1 // 2 // Copyright (c) 2003, 2024, Oracle and/or its affiliates. All rights reserved. 3 // Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved. 4 // Copyright (c) 2020, 2024, Huawei Technologies Co., Ltd. All rights reserved. 5 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 6 // 7 // This code is free software; you can redistribute it and/or modify it 8 // under the terms of the GNU General Public License version 2 only, as 9 // published by the Free Software Foundation. 10 // 11 // This code is distributed in the hope that it will be useful, but WITHOUT 12 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 // version 2 for more details (a copy is included in the LICENSE file that 15 // accompanied this code). 16 // 17 // You should have received a copy of the GNU General Public License version 18 // 2 along with this work; if not, write to the Free Software Foundation, 19 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 // 21 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 // or visit www.oracle.com if you need additional information or have any 23 // questions. 24 // 25 // 26 27 // RISCV Architecture Description File 28 29 //----------REGISTER DEFINITION BLOCK------------------------------------------ 30 // This information is used by the matcher and the register allocator to 31 // describe individual registers and classes of registers within the target 32 // architecture. 33 34 register %{ 35 //----------Architecture Description Register Definitions---------------------- 36 // General Registers 37 // "reg_def" name ( register save type, C convention save type, 38 // ideal register type, encoding ); 39 // Register Save Types: 40 // 41 // NS = No-Save: The register allocator assumes that these registers 42 // can be used without saving upon entry to the method, & 43 // that they do not need to be saved at call sites. 44 // 45 // SOC = Save-On-Call: The register allocator assumes that these registers 46 // can be used without saving upon entry to the method, 47 // but that they must be saved at call sites. 48 // 49 // SOE = Save-On-Entry: The register allocator assumes that these registers 50 // must be saved before using them upon entry to the 51 // method, but they do not need to be saved at call 52 // sites. 53 // 54 // AS = Always-Save: The register allocator assumes that these registers 55 // must be saved before using them upon entry to the 56 // method, & that they must be saved at call sites. 57 // 58 // Ideal Register Type is used to determine how to save & restore a 59 // register. Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get 60 // spilled with LoadP/StoreP. If the register supports both, use Op_RegI. 61 // 62 // The encoding number is the actual bit-pattern placed into the opcodes. 63 64 // We must define the 64 bit int registers in two 32 bit halves, the 65 // real lower register and a virtual upper half register. upper halves 66 // are used by the register allocator but are not actually supplied as 67 // operands to memory ops. 68 // 69 // follow the C1 compiler in making registers 70 // 71 // x7, x9-x17, x27-x31 volatile (caller save) 72 // x0-x4, x8, x23 system (no save, no allocate) 73 // x5-x6 non-allocatable (so we can use them as temporary regs) 74 75 // 76 // as regards Java usage. we don't use any callee save registers 77 // because this makes it difficult to de-optimise a frame (see comment 78 // in x86 implementation of Deoptimization::unwind_callee_save_values) 79 // 80 81 // General Registers 82 83 reg_def R0 ( NS, NS, Op_RegI, 0, x0->as_VMReg() ); // zr 84 reg_def R0_H ( NS, NS, Op_RegI, 0, x0->as_VMReg()->next() ); 85 reg_def R1 ( NS, SOC, Op_RegI, 1, x1->as_VMReg() ); // ra 86 reg_def R1_H ( NS, SOC, Op_RegI, 1, x1->as_VMReg()->next() ); 87 reg_def R2 ( NS, NS, Op_RegI, 2, x2->as_VMReg() ); // sp 88 reg_def R2_H ( NS, NS, Op_RegI, 2, x2->as_VMReg()->next() ); 89 reg_def R3 ( NS, NS, Op_RegI, 3, x3->as_VMReg() ); // gp 90 reg_def R3_H ( NS, NS, Op_RegI, 3, x3->as_VMReg()->next() ); 91 reg_def R4 ( NS, NS, Op_RegI, 4, x4->as_VMReg() ); // tp 92 reg_def R4_H ( NS, NS, Op_RegI, 4, x4->as_VMReg()->next() ); 93 reg_def R7 ( SOC, SOC, Op_RegI, 7, x7->as_VMReg() ); 94 reg_def R7_H ( SOC, SOC, Op_RegI, 7, x7->as_VMReg()->next() ); 95 reg_def R8 ( NS, SOE, Op_RegI, 8, x8->as_VMReg() ); // fp 96 reg_def R8_H ( NS, SOE, Op_RegI, 8, x8->as_VMReg()->next() ); 97 reg_def R9 ( SOC, SOE, Op_RegI, 9, x9->as_VMReg() ); 98 reg_def R9_H ( SOC, SOE, Op_RegI, 9, x9->as_VMReg()->next() ); 99 reg_def R10 ( SOC, SOC, Op_RegI, 10, x10->as_VMReg() ); 100 reg_def R10_H ( SOC, SOC, Op_RegI, 10, x10->as_VMReg()->next()); 101 reg_def R11 ( SOC, SOC, Op_RegI, 11, x11->as_VMReg() ); 102 reg_def R11_H ( SOC, SOC, Op_RegI, 11, x11->as_VMReg()->next()); 103 reg_def R12 ( SOC, SOC, Op_RegI, 12, x12->as_VMReg() ); 104 reg_def R12_H ( SOC, SOC, Op_RegI, 12, x12->as_VMReg()->next()); 105 reg_def R13 ( SOC, SOC, Op_RegI, 13, x13->as_VMReg() ); 106 reg_def R13_H ( SOC, SOC, Op_RegI, 13, x13->as_VMReg()->next()); 107 reg_def R14 ( SOC, SOC, Op_RegI, 14, x14->as_VMReg() ); 108 reg_def R14_H ( SOC, SOC, Op_RegI, 14, x14->as_VMReg()->next()); 109 reg_def R15 ( SOC, SOC, Op_RegI, 15, x15->as_VMReg() ); 110 reg_def R15_H ( SOC, SOC, Op_RegI, 15, x15->as_VMReg()->next()); 111 reg_def R16 ( SOC, SOC, Op_RegI, 16, x16->as_VMReg() ); 112 reg_def R16_H ( SOC, SOC, Op_RegI, 16, x16->as_VMReg()->next()); 113 reg_def R17 ( SOC, SOC, Op_RegI, 17, x17->as_VMReg() ); 114 reg_def R17_H ( SOC, SOC, Op_RegI, 17, x17->as_VMReg()->next()); 115 reg_def R18 ( SOC, SOE, Op_RegI, 18, x18->as_VMReg() ); 116 reg_def R18_H ( SOC, SOE, Op_RegI, 18, x18->as_VMReg()->next()); 117 reg_def R19 ( SOC, SOE, Op_RegI, 19, x19->as_VMReg() ); 118 reg_def R19_H ( SOC, SOE, Op_RegI, 19, x19->as_VMReg()->next()); 119 reg_def R20 ( SOC, SOE, Op_RegI, 20, x20->as_VMReg() ); // caller esp 120 reg_def R20_H ( SOC, SOE, Op_RegI, 20, x20->as_VMReg()->next()); 121 reg_def R21 ( SOC, SOE, Op_RegI, 21, x21->as_VMReg() ); 122 reg_def R21_H ( SOC, SOE, Op_RegI, 21, x21->as_VMReg()->next()); 123 reg_def R22 ( SOC, SOE, Op_RegI, 22, x22->as_VMReg() ); 124 reg_def R22_H ( SOC, SOE, Op_RegI, 22, x22->as_VMReg()->next()); 125 reg_def R23 ( NS, SOE, Op_RegI, 23, x23->as_VMReg() ); // java thread 126 reg_def R23_H ( NS, SOE, Op_RegI, 23, x23->as_VMReg()->next()); 127 reg_def R24 ( SOC, SOE, Op_RegI, 24, x24->as_VMReg() ); 128 reg_def R24_H ( SOC, SOE, Op_RegI, 24, x24->as_VMReg()->next()); 129 reg_def R25 ( SOC, SOE, Op_RegI, 25, x25->as_VMReg() ); 130 reg_def R25_H ( SOC, SOE, Op_RegI, 25, x25->as_VMReg()->next()); 131 reg_def R26 ( SOC, SOE, Op_RegI, 26, x26->as_VMReg() ); 132 reg_def R26_H ( SOC, SOE, Op_RegI, 26, x26->as_VMReg()->next()); 133 reg_def R27 ( SOC, SOE, Op_RegI, 27, x27->as_VMReg() ); // heapbase 134 reg_def R27_H ( SOC, SOE, Op_RegI, 27, x27->as_VMReg()->next()); 135 reg_def R28 ( SOC, SOC, Op_RegI, 28, x28->as_VMReg() ); 136 reg_def R28_H ( SOC, SOC, Op_RegI, 28, x28->as_VMReg()->next()); 137 reg_def R29 ( SOC, SOC, Op_RegI, 29, x29->as_VMReg() ); 138 reg_def R29_H ( SOC, SOC, Op_RegI, 29, x29->as_VMReg()->next()); 139 reg_def R30 ( SOC, SOC, Op_RegI, 30, x30->as_VMReg() ); 140 reg_def R30_H ( SOC, SOC, Op_RegI, 30, x30->as_VMReg()->next()); 141 reg_def R31 ( SOC, SOC, Op_RegI, 31, x31->as_VMReg() ); 142 reg_def R31_H ( SOC, SOC, Op_RegI, 31, x31->as_VMReg()->next()); 143 144 // ---------------------------- 145 // Float/Double Registers 146 // ---------------------------- 147 148 // Double Registers 149 150 // The rules of ADL require that double registers be defined in pairs. 151 // Each pair must be two 32-bit values, but not necessarily a pair of 152 // single float registers. In each pair, ADLC-assigned register numbers 153 // must be adjacent, with the lower number even. Finally, when the 154 // CPU stores such a register pair to memory, the word associated with 155 // the lower ADLC-assigned number must be stored to the lower address. 156 157 // RISCV has 32 floating-point registers. Each can store a single 158 // or double precision floating-point value. 159 160 // for Java use float registers f0-f31 are always save on call whereas 161 // the platform ABI treats f8-f9 and f18-f27 as callee save). Other 162 // float registers are SOC as per the platform spec 163 164 reg_def F0 ( SOC, SOC, Op_RegF, 0, f0->as_VMReg() ); 165 reg_def F0_H ( SOC, SOC, Op_RegF, 0, f0->as_VMReg()->next() ); 166 reg_def F1 ( SOC, SOC, Op_RegF, 1, f1->as_VMReg() ); 167 reg_def F1_H ( SOC, SOC, Op_RegF, 1, f1->as_VMReg()->next() ); 168 reg_def F2 ( SOC, SOC, Op_RegF, 2, f2->as_VMReg() ); 169 reg_def F2_H ( SOC, SOC, Op_RegF, 2, f2->as_VMReg()->next() ); 170 reg_def F3 ( SOC, SOC, Op_RegF, 3, f3->as_VMReg() ); 171 reg_def F3_H ( SOC, SOC, Op_RegF, 3, f3->as_VMReg()->next() ); 172 reg_def F4 ( SOC, SOC, Op_RegF, 4, f4->as_VMReg() ); 173 reg_def F4_H ( SOC, SOC, Op_RegF, 4, f4->as_VMReg()->next() ); 174 reg_def F5 ( SOC, SOC, Op_RegF, 5, f5->as_VMReg() ); 175 reg_def F5_H ( SOC, SOC, Op_RegF, 5, f5->as_VMReg()->next() ); 176 reg_def F6 ( SOC, SOC, Op_RegF, 6, f6->as_VMReg() ); 177 reg_def F6_H ( SOC, SOC, Op_RegF, 6, f6->as_VMReg()->next() ); 178 reg_def F7 ( SOC, SOC, Op_RegF, 7, f7->as_VMReg() ); 179 reg_def F7_H ( SOC, SOC, Op_RegF, 7, f7->as_VMReg()->next() ); 180 reg_def F8 ( SOC, SOE, Op_RegF, 8, f8->as_VMReg() ); 181 reg_def F8_H ( SOC, SOE, Op_RegF, 8, f8->as_VMReg()->next() ); 182 reg_def F9 ( SOC, SOE, Op_RegF, 9, f9->as_VMReg() ); 183 reg_def F9_H ( SOC, SOE, Op_RegF, 9, f9->as_VMReg()->next() ); 184 reg_def F10 ( SOC, SOC, Op_RegF, 10, f10->as_VMReg() ); 185 reg_def F10_H ( SOC, SOC, Op_RegF, 10, f10->as_VMReg()->next() ); 186 reg_def F11 ( SOC, SOC, Op_RegF, 11, f11->as_VMReg() ); 187 reg_def F11_H ( SOC, SOC, Op_RegF, 11, f11->as_VMReg()->next() ); 188 reg_def F12 ( SOC, SOC, Op_RegF, 12, f12->as_VMReg() ); 189 reg_def F12_H ( SOC, SOC, Op_RegF, 12, f12->as_VMReg()->next() ); 190 reg_def F13 ( SOC, SOC, Op_RegF, 13, f13->as_VMReg() ); 191 reg_def F13_H ( SOC, SOC, Op_RegF, 13, f13->as_VMReg()->next() ); 192 reg_def F14 ( SOC, SOC, Op_RegF, 14, f14->as_VMReg() ); 193 reg_def F14_H ( SOC, SOC, Op_RegF, 14, f14->as_VMReg()->next() ); 194 reg_def F15 ( SOC, SOC, Op_RegF, 15, f15->as_VMReg() ); 195 reg_def F15_H ( SOC, SOC, Op_RegF, 15, f15->as_VMReg()->next() ); 196 reg_def F16 ( SOC, SOC, Op_RegF, 16, f16->as_VMReg() ); 197 reg_def F16_H ( SOC, SOC, Op_RegF, 16, f16->as_VMReg()->next() ); 198 reg_def F17 ( SOC, SOC, Op_RegF, 17, f17->as_VMReg() ); 199 reg_def F17_H ( SOC, SOC, Op_RegF, 17, f17->as_VMReg()->next() ); 200 reg_def F18 ( SOC, SOE, Op_RegF, 18, f18->as_VMReg() ); 201 reg_def F18_H ( SOC, SOE, Op_RegF, 18, f18->as_VMReg()->next() ); 202 reg_def F19 ( SOC, SOE, Op_RegF, 19, f19->as_VMReg() ); 203 reg_def F19_H ( SOC, SOE, Op_RegF, 19, f19->as_VMReg()->next() ); 204 reg_def F20 ( SOC, SOE, Op_RegF, 20, f20->as_VMReg() ); 205 reg_def F20_H ( SOC, SOE, Op_RegF, 20, f20->as_VMReg()->next() ); 206 reg_def F21 ( SOC, SOE, Op_RegF, 21, f21->as_VMReg() ); 207 reg_def F21_H ( SOC, SOE, Op_RegF, 21, f21->as_VMReg()->next() ); 208 reg_def F22 ( SOC, SOE, Op_RegF, 22, f22->as_VMReg() ); 209 reg_def F22_H ( SOC, SOE, Op_RegF, 22, f22->as_VMReg()->next() ); 210 reg_def F23 ( SOC, SOE, Op_RegF, 23, f23->as_VMReg() ); 211 reg_def F23_H ( SOC, SOE, Op_RegF, 23, f23->as_VMReg()->next() ); 212 reg_def F24 ( SOC, SOE, Op_RegF, 24, f24->as_VMReg() ); 213 reg_def F24_H ( SOC, SOE, Op_RegF, 24, f24->as_VMReg()->next() ); 214 reg_def F25 ( SOC, SOE, Op_RegF, 25, f25->as_VMReg() ); 215 reg_def F25_H ( SOC, SOE, Op_RegF, 25, f25->as_VMReg()->next() ); 216 reg_def F26 ( SOC, SOE, Op_RegF, 26, f26->as_VMReg() ); 217 reg_def F26_H ( SOC, SOE, Op_RegF, 26, f26->as_VMReg()->next() ); 218 reg_def F27 ( SOC, SOE, Op_RegF, 27, f27->as_VMReg() ); 219 reg_def F27_H ( SOC, SOE, Op_RegF, 27, f27->as_VMReg()->next() ); 220 reg_def F28 ( SOC, SOC, Op_RegF, 28, f28->as_VMReg() ); 221 reg_def F28_H ( SOC, SOC, Op_RegF, 28, f28->as_VMReg()->next() ); 222 reg_def F29 ( SOC, SOC, Op_RegF, 29, f29->as_VMReg() ); 223 reg_def F29_H ( SOC, SOC, Op_RegF, 29, f29->as_VMReg()->next() ); 224 reg_def F30 ( SOC, SOC, Op_RegF, 30, f30->as_VMReg() ); 225 reg_def F30_H ( SOC, SOC, Op_RegF, 30, f30->as_VMReg()->next() ); 226 reg_def F31 ( SOC, SOC, Op_RegF, 31, f31->as_VMReg() ); 227 reg_def F31_H ( SOC, SOC, Op_RegF, 31, f31->as_VMReg()->next() ); 228 229 // ---------------------------- 230 // Vector Registers 231 // ---------------------------- 232 233 // For RVV vector registers, we simply extend vector register size to 4 234 // 'logical' slots. This is nominally 128 bits but it actually covers 235 // all possible 'physical' RVV vector register lengths from 128 ~ 1024 236 // bits. The 'physical' RVV vector register length is detected during 237 // startup, so the register allocator is able to identify the correct 238 // number of bytes needed for an RVV spill/unspill. 239 240 reg_def V0 ( SOC, SOC, Op_VecA, 0, v0->as_VMReg() ); 241 reg_def V0_H ( SOC, SOC, Op_VecA, 0, v0->as_VMReg()->next() ); 242 reg_def V0_J ( SOC, SOC, Op_VecA, 0, v0->as_VMReg()->next(2) ); 243 reg_def V0_K ( SOC, SOC, Op_VecA, 0, v0->as_VMReg()->next(3) ); 244 245 reg_def V1 ( SOC, SOC, Op_VecA, 1, v1->as_VMReg() ); 246 reg_def V1_H ( SOC, SOC, Op_VecA, 1, v1->as_VMReg()->next() ); 247 reg_def V1_J ( SOC, SOC, Op_VecA, 1, v1->as_VMReg()->next(2) ); 248 reg_def V1_K ( SOC, SOC, Op_VecA, 1, v1->as_VMReg()->next(3) ); 249 250 reg_def V2 ( SOC, SOC, Op_VecA, 2, v2->as_VMReg() ); 251 reg_def V2_H ( SOC, SOC, Op_VecA, 2, v2->as_VMReg()->next() ); 252 reg_def V2_J ( SOC, SOC, Op_VecA, 2, v2->as_VMReg()->next(2) ); 253 reg_def V2_K ( SOC, SOC, Op_VecA, 2, v2->as_VMReg()->next(3) ); 254 255 reg_def V3 ( SOC, SOC, Op_VecA, 3, v3->as_VMReg() ); 256 reg_def V3_H ( SOC, SOC, Op_VecA, 3, v3->as_VMReg()->next() ); 257 reg_def V3_J ( SOC, SOC, Op_VecA, 3, v3->as_VMReg()->next(2) ); 258 reg_def V3_K ( SOC, SOC, Op_VecA, 3, v3->as_VMReg()->next(3) ); 259 260 reg_def V4 ( SOC, SOC, Op_VecA, 4, v4->as_VMReg() ); 261 reg_def V4_H ( SOC, SOC, Op_VecA, 4, v4->as_VMReg()->next() ); 262 reg_def V4_J ( SOC, SOC, Op_VecA, 4, v4->as_VMReg()->next(2) ); 263 reg_def V4_K ( SOC, SOC, Op_VecA, 4, v4->as_VMReg()->next(3) ); 264 265 reg_def V5 ( SOC, SOC, Op_VecA, 5, v5->as_VMReg() ); 266 reg_def V5_H ( SOC, SOC, Op_VecA, 5, v5->as_VMReg()->next() ); 267 reg_def V5_J ( SOC, SOC, Op_VecA, 5, v5->as_VMReg()->next(2) ); 268 reg_def V5_K ( SOC, SOC, Op_VecA, 5, v5->as_VMReg()->next(3) ); 269 270 reg_def V6 ( SOC, SOC, Op_VecA, 6, v6->as_VMReg() ); 271 reg_def V6_H ( SOC, SOC, Op_VecA, 6, v6->as_VMReg()->next() ); 272 reg_def V6_J ( SOC, SOC, Op_VecA, 6, v6->as_VMReg()->next(2) ); 273 reg_def V6_K ( SOC, SOC, Op_VecA, 6, v6->as_VMReg()->next(3) ); 274 275 reg_def V7 ( SOC, SOC, Op_VecA, 7, v7->as_VMReg() ); 276 reg_def V7_H ( SOC, SOC, Op_VecA, 7, v7->as_VMReg()->next() ); 277 reg_def V7_J ( SOC, SOC, Op_VecA, 7, v7->as_VMReg()->next(2) ); 278 reg_def V7_K ( SOC, SOC, Op_VecA, 7, v7->as_VMReg()->next(3) ); 279 280 reg_def V8 ( SOC, SOC, Op_VecA, 8, v8->as_VMReg() ); 281 reg_def V8_H ( SOC, SOC, Op_VecA, 8, v8->as_VMReg()->next() ); 282 reg_def V8_J ( SOC, SOC, Op_VecA, 8, v8->as_VMReg()->next(2) ); 283 reg_def V8_K ( SOC, SOC, Op_VecA, 8, v8->as_VMReg()->next(3) ); 284 285 reg_def V9 ( SOC, SOC, Op_VecA, 9, v9->as_VMReg() ); 286 reg_def V9_H ( SOC, SOC, Op_VecA, 9, v9->as_VMReg()->next() ); 287 reg_def V9_J ( SOC, SOC, Op_VecA, 9, v9->as_VMReg()->next(2) ); 288 reg_def V9_K ( SOC, SOC, Op_VecA, 9, v9->as_VMReg()->next(3) ); 289 290 reg_def V10 ( SOC, SOC, Op_VecA, 10, v10->as_VMReg() ); 291 reg_def V10_H ( SOC, SOC, Op_VecA, 10, v10->as_VMReg()->next() ); 292 reg_def V10_J ( SOC, SOC, Op_VecA, 10, v10->as_VMReg()->next(2) ); 293 reg_def V10_K ( SOC, SOC, Op_VecA, 10, v10->as_VMReg()->next(3) ); 294 295 reg_def V11 ( SOC, SOC, Op_VecA, 11, v11->as_VMReg() ); 296 reg_def V11_H ( SOC, SOC, Op_VecA, 11, v11->as_VMReg()->next() ); 297 reg_def V11_J ( SOC, SOC, Op_VecA, 11, v11->as_VMReg()->next(2) ); 298 reg_def V11_K ( SOC, SOC, Op_VecA, 11, v11->as_VMReg()->next(3) ); 299 300 reg_def V12 ( SOC, SOC, Op_VecA, 12, v12->as_VMReg() ); 301 reg_def V12_H ( SOC, SOC, Op_VecA, 12, v12->as_VMReg()->next() ); 302 reg_def V12_J ( SOC, SOC, Op_VecA, 12, v12->as_VMReg()->next(2) ); 303 reg_def V12_K ( SOC, SOC, Op_VecA, 12, v12->as_VMReg()->next(3) ); 304 305 reg_def V13 ( SOC, SOC, Op_VecA, 13, v13->as_VMReg() ); 306 reg_def V13_H ( SOC, SOC, Op_VecA, 13, v13->as_VMReg()->next() ); 307 reg_def V13_J ( SOC, SOC, Op_VecA, 13, v13->as_VMReg()->next(2) ); 308 reg_def V13_K ( SOC, SOC, Op_VecA, 13, v13->as_VMReg()->next(3) ); 309 310 reg_def V14 ( SOC, SOC, Op_VecA, 14, v14->as_VMReg() ); 311 reg_def V14_H ( SOC, SOC, Op_VecA, 14, v14->as_VMReg()->next() ); 312 reg_def V14_J ( SOC, SOC, Op_VecA, 14, v14->as_VMReg()->next(2) ); 313 reg_def V14_K ( SOC, SOC, Op_VecA, 14, v14->as_VMReg()->next(3) ); 314 315 reg_def V15 ( SOC, SOC, Op_VecA, 15, v15->as_VMReg() ); 316 reg_def V15_H ( SOC, SOC, Op_VecA, 15, v15->as_VMReg()->next() ); 317 reg_def V15_J ( SOC, SOC, Op_VecA, 15, v15->as_VMReg()->next(2) ); 318 reg_def V15_K ( SOC, SOC, Op_VecA, 15, v15->as_VMReg()->next(3) ); 319 320 reg_def V16 ( SOC, SOC, Op_VecA, 16, v16->as_VMReg() ); 321 reg_def V16_H ( SOC, SOC, Op_VecA, 16, v16->as_VMReg()->next() ); 322 reg_def V16_J ( SOC, SOC, Op_VecA, 16, v16->as_VMReg()->next(2) ); 323 reg_def V16_K ( SOC, SOC, Op_VecA, 16, v16->as_VMReg()->next(3) ); 324 325 reg_def V17 ( SOC, SOC, Op_VecA, 17, v17->as_VMReg() ); 326 reg_def V17_H ( SOC, SOC, Op_VecA, 17, v17->as_VMReg()->next() ); 327 reg_def V17_J ( SOC, SOC, Op_VecA, 17, v17->as_VMReg()->next(2) ); 328 reg_def V17_K ( SOC, SOC, Op_VecA, 17, v17->as_VMReg()->next(3) ); 329 330 reg_def V18 ( SOC, SOC, Op_VecA, 18, v18->as_VMReg() ); 331 reg_def V18_H ( SOC, SOC, Op_VecA, 18, v18->as_VMReg()->next() ); 332 reg_def V18_J ( SOC, SOC, Op_VecA, 18, v18->as_VMReg()->next(2) ); 333 reg_def V18_K ( SOC, SOC, Op_VecA, 18, v18->as_VMReg()->next(3) ); 334 335 reg_def V19 ( SOC, SOC, Op_VecA, 19, v19->as_VMReg() ); 336 reg_def V19_H ( SOC, SOC, Op_VecA, 19, v19->as_VMReg()->next() ); 337 reg_def V19_J ( SOC, SOC, Op_VecA, 19, v19->as_VMReg()->next(2) ); 338 reg_def V19_K ( SOC, SOC, Op_VecA, 19, v19->as_VMReg()->next(3) ); 339 340 reg_def V20 ( SOC, SOC, Op_VecA, 20, v20->as_VMReg() ); 341 reg_def V20_H ( SOC, SOC, Op_VecA, 20, v20->as_VMReg()->next() ); 342 reg_def V20_J ( SOC, SOC, Op_VecA, 20, v20->as_VMReg()->next(2) ); 343 reg_def V20_K ( SOC, SOC, Op_VecA, 20, v20->as_VMReg()->next(3) ); 344 345 reg_def V21 ( SOC, SOC, Op_VecA, 21, v21->as_VMReg() ); 346 reg_def V21_H ( SOC, SOC, Op_VecA, 21, v21->as_VMReg()->next() ); 347 reg_def V21_J ( SOC, SOC, Op_VecA, 21, v21->as_VMReg()->next(2) ); 348 reg_def V21_K ( SOC, SOC, Op_VecA, 21, v21->as_VMReg()->next(3) ); 349 350 reg_def V22 ( SOC, SOC, Op_VecA, 22, v22->as_VMReg() ); 351 reg_def V22_H ( SOC, SOC, Op_VecA, 22, v22->as_VMReg()->next() ); 352 reg_def V22_J ( SOC, SOC, Op_VecA, 22, v22->as_VMReg()->next(2) ); 353 reg_def V22_K ( SOC, SOC, Op_VecA, 22, v22->as_VMReg()->next(3) ); 354 355 reg_def V23 ( SOC, SOC, Op_VecA, 23, v23->as_VMReg() ); 356 reg_def V23_H ( SOC, SOC, Op_VecA, 23, v23->as_VMReg()->next() ); 357 reg_def V23_J ( SOC, SOC, Op_VecA, 23, v23->as_VMReg()->next(2) ); 358 reg_def V23_K ( SOC, SOC, Op_VecA, 23, v23->as_VMReg()->next(3) ); 359 360 reg_def V24 ( SOC, SOC, Op_VecA, 24, v24->as_VMReg() ); 361 reg_def V24_H ( SOC, SOC, Op_VecA, 24, v24->as_VMReg()->next() ); 362 reg_def V24_J ( SOC, SOC, Op_VecA, 24, v24->as_VMReg()->next(2) ); 363 reg_def V24_K ( SOC, SOC, Op_VecA, 24, v24->as_VMReg()->next(3) ); 364 365 reg_def V25 ( SOC, SOC, Op_VecA, 25, v25->as_VMReg() ); 366 reg_def V25_H ( SOC, SOC, Op_VecA, 25, v25->as_VMReg()->next() ); 367 reg_def V25_J ( SOC, SOC, Op_VecA, 25, v25->as_VMReg()->next(2) ); 368 reg_def V25_K ( SOC, SOC, Op_VecA, 25, v25->as_VMReg()->next(3) ); 369 370 reg_def V26 ( SOC, SOC, Op_VecA, 26, v26->as_VMReg() ); 371 reg_def V26_H ( SOC, SOC, Op_VecA, 26, v26->as_VMReg()->next() ); 372 reg_def V26_J ( SOC, SOC, Op_VecA, 26, v26->as_VMReg()->next(2) ); 373 reg_def V26_K ( SOC, SOC, Op_VecA, 26, v26->as_VMReg()->next(3) ); 374 375 reg_def V27 ( SOC, SOC, Op_VecA, 27, v27->as_VMReg() ); 376 reg_def V27_H ( SOC, SOC, Op_VecA, 27, v27->as_VMReg()->next() ); 377 reg_def V27_J ( SOC, SOC, Op_VecA, 27, v27->as_VMReg()->next(2) ); 378 reg_def V27_K ( SOC, SOC, Op_VecA, 27, v27->as_VMReg()->next(3) ); 379 380 reg_def V28 ( SOC, SOC, Op_VecA, 28, v28->as_VMReg() ); 381 reg_def V28_H ( SOC, SOC, Op_VecA, 28, v28->as_VMReg()->next() ); 382 reg_def V28_J ( SOC, SOC, Op_VecA, 28, v28->as_VMReg()->next(2) ); 383 reg_def V28_K ( SOC, SOC, Op_VecA, 28, v28->as_VMReg()->next(3) ); 384 385 reg_def V29 ( SOC, SOC, Op_VecA, 29, v29->as_VMReg() ); 386 reg_def V29_H ( SOC, SOC, Op_VecA, 29, v29->as_VMReg()->next() ); 387 reg_def V29_J ( SOC, SOC, Op_VecA, 29, v29->as_VMReg()->next(2) ); 388 reg_def V29_K ( SOC, SOC, Op_VecA, 29, v29->as_VMReg()->next(3) ); 389 390 reg_def V30 ( SOC, SOC, Op_VecA, 30, v30->as_VMReg() ); 391 reg_def V30_H ( SOC, SOC, Op_VecA, 30, v30->as_VMReg()->next() ); 392 reg_def V30_J ( SOC, SOC, Op_VecA, 30, v30->as_VMReg()->next(2) ); 393 reg_def V30_K ( SOC, SOC, Op_VecA, 30, v30->as_VMReg()->next(3) ); 394 395 reg_def V31 ( SOC, SOC, Op_VecA, 31, v31->as_VMReg() ); 396 reg_def V31_H ( SOC, SOC, Op_VecA, 31, v31->as_VMReg()->next() ); 397 reg_def V31_J ( SOC, SOC, Op_VecA, 31, v31->as_VMReg()->next(2) ); 398 reg_def V31_K ( SOC, SOC, Op_VecA, 31, v31->as_VMReg()->next(3) ); 399 400 // ---------------------------- 401 // Special Registers 402 // ---------------------------- 403 404 // On riscv, the physical flag register is missing, so we use t1 instead, 405 // to bridge the RegFlag semantics in share/opto 406 407 reg_def RFLAGS (SOC, SOC, Op_RegFlags, 6, x6->as_VMReg() ); 408 409 // Specify priority of register selection within phases of register 410 // allocation. Highest priority is first. A useful heuristic is to 411 // give registers a low priority when they are required by machine 412 // instructions, like EAX and EDX on I486, and choose no-save registers 413 // before save-on-call, & save-on-call before save-on-entry. Registers 414 // which participate in fixed calling sequences should come last. 415 // Registers which are used as pairs must fall on an even boundary. 416 417 alloc_class chunk0( 418 // volatiles 419 R7, R7_H, 420 R28, R28_H, 421 R29, R29_H, 422 R30, R30_H, 423 R31, R31_H, 424 425 // arg registers 426 R10, R10_H, 427 R11, R11_H, 428 R12, R12_H, 429 R13, R13_H, 430 R14, R14_H, 431 R15, R15_H, 432 R16, R16_H, 433 R17, R17_H, 434 435 // non-volatiles 436 R9, R9_H, 437 R18, R18_H, 438 R19, R19_H, 439 R20, R20_H, 440 R21, R21_H, 441 R22, R22_H, 442 R24, R24_H, 443 R25, R25_H, 444 R26, R26_H, 445 446 // non-allocatable registers 447 R23, R23_H, // java thread 448 R27, R27_H, // heapbase 449 R4, R4_H, // thread 450 R8, R8_H, // fp 451 R0, R0_H, // zero 452 R1, R1_H, // ra 453 R2, R2_H, // sp 454 R3, R3_H, // gp 455 ); 456 457 alloc_class chunk1( 458 459 // no save 460 F0, F0_H, 461 F1, F1_H, 462 F2, F2_H, 463 F3, F3_H, 464 F4, F4_H, 465 F5, F5_H, 466 F6, F6_H, 467 F7, F7_H, 468 F28, F28_H, 469 F29, F29_H, 470 F30, F30_H, 471 F31, F31_H, 472 473 // arg registers 474 F10, F10_H, 475 F11, F11_H, 476 F12, F12_H, 477 F13, F13_H, 478 F14, F14_H, 479 F15, F15_H, 480 F16, F16_H, 481 F17, F17_H, 482 483 // non-volatiles 484 F8, F8_H, 485 F9, F9_H, 486 F18, F18_H, 487 F19, F19_H, 488 F20, F20_H, 489 F21, F21_H, 490 F22, F22_H, 491 F23, F23_H, 492 F24, F24_H, 493 F25, F25_H, 494 F26, F26_H, 495 F27, F27_H, 496 ); 497 498 alloc_class chunk2( 499 V0, V0_H, V0_J, V0_K, 500 V1, V1_H, V1_J, V1_K, 501 V2, V2_H, V2_J, V2_K, 502 V3, V3_H, V3_J, V3_K, 503 V4, V4_H, V4_J, V4_K, 504 V5, V5_H, V5_J, V5_K, 505 V6, V6_H, V6_J, V6_K, 506 V7, V7_H, V7_J, V7_K, 507 V8, V8_H, V8_J, V8_K, 508 V9, V9_H, V9_J, V9_K, 509 V10, V10_H, V10_J, V10_K, 510 V11, V11_H, V11_J, V11_K, 511 V12, V12_H, V12_J, V12_K, 512 V13, V13_H, V13_J, V13_K, 513 V14, V14_H, V14_J, V14_K, 514 V15, V15_H, V15_J, V15_K, 515 V16, V16_H, V16_J, V16_K, 516 V17, V17_H, V17_J, V17_K, 517 V18, V18_H, V18_J, V18_K, 518 V19, V19_H, V19_J, V19_K, 519 V20, V20_H, V20_J, V20_K, 520 V21, V21_H, V21_J, V21_K, 521 V22, V22_H, V22_J, V22_K, 522 V23, V23_H, V23_J, V23_K, 523 V24, V24_H, V24_J, V24_K, 524 V25, V25_H, V25_J, V25_K, 525 V26, V26_H, V26_J, V26_K, 526 V27, V27_H, V27_J, V27_K, 527 V28, V28_H, V28_J, V28_K, 528 V29, V29_H, V29_J, V29_K, 529 V30, V30_H, V30_J, V30_K, 530 V31, V31_H, V31_J, V31_K, 531 ); 532 533 alloc_class chunk3(RFLAGS); 534 535 //----------Architecture Description Register Classes-------------------------- 536 // Several register classes are automatically defined based upon information in 537 // this architecture description. 538 // 1) reg_class inline_cache_reg ( /* as def'd in frame section */ ) 539 // 2) reg_class stack_slots( /* one chunk of stack-based "registers" */ ) 540 // 541 542 // Class for all 32 bit general purpose registers 543 reg_class all_reg32( 544 R0, 545 R1, 546 R2, 547 R3, 548 R4, 549 R7, 550 R8, 551 R9, 552 R10, 553 R11, 554 R12, 555 R13, 556 R14, 557 R15, 558 R16, 559 R17, 560 R18, 561 R19, 562 R20, 563 R21, 564 R22, 565 R23, 566 R24, 567 R25, 568 R26, 569 R27, 570 R28, 571 R29, 572 R30, 573 R31 574 ); 575 576 // Class for any 32 bit integer registers (excluding zr) 577 reg_class any_reg32 %{ 578 return _ANY_REG32_mask; 579 %} 580 581 // Singleton class for R10 int register 582 reg_class int_r10_reg(R10); 583 584 // Singleton class for R12 int register 585 reg_class int_r12_reg(R12); 586 587 // Singleton class for R13 int register 588 reg_class int_r13_reg(R13); 589 590 // Singleton class for R14 int register 591 reg_class int_r14_reg(R14); 592 593 // Class for all long integer registers 594 reg_class all_reg( 595 R0, R0_H, 596 R1, R1_H, 597 R2, R2_H, 598 R3, R3_H, 599 R4, R4_H, 600 R7, R7_H, 601 R8, R8_H, 602 R9, R9_H, 603 R10, R10_H, 604 R11, R11_H, 605 R12, R12_H, 606 R13, R13_H, 607 R14, R14_H, 608 R15, R15_H, 609 R16, R16_H, 610 R17, R17_H, 611 R18, R18_H, 612 R19, R19_H, 613 R20, R20_H, 614 R21, R21_H, 615 R22, R22_H, 616 R23, R23_H, 617 R24, R24_H, 618 R25, R25_H, 619 R26, R26_H, 620 R27, R27_H, 621 R28, R28_H, 622 R29, R29_H, 623 R30, R30_H, 624 R31, R31_H 625 ); 626 627 // Class for all long integer registers (excluding zr) 628 reg_class any_reg %{ 629 return _ANY_REG_mask; 630 %} 631 632 // Class for non-allocatable 32 bit registers 633 reg_class non_allocatable_reg32( 634 R0, // zr 635 R1, // ra 636 R2, // sp 637 R3, // gp 638 R4, // tp 639 R23 // java thread 640 ); 641 642 // Class for non-allocatable 64 bit registers 643 reg_class non_allocatable_reg( 644 R0, R0_H, // zr 645 R1, R1_H, // ra 646 R2, R2_H, // sp 647 R3, R3_H, // gp 648 R4, R4_H, // tp 649 R23, R23_H // java thread 650 ); 651 652 // Class for all non-special integer registers 653 reg_class no_special_reg32 %{ 654 return _NO_SPECIAL_REG32_mask; 655 %} 656 657 // Class for all non-special long integer registers 658 reg_class no_special_reg %{ 659 return _NO_SPECIAL_REG_mask; 660 %} 661 662 reg_class ptr_reg %{ 663 return _PTR_REG_mask; 664 %} 665 666 // Class for all non_special pointer registers 667 reg_class no_special_ptr_reg %{ 668 return _NO_SPECIAL_PTR_REG_mask; 669 %} 670 671 // Class for all non_special pointer registers (excluding fp) 672 reg_class no_special_no_fp_ptr_reg %{ 673 return _NO_SPECIAL_NO_FP_PTR_REG_mask; 674 %} 675 676 // Class for 64 bit register r10 677 reg_class r10_reg( 678 R10, R10_H 679 ); 680 681 // Class for 64 bit register r11 682 reg_class r11_reg( 683 R11, R11_H 684 ); 685 686 // Class for 64 bit register r12 687 reg_class r12_reg( 688 R12, R12_H 689 ); 690 691 // Class for 64 bit register r13 692 reg_class r13_reg( 693 R13, R13_H 694 ); 695 696 // Class for 64 bit register r14 697 reg_class r14_reg( 698 R14, R14_H 699 ); 700 701 // Class for 64 bit register r15 702 reg_class r15_reg( 703 R15, R15_H 704 ); 705 706 // Class for 64 bit register r16 707 reg_class r16_reg( 708 R16, R16_H 709 ); 710 711 // Class for method register 712 reg_class method_reg( 713 R31, R31_H 714 ); 715 716 // Class for java thread register 717 reg_class java_thread_reg( 718 R23, R23_H 719 ); 720 721 reg_class r28_reg( 722 R28, R28_H 723 ); 724 725 reg_class r29_reg( 726 R29, R29_H 727 ); 728 729 reg_class r30_reg( 730 R30, R30_H 731 ); 732 733 reg_class r31_reg( 734 R31, R31_H 735 ); 736 737 // Class for zero registesr 738 reg_class zr_reg( 739 R0, R0_H 740 ); 741 742 // Class for thread register 743 reg_class thread_reg( 744 R4, R4_H 745 ); 746 747 // Class for frame pointer register 748 reg_class fp_reg( 749 R8, R8_H 750 ); 751 752 // Class for link register 753 reg_class ra_reg( 754 R1, R1_H 755 ); 756 757 // Class for long sp register 758 reg_class sp_reg( 759 R2, R2_H 760 ); 761 762 // Class for all float registers 763 reg_class float_reg( 764 F0, 765 F1, 766 F2, 767 F3, 768 F4, 769 F5, 770 F6, 771 F7, 772 F8, 773 F9, 774 F10, 775 F11, 776 F12, 777 F13, 778 F14, 779 F15, 780 F16, 781 F17, 782 F18, 783 F19, 784 F20, 785 F21, 786 F22, 787 F23, 788 F24, 789 F25, 790 F26, 791 F27, 792 F28, 793 F29, 794 F30, 795 F31 796 ); 797 798 // Double precision float registers have virtual `high halves' that 799 // are needed by the allocator. 800 // Class for all double registers 801 reg_class double_reg( 802 F0, F0_H, 803 F1, F1_H, 804 F2, F2_H, 805 F3, F3_H, 806 F4, F4_H, 807 F5, F5_H, 808 F6, F6_H, 809 F7, F7_H, 810 F8, F8_H, 811 F9, F9_H, 812 F10, F10_H, 813 F11, F11_H, 814 F12, F12_H, 815 F13, F13_H, 816 F14, F14_H, 817 F15, F15_H, 818 F16, F16_H, 819 F17, F17_H, 820 F18, F18_H, 821 F19, F19_H, 822 F20, F20_H, 823 F21, F21_H, 824 F22, F22_H, 825 F23, F23_H, 826 F24, F24_H, 827 F25, F25_H, 828 F26, F26_H, 829 F27, F27_H, 830 F28, F28_H, 831 F29, F29_H, 832 F30, F30_H, 833 F31, F31_H 834 ); 835 836 // Class for RVV vector registers 837 // Note: v0, v30 and v31 are used as mask registers. 838 reg_class vectora_reg( 839 V1, V1_H, V1_J, V1_K, 840 V2, V2_H, V2_J, V2_K, 841 V3, V3_H, V3_J, V3_K, 842 V4, V4_H, V4_J, V4_K, 843 V5, V5_H, V5_J, V5_K, 844 V6, V6_H, V6_J, V6_K, 845 V7, V7_H, V7_J, V7_K, 846 V8, V8_H, V8_J, V8_K, 847 V9, V9_H, V9_J, V9_K, 848 V10, V10_H, V10_J, V10_K, 849 V11, V11_H, V11_J, V11_K, 850 V12, V12_H, V12_J, V12_K, 851 V13, V13_H, V13_J, V13_K, 852 V14, V14_H, V14_J, V14_K, 853 V15, V15_H, V15_J, V15_K, 854 V16, V16_H, V16_J, V16_K, 855 V17, V17_H, V17_J, V17_K, 856 V18, V18_H, V18_J, V18_K, 857 V19, V19_H, V19_J, V19_K, 858 V20, V20_H, V20_J, V20_K, 859 V21, V21_H, V21_J, V21_K, 860 V22, V22_H, V22_J, V22_K, 861 V23, V23_H, V23_J, V23_K, 862 V24, V24_H, V24_J, V24_K, 863 V25, V25_H, V25_J, V25_K, 864 V26, V26_H, V26_J, V26_K, 865 V27, V27_H, V27_J, V27_K, 866 V28, V28_H, V28_J, V28_K, 867 V29, V29_H, V29_J, V29_K 868 ); 869 870 // Class for 64 bit register f0 871 reg_class f0_reg( 872 F0, F0_H 873 ); 874 875 // Class for 64 bit register f1 876 reg_class f1_reg( 877 F1, F1_H 878 ); 879 880 // Class for 64 bit register f2 881 reg_class f2_reg( 882 F2, F2_H 883 ); 884 885 // Class for 64 bit register f3 886 reg_class f3_reg( 887 F3, F3_H 888 ); 889 890 // class for vector register v1 891 reg_class v1_reg( 892 V1, V1_H, V1_J, V1_K 893 ); 894 895 // class for vector register v2 896 reg_class v2_reg( 897 V2, V2_H, V2_J, V2_K 898 ); 899 900 // class for vector register v3 901 reg_class v3_reg( 902 V3, V3_H, V3_J, V3_K 903 ); 904 905 // class for vector register v4 906 reg_class v4_reg( 907 V4, V4_H, V4_J, V4_K 908 ); 909 910 // class for vector register v5 911 reg_class v5_reg( 912 V5, V5_H, V5_J, V5_K 913 ); 914 915 // class for vector register v6 916 reg_class v6_reg( 917 V6, V6_H, V6_J, V6_K 918 ); 919 920 // class for vector register v7 921 reg_class v7_reg( 922 V7, V7_H, V7_J, V7_K 923 ); 924 925 // class for vector register v8 926 reg_class v8_reg( 927 V8, V8_H, V8_J, V8_K 928 ); 929 930 // class for vector register v9 931 reg_class v9_reg( 932 V9, V9_H, V9_J, V9_K 933 ); 934 935 // class for vector register v10 936 reg_class v10_reg( 937 V10, V10_H, V10_J, V10_K 938 ); 939 940 // class for vector register v11 941 reg_class v11_reg( 942 V11, V11_H, V11_J, V11_K 943 ); 944 945 // class for condition codes 946 reg_class reg_flags(RFLAGS); 947 948 // Class for RVV v0 mask register 949 // https://github.com/riscv/riscv-v-spec/blob/master/v-spec.adoc#53-vector-masking 950 // The mask value used to control execution of a masked vector 951 // instruction is always supplied by vector register v0. 952 reg_class vmask_reg_v0 ( 953 V0 954 ); 955 956 // Class for RVV mask registers 957 // We need two more vmask registers to do the vector mask logical ops, 958 // so define v30, v31 as mask register too. 959 reg_class vmask_reg ( 960 V0, 961 V30, 962 V31 963 ); 964 %} 965 966 //----------DEFINITION BLOCK--------------------------------------------------- 967 // Define name --> value mappings to inform the ADLC of an integer valued name 968 // Current support includes integer values in the range [0, 0x7FFFFFFF] 969 // Format: 970 // int_def <name> ( <int_value>, <expression>); 971 // Generated Code in ad_<arch>.hpp 972 // #define <name> (<expression>) 973 // // value == <int_value> 974 // Generated code in ad_<arch>.cpp adlc_verification() 975 // assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>"); 976 // 977 978 // we follow the ppc-aix port in using a simple cost model which ranks 979 // register operations as cheap, memory ops as more expensive and 980 // branches as most expensive. the first two have a low as well as a 981 // normal cost. huge cost appears to be a way of saying don't do 982 // something 983 984 definitions %{ 985 // The default cost (of a register move instruction). 986 int_def DEFAULT_COST ( 100, 100); 987 int_def ALU_COST ( 100, 1 * DEFAULT_COST); // unknown, const, arith, shift, slt, 988 // multi, auipc, nop, logical, move 989 int_def LOAD_COST ( 300, 3 * DEFAULT_COST); // load, fpload 990 int_def STORE_COST ( 100, 1 * DEFAULT_COST); // store, fpstore 991 int_def XFER_COST ( 300, 3 * DEFAULT_COST); // mfc, mtc, fcvt, fmove, fcmp 992 int_def FMVX_COST ( 100, 1 * DEFAULT_COST); // shuffles with no conversion 993 int_def BRANCH_COST ( 200, 2 * DEFAULT_COST); // branch, jmp, call 994 int_def IMUL_COST ( 1000, 10 * DEFAULT_COST); // imul 995 int_def IDIVSI_COST ( 3400, 34 * DEFAULT_COST); // idivsi 996 int_def IDIVDI_COST ( 6600, 66 * DEFAULT_COST); // idivdi 997 int_def FMUL_SINGLE_COST ( 500, 5 * DEFAULT_COST); // fmul, fmadd 998 int_def FMUL_DOUBLE_COST ( 700, 7 * DEFAULT_COST); // fmul, fmadd 999 int_def FDIV_COST ( 2000, 20 * DEFAULT_COST); // fdiv 1000 int_def FSQRT_COST ( 2500, 25 * DEFAULT_COST); // fsqrt 1001 int_def VOLATILE_REF_COST ( 1000, 10 * DEFAULT_COST); 1002 int_def CACHE_MISS_COST ( 2000, 20 * DEFAULT_COST); // typicall cache miss penalty 1003 %} 1004 1005 1006 1007 //----------SOURCE BLOCK------------------------------------------------------- 1008 // This is a block of C++ code which provides values, functions, and 1009 // definitions necessary in the rest of the architecture description 1010 1011 source_hpp %{ 1012 1013 #include "asm/macroAssembler.hpp" 1014 #include "gc/shared/barrierSetAssembler.hpp" 1015 #include "gc/shared/cardTable.hpp" 1016 #include "gc/shared/cardTableBarrierSet.hpp" 1017 #include "gc/shared/collectedHeap.hpp" 1018 #include "opto/addnode.hpp" 1019 #include "opto/convertnode.hpp" 1020 #include "runtime/objectMonitor.hpp" 1021 1022 extern RegMask _ANY_REG32_mask; 1023 extern RegMask _ANY_REG_mask; 1024 extern RegMask _PTR_REG_mask; 1025 extern RegMask _NO_SPECIAL_REG32_mask; 1026 extern RegMask _NO_SPECIAL_REG_mask; 1027 extern RegMask _NO_SPECIAL_PTR_REG_mask; 1028 extern RegMask _NO_SPECIAL_NO_FP_PTR_REG_mask; 1029 1030 class CallStubImpl { 1031 1032 //-------------------------------------------------------------- 1033 //---< Used for optimization in Compile::shorten_branches >--- 1034 //-------------------------------------------------------------- 1035 1036 public: 1037 // Size of call trampoline stub. 1038 static uint size_call_trampoline() { 1039 return 0; // no call trampolines on this platform 1040 } 1041 1042 // number of relocations needed by a call trampoline stub 1043 static uint reloc_call_trampoline() { 1044 return 0; // no call trampolines on this platform 1045 } 1046 }; 1047 1048 class HandlerImpl { 1049 1050 public: 1051 1052 static int emit_exception_handler(C2_MacroAssembler *masm); 1053 static int emit_deopt_handler(C2_MacroAssembler* masm); 1054 1055 static uint size_exception_handler() { 1056 return MacroAssembler::far_branch_size(); 1057 } 1058 1059 static uint size_deopt_handler() { 1060 // count auipc + far branch 1061 return NativeInstruction::instruction_size + MacroAssembler::far_branch_size(); 1062 } 1063 }; 1064 1065 class Node::PD { 1066 public: 1067 enum NodeFlags { 1068 _last_flag = Node::_last_flag 1069 }; 1070 }; 1071 1072 bool is_CAS(int opcode, bool maybe_volatile); 1073 1074 // predicate controlling translation of CompareAndSwapX 1075 bool needs_acquiring_load_reserved(const Node *load); 1076 1077 // predicate controlling addressing modes 1078 bool size_fits_all_mem_uses(AddPNode* addp, int shift); 1079 %} 1080 1081 source %{ 1082 1083 // Derived RegMask with conditionally allocatable registers 1084 1085 RegMask _ANY_REG32_mask; 1086 RegMask _ANY_REG_mask; 1087 RegMask _PTR_REG_mask; 1088 RegMask _NO_SPECIAL_REG32_mask; 1089 RegMask _NO_SPECIAL_REG_mask; 1090 RegMask _NO_SPECIAL_PTR_REG_mask; 1091 RegMask _NO_SPECIAL_NO_FP_PTR_REG_mask; 1092 1093 void reg_mask_init() { 1094 1095 _ANY_REG32_mask = _ALL_REG32_mask; 1096 _ANY_REG32_mask.Remove(OptoReg::as_OptoReg(x0->as_VMReg())); 1097 1098 _ANY_REG_mask = _ALL_REG_mask; 1099 _ANY_REG_mask.SUBTRACT(_ZR_REG_mask); 1100 1101 _PTR_REG_mask = _ALL_REG_mask; 1102 _PTR_REG_mask.SUBTRACT(_ZR_REG_mask); 1103 1104 _NO_SPECIAL_REG32_mask = _ALL_REG32_mask; 1105 _NO_SPECIAL_REG32_mask.SUBTRACT(_NON_ALLOCATABLE_REG32_mask); 1106 1107 _NO_SPECIAL_REG_mask = _ALL_REG_mask; 1108 _NO_SPECIAL_REG_mask.SUBTRACT(_NON_ALLOCATABLE_REG_mask); 1109 1110 _NO_SPECIAL_PTR_REG_mask = _ALL_REG_mask; 1111 _NO_SPECIAL_PTR_REG_mask.SUBTRACT(_NON_ALLOCATABLE_REG_mask); 1112 1113 // x27 is not allocatable when compressed oops is on 1114 if (UseCompressedOops) { 1115 _NO_SPECIAL_REG32_mask.Remove(OptoReg::as_OptoReg(x27->as_VMReg())); 1116 _NO_SPECIAL_REG_mask.Remove(OptoReg::as_OptoReg(x27->as_VMReg())); 1117 _NO_SPECIAL_PTR_REG_mask.Remove(OptoReg::as_OptoReg(x27->as_VMReg())); 1118 } 1119 1120 // x8 is not allocatable when PreserveFramePointer is on 1121 if (PreserveFramePointer) { 1122 _NO_SPECIAL_REG32_mask.Remove(OptoReg::as_OptoReg(x8->as_VMReg())); 1123 _NO_SPECIAL_REG_mask.Remove(OptoReg::as_OptoReg(x8->as_VMReg())); 1124 _NO_SPECIAL_PTR_REG_mask.Remove(OptoReg::as_OptoReg(x8->as_VMReg())); 1125 } 1126 1127 _NO_SPECIAL_NO_FP_PTR_REG_mask = _NO_SPECIAL_PTR_REG_mask; 1128 _NO_SPECIAL_NO_FP_PTR_REG_mask.Remove(OptoReg::as_OptoReg(x8->as_VMReg())); 1129 } 1130 1131 void PhaseOutput::pd_perform_mach_node_analysis() { 1132 } 1133 1134 int MachNode::pd_alignment_required() const { 1135 return 1; 1136 } 1137 1138 int MachNode::compute_padding(int current_offset) const { 1139 return 0; 1140 } 1141 1142 // is_CAS(int opcode, bool maybe_volatile) 1143 // 1144 // return true if opcode is one of the possible CompareAndSwapX 1145 // values otherwise false. 1146 bool is_CAS(int opcode, bool maybe_volatile) 1147 { 1148 switch (opcode) { 1149 // We handle these 1150 case Op_CompareAndSwapI: 1151 case Op_CompareAndSwapL: 1152 case Op_CompareAndSwapP: 1153 case Op_CompareAndSwapN: 1154 case Op_ShenandoahCompareAndSwapP: 1155 case Op_ShenandoahCompareAndSwapN: 1156 case Op_CompareAndSwapB: 1157 case Op_CompareAndSwapS: 1158 case Op_GetAndSetI: 1159 case Op_GetAndSetL: 1160 case Op_GetAndSetP: 1161 case Op_GetAndSetN: 1162 case Op_GetAndAddI: 1163 case Op_GetAndAddL: 1164 return true; 1165 case Op_CompareAndExchangeI: 1166 case Op_CompareAndExchangeN: 1167 case Op_CompareAndExchangeB: 1168 case Op_CompareAndExchangeS: 1169 case Op_CompareAndExchangeL: 1170 case Op_CompareAndExchangeP: 1171 case Op_WeakCompareAndSwapB: 1172 case Op_WeakCompareAndSwapS: 1173 case Op_WeakCompareAndSwapI: 1174 case Op_WeakCompareAndSwapL: 1175 case Op_WeakCompareAndSwapP: 1176 case Op_WeakCompareAndSwapN: 1177 case Op_ShenandoahWeakCompareAndSwapP: 1178 case Op_ShenandoahWeakCompareAndSwapN: 1179 case Op_ShenandoahCompareAndExchangeP: 1180 case Op_ShenandoahCompareAndExchangeN: 1181 return maybe_volatile; 1182 default: 1183 return false; 1184 } 1185 } 1186 1187 // predicate controlling translation of CAS 1188 // 1189 // returns true if CAS needs to use an acquiring load otherwise false 1190 bool needs_acquiring_load_reserved(const Node *n) 1191 { 1192 assert(n != nullptr && is_CAS(n->Opcode(), true), "expecting a compare and swap"); 1193 1194 LoadStoreNode* ldst = n->as_LoadStore(); 1195 if (n != nullptr && is_CAS(n->Opcode(), false)) { 1196 assert(ldst != nullptr && ldst->trailing_membar() != nullptr, "expected trailing membar"); 1197 } else { 1198 return ldst != nullptr && ldst->trailing_membar() != nullptr; 1199 } 1200 // so we can just return true here 1201 return true; 1202 } 1203 #define __ masm-> 1204 1205 // advance declarations for helper functions to convert register 1206 // indices to register objects 1207 1208 // the ad file has to provide implementations of certain methods 1209 // expected by the generic code 1210 // 1211 // REQUIRED FUNCTIONALITY 1212 1213 //============================================================================= 1214 1215 // !!!!! Special hack to get all types of calls to specify the byte offset 1216 // from the start of the call to the point where the return address 1217 // will point. 1218 1219 int MachCallStaticJavaNode::ret_addr_offset() 1220 { 1221 return 3 * NativeInstruction::instruction_size; // auipc + ld + jalr 1222 } 1223 1224 int MachCallDynamicJavaNode::ret_addr_offset() 1225 { 1226 return NativeMovConstReg::movptr2_instruction_size + (3 * NativeInstruction::instruction_size); // movptr2, auipc + ld + jal 1227 } 1228 1229 int MachCallRuntimeNode::ret_addr_offset() { 1230 // For address inside the code cache the call will be: 1231 // auipc + jalr 1232 // For real runtime callouts it will be 8 instructions 1233 // see riscv_enc_java_to_runtime 1234 // la(t0, retaddr) -> auipc + addi 1235 // sd(t0, Address(xthread, JavaThread::last_Java_pc_offset())) -> sd 1236 // movptr(t1, addr, offset, t0) -> lui + lui + slli + add 1237 // jalr(t1, offset) -> jalr 1238 if (CodeCache::contains(_entry_point)) { 1239 return 2 * NativeInstruction::instruction_size; 1240 } else { 1241 return 8 * NativeInstruction::instruction_size; 1242 } 1243 } 1244 1245 // 1246 // Compute padding required for nodes which need alignment 1247 // 1248 1249 // With RVC a call instruction may get 2-byte aligned. 1250 // The address of the call instruction needs to be 4-byte aligned to 1251 // ensure that it does not span a cache line so that it can be patched. 1252 int CallStaticJavaDirectNode::compute_padding(int current_offset) const 1253 { 1254 // to make sure the address of jal 4-byte aligned. 1255 return align_up(current_offset, alignment_required()) - current_offset; 1256 } 1257 1258 // With RVC a call instruction may get 2-byte aligned. 1259 // The address of the call instruction needs to be 4-byte aligned to 1260 // ensure that it does not span a cache line so that it can be patched. 1261 int CallDynamicJavaDirectNode::compute_padding(int current_offset) const 1262 { 1263 // skip the movptr2 in MacroAssembler::ic_call(): 1264 // lui, lui, slli, add, addi 1265 // Though movptr2() has already 4-byte aligned with or without RVC, 1266 // We need to prevent from further changes by explicitly calculating the size. 1267 current_offset += NativeMovConstReg::movptr2_instruction_size; 1268 // to make sure the address of jal 4-byte aligned. 1269 return align_up(current_offset, alignment_required()) - current_offset; 1270 } 1271 1272 //============================================================================= 1273 1274 #ifndef PRODUCT 1275 void MachBreakpointNode::format(PhaseRegAlloc *ra_, outputStream *st) const { 1276 assert_cond(st != nullptr); 1277 st->print("BREAKPOINT"); 1278 } 1279 #endif 1280 1281 void MachBreakpointNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const { 1282 __ ebreak(); 1283 } 1284 1285 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const { 1286 return MachNode::size(ra_); 1287 } 1288 1289 //============================================================================= 1290 1291 #ifndef PRODUCT 1292 void MachNopNode::format(PhaseRegAlloc*, outputStream* st) const { 1293 st->print("nop \t# %d bytes pad for loops and calls", _count); 1294 } 1295 #endif 1296 1297 void MachNopNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc*) const { 1298 Assembler::CompressibleRegion cr(masm); // nops shall be 2-byte under RVC for alignment purposes. 1299 for (int i = 0; i < _count; i++) { 1300 __ nop(); 1301 } 1302 } 1303 1304 uint MachNopNode::size(PhaseRegAlloc*) const { 1305 return _count * (UseRVC ? NativeInstruction::compressed_instruction_size : NativeInstruction::instruction_size); 1306 } 1307 1308 //============================================================================= 1309 const RegMask& MachConstantBaseNode::_out_RegMask = RegMask::Empty; 1310 1311 int ConstantTable::calculate_table_base_offset() const { 1312 return 0; // absolute addressing, no offset 1313 } 1314 1315 bool MachConstantBaseNode::requires_postalloc_expand() const { return false; } 1316 void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) { 1317 ShouldNotReachHere(); 1318 } 1319 1320 void MachConstantBaseNode::emit(C2_MacroAssembler* masm, PhaseRegAlloc* ra_) const { 1321 // Empty encoding 1322 } 1323 1324 uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const { 1325 return 0; 1326 } 1327 1328 #ifndef PRODUCT 1329 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const { 1330 assert_cond(st != nullptr); 1331 st->print("-- \t// MachConstantBaseNode (empty encoding)"); 1332 } 1333 #endif 1334 1335 #ifndef PRODUCT 1336 void MachPrologNode::format(PhaseRegAlloc *ra_, outputStream *st) const { 1337 assert_cond(st != nullptr && ra_ != nullptr); 1338 Compile* C = ra_->C; 1339 1340 int framesize = C->output()->frame_slots() << LogBytesPerInt; 1341 1342 if (C->output()->need_stack_bang(framesize)) { 1343 st->print("# stack bang size=%d\n\t", framesize); 1344 } 1345 1346 st->print("sd fp, [sp, #%d]\n\t", - 2 * wordSize); 1347 st->print("sd ra, [sp, #%d]\n\t", - wordSize); 1348 if (PreserveFramePointer) { st->print("sub fp, sp, #%d\n\t", 2 * wordSize); } 1349 st->print("sub sp, sp, #%d\n\t", framesize); 1350 1351 if (C->stub_function() == nullptr && BarrierSet::barrier_set()->barrier_set_nmethod() != nullptr) { 1352 st->print("ld t0, [guard]\n\t"); 1353 st->print("membar LoadLoad\n\t"); 1354 st->print("ld t1, [xthread, #thread_disarmed_guard_value_offset]\n\t"); 1355 st->print("beq t0, t1, skip\n\t"); 1356 st->print("jalr #nmethod_entry_barrier_stub\n\t"); 1357 st->print("j skip\n\t"); 1358 st->print("guard: int\n\t"); 1359 st->print("skip:\n\t"); 1360 } 1361 } 1362 #endif 1363 1364 void MachPrologNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const { 1365 assert_cond(ra_ != nullptr); 1366 Compile* C = ra_->C; 1367 1368 // n.b. frame size includes space for return pc and fp 1369 const int framesize = C->output()->frame_size_in_bytes(); 1370 1371 // insert a nop at the start of the prolog so we can patch in a 1372 // branch if we need to invalidate the method later 1373 { 1374 Assembler::IncompressibleRegion ir(masm); // keep the nop as 4 bytes for patching. 1375 MacroAssembler::assert_alignment(__ pc()); 1376 __ nop(); // 4 bytes 1377 } 1378 1379 assert_cond(C != nullptr); 1380 1381 if (C->clinit_barrier_on_entry()) { 1382 assert(!C->method()->holder()->is_not_initialized(), "initialization should have been started"); 1383 1384 Label L_skip_barrier; 1385 1386 __ mov_metadata(t1, C->method()->holder()->constant_encoding()); 1387 __ clinit_barrier(t1, t0, &L_skip_barrier); 1388 __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 1389 __ bind(L_skip_barrier); 1390 } 1391 1392 int bangsize = C->output()->bang_size_in_bytes(); 1393 if (C->output()->need_stack_bang(bangsize)) { 1394 __ generate_stack_overflow_check(bangsize); 1395 } 1396 1397 __ build_frame(framesize); 1398 1399 if (C->stub_function() == nullptr) { 1400 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 1401 if (BarrierSet::barrier_set()->barrier_set_nmethod() != nullptr) { 1402 // Dummy labels for just measuring the code size 1403 Label dummy_slow_path; 1404 Label dummy_continuation; 1405 Label dummy_guard; 1406 Label* slow_path = &dummy_slow_path; 1407 Label* continuation = &dummy_continuation; 1408 Label* guard = &dummy_guard; 1409 if (!Compile::current()->output()->in_scratch_emit_size()) { 1410 // Use real labels from actual stub when not emitting code for purpose of measuring its size 1411 C2EntryBarrierStub* stub = new (Compile::current()->comp_arena()) C2EntryBarrierStub(); 1412 Compile::current()->output()->add_stub(stub); 1413 slow_path = &stub->entry(); 1414 continuation = &stub->continuation(); 1415 guard = &stub->guard(); 1416 } 1417 // In the C2 code, we move the non-hot part of nmethod entry barriers out-of-line to a stub. 1418 bs->nmethod_entry_barrier(masm, slow_path, continuation, guard); 1419 } 1420 } 1421 1422 if (VerifyStackAtCalls) { 1423 Unimplemented(); 1424 } 1425 1426 C->output()->set_frame_complete(__ offset()); 1427 1428 if (C->has_mach_constant_base_node()) { 1429 // NOTE: We set the table base offset here because users might be 1430 // emitted before MachConstantBaseNode. 1431 ConstantTable& constant_table = C->output()->constant_table(); 1432 constant_table.set_table_base_offset(constant_table.calculate_table_base_offset()); 1433 } 1434 } 1435 1436 uint MachPrologNode::size(PhaseRegAlloc* ra_) const 1437 { 1438 assert_cond(ra_ != nullptr); 1439 return MachNode::size(ra_); // too many variables; just compute it 1440 // the hard way 1441 } 1442 1443 int MachPrologNode::reloc() const 1444 { 1445 return 0; 1446 } 1447 1448 //============================================================================= 1449 1450 #ifndef PRODUCT 1451 void MachEpilogNode::format(PhaseRegAlloc *ra_, outputStream *st) const { 1452 assert_cond(st != nullptr && ra_ != nullptr); 1453 Compile* C = ra_->C; 1454 assert_cond(C != nullptr); 1455 int framesize = C->output()->frame_size_in_bytes(); 1456 1457 st->print("# pop frame %d\n\t", framesize); 1458 1459 if (framesize == 0) { 1460 st->print("ld ra, [sp,#%d]\n\t", (2 * wordSize)); 1461 st->print("ld fp, [sp,#%d]\n\t", (3 * wordSize)); 1462 st->print("add sp, sp, #%d\n\t", (2 * wordSize)); 1463 } else { 1464 st->print("add sp, sp, #%d\n\t", framesize); 1465 st->print("ld ra, [sp,#%d]\n\t", - 2 * wordSize); 1466 st->print("ld fp, [sp,#%d]\n\t", - wordSize); 1467 } 1468 1469 if (do_polling() && C->is_method_compilation()) { 1470 st->print("# test polling word\n\t"); 1471 st->print("ld t0, [xthread,#%d]\n\t", in_bytes(JavaThread::polling_word_offset())); 1472 st->print("bgtu sp, t0, #slow_path"); 1473 } 1474 } 1475 #endif 1476 1477 void MachEpilogNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const { 1478 assert_cond(ra_ != nullptr); 1479 Compile* C = ra_->C; 1480 assert_cond(C != nullptr); 1481 int framesize = C->output()->frame_size_in_bytes(); 1482 1483 __ remove_frame(framesize); 1484 1485 if (StackReservedPages > 0 && C->has_reserved_stack_access()) { 1486 __ reserved_stack_check(); 1487 } 1488 1489 if (do_polling() && C->is_method_compilation()) { 1490 Label dummy_label; 1491 Label* code_stub = &dummy_label; 1492 if (!C->output()->in_scratch_emit_size()) { 1493 C2SafepointPollStub* stub = new (C->comp_arena()) C2SafepointPollStub(__ offset()); 1494 C->output()->add_stub(stub); 1495 code_stub = &stub->entry(); 1496 } 1497 __ relocate(relocInfo::poll_return_type); 1498 __ safepoint_poll(*code_stub, true /* at_return */, false /* acquire */, true /* in_nmethod */); 1499 } 1500 } 1501 1502 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const { 1503 assert_cond(ra_ != nullptr); 1504 // Variable size. Determine dynamically. 1505 return MachNode::size(ra_); 1506 } 1507 1508 int MachEpilogNode::reloc() const { 1509 // Return number of relocatable values contained in this instruction. 1510 return 1; // 1 for polling page. 1511 } 1512 const Pipeline * MachEpilogNode::pipeline() const { 1513 return MachNode::pipeline_class(); 1514 } 1515 1516 //============================================================================= 1517 1518 // Figure out which register class each belongs in: rc_int, rc_float or 1519 // rc_stack. 1520 enum RC { rc_bad, rc_int, rc_float, rc_vector, rc_stack }; 1521 1522 static enum RC rc_class(OptoReg::Name reg) { 1523 1524 if (reg == OptoReg::Bad) { 1525 return rc_bad; 1526 } 1527 1528 // we have 30 int registers * 2 halves 1529 // (t0 and t1 are omitted) 1530 int slots_of_int_registers = Register::max_slots_per_register * (Register::number_of_registers - 2); 1531 if (reg < slots_of_int_registers) { 1532 return rc_int; 1533 } 1534 1535 // we have 32 float register * 2 halves 1536 int slots_of_float_registers = FloatRegister::max_slots_per_register * FloatRegister::number_of_registers; 1537 if (reg < slots_of_int_registers + slots_of_float_registers) { 1538 return rc_float; 1539 } 1540 1541 // we have 32 vector register * 4 halves 1542 int slots_of_vector_registers = VectorRegister::max_slots_per_register * VectorRegister::number_of_registers; 1543 if (reg < slots_of_int_registers + slots_of_float_registers + slots_of_vector_registers) { 1544 return rc_vector; 1545 } 1546 1547 // Between vector regs & stack is the flags regs. 1548 assert(OptoReg::is_stack(reg), "blow up if spilling flags"); 1549 1550 return rc_stack; 1551 } 1552 1553 uint MachSpillCopyNode::implementation(C2_MacroAssembler *masm, PhaseRegAlloc *ra_, bool do_size, outputStream *st) const { 1554 assert_cond(ra_ != nullptr); 1555 Compile* C = ra_->C; 1556 1557 // Get registers to move. 1558 OptoReg::Name src_hi = ra_->get_reg_second(in(1)); 1559 OptoReg::Name src_lo = ra_->get_reg_first(in(1)); 1560 OptoReg::Name dst_hi = ra_->get_reg_second(this); 1561 OptoReg::Name dst_lo = ra_->get_reg_first(this); 1562 1563 enum RC src_hi_rc = rc_class(src_hi); 1564 enum RC src_lo_rc = rc_class(src_lo); 1565 enum RC dst_hi_rc = rc_class(dst_hi); 1566 enum RC dst_lo_rc = rc_class(dst_lo); 1567 1568 assert(src_lo != OptoReg::Bad && dst_lo != OptoReg::Bad, "must move at least 1 register"); 1569 1570 if (src_hi != OptoReg::Bad && !bottom_type()->isa_vectmask()) { 1571 assert((src_lo & 1) == 0 && src_lo + 1 == src_hi && 1572 (dst_lo & 1) == 0 && dst_lo + 1 == dst_hi, 1573 "expected aligned-adjacent pairs"); 1574 } 1575 1576 if (src_lo == dst_lo && src_hi == dst_hi) { 1577 return 0; // Self copy, no move. 1578 } 1579 1580 bool is64 = (src_lo & 1) == 0 && src_lo + 1 == src_hi && 1581 (dst_lo & 1) == 0 && dst_lo + 1 == dst_hi; 1582 int src_offset = ra_->reg2offset(src_lo); 1583 int dst_offset = ra_->reg2offset(dst_lo); 1584 1585 if (bottom_type()->isa_vect() != nullptr) { 1586 uint ireg = ideal_reg(); 1587 if (ireg == Op_VecA && masm) { 1588 int vector_reg_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 1589 if (src_lo_rc == rc_stack && dst_lo_rc == rc_stack) { 1590 // stack to stack 1591 __ spill_copy_vector_stack_to_stack(src_offset, dst_offset, 1592 vector_reg_size_in_bytes); 1593 } else if (src_lo_rc == rc_vector && dst_lo_rc == rc_stack) { 1594 // vpr to stack 1595 __ spill(as_VectorRegister(Matcher::_regEncode[src_lo]), ra_->reg2offset(dst_lo)); 1596 } else if (src_lo_rc == rc_stack && dst_lo_rc == rc_vector) { 1597 // stack to vpr 1598 __ unspill(as_VectorRegister(Matcher::_regEncode[dst_lo]), ra_->reg2offset(src_lo)); 1599 } else if (src_lo_rc == rc_vector && dst_lo_rc == rc_vector) { 1600 // vpr to vpr 1601 __ vmv1r_v(as_VectorRegister(Matcher::_regEncode[dst_lo]), as_VectorRegister(Matcher::_regEncode[src_lo])); 1602 } else { 1603 ShouldNotReachHere(); 1604 } 1605 } else if (bottom_type()->isa_vectmask() && masm) { 1606 int vmask_size_in_bytes = Matcher::scalable_predicate_reg_slots() * 32 / 8; 1607 if (src_lo_rc == rc_stack && dst_lo_rc == rc_stack) { 1608 // stack to stack 1609 __ spill_copy_vmask_stack_to_stack(src_offset, dst_offset, 1610 vmask_size_in_bytes); 1611 } else if (src_lo_rc == rc_vector && dst_lo_rc == rc_stack) { 1612 // vmask to stack 1613 __ spill_vmask(as_VectorRegister(Matcher::_regEncode[src_lo]), ra_->reg2offset(dst_lo)); 1614 } else if (src_lo_rc == rc_stack && dst_lo_rc == rc_vector) { 1615 // stack to vmask 1616 __ unspill_vmask(as_VectorRegister(Matcher::_regEncode[dst_lo]), ra_->reg2offset(src_lo)); 1617 } else if (src_lo_rc == rc_vector && dst_lo_rc == rc_vector) { 1618 // vmask to vmask 1619 __ vmv1r_v(as_VectorRegister(Matcher::_regEncode[dst_lo]), as_VectorRegister(Matcher::_regEncode[src_lo])); 1620 } else { 1621 ShouldNotReachHere(); 1622 } 1623 } 1624 } else if (masm != nullptr) { 1625 switch (src_lo_rc) { 1626 case rc_int: 1627 if (dst_lo_rc == rc_int) { // gpr --> gpr copy 1628 if (!is64 && this->ideal_reg() != Op_RegI) { // zero extended for narrow oop or klass 1629 __ zext(as_Register(Matcher::_regEncode[dst_lo]), as_Register(Matcher::_regEncode[src_lo]), 32); 1630 } else { 1631 __ mv(as_Register(Matcher::_regEncode[dst_lo]), as_Register(Matcher::_regEncode[src_lo])); 1632 } 1633 } else if (dst_lo_rc == rc_float) { // gpr --> fpr copy 1634 if (is64) { 1635 __ fmv_d_x(as_FloatRegister(Matcher::_regEncode[dst_lo]), 1636 as_Register(Matcher::_regEncode[src_lo])); 1637 } else { 1638 __ fmv_w_x(as_FloatRegister(Matcher::_regEncode[dst_lo]), 1639 as_Register(Matcher::_regEncode[src_lo])); 1640 } 1641 } else { // gpr --> stack spill 1642 assert(dst_lo_rc == rc_stack, "spill to bad register class"); 1643 __ spill(as_Register(Matcher::_regEncode[src_lo]), is64, dst_offset); 1644 } 1645 break; 1646 case rc_float: 1647 if (dst_lo_rc == rc_int) { // fpr --> gpr copy 1648 if (is64) { 1649 __ fmv_x_d(as_Register(Matcher::_regEncode[dst_lo]), 1650 as_FloatRegister(Matcher::_regEncode[src_lo])); 1651 } else { 1652 __ fmv_x_w(as_Register(Matcher::_regEncode[dst_lo]), 1653 as_FloatRegister(Matcher::_regEncode[src_lo])); 1654 } 1655 } else if (dst_lo_rc == rc_float) { // fpr --> fpr copy 1656 if (is64) { 1657 __ fmv_d(as_FloatRegister(Matcher::_regEncode[dst_lo]), 1658 as_FloatRegister(Matcher::_regEncode[src_lo])); 1659 } else { 1660 __ fmv_s(as_FloatRegister(Matcher::_regEncode[dst_lo]), 1661 as_FloatRegister(Matcher::_regEncode[src_lo])); 1662 } 1663 } else { // fpr --> stack spill 1664 assert(dst_lo_rc == rc_stack, "spill to bad register class"); 1665 __ spill(as_FloatRegister(Matcher::_regEncode[src_lo]), 1666 is64, dst_offset); 1667 } 1668 break; 1669 case rc_stack: 1670 if (dst_lo_rc == rc_int) { // stack --> gpr load 1671 if (this->ideal_reg() == Op_RegI) { 1672 __ unspill(as_Register(Matcher::_regEncode[dst_lo]), is64, src_offset); 1673 } else { // // zero extended for narrow oop or klass 1674 __ unspillu(as_Register(Matcher::_regEncode[dst_lo]), is64, src_offset); 1675 } 1676 } else if (dst_lo_rc == rc_float) { // stack --> fpr load 1677 __ unspill(as_FloatRegister(Matcher::_regEncode[dst_lo]), 1678 is64, src_offset); 1679 } else { // stack --> stack copy 1680 assert(dst_lo_rc == rc_stack, "spill to bad register class"); 1681 if (this->ideal_reg() == Op_RegI) { 1682 __ unspill(t0, is64, src_offset); 1683 } else { // zero extended for narrow oop or klass 1684 __ unspillu(t0, is64, src_offset); 1685 } 1686 __ spill(t0, is64, dst_offset); 1687 } 1688 break; 1689 default: 1690 ShouldNotReachHere(); 1691 } 1692 } 1693 1694 if (st != nullptr) { 1695 st->print("spill "); 1696 if (src_lo_rc == rc_stack) { 1697 st->print("[sp, #%d] -> ", src_offset); 1698 } else { 1699 st->print("%s -> ", Matcher::regName[src_lo]); 1700 } 1701 if (dst_lo_rc == rc_stack) { 1702 st->print("[sp, #%d]", dst_offset); 1703 } else { 1704 st->print("%s", Matcher::regName[dst_lo]); 1705 } 1706 if (bottom_type()->isa_vect() && !bottom_type()->isa_vectmask()) { 1707 int vsize = 0; 1708 if (ideal_reg() == Op_VecA) { 1709 vsize = Matcher::scalable_vector_reg_size(T_BYTE) * 8; 1710 } else { 1711 ShouldNotReachHere(); 1712 } 1713 st->print("\t# vector spill size = %d", vsize); 1714 } else if (ideal_reg() == Op_RegVectMask) { 1715 assert(Matcher::supports_scalable_vector(), "bad register type for spill"); 1716 int vsize = Matcher::scalable_predicate_reg_slots() * 32; 1717 st->print("\t# vmask spill size = %d", vsize); 1718 } else { 1719 st->print("\t# spill size = %d", is64 ? 64 : 32); 1720 } 1721 } 1722 1723 return 0; 1724 } 1725 1726 #ifndef PRODUCT 1727 void MachSpillCopyNode::format(PhaseRegAlloc *ra_, outputStream *st) const { 1728 if (ra_ == nullptr) { 1729 st->print("N%d = SpillCopy(N%d)", _idx, in(1)->_idx); 1730 } else { 1731 implementation(nullptr, ra_, false, st); 1732 } 1733 } 1734 #endif 1735 1736 void MachSpillCopyNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const { 1737 implementation(masm, ra_, false, nullptr); 1738 } 1739 1740 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const { 1741 return MachNode::size(ra_); 1742 } 1743 1744 //============================================================================= 1745 1746 #ifndef PRODUCT 1747 void BoxLockNode::format(PhaseRegAlloc *ra_, outputStream *st) const { 1748 assert_cond(ra_ != nullptr && st != nullptr); 1749 int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()); 1750 int reg = ra_->get_reg_first(this); 1751 st->print("add %s, sp, #%d\t# box lock", 1752 Matcher::regName[reg], offset); 1753 } 1754 #endif 1755 1756 void BoxLockNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const { 1757 Assembler::IncompressibleRegion ir(masm); // Fixed length: see BoxLockNode::size() 1758 1759 assert_cond(ra_ != nullptr); 1760 int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()); 1761 int reg = ra_->get_encode(this); 1762 1763 if (Assembler::is_simm12(offset)) { 1764 __ addi(as_Register(reg), sp, offset); 1765 } else { 1766 __ li32(t0, offset); 1767 __ add(as_Register(reg), sp, t0); 1768 } 1769 } 1770 1771 uint BoxLockNode::size(PhaseRegAlloc *ra_) const { 1772 // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_). 1773 int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()); 1774 1775 if (Assembler::is_simm12(offset)) { 1776 return NativeInstruction::instruction_size; 1777 } else { 1778 return 3 * NativeInstruction::instruction_size; // lui + addiw + add; 1779 } 1780 } 1781 1782 //============================================================================= 1783 1784 #ifndef PRODUCT 1785 void MachUEPNode::format(PhaseRegAlloc* ra_, outputStream* st) const 1786 { 1787 assert_cond(st != nullptr); 1788 st->print_cr("# MachUEPNode"); 1789 if (UseCompressedClassPointers) { 1790 st->print_cr("\tlwu t1, [j_rarg0 + oopDesc::klass_offset_in_bytes()]\t# compressed klass"); 1791 st->print_cr("\tlwu t2, [t0 + CompiledICData::speculated_klass_offset()]\t# compressed klass"); 1792 } else { 1793 st->print_cr("\tld t1, [j_rarg0 + oopDesc::klass_offset_in_bytes()]\t# compressed klass"); 1794 st->print_cr("\tld t2, [t0 + CompiledICData::speculated_klass_offset()]\t# compressed klass"); 1795 } 1796 st->print_cr("\tbeq t1, t2, ic_hit"); 1797 st->print_cr("\tj, SharedRuntime::_ic_miss_stub\t # Inline cache check"); 1798 st->print_cr("\tic_hit:"); 1799 } 1800 #endif 1801 1802 void MachUEPNode::emit(C2_MacroAssembler* masm, PhaseRegAlloc* ra_) const 1803 { 1804 // This is the unverified entry point. 1805 __ ic_check(CodeEntryAlignment); 1806 1807 // Verified entry point must be properly 4 bytes aligned for patching by NativeJump::patch_verified_entry(). 1808 // ic_check() aligns to CodeEntryAlignment >= InteriorEntryAlignment(min 16) > NativeInstruction::instruction_size(4). 1809 assert(((__ offset()) % CodeEntryAlignment) == 0, "Misaligned verified entry point"); 1810 } 1811 1812 uint MachUEPNode::size(PhaseRegAlloc* ra_) const 1813 { 1814 assert_cond(ra_ != nullptr); 1815 return MachNode::size(ra_); 1816 } 1817 1818 // REQUIRED EMIT CODE 1819 1820 //============================================================================= 1821 1822 // Emit exception handler code. 1823 int HandlerImpl::emit_exception_handler(C2_MacroAssembler* masm) 1824 { 1825 // auipc t1, #exception_blob_entry_point 1826 // jr (offset)t1 1827 // Note that the code buffer's insts_mark is always relative to insts. 1828 // That's why we must use the macroassembler to generate a handler. 1829 address base = __ start_a_stub(size_exception_handler()); 1830 if (base == nullptr) { 1831 ciEnv::current()->record_failure("CodeCache is full"); 1832 return 0; // CodeBuffer::expand failed 1833 } 1834 int offset = __ offset(); 1835 __ far_jump(RuntimeAddress(OptoRuntime::exception_blob()->entry_point())); 1836 assert(__ offset() - offset <= (int) size_exception_handler(), "overflow"); 1837 __ end_a_stub(); 1838 return offset; 1839 } 1840 1841 // Emit deopt handler code. 1842 int HandlerImpl::emit_deopt_handler(C2_MacroAssembler* masm) 1843 { 1844 address base = __ start_a_stub(size_deopt_handler()); 1845 if (base == nullptr) { 1846 ciEnv::current()->record_failure("CodeCache is full"); 1847 return 0; // CodeBuffer::expand failed 1848 } 1849 int offset = __ offset(); 1850 1851 __ auipc(ra, 0); 1852 __ far_jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack())); 1853 1854 assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow"); 1855 __ end_a_stub(); 1856 return offset; 1857 1858 } 1859 // REQUIRED MATCHER CODE 1860 1861 //============================================================================= 1862 1863 bool Matcher::match_rule_supported(int opcode) { 1864 if (!has_match_rule(opcode)) { 1865 return false; 1866 } 1867 1868 switch (opcode) { 1869 case Op_OnSpinWait: 1870 return VM_Version::supports_on_spin_wait(); 1871 case Op_CacheWB: // fall through 1872 case Op_CacheWBPreSync: // fall through 1873 case Op_CacheWBPostSync: 1874 if (!VM_Version::supports_data_cache_line_flush()) { 1875 return false; 1876 } 1877 break; 1878 1879 case Op_StrCompressedCopy: // fall through 1880 case Op_StrInflatedCopy: // fall through 1881 case Op_CountPositives: // fall through 1882 case Op_EncodeISOArray: 1883 return UseRVV; 1884 1885 // Current test shows that, it brings performance gain when MaxVectorSize >= 32, but brings 1886 // regression when MaxVectorSize == 16. So only enable the intrinsic when MaxVectorSize >= 32. 1887 case Op_RoundVF: 1888 return UseRVV && MaxVectorSize >= 32; 1889 1890 // For double, current test shows that even with MaxVectorSize == 32, there is still some regression. 1891 // Although there is no hardware to verify it for now, from the trend of performance data on hardwares 1892 // (with vlenb == 16 and 32 respectively), it's promising to bring better performance rather than 1893 // regression for double when MaxVectorSize == 64+. So only enable the intrinsic when MaxVectorSize >= 64. 1894 case Op_RoundVD: 1895 return UseRVV && MaxVectorSize >= 64; 1896 1897 case Op_PopCountI: 1898 case Op_PopCountL: 1899 return UsePopCountInstruction; 1900 1901 case Op_ReverseBytesI: 1902 case Op_ReverseBytesL: 1903 case Op_ReverseBytesS: 1904 case Op_ReverseBytesUS: 1905 case Op_RotateRight: 1906 case Op_RotateLeft: 1907 case Op_CountLeadingZerosI: 1908 case Op_CountLeadingZerosL: 1909 case Op_CountTrailingZerosI: 1910 case Op_CountTrailingZerosL: 1911 return UseZbb; 1912 1913 case Op_FmaF: 1914 case Op_FmaD: 1915 case Op_FmaVF: 1916 case Op_FmaVD: 1917 return UseFMA; 1918 1919 case Op_ConvHF2F: 1920 case Op_ConvF2HF: 1921 return UseZfh || UseZfhmin; 1922 } 1923 1924 return true; // Per default match rules are supported. 1925 } 1926 1927 const RegMask* Matcher::predicate_reg_mask(void) { 1928 return &_VMASK_REG_mask; 1929 } 1930 1931 // Vector calling convention not yet implemented. 1932 bool Matcher::supports_vector_calling_convention(void) { 1933 return EnableVectorSupport && UseVectorStubs; 1934 } 1935 1936 OptoRegPair Matcher::vector_return_value(uint ideal_reg) { 1937 assert(EnableVectorSupport && UseVectorStubs, "sanity"); 1938 assert(ideal_reg == Op_VecA, "sanity"); 1939 // check more info at https://github.com/riscv-non-isa/riscv-elf-psabi-doc/blob/master/riscv-cc.adoc 1940 int lo = V8_num; 1941 int hi = V8_K_num; 1942 return OptoRegPair(hi, lo); 1943 } 1944 1945 // Is this branch offset short enough that a short branch can be used? 1946 // 1947 // NOTE: If the platform does not provide any short branch variants, then 1948 // this method should return false for offset 0. 1949 // |---label(L1)-----| 1950 // |-----------------| 1951 // |-----------------|----------eq: float------------------- 1952 // |-----------------| // far_cmpD_branch | cmpD_branch 1953 // |------- ---------| feq; | feq; 1954 // |-far_cmpD_branch-| beqz done; | bnez L; 1955 // |-----------------| j L; | 1956 // |-----------------| bind(done); | 1957 // |-----------------|-------------------------------------- 1958 // |-----------------| // so shortBrSize = br_size - 4; 1959 // |-----------------| // so offs = offset - shortBrSize + 4; 1960 // |---label(L2)-----| 1961 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) { 1962 // The passed offset is relative to address of the branch. 1963 int shortBrSize = br_size - 4; 1964 int offs = offset - shortBrSize + 4; 1965 return (-4096 <= offs && offs < 4096); 1966 } 1967 1968 // Vector width in bytes. 1969 int Matcher::vector_width_in_bytes(BasicType bt) { 1970 if (UseRVV) { 1971 // The MaxVectorSize should have been set by detecting RVV max vector register size when check UseRVV. 1972 // MaxVectorSize == VM_Version::_initial_vector_length 1973 int size = MaxVectorSize; 1974 // Minimum 2 values in vector 1975 if (size < 2 * type2aelembytes(bt)) size = 0; 1976 // But never < 4 1977 if (size < 4) size = 0; 1978 return size; 1979 } 1980 return 0; 1981 } 1982 1983 // Limits on vector size (number of elements) loaded into vector. 1984 int Matcher::max_vector_size(const BasicType bt) { 1985 return vector_width_in_bytes(bt) / type2aelembytes(bt); 1986 } 1987 1988 int Matcher::min_vector_size(const BasicType bt) { 1989 int max_size = max_vector_size(bt); 1990 // Limit the min vector size to 8 bytes. 1991 int size = 8 / type2aelembytes(bt); 1992 if (bt == T_BYTE) { 1993 // To support vector api shuffle/rearrange. 1994 size = 4; 1995 } else if (bt == T_BOOLEAN) { 1996 // To support vector api load/store mask. 1997 size = 2; 1998 } 1999 if (size < 2) size = 2; 2000 return MIN2(size, max_size); 2001 } 2002 2003 int Matcher::max_vector_size_auto_vectorization(const BasicType bt) { 2004 return Matcher::max_vector_size(bt); 2005 } 2006 2007 // Vector ideal reg. 2008 uint Matcher::vector_ideal_reg(int len) { 2009 assert(MaxVectorSize >= len, ""); 2010 if (UseRVV) { 2011 return Op_VecA; 2012 } 2013 2014 ShouldNotReachHere(); 2015 return 0; 2016 } 2017 2018 int Matcher::scalable_vector_reg_size(const BasicType bt) { 2019 return Matcher::max_vector_size(bt); 2020 } 2021 2022 MachOper* Matcher::pd_specialize_generic_vector_operand(MachOper* original_opnd, uint ideal_reg, bool is_temp) { 2023 ShouldNotReachHere(); // generic vector operands not supported 2024 return nullptr; 2025 } 2026 2027 bool Matcher::is_reg2reg_move(MachNode* m) { 2028 ShouldNotReachHere(); // generic vector operands not supported 2029 return false; 2030 } 2031 2032 bool Matcher::is_generic_vector(MachOper* opnd) { 2033 ShouldNotReachHere(); // generic vector operands not supported 2034 return false; 2035 } 2036 2037 // Return whether or not this register is ever used as an argument. 2038 // This function is used on startup to build the trampoline stubs in 2039 // generateOptoStub. Registers not mentioned will be killed by the VM 2040 // call in the trampoline, and arguments in those registers not be 2041 // available to the callee. 2042 bool Matcher::can_be_java_arg(int reg) 2043 { 2044 return 2045 reg == R10_num || reg == R10_H_num || 2046 reg == R11_num || reg == R11_H_num || 2047 reg == R12_num || reg == R12_H_num || 2048 reg == R13_num || reg == R13_H_num || 2049 reg == R14_num || reg == R14_H_num || 2050 reg == R15_num || reg == R15_H_num || 2051 reg == R16_num || reg == R16_H_num || 2052 reg == R17_num || reg == R17_H_num || 2053 reg == F10_num || reg == F10_H_num || 2054 reg == F11_num || reg == F11_H_num || 2055 reg == F12_num || reg == F12_H_num || 2056 reg == F13_num || reg == F13_H_num || 2057 reg == F14_num || reg == F14_H_num || 2058 reg == F15_num || reg == F15_H_num || 2059 reg == F16_num || reg == F16_H_num || 2060 reg == F17_num || reg == F17_H_num; 2061 } 2062 2063 bool Matcher::is_spillable_arg(int reg) 2064 { 2065 return can_be_java_arg(reg); 2066 } 2067 2068 uint Matcher::int_pressure_limit() 2069 { 2070 // A derived pointer is live at CallNode and then is flagged by RA 2071 // as a spilled LRG. Spilling heuristics(Spill-USE) explicitly skip 2072 // derived pointers and lastly fail to spill after reaching maximum 2073 // number of iterations. Lowering the default pressure threshold to 2074 // (_NO_SPECIAL_REG32_mask.Size() minus 1) forces CallNode to become 2075 // a high register pressure area of the code so that split_DEF can 2076 // generate DefinitionSpillCopy for the derived pointer. 2077 uint default_int_pressure_threshold = _NO_SPECIAL_REG32_mask.Size() - 1; 2078 if (!PreserveFramePointer) { 2079 // When PreserveFramePointer is off, frame pointer is allocatable, 2080 // but different from other SOC registers, it is excluded from 2081 // fatproj's mask because its save type is No-Save. Decrease 1 to 2082 // ensure high pressure at fatproj when PreserveFramePointer is off. 2083 // See check_pressure_at_fatproj(). 2084 default_int_pressure_threshold--; 2085 } 2086 return (INTPRESSURE == -1) ? default_int_pressure_threshold : INTPRESSURE; 2087 } 2088 2089 uint Matcher::float_pressure_limit() 2090 { 2091 // _FLOAT_REG_mask is generated by adlc from the float_reg register class. 2092 return (FLOATPRESSURE == -1) ? _FLOAT_REG_mask.Size() : FLOATPRESSURE; 2093 } 2094 2095 bool Matcher::use_asm_for_ldiv_by_con(jlong divisor) { 2096 return false; 2097 } 2098 2099 RegMask Matcher::divI_proj_mask() { 2100 ShouldNotReachHere(); 2101 return RegMask(); 2102 } 2103 2104 // Register for MODI projection of divmodI. 2105 RegMask Matcher::modI_proj_mask() { 2106 ShouldNotReachHere(); 2107 return RegMask(); 2108 } 2109 2110 // Register for DIVL projection of divmodL. 2111 RegMask Matcher::divL_proj_mask() { 2112 ShouldNotReachHere(); 2113 return RegMask(); 2114 } 2115 2116 // Register for MODL projection of divmodL. 2117 RegMask Matcher::modL_proj_mask() { 2118 ShouldNotReachHere(); 2119 return RegMask(); 2120 } 2121 2122 const RegMask Matcher::method_handle_invoke_SP_save_mask() { 2123 return FP_REG_mask(); 2124 } 2125 2126 bool size_fits_all_mem_uses(AddPNode* addp, int shift) { 2127 assert_cond(addp != nullptr); 2128 for (DUIterator_Fast imax, i = addp->fast_outs(imax); i < imax; i++) { 2129 Node* u = addp->fast_out(i); 2130 if (u != nullptr && u->is_Mem()) { 2131 int opsize = u->as_Mem()->memory_size(); 2132 assert(opsize > 0, "unexpected memory operand size"); 2133 if (u->as_Mem()->memory_size() != (1 << shift)) { 2134 return false; 2135 } 2136 } 2137 } 2138 return true; 2139 } 2140 2141 // Binary src (Replicate scalar/immediate) 2142 static bool is_vector_scalar_bitwise_pattern(Node* n, Node* m) { 2143 if (n == nullptr || m == nullptr) { 2144 return false; 2145 } 2146 2147 if (m->Opcode() != Op_Replicate) { 2148 return false; 2149 } 2150 2151 switch (n->Opcode()) { 2152 case Op_AndV: 2153 case Op_OrV: 2154 case Op_XorV: 2155 case Op_AddVB: 2156 case Op_AddVS: 2157 case Op_AddVI: 2158 case Op_AddVL: 2159 case Op_SubVB: 2160 case Op_SubVS: 2161 case Op_SubVI: 2162 case Op_SubVL: 2163 case Op_MulVB: 2164 case Op_MulVS: 2165 case Op_MulVI: 2166 case Op_MulVL: { 2167 return true; 2168 } 2169 default: 2170 return false; 2171 } 2172 } 2173 2174 // (XorV src (Replicate m1)) 2175 // (XorVMask src (MaskAll m1)) 2176 static bool is_vector_bitwise_not_pattern(Node* n, Node* m) { 2177 if (n != nullptr && m != nullptr) { 2178 return (n->Opcode() == Op_XorV || n->Opcode() == Op_XorVMask) && 2179 VectorNode::is_all_ones_vector(m); 2180 } 2181 return false; 2182 } 2183 2184 // Should the Matcher clone input 'm' of node 'n'? 2185 bool Matcher::pd_clone_node(Node* n, Node* m, Matcher::MStack& mstack) { 2186 assert_cond(m != nullptr); 2187 if (is_vshift_con_pattern(n, m) || // ShiftV src (ShiftCntV con) 2188 is_vector_bitwise_not_pattern(n, m) || 2189 is_vector_scalar_bitwise_pattern(n, m) || 2190 is_encode_and_store_pattern(n, m)) { 2191 mstack.push(m, Visit); 2192 return true; 2193 } 2194 return false; 2195 } 2196 2197 // Should the Matcher clone shifts on addressing modes, expecting them 2198 // to be subsumed into complex addressing expressions or compute them 2199 // into registers? 2200 bool Matcher::pd_clone_address_expressions(AddPNode* m, Matcher::MStack& mstack, VectorSet& address_visited) { 2201 return clone_base_plus_offset_address(m, mstack, address_visited); 2202 } 2203 2204 %} 2205 2206 2207 2208 //----------ENCODING BLOCK----------------------------------------------------- 2209 // This block specifies the encoding classes used by the compiler to 2210 // output byte streams. Encoding classes are parameterized macros 2211 // used by Machine Instruction Nodes in order to generate the bit 2212 // encoding of the instruction. Operands specify their base encoding 2213 // interface with the interface keyword. There are currently 2214 // supported four interfaces, REG_INTER, CONST_INTER, MEMORY_INTER, & 2215 // COND_INTER. REG_INTER causes an operand to generate a function 2216 // which returns its register number when queried. CONST_INTER causes 2217 // an operand to generate a function which returns the value of the 2218 // constant when queried. MEMORY_INTER causes an operand to generate 2219 // four functions which return the Base Register, the Index Register, 2220 // the Scale Value, and the Offset Value of the operand when queried. 2221 // COND_INTER causes an operand to generate six functions which return 2222 // the encoding code (ie - encoding bits for the instruction) 2223 // associated with each basic boolean condition for a conditional 2224 // instruction. 2225 // 2226 // Instructions specify two basic values for encoding. Again, a 2227 // function is available to check if the constant displacement is an 2228 // oop. They use the ins_encode keyword to specify their encoding 2229 // classes (which must be a sequence of enc_class names, and their 2230 // parameters, specified in the encoding block), and they use the 2231 // opcode keyword to specify, in order, their primary, secondary, and 2232 // tertiary opcode. Only the opcode sections which a particular 2233 // instruction needs for encoding need to be specified. 2234 encode %{ 2235 // BEGIN Non-volatile memory access 2236 2237 enc_class riscv_enc_mov_imm(iRegIorL dst, immIorL src) %{ 2238 int64_t con = (int64_t)$src$$constant; 2239 Register dst_reg = as_Register($dst$$reg); 2240 __ mv(dst_reg, con); 2241 %} 2242 2243 enc_class riscv_enc_mov_p(iRegP dst, immP src) %{ 2244 Register dst_reg = as_Register($dst$$reg); 2245 address con = (address)$src$$constant; 2246 if (con == nullptr || con == (address)1) { 2247 ShouldNotReachHere(); 2248 } else { 2249 relocInfo::relocType rtype = $src->constant_reloc(); 2250 if (rtype == relocInfo::oop_type) { 2251 __ movoop(dst_reg, (jobject)con); 2252 } else if (rtype == relocInfo::metadata_type) { 2253 __ mov_metadata(dst_reg, (Metadata*)con); 2254 } else { 2255 assert(rtype == relocInfo::none, "unexpected reloc type"); 2256 __ mv(dst_reg, $src$$constant); 2257 } 2258 } 2259 %} 2260 2261 enc_class riscv_enc_mov_p1(iRegP dst) %{ 2262 Register dst_reg = as_Register($dst$$reg); 2263 __ mv(dst_reg, 1); 2264 %} 2265 2266 enc_class riscv_enc_mov_byte_map_base(iRegP dst) %{ 2267 __ load_byte_map_base($dst$$Register); 2268 %} 2269 2270 enc_class riscv_enc_mov_n(iRegN dst, immN src) %{ 2271 Register dst_reg = as_Register($dst$$reg); 2272 address con = (address)$src$$constant; 2273 if (con == nullptr) { 2274 ShouldNotReachHere(); 2275 } else { 2276 relocInfo::relocType rtype = $src->constant_reloc(); 2277 assert(rtype == relocInfo::oop_type, "unexpected reloc type"); 2278 __ set_narrow_oop(dst_reg, (jobject)con); 2279 } 2280 %} 2281 2282 enc_class riscv_enc_mov_zero(iRegNorP dst) %{ 2283 Register dst_reg = as_Register($dst$$reg); 2284 __ mv(dst_reg, zr); 2285 %} 2286 2287 enc_class riscv_enc_mov_nk(iRegN dst, immNKlass src) %{ 2288 Register dst_reg = as_Register($dst$$reg); 2289 address con = (address)$src$$constant; 2290 if (con == nullptr) { 2291 ShouldNotReachHere(); 2292 } else { 2293 relocInfo::relocType rtype = $src->constant_reloc(); 2294 assert(rtype == relocInfo::metadata_type, "unexpected reloc type"); 2295 __ set_narrow_klass(dst_reg, (Klass *)con); 2296 } 2297 %} 2298 2299 enc_class riscv_enc_cmpxchgw(iRegINoSp res, memory mem, iRegI oldval, iRegI newval) %{ 2300 __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int32, 2301 /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register, 2302 /*result as bool*/ true); 2303 %} 2304 2305 enc_class riscv_enc_cmpxchgn(iRegINoSp res, memory mem, iRegI oldval, iRegI newval) %{ 2306 __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::uint32, 2307 /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register, 2308 /*result as bool*/ true); 2309 %} 2310 2311 enc_class riscv_enc_cmpxchg(iRegINoSp res, memory mem, iRegL oldval, iRegL newval) %{ 2312 __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int64, 2313 /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register, 2314 /*result as bool*/ true); 2315 %} 2316 2317 enc_class riscv_enc_cmpxchgw_acq(iRegINoSp res, memory mem, iRegI oldval, iRegI newval) %{ 2318 __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int32, 2319 /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register, 2320 /*result as bool*/ true); 2321 %} 2322 2323 enc_class riscv_enc_cmpxchgn_acq(iRegINoSp res, memory mem, iRegI oldval, iRegI newval) %{ 2324 __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::uint32, 2325 /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register, 2326 /*result as bool*/ true); 2327 %} 2328 2329 enc_class riscv_enc_cmpxchg_acq(iRegINoSp res, memory mem, iRegL oldval, iRegL newval) %{ 2330 __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int64, 2331 /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register, 2332 /*result as bool*/ true); 2333 %} 2334 2335 // compare and branch instruction encodings 2336 2337 enc_class riscv_enc_j(label lbl) %{ 2338 Label* L = $lbl$$label; 2339 __ j(*L); 2340 %} 2341 2342 enc_class riscv_enc_far_cmpULtGe_imm0_branch(cmpOpULtGe cmp, iRegIorL op1, label lbl) %{ 2343 Label* L = $lbl$$label; 2344 switch ($cmp$$cmpcode) { 2345 case(BoolTest::ge): 2346 __ j(*L); 2347 break; 2348 case(BoolTest::lt): 2349 break; 2350 default: 2351 Unimplemented(); 2352 } 2353 %} 2354 2355 // call instruction encodings 2356 2357 enc_class riscv_enc_partial_subtype_check(iRegP sub, iRegP super, iRegP temp, iRegP result) %{ 2358 Register sub_reg = as_Register($sub$$reg); 2359 Register super_reg = as_Register($super$$reg); 2360 Register temp_reg = as_Register($temp$$reg); 2361 Register result_reg = as_Register($result$$reg); 2362 Register cr_reg = t1; 2363 2364 Label miss; 2365 Label done; 2366 __ check_klass_subtype_slow_path(sub_reg, super_reg, temp_reg, result_reg, 2367 nullptr, &miss, /*set_cond_codes*/ true); 2368 if ($primary) { 2369 __ mv(result_reg, zr); 2370 } else { 2371 __ mv(cr_reg, zr); 2372 __ j(done); 2373 } 2374 2375 __ bind(miss); 2376 if (!$primary) { 2377 __ mv(cr_reg, 1); 2378 } 2379 2380 __ bind(done); 2381 %} 2382 2383 enc_class riscv_enc_java_static_call(method meth) %{ 2384 Assembler::IncompressibleRegion ir(masm); // Fixed length: see ret_addr_offset 2385 2386 address addr = (address)$meth$$method; 2387 address call = nullptr; 2388 assert_cond(addr != nullptr); 2389 if (!_method) { 2390 // A call to a runtime wrapper, e.g. new, new_typeArray_Java, uncommon_trap. 2391 call = __ reloc_call(Address(addr, relocInfo::runtime_call_type)); 2392 if (call == nullptr) { 2393 ciEnv::current()->record_failure("CodeCache is full"); 2394 return; 2395 } 2396 } else if (_method->intrinsic_id() == vmIntrinsicID::_ensureMaterializedForStackWalk) { 2397 // The NOP here is purely to ensure that eliding a call to 2398 // JVM_EnsureMaterializedForStackWalk doesn't change the code size. 2399 __ nop(); 2400 __ nop(); 2401 __ nop(); 2402 __ block_comment("call JVM_EnsureMaterializedForStackWalk (elided)"); 2403 } else { 2404 int method_index = resolved_method_index(masm); 2405 RelocationHolder rspec = _optimized_virtual ? opt_virtual_call_Relocation::spec(method_index) 2406 : static_call_Relocation::spec(method_index); 2407 call = __ reloc_call(Address(addr, rspec)); 2408 if (call == nullptr) { 2409 ciEnv::current()->record_failure("CodeCache is full"); 2410 return; 2411 } 2412 2413 if (CodeBuffer::supports_shared_stubs() && _method->can_be_statically_bound()) { 2414 // Calls of the same statically bound method can share 2415 // a stub to the interpreter. 2416 __ code()->shared_stub_to_interp_for(_method, call - (__ begin())); 2417 } else { 2418 // Emit stub for static call 2419 address stub = CompiledDirectCall::emit_to_interp_stub(masm, call); 2420 if (stub == nullptr) { 2421 ciEnv::current()->record_failure("CodeCache is full"); 2422 return; 2423 } 2424 } 2425 } 2426 2427 __ post_call_nop(); 2428 %} 2429 2430 enc_class riscv_enc_java_dynamic_call(method meth) %{ 2431 Assembler::IncompressibleRegion ir(masm); // Fixed length: see ret_addr_offset 2432 int method_index = resolved_method_index(masm); 2433 address call = __ ic_call((address)$meth$$method, method_index); 2434 if (call == nullptr) { 2435 ciEnv::current()->record_failure("CodeCache is full"); 2436 return; 2437 } 2438 2439 __ post_call_nop(); 2440 %} 2441 2442 enc_class riscv_enc_call_epilog() %{ 2443 if (VerifyStackAtCalls) { 2444 // Check that stack depth is unchanged: find majik cookie on stack 2445 __ call_Unimplemented(); 2446 } 2447 %} 2448 2449 enc_class riscv_enc_java_to_runtime(method meth) %{ 2450 Assembler::IncompressibleRegion ir(masm); // Fixed length: see ret_addr_offset 2451 2452 // Some calls to generated routines (arraycopy code) are scheduled by C2 2453 // as runtime calls. if so we can call them using a far call (they will be 2454 // in the code cache, thus in a reachable segment) otherwise we have to use 2455 // a movptr+jalr pair which loads the absolute address into a register. 2456 address entry = (address)$meth$$method; 2457 if (CodeCache::contains(entry)) { 2458 __ far_call(Address(entry, relocInfo::runtime_call_type)); 2459 __ post_call_nop(); 2460 } else { 2461 Label retaddr; 2462 // Make the anchor frame walkable 2463 __ la(t0, retaddr); 2464 __ sd(t0, Address(xthread, JavaThread::last_Java_pc_offset())); 2465 int32_t offset = 0; 2466 // No relocation needed 2467 __ movptr(t1, entry, offset, t0); // lui + lui + slli + add 2468 __ jalr(t1, offset); 2469 __ bind(retaddr); 2470 __ post_call_nop(); 2471 } 2472 %} 2473 2474 // arithmetic encodings 2475 2476 enc_class riscv_enc_divw(iRegI dst, iRegI src1, iRegI src2) %{ 2477 Register dst_reg = as_Register($dst$$reg); 2478 Register src1_reg = as_Register($src1$$reg); 2479 Register src2_reg = as_Register($src2$$reg); 2480 __ corrected_idivl(dst_reg, src1_reg, src2_reg, /* want_remainder */ false, /* is_signed */ true); 2481 %} 2482 2483 enc_class riscv_enc_divuw(iRegI dst, iRegI src1, iRegI src2) %{ 2484 Register dst_reg = as_Register($dst$$reg); 2485 Register src1_reg = as_Register($src1$$reg); 2486 Register src2_reg = as_Register($src2$$reg); 2487 __ corrected_idivl(dst_reg, src1_reg, src2_reg, /* want_remainder */ false, /* is_signed */ false); 2488 %} 2489 2490 enc_class riscv_enc_div(iRegI dst, iRegI src1, iRegI src2) %{ 2491 Register dst_reg = as_Register($dst$$reg); 2492 Register src1_reg = as_Register($src1$$reg); 2493 Register src2_reg = as_Register($src2$$reg); 2494 __ corrected_idivq(dst_reg, src1_reg, src2_reg, /* want_remainder */ false, /* is_signed */ true); 2495 %} 2496 2497 enc_class riscv_enc_divu(iRegI dst, iRegI src1, iRegI src2) %{ 2498 Register dst_reg = as_Register($dst$$reg); 2499 Register src1_reg = as_Register($src1$$reg); 2500 Register src2_reg = as_Register($src2$$reg); 2501 __ corrected_idivq(dst_reg, src1_reg, src2_reg, /* want_remainder */ false, /* is_signed */ false); 2502 %} 2503 2504 enc_class riscv_enc_modw(iRegI dst, iRegI src1, iRegI src2) %{ 2505 Register dst_reg = as_Register($dst$$reg); 2506 Register src1_reg = as_Register($src1$$reg); 2507 Register src2_reg = as_Register($src2$$reg); 2508 __ corrected_idivl(dst_reg, src1_reg, src2_reg, /* want_remainder */ true, /* is_signed */ true); 2509 %} 2510 2511 enc_class riscv_enc_moduw(iRegI dst, iRegI src1, iRegI src2) %{ 2512 Register dst_reg = as_Register($dst$$reg); 2513 Register src1_reg = as_Register($src1$$reg); 2514 Register src2_reg = as_Register($src2$$reg); 2515 __ corrected_idivl(dst_reg, src1_reg, src2_reg, /* want_remainder */ true, /* is_signed */ false); 2516 %} 2517 2518 enc_class riscv_enc_mod(iRegI dst, iRegI src1, iRegI src2) %{ 2519 Register dst_reg = as_Register($dst$$reg); 2520 Register src1_reg = as_Register($src1$$reg); 2521 Register src2_reg = as_Register($src2$$reg); 2522 __ corrected_idivq(dst_reg, src1_reg, src2_reg, /* want_remainder */ true, /* is_signed */ true); 2523 %} 2524 2525 enc_class riscv_enc_modu(iRegI dst, iRegI src1, iRegI src2) %{ 2526 Register dst_reg = as_Register($dst$$reg); 2527 Register src1_reg = as_Register($src1$$reg); 2528 Register src2_reg = as_Register($src2$$reg); 2529 __ corrected_idivq(dst_reg, src1_reg, src2_reg, /* want_remainder */ true, /* is_signed */ false); 2530 %} 2531 2532 enc_class riscv_enc_tail_call(iRegP jump_target) %{ 2533 Register target_reg = as_Register($jump_target$$reg); 2534 __ jr(target_reg); 2535 %} 2536 2537 enc_class riscv_enc_tail_jmp(iRegP jump_target) %{ 2538 Register target_reg = as_Register($jump_target$$reg); 2539 // exception oop should be in x10 2540 // ret addr has been popped into ra 2541 // callee expects it in x13 2542 __ mv(x13, ra); 2543 __ jr(target_reg); 2544 %} 2545 2546 enc_class riscv_enc_rethrow() %{ 2547 __ far_jump(RuntimeAddress(OptoRuntime::rethrow_stub())); 2548 %} 2549 2550 enc_class riscv_enc_ret() %{ 2551 __ ret(); 2552 %} 2553 2554 %} 2555 2556 //----------FRAME-------------------------------------------------------------- 2557 // Definition of frame structure and management information. 2558 // 2559 // S T A C K L A Y O U T Allocators stack-slot number 2560 // | (to get allocators register number 2561 // G Owned by | | v add OptoReg::stack0()) 2562 // r CALLER | | 2563 // o | +--------+ pad to even-align allocators stack-slot 2564 // w V | pad0 | numbers; owned by CALLER 2565 // t -----------+--------+----> Matcher::_in_arg_limit, unaligned 2566 // h ^ | in | 5 2567 // | | args | 4 Holes in incoming args owned by SELF 2568 // | | | | 3 2569 // | | +--------+ 2570 // V | | old out| Empty on Intel, window on Sparc 2571 // | old |preserve| Must be even aligned. 2572 // | SP-+--------+----> Matcher::_old_SP, even aligned 2573 // | | in | 3 area for Intel ret address 2574 // Owned by |preserve| Empty on Sparc. 2575 // SELF +--------+ 2576 // | | pad2 | 2 pad to align old SP 2577 // | +--------+ 1 2578 // | | locks | 0 2579 // | +--------+----> OptoReg::stack0(), even aligned 2580 // | | pad1 | 11 pad to align new SP 2581 // | +--------+ 2582 // | | | 10 2583 // | | spills | 9 spills 2584 // V | | 8 (pad0 slot for callee) 2585 // -----------+--------+----> Matcher::_out_arg_limit, unaligned 2586 // ^ | out | 7 2587 // | | args | 6 Holes in outgoing args owned by CALLEE 2588 // Owned by +--------+ 2589 // CALLEE | new out| 6 Empty on Intel, window on Sparc 2590 // | new |preserve| Must be even-aligned. 2591 // | SP-+--------+----> Matcher::_new_SP, even aligned 2592 // | | | 2593 // 2594 // Note 1: Only region 8-11 is determined by the allocator. Region 0-5 is 2595 // known from SELF's arguments and the Java calling convention. 2596 // Region 6-7 is determined per call site. 2597 // Note 2: If the calling convention leaves holes in the incoming argument 2598 // area, those holes are owned by SELF. Holes in the outgoing area 2599 // are owned by the CALLEE. Holes should not be necessary in the 2600 // incoming area, as the Java calling convention is completely under 2601 // the control of the AD file. Doubles can be sorted and packed to 2602 // avoid holes. Holes in the outgoing arguments may be necessary for 2603 // varargs C calling conventions. 2604 // Note 3: Region 0-3 is even aligned, with pad2 as needed. Region 3-5 is 2605 // even aligned with pad0 as needed. 2606 // Region 6 is even aligned. Region 6-7 is NOT even aligned; 2607 // (the latter is true on Intel but is it false on RISCV?) 2608 // region 6-11 is even aligned; it may be padded out more so that 2609 // the region from SP to FP meets the minimum stack alignment. 2610 // Note 4: For I2C adapters, the incoming FP may not meet the minimum stack 2611 // alignment. Region 11, pad1, may be dynamically extended so that 2612 // SP meets the minimum alignment. 2613 2614 frame %{ 2615 // These three registers define part of the calling convention 2616 // between compiled code and the interpreter. 2617 2618 // Inline Cache Register or methodOop for I2C. 2619 inline_cache_reg(R31); 2620 2621 // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset] 2622 cisc_spilling_operand_name(indOffset); 2623 2624 // Number of stack slots consumed by locking an object 2625 // generate Compile::sync_stack_slots 2626 // VMRegImpl::slots_per_word = wordSize / stack_slot_size = 8 / 4 = 2 2627 sync_stack_slots(1 * VMRegImpl::slots_per_word); 2628 2629 // Compiled code's Frame Pointer 2630 frame_pointer(R2); 2631 2632 // Interpreter stores its frame pointer in a register which is 2633 // stored to the stack by I2CAdaptors. 2634 // I2CAdaptors convert from interpreted java to compiled java. 2635 interpreter_frame_pointer(R8); 2636 2637 // Stack alignment requirement 2638 stack_alignment(StackAlignmentInBytes); // Alignment size in bytes (128-bit -> 16 bytes) 2639 2640 // Number of outgoing stack slots killed above the out_preserve_stack_slots 2641 // for calls to C. Supports the var-args backing area for register parms. 2642 varargs_C_out_slots_killed(frame::arg_reg_save_area_bytes / BytesPerInt); 2643 2644 // The after-PROLOG location of the return address. Location of 2645 // return address specifies a type (REG or STACK) and a number 2646 // representing the register number (i.e. - use a register name) or 2647 // stack slot. 2648 // Ret Addr is on stack in slot 0 if no locks or verification or alignment. 2649 // Otherwise, it is above the locks and verification slot and alignment word 2650 // TODO this may well be correct but need to check why that - 2 is there 2651 // ppc port uses 0 but we definitely need to allow for fixed_slots 2652 // which folds in the space used for monitors 2653 return_addr(STACK - 2 + 2654 align_up((Compile::current()->in_preserve_stack_slots() + 2655 Compile::current()->fixed_slots()), 2656 stack_alignment_in_slots())); 2657 2658 // Location of compiled Java return values. Same as C for now. 2659 return_value 2660 %{ 2661 assert(ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, 2662 "only return normal values"); 2663 2664 static const int lo[Op_RegL + 1] = { // enum name 2665 0, // Op_Node 2666 0, // Op_Set 2667 R10_num, // Op_RegN 2668 R10_num, // Op_RegI 2669 R10_num, // Op_RegP 2670 F10_num, // Op_RegF 2671 F10_num, // Op_RegD 2672 R10_num // Op_RegL 2673 }; 2674 2675 static const int hi[Op_RegL + 1] = { // enum name 2676 0, // Op_Node 2677 0, // Op_Set 2678 OptoReg::Bad, // Op_RegN 2679 OptoReg::Bad, // Op_RegI 2680 R10_H_num, // Op_RegP 2681 OptoReg::Bad, // Op_RegF 2682 F10_H_num, // Op_RegD 2683 R10_H_num // Op_RegL 2684 }; 2685 2686 return OptoRegPair(hi[ideal_reg], lo[ideal_reg]); 2687 %} 2688 %} 2689 2690 //----------ATTRIBUTES--------------------------------------------------------- 2691 //----------Operand Attributes------------------------------------------------- 2692 op_attrib op_cost(1); // Required cost attribute 2693 2694 //----------Instruction Attributes--------------------------------------------- 2695 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute 2696 ins_attrib ins_size(32); // Required size attribute (in bits) 2697 ins_attrib ins_short_branch(0); // Required flag: is this instruction 2698 // a non-matching short branch variant 2699 // of some long branch? 2700 ins_attrib ins_alignment(4); // Required alignment attribute (must 2701 // be a power of 2) specifies the 2702 // alignment that some part of the 2703 // instruction (not necessarily the 2704 // start) requires. If > 1, a 2705 // compute_padding() function must be 2706 // provided for the instruction 2707 2708 //----------OPERANDS----------------------------------------------------------- 2709 // Operand definitions must precede instruction definitions for correct parsing 2710 // in the ADLC because operands constitute user defined types which are used in 2711 // instruction definitions. 2712 2713 //----------Simple Operands---------------------------------------------------- 2714 2715 // Integer operands 32 bit 2716 // 32 bit immediate 2717 operand immI() 2718 %{ 2719 match(ConI); 2720 2721 op_cost(0); 2722 format %{ %} 2723 interface(CONST_INTER); 2724 %} 2725 2726 // 32 bit zero 2727 operand immI0() 2728 %{ 2729 predicate(n->get_int() == 0); 2730 match(ConI); 2731 2732 op_cost(0); 2733 format %{ %} 2734 interface(CONST_INTER); 2735 %} 2736 2737 // 32 bit unit increment 2738 operand immI_1() 2739 %{ 2740 predicate(n->get_int() == 1); 2741 match(ConI); 2742 2743 op_cost(0); 2744 format %{ %} 2745 interface(CONST_INTER); 2746 %} 2747 2748 // 32 bit unit decrement 2749 operand immI_M1() 2750 %{ 2751 predicate(n->get_int() == -1); 2752 match(ConI); 2753 2754 op_cost(0); 2755 format %{ %} 2756 interface(CONST_INTER); 2757 %} 2758 2759 // Unsigned Integer Immediate: 6-bit int, greater than 32 2760 operand uimmI6_ge32() %{ 2761 predicate(((unsigned int)(n->get_int()) < 64) && (n->get_int() >= 32)); 2762 match(ConI); 2763 op_cost(0); 2764 format %{ %} 2765 interface(CONST_INTER); 2766 %} 2767 2768 operand immI_le_4() 2769 %{ 2770 predicate(n->get_int() <= 4); 2771 match(ConI); 2772 2773 op_cost(0); 2774 format %{ %} 2775 interface(CONST_INTER); 2776 %} 2777 2778 operand immI_16() 2779 %{ 2780 predicate(n->get_int() == 16); 2781 match(ConI); 2782 op_cost(0); 2783 format %{ %} 2784 interface(CONST_INTER); 2785 %} 2786 2787 operand immI_24() 2788 %{ 2789 predicate(n->get_int() == 24); 2790 match(ConI); 2791 op_cost(0); 2792 format %{ %} 2793 interface(CONST_INTER); 2794 %} 2795 2796 operand immI_31() 2797 %{ 2798 predicate(n->get_int() == 31); 2799 match(ConI); 2800 2801 op_cost(0); 2802 format %{ %} 2803 interface(CONST_INTER); 2804 %} 2805 2806 operand immI_63() 2807 %{ 2808 predicate(n->get_int() == 63); 2809 match(ConI); 2810 2811 op_cost(0); 2812 format %{ %} 2813 interface(CONST_INTER); 2814 %} 2815 2816 // 32 bit integer valid for add immediate 2817 operand immIAdd() 2818 %{ 2819 predicate(Assembler::is_simm12((int64_t)n->get_int())); 2820 match(ConI); 2821 op_cost(0); 2822 format %{ %} 2823 interface(CONST_INTER); 2824 %} 2825 2826 // 32 bit integer valid for sub immediate 2827 operand immISub() 2828 %{ 2829 predicate(Assembler::is_simm12(-(int64_t)n->get_int())); 2830 match(ConI); 2831 op_cost(0); 2832 format %{ %} 2833 interface(CONST_INTER); 2834 %} 2835 2836 // 5 bit signed value. 2837 operand immI5() 2838 %{ 2839 predicate(n->get_int() <= 15 && n->get_int() >= -16); 2840 match(ConI); 2841 2842 op_cost(0); 2843 format %{ %} 2844 interface(CONST_INTER); 2845 %} 2846 2847 // 5 bit signed value (simm5) 2848 operand immL5() 2849 %{ 2850 predicate(n->get_long() <= 15 && n->get_long() >= -16); 2851 match(ConL); 2852 2853 op_cost(0); 2854 format %{ %} 2855 interface(CONST_INTER); 2856 %} 2857 2858 // Integer operands 64 bit 2859 // 64 bit immediate 2860 operand immL() 2861 %{ 2862 match(ConL); 2863 2864 op_cost(0); 2865 format %{ %} 2866 interface(CONST_INTER); 2867 %} 2868 2869 // 64 bit zero 2870 operand immL0() 2871 %{ 2872 predicate(n->get_long() == 0); 2873 match(ConL); 2874 2875 op_cost(0); 2876 format %{ %} 2877 interface(CONST_INTER); 2878 %} 2879 2880 // Pointer operands 2881 // Pointer Immediate 2882 operand immP() 2883 %{ 2884 match(ConP); 2885 2886 op_cost(0); 2887 format %{ %} 2888 interface(CONST_INTER); 2889 %} 2890 2891 // Null Pointer Immediate 2892 operand immP0() 2893 %{ 2894 predicate(n->get_ptr() == 0); 2895 match(ConP); 2896 2897 op_cost(0); 2898 format %{ %} 2899 interface(CONST_INTER); 2900 %} 2901 2902 // Pointer Immediate One 2903 // this is used in object initialization (initial object header) 2904 operand immP_1() 2905 %{ 2906 predicate(n->get_ptr() == 1); 2907 match(ConP); 2908 2909 op_cost(0); 2910 format %{ %} 2911 interface(CONST_INTER); 2912 %} 2913 2914 // Card Table Byte Map Base 2915 operand immByteMapBase() 2916 %{ 2917 // Get base of card map 2918 predicate(BarrierSet::barrier_set()->is_a(BarrierSet::CardTableBarrierSet) && 2919 (CardTable::CardValue*)n->get_ptr() == 2920 ((CardTableBarrierSet*)(BarrierSet::barrier_set()))->card_table()->byte_map_base()); 2921 match(ConP); 2922 2923 op_cost(0); 2924 format %{ %} 2925 interface(CONST_INTER); 2926 %} 2927 2928 // Int Immediate: low 16-bit mask 2929 operand immI_16bits() 2930 %{ 2931 predicate(n->get_int() == 0xFFFF); 2932 match(ConI); 2933 op_cost(0); 2934 format %{ %} 2935 interface(CONST_INTER); 2936 %} 2937 2938 operand immIpowerOf2() %{ 2939 predicate(is_power_of_2((juint)(n->get_int()))); 2940 match(ConI); 2941 op_cost(0); 2942 format %{ %} 2943 interface(CONST_INTER); 2944 %} 2945 2946 // Long Immediate: low 32-bit mask 2947 operand immL_32bits() 2948 %{ 2949 predicate(n->get_long() == 0xFFFFFFFFL); 2950 match(ConL); 2951 op_cost(0); 2952 format %{ %} 2953 interface(CONST_INTER); 2954 %} 2955 2956 // 64 bit unit decrement 2957 operand immL_M1() 2958 %{ 2959 predicate(n->get_long() == -1); 2960 match(ConL); 2961 2962 op_cost(0); 2963 format %{ %} 2964 interface(CONST_INTER); 2965 %} 2966 2967 2968 // 64 bit integer valid for add immediate 2969 operand immLAdd() 2970 %{ 2971 predicate(Assembler::is_simm12(n->get_long())); 2972 match(ConL); 2973 op_cost(0); 2974 format %{ %} 2975 interface(CONST_INTER); 2976 %} 2977 2978 // 64 bit integer valid for sub immediate 2979 operand immLSub() 2980 %{ 2981 predicate(Assembler::is_simm12(-(n->get_long()))); 2982 match(ConL); 2983 op_cost(0); 2984 format %{ %} 2985 interface(CONST_INTER); 2986 %} 2987 2988 // Narrow pointer operands 2989 // Narrow Pointer Immediate 2990 operand immN() 2991 %{ 2992 match(ConN); 2993 2994 op_cost(0); 2995 format %{ %} 2996 interface(CONST_INTER); 2997 %} 2998 2999 // Narrow Null Pointer Immediate 3000 operand immN0() 3001 %{ 3002 predicate(n->get_narrowcon() == 0); 3003 match(ConN); 3004 3005 op_cost(0); 3006 format %{ %} 3007 interface(CONST_INTER); 3008 %} 3009 3010 operand immNKlass() 3011 %{ 3012 match(ConNKlass); 3013 3014 op_cost(0); 3015 format %{ %} 3016 interface(CONST_INTER); 3017 %} 3018 3019 // Float and Double operands 3020 // Double Immediate 3021 operand immD() 3022 %{ 3023 match(ConD); 3024 op_cost(0); 3025 format %{ %} 3026 interface(CONST_INTER); 3027 %} 3028 3029 // Double Immediate: +0.0d 3030 operand immD0() 3031 %{ 3032 predicate(jlong_cast(n->getd()) == 0); 3033 match(ConD); 3034 3035 op_cost(0); 3036 format %{ %} 3037 interface(CONST_INTER); 3038 %} 3039 3040 // Float Immediate 3041 operand immF() 3042 %{ 3043 match(ConF); 3044 op_cost(0); 3045 format %{ %} 3046 interface(CONST_INTER); 3047 %} 3048 3049 // Float Immediate: +0.0f. 3050 operand immF0() 3051 %{ 3052 predicate(jint_cast(n->getf()) == 0); 3053 match(ConF); 3054 3055 op_cost(0); 3056 format %{ %} 3057 interface(CONST_INTER); 3058 %} 3059 3060 operand immIOffset() 3061 %{ 3062 predicate(Assembler::is_simm12(n->get_int())); 3063 match(ConI); 3064 op_cost(0); 3065 format %{ %} 3066 interface(CONST_INTER); 3067 %} 3068 3069 operand immLOffset() 3070 %{ 3071 predicate(Assembler::is_simm12(n->get_long())); 3072 match(ConL); 3073 op_cost(0); 3074 format %{ %} 3075 interface(CONST_INTER); 3076 %} 3077 3078 // Scale values 3079 operand immIScale() 3080 %{ 3081 predicate(1 <= n->get_int() && (n->get_int() <= 3)); 3082 match(ConI); 3083 3084 op_cost(0); 3085 format %{ %} 3086 interface(CONST_INTER); 3087 %} 3088 3089 // Integer 32 bit Register Operands 3090 operand iRegI() 3091 %{ 3092 constraint(ALLOC_IN_RC(any_reg32)); 3093 match(RegI); 3094 match(iRegINoSp); 3095 op_cost(0); 3096 format %{ %} 3097 interface(REG_INTER); 3098 %} 3099 3100 // Integer 32 bit Register not Special 3101 operand iRegINoSp() 3102 %{ 3103 constraint(ALLOC_IN_RC(no_special_reg32)); 3104 match(RegI); 3105 op_cost(0); 3106 format %{ %} 3107 interface(REG_INTER); 3108 %} 3109 3110 // Register R10 only 3111 operand iRegI_R10() 3112 %{ 3113 constraint(ALLOC_IN_RC(int_r10_reg)); 3114 match(RegI); 3115 match(iRegINoSp); 3116 op_cost(0); 3117 format %{ %} 3118 interface(REG_INTER); 3119 %} 3120 3121 // Register R12 only 3122 operand iRegI_R12() 3123 %{ 3124 constraint(ALLOC_IN_RC(int_r12_reg)); 3125 match(RegI); 3126 match(iRegINoSp); 3127 op_cost(0); 3128 format %{ %} 3129 interface(REG_INTER); 3130 %} 3131 3132 // Register R13 only 3133 operand iRegI_R13() 3134 %{ 3135 constraint(ALLOC_IN_RC(int_r13_reg)); 3136 match(RegI); 3137 match(iRegINoSp); 3138 op_cost(0); 3139 format %{ %} 3140 interface(REG_INTER); 3141 %} 3142 3143 // Register R14 only 3144 operand iRegI_R14() 3145 %{ 3146 constraint(ALLOC_IN_RC(int_r14_reg)); 3147 match(RegI); 3148 match(iRegINoSp); 3149 op_cost(0); 3150 format %{ %} 3151 interface(REG_INTER); 3152 %} 3153 3154 // Integer 64 bit Register Operands 3155 operand iRegL() 3156 %{ 3157 constraint(ALLOC_IN_RC(any_reg)); 3158 match(RegL); 3159 match(iRegLNoSp); 3160 op_cost(0); 3161 format %{ %} 3162 interface(REG_INTER); 3163 %} 3164 3165 // Integer 64 bit Register not Special 3166 operand iRegLNoSp() 3167 %{ 3168 constraint(ALLOC_IN_RC(no_special_reg)); 3169 match(RegL); 3170 match(iRegL_R10); 3171 format %{ %} 3172 interface(REG_INTER); 3173 %} 3174 3175 // Long 64 bit Register R29 only 3176 operand iRegL_R29() 3177 %{ 3178 constraint(ALLOC_IN_RC(r29_reg)); 3179 match(RegL); 3180 match(iRegLNoSp); 3181 op_cost(0); 3182 format %{ %} 3183 interface(REG_INTER); 3184 %} 3185 3186 // Long 64 bit Register R30 only 3187 operand iRegL_R30() 3188 %{ 3189 constraint(ALLOC_IN_RC(r30_reg)); 3190 match(RegL); 3191 match(iRegLNoSp); 3192 op_cost(0); 3193 format %{ %} 3194 interface(REG_INTER); 3195 %} 3196 3197 // Pointer Register Operands 3198 // Pointer Register 3199 operand iRegP() 3200 %{ 3201 constraint(ALLOC_IN_RC(ptr_reg)); 3202 match(RegP); 3203 match(iRegPNoSp); 3204 match(iRegP_R10); 3205 match(iRegP_R15); 3206 match(javaThread_RegP); 3207 op_cost(0); 3208 format %{ %} 3209 interface(REG_INTER); 3210 %} 3211 3212 // Pointer 64 bit Register not Special 3213 operand iRegPNoSp() 3214 %{ 3215 constraint(ALLOC_IN_RC(no_special_ptr_reg)); 3216 match(RegP); 3217 op_cost(0); 3218 format %{ %} 3219 interface(REG_INTER); 3220 %} 3221 3222 // This operand is not allowed to use fp even if 3223 // fp is not used to hold the frame pointer. 3224 operand iRegPNoSpNoFp() 3225 %{ 3226 constraint(ALLOC_IN_RC(no_special_no_fp_ptr_reg)); 3227 match(RegP); 3228 match(iRegPNoSp); 3229 op_cost(0); 3230 format %{ %} 3231 interface(REG_INTER); 3232 %} 3233 3234 operand iRegP_R10() 3235 %{ 3236 constraint(ALLOC_IN_RC(r10_reg)); 3237 match(RegP); 3238 // match(iRegP); 3239 match(iRegPNoSp); 3240 op_cost(0); 3241 format %{ %} 3242 interface(REG_INTER); 3243 %} 3244 3245 // Pointer 64 bit Register R11 only 3246 operand iRegP_R11() 3247 %{ 3248 constraint(ALLOC_IN_RC(r11_reg)); 3249 match(RegP); 3250 match(iRegPNoSp); 3251 op_cost(0); 3252 format %{ %} 3253 interface(REG_INTER); 3254 %} 3255 3256 operand iRegP_R12() 3257 %{ 3258 constraint(ALLOC_IN_RC(r12_reg)); 3259 match(RegP); 3260 // match(iRegP); 3261 match(iRegPNoSp); 3262 op_cost(0); 3263 format %{ %} 3264 interface(REG_INTER); 3265 %} 3266 3267 // Pointer 64 bit Register R13 only 3268 operand iRegP_R13() 3269 %{ 3270 constraint(ALLOC_IN_RC(r13_reg)); 3271 match(RegP); 3272 match(iRegPNoSp); 3273 op_cost(0); 3274 format %{ %} 3275 interface(REG_INTER); 3276 %} 3277 3278 operand iRegP_R14() 3279 %{ 3280 constraint(ALLOC_IN_RC(r14_reg)); 3281 match(RegP); 3282 // match(iRegP); 3283 match(iRegPNoSp); 3284 op_cost(0); 3285 format %{ %} 3286 interface(REG_INTER); 3287 %} 3288 3289 operand iRegP_R15() 3290 %{ 3291 constraint(ALLOC_IN_RC(r15_reg)); 3292 match(RegP); 3293 // match(iRegP); 3294 match(iRegPNoSp); 3295 op_cost(0); 3296 format %{ %} 3297 interface(REG_INTER); 3298 %} 3299 3300 operand iRegP_R16() 3301 %{ 3302 constraint(ALLOC_IN_RC(r16_reg)); 3303 match(RegP); 3304 match(iRegPNoSp); 3305 op_cost(0); 3306 format %{ %} 3307 interface(REG_INTER); 3308 %} 3309 3310 // Pointer 64 bit Register R28 only 3311 operand iRegP_R28() 3312 %{ 3313 constraint(ALLOC_IN_RC(r28_reg)); 3314 match(RegP); 3315 match(iRegPNoSp); 3316 op_cost(0); 3317 format %{ %} 3318 interface(REG_INTER); 3319 %} 3320 3321 // Pointer 64 bit Register R30 only 3322 operand iRegP_R30() 3323 %{ 3324 constraint(ALLOC_IN_RC(r30_reg)); 3325 match(RegP); 3326 match(iRegPNoSp); 3327 op_cost(0); 3328 format %{ %} 3329 interface(REG_INTER); 3330 %} 3331 3332 // Pointer 64 bit Register R31 only 3333 operand iRegP_R31() 3334 %{ 3335 constraint(ALLOC_IN_RC(r31_reg)); 3336 match(RegP); 3337 match(iRegPNoSp); 3338 op_cost(0); 3339 format %{ %} 3340 interface(REG_INTER); 3341 %} 3342 3343 // Pointer Register Operands 3344 // Narrow Pointer Register 3345 operand iRegN() 3346 %{ 3347 constraint(ALLOC_IN_RC(any_reg32)); 3348 match(RegN); 3349 match(iRegNNoSp); 3350 op_cost(0); 3351 format %{ %} 3352 interface(REG_INTER); 3353 %} 3354 3355 // Integer 64 bit Register not Special 3356 operand iRegNNoSp() 3357 %{ 3358 constraint(ALLOC_IN_RC(no_special_reg32)); 3359 match(RegN); 3360 op_cost(0); 3361 format %{ %} 3362 interface(REG_INTER); 3363 %} 3364 3365 // Long 64 bit Register R10 only 3366 operand iRegL_R10() 3367 %{ 3368 constraint(ALLOC_IN_RC(r10_reg)); 3369 match(RegL); 3370 match(iRegLNoSp); 3371 op_cost(0); 3372 format %{ %} 3373 interface(REG_INTER); 3374 %} 3375 3376 // Float Register 3377 // Float register operands 3378 operand fRegF() 3379 %{ 3380 constraint(ALLOC_IN_RC(float_reg)); 3381 match(RegF); 3382 3383 op_cost(0); 3384 format %{ %} 3385 interface(REG_INTER); 3386 %} 3387 3388 // Double Register 3389 // Double register operands 3390 operand fRegD() 3391 %{ 3392 constraint(ALLOC_IN_RC(double_reg)); 3393 match(RegD); 3394 3395 op_cost(0); 3396 format %{ %} 3397 interface(REG_INTER); 3398 %} 3399 3400 // Generic vector class. This will be used for 3401 // all vector operands. 3402 operand vReg() 3403 %{ 3404 constraint(ALLOC_IN_RC(vectora_reg)); 3405 match(VecA); 3406 op_cost(0); 3407 format %{ %} 3408 interface(REG_INTER); 3409 %} 3410 3411 operand vReg_V1() 3412 %{ 3413 constraint(ALLOC_IN_RC(v1_reg)); 3414 match(VecA); 3415 match(vReg); 3416 op_cost(0); 3417 format %{ %} 3418 interface(REG_INTER); 3419 %} 3420 3421 operand vReg_V2() 3422 %{ 3423 constraint(ALLOC_IN_RC(v2_reg)); 3424 match(VecA); 3425 match(vReg); 3426 op_cost(0); 3427 format %{ %} 3428 interface(REG_INTER); 3429 %} 3430 3431 operand vReg_V3() 3432 %{ 3433 constraint(ALLOC_IN_RC(v3_reg)); 3434 match(VecA); 3435 match(vReg); 3436 op_cost(0); 3437 format %{ %} 3438 interface(REG_INTER); 3439 %} 3440 3441 operand vReg_V4() 3442 %{ 3443 constraint(ALLOC_IN_RC(v4_reg)); 3444 match(VecA); 3445 match(vReg); 3446 op_cost(0); 3447 format %{ %} 3448 interface(REG_INTER); 3449 %} 3450 3451 operand vReg_V5() 3452 %{ 3453 constraint(ALLOC_IN_RC(v5_reg)); 3454 match(VecA); 3455 match(vReg); 3456 op_cost(0); 3457 format %{ %} 3458 interface(REG_INTER); 3459 %} 3460 3461 operand vReg_V6() 3462 %{ 3463 constraint(ALLOC_IN_RC(v6_reg)); 3464 match(VecA); 3465 match(vReg); 3466 op_cost(0); 3467 format %{ %} 3468 interface(REG_INTER); 3469 %} 3470 3471 operand vReg_V7() 3472 %{ 3473 constraint(ALLOC_IN_RC(v7_reg)); 3474 match(VecA); 3475 match(vReg); 3476 op_cost(0); 3477 format %{ %} 3478 interface(REG_INTER); 3479 %} 3480 3481 operand vReg_V8() 3482 %{ 3483 constraint(ALLOC_IN_RC(v8_reg)); 3484 match(VecA); 3485 match(vReg); 3486 op_cost(0); 3487 format %{ %} 3488 interface(REG_INTER); 3489 %} 3490 3491 operand vReg_V9() 3492 %{ 3493 constraint(ALLOC_IN_RC(v9_reg)); 3494 match(VecA); 3495 match(vReg); 3496 op_cost(0); 3497 format %{ %} 3498 interface(REG_INTER); 3499 %} 3500 3501 operand vReg_V10() 3502 %{ 3503 constraint(ALLOC_IN_RC(v10_reg)); 3504 match(VecA); 3505 match(vReg); 3506 op_cost(0); 3507 format %{ %} 3508 interface(REG_INTER); 3509 %} 3510 3511 operand vReg_V11() 3512 %{ 3513 constraint(ALLOC_IN_RC(v11_reg)); 3514 match(VecA); 3515 match(vReg); 3516 op_cost(0); 3517 format %{ %} 3518 interface(REG_INTER); 3519 %} 3520 3521 operand vRegMask() 3522 %{ 3523 constraint(ALLOC_IN_RC(vmask_reg)); 3524 match(RegVectMask); 3525 match(vRegMask_V0); 3526 op_cost(0); 3527 format %{ %} 3528 interface(REG_INTER); 3529 %} 3530 3531 // The mask value used to control execution of a masked 3532 // vector instruction is always supplied by vector register v0. 3533 operand vRegMask_V0() 3534 %{ 3535 constraint(ALLOC_IN_RC(vmask_reg_v0)); 3536 match(RegVectMask); 3537 match(vRegMask); 3538 op_cost(0); 3539 format %{ %} 3540 interface(REG_INTER); 3541 %} 3542 3543 // Java Thread Register 3544 operand javaThread_RegP(iRegP reg) 3545 %{ 3546 constraint(ALLOC_IN_RC(java_thread_reg)); // java_thread_reg 3547 match(reg); 3548 op_cost(0); 3549 format %{ %} 3550 interface(REG_INTER); 3551 %} 3552 3553 //----------Memory Operands---------------------------------------------------- 3554 // RISCV has only base_plus_offset and literal address mode, so no need to use 3555 // index and scale. Here set index as 0xffffffff and scale as 0x0. 3556 operand indirect(iRegP reg) 3557 %{ 3558 constraint(ALLOC_IN_RC(ptr_reg)); 3559 match(reg); 3560 op_cost(0); 3561 format %{ "[$reg]" %} 3562 interface(MEMORY_INTER) %{ 3563 base($reg); 3564 index(0xffffffff); 3565 scale(0x0); 3566 disp(0x0); 3567 %} 3568 %} 3569 3570 operand indOffI(iRegP reg, immIOffset off) 3571 %{ 3572 constraint(ALLOC_IN_RC(ptr_reg)); 3573 match(AddP reg off); 3574 op_cost(0); 3575 format %{ "[$reg, $off]" %} 3576 interface(MEMORY_INTER) %{ 3577 base($reg); 3578 index(0xffffffff); 3579 scale(0x0); 3580 disp($off); 3581 %} 3582 %} 3583 3584 operand indOffL(iRegP reg, immLOffset off) 3585 %{ 3586 constraint(ALLOC_IN_RC(ptr_reg)); 3587 match(AddP reg off); 3588 op_cost(0); 3589 format %{ "[$reg, $off]" %} 3590 interface(MEMORY_INTER) %{ 3591 base($reg); 3592 index(0xffffffff); 3593 scale(0x0); 3594 disp($off); 3595 %} 3596 %} 3597 3598 operand indirectN(iRegN reg) 3599 %{ 3600 predicate(CompressedOops::shift() == 0); 3601 constraint(ALLOC_IN_RC(ptr_reg)); 3602 match(DecodeN reg); 3603 op_cost(0); 3604 format %{ "[$reg]\t# narrow" %} 3605 interface(MEMORY_INTER) %{ 3606 base($reg); 3607 index(0xffffffff); 3608 scale(0x0); 3609 disp(0x0); 3610 %} 3611 %} 3612 3613 operand indOffIN(iRegN reg, immIOffset off) 3614 %{ 3615 predicate(CompressedOops::shift() == 0); 3616 constraint(ALLOC_IN_RC(ptr_reg)); 3617 match(AddP (DecodeN reg) off); 3618 op_cost(0); 3619 format %{ "[$reg, $off]\t# narrow" %} 3620 interface(MEMORY_INTER) %{ 3621 base($reg); 3622 index(0xffffffff); 3623 scale(0x0); 3624 disp($off); 3625 %} 3626 %} 3627 3628 operand indOffLN(iRegN reg, immLOffset off) 3629 %{ 3630 predicate(CompressedOops::shift() == 0); 3631 constraint(ALLOC_IN_RC(ptr_reg)); 3632 match(AddP (DecodeN reg) off); 3633 op_cost(0); 3634 format %{ "[$reg, $off]\t# narrow" %} 3635 interface(MEMORY_INTER) %{ 3636 base($reg); 3637 index(0xffffffff); 3638 scale(0x0); 3639 disp($off); 3640 %} 3641 %} 3642 3643 //----------Special Memory Operands-------------------------------------------- 3644 // Stack Slot Operand - This operand is used for loading and storing temporary 3645 // values on the stack where a match requires a value to 3646 // flow through memory. 3647 operand stackSlotI(sRegI reg) 3648 %{ 3649 constraint(ALLOC_IN_RC(stack_slots)); 3650 // No match rule because this operand is only generated in matching 3651 // match(RegI); 3652 format %{ "[$reg]" %} 3653 interface(MEMORY_INTER) %{ 3654 base(0x02); // RSP 3655 index(0xffffffff); // No Index 3656 scale(0x0); // No Scale 3657 disp($reg); // Stack Offset 3658 %} 3659 %} 3660 3661 operand stackSlotF(sRegF reg) 3662 %{ 3663 constraint(ALLOC_IN_RC(stack_slots)); 3664 // No match rule because this operand is only generated in matching 3665 // match(RegF); 3666 format %{ "[$reg]" %} 3667 interface(MEMORY_INTER) %{ 3668 base(0x02); // RSP 3669 index(0xffffffff); // No Index 3670 scale(0x0); // No Scale 3671 disp($reg); // Stack Offset 3672 %} 3673 %} 3674 3675 operand stackSlotD(sRegD reg) 3676 %{ 3677 constraint(ALLOC_IN_RC(stack_slots)); 3678 // No match rule because this operand is only generated in matching 3679 // match(RegD); 3680 format %{ "[$reg]" %} 3681 interface(MEMORY_INTER) %{ 3682 base(0x02); // RSP 3683 index(0xffffffff); // No Index 3684 scale(0x0); // No Scale 3685 disp($reg); // Stack Offset 3686 %} 3687 %} 3688 3689 operand stackSlotL(sRegL reg) 3690 %{ 3691 constraint(ALLOC_IN_RC(stack_slots)); 3692 // No match rule because this operand is only generated in matching 3693 // match(RegL); 3694 format %{ "[$reg]" %} 3695 interface(MEMORY_INTER) %{ 3696 base(0x02); // RSP 3697 index(0xffffffff); // No Index 3698 scale(0x0); // No Scale 3699 disp($reg); // Stack Offset 3700 %} 3701 %} 3702 3703 // Special operand allowing long args to int ops to be truncated for free 3704 3705 operand iRegL2I(iRegL reg) %{ 3706 3707 op_cost(0); 3708 3709 match(ConvL2I reg); 3710 3711 format %{ "l2i($reg)" %} 3712 3713 interface(REG_INTER) 3714 %} 3715 3716 3717 // Comparison Operands 3718 // NOTE: Label is a predefined operand which should not be redefined in 3719 // the AD file. It is generically handled within the ADLC. 3720 3721 //----------Conditional Branch Operands---------------------------------------- 3722 // Comparison Op - This is the operation of the comparison, and is limited to 3723 // the following set of codes: 3724 // L (<), LE (<=), G (>), GE (>=), E (==), NE (!=) 3725 // 3726 // Other attributes of the comparison, such as unsignedness, are specified 3727 // by the comparison instruction that sets a condition code flags register. 3728 // That result is represented by a flags operand whose subtype is appropriate 3729 // to the unsignedness (etc.) of the comparison. 3730 // 3731 // Later, the instruction which matches both the Comparison Op (a Bool) and 3732 // the flags (produced by the Cmp) specifies the coding of the comparison op 3733 // by matching a specific subtype of Bool operand below, such as cmpOpU. 3734 3735 3736 // used for signed integral comparisons and fp comparisons 3737 operand cmpOp() 3738 %{ 3739 match(Bool); 3740 3741 format %{ "" %} 3742 3743 // the values in interface derives from struct BoolTest::mask 3744 interface(COND_INTER) %{ 3745 equal(0x0, "eq"); 3746 greater(0x1, "gt"); 3747 overflow(0x2, "overflow"); 3748 less(0x3, "lt"); 3749 not_equal(0x4, "ne"); 3750 less_equal(0x5, "le"); 3751 no_overflow(0x6, "no_overflow"); 3752 greater_equal(0x7, "ge"); 3753 %} 3754 %} 3755 3756 // used for unsigned integral comparisons 3757 operand cmpOpU() 3758 %{ 3759 match(Bool); 3760 3761 format %{ "" %} 3762 // the values in interface derives from struct BoolTest::mask 3763 interface(COND_INTER) %{ 3764 equal(0x0, "eq"); 3765 greater(0x1, "gtu"); 3766 overflow(0x2, "overflow"); 3767 less(0x3, "ltu"); 3768 not_equal(0x4, "ne"); 3769 less_equal(0x5, "leu"); 3770 no_overflow(0x6, "no_overflow"); 3771 greater_equal(0x7, "geu"); 3772 %} 3773 %} 3774 3775 // used for certain integral comparisons which can be 3776 // converted to bxx instructions 3777 operand cmpOpEqNe() 3778 %{ 3779 match(Bool); 3780 op_cost(0); 3781 predicate(n->as_Bool()->_test._test == BoolTest::ne || 3782 n->as_Bool()->_test._test == BoolTest::eq); 3783 3784 format %{ "" %} 3785 interface(COND_INTER) %{ 3786 equal(0x0, "eq"); 3787 greater(0x1, "gt"); 3788 overflow(0x2, "overflow"); 3789 less(0x3, "lt"); 3790 not_equal(0x4, "ne"); 3791 less_equal(0x5, "le"); 3792 no_overflow(0x6, "no_overflow"); 3793 greater_equal(0x7, "ge"); 3794 %} 3795 %} 3796 3797 operand cmpOpULtGe() 3798 %{ 3799 match(Bool); 3800 op_cost(0); 3801 predicate(n->as_Bool()->_test._test == BoolTest::lt || 3802 n->as_Bool()->_test._test == BoolTest::ge); 3803 3804 format %{ "" %} 3805 interface(COND_INTER) %{ 3806 equal(0x0, "eq"); 3807 greater(0x1, "gtu"); 3808 overflow(0x2, "overflow"); 3809 less(0x3, "ltu"); 3810 not_equal(0x4, "ne"); 3811 less_equal(0x5, "leu"); 3812 no_overflow(0x6, "no_overflow"); 3813 greater_equal(0x7, "geu"); 3814 %} 3815 %} 3816 3817 operand cmpOpUEqNeLeGt() 3818 %{ 3819 match(Bool); 3820 op_cost(0); 3821 predicate(n->as_Bool()->_test._test == BoolTest::ne || 3822 n->as_Bool()->_test._test == BoolTest::eq || 3823 n->as_Bool()->_test._test == BoolTest::le || 3824 n->as_Bool()->_test._test == BoolTest::gt); 3825 3826 format %{ "" %} 3827 interface(COND_INTER) %{ 3828 equal(0x0, "eq"); 3829 greater(0x1, "gtu"); 3830 overflow(0x2, "overflow"); 3831 less(0x3, "ltu"); 3832 not_equal(0x4, "ne"); 3833 less_equal(0x5, "leu"); 3834 no_overflow(0x6, "no_overflow"); 3835 greater_equal(0x7, "geu"); 3836 %} 3837 %} 3838 3839 3840 // Flags register, used as output of compare logic 3841 operand rFlagsReg() 3842 %{ 3843 constraint(ALLOC_IN_RC(reg_flags)); 3844 match(RegFlags); 3845 3846 op_cost(0); 3847 format %{ "RFLAGS" %} 3848 interface(REG_INTER); 3849 %} 3850 3851 // Special Registers 3852 3853 // Method Register 3854 operand inline_cache_RegP(iRegP reg) 3855 %{ 3856 constraint(ALLOC_IN_RC(method_reg)); // inline_cache_reg 3857 match(reg); 3858 match(iRegPNoSp); 3859 op_cost(0); 3860 format %{ %} 3861 interface(REG_INTER); 3862 %} 3863 3864 //----------OPERAND CLASSES---------------------------------------------------- 3865 // Operand Classes are groups of operands that are used as to simplify 3866 // instruction definitions by not requiring the AD writer to specify 3867 // separate instructions for every form of operand when the 3868 // instruction accepts multiple operand types with the same basic 3869 // encoding and format. The classic case of this is memory operands. 3870 3871 // memory is used to define read/write location for load/store 3872 // instruction defs. we can turn a memory op into an Address 3873 3874 opclass memory(indirect, indOffI, indOffL, indirectN, indOffIN, indOffLN); 3875 3876 // iRegIorL2I is used for src inputs in rules for 32 bit int (I) 3877 // operations. it allows the src to be either an iRegI or a (ConvL2I 3878 // iRegL). in the latter case the l2i normally planted for a ConvL2I 3879 // can be elided because the 32-bit instruction will just employ the 3880 // lower 32 bits anyway. 3881 // 3882 // n.b. this does not elide all L2I conversions. if the truncated 3883 // value is consumed by more than one operation then the ConvL2I 3884 // cannot be bundled into the consuming nodes so an l2i gets planted 3885 // (actually an addiw $dst, $src, 0) and the downstream instructions 3886 // consume the result of the L2I as an iRegI input. That's a shame since 3887 // the addiw is actually redundant but its not too costly. 3888 3889 opclass iRegIorL2I(iRegI, iRegL2I); 3890 opclass iRegIorL(iRegI, iRegL); 3891 opclass iRegNorP(iRegN, iRegP); 3892 opclass iRegILNP(iRegI, iRegL, iRegN, iRegP); 3893 opclass iRegILNPNoSp(iRegINoSp, iRegLNoSp, iRegNNoSp, iRegPNoSp); 3894 opclass immIorL(immI, immL); 3895 3896 //----------PIPELINE----------------------------------------------------------- 3897 // Rules which define the behavior of the target architectures pipeline. 3898 3899 // For specific pipelines, e.g. generic RISC-V, define the stages of that pipeline 3900 //pipe_desc(ID, EX, MEM, WR); 3901 #define ID S0 3902 #define EX S1 3903 #define MEM S2 3904 #define WR S3 3905 3906 // Integer ALU reg operation 3907 pipeline %{ 3908 3909 attributes %{ 3910 // RISC-V instructions are of fixed length 3911 fixed_size_instructions; // Fixed size instructions TODO does 3912 max_instructions_per_bundle = 2; // Generic RISC-V 1, Sifive Series 7 2 3913 // RISC-V instructions come in 32-bit word units 3914 instruction_unit_size = 4; // An instruction is 4 bytes long 3915 instruction_fetch_unit_size = 64; // The processor fetches one line 3916 instruction_fetch_units = 1; // of 64 bytes 3917 3918 // List of nop instructions 3919 nops( MachNop ); 3920 %} 3921 3922 // We don't use an actual pipeline model so don't care about resources 3923 // or description. we do use pipeline classes to introduce fixed 3924 // latencies 3925 3926 //----------RESOURCES---------------------------------------------------------- 3927 // Resources are the functional units available to the machine 3928 3929 // Generic RISC-V pipeline 3930 // 1 decoder 3931 // 1 instruction decoded per cycle 3932 // 1 load/store ops per cycle, 1 branch, 1 FPU 3933 // 1 mul, 1 div 3934 3935 resources ( DECODE, 3936 ALU, 3937 MUL, 3938 DIV, 3939 BRANCH, 3940 LDST, 3941 FPU); 3942 3943 //----------PIPELINE DESCRIPTION----------------------------------------------- 3944 // Pipeline Description specifies the stages in the machine's pipeline 3945 3946 // Define the pipeline as a generic 6 stage pipeline 3947 pipe_desc(S0, S1, S2, S3, S4, S5); 3948 3949 //----------PIPELINE CLASSES--------------------------------------------------- 3950 // Pipeline Classes describe the stages in which input and output are 3951 // referenced by the hardware pipeline. 3952 3953 pipe_class fp_dop_reg_reg_s(fRegF dst, fRegF src1, fRegF src2) 3954 %{ 3955 single_instruction; 3956 src1 : S1(read); 3957 src2 : S2(read); 3958 dst : S5(write); 3959 DECODE : ID; 3960 FPU : S5; 3961 %} 3962 3963 pipe_class fp_dop_reg_reg_d(fRegD dst, fRegD src1, fRegD src2) 3964 %{ 3965 src1 : S1(read); 3966 src2 : S2(read); 3967 dst : S5(write); 3968 DECODE : ID; 3969 FPU : S5; 3970 %} 3971 3972 pipe_class fp_uop_s(fRegF dst, fRegF src) 3973 %{ 3974 single_instruction; 3975 src : S1(read); 3976 dst : S5(write); 3977 DECODE : ID; 3978 FPU : S5; 3979 %} 3980 3981 pipe_class fp_uop_d(fRegD dst, fRegD src) 3982 %{ 3983 single_instruction; 3984 src : S1(read); 3985 dst : S5(write); 3986 DECODE : ID; 3987 FPU : S5; 3988 %} 3989 3990 pipe_class fp_d2f(fRegF dst, fRegD src) 3991 %{ 3992 single_instruction; 3993 src : S1(read); 3994 dst : S5(write); 3995 DECODE : ID; 3996 FPU : S5; 3997 %} 3998 3999 pipe_class fp_f2d(fRegD dst, fRegF src) 4000 %{ 4001 single_instruction; 4002 src : S1(read); 4003 dst : S5(write); 4004 DECODE : ID; 4005 FPU : S5; 4006 %} 4007 4008 pipe_class fp_f2i(iRegINoSp dst, fRegF src) 4009 %{ 4010 single_instruction; 4011 src : S1(read); 4012 dst : S5(write); 4013 DECODE : ID; 4014 FPU : S5; 4015 %} 4016 4017 pipe_class fp_f2l(iRegLNoSp dst, fRegF src) 4018 %{ 4019 single_instruction; 4020 src : S1(read); 4021 dst : S5(write); 4022 DECODE : ID; 4023 FPU : S5; 4024 %} 4025 4026 pipe_class fp_i2f(fRegF dst, iRegIorL2I src) 4027 %{ 4028 single_instruction; 4029 src : S1(read); 4030 dst : S5(write); 4031 DECODE : ID; 4032 FPU : S5; 4033 %} 4034 4035 pipe_class fp_l2f(fRegF dst, iRegL src) 4036 %{ 4037 single_instruction; 4038 src : S1(read); 4039 dst : S5(write); 4040 DECODE : ID; 4041 FPU : S5; 4042 %} 4043 4044 pipe_class fp_d2i(iRegINoSp dst, fRegD src) 4045 %{ 4046 single_instruction; 4047 src : S1(read); 4048 dst : S5(write); 4049 DECODE : ID; 4050 FPU : S5; 4051 %} 4052 4053 pipe_class fp_d2l(iRegLNoSp dst, fRegD src) 4054 %{ 4055 single_instruction; 4056 src : S1(read); 4057 dst : S5(write); 4058 DECODE : ID; 4059 FPU : S5; 4060 %} 4061 4062 pipe_class fp_i2d(fRegD dst, iRegIorL2I src) 4063 %{ 4064 single_instruction; 4065 src : S1(read); 4066 dst : S5(write); 4067 DECODE : ID; 4068 FPU : S5; 4069 %} 4070 4071 pipe_class fp_l2d(fRegD dst, iRegIorL2I src) 4072 %{ 4073 single_instruction; 4074 src : S1(read); 4075 dst : S5(write); 4076 DECODE : ID; 4077 FPU : S5; 4078 %} 4079 4080 pipe_class fp_div_s(fRegF dst, fRegF src1, fRegF src2) 4081 %{ 4082 single_instruction; 4083 src1 : S1(read); 4084 src2 : S2(read); 4085 dst : S5(write); 4086 DECODE : ID; 4087 FPU : S5; 4088 %} 4089 4090 pipe_class fp_div_d(fRegD dst, fRegD src1, fRegD src2) 4091 %{ 4092 single_instruction; 4093 src1 : S1(read); 4094 src2 : S2(read); 4095 dst : S5(write); 4096 DECODE : ID; 4097 FPU : S5; 4098 %} 4099 4100 pipe_class fp_sqrt_s(fRegF dst, fRegF src1, fRegF src2) 4101 %{ 4102 single_instruction; 4103 src1 : S1(read); 4104 src2 : S2(read); 4105 dst : S5(write); 4106 DECODE : ID; 4107 FPU : S5; 4108 %} 4109 4110 pipe_class fp_sqrt_d(fRegD dst, fRegD src1, fRegD src2) 4111 %{ 4112 single_instruction; 4113 src1 : S1(read); 4114 src2 : S2(read); 4115 dst : S5(write); 4116 DECODE : ID; 4117 FPU : S5; 4118 %} 4119 4120 pipe_class fp_load_constant_s(fRegF dst) 4121 %{ 4122 single_instruction; 4123 dst : S5(write); 4124 DECODE : ID; 4125 FPU : S5; 4126 %} 4127 4128 pipe_class fp_load_constant_d(fRegD dst) 4129 %{ 4130 single_instruction; 4131 dst : S5(write); 4132 DECODE : ID; 4133 FPU : S5; 4134 %} 4135 4136 pipe_class fp_load_mem_s(fRegF dst, memory mem) 4137 %{ 4138 single_instruction; 4139 mem : S1(read); 4140 dst : S5(write); 4141 DECODE : ID; 4142 LDST : MEM; 4143 %} 4144 4145 pipe_class fp_load_mem_d(fRegD dst, memory mem) 4146 %{ 4147 single_instruction; 4148 mem : S1(read); 4149 dst : S5(write); 4150 DECODE : ID; 4151 LDST : MEM; 4152 %} 4153 4154 pipe_class fp_store_reg_s(fRegF src, memory mem) 4155 %{ 4156 single_instruction; 4157 src : S1(read); 4158 mem : S5(write); 4159 DECODE : ID; 4160 LDST : MEM; 4161 %} 4162 4163 pipe_class fp_store_reg_d(fRegD src, memory mem) 4164 %{ 4165 single_instruction; 4166 src : S1(read); 4167 mem : S5(write); 4168 DECODE : ID; 4169 LDST : MEM; 4170 %} 4171 4172 //------- Integer ALU operations -------------------------- 4173 4174 // Integer ALU reg-reg operation 4175 // Operands needs in ID, result generated in EX 4176 // E.g. ADD Rd, Rs1, Rs2 4177 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) 4178 %{ 4179 single_instruction; 4180 dst : EX(write); 4181 src1 : ID(read); 4182 src2 : ID(read); 4183 DECODE : ID; 4184 ALU : EX; 4185 %} 4186 4187 // Integer ALU reg operation with constant shift 4188 // E.g. SLLI Rd, Rs1, #shift 4189 pipe_class ialu_reg_shift(iRegI dst, iRegI src1) 4190 %{ 4191 single_instruction; 4192 dst : EX(write); 4193 src1 : ID(read); 4194 DECODE : ID; 4195 ALU : EX; 4196 %} 4197 4198 // Integer ALU reg-reg operation with variable shift 4199 // both operands must be available in ID 4200 // E.g. SLL Rd, Rs1, Rs2 4201 pipe_class ialu_reg_reg_vshift(iRegI dst, iRegI src1, iRegI src2) 4202 %{ 4203 single_instruction; 4204 dst : EX(write); 4205 src1 : ID(read); 4206 src2 : ID(read); 4207 DECODE : ID; 4208 ALU : EX; 4209 %} 4210 4211 // Integer ALU reg operation 4212 // E.g. NEG Rd, Rs2 4213 pipe_class ialu_reg(iRegI dst, iRegI src) 4214 %{ 4215 single_instruction; 4216 dst : EX(write); 4217 src : ID(read); 4218 DECODE : ID; 4219 ALU : EX; 4220 %} 4221 4222 // Integer ALU reg immediate operation 4223 // E.g. ADDI Rd, Rs1, #imm 4224 pipe_class ialu_reg_imm(iRegI dst, iRegI src1) 4225 %{ 4226 single_instruction; 4227 dst : EX(write); 4228 src1 : ID(read); 4229 DECODE : ID; 4230 ALU : EX; 4231 %} 4232 4233 // Integer ALU immediate operation (no source operands) 4234 // E.g. LI Rd, #imm 4235 pipe_class ialu_imm(iRegI dst) 4236 %{ 4237 single_instruction; 4238 dst : EX(write); 4239 DECODE : ID; 4240 ALU : EX; 4241 %} 4242 4243 //------- Multiply pipeline operations -------------------- 4244 4245 // Multiply reg-reg 4246 // E.g. MULW Rd, Rs1, Rs2 4247 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) 4248 %{ 4249 single_instruction; 4250 dst : WR(write); 4251 src1 : ID(read); 4252 src2 : ID(read); 4253 DECODE : ID; 4254 MUL : WR; 4255 %} 4256 4257 // E.g. MUL RD, Rs1, Rs2 4258 pipe_class lmul_reg_reg(iRegL dst, iRegL src1, iRegL src2) 4259 %{ 4260 single_instruction; 4261 fixed_latency(3); // Maximum latency for 64 bit mul 4262 dst : WR(write); 4263 src1 : ID(read); 4264 src2 : ID(read); 4265 DECODE : ID; 4266 MUL : WR; 4267 %} 4268 4269 //------- Divide pipeline operations -------------------- 4270 4271 // E.g. DIVW Rd, Rs1, Rs2 4272 pipe_class idiv_reg_reg(iRegI dst, iRegI src1, iRegI src2) 4273 %{ 4274 single_instruction; 4275 fixed_latency(8); // Maximum latency for 32 bit divide 4276 dst : WR(write); 4277 src1 : ID(read); 4278 src2 : ID(read); 4279 DECODE : ID; 4280 DIV : WR; 4281 %} 4282 4283 // E.g. DIV RD, Rs1, Rs2 4284 pipe_class ldiv_reg_reg(iRegL dst, iRegL src1, iRegL src2) 4285 %{ 4286 single_instruction; 4287 fixed_latency(16); // Maximum latency for 64 bit divide 4288 dst : WR(write); 4289 src1 : ID(read); 4290 src2 : ID(read); 4291 DECODE : ID; 4292 DIV : WR; 4293 %} 4294 4295 //------- Load pipeline operations ------------------------ 4296 4297 // Load - prefetch 4298 // Eg. PREFETCH_W mem 4299 pipe_class iload_prefetch(memory mem) 4300 %{ 4301 single_instruction; 4302 mem : ID(read); 4303 DECODE : ID; 4304 LDST : MEM; 4305 %} 4306 4307 // Load - reg, mem 4308 // E.g. LA Rd, mem 4309 pipe_class iload_reg_mem(iRegI dst, memory mem) 4310 %{ 4311 single_instruction; 4312 dst : WR(write); 4313 mem : ID(read); 4314 DECODE : ID; 4315 LDST : MEM; 4316 %} 4317 4318 // Load - reg, reg 4319 // E.g. LD Rd, Rs 4320 pipe_class iload_reg_reg(iRegI dst, iRegI src) 4321 %{ 4322 single_instruction; 4323 dst : WR(write); 4324 src : ID(read); 4325 DECODE : ID; 4326 LDST : MEM; 4327 %} 4328 4329 //------- Store pipeline operations ----------------------- 4330 4331 // Store - zr, mem 4332 // E.g. SD zr, mem 4333 pipe_class istore_mem(memory mem) 4334 %{ 4335 single_instruction; 4336 mem : ID(read); 4337 DECODE : ID; 4338 LDST : MEM; 4339 %} 4340 4341 // Store - reg, mem 4342 // E.g. SD Rs, mem 4343 pipe_class istore_reg_mem(iRegI src, memory mem) 4344 %{ 4345 single_instruction; 4346 mem : ID(read); 4347 src : EX(read); 4348 DECODE : ID; 4349 LDST : MEM; 4350 %} 4351 4352 // Store - reg, reg 4353 // E.g. SD Rs2, Rs1 4354 pipe_class istore_reg_reg(iRegI dst, iRegI src) 4355 %{ 4356 single_instruction; 4357 dst : ID(read); 4358 src : EX(read); 4359 DECODE : ID; 4360 LDST : MEM; 4361 %} 4362 4363 //------- Control transfer pipeline operations ------------ 4364 4365 // Branch 4366 pipe_class pipe_branch() 4367 %{ 4368 single_instruction; 4369 DECODE : ID; 4370 BRANCH : EX; 4371 %} 4372 4373 // Branch 4374 pipe_class pipe_branch_reg(iRegI src) 4375 %{ 4376 single_instruction; 4377 src : ID(read); 4378 DECODE : ID; 4379 BRANCH : EX; 4380 %} 4381 4382 // Compare & Branch 4383 // E.g. BEQ Rs1, Rs2, L 4384 pipe_class pipe_cmp_branch(iRegI src1, iRegI src2) 4385 %{ 4386 single_instruction; 4387 src1 : ID(read); 4388 src2 : ID(read); 4389 DECODE : ID; 4390 BRANCH : EX; 4391 %} 4392 4393 // E.g. BEQZ Rs, L 4394 pipe_class pipe_cmpz_branch(iRegI src) 4395 %{ 4396 single_instruction; 4397 src : ID(read); 4398 DECODE : ID; 4399 BRANCH : EX; 4400 %} 4401 4402 //------- Synchronisation operations ---------------------- 4403 // Any operation requiring serialization 4404 // E.g. FENCE/Atomic Ops/Load Acquire/Store Release 4405 pipe_class pipe_serial() 4406 %{ 4407 single_instruction; 4408 force_serialization; 4409 fixed_latency(16); 4410 DECODE : ID; 4411 LDST : MEM; 4412 %} 4413 4414 pipe_class pipe_slow() 4415 %{ 4416 instruction_count(10); 4417 multiple_bundles; 4418 force_serialization; 4419 fixed_latency(16); 4420 DECODE : ID; 4421 LDST : MEM; 4422 %} 4423 4424 // Empty pipeline class 4425 pipe_class pipe_class_empty() 4426 %{ 4427 single_instruction; 4428 fixed_latency(0); 4429 %} 4430 4431 // Default pipeline class. 4432 pipe_class pipe_class_default() 4433 %{ 4434 single_instruction; 4435 fixed_latency(2); 4436 %} 4437 4438 // Pipeline class for compares. 4439 pipe_class pipe_class_compare() 4440 %{ 4441 single_instruction; 4442 fixed_latency(16); 4443 %} 4444 4445 // Pipeline class for memory operations. 4446 pipe_class pipe_class_memory() 4447 %{ 4448 single_instruction; 4449 fixed_latency(16); 4450 %} 4451 4452 // Pipeline class for call. 4453 pipe_class pipe_class_call() 4454 %{ 4455 single_instruction; 4456 fixed_latency(100); 4457 %} 4458 4459 // Define the class for the Nop node. 4460 define %{ 4461 MachNop = pipe_class_empty; 4462 %} 4463 %} 4464 //----------INSTRUCTIONS------------------------------------------------------- 4465 // 4466 // match -- States which machine-independent subtree may be replaced 4467 // by this instruction. 4468 // ins_cost -- The estimated cost of this instruction is used by instruction 4469 // selection to identify a minimum cost tree of machine 4470 // instructions that matches a tree of machine-independent 4471 // instructions. 4472 // format -- A string providing the disassembly for this instruction. 4473 // The value of an instruction's operand may be inserted 4474 // by referring to it with a '$' prefix. 4475 // opcode -- Three instruction opcodes may be provided. These are referred 4476 // to within an encode class as $primary, $secondary, and $tertiary 4477 // rrspectively. The primary opcode is commonly used to 4478 // indicate the type of machine instruction, while secondary 4479 // and tertiary are often used for prefix options or addressing 4480 // modes. 4481 // ins_encode -- A list of encode classes with parameters. The encode class 4482 // name must have been defined in an 'enc_class' specification 4483 // in the encode section of the architecture description. 4484 4485 // ============================================================================ 4486 // Memory (Load/Store) Instructions 4487 4488 // Load Instructions 4489 4490 // Load Byte (8 bit signed) 4491 instruct loadB(iRegINoSp dst, memory mem) 4492 %{ 4493 match(Set dst (LoadB mem)); 4494 4495 ins_cost(LOAD_COST); 4496 format %{ "lb $dst, $mem\t# byte, #@loadB" %} 4497 4498 ins_encode %{ 4499 __ lb(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp)); 4500 %} 4501 4502 ins_pipe(iload_reg_mem); 4503 %} 4504 4505 // Load Byte (8 bit signed) into long 4506 instruct loadB2L(iRegLNoSp dst, memory mem) 4507 %{ 4508 match(Set dst (ConvI2L (LoadB mem))); 4509 4510 ins_cost(LOAD_COST); 4511 format %{ "lb $dst, $mem\t# byte, #@loadB2L" %} 4512 4513 ins_encode %{ 4514 __ lb(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp)); 4515 %} 4516 4517 ins_pipe(iload_reg_mem); 4518 %} 4519 4520 // Load Byte (8 bit unsigned) 4521 instruct loadUB(iRegINoSp dst, memory mem) 4522 %{ 4523 match(Set dst (LoadUB mem)); 4524 4525 ins_cost(LOAD_COST); 4526 format %{ "lbu $dst, $mem\t# byte, #@loadUB" %} 4527 4528 ins_encode %{ 4529 __ lbu(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp)); 4530 %} 4531 4532 ins_pipe(iload_reg_mem); 4533 %} 4534 4535 // Load Byte (8 bit unsigned) into long 4536 instruct loadUB2L(iRegLNoSp dst, memory mem) 4537 %{ 4538 match(Set dst (ConvI2L (LoadUB mem))); 4539 4540 ins_cost(LOAD_COST); 4541 format %{ "lbu $dst, $mem\t# byte, #@loadUB2L" %} 4542 4543 ins_encode %{ 4544 __ lbu(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp)); 4545 %} 4546 4547 ins_pipe(iload_reg_mem); 4548 %} 4549 4550 // Load Short (16 bit signed) 4551 instruct loadS(iRegINoSp dst, memory mem) 4552 %{ 4553 match(Set dst (LoadS mem)); 4554 4555 ins_cost(LOAD_COST); 4556 format %{ "lh $dst, $mem\t# short, #@loadS" %} 4557 4558 ins_encode %{ 4559 __ lh(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp)); 4560 %} 4561 4562 ins_pipe(iload_reg_mem); 4563 %} 4564 4565 // Load Short (16 bit signed) into long 4566 instruct loadS2L(iRegLNoSp dst, memory mem) 4567 %{ 4568 match(Set dst (ConvI2L (LoadS mem))); 4569 4570 ins_cost(LOAD_COST); 4571 format %{ "lh $dst, $mem\t# short, #@loadS2L" %} 4572 4573 ins_encode %{ 4574 __ lh(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp)); 4575 %} 4576 4577 ins_pipe(iload_reg_mem); 4578 %} 4579 4580 // Load Char (16 bit unsigned) 4581 instruct loadUS(iRegINoSp dst, memory mem) 4582 %{ 4583 match(Set dst (LoadUS mem)); 4584 4585 ins_cost(LOAD_COST); 4586 format %{ "lhu $dst, $mem\t# short, #@loadUS" %} 4587 4588 ins_encode %{ 4589 __ lhu(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp)); 4590 %} 4591 4592 ins_pipe(iload_reg_mem); 4593 %} 4594 4595 // Load Short/Char (16 bit unsigned) into long 4596 instruct loadUS2L(iRegLNoSp dst, memory mem) 4597 %{ 4598 match(Set dst (ConvI2L (LoadUS mem))); 4599 4600 ins_cost(LOAD_COST); 4601 format %{ "lhu $dst, $mem\t# short, #@loadUS2L" %} 4602 4603 ins_encode %{ 4604 __ lhu(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp)); 4605 %} 4606 4607 ins_pipe(iload_reg_mem); 4608 %} 4609 4610 // Load Integer (32 bit signed) 4611 instruct loadI(iRegINoSp dst, memory mem) 4612 %{ 4613 match(Set dst (LoadI mem)); 4614 4615 ins_cost(LOAD_COST); 4616 format %{ "lw $dst, $mem\t# int, #@loadI" %} 4617 4618 ins_encode %{ 4619 __ lw(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp)); 4620 %} 4621 4622 ins_pipe(iload_reg_mem); 4623 %} 4624 4625 // Load Integer (32 bit signed) into long 4626 instruct loadI2L(iRegLNoSp dst, memory mem) 4627 %{ 4628 match(Set dst (ConvI2L (LoadI mem))); 4629 4630 ins_cost(LOAD_COST); 4631 format %{ "lw $dst, $mem\t# int, #@loadI2L" %} 4632 4633 ins_encode %{ 4634 __ lw(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp)); 4635 %} 4636 4637 ins_pipe(iload_reg_mem); 4638 %} 4639 4640 // Load Integer (32 bit unsigned) into long 4641 instruct loadUI2L(iRegLNoSp dst, memory mem, immL_32bits mask) 4642 %{ 4643 match(Set dst (AndL (ConvI2L (LoadI mem)) mask)); 4644 4645 ins_cost(LOAD_COST); 4646 format %{ "lwu $dst, $mem\t# int, #@loadUI2L" %} 4647 4648 ins_encode %{ 4649 __ lwu(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp)); 4650 %} 4651 4652 ins_pipe(iload_reg_mem); 4653 %} 4654 4655 // Load Long (64 bit signed) 4656 instruct loadL(iRegLNoSp dst, memory mem) 4657 %{ 4658 match(Set dst (LoadL mem)); 4659 4660 ins_cost(LOAD_COST); 4661 format %{ "ld $dst, $mem\t# int, #@loadL" %} 4662 4663 ins_encode %{ 4664 __ ld(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp)); 4665 %} 4666 4667 ins_pipe(iload_reg_mem); 4668 %} 4669 4670 // Load Range 4671 instruct loadRange(iRegINoSp dst, memory mem) 4672 %{ 4673 match(Set dst (LoadRange mem)); 4674 4675 ins_cost(LOAD_COST); 4676 format %{ "lwu $dst, $mem\t# range, #@loadRange" %} 4677 4678 ins_encode %{ 4679 __ lwu(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp)); 4680 %} 4681 4682 ins_pipe(iload_reg_mem); 4683 %} 4684 4685 // Load Pointer 4686 instruct loadP(iRegPNoSp dst, memory mem) 4687 %{ 4688 match(Set dst (LoadP mem)); 4689 predicate(n->as_Load()->barrier_data() == 0); 4690 4691 ins_cost(LOAD_COST); 4692 format %{ "ld $dst, $mem\t# ptr, #@loadP" %} 4693 4694 ins_encode %{ 4695 __ ld(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp)); 4696 %} 4697 4698 ins_pipe(iload_reg_mem); 4699 %} 4700 4701 // Load Compressed Pointer 4702 instruct loadN(iRegNNoSp dst, memory mem) 4703 %{ 4704 predicate(n->as_Load()->barrier_data() == 0); 4705 match(Set dst (LoadN mem)); 4706 4707 ins_cost(LOAD_COST); 4708 format %{ "lwu $dst, $mem\t# compressed ptr, #@loadN" %} 4709 4710 ins_encode %{ 4711 __ lwu(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp)); 4712 %} 4713 4714 ins_pipe(iload_reg_mem); 4715 %} 4716 4717 // Load Klass Pointer 4718 instruct loadKlass(iRegPNoSp dst, memory mem) 4719 %{ 4720 match(Set dst (LoadKlass mem)); 4721 4722 ins_cost(LOAD_COST); 4723 format %{ "ld $dst, $mem\t# class, #@loadKlass" %} 4724 4725 ins_encode %{ 4726 __ ld(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp)); 4727 %} 4728 4729 ins_pipe(iload_reg_mem); 4730 %} 4731 4732 // Load Narrow Klass Pointer 4733 instruct loadNKlass(iRegNNoSp dst, memory mem) 4734 %{ 4735 predicate(!UseCompactObjectHeaders); 4736 match(Set dst (LoadNKlass mem)); 4737 4738 ins_cost(LOAD_COST); 4739 format %{ "lwu $dst, $mem\t# compressed class ptr, #@loadNKlass" %} 4740 4741 ins_encode %{ 4742 __ lwu(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp)); 4743 %} 4744 4745 ins_pipe(iload_reg_mem); 4746 %} 4747 4748 instruct loadNKlassCompactHeaders(iRegNNoSp dst, memory mem) 4749 %{ 4750 predicate(UseCompactObjectHeaders); 4751 match(Set dst (LoadNKlass mem)); 4752 4753 ins_cost(LOAD_COST); 4754 format %{ 4755 "lwu $dst, $mem\t# compressed klass ptr, shifted\n\t" 4756 "srli $dst, $dst, markWord::klass_shift_at_offset" 4757 %} 4758 4759 ins_encode %{ 4760 __ lwu(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp)); 4761 __ srli(as_Register($dst$$reg), as_Register($dst$$reg), (unsigned) markWord::klass_shift_at_offset); 4762 %} 4763 4764 ins_pipe(iload_reg_mem); 4765 %} 4766 4767 // Load Float 4768 instruct loadF(fRegF dst, memory mem) 4769 %{ 4770 match(Set dst (LoadF mem)); 4771 4772 ins_cost(LOAD_COST); 4773 format %{ "flw $dst, $mem\t# float, #@loadF" %} 4774 4775 ins_encode %{ 4776 __ flw(as_FloatRegister($dst$$reg), Address(as_Register($mem$$base), $mem$$disp)); 4777 %} 4778 4779 ins_pipe(fp_load_mem_s); 4780 %} 4781 4782 // Load Double 4783 instruct loadD(fRegD dst, memory mem) 4784 %{ 4785 match(Set dst (LoadD mem)); 4786 4787 ins_cost(LOAD_COST); 4788 format %{ "fld $dst, $mem\t# double, #@loadD" %} 4789 4790 ins_encode %{ 4791 __ fld(as_FloatRegister($dst$$reg), Address(as_Register($mem$$base), $mem$$disp)); 4792 %} 4793 4794 ins_pipe(fp_load_mem_d); 4795 %} 4796 4797 // Load Int Constant 4798 instruct loadConI(iRegINoSp dst, immI src) 4799 %{ 4800 match(Set dst src); 4801 4802 ins_cost(ALU_COST); 4803 format %{ "mv $dst, $src\t# int, #@loadConI" %} 4804 4805 ins_encode(riscv_enc_mov_imm(dst, src)); 4806 4807 ins_pipe(ialu_imm); 4808 %} 4809 4810 // Load Long Constant 4811 instruct loadConL(iRegLNoSp dst, immL src) 4812 %{ 4813 match(Set dst src); 4814 4815 ins_cost(ALU_COST); 4816 format %{ "mv $dst, $src\t# long, #@loadConL" %} 4817 4818 ins_encode(riscv_enc_mov_imm(dst, src)); 4819 4820 ins_pipe(ialu_imm); 4821 %} 4822 4823 // Load Pointer Constant 4824 instruct loadConP(iRegPNoSp dst, immP con) 4825 %{ 4826 match(Set dst con); 4827 4828 ins_cost(ALU_COST); 4829 format %{ "mv $dst, $con\t# ptr, #@loadConP" %} 4830 4831 ins_encode(riscv_enc_mov_p(dst, con)); 4832 4833 ins_pipe(ialu_imm); 4834 %} 4835 4836 // Load Null Pointer Constant 4837 instruct loadConP0(iRegPNoSp dst, immP0 con) 4838 %{ 4839 match(Set dst con); 4840 4841 ins_cost(ALU_COST); 4842 format %{ "mv $dst, $con\t# null pointer, #@loadConP0" %} 4843 4844 ins_encode(riscv_enc_mov_zero(dst)); 4845 4846 ins_pipe(ialu_imm); 4847 %} 4848 4849 // Load Pointer Constant One 4850 instruct loadConP1(iRegPNoSp dst, immP_1 con) 4851 %{ 4852 match(Set dst con); 4853 4854 ins_cost(ALU_COST); 4855 format %{ "mv $dst, $con\t# load ptr constant one, #@loadConP1" %} 4856 4857 ins_encode(riscv_enc_mov_p1(dst)); 4858 4859 ins_pipe(ialu_imm); 4860 %} 4861 4862 // Load Byte Map Base Constant 4863 instruct loadByteMapBase(iRegPNoSp dst, immByteMapBase con) 4864 %{ 4865 match(Set dst con); 4866 ins_cost(ALU_COST); 4867 format %{ "mv $dst, $con\t# Byte Map Base, #@loadByteMapBase" %} 4868 4869 ins_encode(riscv_enc_mov_byte_map_base(dst)); 4870 4871 ins_pipe(ialu_imm); 4872 %} 4873 4874 // Load Narrow Pointer Constant 4875 instruct loadConN(iRegNNoSp dst, immN con) 4876 %{ 4877 match(Set dst con); 4878 4879 ins_cost(ALU_COST * 4); 4880 format %{ "mv $dst, $con\t# compressed ptr, #@loadConN" %} 4881 4882 ins_encode(riscv_enc_mov_n(dst, con)); 4883 4884 ins_pipe(ialu_imm); 4885 %} 4886 4887 // Load Narrow Null Pointer Constant 4888 instruct loadConN0(iRegNNoSp dst, immN0 con) 4889 %{ 4890 match(Set dst con); 4891 4892 ins_cost(ALU_COST); 4893 format %{ "mv $dst, $con\t# compressed null pointer, #@loadConN0" %} 4894 4895 ins_encode(riscv_enc_mov_zero(dst)); 4896 4897 ins_pipe(ialu_imm); 4898 %} 4899 4900 // Load Narrow Klass Constant 4901 instruct loadConNKlass(iRegNNoSp dst, immNKlass con) 4902 %{ 4903 match(Set dst con); 4904 4905 ins_cost(ALU_COST * 6); 4906 format %{ "mv $dst, $con\t# compressed klass ptr, #@loadConNKlass" %} 4907 4908 ins_encode(riscv_enc_mov_nk(dst, con)); 4909 4910 ins_pipe(ialu_imm); 4911 %} 4912 4913 // Load Float Constant 4914 instruct loadConF(fRegF dst, immF con) %{ 4915 match(Set dst con); 4916 4917 ins_cost(LOAD_COST); 4918 format %{ 4919 "flw $dst, [$constantaddress]\t# load from constant table: float=$con, #@loadConF" 4920 %} 4921 4922 ins_encode %{ 4923 if (MacroAssembler::can_fp_imm_load($con$$constant)) { 4924 __ fli_s(as_FloatRegister($dst$$reg), $con$$constant); 4925 } else { 4926 __ flw(as_FloatRegister($dst$$reg), $constantaddress($con)); 4927 } 4928 %} 4929 4930 ins_pipe(fp_load_constant_s); 4931 %} 4932 4933 instruct loadConF0(fRegF dst, immF0 con) %{ 4934 match(Set dst con); 4935 4936 ins_cost(XFER_COST); 4937 4938 format %{ "fmv.w.x $dst, zr\t# float, #@loadConF0" %} 4939 4940 ins_encode %{ 4941 __ fmv_w_x(as_FloatRegister($dst$$reg), zr); 4942 %} 4943 4944 ins_pipe(fp_load_constant_s); 4945 %} 4946 4947 // Load Double Constant 4948 instruct loadConD(fRegD dst, immD con) %{ 4949 match(Set dst con); 4950 4951 ins_cost(LOAD_COST); 4952 format %{ 4953 "fld $dst, [$constantaddress]\t# load from constant table: double=$con, #@loadConD" 4954 %} 4955 4956 ins_encode %{ 4957 if (MacroAssembler::can_dp_imm_load($con$$constant)) { 4958 __ fli_d(as_FloatRegister($dst$$reg), $con$$constant); 4959 } else { 4960 __ fld(as_FloatRegister($dst$$reg), $constantaddress($con)); 4961 } 4962 %} 4963 4964 ins_pipe(fp_load_constant_d); 4965 %} 4966 4967 instruct loadConD0(fRegD dst, immD0 con) %{ 4968 match(Set dst con); 4969 4970 ins_cost(XFER_COST); 4971 4972 format %{ "fmv.d.x $dst, zr\t# double, #@loadConD0" %} 4973 4974 ins_encode %{ 4975 __ fmv_d_x(as_FloatRegister($dst$$reg), zr); 4976 %} 4977 4978 ins_pipe(fp_load_constant_d); 4979 %} 4980 4981 // Store Byte 4982 instruct storeB(iRegIorL2I src, memory mem) 4983 %{ 4984 match(Set mem (StoreB mem src)); 4985 4986 ins_cost(STORE_COST); 4987 format %{ "sb $src, $mem\t# byte, #@storeB" %} 4988 4989 ins_encode %{ 4990 __ sb(as_Register($src$$reg), Address(as_Register($mem$$base), $mem$$disp)); 4991 %} 4992 4993 ins_pipe(istore_reg_mem); 4994 %} 4995 4996 instruct storeimmB0(immI0 zero, memory mem) 4997 %{ 4998 match(Set mem (StoreB mem zero)); 4999 5000 ins_cost(STORE_COST); 5001 format %{ "sb zr, $mem\t# byte, #@storeimmB0" %} 5002 5003 ins_encode %{ 5004 __ sb(zr, Address(as_Register($mem$$base), $mem$$disp)); 5005 %} 5006 5007 ins_pipe(istore_mem); 5008 %} 5009 5010 // Store Char/Short 5011 instruct storeC(iRegIorL2I src, memory mem) 5012 %{ 5013 match(Set mem (StoreC mem src)); 5014 5015 ins_cost(STORE_COST); 5016 format %{ "sh $src, $mem\t# short, #@storeC" %} 5017 5018 ins_encode %{ 5019 __ sh(as_Register($src$$reg), Address(as_Register($mem$$base), $mem$$disp)); 5020 %} 5021 5022 ins_pipe(istore_reg_mem); 5023 %} 5024 5025 instruct storeimmC0(immI0 zero, memory mem) 5026 %{ 5027 match(Set mem (StoreC mem zero)); 5028 5029 ins_cost(STORE_COST); 5030 format %{ "sh zr, $mem\t# short, #@storeimmC0" %} 5031 5032 ins_encode %{ 5033 __ sh(zr, Address(as_Register($mem$$base), $mem$$disp)); 5034 %} 5035 5036 ins_pipe(istore_mem); 5037 %} 5038 5039 // Store Integer 5040 instruct storeI(iRegIorL2I src, memory mem) 5041 %{ 5042 match(Set mem(StoreI mem src)); 5043 5044 ins_cost(STORE_COST); 5045 format %{ "sw $src, $mem\t# int, #@storeI" %} 5046 5047 ins_encode %{ 5048 __ sw(as_Register($src$$reg), Address(as_Register($mem$$base), $mem$$disp)); 5049 %} 5050 5051 ins_pipe(istore_reg_mem); 5052 %} 5053 5054 instruct storeimmI0(immI0 zero, memory mem) 5055 %{ 5056 match(Set mem(StoreI mem zero)); 5057 5058 ins_cost(STORE_COST); 5059 format %{ "sw zr, $mem\t# int, #@storeimmI0" %} 5060 5061 ins_encode %{ 5062 __ sw(zr, Address(as_Register($mem$$base), $mem$$disp)); 5063 %} 5064 5065 ins_pipe(istore_mem); 5066 %} 5067 5068 // Store Long (64 bit signed) 5069 instruct storeL(iRegL src, memory mem) 5070 %{ 5071 match(Set mem (StoreL mem src)); 5072 5073 ins_cost(STORE_COST); 5074 format %{ "sd $src, $mem\t# long, #@storeL" %} 5075 5076 ins_encode %{ 5077 __ sd(as_Register($src$$reg), Address(as_Register($mem$$base), $mem$$disp)); 5078 %} 5079 5080 ins_pipe(istore_reg_mem); 5081 %} 5082 5083 // Store Long (64 bit signed) 5084 instruct storeimmL0(immL0 zero, memory mem) 5085 %{ 5086 match(Set mem (StoreL mem zero)); 5087 5088 ins_cost(STORE_COST); 5089 format %{ "sd zr, $mem\t# long, #@storeimmL0" %} 5090 5091 ins_encode %{ 5092 __ sd(zr, Address(as_Register($mem$$base), $mem$$disp)); 5093 %} 5094 5095 ins_pipe(istore_mem); 5096 %} 5097 5098 // Store Pointer 5099 instruct storeP(iRegP src, memory mem) 5100 %{ 5101 match(Set mem (StoreP mem src)); 5102 predicate(n->as_Store()->barrier_data() == 0); 5103 5104 ins_cost(STORE_COST); 5105 format %{ "sd $src, $mem\t# ptr, #@storeP" %} 5106 5107 ins_encode %{ 5108 __ sd(as_Register($src$$reg), Address(as_Register($mem$$base), $mem$$disp)); 5109 %} 5110 5111 ins_pipe(istore_reg_mem); 5112 %} 5113 5114 // Store Pointer 5115 instruct storeimmP0(immP0 zero, memory mem) 5116 %{ 5117 match(Set mem (StoreP mem zero)); 5118 predicate(n->as_Store()->barrier_data() == 0); 5119 5120 ins_cost(STORE_COST); 5121 format %{ "sd zr, $mem\t# ptr, #@storeimmP0" %} 5122 5123 ins_encode %{ 5124 __ sd(zr, Address(as_Register($mem$$base), $mem$$disp)); 5125 %} 5126 5127 ins_pipe(istore_mem); 5128 %} 5129 5130 // Store Compressed Pointer 5131 instruct storeN(iRegN src, memory mem) 5132 %{ 5133 predicate(n->as_Store()->barrier_data() == 0); 5134 match(Set mem (StoreN mem src)); 5135 5136 ins_cost(STORE_COST); 5137 format %{ "sw $src, $mem\t# compressed ptr, #@storeN" %} 5138 5139 ins_encode %{ 5140 __ sw(as_Register($src$$reg), Address(as_Register($mem$$base), $mem$$disp)); 5141 %} 5142 5143 ins_pipe(istore_reg_mem); 5144 %} 5145 5146 instruct storeImmN0(immN0 zero, memory mem) 5147 %{ 5148 predicate(n->as_Store()->barrier_data() == 0); 5149 match(Set mem (StoreN mem zero)); 5150 5151 ins_cost(STORE_COST); 5152 format %{ "sw zr, $mem\t# compressed ptr, #@storeImmN0" %} 5153 5154 ins_encode %{ 5155 __ sw(zr, Address(as_Register($mem$$base), $mem$$disp)); 5156 %} 5157 5158 ins_pipe(istore_reg_mem); 5159 %} 5160 5161 // Store Float 5162 instruct storeF(fRegF src, memory mem) 5163 %{ 5164 match(Set mem (StoreF mem src)); 5165 5166 ins_cost(STORE_COST); 5167 format %{ "fsw $src, $mem\t# float, #@storeF" %} 5168 5169 ins_encode %{ 5170 __ fsw(as_FloatRegister($src$$reg), Address(as_Register($mem$$base), $mem$$disp)); 5171 %} 5172 5173 ins_pipe(fp_store_reg_s); 5174 %} 5175 5176 // Store Double 5177 instruct storeD(fRegD src, memory mem) 5178 %{ 5179 match(Set mem (StoreD mem src)); 5180 5181 ins_cost(STORE_COST); 5182 format %{ "fsd $src, $mem\t# double, #@storeD" %} 5183 5184 ins_encode %{ 5185 __ fsd(as_FloatRegister($src$$reg), Address(as_Register($mem$$base), $mem$$disp)); 5186 %} 5187 5188 ins_pipe(fp_store_reg_d); 5189 %} 5190 5191 // Store Compressed Klass Pointer 5192 instruct storeNKlass(iRegN src, memory mem) 5193 %{ 5194 match(Set mem (StoreNKlass mem src)); 5195 5196 ins_cost(STORE_COST); 5197 format %{ "sw $src, $mem\t# compressed klass ptr, #@storeNKlass" %} 5198 5199 ins_encode %{ 5200 __ sw(as_Register($src$$reg), Address(as_Register($mem$$base), $mem$$disp)); 5201 %} 5202 5203 ins_pipe(istore_reg_mem); 5204 %} 5205 5206 // ============================================================================ 5207 // Prefetch instructions 5208 // Must be safe to execute with invalid address (cannot fault). 5209 5210 instruct prefetchalloc( memory mem ) %{ 5211 predicate(UseZicbop); 5212 match(PrefetchAllocation mem); 5213 5214 ins_cost(ALU_COST * 1); 5215 format %{ "prefetch_w $mem\t# Prefetch for write" %} 5216 5217 ins_encode %{ 5218 if (Assembler::is_simm12($mem$$disp)) { 5219 if (($mem$$disp & 0x1f) == 0) { 5220 __ prefetch_w(as_Register($mem$$base), $mem$$disp); 5221 } else { 5222 __ addi(t0, as_Register($mem$$base), $mem$$disp); 5223 __ prefetch_w(t0, 0); 5224 } 5225 } else { 5226 __ mv(t0, $mem$$disp); 5227 __ add(t0, as_Register($mem$$base), t0); 5228 __ prefetch_w(t0, 0); 5229 } 5230 %} 5231 5232 ins_pipe(iload_prefetch); 5233 %} 5234 5235 // ============================================================================ 5236 // Atomic operation instructions 5237 // 5238 5239 // standard CompareAndSwapX when we are using barriers 5240 // these have higher priority than the rules selected by a predicate 5241 instruct compareAndSwapB(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval, 5242 iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr) 5243 %{ 5244 match(Set res (CompareAndSwapB mem (Binary oldval newval))); 5245 5246 ins_cost(LOAD_COST + STORE_COST + ALU_COST * 10 + BRANCH_COST * 4); 5247 5248 effect(TEMP_DEF res, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3, KILL cr); 5249 5250 format %{ 5251 "cmpxchg $mem, $oldval, $newval\t# (byte) if $mem == $oldval then $mem <-- $newval\n\t" 5252 "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapB" 5253 %} 5254 5255 ins_encode %{ 5256 __ cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int8, 5257 Assembler::relaxed /* acquire */, Assembler::rl /* release */, $res$$Register, 5258 true /* result as bool */, $tmp1$$Register, $tmp2$$Register, $tmp3$$Register); 5259 %} 5260 5261 ins_pipe(pipe_slow); 5262 %} 5263 5264 instruct compareAndSwapS(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval, 5265 iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr) 5266 %{ 5267 match(Set res (CompareAndSwapS mem (Binary oldval newval))); 5268 5269 ins_cost(LOAD_COST + STORE_COST + ALU_COST * 11 + BRANCH_COST * 4); 5270 5271 effect(TEMP_DEF res, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3, KILL cr); 5272 5273 format %{ 5274 "cmpxchg $mem, $oldval, $newval\t# (short) if $mem == $oldval then $mem <-- $newval\n\t" 5275 "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapS" 5276 %} 5277 5278 ins_encode %{ 5279 __ cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int16, 5280 Assembler::relaxed /* acquire */, Assembler::rl /* release */, $res$$Register, 5281 true /* result as bool */, $tmp1$$Register, $tmp2$$Register, $tmp3$$Register); 5282 %} 5283 5284 ins_pipe(pipe_slow); 5285 %} 5286 5287 instruct compareAndSwapI(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval) 5288 %{ 5289 match(Set res (CompareAndSwapI mem (Binary oldval newval))); 5290 5291 ins_cost(LOAD_COST + STORE_COST + ALU_COST * 6 + BRANCH_COST * 4); 5292 5293 format %{ 5294 "cmpxchg $mem, $oldval, $newval\t# (int) if $mem == $oldval then $mem <-- $newval\n\t" 5295 "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapI" 5296 %} 5297 5298 ins_encode(riscv_enc_cmpxchgw(res, mem, oldval, newval)); 5299 5300 ins_pipe(pipe_slow); 5301 %} 5302 5303 instruct compareAndSwapL(iRegINoSp res, indirect mem, iRegL oldval, iRegL newval) 5304 %{ 5305 match(Set res (CompareAndSwapL mem (Binary oldval newval))); 5306 5307 ins_cost(LOAD_COST + STORE_COST + ALU_COST * 6 + BRANCH_COST * 4); 5308 5309 format %{ 5310 "cmpxchg $mem, $oldval, $newval\t# (long) if $mem == $oldval then $mem <-- $newval\n\t" 5311 "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapL" 5312 %} 5313 5314 ins_encode(riscv_enc_cmpxchg(res, mem, oldval, newval)); 5315 5316 ins_pipe(pipe_slow); 5317 %} 5318 5319 instruct compareAndSwapP(iRegINoSp res, indirect mem, iRegP oldval, iRegP newval) 5320 %{ 5321 predicate(n->as_LoadStore()->barrier_data() == 0); 5322 5323 match(Set res (CompareAndSwapP mem (Binary oldval newval))); 5324 5325 ins_cost(LOAD_COST + STORE_COST + ALU_COST * 6 + BRANCH_COST * 4); 5326 5327 format %{ 5328 "cmpxchg $mem, $oldval, $newval\t# (ptr) if $mem == $oldval then $mem <-- $newval\n\t" 5329 "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapP" 5330 %} 5331 5332 ins_encode(riscv_enc_cmpxchg(res, mem, oldval, newval)); 5333 5334 ins_pipe(pipe_slow); 5335 %} 5336 5337 instruct compareAndSwapN(iRegINoSp res, indirect mem, iRegN oldval, iRegN newval) 5338 %{ 5339 predicate(n->as_LoadStore()->barrier_data() == 0); 5340 match(Set res (CompareAndSwapN mem (Binary oldval newval))); 5341 5342 ins_cost(LOAD_COST + STORE_COST + ALU_COST * 8 + BRANCH_COST * 4); 5343 5344 format %{ 5345 "cmpxchg $mem, $oldval, $newval\t# (narrow oop) if $mem == $oldval then $mem <-- $newval\n\t" 5346 "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapN" 5347 %} 5348 5349 ins_encode(riscv_enc_cmpxchgn(res, mem, oldval, newval)); 5350 5351 ins_pipe(pipe_slow); 5352 %} 5353 5354 // alternative CompareAndSwapX when we are eliding barriers 5355 instruct compareAndSwapBAcq(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval, 5356 iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr) 5357 %{ 5358 predicate(needs_acquiring_load_reserved(n)); 5359 5360 match(Set res (CompareAndSwapB mem (Binary oldval newval))); 5361 5362 ins_cost(LOAD_COST + STORE_COST + ALU_COST * 10 + BRANCH_COST * 4); 5363 5364 effect(TEMP_DEF res, KILL cr, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3); 5365 5366 format %{ 5367 "cmpxchg_acq $mem, $oldval, $newval\t# (byte) if $mem == $oldval then $mem <-- $newval\n\t" 5368 "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapBAcq" 5369 %} 5370 5371 ins_encode %{ 5372 __ cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int8, 5373 Assembler::aq /* acquire */, Assembler::rl /* release */, $res$$Register, 5374 true /* result as bool */, $tmp1$$Register, $tmp2$$Register, $tmp3$$Register); 5375 %} 5376 5377 ins_pipe(pipe_slow); 5378 %} 5379 5380 instruct compareAndSwapSAcq(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval, 5381 iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr) 5382 %{ 5383 predicate(needs_acquiring_load_reserved(n)); 5384 5385 match(Set res (CompareAndSwapS mem (Binary oldval newval))); 5386 5387 ins_cost(LOAD_COST + STORE_COST + ALU_COST * 11 + BRANCH_COST * 4); 5388 5389 effect(TEMP_DEF res, KILL cr, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3); 5390 5391 format %{ 5392 "cmpxchg_acq $mem, $oldval, $newval\t# (short) if $mem == $oldval then $mem <-- $newval\n\t" 5393 "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapSAcq" 5394 %} 5395 5396 ins_encode %{ 5397 __ cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int16, 5398 Assembler::aq /* acquire */, Assembler::rl /* release */, $res$$Register, 5399 true /* result as bool */, $tmp1$$Register, $tmp2$$Register, $tmp3$$Register); 5400 %} 5401 5402 ins_pipe(pipe_slow); 5403 %} 5404 5405 instruct compareAndSwapIAcq(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval) 5406 %{ 5407 predicate(needs_acquiring_load_reserved(n)); 5408 5409 match(Set res (CompareAndSwapI mem (Binary oldval newval))); 5410 5411 ins_cost(LOAD_COST + STORE_COST + ALU_COST * 6 + BRANCH_COST * 4); 5412 5413 format %{ 5414 "cmpxchg_acq $mem, $oldval, $newval\t# (int) if $mem == $oldval then $mem <-- $newval\n\t" 5415 "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapIAcq" 5416 %} 5417 5418 ins_encode(riscv_enc_cmpxchgw_acq(res, mem, oldval, newval)); 5419 5420 ins_pipe(pipe_slow); 5421 %} 5422 5423 instruct compareAndSwapLAcq(iRegINoSp res, indirect mem, iRegL oldval, iRegL newval) 5424 %{ 5425 predicate(needs_acquiring_load_reserved(n)); 5426 5427 match(Set res (CompareAndSwapL mem (Binary oldval newval))); 5428 5429 ins_cost(LOAD_COST + STORE_COST + ALU_COST * 6 + BRANCH_COST * 4); 5430 5431 format %{ 5432 "cmpxchg_acq $mem, $oldval, $newval\t# (long) if $mem == $oldval then $mem <-- $newval\n\t" 5433 "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapLAcq" 5434 %} 5435 5436 ins_encode(riscv_enc_cmpxchg_acq(res, mem, oldval, newval)); 5437 5438 ins_pipe(pipe_slow); 5439 %} 5440 5441 instruct compareAndSwapPAcq(iRegINoSp res, indirect mem, iRegP oldval, iRegP newval) 5442 %{ 5443 predicate(needs_acquiring_load_reserved(n) && (n->as_LoadStore()->barrier_data() == 0)); 5444 5445 match(Set res (CompareAndSwapP mem (Binary oldval newval))); 5446 5447 ins_cost(LOAD_COST + STORE_COST + ALU_COST * 6 + BRANCH_COST * 4); 5448 5449 format %{ 5450 "cmpxchg_acq $mem, $oldval, $newval\t# (ptr) if $mem == $oldval then $mem <-- $newval\n\t" 5451 "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapPAcq" 5452 %} 5453 5454 ins_encode(riscv_enc_cmpxchg_acq(res, mem, oldval, newval)); 5455 5456 ins_pipe(pipe_slow); 5457 %} 5458 5459 instruct compareAndSwapNAcq(iRegINoSp res, indirect mem, iRegN oldval, iRegN newval) 5460 %{ 5461 predicate(needs_acquiring_load_reserved(n) && n->as_LoadStore()->barrier_data() == 0); 5462 5463 match(Set res (CompareAndSwapN mem (Binary oldval newval))); 5464 5465 ins_cost(LOAD_COST + STORE_COST + ALU_COST * 8 + BRANCH_COST * 4); 5466 5467 format %{ 5468 "cmpxchg_acq $mem, $oldval, $newval\t# (narrow oop) if $mem == $oldval then $mem <-- $newval\n\t" 5469 "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapNAcq" 5470 %} 5471 5472 ins_encode(riscv_enc_cmpxchgn_acq(res, mem, oldval, newval)); 5473 5474 ins_pipe(pipe_slow); 5475 %} 5476 5477 // Sundry CAS operations. Note that release is always true, 5478 // regardless of the memory ordering of the CAS. This is because we 5479 // need the volatile case to be sequentially consistent but there is 5480 // no trailing StoreLoad barrier emitted by C2. Unfortunately we 5481 // can't check the type of memory ordering here, so we always emit a 5482 // sc_d(w) with rl bit set. 5483 instruct compareAndExchangeB(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval, 5484 iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr) 5485 %{ 5486 match(Set res (CompareAndExchangeB mem (Binary oldval newval))); 5487 5488 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST * 5); 5489 5490 effect(TEMP_DEF res, KILL cr, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3); 5491 5492 format %{ 5493 "cmpxchg $res = $mem, $oldval, $newval\t# (byte, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeB" 5494 %} 5495 5496 ins_encode %{ 5497 __ cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int8, 5498 /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register, 5499 /*result_as_bool*/ false, $tmp1$$Register, $tmp2$$Register, $tmp3$$Register); 5500 %} 5501 5502 ins_pipe(pipe_slow); 5503 %} 5504 5505 instruct compareAndExchangeS(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval, 5506 iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr) 5507 %{ 5508 match(Set res (CompareAndExchangeS mem (Binary oldval newval))); 5509 5510 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST * 6); 5511 5512 effect(TEMP_DEF res, KILL cr, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3); 5513 5514 format %{ 5515 "cmpxchg $res = $mem, $oldval, $newval\t# (short, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeS" 5516 %} 5517 5518 ins_encode %{ 5519 __ cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int16, 5520 /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register, 5521 /*result_as_bool*/ false, $tmp1$$Register, $tmp2$$Register, $tmp3$$Register); 5522 %} 5523 5524 ins_pipe(pipe_slow); 5525 %} 5526 5527 instruct compareAndExchangeI(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval) 5528 %{ 5529 match(Set res (CompareAndExchangeI mem (Binary oldval newval))); 5530 5531 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST); 5532 5533 effect(TEMP_DEF res); 5534 5535 format %{ 5536 "cmpxchg $res = $mem, $oldval, $newval\t# (int, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeI" 5537 %} 5538 5539 ins_encode %{ 5540 __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int32, 5541 /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register); 5542 %} 5543 5544 ins_pipe(pipe_slow); 5545 %} 5546 5547 instruct compareAndExchangeL(iRegLNoSp res, indirect mem, iRegL oldval, iRegL newval) 5548 %{ 5549 match(Set res (CompareAndExchangeL mem (Binary oldval newval))); 5550 5551 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST); 5552 5553 effect(TEMP_DEF res); 5554 5555 format %{ 5556 "cmpxchg $res = $mem, $oldval, $newval\t# (long, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeL" 5557 %} 5558 5559 ins_encode %{ 5560 __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int64, 5561 /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register); 5562 %} 5563 5564 ins_pipe(pipe_slow); 5565 %} 5566 5567 instruct compareAndExchangeN(iRegNNoSp res, indirect mem, iRegN oldval, iRegN newval) 5568 %{ 5569 predicate(n->as_LoadStore()->barrier_data() == 0); 5570 match(Set res (CompareAndExchangeN mem (Binary oldval newval))); 5571 5572 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST * 3); 5573 5574 effect(TEMP_DEF res); 5575 5576 format %{ 5577 "cmpxchg $res = $mem, $oldval, $newval\t# (narrow oop, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeN" 5578 %} 5579 5580 ins_encode %{ 5581 __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::uint32, 5582 /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register); 5583 %} 5584 5585 ins_pipe(pipe_slow); 5586 %} 5587 5588 instruct compareAndExchangeP(iRegPNoSp res, indirect mem, iRegP oldval, iRegP newval) 5589 %{ 5590 predicate(n->as_LoadStore()->barrier_data() == 0); 5591 match(Set res (CompareAndExchangeP mem (Binary oldval newval))); 5592 5593 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST); 5594 5595 effect(TEMP_DEF res); 5596 5597 format %{ 5598 "cmpxchg $res = $mem, $oldval, $newval\t# (ptr, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeP" 5599 %} 5600 5601 ins_encode %{ 5602 __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int64, 5603 /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register); 5604 %} 5605 5606 ins_pipe(pipe_slow); 5607 %} 5608 5609 instruct compareAndExchangeBAcq(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval, 5610 iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr) 5611 %{ 5612 predicate(needs_acquiring_load_reserved(n)); 5613 5614 match(Set res (CompareAndExchangeB mem (Binary oldval newval))); 5615 5616 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST * 5); 5617 5618 effect(TEMP_DEF res, KILL cr, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3); 5619 5620 format %{ 5621 "cmpxchg_acq $res = $mem, $oldval, $newval\t# (byte, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeBAcq" 5622 %} 5623 5624 ins_encode %{ 5625 __ cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int8, 5626 /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register, 5627 /*result_as_bool*/ false, $tmp1$$Register, $tmp2$$Register, $tmp3$$Register); 5628 %} 5629 5630 ins_pipe(pipe_slow); 5631 %} 5632 5633 instruct compareAndExchangeSAcq(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval, 5634 iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr) 5635 %{ 5636 predicate(needs_acquiring_load_reserved(n)); 5637 5638 match(Set res (CompareAndExchangeS mem (Binary oldval newval))); 5639 5640 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST * 6); 5641 5642 effect(TEMP_DEF res, KILL cr, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3); 5643 5644 format %{ 5645 "cmpxchg_acq $res = $mem, $oldval, $newval\t# (short, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeSAcq" 5646 %} 5647 5648 ins_encode %{ 5649 __ cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int16, 5650 /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register, 5651 /*result_as_bool*/ false, $tmp1$$Register, $tmp2$$Register, $tmp3$$Register); 5652 %} 5653 5654 ins_pipe(pipe_slow); 5655 %} 5656 5657 instruct compareAndExchangeIAcq(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval) 5658 %{ 5659 predicate(needs_acquiring_load_reserved(n)); 5660 5661 match(Set res (CompareAndExchangeI mem (Binary oldval newval))); 5662 5663 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST); 5664 5665 effect(TEMP_DEF res); 5666 5667 format %{ 5668 "cmpxchg_acq $res = $mem, $oldval, $newval\t# (int, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeIAcq" 5669 %} 5670 5671 ins_encode %{ 5672 __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int32, 5673 /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register); 5674 %} 5675 5676 ins_pipe(pipe_slow); 5677 %} 5678 5679 instruct compareAndExchangeLAcq(iRegLNoSp res, indirect mem, iRegL oldval, iRegL newval) 5680 %{ 5681 predicate(needs_acquiring_load_reserved(n)); 5682 5683 match(Set res (CompareAndExchangeL mem (Binary oldval newval))); 5684 5685 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST); 5686 5687 effect(TEMP_DEF res); 5688 5689 format %{ 5690 "cmpxchg_acq $res = $mem, $oldval, $newval\t# (long, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeLAcq" 5691 %} 5692 5693 ins_encode %{ 5694 __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int64, 5695 /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register); 5696 %} 5697 5698 ins_pipe(pipe_slow); 5699 %} 5700 5701 instruct compareAndExchangeNAcq(iRegNNoSp res, indirect mem, iRegN oldval, iRegN newval) 5702 %{ 5703 predicate(needs_acquiring_load_reserved(n) && n->as_LoadStore()->barrier_data() == 0); 5704 5705 match(Set res (CompareAndExchangeN mem (Binary oldval newval))); 5706 5707 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST); 5708 5709 effect(TEMP_DEF res); 5710 5711 format %{ 5712 "cmpxchg_acq $res = $mem, $oldval, $newval\t# (narrow oop, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeNAcq" 5713 %} 5714 5715 ins_encode %{ 5716 __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::uint32, 5717 /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register); 5718 %} 5719 5720 ins_pipe(pipe_slow); 5721 %} 5722 5723 instruct compareAndExchangePAcq(iRegPNoSp res, indirect mem, iRegP oldval, iRegP newval) 5724 %{ 5725 predicate(needs_acquiring_load_reserved(n) && (n->as_LoadStore()->barrier_data() == 0)); 5726 5727 match(Set res (CompareAndExchangeP mem (Binary oldval newval))); 5728 5729 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST); 5730 5731 effect(TEMP_DEF res); 5732 5733 format %{ 5734 "cmpxchg_acq $res = $mem, $oldval, $newval\t# (ptr, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangePAcq" 5735 %} 5736 5737 ins_encode %{ 5738 __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int64, 5739 /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register); 5740 %} 5741 5742 ins_pipe(pipe_slow); 5743 %} 5744 5745 instruct weakCompareAndSwapB(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval, 5746 iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr) 5747 %{ 5748 match(Set res (WeakCompareAndSwapB mem (Binary oldval newval))); 5749 5750 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 6); 5751 5752 effect(TEMP_DEF res, KILL cr, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3); 5753 5754 format %{ 5755 "weak_cmpxchg $mem, $oldval, $newval\t# (byte, weak) if $mem == $oldval then $mem <-- $newval\n\t" 5756 "# $res == 1 when success, #@weakCompareAndSwapB" 5757 %} 5758 5759 ins_encode %{ 5760 __ weak_cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int8, 5761 /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register, 5762 $tmp1$$Register, $tmp2$$Register, $tmp3$$Register); 5763 %} 5764 5765 ins_pipe(pipe_slow); 5766 %} 5767 5768 instruct weakCompareAndSwapS(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval, 5769 iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr) 5770 %{ 5771 match(Set res (WeakCompareAndSwapS mem (Binary oldval newval))); 5772 5773 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 7); 5774 5775 effect(TEMP_DEF res, KILL cr, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3); 5776 5777 format %{ 5778 "weak_cmpxchg $mem, $oldval, $newval\t# (short, weak) if $mem == $oldval then $mem <-- $newval\n\t" 5779 "# $res == 1 when success, #@weakCompareAndSwapS" 5780 %} 5781 5782 ins_encode %{ 5783 __ weak_cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int16, 5784 /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register, 5785 $tmp1$$Register, $tmp2$$Register, $tmp3$$Register); 5786 %} 5787 5788 ins_pipe(pipe_slow); 5789 %} 5790 5791 instruct weakCompareAndSwapI(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval) 5792 %{ 5793 match(Set res (WeakCompareAndSwapI mem (Binary oldval newval))); 5794 5795 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 2); 5796 5797 format %{ 5798 "weak_cmpxchg $mem, $oldval, $newval\t# (int, weak) if $mem == $oldval then $mem <-- $newval\n\t" 5799 "# $res == 1 when success, #@weakCompareAndSwapI" 5800 %} 5801 5802 ins_encode %{ 5803 __ weak_cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int32, 5804 /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register); 5805 %} 5806 5807 ins_pipe(pipe_slow); 5808 %} 5809 5810 instruct weakCompareAndSwapL(iRegINoSp res, indirect mem, iRegL oldval, iRegL newval) 5811 %{ 5812 match(Set res (WeakCompareAndSwapL mem (Binary oldval newval))); 5813 5814 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 2); 5815 5816 format %{ 5817 "weak_cmpxchg $mem, $oldval, $newval\t# (long, weak) if $mem == $oldval then $mem <-- $newval\n\t" 5818 "# $res == 1 when success, #@weakCompareAndSwapL" 5819 %} 5820 5821 ins_encode %{ 5822 __ weak_cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int64, 5823 /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register); 5824 %} 5825 5826 ins_pipe(pipe_slow); 5827 %} 5828 5829 instruct weakCompareAndSwapN(iRegINoSp res, indirect mem, iRegN oldval, iRegN newval) 5830 %{ 5831 predicate(n->as_LoadStore()->barrier_data() == 0); 5832 match(Set res (WeakCompareAndSwapN mem (Binary oldval newval))); 5833 5834 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 4); 5835 5836 format %{ 5837 "weak_cmpxchg $mem, $oldval, $newval\t# (narrow oop, weak) if $mem == $oldval then $mem <-- $newval\n\t" 5838 "# $res == 1 when success, #@weakCompareAndSwapN" 5839 %} 5840 5841 ins_encode %{ 5842 __ weak_cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::uint32, 5843 /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register); 5844 %} 5845 5846 ins_pipe(pipe_slow); 5847 %} 5848 5849 instruct weakCompareAndSwapP(iRegINoSp res, indirect mem, iRegP oldval, iRegP newval) 5850 %{ 5851 predicate(n->as_LoadStore()->barrier_data() == 0); 5852 match(Set res (WeakCompareAndSwapP mem (Binary oldval newval))); 5853 5854 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 2); 5855 5856 format %{ 5857 "weak_cmpxchg $mem, $oldval, $newval\t# (ptr, weak) if $mem == $oldval then $mem <-- $newval\n\t" 5858 "# $res == 1 when success, #@weakCompareAndSwapP" 5859 %} 5860 5861 ins_encode %{ 5862 __ weak_cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int64, 5863 /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register); 5864 %} 5865 5866 ins_pipe(pipe_slow); 5867 %} 5868 5869 instruct weakCompareAndSwapBAcq(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval, 5870 iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr) 5871 %{ 5872 predicate(needs_acquiring_load_reserved(n)); 5873 5874 match(Set res (WeakCompareAndSwapB mem (Binary oldval newval))); 5875 5876 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 6); 5877 5878 effect(TEMP_DEF res, KILL cr, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3); 5879 5880 format %{ 5881 "weak_cmpxchg_acq $mem, $oldval, $newval\t# (byte, weak) if $mem == $oldval then $mem <-- $newval\n\t" 5882 "# $res == 1 when success, #@weakCompareAndSwapBAcq" 5883 %} 5884 5885 ins_encode %{ 5886 __ weak_cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int8, 5887 /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register, 5888 $tmp1$$Register, $tmp2$$Register, $tmp3$$Register); 5889 %} 5890 5891 ins_pipe(pipe_slow); 5892 %} 5893 5894 instruct weakCompareAndSwapSAcq(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval, 5895 iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr) 5896 %{ 5897 predicate(needs_acquiring_load_reserved(n)); 5898 5899 match(Set res (WeakCompareAndSwapS mem (Binary oldval newval))); 5900 5901 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 7); 5902 5903 effect(TEMP_DEF res, KILL cr, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3); 5904 5905 format %{ 5906 "weak_cmpxchg_acq $mem, $oldval, $newval\t# (short, weak) if $mem == $oldval then $mem <-- $newval\n\t" 5907 "# $res == 1 when success, #@weakCompareAndSwapSAcq" 5908 %} 5909 5910 ins_encode %{ 5911 __ weak_cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int16, 5912 /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register, 5913 $tmp1$$Register, $tmp2$$Register, $tmp3$$Register); 5914 %} 5915 5916 ins_pipe(pipe_slow); 5917 %} 5918 5919 instruct weakCompareAndSwapIAcq(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval) 5920 %{ 5921 predicate(needs_acquiring_load_reserved(n)); 5922 5923 match(Set res (WeakCompareAndSwapI mem (Binary oldval newval))); 5924 5925 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 2); 5926 5927 format %{ 5928 "weak_cmpxchg_acq $mem, $oldval, $newval\t# (int, weak) if $mem == $oldval then $mem <-- $newval\n\t" 5929 "# $res == 1 when success, #@weakCompareAndSwapIAcq" 5930 %} 5931 5932 ins_encode %{ 5933 __ weak_cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int32, 5934 /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register); 5935 %} 5936 5937 ins_pipe(pipe_slow); 5938 %} 5939 5940 instruct weakCompareAndSwapLAcq(iRegINoSp res, indirect mem, iRegL oldval, iRegL newval) 5941 %{ 5942 predicate(needs_acquiring_load_reserved(n)); 5943 5944 match(Set res (WeakCompareAndSwapL mem (Binary oldval newval))); 5945 5946 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 2); 5947 5948 format %{ 5949 "weak_cmpxchg_acq $mem, $oldval, $newval\t# (long, weak) if $mem == $oldval then $mem <-- $newval\n\t" 5950 "# $res == 1 when success, #@weakCompareAndSwapLAcq" 5951 %} 5952 5953 ins_encode %{ 5954 __ weak_cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int64, 5955 /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register); 5956 %} 5957 5958 ins_pipe(pipe_slow); 5959 %} 5960 5961 instruct weakCompareAndSwapNAcq(iRegINoSp res, indirect mem, iRegN oldval, iRegN newval) 5962 %{ 5963 predicate(needs_acquiring_load_reserved(n) && n->as_LoadStore()->barrier_data() == 0); 5964 5965 match(Set res (WeakCompareAndSwapN mem (Binary oldval newval))); 5966 5967 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 4); 5968 5969 format %{ 5970 "weak_cmpxchg_acq $mem, $oldval, $newval\t# (narrow oop, weak) if $mem == $oldval then $mem <-- $newval\n\t" 5971 "# $res == 1 when success, #@weakCompareAndSwapNAcq" 5972 %} 5973 5974 ins_encode %{ 5975 __ weak_cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::uint32, 5976 /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register); 5977 %} 5978 5979 ins_pipe(pipe_slow); 5980 %} 5981 5982 instruct weakCompareAndSwapPAcq(iRegINoSp res, indirect mem, iRegP oldval, iRegP newval) 5983 %{ 5984 predicate(needs_acquiring_load_reserved(n) && (n->as_LoadStore()->barrier_data() == 0)); 5985 5986 match(Set res (WeakCompareAndSwapP mem (Binary oldval newval))); 5987 5988 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 2); 5989 5990 format %{ 5991 "weak_cmpxchg_acq $mem, $oldval, $newval\t# (ptr, weak) if $mem == $oldval then $mem <-- $newval\n\t" 5992 "\t# $res == 1 when success, #@weakCompareAndSwapPAcq" 5993 %} 5994 5995 ins_encode %{ 5996 __ weak_cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int64, 5997 /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register); 5998 %} 5999 6000 ins_pipe(pipe_slow); 6001 %} 6002 6003 instruct get_and_setI(indirect mem, iRegI newv, iRegINoSp prev) 6004 %{ 6005 match(Set prev (GetAndSetI mem newv)); 6006 6007 ins_cost(ALU_COST); 6008 6009 format %{ "atomic_xchgw $prev, $newv, [$mem]\t#@get_and_setI" %} 6010 6011 ins_encode %{ 6012 __ atomic_xchgw($prev$$Register, $newv$$Register, as_Register($mem$$base)); 6013 %} 6014 6015 ins_pipe(pipe_serial); 6016 %} 6017 6018 instruct get_and_setL(indirect mem, iRegL newv, iRegLNoSp prev) 6019 %{ 6020 match(Set prev (GetAndSetL mem newv)); 6021 6022 ins_cost(ALU_COST); 6023 6024 format %{ "atomic_xchg $prev, $newv, [$mem]\t#@get_and_setL" %} 6025 6026 ins_encode %{ 6027 __ atomic_xchg($prev$$Register, $newv$$Register, as_Register($mem$$base)); 6028 %} 6029 6030 ins_pipe(pipe_serial); 6031 %} 6032 6033 instruct get_and_setN(indirect mem, iRegN newv, iRegINoSp prev) 6034 %{ 6035 predicate(n->as_LoadStore()->barrier_data() == 0); 6036 6037 match(Set prev (GetAndSetN mem newv)); 6038 6039 ins_cost(ALU_COST); 6040 6041 format %{ "atomic_xchgwu $prev, $newv, [$mem]\t#@get_and_setN" %} 6042 6043 ins_encode %{ 6044 __ atomic_xchgwu($prev$$Register, $newv$$Register, as_Register($mem$$base)); 6045 %} 6046 6047 ins_pipe(pipe_serial); 6048 %} 6049 6050 instruct get_and_setP(indirect mem, iRegP newv, iRegPNoSp prev) 6051 %{ 6052 predicate(n->as_LoadStore()->barrier_data() == 0); 6053 match(Set prev (GetAndSetP mem newv)); 6054 6055 ins_cost(ALU_COST); 6056 6057 format %{ "atomic_xchg $prev, $newv, [$mem]\t#@get_and_setP" %} 6058 6059 ins_encode %{ 6060 __ atomic_xchg($prev$$Register, $newv$$Register, as_Register($mem$$base)); 6061 %} 6062 6063 ins_pipe(pipe_serial); 6064 %} 6065 6066 instruct get_and_setIAcq(indirect mem, iRegI newv, iRegINoSp prev) 6067 %{ 6068 predicate(needs_acquiring_load_reserved(n)); 6069 6070 match(Set prev (GetAndSetI mem newv)); 6071 6072 ins_cost(ALU_COST); 6073 6074 format %{ "atomic_xchgw_acq $prev, $newv, [$mem]\t#@get_and_setIAcq" %} 6075 6076 ins_encode %{ 6077 __ atomic_xchgalw($prev$$Register, $newv$$Register, as_Register($mem$$base)); 6078 %} 6079 6080 ins_pipe(pipe_serial); 6081 %} 6082 6083 instruct get_and_setLAcq(indirect mem, iRegL newv, iRegLNoSp prev) 6084 %{ 6085 predicate(needs_acquiring_load_reserved(n)); 6086 6087 match(Set prev (GetAndSetL mem newv)); 6088 6089 ins_cost(ALU_COST); 6090 6091 format %{ "atomic_xchg_acq $prev, $newv, [$mem]\t#@get_and_setLAcq" %} 6092 6093 ins_encode %{ 6094 __ atomic_xchgal($prev$$Register, $newv$$Register, as_Register($mem$$base)); 6095 %} 6096 6097 ins_pipe(pipe_serial); 6098 %} 6099 6100 instruct get_and_setNAcq(indirect mem, iRegN newv, iRegINoSp prev) 6101 %{ 6102 predicate(needs_acquiring_load_reserved(n) && n->as_LoadStore()->barrier_data() == 0); 6103 6104 match(Set prev (GetAndSetN mem newv)); 6105 6106 ins_cost(ALU_COST); 6107 6108 format %{ "atomic_xchgwu_acq $prev, $newv, [$mem]\t#@get_and_setNAcq" %} 6109 6110 ins_encode %{ 6111 __ atomic_xchgalwu($prev$$Register, $newv$$Register, as_Register($mem$$base)); 6112 %} 6113 6114 ins_pipe(pipe_serial); 6115 %} 6116 6117 instruct get_and_setPAcq(indirect mem, iRegP newv, iRegPNoSp prev) 6118 %{ 6119 predicate(needs_acquiring_load_reserved(n) && (n->as_LoadStore()->barrier_data() == 0)); 6120 6121 match(Set prev (GetAndSetP mem newv)); 6122 6123 ins_cost(ALU_COST); 6124 6125 format %{ "atomic_xchg_acq $prev, $newv, [$mem]\t#@get_and_setPAcq" %} 6126 6127 ins_encode %{ 6128 __ atomic_xchgal($prev$$Register, $newv$$Register, as_Register($mem$$base)); 6129 %} 6130 6131 ins_pipe(pipe_serial); 6132 %} 6133 6134 instruct get_and_addL(indirect mem, iRegLNoSp newval, iRegL incr) 6135 %{ 6136 match(Set newval (GetAndAddL mem incr)); 6137 6138 ins_cost(ALU_COST); 6139 6140 format %{ "get_and_addL $newval, [$mem], $incr\t#@get_and_addL" %} 6141 6142 ins_encode %{ 6143 __ atomic_add($newval$$Register, $incr$$Register, as_Register($mem$$base)); 6144 %} 6145 6146 ins_pipe(pipe_serial); 6147 %} 6148 6149 instruct get_and_addL_no_res(indirect mem, Universe dummy, iRegL incr) 6150 %{ 6151 predicate(n->as_LoadStore()->result_not_used()); 6152 6153 match(Set dummy (GetAndAddL mem incr)); 6154 6155 ins_cost(ALU_COST); 6156 6157 format %{ "get_and_addL [$mem], $incr\t#@get_and_addL_no_res" %} 6158 6159 ins_encode %{ 6160 __ atomic_add(noreg, $incr$$Register, as_Register($mem$$base)); 6161 %} 6162 6163 ins_pipe(pipe_serial); 6164 %} 6165 6166 instruct get_and_addLi(indirect mem, iRegLNoSp newval, immLAdd incr) 6167 %{ 6168 match(Set newval (GetAndAddL mem incr)); 6169 6170 ins_cost(ALU_COST); 6171 6172 format %{ "get_and_addL $newval, [$mem], $incr\t#@get_and_addLi" %} 6173 6174 ins_encode %{ 6175 __ atomic_add($newval$$Register, $incr$$constant, as_Register($mem$$base)); 6176 %} 6177 6178 ins_pipe(pipe_serial); 6179 %} 6180 6181 instruct get_and_addLi_no_res(indirect mem, Universe dummy, immLAdd incr) 6182 %{ 6183 predicate(n->as_LoadStore()->result_not_used()); 6184 6185 match(Set dummy (GetAndAddL mem incr)); 6186 6187 ins_cost(ALU_COST); 6188 6189 format %{ "get_and_addL [$mem], $incr\t#@get_and_addLi_no_res" %} 6190 6191 ins_encode %{ 6192 __ atomic_add(noreg, $incr$$constant, as_Register($mem$$base)); 6193 %} 6194 6195 ins_pipe(pipe_serial); 6196 %} 6197 6198 instruct get_and_addI(indirect mem, iRegINoSp newval, iRegIorL2I incr) 6199 %{ 6200 match(Set newval (GetAndAddI mem incr)); 6201 6202 ins_cost(ALU_COST); 6203 6204 format %{ "get_and_addI $newval, [$mem], $incr\t#@get_and_addI" %} 6205 6206 ins_encode %{ 6207 __ atomic_addw($newval$$Register, $incr$$Register, as_Register($mem$$base)); 6208 %} 6209 6210 ins_pipe(pipe_serial); 6211 %} 6212 6213 instruct get_and_addI_no_res(indirect mem, Universe dummy, iRegIorL2I incr) 6214 %{ 6215 predicate(n->as_LoadStore()->result_not_used()); 6216 6217 match(Set dummy (GetAndAddI mem incr)); 6218 6219 ins_cost(ALU_COST); 6220 6221 format %{ "get_and_addI [$mem], $incr\t#@get_and_addI_no_res" %} 6222 6223 ins_encode %{ 6224 __ atomic_addw(noreg, $incr$$Register, as_Register($mem$$base)); 6225 %} 6226 6227 ins_pipe(pipe_serial); 6228 %} 6229 6230 instruct get_and_addIi(indirect mem, iRegINoSp newval, immIAdd incr) 6231 %{ 6232 match(Set newval (GetAndAddI mem incr)); 6233 6234 ins_cost(ALU_COST); 6235 6236 format %{ "get_and_addI $newval, [$mem], $incr\t#@get_and_addIi" %} 6237 6238 ins_encode %{ 6239 __ atomic_addw($newval$$Register, $incr$$constant, as_Register($mem$$base)); 6240 %} 6241 6242 ins_pipe(pipe_serial); 6243 %} 6244 6245 instruct get_and_addIi_no_res(indirect mem, Universe dummy, immIAdd incr) 6246 %{ 6247 predicate(n->as_LoadStore()->result_not_used()); 6248 6249 match(Set dummy (GetAndAddI mem incr)); 6250 6251 ins_cost(ALU_COST); 6252 6253 format %{ "get_and_addI [$mem], $incr\t#@get_and_addIi_no_res" %} 6254 6255 ins_encode %{ 6256 __ atomic_addw(noreg, $incr$$constant, as_Register($mem$$base)); 6257 %} 6258 6259 ins_pipe(pipe_serial); 6260 %} 6261 6262 instruct get_and_addLAcq(indirect mem, iRegLNoSp newval, iRegL incr) 6263 %{ 6264 predicate(needs_acquiring_load_reserved(n)); 6265 6266 match(Set newval (GetAndAddL mem incr)); 6267 6268 ins_cost(ALU_COST); 6269 6270 format %{ "get_and_addL_acq $newval, [$mem], $incr\t#@get_and_addLAcq" %} 6271 6272 ins_encode %{ 6273 __ atomic_addal($newval$$Register, $incr$$Register, as_Register($mem$$base)); 6274 %} 6275 6276 ins_pipe(pipe_serial); 6277 %} 6278 6279 instruct get_and_addL_no_resAcq(indirect mem, Universe dummy, iRegL incr) %{ 6280 predicate(n->as_LoadStore()->result_not_used() && needs_acquiring_load_reserved(n)); 6281 6282 match(Set dummy (GetAndAddL mem incr)); 6283 6284 ins_cost(ALU_COST); 6285 6286 format %{ "get_and_addL_acq [$mem], $incr\t#@get_and_addL_no_resAcq" %} 6287 6288 ins_encode %{ 6289 __ atomic_addal(noreg, $incr$$Register, as_Register($mem$$base)); 6290 %} 6291 6292 ins_pipe(pipe_serial); 6293 %} 6294 6295 instruct get_and_addLiAcq(indirect mem, iRegLNoSp newval, immLAdd incr) 6296 %{ 6297 predicate(needs_acquiring_load_reserved(n)); 6298 6299 match(Set newval (GetAndAddL mem incr)); 6300 6301 ins_cost(ALU_COST); 6302 6303 format %{ "get_and_addL_acq $newval, [$mem], $incr\t#@get_and_addLiAcq" %} 6304 6305 ins_encode %{ 6306 __ atomic_addal($newval$$Register, $incr$$constant, as_Register($mem$$base)); 6307 %} 6308 6309 ins_pipe(pipe_serial); 6310 %} 6311 6312 instruct get_and_addLi_no_resAcq(indirect mem, Universe dummy, immLAdd incr) 6313 %{ 6314 predicate(n->as_LoadStore()->result_not_used() && needs_acquiring_load_reserved(n)); 6315 6316 match(Set dummy (GetAndAddL mem incr)); 6317 6318 ins_cost(ALU_COST); 6319 6320 format %{ "get_and_addL_acq [$mem], $incr\t#@get_and_addLi_no_resAcq" %} 6321 6322 ins_encode %{ 6323 __ atomic_addal(noreg, $incr$$constant, as_Register($mem$$base)); 6324 %} 6325 6326 ins_pipe(pipe_serial); 6327 %} 6328 6329 instruct get_and_addIAcq(indirect mem, iRegINoSp newval, iRegIorL2I incr) 6330 %{ 6331 predicate(needs_acquiring_load_reserved(n)); 6332 6333 match(Set newval (GetAndAddI mem incr)); 6334 6335 ins_cost(ALU_COST); 6336 6337 format %{ "get_and_addI_acq $newval, [$mem], $incr\t#@get_and_addIAcq" %} 6338 6339 ins_encode %{ 6340 __ atomic_addalw($newval$$Register, $incr$$Register, as_Register($mem$$base)); 6341 %} 6342 6343 ins_pipe(pipe_serial); 6344 %} 6345 6346 instruct get_and_addI_no_resAcq(indirect mem, Universe dummy, iRegIorL2I incr) 6347 %{ 6348 predicate(n->as_LoadStore()->result_not_used() && needs_acquiring_load_reserved(n)); 6349 6350 match(Set dummy (GetAndAddI mem incr)); 6351 6352 ins_cost(ALU_COST); 6353 6354 format %{ "get_and_addI_acq [$mem], $incr\t#@get_and_addI_no_resAcq" %} 6355 6356 ins_encode %{ 6357 __ atomic_addalw(noreg, $incr$$Register, as_Register($mem$$base)); 6358 %} 6359 6360 ins_pipe(pipe_serial); 6361 %} 6362 6363 instruct get_and_addIiAcq(indirect mem, iRegINoSp newval, immIAdd incr) 6364 %{ 6365 predicate(needs_acquiring_load_reserved(n)); 6366 6367 match(Set newval (GetAndAddI mem incr)); 6368 6369 ins_cost(ALU_COST); 6370 6371 format %{ "get_and_addI_acq $newval, [$mem], $incr\t#@get_and_addIiAcq" %} 6372 6373 ins_encode %{ 6374 __ atomic_addalw($newval$$Register, $incr$$constant, as_Register($mem$$base)); 6375 %} 6376 6377 ins_pipe(pipe_serial); 6378 %} 6379 6380 instruct get_and_addIi_no_resAcq(indirect mem, Universe dummy, immIAdd incr) 6381 %{ 6382 predicate(n->as_LoadStore()->result_not_used() && needs_acquiring_load_reserved(n)); 6383 6384 match(Set dummy (GetAndAddI mem incr)); 6385 6386 ins_cost(ALU_COST); 6387 6388 format %{ "get_and_addI_acq [$mem], $incr\t#@get_and_addIi_no_resAcq" %} 6389 6390 ins_encode %{ 6391 __ atomic_addalw(noreg, $incr$$constant, as_Register($mem$$base)); 6392 %} 6393 6394 ins_pipe(pipe_serial); 6395 %} 6396 6397 // ============================================================================ 6398 // Arithmetic Instructions 6399 // 6400 6401 // Integer Addition 6402 6403 // TODO 6404 // these currently employ operations which do not set CR and hence are 6405 // not flagged as killing CR but we would like to isolate the cases 6406 // where we want to set flags from those where we don't. need to work 6407 // out how to do that. 6408 instruct addI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{ 6409 match(Set dst (AddI src1 src2)); 6410 6411 ins_cost(ALU_COST); 6412 format %{ "addw $dst, $src1, $src2\t#@addI_reg_reg" %} 6413 6414 ins_encode %{ 6415 __ addw(as_Register($dst$$reg), 6416 as_Register($src1$$reg), 6417 as_Register($src2$$reg)); 6418 %} 6419 6420 ins_pipe(ialu_reg_reg); 6421 %} 6422 6423 instruct addI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immIAdd src2) %{ 6424 match(Set dst (AddI src1 src2)); 6425 6426 ins_cost(ALU_COST); 6427 format %{ "addiw $dst, $src1, $src2\t#@addI_reg_imm" %} 6428 6429 ins_encode %{ 6430 int32_t con = (int32_t)$src2$$constant; 6431 __ addiw(as_Register($dst$$reg), 6432 as_Register($src1$$reg), 6433 $src2$$constant); 6434 %} 6435 6436 ins_pipe(ialu_reg_imm); 6437 %} 6438 6439 instruct addI_reg_imm_l2i(iRegINoSp dst, iRegL src1, immIAdd src2) %{ 6440 match(Set dst (AddI (ConvL2I src1) src2)); 6441 6442 ins_cost(ALU_COST); 6443 format %{ "addiw $dst, $src1, $src2\t#@addI_reg_imm_l2i" %} 6444 6445 ins_encode %{ 6446 __ addiw(as_Register($dst$$reg), 6447 as_Register($src1$$reg), 6448 $src2$$constant); 6449 %} 6450 6451 ins_pipe(ialu_reg_imm); 6452 %} 6453 6454 // Pointer Addition 6455 instruct addP_reg_reg(iRegPNoSp dst, iRegP src1, iRegL src2) %{ 6456 match(Set dst (AddP src1 src2)); 6457 6458 ins_cost(ALU_COST); 6459 format %{ "add $dst, $src1, $src2\t# ptr, #@addP_reg_reg" %} 6460 6461 ins_encode %{ 6462 __ add(as_Register($dst$$reg), 6463 as_Register($src1$$reg), 6464 as_Register($src2$$reg)); 6465 %} 6466 6467 ins_pipe(ialu_reg_reg); 6468 %} 6469 6470 // If we shift more than 32 bits, we need not convert I2L. 6471 instruct lShiftL_regI_immGE32(iRegLNoSp dst, iRegI src, uimmI6_ge32 scale) %{ 6472 match(Set dst (LShiftL (ConvI2L src) scale)); 6473 ins_cost(ALU_COST); 6474 format %{ "slli $dst, $src, $scale & 63\t#@lShiftL_regI_immGE32" %} 6475 6476 ins_encode %{ 6477 __ slli(as_Register($dst$$reg), as_Register($src$$reg), $scale$$constant & 63); 6478 %} 6479 6480 ins_pipe(ialu_reg_shift); 6481 %} 6482 6483 // Pointer Immediate Addition 6484 // n.b. this needs to be more expensive than using an indirect memory 6485 // operand 6486 instruct addP_reg_imm(iRegPNoSp dst, iRegP src1, immLAdd src2) %{ 6487 match(Set dst (AddP src1 src2)); 6488 ins_cost(ALU_COST); 6489 format %{ "addi $dst, $src1, $src2\t# ptr, #@addP_reg_imm" %} 6490 6491 ins_encode %{ 6492 // src2 is imm, so actually call the addi 6493 __ addi(as_Register($dst$$reg), 6494 as_Register($src1$$reg), 6495 $src2$$constant); 6496 %} 6497 6498 ins_pipe(ialu_reg_imm); 6499 %} 6500 6501 // Long Addition 6502 instruct addL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2) %{ 6503 match(Set dst (AddL src1 src2)); 6504 ins_cost(ALU_COST); 6505 format %{ "add $dst, $src1, $src2\t#@addL_reg_reg" %} 6506 6507 ins_encode %{ 6508 __ add(as_Register($dst$$reg), 6509 as_Register($src1$$reg), 6510 as_Register($src2$$reg)); 6511 %} 6512 6513 ins_pipe(ialu_reg_reg); 6514 %} 6515 6516 // No constant pool entries requiredLong Immediate Addition. 6517 instruct addL_reg_imm(iRegLNoSp dst, iRegL src1, immLAdd src2) %{ 6518 match(Set dst (AddL src1 src2)); 6519 ins_cost(ALU_COST); 6520 format %{ "addi $dst, $src1, $src2\t#@addL_reg_imm" %} 6521 6522 ins_encode %{ 6523 // src2 is imm, so actually call the addi 6524 __ addi(as_Register($dst$$reg), 6525 as_Register($src1$$reg), 6526 $src2$$constant); 6527 %} 6528 6529 ins_pipe(ialu_reg_imm); 6530 %} 6531 6532 // Integer Subtraction 6533 instruct subI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{ 6534 match(Set dst (SubI src1 src2)); 6535 6536 ins_cost(ALU_COST); 6537 format %{ "subw $dst, $src1, $src2\t#@subI_reg_reg" %} 6538 6539 ins_encode %{ 6540 __ subw(as_Register($dst$$reg), 6541 as_Register($src1$$reg), 6542 as_Register($src2$$reg)); 6543 %} 6544 6545 ins_pipe(ialu_reg_reg); 6546 %} 6547 6548 // Immediate Subtraction 6549 instruct subI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immISub src2) %{ 6550 match(Set dst (SubI src1 src2)); 6551 6552 ins_cost(ALU_COST); 6553 format %{ "addiw $dst, $src1, -$src2\t#@subI_reg_imm" %} 6554 6555 ins_encode %{ 6556 // src2 is imm, so actually call the addiw 6557 __ subiw(as_Register($dst$$reg), 6558 as_Register($src1$$reg), 6559 $src2$$constant); 6560 %} 6561 6562 ins_pipe(ialu_reg_imm); 6563 %} 6564 6565 // Long Subtraction 6566 instruct subL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2) %{ 6567 match(Set dst (SubL src1 src2)); 6568 ins_cost(ALU_COST); 6569 format %{ "sub $dst, $src1, $src2\t#@subL_reg_reg" %} 6570 6571 ins_encode %{ 6572 __ sub(as_Register($dst$$reg), 6573 as_Register($src1$$reg), 6574 as_Register($src2$$reg)); 6575 %} 6576 6577 ins_pipe(ialu_reg_reg); 6578 %} 6579 6580 // No constant pool entries requiredLong Immediate Subtraction. 6581 instruct subL_reg_imm(iRegLNoSp dst, iRegL src1, immLSub src2) %{ 6582 match(Set dst (SubL src1 src2)); 6583 ins_cost(ALU_COST); 6584 format %{ "addi $dst, $src1, -$src2\t#@subL_reg_imm" %} 6585 6586 ins_encode %{ 6587 // src2 is imm, so actually call the addi 6588 __ subi(as_Register($dst$$reg), 6589 as_Register($src1$$reg), 6590 $src2$$constant); 6591 %} 6592 6593 ins_pipe(ialu_reg_imm); 6594 %} 6595 6596 // Integer Negation (special case for sub) 6597 6598 instruct negI_reg(iRegINoSp dst, iRegIorL2I src, immI0 zero) %{ 6599 match(Set dst (SubI zero src)); 6600 ins_cost(ALU_COST); 6601 format %{ "subw $dst, x0, $src\t# int, #@negI_reg" %} 6602 6603 ins_encode %{ 6604 // actually call the subw 6605 __ negw(as_Register($dst$$reg), 6606 as_Register($src$$reg)); 6607 %} 6608 6609 ins_pipe(ialu_reg); 6610 %} 6611 6612 // Long Negation 6613 6614 instruct negL_reg(iRegLNoSp dst, iRegL src, immL0 zero) %{ 6615 match(Set dst (SubL zero src)); 6616 ins_cost(ALU_COST); 6617 format %{ "sub $dst, x0, $src\t# long, #@negL_reg" %} 6618 6619 ins_encode %{ 6620 // actually call the sub 6621 __ neg(as_Register($dst$$reg), 6622 as_Register($src$$reg)); 6623 %} 6624 6625 ins_pipe(ialu_reg); 6626 %} 6627 6628 // Integer Multiply 6629 6630 instruct mulI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{ 6631 match(Set dst (MulI src1 src2)); 6632 ins_cost(IMUL_COST); 6633 format %{ "mulw $dst, $src1, $src2\t#@mulI" %} 6634 6635 //this means 2 word multi, and no sign extend to 64 bits 6636 ins_encode %{ 6637 // riscv64 mulw will sign-extension to high 32 bits in dst reg 6638 __ mulw(as_Register($dst$$reg), 6639 as_Register($src1$$reg), 6640 as_Register($src2$$reg)); 6641 %} 6642 6643 ins_pipe(imul_reg_reg); 6644 %} 6645 6646 // Long Multiply 6647 6648 instruct mulL(iRegLNoSp dst, iRegL src1, iRegL src2) %{ 6649 match(Set dst (MulL src1 src2)); 6650 ins_cost(IMUL_COST); 6651 format %{ "mul $dst, $src1, $src2\t#@mulL" %} 6652 6653 ins_encode %{ 6654 __ mul(as_Register($dst$$reg), 6655 as_Register($src1$$reg), 6656 as_Register($src2$$reg)); 6657 %} 6658 6659 ins_pipe(lmul_reg_reg); 6660 %} 6661 6662 instruct mulHiL_rReg(iRegLNoSp dst, iRegL src1, iRegL src2) 6663 %{ 6664 match(Set dst (MulHiL src1 src2)); 6665 ins_cost(IMUL_COST); 6666 format %{ "mulh $dst, $src1, $src2\t# mulhi, #@mulHiL_rReg" %} 6667 6668 ins_encode %{ 6669 __ mulh(as_Register($dst$$reg), 6670 as_Register($src1$$reg), 6671 as_Register($src2$$reg)); 6672 %} 6673 6674 ins_pipe(lmul_reg_reg); 6675 %} 6676 6677 instruct umulHiL_rReg(iRegLNoSp dst, iRegL src1, iRegL src2) 6678 %{ 6679 match(Set dst (UMulHiL src1 src2)); 6680 ins_cost(IMUL_COST); 6681 format %{ "mulhu $dst, $src1, $src2\t# umulhi, #@umulHiL_rReg" %} 6682 6683 ins_encode %{ 6684 __ mulhu(as_Register($dst$$reg), 6685 as_Register($src1$$reg), 6686 as_Register($src2$$reg)); 6687 %} 6688 6689 ins_pipe(lmul_reg_reg); 6690 %} 6691 6692 // Integer Divide 6693 6694 instruct divI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{ 6695 match(Set dst (DivI src1 src2)); 6696 ins_cost(IDIVSI_COST); 6697 format %{ "divw $dst, $src1, $src2\t#@divI"%} 6698 6699 ins_encode(riscv_enc_divw(dst, src1, src2)); 6700 ins_pipe(idiv_reg_reg); 6701 %} 6702 6703 instruct UdivI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{ 6704 match(Set dst (UDivI src1 src2)); 6705 ins_cost(IDIVSI_COST); 6706 format %{ "divuw $dst, $src1, $src2\t#@UdivI"%} 6707 6708 ins_encode(riscv_enc_divuw(dst, src1, src2)); 6709 ins_pipe(idiv_reg_reg); 6710 %} 6711 6712 instruct signExtract(iRegINoSp dst, iRegIorL2I src1, immI_31 div1, immI_31 div2) %{ 6713 match(Set dst (URShiftI (RShiftI src1 div1) div2)); 6714 ins_cost(ALU_COST); 6715 format %{ "srliw $dst, $src1, $div1\t# int signExtract, #@signExtract" %} 6716 6717 ins_encode %{ 6718 __ srliw(as_Register($dst$$reg), as_Register($src1$$reg), 31); 6719 %} 6720 ins_pipe(ialu_reg_shift); 6721 %} 6722 6723 // Long Divide 6724 6725 instruct divL(iRegLNoSp dst, iRegL src1, iRegL src2) %{ 6726 match(Set dst (DivL src1 src2)); 6727 ins_cost(IDIVDI_COST); 6728 format %{ "div $dst, $src1, $src2\t#@divL" %} 6729 6730 ins_encode(riscv_enc_div(dst, src1, src2)); 6731 ins_pipe(ldiv_reg_reg); 6732 %} 6733 6734 instruct UdivL(iRegLNoSp dst, iRegL src1, iRegL src2) %{ 6735 match(Set dst (UDivL src1 src2)); 6736 ins_cost(IDIVDI_COST); 6737 6738 format %{ "divu $dst, $src1, $src2\t#@UdivL" %} 6739 6740 ins_encode(riscv_enc_divu(dst, src1, src2)); 6741 ins_pipe(ldiv_reg_reg); 6742 %} 6743 6744 instruct signExtractL(iRegLNoSp dst, iRegL src1, immI_63 div1, immI_63 div2) %{ 6745 match(Set dst (URShiftL (RShiftL src1 div1) div2)); 6746 ins_cost(ALU_COST); 6747 format %{ "srli $dst, $src1, $div1\t# long signExtract, #@signExtractL" %} 6748 6749 ins_encode %{ 6750 __ srli(as_Register($dst$$reg), as_Register($src1$$reg), 63); 6751 %} 6752 ins_pipe(ialu_reg_shift); 6753 %} 6754 6755 // Integer Remainder 6756 6757 instruct modI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{ 6758 match(Set dst (ModI src1 src2)); 6759 ins_cost(IDIVSI_COST); 6760 format %{ "remw $dst, $src1, $src2\t#@modI" %} 6761 6762 ins_encode(riscv_enc_modw(dst, src1, src2)); 6763 ins_pipe(ialu_reg_reg); 6764 %} 6765 6766 instruct UmodI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{ 6767 match(Set dst (UModI src1 src2)); 6768 ins_cost(IDIVSI_COST); 6769 format %{ "remuw $dst, $src1, $src2\t#@UmodI" %} 6770 6771 ins_encode(riscv_enc_moduw(dst, src1, src2)); 6772 ins_pipe(ialu_reg_reg); 6773 %} 6774 6775 // Long Remainder 6776 6777 instruct modL(iRegLNoSp dst, iRegL src1, iRegL src2) %{ 6778 match(Set dst (ModL src1 src2)); 6779 ins_cost(IDIVDI_COST); 6780 format %{ "rem $dst, $src1, $src2\t#@modL" %} 6781 6782 ins_encode(riscv_enc_mod(dst, src1, src2)); 6783 ins_pipe(ialu_reg_reg); 6784 %} 6785 6786 instruct UmodL(iRegLNoSp dst, iRegL src1, iRegL src2) %{ 6787 match(Set dst (UModL src1 src2)); 6788 ins_cost(IDIVDI_COST); 6789 format %{ "remu $dst, $src1, $src2\t#@UmodL" %} 6790 6791 ins_encode(riscv_enc_modu(dst, src1, src2)); 6792 ins_pipe(ialu_reg_reg); 6793 %} 6794 6795 // Integer Shifts 6796 6797 // Shift Left Register 6798 // In RV64I, only the low 5 bits of src2 are considered for the shift amount 6799 instruct lShiftI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{ 6800 match(Set dst (LShiftI src1 src2)); 6801 ins_cost(ALU_COST); 6802 format %{ "sllw $dst, $src1, $src2\t#@lShiftI_reg_reg" %} 6803 6804 ins_encode %{ 6805 __ sllw(as_Register($dst$$reg), 6806 as_Register($src1$$reg), 6807 as_Register($src2$$reg)); 6808 %} 6809 6810 ins_pipe(ialu_reg_reg_vshift); 6811 %} 6812 6813 // Shift Left Immediate 6814 instruct lShiftI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immI src2) %{ 6815 match(Set dst (LShiftI src1 src2)); 6816 ins_cost(ALU_COST); 6817 format %{ "slliw $dst, $src1, ($src2 & 0x1f)\t#@lShiftI_reg_imm" %} 6818 6819 ins_encode %{ 6820 // the shift amount is encoded in the lower 6821 // 5 bits of the I-immediate field for RV32I 6822 __ slliw(as_Register($dst$$reg), 6823 as_Register($src1$$reg), 6824 (unsigned) $src2$$constant & 0x1f); 6825 %} 6826 6827 ins_pipe(ialu_reg_shift); 6828 %} 6829 6830 // Shift Right Logical Register 6831 // In RV64I, only the low 5 bits of src2 are considered for the shift amount 6832 instruct urShiftI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{ 6833 match(Set dst (URShiftI src1 src2)); 6834 ins_cost(ALU_COST); 6835 format %{ "srlw $dst, $src1, $src2\t#@urShiftI_reg_reg" %} 6836 6837 ins_encode %{ 6838 __ srlw(as_Register($dst$$reg), 6839 as_Register($src1$$reg), 6840 as_Register($src2$$reg)); 6841 %} 6842 6843 ins_pipe(ialu_reg_reg_vshift); 6844 %} 6845 6846 // Shift Right Logical Immediate 6847 instruct urShiftI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immI src2) %{ 6848 match(Set dst (URShiftI src1 src2)); 6849 ins_cost(ALU_COST); 6850 format %{ "srliw $dst, $src1, ($src2 & 0x1f)\t#@urShiftI_reg_imm" %} 6851 6852 ins_encode %{ 6853 // the shift amount is encoded in the lower 6854 // 6 bits of the I-immediate field for RV64I 6855 __ srliw(as_Register($dst$$reg), 6856 as_Register($src1$$reg), 6857 (unsigned) $src2$$constant & 0x1f); 6858 %} 6859 6860 ins_pipe(ialu_reg_shift); 6861 %} 6862 6863 // Shift Right Arithmetic Register 6864 // In RV64I, only the low 5 bits of src2 are considered for the shift amount 6865 instruct rShiftI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{ 6866 match(Set dst (RShiftI src1 src2)); 6867 ins_cost(ALU_COST); 6868 format %{ "sraw $dst, $src1, $src2\t#@rShiftI_reg_reg" %} 6869 6870 ins_encode %{ 6871 // riscv will sign-ext dst high 32 bits 6872 __ sraw(as_Register($dst$$reg), 6873 as_Register($src1$$reg), 6874 as_Register($src2$$reg)); 6875 %} 6876 6877 ins_pipe(ialu_reg_reg_vshift); 6878 %} 6879 6880 // Shift Right Arithmetic Immediate 6881 instruct rShiftI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immI src2) %{ 6882 match(Set dst (RShiftI src1 src2)); 6883 ins_cost(ALU_COST); 6884 format %{ "sraiw $dst, $src1, ($src2 & 0x1f)\t#@rShiftI_reg_imm" %} 6885 6886 ins_encode %{ 6887 // riscv will sign-ext dst high 32 bits 6888 __ sraiw(as_Register($dst$$reg), 6889 as_Register($src1$$reg), 6890 (unsigned) $src2$$constant & 0x1f); 6891 %} 6892 6893 ins_pipe(ialu_reg_shift); 6894 %} 6895 6896 // Long Shifts 6897 6898 // Shift Left Register 6899 // In RV64I, only the low 6 bits of src2 are considered for the shift amount 6900 instruct lShiftL_reg_reg(iRegLNoSp dst, iRegL src1, iRegIorL2I src2) %{ 6901 match(Set dst (LShiftL src1 src2)); 6902 6903 ins_cost(ALU_COST); 6904 format %{ "sll $dst, $src1, $src2\t#@lShiftL_reg_reg" %} 6905 6906 ins_encode %{ 6907 __ sll(as_Register($dst$$reg), 6908 as_Register($src1$$reg), 6909 as_Register($src2$$reg)); 6910 %} 6911 6912 ins_pipe(ialu_reg_reg_vshift); 6913 %} 6914 6915 // Shift Left Immediate 6916 instruct lShiftL_reg_imm(iRegLNoSp dst, iRegL src1, immI src2) %{ 6917 match(Set dst (LShiftL src1 src2)); 6918 6919 ins_cost(ALU_COST); 6920 format %{ "slli $dst, $src1, ($src2 & 0x3f)\t#@lShiftL_reg_imm" %} 6921 6922 ins_encode %{ 6923 // the shift amount is encoded in the lower 6924 // 6 bits of the I-immediate field for RV64I 6925 __ slli(as_Register($dst$$reg), 6926 as_Register($src1$$reg), 6927 (unsigned) $src2$$constant & 0x3f); 6928 %} 6929 6930 ins_pipe(ialu_reg_shift); 6931 %} 6932 6933 // Shift Right Logical Register 6934 // In RV64I, only the low 6 bits of src2 are considered for the shift amount 6935 instruct urShiftL_reg_reg(iRegLNoSp dst, iRegL src1, iRegIorL2I src2) %{ 6936 match(Set dst (URShiftL src1 src2)); 6937 6938 ins_cost(ALU_COST); 6939 format %{ "srl $dst, $src1, $src2\t#@urShiftL_reg_reg" %} 6940 6941 ins_encode %{ 6942 __ srl(as_Register($dst$$reg), 6943 as_Register($src1$$reg), 6944 as_Register($src2$$reg)); 6945 %} 6946 6947 ins_pipe(ialu_reg_reg_vshift); 6948 %} 6949 6950 // Shift Right Logical Immediate 6951 instruct urShiftL_reg_imm(iRegLNoSp dst, iRegL src1, immI src2) %{ 6952 match(Set dst (URShiftL src1 src2)); 6953 6954 ins_cost(ALU_COST); 6955 format %{ "srli $dst, $src1, ($src2 & 0x3f)\t#@urShiftL_reg_imm" %} 6956 6957 ins_encode %{ 6958 // the shift amount is encoded in the lower 6959 // 6 bits of the I-immediate field for RV64I 6960 __ srli(as_Register($dst$$reg), 6961 as_Register($src1$$reg), 6962 (unsigned) $src2$$constant & 0x3f); 6963 %} 6964 6965 ins_pipe(ialu_reg_shift); 6966 %} 6967 6968 // A special-case pattern for card table stores. 6969 instruct urShiftP_reg_imm(iRegLNoSp dst, iRegP src1, immI src2) %{ 6970 match(Set dst (URShiftL (CastP2X src1) src2)); 6971 6972 ins_cost(ALU_COST); 6973 format %{ "srli $dst, p2x($src1), ($src2 & 0x3f)\t#@urShiftP_reg_imm" %} 6974 6975 ins_encode %{ 6976 // the shift amount is encoded in the lower 6977 // 6 bits of the I-immediate field for RV64I 6978 __ srli(as_Register($dst$$reg), 6979 as_Register($src1$$reg), 6980 (unsigned) $src2$$constant & 0x3f); 6981 %} 6982 6983 ins_pipe(ialu_reg_shift); 6984 %} 6985 6986 // Shift Right Arithmetic Register 6987 // In RV64I, only the low 6 bits of src2 are considered for the shift amount 6988 instruct rShiftL_reg_reg(iRegLNoSp dst, iRegL src1, iRegIorL2I src2) %{ 6989 match(Set dst (RShiftL src1 src2)); 6990 6991 ins_cost(ALU_COST); 6992 format %{ "sra $dst, $src1, $src2\t#@rShiftL_reg_reg" %} 6993 6994 ins_encode %{ 6995 __ sra(as_Register($dst$$reg), 6996 as_Register($src1$$reg), 6997 as_Register($src2$$reg)); 6998 %} 6999 7000 ins_pipe(ialu_reg_reg_vshift); 7001 %} 7002 7003 // Shift Right Arithmetic Immediate 7004 instruct rShiftL_reg_imm(iRegLNoSp dst, iRegL src1, immI src2) %{ 7005 match(Set dst (RShiftL src1 src2)); 7006 7007 ins_cost(ALU_COST); 7008 format %{ "srai $dst, $src1, ($src2 & 0x3f)\t#@rShiftL_reg_imm" %} 7009 7010 ins_encode %{ 7011 // the shift amount is encoded in the lower 7012 // 6 bits of the I-immediate field for RV64I 7013 __ srai(as_Register($dst$$reg), 7014 as_Register($src1$$reg), 7015 (unsigned) $src2$$constant & 0x3f); 7016 %} 7017 7018 ins_pipe(ialu_reg_shift); 7019 %} 7020 7021 instruct regI_not_reg(iRegINoSp dst, iRegI src1, immI_M1 m1) %{ 7022 match(Set dst (XorI src1 m1)); 7023 ins_cost(ALU_COST); 7024 format %{ "xori $dst, $src1, -1\t#@regI_not_reg" %} 7025 7026 ins_encode %{ 7027 __ xori(as_Register($dst$$reg), as_Register($src1$$reg), -1); 7028 %} 7029 7030 ins_pipe(ialu_reg_imm); 7031 %} 7032 7033 instruct regL_not_reg(iRegLNoSp dst, iRegL src1, immL_M1 m1) %{ 7034 match(Set dst (XorL src1 m1)); 7035 ins_cost(ALU_COST); 7036 format %{ "xori $dst, $src1, -1\t#@regL_not_reg" %} 7037 7038 ins_encode %{ 7039 __ xori(as_Register($dst$$reg), as_Register($src1$$reg), -1); 7040 %} 7041 7042 ins_pipe(ialu_reg_imm); 7043 %} 7044 7045 7046 // ============================================================================ 7047 // Floating Point Arithmetic Instructions 7048 7049 instruct addF_reg_reg(fRegF dst, fRegF src1, fRegF src2) %{ 7050 match(Set dst (AddF src1 src2)); 7051 7052 ins_cost(DEFAULT_COST * 5); 7053 format %{ "fadd.s $dst, $src1, $src2\t#@addF_reg_reg" %} 7054 7055 ins_encode %{ 7056 __ fadd_s(as_FloatRegister($dst$$reg), 7057 as_FloatRegister($src1$$reg), 7058 as_FloatRegister($src2$$reg)); 7059 %} 7060 7061 ins_pipe(fp_dop_reg_reg_s); 7062 %} 7063 7064 instruct addD_reg_reg(fRegD dst, fRegD src1, fRegD src2) %{ 7065 match(Set dst (AddD src1 src2)); 7066 7067 ins_cost(DEFAULT_COST * 5); 7068 format %{ "fadd.d $dst, $src1, $src2\t#@addD_reg_reg" %} 7069 7070 ins_encode %{ 7071 __ fadd_d(as_FloatRegister($dst$$reg), 7072 as_FloatRegister($src1$$reg), 7073 as_FloatRegister($src2$$reg)); 7074 %} 7075 7076 ins_pipe(fp_dop_reg_reg_d); 7077 %} 7078 7079 instruct subF_reg_reg(fRegF dst, fRegF src1, fRegF src2) %{ 7080 match(Set dst (SubF src1 src2)); 7081 7082 ins_cost(DEFAULT_COST * 5); 7083 format %{ "fsub.s $dst, $src1, $src2\t#@subF_reg_reg" %} 7084 7085 ins_encode %{ 7086 __ fsub_s(as_FloatRegister($dst$$reg), 7087 as_FloatRegister($src1$$reg), 7088 as_FloatRegister($src2$$reg)); 7089 %} 7090 7091 ins_pipe(fp_dop_reg_reg_s); 7092 %} 7093 7094 instruct subD_reg_reg(fRegD dst, fRegD src1, fRegD src2) %{ 7095 match(Set dst (SubD src1 src2)); 7096 7097 ins_cost(DEFAULT_COST * 5); 7098 format %{ "fsub.d $dst, $src1, $src2\t#@subD_reg_reg" %} 7099 7100 ins_encode %{ 7101 __ fsub_d(as_FloatRegister($dst$$reg), 7102 as_FloatRegister($src1$$reg), 7103 as_FloatRegister($src2$$reg)); 7104 %} 7105 7106 ins_pipe(fp_dop_reg_reg_d); 7107 %} 7108 7109 instruct mulF_reg_reg(fRegF dst, fRegF src1, fRegF src2) %{ 7110 match(Set dst (MulF src1 src2)); 7111 7112 ins_cost(FMUL_SINGLE_COST); 7113 format %{ "fmul.s $dst, $src1, $src2\t#@mulF_reg_reg" %} 7114 7115 ins_encode %{ 7116 __ fmul_s(as_FloatRegister($dst$$reg), 7117 as_FloatRegister($src1$$reg), 7118 as_FloatRegister($src2$$reg)); 7119 %} 7120 7121 ins_pipe(fp_dop_reg_reg_s); 7122 %} 7123 7124 instruct mulD_reg_reg(fRegD dst, fRegD src1, fRegD src2) %{ 7125 match(Set dst (MulD src1 src2)); 7126 7127 ins_cost(FMUL_DOUBLE_COST); 7128 format %{ "fmul.d $dst, $src1, $src2\t#@mulD_reg_reg" %} 7129 7130 ins_encode %{ 7131 __ fmul_d(as_FloatRegister($dst$$reg), 7132 as_FloatRegister($src1$$reg), 7133 as_FloatRegister($src2$$reg)); 7134 %} 7135 7136 ins_pipe(fp_dop_reg_reg_d); 7137 %} 7138 7139 // src1 * src2 + src3 7140 instruct maddF_reg_reg(fRegF dst, fRegF src1, fRegF src2, fRegF src3) %{ 7141 match(Set dst (FmaF src3 (Binary src1 src2))); 7142 7143 ins_cost(FMUL_SINGLE_COST); 7144 format %{ "fmadd.s $dst, $src1, $src2, $src3\t#@maddF_reg_reg" %} 7145 7146 ins_encode %{ 7147 assert(UseFMA, "Needs FMA instructions support."); 7148 __ fmadd_s(as_FloatRegister($dst$$reg), 7149 as_FloatRegister($src1$$reg), 7150 as_FloatRegister($src2$$reg), 7151 as_FloatRegister($src3$$reg)); 7152 %} 7153 7154 ins_pipe(pipe_class_default); 7155 %} 7156 7157 // src1 * src2 + src3 7158 instruct maddD_reg_reg(fRegD dst, fRegD src1, fRegD src2, fRegD src3) %{ 7159 match(Set dst (FmaD src3 (Binary src1 src2))); 7160 7161 ins_cost(FMUL_DOUBLE_COST); 7162 format %{ "fmadd.d $dst, $src1, $src2, $src3\t#@maddD_reg_reg" %} 7163 7164 ins_encode %{ 7165 assert(UseFMA, "Needs FMA instructions support."); 7166 __ fmadd_d(as_FloatRegister($dst$$reg), 7167 as_FloatRegister($src1$$reg), 7168 as_FloatRegister($src2$$reg), 7169 as_FloatRegister($src3$$reg)); 7170 %} 7171 7172 ins_pipe(pipe_class_default); 7173 %} 7174 7175 // src1 * src2 - src3 7176 instruct msubF_reg_reg(fRegF dst, fRegF src1, fRegF src2, fRegF src3) %{ 7177 match(Set dst (FmaF (NegF src3) (Binary src1 src2))); 7178 7179 ins_cost(FMUL_SINGLE_COST); 7180 format %{ "fmsub.s $dst, $src1, $src2, $src3\t#@msubF_reg_reg" %} 7181 7182 ins_encode %{ 7183 assert(UseFMA, "Needs FMA instructions support."); 7184 __ fmsub_s(as_FloatRegister($dst$$reg), 7185 as_FloatRegister($src1$$reg), 7186 as_FloatRegister($src2$$reg), 7187 as_FloatRegister($src3$$reg)); 7188 %} 7189 7190 ins_pipe(pipe_class_default); 7191 %} 7192 7193 // src1 * src2 - src3 7194 instruct msubD_reg_reg(fRegD dst, fRegD src1, fRegD src2, fRegD src3) %{ 7195 match(Set dst (FmaD (NegD src3) (Binary src1 src2))); 7196 7197 ins_cost(FMUL_DOUBLE_COST); 7198 format %{ "fmsub.d $dst, $src1, $src2, $src3\t#@msubD_reg_reg" %} 7199 7200 ins_encode %{ 7201 assert(UseFMA, "Needs FMA instructions support."); 7202 __ fmsub_d(as_FloatRegister($dst$$reg), 7203 as_FloatRegister($src1$$reg), 7204 as_FloatRegister($src2$$reg), 7205 as_FloatRegister($src3$$reg)); 7206 %} 7207 7208 ins_pipe(pipe_class_default); 7209 %} 7210 7211 // src1 * (-src2) + src3 7212 // "(-src1) * src2 + src3" has been idealized to "src2 * (-src1) + src3" 7213 instruct nmsubF_reg_reg(fRegF dst, fRegF src1, fRegF src2, fRegF src3) %{ 7214 match(Set dst (FmaF src3 (Binary src1 (NegF src2)))); 7215 7216 ins_cost(FMUL_SINGLE_COST); 7217 format %{ "fnmsub.s $dst, $src1, $src2, $src3\t#@nmsubF_reg_reg" %} 7218 7219 ins_encode %{ 7220 assert(UseFMA, "Needs FMA instructions support."); 7221 __ fnmsub_s(as_FloatRegister($dst$$reg), 7222 as_FloatRegister($src1$$reg), 7223 as_FloatRegister($src2$$reg), 7224 as_FloatRegister($src3$$reg)); 7225 %} 7226 7227 ins_pipe(pipe_class_default); 7228 %} 7229 7230 // src1 * (-src2) + src3 7231 // "(-src1) * src2 + src3" has been idealized to "src2 * (-src1) + src3" 7232 instruct nmsubD_reg_reg(fRegD dst, fRegD src1, fRegD src2, fRegD src3) %{ 7233 match(Set dst (FmaD src3 (Binary src1 (NegD src2)))); 7234 7235 ins_cost(FMUL_DOUBLE_COST); 7236 format %{ "fnmsub.d $dst, $src1, $src2, $src3\t#@nmsubD_reg_reg" %} 7237 7238 ins_encode %{ 7239 assert(UseFMA, "Needs FMA instructions support."); 7240 __ fnmsub_d(as_FloatRegister($dst$$reg), 7241 as_FloatRegister($src1$$reg), 7242 as_FloatRegister($src2$$reg), 7243 as_FloatRegister($src3$$reg)); 7244 %} 7245 7246 ins_pipe(pipe_class_default); 7247 %} 7248 7249 // src1 * (-src2) - src3 7250 // "(-src1) * src2 - src3" has been idealized to "src2 * (-src1) - src3" 7251 instruct nmaddF_reg_reg(fRegF dst, fRegF src1, fRegF src2, fRegF src3) %{ 7252 match(Set dst (FmaF (NegF src3) (Binary src1 (NegF src2)))); 7253 7254 ins_cost(FMUL_SINGLE_COST); 7255 format %{ "fnmadd.s $dst, $src1, $src2, $src3\t#@nmaddF_reg_reg" %} 7256 7257 ins_encode %{ 7258 assert(UseFMA, "Needs FMA instructions support."); 7259 __ fnmadd_s(as_FloatRegister($dst$$reg), 7260 as_FloatRegister($src1$$reg), 7261 as_FloatRegister($src2$$reg), 7262 as_FloatRegister($src3$$reg)); 7263 %} 7264 7265 ins_pipe(pipe_class_default); 7266 %} 7267 7268 // src1 * (-src2) - src3 7269 // "(-src1) * src2 - src3" has been idealized to "src2 * (-src1) - src3" 7270 instruct nmaddD_reg_reg(fRegD dst, fRegD src1, fRegD src2, fRegD src3) %{ 7271 match(Set dst (FmaD (NegD src3) (Binary src1 (NegD src2)))); 7272 7273 ins_cost(FMUL_DOUBLE_COST); 7274 format %{ "fnmadd.d $dst, $src1, $src2, $src3\t#@nmaddD_reg_reg" %} 7275 7276 ins_encode %{ 7277 assert(UseFMA, "Needs FMA instructions support."); 7278 __ fnmadd_d(as_FloatRegister($dst$$reg), 7279 as_FloatRegister($src1$$reg), 7280 as_FloatRegister($src2$$reg), 7281 as_FloatRegister($src3$$reg)); 7282 %} 7283 7284 ins_pipe(pipe_class_default); 7285 %} 7286 7287 // Math.max(FF)F 7288 instruct maxF_reg_reg(fRegF dst, fRegF src1, fRegF src2, rFlagsReg cr) %{ 7289 match(Set dst (MaxF src1 src2)); 7290 effect(TEMP_DEF dst, KILL cr); 7291 7292 format %{ "maxF $dst, $src1, $src2" %} 7293 7294 ins_encode %{ 7295 __ minmax_fp(as_FloatRegister($dst$$reg), 7296 as_FloatRegister($src1$$reg), as_FloatRegister($src2$$reg), 7297 false /* is_double */, false /* is_min */); 7298 %} 7299 7300 ins_pipe(pipe_class_default); 7301 %} 7302 7303 // Math.min(FF)F 7304 instruct minF_reg_reg(fRegF dst, fRegF src1, fRegF src2, rFlagsReg cr) %{ 7305 match(Set dst (MinF src1 src2)); 7306 effect(TEMP_DEF dst, KILL cr); 7307 7308 format %{ "minF $dst, $src1, $src2" %} 7309 7310 ins_encode %{ 7311 __ minmax_fp(as_FloatRegister($dst$$reg), 7312 as_FloatRegister($src1$$reg), as_FloatRegister($src2$$reg), 7313 false /* is_double */, true /* is_min */); 7314 %} 7315 7316 ins_pipe(pipe_class_default); 7317 %} 7318 7319 // Math.max(DD)D 7320 instruct maxD_reg_reg(fRegD dst, fRegD src1, fRegD src2, rFlagsReg cr) %{ 7321 match(Set dst (MaxD src1 src2)); 7322 effect(TEMP_DEF dst, KILL cr); 7323 7324 format %{ "maxD $dst, $src1, $src2" %} 7325 7326 ins_encode %{ 7327 __ minmax_fp(as_FloatRegister($dst$$reg), 7328 as_FloatRegister($src1$$reg), as_FloatRegister($src2$$reg), 7329 true /* is_double */, false /* is_min */); 7330 %} 7331 7332 ins_pipe(pipe_class_default); 7333 %} 7334 7335 // Math.min(DD)D 7336 instruct minD_reg_reg(fRegD dst, fRegD src1, fRegD src2, rFlagsReg cr) %{ 7337 match(Set dst (MinD src1 src2)); 7338 effect(TEMP_DEF dst, KILL cr); 7339 7340 format %{ "minD $dst, $src1, $src2" %} 7341 7342 ins_encode %{ 7343 __ minmax_fp(as_FloatRegister($dst$$reg), 7344 as_FloatRegister($src1$$reg), as_FloatRegister($src2$$reg), 7345 true /* is_double */, true /* is_min */); 7346 %} 7347 7348 ins_pipe(pipe_class_default); 7349 %} 7350 7351 // Float.isInfinite 7352 instruct isInfiniteF_reg_reg(iRegINoSp dst, fRegF src) 7353 %{ 7354 match(Set dst (IsInfiniteF src)); 7355 7356 format %{ "isInfinite $dst, $src" %} 7357 ins_encode %{ 7358 __ fclass_s(as_Register($dst$$reg), as_FloatRegister($src$$reg)); 7359 __ andi(as_Register($dst$$reg), as_Register($dst$$reg), Assembler::FClassBits::inf); 7360 __ slt(as_Register($dst$$reg), zr, as_Register($dst$$reg)); 7361 %} 7362 7363 ins_pipe(pipe_class_default); 7364 %} 7365 7366 // Double.isInfinite 7367 instruct isInfiniteD_reg_reg(iRegINoSp dst, fRegD src) 7368 %{ 7369 match(Set dst (IsInfiniteD src)); 7370 7371 format %{ "isInfinite $dst, $src" %} 7372 ins_encode %{ 7373 __ fclass_d(as_Register($dst$$reg), as_FloatRegister($src$$reg)); 7374 __ andi(as_Register($dst$$reg), as_Register($dst$$reg), Assembler::FClassBits::inf); 7375 __ slt(as_Register($dst$$reg), zr, as_Register($dst$$reg)); 7376 %} 7377 7378 ins_pipe(pipe_class_default); 7379 %} 7380 7381 // Float.isFinite 7382 instruct isFiniteF_reg_reg(iRegINoSp dst, fRegF src) 7383 %{ 7384 match(Set dst (IsFiniteF src)); 7385 7386 format %{ "isFinite $dst, $src" %} 7387 ins_encode %{ 7388 __ fclass_s(as_Register($dst$$reg), as_FloatRegister($src$$reg)); 7389 __ andi(as_Register($dst$$reg), as_Register($dst$$reg), Assembler::FClassBits::finite); 7390 __ slt(as_Register($dst$$reg), zr, as_Register($dst$$reg)); 7391 %} 7392 7393 ins_pipe(pipe_class_default); 7394 %} 7395 7396 // Double.isFinite 7397 instruct isFiniteD_reg_reg(iRegINoSp dst, fRegD src) 7398 %{ 7399 match(Set dst (IsFiniteD src)); 7400 7401 format %{ "isFinite $dst, $src" %} 7402 ins_encode %{ 7403 __ fclass_d(as_Register($dst$$reg), as_FloatRegister($src$$reg)); 7404 __ andi(as_Register($dst$$reg), as_Register($dst$$reg), Assembler::FClassBits::finite); 7405 __ slt(as_Register($dst$$reg), zr, as_Register($dst$$reg)); 7406 %} 7407 7408 ins_pipe(pipe_class_default); 7409 %} 7410 7411 instruct divF_reg_reg(fRegF dst, fRegF src1, fRegF src2) %{ 7412 match(Set dst (DivF src1 src2)); 7413 7414 ins_cost(FDIV_COST); 7415 format %{ "fdiv.s $dst, $src1, $src2\t#@divF_reg_reg" %} 7416 7417 ins_encode %{ 7418 __ fdiv_s(as_FloatRegister($dst$$reg), 7419 as_FloatRegister($src1$$reg), 7420 as_FloatRegister($src2$$reg)); 7421 %} 7422 7423 ins_pipe(fp_div_s); 7424 %} 7425 7426 instruct divD_reg_reg(fRegD dst, fRegD src1, fRegD src2) %{ 7427 match(Set dst (DivD src1 src2)); 7428 7429 ins_cost(FDIV_COST); 7430 format %{ "fdiv.d $dst, $src1, $src2\t#@divD_reg_reg" %} 7431 7432 ins_encode %{ 7433 __ fdiv_d(as_FloatRegister($dst$$reg), 7434 as_FloatRegister($src1$$reg), 7435 as_FloatRegister($src2$$reg)); 7436 %} 7437 7438 ins_pipe(fp_div_d); 7439 %} 7440 7441 instruct negF_reg_reg(fRegF dst, fRegF src) %{ 7442 match(Set dst (NegF src)); 7443 7444 ins_cost(XFER_COST); 7445 format %{ "fsgnjn.s $dst, $src, $src\t#@negF_reg_reg" %} 7446 7447 ins_encode %{ 7448 __ fneg_s(as_FloatRegister($dst$$reg), 7449 as_FloatRegister($src$$reg)); 7450 %} 7451 7452 ins_pipe(fp_uop_s); 7453 %} 7454 7455 instruct negD_reg_reg(fRegD dst, fRegD src) %{ 7456 match(Set dst (NegD src)); 7457 7458 ins_cost(XFER_COST); 7459 format %{ "fsgnjn.d $dst, $src, $src\t#@negD_reg_reg" %} 7460 7461 ins_encode %{ 7462 __ fneg_d(as_FloatRegister($dst$$reg), 7463 as_FloatRegister($src$$reg)); 7464 %} 7465 7466 ins_pipe(fp_uop_d); 7467 %} 7468 7469 instruct absI_reg(iRegINoSp dst, iRegIorL2I src) %{ 7470 match(Set dst (AbsI src)); 7471 7472 ins_cost(ALU_COST * 3); 7473 format %{ 7474 "sraiw t0, $src, 0x1f\n\t" 7475 "addw $dst, $src, t0\n\t" 7476 "xorr $dst, $dst, t0\t#@absI_reg" 7477 %} 7478 7479 ins_encode %{ 7480 __ sraiw(t0, as_Register($src$$reg), 0x1f); 7481 __ addw(as_Register($dst$$reg), as_Register($src$$reg), t0); 7482 __ xorr(as_Register($dst$$reg), as_Register($dst$$reg), t0); 7483 %} 7484 7485 ins_pipe(pipe_class_default); 7486 %} 7487 7488 instruct absL_reg(iRegLNoSp dst, iRegL src) %{ 7489 match(Set dst (AbsL src)); 7490 7491 ins_cost(ALU_COST * 3); 7492 format %{ 7493 "srai t0, $src, 0x3f\n\t" 7494 "add $dst, $src, t0\n\t" 7495 "xorr $dst, $dst, t0\t#@absL_reg" 7496 %} 7497 7498 ins_encode %{ 7499 __ srai(t0, as_Register($src$$reg), 0x3f); 7500 __ add(as_Register($dst$$reg), as_Register($src$$reg), t0); 7501 __ xorr(as_Register($dst$$reg), as_Register($dst$$reg), t0); 7502 %} 7503 7504 ins_pipe(pipe_class_default); 7505 %} 7506 7507 instruct absF_reg(fRegF dst, fRegF src) %{ 7508 match(Set dst (AbsF src)); 7509 7510 ins_cost(XFER_COST); 7511 format %{ "fsgnjx.s $dst, $src, $src\t#@absF_reg" %} 7512 ins_encode %{ 7513 __ fabs_s(as_FloatRegister($dst$$reg), 7514 as_FloatRegister($src$$reg)); 7515 %} 7516 7517 ins_pipe(fp_uop_s); 7518 %} 7519 7520 instruct absD_reg(fRegD dst, fRegD src) %{ 7521 match(Set dst (AbsD src)); 7522 7523 ins_cost(XFER_COST); 7524 format %{ "fsgnjx.d $dst, $src, $src\t#@absD_reg" %} 7525 ins_encode %{ 7526 __ fabs_d(as_FloatRegister($dst$$reg), 7527 as_FloatRegister($src$$reg)); 7528 %} 7529 7530 ins_pipe(fp_uop_d); 7531 %} 7532 7533 instruct sqrtF_reg(fRegF dst, fRegF src) %{ 7534 match(Set dst (SqrtF src)); 7535 7536 ins_cost(FSQRT_COST); 7537 format %{ "fsqrt.s $dst, $src\t#@sqrtF_reg" %} 7538 ins_encode %{ 7539 __ fsqrt_s(as_FloatRegister($dst$$reg), 7540 as_FloatRegister($src$$reg)); 7541 %} 7542 7543 ins_pipe(fp_sqrt_s); 7544 %} 7545 7546 instruct sqrtD_reg(fRegD dst, fRegD src) %{ 7547 match(Set dst (SqrtD src)); 7548 7549 ins_cost(FSQRT_COST); 7550 format %{ "fsqrt.d $dst, $src\t#@sqrtD_reg" %} 7551 ins_encode %{ 7552 __ fsqrt_d(as_FloatRegister($dst$$reg), 7553 as_FloatRegister($src$$reg)); 7554 %} 7555 7556 ins_pipe(fp_sqrt_d); 7557 %} 7558 7559 // Round Instruction 7560 instruct roundD_reg(fRegD dst, fRegD src, immI rmode, iRegLNoSp tmp1, iRegLNoSp tmp2, iRegLNoSp tmp3) %{ 7561 match(Set dst (RoundDoubleMode src rmode)); 7562 ins_cost(2 * XFER_COST + BRANCH_COST); 7563 effect(TEMP_DEF dst, TEMP tmp1, TEMP tmp2, TEMP tmp3); 7564 7565 format %{ "RoundDoubleMode $src, $rmode" %} 7566 ins_encode %{ 7567 __ round_double_mode(as_FloatRegister($dst$$reg), 7568 as_FloatRegister($src$$reg), $rmode$$constant, $tmp1$$Register, $tmp2$$Register, $tmp3$$Register); 7569 %} 7570 ins_pipe(pipe_class_default); 7571 %} 7572 7573 // Copysign and signum intrinsics 7574 7575 instruct copySignD_reg(fRegD dst, fRegD src1, fRegD src2, immD zero) %{ 7576 match(Set dst (CopySignD src1 (Binary src2 zero))); 7577 format %{ "CopySignD $dst $src1 $src2" %} 7578 ins_encode %{ 7579 FloatRegister dst = as_FloatRegister($dst$$reg), 7580 src1 = as_FloatRegister($src1$$reg), 7581 src2 = as_FloatRegister($src2$$reg); 7582 __ fsgnj_d(dst, src1, src2); 7583 %} 7584 ins_pipe(fp_dop_reg_reg_d); 7585 %} 7586 7587 instruct copySignF_reg(fRegF dst, fRegF src1, fRegF src2) %{ 7588 match(Set dst (CopySignF src1 src2)); 7589 format %{ "CopySignF $dst $src1 $src2" %} 7590 ins_encode %{ 7591 FloatRegister dst = as_FloatRegister($dst$$reg), 7592 src1 = as_FloatRegister($src1$$reg), 7593 src2 = as_FloatRegister($src2$$reg); 7594 __ fsgnj_s(dst, src1, src2); 7595 %} 7596 ins_pipe(fp_dop_reg_reg_s); 7597 %} 7598 7599 instruct signumD_reg(fRegD dst, immD zero, fRegD one) %{ 7600 match(Set dst (SignumD dst (Binary zero one))); 7601 format %{ "signumD $dst, $dst" %} 7602 ins_encode %{ 7603 __ signum_fp(as_FloatRegister($dst$$reg), as_FloatRegister($one$$reg), true /* is_double */); 7604 %} 7605 ins_pipe(pipe_class_default); 7606 %} 7607 7608 instruct signumF_reg(fRegF dst, immF zero, fRegF one) %{ 7609 match(Set dst (SignumF dst (Binary zero one))); 7610 format %{ "signumF $dst, $dst" %} 7611 ins_encode %{ 7612 __ signum_fp(as_FloatRegister($dst$$reg), as_FloatRegister($one$$reg), false /* is_double */); 7613 %} 7614 ins_pipe(pipe_class_default); 7615 %} 7616 7617 // Arithmetic Instructions End 7618 7619 // ============================================================================ 7620 // Logical Instructions 7621 7622 // Register And 7623 instruct andI_reg_reg(iRegINoSp dst, iRegI src1, iRegI src2) %{ 7624 match(Set dst (AndI src1 src2)); 7625 7626 format %{ "andr $dst, $src1, $src2\t#@andI_reg_reg" %} 7627 7628 ins_cost(ALU_COST); 7629 ins_encode %{ 7630 __ andr(as_Register($dst$$reg), 7631 as_Register($src1$$reg), 7632 as_Register($src2$$reg)); 7633 %} 7634 7635 ins_pipe(ialu_reg_reg); 7636 %} 7637 7638 // Immediate And 7639 instruct andI_reg_imm(iRegINoSp dst, iRegI src1, immIAdd src2) %{ 7640 match(Set dst (AndI src1 src2)); 7641 7642 format %{ "andi $dst, $src1, $src2\t#@andI_reg_imm" %} 7643 7644 ins_cost(ALU_COST); 7645 ins_encode %{ 7646 __ andi(as_Register($dst$$reg), 7647 as_Register($src1$$reg), 7648 (int32_t)($src2$$constant)); 7649 %} 7650 7651 ins_pipe(ialu_reg_imm); 7652 %} 7653 7654 // Register Or 7655 instruct orI_reg_reg(iRegINoSp dst, iRegI src1, iRegI src2) %{ 7656 match(Set dst (OrI src1 src2)); 7657 7658 format %{ "orr $dst, $src1, $src2\t#@orI_reg_reg" %} 7659 7660 ins_cost(ALU_COST); 7661 ins_encode %{ 7662 __ orr(as_Register($dst$$reg), 7663 as_Register($src1$$reg), 7664 as_Register($src2$$reg)); 7665 %} 7666 7667 ins_pipe(ialu_reg_reg); 7668 %} 7669 7670 // Immediate Or 7671 instruct orI_reg_imm(iRegINoSp dst, iRegI src1, immIAdd src2) %{ 7672 match(Set dst (OrI src1 src2)); 7673 7674 format %{ "ori $dst, $src1, $src2\t#@orI_reg_imm" %} 7675 7676 ins_cost(ALU_COST); 7677 ins_encode %{ 7678 __ ori(as_Register($dst$$reg), 7679 as_Register($src1$$reg), 7680 (int32_t)($src2$$constant)); 7681 %} 7682 7683 ins_pipe(ialu_reg_imm); 7684 %} 7685 7686 // Register Xor 7687 instruct xorI_reg_reg(iRegINoSp dst, iRegI src1, iRegI src2) %{ 7688 match(Set dst (XorI src1 src2)); 7689 7690 format %{ "xorr $dst, $src1, $src2\t#@xorI_reg_reg" %} 7691 7692 ins_cost(ALU_COST); 7693 ins_encode %{ 7694 __ xorr(as_Register($dst$$reg), 7695 as_Register($src1$$reg), 7696 as_Register($src2$$reg)); 7697 %} 7698 7699 ins_pipe(ialu_reg_reg); 7700 %} 7701 7702 // Immediate Xor 7703 instruct xorI_reg_imm(iRegINoSp dst, iRegI src1, immIAdd src2) %{ 7704 match(Set dst (XorI src1 src2)); 7705 7706 format %{ "xori $dst, $src1, $src2\t#@xorI_reg_imm" %} 7707 7708 ins_cost(ALU_COST); 7709 ins_encode %{ 7710 __ xori(as_Register($dst$$reg), 7711 as_Register($src1$$reg), 7712 (int32_t)($src2$$constant)); 7713 %} 7714 7715 ins_pipe(ialu_reg_imm); 7716 %} 7717 7718 // Register And Long 7719 instruct andL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2) %{ 7720 match(Set dst (AndL src1 src2)); 7721 7722 format %{ "andr $dst, $src1, $src2\t#@andL_reg_reg" %} 7723 7724 ins_cost(ALU_COST); 7725 ins_encode %{ 7726 __ andr(as_Register($dst$$reg), 7727 as_Register($src1$$reg), 7728 as_Register($src2$$reg)); 7729 %} 7730 7731 ins_pipe(ialu_reg_reg); 7732 %} 7733 7734 // Immediate And Long 7735 instruct andL_reg_imm(iRegLNoSp dst, iRegL src1, immLAdd src2) %{ 7736 match(Set dst (AndL src1 src2)); 7737 7738 format %{ "andi $dst, $src1, $src2\t#@andL_reg_imm" %} 7739 7740 ins_cost(ALU_COST); 7741 ins_encode %{ 7742 __ andi(as_Register($dst$$reg), 7743 as_Register($src1$$reg), 7744 (int32_t)($src2$$constant)); 7745 %} 7746 7747 ins_pipe(ialu_reg_imm); 7748 %} 7749 7750 // Register Or Long 7751 instruct orL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2) %{ 7752 match(Set dst (OrL src1 src2)); 7753 7754 format %{ "orr $dst, $src1, $src2\t#@orL_reg_reg" %} 7755 7756 ins_cost(ALU_COST); 7757 ins_encode %{ 7758 __ orr(as_Register($dst$$reg), 7759 as_Register($src1$$reg), 7760 as_Register($src2$$reg)); 7761 %} 7762 7763 ins_pipe(ialu_reg_reg); 7764 %} 7765 7766 // Immediate Or Long 7767 instruct orL_reg_imm(iRegLNoSp dst, iRegL src1, immLAdd src2) %{ 7768 match(Set dst (OrL src1 src2)); 7769 7770 format %{ "ori $dst, $src1, $src2\t#@orL_reg_imm" %} 7771 7772 ins_cost(ALU_COST); 7773 ins_encode %{ 7774 __ ori(as_Register($dst$$reg), 7775 as_Register($src1$$reg), 7776 (int32_t)($src2$$constant)); 7777 %} 7778 7779 ins_pipe(ialu_reg_imm); 7780 %} 7781 7782 // Register Xor Long 7783 instruct xorL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2) %{ 7784 match(Set dst (XorL src1 src2)); 7785 7786 format %{ "xorr $dst, $src1, $src2\t#@xorL_reg_reg" %} 7787 7788 ins_cost(ALU_COST); 7789 ins_encode %{ 7790 __ xorr(as_Register($dst$$reg), 7791 as_Register($src1$$reg), 7792 as_Register($src2$$reg)); 7793 %} 7794 7795 ins_pipe(ialu_reg_reg); 7796 %} 7797 7798 // Immediate Xor Long 7799 instruct xorL_reg_imm(iRegLNoSp dst, iRegL src1, immLAdd src2) %{ 7800 match(Set dst (XorL src1 src2)); 7801 7802 ins_cost(ALU_COST); 7803 format %{ "xori $dst, $src1, $src2\t#@xorL_reg_imm" %} 7804 7805 ins_encode %{ 7806 __ xori(as_Register($dst$$reg), 7807 as_Register($src1$$reg), 7808 (int32_t)($src2$$constant)); 7809 %} 7810 7811 ins_pipe(ialu_reg_imm); 7812 %} 7813 7814 // ============================================================================ 7815 // MemBar Instruction 7816 7817 instruct load_fence() %{ 7818 match(LoadFence); 7819 ins_cost(ALU_COST); 7820 7821 format %{ "#@load_fence" %} 7822 7823 ins_encode %{ 7824 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 7825 %} 7826 ins_pipe(pipe_serial); 7827 %} 7828 7829 instruct membar_acquire() %{ 7830 match(MemBarAcquire); 7831 ins_cost(ALU_COST); 7832 7833 format %{ "#@membar_acquire\n\t" 7834 "fence ir iorw" %} 7835 7836 ins_encode %{ 7837 __ block_comment("membar_acquire"); 7838 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 7839 %} 7840 7841 ins_pipe(pipe_serial); 7842 %} 7843 7844 instruct membar_acquire_lock() %{ 7845 match(MemBarAcquireLock); 7846 ins_cost(0); 7847 7848 format %{ "#@membar_acquire_lock (elided)" %} 7849 7850 ins_encode %{ 7851 __ block_comment("membar_acquire_lock (elided)"); 7852 %} 7853 7854 ins_pipe(pipe_serial); 7855 %} 7856 7857 instruct store_fence() %{ 7858 match(StoreFence); 7859 ins_cost(ALU_COST); 7860 7861 format %{ "#@store_fence" %} 7862 7863 ins_encode %{ 7864 __ membar(MacroAssembler::LoadStore | MacroAssembler::StoreStore); 7865 %} 7866 ins_pipe(pipe_serial); 7867 %} 7868 7869 instruct membar_release() %{ 7870 match(MemBarRelease); 7871 ins_cost(ALU_COST); 7872 7873 format %{ "#@membar_release\n\t" 7874 "fence iorw ow" %} 7875 7876 ins_encode %{ 7877 __ block_comment("membar_release"); 7878 __ membar(MacroAssembler::LoadStore | MacroAssembler::StoreStore); 7879 %} 7880 ins_pipe(pipe_serial); 7881 %} 7882 7883 instruct membar_storestore() %{ 7884 match(MemBarStoreStore); 7885 match(StoreStoreFence); 7886 ins_cost(ALU_COST); 7887 7888 format %{ "MEMBAR-store-store\t#@membar_storestore" %} 7889 7890 ins_encode %{ 7891 __ membar(MacroAssembler::StoreStore); 7892 %} 7893 ins_pipe(pipe_serial); 7894 %} 7895 7896 instruct membar_release_lock() %{ 7897 match(MemBarReleaseLock); 7898 ins_cost(0); 7899 7900 format %{ "#@membar_release_lock (elided)" %} 7901 7902 ins_encode %{ 7903 __ block_comment("membar_release_lock (elided)"); 7904 %} 7905 7906 ins_pipe(pipe_serial); 7907 %} 7908 7909 instruct membar_volatile() %{ 7910 match(MemBarVolatile); 7911 ins_cost(ALU_COST); 7912 7913 format %{ "#@membar_volatile\n\t" 7914 "fence iorw iorw"%} 7915 7916 ins_encode %{ 7917 __ block_comment("membar_volatile"); 7918 __ membar(MacroAssembler::StoreLoad); 7919 %} 7920 7921 ins_pipe(pipe_serial); 7922 %} 7923 7924 instruct spin_wait() %{ 7925 predicate(UseZihintpause); 7926 match(OnSpinWait); 7927 ins_cost(CACHE_MISS_COST); 7928 7929 format %{ "spin_wait" %} 7930 7931 ins_encode %{ 7932 __ pause(); 7933 %} 7934 7935 ins_pipe(pipe_serial); 7936 %} 7937 7938 // ============================================================================ 7939 // Cast Instructions (Java-level type cast) 7940 7941 instruct castX2P(iRegPNoSp dst, iRegL src) %{ 7942 match(Set dst (CastX2P src)); 7943 7944 ins_cost(ALU_COST); 7945 format %{ "mv $dst, $src\t# long -> ptr, #@castX2P" %} 7946 7947 ins_encode %{ 7948 if ($dst$$reg != $src$$reg) { 7949 __ mv(as_Register($dst$$reg), as_Register($src$$reg)); 7950 } 7951 %} 7952 7953 ins_pipe(ialu_reg); 7954 %} 7955 7956 instruct castP2X(iRegLNoSp dst, iRegP src) %{ 7957 match(Set dst (CastP2X src)); 7958 7959 ins_cost(ALU_COST); 7960 format %{ "mv $dst, $src\t# ptr -> long, #@castP2X" %} 7961 7962 ins_encode %{ 7963 if ($dst$$reg != $src$$reg) { 7964 __ mv(as_Register($dst$$reg), as_Register($src$$reg)); 7965 } 7966 %} 7967 7968 ins_pipe(ialu_reg); 7969 %} 7970 7971 instruct castPP(iRegPNoSp dst) 7972 %{ 7973 match(Set dst (CastPP dst)); 7974 ins_cost(0); 7975 7976 size(0); 7977 format %{ "# castPP of $dst, #@castPP" %} 7978 ins_encode(/* empty encoding */); 7979 ins_pipe(pipe_class_empty); 7980 %} 7981 7982 instruct castLL(iRegL dst) 7983 %{ 7984 match(Set dst (CastLL dst)); 7985 7986 size(0); 7987 format %{ "# castLL of $dst, #@castLL" %} 7988 ins_encode(/* empty encoding */); 7989 ins_cost(0); 7990 ins_pipe(pipe_class_empty); 7991 %} 7992 7993 instruct castII(iRegI dst) 7994 %{ 7995 match(Set dst (CastII dst)); 7996 7997 size(0); 7998 format %{ "# castII of $dst, #@castII" %} 7999 ins_encode(/* empty encoding */); 8000 ins_cost(0); 8001 ins_pipe(pipe_class_empty); 8002 %} 8003 8004 instruct checkCastPP(iRegPNoSp dst) 8005 %{ 8006 match(Set dst (CheckCastPP dst)); 8007 8008 size(0); 8009 ins_cost(0); 8010 format %{ "# checkcastPP of $dst, #@checkCastPP" %} 8011 ins_encode(/* empty encoding */); 8012 ins_pipe(pipe_class_empty); 8013 %} 8014 8015 instruct castFF(fRegF dst) 8016 %{ 8017 match(Set dst (CastFF dst)); 8018 8019 size(0); 8020 format %{ "# castFF of $dst" %} 8021 ins_encode(/* empty encoding */); 8022 ins_cost(0); 8023 ins_pipe(pipe_class_empty); 8024 %} 8025 8026 instruct castDD(fRegD dst) 8027 %{ 8028 match(Set dst (CastDD dst)); 8029 8030 size(0); 8031 format %{ "# castDD of $dst" %} 8032 ins_encode(/* empty encoding */); 8033 ins_cost(0); 8034 ins_pipe(pipe_class_empty); 8035 %} 8036 8037 instruct castVV(vReg dst) 8038 %{ 8039 match(Set dst (CastVV dst)); 8040 8041 size(0); 8042 format %{ "# castVV of $dst" %} 8043 ins_encode(/* empty encoding */); 8044 ins_cost(0); 8045 ins_pipe(pipe_class_empty); 8046 %} 8047 8048 // ============================================================================ 8049 // Convert Instructions 8050 8051 // int to bool 8052 instruct convI2Bool(iRegINoSp dst, iRegI src) 8053 %{ 8054 match(Set dst (Conv2B src)); 8055 8056 ins_cost(ALU_COST); 8057 format %{ "snez $dst, $src\t#@convI2Bool" %} 8058 8059 ins_encode %{ 8060 __ snez(as_Register($dst$$reg), as_Register($src$$reg)); 8061 %} 8062 8063 ins_pipe(ialu_reg); 8064 %} 8065 8066 // pointer to bool 8067 instruct convP2Bool(iRegINoSp dst, iRegP src) 8068 %{ 8069 match(Set dst (Conv2B src)); 8070 8071 ins_cost(ALU_COST); 8072 format %{ "snez $dst, $src\t#@convP2Bool" %} 8073 8074 ins_encode %{ 8075 __ snez(as_Register($dst$$reg), as_Register($src$$reg)); 8076 %} 8077 8078 ins_pipe(ialu_reg); 8079 %} 8080 8081 // int <-> long 8082 8083 instruct convI2L_reg_reg(iRegLNoSp dst, iRegIorL2I src) 8084 %{ 8085 match(Set dst (ConvI2L src)); 8086 8087 ins_cost(ALU_COST); 8088 format %{ "addw $dst, $src, zr\t#@convI2L_reg_reg" %} 8089 ins_encode %{ 8090 __ sext(as_Register($dst$$reg), as_Register($src$$reg), 32); 8091 %} 8092 ins_pipe(ialu_reg); 8093 %} 8094 8095 instruct convL2I_reg(iRegINoSp dst, iRegL src) %{ 8096 match(Set dst (ConvL2I src)); 8097 8098 ins_cost(ALU_COST); 8099 format %{ "addw $dst, $src, zr\t#@convL2I_reg" %} 8100 8101 ins_encode %{ 8102 __ sext(as_Register($dst$$reg), as_Register($src$$reg), 32); 8103 %} 8104 8105 ins_pipe(ialu_reg); 8106 %} 8107 8108 // int to unsigned long (Zero-extend) 8109 instruct convI2UL_reg_reg(iRegLNoSp dst, iRegIorL2I src, immL_32bits mask) 8110 %{ 8111 match(Set dst (AndL (ConvI2L src) mask)); 8112 8113 ins_cost(ALU_COST * 2); 8114 format %{ "zext $dst, $src, 32\t# i2ul, #@convI2UL_reg_reg" %} 8115 8116 ins_encode %{ 8117 __ zext(as_Register($dst$$reg), as_Register($src$$reg), 32); 8118 %} 8119 8120 ins_pipe(ialu_reg_shift); 8121 %} 8122 8123 // float <-> double 8124 8125 instruct convF2D_reg(fRegD dst, fRegF src) %{ 8126 match(Set dst (ConvF2D src)); 8127 8128 ins_cost(XFER_COST); 8129 format %{ "fcvt.d.s $dst, $src\t#@convF2D_reg" %} 8130 8131 ins_encode %{ 8132 __ fcvt_d_s(as_FloatRegister($dst$$reg), as_FloatRegister($src$$reg)); 8133 %} 8134 8135 ins_pipe(fp_f2d); 8136 %} 8137 8138 instruct convD2F_reg(fRegF dst, fRegD src) %{ 8139 match(Set dst (ConvD2F src)); 8140 8141 ins_cost(XFER_COST); 8142 format %{ "fcvt.s.d $dst, $src\t#@convD2F_reg" %} 8143 8144 ins_encode %{ 8145 __ fcvt_s_d(as_FloatRegister($dst$$reg), as_FloatRegister($src$$reg)); 8146 %} 8147 8148 ins_pipe(fp_d2f); 8149 %} 8150 8151 // single <-> half precision 8152 8153 instruct convHF2F_reg_reg(fRegF dst, iRegINoSp src, iRegINoSp tmp) %{ 8154 match(Set dst (ConvHF2F src)); 8155 effect(TEMP tmp); 8156 format %{ "fmv.h.x $dst, $src\t# move source from $src to $dst\n\t" 8157 "fcvt.s.h $dst, $dst\t# convert half to single precision" 8158 %} 8159 ins_encode %{ 8160 __ float16_to_float($dst$$FloatRegister, $src$$Register, $tmp$$Register); 8161 %} 8162 ins_pipe(pipe_slow); 8163 %} 8164 8165 instruct convF2HF_reg_reg(iRegINoSp dst, fRegF src, fRegF ftmp, iRegINoSp xtmp) %{ 8166 match(Set dst (ConvF2HF src)); 8167 effect(TEMP_DEF dst, TEMP ftmp, TEMP xtmp); 8168 format %{ "fcvt.h.s $ftmp, $src\t# convert single precision to half\n\t" 8169 "fmv.x.h $dst, $ftmp\t# move result from $ftmp to $dst" 8170 %} 8171 ins_encode %{ 8172 __ float_to_float16($dst$$Register, $src$$FloatRegister, $ftmp$$FloatRegister, $xtmp$$Register); 8173 %} 8174 ins_pipe(pipe_slow); 8175 %} 8176 8177 // float <-> int 8178 8179 instruct convF2I_reg_reg(iRegINoSp dst, fRegF src) %{ 8180 match(Set dst (ConvF2I src)); 8181 8182 ins_cost(XFER_COST); 8183 format %{ "fcvt.w.s $dst, $src\t#@convF2I_reg_reg" %} 8184 8185 ins_encode %{ 8186 __ fcvt_w_s_safe($dst$$Register, $src$$FloatRegister); 8187 %} 8188 8189 ins_pipe(fp_f2i); 8190 %} 8191 8192 instruct convI2F_reg_reg(fRegF dst, iRegIorL2I src) %{ 8193 match(Set dst (ConvI2F src)); 8194 8195 ins_cost(XFER_COST); 8196 format %{ "fcvt.s.w $dst, $src\t#@convI2F_reg_reg" %} 8197 8198 ins_encode %{ 8199 __ fcvt_s_w(as_FloatRegister($dst$$reg), as_Register($src$$reg)); 8200 %} 8201 8202 ins_pipe(fp_i2f); 8203 %} 8204 8205 // float <-> long 8206 8207 instruct convF2L_reg_reg(iRegLNoSp dst, fRegF src) %{ 8208 match(Set dst (ConvF2L src)); 8209 8210 ins_cost(XFER_COST); 8211 format %{ "fcvt.l.s $dst, $src\t#@convF2L_reg_reg" %} 8212 8213 ins_encode %{ 8214 __ fcvt_l_s_safe($dst$$Register, $src$$FloatRegister); 8215 %} 8216 8217 ins_pipe(fp_f2l); 8218 %} 8219 8220 instruct convL2F_reg_reg(fRegF dst, iRegL src) %{ 8221 match(Set dst (ConvL2F src)); 8222 8223 ins_cost(XFER_COST); 8224 format %{ "fcvt.s.l $dst, $src\t#@convL2F_reg_reg" %} 8225 8226 ins_encode %{ 8227 __ fcvt_s_l(as_FloatRegister($dst$$reg), as_Register($src$$reg)); 8228 %} 8229 8230 ins_pipe(fp_l2f); 8231 %} 8232 8233 // double <-> int 8234 8235 instruct convD2I_reg_reg(iRegINoSp dst, fRegD src) %{ 8236 match(Set dst (ConvD2I src)); 8237 8238 ins_cost(XFER_COST); 8239 format %{ "fcvt.w.d $dst, $src\t#@convD2I_reg_reg" %} 8240 8241 ins_encode %{ 8242 __ fcvt_w_d_safe($dst$$Register, $src$$FloatRegister); 8243 %} 8244 8245 ins_pipe(fp_d2i); 8246 %} 8247 8248 instruct convI2D_reg_reg(fRegD dst, iRegIorL2I src) %{ 8249 match(Set dst (ConvI2D src)); 8250 8251 ins_cost(XFER_COST); 8252 format %{ "fcvt.d.w $dst, $src\t#@convI2D_reg_reg" %} 8253 8254 ins_encode %{ 8255 __ fcvt_d_w(as_FloatRegister($dst$$reg), as_Register($src$$reg)); 8256 %} 8257 8258 ins_pipe(fp_i2d); 8259 %} 8260 8261 // double <-> long 8262 8263 instruct convD2L_reg_reg(iRegLNoSp dst, fRegD src) %{ 8264 match(Set dst (ConvD2L src)); 8265 8266 ins_cost(XFER_COST); 8267 format %{ "fcvt.l.d $dst, $src\t#@convD2L_reg_reg" %} 8268 8269 ins_encode %{ 8270 __ fcvt_l_d_safe($dst$$Register, $src$$FloatRegister); 8271 %} 8272 8273 ins_pipe(fp_d2l); 8274 %} 8275 8276 instruct convL2D_reg_reg(fRegD dst, iRegL src) %{ 8277 match(Set dst (ConvL2D src)); 8278 8279 ins_cost(XFER_COST); 8280 format %{ "fcvt.d.l $dst, $src\t#@convL2D_reg_reg" %} 8281 8282 ins_encode %{ 8283 __ fcvt_d_l(as_FloatRegister($dst$$reg), as_Register($src$$reg)); 8284 %} 8285 8286 ins_pipe(fp_l2d); 8287 %} 8288 8289 // Convert oop into int for vectors alignment masking 8290 instruct convP2I(iRegINoSp dst, iRegP src) %{ 8291 match(Set dst (ConvL2I (CastP2X src))); 8292 8293 ins_cost(ALU_COST * 2); 8294 format %{ "zext $dst, $src, 32\t# ptr -> int, #@convP2I" %} 8295 8296 ins_encode %{ 8297 __ zext($dst$$Register, $src$$Register, 32); 8298 %} 8299 8300 ins_pipe(ialu_reg); 8301 %} 8302 8303 // Convert compressed oop into int for vectors alignment masking 8304 // in case of 32bit oops (heap < 4Gb). 8305 instruct convN2I(iRegINoSp dst, iRegN src) 8306 %{ 8307 predicate(CompressedOops::shift() == 0); 8308 match(Set dst (ConvL2I (CastP2X (DecodeN src)))); 8309 8310 ins_cost(ALU_COST); 8311 format %{ "mv $dst, $src\t# compressed ptr -> int, #@convN2I" %} 8312 8313 ins_encode %{ 8314 __ mv($dst$$Register, $src$$Register); 8315 %} 8316 8317 ins_pipe(ialu_reg); 8318 %} 8319 8320 instruct round_double_reg(iRegLNoSp dst, fRegD src, fRegD ftmp) %{ 8321 match(Set dst (RoundD src)); 8322 8323 ins_cost(XFER_COST + BRANCH_COST); 8324 effect(TEMP ftmp); 8325 format %{ "java_round_double $dst, $src\t#@round_double_reg" %} 8326 8327 ins_encode %{ 8328 __ java_round_double($dst$$Register, as_FloatRegister($src$$reg), as_FloatRegister($ftmp$$reg)); 8329 %} 8330 8331 ins_pipe(pipe_slow); 8332 %} 8333 8334 instruct round_float_reg(iRegINoSp dst, fRegF src, fRegF ftmp) %{ 8335 match(Set dst (RoundF src)); 8336 8337 ins_cost(XFER_COST + BRANCH_COST); 8338 effect(TEMP ftmp); 8339 format %{ "java_round_float $dst, $src\t#@round_float_reg" %} 8340 8341 ins_encode %{ 8342 __ java_round_float($dst$$Register, as_FloatRegister($src$$reg), as_FloatRegister($ftmp$$reg)); 8343 %} 8344 8345 ins_pipe(pipe_slow); 8346 %} 8347 8348 // Convert oop pointer into compressed form 8349 instruct encodeHeapOop(iRegNNoSp dst, iRegP src) %{ 8350 predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull); 8351 match(Set dst (EncodeP src)); 8352 ins_cost(ALU_COST); 8353 format %{ "encode_heap_oop $dst, $src\t#@encodeHeapOop" %} 8354 ins_encode %{ 8355 Register s = $src$$Register; 8356 Register d = $dst$$Register; 8357 __ encode_heap_oop(d, s); 8358 %} 8359 ins_pipe(pipe_class_default); 8360 %} 8361 8362 instruct encodeHeapOop_not_null(iRegNNoSp dst, iRegP src) %{ 8363 predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull); 8364 match(Set dst (EncodeP src)); 8365 ins_cost(ALU_COST); 8366 format %{ "encode_heap_oop_not_null $dst, $src\t#@encodeHeapOop_not_null" %} 8367 ins_encode %{ 8368 __ encode_heap_oop_not_null($dst$$Register, $src$$Register); 8369 %} 8370 ins_pipe(pipe_class_default); 8371 %} 8372 8373 instruct decodeHeapOop(iRegPNoSp dst, iRegN src) %{ 8374 predicate(n->bottom_type()->is_ptr()->ptr() != TypePtr::NotNull && 8375 n->bottom_type()->is_ptr()->ptr() != TypePtr::Constant); 8376 match(Set dst (DecodeN src)); 8377 8378 ins_cost(0); 8379 format %{ "decode_heap_oop $dst, $src\t#@decodeHeapOop" %} 8380 ins_encode %{ 8381 Register s = $src$$Register; 8382 Register d = $dst$$Register; 8383 __ decode_heap_oop(d, s); 8384 %} 8385 ins_pipe(pipe_class_default); 8386 %} 8387 8388 instruct decodeHeapOop_not_null(iRegPNoSp dst, iRegN src) %{ 8389 predicate(n->bottom_type()->is_ptr()->ptr() == TypePtr::NotNull || 8390 n->bottom_type()->is_ptr()->ptr() == TypePtr::Constant); 8391 match(Set dst (DecodeN src)); 8392 8393 ins_cost(0); 8394 format %{ "decode_heap_oop_not_null $dst, $src\t#@decodeHeapOop_not_null" %} 8395 ins_encode %{ 8396 Register s = $src$$Register; 8397 Register d = $dst$$Register; 8398 __ decode_heap_oop_not_null(d, s); 8399 %} 8400 ins_pipe(pipe_class_default); 8401 %} 8402 8403 // Convert klass pointer into compressed form. 8404 instruct encodeKlass_not_null(iRegNNoSp dst, iRegP src) %{ 8405 match(Set dst (EncodePKlass src)); 8406 8407 ins_cost(ALU_COST); 8408 format %{ "encode_klass_not_null $dst, $src\t#@encodeKlass_not_null" %} 8409 8410 ins_encode %{ 8411 Register src_reg = as_Register($src$$reg); 8412 Register dst_reg = as_Register($dst$$reg); 8413 __ encode_klass_not_null(dst_reg, src_reg, t0); 8414 %} 8415 8416 ins_pipe(pipe_class_default); 8417 %} 8418 8419 instruct decodeKlass_not_null(iRegPNoSp dst, iRegN src, iRegPNoSp tmp) %{ 8420 match(Set dst (DecodeNKlass src)); 8421 8422 effect(TEMP tmp); 8423 8424 ins_cost(ALU_COST); 8425 format %{ "decode_klass_not_null $dst, $src\t#@decodeKlass_not_null" %} 8426 8427 ins_encode %{ 8428 Register src_reg = as_Register($src$$reg); 8429 Register dst_reg = as_Register($dst$$reg); 8430 Register tmp_reg = as_Register($tmp$$reg); 8431 __ decode_klass_not_null(dst_reg, src_reg, tmp_reg); 8432 %} 8433 8434 ins_pipe(pipe_class_default); 8435 %} 8436 8437 // stack <-> reg and reg <-> reg shuffles with no conversion 8438 8439 instruct MoveF2I_stack_reg(iRegINoSp dst, stackSlotF src) %{ 8440 8441 match(Set dst (MoveF2I src)); 8442 8443 effect(DEF dst, USE src); 8444 8445 ins_cost(LOAD_COST); 8446 8447 format %{ "lw $dst, $src\t#@MoveF2I_stack_reg" %} 8448 8449 ins_encode %{ 8450 __ lw(as_Register($dst$$reg), Address(sp, $src$$disp)); 8451 %} 8452 8453 ins_pipe(iload_reg_reg); 8454 8455 %} 8456 8457 instruct MoveI2F_stack_reg(fRegF dst, stackSlotI src) %{ 8458 8459 match(Set dst (MoveI2F src)); 8460 8461 effect(DEF dst, USE src); 8462 8463 ins_cost(LOAD_COST); 8464 8465 format %{ "flw $dst, $src\t#@MoveI2F_stack_reg" %} 8466 8467 ins_encode %{ 8468 __ flw(as_FloatRegister($dst$$reg), Address(sp, $src$$disp)); 8469 %} 8470 8471 ins_pipe(fp_load_mem_s); 8472 8473 %} 8474 8475 instruct MoveD2L_stack_reg(iRegLNoSp dst, stackSlotD src) %{ 8476 8477 match(Set dst (MoveD2L src)); 8478 8479 effect(DEF dst, USE src); 8480 8481 ins_cost(LOAD_COST); 8482 8483 format %{ "ld $dst, $src\t#@MoveD2L_stack_reg" %} 8484 8485 ins_encode %{ 8486 __ ld(as_Register($dst$$reg), Address(sp, $src$$disp)); 8487 %} 8488 8489 ins_pipe(iload_reg_reg); 8490 8491 %} 8492 8493 instruct MoveL2D_stack_reg(fRegD dst, stackSlotL src) %{ 8494 8495 match(Set dst (MoveL2D src)); 8496 8497 effect(DEF dst, USE src); 8498 8499 ins_cost(LOAD_COST); 8500 8501 format %{ "fld $dst, $src\t#@MoveL2D_stack_reg" %} 8502 8503 ins_encode %{ 8504 __ fld(as_FloatRegister($dst$$reg), Address(sp, $src$$disp)); 8505 %} 8506 8507 ins_pipe(fp_load_mem_d); 8508 8509 %} 8510 8511 instruct MoveF2I_reg_stack(stackSlotI dst, fRegF src) %{ 8512 8513 match(Set dst (MoveF2I src)); 8514 8515 effect(DEF dst, USE src); 8516 8517 ins_cost(STORE_COST); 8518 8519 format %{ "fsw $src, $dst\t#@MoveF2I_reg_stack" %} 8520 8521 ins_encode %{ 8522 __ fsw(as_FloatRegister($src$$reg), Address(sp, $dst$$disp)); 8523 %} 8524 8525 ins_pipe(fp_store_reg_s); 8526 8527 %} 8528 8529 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{ 8530 8531 match(Set dst (MoveI2F src)); 8532 8533 effect(DEF dst, USE src); 8534 8535 ins_cost(STORE_COST); 8536 8537 format %{ "sw $src, $dst\t#@MoveI2F_reg_stack" %} 8538 8539 ins_encode %{ 8540 __ sw(as_Register($src$$reg), Address(sp, $dst$$disp)); 8541 %} 8542 8543 ins_pipe(istore_reg_reg); 8544 8545 %} 8546 8547 instruct MoveD2L_reg_stack(stackSlotL dst, fRegD src) %{ 8548 8549 match(Set dst (MoveD2L src)); 8550 8551 effect(DEF dst, USE src); 8552 8553 ins_cost(STORE_COST); 8554 8555 format %{ "fsd $dst, $src\t#@MoveD2L_reg_stack" %} 8556 8557 ins_encode %{ 8558 __ fsd(as_FloatRegister($src$$reg), Address(sp, $dst$$disp)); 8559 %} 8560 8561 ins_pipe(fp_store_reg_d); 8562 8563 %} 8564 8565 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{ 8566 8567 match(Set dst (MoveL2D src)); 8568 8569 effect(DEF dst, USE src); 8570 8571 ins_cost(STORE_COST); 8572 8573 format %{ "sd $src, $dst\t#@MoveL2D_reg_stack" %} 8574 8575 ins_encode %{ 8576 __ sd(as_Register($src$$reg), Address(sp, $dst$$disp)); 8577 %} 8578 8579 ins_pipe(istore_reg_reg); 8580 8581 %} 8582 8583 instruct MoveF2I_reg_reg(iRegINoSp dst, fRegF src) %{ 8584 8585 match(Set dst (MoveF2I src)); 8586 8587 effect(DEF dst, USE src); 8588 8589 ins_cost(FMVX_COST); 8590 8591 format %{ "fmv.x.w $dst, $src\t#@MoveF2I_reg_reg" %} 8592 8593 ins_encode %{ 8594 __ fmv_x_w(as_Register($dst$$reg), as_FloatRegister($src$$reg)); 8595 %} 8596 8597 ins_pipe(fp_f2i); 8598 8599 %} 8600 8601 instruct MoveI2F_reg_reg(fRegF dst, iRegI src) %{ 8602 8603 match(Set dst (MoveI2F src)); 8604 8605 effect(DEF dst, USE src); 8606 8607 ins_cost(FMVX_COST); 8608 8609 format %{ "fmv.w.x $dst, $src\t#@MoveI2F_reg_reg" %} 8610 8611 ins_encode %{ 8612 __ fmv_w_x(as_FloatRegister($dst$$reg), as_Register($src$$reg)); 8613 %} 8614 8615 ins_pipe(fp_i2f); 8616 8617 %} 8618 8619 instruct MoveD2L_reg_reg(iRegLNoSp dst, fRegD src) %{ 8620 8621 match(Set dst (MoveD2L src)); 8622 8623 effect(DEF dst, USE src); 8624 8625 ins_cost(FMVX_COST); 8626 8627 format %{ "fmv.x.d $dst, $src\t#@MoveD2L_reg_reg" %} 8628 8629 ins_encode %{ 8630 __ fmv_x_d(as_Register($dst$$reg), as_FloatRegister($src$$reg)); 8631 %} 8632 8633 ins_pipe(fp_d2l); 8634 8635 %} 8636 8637 instruct MoveL2D_reg_reg(fRegD dst, iRegL src) %{ 8638 8639 match(Set dst (MoveL2D src)); 8640 8641 effect(DEF dst, USE src); 8642 8643 ins_cost(FMVX_COST); 8644 8645 format %{ "fmv.d.x $dst, $src\t#@MoveL2D_reg_reg" %} 8646 8647 ins_encode %{ 8648 __ fmv_d_x(as_FloatRegister($dst$$reg), as_Register($src$$reg)); 8649 %} 8650 8651 ins_pipe(fp_l2d); 8652 8653 %} 8654 8655 // ============================================================================ 8656 // Compare Instructions which set the result float comparisons in dest register. 8657 8658 instruct cmpF3_reg_reg(iRegINoSp dst, fRegF op1, fRegF op2) 8659 %{ 8660 match(Set dst (CmpF3 op1 op2)); 8661 8662 ins_cost(XFER_COST * 2 + BRANCH_COST + ALU_COST); 8663 format %{ "flt.s $dst, $op2, $op1\t#@cmpF3_reg_reg\n\t" 8664 "bgtz $dst, done\n\t" 8665 "feq.s $dst, $op1, $op2\n\t" 8666 "addi $dst, $dst, -1\n\t" 8667 "done:" 8668 %} 8669 8670 ins_encode %{ 8671 // we want -1 for unordered or less than, 0 for equal and 1 for greater than. 8672 __ float_compare(as_Register($dst$$reg), as_FloatRegister($op1$$reg), 8673 as_FloatRegister($op2$$reg), -1 /*unordered_result < 0*/); 8674 %} 8675 8676 ins_pipe(pipe_class_default); 8677 %} 8678 8679 instruct cmpD3_reg_reg(iRegINoSp dst, fRegD op1, fRegD op2) 8680 %{ 8681 match(Set dst (CmpD3 op1 op2)); 8682 8683 ins_cost(XFER_COST * 2 + BRANCH_COST + ALU_COST); 8684 format %{ "flt.d $dst, $op2, $op1\t#@cmpD3_reg_reg\n\t" 8685 "bgtz $dst, done\n\t" 8686 "feq.d $dst, $op1, $op2\n\t" 8687 "addi $dst, $dst, -1\n\t" 8688 "done:" 8689 %} 8690 8691 ins_encode %{ 8692 // we want -1 for unordered or less than, 0 for equal and 1 for greater than. 8693 __ double_compare(as_Register($dst$$reg), as_FloatRegister($op1$$reg), as_FloatRegister($op2$$reg), -1 /*unordered_result < 0*/); 8694 %} 8695 8696 ins_pipe(pipe_class_default); 8697 %} 8698 8699 instruct cmpL3_reg_reg(iRegINoSp dst, iRegL op1, iRegL op2) 8700 %{ 8701 match(Set dst (CmpL3 op1 op2)); 8702 8703 ins_cost(ALU_COST * 3 + BRANCH_COST); 8704 format %{ "slt $dst, $op2, $op1\t#@cmpL3_reg_reg\n\t" 8705 "bnez $dst, done\n\t" 8706 "slt $dst, $op1, $op2\n\t" 8707 "neg $dst, $dst\n\t" 8708 "done:" 8709 %} 8710 ins_encode %{ 8711 __ cmp_l2i(t0, as_Register($op1$$reg), as_Register($op2$$reg)); 8712 __ mv(as_Register($dst$$reg), t0); 8713 %} 8714 8715 ins_pipe(pipe_class_default); 8716 %} 8717 8718 instruct cmpUL3_reg_reg(iRegINoSp dst, iRegL op1, iRegL op2) 8719 %{ 8720 match(Set dst (CmpUL3 op1 op2)); 8721 8722 ins_cost(ALU_COST * 3 + BRANCH_COST); 8723 format %{ "sltu $dst, $op2, $op1\t#@cmpUL3_reg_reg\n\t" 8724 "bnez $dst, done\n\t" 8725 "sltu $dst, $op1, $op2\n\t" 8726 "neg $dst, $dst\n\t" 8727 "done:" 8728 %} 8729 ins_encode %{ 8730 __ cmp_ul2i(t0, as_Register($op1$$reg), as_Register($op2$$reg)); 8731 __ mv(as_Register($dst$$reg), t0); 8732 %} 8733 8734 ins_pipe(pipe_class_default); 8735 %} 8736 8737 instruct cmpU3_reg_reg(iRegINoSp dst, iRegI op1, iRegI op2) 8738 %{ 8739 match(Set dst (CmpU3 op1 op2)); 8740 8741 ins_cost(ALU_COST * 3 + BRANCH_COST); 8742 format %{ "sltu $dst, $op2, $op1\t#@cmpU3_reg_reg\n\t" 8743 "bnez $dst, done\n\t" 8744 "sltu $dst, $op1, $op2\n\t" 8745 "neg $dst, $dst\n\t" 8746 "done:" 8747 %} 8748 ins_encode %{ 8749 __ cmp_uw2i(t0, as_Register($op1$$reg), as_Register($op2$$reg)); 8750 __ mv(as_Register($dst$$reg), t0); 8751 %} 8752 8753 ins_pipe(pipe_class_default); 8754 %} 8755 8756 instruct cmpLTMask_reg_reg(iRegINoSp dst, iRegI p, iRegI q) 8757 %{ 8758 match(Set dst (CmpLTMask p q)); 8759 8760 ins_cost(2 * ALU_COST); 8761 8762 format %{ "slt $dst, $p, $q\t#@cmpLTMask_reg_reg\n\t" 8763 "subw $dst, zr, $dst\t#@cmpLTMask_reg_reg" 8764 %} 8765 8766 ins_encode %{ 8767 __ slt(as_Register($dst$$reg), as_Register($p$$reg), as_Register($q$$reg)); 8768 __ subw(as_Register($dst$$reg), zr, as_Register($dst$$reg)); 8769 %} 8770 8771 ins_pipe(ialu_reg_reg); 8772 %} 8773 8774 instruct cmpLTMask_reg_zero(iRegINoSp dst, iRegIorL2I op, immI0 zero) 8775 %{ 8776 match(Set dst (CmpLTMask op zero)); 8777 8778 ins_cost(ALU_COST); 8779 8780 format %{ "sraiw $dst, $dst, 31\t#@cmpLTMask_reg_reg" %} 8781 8782 ins_encode %{ 8783 __ sraiw(as_Register($dst$$reg), as_Register($op$$reg), 31); 8784 %} 8785 8786 ins_pipe(ialu_reg_shift); 8787 %} 8788 8789 8790 // ============================================================================ 8791 // Max and Min 8792 8793 instruct minI_reg_reg(iRegINoSp dst, iRegI src) 8794 %{ 8795 match(Set dst (MinI dst src)); 8796 8797 ins_cost(BRANCH_COST + ALU_COST); 8798 format %{ 8799 "ble $dst, $src, skip\t#@minI_reg_reg\n\t" 8800 "mv $dst, $src\n\t" 8801 "skip:" 8802 %} 8803 8804 ins_encode %{ 8805 Label Lskip; 8806 __ ble(as_Register($dst$$reg), as_Register($src$$reg), Lskip); 8807 __ mv(as_Register($dst$$reg), as_Register($src$$reg)); 8808 __ bind(Lskip); 8809 %} 8810 8811 ins_pipe(pipe_class_compare); 8812 %} 8813 8814 instruct maxI_reg_reg(iRegINoSp dst, iRegI src) 8815 %{ 8816 match(Set dst (MaxI dst src)); 8817 8818 ins_cost(BRANCH_COST + ALU_COST); 8819 format %{ 8820 "bge $dst, $src, skip\t#@maxI_reg_reg\n\t" 8821 "mv $dst, $src\n\t" 8822 "skip:" 8823 %} 8824 8825 ins_encode %{ 8826 Label Lskip; 8827 __ bge(as_Register($dst$$reg), as_Register($src$$reg), Lskip); 8828 __ mv(as_Register($dst$$reg), as_Register($src$$reg)); 8829 __ bind(Lskip); 8830 %} 8831 8832 ins_pipe(pipe_class_compare); 8833 %} 8834 8835 // special case for comparing with zero 8836 // n.b. this is selected in preference to the rule above because it 8837 // avoids loading constant 0 into a source register 8838 8839 instruct minI_reg_zero(iRegINoSp dst, immI0 zero) 8840 %{ 8841 match(Set dst (MinI dst zero)); 8842 match(Set dst (MinI zero dst)); 8843 8844 ins_cost(BRANCH_COST + ALU_COST); 8845 format %{ 8846 "blez $dst, skip\t#@minI_reg_zero\n\t" 8847 "mv $dst, zr\n\t" 8848 "skip:" 8849 %} 8850 8851 ins_encode %{ 8852 Label Lskip; 8853 __ blez(as_Register($dst$$reg), Lskip); 8854 __ mv(as_Register($dst$$reg), zr); 8855 __ bind(Lskip); 8856 %} 8857 8858 ins_pipe(pipe_class_compare); 8859 %} 8860 8861 instruct maxI_reg_zero(iRegINoSp dst, immI0 zero) 8862 %{ 8863 match(Set dst (MaxI dst zero)); 8864 match(Set dst (MaxI zero dst)); 8865 8866 ins_cost(BRANCH_COST + ALU_COST); 8867 format %{ 8868 "bgez $dst, skip\t#@maxI_reg_zero\n\t" 8869 "mv $dst, zr\n\t" 8870 "skip:" 8871 %} 8872 8873 ins_encode %{ 8874 Label Lskip; 8875 __ bgez(as_Register($dst$$reg), Lskip); 8876 __ mv(as_Register($dst$$reg), zr); 8877 __ bind(Lskip); 8878 %} 8879 8880 ins_pipe(pipe_class_compare); 8881 %} 8882 8883 instruct minI_rReg(iRegINoSp dst, iRegI src1, iRegI src2) 8884 %{ 8885 match(Set dst (MinI src1 src2)); 8886 8887 effect(DEF dst, USE src1, USE src2); 8888 8889 ins_cost(BRANCH_COST + ALU_COST * 2); 8890 format %{ 8891 "ble $src1, $src2, Lsrc1\t#@minI_rReg\n\t" 8892 "mv $dst, $src2\n\t" 8893 "j Ldone\n\t" 8894 "Lsrc1:\n\t" 8895 "mv $dst, $src1\n\t" 8896 "Ldone:" 8897 %} 8898 8899 ins_encode %{ 8900 Label Lsrc1, Ldone; 8901 __ ble(as_Register($src1$$reg), as_Register($src2$$reg), Lsrc1); 8902 __ mv(as_Register($dst$$reg), as_Register($src2$$reg)); 8903 __ j(Ldone); 8904 __ bind(Lsrc1); 8905 __ mv(as_Register($dst$$reg), as_Register($src1$$reg)); 8906 __ bind(Ldone); 8907 %} 8908 8909 ins_pipe(pipe_class_compare); 8910 %} 8911 8912 instruct maxI_rReg(iRegINoSp dst, iRegI src1, iRegI src2) 8913 %{ 8914 match(Set dst (MaxI src1 src2)); 8915 8916 effect(DEF dst, USE src1, USE src2); 8917 8918 ins_cost(BRANCH_COST + ALU_COST * 2); 8919 format %{ 8920 "bge $src1, $src2, Lsrc1\t#@maxI_rReg\n\t" 8921 "mv $dst, $src2\n\t" 8922 "j Ldone\n\t" 8923 "Lsrc1:\n\t" 8924 "mv $dst, $src1\n\t" 8925 "Ldone:" 8926 %} 8927 8928 ins_encode %{ 8929 Label Lsrc1, Ldone; 8930 __ bge(as_Register($src1$$reg), as_Register($src2$$reg), Lsrc1); 8931 __ mv(as_Register($dst$$reg), as_Register($src2$$reg)); 8932 __ j(Ldone); 8933 __ bind(Lsrc1); 8934 __ mv(as_Register($dst$$reg), as_Register($src1$$reg)); 8935 __ bind(Ldone); 8936 8937 %} 8938 8939 ins_pipe(pipe_class_compare); 8940 %} 8941 8942 // ============================================================================ 8943 // Branch Instructions 8944 // Direct Branch. 8945 instruct branch(label lbl) 8946 %{ 8947 match(Goto); 8948 8949 effect(USE lbl); 8950 8951 ins_cost(BRANCH_COST); 8952 format %{ "j $lbl\t#@branch" %} 8953 8954 ins_encode(riscv_enc_j(lbl)); 8955 8956 ins_pipe(pipe_branch); 8957 %} 8958 8959 // ============================================================================ 8960 // Compare and Branch Instructions 8961 8962 // Patterns for short (< 12KiB) variants 8963 8964 // Compare flags and branch near instructions. 8965 instruct cmpFlag_branch(cmpOpEqNe cmp, rFlagsReg cr, label lbl) %{ 8966 match(If cmp cr); 8967 effect(USE lbl); 8968 8969 ins_cost(BRANCH_COST); 8970 format %{ "b$cmp $cr, zr, $lbl\t#@cmpFlag_branch" %} 8971 8972 ins_encode %{ 8973 __ enc_cmpEqNe_imm0_branch($cmp$$cmpcode, as_Register($cr$$reg), *($lbl$$label)); 8974 %} 8975 ins_pipe(pipe_cmpz_branch); 8976 ins_short_branch(1); 8977 %} 8978 8979 // Compare signed int and branch near instructions 8980 instruct cmpI_branch(cmpOp cmp, iRegI op1, iRegI op2, label lbl) 8981 %{ 8982 // Same match rule as `far_cmpI_branch'. 8983 match(If cmp (CmpI op1 op2)); 8984 8985 effect(USE lbl); 8986 8987 ins_cost(BRANCH_COST); 8988 8989 format %{ "b$cmp $op1, $op2, $lbl\t#@cmpI_branch" %} 8990 8991 ins_encode %{ 8992 __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), as_Register($op2$$reg), *($lbl$$label)); 8993 %} 8994 8995 ins_pipe(pipe_cmp_branch); 8996 ins_short_branch(1); 8997 %} 8998 8999 instruct cmpI_loop(cmpOp cmp, iRegI op1, iRegI op2, label lbl) 9000 %{ 9001 // Same match rule as `far_cmpI_loop'. 9002 match(CountedLoopEnd cmp (CmpI op1 op2)); 9003 9004 effect(USE lbl); 9005 9006 ins_cost(BRANCH_COST); 9007 9008 format %{ "b$cmp $op1, $op2, $lbl\t#@cmpI_loop" %} 9009 9010 ins_encode %{ 9011 __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), as_Register($op2$$reg), *($lbl$$label)); 9012 %} 9013 9014 ins_pipe(pipe_cmp_branch); 9015 ins_short_branch(1); 9016 %} 9017 9018 // Compare unsigned int and branch near instructions 9019 instruct cmpU_branch(cmpOpU cmp, iRegI op1, iRegI op2, label lbl) 9020 %{ 9021 // Same match rule as `far_cmpU_branch'. 9022 match(If cmp (CmpU op1 op2)); 9023 9024 effect(USE lbl); 9025 9026 ins_cost(BRANCH_COST); 9027 9028 format %{ "b$cmp $op1, $op2, $lbl\t#@cmpU_branch" %} 9029 9030 ins_encode %{ 9031 __ cmp_branch($cmp$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, as_Register($op1$$reg), 9032 as_Register($op2$$reg), *($lbl$$label)); 9033 %} 9034 9035 ins_pipe(pipe_cmp_branch); 9036 ins_short_branch(1); 9037 %} 9038 9039 // Compare signed long and branch near instructions 9040 instruct cmpL_branch(cmpOp cmp, iRegL op1, iRegL op2, label lbl) 9041 %{ 9042 // Same match rule as `far_cmpL_branch'. 9043 match(If cmp (CmpL op1 op2)); 9044 9045 effect(USE lbl); 9046 9047 ins_cost(BRANCH_COST); 9048 9049 format %{ "b$cmp $op1, $op2, $lbl\t#@cmpL_branch" %} 9050 9051 ins_encode %{ 9052 __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), as_Register($op2$$reg), *($lbl$$label)); 9053 %} 9054 9055 ins_pipe(pipe_cmp_branch); 9056 ins_short_branch(1); 9057 %} 9058 9059 instruct cmpL_loop(cmpOp cmp, iRegL op1, iRegL op2, label lbl) 9060 %{ 9061 // Same match rule as `far_cmpL_loop'. 9062 match(CountedLoopEnd cmp (CmpL op1 op2)); 9063 9064 effect(USE lbl); 9065 9066 ins_cost(BRANCH_COST); 9067 9068 format %{ "b$cmp $op1, $op2, $lbl\t#@cmpL_loop" %} 9069 9070 ins_encode %{ 9071 __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), as_Register($op2$$reg), *($lbl$$label)); 9072 %} 9073 9074 ins_pipe(pipe_cmp_branch); 9075 ins_short_branch(1); 9076 %} 9077 9078 // Compare unsigned long and branch near instructions 9079 instruct cmpUL_branch(cmpOpU cmp, iRegL op1, iRegL op2, label lbl) 9080 %{ 9081 // Same match rule as `far_cmpUL_branch'. 9082 match(If cmp (CmpUL op1 op2)); 9083 9084 effect(USE lbl); 9085 9086 ins_cost(BRANCH_COST); 9087 format %{ "b$cmp $op1, $op2, $lbl\t#@cmpUL_branch" %} 9088 9089 ins_encode %{ 9090 __ cmp_branch($cmp$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, as_Register($op1$$reg), 9091 as_Register($op2$$reg), *($lbl$$label)); 9092 %} 9093 9094 ins_pipe(pipe_cmp_branch); 9095 ins_short_branch(1); 9096 %} 9097 9098 // Compare pointer and branch near instructions 9099 instruct cmpP_branch(cmpOpU cmp, iRegP op1, iRegP op2, label lbl) 9100 %{ 9101 // Same match rule as `far_cmpP_branch'. 9102 match(If cmp (CmpP op1 op2)); 9103 9104 effect(USE lbl); 9105 9106 ins_cost(BRANCH_COST); 9107 9108 format %{ "b$cmp $op1, $op2, $lbl\t#@cmpP_branch" %} 9109 9110 ins_encode %{ 9111 __ cmp_branch($cmp$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, as_Register($op1$$reg), 9112 as_Register($op2$$reg), *($lbl$$label)); 9113 %} 9114 9115 ins_pipe(pipe_cmp_branch); 9116 ins_short_branch(1); 9117 %} 9118 9119 // Compare narrow pointer and branch near instructions 9120 instruct cmpN_branch(cmpOpU cmp, iRegN op1, iRegN op2, label lbl) 9121 %{ 9122 // Same match rule as `far_cmpN_branch'. 9123 match(If cmp (CmpN op1 op2)); 9124 9125 effect(USE lbl); 9126 9127 ins_cost(BRANCH_COST); 9128 9129 format %{ "b$cmp $op1, $op2, $lbl\t#@cmpN_branch" %} 9130 9131 ins_encode %{ 9132 __ cmp_branch($cmp$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, as_Register($op1$$reg), 9133 as_Register($op2$$reg), *($lbl$$label)); 9134 %} 9135 9136 ins_pipe(pipe_cmp_branch); 9137 ins_short_branch(1); 9138 %} 9139 9140 // Compare float and branch near instructions 9141 instruct cmpF_branch(cmpOp cmp, fRegF op1, fRegF op2, label lbl) 9142 %{ 9143 // Same match rule as `far_cmpF_branch'. 9144 match(If cmp (CmpF op1 op2)); 9145 9146 effect(USE lbl); 9147 9148 ins_cost(XFER_COST + BRANCH_COST); 9149 format %{ "float_b$cmp $op1, $op2, $lbl \t#@cmpF_branch"%} 9150 9151 ins_encode %{ 9152 __ float_cmp_branch($cmp$$cmpcode, as_FloatRegister($op1$$reg), as_FloatRegister($op2$$reg), *($lbl$$label)); 9153 %} 9154 9155 ins_pipe(pipe_class_compare); 9156 ins_short_branch(1); 9157 %} 9158 9159 // Compare double and branch near instructions 9160 instruct cmpD_branch(cmpOp cmp, fRegD op1, fRegD op2, label lbl) 9161 %{ 9162 // Same match rule as `far_cmpD_branch'. 9163 match(If cmp (CmpD op1 op2)); 9164 effect(USE lbl); 9165 9166 ins_cost(XFER_COST + BRANCH_COST); 9167 format %{ "double_b$cmp $op1, $op2, $lbl\t#@cmpD_branch"%} 9168 9169 ins_encode %{ 9170 __ float_cmp_branch($cmp$$cmpcode | C2_MacroAssembler::double_branch_mask, as_FloatRegister($op1$$reg), 9171 as_FloatRegister($op2$$reg), *($lbl$$label)); 9172 %} 9173 9174 ins_pipe(pipe_class_compare); 9175 ins_short_branch(1); 9176 %} 9177 9178 // Compare signed int with zero and branch near instructions 9179 instruct cmpI_reg_imm0_branch(cmpOp cmp, iRegI op1, immI0 zero, label lbl) 9180 %{ 9181 // Same match rule as `far_cmpI_reg_imm0_branch'. 9182 match(If cmp (CmpI op1 zero)); 9183 9184 effect(USE op1, USE lbl); 9185 9186 ins_cost(BRANCH_COST); 9187 format %{ "b$cmp $op1, zr, $lbl\t#@cmpI_reg_imm0_branch" %} 9188 9189 ins_encode %{ 9190 __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), zr, *($lbl$$label)); 9191 %} 9192 9193 ins_pipe(pipe_cmpz_branch); 9194 ins_short_branch(1); 9195 %} 9196 9197 instruct cmpI_reg_imm0_loop(cmpOp cmp, iRegI op1, immI0 zero, label lbl) 9198 %{ 9199 // Same match rule as `far_cmpI_reg_imm0_loop'. 9200 match(CountedLoopEnd cmp (CmpI op1 zero)); 9201 9202 effect(USE op1, USE lbl); 9203 9204 ins_cost(BRANCH_COST); 9205 9206 format %{ "b$cmp $op1, zr, $lbl\t#@cmpI_reg_imm0_loop" %} 9207 9208 ins_encode %{ 9209 __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), zr, *($lbl$$label)); 9210 %} 9211 9212 ins_pipe(pipe_cmpz_branch); 9213 ins_short_branch(1); 9214 %} 9215 9216 // Compare unsigned int with zero and branch near instructions 9217 instruct cmpUEqNeLeGt_reg_imm0_branch(cmpOpUEqNeLeGt cmp, iRegI op1, immI0 zero, label lbl) 9218 %{ 9219 // Same match rule as `far_cmpUEqNeLeGt_reg_imm0_branch'. 9220 match(If cmp (CmpU op1 zero)); 9221 9222 effect(USE op1, USE lbl); 9223 9224 ins_cost(BRANCH_COST); 9225 9226 format %{ "b$cmp $op1, zr, $lbl\t#@cmpUEqNeLeGt_reg_imm0_branch" %} 9227 9228 ins_encode %{ 9229 __ enc_cmpUEqNeLeGt_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label)); 9230 %} 9231 9232 ins_pipe(pipe_cmpz_branch); 9233 ins_short_branch(1); 9234 %} 9235 9236 // Compare signed long with zero and branch near instructions 9237 instruct cmpL_reg_imm0_branch(cmpOp cmp, iRegL op1, immL0 zero, label lbl) 9238 %{ 9239 // Same match rule as `far_cmpL_reg_imm0_branch'. 9240 match(If cmp (CmpL op1 zero)); 9241 9242 effect(USE op1, USE lbl); 9243 9244 ins_cost(BRANCH_COST); 9245 9246 format %{ "b$cmp $op1, zr, $lbl\t#@cmpL_reg_imm0_branch" %} 9247 9248 ins_encode %{ 9249 __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), zr, *($lbl$$label)); 9250 %} 9251 9252 ins_pipe(pipe_cmpz_branch); 9253 ins_short_branch(1); 9254 %} 9255 9256 instruct cmpL_reg_imm0_loop(cmpOp cmp, iRegL op1, immL0 zero, label lbl) 9257 %{ 9258 // Same match rule as `far_cmpL_reg_imm0_loop'. 9259 match(CountedLoopEnd cmp (CmpL op1 zero)); 9260 9261 effect(USE op1, USE lbl); 9262 9263 ins_cost(BRANCH_COST); 9264 9265 format %{ "b$cmp $op1, zr, $lbl\t#@cmpL_reg_imm0_loop" %} 9266 9267 ins_encode %{ 9268 __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), zr, *($lbl$$label)); 9269 %} 9270 9271 ins_pipe(pipe_cmpz_branch); 9272 ins_short_branch(1); 9273 %} 9274 9275 // Compare unsigned long with zero and branch near instructions 9276 instruct cmpULEqNeLeGt_reg_imm0_branch(cmpOpUEqNeLeGt cmp, iRegL op1, immL0 zero, label lbl) 9277 %{ 9278 // Same match rule as `far_cmpULEqNeLeGt_reg_imm0_branch'. 9279 match(If cmp (CmpUL op1 zero)); 9280 9281 effect(USE op1, USE lbl); 9282 9283 ins_cost(BRANCH_COST); 9284 9285 format %{ "b$cmp $op1, zr, $lbl\t#@cmpULEqNeLeGt_reg_imm0_branch" %} 9286 9287 ins_encode %{ 9288 __ enc_cmpUEqNeLeGt_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label)); 9289 %} 9290 9291 ins_pipe(pipe_cmpz_branch); 9292 ins_short_branch(1); 9293 %} 9294 9295 // Compare pointer with zero and branch near instructions 9296 instruct cmpP_imm0_branch(cmpOpEqNe cmp, iRegP op1, immP0 zero, label lbl) %{ 9297 // Same match rule as `far_cmpP_reg_imm0_branch'. 9298 match(If cmp (CmpP op1 zero)); 9299 effect(USE lbl); 9300 9301 ins_cost(BRANCH_COST); 9302 format %{ "b$cmp $op1, zr, $lbl\t#@cmpP_imm0_branch" %} 9303 9304 ins_encode %{ 9305 __ enc_cmpEqNe_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label)); 9306 %} 9307 9308 ins_pipe(pipe_cmpz_branch); 9309 ins_short_branch(1); 9310 %} 9311 9312 // Compare narrow pointer with zero and branch near instructions 9313 instruct cmpN_imm0_branch(cmpOpEqNe cmp, iRegN op1, immN0 zero, label lbl) %{ 9314 // Same match rule as `far_cmpN_reg_imm0_branch'. 9315 match(If cmp (CmpN op1 zero)); 9316 effect(USE lbl); 9317 9318 ins_cost(BRANCH_COST); 9319 9320 format %{ "b$cmp $op1, zr, $lbl\t#@cmpN_imm0_branch" %} 9321 9322 ins_encode %{ 9323 __ enc_cmpEqNe_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label)); 9324 %} 9325 9326 ins_pipe(pipe_cmpz_branch); 9327 ins_short_branch(1); 9328 %} 9329 9330 // Compare narrow pointer with pointer zero and branch near instructions 9331 instruct cmpP_narrowOop_imm0_branch(cmpOpEqNe cmp, iRegN op1, immP0 zero, label lbl) %{ 9332 // Same match rule as `far_cmpP_narrowOop_imm0_branch'. 9333 match(If cmp (CmpP (DecodeN op1) zero)); 9334 effect(USE lbl); 9335 9336 ins_cost(BRANCH_COST); 9337 format %{ "b$cmp $op1, zr, $lbl\t#@cmpP_narrowOop_imm0_branch" %} 9338 9339 ins_encode %{ 9340 __ enc_cmpEqNe_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label)); 9341 %} 9342 9343 ins_pipe(pipe_cmpz_branch); 9344 ins_short_branch(1); 9345 %} 9346 9347 // Patterns for far (20KiB) variants 9348 9349 instruct far_cmpFlag_branch(cmpOp cmp, rFlagsReg cr, label lbl) %{ 9350 match(If cmp cr); 9351 effect(USE lbl); 9352 9353 ins_cost(BRANCH_COST); 9354 format %{ "far_b$cmp $cr, zr, $lbl\t#@far_cmpFlag_branch"%} 9355 9356 ins_encode %{ 9357 __ enc_cmpEqNe_imm0_branch($cmp$$cmpcode, as_Register($cr$$reg), *($lbl$$label), /* is_far */ true); 9358 %} 9359 9360 ins_pipe(pipe_cmpz_branch); 9361 %} 9362 9363 // Compare signed int and branch far instructions 9364 instruct far_cmpI_branch(cmpOp cmp, iRegI op1, iRegI op2, label lbl) %{ 9365 match(If cmp (CmpI op1 op2)); 9366 effect(USE lbl); 9367 9368 ins_cost(BRANCH_COST * 2); 9369 9370 // the format instruction [far_b$cmp] here is be used as two insructions 9371 // in macroassembler: b$not_cmp(op1, op2, done), j($lbl), bind(done) 9372 format %{ "far_b$cmp $op1, $op2, $lbl\t#@far_cmpI_branch" %} 9373 9374 ins_encode %{ 9375 __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), as_Register($op2$$reg), *($lbl$$label), /* is_far */ true); 9376 %} 9377 9378 ins_pipe(pipe_cmp_branch); 9379 %} 9380 9381 instruct far_cmpI_loop(cmpOp cmp, iRegI op1, iRegI op2, label lbl) %{ 9382 match(CountedLoopEnd cmp (CmpI op1 op2)); 9383 effect(USE lbl); 9384 9385 ins_cost(BRANCH_COST * 2); 9386 format %{ "far_b$cmp $op1, $op2, $lbl\t#@far_cmpI_loop" %} 9387 9388 ins_encode %{ 9389 __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), as_Register($op2$$reg), *($lbl$$label), /* is_far */ true); 9390 %} 9391 9392 ins_pipe(pipe_cmp_branch); 9393 %} 9394 9395 instruct far_cmpU_branch(cmpOpU cmp, iRegI op1, iRegI op2, label lbl) %{ 9396 match(If cmp (CmpU op1 op2)); 9397 effect(USE lbl); 9398 9399 ins_cost(BRANCH_COST * 2); 9400 format %{ "far_b$cmp $op1, $op2, $lbl\t#@far_cmpU_branch" %} 9401 9402 ins_encode %{ 9403 __ cmp_branch($cmp$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, as_Register($op1$$reg), 9404 as_Register($op2$$reg), *($lbl$$label), /* is_far */ true); 9405 %} 9406 9407 ins_pipe(pipe_cmp_branch); 9408 %} 9409 9410 instruct far_cmpL_branch(cmpOp cmp, iRegL op1, iRegL op2, label lbl) %{ 9411 match(If cmp (CmpL op1 op2)); 9412 effect(USE lbl); 9413 9414 ins_cost(BRANCH_COST * 2); 9415 format %{ "far_b$cmp $op1, $op2, $lbl\t#@far_cmpL_branch" %} 9416 9417 ins_encode %{ 9418 __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), as_Register($op2$$reg), *($lbl$$label), /* is_far */ true); 9419 %} 9420 9421 ins_pipe(pipe_cmp_branch); 9422 %} 9423 9424 instruct far_cmpLloop(cmpOp cmp, iRegL op1, iRegL op2, label lbl) %{ 9425 match(CountedLoopEnd cmp (CmpL op1 op2)); 9426 effect(USE lbl); 9427 9428 ins_cost(BRANCH_COST * 2); 9429 format %{ "far_b$cmp $op1, $op2, $lbl\t#@far_cmpL_loop" %} 9430 9431 ins_encode %{ 9432 __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), as_Register($op2$$reg), *($lbl$$label), /* is_far */ true); 9433 %} 9434 9435 ins_pipe(pipe_cmp_branch); 9436 %} 9437 9438 instruct far_cmpUL_branch(cmpOpU cmp, iRegL op1, iRegL op2, label lbl) %{ 9439 match(If cmp (CmpUL op1 op2)); 9440 effect(USE lbl); 9441 9442 ins_cost(BRANCH_COST * 2); 9443 format %{ "far_b$cmp $op1, $op2, $lbl\t#@far_cmpUL_branch" %} 9444 9445 ins_encode %{ 9446 __ cmp_branch($cmp$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, as_Register($op1$$reg), 9447 as_Register($op2$$reg), *($lbl$$label), /* is_far */ true); 9448 %} 9449 9450 ins_pipe(pipe_cmp_branch); 9451 %} 9452 9453 instruct far_cmpP_branch(cmpOpU cmp, iRegP op1, iRegP op2, label lbl) 9454 %{ 9455 match(If cmp (CmpP op1 op2)); 9456 9457 effect(USE lbl); 9458 9459 ins_cost(BRANCH_COST * 2); 9460 9461 format %{ "far_b$cmp $op1, $op2, $lbl\t#@far_cmpP_branch" %} 9462 9463 ins_encode %{ 9464 __ cmp_branch($cmp$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, as_Register($op1$$reg), 9465 as_Register($op2$$reg), *($lbl$$label), /* is_far */ true); 9466 %} 9467 9468 ins_pipe(pipe_cmp_branch); 9469 %} 9470 9471 instruct far_cmpN_branch(cmpOpU cmp, iRegN op1, iRegN op2, label lbl) 9472 %{ 9473 match(If cmp (CmpN op1 op2)); 9474 9475 effect(USE lbl); 9476 9477 ins_cost(BRANCH_COST * 2); 9478 9479 format %{ "far_b$cmp $op1, $op2, $lbl\t#@far_cmpN_branch" %} 9480 9481 ins_encode %{ 9482 __ cmp_branch($cmp$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, as_Register($op1$$reg), 9483 as_Register($op2$$reg), *($lbl$$label), /* is_far */ true); 9484 %} 9485 9486 ins_pipe(pipe_cmp_branch); 9487 %} 9488 9489 // Float compare and branch instructions 9490 instruct far_cmpF_branch(cmpOp cmp, fRegF op1, fRegF op2, label lbl) 9491 %{ 9492 match(If cmp (CmpF op1 op2)); 9493 9494 effect(USE lbl); 9495 9496 ins_cost(XFER_COST + BRANCH_COST * 2); 9497 format %{ "far_float_b$cmp $op1, $op2, $lbl\t#@far_cmpF_branch"%} 9498 9499 ins_encode %{ 9500 __ float_cmp_branch($cmp$$cmpcode, as_FloatRegister($op1$$reg), as_FloatRegister($op2$$reg), 9501 *($lbl$$label), /* is_far */ true); 9502 %} 9503 9504 ins_pipe(pipe_class_compare); 9505 %} 9506 9507 // Double compare and branch instructions 9508 instruct far_cmpD_branch(cmpOp cmp, fRegD op1, fRegD op2, label lbl) 9509 %{ 9510 match(If cmp (CmpD op1 op2)); 9511 effect(USE lbl); 9512 9513 ins_cost(XFER_COST + BRANCH_COST * 2); 9514 format %{ "far_double_b$cmp $op1, $op2, $lbl\t#@far_cmpD_branch"%} 9515 9516 ins_encode %{ 9517 __ float_cmp_branch($cmp$$cmpcode | C2_MacroAssembler::double_branch_mask, as_FloatRegister($op1$$reg), 9518 as_FloatRegister($op2$$reg), *($lbl$$label), /* is_far */ true); 9519 %} 9520 9521 ins_pipe(pipe_class_compare); 9522 %} 9523 9524 instruct far_cmpI_reg_imm0_branch(cmpOp cmp, iRegI op1, immI0 zero, label lbl) 9525 %{ 9526 match(If cmp (CmpI op1 zero)); 9527 9528 effect(USE op1, USE lbl); 9529 9530 ins_cost(BRANCH_COST * 2); 9531 9532 format %{ "far_b$cmp $op1, zr, $lbl\t#@far_cmpI_reg_imm0_branch" %} 9533 9534 ins_encode %{ 9535 __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), zr, *($lbl$$label), /* is_far */ true); 9536 %} 9537 9538 ins_pipe(pipe_cmpz_branch); 9539 %} 9540 9541 instruct far_cmpI_reg_imm0_loop(cmpOp cmp, iRegI op1, immI0 zero, label lbl) 9542 %{ 9543 match(CountedLoopEnd cmp (CmpI op1 zero)); 9544 9545 effect(USE op1, USE lbl); 9546 9547 ins_cost(BRANCH_COST * 2); 9548 9549 format %{ "far_b$cmp $op1, zr, $lbl\t#@far_cmpI_reg_imm0_loop" %} 9550 9551 ins_encode %{ 9552 __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), zr, *($lbl$$label), /* is_far */ true); 9553 %} 9554 9555 ins_pipe(pipe_cmpz_branch); 9556 %} 9557 9558 instruct far_cmpUEqNeLeGt_imm0_branch(cmpOpUEqNeLeGt cmp, iRegI op1, immI0 zero, label lbl) 9559 %{ 9560 match(If cmp (CmpU op1 zero)); 9561 9562 effect(USE op1, USE lbl); 9563 9564 ins_cost(BRANCH_COST * 2); 9565 9566 format %{ "far_b$cmp $op1, zr, $lbl\t#@far_cmpUEqNeLeGt_imm0_branch" %} 9567 9568 ins_encode %{ 9569 __ enc_cmpUEqNeLeGt_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label), /* is_far */ true); 9570 %} 9571 9572 ins_pipe(pipe_cmpz_branch); 9573 %} 9574 9575 // compare lt/ge unsigned instructs has no short instruct with same match 9576 instruct far_cmpULtGe_reg_imm0_branch(cmpOpULtGe cmp, iRegI op1, immI0 zero, label lbl) 9577 %{ 9578 match(If cmp (CmpU op1 zero)); 9579 9580 effect(USE op1, USE lbl); 9581 9582 ins_cost(BRANCH_COST); 9583 9584 format %{ "j $lbl if $cmp == ge\t#@far_cmpULtGe_reg_imm0_branch" %} 9585 9586 ins_encode(riscv_enc_far_cmpULtGe_imm0_branch(cmp, op1, lbl)); 9587 9588 ins_pipe(pipe_cmpz_branch); 9589 %} 9590 9591 instruct far_cmpL_reg_imm0_branch(cmpOp cmp, iRegL op1, immL0 zero, label lbl) 9592 %{ 9593 match(If cmp (CmpL op1 zero)); 9594 9595 effect(USE op1, USE lbl); 9596 9597 ins_cost(BRANCH_COST * 2); 9598 9599 format %{ "far_b$cmp $op1, zr, $lbl\t#@far_cmpL_reg_imm0_branch" %} 9600 9601 ins_encode %{ 9602 __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), zr, *($lbl$$label), /* is_far */ true); 9603 %} 9604 9605 ins_pipe(pipe_cmpz_branch); 9606 %} 9607 9608 instruct far_cmpL_reg_imm0_loop(cmpOp cmp, iRegL op1, immL0 zero, label lbl) 9609 %{ 9610 match(CountedLoopEnd cmp (CmpL op1 zero)); 9611 9612 effect(USE op1, USE lbl); 9613 9614 ins_cost(BRANCH_COST * 2); 9615 9616 format %{ "far_b$cmp $op1, zr, $lbl\t#@far_cmpL_reg_imm0_loop" %} 9617 9618 ins_encode %{ 9619 __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), zr, *($lbl$$label), /* is_far */ true); 9620 %} 9621 9622 ins_pipe(pipe_cmpz_branch); 9623 %} 9624 9625 instruct far_cmpULEqNeLeGt_reg_imm0_branch(cmpOpUEqNeLeGt cmp, iRegL op1, immL0 zero, label lbl) 9626 %{ 9627 match(If cmp (CmpUL op1 zero)); 9628 9629 effect(USE op1, USE lbl); 9630 9631 ins_cost(BRANCH_COST * 2); 9632 9633 format %{ "far_b$cmp $op1, zr, $lbl\t#@far_cmpULEqNeLeGt_reg_imm0_branch" %} 9634 9635 ins_encode %{ 9636 __ enc_cmpUEqNeLeGt_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label), /* is_far */ true); 9637 %} 9638 9639 ins_pipe(pipe_cmpz_branch); 9640 %} 9641 9642 // compare lt/ge unsigned instructs has no short instruct with same match 9643 instruct far_cmpULLtGe_reg_imm0_branch(cmpOpULtGe cmp, iRegL op1, immL0 zero, label lbl) 9644 %{ 9645 match(If cmp (CmpUL op1 zero)); 9646 9647 effect(USE op1, USE lbl); 9648 9649 ins_cost(BRANCH_COST); 9650 9651 format %{ "j $lbl if $cmp == ge\t#@far_cmpULLtGe_reg_imm0_branch" %} 9652 9653 ins_encode(riscv_enc_far_cmpULtGe_imm0_branch(cmp, op1, lbl)); 9654 9655 ins_pipe(pipe_cmpz_branch); 9656 %} 9657 9658 instruct far_cmpP_imm0_branch(cmpOpEqNe cmp, iRegP op1, immP0 zero, label lbl) %{ 9659 match(If cmp (CmpP op1 zero)); 9660 effect(USE lbl); 9661 9662 ins_cost(BRANCH_COST * 2); 9663 format %{ "far_b$cmp $op1, zr, $lbl\t#@far_cmpP_imm0_branch" %} 9664 9665 ins_encode %{ 9666 __ enc_cmpEqNe_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label), /* is_far */ true); 9667 %} 9668 9669 ins_pipe(pipe_cmpz_branch); 9670 %} 9671 9672 instruct far_cmpN_imm0_branch(cmpOpEqNe cmp, iRegN op1, immN0 zero, label lbl) %{ 9673 match(If cmp (CmpN op1 zero)); 9674 effect(USE lbl); 9675 9676 ins_cost(BRANCH_COST * 2); 9677 9678 format %{ "far_b$cmp $op1, zr, $lbl\t#@far_cmpN_imm0_branch" %} 9679 9680 ins_encode %{ 9681 __ enc_cmpEqNe_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label), /* is_far */ true); 9682 %} 9683 9684 ins_pipe(pipe_cmpz_branch); 9685 %} 9686 9687 instruct far_cmpP_narrowOop_imm0_branch(cmpOpEqNe cmp, iRegN op1, immP0 zero, label lbl) %{ 9688 match(If cmp (CmpP (DecodeN op1) zero)); 9689 effect(USE lbl); 9690 9691 ins_cost(BRANCH_COST * 2); 9692 format %{ "far_b$cmp $op1, zr, $lbl\t#@far_cmpP_narrowOop_imm0_branch" %} 9693 9694 ins_encode %{ 9695 __ enc_cmpEqNe_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label), /* is_far */ true); 9696 %} 9697 9698 ins_pipe(pipe_cmpz_branch); 9699 %} 9700 9701 // ============================================================================ 9702 // Conditional Move Instructions 9703 instruct cmovI_cmpI(iRegINoSp dst, iRegI src, iRegI op1, iRegI op2, cmpOp cop) %{ 9704 match(Set dst (CMoveI (Binary cop (CmpI op1 op2)) (Binary dst src))); 9705 ins_cost(ALU_COST + BRANCH_COST); 9706 9707 format %{ 9708 "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovI_cmpI\n\t" 9709 %} 9710 9711 ins_encode %{ 9712 __ enc_cmove($cop$$cmpcode, 9713 as_Register($op1$$reg), as_Register($op2$$reg), 9714 as_Register($dst$$reg), as_Register($src$$reg)); 9715 %} 9716 9717 ins_pipe(pipe_class_compare); 9718 %} 9719 9720 instruct cmovI_cmpU(iRegINoSp dst, iRegI src, iRegI op1, iRegI op2, cmpOpU cop) %{ 9721 match(Set dst (CMoveI (Binary cop (CmpU op1 op2)) (Binary dst src))); 9722 ins_cost(ALU_COST + BRANCH_COST); 9723 9724 format %{ 9725 "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovI_cmpU\n\t" 9726 %} 9727 9728 ins_encode %{ 9729 __ enc_cmove($cop$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, 9730 as_Register($op1$$reg), as_Register($op2$$reg), 9731 as_Register($dst$$reg), as_Register($src$$reg)); 9732 %} 9733 9734 ins_pipe(pipe_class_compare); 9735 %} 9736 9737 instruct cmovI_cmpL(iRegINoSp dst, iRegI src, iRegL op1, iRegL op2, cmpOp cop) %{ 9738 match(Set dst (CMoveI (Binary cop (CmpL op1 op2)) (Binary dst src))); 9739 ins_cost(ALU_COST + BRANCH_COST); 9740 9741 format %{ 9742 "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovI_cmpL\n\t" 9743 %} 9744 9745 ins_encode %{ 9746 __ enc_cmove($cop$$cmpcode, 9747 as_Register($op1$$reg), as_Register($op2$$reg), 9748 as_Register($dst$$reg), as_Register($src$$reg)); 9749 %} 9750 9751 ins_pipe(pipe_class_compare); 9752 %} 9753 9754 instruct cmovI_cmpUL(iRegINoSp dst, iRegI src, iRegL op1, iRegL op2, cmpOpU cop) %{ 9755 match(Set dst (CMoveI (Binary cop (CmpUL op1 op2)) (Binary dst src))); 9756 ins_cost(ALU_COST + BRANCH_COST); 9757 9758 format %{ 9759 "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovI_cmpUL\n\t" 9760 %} 9761 9762 ins_encode %{ 9763 __ enc_cmove($cop$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, 9764 as_Register($op1$$reg), as_Register($op2$$reg), 9765 as_Register($dst$$reg), as_Register($src$$reg)); 9766 %} 9767 9768 ins_pipe(pipe_class_compare); 9769 %} 9770 9771 instruct cmovI_cmpN(iRegINoSp dst, iRegI src, iRegN op1, iRegN op2, cmpOpU cop) %{ 9772 match(Set dst (CMoveI (Binary cop (CmpN op1 op2)) (Binary dst src))); 9773 ins_cost(ALU_COST + BRANCH_COST); 9774 9775 format %{ 9776 "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovI_cmpN\n\t" 9777 %} 9778 9779 ins_encode %{ 9780 __ enc_cmove($cop$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, 9781 as_Register($op1$$reg), as_Register($op2$$reg), 9782 as_Register($dst$$reg), as_Register($src$$reg)); 9783 %} 9784 9785 ins_pipe(pipe_class_compare); 9786 %} 9787 9788 instruct cmovI_cmpP(iRegINoSp dst, iRegI src, iRegP op1, iRegP op2, cmpOpU cop) %{ 9789 match(Set dst (CMoveI (Binary cop (CmpP op1 op2)) (Binary dst src))); 9790 ins_cost(ALU_COST + BRANCH_COST); 9791 9792 format %{ 9793 "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovI_cmpP\n\t" 9794 %} 9795 9796 ins_encode %{ 9797 __ enc_cmove($cop$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, 9798 as_Register($op1$$reg), as_Register($op2$$reg), 9799 as_Register($dst$$reg), as_Register($src$$reg)); 9800 %} 9801 9802 ins_pipe(pipe_class_compare); 9803 %} 9804 9805 instruct cmovL_cmpL(iRegLNoSp dst, iRegL src, iRegL op1, iRegL op2, cmpOp cop) %{ 9806 match(Set dst (CMoveL (Binary cop (CmpL op1 op2)) (Binary dst src))); 9807 ins_cost(ALU_COST + BRANCH_COST); 9808 9809 format %{ 9810 "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovL_cmpL\n\t" 9811 %} 9812 9813 ins_encode %{ 9814 __ enc_cmove($cop$$cmpcode, 9815 as_Register($op1$$reg), as_Register($op2$$reg), 9816 as_Register($dst$$reg), as_Register($src$$reg)); 9817 %} 9818 9819 ins_pipe(pipe_class_compare); 9820 %} 9821 9822 instruct cmovL_cmpUL(iRegLNoSp dst, iRegL src, iRegL op1, iRegL op2, cmpOpU cop) %{ 9823 match(Set dst (CMoveL (Binary cop (CmpUL op1 op2)) (Binary dst src))); 9824 ins_cost(ALU_COST + BRANCH_COST); 9825 9826 format %{ 9827 "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovL_cmpUL\n\t" 9828 %} 9829 9830 ins_encode %{ 9831 __ enc_cmove($cop$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, 9832 as_Register($op1$$reg), as_Register($op2$$reg), 9833 as_Register($dst$$reg), as_Register($src$$reg)); 9834 %} 9835 9836 ins_pipe(pipe_class_compare); 9837 %} 9838 9839 instruct cmovL_cmpI(iRegLNoSp dst, iRegL src, iRegI op1, iRegI op2, cmpOp cop) %{ 9840 match(Set dst (CMoveL (Binary cop (CmpI op1 op2)) (Binary dst src))); 9841 ins_cost(ALU_COST + BRANCH_COST); 9842 9843 format %{ 9844 "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovL_cmpI\n\t" 9845 %} 9846 9847 ins_encode %{ 9848 __ enc_cmove($cop$$cmpcode, 9849 as_Register($op1$$reg), as_Register($op2$$reg), 9850 as_Register($dst$$reg), as_Register($src$$reg)); 9851 %} 9852 9853 ins_pipe(pipe_class_compare); 9854 %} 9855 9856 instruct cmovL_cmpU(iRegLNoSp dst, iRegL src, iRegI op1, iRegI op2, cmpOpU cop) %{ 9857 match(Set dst (CMoveL (Binary cop (CmpU op1 op2)) (Binary dst src))); 9858 ins_cost(ALU_COST + BRANCH_COST); 9859 9860 format %{ 9861 "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovL_cmpU\n\t" 9862 %} 9863 9864 ins_encode %{ 9865 __ enc_cmove($cop$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, 9866 as_Register($op1$$reg), as_Register($op2$$reg), 9867 as_Register($dst$$reg), as_Register($src$$reg)); 9868 %} 9869 9870 ins_pipe(pipe_class_compare); 9871 %} 9872 9873 instruct cmovL_cmpN(iRegLNoSp dst, iRegL src, iRegN op1, iRegN op2, cmpOpU cop) %{ 9874 match(Set dst (CMoveL (Binary cop (CmpN op1 op2)) (Binary dst src))); 9875 ins_cost(ALU_COST + BRANCH_COST); 9876 9877 format %{ 9878 "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovL_cmpN\n\t" 9879 %} 9880 9881 ins_encode %{ 9882 __ enc_cmove($cop$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, 9883 as_Register($op1$$reg), as_Register($op2$$reg), 9884 as_Register($dst$$reg), as_Register($src$$reg)); 9885 %} 9886 9887 ins_pipe(pipe_class_compare); 9888 %} 9889 9890 instruct cmovL_cmpP(iRegLNoSp dst, iRegL src, iRegP op1, iRegP op2, cmpOpU cop) %{ 9891 match(Set dst (CMoveL (Binary cop (CmpP op1 op2)) (Binary dst src))); 9892 ins_cost(ALU_COST + BRANCH_COST); 9893 9894 format %{ 9895 "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovL_cmpP\n\t" 9896 %} 9897 9898 ins_encode %{ 9899 __ enc_cmove($cop$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, 9900 as_Register($op1$$reg), as_Register($op2$$reg), 9901 as_Register($dst$$reg), as_Register($src$$reg)); 9902 %} 9903 9904 ins_pipe(pipe_class_compare); 9905 %} 9906 9907 // ============================================================================ 9908 // Procedure Call/Return Instructions 9909 9910 // Call Java Static Instruction 9911 // Note: If this code changes, the corresponding ret_addr_offset() and 9912 // compute_padding() functions will have to be adjusted. 9913 instruct CallStaticJavaDirect(method meth) 9914 %{ 9915 match(CallStaticJava); 9916 9917 effect(USE meth); 9918 9919 ins_cost(BRANCH_COST); 9920 9921 format %{ "CALL,static $meth\t#@CallStaticJavaDirect" %} 9922 9923 ins_encode(riscv_enc_java_static_call(meth), 9924 riscv_enc_call_epilog); 9925 9926 ins_pipe(pipe_class_call); 9927 ins_alignment(4); 9928 %} 9929 9930 // TO HERE 9931 9932 // Call Java Dynamic Instruction 9933 // Note: If this code changes, the corresponding ret_addr_offset() and 9934 // compute_padding() functions will have to be adjusted. 9935 instruct CallDynamicJavaDirect(method meth) 9936 %{ 9937 match(CallDynamicJava); 9938 9939 effect(USE meth); 9940 9941 ins_cost(BRANCH_COST + ALU_COST * 5); 9942 9943 format %{ "CALL,dynamic $meth\t#@CallDynamicJavaDirect" %} 9944 9945 ins_encode(riscv_enc_java_dynamic_call(meth), 9946 riscv_enc_call_epilog); 9947 9948 ins_pipe(pipe_class_call); 9949 ins_alignment(4); 9950 %} 9951 9952 // Call Runtime Instruction 9953 9954 instruct CallRuntimeDirect(method meth) 9955 %{ 9956 match(CallRuntime); 9957 9958 effect(USE meth); 9959 9960 ins_cost(BRANCH_COST); 9961 9962 format %{ "CALL, runtime $meth\t#@CallRuntimeDirect" %} 9963 9964 ins_encode(riscv_enc_java_to_runtime(meth)); 9965 9966 ins_pipe(pipe_class_call); 9967 %} 9968 9969 // Call Runtime Instruction 9970 9971 instruct CallLeafDirect(method meth) 9972 %{ 9973 match(CallLeaf); 9974 9975 effect(USE meth); 9976 9977 ins_cost(BRANCH_COST); 9978 9979 format %{ "CALL, runtime leaf $meth\t#@CallLeafDirect" %} 9980 9981 ins_encode(riscv_enc_java_to_runtime(meth)); 9982 9983 ins_pipe(pipe_class_call); 9984 %} 9985 9986 // Call Runtime Instruction without safepoint and with vector arguments 9987 9988 instruct CallLeafDirectVector(method meth) 9989 %{ 9990 match(CallLeafVector); 9991 9992 effect(USE meth); 9993 9994 ins_cost(BRANCH_COST); 9995 9996 format %{ "CALL, runtime leaf vector $meth" %} 9997 9998 ins_encode(riscv_enc_java_to_runtime(meth)); 9999 10000 ins_pipe(pipe_class_call); 10001 %} 10002 10003 // Call Runtime Instruction 10004 10005 instruct CallLeafNoFPDirect(method meth) 10006 %{ 10007 match(CallLeafNoFP); 10008 10009 effect(USE meth); 10010 10011 ins_cost(BRANCH_COST); 10012 10013 format %{ "CALL, runtime leaf nofp $meth\t#@CallLeafNoFPDirect" %} 10014 10015 ins_encode(riscv_enc_java_to_runtime(meth)); 10016 10017 ins_pipe(pipe_class_call); 10018 %} 10019 10020 // ============================================================================ 10021 // Partial Subtype Check 10022 // 10023 // superklass array for an instance of the superklass. Set a hidden 10024 // internal cache on a hit (cache is checked with exposed code in 10025 // gen_subtype_check()). Return zero for a hit. The encoding 10026 // ALSO sets flags. 10027 10028 instruct partialSubtypeCheck(iRegP_R15 result, iRegP_R14 sub, iRegP_R10 super, iRegP_R12 tmp, rFlagsReg cr) 10029 %{ 10030 predicate(!UseSecondarySupersTable); 10031 match(Set result (PartialSubtypeCheck sub super)); 10032 effect(KILL tmp, KILL cr); 10033 10034 ins_cost(20 * DEFAULT_COST); 10035 format %{ "partialSubtypeCheck $result, $sub, $super\t#@partialSubtypeCheck" %} 10036 10037 ins_encode(riscv_enc_partial_subtype_check(sub, super, tmp, result)); 10038 10039 opcode(0x1); // Force zero of result reg on hit 10040 10041 ins_pipe(pipe_class_memory); 10042 %} 10043 10044 // Two versions of partialSubtypeCheck, both used when we need to 10045 // search for a super class in the secondary supers array. The first 10046 // is used when we don't know _a priori_ the class being searched 10047 // for. The second, far more common, is used when we do know: this is 10048 // used for instanceof, checkcast, and any case where C2 can determine 10049 // it by constant propagation. 10050 10051 instruct partialSubtypeCheckVarSuper(iRegP_R14 sub, iRegP_R10 super, iRegP_R15 result, 10052 iRegP_R11 tmpR11, iRegP_R12 tmpR12, iRegP_R13 tmpR13, 10053 iRegP_R16 tmpR16, rFlagsReg cr) 10054 %{ 10055 predicate(UseSecondarySupersTable); 10056 match(Set result (PartialSubtypeCheck sub super)); 10057 effect(TEMP tmpR11, TEMP tmpR12, TEMP tmpR13, TEMP tmpR16, KILL cr); 10058 10059 ins_cost(10 * DEFAULT_COST); // slightly larger than the next version 10060 format %{ "partialSubtypeCheck $result, $sub, $super" %} 10061 10062 ins_encode %{ 10063 __ lookup_secondary_supers_table_var($sub$$Register, $super$$Register, $result$$Register, 10064 $tmpR11$$Register, $tmpR12$$Register, $tmpR13$$Register, 10065 $tmpR16$$Register, nullptr /*L_success*/); 10066 %} 10067 10068 ins_pipe(pipe_class_memory); 10069 %} 10070 10071 instruct partialSubtypeCheckConstSuper(iRegP_R14 sub, iRegP_R10 super_reg, immP super_con, iRegP_R15 result, 10072 iRegP_R11 tmpR11, iRegP_R12 tmpR12, iRegP_R13 tmpR13, iRegP_R16 tmpR16, rFlagsReg cr) 10073 %{ 10074 predicate(UseSecondarySupersTable); 10075 match(Set result (PartialSubtypeCheck sub (Binary super_reg super_con))); 10076 effect(TEMP tmpR11, TEMP tmpR12, TEMP tmpR13, TEMP tmpR16, KILL cr); 10077 10078 ins_cost(5 * DEFAULT_COST); // needs to be less than competing nodes 10079 format %{ "partialSubtypeCheck $result, $sub, $super_reg, $super_con" %} 10080 10081 ins_encode %{ 10082 bool success = false; 10083 u1 super_klass_slot = ((Klass*)$super_con$$constant)->hash_slot(); 10084 if (InlineSecondarySupersTest) { 10085 success = __ lookup_secondary_supers_table_const($sub$$Register, $super_reg$$Register, $result$$Register, 10086 $tmpR11$$Register, $tmpR12$$Register, $tmpR13$$Register, 10087 $tmpR16$$Register, super_klass_slot); 10088 } else { 10089 address call = __ reloc_call(RuntimeAddress(StubRoutines::lookup_secondary_supers_table_stub(super_klass_slot))); 10090 success = (call != nullptr); 10091 } 10092 if (!success) { 10093 ciEnv::current()->record_failure("CodeCache is full"); 10094 return; 10095 } 10096 %} 10097 10098 ins_pipe(pipe_class_memory); 10099 %} 10100 10101 instruct string_compareU(iRegP_R11 str1, iRegI_R12 cnt1, iRegP_R13 str2, iRegI_R14 cnt2, 10102 iRegI_R10 result, iRegP_R28 tmp1, iRegL_R29 tmp2, iRegL_R30 tmp3, rFlagsReg cr) 10103 %{ 10104 predicate(!UseRVV && ((StrCompNode *)n)->encoding() == StrIntrinsicNode::UU); 10105 match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2))); 10106 effect(KILL tmp1, KILL tmp2, KILL tmp3, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr); 10107 10108 format %{ "String Compare $str1, $cnt1, $str2, $cnt2 -> $result\t#@string_compareU" %} 10109 ins_encode %{ 10110 // Count is in 8-bit bytes; non-Compact chars are 16 bits. 10111 __ string_compare($str1$$Register, $str2$$Register, 10112 $cnt1$$Register, $cnt2$$Register, $result$$Register, 10113 $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, 10114 StrIntrinsicNode::UU); 10115 %} 10116 ins_pipe(pipe_class_memory); 10117 %} 10118 10119 instruct string_compareL(iRegP_R11 str1, iRegI_R12 cnt1, iRegP_R13 str2, iRegI_R14 cnt2, 10120 iRegI_R10 result, iRegP_R28 tmp1, iRegL_R29 tmp2, iRegL_R30 tmp3, rFlagsReg cr) 10121 %{ 10122 predicate(!UseRVV && ((StrCompNode *)n)->encoding() == StrIntrinsicNode::LL); 10123 match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2))); 10124 effect(KILL tmp1, KILL tmp2, KILL tmp3, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr); 10125 10126 format %{ "String Compare $str1, $cnt1, $str2, $cnt2 -> $result\t#@string_compareL" %} 10127 ins_encode %{ 10128 __ string_compare($str1$$Register, $str2$$Register, 10129 $cnt1$$Register, $cnt2$$Register, $result$$Register, 10130 $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, 10131 StrIntrinsicNode::LL); 10132 %} 10133 ins_pipe(pipe_class_memory); 10134 %} 10135 10136 instruct string_compareUL(iRegP_R11 str1, iRegI_R12 cnt1, iRegP_R13 str2, iRegI_R14 cnt2, 10137 iRegI_R10 result, iRegP_R28 tmp1, iRegL_R29 tmp2, iRegL_R30 tmp3, rFlagsReg cr) 10138 %{ 10139 predicate(!UseRVV && ((StrCompNode *)n)->encoding() == StrIntrinsicNode::UL); 10140 match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2))); 10141 effect(KILL tmp1, KILL tmp2, KILL tmp3, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr); 10142 10143 format %{"String Compare $str1, $cnt1, $str2, $cnt2 -> $result\t#@string_compareUL" %} 10144 ins_encode %{ 10145 __ string_compare($str1$$Register, $str2$$Register, 10146 $cnt1$$Register, $cnt2$$Register, $result$$Register, 10147 $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, 10148 StrIntrinsicNode::UL); 10149 %} 10150 ins_pipe(pipe_class_memory); 10151 %} 10152 10153 instruct string_compareLU(iRegP_R11 str1, iRegI_R12 cnt1, iRegP_R13 str2, iRegI_R14 cnt2, 10154 iRegI_R10 result, iRegP_R28 tmp1, iRegL_R29 tmp2, iRegL_R30 tmp3, 10155 rFlagsReg cr) 10156 %{ 10157 predicate(!UseRVV && ((StrCompNode *)n)->encoding() == StrIntrinsicNode::LU); 10158 match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2))); 10159 effect(KILL tmp1, KILL tmp2, KILL tmp3, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr); 10160 10161 format %{ "String Compare $str1, $cnt1, $str2, $cnt2 -> $result\t#@string_compareLU" %} 10162 ins_encode %{ 10163 __ string_compare($str1$$Register, $str2$$Register, 10164 $cnt1$$Register, $cnt2$$Register, $result$$Register, 10165 $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, 10166 StrIntrinsicNode::LU); 10167 %} 10168 ins_pipe(pipe_class_memory); 10169 %} 10170 10171 instruct string_indexofUU(iRegP_R11 str1, iRegI_R12 cnt1, iRegP_R13 str2, iRegI_R14 cnt2, 10172 iRegI_R10 result, iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, 10173 iRegINoSp tmp4, iRegINoSp tmp5, iRegINoSp tmp6, rFlagsReg cr) 10174 %{ 10175 predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UU); 10176 match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2))); 10177 effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, TEMP_DEF result, 10178 TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5, TEMP tmp6, KILL cr); 10179 10180 format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result (UU)" %} 10181 ins_encode %{ 10182 __ string_indexof($str1$$Register, $str2$$Register, 10183 $cnt1$$Register, $cnt2$$Register, 10184 $tmp1$$Register, $tmp2$$Register, 10185 $tmp3$$Register, $tmp4$$Register, 10186 $tmp5$$Register, $tmp6$$Register, 10187 $result$$Register, StrIntrinsicNode::UU); 10188 %} 10189 ins_pipe(pipe_class_memory); 10190 %} 10191 10192 instruct string_indexofLL(iRegP_R11 str1, iRegI_R12 cnt1, iRegP_R13 str2, iRegI_R14 cnt2, 10193 iRegI_R10 result, iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, 10194 iRegINoSp tmp4, iRegINoSp tmp5, iRegINoSp tmp6, rFlagsReg cr) 10195 %{ 10196 predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::LL); 10197 match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2))); 10198 effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, TEMP_DEF result, 10199 TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5, TEMP tmp6, KILL cr); 10200 10201 format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result (LL)" %} 10202 ins_encode %{ 10203 __ string_indexof($str1$$Register, $str2$$Register, 10204 $cnt1$$Register, $cnt2$$Register, 10205 $tmp1$$Register, $tmp2$$Register, 10206 $tmp3$$Register, $tmp4$$Register, 10207 $tmp5$$Register, $tmp6$$Register, 10208 $result$$Register, StrIntrinsicNode::LL); 10209 %} 10210 ins_pipe(pipe_class_memory); 10211 %} 10212 10213 instruct string_indexofUL(iRegP_R11 str1, iRegI_R12 cnt1, iRegP_R13 str2, iRegI_R14 cnt2, 10214 iRegI_R10 result, iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, 10215 iRegINoSp tmp4, iRegINoSp tmp5, iRegINoSp tmp6, rFlagsReg cr) 10216 %{ 10217 predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UL); 10218 match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2))); 10219 effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, TEMP_DEF result, 10220 TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5, TEMP tmp6, KILL cr); 10221 format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result (UL)" %} 10222 10223 ins_encode %{ 10224 __ string_indexof($str1$$Register, $str2$$Register, 10225 $cnt1$$Register, $cnt2$$Register, 10226 $tmp1$$Register, $tmp2$$Register, 10227 $tmp3$$Register, $tmp4$$Register, 10228 $tmp5$$Register, $tmp6$$Register, 10229 $result$$Register, StrIntrinsicNode::UL); 10230 %} 10231 ins_pipe(pipe_class_memory); 10232 %} 10233 10234 instruct string_indexof_conUU(iRegP_R11 str1, iRegI_R12 cnt1, iRegP_R13 str2, 10235 immI_le_4 int_cnt2, iRegI_R10 result, iRegINoSp tmp1, iRegINoSp tmp2, 10236 iRegINoSp tmp3, iRegINoSp tmp4, rFlagsReg cr) 10237 %{ 10238 predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UU); 10239 match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2))); 10240 effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, TEMP_DEF result, 10241 TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr); 10242 10243 format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result (UU)" %} 10244 10245 ins_encode %{ 10246 int icnt2 = (int)$int_cnt2$$constant; 10247 __ string_indexof_linearscan($str1$$Register, $str2$$Register, 10248 $cnt1$$Register, zr, 10249 $tmp1$$Register, $tmp2$$Register, 10250 $tmp3$$Register, $tmp4$$Register, 10251 icnt2, $result$$Register, StrIntrinsicNode::UU); 10252 %} 10253 ins_pipe(pipe_class_memory); 10254 %} 10255 10256 instruct string_indexof_conLL(iRegP_R11 str1, iRegI_R12 cnt1, iRegP_R13 str2, 10257 immI_le_4 int_cnt2, iRegI_R10 result, iRegINoSp tmp1, iRegINoSp tmp2, 10258 iRegINoSp tmp3, iRegINoSp tmp4, rFlagsReg cr) 10259 %{ 10260 predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::LL); 10261 match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2))); 10262 effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, TEMP_DEF result, 10263 TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr); 10264 10265 format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result (LL)" %} 10266 ins_encode %{ 10267 int icnt2 = (int)$int_cnt2$$constant; 10268 __ string_indexof_linearscan($str1$$Register, $str2$$Register, 10269 $cnt1$$Register, zr, 10270 $tmp1$$Register, $tmp2$$Register, 10271 $tmp3$$Register, $tmp4$$Register, 10272 icnt2, $result$$Register, StrIntrinsicNode::LL); 10273 %} 10274 ins_pipe(pipe_class_memory); 10275 %} 10276 10277 instruct string_indexof_conUL(iRegP_R11 str1, iRegI_R12 cnt1, iRegP_R13 str2, 10278 immI_1 int_cnt2, iRegI_R10 result, iRegINoSp tmp1, iRegINoSp tmp2, 10279 iRegINoSp tmp3, iRegINoSp tmp4, rFlagsReg cr) 10280 %{ 10281 predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UL); 10282 match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2))); 10283 effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, TEMP_DEF result, 10284 TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr); 10285 10286 format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result (UL)" %} 10287 ins_encode %{ 10288 int icnt2 = (int)$int_cnt2$$constant; 10289 __ string_indexof_linearscan($str1$$Register, $str2$$Register, 10290 $cnt1$$Register, zr, 10291 $tmp1$$Register, $tmp2$$Register, 10292 $tmp3$$Register, $tmp4$$Register, 10293 icnt2, $result$$Register, StrIntrinsicNode::UL); 10294 %} 10295 ins_pipe(pipe_class_memory); 10296 %} 10297 10298 instruct stringU_indexof_char(iRegP_R11 str1, iRegI_R12 cnt1, iRegI_R13 ch, 10299 iRegI_R10 result, iRegINoSp tmp1, iRegINoSp tmp2, 10300 iRegINoSp tmp3, iRegINoSp tmp4, rFlagsReg cr) 10301 %{ 10302 match(Set result (StrIndexOfChar (Binary str1 cnt1) ch)); 10303 predicate(!UseRVV && (((StrIndexOfCharNode*)n)->encoding() == StrIntrinsicNode::U)); 10304 effect(USE_KILL str1, USE_KILL cnt1, USE_KILL ch, TEMP_DEF result, 10305 TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr); 10306 10307 format %{ "StringUTF16 IndexOf char[] $str1, $cnt1, $ch -> $result" %} 10308 ins_encode %{ 10309 __ string_indexof_char($str1$$Register, $cnt1$$Register, $ch$$Register, 10310 $result$$Register, $tmp1$$Register, $tmp2$$Register, 10311 $tmp3$$Register, $tmp4$$Register, false /* isU */); 10312 %} 10313 ins_pipe(pipe_class_memory); 10314 %} 10315 10316 10317 instruct stringL_indexof_char(iRegP_R11 str1, iRegI_R12 cnt1, iRegI_R13 ch, 10318 iRegI_R10 result, iRegINoSp tmp1, iRegINoSp tmp2, 10319 iRegINoSp tmp3, iRegINoSp tmp4, rFlagsReg cr) 10320 %{ 10321 match(Set result (StrIndexOfChar (Binary str1 cnt1) ch)); 10322 predicate(!UseRVV && (((StrIndexOfCharNode*)n)->encoding() == StrIntrinsicNode::L)); 10323 effect(USE_KILL str1, USE_KILL cnt1, USE_KILL ch, TEMP_DEF result, 10324 TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr); 10325 10326 format %{ "StringLatin1 IndexOf char[] $str1, $cnt1, $ch -> $result" %} 10327 ins_encode %{ 10328 __ string_indexof_char($str1$$Register, $cnt1$$Register, $ch$$Register, 10329 $result$$Register, $tmp1$$Register, $tmp2$$Register, 10330 $tmp3$$Register, $tmp4$$Register, true /* isL */); 10331 %} 10332 ins_pipe(pipe_class_memory); 10333 %} 10334 10335 // clearing of an array 10336 instruct clearArray_reg_reg(iRegL_R29 cnt, iRegP_R28 base, iRegP_R30 tmp1, 10337 iRegP_R31 tmp2, rFlagsReg cr, Universe dummy) 10338 %{ 10339 // temp registers must match the one used in StubGenerator::generate_zero_blocks() 10340 predicate(UseBlockZeroing || !UseRVV); 10341 match(Set dummy (ClearArray cnt base)); 10342 effect(USE_KILL cnt, USE_KILL base, TEMP tmp1, TEMP tmp2, KILL cr); 10343 10344 ins_cost(4 * DEFAULT_COST); 10345 format %{ "ClearArray $cnt, $base\t#@clearArray_reg_reg" %} 10346 10347 ins_encode %{ 10348 address tpc = __ zero_words($base$$Register, $cnt$$Register); 10349 if (tpc == nullptr) { 10350 ciEnv::current()->record_failure("CodeCache is full"); 10351 return; 10352 } 10353 %} 10354 10355 ins_pipe(pipe_class_memory); 10356 %} 10357 10358 instruct clearArray_imm_reg(immL cnt, iRegP_R28 base, Universe dummy, rFlagsReg cr) 10359 %{ 10360 predicate(!UseRVV && (uint64_t)n->in(2)->get_long() 10361 < (uint64_t)(BlockZeroingLowLimit >> LogBytesPerWord)); 10362 match(Set dummy (ClearArray cnt base)); 10363 effect(USE_KILL base, KILL cr); 10364 10365 ins_cost(4 * DEFAULT_COST); 10366 format %{ "ClearArray $cnt, $base\t#@clearArray_imm_reg" %} 10367 10368 ins_encode %{ 10369 __ zero_words($base$$Register, (uint64_t)$cnt$$constant); 10370 %} 10371 10372 ins_pipe(pipe_class_memory); 10373 %} 10374 10375 instruct string_equalsL(iRegP_R11 str1, iRegP_R13 str2, iRegI_R14 cnt, 10376 iRegI_R10 result, rFlagsReg cr) 10377 %{ 10378 predicate(!UseRVV && ((StrEqualsNode*)n)->encoding() == StrIntrinsicNode::LL); 10379 match(Set result (StrEquals (Binary str1 str2) cnt)); 10380 effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL cr); 10381 10382 format %{ "String Equals $str1, $str2, $cnt -> $result\t#@string_equalsL" %} 10383 ins_encode %{ 10384 // Count is in 8-bit bytes; non-Compact chars are 16 bits. 10385 __ string_equals($str1$$Register, $str2$$Register, 10386 $result$$Register, $cnt$$Register); 10387 %} 10388 ins_pipe(pipe_class_memory); 10389 %} 10390 10391 instruct array_equalsB(iRegP_R11 ary1, iRegP_R12 ary2, iRegI_R10 result, 10392 iRegP_R13 tmp1, iRegP_R14 tmp2, iRegP_R15 tmp3) 10393 %{ 10394 predicate(!UseRVV && ((AryEqNode*)n)->encoding() == StrIntrinsicNode::LL); 10395 match(Set result (AryEq ary1 ary2)); 10396 effect(USE_KILL ary1, USE_KILL ary2, TEMP tmp1, TEMP tmp2, TEMP tmp3); 10397 10398 format %{ "Array Equals $ary1, $ary2 -> $result\t#@array_equalsB // KILL all" %} 10399 ins_encode %{ 10400 __ arrays_equals($ary1$$Register, $ary2$$Register, 10401 $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, 10402 $result$$Register, 1); 10403 %} 10404 ins_pipe(pipe_class_memory); 10405 %} 10406 10407 instruct array_equalsC(iRegP_R11 ary1, iRegP_R12 ary2, iRegI_R10 result, 10408 iRegP_R13 tmp1, iRegP_R14 tmp2, iRegP_R15 tmp3) 10409 %{ 10410 predicate(!UseRVV && ((AryEqNode*)n)->encoding() == StrIntrinsicNode::UU); 10411 match(Set result (AryEq ary1 ary2)); 10412 effect(USE_KILL ary1, USE_KILL ary2, TEMP tmp1, TEMP tmp2, TEMP tmp3); 10413 10414 format %{ "Array Equals $ary1, $ary2 -> $result\t#@array_equalsC // KILL all" %} 10415 ins_encode %{ 10416 __ arrays_equals($ary1$$Register, $ary2$$Register, 10417 $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, 10418 $result$$Register, 2); 10419 %} 10420 ins_pipe(pipe_class_memory); 10421 %} 10422 10423 // fast ArraysSupport.vectorizedHashCode 10424 instruct arrays_hashcode(iRegP_R11 ary, iRegI_R12 cnt, iRegI_R10 result, immI basic_type, 10425 iRegLNoSp tmp1, iRegLNoSp tmp2, 10426 iRegLNoSp tmp3, iRegLNoSp tmp4, 10427 iRegLNoSp tmp5, iRegLNoSp tmp6, rFlagsReg cr) 10428 %{ 10429 match(Set result (VectorizedHashCode (Binary ary cnt) (Binary result basic_type))); 10430 effect(TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5, TEMP tmp6, 10431 USE_KILL ary, USE_KILL cnt, USE basic_type, KILL cr); 10432 10433 format %{ "Array HashCode array[] $ary,$cnt,$result,$basic_type -> $result // KILL all" %} 10434 ins_encode %{ 10435 __ arrays_hashcode($ary$$Register, $cnt$$Register, $result$$Register, 10436 $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, 10437 $tmp4$$Register, $tmp5$$Register, $tmp6$$Register, 10438 (BasicType)$basic_type$$constant); 10439 %} 10440 ins_pipe(pipe_class_memory); 10441 %} 10442 10443 // ============================================================================ 10444 // Safepoint Instructions 10445 10446 instruct safePoint(iRegP poll) 10447 %{ 10448 match(SafePoint poll); 10449 10450 ins_cost(2 * LOAD_COST); 10451 format %{ 10452 "lwu zr, [$poll]\t# Safepoint: poll for GC, #@safePoint" 10453 %} 10454 ins_encode %{ 10455 __ read_polling_page(as_Register($poll$$reg), 0, relocInfo::poll_type); 10456 %} 10457 ins_pipe(pipe_serial); // ins_pipe(iload_reg_mem); 10458 %} 10459 10460 // ============================================================================ 10461 // This name is KNOWN by the ADLC and cannot be changed. 10462 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type 10463 // for this guy. 10464 instruct tlsLoadP(javaThread_RegP dst) 10465 %{ 10466 match(Set dst (ThreadLocal)); 10467 10468 ins_cost(0); 10469 10470 format %{ " -- \t// $dst=Thread::current(), empty, #@tlsLoadP" %} 10471 10472 size(0); 10473 10474 ins_encode( /*empty*/ ); 10475 10476 ins_pipe(pipe_class_empty); 10477 %} 10478 10479 // inlined locking and unlocking 10480 // using t1 as the 'flag' register to bridge the BoolNode producers and consumers 10481 instruct cmpFastLock(rFlagsReg cr, iRegP object, iRegP box, 10482 iRegPNoSp tmp1, iRegPNoSp tmp2, iRegPNoSp tmp3, iRegPNoSp tmp4) 10483 %{ 10484 predicate(LockingMode != LM_LIGHTWEIGHT); 10485 match(Set cr (FastLock object box)); 10486 effect(TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4); 10487 10488 ins_cost(10 * DEFAULT_COST); 10489 format %{ "fastlock $object,$box\t! kills $tmp1,$tmp2,$tmp3,$tmp4 #@cmpFastLock" %} 10490 10491 ins_encode %{ 10492 __ fast_lock($object$$Register, $box$$Register, 10493 $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register); 10494 %} 10495 10496 ins_pipe(pipe_serial); 10497 %} 10498 10499 // using t1 as the 'flag' register to bridge the BoolNode producers and consumers 10500 instruct cmpFastUnlock(rFlagsReg cr, iRegP object, iRegP box, iRegPNoSp tmp1, iRegPNoSp tmp2) 10501 %{ 10502 predicate(LockingMode != LM_LIGHTWEIGHT); 10503 match(Set cr (FastUnlock object box)); 10504 effect(TEMP tmp1, TEMP tmp2); 10505 10506 ins_cost(10 * DEFAULT_COST); 10507 format %{ "fastunlock $object,$box\t! kills $tmp1, $tmp2, #@cmpFastUnlock" %} 10508 10509 ins_encode %{ 10510 __ fast_unlock($object$$Register, $box$$Register, $tmp1$$Register, $tmp2$$Register); 10511 %} 10512 10513 ins_pipe(pipe_serial); 10514 %} 10515 10516 instruct cmpFastLockLightweight(rFlagsReg cr, iRegP object, iRegP box, 10517 iRegPNoSp tmp1, iRegPNoSp tmp2, iRegPNoSp tmp3, iRegPNoSp tmp4) 10518 %{ 10519 predicate(LockingMode == LM_LIGHTWEIGHT); 10520 match(Set cr (FastLock object box)); 10521 effect(TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4); 10522 10523 ins_cost(10 * DEFAULT_COST); 10524 format %{ "fastlock $object,$box\t! kills $tmp1,$tmp2,$tmp3,$tmp4 #@cmpFastLockLightweight" %} 10525 10526 ins_encode %{ 10527 __ fast_lock_lightweight($object$$Register, $box$$Register, 10528 $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register); 10529 %} 10530 10531 ins_pipe(pipe_serial); 10532 %} 10533 10534 instruct cmpFastUnlockLightweight(rFlagsReg cr, iRegP object, iRegP box, 10535 iRegPNoSp tmp1, iRegPNoSp tmp2, iRegPNoSp tmp3) 10536 %{ 10537 predicate(LockingMode == LM_LIGHTWEIGHT); 10538 match(Set cr (FastUnlock object box)); 10539 effect(TEMP tmp1, TEMP tmp2, TEMP tmp3); 10540 10541 ins_cost(10 * DEFAULT_COST); 10542 format %{ "fastunlock $object,$box\t! kills $tmp1,$tmp2,$tmp3 #@cmpFastUnlockLightweight" %} 10543 10544 ins_encode %{ 10545 __ fast_unlock_lightweight($object$$Register, $box$$Register, 10546 $tmp1$$Register, $tmp2$$Register, $tmp3$$Register); 10547 %} 10548 10549 ins_pipe(pipe_serial); 10550 %} 10551 10552 // Tail Call; Jump from runtime stub to Java code. 10553 // Also known as an 'interprocedural jump'. 10554 // Target of jump will eventually return to caller. 10555 // TailJump below removes the return address. 10556 // Don't use fp for 'jump_target' because a MachEpilogNode has already been 10557 // emitted just above the TailCall which has reset fp to the caller state. 10558 instruct TailCalljmpInd(iRegPNoSpNoFp jump_target, inline_cache_RegP method_oop) 10559 %{ 10560 match(TailCall jump_target method_oop); 10561 10562 ins_cost(BRANCH_COST); 10563 10564 format %{ "jalr $jump_target\t# $method_oop holds method oop, #@TailCalljmpInd." %} 10565 10566 ins_encode(riscv_enc_tail_call(jump_target)); 10567 10568 ins_pipe(pipe_class_call); 10569 %} 10570 10571 instruct TailjmpInd(iRegPNoSpNoFp jump_target, iRegP_R10 ex_oop) 10572 %{ 10573 match(TailJump jump_target ex_oop); 10574 10575 ins_cost(ALU_COST + BRANCH_COST); 10576 10577 format %{ "jalr $jump_target\t# $ex_oop holds exception oop, #@TailjmpInd." %} 10578 10579 ins_encode(riscv_enc_tail_jmp(jump_target)); 10580 10581 ins_pipe(pipe_class_call); 10582 %} 10583 10584 // Forward exception. 10585 instruct ForwardExceptionjmp() 10586 %{ 10587 match(ForwardException); 10588 10589 ins_cost(BRANCH_COST); 10590 10591 format %{ "j forward_exception_stub\t#@ForwardException" %} 10592 10593 ins_encode %{ 10594 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 10595 %} 10596 10597 ins_pipe(pipe_class_call); 10598 %} 10599 10600 // Create exception oop: created by stack-crawling runtime code. 10601 // Created exception is now available to this handler, and is setup 10602 // just prior to jumping to this handler. No code emitted. 10603 instruct CreateException(iRegP_R10 ex_oop) 10604 %{ 10605 match(Set ex_oop (CreateEx)); 10606 10607 ins_cost(0); 10608 format %{ " -- \t// exception oop; no code emitted, #@CreateException" %} 10609 10610 size(0); 10611 10612 ins_encode( /*empty*/ ); 10613 10614 ins_pipe(pipe_class_empty); 10615 %} 10616 10617 // Rethrow exception: The exception oop will come in the first 10618 // argument position. Then JUMP (not call) to the rethrow stub code. 10619 instruct RethrowException() 10620 %{ 10621 match(Rethrow); 10622 10623 ins_cost(BRANCH_COST); 10624 10625 format %{ "j rethrow_stub\t#@RethrowException" %} 10626 10627 ins_encode(riscv_enc_rethrow()); 10628 10629 ins_pipe(pipe_class_call); 10630 %} 10631 10632 // Return Instruction 10633 // epilog node loads ret address into ra as part of frame pop 10634 instruct Ret() 10635 %{ 10636 match(Return); 10637 10638 ins_cost(BRANCH_COST); 10639 format %{ "ret\t// return register, #@Ret" %} 10640 10641 ins_encode(riscv_enc_ret()); 10642 10643 ins_pipe(pipe_branch); 10644 %} 10645 10646 // Die now. 10647 instruct ShouldNotReachHere() %{ 10648 match(Halt); 10649 10650 ins_cost(BRANCH_COST); 10651 10652 format %{ "#@ShouldNotReachHere" %} 10653 10654 ins_encode %{ 10655 if (is_reachable()) { 10656 __ stop(_halt_reason); 10657 } 10658 %} 10659 10660 ins_pipe(pipe_class_default); 10661 %} 10662 10663 10664 //----------PEEPHOLE RULES----------------------------------------------------- 10665 // These must follow all instruction definitions as they use the names 10666 // defined in the instructions definitions. 10667 // 10668 // peepmatch ( root_instr_name [preceding_instruction]* ); 10669 // 10670 // peepconstraint %{ 10671 // (instruction_number.operand_name relational_op instruction_number.operand_name 10672 // [, ...] ); 10673 // // instruction numbers are zero-based using left to right order in peepmatch 10674 // 10675 // peepreplace ( instr_name ( [instruction_number.operand_name]* ) ); 10676 // // provide an instruction_number.operand_name for each operand that appears 10677 // // in the replacement instruction's match rule 10678 // 10679 // ---------VM FLAGS--------------------------------------------------------- 10680 // 10681 // All peephole optimizations can be turned off using -XX:-OptoPeephole 10682 // 10683 // Each peephole rule is given an identifying number starting with zero and 10684 // increasing by one in the order seen by the parser. An individual peephole 10685 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=# 10686 // on the command-line. 10687 // 10688 // ---------CURRENT LIMITATIONS---------------------------------------------- 10689 // 10690 // Only match adjacent instructions in same basic block 10691 // Only equality constraints 10692 // Only constraints between operands, not (0.dest_reg == RAX_enc) 10693 // Only one replacement instruction 10694 // 10695 //----------SMARTSPILL RULES--------------------------------------------------- 10696 // These must follow all instruction definitions as they use the names 10697 // defined in the instructions definitions. 10698 10699 // Local Variables: 10700 // mode: c++ 10701 // End: