1 //
    2 // Copyright (c) 2003, 2024, Oracle and/or its affiliates. All rights reserved.
    3 // Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
    4 // Copyright (c) 2020, 2024, Huawei Technologies Co., Ltd. All rights reserved.
    5 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
    6 //
    7 // This code is free software; you can redistribute it and/or modify it
    8 // under the terms of the GNU General Public License version 2 only, as
    9 // published by the Free Software Foundation.
   10 //
   11 // This code is distributed in the hope that it will be useful, but WITHOUT
   12 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
   13 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
   14 // version 2 for more details (a copy is included in the LICENSE file that
   15 // accompanied this code).
   16 //
   17 // You should have received a copy of the GNU General Public License version
   18 // 2 along with this work; if not, write to the Free Software Foundation,
   19 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
   20 //
   21 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
   22 // or visit www.oracle.com if you need additional information or have any
   23 // questions.
   24 //
   25 //
   26 
   27 // RISCV Architecture Description File
   28 
   29 //----------REGISTER DEFINITION BLOCK------------------------------------------
   30 // This information is used by the matcher and the register allocator to
   31 // describe individual registers and classes of registers within the target
   32 // architecture.
   33 
   34 register %{
   35 //----------Architecture Description Register Definitions----------------------
   36 // General Registers
   37 // "reg_def"  name ( register save type, C convention save type,
   38 //                   ideal register type, encoding );
   39 // Register Save Types:
   40 //
   41 // NS  = No-Save:       The register allocator assumes that these registers
   42 //                      can be used without saving upon entry to the method, &
   43 //                      that they do not need to be saved at call sites.
   44 //
   45 // SOC = Save-On-Call:  The register allocator assumes that these registers
   46 //                      can be used without saving upon entry to the method,
   47 //                      but that they must be saved at call sites.
   48 //
   49 // SOE = Save-On-Entry: The register allocator assumes that these registers
   50 //                      must be saved before using them upon entry to the
   51 //                      method, but they do not need to be saved at call
   52 //                      sites.
   53 //
   54 // AS  = Always-Save:   The register allocator assumes that these registers
   55 //                      must be saved before using them upon entry to the
   56 //                      method, & that they must be saved at call sites.
   57 //
   58 // Ideal Register Type is used to determine how to save & restore a
   59 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
   60 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
   61 //
   62 // The encoding number is the actual bit-pattern placed into the opcodes.
   63 
   64 // We must define the 64 bit int registers in two 32 bit halves, the
   65 // real lower register and a virtual upper half register. upper halves
   66 // are used by the register allocator but are not actually supplied as
   67 // operands to memory ops.
   68 //
   69 // follow the C1 compiler in making registers
   70 //
   71 //   x7, x9-x17, x27-x31 volatile (caller save)
   72 //   x0-x4, x8, x23 system (no save, no allocate)
   73 //   x5-x6 non-allocatable (so we can use them as temporary regs)
   74 
   75 //
   76 // as regards Java usage. we don't use any callee save registers
   77 // because this makes it difficult to de-optimise a frame (see comment
   78 // in x86 implementation of Deoptimization::unwind_callee_save_values)
   79 //
   80 
   81 // General Registers
   82 
   83 reg_def R0      ( NS,  NS,  Op_RegI, 0,  x0->as_VMReg()         ); // zr
   84 reg_def R0_H    ( NS,  NS,  Op_RegI, 0,  x0->as_VMReg()->next() );
   85 reg_def R1      ( NS,  SOC, Op_RegI, 1,  x1->as_VMReg()         ); // ra
   86 reg_def R1_H    ( NS,  SOC, Op_RegI, 1,  x1->as_VMReg()->next() );
   87 reg_def R2      ( NS,  NS,  Op_RegI, 2,  x2->as_VMReg()         ); // sp
   88 reg_def R2_H    ( NS,  NS,  Op_RegI, 2,  x2->as_VMReg()->next() );
   89 reg_def R3      ( NS,  NS,  Op_RegI, 3,  x3->as_VMReg()         ); // gp
   90 reg_def R3_H    ( NS,  NS,  Op_RegI, 3,  x3->as_VMReg()->next() );
   91 reg_def R4      ( NS,  NS,  Op_RegI, 4,  x4->as_VMReg()         ); // tp
   92 reg_def R4_H    ( NS,  NS,  Op_RegI, 4,  x4->as_VMReg()->next() );
   93 reg_def R7      ( SOC, SOC, Op_RegI, 7,  x7->as_VMReg()         );
   94 reg_def R7_H    ( SOC, SOC, Op_RegI, 7,  x7->as_VMReg()->next() );
   95 reg_def R8      ( NS,  SOE, Op_RegI, 8,  x8->as_VMReg()         ); // fp
   96 reg_def R8_H    ( NS,  SOE, Op_RegI, 8,  x8->as_VMReg()->next() );
   97 reg_def R9      ( SOC, SOE, Op_RegI, 9,  x9->as_VMReg()         );
   98 reg_def R9_H    ( SOC, SOE, Op_RegI, 9,  x9->as_VMReg()->next() );
   99 reg_def R10     ( SOC, SOC, Op_RegI, 10, x10->as_VMReg()        );
  100 reg_def R10_H   ( SOC, SOC, Op_RegI, 10, x10->as_VMReg()->next());
  101 reg_def R11     ( SOC, SOC, Op_RegI, 11, x11->as_VMReg()        );
  102 reg_def R11_H   ( SOC, SOC, Op_RegI, 11, x11->as_VMReg()->next());
  103 reg_def R12     ( SOC, SOC, Op_RegI, 12, x12->as_VMReg()        );
  104 reg_def R12_H   ( SOC, SOC, Op_RegI, 12, x12->as_VMReg()->next());
  105 reg_def R13     ( SOC, SOC, Op_RegI, 13, x13->as_VMReg()        );
  106 reg_def R13_H   ( SOC, SOC, Op_RegI, 13, x13->as_VMReg()->next());
  107 reg_def R14     ( SOC, SOC, Op_RegI, 14, x14->as_VMReg()        );
  108 reg_def R14_H   ( SOC, SOC, Op_RegI, 14, x14->as_VMReg()->next());
  109 reg_def R15     ( SOC, SOC, Op_RegI, 15, x15->as_VMReg()        );
  110 reg_def R15_H   ( SOC, SOC, Op_RegI, 15, x15->as_VMReg()->next());
  111 reg_def R16     ( SOC, SOC, Op_RegI, 16, x16->as_VMReg()        );
  112 reg_def R16_H   ( SOC, SOC, Op_RegI, 16, x16->as_VMReg()->next());
  113 reg_def R17     ( SOC, SOC, Op_RegI, 17, x17->as_VMReg()        );
  114 reg_def R17_H   ( SOC, SOC, Op_RegI, 17, x17->as_VMReg()->next());
  115 reg_def R18     ( SOC, SOE, Op_RegI, 18, x18->as_VMReg()        );
  116 reg_def R18_H   ( SOC, SOE, Op_RegI, 18, x18->as_VMReg()->next());
  117 reg_def R19     ( SOC, SOE, Op_RegI, 19, x19->as_VMReg()        );
  118 reg_def R19_H   ( SOC, SOE, Op_RegI, 19, x19->as_VMReg()->next());
  119 reg_def R20     ( SOC, SOE, Op_RegI, 20, x20->as_VMReg()        ); // caller esp
  120 reg_def R20_H   ( SOC, SOE, Op_RegI, 20, x20->as_VMReg()->next());
  121 reg_def R21     ( SOC, SOE, Op_RegI, 21, x21->as_VMReg()        );
  122 reg_def R21_H   ( SOC, SOE, Op_RegI, 21, x21->as_VMReg()->next());
  123 reg_def R22     ( SOC, SOE, Op_RegI, 22, x22->as_VMReg()        );
  124 reg_def R22_H   ( SOC, SOE, Op_RegI, 22, x22->as_VMReg()->next());
  125 reg_def R23     ( NS,  SOE, Op_RegI, 23, x23->as_VMReg()        ); // java thread
  126 reg_def R23_H   ( NS,  SOE, Op_RegI, 23, x23->as_VMReg()->next());
  127 reg_def R24     ( SOC, SOE, Op_RegI, 24, x24->as_VMReg()        );
  128 reg_def R24_H   ( SOC, SOE, Op_RegI, 24, x24->as_VMReg()->next());
  129 reg_def R25     ( SOC, SOE, Op_RegI, 25, x25->as_VMReg()        );
  130 reg_def R25_H   ( SOC, SOE, Op_RegI, 25, x25->as_VMReg()->next());
  131 reg_def R26     ( SOC, SOE, Op_RegI, 26, x26->as_VMReg()        );
  132 reg_def R26_H   ( SOC, SOE, Op_RegI, 26, x26->as_VMReg()->next());
  133 reg_def R27     ( SOC, SOE, Op_RegI, 27, x27->as_VMReg()        ); // heapbase
  134 reg_def R27_H   ( SOC, SOE, Op_RegI, 27, x27->as_VMReg()->next());
  135 reg_def R28     ( SOC, SOC, Op_RegI, 28, x28->as_VMReg()        );
  136 reg_def R28_H   ( SOC, SOC, Op_RegI, 28, x28->as_VMReg()->next());
  137 reg_def R29     ( SOC, SOC, Op_RegI, 29, x29->as_VMReg()        );
  138 reg_def R29_H   ( SOC, SOC, Op_RegI, 29, x29->as_VMReg()->next());
  139 reg_def R30     ( SOC, SOC, Op_RegI, 30, x30->as_VMReg()        );
  140 reg_def R30_H   ( SOC, SOC, Op_RegI, 30, x30->as_VMReg()->next());
  141 reg_def R31     ( SOC, SOC, Op_RegI, 31, x31->as_VMReg()        );
  142 reg_def R31_H   ( SOC, SOC, Op_RegI, 31, x31->as_VMReg()->next());
  143 
  144 // ----------------------------
  145 // Float/Double Registers
  146 // ----------------------------
  147 
  148 // Double Registers
  149 
  150 // The rules of ADL require that double registers be defined in pairs.
  151 // Each pair must be two 32-bit values, but not necessarily a pair of
  152 // single float registers. In each pair, ADLC-assigned register numbers
  153 // must be adjacent, with the lower number even. Finally, when the
  154 // CPU stores such a register pair to memory, the word associated with
  155 // the lower ADLC-assigned number must be stored to the lower address.
  156 
  157 // RISCV has 32 floating-point registers. Each can store a single
  158 // or double precision floating-point value.
  159 
  160 // for Java use float registers f0-f31 are always save on call whereas
  161 // the platform ABI treats f8-f9 and f18-f27 as callee save). Other
  162 // float registers are SOC as per the platform spec
  163 
  164 reg_def F0    ( SOC, SOC, Op_RegF,  0,  f0->as_VMReg()          );
  165 reg_def F0_H  ( SOC, SOC, Op_RegF,  0,  f0->as_VMReg()->next()  );
  166 reg_def F1    ( SOC, SOC, Op_RegF,  1,  f1->as_VMReg()          );
  167 reg_def F1_H  ( SOC, SOC, Op_RegF,  1,  f1->as_VMReg()->next()  );
  168 reg_def F2    ( SOC, SOC, Op_RegF,  2,  f2->as_VMReg()          );
  169 reg_def F2_H  ( SOC, SOC, Op_RegF,  2,  f2->as_VMReg()->next()  );
  170 reg_def F3    ( SOC, SOC, Op_RegF,  3,  f3->as_VMReg()          );
  171 reg_def F3_H  ( SOC, SOC, Op_RegF,  3,  f3->as_VMReg()->next()  );
  172 reg_def F4    ( SOC, SOC, Op_RegF,  4,  f4->as_VMReg()          );
  173 reg_def F4_H  ( SOC, SOC, Op_RegF,  4,  f4->as_VMReg()->next()  );
  174 reg_def F5    ( SOC, SOC, Op_RegF,  5,  f5->as_VMReg()          );
  175 reg_def F5_H  ( SOC, SOC, Op_RegF,  5,  f5->as_VMReg()->next()  );
  176 reg_def F6    ( SOC, SOC, Op_RegF,  6,  f6->as_VMReg()          );
  177 reg_def F6_H  ( SOC, SOC, Op_RegF,  6,  f6->as_VMReg()->next()  );
  178 reg_def F7    ( SOC, SOC, Op_RegF,  7,  f7->as_VMReg()          );
  179 reg_def F7_H  ( SOC, SOC, Op_RegF,  7,  f7->as_VMReg()->next()  );
  180 reg_def F8    ( SOC, SOE, Op_RegF,  8,  f8->as_VMReg()          );
  181 reg_def F8_H  ( SOC, SOE, Op_RegF,  8,  f8->as_VMReg()->next()  );
  182 reg_def F9    ( SOC, SOE, Op_RegF,  9,  f9->as_VMReg()          );
  183 reg_def F9_H  ( SOC, SOE, Op_RegF,  9,  f9->as_VMReg()->next()  );
  184 reg_def F10   ( SOC, SOC, Op_RegF,  10, f10->as_VMReg()         );
  185 reg_def F10_H ( SOC, SOC, Op_RegF,  10, f10->as_VMReg()->next() );
  186 reg_def F11   ( SOC, SOC, Op_RegF,  11, f11->as_VMReg()         );
  187 reg_def F11_H ( SOC, SOC, Op_RegF,  11, f11->as_VMReg()->next() );
  188 reg_def F12   ( SOC, SOC, Op_RegF,  12, f12->as_VMReg()         );
  189 reg_def F12_H ( SOC, SOC, Op_RegF,  12, f12->as_VMReg()->next() );
  190 reg_def F13   ( SOC, SOC, Op_RegF,  13, f13->as_VMReg()         );
  191 reg_def F13_H ( SOC, SOC, Op_RegF,  13, f13->as_VMReg()->next() );
  192 reg_def F14   ( SOC, SOC, Op_RegF,  14, f14->as_VMReg()         );
  193 reg_def F14_H ( SOC, SOC, Op_RegF,  14, f14->as_VMReg()->next() );
  194 reg_def F15   ( SOC, SOC, Op_RegF,  15, f15->as_VMReg()         );
  195 reg_def F15_H ( SOC, SOC, Op_RegF,  15, f15->as_VMReg()->next() );
  196 reg_def F16   ( SOC, SOC, Op_RegF,  16, f16->as_VMReg()         );
  197 reg_def F16_H ( SOC, SOC, Op_RegF,  16, f16->as_VMReg()->next() );
  198 reg_def F17   ( SOC, SOC, Op_RegF,  17, f17->as_VMReg()         );
  199 reg_def F17_H ( SOC, SOC, Op_RegF,  17, f17->as_VMReg()->next() );
  200 reg_def F18   ( SOC, SOE, Op_RegF,  18, f18->as_VMReg()         );
  201 reg_def F18_H ( SOC, SOE, Op_RegF,  18, f18->as_VMReg()->next() );
  202 reg_def F19   ( SOC, SOE, Op_RegF,  19, f19->as_VMReg()         );
  203 reg_def F19_H ( SOC, SOE, Op_RegF,  19, f19->as_VMReg()->next() );
  204 reg_def F20   ( SOC, SOE, Op_RegF,  20, f20->as_VMReg()         );
  205 reg_def F20_H ( SOC, SOE, Op_RegF,  20, f20->as_VMReg()->next() );
  206 reg_def F21   ( SOC, SOE, Op_RegF,  21, f21->as_VMReg()         );
  207 reg_def F21_H ( SOC, SOE, Op_RegF,  21, f21->as_VMReg()->next() );
  208 reg_def F22   ( SOC, SOE, Op_RegF,  22, f22->as_VMReg()         );
  209 reg_def F22_H ( SOC, SOE, Op_RegF,  22, f22->as_VMReg()->next() );
  210 reg_def F23   ( SOC, SOE, Op_RegF,  23, f23->as_VMReg()         );
  211 reg_def F23_H ( SOC, SOE, Op_RegF,  23, f23->as_VMReg()->next() );
  212 reg_def F24   ( SOC, SOE, Op_RegF,  24, f24->as_VMReg()         );
  213 reg_def F24_H ( SOC, SOE, Op_RegF,  24, f24->as_VMReg()->next() );
  214 reg_def F25   ( SOC, SOE, Op_RegF,  25, f25->as_VMReg()         );
  215 reg_def F25_H ( SOC, SOE, Op_RegF,  25, f25->as_VMReg()->next() );
  216 reg_def F26   ( SOC, SOE, Op_RegF,  26, f26->as_VMReg()         );
  217 reg_def F26_H ( SOC, SOE, Op_RegF,  26, f26->as_VMReg()->next() );
  218 reg_def F27   ( SOC, SOE, Op_RegF,  27, f27->as_VMReg()         );
  219 reg_def F27_H ( SOC, SOE, Op_RegF,  27, f27->as_VMReg()->next() );
  220 reg_def F28   ( SOC, SOC, Op_RegF,  28, f28->as_VMReg()         );
  221 reg_def F28_H ( SOC, SOC, Op_RegF,  28, f28->as_VMReg()->next() );
  222 reg_def F29   ( SOC, SOC, Op_RegF,  29, f29->as_VMReg()         );
  223 reg_def F29_H ( SOC, SOC, Op_RegF,  29, f29->as_VMReg()->next() );
  224 reg_def F30   ( SOC, SOC, Op_RegF,  30, f30->as_VMReg()         );
  225 reg_def F30_H ( SOC, SOC, Op_RegF,  30, f30->as_VMReg()->next() );
  226 reg_def F31   ( SOC, SOC, Op_RegF,  31, f31->as_VMReg()         );
  227 reg_def F31_H ( SOC, SOC, Op_RegF,  31, f31->as_VMReg()->next() );
  228 
  229 // ----------------------------
  230 // Vector Registers
  231 // ----------------------------
  232 
  233 // For RVV vector registers, we simply extend vector register size to 4
  234 // 'logical' slots. This is nominally 128 bits but it actually covers
  235 // all possible 'physical' RVV vector register lengths from 128 ~ 1024
  236 // bits. The 'physical' RVV vector register length is detected during
  237 // startup, so the register allocator is able to identify the correct
  238 // number of bytes needed for an RVV spill/unspill.
  239 
  240 reg_def V0    ( SOC, SOC, Op_VecA, 0,  v0->as_VMReg()           );
  241 reg_def V0_H  ( SOC, SOC, Op_VecA, 0,  v0->as_VMReg()->next()   );
  242 reg_def V0_J  ( SOC, SOC, Op_VecA, 0,  v0->as_VMReg()->next(2)  );
  243 reg_def V0_K  ( SOC, SOC, Op_VecA, 0,  v0->as_VMReg()->next(3)  );
  244 
  245 reg_def V1    ( SOC, SOC, Op_VecA, 1,  v1->as_VMReg()           );
  246 reg_def V1_H  ( SOC, SOC, Op_VecA, 1,  v1->as_VMReg()->next()   );
  247 reg_def V1_J  ( SOC, SOC, Op_VecA, 1,  v1->as_VMReg()->next(2)  );
  248 reg_def V1_K  ( SOC, SOC, Op_VecA, 1,  v1->as_VMReg()->next(3)  );
  249 
  250 reg_def V2    ( SOC, SOC, Op_VecA, 2,  v2->as_VMReg()           );
  251 reg_def V2_H  ( SOC, SOC, Op_VecA, 2,  v2->as_VMReg()->next()   );
  252 reg_def V2_J  ( SOC, SOC, Op_VecA, 2,  v2->as_VMReg()->next(2)  );
  253 reg_def V2_K  ( SOC, SOC, Op_VecA, 2,  v2->as_VMReg()->next(3)  );
  254 
  255 reg_def V3    ( SOC, SOC, Op_VecA, 3,  v3->as_VMReg()           );
  256 reg_def V3_H  ( SOC, SOC, Op_VecA, 3,  v3->as_VMReg()->next()   );
  257 reg_def V3_J  ( SOC, SOC, Op_VecA, 3,  v3->as_VMReg()->next(2)  );
  258 reg_def V3_K  ( SOC, SOC, Op_VecA, 3,  v3->as_VMReg()->next(3)  );
  259 
  260 reg_def V4    ( SOC, SOC, Op_VecA, 4,  v4->as_VMReg()           );
  261 reg_def V4_H  ( SOC, SOC, Op_VecA, 4,  v4->as_VMReg()->next()   );
  262 reg_def V4_J  ( SOC, SOC, Op_VecA, 4,  v4->as_VMReg()->next(2)  );
  263 reg_def V4_K  ( SOC, SOC, Op_VecA, 4,  v4->as_VMReg()->next(3)  );
  264 
  265 reg_def V5    ( SOC, SOC, Op_VecA, 5,  v5->as_VMReg()           );
  266 reg_def V5_H  ( SOC, SOC, Op_VecA, 5,  v5->as_VMReg()->next()   );
  267 reg_def V5_J  ( SOC, SOC, Op_VecA, 5,  v5->as_VMReg()->next(2)  );
  268 reg_def V5_K  ( SOC, SOC, Op_VecA, 5,  v5->as_VMReg()->next(3)  );
  269 
  270 reg_def V6    ( SOC, SOC, Op_VecA, 6,  v6->as_VMReg()           );
  271 reg_def V6_H  ( SOC, SOC, Op_VecA, 6,  v6->as_VMReg()->next()   );
  272 reg_def V6_J  ( SOC, SOC, Op_VecA, 6,  v6->as_VMReg()->next(2)  );
  273 reg_def V6_K  ( SOC, SOC, Op_VecA, 6,  v6->as_VMReg()->next(3)  );
  274 
  275 reg_def V7    ( SOC, SOC, Op_VecA, 7,  v7->as_VMReg()           );
  276 reg_def V7_H  ( SOC, SOC, Op_VecA, 7,  v7->as_VMReg()->next()   );
  277 reg_def V7_J  ( SOC, SOC, Op_VecA, 7,  v7->as_VMReg()->next(2)  );
  278 reg_def V7_K  ( SOC, SOC, Op_VecA, 7,  v7->as_VMReg()->next(3)  );
  279 
  280 reg_def V8    ( SOC, SOC, Op_VecA, 8,  v8->as_VMReg()           );
  281 reg_def V8_H  ( SOC, SOC, Op_VecA, 8,  v8->as_VMReg()->next()   );
  282 reg_def V8_J  ( SOC, SOC, Op_VecA, 8,  v8->as_VMReg()->next(2)  );
  283 reg_def V8_K  ( SOC, SOC, Op_VecA, 8,  v8->as_VMReg()->next(3)  );
  284 
  285 reg_def V9    ( SOC, SOC, Op_VecA, 9,  v9->as_VMReg()           );
  286 reg_def V9_H  ( SOC, SOC, Op_VecA, 9,  v9->as_VMReg()->next()   );
  287 reg_def V9_J  ( SOC, SOC, Op_VecA, 9,  v9->as_VMReg()->next(2)  );
  288 reg_def V9_K  ( SOC, SOC, Op_VecA, 9,  v9->as_VMReg()->next(3)  );
  289 
  290 reg_def V10   ( SOC, SOC, Op_VecA, 10, v10->as_VMReg()          );
  291 reg_def V10_H ( SOC, SOC, Op_VecA, 10, v10->as_VMReg()->next()  );
  292 reg_def V10_J ( SOC, SOC, Op_VecA, 10, v10->as_VMReg()->next(2) );
  293 reg_def V10_K ( SOC, SOC, Op_VecA, 10, v10->as_VMReg()->next(3) );
  294 
  295 reg_def V11   ( SOC, SOC, Op_VecA, 11, v11->as_VMReg()          );
  296 reg_def V11_H ( SOC, SOC, Op_VecA, 11, v11->as_VMReg()->next()  );
  297 reg_def V11_J ( SOC, SOC, Op_VecA, 11, v11->as_VMReg()->next(2) );
  298 reg_def V11_K ( SOC, SOC, Op_VecA, 11, v11->as_VMReg()->next(3) );
  299 
  300 reg_def V12   ( SOC, SOC, Op_VecA, 12, v12->as_VMReg()          );
  301 reg_def V12_H ( SOC, SOC, Op_VecA, 12, v12->as_VMReg()->next()  );
  302 reg_def V12_J ( SOC, SOC, Op_VecA, 12, v12->as_VMReg()->next(2) );
  303 reg_def V12_K ( SOC, SOC, Op_VecA, 12, v12->as_VMReg()->next(3) );
  304 
  305 reg_def V13   ( SOC, SOC, Op_VecA, 13, v13->as_VMReg()          );
  306 reg_def V13_H ( SOC, SOC, Op_VecA, 13, v13->as_VMReg()->next()  );
  307 reg_def V13_J ( SOC, SOC, Op_VecA, 13, v13->as_VMReg()->next(2) );
  308 reg_def V13_K ( SOC, SOC, Op_VecA, 13, v13->as_VMReg()->next(3) );
  309 
  310 reg_def V14   ( SOC, SOC, Op_VecA, 14, v14->as_VMReg()          );
  311 reg_def V14_H ( SOC, SOC, Op_VecA, 14, v14->as_VMReg()->next()  );
  312 reg_def V14_J ( SOC, SOC, Op_VecA, 14, v14->as_VMReg()->next(2) );
  313 reg_def V14_K ( SOC, SOC, Op_VecA, 14, v14->as_VMReg()->next(3) );
  314 
  315 reg_def V15   ( SOC, SOC, Op_VecA, 15, v15->as_VMReg()          );
  316 reg_def V15_H ( SOC, SOC, Op_VecA, 15, v15->as_VMReg()->next()  );
  317 reg_def V15_J ( SOC, SOC, Op_VecA, 15, v15->as_VMReg()->next(2) );
  318 reg_def V15_K ( SOC, SOC, Op_VecA, 15, v15->as_VMReg()->next(3) );
  319 
  320 reg_def V16   ( SOC, SOC, Op_VecA, 16, v16->as_VMReg()          );
  321 reg_def V16_H ( SOC, SOC, Op_VecA, 16, v16->as_VMReg()->next()  );
  322 reg_def V16_J ( SOC, SOC, Op_VecA, 16, v16->as_VMReg()->next(2) );
  323 reg_def V16_K ( SOC, SOC, Op_VecA, 16, v16->as_VMReg()->next(3) );
  324 
  325 reg_def V17   ( SOC, SOC, Op_VecA, 17, v17->as_VMReg()          );
  326 reg_def V17_H ( SOC, SOC, Op_VecA, 17, v17->as_VMReg()->next()  );
  327 reg_def V17_J ( SOC, SOC, Op_VecA, 17, v17->as_VMReg()->next(2) );
  328 reg_def V17_K ( SOC, SOC, Op_VecA, 17, v17->as_VMReg()->next(3) );
  329 
  330 reg_def V18   ( SOC, SOC, Op_VecA, 18, v18->as_VMReg()          );
  331 reg_def V18_H ( SOC, SOC, Op_VecA, 18, v18->as_VMReg()->next()  );
  332 reg_def V18_J ( SOC, SOC, Op_VecA, 18, v18->as_VMReg()->next(2) );
  333 reg_def V18_K ( SOC, SOC, Op_VecA, 18, v18->as_VMReg()->next(3) );
  334 
  335 reg_def V19   ( SOC, SOC, Op_VecA, 19, v19->as_VMReg()          );
  336 reg_def V19_H ( SOC, SOC, Op_VecA, 19, v19->as_VMReg()->next()  );
  337 reg_def V19_J ( SOC, SOC, Op_VecA, 19, v19->as_VMReg()->next(2) );
  338 reg_def V19_K ( SOC, SOC, Op_VecA, 19, v19->as_VMReg()->next(3) );
  339 
  340 reg_def V20   ( SOC, SOC, Op_VecA, 20, v20->as_VMReg()          );
  341 reg_def V20_H ( SOC, SOC, Op_VecA, 20, v20->as_VMReg()->next()  );
  342 reg_def V20_J ( SOC, SOC, Op_VecA, 20, v20->as_VMReg()->next(2) );
  343 reg_def V20_K ( SOC, SOC, Op_VecA, 20, v20->as_VMReg()->next(3) );
  344 
  345 reg_def V21   ( SOC, SOC, Op_VecA, 21, v21->as_VMReg()          );
  346 reg_def V21_H ( SOC, SOC, Op_VecA, 21, v21->as_VMReg()->next()  );
  347 reg_def V21_J ( SOC, SOC, Op_VecA, 21, v21->as_VMReg()->next(2) );
  348 reg_def V21_K ( SOC, SOC, Op_VecA, 21, v21->as_VMReg()->next(3) );
  349 
  350 reg_def V22   ( SOC, SOC, Op_VecA, 22, v22->as_VMReg()          );
  351 reg_def V22_H ( SOC, SOC, Op_VecA, 22, v22->as_VMReg()->next()  );
  352 reg_def V22_J ( SOC, SOC, Op_VecA, 22, v22->as_VMReg()->next(2) );
  353 reg_def V22_K ( SOC, SOC, Op_VecA, 22, v22->as_VMReg()->next(3) );
  354 
  355 reg_def V23   ( SOC, SOC, Op_VecA, 23, v23->as_VMReg()          );
  356 reg_def V23_H ( SOC, SOC, Op_VecA, 23, v23->as_VMReg()->next()  );
  357 reg_def V23_J ( SOC, SOC, Op_VecA, 23, v23->as_VMReg()->next(2) );
  358 reg_def V23_K ( SOC, SOC, Op_VecA, 23, v23->as_VMReg()->next(3) );
  359 
  360 reg_def V24   ( SOC, SOC, Op_VecA, 24, v24->as_VMReg()          );
  361 reg_def V24_H ( SOC, SOC, Op_VecA, 24, v24->as_VMReg()->next()  );
  362 reg_def V24_J ( SOC, SOC, Op_VecA, 24, v24->as_VMReg()->next(2) );
  363 reg_def V24_K ( SOC, SOC, Op_VecA, 24, v24->as_VMReg()->next(3) );
  364 
  365 reg_def V25   ( SOC, SOC, Op_VecA, 25, v25->as_VMReg()          );
  366 reg_def V25_H ( SOC, SOC, Op_VecA, 25, v25->as_VMReg()->next()  );
  367 reg_def V25_J ( SOC, SOC, Op_VecA, 25, v25->as_VMReg()->next(2) );
  368 reg_def V25_K ( SOC, SOC, Op_VecA, 25, v25->as_VMReg()->next(3) );
  369 
  370 reg_def V26   ( SOC, SOC, Op_VecA, 26, v26->as_VMReg()          );
  371 reg_def V26_H ( SOC, SOC, Op_VecA, 26, v26->as_VMReg()->next()  );
  372 reg_def V26_J ( SOC, SOC, Op_VecA, 26, v26->as_VMReg()->next(2) );
  373 reg_def V26_K ( SOC, SOC, Op_VecA, 26, v26->as_VMReg()->next(3) );
  374 
  375 reg_def V27   ( SOC, SOC, Op_VecA, 27, v27->as_VMReg()          );
  376 reg_def V27_H ( SOC, SOC, Op_VecA, 27, v27->as_VMReg()->next()  );
  377 reg_def V27_J ( SOC, SOC, Op_VecA, 27, v27->as_VMReg()->next(2) );
  378 reg_def V27_K ( SOC, SOC, Op_VecA, 27, v27->as_VMReg()->next(3) );
  379 
  380 reg_def V28   ( SOC, SOC, Op_VecA, 28, v28->as_VMReg()          );
  381 reg_def V28_H ( SOC, SOC, Op_VecA, 28, v28->as_VMReg()->next()  );
  382 reg_def V28_J ( SOC, SOC, Op_VecA, 28, v28->as_VMReg()->next(2) );
  383 reg_def V28_K ( SOC, SOC, Op_VecA, 28, v28->as_VMReg()->next(3) );
  384 
  385 reg_def V29   ( SOC, SOC, Op_VecA, 29, v29->as_VMReg()          );
  386 reg_def V29_H ( SOC, SOC, Op_VecA, 29, v29->as_VMReg()->next()  );
  387 reg_def V29_J ( SOC, SOC, Op_VecA, 29, v29->as_VMReg()->next(2) );
  388 reg_def V29_K ( SOC, SOC, Op_VecA, 29, v29->as_VMReg()->next(3) );
  389 
  390 reg_def V30   ( SOC, SOC, Op_VecA, 30, v30->as_VMReg()          );
  391 reg_def V30_H ( SOC, SOC, Op_VecA, 30, v30->as_VMReg()->next()  );
  392 reg_def V30_J ( SOC, SOC, Op_VecA, 30, v30->as_VMReg()->next(2) );
  393 reg_def V30_K ( SOC, SOC, Op_VecA, 30, v30->as_VMReg()->next(3) );
  394 
  395 reg_def V31   ( SOC, SOC, Op_VecA, 31, v31->as_VMReg()          );
  396 reg_def V31_H ( SOC, SOC, Op_VecA, 31, v31->as_VMReg()->next()  );
  397 reg_def V31_J ( SOC, SOC, Op_VecA, 31, v31->as_VMReg()->next(2) );
  398 reg_def V31_K ( SOC, SOC, Op_VecA, 31, v31->as_VMReg()->next(3) );
  399 
  400 // ----------------------------
  401 // Special Registers
  402 // ----------------------------
  403 
  404 // On riscv, the physical flag register is missing, so we use t1 instead,
  405 // to bridge the RegFlag semantics in share/opto
  406 
  407 reg_def RFLAGS   (SOC, SOC, Op_RegFlags, 6, x6->as_VMReg()        );
  408 
  409 // Specify priority of register selection within phases of register
  410 // allocation.  Highest priority is first.  A useful heuristic is to
  411 // give registers a low priority when they are required by machine
  412 // instructions, like EAX and EDX on I486, and choose no-save registers
  413 // before save-on-call, & save-on-call before save-on-entry.  Registers
  414 // which participate in fixed calling sequences should come last.
  415 // Registers which are used as pairs must fall on an even boundary.
  416 
  417 alloc_class chunk0(
  418     // volatiles
  419     R7,  R7_H,
  420     R28, R28_H,
  421     R29, R29_H,
  422     R30, R30_H,
  423     R31, R31_H,
  424 
  425     // arg registers
  426     R10, R10_H,
  427     R11, R11_H,
  428     R12, R12_H,
  429     R13, R13_H,
  430     R14, R14_H,
  431     R15, R15_H,
  432     R16, R16_H,
  433     R17, R17_H,
  434 
  435     // non-volatiles
  436     R9,  R9_H,
  437     R18, R18_H,
  438     R19, R19_H,
  439     R20, R20_H,
  440     R21, R21_H,
  441     R22, R22_H,
  442     R24, R24_H,
  443     R25, R25_H,
  444     R26, R26_H,
  445 
  446     // non-allocatable registers
  447     R23, R23_H, // java thread
  448     R27, R27_H, // heapbase
  449     R4,  R4_H,  // thread
  450     R8,  R8_H,  // fp
  451     R0,  R0_H,  // zero
  452     R1,  R1_H,  // ra
  453     R2,  R2_H,  // sp
  454     R3,  R3_H,  // gp
  455 );
  456 
  457 alloc_class chunk1(
  458 
  459     // no save
  460     F0,  F0_H,
  461     F1,  F1_H,
  462     F2,  F2_H,
  463     F3,  F3_H,
  464     F4,  F4_H,
  465     F5,  F5_H,
  466     F6,  F6_H,
  467     F7,  F7_H,
  468     F28, F28_H,
  469     F29, F29_H,
  470     F30, F30_H,
  471     F31, F31_H,
  472 
  473     // arg registers
  474     F10, F10_H,
  475     F11, F11_H,
  476     F12, F12_H,
  477     F13, F13_H,
  478     F14, F14_H,
  479     F15, F15_H,
  480     F16, F16_H,
  481     F17, F17_H,
  482 
  483     // non-volatiles
  484     F8,  F8_H,
  485     F9,  F9_H,
  486     F18, F18_H,
  487     F19, F19_H,
  488     F20, F20_H,
  489     F21, F21_H,
  490     F22, F22_H,
  491     F23, F23_H,
  492     F24, F24_H,
  493     F25, F25_H,
  494     F26, F26_H,
  495     F27, F27_H,
  496 );
  497 
  498 alloc_class chunk2(
  499     V0, V0_H, V0_J, V0_K,
  500     V1, V1_H, V1_J, V1_K,
  501     V2, V2_H, V2_J, V2_K,
  502     V3, V3_H, V3_J, V3_K,
  503     V4, V4_H, V4_J, V4_K,
  504     V5, V5_H, V5_J, V5_K,
  505     V6, V6_H, V6_J, V6_K,
  506     V7, V7_H, V7_J, V7_K,
  507     V8, V8_H, V8_J, V8_K,
  508     V9, V9_H, V9_J, V9_K,
  509     V10, V10_H, V10_J, V10_K,
  510     V11, V11_H, V11_J, V11_K,
  511     V12, V12_H, V12_J, V12_K,
  512     V13, V13_H, V13_J, V13_K,
  513     V14, V14_H, V14_J, V14_K,
  514     V15, V15_H, V15_J, V15_K,
  515     V16, V16_H, V16_J, V16_K,
  516     V17, V17_H, V17_J, V17_K,
  517     V18, V18_H, V18_J, V18_K,
  518     V19, V19_H, V19_J, V19_K,
  519     V20, V20_H, V20_J, V20_K,
  520     V21, V21_H, V21_J, V21_K,
  521     V22, V22_H, V22_J, V22_K,
  522     V23, V23_H, V23_J, V23_K,
  523     V24, V24_H, V24_J, V24_K,
  524     V25, V25_H, V25_J, V25_K,
  525     V26, V26_H, V26_J, V26_K,
  526     V27, V27_H, V27_J, V27_K,
  527     V28, V28_H, V28_J, V28_K,
  528     V29, V29_H, V29_J, V29_K,
  529     V30, V30_H, V30_J, V30_K,
  530     V31, V31_H, V31_J, V31_K,
  531 );
  532 
  533 alloc_class chunk3(RFLAGS);
  534 
  535 //----------Architecture Description Register Classes--------------------------
  536 // Several register classes are automatically defined based upon information in
  537 // this architecture description.
  538 // 1) reg_class inline_cache_reg           ( /* as def'd in frame section */ )
  539 // 2) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
  540 //
  541 
  542 // Class for all 32 bit general purpose registers
  543 reg_class all_reg32(
  544     R0,
  545     R1,
  546     R2,
  547     R3,
  548     R4,
  549     R7,
  550     R8,
  551     R9,
  552     R10,
  553     R11,
  554     R12,
  555     R13,
  556     R14,
  557     R15,
  558     R16,
  559     R17,
  560     R18,
  561     R19,
  562     R20,
  563     R21,
  564     R22,
  565     R23,
  566     R24,
  567     R25,
  568     R26,
  569     R27,
  570     R28,
  571     R29,
  572     R30,
  573     R31
  574 );
  575 
  576 // Class for any 32 bit integer registers (excluding zr)
  577 reg_class any_reg32 %{
  578   return _ANY_REG32_mask;
  579 %}
  580 
  581 // Singleton class for R10 int register
  582 reg_class int_r10_reg(R10);
  583 
  584 // Singleton class for R12 int register
  585 reg_class int_r12_reg(R12);
  586 
  587 // Singleton class for R13 int register
  588 reg_class int_r13_reg(R13);
  589 
  590 // Singleton class for R14 int register
  591 reg_class int_r14_reg(R14);
  592 
  593 // Class for all long integer registers
  594 reg_class all_reg(
  595     R0,  R0_H,
  596     R1,  R1_H,
  597     R2,  R2_H,
  598     R3,  R3_H,
  599     R4,  R4_H,
  600     R7,  R7_H,
  601     R8,  R8_H,
  602     R9,  R9_H,
  603     R10, R10_H,
  604     R11, R11_H,
  605     R12, R12_H,
  606     R13, R13_H,
  607     R14, R14_H,
  608     R15, R15_H,
  609     R16, R16_H,
  610     R17, R17_H,
  611     R18, R18_H,
  612     R19, R19_H,
  613     R20, R20_H,
  614     R21, R21_H,
  615     R22, R22_H,
  616     R23, R23_H,
  617     R24, R24_H,
  618     R25, R25_H,
  619     R26, R26_H,
  620     R27, R27_H,
  621     R28, R28_H,
  622     R29, R29_H,
  623     R30, R30_H,
  624     R31, R31_H
  625 );
  626 
  627 // Class for all long integer registers (excluding zr)
  628 reg_class any_reg %{
  629   return _ANY_REG_mask;
  630 %}
  631 
  632 // Class for non-allocatable 32 bit registers
  633 reg_class non_allocatable_reg32(
  634     R0,                       // zr
  635     R1,                       // ra
  636     R2,                       // sp
  637     R3,                       // gp
  638     R4,                       // tp
  639     R23                       // java thread
  640 );
  641 
  642 // Class for non-allocatable 64 bit registers
  643 reg_class non_allocatable_reg(
  644     R0,  R0_H,                // zr
  645     R1,  R1_H,                // ra
  646     R2,  R2_H,                // sp
  647     R3,  R3_H,                // gp
  648     R4,  R4_H,                // tp
  649     R23, R23_H                // java thread
  650 );
  651 
  652 // Class for all non-special integer registers
  653 reg_class no_special_reg32 %{
  654   return _NO_SPECIAL_REG32_mask;
  655 %}
  656 
  657 // Class for all non-special long integer registers
  658 reg_class no_special_reg %{
  659   return _NO_SPECIAL_REG_mask;
  660 %}
  661 
  662 reg_class ptr_reg %{
  663   return _PTR_REG_mask;
  664 %}
  665 
  666 // Class for all non_special pointer registers
  667 reg_class no_special_ptr_reg %{
  668   return _NO_SPECIAL_PTR_REG_mask;
  669 %}
  670 
  671 // Class for all non_special pointer registers (excluding fp)
  672 reg_class no_special_no_fp_ptr_reg %{
  673   return _NO_SPECIAL_NO_FP_PTR_REG_mask;
  674 %}
  675 
  676 // Class for 64 bit register r10
  677 reg_class r10_reg(
  678     R10, R10_H
  679 );
  680 
  681 // Class for 64 bit register r11
  682 reg_class r11_reg(
  683     R11, R11_H
  684 );
  685 
  686 // Class for 64 bit register r12
  687 reg_class r12_reg(
  688     R12, R12_H
  689 );
  690 
  691 // Class for 64 bit register r13
  692 reg_class r13_reg(
  693     R13, R13_H
  694 );
  695 
  696 // Class for 64 bit register r14
  697 reg_class r14_reg(
  698     R14, R14_H
  699 );
  700 
  701 // Class for 64 bit register r15
  702 reg_class r15_reg(
  703     R15, R15_H
  704 );
  705 
  706 // Class for 64 bit register r16
  707 reg_class r16_reg(
  708     R16, R16_H
  709 );
  710 
  711 // Class for method register
  712 reg_class method_reg(
  713     R31, R31_H
  714 );
  715 
  716 // Class for java thread register
  717 reg_class java_thread_reg(
  718     R23, R23_H
  719 );
  720 
  721 reg_class r28_reg(
  722     R28, R28_H
  723 );
  724 
  725 reg_class r29_reg(
  726     R29, R29_H
  727 );
  728 
  729 reg_class r30_reg(
  730     R30, R30_H
  731 );
  732 
  733 reg_class r31_reg(
  734     R31, R31_H
  735 );
  736 
  737 // Class for zero registesr
  738 reg_class zr_reg(
  739     R0, R0_H
  740 );
  741 
  742 // Class for thread register
  743 reg_class thread_reg(
  744     R4, R4_H
  745 );
  746 
  747 // Class for frame pointer register
  748 reg_class fp_reg(
  749     R8, R8_H
  750 );
  751 
  752 // Class for link register
  753 reg_class ra_reg(
  754     R1, R1_H
  755 );
  756 
  757 // Class for long sp register
  758 reg_class sp_reg(
  759     R2, R2_H
  760 );
  761 
  762 // Class for all float registers
  763 reg_class float_reg(
  764     F0,
  765     F1,
  766     F2,
  767     F3,
  768     F4,
  769     F5,
  770     F6,
  771     F7,
  772     F8,
  773     F9,
  774     F10,
  775     F11,
  776     F12,
  777     F13,
  778     F14,
  779     F15,
  780     F16,
  781     F17,
  782     F18,
  783     F19,
  784     F20,
  785     F21,
  786     F22,
  787     F23,
  788     F24,
  789     F25,
  790     F26,
  791     F27,
  792     F28,
  793     F29,
  794     F30,
  795     F31
  796 );
  797 
  798 // Double precision float registers have virtual `high halves' that
  799 // are needed by the allocator.
  800 // Class for all double registers
  801 reg_class double_reg(
  802     F0,  F0_H,
  803     F1,  F1_H,
  804     F2,  F2_H,
  805     F3,  F3_H,
  806     F4,  F4_H,
  807     F5,  F5_H,
  808     F6,  F6_H,
  809     F7,  F7_H,
  810     F8,  F8_H,
  811     F9,  F9_H,
  812     F10, F10_H,
  813     F11, F11_H,
  814     F12, F12_H,
  815     F13, F13_H,
  816     F14, F14_H,
  817     F15, F15_H,
  818     F16, F16_H,
  819     F17, F17_H,
  820     F18, F18_H,
  821     F19, F19_H,
  822     F20, F20_H,
  823     F21, F21_H,
  824     F22, F22_H,
  825     F23, F23_H,
  826     F24, F24_H,
  827     F25, F25_H,
  828     F26, F26_H,
  829     F27, F27_H,
  830     F28, F28_H,
  831     F29, F29_H,
  832     F30, F30_H,
  833     F31, F31_H
  834 );
  835 
  836 // Class for RVV vector registers
  837 // Note: v0, v30 and v31 are used as mask registers.
  838 reg_class vectora_reg(
  839     V1, V1_H, V1_J, V1_K,
  840     V2, V2_H, V2_J, V2_K,
  841     V3, V3_H, V3_J, V3_K,
  842     V4, V4_H, V4_J, V4_K,
  843     V5, V5_H, V5_J, V5_K,
  844     V6, V6_H, V6_J, V6_K,
  845     V7, V7_H, V7_J, V7_K,
  846     V8, V8_H, V8_J, V8_K,
  847     V9, V9_H, V9_J, V9_K,
  848     V10, V10_H, V10_J, V10_K,
  849     V11, V11_H, V11_J, V11_K,
  850     V12, V12_H, V12_J, V12_K,
  851     V13, V13_H, V13_J, V13_K,
  852     V14, V14_H, V14_J, V14_K,
  853     V15, V15_H, V15_J, V15_K,
  854     V16, V16_H, V16_J, V16_K,
  855     V17, V17_H, V17_J, V17_K,
  856     V18, V18_H, V18_J, V18_K,
  857     V19, V19_H, V19_J, V19_K,
  858     V20, V20_H, V20_J, V20_K,
  859     V21, V21_H, V21_J, V21_K,
  860     V22, V22_H, V22_J, V22_K,
  861     V23, V23_H, V23_J, V23_K,
  862     V24, V24_H, V24_J, V24_K,
  863     V25, V25_H, V25_J, V25_K,
  864     V26, V26_H, V26_J, V26_K,
  865     V27, V27_H, V27_J, V27_K,
  866     V28, V28_H, V28_J, V28_K,
  867     V29, V29_H, V29_J, V29_K
  868 );
  869 
  870 // Class for 64 bit register f0
  871 reg_class f0_reg(
  872     F0, F0_H
  873 );
  874 
  875 // Class for 64 bit register f1
  876 reg_class f1_reg(
  877     F1, F1_H
  878 );
  879 
  880 // Class for 64 bit register f2
  881 reg_class f2_reg(
  882     F2, F2_H
  883 );
  884 
  885 // Class for 64 bit register f3
  886 reg_class f3_reg(
  887     F3, F3_H
  888 );
  889 
  890 // class for vector register v1
  891 reg_class v1_reg(
  892     V1, V1_H, V1_J, V1_K
  893 );
  894 
  895 // class for vector register v2
  896 reg_class v2_reg(
  897     V2, V2_H, V2_J, V2_K
  898 );
  899 
  900 // class for vector register v3
  901 reg_class v3_reg(
  902     V3, V3_H, V3_J, V3_K
  903 );
  904 
  905 // class for vector register v4
  906 reg_class v4_reg(
  907     V4, V4_H, V4_J, V4_K
  908 );
  909 
  910 // class for vector register v5
  911 reg_class v5_reg(
  912     V5, V5_H, V5_J, V5_K
  913 );
  914 
  915 // class for vector register v6
  916 reg_class v6_reg(
  917     V6, V6_H, V6_J, V6_K
  918 );
  919 
  920 // class for vector register v7
  921 reg_class v7_reg(
  922     V7, V7_H, V7_J, V7_K
  923 );
  924 
  925 // class for vector register v8
  926 reg_class v8_reg(
  927     V8, V8_H, V8_J, V8_K
  928 );
  929 
  930 // class for vector register v9
  931 reg_class v9_reg(
  932     V9, V9_H, V9_J, V9_K
  933 );
  934 
  935 // class for vector register v10
  936 reg_class v10_reg(
  937     V10, V10_H, V10_J, V10_K
  938 );
  939 
  940 // class for vector register v11
  941 reg_class v11_reg(
  942     V11, V11_H, V11_J, V11_K
  943 );
  944 
  945 // class for condition codes
  946 reg_class reg_flags(RFLAGS);
  947 
  948 // Class for RVV v0 mask register
  949 // https://github.com/riscv/riscv-v-spec/blob/master/v-spec.adoc#53-vector-masking
  950 // The mask value used to control execution of a masked vector
  951 // instruction is always supplied by vector register v0.
  952 reg_class vmask_reg_v0 (
  953     V0
  954 );
  955 
  956 // Class for RVV mask registers
  957 // We need two more vmask registers to do the vector mask logical ops,
  958 // so define v30, v31 as mask register too.
  959 reg_class vmask_reg (
  960     V0,
  961     V30,
  962     V31
  963 );
  964 %}
  965 
  966 //----------DEFINITION BLOCK---------------------------------------------------
  967 // Define name --> value mappings to inform the ADLC of an integer valued name
  968 // Current support includes integer values in the range [0, 0x7FFFFFFF]
  969 // Format:
  970 //        int_def  <name>         ( <int_value>, <expression>);
  971 // Generated Code in ad_<arch>.hpp
  972 //        #define  <name>   (<expression>)
  973 //        // value == <int_value>
  974 // Generated code in ad_<arch>.cpp adlc_verification()
  975 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
  976 //
  977 
  978 // we follow the ppc-aix port in using a simple cost model which ranks
  979 // register operations as cheap, memory ops as more expensive and
  980 // branches as most expensive. the first two have a low as well as a
  981 // normal cost. huge cost appears to be a way of saying don't do
  982 // something
  983 
  984 definitions %{
  985   // The default cost (of a register move instruction).
  986   int_def DEFAULT_COST         (  100,               100);
  987   int_def ALU_COST             (  100,  1 * DEFAULT_COST);          // unknown, const, arith, shift, slt,
  988                                                                     // multi, auipc, nop, logical, move
  989   int_def LOAD_COST            (  300,  3 * DEFAULT_COST);          // load, fpload
  990   int_def STORE_COST           (  100,  1 * DEFAULT_COST);          // store, fpstore
  991   int_def XFER_COST            (  300,  3 * DEFAULT_COST);          // mfc, mtc, fcvt, fmove, fcmp
  992   int_def FMVX_COST            (  100,  1 * DEFAULT_COST);          // shuffles with no conversion
  993   int_def BRANCH_COST          (  200,  2 * DEFAULT_COST);          // branch, jmp, call
  994   int_def IMUL_COST            ( 1000, 10 * DEFAULT_COST);          // imul
  995   int_def IDIVSI_COST          ( 3400, 34 * DEFAULT_COST);          // idivsi
  996   int_def IDIVDI_COST          ( 6600, 66 * DEFAULT_COST);          // idivdi
  997   int_def FMUL_SINGLE_COST     (  500,  5 * DEFAULT_COST);          // fmul, fmadd
  998   int_def FMUL_DOUBLE_COST     (  700,  7 * DEFAULT_COST);          // fmul, fmadd
  999   int_def FDIV_COST            ( 2000, 20 * DEFAULT_COST);          // fdiv
 1000   int_def FSQRT_COST           ( 2500, 25 * DEFAULT_COST);          // fsqrt
 1001   int_def VOLATILE_REF_COST    ( 1000, 10 * DEFAULT_COST);
 1002   int_def CACHE_MISS_COST      ( 2000, 20 * DEFAULT_COST);          // typicall cache miss penalty
 1003 %}
 1004 
 1005 
 1006 
 1007 //----------SOURCE BLOCK-------------------------------------------------------
 1008 // This is a block of C++ code which provides values, functions, and
 1009 // definitions necessary in the rest of the architecture description
 1010 
 1011 source_hpp %{
 1012 
 1013 #include "asm/macroAssembler.hpp"
 1014 #include "gc/shared/barrierSetAssembler.hpp"
 1015 #include "gc/shared/cardTable.hpp"
 1016 #include "gc/shared/cardTableBarrierSet.hpp"
 1017 #include "gc/shared/collectedHeap.hpp"
 1018 #include "opto/addnode.hpp"
 1019 #include "opto/convertnode.hpp"
 1020 #include "runtime/objectMonitor.hpp"
 1021 
 1022 extern RegMask _ANY_REG32_mask;
 1023 extern RegMask _ANY_REG_mask;
 1024 extern RegMask _PTR_REG_mask;
 1025 extern RegMask _NO_SPECIAL_REG32_mask;
 1026 extern RegMask _NO_SPECIAL_REG_mask;
 1027 extern RegMask _NO_SPECIAL_PTR_REG_mask;
 1028 extern RegMask _NO_SPECIAL_NO_FP_PTR_REG_mask;
 1029 
 1030 class CallStubImpl {
 1031 
 1032   //--------------------------------------------------------------
 1033   //---<  Used for optimization in Compile::shorten_branches  >---
 1034   //--------------------------------------------------------------
 1035 
 1036  public:
 1037   // Size of call trampoline stub.
 1038   static uint size_call_trampoline() {
 1039     return 0; // no call trampolines on this platform
 1040   }
 1041 
 1042   // number of relocations needed by a call trampoline stub
 1043   static uint reloc_call_trampoline() {
 1044     return 0; // no call trampolines on this platform
 1045   }
 1046 };
 1047 
 1048 class HandlerImpl {
 1049 
 1050  public:
 1051 
 1052   static int emit_exception_handler(C2_MacroAssembler *masm);
 1053   static int emit_deopt_handler(C2_MacroAssembler* masm);
 1054 
 1055   static uint size_exception_handler() {
 1056     return MacroAssembler::far_branch_size();
 1057   }
 1058 
 1059   static uint size_deopt_handler() {
 1060     // count auipc + far branch
 1061     return NativeInstruction::instruction_size + MacroAssembler::far_branch_size();
 1062   }
 1063 };
 1064 
 1065 class Node::PD {
 1066 public:
 1067   enum NodeFlags {
 1068     _last_flag = Node::_last_flag
 1069   };
 1070 };
 1071 
 1072 bool is_CAS(int opcode, bool maybe_volatile);
 1073 
 1074 // predicate controlling translation of CompareAndSwapX
 1075 bool needs_acquiring_load_reserved(const Node *load);
 1076 
 1077 // predicate controlling addressing modes
 1078 bool size_fits_all_mem_uses(AddPNode* addp, int shift);
 1079 %}
 1080 
 1081 source %{
 1082 
 1083 // Derived RegMask with conditionally allocatable registers
 1084 
 1085 RegMask _ANY_REG32_mask;
 1086 RegMask _ANY_REG_mask;
 1087 RegMask _PTR_REG_mask;
 1088 RegMask _NO_SPECIAL_REG32_mask;
 1089 RegMask _NO_SPECIAL_REG_mask;
 1090 RegMask _NO_SPECIAL_PTR_REG_mask;
 1091 RegMask _NO_SPECIAL_NO_FP_PTR_REG_mask;
 1092 
 1093 void reg_mask_init() {
 1094 
 1095   _ANY_REG32_mask = _ALL_REG32_mask;
 1096   _ANY_REG32_mask.Remove(OptoReg::as_OptoReg(x0->as_VMReg()));
 1097 
 1098   _ANY_REG_mask = _ALL_REG_mask;
 1099   _ANY_REG_mask.SUBTRACT(_ZR_REG_mask);
 1100 
 1101   _PTR_REG_mask = _ALL_REG_mask;
 1102   _PTR_REG_mask.SUBTRACT(_ZR_REG_mask);
 1103 
 1104   _NO_SPECIAL_REG32_mask = _ALL_REG32_mask;
 1105   _NO_SPECIAL_REG32_mask.SUBTRACT(_NON_ALLOCATABLE_REG32_mask);
 1106 
 1107   _NO_SPECIAL_REG_mask = _ALL_REG_mask;
 1108   _NO_SPECIAL_REG_mask.SUBTRACT(_NON_ALLOCATABLE_REG_mask);
 1109 
 1110   _NO_SPECIAL_PTR_REG_mask = _ALL_REG_mask;
 1111   _NO_SPECIAL_PTR_REG_mask.SUBTRACT(_NON_ALLOCATABLE_REG_mask);
 1112 
 1113   // x27 is not allocatable when compressed oops is on
 1114   if (UseCompressedOops) {
 1115     _NO_SPECIAL_REG32_mask.Remove(OptoReg::as_OptoReg(x27->as_VMReg()));
 1116     _NO_SPECIAL_REG_mask.Remove(OptoReg::as_OptoReg(x27->as_VMReg()));
 1117     _NO_SPECIAL_PTR_REG_mask.Remove(OptoReg::as_OptoReg(x27->as_VMReg()));
 1118   }
 1119 
 1120   // x8 is not allocatable when PreserveFramePointer is on
 1121   if (PreserveFramePointer) {
 1122     _NO_SPECIAL_REG32_mask.Remove(OptoReg::as_OptoReg(x8->as_VMReg()));
 1123     _NO_SPECIAL_REG_mask.Remove(OptoReg::as_OptoReg(x8->as_VMReg()));
 1124     _NO_SPECIAL_PTR_REG_mask.Remove(OptoReg::as_OptoReg(x8->as_VMReg()));
 1125   }
 1126 
 1127   _NO_SPECIAL_NO_FP_PTR_REG_mask = _NO_SPECIAL_PTR_REG_mask;
 1128   _NO_SPECIAL_NO_FP_PTR_REG_mask.Remove(OptoReg::as_OptoReg(x8->as_VMReg()));
 1129 }
 1130 
 1131 void PhaseOutput::pd_perform_mach_node_analysis() {
 1132 }
 1133 
 1134 int MachNode::pd_alignment_required() const {
 1135   return 1;
 1136 }
 1137 
 1138 int MachNode::compute_padding(int current_offset) const {
 1139   return 0;
 1140 }
 1141 
 1142 // is_CAS(int opcode, bool maybe_volatile)
 1143 //
 1144 // return true if opcode is one of the possible CompareAndSwapX
 1145 // values otherwise false.
 1146 bool is_CAS(int opcode, bool maybe_volatile)
 1147 {
 1148   switch (opcode) {
 1149     // We handle these
 1150     case Op_CompareAndSwapI:
 1151     case Op_CompareAndSwapL:
 1152     case Op_CompareAndSwapP:
 1153     case Op_CompareAndSwapN:
 1154     case Op_ShenandoahCompareAndSwapP:
 1155     case Op_ShenandoahCompareAndSwapN:
 1156     case Op_CompareAndSwapB:
 1157     case Op_CompareAndSwapS:
 1158     case Op_GetAndSetI:
 1159     case Op_GetAndSetL:
 1160     case Op_GetAndSetP:
 1161     case Op_GetAndSetN:
 1162     case Op_GetAndAddI:
 1163     case Op_GetAndAddL:
 1164       return true;
 1165     case Op_CompareAndExchangeI:
 1166     case Op_CompareAndExchangeN:
 1167     case Op_CompareAndExchangeB:
 1168     case Op_CompareAndExchangeS:
 1169     case Op_CompareAndExchangeL:
 1170     case Op_CompareAndExchangeP:
 1171     case Op_WeakCompareAndSwapB:
 1172     case Op_WeakCompareAndSwapS:
 1173     case Op_WeakCompareAndSwapI:
 1174     case Op_WeakCompareAndSwapL:
 1175     case Op_WeakCompareAndSwapP:
 1176     case Op_WeakCompareAndSwapN:
 1177     case Op_ShenandoahWeakCompareAndSwapP:
 1178     case Op_ShenandoahWeakCompareAndSwapN:
 1179     case Op_ShenandoahCompareAndExchangeP:
 1180     case Op_ShenandoahCompareAndExchangeN:
 1181       return maybe_volatile;
 1182     default:
 1183       return false;
 1184   }
 1185 }
 1186 
 1187 // predicate controlling translation of CAS
 1188 //
 1189 // returns true if CAS needs to use an acquiring load otherwise false
 1190 bool needs_acquiring_load_reserved(const Node *n)
 1191 {
 1192   assert(n != nullptr && is_CAS(n->Opcode(), true), "expecting a compare and swap");
 1193 
 1194   LoadStoreNode* ldst = n->as_LoadStore();
 1195   if (n != nullptr && is_CAS(n->Opcode(), false)) {
 1196     assert(ldst != nullptr && ldst->trailing_membar() != nullptr, "expected trailing membar");
 1197   } else {
 1198     return ldst != nullptr && ldst->trailing_membar() != nullptr;
 1199   }
 1200   // so we can just return true here
 1201   return true;
 1202 }
 1203 #define __ masm->
 1204 
 1205 // advance declarations for helper functions to convert register
 1206 // indices to register objects
 1207 
 1208 // the ad file has to provide implementations of certain methods
 1209 // expected by the generic code
 1210 //
 1211 // REQUIRED FUNCTIONALITY
 1212 
 1213 //=============================================================================
 1214 
 1215 // !!!!! Special hack to get all types of calls to specify the byte offset
 1216 //       from the start of the call to the point where the return address
 1217 //       will point.
 1218 
 1219 int MachCallStaticJavaNode::ret_addr_offset()
 1220 {
 1221   return 3 * NativeInstruction::instruction_size; // auipc + ld + jalr
 1222 }
 1223 
 1224 int MachCallDynamicJavaNode::ret_addr_offset()
 1225 {
 1226   return NativeMovConstReg::movptr2_instruction_size + (3 * NativeInstruction::instruction_size); // movptr2, auipc + ld + jal
 1227 }
 1228 
 1229 int MachCallRuntimeNode::ret_addr_offset() {
 1230   // For address inside the code cache the call will be:
 1231   //   auipc + jalr
 1232   // For real runtime callouts it will be 8 instructions
 1233   // see riscv_enc_java_to_runtime
 1234   //   la(t0, retaddr)                                             ->  auipc + addi
 1235   //   sd(t0, Address(xthread, JavaThread::last_Java_pc_offset())) ->  sd
 1236   //   movptr(t1, addr, offset, t0)                                ->  lui + lui + slli + add
 1237   //   jalr(t1, offset)                                            ->  jalr
 1238   if (CodeCache::contains(_entry_point)) {
 1239     return 2 * NativeInstruction::instruction_size;
 1240   } else {
 1241     return 8 * NativeInstruction::instruction_size;
 1242   }
 1243 }
 1244 
 1245 //
 1246 // Compute padding required for nodes which need alignment
 1247 //
 1248 
 1249 // With RVC a call instruction may get 2-byte aligned.
 1250 // The address of the call instruction needs to be 4-byte aligned to
 1251 // ensure that it does not span a cache line so that it can be patched.
 1252 int CallStaticJavaDirectNode::compute_padding(int current_offset) const
 1253 {
 1254   // to make sure the address of jal 4-byte aligned.
 1255   return align_up(current_offset, alignment_required()) - current_offset;
 1256 }
 1257 
 1258 // With RVC a call instruction may get 2-byte aligned.
 1259 // The address of the call instruction needs to be 4-byte aligned to
 1260 // ensure that it does not span a cache line so that it can be patched.
 1261 int CallDynamicJavaDirectNode::compute_padding(int current_offset) const
 1262 {
 1263   // skip the movptr2 in MacroAssembler::ic_call():
 1264   // lui, lui, slli, add, addi
 1265   // Though movptr2() has already 4-byte aligned with or without RVC,
 1266   // We need to prevent from further changes by explicitly calculating the size.
 1267   current_offset += NativeMovConstReg::movptr2_instruction_size;
 1268   // to make sure the address of jal 4-byte aligned.
 1269   return align_up(current_offset, alignment_required()) - current_offset;
 1270 }
 1271 
 1272 //=============================================================================
 1273 
 1274 #ifndef PRODUCT
 1275 void MachBreakpointNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
 1276   assert_cond(st != nullptr);
 1277   st->print("BREAKPOINT");
 1278 }
 1279 #endif
 1280 
 1281 void MachBreakpointNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const {
 1282   __ ebreak();
 1283 }
 1284 
 1285 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
 1286   return MachNode::size(ra_);
 1287 }
 1288 
 1289 //=============================================================================
 1290 
 1291 #ifndef PRODUCT
 1292   void MachNopNode::format(PhaseRegAlloc*, outputStream* st) const {
 1293     st->print("nop \t# %d bytes pad for loops and calls", _count);
 1294   }
 1295 #endif
 1296 
 1297   void MachNopNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc*) const {
 1298     Assembler::CompressibleRegion cr(masm); // nops shall be 2-byte under RVC for alignment purposes.
 1299     for (int i = 0; i < _count; i++) {
 1300       __ nop();
 1301     }
 1302   }
 1303 
 1304   uint MachNopNode::size(PhaseRegAlloc*) const {
 1305     return _count * (UseRVC ? NativeInstruction::compressed_instruction_size : NativeInstruction::instruction_size);
 1306   }
 1307 
 1308 //=============================================================================
 1309 const RegMask& MachConstantBaseNode::_out_RegMask = RegMask::Empty;
 1310 
 1311 int ConstantTable::calculate_table_base_offset() const {
 1312   return 0;  // absolute addressing, no offset
 1313 }
 1314 
 1315 bool MachConstantBaseNode::requires_postalloc_expand() const { return false; }
 1316 void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {
 1317   ShouldNotReachHere();
 1318 }
 1319 
 1320 void MachConstantBaseNode::emit(C2_MacroAssembler* masm, PhaseRegAlloc* ra_) const {
 1321   // Empty encoding
 1322 }
 1323 
 1324 uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
 1325   return 0;
 1326 }
 1327 
 1328 #ifndef PRODUCT
 1329 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
 1330   assert_cond(st != nullptr);
 1331   st->print("-- \t// MachConstantBaseNode (empty encoding)");
 1332 }
 1333 #endif
 1334 
 1335 #ifndef PRODUCT
 1336 void MachPrologNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
 1337   assert_cond(st != nullptr && ra_ != nullptr);
 1338   Compile* C = ra_->C;
 1339 
 1340   int framesize = C->output()->frame_slots() << LogBytesPerInt;
 1341 
 1342   if (C->output()->need_stack_bang(framesize)) {
 1343     st->print("# stack bang size=%d\n\t", framesize);
 1344   }
 1345 
 1346   st->print("sd  fp, [sp, #%d]\n\t", - 2 * wordSize);
 1347   st->print("sd  ra, [sp, #%d]\n\t", - wordSize);
 1348   if (PreserveFramePointer) { st->print("sub  fp, sp, #%d\n\t", 2 * wordSize); }
 1349   st->print("sub sp, sp, #%d\n\t", framesize);
 1350 
 1351   if (C->stub_function() == nullptr) {
 1352     st->print("ld  t0, [guard]\n\t");
 1353     st->print("membar LoadLoad\n\t");
 1354     st->print("ld  t1, [xthread, #thread_disarmed_guard_value_offset]\n\t");
 1355     st->print("beq t0, t1, skip\n\t");
 1356     st->print("jalr #nmethod_entry_barrier_stub\n\t");
 1357     st->print("j skip\n\t");
 1358     st->print("guard: int\n\t");
 1359     st->print("skip:\n\t");
 1360   }
 1361 }
 1362 #endif
 1363 
 1364 void MachPrologNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const {
 1365   assert_cond(ra_ != nullptr);
 1366   Compile* C = ra_->C;
 1367 
 1368   // n.b. frame size includes space for return pc and fp
 1369   const int framesize = C->output()->frame_size_in_bytes();
 1370 
 1371   // insert a nop at the start of the prolog so we can patch in a
 1372   // branch if we need to invalidate the method later
 1373   {
 1374     Assembler::IncompressibleRegion ir(masm);  // keep the nop as 4 bytes for patching.
 1375     MacroAssembler::assert_alignment(__ pc());
 1376     __ nop();  // 4 bytes
 1377   }
 1378 
 1379   assert_cond(C != nullptr);
 1380 
 1381   if (C->clinit_barrier_on_entry()) {
 1382     assert(!C->method()->holder()->is_not_initialized(), "initialization should have been started");
 1383 
 1384     Label L_skip_barrier;
 1385 
 1386     __ mov_metadata(t1, C->method()->holder()->constant_encoding());
 1387     __ clinit_barrier(t1, t0, &L_skip_barrier);
 1388     __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub()));
 1389     __ bind(L_skip_barrier);
 1390   }
 1391 
 1392   int bangsize = C->output()->bang_size_in_bytes();
 1393   if (C->output()->need_stack_bang(bangsize)) {
 1394     __ generate_stack_overflow_check(bangsize);
 1395   }
 1396 
 1397   __ build_frame(framesize);
 1398 
 1399   if (C->stub_function() == nullptr) {
 1400     BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 1401     // Dummy labels for just measuring the code size
 1402     Label dummy_slow_path;
 1403     Label dummy_continuation;
 1404     Label dummy_guard;
 1405     Label* slow_path = &dummy_slow_path;
 1406     Label* continuation = &dummy_continuation;
 1407     Label* guard = &dummy_guard;
 1408     if (!Compile::current()->output()->in_scratch_emit_size()) {
 1409       // Use real labels from actual stub when not emitting code for purpose of measuring its size
 1410       C2EntryBarrierStub* stub = new (Compile::current()->comp_arena()) C2EntryBarrierStub();
 1411       Compile::current()->output()->add_stub(stub);
 1412       slow_path = &stub->entry();
 1413       continuation = &stub->continuation();
 1414       guard = &stub->guard();
 1415     }
 1416     // In the C2 code, we move the non-hot part of nmethod entry barriers out-of-line to a stub.
 1417     bs->nmethod_entry_barrier(masm, slow_path, continuation, guard);
 1418   }
 1419 
 1420   if (VerifyStackAtCalls) {
 1421     Unimplemented();
 1422   }
 1423 
 1424   C->output()->set_frame_complete(__ offset());
 1425 
 1426   if (C->has_mach_constant_base_node()) {
 1427     // NOTE: We set the table base offset here because users might be
 1428     // emitted before MachConstantBaseNode.
 1429     ConstantTable& constant_table = C->output()->constant_table();
 1430     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
 1431   }
 1432 }
 1433 
 1434 uint MachPrologNode::size(PhaseRegAlloc* ra_) const
 1435 {
 1436   assert_cond(ra_ != nullptr);
 1437   return MachNode::size(ra_); // too many variables; just compute it
 1438                               // the hard way
 1439 }
 1440 
 1441 int MachPrologNode::reloc() const
 1442 {
 1443   return 0;
 1444 }
 1445 
 1446 //=============================================================================
 1447 
 1448 #ifndef PRODUCT
 1449 void MachEpilogNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
 1450   assert_cond(st != nullptr && ra_ != nullptr);
 1451   Compile* C = ra_->C;
 1452   assert_cond(C != nullptr);
 1453   int framesize = C->output()->frame_size_in_bytes();
 1454 
 1455   st->print("# pop frame %d\n\t", framesize);
 1456 
 1457   if (framesize == 0) {
 1458     st->print("ld  ra, [sp,#%d]\n\t", (2 * wordSize));
 1459     st->print("ld  fp, [sp,#%d]\n\t", (3 * wordSize));
 1460     st->print("add sp, sp, #%d\n\t", (2 * wordSize));
 1461   } else {
 1462     st->print("add  sp, sp, #%d\n\t", framesize);
 1463     st->print("ld  ra, [sp,#%d]\n\t", - 2 * wordSize);
 1464     st->print("ld  fp, [sp,#%d]\n\t", - wordSize);
 1465   }
 1466 
 1467   if (do_polling() && C->is_method_compilation()) {
 1468     st->print("# test polling word\n\t");
 1469     st->print("ld t0, [xthread,#%d]\n\t", in_bytes(JavaThread::polling_word_offset()));
 1470     st->print("bgtu sp, t0, #slow_path");
 1471   }
 1472 }
 1473 #endif
 1474 
 1475 void MachEpilogNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const {
 1476   assert_cond(ra_ != nullptr);
 1477   Compile* C = ra_->C;
 1478   assert_cond(C != nullptr);
 1479   int framesize = C->output()->frame_size_in_bytes();
 1480 
 1481   __ remove_frame(framesize);
 1482 
 1483   if (StackReservedPages > 0 && C->has_reserved_stack_access()) {
 1484     __ reserved_stack_check();
 1485   }
 1486 
 1487   if (do_polling() && C->is_method_compilation()) {
 1488     Label dummy_label;
 1489     Label* code_stub = &dummy_label;
 1490     if (!C->output()->in_scratch_emit_size()) {
 1491       C2SafepointPollStub* stub = new (C->comp_arena()) C2SafepointPollStub(__ offset());
 1492       C->output()->add_stub(stub);
 1493       code_stub = &stub->entry();
 1494     }
 1495     __ relocate(relocInfo::poll_return_type);
 1496     __ safepoint_poll(*code_stub, true /* at_return */, false /* acquire */, true /* in_nmethod */);
 1497   }
 1498 }
 1499 
 1500 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
 1501   assert_cond(ra_ != nullptr);
 1502   // Variable size. Determine dynamically.
 1503   return MachNode::size(ra_);
 1504 }
 1505 
 1506 int MachEpilogNode::reloc() const {
 1507   // Return number of relocatable values contained in this instruction.
 1508   return 1; // 1 for polling page.
 1509 }
 1510 const Pipeline * MachEpilogNode::pipeline() const {
 1511   return MachNode::pipeline_class();
 1512 }
 1513 
 1514 //=============================================================================
 1515 
 1516 // Figure out which register class each belongs in: rc_int, rc_float or
 1517 // rc_stack.
 1518 enum RC { rc_bad, rc_int, rc_float, rc_vector, rc_stack };
 1519 
 1520 static enum RC rc_class(OptoReg::Name reg) {
 1521 
 1522   if (reg == OptoReg::Bad) {
 1523     return rc_bad;
 1524   }
 1525 
 1526   // we have 30 int registers * 2 halves
 1527   // (t0 and t1 are omitted)
 1528   int slots_of_int_registers = Register::max_slots_per_register * (Register::number_of_registers - 2);
 1529   if (reg < slots_of_int_registers) {
 1530     return rc_int;
 1531   }
 1532 
 1533   // we have 32 float register * 2 halves
 1534   int slots_of_float_registers = FloatRegister::max_slots_per_register * FloatRegister::number_of_registers;
 1535   if (reg < slots_of_int_registers + slots_of_float_registers) {
 1536     return rc_float;
 1537   }
 1538 
 1539   // we have 32 vector register * 4 halves
 1540   int slots_of_vector_registers = VectorRegister::max_slots_per_register * VectorRegister::number_of_registers;
 1541   if (reg < slots_of_int_registers + slots_of_float_registers + slots_of_vector_registers) {
 1542     return rc_vector;
 1543   }
 1544 
 1545   // Between vector regs & stack is the flags regs.
 1546   assert(OptoReg::is_stack(reg), "blow up if spilling flags");
 1547 
 1548   return rc_stack;
 1549 }
 1550 
 1551 uint MachSpillCopyNode::implementation(C2_MacroAssembler *masm, PhaseRegAlloc *ra_, bool do_size, outputStream *st) const {
 1552   assert_cond(ra_ != nullptr);
 1553   Compile* C = ra_->C;
 1554 
 1555   // Get registers to move.
 1556   OptoReg::Name src_hi = ra_->get_reg_second(in(1));
 1557   OptoReg::Name src_lo = ra_->get_reg_first(in(1));
 1558   OptoReg::Name dst_hi = ra_->get_reg_second(this);
 1559   OptoReg::Name dst_lo = ra_->get_reg_first(this);
 1560 
 1561   enum RC src_hi_rc = rc_class(src_hi);
 1562   enum RC src_lo_rc = rc_class(src_lo);
 1563   enum RC dst_hi_rc = rc_class(dst_hi);
 1564   enum RC dst_lo_rc = rc_class(dst_lo);
 1565 
 1566   assert(src_lo != OptoReg::Bad && dst_lo != OptoReg::Bad, "must move at least 1 register");
 1567 
 1568   if (src_hi != OptoReg::Bad && !bottom_type()->isa_vectmask()) {
 1569     assert((src_lo & 1) == 0 && src_lo + 1 == src_hi &&
 1570            (dst_lo & 1) == 0 && dst_lo + 1 == dst_hi,
 1571            "expected aligned-adjacent pairs");
 1572   }
 1573 
 1574   if (src_lo == dst_lo && src_hi == dst_hi) {
 1575     return 0;            // Self copy, no move.
 1576   }
 1577 
 1578   bool is64 = (src_lo & 1) == 0 && src_lo + 1 == src_hi &&
 1579               (dst_lo & 1) == 0 && dst_lo + 1 == dst_hi;
 1580   int src_offset = ra_->reg2offset(src_lo);
 1581   int dst_offset = ra_->reg2offset(dst_lo);
 1582 
 1583   if (bottom_type()->isa_vect() != nullptr) {
 1584     uint ireg = ideal_reg();
 1585     if (ireg == Op_VecA && masm) {
 1586       int vector_reg_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE);
 1587       if (src_lo_rc == rc_stack && dst_lo_rc == rc_stack) {
 1588         // stack to stack
 1589         __ spill_copy_vector_stack_to_stack(src_offset, dst_offset,
 1590                                             vector_reg_size_in_bytes);
 1591       } else if (src_lo_rc == rc_vector && dst_lo_rc == rc_stack) {
 1592         // vpr to stack
 1593         __ spill(as_VectorRegister(Matcher::_regEncode[src_lo]), ra_->reg2offset(dst_lo));
 1594       } else if (src_lo_rc == rc_stack && dst_lo_rc == rc_vector) {
 1595         // stack to vpr
 1596         __ unspill(as_VectorRegister(Matcher::_regEncode[dst_lo]), ra_->reg2offset(src_lo));
 1597       } else if (src_lo_rc == rc_vector && dst_lo_rc == rc_vector) {
 1598         // vpr to vpr
 1599         __ vmv1r_v(as_VectorRegister(Matcher::_regEncode[dst_lo]), as_VectorRegister(Matcher::_regEncode[src_lo]));
 1600       } else {
 1601         ShouldNotReachHere();
 1602       }
 1603     } else if (bottom_type()->isa_vectmask() && masm) {
 1604       int vmask_size_in_bytes = Matcher::scalable_predicate_reg_slots() * 32 / 8;
 1605       if (src_lo_rc == rc_stack && dst_lo_rc == rc_stack) {
 1606         // stack to stack
 1607         __ spill_copy_vmask_stack_to_stack(src_offset, dst_offset,
 1608                                            vmask_size_in_bytes);
 1609       } else if (src_lo_rc == rc_vector && dst_lo_rc == rc_stack) {
 1610         // vmask to stack
 1611         __ spill_vmask(as_VectorRegister(Matcher::_regEncode[src_lo]), ra_->reg2offset(dst_lo));
 1612       } else if (src_lo_rc == rc_stack && dst_lo_rc == rc_vector) {
 1613         // stack to vmask
 1614         __ unspill_vmask(as_VectorRegister(Matcher::_regEncode[dst_lo]), ra_->reg2offset(src_lo));
 1615       } else if (src_lo_rc == rc_vector && dst_lo_rc == rc_vector) {
 1616         // vmask to vmask
 1617         __ vmv1r_v(as_VectorRegister(Matcher::_regEncode[dst_lo]), as_VectorRegister(Matcher::_regEncode[src_lo]));
 1618       } else {
 1619         ShouldNotReachHere();
 1620       }
 1621     }
 1622   } else if (masm != nullptr) {
 1623     switch (src_lo_rc) {
 1624       case rc_int:
 1625         if (dst_lo_rc == rc_int) {  // gpr --> gpr copy
 1626           if (!is64 && this->ideal_reg() != Op_RegI) { // zero extended for narrow oop or klass
 1627             __ zext(as_Register(Matcher::_regEncode[dst_lo]), as_Register(Matcher::_regEncode[src_lo]), 32);
 1628           } else {
 1629             __ mv(as_Register(Matcher::_regEncode[dst_lo]), as_Register(Matcher::_regEncode[src_lo]));
 1630           }
 1631         } else if (dst_lo_rc == rc_float) { // gpr --> fpr copy
 1632           if (is64) {
 1633             __ fmv_d_x(as_FloatRegister(Matcher::_regEncode[dst_lo]),
 1634                        as_Register(Matcher::_regEncode[src_lo]));
 1635           } else {
 1636             __ fmv_w_x(as_FloatRegister(Matcher::_regEncode[dst_lo]),
 1637                        as_Register(Matcher::_regEncode[src_lo]));
 1638           }
 1639         } else {                    // gpr --> stack spill
 1640           assert(dst_lo_rc == rc_stack, "spill to bad register class");
 1641           __ spill(as_Register(Matcher::_regEncode[src_lo]), is64, dst_offset);
 1642         }
 1643         break;
 1644       case rc_float:
 1645         if (dst_lo_rc == rc_int) {  // fpr --> gpr copy
 1646           if (is64) {
 1647             __ fmv_x_d(as_Register(Matcher::_regEncode[dst_lo]),
 1648                        as_FloatRegister(Matcher::_regEncode[src_lo]));
 1649           } else {
 1650             __ fmv_x_w(as_Register(Matcher::_regEncode[dst_lo]),
 1651                        as_FloatRegister(Matcher::_regEncode[src_lo]));
 1652           }
 1653         } else if (dst_lo_rc == rc_float) { // fpr --> fpr copy
 1654           if (is64) {
 1655             __ fmv_d(as_FloatRegister(Matcher::_regEncode[dst_lo]),
 1656                      as_FloatRegister(Matcher::_regEncode[src_lo]));
 1657           } else {
 1658             __ fmv_s(as_FloatRegister(Matcher::_regEncode[dst_lo]),
 1659                      as_FloatRegister(Matcher::_regEncode[src_lo]));
 1660           }
 1661         } else {                    // fpr --> stack spill
 1662           assert(dst_lo_rc == rc_stack, "spill to bad register class");
 1663           __ spill(as_FloatRegister(Matcher::_regEncode[src_lo]),
 1664                    is64, dst_offset);
 1665         }
 1666         break;
 1667       case rc_stack:
 1668         if (dst_lo_rc == rc_int) {  // stack --> gpr load
 1669           if (this->ideal_reg() == Op_RegI) {
 1670             __ unspill(as_Register(Matcher::_regEncode[dst_lo]), is64, src_offset);
 1671           } else { // // zero extended for narrow oop or klass
 1672             __ unspillu(as_Register(Matcher::_regEncode[dst_lo]), is64, src_offset);
 1673           }
 1674         } else if (dst_lo_rc == rc_float) { // stack --> fpr load
 1675           __ unspill(as_FloatRegister(Matcher::_regEncode[dst_lo]),
 1676                      is64, src_offset);
 1677         } else {                    // stack --> stack copy
 1678           assert(dst_lo_rc == rc_stack, "spill to bad register class");
 1679           if (this->ideal_reg() == Op_RegI) {
 1680             __ unspill(t0, is64, src_offset);
 1681           } else { // zero extended for narrow oop or klass
 1682             __ unspillu(t0, is64, src_offset);
 1683           }
 1684           __ spill(t0, is64, dst_offset);
 1685         }
 1686         break;
 1687       default:
 1688         ShouldNotReachHere();
 1689     }
 1690   }
 1691 
 1692   if (st != nullptr) {
 1693     st->print("spill ");
 1694     if (src_lo_rc == rc_stack) {
 1695       st->print("[sp, #%d] -> ", src_offset);
 1696     } else {
 1697       st->print("%s -> ", Matcher::regName[src_lo]);
 1698     }
 1699     if (dst_lo_rc == rc_stack) {
 1700       st->print("[sp, #%d]", dst_offset);
 1701     } else {
 1702       st->print("%s", Matcher::regName[dst_lo]);
 1703     }
 1704     if (bottom_type()->isa_vect() && !bottom_type()->isa_vectmask()) {
 1705       int vsize = 0;
 1706       if (ideal_reg() == Op_VecA) {
 1707         vsize = Matcher::scalable_vector_reg_size(T_BYTE) * 8;
 1708       } else {
 1709         ShouldNotReachHere();
 1710       }
 1711       st->print("\t# vector spill size = %d", vsize);
 1712     } else if (ideal_reg() == Op_RegVectMask) {
 1713       assert(Matcher::supports_scalable_vector(), "bad register type for spill");
 1714       int vsize = Matcher::scalable_predicate_reg_slots() * 32;
 1715       st->print("\t# vmask spill size = %d", vsize);
 1716     } else {
 1717       st->print("\t# spill size = %d", is64 ? 64 : 32);
 1718     }
 1719   }
 1720 
 1721   return 0;
 1722 }
 1723 
 1724 #ifndef PRODUCT
 1725 void MachSpillCopyNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
 1726   if (ra_ == nullptr) {
 1727     st->print("N%d = SpillCopy(N%d)", _idx, in(1)->_idx);
 1728   } else {
 1729     implementation(nullptr, ra_, false, st);
 1730   }
 1731 }
 1732 #endif
 1733 
 1734 void MachSpillCopyNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const {
 1735   implementation(masm, ra_, false, nullptr);
 1736 }
 1737 
 1738 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
 1739   return MachNode::size(ra_);
 1740 }
 1741 
 1742 //=============================================================================
 1743 
 1744 #ifndef PRODUCT
 1745 void BoxLockNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
 1746   assert_cond(ra_ != nullptr && st != nullptr);
 1747   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
 1748   int reg = ra_->get_reg_first(this);
 1749   st->print("add %s, sp, #%d\t# box lock",
 1750             Matcher::regName[reg], offset);
 1751 }
 1752 #endif
 1753 
 1754 void BoxLockNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const {
 1755   Assembler::IncompressibleRegion ir(masm);  // Fixed length: see BoxLockNode::size()
 1756 
 1757   assert_cond(ra_ != nullptr);
 1758   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
 1759   int reg    = ra_->get_encode(this);
 1760 
 1761   if (Assembler::is_simm12(offset)) {
 1762     __ addi(as_Register(reg), sp, offset);
 1763   } else {
 1764     __ li32(t0, offset);
 1765     __ add(as_Register(reg), sp, t0);
 1766   }
 1767 }
 1768 
 1769 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
 1770   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_).
 1771   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
 1772 
 1773   if (Assembler::is_simm12(offset)) {
 1774     return NativeInstruction::instruction_size;
 1775   } else {
 1776     return 3 * NativeInstruction::instruction_size; // lui + addiw + add;
 1777   }
 1778 }
 1779 
 1780 //=============================================================================
 1781 
 1782 #ifndef PRODUCT
 1783 void MachUEPNode::format(PhaseRegAlloc* ra_, outputStream* st) const
 1784 {
 1785   assert_cond(st != nullptr);
 1786   st->print_cr("# MachUEPNode");
 1787   if (UseCompressedClassPointers) {
 1788     st->print_cr("\tlwu t1, [j_rarg0 + oopDesc::klass_offset_in_bytes()]\t# compressed klass");
 1789     st->print_cr("\tlwu t2, [t0      + CompiledICData::speculated_klass_offset()]\t# compressed klass");
 1790   } else {
 1791     st->print_cr("\tld t1, [j_rarg0 + oopDesc::klass_offset_in_bytes()]\t# compressed klass");
 1792     st->print_cr("\tld t2, [t0      + CompiledICData::speculated_klass_offset()]\t# compressed klass");
 1793   }
 1794   st->print_cr("\tbeq t1, t2, ic_hit");
 1795   st->print_cr("\tj, SharedRuntime::_ic_miss_stub\t # Inline cache check");
 1796   st->print_cr("\tic_hit:");
 1797 }
 1798 #endif
 1799 
 1800 void MachUEPNode::emit(C2_MacroAssembler* masm, PhaseRegAlloc* ra_) const
 1801 {
 1802   // This is the unverified entry point.
 1803   __ ic_check(CodeEntryAlignment);
 1804 
 1805   // Verified entry point must be properly 4 bytes aligned for patching by NativeJump::patch_verified_entry().
 1806   // ic_check() aligns to CodeEntryAlignment >= InteriorEntryAlignment(min 16) > NativeInstruction::instruction_size(4).
 1807   assert(((__ offset()) % CodeEntryAlignment) == 0, "Misaligned verified entry point");
 1808 }
 1809 
 1810 uint MachUEPNode::size(PhaseRegAlloc* ra_) const
 1811 {
 1812   assert_cond(ra_ != nullptr);
 1813   return MachNode::size(ra_);
 1814 }
 1815 
 1816 // REQUIRED EMIT CODE
 1817 
 1818 //=============================================================================
 1819 
 1820 // Emit exception handler code.
 1821 int HandlerImpl::emit_exception_handler(C2_MacroAssembler* masm)
 1822 {
 1823   // auipc t1, #exception_blob_entry_point
 1824   // jr (offset)t1
 1825   // Note that the code buffer's insts_mark is always relative to insts.
 1826   // That's why we must use the macroassembler to generate a handler.
 1827   address base = __ start_a_stub(size_exception_handler());
 1828   if (base == nullptr) {
 1829     ciEnv::current()->record_failure("CodeCache is full");
 1830     return 0;  // CodeBuffer::expand failed
 1831   }
 1832   int offset = __ offset();
 1833   __ far_jump(RuntimeAddress(OptoRuntime::exception_blob()->entry_point()));
 1834   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
 1835   __ end_a_stub();
 1836   return offset;
 1837 }
 1838 
 1839 // Emit deopt handler code.
 1840 int HandlerImpl::emit_deopt_handler(C2_MacroAssembler* masm)
 1841 {
 1842   address base = __ start_a_stub(size_deopt_handler());
 1843   if (base == nullptr) {
 1844     ciEnv::current()->record_failure("CodeCache is full");
 1845     return 0;  // CodeBuffer::expand failed
 1846   }
 1847   int offset = __ offset();
 1848 
 1849   __ auipc(ra, 0);
 1850   __ far_jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
 1851 
 1852   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
 1853   __ end_a_stub();
 1854   return offset;
 1855 
 1856 }
 1857 // REQUIRED MATCHER CODE
 1858 
 1859 //=============================================================================
 1860 
 1861 bool Matcher::match_rule_supported(int opcode) {
 1862   if (!has_match_rule(opcode)) {
 1863     return false;
 1864   }
 1865 
 1866   switch (opcode) {
 1867     case Op_OnSpinWait:
 1868       return VM_Version::supports_on_spin_wait();
 1869     case Op_CacheWB:           // fall through
 1870     case Op_CacheWBPreSync:    // fall through
 1871     case Op_CacheWBPostSync:
 1872       if (!VM_Version::supports_data_cache_line_flush()) {
 1873         return false;
 1874       }
 1875       break;
 1876 
 1877     case Op_StrCompressedCopy: // fall through
 1878     case Op_StrInflatedCopy:   // fall through
 1879     case Op_CountPositives:    // fall through
 1880     case Op_EncodeISOArray:
 1881       return UseRVV;
 1882 
 1883     // Current test shows that, it brings performance gain when MaxVectorSize >= 32, but brings
 1884     // regression when MaxVectorSize == 16. So only enable the intrinsic when MaxVectorSize >= 32.
 1885     case Op_RoundVF:
 1886       return UseRVV && MaxVectorSize >= 32;
 1887 
 1888     // For double, current test shows that even with MaxVectorSize == 32, there is still some regression.
 1889     // Although there is no hardware to verify it for now, from the trend of performance data on hardwares
 1890     // (with vlenb == 16 and 32 respectively), it's promising to bring better performance rather than
 1891     // regression for double when MaxVectorSize == 64+. So only enable the intrinsic when MaxVectorSize >= 64.
 1892     case Op_RoundVD:
 1893       return UseRVV && MaxVectorSize >= 64;
 1894 
 1895     case Op_PopCountI:
 1896     case Op_PopCountL:
 1897       return UsePopCountInstruction;
 1898 
 1899     case Op_ReverseI:
 1900     case Op_ReverseL:
 1901       return UseZbkb;
 1902 
 1903     case Op_ReverseBytesI:
 1904     case Op_ReverseBytesL:
 1905     case Op_ReverseBytesS:
 1906     case Op_ReverseBytesUS:
 1907     case Op_RotateRight:
 1908     case Op_RotateLeft:
 1909     case Op_CountLeadingZerosI:
 1910     case Op_CountLeadingZerosL:
 1911     case Op_CountTrailingZerosI:
 1912     case Op_CountTrailingZerosL:
 1913       return UseZbb;
 1914 
 1915     case Op_FmaF:
 1916     case Op_FmaD:
 1917     case Op_FmaVF:
 1918     case Op_FmaVD:
 1919       return UseFMA;
 1920 
 1921     case Op_ConvHF2F:
 1922     case Op_ConvF2HF:
 1923       return VM_Version::supports_float16_float_conversion();
 1924     case Op_ReinterpretS2HF:
 1925     case Op_ReinterpretHF2S:
 1926       return UseZfh || UseZfhmin;
 1927     case Op_AddHF:
 1928     case Op_DivHF:
 1929     case Op_FmaHF:
 1930     case Op_MaxHF:
 1931     case Op_MinHF:
 1932     case Op_MulHF:
 1933     case Op_SubHF:
 1934     case Op_SqrtHF:
 1935       return UseZfh;
 1936   }
 1937 
 1938   return true; // Per default match rules are supported.
 1939 }
 1940 
 1941 const RegMask* Matcher::predicate_reg_mask(void) {
 1942   return &_VMASK_REG_mask;
 1943 }
 1944 
 1945 // Vector calling convention not yet implemented.
 1946 bool Matcher::supports_vector_calling_convention(void) {
 1947   return EnableVectorSupport && UseVectorStubs;
 1948 }
 1949 
 1950 OptoRegPair Matcher::vector_return_value(uint ideal_reg) {
 1951   assert(EnableVectorSupport && UseVectorStubs, "sanity");
 1952   assert(ideal_reg == Op_VecA, "sanity");
 1953   // check more info at https://github.com/riscv-non-isa/riscv-elf-psabi-doc/blob/master/riscv-cc.adoc
 1954   int lo = V8_num;
 1955   int hi = V8_K_num;
 1956   return OptoRegPair(hi, lo);
 1957 }
 1958 
 1959 // Is this branch offset short enough that a short branch can be used?
 1960 //
 1961 // NOTE: If the platform does not provide any short branch variants, then
 1962 //       this method should return false for offset 0.
 1963 // |---label(L1)-----|
 1964 // |-----------------|
 1965 // |-----------------|----------eq: float-------------------
 1966 // |-----------------| // far_cmpD_branch   |   cmpD_branch
 1967 // |------- ---------|    feq;              |      feq;
 1968 // |-far_cmpD_branch-|    beqz done;        |      bnez L;
 1969 // |-----------------|    j L;              |
 1970 // |-----------------|    bind(done);       |
 1971 // |-----------------|--------------------------------------
 1972 // |-----------------| // so shortBrSize = br_size - 4;
 1973 // |-----------------| // so offs = offset - shortBrSize + 4;
 1974 // |---label(L2)-----|
 1975 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
 1976   // The passed offset is relative to address of the branch.
 1977   int shortBrSize = br_size - 4;
 1978   int offs = offset - shortBrSize + 4;
 1979   return (-4096 <= offs && offs < 4096);
 1980 }
 1981 
 1982 // Vector width in bytes.
 1983 int Matcher::vector_width_in_bytes(BasicType bt) {
 1984   if (UseRVV) {
 1985     // The MaxVectorSize should have been set by detecting RVV max vector register size when check UseRVV.
 1986     // MaxVectorSize == VM_Version::_initial_vector_length
 1987     int size = MaxVectorSize;
 1988     // Minimum 2 values in vector
 1989     if (size < 2 * type2aelembytes(bt)) size = 0;
 1990     // But never < 4
 1991     if (size < 4) size = 0;
 1992     return size;
 1993   }
 1994   return 0;
 1995 }
 1996 
 1997 // Limits on vector size (number of elements) loaded into vector.
 1998 int Matcher::max_vector_size(const BasicType bt) {
 1999   return vector_width_in_bytes(bt) / type2aelembytes(bt);
 2000 }
 2001 
 2002 int Matcher::min_vector_size(const BasicType bt) {
 2003   int max_size = max_vector_size(bt);
 2004   // Limit the min vector size to 8 bytes.
 2005   int size = 8 / type2aelembytes(bt);
 2006   if (bt == T_BYTE) {
 2007     // To support vector api shuffle/rearrange.
 2008     size = 4;
 2009   } else if (bt == T_BOOLEAN) {
 2010     // To support vector api load/store mask.
 2011     size = 2;
 2012   }
 2013   if (size < 2) size = 2;
 2014   return MIN2(size, max_size);
 2015 }
 2016 
 2017 int Matcher::max_vector_size_auto_vectorization(const BasicType bt) {
 2018   return Matcher::max_vector_size(bt);
 2019 }
 2020 
 2021 // Vector ideal reg.
 2022 uint Matcher::vector_ideal_reg(int len) {
 2023   assert(MaxVectorSize >= len, "");
 2024   if (UseRVV) {
 2025     return Op_VecA;
 2026   }
 2027 
 2028   ShouldNotReachHere();
 2029   return 0;
 2030 }
 2031 
 2032 int Matcher::scalable_vector_reg_size(const BasicType bt) {
 2033   return Matcher::max_vector_size(bt);
 2034 }
 2035 
 2036 MachOper* Matcher::pd_specialize_generic_vector_operand(MachOper* original_opnd, uint ideal_reg, bool is_temp) {
 2037   ShouldNotReachHere(); // generic vector operands not supported
 2038   return nullptr;
 2039 }
 2040 
 2041 bool Matcher::is_reg2reg_move(MachNode* m) {
 2042   ShouldNotReachHere(); // generic vector operands not supported
 2043   return false;
 2044 }
 2045 
 2046 bool Matcher::is_generic_vector(MachOper* opnd) {
 2047   ShouldNotReachHere(); // generic vector operands not supported
 2048   return false;
 2049 }
 2050 
 2051 // Return whether or not this register is ever used as an argument.
 2052 // This function is used on startup to build the trampoline stubs in
 2053 // generateOptoStub.  Registers not mentioned will be killed by the VM
 2054 // call in the trampoline, and arguments in those registers not be
 2055 // available to the callee.
 2056 bool Matcher::can_be_java_arg(int reg)
 2057 {
 2058   return
 2059     reg ==  R10_num || reg == R10_H_num ||
 2060     reg ==  R11_num || reg == R11_H_num ||
 2061     reg ==  R12_num || reg == R12_H_num ||
 2062     reg ==  R13_num || reg == R13_H_num ||
 2063     reg ==  R14_num || reg == R14_H_num ||
 2064     reg ==  R15_num || reg == R15_H_num ||
 2065     reg ==  R16_num || reg == R16_H_num ||
 2066     reg ==  R17_num || reg == R17_H_num ||
 2067     reg ==  F10_num || reg == F10_H_num ||
 2068     reg ==  F11_num || reg == F11_H_num ||
 2069     reg ==  F12_num || reg == F12_H_num ||
 2070     reg ==  F13_num || reg == F13_H_num ||
 2071     reg ==  F14_num || reg == F14_H_num ||
 2072     reg ==  F15_num || reg == F15_H_num ||
 2073     reg ==  F16_num || reg == F16_H_num ||
 2074     reg ==  F17_num || reg == F17_H_num;
 2075 }
 2076 
 2077 bool Matcher::is_spillable_arg(int reg)
 2078 {
 2079   return can_be_java_arg(reg);
 2080 }
 2081 
 2082 uint Matcher::int_pressure_limit()
 2083 {
 2084   // A derived pointer is live at CallNode and then is flagged by RA
 2085   // as a spilled LRG. Spilling heuristics(Spill-USE) explicitly skip
 2086   // derived pointers and lastly fail to spill after reaching maximum
 2087   // number of iterations. Lowering the default pressure threshold to
 2088   // (_NO_SPECIAL_REG32_mask.Size() minus 1) forces CallNode to become
 2089   // a high register pressure area of the code so that split_DEF can
 2090   // generate DefinitionSpillCopy for the derived pointer.
 2091   uint default_int_pressure_threshold = _NO_SPECIAL_REG32_mask.Size() - 1;
 2092   if (!PreserveFramePointer) {
 2093     // When PreserveFramePointer is off, frame pointer is allocatable,
 2094     // but different from other SOC registers, it is excluded from
 2095     // fatproj's mask because its save type is No-Save. Decrease 1 to
 2096     // ensure high pressure at fatproj when PreserveFramePointer is off.
 2097     // See check_pressure_at_fatproj().
 2098     default_int_pressure_threshold--;
 2099   }
 2100   return (INTPRESSURE == -1) ? default_int_pressure_threshold : INTPRESSURE;
 2101 }
 2102 
 2103 uint Matcher::float_pressure_limit()
 2104 {
 2105   // _FLOAT_REG_mask is generated by adlc from the float_reg register class.
 2106   return (FLOATPRESSURE == -1) ? _FLOAT_REG_mask.Size() : FLOATPRESSURE;
 2107 }
 2108 
 2109 bool Matcher::use_asm_for_ldiv_by_con(jlong divisor) {
 2110   return false;
 2111 }
 2112 
 2113 RegMask Matcher::divI_proj_mask() {
 2114   ShouldNotReachHere();
 2115   return RegMask();
 2116 }
 2117 
 2118 // Register for MODI projection of divmodI.
 2119 RegMask Matcher::modI_proj_mask() {
 2120   ShouldNotReachHere();
 2121   return RegMask();
 2122 }
 2123 
 2124 // Register for DIVL projection of divmodL.
 2125 RegMask Matcher::divL_proj_mask() {
 2126   ShouldNotReachHere();
 2127   return RegMask();
 2128 }
 2129 
 2130 // Register for MODL projection of divmodL.
 2131 RegMask Matcher::modL_proj_mask() {
 2132   ShouldNotReachHere();
 2133   return RegMask();
 2134 }
 2135 
 2136 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
 2137   return FP_REG_mask();
 2138 }
 2139 
 2140 bool size_fits_all_mem_uses(AddPNode* addp, int shift) {
 2141   assert_cond(addp != nullptr);
 2142   for (DUIterator_Fast imax, i = addp->fast_outs(imax); i < imax; i++) {
 2143     Node* u = addp->fast_out(i);
 2144     if (u != nullptr && u->is_Mem()) {
 2145       int opsize = u->as_Mem()->memory_size();
 2146       assert(opsize > 0, "unexpected memory operand size");
 2147       if (u->as_Mem()->memory_size() != (1 << shift)) {
 2148         return false;
 2149       }
 2150     }
 2151   }
 2152   return true;
 2153 }
 2154 
 2155 // Binary src (Replicate scalar/immediate)
 2156 static bool is_vector_scalar_bitwise_pattern(Node* n, Node* m) {
 2157   if (n == nullptr || m == nullptr) {
 2158     return false;
 2159   }
 2160 
 2161   if (m->Opcode() != Op_Replicate) {
 2162     return false;
 2163   }
 2164 
 2165   switch (n->Opcode()) {
 2166     case Op_AndV:
 2167     case Op_OrV:
 2168     case Op_XorV:
 2169     case Op_AddVB:
 2170     case Op_AddVS:
 2171     case Op_AddVI:
 2172     case Op_AddVL:
 2173     case Op_SubVB:
 2174     case Op_SubVS:
 2175     case Op_SubVI:
 2176     case Op_SubVL:
 2177     case Op_MulVB:
 2178     case Op_MulVS:
 2179     case Op_MulVI:
 2180     case Op_MulVL: {
 2181       return true;
 2182     }
 2183     default:
 2184       return false;
 2185   }
 2186 }
 2187 
 2188 // (XorV src (Replicate m1))
 2189 // (XorVMask src (MaskAll m1))
 2190 static bool is_vector_bitwise_not_pattern(Node* n, Node* m) {
 2191   if (n != nullptr && m != nullptr) {
 2192     return (n->Opcode() == Op_XorV || n->Opcode() == Op_XorVMask) &&
 2193            VectorNode::is_all_ones_vector(m);
 2194   }
 2195   return false;
 2196 }
 2197 
 2198 // Should the Matcher clone input 'm' of node 'n'?
 2199 bool Matcher::pd_clone_node(Node* n, Node* m, Matcher::MStack& mstack) {
 2200   assert_cond(m != nullptr);
 2201   if (is_vshift_con_pattern(n, m) || // ShiftV src (ShiftCntV con)
 2202       is_vector_bitwise_not_pattern(n, m) ||
 2203       is_vector_scalar_bitwise_pattern(n, m) ||
 2204       is_encode_and_store_pattern(n, m)) {
 2205     mstack.push(m, Visit);
 2206     return true;
 2207   }
 2208   return false;
 2209 }
 2210 
 2211 // Should the Matcher clone shifts on addressing modes, expecting them
 2212 // to be subsumed into complex addressing expressions or compute them
 2213 // into registers?
 2214 bool Matcher::pd_clone_address_expressions(AddPNode* m, Matcher::MStack& mstack, VectorSet& address_visited) {
 2215   return clone_base_plus_offset_address(m, mstack, address_visited);
 2216 }
 2217 
 2218 %}
 2219 
 2220 
 2221 
 2222 //----------ENCODING BLOCK-----------------------------------------------------
 2223 // This block specifies the encoding classes used by the compiler to
 2224 // output byte streams.  Encoding classes are parameterized macros
 2225 // used by Machine Instruction Nodes in order to generate the bit
 2226 // encoding of the instruction.  Operands specify their base encoding
 2227 // interface with the interface keyword.  There are currently
 2228 // supported four interfaces, REG_INTER, CONST_INTER, MEMORY_INTER, &
 2229 // COND_INTER.  REG_INTER causes an operand to generate a function
 2230 // which returns its register number when queried.  CONST_INTER causes
 2231 // an operand to generate a function which returns the value of the
 2232 // constant when queried.  MEMORY_INTER causes an operand to generate
 2233 // four functions which return the Base Register, the Index Register,
 2234 // the Scale Value, and the Offset Value of the operand when queried.
 2235 // COND_INTER causes an operand to generate six functions which return
 2236 // the encoding code (ie - encoding bits for the instruction)
 2237 // associated with each basic boolean condition for a conditional
 2238 // instruction.
 2239 //
 2240 // Instructions specify two basic values for encoding.  Again, a
 2241 // function is available to check if the constant displacement is an
 2242 // oop. They use the ins_encode keyword to specify their encoding
 2243 // classes (which must be a sequence of enc_class names, and their
 2244 // parameters, specified in the encoding block), and they use the
 2245 // opcode keyword to specify, in order, their primary, secondary, and
 2246 // tertiary opcode.  Only the opcode sections which a particular
 2247 // instruction needs for encoding need to be specified.
 2248 encode %{
 2249   // BEGIN Non-volatile memory access
 2250 
 2251   enc_class riscv_enc_mov_imm(iRegIorL dst, immIorL src) %{
 2252     int64_t con = (int64_t)$src$$constant;
 2253     Register dst_reg = as_Register($dst$$reg);
 2254     __ mv(dst_reg, con);
 2255   %}
 2256 
 2257   enc_class riscv_enc_mov_p(iRegP dst, immP src) %{
 2258     Register dst_reg = as_Register($dst$$reg);
 2259     address con = (address)$src$$constant;
 2260     if (con == nullptr || con == (address)1) {
 2261       ShouldNotReachHere();
 2262     } else {
 2263       relocInfo::relocType rtype = $src->constant_reloc();
 2264       if (rtype == relocInfo::oop_type) {
 2265         __ movoop(dst_reg, (jobject)con);
 2266       } else if (rtype == relocInfo::metadata_type) {
 2267         __ mov_metadata(dst_reg, (Metadata*)con);
 2268       } else {
 2269         assert(rtype == relocInfo::none, "unexpected reloc type");
 2270         __ mv(dst_reg, $src$$constant);
 2271       }
 2272     }
 2273   %}
 2274 
 2275   enc_class riscv_enc_mov_p1(iRegP dst) %{
 2276     Register dst_reg = as_Register($dst$$reg);
 2277     __ mv(dst_reg, 1);
 2278   %}
 2279 
 2280   enc_class riscv_enc_mov_byte_map_base(iRegP dst) %{
 2281     __ load_byte_map_base($dst$$Register);
 2282   %}
 2283 
 2284   enc_class riscv_enc_mov_n(iRegN dst, immN src) %{
 2285     Register dst_reg = as_Register($dst$$reg);
 2286     address con = (address)$src$$constant;
 2287     if (con == nullptr) {
 2288       ShouldNotReachHere();
 2289     } else {
 2290       relocInfo::relocType rtype = $src->constant_reloc();
 2291       assert(rtype == relocInfo::oop_type, "unexpected reloc type");
 2292       __ set_narrow_oop(dst_reg, (jobject)con);
 2293     }
 2294   %}
 2295 
 2296   enc_class riscv_enc_mov_zero(iRegNorP dst) %{
 2297     Register dst_reg = as_Register($dst$$reg);
 2298     __ mv(dst_reg, zr);
 2299   %}
 2300 
 2301   enc_class riscv_enc_mov_nk(iRegN dst, immNKlass src) %{
 2302     Register dst_reg = as_Register($dst$$reg);
 2303     address con = (address)$src$$constant;
 2304     if (con == nullptr) {
 2305       ShouldNotReachHere();
 2306     } else {
 2307       relocInfo::relocType rtype = $src->constant_reloc();
 2308       assert(rtype == relocInfo::metadata_type, "unexpected reloc type");
 2309       __ set_narrow_klass(dst_reg, (Klass *)con);
 2310     }
 2311   %}
 2312 
 2313   enc_class riscv_enc_cmpxchgw(iRegINoSp res, memory mem, iRegI oldval, iRegI newval) %{
 2314     __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int32,
 2315                /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register,
 2316                /*result as bool*/ true);
 2317   %}
 2318 
 2319   enc_class riscv_enc_cmpxchgn(iRegINoSp res, memory mem, iRegI oldval, iRegI newval) %{
 2320     __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::uint32,
 2321                /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register,
 2322                /*result as bool*/ true);
 2323   %}
 2324 
 2325   enc_class riscv_enc_cmpxchg(iRegINoSp res, memory mem, iRegL oldval, iRegL newval) %{
 2326     __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int64,
 2327                /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register,
 2328                /*result as bool*/ true);
 2329   %}
 2330 
 2331   enc_class riscv_enc_cmpxchgw_acq(iRegINoSp res, memory mem, iRegI oldval, iRegI newval) %{
 2332     __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int32,
 2333                /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register,
 2334                /*result as bool*/ true);
 2335   %}
 2336 
 2337   enc_class riscv_enc_cmpxchgn_acq(iRegINoSp res, memory mem, iRegI oldval, iRegI newval) %{
 2338     __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::uint32,
 2339                /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register,
 2340                /*result as bool*/ true);
 2341   %}
 2342 
 2343   enc_class riscv_enc_cmpxchg_acq(iRegINoSp res, memory mem, iRegL oldval, iRegL newval) %{
 2344     __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int64,
 2345                /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register,
 2346                /*result as bool*/ true);
 2347   %}
 2348 
 2349   // compare and branch instruction encodings
 2350 
 2351   enc_class riscv_enc_j(label lbl) %{
 2352     Label* L = $lbl$$label;
 2353     __ j(*L);
 2354   %}
 2355 
 2356   enc_class riscv_enc_far_cmpULtGe_imm0_branch(cmpOpULtGe cmp, iRegIorL op1, label lbl) %{
 2357     Label* L = $lbl$$label;
 2358     switch ($cmp$$cmpcode) {
 2359       case(BoolTest::ge):
 2360         __ j(*L);
 2361         break;
 2362       case(BoolTest::lt):
 2363         break;
 2364       default:
 2365         Unimplemented();
 2366     }
 2367   %}
 2368 
 2369   // call instruction encodings
 2370 
 2371   enc_class riscv_enc_partial_subtype_check(iRegP sub, iRegP super, iRegP temp, iRegP result) %{
 2372     Register sub_reg = as_Register($sub$$reg);
 2373     Register super_reg = as_Register($super$$reg);
 2374     Register temp_reg = as_Register($temp$$reg);
 2375     Register result_reg = as_Register($result$$reg);
 2376     Register cr_reg = t1;
 2377 
 2378     Label miss;
 2379     Label done;
 2380     __ check_klass_subtype_slow_path(sub_reg, super_reg, temp_reg, result_reg,
 2381                                      nullptr, &miss, /*set_cond_codes*/ true);
 2382     if ($primary) {
 2383       __ mv(result_reg, zr);
 2384     } else {
 2385       __ mv(cr_reg, zr);
 2386       __ j(done);
 2387     }
 2388 
 2389     __ bind(miss);
 2390     if (!$primary) {
 2391       __ mv(cr_reg, 1);
 2392     }
 2393 
 2394     __ bind(done);
 2395   %}
 2396 
 2397   enc_class riscv_enc_java_static_call(method meth) %{
 2398     Assembler::IncompressibleRegion ir(masm);  // Fixed length: see ret_addr_offset
 2399 
 2400     address addr = (address)$meth$$method;
 2401     address call = nullptr;
 2402     assert_cond(addr != nullptr);
 2403     if (!_method) {
 2404       // A call to a runtime wrapper, e.g. new, new_typeArray_Java, uncommon_trap.
 2405       call = __ reloc_call(Address(addr, relocInfo::runtime_call_type));
 2406       if (call == nullptr) {
 2407         ciEnv::current()->record_failure("CodeCache is full");
 2408         return;
 2409       }
 2410     } else if (_method->intrinsic_id() == vmIntrinsicID::_ensureMaterializedForStackWalk) {
 2411       // The NOP here is purely to ensure that eliding a call to
 2412       // JVM_EnsureMaterializedForStackWalk doesn't change the code size.
 2413       __ nop();
 2414       __ nop();
 2415       __ nop();
 2416       __ block_comment("call JVM_EnsureMaterializedForStackWalk (elided)");
 2417     } else {
 2418       int method_index = resolved_method_index(masm);
 2419       RelocationHolder rspec = _optimized_virtual ? opt_virtual_call_Relocation::spec(method_index)
 2420                                                   : static_call_Relocation::spec(method_index);
 2421       call = __ reloc_call(Address(addr, rspec));
 2422       if (call == nullptr) {
 2423         ciEnv::current()->record_failure("CodeCache is full");
 2424         return;
 2425       }
 2426 
 2427       if (CodeBuffer::supports_shared_stubs() && _method->can_be_statically_bound()) {
 2428         // Calls of the same statically bound method can share
 2429         // a stub to the interpreter.
 2430         __ code()->shared_stub_to_interp_for(_method, call - (__ begin()));
 2431       } else {
 2432         // Emit stub for static call
 2433         address stub = CompiledDirectCall::emit_to_interp_stub(masm, call);
 2434         if (stub == nullptr) {
 2435           ciEnv::current()->record_failure("CodeCache is full");
 2436           return;
 2437         }
 2438       }
 2439     }
 2440 
 2441     __ post_call_nop();
 2442   %}
 2443 
 2444   enc_class riscv_enc_java_dynamic_call(method meth) %{
 2445     Assembler::IncompressibleRegion ir(masm);  // Fixed length: see ret_addr_offset
 2446     int method_index = resolved_method_index(masm);
 2447     address call = __ ic_call((address)$meth$$method, method_index);
 2448     if (call == nullptr) {
 2449       ciEnv::current()->record_failure("CodeCache is full");
 2450       return;
 2451     }
 2452 
 2453     __ post_call_nop();
 2454   %}
 2455 
 2456   enc_class riscv_enc_call_epilog() %{
 2457     if (VerifyStackAtCalls) {
 2458       // Check that stack depth is unchanged: find majik cookie on stack
 2459       __ call_Unimplemented();
 2460     }
 2461   %}
 2462 
 2463   enc_class riscv_enc_java_to_runtime(method meth) %{
 2464     Assembler::IncompressibleRegion ir(masm);  // Fixed length: see ret_addr_offset
 2465 
 2466     // Some calls to generated routines (arraycopy code) are scheduled by C2
 2467     // as runtime calls. if so we can call them using a far call (they will be
 2468     // in the code cache, thus in a reachable segment) otherwise we have to use
 2469     // a movptr+jalr pair which loads the absolute address into a register.
 2470     address entry = (address)$meth$$method;
 2471     if (CodeCache::contains(entry)) {
 2472       __ far_call(Address(entry, relocInfo::runtime_call_type));
 2473       __ post_call_nop();
 2474     } else {
 2475       Label retaddr;
 2476       // Make the anchor frame walkable
 2477       __ la(t0, retaddr);
 2478       __ sd(t0, Address(xthread, JavaThread::last_Java_pc_offset()));
 2479       int32_t offset = 0;
 2480       // No relocation needed
 2481       __ movptr(t1, entry, offset, t0); // lui + lui + slli + add
 2482       __ jalr(t1, offset);
 2483       __ bind(retaddr);
 2484       __ post_call_nop();
 2485     }
 2486   %}
 2487 
 2488   enc_class riscv_enc_tail_call(iRegP jump_target) %{
 2489     Register target_reg = as_Register($jump_target$$reg);
 2490     __ jr(target_reg);
 2491   %}
 2492 
 2493   enc_class riscv_enc_tail_jmp(iRegP jump_target) %{
 2494     Register target_reg = as_Register($jump_target$$reg);
 2495     // exception oop should be in x10
 2496     // ret addr has been popped into ra
 2497     // callee expects it in x13
 2498     __ mv(x13, ra);
 2499     __ jr(target_reg);
 2500   %}
 2501 
 2502   enc_class riscv_enc_rethrow() %{
 2503     __ far_jump(RuntimeAddress(OptoRuntime::rethrow_stub()));
 2504   %}
 2505 
 2506   enc_class riscv_enc_ret() %{
 2507     __ ret();
 2508   %}
 2509 
 2510 %}
 2511 
 2512 //----------FRAME--------------------------------------------------------------
 2513 // Definition of frame structure and management information.
 2514 //
 2515 //  S T A C K   L A Y O U T    Allocators stack-slot number
 2516 //                             |   (to get allocators register number
 2517 //  G  Owned by    |        |  v    add OptoReg::stack0())
 2518 //  r   CALLER     |        |
 2519 //  o     |        +--------+      pad to even-align allocators stack-slot
 2520 //  w     V        |  pad0  |        numbers; owned by CALLER
 2521 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
 2522 //  h     ^        |   in   |  5
 2523 //        |        |  args  |  4   Holes in incoming args owned by SELF
 2524 //  |     |        |        |  3
 2525 //  |     |        +--------+
 2526 //  V     |        | old out|      Empty on Intel, window on Sparc
 2527 //        |    old |preserve|      Must be even aligned.
 2528 //        |     SP-+--------+----> Matcher::_old_SP, even aligned
 2529 //        |        |   in   |  3   area for Intel ret address
 2530 //     Owned by    |preserve|      Empty on Sparc.
 2531 //       SELF      +--------+
 2532 //        |        |  pad2  |  2   pad to align old SP
 2533 //        |        +--------+  1
 2534 //        |        | locks  |  0
 2535 //        |        +--------+----> OptoReg::stack0(), even aligned
 2536 //        |        |  pad1  | 11   pad to align new SP
 2537 //        |        +--------+
 2538 //        |        |        | 10
 2539 //        |        | spills |  9   spills
 2540 //        V        |        |  8   (pad0 slot for callee)
 2541 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
 2542 //        ^        |  out   |  7
 2543 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
 2544 //     Owned by    +--------+
 2545 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
 2546 //        |    new |preserve|      Must be even-aligned.
 2547 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
 2548 //        |        |        |
 2549 //
 2550 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
 2551 //         known from SELF's arguments and the Java calling convention.
 2552 //         Region 6-7 is determined per call site.
 2553 // Note 2: If the calling convention leaves holes in the incoming argument
 2554 //         area, those holes are owned by SELF.  Holes in the outgoing area
 2555 //         are owned by the CALLEE.  Holes should not be necessary in the
 2556 //         incoming area, as the Java calling convention is completely under
 2557 //         the control of the AD file.  Doubles can be sorted and packed to
 2558 //         avoid holes.  Holes in the outgoing arguments may be necessary for
 2559 //         varargs C calling conventions.
 2560 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
 2561 //         even aligned with pad0 as needed.
 2562 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
 2563 //           (the latter is true on Intel but is it false on RISCV?)
 2564 //         region 6-11 is even aligned; it may be padded out more so that
 2565 //         the region from SP to FP meets the minimum stack alignment.
 2566 // Note 4: For I2C adapters, the incoming FP may not meet the minimum stack
 2567 //         alignment.  Region 11, pad1, may be dynamically extended so that
 2568 //         SP meets the minimum alignment.
 2569 
 2570 frame %{
 2571   // These three registers define part of the calling convention
 2572   // between compiled code and the interpreter.
 2573 
 2574   // Inline Cache Register or methodOop for I2C.
 2575   inline_cache_reg(R31);
 2576 
 2577   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
 2578   cisc_spilling_operand_name(indOffset);
 2579 
 2580   // Number of stack slots consumed by locking an object
 2581   // generate Compile::sync_stack_slots
 2582   // VMRegImpl::slots_per_word = wordSize / stack_slot_size = 8 / 4 = 2
 2583   sync_stack_slots(1 * VMRegImpl::slots_per_word);
 2584 
 2585   // Compiled code's Frame Pointer
 2586   frame_pointer(R2);
 2587 
 2588   // Interpreter stores its frame pointer in a register which is
 2589   // stored to the stack by I2CAdaptors.
 2590   // I2CAdaptors convert from interpreted java to compiled java.
 2591   interpreter_frame_pointer(R8);
 2592 
 2593   // Stack alignment requirement
 2594   stack_alignment(StackAlignmentInBytes); // Alignment size in bytes (128-bit -> 16 bytes)
 2595 
 2596   // Number of outgoing stack slots killed above the out_preserve_stack_slots
 2597   // for calls to C.  Supports the var-args backing area for register parms.
 2598   varargs_C_out_slots_killed(frame::arg_reg_save_area_bytes / BytesPerInt);
 2599 
 2600   // The after-PROLOG location of the return address.  Location of
 2601   // return address specifies a type (REG or STACK) and a number
 2602   // representing the register number (i.e. - use a register name) or
 2603   // stack slot.
 2604   // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
 2605   // Otherwise, it is above the locks and verification slot and alignment word
 2606   // TODO this may well be correct but need to check why that - 2 is there
 2607   // ppc port uses 0 but we definitely need to allow for fixed_slots
 2608   // which folds in the space used for monitors
 2609   return_addr(STACK - 2 +
 2610               align_up((Compile::current()->in_preserve_stack_slots() +
 2611                         Compile::current()->fixed_slots()),
 2612                        stack_alignment_in_slots()));
 2613 
 2614   // Location of compiled Java return values.  Same as C for now.
 2615   return_value
 2616   %{
 2617     assert(ideal_reg >= Op_RegI && ideal_reg <= Op_RegL,
 2618            "only return normal values");
 2619 
 2620     static const int lo[Op_RegL + 1] = { // enum name
 2621       0,                                 // Op_Node
 2622       0,                                 // Op_Set
 2623       R10_num,                           // Op_RegN
 2624       R10_num,                           // Op_RegI
 2625       R10_num,                           // Op_RegP
 2626       F10_num,                           // Op_RegF
 2627       F10_num,                           // Op_RegD
 2628       R10_num                            // Op_RegL
 2629     };
 2630 
 2631     static const int hi[Op_RegL + 1] = { // enum name
 2632       0,                                 // Op_Node
 2633       0,                                 // Op_Set
 2634       OptoReg::Bad,                      // Op_RegN
 2635       OptoReg::Bad,                      // Op_RegI
 2636       R10_H_num,                         // Op_RegP
 2637       OptoReg::Bad,                      // Op_RegF
 2638       F10_H_num,                         // Op_RegD
 2639       R10_H_num                          // Op_RegL
 2640     };
 2641 
 2642     return OptoRegPair(hi[ideal_reg], lo[ideal_reg]);
 2643   %}
 2644 %}
 2645 
 2646 //----------ATTRIBUTES---------------------------------------------------------
 2647 //----------Operand Attributes-------------------------------------------------
 2648 op_attrib op_cost(1);        // Required cost attribute
 2649 
 2650 //----------Instruction Attributes---------------------------------------------
 2651 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
 2652 ins_attrib ins_size(32);        // Required size attribute (in bits)
 2653 ins_attrib ins_short_branch(0); // Required flag: is this instruction
 2654                                 // a non-matching short branch variant
 2655                                 // of some long branch?
 2656 ins_attrib ins_alignment(4);    // Required alignment attribute (must
 2657                                 // be a power of 2) specifies the
 2658                                 // alignment that some part of the
 2659                                 // instruction (not necessarily the
 2660                                 // start) requires.  If > 1, a
 2661                                 // compute_padding() function must be
 2662                                 // provided for the instruction
 2663 
 2664 //----------OPERANDS-----------------------------------------------------------
 2665 // Operand definitions must precede instruction definitions for correct parsing
 2666 // in the ADLC because operands constitute user defined types which are used in
 2667 // instruction definitions.
 2668 
 2669 //----------Simple Operands----------------------------------------------------
 2670 
 2671 // Integer operands 32 bit
 2672 // 32 bit immediate
 2673 operand immI()
 2674 %{
 2675   match(ConI);
 2676 
 2677   op_cost(0);
 2678   format %{ %}
 2679   interface(CONST_INTER);
 2680 %}
 2681 
 2682 // 32 bit zero
 2683 operand immI0()
 2684 %{
 2685   predicate(n->get_int() == 0);
 2686   match(ConI);
 2687 
 2688   op_cost(0);
 2689   format %{ %}
 2690   interface(CONST_INTER);
 2691 %}
 2692 
 2693 // 32 bit unit increment
 2694 operand immI_1()
 2695 %{
 2696   predicate(n->get_int() == 1);
 2697   match(ConI);
 2698 
 2699   op_cost(0);
 2700   format %{ %}
 2701   interface(CONST_INTER);
 2702 %}
 2703 
 2704 // 32 bit unit decrement
 2705 operand immI_M1()
 2706 %{
 2707   predicate(n->get_int() == -1);
 2708   match(ConI);
 2709 
 2710   op_cost(0);
 2711   format %{ %}
 2712   interface(CONST_INTER);
 2713 %}
 2714 
 2715 // Unsigned Integer Immediate:  6-bit int, greater than 32
 2716 operand uimmI6_ge32() %{
 2717   predicate(((unsigned int)(n->get_int()) < 64) && (n->get_int() >= 32));
 2718   match(ConI);
 2719   op_cost(0);
 2720   format %{ %}
 2721   interface(CONST_INTER);
 2722 %}
 2723 
 2724 operand immI_le_4()
 2725 %{
 2726   predicate(n->get_int() <= 4);
 2727   match(ConI);
 2728 
 2729   op_cost(0);
 2730   format %{ %}
 2731   interface(CONST_INTER);
 2732 %}
 2733 
 2734 operand immI_16()
 2735 %{
 2736   predicate(n->get_int() == 16);
 2737   match(ConI);
 2738   op_cost(0);
 2739   format %{ %}
 2740   interface(CONST_INTER);
 2741 %}
 2742 
 2743 operand immI_24()
 2744 %{
 2745   predicate(n->get_int() == 24);
 2746   match(ConI);
 2747   op_cost(0);
 2748   format %{ %}
 2749   interface(CONST_INTER);
 2750 %}
 2751 
 2752 operand immI_31()
 2753 %{
 2754   predicate(n->get_int() == 31);
 2755   match(ConI);
 2756 
 2757   op_cost(0);
 2758   format %{ %}
 2759   interface(CONST_INTER);
 2760 %}
 2761 
 2762 operand immI_63()
 2763 %{
 2764   predicate(n->get_int() == 63);
 2765   match(ConI);
 2766 
 2767   op_cost(0);
 2768   format %{ %}
 2769   interface(CONST_INTER);
 2770 %}
 2771 
 2772 // 32 bit integer valid for add immediate
 2773 operand immIAdd()
 2774 %{
 2775   predicate(Assembler::is_simm12((int64_t)n->get_int()));
 2776   match(ConI);
 2777   op_cost(0);
 2778   format %{ %}
 2779   interface(CONST_INTER);
 2780 %}
 2781 
 2782 // 32 bit integer valid for sub immediate
 2783 operand immISub()
 2784 %{
 2785   predicate(Assembler::is_simm12(-(int64_t)n->get_int()));
 2786   match(ConI);
 2787   op_cost(0);
 2788   format %{ %}
 2789   interface(CONST_INTER);
 2790 %}
 2791 
 2792 // 5 bit signed value.
 2793 operand immI5()
 2794 %{
 2795   predicate(n->get_int() <= 15 && n->get_int() >= -16);
 2796   match(ConI);
 2797 
 2798   op_cost(0);
 2799   format %{ %}
 2800   interface(CONST_INTER);
 2801 %}
 2802 
 2803 // 5 bit signed value (simm5)
 2804 operand immL5()
 2805 %{
 2806   predicate(n->get_long() <= 15 && n->get_long() >= -16);
 2807   match(ConL);
 2808 
 2809   op_cost(0);
 2810   format %{ %}
 2811   interface(CONST_INTER);
 2812 %}
 2813 
 2814 // Integer operands 64 bit
 2815 // 64 bit immediate
 2816 operand immL()
 2817 %{
 2818   match(ConL);
 2819 
 2820   op_cost(0);
 2821   format %{ %}
 2822   interface(CONST_INTER);
 2823 %}
 2824 
 2825 // 64 bit zero
 2826 operand immL0()
 2827 %{
 2828   predicate(n->get_long() == 0);
 2829   match(ConL);
 2830 
 2831   op_cost(0);
 2832   format %{ %}
 2833   interface(CONST_INTER);
 2834 %}
 2835 
 2836 // Pointer operands
 2837 // Pointer Immediate
 2838 operand immP()
 2839 %{
 2840   match(ConP);
 2841 
 2842   op_cost(0);
 2843   format %{ %}
 2844   interface(CONST_INTER);
 2845 %}
 2846 
 2847 // Null Pointer Immediate
 2848 operand immP0()
 2849 %{
 2850   predicate(n->get_ptr() == 0);
 2851   match(ConP);
 2852 
 2853   op_cost(0);
 2854   format %{ %}
 2855   interface(CONST_INTER);
 2856 %}
 2857 
 2858 // Pointer Immediate One
 2859 // this is used in object initialization (initial object header)
 2860 operand immP_1()
 2861 %{
 2862   predicate(n->get_ptr() == 1);
 2863   match(ConP);
 2864 
 2865   op_cost(0);
 2866   format %{ %}
 2867   interface(CONST_INTER);
 2868 %}
 2869 
 2870 // Card Table Byte Map Base
 2871 operand immByteMapBase()
 2872 %{
 2873   // Get base of card map
 2874   predicate(BarrierSet::barrier_set()->is_a(BarrierSet::CardTableBarrierSet) &&
 2875             SHENANDOAHGC_ONLY(!BarrierSet::barrier_set()->is_a(BarrierSet::ShenandoahBarrierSet) &&)
 2876             (CardTable::CardValue*)n->get_ptr() ==
 2877              ((CardTableBarrierSet*)(BarrierSet::barrier_set()))->card_table()->byte_map_base());
 2878   match(ConP);
 2879 
 2880   op_cost(0);
 2881   format %{ %}
 2882   interface(CONST_INTER);
 2883 %}
 2884 
 2885 // Int Immediate: low 16-bit mask
 2886 operand immI_16bits()
 2887 %{
 2888   predicate(n->get_int() == 0xFFFF);
 2889   match(ConI);
 2890   op_cost(0);
 2891   format %{ %}
 2892   interface(CONST_INTER);
 2893 %}
 2894 
 2895 operand immIpowerOf2() %{
 2896   predicate(is_power_of_2((juint)(n->get_int())));
 2897   match(ConI);
 2898   op_cost(0);
 2899   format %{ %}
 2900   interface(CONST_INTER);
 2901 %}
 2902 
 2903 // Long Immediate: low 32-bit mask
 2904 operand immL_32bits()
 2905 %{
 2906   predicate(n->get_long() == 0xFFFFFFFFL);
 2907   match(ConL);
 2908   op_cost(0);
 2909   format %{ %}
 2910   interface(CONST_INTER);
 2911 %}
 2912 
 2913 // 64 bit unit decrement
 2914 operand immL_M1()
 2915 %{
 2916   predicate(n->get_long() == -1);
 2917   match(ConL);
 2918 
 2919   op_cost(0);
 2920   format %{ %}
 2921   interface(CONST_INTER);
 2922 %}
 2923 
 2924 
 2925 // 64 bit integer valid for add immediate
 2926 operand immLAdd()
 2927 %{
 2928   predicate(Assembler::is_simm12(n->get_long()));
 2929   match(ConL);
 2930   op_cost(0);
 2931   format %{ %}
 2932   interface(CONST_INTER);
 2933 %}
 2934 
 2935 // 64 bit integer valid for sub immediate
 2936 operand immLSub()
 2937 %{
 2938   predicate(Assembler::is_simm12(-(n->get_long())));
 2939   match(ConL);
 2940   op_cost(0);
 2941   format %{ %}
 2942   interface(CONST_INTER);
 2943 %}
 2944 
 2945 // Narrow pointer operands
 2946 // Narrow Pointer Immediate
 2947 operand immN()
 2948 %{
 2949   match(ConN);
 2950 
 2951   op_cost(0);
 2952   format %{ %}
 2953   interface(CONST_INTER);
 2954 %}
 2955 
 2956 // Narrow Null Pointer Immediate
 2957 operand immN0()
 2958 %{
 2959   predicate(n->get_narrowcon() == 0);
 2960   match(ConN);
 2961 
 2962   op_cost(0);
 2963   format %{ %}
 2964   interface(CONST_INTER);
 2965 %}
 2966 
 2967 operand immNKlass()
 2968 %{
 2969   match(ConNKlass);
 2970 
 2971   op_cost(0);
 2972   format %{ %}
 2973   interface(CONST_INTER);
 2974 %}
 2975 
 2976 // Float and Double operands
 2977 // Double Immediate
 2978 operand immD()
 2979 %{
 2980   match(ConD);
 2981   op_cost(0);
 2982   format %{ %}
 2983   interface(CONST_INTER);
 2984 %}
 2985 
 2986 // Double Immediate: +0.0d
 2987 operand immD0()
 2988 %{
 2989   predicate(jlong_cast(n->getd()) == 0);
 2990   match(ConD);
 2991 
 2992   op_cost(0);
 2993   format %{ %}
 2994   interface(CONST_INTER);
 2995 %}
 2996 
 2997 // Float Immediate
 2998 operand immF()
 2999 %{
 3000   match(ConF);
 3001   op_cost(0);
 3002   format %{ %}
 3003   interface(CONST_INTER);
 3004 %}
 3005 
 3006 // Float Immediate: +0.0f.
 3007 operand immF0()
 3008 %{
 3009   predicate(jint_cast(n->getf()) == 0);
 3010   match(ConF);
 3011 
 3012   op_cost(0);
 3013   format %{ %}
 3014   interface(CONST_INTER);
 3015 %}
 3016 
 3017 // Half Float Immediate
 3018 operand immH()
 3019 %{
 3020   match(ConH);
 3021 
 3022   op_cost(0);
 3023   format %{ %}
 3024   interface(CONST_INTER);
 3025 %}
 3026 
 3027 // Half Float Immediate: +0.0f.
 3028 operand immH0()
 3029 %{
 3030   predicate(jint_cast(n->geth()) == 0);
 3031   match(ConH);
 3032 
 3033   op_cost(0);
 3034   format %{ %}
 3035   interface(CONST_INTER);
 3036 %}
 3037 
 3038 operand immIOffset()
 3039 %{
 3040   predicate(Assembler::is_simm12(n->get_int()));
 3041   match(ConI);
 3042   op_cost(0);
 3043   format %{ %}
 3044   interface(CONST_INTER);
 3045 %}
 3046 
 3047 operand immLOffset()
 3048 %{
 3049   predicate(Assembler::is_simm12(n->get_long()));
 3050   match(ConL);
 3051   op_cost(0);
 3052   format %{ %}
 3053   interface(CONST_INTER);
 3054 %}
 3055 
 3056 // Scale values
 3057 operand immIScale()
 3058 %{
 3059   predicate(1 <= n->get_int() && (n->get_int() <= 3));
 3060   match(ConI);
 3061 
 3062   op_cost(0);
 3063   format %{ %}
 3064   interface(CONST_INTER);
 3065 %}
 3066 
 3067 // Integer 32 bit Register Operands
 3068 operand iRegI()
 3069 %{
 3070   constraint(ALLOC_IN_RC(any_reg32));
 3071   match(RegI);
 3072   match(iRegINoSp);
 3073   op_cost(0);
 3074   format %{ %}
 3075   interface(REG_INTER);
 3076 %}
 3077 
 3078 // Integer 32 bit Register not Special
 3079 operand iRegINoSp()
 3080 %{
 3081   constraint(ALLOC_IN_RC(no_special_reg32));
 3082   match(RegI);
 3083   op_cost(0);
 3084   format %{ %}
 3085   interface(REG_INTER);
 3086 %}
 3087 
 3088 // Register R10 only
 3089 operand iRegI_R10()
 3090 %{
 3091   constraint(ALLOC_IN_RC(int_r10_reg));
 3092   match(RegI);
 3093   match(iRegINoSp);
 3094   op_cost(0);
 3095   format %{ %}
 3096   interface(REG_INTER);
 3097 %}
 3098 
 3099 // Register R12 only
 3100 operand iRegI_R12()
 3101 %{
 3102   constraint(ALLOC_IN_RC(int_r12_reg));
 3103   match(RegI);
 3104   match(iRegINoSp);
 3105   op_cost(0);
 3106   format %{ %}
 3107   interface(REG_INTER);
 3108 %}
 3109 
 3110 // Register R13 only
 3111 operand iRegI_R13()
 3112 %{
 3113   constraint(ALLOC_IN_RC(int_r13_reg));
 3114   match(RegI);
 3115   match(iRegINoSp);
 3116   op_cost(0);
 3117   format %{ %}
 3118   interface(REG_INTER);
 3119 %}
 3120 
 3121 // Register R14 only
 3122 operand iRegI_R14()
 3123 %{
 3124   constraint(ALLOC_IN_RC(int_r14_reg));
 3125   match(RegI);
 3126   match(iRegINoSp);
 3127   op_cost(0);
 3128   format %{ %}
 3129   interface(REG_INTER);
 3130 %}
 3131 
 3132 // Integer 64 bit Register Operands
 3133 operand iRegL()
 3134 %{
 3135   constraint(ALLOC_IN_RC(any_reg));
 3136   match(RegL);
 3137   match(iRegLNoSp);
 3138   op_cost(0);
 3139   format %{ %}
 3140   interface(REG_INTER);
 3141 %}
 3142 
 3143 // Integer 64 bit Register not Special
 3144 operand iRegLNoSp()
 3145 %{
 3146   constraint(ALLOC_IN_RC(no_special_reg));
 3147   match(RegL);
 3148   match(iRegL_R10);
 3149   format %{ %}
 3150   interface(REG_INTER);
 3151 %}
 3152 
 3153 // Long 64 bit Register R29 only
 3154 operand iRegL_R29()
 3155 %{
 3156   constraint(ALLOC_IN_RC(r29_reg));
 3157   match(RegL);
 3158   match(iRegLNoSp);
 3159   op_cost(0);
 3160   format %{ %}
 3161   interface(REG_INTER);
 3162 %}
 3163 
 3164 // Long 64 bit Register R30 only
 3165 operand iRegL_R30()
 3166 %{
 3167   constraint(ALLOC_IN_RC(r30_reg));
 3168   match(RegL);
 3169   match(iRegLNoSp);
 3170   op_cost(0);
 3171   format %{ %}
 3172   interface(REG_INTER);
 3173 %}
 3174 
 3175 // Pointer Register Operands
 3176 // Pointer Register
 3177 operand iRegP()
 3178 %{
 3179   constraint(ALLOC_IN_RC(ptr_reg));
 3180   match(RegP);
 3181   match(iRegPNoSp);
 3182   match(iRegP_R10);
 3183   match(iRegP_R15);
 3184   match(javaThread_RegP);
 3185   op_cost(0);
 3186   format %{ %}
 3187   interface(REG_INTER);
 3188 %}
 3189 
 3190 // Pointer 64 bit Register not Special
 3191 operand iRegPNoSp()
 3192 %{
 3193   constraint(ALLOC_IN_RC(no_special_ptr_reg));
 3194   match(RegP);
 3195   op_cost(0);
 3196   format %{ %}
 3197   interface(REG_INTER);
 3198 %}
 3199 
 3200 // This operand is not allowed to use fp even if
 3201 // fp is not used to hold the frame pointer.
 3202 operand iRegPNoSpNoFp()
 3203 %{
 3204   constraint(ALLOC_IN_RC(no_special_no_fp_ptr_reg));
 3205   match(RegP);
 3206   match(iRegPNoSp);
 3207   op_cost(0);
 3208   format %{ %}
 3209   interface(REG_INTER);
 3210 %}
 3211 
 3212 operand iRegP_R10()
 3213 %{
 3214   constraint(ALLOC_IN_RC(r10_reg));
 3215   match(RegP);
 3216   // match(iRegP);
 3217   match(iRegPNoSp);
 3218   op_cost(0);
 3219   format %{ %}
 3220   interface(REG_INTER);
 3221 %}
 3222 
 3223 // Pointer 64 bit Register R11 only
 3224 operand iRegP_R11()
 3225 %{
 3226   constraint(ALLOC_IN_RC(r11_reg));
 3227   match(RegP);
 3228   match(iRegPNoSp);
 3229   op_cost(0);
 3230   format %{ %}
 3231   interface(REG_INTER);
 3232 %}
 3233 
 3234 operand iRegP_R12()
 3235 %{
 3236   constraint(ALLOC_IN_RC(r12_reg));
 3237   match(RegP);
 3238   // match(iRegP);
 3239   match(iRegPNoSp);
 3240   op_cost(0);
 3241   format %{ %}
 3242   interface(REG_INTER);
 3243 %}
 3244 
 3245 // Pointer 64 bit Register R13 only
 3246 operand iRegP_R13()
 3247 %{
 3248   constraint(ALLOC_IN_RC(r13_reg));
 3249   match(RegP);
 3250   match(iRegPNoSp);
 3251   op_cost(0);
 3252   format %{ %}
 3253   interface(REG_INTER);
 3254 %}
 3255 
 3256 operand iRegP_R14()
 3257 %{
 3258   constraint(ALLOC_IN_RC(r14_reg));
 3259   match(RegP);
 3260   // match(iRegP);
 3261   match(iRegPNoSp);
 3262   op_cost(0);
 3263   format %{ %}
 3264   interface(REG_INTER);
 3265 %}
 3266 
 3267 operand iRegP_R15()
 3268 %{
 3269   constraint(ALLOC_IN_RC(r15_reg));
 3270   match(RegP);
 3271   // match(iRegP);
 3272   match(iRegPNoSp);
 3273   op_cost(0);
 3274   format %{ %}
 3275   interface(REG_INTER);
 3276 %}
 3277 
 3278 operand iRegP_R16()
 3279 %{
 3280   constraint(ALLOC_IN_RC(r16_reg));
 3281   match(RegP);
 3282   match(iRegPNoSp);
 3283   op_cost(0);
 3284   format %{ %}
 3285   interface(REG_INTER);
 3286 %}
 3287 
 3288 // Pointer 64 bit Register R28 only
 3289 operand iRegP_R28()
 3290 %{
 3291   constraint(ALLOC_IN_RC(r28_reg));
 3292   match(RegP);
 3293   match(iRegPNoSp);
 3294   op_cost(0);
 3295   format %{ %}
 3296   interface(REG_INTER);
 3297 %}
 3298 
 3299 // Pointer 64 bit Register R30 only
 3300 operand iRegP_R30()
 3301 %{
 3302   constraint(ALLOC_IN_RC(r30_reg));
 3303   match(RegP);
 3304   match(iRegPNoSp);
 3305   op_cost(0);
 3306   format %{ %}
 3307   interface(REG_INTER);
 3308 %}
 3309 
 3310 // Pointer 64 bit Register R31 only
 3311 operand iRegP_R31()
 3312 %{
 3313   constraint(ALLOC_IN_RC(r31_reg));
 3314   match(RegP);
 3315   match(iRegPNoSp);
 3316   op_cost(0);
 3317   format %{ %}
 3318   interface(REG_INTER);
 3319 %}
 3320 
 3321 // Pointer Register Operands
 3322 // Narrow Pointer Register
 3323 operand iRegN()
 3324 %{
 3325   constraint(ALLOC_IN_RC(any_reg32));
 3326   match(RegN);
 3327   match(iRegNNoSp);
 3328   op_cost(0);
 3329   format %{ %}
 3330   interface(REG_INTER);
 3331 %}
 3332 
 3333 // Integer 64 bit Register not Special
 3334 operand iRegNNoSp()
 3335 %{
 3336   constraint(ALLOC_IN_RC(no_special_reg32));
 3337   match(RegN);
 3338   op_cost(0);
 3339   format %{ %}
 3340   interface(REG_INTER);
 3341 %}
 3342 
 3343 // Long 64 bit Register R10 only
 3344 operand iRegL_R10()
 3345 %{
 3346   constraint(ALLOC_IN_RC(r10_reg));
 3347   match(RegL);
 3348   match(iRegLNoSp);
 3349   op_cost(0);
 3350   format %{ %}
 3351   interface(REG_INTER);
 3352 %}
 3353 
 3354 // Float Register
 3355 // Float register operands
 3356 operand fRegF()
 3357 %{
 3358   constraint(ALLOC_IN_RC(float_reg));
 3359   match(RegF);
 3360 
 3361   op_cost(0);
 3362   format %{ %}
 3363   interface(REG_INTER);
 3364 %}
 3365 
 3366 // Double Register
 3367 // Double register operands
 3368 operand fRegD()
 3369 %{
 3370   constraint(ALLOC_IN_RC(double_reg));
 3371   match(RegD);
 3372 
 3373   op_cost(0);
 3374   format %{ %}
 3375   interface(REG_INTER);
 3376 %}
 3377 
 3378 // Generic vector class. This will be used for
 3379 // all vector operands.
 3380 operand vReg()
 3381 %{
 3382   constraint(ALLOC_IN_RC(vectora_reg));
 3383   match(VecA);
 3384   op_cost(0);
 3385   format %{ %}
 3386   interface(REG_INTER);
 3387 %}
 3388 
 3389 operand vReg_V1()
 3390 %{
 3391   constraint(ALLOC_IN_RC(v1_reg));
 3392   match(VecA);
 3393   match(vReg);
 3394   op_cost(0);
 3395   format %{ %}
 3396   interface(REG_INTER);
 3397 %}
 3398 
 3399 operand vReg_V2()
 3400 %{
 3401   constraint(ALLOC_IN_RC(v2_reg));
 3402   match(VecA);
 3403   match(vReg);
 3404   op_cost(0);
 3405   format %{ %}
 3406   interface(REG_INTER);
 3407 %}
 3408 
 3409 operand vReg_V3()
 3410 %{
 3411   constraint(ALLOC_IN_RC(v3_reg));
 3412   match(VecA);
 3413   match(vReg);
 3414   op_cost(0);
 3415   format %{ %}
 3416   interface(REG_INTER);
 3417 %}
 3418 
 3419 operand vReg_V4()
 3420 %{
 3421   constraint(ALLOC_IN_RC(v4_reg));
 3422   match(VecA);
 3423   match(vReg);
 3424   op_cost(0);
 3425   format %{ %}
 3426   interface(REG_INTER);
 3427 %}
 3428 
 3429 operand vReg_V5()
 3430 %{
 3431   constraint(ALLOC_IN_RC(v5_reg));
 3432   match(VecA);
 3433   match(vReg);
 3434   op_cost(0);
 3435   format %{ %}
 3436   interface(REG_INTER);
 3437 %}
 3438 
 3439 operand vReg_V6()
 3440 %{
 3441   constraint(ALLOC_IN_RC(v6_reg));
 3442   match(VecA);
 3443   match(vReg);
 3444   op_cost(0);
 3445   format %{ %}
 3446   interface(REG_INTER);
 3447 %}
 3448 
 3449 operand vReg_V7()
 3450 %{
 3451   constraint(ALLOC_IN_RC(v7_reg));
 3452   match(VecA);
 3453   match(vReg);
 3454   op_cost(0);
 3455   format %{ %}
 3456   interface(REG_INTER);
 3457 %}
 3458 
 3459 operand vReg_V8()
 3460 %{
 3461   constraint(ALLOC_IN_RC(v8_reg));
 3462   match(VecA);
 3463   match(vReg);
 3464   op_cost(0);
 3465   format %{ %}
 3466   interface(REG_INTER);
 3467 %}
 3468 
 3469 operand vReg_V9()
 3470 %{
 3471   constraint(ALLOC_IN_RC(v9_reg));
 3472   match(VecA);
 3473   match(vReg);
 3474   op_cost(0);
 3475   format %{ %}
 3476   interface(REG_INTER);
 3477 %}
 3478 
 3479 operand vReg_V10()
 3480 %{
 3481   constraint(ALLOC_IN_RC(v10_reg));
 3482   match(VecA);
 3483   match(vReg);
 3484   op_cost(0);
 3485   format %{ %}
 3486   interface(REG_INTER);
 3487 %}
 3488 
 3489 operand vReg_V11()
 3490 %{
 3491   constraint(ALLOC_IN_RC(v11_reg));
 3492   match(VecA);
 3493   match(vReg);
 3494   op_cost(0);
 3495   format %{ %}
 3496   interface(REG_INTER);
 3497 %}
 3498 
 3499 operand vRegMask()
 3500 %{
 3501   constraint(ALLOC_IN_RC(vmask_reg));
 3502   match(RegVectMask);
 3503   match(vRegMask_V0);
 3504   op_cost(0);
 3505   format %{ %}
 3506   interface(REG_INTER);
 3507 %}
 3508 
 3509 // The mask value used to control execution of a masked
 3510 // vector instruction is always supplied by vector register v0.
 3511 operand vRegMask_V0()
 3512 %{
 3513   constraint(ALLOC_IN_RC(vmask_reg_v0));
 3514   match(RegVectMask);
 3515   match(vRegMask);
 3516   op_cost(0);
 3517   format %{ %}
 3518   interface(REG_INTER);
 3519 %}
 3520 
 3521 // Java Thread Register
 3522 operand javaThread_RegP(iRegP reg)
 3523 %{
 3524   constraint(ALLOC_IN_RC(java_thread_reg)); // java_thread_reg
 3525   match(reg);
 3526   op_cost(0);
 3527   format %{ %}
 3528   interface(REG_INTER);
 3529 %}
 3530 
 3531 //----------Memory Operands----------------------------------------------------
 3532 // RISCV has only base_plus_offset and literal address mode, so no need to use
 3533 // index and scale. Here set index as 0xffffffff and scale as 0x0.
 3534 operand indirect(iRegP reg)
 3535 %{
 3536   constraint(ALLOC_IN_RC(ptr_reg));
 3537   match(reg);
 3538   op_cost(0);
 3539   format %{ "[$reg]" %}
 3540   interface(MEMORY_INTER) %{
 3541     base($reg);
 3542     index(0xffffffff);
 3543     scale(0x0);
 3544     disp(0x0);
 3545   %}
 3546 %}
 3547 
 3548 operand indOffI(iRegP reg, immIOffset off)
 3549 %{
 3550   constraint(ALLOC_IN_RC(ptr_reg));
 3551   match(AddP reg off);
 3552   op_cost(0);
 3553   format %{ "[$reg, $off]" %}
 3554   interface(MEMORY_INTER) %{
 3555     base($reg);
 3556     index(0xffffffff);
 3557     scale(0x0);
 3558     disp($off);
 3559   %}
 3560 %}
 3561 
 3562 operand indOffL(iRegP reg, immLOffset off)
 3563 %{
 3564   constraint(ALLOC_IN_RC(ptr_reg));
 3565   match(AddP reg off);
 3566   op_cost(0);
 3567   format %{ "[$reg, $off]" %}
 3568   interface(MEMORY_INTER) %{
 3569     base($reg);
 3570     index(0xffffffff);
 3571     scale(0x0);
 3572     disp($off);
 3573   %}
 3574 %}
 3575 
 3576 operand indirectN(iRegN reg)
 3577 %{
 3578   predicate(CompressedOops::shift() == 0);
 3579   constraint(ALLOC_IN_RC(ptr_reg));
 3580   match(DecodeN reg);
 3581   op_cost(0);
 3582   format %{ "[$reg]\t# narrow" %}
 3583   interface(MEMORY_INTER) %{
 3584     base($reg);
 3585     index(0xffffffff);
 3586     scale(0x0);
 3587     disp(0x0);
 3588   %}
 3589 %}
 3590 
 3591 operand indOffIN(iRegN reg, immIOffset off)
 3592 %{
 3593   predicate(CompressedOops::shift() == 0);
 3594   constraint(ALLOC_IN_RC(ptr_reg));
 3595   match(AddP (DecodeN reg) off);
 3596   op_cost(0);
 3597   format %{ "[$reg, $off]\t# narrow" %}
 3598   interface(MEMORY_INTER) %{
 3599     base($reg);
 3600     index(0xffffffff);
 3601     scale(0x0);
 3602     disp($off);
 3603   %}
 3604 %}
 3605 
 3606 operand indOffLN(iRegN reg, immLOffset off)
 3607 %{
 3608   predicate(CompressedOops::shift() == 0);
 3609   constraint(ALLOC_IN_RC(ptr_reg));
 3610   match(AddP (DecodeN reg) off);
 3611   op_cost(0);
 3612   format %{ "[$reg, $off]\t# narrow" %}
 3613   interface(MEMORY_INTER) %{
 3614     base($reg);
 3615     index(0xffffffff);
 3616     scale(0x0);
 3617     disp($off);
 3618   %}
 3619 %}
 3620 
 3621 //----------Special Memory Operands--------------------------------------------
 3622 // Stack Slot Operand - This operand is used for loading and storing temporary
 3623 //                      values on the stack where a match requires a value to
 3624 //                      flow through memory.
 3625 operand stackSlotI(sRegI reg)
 3626 %{
 3627   constraint(ALLOC_IN_RC(stack_slots));
 3628   // No match rule because this operand is only generated in matching
 3629   // match(RegI);
 3630   format %{ "[$reg]" %}
 3631   interface(MEMORY_INTER) %{
 3632     base(0x02);  // RSP
 3633     index(0xffffffff);  // No Index
 3634     scale(0x0);  // No Scale
 3635     disp($reg);  // Stack Offset
 3636   %}
 3637 %}
 3638 
 3639 operand stackSlotF(sRegF reg)
 3640 %{
 3641   constraint(ALLOC_IN_RC(stack_slots));
 3642   // No match rule because this operand is only generated in matching
 3643   // match(RegF);
 3644   format %{ "[$reg]" %}
 3645   interface(MEMORY_INTER) %{
 3646     base(0x02);  // RSP
 3647     index(0xffffffff);  // No Index
 3648     scale(0x0);  // No Scale
 3649     disp($reg);  // Stack Offset
 3650   %}
 3651 %}
 3652 
 3653 operand stackSlotD(sRegD reg)
 3654 %{
 3655   constraint(ALLOC_IN_RC(stack_slots));
 3656   // No match rule because this operand is only generated in matching
 3657   // match(RegD);
 3658   format %{ "[$reg]" %}
 3659   interface(MEMORY_INTER) %{
 3660     base(0x02);  // RSP
 3661     index(0xffffffff);  // No Index
 3662     scale(0x0);  // No Scale
 3663     disp($reg);  // Stack Offset
 3664   %}
 3665 %}
 3666 
 3667 operand stackSlotL(sRegL reg)
 3668 %{
 3669   constraint(ALLOC_IN_RC(stack_slots));
 3670   // No match rule because this operand is only generated in matching
 3671   // match(RegL);
 3672   format %{ "[$reg]" %}
 3673   interface(MEMORY_INTER) %{
 3674     base(0x02);  // RSP
 3675     index(0xffffffff);  // No Index
 3676     scale(0x0);  // No Scale
 3677     disp($reg);  // Stack Offset
 3678   %}
 3679 %}
 3680 
 3681 // Special operand allowing long args to int ops to be truncated for free
 3682 
 3683 operand iRegL2I(iRegL reg) %{
 3684 
 3685   op_cost(0);
 3686 
 3687   match(ConvL2I reg);
 3688 
 3689   format %{ "l2i($reg)" %}
 3690 
 3691   interface(REG_INTER)
 3692 %}
 3693 
 3694 
 3695 // Comparison Operands
 3696 // NOTE: Label is a predefined operand which should not be redefined in
 3697 //       the AD file. It is generically handled within the ADLC.
 3698 
 3699 //----------Conditional Branch Operands----------------------------------------
 3700 // Comparison Op  - This is the operation of the comparison, and is limited to
 3701 //                  the following set of codes:
 3702 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
 3703 //
 3704 // Other attributes of the comparison, such as unsignedness, are specified
 3705 // by the comparison instruction that sets a condition code flags register.
 3706 // That result is represented by a flags operand whose subtype is appropriate
 3707 // to the unsignedness (etc.) of the comparison.
 3708 //
 3709 // Later, the instruction which matches both the Comparison Op (a Bool) and
 3710 // the flags (produced by the Cmp) specifies the coding of the comparison op
 3711 // by matching a specific subtype of Bool operand below, such as cmpOpU.
 3712 
 3713 
 3714 // used for signed integral comparisons and fp comparisons
 3715 operand cmpOp()
 3716 %{
 3717   match(Bool);
 3718 
 3719   format %{ "" %}
 3720 
 3721   // the values in interface derives from struct BoolTest::mask
 3722   interface(COND_INTER) %{
 3723     equal(0x0, "eq");
 3724     greater(0x1, "gt");
 3725     overflow(0x2, "overflow");
 3726     less(0x3, "lt");
 3727     not_equal(0x4, "ne");
 3728     less_equal(0x5, "le");
 3729     no_overflow(0x6, "no_overflow");
 3730     greater_equal(0x7, "ge");
 3731   %}
 3732 %}
 3733 
 3734 // used for unsigned integral comparisons
 3735 operand cmpOpU()
 3736 %{
 3737   match(Bool);
 3738 
 3739   format %{ "" %}
 3740   // the values in interface derives from struct BoolTest::mask
 3741   interface(COND_INTER) %{
 3742     equal(0x0, "eq");
 3743     greater(0x1, "gtu");
 3744     overflow(0x2, "overflow");
 3745     less(0x3, "ltu");
 3746     not_equal(0x4, "ne");
 3747     less_equal(0x5, "leu");
 3748     no_overflow(0x6, "no_overflow");
 3749     greater_equal(0x7, "geu");
 3750   %}
 3751 %}
 3752 
 3753 // used for certain integral comparisons which can be
 3754 // converted to bxx instructions
 3755 operand cmpOpEqNe()
 3756 %{
 3757   match(Bool);
 3758   op_cost(0);
 3759   predicate(n->as_Bool()->_test._test == BoolTest::ne ||
 3760             n->as_Bool()->_test._test == BoolTest::eq);
 3761 
 3762   format %{ "" %}
 3763   interface(COND_INTER) %{
 3764     equal(0x0, "eq");
 3765     greater(0x1, "gt");
 3766     overflow(0x2, "overflow");
 3767     less(0x3, "lt");
 3768     not_equal(0x4, "ne");
 3769     less_equal(0x5, "le");
 3770     no_overflow(0x6, "no_overflow");
 3771     greater_equal(0x7, "ge");
 3772   %}
 3773 %}
 3774 
 3775 operand cmpOpULtGe()
 3776 %{
 3777   match(Bool);
 3778   op_cost(0);
 3779   predicate(n->as_Bool()->_test._test == BoolTest::lt ||
 3780             n->as_Bool()->_test._test == BoolTest::ge);
 3781 
 3782   format %{ "" %}
 3783   interface(COND_INTER) %{
 3784     equal(0x0, "eq");
 3785     greater(0x1, "gtu");
 3786     overflow(0x2, "overflow");
 3787     less(0x3, "ltu");
 3788     not_equal(0x4, "ne");
 3789     less_equal(0x5, "leu");
 3790     no_overflow(0x6, "no_overflow");
 3791     greater_equal(0x7, "geu");
 3792   %}
 3793 %}
 3794 
 3795 operand cmpOpUEqNeLeGt()
 3796 %{
 3797   match(Bool);
 3798   op_cost(0);
 3799   predicate(n->as_Bool()->_test._test == BoolTest::ne ||
 3800             n->as_Bool()->_test._test == BoolTest::eq ||
 3801             n->as_Bool()->_test._test == BoolTest::le ||
 3802             n->as_Bool()->_test._test == BoolTest::gt);
 3803 
 3804   format %{ "" %}
 3805   interface(COND_INTER) %{
 3806     equal(0x0, "eq");
 3807     greater(0x1, "gtu");
 3808     overflow(0x2, "overflow");
 3809     less(0x3, "ltu");
 3810     not_equal(0x4, "ne");
 3811     less_equal(0x5, "leu");
 3812     no_overflow(0x6, "no_overflow");
 3813     greater_equal(0x7, "geu");
 3814   %}
 3815 %}
 3816 
 3817 
 3818 // Flags register, used as output of compare logic
 3819 operand rFlagsReg()
 3820 %{
 3821   constraint(ALLOC_IN_RC(reg_flags));
 3822   match(RegFlags);
 3823 
 3824   op_cost(0);
 3825   format %{ "RFLAGS" %}
 3826   interface(REG_INTER);
 3827 %}
 3828 
 3829 // Special Registers
 3830 
 3831 // Method Register
 3832 operand inline_cache_RegP(iRegP reg)
 3833 %{
 3834   constraint(ALLOC_IN_RC(method_reg)); // inline_cache_reg
 3835   match(reg);
 3836   match(iRegPNoSp);
 3837   op_cost(0);
 3838   format %{ %}
 3839   interface(REG_INTER);
 3840 %}
 3841 
 3842 //----------OPERAND CLASSES----------------------------------------------------
 3843 // Operand Classes are groups of operands that are used as to simplify
 3844 // instruction definitions by not requiring the AD writer to specify
 3845 // separate instructions for every form of operand when the
 3846 // instruction accepts multiple operand types with the same basic
 3847 // encoding and format. The classic case of this is memory operands.
 3848 
 3849 // memory is used to define read/write location for load/store
 3850 // instruction defs. we can turn a memory op into an Address
 3851 
 3852 opclass memory(indirect, indOffI, indOffL, indirectN, indOffIN, indOffLN);
 3853 
 3854 // iRegIorL2I is used for src inputs in rules for 32 bit int (I)
 3855 // operations. it allows the src to be either an iRegI or a (ConvL2I
 3856 // iRegL). in the latter case the l2i normally planted for a ConvL2I
 3857 // can be elided because the 32-bit instruction will just employ the
 3858 // lower 32 bits anyway.
 3859 //
 3860 // n.b. this does not elide all L2I conversions. if the truncated
 3861 // value is consumed by more than one operation then the ConvL2I
 3862 // cannot be bundled into the consuming nodes so an l2i gets planted
 3863 // (actually an addiw $dst, $src, 0) and the downstream instructions
 3864 // consume the result of the L2I as an iRegI input. That's a shame since
 3865 // the addiw is actually redundant but its not too costly.
 3866 
 3867 opclass iRegIorL2I(iRegI, iRegL2I);
 3868 opclass iRegIorL(iRegI, iRegL);
 3869 opclass iRegNorP(iRegN, iRegP);
 3870 opclass iRegILNP(iRegI, iRegL, iRegN, iRegP);
 3871 opclass iRegILNPNoSp(iRegINoSp, iRegLNoSp, iRegNNoSp, iRegPNoSp);
 3872 opclass immIorL(immI, immL);
 3873 
 3874 //----------PIPELINE-----------------------------------------------------------
 3875 // Rules which define the behavior of the target architectures pipeline.
 3876 
 3877 // For specific pipelines, e.g. generic RISC-V, define the stages of that pipeline
 3878 //pipe_desc(ID, EX, MEM, WR);
 3879 #define ID   S0
 3880 #define EX   S1
 3881 #define MEM  S2
 3882 #define WR   S3
 3883 
 3884 // Integer ALU reg operation
 3885 pipeline %{
 3886 
 3887 attributes %{
 3888   // RISC-V instructions are of fixed length
 3889   fixed_size_instructions;           // Fixed size instructions TODO does
 3890   max_instructions_per_bundle = 2;   // Generic RISC-V 1, Sifive Series 7 2
 3891   // RISC-V instructions come in 32-bit word units
 3892   instruction_unit_size = 4;         // An instruction is 4 bytes long
 3893   instruction_fetch_unit_size = 64;  // The processor fetches one line
 3894   instruction_fetch_units = 1;       // of 64 bytes
 3895 
 3896   // List of nop instructions
 3897   nops( MachNop );
 3898 %}
 3899 
 3900 // We don't use an actual pipeline model so don't care about resources
 3901 // or description. we do use pipeline classes to introduce fixed
 3902 // latencies
 3903 
 3904 //----------RESOURCES----------------------------------------------------------
 3905 // Resources are the functional units available to the machine
 3906 
 3907 // Generic RISC-V pipeline
 3908 // 1 decoder
 3909 // 1 instruction decoded per cycle
 3910 // 1 load/store ops per cycle, 1 branch, 1 FPU
 3911 // 1 mul, 1 div
 3912 
 3913 resources ( DECODE,
 3914             ALU,
 3915             MUL,
 3916             DIV,
 3917             BRANCH,
 3918             LDST,
 3919             FPU);
 3920 
 3921 //----------PIPELINE DESCRIPTION-----------------------------------------------
 3922 // Pipeline Description specifies the stages in the machine's pipeline
 3923 
 3924 // Define the pipeline as a generic 6 stage pipeline
 3925 pipe_desc(S0, S1, S2, S3, S4, S5);
 3926 
 3927 //----------PIPELINE CLASSES---------------------------------------------------
 3928 // Pipeline Classes describe the stages in which input and output are
 3929 // referenced by the hardware pipeline.
 3930 
 3931 pipe_class fp_dop_reg_reg_s(fRegF dst, fRegF src1, fRegF src2)
 3932 %{
 3933   single_instruction;
 3934   src1   : S1(read);
 3935   src2   : S2(read);
 3936   dst    : S5(write);
 3937   DECODE : ID;
 3938   FPU    : S5;
 3939 %}
 3940 
 3941 pipe_class fp_dop_reg_reg_d(fRegD dst, fRegD src1, fRegD src2)
 3942 %{
 3943   src1   : S1(read);
 3944   src2   : S2(read);
 3945   dst    : S5(write);
 3946   DECODE : ID;
 3947   FPU    : S5;
 3948 %}
 3949 
 3950 pipe_class fp_uop_s(fRegF dst, fRegF src)
 3951 %{
 3952   single_instruction;
 3953   src    : S1(read);
 3954   dst    : S5(write);
 3955   DECODE : ID;
 3956   FPU    : S5;
 3957 %}
 3958 
 3959 pipe_class fp_uop_d(fRegD dst, fRegD src)
 3960 %{
 3961   single_instruction;
 3962   src    : S1(read);
 3963   dst    : S5(write);
 3964   DECODE : ID;
 3965   FPU    : S5;
 3966 %}
 3967 
 3968 pipe_class fp_d2f(fRegF dst, fRegD src)
 3969 %{
 3970   single_instruction;
 3971   src    : S1(read);
 3972   dst    : S5(write);
 3973   DECODE : ID;
 3974   FPU    : S5;
 3975 %}
 3976 
 3977 pipe_class fp_f2d(fRegD dst, fRegF src)
 3978 %{
 3979   single_instruction;
 3980   src    : S1(read);
 3981   dst    : S5(write);
 3982   DECODE : ID;
 3983   FPU    : S5;
 3984 %}
 3985 
 3986 pipe_class fp_f2i(iRegINoSp dst, fRegF src)
 3987 %{
 3988   single_instruction;
 3989   src    : S1(read);
 3990   dst    : S5(write);
 3991   DECODE : ID;
 3992   FPU    : S5;
 3993 %}
 3994 
 3995 pipe_class fp_f2l(iRegLNoSp dst, fRegF src)
 3996 %{
 3997   single_instruction;
 3998   src    : S1(read);
 3999   dst    : S5(write);
 4000   DECODE : ID;
 4001   FPU    : S5;
 4002 %}
 4003 
 4004 pipe_class fp_i2f(fRegF dst, iRegIorL2I src)
 4005 %{
 4006   single_instruction;
 4007   src    : S1(read);
 4008   dst    : S5(write);
 4009   DECODE : ID;
 4010   FPU    : S5;
 4011 %}
 4012 
 4013 pipe_class fp_l2f(fRegF dst, iRegL src)
 4014 %{
 4015   single_instruction;
 4016   src    : S1(read);
 4017   dst    : S5(write);
 4018   DECODE : ID;
 4019   FPU    : S5;
 4020 %}
 4021 
 4022 pipe_class fp_d2i(iRegINoSp dst, fRegD src)
 4023 %{
 4024   single_instruction;
 4025   src    : S1(read);
 4026   dst    : S5(write);
 4027   DECODE : ID;
 4028   FPU    : S5;
 4029 %}
 4030 
 4031 pipe_class fp_d2l(iRegLNoSp dst, fRegD src)
 4032 %{
 4033   single_instruction;
 4034   src    : S1(read);
 4035   dst    : S5(write);
 4036   DECODE : ID;
 4037   FPU    : S5;
 4038 %}
 4039 
 4040 pipe_class fp_i2d(fRegD dst, iRegIorL2I src)
 4041 %{
 4042   single_instruction;
 4043   src    : S1(read);
 4044   dst    : S5(write);
 4045   DECODE : ID;
 4046   FPU    : S5;
 4047 %}
 4048 
 4049 pipe_class fp_l2d(fRegD dst, iRegIorL2I src)
 4050 %{
 4051   single_instruction;
 4052   src    : S1(read);
 4053   dst    : S5(write);
 4054   DECODE : ID;
 4055   FPU    : S5;
 4056 %}
 4057 
 4058 pipe_class fp_div_s(fRegF dst, fRegF src1, fRegF src2)
 4059 %{
 4060   single_instruction;
 4061   src1   : S1(read);
 4062   src2   : S2(read);
 4063   dst    : S5(write);
 4064   DECODE : ID;
 4065   FPU    : S5;
 4066 %}
 4067 
 4068 pipe_class fp_div_d(fRegD dst, fRegD src1, fRegD src2)
 4069 %{
 4070   single_instruction;
 4071   src1   : S1(read);
 4072   src2   : S2(read);
 4073   dst    : S5(write);
 4074   DECODE : ID;
 4075   FPU    : S5;
 4076 %}
 4077 
 4078 pipe_class fp_sqrt_s(fRegF dst, fRegF src)
 4079 %{
 4080   single_instruction;
 4081   src    : S1(read);
 4082   dst    : S5(write);
 4083   DECODE : ID;
 4084   FPU    : S5;
 4085 %}
 4086 
 4087 pipe_class fp_sqrt_d(fRegD dst, fRegD src)
 4088 %{
 4089   single_instruction;
 4090   src    : S1(read);
 4091   dst    : S5(write);
 4092   DECODE : ID;
 4093   FPU    : S5;
 4094 %}
 4095 
 4096 pipe_class fp_load_constant_s(fRegF dst)
 4097 %{
 4098   single_instruction;
 4099   dst    : S5(write);
 4100   DECODE : ID;
 4101   FPU    : S5;
 4102 %}
 4103 
 4104 pipe_class fp_load_constant_d(fRegD dst)
 4105 %{
 4106   single_instruction;
 4107   dst    : S5(write);
 4108   DECODE : ID;
 4109   FPU    : S5;
 4110 %}
 4111 
 4112 pipe_class fp_load_mem_s(fRegF dst, memory mem)
 4113 %{
 4114   single_instruction;
 4115   mem    : S1(read);
 4116   dst    : S5(write);
 4117   DECODE : ID;
 4118   LDST   : MEM;
 4119 %}
 4120 
 4121 pipe_class fp_load_mem_d(fRegD dst, memory mem)
 4122 %{
 4123   single_instruction;
 4124   mem    : S1(read);
 4125   dst    : S5(write);
 4126   DECODE : ID;
 4127   LDST   : MEM;
 4128 %}
 4129 
 4130 pipe_class fp_store_reg_s(fRegF src, memory mem)
 4131 %{
 4132   single_instruction;
 4133   src    : S1(read);
 4134   mem    : S5(write);
 4135   DECODE : ID;
 4136   LDST   : MEM;
 4137 %}
 4138 
 4139 pipe_class fp_store_reg_d(fRegD src, memory mem)
 4140 %{
 4141   single_instruction;
 4142   src    : S1(read);
 4143   mem    : S5(write);
 4144   DECODE : ID;
 4145   LDST   : MEM;
 4146 %}
 4147 
 4148 //------- Integer ALU operations --------------------------
 4149 
 4150 // Integer ALU reg-reg operation
 4151 // Operands needs in ID, result generated in EX
 4152 // E.g.  ADD   Rd, Rs1, Rs2
 4153 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2)
 4154 %{
 4155   single_instruction;
 4156   dst    : EX(write);
 4157   src1   : ID(read);
 4158   src2   : ID(read);
 4159   DECODE : ID;
 4160   ALU    : EX;
 4161 %}
 4162 
 4163 // Integer ALU reg operation with constant shift
 4164 // E.g. SLLI    Rd, Rs1, #shift
 4165 pipe_class ialu_reg_shift(iRegI dst, iRegI src1)
 4166 %{
 4167   single_instruction;
 4168   dst    : EX(write);
 4169   src1   : ID(read);
 4170   DECODE : ID;
 4171   ALU    : EX;
 4172 %}
 4173 
 4174 // Integer ALU reg-reg operation with variable shift
 4175 // both operands must be available in ID
 4176 // E.g. SLL   Rd, Rs1, Rs2
 4177 pipe_class ialu_reg_reg_vshift(iRegI dst, iRegI src1, iRegI src2)
 4178 %{
 4179   single_instruction;
 4180   dst    : EX(write);
 4181   src1   : ID(read);
 4182   src2   : ID(read);
 4183   DECODE : ID;
 4184   ALU    : EX;
 4185 %}
 4186 
 4187 // Integer ALU reg operation
 4188 // E.g. NEG   Rd, Rs2
 4189 pipe_class ialu_reg(iRegI dst, iRegI src)
 4190 %{
 4191   single_instruction;
 4192   dst    : EX(write);
 4193   src    : ID(read);
 4194   DECODE : ID;
 4195   ALU    : EX;
 4196 %}
 4197 
 4198 // Integer ALU reg immediate operation
 4199 // E.g. ADDI   Rd, Rs1, #imm
 4200 pipe_class ialu_reg_imm(iRegI dst, iRegI src1)
 4201 %{
 4202   single_instruction;
 4203   dst    : EX(write);
 4204   src1   : ID(read);
 4205   DECODE : ID;
 4206   ALU    : EX;
 4207 %}
 4208 
 4209 // Integer ALU immediate operation (no source operands)
 4210 // E.g. LI    Rd, #imm
 4211 pipe_class ialu_imm(iRegI dst)
 4212 %{
 4213   single_instruction;
 4214   dst    : EX(write);
 4215   DECODE : ID;
 4216   ALU    : EX;
 4217 %}
 4218 
 4219 //------- Multiply pipeline operations --------------------
 4220 
 4221 // Multiply reg-reg
 4222 // E.g. MULW   Rd, Rs1, Rs2
 4223 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2)
 4224 %{
 4225   single_instruction;
 4226   dst    : WR(write);
 4227   src1   : ID(read);
 4228   src2   : ID(read);
 4229   DECODE : ID;
 4230   MUL    : WR;
 4231 %}
 4232 
 4233 // E.g. MUL   RD, Rs1, Rs2
 4234 pipe_class lmul_reg_reg(iRegL dst, iRegL src1, iRegL src2)
 4235 %{
 4236   single_instruction;
 4237   fixed_latency(3); // Maximum latency for 64 bit mul
 4238   dst    : WR(write);
 4239   src1   : ID(read);
 4240   src2   : ID(read);
 4241   DECODE : ID;
 4242   MUL    : WR;
 4243 %}
 4244 
 4245 //------- Divide pipeline operations --------------------
 4246 
 4247 // E.g. DIVW   Rd, Rs1, Rs2
 4248 pipe_class idiv_reg_reg(iRegI dst, iRegI src1, iRegI src2)
 4249 %{
 4250   single_instruction;
 4251   fixed_latency(8); // Maximum latency for 32 bit divide
 4252   dst    : WR(write);
 4253   src1   : ID(read);
 4254   src2   : ID(read);
 4255   DECODE : ID;
 4256   DIV    : WR;
 4257 %}
 4258 
 4259 // E.g. DIV   RD, Rs1, Rs2
 4260 pipe_class ldiv_reg_reg(iRegL dst, iRegL src1, iRegL src2)
 4261 %{
 4262   single_instruction;
 4263   fixed_latency(16); // Maximum latency for 64 bit divide
 4264   dst    : WR(write);
 4265   src1   : ID(read);
 4266   src2   : ID(read);
 4267   DECODE : ID;
 4268   DIV    : WR;
 4269 %}
 4270 
 4271 //------- Load pipeline operations ------------------------
 4272 
 4273 // Load - prefetch
 4274 // Eg.  PREFETCH_W  mem
 4275 pipe_class iload_prefetch(memory mem)
 4276 %{
 4277   single_instruction;
 4278   mem    : ID(read);
 4279   DECODE : ID;
 4280   LDST   : MEM;
 4281 %}
 4282 
 4283 // Load - reg, mem
 4284 // E.g. LA    Rd, mem
 4285 pipe_class iload_reg_mem(iRegI dst, memory mem)
 4286 %{
 4287   single_instruction;
 4288   dst    : WR(write);
 4289   mem    : ID(read);
 4290   DECODE : ID;
 4291   LDST   : MEM;
 4292 %}
 4293 
 4294 // Load - reg, reg
 4295 // E.g. LD    Rd, Rs
 4296 pipe_class iload_reg_reg(iRegI dst, iRegI src)
 4297 %{
 4298   single_instruction;
 4299   dst    : WR(write);
 4300   src    : ID(read);
 4301   DECODE : ID;
 4302   LDST   : MEM;
 4303 %}
 4304 
 4305 //------- Store pipeline operations -----------------------
 4306 
 4307 // Store - zr, mem
 4308 // E.g. SD    zr, mem
 4309 pipe_class istore_mem(memory mem)
 4310 %{
 4311   single_instruction;
 4312   mem    : ID(read);
 4313   DECODE : ID;
 4314   LDST   : MEM;
 4315 %}
 4316 
 4317 // Store - reg, mem
 4318 // E.g. SD    Rs, mem
 4319 pipe_class istore_reg_mem(iRegI src, memory mem)
 4320 %{
 4321   single_instruction;
 4322   mem    : ID(read);
 4323   src    : EX(read);
 4324   DECODE : ID;
 4325   LDST   : MEM;
 4326 %}
 4327 
 4328 // Store - reg, reg
 4329 // E.g. SD    Rs2, Rs1
 4330 pipe_class istore_reg_reg(iRegI dst, iRegI src)
 4331 %{
 4332   single_instruction;
 4333   dst    : ID(read);
 4334   src    : EX(read);
 4335   DECODE : ID;
 4336   LDST   : MEM;
 4337 %}
 4338 
 4339 //------- Control transfer pipeline operations ------------
 4340 
 4341 // Branch
 4342 pipe_class pipe_branch()
 4343 %{
 4344   single_instruction;
 4345   DECODE : ID;
 4346   BRANCH : EX;
 4347 %}
 4348 
 4349 // Branch
 4350 pipe_class pipe_branch_reg(iRegI src)
 4351 %{
 4352   single_instruction;
 4353   src    : ID(read);
 4354   DECODE : ID;
 4355   BRANCH : EX;
 4356 %}
 4357 
 4358 // Compare & Branch
 4359 // E.g. BEQ   Rs1, Rs2, L
 4360 pipe_class pipe_cmp_branch(iRegI src1, iRegI src2)
 4361 %{
 4362   single_instruction;
 4363   src1   : ID(read);
 4364   src2   : ID(read);
 4365   DECODE : ID;
 4366   BRANCH : EX;
 4367 %}
 4368 
 4369 // E.g. BEQZ Rs, L
 4370 pipe_class pipe_cmpz_branch(iRegI src)
 4371 %{
 4372   single_instruction;
 4373   src    : ID(read);
 4374   DECODE : ID;
 4375   BRANCH : EX;
 4376 %}
 4377 
 4378 //------- Synchronisation operations ----------------------
 4379 // Any operation requiring serialization
 4380 // E.g. FENCE/Atomic Ops/Load Acquire/Store Release
 4381 pipe_class pipe_serial()
 4382 %{
 4383   single_instruction;
 4384   force_serialization;
 4385   fixed_latency(16);
 4386   DECODE : ID;
 4387   LDST   : MEM;
 4388 %}
 4389 
 4390 pipe_class pipe_slow()
 4391 %{
 4392   instruction_count(10);
 4393   multiple_bundles;
 4394   force_serialization;
 4395   fixed_latency(16);
 4396   DECODE : ID;
 4397   LDST   : MEM;
 4398 %}
 4399 
 4400 // Empty pipeline class
 4401 pipe_class pipe_class_empty()
 4402 %{
 4403   single_instruction;
 4404   fixed_latency(0);
 4405 %}
 4406 
 4407 // Default pipeline class.
 4408 pipe_class pipe_class_default()
 4409 %{
 4410   single_instruction;
 4411   fixed_latency(2);
 4412 %}
 4413 
 4414 // Pipeline class for compares.
 4415 pipe_class pipe_class_compare()
 4416 %{
 4417   single_instruction;
 4418   fixed_latency(16);
 4419 %}
 4420 
 4421 // Pipeline class for memory operations.
 4422 pipe_class pipe_class_memory()
 4423 %{
 4424   single_instruction;
 4425   fixed_latency(16);
 4426 %}
 4427 
 4428 // Pipeline class for call.
 4429 pipe_class pipe_class_call()
 4430 %{
 4431   single_instruction;
 4432   fixed_latency(100);
 4433 %}
 4434 
 4435 // Define the class for the Nop node.
 4436 define %{
 4437    MachNop = pipe_class_empty;
 4438 %}
 4439 %}
 4440 //----------INSTRUCTIONS-------------------------------------------------------
 4441 //
 4442 // match      -- States which machine-independent subtree may be replaced
 4443 //               by this instruction.
 4444 // ins_cost   -- The estimated cost of this instruction is used by instruction
 4445 //               selection to identify a minimum cost tree of machine
 4446 //               instructions that matches a tree of machine-independent
 4447 //               instructions.
 4448 // format     -- A string providing the disassembly for this instruction.
 4449 //               The value of an instruction's operand may be inserted
 4450 //               by referring to it with a '$' prefix.
 4451 // opcode     -- Three instruction opcodes may be provided.  These are referred
 4452 //               to within an encode class as $primary, $secondary, and $tertiary
 4453 //               rrspectively.  The primary opcode is commonly used to
 4454 //               indicate the type of machine instruction, while secondary
 4455 //               and tertiary are often used for prefix options or addressing
 4456 //               modes.
 4457 // ins_encode -- A list of encode classes with parameters. The encode class
 4458 //               name must have been defined in an 'enc_class' specification
 4459 //               in the encode section of the architecture description.
 4460 
 4461 // ============================================================================
 4462 // Memory (Load/Store) Instructions
 4463 
 4464 // Load Instructions
 4465 
 4466 // Load Byte (8 bit signed)
 4467 instruct loadB(iRegINoSp dst, memory mem)
 4468 %{
 4469   match(Set dst (LoadB mem));
 4470 
 4471   ins_cost(LOAD_COST);
 4472   format %{ "lb  $dst, $mem\t# byte, #@loadB" %}
 4473 
 4474   ins_encode %{
 4475     __ lb(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp));
 4476   %}
 4477 
 4478   ins_pipe(iload_reg_mem);
 4479 %}
 4480 
 4481 // Load Byte (8 bit signed) into long
 4482 instruct loadB2L(iRegLNoSp dst, memory mem)
 4483 %{
 4484   match(Set dst (ConvI2L (LoadB mem)));
 4485 
 4486   ins_cost(LOAD_COST);
 4487   format %{ "lb  $dst, $mem\t# byte, #@loadB2L" %}
 4488 
 4489   ins_encode %{
 4490     __ lb(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp));
 4491   %}
 4492 
 4493   ins_pipe(iload_reg_mem);
 4494 %}
 4495 
 4496 // Load Byte (8 bit unsigned)
 4497 instruct loadUB(iRegINoSp dst, memory mem)
 4498 %{
 4499   match(Set dst (LoadUB mem));
 4500 
 4501   ins_cost(LOAD_COST);
 4502   format %{ "lbu  $dst, $mem\t# byte, #@loadUB" %}
 4503 
 4504   ins_encode %{
 4505     __ lbu(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp));
 4506   %}
 4507 
 4508   ins_pipe(iload_reg_mem);
 4509 %}
 4510 
 4511 // Load Byte (8 bit unsigned) into long
 4512 instruct loadUB2L(iRegLNoSp dst, memory mem)
 4513 %{
 4514   match(Set dst (ConvI2L (LoadUB mem)));
 4515 
 4516   ins_cost(LOAD_COST);
 4517   format %{ "lbu  $dst, $mem\t# byte, #@loadUB2L" %}
 4518 
 4519   ins_encode %{
 4520     __ lbu(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp));
 4521   %}
 4522 
 4523   ins_pipe(iload_reg_mem);
 4524 %}
 4525 
 4526 // Load Short (16 bit signed)
 4527 instruct loadS(iRegINoSp dst, memory mem)
 4528 %{
 4529   match(Set dst (LoadS mem));
 4530 
 4531   ins_cost(LOAD_COST);
 4532   format %{ "lh  $dst, $mem\t# short, #@loadS" %}
 4533 
 4534   ins_encode %{
 4535     __ lh(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp));
 4536   %}
 4537 
 4538   ins_pipe(iload_reg_mem);
 4539 %}
 4540 
 4541 // Load Short (16 bit signed) into long
 4542 instruct loadS2L(iRegLNoSp dst, memory mem)
 4543 %{
 4544   match(Set dst (ConvI2L (LoadS mem)));
 4545 
 4546   ins_cost(LOAD_COST);
 4547   format %{ "lh  $dst, $mem\t# short, #@loadS2L" %}
 4548 
 4549   ins_encode %{
 4550     __ lh(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp));
 4551   %}
 4552 
 4553   ins_pipe(iload_reg_mem);
 4554 %}
 4555 
 4556 // Load Char (16 bit unsigned)
 4557 instruct loadUS(iRegINoSp dst, memory mem)
 4558 %{
 4559   match(Set dst (LoadUS mem));
 4560 
 4561   ins_cost(LOAD_COST);
 4562   format %{ "lhu  $dst, $mem\t# short, #@loadUS" %}
 4563 
 4564   ins_encode %{
 4565     __ lhu(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp));
 4566   %}
 4567 
 4568   ins_pipe(iload_reg_mem);
 4569 %}
 4570 
 4571 // Load Short/Char (16 bit unsigned) into long
 4572 instruct loadUS2L(iRegLNoSp dst, memory mem)
 4573 %{
 4574   match(Set dst (ConvI2L (LoadUS mem)));
 4575 
 4576   ins_cost(LOAD_COST);
 4577   format %{ "lhu  $dst, $mem\t# short, #@loadUS2L" %}
 4578 
 4579   ins_encode %{
 4580     __ lhu(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp));
 4581   %}
 4582 
 4583   ins_pipe(iload_reg_mem);
 4584 %}
 4585 
 4586 // Load Integer (32 bit signed)
 4587 instruct loadI(iRegINoSp dst, memory mem)
 4588 %{
 4589   match(Set dst (LoadI mem));
 4590 
 4591   ins_cost(LOAD_COST);
 4592   format %{ "lw  $dst, $mem\t# int, #@loadI" %}
 4593 
 4594   ins_encode %{
 4595     __ lw(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp));
 4596   %}
 4597 
 4598   ins_pipe(iload_reg_mem);
 4599 %}
 4600 
 4601 // Load Integer (32 bit signed) into long
 4602 instruct loadI2L(iRegLNoSp dst, memory mem)
 4603 %{
 4604   match(Set dst (ConvI2L (LoadI mem)));
 4605 
 4606   ins_cost(LOAD_COST);
 4607   format %{ "lw  $dst, $mem\t# int, #@loadI2L" %}
 4608 
 4609   ins_encode %{
 4610     __ lw(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp));
 4611   %}
 4612 
 4613   ins_pipe(iload_reg_mem);
 4614 %}
 4615 
 4616 // Load Integer (32 bit unsigned) into long
 4617 instruct loadUI2L(iRegLNoSp dst, memory mem, immL_32bits mask)
 4618 %{
 4619   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
 4620 
 4621   ins_cost(LOAD_COST);
 4622   format %{ "lwu  $dst, $mem\t# int, #@loadUI2L" %}
 4623 
 4624   ins_encode %{
 4625     __ lwu(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp));
 4626   %}
 4627 
 4628   ins_pipe(iload_reg_mem);
 4629 %}
 4630 
 4631 // Load Long (64 bit signed)
 4632 instruct loadL(iRegLNoSp dst, memory mem)
 4633 %{
 4634   match(Set dst (LoadL mem));
 4635 
 4636   ins_cost(LOAD_COST);
 4637   format %{ "ld  $dst, $mem\t# int, #@loadL" %}
 4638 
 4639   ins_encode %{
 4640     __ ld(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp));
 4641   %}
 4642 
 4643   ins_pipe(iload_reg_mem);
 4644 %}
 4645 
 4646 // Load Range
 4647 instruct loadRange(iRegINoSp dst, memory mem)
 4648 %{
 4649   match(Set dst (LoadRange mem));
 4650 
 4651   ins_cost(LOAD_COST);
 4652   format %{ "lwu  $dst, $mem\t# range, #@loadRange" %}
 4653 
 4654   ins_encode %{
 4655     __ lwu(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp));
 4656   %}
 4657 
 4658   ins_pipe(iload_reg_mem);
 4659 %}
 4660 
 4661 // Load Pointer
 4662 instruct loadP(iRegPNoSp dst, memory mem)
 4663 %{
 4664   match(Set dst (LoadP mem));
 4665   predicate(n->as_Load()->barrier_data() == 0);
 4666 
 4667   ins_cost(LOAD_COST);
 4668   format %{ "ld  $dst, $mem\t# ptr, #@loadP" %}
 4669 
 4670   ins_encode %{
 4671     __ ld(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp));
 4672   %}
 4673 
 4674   ins_pipe(iload_reg_mem);
 4675 %}
 4676 
 4677 // Load Compressed Pointer
 4678 instruct loadN(iRegNNoSp dst, memory mem)
 4679 %{
 4680   predicate(n->as_Load()->barrier_data() == 0);
 4681   match(Set dst (LoadN mem));
 4682 
 4683   ins_cost(LOAD_COST);
 4684   format %{ "lwu  $dst, $mem\t# compressed ptr, #@loadN" %}
 4685 
 4686   ins_encode %{
 4687     __ lwu(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp));
 4688   %}
 4689 
 4690   ins_pipe(iload_reg_mem);
 4691 %}
 4692 
 4693 // Load Klass Pointer
 4694 instruct loadKlass(iRegPNoSp dst, memory mem)
 4695 %{
 4696   match(Set dst (LoadKlass mem));
 4697 
 4698   ins_cost(LOAD_COST);
 4699   format %{ "ld  $dst, $mem\t# class, #@loadKlass" %}
 4700 
 4701   ins_encode %{
 4702     __ ld(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp));
 4703   %}
 4704 
 4705   ins_pipe(iload_reg_mem);
 4706 %}
 4707 
 4708 // Load Narrow Klass Pointer
 4709 instruct loadNKlass(iRegNNoSp dst, memory mem)
 4710 %{
 4711   predicate(!UseCompactObjectHeaders);
 4712   match(Set dst (LoadNKlass mem));
 4713 
 4714   ins_cost(LOAD_COST);
 4715   format %{ "lwu  $dst, $mem\t# compressed class ptr, #@loadNKlass" %}
 4716 
 4717   ins_encode %{
 4718     __ lwu(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp));
 4719   %}
 4720 
 4721   ins_pipe(iload_reg_mem);
 4722 %}
 4723 
 4724 instruct loadNKlassCompactHeaders(iRegNNoSp dst, memory mem)
 4725 %{
 4726   predicate(UseCompactObjectHeaders);
 4727   match(Set dst (LoadNKlass mem));
 4728 
 4729   ins_cost(LOAD_COST);
 4730   format %{
 4731     "lwu  $dst, $mem\t# compressed klass ptr, shifted\n\t"
 4732     "srli $dst, $dst, markWord::klass_shift_at_offset"
 4733   %}
 4734 
 4735   ins_encode %{
 4736     __ lwu(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp));
 4737     __ srli(as_Register($dst$$reg), as_Register($dst$$reg), (unsigned) markWord::klass_shift_at_offset);
 4738   %}
 4739 
 4740   ins_pipe(iload_reg_mem);
 4741 %}
 4742 
 4743 // Load Float
 4744 instruct loadF(fRegF dst, memory mem)
 4745 %{
 4746   match(Set dst (LoadF mem));
 4747 
 4748   ins_cost(LOAD_COST);
 4749   format %{ "flw  $dst, $mem\t# float, #@loadF" %}
 4750 
 4751   ins_encode %{
 4752     __ flw(as_FloatRegister($dst$$reg), Address(as_Register($mem$$base), $mem$$disp));
 4753   %}
 4754 
 4755   ins_pipe(fp_load_mem_s);
 4756 %}
 4757 
 4758 // Load Double
 4759 instruct loadD(fRegD dst, memory mem)
 4760 %{
 4761   match(Set dst (LoadD mem));
 4762 
 4763   ins_cost(LOAD_COST);
 4764   format %{ "fld  $dst, $mem\t# double, #@loadD" %}
 4765 
 4766   ins_encode %{
 4767     __ fld(as_FloatRegister($dst$$reg), Address(as_Register($mem$$base), $mem$$disp));
 4768   %}
 4769 
 4770   ins_pipe(fp_load_mem_d);
 4771 %}
 4772 
 4773 // Load Int Constant
 4774 instruct loadConI(iRegINoSp dst, immI src)
 4775 %{
 4776   match(Set dst src);
 4777 
 4778   ins_cost(ALU_COST);
 4779   format %{ "mv $dst, $src\t# int, #@loadConI" %}
 4780 
 4781   ins_encode(riscv_enc_mov_imm(dst, src));
 4782 
 4783   ins_pipe(ialu_imm);
 4784 %}
 4785 
 4786 // Load Long Constant
 4787 instruct loadConL(iRegLNoSp dst, immL src)
 4788 %{
 4789   match(Set dst src);
 4790 
 4791   ins_cost(ALU_COST);
 4792   format %{ "mv $dst, $src\t# long, #@loadConL" %}
 4793 
 4794   ins_encode(riscv_enc_mov_imm(dst, src));
 4795 
 4796   ins_pipe(ialu_imm);
 4797 %}
 4798 
 4799 // Load Pointer Constant
 4800 instruct loadConP(iRegPNoSp dst, immP con)
 4801 %{
 4802   match(Set dst con);
 4803 
 4804   ins_cost(ALU_COST);
 4805   format %{ "mv  $dst, $con\t# ptr, #@loadConP" %}
 4806 
 4807   ins_encode(riscv_enc_mov_p(dst, con));
 4808 
 4809   ins_pipe(ialu_imm);
 4810 %}
 4811 
 4812 // Load Null Pointer Constant
 4813 instruct loadConP0(iRegPNoSp dst, immP0 con)
 4814 %{
 4815   match(Set dst con);
 4816 
 4817   ins_cost(ALU_COST);
 4818   format %{ "mv  $dst, $con\t# null pointer, #@loadConP0" %}
 4819 
 4820   ins_encode(riscv_enc_mov_zero(dst));
 4821 
 4822   ins_pipe(ialu_imm);
 4823 %}
 4824 
 4825 // Load Pointer Constant One
 4826 instruct loadConP1(iRegPNoSp dst, immP_1 con)
 4827 %{
 4828   match(Set dst con);
 4829 
 4830   ins_cost(ALU_COST);
 4831   format %{ "mv  $dst, $con\t# load ptr constant one, #@loadConP1" %}
 4832 
 4833   ins_encode(riscv_enc_mov_p1(dst));
 4834 
 4835   ins_pipe(ialu_imm);
 4836 %}
 4837 
 4838 // Load Byte Map Base Constant
 4839 instruct loadByteMapBase(iRegPNoSp dst, immByteMapBase con)
 4840 %{
 4841   match(Set dst con);
 4842   ins_cost(ALU_COST);
 4843   format %{ "mv  $dst, $con\t# Byte Map Base, #@loadByteMapBase" %}
 4844 
 4845   ins_encode(riscv_enc_mov_byte_map_base(dst));
 4846 
 4847   ins_pipe(ialu_imm);
 4848 %}
 4849 
 4850 // Load Narrow Pointer Constant
 4851 instruct loadConN(iRegNNoSp dst, immN con)
 4852 %{
 4853   match(Set dst con);
 4854 
 4855   ins_cost(ALU_COST * 4);
 4856   format %{ "mv  $dst, $con\t# compressed ptr, #@loadConN" %}
 4857 
 4858   ins_encode(riscv_enc_mov_n(dst, con));
 4859 
 4860   ins_pipe(ialu_imm);
 4861 %}
 4862 
 4863 // Load Narrow Null Pointer Constant
 4864 instruct loadConN0(iRegNNoSp dst, immN0 con)
 4865 %{
 4866   match(Set dst con);
 4867 
 4868   ins_cost(ALU_COST);
 4869   format %{ "mv  $dst, $con\t# compressed null pointer, #@loadConN0" %}
 4870 
 4871   ins_encode(riscv_enc_mov_zero(dst));
 4872 
 4873   ins_pipe(ialu_imm);
 4874 %}
 4875 
 4876 // Load Narrow Klass Constant
 4877 instruct loadConNKlass(iRegNNoSp dst, immNKlass con)
 4878 %{
 4879   match(Set dst con);
 4880 
 4881   ins_cost(ALU_COST * 6);
 4882   format %{ "mv  $dst, $con\t# compressed klass ptr, #@loadConNKlass" %}
 4883 
 4884   ins_encode(riscv_enc_mov_nk(dst, con));
 4885 
 4886   ins_pipe(ialu_imm);
 4887 %}
 4888 
 4889 // Load Half Float Constant
 4890 instruct loadConH(fRegF dst, immH con) %{
 4891   match(Set dst con);
 4892 
 4893   ins_cost(LOAD_COST);
 4894   format %{
 4895     "flh $dst, [$constantaddress]\t# load from constant table: float=$con, #@loadConH"
 4896   %}
 4897 
 4898   ins_encode %{
 4899     assert(UseZfh || UseZfhmin, "must");
 4900     if (MacroAssembler::can_hf_imm_load($con$$constant)) {
 4901       __ fli_h(as_FloatRegister($dst$$reg), $con$$constant);
 4902     } else {
 4903       __ flh(as_FloatRegister($dst$$reg), $constantaddress($con));
 4904     }
 4905   %}
 4906 
 4907   ins_pipe(fp_load_constant_s);
 4908 %}
 4909 
 4910 instruct loadConH0(fRegF dst, immH0 con) %{
 4911   match(Set dst con);
 4912 
 4913   ins_cost(XFER_COST);
 4914 
 4915   format %{ "fmv.h.x $dst, zr\t# float, #@loadConH0" %}
 4916 
 4917   ins_encode %{
 4918     assert(UseZfh || UseZfhmin, "must");
 4919     __ fmv_h_x(as_FloatRegister($dst$$reg), zr);
 4920   %}
 4921 
 4922   ins_pipe(fp_load_constant_s);
 4923 %}
 4924 
 4925 // Load Float Constant
 4926 instruct loadConF(fRegF dst, immF con) %{
 4927   match(Set dst con);
 4928 
 4929   ins_cost(LOAD_COST);
 4930   format %{
 4931     "flw $dst, [$constantaddress]\t# load from constant table: float=$con, #@loadConF"
 4932   %}
 4933 
 4934   ins_encode %{
 4935     if (MacroAssembler::can_fp_imm_load($con$$constant)) {
 4936       __ fli_s(as_FloatRegister($dst$$reg), $con$$constant);
 4937     } else {
 4938       __ flw(as_FloatRegister($dst$$reg), $constantaddress($con));
 4939     }
 4940   %}
 4941 
 4942   ins_pipe(fp_load_constant_s);
 4943 %}
 4944 
 4945 instruct loadConF0(fRegF dst, immF0 con) %{
 4946   match(Set dst con);
 4947 
 4948   ins_cost(XFER_COST);
 4949 
 4950   format %{ "fmv.w.x $dst, zr\t# float, #@loadConF0" %}
 4951 
 4952   ins_encode %{
 4953     __ fmv_w_x(as_FloatRegister($dst$$reg), zr);
 4954   %}
 4955 
 4956   ins_pipe(fp_load_constant_s);
 4957 %}
 4958 
 4959 // Load Double Constant
 4960 instruct loadConD(fRegD dst, immD con) %{
 4961   match(Set dst con);
 4962 
 4963   ins_cost(LOAD_COST);
 4964   format %{
 4965     "fld $dst, [$constantaddress]\t# load from constant table: double=$con, #@loadConD"
 4966   %}
 4967 
 4968   ins_encode %{
 4969     if (MacroAssembler::can_dp_imm_load($con$$constant)) {
 4970       __ fli_d(as_FloatRegister($dst$$reg), $con$$constant);
 4971     } else {
 4972       __ fld(as_FloatRegister($dst$$reg), $constantaddress($con));
 4973     }
 4974   %}
 4975 
 4976   ins_pipe(fp_load_constant_d);
 4977 %}
 4978 
 4979 instruct loadConD0(fRegD dst, immD0 con) %{
 4980   match(Set dst con);
 4981 
 4982   ins_cost(XFER_COST);
 4983 
 4984   format %{ "fmv.d.x $dst, zr\t# double, #@loadConD0" %}
 4985 
 4986   ins_encode %{
 4987     __ fmv_d_x(as_FloatRegister($dst$$reg), zr);
 4988   %}
 4989 
 4990   ins_pipe(fp_load_constant_d);
 4991 %}
 4992 
 4993 // Store Byte
 4994 instruct storeB(iRegIorL2I src, memory mem)
 4995 %{
 4996   match(Set mem (StoreB mem src));
 4997 
 4998   ins_cost(STORE_COST);
 4999   format %{ "sb  $src, $mem\t# byte, #@storeB" %}
 5000 
 5001   ins_encode %{
 5002     __ sb(as_Register($src$$reg), Address(as_Register($mem$$base), $mem$$disp));
 5003   %}
 5004 
 5005   ins_pipe(istore_reg_mem);
 5006 %}
 5007 
 5008 instruct storeimmB0(immI0 zero, memory mem)
 5009 %{
 5010   match(Set mem (StoreB mem zero));
 5011 
 5012   ins_cost(STORE_COST);
 5013   format %{ "sb zr, $mem\t# byte, #@storeimmB0" %}
 5014 
 5015   ins_encode %{
 5016     __ sb(zr, Address(as_Register($mem$$base), $mem$$disp));
 5017   %}
 5018 
 5019   ins_pipe(istore_mem);
 5020 %}
 5021 
 5022 // Store Char/Short
 5023 instruct storeC(iRegIorL2I src, memory mem)
 5024 %{
 5025   match(Set mem (StoreC mem src));
 5026 
 5027   ins_cost(STORE_COST);
 5028   format %{ "sh  $src, $mem\t# short, #@storeC" %}
 5029 
 5030   ins_encode %{
 5031     __ sh(as_Register($src$$reg), Address(as_Register($mem$$base), $mem$$disp));
 5032   %}
 5033 
 5034   ins_pipe(istore_reg_mem);
 5035 %}
 5036 
 5037 instruct storeimmC0(immI0 zero, memory mem)
 5038 %{
 5039   match(Set mem (StoreC mem zero));
 5040 
 5041   ins_cost(STORE_COST);
 5042   format %{ "sh  zr, $mem\t# short, #@storeimmC0" %}
 5043 
 5044   ins_encode %{
 5045     __ sh(zr, Address(as_Register($mem$$base), $mem$$disp));
 5046   %}
 5047 
 5048   ins_pipe(istore_mem);
 5049 %}
 5050 
 5051 // Store Integer
 5052 instruct storeI(iRegIorL2I src, memory mem)
 5053 %{
 5054   match(Set mem(StoreI mem src));
 5055 
 5056   ins_cost(STORE_COST);
 5057   format %{ "sw  $src, $mem\t# int, #@storeI" %}
 5058 
 5059   ins_encode %{
 5060     __ sw(as_Register($src$$reg), Address(as_Register($mem$$base), $mem$$disp));
 5061   %}
 5062 
 5063   ins_pipe(istore_reg_mem);
 5064 %}
 5065 
 5066 instruct storeimmI0(immI0 zero, memory mem)
 5067 %{
 5068   match(Set mem(StoreI mem zero));
 5069 
 5070   ins_cost(STORE_COST);
 5071   format %{ "sw  zr, $mem\t# int, #@storeimmI0" %}
 5072 
 5073   ins_encode %{
 5074     __ sw(zr, Address(as_Register($mem$$base), $mem$$disp));
 5075   %}
 5076 
 5077   ins_pipe(istore_mem);
 5078 %}
 5079 
 5080 // Store Long (64 bit signed)
 5081 instruct storeL(iRegL src, memory mem)
 5082 %{
 5083   match(Set mem (StoreL mem src));
 5084 
 5085   ins_cost(STORE_COST);
 5086   format %{ "sd  $src, $mem\t# long, #@storeL" %}
 5087 
 5088   ins_encode %{
 5089     __ sd(as_Register($src$$reg), Address(as_Register($mem$$base), $mem$$disp));
 5090   %}
 5091 
 5092   ins_pipe(istore_reg_mem);
 5093 %}
 5094 
 5095 // Store Long (64 bit signed)
 5096 instruct storeimmL0(immL0 zero, memory mem)
 5097 %{
 5098   match(Set mem (StoreL mem zero));
 5099 
 5100   ins_cost(STORE_COST);
 5101   format %{ "sd  zr, $mem\t# long, #@storeimmL0" %}
 5102 
 5103   ins_encode %{
 5104     __ sd(zr, Address(as_Register($mem$$base), $mem$$disp));
 5105   %}
 5106 
 5107   ins_pipe(istore_mem);
 5108 %}
 5109 
 5110 // Store Pointer
 5111 instruct storeP(iRegP src, memory mem)
 5112 %{
 5113   match(Set mem (StoreP mem src));
 5114   predicate(n->as_Store()->barrier_data() == 0);
 5115 
 5116   ins_cost(STORE_COST);
 5117   format %{ "sd  $src, $mem\t# ptr, #@storeP" %}
 5118 
 5119   ins_encode %{
 5120     __ sd(as_Register($src$$reg), Address(as_Register($mem$$base), $mem$$disp));
 5121   %}
 5122 
 5123   ins_pipe(istore_reg_mem);
 5124 %}
 5125 
 5126 // Store Pointer
 5127 instruct storeimmP0(immP0 zero, memory mem)
 5128 %{
 5129   match(Set mem (StoreP mem zero));
 5130   predicate(n->as_Store()->barrier_data() == 0);
 5131 
 5132   ins_cost(STORE_COST);
 5133   format %{ "sd zr, $mem\t# ptr, #@storeimmP0" %}
 5134 
 5135   ins_encode %{
 5136     __ sd(zr, Address(as_Register($mem$$base), $mem$$disp));
 5137   %}
 5138 
 5139   ins_pipe(istore_mem);
 5140 %}
 5141 
 5142 // Store Compressed Pointer
 5143 instruct storeN(iRegN src, memory mem)
 5144 %{
 5145   predicate(n->as_Store()->barrier_data() == 0);
 5146   match(Set mem (StoreN mem src));
 5147 
 5148   ins_cost(STORE_COST);
 5149   format %{ "sw  $src, $mem\t# compressed ptr, #@storeN" %}
 5150 
 5151   ins_encode %{
 5152     __ sw(as_Register($src$$reg), Address(as_Register($mem$$base), $mem$$disp));
 5153   %}
 5154 
 5155   ins_pipe(istore_reg_mem);
 5156 %}
 5157 
 5158 instruct storeImmN0(immN0 zero, memory mem)
 5159 %{
 5160   predicate(n->as_Store()->barrier_data() == 0);
 5161   match(Set mem (StoreN mem zero));
 5162 
 5163   ins_cost(STORE_COST);
 5164   format %{ "sw  zr, $mem\t# compressed ptr, #@storeImmN0" %}
 5165 
 5166   ins_encode %{
 5167     __ sw(zr, Address(as_Register($mem$$base), $mem$$disp));
 5168   %}
 5169 
 5170   ins_pipe(istore_reg_mem);
 5171 %}
 5172 
 5173 // Store Float
 5174 instruct storeF(fRegF src, memory mem)
 5175 %{
 5176   match(Set mem (StoreF mem src));
 5177 
 5178   ins_cost(STORE_COST);
 5179   format %{ "fsw  $src, $mem\t# float, #@storeF" %}
 5180 
 5181   ins_encode %{
 5182     __ fsw(as_FloatRegister($src$$reg), Address(as_Register($mem$$base), $mem$$disp));
 5183   %}
 5184 
 5185   ins_pipe(fp_store_reg_s);
 5186 %}
 5187 
 5188 // Store Double
 5189 instruct storeD(fRegD src, memory mem)
 5190 %{
 5191   match(Set mem (StoreD mem src));
 5192 
 5193   ins_cost(STORE_COST);
 5194   format %{ "fsd  $src, $mem\t# double, #@storeD" %}
 5195 
 5196   ins_encode %{
 5197     __ fsd(as_FloatRegister($src$$reg), Address(as_Register($mem$$base), $mem$$disp));
 5198   %}
 5199 
 5200   ins_pipe(fp_store_reg_d);
 5201 %}
 5202 
 5203 // Store Compressed Klass Pointer
 5204 instruct storeNKlass(iRegN src, memory mem)
 5205 %{
 5206   match(Set mem (StoreNKlass mem src));
 5207 
 5208   ins_cost(STORE_COST);
 5209   format %{ "sw  $src, $mem\t# compressed klass ptr, #@storeNKlass" %}
 5210 
 5211   ins_encode %{
 5212     __ sw(as_Register($src$$reg), Address(as_Register($mem$$base), $mem$$disp));
 5213   %}
 5214 
 5215   ins_pipe(istore_reg_mem);
 5216 %}
 5217 
 5218 // ============================================================================
 5219 // Prefetch instructions
 5220 // Must be safe to execute with invalid address (cannot fault).
 5221 
 5222 instruct prefetchalloc( memory mem ) %{
 5223   predicate(UseZicbop);
 5224   match(PrefetchAllocation mem);
 5225 
 5226   ins_cost(ALU_COST * 1);
 5227   format %{ "prefetch_w $mem\t# Prefetch for write" %}
 5228 
 5229   ins_encode %{
 5230     if (Assembler::is_simm12($mem$$disp)) {
 5231       if (($mem$$disp & 0x1f) == 0) {
 5232         __ prefetch_w(as_Register($mem$$base), $mem$$disp);
 5233       } else {
 5234         __ addi(t0, as_Register($mem$$base), $mem$$disp);
 5235         __ prefetch_w(t0, 0);
 5236       }
 5237     } else {
 5238       __ mv(t0, $mem$$disp);
 5239       __ add(t0, as_Register($mem$$base), t0);
 5240       __ prefetch_w(t0, 0);
 5241     }
 5242   %}
 5243 
 5244   ins_pipe(iload_prefetch);
 5245 %}
 5246 
 5247 // ============================================================================
 5248 // Atomic operation instructions
 5249 //
 5250 
 5251 // standard CompareAndSwapX when we are using barriers
 5252 // these have higher priority than the rules selected by a predicate
 5253 instruct compareAndSwapB(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval,
 5254                          iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr)
 5255 %{
 5256   match(Set res (CompareAndSwapB mem (Binary oldval newval)));
 5257 
 5258   ins_cost(LOAD_COST + STORE_COST + ALU_COST * 10 + BRANCH_COST * 4);
 5259 
 5260   effect(TEMP_DEF res, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3, KILL cr);
 5261 
 5262   format %{
 5263     "cmpxchg $mem, $oldval, $newval\t# (byte) if $mem == $oldval then $mem <-- $newval\n\t"
 5264     "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapB"
 5265   %}
 5266 
 5267   ins_encode %{
 5268     __ cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int8,
 5269                             Assembler::relaxed /* acquire */, Assembler::rl /* release */, $res$$Register,
 5270                             true /* result as bool */, $tmp1$$Register, $tmp2$$Register, $tmp3$$Register);
 5271   %}
 5272 
 5273   ins_pipe(pipe_slow);
 5274 %}
 5275 
 5276 instruct compareAndSwapS(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval,
 5277                          iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr)
 5278 %{
 5279   match(Set res (CompareAndSwapS mem (Binary oldval newval)));
 5280 
 5281   ins_cost(LOAD_COST + STORE_COST + ALU_COST * 11 + BRANCH_COST * 4);
 5282 
 5283   effect(TEMP_DEF res, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3, KILL cr);
 5284 
 5285   format %{
 5286     "cmpxchg $mem, $oldval, $newval\t# (short) if $mem == $oldval then $mem <-- $newval\n\t"
 5287     "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapS"
 5288   %}
 5289 
 5290   ins_encode %{
 5291     __ cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int16,
 5292                             Assembler::relaxed /* acquire */, Assembler::rl /* release */, $res$$Register,
 5293                             true /* result as bool */, $tmp1$$Register, $tmp2$$Register, $tmp3$$Register);
 5294   %}
 5295 
 5296   ins_pipe(pipe_slow);
 5297 %}
 5298 
 5299 instruct compareAndSwapI(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval)
 5300 %{
 5301   match(Set res (CompareAndSwapI mem (Binary oldval newval)));
 5302 
 5303   ins_cost(LOAD_COST + STORE_COST + ALU_COST * 6 + BRANCH_COST * 4);
 5304 
 5305   format %{
 5306     "cmpxchg $mem, $oldval, $newval\t# (int) if $mem == $oldval then $mem <-- $newval\n\t"
 5307     "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapI"
 5308   %}
 5309 
 5310   ins_encode(riscv_enc_cmpxchgw(res, mem, oldval, newval));
 5311 
 5312   ins_pipe(pipe_slow);
 5313 %}
 5314 
 5315 instruct compareAndSwapL(iRegINoSp res, indirect mem, iRegL oldval, iRegL newval)
 5316 %{
 5317   match(Set res (CompareAndSwapL mem (Binary oldval newval)));
 5318 
 5319   ins_cost(LOAD_COST + STORE_COST + ALU_COST * 6 + BRANCH_COST * 4);
 5320 
 5321   format %{
 5322     "cmpxchg $mem, $oldval, $newval\t# (long) if $mem == $oldval then $mem <-- $newval\n\t"
 5323     "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapL"
 5324   %}
 5325 
 5326   ins_encode(riscv_enc_cmpxchg(res, mem, oldval, newval));
 5327 
 5328   ins_pipe(pipe_slow);
 5329 %}
 5330 
 5331 instruct compareAndSwapP(iRegINoSp res, indirect mem, iRegP oldval, iRegP newval)
 5332 %{
 5333   predicate(n->as_LoadStore()->barrier_data() == 0);
 5334 
 5335   match(Set res (CompareAndSwapP mem (Binary oldval newval)));
 5336 
 5337   ins_cost(LOAD_COST + STORE_COST + ALU_COST * 6 + BRANCH_COST * 4);
 5338 
 5339   format %{
 5340     "cmpxchg $mem, $oldval, $newval\t# (ptr) if $mem == $oldval then $mem <-- $newval\n\t"
 5341     "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapP"
 5342   %}
 5343 
 5344   ins_encode(riscv_enc_cmpxchg(res, mem, oldval, newval));
 5345 
 5346   ins_pipe(pipe_slow);
 5347 %}
 5348 
 5349 instruct compareAndSwapN(iRegINoSp res, indirect mem, iRegN oldval, iRegN newval)
 5350 %{
 5351   predicate(n->as_LoadStore()->barrier_data() == 0);
 5352   match(Set res (CompareAndSwapN mem (Binary oldval newval)));
 5353 
 5354   ins_cost(LOAD_COST + STORE_COST + ALU_COST * 8 + BRANCH_COST * 4);
 5355 
 5356   format %{
 5357     "cmpxchg $mem, $oldval, $newval\t# (narrow oop) if $mem == $oldval then $mem <-- $newval\n\t"
 5358     "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapN"
 5359   %}
 5360 
 5361   ins_encode(riscv_enc_cmpxchgn(res, mem, oldval, newval));
 5362 
 5363   ins_pipe(pipe_slow);
 5364 %}
 5365 
 5366 // alternative CompareAndSwapX when we are eliding barriers
 5367 instruct compareAndSwapBAcq(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval,
 5368                             iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr)
 5369 %{
 5370   predicate(needs_acquiring_load_reserved(n));
 5371 
 5372   match(Set res (CompareAndSwapB mem (Binary oldval newval)));
 5373 
 5374   ins_cost(LOAD_COST + STORE_COST + ALU_COST * 10 + BRANCH_COST * 4);
 5375 
 5376   effect(TEMP_DEF res, KILL cr, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3);
 5377 
 5378   format %{
 5379     "cmpxchg_acq $mem, $oldval, $newval\t# (byte) if $mem == $oldval then $mem <-- $newval\n\t"
 5380     "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapBAcq"
 5381   %}
 5382 
 5383   ins_encode %{
 5384     __ cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int8,
 5385                             Assembler::aq /* acquire */, Assembler::rl /* release */, $res$$Register,
 5386                             true /* result as bool */, $tmp1$$Register, $tmp2$$Register, $tmp3$$Register);
 5387   %}
 5388 
 5389   ins_pipe(pipe_slow);
 5390 %}
 5391 
 5392 instruct compareAndSwapSAcq(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval,
 5393                             iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr)
 5394 %{
 5395   predicate(needs_acquiring_load_reserved(n));
 5396 
 5397   match(Set res (CompareAndSwapS mem (Binary oldval newval)));
 5398 
 5399   ins_cost(LOAD_COST + STORE_COST + ALU_COST * 11 + BRANCH_COST * 4);
 5400 
 5401   effect(TEMP_DEF res, KILL cr, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3);
 5402 
 5403   format %{
 5404     "cmpxchg_acq $mem, $oldval, $newval\t# (short) if $mem == $oldval then $mem <-- $newval\n\t"
 5405     "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapSAcq"
 5406   %}
 5407 
 5408   ins_encode %{
 5409     __ cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int16,
 5410                             Assembler::aq /* acquire */, Assembler::rl /* release */, $res$$Register,
 5411                             true /* result as bool */, $tmp1$$Register, $tmp2$$Register, $tmp3$$Register);
 5412   %}
 5413 
 5414   ins_pipe(pipe_slow);
 5415 %}
 5416 
 5417 instruct compareAndSwapIAcq(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval)
 5418 %{
 5419   predicate(needs_acquiring_load_reserved(n));
 5420 
 5421   match(Set res (CompareAndSwapI mem (Binary oldval newval)));
 5422 
 5423   ins_cost(LOAD_COST + STORE_COST + ALU_COST * 6 + BRANCH_COST * 4);
 5424 
 5425   format %{
 5426     "cmpxchg_acq $mem, $oldval, $newval\t# (int) if $mem == $oldval then $mem <-- $newval\n\t"
 5427     "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapIAcq"
 5428   %}
 5429 
 5430   ins_encode(riscv_enc_cmpxchgw_acq(res, mem, oldval, newval));
 5431 
 5432   ins_pipe(pipe_slow);
 5433 %}
 5434 
 5435 instruct compareAndSwapLAcq(iRegINoSp res, indirect mem, iRegL oldval, iRegL newval)
 5436 %{
 5437   predicate(needs_acquiring_load_reserved(n));
 5438 
 5439   match(Set res (CompareAndSwapL mem (Binary oldval newval)));
 5440 
 5441   ins_cost(LOAD_COST + STORE_COST + ALU_COST * 6 + BRANCH_COST * 4);
 5442 
 5443   format %{
 5444     "cmpxchg_acq $mem, $oldval, $newval\t# (long) if $mem == $oldval then $mem <-- $newval\n\t"
 5445     "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapLAcq"
 5446   %}
 5447 
 5448   ins_encode(riscv_enc_cmpxchg_acq(res, mem, oldval, newval));
 5449 
 5450   ins_pipe(pipe_slow);
 5451 %}
 5452 
 5453 instruct compareAndSwapPAcq(iRegINoSp res, indirect mem, iRegP oldval, iRegP newval)
 5454 %{
 5455   predicate(needs_acquiring_load_reserved(n) && (n->as_LoadStore()->barrier_data() == 0));
 5456 
 5457   match(Set res (CompareAndSwapP mem (Binary oldval newval)));
 5458 
 5459   ins_cost(LOAD_COST + STORE_COST + ALU_COST * 6 + BRANCH_COST * 4);
 5460 
 5461   format %{
 5462     "cmpxchg_acq $mem, $oldval, $newval\t# (ptr) if $mem == $oldval then $mem <-- $newval\n\t"
 5463     "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapPAcq"
 5464   %}
 5465 
 5466   ins_encode(riscv_enc_cmpxchg_acq(res, mem, oldval, newval));
 5467 
 5468   ins_pipe(pipe_slow);
 5469 %}
 5470 
 5471 instruct compareAndSwapNAcq(iRegINoSp res, indirect mem, iRegN oldval, iRegN newval)
 5472 %{
 5473   predicate(needs_acquiring_load_reserved(n) && n->as_LoadStore()->barrier_data() == 0);
 5474 
 5475   match(Set res (CompareAndSwapN mem (Binary oldval newval)));
 5476 
 5477   ins_cost(LOAD_COST + STORE_COST + ALU_COST * 8 + BRANCH_COST * 4);
 5478 
 5479   format %{
 5480     "cmpxchg_acq $mem, $oldval, $newval\t# (narrow oop) if $mem == $oldval then $mem <-- $newval\n\t"
 5481     "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapNAcq"
 5482   %}
 5483 
 5484   ins_encode(riscv_enc_cmpxchgn_acq(res, mem, oldval, newval));
 5485 
 5486   ins_pipe(pipe_slow);
 5487 %}
 5488 
 5489 // Sundry CAS operations.  Note that release is always true,
 5490 // regardless of the memory ordering of the CAS.  This is because we
 5491 // need the volatile case to be sequentially consistent but there is
 5492 // no trailing StoreLoad barrier emitted by C2.  Unfortunately we
 5493 // can't check the type of memory ordering here, so we always emit a
 5494 // sc_d(w) with rl bit set.
 5495 instruct compareAndExchangeB(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval,
 5496                              iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr)
 5497 %{
 5498   match(Set res (CompareAndExchangeB mem (Binary oldval newval)));
 5499 
 5500   ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST * 5);
 5501 
 5502   effect(TEMP_DEF res, KILL cr, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3);
 5503 
 5504   format %{
 5505     "cmpxchg $res = $mem, $oldval, $newval\t# (byte, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeB"
 5506   %}
 5507 
 5508   ins_encode %{
 5509     __ cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int8,
 5510                             /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register,
 5511                             /*result_as_bool*/ false, $tmp1$$Register, $tmp2$$Register, $tmp3$$Register);
 5512   %}
 5513 
 5514   ins_pipe(pipe_slow);
 5515 %}
 5516 
 5517 instruct compareAndExchangeS(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval,
 5518                              iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr)
 5519 %{
 5520   match(Set res (CompareAndExchangeS mem (Binary oldval newval)));
 5521 
 5522   ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST * 6);
 5523 
 5524   effect(TEMP_DEF res, KILL cr, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3);
 5525 
 5526   format %{
 5527     "cmpxchg $res = $mem, $oldval, $newval\t# (short, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeS"
 5528   %}
 5529 
 5530   ins_encode %{
 5531     __ cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int16,
 5532                             /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register,
 5533                             /*result_as_bool*/ false, $tmp1$$Register, $tmp2$$Register, $tmp3$$Register);
 5534   %}
 5535 
 5536   ins_pipe(pipe_slow);
 5537 %}
 5538 
 5539 instruct compareAndExchangeI(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval)
 5540 %{
 5541   match(Set res (CompareAndExchangeI mem (Binary oldval newval)));
 5542 
 5543   ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST);
 5544 
 5545   effect(TEMP_DEF res);
 5546 
 5547   format %{
 5548     "cmpxchg $res = $mem, $oldval, $newval\t# (int, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeI"
 5549   %}
 5550 
 5551   ins_encode %{
 5552     __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int32,
 5553                /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register);
 5554   %}
 5555 
 5556   ins_pipe(pipe_slow);
 5557 %}
 5558 
 5559 instruct compareAndExchangeL(iRegLNoSp res, indirect mem, iRegL oldval, iRegL newval)
 5560 %{
 5561   match(Set res (CompareAndExchangeL mem (Binary oldval newval)));
 5562 
 5563   ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST);
 5564 
 5565   effect(TEMP_DEF res);
 5566 
 5567   format %{
 5568     "cmpxchg $res = $mem, $oldval, $newval\t# (long, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeL"
 5569   %}
 5570 
 5571   ins_encode %{
 5572     __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int64,
 5573                /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register);
 5574   %}
 5575 
 5576   ins_pipe(pipe_slow);
 5577 %}
 5578 
 5579 instruct compareAndExchangeN(iRegNNoSp res, indirect mem, iRegN oldval, iRegN newval)
 5580 %{
 5581   predicate(n->as_LoadStore()->barrier_data() == 0);
 5582   match(Set res (CompareAndExchangeN mem (Binary oldval newval)));
 5583 
 5584   ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST * 3);
 5585 
 5586   effect(TEMP_DEF res);
 5587 
 5588   format %{
 5589     "cmpxchg $res = $mem, $oldval, $newval\t# (narrow oop, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeN"
 5590   %}
 5591 
 5592   ins_encode %{
 5593     __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::uint32,
 5594                /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register);
 5595   %}
 5596 
 5597   ins_pipe(pipe_slow);
 5598 %}
 5599 
 5600 instruct compareAndExchangeP(iRegPNoSp res, indirect mem, iRegP oldval, iRegP newval)
 5601 %{
 5602   predicate(n->as_LoadStore()->barrier_data() == 0);
 5603   match(Set res (CompareAndExchangeP mem (Binary oldval newval)));
 5604 
 5605   ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST);
 5606 
 5607   effect(TEMP_DEF res);
 5608 
 5609   format %{
 5610     "cmpxchg $res = $mem, $oldval, $newval\t# (ptr, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeP"
 5611   %}
 5612 
 5613   ins_encode %{
 5614     __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int64,
 5615                /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register);
 5616   %}
 5617 
 5618   ins_pipe(pipe_slow);
 5619 %}
 5620 
 5621 instruct compareAndExchangeBAcq(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval,
 5622                                 iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr)
 5623 %{
 5624   predicate(needs_acquiring_load_reserved(n));
 5625 
 5626   match(Set res (CompareAndExchangeB mem (Binary oldval newval)));
 5627 
 5628   ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST * 5);
 5629 
 5630   effect(TEMP_DEF res, KILL cr, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3);
 5631 
 5632   format %{
 5633     "cmpxchg_acq $res = $mem, $oldval, $newval\t# (byte, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeBAcq"
 5634   %}
 5635 
 5636   ins_encode %{
 5637     __ cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int8,
 5638                             /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register,
 5639                             /*result_as_bool*/ false, $tmp1$$Register, $tmp2$$Register, $tmp3$$Register);
 5640   %}
 5641 
 5642   ins_pipe(pipe_slow);
 5643 %}
 5644 
 5645 instruct compareAndExchangeSAcq(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval,
 5646                                 iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr)
 5647 %{
 5648   predicate(needs_acquiring_load_reserved(n));
 5649 
 5650   match(Set res (CompareAndExchangeS mem (Binary oldval newval)));
 5651 
 5652   ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST * 6);
 5653 
 5654   effect(TEMP_DEF res, KILL cr, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3);
 5655 
 5656   format %{
 5657     "cmpxchg_acq $res = $mem, $oldval, $newval\t# (short, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeSAcq"
 5658   %}
 5659 
 5660   ins_encode %{
 5661     __ cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int16,
 5662                             /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register,
 5663                             /*result_as_bool*/ false, $tmp1$$Register, $tmp2$$Register, $tmp3$$Register);
 5664   %}
 5665 
 5666   ins_pipe(pipe_slow);
 5667 %}
 5668 
 5669 instruct compareAndExchangeIAcq(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval)
 5670 %{
 5671   predicate(needs_acquiring_load_reserved(n));
 5672 
 5673   match(Set res (CompareAndExchangeI mem (Binary oldval newval)));
 5674 
 5675   ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST);
 5676 
 5677   effect(TEMP_DEF res);
 5678 
 5679   format %{
 5680     "cmpxchg_acq $res = $mem, $oldval, $newval\t# (int, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeIAcq"
 5681   %}
 5682 
 5683   ins_encode %{
 5684     __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int32,
 5685                /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register);
 5686   %}
 5687 
 5688   ins_pipe(pipe_slow);
 5689 %}
 5690 
 5691 instruct compareAndExchangeLAcq(iRegLNoSp res, indirect mem, iRegL oldval, iRegL newval)
 5692 %{
 5693   predicate(needs_acquiring_load_reserved(n));
 5694 
 5695   match(Set res (CompareAndExchangeL mem (Binary oldval newval)));
 5696 
 5697   ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST);
 5698 
 5699   effect(TEMP_DEF res);
 5700 
 5701   format %{
 5702     "cmpxchg_acq $res = $mem, $oldval, $newval\t# (long, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeLAcq"
 5703   %}
 5704 
 5705   ins_encode %{
 5706     __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int64,
 5707                /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register);
 5708   %}
 5709 
 5710   ins_pipe(pipe_slow);
 5711 %}
 5712 
 5713 instruct compareAndExchangeNAcq(iRegNNoSp res, indirect mem, iRegN oldval, iRegN newval)
 5714 %{
 5715   predicate(needs_acquiring_load_reserved(n) && n->as_LoadStore()->barrier_data() == 0);
 5716 
 5717   match(Set res (CompareAndExchangeN mem (Binary oldval newval)));
 5718 
 5719   ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST);
 5720 
 5721   effect(TEMP_DEF res);
 5722 
 5723   format %{
 5724     "cmpxchg_acq $res = $mem, $oldval, $newval\t# (narrow oop, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeNAcq"
 5725   %}
 5726 
 5727   ins_encode %{
 5728     __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::uint32,
 5729                /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register);
 5730   %}
 5731 
 5732   ins_pipe(pipe_slow);
 5733 %}
 5734 
 5735 instruct compareAndExchangePAcq(iRegPNoSp res, indirect mem, iRegP oldval, iRegP newval)
 5736 %{
 5737   predicate(needs_acquiring_load_reserved(n) && (n->as_LoadStore()->barrier_data() == 0));
 5738 
 5739   match(Set res (CompareAndExchangeP mem (Binary oldval newval)));
 5740 
 5741   ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST);
 5742 
 5743   effect(TEMP_DEF res);
 5744 
 5745   format %{
 5746     "cmpxchg_acq $res = $mem, $oldval, $newval\t# (ptr, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangePAcq"
 5747   %}
 5748 
 5749   ins_encode %{
 5750     __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int64,
 5751                /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register);
 5752   %}
 5753 
 5754   ins_pipe(pipe_slow);
 5755 %}
 5756 
 5757 instruct weakCompareAndSwapB(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval,
 5758                              iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr)
 5759 %{
 5760   match(Set res (WeakCompareAndSwapB mem (Binary oldval newval)));
 5761 
 5762   ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 6);
 5763 
 5764   effect(TEMP_DEF res, KILL cr, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3);
 5765 
 5766   format %{
 5767     "weak_cmpxchg $mem, $oldval, $newval\t# (byte, weak) if $mem == $oldval then $mem <-- $newval\n\t"
 5768     "# $res == 1 when success, #@weakCompareAndSwapB"
 5769   %}
 5770 
 5771   ins_encode %{
 5772     __ weak_cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int8,
 5773                                  /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register,
 5774                                  $tmp1$$Register, $tmp2$$Register, $tmp3$$Register);
 5775   %}
 5776 
 5777   ins_pipe(pipe_slow);
 5778 %}
 5779 
 5780 instruct weakCompareAndSwapS(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval,
 5781                              iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr)
 5782 %{
 5783   match(Set res (WeakCompareAndSwapS mem (Binary oldval newval)));
 5784 
 5785   ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 7);
 5786 
 5787   effect(TEMP_DEF res, KILL cr, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3);
 5788 
 5789   format %{
 5790     "weak_cmpxchg $mem, $oldval, $newval\t# (short, weak) if $mem == $oldval then $mem <-- $newval\n\t"
 5791     "# $res == 1 when success, #@weakCompareAndSwapS"
 5792   %}
 5793 
 5794   ins_encode %{
 5795     __ weak_cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int16,
 5796                                  /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register,
 5797                                  $tmp1$$Register, $tmp2$$Register, $tmp3$$Register);
 5798   %}
 5799 
 5800   ins_pipe(pipe_slow);
 5801 %}
 5802 
 5803 instruct weakCompareAndSwapI(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval)
 5804 %{
 5805   match(Set res (WeakCompareAndSwapI mem (Binary oldval newval)));
 5806 
 5807   ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 2);
 5808 
 5809   format %{
 5810     "weak_cmpxchg $mem, $oldval, $newval\t# (int, weak) if $mem == $oldval then $mem <-- $newval\n\t"
 5811     "# $res == 1 when success, #@weakCompareAndSwapI"
 5812   %}
 5813 
 5814   ins_encode %{
 5815     __ weak_cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int32,
 5816                     /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register);
 5817   %}
 5818 
 5819   ins_pipe(pipe_slow);
 5820 %}
 5821 
 5822 instruct weakCompareAndSwapL(iRegINoSp res, indirect mem, iRegL oldval, iRegL newval)
 5823 %{
 5824   match(Set res (WeakCompareAndSwapL mem (Binary oldval newval)));
 5825 
 5826   ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 2);
 5827 
 5828   format %{
 5829     "weak_cmpxchg $mem, $oldval, $newval\t# (long, weak) if $mem == $oldval then $mem <-- $newval\n\t"
 5830     "# $res == 1 when success, #@weakCompareAndSwapL"
 5831   %}
 5832 
 5833   ins_encode %{
 5834     __ weak_cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int64,
 5835                     /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register);
 5836   %}
 5837 
 5838   ins_pipe(pipe_slow);
 5839 %}
 5840 
 5841 instruct weakCompareAndSwapN(iRegINoSp res, indirect mem, iRegN oldval, iRegN newval)
 5842 %{
 5843   predicate(n->as_LoadStore()->barrier_data() == 0);
 5844   match(Set res (WeakCompareAndSwapN mem (Binary oldval newval)));
 5845 
 5846   ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 4);
 5847 
 5848   format %{
 5849     "weak_cmpxchg $mem, $oldval, $newval\t# (narrow oop, weak) if $mem == $oldval then $mem <-- $newval\n\t"
 5850     "# $res == 1 when success, #@weakCompareAndSwapN"
 5851   %}
 5852 
 5853   ins_encode %{
 5854     __ weak_cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::uint32,
 5855                     /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register);
 5856   %}
 5857 
 5858   ins_pipe(pipe_slow);
 5859 %}
 5860 
 5861 instruct weakCompareAndSwapP(iRegINoSp res, indirect mem, iRegP oldval, iRegP newval)
 5862 %{
 5863   predicate(n->as_LoadStore()->barrier_data() == 0);
 5864   match(Set res (WeakCompareAndSwapP mem (Binary oldval newval)));
 5865 
 5866   ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 2);
 5867 
 5868   format %{
 5869     "weak_cmpxchg $mem, $oldval, $newval\t# (ptr, weak) if $mem == $oldval then $mem <-- $newval\n\t"
 5870     "# $res == 1 when success, #@weakCompareAndSwapP"
 5871   %}
 5872 
 5873   ins_encode %{
 5874     __ weak_cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int64,
 5875                     /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register);
 5876   %}
 5877 
 5878   ins_pipe(pipe_slow);
 5879 %}
 5880 
 5881 instruct weakCompareAndSwapBAcq(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval,
 5882                                 iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr)
 5883 %{
 5884   predicate(needs_acquiring_load_reserved(n));
 5885 
 5886   match(Set res (WeakCompareAndSwapB mem (Binary oldval newval)));
 5887 
 5888   ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 6);
 5889 
 5890   effect(TEMP_DEF res, KILL cr, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3);
 5891 
 5892   format %{
 5893     "weak_cmpxchg_acq $mem, $oldval, $newval\t# (byte, weak) if $mem == $oldval then $mem <-- $newval\n\t"
 5894     "# $res == 1 when success, #@weakCompareAndSwapBAcq"
 5895   %}
 5896 
 5897   ins_encode %{
 5898     __ weak_cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int8,
 5899                                  /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register,
 5900                                  $tmp1$$Register, $tmp2$$Register, $tmp3$$Register);
 5901   %}
 5902 
 5903   ins_pipe(pipe_slow);
 5904 %}
 5905 
 5906 instruct weakCompareAndSwapSAcq(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval,
 5907                                 iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr)
 5908 %{
 5909   predicate(needs_acquiring_load_reserved(n));
 5910 
 5911   match(Set res (WeakCompareAndSwapS mem (Binary oldval newval)));
 5912 
 5913   ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 7);
 5914 
 5915   effect(TEMP_DEF res, KILL cr, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3);
 5916 
 5917   format %{
 5918     "weak_cmpxchg_acq $mem, $oldval, $newval\t# (short, weak) if $mem == $oldval then $mem <-- $newval\n\t"
 5919     "# $res == 1 when success, #@weakCompareAndSwapSAcq"
 5920   %}
 5921 
 5922   ins_encode %{
 5923     __ weak_cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int16,
 5924                                  /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register,
 5925                                  $tmp1$$Register, $tmp2$$Register, $tmp3$$Register);
 5926   %}
 5927 
 5928   ins_pipe(pipe_slow);
 5929 %}
 5930 
 5931 instruct weakCompareAndSwapIAcq(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval)
 5932 %{
 5933   predicate(needs_acquiring_load_reserved(n));
 5934 
 5935   match(Set res (WeakCompareAndSwapI mem (Binary oldval newval)));
 5936 
 5937   ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 2);
 5938 
 5939   format %{
 5940     "weak_cmpxchg_acq $mem, $oldval, $newval\t# (int, weak) if $mem == $oldval then $mem <-- $newval\n\t"
 5941     "# $res == 1 when success, #@weakCompareAndSwapIAcq"
 5942   %}
 5943 
 5944   ins_encode %{
 5945     __ weak_cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int32,
 5946                     /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register);
 5947   %}
 5948 
 5949   ins_pipe(pipe_slow);
 5950 %}
 5951 
 5952 instruct weakCompareAndSwapLAcq(iRegINoSp res, indirect mem, iRegL oldval, iRegL newval)
 5953 %{
 5954   predicate(needs_acquiring_load_reserved(n));
 5955 
 5956   match(Set res (WeakCompareAndSwapL mem (Binary oldval newval)));
 5957 
 5958   ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 2);
 5959 
 5960   format %{
 5961     "weak_cmpxchg_acq $mem, $oldval, $newval\t# (long, weak) if $mem == $oldval then $mem <-- $newval\n\t"
 5962     "# $res == 1 when success, #@weakCompareAndSwapLAcq"
 5963   %}
 5964 
 5965   ins_encode %{
 5966     __ weak_cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int64,
 5967                     /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register);
 5968   %}
 5969 
 5970   ins_pipe(pipe_slow);
 5971 %}
 5972 
 5973 instruct weakCompareAndSwapNAcq(iRegINoSp res, indirect mem, iRegN oldval, iRegN newval)
 5974 %{
 5975   predicate(needs_acquiring_load_reserved(n) && n->as_LoadStore()->barrier_data() == 0);
 5976 
 5977   match(Set res (WeakCompareAndSwapN mem (Binary oldval newval)));
 5978 
 5979   ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 4);
 5980 
 5981   format %{
 5982     "weak_cmpxchg_acq $mem, $oldval, $newval\t# (narrow oop, weak) if $mem == $oldval then $mem <-- $newval\n\t"
 5983     "# $res == 1 when success, #@weakCompareAndSwapNAcq"
 5984   %}
 5985 
 5986   ins_encode %{
 5987     __ weak_cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::uint32,
 5988                     /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register);
 5989   %}
 5990 
 5991   ins_pipe(pipe_slow);
 5992 %}
 5993 
 5994 instruct weakCompareAndSwapPAcq(iRegINoSp res, indirect mem, iRegP oldval, iRegP newval)
 5995 %{
 5996   predicate(needs_acquiring_load_reserved(n) && (n->as_LoadStore()->barrier_data() == 0));
 5997 
 5998   match(Set res (WeakCompareAndSwapP mem (Binary oldval newval)));
 5999 
 6000   ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 2);
 6001 
 6002   format %{
 6003     "weak_cmpxchg_acq $mem, $oldval, $newval\t# (ptr, weak) if $mem == $oldval then $mem <-- $newval\n\t"
 6004     "\t# $res == 1 when success, #@weakCompareAndSwapPAcq"
 6005   %}
 6006 
 6007   ins_encode %{
 6008     __ weak_cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int64,
 6009                     /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register);
 6010   %}
 6011 
 6012   ins_pipe(pipe_slow);
 6013 %}
 6014 
 6015 instruct get_and_setI(indirect mem, iRegI newv, iRegINoSp prev)
 6016 %{
 6017   match(Set prev (GetAndSetI mem newv));
 6018 
 6019   ins_cost(ALU_COST);
 6020 
 6021   format %{ "atomic_xchgw  $prev, $newv, [$mem]\t#@get_and_setI" %}
 6022 
 6023   ins_encode %{
 6024     __ atomic_xchgw($prev$$Register, $newv$$Register, as_Register($mem$$base));
 6025   %}
 6026 
 6027   ins_pipe(pipe_serial);
 6028 %}
 6029 
 6030 instruct get_and_setL(indirect mem, iRegL newv, iRegLNoSp prev)
 6031 %{
 6032   match(Set prev (GetAndSetL mem newv));
 6033 
 6034   ins_cost(ALU_COST);
 6035 
 6036   format %{ "atomic_xchg  $prev, $newv, [$mem]\t#@get_and_setL" %}
 6037 
 6038   ins_encode %{
 6039     __ atomic_xchg($prev$$Register, $newv$$Register, as_Register($mem$$base));
 6040   %}
 6041 
 6042   ins_pipe(pipe_serial);
 6043 %}
 6044 
 6045 instruct get_and_setN(indirect mem, iRegN newv, iRegINoSp prev)
 6046 %{
 6047   predicate(n->as_LoadStore()->barrier_data() == 0);
 6048 
 6049   match(Set prev (GetAndSetN mem newv));
 6050 
 6051   ins_cost(ALU_COST);
 6052 
 6053   format %{ "atomic_xchgwu $prev, $newv, [$mem]\t#@get_and_setN" %}
 6054 
 6055   ins_encode %{
 6056     __ atomic_xchgwu($prev$$Register, $newv$$Register, as_Register($mem$$base));
 6057   %}
 6058 
 6059   ins_pipe(pipe_serial);
 6060 %}
 6061 
 6062 instruct get_and_setP(indirect mem, iRegP newv, iRegPNoSp prev)
 6063 %{
 6064   predicate(n->as_LoadStore()->barrier_data() == 0);
 6065   match(Set prev (GetAndSetP mem newv));
 6066 
 6067   ins_cost(ALU_COST);
 6068 
 6069   format %{ "atomic_xchg  $prev, $newv, [$mem]\t#@get_and_setP" %}
 6070 
 6071   ins_encode %{
 6072     __ atomic_xchg($prev$$Register, $newv$$Register, as_Register($mem$$base));
 6073   %}
 6074 
 6075   ins_pipe(pipe_serial);
 6076 %}
 6077 
 6078 instruct get_and_setIAcq(indirect mem, iRegI newv, iRegINoSp prev)
 6079 %{
 6080   predicate(needs_acquiring_load_reserved(n));
 6081 
 6082   match(Set prev (GetAndSetI mem newv));
 6083 
 6084   ins_cost(ALU_COST);
 6085 
 6086   format %{ "atomic_xchgw_acq  $prev, $newv, [$mem]\t#@get_and_setIAcq" %}
 6087 
 6088   ins_encode %{
 6089     __ atomic_xchgalw($prev$$Register, $newv$$Register, as_Register($mem$$base));
 6090   %}
 6091 
 6092   ins_pipe(pipe_serial);
 6093 %}
 6094 
 6095 instruct get_and_setLAcq(indirect mem, iRegL newv, iRegLNoSp prev)
 6096 %{
 6097   predicate(needs_acquiring_load_reserved(n));
 6098 
 6099   match(Set prev (GetAndSetL mem newv));
 6100 
 6101   ins_cost(ALU_COST);
 6102 
 6103   format %{ "atomic_xchg_acq  $prev, $newv, [$mem]\t#@get_and_setLAcq" %}
 6104 
 6105   ins_encode %{
 6106     __ atomic_xchgal($prev$$Register, $newv$$Register, as_Register($mem$$base));
 6107   %}
 6108 
 6109   ins_pipe(pipe_serial);
 6110 %}
 6111 
 6112 instruct get_and_setNAcq(indirect mem, iRegN newv, iRegINoSp prev)
 6113 %{
 6114   predicate(needs_acquiring_load_reserved(n) && n->as_LoadStore()->barrier_data() == 0);
 6115 
 6116   match(Set prev (GetAndSetN mem newv));
 6117 
 6118   ins_cost(ALU_COST);
 6119 
 6120   format %{ "atomic_xchgwu_acq $prev, $newv, [$mem]\t#@get_and_setNAcq" %}
 6121 
 6122   ins_encode %{
 6123     __ atomic_xchgalwu($prev$$Register, $newv$$Register, as_Register($mem$$base));
 6124   %}
 6125 
 6126   ins_pipe(pipe_serial);
 6127 %}
 6128 
 6129 instruct get_and_setPAcq(indirect mem, iRegP newv, iRegPNoSp prev)
 6130 %{
 6131   predicate(needs_acquiring_load_reserved(n) && (n->as_LoadStore()->barrier_data() == 0));
 6132 
 6133   match(Set prev (GetAndSetP mem newv));
 6134 
 6135   ins_cost(ALU_COST);
 6136 
 6137   format %{ "atomic_xchg_acq  $prev, $newv, [$mem]\t#@get_and_setPAcq" %}
 6138 
 6139   ins_encode %{
 6140     __ atomic_xchgal($prev$$Register, $newv$$Register, as_Register($mem$$base));
 6141   %}
 6142 
 6143   ins_pipe(pipe_serial);
 6144 %}
 6145 
 6146 instruct get_and_addL(indirect mem, iRegLNoSp newval, iRegL incr)
 6147 %{
 6148   match(Set newval (GetAndAddL mem incr));
 6149 
 6150   ins_cost(ALU_COST);
 6151 
 6152   format %{ "get_and_addL $newval, [$mem], $incr\t#@get_and_addL" %}
 6153 
 6154   ins_encode %{
 6155     __ atomic_add($newval$$Register, $incr$$Register, as_Register($mem$$base));
 6156   %}
 6157 
 6158   ins_pipe(pipe_serial);
 6159 %}
 6160 
 6161 instruct get_and_addL_no_res(indirect mem, Universe dummy, iRegL incr)
 6162 %{
 6163   predicate(n->as_LoadStore()->result_not_used());
 6164 
 6165   match(Set dummy (GetAndAddL mem incr));
 6166 
 6167   ins_cost(ALU_COST);
 6168 
 6169   format %{ "get_and_addL [$mem], $incr\t#@get_and_addL_no_res" %}
 6170 
 6171   ins_encode %{
 6172     __ atomic_add(noreg, $incr$$Register, as_Register($mem$$base));
 6173   %}
 6174 
 6175   ins_pipe(pipe_serial);
 6176 %}
 6177 
 6178 instruct get_and_addLi(indirect mem, iRegLNoSp newval, immLAdd incr)
 6179 %{
 6180   match(Set newval (GetAndAddL mem incr));
 6181 
 6182   ins_cost(ALU_COST);
 6183 
 6184   format %{ "get_and_addL $newval, [$mem], $incr\t#@get_and_addLi" %}
 6185 
 6186   ins_encode %{
 6187     __ atomic_add($newval$$Register, $incr$$constant, as_Register($mem$$base));
 6188   %}
 6189 
 6190   ins_pipe(pipe_serial);
 6191 %}
 6192 
 6193 instruct get_and_addLi_no_res(indirect mem, Universe dummy, immLAdd incr)
 6194 %{
 6195   predicate(n->as_LoadStore()->result_not_used());
 6196 
 6197   match(Set dummy (GetAndAddL mem incr));
 6198 
 6199   ins_cost(ALU_COST);
 6200 
 6201   format %{ "get_and_addL [$mem], $incr\t#@get_and_addLi_no_res" %}
 6202 
 6203   ins_encode %{
 6204     __ atomic_add(noreg, $incr$$constant, as_Register($mem$$base));
 6205   %}
 6206 
 6207   ins_pipe(pipe_serial);
 6208 %}
 6209 
 6210 instruct get_and_addI(indirect mem, iRegINoSp newval, iRegIorL2I incr)
 6211 %{
 6212   match(Set newval (GetAndAddI mem incr));
 6213 
 6214   ins_cost(ALU_COST);
 6215 
 6216   format %{ "get_and_addI $newval, [$mem], $incr\t#@get_and_addI" %}
 6217 
 6218   ins_encode %{
 6219     __ atomic_addw($newval$$Register, $incr$$Register, as_Register($mem$$base));
 6220   %}
 6221 
 6222   ins_pipe(pipe_serial);
 6223 %}
 6224 
 6225 instruct get_and_addI_no_res(indirect mem, Universe dummy, iRegIorL2I incr)
 6226 %{
 6227   predicate(n->as_LoadStore()->result_not_used());
 6228 
 6229   match(Set dummy (GetAndAddI mem incr));
 6230 
 6231   ins_cost(ALU_COST);
 6232 
 6233   format %{ "get_and_addI [$mem], $incr\t#@get_and_addI_no_res" %}
 6234 
 6235   ins_encode %{
 6236     __ atomic_addw(noreg, $incr$$Register, as_Register($mem$$base));
 6237   %}
 6238 
 6239   ins_pipe(pipe_serial);
 6240 %}
 6241 
 6242 instruct get_and_addIi(indirect mem, iRegINoSp newval, immIAdd incr)
 6243 %{
 6244   match(Set newval (GetAndAddI mem incr));
 6245 
 6246   ins_cost(ALU_COST);
 6247 
 6248   format %{ "get_and_addI $newval, [$mem], $incr\t#@get_and_addIi" %}
 6249 
 6250   ins_encode %{
 6251     __ atomic_addw($newval$$Register, $incr$$constant, as_Register($mem$$base));
 6252   %}
 6253 
 6254   ins_pipe(pipe_serial);
 6255 %}
 6256 
 6257 instruct get_and_addIi_no_res(indirect mem, Universe dummy, immIAdd incr)
 6258 %{
 6259   predicate(n->as_LoadStore()->result_not_used());
 6260 
 6261   match(Set dummy (GetAndAddI mem incr));
 6262 
 6263   ins_cost(ALU_COST);
 6264 
 6265   format %{ "get_and_addI [$mem], $incr\t#@get_and_addIi_no_res" %}
 6266 
 6267   ins_encode %{
 6268     __ atomic_addw(noreg, $incr$$constant, as_Register($mem$$base));
 6269   %}
 6270 
 6271   ins_pipe(pipe_serial);
 6272 %}
 6273 
 6274 instruct get_and_addLAcq(indirect mem, iRegLNoSp newval, iRegL incr)
 6275 %{
 6276   predicate(needs_acquiring_load_reserved(n));
 6277 
 6278   match(Set newval (GetAndAddL mem incr));
 6279 
 6280   ins_cost(ALU_COST);
 6281 
 6282   format %{ "get_and_addL_acq $newval, [$mem], $incr\t#@get_and_addLAcq" %}
 6283 
 6284   ins_encode %{
 6285     __ atomic_addal($newval$$Register, $incr$$Register, as_Register($mem$$base));
 6286   %}
 6287 
 6288   ins_pipe(pipe_serial);
 6289 %}
 6290 
 6291 instruct get_and_addL_no_resAcq(indirect mem, Universe dummy, iRegL incr) %{
 6292   predicate(n->as_LoadStore()->result_not_used() && needs_acquiring_load_reserved(n));
 6293 
 6294   match(Set dummy (GetAndAddL mem incr));
 6295 
 6296   ins_cost(ALU_COST);
 6297 
 6298   format %{ "get_and_addL_acq [$mem], $incr\t#@get_and_addL_no_resAcq" %}
 6299 
 6300   ins_encode %{
 6301     __ atomic_addal(noreg, $incr$$Register, as_Register($mem$$base));
 6302   %}
 6303 
 6304   ins_pipe(pipe_serial);
 6305 %}
 6306 
 6307 instruct get_and_addLiAcq(indirect mem, iRegLNoSp newval, immLAdd incr)
 6308 %{
 6309   predicate(needs_acquiring_load_reserved(n));
 6310 
 6311   match(Set newval (GetAndAddL mem incr));
 6312 
 6313   ins_cost(ALU_COST);
 6314 
 6315   format %{ "get_and_addL_acq $newval, [$mem], $incr\t#@get_and_addLiAcq" %}
 6316 
 6317   ins_encode %{
 6318     __ atomic_addal($newval$$Register, $incr$$constant, as_Register($mem$$base));
 6319   %}
 6320 
 6321   ins_pipe(pipe_serial);
 6322 %}
 6323 
 6324 instruct get_and_addLi_no_resAcq(indirect mem, Universe dummy, immLAdd incr)
 6325 %{
 6326   predicate(n->as_LoadStore()->result_not_used() && needs_acquiring_load_reserved(n));
 6327 
 6328   match(Set dummy (GetAndAddL mem incr));
 6329 
 6330   ins_cost(ALU_COST);
 6331 
 6332   format %{ "get_and_addL_acq [$mem], $incr\t#@get_and_addLi_no_resAcq" %}
 6333 
 6334   ins_encode %{
 6335     __ atomic_addal(noreg, $incr$$constant, as_Register($mem$$base));
 6336   %}
 6337 
 6338   ins_pipe(pipe_serial);
 6339 %}
 6340 
 6341 instruct get_and_addIAcq(indirect mem, iRegINoSp newval, iRegIorL2I incr)
 6342 %{
 6343   predicate(needs_acquiring_load_reserved(n));
 6344 
 6345   match(Set newval (GetAndAddI mem incr));
 6346 
 6347   ins_cost(ALU_COST);
 6348 
 6349   format %{ "get_and_addI_acq $newval, [$mem], $incr\t#@get_and_addIAcq" %}
 6350 
 6351   ins_encode %{
 6352     __ atomic_addalw($newval$$Register, $incr$$Register, as_Register($mem$$base));
 6353   %}
 6354 
 6355   ins_pipe(pipe_serial);
 6356 %}
 6357 
 6358 instruct get_and_addI_no_resAcq(indirect mem, Universe dummy, iRegIorL2I incr)
 6359 %{
 6360   predicate(n->as_LoadStore()->result_not_used() && needs_acquiring_load_reserved(n));
 6361 
 6362   match(Set dummy (GetAndAddI mem incr));
 6363 
 6364   ins_cost(ALU_COST);
 6365 
 6366   format %{ "get_and_addI_acq [$mem], $incr\t#@get_and_addI_no_resAcq" %}
 6367 
 6368   ins_encode %{
 6369     __ atomic_addalw(noreg, $incr$$Register, as_Register($mem$$base));
 6370   %}
 6371 
 6372   ins_pipe(pipe_serial);
 6373 %}
 6374 
 6375 instruct get_and_addIiAcq(indirect mem, iRegINoSp newval, immIAdd incr)
 6376 %{
 6377   predicate(needs_acquiring_load_reserved(n));
 6378 
 6379   match(Set newval (GetAndAddI mem incr));
 6380 
 6381   ins_cost(ALU_COST);
 6382 
 6383   format %{ "get_and_addI_acq $newval, [$mem], $incr\t#@get_and_addIiAcq" %}
 6384 
 6385   ins_encode %{
 6386     __ atomic_addalw($newval$$Register, $incr$$constant, as_Register($mem$$base));
 6387   %}
 6388 
 6389   ins_pipe(pipe_serial);
 6390 %}
 6391 
 6392 instruct get_and_addIi_no_resAcq(indirect mem, Universe dummy, immIAdd incr)
 6393 %{
 6394   predicate(n->as_LoadStore()->result_not_used() && needs_acquiring_load_reserved(n));
 6395 
 6396   match(Set dummy (GetAndAddI mem incr));
 6397 
 6398   ins_cost(ALU_COST);
 6399 
 6400   format %{ "get_and_addI_acq [$mem], $incr\t#@get_and_addIi_no_resAcq" %}
 6401 
 6402   ins_encode %{
 6403     __ atomic_addalw(noreg, $incr$$constant, as_Register($mem$$base));
 6404   %}
 6405 
 6406   ins_pipe(pipe_serial);
 6407 %}
 6408 
 6409 // ============================================================================
 6410 // Arithmetic Instructions
 6411 //
 6412 
 6413 // Integer Addition
 6414 
 6415 // TODO
 6416 // these currently employ operations which do not set CR and hence are
 6417 // not flagged as killing CR but we would like to isolate the cases
 6418 // where we want to set flags from those where we don't. need to work
 6419 // out how to do that.
 6420 instruct addI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
 6421   match(Set dst (AddI src1 src2));
 6422 
 6423   ins_cost(ALU_COST);
 6424   format %{ "addw  $dst, $src1, $src2\t#@addI_reg_reg" %}
 6425 
 6426   ins_encode %{
 6427     __ addw(as_Register($dst$$reg),
 6428             as_Register($src1$$reg),
 6429             as_Register($src2$$reg));
 6430   %}
 6431 
 6432   ins_pipe(ialu_reg_reg);
 6433 %}
 6434 
 6435 instruct addI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immIAdd src2) %{
 6436   match(Set dst (AddI src1 src2));
 6437 
 6438   ins_cost(ALU_COST);
 6439   format %{ "addiw  $dst, $src1, $src2\t#@addI_reg_imm" %}
 6440 
 6441   ins_encode %{
 6442     int32_t con = (int32_t)$src2$$constant;
 6443     __ addiw(as_Register($dst$$reg),
 6444              as_Register($src1$$reg),
 6445              $src2$$constant);
 6446   %}
 6447 
 6448   ins_pipe(ialu_reg_imm);
 6449 %}
 6450 
 6451 instruct addI_reg_imm_l2i(iRegINoSp dst, iRegL src1, immIAdd src2) %{
 6452   match(Set dst (AddI (ConvL2I src1) src2));
 6453 
 6454   ins_cost(ALU_COST);
 6455   format %{ "addiw  $dst, $src1, $src2\t#@addI_reg_imm_l2i" %}
 6456 
 6457   ins_encode %{
 6458     __ addiw(as_Register($dst$$reg),
 6459              as_Register($src1$$reg),
 6460              $src2$$constant);
 6461   %}
 6462 
 6463   ins_pipe(ialu_reg_imm);
 6464 %}
 6465 
 6466 // Pointer Addition
 6467 instruct addP_reg_reg(iRegPNoSp dst, iRegP src1, iRegL src2) %{
 6468   match(Set dst (AddP src1 src2));
 6469 
 6470   ins_cost(ALU_COST);
 6471   format %{ "add $dst, $src1, $src2\t# ptr, #@addP_reg_reg" %}
 6472 
 6473   ins_encode %{
 6474     __ add(as_Register($dst$$reg),
 6475            as_Register($src1$$reg),
 6476            as_Register($src2$$reg));
 6477   %}
 6478 
 6479   ins_pipe(ialu_reg_reg);
 6480 %}
 6481 
 6482 // If we shift more than 32 bits, we need not convert I2L.
 6483 instruct lShiftL_regI_immGE32(iRegLNoSp dst, iRegI src, uimmI6_ge32 scale) %{
 6484   match(Set dst (LShiftL (ConvI2L src) scale));
 6485   ins_cost(ALU_COST);
 6486   format %{ "slli  $dst, $src, $scale & 63\t#@lShiftL_regI_immGE32" %}
 6487 
 6488   ins_encode %{
 6489     __ slli(as_Register($dst$$reg), as_Register($src$$reg), $scale$$constant & 63);
 6490   %}
 6491 
 6492   ins_pipe(ialu_reg_shift);
 6493 %}
 6494 
 6495 // Pointer Immediate Addition
 6496 // n.b. this needs to be more expensive than using an indirect memory
 6497 // operand
 6498 instruct addP_reg_imm(iRegPNoSp dst, iRegP src1, immLAdd src2) %{
 6499   match(Set dst (AddP src1 src2));
 6500   ins_cost(ALU_COST);
 6501   format %{ "addi  $dst, $src1, $src2\t# ptr, #@addP_reg_imm" %}
 6502 
 6503   ins_encode %{
 6504     // src2 is imm, so actually call the addi
 6505     __ addi(as_Register($dst$$reg),
 6506             as_Register($src1$$reg),
 6507             $src2$$constant);
 6508   %}
 6509 
 6510   ins_pipe(ialu_reg_imm);
 6511 %}
 6512 
 6513 // Long Addition
 6514 instruct addL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2) %{
 6515   match(Set dst (AddL src1 src2));
 6516   ins_cost(ALU_COST);
 6517   format %{ "add  $dst, $src1, $src2\t#@addL_reg_reg" %}
 6518 
 6519   ins_encode %{
 6520     __ add(as_Register($dst$$reg),
 6521            as_Register($src1$$reg),
 6522            as_Register($src2$$reg));
 6523   %}
 6524 
 6525   ins_pipe(ialu_reg_reg);
 6526 %}
 6527 
 6528 // No constant pool entries requiredLong Immediate Addition.
 6529 instruct addL_reg_imm(iRegLNoSp dst, iRegL src1, immLAdd src2) %{
 6530   match(Set dst (AddL src1 src2));
 6531   ins_cost(ALU_COST);
 6532   format %{ "addi  $dst, $src1, $src2\t#@addL_reg_imm" %}
 6533 
 6534   ins_encode %{
 6535     // src2 is imm, so actually call the addi
 6536     __ addi(as_Register($dst$$reg),
 6537             as_Register($src1$$reg),
 6538             $src2$$constant);
 6539   %}
 6540 
 6541   ins_pipe(ialu_reg_imm);
 6542 %}
 6543 
 6544 // Integer Subtraction
 6545 instruct subI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
 6546   match(Set dst (SubI src1 src2));
 6547 
 6548   ins_cost(ALU_COST);
 6549   format %{ "subw  $dst, $src1, $src2\t#@subI_reg_reg" %}
 6550 
 6551   ins_encode %{
 6552     __ subw(as_Register($dst$$reg),
 6553             as_Register($src1$$reg),
 6554             as_Register($src2$$reg));
 6555   %}
 6556 
 6557   ins_pipe(ialu_reg_reg);
 6558 %}
 6559 
 6560 // Immediate Subtraction
 6561 instruct subI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immISub src2) %{
 6562   match(Set dst (SubI src1 src2));
 6563 
 6564   ins_cost(ALU_COST);
 6565   format %{ "addiw  $dst, $src1, -$src2\t#@subI_reg_imm" %}
 6566 
 6567   ins_encode %{
 6568     // src2 is imm, so actually call the addiw
 6569     __ subiw(as_Register($dst$$reg),
 6570              as_Register($src1$$reg),
 6571              $src2$$constant);
 6572   %}
 6573 
 6574   ins_pipe(ialu_reg_imm);
 6575 %}
 6576 
 6577 // Long Subtraction
 6578 instruct subL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2) %{
 6579   match(Set dst (SubL src1 src2));
 6580   ins_cost(ALU_COST);
 6581   format %{ "sub  $dst, $src1, $src2\t#@subL_reg_reg" %}
 6582 
 6583   ins_encode %{
 6584     __ sub(as_Register($dst$$reg),
 6585            as_Register($src1$$reg),
 6586            as_Register($src2$$reg));
 6587   %}
 6588 
 6589   ins_pipe(ialu_reg_reg);
 6590 %}
 6591 
 6592 // No constant pool entries requiredLong Immediate Subtraction.
 6593 instruct subL_reg_imm(iRegLNoSp dst, iRegL src1, immLSub src2) %{
 6594   match(Set dst (SubL src1 src2));
 6595   ins_cost(ALU_COST);
 6596   format %{ "addi  $dst, $src1, -$src2\t#@subL_reg_imm" %}
 6597 
 6598   ins_encode %{
 6599     // src2 is imm, so actually call the addi
 6600     __ subi(as_Register($dst$$reg),
 6601             as_Register($src1$$reg),
 6602             $src2$$constant);
 6603   %}
 6604 
 6605   ins_pipe(ialu_reg_imm);
 6606 %}
 6607 
 6608 // Integer Negation (special case for sub)
 6609 
 6610 instruct negI_reg(iRegINoSp dst, iRegIorL2I src, immI0 zero) %{
 6611   match(Set dst (SubI zero src));
 6612   ins_cost(ALU_COST);
 6613   format %{ "subw  $dst, x0, $src\t# int, #@negI_reg" %}
 6614 
 6615   ins_encode %{
 6616     // actually call the subw
 6617     __ negw(as_Register($dst$$reg),
 6618             as_Register($src$$reg));
 6619   %}
 6620 
 6621   ins_pipe(ialu_reg);
 6622 %}
 6623 
 6624 // Long Negation
 6625 
 6626 instruct negL_reg(iRegLNoSp dst, iRegL src, immL0 zero) %{
 6627   match(Set dst (SubL zero src));
 6628   ins_cost(ALU_COST);
 6629   format %{ "sub  $dst, x0, $src\t# long, #@negL_reg" %}
 6630 
 6631   ins_encode %{
 6632     // actually call the sub
 6633     __ neg(as_Register($dst$$reg),
 6634            as_Register($src$$reg));
 6635   %}
 6636 
 6637   ins_pipe(ialu_reg);
 6638 %}
 6639 
 6640 // Integer Multiply
 6641 
 6642 instruct mulI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
 6643   match(Set dst (MulI src1 src2));
 6644   ins_cost(IMUL_COST);
 6645   format %{ "mulw  $dst, $src1, $src2\t#@mulI" %}
 6646 
 6647   //this means 2 word multi, and no sign extend to 64 bits
 6648   ins_encode %{
 6649     // riscv64 mulw will sign-extension to high 32 bits in dst reg
 6650     __ mulw(as_Register($dst$$reg),
 6651             as_Register($src1$$reg),
 6652             as_Register($src2$$reg));
 6653   %}
 6654 
 6655   ins_pipe(imul_reg_reg);
 6656 %}
 6657 
 6658 // Long Multiply
 6659 
 6660 instruct mulL(iRegLNoSp dst, iRegL src1, iRegL src2) %{
 6661   match(Set dst (MulL src1 src2));
 6662   ins_cost(IMUL_COST);
 6663   format %{ "mul  $dst, $src1, $src2\t#@mulL" %}
 6664 
 6665   ins_encode %{
 6666     __ mul(as_Register($dst$$reg),
 6667            as_Register($src1$$reg),
 6668            as_Register($src2$$reg));
 6669   %}
 6670 
 6671   ins_pipe(lmul_reg_reg);
 6672 %}
 6673 
 6674 instruct mulHiL_rReg(iRegLNoSp dst, iRegL src1, iRegL src2)
 6675 %{
 6676   match(Set dst (MulHiL src1 src2));
 6677   ins_cost(IMUL_COST);
 6678   format %{ "mulh  $dst, $src1, $src2\t# mulhi, #@mulHiL_rReg" %}
 6679 
 6680   ins_encode %{
 6681     __ mulh(as_Register($dst$$reg),
 6682             as_Register($src1$$reg),
 6683             as_Register($src2$$reg));
 6684   %}
 6685 
 6686   ins_pipe(lmul_reg_reg);
 6687 %}
 6688 
 6689 instruct umulHiL_rReg(iRegLNoSp dst, iRegL src1, iRegL src2)
 6690 %{
 6691   match(Set dst (UMulHiL src1 src2));
 6692   ins_cost(IMUL_COST);
 6693   format %{ "mulhu  $dst, $src1, $src2\t# umulhi, #@umulHiL_rReg" %}
 6694 
 6695   ins_encode %{
 6696     __ mulhu(as_Register($dst$$reg),
 6697              as_Register($src1$$reg),
 6698              as_Register($src2$$reg));
 6699   %}
 6700 
 6701   ins_pipe(lmul_reg_reg);
 6702 %}
 6703 
 6704 // Integer Divide
 6705 
 6706 instruct divI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
 6707   match(Set dst (DivI src1 src2));
 6708   ins_cost(IDIVSI_COST);
 6709   format %{ "divw  $dst, $src1, $src2\t#@divI"%}
 6710 
 6711   ins_encode %{
 6712     __ divw(as_Register($dst$$reg), as_Register($src1$$reg), as_Register($src2$$reg));
 6713   %}
 6714   ins_pipe(idiv_reg_reg);
 6715 %}
 6716 
 6717 instruct UdivI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
 6718   match(Set dst (UDivI src1 src2));
 6719   ins_cost(IDIVSI_COST);
 6720   format %{ "divuw  $dst, $src1, $src2\t#@UdivI"%}
 6721 
 6722   ins_encode %{
 6723     __ divuw(as_Register($dst$$reg), as_Register($src1$$reg), as_Register($src2$$reg));
 6724   %}
 6725   ins_pipe(idiv_reg_reg);
 6726 %}
 6727 
 6728 instruct signExtract(iRegINoSp dst, iRegIorL2I src1, immI_31 div1, immI_31 div2) %{
 6729   match(Set dst (URShiftI (RShiftI src1 div1) div2));
 6730   ins_cost(ALU_COST);
 6731   format %{ "srliw $dst, $src1, $div1\t# int signExtract, #@signExtract" %}
 6732 
 6733   ins_encode %{
 6734     __ srliw(as_Register($dst$$reg), as_Register($src1$$reg), 31);
 6735   %}
 6736   ins_pipe(ialu_reg_shift);
 6737 %}
 6738 
 6739 // Long Divide
 6740 
 6741 instruct divL(iRegLNoSp dst, iRegL src1, iRegL src2) %{
 6742   match(Set dst (DivL src1 src2));
 6743   ins_cost(IDIVDI_COST);
 6744   format %{ "div  $dst, $src1, $src2\t#@divL" %}
 6745 
 6746   ins_encode %{
 6747     __ div(as_Register($dst$$reg), as_Register($src1$$reg), as_Register($src2$$reg));
 6748   %}
 6749   ins_pipe(ldiv_reg_reg);
 6750 %}
 6751 
 6752 instruct UdivL(iRegLNoSp dst, iRegL src1, iRegL src2) %{
 6753   match(Set dst (UDivL src1 src2));
 6754   ins_cost(IDIVDI_COST);
 6755 
 6756   format %{ "divu $dst, $src1, $src2\t#@UdivL" %}
 6757 
 6758   ins_encode %{
 6759     __ divu(as_Register($dst$$reg), as_Register($src1$$reg), as_Register($src2$$reg));
 6760   %}
 6761   ins_pipe(ldiv_reg_reg);
 6762 %}
 6763 
 6764 instruct signExtractL(iRegLNoSp dst, iRegL src1, immI_63 div1, immI_63 div2) %{
 6765   match(Set dst (URShiftL (RShiftL src1 div1) div2));
 6766   ins_cost(ALU_COST);
 6767   format %{ "srli $dst, $src1, $div1\t# long signExtract, #@signExtractL" %}
 6768 
 6769   ins_encode %{
 6770     __ srli(as_Register($dst$$reg), as_Register($src1$$reg), 63);
 6771   %}
 6772   ins_pipe(ialu_reg_shift);
 6773 %}
 6774 
 6775 // Integer Remainder
 6776 
 6777 instruct modI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
 6778   match(Set dst (ModI src1 src2));
 6779   ins_cost(IDIVSI_COST);
 6780   format %{ "remw  $dst, $src1, $src2\t#@modI" %}
 6781 
 6782   ins_encode %{
 6783     __ remw(as_Register($dst$$reg), as_Register($src1$$reg), as_Register($src2$$reg));
 6784   %}
 6785   ins_pipe(ialu_reg_reg);
 6786 %}
 6787 
 6788 instruct UmodI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
 6789   match(Set dst (UModI src1 src2));
 6790   ins_cost(IDIVSI_COST);
 6791   format %{ "remuw  $dst, $src1, $src2\t#@UmodI" %}
 6792 
 6793   ins_encode %{
 6794     __ remuw(as_Register($dst$$reg), as_Register($src1$$reg), as_Register($src2$$reg));
 6795   %}
 6796   ins_pipe(ialu_reg_reg);
 6797 %}
 6798 
 6799 // Long Remainder
 6800 
 6801 instruct modL(iRegLNoSp dst, iRegL src1, iRegL src2) %{
 6802   match(Set dst (ModL src1 src2));
 6803   ins_cost(IDIVDI_COST);
 6804   format %{ "rem  $dst, $src1, $src2\t#@modL" %}
 6805 
 6806   ins_encode %{
 6807     __ rem(as_Register($dst$$reg), as_Register($src1$$reg), as_Register($src2$$reg));
 6808   %}
 6809   ins_pipe(ialu_reg_reg);
 6810 %}
 6811 
 6812 instruct UmodL(iRegLNoSp dst, iRegL src1, iRegL src2) %{
 6813   match(Set dst (UModL src1 src2));
 6814   ins_cost(IDIVDI_COST);
 6815   format %{ "remu  $dst, $src1, $src2\t#@UmodL" %}
 6816 
 6817   ins_encode %{
 6818     __ remu(as_Register($dst$$reg), as_Register($src1$$reg), as_Register($src2$$reg));
 6819   %}
 6820   ins_pipe(ialu_reg_reg);
 6821 %}
 6822 
 6823 // Integer Shifts
 6824 
 6825 // Shift Left Register
 6826 // In RV64I, only the low 5 bits of src2 are considered for the shift amount
 6827 instruct lShiftI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
 6828   match(Set dst (LShiftI src1 src2));
 6829   ins_cost(ALU_COST);
 6830   format %{ "sllw  $dst, $src1, $src2\t#@lShiftI_reg_reg" %}
 6831 
 6832   ins_encode %{
 6833     __ sllw(as_Register($dst$$reg),
 6834             as_Register($src1$$reg),
 6835             as_Register($src2$$reg));
 6836   %}
 6837 
 6838   ins_pipe(ialu_reg_reg_vshift);
 6839 %}
 6840 
 6841 // Shift Left Immediate
 6842 instruct lShiftI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immI src2) %{
 6843   match(Set dst (LShiftI src1 src2));
 6844   ins_cost(ALU_COST);
 6845   format %{ "slliw  $dst, $src1, ($src2 & 0x1f)\t#@lShiftI_reg_imm" %}
 6846 
 6847   ins_encode %{
 6848     // the shift amount is encoded in the lower
 6849     // 5 bits of the I-immediate field for RV32I
 6850     __ slliw(as_Register($dst$$reg),
 6851              as_Register($src1$$reg),
 6852              (unsigned) $src2$$constant & 0x1f);
 6853   %}
 6854 
 6855   ins_pipe(ialu_reg_shift);
 6856 %}
 6857 
 6858 // Shift Right Logical Register
 6859 // In RV64I, only the low 5 bits of src2 are considered for the shift amount
 6860 instruct urShiftI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
 6861   match(Set dst (URShiftI src1 src2));
 6862   ins_cost(ALU_COST);
 6863   format %{ "srlw  $dst, $src1, $src2\t#@urShiftI_reg_reg" %}
 6864 
 6865   ins_encode %{
 6866     __ srlw(as_Register($dst$$reg),
 6867             as_Register($src1$$reg),
 6868             as_Register($src2$$reg));
 6869   %}
 6870 
 6871   ins_pipe(ialu_reg_reg_vshift);
 6872 %}
 6873 
 6874 // Shift Right Logical Immediate
 6875 instruct urShiftI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immI src2) %{
 6876   match(Set dst (URShiftI src1 src2));
 6877   ins_cost(ALU_COST);
 6878   format %{ "srliw  $dst, $src1, ($src2 & 0x1f)\t#@urShiftI_reg_imm" %}
 6879 
 6880   ins_encode %{
 6881     // the shift amount is encoded in the lower
 6882     // 6 bits of the I-immediate field for RV64I
 6883     __ srliw(as_Register($dst$$reg),
 6884              as_Register($src1$$reg),
 6885              (unsigned) $src2$$constant & 0x1f);
 6886   %}
 6887 
 6888   ins_pipe(ialu_reg_shift);
 6889 %}
 6890 
 6891 // Shift Right Arithmetic Register
 6892 // In RV64I, only the low 5 bits of src2 are considered for the shift amount
 6893 instruct rShiftI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
 6894   match(Set dst (RShiftI src1 src2));
 6895   ins_cost(ALU_COST);
 6896   format %{ "sraw  $dst, $src1, $src2\t#@rShiftI_reg_reg" %}
 6897 
 6898   ins_encode %{
 6899     // riscv will sign-ext dst high 32 bits
 6900     __ sraw(as_Register($dst$$reg),
 6901             as_Register($src1$$reg),
 6902             as_Register($src2$$reg));
 6903   %}
 6904 
 6905   ins_pipe(ialu_reg_reg_vshift);
 6906 %}
 6907 
 6908 // Shift Right Arithmetic Immediate
 6909 instruct rShiftI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immI src2) %{
 6910   match(Set dst (RShiftI src1 src2));
 6911   ins_cost(ALU_COST);
 6912   format %{ "sraiw  $dst, $src1, ($src2 & 0x1f)\t#@rShiftI_reg_imm" %}
 6913 
 6914   ins_encode %{
 6915     // riscv will sign-ext dst high 32 bits
 6916     __ sraiw(as_Register($dst$$reg),
 6917              as_Register($src1$$reg),
 6918              (unsigned) $src2$$constant & 0x1f);
 6919   %}
 6920 
 6921   ins_pipe(ialu_reg_shift);
 6922 %}
 6923 
 6924 // Long Shifts
 6925 
 6926 // Shift Left Register
 6927 // In RV64I, only the low 6 bits of src2 are considered for the shift amount
 6928 instruct lShiftL_reg_reg(iRegLNoSp dst, iRegL src1, iRegIorL2I src2) %{
 6929   match(Set dst (LShiftL src1 src2));
 6930 
 6931   ins_cost(ALU_COST);
 6932   format %{ "sll  $dst, $src1, $src2\t#@lShiftL_reg_reg" %}
 6933 
 6934   ins_encode %{
 6935     __ sll(as_Register($dst$$reg),
 6936            as_Register($src1$$reg),
 6937            as_Register($src2$$reg));
 6938   %}
 6939 
 6940   ins_pipe(ialu_reg_reg_vshift);
 6941 %}
 6942 
 6943 // Shift Left Immediate
 6944 instruct lShiftL_reg_imm(iRegLNoSp dst, iRegL src1, immI src2) %{
 6945   match(Set dst (LShiftL src1 src2));
 6946 
 6947   ins_cost(ALU_COST);
 6948   format %{ "slli  $dst, $src1, ($src2 & 0x3f)\t#@lShiftL_reg_imm" %}
 6949 
 6950   ins_encode %{
 6951     // the shift amount is encoded in the lower
 6952     // 6 bits of the I-immediate field for RV64I
 6953     __ slli(as_Register($dst$$reg),
 6954             as_Register($src1$$reg),
 6955             (unsigned) $src2$$constant & 0x3f);
 6956   %}
 6957 
 6958   ins_pipe(ialu_reg_shift);
 6959 %}
 6960 
 6961 // Shift Right Logical Register
 6962 // In RV64I, only the low 6 bits of src2 are considered for the shift amount
 6963 instruct urShiftL_reg_reg(iRegLNoSp dst, iRegL src1, iRegIorL2I src2) %{
 6964   match(Set dst (URShiftL src1 src2));
 6965 
 6966   ins_cost(ALU_COST);
 6967   format %{ "srl  $dst, $src1, $src2\t#@urShiftL_reg_reg" %}
 6968 
 6969   ins_encode %{
 6970     __ srl(as_Register($dst$$reg),
 6971             as_Register($src1$$reg),
 6972             as_Register($src2$$reg));
 6973   %}
 6974 
 6975   ins_pipe(ialu_reg_reg_vshift);
 6976 %}
 6977 
 6978 // Shift Right Logical Immediate
 6979 instruct urShiftL_reg_imm(iRegLNoSp dst, iRegL src1, immI src2) %{
 6980   match(Set dst (URShiftL src1 src2));
 6981 
 6982   ins_cost(ALU_COST);
 6983   format %{ "srli  $dst, $src1, ($src2 & 0x3f)\t#@urShiftL_reg_imm" %}
 6984 
 6985   ins_encode %{
 6986     // the shift amount is encoded in the lower
 6987     // 6 bits of the I-immediate field for RV64I
 6988     __ srli(as_Register($dst$$reg),
 6989             as_Register($src1$$reg),
 6990             (unsigned) $src2$$constant & 0x3f);
 6991   %}
 6992 
 6993   ins_pipe(ialu_reg_shift);
 6994 %}
 6995 
 6996 // A special-case pattern for card table stores.
 6997 instruct urShiftP_reg_imm(iRegLNoSp dst, iRegP src1, immI src2) %{
 6998   match(Set dst (URShiftL (CastP2X src1) src2));
 6999 
 7000   ins_cost(ALU_COST);
 7001   format %{ "srli  $dst, p2x($src1), ($src2 & 0x3f)\t#@urShiftP_reg_imm" %}
 7002 
 7003   ins_encode %{
 7004     // the shift amount is encoded in the lower
 7005     // 6 bits of the I-immediate field for RV64I
 7006     __ srli(as_Register($dst$$reg),
 7007             as_Register($src1$$reg),
 7008             (unsigned) $src2$$constant & 0x3f);
 7009   %}
 7010 
 7011   ins_pipe(ialu_reg_shift);
 7012 %}
 7013 
 7014 // Shift Right Arithmetic Register
 7015 // In RV64I, only the low 6 bits of src2 are considered for the shift amount
 7016 instruct rShiftL_reg_reg(iRegLNoSp dst, iRegL src1, iRegIorL2I src2) %{
 7017   match(Set dst (RShiftL src1 src2));
 7018 
 7019   ins_cost(ALU_COST);
 7020   format %{ "sra  $dst, $src1, $src2\t#@rShiftL_reg_reg" %}
 7021 
 7022   ins_encode %{
 7023     __ sra(as_Register($dst$$reg),
 7024            as_Register($src1$$reg),
 7025            as_Register($src2$$reg));
 7026   %}
 7027 
 7028   ins_pipe(ialu_reg_reg_vshift);
 7029 %}
 7030 
 7031 // Shift Right Arithmetic Immediate
 7032 instruct rShiftL_reg_imm(iRegLNoSp dst, iRegL src1, immI src2) %{
 7033   match(Set dst (RShiftL src1 src2));
 7034 
 7035   ins_cost(ALU_COST);
 7036   format %{ "srai  $dst, $src1, ($src2 & 0x3f)\t#@rShiftL_reg_imm" %}
 7037 
 7038   ins_encode %{
 7039     // the shift amount is encoded in the lower
 7040     // 6 bits of the I-immediate field for RV64I
 7041     __ srai(as_Register($dst$$reg),
 7042             as_Register($src1$$reg),
 7043             (unsigned) $src2$$constant & 0x3f);
 7044   %}
 7045 
 7046   ins_pipe(ialu_reg_shift);
 7047 %}
 7048 
 7049 instruct regI_not_reg(iRegINoSp dst, iRegI src1, immI_M1 m1) %{
 7050   match(Set dst (XorI src1 m1));
 7051   ins_cost(ALU_COST);
 7052   format %{ "xori  $dst, $src1, -1\t#@regI_not_reg" %}
 7053 
 7054   ins_encode %{
 7055     __ xori(as_Register($dst$$reg), as_Register($src1$$reg), -1);
 7056   %}
 7057 
 7058   ins_pipe(ialu_reg_imm);
 7059 %}
 7060 
 7061 instruct regL_not_reg(iRegLNoSp dst, iRegL src1, immL_M1 m1) %{
 7062   match(Set dst (XorL src1 m1));
 7063   ins_cost(ALU_COST);
 7064   format %{ "xori  $dst, $src1, -1\t#@regL_not_reg" %}
 7065 
 7066   ins_encode %{
 7067     __ xori(as_Register($dst$$reg), as_Register($src1$$reg), -1);
 7068   %}
 7069 
 7070   ins_pipe(ialu_reg_imm);
 7071 %}
 7072 
 7073 
 7074 // ============================================================================
 7075 // Floating Point Arithmetic Instructions
 7076 
 7077 instruct addF_reg_reg(fRegF dst, fRegF src1, fRegF src2) %{
 7078   match(Set dst (AddF src1 src2));
 7079 
 7080   ins_cost(DEFAULT_COST * 5);
 7081   format %{ "fadd.s  $dst, $src1, $src2\t#@addF_reg_reg" %}
 7082 
 7083   ins_encode %{
 7084     __ fadd_s(as_FloatRegister($dst$$reg),
 7085               as_FloatRegister($src1$$reg),
 7086               as_FloatRegister($src2$$reg));
 7087   %}
 7088 
 7089   ins_pipe(fp_dop_reg_reg_s);
 7090 %}
 7091 
 7092 instruct addD_reg_reg(fRegD dst, fRegD src1, fRegD src2) %{
 7093   match(Set dst (AddD src1 src2));
 7094 
 7095   ins_cost(DEFAULT_COST * 5);
 7096   format %{ "fadd.d  $dst, $src1, $src2\t#@addD_reg_reg" %}
 7097 
 7098   ins_encode %{
 7099     __ fadd_d(as_FloatRegister($dst$$reg),
 7100               as_FloatRegister($src1$$reg),
 7101               as_FloatRegister($src2$$reg));
 7102   %}
 7103 
 7104   ins_pipe(fp_dop_reg_reg_d);
 7105 %}
 7106 
 7107 instruct subF_reg_reg(fRegF dst, fRegF src1, fRegF src2) %{
 7108   match(Set dst (SubF src1 src2));
 7109 
 7110   ins_cost(DEFAULT_COST * 5);
 7111   format %{ "fsub.s  $dst, $src1, $src2\t#@subF_reg_reg" %}
 7112 
 7113   ins_encode %{
 7114     __ fsub_s(as_FloatRegister($dst$$reg),
 7115               as_FloatRegister($src1$$reg),
 7116               as_FloatRegister($src2$$reg));
 7117   %}
 7118 
 7119   ins_pipe(fp_dop_reg_reg_s);
 7120 %}
 7121 
 7122 instruct subD_reg_reg(fRegD dst, fRegD src1, fRegD src2) %{
 7123   match(Set dst (SubD src1 src2));
 7124 
 7125   ins_cost(DEFAULT_COST * 5);
 7126   format %{ "fsub.d  $dst, $src1, $src2\t#@subD_reg_reg" %}
 7127 
 7128   ins_encode %{
 7129     __ fsub_d(as_FloatRegister($dst$$reg),
 7130               as_FloatRegister($src1$$reg),
 7131               as_FloatRegister($src2$$reg));
 7132   %}
 7133 
 7134   ins_pipe(fp_dop_reg_reg_d);
 7135 %}
 7136 
 7137 instruct mulF_reg_reg(fRegF dst, fRegF src1, fRegF src2) %{
 7138   match(Set dst (MulF src1 src2));
 7139 
 7140   ins_cost(FMUL_SINGLE_COST);
 7141   format %{ "fmul.s  $dst, $src1, $src2\t#@mulF_reg_reg" %}
 7142 
 7143   ins_encode %{
 7144     __ fmul_s(as_FloatRegister($dst$$reg),
 7145               as_FloatRegister($src1$$reg),
 7146               as_FloatRegister($src2$$reg));
 7147   %}
 7148 
 7149   ins_pipe(fp_dop_reg_reg_s);
 7150 %}
 7151 
 7152 instruct mulD_reg_reg(fRegD dst, fRegD src1, fRegD src2) %{
 7153   match(Set dst (MulD src1 src2));
 7154 
 7155   ins_cost(FMUL_DOUBLE_COST);
 7156   format %{ "fmul.d  $dst, $src1, $src2\t#@mulD_reg_reg" %}
 7157 
 7158   ins_encode %{
 7159     __ fmul_d(as_FloatRegister($dst$$reg),
 7160               as_FloatRegister($src1$$reg),
 7161               as_FloatRegister($src2$$reg));
 7162   %}
 7163 
 7164   ins_pipe(fp_dop_reg_reg_d);
 7165 %}
 7166 
 7167 // src1 * src2 + src3
 7168 instruct maddF_reg_reg(fRegF dst, fRegF src1, fRegF src2, fRegF src3) %{
 7169   match(Set dst (FmaF src3 (Binary src1 src2)));
 7170 
 7171   ins_cost(FMUL_SINGLE_COST);
 7172   format %{ "fmadd.s  $dst, $src1, $src2, $src3\t#@maddF_reg_reg" %}
 7173 
 7174   ins_encode %{
 7175     assert(UseFMA, "Needs FMA instructions support.");
 7176     __ fmadd_s(as_FloatRegister($dst$$reg),
 7177                as_FloatRegister($src1$$reg),
 7178                as_FloatRegister($src2$$reg),
 7179                as_FloatRegister($src3$$reg));
 7180   %}
 7181 
 7182   ins_pipe(pipe_class_default);
 7183 %}
 7184 
 7185 // src1 * src2 + src3
 7186 instruct maddD_reg_reg(fRegD dst, fRegD src1, fRegD src2, fRegD src3) %{
 7187   match(Set dst (FmaD src3 (Binary src1 src2)));
 7188 
 7189   ins_cost(FMUL_DOUBLE_COST);
 7190   format %{ "fmadd.d  $dst, $src1, $src2, $src3\t#@maddD_reg_reg" %}
 7191 
 7192   ins_encode %{
 7193     assert(UseFMA, "Needs FMA instructions support.");
 7194     __ fmadd_d(as_FloatRegister($dst$$reg),
 7195                as_FloatRegister($src1$$reg),
 7196                as_FloatRegister($src2$$reg),
 7197                as_FloatRegister($src3$$reg));
 7198   %}
 7199 
 7200   ins_pipe(pipe_class_default);
 7201 %}
 7202 
 7203 // src1 * src2 - src3
 7204 instruct msubF_reg_reg(fRegF dst, fRegF src1, fRegF src2, fRegF src3) %{
 7205   match(Set dst (FmaF (NegF src3) (Binary src1 src2)));
 7206 
 7207   ins_cost(FMUL_SINGLE_COST);
 7208   format %{ "fmsub.s  $dst, $src1, $src2, $src3\t#@msubF_reg_reg" %}
 7209 
 7210   ins_encode %{
 7211     assert(UseFMA, "Needs FMA instructions support.");
 7212     __ fmsub_s(as_FloatRegister($dst$$reg),
 7213                as_FloatRegister($src1$$reg),
 7214                as_FloatRegister($src2$$reg),
 7215                as_FloatRegister($src3$$reg));
 7216   %}
 7217 
 7218   ins_pipe(pipe_class_default);
 7219 %}
 7220 
 7221 // src1 * src2 - src3
 7222 instruct msubD_reg_reg(fRegD dst, fRegD src1, fRegD src2, fRegD src3) %{
 7223   match(Set dst (FmaD (NegD src3) (Binary src1 src2)));
 7224 
 7225   ins_cost(FMUL_DOUBLE_COST);
 7226   format %{ "fmsub.d  $dst, $src1, $src2, $src3\t#@msubD_reg_reg" %}
 7227 
 7228   ins_encode %{
 7229     assert(UseFMA, "Needs FMA instructions support.");
 7230     __ fmsub_d(as_FloatRegister($dst$$reg),
 7231                as_FloatRegister($src1$$reg),
 7232                as_FloatRegister($src2$$reg),
 7233                as_FloatRegister($src3$$reg));
 7234   %}
 7235 
 7236   ins_pipe(pipe_class_default);
 7237 %}
 7238 
 7239 // src1 * (-src2) + src3
 7240 // "(-src1) * src2 + src3" has been idealized to "src2 * (-src1) + src3"
 7241 instruct nmsubF_reg_reg(fRegF dst, fRegF src1, fRegF src2, fRegF src3) %{
 7242   match(Set dst (FmaF src3 (Binary src1 (NegF src2))));
 7243 
 7244   ins_cost(FMUL_SINGLE_COST);
 7245   format %{ "fnmsub.s  $dst, $src1, $src2, $src3\t#@nmsubF_reg_reg" %}
 7246 
 7247   ins_encode %{
 7248     assert(UseFMA, "Needs FMA instructions support.");
 7249     __ fnmsub_s(as_FloatRegister($dst$$reg),
 7250                 as_FloatRegister($src1$$reg),
 7251                 as_FloatRegister($src2$$reg),
 7252                 as_FloatRegister($src3$$reg));
 7253   %}
 7254 
 7255   ins_pipe(pipe_class_default);
 7256 %}
 7257 
 7258 // src1 * (-src2) + src3
 7259 // "(-src1) * src2 + src3" has been idealized to "src2 * (-src1) + src3"
 7260 instruct nmsubD_reg_reg(fRegD dst, fRegD src1, fRegD src2, fRegD src3) %{
 7261   match(Set dst (FmaD src3 (Binary src1 (NegD src2))));
 7262 
 7263   ins_cost(FMUL_DOUBLE_COST);
 7264   format %{ "fnmsub.d  $dst, $src1, $src2, $src3\t#@nmsubD_reg_reg" %}
 7265 
 7266   ins_encode %{
 7267     assert(UseFMA, "Needs FMA instructions support.");
 7268     __ fnmsub_d(as_FloatRegister($dst$$reg),
 7269                 as_FloatRegister($src1$$reg),
 7270                 as_FloatRegister($src2$$reg),
 7271                 as_FloatRegister($src3$$reg));
 7272   %}
 7273 
 7274   ins_pipe(pipe_class_default);
 7275 %}
 7276 
 7277 // src1 * (-src2) - src3
 7278 // "(-src1) * src2 - src3" has been idealized to "src2 * (-src1) - src3"
 7279 instruct nmaddF_reg_reg(fRegF dst, fRegF src1, fRegF src2, fRegF src3) %{
 7280   match(Set dst (FmaF (NegF src3) (Binary src1 (NegF src2))));
 7281 
 7282   ins_cost(FMUL_SINGLE_COST);
 7283   format %{ "fnmadd.s  $dst, $src1, $src2, $src3\t#@nmaddF_reg_reg" %}
 7284 
 7285   ins_encode %{
 7286     assert(UseFMA, "Needs FMA instructions support.");
 7287     __ fnmadd_s(as_FloatRegister($dst$$reg),
 7288                 as_FloatRegister($src1$$reg),
 7289                 as_FloatRegister($src2$$reg),
 7290                 as_FloatRegister($src3$$reg));
 7291   %}
 7292 
 7293   ins_pipe(pipe_class_default);
 7294 %}
 7295 
 7296 // src1 * (-src2) - src3
 7297 // "(-src1) * src2 - src3" has been idealized to "src2 * (-src1) - src3"
 7298 instruct nmaddD_reg_reg(fRegD dst, fRegD src1, fRegD src2, fRegD src3) %{
 7299   match(Set dst (FmaD (NegD src3) (Binary src1 (NegD src2))));
 7300 
 7301   ins_cost(FMUL_DOUBLE_COST);
 7302   format %{ "fnmadd.d  $dst, $src1, $src2, $src3\t#@nmaddD_reg_reg" %}
 7303 
 7304   ins_encode %{
 7305     assert(UseFMA, "Needs FMA instructions support.");
 7306     __ fnmadd_d(as_FloatRegister($dst$$reg),
 7307                 as_FloatRegister($src1$$reg),
 7308                 as_FloatRegister($src2$$reg),
 7309                 as_FloatRegister($src3$$reg));
 7310   %}
 7311 
 7312   ins_pipe(pipe_class_default);
 7313 %}
 7314 
 7315 // Math.max(FF)F
 7316 instruct maxF_reg_reg(fRegF dst, fRegF src1, fRegF src2, rFlagsReg cr) %{
 7317   predicate(!UseZfa);
 7318   match(Set dst (MaxF src1 src2));
 7319   effect(KILL cr);
 7320 
 7321   format %{ "maxF $dst, $src1, $src2" %}
 7322 
 7323   ins_encode %{
 7324     __ minmax_fp(as_FloatRegister($dst$$reg),
 7325                  as_FloatRegister($src1$$reg), as_FloatRegister($src2$$reg),
 7326                  __ FLOAT_TYPE::single_precision, false /* is_min */);
 7327   %}
 7328 
 7329   ins_pipe(pipe_class_default);
 7330 %}
 7331 
 7332 instruct maxF_reg_reg_zfa(fRegF dst, fRegF src1, fRegF src2) %{
 7333   predicate(UseZfa);
 7334   match(Set dst (MaxF src1 src2));
 7335 
 7336   format %{ "maxF $dst, $src1, $src2" %}
 7337 
 7338   ins_encode %{
 7339     __ fmaxm_s(as_FloatRegister($dst$$reg),
 7340                as_FloatRegister($src1$$reg), as_FloatRegister($src2$$reg));
 7341   %}
 7342 
 7343   ins_pipe(pipe_class_default);
 7344 %}
 7345 
 7346 // Math.min(FF)F
 7347 instruct minF_reg_reg(fRegF dst, fRegF src1, fRegF src2, rFlagsReg cr) %{
 7348   predicate(!UseZfa);
 7349   match(Set dst (MinF src1 src2));
 7350   effect(KILL cr);
 7351 
 7352   format %{ "minF $dst, $src1, $src2" %}
 7353 
 7354   ins_encode %{
 7355     __ minmax_fp(as_FloatRegister($dst$$reg),
 7356                  as_FloatRegister($src1$$reg), as_FloatRegister($src2$$reg),
 7357                  __ FLOAT_TYPE::single_precision, true /* is_min */);
 7358   %}
 7359 
 7360   ins_pipe(pipe_class_default);
 7361 %}
 7362 
 7363 instruct minF_reg_reg_zfa(fRegF dst, fRegF src1, fRegF src2) %{
 7364   predicate(UseZfa);
 7365   match(Set dst (MinF src1 src2));
 7366 
 7367   format %{ "minF $dst, $src1, $src2" %}
 7368 
 7369   ins_encode %{
 7370     __ fminm_s(as_FloatRegister($dst$$reg),
 7371                as_FloatRegister($src1$$reg), as_FloatRegister($src2$$reg));
 7372   %}
 7373 
 7374   ins_pipe(pipe_class_default);
 7375 %}
 7376 
 7377 // Math.max(DD)D
 7378 instruct maxD_reg_reg(fRegD dst, fRegD src1, fRegD src2, rFlagsReg cr) %{
 7379   predicate(!UseZfa);
 7380   match(Set dst (MaxD src1 src2));
 7381   effect(KILL cr);
 7382 
 7383   format %{ "maxD $dst, $src1, $src2" %}
 7384 
 7385   ins_encode %{
 7386     __ minmax_fp(as_FloatRegister($dst$$reg),
 7387                  as_FloatRegister($src1$$reg), as_FloatRegister($src2$$reg),
 7388                  __ FLOAT_TYPE::double_precision, false /* is_min */);
 7389   %}
 7390 
 7391   ins_pipe(pipe_class_default);
 7392 %}
 7393 
 7394 instruct maxD_reg_reg_zfa(fRegD dst, fRegD src1, fRegD src2) %{
 7395   predicate(UseZfa);
 7396   match(Set dst (MaxD src1 src2));
 7397 
 7398   format %{ "maxD $dst, $src1, $src2" %}
 7399 
 7400   ins_encode %{
 7401     __ fmaxm_d(as_FloatRegister($dst$$reg),
 7402                as_FloatRegister($src1$$reg), as_FloatRegister($src2$$reg));
 7403   %}
 7404 
 7405   ins_pipe(pipe_class_default);
 7406 %}
 7407 
 7408 // Math.min(DD)D
 7409 instruct minD_reg_reg(fRegD dst, fRegD src1, fRegD src2, rFlagsReg cr) %{
 7410   predicate(!UseZfa);
 7411   match(Set dst (MinD src1 src2));
 7412   effect(KILL cr);
 7413 
 7414   format %{ "minD $dst, $src1, $src2" %}
 7415 
 7416   ins_encode %{
 7417     __ minmax_fp(as_FloatRegister($dst$$reg),
 7418                  as_FloatRegister($src1$$reg), as_FloatRegister($src2$$reg),
 7419                  __ FLOAT_TYPE::double_precision, true /* is_min */);
 7420   %}
 7421 
 7422   ins_pipe(pipe_class_default);
 7423 %}
 7424 
 7425 instruct minD_reg_reg_zfa(fRegD dst, fRegD src1, fRegD src2) %{
 7426   predicate(UseZfa);
 7427   match(Set dst (MinD src1 src2));
 7428 
 7429   format %{ "minD $dst, $src1, $src2" %}
 7430 
 7431   ins_encode %{
 7432     __ fminm_d(as_FloatRegister($dst$$reg),
 7433                as_FloatRegister($src1$$reg), as_FloatRegister($src2$$reg));
 7434   %}
 7435 
 7436   ins_pipe(pipe_class_default);
 7437 %}
 7438 
 7439 // Float.isInfinite
 7440 instruct isInfiniteF_reg_reg(iRegINoSp dst, fRegF src)
 7441 %{
 7442   match(Set dst (IsInfiniteF src));
 7443 
 7444   format %{ "isInfinite $dst, $src" %}
 7445   ins_encode %{
 7446     __ fclass_s(as_Register($dst$$reg), as_FloatRegister($src$$reg));
 7447     __ andi(as_Register($dst$$reg), as_Register($dst$$reg), Assembler::FClassBits::inf);
 7448     __ slt(as_Register($dst$$reg), zr, as_Register($dst$$reg));
 7449   %}
 7450 
 7451   ins_pipe(pipe_class_default);
 7452 %}
 7453 
 7454 // Double.isInfinite
 7455 instruct isInfiniteD_reg_reg(iRegINoSp dst, fRegD src)
 7456 %{
 7457   match(Set dst (IsInfiniteD src));
 7458 
 7459   format %{ "isInfinite $dst, $src" %}
 7460   ins_encode %{
 7461     __ fclass_d(as_Register($dst$$reg), as_FloatRegister($src$$reg));
 7462     __ andi(as_Register($dst$$reg), as_Register($dst$$reg), Assembler::FClassBits::inf);
 7463     __ slt(as_Register($dst$$reg), zr, as_Register($dst$$reg));
 7464   %}
 7465 
 7466   ins_pipe(pipe_class_default);
 7467 %}
 7468 
 7469 // Float.isFinite
 7470 instruct isFiniteF_reg_reg(iRegINoSp dst, fRegF src)
 7471 %{
 7472   match(Set dst (IsFiniteF src));
 7473 
 7474   format %{ "isFinite $dst, $src" %}
 7475   ins_encode %{
 7476     __ fclass_s(as_Register($dst$$reg), as_FloatRegister($src$$reg));
 7477     __ andi(as_Register($dst$$reg), as_Register($dst$$reg), Assembler::FClassBits::finite);
 7478     __ slt(as_Register($dst$$reg), zr, as_Register($dst$$reg));
 7479   %}
 7480 
 7481   ins_pipe(pipe_class_default);
 7482 %}
 7483 
 7484 // Double.isFinite
 7485 instruct isFiniteD_reg_reg(iRegINoSp dst, fRegD src)
 7486 %{
 7487   match(Set dst (IsFiniteD src));
 7488 
 7489   format %{ "isFinite $dst, $src" %}
 7490   ins_encode %{
 7491     __ fclass_d(as_Register($dst$$reg), as_FloatRegister($src$$reg));
 7492     __ andi(as_Register($dst$$reg), as_Register($dst$$reg), Assembler::FClassBits::finite);
 7493     __ slt(as_Register($dst$$reg), zr, as_Register($dst$$reg));
 7494   %}
 7495 
 7496   ins_pipe(pipe_class_default);
 7497 %}
 7498 
 7499 instruct divF_reg_reg(fRegF dst, fRegF src1, fRegF src2) %{
 7500   match(Set dst (DivF src1  src2));
 7501 
 7502   ins_cost(FDIV_COST);
 7503   format %{ "fdiv.s  $dst, $src1, $src2\t#@divF_reg_reg" %}
 7504 
 7505   ins_encode %{
 7506     __ fdiv_s(as_FloatRegister($dst$$reg),
 7507               as_FloatRegister($src1$$reg),
 7508               as_FloatRegister($src2$$reg));
 7509   %}
 7510 
 7511   ins_pipe(fp_div_s);
 7512 %}
 7513 
 7514 instruct divD_reg_reg(fRegD dst, fRegD src1, fRegD src2) %{
 7515   match(Set dst (DivD src1  src2));
 7516 
 7517   ins_cost(FDIV_COST);
 7518   format %{ "fdiv.d  $dst, $src1, $src2\t#@divD_reg_reg" %}
 7519 
 7520   ins_encode %{
 7521     __ fdiv_d(as_FloatRegister($dst$$reg),
 7522               as_FloatRegister($src1$$reg),
 7523               as_FloatRegister($src2$$reg));
 7524   %}
 7525 
 7526   ins_pipe(fp_div_d);
 7527 %}
 7528 
 7529 instruct negF_reg_reg(fRegF dst, fRegF src) %{
 7530   match(Set dst (NegF src));
 7531 
 7532   ins_cost(XFER_COST);
 7533   format %{ "fsgnjn.s  $dst, $src, $src\t#@negF_reg_reg" %}
 7534 
 7535   ins_encode %{
 7536     __ fneg_s(as_FloatRegister($dst$$reg),
 7537               as_FloatRegister($src$$reg));
 7538   %}
 7539 
 7540   ins_pipe(fp_uop_s);
 7541 %}
 7542 
 7543 instruct negD_reg_reg(fRegD dst, fRegD src) %{
 7544   match(Set dst (NegD src));
 7545 
 7546   ins_cost(XFER_COST);
 7547   format %{ "fsgnjn.d  $dst, $src, $src\t#@negD_reg_reg" %}
 7548 
 7549   ins_encode %{
 7550     __ fneg_d(as_FloatRegister($dst$$reg),
 7551               as_FloatRegister($src$$reg));
 7552   %}
 7553 
 7554   ins_pipe(fp_uop_d);
 7555 %}
 7556 
 7557 instruct absI_reg(iRegINoSp dst, iRegIorL2I src) %{
 7558   match(Set dst (AbsI src));
 7559 
 7560   ins_cost(ALU_COST * 3);
 7561   format %{
 7562     "sraiw  t0, $src, 0x1f\n\t"
 7563     "addw  $dst, $src, t0\n\t"
 7564     "xorr  $dst, $dst, t0\t#@absI_reg"
 7565   %}
 7566 
 7567   ins_encode %{
 7568     __ sraiw(t0, as_Register($src$$reg), 0x1f);
 7569     __ addw(as_Register($dst$$reg), as_Register($src$$reg), t0);
 7570     __ xorr(as_Register($dst$$reg), as_Register($dst$$reg), t0);
 7571   %}
 7572 
 7573   ins_pipe(pipe_class_default);
 7574 %}
 7575 
 7576 instruct absL_reg(iRegLNoSp dst, iRegL src) %{
 7577   match(Set dst (AbsL src));
 7578 
 7579   ins_cost(ALU_COST * 3);
 7580   format %{
 7581     "srai  t0, $src, 0x3f\n\t"
 7582     "add  $dst, $src, t0\n\t"
 7583     "xorr  $dst, $dst, t0\t#@absL_reg"
 7584   %}
 7585 
 7586   ins_encode %{
 7587     __ srai(t0, as_Register($src$$reg), 0x3f);
 7588     __ add(as_Register($dst$$reg), as_Register($src$$reg), t0);
 7589     __ xorr(as_Register($dst$$reg), as_Register($dst$$reg), t0);
 7590   %}
 7591 
 7592   ins_pipe(pipe_class_default);
 7593 %}
 7594 
 7595 instruct absF_reg(fRegF dst, fRegF src) %{
 7596   match(Set dst (AbsF src));
 7597 
 7598   ins_cost(XFER_COST);
 7599   format %{ "fsgnjx.s  $dst, $src, $src\t#@absF_reg" %}
 7600   ins_encode %{
 7601     __ fabs_s(as_FloatRegister($dst$$reg),
 7602               as_FloatRegister($src$$reg));
 7603   %}
 7604 
 7605   ins_pipe(fp_uop_s);
 7606 %}
 7607 
 7608 instruct absD_reg(fRegD dst, fRegD src) %{
 7609   match(Set dst (AbsD src));
 7610 
 7611   ins_cost(XFER_COST);
 7612   format %{ "fsgnjx.d  $dst, $src, $src\t#@absD_reg" %}
 7613   ins_encode %{
 7614     __ fabs_d(as_FloatRegister($dst$$reg),
 7615               as_FloatRegister($src$$reg));
 7616   %}
 7617 
 7618   ins_pipe(fp_uop_d);
 7619 %}
 7620 
 7621 instruct sqrtF_reg(fRegF dst, fRegF src) %{
 7622   match(Set dst (SqrtF src));
 7623 
 7624   ins_cost(FSQRT_COST);
 7625   format %{ "fsqrt.s  $dst, $src\t#@sqrtF_reg" %}
 7626   ins_encode %{
 7627     __ fsqrt_s(as_FloatRegister($dst$$reg),
 7628                as_FloatRegister($src$$reg));
 7629   %}
 7630 
 7631   ins_pipe(fp_sqrt_s);
 7632 %}
 7633 
 7634 instruct sqrtD_reg(fRegD dst, fRegD src) %{
 7635   match(Set dst (SqrtD src));
 7636 
 7637   ins_cost(FSQRT_COST);
 7638   format %{ "fsqrt.d  $dst, $src\t#@sqrtD_reg" %}
 7639   ins_encode %{
 7640     __ fsqrt_d(as_FloatRegister($dst$$reg),
 7641                as_FloatRegister($src$$reg));
 7642   %}
 7643 
 7644   ins_pipe(fp_sqrt_d);
 7645 %}
 7646 
 7647 // Round Instruction
 7648 instruct roundD_reg(fRegD dst, fRegD src, immI rmode, iRegLNoSp tmp1, iRegLNoSp tmp2, iRegLNoSp tmp3) %{
 7649   match(Set dst (RoundDoubleMode src rmode));
 7650   ins_cost(2 * XFER_COST + BRANCH_COST);
 7651   effect(TEMP_DEF dst, TEMP tmp1, TEMP tmp2, TEMP tmp3);
 7652 
 7653   format %{ "RoundDoubleMode $src, $rmode" %}
 7654   ins_encode %{
 7655     __ round_double_mode(as_FloatRegister($dst$$reg),
 7656                as_FloatRegister($src$$reg), $rmode$$constant, $tmp1$$Register, $tmp2$$Register, $tmp3$$Register);
 7657   %}
 7658   ins_pipe(pipe_class_default);
 7659 %}
 7660 
 7661 // Copysign and signum intrinsics
 7662 
 7663 instruct copySignD_reg(fRegD dst, fRegD src1, fRegD src2, immD zero) %{
 7664   match(Set dst (CopySignD src1 (Binary src2 zero)));
 7665   format %{ "CopySignD  $dst $src1 $src2" %}
 7666   ins_encode %{
 7667     FloatRegister dst = as_FloatRegister($dst$$reg),
 7668                   src1 = as_FloatRegister($src1$$reg),
 7669                   src2 = as_FloatRegister($src2$$reg);
 7670     __ fsgnj_d(dst, src1, src2);
 7671   %}
 7672   ins_pipe(fp_dop_reg_reg_d);
 7673 %}
 7674 
 7675 instruct copySignF_reg(fRegF dst, fRegF src1, fRegF src2) %{
 7676   match(Set dst (CopySignF src1 src2));
 7677   format %{ "CopySignF  $dst $src1 $src2" %}
 7678   ins_encode %{
 7679     FloatRegister dst = as_FloatRegister($dst$$reg),
 7680                   src1 = as_FloatRegister($src1$$reg),
 7681                   src2 = as_FloatRegister($src2$$reg);
 7682     __ fsgnj_s(dst, src1, src2);
 7683   %}
 7684   ins_pipe(fp_dop_reg_reg_s);
 7685 %}
 7686 
 7687 instruct signumD_reg(fRegD dst, immD zero, fRegD one) %{
 7688   match(Set dst (SignumD dst (Binary zero one)));
 7689   format %{ "signumD  $dst, $dst" %}
 7690   ins_encode %{
 7691     __ signum_fp(as_FloatRegister($dst$$reg), as_FloatRegister($one$$reg), true /* is_double */);
 7692   %}
 7693   ins_pipe(pipe_class_default);
 7694 %}
 7695 
 7696 instruct signumF_reg(fRegF dst, immF zero, fRegF one) %{
 7697   match(Set dst (SignumF dst (Binary zero one)));
 7698   format %{ "signumF  $dst, $dst" %}
 7699   ins_encode %{
 7700     __ signum_fp(as_FloatRegister($dst$$reg), as_FloatRegister($one$$reg), false /* is_double */);
 7701   %}
 7702   ins_pipe(pipe_class_default);
 7703 %}
 7704 
 7705 // Arithmetic Instructions End
 7706 
 7707 // ============================================================================
 7708 // Logical Instructions
 7709 
 7710 // Register And
 7711 instruct andI_reg_reg(iRegINoSp dst, iRegI src1, iRegI src2) %{
 7712   match(Set dst (AndI src1 src2));
 7713 
 7714   format %{ "andr  $dst, $src1, $src2\t#@andI_reg_reg" %}
 7715 
 7716   ins_cost(ALU_COST);
 7717   ins_encode %{
 7718     __ andr(as_Register($dst$$reg),
 7719             as_Register($src1$$reg),
 7720             as_Register($src2$$reg));
 7721   %}
 7722 
 7723   ins_pipe(ialu_reg_reg);
 7724 %}
 7725 
 7726 // Immediate And
 7727 instruct andI_reg_imm(iRegINoSp dst, iRegI src1, immIAdd src2) %{
 7728   match(Set dst (AndI src1 src2));
 7729 
 7730   format %{ "andi  $dst, $src1, $src2\t#@andI_reg_imm" %}
 7731 
 7732   ins_cost(ALU_COST);
 7733   ins_encode %{
 7734     __ andi(as_Register($dst$$reg),
 7735             as_Register($src1$$reg),
 7736             (int32_t)($src2$$constant));
 7737   %}
 7738 
 7739   ins_pipe(ialu_reg_imm);
 7740 %}
 7741 
 7742 // Register Or
 7743 instruct orI_reg_reg(iRegINoSp dst, iRegI src1, iRegI src2) %{
 7744   match(Set dst (OrI src1 src2));
 7745 
 7746   format %{ "orr  $dst, $src1, $src2\t#@orI_reg_reg" %}
 7747 
 7748   ins_cost(ALU_COST);
 7749   ins_encode %{
 7750     __ orr(as_Register($dst$$reg),
 7751            as_Register($src1$$reg),
 7752            as_Register($src2$$reg));
 7753   %}
 7754 
 7755   ins_pipe(ialu_reg_reg);
 7756 %}
 7757 
 7758 // Immediate Or
 7759 instruct orI_reg_imm(iRegINoSp dst, iRegI src1, immIAdd src2) %{
 7760   match(Set dst (OrI src1 src2));
 7761 
 7762   format %{ "ori  $dst, $src1, $src2\t#@orI_reg_imm" %}
 7763 
 7764   ins_cost(ALU_COST);
 7765   ins_encode %{
 7766     __ ori(as_Register($dst$$reg),
 7767            as_Register($src1$$reg),
 7768            (int32_t)($src2$$constant));
 7769   %}
 7770 
 7771   ins_pipe(ialu_reg_imm);
 7772 %}
 7773 
 7774 // Register Xor
 7775 instruct xorI_reg_reg(iRegINoSp dst, iRegI src1, iRegI src2) %{
 7776   match(Set dst (XorI src1 src2));
 7777 
 7778   format %{ "xorr  $dst, $src1, $src2\t#@xorI_reg_reg" %}
 7779 
 7780   ins_cost(ALU_COST);
 7781   ins_encode %{
 7782     __ xorr(as_Register($dst$$reg),
 7783             as_Register($src1$$reg),
 7784             as_Register($src2$$reg));
 7785   %}
 7786 
 7787   ins_pipe(ialu_reg_reg);
 7788 %}
 7789 
 7790 // Immediate Xor
 7791 instruct xorI_reg_imm(iRegINoSp dst, iRegI src1, immIAdd src2) %{
 7792   match(Set dst (XorI src1 src2));
 7793 
 7794   format %{ "xori  $dst, $src1, $src2\t#@xorI_reg_imm" %}
 7795 
 7796   ins_cost(ALU_COST);
 7797   ins_encode %{
 7798     __ xori(as_Register($dst$$reg),
 7799             as_Register($src1$$reg),
 7800             (int32_t)($src2$$constant));
 7801   %}
 7802 
 7803   ins_pipe(ialu_reg_imm);
 7804 %}
 7805 
 7806 // Register And Long
 7807 instruct andL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2) %{
 7808   match(Set dst (AndL src1 src2));
 7809 
 7810   format %{ "andr  $dst, $src1, $src2\t#@andL_reg_reg" %}
 7811 
 7812   ins_cost(ALU_COST);
 7813   ins_encode %{
 7814     __ andr(as_Register($dst$$reg),
 7815             as_Register($src1$$reg),
 7816             as_Register($src2$$reg));
 7817   %}
 7818 
 7819   ins_pipe(ialu_reg_reg);
 7820 %}
 7821 
 7822 // Immediate And Long
 7823 instruct andL_reg_imm(iRegLNoSp dst, iRegL src1, immLAdd src2) %{
 7824   match(Set dst (AndL src1 src2));
 7825 
 7826   format %{ "andi  $dst, $src1, $src2\t#@andL_reg_imm" %}
 7827 
 7828   ins_cost(ALU_COST);
 7829   ins_encode %{
 7830     __ andi(as_Register($dst$$reg),
 7831             as_Register($src1$$reg),
 7832             (int32_t)($src2$$constant));
 7833   %}
 7834 
 7835   ins_pipe(ialu_reg_imm);
 7836 %}
 7837 
 7838 // Register Or Long
 7839 instruct orL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2) %{
 7840   match(Set dst (OrL src1 src2));
 7841 
 7842   format %{ "orr  $dst, $src1, $src2\t#@orL_reg_reg" %}
 7843 
 7844   ins_cost(ALU_COST);
 7845   ins_encode %{
 7846     __ orr(as_Register($dst$$reg),
 7847            as_Register($src1$$reg),
 7848            as_Register($src2$$reg));
 7849   %}
 7850 
 7851   ins_pipe(ialu_reg_reg);
 7852 %}
 7853 
 7854 // Immediate Or Long
 7855 instruct orL_reg_imm(iRegLNoSp dst, iRegL src1, immLAdd src2) %{
 7856   match(Set dst (OrL src1 src2));
 7857 
 7858   format %{ "ori  $dst, $src1, $src2\t#@orL_reg_imm" %}
 7859 
 7860   ins_cost(ALU_COST);
 7861   ins_encode %{
 7862     __ ori(as_Register($dst$$reg),
 7863            as_Register($src1$$reg),
 7864            (int32_t)($src2$$constant));
 7865   %}
 7866 
 7867   ins_pipe(ialu_reg_imm);
 7868 %}
 7869 
 7870 // Register Xor Long
 7871 instruct xorL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2) %{
 7872   match(Set dst (XorL src1 src2));
 7873 
 7874   format %{ "xorr  $dst, $src1, $src2\t#@xorL_reg_reg" %}
 7875 
 7876   ins_cost(ALU_COST);
 7877   ins_encode %{
 7878     __ xorr(as_Register($dst$$reg),
 7879             as_Register($src1$$reg),
 7880             as_Register($src2$$reg));
 7881   %}
 7882 
 7883   ins_pipe(ialu_reg_reg);
 7884 %}
 7885 
 7886 // Immediate Xor Long
 7887 instruct xorL_reg_imm(iRegLNoSp dst, iRegL src1, immLAdd src2) %{
 7888   match(Set dst (XorL src1 src2));
 7889 
 7890   ins_cost(ALU_COST);
 7891   format %{ "xori  $dst, $src1, $src2\t#@xorL_reg_imm" %}
 7892 
 7893   ins_encode %{
 7894     __ xori(as_Register($dst$$reg),
 7895             as_Register($src1$$reg),
 7896             (int32_t)($src2$$constant));
 7897   %}
 7898 
 7899   ins_pipe(ialu_reg_imm);
 7900 %}
 7901 
 7902 // ============================================================================
 7903 // MemBar Instruction
 7904 
 7905 instruct load_fence() %{
 7906   match(LoadFence);
 7907   ins_cost(ALU_COST);
 7908 
 7909   format %{ "#@load_fence" %}
 7910 
 7911   ins_encode %{
 7912     __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
 7913   %}
 7914   ins_pipe(pipe_serial);
 7915 %}
 7916 
 7917 instruct membar_acquire() %{
 7918   match(MemBarAcquire);
 7919   ins_cost(ALU_COST);
 7920 
 7921   format %{ "#@membar_acquire\n\t"
 7922             "fence ir iorw" %}
 7923 
 7924   ins_encode %{
 7925     __ block_comment("membar_acquire");
 7926     __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
 7927   %}
 7928 
 7929   ins_pipe(pipe_serial);
 7930 %}
 7931 
 7932 instruct membar_acquire_lock() %{
 7933   match(MemBarAcquireLock);
 7934   ins_cost(0);
 7935 
 7936   format %{ "#@membar_acquire_lock (elided)" %}
 7937 
 7938   ins_encode %{
 7939     __ block_comment("membar_acquire_lock (elided)");
 7940   %}
 7941 
 7942   ins_pipe(pipe_serial);
 7943 %}
 7944 
 7945 instruct store_fence() %{
 7946   match(StoreFence);
 7947   ins_cost(ALU_COST);
 7948 
 7949   format %{ "#@store_fence" %}
 7950 
 7951   ins_encode %{
 7952     __ membar(MacroAssembler::LoadStore | MacroAssembler::StoreStore);
 7953   %}
 7954   ins_pipe(pipe_serial);
 7955 %}
 7956 
 7957 instruct membar_release() %{
 7958   match(MemBarRelease);
 7959   ins_cost(ALU_COST);
 7960 
 7961   format %{ "#@membar_release\n\t"
 7962             "fence iorw ow" %}
 7963 
 7964   ins_encode %{
 7965     __ block_comment("membar_release");
 7966     __ membar(MacroAssembler::LoadStore | MacroAssembler::StoreStore);
 7967   %}
 7968   ins_pipe(pipe_serial);
 7969 %}
 7970 
 7971 instruct membar_storestore() %{
 7972   match(MemBarStoreStore);
 7973   match(StoreStoreFence);
 7974   ins_cost(ALU_COST);
 7975 
 7976   format %{ "MEMBAR-store-store\t#@membar_storestore" %}
 7977 
 7978   ins_encode %{
 7979     __ membar(MacroAssembler::StoreStore);
 7980   %}
 7981   ins_pipe(pipe_serial);
 7982 %}
 7983 
 7984 instruct membar_release_lock() %{
 7985   match(MemBarReleaseLock);
 7986   ins_cost(0);
 7987 
 7988   format %{ "#@membar_release_lock (elided)" %}
 7989 
 7990   ins_encode %{
 7991     __ block_comment("membar_release_lock (elided)");
 7992   %}
 7993 
 7994   ins_pipe(pipe_serial);
 7995 %}
 7996 
 7997 instruct membar_volatile() %{
 7998   match(MemBarVolatile);
 7999   ins_cost(ALU_COST);
 8000 
 8001   format %{ "#@membar_volatile\n\t"
 8002              "fence iorw iorw"%}
 8003 
 8004   ins_encode %{
 8005     __ block_comment("membar_volatile");
 8006     __ membar(MacroAssembler::StoreLoad);
 8007   %}
 8008 
 8009   ins_pipe(pipe_serial);
 8010 %}
 8011 
 8012 instruct spin_wait() %{
 8013   predicate(UseZihintpause);
 8014   match(OnSpinWait);
 8015   ins_cost(CACHE_MISS_COST);
 8016 
 8017   format %{ "spin_wait" %}
 8018 
 8019   ins_encode %{
 8020     __ pause();
 8021   %}
 8022 
 8023   ins_pipe(pipe_serial);
 8024 %}
 8025 
 8026 // ============================================================================
 8027 // Cast Instructions (Java-level type cast)
 8028 
 8029 instruct castX2P(iRegPNoSp dst, iRegL src) %{
 8030   match(Set dst (CastX2P src));
 8031 
 8032   ins_cost(ALU_COST);
 8033   format %{ "mv  $dst, $src\t# long -> ptr, #@castX2P" %}
 8034 
 8035   ins_encode %{
 8036     if ($dst$$reg != $src$$reg) {
 8037       __ mv(as_Register($dst$$reg), as_Register($src$$reg));
 8038     }
 8039   %}
 8040 
 8041   ins_pipe(ialu_reg);
 8042 %}
 8043 
 8044 instruct castP2X(iRegLNoSp dst, iRegP src) %{
 8045   match(Set dst (CastP2X src));
 8046 
 8047   ins_cost(ALU_COST);
 8048   format %{ "mv  $dst, $src\t# ptr -> long, #@castP2X" %}
 8049 
 8050   ins_encode %{
 8051     if ($dst$$reg != $src$$reg) {
 8052       __ mv(as_Register($dst$$reg), as_Register($src$$reg));
 8053     }
 8054   %}
 8055 
 8056   ins_pipe(ialu_reg);
 8057 %}
 8058 
 8059 instruct castPP(iRegPNoSp dst)
 8060 %{
 8061   match(Set dst (CastPP dst));
 8062   ins_cost(0);
 8063 
 8064   size(0);
 8065   format %{ "# castPP of $dst, #@castPP" %}
 8066   ins_encode(/* empty encoding */);
 8067   ins_pipe(pipe_class_empty);
 8068 %}
 8069 
 8070 instruct castLL(iRegL dst)
 8071 %{
 8072   match(Set dst (CastLL dst));
 8073 
 8074   size(0);
 8075   format %{ "# castLL of $dst, #@castLL" %}
 8076   ins_encode(/* empty encoding */);
 8077   ins_cost(0);
 8078   ins_pipe(pipe_class_empty);
 8079 %}
 8080 
 8081 instruct castII(iRegI dst)
 8082 %{
 8083   match(Set dst (CastII dst));
 8084 
 8085   size(0);
 8086   format %{ "# castII of $dst, #@castII" %}
 8087   ins_encode(/* empty encoding */);
 8088   ins_cost(0);
 8089   ins_pipe(pipe_class_empty);
 8090 %}
 8091 
 8092 instruct checkCastPP(iRegPNoSp dst)
 8093 %{
 8094   match(Set dst (CheckCastPP dst));
 8095 
 8096   size(0);
 8097   ins_cost(0);
 8098   format %{ "# checkcastPP of $dst, #@checkCastPP" %}
 8099   ins_encode(/* empty encoding */);
 8100   ins_pipe(pipe_class_empty);
 8101 %}
 8102 
 8103 instruct castHH(fRegF dst)
 8104 %{
 8105   match(Set dst (CastHH dst));
 8106 
 8107   size(0);
 8108   format %{ "# castHH of $dst" %}
 8109   ins_encode(/* empty encoding */);
 8110   ins_cost(0);
 8111   ins_pipe(pipe_class_empty);
 8112 %}
 8113 
 8114 instruct castFF(fRegF dst)
 8115 %{
 8116   match(Set dst (CastFF dst));
 8117 
 8118   size(0);
 8119   format %{ "# castFF of $dst" %}
 8120   ins_encode(/* empty encoding */);
 8121   ins_cost(0);
 8122   ins_pipe(pipe_class_empty);
 8123 %}
 8124 
 8125 instruct castDD(fRegD dst)
 8126 %{
 8127   match(Set dst (CastDD dst));
 8128 
 8129   size(0);
 8130   format %{ "# castDD of $dst" %}
 8131   ins_encode(/* empty encoding */);
 8132   ins_cost(0);
 8133   ins_pipe(pipe_class_empty);
 8134 %}
 8135 
 8136 instruct castVV(vReg dst)
 8137 %{
 8138   match(Set dst (CastVV dst));
 8139 
 8140   size(0);
 8141   format %{ "# castVV of $dst" %}
 8142   ins_encode(/* empty encoding */);
 8143   ins_cost(0);
 8144   ins_pipe(pipe_class_empty);
 8145 %}
 8146 
 8147 // ============================================================================
 8148 // Convert Instructions
 8149 
 8150 // int to bool
 8151 instruct convI2Bool(iRegINoSp dst, iRegI src)
 8152 %{
 8153   match(Set dst (Conv2B src));
 8154 
 8155   ins_cost(ALU_COST);
 8156   format %{ "snez  $dst, $src\t#@convI2Bool" %}
 8157 
 8158   ins_encode %{
 8159     __ snez(as_Register($dst$$reg), as_Register($src$$reg));
 8160   %}
 8161 
 8162   ins_pipe(ialu_reg);
 8163 %}
 8164 
 8165 // pointer to bool
 8166 instruct convP2Bool(iRegINoSp dst, iRegP src)
 8167 %{
 8168   match(Set dst (Conv2B src));
 8169 
 8170   ins_cost(ALU_COST);
 8171   format %{ "snez  $dst, $src\t#@convP2Bool" %}
 8172 
 8173   ins_encode %{
 8174     __ snez(as_Register($dst$$reg), as_Register($src$$reg));
 8175   %}
 8176 
 8177   ins_pipe(ialu_reg);
 8178 %}
 8179 
 8180 // int <-> long
 8181 
 8182 instruct convI2L_reg_reg(iRegLNoSp dst, iRegIorL2I src)
 8183 %{
 8184   match(Set dst (ConvI2L src));
 8185 
 8186   ins_cost(ALU_COST);
 8187   format %{ "addw  $dst, $src, zr\t#@convI2L_reg_reg" %}
 8188   ins_encode %{
 8189     __ sext(as_Register($dst$$reg), as_Register($src$$reg), 32);
 8190   %}
 8191   ins_pipe(ialu_reg);
 8192 %}
 8193 
 8194 instruct convL2I_reg(iRegINoSp dst, iRegL src) %{
 8195   match(Set dst (ConvL2I src));
 8196 
 8197   ins_cost(ALU_COST);
 8198   format %{ "addw  $dst, $src, zr\t#@convL2I_reg" %}
 8199 
 8200   ins_encode %{
 8201     __ sext(as_Register($dst$$reg), as_Register($src$$reg), 32);
 8202   %}
 8203 
 8204   ins_pipe(ialu_reg);
 8205 %}
 8206 
 8207 // int to unsigned long (Zero-extend)
 8208 instruct convI2UL_reg_reg(iRegLNoSp dst, iRegIorL2I src, immL_32bits mask)
 8209 %{
 8210   match(Set dst (AndL (ConvI2L src) mask));
 8211 
 8212   ins_cost(ALU_COST * 2);
 8213   format %{ "zext $dst, $src, 32\t# i2ul, #@convI2UL_reg_reg" %}
 8214 
 8215   ins_encode %{
 8216     __ zext(as_Register($dst$$reg), as_Register($src$$reg), 32);
 8217   %}
 8218 
 8219   ins_pipe(ialu_reg_shift);
 8220 %}
 8221 
 8222 // float <-> double
 8223 
 8224 instruct convF2D_reg(fRegD dst, fRegF src) %{
 8225   match(Set dst (ConvF2D src));
 8226 
 8227   ins_cost(XFER_COST);
 8228   format %{ "fcvt.d.s  $dst, $src\t#@convF2D_reg" %}
 8229 
 8230   ins_encode %{
 8231     __ fcvt_d_s(as_FloatRegister($dst$$reg), as_FloatRegister($src$$reg));
 8232   %}
 8233 
 8234   ins_pipe(fp_f2d);
 8235 %}
 8236 
 8237 instruct convD2F_reg(fRegF dst, fRegD src) %{
 8238   match(Set dst (ConvD2F src));
 8239 
 8240   ins_cost(XFER_COST);
 8241   format %{ "fcvt.s.d  $dst, $src\t#@convD2F_reg" %}
 8242 
 8243   ins_encode %{
 8244     __ fcvt_s_d(as_FloatRegister($dst$$reg), as_FloatRegister($src$$reg));
 8245   %}
 8246 
 8247   ins_pipe(fp_d2f);
 8248 %}
 8249 
 8250 // single <-> half precision
 8251 
 8252 instruct convHF2F_reg_reg(fRegF dst, iRegINoSp src, iRegINoSp tmp) %{
 8253   match(Set dst (ConvHF2F src));
 8254   effect(TEMP tmp);
 8255   format %{ "fmv.h.x $dst, $src\t# move source from $src to $dst\n\t"
 8256             "fcvt.s.h $dst, $dst\t# convert half to single precision"
 8257   %}
 8258   ins_encode %{
 8259     __ float16_to_float($dst$$FloatRegister, $src$$Register, $tmp$$Register);
 8260   %}
 8261   ins_pipe(pipe_slow);
 8262 %}
 8263 
 8264 instruct convF2HF_reg_reg(iRegINoSp dst, fRegF src, fRegF ftmp, iRegINoSp xtmp) %{
 8265   match(Set dst (ConvF2HF src));
 8266   effect(TEMP_DEF dst, TEMP ftmp, TEMP xtmp);
 8267   format %{ "fcvt.h.s $ftmp, $src\t# convert single precision to half\n\t"
 8268             "fmv.x.h $dst, $ftmp\t# move result from $ftmp to $dst"
 8269   %}
 8270   ins_encode %{
 8271     __ float_to_float16($dst$$Register, $src$$FloatRegister, $ftmp$$FloatRegister, $xtmp$$Register);
 8272   %}
 8273   ins_pipe(pipe_slow);
 8274 %}
 8275 
 8276 // half precision operations
 8277 
 8278 instruct reinterpretS2HF(fRegF dst, iRegI src)
 8279 %{
 8280   match(Set dst (ReinterpretS2HF src));
 8281   format %{ "fmv.h.x $dst, $src" %}
 8282   ins_encode %{
 8283     __ fmv_h_x($dst$$FloatRegister, $src$$Register);
 8284   %}
 8285   ins_pipe(fp_i2f);
 8286 %}
 8287 
 8288 instruct convF2HFAndS2HF(fRegF dst, fRegF src)
 8289 %{
 8290   match(Set dst (ReinterpretS2HF (ConvF2HF src)));
 8291   format %{ "convF2HFAndS2HF $dst, $src" %}
 8292   ins_encode %{
 8293     __ fcvt_h_s($dst$$FloatRegister, $src$$FloatRegister);
 8294   %}
 8295   ins_pipe(fp_uop_s);
 8296 %}
 8297 
 8298 instruct reinterpretHF2S(iRegINoSp dst, fRegF src)
 8299 %{
 8300   match(Set dst (ReinterpretHF2S src));
 8301   format %{ "fmv.x.h $dst, $src" %}
 8302   ins_encode %{
 8303     __ fmv_x_h($dst$$Register, $src$$FloatRegister);
 8304   %}
 8305   ins_pipe(fp_f2i);
 8306 %}
 8307 
 8308 instruct convHF2SAndHF2F(fRegF dst, fRegF src)
 8309 %{
 8310   match(Set dst (ConvHF2F (ReinterpretHF2S src)));
 8311   format %{ "convHF2SAndHF2F $dst, $src" %}
 8312   ins_encode %{
 8313     __ fcvt_s_h($dst$$FloatRegister, $src$$FloatRegister);
 8314   %}
 8315   ins_pipe(fp_uop_s);
 8316 %}
 8317 
 8318 instruct sqrt_HF_reg(fRegF dst, fRegF src)
 8319 %{
 8320   match(Set dst (SqrtHF src));
 8321   format %{ "fsqrt.h $dst, $src" %}
 8322   ins_encode %{
 8323     __ fsqrt_h($dst$$FloatRegister, $src$$FloatRegister);
 8324   %}
 8325   ins_pipe(fp_sqrt_s);
 8326 %}
 8327 
 8328 instruct binOps_HF_reg(fRegF dst, fRegF src1, fRegF src2)
 8329 %{
 8330   match(Set dst (AddHF src1 src2));
 8331   match(Set dst (SubHF src1 src2));
 8332   match(Set dst (MulHF src1 src2));
 8333   match(Set dst (DivHF src1 src2));
 8334   format %{ "binop_hf $dst, $src1, $src2" %}
 8335   ins_encode %{
 8336     int opcode = this->ideal_Opcode();
 8337     switch(opcode) {
 8338       case Op_AddHF: __ fadd_h($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister); break;
 8339       case Op_SubHF: __ fsub_h($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister); break;
 8340       case Op_MulHF: __ fmul_h($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister); break;
 8341       case Op_DivHF: __ fdiv_h($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister); break;
 8342       default: assert(false, "%s is not supported here", NodeClassNames[opcode]); break;
 8343     }
 8344   %}
 8345   ins_pipe(fp_dop_reg_reg_s);
 8346 %}
 8347 
 8348 instruct min_HF_reg(fRegF dst, fRegF src1, fRegF src2, rFlagsReg cr)
 8349 %{
 8350   predicate(!UseZfa);
 8351   match(Set dst (MinHF src1 src2));
 8352   effect(KILL cr);
 8353 
 8354   format %{ "min_hf $dst, $src1, $src2" %}
 8355 
 8356   ins_encode %{
 8357     __ minmax_fp($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister,
 8358                  __ FLOAT_TYPE::half_precision, true /* is_min */);
 8359   %}
 8360   ins_pipe(pipe_class_default);
 8361 %}
 8362 
 8363 instruct min_HF_reg_zfa(fRegF dst, fRegF src1, fRegF src2)
 8364 %{
 8365   predicate(UseZfa);
 8366   match(Set dst (MinHF src1 src2));
 8367 
 8368   format %{ "min_hf $dst, $src1, $src2" %}
 8369 
 8370   ins_encode %{
 8371     __ fminm_h(as_FloatRegister($dst$$reg),
 8372                as_FloatRegister($src1$$reg), as_FloatRegister($src2$$reg));
 8373   %}
 8374 
 8375   ins_pipe(pipe_class_default);
 8376 %}
 8377 
 8378 instruct max_HF_reg(fRegF dst, fRegF src1, fRegF src2, rFlagsReg cr)
 8379 %{
 8380   predicate(!UseZfa);
 8381   match(Set dst (MaxHF src1 src2));
 8382   effect(KILL cr);
 8383 
 8384   format %{ "max_hf $dst, $src1, $src2" %}
 8385 
 8386   ins_encode %{
 8387     __ minmax_fp($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister,
 8388                  __ FLOAT_TYPE::half_precision, false /* is_min */);
 8389   %}
 8390   ins_pipe(pipe_class_default);
 8391 %}
 8392 
 8393 instruct max_HF_reg_zfa(fRegF dst, fRegF src1, fRegF src2)
 8394 %{
 8395   predicate(UseZfa);
 8396   match(Set dst (MaxHF src1 src2));
 8397 
 8398   format %{ "max_hf $dst, $src1, $src2" %}
 8399 
 8400   ins_encode %{
 8401     __ fmaxm_h(as_FloatRegister($dst$$reg),
 8402                as_FloatRegister($src1$$reg), as_FloatRegister($src2$$reg));
 8403   %}
 8404 
 8405   ins_pipe(pipe_class_default);
 8406 %}
 8407 
 8408 instruct fma_HF_reg(fRegF dst, fRegF src1, fRegF src2, fRegF src3)
 8409 %{
 8410   match(Set dst (FmaHF src3 (Binary src1 src2)));
 8411   format %{ "fmadd.h $dst, $src1, $src2, $src3\t# $dst = $src1 * $src2 + $src3 fma packedH" %}
 8412   ins_encode %{
 8413     __ fmadd_h($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister, $src3$$FloatRegister);
 8414   %}
 8415   ins_pipe(pipe_class_default);
 8416 %}
 8417 
 8418 // float <-> int
 8419 
 8420 instruct convF2I_reg_reg(iRegINoSp dst, fRegF src) %{
 8421   match(Set dst (ConvF2I src));
 8422 
 8423   ins_cost(XFER_COST);
 8424   format %{ "fcvt.w.s  $dst, $src\t#@convF2I_reg_reg" %}
 8425 
 8426   ins_encode %{
 8427     __ fcvt_w_s_safe($dst$$Register, $src$$FloatRegister);
 8428   %}
 8429 
 8430   ins_pipe(fp_f2i);
 8431 %}
 8432 
 8433 instruct convI2F_reg_reg(fRegF dst, iRegIorL2I src) %{
 8434   match(Set dst (ConvI2F src));
 8435 
 8436   ins_cost(XFER_COST);
 8437   format %{ "fcvt.s.w  $dst, $src\t#@convI2F_reg_reg" %}
 8438 
 8439   ins_encode %{
 8440     __ fcvt_s_w(as_FloatRegister($dst$$reg), as_Register($src$$reg));
 8441   %}
 8442 
 8443   ins_pipe(fp_i2f);
 8444 %}
 8445 
 8446 // float <-> long
 8447 
 8448 instruct convF2L_reg_reg(iRegLNoSp dst, fRegF src) %{
 8449   match(Set dst (ConvF2L src));
 8450 
 8451   ins_cost(XFER_COST);
 8452   format %{ "fcvt.l.s  $dst, $src\t#@convF2L_reg_reg" %}
 8453 
 8454   ins_encode %{
 8455     __ fcvt_l_s_safe($dst$$Register, $src$$FloatRegister);
 8456   %}
 8457 
 8458   ins_pipe(fp_f2l);
 8459 %}
 8460 
 8461 instruct convL2F_reg_reg(fRegF dst, iRegL src) %{
 8462   match(Set dst (ConvL2F src));
 8463 
 8464   ins_cost(XFER_COST);
 8465   format %{ "fcvt.s.l  $dst, $src\t#@convL2F_reg_reg" %}
 8466 
 8467   ins_encode %{
 8468     __ fcvt_s_l(as_FloatRegister($dst$$reg), as_Register($src$$reg));
 8469   %}
 8470 
 8471   ins_pipe(fp_l2f);
 8472 %}
 8473 
 8474 // double <-> int
 8475 
 8476 instruct convD2I_reg_reg(iRegINoSp dst, fRegD src) %{
 8477   match(Set dst (ConvD2I src));
 8478 
 8479   ins_cost(XFER_COST);
 8480   format %{ "fcvt.w.d  $dst, $src\t#@convD2I_reg_reg" %}
 8481 
 8482   ins_encode %{
 8483     __ fcvt_w_d_safe($dst$$Register, $src$$FloatRegister);
 8484   %}
 8485 
 8486   ins_pipe(fp_d2i);
 8487 %}
 8488 
 8489 instruct convI2D_reg_reg(fRegD dst, iRegIorL2I src) %{
 8490   match(Set dst (ConvI2D src));
 8491 
 8492   ins_cost(XFER_COST);
 8493   format %{ "fcvt.d.w  $dst, $src\t#@convI2D_reg_reg" %}
 8494 
 8495   ins_encode %{
 8496     __ fcvt_d_w(as_FloatRegister($dst$$reg), as_Register($src$$reg));
 8497   %}
 8498 
 8499   ins_pipe(fp_i2d);
 8500 %}
 8501 
 8502 // double <-> long
 8503 
 8504 instruct convD2L_reg_reg(iRegLNoSp dst, fRegD src) %{
 8505   match(Set dst (ConvD2L src));
 8506 
 8507   ins_cost(XFER_COST);
 8508   format %{ "fcvt.l.d  $dst, $src\t#@convD2L_reg_reg" %}
 8509 
 8510   ins_encode %{
 8511     __ fcvt_l_d_safe($dst$$Register, $src$$FloatRegister);
 8512   %}
 8513 
 8514   ins_pipe(fp_d2l);
 8515 %}
 8516 
 8517 instruct convL2D_reg_reg(fRegD dst, iRegL src) %{
 8518   match(Set dst (ConvL2D src));
 8519 
 8520   ins_cost(XFER_COST);
 8521   format %{ "fcvt.d.l  $dst, $src\t#@convL2D_reg_reg" %}
 8522 
 8523   ins_encode %{
 8524     __ fcvt_d_l(as_FloatRegister($dst$$reg), as_Register($src$$reg));
 8525   %}
 8526 
 8527   ins_pipe(fp_l2d);
 8528 %}
 8529 
 8530 // Convert oop into int for vectors alignment masking
 8531 instruct convP2I(iRegINoSp dst, iRegP src) %{
 8532   match(Set dst (ConvL2I (CastP2X src)));
 8533 
 8534   ins_cost(ALU_COST * 2);
 8535   format %{ "zext $dst, $src, 32\t# ptr -> int, #@convP2I" %}
 8536 
 8537   ins_encode %{
 8538     __ zext($dst$$Register, $src$$Register, 32);
 8539   %}
 8540 
 8541   ins_pipe(ialu_reg);
 8542 %}
 8543 
 8544 // Convert compressed oop into int for vectors alignment masking
 8545 // in case of 32bit oops (heap < 4Gb).
 8546 instruct convN2I(iRegINoSp dst, iRegN src)
 8547 %{
 8548   predicate(CompressedOops::shift() == 0);
 8549   match(Set dst (ConvL2I (CastP2X (DecodeN src))));
 8550 
 8551   ins_cost(ALU_COST);
 8552   format %{ "mv  $dst, $src\t# compressed ptr -> int, #@convN2I" %}
 8553 
 8554   ins_encode %{
 8555     __ mv($dst$$Register, $src$$Register);
 8556   %}
 8557 
 8558   ins_pipe(ialu_reg);
 8559 %}
 8560 
 8561 instruct round_double_reg(iRegLNoSp dst, fRegD src, fRegD ftmp) %{
 8562   match(Set dst (RoundD src));
 8563 
 8564   ins_cost(XFER_COST + BRANCH_COST);
 8565   effect(TEMP ftmp);
 8566   format %{ "java_round_double $dst, $src\t#@round_double_reg" %}
 8567 
 8568   ins_encode %{
 8569     __ java_round_double($dst$$Register, as_FloatRegister($src$$reg), as_FloatRegister($ftmp$$reg));
 8570   %}
 8571 
 8572   ins_pipe(pipe_slow);
 8573 %}
 8574 
 8575 instruct round_float_reg(iRegINoSp dst, fRegF src, fRegF ftmp) %{
 8576   match(Set dst (RoundF src));
 8577 
 8578   ins_cost(XFER_COST + BRANCH_COST);
 8579   effect(TEMP ftmp);
 8580   format %{ "java_round_float $dst, $src\t#@round_float_reg" %}
 8581 
 8582   ins_encode %{
 8583     __ java_round_float($dst$$Register, as_FloatRegister($src$$reg), as_FloatRegister($ftmp$$reg));
 8584   %}
 8585 
 8586   ins_pipe(pipe_slow);
 8587 %}
 8588 
 8589 // Convert oop pointer into compressed form
 8590 instruct encodeHeapOop(iRegNNoSp dst, iRegP src) %{
 8591   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
 8592   match(Set dst (EncodeP src));
 8593   ins_cost(ALU_COST);
 8594   format %{ "encode_heap_oop  $dst, $src\t#@encodeHeapOop" %}
 8595   ins_encode %{
 8596     Register s = $src$$Register;
 8597     Register d = $dst$$Register;
 8598     __ encode_heap_oop(d, s);
 8599   %}
 8600   ins_pipe(pipe_class_default);
 8601 %}
 8602 
 8603 instruct encodeHeapOop_not_null(iRegNNoSp dst, iRegP src) %{
 8604   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
 8605   match(Set dst (EncodeP src));
 8606   ins_cost(ALU_COST);
 8607   format %{ "encode_heap_oop_not_null $dst, $src\t#@encodeHeapOop_not_null" %}
 8608   ins_encode %{
 8609     __ encode_heap_oop_not_null($dst$$Register, $src$$Register);
 8610   %}
 8611   ins_pipe(pipe_class_default);
 8612 %}
 8613 
 8614 instruct decodeHeapOop(iRegPNoSp dst, iRegN src) %{
 8615   predicate(n->bottom_type()->is_ptr()->ptr() != TypePtr::NotNull &&
 8616             n->bottom_type()->is_ptr()->ptr() != TypePtr::Constant);
 8617   match(Set dst (DecodeN src));
 8618 
 8619   ins_cost(0);
 8620   format %{ "decode_heap_oop  $dst, $src\t#@decodeHeapOop" %}
 8621   ins_encode %{
 8622     Register s = $src$$Register;
 8623     Register d = $dst$$Register;
 8624     __ decode_heap_oop(d, s);
 8625   %}
 8626   ins_pipe(pipe_class_default);
 8627 %}
 8628 
 8629 instruct decodeHeapOop_not_null(iRegPNoSp dst, iRegN src) %{
 8630   predicate(n->bottom_type()->is_ptr()->ptr() == TypePtr::NotNull ||
 8631             n->bottom_type()->is_ptr()->ptr() == TypePtr::Constant);
 8632   match(Set dst (DecodeN src));
 8633 
 8634   ins_cost(0);
 8635   format %{ "decode_heap_oop_not_null $dst, $src\t#@decodeHeapOop_not_null" %}
 8636   ins_encode %{
 8637     Register s = $src$$Register;
 8638     Register d = $dst$$Register;
 8639     __ decode_heap_oop_not_null(d, s);
 8640   %}
 8641   ins_pipe(pipe_class_default);
 8642 %}
 8643 
 8644 // Convert klass pointer into compressed form.
 8645 instruct encodeKlass_not_null(iRegNNoSp dst, iRegP src) %{
 8646   match(Set dst (EncodePKlass src));
 8647 
 8648   ins_cost(ALU_COST);
 8649   format %{ "encode_klass_not_null  $dst, $src\t#@encodeKlass_not_null" %}
 8650 
 8651   ins_encode %{
 8652     Register src_reg = as_Register($src$$reg);
 8653     Register dst_reg = as_Register($dst$$reg);
 8654     __ encode_klass_not_null(dst_reg, src_reg, t0);
 8655   %}
 8656 
 8657    ins_pipe(pipe_class_default);
 8658 %}
 8659 
 8660 instruct decodeKlass_not_null(iRegPNoSp dst, iRegN src, iRegPNoSp tmp) %{
 8661   match(Set dst (DecodeNKlass src));
 8662 
 8663   effect(TEMP tmp);
 8664 
 8665   ins_cost(ALU_COST);
 8666   format %{ "decode_klass_not_null  $dst, $src\t#@decodeKlass_not_null" %}
 8667 
 8668   ins_encode %{
 8669     Register src_reg = as_Register($src$$reg);
 8670     Register dst_reg = as_Register($dst$$reg);
 8671     Register tmp_reg = as_Register($tmp$$reg);
 8672     __ decode_klass_not_null(dst_reg, src_reg, tmp_reg);
 8673   %}
 8674 
 8675    ins_pipe(pipe_class_default);
 8676 %}
 8677 
 8678 // stack <-> reg and reg <-> reg shuffles with no conversion
 8679 
 8680 instruct MoveF2I_stack_reg(iRegINoSp dst, stackSlotF src) %{
 8681 
 8682   match(Set dst (MoveF2I src));
 8683 
 8684   effect(DEF dst, USE src);
 8685 
 8686   ins_cost(LOAD_COST);
 8687 
 8688   format %{ "lw  $dst, $src\t#@MoveF2I_stack_reg" %}
 8689 
 8690   ins_encode %{
 8691     __ lw(as_Register($dst$$reg), Address(sp, $src$$disp));
 8692   %}
 8693 
 8694   ins_pipe(iload_reg_reg);
 8695 
 8696 %}
 8697 
 8698 instruct MoveI2F_stack_reg(fRegF dst, stackSlotI src) %{
 8699 
 8700   match(Set dst (MoveI2F src));
 8701 
 8702   effect(DEF dst, USE src);
 8703 
 8704   ins_cost(LOAD_COST);
 8705 
 8706   format %{ "flw  $dst, $src\t#@MoveI2F_stack_reg" %}
 8707 
 8708   ins_encode %{
 8709     __ flw(as_FloatRegister($dst$$reg), Address(sp, $src$$disp));
 8710   %}
 8711 
 8712   ins_pipe(fp_load_mem_s);
 8713 
 8714 %}
 8715 
 8716 instruct MoveD2L_stack_reg(iRegLNoSp dst, stackSlotD src) %{
 8717 
 8718   match(Set dst (MoveD2L src));
 8719 
 8720   effect(DEF dst, USE src);
 8721 
 8722   ins_cost(LOAD_COST);
 8723 
 8724   format %{ "ld  $dst, $src\t#@MoveD2L_stack_reg" %}
 8725 
 8726   ins_encode %{
 8727     __ ld(as_Register($dst$$reg), Address(sp, $src$$disp));
 8728   %}
 8729 
 8730   ins_pipe(iload_reg_reg);
 8731 
 8732 %}
 8733 
 8734 instruct MoveL2D_stack_reg(fRegD dst, stackSlotL src) %{
 8735 
 8736   match(Set dst (MoveL2D src));
 8737 
 8738   effect(DEF dst, USE src);
 8739 
 8740   ins_cost(LOAD_COST);
 8741 
 8742   format %{ "fld  $dst, $src\t#@MoveL2D_stack_reg" %}
 8743 
 8744   ins_encode %{
 8745     __ fld(as_FloatRegister($dst$$reg), Address(sp, $src$$disp));
 8746   %}
 8747 
 8748   ins_pipe(fp_load_mem_d);
 8749 
 8750 %}
 8751 
 8752 instruct MoveF2I_reg_stack(stackSlotI dst, fRegF src) %{
 8753 
 8754   match(Set dst (MoveF2I src));
 8755 
 8756   effect(DEF dst, USE src);
 8757 
 8758   ins_cost(STORE_COST);
 8759 
 8760   format %{ "fsw  $src, $dst\t#@MoveF2I_reg_stack" %}
 8761 
 8762   ins_encode %{
 8763     __ fsw(as_FloatRegister($src$$reg), Address(sp, $dst$$disp));
 8764   %}
 8765 
 8766   ins_pipe(fp_store_reg_s);
 8767 
 8768 %}
 8769 
 8770 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
 8771 
 8772   match(Set dst (MoveI2F src));
 8773 
 8774   effect(DEF dst, USE src);
 8775 
 8776   ins_cost(STORE_COST);
 8777 
 8778   format %{ "sw  $src, $dst\t#@MoveI2F_reg_stack" %}
 8779 
 8780   ins_encode %{
 8781     __ sw(as_Register($src$$reg), Address(sp, $dst$$disp));
 8782   %}
 8783 
 8784   ins_pipe(istore_reg_reg);
 8785 
 8786 %}
 8787 
 8788 instruct MoveD2L_reg_stack(stackSlotL dst, fRegD src) %{
 8789 
 8790   match(Set dst (MoveD2L src));
 8791 
 8792   effect(DEF dst, USE src);
 8793 
 8794   ins_cost(STORE_COST);
 8795 
 8796   format %{ "fsd  $dst, $src\t#@MoveD2L_reg_stack" %}
 8797 
 8798   ins_encode %{
 8799     __ fsd(as_FloatRegister($src$$reg), Address(sp, $dst$$disp));
 8800   %}
 8801 
 8802   ins_pipe(fp_store_reg_d);
 8803 
 8804 %}
 8805 
 8806 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
 8807 
 8808   match(Set dst (MoveL2D src));
 8809 
 8810   effect(DEF dst, USE src);
 8811 
 8812   ins_cost(STORE_COST);
 8813 
 8814   format %{ "sd  $src, $dst\t#@MoveL2D_reg_stack" %}
 8815 
 8816   ins_encode %{
 8817     __ sd(as_Register($src$$reg), Address(sp, $dst$$disp));
 8818   %}
 8819 
 8820   ins_pipe(istore_reg_reg);
 8821 
 8822 %}
 8823 
 8824 instruct MoveF2I_reg_reg(iRegINoSp dst, fRegF src) %{
 8825 
 8826   match(Set dst (MoveF2I src));
 8827 
 8828   effect(DEF dst, USE src);
 8829 
 8830   ins_cost(FMVX_COST);
 8831 
 8832   format %{ "fmv.x.w  $dst, $src\t#@MoveF2I_reg_reg" %}
 8833 
 8834   ins_encode %{
 8835     __ fmv_x_w(as_Register($dst$$reg), as_FloatRegister($src$$reg));
 8836   %}
 8837 
 8838   ins_pipe(fp_f2i);
 8839 
 8840 %}
 8841 
 8842 instruct MoveI2F_reg_reg(fRegF dst, iRegI src) %{
 8843 
 8844   match(Set dst (MoveI2F src));
 8845 
 8846   effect(DEF dst, USE src);
 8847 
 8848   ins_cost(FMVX_COST);
 8849 
 8850   format %{ "fmv.w.x  $dst, $src\t#@MoveI2F_reg_reg" %}
 8851 
 8852   ins_encode %{
 8853     __ fmv_w_x(as_FloatRegister($dst$$reg), as_Register($src$$reg));
 8854   %}
 8855 
 8856   ins_pipe(fp_i2f);
 8857 
 8858 %}
 8859 
 8860 instruct MoveD2L_reg_reg(iRegLNoSp dst, fRegD src) %{
 8861 
 8862   match(Set dst (MoveD2L src));
 8863 
 8864   effect(DEF dst, USE src);
 8865 
 8866   ins_cost(FMVX_COST);
 8867 
 8868   format %{ "fmv.x.d $dst, $src\t#@MoveD2L_reg_reg" %}
 8869 
 8870   ins_encode %{
 8871     __ fmv_x_d(as_Register($dst$$reg), as_FloatRegister($src$$reg));
 8872   %}
 8873 
 8874   ins_pipe(fp_d2l);
 8875 
 8876 %}
 8877 
 8878 instruct MoveL2D_reg_reg(fRegD dst, iRegL src) %{
 8879 
 8880   match(Set dst (MoveL2D src));
 8881 
 8882   effect(DEF dst, USE src);
 8883 
 8884   ins_cost(FMVX_COST);
 8885 
 8886   format %{ "fmv.d.x  $dst, $src\t#@MoveL2D_reg_reg" %}
 8887 
 8888   ins_encode %{
 8889     __ fmv_d_x(as_FloatRegister($dst$$reg), as_Register($src$$reg));
 8890   %}
 8891 
 8892   ins_pipe(fp_l2d);
 8893 
 8894 %}
 8895 
 8896 // ============================================================================
 8897 // Compare Instructions which set the result float comparisons in dest register.
 8898 
 8899 instruct cmpF3_reg_reg(iRegINoSp dst, fRegF op1, fRegF op2)
 8900 %{
 8901   match(Set dst (CmpF3 op1 op2));
 8902 
 8903   ins_cost(XFER_COST * 2 + BRANCH_COST + ALU_COST);
 8904   format %{ "flt.s  $dst, $op2, $op1\t#@cmpF3_reg_reg\n\t"
 8905             "bgtz   $dst, done\n\t"
 8906             "feq.s  $dst, $op1, $op2\n\t"
 8907             "addi   $dst, $dst, -1\n\t"
 8908             "done:"
 8909   %}
 8910 
 8911   ins_encode %{
 8912     // we want -1 for unordered or less than, 0 for equal and 1 for greater than.
 8913     __ float_compare(as_Register($dst$$reg), as_FloatRegister($op1$$reg),
 8914                      as_FloatRegister($op2$$reg), -1 /*unordered_result < 0*/);
 8915   %}
 8916 
 8917   ins_pipe(pipe_class_default);
 8918 %}
 8919 
 8920 instruct cmpD3_reg_reg(iRegINoSp dst, fRegD op1, fRegD op2)
 8921 %{
 8922   match(Set dst (CmpD3 op1 op2));
 8923 
 8924   ins_cost(XFER_COST * 2 + BRANCH_COST + ALU_COST);
 8925   format %{ "flt.d  $dst, $op2, $op1\t#@cmpD3_reg_reg\n\t"
 8926             "bgtz   $dst, done\n\t"
 8927             "feq.d  $dst, $op1, $op2\n\t"
 8928             "addi   $dst, $dst, -1\n\t"
 8929             "done:"
 8930   %}
 8931 
 8932   ins_encode %{
 8933     // we want -1 for unordered or less than, 0 for equal and 1 for greater than.
 8934     __ double_compare(as_Register($dst$$reg), as_FloatRegister($op1$$reg), as_FloatRegister($op2$$reg), -1 /*unordered_result < 0*/);
 8935   %}
 8936 
 8937   ins_pipe(pipe_class_default);
 8938 %}
 8939 
 8940 instruct cmpL3_reg_reg(iRegINoSp dst, iRegL op1, iRegL op2)
 8941 %{
 8942   match(Set dst (CmpL3 op1 op2));
 8943 
 8944   ins_cost(ALU_COST * 3 + BRANCH_COST);
 8945   format %{ "slt   $dst, $op2, $op1\t#@cmpL3_reg_reg\n\t"
 8946             "bnez  $dst, done\n\t"
 8947             "slt   $dst, $op1, $op2\n\t"
 8948             "neg   $dst, $dst\n\t"
 8949             "done:"
 8950   %}
 8951   ins_encode %{
 8952     __ cmp_l2i(t0, as_Register($op1$$reg), as_Register($op2$$reg));
 8953     __ mv(as_Register($dst$$reg), t0);
 8954   %}
 8955 
 8956   ins_pipe(pipe_class_default);
 8957 %}
 8958 
 8959 instruct cmpUL3_reg_reg(iRegINoSp dst, iRegL op1, iRegL op2)
 8960 %{
 8961   match(Set dst (CmpUL3 op1 op2));
 8962 
 8963   ins_cost(ALU_COST * 3 + BRANCH_COST);
 8964   format %{ "sltu  $dst, $op2, $op1\t#@cmpUL3_reg_reg\n\t"
 8965             "bnez  $dst, done\n\t"
 8966             "sltu  $dst, $op1, $op2\n\t"
 8967             "neg   $dst, $dst\n\t"
 8968             "done:"
 8969   %}
 8970   ins_encode %{
 8971     __ cmp_ul2i(t0, as_Register($op1$$reg), as_Register($op2$$reg));
 8972     __ mv(as_Register($dst$$reg), t0);
 8973   %}
 8974 
 8975   ins_pipe(pipe_class_default);
 8976 %}
 8977 
 8978 instruct cmpU3_reg_reg(iRegINoSp dst, iRegI op1, iRegI op2)
 8979 %{
 8980   match(Set dst (CmpU3 op1 op2));
 8981 
 8982   ins_cost(ALU_COST * 3 + BRANCH_COST);
 8983   format %{ "sltu  $dst, $op2, $op1\t#@cmpU3_reg_reg\n\t"
 8984             "bnez  $dst, done\n\t"
 8985             "sltu  $dst, $op1, $op2\n\t"
 8986             "neg   $dst, $dst\n\t"
 8987             "done:"
 8988   %}
 8989   ins_encode %{
 8990     __ cmp_uw2i(t0, as_Register($op1$$reg), as_Register($op2$$reg));
 8991     __ mv(as_Register($dst$$reg), t0);
 8992   %}
 8993 
 8994   ins_pipe(pipe_class_default);
 8995 %}
 8996 
 8997 instruct cmpLTMask_reg_reg(iRegINoSp dst, iRegI p, iRegI q)
 8998 %{
 8999   match(Set dst (CmpLTMask p q));
 9000 
 9001   ins_cost(2 * ALU_COST);
 9002 
 9003   format %{ "slt $dst, $p, $q\t#@cmpLTMask_reg_reg\n\t"
 9004             "subw $dst, zr, $dst\t#@cmpLTMask_reg_reg"
 9005   %}
 9006 
 9007   ins_encode %{
 9008     __ slt(as_Register($dst$$reg), as_Register($p$$reg), as_Register($q$$reg));
 9009     __ subw(as_Register($dst$$reg), zr, as_Register($dst$$reg));
 9010   %}
 9011 
 9012   ins_pipe(ialu_reg_reg);
 9013 %}
 9014 
 9015 instruct cmpLTMask_reg_zero(iRegINoSp dst, iRegIorL2I op, immI0 zero)
 9016 %{
 9017   match(Set dst (CmpLTMask op zero));
 9018 
 9019   ins_cost(ALU_COST);
 9020 
 9021   format %{ "sraiw $dst, $dst, 31\t#@cmpLTMask_reg_reg" %}
 9022 
 9023   ins_encode %{
 9024     __ sraiw(as_Register($dst$$reg), as_Register($op$$reg), 31);
 9025   %}
 9026 
 9027   ins_pipe(ialu_reg_shift);
 9028 %}
 9029 
 9030 
 9031 // ============================================================================
 9032 // Max and Min
 9033 
 9034 instruct minI_reg_reg(iRegINoSp dst, iRegI src)
 9035 %{
 9036   match(Set dst (MinI dst src));
 9037 
 9038   ins_cost(BRANCH_COST + ALU_COST);
 9039   format %{"minI_reg_reg $dst, $dst, $src\t#@minI_reg_reg\n\t"%}
 9040 
 9041   ins_encode %{
 9042     __ cmov_gt(as_Register($dst$$reg), as_Register($src$$reg),
 9043                as_Register($dst$$reg), as_Register($src$$reg));
 9044   %}
 9045 
 9046   ins_pipe(pipe_class_compare);
 9047 %}
 9048 
 9049 instruct maxI_reg_reg(iRegINoSp dst, iRegI src)
 9050 %{
 9051   match(Set dst (MaxI dst src));
 9052 
 9053   ins_cost(BRANCH_COST + ALU_COST);
 9054   format %{"maxI_reg_reg $dst, $dst, $src\t#@maxI_reg_reg\n\t"%}
 9055 
 9056   ins_encode %{
 9057     __ cmov_lt(as_Register($dst$$reg), as_Register($src$$reg),
 9058                as_Register($dst$$reg), as_Register($src$$reg));
 9059   %}
 9060 
 9061   ins_pipe(pipe_class_compare);
 9062 %}
 9063 
 9064 // special case for comparing with zero
 9065 // n.b. this is selected in preference to the rule above because it
 9066 // avoids loading constant 0 into a source register
 9067 
 9068 instruct minI_reg_zero(iRegINoSp dst, immI0 zero)
 9069 %{
 9070   match(Set dst (MinI dst zero));
 9071   match(Set dst (MinI zero dst));
 9072 
 9073   ins_cost(BRANCH_COST + ALU_COST);
 9074   format %{"minI_reg_zero $dst, $dst, zr\t#@minI_reg_zero\n\t"%}
 9075 
 9076   ins_encode %{
 9077     __ cmov_gt(as_Register($dst$$reg), zr,
 9078                as_Register($dst$$reg), zr);
 9079   %}
 9080 
 9081   ins_pipe(pipe_class_compare);
 9082 %}
 9083 
 9084 instruct maxI_reg_zero(iRegINoSp dst, immI0 zero)
 9085 %{
 9086   match(Set dst (MaxI dst zero));
 9087   match(Set dst (MaxI zero dst));
 9088 
 9089   ins_cost(BRANCH_COST + ALU_COST);
 9090   format %{"maxI_reg_zero $dst, $dst, zr\t#@maxI_reg_zero\n\t"%}
 9091 
 9092   ins_encode %{
 9093     __ cmov_lt(as_Register($dst$$reg), zr,
 9094                as_Register($dst$$reg), zr);
 9095   %}
 9096 
 9097   ins_pipe(pipe_class_compare);
 9098 %}
 9099 
 9100 instruct minI_rReg(iRegINoSp dst, iRegI src1, iRegI src2)
 9101 %{
 9102   match(Set dst (MinI src1 src2));
 9103 
 9104   effect(DEF dst, USE src1, USE src2);
 9105 
 9106   ins_cost(BRANCH_COST + ALU_COST * 2);
 9107   format %{"minI_rReg $dst, $src1, $src2\t#@minI_rReg\n\t"%}
 9108 
 9109   ins_encode %{
 9110     __ mv(as_Register($dst$$reg), as_Register($src1$$reg));
 9111     __ cmov_gt(as_Register($src1$$reg), as_Register($src2$$reg),
 9112                as_Register($dst$$reg), as_Register($src2$$reg));
 9113   %}
 9114 
 9115   ins_pipe(pipe_class_compare);
 9116 %}
 9117 
 9118 instruct maxI_rReg(iRegINoSp dst, iRegI src1, iRegI src2)
 9119 %{
 9120   match(Set dst (MaxI src1 src2));
 9121 
 9122   effect(DEF dst, USE src1, USE src2);
 9123 
 9124   ins_cost(BRANCH_COST + ALU_COST * 2);
 9125   format %{"maxI_rReg $dst, $src1, $src2\t#@maxI_rReg\n\t"%}
 9126 
 9127   ins_encode %{
 9128     __ mv(as_Register($dst$$reg), as_Register($src1$$reg));
 9129     __ cmov_lt(as_Register($src1$$reg), as_Register($src2$$reg),
 9130                as_Register($dst$$reg), as_Register($src2$$reg));
 9131   %}
 9132 
 9133   ins_pipe(pipe_class_compare);
 9134 %}
 9135 
 9136 // ============================================================================
 9137 // Branch Instructions
 9138 // Direct Branch.
 9139 instruct branch(label lbl)
 9140 %{
 9141   match(Goto);
 9142 
 9143   effect(USE lbl);
 9144 
 9145   ins_cost(BRANCH_COST);
 9146   format %{ "j  $lbl\t#@branch" %}
 9147 
 9148   ins_encode(riscv_enc_j(lbl));
 9149 
 9150   ins_pipe(pipe_branch);
 9151 %}
 9152 
 9153 // ============================================================================
 9154 // Compare and Branch Instructions
 9155 
 9156 // Patterns for short (< 12KiB) variants
 9157 
 9158 // Compare flags and branch near instructions.
 9159 instruct cmpFlag_branch(cmpOpEqNe cmp, rFlagsReg cr, label lbl) %{
 9160   match(If cmp cr);
 9161   effect(USE lbl);
 9162 
 9163   ins_cost(BRANCH_COST);
 9164   format %{ "b$cmp  $cr, zr, $lbl\t#@cmpFlag_branch" %}
 9165 
 9166   ins_encode %{
 9167     __ enc_cmpEqNe_imm0_branch($cmp$$cmpcode, as_Register($cr$$reg), *($lbl$$label));
 9168   %}
 9169   ins_pipe(pipe_cmpz_branch);
 9170   ins_short_branch(1);
 9171 %}
 9172 
 9173 // Compare signed int and branch near instructions
 9174 instruct cmpI_branch(cmpOp cmp, iRegI op1, iRegI op2, label lbl)
 9175 %{
 9176   // Same match rule as `far_cmpI_branch'.
 9177   match(If cmp (CmpI op1 op2));
 9178 
 9179   effect(USE lbl);
 9180 
 9181   ins_cost(BRANCH_COST);
 9182 
 9183   format %{ "b$cmp  $op1, $op2, $lbl\t#@cmpI_branch" %}
 9184 
 9185   ins_encode %{
 9186     __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), as_Register($op2$$reg), *($lbl$$label));
 9187   %}
 9188 
 9189   ins_pipe(pipe_cmp_branch);
 9190   ins_short_branch(1);
 9191 %}
 9192 
 9193 instruct cmpI_loop(cmpOp cmp, iRegI op1, iRegI op2, label lbl)
 9194 %{
 9195   // Same match rule as `far_cmpI_loop'.
 9196   match(CountedLoopEnd cmp (CmpI op1 op2));
 9197 
 9198   effect(USE lbl);
 9199 
 9200   ins_cost(BRANCH_COST);
 9201 
 9202   format %{ "b$cmp  $op1, $op2, $lbl\t#@cmpI_loop" %}
 9203 
 9204   ins_encode %{
 9205     __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), as_Register($op2$$reg), *($lbl$$label));
 9206   %}
 9207 
 9208   ins_pipe(pipe_cmp_branch);
 9209   ins_short_branch(1);
 9210 %}
 9211 
 9212 // Compare unsigned int and branch near instructions
 9213 instruct cmpU_branch(cmpOpU cmp, iRegI op1, iRegI op2, label lbl)
 9214 %{
 9215   // Same match rule as `far_cmpU_branch'.
 9216   match(If cmp (CmpU op1 op2));
 9217 
 9218   effect(USE lbl);
 9219 
 9220   ins_cost(BRANCH_COST);
 9221 
 9222   format %{ "b$cmp  $op1, $op2, $lbl\t#@cmpU_branch" %}
 9223 
 9224   ins_encode %{
 9225     __ cmp_branch($cmp$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, as_Register($op1$$reg),
 9226                   as_Register($op2$$reg), *($lbl$$label));
 9227   %}
 9228 
 9229   ins_pipe(pipe_cmp_branch);
 9230   ins_short_branch(1);
 9231 %}
 9232 
 9233 // Compare signed long and branch near instructions
 9234 instruct cmpL_branch(cmpOp cmp, iRegL op1, iRegL op2, label lbl)
 9235 %{
 9236   // Same match rule as `far_cmpL_branch'.
 9237   match(If cmp (CmpL op1 op2));
 9238 
 9239   effect(USE lbl);
 9240 
 9241   ins_cost(BRANCH_COST);
 9242 
 9243   format %{ "b$cmp  $op1, $op2, $lbl\t#@cmpL_branch" %}
 9244 
 9245   ins_encode %{
 9246     __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), as_Register($op2$$reg), *($lbl$$label));
 9247   %}
 9248 
 9249   ins_pipe(pipe_cmp_branch);
 9250   ins_short_branch(1);
 9251 %}
 9252 
 9253 instruct cmpL_loop(cmpOp cmp, iRegL op1, iRegL op2, label lbl)
 9254 %{
 9255   // Same match rule as `far_cmpL_loop'.
 9256   match(CountedLoopEnd cmp (CmpL op1 op2));
 9257 
 9258   effect(USE lbl);
 9259 
 9260   ins_cost(BRANCH_COST);
 9261 
 9262   format %{ "b$cmp  $op1, $op2, $lbl\t#@cmpL_loop" %}
 9263 
 9264   ins_encode %{
 9265     __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), as_Register($op2$$reg), *($lbl$$label));
 9266   %}
 9267 
 9268   ins_pipe(pipe_cmp_branch);
 9269   ins_short_branch(1);
 9270 %}
 9271 
 9272 // Compare unsigned long and branch near instructions
 9273 instruct cmpUL_branch(cmpOpU cmp, iRegL op1, iRegL op2, label lbl)
 9274 %{
 9275   // Same match rule as `far_cmpUL_branch'.
 9276   match(If cmp (CmpUL op1 op2));
 9277 
 9278   effect(USE lbl);
 9279 
 9280   ins_cost(BRANCH_COST);
 9281   format %{ "b$cmp  $op1, $op2, $lbl\t#@cmpUL_branch" %}
 9282 
 9283   ins_encode %{
 9284     __ cmp_branch($cmp$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, as_Register($op1$$reg),
 9285                   as_Register($op2$$reg), *($lbl$$label));
 9286   %}
 9287 
 9288   ins_pipe(pipe_cmp_branch);
 9289   ins_short_branch(1);
 9290 %}
 9291 
 9292 // Compare pointer and branch near instructions
 9293 instruct cmpP_branch(cmpOpU cmp, iRegP op1, iRegP op2, label lbl)
 9294 %{
 9295   // Same match rule as `far_cmpP_branch'.
 9296   match(If cmp (CmpP op1 op2));
 9297 
 9298   effect(USE lbl);
 9299 
 9300   ins_cost(BRANCH_COST);
 9301 
 9302   format %{ "b$cmp  $op1, $op2, $lbl\t#@cmpP_branch" %}
 9303 
 9304   ins_encode %{
 9305     __ cmp_branch($cmp$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, as_Register($op1$$reg),
 9306                   as_Register($op2$$reg), *($lbl$$label));
 9307   %}
 9308 
 9309   ins_pipe(pipe_cmp_branch);
 9310   ins_short_branch(1);
 9311 %}
 9312 
 9313 // Compare narrow pointer and branch near instructions
 9314 instruct cmpN_branch(cmpOpU cmp, iRegN op1, iRegN op2, label lbl)
 9315 %{
 9316   // Same match rule as `far_cmpN_branch'.
 9317   match(If cmp (CmpN op1 op2));
 9318 
 9319   effect(USE lbl);
 9320 
 9321   ins_cost(BRANCH_COST);
 9322 
 9323   format %{ "b$cmp  $op1, $op2, $lbl\t#@cmpN_branch" %}
 9324 
 9325   ins_encode %{
 9326     __ cmp_branch($cmp$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, as_Register($op1$$reg),
 9327                   as_Register($op2$$reg), *($lbl$$label));
 9328   %}
 9329 
 9330   ins_pipe(pipe_cmp_branch);
 9331   ins_short_branch(1);
 9332 %}
 9333 
 9334 // Compare float and branch near instructions
 9335 instruct cmpF_branch(cmpOp cmp, fRegF op1, fRegF op2, label lbl)
 9336 %{
 9337   // Same match rule as `far_cmpF_branch'.
 9338   match(If cmp (CmpF op1 op2));
 9339 
 9340   effect(USE lbl);
 9341 
 9342   ins_cost(XFER_COST + BRANCH_COST);
 9343   format %{ "float_b$cmp $op1, $op2, $lbl \t#@cmpF_branch"%}
 9344 
 9345   ins_encode %{
 9346     __ float_cmp_branch($cmp$$cmpcode, as_FloatRegister($op1$$reg), as_FloatRegister($op2$$reg), *($lbl$$label));
 9347   %}
 9348 
 9349   ins_pipe(pipe_class_compare);
 9350   ins_short_branch(1);
 9351 %}
 9352 
 9353 // Compare double and branch near instructions
 9354 instruct cmpD_branch(cmpOp cmp, fRegD op1, fRegD op2, label lbl)
 9355 %{
 9356   // Same match rule as `far_cmpD_branch'.
 9357   match(If cmp (CmpD op1 op2));
 9358   effect(USE lbl);
 9359 
 9360   ins_cost(XFER_COST + BRANCH_COST);
 9361   format %{ "double_b$cmp $op1, $op2, $lbl\t#@cmpD_branch"%}
 9362 
 9363   ins_encode %{
 9364     __ float_cmp_branch($cmp$$cmpcode | C2_MacroAssembler::double_branch_mask, as_FloatRegister($op1$$reg),
 9365                         as_FloatRegister($op2$$reg), *($lbl$$label));
 9366   %}
 9367 
 9368   ins_pipe(pipe_class_compare);
 9369   ins_short_branch(1);
 9370 %}
 9371 
 9372 // Compare signed int with zero and branch near instructions
 9373 instruct cmpI_reg_imm0_branch(cmpOp cmp, iRegI op1, immI0 zero, label lbl)
 9374 %{
 9375   // Same match rule as `far_cmpI_reg_imm0_branch'.
 9376   match(If cmp (CmpI op1 zero));
 9377 
 9378   effect(USE op1, USE lbl);
 9379 
 9380   ins_cost(BRANCH_COST);
 9381   format %{ "b$cmp  $op1, zr, $lbl\t#@cmpI_reg_imm0_branch" %}
 9382 
 9383   ins_encode %{
 9384     __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), zr, *($lbl$$label));
 9385   %}
 9386 
 9387   ins_pipe(pipe_cmpz_branch);
 9388   ins_short_branch(1);
 9389 %}
 9390 
 9391 instruct cmpI_reg_imm0_loop(cmpOp cmp, iRegI op1, immI0 zero, label lbl)
 9392 %{
 9393   // Same match rule as `far_cmpI_reg_imm0_loop'.
 9394   match(CountedLoopEnd cmp (CmpI op1 zero));
 9395 
 9396   effect(USE op1, USE lbl);
 9397 
 9398   ins_cost(BRANCH_COST);
 9399 
 9400   format %{ "b$cmp  $op1, zr, $lbl\t#@cmpI_reg_imm0_loop" %}
 9401 
 9402   ins_encode %{
 9403     __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), zr, *($lbl$$label));
 9404   %}
 9405 
 9406   ins_pipe(pipe_cmpz_branch);
 9407   ins_short_branch(1);
 9408 %}
 9409 
 9410 // Compare unsigned int with zero and branch near instructions
 9411 instruct cmpUEqNeLeGt_reg_imm0_branch(cmpOpUEqNeLeGt cmp, iRegI op1, immI0 zero, label lbl)
 9412 %{
 9413   // Same match rule as `far_cmpUEqNeLeGt_reg_imm0_branch'.
 9414   match(If cmp (CmpU op1 zero));
 9415 
 9416   effect(USE op1, USE lbl);
 9417 
 9418   ins_cost(BRANCH_COST);
 9419 
 9420   format %{ "b$cmp  $op1, zr, $lbl\t#@cmpUEqNeLeGt_reg_imm0_branch" %}
 9421 
 9422   ins_encode %{
 9423     __ enc_cmpUEqNeLeGt_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label));
 9424   %}
 9425 
 9426   ins_pipe(pipe_cmpz_branch);
 9427   ins_short_branch(1);
 9428 %}
 9429 
 9430 // Compare signed long with zero and branch near instructions
 9431 instruct cmpL_reg_imm0_branch(cmpOp cmp, iRegL op1, immL0 zero, label lbl)
 9432 %{
 9433   // Same match rule as `far_cmpL_reg_imm0_branch'.
 9434   match(If cmp (CmpL op1 zero));
 9435 
 9436   effect(USE op1, USE lbl);
 9437 
 9438   ins_cost(BRANCH_COST);
 9439 
 9440   format %{ "b$cmp  $op1, zr, $lbl\t#@cmpL_reg_imm0_branch" %}
 9441 
 9442   ins_encode %{
 9443     __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), zr, *($lbl$$label));
 9444   %}
 9445 
 9446   ins_pipe(pipe_cmpz_branch);
 9447   ins_short_branch(1);
 9448 %}
 9449 
 9450 instruct cmpL_reg_imm0_loop(cmpOp cmp, iRegL op1, immL0 zero, label lbl)
 9451 %{
 9452   // Same match rule as `far_cmpL_reg_imm0_loop'.
 9453   match(CountedLoopEnd cmp (CmpL op1 zero));
 9454 
 9455   effect(USE op1, USE lbl);
 9456 
 9457   ins_cost(BRANCH_COST);
 9458 
 9459   format %{ "b$cmp  $op1, zr, $lbl\t#@cmpL_reg_imm0_loop" %}
 9460 
 9461   ins_encode %{
 9462     __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), zr, *($lbl$$label));
 9463   %}
 9464 
 9465   ins_pipe(pipe_cmpz_branch);
 9466   ins_short_branch(1);
 9467 %}
 9468 
 9469 // Compare unsigned long with zero and branch near instructions
 9470 instruct cmpULEqNeLeGt_reg_imm0_branch(cmpOpUEqNeLeGt cmp, iRegL op1, immL0 zero, label lbl)
 9471 %{
 9472   // Same match rule as `far_cmpULEqNeLeGt_reg_imm0_branch'.
 9473   match(If cmp (CmpUL op1 zero));
 9474 
 9475   effect(USE op1, USE lbl);
 9476 
 9477   ins_cost(BRANCH_COST);
 9478 
 9479   format %{ "b$cmp  $op1, zr, $lbl\t#@cmpULEqNeLeGt_reg_imm0_branch" %}
 9480 
 9481   ins_encode %{
 9482     __ enc_cmpUEqNeLeGt_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label));
 9483   %}
 9484 
 9485   ins_pipe(pipe_cmpz_branch);
 9486   ins_short_branch(1);
 9487 %}
 9488 
 9489 // Compare pointer with zero and branch near instructions
 9490 instruct cmpP_imm0_branch(cmpOpEqNe cmp, iRegP op1, immP0 zero, label lbl) %{
 9491   // Same match rule as `far_cmpP_reg_imm0_branch'.
 9492   match(If cmp (CmpP op1 zero));
 9493   effect(USE lbl);
 9494 
 9495   ins_cost(BRANCH_COST);
 9496   format %{ "b$cmp   $op1, zr, $lbl\t#@cmpP_imm0_branch" %}
 9497 
 9498   ins_encode %{
 9499     __ enc_cmpEqNe_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label));
 9500   %}
 9501 
 9502   ins_pipe(pipe_cmpz_branch);
 9503   ins_short_branch(1);
 9504 %}
 9505 
 9506 // Compare narrow pointer with zero and branch near instructions
 9507 instruct cmpN_imm0_branch(cmpOpEqNe cmp, iRegN op1, immN0 zero, label lbl) %{
 9508   // Same match rule as `far_cmpN_reg_imm0_branch'.
 9509   match(If cmp (CmpN op1 zero));
 9510   effect(USE lbl);
 9511 
 9512   ins_cost(BRANCH_COST);
 9513 
 9514   format %{ "b$cmp  $op1, zr, $lbl\t#@cmpN_imm0_branch" %}
 9515 
 9516   ins_encode %{
 9517     __ enc_cmpEqNe_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label));
 9518   %}
 9519 
 9520   ins_pipe(pipe_cmpz_branch);
 9521   ins_short_branch(1);
 9522 %}
 9523 
 9524 // Compare narrow pointer with pointer zero and branch near instructions
 9525 instruct cmpP_narrowOop_imm0_branch(cmpOpEqNe cmp, iRegN op1, immP0 zero, label lbl) %{
 9526   // Same match rule as `far_cmpP_narrowOop_imm0_branch'.
 9527   match(If cmp (CmpP (DecodeN op1) zero));
 9528   effect(USE lbl);
 9529 
 9530   ins_cost(BRANCH_COST);
 9531   format %{ "b$cmp   $op1, zr, $lbl\t#@cmpP_narrowOop_imm0_branch" %}
 9532 
 9533   ins_encode %{
 9534     __ enc_cmpEqNe_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label));
 9535   %}
 9536 
 9537   ins_pipe(pipe_cmpz_branch);
 9538   ins_short_branch(1);
 9539 %}
 9540 
 9541 // Patterns for far (20KiB) variants
 9542 
 9543 instruct far_cmpFlag_branch(cmpOp cmp, rFlagsReg cr, label lbl) %{
 9544   match(If cmp cr);
 9545   effect(USE lbl);
 9546 
 9547   ins_cost(BRANCH_COST);
 9548   format %{ "far_b$cmp $cr, zr, $lbl\t#@far_cmpFlag_branch"%}
 9549 
 9550   ins_encode %{
 9551     __ enc_cmpEqNe_imm0_branch($cmp$$cmpcode, as_Register($cr$$reg), *($lbl$$label), /* is_far */ true);
 9552   %}
 9553 
 9554   ins_pipe(pipe_cmpz_branch);
 9555 %}
 9556 
 9557 // Compare signed int and branch far instructions
 9558 instruct far_cmpI_branch(cmpOp cmp, iRegI op1, iRegI op2, label lbl) %{
 9559   match(If cmp (CmpI op1 op2));
 9560   effect(USE lbl);
 9561 
 9562   ins_cost(BRANCH_COST * 2);
 9563 
 9564   // the format instruction [far_b$cmp] here is be used as two insructions
 9565   // in macroassembler: b$not_cmp(op1, op2, done), j($lbl), bind(done)
 9566   format %{ "far_b$cmp  $op1, $op2, $lbl\t#@far_cmpI_branch" %}
 9567 
 9568   ins_encode %{
 9569     __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), as_Register($op2$$reg), *($lbl$$label), /* is_far */ true);
 9570   %}
 9571 
 9572   ins_pipe(pipe_cmp_branch);
 9573 %}
 9574 
 9575 instruct far_cmpI_loop(cmpOp cmp, iRegI op1, iRegI op2, label lbl) %{
 9576   match(CountedLoopEnd cmp (CmpI op1 op2));
 9577   effect(USE lbl);
 9578 
 9579   ins_cost(BRANCH_COST * 2);
 9580   format %{ "far_b$cmp  $op1, $op2, $lbl\t#@far_cmpI_loop" %}
 9581 
 9582   ins_encode %{
 9583     __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), as_Register($op2$$reg), *($lbl$$label), /* is_far */ true);
 9584   %}
 9585 
 9586   ins_pipe(pipe_cmp_branch);
 9587 %}
 9588 
 9589 instruct far_cmpU_branch(cmpOpU cmp, iRegI op1, iRegI op2, label lbl) %{
 9590   match(If cmp (CmpU op1 op2));
 9591   effect(USE lbl);
 9592 
 9593   ins_cost(BRANCH_COST * 2);
 9594   format %{ "far_b$cmp $op1, $op2, $lbl\t#@far_cmpU_branch" %}
 9595 
 9596   ins_encode %{
 9597     __ cmp_branch($cmp$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, as_Register($op1$$reg),
 9598                        as_Register($op2$$reg), *($lbl$$label), /* is_far */ true);
 9599   %}
 9600 
 9601   ins_pipe(pipe_cmp_branch);
 9602 %}
 9603 
 9604 instruct far_cmpL_branch(cmpOp cmp, iRegL op1, iRegL op2, label lbl) %{
 9605   match(If cmp (CmpL op1 op2));
 9606   effect(USE lbl);
 9607 
 9608   ins_cost(BRANCH_COST * 2);
 9609   format %{ "far_b$cmp  $op1, $op2, $lbl\t#@far_cmpL_branch" %}
 9610 
 9611   ins_encode %{
 9612     __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), as_Register($op2$$reg), *($lbl$$label), /* is_far */ true);
 9613   %}
 9614 
 9615   ins_pipe(pipe_cmp_branch);
 9616 %}
 9617 
 9618 instruct far_cmpLloop(cmpOp cmp, iRegL op1, iRegL op2, label lbl) %{
 9619   match(CountedLoopEnd cmp (CmpL op1 op2));
 9620   effect(USE lbl);
 9621 
 9622   ins_cost(BRANCH_COST * 2);
 9623   format %{ "far_b$cmp  $op1, $op2, $lbl\t#@far_cmpL_loop" %}
 9624 
 9625   ins_encode %{
 9626     __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), as_Register($op2$$reg), *($lbl$$label), /* is_far */ true);
 9627   %}
 9628 
 9629   ins_pipe(pipe_cmp_branch);
 9630 %}
 9631 
 9632 instruct far_cmpUL_branch(cmpOpU cmp, iRegL op1, iRegL op2, label lbl) %{
 9633   match(If cmp (CmpUL op1 op2));
 9634   effect(USE lbl);
 9635 
 9636   ins_cost(BRANCH_COST * 2);
 9637   format %{ "far_b$cmp  $op1, $op2, $lbl\t#@far_cmpUL_branch" %}
 9638 
 9639   ins_encode %{
 9640     __ cmp_branch($cmp$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, as_Register($op1$$reg),
 9641                        as_Register($op2$$reg), *($lbl$$label), /* is_far */ true);
 9642   %}
 9643 
 9644   ins_pipe(pipe_cmp_branch);
 9645 %}
 9646 
 9647 instruct far_cmpP_branch(cmpOpU cmp, iRegP op1, iRegP op2, label lbl)
 9648 %{
 9649   match(If cmp (CmpP op1 op2));
 9650 
 9651   effect(USE lbl);
 9652 
 9653   ins_cost(BRANCH_COST * 2);
 9654 
 9655   format %{ "far_b$cmp  $op1, $op2, $lbl\t#@far_cmpP_branch" %}
 9656 
 9657   ins_encode %{
 9658     __ cmp_branch($cmp$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, as_Register($op1$$reg),
 9659                        as_Register($op2$$reg), *($lbl$$label), /* is_far */ true);
 9660   %}
 9661 
 9662   ins_pipe(pipe_cmp_branch);
 9663 %}
 9664 
 9665 instruct far_cmpN_branch(cmpOpU cmp, iRegN op1, iRegN op2, label lbl)
 9666 %{
 9667   match(If cmp (CmpN op1 op2));
 9668 
 9669   effect(USE lbl);
 9670 
 9671   ins_cost(BRANCH_COST * 2);
 9672 
 9673   format %{ "far_b$cmp  $op1, $op2, $lbl\t#@far_cmpN_branch" %}
 9674 
 9675   ins_encode %{
 9676     __ cmp_branch($cmp$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, as_Register($op1$$reg),
 9677                        as_Register($op2$$reg), *($lbl$$label), /* is_far */ true);
 9678   %}
 9679 
 9680   ins_pipe(pipe_cmp_branch);
 9681 %}
 9682 
 9683 // Float compare and branch instructions
 9684 instruct far_cmpF_branch(cmpOp cmp, fRegF op1, fRegF op2, label lbl)
 9685 %{
 9686   match(If cmp (CmpF op1 op2));
 9687 
 9688   effect(USE lbl);
 9689 
 9690   ins_cost(XFER_COST + BRANCH_COST * 2);
 9691   format %{ "far_float_b$cmp $op1, $op2, $lbl\t#@far_cmpF_branch"%}
 9692 
 9693   ins_encode %{
 9694     __ float_cmp_branch($cmp$$cmpcode, as_FloatRegister($op1$$reg), as_FloatRegister($op2$$reg),
 9695                         *($lbl$$label), /* is_far */ true);
 9696   %}
 9697 
 9698   ins_pipe(pipe_class_compare);
 9699 %}
 9700 
 9701 // Double compare and branch instructions
 9702 instruct far_cmpD_branch(cmpOp cmp, fRegD op1, fRegD op2, label lbl)
 9703 %{
 9704   match(If cmp (CmpD op1 op2));
 9705   effect(USE lbl);
 9706 
 9707   ins_cost(XFER_COST + BRANCH_COST * 2);
 9708   format %{ "far_double_b$cmp $op1, $op2, $lbl\t#@far_cmpD_branch"%}
 9709 
 9710   ins_encode %{
 9711     __ float_cmp_branch($cmp$$cmpcode | C2_MacroAssembler::double_branch_mask, as_FloatRegister($op1$$reg),
 9712                         as_FloatRegister($op2$$reg), *($lbl$$label), /* is_far */ true);
 9713   %}
 9714 
 9715   ins_pipe(pipe_class_compare);
 9716 %}
 9717 
 9718 instruct far_cmpI_reg_imm0_branch(cmpOp cmp, iRegI op1, immI0 zero, label lbl)
 9719 %{
 9720   match(If cmp (CmpI op1 zero));
 9721 
 9722   effect(USE op1, USE lbl);
 9723 
 9724   ins_cost(BRANCH_COST * 2);
 9725 
 9726   format %{ "far_b$cmp  $op1, zr, $lbl\t#@far_cmpI_reg_imm0_branch" %}
 9727 
 9728   ins_encode %{
 9729     __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), zr, *($lbl$$label), /* is_far */ true);
 9730   %}
 9731 
 9732   ins_pipe(pipe_cmpz_branch);
 9733 %}
 9734 
 9735 instruct far_cmpI_reg_imm0_loop(cmpOp cmp, iRegI op1, immI0 zero, label lbl)
 9736 %{
 9737   match(CountedLoopEnd cmp (CmpI op1 zero));
 9738 
 9739   effect(USE op1, USE lbl);
 9740 
 9741   ins_cost(BRANCH_COST * 2);
 9742 
 9743   format %{ "far_b$cmp  $op1, zr, $lbl\t#@far_cmpI_reg_imm0_loop" %}
 9744 
 9745   ins_encode %{
 9746     __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), zr, *($lbl$$label), /* is_far */ true);
 9747   %}
 9748 
 9749   ins_pipe(pipe_cmpz_branch);
 9750 %}
 9751 
 9752 instruct far_cmpUEqNeLeGt_imm0_branch(cmpOpUEqNeLeGt cmp, iRegI op1, immI0 zero, label lbl)
 9753 %{
 9754   match(If cmp (CmpU op1 zero));
 9755 
 9756   effect(USE op1, USE lbl);
 9757 
 9758   ins_cost(BRANCH_COST * 2);
 9759 
 9760   format %{ "far_b$cmp  $op1, zr, $lbl\t#@far_cmpUEqNeLeGt_imm0_branch" %}
 9761 
 9762   ins_encode %{
 9763     __ enc_cmpUEqNeLeGt_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label), /* is_far */ true);
 9764   %}
 9765 
 9766   ins_pipe(pipe_cmpz_branch);
 9767 %}
 9768 
 9769 // compare lt/ge unsigned instructs has no short instruct with same match
 9770 instruct far_cmpULtGe_reg_imm0_branch(cmpOpULtGe cmp, iRegI op1, immI0 zero, label lbl)
 9771 %{
 9772   match(If cmp (CmpU op1 zero));
 9773 
 9774   effect(USE op1, USE lbl);
 9775 
 9776   ins_cost(BRANCH_COST);
 9777 
 9778   format %{ "j  $lbl if $cmp == ge\t#@far_cmpULtGe_reg_imm0_branch" %}
 9779 
 9780   ins_encode(riscv_enc_far_cmpULtGe_imm0_branch(cmp, op1, lbl));
 9781 
 9782   ins_pipe(pipe_cmpz_branch);
 9783 %}
 9784 
 9785 instruct far_cmpL_reg_imm0_branch(cmpOp cmp, iRegL op1, immL0 zero, label lbl)
 9786 %{
 9787   match(If cmp (CmpL op1 zero));
 9788 
 9789   effect(USE op1, USE lbl);
 9790 
 9791   ins_cost(BRANCH_COST * 2);
 9792 
 9793   format %{ "far_b$cmp  $op1, zr, $lbl\t#@far_cmpL_reg_imm0_branch" %}
 9794 
 9795   ins_encode %{
 9796     __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), zr, *($lbl$$label), /* is_far */ true);
 9797   %}
 9798 
 9799   ins_pipe(pipe_cmpz_branch);
 9800 %}
 9801 
 9802 instruct far_cmpL_reg_imm0_loop(cmpOp cmp, iRegL op1, immL0 zero, label lbl)
 9803 %{
 9804   match(CountedLoopEnd cmp (CmpL op1 zero));
 9805 
 9806   effect(USE op1, USE lbl);
 9807 
 9808   ins_cost(BRANCH_COST * 2);
 9809 
 9810   format %{ "far_b$cmp  $op1, zr, $lbl\t#@far_cmpL_reg_imm0_loop" %}
 9811 
 9812   ins_encode %{
 9813     __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), zr, *($lbl$$label), /* is_far */ true);
 9814   %}
 9815 
 9816   ins_pipe(pipe_cmpz_branch);
 9817 %}
 9818 
 9819 instruct far_cmpULEqNeLeGt_reg_imm0_branch(cmpOpUEqNeLeGt cmp, iRegL op1, immL0 zero, label lbl)
 9820 %{
 9821   match(If cmp (CmpUL op1 zero));
 9822 
 9823   effect(USE op1, USE lbl);
 9824 
 9825   ins_cost(BRANCH_COST * 2);
 9826 
 9827   format %{ "far_b$cmp  $op1, zr, $lbl\t#@far_cmpULEqNeLeGt_reg_imm0_branch" %}
 9828 
 9829   ins_encode %{
 9830     __ enc_cmpUEqNeLeGt_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label), /* is_far */ true);
 9831   %}
 9832 
 9833   ins_pipe(pipe_cmpz_branch);
 9834 %}
 9835 
 9836 // compare lt/ge unsigned instructs has no short instruct with same match
 9837 instruct far_cmpULLtGe_reg_imm0_branch(cmpOpULtGe cmp, iRegL op1, immL0 zero, label lbl)
 9838 %{
 9839   match(If cmp (CmpUL op1 zero));
 9840 
 9841   effect(USE op1, USE lbl);
 9842 
 9843   ins_cost(BRANCH_COST);
 9844 
 9845   format %{ "j  $lbl if $cmp == ge\t#@far_cmpULLtGe_reg_imm0_branch" %}
 9846 
 9847   ins_encode(riscv_enc_far_cmpULtGe_imm0_branch(cmp, op1, lbl));
 9848 
 9849   ins_pipe(pipe_cmpz_branch);
 9850 %}
 9851 
 9852 instruct far_cmpP_imm0_branch(cmpOpEqNe cmp, iRegP op1, immP0 zero, label lbl) %{
 9853   match(If cmp (CmpP op1 zero));
 9854   effect(USE lbl);
 9855 
 9856   ins_cost(BRANCH_COST * 2);
 9857   format %{ "far_b$cmp   $op1, zr, $lbl\t#@far_cmpP_imm0_branch" %}
 9858 
 9859   ins_encode %{
 9860     __ enc_cmpEqNe_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label), /* is_far */ true);
 9861   %}
 9862 
 9863   ins_pipe(pipe_cmpz_branch);
 9864 %}
 9865 
 9866 instruct far_cmpN_imm0_branch(cmpOpEqNe cmp, iRegN op1, immN0 zero, label lbl) %{
 9867   match(If cmp (CmpN op1 zero));
 9868   effect(USE lbl);
 9869 
 9870   ins_cost(BRANCH_COST * 2);
 9871 
 9872   format %{ "far_b$cmp  $op1, zr, $lbl\t#@far_cmpN_imm0_branch" %}
 9873 
 9874   ins_encode %{
 9875     __ enc_cmpEqNe_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label), /* is_far */ true);
 9876   %}
 9877 
 9878   ins_pipe(pipe_cmpz_branch);
 9879 %}
 9880 
 9881 instruct far_cmpP_narrowOop_imm0_branch(cmpOpEqNe cmp, iRegN op1, immP0 zero, label lbl) %{
 9882   match(If cmp (CmpP (DecodeN op1) zero));
 9883   effect(USE lbl);
 9884 
 9885   ins_cost(BRANCH_COST * 2);
 9886   format %{ "far_b$cmp   $op1, zr, $lbl\t#@far_cmpP_narrowOop_imm0_branch" %}
 9887 
 9888   ins_encode %{
 9889     __ enc_cmpEqNe_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label), /* is_far */ true);
 9890   %}
 9891 
 9892   ins_pipe(pipe_cmpz_branch);
 9893 %}
 9894 
 9895 // ============================================================================
 9896 // Conditional Move Instructions
 9897 instruct cmovI_cmpI(iRegINoSp dst, iRegI src, iRegI op1, iRegI op2, cmpOp cop) %{
 9898   match(Set dst (CMoveI (Binary cop (CmpI op1 op2)) (Binary dst src)));
 9899   ins_cost(ALU_COST + BRANCH_COST);
 9900 
 9901   format %{
 9902     "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovI_cmpI\n\t"
 9903   %}
 9904 
 9905   ins_encode %{
 9906     __ enc_cmove($cop$$cmpcode,
 9907                  as_Register($op1$$reg), as_Register($op2$$reg),
 9908                  as_Register($dst$$reg), as_Register($src$$reg));
 9909   %}
 9910 
 9911   ins_pipe(pipe_class_compare);
 9912 %}
 9913 
 9914 instruct cmovI_cmpU(iRegINoSp dst, iRegI src, iRegI op1, iRegI op2, cmpOpU cop) %{
 9915   match(Set dst (CMoveI (Binary cop (CmpU op1 op2)) (Binary dst src)));
 9916   ins_cost(ALU_COST + BRANCH_COST);
 9917 
 9918   format %{
 9919     "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovI_cmpU\n\t"
 9920   %}
 9921 
 9922   ins_encode %{
 9923     __ enc_cmove($cop$$cmpcode | C2_MacroAssembler::unsigned_branch_mask,
 9924                  as_Register($op1$$reg), as_Register($op2$$reg),
 9925                  as_Register($dst$$reg), as_Register($src$$reg));
 9926   %}
 9927 
 9928   ins_pipe(pipe_class_compare);
 9929 %}
 9930 
 9931 instruct cmovI_cmpL(iRegINoSp dst, iRegI src, iRegL op1, iRegL op2, cmpOp cop) %{
 9932   match(Set dst (CMoveI (Binary cop (CmpL op1 op2)) (Binary dst src)));
 9933   ins_cost(ALU_COST + BRANCH_COST);
 9934 
 9935   format %{
 9936     "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovI_cmpL\n\t"
 9937   %}
 9938 
 9939   ins_encode %{
 9940     __ enc_cmove($cop$$cmpcode,
 9941                  as_Register($op1$$reg), as_Register($op2$$reg),
 9942                  as_Register($dst$$reg), as_Register($src$$reg));
 9943   %}
 9944 
 9945   ins_pipe(pipe_class_compare);
 9946 %}
 9947 
 9948 instruct cmovI_cmpUL(iRegINoSp dst, iRegI src, iRegL op1, iRegL op2, cmpOpU cop) %{
 9949   match(Set dst (CMoveI (Binary cop (CmpUL op1 op2)) (Binary dst src)));
 9950   ins_cost(ALU_COST + BRANCH_COST);
 9951 
 9952   format %{
 9953     "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovI_cmpUL\n\t"
 9954   %}
 9955 
 9956   ins_encode %{
 9957     __ enc_cmove($cop$$cmpcode | C2_MacroAssembler::unsigned_branch_mask,
 9958                  as_Register($op1$$reg), as_Register($op2$$reg),
 9959                  as_Register($dst$$reg), as_Register($src$$reg));
 9960   %}
 9961 
 9962   ins_pipe(pipe_class_compare);
 9963 %}
 9964 
 9965 instruct cmovI_cmpN(iRegINoSp dst, iRegI src, iRegN op1, iRegN op2, cmpOpU cop) %{
 9966   match(Set dst (CMoveI (Binary cop (CmpN op1 op2)) (Binary dst src)));
 9967   ins_cost(ALU_COST + BRANCH_COST);
 9968 
 9969   format %{
 9970     "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovI_cmpN\n\t"
 9971   %}
 9972 
 9973   ins_encode %{
 9974     __ enc_cmove($cop$$cmpcode | C2_MacroAssembler::unsigned_branch_mask,
 9975                  as_Register($op1$$reg), as_Register($op2$$reg),
 9976                  as_Register($dst$$reg), as_Register($src$$reg));
 9977   %}
 9978 
 9979   ins_pipe(pipe_class_compare);
 9980 %}
 9981 
 9982 instruct cmovI_cmpP(iRegINoSp dst, iRegI src, iRegP op1, iRegP op2, cmpOpU cop) %{
 9983   match(Set dst (CMoveI (Binary cop (CmpP op1 op2)) (Binary dst src)));
 9984   ins_cost(ALU_COST + BRANCH_COST);
 9985 
 9986   format %{
 9987     "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovI_cmpP\n\t"
 9988   %}
 9989 
 9990   ins_encode %{
 9991     __ enc_cmove($cop$$cmpcode | C2_MacroAssembler::unsigned_branch_mask,
 9992                  as_Register($op1$$reg), as_Register($op2$$reg),
 9993                  as_Register($dst$$reg), as_Register($src$$reg));
 9994   %}
 9995 
 9996   ins_pipe(pipe_class_compare);
 9997 %}
 9998 
 9999 instruct cmovL_cmpL(iRegLNoSp dst, iRegL src, iRegL op1, iRegL op2, cmpOp cop) %{
10000   match(Set dst (CMoveL (Binary cop (CmpL op1 op2)) (Binary dst src)));
10001   ins_cost(ALU_COST + BRANCH_COST);
10002 
10003   format %{
10004     "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovL_cmpL\n\t"
10005   %}
10006 
10007   ins_encode %{
10008     __ enc_cmove($cop$$cmpcode,
10009                  as_Register($op1$$reg), as_Register($op2$$reg),
10010                  as_Register($dst$$reg), as_Register($src$$reg));
10011   %}
10012 
10013   ins_pipe(pipe_class_compare);
10014 %}
10015 
10016 instruct cmovL_cmpUL(iRegLNoSp dst, iRegL src, iRegL op1, iRegL op2, cmpOpU cop) %{
10017   match(Set dst (CMoveL (Binary cop (CmpUL op1 op2)) (Binary dst src)));
10018   ins_cost(ALU_COST + BRANCH_COST);
10019 
10020   format %{
10021     "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovL_cmpUL\n\t"
10022   %}
10023 
10024   ins_encode %{
10025     __ enc_cmove($cop$$cmpcode | C2_MacroAssembler::unsigned_branch_mask,
10026                  as_Register($op1$$reg), as_Register($op2$$reg),
10027                  as_Register($dst$$reg), as_Register($src$$reg));
10028   %}
10029 
10030   ins_pipe(pipe_class_compare);
10031 %}
10032 
10033 instruct cmovL_cmpI(iRegLNoSp dst, iRegL src, iRegI op1, iRegI op2, cmpOp cop) %{
10034   match(Set dst (CMoveL (Binary cop (CmpI op1 op2)) (Binary dst src)));
10035   ins_cost(ALU_COST + BRANCH_COST);
10036 
10037   format %{
10038     "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovL_cmpI\n\t"
10039   %}
10040 
10041   ins_encode %{
10042     __ enc_cmove($cop$$cmpcode,
10043                  as_Register($op1$$reg), as_Register($op2$$reg),
10044                  as_Register($dst$$reg), as_Register($src$$reg));
10045   %}
10046 
10047   ins_pipe(pipe_class_compare);
10048 %}
10049 
10050 instruct cmovL_cmpU(iRegLNoSp dst, iRegL src, iRegI op1, iRegI op2, cmpOpU cop) %{
10051   match(Set dst (CMoveL (Binary cop (CmpU op1 op2)) (Binary dst src)));
10052   ins_cost(ALU_COST + BRANCH_COST);
10053 
10054   format %{
10055     "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovL_cmpU\n\t"
10056   %}
10057 
10058   ins_encode %{
10059     __ enc_cmove($cop$$cmpcode | C2_MacroAssembler::unsigned_branch_mask,
10060                  as_Register($op1$$reg), as_Register($op2$$reg),
10061                  as_Register($dst$$reg), as_Register($src$$reg));
10062   %}
10063 
10064   ins_pipe(pipe_class_compare);
10065 %}
10066 
10067 instruct cmovL_cmpN(iRegLNoSp dst, iRegL src, iRegN op1, iRegN op2, cmpOpU cop) %{
10068   match(Set dst (CMoveL (Binary cop (CmpN op1 op2)) (Binary dst src)));
10069   ins_cost(ALU_COST + BRANCH_COST);
10070 
10071   format %{
10072     "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovL_cmpN\n\t"
10073   %}
10074 
10075   ins_encode %{
10076     __ enc_cmove($cop$$cmpcode | C2_MacroAssembler::unsigned_branch_mask,
10077                  as_Register($op1$$reg), as_Register($op2$$reg),
10078                  as_Register($dst$$reg), as_Register($src$$reg));
10079   %}
10080 
10081   ins_pipe(pipe_class_compare);
10082 %}
10083 
10084 instruct cmovL_cmpP(iRegLNoSp dst, iRegL src, iRegP op1, iRegP op2, cmpOpU cop) %{
10085   match(Set dst (CMoveL (Binary cop (CmpP op1 op2)) (Binary dst src)));
10086   ins_cost(ALU_COST + BRANCH_COST);
10087 
10088   format %{
10089     "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovL_cmpP\n\t"
10090   %}
10091 
10092   ins_encode %{
10093     __ enc_cmove($cop$$cmpcode | C2_MacroAssembler::unsigned_branch_mask,
10094                  as_Register($op1$$reg), as_Register($op2$$reg),
10095                  as_Register($dst$$reg), as_Register($src$$reg));
10096   %}
10097 
10098   ins_pipe(pipe_class_compare);
10099 %}
10100 
10101 // ============================================================================
10102 // Procedure Call/Return Instructions
10103 
10104 // Call Java Static Instruction
10105 // Note: If this code changes, the corresponding ret_addr_offset() and
10106 //       compute_padding() functions will have to be adjusted.
10107 instruct CallStaticJavaDirect(method meth)
10108 %{
10109   match(CallStaticJava);
10110 
10111   effect(USE meth);
10112 
10113   ins_cost(BRANCH_COST);
10114 
10115   format %{ "CALL,static $meth\t#@CallStaticJavaDirect" %}
10116 
10117   ins_encode(riscv_enc_java_static_call(meth),
10118              riscv_enc_call_epilog);
10119 
10120   ins_pipe(pipe_class_call);
10121   ins_alignment(4);
10122 %}
10123 
10124 // TO HERE
10125 
10126 // Call Java Dynamic Instruction
10127 // Note: If this code changes, the corresponding ret_addr_offset() and
10128 //       compute_padding() functions will have to be adjusted.
10129 instruct CallDynamicJavaDirect(method meth)
10130 %{
10131   match(CallDynamicJava);
10132 
10133   effect(USE meth);
10134 
10135   ins_cost(BRANCH_COST + ALU_COST * 5);
10136 
10137   format %{ "CALL,dynamic $meth\t#@CallDynamicJavaDirect" %}
10138 
10139   ins_encode(riscv_enc_java_dynamic_call(meth),
10140              riscv_enc_call_epilog);
10141 
10142   ins_pipe(pipe_class_call);
10143   ins_alignment(4);
10144 %}
10145 
10146 // Call Runtime Instruction
10147 
10148 instruct CallRuntimeDirect(method meth)
10149 %{
10150   match(CallRuntime);
10151 
10152   effect(USE meth);
10153 
10154   ins_cost(BRANCH_COST);
10155 
10156   format %{ "CALL, runtime $meth\t#@CallRuntimeDirect" %}
10157 
10158   ins_encode(riscv_enc_java_to_runtime(meth));
10159 
10160   ins_pipe(pipe_class_call);
10161 %}
10162 
10163 // Call Runtime Instruction
10164 
10165 instruct CallLeafDirect(method meth)
10166 %{
10167   match(CallLeaf);
10168 
10169   effect(USE meth);
10170 
10171   ins_cost(BRANCH_COST);
10172 
10173   format %{ "CALL, runtime leaf $meth\t#@CallLeafDirect" %}
10174 
10175   ins_encode(riscv_enc_java_to_runtime(meth));
10176 
10177   ins_pipe(pipe_class_call);
10178 %}
10179 
10180 // Call Runtime Instruction without safepoint and with vector arguments
10181 
10182 instruct CallLeafDirectVector(method meth)
10183 %{
10184   match(CallLeafVector);
10185 
10186   effect(USE meth);
10187 
10188   ins_cost(BRANCH_COST);
10189 
10190   format %{ "CALL, runtime leaf vector $meth" %}
10191 
10192   ins_encode(riscv_enc_java_to_runtime(meth));
10193 
10194   ins_pipe(pipe_class_call);
10195 %}
10196 
10197 // Call Runtime Instruction
10198 
10199 instruct CallLeafNoFPDirect(method meth)
10200 %{
10201   match(CallLeafNoFP);
10202 
10203   effect(USE meth);
10204 
10205   ins_cost(BRANCH_COST);
10206 
10207   format %{ "CALL, runtime leaf nofp $meth\t#@CallLeafNoFPDirect" %}
10208 
10209   ins_encode(riscv_enc_java_to_runtime(meth));
10210 
10211   ins_pipe(pipe_class_call);
10212 %}
10213 
10214 // ============================================================================
10215 // Partial Subtype Check
10216 //
10217 // superklass array for an instance of the superklass.  Set a hidden
10218 // internal cache on a hit (cache is checked with exposed code in
10219 // gen_subtype_check()).  Return zero for a hit.  The encoding
10220 // ALSO sets flags.
10221 
10222 instruct partialSubtypeCheck(iRegP_R15 result, iRegP_R14 sub, iRegP_R10 super, iRegP_R12 tmp, rFlagsReg cr)
10223 %{
10224   predicate(!UseSecondarySupersTable);
10225   match(Set result (PartialSubtypeCheck sub super));
10226   effect(KILL tmp, KILL cr);
10227 
10228   ins_cost(20 * DEFAULT_COST);
10229   format %{ "partialSubtypeCheck $result, $sub, $super\t#@partialSubtypeCheck" %}
10230 
10231   ins_encode(riscv_enc_partial_subtype_check(sub, super, tmp, result));
10232 
10233   opcode(0x1); // Force zero of result reg on hit
10234 
10235   ins_pipe(pipe_class_memory);
10236 %}
10237 
10238 // Two versions of partialSubtypeCheck, both used when we need to
10239 // search for a super class in the secondary supers array. The first
10240 // is used when we don't know _a priori_ the class being searched
10241 // for. The second, far more common, is used when we do know: this is
10242 // used for instanceof, checkcast, and any case where C2 can determine
10243 // it by constant propagation.
10244 
10245 instruct partialSubtypeCheckVarSuper(iRegP_R14 sub, iRegP_R10 super, iRegP_R15 result,
10246                                      iRegP_R11 tmpR11, iRegP_R12 tmpR12, iRegP_R13 tmpR13,
10247                                      iRegP_R16 tmpR16, rFlagsReg cr)
10248 %{
10249   predicate(UseSecondarySupersTable);
10250   match(Set result (PartialSubtypeCheck sub super));
10251   effect(TEMP tmpR11, TEMP tmpR12, TEMP tmpR13, TEMP tmpR16, KILL cr);
10252 
10253   ins_cost(10 * DEFAULT_COST);  // slightly larger than the next version
10254   format %{ "partialSubtypeCheck $result, $sub, $super" %}
10255 
10256   ins_encode %{
10257     __ lookup_secondary_supers_table_var($sub$$Register, $super$$Register, $result$$Register,
10258                                          $tmpR11$$Register, $tmpR12$$Register, $tmpR13$$Register,
10259                                          $tmpR16$$Register, nullptr /*L_success*/);
10260   %}
10261 
10262   ins_pipe(pipe_class_memory);
10263 %}
10264 
10265 instruct partialSubtypeCheckConstSuper(iRegP_R14 sub, iRegP_R10 super_reg, immP super_con, iRegP_R15 result,
10266                                        iRegP_R11 tmpR11, iRegP_R12 tmpR12, iRegP_R13 tmpR13, iRegP_R16 tmpR16, rFlagsReg cr)
10267 %{
10268   predicate(UseSecondarySupersTable);
10269   match(Set result (PartialSubtypeCheck sub (Binary super_reg super_con)));
10270   effect(TEMP tmpR11, TEMP tmpR12, TEMP tmpR13, TEMP tmpR16, KILL cr);
10271 
10272   ins_cost(5 * DEFAULT_COST); // needs to be less than competing nodes
10273   format %{ "partialSubtypeCheck $result, $sub, $super_reg, $super_con" %}
10274 
10275   ins_encode %{
10276     bool success = false;
10277     u1 super_klass_slot = ((Klass*)$super_con$$constant)->hash_slot();
10278     if (InlineSecondarySupersTest) {
10279       success = __ lookup_secondary_supers_table_const($sub$$Register, $super_reg$$Register, $result$$Register,
10280                                                        $tmpR11$$Register, $tmpR12$$Register, $tmpR13$$Register,
10281                                                        $tmpR16$$Register, super_klass_slot);
10282     } else {
10283       address call = __ reloc_call(RuntimeAddress(StubRoutines::lookup_secondary_supers_table_stub(super_klass_slot)));
10284       success = (call != nullptr);
10285     }
10286     if (!success) {
10287       ciEnv::current()->record_failure("CodeCache is full");
10288       return;
10289     }
10290   %}
10291 
10292   ins_pipe(pipe_class_memory);
10293 %}
10294 
10295 instruct string_compareU(iRegP_R11 str1, iRegI_R12 cnt1, iRegP_R13 str2, iRegI_R14 cnt2,
10296                          iRegI_R10 result, iRegP_R28 tmp1, iRegL_R29 tmp2, iRegL_R30 tmp3, rFlagsReg cr)
10297 %{
10298   predicate(!UseRVV && ((StrCompNode *)n)->encoding() == StrIntrinsicNode::UU);
10299   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
10300   effect(KILL tmp1, KILL tmp2, KILL tmp3, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
10301 
10302   format %{ "String Compare $str1, $cnt1, $str2, $cnt2 -> $result\t#@string_compareU" %}
10303   ins_encode %{
10304     // Count is in 8-bit bytes; non-Compact chars are 16 bits.
10305     __ string_compare($str1$$Register, $str2$$Register,
10306                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
10307                       $tmp1$$Register, $tmp2$$Register, $tmp3$$Register,
10308                       StrIntrinsicNode::UU);
10309   %}
10310   ins_pipe(pipe_class_memory);
10311 %}
10312 
10313 instruct string_compareL(iRegP_R11 str1, iRegI_R12 cnt1, iRegP_R13 str2, iRegI_R14 cnt2,
10314                          iRegI_R10 result, iRegP_R28 tmp1, iRegL_R29 tmp2, iRegL_R30 tmp3, rFlagsReg cr)
10315 %{
10316   predicate(!UseRVV && ((StrCompNode *)n)->encoding() == StrIntrinsicNode::LL);
10317   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
10318   effect(KILL tmp1, KILL tmp2, KILL tmp3, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
10319 
10320   format %{ "String Compare $str1, $cnt1, $str2, $cnt2 -> $result\t#@string_compareL" %}
10321   ins_encode %{
10322     __ string_compare($str1$$Register, $str2$$Register,
10323                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
10324                       $tmp1$$Register, $tmp2$$Register, $tmp3$$Register,
10325                       StrIntrinsicNode::LL);
10326   %}
10327   ins_pipe(pipe_class_memory);
10328 %}
10329 
10330 instruct string_compareUL(iRegP_R11 str1, iRegI_R12 cnt1, iRegP_R13 str2, iRegI_R14 cnt2,
10331                           iRegI_R10 result, iRegP_R28 tmp1, iRegL_R29 tmp2, iRegL_R30 tmp3, rFlagsReg cr)
10332 %{
10333   predicate(!UseRVV && ((StrCompNode *)n)->encoding() == StrIntrinsicNode::UL);
10334   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
10335   effect(KILL tmp1, KILL tmp2, KILL tmp3, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
10336 
10337   format %{"String Compare $str1, $cnt1, $str2, $cnt2 -> $result\t#@string_compareUL" %}
10338   ins_encode %{
10339     __ string_compare($str1$$Register, $str2$$Register,
10340                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
10341                       $tmp1$$Register, $tmp2$$Register, $tmp3$$Register,
10342                       StrIntrinsicNode::UL);
10343   %}
10344   ins_pipe(pipe_class_memory);
10345 %}
10346 
10347 instruct string_compareLU(iRegP_R11 str1, iRegI_R12 cnt1, iRegP_R13 str2, iRegI_R14 cnt2,
10348                           iRegI_R10 result, iRegP_R28 tmp1, iRegL_R29 tmp2, iRegL_R30 tmp3,
10349                           rFlagsReg cr)
10350 %{
10351   predicate(!UseRVV && ((StrCompNode *)n)->encoding() == StrIntrinsicNode::LU);
10352   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
10353   effect(KILL tmp1, KILL tmp2, KILL tmp3, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
10354 
10355   format %{ "String Compare $str1, $cnt1, $str2, $cnt2 -> $result\t#@string_compareLU" %}
10356   ins_encode %{
10357     __ string_compare($str1$$Register, $str2$$Register,
10358                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
10359                       $tmp1$$Register, $tmp2$$Register, $tmp3$$Register,
10360                       StrIntrinsicNode::LU);
10361   %}
10362   ins_pipe(pipe_class_memory);
10363 %}
10364 
10365 instruct string_indexofUU(iRegP_R11 str1, iRegI_R12 cnt1, iRegP_R13 str2, iRegI_R14 cnt2,
10366                           iRegI_R10 result, iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3,
10367                           iRegINoSp tmp4, iRegINoSp tmp5, iRegINoSp tmp6, rFlagsReg cr)
10368 %{
10369   predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UU);
10370   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
10371   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, TEMP_DEF result,
10372          TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5, TEMP tmp6, KILL cr);
10373 
10374   format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result (UU)" %}
10375   ins_encode %{
10376     __ string_indexof($str1$$Register, $str2$$Register,
10377                       $cnt1$$Register, $cnt2$$Register,
10378                       $tmp1$$Register, $tmp2$$Register,
10379                       $tmp3$$Register, $tmp4$$Register,
10380                       $tmp5$$Register, $tmp6$$Register,
10381                       $result$$Register, StrIntrinsicNode::UU);
10382   %}
10383   ins_pipe(pipe_class_memory);
10384 %}
10385 
10386 instruct string_indexofLL(iRegP_R11 str1, iRegI_R12 cnt1, iRegP_R13 str2, iRegI_R14 cnt2,
10387                           iRegI_R10 result, iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3,
10388                           iRegINoSp tmp4, iRegINoSp tmp5, iRegINoSp tmp6, rFlagsReg cr)
10389 %{
10390   predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::LL);
10391   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
10392   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, TEMP_DEF result,
10393          TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5, TEMP tmp6, KILL cr);
10394 
10395   format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result (LL)" %}
10396   ins_encode %{
10397     __ string_indexof($str1$$Register, $str2$$Register,
10398                       $cnt1$$Register, $cnt2$$Register,
10399                       $tmp1$$Register, $tmp2$$Register,
10400                       $tmp3$$Register, $tmp4$$Register,
10401                       $tmp5$$Register, $tmp6$$Register,
10402                       $result$$Register, StrIntrinsicNode::LL);
10403   %}
10404   ins_pipe(pipe_class_memory);
10405 %}
10406 
10407 instruct string_indexofUL(iRegP_R11 str1, iRegI_R12 cnt1, iRegP_R13 str2, iRegI_R14 cnt2,
10408                           iRegI_R10 result, iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3,
10409                           iRegINoSp tmp4, iRegINoSp tmp5, iRegINoSp tmp6, rFlagsReg cr)
10410 %{
10411   predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UL);
10412   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
10413   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, TEMP_DEF result,
10414          TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5, TEMP tmp6, KILL cr);
10415   format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result (UL)" %}
10416 
10417   ins_encode %{
10418     __ string_indexof($str1$$Register, $str2$$Register,
10419                       $cnt1$$Register, $cnt2$$Register,
10420                       $tmp1$$Register, $tmp2$$Register,
10421                       $tmp3$$Register, $tmp4$$Register,
10422                       $tmp5$$Register, $tmp6$$Register,
10423                       $result$$Register, StrIntrinsicNode::UL);
10424   %}
10425   ins_pipe(pipe_class_memory);
10426 %}
10427 
10428 instruct string_indexof_conUU(iRegP_R11 str1, iRegI_R12 cnt1, iRegP_R13 str2,
10429                               immI_le_4 int_cnt2, iRegI_R10 result, iRegINoSp tmp1, iRegINoSp tmp2,
10430                               iRegINoSp tmp3, iRegINoSp tmp4, rFlagsReg cr)
10431 %{
10432   predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UU);
10433   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
10434   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, TEMP_DEF result,
10435          TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr);
10436 
10437   format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result (UU)" %}
10438 
10439   ins_encode %{
10440     int icnt2 = (int)$int_cnt2$$constant;
10441     __ string_indexof_linearscan($str1$$Register, $str2$$Register,
10442                                  $cnt1$$Register, zr,
10443                                  $tmp1$$Register, $tmp2$$Register,
10444                                  $tmp3$$Register, $tmp4$$Register,
10445                                  icnt2, $result$$Register, StrIntrinsicNode::UU);
10446   %}
10447   ins_pipe(pipe_class_memory);
10448 %}
10449 
10450 instruct string_indexof_conLL(iRegP_R11 str1, iRegI_R12 cnt1, iRegP_R13 str2,
10451                               immI_le_4 int_cnt2, iRegI_R10 result, iRegINoSp tmp1, iRegINoSp tmp2,
10452                               iRegINoSp tmp3, iRegINoSp tmp4, rFlagsReg cr)
10453 %{
10454   predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::LL);
10455   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
10456   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, TEMP_DEF result,
10457          TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr);
10458 
10459   format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result (LL)" %}
10460   ins_encode %{
10461     int icnt2 = (int)$int_cnt2$$constant;
10462     __ string_indexof_linearscan($str1$$Register, $str2$$Register,
10463                                  $cnt1$$Register, zr,
10464                                  $tmp1$$Register, $tmp2$$Register,
10465                                  $tmp3$$Register, $tmp4$$Register,
10466                                  icnt2, $result$$Register, StrIntrinsicNode::LL);
10467   %}
10468   ins_pipe(pipe_class_memory);
10469 %}
10470 
10471 instruct string_indexof_conUL(iRegP_R11 str1, iRegI_R12 cnt1, iRegP_R13 str2,
10472                               immI_1 int_cnt2, iRegI_R10 result, iRegINoSp tmp1, iRegINoSp tmp2,
10473                               iRegINoSp tmp3, iRegINoSp tmp4, rFlagsReg cr)
10474 %{
10475   predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UL);
10476   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
10477   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, TEMP_DEF result,
10478          TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr);
10479 
10480   format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result (UL)" %}
10481   ins_encode %{
10482     int icnt2 = (int)$int_cnt2$$constant;
10483     __ string_indexof_linearscan($str1$$Register, $str2$$Register,
10484                                  $cnt1$$Register, zr,
10485                                  $tmp1$$Register, $tmp2$$Register,
10486                                  $tmp3$$Register, $tmp4$$Register,
10487                                  icnt2, $result$$Register, StrIntrinsicNode::UL);
10488   %}
10489   ins_pipe(pipe_class_memory);
10490 %}
10491 
10492 instruct stringU_indexof_char(iRegP_R11 str1, iRegI_R12 cnt1, iRegI_R13 ch,
10493                               iRegI_R10 result, iRegINoSp tmp1, iRegINoSp tmp2,
10494                               iRegINoSp tmp3, iRegINoSp tmp4, rFlagsReg cr)
10495 %{
10496   match(Set result (StrIndexOfChar (Binary str1 cnt1) ch));
10497   predicate(!UseRVV && (((StrIndexOfCharNode*)n)->encoding() == StrIntrinsicNode::U));
10498   effect(USE_KILL str1, USE_KILL cnt1, USE_KILL ch, TEMP_DEF result,
10499          TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr);
10500 
10501   format %{ "StringUTF16 IndexOf char[] $str1, $cnt1, $ch -> $result" %}
10502   ins_encode %{
10503     __ string_indexof_char($str1$$Register, $cnt1$$Register, $ch$$Register,
10504                            $result$$Register, $tmp1$$Register, $tmp2$$Register,
10505                            $tmp3$$Register, $tmp4$$Register, false /* isU */);
10506   %}
10507   ins_pipe(pipe_class_memory);
10508 %}
10509 
10510 
10511 instruct stringL_indexof_char(iRegP_R11 str1, iRegI_R12 cnt1, iRegI_R13 ch,
10512                               iRegI_R10 result, iRegINoSp tmp1, iRegINoSp tmp2,
10513                               iRegINoSp tmp3, iRegINoSp tmp4, rFlagsReg cr)
10514 %{
10515   match(Set result (StrIndexOfChar (Binary str1 cnt1) ch));
10516   predicate(!UseRVV && (((StrIndexOfCharNode*)n)->encoding() == StrIntrinsicNode::L));
10517   effect(USE_KILL str1, USE_KILL cnt1, USE_KILL ch, TEMP_DEF result,
10518          TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr);
10519 
10520   format %{ "StringLatin1 IndexOf char[] $str1, $cnt1, $ch -> $result" %}
10521   ins_encode %{
10522     __ string_indexof_char($str1$$Register, $cnt1$$Register, $ch$$Register,
10523                            $result$$Register, $tmp1$$Register, $tmp2$$Register,
10524                            $tmp3$$Register, $tmp4$$Register, true /* isL */);
10525   %}
10526   ins_pipe(pipe_class_memory);
10527 %}
10528 
10529 // clearing of an array
10530 instruct clearArray_reg_reg(iRegL_R29 cnt, iRegP_R28 base, iRegP_R30 tmp1,
10531                             iRegP_R31 tmp2, rFlagsReg cr, Universe dummy)
10532 %{
10533   // temp registers must match the one used in StubGenerator::generate_zero_blocks()
10534   predicate(UseBlockZeroing || !UseRVV);
10535   match(Set dummy (ClearArray cnt base));
10536   effect(USE_KILL cnt, USE_KILL base, TEMP tmp1, TEMP tmp2, KILL cr);
10537 
10538   ins_cost(4 * DEFAULT_COST);
10539   format %{ "ClearArray $cnt, $base\t#@clearArray_reg_reg" %}
10540 
10541   ins_encode %{
10542     address tpc = __ zero_words($base$$Register, $cnt$$Register);
10543     if (tpc == nullptr) {
10544       ciEnv::current()->record_failure("CodeCache is full");
10545       return;
10546     }
10547   %}
10548 
10549   ins_pipe(pipe_class_memory);
10550 %}
10551 
10552 instruct clearArray_imm_reg(immL cnt, iRegP_R28 base, Universe dummy, rFlagsReg cr)
10553 %{
10554   predicate(!UseRVV && (uint64_t)n->in(2)->get_long()
10555             < (uint64_t)(BlockZeroingLowLimit >> LogBytesPerWord));
10556   match(Set dummy (ClearArray cnt base));
10557   effect(USE_KILL base, KILL cr);
10558 
10559   ins_cost(4 * DEFAULT_COST);
10560   format %{ "ClearArray $cnt, $base\t#@clearArray_imm_reg" %}
10561 
10562   ins_encode %{
10563     __ zero_words($base$$Register, (uint64_t)$cnt$$constant);
10564   %}
10565 
10566   ins_pipe(pipe_class_memory);
10567 %}
10568 
10569 instruct string_equalsL(iRegP_R11 str1, iRegP_R13 str2, iRegI_R14 cnt,
10570                         iRegI_R10 result, rFlagsReg cr)
10571 %{
10572   predicate(!UseRVV && ((StrEqualsNode*)n)->encoding() == StrIntrinsicNode::LL);
10573   match(Set result (StrEquals (Binary str1 str2) cnt));
10574   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL cr);
10575 
10576   format %{ "String Equals $str1, $str2, $cnt -> $result\t#@string_equalsL" %}
10577   ins_encode %{
10578     // Count is in 8-bit bytes; non-Compact chars are 16 bits.
10579     __ string_equals($str1$$Register, $str2$$Register,
10580                      $result$$Register, $cnt$$Register);
10581   %}
10582   ins_pipe(pipe_class_memory);
10583 %}
10584 
10585 instruct array_equalsB(iRegP_R11 ary1, iRegP_R12 ary2, iRegI_R10 result,
10586                        iRegP_R13 tmp1, iRegP_R14 tmp2, iRegP_R15 tmp3)
10587 %{
10588   predicate(!UseRVV && ((AryEqNode*)n)->encoding() == StrIntrinsicNode::LL);
10589   match(Set result (AryEq ary1 ary2));
10590   effect(USE_KILL ary1, USE_KILL ary2, TEMP tmp1, TEMP tmp2, TEMP tmp3);
10591 
10592   format %{ "Array Equals $ary1, $ary2 -> $result\t#@array_equalsB // KILL all" %}
10593   ins_encode %{
10594     __ arrays_equals($ary1$$Register, $ary2$$Register,
10595                      $tmp1$$Register, $tmp2$$Register, $tmp3$$Register,
10596                      $result$$Register, 1);
10597   %}
10598   ins_pipe(pipe_class_memory);
10599 %}
10600 
10601 instruct array_equalsC(iRegP_R11 ary1, iRegP_R12 ary2, iRegI_R10 result,
10602                        iRegP_R13 tmp1, iRegP_R14 tmp2, iRegP_R15 tmp3)
10603 %{
10604   predicate(!UseRVV && ((AryEqNode*)n)->encoding() == StrIntrinsicNode::UU);
10605   match(Set result (AryEq ary1 ary2));
10606   effect(USE_KILL ary1, USE_KILL ary2, TEMP tmp1, TEMP tmp2, TEMP tmp3);
10607 
10608   format %{ "Array Equals $ary1, $ary2 -> $result\t#@array_equalsC // KILL all" %}
10609   ins_encode %{
10610     __ arrays_equals($ary1$$Register, $ary2$$Register,
10611                      $tmp1$$Register, $tmp2$$Register, $tmp3$$Register,
10612                      $result$$Register, 2);
10613   %}
10614   ins_pipe(pipe_class_memory);
10615 %}
10616 
10617 // fast ArraysSupport.vectorizedHashCode
10618 instruct arrays_hashcode(iRegP_R11 ary, iRegI_R12 cnt, iRegI_R10 result, immI basic_type,
10619                          iRegLNoSp tmp1, iRegLNoSp tmp2,
10620                          iRegLNoSp tmp3, iRegLNoSp tmp4,
10621                          iRegLNoSp tmp5, iRegLNoSp tmp6, rFlagsReg cr)
10622 %{
10623   match(Set result (VectorizedHashCode (Binary ary cnt) (Binary result basic_type)));
10624   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5, TEMP tmp6,
10625          USE_KILL ary, USE_KILL cnt, USE basic_type, KILL cr);
10626 
10627   format %{ "Array HashCode array[] $ary,$cnt,$result,$basic_type -> $result   // KILL all" %}
10628   ins_encode %{
10629     __ arrays_hashcode($ary$$Register, $cnt$$Register, $result$$Register,
10630                        $tmp1$$Register, $tmp2$$Register, $tmp3$$Register,
10631                        $tmp4$$Register, $tmp5$$Register, $tmp6$$Register,
10632                        (BasicType)$basic_type$$constant);
10633   %}
10634   ins_pipe(pipe_class_memory);
10635 %}
10636 
10637 // ============================================================================
10638 // Safepoint Instructions
10639 
10640 instruct safePoint(iRegP poll)
10641 %{
10642   match(SafePoint poll);
10643 
10644   ins_cost(2 * LOAD_COST);
10645   format %{
10646     "lwu zr, [$poll]\t# Safepoint: poll for GC, #@safePoint"
10647   %}
10648   ins_encode %{
10649     __ read_polling_page(as_Register($poll$$reg), 0, relocInfo::poll_type);
10650   %}
10651   ins_pipe(pipe_serial); // ins_pipe(iload_reg_mem);
10652 %}
10653 
10654 // ============================================================================
10655 // This name is KNOWN by the ADLC and cannot be changed.
10656 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
10657 // for this guy.
10658 instruct tlsLoadP(javaThread_RegP dst)
10659 %{
10660   match(Set dst (ThreadLocal));
10661 
10662   ins_cost(0);
10663 
10664   format %{ " -- \t// $dst=Thread::current(), empty, #@tlsLoadP" %}
10665 
10666   size(0);
10667 
10668   ins_encode( /*empty*/ );
10669 
10670   ins_pipe(pipe_class_empty);
10671 %}
10672 
10673 // inlined locking and unlocking
10674 // using t1 as the 'flag' register to bridge the BoolNode producers and consumers
10675 instruct cmpFastLock(rFlagsReg cr, iRegP object, iRegP box,
10676                      iRegPNoSp tmp1, iRegPNoSp tmp2, iRegPNoSp tmp3, iRegPNoSp tmp4)
10677 %{
10678   predicate(LockingMode != LM_LIGHTWEIGHT);
10679   match(Set cr (FastLock object box));
10680   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4);
10681 
10682   ins_cost(10 * DEFAULT_COST);
10683   format %{ "fastlock $object,$box\t! kills $tmp1,$tmp2,$tmp3,$tmp4 #@cmpFastLock" %}
10684 
10685   ins_encode %{
10686     __ fast_lock($object$$Register, $box$$Register,
10687                  $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register);
10688   %}
10689 
10690   ins_pipe(pipe_serial);
10691 %}
10692 
10693 // using t1 as the 'flag' register to bridge the BoolNode producers and consumers
10694 instruct cmpFastUnlock(rFlagsReg cr, iRegP object, iRegP box, iRegPNoSp tmp1, iRegPNoSp tmp2)
10695 %{
10696   predicate(LockingMode != LM_LIGHTWEIGHT);
10697   match(Set cr (FastUnlock object box));
10698   effect(TEMP tmp1, TEMP tmp2);
10699 
10700   ins_cost(10 * DEFAULT_COST);
10701   format %{ "fastunlock $object,$box\t! kills $tmp1, $tmp2, #@cmpFastUnlock" %}
10702 
10703   ins_encode %{
10704     __ fast_unlock($object$$Register, $box$$Register, $tmp1$$Register, $tmp2$$Register);
10705   %}
10706 
10707   ins_pipe(pipe_serial);
10708 %}
10709 
10710 instruct cmpFastLockLightweight(rFlagsReg cr, iRegP object, iRegP box,
10711                                 iRegPNoSp tmp1, iRegPNoSp tmp2, iRegPNoSp tmp3, iRegPNoSp tmp4)
10712 %{
10713   predicate(LockingMode == LM_LIGHTWEIGHT);
10714   match(Set cr (FastLock object box));
10715   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4);
10716 
10717   ins_cost(10 * DEFAULT_COST);
10718   format %{ "fastlock $object,$box\t! kills $tmp1,$tmp2,$tmp3,$tmp4 #@cmpFastLockLightweight" %}
10719 
10720   ins_encode %{
10721     __ fast_lock_lightweight($object$$Register, $box$$Register,
10722                              $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register);
10723   %}
10724 
10725   ins_pipe(pipe_serial);
10726 %}
10727 
10728 instruct cmpFastUnlockLightweight(rFlagsReg cr, iRegP object, iRegP box,
10729                                   iRegPNoSp tmp1, iRegPNoSp tmp2, iRegPNoSp tmp3)
10730 %{
10731   predicate(LockingMode == LM_LIGHTWEIGHT);
10732   match(Set cr (FastUnlock object box));
10733   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3);
10734 
10735   ins_cost(10 * DEFAULT_COST);
10736   format %{ "fastunlock $object,$box\t! kills $tmp1,$tmp2,$tmp3 #@cmpFastUnlockLightweight" %}
10737 
10738   ins_encode %{
10739     __ fast_unlock_lightweight($object$$Register, $box$$Register,
10740                                $tmp1$$Register, $tmp2$$Register, $tmp3$$Register);
10741   %}
10742 
10743   ins_pipe(pipe_serial);
10744 %}
10745 
10746 // Tail Call; Jump from runtime stub to Java code.
10747 // Also known as an 'interprocedural jump'.
10748 // Target of jump will eventually return to caller.
10749 // TailJump below removes the return address.
10750 // Don't use fp for 'jump_target' because a MachEpilogNode has already been
10751 // emitted just above the TailCall which has reset fp to the caller state.
10752 instruct TailCalljmpInd(iRegPNoSpNoFp jump_target, inline_cache_RegP method_oop)
10753 %{
10754   match(TailCall jump_target method_oop);
10755 
10756   ins_cost(BRANCH_COST);
10757 
10758   format %{ "jalr $jump_target\t# $method_oop holds method oop, #@TailCalljmpInd." %}
10759 
10760   ins_encode(riscv_enc_tail_call(jump_target));
10761 
10762   ins_pipe(pipe_class_call);
10763 %}
10764 
10765 instruct TailjmpInd(iRegPNoSpNoFp jump_target, iRegP_R10 ex_oop)
10766 %{
10767   match(TailJump jump_target ex_oop);
10768 
10769   ins_cost(ALU_COST + BRANCH_COST);
10770 
10771   format %{ "jalr $jump_target\t# $ex_oop holds exception oop, #@TailjmpInd." %}
10772 
10773   ins_encode(riscv_enc_tail_jmp(jump_target));
10774 
10775   ins_pipe(pipe_class_call);
10776 %}
10777 
10778 // Forward exception.
10779 instruct ForwardExceptionjmp()
10780 %{
10781   match(ForwardException);
10782 
10783   ins_cost(BRANCH_COST);
10784 
10785   format %{ "j forward_exception_stub\t#@ForwardException" %}
10786 
10787   ins_encode %{
10788     __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
10789   %}
10790 
10791   ins_pipe(pipe_class_call);
10792 %}
10793 
10794 // Create exception oop: created by stack-crawling runtime code.
10795 // Created exception is now available to this handler, and is setup
10796 // just prior to jumping to this handler. No code emitted.
10797 instruct CreateException(iRegP_R10 ex_oop)
10798 %{
10799   match(Set ex_oop (CreateEx));
10800 
10801   ins_cost(0);
10802   format %{ " -- \t// exception oop; no code emitted, #@CreateException" %}
10803 
10804   size(0);
10805 
10806   ins_encode( /*empty*/ );
10807 
10808   ins_pipe(pipe_class_empty);
10809 %}
10810 
10811 // Rethrow exception: The exception oop will come in the first
10812 // argument position. Then JUMP (not call) to the rethrow stub code.
10813 instruct RethrowException()
10814 %{
10815   match(Rethrow);
10816 
10817   ins_cost(BRANCH_COST);
10818 
10819   format %{ "j rethrow_stub\t#@RethrowException" %}
10820 
10821   ins_encode(riscv_enc_rethrow());
10822 
10823   ins_pipe(pipe_class_call);
10824 %}
10825 
10826 // Return Instruction
10827 // epilog node loads ret address into ra as part of frame pop
10828 instruct Ret()
10829 %{
10830   match(Return);
10831 
10832   ins_cost(BRANCH_COST);
10833   format %{ "ret\t// return register, #@Ret" %}
10834 
10835   ins_encode(riscv_enc_ret());
10836 
10837   ins_pipe(pipe_branch);
10838 %}
10839 
10840 // Die now.
10841 instruct ShouldNotReachHere() %{
10842   match(Halt);
10843 
10844   ins_cost(BRANCH_COST);
10845 
10846   format %{ "#@ShouldNotReachHere" %}
10847 
10848   ins_encode %{
10849     if (is_reachable()) {
10850       __ stop(_halt_reason);
10851     }
10852   %}
10853 
10854   ins_pipe(pipe_class_default);
10855 %}
10856 
10857 
10858 //----------PEEPHOLE RULES-----------------------------------------------------
10859 // These must follow all instruction definitions as they use the names
10860 // defined in the instructions definitions.
10861 //
10862 // peepmatch ( root_instr_name [preceding_instruction]* );
10863 //
10864 // peepconstraint %{
10865 // (instruction_number.operand_name relational_op instruction_number.operand_name
10866 //  [, ...] );
10867 // // instruction numbers are zero-based using left to right order in peepmatch
10868 //
10869 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
10870 // // provide an instruction_number.operand_name for each operand that appears
10871 // // in the replacement instruction's match rule
10872 //
10873 // ---------VM FLAGS---------------------------------------------------------
10874 //
10875 // All peephole optimizations can be turned off using -XX:-OptoPeephole
10876 //
10877 // Each peephole rule is given an identifying number starting with zero and
10878 // increasing by one in the order seen by the parser.  An individual peephole
10879 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
10880 // on the command-line.
10881 //
10882 // ---------CURRENT LIMITATIONS----------------------------------------------
10883 //
10884 // Only match adjacent instructions in same basic block
10885 // Only equality constraints
10886 // Only constraints between operands, not (0.dest_reg == RAX_enc)
10887 // Only one replacement instruction
10888 //
10889 //----------SMARTSPILL RULES---------------------------------------------------
10890 // These must follow all instruction definitions as they use the names
10891 // defined in the instructions definitions.
10892 
10893 // Local Variables:
10894 // mode: c++
10895 // End: