628 2629 // Compiled code's Frame Pointer 2630 frame_pointer(R2); 2631 2632 // Interpreter stores its frame pointer in a register which is 2633 // stored to the stack by I2CAdaptors. 2634 // I2CAdaptors convert from interpreted java to compiled java. 2635 interpreter_frame_pointer(R8); 2636 2637 // Stack alignment requirement 2638 stack_alignment(StackAlignmentInBytes); // Alignment size in bytes (128-bit -> 16 bytes) 2639 2640 // Number of outgoing stack slots killed above the out_preserve_stack_slots 2641 // for calls to C. Supports the var-args backing area for register parms. 2642 varargs_C_out_slots_killed(frame::arg_reg_save_area_bytes / BytesPerInt); 2643 2644 // The after-PROLOG location of the return address. Location of 2645 // return address specifies a type (REG or STACK) and a number 2646 // representing the register number (i.e. - use a register name) or 2647 // stack slot. 2648 // Ret Addr is on stack in slot 0 if no locks or verification or alignment. 2649 // Otherwise, it is above the locks and verification slot and alignment word 2650 // TODO this may well be correct but need to check why that - 2 is there 2651 // ppc port uses 0 but we definitely need to allow for fixed_slots 2652 // which folds in the space used for monitors 2653 return_addr(STACK - 2 + 2654 align_up((Compile::current()->in_preserve_stack_slots() + 2655 Compile::current()->fixed_slots()), 2656 stack_alignment_in_slots())); 2657 2658 // Location of compiled Java return values. Same as C for now. 2659 return_value 2660 %{ 2661 assert(ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, 2662 "only return normal values"); 2663 2664 static const int lo[Op_RegL + 1] = { // enum name 2665 0, // Op_Node 2666 0, // Op_Set 2667 R10_num, // Op_RegN 2668 R10_num, // Op_RegI 2669 R10_num, // Op_RegP 2670 F10_num, // Op_RegF 2671 F10_num, // Op_RegD 2672 R10_num // Op_RegL 2673 }; 2674 2675 static const int hi[Op_RegL + 1] = { // enum name 2676 0, // Op_Node 2677 0, // Op_Set 2678 OptoReg::Bad, // Op_RegN 2679 OptoReg::Bad, // Op_RegI 2680 R10_H_num, // Op_RegP 2681 OptoReg::Bad, // Op_RegF 2682 F10_H_num, // Op_RegD 2683 R10_H_num // Op_RegL 2684 }; 2685 2686 return OptoRegPair(hi[ideal_reg], lo[ideal_reg]); 2687 %} 2688 %} 2689 2690 //----------ATTRIBUTES--------------------------------------------------------- 2691 //----------Operand Attributes------------------------------------------------- 2692 op_attrib op_cost(1); // Required cost attribute 2693 2694 //----------Instruction Attributes--------------------------------------------- 2695 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute 2696 ins_attrib ins_size(32); // Required size attribute (in bits) 2697 ins_attrib ins_short_branch(0); // Required flag: is this instruction 2698 // a non-matching short branch variant 2699 // of some long branch? 2700 ins_attrib ins_alignment(4); // Required alignment attribute (must 2701 // be a power of 2) specifies the 2702 // alignment that some part of the 2703 // instruction (not necessarily the 2704 // start) requires. If > 1, a 2705 // compute_padding() function must be 2706 // provided for the instruction 2707 2708 //----------OPERANDS----------------------------------------------------------- 2709 // Operand definitions must precede instruction definitions for correct parsing 2710 // in the ADLC because operands constitute user defined types which are used in 2711 // instruction definitions. 2712 2713 //----------Simple Operands---------------------------------------------------- 2714 2715 // Integer operands 32 bit 2716 // 32 bit immediate 2717 operand immI() 2718 %{ 2719 match(ConI); 2720 2721 op_cost(0); 2722 format %{ %} 2723 interface(CONST_INTER); 2724 %} 2725 2726 // 32 bit zero 2727 operand immI0() 2728 %{ 2729 predicate(n->get_int() == 0); 2730 match(ConI); 2731 2732 op_cost(0); 2733 format %{ %} 2734 interface(CONST_INTER); 2735 %} 2736 2737 // 32 bit unit increment 2738 operand immI_1() 2739 %{ 2740 predicate(n->get_int() == 1); 2741 match(ConI); 2742 2743 op_cost(0); 2744 format %{ %} 2745 interface(CONST_INTER); 2746 %} 2747 2748 // 32 bit unit decrement 2749 operand immI_M1() 2750 %{ 2751 predicate(n->get_int() == -1); 2752 match(ConI); 2753 2754 op_cost(0); 2755 format %{ %} 2756 interface(CONST_INTER); 2757 %} 2758 2759 // Unsigned Integer Immediate: 6-bit int, greater than 32 2760 operand uimmI6_ge32() %{ 2761 predicate(((unsigned int)(n->get_int()) < 64) && (n->get_int() >= 32)); 2762 match(ConI); 2763 op_cost(0); 2764 format %{ %} 2765 interface(CONST_INTER); 2766 %} 2767 2768 operand immI_le_4() 2769 %{ 2770 predicate(n->get_int() <= 4); 2771 match(ConI); 2772 2773 op_cost(0); 2774 format %{ %} 2775 interface(CONST_INTER); 2776 %} 2777 2778 operand immI_16() 2779 %{ 2780 predicate(n->get_int() == 16); 2781 match(ConI); 2782 op_cost(0); 2783 format %{ %} 2784 interface(CONST_INTER); 2785 %} 2786 2787 operand immI_24() 2788 %{ 2789 predicate(n->get_int() == 24); 2790 match(ConI); 2791 op_cost(0); 2792 format %{ %} 2793 interface(CONST_INTER); 2794 %} 2795 2796 operand immI_31() 2797 %{ 2798 predicate(n->get_int() == 31); 2799 match(ConI); 2800 2801 op_cost(0); 2802 format %{ %} 2803 interface(CONST_INTER); 2804 %} 2805 2806 operand immI_63() 2807 %{ 2808 predicate(n->get_int() == 63); 2809 match(ConI); 2810 2811 op_cost(0); 2812 format %{ %} 2813 interface(CONST_INTER); 2814 %} 2815 2816 // 32 bit integer valid for add immediate 2817 operand immIAdd() 2818 %{ 2819 predicate(Assembler::is_simm12((int64_t)n->get_int())); 2820 match(ConI); 2821 op_cost(0); 2822 format %{ %} 2823 interface(CONST_INTER); 2824 %} 2825 2826 // 32 bit integer valid for sub immediate 2827 operand immISub() 2828 %{ 2829 predicate(Assembler::is_simm12(-(int64_t)n->get_int())); 2830 match(ConI); 2831 op_cost(0); 2832 format %{ %} 2833 interface(CONST_INTER); 2834 %} 2835 2836 // 5 bit signed value. 2837 operand immI5() 2838 %{ 2839 predicate(n->get_int() <= 15 && n->get_int() >= -16); 2840 match(ConI); 2841 2842 op_cost(0); 2843 format %{ %} 2844 interface(CONST_INTER); 2845 %} 2846 2847 // 5 bit signed value (simm5) 2848 operand immL5() 2849 %{ 2850 predicate(n->get_long() <= 15 && n->get_long() >= -16); 2851 match(ConL); 2852 2853 op_cost(0); 2854 format %{ %} 2855 interface(CONST_INTER); 2856 %} 2857 2858 // Integer operands 64 bit 2859 // 64 bit immediate 2860 operand immL() 2861 %{ 2862 match(ConL); 2863 2864 op_cost(0); 2865 format %{ %} 2866 interface(CONST_INTER); 2867 %} 2868 2869 // 64 bit zero 2870 operand immL0() 2871 %{ 2872 predicate(n->get_long() == 0); 2873 match(ConL); 2874 2875 op_cost(0); 2876 format %{ %} 2877 interface(CONST_INTER); 2878 %} 2879 2880 // Pointer operands 2881 // Pointer Immediate 2882 operand immP() 2883 %{ 2884 match(ConP); 2885 2886 op_cost(0); 2887 format %{ %} 2888 interface(CONST_INTER); 2889 %} 2890 2891 // Null Pointer Immediate 2892 operand immP0() 2893 %{ 2894 predicate(n->get_ptr() == 0); 2895 match(ConP); 2896 2897 op_cost(0); 2898 format %{ %} 2899 interface(CONST_INTER); 2900 %} 2901 2902 // Pointer Immediate One 2903 // this is used in object initialization (initial object header) 2904 operand immP_1() 2905 %{ 2906 predicate(n->get_ptr() == 1); 2907 match(ConP); 2908 2909 op_cost(0); 2910 format %{ %} 2911 interface(CONST_INTER); 2912 %} 2913 2914 // Card Table Byte Map Base 2915 operand immByteMapBase() 2916 %{ 2917 // Get base of card map 2918 predicate(BarrierSet::barrier_set()->is_a(BarrierSet::CardTableBarrierSet) && 2919 (CardTable::CardValue*)n->get_ptr() == 2920 ((CardTableBarrierSet*)(BarrierSet::barrier_set()))->card_table()->byte_map_base()); 2921 match(ConP); 2922 2923 op_cost(0); 2924 format %{ %} 2925 interface(CONST_INTER); 2926 %} 2927 2928 // Int Immediate: low 16-bit mask 2929 operand immI_16bits() 2930 %{ 2931 predicate(n->get_int() == 0xFFFF); 2932 match(ConI); 2933 op_cost(0); 2934 format %{ %} 2935 interface(CONST_INTER); 2936 %} 2937 2938 operand immIpowerOf2() %{ 2939 predicate(is_power_of_2((juint)(n->get_int()))); 2940 match(ConI); 2941 op_cost(0); 2942 format %{ %} 2943 interface(CONST_INTER); 2944 %} 2945 2946 // Long Immediate: low 32-bit mask 2947 operand immL_32bits() 2948 %{ 2949 predicate(n->get_long() == 0xFFFFFFFFL); 2950 match(ConL); 2951 op_cost(0); 2952 format %{ %} 2953 interface(CONST_INTER); 2954 %} 2955 2956 // 64 bit unit decrement 2957 operand immL_M1() 2958 %{ 2959 predicate(n->get_long() == -1); 2960 match(ConL); 2961 2962 op_cost(0); 2963 format %{ %} 2964 interface(CONST_INTER); 2965 %} 2966 2967 2968 // 64 bit integer valid for add immediate 2969 operand immLAdd() 2970 %{ 2971 predicate(Assembler::is_simm12(n->get_long())); 2972 match(ConL); 2973 op_cost(0); 2974 format %{ %} 2975 interface(CONST_INTER); 2976 %} 2977 2978 // 64 bit integer valid for sub immediate 2979 operand immLSub() 2980 %{ 2981 predicate(Assembler::is_simm12(-(n->get_long()))); 2982 match(ConL); 2983 op_cost(0); 2984 format %{ %} 2985 interface(CONST_INTER); 2986 %} 2987 2988 // Narrow pointer operands 2989 // Narrow Pointer Immediate 2990 operand immN() 2991 %{ 2992 match(ConN); 2993 2994 op_cost(0); 2995 format %{ %} 2996 interface(CONST_INTER); 2997 %} 2998 2999 // Narrow Null Pointer Immediate 3000 operand immN0() 3001 %{ 3002 predicate(n->get_narrowcon() == 0); 3003 match(ConN); 3004 3005 op_cost(0); 3006 format %{ %} 3007 interface(CONST_INTER); 3008 %} 3009 3010 operand immNKlass() 3011 %{ 3012 match(ConNKlass); 3013 3014 op_cost(0); 3015 format %{ %} 3016 interface(CONST_INTER); 3017 %} 3018 3019 // Float and Double operands 3020 // Double Immediate 3021 operand immD() 3022 %{ 3023 match(ConD); 3024 op_cost(0); 3025 format %{ %} 3026 interface(CONST_INTER); 3027 %} 3028 3029 // Double Immediate: +0.0d 3030 operand immD0() 3031 %{ 3032 predicate(jlong_cast(n->getd()) == 0); 3033 match(ConD); 3034 3035 op_cost(0); 3036 format %{ %} 3037 interface(CONST_INTER); 3038 %} 3039 3040 // Float Immediate 3041 operand immF() 3042 %{ 3043 match(ConF); 3044 op_cost(0); 3045 format %{ %} 3046 interface(CONST_INTER); 3047 %} 3048 3049 // Float Immediate: +0.0f. 3050 operand immF0() 3051 %{ 3052 predicate(jint_cast(n->getf()) == 0); 3053 match(ConF); 3054 3055 op_cost(0); 3056 format %{ %} 3057 interface(CONST_INTER); 3058 %} 3059 3060 operand immIOffset() 3061 %{ 3062 predicate(Assembler::is_simm12(n->get_int())); 3063 match(ConI); 3064 op_cost(0); 3065 format %{ %} 3066 interface(CONST_INTER); 3067 %} 3068 3069 operand immLOffset() 3070 %{ 3071 predicate(Assembler::is_simm12(n->get_long())); 3072 match(ConL); 3073 op_cost(0); 3074 format %{ %} 3075 interface(CONST_INTER); 3076 %} 3077 3078 // Scale values 3079 operand immIScale() 3080 %{ 3081 predicate(1 <= n->get_int() && (n->get_int() <= 3)); 3082 match(ConI); 3083 3084 op_cost(0); 3085 format %{ %} 3086 interface(CONST_INTER); 3087 %} 3088 3089 // Integer 32 bit Register Operands 3090 operand iRegI() 3091 %{ 3092 constraint(ALLOC_IN_RC(any_reg32)); 3093 match(RegI); 3094 match(iRegINoSp); 3095 op_cost(0); 3096 format %{ %} 3097 interface(REG_INTER); 3098 %} 3099 3100 // Integer 32 bit Register not Special 3101 operand iRegINoSp() 3102 %{ 3103 constraint(ALLOC_IN_RC(no_special_reg32)); 3104 match(RegI); 3105 op_cost(0); 3106 format %{ %} 3107 interface(REG_INTER); 3108 %} 3109 3110 // Register R10 only 3111 operand iRegI_R10() 3112 %{ 3113 constraint(ALLOC_IN_RC(int_r10_reg)); 3114 match(RegI); 3115 match(iRegINoSp); 3116 op_cost(0); 3117 format %{ %} 3118 interface(REG_INTER); 3119 %} 3120 3121 // Register R12 only 3122 operand iRegI_R12() 3123 %{ 3124 constraint(ALLOC_IN_RC(int_r12_reg)); 3125 match(RegI); 3126 match(iRegINoSp); 3127 op_cost(0); 3128 format %{ %} 3129 interface(REG_INTER); 3130 %} 3131 3132 // Register R13 only 3133 operand iRegI_R13() 3134 %{ 3135 constraint(ALLOC_IN_RC(int_r13_reg)); 3136 match(RegI); 3137 match(iRegINoSp); 3138 op_cost(0); 3139 format %{ %} 3140 interface(REG_INTER); 3141 %} 3142 3143 // Register R14 only 3144 operand iRegI_R14() 3145 %{ 3146 constraint(ALLOC_IN_RC(int_r14_reg)); 3147 match(RegI); 3148 match(iRegINoSp); 3149 op_cost(0); 3150 format %{ %} 3151 interface(REG_INTER); 3152 %} 3153 3154 // Integer 64 bit Register Operands 3155 operand iRegL() 3156 %{ 3157 constraint(ALLOC_IN_RC(any_reg)); 3158 match(RegL); 3159 match(iRegLNoSp); 3160 op_cost(0); 3161 format %{ %} 3162 interface(REG_INTER); 3163 %} 3164 3165 // Integer 64 bit Register not Special 3166 operand iRegLNoSp() 3167 %{ 3168 constraint(ALLOC_IN_RC(no_special_reg)); 3169 match(RegL); 3170 match(iRegL_R10); 3171 format %{ %} 3172 interface(REG_INTER); 3173 %} 3174 3175 // Long 64 bit Register R29 only 3176 operand iRegL_R29() 3177 %{ 3178 constraint(ALLOC_IN_RC(r29_reg)); 3179 match(RegL); 3180 match(iRegLNoSp); 3181 op_cost(0); 3182 format %{ %} 3183 interface(REG_INTER); 3184 %} 3185 3186 // Long 64 bit Register R30 only 3187 operand iRegL_R30() 3188 %{ 3189 constraint(ALLOC_IN_RC(r30_reg)); 3190 match(RegL); 3191 match(iRegLNoSp); 3192 op_cost(0); 3193 format %{ %} 3194 interface(REG_INTER); 3195 %} 3196 3197 // Pointer Register Operands 3198 // Pointer Register 3199 operand iRegP() 3200 %{ 3201 constraint(ALLOC_IN_RC(ptr_reg)); 3202 match(RegP); 3203 match(iRegPNoSp); 3204 match(iRegP_R10); 3205 match(iRegP_R15); 3206 match(javaThread_RegP); 3207 op_cost(0); 3208 format %{ %} 3209 interface(REG_INTER); 3210 %} 3211 3212 // Pointer 64 bit Register not Special 3213 operand iRegPNoSp() 3214 %{ 3215 constraint(ALLOC_IN_RC(no_special_ptr_reg)); 3216 match(RegP); 3217 op_cost(0); 3218 format %{ %} 3219 interface(REG_INTER); 3220 %} 3221 3222 // This operand is not allowed to use fp even if 3223 // fp is not used to hold the frame pointer. 3224 operand iRegPNoSpNoFp() 3225 %{ 3226 constraint(ALLOC_IN_RC(no_special_no_fp_ptr_reg)); 3227 match(RegP); 3228 match(iRegPNoSp); 3229 op_cost(0); 3230 format %{ %} 3231 interface(REG_INTER); 3232 %} 3233 3234 operand iRegP_R10() 3235 %{ 3236 constraint(ALLOC_IN_RC(r10_reg)); 3237 match(RegP); 3238 // match(iRegP); 3239 match(iRegPNoSp); 3240 op_cost(0); 3241 format %{ %} 3242 interface(REG_INTER); 3243 %} 3244 3245 // Pointer 64 bit Register R11 only 3246 operand iRegP_R11() 3247 %{ 3248 constraint(ALLOC_IN_RC(r11_reg)); 3249 match(RegP); 3250 match(iRegPNoSp); 3251 op_cost(0); 3252 format %{ %} 3253 interface(REG_INTER); 3254 %} 3255 3256 operand iRegP_R12() 3257 %{ 3258 constraint(ALLOC_IN_RC(r12_reg)); 3259 match(RegP); 3260 // match(iRegP); 3261 match(iRegPNoSp); 3262 op_cost(0); 3263 format %{ %} 3264 interface(REG_INTER); 3265 %} 3266 3267 // Pointer 64 bit Register R13 only 3268 operand iRegP_R13() 3269 %{ 3270 constraint(ALLOC_IN_RC(r13_reg)); 3271 match(RegP); 3272 match(iRegPNoSp); 3273 op_cost(0); 3274 format %{ %} 3275 interface(REG_INTER); 3276 %} 3277 3278 operand iRegP_R14() 3279 %{ 3280 constraint(ALLOC_IN_RC(r14_reg)); 3281 match(RegP); 3282 // match(iRegP); 3283 match(iRegPNoSp); 3284 op_cost(0); 3285 format %{ %} 3286 interface(REG_INTER); 3287 %} 3288 3289 operand iRegP_R15() 3290 %{ 3291 constraint(ALLOC_IN_RC(r15_reg)); 3292 match(RegP); 3293 // match(iRegP); 3294 match(iRegPNoSp); 3295 op_cost(0); 3296 format %{ %} 3297 interface(REG_INTER); 3298 %} 3299 3300 operand iRegP_R16() 3301 %{ 3302 constraint(ALLOC_IN_RC(r16_reg)); 3303 match(RegP); 3304 match(iRegPNoSp); 3305 op_cost(0); 3306 format %{ %} 3307 interface(REG_INTER); 3308 %} 3309 3310 // Pointer 64 bit Register R28 only 3311 operand iRegP_R28() 3312 %{ 3313 constraint(ALLOC_IN_RC(r28_reg)); 3314 match(RegP); 3315 match(iRegPNoSp); 3316 op_cost(0); 3317 format %{ %} 3318 interface(REG_INTER); 3319 %} 3320 3321 // Pointer 64 bit Register R30 only 3322 operand iRegP_R30() 3323 %{ 3324 constraint(ALLOC_IN_RC(r30_reg)); 3325 match(RegP); 3326 match(iRegPNoSp); 3327 op_cost(0); 3328 format %{ %} 3329 interface(REG_INTER); 3330 %} 3331 3332 // Pointer 64 bit Register R31 only 3333 operand iRegP_R31() 3334 %{ 3335 constraint(ALLOC_IN_RC(r31_reg)); 3336 match(RegP); 3337 match(iRegPNoSp); 3338 op_cost(0); 3339 format %{ %} 3340 interface(REG_INTER); 3341 %} 3342 3343 // Pointer Register Operands 3344 // Narrow Pointer Register 3345 operand iRegN() 3346 %{ 3347 constraint(ALLOC_IN_RC(any_reg32)); 3348 match(RegN); 3349 match(iRegNNoSp); 3350 op_cost(0); 3351 format %{ %} 3352 interface(REG_INTER); 3353 %} 3354 3355 // Integer 64 bit Register not Special 3356 operand iRegNNoSp() 3357 %{ 3358 constraint(ALLOC_IN_RC(no_special_reg32)); 3359 match(RegN); 3360 op_cost(0); 3361 format %{ %} 3362 interface(REG_INTER); 3363 %} 3364 3365 // Long 64 bit Register R10 only 3366 operand iRegL_R10() 3367 %{ 3368 constraint(ALLOC_IN_RC(r10_reg)); 3369 match(RegL); 3370 match(iRegLNoSp); 3371 op_cost(0); 3372 format %{ %} 3373 interface(REG_INTER); 3374 %} 3375 3376 // Float Register 3377 // Float register operands 3378 operand fRegF() 3379 %{ 3380 constraint(ALLOC_IN_RC(float_reg)); 3381 match(RegF); 3382 3383 op_cost(0); 3384 format %{ %} 3385 interface(REG_INTER); 3386 %} 3387 3388 // Double Register 3389 // Double register operands 3390 operand fRegD() 3391 %{ 3392 constraint(ALLOC_IN_RC(double_reg)); 3393 match(RegD); 3394 3395 op_cost(0); 3396 format %{ %} 3397 interface(REG_INTER); 3398 %} 3399 3400 // Generic vector class. This will be used for 3401 // all vector operands. 3402 operand vReg() 3403 %{ 3404 constraint(ALLOC_IN_RC(vectora_reg)); 3405 match(VecA); 3406 op_cost(0); 3407 format %{ %} 3408 interface(REG_INTER); 3409 %} 3410 3411 operand vReg_V1() 3412 %{ 3413 constraint(ALLOC_IN_RC(v1_reg)); 3414 match(VecA); 3415 match(vReg); 3416 op_cost(0); 3417 format %{ %} 3418 interface(REG_INTER); 3419 %} 3420 3421 operand vReg_V2() 3422 %{ 3423 constraint(ALLOC_IN_RC(v2_reg)); 3424 match(VecA); 3425 match(vReg); 3426 op_cost(0); 3427 format %{ %} 3428 interface(REG_INTER); 3429 %} 3430 3431 operand vReg_V3() 3432 %{ 3433 constraint(ALLOC_IN_RC(v3_reg)); 3434 match(VecA); 3435 match(vReg); 3436 op_cost(0); 3437 format %{ %} 3438 interface(REG_INTER); 3439 %} 3440 3441 operand vReg_V4() 3442 %{ 3443 constraint(ALLOC_IN_RC(v4_reg)); 3444 match(VecA); 3445 match(vReg); 3446 op_cost(0); 3447 format %{ %} 3448 interface(REG_INTER); 3449 %} 3450 3451 operand vReg_V5() 3452 %{ 3453 constraint(ALLOC_IN_RC(v5_reg)); 3454 match(VecA); 3455 match(vReg); 3456 op_cost(0); 3457 format %{ %} 3458 interface(REG_INTER); 3459 %} 3460 3461 operand vReg_V6() 3462 %{ 3463 constraint(ALLOC_IN_RC(v6_reg)); 3464 match(VecA); 3465 match(vReg); 3466 op_cost(0); 3467 format %{ %} 3468 interface(REG_INTER); 3469 %} 3470 3471 operand vReg_V7() 3472 %{ 3473 constraint(ALLOC_IN_RC(v7_reg)); 3474 match(VecA); 3475 match(vReg); 3476 op_cost(0); 3477 format %{ %} 3478 interface(REG_INTER); 3479 %} 3480 3481 operand vReg_V8() 3482 %{ 3483 constraint(ALLOC_IN_RC(v8_reg)); 3484 match(VecA); 3485 match(vReg); 3486 op_cost(0); 3487 format %{ %} 3488 interface(REG_INTER); 3489 %} 3490 3491 operand vReg_V9() 3492 %{ 3493 constraint(ALLOC_IN_RC(v9_reg)); 3494 match(VecA); 3495 match(vReg); 3496 op_cost(0); 3497 format %{ %} 3498 interface(REG_INTER); 3499 %} 3500 3501 operand vReg_V10() 3502 %{ 3503 constraint(ALLOC_IN_RC(v10_reg)); 3504 match(VecA); 3505 match(vReg); 3506 op_cost(0); 3507 format %{ %} 3508 interface(REG_INTER); 3509 %} 3510 3511 operand vReg_V11() 3512 %{ 3513 constraint(ALLOC_IN_RC(v11_reg)); 3514 match(VecA); 3515 match(vReg); 3516 op_cost(0); 3517 format %{ %} 3518 interface(REG_INTER); 3519 %} 3520 3521 operand vRegMask() 3522 %{ 3523 constraint(ALLOC_IN_RC(vmask_reg)); 3524 match(RegVectMask); 3525 match(vRegMask_V0); 3526 op_cost(0); 3527 format %{ %} 3528 interface(REG_INTER); 3529 %} 3530 3531 // The mask value used to control execution of a masked 3532 // vector instruction is always supplied by vector register v0. 3533 operand vRegMask_V0() 3534 %{ 3535 constraint(ALLOC_IN_RC(vmask_reg_v0)); 3536 match(RegVectMask); 3537 match(vRegMask); 3538 op_cost(0); 3539 format %{ %} 3540 interface(REG_INTER); 3541 %} 3542 3543 // Java Thread Register 3544 operand javaThread_RegP(iRegP reg) 3545 %{ 3546 constraint(ALLOC_IN_RC(java_thread_reg)); // java_thread_reg 3547 match(reg); 3548 op_cost(0); 3549 format %{ %} 3550 interface(REG_INTER); 3551 %} 3552 3553 //----------Memory Operands---------------------------------------------------- 3554 // RISCV has only base_plus_offset and literal address mode, so no need to use 3555 // index and scale. Here set index as 0xffffffff and scale as 0x0. 3556 operand indirect(iRegP reg) 3557 %{ 3558 constraint(ALLOC_IN_RC(ptr_reg)); 3559 match(reg); 3560 op_cost(0); 3561 format %{ "[$reg]" %} 3562 interface(MEMORY_INTER) %{ 3563 base($reg); 3564 index(0xffffffff); 3565 scale(0x0); 3566 disp(0x0); 3567 %} 3568 %} 3569 3570 operand indOffI(iRegP reg, immIOffset off) 3571 %{ 3572 constraint(ALLOC_IN_RC(ptr_reg)); 3573 match(AddP reg off); 3574 op_cost(0); 3575 format %{ "[$reg, $off]" %} 3576 interface(MEMORY_INTER) %{ 3577 base($reg); 3578 index(0xffffffff); 3579 scale(0x0); 3580 disp($off); 3581 %} 3582 %} 3583 3584 operand indOffL(iRegP reg, immLOffset off) 3585 %{ 3586 constraint(ALLOC_IN_RC(ptr_reg)); 3587 match(AddP reg off); 3588 op_cost(0); 3589 format %{ "[$reg, $off]" %} 3590 interface(MEMORY_INTER) %{ 3591 base($reg); 3592 index(0xffffffff); 3593 scale(0x0); 3594 disp($off); 3595 %} 3596 %} 3597 3598 operand indirectN(iRegN reg) 3599 %{ 3600 predicate(CompressedOops::shift() == 0); 3601 constraint(ALLOC_IN_RC(ptr_reg)); 3602 match(DecodeN reg); 3603 op_cost(0); 3604 format %{ "[$reg]\t# narrow" %} 3605 interface(MEMORY_INTER) %{ 3606 base($reg); 3607 index(0xffffffff); 3608 scale(0x0); 3609 disp(0x0); 3610 %} 3611 %} 3612 3613 operand indOffIN(iRegN reg, immIOffset off) 3614 %{ 3615 predicate(CompressedOops::shift() == 0); 3616 constraint(ALLOC_IN_RC(ptr_reg)); 3617 match(AddP (DecodeN reg) off); 3618 op_cost(0); 3619 format %{ "[$reg, $off]\t# narrow" %} 3620 interface(MEMORY_INTER) %{ 3621 base($reg); 3622 index(0xffffffff); 3623 scale(0x0); 3624 disp($off); 3625 %} 3626 %} 3627 3628 operand indOffLN(iRegN reg, immLOffset off) 3629 %{ 3630 predicate(CompressedOops::shift() == 0); 3631 constraint(ALLOC_IN_RC(ptr_reg)); 3632 match(AddP (DecodeN reg) off); 3633 op_cost(0); 3634 format %{ "[$reg, $off]\t# narrow" %} 3635 interface(MEMORY_INTER) %{ 3636 base($reg); 3637 index(0xffffffff); 3638 scale(0x0); 3639 disp($off); 3640 %} 3641 %} 3642 3643 //----------Special Memory Operands-------------------------------------------- 3644 // Stack Slot Operand - This operand is used for loading and storing temporary 3645 // values on the stack where a match requires a value to 3646 // flow through memory. 3647 operand stackSlotI(sRegI reg) 3648 %{ 3649 constraint(ALLOC_IN_RC(stack_slots)); 3650 // No match rule because this operand is only generated in matching 3651 // match(RegI); 3652 format %{ "[$reg]" %} 3653 interface(MEMORY_INTER) %{ 3654 base(0x02); // RSP 3655 index(0xffffffff); // No Index 3656 scale(0x0); // No Scale 3657 disp($reg); // Stack Offset 3658 %} 3659 %} 3660 3661 operand stackSlotF(sRegF reg) 3662 %{ 3663 constraint(ALLOC_IN_RC(stack_slots)); 3664 // No match rule because this operand is only generated in matching 3665 // match(RegF); 3666 format %{ "[$reg]" %} 3667 interface(MEMORY_INTER) %{ 3668 base(0x02); // RSP 3669 index(0xffffffff); // No Index 3670 scale(0x0); // No Scale 3671 disp($reg); // Stack Offset 3672 %} 3673 %} 3674 3675 operand stackSlotD(sRegD reg) 3676 %{ 3677 constraint(ALLOC_IN_RC(stack_slots)); 3678 // No match rule because this operand is only generated in matching 3679 // match(RegD); 3680 format %{ "[$reg]" %} 3681 interface(MEMORY_INTER) %{ 3682 base(0x02); // RSP 3683 index(0xffffffff); // No Index 3684 scale(0x0); // No Scale 3685 disp($reg); // Stack Offset 3686 %} 3687 %} 3688 3689 operand stackSlotL(sRegL reg) 3690 %{ 3691 constraint(ALLOC_IN_RC(stack_slots)); 3692 // No match rule because this operand is only generated in matching 3693 // match(RegL); 3694 format %{ "[$reg]" %} 3695 interface(MEMORY_INTER) %{ 3696 base(0x02); // RSP 3697 index(0xffffffff); // No Index 3698 scale(0x0); // No Scale 3699 disp($reg); // Stack Offset 3700 %} 3701 %} 3702 3703 // Special operand allowing long args to int ops to be truncated for free 3704 3705 operand iRegL2I(iRegL reg) %{ 3706 3707 op_cost(0); 3708 3709 match(ConvL2I reg); 3710 3711 format %{ "l2i($reg)" %} 3712 3713 interface(REG_INTER) 3714 %} 3715 3716 3717 // Comparison Operands 3718 // NOTE: Label is a predefined operand which should not be redefined in 3719 // the AD file. It is generically handled within the ADLC. 3720 3721 //----------Conditional Branch Operands---------------------------------------- 3722 // Comparison Op - This is the operation of the comparison, and is limited to 3723 // the following set of codes: 3724 // L (<), LE (<=), G (>), GE (>=), E (==), NE (!=) 3725 // 3726 // Other attributes of the comparison, such as unsignedness, are specified 3727 // by the comparison instruction that sets a condition code flags register. 3728 // That result is represented by a flags operand whose subtype is appropriate 3729 // to the unsignedness (etc.) of the comparison. 3730 // 3731 // Later, the instruction which matches both the Comparison Op (a Bool) and 3732 // the flags (produced by the Cmp) specifies the coding of the comparison op 3733 // by matching a specific subtype of Bool operand below, such as cmpOpU. 3734 3735 3736 // used for signed integral comparisons and fp comparisons 3737 operand cmpOp() 3738 %{ 3739 match(Bool); 3740 3741 format %{ "" %} 3742 3743 // the values in interface derives from struct BoolTest::mask 3744 interface(COND_INTER) %{ 3745 equal(0x0, "eq"); 3746 greater(0x1, "gt"); 3747 overflow(0x2, "overflow"); 3748 less(0x3, "lt"); 3749 not_equal(0x4, "ne"); 3750 less_equal(0x5, "le"); 3751 no_overflow(0x6, "no_overflow"); 3752 greater_equal(0x7, "ge"); 3753 %} 3754 %} 3755 3756 // used for unsigned integral comparisons 3757 operand cmpOpU() 3758 %{ 3759 match(Bool); 3760 3761 format %{ "" %} 3762 // the values in interface derives from struct BoolTest::mask 3763 interface(COND_INTER) %{ 3764 equal(0x0, "eq"); 3765 greater(0x1, "gtu"); 3766 overflow(0x2, "overflow"); 3767 less(0x3, "ltu"); 3768 not_equal(0x4, "ne"); 3769 less_equal(0x5, "leu"); 3770 no_overflow(0x6, "no_overflow"); 3771 greater_equal(0x7, "geu"); 3772 %} 3773 %} 3774 3775 // used for certain integral comparisons which can be 3776 // converted to bxx instructions 3777 operand cmpOpEqNe() 3778 %{ 3779 match(Bool); 3780 op_cost(0); 3781 predicate(n->as_Bool()->_test._test == BoolTest::ne || 3782 n->as_Bool()->_test._test == BoolTest::eq); 3783 3784 format %{ "" %} 3785 interface(COND_INTER) %{ 3786 equal(0x0, "eq"); 3787 greater(0x1, "gt"); 3788 overflow(0x2, "overflow"); 3789 less(0x3, "lt"); 3790 not_equal(0x4, "ne"); 3791 less_equal(0x5, "le"); 3792 no_overflow(0x6, "no_overflow"); 3793 greater_equal(0x7, "ge"); 3794 %} 3795 %} 3796 3797 operand cmpOpULtGe() 3798 %{ 3799 match(Bool); 3800 op_cost(0); 3801 predicate(n->as_Bool()->_test._test == BoolTest::lt || 3802 n->as_Bool()->_test._test == BoolTest::ge); 3803 3804 format %{ "" %} 3805 interface(COND_INTER) %{ 3806 equal(0x0, "eq"); 3807 greater(0x1, "gtu"); 3808 overflow(0x2, "overflow"); 3809 less(0x3, "ltu"); 3810 not_equal(0x4, "ne"); 3811 less_equal(0x5, "leu"); 3812 no_overflow(0x6, "no_overflow"); 3813 greater_equal(0x7, "geu"); 3814 %} 3815 %} 3816 3817 operand cmpOpUEqNeLeGt() 3818 %{ 3819 match(Bool); 3820 op_cost(0); 3821 predicate(n->as_Bool()->_test._test == BoolTest::ne || 3822 n->as_Bool()->_test._test == BoolTest::eq || 3823 n->as_Bool()->_test._test == BoolTest::le || 3824 n->as_Bool()->_test._test == BoolTest::gt); 3825 3826 format %{ "" %} 3827 interface(COND_INTER) %{ 3828 equal(0x0, "eq"); 3829 greater(0x1, "gtu"); 3830 overflow(0x2, "overflow"); 3831 less(0x3, "ltu"); 3832 not_equal(0x4, "ne"); 3833 less_equal(0x5, "leu"); 3834 no_overflow(0x6, "no_overflow"); 3835 greater_equal(0x7, "geu"); 3836 %} 3837 %} 3838 3839 3840 // Flags register, used as output of compare logic 3841 operand rFlagsReg() 3842 %{ 3843 constraint(ALLOC_IN_RC(reg_flags)); 3844 match(RegFlags); 3845 3846 op_cost(0); 3847 format %{ "RFLAGS" %} 3848 interface(REG_INTER); 3849 %} 3850 3851 // Special Registers 3852 3853 // Method Register 3854 operand inline_cache_RegP(iRegP reg) 3855 %{ 3856 constraint(ALLOC_IN_RC(method_reg)); // inline_cache_reg 3857 match(reg); 3858 match(iRegPNoSp); 3859 op_cost(0); 3860 format %{ %} 3861 interface(REG_INTER); 3862 %} 3863 3864 //----------OPERAND CLASSES---------------------------------------------------- 3865 // Operand Classes are groups of operands that are used as to simplify 3866 // instruction definitions by not requiring the AD writer to specify 3867 // separate instructions for every form of operand when the 3868 // instruction accepts multiple operand types with the same basic 3869 // encoding and format. The classic case of this is memory operands. 3870 3871 // memory is used to define read/write location for load/store 3872 // instruction defs. we can turn a memory op into an Address 3873 3874 opclass memory(indirect, indOffI, indOffL, indirectN, indOffIN, indOffLN); 3875 3876 // iRegIorL2I is used for src inputs in rules for 32 bit int (I) 3877 // operations. it allows the src to be either an iRegI or a (ConvL2I 3878 // iRegL). in the latter case the l2i normally planted for a ConvL2I 3879 // can be elided because the 32-bit instruction will just employ the 3880 // lower 32 bits anyway. 3881 // 3882 // n.b. this does not elide all L2I conversions. if the truncated 3883 // value is consumed by more than one operation then the ConvL2I 3884 // cannot be bundled into the consuming nodes so an l2i gets planted 3885 // (actually an addiw $dst, $src, 0) and the downstream instructions 3886 // consume the result of the L2I as an iRegI input. That's a shame since 3887 // the addiw is actually redundant but its not too costly. 3888 3889 opclass iRegIorL2I(iRegI, iRegL2I); 3890 opclass iRegIorL(iRegI, iRegL); 3891 opclass iRegNorP(iRegN, iRegP); 3892 opclass iRegILNP(iRegI, iRegL, iRegN, iRegP); 3893 opclass iRegILNPNoSp(iRegINoSp, iRegLNoSp, iRegNNoSp, iRegPNoSp); 3894 opclass immIorL(immI, immL); 3895 3896 //----------PIPELINE----------------------------------------------------------- 3897 // Rules which define the behavior of the target architectures pipeline. 3898 3899 // For specific pipelines, e.g. generic RISC-V, define the stages of that pipeline 3900 //pipe_desc(ID, EX, MEM, WR); 3901 #define ID S0 3902 #define EX S1 3903 #define MEM S2 3904 #define WR S3 3905 3906 // Integer ALU reg operation 3907 pipeline %{ 3908 3909 attributes %{ 3910 // RISC-V instructions are of fixed length 3911 fixed_size_instructions; // Fixed size instructions TODO does 3912 max_instructions_per_bundle = 2; // Generic RISC-V 1, Sifive Series 7 2 3913 // RISC-V instructions come in 32-bit word units 3914 instruction_unit_size = 4; // An instruction is 4 bytes long 3915 instruction_fetch_unit_size = 64; // The processor fetches one line 3916 instruction_fetch_units = 1; // of 64 bytes 3917 3918 // List of nop instructions 3919 nops( MachNop ); 3920 %} 3921 3922 // We don't use an actual pipeline model so don't care about resources 3923 // or description. we do use pipeline classes to introduce fixed 3924 // latencies 3925 3926 //----------RESOURCES---------------------------------------------------------- 3927 // Resources are the functional units available to the machine 3928 3929 // Generic RISC-V pipeline 3930 // 1 decoder 3931 // 1 instruction decoded per cycle 3932 // 1 load/store ops per cycle, 1 branch, 1 FPU 3933 // 1 mul, 1 div 3934 3935 resources ( DECODE, 3936 ALU, 3937 MUL, 3938 DIV, 3939 BRANCH, 3940 LDST, 3941 FPU); 3942 3943 //----------PIPELINE DESCRIPTION----------------------------------------------- 3944 // Pipeline Description specifies the stages in the machine's pipeline 3945 3946 // Define the pipeline as a generic 6 stage pipeline 3947 pipe_desc(S0, S1, S2, S3, S4, S5); 3948 3949 //----------PIPELINE CLASSES--------------------------------------------------- 3950 // Pipeline Classes describe the stages in which input and output are 3951 // referenced by the hardware pipeline. 3952 3953 pipe_class fp_dop_reg_reg_s(fRegF dst, fRegF src1, fRegF src2) 3954 %{ 3955 single_instruction; 3956 src1 : S1(read); 3957 src2 : S2(read); 3958 dst : S5(write); 3959 DECODE : ID; 3960 FPU : S5; 3961 %} 3962 3963 pipe_class fp_dop_reg_reg_d(fRegD dst, fRegD src1, fRegD src2) 3964 %{ 3965 src1 : S1(read); 3966 src2 : S2(read); 3967 dst : S5(write); 3968 DECODE : ID; 3969 FPU : S5; 3970 %} 3971 3972 pipe_class fp_uop_s(fRegF dst, fRegF src) 3973 %{ 3974 single_instruction; 3975 src : S1(read); 3976 dst : S5(write); 3977 DECODE : ID; 3978 FPU : S5; 3979 %} 3980 3981 pipe_class fp_uop_d(fRegD dst, fRegD src) 3982 %{ 3983 single_instruction; 3984 src : S1(read); 3985 dst : S5(write); 3986 DECODE : ID; 3987 FPU : S5; 3988 %} 3989 3990 pipe_class fp_d2f(fRegF dst, fRegD src) 3991 %{ 3992 single_instruction; 3993 src : S1(read); 3994 dst : S5(write); 3995 DECODE : ID; 3996 FPU : S5; 3997 %} 3998 3999 pipe_class fp_f2d(fRegD dst, fRegF src) 4000 %{ 4001 single_instruction; 4002 src : S1(read); 4003 dst : S5(write); 4004 DECODE : ID; 4005 FPU : S5; 4006 %} 4007 4008 pipe_class fp_f2i(iRegINoSp dst, fRegF src) 4009 %{ 4010 single_instruction; 4011 src : S1(read); 4012 dst : S5(write); 4013 DECODE : ID; 4014 FPU : S5; 4015 %} 4016 4017 pipe_class fp_f2l(iRegLNoSp dst, fRegF src) 4018 %{ 4019 single_instruction; 4020 src : S1(read); 4021 dst : S5(write); 4022 DECODE : ID; 4023 FPU : S5; 4024 %} 4025 4026 pipe_class fp_i2f(fRegF dst, iRegIorL2I src) 4027 %{ 4028 single_instruction; 4029 src : S1(read); 4030 dst : S5(write); 4031 DECODE : ID; 4032 FPU : S5; 4033 %} 4034 4035 pipe_class fp_l2f(fRegF dst, iRegL src) 4036 %{ 4037 single_instruction; 4038 src : S1(read); 4039 dst : S5(write); 4040 DECODE : ID; 4041 FPU : S5; 4042 %} 4043 4044 pipe_class fp_d2i(iRegINoSp dst, fRegD src) 4045 %{ 4046 single_instruction; 4047 src : S1(read); 4048 dst : S5(write); 4049 DECODE : ID; 4050 FPU : S5; 4051 %} 4052 4053 pipe_class fp_d2l(iRegLNoSp dst, fRegD src) 4054 %{ 4055 single_instruction; 4056 src : S1(read); 4057 dst : S5(write); 4058 DECODE : ID; 4059 FPU : S5; 4060 %} 4061 4062 pipe_class fp_i2d(fRegD dst, iRegIorL2I src) 4063 %{ 4064 single_instruction; 4065 src : S1(read); 4066 dst : S5(write); 4067 DECODE : ID; 4068 FPU : S5; 4069 %} 4070 4071 pipe_class fp_l2d(fRegD dst, iRegIorL2I src) 4072 %{ 4073 single_instruction; 4074 src : S1(read); 4075 dst : S5(write); 4076 DECODE : ID; 4077 FPU : S5; 4078 %} 4079 4080 pipe_class fp_div_s(fRegF dst, fRegF src1, fRegF src2) 4081 %{ 4082 single_instruction; 4083 src1 : S1(read); 4084 src2 : S2(read); 4085 dst : S5(write); 4086 DECODE : ID; 4087 FPU : S5; 4088 %} 4089 4090 pipe_class fp_div_d(fRegD dst, fRegD src1, fRegD src2) 4091 %{ 4092 single_instruction; 4093 src1 : S1(read); 4094 src2 : S2(read); 4095 dst : S5(write); 4096 DECODE : ID; 4097 FPU : S5; 4098 %} 4099 4100 pipe_class fp_sqrt_s(fRegF dst, fRegF src1, fRegF src2) 4101 %{ 4102 single_instruction; 4103 src1 : S1(read); 4104 src2 : S2(read); 4105 dst : S5(write); 4106 DECODE : ID; 4107 FPU : S5; 4108 %} 4109 4110 pipe_class fp_sqrt_d(fRegD dst, fRegD src1, fRegD src2) 4111 %{ 4112 single_instruction; 4113 src1 : S1(read); 4114 src2 : S2(read); 4115 dst : S5(write); 4116 DECODE : ID; 4117 FPU : S5; 4118 %} 4119 4120 pipe_class fp_load_constant_s(fRegF dst) 4121 %{ 4122 single_instruction; 4123 dst : S5(write); 4124 DECODE : ID; 4125 FPU : S5; 4126 %} 4127 4128 pipe_class fp_load_constant_d(fRegD dst) 4129 %{ 4130 single_instruction; 4131 dst : S5(write); 4132 DECODE : ID; 4133 FPU : S5; 4134 %} 4135 4136 pipe_class fp_load_mem_s(fRegF dst, memory mem) 4137 %{ 4138 single_instruction; 4139 mem : S1(read); 4140 dst : S5(write); 4141 DECODE : ID; 4142 LDST : MEM; 4143 %} 4144 4145 pipe_class fp_load_mem_d(fRegD dst, memory mem) 4146 %{ 4147 single_instruction; 4148 mem : S1(read); 4149 dst : S5(write); 4150 DECODE : ID; 4151 LDST : MEM; 4152 %} 4153 4154 pipe_class fp_store_reg_s(fRegF src, memory mem) 4155 %{ 4156 single_instruction; 4157 src : S1(read); 4158 mem : S5(write); 4159 DECODE : ID; 4160 LDST : MEM; 4161 %} 4162 4163 pipe_class fp_store_reg_d(fRegD src, memory mem) 4164 %{ 4165 single_instruction; 4166 src : S1(read); 4167 mem : S5(write); 4168 DECODE : ID; 4169 LDST : MEM; 4170 %} 4171 4172 //------- Integer ALU operations -------------------------- 4173 4174 // Integer ALU reg-reg operation 4175 // Operands needs in ID, result generated in EX 4176 // E.g. ADD Rd, Rs1, Rs2 4177 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) 4178 %{ 4179 single_instruction; 4180 dst : EX(write); 4181 src1 : ID(read); 4182 src2 : ID(read); 4183 DECODE : ID; 4184 ALU : EX; 4185 %} 4186 4187 // Integer ALU reg operation with constant shift 4188 // E.g. SLLI Rd, Rs1, #shift 4189 pipe_class ialu_reg_shift(iRegI dst, iRegI src1) 4190 %{ 4191 single_instruction; 4192 dst : EX(write); 4193 src1 : ID(read); 4194 DECODE : ID; 4195 ALU : EX; 4196 %} 4197 4198 // Integer ALU reg-reg operation with variable shift 4199 // both operands must be available in ID 4200 // E.g. SLL Rd, Rs1, Rs2 4201 pipe_class ialu_reg_reg_vshift(iRegI dst, iRegI src1, iRegI src2) 4202 %{ 4203 single_instruction; 4204 dst : EX(write); 4205 src1 : ID(read); 4206 src2 : ID(read); 4207 DECODE : ID; 4208 ALU : EX; 4209 %} 4210 4211 // Integer ALU reg operation 4212 // E.g. NEG Rd, Rs2 4213 pipe_class ialu_reg(iRegI dst, iRegI src) 4214 %{ 4215 single_instruction; 4216 dst : EX(write); 4217 src : ID(read); 4218 DECODE : ID; 4219 ALU : EX; 4220 %} 4221 4222 // Integer ALU reg immediate operation 4223 // E.g. ADDI Rd, Rs1, #imm 4224 pipe_class ialu_reg_imm(iRegI dst, iRegI src1) 4225 %{ 4226 single_instruction; 4227 dst : EX(write); 4228 src1 : ID(read); 4229 DECODE : ID; 4230 ALU : EX; 4231 %} 4232 4233 // Integer ALU immediate operation (no source operands) 4234 // E.g. LI Rd, #imm 4235 pipe_class ialu_imm(iRegI dst) 4236 %{ 4237 single_instruction; 4238 dst : EX(write); 4239 DECODE : ID; 4240 ALU : EX; 4241 %} 4242 4243 //------- Multiply pipeline operations -------------------- 4244 4245 // Multiply reg-reg 4246 // E.g. MULW Rd, Rs1, Rs2 4247 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) 4248 %{ 4249 single_instruction; 4250 dst : WR(write); 4251 src1 : ID(read); 4252 src2 : ID(read); 4253 DECODE : ID; 4254 MUL : WR; 4255 %} 4256 4257 // E.g. MUL RD, Rs1, Rs2 4258 pipe_class lmul_reg_reg(iRegL dst, iRegL src1, iRegL src2) 4259 %{ 4260 single_instruction; 4261 fixed_latency(3); // Maximum latency for 64 bit mul 4262 dst : WR(write); 4263 src1 : ID(read); 4264 src2 : ID(read); 4265 DECODE : ID; 4266 MUL : WR; 4267 %} 4268 4269 //------- Divide pipeline operations -------------------- 4270 4271 // E.g. DIVW Rd, Rs1, Rs2 4272 pipe_class idiv_reg_reg(iRegI dst, iRegI src1, iRegI src2) 4273 %{ 4274 single_instruction; 4275 fixed_latency(8); // Maximum latency for 32 bit divide 4276 dst : WR(write); 4277 src1 : ID(read); 4278 src2 : ID(read); 4279 DECODE : ID; 4280 DIV : WR; 4281 %} 4282 4283 // E.g. DIV RD, Rs1, Rs2 4284 pipe_class ldiv_reg_reg(iRegL dst, iRegL src1, iRegL src2) 4285 %{ 4286 single_instruction; 4287 fixed_latency(16); // Maximum latency for 64 bit divide 4288 dst : WR(write); 4289 src1 : ID(read); 4290 src2 : ID(read); 4291 DECODE : ID; 4292 DIV : WR; 4293 %} 4294 4295 //------- Load pipeline operations ------------------------ 4296 4297 // Load - prefetch 4298 // Eg. PREFETCH_W mem 4299 pipe_class iload_prefetch(memory mem) 4300 %{ 4301 single_instruction; 4302 mem : ID(read); 4303 DECODE : ID; 4304 LDST : MEM; 4305 %} 4306 4307 // Load - reg, mem 4308 // E.g. LA Rd, mem 4309 pipe_class iload_reg_mem(iRegI dst, memory mem) 4310 %{ 4311 single_instruction; 4312 dst : WR(write); 4313 mem : ID(read); 4314 DECODE : ID; 4315 LDST : MEM; 4316 %} 4317 4318 // Load - reg, reg 4319 // E.g. LD Rd, Rs 4320 pipe_class iload_reg_reg(iRegI dst, iRegI src) 4321 %{ 4322 single_instruction; 4323 dst : WR(write); 4324 src : ID(read); 4325 DECODE : ID; 4326 LDST : MEM; 4327 %} 4328 4329 //------- Store pipeline operations ----------------------- 4330 4331 // Store - zr, mem 4332 // E.g. SD zr, mem 4333 pipe_class istore_mem(memory mem) 4334 %{ 4335 single_instruction; 4336 mem : ID(read); 4337 DECODE : ID; 4338 LDST : MEM; 4339 %} 4340 4341 // Store - reg, mem 4342 // E.g. SD Rs, mem 4343 pipe_class istore_reg_mem(iRegI src, memory mem) 4344 %{ 4345 single_instruction; 4346 mem : ID(read); 4347 src : EX(read); 4348 DECODE : ID; 4349 LDST : MEM; 4350 %} 4351 4352 // Store - reg, reg 4353 // E.g. SD Rs2, Rs1 4354 pipe_class istore_reg_reg(iRegI dst, iRegI src) 4355 %{ 4356 single_instruction; 4357 dst : ID(read); 4358 src : EX(read); 4359 DECODE : ID; 4360 LDST : MEM; 4361 %} 4362 4363 //------- Control transfer pipeline operations ------------ 4364 4365 // Branch 4366 pipe_class pipe_branch() 4367 %{ 4368 single_instruction; 4369 DECODE : ID; 4370 BRANCH : EX; 4371 %} 4372 4373 // Branch 4374 pipe_class pipe_branch_reg(iRegI src) 4375 %{ 4376 single_instruction; 4377 src : ID(read); 4378 DECODE : ID; 4379 BRANCH : EX; 4380 %} 4381 4382 // Compare & Branch 4383 // E.g. BEQ Rs1, Rs2, L 4384 pipe_class pipe_cmp_branch(iRegI src1, iRegI src2) 4385 %{ 4386 single_instruction; 4387 src1 : ID(read); 4388 src2 : ID(read); 4389 DECODE : ID; 4390 BRANCH : EX; 4391 %} 4392 4393 // E.g. BEQZ Rs, L 4394 pipe_class pipe_cmpz_branch(iRegI src) 4395 %{ 4396 single_instruction; 4397 src : ID(read); 4398 DECODE : ID; 4399 BRANCH : EX; 4400 %} 4401 4402 //------- Synchronisation operations ---------------------- 4403 // Any operation requiring serialization 4404 // E.g. FENCE/Atomic Ops/Load Acquire/Store Release 4405 pipe_class pipe_serial() 4406 %{ 4407 single_instruction; 4408 force_serialization; 4409 fixed_latency(16); 4410 DECODE : ID; 4411 LDST : MEM; 4412 %} 4413 4414 pipe_class pipe_slow() 4415 %{ 4416 instruction_count(10); 4417 multiple_bundles; 4418 force_serialization; 4419 fixed_latency(16); 4420 DECODE : ID; 4421 LDST : MEM; 4422 %} 4423 4424 // Empty pipeline class 4425 pipe_class pipe_class_empty() 4426 %{ 4427 single_instruction; 4428 fixed_latency(0); 4429 %} 4430 4431 // Default pipeline class. 4432 pipe_class pipe_class_default() 4433 %{ 4434 single_instruction; 4435 fixed_latency(2); 4436 %} 4437 4438 // Pipeline class for compares. 4439 pipe_class pipe_class_compare() 4440 %{ 4441 single_instruction; 4442 fixed_latency(16); 4443 %} 4444 4445 // Pipeline class for memory operations. 4446 pipe_class pipe_class_memory() 4447 %{ 4448 single_instruction; 4449 fixed_latency(16); 4450 %} 4451 4452 // Pipeline class for call. 4453 pipe_class pipe_class_call() 4454 %{ 4455 single_instruction; 4456 fixed_latency(100); 4457 %} 4458 4459 // Define the class for the Nop node. 4460 define %{ 4461 MachNop = pipe_class_empty; 4462 %} 4463 %} 4464 //----------INSTRUCTIONS------------------------------------------------------- 4465 // 4466 // match -- States which machine-independent subtree may be replaced 4467 // by this instruction. 4468 // ins_cost -- The estimated cost of this instruction is used by instruction 4469 // selection to identify a minimum cost tree of machine 4470 // instructions that matches a tree of machine-independent 4471 // instructions. 4472 // format -- A string providing the disassembly for this instruction. 4473 // The value of an instruction's operand may be inserted 4474 // by referring to it with a '$' prefix. 4475 // opcode -- Three instruction opcodes may be provided. These are referred 4476 // to within an encode class as $primary, $secondary, and $tertiary 4477 // rrspectively. The primary opcode is commonly used to 4478 // indicate the type of machine instruction, while secondary 4479 // and tertiary are often used for prefix options or addressing 4480 // modes. 4481 // ins_encode -- A list of encode classes with parameters. The encode class 4482 // name must have been defined in an 'enc_class' specification 4483 // in the encode section of the architecture description. 4484 4485 // ============================================================================ 4486 // Memory (Load/Store) Instructions 4487 4488 // Load Instructions 4489 4490 // Load Byte (8 bit signed) 4491 instruct loadB(iRegINoSp dst, memory mem) 4492 %{ 4493 match(Set dst (LoadB mem)); 4494 4495 ins_cost(LOAD_COST); 4496 format %{ "lb $dst, $mem\t# byte, #@loadB" %} 4497 4498 ins_encode %{ 4499 __ lb(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp)); 4500 %} 4501 4502 ins_pipe(iload_reg_mem); 4503 %} 4504 4505 // Load Byte (8 bit signed) into long 4506 instruct loadB2L(iRegLNoSp dst, memory mem) 4507 %{ 4508 match(Set dst (ConvI2L (LoadB mem))); 4509 4510 ins_cost(LOAD_COST); 4511 format %{ "lb $dst, $mem\t# byte, #@loadB2L" %} 4512 4513 ins_encode %{ 4514 __ lb(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp)); 4515 %} 4516 4517 ins_pipe(iload_reg_mem); 4518 %} 4519 4520 // Load Byte (8 bit unsigned) 4521 instruct loadUB(iRegINoSp dst, memory mem) 4522 %{ 4523 match(Set dst (LoadUB mem)); 4524 4525 ins_cost(LOAD_COST); 4526 format %{ "lbu $dst, $mem\t# byte, #@loadUB" %} 4527 4528 ins_encode %{ 4529 __ lbu(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp)); 4530 %} 4531 4532 ins_pipe(iload_reg_mem); 4533 %} 4534 4535 // Load Byte (8 bit unsigned) into long 4536 instruct loadUB2L(iRegLNoSp dst, memory mem) 4537 %{ 4538 match(Set dst (ConvI2L (LoadUB mem))); 4539 4540 ins_cost(LOAD_COST); 4541 format %{ "lbu $dst, $mem\t# byte, #@loadUB2L" %} 4542 4543 ins_encode %{ 4544 __ lbu(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp)); 4545 %} 4546 4547 ins_pipe(iload_reg_mem); 4548 %} 4549 4550 // Load Short (16 bit signed) 4551 instruct loadS(iRegINoSp dst, memory mem) 4552 %{ 4553 match(Set dst (LoadS mem)); 4554 4555 ins_cost(LOAD_COST); 4556 format %{ "lh $dst, $mem\t# short, #@loadS" %} 4557 4558 ins_encode %{ 4559 __ lh(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp)); 4560 %} 4561 4562 ins_pipe(iload_reg_mem); 4563 %} 4564 4565 // Load Short (16 bit signed) into long 4566 instruct loadS2L(iRegLNoSp dst, memory mem) 4567 %{ 4568 match(Set dst (ConvI2L (LoadS mem))); 4569 4570 ins_cost(LOAD_COST); 4571 format %{ "lh $dst, $mem\t# short, #@loadS2L" %} 4572 4573 ins_encode %{ 4574 __ lh(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp)); 4575 %} 4576 4577 ins_pipe(iload_reg_mem); 4578 %} 4579 4580 // Load Char (16 bit unsigned) 4581 instruct loadUS(iRegINoSp dst, memory mem) 4582 %{ 4583 match(Set dst (LoadUS mem)); 4584 4585 ins_cost(LOAD_COST); 4586 format %{ "lhu $dst, $mem\t# short, #@loadUS" %} 4587 4588 ins_encode %{ 4589 __ lhu(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp)); 4590 %} 4591 4592 ins_pipe(iload_reg_mem); 4593 %} 4594 4595 // Load Short/Char (16 bit unsigned) into long 4596 instruct loadUS2L(iRegLNoSp dst, memory mem) 4597 %{ 4598 match(Set dst (ConvI2L (LoadUS mem))); 4599 4600 ins_cost(LOAD_COST); 4601 format %{ "lhu $dst, $mem\t# short, #@loadUS2L" %} 4602 4603 ins_encode %{ 4604 __ lhu(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp)); 4605 %} 4606 4607 ins_pipe(iload_reg_mem); 4608 %} 4609 4610 // Load Integer (32 bit signed) 4611 instruct loadI(iRegINoSp dst, memory mem) 4612 %{ 4613 match(Set dst (LoadI mem)); 4614 4615 ins_cost(LOAD_COST); 4616 format %{ "lw $dst, $mem\t# int, #@loadI" %} 4617 4618 ins_encode %{ 4619 __ lw(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp)); 4620 %} 4621 4622 ins_pipe(iload_reg_mem); 4623 %} 4624 4625 // Load Integer (32 bit signed) into long 4626 instruct loadI2L(iRegLNoSp dst, memory mem) 4627 %{ 4628 match(Set dst (ConvI2L (LoadI mem))); 4629 4630 ins_cost(LOAD_COST); 4631 format %{ "lw $dst, $mem\t# int, #@loadI2L" %} 4632 4633 ins_encode %{ 4634 __ lw(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp)); 4635 %} 4636 4637 ins_pipe(iload_reg_mem); 4638 %} 4639 4640 // Load Integer (32 bit unsigned) into long 4641 instruct loadUI2L(iRegLNoSp dst, memory mem, immL_32bits mask) 4642 %{ 4643 match(Set dst (AndL (ConvI2L (LoadI mem)) mask)); 4644 4645 ins_cost(LOAD_COST); 4646 format %{ "lwu $dst, $mem\t# int, #@loadUI2L" %} 4647 4648 ins_encode %{ 4649 __ lwu(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp)); 4650 %} 4651 4652 ins_pipe(iload_reg_mem); 4653 %} 4654 4655 // Load Long (64 bit signed) 4656 instruct loadL(iRegLNoSp dst, memory mem) 4657 %{ 4658 match(Set dst (LoadL mem)); 4659 4660 ins_cost(LOAD_COST); 4661 format %{ "ld $dst, $mem\t# int, #@loadL" %} 4662 4663 ins_encode %{ 4664 __ ld(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp)); 4665 %} 4666 4667 ins_pipe(iload_reg_mem); 4668 %} 4669 4670 // Load Range 4671 instruct loadRange(iRegINoSp dst, memory mem) 4672 %{ 4673 match(Set dst (LoadRange mem)); 4674 4675 ins_cost(LOAD_COST); 4676 format %{ "lwu $dst, $mem\t# range, #@loadRange" %} 4677 4678 ins_encode %{ 4679 __ lwu(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp)); 4680 %} 4681 4682 ins_pipe(iload_reg_mem); 4683 %} 4684 4685 // Load Pointer 4686 instruct loadP(iRegPNoSp dst, memory mem) 4687 %{ 4688 match(Set dst (LoadP mem)); 4689 predicate(n->as_Load()->barrier_data() == 0); 4690 4691 ins_cost(LOAD_COST); 4692 format %{ "ld $dst, $mem\t# ptr, #@loadP" %} 4693 4694 ins_encode %{ 4695 __ ld(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp)); 4696 %} 4697 4698 ins_pipe(iload_reg_mem); 4699 %} 4700 4701 // Load Compressed Pointer 4702 instruct loadN(iRegNNoSp dst, memory mem) 4703 %{ 4704 predicate(n->as_Load()->barrier_data() == 0); 4705 match(Set dst (LoadN mem)); 4706 4707 ins_cost(LOAD_COST); 4708 format %{ "lwu $dst, $mem\t# compressed ptr, #@loadN" %} 4709 4710 ins_encode %{ 4711 __ lwu(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp)); 4712 %} 4713 4714 ins_pipe(iload_reg_mem); 4715 %} 4716 4717 // Load Klass Pointer 4718 instruct loadKlass(iRegPNoSp dst, memory mem) 4719 %{ 4720 match(Set dst (LoadKlass mem)); 4721 4722 ins_cost(LOAD_COST); 4723 format %{ "ld $dst, $mem\t# class, #@loadKlass" %} 4724 4725 ins_encode %{ 4726 __ ld(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp)); 4727 %} 4728 4729 ins_pipe(iload_reg_mem); 4730 %} 4731 4732 // Load Narrow Klass Pointer 4733 instruct loadNKlass(iRegNNoSp dst, memory mem) 4734 %{ 4735 predicate(!UseCompactObjectHeaders); 4736 match(Set dst (LoadNKlass mem)); 4737 4738 ins_cost(LOAD_COST); 4739 format %{ "lwu $dst, $mem\t# compressed class ptr, #@loadNKlass" %} 4740 4741 ins_encode %{ 4742 __ lwu(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp)); 4743 %} 4744 4745 ins_pipe(iload_reg_mem); 4746 %} 4747 4748 instruct loadNKlassCompactHeaders(iRegNNoSp dst, memory mem) 4749 %{ 4750 predicate(UseCompactObjectHeaders); 4751 match(Set dst (LoadNKlass mem)); 4752 4753 ins_cost(LOAD_COST); 4754 format %{ 4755 "lwu $dst, $mem\t# compressed klass ptr, shifted\n\t" 4756 "srli $dst, $dst, markWord::klass_shift_at_offset" 4757 %} 4758 4759 ins_encode %{ 4760 __ lwu(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp)); 4761 __ srli(as_Register($dst$$reg), as_Register($dst$$reg), (unsigned) markWord::klass_shift_at_offset); 4762 %} 4763 4764 ins_pipe(iload_reg_mem); 4765 %} 4766 4767 // Load Float 4768 instruct loadF(fRegF dst, memory mem) 4769 %{ 4770 match(Set dst (LoadF mem)); 4771 4772 ins_cost(LOAD_COST); 4773 format %{ "flw $dst, $mem\t# float, #@loadF" %} 4774 4775 ins_encode %{ 4776 __ flw(as_FloatRegister($dst$$reg), Address(as_Register($mem$$base), $mem$$disp)); 4777 %} 4778 4779 ins_pipe(fp_load_mem_s); 4780 %} 4781 4782 // Load Double 4783 instruct loadD(fRegD dst, memory mem) 4784 %{ 4785 match(Set dst (LoadD mem)); 4786 4787 ins_cost(LOAD_COST); 4788 format %{ "fld $dst, $mem\t# double, #@loadD" %} 4789 4790 ins_encode %{ 4791 __ fld(as_FloatRegister($dst$$reg), Address(as_Register($mem$$base), $mem$$disp)); 4792 %} 4793 4794 ins_pipe(fp_load_mem_d); 4795 %} 4796 4797 // Load Int Constant 4798 instruct loadConI(iRegINoSp dst, immI src) 4799 %{ 4800 match(Set dst src); 4801 4802 ins_cost(ALU_COST); 4803 format %{ "mv $dst, $src\t# int, #@loadConI" %} 4804 4805 ins_encode(riscv_enc_mov_imm(dst, src)); 4806 4807 ins_pipe(ialu_imm); 4808 %} 4809 4810 // Load Long Constant 4811 instruct loadConL(iRegLNoSp dst, immL src) 4812 %{ 4813 match(Set dst src); 4814 4815 ins_cost(ALU_COST); 4816 format %{ "mv $dst, $src\t# long, #@loadConL" %} 4817 4818 ins_encode(riscv_enc_mov_imm(dst, src)); 4819 4820 ins_pipe(ialu_imm); 4821 %} 4822 4823 // Load Pointer Constant 4824 instruct loadConP(iRegPNoSp dst, immP con) 4825 %{ 4826 match(Set dst con); 4827 4828 ins_cost(ALU_COST); 4829 format %{ "mv $dst, $con\t# ptr, #@loadConP" %} 4830 4831 ins_encode(riscv_enc_mov_p(dst, con)); 4832 4833 ins_pipe(ialu_imm); 4834 %} 4835 4836 // Load Null Pointer Constant 4837 instruct loadConP0(iRegPNoSp dst, immP0 con) 4838 %{ 4839 match(Set dst con); 4840 4841 ins_cost(ALU_COST); 4842 format %{ "mv $dst, $con\t# null pointer, #@loadConP0" %} 4843 4844 ins_encode(riscv_enc_mov_zero(dst)); 4845 4846 ins_pipe(ialu_imm); 4847 %} 4848 4849 // Load Pointer Constant One 4850 instruct loadConP1(iRegPNoSp dst, immP_1 con) 4851 %{ 4852 match(Set dst con); 4853 4854 ins_cost(ALU_COST); 4855 format %{ "mv $dst, $con\t# load ptr constant one, #@loadConP1" %} 4856 4857 ins_encode(riscv_enc_mov_p1(dst)); 4858 4859 ins_pipe(ialu_imm); 4860 %} 4861 4862 // Load Byte Map Base Constant 4863 instruct loadByteMapBase(iRegPNoSp dst, immByteMapBase con) 4864 %{ 4865 match(Set dst con); 4866 ins_cost(ALU_COST); 4867 format %{ "mv $dst, $con\t# Byte Map Base, #@loadByteMapBase" %} 4868 4869 ins_encode(riscv_enc_mov_byte_map_base(dst)); 4870 4871 ins_pipe(ialu_imm); 4872 %} 4873 4874 // Load Narrow Pointer Constant 4875 instruct loadConN(iRegNNoSp dst, immN con) 4876 %{ 4877 match(Set dst con); 4878 4879 ins_cost(ALU_COST * 4); 4880 format %{ "mv $dst, $con\t# compressed ptr, #@loadConN" %} 4881 4882 ins_encode(riscv_enc_mov_n(dst, con)); 4883 4884 ins_pipe(ialu_imm); 4885 %} 4886 4887 // Load Narrow Null Pointer Constant 4888 instruct loadConN0(iRegNNoSp dst, immN0 con) 4889 %{ 4890 match(Set dst con); 4891 4892 ins_cost(ALU_COST); 4893 format %{ "mv $dst, $con\t# compressed null pointer, #@loadConN0" %} 4894 4895 ins_encode(riscv_enc_mov_zero(dst)); 4896 4897 ins_pipe(ialu_imm); 4898 %} 4899 4900 // Load Narrow Klass Constant 4901 instruct loadConNKlass(iRegNNoSp dst, immNKlass con) 4902 %{ 4903 match(Set dst con); 4904 4905 ins_cost(ALU_COST * 6); 4906 format %{ "mv $dst, $con\t# compressed klass ptr, #@loadConNKlass" %} 4907 4908 ins_encode(riscv_enc_mov_nk(dst, con)); 4909 4910 ins_pipe(ialu_imm); 4911 %} 4912 4913 // Load Float Constant 4914 instruct loadConF(fRegF dst, immF con) %{ 4915 match(Set dst con); 4916 4917 ins_cost(LOAD_COST); 4918 format %{ 4919 "flw $dst, [$constantaddress]\t# load from constant table: float=$con, #@loadConF" 4920 %} 4921 4922 ins_encode %{ 4923 __ flw(as_FloatRegister($dst$$reg), $constantaddress($con)); 4924 %} 4925 4926 ins_pipe(fp_load_constant_s); 4927 %} 4928 4929 instruct loadConF0(fRegF dst, immF0 con) %{ 4930 match(Set dst con); 4931 4932 ins_cost(XFER_COST); 4933 4934 format %{ "fmv.w.x $dst, zr\t# float, #@loadConF0" %} 4935 4936 ins_encode %{ 4937 __ fmv_w_x(as_FloatRegister($dst$$reg), zr); 4938 %} 4939 4940 ins_pipe(fp_load_constant_s); 4941 %} 4942 4943 // Load Double Constant 4944 instruct loadConD(fRegD dst, immD con) %{ 4945 match(Set dst con); 4946 4947 ins_cost(LOAD_COST); 4948 format %{ 4949 "fld $dst, [$constantaddress]\t# load from constant table: double=$con, #@loadConD" 4950 %} 4951 4952 ins_encode %{ 4953 __ fld(as_FloatRegister($dst$$reg), $constantaddress($con)); 4954 %} 4955 4956 ins_pipe(fp_load_constant_d); 4957 %} 4958 4959 instruct loadConD0(fRegD dst, immD0 con) %{ 4960 match(Set dst con); 4961 4962 ins_cost(XFER_COST); 4963 4964 format %{ "fmv.d.x $dst, zr\t# double, #@loadConD0" %} 4965 4966 ins_encode %{ 4967 __ fmv_d_x(as_FloatRegister($dst$$reg), zr); 4968 %} 4969 4970 ins_pipe(fp_load_constant_d); 4971 %} 4972 4973 // Store Byte 4974 instruct storeB(iRegIorL2I src, memory mem) 4975 %{ 4976 match(Set mem (StoreB mem src)); 4977 4978 ins_cost(STORE_COST); 4979 format %{ "sb $src, $mem\t# byte, #@storeB" %} 4980 4981 ins_encode %{ 4982 __ sb(as_Register($src$$reg), Address(as_Register($mem$$base), $mem$$disp)); 4983 %} 4984 4985 ins_pipe(istore_reg_mem); 4986 %} 4987 4988 instruct storeimmB0(immI0 zero, memory mem) 4989 %{ 4990 match(Set mem (StoreB mem zero)); 4991 4992 ins_cost(STORE_COST); 4993 format %{ "sb zr, $mem\t# byte, #@storeimmB0" %} 4994 4995 ins_encode %{ 4996 __ sb(zr, Address(as_Register($mem$$base), $mem$$disp)); 4997 %} 4998 4999 ins_pipe(istore_mem); 5000 %} 5001 5002 // Store Char/Short 5003 instruct storeC(iRegIorL2I src, memory mem) 5004 %{ 5005 match(Set mem (StoreC mem src)); 5006 5007 ins_cost(STORE_COST); 5008 format %{ "sh $src, $mem\t# short, #@storeC" %} 5009 5010 ins_encode %{ 5011 __ sh(as_Register($src$$reg), Address(as_Register($mem$$base), $mem$$disp)); 5012 %} 5013 5014 ins_pipe(istore_reg_mem); 5015 %} 5016 5017 instruct storeimmC0(immI0 zero, memory mem) 5018 %{ 5019 match(Set mem (StoreC mem zero)); 5020 5021 ins_cost(STORE_COST); 5022 format %{ "sh zr, $mem\t# short, #@storeimmC0" %} 5023 5024 ins_encode %{ 5025 __ sh(zr, Address(as_Register($mem$$base), $mem$$disp)); 5026 %} 5027 5028 ins_pipe(istore_mem); 5029 %} 5030 5031 // Store Integer 5032 instruct storeI(iRegIorL2I src, memory mem) 5033 %{ 5034 match(Set mem(StoreI mem src)); 5035 5036 ins_cost(STORE_COST); 5037 format %{ "sw $src, $mem\t# int, #@storeI" %} 5038 5039 ins_encode %{ 5040 __ sw(as_Register($src$$reg), Address(as_Register($mem$$base), $mem$$disp)); 5041 %} 5042 5043 ins_pipe(istore_reg_mem); 5044 %} 5045 5046 instruct storeimmI0(immI0 zero, memory mem) 5047 %{ 5048 match(Set mem(StoreI mem zero)); 5049 5050 ins_cost(STORE_COST); 5051 format %{ "sw zr, $mem\t# int, #@storeimmI0" %} 5052 5053 ins_encode %{ 5054 __ sw(zr, Address(as_Register($mem$$base), $mem$$disp)); 5055 %} 5056 5057 ins_pipe(istore_mem); 5058 %} 5059 5060 // Store Long (64 bit signed) 5061 instruct storeL(iRegL src, memory mem) 5062 %{ 5063 match(Set mem (StoreL mem src)); 5064 5065 ins_cost(STORE_COST); 5066 format %{ "sd $src, $mem\t# long, #@storeL" %} 5067 5068 ins_encode %{ 5069 __ sd(as_Register($src$$reg), Address(as_Register($mem$$base), $mem$$disp)); 5070 %} 5071 5072 ins_pipe(istore_reg_mem); 5073 %} 5074 5075 // Store Long (64 bit signed) 5076 instruct storeimmL0(immL0 zero, memory mem) 5077 %{ 5078 match(Set mem (StoreL mem zero)); 5079 5080 ins_cost(STORE_COST); 5081 format %{ "sd zr, $mem\t# long, #@storeimmL0" %} 5082 5083 ins_encode %{ 5084 __ sd(zr, Address(as_Register($mem$$base), $mem$$disp)); 5085 %} 5086 5087 ins_pipe(istore_mem); 5088 %} 5089 5090 // Store Pointer 5091 instruct storeP(iRegP src, memory mem) 5092 %{ 5093 match(Set mem (StoreP mem src)); 5094 predicate(n->as_Store()->barrier_data() == 0); 5095 5096 ins_cost(STORE_COST); 5097 format %{ "sd $src, $mem\t# ptr, #@storeP" %} 5098 5099 ins_encode %{ 5100 __ sd(as_Register($src$$reg), Address(as_Register($mem$$base), $mem$$disp)); 5101 %} 5102 5103 ins_pipe(istore_reg_mem); 5104 %} 5105 5106 // Store Pointer 5107 instruct storeimmP0(immP0 zero, memory mem) 5108 %{ 5109 match(Set mem (StoreP mem zero)); 5110 predicate(n->as_Store()->barrier_data() == 0); 5111 5112 ins_cost(STORE_COST); 5113 format %{ "sd zr, $mem\t# ptr, #@storeimmP0" %} 5114 5115 ins_encode %{ 5116 __ sd(zr, Address(as_Register($mem$$base), $mem$$disp)); 5117 %} 5118 5119 ins_pipe(istore_mem); 5120 %} 5121 5122 // Store Compressed Pointer 5123 instruct storeN(iRegN src, memory mem) 5124 %{ 5125 predicate(n->as_Store()->barrier_data() == 0); 5126 match(Set mem (StoreN mem src)); 5127 5128 ins_cost(STORE_COST); 5129 format %{ "sw $src, $mem\t# compressed ptr, #@storeN" %} 5130 5131 ins_encode %{ 5132 __ sw(as_Register($src$$reg), Address(as_Register($mem$$base), $mem$$disp)); 5133 %} 5134 5135 ins_pipe(istore_reg_mem); 5136 %} 5137 5138 instruct storeImmN0(immN0 zero, memory mem) 5139 %{ 5140 predicate(n->as_Store()->barrier_data() == 0); 5141 match(Set mem (StoreN mem zero)); 5142 5143 ins_cost(STORE_COST); 5144 format %{ "sw zr, $mem\t# compressed ptr, #@storeImmN0" %} 5145 5146 ins_encode %{ 5147 __ sw(zr, Address(as_Register($mem$$base), $mem$$disp)); 5148 %} 5149 5150 ins_pipe(istore_reg_mem); 5151 %} 5152 5153 // Store Float 5154 instruct storeF(fRegF src, memory mem) 5155 %{ 5156 match(Set mem (StoreF mem src)); 5157 5158 ins_cost(STORE_COST); 5159 format %{ "fsw $src, $mem\t# float, #@storeF" %} 5160 5161 ins_encode %{ 5162 __ fsw(as_FloatRegister($src$$reg), Address(as_Register($mem$$base), $mem$$disp)); 5163 %} 5164 5165 ins_pipe(fp_store_reg_s); 5166 %} 5167 5168 // Store Double 5169 instruct storeD(fRegD src, memory mem) 5170 %{ 5171 match(Set mem (StoreD mem src)); 5172 5173 ins_cost(STORE_COST); 5174 format %{ "fsd $src, $mem\t# double, #@storeD" %} 5175 5176 ins_encode %{ 5177 __ fsd(as_FloatRegister($src$$reg), Address(as_Register($mem$$base), $mem$$disp)); 5178 %} 5179 5180 ins_pipe(fp_store_reg_d); 5181 %} 5182 5183 // Store Compressed Klass Pointer 5184 instruct storeNKlass(iRegN src, memory mem) 5185 %{ 5186 match(Set mem (StoreNKlass mem src)); 5187 5188 ins_cost(STORE_COST); 5189 format %{ "sw $src, $mem\t# compressed klass ptr, #@storeNKlass" %} 5190 5191 ins_encode %{ 5192 __ sw(as_Register($src$$reg), Address(as_Register($mem$$base), $mem$$disp)); 5193 %} 5194 5195 ins_pipe(istore_reg_mem); 5196 %} 5197 5198 // ============================================================================ 5199 // Prefetch instructions 5200 // Must be safe to execute with invalid address (cannot fault). 5201 5202 instruct prefetchalloc( memory mem ) %{ 5203 predicate(UseZicbop); 5204 match(PrefetchAllocation mem); 5205 5206 ins_cost(ALU_COST * 1); 5207 format %{ "prefetch_w $mem\t# Prefetch for write" %} 5208 5209 ins_encode %{ 5210 if (Assembler::is_simm12($mem$$disp)) { 5211 if (($mem$$disp & 0x1f) == 0) { 5212 __ prefetch_w(as_Register($mem$$base), $mem$$disp); 5213 } else { 5214 __ addi(t0, as_Register($mem$$base), $mem$$disp); 5215 __ prefetch_w(t0, 0); 5216 } 5217 } else { 5218 __ mv(t0, $mem$$disp); 5219 __ add(t0, as_Register($mem$$base), t0); 5220 __ prefetch_w(t0, 0); 5221 } 5222 %} 5223 5224 ins_pipe(iload_prefetch); 5225 %} 5226 5227 // ============================================================================ 5228 // Atomic operation instructions 5229 // 5230 5231 // standard CompareAndSwapX when we are using barriers 5232 // these have higher priority than the rules selected by a predicate 5233 instruct compareAndSwapB(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval, 5234 iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr) 5235 %{ 5236 match(Set res (CompareAndSwapB mem (Binary oldval newval))); 5237 5238 ins_cost(LOAD_COST + STORE_COST + ALU_COST * 10 + BRANCH_COST * 4); 5239 5240 effect(TEMP_DEF res, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3, KILL cr); 5241 5242 format %{ 5243 "cmpxchg $mem, $oldval, $newval\t# (byte) if $mem == $oldval then $mem <-- $newval\n\t" 5244 "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapB" 5245 %} 5246 5247 ins_encode %{ 5248 __ cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int8, 5249 Assembler::relaxed /* acquire */, Assembler::rl /* release */, $res$$Register, 5250 true /* result as bool */, $tmp1$$Register, $tmp2$$Register, $tmp3$$Register); 5251 %} 5252 5253 ins_pipe(pipe_slow); 5254 %} 5255 5256 instruct compareAndSwapS(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval, 5257 iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr) 5258 %{ 5259 match(Set res (CompareAndSwapS mem (Binary oldval newval))); 5260 5261 ins_cost(LOAD_COST + STORE_COST + ALU_COST * 11 + BRANCH_COST * 4); 5262 5263 effect(TEMP_DEF res, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3, KILL cr); 5264 5265 format %{ 5266 "cmpxchg $mem, $oldval, $newval\t# (short) if $mem == $oldval then $mem <-- $newval\n\t" 5267 "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapS" 5268 %} 5269 5270 ins_encode %{ 5271 __ cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int16, 5272 Assembler::relaxed /* acquire */, Assembler::rl /* release */, $res$$Register, 5273 true /* result as bool */, $tmp1$$Register, $tmp2$$Register, $tmp3$$Register); 5274 %} 5275 5276 ins_pipe(pipe_slow); 5277 %} 5278 5279 instruct compareAndSwapI(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval) 5280 %{ 5281 match(Set res (CompareAndSwapI mem (Binary oldval newval))); 5282 5283 ins_cost(LOAD_COST + STORE_COST + ALU_COST * 6 + BRANCH_COST * 4); 5284 5285 format %{ 5286 "cmpxchg $mem, $oldval, $newval\t# (int) if $mem == $oldval then $mem <-- $newval\n\t" 5287 "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapI" 5288 %} 5289 5290 ins_encode(riscv_enc_cmpxchgw(res, mem, oldval, newval)); 5291 5292 ins_pipe(pipe_slow); 5293 %} 5294 5295 instruct compareAndSwapL(iRegINoSp res, indirect mem, iRegL oldval, iRegL newval) 5296 %{ 5297 match(Set res (CompareAndSwapL mem (Binary oldval newval))); 5298 5299 ins_cost(LOAD_COST + STORE_COST + ALU_COST * 6 + BRANCH_COST * 4); 5300 5301 format %{ 5302 "cmpxchg $mem, $oldval, $newval\t# (long) if $mem == $oldval then $mem <-- $newval\n\t" 5303 "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapL" 5304 %} 5305 5306 ins_encode(riscv_enc_cmpxchg(res, mem, oldval, newval)); 5307 5308 ins_pipe(pipe_slow); 5309 %} 5310 5311 instruct compareAndSwapP(iRegINoSp res, indirect mem, iRegP oldval, iRegP newval) 5312 %{ 5313 predicate(n->as_LoadStore()->barrier_data() == 0); 5314 5315 match(Set res (CompareAndSwapP mem (Binary oldval newval))); 5316 5317 ins_cost(LOAD_COST + STORE_COST + ALU_COST * 6 + BRANCH_COST * 4); 5318 5319 format %{ 5320 "cmpxchg $mem, $oldval, $newval\t# (ptr) if $mem == $oldval then $mem <-- $newval\n\t" 5321 "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapP" 5322 %} 5323 5324 ins_encode(riscv_enc_cmpxchg(res, mem, oldval, newval)); 5325 5326 ins_pipe(pipe_slow); 5327 %} 5328 5329 instruct compareAndSwapN(iRegINoSp res, indirect mem, iRegN oldval, iRegN newval) 5330 %{ 5331 predicate(n->as_LoadStore()->barrier_data() == 0); 5332 match(Set res (CompareAndSwapN mem (Binary oldval newval))); 5333 5334 ins_cost(LOAD_COST + STORE_COST + ALU_COST * 8 + BRANCH_COST * 4); 5335 5336 format %{ 5337 "cmpxchg $mem, $oldval, $newval\t# (narrow oop) if $mem == $oldval then $mem <-- $newval\n\t" 5338 "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapN" 5339 %} 5340 5341 ins_encode(riscv_enc_cmpxchgn(res, mem, oldval, newval)); 5342 5343 ins_pipe(pipe_slow); 5344 %} 5345 5346 // alternative CompareAndSwapX when we are eliding barriers 5347 instruct compareAndSwapBAcq(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval, 5348 iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr) 5349 %{ 5350 predicate(needs_acquiring_load_reserved(n)); 5351 5352 match(Set res (CompareAndSwapB mem (Binary oldval newval))); 5353 5354 ins_cost(LOAD_COST + STORE_COST + ALU_COST * 10 + BRANCH_COST * 4); 5355 5356 effect(TEMP_DEF res, KILL cr, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3); 5357 5358 format %{ 5359 "cmpxchg_acq $mem, $oldval, $newval\t# (byte) if $mem == $oldval then $mem <-- $newval\n\t" 5360 "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapBAcq" 5361 %} 5362 5363 ins_encode %{ 5364 __ cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int8, 5365 Assembler::aq /* acquire */, Assembler::rl /* release */, $res$$Register, 5366 true /* result as bool */, $tmp1$$Register, $tmp2$$Register, $tmp3$$Register); 5367 %} 5368 5369 ins_pipe(pipe_slow); 5370 %} 5371 5372 instruct compareAndSwapSAcq(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval, 5373 iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr) 5374 %{ 5375 predicate(needs_acquiring_load_reserved(n)); 5376 5377 match(Set res (CompareAndSwapS mem (Binary oldval newval))); 5378 5379 ins_cost(LOAD_COST + STORE_COST + ALU_COST * 11 + BRANCH_COST * 4); 5380 5381 effect(TEMP_DEF res, KILL cr, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3); 5382 5383 format %{ 5384 "cmpxchg_acq $mem, $oldval, $newval\t# (short) if $mem == $oldval then $mem <-- $newval\n\t" 5385 "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapSAcq" 5386 %} 5387 5388 ins_encode %{ 5389 __ cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int16, 5390 Assembler::aq /* acquire */, Assembler::rl /* release */, $res$$Register, 5391 true /* result as bool */, $tmp1$$Register, $tmp2$$Register, $tmp3$$Register); 5392 %} 5393 5394 ins_pipe(pipe_slow); 5395 %} 5396 5397 instruct compareAndSwapIAcq(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval) 5398 %{ 5399 predicate(needs_acquiring_load_reserved(n)); 5400 5401 match(Set res (CompareAndSwapI mem (Binary oldval newval))); 5402 5403 ins_cost(LOAD_COST + STORE_COST + ALU_COST * 6 + BRANCH_COST * 4); 5404 5405 format %{ 5406 "cmpxchg_acq $mem, $oldval, $newval\t# (int) if $mem == $oldval then $mem <-- $newval\n\t" 5407 "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapIAcq" 5408 %} 5409 5410 ins_encode(riscv_enc_cmpxchgw_acq(res, mem, oldval, newval)); 5411 5412 ins_pipe(pipe_slow); 5413 %} 5414 5415 instruct compareAndSwapLAcq(iRegINoSp res, indirect mem, iRegL oldval, iRegL newval) 5416 %{ 5417 predicate(needs_acquiring_load_reserved(n)); 5418 5419 match(Set res (CompareAndSwapL mem (Binary oldval newval))); 5420 5421 ins_cost(LOAD_COST + STORE_COST + ALU_COST * 6 + BRANCH_COST * 4); 5422 5423 format %{ 5424 "cmpxchg_acq $mem, $oldval, $newval\t# (long) if $mem == $oldval then $mem <-- $newval\n\t" 5425 "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapLAcq" 5426 %} 5427 5428 ins_encode(riscv_enc_cmpxchg_acq(res, mem, oldval, newval)); 5429 5430 ins_pipe(pipe_slow); 5431 %} 5432 5433 instruct compareAndSwapPAcq(iRegINoSp res, indirect mem, iRegP oldval, iRegP newval) 5434 %{ 5435 predicate(needs_acquiring_load_reserved(n) && (n->as_LoadStore()->barrier_data() == 0)); 5436 5437 match(Set res (CompareAndSwapP mem (Binary oldval newval))); 5438 5439 ins_cost(LOAD_COST + STORE_COST + ALU_COST * 6 + BRANCH_COST * 4); 5440 5441 format %{ 5442 "cmpxchg_acq $mem, $oldval, $newval\t# (ptr) if $mem == $oldval then $mem <-- $newval\n\t" 5443 "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapPAcq" 5444 %} 5445 5446 ins_encode(riscv_enc_cmpxchg_acq(res, mem, oldval, newval)); 5447 5448 ins_pipe(pipe_slow); 5449 %} 5450 5451 instruct compareAndSwapNAcq(iRegINoSp res, indirect mem, iRegN oldval, iRegN newval) 5452 %{ 5453 predicate(needs_acquiring_load_reserved(n) && n->as_LoadStore()->barrier_data() == 0); 5454 5455 match(Set res (CompareAndSwapN mem (Binary oldval newval))); 5456 5457 ins_cost(LOAD_COST + STORE_COST + ALU_COST * 8 + BRANCH_COST * 4); 5458 5459 format %{ 5460 "cmpxchg_acq $mem, $oldval, $newval\t# (narrow oop) if $mem == $oldval then $mem <-- $newval\n\t" 5461 "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapNAcq" 5462 %} 5463 5464 ins_encode(riscv_enc_cmpxchgn_acq(res, mem, oldval, newval)); 5465 5466 ins_pipe(pipe_slow); 5467 %} 5468 5469 // Sundry CAS operations. Note that release is always true, 5470 // regardless of the memory ordering of the CAS. This is because we 5471 // need the volatile case to be sequentially consistent but there is 5472 // no trailing StoreLoad barrier emitted by C2. Unfortunately we 5473 // can't check the type of memory ordering here, so we always emit a 5474 // sc_d(w) with rl bit set. 5475 instruct compareAndExchangeB(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval, 5476 iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr) 5477 %{ 5478 match(Set res (CompareAndExchangeB mem (Binary oldval newval))); 5479 5480 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST * 5); 5481 5482 effect(TEMP_DEF res, KILL cr, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3); 5483 5484 format %{ 5485 "cmpxchg $res = $mem, $oldval, $newval\t# (byte, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeB" 5486 %} 5487 5488 ins_encode %{ 5489 __ cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int8, 5490 /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register, 5491 /*result_as_bool*/ false, $tmp1$$Register, $tmp2$$Register, $tmp3$$Register); 5492 %} 5493 5494 ins_pipe(pipe_slow); 5495 %} 5496 5497 instruct compareAndExchangeS(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval, 5498 iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr) 5499 %{ 5500 match(Set res (CompareAndExchangeS mem (Binary oldval newval))); 5501 5502 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST * 6); 5503 5504 effect(TEMP_DEF res, KILL cr, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3); 5505 5506 format %{ 5507 "cmpxchg $res = $mem, $oldval, $newval\t# (short, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeS" 5508 %} 5509 5510 ins_encode %{ 5511 __ cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int16, 5512 /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register, 5513 /*result_as_bool*/ false, $tmp1$$Register, $tmp2$$Register, $tmp3$$Register); 5514 %} 5515 5516 ins_pipe(pipe_slow); 5517 %} 5518 5519 instruct compareAndExchangeI(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval) 5520 %{ 5521 match(Set res (CompareAndExchangeI mem (Binary oldval newval))); 5522 5523 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST); 5524 5525 effect(TEMP_DEF res); 5526 5527 format %{ 5528 "cmpxchg $res = $mem, $oldval, $newval\t# (int, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeI" 5529 %} 5530 5531 ins_encode %{ 5532 __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int32, 5533 /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register); 5534 %} 5535 5536 ins_pipe(pipe_slow); 5537 %} 5538 5539 instruct compareAndExchangeL(iRegLNoSp res, indirect mem, iRegL oldval, iRegL newval) 5540 %{ 5541 match(Set res (CompareAndExchangeL mem (Binary oldval newval))); 5542 5543 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST); 5544 5545 effect(TEMP_DEF res); 5546 5547 format %{ 5548 "cmpxchg $res = $mem, $oldval, $newval\t# (long, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeL" 5549 %} 5550 5551 ins_encode %{ 5552 __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int64, 5553 /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register); 5554 %} 5555 5556 ins_pipe(pipe_slow); 5557 %} 5558 5559 instruct compareAndExchangeN(iRegNNoSp res, indirect mem, iRegN oldval, iRegN newval) 5560 %{ 5561 predicate(n->as_LoadStore()->barrier_data() == 0); 5562 match(Set res (CompareAndExchangeN mem (Binary oldval newval))); 5563 5564 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST * 3); 5565 5566 effect(TEMP_DEF res); 5567 5568 format %{ 5569 "cmpxchg $res = $mem, $oldval, $newval\t# (narrow oop, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeN" 5570 %} 5571 5572 ins_encode %{ 5573 __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::uint32, 5574 /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register); 5575 %} 5576 5577 ins_pipe(pipe_slow); 5578 %} 5579 5580 instruct compareAndExchangeP(iRegPNoSp res, indirect mem, iRegP oldval, iRegP newval) 5581 %{ 5582 predicate(n->as_LoadStore()->barrier_data() == 0); 5583 match(Set res (CompareAndExchangeP mem (Binary oldval newval))); 5584 5585 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST); 5586 5587 effect(TEMP_DEF res); 5588 5589 format %{ 5590 "cmpxchg $res = $mem, $oldval, $newval\t# (ptr, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeP" 5591 %} 5592 5593 ins_encode %{ 5594 __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int64, 5595 /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register); 5596 %} 5597 5598 ins_pipe(pipe_slow); 5599 %} 5600 5601 instruct compareAndExchangeBAcq(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval, 5602 iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr) 5603 %{ 5604 predicate(needs_acquiring_load_reserved(n)); 5605 5606 match(Set res (CompareAndExchangeB mem (Binary oldval newval))); 5607 5608 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST * 5); 5609 5610 effect(TEMP_DEF res, KILL cr, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3); 5611 5612 format %{ 5613 "cmpxchg_acq $res = $mem, $oldval, $newval\t# (byte, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeBAcq" 5614 %} 5615 5616 ins_encode %{ 5617 __ cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int8, 5618 /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register, 5619 /*result_as_bool*/ false, $tmp1$$Register, $tmp2$$Register, $tmp3$$Register); 5620 %} 5621 5622 ins_pipe(pipe_slow); 5623 %} 5624 5625 instruct compareAndExchangeSAcq(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval, 5626 iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr) 5627 %{ 5628 predicate(needs_acquiring_load_reserved(n)); 5629 5630 match(Set res (CompareAndExchangeS mem (Binary oldval newval))); 5631 5632 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST * 6); 5633 5634 effect(TEMP_DEF res, KILL cr, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3); 5635 5636 format %{ 5637 "cmpxchg_acq $res = $mem, $oldval, $newval\t# (short, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeSAcq" 5638 %} 5639 5640 ins_encode %{ 5641 __ cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int16, 5642 /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register, 5643 /*result_as_bool*/ false, $tmp1$$Register, $tmp2$$Register, $tmp3$$Register); 5644 %} 5645 5646 ins_pipe(pipe_slow); 5647 %} 5648 5649 instruct compareAndExchangeIAcq(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval) 5650 %{ 5651 predicate(needs_acquiring_load_reserved(n)); 5652 5653 match(Set res (CompareAndExchangeI mem (Binary oldval newval))); 5654 5655 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST); 5656 5657 effect(TEMP_DEF res); 5658 5659 format %{ 5660 "cmpxchg_acq $res = $mem, $oldval, $newval\t# (int, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeIAcq" 5661 %} 5662 5663 ins_encode %{ 5664 __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int32, 5665 /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register); 5666 %} 5667 5668 ins_pipe(pipe_slow); 5669 %} 5670 5671 instruct compareAndExchangeLAcq(iRegLNoSp res, indirect mem, iRegL oldval, iRegL newval) 5672 %{ 5673 predicate(needs_acquiring_load_reserved(n)); 5674 5675 match(Set res (CompareAndExchangeL mem (Binary oldval newval))); 5676 5677 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST); 5678 5679 effect(TEMP_DEF res); 5680 5681 format %{ 5682 "cmpxchg_acq $res = $mem, $oldval, $newval\t# (long, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeLAcq" 5683 %} 5684 5685 ins_encode %{ 5686 __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int64, 5687 /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register); 5688 %} 5689 5690 ins_pipe(pipe_slow); 5691 %} 5692 5693 instruct compareAndExchangeNAcq(iRegNNoSp res, indirect mem, iRegN oldval, iRegN newval) 5694 %{ 5695 predicate(needs_acquiring_load_reserved(n) && n->as_LoadStore()->barrier_data() == 0); 5696 5697 match(Set res (CompareAndExchangeN mem (Binary oldval newval))); 5698 5699 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST); 5700 5701 effect(TEMP_DEF res); 5702 5703 format %{ 5704 "cmpxchg_acq $res = $mem, $oldval, $newval\t# (narrow oop, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeNAcq" 5705 %} 5706 5707 ins_encode %{ 5708 __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::uint32, 5709 /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register); 5710 %} 5711 5712 ins_pipe(pipe_slow); 5713 %} 5714 5715 instruct compareAndExchangePAcq(iRegPNoSp res, indirect mem, iRegP oldval, iRegP newval) 5716 %{ 5717 predicate(needs_acquiring_load_reserved(n) && (n->as_LoadStore()->barrier_data() == 0)); 5718 5719 match(Set res (CompareAndExchangeP mem (Binary oldval newval))); 5720 5721 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST); 5722 5723 effect(TEMP_DEF res); 5724 5725 format %{ 5726 "cmpxchg_acq $res = $mem, $oldval, $newval\t# (ptr, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangePAcq" 5727 %} 5728 5729 ins_encode %{ 5730 __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int64, 5731 /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register); 5732 %} 5733 5734 ins_pipe(pipe_slow); 5735 %} 5736 5737 instruct weakCompareAndSwapB(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval, 5738 iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr) 5739 %{ 5740 match(Set res (WeakCompareAndSwapB mem (Binary oldval newval))); 5741 5742 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 6); 5743 5744 effect(TEMP_DEF res, KILL cr, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3); 5745 5746 format %{ 5747 "weak_cmpxchg $mem, $oldval, $newval\t# (byte, weak) if $mem == $oldval then $mem <-- $newval\n\t" 5748 "# $res == 1 when success, #@weakCompareAndSwapB" 5749 %} 5750 5751 ins_encode %{ 5752 __ weak_cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int8, 5753 /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register, 5754 $tmp1$$Register, $tmp2$$Register, $tmp3$$Register); 5755 %} 5756 5757 ins_pipe(pipe_slow); 5758 %} 5759 5760 instruct weakCompareAndSwapS(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval, 5761 iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr) 5762 %{ 5763 match(Set res (WeakCompareAndSwapS mem (Binary oldval newval))); 5764 5765 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 7); 5766 5767 effect(TEMP_DEF res, KILL cr, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3); 5768 5769 format %{ 5770 "weak_cmpxchg $mem, $oldval, $newval\t# (short, weak) if $mem == $oldval then $mem <-- $newval\n\t" 5771 "# $res == 1 when success, #@weakCompareAndSwapS" 5772 %} 5773 5774 ins_encode %{ 5775 __ weak_cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int16, 5776 /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register, 5777 $tmp1$$Register, $tmp2$$Register, $tmp3$$Register); 5778 %} 5779 5780 ins_pipe(pipe_slow); 5781 %} 5782 5783 instruct weakCompareAndSwapI(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval) 5784 %{ 5785 match(Set res (WeakCompareAndSwapI mem (Binary oldval newval))); 5786 5787 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 2); 5788 5789 format %{ 5790 "weak_cmpxchg $mem, $oldval, $newval\t# (int, weak) if $mem == $oldval then $mem <-- $newval\n\t" 5791 "# $res == 1 when success, #@weakCompareAndSwapI" 5792 %} 5793 5794 ins_encode %{ 5795 __ weak_cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int32, 5796 /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register); 5797 %} 5798 5799 ins_pipe(pipe_slow); 5800 %} 5801 5802 instruct weakCompareAndSwapL(iRegINoSp res, indirect mem, iRegL oldval, iRegL newval) 5803 %{ 5804 match(Set res (WeakCompareAndSwapL mem (Binary oldval newval))); 5805 5806 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 2); 5807 5808 format %{ 5809 "weak_cmpxchg $mem, $oldval, $newval\t# (long, weak) if $mem == $oldval then $mem <-- $newval\n\t" 5810 "# $res == 1 when success, #@weakCompareAndSwapL" 5811 %} 5812 5813 ins_encode %{ 5814 __ weak_cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int64, 5815 /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register); 5816 %} 5817 5818 ins_pipe(pipe_slow); 5819 %} 5820 5821 instruct weakCompareAndSwapN(iRegINoSp res, indirect mem, iRegN oldval, iRegN newval) 5822 %{ 5823 predicate(n->as_LoadStore()->barrier_data() == 0); 5824 match(Set res (WeakCompareAndSwapN mem (Binary oldval newval))); 5825 5826 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 4); 5827 5828 format %{ 5829 "weak_cmpxchg $mem, $oldval, $newval\t# (narrow oop, weak) if $mem == $oldval then $mem <-- $newval\n\t" 5830 "# $res == 1 when success, #@weakCompareAndSwapN" 5831 %} 5832 5833 ins_encode %{ 5834 __ weak_cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::uint32, 5835 /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register); 5836 %} 5837 5838 ins_pipe(pipe_slow); 5839 %} 5840 5841 instruct weakCompareAndSwapP(iRegINoSp res, indirect mem, iRegP oldval, iRegP newval) 5842 %{ 5843 predicate(n->as_LoadStore()->barrier_data() == 0); 5844 match(Set res (WeakCompareAndSwapP mem (Binary oldval newval))); 5845 5846 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 2); 5847 5848 format %{ 5849 "weak_cmpxchg $mem, $oldval, $newval\t# (ptr, weak) if $mem == $oldval then $mem <-- $newval\n\t" 5850 "# $res == 1 when success, #@weakCompareAndSwapP" 5851 %} 5852 5853 ins_encode %{ 5854 __ weak_cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int64, 5855 /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register); 5856 %} 5857 5858 ins_pipe(pipe_slow); 5859 %} 5860 5861 instruct weakCompareAndSwapBAcq(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval, 5862 iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr) 5863 %{ 5864 predicate(needs_acquiring_load_reserved(n)); 5865 5866 match(Set res (WeakCompareAndSwapB mem (Binary oldval newval))); 5867 5868 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 6); 5869 5870 effect(TEMP_DEF res, KILL cr, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3); 5871 5872 format %{ 5873 "weak_cmpxchg_acq $mem, $oldval, $newval\t# (byte, weak) if $mem == $oldval then $mem <-- $newval\n\t" 5874 "# $res == 1 when success, #@weakCompareAndSwapBAcq" 5875 %} 5876 5877 ins_encode %{ 5878 __ weak_cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int8, 5879 /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register, 5880 $tmp1$$Register, $tmp2$$Register, $tmp3$$Register); 5881 %} 5882 5883 ins_pipe(pipe_slow); 5884 %} 5885 5886 instruct weakCompareAndSwapSAcq(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval, 5887 iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr) 5888 %{ 5889 predicate(needs_acquiring_load_reserved(n)); 5890 5891 match(Set res (WeakCompareAndSwapS mem (Binary oldval newval))); 5892 5893 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 7); 5894 5895 effect(TEMP_DEF res, KILL cr, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3); 5896 5897 format %{ 5898 "weak_cmpxchg_acq $mem, $oldval, $newval\t# (short, weak) if $mem == $oldval then $mem <-- $newval\n\t" 5899 "# $res == 1 when success, #@weakCompareAndSwapSAcq" 5900 %} 5901 5902 ins_encode %{ 5903 __ weak_cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int16, 5904 /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register, 5905 $tmp1$$Register, $tmp2$$Register, $tmp3$$Register); 5906 %} 5907 5908 ins_pipe(pipe_slow); 5909 %} 5910 5911 instruct weakCompareAndSwapIAcq(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval) 5912 %{ 5913 predicate(needs_acquiring_load_reserved(n)); 5914 5915 match(Set res (WeakCompareAndSwapI mem (Binary oldval newval))); 5916 5917 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 2); 5918 5919 format %{ 5920 "weak_cmpxchg_acq $mem, $oldval, $newval\t# (int, weak) if $mem == $oldval then $mem <-- $newval\n\t" 5921 "# $res == 1 when success, #@weakCompareAndSwapIAcq" 5922 %} 5923 5924 ins_encode %{ 5925 __ weak_cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int32, 5926 /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register); 5927 %} 5928 5929 ins_pipe(pipe_slow); 5930 %} 5931 5932 instruct weakCompareAndSwapLAcq(iRegINoSp res, indirect mem, iRegL oldval, iRegL newval) 5933 %{ 5934 predicate(needs_acquiring_load_reserved(n)); 5935 5936 match(Set res (WeakCompareAndSwapL mem (Binary oldval newval))); 5937 5938 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 2); 5939 5940 format %{ 5941 "weak_cmpxchg_acq $mem, $oldval, $newval\t# (long, weak) if $mem == $oldval then $mem <-- $newval\n\t" 5942 "# $res == 1 when success, #@weakCompareAndSwapLAcq" 5943 %} 5944 5945 ins_encode %{ 5946 __ weak_cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int64, 5947 /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register); 5948 %} 5949 5950 ins_pipe(pipe_slow); 5951 %} 5952 5953 instruct weakCompareAndSwapNAcq(iRegINoSp res, indirect mem, iRegN oldval, iRegN newval) 5954 %{ 5955 predicate(needs_acquiring_load_reserved(n) && n->as_LoadStore()->barrier_data() == 0); 5956 5957 match(Set res (WeakCompareAndSwapN mem (Binary oldval newval))); 5958 5959 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 4); 5960 5961 format %{ 5962 "weak_cmpxchg_acq $mem, $oldval, $newval\t# (narrow oop, weak) if $mem == $oldval then $mem <-- $newval\n\t" 5963 "# $res == 1 when success, #@weakCompareAndSwapNAcq" 5964 %} 5965 5966 ins_encode %{ 5967 __ weak_cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::uint32, 5968 /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register); 5969 %} 5970 5971 ins_pipe(pipe_slow); 5972 %} 5973 5974 instruct weakCompareAndSwapPAcq(iRegINoSp res, indirect mem, iRegP oldval, iRegP newval) 5975 %{ 5976 predicate(needs_acquiring_load_reserved(n) && (n->as_LoadStore()->barrier_data() == 0)); 5977 5978 match(Set res (WeakCompareAndSwapP mem (Binary oldval newval))); 5979 5980 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 2); 5981 5982 format %{ 5983 "weak_cmpxchg_acq $mem, $oldval, $newval\t# (ptr, weak) if $mem == $oldval then $mem <-- $newval\n\t" 5984 "\t# $res == 1 when success, #@weakCompareAndSwapPAcq" 5985 %} 5986 5987 ins_encode %{ 5988 __ weak_cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int64, 5989 /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register); 5990 %} 5991 5992 ins_pipe(pipe_slow); 5993 %} 5994 5995 instruct get_and_setI(indirect mem, iRegI newv, iRegINoSp prev) 5996 %{ 5997 match(Set prev (GetAndSetI mem newv)); 5998 5999 ins_cost(ALU_COST); 6000 6001 format %{ "atomic_xchgw $prev, $newv, [$mem]\t#@get_and_setI" %} 6002 6003 ins_encode %{ 6004 __ atomic_xchgw($prev$$Register, $newv$$Register, as_Register($mem$$base)); 6005 %} 6006 6007 ins_pipe(pipe_serial); 6008 %} 6009 6010 instruct get_and_setL(indirect mem, iRegL newv, iRegLNoSp prev) 6011 %{ 6012 match(Set prev (GetAndSetL mem newv)); 6013 6014 ins_cost(ALU_COST); 6015 6016 format %{ "atomic_xchg $prev, $newv, [$mem]\t#@get_and_setL" %} 6017 6018 ins_encode %{ 6019 __ atomic_xchg($prev$$Register, $newv$$Register, as_Register($mem$$base)); 6020 %} 6021 6022 ins_pipe(pipe_serial); 6023 %} 6024 6025 instruct get_and_setN(indirect mem, iRegN newv, iRegINoSp prev) 6026 %{ 6027 predicate(n->as_LoadStore()->barrier_data() == 0); 6028 6029 match(Set prev (GetAndSetN mem newv)); 6030 6031 ins_cost(ALU_COST); 6032 6033 format %{ "atomic_xchgwu $prev, $newv, [$mem]\t#@get_and_setN" %} 6034 6035 ins_encode %{ 6036 __ atomic_xchgwu($prev$$Register, $newv$$Register, as_Register($mem$$base)); 6037 %} 6038 6039 ins_pipe(pipe_serial); 6040 %} 6041 6042 instruct get_and_setP(indirect mem, iRegP newv, iRegPNoSp prev) 6043 %{ 6044 predicate(n->as_LoadStore()->barrier_data() == 0); 6045 match(Set prev (GetAndSetP mem newv)); 6046 6047 ins_cost(ALU_COST); 6048 6049 format %{ "atomic_xchg $prev, $newv, [$mem]\t#@get_and_setP" %} 6050 6051 ins_encode %{ 6052 __ atomic_xchg($prev$$Register, $newv$$Register, as_Register($mem$$base)); 6053 %} 6054 6055 ins_pipe(pipe_serial); 6056 %} 6057 6058 instruct get_and_setIAcq(indirect mem, iRegI newv, iRegINoSp prev) 6059 %{ 6060 predicate(needs_acquiring_load_reserved(n)); 6061 6062 match(Set prev (GetAndSetI mem newv)); 6063 6064 ins_cost(ALU_COST); 6065 6066 format %{ "atomic_xchgw_acq $prev, $newv, [$mem]\t#@get_and_setIAcq" %} 6067 6068 ins_encode %{ 6069 __ atomic_xchgalw($prev$$Register, $newv$$Register, as_Register($mem$$base)); 6070 %} 6071 6072 ins_pipe(pipe_serial); 6073 %} 6074 6075 instruct get_and_setLAcq(indirect mem, iRegL newv, iRegLNoSp prev) 6076 %{ 6077 predicate(needs_acquiring_load_reserved(n)); 6078 6079 match(Set prev (GetAndSetL mem newv)); 6080 6081 ins_cost(ALU_COST); 6082 6083 format %{ "atomic_xchg_acq $prev, $newv, [$mem]\t#@get_and_setLAcq" %} 6084 6085 ins_encode %{ 6086 __ atomic_xchgal($prev$$Register, $newv$$Register, as_Register($mem$$base)); 6087 %} 6088 6089 ins_pipe(pipe_serial); 6090 %} 6091 6092 instruct get_and_setNAcq(indirect mem, iRegN newv, iRegINoSp prev) 6093 %{ 6094 predicate(needs_acquiring_load_reserved(n) && n->as_LoadStore()->barrier_data() == 0); 6095 6096 match(Set prev (GetAndSetN mem newv)); 6097 6098 ins_cost(ALU_COST); 6099 6100 format %{ "atomic_xchgwu_acq $prev, $newv, [$mem]\t#@get_and_setNAcq" %} 6101 6102 ins_encode %{ 6103 __ atomic_xchgalwu($prev$$Register, $newv$$Register, as_Register($mem$$base)); 6104 %} 6105 6106 ins_pipe(pipe_serial); 6107 %} 6108 6109 instruct get_and_setPAcq(indirect mem, iRegP newv, iRegPNoSp prev) 6110 %{ 6111 predicate(needs_acquiring_load_reserved(n) && (n->as_LoadStore()->barrier_data() == 0)); 6112 6113 match(Set prev (GetAndSetP mem newv)); 6114 6115 ins_cost(ALU_COST); 6116 6117 format %{ "atomic_xchg_acq $prev, $newv, [$mem]\t#@get_and_setPAcq" %} 6118 6119 ins_encode %{ 6120 __ atomic_xchgal($prev$$Register, $newv$$Register, as_Register($mem$$base)); 6121 %} 6122 6123 ins_pipe(pipe_serial); 6124 %} 6125 6126 instruct get_and_addL(indirect mem, iRegLNoSp newval, iRegL incr) 6127 %{ 6128 match(Set newval (GetAndAddL mem incr)); 6129 6130 ins_cost(ALU_COST); 6131 6132 format %{ "get_and_addL $newval, [$mem], $incr\t#@get_and_addL" %} 6133 6134 ins_encode %{ 6135 __ atomic_add($newval$$Register, $incr$$Register, as_Register($mem$$base)); 6136 %} 6137 6138 ins_pipe(pipe_serial); 6139 %} 6140 6141 instruct get_and_addL_no_res(indirect mem, Universe dummy, iRegL incr) 6142 %{ 6143 predicate(n->as_LoadStore()->result_not_used()); 6144 6145 match(Set dummy (GetAndAddL mem incr)); 6146 6147 ins_cost(ALU_COST); 6148 6149 format %{ "get_and_addL [$mem], $incr\t#@get_and_addL_no_res" %} 6150 6151 ins_encode %{ 6152 __ atomic_add(noreg, $incr$$Register, as_Register($mem$$base)); 6153 %} 6154 6155 ins_pipe(pipe_serial); 6156 %} 6157 6158 instruct get_and_addLi(indirect mem, iRegLNoSp newval, immLAdd incr) 6159 %{ 6160 match(Set newval (GetAndAddL mem incr)); 6161 6162 ins_cost(ALU_COST); 6163 6164 format %{ "get_and_addL $newval, [$mem], $incr\t#@get_and_addLi" %} 6165 6166 ins_encode %{ 6167 __ atomic_add($newval$$Register, $incr$$constant, as_Register($mem$$base)); 6168 %} 6169 6170 ins_pipe(pipe_serial); 6171 %} 6172 6173 instruct get_and_addLi_no_res(indirect mem, Universe dummy, immLAdd incr) 6174 %{ 6175 predicate(n->as_LoadStore()->result_not_used()); 6176 6177 match(Set dummy (GetAndAddL mem incr)); 6178 6179 ins_cost(ALU_COST); 6180 6181 format %{ "get_and_addL [$mem], $incr\t#@get_and_addLi_no_res" %} 6182 6183 ins_encode %{ 6184 __ atomic_add(noreg, $incr$$constant, as_Register($mem$$base)); 6185 %} 6186 6187 ins_pipe(pipe_serial); 6188 %} 6189 6190 instruct get_and_addI(indirect mem, iRegINoSp newval, iRegIorL2I incr) 6191 %{ 6192 match(Set newval (GetAndAddI mem incr)); 6193 6194 ins_cost(ALU_COST); 6195 6196 format %{ "get_and_addI $newval, [$mem], $incr\t#@get_and_addI" %} 6197 6198 ins_encode %{ 6199 __ atomic_addw($newval$$Register, $incr$$Register, as_Register($mem$$base)); 6200 %} 6201 6202 ins_pipe(pipe_serial); 6203 %} 6204 6205 instruct get_and_addI_no_res(indirect mem, Universe dummy, iRegIorL2I incr) 6206 %{ 6207 predicate(n->as_LoadStore()->result_not_used()); 6208 6209 match(Set dummy (GetAndAddI mem incr)); 6210 6211 ins_cost(ALU_COST); 6212 6213 format %{ "get_and_addI [$mem], $incr\t#@get_and_addI_no_res" %} 6214 6215 ins_encode %{ 6216 __ atomic_addw(noreg, $incr$$Register, as_Register($mem$$base)); 6217 %} 6218 6219 ins_pipe(pipe_serial); 6220 %} 6221 6222 instruct get_and_addIi(indirect mem, iRegINoSp newval, immIAdd incr) 6223 %{ 6224 match(Set newval (GetAndAddI mem incr)); 6225 6226 ins_cost(ALU_COST); 6227 6228 format %{ "get_and_addI $newval, [$mem], $incr\t#@get_and_addIi" %} 6229 6230 ins_encode %{ 6231 __ atomic_addw($newval$$Register, $incr$$constant, as_Register($mem$$base)); 6232 %} 6233 6234 ins_pipe(pipe_serial); 6235 %} 6236 6237 instruct get_and_addIi_no_res(indirect mem, Universe dummy, immIAdd incr) 6238 %{ 6239 predicate(n->as_LoadStore()->result_not_used()); 6240 6241 match(Set dummy (GetAndAddI mem incr)); 6242 6243 ins_cost(ALU_COST); 6244 6245 format %{ "get_and_addI [$mem], $incr\t#@get_and_addIi_no_res" %} 6246 6247 ins_encode %{ 6248 __ atomic_addw(noreg, $incr$$constant, as_Register($mem$$base)); 6249 %} 6250 6251 ins_pipe(pipe_serial); 6252 %} 6253 6254 instruct get_and_addLAcq(indirect mem, iRegLNoSp newval, iRegL incr) 6255 %{ 6256 predicate(needs_acquiring_load_reserved(n)); 6257 6258 match(Set newval (GetAndAddL mem incr)); 6259 6260 ins_cost(ALU_COST); 6261 6262 format %{ "get_and_addL_acq $newval, [$mem], $incr\t#@get_and_addLAcq" %} 6263 6264 ins_encode %{ 6265 __ atomic_addal($newval$$Register, $incr$$Register, as_Register($mem$$base)); 6266 %} 6267 6268 ins_pipe(pipe_serial); 6269 %} 6270 6271 instruct get_and_addL_no_resAcq(indirect mem, Universe dummy, iRegL incr) %{ 6272 predicate(n->as_LoadStore()->result_not_used() && needs_acquiring_load_reserved(n)); 6273 6274 match(Set dummy (GetAndAddL mem incr)); 6275 6276 ins_cost(ALU_COST); 6277 6278 format %{ "get_and_addL_acq [$mem], $incr\t#@get_and_addL_no_resAcq" %} 6279 6280 ins_encode %{ 6281 __ atomic_addal(noreg, $incr$$Register, as_Register($mem$$base)); 6282 %} 6283 6284 ins_pipe(pipe_serial); 6285 %} 6286 6287 instruct get_and_addLiAcq(indirect mem, iRegLNoSp newval, immLAdd incr) 6288 %{ 6289 predicate(needs_acquiring_load_reserved(n)); 6290 6291 match(Set newval (GetAndAddL mem incr)); 6292 6293 ins_cost(ALU_COST); 6294 6295 format %{ "get_and_addL_acq $newval, [$mem], $incr\t#@get_and_addLiAcq" %} 6296 6297 ins_encode %{ 6298 __ atomic_addal($newval$$Register, $incr$$constant, as_Register($mem$$base)); 6299 %} 6300 6301 ins_pipe(pipe_serial); 6302 %} 6303 6304 instruct get_and_addLi_no_resAcq(indirect mem, Universe dummy, immLAdd incr) 6305 %{ 6306 predicate(n->as_LoadStore()->result_not_used() && needs_acquiring_load_reserved(n)); 6307 6308 match(Set dummy (GetAndAddL mem incr)); 6309 6310 ins_cost(ALU_COST); 6311 6312 format %{ "get_and_addL_acq [$mem], $incr\t#@get_and_addLi_no_resAcq" %} 6313 6314 ins_encode %{ 6315 __ atomic_addal(noreg, $incr$$constant, as_Register($mem$$base)); 6316 %} 6317 6318 ins_pipe(pipe_serial); 6319 %} 6320 6321 instruct get_and_addIAcq(indirect mem, iRegINoSp newval, iRegIorL2I incr) 6322 %{ 6323 predicate(needs_acquiring_load_reserved(n)); 6324 6325 match(Set newval (GetAndAddI mem incr)); 6326 6327 ins_cost(ALU_COST); 6328 6329 format %{ "get_and_addI_acq $newval, [$mem], $incr\t#@get_and_addIAcq" %} 6330 6331 ins_encode %{ 6332 __ atomic_addalw($newval$$Register, $incr$$Register, as_Register($mem$$base)); 6333 %} 6334 6335 ins_pipe(pipe_serial); 6336 %} 6337 6338 instruct get_and_addI_no_resAcq(indirect mem, Universe dummy, iRegIorL2I incr) 6339 %{ 6340 predicate(n->as_LoadStore()->result_not_used() && needs_acquiring_load_reserved(n)); 6341 6342 match(Set dummy (GetAndAddI mem incr)); 6343 6344 ins_cost(ALU_COST); 6345 6346 format %{ "get_and_addI_acq [$mem], $incr\t#@get_and_addI_no_resAcq" %} 6347 6348 ins_encode %{ 6349 __ atomic_addalw(noreg, $incr$$Register, as_Register($mem$$base)); 6350 %} 6351 6352 ins_pipe(pipe_serial); 6353 %} 6354 6355 instruct get_and_addIiAcq(indirect mem, iRegINoSp newval, immIAdd incr) 6356 %{ 6357 predicate(needs_acquiring_load_reserved(n)); 6358 6359 match(Set newval (GetAndAddI mem incr)); 6360 6361 ins_cost(ALU_COST); 6362 6363 format %{ "get_and_addI_acq $newval, [$mem], $incr\t#@get_and_addIiAcq" %} 6364 6365 ins_encode %{ 6366 __ atomic_addalw($newval$$Register, $incr$$constant, as_Register($mem$$base)); 6367 %} 6368 6369 ins_pipe(pipe_serial); 6370 %} 6371 6372 instruct get_and_addIi_no_resAcq(indirect mem, Universe dummy, immIAdd incr) 6373 %{ 6374 predicate(n->as_LoadStore()->result_not_used() && needs_acquiring_load_reserved(n)); 6375 6376 match(Set dummy (GetAndAddI mem incr)); 6377 6378 ins_cost(ALU_COST); 6379 6380 format %{ "get_and_addI_acq [$mem], $incr\t#@get_and_addIi_no_resAcq" %} 6381 6382 ins_encode %{ 6383 __ atomic_addalw(noreg, $incr$$constant, as_Register($mem$$base)); 6384 %} 6385 6386 ins_pipe(pipe_serial); 6387 %} 6388 6389 // ============================================================================ 6390 // Arithmetic Instructions 6391 // 6392 6393 // Integer Addition 6394 6395 // TODO 6396 // these currently employ operations which do not set CR and hence are 6397 // not flagged as killing CR but we would like to isolate the cases 6398 // where we want to set flags from those where we don't. need to work 6399 // out how to do that. 6400 instruct addI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{ 6401 match(Set dst (AddI src1 src2)); 6402 6403 ins_cost(ALU_COST); 6404 format %{ "addw $dst, $src1, $src2\t#@addI_reg_reg" %} 6405 6406 ins_encode %{ 6407 __ addw(as_Register($dst$$reg), 6408 as_Register($src1$$reg), 6409 as_Register($src2$$reg)); 6410 %} 6411 6412 ins_pipe(ialu_reg_reg); 6413 %} 6414 6415 instruct addI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immIAdd src2) %{ 6416 match(Set dst (AddI src1 src2)); 6417 6418 ins_cost(ALU_COST); 6419 format %{ "addiw $dst, $src1, $src2\t#@addI_reg_imm" %} 6420 6421 ins_encode %{ 6422 int32_t con = (int32_t)$src2$$constant; 6423 __ addiw(as_Register($dst$$reg), 6424 as_Register($src1$$reg), 6425 $src2$$constant); 6426 %} 6427 6428 ins_pipe(ialu_reg_imm); 6429 %} 6430 6431 instruct addI_reg_imm_l2i(iRegINoSp dst, iRegL src1, immIAdd src2) %{ 6432 match(Set dst (AddI (ConvL2I src1) src2)); 6433 6434 ins_cost(ALU_COST); 6435 format %{ "addiw $dst, $src1, $src2\t#@addI_reg_imm_l2i" %} 6436 6437 ins_encode %{ 6438 __ addiw(as_Register($dst$$reg), 6439 as_Register($src1$$reg), 6440 $src2$$constant); 6441 %} 6442 6443 ins_pipe(ialu_reg_imm); 6444 %} 6445 6446 // Pointer Addition 6447 instruct addP_reg_reg(iRegPNoSp dst, iRegP src1, iRegL src2) %{ 6448 match(Set dst (AddP src1 src2)); 6449 6450 ins_cost(ALU_COST); 6451 format %{ "add $dst, $src1, $src2\t# ptr, #@addP_reg_reg" %} 6452 6453 ins_encode %{ 6454 __ add(as_Register($dst$$reg), 6455 as_Register($src1$$reg), 6456 as_Register($src2$$reg)); 6457 %} 6458 6459 ins_pipe(ialu_reg_reg); 6460 %} 6461 6462 // If we shift more than 32 bits, we need not convert I2L. 6463 instruct lShiftL_regI_immGE32(iRegLNoSp dst, iRegI src, uimmI6_ge32 scale) %{ 6464 match(Set dst (LShiftL (ConvI2L src) scale)); 6465 ins_cost(ALU_COST); 6466 format %{ "slli $dst, $src, $scale & 63\t#@lShiftL_regI_immGE32" %} 6467 6468 ins_encode %{ 6469 __ slli(as_Register($dst$$reg), as_Register($src$$reg), $scale$$constant & 63); 6470 %} 6471 6472 ins_pipe(ialu_reg_shift); 6473 %} 6474 6475 // Pointer Immediate Addition 6476 // n.b. this needs to be more expensive than using an indirect memory 6477 // operand 6478 instruct addP_reg_imm(iRegPNoSp dst, iRegP src1, immLAdd src2) %{ 6479 match(Set dst (AddP src1 src2)); 6480 ins_cost(ALU_COST); 6481 format %{ "addi $dst, $src1, $src2\t# ptr, #@addP_reg_imm" %} 6482 6483 ins_encode %{ 6484 // src2 is imm, so actually call the addi 6485 __ add(as_Register($dst$$reg), 6486 as_Register($src1$$reg), 6487 $src2$$constant); 6488 %} 6489 6490 ins_pipe(ialu_reg_imm); 6491 %} 6492 6493 // Long Addition 6494 instruct addL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2) %{ 6495 match(Set dst (AddL src1 src2)); 6496 ins_cost(ALU_COST); 6497 format %{ "add $dst, $src1, $src2\t#@addL_reg_reg" %} 6498 6499 ins_encode %{ 6500 __ add(as_Register($dst$$reg), 6501 as_Register($src1$$reg), 6502 as_Register($src2$$reg)); 6503 %} 6504 6505 ins_pipe(ialu_reg_reg); 6506 %} 6507 6508 // No constant pool entries requiredLong Immediate Addition. 6509 instruct addL_reg_imm(iRegLNoSp dst, iRegL src1, immLAdd src2) %{ 6510 match(Set dst (AddL src1 src2)); 6511 ins_cost(ALU_COST); 6512 format %{ "addi $dst, $src1, $src2\t#@addL_reg_imm" %} 6513 6514 ins_encode %{ 6515 // src2 is imm, so actually call the addi 6516 __ add(as_Register($dst$$reg), 6517 as_Register($src1$$reg), 6518 $src2$$constant); 6519 %} 6520 6521 ins_pipe(ialu_reg_imm); 6522 %} 6523 6524 // Integer Subtraction 6525 instruct subI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{ 6526 match(Set dst (SubI src1 src2)); 6527 6528 ins_cost(ALU_COST); 6529 format %{ "subw $dst, $src1, $src2\t#@subI_reg_reg" %} 6530 6531 ins_encode %{ 6532 __ subw(as_Register($dst$$reg), 6533 as_Register($src1$$reg), 6534 as_Register($src2$$reg)); 6535 %} 6536 6537 ins_pipe(ialu_reg_reg); 6538 %} 6539 6540 // Immediate Subtraction 6541 instruct subI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immISub src2) %{ 6542 match(Set dst (SubI src1 src2)); 6543 6544 ins_cost(ALU_COST); 6545 format %{ "addiw $dst, $src1, -$src2\t#@subI_reg_imm" %} 6546 6547 ins_encode %{ 6548 // src2 is imm, so actually call the addiw 6549 __ subw(as_Register($dst$$reg), 6550 as_Register($src1$$reg), 6551 $src2$$constant); 6552 %} 6553 6554 ins_pipe(ialu_reg_imm); 6555 %} 6556 6557 // Long Subtraction 6558 instruct subL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2) %{ 6559 match(Set dst (SubL src1 src2)); 6560 ins_cost(ALU_COST); 6561 format %{ "sub $dst, $src1, $src2\t#@subL_reg_reg" %} 6562 6563 ins_encode %{ 6564 __ sub(as_Register($dst$$reg), 6565 as_Register($src1$$reg), 6566 as_Register($src2$$reg)); 6567 %} 6568 6569 ins_pipe(ialu_reg_reg); 6570 %} 6571 6572 // No constant pool entries requiredLong Immediate Subtraction. 6573 instruct subL_reg_imm(iRegLNoSp dst, iRegL src1, immLSub src2) %{ 6574 match(Set dst (SubL src1 src2)); 6575 ins_cost(ALU_COST); 6576 format %{ "addi $dst, $src1, -$src2\t#@subL_reg_imm" %} 6577 6578 ins_encode %{ 6579 // src2 is imm, so actually call the addi 6580 __ sub(as_Register($dst$$reg), 6581 as_Register($src1$$reg), 6582 $src2$$constant); 6583 %} 6584 6585 ins_pipe(ialu_reg_imm); 6586 %} 6587 6588 // Integer Negation (special case for sub) 6589 6590 instruct negI_reg(iRegINoSp dst, iRegIorL2I src, immI0 zero) %{ 6591 match(Set dst (SubI zero src)); 6592 ins_cost(ALU_COST); 6593 format %{ "subw $dst, x0, $src\t# int, #@negI_reg" %} 6594 6595 ins_encode %{ 6596 // actually call the subw 6597 __ negw(as_Register($dst$$reg), 6598 as_Register($src$$reg)); 6599 %} 6600 6601 ins_pipe(ialu_reg); 6602 %} 6603 6604 // Long Negation 6605 6606 instruct negL_reg(iRegLNoSp dst, iRegL src, immL0 zero) %{ 6607 match(Set dst (SubL zero src)); 6608 ins_cost(ALU_COST); 6609 format %{ "sub $dst, x0, $src\t# long, #@negL_reg" %} 6610 6611 ins_encode %{ 6612 // actually call the sub 6613 __ neg(as_Register($dst$$reg), 6614 as_Register($src$$reg)); 6615 %} 6616 6617 ins_pipe(ialu_reg); 6618 %} 6619 6620 // Integer Multiply 6621 6622 instruct mulI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{ 6623 match(Set dst (MulI src1 src2)); 6624 ins_cost(IMUL_COST); 6625 format %{ "mulw $dst, $src1, $src2\t#@mulI" %} 6626 6627 //this means 2 word multi, and no sign extend to 64 bits 6628 ins_encode %{ 6629 // riscv64 mulw will sign-extension to high 32 bits in dst reg 6630 __ mulw(as_Register($dst$$reg), 6631 as_Register($src1$$reg), 6632 as_Register($src2$$reg)); 6633 %} 6634 6635 ins_pipe(imul_reg_reg); 6636 %} 6637 6638 // Long Multiply 6639 6640 instruct mulL(iRegLNoSp dst, iRegL src1, iRegL src2) %{ 6641 match(Set dst (MulL src1 src2)); 6642 ins_cost(IMUL_COST); 6643 format %{ "mul $dst, $src1, $src2\t#@mulL" %} 6644 6645 ins_encode %{ 6646 __ mul(as_Register($dst$$reg), 6647 as_Register($src1$$reg), 6648 as_Register($src2$$reg)); 6649 %} 6650 6651 ins_pipe(lmul_reg_reg); 6652 %} 6653 6654 instruct mulHiL_rReg(iRegLNoSp dst, iRegL src1, iRegL src2) 6655 %{ 6656 match(Set dst (MulHiL src1 src2)); 6657 ins_cost(IMUL_COST); 6658 format %{ "mulh $dst, $src1, $src2\t# mulhi, #@mulHiL_rReg" %} 6659 6660 ins_encode %{ 6661 __ mulh(as_Register($dst$$reg), 6662 as_Register($src1$$reg), 6663 as_Register($src2$$reg)); 6664 %} 6665 6666 ins_pipe(lmul_reg_reg); 6667 %} 6668 6669 instruct umulHiL_rReg(iRegLNoSp dst, iRegL src1, iRegL src2) 6670 %{ 6671 match(Set dst (UMulHiL src1 src2)); 6672 ins_cost(IMUL_COST); 6673 format %{ "mulhu $dst, $src1, $src2\t# umulhi, #@umulHiL_rReg" %} 6674 6675 ins_encode %{ 6676 __ mulhu(as_Register($dst$$reg), 6677 as_Register($src1$$reg), 6678 as_Register($src2$$reg)); 6679 %} 6680 6681 ins_pipe(lmul_reg_reg); 6682 %} 6683 6684 // Integer Divide 6685 6686 instruct divI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{ 6687 match(Set dst (DivI src1 src2)); 6688 ins_cost(IDIVSI_COST); 6689 format %{ "divw $dst, $src1, $src2\t#@divI"%} 6690 6691 ins_encode(riscv_enc_divw(dst, src1, src2)); 6692 ins_pipe(idiv_reg_reg); 6693 %} 6694 6695 instruct UdivI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{ 6696 match(Set dst (UDivI src1 src2)); 6697 ins_cost(IDIVSI_COST); 6698 format %{ "divuw $dst, $src1, $src2\t#@UdivI"%} 6699 6700 ins_encode(riscv_enc_divuw(dst, src1, src2)); 6701 ins_pipe(idiv_reg_reg); 6702 %} 6703 6704 instruct signExtract(iRegINoSp dst, iRegIorL2I src1, immI_31 div1, immI_31 div2) %{ 6705 match(Set dst (URShiftI (RShiftI src1 div1) div2)); 6706 ins_cost(ALU_COST); 6707 format %{ "srliw $dst, $src1, $div1\t# int signExtract, #@signExtract" %} 6708 6709 ins_encode %{ 6710 __ srliw(as_Register($dst$$reg), as_Register($src1$$reg), 31); 6711 %} 6712 ins_pipe(ialu_reg_shift); 6713 %} 6714 6715 // Long Divide 6716 6717 instruct divL(iRegLNoSp dst, iRegL src1, iRegL src2) %{ 6718 match(Set dst (DivL src1 src2)); 6719 ins_cost(IDIVDI_COST); 6720 format %{ "div $dst, $src1, $src2\t#@divL" %} 6721 6722 ins_encode(riscv_enc_div(dst, src1, src2)); 6723 ins_pipe(ldiv_reg_reg); 6724 %} 6725 6726 instruct UdivL(iRegLNoSp dst, iRegL src1, iRegL src2) %{ 6727 match(Set dst (UDivL src1 src2)); 6728 ins_cost(IDIVDI_COST); 6729 6730 format %{ "divu $dst, $src1, $src2\t#@UdivL" %} 6731 6732 ins_encode(riscv_enc_divu(dst, src1, src2)); 6733 ins_pipe(ldiv_reg_reg); 6734 %} 6735 6736 instruct signExtractL(iRegLNoSp dst, iRegL src1, immI_63 div1, immI_63 div2) %{ 6737 match(Set dst (URShiftL (RShiftL src1 div1) div2)); 6738 ins_cost(ALU_COST); 6739 format %{ "srli $dst, $src1, $div1\t# long signExtract, #@signExtractL" %} 6740 6741 ins_encode %{ 6742 __ srli(as_Register($dst$$reg), as_Register($src1$$reg), 63); 6743 %} 6744 ins_pipe(ialu_reg_shift); 6745 %} 6746 6747 // Integer Remainder 6748 6749 instruct modI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{ 6750 match(Set dst (ModI src1 src2)); 6751 ins_cost(IDIVSI_COST); 6752 format %{ "remw $dst, $src1, $src2\t#@modI" %} 6753 6754 ins_encode(riscv_enc_modw(dst, src1, src2)); 6755 ins_pipe(ialu_reg_reg); 6756 %} 6757 6758 instruct UmodI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{ 6759 match(Set dst (UModI src1 src2)); 6760 ins_cost(IDIVSI_COST); 6761 format %{ "remuw $dst, $src1, $src2\t#@UmodI" %} 6762 6763 ins_encode(riscv_enc_moduw(dst, src1, src2)); 6764 ins_pipe(ialu_reg_reg); 6765 %} 6766 6767 // Long Remainder 6768 6769 instruct modL(iRegLNoSp dst, iRegL src1, iRegL src2) %{ 6770 match(Set dst (ModL src1 src2)); 6771 ins_cost(IDIVDI_COST); 6772 format %{ "rem $dst, $src1, $src2\t#@modL" %} 6773 6774 ins_encode(riscv_enc_mod(dst, src1, src2)); 6775 ins_pipe(ialu_reg_reg); 6776 %} 6777 6778 instruct UmodL(iRegLNoSp dst, iRegL src1, iRegL src2) %{ 6779 match(Set dst (UModL src1 src2)); 6780 ins_cost(IDIVDI_COST); 6781 format %{ "remu $dst, $src1, $src2\t#@UmodL" %} 6782 6783 ins_encode(riscv_enc_modu(dst, src1, src2)); 6784 ins_pipe(ialu_reg_reg); 6785 %} 6786 6787 // Integer Shifts 6788 6789 // Shift Left Register 6790 // In RV64I, only the low 5 bits of src2 are considered for the shift amount 6791 instruct lShiftI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{ 6792 match(Set dst (LShiftI src1 src2)); 6793 ins_cost(ALU_COST); 6794 format %{ "sllw $dst, $src1, $src2\t#@lShiftI_reg_reg" %} 6795 6796 ins_encode %{ 6797 __ sllw(as_Register($dst$$reg), 6798 as_Register($src1$$reg), 6799 as_Register($src2$$reg)); 6800 %} 6801 6802 ins_pipe(ialu_reg_reg_vshift); 6803 %} 6804 6805 // Shift Left Immediate 6806 instruct lShiftI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immI src2) %{ 6807 match(Set dst (LShiftI src1 src2)); 6808 ins_cost(ALU_COST); 6809 format %{ "slliw $dst, $src1, ($src2 & 0x1f)\t#@lShiftI_reg_imm" %} 6810 6811 ins_encode %{ 6812 // the shift amount is encoded in the lower 6813 // 5 bits of the I-immediate field for RV32I 6814 __ slliw(as_Register($dst$$reg), 6815 as_Register($src1$$reg), 6816 (unsigned) $src2$$constant & 0x1f); 6817 %} 6818 6819 ins_pipe(ialu_reg_shift); 6820 %} 6821 6822 // Shift Right Logical Register 6823 // In RV64I, only the low 5 bits of src2 are considered for the shift amount 6824 instruct urShiftI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{ 6825 match(Set dst (URShiftI src1 src2)); 6826 ins_cost(ALU_COST); 6827 format %{ "srlw $dst, $src1, $src2\t#@urShiftI_reg_reg" %} 6828 6829 ins_encode %{ 6830 __ srlw(as_Register($dst$$reg), 6831 as_Register($src1$$reg), 6832 as_Register($src2$$reg)); 6833 %} 6834 6835 ins_pipe(ialu_reg_reg_vshift); 6836 %} 6837 6838 // Shift Right Logical Immediate 6839 instruct urShiftI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immI src2) %{ 6840 match(Set dst (URShiftI src1 src2)); 6841 ins_cost(ALU_COST); 6842 format %{ "srliw $dst, $src1, ($src2 & 0x1f)\t#@urShiftI_reg_imm" %} 6843 6844 ins_encode %{ 6845 // the shift amount is encoded in the lower 6846 // 6 bits of the I-immediate field for RV64I 6847 __ srliw(as_Register($dst$$reg), 6848 as_Register($src1$$reg), 6849 (unsigned) $src2$$constant & 0x1f); 6850 %} 6851 6852 ins_pipe(ialu_reg_shift); 6853 %} 6854 6855 // Shift Right Arithmetic Register 6856 // In RV64I, only the low 5 bits of src2 are considered for the shift amount 6857 instruct rShiftI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{ 6858 match(Set dst (RShiftI src1 src2)); 6859 ins_cost(ALU_COST); 6860 format %{ "sraw $dst, $src1, $src2\t#@rShiftI_reg_reg" %} 6861 6862 ins_encode %{ 6863 // riscv will sign-ext dst high 32 bits 6864 __ sraw(as_Register($dst$$reg), 6865 as_Register($src1$$reg), 6866 as_Register($src2$$reg)); 6867 %} 6868 6869 ins_pipe(ialu_reg_reg_vshift); 6870 %} 6871 6872 // Shift Right Arithmetic Immediate 6873 instruct rShiftI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immI src2) %{ 6874 match(Set dst (RShiftI src1 src2)); 6875 ins_cost(ALU_COST); 6876 format %{ "sraiw $dst, $src1, ($src2 & 0x1f)\t#@rShiftI_reg_imm" %} 6877 6878 ins_encode %{ 6879 // riscv will sign-ext dst high 32 bits 6880 __ sraiw(as_Register($dst$$reg), 6881 as_Register($src1$$reg), 6882 (unsigned) $src2$$constant & 0x1f); 6883 %} 6884 6885 ins_pipe(ialu_reg_shift); 6886 %} 6887 6888 // Long Shifts 6889 6890 // Shift Left Register 6891 // In RV64I, only the low 6 bits of src2 are considered for the shift amount 6892 instruct lShiftL_reg_reg(iRegLNoSp dst, iRegL src1, iRegIorL2I src2) %{ 6893 match(Set dst (LShiftL src1 src2)); 6894 6895 ins_cost(ALU_COST); 6896 format %{ "sll $dst, $src1, $src2\t#@lShiftL_reg_reg" %} 6897 6898 ins_encode %{ 6899 __ sll(as_Register($dst$$reg), 6900 as_Register($src1$$reg), 6901 as_Register($src2$$reg)); 6902 %} 6903 6904 ins_pipe(ialu_reg_reg_vshift); 6905 %} 6906 6907 // Shift Left Immediate 6908 instruct lShiftL_reg_imm(iRegLNoSp dst, iRegL src1, immI src2) %{ 6909 match(Set dst (LShiftL src1 src2)); 6910 6911 ins_cost(ALU_COST); 6912 format %{ "slli $dst, $src1, ($src2 & 0x3f)\t#@lShiftL_reg_imm" %} 6913 6914 ins_encode %{ 6915 // the shift amount is encoded in the lower 6916 // 6 bits of the I-immediate field for RV64I 6917 __ slli(as_Register($dst$$reg), 6918 as_Register($src1$$reg), 6919 (unsigned) $src2$$constant & 0x3f); 6920 %} 6921 6922 ins_pipe(ialu_reg_shift); 6923 %} 6924 6925 // Shift Right Logical Register 6926 // In RV64I, only the low 6 bits of src2 are considered for the shift amount 6927 instruct urShiftL_reg_reg(iRegLNoSp dst, iRegL src1, iRegIorL2I src2) %{ 6928 match(Set dst (URShiftL src1 src2)); 6929 6930 ins_cost(ALU_COST); 6931 format %{ "srl $dst, $src1, $src2\t#@urShiftL_reg_reg" %} 6932 6933 ins_encode %{ 6934 __ srl(as_Register($dst$$reg), 6935 as_Register($src1$$reg), 6936 as_Register($src2$$reg)); 6937 %} 6938 6939 ins_pipe(ialu_reg_reg_vshift); 6940 %} 6941 6942 // Shift Right Logical Immediate 6943 instruct urShiftL_reg_imm(iRegLNoSp dst, iRegL src1, immI src2) %{ 6944 match(Set dst (URShiftL src1 src2)); 6945 6946 ins_cost(ALU_COST); 6947 format %{ "srli $dst, $src1, ($src2 & 0x3f)\t#@urShiftL_reg_imm" %} 6948 6949 ins_encode %{ 6950 // the shift amount is encoded in the lower 6951 // 6 bits of the I-immediate field for RV64I 6952 __ srli(as_Register($dst$$reg), 6953 as_Register($src1$$reg), 6954 (unsigned) $src2$$constant & 0x3f); 6955 %} 6956 6957 ins_pipe(ialu_reg_shift); 6958 %} 6959 6960 // A special-case pattern for card table stores. 6961 instruct urShiftP_reg_imm(iRegLNoSp dst, iRegP src1, immI src2) %{ 6962 match(Set dst (URShiftL (CastP2X src1) src2)); 6963 6964 ins_cost(ALU_COST); 6965 format %{ "srli $dst, p2x($src1), ($src2 & 0x3f)\t#@urShiftP_reg_imm" %} 6966 6967 ins_encode %{ 6968 // the shift amount is encoded in the lower 6969 // 6 bits of the I-immediate field for RV64I 6970 __ srli(as_Register($dst$$reg), 6971 as_Register($src1$$reg), 6972 (unsigned) $src2$$constant & 0x3f); 6973 %} 6974 6975 ins_pipe(ialu_reg_shift); 6976 %} 6977 6978 // Shift Right Arithmetic Register 6979 // In RV64I, only the low 6 bits of src2 are considered for the shift amount 6980 instruct rShiftL_reg_reg(iRegLNoSp dst, iRegL src1, iRegIorL2I src2) %{ 6981 match(Set dst (RShiftL src1 src2)); 6982 6983 ins_cost(ALU_COST); 6984 format %{ "sra $dst, $src1, $src2\t#@rShiftL_reg_reg" %} 6985 6986 ins_encode %{ 6987 __ sra(as_Register($dst$$reg), 6988 as_Register($src1$$reg), 6989 as_Register($src2$$reg)); 6990 %} 6991 6992 ins_pipe(ialu_reg_reg_vshift); 6993 %} 6994 6995 // Shift Right Arithmetic Immediate 6996 instruct rShiftL_reg_imm(iRegLNoSp dst, iRegL src1, immI src2) %{ 6997 match(Set dst (RShiftL src1 src2)); 6998 6999 ins_cost(ALU_COST); 7000 format %{ "srai $dst, $src1, ($src2 & 0x3f)\t#@rShiftL_reg_imm" %} 7001 7002 ins_encode %{ 7003 // the shift amount is encoded in the lower 7004 // 6 bits of the I-immediate field for RV64I 7005 __ srai(as_Register($dst$$reg), 7006 as_Register($src1$$reg), 7007 (unsigned) $src2$$constant & 0x3f); 7008 %} 7009 7010 ins_pipe(ialu_reg_shift); 7011 %} 7012 7013 instruct regI_not_reg(iRegINoSp dst, iRegI src1, immI_M1 m1) %{ 7014 match(Set dst (XorI src1 m1)); 7015 ins_cost(ALU_COST); 7016 format %{ "xori $dst, $src1, -1\t#@regI_not_reg" %} 7017 7018 ins_encode %{ 7019 __ xori(as_Register($dst$$reg), as_Register($src1$$reg), -1); 7020 %} 7021 7022 ins_pipe(ialu_reg_imm); 7023 %} 7024 7025 instruct regL_not_reg(iRegLNoSp dst, iRegL src1, immL_M1 m1) %{ 7026 match(Set dst (XorL src1 m1)); 7027 ins_cost(ALU_COST); 7028 format %{ "xori $dst, $src1, -1\t#@regL_not_reg" %} 7029 7030 ins_encode %{ 7031 __ xori(as_Register($dst$$reg), as_Register($src1$$reg), -1); 7032 %} 7033 7034 ins_pipe(ialu_reg_imm); 7035 %} 7036 7037 7038 // ============================================================================ 7039 // Floating Point Arithmetic Instructions 7040 7041 instruct addF_reg_reg(fRegF dst, fRegF src1, fRegF src2) %{ 7042 match(Set dst (AddF src1 src2)); 7043 7044 ins_cost(DEFAULT_COST * 5); 7045 format %{ "fadd.s $dst, $src1, $src2\t#@addF_reg_reg" %} 7046 7047 ins_encode %{ 7048 __ fadd_s(as_FloatRegister($dst$$reg), 7049 as_FloatRegister($src1$$reg), 7050 as_FloatRegister($src2$$reg)); 7051 %} 7052 7053 ins_pipe(fp_dop_reg_reg_s); 7054 %} 7055 7056 instruct addD_reg_reg(fRegD dst, fRegD src1, fRegD src2) %{ 7057 match(Set dst (AddD src1 src2)); 7058 7059 ins_cost(DEFAULT_COST * 5); 7060 format %{ "fadd.d $dst, $src1, $src2\t#@addD_reg_reg" %} 7061 7062 ins_encode %{ 7063 __ fadd_d(as_FloatRegister($dst$$reg), 7064 as_FloatRegister($src1$$reg), 7065 as_FloatRegister($src2$$reg)); 7066 %} 7067 7068 ins_pipe(fp_dop_reg_reg_d); 7069 %} 7070 7071 instruct subF_reg_reg(fRegF dst, fRegF src1, fRegF src2) %{ 7072 match(Set dst (SubF src1 src2)); 7073 7074 ins_cost(DEFAULT_COST * 5); 7075 format %{ "fsub.s $dst, $src1, $src2\t#@subF_reg_reg" %} 7076 7077 ins_encode %{ 7078 __ fsub_s(as_FloatRegister($dst$$reg), 7079 as_FloatRegister($src1$$reg), 7080 as_FloatRegister($src2$$reg)); 7081 %} 7082 7083 ins_pipe(fp_dop_reg_reg_s); 7084 %} 7085 7086 instruct subD_reg_reg(fRegD dst, fRegD src1, fRegD src2) %{ 7087 match(Set dst (SubD src1 src2)); 7088 7089 ins_cost(DEFAULT_COST * 5); 7090 format %{ "fsub.d $dst, $src1, $src2\t#@subD_reg_reg" %} 7091 7092 ins_encode %{ 7093 __ fsub_d(as_FloatRegister($dst$$reg), 7094 as_FloatRegister($src1$$reg), 7095 as_FloatRegister($src2$$reg)); 7096 %} 7097 7098 ins_pipe(fp_dop_reg_reg_d); 7099 %} 7100 7101 instruct mulF_reg_reg(fRegF dst, fRegF src1, fRegF src2) %{ 7102 match(Set dst (MulF src1 src2)); 7103 7104 ins_cost(FMUL_SINGLE_COST); 7105 format %{ "fmul.s $dst, $src1, $src2\t#@mulF_reg_reg" %} 7106 7107 ins_encode %{ 7108 __ fmul_s(as_FloatRegister($dst$$reg), 7109 as_FloatRegister($src1$$reg), 7110 as_FloatRegister($src2$$reg)); 7111 %} 7112 7113 ins_pipe(fp_dop_reg_reg_s); 7114 %} 7115 7116 instruct mulD_reg_reg(fRegD dst, fRegD src1, fRegD src2) %{ 7117 match(Set dst (MulD src1 src2)); 7118 7119 ins_cost(FMUL_DOUBLE_COST); 7120 format %{ "fmul.d $dst, $src1, $src2\t#@mulD_reg_reg" %} 7121 7122 ins_encode %{ 7123 __ fmul_d(as_FloatRegister($dst$$reg), 7124 as_FloatRegister($src1$$reg), 7125 as_FloatRegister($src2$$reg)); 7126 %} 7127 7128 ins_pipe(fp_dop_reg_reg_d); 7129 %} 7130 7131 // src1 * src2 + src3 7132 instruct maddF_reg_reg(fRegF dst, fRegF src1, fRegF src2, fRegF src3) %{ 7133 match(Set dst (FmaF src3 (Binary src1 src2))); 7134 7135 ins_cost(FMUL_SINGLE_COST); 7136 format %{ "fmadd.s $dst, $src1, $src2, $src3\t#@maddF_reg_reg" %} 7137 7138 ins_encode %{ 7139 assert(UseFMA, "Needs FMA instructions support."); 7140 __ fmadd_s(as_FloatRegister($dst$$reg), 7141 as_FloatRegister($src1$$reg), 7142 as_FloatRegister($src2$$reg), 7143 as_FloatRegister($src3$$reg)); 7144 %} 7145 7146 ins_pipe(pipe_class_default); 7147 %} 7148 7149 // src1 * src2 + src3 7150 instruct maddD_reg_reg(fRegD dst, fRegD src1, fRegD src2, fRegD src3) %{ 7151 match(Set dst (FmaD src3 (Binary src1 src2))); 7152 7153 ins_cost(FMUL_DOUBLE_COST); 7154 format %{ "fmadd.d $dst, $src1, $src2, $src3\t#@maddD_reg_reg" %} 7155 7156 ins_encode %{ 7157 assert(UseFMA, "Needs FMA instructions support."); 7158 __ fmadd_d(as_FloatRegister($dst$$reg), 7159 as_FloatRegister($src1$$reg), 7160 as_FloatRegister($src2$$reg), 7161 as_FloatRegister($src3$$reg)); 7162 %} 7163 7164 ins_pipe(pipe_class_default); 7165 %} 7166 7167 // src1 * src2 - src3 7168 instruct msubF_reg_reg(fRegF dst, fRegF src1, fRegF src2, fRegF src3) %{ 7169 match(Set dst (FmaF (NegF src3) (Binary src1 src2))); 7170 7171 ins_cost(FMUL_SINGLE_COST); 7172 format %{ "fmsub.s $dst, $src1, $src2, $src3\t#@msubF_reg_reg" %} 7173 7174 ins_encode %{ 7175 assert(UseFMA, "Needs FMA instructions support."); 7176 __ fmsub_s(as_FloatRegister($dst$$reg), 7177 as_FloatRegister($src1$$reg), 7178 as_FloatRegister($src2$$reg), 7179 as_FloatRegister($src3$$reg)); 7180 %} 7181 7182 ins_pipe(pipe_class_default); 7183 %} 7184 7185 // src1 * src2 - src3 7186 instruct msubD_reg_reg(fRegD dst, fRegD src1, fRegD src2, fRegD src3) %{ 7187 match(Set dst (FmaD (NegD src3) (Binary src1 src2))); 7188 7189 ins_cost(FMUL_DOUBLE_COST); 7190 format %{ "fmsub.d $dst, $src1, $src2, $src3\t#@msubD_reg_reg" %} 7191 7192 ins_encode %{ 7193 assert(UseFMA, "Needs FMA instructions support."); 7194 __ fmsub_d(as_FloatRegister($dst$$reg), 7195 as_FloatRegister($src1$$reg), 7196 as_FloatRegister($src2$$reg), 7197 as_FloatRegister($src3$$reg)); 7198 %} 7199 7200 ins_pipe(pipe_class_default); 7201 %} 7202 7203 // src1 * (-src2) + src3 7204 // "(-src1) * src2 + src3" has been idealized to "src2 * (-src1) + src3" 7205 instruct nmsubF_reg_reg(fRegF dst, fRegF src1, fRegF src2, fRegF src3) %{ 7206 match(Set dst (FmaF src3 (Binary src1 (NegF src2)))); 7207 7208 ins_cost(FMUL_SINGLE_COST); 7209 format %{ "fnmsub.s $dst, $src1, $src2, $src3\t#@nmsubF_reg_reg" %} 7210 7211 ins_encode %{ 7212 assert(UseFMA, "Needs FMA instructions support."); 7213 __ fnmsub_s(as_FloatRegister($dst$$reg), 7214 as_FloatRegister($src1$$reg), 7215 as_FloatRegister($src2$$reg), 7216 as_FloatRegister($src3$$reg)); 7217 %} 7218 7219 ins_pipe(pipe_class_default); 7220 %} 7221 7222 // src1 * (-src2) + src3 7223 // "(-src1) * src2 + src3" has been idealized to "src2 * (-src1) + src3" 7224 instruct nmsubD_reg_reg(fRegD dst, fRegD src1, fRegD src2, fRegD src3) %{ 7225 match(Set dst (FmaD src3 (Binary src1 (NegD src2)))); 7226 7227 ins_cost(FMUL_DOUBLE_COST); 7228 format %{ "fnmsub.d $dst, $src1, $src2, $src3\t#@nmsubD_reg_reg" %} 7229 7230 ins_encode %{ 7231 assert(UseFMA, "Needs FMA instructions support."); 7232 __ fnmsub_d(as_FloatRegister($dst$$reg), 7233 as_FloatRegister($src1$$reg), 7234 as_FloatRegister($src2$$reg), 7235 as_FloatRegister($src3$$reg)); 7236 %} 7237 7238 ins_pipe(pipe_class_default); 7239 %} 7240 7241 // src1 * (-src2) - src3 7242 // "(-src1) * src2 - src3" has been idealized to "src2 * (-src1) - src3" 7243 instruct nmaddF_reg_reg(fRegF dst, fRegF src1, fRegF src2, fRegF src3) %{ 7244 match(Set dst (FmaF (NegF src3) (Binary src1 (NegF src2)))); 7245 7246 ins_cost(FMUL_SINGLE_COST); 7247 format %{ "fnmadd.s $dst, $src1, $src2, $src3\t#@nmaddF_reg_reg" %} 7248 7249 ins_encode %{ 7250 assert(UseFMA, "Needs FMA instructions support."); 7251 __ fnmadd_s(as_FloatRegister($dst$$reg), 7252 as_FloatRegister($src1$$reg), 7253 as_FloatRegister($src2$$reg), 7254 as_FloatRegister($src3$$reg)); 7255 %} 7256 7257 ins_pipe(pipe_class_default); 7258 %} 7259 7260 // src1 * (-src2) - src3 7261 // "(-src1) * src2 - src3" has been idealized to "src2 * (-src1) - src3" 7262 instruct nmaddD_reg_reg(fRegD dst, fRegD src1, fRegD src2, fRegD src3) %{ 7263 match(Set dst (FmaD (NegD src3) (Binary src1 (NegD src2)))); 7264 7265 ins_cost(FMUL_DOUBLE_COST); 7266 format %{ "fnmadd.d $dst, $src1, $src2, $src3\t#@nmaddD_reg_reg" %} 7267 7268 ins_encode %{ 7269 assert(UseFMA, "Needs FMA instructions support."); 7270 __ fnmadd_d(as_FloatRegister($dst$$reg), 7271 as_FloatRegister($src1$$reg), 7272 as_FloatRegister($src2$$reg), 7273 as_FloatRegister($src3$$reg)); 7274 %} 7275 7276 ins_pipe(pipe_class_default); 7277 %} 7278 7279 // Math.max(FF)F 7280 instruct maxF_reg_reg(fRegF dst, fRegF src1, fRegF src2, rFlagsReg cr) %{ 7281 match(Set dst (MaxF src1 src2)); 7282 effect(TEMP_DEF dst, KILL cr); 7283 7284 format %{ "maxF $dst, $src1, $src2" %} 7285 7286 ins_encode %{ 7287 __ minmax_fp(as_FloatRegister($dst$$reg), 7288 as_FloatRegister($src1$$reg), as_FloatRegister($src2$$reg), 7289 false /* is_double */, false /* is_min */); 7290 %} 7291 7292 ins_pipe(pipe_class_default); 7293 %} 7294 7295 // Math.min(FF)F 7296 instruct minF_reg_reg(fRegF dst, fRegF src1, fRegF src2, rFlagsReg cr) %{ 7297 match(Set dst (MinF src1 src2)); 7298 effect(TEMP_DEF dst, KILL cr); 7299 7300 format %{ "minF $dst, $src1, $src2" %} 7301 7302 ins_encode %{ 7303 __ minmax_fp(as_FloatRegister($dst$$reg), 7304 as_FloatRegister($src1$$reg), as_FloatRegister($src2$$reg), 7305 false /* is_double */, true /* is_min */); 7306 %} 7307 7308 ins_pipe(pipe_class_default); 7309 %} 7310 7311 // Math.max(DD)D 7312 instruct maxD_reg_reg(fRegD dst, fRegD src1, fRegD src2, rFlagsReg cr) %{ 7313 match(Set dst (MaxD src1 src2)); 7314 effect(TEMP_DEF dst, KILL cr); 7315 7316 format %{ "maxD $dst, $src1, $src2" %} 7317 7318 ins_encode %{ 7319 __ minmax_fp(as_FloatRegister($dst$$reg), 7320 as_FloatRegister($src1$$reg), as_FloatRegister($src2$$reg), 7321 true /* is_double */, false /* is_min */); 7322 %} 7323 7324 ins_pipe(pipe_class_default); 7325 %} 7326 7327 // Math.min(DD)D 7328 instruct minD_reg_reg(fRegD dst, fRegD src1, fRegD src2, rFlagsReg cr) %{ 7329 match(Set dst (MinD src1 src2)); 7330 effect(TEMP_DEF dst, KILL cr); 7331 7332 format %{ "minD $dst, $src1, $src2" %} 7333 7334 ins_encode %{ 7335 __ minmax_fp(as_FloatRegister($dst$$reg), 7336 as_FloatRegister($src1$$reg), as_FloatRegister($src2$$reg), 7337 true /* is_double */, true /* is_min */); 7338 %} 7339 7340 ins_pipe(pipe_class_default); 7341 %} 7342 7343 // Float.isInfinite 7344 instruct isInfiniteF_reg_reg(iRegINoSp dst, fRegF src) 7345 %{ 7346 match(Set dst (IsInfiniteF src)); 7347 7348 format %{ "isInfinite $dst, $src" %} 7349 ins_encode %{ 7350 __ fclass_s(as_Register($dst$$reg), as_FloatRegister($src$$reg)); 7351 __ andi(as_Register($dst$$reg), as_Register($dst$$reg), Assembler::fclass_mask::inf); 7352 __ slt(as_Register($dst$$reg), zr, as_Register($dst$$reg)); 7353 %} 7354 7355 ins_pipe(pipe_class_default); 7356 %} 7357 7358 // Double.isInfinite 7359 instruct isInfiniteD_reg_reg(iRegINoSp dst, fRegD src) 7360 %{ 7361 match(Set dst (IsInfiniteD src)); 7362 7363 format %{ "isInfinite $dst, $src" %} 7364 ins_encode %{ 7365 __ fclass_d(as_Register($dst$$reg), as_FloatRegister($src$$reg)); 7366 __ andi(as_Register($dst$$reg), as_Register($dst$$reg), Assembler::fclass_mask::inf); 7367 __ slt(as_Register($dst$$reg), zr, as_Register($dst$$reg)); 7368 %} 7369 7370 ins_pipe(pipe_class_default); 7371 %} 7372 7373 // Float.isFinite 7374 instruct isFiniteF_reg_reg(iRegINoSp dst, fRegF src) 7375 %{ 7376 match(Set dst (IsFiniteF src)); 7377 7378 format %{ "isFinite $dst, $src" %} 7379 ins_encode %{ 7380 __ fclass_s(as_Register($dst$$reg), as_FloatRegister($src$$reg)); 7381 __ andi(as_Register($dst$$reg), as_Register($dst$$reg), Assembler::fclass_mask::finite); 7382 __ slt(as_Register($dst$$reg), zr, as_Register($dst$$reg)); 7383 %} 7384 7385 ins_pipe(pipe_class_default); 7386 %} 7387 7388 // Double.isFinite 7389 instruct isFiniteD_reg_reg(iRegINoSp dst, fRegD src) 7390 %{ 7391 match(Set dst (IsFiniteD src)); 7392 7393 format %{ "isFinite $dst, $src" %} 7394 ins_encode %{ 7395 __ fclass_d(as_Register($dst$$reg), as_FloatRegister($src$$reg)); 7396 __ andi(as_Register($dst$$reg), as_Register($dst$$reg), Assembler::fclass_mask::finite); 7397 __ slt(as_Register($dst$$reg), zr, as_Register($dst$$reg)); 7398 %} 7399 7400 ins_pipe(pipe_class_default); 7401 %} 7402 7403 instruct divF_reg_reg(fRegF dst, fRegF src1, fRegF src2) %{ 7404 match(Set dst (DivF src1 src2)); 7405 7406 ins_cost(FDIV_COST); 7407 format %{ "fdiv.s $dst, $src1, $src2\t#@divF_reg_reg" %} 7408 7409 ins_encode %{ 7410 __ fdiv_s(as_FloatRegister($dst$$reg), 7411 as_FloatRegister($src1$$reg), 7412 as_FloatRegister($src2$$reg)); 7413 %} 7414 7415 ins_pipe(fp_div_s); 7416 %} 7417 7418 instruct divD_reg_reg(fRegD dst, fRegD src1, fRegD src2) %{ 7419 match(Set dst (DivD src1 src2)); 7420 7421 ins_cost(FDIV_COST); 7422 format %{ "fdiv.d $dst, $src1, $src2\t#@divD_reg_reg" %} 7423 7424 ins_encode %{ 7425 __ fdiv_d(as_FloatRegister($dst$$reg), 7426 as_FloatRegister($src1$$reg), 7427 as_FloatRegister($src2$$reg)); 7428 %} 7429 7430 ins_pipe(fp_div_d); 7431 %} 7432 7433 instruct negF_reg_reg(fRegF dst, fRegF src) %{ 7434 match(Set dst (NegF src)); 7435 7436 ins_cost(XFER_COST); 7437 format %{ "fsgnjn.s $dst, $src, $src\t#@negF_reg_reg" %} 7438 7439 ins_encode %{ 7440 __ fneg_s(as_FloatRegister($dst$$reg), 7441 as_FloatRegister($src$$reg)); 7442 %} 7443 7444 ins_pipe(fp_uop_s); 7445 %} 7446 7447 instruct negD_reg_reg(fRegD dst, fRegD src) %{ 7448 match(Set dst (NegD src)); 7449 7450 ins_cost(XFER_COST); 7451 format %{ "fsgnjn.d $dst, $src, $src\t#@negD_reg_reg" %} 7452 7453 ins_encode %{ 7454 __ fneg_d(as_FloatRegister($dst$$reg), 7455 as_FloatRegister($src$$reg)); 7456 %} 7457 7458 ins_pipe(fp_uop_d); 7459 %} 7460 7461 instruct absI_reg(iRegINoSp dst, iRegIorL2I src) %{ 7462 match(Set dst (AbsI src)); 7463 7464 ins_cost(ALU_COST * 3); 7465 format %{ 7466 "sraiw t0, $src, 0x1f\n\t" 7467 "addw $dst, $src, t0\n\t" 7468 "xorr $dst, $dst, t0\t#@absI_reg" 7469 %} 7470 7471 ins_encode %{ 7472 __ sraiw(t0, as_Register($src$$reg), 0x1f); 7473 __ addw(as_Register($dst$$reg), as_Register($src$$reg), t0); 7474 __ xorr(as_Register($dst$$reg), as_Register($dst$$reg), t0); 7475 %} 7476 7477 ins_pipe(pipe_class_default); 7478 %} 7479 7480 instruct absL_reg(iRegLNoSp dst, iRegL src) %{ 7481 match(Set dst (AbsL src)); 7482 7483 ins_cost(ALU_COST * 3); 7484 format %{ 7485 "srai t0, $src, 0x3f\n\t" 7486 "add $dst, $src, t0\n\t" 7487 "xorr $dst, $dst, t0\t#@absL_reg" 7488 %} 7489 7490 ins_encode %{ 7491 __ srai(t0, as_Register($src$$reg), 0x3f); 7492 __ add(as_Register($dst$$reg), as_Register($src$$reg), t0); 7493 __ xorr(as_Register($dst$$reg), as_Register($dst$$reg), t0); 7494 %} 7495 7496 ins_pipe(pipe_class_default); 7497 %} 7498 7499 instruct absF_reg(fRegF dst, fRegF src) %{ 7500 match(Set dst (AbsF src)); 7501 7502 ins_cost(XFER_COST); 7503 format %{ "fsgnjx.s $dst, $src, $src\t#@absF_reg" %} 7504 ins_encode %{ 7505 __ fabs_s(as_FloatRegister($dst$$reg), 7506 as_FloatRegister($src$$reg)); 7507 %} 7508 7509 ins_pipe(fp_uop_s); 7510 %} 7511 7512 instruct absD_reg(fRegD dst, fRegD src) %{ 7513 match(Set dst (AbsD src)); 7514 7515 ins_cost(XFER_COST); 7516 format %{ "fsgnjx.d $dst, $src, $src\t#@absD_reg" %} 7517 ins_encode %{ 7518 __ fabs_d(as_FloatRegister($dst$$reg), 7519 as_FloatRegister($src$$reg)); 7520 %} 7521 7522 ins_pipe(fp_uop_d); 7523 %} 7524 7525 instruct sqrtF_reg(fRegF dst, fRegF src) %{ 7526 match(Set dst (SqrtF src)); 7527 7528 ins_cost(FSQRT_COST); 7529 format %{ "fsqrt.s $dst, $src\t#@sqrtF_reg" %} 7530 ins_encode %{ 7531 __ fsqrt_s(as_FloatRegister($dst$$reg), 7532 as_FloatRegister($src$$reg)); 7533 %} 7534 7535 ins_pipe(fp_sqrt_s); 7536 %} 7537 7538 instruct sqrtD_reg(fRegD dst, fRegD src) %{ 7539 match(Set dst (SqrtD src)); 7540 7541 ins_cost(FSQRT_COST); 7542 format %{ "fsqrt.d $dst, $src\t#@sqrtD_reg" %} 7543 ins_encode %{ 7544 __ fsqrt_d(as_FloatRegister($dst$$reg), 7545 as_FloatRegister($src$$reg)); 7546 %} 7547 7548 ins_pipe(fp_sqrt_d); 7549 %} 7550 7551 // Round Instruction 7552 instruct roundD_reg(fRegD dst, fRegD src, immI rmode, iRegLNoSp tmp1, iRegLNoSp tmp2, iRegLNoSp tmp3) %{ 7553 match(Set dst (RoundDoubleMode src rmode)); 7554 ins_cost(2 * XFER_COST + BRANCH_COST); 7555 effect(TEMP_DEF dst, TEMP tmp1, TEMP tmp2, TEMP tmp3); 7556 7557 format %{ "RoundDoubleMode $src, $rmode" %} 7558 ins_encode %{ 7559 __ round_double_mode(as_FloatRegister($dst$$reg), 7560 as_FloatRegister($src$$reg), $rmode$$constant, $tmp1$$Register, $tmp2$$Register, $tmp3$$Register); 7561 %} 7562 ins_pipe(pipe_class_default); 7563 %} 7564 7565 // Copysign and signum intrinsics 7566 7567 instruct copySignD_reg(fRegD dst, fRegD src1, fRegD src2, immD zero) %{ 7568 match(Set dst (CopySignD src1 (Binary src2 zero))); 7569 format %{ "CopySignD $dst $src1 $src2" %} 7570 ins_encode %{ 7571 FloatRegister dst = as_FloatRegister($dst$$reg), 7572 src1 = as_FloatRegister($src1$$reg), 7573 src2 = as_FloatRegister($src2$$reg); 7574 __ fsgnj_d(dst, src1, src2); 7575 %} 7576 ins_pipe(fp_dop_reg_reg_d); 7577 %} 7578 7579 instruct copySignF_reg(fRegF dst, fRegF src1, fRegF src2) %{ 7580 match(Set dst (CopySignF src1 src2)); 7581 format %{ "CopySignF $dst $src1 $src2" %} 7582 ins_encode %{ 7583 FloatRegister dst = as_FloatRegister($dst$$reg), 7584 src1 = as_FloatRegister($src1$$reg), 7585 src2 = as_FloatRegister($src2$$reg); 7586 __ fsgnj_s(dst, src1, src2); 7587 %} 7588 ins_pipe(fp_dop_reg_reg_s); 7589 %} 7590 7591 instruct signumD_reg(fRegD dst, immD zero, fRegD one) %{ 7592 match(Set dst (SignumD dst (Binary zero one))); 7593 format %{ "signumD $dst, $dst" %} 7594 ins_encode %{ 7595 __ signum_fp(as_FloatRegister($dst$$reg), as_FloatRegister($one$$reg), true /* is_double */); 7596 %} 7597 ins_pipe(pipe_class_default); 7598 %} 7599 7600 instruct signumF_reg(fRegF dst, immF zero, fRegF one) %{ 7601 match(Set dst (SignumF dst (Binary zero one))); 7602 format %{ "signumF $dst, $dst" %} 7603 ins_encode %{ 7604 __ signum_fp(as_FloatRegister($dst$$reg), as_FloatRegister($one$$reg), false /* is_double */); 7605 %} 7606 ins_pipe(pipe_class_default); 7607 %} 7608 7609 // Arithmetic Instructions End 7610 7611 // ============================================================================ 7612 // Logical Instructions 7613 7614 // Register And 7615 instruct andI_reg_reg(iRegINoSp dst, iRegI src1, iRegI src2) %{ 7616 match(Set dst (AndI src1 src2)); 7617 7618 format %{ "andr $dst, $src1, $src2\t#@andI_reg_reg" %} 7619 7620 ins_cost(ALU_COST); 7621 ins_encode %{ 7622 __ andr(as_Register($dst$$reg), 7623 as_Register($src1$$reg), 7624 as_Register($src2$$reg)); 7625 %} 7626 7627 ins_pipe(ialu_reg_reg); 7628 %} 7629 7630 // Immediate And 7631 instruct andI_reg_imm(iRegINoSp dst, iRegI src1, immIAdd src2) %{ 7632 match(Set dst (AndI src1 src2)); 7633 7634 format %{ "andi $dst, $src1, $src2\t#@andI_reg_imm" %} 7635 7636 ins_cost(ALU_COST); 7637 ins_encode %{ 7638 __ andi(as_Register($dst$$reg), 7639 as_Register($src1$$reg), 7640 (int32_t)($src2$$constant)); 7641 %} 7642 7643 ins_pipe(ialu_reg_imm); 7644 %} 7645 7646 // Register Or 7647 instruct orI_reg_reg(iRegINoSp dst, iRegI src1, iRegI src2) %{ 7648 match(Set dst (OrI src1 src2)); 7649 7650 format %{ "orr $dst, $src1, $src2\t#@orI_reg_reg" %} 7651 7652 ins_cost(ALU_COST); 7653 ins_encode %{ 7654 __ orr(as_Register($dst$$reg), 7655 as_Register($src1$$reg), 7656 as_Register($src2$$reg)); 7657 %} 7658 7659 ins_pipe(ialu_reg_reg); 7660 %} 7661 7662 // Immediate Or 7663 instruct orI_reg_imm(iRegINoSp dst, iRegI src1, immIAdd src2) %{ 7664 match(Set dst (OrI src1 src2)); 7665 7666 format %{ "ori $dst, $src1, $src2\t#@orI_reg_imm" %} 7667 7668 ins_cost(ALU_COST); 7669 ins_encode %{ 7670 __ ori(as_Register($dst$$reg), 7671 as_Register($src1$$reg), 7672 (int32_t)($src2$$constant)); 7673 %} 7674 7675 ins_pipe(ialu_reg_imm); 7676 %} 7677 7678 // Register Xor 7679 instruct xorI_reg_reg(iRegINoSp dst, iRegI src1, iRegI src2) %{ 7680 match(Set dst (XorI src1 src2)); 7681 7682 format %{ "xorr $dst, $src1, $src2\t#@xorI_reg_reg" %} 7683 7684 ins_cost(ALU_COST); 7685 ins_encode %{ 7686 __ xorr(as_Register($dst$$reg), 7687 as_Register($src1$$reg), 7688 as_Register($src2$$reg)); 7689 %} 7690 7691 ins_pipe(ialu_reg_reg); 7692 %} 7693 7694 // Immediate Xor 7695 instruct xorI_reg_imm(iRegINoSp dst, iRegI src1, immIAdd src2) %{ 7696 match(Set dst (XorI src1 src2)); 7697 7698 format %{ "xori $dst, $src1, $src2\t#@xorI_reg_imm" %} 7699 7700 ins_cost(ALU_COST); 7701 ins_encode %{ 7702 __ xori(as_Register($dst$$reg), 7703 as_Register($src1$$reg), 7704 (int32_t)($src2$$constant)); 7705 %} 7706 7707 ins_pipe(ialu_reg_imm); 7708 %} 7709 7710 // Register And Long 7711 instruct andL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2) %{ 7712 match(Set dst (AndL src1 src2)); 7713 7714 format %{ "andr $dst, $src1, $src2\t#@andL_reg_reg" %} 7715 7716 ins_cost(ALU_COST); 7717 ins_encode %{ 7718 __ andr(as_Register($dst$$reg), 7719 as_Register($src1$$reg), 7720 as_Register($src2$$reg)); 7721 %} 7722 7723 ins_pipe(ialu_reg_reg); 7724 %} 7725 7726 // Immediate And Long 7727 instruct andL_reg_imm(iRegLNoSp dst, iRegL src1, immLAdd src2) %{ 7728 match(Set dst (AndL src1 src2)); 7729 7730 format %{ "andi $dst, $src1, $src2\t#@andL_reg_imm" %} 7731 7732 ins_cost(ALU_COST); 7733 ins_encode %{ 7734 __ andi(as_Register($dst$$reg), 7735 as_Register($src1$$reg), 7736 (int32_t)($src2$$constant)); 7737 %} 7738 7739 ins_pipe(ialu_reg_imm); 7740 %} 7741 7742 // Register Or Long 7743 instruct orL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2) %{ 7744 match(Set dst (OrL src1 src2)); 7745 7746 format %{ "orr $dst, $src1, $src2\t#@orL_reg_reg" %} 7747 7748 ins_cost(ALU_COST); 7749 ins_encode %{ 7750 __ orr(as_Register($dst$$reg), 7751 as_Register($src1$$reg), 7752 as_Register($src2$$reg)); 7753 %} 7754 7755 ins_pipe(ialu_reg_reg); 7756 %} 7757 7758 // Immediate Or Long 7759 instruct orL_reg_imm(iRegLNoSp dst, iRegL src1, immLAdd src2) %{ 7760 match(Set dst (OrL src1 src2)); 7761 7762 format %{ "ori $dst, $src1, $src2\t#@orL_reg_imm" %} 7763 7764 ins_cost(ALU_COST); 7765 ins_encode %{ 7766 __ ori(as_Register($dst$$reg), 7767 as_Register($src1$$reg), 7768 (int32_t)($src2$$constant)); 7769 %} 7770 7771 ins_pipe(ialu_reg_imm); 7772 %} 7773 7774 // Register Xor Long 7775 instruct xorL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2) %{ 7776 match(Set dst (XorL src1 src2)); 7777 7778 format %{ "xorr $dst, $src1, $src2\t#@xorL_reg_reg" %} 7779 7780 ins_cost(ALU_COST); 7781 ins_encode %{ 7782 __ xorr(as_Register($dst$$reg), 7783 as_Register($src1$$reg), 7784 as_Register($src2$$reg)); 7785 %} 7786 7787 ins_pipe(ialu_reg_reg); 7788 %} 7789 7790 // Immediate Xor Long 7791 instruct xorL_reg_imm(iRegLNoSp dst, iRegL src1, immLAdd src2) %{ 7792 match(Set dst (XorL src1 src2)); 7793 7794 ins_cost(ALU_COST); 7795 format %{ "xori $dst, $src1, $src2\t#@xorL_reg_imm" %} 7796 7797 ins_encode %{ 7798 __ xori(as_Register($dst$$reg), 7799 as_Register($src1$$reg), 7800 (int32_t)($src2$$constant)); 7801 %} 7802 7803 ins_pipe(ialu_reg_imm); 7804 %} 7805 7806 // ============================================================================ 7807 // MemBar Instruction 7808 7809 instruct load_fence() %{ 7810 match(LoadFence); 7811 ins_cost(ALU_COST); 7812 7813 format %{ "#@load_fence" %} 7814 7815 ins_encode %{ 7816 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 7817 %} 7818 ins_pipe(pipe_serial); 7819 %} 7820 7821 instruct membar_acquire() %{ 7822 match(MemBarAcquire); 7823 ins_cost(ALU_COST); 7824 7825 format %{ "#@membar_acquire\n\t" 7826 "fence ir iorw" %} 7827 7828 ins_encode %{ 7829 __ block_comment("membar_acquire"); 7830 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 7831 %} 7832 7833 ins_pipe(pipe_serial); 7834 %} 7835 7836 instruct membar_acquire_lock() %{ 7837 match(MemBarAcquireLock); 7838 ins_cost(0); 7839 7840 format %{ "#@membar_acquire_lock (elided)" %} 7841 7842 ins_encode %{ 7843 __ block_comment("membar_acquire_lock (elided)"); 7844 %} 7845 7846 ins_pipe(pipe_serial); 7847 %} 7848 7849 instruct store_fence() %{ 7850 match(StoreFence); 7851 ins_cost(ALU_COST); 7852 7853 format %{ "#@store_fence" %} 7854 7855 ins_encode %{ 7856 __ membar(MacroAssembler::LoadStore | MacroAssembler::StoreStore); 7857 %} 7858 ins_pipe(pipe_serial); 7859 %} 7860 7861 instruct membar_release() %{ 7862 match(MemBarRelease); 7863 ins_cost(ALU_COST); 7864 7865 format %{ "#@membar_release\n\t" 7866 "fence iorw ow" %} 7867 7868 ins_encode %{ 7869 __ block_comment("membar_release"); 7870 __ membar(MacroAssembler::LoadStore | MacroAssembler::StoreStore); 7871 %} 7872 ins_pipe(pipe_serial); 7873 %} 7874 7875 instruct membar_storestore() %{ 7876 match(MemBarStoreStore); 7877 match(StoreStoreFence); 7878 ins_cost(ALU_COST); 7879 7880 format %{ "MEMBAR-store-store\t#@membar_storestore" %} 7881 7882 ins_encode %{ 7883 __ membar(MacroAssembler::StoreStore); 7884 %} 7885 ins_pipe(pipe_serial); 7886 %} 7887 7888 instruct membar_release_lock() %{ 7889 match(MemBarReleaseLock); 7890 ins_cost(0); 7891 7892 format %{ "#@membar_release_lock (elided)" %} 7893 7894 ins_encode %{ 7895 __ block_comment("membar_release_lock (elided)"); 7896 %} 7897 7898 ins_pipe(pipe_serial); 7899 %} 7900 7901 instruct membar_volatile() %{ 7902 match(MemBarVolatile); 7903 ins_cost(ALU_COST); 7904 7905 format %{ "#@membar_volatile\n\t" 7906 "fence iorw iorw"%} 7907 7908 ins_encode %{ 7909 __ block_comment("membar_volatile"); 7910 __ membar(MacroAssembler::StoreLoad); 7911 %} 7912 7913 ins_pipe(pipe_serial); 7914 %} 7915 7916 instruct spin_wait() %{ 7917 predicate(UseZihintpause); 7918 match(OnSpinWait); 7919 ins_cost(CACHE_MISS_COST); 7920 7921 format %{ "spin_wait" %} 7922 7923 ins_encode %{ 7924 __ pause(); 7925 %} 7926 7927 ins_pipe(pipe_serial); 7928 %} 7929 7930 // ============================================================================ 7931 // Cast Instructions (Java-level type cast) 7932 7933 instruct castX2P(iRegPNoSp dst, iRegL src) %{ 7934 match(Set dst (CastX2P src)); 7935 7936 ins_cost(ALU_COST); 7937 format %{ "mv $dst, $src\t# long -> ptr, #@castX2P" %} 7938 7939 ins_encode %{ 7940 if ($dst$$reg != $src$$reg) { 7941 __ mv(as_Register($dst$$reg), as_Register($src$$reg)); 7942 } 7943 %} 7944 7945 ins_pipe(ialu_reg); 7946 %} 7947 7948 instruct castP2X(iRegLNoSp dst, iRegP src) %{ 7949 match(Set dst (CastP2X src)); 7950 7951 ins_cost(ALU_COST); 7952 format %{ "mv $dst, $src\t# ptr -> long, #@castP2X" %} 7953 7954 ins_encode %{ 7955 if ($dst$$reg != $src$$reg) { 7956 __ mv(as_Register($dst$$reg), as_Register($src$$reg)); 7957 } 7958 %} 7959 7960 ins_pipe(ialu_reg); 7961 %} 7962 7963 instruct castPP(iRegPNoSp dst) 7964 %{ 7965 match(Set dst (CastPP dst)); 7966 ins_cost(0); 7967 7968 size(0); 7969 format %{ "# castPP of $dst, #@castPP" %} 7970 ins_encode(/* empty encoding */); 7971 ins_pipe(pipe_class_empty); 7972 %} 7973 7974 instruct castLL(iRegL dst) 7975 %{ 7976 match(Set dst (CastLL dst)); 7977 7978 size(0); 7979 format %{ "# castLL of $dst, #@castLL" %} 7980 ins_encode(/* empty encoding */); 7981 ins_cost(0); 7982 ins_pipe(pipe_class_empty); 7983 %} 7984 7985 instruct castII(iRegI dst) 7986 %{ 7987 match(Set dst (CastII dst)); 7988 7989 size(0); 7990 format %{ "# castII of $dst, #@castII" %} 7991 ins_encode(/* empty encoding */); 7992 ins_cost(0); 7993 ins_pipe(pipe_class_empty); 7994 %} 7995 7996 instruct checkCastPP(iRegPNoSp dst) 7997 %{ 7998 match(Set dst (CheckCastPP dst)); 7999 8000 size(0); 8001 ins_cost(0); 8002 format %{ "# checkcastPP of $dst, #@checkCastPP" %} 8003 ins_encode(/* empty encoding */); 8004 ins_pipe(pipe_class_empty); 8005 %} 8006 8007 instruct castFF(fRegF dst) 8008 %{ 8009 match(Set dst (CastFF dst)); 8010 8011 size(0); 8012 format %{ "# castFF of $dst" %} 8013 ins_encode(/* empty encoding */); 8014 ins_cost(0); 8015 ins_pipe(pipe_class_empty); 8016 %} 8017 8018 instruct castDD(fRegD dst) 8019 %{ 8020 match(Set dst (CastDD dst)); 8021 8022 size(0); 8023 format %{ "# castDD of $dst" %} 8024 ins_encode(/* empty encoding */); 8025 ins_cost(0); 8026 ins_pipe(pipe_class_empty); 8027 %} 8028 8029 instruct castVV(vReg dst) 8030 %{ 8031 match(Set dst (CastVV dst)); 8032 8033 size(0); 8034 format %{ "# castVV of $dst" %} 8035 ins_encode(/* empty encoding */); 8036 ins_cost(0); 8037 ins_pipe(pipe_class_empty); 8038 %} 8039 8040 // ============================================================================ 8041 // Convert Instructions 8042 8043 // int to bool 8044 instruct convI2Bool(iRegINoSp dst, iRegI src) 8045 %{ 8046 match(Set dst (Conv2B src)); 8047 8048 ins_cost(ALU_COST); 8049 format %{ "snez $dst, $src\t#@convI2Bool" %} 8050 8051 ins_encode %{ 8052 __ snez(as_Register($dst$$reg), as_Register($src$$reg)); 8053 %} 8054 8055 ins_pipe(ialu_reg); 8056 %} 8057 8058 // pointer to bool 8059 instruct convP2Bool(iRegINoSp dst, iRegP src) 8060 %{ 8061 match(Set dst (Conv2B src)); 8062 8063 ins_cost(ALU_COST); 8064 format %{ "snez $dst, $src\t#@convP2Bool" %} 8065 8066 ins_encode %{ 8067 __ snez(as_Register($dst$$reg), as_Register($src$$reg)); 8068 %} 8069 8070 ins_pipe(ialu_reg); 8071 %} 8072 8073 // int <-> long 8074 8075 instruct convI2L_reg_reg(iRegLNoSp dst, iRegIorL2I src) 8076 %{ 8077 match(Set dst (ConvI2L src)); 8078 8079 ins_cost(ALU_COST); 8080 format %{ "addw $dst, $src, zr\t#@convI2L_reg_reg" %} 8081 ins_encode %{ 8082 __ sign_extend(as_Register($dst$$reg), as_Register($src$$reg), 32); 8083 %} 8084 ins_pipe(ialu_reg); 8085 %} 8086 8087 instruct convL2I_reg(iRegINoSp dst, iRegL src) %{ 8088 match(Set dst (ConvL2I src)); 8089 8090 ins_cost(ALU_COST); 8091 format %{ "addw $dst, $src, zr\t#@convL2I_reg" %} 8092 8093 ins_encode %{ 8094 __ sign_extend(as_Register($dst$$reg), as_Register($src$$reg), 32); 8095 %} 8096 8097 ins_pipe(ialu_reg); 8098 %} 8099 8100 // int to unsigned long (Zero-extend) 8101 instruct convI2UL_reg_reg(iRegLNoSp dst, iRegIorL2I src, immL_32bits mask) 8102 %{ 8103 match(Set dst (AndL (ConvI2L src) mask)); 8104 8105 ins_cost(ALU_COST * 2); 8106 format %{ "zero_extend $dst, $src, 32\t# i2ul, #@convI2UL_reg_reg" %} 8107 8108 ins_encode %{ 8109 __ zero_extend(as_Register($dst$$reg), as_Register($src$$reg), 32); 8110 %} 8111 8112 ins_pipe(ialu_reg_shift); 8113 %} 8114 8115 // float <-> double 8116 8117 instruct convF2D_reg(fRegD dst, fRegF src) %{ 8118 match(Set dst (ConvF2D src)); 8119 8120 ins_cost(XFER_COST); 8121 format %{ "fcvt.d.s $dst, $src\t#@convF2D_reg" %} 8122 8123 ins_encode %{ 8124 __ fcvt_d_s(as_FloatRegister($dst$$reg), as_FloatRegister($src$$reg)); 8125 %} 8126 8127 ins_pipe(fp_f2d); 8128 %} 8129 8130 instruct convD2F_reg(fRegF dst, fRegD src) %{ 8131 match(Set dst (ConvD2F src)); 8132 8133 ins_cost(XFER_COST); 8134 format %{ "fcvt.s.d $dst, $src\t#@convD2F_reg" %} 8135 8136 ins_encode %{ 8137 __ fcvt_s_d(as_FloatRegister($dst$$reg), as_FloatRegister($src$$reg)); 8138 %} 8139 8140 ins_pipe(fp_d2f); 8141 %} 8142 8143 // single <-> half precision 8144 8145 instruct convHF2F_reg_reg(fRegF dst, iRegINoSp src, iRegINoSp tmp) %{ 8146 match(Set dst (ConvHF2F src)); 8147 effect(TEMP tmp); 8148 format %{ "fmv.h.x $dst, $src\t# move source from $src to $dst\n\t" 8149 "fcvt.s.h $dst, $dst\t# convert half to single precision" 8150 %} 8151 ins_encode %{ 8152 __ float16_to_float($dst$$FloatRegister, $src$$Register, $tmp$$Register); 8153 %} 8154 ins_pipe(pipe_slow); 8155 %} 8156 8157 instruct convF2HF_reg_reg(iRegINoSp dst, fRegF src, fRegF ftmp, iRegINoSp xtmp) %{ 8158 match(Set dst (ConvF2HF src)); 8159 effect(TEMP_DEF dst, TEMP ftmp, TEMP xtmp); 8160 format %{ "fcvt.h.s $ftmp, $src\t# convert single precision to half\n\t" 8161 "fmv.x.h $dst, $ftmp\t# move result from $ftmp to $dst" 8162 %} 8163 ins_encode %{ 8164 __ float_to_float16($dst$$Register, $src$$FloatRegister, $ftmp$$FloatRegister, $xtmp$$Register); 8165 %} 8166 ins_pipe(pipe_slow); 8167 %} 8168 8169 // float <-> int 8170 8171 instruct convF2I_reg_reg(iRegINoSp dst, fRegF src) %{ 8172 match(Set dst (ConvF2I src)); 8173 8174 ins_cost(XFER_COST); 8175 format %{ "fcvt.w.s $dst, $src\t#@convF2I_reg_reg" %} 8176 8177 ins_encode %{ 8178 __ fcvt_w_s_safe($dst$$Register, $src$$FloatRegister); 8179 %} 8180 8181 ins_pipe(fp_f2i); 8182 %} 8183 8184 instruct convI2F_reg_reg(fRegF dst, iRegIorL2I src) %{ 8185 match(Set dst (ConvI2F src)); 8186 8187 ins_cost(XFER_COST); 8188 format %{ "fcvt.s.w $dst, $src\t#@convI2F_reg_reg" %} 8189 8190 ins_encode %{ 8191 __ fcvt_s_w(as_FloatRegister($dst$$reg), as_Register($src$$reg)); 8192 %} 8193 8194 ins_pipe(fp_i2f); 8195 %} 8196 8197 // float <-> long 8198 8199 instruct convF2L_reg_reg(iRegLNoSp dst, fRegF src) %{ 8200 match(Set dst (ConvF2L src)); 8201 8202 ins_cost(XFER_COST); 8203 format %{ "fcvt.l.s $dst, $src\t#@convF2L_reg_reg" %} 8204 8205 ins_encode %{ 8206 __ fcvt_l_s_safe($dst$$Register, $src$$FloatRegister); 8207 %} 8208 8209 ins_pipe(fp_f2l); 8210 %} 8211 8212 instruct convL2F_reg_reg(fRegF dst, iRegL src) %{ 8213 match(Set dst (ConvL2F src)); 8214 8215 ins_cost(XFER_COST); 8216 format %{ "fcvt.s.l $dst, $src\t#@convL2F_reg_reg" %} 8217 8218 ins_encode %{ 8219 __ fcvt_s_l(as_FloatRegister($dst$$reg), as_Register($src$$reg)); 8220 %} 8221 8222 ins_pipe(fp_l2f); 8223 %} 8224 8225 // double <-> int 8226 8227 instruct convD2I_reg_reg(iRegINoSp dst, fRegD src) %{ 8228 match(Set dst (ConvD2I src)); 8229 8230 ins_cost(XFER_COST); 8231 format %{ "fcvt.w.d $dst, $src\t#@convD2I_reg_reg" %} 8232 8233 ins_encode %{ 8234 __ fcvt_w_d_safe($dst$$Register, $src$$FloatRegister); 8235 %} 8236 8237 ins_pipe(fp_d2i); 8238 %} 8239 8240 instruct convI2D_reg_reg(fRegD dst, iRegIorL2I src) %{ 8241 match(Set dst (ConvI2D src)); 8242 8243 ins_cost(XFER_COST); 8244 format %{ "fcvt.d.w $dst, $src\t#@convI2D_reg_reg" %} 8245 8246 ins_encode %{ 8247 __ fcvt_d_w(as_FloatRegister($dst$$reg), as_Register($src$$reg)); 8248 %} 8249 8250 ins_pipe(fp_i2d); 8251 %} 8252 8253 // double <-> long 8254 8255 instruct convD2L_reg_reg(iRegLNoSp dst, fRegD src) %{ 8256 match(Set dst (ConvD2L src)); 8257 8258 ins_cost(XFER_COST); 8259 format %{ "fcvt.l.d $dst, $src\t#@convD2L_reg_reg" %} 8260 8261 ins_encode %{ 8262 __ fcvt_l_d_safe($dst$$Register, $src$$FloatRegister); 8263 %} 8264 8265 ins_pipe(fp_d2l); 8266 %} 8267 8268 instruct convL2D_reg_reg(fRegD dst, iRegL src) %{ 8269 match(Set dst (ConvL2D src)); 8270 8271 ins_cost(XFER_COST); 8272 format %{ "fcvt.d.l $dst, $src\t#@convL2D_reg_reg" %} 8273 8274 ins_encode %{ 8275 __ fcvt_d_l(as_FloatRegister($dst$$reg), as_Register($src$$reg)); 8276 %} 8277 8278 ins_pipe(fp_l2d); 8279 %} 8280 8281 // Convert oop into int for vectors alignment masking 8282 instruct convP2I(iRegINoSp dst, iRegP src) %{ 8283 match(Set dst (ConvL2I (CastP2X src))); 8284 8285 ins_cost(ALU_COST * 2); 8286 format %{ "zero_extend $dst, $src, 32\t# ptr -> int, #@convP2I" %} 8287 8288 ins_encode %{ 8289 __ zero_extend($dst$$Register, $src$$Register, 32); 8290 %} 8291 8292 ins_pipe(ialu_reg); 8293 %} 8294 8295 // Convert compressed oop into int for vectors alignment masking 8296 // in case of 32bit oops (heap < 4Gb). 8297 instruct convN2I(iRegINoSp dst, iRegN src) 8298 %{ 8299 predicate(CompressedOops::shift() == 0); 8300 match(Set dst (ConvL2I (CastP2X (DecodeN src)))); 8301 8302 ins_cost(ALU_COST); 8303 format %{ "mv $dst, $src\t# compressed ptr -> int, #@convN2I" %} 8304 8305 ins_encode %{ 8306 __ mv($dst$$Register, $src$$Register); 8307 %} 8308 8309 ins_pipe(ialu_reg); 8310 %} 8311 8312 instruct round_double_reg(iRegLNoSp dst, fRegD src, fRegD ftmp) %{ 8313 match(Set dst (RoundD src)); 8314 8315 ins_cost(XFER_COST + BRANCH_COST); 8316 effect(TEMP ftmp); 8317 format %{ "java_round_double $dst, $src\t#@round_double_reg" %} 8318 8319 ins_encode %{ 8320 __ java_round_double($dst$$Register, as_FloatRegister($src$$reg), as_FloatRegister($ftmp$$reg)); 8321 %} 8322 8323 ins_pipe(pipe_slow); 8324 %} 8325 8326 instruct round_float_reg(iRegINoSp dst, fRegF src, fRegF ftmp) %{ 8327 match(Set dst (RoundF src)); 8328 8329 ins_cost(XFER_COST + BRANCH_COST); 8330 effect(TEMP ftmp); 8331 format %{ "java_round_float $dst, $src\t#@round_float_reg" %} 8332 8333 ins_encode %{ 8334 __ java_round_float($dst$$Register, as_FloatRegister($src$$reg), as_FloatRegister($ftmp$$reg)); 8335 %} 8336 8337 ins_pipe(pipe_slow); 8338 %} 8339 8340 // Convert oop pointer into compressed form 8341 instruct encodeHeapOop(iRegNNoSp dst, iRegP src) %{ 8342 predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull); 8343 match(Set dst (EncodeP src)); 8344 ins_cost(ALU_COST); 8345 format %{ "encode_heap_oop $dst, $src\t#@encodeHeapOop" %} 8346 ins_encode %{ 8347 Register s = $src$$Register; 8348 Register d = $dst$$Register; 8349 __ encode_heap_oop(d, s); 8350 %} 8351 ins_pipe(pipe_class_default); 8352 %} 8353 8354 instruct encodeHeapOop_not_null(iRegNNoSp dst, iRegP src) %{ 8355 predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull); 8356 match(Set dst (EncodeP src)); 8357 ins_cost(ALU_COST); 8358 format %{ "encode_heap_oop_not_null $dst, $src\t#@encodeHeapOop_not_null" %} 8359 ins_encode %{ 8360 __ encode_heap_oop_not_null($dst$$Register, $src$$Register); 8361 %} 8362 ins_pipe(pipe_class_default); 8363 %} 8364 8365 instruct decodeHeapOop(iRegPNoSp dst, iRegN src) %{ 8366 predicate(n->bottom_type()->is_ptr()->ptr() != TypePtr::NotNull && 8367 n->bottom_type()->is_ptr()->ptr() != TypePtr::Constant); 8368 match(Set dst (DecodeN src)); 8369 8370 ins_cost(0); 8371 format %{ "decode_heap_oop $dst, $src\t#@decodeHeapOop" %} 8372 ins_encode %{ 8373 Register s = $src$$Register; 8374 Register d = $dst$$Register; 8375 __ decode_heap_oop(d, s); 8376 %} 8377 ins_pipe(pipe_class_default); 8378 %} 8379 8380 instruct decodeHeapOop_not_null(iRegPNoSp dst, iRegN src) %{ 8381 predicate(n->bottom_type()->is_ptr()->ptr() == TypePtr::NotNull || 8382 n->bottom_type()->is_ptr()->ptr() == TypePtr::Constant); 8383 match(Set dst (DecodeN src)); 8384 8385 ins_cost(0); 8386 format %{ "decode_heap_oop_not_null $dst, $src\t#@decodeHeapOop_not_null" %} 8387 ins_encode %{ 8388 Register s = $src$$Register; 8389 Register d = $dst$$Register; 8390 __ decode_heap_oop_not_null(d, s); 8391 %} 8392 ins_pipe(pipe_class_default); 8393 %} 8394 8395 // Convert klass pointer into compressed form. 8396 instruct encodeKlass_not_null(iRegNNoSp dst, iRegP src) %{ 8397 match(Set dst (EncodePKlass src)); 8398 8399 ins_cost(ALU_COST); 8400 format %{ "encode_klass_not_null $dst, $src\t#@encodeKlass_not_null" %} 8401 8402 ins_encode %{ 8403 Register src_reg = as_Register($src$$reg); 8404 Register dst_reg = as_Register($dst$$reg); 8405 __ encode_klass_not_null(dst_reg, src_reg, t0); 8406 %} 8407 8408 ins_pipe(pipe_class_default); 8409 %} 8410 8411 instruct decodeKlass_not_null(iRegPNoSp dst, iRegN src, iRegPNoSp tmp) %{ 8412 match(Set dst (DecodeNKlass src)); 8413 8414 effect(TEMP tmp); 8415 8416 ins_cost(ALU_COST); 8417 format %{ "decode_klass_not_null $dst, $src\t#@decodeKlass_not_null" %} 8418 8419 ins_encode %{ 8420 Register src_reg = as_Register($src$$reg); 8421 Register dst_reg = as_Register($dst$$reg); 8422 Register tmp_reg = as_Register($tmp$$reg); 8423 __ decode_klass_not_null(dst_reg, src_reg, tmp_reg); 8424 %} 8425 8426 ins_pipe(pipe_class_default); 8427 %} 8428 8429 // stack <-> reg and reg <-> reg shuffles with no conversion 8430 8431 instruct MoveF2I_stack_reg(iRegINoSp dst, stackSlotF src) %{ 8432 8433 match(Set dst (MoveF2I src)); 8434 8435 effect(DEF dst, USE src); 8436 8437 ins_cost(LOAD_COST); 8438 8439 format %{ "lw $dst, $src\t#@MoveF2I_stack_reg" %} 8440 8441 ins_encode %{ 8442 __ lw(as_Register($dst$$reg), Address(sp, $src$$disp)); 8443 %} 8444 8445 ins_pipe(iload_reg_reg); 8446 8447 %} 8448 8449 instruct MoveI2F_stack_reg(fRegF dst, stackSlotI src) %{ 8450 8451 match(Set dst (MoveI2F src)); 8452 8453 effect(DEF dst, USE src); 8454 8455 ins_cost(LOAD_COST); 8456 8457 format %{ "flw $dst, $src\t#@MoveI2F_stack_reg" %} 8458 8459 ins_encode %{ 8460 __ flw(as_FloatRegister($dst$$reg), Address(sp, $src$$disp)); 8461 %} 8462 8463 ins_pipe(fp_load_mem_s); 8464 8465 %} 8466 8467 instruct MoveD2L_stack_reg(iRegLNoSp dst, stackSlotD src) %{ 8468 8469 match(Set dst (MoveD2L src)); 8470 8471 effect(DEF dst, USE src); 8472 8473 ins_cost(LOAD_COST); 8474 8475 format %{ "ld $dst, $src\t#@MoveD2L_stack_reg" %} 8476 8477 ins_encode %{ 8478 __ ld(as_Register($dst$$reg), Address(sp, $src$$disp)); 8479 %} 8480 8481 ins_pipe(iload_reg_reg); 8482 8483 %} 8484 8485 instruct MoveL2D_stack_reg(fRegD dst, stackSlotL src) %{ 8486 8487 match(Set dst (MoveL2D src)); 8488 8489 effect(DEF dst, USE src); 8490 8491 ins_cost(LOAD_COST); 8492 8493 format %{ "fld $dst, $src\t#@MoveL2D_stack_reg" %} 8494 8495 ins_encode %{ 8496 __ fld(as_FloatRegister($dst$$reg), Address(sp, $src$$disp)); 8497 %} 8498 8499 ins_pipe(fp_load_mem_d); 8500 8501 %} 8502 8503 instruct MoveF2I_reg_stack(stackSlotI dst, fRegF src) %{ 8504 8505 match(Set dst (MoveF2I src)); 8506 8507 effect(DEF dst, USE src); 8508 8509 ins_cost(STORE_COST); 8510 8511 format %{ "fsw $src, $dst\t#@MoveF2I_reg_stack" %} 8512 8513 ins_encode %{ 8514 __ fsw(as_FloatRegister($src$$reg), Address(sp, $dst$$disp)); 8515 %} 8516 8517 ins_pipe(fp_store_reg_s); 8518 8519 %} 8520 8521 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{ 8522 8523 match(Set dst (MoveI2F src)); 8524 8525 effect(DEF dst, USE src); 8526 8527 ins_cost(STORE_COST); 8528 8529 format %{ "sw $src, $dst\t#@MoveI2F_reg_stack" %} 8530 8531 ins_encode %{ 8532 __ sw(as_Register($src$$reg), Address(sp, $dst$$disp)); 8533 %} 8534 8535 ins_pipe(istore_reg_reg); 8536 8537 %} 8538 8539 instruct MoveD2L_reg_stack(stackSlotL dst, fRegD src) %{ 8540 8541 match(Set dst (MoveD2L src)); 8542 8543 effect(DEF dst, USE src); 8544 8545 ins_cost(STORE_COST); 8546 8547 format %{ "fsd $dst, $src\t#@MoveD2L_reg_stack" %} 8548 8549 ins_encode %{ 8550 __ fsd(as_FloatRegister($src$$reg), Address(sp, $dst$$disp)); 8551 %} 8552 8553 ins_pipe(fp_store_reg_d); 8554 8555 %} 8556 8557 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{ 8558 8559 match(Set dst (MoveL2D src)); 8560 8561 effect(DEF dst, USE src); 8562 8563 ins_cost(STORE_COST); 8564 8565 format %{ "sd $src, $dst\t#@MoveL2D_reg_stack" %} 8566 8567 ins_encode %{ 8568 __ sd(as_Register($src$$reg), Address(sp, $dst$$disp)); 8569 %} 8570 8571 ins_pipe(istore_reg_reg); 8572 8573 %} 8574 8575 instruct MoveF2I_reg_reg(iRegINoSp dst, fRegF src) %{ 8576 8577 match(Set dst (MoveF2I src)); 8578 8579 effect(DEF dst, USE src); 8580 8581 ins_cost(FMVX_COST); 8582 8583 format %{ "fmv.x.w $dst, $src\t#@MoveF2I_reg_reg" %} 8584 8585 ins_encode %{ 8586 __ fmv_x_w(as_Register($dst$$reg), as_FloatRegister($src$$reg)); 8587 %} 8588 8589 ins_pipe(fp_f2i); 8590 8591 %} 8592 8593 instruct MoveI2F_reg_reg(fRegF dst, iRegI src) %{ 8594 8595 match(Set dst (MoveI2F src)); 8596 8597 effect(DEF dst, USE src); 8598 8599 ins_cost(FMVX_COST); 8600 8601 format %{ "fmv.w.x $dst, $src\t#@MoveI2F_reg_reg" %} 8602 8603 ins_encode %{ 8604 __ fmv_w_x(as_FloatRegister($dst$$reg), as_Register($src$$reg)); 8605 %} 8606 8607 ins_pipe(fp_i2f); 8608 8609 %} 8610 8611 instruct MoveD2L_reg_reg(iRegLNoSp dst, fRegD src) %{ 8612 8613 match(Set dst (MoveD2L src)); 8614 8615 effect(DEF dst, USE src); 8616 8617 ins_cost(FMVX_COST); 8618 8619 format %{ "fmv.x.d $dst, $src\t#@MoveD2L_reg_reg" %} 8620 8621 ins_encode %{ 8622 __ fmv_x_d(as_Register($dst$$reg), as_FloatRegister($src$$reg)); 8623 %} 8624 8625 ins_pipe(fp_d2l); 8626 8627 %} 8628 8629 instruct MoveL2D_reg_reg(fRegD dst, iRegL src) %{ 8630 8631 match(Set dst (MoveL2D src)); 8632 8633 effect(DEF dst, USE src); 8634 8635 ins_cost(FMVX_COST); 8636 8637 format %{ "fmv.d.x $dst, $src\t#@MoveL2D_reg_reg" %} 8638 8639 ins_encode %{ 8640 __ fmv_d_x(as_FloatRegister($dst$$reg), as_Register($src$$reg)); 8641 %} 8642 8643 ins_pipe(fp_l2d); 8644 8645 %} 8646 8647 // ============================================================================ 8648 // Compare Instructions which set the result float comparisons in dest register. 8649 8650 instruct cmpF3_reg_reg(iRegINoSp dst, fRegF op1, fRegF op2) 8651 %{ 8652 match(Set dst (CmpF3 op1 op2)); 8653 8654 ins_cost(XFER_COST * 2 + BRANCH_COST + ALU_COST); 8655 format %{ "flt.s $dst, $op2, $op1\t#@cmpF3_reg_reg\n\t" 8656 "bgtz $dst, done\n\t" 8657 "feq.s $dst, $op1, $op2\n\t" 8658 "addi $dst, $dst, -1\n\t" 8659 "done:" 8660 %} 8661 8662 ins_encode %{ 8663 // we want -1 for unordered or less than, 0 for equal and 1 for greater than. 8664 __ float_compare(as_Register($dst$$reg), as_FloatRegister($op1$$reg), 8665 as_FloatRegister($op2$$reg), -1 /*unordered_result < 0*/); 8666 %} 8667 8668 ins_pipe(pipe_class_default); 8669 %} 8670 8671 instruct cmpD3_reg_reg(iRegINoSp dst, fRegD op1, fRegD op2) 8672 %{ 8673 match(Set dst (CmpD3 op1 op2)); 8674 8675 ins_cost(XFER_COST * 2 + BRANCH_COST + ALU_COST); 8676 format %{ "flt.d $dst, $op2, $op1\t#@cmpD3_reg_reg\n\t" 8677 "bgtz $dst, done\n\t" 8678 "feq.d $dst, $op1, $op2\n\t" 8679 "addi $dst, $dst, -1\n\t" 8680 "done:" 8681 %} 8682 8683 ins_encode %{ 8684 // we want -1 for unordered or less than, 0 for equal and 1 for greater than. 8685 __ double_compare(as_Register($dst$$reg), as_FloatRegister($op1$$reg), as_FloatRegister($op2$$reg), -1 /*unordered_result < 0*/); 8686 %} 8687 8688 ins_pipe(pipe_class_default); 8689 %} 8690 8691 instruct cmpL3_reg_reg(iRegINoSp dst, iRegL op1, iRegL op2) 8692 %{ 8693 match(Set dst (CmpL3 op1 op2)); 8694 8695 ins_cost(ALU_COST * 3 + BRANCH_COST); 8696 format %{ "slt $dst, $op2, $op1\t#@cmpL3_reg_reg\n\t" 8697 "bnez $dst, done\n\t" 8698 "slt $dst, $op1, $op2\n\t" 8699 "neg $dst, $dst\n\t" 8700 "done:" 8701 %} 8702 ins_encode %{ 8703 __ cmp_l2i(t0, as_Register($op1$$reg), as_Register($op2$$reg)); 8704 __ mv(as_Register($dst$$reg), t0); 8705 %} 8706 8707 ins_pipe(pipe_class_default); 8708 %} 8709 8710 instruct cmpUL3_reg_reg(iRegINoSp dst, iRegL op1, iRegL op2) 8711 %{ 8712 match(Set dst (CmpUL3 op1 op2)); 8713 8714 ins_cost(ALU_COST * 3 + BRANCH_COST); 8715 format %{ "sltu $dst, $op2, $op1\t#@cmpUL3_reg_reg\n\t" 8716 "bnez $dst, done\n\t" 8717 "sltu $dst, $op1, $op2\n\t" 8718 "neg $dst, $dst\n\t" 8719 "done:" 8720 %} 8721 ins_encode %{ 8722 __ cmp_ul2i(t0, as_Register($op1$$reg), as_Register($op2$$reg)); 8723 __ mv(as_Register($dst$$reg), t0); 8724 %} 8725 8726 ins_pipe(pipe_class_default); 8727 %} 8728 8729 instruct cmpU3_reg_reg(iRegINoSp dst, iRegI op1, iRegI op2) 8730 %{ 8731 match(Set dst (CmpU3 op1 op2)); 8732 8733 ins_cost(ALU_COST * 3 + BRANCH_COST); 8734 format %{ "sltu $dst, $op2, $op1\t#@cmpU3_reg_reg\n\t" 8735 "bnez $dst, done\n\t" 8736 "sltu $dst, $op1, $op2\n\t" 8737 "neg $dst, $dst\n\t" 8738 "done:" 8739 %} 8740 ins_encode %{ 8741 __ cmp_uw2i(t0, as_Register($op1$$reg), as_Register($op2$$reg)); 8742 __ mv(as_Register($dst$$reg), t0); 8743 %} 8744 8745 ins_pipe(pipe_class_default); 8746 %} 8747 8748 instruct cmpLTMask_reg_reg(iRegINoSp dst, iRegI p, iRegI q) 8749 %{ 8750 match(Set dst (CmpLTMask p q)); 8751 8752 ins_cost(2 * ALU_COST); 8753 8754 format %{ "slt $dst, $p, $q\t#@cmpLTMask_reg_reg\n\t" 8755 "subw $dst, zr, $dst\t#@cmpLTMask_reg_reg" 8756 %} 8757 8758 ins_encode %{ 8759 __ slt(as_Register($dst$$reg), as_Register($p$$reg), as_Register($q$$reg)); 8760 __ subw(as_Register($dst$$reg), zr, as_Register($dst$$reg)); 8761 %} 8762 8763 ins_pipe(ialu_reg_reg); 8764 %} 8765 8766 instruct cmpLTMask_reg_zero(iRegINoSp dst, iRegIorL2I op, immI0 zero) 8767 %{ 8768 match(Set dst (CmpLTMask op zero)); 8769 8770 ins_cost(ALU_COST); 8771 8772 format %{ "sraiw $dst, $dst, 31\t#@cmpLTMask_reg_reg" %} 8773 8774 ins_encode %{ 8775 __ sraiw(as_Register($dst$$reg), as_Register($op$$reg), 31); 8776 %} 8777 8778 ins_pipe(ialu_reg_shift); 8779 %} 8780 8781 8782 // ============================================================================ 8783 // Max and Min 8784 8785 instruct minI_reg_reg(iRegINoSp dst, iRegI src) 8786 %{ 8787 match(Set dst (MinI dst src)); 8788 8789 ins_cost(BRANCH_COST + ALU_COST); 8790 format %{ 8791 "ble $dst, $src, skip\t#@minI_reg_reg\n\t" 8792 "mv $dst, $src\n\t" 8793 "skip:" 8794 %} 8795 8796 ins_encode %{ 8797 Label Lskip; 8798 __ ble(as_Register($dst$$reg), as_Register($src$$reg), Lskip); 8799 __ mv(as_Register($dst$$reg), as_Register($src$$reg)); 8800 __ bind(Lskip); 8801 %} 8802 8803 ins_pipe(pipe_class_compare); 8804 %} 8805 8806 instruct maxI_reg_reg(iRegINoSp dst, iRegI src) 8807 %{ 8808 match(Set dst (MaxI dst src)); 8809 8810 ins_cost(BRANCH_COST + ALU_COST); 8811 format %{ 8812 "bge $dst, $src, skip\t#@maxI_reg_reg\n\t" 8813 "mv $dst, $src\n\t" 8814 "skip:" 8815 %} 8816 8817 ins_encode %{ 8818 Label Lskip; 8819 __ bge(as_Register($dst$$reg), as_Register($src$$reg), Lskip); 8820 __ mv(as_Register($dst$$reg), as_Register($src$$reg)); 8821 __ bind(Lskip); 8822 %} 8823 8824 ins_pipe(pipe_class_compare); 8825 %} 8826 8827 // special case for comparing with zero 8828 // n.b. this is selected in preference to the rule above because it 8829 // avoids loading constant 0 into a source register 8830 8831 instruct minI_reg_zero(iRegINoSp dst, immI0 zero) 8832 %{ 8833 match(Set dst (MinI dst zero)); 8834 match(Set dst (MinI zero dst)); 8835 8836 ins_cost(BRANCH_COST + ALU_COST); 8837 format %{ 8838 "blez $dst, skip\t#@minI_reg_zero\n\t" 8839 "mv $dst, zr\n\t" 8840 "skip:" 8841 %} 8842 8843 ins_encode %{ 8844 Label Lskip; 8845 __ blez(as_Register($dst$$reg), Lskip); 8846 __ mv(as_Register($dst$$reg), zr); 8847 __ bind(Lskip); 8848 %} 8849 8850 ins_pipe(pipe_class_compare); 8851 %} 8852 8853 instruct maxI_reg_zero(iRegINoSp dst, immI0 zero) 8854 %{ 8855 match(Set dst (MaxI dst zero)); 8856 match(Set dst (MaxI zero dst)); 8857 8858 ins_cost(BRANCH_COST + ALU_COST); 8859 format %{ 8860 "bgez $dst, skip\t#@maxI_reg_zero\n\t" 8861 "mv $dst, zr\n\t" 8862 "skip:" 8863 %} 8864 8865 ins_encode %{ 8866 Label Lskip; 8867 __ bgez(as_Register($dst$$reg), Lskip); 8868 __ mv(as_Register($dst$$reg), zr); 8869 __ bind(Lskip); 8870 %} 8871 8872 ins_pipe(pipe_class_compare); 8873 %} 8874 8875 instruct minI_rReg(iRegINoSp dst, iRegI src1, iRegI src2) 8876 %{ 8877 match(Set dst (MinI src1 src2)); 8878 8879 effect(DEF dst, USE src1, USE src2); 8880 8881 ins_cost(BRANCH_COST + ALU_COST * 2); 8882 format %{ 8883 "ble $src1, $src2, Lsrc1\t#@minI_rReg\n\t" 8884 "mv $dst, $src2\n\t" 8885 "j Ldone\n\t" 8886 "Lsrc1:\n\t" 8887 "mv $dst, $src1\n\t" 8888 "Ldone:" 8889 %} 8890 8891 ins_encode %{ 8892 Label Lsrc1, Ldone; 8893 __ ble(as_Register($src1$$reg), as_Register($src2$$reg), Lsrc1); 8894 __ mv(as_Register($dst$$reg), as_Register($src2$$reg)); 8895 __ j(Ldone); 8896 __ bind(Lsrc1); 8897 __ mv(as_Register($dst$$reg), as_Register($src1$$reg)); 8898 __ bind(Ldone); 8899 %} 8900 8901 ins_pipe(pipe_class_compare); 8902 %} 8903 8904 instruct maxI_rReg(iRegINoSp dst, iRegI src1, iRegI src2) 8905 %{ 8906 match(Set dst (MaxI src1 src2)); 8907 8908 effect(DEF dst, USE src1, USE src2); 8909 8910 ins_cost(BRANCH_COST + ALU_COST * 2); 8911 format %{ 8912 "bge $src1, $src2, Lsrc1\t#@maxI_rReg\n\t" 8913 "mv $dst, $src2\n\t" 8914 "j Ldone\n\t" 8915 "Lsrc1:\n\t" 8916 "mv $dst, $src1\n\t" 8917 "Ldone:" 8918 %} 8919 8920 ins_encode %{ 8921 Label Lsrc1, Ldone; 8922 __ bge(as_Register($src1$$reg), as_Register($src2$$reg), Lsrc1); 8923 __ mv(as_Register($dst$$reg), as_Register($src2$$reg)); 8924 __ j(Ldone); 8925 __ bind(Lsrc1); 8926 __ mv(as_Register($dst$$reg), as_Register($src1$$reg)); 8927 __ bind(Ldone); 8928 8929 %} 8930 8931 ins_pipe(pipe_class_compare); 8932 %} 8933 8934 // ============================================================================ 8935 // Branch Instructions 8936 // Direct Branch. 8937 instruct branch(label lbl) 8938 %{ 8939 match(Goto); 8940 8941 effect(USE lbl); 8942 8943 ins_cost(BRANCH_COST); 8944 format %{ "j $lbl\t#@branch" %} 8945 8946 ins_encode(riscv_enc_j(lbl)); 8947 8948 ins_pipe(pipe_branch); 8949 %} 8950 8951 // ============================================================================ 8952 // Compare and Branch Instructions 8953 8954 // Patterns for short (< 12KiB) variants 8955 8956 // Compare flags and branch near instructions. 8957 instruct cmpFlag_branch(cmpOpEqNe cmp, rFlagsReg cr, label lbl) %{ 8958 match(If cmp cr); 8959 effect(USE lbl); 8960 8961 ins_cost(BRANCH_COST); 8962 format %{ "b$cmp $cr, zr, $lbl\t#@cmpFlag_branch" %} 8963 8964 ins_encode %{ 8965 __ enc_cmpEqNe_imm0_branch($cmp$$cmpcode, as_Register($cr$$reg), *($lbl$$label)); 8966 %} 8967 ins_pipe(pipe_cmpz_branch); 8968 ins_short_branch(1); 8969 %} 8970 8971 // Compare signed int and branch near instructions 8972 instruct cmpI_branch(cmpOp cmp, iRegI op1, iRegI op2, label lbl) 8973 %{ 8974 // Same match rule as `far_cmpI_branch'. 8975 match(If cmp (CmpI op1 op2)); 8976 8977 effect(USE lbl); 8978 8979 ins_cost(BRANCH_COST); 8980 8981 format %{ "b$cmp $op1, $op2, $lbl\t#@cmpI_branch" %} 8982 8983 ins_encode %{ 8984 __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), as_Register($op2$$reg), *($lbl$$label)); 8985 %} 8986 8987 ins_pipe(pipe_cmp_branch); 8988 ins_short_branch(1); 8989 %} 8990 8991 instruct cmpI_loop(cmpOp cmp, iRegI op1, iRegI op2, label lbl) 8992 %{ 8993 // Same match rule as `far_cmpI_loop'. 8994 match(CountedLoopEnd cmp (CmpI op1 op2)); 8995 8996 effect(USE lbl); 8997 8998 ins_cost(BRANCH_COST); 8999 9000 format %{ "b$cmp $op1, $op2, $lbl\t#@cmpI_loop" %} 9001 9002 ins_encode %{ 9003 __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), as_Register($op2$$reg), *($lbl$$label)); 9004 %} 9005 9006 ins_pipe(pipe_cmp_branch); 9007 ins_short_branch(1); 9008 %} 9009 9010 // Compare unsigned int and branch near instructions 9011 instruct cmpU_branch(cmpOpU cmp, iRegI op1, iRegI op2, label lbl) 9012 %{ 9013 // Same match rule as `far_cmpU_branch'. 9014 match(If cmp (CmpU op1 op2)); 9015 9016 effect(USE lbl); 9017 9018 ins_cost(BRANCH_COST); 9019 9020 format %{ "b$cmp $op1, $op2, $lbl\t#@cmpU_branch" %} 9021 9022 ins_encode %{ 9023 __ cmp_branch($cmp$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, as_Register($op1$$reg), 9024 as_Register($op2$$reg), *($lbl$$label)); 9025 %} 9026 9027 ins_pipe(pipe_cmp_branch); 9028 ins_short_branch(1); 9029 %} 9030 9031 // Compare signed long and branch near instructions 9032 instruct cmpL_branch(cmpOp cmp, iRegL op1, iRegL op2, label lbl) 9033 %{ 9034 // Same match rule as `far_cmpL_branch'. 9035 match(If cmp (CmpL op1 op2)); 9036 9037 effect(USE lbl); 9038 9039 ins_cost(BRANCH_COST); 9040 9041 format %{ "b$cmp $op1, $op2, $lbl\t#@cmpL_branch" %} 9042 9043 ins_encode %{ 9044 __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), as_Register($op2$$reg), *($lbl$$label)); 9045 %} 9046 9047 ins_pipe(pipe_cmp_branch); 9048 ins_short_branch(1); 9049 %} 9050 9051 instruct cmpL_loop(cmpOp cmp, iRegL op1, iRegL op2, label lbl) 9052 %{ 9053 // Same match rule as `far_cmpL_loop'. 9054 match(CountedLoopEnd cmp (CmpL op1 op2)); 9055 9056 effect(USE lbl); 9057 9058 ins_cost(BRANCH_COST); 9059 9060 format %{ "b$cmp $op1, $op2, $lbl\t#@cmpL_loop" %} 9061 9062 ins_encode %{ 9063 __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), as_Register($op2$$reg), *($lbl$$label)); 9064 %} 9065 9066 ins_pipe(pipe_cmp_branch); 9067 ins_short_branch(1); 9068 %} 9069 9070 // Compare unsigned long and branch near instructions 9071 instruct cmpUL_branch(cmpOpU cmp, iRegL op1, iRegL op2, label lbl) 9072 %{ 9073 // Same match rule as `far_cmpUL_branch'. 9074 match(If cmp (CmpUL op1 op2)); 9075 9076 effect(USE lbl); 9077 9078 ins_cost(BRANCH_COST); 9079 format %{ "b$cmp $op1, $op2, $lbl\t#@cmpUL_branch" %} 9080 9081 ins_encode %{ 9082 __ cmp_branch($cmp$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, as_Register($op1$$reg), 9083 as_Register($op2$$reg), *($lbl$$label)); 9084 %} 9085 9086 ins_pipe(pipe_cmp_branch); 9087 ins_short_branch(1); 9088 %} 9089 9090 // Compare pointer and branch near instructions 9091 instruct cmpP_branch(cmpOpU cmp, iRegP op1, iRegP op2, label lbl) 9092 %{ 9093 // Same match rule as `far_cmpP_branch'. 9094 match(If cmp (CmpP op1 op2)); 9095 9096 effect(USE lbl); 9097 9098 ins_cost(BRANCH_COST); 9099 9100 format %{ "b$cmp $op1, $op2, $lbl\t#@cmpP_branch" %} 9101 9102 ins_encode %{ 9103 __ cmp_branch($cmp$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, as_Register($op1$$reg), 9104 as_Register($op2$$reg), *($lbl$$label)); 9105 %} 9106 9107 ins_pipe(pipe_cmp_branch); 9108 ins_short_branch(1); 9109 %} 9110 9111 // Compare narrow pointer and branch near instructions 9112 instruct cmpN_branch(cmpOpU cmp, iRegN op1, iRegN op2, label lbl) 9113 %{ 9114 // Same match rule as `far_cmpN_branch'. 9115 match(If cmp (CmpN op1 op2)); 9116 9117 effect(USE lbl); 9118 9119 ins_cost(BRANCH_COST); 9120 9121 format %{ "b$cmp $op1, $op2, $lbl\t#@cmpN_branch" %} 9122 9123 ins_encode %{ 9124 __ cmp_branch($cmp$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, as_Register($op1$$reg), 9125 as_Register($op2$$reg), *($lbl$$label)); 9126 %} 9127 9128 ins_pipe(pipe_cmp_branch); 9129 ins_short_branch(1); 9130 %} 9131 9132 // Compare float and branch near instructions 9133 instruct cmpF_branch(cmpOp cmp, fRegF op1, fRegF op2, label lbl) 9134 %{ 9135 // Same match rule as `far_cmpF_branch'. 9136 match(If cmp (CmpF op1 op2)); 9137 9138 effect(USE lbl); 9139 9140 ins_cost(XFER_COST + BRANCH_COST); 9141 format %{ "float_b$cmp $op1, $op2, $lbl \t#@cmpF_branch"%} 9142 9143 ins_encode %{ 9144 __ float_cmp_branch($cmp$$cmpcode, as_FloatRegister($op1$$reg), as_FloatRegister($op2$$reg), *($lbl$$label)); 9145 %} 9146 9147 ins_pipe(pipe_class_compare); 9148 ins_short_branch(1); 9149 %} 9150 9151 // Compare double and branch near instructions 9152 instruct cmpD_branch(cmpOp cmp, fRegD op1, fRegD op2, label lbl) 9153 %{ 9154 // Same match rule as `far_cmpD_branch'. 9155 match(If cmp (CmpD op1 op2)); 9156 effect(USE lbl); 9157 9158 ins_cost(XFER_COST + BRANCH_COST); 9159 format %{ "double_b$cmp $op1, $op2, $lbl\t#@cmpD_branch"%} 9160 9161 ins_encode %{ 9162 __ float_cmp_branch($cmp$$cmpcode | C2_MacroAssembler::double_branch_mask, as_FloatRegister($op1$$reg), 9163 as_FloatRegister($op2$$reg), *($lbl$$label)); 9164 %} 9165 9166 ins_pipe(pipe_class_compare); 9167 ins_short_branch(1); 9168 %} 9169 9170 // Compare signed int with zero and branch near instructions 9171 instruct cmpI_reg_imm0_branch(cmpOp cmp, iRegI op1, immI0 zero, label lbl) 9172 %{ 9173 // Same match rule as `far_cmpI_reg_imm0_branch'. 9174 match(If cmp (CmpI op1 zero)); 9175 9176 effect(USE op1, USE lbl); 9177 9178 ins_cost(BRANCH_COST); 9179 format %{ "b$cmp $op1, zr, $lbl\t#@cmpI_reg_imm0_branch" %} 9180 9181 ins_encode %{ 9182 __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), zr, *($lbl$$label)); 9183 %} 9184 9185 ins_pipe(pipe_cmpz_branch); 9186 ins_short_branch(1); 9187 %} 9188 9189 instruct cmpI_reg_imm0_loop(cmpOp cmp, iRegI op1, immI0 zero, label lbl) 9190 %{ 9191 // Same match rule as `far_cmpI_reg_imm0_loop'. 9192 match(CountedLoopEnd cmp (CmpI op1 zero)); 9193 9194 effect(USE op1, USE lbl); 9195 9196 ins_cost(BRANCH_COST); 9197 9198 format %{ "b$cmp $op1, zr, $lbl\t#@cmpI_reg_imm0_loop" %} 9199 9200 ins_encode %{ 9201 __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), zr, *($lbl$$label)); 9202 %} 9203 9204 ins_pipe(pipe_cmpz_branch); 9205 ins_short_branch(1); 9206 %} 9207 9208 // Compare unsigned int with zero and branch near instructions 9209 instruct cmpUEqNeLeGt_reg_imm0_branch(cmpOpUEqNeLeGt cmp, iRegI op1, immI0 zero, label lbl) 9210 %{ 9211 // Same match rule as `far_cmpUEqNeLeGt_reg_imm0_branch'. 9212 match(If cmp (CmpU op1 zero)); 9213 9214 effect(USE op1, USE lbl); 9215 9216 ins_cost(BRANCH_COST); 9217 9218 format %{ "b$cmp $op1, zr, $lbl\t#@cmpUEqNeLeGt_reg_imm0_branch" %} 9219 9220 ins_encode %{ 9221 __ enc_cmpUEqNeLeGt_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label)); 9222 %} 9223 9224 ins_pipe(pipe_cmpz_branch); 9225 ins_short_branch(1); 9226 %} 9227 9228 // Compare signed long with zero and branch near instructions 9229 instruct cmpL_reg_imm0_branch(cmpOp cmp, iRegL op1, immL0 zero, label lbl) 9230 %{ 9231 // Same match rule as `far_cmpL_reg_imm0_branch'. 9232 match(If cmp (CmpL op1 zero)); 9233 9234 effect(USE op1, USE lbl); 9235 9236 ins_cost(BRANCH_COST); 9237 9238 format %{ "b$cmp $op1, zr, $lbl\t#@cmpL_reg_imm0_branch" %} 9239 9240 ins_encode %{ 9241 __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), zr, *($lbl$$label)); 9242 %} 9243 9244 ins_pipe(pipe_cmpz_branch); 9245 ins_short_branch(1); 9246 %} 9247 9248 instruct cmpL_reg_imm0_loop(cmpOp cmp, iRegL op1, immL0 zero, label lbl) 9249 %{ 9250 // Same match rule as `far_cmpL_reg_imm0_loop'. 9251 match(CountedLoopEnd cmp (CmpL op1 zero)); 9252 9253 effect(USE op1, USE lbl); 9254 9255 ins_cost(BRANCH_COST); 9256 9257 format %{ "b$cmp $op1, zr, $lbl\t#@cmpL_reg_imm0_loop" %} 9258 9259 ins_encode %{ 9260 __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), zr, *($lbl$$label)); 9261 %} 9262 9263 ins_pipe(pipe_cmpz_branch); 9264 ins_short_branch(1); 9265 %} 9266 9267 // Compare unsigned long with zero and branch near instructions 9268 instruct cmpULEqNeLeGt_reg_imm0_branch(cmpOpUEqNeLeGt cmp, iRegL op1, immL0 zero, label lbl) 9269 %{ 9270 // Same match rule as `far_cmpULEqNeLeGt_reg_imm0_branch'. 9271 match(If cmp (CmpUL op1 zero)); 9272 9273 effect(USE op1, USE lbl); 9274 9275 ins_cost(BRANCH_COST); 9276 9277 format %{ "b$cmp $op1, zr, $lbl\t#@cmpULEqNeLeGt_reg_imm0_branch" %} 9278 9279 ins_encode %{ 9280 __ enc_cmpUEqNeLeGt_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label)); 9281 %} 9282 9283 ins_pipe(pipe_cmpz_branch); 9284 ins_short_branch(1); 9285 %} 9286 9287 // Compare pointer with zero and branch near instructions 9288 instruct cmpP_imm0_branch(cmpOpEqNe cmp, iRegP op1, immP0 zero, label lbl) %{ 9289 // Same match rule as `far_cmpP_reg_imm0_branch'. 9290 match(If cmp (CmpP op1 zero)); 9291 effect(USE lbl); 9292 9293 ins_cost(BRANCH_COST); 9294 format %{ "b$cmp $op1, zr, $lbl\t#@cmpP_imm0_branch" %} 9295 9296 ins_encode %{ 9297 __ enc_cmpEqNe_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label)); 9298 %} 9299 9300 ins_pipe(pipe_cmpz_branch); 9301 ins_short_branch(1); 9302 %} 9303 9304 // Compare narrow pointer with zero and branch near instructions 9305 instruct cmpN_imm0_branch(cmpOpEqNe cmp, iRegN op1, immN0 zero, label lbl) %{ 9306 // Same match rule as `far_cmpN_reg_imm0_branch'. 9307 match(If cmp (CmpN op1 zero)); 9308 effect(USE lbl); 9309 9310 ins_cost(BRANCH_COST); 9311 9312 format %{ "b$cmp $op1, zr, $lbl\t#@cmpN_imm0_branch" %} 9313 9314 ins_encode %{ 9315 __ enc_cmpEqNe_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label)); 9316 %} 9317 9318 ins_pipe(pipe_cmpz_branch); 9319 ins_short_branch(1); 9320 %} 9321 9322 // Compare narrow pointer with pointer zero and branch near instructions 9323 instruct cmpP_narrowOop_imm0_branch(cmpOpEqNe cmp, iRegN op1, immP0 zero, label lbl) %{ 9324 // Same match rule as `far_cmpP_narrowOop_imm0_branch'. 9325 match(If cmp (CmpP (DecodeN op1) zero)); 9326 effect(USE lbl); 9327 9328 ins_cost(BRANCH_COST); 9329 format %{ "b$cmp $op1, zr, $lbl\t#@cmpP_narrowOop_imm0_branch" %} 9330 9331 ins_encode %{ 9332 __ enc_cmpEqNe_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label)); 9333 %} 9334 9335 ins_pipe(pipe_cmpz_branch); 9336 ins_short_branch(1); 9337 %} 9338 9339 // Patterns for far (20KiB) variants 9340 9341 instruct far_cmpFlag_branch(cmpOp cmp, rFlagsReg cr, label lbl) %{ 9342 match(If cmp cr); 9343 effect(USE lbl); 9344 9345 ins_cost(BRANCH_COST); 9346 format %{ "far_b$cmp $cr, zr, $lbl\t#@far_cmpFlag_branch"%} 9347 9348 ins_encode %{ 9349 __ enc_cmpEqNe_imm0_branch($cmp$$cmpcode, as_Register($cr$$reg), *($lbl$$label), /* is_far */ true); 9350 %} 9351 9352 ins_pipe(pipe_cmpz_branch); 9353 %} 9354 9355 // Compare signed int and branch far instructions 9356 instruct far_cmpI_branch(cmpOp cmp, iRegI op1, iRegI op2, label lbl) %{ 9357 match(If cmp (CmpI op1 op2)); 9358 effect(USE lbl); 9359 9360 ins_cost(BRANCH_COST * 2); 9361 9362 // the format instruction [far_b$cmp] here is be used as two insructions 9363 // in macroassembler: b$not_cmp(op1, op2, done), j($lbl), bind(done) 9364 format %{ "far_b$cmp $op1, $op2, $lbl\t#@far_cmpI_branch" %} 9365 9366 ins_encode %{ 9367 __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), as_Register($op2$$reg), *($lbl$$label), /* is_far */ true); 9368 %} 9369 9370 ins_pipe(pipe_cmp_branch); 9371 %} 9372 9373 instruct far_cmpI_loop(cmpOp cmp, iRegI op1, iRegI op2, label lbl) %{ 9374 match(CountedLoopEnd cmp (CmpI op1 op2)); 9375 effect(USE lbl); 9376 9377 ins_cost(BRANCH_COST * 2); 9378 format %{ "far_b$cmp $op1, $op2, $lbl\t#@far_cmpI_loop" %} 9379 9380 ins_encode %{ 9381 __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), as_Register($op2$$reg), *($lbl$$label), /* is_far */ true); 9382 %} 9383 9384 ins_pipe(pipe_cmp_branch); 9385 %} 9386 9387 instruct far_cmpU_branch(cmpOpU cmp, iRegI op1, iRegI op2, label lbl) %{ 9388 match(If cmp (CmpU op1 op2)); 9389 effect(USE lbl); 9390 9391 ins_cost(BRANCH_COST * 2); 9392 format %{ "far_b$cmp $op1, $op2, $lbl\t#@far_cmpU_branch" %} 9393 9394 ins_encode %{ 9395 __ cmp_branch($cmp$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, as_Register($op1$$reg), 9396 as_Register($op2$$reg), *($lbl$$label), /* is_far */ true); 9397 %} 9398 9399 ins_pipe(pipe_cmp_branch); 9400 %} 9401 9402 instruct far_cmpL_branch(cmpOp cmp, iRegL op1, iRegL op2, label lbl) %{ 9403 match(If cmp (CmpL op1 op2)); 9404 effect(USE lbl); 9405 9406 ins_cost(BRANCH_COST * 2); 9407 format %{ "far_b$cmp $op1, $op2, $lbl\t#@far_cmpL_branch" %} 9408 9409 ins_encode %{ 9410 __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), as_Register($op2$$reg), *($lbl$$label), /* is_far */ true); 9411 %} 9412 9413 ins_pipe(pipe_cmp_branch); 9414 %} 9415 9416 instruct far_cmpLloop(cmpOp cmp, iRegL op1, iRegL op2, label lbl) %{ 9417 match(CountedLoopEnd cmp (CmpL op1 op2)); 9418 effect(USE lbl); 9419 9420 ins_cost(BRANCH_COST * 2); 9421 format %{ "far_b$cmp $op1, $op2, $lbl\t#@far_cmpL_loop" %} 9422 9423 ins_encode %{ 9424 __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), as_Register($op2$$reg), *($lbl$$label), /* is_far */ true); 9425 %} 9426 9427 ins_pipe(pipe_cmp_branch); 9428 %} 9429 9430 instruct far_cmpUL_branch(cmpOpU cmp, iRegL op1, iRegL op2, label lbl) %{ 9431 match(If cmp (CmpUL op1 op2)); 9432 effect(USE lbl); 9433 9434 ins_cost(BRANCH_COST * 2); 9435 format %{ "far_b$cmp $op1, $op2, $lbl\t#@far_cmpUL_branch" %} 9436 9437 ins_encode %{ 9438 __ cmp_branch($cmp$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, as_Register($op1$$reg), 9439 as_Register($op2$$reg), *($lbl$$label), /* is_far */ true); 9440 %} 9441 9442 ins_pipe(pipe_cmp_branch); 9443 %} 9444 9445 instruct far_cmpP_branch(cmpOpU cmp, iRegP op1, iRegP op2, label lbl) 9446 %{ 9447 match(If cmp (CmpP op1 op2)); 9448 9449 effect(USE lbl); 9450 9451 ins_cost(BRANCH_COST * 2); 9452 9453 format %{ "far_b$cmp $op1, $op2, $lbl\t#@far_cmpP_branch" %} 9454 9455 ins_encode %{ 9456 __ cmp_branch($cmp$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, as_Register($op1$$reg), 9457 as_Register($op2$$reg), *($lbl$$label), /* is_far */ true); 9458 %} 9459 9460 ins_pipe(pipe_cmp_branch); 9461 %} 9462 9463 instruct far_cmpN_branch(cmpOpU cmp, iRegN op1, iRegN op2, label lbl) 9464 %{ 9465 match(If cmp (CmpN op1 op2)); 9466 9467 effect(USE lbl); 9468 9469 ins_cost(BRANCH_COST * 2); 9470 9471 format %{ "far_b$cmp $op1, $op2, $lbl\t#@far_cmpN_branch" %} 9472 9473 ins_encode %{ 9474 __ cmp_branch($cmp$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, as_Register($op1$$reg), 9475 as_Register($op2$$reg), *($lbl$$label), /* is_far */ true); 9476 %} 9477 9478 ins_pipe(pipe_cmp_branch); 9479 %} 9480 9481 // Float compare and branch instructions 9482 instruct far_cmpF_branch(cmpOp cmp, fRegF op1, fRegF op2, label lbl) 9483 %{ 9484 match(If cmp (CmpF op1 op2)); 9485 9486 effect(USE lbl); 9487 9488 ins_cost(XFER_COST + BRANCH_COST * 2); 9489 format %{ "far_float_b$cmp $op1, $op2, $lbl\t#@far_cmpF_branch"%} 9490 9491 ins_encode %{ 9492 __ float_cmp_branch($cmp$$cmpcode, as_FloatRegister($op1$$reg), as_FloatRegister($op2$$reg), 9493 *($lbl$$label), /* is_far */ true); 9494 %} 9495 9496 ins_pipe(pipe_class_compare); 9497 %} 9498 9499 // Double compare and branch instructions 9500 instruct far_cmpD_branch(cmpOp cmp, fRegD op1, fRegD op2, label lbl) 9501 %{ 9502 match(If cmp (CmpD op1 op2)); 9503 effect(USE lbl); 9504 9505 ins_cost(XFER_COST + BRANCH_COST * 2); 9506 format %{ "far_double_b$cmp $op1, $op2, $lbl\t#@far_cmpD_branch"%} 9507 9508 ins_encode %{ 9509 __ float_cmp_branch($cmp$$cmpcode | C2_MacroAssembler::double_branch_mask, as_FloatRegister($op1$$reg), 9510 as_FloatRegister($op2$$reg), *($lbl$$label), /* is_far */ true); 9511 %} 9512 9513 ins_pipe(pipe_class_compare); 9514 %} 9515 9516 instruct far_cmpI_reg_imm0_branch(cmpOp cmp, iRegI op1, immI0 zero, label lbl) 9517 %{ 9518 match(If cmp (CmpI op1 zero)); 9519 9520 effect(USE op1, USE lbl); 9521 9522 ins_cost(BRANCH_COST * 2); 9523 9524 format %{ "far_b$cmp $op1, zr, $lbl\t#@far_cmpI_reg_imm0_branch" %} 9525 9526 ins_encode %{ 9527 __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), zr, *($lbl$$label), /* is_far */ true); 9528 %} 9529 9530 ins_pipe(pipe_cmpz_branch); 9531 %} 9532 9533 instruct far_cmpI_reg_imm0_loop(cmpOp cmp, iRegI op1, immI0 zero, label lbl) 9534 %{ 9535 match(CountedLoopEnd cmp (CmpI op1 zero)); 9536 9537 effect(USE op1, USE lbl); 9538 9539 ins_cost(BRANCH_COST * 2); 9540 9541 format %{ "far_b$cmp $op1, zr, $lbl\t#@far_cmpI_reg_imm0_loop" %} 9542 9543 ins_encode %{ 9544 __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), zr, *($lbl$$label), /* is_far */ true); 9545 %} 9546 9547 ins_pipe(pipe_cmpz_branch); 9548 %} 9549 9550 instruct far_cmpUEqNeLeGt_imm0_branch(cmpOpUEqNeLeGt cmp, iRegI op1, immI0 zero, label lbl) 9551 %{ 9552 match(If cmp (CmpU op1 zero)); 9553 9554 effect(USE op1, USE lbl); 9555 9556 ins_cost(BRANCH_COST * 2); 9557 9558 format %{ "far_b$cmp $op1, zr, $lbl\t#@far_cmpUEqNeLeGt_imm0_branch" %} 9559 9560 ins_encode %{ 9561 __ enc_cmpUEqNeLeGt_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label), /* is_far */ true); 9562 %} 9563 9564 ins_pipe(pipe_cmpz_branch); 9565 %} 9566 9567 // compare lt/ge unsigned instructs has no short instruct with same match 9568 instruct far_cmpULtGe_reg_imm0_branch(cmpOpULtGe cmp, iRegI op1, immI0 zero, label lbl) 9569 %{ 9570 match(If cmp (CmpU op1 zero)); 9571 9572 effect(USE op1, USE lbl); 9573 9574 ins_cost(BRANCH_COST); 9575 9576 format %{ "j $lbl if $cmp == ge\t#@far_cmpULtGe_reg_imm0_branch" %} 9577 9578 ins_encode(riscv_enc_far_cmpULtGe_imm0_branch(cmp, op1, lbl)); 9579 9580 ins_pipe(pipe_cmpz_branch); 9581 %} 9582 9583 instruct far_cmpL_reg_imm0_branch(cmpOp cmp, iRegL op1, immL0 zero, label lbl) 9584 %{ 9585 match(If cmp (CmpL op1 zero)); 9586 9587 effect(USE op1, USE lbl); 9588 9589 ins_cost(BRANCH_COST * 2); 9590 9591 format %{ "far_b$cmp $op1, zr, $lbl\t#@far_cmpL_reg_imm0_branch" %} 9592 9593 ins_encode %{ 9594 __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), zr, *($lbl$$label), /* is_far */ true); 9595 %} 9596 9597 ins_pipe(pipe_cmpz_branch); 9598 %} 9599 9600 instruct far_cmpL_reg_imm0_loop(cmpOp cmp, iRegL op1, immL0 zero, label lbl) 9601 %{ 9602 match(CountedLoopEnd cmp (CmpL op1 zero)); 9603 9604 effect(USE op1, USE lbl); 9605 9606 ins_cost(BRANCH_COST * 2); 9607 9608 format %{ "far_b$cmp $op1, zr, $lbl\t#@far_cmpL_reg_imm0_loop" %} 9609 9610 ins_encode %{ 9611 __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), zr, *($lbl$$label), /* is_far */ true); 9612 %} 9613 9614 ins_pipe(pipe_cmpz_branch); 9615 %} 9616 9617 instruct far_cmpULEqNeLeGt_reg_imm0_branch(cmpOpUEqNeLeGt cmp, iRegL op1, immL0 zero, label lbl) 9618 %{ 9619 match(If cmp (CmpUL op1 zero)); 9620 9621 effect(USE op1, USE lbl); 9622 9623 ins_cost(BRANCH_COST * 2); 9624 9625 format %{ "far_b$cmp $op1, zr, $lbl\t#@far_cmpULEqNeLeGt_reg_imm0_branch" %} 9626 9627 ins_encode %{ 9628 __ enc_cmpUEqNeLeGt_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label), /* is_far */ true); 9629 %} 9630 9631 ins_pipe(pipe_cmpz_branch); 9632 %} 9633 9634 // compare lt/ge unsigned instructs has no short instruct with same match 9635 instruct far_cmpULLtGe_reg_imm0_branch(cmpOpULtGe cmp, iRegL op1, immL0 zero, label lbl) 9636 %{ 9637 match(If cmp (CmpUL op1 zero)); 9638 9639 effect(USE op1, USE lbl); 9640 9641 ins_cost(BRANCH_COST); 9642 9643 format %{ "j $lbl if $cmp == ge\t#@far_cmpULLtGe_reg_imm0_branch" %} 9644 9645 ins_encode(riscv_enc_far_cmpULtGe_imm0_branch(cmp, op1, lbl)); 9646 9647 ins_pipe(pipe_cmpz_branch); 9648 %} 9649 9650 instruct far_cmpP_imm0_branch(cmpOpEqNe cmp, iRegP op1, immP0 zero, label lbl) %{ 9651 match(If cmp (CmpP op1 zero)); 9652 effect(USE lbl); 9653 9654 ins_cost(BRANCH_COST * 2); 9655 format %{ "far_b$cmp $op1, zr, $lbl\t#@far_cmpP_imm0_branch" %} 9656 9657 ins_encode %{ 9658 __ enc_cmpEqNe_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label), /* is_far */ true); 9659 %} 9660 9661 ins_pipe(pipe_cmpz_branch); 9662 %} 9663 9664 instruct far_cmpN_imm0_branch(cmpOpEqNe cmp, iRegN op1, immN0 zero, label lbl) %{ 9665 match(If cmp (CmpN op1 zero)); 9666 effect(USE lbl); 9667 9668 ins_cost(BRANCH_COST * 2); 9669 9670 format %{ "far_b$cmp $op1, zr, $lbl\t#@far_cmpN_imm0_branch" %} 9671 9672 ins_encode %{ 9673 __ enc_cmpEqNe_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label), /* is_far */ true); 9674 %} 9675 9676 ins_pipe(pipe_cmpz_branch); 9677 %} 9678 9679 instruct far_cmpP_narrowOop_imm0_branch(cmpOpEqNe cmp, iRegN op1, immP0 zero, label lbl) %{ 9680 match(If cmp (CmpP (DecodeN op1) zero)); 9681 effect(USE lbl); 9682 9683 ins_cost(BRANCH_COST * 2); 9684 format %{ "far_b$cmp $op1, zr, $lbl\t#@far_cmpP_narrowOop_imm0_branch" %} 9685 9686 ins_encode %{ 9687 __ enc_cmpEqNe_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label), /* is_far */ true); 9688 %} 9689 9690 ins_pipe(pipe_cmpz_branch); 9691 %} 9692 9693 // ============================================================================ 9694 // Conditional Move Instructions 9695 instruct cmovI_cmpI(iRegINoSp dst, iRegI src, iRegI op1, iRegI op2, cmpOp cop) %{ 9696 match(Set dst (CMoveI (Binary cop (CmpI op1 op2)) (Binary dst src))); 9697 ins_cost(ALU_COST + BRANCH_COST); 9698 9699 format %{ 9700 "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovI_cmpI\n\t" 9701 %} 9702 9703 ins_encode %{ 9704 __ enc_cmove($cop$$cmpcode, 9705 as_Register($op1$$reg), as_Register($op2$$reg), 9706 as_Register($dst$$reg), as_Register($src$$reg)); 9707 %} 9708 9709 ins_pipe(pipe_class_compare); 9710 %} 9711 9712 instruct cmovI_cmpU(iRegINoSp dst, iRegI src, iRegI op1, iRegI op2, cmpOpU cop) %{ 9713 match(Set dst (CMoveI (Binary cop (CmpU op1 op2)) (Binary dst src))); 9714 ins_cost(ALU_COST + BRANCH_COST); 9715 9716 format %{ 9717 "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovI_cmpU\n\t" 9718 %} 9719 9720 ins_encode %{ 9721 __ enc_cmove($cop$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, 9722 as_Register($op1$$reg), as_Register($op2$$reg), 9723 as_Register($dst$$reg), as_Register($src$$reg)); 9724 %} 9725 9726 ins_pipe(pipe_class_compare); 9727 %} 9728 9729 instruct cmovI_cmpL(iRegINoSp dst, iRegI src, iRegL op1, iRegL op2, cmpOp cop) %{ 9730 match(Set dst (CMoveI (Binary cop (CmpL op1 op2)) (Binary dst src))); 9731 ins_cost(ALU_COST + BRANCH_COST); 9732 9733 format %{ 9734 "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovI_cmpL\n\t" 9735 %} 9736 9737 ins_encode %{ 9738 __ enc_cmove($cop$$cmpcode, 9739 as_Register($op1$$reg), as_Register($op2$$reg), 9740 as_Register($dst$$reg), as_Register($src$$reg)); 9741 %} 9742 9743 ins_pipe(pipe_class_compare); 9744 %} 9745 9746 instruct cmovI_cmpUL(iRegINoSp dst, iRegI src, iRegL op1, iRegL op2, cmpOpU cop) %{ 9747 match(Set dst (CMoveI (Binary cop (CmpUL op1 op2)) (Binary dst src))); 9748 ins_cost(ALU_COST + BRANCH_COST); 9749 9750 format %{ 9751 "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovI_cmpUL\n\t" 9752 %} 9753 9754 ins_encode %{ 9755 __ enc_cmove($cop$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, 9756 as_Register($op1$$reg), as_Register($op2$$reg), 9757 as_Register($dst$$reg), as_Register($src$$reg)); 9758 %} 9759 9760 ins_pipe(pipe_class_compare); 9761 %} 9762 9763 instruct cmovI_cmpN(iRegINoSp dst, iRegI src, iRegN op1, iRegN op2, cmpOpU cop) %{ 9764 match(Set dst (CMoveI (Binary cop (CmpN op1 op2)) (Binary dst src))); 9765 ins_cost(ALU_COST + BRANCH_COST); 9766 9767 format %{ 9768 "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovI_cmpN\n\t" 9769 %} 9770 9771 ins_encode %{ 9772 __ enc_cmove($cop$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, 9773 as_Register($op1$$reg), as_Register($op2$$reg), 9774 as_Register($dst$$reg), as_Register($src$$reg)); 9775 %} 9776 9777 ins_pipe(pipe_class_compare); 9778 %} 9779 9780 instruct cmovI_cmpP(iRegINoSp dst, iRegI src, iRegP op1, iRegP op2, cmpOpU cop) %{ 9781 match(Set dst (CMoveI (Binary cop (CmpP op1 op2)) (Binary dst src))); 9782 ins_cost(ALU_COST + BRANCH_COST); 9783 9784 format %{ 9785 "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovI_cmpP\n\t" 9786 %} 9787 9788 ins_encode %{ 9789 __ enc_cmove($cop$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, 9790 as_Register($op1$$reg), as_Register($op2$$reg), 9791 as_Register($dst$$reg), as_Register($src$$reg)); 9792 %} 9793 9794 ins_pipe(pipe_class_compare); 9795 %} 9796 9797 instruct cmovL_cmpL(iRegLNoSp dst, iRegL src, iRegL op1, iRegL op2, cmpOp cop) %{ 9798 match(Set dst (CMoveL (Binary cop (CmpL op1 op2)) (Binary dst src))); 9799 ins_cost(ALU_COST + BRANCH_COST); 9800 9801 format %{ 9802 "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovL_cmpL\n\t" 9803 %} 9804 9805 ins_encode %{ 9806 __ enc_cmove($cop$$cmpcode, 9807 as_Register($op1$$reg), as_Register($op2$$reg), 9808 as_Register($dst$$reg), as_Register($src$$reg)); 9809 %} 9810 9811 ins_pipe(pipe_class_compare); 9812 %} 9813 9814 instruct cmovL_cmpUL(iRegLNoSp dst, iRegL src, iRegL op1, iRegL op2, cmpOpU cop) %{ 9815 match(Set dst (CMoveL (Binary cop (CmpUL op1 op2)) (Binary dst src))); 9816 ins_cost(ALU_COST + BRANCH_COST); 9817 9818 format %{ 9819 "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovL_cmpUL\n\t" 9820 %} 9821 9822 ins_encode %{ 9823 __ enc_cmove($cop$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, 9824 as_Register($op1$$reg), as_Register($op2$$reg), 9825 as_Register($dst$$reg), as_Register($src$$reg)); 9826 %} 9827 9828 ins_pipe(pipe_class_compare); 9829 %} 9830 9831 instruct cmovL_cmpI(iRegLNoSp dst, iRegL src, iRegI op1, iRegI op2, cmpOp cop) %{ 9832 match(Set dst (CMoveL (Binary cop (CmpI op1 op2)) (Binary dst src))); 9833 ins_cost(ALU_COST + BRANCH_COST); 9834 9835 format %{ 9836 "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovL_cmpI\n\t" 9837 %} 9838 9839 ins_encode %{ 9840 __ enc_cmove($cop$$cmpcode, 9841 as_Register($op1$$reg), as_Register($op2$$reg), 9842 as_Register($dst$$reg), as_Register($src$$reg)); 9843 %} 9844 9845 ins_pipe(pipe_class_compare); 9846 %} 9847 9848 instruct cmovL_cmpU(iRegLNoSp dst, iRegL src, iRegI op1, iRegI op2, cmpOpU cop) %{ 9849 match(Set dst (CMoveL (Binary cop (CmpU op1 op2)) (Binary dst src))); 9850 ins_cost(ALU_COST + BRANCH_COST); 9851 9852 format %{ 9853 "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovL_cmpU\n\t" 9854 %} 9855 9856 ins_encode %{ 9857 __ enc_cmove($cop$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, 9858 as_Register($op1$$reg), as_Register($op2$$reg), 9859 as_Register($dst$$reg), as_Register($src$$reg)); 9860 %} 9861 9862 ins_pipe(pipe_class_compare); 9863 %} 9864 9865 instruct cmovL_cmpN(iRegLNoSp dst, iRegL src, iRegN op1, iRegN op2, cmpOpU cop) %{ 9866 match(Set dst (CMoveL (Binary cop (CmpN op1 op2)) (Binary dst src))); 9867 ins_cost(ALU_COST + BRANCH_COST); 9868 9869 format %{ 9870 "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovL_cmpN\n\t" 9871 %} 9872 9873 ins_encode %{ 9874 __ enc_cmove($cop$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, 9875 as_Register($op1$$reg), as_Register($op2$$reg), 9876 as_Register($dst$$reg), as_Register($src$$reg)); 9877 %} 9878 9879 ins_pipe(pipe_class_compare); 9880 %} 9881 9882 instruct cmovL_cmpP(iRegLNoSp dst, iRegL src, iRegP op1, iRegP op2, cmpOpU cop) %{ 9883 match(Set dst (CMoveL (Binary cop (CmpP op1 op2)) (Binary dst src))); 9884 ins_cost(ALU_COST + BRANCH_COST); 9885 9886 format %{ 9887 "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovL_cmpP\n\t" 9888 %} 9889 9890 ins_encode %{ 9891 __ enc_cmove($cop$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, 9892 as_Register($op1$$reg), as_Register($op2$$reg), 9893 as_Register($dst$$reg), as_Register($src$$reg)); 9894 %} 9895 9896 ins_pipe(pipe_class_compare); 9897 %} 9898 9899 // ============================================================================ 9900 // Procedure Call/Return Instructions 9901 9902 // Call Java Static Instruction 9903 // Note: If this code changes, the corresponding ret_addr_offset() and 9904 // compute_padding() functions will have to be adjusted. 9905 instruct CallStaticJavaDirect(method meth) 9906 %{ 9907 match(CallStaticJava); 9908 9909 effect(USE meth); 9910 9911 ins_cost(BRANCH_COST); 9912 9913 format %{ "CALL,static $meth\t#@CallStaticJavaDirect" %} 9914 9915 ins_encode(riscv_enc_java_static_call(meth), 9916 riscv_enc_call_epilog); 9917 9918 ins_pipe(pipe_class_call); 9919 ins_alignment(4); 9920 %} 9921 9922 // TO HERE 9923 9924 // Call Java Dynamic Instruction 9925 // Note: If this code changes, the corresponding ret_addr_offset() and 9926 // compute_padding() functions will have to be adjusted. 9927 instruct CallDynamicJavaDirect(method meth) 9928 %{ 9929 match(CallDynamicJava); 9930 9931 effect(USE meth); 9932 9933 ins_cost(BRANCH_COST + ALU_COST * 5); 9934 9935 format %{ "CALL,dynamic $meth\t#@CallDynamicJavaDirect" %} 9936 9937 ins_encode(riscv_enc_java_dynamic_call(meth), 9938 riscv_enc_call_epilog); 9939 9940 ins_pipe(pipe_class_call); 9941 ins_alignment(4); 9942 %} 9943 9944 // Call Runtime Instruction 9945 9946 instruct CallRuntimeDirect(method meth) 9947 %{ 9948 match(CallRuntime); 9949 9950 effect(USE meth); 9951 9952 ins_cost(BRANCH_COST); 9953 9954 format %{ "CALL, runtime $meth\t#@CallRuntimeDirect" %} 9955 9956 ins_encode(riscv_enc_java_to_runtime(meth)); 9957 9958 ins_pipe(pipe_class_call); 9959 %} 9960 9961 // Call Runtime Instruction 9962 9963 instruct CallLeafDirect(method meth) 9964 %{ 9965 match(CallLeaf); 9966 9967 effect(USE meth); 9968 9969 ins_cost(BRANCH_COST); 9970 9971 format %{ "CALL, runtime leaf $meth\t#@CallLeafDirect" %} 9972 9973 ins_encode(riscv_enc_java_to_runtime(meth)); 9974 9975 ins_pipe(pipe_class_call); 9976 %} 9977 9978 // Call Runtime Instruction without safepoint and with vector arguments 9979 9980 instruct CallLeafDirectVector(method meth) 9981 %{ 9982 match(CallLeafVector); 9983 9984 effect(USE meth); 9985 9986 ins_cost(BRANCH_COST); 9987 9988 format %{ "CALL, runtime leaf vector $meth" %} 9989 9990 ins_encode(riscv_enc_java_to_runtime(meth)); 9991 9992 ins_pipe(pipe_class_call); 9993 %} 9994 9995 // Call Runtime Instruction 9996 9997 instruct CallLeafNoFPDirect(method meth) 9998 %{ 9999 match(CallLeafNoFP); 10000 10001 effect(USE meth); 10002 10003 ins_cost(BRANCH_COST); 10004 10005 format %{ "CALL, runtime leaf nofp $meth\t#@CallLeafNoFPDirect" %} 10006 10007 ins_encode(riscv_enc_java_to_runtime(meth)); 10008 10009 ins_pipe(pipe_class_call); 10010 %} 10011 10012 // ============================================================================ 10013 // Partial Subtype Check 10014 // 10015 // superklass array for an instance of the superklass. Set a hidden 10016 // internal cache on a hit (cache is checked with exposed code in 10017 // gen_subtype_check()). Return zero for a hit. The encoding 10018 // ALSO sets flags. 10019 10020 instruct partialSubtypeCheck(iRegP_R15 result, iRegP_R14 sub, iRegP_R10 super, iRegP_R12 tmp, rFlagsReg cr) 10021 %{ 10022 match(Set result (PartialSubtypeCheck sub super)); 10023 effect(KILL tmp, KILL cr); 10024 10025 ins_cost(11 * DEFAULT_COST); 10026 format %{ "partialSubtypeCheck $result, $sub, $super\t#@partialSubtypeCheck" %} 10027 10028 ins_encode(riscv_enc_partial_subtype_check(sub, super, tmp, result)); 10029 10030 opcode(0x1); // Force zero of result reg on hit 10031 10032 ins_pipe(pipe_class_memory); 10033 %} 10034 10035 instruct partialSubtypeCheckConstSuper(iRegP_R14 sub, iRegP_R10 super_reg, immP super_con, iRegP_R15 result, 10036 iRegP_R11 tmpR11, iRegP_R12 tmpR12, iRegP_R13 tmpR13, iRegP_R16 tmpR16, rFlagsReg cr) 10037 %{ 10038 predicate(UseSecondarySupersTable); 10039 match(Set result (PartialSubtypeCheck sub (Binary super_reg super_con))); 10040 effect(TEMP tmpR11, TEMP tmpR12, TEMP tmpR13, TEMP tmpR16, KILL cr); 10041 10042 ins_cost(7 * DEFAULT_COST); // needs to be less than competing nodes 10043 format %{ "partialSubtypeCheck $result, $sub, $super_reg, $super_con" %} 10044 10045 ins_encode %{ 10046 bool success = false; 10047 u1 super_klass_slot = ((Klass*)$super_con$$constant)->hash_slot(); 10048 if (InlineSecondarySupersTest) { 10049 success = __ lookup_secondary_supers_table($sub$$Register, $super_reg$$Register, $result$$Register, 10050 $tmpR11$$Register, $tmpR12$$Register, $tmpR13$$Register, 10051 $tmpR16$$Register, super_klass_slot); 10052 } else { 10053 address call = __ reloc_call(RuntimeAddress(StubRoutines::lookup_secondary_supers_table_stub(super_klass_slot))); 10054 success = (call != nullptr); 10055 } 10056 if (!success) { 10057 ciEnv::current()->record_failure("CodeCache is full"); 10058 return; 10059 } 10060 %} 10061 10062 ins_pipe(pipe_class_memory); 10063 %} 10064 10065 instruct partialSubtypeCheckVsZero(iRegP_R15 result, iRegP_R14 sub, iRegP_R10 super, iRegP_R12 tmp, 10066 immP0 zero, rFlagsReg cr) 10067 %{ 10068 match(Set cr (CmpP (PartialSubtypeCheck sub super) zero)); 10069 effect(KILL tmp, KILL result); 10070 10071 ins_cost(11 * DEFAULT_COST); 10072 format %{ "partialSubtypeCheck $result, $sub, $super == 0\t#@partialSubtypeCheckVsZero" %} 10073 10074 ins_encode(riscv_enc_partial_subtype_check(sub, super, tmp, result)); 10075 10076 opcode(0x0); // Don't zero result reg on hit 10077 10078 ins_pipe(pipe_class_memory); 10079 %} 10080 10081 instruct string_compareU(iRegP_R11 str1, iRegI_R12 cnt1, iRegP_R13 str2, iRegI_R14 cnt2, 10082 iRegI_R10 result, iRegP_R28 tmp1, iRegL_R29 tmp2, iRegL_R30 tmp3, rFlagsReg cr) 10083 %{ 10084 predicate(!UseRVV && ((StrCompNode *)n)->encoding() == StrIntrinsicNode::UU); 10085 match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2))); 10086 effect(KILL tmp1, KILL tmp2, KILL tmp3, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr); 10087 10088 format %{ "String Compare $str1, $cnt1, $str2, $cnt2 -> $result\t#@string_compareU" %} 10089 ins_encode %{ 10090 // Count is in 8-bit bytes; non-Compact chars are 16 bits. 10091 __ string_compare($str1$$Register, $str2$$Register, 10092 $cnt1$$Register, $cnt2$$Register, $result$$Register, 10093 $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, 10094 StrIntrinsicNode::UU); 10095 %} 10096 ins_pipe(pipe_class_memory); 10097 %} 10098 10099 instruct string_compareL(iRegP_R11 str1, iRegI_R12 cnt1, iRegP_R13 str2, iRegI_R14 cnt2, 10100 iRegI_R10 result, iRegP_R28 tmp1, iRegL_R29 tmp2, iRegL_R30 tmp3, rFlagsReg cr) 10101 %{ 10102 predicate(!UseRVV && ((StrCompNode *)n)->encoding() == StrIntrinsicNode::LL); 10103 match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2))); 10104 effect(KILL tmp1, KILL tmp2, KILL tmp3, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr); 10105 10106 format %{ "String Compare $str1, $cnt1, $str2, $cnt2 -> $result\t#@string_compareL" %} 10107 ins_encode %{ 10108 __ string_compare($str1$$Register, $str2$$Register, 10109 $cnt1$$Register, $cnt2$$Register, $result$$Register, 10110 $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, 10111 StrIntrinsicNode::LL); 10112 %} 10113 ins_pipe(pipe_class_memory); 10114 %} 10115 10116 instruct string_compareUL(iRegP_R11 str1, iRegI_R12 cnt1, iRegP_R13 str2, iRegI_R14 cnt2, 10117 iRegI_R10 result, iRegP_R28 tmp1, iRegL_R29 tmp2, iRegL_R30 tmp3, rFlagsReg cr) 10118 %{ 10119 predicate(!UseRVV && ((StrCompNode *)n)->encoding() == StrIntrinsicNode::UL); 10120 match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2))); 10121 effect(KILL tmp1, KILL tmp2, KILL tmp3, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr); 10122 10123 format %{"String Compare $str1, $cnt1, $str2, $cnt2 -> $result\t#@string_compareUL" %} 10124 ins_encode %{ 10125 __ string_compare($str1$$Register, $str2$$Register, 10126 $cnt1$$Register, $cnt2$$Register, $result$$Register, 10127 $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, 10128 StrIntrinsicNode::UL); 10129 %} 10130 ins_pipe(pipe_class_memory); 10131 %} 10132 10133 instruct string_compareLU(iRegP_R11 str1, iRegI_R12 cnt1, iRegP_R13 str2, iRegI_R14 cnt2, 10134 iRegI_R10 result, iRegP_R28 tmp1, iRegL_R29 tmp2, iRegL_R30 tmp3, 10135 rFlagsReg cr) 10136 %{ 10137 predicate(!UseRVV && ((StrCompNode *)n)->encoding() == StrIntrinsicNode::LU); 10138 match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2))); 10139 effect(KILL tmp1, KILL tmp2, KILL tmp3, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr); 10140 10141 format %{ "String Compare $str1, $cnt1, $str2, $cnt2 -> $result\t#@string_compareLU" %} 10142 ins_encode %{ 10143 __ string_compare($str1$$Register, $str2$$Register, 10144 $cnt1$$Register, $cnt2$$Register, $result$$Register, 10145 $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, 10146 StrIntrinsicNode::LU); 10147 %} 10148 ins_pipe(pipe_class_memory); 10149 %} 10150 10151 instruct string_indexofUU(iRegP_R11 str1, iRegI_R12 cnt1, iRegP_R13 str2, iRegI_R14 cnt2, 10152 iRegI_R10 result, iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, 10153 iRegINoSp tmp4, iRegINoSp tmp5, iRegINoSp tmp6, rFlagsReg cr) 10154 %{ 10155 predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UU); 10156 match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2))); 10157 effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, TEMP_DEF result, 10158 TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5, TEMP tmp6, KILL cr); 10159 10160 format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result (UU)" %} 10161 ins_encode %{ 10162 __ string_indexof($str1$$Register, $str2$$Register, 10163 $cnt1$$Register, $cnt2$$Register, 10164 $tmp1$$Register, $tmp2$$Register, 10165 $tmp3$$Register, $tmp4$$Register, 10166 $tmp5$$Register, $tmp6$$Register, 10167 $result$$Register, StrIntrinsicNode::UU); 10168 %} 10169 ins_pipe(pipe_class_memory); 10170 %} 10171 10172 instruct string_indexofLL(iRegP_R11 str1, iRegI_R12 cnt1, iRegP_R13 str2, iRegI_R14 cnt2, 10173 iRegI_R10 result, iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, 10174 iRegINoSp tmp4, iRegINoSp tmp5, iRegINoSp tmp6, rFlagsReg cr) 10175 %{ 10176 predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::LL); 10177 match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2))); 10178 effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, TEMP_DEF result, 10179 TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5, TEMP tmp6, KILL cr); 10180 10181 format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result (LL)" %} 10182 ins_encode %{ 10183 __ string_indexof($str1$$Register, $str2$$Register, 10184 $cnt1$$Register, $cnt2$$Register, 10185 $tmp1$$Register, $tmp2$$Register, 10186 $tmp3$$Register, $tmp4$$Register, 10187 $tmp5$$Register, $tmp6$$Register, 10188 $result$$Register, StrIntrinsicNode::LL); 10189 %} 10190 ins_pipe(pipe_class_memory); 10191 %} 10192 10193 instruct string_indexofUL(iRegP_R11 str1, iRegI_R12 cnt1, iRegP_R13 str2, iRegI_R14 cnt2, 10194 iRegI_R10 result, iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, 10195 iRegINoSp tmp4, iRegINoSp tmp5, iRegINoSp tmp6, rFlagsReg cr) 10196 %{ 10197 predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UL); 10198 match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2))); 10199 effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, TEMP_DEF result, 10200 TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5, TEMP tmp6, KILL cr); 10201 format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result (UL)" %} 10202 10203 ins_encode %{ 10204 __ string_indexof($str1$$Register, $str2$$Register, 10205 $cnt1$$Register, $cnt2$$Register, 10206 $tmp1$$Register, $tmp2$$Register, 10207 $tmp3$$Register, $tmp4$$Register, 10208 $tmp5$$Register, $tmp6$$Register, 10209 $result$$Register, StrIntrinsicNode::UL); 10210 %} 10211 ins_pipe(pipe_class_memory); 10212 %} 10213 10214 instruct string_indexof_conUU(iRegP_R11 str1, iRegI_R12 cnt1, iRegP_R13 str2, 10215 immI_le_4 int_cnt2, iRegI_R10 result, iRegINoSp tmp1, iRegINoSp tmp2, 10216 iRegINoSp tmp3, iRegINoSp tmp4, rFlagsReg cr) 10217 %{ 10218 predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UU); 10219 match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2))); 10220 effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, TEMP_DEF result, 10221 TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr); 10222 10223 format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result (UU)" %} 10224 10225 ins_encode %{ 10226 int icnt2 = (int)$int_cnt2$$constant; 10227 __ string_indexof_linearscan($str1$$Register, $str2$$Register, 10228 $cnt1$$Register, zr, 10229 $tmp1$$Register, $tmp2$$Register, 10230 $tmp3$$Register, $tmp4$$Register, 10231 icnt2, $result$$Register, StrIntrinsicNode::UU); 10232 %} 10233 ins_pipe(pipe_class_memory); 10234 %} 10235 10236 instruct string_indexof_conLL(iRegP_R11 str1, iRegI_R12 cnt1, iRegP_R13 str2, 10237 immI_le_4 int_cnt2, iRegI_R10 result, iRegINoSp tmp1, iRegINoSp tmp2, 10238 iRegINoSp tmp3, iRegINoSp tmp4, rFlagsReg cr) 10239 %{ 10240 predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::LL); 10241 match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2))); 10242 effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, TEMP_DEF result, 10243 TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr); 10244 10245 format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result (LL)" %} 10246 ins_encode %{ 10247 int icnt2 = (int)$int_cnt2$$constant; 10248 __ string_indexof_linearscan($str1$$Register, $str2$$Register, 10249 $cnt1$$Register, zr, 10250 $tmp1$$Register, $tmp2$$Register, 10251 $tmp3$$Register, $tmp4$$Register, 10252 icnt2, $result$$Register, StrIntrinsicNode::LL); 10253 %} 10254 ins_pipe(pipe_class_memory); 10255 %} 10256 10257 instruct string_indexof_conUL(iRegP_R11 str1, iRegI_R12 cnt1, iRegP_R13 str2, 10258 immI_1 int_cnt2, iRegI_R10 result, iRegINoSp tmp1, iRegINoSp tmp2, 10259 iRegINoSp tmp3, iRegINoSp tmp4, rFlagsReg cr) 10260 %{ 10261 predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UL); 10262 match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2))); 10263 effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, TEMP_DEF result, 10264 TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr); 10265 10266 format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result (UL)" %} 10267 ins_encode %{ 10268 int icnt2 = (int)$int_cnt2$$constant; 10269 __ string_indexof_linearscan($str1$$Register, $str2$$Register, 10270 $cnt1$$Register, zr, 10271 $tmp1$$Register, $tmp2$$Register, 10272 $tmp3$$Register, $tmp4$$Register, 10273 icnt2, $result$$Register, StrIntrinsicNode::UL); 10274 %} 10275 ins_pipe(pipe_class_memory); 10276 %} 10277 10278 instruct stringU_indexof_char(iRegP_R11 str1, iRegI_R12 cnt1, iRegI_R13 ch, 10279 iRegI_R10 result, iRegINoSp tmp1, iRegINoSp tmp2, 10280 iRegINoSp tmp3, iRegINoSp tmp4, rFlagsReg cr) 10281 %{ 10282 match(Set result (StrIndexOfChar (Binary str1 cnt1) ch)); 10283 predicate(!UseRVV && (((StrIndexOfCharNode*)n)->encoding() == StrIntrinsicNode::U)); 10284 effect(USE_KILL str1, USE_KILL cnt1, USE_KILL ch, TEMP_DEF result, 10285 TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr); 10286 10287 format %{ "StringUTF16 IndexOf char[] $str1, $cnt1, $ch -> $result" %} 10288 ins_encode %{ 10289 __ string_indexof_char($str1$$Register, $cnt1$$Register, $ch$$Register, 10290 $result$$Register, $tmp1$$Register, $tmp2$$Register, 10291 $tmp3$$Register, $tmp4$$Register, false /* isU */); 10292 %} 10293 ins_pipe(pipe_class_memory); 10294 %} 10295 10296 10297 instruct stringL_indexof_char(iRegP_R11 str1, iRegI_R12 cnt1, iRegI_R13 ch, 10298 iRegI_R10 result, iRegINoSp tmp1, iRegINoSp tmp2, 10299 iRegINoSp tmp3, iRegINoSp tmp4, rFlagsReg cr) 10300 %{ 10301 match(Set result (StrIndexOfChar (Binary str1 cnt1) ch)); 10302 predicate(!UseRVV && (((StrIndexOfCharNode*)n)->encoding() == StrIntrinsicNode::L)); 10303 effect(USE_KILL str1, USE_KILL cnt1, USE_KILL ch, TEMP_DEF result, 10304 TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr); 10305 10306 format %{ "StringLatin1 IndexOf char[] $str1, $cnt1, $ch -> $result" %} 10307 ins_encode %{ 10308 __ string_indexof_char($str1$$Register, $cnt1$$Register, $ch$$Register, 10309 $result$$Register, $tmp1$$Register, $tmp2$$Register, 10310 $tmp3$$Register, $tmp4$$Register, true /* isL */); 10311 %} 10312 ins_pipe(pipe_class_memory); 10313 %} 10314 10315 // clearing of an array 10316 instruct clearArray_reg_reg(iRegL_R29 cnt, iRegP_R28 base, iRegP_R30 tmp1, 10317 iRegP_R31 tmp2, rFlagsReg cr, Universe dummy) 10318 %{ 10319 // temp registers must match the one used in StubGenerator::generate_zero_blocks() 10320 predicate(UseBlockZeroing || !UseRVV); 10321 match(Set dummy (ClearArray cnt base)); 10322 effect(USE_KILL cnt, USE_KILL base, TEMP tmp1, TEMP tmp2, KILL cr); 10323 10324 ins_cost(4 * DEFAULT_COST); 10325 format %{ "ClearArray $cnt, $base\t#@clearArray_reg_reg" %} 10326 10327 ins_encode %{ 10328 address tpc = __ zero_words($base$$Register, $cnt$$Register); 10329 if (tpc == nullptr) { 10330 ciEnv::current()->record_failure("CodeCache is full"); 10331 return; 10332 } 10333 %} 10334 10335 ins_pipe(pipe_class_memory); 10336 %} 10337 10338 instruct clearArray_imm_reg(immL cnt, iRegP_R28 base, Universe dummy, rFlagsReg cr) 10339 %{ 10340 predicate(!UseRVV && (uint64_t)n->in(2)->get_long() 10341 < (uint64_t)(BlockZeroingLowLimit >> LogBytesPerWord)); 10342 match(Set dummy (ClearArray cnt base)); 10343 effect(USE_KILL base, KILL cr); 10344 10345 ins_cost(4 * DEFAULT_COST); 10346 format %{ "ClearArray $cnt, $base\t#@clearArray_imm_reg" %} 10347 10348 ins_encode %{ 10349 __ zero_words($base$$Register, (uint64_t)$cnt$$constant); 10350 %} 10351 10352 ins_pipe(pipe_class_memory); 10353 %} 10354 10355 instruct string_equalsL(iRegP_R11 str1, iRegP_R13 str2, iRegI_R14 cnt, 10356 iRegI_R10 result, rFlagsReg cr) 10357 %{ 10358 predicate(!UseRVV && ((StrEqualsNode*)n)->encoding() == StrIntrinsicNode::LL); 10359 match(Set result (StrEquals (Binary str1 str2) cnt)); 10360 effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL cr); 10361 10362 format %{ "String Equals $str1, $str2, $cnt -> $result\t#@string_equalsL" %} 10363 ins_encode %{ 10364 // Count is in 8-bit bytes; non-Compact chars are 16 bits. 10365 __ string_equals($str1$$Register, $str2$$Register, 10366 $result$$Register, $cnt$$Register); 10367 %} 10368 ins_pipe(pipe_class_memory); 10369 %} 10370 10371 instruct array_equalsB(iRegP_R11 ary1, iRegP_R12 ary2, iRegI_R10 result, 10372 iRegP_R13 tmp1, iRegP_R14 tmp2, iRegP_R15 tmp3) 10373 %{ 10374 predicate(!UseRVV && ((AryEqNode*)n)->encoding() == StrIntrinsicNode::LL); 10375 match(Set result (AryEq ary1 ary2)); 10376 effect(USE_KILL ary1, USE_KILL ary2, TEMP tmp1, TEMP tmp2, TEMP tmp3); 10377 10378 format %{ "Array Equals $ary1, $ary2 -> $result\t#@array_equalsB // KILL all" %} 10379 ins_encode %{ 10380 __ arrays_equals($ary1$$Register, $ary2$$Register, 10381 $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, 10382 $result$$Register, 1); 10383 %} 10384 ins_pipe(pipe_class_memory); 10385 %} 10386 10387 instruct array_equalsC(iRegP_R11 ary1, iRegP_R12 ary2, iRegI_R10 result, 10388 iRegP_R13 tmp1, iRegP_R14 tmp2, iRegP_R15 tmp3) 10389 %{ 10390 predicate(!UseRVV && ((AryEqNode*)n)->encoding() == StrIntrinsicNode::UU); 10391 match(Set result (AryEq ary1 ary2)); 10392 effect(USE_KILL ary1, USE_KILL ary2, TEMP tmp1, TEMP tmp2, TEMP tmp3); 10393 10394 format %{ "Array Equals $ary1, $ary2 -> $result\t#@array_equalsC // KILL all" %} 10395 ins_encode %{ 10396 __ arrays_equals($ary1$$Register, $ary2$$Register, 10397 $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, 10398 $result$$Register, 2); 10399 %} 10400 ins_pipe(pipe_class_memory); 10401 %} 10402 10403 // fast ArraysSupport.vectorizedHashCode 10404 instruct arrays_hashcode(iRegP_R11 ary, iRegI_R12 cnt, iRegI_R10 result, immI basic_type, 10405 iRegLNoSp tmp1, iRegLNoSp tmp2, 10406 iRegLNoSp tmp3, iRegLNoSp tmp4, 10407 iRegLNoSp tmp5, iRegLNoSp tmp6, rFlagsReg cr) 10408 %{ 10409 match(Set result (VectorizedHashCode (Binary ary cnt) (Binary result basic_type))); 10410 effect(TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5, TEMP tmp6, 10411 USE_KILL ary, USE_KILL cnt, USE basic_type, KILL cr); 10412 10413 format %{ "Array HashCode array[] $ary,$cnt,$result,$basic_type -> $result // KILL all" %} 10414 ins_encode %{ 10415 __ arrays_hashcode($ary$$Register, $cnt$$Register, $result$$Register, 10416 $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, 10417 $tmp4$$Register, $tmp5$$Register, $tmp6$$Register, 10418 (BasicType)$basic_type$$constant); 10419 %} 10420 ins_pipe(pipe_class_memory); 10421 %} 10422 10423 // ============================================================================ 10424 // Safepoint Instructions 10425 10426 instruct safePoint(iRegP poll) 10427 %{ 10428 match(SafePoint poll); 10429 10430 ins_cost(2 * LOAD_COST); 10431 format %{ 10432 "lwu zr, [$poll]\t# Safepoint: poll for GC, #@safePoint" 10433 %} 10434 ins_encode %{ 10435 __ read_polling_page(as_Register($poll$$reg), 0, relocInfo::poll_type); 10436 %} 10437 ins_pipe(pipe_serial); // ins_pipe(iload_reg_mem); 10438 %} 10439 10440 // ============================================================================ 10441 // This name is KNOWN by the ADLC and cannot be changed. 10442 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type 10443 // for this guy. 10444 instruct tlsLoadP(javaThread_RegP dst) 10445 %{ 10446 match(Set dst (ThreadLocal)); 10447 10448 ins_cost(0); 10449 10450 format %{ " -- \t// $dst=Thread::current(), empty, #@tlsLoadP" %} 10451 10452 size(0); 10453 10454 ins_encode( /*empty*/ ); 10455 10456 ins_pipe(pipe_class_empty); 10457 %} 10458 10459 // inlined locking and unlocking 10460 // using t1 as the 'flag' register to bridge the BoolNode producers and consumers 10461 instruct cmpFastLock(rFlagsReg cr, iRegP object, iRegP box, 10462 iRegPNoSp tmp1, iRegPNoSp tmp2, iRegPNoSp tmp3, iRegPNoSp tmp4) 10463 %{ 10464 predicate(LockingMode != LM_LIGHTWEIGHT); 10465 match(Set cr (FastLock object box)); 10466 effect(TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4); 10467 10468 ins_cost(10 * DEFAULT_COST); 10469 format %{ "fastlock $object,$box\t! kills $tmp1,$tmp2,$tmp3,$tmp4 #@cmpFastLock" %} 10470 10471 ins_encode %{ 10472 __ fast_lock($object$$Register, $box$$Register, 10473 $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register); 10474 %} 10475 10476 ins_pipe(pipe_serial); 10477 %} 10478 10479 // using t1 as the 'flag' register to bridge the BoolNode producers and consumers 10480 instruct cmpFastUnlock(rFlagsReg cr, iRegP object, iRegP box, iRegPNoSp tmp1, iRegPNoSp tmp2) 10481 %{ 10482 predicate(LockingMode != LM_LIGHTWEIGHT); 10483 match(Set cr (FastUnlock object box)); 10484 effect(TEMP tmp1, TEMP tmp2); 10485 10486 ins_cost(10 * DEFAULT_COST); 10487 format %{ "fastunlock $object,$box\t! kills $tmp1, $tmp2, #@cmpFastUnlock" %} 10488 10489 ins_encode %{ 10490 __ fast_unlock($object$$Register, $box$$Register, $tmp1$$Register, $tmp2$$Register); 10491 %} 10492 10493 ins_pipe(pipe_serial); 10494 %} 10495 10496 instruct cmpFastLockLightweight(rFlagsReg cr, iRegP object, iRegP box, 10497 iRegPNoSp tmp1, iRegPNoSp tmp2, iRegPNoSp tmp3, iRegPNoSp tmp4) 10498 %{ 10499 predicate(LockingMode == LM_LIGHTWEIGHT); 10500 match(Set cr (FastLock object box)); 10501 effect(TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4); 10502 10503 ins_cost(10 * DEFAULT_COST); 10504 format %{ "fastlock $object,$box\t! kills $tmp1,$tmp2,$tmp3,$tmp4 #@cmpFastLockLightweight" %} 10505 10506 ins_encode %{ 10507 __ fast_lock_lightweight($object$$Register, $box$$Register, 10508 $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register); 10509 %} 10510 10511 ins_pipe(pipe_serial); 10512 %} 10513 10514 instruct cmpFastUnlockLightweight(rFlagsReg cr, iRegP object, iRegP box, 10515 iRegPNoSp tmp1, iRegPNoSp tmp2, iRegPNoSp tmp3) 10516 %{ 10517 predicate(LockingMode == LM_LIGHTWEIGHT); 10518 match(Set cr (FastUnlock object box)); 10519 effect(TEMP tmp1, TEMP tmp2, TEMP tmp3); 10520 10521 ins_cost(10 * DEFAULT_COST); 10522 format %{ "fastunlock $object,$box\t! kills $tmp1,$tmp2,$tmp3 #@cmpFastUnlockLightweight" %} 10523 10524 ins_encode %{ 10525 __ fast_unlock_lightweight($object$$Register, $box$$Register, 10526 $tmp1$$Register, $tmp2$$Register, $tmp3$$Register); 10527 %} 10528 10529 ins_pipe(pipe_serial); 10530 %} 10531 10532 // Tail Call; Jump from runtime stub to Java code. 10533 // Also known as an 'interprocedural jump'. 10534 // Target of jump will eventually return to caller. 10535 // TailJump below removes the return address. 10536 // Don't use fp for 'jump_target' because a MachEpilogNode has already been 10537 // emitted just above the TailCall which has reset fp to the caller state. 10538 instruct TailCalljmpInd(iRegPNoSpNoFp jump_target, inline_cache_RegP method_oop) 10539 %{ 10540 match(TailCall jump_target method_oop); 10541 10542 ins_cost(BRANCH_COST); 10543 10544 format %{ "jalr $jump_target\t# $method_oop holds method oop, #@TailCalljmpInd." %} 10545 10546 ins_encode(riscv_enc_tail_call(jump_target)); 10547 10548 ins_pipe(pipe_class_call); 10549 %} 10550 10551 instruct TailjmpInd(iRegPNoSpNoFp jump_target, iRegP_R10 ex_oop) 10552 %{ 10553 match(TailJump jump_target ex_oop); 10554 10555 ins_cost(ALU_COST + BRANCH_COST); 10556 10557 format %{ "jalr $jump_target\t# $ex_oop holds exception oop, #@TailjmpInd." %} 10558 10559 ins_encode(riscv_enc_tail_jmp(jump_target)); 10560 10561 ins_pipe(pipe_class_call); 10562 %} 10563 10564 // Forward exception. 10565 instruct ForwardExceptionjmp() 10566 %{ 10567 match(ForwardException); 10568 10569 ins_cost(BRANCH_COST); 10570 10571 format %{ "j forward_exception_stub\t#@ForwardException" %} 10572 10573 ins_encode %{ 10574 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 10575 %} 10576 10577 ins_pipe(pipe_class_call); 10578 %} 10579 10580 // Create exception oop: created by stack-crawling runtime code. 10581 // Created exception is now available to this handler, and is setup 10582 // just prior to jumping to this handler. No code emitted. 10583 instruct CreateException(iRegP_R10 ex_oop) 10584 %{ 10585 match(Set ex_oop (CreateEx)); 10586 10587 ins_cost(0); 10588 format %{ " -- \t// exception oop; no code emitted, #@CreateException" %} 10589 10590 size(0); 10591 10592 ins_encode( /*empty*/ ); 10593 10594 ins_pipe(pipe_class_empty); 10595 %} 10596 10597 // Rethrow exception: The exception oop will come in the first 10598 // argument position. Then JUMP (not call) to the rethrow stub code. 10599 instruct RethrowException() 10600 %{ 10601 match(Rethrow); 10602 10603 ins_cost(BRANCH_COST); 10604 10605 format %{ "j rethrow_stub\t#@RethrowException" %} 10606 10607 ins_encode(riscv_enc_rethrow()); 10608 10609 ins_pipe(pipe_class_call); 10610 %} 10611 10612 // Return Instruction 10613 // epilog node loads ret address into ra as part of frame pop 10614 instruct Ret() 10615 %{ 10616 match(Return); 10617 10618 ins_cost(BRANCH_COST); 10619 format %{ "ret\t// return register, #@Ret" %} 10620 10621 ins_encode(riscv_enc_ret()); 10622 10623 ins_pipe(pipe_branch); 10624 %} 10625 10626 // Die now. 10627 instruct ShouldNotReachHere() %{ 10628 match(Halt); 10629 10630 ins_cost(BRANCH_COST); 10631 10632 format %{ "#@ShouldNotReachHere" %} 10633 10634 ins_encode %{ 10635 if (is_reachable()) { 10636 __ stop(_halt_reason); 10637 } 10638 %} 10639 10640 ins_pipe(pipe_class_default); 10641 %} 10642 10643 10644 //----------PEEPHOLE RULES----------------------------------------------------- 10645 // These must follow all instruction definitions as they use the names 10646 // defined in the instructions definitions. 10647 // 10648 // peepmatch ( root_instr_name [preceding_instruction]* ); 10649 // 10650 // peepconstraint %{ 10651 // (instruction_number.operand_name relational_op instruction_number.operand_name 10652 // [, ...] ); 10653 // // instruction numbers are zero-based using left to right order in peepmatch 10654 // 10655 // peepreplace ( instr_name ( [instruction_number.operand_name]* ) ); 10656 // // provide an instruction_number.operand_name for each operand that appears 10657 // // in the replacement instruction's match rule 10658 // 10659 // ---------VM FLAGS--------------------------------------------------------- 10660 // 10661 // All peephole optimizations can be turned off using -XX:-OptoPeephole 10662 // 10663 // Each peephole rule is given an identifying number starting with zero and 10664 // increasing by one in the order seen by the parser. An individual peephole 10665 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=# 10666 // on the command-line. 10667 // 10668 // ---------CURRENT LIMITATIONS---------------------------------------------- 10669 // 10670 // Only match adjacent instructions in same basic block 10671 // Only equality constraints 10672 // Only constraints between operands, not (0.dest_reg == RAX_enc) 10673 // Only one replacement instruction 10674 // 10675 //----------SMARTSPILL RULES--------------------------------------------------- 10676 // These must follow all instruction definitions as they use the names 10677 // defined in the instructions definitions. 10678 10679 // Local Variables: 10680 // mode: c++ 10681 // End: