1 //
    2 // Copyright (c) 2003, 2024, Oracle and/or its affiliates. All rights reserved.
    3 // Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
    4 // Copyright (c) 2020, 2024, Huawei Technologies Co., Ltd. All rights reserved.
    5 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
    6 //
    7 // This code is free software; you can redistribute it and/or modify it
    8 // under the terms of the GNU General Public License version 2 only, as
    9 // published by the Free Software Foundation.
   10 //
   11 // This code is distributed in the hope that it will be useful, but WITHOUT
   12 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
   13 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
   14 // version 2 for more details (a copy is included in the LICENSE file that
   15 // accompanied this code).
   16 //
   17 // You should have received a copy of the GNU General Public License version
   18 // 2 along with this work; if not, write to the Free Software Foundation,
   19 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
   20 //
   21 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
   22 // or visit www.oracle.com if you need additional information or have any
   23 // questions.
   24 //
   25 //
   26 
   27 // RISCV Architecture Description File
   28 
   29 //----------REGISTER DEFINITION BLOCK------------------------------------------
   30 // This information is used by the matcher and the register allocator to
   31 // describe individual registers and classes of registers within the target
   32 // architecture.
   33 
   34 register %{
   35 //----------Architecture Description Register Definitions----------------------
   36 // General Registers
   37 // "reg_def"  name ( register save type, C convention save type,
   38 //                   ideal register type, encoding );
   39 // Register Save Types:
   40 //
   41 // NS  = No-Save:       The register allocator assumes that these registers
   42 //                      can be used without saving upon entry to the method, &
   43 //                      that they do not need to be saved at call sites.
   44 //
   45 // SOC = Save-On-Call:  The register allocator assumes that these registers
   46 //                      can be used without saving upon entry to the method,
   47 //                      but that they must be saved at call sites.
   48 //
   49 // SOE = Save-On-Entry: The register allocator assumes that these registers
   50 //                      must be saved before using them upon entry to the
   51 //                      method, but they do not need to be saved at call
   52 //                      sites.
   53 //
   54 // AS  = Always-Save:   The register allocator assumes that these registers
   55 //                      must be saved before using them upon entry to the
   56 //                      method, & that they must be saved at call sites.
   57 //
   58 // Ideal Register Type is used to determine how to save & restore a
   59 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
   60 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
   61 //
   62 // The encoding number is the actual bit-pattern placed into the opcodes.
   63 
   64 // We must define the 64 bit int registers in two 32 bit halves, the
   65 // real lower register and a virtual upper half register. upper halves
   66 // are used by the register allocator but are not actually supplied as
   67 // operands to memory ops.
   68 //
   69 // follow the C1 compiler in making registers
   70 //
   71 //   x7, x9-x17, x27-x31 volatile (caller save)
   72 //   x0-x4, x8, x23 system (no save, no allocate)
   73 //   x5-x6 non-allocatable (so we can use them as temporary regs)
   74 
   75 //
   76 // as regards Java usage. we don't use any callee save registers
   77 // because this makes it difficult to de-optimise a frame (see comment
   78 // in x86 implementation of Deoptimization::unwind_callee_save_values)
   79 //
   80 
   81 // General Registers
   82 
   83 reg_def R0      ( NS,  NS,  Op_RegI, 0,  x0->as_VMReg()         ); // zr
   84 reg_def R0_H    ( NS,  NS,  Op_RegI, 0,  x0->as_VMReg()->next() );
   85 reg_def R1      ( NS,  SOC, Op_RegI, 1,  x1->as_VMReg()         ); // ra
   86 reg_def R1_H    ( NS,  SOC, Op_RegI, 1,  x1->as_VMReg()->next() );
   87 reg_def R2      ( NS,  NS,  Op_RegI, 2,  x2->as_VMReg()         ); // sp
   88 reg_def R2_H    ( NS,  NS,  Op_RegI, 2,  x2->as_VMReg()->next() );
   89 reg_def R3      ( NS,  NS,  Op_RegI, 3,  x3->as_VMReg()         ); // gp
   90 reg_def R3_H    ( NS,  NS,  Op_RegI, 3,  x3->as_VMReg()->next() );
   91 reg_def R4      ( NS,  NS,  Op_RegI, 4,  x4->as_VMReg()         ); // tp
   92 reg_def R4_H    ( NS,  NS,  Op_RegI, 4,  x4->as_VMReg()->next() );
   93 reg_def R7      ( SOC, SOC, Op_RegI, 7,  x7->as_VMReg()         );
   94 reg_def R7_H    ( SOC, SOC, Op_RegI, 7,  x7->as_VMReg()->next() );
   95 reg_def R8      ( NS,  SOE, Op_RegI, 8,  x8->as_VMReg()         ); // fp
   96 reg_def R8_H    ( NS,  SOE, Op_RegI, 8,  x8->as_VMReg()->next() );
   97 reg_def R9      ( SOC, SOE, Op_RegI, 9,  x9->as_VMReg()         );
   98 reg_def R9_H    ( SOC, SOE, Op_RegI, 9,  x9->as_VMReg()->next() );
   99 reg_def R10     ( SOC, SOC, Op_RegI, 10, x10->as_VMReg()        );
  100 reg_def R10_H   ( SOC, SOC, Op_RegI, 10, x10->as_VMReg()->next());
  101 reg_def R11     ( SOC, SOC, Op_RegI, 11, x11->as_VMReg()        );
  102 reg_def R11_H   ( SOC, SOC, Op_RegI, 11, x11->as_VMReg()->next());
  103 reg_def R12     ( SOC, SOC, Op_RegI, 12, x12->as_VMReg()        );
  104 reg_def R12_H   ( SOC, SOC, Op_RegI, 12, x12->as_VMReg()->next());
  105 reg_def R13     ( SOC, SOC, Op_RegI, 13, x13->as_VMReg()        );
  106 reg_def R13_H   ( SOC, SOC, Op_RegI, 13, x13->as_VMReg()->next());
  107 reg_def R14     ( SOC, SOC, Op_RegI, 14, x14->as_VMReg()        );
  108 reg_def R14_H   ( SOC, SOC, Op_RegI, 14, x14->as_VMReg()->next());
  109 reg_def R15     ( SOC, SOC, Op_RegI, 15, x15->as_VMReg()        );
  110 reg_def R15_H   ( SOC, SOC, Op_RegI, 15, x15->as_VMReg()->next());
  111 reg_def R16     ( SOC, SOC, Op_RegI, 16, x16->as_VMReg()        );
  112 reg_def R16_H   ( SOC, SOC, Op_RegI, 16, x16->as_VMReg()->next());
  113 reg_def R17     ( SOC, SOC, Op_RegI, 17, x17->as_VMReg()        );
  114 reg_def R17_H   ( SOC, SOC, Op_RegI, 17, x17->as_VMReg()->next());
  115 reg_def R18     ( SOC, SOE, Op_RegI, 18, x18->as_VMReg()        );
  116 reg_def R18_H   ( SOC, SOE, Op_RegI, 18, x18->as_VMReg()->next());
  117 reg_def R19     ( SOC, SOE, Op_RegI, 19, x19->as_VMReg()        );
  118 reg_def R19_H   ( SOC, SOE, Op_RegI, 19, x19->as_VMReg()->next());
  119 reg_def R20     ( SOC, SOE, Op_RegI, 20, x20->as_VMReg()        ); // caller esp
  120 reg_def R20_H   ( SOC, SOE, Op_RegI, 20, x20->as_VMReg()->next());
  121 reg_def R21     ( SOC, SOE, Op_RegI, 21, x21->as_VMReg()        );
  122 reg_def R21_H   ( SOC, SOE, Op_RegI, 21, x21->as_VMReg()->next());
  123 reg_def R22     ( SOC, SOE, Op_RegI, 22, x22->as_VMReg()        );
  124 reg_def R22_H   ( SOC, SOE, Op_RegI, 22, x22->as_VMReg()->next());
  125 reg_def R23     ( NS,  SOE, Op_RegI, 23, x23->as_VMReg()        ); // java thread
  126 reg_def R23_H   ( NS,  SOE, Op_RegI, 23, x23->as_VMReg()->next());
  127 reg_def R24     ( SOC, SOE, Op_RegI, 24, x24->as_VMReg()        );
  128 reg_def R24_H   ( SOC, SOE, Op_RegI, 24, x24->as_VMReg()->next());
  129 reg_def R25     ( SOC, SOE, Op_RegI, 25, x25->as_VMReg()        );
  130 reg_def R25_H   ( SOC, SOE, Op_RegI, 25, x25->as_VMReg()->next());
  131 reg_def R26     ( SOC, SOE, Op_RegI, 26, x26->as_VMReg()        );
  132 reg_def R26_H   ( SOC, SOE, Op_RegI, 26, x26->as_VMReg()->next());
  133 reg_def R27     ( SOC, SOE, Op_RegI, 27, x27->as_VMReg()        ); // heapbase
  134 reg_def R27_H   ( SOC, SOE, Op_RegI, 27, x27->as_VMReg()->next());
  135 reg_def R28     ( SOC, SOC, Op_RegI, 28, x28->as_VMReg()        );
  136 reg_def R28_H   ( SOC, SOC, Op_RegI, 28, x28->as_VMReg()->next());
  137 reg_def R29     ( SOC, SOC, Op_RegI, 29, x29->as_VMReg()        );
  138 reg_def R29_H   ( SOC, SOC, Op_RegI, 29, x29->as_VMReg()->next());
  139 reg_def R30     ( SOC, SOC, Op_RegI, 30, x30->as_VMReg()        );
  140 reg_def R30_H   ( SOC, SOC, Op_RegI, 30, x30->as_VMReg()->next());
  141 reg_def R31     ( SOC, SOC, Op_RegI, 31, x31->as_VMReg()        );
  142 reg_def R31_H   ( SOC, SOC, Op_RegI, 31, x31->as_VMReg()->next());
  143 
  144 // ----------------------------
  145 // Float/Double Registers
  146 // ----------------------------
  147 
  148 // Double Registers
  149 
  150 // The rules of ADL require that double registers be defined in pairs.
  151 // Each pair must be two 32-bit values, but not necessarily a pair of
  152 // single float registers. In each pair, ADLC-assigned register numbers
  153 // must be adjacent, with the lower number even. Finally, when the
  154 // CPU stores such a register pair to memory, the word associated with
  155 // the lower ADLC-assigned number must be stored to the lower address.
  156 
  157 // RISCV has 32 floating-point registers. Each can store a single
  158 // or double precision floating-point value.
  159 
  160 // for Java use float registers f0-f31 are always save on call whereas
  161 // the platform ABI treats f8-f9 and f18-f27 as callee save). Other
  162 // float registers are SOC as per the platform spec
  163 
  164 reg_def F0    ( SOC, SOC, Op_RegF,  0,  f0->as_VMReg()          );
  165 reg_def F0_H  ( SOC, SOC, Op_RegF,  0,  f0->as_VMReg()->next()  );
  166 reg_def F1    ( SOC, SOC, Op_RegF,  1,  f1->as_VMReg()          );
  167 reg_def F1_H  ( SOC, SOC, Op_RegF,  1,  f1->as_VMReg()->next()  );
  168 reg_def F2    ( SOC, SOC, Op_RegF,  2,  f2->as_VMReg()          );
  169 reg_def F2_H  ( SOC, SOC, Op_RegF,  2,  f2->as_VMReg()->next()  );
  170 reg_def F3    ( SOC, SOC, Op_RegF,  3,  f3->as_VMReg()          );
  171 reg_def F3_H  ( SOC, SOC, Op_RegF,  3,  f3->as_VMReg()->next()  );
  172 reg_def F4    ( SOC, SOC, Op_RegF,  4,  f4->as_VMReg()          );
  173 reg_def F4_H  ( SOC, SOC, Op_RegF,  4,  f4->as_VMReg()->next()  );
  174 reg_def F5    ( SOC, SOC, Op_RegF,  5,  f5->as_VMReg()          );
  175 reg_def F5_H  ( SOC, SOC, Op_RegF,  5,  f5->as_VMReg()->next()  );
  176 reg_def F6    ( SOC, SOC, Op_RegF,  6,  f6->as_VMReg()          );
  177 reg_def F6_H  ( SOC, SOC, Op_RegF,  6,  f6->as_VMReg()->next()  );
  178 reg_def F7    ( SOC, SOC, Op_RegF,  7,  f7->as_VMReg()          );
  179 reg_def F7_H  ( SOC, SOC, Op_RegF,  7,  f7->as_VMReg()->next()  );
  180 reg_def F8    ( SOC, SOE, Op_RegF,  8,  f8->as_VMReg()          );
  181 reg_def F8_H  ( SOC, SOE, Op_RegF,  8,  f8->as_VMReg()->next()  );
  182 reg_def F9    ( SOC, SOE, Op_RegF,  9,  f9->as_VMReg()          );
  183 reg_def F9_H  ( SOC, SOE, Op_RegF,  9,  f9->as_VMReg()->next()  );
  184 reg_def F10   ( SOC, SOC, Op_RegF,  10, f10->as_VMReg()         );
  185 reg_def F10_H ( SOC, SOC, Op_RegF,  10, f10->as_VMReg()->next() );
  186 reg_def F11   ( SOC, SOC, Op_RegF,  11, f11->as_VMReg()         );
  187 reg_def F11_H ( SOC, SOC, Op_RegF,  11, f11->as_VMReg()->next() );
  188 reg_def F12   ( SOC, SOC, Op_RegF,  12, f12->as_VMReg()         );
  189 reg_def F12_H ( SOC, SOC, Op_RegF,  12, f12->as_VMReg()->next() );
  190 reg_def F13   ( SOC, SOC, Op_RegF,  13, f13->as_VMReg()         );
  191 reg_def F13_H ( SOC, SOC, Op_RegF,  13, f13->as_VMReg()->next() );
  192 reg_def F14   ( SOC, SOC, Op_RegF,  14, f14->as_VMReg()         );
  193 reg_def F14_H ( SOC, SOC, Op_RegF,  14, f14->as_VMReg()->next() );
  194 reg_def F15   ( SOC, SOC, Op_RegF,  15, f15->as_VMReg()         );
  195 reg_def F15_H ( SOC, SOC, Op_RegF,  15, f15->as_VMReg()->next() );
  196 reg_def F16   ( SOC, SOC, Op_RegF,  16, f16->as_VMReg()         );
  197 reg_def F16_H ( SOC, SOC, Op_RegF,  16, f16->as_VMReg()->next() );
  198 reg_def F17   ( SOC, SOC, Op_RegF,  17, f17->as_VMReg()         );
  199 reg_def F17_H ( SOC, SOC, Op_RegF,  17, f17->as_VMReg()->next() );
  200 reg_def F18   ( SOC, SOE, Op_RegF,  18, f18->as_VMReg()         );
  201 reg_def F18_H ( SOC, SOE, Op_RegF,  18, f18->as_VMReg()->next() );
  202 reg_def F19   ( SOC, SOE, Op_RegF,  19, f19->as_VMReg()         );
  203 reg_def F19_H ( SOC, SOE, Op_RegF,  19, f19->as_VMReg()->next() );
  204 reg_def F20   ( SOC, SOE, Op_RegF,  20, f20->as_VMReg()         );
  205 reg_def F20_H ( SOC, SOE, Op_RegF,  20, f20->as_VMReg()->next() );
  206 reg_def F21   ( SOC, SOE, Op_RegF,  21, f21->as_VMReg()         );
  207 reg_def F21_H ( SOC, SOE, Op_RegF,  21, f21->as_VMReg()->next() );
  208 reg_def F22   ( SOC, SOE, Op_RegF,  22, f22->as_VMReg()         );
  209 reg_def F22_H ( SOC, SOE, Op_RegF,  22, f22->as_VMReg()->next() );
  210 reg_def F23   ( SOC, SOE, Op_RegF,  23, f23->as_VMReg()         );
  211 reg_def F23_H ( SOC, SOE, Op_RegF,  23, f23->as_VMReg()->next() );
  212 reg_def F24   ( SOC, SOE, Op_RegF,  24, f24->as_VMReg()         );
  213 reg_def F24_H ( SOC, SOE, Op_RegF,  24, f24->as_VMReg()->next() );
  214 reg_def F25   ( SOC, SOE, Op_RegF,  25, f25->as_VMReg()         );
  215 reg_def F25_H ( SOC, SOE, Op_RegF,  25, f25->as_VMReg()->next() );
  216 reg_def F26   ( SOC, SOE, Op_RegF,  26, f26->as_VMReg()         );
  217 reg_def F26_H ( SOC, SOE, Op_RegF,  26, f26->as_VMReg()->next() );
  218 reg_def F27   ( SOC, SOE, Op_RegF,  27, f27->as_VMReg()         );
  219 reg_def F27_H ( SOC, SOE, Op_RegF,  27, f27->as_VMReg()->next() );
  220 reg_def F28   ( SOC, SOC, Op_RegF,  28, f28->as_VMReg()         );
  221 reg_def F28_H ( SOC, SOC, Op_RegF,  28, f28->as_VMReg()->next() );
  222 reg_def F29   ( SOC, SOC, Op_RegF,  29, f29->as_VMReg()         );
  223 reg_def F29_H ( SOC, SOC, Op_RegF,  29, f29->as_VMReg()->next() );
  224 reg_def F30   ( SOC, SOC, Op_RegF,  30, f30->as_VMReg()         );
  225 reg_def F30_H ( SOC, SOC, Op_RegF,  30, f30->as_VMReg()->next() );
  226 reg_def F31   ( SOC, SOC, Op_RegF,  31, f31->as_VMReg()         );
  227 reg_def F31_H ( SOC, SOC, Op_RegF,  31, f31->as_VMReg()->next() );
  228 
  229 // ----------------------------
  230 // Vector Registers
  231 // ----------------------------
  232 
  233 // For RVV vector registers, we simply extend vector register size to 4
  234 // 'logical' slots. This is nominally 128 bits but it actually covers
  235 // all possible 'physical' RVV vector register lengths from 128 ~ 1024
  236 // bits. The 'physical' RVV vector register length is detected during
  237 // startup, so the register allocator is able to identify the correct
  238 // number of bytes needed for an RVV spill/unspill.
  239 
  240 reg_def V0    ( SOC, SOC, Op_VecA, 0,  v0->as_VMReg()           );
  241 reg_def V0_H  ( SOC, SOC, Op_VecA, 0,  v0->as_VMReg()->next()   );
  242 reg_def V0_J  ( SOC, SOC, Op_VecA, 0,  v0->as_VMReg()->next(2)  );
  243 reg_def V0_K  ( SOC, SOC, Op_VecA, 0,  v0->as_VMReg()->next(3)  );
  244 
  245 reg_def V1    ( SOC, SOC, Op_VecA, 1,  v1->as_VMReg()           );
  246 reg_def V1_H  ( SOC, SOC, Op_VecA, 1,  v1->as_VMReg()->next()   );
  247 reg_def V1_J  ( SOC, SOC, Op_VecA, 1,  v1->as_VMReg()->next(2)  );
  248 reg_def V1_K  ( SOC, SOC, Op_VecA, 1,  v1->as_VMReg()->next(3)  );
  249 
  250 reg_def V2    ( SOC, SOC, Op_VecA, 2,  v2->as_VMReg()           );
  251 reg_def V2_H  ( SOC, SOC, Op_VecA, 2,  v2->as_VMReg()->next()   );
  252 reg_def V2_J  ( SOC, SOC, Op_VecA, 2,  v2->as_VMReg()->next(2)  );
  253 reg_def V2_K  ( SOC, SOC, Op_VecA, 2,  v2->as_VMReg()->next(3)  );
  254 
  255 reg_def V3    ( SOC, SOC, Op_VecA, 3,  v3->as_VMReg()           );
  256 reg_def V3_H  ( SOC, SOC, Op_VecA, 3,  v3->as_VMReg()->next()   );
  257 reg_def V3_J  ( SOC, SOC, Op_VecA, 3,  v3->as_VMReg()->next(2)  );
  258 reg_def V3_K  ( SOC, SOC, Op_VecA, 3,  v3->as_VMReg()->next(3)  );
  259 
  260 reg_def V4    ( SOC, SOC, Op_VecA, 4,  v4->as_VMReg()           );
  261 reg_def V4_H  ( SOC, SOC, Op_VecA, 4,  v4->as_VMReg()->next()   );
  262 reg_def V4_J  ( SOC, SOC, Op_VecA, 4,  v4->as_VMReg()->next(2)  );
  263 reg_def V4_K  ( SOC, SOC, Op_VecA, 4,  v4->as_VMReg()->next(3)  );
  264 
  265 reg_def V5    ( SOC, SOC, Op_VecA, 5,  v5->as_VMReg()           );
  266 reg_def V5_H  ( SOC, SOC, Op_VecA, 5,  v5->as_VMReg()->next()   );
  267 reg_def V5_J  ( SOC, SOC, Op_VecA, 5,  v5->as_VMReg()->next(2)  );
  268 reg_def V5_K  ( SOC, SOC, Op_VecA, 5,  v5->as_VMReg()->next(3)  );
  269 
  270 reg_def V6    ( SOC, SOC, Op_VecA, 6,  v6->as_VMReg()           );
  271 reg_def V6_H  ( SOC, SOC, Op_VecA, 6,  v6->as_VMReg()->next()   );
  272 reg_def V6_J  ( SOC, SOC, Op_VecA, 6,  v6->as_VMReg()->next(2)  );
  273 reg_def V6_K  ( SOC, SOC, Op_VecA, 6,  v6->as_VMReg()->next(3)  );
  274 
  275 reg_def V7    ( SOC, SOC, Op_VecA, 7,  v7->as_VMReg()           );
  276 reg_def V7_H  ( SOC, SOC, Op_VecA, 7,  v7->as_VMReg()->next()   );
  277 reg_def V7_J  ( SOC, SOC, Op_VecA, 7,  v7->as_VMReg()->next(2)  );
  278 reg_def V7_K  ( SOC, SOC, Op_VecA, 7,  v7->as_VMReg()->next(3)  );
  279 
  280 reg_def V8    ( SOC, SOC, Op_VecA, 8,  v8->as_VMReg()           );
  281 reg_def V8_H  ( SOC, SOC, Op_VecA, 8,  v8->as_VMReg()->next()   );
  282 reg_def V8_J  ( SOC, SOC, Op_VecA, 8,  v8->as_VMReg()->next(2)  );
  283 reg_def V8_K  ( SOC, SOC, Op_VecA, 8,  v8->as_VMReg()->next(3)  );
  284 
  285 reg_def V9    ( SOC, SOC, Op_VecA, 9,  v9->as_VMReg()           );
  286 reg_def V9_H  ( SOC, SOC, Op_VecA, 9,  v9->as_VMReg()->next()   );
  287 reg_def V9_J  ( SOC, SOC, Op_VecA, 9,  v9->as_VMReg()->next(2)  );
  288 reg_def V9_K  ( SOC, SOC, Op_VecA, 9,  v9->as_VMReg()->next(3)  );
  289 
  290 reg_def V10   ( SOC, SOC, Op_VecA, 10, v10->as_VMReg()          );
  291 reg_def V10_H ( SOC, SOC, Op_VecA, 10, v10->as_VMReg()->next()  );
  292 reg_def V10_J ( SOC, SOC, Op_VecA, 10, v10->as_VMReg()->next(2) );
  293 reg_def V10_K ( SOC, SOC, Op_VecA, 10, v10->as_VMReg()->next(3) );
  294 
  295 reg_def V11   ( SOC, SOC, Op_VecA, 11, v11->as_VMReg()          );
  296 reg_def V11_H ( SOC, SOC, Op_VecA, 11, v11->as_VMReg()->next()  );
  297 reg_def V11_J ( SOC, SOC, Op_VecA, 11, v11->as_VMReg()->next(2) );
  298 reg_def V11_K ( SOC, SOC, Op_VecA, 11, v11->as_VMReg()->next(3) );
  299 
  300 reg_def V12   ( SOC, SOC, Op_VecA, 12, v12->as_VMReg()          );
  301 reg_def V12_H ( SOC, SOC, Op_VecA, 12, v12->as_VMReg()->next()  );
  302 reg_def V12_J ( SOC, SOC, Op_VecA, 12, v12->as_VMReg()->next(2) );
  303 reg_def V12_K ( SOC, SOC, Op_VecA, 12, v12->as_VMReg()->next(3) );
  304 
  305 reg_def V13   ( SOC, SOC, Op_VecA, 13, v13->as_VMReg()          );
  306 reg_def V13_H ( SOC, SOC, Op_VecA, 13, v13->as_VMReg()->next()  );
  307 reg_def V13_J ( SOC, SOC, Op_VecA, 13, v13->as_VMReg()->next(2) );
  308 reg_def V13_K ( SOC, SOC, Op_VecA, 13, v13->as_VMReg()->next(3) );
  309 
  310 reg_def V14   ( SOC, SOC, Op_VecA, 14, v14->as_VMReg()          );
  311 reg_def V14_H ( SOC, SOC, Op_VecA, 14, v14->as_VMReg()->next()  );
  312 reg_def V14_J ( SOC, SOC, Op_VecA, 14, v14->as_VMReg()->next(2) );
  313 reg_def V14_K ( SOC, SOC, Op_VecA, 14, v14->as_VMReg()->next(3) );
  314 
  315 reg_def V15   ( SOC, SOC, Op_VecA, 15, v15->as_VMReg()          );
  316 reg_def V15_H ( SOC, SOC, Op_VecA, 15, v15->as_VMReg()->next()  );
  317 reg_def V15_J ( SOC, SOC, Op_VecA, 15, v15->as_VMReg()->next(2) );
  318 reg_def V15_K ( SOC, SOC, Op_VecA, 15, v15->as_VMReg()->next(3) );
  319 
  320 reg_def V16   ( SOC, SOC, Op_VecA, 16, v16->as_VMReg()          );
  321 reg_def V16_H ( SOC, SOC, Op_VecA, 16, v16->as_VMReg()->next()  );
  322 reg_def V16_J ( SOC, SOC, Op_VecA, 16, v16->as_VMReg()->next(2) );
  323 reg_def V16_K ( SOC, SOC, Op_VecA, 16, v16->as_VMReg()->next(3) );
  324 
  325 reg_def V17   ( SOC, SOC, Op_VecA, 17, v17->as_VMReg()          );
  326 reg_def V17_H ( SOC, SOC, Op_VecA, 17, v17->as_VMReg()->next()  );
  327 reg_def V17_J ( SOC, SOC, Op_VecA, 17, v17->as_VMReg()->next(2) );
  328 reg_def V17_K ( SOC, SOC, Op_VecA, 17, v17->as_VMReg()->next(3) );
  329 
  330 reg_def V18   ( SOC, SOC, Op_VecA, 18, v18->as_VMReg()          );
  331 reg_def V18_H ( SOC, SOC, Op_VecA, 18, v18->as_VMReg()->next()  );
  332 reg_def V18_J ( SOC, SOC, Op_VecA, 18, v18->as_VMReg()->next(2) );
  333 reg_def V18_K ( SOC, SOC, Op_VecA, 18, v18->as_VMReg()->next(3) );
  334 
  335 reg_def V19   ( SOC, SOC, Op_VecA, 19, v19->as_VMReg()          );
  336 reg_def V19_H ( SOC, SOC, Op_VecA, 19, v19->as_VMReg()->next()  );
  337 reg_def V19_J ( SOC, SOC, Op_VecA, 19, v19->as_VMReg()->next(2) );
  338 reg_def V19_K ( SOC, SOC, Op_VecA, 19, v19->as_VMReg()->next(3) );
  339 
  340 reg_def V20   ( SOC, SOC, Op_VecA, 20, v20->as_VMReg()          );
  341 reg_def V20_H ( SOC, SOC, Op_VecA, 20, v20->as_VMReg()->next()  );
  342 reg_def V20_J ( SOC, SOC, Op_VecA, 20, v20->as_VMReg()->next(2) );
  343 reg_def V20_K ( SOC, SOC, Op_VecA, 20, v20->as_VMReg()->next(3) );
  344 
  345 reg_def V21   ( SOC, SOC, Op_VecA, 21, v21->as_VMReg()          );
  346 reg_def V21_H ( SOC, SOC, Op_VecA, 21, v21->as_VMReg()->next()  );
  347 reg_def V21_J ( SOC, SOC, Op_VecA, 21, v21->as_VMReg()->next(2) );
  348 reg_def V21_K ( SOC, SOC, Op_VecA, 21, v21->as_VMReg()->next(3) );
  349 
  350 reg_def V22   ( SOC, SOC, Op_VecA, 22, v22->as_VMReg()          );
  351 reg_def V22_H ( SOC, SOC, Op_VecA, 22, v22->as_VMReg()->next()  );
  352 reg_def V22_J ( SOC, SOC, Op_VecA, 22, v22->as_VMReg()->next(2) );
  353 reg_def V22_K ( SOC, SOC, Op_VecA, 22, v22->as_VMReg()->next(3) );
  354 
  355 reg_def V23   ( SOC, SOC, Op_VecA, 23, v23->as_VMReg()          );
  356 reg_def V23_H ( SOC, SOC, Op_VecA, 23, v23->as_VMReg()->next()  );
  357 reg_def V23_J ( SOC, SOC, Op_VecA, 23, v23->as_VMReg()->next(2) );
  358 reg_def V23_K ( SOC, SOC, Op_VecA, 23, v23->as_VMReg()->next(3) );
  359 
  360 reg_def V24   ( SOC, SOC, Op_VecA, 24, v24->as_VMReg()          );
  361 reg_def V24_H ( SOC, SOC, Op_VecA, 24, v24->as_VMReg()->next()  );
  362 reg_def V24_J ( SOC, SOC, Op_VecA, 24, v24->as_VMReg()->next(2) );
  363 reg_def V24_K ( SOC, SOC, Op_VecA, 24, v24->as_VMReg()->next(3) );
  364 
  365 reg_def V25   ( SOC, SOC, Op_VecA, 25, v25->as_VMReg()          );
  366 reg_def V25_H ( SOC, SOC, Op_VecA, 25, v25->as_VMReg()->next()  );
  367 reg_def V25_J ( SOC, SOC, Op_VecA, 25, v25->as_VMReg()->next(2) );
  368 reg_def V25_K ( SOC, SOC, Op_VecA, 25, v25->as_VMReg()->next(3) );
  369 
  370 reg_def V26   ( SOC, SOC, Op_VecA, 26, v26->as_VMReg()          );
  371 reg_def V26_H ( SOC, SOC, Op_VecA, 26, v26->as_VMReg()->next()  );
  372 reg_def V26_J ( SOC, SOC, Op_VecA, 26, v26->as_VMReg()->next(2) );
  373 reg_def V26_K ( SOC, SOC, Op_VecA, 26, v26->as_VMReg()->next(3) );
  374 
  375 reg_def V27   ( SOC, SOC, Op_VecA, 27, v27->as_VMReg()          );
  376 reg_def V27_H ( SOC, SOC, Op_VecA, 27, v27->as_VMReg()->next()  );
  377 reg_def V27_J ( SOC, SOC, Op_VecA, 27, v27->as_VMReg()->next(2) );
  378 reg_def V27_K ( SOC, SOC, Op_VecA, 27, v27->as_VMReg()->next(3) );
  379 
  380 reg_def V28   ( SOC, SOC, Op_VecA, 28, v28->as_VMReg()          );
  381 reg_def V28_H ( SOC, SOC, Op_VecA, 28, v28->as_VMReg()->next()  );
  382 reg_def V28_J ( SOC, SOC, Op_VecA, 28, v28->as_VMReg()->next(2) );
  383 reg_def V28_K ( SOC, SOC, Op_VecA, 28, v28->as_VMReg()->next(3) );
  384 
  385 reg_def V29   ( SOC, SOC, Op_VecA, 29, v29->as_VMReg()          );
  386 reg_def V29_H ( SOC, SOC, Op_VecA, 29, v29->as_VMReg()->next()  );
  387 reg_def V29_J ( SOC, SOC, Op_VecA, 29, v29->as_VMReg()->next(2) );
  388 reg_def V29_K ( SOC, SOC, Op_VecA, 29, v29->as_VMReg()->next(3) );
  389 
  390 reg_def V30   ( SOC, SOC, Op_VecA, 30, v30->as_VMReg()          );
  391 reg_def V30_H ( SOC, SOC, Op_VecA, 30, v30->as_VMReg()->next()  );
  392 reg_def V30_J ( SOC, SOC, Op_VecA, 30, v30->as_VMReg()->next(2) );
  393 reg_def V30_K ( SOC, SOC, Op_VecA, 30, v30->as_VMReg()->next(3) );
  394 
  395 reg_def V31   ( SOC, SOC, Op_VecA, 31, v31->as_VMReg()          );
  396 reg_def V31_H ( SOC, SOC, Op_VecA, 31, v31->as_VMReg()->next()  );
  397 reg_def V31_J ( SOC, SOC, Op_VecA, 31, v31->as_VMReg()->next(2) );
  398 reg_def V31_K ( SOC, SOC, Op_VecA, 31, v31->as_VMReg()->next(3) );
  399 
  400 // ----------------------------
  401 // Special Registers
  402 // ----------------------------
  403 
  404 // On riscv, the physical flag register is missing, so we use t1 instead,
  405 // to bridge the RegFlag semantics in share/opto
  406 
  407 reg_def RFLAGS   (SOC, SOC, Op_RegFlags, 6, x6->as_VMReg()        );
  408 
  409 // Specify priority of register selection within phases of register
  410 // allocation.  Highest priority is first.  A useful heuristic is to
  411 // give registers a low priority when they are required by machine
  412 // instructions, like EAX and EDX on I486, and choose no-save registers
  413 // before save-on-call, & save-on-call before save-on-entry.  Registers
  414 // which participate in fixed calling sequences should come last.
  415 // Registers which are used as pairs must fall on an even boundary.
  416 
  417 alloc_class chunk0(
  418     // volatiles
  419     R7,  R7_H,
  420     R28, R28_H,
  421     R29, R29_H,
  422     R30, R30_H,
  423     R31, R31_H,
  424 
  425     // arg registers
  426     R10, R10_H,
  427     R11, R11_H,
  428     R12, R12_H,
  429     R13, R13_H,
  430     R14, R14_H,
  431     R15, R15_H,
  432     R16, R16_H,
  433     R17, R17_H,
  434 
  435     // non-volatiles
  436     R9,  R9_H,
  437     R18, R18_H,
  438     R19, R19_H,
  439     R20, R20_H,
  440     R21, R21_H,
  441     R22, R22_H,
  442     R24, R24_H,
  443     R25, R25_H,
  444     R26, R26_H,
  445 
  446     // non-allocatable registers
  447     R23, R23_H, // java thread
  448     R27, R27_H, // heapbase
  449     R4,  R4_H,  // thread
  450     R8,  R8_H,  // fp
  451     R0,  R0_H,  // zero
  452     R1,  R1_H,  // ra
  453     R2,  R2_H,  // sp
  454     R3,  R3_H,  // gp
  455 );
  456 
  457 alloc_class chunk1(
  458 
  459     // no save
  460     F0,  F0_H,
  461     F1,  F1_H,
  462     F2,  F2_H,
  463     F3,  F3_H,
  464     F4,  F4_H,
  465     F5,  F5_H,
  466     F6,  F6_H,
  467     F7,  F7_H,
  468     F28, F28_H,
  469     F29, F29_H,
  470     F30, F30_H,
  471     F31, F31_H,
  472 
  473     // arg registers
  474     F10, F10_H,
  475     F11, F11_H,
  476     F12, F12_H,
  477     F13, F13_H,
  478     F14, F14_H,
  479     F15, F15_H,
  480     F16, F16_H,
  481     F17, F17_H,
  482 
  483     // non-volatiles
  484     F8,  F8_H,
  485     F9,  F9_H,
  486     F18, F18_H,
  487     F19, F19_H,
  488     F20, F20_H,
  489     F21, F21_H,
  490     F22, F22_H,
  491     F23, F23_H,
  492     F24, F24_H,
  493     F25, F25_H,
  494     F26, F26_H,
  495     F27, F27_H,
  496 );
  497 
  498 alloc_class chunk2(
  499     V0, V0_H, V0_J, V0_K,
  500     V1, V1_H, V1_J, V1_K,
  501     V2, V2_H, V2_J, V2_K,
  502     V3, V3_H, V3_J, V3_K,
  503     V4, V4_H, V4_J, V4_K,
  504     V5, V5_H, V5_J, V5_K,
  505     V6, V6_H, V6_J, V6_K,
  506     V7, V7_H, V7_J, V7_K,
  507     V8, V8_H, V8_J, V8_K,
  508     V9, V9_H, V9_J, V9_K,
  509     V10, V10_H, V10_J, V10_K,
  510     V11, V11_H, V11_J, V11_K,
  511     V12, V12_H, V12_J, V12_K,
  512     V13, V13_H, V13_J, V13_K,
  513     V14, V14_H, V14_J, V14_K,
  514     V15, V15_H, V15_J, V15_K,
  515     V16, V16_H, V16_J, V16_K,
  516     V17, V17_H, V17_J, V17_K,
  517     V18, V18_H, V18_J, V18_K,
  518     V19, V19_H, V19_J, V19_K,
  519     V20, V20_H, V20_J, V20_K,
  520     V21, V21_H, V21_J, V21_K,
  521     V22, V22_H, V22_J, V22_K,
  522     V23, V23_H, V23_J, V23_K,
  523     V24, V24_H, V24_J, V24_K,
  524     V25, V25_H, V25_J, V25_K,
  525     V26, V26_H, V26_J, V26_K,
  526     V27, V27_H, V27_J, V27_K,
  527     V28, V28_H, V28_J, V28_K,
  528     V29, V29_H, V29_J, V29_K,
  529     V30, V30_H, V30_J, V30_K,
  530     V31, V31_H, V31_J, V31_K,
  531 );
  532 
  533 alloc_class chunk3(RFLAGS);
  534 
  535 //----------Architecture Description Register Classes--------------------------
  536 // Several register classes are automatically defined based upon information in
  537 // this architecture description.
  538 // 1) reg_class inline_cache_reg           ( /* as def'd in frame section */ )
  539 // 2) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
  540 //
  541 
  542 // Class for all 32 bit general purpose registers
  543 reg_class all_reg32(
  544     R0,
  545     R1,
  546     R2,
  547     R3,
  548     R4,
  549     R7,
  550     R8,
  551     R9,
  552     R10,
  553     R11,
  554     R12,
  555     R13,
  556     R14,
  557     R15,
  558     R16,
  559     R17,
  560     R18,
  561     R19,
  562     R20,
  563     R21,
  564     R22,
  565     R23,
  566     R24,
  567     R25,
  568     R26,
  569     R27,
  570     R28,
  571     R29,
  572     R30,
  573     R31
  574 );
  575 
  576 // Class for any 32 bit integer registers (excluding zr)
  577 reg_class any_reg32 %{
  578   return _ANY_REG32_mask;
  579 %}
  580 
  581 // Singleton class for R10 int register
  582 reg_class int_r10_reg(R10);
  583 
  584 // Singleton class for R12 int register
  585 reg_class int_r12_reg(R12);
  586 
  587 // Singleton class for R13 int register
  588 reg_class int_r13_reg(R13);
  589 
  590 // Singleton class for R14 int register
  591 reg_class int_r14_reg(R14);
  592 
  593 // Class for all long integer registers
  594 reg_class all_reg(
  595     R0,  R0_H,
  596     R1,  R1_H,
  597     R2,  R2_H,
  598     R3,  R3_H,
  599     R4,  R4_H,
  600     R7,  R7_H,
  601     R8,  R8_H,
  602     R9,  R9_H,
  603     R10, R10_H,
  604     R11, R11_H,
  605     R12, R12_H,
  606     R13, R13_H,
  607     R14, R14_H,
  608     R15, R15_H,
  609     R16, R16_H,
  610     R17, R17_H,
  611     R18, R18_H,
  612     R19, R19_H,
  613     R20, R20_H,
  614     R21, R21_H,
  615     R22, R22_H,
  616     R23, R23_H,
  617     R24, R24_H,
  618     R25, R25_H,
  619     R26, R26_H,
  620     R27, R27_H,
  621     R28, R28_H,
  622     R29, R29_H,
  623     R30, R30_H,
  624     R31, R31_H
  625 );
  626 
  627 // Class for all long integer registers (excluding zr)
  628 reg_class any_reg %{
  629   return _ANY_REG_mask;
  630 %}
  631 
  632 // Class for non-allocatable 32 bit registers
  633 reg_class non_allocatable_reg32(
  634     R0,                       // zr
  635     R1,                       // ra
  636     R2,                       // sp
  637     R3,                       // gp
  638     R4,                       // tp
  639     R23                       // java thread
  640 );
  641 
  642 // Class for non-allocatable 64 bit registers
  643 reg_class non_allocatable_reg(
  644     R0,  R0_H,                // zr
  645     R1,  R1_H,                // ra
  646     R2,  R2_H,                // sp
  647     R3,  R3_H,                // gp
  648     R4,  R4_H,                // tp
  649     R23, R23_H                // java thread
  650 );
  651 
  652 // Class for all non-special integer registers
  653 reg_class no_special_reg32 %{
  654   return _NO_SPECIAL_REG32_mask;
  655 %}
  656 
  657 // Class for all non-special long integer registers
  658 reg_class no_special_reg %{
  659   return _NO_SPECIAL_REG_mask;
  660 %}
  661 
  662 reg_class ptr_reg %{
  663   return _PTR_REG_mask;
  664 %}
  665 
  666 // Class for all non_special pointer registers
  667 reg_class no_special_ptr_reg %{
  668   return _NO_SPECIAL_PTR_REG_mask;
  669 %}
  670 
  671 // Class for all non_special pointer registers (excluding fp)
  672 reg_class no_special_no_fp_ptr_reg %{
  673   return _NO_SPECIAL_NO_FP_PTR_REG_mask;
  674 %}
  675 
  676 // Class for 64 bit register r10
  677 reg_class r10_reg(
  678     R10, R10_H
  679 );
  680 
  681 // Class for 64 bit register r11
  682 reg_class r11_reg(
  683     R11, R11_H
  684 );
  685 
  686 // Class for 64 bit register r12
  687 reg_class r12_reg(
  688     R12, R12_H
  689 );
  690 
  691 // Class for 64 bit register r13
  692 reg_class r13_reg(
  693     R13, R13_H
  694 );
  695 
  696 // Class for 64 bit register r14
  697 reg_class r14_reg(
  698     R14, R14_H
  699 );
  700 
  701 // Class for 64 bit register r15
  702 reg_class r15_reg(
  703     R15, R15_H
  704 );
  705 
  706 // Class for 64 bit register r16
  707 reg_class r16_reg(
  708     R16, R16_H
  709 );
  710 
  711 // Class for method register
  712 reg_class method_reg(
  713     R31, R31_H
  714 );
  715 
  716 // Class for java thread register
  717 reg_class java_thread_reg(
  718     R23, R23_H
  719 );
  720 
  721 reg_class r28_reg(
  722     R28, R28_H
  723 );
  724 
  725 reg_class r29_reg(
  726     R29, R29_H
  727 );
  728 
  729 reg_class r30_reg(
  730     R30, R30_H
  731 );
  732 
  733 reg_class r31_reg(
  734     R31, R31_H
  735 );
  736 
  737 // Class for zero registesr
  738 reg_class zr_reg(
  739     R0, R0_H
  740 );
  741 
  742 // Class for thread register
  743 reg_class thread_reg(
  744     R4, R4_H
  745 );
  746 
  747 // Class for frame pointer register
  748 reg_class fp_reg(
  749     R8, R8_H
  750 );
  751 
  752 // Class for link register
  753 reg_class ra_reg(
  754     R1, R1_H
  755 );
  756 
  757 // Class for long sp register
  758 reg_class sp_reg(
  759     R2, R2_H
  760 );
  761 
  762 // Class for all float registers
  763 reg_class float_reg(
  764     F0,
  765     F1,
  766     F2,
  767     F3,
  768     F4,
  769     F5,
  770     F6,
  771     F7,
  772     F8,
  773     F9,
  774     F10,
  775     F11,
  776     F12,
  777     F13,
  778     F14,
  779     F15,
  780     F16,
  781     F17,
  782     F18,
  783     F19,
  784     F20,
  785     F21,
  786     F22,
  787     F23,
  788     F24,
  789     F25,
  790     F26,
  791     F27,
  792     F28,
  793     F29,
  794     F30,
  795     F31
  796 );
  797 
  798 // Double precision float registers have virtual `high halves' that
  799 // are needed by the allocator.
  800 // Class for all double registers
  801 reg_class double_reg(
  802     F0,  F0_H,
  803     F1,  F1_H,
  804     F2,  F2_H,
  805     F3,  F3_H,
  806     F4,  F4_H,
  807     F5,  F5_H,
  808     F6,  F6_H,
  809     F7,  F7_H,
  810     F8,  F8_H,
  811     F9,  F9_H,
  812     F10, F10_H,
  813     F11, F11_H,
  814     F12, F12_H,
  815     F13, F13_H,
  816     F14, F14_H,
  817     F15, F15_H,
  818     F16, F16_H,
  819     F17, F17_H,
  820     F18, F18_H,
  821     F19, F19_H,
  822     F20, F20_H,
  823     F21, F21_H,
  824     F22, F22_H,
  825     F23, F23_H,
  826     F24, F24_H,
  827     F25, F25_H,
  828     F26, F26_H,
  829     F27, F27_H,
  830     F28, F28_H,
  831     F29, F29_H,
  832     F30, F30_H,
  833     F31, F31_H
  834 );
  835 
  836 // Class for RVV vector registers
  837 // Note: v0, v30 and v31 are used as mask registers.
  838 reg_class vectora_reg(
  839     V1, V1_H, V1_J, V1_K,
  840     V2, V2_H, V2_J, V2_K,
  841     V3, V3_H, V3_J, V3_K,
  842     V4, V4_H, V4_J, V4_K,
  843     V5, V5_H, V5_J, V5_K,
  844     V6, V6_H, V6_J, V6_K,
  845     V7, V7_H, V7_J, V7_K,
  846     V8, V8_H, V8_J, V8_K,
  847     V9, V9_H, V9_J, V9_K,
  848     V10, V10_H, V10_J, V10_K,
  849     V11, V11_H, V11_J, V11_K,
  850     V12, V12_H, V12_J, V12_K,
  851     V13, V13_H, V13_J, V13_K,
  852     V14, V14_H, V14_J, V14_K,
  853     V15, V15_H, V15_J, V15_K,
  854     V16, V16_H, V16_J, V16_K,
  855     V17, V17_H, V17_J, V17_K,
  856     V18, V18_H, V18_J, V18_K,
  857     V19, V19_H, V19_J, V19_K,
  858     V20, V20_H, V20_J, V20_K,
  859     V21, V21_H, V21_J, V21_K,
  860     V22, V22_H, V22_J, V22_K,
  861     V23, V23_H, V23_J, V23_K,
  862     V24, V24_H, V24_J, V24_K,
  863     V25, V25_H, V25_J, V25_K,
  864     V26, V26_H, V26_J, V26_K,
  865     V27, V27_H, V27_J, V27_K,
  866     V28, V28_H, V28_J, V28_K,
  867     V29, V29_H, V29_J, V29_K
  868 );
  869 
  870 // Class for 64 bit register f0
  871 reg_class f0_reg(
  872     F0, F0_H
  873 );
  874 
  875 // Class for 64 bit register f1
  876 reg_class f1_reg(
  877     F1, F1_H
  878 );
  879 
  880 // Class for 64 bit register f2
  881 reg_class f2_reg(
  882     F2, F2_H
  883 );
  884 
  885 // Class for 64 bit register f3
  886 reg_class f3_reg(
  887     F3, F3_H
  888 );
  889 
  890 // class for vector register v1
  891 reg_class v1_reg(
  892     V1, V1_H, V1_J, V1_K
  893 );
  894 
  895 // class for vector register v2
  896 reg_class v2_reg(
  897     V2, V2_H, V2_J, V2_K
  898 );
  899 
  900 // class for vector register v3
  901 reg_class v3_reg(
  902     V3, V3_H, V3_J, V3_K
  903 );
  904 
  905 // class for vector register v4
  906 reg_class v4_reg(
  907     V4, V4_H, V4_J, V4_K
  908 );
  909 
  910 // class for vector register v5
  911 reg_class v5_reg(
  912     V5, V5_H, V5_J, V5_K
  913 );
  914 
  915 // class for vector register v6
  916 reg_class v6_reg(
  917     V6, V6_H, V6_J, V6_K
  918 );
  919 
  920 // class for vector register v7
  921 reg_class v7_reg(
  922     V7, V7_H, V7_J, V7_K
  923 );
  924 
  925 // class for vector register v8
  926 reg_class v8_reg(
  927     V8, V8_H, V8_J, V8_K
  928 );
  929 
  930 // class for vector register v9
  931 reg_class v9_reg(
  932     V9, V9_H, V9_J, V9_K
  933 );
  934 
  935 // class for vector register v10
  936 reg_class v10_reg(
  937     V10, V10_H, V10_J, V10_K
  938 );
  939 
  940 // class for vector register v11
  941 reg_class v11_reg(
  942     V11, V11_H, V11_J, V11_K
  943 );
  944 
  945 // class for condition codes
  946 reg_class reg_flags(RFLAGS);
  947 
  948 // Class for RVV v0 mask register
  949 // https://github.com/riscv/riscv-v-spec/blob/master/v-spec.adoc#53-vector-masking
  950 // The mask value used to control execution of a masked vector
  951 // instruction is always supplied by vector register v0.
  952 reg_class vmask_reg_v0 (
  953     V0
  954 );
  955 
  956 // Class for RVV mask registers
  957 // We need two more vmask registers to do the vector mask logical ops,
  958 // so define v30, v31 as mask register too.
  959 reg_class vmask_reg (
  960     V0,
  961     V30,
  962     V31
  963 );
  964 %}
  965 
  966 //----------DEFINITION BLOCK---------------------------------------------------
  967 // Define name --> value mappings to inform the ADLC of an integer valued name
  968 // Current support includes integer values in the range [0, 0x7FFFFFFF]
  969 // Format:
  970 //        int_def  <name>         ( <int_value>, <expression>);
  971 // Generated Code in ad_<arch>.hpp
  972 //        #define  <name>   (<expression>)
  973 //        // value == <int_value>
  974 // Generated code in ad_<arch>.cpp adlc_verification()
  975 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
  976 //
  977 
  978 // we follow the ppc-aix port in using a simple cost model which ranks
  979 // register operations as cheap, memory ops as more expensive and
  980 // branches as most expensive. the first two have a low as well as a
  981 // normal cost. huge cost appears to be a way of saying don't do
  982 // something
  983 
  984 definitions %{
  985   // The default cost (of a register move instruction).
  986   int_def DEFAULT_COST         (  100,               100);
  987   int_def ALU_COST             (  100,  1 * DEFAULT_COST);          // unknown, const, arith, shift, slt,
  988                                                                     // multi, auipc, nop, logical, move
  989   int_def LOAD_COST            (  300,  3 * DEFAULT_COST);          // load, fpload
  990   int_def STORE_COST           (  100,  1 * DEFAULT_COST);          // store, fpstore
  991   int_def XFER_COST            (  300,  3 * DEFAULT_COST);          // mfc, mtc, fcvt, fmove, fcmp
  992   int_def FMVX_COST            (  100,  1 * DEFAULT_COST);          // shuffles with no conversion
  993   int_def BRANCH_COST          (  200,  2 * DEFAULT_COST);          // branch, jmp, call
  994   int_def IMUL_COST            ( 1000, 10 * DEFAULT_COST);          // imul
  995   int_def IDIVSI_COST          ( 3400, 34 * DEFAULT_COST);          // idivsi
  996   int_def IDIVDI_COST          ( 6600, 66 * DEFAULT_COST);          // idivdi
  997   int_def FMUL_SINGLE_COST     (  500,  5 * DEFAULT_COST);          // fmul, fmadd
  998   int_def FMUL_DOUBLE_COST     (  700,  7 * DEFAULT_COST);          // fmul, fmadd
  999   int_def FDIV_COST            ( 2000, 20 * DEFAULT_COST);          // fdiv
 1000   int_def FSQRT_COST           ( 2500, 25 * DEFAULT_COST);          // fsqrt
 1001   int_def VOLATILE_REF_COST    ( 1000, 10 * DEFAULT_COST);
 1002   int_def CACHE_MISS_COST      ( 2000, 20 * DEFAULT_COST);          // typicall cache miss penalty
 1003 %}
 1004 
 1005 
 1006 
 1007 //----------SOURCE BLOCK-------------------------------------------------------
 1008 // This is a block of C++ code which provides values, functions, and
 1009 // definitions necessary in the rest of the architecture description
 1010 
 1011 source_hpp %{
 1012 
 1013 #include "asm/macroAssembler.hpp"
 1014 #include "gc/shared/barrierSetAssembler.hpp"
 1015 #include "gc/shared/cardTable.hpp"
 1016 #include "gc/shared/cardTableBarrierSet.hpp"
 1017 #include "gc/shared/collectedHeap.hpp"
 1018 #include "opto/addnode.hpp"
 1019 #include "opto/convertnode.hpp"
 1020 #include "runtime/objectMonitor.hpp"
 1021 
 1022 extern RegMask _ANY_REG32_mask;
 1023 extern RegMask _ANY_REG_mask;
 1024 extern RegMask _PTR_REG_mask;
 1025 extern RegMask _NO_SPECIAL_REG32_mask;
 1026 extern RegMask _NO_SPECIAL_REG_mask;
 1027 extern RegMask _NO_SPECIAL_PTR_REG_mask;
 1028 extern RegMask _NO_SPECIAL_NO_FP_PTR_REG_mask;
 1029 
 1030 class CallStubImpl {
 1031 
 1032   //--------------------------------------------------------------
 1033   //---<  Used for optimization in Compile::shorten_branches  >---
 1034   //--------------------------------------------------------------
 1035 
 1036  public:
 1037   // Size of call trampoline stub.
 1038   static uint size_call_trampoline() {
 1039     return 0; // no call trampolines on this platform
 1040   }
 1041 
 1042   // number of relocations needed by a call trampoline stub
 1043   static uint reloc_call_trampoline() {
 1044     return 0; // no call trampolines on this platform
 1045   }
 1046 };
 1047 
 1048 class HandlerImpl {
 1049 
 1050  public:
 1051 
 1052   static int emit_exception_handler(C2_MacroAssembler *masm);
 1053   static int emit_deopt_handler(C2_MacroAssembler* masm);
 1054 
 1055   static uint size_exception_handler() {
 1056     return MacroAssembler::far_branch_size();
 1057   }
 1058 
 1059   static uint size_deopt_handler() {
 1060     // count auipc + far branch
 1061     return NativeInstruction::instruction_size + MacroAssembler::far_branch_size();
 1062   }
 1063 };
 1064 
 1065 class Node::PD {
 1066 public:
 1067   enum NodeFlags {
 1068     _last_flag = Node::_last_flag
 1069   };
 1070 };
 1071 
 1072 bool is_CAS(int opcode, bool maybe_volatile);
 1073 
 1074 // predicate controlling translation of CompareAndSwapX
 1075 bool needs_acquiring_load_reserved(const Node *load);
 1076 
 1077 // predicate controlling addressing modes
 1078 bool size_fits_all_mem_uses(AddPNode* addp, int shift);
 1079 %}
 1080 
 1081 source %{
 1082 
 1083 // Derived RegMask with conditionally allocatable registers
 1084 
 1085 RegMask _ANY_REG32_mask;
 1086 RegMask _ANY_REG_mask;
 1087 RegMask _PTR_REG_mask;
 1088 RegMask _NO_SPECIAL_REG32_mask;
 1089 RegMask _NO_SPECIAL_REG_mask;
 1090 RegMask _NO_SPECIAL_PTR_REG_mask;
 1091 RegMask _NO_SPECIAL_NO_FP_PTR_REG_mask;
 1092 
 1093 void reg_mask_init() {
 1094 
 1095   _ANY_REG32_mask = _ALL_REG32_mask;
 1096   _ANY_REG32_mask.Remove(OptoReg::as_OptoReg(x0->as_VMReg()));
 1097 
 1098   _ANY_REG_mask = _ALL_REG_mask;
 1099   _ANY_REG_mask.SUBTRACT(_ZR_REG_mask);
 1100 
 1101   _PTR_REG_mask = _ALL_REG_mask;
 1102   _PTR_REG_mask.SUBTRACT(_ZR_REG_mask);
 1103 
 1104   _NO_SPECIAL_REG32_mask = _ALL_REG32_mask;
 1105   _NO_SPECIAL_REG32_mask.SUBTRACT(_NON_ALLOCATABLE_REG32_mask);
 1106 
 1107   _NO_SPECIAL_REG_mask = _ALL_REG_mask;
 1108   _NO_SPECIAL_REG_mask.SUBTRACT(_NON_ALLOCATABLE_REG_mask);
 1109 
 1110   _NO_SPECIAL_PTR_REG_mask = _ALL_REG_mask;
 1111   _NO_SPECIAL_PTR_REG_mask.SUBTRACT(_NON_ALLOCATABLE_REG_mask);
 1112 
 1113   // x27 is not allocatable when compressed oops is on
 1114   if (UseCompressedOops) {
 1115     _NO_SPECIAL_REG32_mask.Remove(OptoReg::as_OptoReg(x27->as_VMReg()));
 1116     _NO_SPECIAL_REG_mask.Remove(OptoReg::as_OptoReg(x27->as_VMReg()));
 1117     _NO_SPECIAL_PTR_REG_mask.Remove(OptoReg::as_OptoReg(x27->as_VMReg()));
 1118   }
 1119 
 1120   // x8 is not allocatable when PreserveFramePointer is on
 1121   if (PreserveFramePointer) {
 1122     _NO_SPECIAL_REG32_mask.Remove(OptoReg::as_OptoReg(x8->as_VMReg()));
 1123     _NO_SPECIAL_REG_mask.Remove(OptoReg::as_OptoReg(x8->as_VMReg()));
 1124     _NO_SPECIAL_PTR_REG_mask.Remove(OptoReg::as_OptoReg(x8->as_VMReg()));
 1125   }
 1126 
 1127   _NO_SPECIAL_NO_FP_PTR_REG_mask = _NO_SPECIAL_PTR_REG_mask;
 1128   _NO_SPECIAL_NO_FP_PTR_REG_mask.Remove(OptoReg::as_OptoReg(x8->as_VMReg()));
 1129 }
 1130 
 1131 void PhaseOutput::pd_perform_mach_node_analysis() {
 1132 }
 1133 
 1134 int MachNode::pd_alignment_required() const {
 1135   return 1;
 1136 }
 1137 
 1138 int MachNode::compute_padding(int current_offset) const {
 1139   return 0;
 1140 }
 1141 
 1142 // is_CAS(int opcode, bool maybe_volatile)
 1143 //
 1144 // return true if opcode is one of the possible CompareAndSwapX
 1145 // values otherwise false.
 1146 bool is_CAS(int opcode, bool maybe_volatile)
 1147 {
 1148   switch (opcode) {
 1149     // We handle these
 1150     case Op_CompareAndSwapI:
 1151     case Op_CompareAndSwapL:
 1152     case Op_CompareAndSwapP:
 1153     case Op_CompareAndSwapN:
 1154     case Op_ShenandoahCompareAndSwapP:
 1155     case Op_ShenandoahCompareAndSwapN:
 1156     case Op_CompareAndSwapB:
 1157     case Op_CompareAndSwapS:
 1158     case Op_GetAndSetI:
 1159     case Op_GetAndSetL:
 1160     case Op_GetAndSetP:
 1161     case Op_GetAndSetN:
 1162     case Op_GetAndAddI:
 1163     case Op_GetAndAddL:
 1164       return true;
 1165     case Op_CompareAndExchangeI:
 1166     case Op_CompareAndExchangeN:
 1167     case Op_CompareAndExchangeB:
 1168     case Op_CompareAndExchangeS:
 1169     case Op_CompareAndExchangeL:
 1170     case Op_CompareAndExchangeP:
 1171     case Op_WeakCompareAndSwapB:
 1172     case Op_WeakCompareAndSwapS:
 1173     case Op_WeakCompareAndSwapI:
 1174     case Op_WeakCompareAndSwapL:
 1175     case Op_WeakCompareAndSwapP:
 1176     case Op_WeakCompareAndSwapN:
 1177     case Op_ShenandoahWeakCompareAndSwapP:
 1178     case Op_ShenandoahWeakCompareAndSwapN:
 1179     case Op_ShenandoahCompareAndExchangeP:
 1180     case Op_ShenandoahCompareAndExchangeN:
 1181       return maybe_volatile;
 1182     default:
 1183       return false;
 1184   }
 1185 }
 1186 
 1187 // predicate controlling translation of CAS
 1188 //
 1189 // returns true if CAS needs to use an acquiring load otherwise false
 1190 bool needs_acquiring_load_reserved(const Node *n)
 1191 {
 1192   assert(n != nullptr && is_CAS(n->Opcode(), true), "expecting a compare and swap");
 1193 
 1194   LoadStoreNode* ldst = n->as_LoadStore();
 1195   if (n != nullptr && is_CAS(n->Opcode(), false)) {
 1196     assert(ldst != nullptr && ldst->trailing_membar() != nullptr, "expected trailing membar");
 1197   } else {
 1198     return ldst != nullptr && ldst->trailing_membar() != nullptr;
 1199   }
 1200   // so we can just return true here
 1201   return true;
 1202 }
 1203 #define __ masm->
 1204 
 1205 // advance declarations for helper functions to convert register
 1206 // indices to register objects
 1207 
 1208 // the ad file has to provide implementations of certain methods
 1209 // expected by the generic code
 1210 //
 1211 // REQUIRED FUNCTIONALITY
 1212 
 1213 //=============================================================================
 1214 
 1215 // !!!!! Special hack to get all types of calls to specify the byte offset
 1216 //       from the start of the call to the point where the return address
 1217 //       will point.
 1218 
 1219 int MachCallStaticJavaNode::ret_addr_offset()
 1220 {
 1221   return 3 * NativeInstruction::instruction_size; // auipc + ld + jalr
 1222 }
 1223 
 1224 int MachCallDynamicJavaNode::ret_addr_offset()
 1225 {
 1226   return NativeMovConstReg::movptr2_instruction_size + (3 * NativeInstruction::instruction_size); // movptr2, auipc + ld + jal
 1227 }
 1228 
 1229 int MachCallRuntimeNode::ret_addr_offset() {
 1230   // For address inside the code cache the call will be:
 1231   //   auipc + jalr
 1232   // For real runtime callouts it will be 8 instructions
 1233   // see riscv_enc_java_to_runtime
 1234   //   la(t0, retaddr)                                             ->  auipc + addi
 1235   //   sd(t0, Address(xthread, JavaThread::last_Java_pc_offset())) ->  sd
 1236   //   movptr(t1, addr, offset, t0)                                ->  lui + lui + slli + add
 1237   //   jalr(t1, offset)                                            ->  jalr
 1238   if (CodeCache::contains(_entry_point)) {
 1239     return 2 * NativeInstruction::instruction_size;
 1240   } else {
 1241     return 8 * NativeInstruction::instruction_size;
 1242   }
 1243 }
 1244 
 1245 //
 1246 // Compute padding required for nodes which need alignment
 1247 //
 1248 
 1249 // With RVC a call instruction may get 2-byte aligned.
 1250 // The address of the call instruction needs to be 4-byte aligned to
 1251 // ensure that it does not span a cache line so that it can be patched.
 1252 int CallStaticJavaDirectNode::compute_padding(int current_offset) const
 1253 {
 1254   // to make sure the address of jal 4-byte aligned.
 1255   return align_up(current_offset, alignment_required()) - current_offset;
 1256 }
 1257 
 1258 // With RVC a call instruction may get 2-byte aligned.
 1259 // The address of the call instruction needs to be 4-byte aligned to
 1260 // ensure that it does not span a cache line so that it can be patched.
 1261 int CallDynamicJavaDirectNode::compute_padding(int current_offset) const
 1262 {
 1263   // skip the movptr2 in MacroAssembler::ic_call():
 1264   // lui, lui, slli, add, addi
 1265   // Though movptr2() has already 4-byte aligned with or without RVC,
 1266   // We need to prevent from further changes by explicitly calculating the size.
 1267   current_offset += NativeMovConstReg::movptr2_instruction_size;
 1268   // to make sure the address of jal 4-byte aligned.
 1269   return align_up(current_offset, alignment_required()) - current_offset;
 1270 }
 1271 
 1272 //=============================================================================
 1273 
 1274 #ifndef PRODUCT
 1275 void MachBreakpointNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
 1276   assert_cond(st != nullptr);
 1277   st->print("BREAKPOINT");
 1278 }
 1279 #endif
 1280 
 1281 void MachBreakpointNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const {
 1282   __ ebreak();
 1283 }
 1284 
 1285 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
 1286   return MachNode::size(ra_);
 1287 }
 1288 
 1289 //=============================================================================
 1290 
 1291 #ifndef PRODUCT
 1292   void MachNopNode::format(PhaseRegAlloc*, outputStream* st) const {
 1293     st->print("nop \t# %d bytes pad for loops and calls", _count);
 1294   }
 1295 #endif
 1296 
 1297   void MachNopNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc*) const {
 1298     Assembler::CompressibleRegion cr(masm); // nops shall be 2-byte under RVC for alignment purposes.
 1299     for (int i = 0; i < _count; i++) {
 1300       __ nop();
 1301     }
 1302   }
 1303 
 1304   uint MachNopNode::size(PhaseRegAlloc*) const {
 1305     return _count * (UseRVC ? NativeInstruction::compressed_instruction_size : NativeInstruction::instruction_size);
 1306   }
 1307 
 1308 //=============================================================================
 1309 const RegMask& MachConstantBaseNode::_out_RegMask = RegMask::Empty;
 1310 
 1311 int ConstantTable::calculate_table_base_offset() const {
 1312   return 0;  // absolute addressing, no offset
 1313 }
 1314 
 1315 bool MachConstantBaseNode::requires_postalloc_expand() const { return false; }
 1316 void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {
 1317   ShouldNotReachHere();
 1318 }
 1319 
 1320 void MachConstantBaseNode::emit(C2_MacroAssembler* masm, PhaseRegAlloc* ra_) const {
 1321   // Empty encoding
 1322 }
 1323 
 1324 uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
 1325   return 0;
 1326 }
 1327 
 1328 #ifndef PRODUCT
 1329 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
 1330   assert_cond(st != nullptr);
 1331   st->print("-- \t// MachConstantBaseNode (empty encoding)");
 1332 }
 1333 #endif
 1334 
 1335 #ifndef PRODUCT
 1336 void MachPrologNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
 1337   assert_cond(st != nullptr && ra_ != nullptr);
 1338   Compile* C = ra_->C;
 1339 
 1340   int framesize = C->output()->frame_slots() << LogBytesPerInt;
 1341 
 1342   if (C->output()->need_stack_bang(framesize)) {
 1343     st->print("# stack bang size=%d\n\t", framesize);
 1344   }
 1345 
 1346   st->print("sd  fp, [sp, #%d]\n\t", - 2 * wordSize);
 1347   st->print("sd  ra, [sp, #%d]\n\t", - wordSize);
 1348   if (PreserveFramePointer) { st->print("sub  fp, sp, #%d\n\t", 2 * wordSize); }
 1349   st->print("sub sp, sp, #%d\n\t", framesize);
 1350 
 1351   if (C->stub_function() == nullptr && BarrierSet::barrier_set()->barrier_set_nmethod() != nullptr) {
 1352     st->print("ld  t0, [guard]\n\t");
 1353     st->print("membar LoadLoad\n\t");
 1354     st->print("ld  t1, [xthread, #thread_disarmed_guard_value_offset]\n\t");
 1355     st->print("beq t0, t1, skip\n\t");
 1356     st->print("jalr #nmethod_entry_barrier_stub\n\t");
 1357     st->print("j skip\n\t");
 1358     st->print("guard: int\n\t");
 1359     st->print("skip:\n\t");
 1360   }
 1361 }
 1362 #endif
 1363 
 1364 void MachPrologNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const {
 1365   assert_cond(ra_ != nullptr);
 1366   Compile* C = ra_->C;
 1367 
 1368   // n.b. frame size includes space for return pc and fp
 1369   const int framesize = C->output()->frame_size_in_bytes();
 1370 
 1371   // insert a nop at the start of the prolog so we can patch in a
 1372   // branch if we need to invalidate the method later
 1373   {
 1374     Assembler::IncompressibleRegion ir(masm);  // keep the nop as 4 bytes for patching.
 1375     MacroAssembler::assert_alignment(__ pc());
 1376     __ nop();  // 4 bytes
 1377   }
 1378 
 1379   assert_cond(C != nullptr);
 1380 
 1381   if (C->clinit_barrier_on_entry()) {
 1382     assert(!C->method()->holder()->is_not_initialized(), "initialization should have been started");
 1383 
 1384     Label L_skip_barrier;
 1385 
 1386     __ mov_metadata(t1, C->method()->holder()->constant_encoding());
 1387     __ clinit_barrier(t1, t0, &L_skip_barrier);
 1388     __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub()));
 1389     __ bind(L_skip_barrier);
 1390   }
 1391 
 1392   int bangsize = C->output()->bang_size_in_bytes();
 1393   if (C->output()->need_stack_bang(bangsize)) {
 1394     __ generate_stack_overflow_check(bangsize);
 1395   }
 1396 
 1397   __ build_frame(framesize);
 1398 
 1399   if (C->stub_function() == nullptr) {
 1400     BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 1401     if (BarrierSet::barrier_set()->barrier_set_nmethod() != nullptr) {
 1402       // Dummy labels for just measuring the code size
 1403       Label dummy_slow_path;
 1404       Label dummy_continuation;
 1405       Label dummy_guard;
 1406       Label* slow_path = &dummy_slow_path;
 1407       Label* continuation = &dummy_continuation;
 1408       Label* guard = &dummy_guard;
 1409       if (!Compile::current()->output()->in_scratch_emit_size()) {
 1410         // Use real labels from actual stub when not emitting code for purpose of measuring its size
 1411         C2EntryBarrierStub* stub = new (Compile::current()->comp_arena()) C2EntryBarrierStub();
 1412         Compile::current()->output()->add_stub(stub);
 1413         slow_path = &stub->entry();
 1414         continuation = &stub->continuation();
 1415         guard = &stub->guard();
 1416       }
 1417       // In the C2 code, we move the non-hot part of nmethod entry barriers out-of-line to a stub.
 1418       bs->nmethod_entry_barrier(masm, slow_path, continuation, guard);
 1419     }
 1420   }
 1421 
 1422   if (VerifyStackAtCalls) {
 1423     Unimplemented();
 1424   }
 1425 
 1426   C->output()->set_frame_complete(__ offset());
 1427 
 1428   if (C->has_mach_constant_base_node()) {
 1429     // NOTE: We set the table base offset here because users might be
 1430     // emitted before MachConstantBaseNode.
 1431     ConstantTable& constant_table = C->output()->constant_table();
 1432     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
 1433   }
 1434 }
 1435 
 1436 uint MachPrologNode::size(PhaseRegAlloc* ra_) const
 1437 {
 1438   assert_cond(ra_ != nullptr);
 1439   return MachNode::size(ra_); // too many variables; just compute it
 1440                               // the hard way
 1441 }
 1442 
 1443 int MachPrologNode::reloc() const
 1444 {
 1445   return 0;
 1446 }
 1447 
 1448 //=============================================================================
 1449 
 1450 #ifndef PRODUCT
 1451 void MachEpilogNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
 1452   assert_cond(st != nullptr && ra_ != nullptr);
 1453   Compile* C = ra_->C;
 1454   assert_cond(C != nullptr);
 1455   int framesize = C->output()->frame_size_in_bytes();
 1456 
 1457   st->print("# pop frame %d\n\t", framesize);
 1458 
 1459   if (framesize == 0) {
 1460     st->print("ld  ra, [sp,#%d]\n\t", (2 * wordSize));
 1461     st->print("ld  fp, [sp,#%d]\n\t", (3 * wordSize));
 1462     st->print("add sp, sp, #%d\n\t", (2 * wordSize));
 1463   } else {
 1464     st->print("add  sp, sp, #%d\n\t", framesize);
 1465     st->print("ld  ra, [sp,#%d]\n\t", - 2 * wordSize);
 1466     st->print("ld  fp, [sp,#%d]\n\t", - wordSize);
 1467   }
 1468 
 1469   if (do_polling() && C->is_method_compilation()) {
 1470     st->print("# test polling word\n\t");
 1471     st->print("ld t0, [xthread,#%d]\n\t", in_bytes(JavaThread::polling_word_offset()));
 1472     st->print("bgtu sp, t0, #slow_path");
 1473   }
 1474 }
 1475 #endif
 1476 
 1477 void MachEpilogNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const {
 1478   assert_cond(ra_ != nullptr);
 1479   Compile* C = ra_->C;
 1480   assert_cond(C != nullptr);
 1481   int framesize = C->output()->frame_size_in_bytes();
 1482 
 1483   __ remove_frame(framesize);
 1484 
 1485   if (StackReservedPages > 0 && C->has_reserved_stack_access()) {
 1486     __ reserved_stack_check();
 1487   }
 1488 
 1489   if (do_polling() && C->is_method_compilation()) {
 1490     Label dummy_label;
 1491     Label* code_stub = &dummy_label;
 1492     if (!C->output()->in_scratch_emit_size()) {
 1493       C2SafepointPollStub* stub = new (C->comp_arena()) C2SafepointPollStub(__ offset());
 1494       C->output()->add_stub(stub);
 1495       code_stub = &stub->entry();
 1496     }
 1497     __ relocate(relocInfo::poll_return_type);
 1498     __ safepoint_poll(*code_stub, true /* at_return */, false /* acquire */, true /* in_nmethod */);
 1499   }
 1500 }
 1501 
 1502 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
 1503   assert_cond(ra_ != nullptr);
 1504   // Variable size. Determine dynamically.
 1505   return MachNode::size(ra_);
 1506 }
 1507 
 1508 int MachEpilogNode::reloc() const {
 1509   // Return number of relocatable values contained in this instruction.
 1510   return 1; // 1 for polling page.
 1511 }
 1512 const Pipeline * MachEpilogNode::pipeline() const {
 1513   return MachNode::pipeline_class();
 1514 }
 1515 
 1516 //=============================================================================
 1517 
 1518 // Figure out which register class each belongs in: rc_int, rc_float or
 1519 // rc_stack.
 1520 enum RC { rc_bad, rc_int, rc_float, rc_vector, rc_stack };
 1521 
 1522 static enum RC rc_class(OptoReg::Name reg) {
 1523 
 1524   if (reg == OptoReg::Bad) {
 1525     return rc_bad;
 1526   }
 1527 
 1528   // we have 30 int registers * 2 halves
 1529   // (t0 and t1 are omitted)
 1530   int slots_of_int_registers = Register::max_slots_per_register * (Register::number_of_registers - 2);
 1531   if (reg < slots_of_int_registers) {
 1532     return rc_int;
 1533   }
 1534 
 1535   // we have 32 float register * 2 halves
 1536   int slots_of_float_registers = FloatRegister::max_slots_per_register * FloatRegister::number_of_registers;
 1537   if (reg < slots_of_int_registers + slots_of_float_registers) {
 1538     return rc_float;
 1539   }
 1540 
 1541   // we have 32 vector register * 4 halves
 1542   int slots_of_vector_registers = VectorRegister::max_slots_per_register * VectorRegister::number_of_registers;
 1543   if (reg < slots_of_int_registers + slots_of_float_registers + slots_of_vector_registers) {
 1544     return rc_vector;
 1545   }
 1546 
 1547   // Between vector regs & stack is the flags regs.
 1548   assert(OptoReg::is_stack(reg), "blow up if spilling flags");
 1549 
 1550   return rc_stack;
 1551 }
 1552 
 1553 uint MachSpillCopyNode::implementation(C2_MacroAssembler *masm, PhaseRegAlloc *ra_, bool do_size, outputStream *st) const {
 1554   assert_cond(ra_ != nullptr);
 1555   Compile* C = ra_->C;
 1556 
 1557   // Get registers to move.
 1558   OptoReg::Name src_hi = ra_->get_reg_second(in(1));
 1559   OptoReg::Name src_lo = ra_->get_reg_first(in(1));
 1560   OptoReg::Name dst_hi = ra_->get_reg_second(this);
 1561   OptoReg::Name dst_lo = ra_->get_reg_first(this);
 1562 
 1563   enum RC src_hi_rc = rc_class(src_hi);
 1564   enum RC src_lo_rc = rc_class(src_lo);
 1565   enum RC dst_hi_rc = rc_class(dst_hi);
 1566   enum RC dst_lo_rc = rc_class(dst_lo);
 1567 
 1568   assert(src_lo != OptoReg::Bad && dst_lo != OptoReg::Bad, "must move at least 1 register");
 1569 
 1570   if (src_hi != OptoReg::Bad && !bottom_type()->isa_vectmask()) {
 1571     assert((src_lo & 1) == 0 && src_lo + 1 == src_hi &&
 1572            (dst_lo & 1) == 0 && dst_lo + 1 == dst_hi,
 1573            "expected aligned-adjacent pairs");
 1574   }
 1575 
 1576   if (src_lo == dst_lo && src_hi == dst_hi) {
 1577     return 0;            // Self copy, no move.
 1578   }
 1579 
 1580   bool is64 = (src_lo & 1) == 0 && src_lo + 1 == src_hi &&
 1581               (dst_lo & 1) == 0 && dst_lo + 1 == dst_hi;
 1582   int src_offset = ra_->reg2offset(src_lo);
 1583   int dst_offset = ra_->reg2offset(dst_lo);
 1584 
 1585   if (bottom_type()->isa_vect() != nullptr) {
 1586     uint ireg = ideal_reg();
 1587     if (ireg == Op_VecA && masm) {
 1588       int vector_reg_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE);
 1589       if (src_lo_rc == rc_stack && dst_lo_rc == rc_stack) {
 1590         // stack to stack
 1591         __ spill_copy_vector_stack_to_stack(src_offset, dst_offset,
 1592                                             vector_reg_size_in_bytes);
 1593       } else if (src_lo_rc == rc_vector && dst_lo_rc == rc_stack) {
 1594         // vpr to stack
 1595         __ spill(as_VectorRegister(Matcher::_regEncode[src_lo]), ra_->reg2offset(dst_lo));
 1596       } else if (src_lo_rc == rc_stack && dst_lo_rc == rc_vector) {
 1597         // stack to vpr
 1598         __ unspill(as_VectorRegister(Matcher::_regEncode[dst_lo]), ra_->reg2offset(src_lo));
 1599       } else if (src_lo_rc == rc_vector && dst_lo_rc == rc_vector) {
 1600         // vpr to vpr
 1601         __ vmv1r_v(as_VectorRegister(Matcher::_regEncode[dst_lo]), as_VectorRegister(Matcher::_regEncode[src_lo]));
 1602       } else {
 1603         ShouldNotReachHere();
 1604       }
 1605     } else if (bottom_type()->isa_vectmask() && masm) {
 1606       int vmask_size_in_bytes = Matcher::scalable_predicate_reg_slots() * 32 / 8;
 1607       if (src_lo_rc == rc_stack && dst_lo_rc == rc_stack) {
 1608         // stack to stack
 1609         __ spill_copy_vmask_stack_to_stack(src_offset, dst_offset,
 1610                                            vmask_size_in_bytes);
 1611       } else if (src_lo_rc == rc_vector && dst_lo_rc == rc_stack) {
 1612         // vmask to stack
 1613         __ spill_vmask(as_VectorRegister(Matcher::_regEncode[src_lo]), ra_->reg2offset(dst_lo));
 1614       } else if (src_lo_rc == rc_stack && dst_lo_rc == rc_vector) {
 1615         // stack to vmask
 1616         __ unspill_vmask(as_VectorRegister(Matcher::_regEncode[dst_lo]), ra_->reg2offset(src_lo));
 1617       } else if (src_lo_rc == rc_vector && dst_lo_rc == rc_vector) {
 1618         // vmask to vmask
 1619         __ vmv1r_v(as_VectorRegister(Matcher::_regEncode[dst_lo]), as_VectorRegister(Matcher::_regEncode[src_lo]));
 1620       } else {
 1621         ShouldNotReachHere();
 1622       }
 1623     }
 1624   } else if (masm != nullptr) {
 1625     switch (src_lo_rc) {
 1626       case rc_int:
 1627         if (dst_lo_rc == rc_int) {  // gpr --> gpr copy
 1628           if (!is64 && this->ideal_reg() != Op_RegI) { // zero extended for narrow oop or klass
 1629             __ zero_extend(as_Register(Matcher::_regEncode[dst_lo]), as_Register(Matcher::_regEncode[src_lo]), 32);
 1630           } else {
 1631             __ mv(as_Register(Matcher::_regEncode[dst_lo]), as_Register(Matcher::_regEncode[src_lo]));
 1632           }
 1633         } else if (dst_lo_rc == rc_float) { // gpr --> fpr copy
 1634           if (is64) {
 1635             __ fmv_d_x(as_FloatRegister(Matcher::_regEncode[dst_lo]),
 1636                        as_Register(Matcher::_regEncode[src_lo]));
 1637           } else {
 1638             __ fmv_w_x(as_FloatRegister(Matcher::_regEncode[dst_lo]),
 1639                        as_Register(Matcher::_regEncode[src_lo]));
 1640           }
 1641         } else {                    // gpr --> stack spill
 1642           assert(dst_lo_rc == rc_stack, "spill to bad register class");
 1643           __ spill(as_Register(Matcher::_regEncode[src_lo]), is64, dst_offset);
 1644         }
 1645         break;
 1646       case rc_float:
 1647         if (dst_lo_rc == rc_int) {  // fpr --> gpr copy
 1648           if (is64) {
 1649             __ fmv_x_d(as_Register(Matcher::_regEncode[dst_lo]),
 1650                        as_FloatRegister(Matcher::_regEncode[src_lo]));
 1651           } else {
 1652             __ fmv_x_w(as_Register(Matcher::_regEncode[dst_lo]),
 1653                        as_FloatRegister(Matcher::_regEncode[src_lo]));
 1654           }
 1655         } else if (dst_lo_rc == rc_float) { // fpr --> fpr copy
 1656           if (is64) {
 1657             __ fmv_d(as_FloatRegister(Matcher::_regEncode[dst_lo]),
 1658                      as_FloatRegister(Matcher::_regEncode[src_lo]));
 1659           } else {
 1660             __ fmv_s(as_FloatRegister(Matcher::_regEncode[dst_lo]),
 1661                      as_FloatRegister(Matcher::_regEncode[src_lo]));
 1662           }
 1663         } else {                    // fpr --> stack spill
 1664           assert(dst_lo_rc == rc_stack, "spill to bad register class");
 1665           __ spill(as_FloatRegister(Matcher::_regEncode[src_lo]),
 1666                    is64, dst_offset);
 1667         }
 1668         break;
 1669       case rc_stack:
 1670         if (dst_lo_rc == rc_int) {  // stack --> gpr load
 1671           if (this->ideal_reg() == Op_RegI) {
 1672             __ unspill(as_Register(Matcher::_regEncode[dst_lo]), is64, src_offset);
 1673           } else { // // zero extended for narrow oop or klass
 1674             __ unspillu(as_Register(Matcher::_regEncode[dst_lo]), is64, src_offset);
 1675           }
 1676         } else if (dst_lo_rc == rc_float) { // stack --> fpr load
 1677           __ unspill(as_FloatRegister(Matcher::_regEncode[dst_lo]),
 1678                      is64, src_offset);
 1679         } else {                    // stack --> stack copy
 1680           assert(dst_lo_rc == rc_stack, "spill to bad register class");
 1681           if (this->ideal_reg() == Op_RegI) {
 1682             __ unspill(t0, is64, src_offset);
 1683           } else { // zero extended for narrow oop or klass
 1684             __ unspillu(t0, is64, src_offset);
 1685           }
 1686           __ spill(t0, is64, dst_offset);
 1687         }
 1688         break;
 1689       default:
 1690         ShouldNotReachHere();
 1691     }
 1692   }
 1693 
 1694   if (st != nullptr) {
 1695     st->print("spill ");
 1696     if (src_lo_rc == rc_stack) {
 1697       st->print("[sp, #%d] -> ", src_offset);
 1698     } else {
 1699       st->print("%s -> ", Matcher::regName[src_lo]);
 1700     }
 1701     if (dst_lo_rc == rc_stack) {
 1702       st->print("[sp, #%d]", dst_offset);
 1703     } else {
 1704       st->print("%s", Matcher::regName[dst_lo]);
 1705     }
 1706     if (bottom_type()->isa_vect() && !bottom_type()->isa_vectmask()) {
 1707       int vsize = 0;
 1708       if (ideal_reg() == Op_VecA) {
 1709         vsize = Matcher::scalable_vector_reg_size(T_BYTE) * 8;
 1710       } else {
 1711         ShouldNotReachHere();
 1712       }
 1713       st->print("\t# vector spill size = %d", vsize);
 1714     } else if (ideal_reg() == Op_RegVectMask) {
 1715       assert(Matcher::supports_scalable_vector(), "bad register type for spill");
 1716       int vsize = Matcher::scalable_predicate_reg_slots() * 32;
 1717       st->print("\t# vmask spill size = %d", vsize);
 1718     } else {
 1719       st->print("\t# spill size = %d", is64 ? 64 : 32);
 1720     }
 1721   }
 1722 
 1723   return 0;
 1724 }
 1725 
 1726 #ifndef PRODUCT
 1727 void MachSpillCopyNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
 1728   if (ra_ == nullptr) {
 1729     st->print("N%d = SpillCopy(N%d)", _idx, in(1)->_idx);
 1730   } else {
 1731     implementation(nullptr, ra_, false, st);
 1732   }
 1733 }
 1734 #endif
 1735 
 1736 void MachSpillCopyNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const {
 1737   implementation(masm, ra_, false, nullptr);
 1738 }
 1739 
 1740 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
 1741   return MachNode::size(ra_);
 1742 }
 1743 
 1744 //=============================================================================
 1745 
 1746 #ifndef PRODUCT
 1747 void BoxLockNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
 1748   assert_cond(ra_ != nullptr && st != nullptr);
 1749   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
 1750   int reg = ra_->get_reg_first(this);
 1751   st->print("add %s, sp, #%d\t# box lock",
 1752             Matcher::regName[reg], offset);
 1753 }
 1754 #endif
 1755 
 1756 void BoxLockNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const {
 1757   Assembler::IncompressibleRegion ir(masm);  // Fixed length: see BoxLockNode::size()
 1758 
 1759   assert_cond(ra_ != nullptr);
 1760   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
 1761   int reg    = ra_->get_encode(this);
 1762 
 1763   if (Assembler::is_simm12(offset)) {
 1764     __ addi(as_Register(reg), sp, offset);
 1765   } else {
 1766     __ li32(t0, offset);
 1767     __ add(as_Register(reg), sp, t0);
 1768   }
 1769 }
 1770 
 1771 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
 1772   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_).
 1773   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
 1774 
 1775   if (Assembler::is_simm12(offset)) {
 1776     return NativeInstruction::instruction_size;
 1777   } else {
 1778     return 3 * NativeInstruction::instruction_size; // lui + addiw + add;
 1779   }
 1780 }
 1781 
 1782 //=============================================================================
 1783 
 1784 #ifndef PRODUCT
 1785 void MachUEPNode::format(PhaseRegAlloc* ra_, outputStream* st) const
 1786 {
 1787   assert_cond(st != nullptr);
 1788   st->print_cr("# MachUEPNode");
 1789   if (UseCompressedClassPointers) {
 1790     st->print_cr("\tlwu t1, [j_rarg0 + oopDesc::klass_offset_in_bytes()]\t# compressed klass");
 1791     st->print_cr("\tlwu t2, [t0      + CompiledICData::speculated_klass_offset()]\t# compressed klass");
 1792   } else {
 1793     st->print_cr("\tld t1, [j_rarg0 + oopDesc::klass_offset_in_bytes()]\t# compressed klass");
 1794     st->print_cr("\tld t2, [t0      + CompiledICData::speculated_klass_offset()]\t# compressed klass");
 1795   }
 1796   st->print_cr("\tbeq t1, t2, ic_hit");
 1797   st->print_cr("\tj, SharedRuntime::_ic_miss_stub\t # Inline cache check");
 1798   st->print_cr("\tic_hit:");
 1799 }
 1800 #endif
 1801 
 1802 void MachUEPNode::emit(C2_MacroAssembler* masm, PhaseRegAlloc* ra_) const
 1803 {
 1804   // This is the unverified entry point.
 1805   __ ic_check(CodeEntryAlignment);
 1806 
 1807   // Verified entry point must be properly 4 bytes aligned for patching by NativeJump::patch_verified_entry().
 1808   // ic_check() aligns to CodeEntryAlignment >= InteriorEntryAlignment(min 16) > NativeInstruction::instruction_size(4).
 1809   assert(((__ offset()) % CodeEntryAlignment) == 0, "Misaligned verified entry point");
 1810 }
 1811 
 1812 uint MachUEPNode::size(PhaseRegAlloc* ra_) const
 1813 {
 1814   assert_cond(ra_ != nullptr);
 1815   return MachNode::size(ra_);
 1816 }
 1817 
 1818 // REQUIRED EMIT CODE
 1819 
 1820 //=============================================================================
 1821 
 1822 // Emit exception handler code.
 1823 int HandlerImpl::emit_exception_handler(C2_MacroAssembler* masm)
 1824 {
 1825   // auipc t1, #exception_blob_entry_point
 1826   // jr (offset)t1
 1827   // Note that the code buffer's insts_mark is always relative to insts.
 1828   // That's why we must use the macroassembler to generate a handler.
 1829   address base = __ start_a_stub(size_exception_handler());
 1830   if (base == nullptr) {
 1831     ciEnv::current()->record_failure("CodeCache is full");
 1832     return 0;  // CodeBuffer::expand failed
 1833   }
 1834   int offset = __ offset();
 1835   __ far_jump(RuntimeAddress(OptoRuntime::exception_blob()->entry_point()));
 1836   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
 1837   __ end_a_stub();
 1838   return offset;
 1839 }
 1840 
 1841 // Emit deopt handler code.
 1842 int HandlerImpl::emit_deopt_handler(C2_MacroAssembler* masm)
 1843 {
 1844   address base = __ start_a_stub(size_deopt_handler());
 1845   if (base == nullptr) {
 1846     ciEnv::current()->record_failure("CodeCache is full");
 1847     return 0;  // CodeBuffer::expand failed
 1848   }
 1849   int offset = __ offset();
 1850 
 1851   __ auipc(ra, 0);
 1852   __ far_jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
 1853 
 1854   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
 1855   __ end_a_stub();
 1856   return offset;
 1857 
 1858 }
 1859 // REQUIRED MATCHER CODE
 1860 
 1861 //=============================================================================
 1862 
 1863 bool Matcher::match_rule_supported(int opcode) {
 1864   if (!has_match_rule(opcode)) {
 1865     return false;
 1866   }
 1867 
 1868   switch (opcode) {
 1869     case Op_OnSpinWait:
 1870       return VM_Version::supports_on_spin_wait();
 1871     case Op_CacheWB:           // fall through
 1872     case Op_CacheWBPreSync:    // fall through
 1873     case Op_CacheWBPostSync:
 1874       if (!VM_Version::supports_data_cache_line_flush()) {
 1875         return false;
 1876       }
 1877       break;
 1878 
 1879     case Op_StrCompressedCopy: // fall through
 1880     case Op_StrInflatedCopy:   // fall through
 1881     case Op_CountPositives:    // fall through
 1882     case Op_EncodeISOArray:
 1883       return UseRVV;
 1884 
 1885     // Current test shows that, it brings performance gain when MaxVectorSize >= 32, but brings
 1886     // regression when MaxVectorSize == 16. So only enable the intrinsic when MaxVectorSize >= 32.
 1887     case Op_RoundVF:
 1888       return UseRVV && MaxVectorSize >= 32;
 1889 
 1890     // For double, current test shows that even with MaxVectorSize == 32, there is still some regression.
 1891     // Although there is no hardware to verify it for now, from the trend of performance data on hardwares
 1892     // (with vlenb == 16 and 32 respectively), it's promising to bring better performance rather than
 1893     // regression for double when MaxVectorSize == 64+. So only enable the intrinsic when MaxVectorSize >= 64.
 1894     case Op_RoundVD:
 1895       return UseRVV && MaxVectorSize >= 64;
 1896 
 1897     case Op_PopCountI:
 1898     case Op_PopCountL:
 1899       return UsePopCountInstruction;
 1900 
 1901     case Op_ReverseBytesI:
 1902     case Op_ReverseBytesL:
 1903     case Op_ReverseBytesS:
 1904     case Op_ReverseBytesUS:
 1905     case Op_RotateRight:
 1906     case Op_RotateLeft:
 1907     case Op_CountLeadingZerosI:
 1908     case Op_CountLeadingZerosL:
 1909     case Op_CountTrailingZerosI:
 1910     case Op_CountTrailingZerosL:
 1911       return UseZbb;
 1912 
 1913     case Op_FmaF:
 1914     case Op_FmaD:
 1915     case Op_FmaVF:
 1916     case Op_FmaVD:
 1917       return UseFMA;
 1918 
 1919     case Op_ConvHF2F:
 1920     case Op_ConvF2HF:
 1921       return UseZfh;
 1922   }
 1923 
 1924   return true; // Per default match rules are supported.
 1925 }
 1926 
 1927 const RegMask* Matcher::predicate_reg_mask(void) {
 1928   return &_VMASK_REG_mask;
 1929 }
 1930 
 1931 // Vector calling convention not yet implemented.
 1932 bool Matcher::supports_vector_calling_convention(void) {
 1933   return EnableVectorSupport && UseVectorStubs;
 1934 }
 1935 
 1936 OptoRegPair Matcher::vector_return_value(uint ideal_reg) {
 1937   assert(EnableVectorSupport && UseVectorStubs, "sanity");
 1938   assert(ideal_reg == Op_VecA, "sanity");
 1939   // check more info at https://github.com/riscv-non-isa/riscv-elf-psabi-doc/blob/master/riscv-cc.adoc
 1940   int lo = V8_num;
 1941   int hi = V8_K_num;
 1942   return OptoRegPair(hi, lo);
 1943 }
 1944 
 1945 // Is this branch offset short enough that a short branch can be used?
 1946 //
 1947 // NOTE: If the platform does not provide any short branch variants, then
 1948 //       this method should return false for offset 0.
 1949 // |---label(L1)-----|
 1950 // |-----------------|
 1951 // |-----------------|----------eq: float-------------------
 1952 // |-----------------| // far_cmpD_branch   |   cmpD_branch
 1953 // |------- ---------|    feq;              |      feq;
 1954 // |-far_cmpD_branch-|    beqz done;        |      bnez L;
 1955 // |-----------------|    j L;              |
 1956 // |-----------------|    bind(done);       |
 1957 // |-----------------|--------------------------------------
 1958 // |-----------------| // so shortBrSize = br_size - 4;
 1959 // |-----------------| // so offs = offset - shortBrSize + 4;
 1960 // |---label(L2)-----|
 1961 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
 1962   // The passed offset is relative to address of the branch.
 1963   int shortBrSize = br_size - 4;
 1964   int offs = offset - shortBrSize + 4;
 1965   return (-4096 <= offs && offs < 4096);
 1966 }
 1967 
 1968 // Vector width in bytes.
 1969 int Matcher::vector_width_in_bytes(BasicType bt) {
 1970   if (UseRVV) {
 1971     // The MaxVectorSize should have been set by detecting RVV max vector register size when check UseRVV.
 1972     // MaxVectorSize == VM_Version::_initial_vector_length
 1973     int size = MaxVectorSize;
 1974     // Minimum 2 values in vector
 1975     if (size < 2 * type2aelembytes(bt)) size = 0;
 1976     // But never < 4
 1977     if (size < 4) size = 0;
 1978     return size;
 1979   }
 1980   return 0;
 1981 }
 1982 
 1983 // Limits on vector size (number of elements) loaded into vector.
 1984 int Matcher::max_vector_size(const BasicType bt) {
 1985   return vector_width_in_bytes(bt) / type2aelembytes(bt);
 1986 }
 1987 
 1988 int Matcher::min_vector_size(const BasicType bt) {
 1989   int max_size = max_vector_size(bt);
 1990   // Limit the min vector size to 8 bytes.
 1991   int size = 8 / type2aelembytes(bt);
 1992   if (bt == T_BYTE) {
 1993     // To support vector api shuffle/rearrange.
 1994     size = 4;
 1995   } else if (bt == T_BOOLEAN) {
 1996     // To support vector api load/store mask.
 1997     size = 2;
 1998   }
 1999   if (size < 2) size = 2;
 2000   return MIN2(size, max_size);
 2001 }
 2002 
 2003 int Matcher::max_vector_size_auto_vectorization(const BasicType bt) {
 2004   return Matcher::max_vector_size(bt);
 2005 }
 2006 
 2007 // Vector ideal reg.
 2008 uint Matcher::vector_ideal_reg(int len) {
 2009   assert(MaxVectorSize >= len, "");
 2010   if (UseRVV) {
 2011     return Op_VecA;
 2012   }
 2013 
 2014   ShouldNotReachHere();
 2015   return 0;
 2016 }
 2017 
 2018 int Matcher::scalable_vector_reg_size(const BasicType bt) {
 2019   return Matcher::max_vector_size(bt);
 2020 }
 2021 
 2022 MachOper* Matcher::pd_specialize_generic_vector_operand(MachOper* original_opnd, uint ideal_reg, bool is_temp) {
 2023   ShouldNotReachHere(); // generic vector operands not supported
 2024   return nullptr;
 2025 }
 2026 
 2027 bool Matcher::is_reg2reg_move(MachNode* m) {
 2028   ShouldNotReachHere(); // generic vector operands not supported
 2029   return false;
 2030 }
 2031 
 2032 bool Matcher::is_generic_vector(MachOper* opnd) {
 2033   ShouldNotReachHere(); // generic vector operands not supported
 2034   return false;
 2035 }
 2036 
 2037 // Return whether or not this register is ever used as an argument.
 2038 // This function is used on startup to build the trampoline stubs in
 2039 // generateOptoStub.  Registers not mentioned will be killed by the VM
 2040 // call in the trampoline, and arguments in those registers not be
 2041 // available to the callee.
 2042 bool Matcher::can_be_java_arg(int reg)
 2043 {
 2044   return
 2045     reg ==  R10_num || reg == R10_H_num ||
 2046     reg ==  R11_num || reg == R11_H_num ||
 2047     reg ==  R12_num || reg == R12_H_num ||
 2048     reg ==  R13_num || reg == R13_H_num ||
 2049     reg ==  R14_num || reg == R14_H_num ||
 2050     reg ==  R15_num || reg == R15_H_num ||
 2051     reg ==  R16_num || reg == R16_H_num ||
 2052     reg ==  R17_num || reg == R17_H_num ||
 2053     reg ==  F10_num || reg == F10_H_num ||
 2054     reg ==  F11_num || reg == F11_H_num ||
 2055     reg ==  F12_num || reg == F12_H_num ||
 2056     reg ==  F13_num || reg == F13_H_num ||
 2057     reg ==  F14_num || reg == F14_H_num ||
 2058     reg ==  F15_num || reg == F15_H_num ||
 2059     reg ==  F16_num || reg == F16_H_num ||
 2060     reg ==  F17_num || reg == F17_H_num;
 2061 }
 2062 
 2063 bool Matcher::is_spillable_arg(int reg)
 2064 {
 2065   return can_be_java_arg(reg);
 2066 }
 2067 
 2068 uint Matcher::int_pressure_limit()
 2069 {
 2070   // A derived pointer is live at CallNode and then is flagged by RA
 2071   // as a spilled LRG. Spilling heuristics(Spill-USE) explicitly skip
 2072   // derived pointers and lastly fail to spill after reaching maximum
 2073   // number of iterations. Lowering the default pressure threshold to
 2074   // (_NO_SPECIAL_REG32_mask.Size() minus 1) forces CallNode to become
 2075   // a high register pressure area of the code so that split_DEF can
 2076   // generate DefinitionSpillCopy for the derived pointer.
 2077   uint default_int_pressure_threshold = _NO_SPECIAL_REG32_mask.Size() - 1;
 2078   if (!PreserveFramePointer) {
 2079     // When PreserveFramePointer is off, frame pointer is allocatable,
 2080     // but different from other SOC registers, it is excluded from
 2081     // fatproj's mask because its save type is No-Save. Decrease 1 to
 2082     // ensure high pressure at fatproj when PreserveFramePointer is off.
 2083     // See check_pressure_at_fatproj().
 2084     default_int_pressure_threshold--;
 2085   }
 2086   return (INTPRESSURE == -1) ? default_int_pressure_threshold : INTPRESSURE;
 2087 }
 2088 
 2089 uint Matcher::float_pressure_limit()
 2090 {
 2091   // _FLOAT_REG_mask is generated by adlc from the float_reg register class.
 2092   return (FLOATPRESSURE == -1) ? _FLOAT_REG_mask.Size() : FLOATPRESSURE;
 2093 }
 2094 
 2095 bool Matcher::use_asm_for_ldiv_by_con(jlong divisor) {
 2096   return false;
 2097 }
 2098 
 2099 RegMask Matcher::divI_proj_mask() {
 2100   ShouldNotReachHere();
 2101   return RegMask();
 2102 }
 2103 
 2104 // Register for MODI projection of divmodI.
 2105 RegMask Matcher::modI_proj_mask() {
 2106   ShouldNotReachHere();
 2107   return RegMask();
 2108 }
 2109 
 2110 // Register for DIVL projection of divmodL.
 2111 RegMask Matcher::divL_proj_mask() {
 2112   ShouldNotReachHere();
 2113   return RegMask();
 2114 }
 2115 
 2116 // Register for MODL projection of divmodL.
 2117 RegMask Matcher::modL_proj_mask() {
 2118   ShouldNotReachHere();
 2119   return RegMask();
 2120 }
 2121 
 2122 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
 2123   return FP_REG_mask();
 2124 }
 2125 
 2126 bool size_fits_all_mem_uses(AddPNode* addp, int shift) {
 2127   assert_cond(addp != nullptr);
 2128   for (DUIterator_Fast imax, i = addp->fast_outs(imax); i < imax; i++) {
 2129     Node* u = addp->fast_out(i);
 2130     if (u != nullptr && u->is_Mem()) {
 2131       int opsize = u->as_Mem()->memory_size();
 2132       assert(opsize > 0, "unexpected memory operand size");
 2133       if (u->as_Mem()->memory_size() != (1 << shift)) {
 2134         return false;
 2135       }
 2136     }
 2137   }
 2138   return true;
 2139 }
 2140 
 2141 // Binary src (Replicate scalar/immediate)
 2142 static bool is_vector_scalar_bitwise_pattern(Node* n, Node* m) {
 2143   if (n == nullptr || m == nullptr) {
 2144     return false;
 2145   }
 2146 
 2147   if (m->Opcode() != Op_Replicate) {
 2148     return false;
 2149   }
 2150 
 2151   switch (n->Opcode()) {
 2152     case Op_AndV:
 2153     case Op_OrV:
 2154     case Op_XorV:
 2155     case Op_AddVB:
 2156     case Op_AddVS:
 2157     case Op_AddVI:
 2158     case Op_AddVL:
 2159     case Op_SubVB:
 2160     case Op_SubVS:
 2161     case Op_SubVI:
 2162     case Op_SubVL:
 2163     case Op_MulVB:
 2164     case Op_MulVS:
 2165     case Op_MulVI:
 2166     case Op_MulVL: {
 2167       return true;
 2168     }
 2169     default:
 2170       return false;
 2171   }
 2172 }
 2173 
 2174 // (XorV src (Replicate m1))
 2175 // (XorVMask src (MaskAll m1))
 2176 static bool is_vector_bitwise_not_pattern(Node* n, Node* m) {
 2177   if (n != nullptr && m != nullptr) {
 2178     return (n->Opcode() == Op_XorV || n->Opcode() == Op_XorVMask) &&
 2179            VectorNode::is_all_ones_vector(m);
 2180   }
 2181   return false;
 2182 }
 2183 
 2184 // Should the Matcher clone input 'm' of node 'n'?
 2185 bool Matcher::pd_clone_node(Node* n, Node* m, Matcher::MStack& mstack) {
 2186   assert_cond(m != nullptr);
 2187   if (is_vshift_con_pattern(n, m) || // ShiftV src (ShiftCntV con)
 2188       is_vector_bitwise_not_pattern(n, m) ||
 2189       is_vector_scalar_bitwise_pattern(n, m) ||
 2190       is_encode_and_store_pattern(n, m)) {
 2191     mstack.push(m, Visit);
 2192     return true;
 2193   }
 2194   return false;
 2195 }
 2196 
 2197 // Should the Matcher clone shifts on addressing modes, expecting them
 2198 // to be subsumed into complex addressing expressions or compute them
 2199 // into registers?
 2200 bool Matcher::pd_clone_address_expressions(AddPNode* m, Matcher::MStack& mstack, VectorSet& address_visited) {
 2201   return clone_base_plus_offset_address(m, mstack, address_visited);
 2202 }
 2203 
 2204 %}
 2205 
 2206 
 2207 
 2208 //----------ENCODING BLOCK-----------------------------------------------------
 2209 // This block specifies the encoding classes used by the compiler to
 2210 // output byte streams.  Encoding classes are parameterized macros
 2211 // used by Machine Instruction Nodes in order to generate the bit
 2212 // encoding of the instruction.  Operands specify their base encoding
 2213 // interface with the interface keyword.  There are currently
 2214 // supported four interfaces, REG_INTER, CONST_INTER, MEMORY_INTER, &
 2215 // COND_INTER.  REG_INTER causes an operand to generate a function
 2216 // which returns its register number when queried.  CONST_INTER causes
 2217 // an operand to generate a function which returns the value of the
 2218 // constant when queried.  MEMORY_INTER causes an operand to generate
 2219 // four functions which return the Base Register, the Index Register,
 2220 // the Scale Value, and the Offset Value of the operand when queried.
 2221 // COND_INTER causes an operand to generate six functions which return
 2222 // the encoding code (ie - encoding bits for the instruction)
 2223 // associated with each basic boolean condition for a conditional
 2224 // instruction.
 2225 //
 2226 // Instructions specify two basic values for encoding.  Again, a
 2227 // function is available to check if the constant displacement is an
 2228 // oop. They use the ins_encode keyword to specify their encoding
 2229 // classes (which must be a sequence of enc_class names, and their
 2230 // parameters, specified in the encoding block), and they use the
 2231 // opcode keyword to specify, in order, their primary, secondary, and
 2232 // tertiary opcode.  Only the opcode sections which a particular
 2233 // instruction needs for encoding need to be specified.
 2234 encode %{
 2235   // BEGIN Non-volatile memory access
 2236 
 2237   enc_class riscv_enc_mov_imm(iRegIorL dst, immIorL src) %{
 2238     int64_t con = (int64_t)$src$$constant;
 2239     Register dst_reg = as_Register($dst$$reg);
 2240     __ mv(dst_reg, con);
 2241   %}
 2242 
 2243   enc_class riscv_enc_mov_p(iRegP dst, immP src) %{
 2244     Register dst_reg = as_Register($dst$$reg);
 2245     address con = (address)$src$$constant;
 2246     if (con == nullptr || con == (address)1) {
 2247       ShouldNotReachHere();
 2248     } else {
 2249       relocInfo::relocType rtype = $src->constant_reloc();
 2250       if (rtype == relocInfo::oop_type) {
 2251         __ movoop(dst_reg, (jobject)con);
 2252       } else if (rtype == relocInfo::metadata_type) {
 2253         __ mov_metadata(dst_reg, (Metadata*)con);
 2254       } else {
 2255         assert(rtype == relocInfo::none, "unexpected reloc type");
 2256         __ mv(dst_reg, $src$$constant);
 2257       }
 2258     }
 2259   %}
 2260 
 2261   enc_class riscv_enc_mov_p1(iRegP dst) %{
 2262     Register dst_reg = as_Register($dst$$reg);
 2263     __ mv(dst_reg, 1);
 2264   %}
 2265 
 2266   enc_class riscv_enc_mov_byte_map_base(iRegP dst) %{
 2267     __ load_byte_map_base($dst$$Register);
 2268   %}
 2269 
 2270   enc_class riscv_enc_mov_n(iRegN dst, immN src) %{
 2271     Register dst_reg = as_Register($dst$$reg);
 2272     address con = (address)$src$$constant;
 2273     if (con == nullptr) {
 2274       ShouldNotReachHere();
 2275     } else {
 2276       relocInfo::relocType rtype = $src->constant_reloc();
 2277       assert(rtype == relocInfo::oop_type, "unexpected reloc type");
 2278       __ set_narrow_oop(dst_reg, (jobject)con);
 2279     }
 2280   %}
 2281 
 2282   enc_class riscv_enc_mov_zero(iRegNorP dst) %{
 2283     Register dst_reg = as_Register($dst$$reg);
 2284     __ mv(dst_reg, zr);
 2285   %}
 2286 
 2287   enc_class riscv_enc_mov_nk(iRegN dst, immNKlass src) %{
 2288     Register dst_reg = as_Register($dst$$reg);
 2289     address con = (address)$src$$constant;
 2290     if (con == nullptr) {
 2291       ShouldNotReachHere();
 2292     } else {
 2293       relocInfo::relocType rtype = $src->constant_reloc();
 2294       assert(rtype == relocInfo::metadata_type, "unexpected reloc type");
 2295       __ set_narrow_klass(dst_reg, (Klass *)con);
 2296     }
 2297   %}
 2298 
 2299   enc_class riscv_enc_cmpxchgw(iRegINoSp res, memory mem, iRegI oldval, iRegI newval) %{
 2300     __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int32,
 2301                /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register,
 2302                /*result as bool*/ true);
 2303   %}
 2304 
 2305   enc_class riscv_enc_cmpxchgn(iRegINoSp res, memory mem, iRegI oldval, iRegI newval) %{
 2306     __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::uint32,
 2307                /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register,
 2308                /*result as bool*/ true);
 2309   %}
 2310 
 2311   enc_class riscv_enc_cmpxchg(iRegINoSp res, memory mem, iRegL oldval, iRegL newval) %{
 2312     __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int64,
 2313                /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register,
 2314                /*result as bool*/ true);
 2315   %}
 2316 
 2317   enc_class riscv_enc_cmpxchgw_acq(iRegINoSp res, memory mem, iRegI oldval, iRegI newval) %{
 2318     __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int32,
 2319                /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register,
 2320                /*result as bool*/ true);
 2321   %}
 2322 
 2323   enc_class riscv_enc_cmpxchgn_acq(iRegINoSp res, memory mem, iRegI oldval, iRegI newval) %{
 2324     __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::uint32,
 2325                /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register,
 2326                /*result as bool*/ true);
 2327   %}
 2328 
 2329   enc_class riscv_enc_cmpxchg_acq(iRegINoSp res, memory mem, iRegL oldval, iRegL newval) %{
 2330     __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int64,
 2331                /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register,
 2332                /*result as bool*/ true);
 2333   %}
 2334 
 2335   // compare and branch instruction encodings
 2336 
 2337   enc_class riscv_enc_j(label lbl) %{
 2338     Label* L = $lbl$$label;
 2339     __ j(*L);
 2340   %}
 2341 
 2342   enc_class riscv_enc_far_cmpULtGe_imm0_branch(cmpOpULtGe cmp, iRegIorL op1, label lbl) %{
 2343     Label* L = $lbl$$label;
 2344     switch ($cmp$$cmpcode) {
 2345       case(BoolTest::ge):
 2346         __ j(*L);
 2347         break;
 2348       case(BoolTest::lt):
 2349         break;
 2350       default:
 2351         Unimplemented();
 2352     }
 2353   %}
 2354 
 2355   // call instruction encodings
 2356 
 2357   enc_class riscv_enc_partial_subtype_check(iRegP sub, iRegP super, iRegP temp, iRegP result) %{
 2358     Register sub_reg = as_Register($sub$$reg);
 2359     Register super_reg = as_Register($super$$reg);
 2360     Register temp_reg = as_Register($temp$$reg);
 2361     Register result_reg = as_Register($result$$reg);
 2362     Register cr_reg = t1;
 2363 
 2364     Label miss;
 2365     Label done;
 2366     __ check_klass_subtype_slow_path(sub_reg, super_reg, temp_reg, result_reg,
 2367                                      nullptr, &miss);
 2368     if ($primary) {
 2369       __ mv(result_reg, zr);
 2370     } else {
 2371       __ mv(cr_reg, zr);
 2372       __ j(done);
 2373     }
 2374 
 2375     __ bind(miss);
 2376     if (!$primary) {
 2377       __ mv(cr_reg, 1);
 2378     }
 2379 
 2380     __ bind(done);
 2381   %}
 2382 
 2383   enc_class riscv_enc_java_static_call(method meth) %{
 2384     Assembler::IncompressibleRegion ir(masm);  // Fixed length: see ret_addr_offset
 2385 
 2386     address addr = (address)$meth$$method;
 2387     address call = nullptr;
 2388     assert_cond(addr != nullptr);
 2389     if (!_method) {
 2390       // A call to a runtime wrapper, e.g. new, new_typeArray_Java, uncommon_trap.
 2391       call = __ reloc_call(Address(addr, relocInfo::runtime_call_type));
 2392       if (call == nullptr) {
 2393         ciEnv::current()->record_failure("CodeCache is full");
 2394         return;
 2395       }
 2396     } else if (_method->intrinsic_id() == vmIntrinsicID::_ensureMaterializedForStackWalk) {
 2397       // The NOP here is purely to ensure that eliding a call to
 2398       // JVM_EnsureMaterializedForStackWalk doesn't change the code size.
 2399       __ nop();
 2400       __ nop();
 2401       __ nop();
 2402       __ block_comment("call JVM_EnsureMaterializedForStackWalk (elided)");
 2403     } else {
 2404       int method_index = resolved_method_index(masm);
 2405       RelocationHolder rspec = _optimized_virtual ? opt_virtual_call_Relocation::spec(method_index)
 2406                                                   : static_call_Relocation::spec(method_index);
 2407       call = __ reloc_call(Address(addr, rspec));
 2408       if (call == nullptr) {
 2409         ciEnv::current()->record_failure("CodeCache is full");
 2410         return;
 2411       }
 2412 
 2413       if (CodeBuffer::supports_shared_stubs() && _method->can_be_statically_bound()) {
 2414         // Calls of the same statically bound method can share
 2415         // a stub to the interpreter.
 2416         __ code()->shared_stub_to_interp_for(_method, call - (__ begin()));
 2417       } else {
 2418         // Emit stub for static call
 2419         address stub = CompiledDirectCall::emit_to_interp_stub(masm, call);
 2420         if (stub == nullptr) {
 2421           ciEnv::current()->record_failure("CodeCache is full");
 2422           return;
 2423         }
 2424       }
 2425     }
 2426 
 2427     __ post_call_nop();
 2428   %}
 2429 
 2430   enc_class riscv_enc_java_dynamic_call(method meth) %{
 2431     Assembler::IncompressibleRegion ir(masm);  // Fixed length: see ret_addr_offset
 2432     int method_index = resolved_method_index(masm);
 2433     address call = __ ic_call((address)$meth$$method, method_index);
 2434     if (call == nullptr) {
 2435       ciEnv::current()->record_failure("CodeCache is full");
 2436       return;
 2437     }
 2438 
 2439     __ post_call_nop();
 2440   %}
 2441 
 2442   enc_class riscv_enc_call_epilog() %{
 2443     if (VerifyStackAtCalls) {
 2444       // Check that stack depth is unchanged: find majik cookie on stack
 2445       __ call_Unimplemented();
 2446     }
 2447   %}
 2448 
 2449   enc_class riscv_enc_java_to_runtime(method meth) %{
 2450     Assembler::IncompressibleRegion ir(masm);  // Fixed length: see ret_addr_offset
 2451 
 2452     // Some calls to generated routines (arraycopy code) are scheduled by C2
 2453     // as runtime calls. if so we can call them using a far call (they will be
 2454     // in the code cache, thus in a reachable segment) otherwise we have to use
 2455     // a movptr+jalr pair which loads the absolute address into a register.
 2456     address entry = (address)$meth$$method;
 2457     if (CodeCache::contains(entry)) {
 2458       __ far_call(Address(entry, relocInfo::runtime_call_type));
 2459       __ post_call_nop();
 2460     } else {
 2461       Label retaddr;
 2462       // Make the anchor frame walkable
 2463       __ la(t0, retaddr);
 2464       __ sd(t0, Address(xthread, JavaThread::last_Java_pc_offset()));
 2465       int32_t offset = 0;
 2466       // No relocation needed
 2467       __ movptr(t1, entry, offset, t0); // lui + lui + slli + add
 2468       __ jalr(t1, offset);
 2469       __ bind(retaddr);
 2470       __ post_call_nop();
 2471     }
 2472   %}
 2473 
 2474   // arithmetic encodings
 2475 
 2476   enc_class riscv_enc_divw(iRegI dst, iRegI src1, iRegI src2) %{
 2477     Register dst_reg = as_Register($dst$$reg);
 2478     Register src1_reg = as_Register($src1$$reg);
 2479     Register src2_reg = as_Register($src2$$reg);
 2480     __ corrected_idivl(dst_reg, src1_reg, src2_reg, /* want_remainder */ false, /* is_signed */ true);
 2481   %}
 2482 
 2483   enc_class riscv_enc_divuw(iRegI dst, iRegI src1, iRegI src2) %{
 2484     Register dst_reg = as_Register($dst$$reg);
 2485     Register src1_reg = as_Register($src1$$reg);
 2486     Register src2_reg = as_Register($src2$$reg);
 2487     __ corrected_idivl(dst_reg, src1_reg, src2_reg, /* want_remainder */ false, /* is_signed */ false);
 2488   %}
 2489 
 2490   enc_class riscv_enc_div(iRegI dst, iRegI src1, iRegI src2) %{
 2491     Register dst_reg = as_Register($dst$$reg);
 2492     Register src1_reg = as_Register($src1$$reg);
 2493     Register src2_reg = as_Register($src2$$reg);
 2494     __ corrected_idivq(dst_reg, src1_reg, src2_reg, /* want_remainder */ false, /* is_signed */ true);
 2495   %}
 2496 
 2497   enc_class riscv_enc_divu(iRegI dst, iRegI src1, iRegI src2) %{
 2498     Register dst_reg = as_Register($dst$$reg);
 2499     Register src1_reg = as_Register($src1$$reg);
 2500     Register src2_reg = as_Register($src2$$reg);
 2501     __ corrected_idivq(dst_reg, src1_reg, src2_reg, /* want_remainder */ false, /* is_signed */ false);
 2502   %}
 2503 
 2504   enc_class riscv_enc_modw(iRegI dst, iRegI src1, iRegI src2) %{
 2505     Register dst_reg = as_Register($dst$$reg);
 2506     Register src1_reg = as_Register($src1$$reg);
 2507     Register src2_reg = as_Register($src2$$reg);
 2508     __ corrected_idivl(dst_reg, src1_reg, src2_reg, /* want_remainder */ true, /* is_signed */ true);
 2509   %}
 2510 
 2511   enc_class riscv_enc_moduw(iRegI dst, iRegI src1, iRegI src2) %{
 2512     Register dst_reg = as_Register($dst$$reg);
 2513     Register src1_reg = as_Register($src1$$reg);
 2514     Register src2_reg = as_Register($src2$$reg);
 2515     __ corrected_idivl(dst_reg, src1_reg, src2_reg, /* want_remainder */ true, /* is_signed */ false);
 2516   %}
 2517 
 2518   enc_class riscv_enc_mod(iRegI dst, iRegI src1, iRegI src2) %{
 2519     Register dst_reg = as_Register($dst$$reg);
 2520     Register src1_reg = as_Register($src1$$reg);
 2521     Register src2_reg = as_Register($src2$$reg);
 2522     __ corrected_idivq(dst_reg, src1_reg, src2_reg, /* want_remainder */ true, /* is_signed */ true);
 2523   %}
 2524 
 2525   enc_class riscv_enc_modu(iRegI dst, iRegI src1, iRegI src2) %{
 2526     Register dst_reg = as_Register($dst$$reg);
 2527     Register src1_reg = as_Register($src1$$reg);
 2528     Register src2_reg = as_Register($src2$$reg);
 2529     __ corrected_idivq(dst_reg, src1_reg, src2_reg, /* want_remainder */ true, /* is_signed */ false);
 2530   %}
 2531 
 2532   enc_class riscv_enc_tail_call(iRegP jump_target) %{
 2533     Register target_reg = as_Register($jump_target$$reg);
 2534     __ jr(target_reg);
 2535   %}
 2536 
 2537   enc_class riscv_enc_tail_jmp(iRegP jump_target) %{
 2538     Register target_reg = as_Register($jump_target$$reg);
 2539     // exception oop should be in x10
 2540     // ret addr has been popped into ra
 2541     // callee expects it in x13
 2542     __ mv(x13, ra);
 2543     __ jr(target_reg);
 2544   %}
 2545 
 2546   enc_class riscv_enc_rethrow() %{
 2547     __ far_jump(RuntimeAddress(OptoRuntime::rethrow_stub()));
 2548   %}
 2549 
 2550   enc_class riscv_enc_ret() %{
 2551     __ ret();
 2552   %}
 2553 
 2554 %}
 2555 
 2556 //----------FRAME--------------------------------------------------------------
 2557 // Definition of frame structure and management information.
 2558 //
 2559 //  S T A C K   L A Y O U T    Allocators stack-slot number
 2560 //                             |   (to get allocators register number
 2561 //  G  Owned by    |        |  v    add OptoReg::stack0())
 2562 //  r   CALLER     |        |
 2563 //  o     |        +--------+      pad to even-align allocators stack-slot
 2564 //  w     V        |  pad0  |        numbers; owned by CALLER
 2565 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
 2566 //  h     ^        |   in   |  5
 2567 //        |        |  args  |  4   Holes in incoming args owned by SELF
 2568 //  |     |        |        |  3
 2569 //  |     |        +--------+
 2570 //  V     |        | old out|      Empty on Intel, window on Sparc
 2571 //        |    old |preserve|      Must be even aligned.
 2572 //        |     SP-+--------+----> Matcher::_old_SP, even aligned
 2573 //        |        |   in   |  3   area for Intel ret address
 2574 //     Owned by    |preserve|      Empty on Sparc.
 2575 //       SELF      +--------+
 2576 //        |        |  pad2  |  2   pad to align old SP
 2577 //        |        +--------+  1
 2578 //        |        | locks  |  0
 2579 //        |        +--------+----> OptoReg::stack0(), even aligned
 2580 //        |        |  pad1  | 11   pad to align new SP
 2581 //        |        +--------+
 2582 //        |        |        | 10
 2583 //        |        | spills |  9   spills
 2584 //        V        |        |  8   (pad0 slot for callee)
 2585 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
 2586 //        ^        |  out   |  7
 2587 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
 2588 //     Owned by    +--------+
 2589 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
 2590 //        |    new |preserve|      Must be even-aligned.
 2591 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
 2592 //        |        |        |
 2593 //
 2594 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
 2595 //         known from SELF's arguments and the Java calling convention.
 2596 //         Region 6-7 is determined per call site.
 2597 // Note 2: If the calling convention leaves holes in the incoming argument
 2598 //         area, those holes are owned by SELF.  Holes in the outgoing area
 2599 //         are owned by the CALLEE.  Holes should not be necessary in the
 2600 //         incoming area, as the Java calling convention is completely under
 2601 //         the control of the AD file.  Doubles can be sorted and packed to
 2602 //         avoid holes.  Holes in the outgoing arguments may be necessary for
 2603 //         varargs C calling conventions.
 2604 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
 2605 //         even aligned with pad0 as needed.
 2606 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
 2607 //           (the latter is true on Intel but is it false on RISCV?)
 2608 //         region 6-11 is even aligned; it may be padded out more so that
 2609 //         the region from SP to FP meets the minimum stack alignment.
 2610 // Note 4: For I2C adapters, the incoming FP may not meet the minimum stack
 2611 //         alignment.  Region 11, pad1, may be dynamically extended so that
 2612 //         SP meets the minimum alignment.
 2613 
 2614 frame %{
 2615   // These three registers define part of the calling convention
 2616   // between compiled code and the interpreter.
 2617 
 2618   // Inline Cache Register or methodOop for I2C.
 2619   inline_cache_reg(R31);
 2620 
 2621   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
 2622   cisc_spilling_operand_name(indOffset);
 2623 
 2624   // Number of stack slots consumed by locking an object
 2625   // generate Compile::sync_stack_slots
 2626   // VMRegImpl::slots_per_word = wordSize / stack_slot_size = 8 / 4 = 2
 2627   sync_stack_slots(1 * VMRegImpl::slots_per_word);
 2628 
 2629   // Compiled code's Frame Pointer
 2630   frame_pointer(R2);
 2631 
 2632   // Interpreter stores its frame pointer in a register which is
 2633   // stored to the stack by I2CAdaptors.
 2634   // I2CAdaptors convert from interpreted java to compiled java.
 2635   interpreter_frame_pointer(R8);
 2636 
 2637   // Stack alignment requirement
 2638   stack_alignment(StackAlignmentInBytes); // Alignment size in bytes (128-bit -> 16 bytes)
 2639 
 2640   // Number of outgoing stack slots killed above the out_preserve_stack_slots
 2641   // for calls to C.  Supports the var-args backing area for register parms.
 2642   varargs_C_out_slots_killed(frame::arg_reg_save_area_bytes / BytesPerInt);
 2643 
 2644   // The after-PROLOG location of the return address.  Location of
 2645   // return address specifies a type (REG or STACK) and a number
 2646   // representing the register number (i.e. - use a register name) or
 2647   // stack slot.
 2648   // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
 2649   // Otherwise, it is above the locks and verification slot and alignment word
 2650   // TODO this may well be correct but need to check why that - 2 is there
 2651   // ppc port uses 0 but we definitely need to allow for fixed_slots
 2652   // which folds in the space used for monitors
 2653   return_addr(STACK - 2 +
 2654               align_up((Compile::current()->in_preserve_stack_slots() +
 2655                         Compile::current()->fixed_slots()),
 2656                        stack_alignment_in_slots()));
 2657 
 2658   // Location of compiled Java return values.  Same as C for now.
 2659   return_value
 2660   %{
 2661     assert(ideal_reg >= Op_RegI && ideal_reg <= Op_RegL,
 2662            "only return normal values");
 2663 
 2664     static const int lo[Op_RegL + 1] = { // enum name
 2665       0,                                 // Op_Node
 2666       0,                                 // Op_Set
 2667       R10_num,                           // Op_RegN
 2668       R10_num,                           // Op_RegI
 2669       R10_num,                           // Op_RegP
 2670       F10_num,                           // Op_RegF
 2671       F10_num,                           // Op_RegD
 2672       R10_num                            // Op_RegL
 2673     };
 2674 
 2675     static const int hi[Op_RegL + 1] = { // enum name
 2676       0,                                 // Op_Node
 2677       0,                                 // Op_Set
 2678       OptoReg::Bad,                      // Op_RegN
 2679       OptoReg::Bad,                      // Op_RegI
 2680       R10_H_num,                         // Op_RegP
 2681       OptoReg::Bad,                      // Op_RegF
 2682       F10_H_num,                         // Op_RegD
 2683       R10_H_num                          // Op_RegL
 2684     };
 2685 
 2686     return OptoRegPair(hi[ideal_reg], lo[ideal_reg]);
 2687   %}
 2688 %}
 2689 
 2690 //----------ATTRIBUTES---------------------------------------------------------
 2691 //----------Operand Attributes-------------------------------------------------
 2692 op_attrib op_cost(1);        // Required cost attribute
 2693 
 2694 //----------Instruction Attributes---------------------------------------------
 2695 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
 2696 ins_attrib ins_size(32);        // Required size attribute (in bits)
 2697 ins_attrib ins_short_branch(0); // Required flag: is this instruction
 2698                                 // a non-matching short branch variant
 2699                                 // of some long branch?
 2700 ins_attrib ins_alignment(4);    // Required alignment attribute (must
 2701                                 // be a power of 2) specifies the
 2702                                 // alignment that some part of the
 2703                                 // instruction (not necessarily the
 2704                                 // start) requires.  If > 1, a
 2705                                 // compute_padding() function must be
 2706                                 // provided for the instruction
 2707 
 2708 //----------OPERANDS-----------------------------------------------------------
 2709 // Operand definitions must precede instruction definitions for correct parsing
 2710 // in the ADLC because operands constitute user defined types which are used in
 2711 // instruction definitions.
 2712 
 2713 //----------Simple Operands----------------------------------------------------
 2714 
 2715 // Integer operands 32 bit
 2716 // 32 bit immediate
 2717 operand immI()
 2718 %{
 2719   match(ConI);
 2720 
 2721   op_cost(0);
 2722   format %{ %}
 2723   interface(CONST_INTER);
 2724 %}
 2725 
 2726 // 32 bit zero
 2727 operand immI0()
 2728 %{
 2729   predicate(n->get_int() == 0);
 2730   match(ConI);
 2731 
 2732   op_cost(0);
 2733   format %{ %}
 2734   interface(CONST_INTER);
 2735 %}
 2736 
 2737 // 32 bit unit increment
 2738 operand immI_1()
 2739 %{
 2740   predicate(n->get_int() == 1);
 2741   match(ConI);
 2742 
 2743   op_cost(0);
 2744   format %{ %}
 2745   interface(CONST_INTER);
 2746 %}
 2747 
 2748 // 32 bit unit decrement
 2749 operand immI_M1()
 2750 %{
 2751   predicate(n->get_int() == -1);
 2752   match(ConI);
 2753 
 2754   op_cost(0);
 2755   format %{ %}
 2756   interface(CONST_INTER);
 2757 %}
 2758 
 2759 // Unsigned Integer Immediate:  6-bit int, greater than 32
 2760 operand uimmI6_ge32() %{
 2761   predicate(((unsigned int)(n->get_int()) < 64) && (n->get_int() >= 32));
 2762   match(ConI);
 2763   op_cost(0);
 2764   format %{ %}
 2765   interface(CONST_INTER);
 2766 %}
 2767 
 2768 operand immI_le_4()
 2769 %{
 2770   predicate(n->get_int() <= 4);
 2771   match(ConI);
 2772 
 2773   op_cost(0);
 2774   format %{ %}
 2775   interface(CONST_INTER);
 2776 %}
 2777 
 2778 operand immI_16()
 2779 %{
 2780   predicate(n->get_int() == 16);
 2781   match(ConI);
 2782   op_cost(0);
 2783   format %{ %}
 2784   interface(CONST_INTER);
 2785 %}
 2786 
 2787 operand immI_24()
 2788 %{
 2789   predicate(n->get_int() == 24);
 2790   match(ConI);
 2791   op_cost(0);
 2792   format %{ %}
 2793   interface(CONST_INTER);
 2794 %}
 2795 
 2796 operand immI_31()
 2797 %{
 2798   predicate(n->get_int() == 31);
 2799   match(ConI);
 2800 
 2801   op_cost(0);
 2802   format %{ %}
 2803   interface(CONST_INTER);
 2804 %}
 2805 
 2806 operand immI_63()
 2807 %{
 2808   predicate(n->get_int() == 63);
 2809   match(ConI);
 2810 
 2811   op_cost(0);
 2812   format %{ %}
 2813   interface(CONST_INTER);
 2814 %}
 2815 
 2816 // 32 bit integer valid for add immediate
 2817 operand immIAdd()
 2818 %{
 2819   predicate(Assembler::is_simm12((int64_t)n->get_int()));
 2820   match(ConI);
 2821   op_cost(0);
 2822   format %{ %}
 2823   interface(CONST_INTER);
 2824 %}
 2825 
 2826 // 32 bit integer valid for sub immediate
 2827 operand immISub()
 2828 %{
 2829   predicate(Assembler::is_simm12(-(int64_t)n->get_int()));
 2830   match(ConI);
 2831   op_cost(0);
 2832   format %{ %}
 2833   interface(CONST_INTER);
 2834 %}
 2835 
 2836 // 5 bit signed value.
 2837 operand immI5()
 2838 %{
 2839   predicate(n->get_int() <= 15 && n->get_int() >= -16);
 2840   match(ConI);
 2841 
 2842   op_cost(0);
 2843   format %{ %}
 2844   interface(CONST_INTER);
 2845 %}
 2846 
 2847 // 5 bit signed value (simm5)
 2848 operand immL5()
 2849 %{
 2850   predicate(n->get_long() <= 15 && n->get_long() >= -16);
 2851   match(ConL);
 2852 
 2853   op_cost(0);
 2854   format %{ %}
 2855   interface(CONST_INTER);
 2856 %}
 2857 
 2858 // Integer operands 64 bit
 2859 // 64 bit immediate
 2860 operand immL()
 2861 %{
 2862   match(ConL);
 2863 
 2864   op_cost(0);
 2865   format %{ %}
 2866   interface(CONST_INTER);
 2867 %}
 2868 
 2869 // 64 bit zero
 2870 operand immL0()
 2871 %{
 2872   predicate(n->get_long() == 0);
 2873   match(ConL);
 2874 
 2875   op_cost(0);
 2876   format %{ %}
 2877   interface(CONST_INTER);
 2878 %}
 2879 
 2880 // Pointer operands
 2881 // Pointer Immediate
 2882 operand immP()
 2883 %{
 2884   match(ConP);
 2885 
 2886   op_cost(0);
 2887   format %{ %}
 2888   interface(CONST_INTER);
 2889 %}
 2890 
 2891 // Null Pointer Immediate
 2892 operand immP0()
 2893 %{
 2894   predicate(n->get_ptr() == 0);
 2895   match(ConP);
 2896 
 2897   op_cost(0);
 2898   format %{ %}
 2899   interface(CONST_INTER);
 2900 %}
 2901 
 2902 // Pointer Immediate One
 2903 // this is used in object initialization (initial object header)
 2904 operand immP_1()
 2905 %{
 2906   predicate(n->get_ptr() == 1);
 2907   match(ConP);
 2908 
 2909   op_cost(0);
 2910   format %{ %}
 2911   interface(CONST_INTER);
 2912 %}
 2913 
 2914 // Card Table Byte Map Base
 2915 operand immByteMapBase()
 2916 %{
 2917   // Get base of card map
 2918   predicate(BarrierSet::barrier_set()->is_a(BarrierSet::CardTableBarrierSet) &&
 2919             (CardTable::CardValue*)n->get_ptr() ==
 2920              ((CardTableBarrierSet*)(BarrierSet::barrier_set()))->card_table()->byte_map_base());
 2921   match(ConP);
 2922 
 2923   op_cost(0);
 2924   format %{ %}
 2925   interface(CONST_INTER);
 2926 %}
 2927 
 2928 // Int Immediate: low 16-bit mask
 2929 operand immI_16bits()
 2930 %{
 2931   predicate(n->get_int() == 0xFFFF);
 2932   match(ConI);
 2933   op_cost(0);
 2934   format %{ %}
 2935   interface(CONST_INTER);
 2936 %}
 2937 
 2938 operand immIpowerOf2() %{
 2939   predicate(is_power_of_2((juint)(n->get_int())));
 2940   match(ConI);
 2941   op_cost(0);
 2942   format %{ %}
 2943   interface(CONST_INTER);
 2944 %}
 2945 
 2946 // Long Immediate: low 32-bit mask
 2947 operand immL_32bits()
 2948 %{
 2949   predicate(n->get_long() == 0xFFFFFFFFL);
 2950   match(ConL);
 2951   op_cost(0);
 2952   format %{ %}
 2953   interface(CONST_INTER);
 2954 %}
 2955 
 2956 // 64 bit unit decrement
 2957 operand immL_M1()
 2958 %{
 2959   predicate(n->get_long() == -1);
 2960   match(ConL);
 2961 
 2962   op_cost(0);
 2963   format %{ %}
 2964   interface(CONST_INTER);
 2965 %}
 2966 
 2967 
 2968 // 64 bit integer valid for add immediate
 2969 operand immLAdd()
 2970 %{
 2971   predicate(Assembler::is_simm12(n->get_long()));
 2972   match(ConL);
 2973   op_cost(0);
 2974   format %{ %}
 2975   interface(CONST_INTER);
 2976 %}
 2977 
 2978 // 64 bit integer valid for sub immediate
 2979 operand immLSub()
 2980 %{
 2981   predicate(Assembler::is_simm12(-(n->get_long())));
 2982   match(ConL);
 2983   op_cost(0);
 2984   format %{ %}
 2985   interface(CONST_INTER);
 2986 %}
 2987 
 2988 // Narrow pointer operands
 2989 // Narrow Pointer Immediate
 2990 operand immN()
 2991 %{
 2992   match(ConN);
 2993 
 2994   op_cost(0);
 2995   format %{ %}
 2996   interface(CONST_INTER);
 2997 %}
 2998 
 2999 // Narrow Null Pointer Immediate
 3000 operand immN0()
 3001 %{
 3002   predicate(n->get_narrowcon() == 0);
 3003   match(ConN);
 3004 
 3005   op_cost(0);
 3006   format %{ %}
 3007   interface(CONST_INTER);
 3008 %}
 3009 
 3010 operand immNKlass()
 3011 %{
 3012   match(ConNKlass);
 3013 
 3014   op_cost(0);
 3015   format %{ %}
 3016   interface(CONST_INTER);
 3017 %}
 3018 
 3019 // Float and Double operands
 3020 // Double Immediate
 3021 operand immD()
 3022 %{
 3023   match(ConD);
 3024   op_cost(0);
 3025   format %{ %}
 3026   interface(CONST_INTER);
 3027 %}
 3028 
 3029 // Double Immediate: +0.0d
 3030 operand immD0()
 3031 %{
 3032   predicate(jlong_cast(n->getd()) == 0);
 3033   match(ConD);
 3034 
 3035   op_cost(0);
 3036   format %{ %}
 3037   interface(CONST_INTER);
 3038 %}
 3039 
 3040 // Float Immediate
 3041 operand immF()
 3042 %{
 3043   match(ConF);
 3044   op_cost(0);
 3045   format %{ %}
 3046   interface(CONST_INTER);
 3047 %}
 3048 
 3049 // Float Immediate: +0.0f.
 3050 operand immF0()
 3051 %{
 3052   predicate(jint_cast(n->getf()) == 0);
 3053   match(ConF);
 3054 
 3055   op_cost(0);
 3056   format %{ %}
 3057   interface(CONST_INTER);
 3058 %}
 3059 
 3060 operand immIOffset()
 3061 %{
 3062   predicate(Assembler::is_simm12(n->get_int()));
 3063   match(ConI);
 3064   op_cost(0);
 3065   format %{ %}
 3066   interface(CONST_INTER);
 3067 %}
 3068 
 3069 operand immLOffset()
 3070 %{
 3071   predicate(Assembler::is_simm12(n->get_long()));
 3072   match(ConL);
 3073   op_cost(0);
 3074   format %{ %}
 3075   interface(CONST_INTER);
 3076 %}
 3077 
 3078 // Scale values
 3079 operand immIScale()
 3080 %{
 3081   predicate(1 <= n->get_int() && (n->get_int() <= 3));
 3082   match(ConI);
 3083 
 3084   op_cost(0);
 3085   format %{ %}
 3086   interface(CONST_INTER);
 3087 %}
 3088 
 3089 // Integer 32 bit Register Operands
 3090 operand iRegI()
 3091 %{
 3092   constraint(ALLOC_IN_RC(any_reg32));
 3093   match(RegI);
 3094   match(iRegINoSp);
 3095   op_cost(0);
 3096   format %{ %}
 3097   interface(REG_INTER);
 3098 %}
 3099 
 3100 // Integer 32 bit Register not Special
 3101 operand iRegINoSp()
 3102 %{
 3103   constraint(ALLOC_IN_RC(no_special_reg32));
 3104   match(RegI);
 3105   op_cost(0);
 3106   format %{ %}
 3107   interface(REG_INTER);
 3108 %}
 3109 
 3110 // Register R10 only
 3111 operand iRegI_R10()
 3112 %{
 3113   constraint(ALLOC_IN_RC(int_r10_reg));
 3114   match(RegI);
 3115   match(iRegINoSp);
 3116   op_cost(0);
 3117   format %{ %}
 3118   interface(REG_INTER);
 3119 %}
 3120 
 3121 // Register R12 only
 3122 operand iRegI_R12()
 3123 %{
 3124   constraint(ALLOC_IN_RC(int_r12_reg));
 3125   match(RegI);
 3126   match(iRegINoSp);
 3127   op_cost(0);
 3128   format %{ %}
 3129   interface(REG_INTER);
 3130 %}
 3131 
 3132 // Register R13 only
 3133 operand iRegI_R13()
 3134 %{
 3135   constraint(ALLOC_IN_RC(int_r13_reg));
 3136   match(RegI);
 3137   match(iRegINoSp);
 3138   op_cost(0);
 3139   format %{ %}
 3140   interface(REG_INTER);
 3141 %}
 3142 
 3143 // Register R14 only
 3144 operand iRegI_R14()
 3145 %{
 3146   constraint(ALLOC_IN_RC(int_r14_reg));
 3147   match(RegI);
 3148   match(iRegINoSp);
 3149   op_cost(0);
 3150   format %{ %}
 3151   interface(REG_INTER);
 3152 %}
 3153 
 3154 // Integer 64 bit Register Operands
 3155 operand iRegL()
 3156 %{
 3157   constraint(ALLOC_IN_RC(any_reg));
 3158   match(RegL);
 3159   match(iRegLNoSp);
 3160   op_cost(0);
 3161   format %{ %}
 3162   interface(REG_INTER);
 3163 %}
 3164 
 3165 // Integer 64 bit Register not Special
 3166 operand iRegLNoSp()
 3167 %{
 3168   constraint(ALLOC_IN_RC(no_special_reg));
 3169   match(RegL);
 3170   match(iRegL_R10);
 3171   format %{ %}
 3172   interface(REG_INTER);
 3173 %}
 3174 
 3175 // Long 64 bit Register R29 only
 3176 operand iRegL_R29()
 3177 %{
 3178   constraint(ALLOC_IN_RC(r29_reg));
 3179   match(RegL);
 3180   match(iRegLNoSp);
 3181   op_cost(0);
 3182   format %{ %}
 3183   interface(REG_INTER);
 3184 %}
 3185 
 3186 // Long 64 bit Register R30 only
 3187 operand iRegL_R30()
 3188 %{
 3189   constraint(ALLOC_IN_RC(r30_reg));
 3190   match(RegL);
 3191   match(iRegLNoSp);
 3192   op_cost(0);
 3193   format %{ %}
 3194   interface(REG_INTER);
 3195 %}
 3196 
 3197 // Pointer Register Operands
 3198 // Pointer Register
 3199 operand iRegP()
 3200 %{
 3201   constraint(ALLOC_IN_RC(ptr_reg));
 3202   match(RegP);
 3203   match(iRegPNoSp);
 3204   match(iRegP_R10);
 3205   match(iRegP_R15);
 3206   match(javaThread_RegP);
 3207   op_cost(0);
 3208   format %{ %}
 3209   interface(REG_INTER);
 3210 %}
 3211 
 3212 // Pointer 64 bit Register not Special
 3213 operand iRegPNoSp()
 3214 %{
 3215   constraint(ALLOC_IN_RC(no_special_ptr_reg));
 3216   match(RegP);
 3217   op_cost(0);
 3218   format %{ %}
 3219   interface(REG_INTER);
 3220 %}
 3221 
 3222 // This operand is not allowed to use fp even if
 3223 // fp is not used to hold the frame pointer.
 3224 operand iRegPNoSpNoFp()
 3225 %{
 3226   constraint(ALLOC_IN_RC(no_special_no_fp_ptr_reg));
 3227   match(RegP);
 3228   match(iRegPNoSp);
 3229   op_cost(0);
 3230   format %{ %}
 3231   interface(REG_INTER);
 3232 %}
 3233 
 3234 operand iRegP_R10()
 3235 %{
 3236   constraint(ALLOC_IN_RC(r10_reg));
 3237   match(RegP);
 3238   // match(iRegP);
 3239   match(iRegPNoSp);
 3240   op_cost(0);
 3241   format %{ %}
 3242   interface(REG_INTER);
 3243 %}
 3244 
 3245 // Pointer 64 bit Register R11 only
 3246 operand iRegP_R11()
 3247 %{
 3248   constraint(ALLOC_IN_RC(r11_reg));
 3249   match(RegP);
 3250   match(iRegPNoSp);
 3251   op_cost(0);
 3252   format %{ %}
 3253   interface(REG_INTER);
 3254 %}
 3255 
 3256 operand iRegP_R12()
 3257 %{
 3258   constraint(ALLOC_IN_RC(r12_reg));
 3259   match(RegP);
 3260   // match(iRegP);
 3261   match(iRegPNoSp);
 3262   op_cost(0);
 3263   format %{ %}
 3264   interface(REG_INTER);
 3265 %}
 3266 
 3267 // Pointer 64 bit Register R13 only
 3268 operand iRegP_R13()
 3269 %{
 3270   constraint(ALLOC_IN_RC(r13_reg));
 3271   match(RegP);
 3272   match(iRegPNoSp);
 3273   op_cost(0);
 3274   format %{ %}
 3275   interface(REG_INTER);
 3276 %}
 3277 
 3278 operand iRegP_R14()
 3279 %{
 3280   constraint(ALLOC_IN_RC(r14_reg));
 3281   match(RegP);
 3282   // match(iRegP);
 3283   match(iRegPNoSp);
 3284   op_cost(0);
 3285   format %{ %}
 3286   interface(REG_INTER);
 3287 %}
 3288 
 3289 operand iRegP_R15()
 3290 %{
 3291   constraint(ALLOC_IN_RC(r15_reg));
 3292   match(RegP);
 3293   // match(iRegP);
 3294   match(iRegPNoSp);
 3295   op_cost(0);
 3296   format %{ %}
 3297   interface(REG_INTER);
 3298 %}
 3299 
 3300 operand iRegP_R16()
 3301 %{
 3302   constraint(ALLOC_IN_RC(r16_reg));
 3303   match(RegP);
 3304   match(iRegPNoSp);
 3305   op_cost(0);
 3306   format %{ %}
 3307   interface(REG_INTER);
 3308 %}
 3309 
 3310 // Pointer 64 bit Register R28 only
 3311 operand iRegP_R28()
 3312 %{
 3313   constraint(ALLOC_IN_RC(r28_reg));
 3314   match(RegP);
 3315   match(iRegPNoSp);
 3316   op_cost(0);
 3317   format %{ %}
 3318   interface(REG_INTER);
 3319 %}
 3320 
 3321 // Pointer 64 bit Register R30 only
 3322 operand iRegP_R30()
 3323 %{
 3324   constraint(ALLOC_IN_RC(r30_reg));
 3325   match(RegP);
 3326   match(iRegPNoSp);
 3327   op_cost(0);
 3328   format %{ %}
 3329   interface(REG_INTER);
 3330 %}
 3331 
 3332 // Pointer 64 bit Register R31 only
 3333 operand iRegP_R31()
 3334 %{
 3335   constraint(ALLOC_IN_RC(r31_reg));
 3336   match(RegP);
 3337   match(iRegPNoSp);
 3338   op_cost(0);
 3339   format %{ %}
 3340   interface(REG_INTER);
 3341 %}
 3342 
 3343 // Pointer Register Operands
 3344 // Narrow Pointer Register
 3345 operand iRegN()
 3346 %{
 3347   constraint(ALLOC_IN_RC(any_reg32));
 3348   match(RegN);
 3349   match(iRegNNoSp);
 3350   op_cost(0);
 3351   format %{ %}
 3352   interface(REG_INTER);
 3353 %}
 3354 
 3355 // Integer 64 bit Register not Special
 3356 operand iRegNNoSp()
 3357 %{
 3358   constraint(ALLOC_IN_RC(no_special_reg32));
 3359   match(RegN);
 3360   op_cost(0);
 3361   format %{ %}
 3362   interface(REG_INTER);
 3363 %}
 3364 
 3365 // Long 64 bit Register R10 only
 3366 operand iRegL_R10()
 3367 %{
 3368   constraint(ALLOC_IN_RC(r10_reg));
 3369   match(RegL);
 3370   match(iRegLNoSp);
 3371   op_cost(0);
 3372   format %{ %}
 3373   interface(REG_INTER);
 3374 %}
 3375 
 3376 // Float Register
 3377 // Float register operands
 3378 operand fRegF()
 3379 %{
 3380   constraint(ALLOC_IN_RC(float_reg));
 3381   match(RegF);
 3382 
 3383   op_cost(0);
 3384   format %{ %}
 3385   interface(REG_INTER);
 3386 %}
 3387 
 3388 // Double Register
 3389 // Double register operands
 3390 operand fRegD()
 3391 %{
 3392   constraint(ALLOC_IN_RC(double_reg));
 3393   match(RegD);
 3394 
 3395   op_cost(0);
 3396   format %{ %}
 3397   interface(REG_INTER);
 3398 %}
 3399 
 3400 // Generic vector class. This will be used for
 3401 // all vector operands.
 3402 operand vReg()
 3403 %{
 3404   constraint(ALLOC_IN_RC(vectora_reg));
 3405   match(VecA);
 3406   op_cost(0);
 3407   format %{ %}
 3408   interface(REG_INTER);
 3409 %}
 3410 
 3411 operand vReg_V1()
 3412 %{
 3413   constraint(ALLOC_IN_RC(v1_reg));
 3414   match(VecA);
 3415   match(vReg);
 3416   op_cost(0);
 3417   format %{ %}
 3418   interface(REG_INTER);
 3419 %}
 3420 
 3421 operand vReg_V2()
 3422 %{
 3423   constraint(ALLOC_IN_RC(v2_reg));
 3424   match(VecA);
 3425   match(vReg);
 3426   op_cost(0);
 3427   format %{ %}
 3428   interface(REG_INTER);
 3429 %}
 3430 
 3431 operand vReg_V3()
 3432 %{
 3433   constraint(ALLOC_IN_RC(v3_reg));
 3434   match(VecA);
 3435   match(vReg);
 3436   op_cost(0);
 3437   format %{ %}
 3438   interface(REG_INTER);
 3439 %}
 3440 
 3441 operand vReg_V4()
 3442 %{
 3443   constraint(ALLOC_IN_RC(v4_reg));
 3444   match(VecA);
 3445   match(vReg);
 3446   op_cost(0);
 3447   format %{ %}
 3448   interface(REG_INTER);
 3449 %}
 3450 
 3451 operand vReg_V5()
 3452 %{
 3453   constraint(ALLOC_IN_RC(v5_reg));
 3454   match(VecA);
 3455   match(vReg);
 3456   op_cost(0);
 3457   format %{ %}
 3458   interface(REG_INTER);
 3459 %}
 3460 
 3461 operand vReg_V6()
 3462 %{
 3463   constraint(ALLOC_IN_RC(v6_reg));
 3464   match(VecA);
 3465   match(vReg);
 3466   op_cost(0);
 3467   format %{ %}
 3468   interface(REG_INTER);
 3469 %}
 3470 
 3471 operand vReg_V7()
 3472 %{
 3473   constraint(ALLOC_IN_RC(v7_reg));
 3474   match(VecA);
 3475   match(vReg);
 3476   op_cost(0);
 3477   format %{ %}
 3478   interface(REG_INTER);
 3479 %}
 3480 
 3481 operand vReg_V8()
 3482 %{
 3483   constraint(ALLOC_IN_RC(v8_reg));
 3484   match(VecA);
 3485   match(vReg);
 3486   op_cost(0);
 3487   format %{ %}
 3488   interface(REG_INTER);
 3489 %}
 3490 
 3491 operand vReg_V9()
 3492 %{
 3493   constraint(ALLOC_IN_RC(v9_reg));
 3494   match(VecA);
 3495   match(vReg);
 3496   op_cost(0);
 3497   format %{ %}
 3498   interface(REG_INTER);
 3499 %}
 3500 
 3501 operand vReg_V10()
 3502 %{
 3503   constraint(ALLOC_IN_RC(v10_reg));
 3504   match(VecA);
 3505   match(vReg);
 3506   op_cost(0);
 3507   format %{ %}
 3508   interface(REG_INTER);
 3509 %}
 3510 
 3511 operand vReg_V11()
 3512 %{
 3513   constraint(ALLOC_IN_RC(v11_reg));
 3514   match(VecA);
 3515   match(vReg);
 3516   op_cost(0);
 3517   format %{ %}
 3518   interface(REG_INTER);
 3519 %}
 3520 
 3521 operand vRegMask()
 3522 %{
 3523   constraint(ALLOC_IN_RC(vmask_reg));
 3524   match(RegVectMask);
 3525   match(vRegMask_V0);
 3526   op_cost(0);
 3527   format %{ %}
 3528   interface(REG_INTER);
 3529 %}
 3530 
 3531 // The mask value used to control execution of a masked
 3532 // vector instruction is always supplied by vector register v0.
 3533 operand vRegMask_V0()
 3534 %{
 3535   constraint(ALLOC_IN_RC(vmask_reg_v0));
 3536   match(RegVectMask);
 3537   match(vRegMask);
 3538   op_cost(0);
 3539   format %{ %}
 3540   interface(REG_INTER);
 3541 %}
 3542 
 3543 // Java Thread Register
 3544 operand javaThread_RegP(iRegP reg)
 3545 %{
 3546   constraint(ALLOC_IN_RC(java_thread_reg)); // java_thread_reg
 3547   match(reg);
 3548   op_cost(0);
 3549   format %{ %}
 3550   interface(REG_INTER);
 3551 %}
 3552 
 3553 //----------Memory Operands----------------------------------------------------
 3554 // RISCV has only base_plus_offset and literal address mode, so no need to use
 3555 // index and scale. Here set index as 0xffffffff and scale as 0x0.
 3556 operand indirect(iRegP reg)
 3557 %{
 3558   constraint(ALLOC_IN_RC(ptr_reg));
 3559   match(reg);
 3560   op_cost(0);
 3561   format %{ "[$reg]" %}
 3562   interface(MEMORY_INTER) %{
 3563     base($reg);
 3564     index(0xffffffff);
 3565     scale(0x0);
 3566     disp(0x0);
 3567   %}
 3568 %}
 3569 
 3570 operand indOffI(iRegP reg, immIOffset off)
 3571 %{
 3572   constraint(ALLOC_IN_RC(ptr_reg));
 3573   match(AddP reg off);
 3574   op_cost(0);
 3575   format %{ "[$reg, $off]" %}
 3576   interface(MEMORY_INTER) %{
 3577     base($reg);
 3578     index(0xffffffff);
 3579     scale(0x0);
 3580     disp($off);
 3581   %}
 3582 %}
 3583 
 3584 operand indOffL(iRegP reg, immLOffset off)
 3585 %{
 3586   constraint(ALLOC_IN_RC(ptr_reg));
 3587   match(AddP reg off);
 3588   op_cost(0);
 3589   format %{ "[$reg, $off]" %}
 3590   interface(MEMORY_INTER) %{
 3591     base($reg);
 3592     index(0xffffffff);
 3593     scale(0x0);
 3594     disp($off);
 3595   %}
 3596 %}
 3597 
 3598 operand indirectN(iRegN reg)
 3599 %{
 3600   predicate(CompressedOops::shift() == 0);
 3601   constraint(ALLOC_IN_RC(ptr_reg));
 3602   match(DecodeN reg);
 3603   op_cost(0);
 3604   format %{ "[$reg]\t# narrow" %}
 3605   interface(MEMORY_INTER) %{
 3606     base($reg);
 3607     index(0xffffffff);
 3608     scale(0x0);
 3609     disp(0x0);
 3610   %}
 3611 %}
 3612 
 3613 operand indOffIN(iRegN reg, immIOffset off)
 3614 %{
 3615   predicate(CompressedOops::shift() == 0);
 3616   constraint(ALLOC_IN_RC(ptr_reg));
 3617   match(AddP (DecodeN reg) off);
 3618   op_cost(0);
 3619   format %{ "[$reg, $off]\t# narrow" %}
 3620   interface(MEMORY_INTER) %{
 3621     base($reg);
 3622     index(0xffffffff);
 3623     scale(0x0);
 3624     disp($off);
 3625   %}
 3626 %}
 3627 
 3628 operand indOffLN(iRegN reg, immLOffset off)
 3629 %{
 3630   predicate(CompressedOops::shift() == 0);
 3631   constraint(ALLOC_IN_RC(ptr_reg));
 3632   match(AddP (DecodeN reg) off);
 3633   op_cost(0);
 3634   format %{ "[$reg, $off]\t# narrow" %}
 3635   interface(MEMORY_INTER) %{
 3636     base($reg);
 3637     index(0xffffffff);
 3638     scale(0x0);
 3639     disp($off);
 3640   %}
 3641 %}
 3642 
 3643 //----------Special Memory Operands--------------------------------------------
 3644 // Stack Slot Operand - This operand is used for loading and storing temporary
 3645 //                      values on the stack where a match requires a value to
 3646 //                      flow through memory.
 3647 operand stackSlotI(sRegI reg)
 3648 %{
 3649   constraint(ALLOC_IN_RC(stack_slots));
 3650   // No match rule because this operand is only generated in matching
 3651   // match(RegI);
 3652   format %{ "[$reg]" %}
 3653   interface(MEMORY_INTER) %{
 3654     base(0x02);  // RSP
 3655     index(0xffffffff);  // No Index
 3656     scale(0x0);  // No Scale
 3657     disp($reg);  // Stack Offset
 3658   %}
 3659 %}
 3660 
 3661 operand stackSlotF(sRegF reg)
 3662 %{
 3663   constraint(ALLOC_IN_RC(stack_slots));
 3664   // No match rule because this operand is only generated in matching
 3665   // match(RegF);
 3666   format %{ "[$reg]" %}
 3667   interface(MEMORY_INTER) %{
 3668     base(0x02);  // RSP
 3669     index(0xffffffff);  // No Index
 3670     scale(0x0);  // No Scale
 3671     disp($reg);  // Stack Offset
 3672   %}
 3673 %}
 3674 
 3675 operand stackSlotD(sRegD reg)
 3676 %{
 3677   constraint(ALLOC_IN_RC(stack_slots));
 3678   // No match rule because this operand is only generated in matching
 3679   // match(RegD);
 3680   format %{ "[$reg]" %}
 3681   interface(MEMORY_INTER) %{
 3682     base(0x02);  // RSP
 3683     index(0xffffffff);  // No Index
 3684     scale(0x0);  // No Scale
 3685     disp($reg);  // Stack Offset
 3686   %}
 3687 %}
 3688 
 3689 operand stackSlotL(sRegL reg)
 3690 %{
 3691   constraint(ALLOC_IN_RC(stack_slots));
 3692   // No match rule because this operand is only generated in matching
 3693   // match(RegL);
 3694   format %{ "[$reg]" %}
 3695   interface(MEMORY_INTER) %{
 3696     base(0x02);  // RSP
 3697     index(0xffffffff);  // No Index
 3698     scale(0x0);  // No Scale
 3699     disp($reg);  // Stack Offset
 3700   %}
 3701 %}
 3702 
 3703 // Special operand allowing long args to int ops to be truncated for free
 3704 
 3705 operand iRegL2I(iRegL reg) %{
 3706 
 3707   op_cost(0);
 3708 
 3709   match(ConvL2I reg);
 3710 
 3711   format %{ "l2i($reg)" %}
 3712 
 3713   interface(REG_INTER)
 3714 %}
 3715 
 3716 
 3717 // Comparison Operands
 3718 // NOTE: Label is a predefined operand which should not be redefined in
 3719 //       the AD file. It is generically handled within the ADLC.
 3720 
 3721 //----------Conditional Branch Operands----------------------------------------
 3722 // Comparison Op  - This is the operation of the comparison, and is limited to
 3723 //                  the following set of codes:
 3724 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
 3725 //
 3726 // Other attributes of the comparison, such as unsignedness, are specified
 3727 // by the comparison instruction that sets a condition code flags register.
 3728 // That result is represented by a flags operand whose subtype is appropriate
 3729 // to the unsignedness (etc.) of the comparison.
 3730 //
 3731 // Later, the instruction which matches both the Comparison Op (a Bool) and
 3732 // the flags (produced by the Cmp) specifies the coding of the comparison op
 3733 // by matching a specific subtype of Bool operand below, such as cmpOpU.
 3734 
 3735 
 3736 // used for signed integral comparisons and fp comparisons
 3737 operand cmpOp()
 3738 %{
 3739   match(Bool);
 3740 
 3741   format %{ "" %}
 3742 
 3743   // the values in interface derives from struct BoolTest::mask
 3744   interface(COND_INTER) %{
 3745     equal(0x0, "eq");
 3746     greater(0x1, "gt");
 3747     overflow(0x2, "overflow");
 3748     less(0x3, "lt");
 3749     not_equal(0x4, "ne");
 3750     less_equal(0x5, "le");
 3751     no_overflow(0x6, "no_overflow");
 3752     greater_equal(0x7, "ge");
 3753   %}
 3754 %}
 3755 
 3756 // used for unsigned integral comparisons
 3757 operand cmpOpU()
 3758 %{
 3759   match(Bool);
 3760 
 3761   format %{ "" %}
 3762   // the values in interface derives from struct BoolTest::mask
 3763   interface(COND_INTER) %{
 3764     equal(0x0, "eq");
 3765     greater(0x1, "gtu");
 3766     overflow(0x2, "overflow");
 3767     less(0x3, "ltu");
 3768     not_equal(0x4, "ne");
 3769     less_equal(0x5, "leu");
 3770     no_overflow(0x6, "no_overflow");
 3771     greater_equal(0x7, "geu");
 3772   %}
 3773 %}
 3774 
 3775 // used for certain integral comparisons which can be
 3776 // converted to bxx instructions
 3777 operand cmpOpEqNe()
 3778 %{
 3779   match(Bool);
 3780   op_cost(0);
 3781   predicate(n->as_Bool()->_test._test == BoolTest::ne ||
 3782             n->as_Bool()->_test._test == BoolTest::eq);
 3783 
 3784   format %{ "" %}
 3785   interface(COND_INTER) %{
 3786     equal(0x0, "eq");
 3787     greater(0x1, "gt");
 3788     overflow(0x2, "overflow");
 3789     less(0x3, "lt");
 3790     not_equal(0x4, "ne");
 3791     less_equal(0x5, "le");
 3792     no_overflow(0x6, "no_overflow");
 3793     greater_equal(0x7, "ge");
 3794   %}
 3795 %}
 3796 
 3797 operand cmpOpULtGe()
 3798 %{
 3799   match(Bool);
 3800   op_cost(0);
 3801   predicate(n->as_Bool()->_test._test == BoolTest::lt ||
 3802             n->as_Bool()->_test._test == BoolTest::ge);
 3803 
 3804   format %{ "" %}
 3805   interface(COND_INTER) %{
 3806     equal(0x0, "eq");
 3807     greater(0x1, "gtu");
 3808     overflow(0x2, "overflow");
 3809     less(0x3, "ltu");
 3810     not_equal(0x4, "ne");
 3811     less_equal(0x5, "leu");
 3812     no_overflow(0x6, "no_overflow");
 3813     greater_equal(0x7, "geu");
 3814   %}
 3815 %}
 3816 
 3817 operand cmpOpUEqNeLeGt()
 3818 %{
 3819   match(Bool);
 3820   op_cost(0);
 3821   predicate(n->as_Bool()->_test._test == BoolTest::ne ||
 3822             n->as_Bool()->_test._test == BoolTest::eq ||
 3823             n->as_Bool()->_test._test == BoolTest::le ||
 3824             n->as_Bool()->_test._test == BoolTest::gt);
 3825 
 3826   format %{ "" %}
 3827   interface(COND_INTER) %{
 3828     equal(0x0, "eq");
 3829     greater(0x1, "gtu");
 3830     overflow(0x2, "overflow");
 3831     less(0x3, "ltu");
 3832     not_equal(0x4, "ne");
 3833     less_equal(0x5, "leu");
 3834     no_overflow(0x6, "no_overflow");
 3835     greater_equal(0x7, "geu");
 3836   %}
 3837 %}
 3838 
 3839 
 3840 // Flags register, used as output of compare logic
 3841 operand rFlagsReg()
 3842 %{
 3843   constraint(ALLOC_IN_RC(reg_flags));
 3844   match(RegFlags);
 3845 
 3846   op_cost(0);
 3847   format %{ "RFLAGS" %}
 3848   interface(REG_INTER);
 3849 %}
 3850 
 3851 // Special Registers
 3852 
 3853 // Method Register
 3854 operand inline_cache_RegP(iRegP reg)
 3855 %{
 3856   constraint(ALLOC_IN_RC(method_reg)); // inline_cache_reg
 3857   match(reg);
 3858   match(iRegPNoSp);
 3859   op_cost(0);
 3860   format %{ %}
 3861   interface(REG_INTER);
 3862 %}
 3863 
 3864 //----------OPERAND CLASSES----------------------------------------------------
 3865 // Operand Classes are groups of operands that are used as to simplify
 3866 // instruction definitions by not requiring the AD writer to specify
 3867 // separate instructions for every form of operand when the
 3868 // instruction accepts multiple operand types with the same basic
 3869 // encoding and format. The classic case of this is memory operands.
 3870 
 3871 // memory is used to define read/write location for load/store
 3872 // instruction defs. we can turn a memory op into an Address
 3873 
 3874 opclass memory(indirect, indOffI, indOffL, indirectN, indOffIN, indOffLN);
 3875 
 3876 // iRegIorL2I is used for src inputs in rules for 32 bit int (I)
 3877 // operations. it allows the src to be either an iRegI or a (ConvL2I
 3878 // iRegL). in the latter case the l2i normally planted for a ConvL2I
 3879 // can be elided because the 32-bit instruction will just employ the
 3880 // lower 32 bits anyway.
 3881 //
 3882 // n.b. this does not elide all L2I conversions. if the truncated
 3883 // value is consumed by more than one operation then the ConvL2I
 3884 // cannot be bundled into the consuming nodes so an l2i gets planted
 3885 // (actually an addiw $dst, $src, 0) and the downstream instructions
 3886 // consume the result of the L2I as an iRegI input. That's a shame since
 3887 // the addiw is actually redundant but its not too costly.
 3888 
 3889 opclass iRegIorL2I(iRegI, iRegL2I);
 3890 opclass iRegIorL(iRegI, iRegL);
 3891 opclass iRegNorP(iRegN, iRegP);
 3892 opclass iRegILNP(iRegI, iRegL, iRegN, iRegP);
 3893 opclass iRegILNPNoSp(iRegINoSp, iRegLNoSp, iRegNNoSp, iRegPNoSp);
 3894 opclass immIorL(immI, immL);
 3895 
 3896 //----------PIPELINE-----------------------------------------------------------
 3897 // Rules which define the behavior of the target architectures pipeline.
 3898 
 3899 // For specific pipelines, e.g. generic RISC-V, define the stages of that pipeline
 3900 //pipe_desc(ID, EX, MEM, WR);
 3901 #define ID   S0
 3902 #define EX   S1
 3903 #define MEM  S2
 3904 #define WR   S3
 3905 
 3906 // Integer ALU reg operation
 3907 pipeline %{
 3908 
 3909 attributes %{
 3910   // RISC-V instructions are of fixed length
 3911   fixed_size_instructions;           // Fixed size instructions TODO does
 3912   max_instructions_per_bundle = 2;   // Generic RISC-V 1, Sifive Series 7 2
 3913   // RISC-V instructions come in 32-bit word units
 3914   instruction_unit_size = 4;         // An instruction is 4 bytes long
 3915   instruction_fetch_unit_size = 64;  // The processor fetches one line
 3916   instruction_fetch_units = 1;       // of 64 bytes
 3917 
 3918   // List of nop instructions
 3919   nops( MachNop );
 3920 %}
 3921 
 3922 // We don't use an actual pipeline model so don't care about resources
 3923 // or description. we do use pipeline classes to introduce fixed
 3924 // latencies
 3925 
 3926 //----------RESOURCES----------------------------------------------------------
 3927 // Resources are the functional units available to the machine
 3928 
 3929 // Generic RISC-V pipeline
 3930 // 1 decoder
 3931 // 1 instruction decoded per cycle
 3932 // 1 load/store ops per cycle, 1 branch, 1 FPU
 3933 // 1 mul, 1 div
 3934 
 3935 resources ( DECODE,
 3936             ALU,
 3937             MUL,
 3938             DIV,
 3939             BRANCH,
 3940             LDST,
 3941             FPU);
 3942 
 3943 //----------PIPELINE DESCRIPTION-----------------------------------------------
 3944 // Pipeline Description specifies the stages in the machine's pipeline
 3945 
 3946 // Define the pipeline as a generic 6 stage pipeline
 3947 pipe_desc(S0, S1, S2, S3, S4, S5);
 3948 
 3949 //----------PIPELINE CLASSES---------------------------------------------------
 3950 // Pipeline Classes describe the stages in which input and output are
 3951 // referenced by the hardware pipeline.
 3952 
 3953 pipe_class fp_dop_reg_reg_s(fRegF dst, fRegF src1, fRegF src2)
 3954 %{
 3955   single_instruction;
 3956   src1   : S1(read);
 3957   src2   : S2(read);
 3958   dst    : S5(write);
 3959   DECODE : ID;
 3960   FPU    : S5;
 3961 %}
 3962 
 3963 pipe_class fp_dop_reg_reg_d(fRegD dst, fRegD src1, fRegD src2)
 3964 %{
 3965   src1   : S1(read);
 3966   src2   : S2(read);
 3967   dst    : S5(write);
 3968   DECODE : ID;
 3969   FPU    : S5;
 3970 %}
 3971 
 3972 pipe_class fp_uop_s(fRegF dst, fRegF src)
 3973 %{
 3974   single_instruction;
 3975   src    : S1(read);
 3976   dst    : S5(write);
 3977   DECODE : ID;
 3978   FPU    : S5;
 3979 %}
 3980 
 3981 pipe_class fp_uop_d(fRegD dst, fRegD src)
 3982 %{
 3983   single_instruction;
 3984   src    : S1(read);
 3985   dst    : S5(write);
 3986   DECODE : ID;
 3987   FPU    : S5;
 3988 %}
 3989 
 3990 pipe_class fp_d2f(fRegF dst, fRegD src)
 3991 %{
 3992   single_instruction;
 3993   src    : S1(read);
 3994   dst    : S5(write);
 3995   DECODE : ID;
 3996   FPU    : S5;
 3997 %}
 3998 
 3999 pipe_class fp_f2d(fRegD dst, fRegF src)
 4000 %{
 4001   single_instruction;
 4002   src    : S1(read);
 4003   dst    : S5(write);
 4004   DECODE : ID;
 4005   FPU    : S5;
 4006 %}
 4007 
 4008 pipe_class fp_f2i(iRegINoSp dst, fRegF src)
 4009 %{
 4010   single_instruction;
 4011   src    : S1(read);
 4012   dst    : S5(write);
 4013   DECODE : ID;
 4014   FPU    : S5;
 4015 %}
 4016 
 4017 pipe_class fp_f2l(iRegLNoSp dst, fRegF src)
 4018 %{
 4019   single_instruction;
 4020   src    : S1(read);
 4021   dst    : S5(write);
 4022   DECODE : ID;
 4023   FPU    : S5;
 4024 %}
 4025 
 4026 pipe_class fp_i2f(fRegF dst, iRegIorL2I src)
 4027 %{
 4028   single_instruction;
 4029   src    : S1(read);
 4030   dst    : S5(write);
 4031   DECODE : ID;
 4032   FPU    : S5;
 4033 %}
 4034 
 4035 pipe_class fp_l2f(fRegF dst, iRegL src)
 4036 %{
 4037   single_instruction;
 4038   src    : S1(read);
 4039   dst    : S5(write);
 4040   DECODE : ID;
 4041   FPU    : S5;
 4042 %}
 4043 
 4044 pipe_class fp_d2i(iRegINoSp dst, fRegD src)
 4045 %{
 4046   single_instruction;
 4047   src    : S1(read);
 4048   dst    : S5(write);
 4049   DECODE : ID;
 4050   FPU    : S5;
 4051 %}
 4052 
 4053 pipe_class fp_d2l(iRegLNoSp dst, fRegD src)
 4054 %{
 4055   single_instruction;
 4056   src    : S1(read);
 4057   dst    : S5(write);
 4058   DECODE : ID;
 4059   FPU    : S5;
 4060 %}
 4061 
 4062 pipe_class fp_i2d(fRegD dst, iRegIorL2I src)
 4063 %{
 4064   single_instruction;
 4065   src    : S1(read);
 4066   dst    : S5(write);
 4067   DECODE : ID;
 4068   FPU    : S5;
 4069 %}
 4070 
 4071 pipe_class fp_l2d(fRegD dst, iRegIorL2I src)
 4072 %{
 4073   single_instruction;
 4074   src    : S1(read);
 4075   dst    : S5(write);
 4076   DECODE : ID;
 4077   FPU    : S5;
 4078 %}
 4079 
 4080 pipe_class fp_div_s(fRegF dst, fRegF src1, fRegF src2)
 4081 %{
 4082   single_instruction;
 4083   src1   : S1(read);
 4084   src2   : S2(read);
 4085   dst    : S5(write);
 4086   DECODE : ID;
 4087   FPU    : S5;
 4088 %}
 4089 
 4090 pipe_class fp_div_d(fRegD dst, fRegD src1, fRegD src2)
 4091 %{
 4092   single_instruction;
 4093   src1   : S1(read);
 4094   src2   : S2(read);
 4095   dst    : S5(write);
 4096   DECODE : ID;
 4097   FPU    : S5;
 4098 %}
 4099 
 4100 pipe_class fp_sqrt_s(fRegF dst, fRegF src1, fRegF src2)
 4101 %{
 4102   single_instruction;
 4103   src1   : S1(read);
 4104   src2   : S2(read);
 4105   dst    : S5(write);
 4106   DECODE : ID;
 4107   FPU    : S5;
 4108 %}
 4109 
 4110 pipe_class fp_sqrt_d(fRegD dst, fRegD src1, fRegD src2)
 4111 %{
 4112   single_instruction;
 4113   src1   : S1(read);
 4114   src2   : S2(read);
 4115   dst    : S5(write);
 4116   DECODE : ID;
 4117   FPU    : S5;
 4118 %}
 4119 
 4120 pipe_class fp_load_constant_s(fRegF dst)
 4121 %{
 4122   single_instruction;
 4123   dst    : S5(write);
 4124   DECODE : ID;
 4125   FPU    : S5;
 4126 %}
 4127 
 4128 pipe_class fp_load_constant_d(fRegD dst)
 4129 %{
 4130   single_instruction;
 4131   dst    : S5(write);
 4132   DECODE : ID;
 4133   FPU    : S5;
 4134 %}
 4135 
 4136 pipe_class fp_load_mem_s(fRegF dst, memory mem)
 4137 %{
 4138   single_instruction;
 4139   mem    : S1(read);
 4140   dst    : S5(write);
 4141   DECODE : ID;
 4142   LDST   : MEM;
 4143 %}
 4144 
 4145 pipe_class fp_load_mem_d(fRegD dst, memory mem)
 4146 %{
 4147   single_instruction;
 4148   mem    : S1(read);
 4149   dst    : S5(write);
 4150   DECODE : ID;
 4151   LDST   : MEM;
 4152 %}
 4153 
 4154 pipe_class fp_store_reg_s(fRegF src, memory mem)
 4155 %{
 4156   single_instruction;
 4157   src    : S1(read);
 4158   mem    : S5(write);
 4159   DECODE : ID;
 4160   LDST   : MEM;
 4161 %}
 4162 
 4163 pipe_class fp_store_reg_d(fRegD src, memory mem)
 4164 %{
 4165   single_instruction;
 4166   src    : S1(read);
 4167   mem    : S5(write);
 4168   DECODE : ID;
 4169   LDST   : MEM;
 4170 %}
 4171 
 4172 //------- Integer ALU operations --------------------------
 4173 
 4174 // Integer ALU reg-reg operation
 4175 // Operands needs in ID, result generated in EX
 4176 // E.g.  ADD   Rd, Rs1, Rs2
 4177 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2)
 4178 %{
 4179   single_instruction;
 4180   dst    : EX(write);
 4181   src1   : ID(read);
 4182   src2   : ID(read);
 4183   DECODE : ID;
 4184   ALU    : EX;
 4185 %}
 4186 
 4187 // Integer ALU reg operation with constant shift
 4188 // E.g. SLLI    Rd, Rs1, #shift
 4189 pipe_class ialu_reg_shift(iRegI dst, iRegI src1)
 4190 %{
 4191   single_instruction;
 4192   dst    : EX(write);
 4193   src1   : ID(read);
 4194   DECODE : ID;
 4195   ALU    : EX;
 4196 %}
 4197 
 4198 // Integer ALU reg-reg operation with variable shift
 4199 // both operands must be available in ID
 4200 // E.g. SLL   Rd, Rs1, Rs2
 4201 pipe_class ialu_reg_reg_vshift(iRegI dst, iRegI src1, iRegI src2)
 4202 %{
 4203   single_instruction;
 4204   dst    : EX(write);
 4205   src1   : ID(read);
 4206   src2   : ID(read);
 4207   DECODE : ID;
 4208   ALU    : EX;
 4209 %}
 4210 
 4211 // Integer ALU reg operation
 4212 // E.g. NEG   Rd, Rs2
 4213 pipe_class ialu_reg(iRegI dst, iRegI src)
 4214 %{
 4215   single_instruction;
 4216   dst    : EX(write);
 4217   src    : ID(read);
 4218   DECODE : ID;
 4219   ALU    : EX;
 4220 %}
 4221 
 4222 // Integer ALU reg immediate operation
 4223 // E.g. ADDI   Rd, Rs1, #imm
 4224 pipe_class ialu_reg_imm(iRegI dst, iRegI src1)
 4225 %{
 4226   single_instruction;
 4227   dst    : EX(write);
 4228   src1   : ID(read);
 4229   DECODE : ID;
 4230   ALU    : EX;
 4231 %}
 4232 
 4233 // Integer ALU immediate operation (no source operands)
 4234 // E.g. LI    Rd, #imm
 4235 pipe_class ialu_imm(iRegI dst)
 4236 %{
 4237   single_instruction;
 4238   dst    : EX(write);
 4239   DECODE : ID;
 4240   ALU    : EX;
 4241 %}
 4242 
 4243 //------- Multiply pipeline operations --------------------
 4244 
 4245 // Multiply reg-reg
 4246 // E.g. MULW   Rd, Rs1, Rs2
 4247 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2)
 4248 %{
 4249   single_instruction;
 4250   dst    : WR(write);
 4251   src1   : ID(read);
 4252   src2   : ID(read);
 4253   DECODE : ID;
 4254   MUL    : WR;
 4255 %}
 4256 
 4257 // E.g. MUL   RD, Rs1, Rs2
 4258 pipe_class lmul_reg_reg(iRegL dst, iRegL src1, iRegL src2)
 4259 %{
 4260   single_instruction;
 4261   fixed_latency(3); // Maximum latency for 64 bit mul
 4262   dst    : WR(write);
 4263   src1   : ID(read);
 4264   src2   : ID(read);
 4265   DECODE : ID;
 4266   MUL    : WR;
 4267 %}
 4268 
 4269 //------- Divide pipeline operations --------------------
 4270 
 4271 // E.g. DIVW   Rd, Rs1, Rs2
 4272 pipe_class idiv_reg_reg(iRegI dst, iRegI src1, iRegI src2)
 4273 %{
 4274   single_instruction;
 4275   fixed_latency(8); // Maximum latency for 32 bit divide
 4276   dst    : WR(write);
 4277   src1   : ID(read);
 4278   src2   : ID(read);
 4279   DECODE : ID;
 4280   DIV    : WR;
 4281 %}
 4282 
 4283 // E.g. DIV   RD, Rs1, Rs2
 4284 pipe_class ldiv_reg_reg(iRegL dst, iRegL src1, iRegL src2)
 4285 %{
 4286   single_instruction;
 4287   fixed_latency(16); // Maximum latency for 64 bit divide
 4288   dst    : WR(write);
 4289   src1   : ID(read);
 4290   src2   : ID(read);
 4291   DECODE : ID;
 4292   DIV    : WR;
 4293 %}
 4294 
 4295 //------- Load pipeline operations ------------------------
 4296 
 4297 // Load - prefetch
 4298 // Eg.  PREFETCH_W  mem
 4299 pipe_class iload_prefetch(memory mem)
 4300 %{
 4301   single_instruction;
 4302   mem    : ID(read);
 4303   DECODE : ID;
 4304   LDST   : MEM;
 4305 %}
 4306 
 4307 // Load - reg, mem
 4308 // E.g. LA    Rd, mem
 4309 pipe_class iload_reg_mem(iRegI dst, memory mem)
 4310 %{
 4311   single_instruction;
 4312   dst    : WR(write);
 4313   mem    : ID(read);
 4314   DECODE : ID;
 4315   LDST   : MEM;
 4316 %}
 4317 
 4318 // Load - reg, reg
 4319 // E.g. LD    Rd, Rs
 4320 pipe_class iload_reg_reg(iRegI dst, iRegI src)
 4321 %{
 4322   single_instruction;
 4323   dst    : WR(write);
 4324   src    : ID(read);
 4325   DECODE : ID;
 4326   LDST   : MEM;
 4327 %}
 4328 
 4329 //------- Store pipeline operations -----------------------
 4330 
 4331 // Store - zr, mem
 4332 // E.g. SD    zr, mem
 4333 pipe_class istore_mem(memory mem)
 4334 %{
 4335   single_instruction;
 4336   mem    : ID(read);
 4337   DECODE : ID;
 4338   LDST   : MEM;
 4339 %}
 4340 
 4341 // Store - reg, mem
 4342 // E.g. SD    Rs, mem
 4343 pipe_class istore_reg_mem(iRegI src, memory mem)
 4344 %{
 4345   single_instruction;
 4346   mem    : ID(read);
 4347   src    : EX(read);
 4348   DECODE : ID;
 4349   LDST   : MEM;
 4350 %}
 4351 
 4352 // Store - reg, reg
 4353 // E.g. SD    Rs2, Rs1
 4354 pipe_class istore_reg_reg(iRegI dst, iRegI src)
 4355 %{
 4356   single_instruction;
 4357   dst    : ID(read);
 4358   src    : EX(read);
 4359   DECODE : ID;
 4360   LDST   : MEM;
 4361 %}
 4362 
 4363 //------- Control transfer pipeline operations ------------
 4364 
 4365 // Branch
 4366 pipe_class pipe_branch()
 4367 %{
 4368   single_instruction;
 4369   DECODE : ID;
 4370   BRANCH : EX;
 4371 %}
 4372 
 4373 // Branch
 4374 pipe_class pipe_branch_reg(iRegI src)
 4375 %{
 4376   single_instruction;
 4377   src    : ID(read);
 4378   DECODE : ID;
 4379   BRANCH : EX;
 4380 %}
 4381 
 4382 // Compare & Branch
 4383 // E.g. BEQ   Rs1, Rs2, L
 4384 pipe_class pipe_cmp_branch(iRegI src1, iRegI src2)
 4385 %{
 4386   single_instruction;
 4387   src1   : ID(read);
 4388   src2   : ID(read);
 4389   DECODE : ID;
 4390   BRANCH : EX;
 4391 %}
 4392 
 4393 // E.g. BEQZ Rs, L
 4394 pipe_class pipe_cmpz_branch(iRegI src)
 4395 %{
 4396   single_instruction;
 4397   src    : ID(read);
 4398   DECODE : ID;
 4399   BRANCH : EX;
 4400 %}
 4401 
 4402 //------- Synchronisation operations ----------------------
 4403 // Any operation requiring serialization
 4404 // E.g. FENCE/Atomic Ops/Load Acquire/Store Release
 4405 pipe_class pipe_serial()
 4406 %{
 4407   single_instruction;
 4408   force_serialization;
 4409   fixed_latency(16);
 4410   DECODE : ID;
 4411   LDST   : MEM;
 4412 %}
 4413 
 4414 pipe_class pipe_slow()
 4415 %{
 4416   instruction_count(10);
 4417   multiple_bundles;
 4418   force_serialization;
 4419   fixed_latency(16);
 4420   DECODE : ID;
 4421   LDST   : MEM;
 4422 %}
 4423 
 4424 // Empty pipeline class
 4425 pipe_class pipe_class_empty()
 4426 %{
 4427   single_instruction;
 4428   fixed_latency(0);
 4429 %}
 4430 
 4431 // Default pipeline class.
 4432 pipe_class pipe_class_default()
 4433 %{
 4434   single_instruction;
 4435   fixed_latency(2);
 4436 %}
 4437 
 4438 // Pipeline class for compares.
 4439 pipe_class pipe_class_compare()
 4440 %{
 4441   single_instruction;
 4442   fixed_latency(16);
 4443 %}
 4444 
 4445 // Pipeline class for memory operations.
 4446 pipe_class pipe_class_memory()
 4447 %{
 4448   single_instruction;
 4449   fixed_latency(16);
 4450 %}
 4451 
 4452 // Pipeline class for call.
 4453 pipe_class pipe_class_call()
 4454 %{
 4455   single_instruction;
 4456   fixed_latency(100);
 4457 %}
 4458 
 4459 // Define the class for the Nop node.
 4460 define %{
 4461    MachNop = pipe_class_empty;
 4462 %}
 4463 %}
 4464 //----------INSTRUCTIONS-------------------------------------------------------
 4465 //
 4466 // match      -- States which machine-independent subtree may be replaced
 4467 //               by this instruction.
 4468 // ins_cost   -- The estimated cost of this instruction is used by instruction
 4469 //               selection to identify a minimum cost tree of machine
 4470 //               instructions that matches a tree of machine-independent
 4471 //               instructions.
 4472 // format     -- A string providing the disassembly for this instruction.
 4473 //               The value of an instruction's operand may be inserted
 4474 //               by referring to it with a '$' prefix.
 4475 // opcode     -- Three instruction opcodes may be provided.  These are referred
 4476 //               to within an encode class as $primary, $secondary, and $tertiary
 4477 //               rrspectively.  The primary opcode is commonly used to
 4478 //               indicate the type of machine instruction, while secondary
 4479 //               and tertiary are often used for prefix options or addressing
 4480 //               modes.
 4481 // ins_encode -- A list of encode classes with parameters. The encode class
 4482 //               name must have been defined in an 'enc_class' specification
 4483 //               in the encode section of the architecture description.
 4484 
 4485 // ============================================================================
 4486 // Memory (Load/Store) Instructions
 4487 
 4488 // Load Instructions
 4489 
 4490 // Load Byte (8 bit signed)
 4491 instruct loadB(iRegINoSp dst, memory mem)
 4492 %{
 4493   match(Set dst (LoadB mem));
 4494 
 4495   ins_cost(LOAD_COST);
 4496   format %{ "lb  $dst, $mem\t# byte, #@loadB" %}
 4497 
 4498   ins_encode %{
 4499     __ lb(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp));
 4500   %}
 4501 
 4502   ins_pipe(iload_reg_mem);
 4503 %}
 4504 
 4505 // Load Byte (8 bit signed) into long
 4506 instruct loadB2L(iRegLNoSp dst, memory mem)
 4507 %{
 4508   match(Set dst (ConvI2L (LoadB mem)));
 4509 
 4510   ins_cost(LOAD_COST);
 4511   format %{ "lb  $dst, $mem\t# byte, #@loadB2L" %}
 4512 
 4513   ins_encode %{
 4514     __ lb(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp));
 4515   %}
 4516 
 4517   ins_pipe(iload_reg_mem);
 4518 %}
 4519 
 4520 // Load Byte (8 bit unsigned)
 4521 instruct loadUB(iRegINoSp dst, memory mem)
 4522 %{
 4523   match(Set dst (LoadUB mem));
 4524 
 4525   ins_cost(LOAD_COST);
 4526   format %{ "lbu  $dst, $mem\t# byte, #@loadUB" %}
 4527 
 4528   ins_encode %{
 4529     __ lbu(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp));
 4530   %}
 4531 
 4532   ins_pipe(iload_reg_mem);
 4533 %}
 4534 
 4535 // Load Byte (8 bit unsigned) into long
 4536 instruct loadUB2L(iRegLNoSp dst, memory mem)
 4537 %{
 4538   match(Set dst (ConvI2L (LoadUB mem)));
 4539 
 4540   ins_cost(LOAD_COST);
 4541   format %{ "lbu  $dst, $mem\t# byte, #@loadUB2L" %}
 4542 
 4543   ins_encode %{
 4544     __ lbu(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp));
 4545   %}
 4546 
 4547   ins_pipe(iload_reg_mem);
 4548 %}
 4549 
 4550 // Load Short (16 bit signed)
 4551 instruct loadS(iRegINoSp dst, memory mem)
 4552 %{
 4553   match(Set dst (LoadS mem));
 4554 
 4555   ins_cost(LOAD_COST);
 4556   format %{ "lh  $dst, $mem\t# short, #@loadS" %}
 4557 
 4558   ins_encode %{
 4559     __ lh(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp));
 4560   %}
 4561 
 4562   ins_pipe(iload_reg_mem);
 4563 %}
 4564 
 4565 // Load Short (16 bit signed) into long
 4566 instruct loadS2L(iRegLNoSp dst, memory mem)
 4567 %{
 4568   match(Set dst (ConvI2L (LoadS mem)));
 4569 
 4570   ins_cost(LOAD_COST);
 4571   format %{ "lh  $dst, $mem\t# short, #@loadS2L" %}
 4572 
 4573   ins_encode %{
 4574     __ lh(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp));
 4575   %}
 4576 
 4577   ins_pipe(iload_reg_mem);
 4578 %}
 4579 
 4580 // Load Char (16 bit unsigned)
 4581 instruct loadUS(iRegINoSp dst, memory mem)
 4582 %{
 4583   match(Set dst (LoadUS mem));
 4584 
 4585   ins_cost(LOAD_COST);
 4586   format %{ "lhu  $dst, $mem\t# short, #@loadUS" %}
 4587 
 4588   ins_encode %{
 4589     __ lhu(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp));
 4590   %}
 4591 
 4592   ins_pipe(iload_reg_mem);
 4593 %}
 4594 
 4595 // Load Short/Char (16 bit unsigned) into long
 4596 instruct loadUS2L(iRegLNoSp dst, memory mem)
 4597 %{
 4598   match(Set dst (ConvI2L (LoadUS mem)));
 4599 
 4600   ins_cost(LOAD_COST);
 4601   format %{ "lhu  $dst, $mem\t# short, #@loadUS2L" %}
 4602 
 4603   ins_encode %{
 4604     __ lhu(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp));
 4605   %}
 4606 
 4607   ins_pipe(iload_reg_mem);
 4608 %}
 4609 
 4610 // Load Integer (32 bit signed)
 4611 instruct loadI(iRegINoSp dst, memory mem)
 4612 %{
 4613   match(Set dst (LoadI mem));
 4614 
 4615   ins_cost(LOAD_COST);
 4616   format %{ "lw  $dst, $mem\t# int, #@loadI" %}
 4617 
 4618   ins_encode %{
 4619     __ lw(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp));
 4620   %}
 4621 
 4622   ins_pipe(iload_reg_mem);
 4623 %}
 4624 
 4625 // Load Integer (32 bit signed) into long
 4626 instruct loadI2L(iRegLNoSp dst, memory mem)
 4627 %{
 4628   match(Set dst (ConvI2L (LoadI mem)));
 4629 
 4630   ins_cost(LOAD_COST);
 4631   format %{ "lw  $dst, $mem\t# int, #@loadI2L" %}
 4632 
 4633   ins_encode %{
 4634     __ lw(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp));
 4635   %}
 4636 
 4637   ins_pipe(iload_reg_mem);
 4638 %}
 4639 
 4640 // Load Integer (32 bit unsigned) into long
 4641 instruct loadUI2L(iRegLNoSp dst, memory mem, immL_32bits mask)
 4642 %{
 4643   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
 4644 
 4645   ins_cost(LOAD_COST);
 4646   format %{ "lwu  $dst, $mem\t# int, #@loadUI2L" %}
 4647 
 4648   ins_encode %{
 4649     __ lwu(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp));
 4650   %}
 4651 
 4652   ins_pipe(iload_reg_mem);
 4653 %}
 4654 
 4655 // Load Long (64 bit signed)
 4656 instruct loadL(iRegLNoSp dst, memory mem)
 4657 %{
 4658   match(Set dst (LoadL mem));
 4659 
 4660   ins_cost(LOAD_COST);
 4661   format %{ "ld  $dst, $mem\t# int, #@loadL" %}
 4662 
 4663   ins_encode %{
 4664     __ ld(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp));
 4665   %}
 4666 
 4667   ins_pipe(iload_reg_mem);
 4668 %}
 4669 
 4670 // Load Range
 4671 instruct loadRange(iRegINoSp dst, memory mem)
 4672 %{
 4673   match(Set dst (LoadRange mem));
 4674 
 4675   ins_cost(LOAD_COST);
 4676   format %{ "lwu  $dst, $mem\t# range, #@loadRange" %}
 4677 
 4678   ins_encode %{
 4679     __ lwu(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp));
 4680   %}
 4681 
 4682   ins_pipe(iload_reg_mem);
 4683 %}
 4684 
 4685 // Load Pointer
 4686 instruct loadP(iRegPNoSp dst, memory mem)
 4687 %{
 4688   match(Set dst (LoadP mem));
 4689   predicate(n->as_Load()->barrier_data() == 0);
 4690 
 4691   ins_cost(LOAD_COST);
 4692   format %{ "ld  $dst, $mem\t# ptr, #@loadP" %}
 4693 
 4694   ins_encode %{
 4695     __ ld(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp));
 4696   %}
 4697 
 4698   ins_pipe(iload_reg_mem);
 4699 %}
 4700 
 4701 // Load Compressed Pointer
 4702 instruct loadN(iRegNNoSp dst, memory mem)
 4703 %{
 4704   predicate(n->as_Load()->barrier_data() == 0);
 4705   match(Set dst (LoadN mem));
 4706 
 4707   ins_cost(LOAD_COST);
 4708   format %{ "lwu  $dst, $mem\t# compressed ptr, #@loadN" %}
 4709 
 4710   ins_encode %{
 4711     __ lwu(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp));
 4712   %}
 4713 
 4714   ins_pipe(iload_reg_mem);
 4715 %}
 4716 
 4717 // Load Klass Pointer
 4718 instruct loadKlass(iRegPNoSp dst, memory mem)
 4719 %{
 4720   match(Set dst (LoadKlass mem));
 4721 
 4722   ins_cost(LOAD_COST);
 4723   format %{ "ld  $dst, $mem\t# class, #@loadKlass" %}
 4724 
 4725   ins_encode %{
 4726     __ ld(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp));
 4727   %}
 4728 
 4729   ins_pipe(iload_reg_mem);
 4730 %}
 4731 
 4732 // Load Narrow Klass Pointer
 4733 instruct loadNKlass(iRegNNoSp dst, memory mem)
 4734 %{
 4735   predicate(!UseCompactObjectHeaders);
 4736   match(Set dst (LoadNKlass mem));
 4737 
 4738   ins_cost(LOAD_COST);
 4739   format %{ "lwu  $dst, $mem\t# compressed class ptr, #@loadNKlass" %}
 4740 
 4741   ins_encode %{
 4742     __ lwu(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp));
 4743   %}
 4744 
 4745   ins_pipe(iload_reg_mem);
 4746 %}
 4747 
 4748 instruct loadNKlassCompactHeaders(iRegNNoSp dst, memory mem)
 4749 %{
 4750   predicate(UseCompactObjectHeaders);
 4751   match(Set dst (LoadNKlass mem));
 4752 
 4753   ins_cost(LOAD_COST);
 4754   format %{
 4755     "lwu  $dst, $mem\t# compressed klass ptr, shifted\n\t"
 4756     "srli $dst, $dst, markWord::klass_shift_at_offset"
 4757   %}
 4758 
 4759   ins_encode %{
 4760     __ lwu(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp));
 4761     __ srli(as_Register($dst$$reg), as_Register($dst$$reg), (unsigned) markWord::klass_shift_at_offset);
 4762   %}
 4763 
 4764   ins_pipe(iload_reg_mem);
 4765 %}
 4766 
 4767 // Load Float
 4768 instruct loadF(fRegF dst, memory mem)
 4769 %{
 4770   match(Set dst (LoadF mem));
 4771 
 4772   ins_cost(LOAD_COST);
 4773   format %{ "flw  $dst, $mem\t# float, #@loadF" %}
 4774 
 4775   ins_encode %{
 4776     __ flw(as_FloatRegister($dst$$reg), Address(as_Register($mem$$base), $mem$$disp));
 4777   %}
 4778 
 4779   ins_pipe(fp_load_mem_s);
 4780 %}
 4781 
 4782 // Load Double
 4783 instruct loadD(fRegD dst, memory mem)
 4784 %{
 4785   match(Set dst (LoadD mem));
 4786 
 4787   ins_cost(LOAD_COST);
 4788   format %{ "fld  $dst, $mem\t# double, #@loadD" %}
 4789 
 4790   ins_encode %{
 4791     __ fld(as_FloatRegister($dst$$reg), Address(as_Register($mem$$base), $mem$$disp));
 4792   %}
 4793 
 4794   ins_pipe(fp_load_mem_d);
 4795 %}
 4796 
 4797 // Load Int Constant
 4798 instruct loadConI(iRegINoSp dst, immI src)
 4799 %{
 4800   match(Set dst src);
 4801 
 4802   ins_cost(ALU_COST);
 4803   format %{ "mv $dst, $src\t# int, #@loadConI" %}
 4804 
 4805   ins_encode(riscv_enc_mov_imm(dst, src));
 4806 
 4807   ins_pipe(ialu_imm);
 4808 %}
 4809 
 4810 // Load Long Constant
 4811 instruct loadConL(iRegLNoSp dst, immL src)
 4812 %{
 4813   match(Set dst src);
 4814 
 4815   ins_cost(ALU_COST);
 4816   format %{ "mv $dst, $src\t# long, #@loadConL" %}
 4817 
 4818   ins_encode(riscv_enc_mov_imm(dst, src));
 4819 
 4820   ins_pipe(ialu_imm);
 4821 %}
 4822 
 4823 // Load Pointer Constant
 4824 instruct loadConP(iRegPNoSp dst, immP con)
 4825 %{
 4826   match(Set dst con);
 4827 
 4828   ins_cost(ALU_COST);
 4829   format %{ "mv  $dst, $con\t# ptr, #@loadConP" %}
 4830 
 4831   ins_encode(riscv_enc_mov_p(dst, con));
 4832 
 4833   ins_pipe(ialu_imm);
 4834 %}
 4835 
 4836 // Load Null Pointer Constant
 4837 instruct loadConP0(iRegPNoSp dst, immP0 con)
 4838 %{
 4839   match(Set dst con);
 4840 
 4841   ins_cost(ALU_COST);
 4842   format %{ "mv  $dst, $con\t# null pointer, #@loadConP0" %}
 4843 
 4844   ins_encode(riscv_enc_mov_zero(dst));
 4845 
 4846   ins_pipe(ialu_imm);
 4847 %}
 4848 
 4849 // Load Pointer Constant One
 4850 instruct loadConP1(iRegPNoSp dst, immP_1 con)
 4851 %{
 4852   match(Set dst con);
 4853 
 4854   ins_cost(ALU_COST);
 4855   format %{ "mv  $dst, $con\t# load ptr constant one, #@loadConP1" %}
 4856 
 4857   ins_encode(riscv_enc_mov_p1(dst));
 4858 
 4859   ins_pipe(ialu_imm);
 4860 %}
 4861 
 4862 // Load Byte Map Base Constant
 4863 instruct loadByteMapBase(iRegPNoSp dst, immByteMapBase con)
 4864 %{
 4865   match(Set dst con);
 4866   ins_cost(ALU_COST);
 4867   format %{ "mv  $dst, $con\t# Byte Map Base, #@loadByteMapBase" %}
 4868 
 4869   ins_encode(riscv_enc_mov_byte_map_base(dst));
 4870 
 4871   ins_pipe(ialu_imm);
 4872 %}
 4873 
 4874 // Load Narrow Pointer Constant
 4875 instruct loadConN(iRegNNoSp dst, immN con)
 4876 %{
 4877   match(Set dst con);
 4878 
 4879   ins_cost(ALU_COST * 4);
 4880   format %{ "mv  $dst, $con\t# compressed ptr, #@loadConN" %}
 4881 
 4882   ins_encode(riscv_enc_mov_n(dst, con));
 4883 
 4884   ins_pipe(ialu_imm);
 4885 %}
 4886 
 4887 // Load Narrow Null Pointer Constant
 4888 instruct loadConN0(iRegNNoSp dst, immN0 con)
 4889 %{
 4890   match(Set dst con);
 4891 
 4892   ins_cost(ALU_COST);
 4893   format %{ "mv  $dst, $con\t# compressed null pointer, #@loadConN0" %}
 4894 
 4895   ins_encode(riscv_enc_mov_zero(dst));
 4896 
 4897   ins_pipe(ialu_imm);
 4898 %}
 4899 
 4900 // Load Narrow Klass Constant
 4901 instruct loadConNKlass(iRegNNoSp dst, immNKlass con)
 4902 %{
 4903   match(Set dst con);
 4904 
 4905   ins_cost(ALU_COST * 6);
 4906   format %{ "mv  $dst, $con\t# compressed klass ptr, #@loadConNKlass" %}
 4907 
 4908   ins_encode(riscv_enc_mov_nk(dst, con));
 4909 
 4910   ins_pipe(ialu_imm);
 4911 %}
 4912 
 4913 // Load Float Constant
 4914 instruct loadConF(fRegF dst, immF con) %{
 4915   match(Set dst con);
 4916 
 4917   ins_cost(LOAD_COST);
 4918   format %{
 4919     "flw $dst, [$constantaddress]\t# load from constant table: float=$con, #@loadConF"
 4920   %}
 4921 
 4922   ins_encode %{
 4923     __ flw(as_FloatRegister($dst$$reg), $constantaddress($con));
 4924   %}
 4925 
 4926   ins_pipe(fp_load_constant_s);
 4927 %}
 4928 
 4929 instruct loadConF0(fRegF dst, immF0 con) %{
 4930   match(Set dst con);
 4931 
 4932   ins_cost(XFER_COST);
 4933 
 4934   format %{ "fmv.w.x $dst, zr\t# float, #@loadConF0" %}
 4935 
 4936   ins_encode %{
 4937     __ fmv_w_x(as_FloatRegister($dst$$reg), zr);
 4938   %}
 4939 
 4940   ins_pipe(fp_load_constant_s);
 4941 %}
 4942 
 4943 // Load Double Constant
 4944 instruct loadConD(fRegD dst, immD con) %{
 4945   match(Set dst con);
 4946 
 4947   ins_cost(LOAD_COST);
 4948   format %{
 4949     "fld $dst, [$constantaddress]\t# load from constant table: double=$con, #@loadConD"
 4950   %}
 4951 
 4952   ins_encode %{
 4953     __ fld(as_FloatRegister($dst$$reg), $constantaddress($con));
 4954   %}
 4955 
 4956   ins_pipe(fp_load_constant_d);
 4957 %}
 4958 
 4959 instruct loadConD0(fRegD dst, immD0 con) %{
 4960   match(Set dst con);
 4961 
 4962   ins_cost(XFER_COST);
 4963 
 4964   format %{ "fmv.d.x $dst, zr\t# double, #@loadConD0" %}
 4965 
 4966   ins_encode %{
 4967     __ fmv_d_x(as_FloatRegister($dst$$reg), zr);
 4968   %}
 4969 
 4970   ins_pipe(fp_load_constant_d);
 4971 %}
 4972 
 4973 // Store Byte
 4974 instruct storeB(iRegIorL2I src, memory mem)
 4975 %{
 4976   match(Set mem (StoreB mem src));
 4977 
 4978   ins_cost(STORE_COST);
 4979   format %{ "sb  $src, $mem\t# byte, #@storeB" %}
 4980 
 4981   ins_encode %{
 4982     __ sb(as_Register($src$$reg), Address(as_Register($mem$$base), $mem$$disp));
 4983   %}
 4984 
 4985   ins_pipe(istore_reg_mem);
 4986 %}
 4987 
 4988 instruct storeimmB0(immI0 zero, memory mem)
 4989 %{
 4990   match(Set mem (StoreB mem zero));
 4991 
 4992   ins_cost(STORE_COST);
 4993   format %{ "sb zr, $mem\t# byte, #@storeimmB0" %}
 4994 
 4995   ins_encode %{
 4996     __ sb(zr, Address(as_Register($mem$$base), $mem$$disp));
 4997   %}
 4998 
 4999   ins_pipe(istore_mem);
 5000 %}
 5001 
 5002 // Store Char/Short
 5003 instruct storeC(iRegIorL2I src, memory mem)
 5004 %{
 5005   match(Set mem (StoreC mem src));
 5006 
 5007   ins_cost(STORE_COST);
 5008   format %{ "sh  $src, $mem\t# short, #@storeC" %}
 5009 
 5010   ins_encode %{
 5011     __ sh(as_Register($src$$reg), Address(as_Register($mem$$base), $mem$$disp));
 5012   %}
 5013 
 5014   ins_pipe(istore_reg_mem);
 5015 %}
 5016 
 5017 instruct storeimmC0(immI0 zero, memory mem)
 5018 %{
 5019   match(Set mem (StoreC mem zero));
 5020 
 5021   ins_cost(STORE_COST);
 5022   format %{ "sh  zr, $mem\t# short, #@storeimmC0" %}
 5023 
 5024   ins_encode %{
 5025     __ sh(zr, Address(as_Register($mem$$base), $mem$$disp));
 5026   %}
 5027 
 5028   ins_pipe(istore_mem);
 5029 %}
 5030 
 5031 // Store Integer
 5032 instruct storeI(iRegIorL2I src, memory mem)
 5033 %{
 5034   match(Set mem(StoreI mem src));
 5035 
 5036   ins_cost(STORE_COST);
 5037   format %{ "sw  $src, $mem\t# int, #@storeI" %}
 5038 
 5039   ins_encode %{
 5040     __ sw(as_Register($src$$reg), Address(as_Register($mem$$base), $mem$$disp));
 5041   %}
 5042 
 5043   ins_pipe(istore_reg_mem);
 5044 %}
 5045 
 5046 instruct storeimmI0(immI0 zero, memory mem)
 5047 %{
 5048   match(Set mem(StoreI mem zero));
 5049 
 5050   ins_cost(STORE_COST);
 5051   format %{ "sw  zr, $mem\t# int, #@storeimmI0" %}
 5052 
 5053   ins_encode %{
 5054     __ sw(zr, Address(as_Register($mem$$base), $mem$$disp));
 5055   %}
 5056 
 5057   ins_pipe(istore_mem);
 5058 %}
 5059 
 5060 // Store Long (64 bit signed)
 5061 instruct storeL(iRegL src, memory mem)
 5062 %{
 5063   match(Set mem (StoreL mem src));
 5064 
 5065   ins_cost(STORE_COST);
 5066   format %{ "sd  $src, $mem\t# long, #@storeL" %}
 5067 
 5068   ins_encode %{
 5069     __ sd(as_Register($src$$reg), Address(as_Register($mem$$base), $mem$$disp));
 5070   %}
 5071 
 5072   ins_pipe(istore_reg_mem);
 5073 %}
 5074 
 5075 // Store Long (64 bit signed)
 5076 instruct storeimmL0(immL0 zero, memory mem)
 5077 %{
 5078   match(Set mem (StoreL mem zero));
 5079 
 5080   ins_cost(STORE_COST);
 5081   format %{ "sd  zr, $mem\t# long, #@storeimmL0" %}
 5082 
 5083   ins_encode %{
 5084     __ sd(zr, Address(as_Register($mem$$base), $mem$$disp));
 5085   %}
 5086 
 5087   ins_pipe(istore_mem);
 5088 %}
 5089 
 5090 // Store Pointer
 5091 instruct storeP(iRegP src, memory mem)
 5092 %{
 5093   match(Set mem (StoreP mem src));
 5094   predicate(n->as_Store()->barrier_data() == 0);
 5095 
 5096   ins_cost(STORE_COST);
 5097   format %{ "sd  $src, $mem\t# ptr, #@storeP" %}
 5098 
 5099   ins_encode %{
 5100     __ sd(as_Register($src$$reg), Address(as_Register($mem$$base), $mem$$disp));
 5101   %}
 5102 
 5103   ins_pipe(istore_reg_mem);
 5104 %}
 5105 
 5106 // Store Pointer
 5107 instruct storeimmP0(immP0 zero, memory mem)
 5108 %{
 5109   match(Set mem (StoreP mem zero));
 5110   predicate(n->as_Store()->barrier_data() == 0);
 5111 
 5112   ins_cost(STORE_COST);
 5113   format %{ "sd zr, $mem\t# ptr, #@storeimmP0" %}
 5114 
 5115   ins_encode %{
 5116     __ sd(zr, Address(as_Register($mem$$base), $mem$$disp));
 5117   %}
 5118 
 5119   ins_pipe(istore_mem);
 5120 %}
 5121 
 5122 // Store Compressed Pointer
 5123 instruct storeN(iRegN src, memory mem)
 5124 %{
 5125   predicate(n->as_Store()->barrier_data() == 0);
 5126   match(Set mem (StoreN mem src));
 5127 
 5128   ins_cost(STORE_COST);
 5129   format %{ "sw  $src, $mem\t# compressed ptr, #@storeN" %}
 5130 
 5131   ins_encode %{
 5132     __ sw(as_Register($src$$reg), Address(as_Register($mem$$base), $mem$$disp));
 5133   %}
 5134 
 5135   ins_pipe(istore_reg_mem);
 5136 %}
 5137 
 5138 instruct storeImmN0(immN0 zero, memory mem)
 5139 %{
 5140   predicate(n->as_Store()->barrier_data() == 0);
 5141   match(Set mem (StoreN mem zero));
 5142 
 5143   ins_cost(STORE_COST);
 5144   format %{ "sw  zr, $mem\t# compressed ptr, #@storeImmN0" %}
 5145 
 5146   ins_encode %{
 5147     __ sw(zr, Address(as_Register($mem$$base), $mem$$disp));
 5148   %}
 5149 
 5150   ins_pipe(istore_reg_mem);
 5151 %}
 5152 
 5153 // Store Float
 5154 instruct storeF(fRegF src, memory mem)
 5155 %{
 5156   match(Set mem (StoreF mem src));
 5157 
 5158   ins_cost(STORE_COST);
 5159   format %{ "fsw  $src, $mem\t# float, #@storeF" %}
 5160 
 5161   ins_encode %{
 5162     __ fsw(as_FloatRegister($src$$reg), Address(as_Register($mem$$base), $mem$$disp));
 5163   %}
 5164 
 5165   ins_pipe(fp_store_reg_s);
 5166 %}
 5167 
 5168 // Store Double
 5169 instruct storeD(fRegD src, memory mem)
 5170 %{
 5171   match(Set mem (StoreD mem src));
 5172 
 5173   ins_cost(STORE_COST);
 5174   format %{ "fsd  $src, $mem\t# double, #@storeD" %}
 5175 
 5176   ins_encode %{
 5177     __ fsd(as_FloatRegister($src$$reg), Address(as_Register($mem$$base), $mem$$disp));
 5178   %}
 5179 
 5180   ins_pipe(fp_store_reg_d);
 5181 %}
 5182 
 5183 // Store Compressed Klass Pointer
 5184 instruct storeNKlass(iRegN src, memory mem)
 5185 %{
 5186   match(Set mem (StoreNKlass mem src));
 5187 
 5188   ins_cost(STORE_COST);
 5189   format %{ "sw  $src, $mem\t# compressed klass ptr, #@storeNKlass" %}
 5190 
 5191   ins_encode %{
 5192     __ sw(as_Register($src$$reg), Address(as_Register($mem$$base), $mem$$disp));
 5193   %}
 5194 
 5195   ins_pipe(istore_reg_mem);
 5196 %}
 5197 
 5198 // ============================================================================
 5199 // Prefetch instructions
 5200 // Must be safe to execute with invalid address (cannot fault).
 5201 
 5202 instruct prefetchalloc( memory mem ) %{
 5203   predicate(UseZicbop);
 5204   match(PrefetchAllocation mem);
 5205 
 5206   ins_cost(ALU_COST * 1);
 5207   format %{ "prefetch_w $mem\t# Prefetch for write" %}
 5208 
 5209   ins_encode %{
 5210     if (Assembler::is_simm12($mem$$disp)) {
 5211       if (($mem$$disp & 0x1f) == 0) {
 5212         __ prefetch_w(as_Register($mem$$base), $mem$$disp);
 5213       } else {
 5214         __ addi(t0, as_Register($mem$$base), $mem$$disp);
 5215         __ prefetch_w(t0, 0);
 5216       }
 5217     } else {
 5218       __ mv(t0, $mem$$disp);
 5219       __ add(t0, as_Register($mem$$base), t0);
 5220       __ prefetch_w(t0, 0);
 5221     }
 5222   %}
 5223 
 5224   ins_pipe(iload_prefetch);
 5225 %}
 5226 
 5227 // ============================================================================
 5228 // Atomic operation instructions
 5229 //
 5230 
 5231 // standard CompareAndSwapX when we are using barriers
 5232 // these have higher priority than the rules selected by a predicate
 5233 instruct compareAndSwapB(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval,
 5234                          iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr)
 5235 %{
 5236   match(Set res (CompareAndSwapB mem (Binary oldval newval)));
 5237 
 5238   ins_cost(LOAD_COST + STORE_COST + ALU_COST * 10 + BRANCH_COST * 4);
 5239 
 5240   effect(TEMP_DEF res, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3, KILL cr);
 5241 
 5242   format %{
 5243     "cmpxchg $mem, $oldval, $newval\t# (byte) if $mem == $oldval then $mem <-- $newval\n\t"
 5244     "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapB"
 5245   %}
 5246 
 5247   ins_encode %{
 5248     __ cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int8,
 5249                             Assembler::relaxed /* acquire */, Assembler::rl /* release */, $res$$Register,
 5250                             true /* result as bool */, $tmp1$$Register, $tmp2$$Register, $tmp3$$Register);
 5251   %}
 5252 
 5253   ins_pipe(pipe_slow);
 5254 %}
 5255 
 5256 instruct compareAndSwapS(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval,
 5257                          iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr)
 5258 %{
 5259   match(Set res (CompareAndSwapS mem (Binary oldval newval)));
 5260 
 5261   ins_cost(LOAD_COST + STORE_COST + ALU_COST * 11 + BRANCH_COST * 4);
 5262 
 5263   effect(TEMP_DEF res, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3, KILL cr);
 5264 
 5265   format %{
 5266     "cmpxchg $mem, $oldval, $newval\t# (short) if $mem == $oldval then $mem <-- $newval\n\t"
 5267     "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapS"
 5268   %}
 5269 
 5270   ins_encode %{
 5271     __ cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int16,
 5272                             Assembler::relaxed /* acquire */, Assembler::rl /* release */, $res$$Register,
 5273                             true /* result as bool */, $tmp1$$Register, $tmp2$$Register, $tmp3$$Register);
 5274   %}
 5275 
 5276   ins_pipe(pipe_slow);
 5277 %}
 5278 
 5279 instruct compareAndSwapI(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval)
 5280 %{
 5281   match(Set res (CompareAndSwapI mem (Binary oldval newval)));
 5282 
 5283   ins_cost(LOAD_COST + STORE_COST + ALU_COST * 6 + BRANCH_COST * 4);
 5284 
 5285   format %{
 5286     "cmpxchg $mem, $oldval, $newval\t# (int) if $mem == $oldval then $mem <-- $newval\n\t"
 5287     "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapI"
 5288   %}
 5289 
 5290   ins_encode(riscv_enc_cmpxchgw(res, mem, oldval, newval));
 5291 
 5292   ins_pipe(pipe_slow);
 5293 %}
 5294 
 5295 instruct compareAndSwapL(iRegINoSp res, indirect mem, iRegL oldval, iRegL newval)
 5296 %{
 5297   match(Set res (CompareAndSwapL mem (Binary oldval newval)));
 5298 
 5299   ins_cost(LOAD_COST + STORE_COST + ALU_COST * 6 + BRANCH_COST * 4);
 5300 
 5301   format %{
 5302     "cmpxchg $mem, $oldval, $newval\t# (long) if $mem == $oldval then $mem <-- $newval\n\t"
 5303     "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapL"
 5304   %}
 5305 
 5306   ins_encode(riscv_enc_cmpxchg(res, mem, oldval, newval));
 5307 
 5308   ins_pipe(pipe_slow);
 5309 %}
 5310 
 5311 instruct compareAndSwapP(iRegINoSp res, indirect mem, iRegP oldval, iRegP newval)
 5312 %{
 5313   predicate(n->as_LoadStore()->barrier_data() == 0);
 5314 
 5315   match(Set res (CompareAndSwapP mem (Binary oldval newval)));
 5316 
 5317   ins_cost(LOAD_COST + STORE_COST + ALU_COST * 6 + BRANCH_COST * 4);
 5318 
 5319   format %{
 5320     "cmpxchg $mem, $oldval, $newval\t# (ptr) if $mem == $oldval then $mem <-- $newval\n\t"
 5321     "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapP"
 5322   %}
 5323 
 5324   ins_encode(riscv_enc_cmpxchg(res, mem, oldval, newval));
 5325 
 5326   ins_pipe(pipe_slow);
 5327 %}
 5328 
 5329 instruct compareAndSwapN(iRegINoSp res, indirect mem, iRegN oldval, iRegN newval)
 5330 %{
 5331   predicate(n->as_LoadStore()->barrier_data() == 0);
 5332   match(Set res (CompareAndSwapN mem (Binary oldval newval)));
 5333 
 5334   ins_cost(LOAD_COST + STORE_COST + ALU_COST * 8 + BRANCH_COST * 4);
 5335 
 5336   format %{
 5337     "cmpxchg $mem, $oldval, $newval\t# (narrow oop) if $mem == $oldval then $mem <-- $newval\n\t"
 5338     "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapN"
 5339   %}
 5340 
 5341   ins_encode(riscv_enc_cmpxchgn(res, mem, oldval, newval));
 5342 
 5343   ins_pipe(pipe_slow);
 5344 %}
 5345 
 5346 // alternative CompareAndSwapX when we are eliding barriers
 5347 instruct compareAndSwapBAcq(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval,
 5348                             iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr)
 5349 %{
 5350   predicate(needs_acquiring_load_reserved(n));
 5351 
 5352   match(Set res (CompareAndSwapB mem (Binary oldval newval)));
 5353 
 5354   ins_cost(LOAD_COST + STORE_COST + ALU_COST * 10 + BRANCH_COST * 4);
 5355 
 5356   effect(TEMP_DEF res, KILL cr, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3);
 5357 
 5358   format %{
 5359     "cmpxchg_acq $mem, $oldval, $newval\t# (byte) if $mem == $oldval then $mem <-- $newval\n\t"
 5360     "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapBAcq"
 5361   %}
 5362 
 5363   ins_encode %{
 5364     __ cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int8,
 5365                             Assembler::aq /* acquire */, Assembler::rl /* release */, $res$$Register,
 5366                             true /* result as bool */, $tmp1$$Register, $tmp2$$Register, $tmp3$$Register);
 5367   %}
 5368 
 5369   ins_pipe(pipe_slow);
 5370 %}
 5371 
 5372 instruct compareAndSwapSAcq(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval,
 5373                             iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr)
 5374 %{
 5375   predicate(needs_acquiring_load_reserved(n));
 5376 
 5377   match(Set res (CompareAndSwapS mem (Binary oldval newval)));
 5378 
 5379   ins_cost(LOAD_COST + STORE_COST + ALU_COST * 11 + BRANCH_COST * 4);
 5380 
 5381   effect(TEMP_DEF res, KILL cr, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3);
 5382 
 5383   format %{
 5384     "cmpxchg_acq $mem, $oldval, $newval\t# (short) if $mem == $oldval then $mem <-- $newval\n\t"
 5385     "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapSAcq"
 5386   %}
 5387 
 5388   ins_encode %{
 5389     __ cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int16,
 5390                             Assembler::aq /* acquire */, Assembler::rl /* release */, $res$$Register,
 5391                             true /* result as bool */, $tmp1$$Register, $tmp2$$Register, $tmp3$$Register);
 5392   %}
 5393 
 5394   ins_pipe(pipe_slow);
 5395 %}
 5396 
 5397 instruct compareAndSwapIAcq(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval)
 5398 %{
 5399   predicate(needs_acquiring_load_reserved(n));
 5400 
 5401   match(Set res (CompareAndSwapI mem (Binary oldval newval)));
 5402 
 5403   ins_cost(LOAD_COST + STORE_COST + ALU_COST * 6 + BRANCH_COST * 4);
 5404 
 5405   format %{
 5406     "cmpxchg_acq $mem, $oldval, $newval\t# (int) if $mem == $oldval then $mem <-- $newval\n\t"
 5407     "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapIAcq"
 5408   %}
 5409 
 5410   ins_encode(riscv_enc_cmpxchgw_acq(res, mem, oldval, newval));
 5411 
 5412   ins_pipe(pipe_slow);
 5413 %}
 5414 
 5415 instruct compareAndSwapLAcq(iRegINoSp res, indirect mem, iRegL oldval, iRegL newval)
 5416 %{
 5417   predicate(needs_acquiring_load_reserved(n));
 5418 
 5419   match(Set res (CompareAndSwapL mem (Binary oldval newval)));
 5420 
 5421   ins_cost(LOAD_COST + STORE_COST + ALU_COST * 6 + BRANCH_COST * 4);
 5422 
 5423   format %{
 5424     "cmpxchg_acq $mem, $oldval, $newval\t# (long) if $mem == $oldval then $mem <-- $newval\n\t"
 5425     "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapLAcq"
 5426   %}
 5427 
 5428   ins_encode(riscv_enc_cmpxchg_acq(res, mem, oldval, newval));
 5429 
 5430   ins_pipe(pipe_slow);
 5431 %}
 5432 
 5433 instruct compareAndSwapPAcq(iRegINoSp res, indirect mem, iRegP oldval, iRegP newval)
 5434 %{
 5435   predicate(needs_acquiring_load_reserved(n) && (n->as_LoadStore()->barrier_data() == 0));
 5436 
 5437   match(Set res (CompareAndSwapP mem (Binary oldval newval)));
 5438 
 5439   ins_cost(LOAD_COST + STORE_COST + ALU_COST * 6 + BRANCH_COST * 4);
 5440 
 5441   format %{
 5442     "cmpxchg_acq $mem, $oldval, $newval\t# (ptr) if $mem == $oldval then $mem <-- $newval\n\t"
 5443     "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapPAcq"
 5444   %}
 5445 
 5446   ins_encode(riscv_enc_cmpxchg_acq(res, mem, oldval, newval));
 5447 
 5448   ins_pipe(pipe_slow);
 5449 %}
 5450 
 5451 instruct compareAndSwapNAcq(iRegINoSp res, indirect mem, iRegN oldval, iRegN newval)
 5452 %{
 5453   predicate(needs_acquiring_load_reserved(n) && n->as_LoadStore()->barrier_data() == 0);
 5454 
 5455   match(Set res (CompareAndSwapN mem (Binary oldval newval)));
 5456 
 5457   ins_cost(LOAD_COST + STORE_COST + ALU_COST * 8 + BRANCH_COST * 4);
 5458 
 5459   format %{
 5460     "cmpxchg_acq $mem, $oldval, $newval\t# (narrow oop) if $mem == $oldval then $mem <-- $newval\n\t"
 5461     "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapNAcq"
 5462   %}
 5463 
 5464   ins_encode(riscv_enc_cmpxchgn_acq(res, mem, oldval, newval));
 5465 
 5466   ins_pipe(pipe_slow);
 5467 %}
 5468 
 5469 // Sundry CAS operations.  Note that release is always true,
 5470 // regardless of the memory ordering of the CAS.  This is because we
 5471 // need the volatile case to be sequentially consistent but there is
 5472 // no trailing StoreLoad barrier emitted by C2.  Unfortunately we
 5473 // can't check the type of memory ordering here, so we always emit a
 5474 // sc_d(w) with rl bit set.
 5475 instruct compareAndExchangeB(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval,
 5476                              iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr)
 5477 %{
 5478   match(Set res (CompareAndExchangeB mem (Binary oldval newval)));
 5479 
 5480   ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST * 5);
 5481 
 5482   effect(TEMP_DEF res, KILL cr, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3);
 5483 
 5484   format %{
 5485     "cmpxchg $res = $mem, $oldval, $newval\t# (byte, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeB"
 5486   %}
 5487 
 5488   ins_encode %{
 5489     __ cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int8,
 5490                             /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register,
 5491                             /*result_as_bool*/ false, $tmp1$$Register, $tmp2$$Register, $tmp3$$Register);
 5492   %}
 5493 
 5494   ins_pipe(pipe_slow);
 5495 %}
 5496 
 5497 instruct compareAndExchangeS(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval,
 5498                              iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr)
 5499 %{
 5500   match(Set res (CompareAndExchangeS mem (Binary oldval newval)));
 5501 
 5502   ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST * 6);
 5503 
 5504   effect(TEMP_DEF res, KILL cr, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3);
 5505 
 5506   format %{
 5507     "cmpxchg $res = $mem, $oldval, $newval\t# (short, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeS"
 5508   %}
 5509 
 5510   ins_encode %{
 5511     __ cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int16,
 5512                             /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register,
 5513                             /*result_as_bool*/ false, $tmp1$$Register, $tmp2$$Register, $tmp3$$Register);
 5514   %}
 5515 
 5516   ins_pipe(pipe_slow);
 5517 %}
 5518 
 5519 instruct compareAndExchangeI(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval)
 5520 %{
 5521   match(Set res (CompareAndExchangeI mem (Binary oldval newval)));
 5522 
 5523   ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST);
 5524 
 5525   effect(TEMP_DEF res);
 5526 
 5527   format %{
 5528     "cmpxchg $res = $mem, $oldval, $newval\t# (int, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeI"
 5529   %}
 5530 
 5531   ins_encode %{
 5532     __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int32,
 5533                /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register);
 5534   %}
 5535 
 5536   ins_pipe(pipe_slow);
 5537 %}
 5538 
 5539 instruct compareAndExchangeL(iRegLNoSp res, indirect mem, iRegL oldval, iRegL newval)
 5540 %{
 5541   match(Set res (CompareAndExchangeL mem (Binary oldval newval)));
 5542 
 5543   ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST);
 5544 
 5545   effect(TEMP_DEF res);
 5546 
 5547   format %{
 5548     "cmpxchg $res = $mem, $oldval, $newval\t# (long, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeL"
 5549   %}
 5550 
 5551   ins_encode %{
 5552     __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int64,
 5553                /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register);
 5554   %}
 5555 
 5556   ins_pipe(pipe_slow);
 5557 %}
 5558 
 5559 instruct compareAndExchangeN(iRegNNoSp res, indirect mem, iRegN oldval, iRegN newval)
 5560 %{
 5561   predicate(n->as_LoadStore()->barrier_data() == 0);
 5562   match(Set res (CompareAndExchangeN mem (Binary oldval newval)));
 5563 
 5564   ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST * 3);
 5565 
 5566   effect(TEMP_DEF res);
 5567 
 5568   format %{
 5569     "cmpxchg $res = $mem, $oldval, $newval\t# (narrow oop, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeN"
 5570   %}
 5571 
 5572   ins_encode %{
 5573     __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::uint32,
 5574                /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register);
 5575   %}
 5576 
 5577   ins_pipe(pipe_slow);
 5578 %}
 5579 
 5580 instruct compareAndExchangeP(iRegPNoSp res, indirect mem, iRegP oldval, iRegP newval)
 5581 %{
 5582   predicate(n->as_LoadStore()->barrier_data() == 0);
 5583   match(Set res (CompareAndExchangeP mem (Binary oldval newval)));
 5584 
 5585   ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST);
 5586 
 5587   effect(TEMP_DEF res);
 5588 
 5589   format %{
 5590     "cmpxchg $res = $mem, $oldval, $newval\t# (ptr, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeP"
 5591   %}
 5592 
 5593   ins_encode %{
 5594     __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int64,
 5595                /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register);
 5596   %}
 5597 
 5598   ins_pipe(pipe_slow);
 5599 %}
 5600 
 5601 instruct compareAndExchangeBAcq(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval,
 5602                                 iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr)
 5603 %{
 5604   predicate(needs_acquiring_load_reserved(n));
 5605 
 5606   match(Set res (CompareAndExchangeB mem (Binary oldval newval)));
 5607 
 5608   ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST * 5);
 5609 
 5610   effect(TEMP_DEF res, KILL cr, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3);
 5611 
 5612   format %{
 5613     "cmpxchg_acq $res = $mem, $oldval, $newval\t# (byte, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeBAcq"
 5614   %}
 5615 
 5616   ins_encode %{
 5617     __ cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int8,
 5618                             /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register,
 5619                             /*result_as_bool*/ false, $tmp1$$Register, $tmp2$$Register, $tmp3$$Register);
 5620   %}
 5621 
 5622   ins_pipe(pipe_slow);
 5623 %}
 5624 
 5625 instruct compareAndExchangeSAcq(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval,
 5626                                 iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr)
 5627 %{
 5628   predicate(needs_acquiring_load_reserved(n));
 5629 
 5630   match(Set res (CompareAndExchangeS mem (Binary oldval newval)));
 5631 
 5632   ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST * 6);
 5633 
 5634   effect(TEMP_DEF res, KILL cr, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3);
 5635 
 5636   format %{
 5637     "cmpxchg_acq $res = $mem, $oldval, $newval\t# (short, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeSAcq"
 5638   %}
 5639 
 5640   ins_encode %{
 5641     __ cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int16,
 5642                             /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register,
 5643                             /*result_as_bool*/ false, $tmp1$$Register, $tmp2$$Register, $tmp3$$Register);
 5644   %}
 5645 
 5646   ins_pipe(pipe_slow);
 5647 %}
 5648 
 5649 instruct compareAndExchangeIAcq(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval)
 5650 %{
 5651   predicate(needs_acquiring_load_reserved(n));
 5652 
 5653   match(Set res (CompareAndExchangeI mem (Binary oldval newval)));
 5654 
 5655   ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST);
 5656 
 5657   effect(TEMP_DEF res);
 5658 
 5659   format %{
 5660     "cmpxchg_acq $res = $mem, $oldval, $newval\t# (int, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeIAcq"
 5661   %}
 5662 
 5663   ins_encode %{
 5664     __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int32,
 5665                /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register);
 5666   %}
 5667 
 5668   ins_pipe(pipe_slow);
 5669 %}
 5670 
 5671 instruct compareAndExchangeLAcq(iRegLNoSp res, indirect mem, iRegL oldval, iRegL newval)
 5672 %{
 5673   predicate(needs_acquiring_load_reserved(n));
 5674 
 5675   match(Set res (CompareAndExchangeL mem (Binary oldval newval)));
 5676 
 5677   ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST);
 5678 
 5679   effect(TEMP_DEF res);
 5680 
 5681   format %{
 5682     "cmpxchg_acq $res = $mem, $oldval, $newval\t# (long, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeLAcq"
 5683   %}
 5684 
 5685   ins_encode %{
 5686     __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int64,
 5687                /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register);
 5688   %}
 5689 
 5690   ins_pipe(pipe_slow);
 5691 %}
 5692 
 5693 instruct compareAndExchangeNAcq(iRegNNoSp res, indirect mem, iRegN oldval, iRegN newval)
 5694 %{
 5695   predicate(needs_acquiring_load_reserved(n) && n->as_LoadStore()->barrier_data() == 0);
 5696 
 5697   match(Set res (CompareAndExchangeN mem (Binary oldval newval)));
 5698 
 5699   ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST);
 5700 
 5701   effect(TEMP_DEF res);
 5702 
 5703   format %{
 5704     "cmpxchg_acq $res = $mem, $oldval, $newval\t# (narrow oop, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeNAcq"
 5705   %}
 5706 
 5707   ins_encode %{
 5708     __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::uint32,
 5709                /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register);
 5710   %}
 5711 
 5712   ins_pipe(pipe_slow);
 5713 %}
 5714 
 5715 instruct compareAndExchangePAcq(iRegPNoSp res, indirect mem, iRegP oldval, iRegP newval)
 5716 %{
 5717   predicate(needs_acquiring_load_reserved(n) && (n->as_LoadStore()->barrier_data() == 0));
 5718 
 5719   match(Set res (CompareAndExchangeP mem (Binary oldval newval)));
 5720 
 5721   ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST);
 5722 
 5723   effect(TEMP_DEF res);
 5724 
 5725   format %{
 5726     "cmpxchg_acq $res = $mem, $oldval, $newval\t# (ptr, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangePAcq"
 5727   %}
 5728 
 5729   ins_encode %{
 5730     __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int64,
 5731                /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register);
 5732   %}
 5733 
 5734   ins_pipe(pipe_slow);
 5735 %}
 5736 
 5737 instruct weakCompareAndSwapB(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval,
 5738                              iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr)
 5739 %{
 5740   match(Set res (WeakCompareAndSwapB mem (Binary oldval newval)));
 5741 
 5742   ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 6);
 5743 
 5744   effect(TEMP_DEF res, KILL cr, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3);
 5745 
 5746   format %{
 5747     "weak_cmpxchg $mem, $oldval, $newval\t# (byte, weak) if $mem == $oldval then $mem <-- $newval\n\t"
 5748     "# $res == 1 when success, #@weakCompareAndSwapB"
 5749   %}
 5750 
 5751   ins_encode %{
 5752     __ weak_cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int8,
 5753                                  /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register,
 5754                                  $tmp1$$Register, $tmp2$$Register, $tmp3$$Register);
 5755   %}
 5756 
 5757   ins_pipe(pipe_slow);
 5758 %}
 5759 
 5760 instruct weakCompareAndSwapS(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval,
 5761                              iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr)
 5762 %{
 5763   match(Set res (WeakCompareAndSwapS mem (Binary oldval newval)));
 5764 
 5765   ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 7);
 5766 
 5767   effect(TEMP_DEF res, KILL cr, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3);
 5768 
 5769   format %{
 5770     "weak_cmpxchg $mem, $oldval, $newval\t# (short, weak) if $mem == $oldval then $mem <-- $newval\n\t"
 5771     "# $res == 1 when success, #@weakCompareAndSwapS"
 5772   %}
 5773 
 5774   ins_encode %{
 5775     __ weak_cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int16,
 5776                                  /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register,
 5777                                  $tmp1$$Register, $tmp2$$Register, $tmp3$$Register);
 5778   %}
 5779 
 5780   ins_pipe(pipe_slow);
 5781 %}
 5782 
 5783 instruct weakCompareAndSwapI(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval)
 5784 %{
 5785   match(Set res (WeakCompareAndSwapI mem (Binary oldval newval)));
 5786 
 5787   ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 2);
 5788 
 5789   format %{
 5790     "weak_cmpxchg $mem, $oldval, $newval\t# (int, weak) if $mem == $oldval then $mem <-- $newval\n\t"
 5791     "# $res == 1 when success, #@weakCompareAndSwapI"
 5792   %}
 5793 
 5794   ins_encode %{
 5795     __ weak_cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int32,
 5796                     /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register);
 5797   %}
 5798 
 5799   ins_pipe(pipe_slow);
 5800 %}
 5801 
 5802 instruct weakCompareAndSwapL(iRegINoSp res, indirect mem, iRegL oldval, iRegL newval)
 5803 %{
 5804   match(Set res (WeakCompareAndSwapL mem (Binary oldval newval)));
 5805 
 5806   ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 2);
 5807 
 5808   format %{
 5809     "weak_cmpxchg $mem, $oldval, $newval\t# (long, weak) if $mem == $oldval then $mem <-- $newval\n\t"
 5810     "# $res == 1 when success, #@weakCompareAndSwapL"
 5811   %}
 5812 
 5813   ins_encode %{
 5814     __ weak_cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int64,
 5815                     /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register);
 5816   %}
 5817 
 5818   ins_pipe(pipe_slow);
 5819 %}
 5820 
 5821 instruct weakCompareAndSwapN(iRegINoSp res, indirect mem, iRegN oldval, iRegN newval)
 5822 %{
 5823   predicate(n->as_LoadStore()->barrier_data() == 0);
 5824   match(Set res (WeakCompareAndSwapN mem (Binary oldval newval)));
 5825 
 5826   ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 4);
 5827 
 5828   format %{
 5829     "weak_cmpxchg $mem, $oldval, $newval\t# (narrow oop, weak) if $mem == $oldval then $mem <-- $newval\n\t"
 5830     "# $res == 1 when success, #@weakCompareAndSwapN"
 5831   %}
 5832 
 5833   ins_encode %{
 5834     __ weak_cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::uint32,
 5835                     /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register);
 5836   %}
 5837 
 5838   ins_pipe(pipe_slow);
 5839 %}
 5840 
 5841 instruct weakCompareAndSwapP(iRegINoSp res, indirect mem, iRegP oldval, iRegP newval)
 5842 %{
 5843   predicate(n->as_LoadStore()->barrier_data() == 0);
 5844   match(Set res (WeakCompareAndSwapP mem (Binary oldval newval)));
 5845 
 5846   ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 2);
 5847 
 5848   format %{
 5849     "weak_cmpxchg $mem, $oldval, $newval\t# (ptr, weak) if $mem == $oldval then $mem <-- $newval\n\t"
 5850     "# $res == 1 when success, #@weakCompareAndSwapP"
 5851   %}
 5852 
 5853   ins_encode %{
 5854     __ weak_cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int64,
 5855                     /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register);
 5856   %}
 5857 
 5858   ins_pipe(pipe_slow);
 5859 %}
 5860 
 5861 instruct weakCompareAndSwapBAcq(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval,
 5862                                 iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr)
 5863 %{
 5864   predicate(needs_acquiring_load_reserved(n));
 5865 
 5866   match(Set res (WeakCompareAndSwapB mem (Binary oldval newval)));
 5867 
 5868   ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 6);
 5869 
 5870   effect(TEMP_DEF res, KILL cr, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3);
 5871 
 5872   format %{
 5873     "weak_cmpxchg_acq $mem, $oldval, $newval\t# (byte, weak) if $mem == $oldval then $mem <-- $newval\n\t"
 5874     "# $res == 1 when success, #@weakCompareAndSwapBAcq"
 5875   %}
 5876 
 5877   ins_encode %{
 5878     __ weak_cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int8,
 5879                                  /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register,
 5880                                  $tmp1$$Register, $tmp2$$Register, $tmp3$$Register);
 5881   %}
 5882 
 5883   ins_pipe(pipe_slow);
 5884 %}
 5885 
 5886 instruct weakCompareAndSwapSAcq(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval,
 5887                                 iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr)
 5888 %{
 5889   predicate(needs_acquiring_load_reserved(n));
 5890 
 5891   match(Set res (WeakCompareAndSwapS mem (Binary oldval newval)));
 5892 
 5893   ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 7);
 5894 
 5895   effect(TEMP_DEF res, KILL cr, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3);
 5896 
 5897   format %{
 5898     "weak_cmpxchg_acq $mem, $oldval, $newval\t# (short, weak) if $mem == $oldval then $mem <-- $newval\n\t"
 5899     "# $res == 1 when success, #@weakCompareAndSwapSAcq"
 5900   %}
 5901 
 5902   ins_encode %{
 5903     __ weak_cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int16,
 5904                                  /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register,
 5905                                  $tmp1$$Register, $tmp2$$Register, $tmp3$$Register);
 5906   %}
 5907 
 5908   ins_pipe(pipe_slow);
 5909 %}
 5910 
 5911 instruct weakCompareAndSwapIAcq(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval)
 5912 %{
 5913   predicate(needs_acquiring_load_reserved(n));
 5914 
 5915   match(Set res (WeakCompareAndSwapI mem (Binary oldval newval)));
 5916 
 5917   ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 2);
 5918 
 5919   format %{
 5920     "weak_cmpxchg_acq $mem, $oldval, $newval\t# (int, weak) if $mem == $oldval then $mem <-- $newval\n\t"
 5921     "# $res == 1 when success, #@weakCompareAndSwapIAcq"
 5922   %}
 5923 
 5924   ins_encode %{
 5925     __ weak_cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int32,
 5926                     /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register);
 5927   %}
 5928 
 5929   ins_pipe(pipe_slow);
 5930 %}
 5931 
 5932 instruct weakCompareAndSwapLAcq(iRegINoSp res, indirect mem, iRegL oldval, iRegL newval)
 5933 %{
 5934   predicate(needs_acquiring_load_reserved(n));
 5935 
 5936   match(Set res (WeakCompareAndSwapL mem (Binary oldval newval)));
 5937 
 5938   ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 2);
 5939 
 5940   format %{
 5941     "weak_cmpxchg_acq $mem, $oldval, $newval\t# (long, weak) if $mem == $oldval then $mem <-- $newval\n\t"
 5942     "# $res == 1 when success, #@weakCompareAndSwapLAcq"
 5943   %}
 5944 
 5945   ins_encode %{
 5946     __ weak_cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int64,
 5947                     /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register);
 5948   %}
 5949 
 5950   ins_pipe(pipe_slow);
 5951 %}
 5952 
 5953 instruct weakCompareAndSwapNAcq(iRegINoSp res, indirect mem, iRegN oldval, iRegN newval)
 5954 %{
 5955   predicate(needs_acquiring_load_reserved(n) && n->as_LoadStore()->barrier_data() == 0);
 5956 
 5957   match(Set res (WeakCompareAndSwapN mem (Binary oldval newval)));
 5958 
 5959   ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 4);
 5960 
 5961   format %{
 5962     "weak_cmpxchg_acq $mem, $oldval, $newval\t# (narrow oop, weak) if $mem == $oldval then $mem <-- $newval\n\t"
 5963     "# $res == 1 when success, #@weakCompareAndSwapNAcq"
 5964   %}
 5965 
 5966   ins_encode %{
 5967     __ weak_cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::uint32,
 5968                     /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register);
 5969   %}
 5970 
 5971   ins_pipe(pipe_slow);
 5972 %}
 5973 
 5974 instruct weakCompareAndSwapPAcq(iRegINoSp res, indirect mem, iRegP oldval, iRegP newval)
 5975 %{
 5976   predicate(needs_acquiring_load_reserved(n) && (n->as_LoadStore()->barrier_data() == 0));
 5977 
 5978   match(Set res (WeakCompareAndSwapP mem (Binary oldval newval)));
 5979 
 5980   ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 2);
 5981 
 5982   format %{
 5983     "weak_cmpxchg_acq $mem, $oldval, $newval\t# (ptr, weak) if $mem == $oldval then $mem <-- $newval\n\t"
 5984     "\t# $res == 1 when success, #@weakCompareAndSwapPAcq"
 5985   %}
 5986 
 5987   ins_encode %{
 5988     __ weak_cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int64,
 5989                     /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register);
 5990   %}
 5991 
 5992   ins_pipe(pipe_slow);
 5993 %}
 5994 
 5995 instruct get_and_setI(indirect mem, iRegI newv, iRegINoSp prev)
 5996 %{
 5997   match(Set prev (GetAndSetI mem newv));
 5998 
 5999   ins_cost(ALU_COST);
 6000 
 6001   format %{ "atomic_xchgw  $prev, $newv, [$mem]\t#@get_and_setI" %}
 6002 
 6003   ins_encode %{
 6004     __ atomic_xchgw($prev$$Register, $newv$$Register, as_Register($mem$$base));
 6005   %}
 6006 
 6007   ins_pipe(pipe_serial);
 6008 %}
 6009 
 6010 instruct get_and_setL(indirect mem, iRegL newv, iRegLNoSp prev)
 6011 %{
 6012   match(Set prev (GetAndSetL mem newv));
 6013 
 6014   ins_cost(ALU_COST);
 6015 
 6016   format %{ "atomic_xchg  $prev, $newv, [$mem]\t#@get_and_setL" %}
 6017 
 6018   ins_encode %{
 6019     __ atomic_xchg($prev$$Register, $newv$$Register, as_Register($mem$$base));
 6020   %}
 6021 
 6022   ins_pipe(pipe_serial);
 6023 %}
 6024 
 6025 instruct get_and_setN(indirect mem, iRegN newv, iRegINoSp prev)
 6026 %{
 6027   predicate(n->as_LoadStore()->barrier_data() == 0);
 6028 
 6029   match(Set prev (GetAndSetN mem newv));
 6030 
 6031   ins_cost(ALU_COST);
 6032 
 6033   format %{ "atomic_xchgwu $prev, $newv, [$mem]\t#@get_and_setN" %}
 6034 
 6035   ins_encode %{
 6036     __ atomic_xchgwu($prev$$Register, $newv$$Register, as_Register($mem$$base));
 6037   %}
 6038 
 6039   ins_pipe(pipe_serial);
 6040 %}
 6041 
 6042 instruct get_and_setP(indirect mem, iRegP newv, iRegPNoSp prev)
 6043 %{
 6044   predicate(n->as_LoadStore()->barrier_data() == 0);
 6045   match(Set prev (GetAndSetP mem newv));
 6046 
 6047   ins_cost(ALU_COST);
 6048 
 6049   format %{ "atomic_xchg  $prev, $newv, [$mem]\t#@get_and_setP" %}
 6050 
 6051   ins_encode %{
 6052     __ atomic_xchg($prev$$Register, $newv$$Register, as_Register($mem$$base));
 6053   %}
 6054 
 6055   ins_pipe(pipe_serial);
 6056 %}
 6057 
 6058 instruct get_and_setIAcq(indirect mem, iRegI newv, iRegINoSp prev)
 6059 %{
 6060   predicate(needs_acquiring_load_reserved(n));
 6061 
 6062   match(Set prev (GetAndSetI mem newv));
 6063 
 6064   ins_cost(ALU_COST);
 6065 
 6066   format %{ "atomic_xchgw_acq  $prev, $newv, [$mem]\t#@get_and_setIAcq" %}
 6067 
 6068   ins_encode %{
 6069     __ atomic_xchgalw($prev$$Register, $newv$$Register, as_Register($mem$$base));
 6070   %}
 6071 
 6072   ins_pipe(pipe_serial);
 6073 %}
 6074 
 6075 instruct get_and_setLAcq(indirect mem, iRegL newv, iRegLNoSp prev)
 6076 %{
 6077   predicate(needs_acquiring_load_reserved(n));
 6078 
 6079   match(Set prev (GetAndSetL mem newv));
 6080 
 6081   ins_cost(ALU_COST);
 6082 
 6083   format %{ "atomic_xchg_acq  $prev, $newv, [$mem]\t#@get_and_setLAcq" %}
 6084 
 6085   ins_encode %{
 6086     __ atomic_xchgal($prev$$Register, $newv$$Register, as_Register($mem$$base));
 6087   %}
 6088 
 6089   ins_pipe(pipe_serial);
 6090 %}
 6091 
 6092 instruct get_and_setNAcq(indirect mem, iRegN newv, iRegINoSp prev)
 6093 %{
 6094   predicate(needs_acquiring_load_reserved(n) && n->as_LoadStore()->barrier_data() == 0);
 6095 
 6096   match(Set prev (GetAndSetN mem newv));
 6097 
 6098   ins_cost(ALU_COST);
 6099 
 6100   format %{ "atomic_xchgwu_acq $prev, $newv, [$mem]\t#@get_and_setNAcq" %}
 6101 
 6102   ins_encode %{
 6103     __ atomic_xchgalwu($prev$$Register, $newv$$Register, as_Register($mem$$base));
 6104   %}
 6105 
 6106   ins_pipe(pipe_serial);
 6107 %}
 6108 
 6109 instruct get_and_setPAcq(indirect mem, iRegP newv, iRegPNoSp prev)
 6110 %{
 6111   predicate(needs_acquiring_load_reserved(n) && (n->as_LoadStore()->barrier_data() == 0));
 6112 
 6113   match(Set prev (GetAndSetP mem newv));
 6114 
 6115   ins_cost(ALU_COST);
 6116 
 6117   format %{ "atomic_xchg_acq  $prev, $newv, [$mem]\t#@get_and_setPAcq" %}
 6118 
 6119   ins_encode %{
 6120     __ atomic_xchgal($prev$$Register, $newv$$Register, as_Register($mem$$base));
 6121   %}
 6122 
 6123   ins_pipe(pipe_serial);
 6124 %}
 6125 
 6126 instruct get_and_addL(indirect mem, iRegLNoSp newval, iRegL incr)
 6127 %{
 6128   match(Set newval (GetAndAddL mem incr));
 6129 
 6130   ins_cost(ALU_COST);
 6131 
 6132   format %{ "get_and_addL $newval, [$mem], $incr\t#@get_and_addL" %}
 6133 
 6134   ins_encode %{
 6135     __ atomic_add($newval$$Register, $incr$$Register, as_Register($mem$$base));
 6136   %}
 6137 
 6138   ins_pipe(pipe_serial);
 6139 %}
 6140 
 6141 instruct get_and_addL_no_res(indirect mem, Universe dummy, iRegL incr)
 6142 %{
 6143   predicate(n->as_LoadStore()->result_not_used());
 6144 
 6145   match(Set dummy (GetAndAddL mem incr));
 6146 
 6147   ins_cost(ALU_COST);
 6148 
 6149   format %{ "get_and_addL [$mem], $incr\t#@get_and_addL_no_res" %}
 6150 
 6151   ins_encode %{
 6152     __ atomic_add(noreg, $incr$$Register, as_Register($mem$$base));
 6153   %}
 6154 
 6155   ins_pipe(pipe_serial);
 6156 %}
 6157 
 6158 instruct get_and_addLi(indirect mem, iRegLNoSp newval, immLAdd incr)
 6159 %{
 6160   match(Set newval (GetAndAddL mem incr));
 6161 
 6162   ins_cost(ALU_COST);
 6163 
 6164   format %{ "get_and_addL $newval, [$mem], $incr\t#@get_and_addLi" %}
 6165 
 6166   ins_encode %{
 6167     __ atomic_add($newval$$Register, $incr$$constant, as_Register($mem$$base));
 6168   %}
 6169 
 6170   ins_pipe(pipe_serial);
 6171 %}
 6172 
 6173 instruct get_and_addLi_no_res(indirect mem, Universe dummy, immLAdd incr)
 6174 %{
 6175   predicate(n->as_LoadStore()->result_not_used());
 6176 
 6177   match(Set dummy (GetAndAddL mem incr));
 6178 
 6179   ins_cost(ALU_COST);
 6180 
 6181   format %{ "get_and_addL [$mem], $incr\t#@get_and_addLi_no_res" %}
 6182 
 6183   ins_encode %{
 6184     __ atomic_add(noreg, $incr$$constant, as_Register($mem$$base));
 6185   %}
 6186 
 6187   ins_pipe(pipe_serial);
 6188 %}
 6189 
 6190 instruct get_and_addI(indirect mem, iRegINoSp newval, iRegIorL2I incr)
 6191 %{
 6192   match(Set newval (GetAndAddI mem incr));
 6193 
 6194   ins_cost(ALU_COST);
 6195 
 6196   format %{ "get_and_addI $newval, [$mem], $incr\t#@get_and_addI" %}
 6197 
 6198   ins_encode %{
 6199     __ atomic_addw($newval$$Register, $incr$$Register, as_Register($mem$$base));
 6200   %}
 6201 
 6202   ins_pipe(pipe_serial);
 6203 %}
 6204 
 6205 instruct get_and_addI_no_res(indirect mem, Universe dummy, iRegIorL2I incr)
 6206 %{
 6207   predicate(n->as_LoadStore()->result_not_used());
 6208 
 6209   match(Set dummy (GetAndAddI mem incr));
 6210 
 6211   ins_cost(ALU_COST);
 6212 
 6213   format %{ "get_and_addI [$mem], $incr\t#@get_and_addI_no_res" %}
 6214 
 6215   ins_encode %{
 6216     __ atomic_addw(noreg, $incr$$Register, as_Register($mem$$base));
 6217   %}
 6218 
 6219   ins_pipe(pipe_serial);
 6220 %}
 6221 
 6222 instruct get_and_addIi(indirect mem, iRegINoSp newval, immIAdd incr)
 6223 %{
 6224   match(Set newval (GetAndAddI mem incr));
 6225 
 6226   ins_cost(ALU_COST);
 6227 
 6228   format %{ "get_and_addI $newval, [$mem], $incr\t#@get_and_addIi" %}
 6229 
 6230   ins_encode %{
 6231     __ atomic_addw($newval$$Register, $incr$$constant, as_Register($mem$$base));
 6232   %}
 6233 
 6234   ins_pipe(pipe_serial);
 6235 %}
 6236 
 6237 instruct get_and_addIi_no_res(indirect mem, Universe dummy, immIAdd incr)
 6238 %{
 6239   predicate(n->as_LoadStore()->result_not_used());
 6240 
 6241   match(Set dummy (GetAndAddI mem incr));
 6242 
 6243   ins_cost(ALU_COST);
 6244 
 6245   format %{ "get_and_addI [$mem], $incr\t#@get_and_addIi_no_res" %}
 6246 
 6247   ins_encode %{
 6248     __ atomic_addw(noreg, $incr$$constant, as_Register($mem$$base));
 6249   %}
 6250 
 6251   ins_pipe(pipe_serial);
 6252 %}
 6253 
 6254 instruct get_and_addLAcq(indirect mem, iRegLNoSp newval, iRegL incr)
 6255 %{
 6256   predicate(needs_acquiring_load_reserved(n));
 6257 
 6258   match(Set newval (GetAndAddL mem incr));
 6259 
 6260   ins_cost(ALU_COST);
 6261 
 6262   format %{ "get_and_addL_acq $newval, [$mem], $incr\t#@get_and_addLAcq" %}
 6263 
 6264   ins_encode %{
 6265     __ atomic_addal($newval$$Register, $incr$$Register, as_Register($mem$$base));
 6266   %}
 6267 
 6268   ins_pipe(pipe_serial);
 6269 %}
 6270 
 6271 instruct get_and_addL_no_resAcq(indirect mem, Universe dummy, iRegL incr) %{
 6272   predicate(n->as_LoadStore()->result_not_used() && needs_acquiring_load_reserved(n));
 6273 
 6274   match(Set dummy (GetAndAddL mem incr));
 6275 
 6276   ins_cost(ALU_COST);
 6277 
 6278   format %{ "get_and_addL_acq [$mem], $incr\t#@get_and_addL_no_resAcq" %}
 6279 
 6280   ins_encode %{
 6281     __ atomic_addal(noreg, $incr$$Register, as_Register($mem$$base));
 6282   %}
 6283 
 6284   ins_pipe(pipe_serial);
 6285 %}
 6286 
 6287 instruct get_and_addLiAcq(indirect mem, iRegLNoSp newval, immLAdd incr)
 6288 %{
 6289   predicate(needs_acquiring_load_reserved(n));
 6290 
 6291   match(Set newval (GetAndAddL mem incr));
 6292 
 6293   ins_cost(ALU_COST);
 6294 
 6295   format %{ "get_and_addL_acq $newval, [$mem], $incr\t#@get_and_addLiAcq" %}
 6296 
 6297   ins_encode %{
 6298     __ atomic_addal($newval$$Register, $incr$$constant, as_Register($mem$$base));
 6299   %}
 6300 
 6301   ins_pipe(pipe_serial);
 6302 %}
 6303 
 6304 instruct get_and_addLi_no_resAcq(indirect mem, Universe dummy, immLAdd incr)
 6305 %{
 6306   predicate(n->as_LoadStore()->result_not_used() && needs_acquiring_load_reserved(n));
 6307 
 6308   match(Set dummy (GetAndAddL mem incr));
 6309 
 6310   ins_cost(ALU_COST);
 6311 
 6312   format %{ "get_and_addL_acq [$mem], $incr\t#@get_and_addLi_no_resAcq" %}
 6313 
 6314   ins_encode %{
 6315     __ atomic_addal(noreg, $incr$$constant, as_Register($mem$$base));
 6316   %}
 6317 
 6318   ins_pipe(pipe_serial);
 6319 %}
 6320 
 6321 instruct get_and_addIAcq(indirect mem, iRegINoSp newval, iRegIorL2I incr)
 6322 %{
 6323   predicate(needs_acquiring_load_reserved(n));
 6324 
 6325   match(Set newval (GetAndAddI mem incr));
 6326 
 6327   ins_cost(ALU_COST);
 6328 
 6329   format %{ "get_and_addI_acq $newval, [$mem], $incr\t#@get_and_addIAcq" %}
 6330 
 6331   ins_encode %{
 6332     __ atomic_addalw($newval$$Register, $incr$$Register, as_Register($mem$$base));
 6333   %}
 6334 
 6335   ins_pipe(pipe_serial);
 6336 %}
 6337 
 6338 instruct get_and_addI_no_resAcq(indirect mem, Universe dummy, iRegIorL2I incr)
 6339 %{
 6340   predicate(n->as_LoadStore()->result_not_used() && needs_acquiring_load_reserved(n));
 6341 
 6342   match(Set dummy (GetAndAddI mem incr));
 6343 
 6344   ins_cost(ALU_COST);
 6345 
 6346   format %{ "get_and_addI_acq [$mem], $incr\t#@get_and_addI_no_resAcq" %}
 6347 
 6348   ins_encode %{
 6349     __ atomic_addalw(noreg, $incr$$Register, as_Register($mem$$base));
 6350   %}
 6351 
 6352   ins_pipe(pipe_serial);
 6353 %}
 6354 
 6355 instruct get_and_addIiAcq(indirect mem, iRegINoSp newval, immIAdd incr)
 6356 %{
 6357   predicate(needs_acquiring_load_reserved(n));
 6358 
 6359   match(Set newval (GetAndAddI mem incr));
 6360 
 6361   ins_cost(ALU_COST);
 6362 
 6363   format %{ "get_and_addI_acq $newval, [$mem], $incr\t#@get_and_addIiAcq" %}
 6364 
 6365   ins_encode %{
 6366     __ atomic_addalw($newval$$Register, $incr$$constant, as_Register($mem$$base));
 6367   %}
 6368 
 6369   ins_pipe(pipe_serial);
 6370 %}
 6371 
 6372 instruct get_and_addIi_no_resAcq(indirect mem, Universe dummy, immIAdd incr)
 6373 %{
 6374   predicate(n->as_LoadStore()->result_not_used() && needs_acquiring_load_reserved(n));
 6375 
 6376   match(Set dummy (GetAndAddI mem incr));
 6377 
 6378   ins_cost(ALU_COST);
 6379 
 6380   format %{ "get_and_addI_acq [$mem], $incr\t#@get_and_addIi_no_resAcq" %}
 6381 
 6382   ins_encode %{
 6383     __ atomic_addalw(noreg, $incr$$constant, as_Register($mem$$base));
 6384   %}
 6385 
 6386   ins_pipe(pipe_serial);
 6387 %}
 6388 
 6389 // ============================================================================
 6390 // Arithmetic Instructions
 6391 //
 6392 
 6393 // Integer Addition
 6394 
 6395 // TODO
 6396 // these currently employ operations which do not set CR and hence are
 6397 // not flagged as killing CR but we would like to isolate the cases
 6398 // where we want to set flags from those where we don't. need to work
 6399 // out how to do that.
 6400 instruct addI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
 6401   match(Set dst (AddI src1 src2));
 6402 
 6403   ins_cost(ALU_COST);
 6404   format %{ "addw  $dst, $src1, $src2\t#@addI_reg_reg" %}
 6405 
 6406   ins_encode %{
 6407     __ addw(as_Register($dst$$reg),
 6408             as_Register($src1$$reg),
 6409             as_Register($src2$$reg));
 6410   %}
 6411 
 6412   ins_pipe(ialu_reg_reg);
 6413 %}
 6414 
 6415 instruct addI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immIAdd src2) %{
 6416   match(Set dst (AddI src1 src2));
 6417 
 6418   ins_cost(ALU_COST);
 6419   format %{ "addiw  $dst, $src1, $src2\t#@addI_reg_imm" %}
 6420 
 6421   ins_encode %{
 6422     int32_t con = (int32_t)$src2$$constant;
 6423     __ addiw(as_Register($dst$$reg),
 6424              as_Register($src1$$reg),
 6425              $src2$$constant);
 6426   %}
 6427 
 6428   ins_pipe(ialu_reg_imm);
 6429 %}
 6430 
 6431 instruct addI_reg_imm_l2i(iRegINoSp dst, iRegL src1, immIAdd src2) %{
 6432   match(Set dst (AddI (ConvL2I src1) src2));
 6433 
 6434   ins_cost(ALU_COST);
 6435   format %{ "addiw  $dst, $src1, $src2\t#@addI_reg_imm_l2i" %}
 6436 
 6437   ins_encode %{
 6438     __ addiw(as_Register($dst$$reg),
 6439              as_Register($src1$$reg),
 6440              $src2$$constant);
 6441   %}
 6442 
 6443   ins_pipe(ialu_reg_imm);
 6444 %}
 6445 
 6446 // Pointer Addition
 6447 instruct addP_reg_reg(iRegPNoSp dst, iRegP src1, iRegL src2) %{
 6448   match(Set dst (AddP src1 src2));
 6449 
 6450   ins_cost(ALU_COST);
 6451   format %{ "add $dst, $src1, $src2\t# ptr, #@addP_reg_reg" %}
 6452 
 6453   ins_encode %{
 6454     __ add(as_Register($dst$$reg),
 6455            as_Register($src1$$reg),
 6456            as_Register($src2$$reg));
 6457   %}
 6458 
 6459   ins_pipe(ialu_reg_reg);
 6460 %}
 6461 
 6462 // If we shift more than 32 bits, we need not convert I2L.
 6463 instruct lShiftL_regI_immGE32(iRegLNoSp dst, iRegI src, uimmI6_ge32 scale) %{
 6464   match(Set dst (LShiftL (ConvI2L src) scale));
 6465   ins_cost(ALU_COST);
 6466   format %{ "slli  $dst, $src, $scale & 63\t#@lShiftL_regI_immGE32" %}
 6467 
 6468   ins_encode %{
 6469     __ slli(as_Register($dst$$reg), as_Register($src$$reg), $scale$$constant & 63);
 6470   %}
 6471 
 6472   ins_pipe(ialu_reg_shift);
 6473 %}
 6474 
 6475 // Pointer Immediate Addition
 6476 // n.b. this needs to be more expensive than using an indirect memory
 6477 // operand
 6478 instruct addP_reg_imm(iRegPNoSp dst, iRegP src1, immLAdd src2) %{
 6479   match(Set dst (AddP src1 src2));
 6480   ins_cost(ALU_COST);
 6481   format %{ "addi  $dst, $src1, $src2\t# ptr, #@addP_reg_imm" %}
 6482 
 6483   ins_encode %{
 6484     // src2 is imm, so actually call the addi
 6485     __ add(as_Register($dst$$reg),
 6486            as_Register($src1$$reg),
 6487            $src2$$constant);
 6488   %}
 6489 
 6490   ins_pipe(ialu_reg_imm);
 6491 %}
 6492 
 6493 // Long Addition
 6494 instruct addL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2) %{
 6495   match(Set dst (AddL src1 src2));
 6496   ins_cost(ALU_COST);
 6497   format %{ "add  $dst, $src1, $src2\t#@addL_reg_reg" %}
 6498 
 6499   ins_encode %{
 6500     __ add(as_Register($dst$$reg),
 6501            as_Register($src1$$reg),
 6502            as_Register($src2$$reg));
 6503   %}
 6504 
 6505   ins_pipe(ialu_reg_reg);
 6506 %}
 6507 
 6508 // No constant pool entries requiredLong Immediate Addition.
 6509 instruct addL_reg_imm(iRegLNoSp dst, iRegL src1, immLAdd src2) %{
 6510   match(Set dst (AddL src1 src2));
 6511   ins_cost(ALU_COST);
 6512   format %{ "addi  $dst, $src1, $src2\t#@addL_reg_imm" %}
 6513 
 6514   ins_encode %{
 6515     // src2 is imm, so actually call the addi
 6516     __ add(as_Register($dst$$reg),
 6517            as_Register($src1$$reg),
 6518            $src2$$constant);
 6519   %}
 6520 
 6521   ins_pipe(ialu_reg_imm);
 6522 %}
 6523 
 6524 // Integer Subtraction
 6525 instruct subI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
 6526   match(Set dst (SubI src1 src2));
 6527 
 6528   ins_cost(ALU_COST);
 6529   format %{ "subw  $dst, $src1, $src2\t#@subI_reg_reg" %}
 6530 
 6531   ins_encode %{
 6532     __ subw(as_Register($dst$$reg),
 6533             as_Register($src1$$reg),
 6534             as_Register($src2$$reg));
 6535   %}
 6536 
 6537   ins_pipe(ialu_reg_reg);
 6538 %}
 6539 
 6540 // Immediate Subtraction
 6541 instruct subI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immISub src2) %{
 6542   match(Set dst (SubI src1 src2));
 6543 
 6544   ins_cost(ALU_COST);
 6545   format %{ "addiw  $dst, $src1, -$src2\t#@subI_reg_imm" %}
 6546 
 6547   ins_encode %{
 6548     // src2 is imm, so actually call the addiw
 6549     __ subw(as_Register($dst$$reg),
 6550             as_Register($src1$$reg),
 6551             $src2$$constant);
 6552   %}
 6553 
 6554   ins_pipe(ialu_reg_imm);
 6555 %}
 6556 
 6557 // Long Subtraction
 6558 instruct subL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2) %{
 6559   match(Set dst (SubL src1 src2));
 6560   ins_cost(ALU_COST);
 6561   format %{ "sub  $dst, $src1, $src2\t#@subL_reg_reg" %}
 6562 
 6563   ins_encode %{
 6564     __ sub(as_Register($dst$$reg),
 6565            as_Register($src1$$reg),
 6566            as_Register($src2$$reg));
 6567   %}
 6568 
 6569   ins_pipe(ialu_reg_reg);
 6570 %}
 6571 
 6572 // No constant pool entries requiredLong Immediate Subtraction.
 6573 instruct subL_reg_imm(iRegLNoSp dst, iRegL src1, immLSub src2) %{
 6574   match(Set dst (SubL src1 src2));
 6575   ins_cost(ALU_COST);
 6576   format %{ "addi  $dst, $src1, -$src2\t#@subL_reg_imm" %}
 6577 
 6578   ins_encode %{
 6579     // src2 is imm, so actually call the addi
 6580     __ sub(as_Register($dst$$reg),
 6581            as_Register($src1$$reg),
 6582            $src2$$constant);
 6583   %}
 6584 
 6585   ins_pipe(ialu_reg_imm);
 6586 %}
 6587 
 6588 // Integer Negation (special case for sub)
 6589 
 6590 instruct negI_reg(iRegINoSp dst, iRegIorL2I src, immI0 zero) %{
 6591   match(Set dst (SubI zero src));
 6592   ins_cost(ALU_COST);
 6593   format %{ "subw  $dst, x0, $src\t# int, #@negI_reg" %}
 6594 
 6595   ins_encode %{
 6596     // actually call the subw
 6597     __ negw(as_Register($dst$$reg),
 6598             as_Register($src$$reg));
 6599   %}
 6600 
 6601   ins_pipe(ialu_reg);
 6602 %}
 6603 
 6604 // Long Negation
 6605 
 6606 instruct negL_reg(iRegLNoSp dst, iRegL src, immL0 zero) %{
 6607   match(Set dst (SubL zero src));
 6608   ins_cost(ALU_COST);
 6609   format %{ "sub  $dst, x0, $src\t# long, #@negL_reg" %}
 6610 
 6611   ins_encode %{
 6612     // actually call the sub
 6613     __ neg(as_Register($dst$$reg),
 6614            as_Register($src$$reg));
 6615   %}
 6616 
 6617   ins_pipe(ialu_reg);
 6618 %}
 6619 
 6620 // Integer Multiply
 6621 
 6622 instruct mulI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
 6623   match(Set dst (MulI src1 src2));
 6624   ins_cost(IMUL_COST);
 6625   format %{ "mulw  $dst, $src1, $src2\t#@mulI" %}
 6626 
 6627   //this means 2 word multi, and no sign extend to 64 bits
 6628   ins_encode %{
 6629     // riscv64 mulw will sign-extension to high 32 bits in dst reg
 6630     __ mulw(as_Register($dst$$reg),
 6631             as_Register($src1$$reg),
 6632             as_Register($src2$$reg));
 6633   %}
 6634 
 6635   ins_pipe(imul_reg_reg);
 6636 %}
 6637 
 6638 // Long Multiply
 6639 
 6640 instruct mulL(iRegLNoSp dst, iRegL src1, iRegL src2) %{
 6641   match(Set dst (MulL src1 src2));
 6642   ins_cost(IMUL_COST);
 6643   format %{ "mul  $dst, $src1, $src2\t#@mulL" %}
 6644 
 6645   ins_encode %{
 6646     __ mul(as_Register($dst$$reg),
 6647            as_Register($src1$$reg),
 6648            as_Register($src2$$reg));
 6649   %}
 6650 
 6651   ins_pipe(lmul_reg_reg);
 6652 %}
 6653 
 6654 instruct mulHiL_rReg(iRegLNoSp dst, iRegL src1, iRegL src2)
 6655 %{
 6656   match(Set dst (MulHiL src1 src2));
 6657   ins_cost(IMUL_COST);
 6658   format %{ "mulh  $dst, $src1, $src2\t# mulhi, #@mulHiL_rReg" %}
 6659 
 6660   ins_encode %{
 6661     __ mulh(as_Register($dst$$reg),
 6662             as_Register($src1$$reg),
 6663             as_Register($src2$$reg));
 6664   %}
 6665 
 6666   ins_pipe(lmul_reg_reg);
 6667 %}
 6668 
 6669 instruct umulHiL_rReg(iRegLNoSp dst, iRegL src1, iRegL src2)
 6670 %{
 6671   match(Set dst (UMulHiL src1 src2));
 6672   ins_cost(IMUL_COST);
 6673   format %{ "mulhu  $dst, $src1, $src2\t# umulhi, #@umulHiL_rReg" %}
 6674 
 6675   ins_encode %{
 6676     __ mulhu(as_Register($dst$$reg),
 6677              as_Register($src1$$reg),
 6678              as_Register($src2$$reg));
 6679   %}
 6680 
 6681   ins_pipe(lmul_reg_reg);
 6682 %}
 6683 
 6684 // Integer Divide
 6685 
 6686 instruct divI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
 6687   match(Set dst (DivI src1 src2));
 6688   ins_cost(IDIVSI_COST);
 6689   format %{ "divw  $dst, $src1, $src2\t#@divI"%}
 6690 
 6691   ins_encode(riscv_enc_divw(dst, src1, src2));
 6692   ins_pipe(idiv_reg_reg);
 6693 %}
 6694 
 6695 instruct UdivI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
 6696   match(Set dst (UDivI src1 src2));
 6697   ins_cost(IDIVSI_COST);
 6698   format %{ "divuw  $dst, $src1, $src2\t#@UdivI"%}
 6699 
 6700   ins_encode(riscv_enc_divuw(dst, src1, src2));
 6701   ins_pipe(idiv_reg_reg);
 6702 %}
 6703 
 6704 instruct signExtract(iRegINoSp dst, iRegIorL2I src1, immI_31 div1, immI_31 div2) %{
 6705   match(Set dst (URShiftI (RShiftI src1 div1) div2));
 6706   ins_cost(ALU_COST);
 6707   format %{ "srliw $dst, $src1, $div1\t# int signExtract, #@signExtract" %}
 6708 
 6709   ins_encode %{
 6710     __ srliw(as_Register($dst$$reg), as_Register($src1$$reg), 31);
 6711   %}
 6712   ins_pipe(ialu_reg_shift);
 6713 %}
 6714 
 6715 // Long Divide
 6716 
 6717 instruct divL(iRegLNoSp dst, iRegL src1, iRegL src2) %{
 6718   match(Set dst (DivL src1 src2));
 6719   ins_cost(IDIVDI_COST);
 6720   format %{ "div  $dst, $src1, $src2\t#@divL" %}
 6721 
 6722   ins_encode(riscv_enc_div(dst, src1, src2));
 6723   ins_pipe(ldiv_reg_reg);
 6724 %}
 6725 
 6726 instruct UdivL(iRegLNoSp dst, iRegL src1, iRegL src2) %{
 6727   match(Set dst (UDivL src1 src2));
 6728   ins_cost(IDIVDI_COST);
 6729 
 6730   format %{ "divu $dst, $src1, $src2\t#@UdivL" %}
 6731 
 6732   ins_encode(riscv_enc_divu(dst, src1, src2));
 6733   ins_pipe(ldiv_reg_reg);
 6734 %}
 6735 
 6736 instruct signExtractL(iRegLNoSp dst, iRegL src1, immI_63 div1, immI_63 div2) %{
 6737   match(Set dst (URShiftL (RShiftL src1 div1) div2));
 6738   ins_cost(ALU_COST);
 6739   format %{ "srli $dst, $src1, $div1\t# long signExtract, #@signExtractL" %}
 6740 
 6741   ins_encode %{
 6742     __ srli(as_Register($dst$$reg), as_Register($src1$$reg), 63);
 6743   %}
 6744   ins_pipe(ialu_reg_shift);
 6745 %}
 6746 
 6747 // Integer Remainder
 6748 
 6749 instruct modI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
 6750   match(Set dst (ModI src1 src2));
 6751   ins_cost(IDIVSI_COST);
 6752   format %{ "remw  $dst, $src1, $src2\t#@modI" %}
 6753 
 6754   ins_encode(riscv_enc_modw(dst, src1, src2));
 6755   ins_pipe(ialu_reg_reg);
 6756 %}
 6757 
 6758 instruct UmodI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
 6759   match(Set dst (UModI src1 src2));
 6760   ins_cost(IDIVSI_COST);
 6761   format %{ "remuw  $dst, $src1, $src2\t#@UmodI" %}
 6762 
 6763   ins_encode(riscv_enc_moduw(dst, src1, src2));
 6764   ins_pipe(ialu_reg_reg);
 6765 %}
 6766 
 6767 // Long Remainder
 6768 
 6769 instruct modL(iRegLNoSp dst, iRegL src1, iRegL src2) %{
 6770   match(Set dst (ModL src1 src2));
 6771   ins_cost(IDIVDI_COST);
 6772   format %{ "rem  $dst, $src1, $src2\t#@modL" %}
 6773 
 6774   ins_encode(riscv_enc_mod(dst, src1, src2));
 6775   ins_pipe(ialu_reg_reg);
 6776 %}
 6777 
 6778 instruct UmodL(iRegLNoSp dst, iRegL src1, iRegL src2) %{
 6779   match(Set dst (UModL src1 src2));
 6780   ins_cost(IDIVDI_COST);
 6781   format %{ "remu  $dst, $src1, $src2\t#@UmodL" %}
 6782 
 6783   ins_encode(riscv_enc_modu(dst, src1, src2));
 6784   ins_pipe(ialu_reg_reg);
 6785 %}
 6786 
 6787 // Integer Shifts
 6788 
 6789 // Shift Left Register
 6790 // In RV64I, only the low 5 bits of src2 are considered for the shift amount
 6791 instruct lShiftI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
 6792   match(Set dst (LShiftI src1 src2));
 6793   ins_cost(ALU_COST);
 6794   format %{ "sllw  $dst, $src1, $src2\t#@lShiftI_reg_reg" %}
 6795 
 6796   ins_encode %{
 6797     __ sllw(as_Register($dst$$reg),
 6798             as_Register($src1$$reg),
 6799             as_Register($src2$$reg));
 6800   %}
 6801 
 6802   ins_pipe(ialu_reg_reg_vshift);
 6803 %}
 6804 
 6805 // Shift Left Immediate
 6806 instruct lShiftI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immI src2) %{
 6807   match(Set dst (LShiftI src1 src2));
 6808   ins_cost(ALU_COST);
 6809   format %{ "slliw  $dst, $src1, ($src2 & 0x1f)\t#@lShiftI_reg_imm" %}
 6810 
 6811   ins_encode %{
 6812     // the shift amount is encoded in the lower
 6813     // 5 bits of the I-immediate field for RV32I
 6814     __ slliw(as_Register($dst$$reg),
 6815              as_Register($src1$$reg),
 6816              (unsigned) $src2$$constant & 0x1f);
 6817   %}
 6818 
 6819   ins_pipe(ialu_reg_shift);
 6820 %}
 6821 
 6822 // Shift Right Logical Register
 6823 // In RV64I, only the low 5 bits of src2 are considered for the shift amount
 6824 instruct urShiftI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
 6825   match(Set dst (URShiftI src1 src2));
 6826   ins_cost(ALU_COST);
 6827   format %{ "srlw  $dst, $src1, $src2\t#@urShiftI_reg_reg" %}
 6828 
 6829   ins_encode %{
 6830     __ srlw(as_Register($dst$$reg),
 6831             as_Register($src1$$reg),
 6832             as_Register($src2$$reg));
 6833   %}
 6834 
 6835   ins_pipe(ialu_reg_reg_vshift);
 6836 %}
 6837 
 6838 // Shift Right Logical Immediate
 6839 instruct urShiftI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immI src2) %{
 6840   match(Set dst (URShiftI src1 src2));
 6841   ins_cost(ALU_COST);
 6842   format %{ "srliw  $dst, $src1, ($src2 & 0x1f)\t#@urShiftI_reg_imm" %}
 6843 
 6844   ins_encode %{
 6845     // the shift amount is encoded in the lower
 6846     // 6 bits of the I-immediate field for RV64I
 6847     __ srliw(as_Register($dst$$reg),
 6848              as_Register($src1$$reg),
 6849              (unsigned) $src2$$constant & 0x1f);
 6850   %}
 6851 
 6852   ins_pipe(ialu_reg_shift);
 6853 %}
 6854 
 6855 // Shift Right Arithmetic Register
 6856 // In RV64I, only the low 5 bits of src2 are considered for the shift amount
 6857 instruct rShiftI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
 6858   match(Set dst (RShiftI src1 src2));
 6859   ins_cost(ALU_COST);
 6860   format %{ "sraw  $dst, $src1, $src2\t#@rShiftI_reg_reg" %}
 6861 
 6862   ins_encode %{
 6863     // riscv will sign-ext dst high 32 bits
 6864     __ sraw(as_Register($dst$$reg),
 6865             as_Register($src1$$reg),
 6866             as_Register($src2$$reg));
 6867   %}
 6868 
 6869   ins_pipe(ialu_reg_reg_vshift);
 6870 %}
 6871 
 6872 // Shift Right Arithmetic Immediate
 6873 instruct rShiftI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immI src2) %{
 6874   match(Set dst (RShiftI src1 src2));
 6875   ins_cost(ALU_COST);
 6876   format %{ "sraiw  $dst, $src1, ($src2 & 0x1f)\t#@rShiftI_reg_imm" %}
 6877 
 6878   ins_encode %{
 6879     // riscv will sign-ext dst high 32 bits
 6880     __ sraiw(as_Register($dst$$reg),
 6881              as_Register($src1$$reg),
 6882              (unsigned) $src2$$constant & 0x1f);
 6883   %}
 6884 
 6885   ins_pipe(ialu_reg_shift);
 6886 %}
 6887 
 6888 // Long Shifts
 6889 
 6890 // Shift Left Register
 6891 // In RV64I, only the low 6 bits of src2 are considered for the shift amount
 6892 instruct lShiftL_reg_reg(iRegLNoSp dst, iRegL src1, iRegIorL2I src2) %{
 6893   match(Set dst (LShiftL src1 src2));
 6894 
 6895   ins_cost(ALU_COST);
 6896   format %{ "sll  $dst, $src1, $src2\t#@lShiftL_reg_reg" %}
 6897 
 6898   ins_encode %{
 6899     __ sll(as_Register($dst$$reg),
 6900            as_Register($src1$$reg),
 6901            as_Register($src2$$reg));
 6902   %}
 6903 
 6904   ins_pipe(ialu_reg_reg_vshift);
 6905 %}
 6906 
 6907 // Shift Left Immediate
 6908 instruct lShiftL_reg_imm(iRegLNoSp dst, iRegL src1, immI src2) %{
 6909   match(Set dst (LShiftL src1 src2));
 6910 
 6911   ins_cost(ALU_COST);
 6912   format %{ "slli  $dst, $src1, ($src2 & 0x3f)\t#@lShiftL_reg_imm" %}
 6913 
 6914   ins_encode %{
 6915     // the shift amount is encoded in the lower
 6916     // 6 bits of the I-immediate field for RV64I
 6917     __ slli(as_Register($dst$$reg),
 6918             as_Register($src1$$reg),
 6919             (unsigned) $src2$$constant & 0x3f);
 6920   %}
 6921 
 6922   ins_pipe(ialu_reg_shift);
 6923 %}
 6924 
 6925 // Shift Right Logical Register
 6926 // In RV64I, only the low 6 bits of src2 are considered for the shift amount
 6927 instruct urShiftL_reg_reg(iRegLNoSp dst, iRegL src1, iRegIorL2I src2) %{
 6928   match(Set dst (URShiftL src1 src2));
 6929 
 6930   ins_cost(ALU_COST);
 6931   format %{ "srl  $dst, $src1, $src2\t#@urShiftL_reg_reg" %}
 6932 
 6933   ins_encode %{
 6934     __ srl(as_Register($dst$$reg),
 6935             as_Register($src1$$reg),
 6936             as_Register($src2$$reg));
 6937   %}
 6938 
 6939   ins_pipe(ialu_reg_reg_vshift);
 6940 %}
 6941 
 6942 // Shift Right Logical Immediate
 6943 instruct urShiftL_reg_imm(iRegLNoSp dst, iRegL src1, immI src2) %{
 6944   match(Set dst (URShiftL src1 src2));
 6945 
 6946   ins_cost(ALU_COST);
 6947   format %{ "srli  $dst, $src1, ($src2 & 0x3f)\t#@urShiftL_reg_imm" %}
 6948 
 6949   ins_encode %{
 6950     // the shift amount is encoded in the lower
 6951     // 6 bits of the I-immediate field for RV64I
 6952     __ srli(as_Register($dst$$reg),
 6953             as_Register($src1$$reg),
 6954             (unsigned) $src2$$constant & 0x3f);
 6955   %}
 6956 
 6957   ins_pipe(ialu_reg_shift);
 6958 %}
 6959 
 6960 // A special-case pattern for card table stores.
 6961 instruct urShiftP_reg_imm(iRegLNoSp dst, iRegP src1, immI src2) %{
 6962   match(Set dst (URShiftL (CastP2X src1) src2));
 6963 
 6964   ins_cost(ALU_COST);
 6965   format %{ "srli  $dst, p2x($src1), ($src2 & 0x3f)\t#@urShiftP_reg_imm" %}
 6966 
 6967   ins_encode %{
 6968     // the shift amount is encoded in the lower
 6969     // 6 bits of the I-immediate field for RV64I
 6970     __ srli(as_Register($dst$$reg),
 6971             as_Register($src1$$reg),
 6972             (unsigned) $src2$$constant & 0x3f);
 6973   %}
 6974 
 6975   ins_pipe(ialu_reg_shift);
 6976 %}
 6977 
 6978 // Shift Right Arithmetic Register
 6979 // In RV64I, only the low 6 bits of src2 are considered for the shift amount
 6980 instruct rShiftL_reg_reg(iRegLNoSp dst, iRegL src1, iRegIorL2I src2) %{
 6981   match(Set dst (RShiftL src1 src2));
 6982 
 6983   ins_cost(ALU_COST);
 6984   format %{ "sra  $dst, $src1, $src2\t#@rShiftL_reg_reg" %}
 6985 
 6986   ins_encode %{
 6987     __ sra(as_Register($dst$$reg),
 6988            as_Register($src1$$reg),
 6989            as_Register($src2$$reg));
 6990   %}
 6991 
 6992   ins_pipe(ialu_reg_reg_vshift);
 6993 %}
 6994 
 6995 // Shift Right Arithmetic Immediate
 6996 instruct rShiftL_reg_imm(iRegLNoSp dst, iRegL src1, immI src2) %{
 6997   match(Set dst (RShiftL src1 src2));
 6998 
 6999   ins_cost(ALU_COST);
 7000   format %{ "srai  $dst, $src1, ($src2 & 0x3f)\t#@rShiftL_reg_imm" %}
 7001 
 7002   ins_encode %{
 7003     // the shift amount is encoded in the lower
 7004     // 6 bits of the I-immediate field for RV64I
 7005     __ srai(as_Register($dst$$reg),
 7006             as_Register($src1$$reg),
 7007             (unsigned) $src2$$constant & 0x3f);
 7008   %}
 7009 
 7010   ins_pipe(ialu_reg_shift);
 7011 %}
 7012 
 7013 instruct regI_not_reg(iRegINoSp dst, iRegI src1, immI_M1 m1) %{
 7014   match(Set dst (XorI src1 m1));
 7015   ins_cost(ALU_COST);
 7016   format %{ "xori  $dst, $src1, -1\t#@regI_not_reg" %}
 7017 
 7018   ins_encode %{
 7019     __ xori(as_Register($dst$$reg), as_Register($src1$$reg), -1);
 7020   %}
 7021 
 7022   ins_pipe(ialu_reg_imm);
 7023 %}
 7024 
 7025 instruct regL_not_reg(iRegLNoSp dst, iRegL src1, immL_M1 m1) %{
 7026   match(Set dst (XorL src1 m1));
 7027   ins_cost(ALU_COST);
 7028   format %{ "xori  $dst, $src1, -1\t#@regL_not_reg" %}
 7029 
 7030   ins_encode %{
 7031     __ xori(as_Register($dst$$reg), as_Register($src1$$reg), -1);
 7032   %}
 7033 
 7034   ins_pipe(ialu_reg_imm);
 7035 %}
 7036 
 7037 
 7038 // ============================================================================
 7039 // Floating Point Arithmetic Instructions
 7040 
 7041 instruct addF_reg_reg(fRegF dst, fRegF src1, fRegF src2) %{
 7042   match(Set dst (AddF src1 src2));
 7043 
 7044   ins_cost(DEFAULT_COST * 5);
 7045   format %{ "fadd.s  $dst, $src1, $src2\t#@addF_reg_reg" %}
 7046 
 7047   ins_encode %{
 7048     __ fadd_s(as_FloatRegister($dst$$reg),
 7049               as_FloatRegister($src1$$reg),
 7050               as_FloatRegister($src2$$reg));
 7051   %}
 7052 
 7053   ins_pipe(fp_dop_reg_reg_s);
 7054 %}
 7055 
 7056 instruct addD_reg_reg(fRegD dst, fRegD src1, fRegD src2) %{
 7057   match(Set dst (AddD src1 src2));
 7058 
 7059   ins_cost(DEFAULT_COST * 5);
 7060   format %{ "fadd.d  $dst, $src1, $src2\t#@addD_reg_reg" %}
 7061 
 7062   ins_encode %{
 7063     __ fadd_d(as_FloatRegister($dst$$reg),
 7064               as_FloatRegister($src1$$reg),
 7065               as_FloatRegister($src2$$reg));
 7066   %}
 7067 
 7068   ins_pipe(fp_dop_reg_reg_d);
 7069 %}
 7070 
 7071 instruct subF_reg_reg(fRegF dst, fRegF src1, fRegF src2) %{
 7072   match(Set dst (SubF src1 src2));
 7073 
 7074   ins_cost(DEFAULT_COST * 5);
 7075   format %{ "fsub.s  $dst, $src1, $src2\t#@subF_reg_reg" %}
 7076 
 7077   ins_encode %{
 7078     __ fsub_s(as_FloatRegister($dst$$reg),
 7079               as_FloatRegister($src1$$reg),
 7080               as_FloatRegister($src2$$reg));
 7081   %}
 7082 
 7083   ins_pipe(fp_dop_reg_reg_s);
 7084 %}
 7085 
 7086 instruct subD_reg_reg(fRegD dst, fRegD src1, fRegD src2) %{
 7087   match(Set dst (SubD src1 src2));
 7088 
 7089   ins_cost(DEFAULT_COST * 5);
 7090   format %{ "fsub.d  $dst, $src1, $src2\t#@subD_reg_reg" %}
 7091 
 7092   ins_encode %{
 7093     __ fsub_d(as_FloatRegister($dst$$reg),
 7094               as_FloatRegister($src1$$reg),
 7095               as_FloatRegister($src2$$reg));
 7096   %}
 7097 
 7098   ins_pipe(fp_dop_reg_reg_d);
 7099 %}
 7100 
 7101 instruct mulF_reg_reg(fRegF dst, fRegF src1, fRegF src2) %{
 7102   match(Set dst (MulF src1 src2));
 7103 
 7104   ins_cost(FMUL_SINGLE_COST);
 7105   format %{ "fmul.s  $dst, $src1, $src2\t#@mulF_reg_reg" %}
 7106 
 7107   ins_encode %{
 7108     __ fmul_s(as_FloatRegister($dst$$reg),
 7109               as_FloatRegister($src1$$reg),
 7110               as_FloatRegister($src2$$reg));
 7111   %}
 7112 
 7113   ins_pipe(fp_dop_reg_reg_s);
 7114 %}
 7115 
 7116 instruct mulD_reg_reg(fRegD dst, fRegD src1, fRegD src2) %{
 7117   match(Set dst (MulD src1 src2));
 7118 
 7119   ins_cost(FMUL_DOUBLE_COST);
 7120   format %{ "fmul.d  $dst, $src1, $src2\t#@mulD_reg_reg" %}
 7121 
 7122   ins_encode %{
 7123     __ fmul_d(as_FloatRegister($dst$$reg),
 7124               as_FloatRegister($src1$$reg),
 7125               as_FloatRegister($src2$$reg));
 7126   %}
 7127 
 7128   ins_pipe(fp_dop_reg_reg_d);
 7129 %}
 7130 
 7131 // src1 * src2 + src3
 7132 instruct maddF_reg_reg(fRegF dst, fRegF src1, fRegF src2, fRegF src3) %{
 7133   match(Set dst (FmaF src3 (Binary src1 src2)));
 7134 
 7135   ins_cost(FMUL_SINGLE_COST);
 7136   format %{ "fmadd.s  $dst, $src1, $src2, $src3\t#@maddF_reg_reg" %}
 7137 
 7138   ins_encode %{
 7139     assert(UseFMA, "Needs FMA instructions support.");
 7140     __ fmadd_s(as_FloatRegister($dst$$reg),
 7141                as_FloatRegister($src1$$reg),
 7142                as_FloatRegister($src2$$reg),
 7143                as_FloatRegister($src3$$reg));
 7144   %}
 7145 
 7146   ins_pipe(pipe_class_default);
 7147 %}
 7148 
 7149 // src1 * src2 + src3
 7150 instruct maddD_reg_reg(fRegD dst, fRegD src1, fRegD src2, fRegD src3) %{
 7151   match(Set dst (FmaD src3 (Binary src1 src2)));
 7152 
 7153   ins_cost(FMUL_DOUBLE_COST);
 7154   format %{ "fmadd.d  $dst, $src1, $src2, $src3\t#@maddD_reg_reg" %}
 7155 
 7156   ins_encode %{
 7157     assert(UseFMA, "Needs FMA instructions support.");
 7158     __ fmadd_d(as_FloatRegister($dst$$reg),
 7159                as_FloatRegister($src1$$reg),
 7160                as_FloatRegister($src2$$reg),
 7161                as_FloatRegister($src3$$reg));
 7162   %}
 7163 
 7164   ins_pipe(pipe_class_default);
 7165 %}
 7166 
 7167 // src1 * src2 - src3
 7168 instruct msubF_reg_reg(fRegF dst, fRegF src1, fRegF src2, fRegF src3) %{
 7169   match(Set dst (FmaF (NegF src3) (Binary src1 src2)));
 7170 
 7171   ins_cost(FMUL_SINGLE_COST);
 7172   format %{ "fmsub.s  $dst, $src1, $src2, $src3\t#@msubF_reg_reg" %}
 7173 
 7174   ins_encode %{
 7175     assert(UseFMA, "Needs FMA instructions support.");
 7176     __ fmsub_s(as_FloatRegister($dst$$reg),
 7177                as_FloatRegister($src1$$reg),
 7178                as_FloatRegister($src2$$reg),
 7179                as_FloatRegister($src3$$reg));
 7180   %}
 7181 
 7182   ins_pipe(pipe_class_default);
 7183 %}
 7184 
 7185 // src1 * src2 - src3
 7186 instruct msubD_reg_reg(fRegD dst, fRegD src1, fRegD src2, fRegD src3) %{
 7187   match(Set dst (FmaD (NegD src3) (Binary src1 src2)));
 7188 
 7189   ins_cost(FMUL_DOUBLE_COST);
 7190   format %{ "fmsub.d  $dst, $src1, $src2, $src3\t#@msubD_reg_reg" %}
 7191 
 7192   ins_encode %{
 7193     assert(UseFMA, "Needs FMA instructions support.");
 7194     __ fmsub_d(as_FloatRegister($dst$$reg),
 7195                as_FloatRegister($src1$$reg),
 7196                as_FloatRegister($src2$$reg),
 7197                as_FloatRegister($src3$$reg));
 7198   %}
 7199 
 7200   ins_pipe(pipe_class_default);
 7201 %}
 7202 
 7203 // src1 * (-src2) + src3
 7204 // "(-src1) * src2 + src3" has been idealized to "src2 * (-src1) + src3"
 7205 instruct nmsubF_reg_reg(fRegF dst, fRegF src1, fRegF src2, fRegF src3) %{
 7206   match(Set dst (FmaF src3 (Binary src1 (NegF src2))));
 7207 
 7208   ins_cost(FMUL_SINGLE_COST);
 7209   format %{ "fnmsub.s  $dst, $src1, $src2, $src3\t#@nmsubF_reg_reg" %}
 7210 
 7211   ins_encode %{
 7212     assert(UseFMA, "Needs FMA instructions support.");
 7213     __ fnmsub_s(as_FloatRegister($dst$$reg),
 7214                 as_FloatRegister($src1$$reg),
 7215                 as_FloatRegister($src2$$reg),
 7216                 as_FloatRegister($src3$$reg));
 7217   %}
 7218 
 7219   ins_pipe(pipe_class_default);
 7220 %}
 7221 
 7222 // src1 * (-src2) + src3
 7223 // "(-src1) * src2 + src3" has been idealized to "src2 * (-src1) + src3"
 7224 instruct nmsubD_reg_reg(fRegD dst, fRegD src1, fRegD src2, fRegD src3) %{
 7225   match(Set dst (FmaD src3 (Binary src1 (NegD src2))));
 7226 
 7227   ins_cost(FMUL_DOUBLE_COST);
 7228   format %{ "fnmsub.d  $dst, $src1, $src2, $src3\t#@nmsubD_reg_reg" %}
 7229 
 7230   ins_encode %{
 7231     assert(UseFMA, "Needs FMA instructions support.");
 7232     __ fnmsub_d(as_FloatRegister($dst$$reg),
 7233                 as_FloatRegister($src1$$reg),
 7234                 as_FloatRegister($src2$$reg),
 7235                 as_FloatRegister($src3$$reg));
 7236   %}
 7237 
 7238   ins_pipe(pipe_class_default);
 7239 %}
 7240 
 7241 // src1 * (-src2) - src3
 7242 // "(-src1) * src2 - src3" has been idealized to "src2 * (-src1) - src3"
 7243 instruct nmaddF_reg_reg(fRegF dst, fRegF src1, fRegF src2, fRegF src3) %{
 7244   match(Set dst (FmaF (NegF src3) (Binary src1 (NegF src2))));
 7245 
 7246   ins_cost(FMUL_SINGLE_COST);
 7247   format %{ "fnmadd.s  $dst, $src1, $src2, $src3\t#@nmaddF_reg_reg" %}
 7248 
 7249   ins_encode %{
 7250     assert(UseFMA, "Needs FMA instructions support.");
 7251     __ fnmadd_s(as_FloatRegister($dst$$reg),
 7252                 as_FloatRegister($src1$$reg),
 7253                 as_FloatRegister($src2$$reg),
 7254                 as_FloatRegister($src3$$reg));
 7255   %}
 7256 
 7257   ins_pipe(pipe_class_default);
 7258 %}
 7259 
 7260 // src1 * (-src2) - src3
 7261 // "(-src1) * src2 - src3" has been idealized to "src2 * (-src1) - src3"
 7262 instruct nmaddD_reg_reg(fRegD dst, fRegD src1, fRegD src2, fRegD src3) %{
 7263   match(Set dst (FmaD (NegD src3) (Binary src1 (NegD src2))));
 7264 
 7265   ins_cost(FMUL_DOUBLE_COST);
 7266   format %{ "fnmadd.d  $dst, $src1, $src2, $src3\t#@nmaddD_reg_reg" %}
 7267 
 7268   ins_encode %{
 7269     assert(UseFMA, "Needs FMA instructions support.");
 7270     __ fnmadd_d(as_FloatRegister($dst$$reg),
 7271                 as_FloatRegister($src1$$reg),
 7272                 as_FloatRegister($src2$$reg),
 7273                 as_FloatRegister($src3$$reg));
 7274   %}
 7275 
 7276   ins_pipe(pipe_class_default);
 7277 %}
 7278 
 7279 // Math.max(FF)F
 7280 instruct maxF_reg_reg(fRegF dst, fRegF src1, fRegF src2, rFlagsReg cr) %{
 7281   match(Set dst (MaxF src1 src2));
 7282   effect(TEMP_DEF dst, KILL cr);
 7283 
 7284   format %{ "maxF $dst, $src1, $src2" %}
 7285 
 7286   ins_encode %{
 7287     __ minmax_fp(as_FloatRegister($dst$$reg),
 7288                  as_FloatRegister($src1$$reg), as_FloatRegister($src2$$reg),
 7289                  false /* is_double */, false /* is_min */);
 7290   %}
 7291 
 7292   ins_pipe(pipe_class_default);
 7293 %}
 7294 
 7295 // Math.min(FF)F
 7296 instruct minF_reg_reg(fRegF dst, fRegF src1, fRegF src2, rFlagsReg cr) %{
 7297   match(Set dst (MinF src1 src2));
 7298   effect(TEMP_DEF dst, KILL cr);
 7299 
 7300   format %{ "minF $dst, $src1, $src2" %}
 7301 
 7302   ins_encode %{
 7303     __ minmax_fp(as_FloatRegister($dst$$reg),
 7304                  as_FloatRegister($src1$$reg), as_FloatRegister($src2$$reg),
 7305                  false /* is_double */, true /* is_min */);
 7306   %}
 7307 
 7308   ins_pipe(pipe_class_default);
 7309 %}
 7310 
 7311 // Math.max(DD)D
 7312 instruct maxD_reg_reg(fRegD dst, fRegD src1, fRegD src2, rFlagsReg cr) %{
 7313   match(Set dst (MaxD src1 src2));
 7314   effect(TEMP_DEF dst, KILL cr);
 7315 
 7316   format %{ "maxD $dst, $src1, $src2" %}
 7317 
 7318   ins_encode %{
 7319     __ minmax_fp(as_FloatRegister($dst$$reg),
 7320                  as_FloatRegister($src1$$reg), as_FloatRegister($src2$$reg),
 7321                  true /* is_double */, false /* is_min */);
 7322   %}
 7323 
 7324   ins_pipe(pipe_class_default);
 7325 %}
 7326 
 7327 // Math.min(DD)D
 7328 instruct minD_reg_reg(fRegD dst, fRegD src1, fRegD src2, rFlagsReg cr) %{
 7329   match(Set dst (MinD src1 src2));
 7330   effect(TEMP_DEF dst, KILL cr);
 7331 
 7332   format %{ "minD $dst, $src1, $src2" %}
 7333 
 7334   ins_encode %{
 7335     __ minmax_fp(as_FloatRegister($dst$$reg),
 7336                  as_FloatRegister($src1$$reg), as_FloatRegister($src2$$reg),
 7337                  true /* is_double */, true /* is_min */);
 7338   %}
 7339 
 7340   ins_pipe(pipe_class_default);
 7341 %}
 7342 
 7343 // Float.isInfinite
 7344 instruct isInfiniteF_reg_reg(iRegINoSp dst, fRegF src)
 7345 %{
 7346   match(Set dst (IsInfiniteF src));
 7347 
 7348   format %{ "isInfinite $dst, $src" %}
 7349   ins_encode %{
 7350     __ fclass_s(as_Register($dst$$reg), as_FloatRegister($src$$reg));
 7351     __ andi(as_Register($dst$$reg), as_Register($dst$$reg), Assembler::fclass_mask::inf);
 7352     __ slt(as_Register($dst$$reg), zr, as_Register($dst$$reg));
 7353   %}
 7354 
 7355   ins_pipe(pipe_class_default);
 7356 %}
 7357 
 7358 // Double.isInfinite
 7359 instruct isInfiniteD_reg_reg(iRegINoSp dst, fRegD src)
 7360 %{
 7361   match(Set dst (IsInfiniteD src));
 7362 
 7363   format %{ "isInfinite $dst, $src" %}
 7364   ins_encode %{
 7365     __ fclass_d(as_Register($dst$$reg), as_FloatRegister($src$$reg));
 7366     __ andi(as_Register($dst$$reg), as_Register($dst$$reg), Assembler::fclass_mask::inf);
 7367     __ slt(as_Register($dst$$reg), zr, as_Register($dst$$reg));
 7368   %}
 7369 
 7370   ins_pipe(pipe_class_default);
 7371 %}
 7372 
 7373 // Float.isFinite
 7374 instruct isFiniteF_reg_reg(iRegINoSp dst, fRegF src)
 7375 %{
 7376   match(Set dst (IsFiniteF src));
 7377 
 7378   format %{ "isFinite $dst, $src" %}
 7379   ins_encode %{
 7380     __ fclass_s(as_Register($dst$$reg), as_FloatRegister($src$$reg));
 7381     __ andi(as_Register($dst$$reg), as_Register($dst$$reg), Assembler::fclass_mask::finite);
 7382     __ slt(as_Register($dst$$reg), zr, as_Register($dst$$reg));
 7383   %}
 7384 
 7385   ins_pipe(pipe_class_default);
 7386 %}
 7387 
 7388 // Double.isFinite
 7389 instruct isFiniteD_reg_reg(iRegINoSp dst, fRegD src)
 7390 %{
 7391   match(Set dst (IsFiniteD src));
 7392 
 7393   format %{ "isFinite $dst, $src" %}
 7394   ins_encode %{
 7395     __ fclass_d(as_Register($dst$$reg), as_FloatRegister($src$$reg));
 7396     __ andi(as_Register($dst$$reg), as_Register($dst$$reg), Assembler::fclass_mask::finite);
 7397     __ slt(as_Register($dst$$reg), zr, as_Register($dst$$reg));
 7398   %}
 7399 
 7400   ins_pipe(pipe_class_default);
 7401 %}
 7402 
 7403 instruct divF_reg_reg(fRegF dst, fRegF src1, fRegF src2) %{
 7404   match(Set dst (DivF src1  src2));
 7405 
 7406   ins_cost(FDIV_COST);
 7407   format %{ "fdiv.s  $dst, $src1, $src2\t#@divF_reg_reg" %}
 7408 
 7409   ins_encode %{
 7410     __ fdiv_s(as_FloatRegister($dst$$reg),
 7411               as_FloatRegister($src1$$reg),
 7412               as_FloatRegister($src2$$reg));
 7413   %}
 7414 
 7415   ins_pipe(fp_div_s);
 7416 %}
 7417 
 7418 instruct divD_reg_reg(fRegD dst, fRegD src1, fRegD src2) %{
 7419   match(Set dst (DivD src1  src2));
 7420 
 7421   ins_cost(FDIV_COST);
 7422   format %{ "fdiv.d  $dst, $src1, $src2\t#@divD_reg_reg" %}
 7423 
 7424   ins_encode %{
 7425     __ fdiv_d(as_FloatRegister($dst$$reg),
 7426               as_FloatRegister($src1$$reg),
 7427               as_FloatRegister($src2$$reg));
 7428   %}
 7429 
 7430   ins_pipe(fp_div_d);
 7431 %}
 7432 
 7433 instruct negF_reg_reg(fRegF dst, fRegF src) %{
 7434   match(Set dst (NegF src));
 7435 
 7436   ins_cost(XFER_COST);
 7437   format %{ "fsgnjn.s  $dst, $src, $src\t#@negF_reg_reg" %}
 7438 
 7439   ins_encode %{
 7440     __ fneg_s(as_FloatRegister($dst$$reg),
 7441               as_FloatRegister($src$$reg));
 7442   %}
 7443 
 7444   ins_pipe(fp_uop_s);
 7445 %}
 7446 
 7447 instruct negD_reg_reg(fRegD dst, fRegD src) %{
 7448   match(Set dst (NegD src));
 7449 
 7450   ins_cost(XFER_COST);
 7451   format %{ "fsgnjn.d  $dst, $src, $src\t#@negD_reg_reg" %}
 7452 
 7453   ins_encode %{
 7454     __ fneg_d(as_FloatRegister($dst$$reg),
 7455               as_FloatRegister($src$$reg));
 7456   %}
 7457 
 7458   ins_pipe(fp_uop_d);
 7459 %}
 7460 
 7461 instruct absI_reg(iRegINoSp dst, iRegIorL2I src) %{
 7462   match(Set dst (AbsI src));
 7463 
 7464   ins_cost(ALU_COST * 3);
 7465   format %{
 7466     "sraiw  t0, $src, 0x1f\n\t"
 7467     "addw  $dst, $src, t0\n\t"
 7468     "xorr  $dst, $dst, t0\t#@absI_reg"
 7469   %}
 7470 
 7471   ins_encode %{
 7472     __ sraiw(t0, as_Register($src$$reg), 0x1f);
 7473     __ addw(as_Register($dst$$reg), as_Register($src$$reg), t0);
 7474     __ xorr(as_Register($dst$$reg), as_Register($dst$$reg), t0);
 7475   %}
 7476 
 7477   ins_pipe(pipe_class_default);
 7478 %}
 7479 
 7480 instruct absL_reg(iRegLNoSp dst, iRegL src) %{
 7481   match(Set dst (AbsL src));
 7482 
 7483   ins_cost(ALU_COST * 3);
 7484   format %{
 7485     "srai  t0, $src, 0x3f\n\t"
 7486     "add  $dst, $src, t0\n\t"
 7487     "xorr  $dst, $dst, t0\t#@absL_reg"
 7488   %}
 7489 
 7490   ins_encode %{
 7491     __ srai(t0, as_Register($src$$reg), 0x3f);
 7492     __ add(as_Register($dst$$reg), as_Register($src$$reg), t0);
 7493     __ xorr(as_Register($dst$$reg), as_Register($dst$$reg), t0);
 7494   %}
 7495 
 7496   ins_pipe(pipe_class_default);
 7497 %}
 7498 
 7499 instruct absF_reg(fRegF dst, fRegF src) %{
 7500   match(Set dst (AbsF src));
 7501 
 7502   ins_cost(XFER_COST);
 7503   format %{ "fsgnjx.s  $dst, $src, $src\t#@absF_reg" %}
 7504   ins_encode %{
 7505     __ fabs_s(as_FloatRegister($dst$$reg),
 7506               as_FloatRegister($src$$reg));
 7507   %}
 7508 
 7509   ins_pipe(fp_uop_s);
 7510 %}
 7511 
 7512 instruct absD_reg(fRegD dst, fRegD src) %{
 7513   match(Set dst (AbsD src));
 7514 
 7515   ins_cost(XFER_COST);
 7516   format %{ "fsgnjx.d  $dst, $src, $src\t#@absD_reg" %}
 7517   ins_encode %{
 7518     __ fabs_d(as_FloatRegister($dst$$reg),
 7519               as_FloatRegister($src$$reg));
 7520   %}
 7521 
 7522   ins_pipe(fp_uop_d);
 7523 %}
 7524 
 7525 instruct sqrtF_reg(fRegF dst, fRegF src) %{
 7526   match(Set dst (SqrtF src));
 7527 
 7528   ins_cost(FSQRT_COST);
 7529   format %{ "fsqrt.s  $dst, $src\t#@sqrtF_reg" %}
 7530   ins_encode %{
 7531     __ fsqrt_s(as_FloatRegister($dst$$reg),
 7532                as_FloatRegister($src$$reg));
 7533   %}
 7534 
 7535   ins_pipe(fp_sqrt_s);
 7536 %}
 7537 
 7538 instruct sqrtD_reg(fRegD dst, fRegD src) %{
 7539   match(Set dst (SqrtD src));
 7540 
 7541   ins_cost(FSQRT_COST);
 7542   format %{ "fsqrt.d  $dst, $src\t#@sqrtD_reg" %}
 7543   ins_encode %{
 7544     __ fsqrt_d(as_FloatRegister($dst$$reg),
 7545                as_FloatRegister($src$$reg));
 7546   %}
 7547 
 7548   ins_pipe(fp_sqrt_d);
 7549 %}
 7550 
 7551 // Round Instruction
 7552 instruct roundD_reg(fRegD dst, fRegD src, immI rmode, iRegLNoSp tmp1, iRegLNoSp tmp2, iRegLNoSp tmp3) %{
 7553   match(Set dst (RoundDoubleMode src rmode));
 7554   ins_cost(2 * XFER_COST + BRANCH_COST);
 7555   effect(TEMP_DEF dst, TEMP tmp1, TEMP tmp2, TEMP tmp3);
 7556 
 7557   format %{ "RoundDoubleMode $src, $rmode" %}
 7558   ins_encode %{
 7559     __ round_double_mode(as_FloatRegister($dst$$reg),
 7560                as_FloatRegister($src$$reg), $rmode$$constant, $tmp1$$Register, $tmp2$$Register, $tmp3$$Register);
 7561   %}
 7562   ins_pipe(pipe_class_default);
 7563 %}
 7564 
 7565 // Copysign and signum intrinsics
 7566 
 7567 instruct copySignD_reg(fRegD dst, fRegD src1, fRegD src2, immD zero) %{
 7568   match(Set dst (CopySignD src1 (Binary src2 zero)));
 7569   format %{ "CopySignD  $dst $src1 $src2" %}
 7570   ins_encode %{
 7571     FloatRegister dst = as_FloatRegister($dst$$reg),
 7572                   src1 = as_FloatRegister($src1$$reg),
 7573                   src2 = as_FloatRegister($src2$$reg);
 7574     __ fsgnj_d(dst, src1, src2);
 7575   %}
 7576   ins_pipe(fp_dop_reg_reg_d);
 7577 %}
 7578 
 7579 instruct copySignF_reg(fRegF dst, fRegF src1, fRegF src2) %{
 7580   match(Set dst (CopySignF src1 src2));
 7581   format %{ "CopySignF  $dst $src1 $src2" %}
 7582   ins_encode %{
 7583     FloatRegister dst = as_FloatRegister($dst$$reg),
 7584                   src1 = as_FloatRegister($src1$$reg),
 7585                   src2 = as_FloatRegister($src2$$reg);
 7586     __ fsgnj_s(dst, src1, src2);
 7587   %}
 7588   ins_pipe(fp_dop_reg_reg_s);
 7589 %}
 7590 
 7591 instruct signumD_reg(fRegD dst, immD zero, fRegD one) %{
 7592   match(Set dst (SignumD dst (Binary zero one)));
 7593   format %{ "signumD  $dst, $dst" %}
 7594   ins_encode %{
 7595     __ signum_fp(as_FloatRegister($dst$$reg), as_FloatRegister($one$$reg), true /* is_double */);
 7596   %}
 7597   ins_pipe(pipe_class_default);
 7598 %}
 7599 
 7600 instruct signumF_reg(fRegF dst, immF zero, fRegF one) %{
 7601   match(Set dst (SignumF dst (Binary zero one)));
 7602   format %{ "signumF  $dst, $dst" %}
 7603   ins_encode %{
 7604     __ signum_fp(as_FloatRegister($dst$$reg), as_FloatRegister($one$$reg), false /* is_double */);
 7605   %}
 7606   ins_pipe(pipe_class_default);
 7607 %}
 7608 
 7609 // Arithmetic Instructions End
 7610 
 7611 // ============================================================================
 7612 // Logical Instructions
 7613 
 7614 // Register And
 7615 instruct andI_reg_reg(iRegINoSp dst, iRegI src1, iRegI src2) %{
 7616   match(Set dst (AndI src1 src2));
 7617 
 7618   format %{ "andr  $dst, $src1, $src2\t#@andI_reg_reg" %}
 7619 
 7620   ins_cost(ALU_COST);
 7621   ins_encode %{
 7622     __ andr(as_Register($dst$$reg),
 7623             as_Register($src1$$reg),
 7624             as_Register($src2$$reg));
 7625   %}
 7626 
 7627   ins_pipe(ialu_reg_reg);
 7628 %}
 7629 
 7630 // Immediate And
 7631 instruct andI_reg_imm(iRegINoSp dst, iRegI src1, immIAdd src2) %{
 7632   match(Set dst (AndI src1 src2));
 7633 
 7634   format %{ "andi  $dst, $src1, $src2\t#@andI_reg_imm" %}
 7635 
 7636   ins_cost(ALU_COST);
 7637   ins_encode %{
 7638     __ andi(as_Register($dst$$reg),
 7639             as_Register($src1$$reg),
 7640             (int32_t)($src2$$constant));
 7641   %}
 7642 
 7643   ins_pipe(ialu_reg_imm);
 7644 %}
 7645 
 7646 // Register Or
 7647 instruct orI_reg_reg(iRegINoSp dst, iRegI src1, iRegI src2) %{
 7648   match(Set dst (OrI src1 src2));
 7649 
 7650   format %{ "orr  $dst, $src1, $src2\t#@orI_reg_reg" %}
 7651 
 7652   ins_cost(ALU_COST);
 7653   ins_encode %{
 7654     __ orr(as_Register($dst$$reg),
 7655            as_Register($src1$$reg),
 7656            as_Register($src2$$reg));
 7657   %}
 7658 
 7659   ins_pipe(ialu_reg_reg);
 7660 %}
 7661 
 7662 // Immediate Or
 7663 instruct orI_reg_imm(iRegINoSp dst, iRegI src1, immIAdd src2) %{
 7664   match(Set dst (OrI src1 src2));
 7665 
 7666   format %{ "ori  $dst, $src1, $src2\t#@orI_reg_imm" %}
 7667 
 7668   ins_cost(ALU_COST);
 7669   ins_encode %{
 7670     __ ori(as_Register($dst$$reg),
 7671            as_Register($src1$$reg),
 7672            (int32_t)($src2$$constant));
 7673   %}
 7674 
 7675   ins_pipe(ialu_reg_imm);
 7676 %}
 7677 
 7678 // Register Xor
 7679 instruct xorI_reg_reg(iRegINoSp dst, iRegI src1, iRegI src2) %{
 7680   match(Set dst (XorI src1 src2));
 7681 
 7682   format %{ "xorr  $dst, $src1, $src2\t#@xorI_reg_reg" %}
 7683 
 7684   ins_cost(ALU_COST);
 7685   ins_encode %{
 7686     __ xorr(as_Register($dst$$reg),
 7687             as_Register($src1$$reg),
 7688             as_Register($src2$$reg));
 7689   %}
 7690 
 7691   ins_pipe(ialu_reg_reg);
 7692 %}
 7693 
 7694 // Immediate Xor
 7695 instruct xorI_reg_imm(iRegINoSp dst, iRegI src1, immIAdd src2) %{
 7696   match(Set dst (XorI src1 src2));
 7697 
 7698   format %{ "xori  $dst, $src1, $src2\t#@xorI_reg_imm" %}
 7699 
 7700   ins_cost(ALU_COST);
 7701   ins_encode %{
 7702     __ xori(as_Register($dst$$reg),
 7703             as_Register($src1$$reg),
 7704             (int32_t)($src2$$constant));
 7705   %}
 7706 
 7707   ins_pipe(ialu_reg_imm);
 7708 %}
 7709 
 7710 // Register And Long
 7711 instruct andL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2) %{
 7712   match(Set dst (AndL src1 src2));
 7713 
 7714   format %{ "andr  $dst, $src1, $src2\t#@andL_reg_reg" %}
 7715 
 7716   ins_cost(ALU_COST);
 7717   ins_encode %{
 7718     __ andr(as_Register($dst$$reg),
 7719             as_Register($src1$$reg),
 7720             as_Register($src2$$reg));
 7721   %}
 7722 
 7723   ins_pipe(ialu_reg_reg);
 7724 %}
 7725 
 7726 // Immediate And Long
 7727 instruct andL_reg_imm(iRegLNoSp dst, iRegL src1, immLAdd src2) %{
 7728   match(Set dst (AndL src1 src2));
 7729 
 7730   format %{ "andi  $dst, $src1, $src2\t#@andL_reg_imm" %}
 7731 
 7732   ins_cost(ALU_COST);
 7733   ins_encode %{
 7734     __ andi(as_Register($dst$$reg),
 7735             as_Register($src1$$reg),
 7736             (int32_t)($src2$$constant));
 7737   %}
 7738 
 7739   ins_pipe(ialu_reg_imm);
 7740 %}
 7741 
 7742 // Register Or Long
 7743 instruct orL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2) %{
 7744   match(Set dst (OrL src1 src2));
 7745 
 7746   format %{ "orr  $dst, $src1, $src2\t#@orL_reg_reg" %}
 7747 
 7748   ins_cost(ALU_COST);
 7749   ins_encode %{
 7750     __ orr(as_Register($dst$$reg),
 7751            as_Register($src1$$reg),
 7752            as_Register($src2$$reg));
 7753   %}
 7754 
 7755   ins_pipe(ialu_reg_reg);
 7756 %}
 7757 
 7758 // Immediate Or Long
 7759 instruct orL_reg_imm(iRegLNoSp dst, iRegL src1, immLAdd src2) %{
 7760   match(Set dst (OrL src1 src2));
 7761 
 7762   format %{ "ori  $dst, $src1, $src2\t#@orL_reg_imm" %}
 7763 
 7764   ins_cost(ALU_COST);
 7765   ins_encode %{
 7766     __ ori(as_Register($dst$$reg),
 7767            as_Register($src1$$reg),
 7768            (int32_t)($src2$$constant));
 7769   %}
 7770 
 7771   ins_pipe(ialu_reg_imm);
 7772 %}
 7773 
 7774 // Register Xor Long
 7775 instruct xorL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2) %{
 7776   match(Set dst (XorL src1 src2));
 7777 
 7778   format %{ "xorr  $dst, $src1, $src2\t#@xorL_reg_reg" %}
 7779 
 7780   ins_cost(ALU_COST);
 7781   ins_encode %{
 7782     __ xorr(as_Register($dst$$reg),
 7783             as_Register($src1$$reg),
 7784             as_Register($src2$$reg));
 7785   %}
 7786 
 7787   ins_pipe(ialu_reg_reg);
 7788 %}
 7789 
 7790 // Immediate Xor Long
 7791 instruct xorL_reg_imm(iRegLNoSp dst, iRegL src1, immLAdd src2) %{
 7792   match(Set dst (XorL src1 src2));
 7793 
 7794   ins_cost(ALU_COST);
 7795   format %{ "xori  $dst, $src1, $src2\t#@xorL_reg_imm" %}
 7796 
 7797   ins_encode %{
 7798     __ xori(as_Register($dst$$reg),
 7799             as_Register($src1$$reg),
 7800             (int32_t)($src2$$constant));
 7801   %}
 7802 
 7803   ins_pipe(ialu_reg_imm);
 7804 %}
 7805 
 7806 // ============================================================================
 7807 // MemBar Instruction
 7808 
 7809 instruct load_fence() %{
 7810   match(LoadFence);
 7811   ins_cost(ALU_COST);
 7812 
 7813   format %{ "#@load_fence" %}
 7814 
 7815   ins_encode %{
 7816     __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
 7817   %}
 7818   ins_pipe(pipe_serial);
 7819 %}
 7820 
 7821 instruct membar_acquire() %{
 7822   match(MemBarAcquire);
 7823   ins_cost(ALU_COST);
 7824 
 7825   format %{ "#@membar_acquire\n\t"
 7826             "fence ir iorw" %}
 7827 
 7828   ins_encode %{
 7829     __ block_comment("membar_acquire");
 7830     __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
 7831   %}
 7832 
 7833   ins_pipe(pipe_serial);
 7834 %}
 7835 
 7836 instruct membar_acquire_lock() %{
 7837   match(MemBarAcquireLock);
 7838   ins_cost(0);
 7839 
 7840   format %{ "#@membar_acquire_lock (elided)" %}
 7841 
 7842   ins_encode %{
 7843     __ block_comment("membar_acquire_lock (elided)");
 7844   %}
 7845 
 7846   ins_pipe(pipe_serial);
 7847 %}
 7848 
 7849 instruct store_fence() %{
 7850   match(StoreFence);
 7851   ins_cost(ALU_COST);
 7852 
 7853   format %{ "#@store_fence" %}
 7854 
 7855   ins_encode %{
 7856     __ membar(MacroAssembler::LoadStore | MacroAssembler::StoreStore);
 7857   %}
 7858   ins_pipe(pipe_serial);
 7859 %}
 7860 
 7861 instruct membar_release() %{
 7862   match(MemBarRelease);
 7863   ins_cost(ALU_COST);
 7864 
 7865   format %{ "#@membar_release\n\t"
 7866             "fence iorw ow" %}
 7867 
 7868   ins_encode %{
 7869     __ block_comment("membar_release");
 7870     __ membar(MacroAssembler::LoadStore | MacroAssembler::StoreStore);
 7871   %}
 7872   ins_pipe(pipe_serial);
 7873 %}
 7874 
 7875 instruct membar_storestore() %{
 7876   match(MemBarStoreStore);
 7877   match(StoreStoreFence);
 7878   ins_cost(ALU_COST);
 7879 
 7880   format %{ "MEMBAR-store-store\t#@membar_storestore" %}
 7881 
 7882   ins_encode %{
 7883     __ membar(MacroAssembler::StoreStore);
 7884   %}
 7885   ins_pipe(pipe_serial);
 7886 %}
 7887 
 7888 instruct membar_release_lock() %{
 7889   match(MemBarReleaseLock);
 7890   ins_cost(0);
 7891 
 7892   format %{ "#@membar_release_lock (elided)" %}
 7893 
 7894   ins_encode %{
 7895     __ block_comment("membar_release_lock (elided)");
 7896   %}
 7897 
 7898   ins_pipe(pipe_serial);
 7899 %}
 7900 
 7901 instruct membar_volatile() %{
 7902   match(MemBarVolatile);
 7903   ins_cost(ALU_COST);
 7904 
 7905   format %{ "#@membar_volatile\n\t"
 7906              "fence iorw iorw"%}
 7907 
 7908   ins_encode %{
 7909     __ block_comment("membar_volatile");
 7910     __ membar(MacroAssembler::StoreLoad);
 7911   %}
 7912 
 7913   ins_pipe(pipe_serial);
 7914 %}
 7915 
 7916 instruct spin_wait() %{
 7917   predicate(UseZihintpause);
 7918   match(OnSpinWait);
 7919   ins_cost(CACHE_MISS_COST);
 7920 
 7921   format %{ "spin_wait" %}
 7922 
 7923   ins_encode %{
 7924     __ pause();
 7925   %}
 7926 
 7927   ins_pipe(pipe_serial);
 7928 %}
 7929 
 7930 // ============================================================================
 7931 // Cast Instructions (Java-level type cast)
 7932 
 7933 instruct castX2P(iRegPNoSp dst, iRegL src) %{
 7934   match(Set dst (CastX2P src));
 7935 
 7936   ins_cost(ALU_COST);
 7937   format %{ "mv  $dst, $src\t# long -> ptr, #@castX2P" %}
 7938 
 7939   ins_encode %{
 7940     if ($dst$$reg != $src$$reg) {
 7941       __ mv(as_Register($dst$$reg), as_Register($src$$reg));
 7942     }
 7943   %}
 7944 
 7945   ins_pipe(ialu_reg);
 7946 %}
 7947 
 7948 instruct castP2X(iRegLNoSp dst, iRegP src) %{
 7949   match(Set dst (CastP2X src));
 7950 
 7951   ins_cost(ALU_COST);
 7952   format %{ "mv  $dst, $src\t# ptr -> long, #@castP2X" %}
 7953 
 7954   ins_encode %{
 7955     if ($dst$$reg != $src$$reg) {
 7956       __ mv(as_Register($dst$$reg), as_Register($src$$reg));
 7957     }
 7958   %}
 7959 
 7960   ins_pipe(ialu_reg);
 7961 %}
 7962 
 7963 instruct castPP(iRegPNoSp dst)
 7964 %{
 7965   match(Set dst (CastPP dst));
 7966   ins_cost(0);
 7967 
 7968   size(0);
 7969   format %{ "# castPP of $dst, #@castPP" %}
 7970   ins_encode(/* empty encoding */);
 7971   ins_pipe(pipe_class_empty);
 7972 %}
 7973 
 7974 instruct castLL(iRegL dst)
 7975 %{
 7976   match(Set dst (CastLL dst));
 7977 
 7978   size(0);
 7979   format %{ "# castLL of $dst, #@castLL" %}
 7980   ins_encode(/* empty encoding */);
 7981   ins_cost(0);
 7982   ins_pipe(pipe_class_empty);
 7983 %}
 7984 
 7985 instruct castII(iRegI dst)
 7986 %{
 7987   match(Set dst (CastII dst));
 7988 
 7989   size(0);
 7990   format %{ "# castII of $dst, #@castII" %}
 7991   ins_encode(/* empty encoding */);
 7992   ins_cost(0);
 7993   ins_pipe(pipe_class_empty);
 7994 %}
 7995 
 7996 instruct checkCastPP(iRegPNoSp dst)
 7997 %{
 7998   match(Set dst (CheckCastPP dst));
 7999 
 8000   size(0);
 8001   ins_cost(0);
 8002   format %{ "# checkcastPP of $dst, #@checkCastPP" %}
 8003   ins_encode(/* empty encoding */);
 8004   ins_pipe(pipe_class_empty);
 8005 %}
 8006 
 8007 instruct castFF(fRegF dst)
 8008 %{
 8009   match(Set dst (CastFF dst));
 8010 
 8011   size(0);
 8012   format %{ "# castFF of $dst" %}
 8013   ins_encode(/* empty encoding */);
 8014   ins_cost(0);
 8015   ins_pipe(pipe_class_empty);
 8016 %}
 8017 
 8018 instruct castDD(fRegD dst)
 8019 %{
 8020   match(Set dst (CastDD dst));
 8021 
 8022   size(0);
 8023   format %{ "# castDD of $dst" %}
 8024   ins_encode(/* empty encoding */);
 8025   ins_cost(0);
 8026   ins_pipe(pipe_class_empty);
 8027 %}
 8028 
 8029 instruct castVV(vReg dst)
 8030 %{
 8031   match(Set dst (CastVV dst));
 8032 
 8033   size(0);
 8034   format %{ "# castVV of $dst" %}
 8035   ins_encode(/* empty encoding */);
 8036   ins_cost(0);
 8037   ins_pipe(pipe_class_empty);
 8038 %}
 8039 
 8040 // ============================================================================
 8041 // Convert Instructions
 8042 
 8043 // int to bool
 8044 instruct convI2Bool(iRegINoSp dst, iRegI src)
 8045 %{
 8046   match(Set dst (Conv2B src));
 8047 
 8048   ins_cost(ALU_COST);
 8049   format %{ "snez  $dst, $src\t#@convI2Bool" %}
 8050 
 8051   ins_encode %{
 8052     __ snez(as_Register($dst$$reg), as_Register($src$$reg));
 8053   %}
 8054 
 8055   ins_pipe(ialu_reg);
 8056 %}
 8057 
 8058 // pointer to bool
 8059 instruct convP2Bool(iRegINoSp dst, iRegP src)
 8060 %{
 8061   match(Set dst (Conv2B src));
 8062 
 8063   ins_cost(ALU_COST);
 8064   format %{ "snez  $dst, $src\t#@convP2Bool" %}
 8065 
 8066   ins_encode %{
 8067     __ snez(as_Register($dst$$reg), as_Register($src$$reg));
 8068   %}
 8069 
 8070   ins_pipe(ialu_reg);
 8071 %}
 8072 
 8073 // int <-> long
 8074 
 8075 instruct convI2L_reg_reg(iRegLNoSp dst, iRegIorL2I src)
 8076 %{
 8077   match(Set dst (ConvI2L src));
 8078 
 8079   ins_cost(ALU_COST);
 8080   format %{ "addw  $dst, $src, zr\t#@convI2L_reg_reg" %}
 8081   ins_encode %{
 8082     __ sign_extend(as_Register($dst$$reg), as_Register($src$$reg), 32);
 8083   %}
 8084   ins_pipe(ialu_reg);
 8085 %}
 8086 
 8087 instruct convL2I_reg(iRegINoSp dst, iRegL src) %{
 8088   match(Set dst (ConvL2I src));
 8089 
 8090   ins_cost(ALU_COST);
 8091   format %{ "addw  $dst, $src, zr\t#@convL2I_reg" %}
 8092 
 8093   ins_encode %{
 8094     __ sign_extend(as_Register($dst$$reg), as_Register($src$$reg), 32);
 8095   %}
 8096 
 8097   ins_pipe(ialu_reg);
 8098 %}
 8099 
 8100 // int to unsigned long (Zero-extend)
 8101 instruct convI2UL_reg_reg(iRegLNoSp dst, iRegIorL2I src, immL_32bits mask)
 8102 %{
 8103   match(Set dst (AndL (ConvI2L src) mask));
 8104 
 8105   ins_cost(ALU_COST * 2);
 8106   format %{ "zero_extend $dst, $src, 32\t# i2ul, #@convI2UL_reg_reg" %}
 8107 
 8108   ins_encode %{
 8109     __ zero_extend(as_Register($dst$$reg), as_Register($src$$reg), 32);
 8110   %}
 8111 
 8112   ins_pipe(ialu_reg_shift);
 8113 %}
 8114 
 8115 // float <-> double
 8116 
 8117 instruct convF2D_reg(fRegD dst, fRegF src) %{
 8118   match(Set dst (ConvF2D src));
 8119 
 8120   ins_cost(XFER_COST);
 8121   format %{ "fcvt.d.s  $dst, $src\t#@convF2D_reg" %}
 8122 
 8123   ins_encode %{
 8124     __ fcvt_d_s(as_FloatRegister($dst$$reg), as_FloatRegister($src$$reg));
 8125   %}
 8126 
 8127   ins_pipe(fp_f2d);
 8128 %}
 8129 
 8130 instruct convD2F_reg(fRegF dst, fRegD src) %{
 8131   match(Set dst (ConvD2F src));
 8132 
 8133   ins_cost(XFER_COST);
 8134   format %{ "fcvt.s.d  $dst, $src\t#@convD2F_reg" %}
 8135 
 8136   ins_encode %{
 8137     __ fcvt_s_d(as_FloatRegister($dst$$reg), as_FloatRegister($src$$reg));
 8138   %}
 8139 
 8140   ins_pipe(fp_d2f);
 8141 %}
 8142 
 8143 // single <-> half precision
 8144 
 8145 instruct convHF2F_reg_reg(fRegF dst, iRegINoSp src, iRegINoSp tmp) %{
 8146   match(Set dst (ConvHF2F src));
 8147   effect(TEMP tmp);
 8148   format %{ "fmv.h.x $dst, $src\t# move source from $src to $dst\n\t"
 8149             "fcvt.s.h $dst, $dst\t# convert half to single precision"
 8150   %}
 8151   ins_encode %{
 8152     __ float16_to_float($dst$$FloatRegister, $src$$Register, $tmp$$Register);
 8153   %}
 8154   ins_pipe(pipe_slow);
 8155 %}
 8156 
 8157 instruct convF2HF_reg_reg(iRegINoSp dst, fRegF src, fRegF ftmp, iRegINoSp xtmp) %{
 8158   match(Set dst (ConvF2HF src));
 8159   effect(TEMP_DEF dst, TEMP ftmp, TEMP xtmp);
 8160   format %{ "fcvt.h.s $ftmp, $src\t# convert single precision to half\n\t"
 8161             "fmv.x.h $dst, $ftmp\t# move result from $ftmp to $dst"
 8162   %}
 8163   ins_encode %{
 8164     __ float_to_float16($dst$$Register, $src$$FloatRegister, $ftmp$$FloatRegister, $xtmp$$Register);
 8165   %}
 8166   ins_pipe(pipe_slow);
 8167 %}
 8168 
 8169 // float <-> int
 8170 
 8171 instruct convF2I_reg_reg(iRegINoSp dst, fRegF src) %{
 8172   match(Set dst (ConvF2I src));
 8173 
 8174   ins_cost(XFER_COST);
 8175   format %{ "fcvt.w.s  $dst, $src\t#@convF2I_reg_reg" %}
 8176 
 8177   ins_encode %{
 8178     __ fcvt_w_s_safe($dst$$Register, $src$$FloatRegister);
 8179   %}
 8180 
 8181   ins_pipe(fp_f2i);
 8182 %}
 8183 
 8184 instruct convI2F_reg_reg(fRegF dst, iRegIorL2I src) %{
 8185   match(Set dst (ConvI2F src));
 8186 
 8187   ins_cost(XFER_COST);
 8188   format %{ "fcvt.s.w  $dst, $src\t#@convI2F_reg_reg" %}
 8189 
 8190   ins_encode %{
 8191     __ fcvt_s_w(as_FloatRegister($dst$$reg), as_Register($src$$reg));
 8192   %}
 8193 
 8194   ins_pipe(fp_i2f);
 8195 %}
 8196 
 8197 // float <-> long
 8198 
 8199 instruct convF2L_reg_reg(iRegLNoSp dst, fRegF src) %{
 8200   match(Set dst (ConvF2L src));
 8201 
 8202   ins_cost(XFER_COST);
 8203   format %{ "fcvt.l.s  $dst, $src\t#@convF2L_reg_reg" %}
 8204 
 8205   ins_encode %{
 8206     __ fcvt_l_s_safe($dst$$Register, $src$$FloatRegister);
 8207   %}
 8208 
 8209   ins_pipe(fp_f2l);
 8210 %}
 8211 
 8212 instruct convL2F_reg_reg(fRegF dst, iRegL src) %{
 8213   match(Set dst (ConvL2F src));
 8214 
 8215   ins_cost(XFER_COST);
 8216   format %{ "fcvt.s.l  $dst, $src\t#@convL2F_reg_reg" %}
 8217 
 8218   ins_encode %{
 8219     __ fcvt_s_l(as_FloatRegister($dst$$reg), as_Register($src$$reg));
 8220   %}
 8221 
 8222   ins_pipe(fp_l2f);
 8223 %}
 8224 
 8225 // double <-> int
 8226 
 8227 instruct convD2I_reg_reg(iRegINoSp dst, fRegD src) %{
 8228   match(Set dst (ConvD2I src));
 8229 
 8230   ins_cost(XFER_COST);
 8231   format %{ "fcvt.w.d  $dst, $src\t#@convD2I_reg_reg" %}
 8232 
 8233   ins_encode %{
 8234     __ fcvt_w_d_safe($dst$$Register, $src$$FloatRegister);
 8235   %}
 8236 
 8237   ins_pipe(fp_d2i);
 8238 %}
 8239 
 8240 instruct convI2D_reg_reg(fRegD dst, iRegIorL2I src) %{
 8241   match(Set dst (ConvI2D src));
 8242 
 8243   ins_cost(XFER_COST);
 8244   format %{ "fcvt.d.w  $dst, $src\t#@convI2D_reg_reg" %}
 8245 
 8246   ins_encode %{
 8247     __ fcvt_d_w(as_FloatRegister($dst$$reg), as_Register($src$$reg));
 8248   %}
 8249 
 8250   ins_pipe(fp_i2d);
 8251 %}
 8252 
 8253 // double <-> long
 8254 
 8255 instruct convD2L_reg_reg(iRegLNoSp dst, fRegD src) %{
 8256   match(Set dst (ConvD2L src));
 8257 
 8258   ins_cost(XFER_COST);
 8259   format %{ "fcvt.l.d  $dst, $src\t#@convD2L_reg_reg" %}
 8260 
 8261   ins_encode %{
 8262     __ fcvt_l_d_safe($dst$$Register, $src$$FloatRegister);
 8263   %}
 8264 
 8265   ins_pipe(fp_d2l);
 8266 %}
 8267 
 8268 instruct convL2D_reg_reg(fRegD dst, iRegL src) %{
 8269   match(Set dst (ConvL2D src));
 8270 
 8271   ins_cost(XFER_COST);
 8272   format %{ "fcvt.d.l  $dst, $src\t#@convL2D_reg_reg" %}
 8273 
 8274   ins_encode %{
 8275     __ fcvt_d_l(as_FloatRegister($dst$$reg), as_Register($src$$reg));
 8276   %}
 8277 
 8278   ins_pipe(fp_l2d);
 8279 %}
 8280 
 8281 // Convert oop into int for vectors alignment masking
 8282 instruct convP2I(iRegINoSp dst, iRegP src) %{
 8283   match(Set dst (ConvL2I (CastP2X src)));
 8284 
 8285   ins_cost(ALU_COST * 2);
 8286   format %{ "zero_extend $dst, $src, 32\t# ptr -> int, #@convP2I" %}
 8287 
 8288   ins_encode %{
 8289     __ zero_extend($dst$$Register, $src$$Register, 32);
 8290   %}
 8291 
 8292   ins_pipe(ialu_reg);
 8293 %}
 8294 
 8295 // Convert compressed oop into int for vectors alignment masking
 8296 // in case of 32bit oops (heap < 4Gb).
 8297 instruct convN2I(iRegINoSp dst, iRegN src)
 8298 %{
 8299   predicate(CompressedOops::shift() == 0);
 8300   match(Set dst (ConvL2I (CastP2X (DecodeN src))));
 8301 
 8302   ins_cost(ALU_COST);
 8303   format %{ "mv  $dst, $src\t# compressed ptr -> int, #@convN2I" %}
 8304 
 8305   ins_encode %{
 8306     __ mv($dst$$Register, $src$$Register);
 8307   %}
 8308 
 8309   ins_pipe(ialu_reg);
 8310 %}
 8311 
 8312 instruct round_double_reg(iRegLNoSp dst, fRegD src, fRegD ftmp) %{
 8313   match(Set dst (RoundD src));
 8314 
 8315   ins_cost(XFER_COST + BRANCH_COST);
 8316   effect(TEMP ftmp);
 8317   format %{ "java_round_double $dst, $src\t#@round_double_reg" %}
 8318 
 8319   ins_encode %{
 8320     __ java_round_double($dst$$Register, as_FloatRegister($src$$reg), as_FloatRegister($ftmp$$reg));
 8321   %}
 8322 
 8323   ins_pipe(pipe_slow);
 8324 %}
 8325 
 8326 instruct round_float_reg(iRegINoSp dst, fRegF src, fRegF ftmp) %{
 8327   match(Set dst (RoundF src));
 8328 
 8329   ins_cost(XFER_COST + BRANCH_COST);
 8330   effect(TEMP ftmp);
 8331   format %{ "java_round_float $dst, $src\t#@round_float_reg" %}
 8332 
 8333   ins_encode %{
 8334     __ java_round_float($dst$$Register, as_FloatRegister($src$$reg), as_FloatRegister($ftmp$$reg));
 8335   %}
 8336 
 8337   ins_pipe(pipe_slow);
 8338 %}
 8339 
 8340 // Convert oop pointer into compressed form
 8341 instruct encodeHeapOop(iRegNNoSp dst, iRegP src) %{
 8342   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
 8343   match(Set dst (EncodeP src));
 8344   ins_cost(ALU_COST);
 8345   format %{ "encode_heap_oop  $dst, $src\t#@encodeHeapOop" %}
 8346   ins_encode %{
 8347     Register s = $src$$Register;
 8348     Register d = $dst$$Register;
 8349     __ encode_heap_oop(d, s);
 8350   %}
 8351   ins_pipe(pipe_class_default);
 8352 %}
 8353 
 8354 instruct encodeHeapOop_not_null(iRegNNoSp dst, iRegP src) %{
 8355   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
 8356   match(Set dst (EncodeP src));
 8357   ins_cost(ALU_COST);
 8358   format %{ "encode_heap_oop_not_null $dst, $src\t#@encodeHeapOop_not_null" %}
 8359   ins_encode %{
 8360     __ encode_heap_oop_not_null($dst$$Register, $src$$Register);
 8361   %}
 8362   ins_pipe(pipe_class_default);
 8363 %}
 8364 
 8365 instruct decodeHeapOop(iRegPNoSp dst, iRegN src) %{
 8366   predicate(n->bottom_type()->is_ptr()->ptr() != TypePtr::NotNull &&
 8367             n->bottom_type()->is_ptr()->ptr() != TypePtr::Constant);
 8368   match(Set dst (DecodeN src));
 8369 
 8370   ins_cost(0);
 8371   format %{ "decode_heap_oop  $dst, $src\t#@decodeHeapOop" %}
 8372   ins_encode %{
 8373     Register s = $src$$Register;
 8374     Register d = $dst$$Register;
 8375     __ decode_heap_oop(d, s);
 8376   %}
 8377   ins_pipe(pipe_class_default);
 8378 %}
 8379 
 8380 instruct decodeHeapOop_not_null(iRegPNoSp dst, iRegN src) %{
 8381   predicate(n->bottom_type()->is_ptr()->ptr() == TypePtr::NotNull ||
 8382             n->bottom_type()->is_ptr()->ptr() == TypePtr::Constant);
 8383   match(Set dst (DecodeN src));
 8384 
 8385   ins_cost(0);
 8386   format %{ "decode_heap_oop_not_null $dst, $src\t#@decodeHeapOop_not_null" %}
 8387   ins_encode %{
 8388     Register s = $src$$Register;
 8389     Register d = $dst$$Register;
 8390     __ decode_heap_oop_not_null(d, s);
 8391   %}
 8392   ins_pipe(pipe_class_default);
 8393 %}
 8394 
 8395 // Convert klass pointer into compressed form.
 8396 instruct encodeKlass_not_null(iRegNNoSp dst, iRegP src) %{
 8397   match(Set dst (EncodePKlass src));
 8398 
 8399   ins_cost(ALU_COST);
 8400   format %{ "encode_klass_not_null  $dst, $src\t#@encodeKlass_not_null" %}
 8401 
 8402   ins_encode %{
 8403     Register src_reg = as_Register($src$$reg);
 8404     Register dst_reg = as_Register($dst$$reg);
 8405     __ encode_klass_not_null(dst_reg, src_reg, t0);
 8406   %}
 8407 
 8408    ins_pipe(pipe_class_default);
 8409 %}
 8410 
 8411 instruct decodeKlass_not_null(iRegPNoSp dst, iRegN src, iRegPNoSp tmp) %{
 8412   match(Set dst (DecodeNKlass src));
 8413 
 8414   effect(TEMP tmp);
 8415 
 8416   ins_cost(ALU_COST);
 8417   format %{ "decode_klass_not_null  $dst, $src\t#@decodeKlass_not_null" %}
 8418 
 8419   ins_encode %{
 8420     Register src_reg = as_Register($src$$reg);
 8421     Register dst_reg = as_Register($dst$$reg);
 8422     Register tmp_reg = as_Register($tmp$$reg);
 8423     __ decode_klass_not_null(dst_reg, src_reg, tmp_reg);
 8424   %}
 8425 
 8426    ins_pipe(pipe_class_default);
 8427 %}
 8428 
 8429 // stack <-> reg and reg <-> reg shuffles with no conversion
 8430 
 8431 instruct MoveF2I_stack_reg(iRegINoSp dst, stackSlotF src) %{
 8432 
 8433   match(Set dst (MoveF2I src));
 8434 
 8435   effect(DEF dst, USE src);
 8436 
 8437   ins_cost(LOAD_COST);
 8438 
 8439   format %{ "lw  $dst, $src\t#@MoveF2I_stack_reg" %}
 8440 
 8441   ins_encode %{
 8442     __ lw(as_Register($dst$$reg), Address(sp, $src$$disp));
 8443   %}
 8444 
 8445   ins_pipe(iload_reg_reg);
 8446 
 8447 %}
 8448 
 8449 instruct MoveI2F_stack_reg(fRegF dst, stackSlotI src) %{
 8450 
 8451   match(Set dst (MoveI2F src));
 8452 
 8453   effect(DEF dst, USE src);
 8454 
 8455   ins_cost(LOAD_COST);
 8456 
 8457   format %{ "flw  $dst, $src\t#@MoveI2F_stack_reg" %}
 8458 
 8459   ins_encode %{
 8460     __ flw(as_FloatRegister($dst$$reg), Address(sp, $src$$disp));
 8461   %}
 8462 
 8463   ins_pipe(fp_load_mem_s);
 8464 
 8465 %}
 8466 
 8467 instruct MoveD2L_stack_reg(iRegLNoSp dst, stackSlotD src) %{
 8468 
 8469   match(Set dst (MoveD2L src));
 8470 
 8471   effect(DEF dst, USE src);
 8472 
 8473   ins_cost(LOAD_COST);
 8474 
 8475   format %{ "ld  $dst, $src\t#@MoveD2L_stack_reg" %}
 8476 
 8477   ins_encode %{
 8478     __ ld(as_Register($dst$$reg), Address(sp, $src$$disp));
 8479   %}
 8480 
 8481   ins_pipe(iload_reg_reg);
 8482 
 8483 %}
 8484 
 8485 instruct MoveL2D_stack_reg(fRegD dst, stackSlotL src) %{
 8486 
 8487   match(Set dst (MoveL2D src));
 8488 
 8489   effect(DEF dst, USE src);
 8490 
 8491   ins_cost(LOAD_COST);
 8492 
 8493   format %{ "fld  $dst, $src\t#@MoveL2D_stack_reg" %}
 8494 
 8495   ins_encode %{
 8496     __ fld(as_FloatRegister($dst$$reg), Address(sp, $src$$disp));
 8497   %}
 8498 
 8499   ins_pipe(fp_load_mem_d);
 8500 
 8501 %}
 8502 
 8503 instruct MoveF2I_reg_stack(stackSlotI dst, fRegF src) %{
 8504 
 8505   match(Set dst (MoveF2I src));
 8506 
 8507   effect(DEF dst, USE src);
 8508 
 8509   ins_cost(STORE_COST);
 8510 
 8511   format %{ "fsw  $src, $dst\t#@MoveF2I_reg_stack" %}
 8512 
 8513   ins_encode %{
 8514     __ fsw(as_FloatRegister($src$$reg), Address(sp, $dst$$disp));
 8515   %}
 8516 
 8517   ins_pipe(fp_store_reg_s);
 8518 
 8519 %}
 8520 
 8521 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
 8522 
 8523   match(Set dst (MoveI2F src));
 8524 
 8525   effect(DEF dst, USE src);
 8526 
 8527   ins_cost(STORE_COST);
 8528 
 8529   format %{ "sw  $src, $dst\t#@MoveI2F_reg_stack" %}
 8530 
 8531   ins_encode %{
 8532     __ sw(as_Register($src$$reg), Address(sp, $dst$$disp));
 8533   %}
 8534 
 8535   ins_pipe(istore_reg_reg);
 8536 
 8537 %}
 8538 
 8539 instruct MoveD2L_reg_stack(stackSlotL dst, fRegD src) %{
 8540 
 8541   match(Set dst (MoveD2L src));
 8542 
 8543   effect(DEF dst, USE src);
 8544 
 8545   ins_cost(STORE_COST);
 8546 
 8547   format %{ "fsd  $dst, $src\t#@MoveD2L_reg_stack" %}
 8548 
 8549   ins_encode %{
 8550     __ fsd(as_FloatRegister($src$$reg), Address(sp, $dst$$disp));
 8551   %}
 8552 
 8553   ins_pipe(fp_store_reg_d);
 8554 
 8555 %}
 8556 
 8557 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
 8558 
 8559   match(Set dst (MoveL2D src));
 8560 
 8561   effect(DEF dst, USE src);
 8562 
 8563   ins_cost(STORE_COST);
 8564 
 8565   format %{ "sd  $src, $dst\t#@MoveL2D_reg_stack" %}
 8566 
 8567   ins_encode %{
 8568     __ sd(as_Register($src$$reg), Address(sp, $dst$$disp));
 8569   %}
 8570 
 8571   ins_pipe(istore_reg_reg);
 8572 
 8573 %}
 8574 
 8575 instruct MoveF2I_reg_reg(iRegINoSp dst, fRegF src) %{
 8576 
 8577   match(Set dst (MoveF2I src));
 8578 
 8579   effect(DEF dst, USE src);
 8580 
 8581   ins_cost(FMVX_COST);
 8582 
 8583   format %{ "fmv.x.w  $dst, $src\t#@MoveF2I_reg_reg" %}
 8584 
 8585   ins_encode %{
 8586     __ fmv_x_w(as_Register($dst$$reg), as_FloatRegister($src$$reg));
 8587   %}
 8588 
 8589   ins_pipe(fp_f2i);
 8590 
 8591 %}
 8592 
 8593 instruct MoveI2F_reg_reg(fRegF dst, iRegI src) %{
 8594 
 8595   match(Set dst (MoveI2F src));
 8596 
 8597   effect(DEF dst, USE src);
 8598 
 8599   ins_cost(FMVX_COST);
 8600 
 8601   format %{ "fmv.w.x  $dst, $src\t#@MoveI2F_reg_reg" %}
 8602 
 8603   ins_encode %{
 8604     __ fmv_w_x(as_FloatRegister($dst$$reg), as_Register($src$$reg));
 8605   %}
 8606 
 8607   ins_pipe(fp_i2f);
 8608 
 8609 %}
 8610 
 8611 instruct MoveD2L_reg_reg(iRegLNoSp dst, fRegD src) %{
 8612 
 8613   match(Set dst (MoveD2L src));
 8614 
 8615   effect(DEF dst, USE src);
 8616 
 8617   ins_cost(FMVX_COST);
 8618 
 8619   format %{ "fmv.x.d $dst, $src\t#@MoveD2L_reg_reg" %}
 8620 
 8621   ins_encode %{
 8622     __ fmv_x_d(as_Register($dst$$reg), as_FloatRegister($src$$reg));
 8623   %}
 8624 
 8625   ins_pipe(fp_d2l);
 8626 
 8627 %}
 8628 
 8629 instruct MoveL2D_reg_reg(fRegD dst, iRegL src) %{
 8630 
 8631   match(Set dst (MoveL2D src));
 8632 
 8633   effect(DEF dst, USE src);
 8634 
 8635   ins_cost(FMVX_COST);
 8636 
 8637   format %{ "fmv.d.x  $dst, $src\t#@MoveL2D_reg_reg" %}
 8638 
 8639   ins_encode %{
 8640     __ fmv_d_x(as_FloatRegister($dst$$reg), as_Register($src$$reg));
 8641   %}
 8642 
 8643   ins_pipe(fp_l2d);
 8644 
 8645 %}
 8646 
 8647 // ============================================================================
 8648 // Compare Instructions which set the result float comparisons in dest register.
 8649 
 8650 instruct cmpF3_reg_reg(iRegINoSp dst, fRegF op1, fRegF op2)
 8651 %{
 8652   match(Set dst (CmpF3 op1 op2));
 8653 
 8654   ins_cost(XFER_COST * 2 + BRANCH_COST + ALU_COST);
 8655   format %{ "flt.s  $dst, $op2, $op1\t#@cmpF3_reg_reg\n\t"
 8656             "bgtz   $dst, done\n\t"
 8657             "feq.s  $dst, $op1, $op2\n\t"
 8658             "addi   $dst, $dst, -1\n\t"
 8659             "done:"
 8660   %}
 8661 
 8662   ins_encode %{
 8663     // we want -1 for unordered or less than, 0 for equal and 1 for greater than.
 8664     __ float_compare(as_Register($dst$$reg), as_FloatRegister($op1$$reg),
 8665                      as_FloatRegister($op2$$reg), -1 /*unordered_result < 0*/);
 8666   %}
 8667 
 8668   ins_pipe(pipe_class_default);
 8669 %}
 8670 
 8671 instruct cmpD3_reg_reg(iRegINoSp dst, fRegD op1, fRegD op2)
 8672 %{
 8673   match(Set dst (CmpD3 op1 op2));
 8674 
 8675   ins_cost(XFER_COST * 2 + BRANCH_COST + ALU_COST);
 8676   format %{ "flt.d  $dst, $op2, $op1\t#@cmpD3_reg_reg\n\t"
 8677             "bgtz   $dst, done\n\t"
 8678             "feq.d  $dst, $op1, $op2\n\t"
 8679             "addi   $dst, $dst, -1\n\t"
 8680             "done:"
 8681   %}
 8682 
 8683   ins_encode %{
 8684     // we want -1 for unordered or less than, 0 for equal and 1 for greater than.
 8685     __ double_compare(as_Register($dst$$reg), as_FloatRegister($op1$$reg), as_FloatRegister($op2$$reg), -1 /*unordered_result < 0*/);
 8686   %}
 8687 
 8688   ins_pipe(pipe_class_default);
 8689 %}
 8690 
 8691 instruct cmpL3_reg_reg(iRegINoSp dst, iRegL op1, iRegL op2)
 8692 %{
 8693   match(Set dst (CmpL3 op1 op2));
 8694 
 8695   ins_cost(ALU_COST * 3 + BRANCH_COST);
 8696   format %{ "slt   $dst, $op2, $op1\t#@cmpL3_reg_reg\n\t"
 8697             "bnez  $dst, done\n\t"
 8698             "slt   $dst, $op1, $op2\n\t"
 8699             "neg   $dst, $dst\n\t"
 8700             "done:"
 8701   %}
 8702   ins_encode %{
 8703     __ cmp_l2i(t0, as_Register($op1$$reg), as_Register($op2$$reg));
 8704     __ mv(as_Register($dst$$reg), t0);
 8705   %}
 8706 
 8707   ins_pipe(pipe_class_default);
 8708 %}
 8709 
 8710 instruct cmpUL3_reg_reg(iRegINoSp dst, iRegL op1, iRegL op2)
 8711 %{
 8712   match(Set dst (CmpUL3 op1 op2));
 8713 
 8714   ins_cost(ALU_COST * 3 + BRANCH_COST);
 8715   format %{ "sltu  $dst, $op2, $op1\t#@cmpUL3_reg_reg\n\t"
 8716             "bnez  $dst, done\n\t"
 8717             "sltu  $dst, $op1, $op2\n\t"
 8718             "neg   $dst, $dst\n\t"
 8719             "done:"
 8720   %}
 8721   ins_encode %{
 8722     __ cmp_ul2i(t0, as_Register($op1$$reg), as_Register($op2$$reg));
 8723     __ mv(as_Register($dst$$reg), t0);
 8724   %}
 8725 
 8726   ins_pipe(pipe_class_default);
 8727 %}
 8728 
 8729 instruct cmpU3_reg_reg(iRegINoSp dst, iRegI op1, iRegI op2)
 8730 %{
 8731   match(Set dst (CmpU3 op1 op2));
 8732 
 8733   ins_cost(ALU_COST * 3 + BRANCH_COST);
 8734   format %{ "sltu  $dst, $op2, $op1\t#@cmpU3_reg_reg\n\t"
 8735             "bnez  $dst, done\n\t"
 8736             "sltu  $dst, $op1, $op2\n\t"
 8737             "neg   $dst, $dst\n\t"
 8738             "done:"
 8739   %}
 8740   ins_encode %{
 8741     __ cmp_uw2i(t0, as_Register($op1$$reg), as_Register($op2$$reg));
 8742     __ mv(as_Register($dst$$reg), t0);
 8743   %}
 8744 
 8745   ins_pipe(pipe_class_default);
 8746 %}
 8747 
 8748 instruct cmpLTMask_reg_reg(iRegINoSp dst, iRegI p, iRegI q)
 8749 %{
 8750   match(Set dst (CmpLTMask p q));
 8751 
 8752   ins_cost(2 * ALU_COST);
 8753 
 8754   format %{ "slt $dst, $p, $q\t#@cmpLTMask_reg_reg\n\t"
 8755             "subw $dst, zr, $dst\t#@cmpLTMask_reg_reg"
 8756   %}
 8757 
 8758   ins_encode %{
 8759     __ slt(as_Register($dst$$reg), as_Register($p$$reg), as_Register($q$$reg));
 8760     __ subw(as_Register($dst$$reg), zr, as_Register($dst$$reg));
 8761   %}
 8762 
 8763   ins_pipe(ialu_reg_reg);
 8764 %}
 8765 
 8766 instruct cmpLTMask_reg_zero(iRegINoSp dst, iRegIorL2I op, immI0 zero)
 8767 %{
 8768   match(Set dst (CmpLTMask op zero));
 8769 
 8770   ins_cost(ALU_COST);
 8771 
 8772   format %{ "sraiw $dst, $dst, 31\t#@cmpLTMask_reg_reg" %}
 8773 
 8774   ins_encode %{
 8775     __ sraiw(as_Register($dst$$reg), as_Register($op$$reg), 31);
 8776   %}
 8777 
 8778   ins_pipe(ialu_reg_shift);
 8779 %}
 8780 
 8781 
 8782 // ============================================================================
 8783 // Max and Min
 8784 
 8785 instruct minI_reg_reg(iRegINoSp dst, iRegI src)
 8786 %{
 8787   match(Set dst (MinI dst src));
 8788 
 8789   ins_cost(BRANCH_COST + ALU_COST);
 8790   format %{
 8791     "ble $dst, $src, skip\t#@minI_reg_reg\n\t"
 8792     "mv  $dst, $src\n\t"
 8793     "skip:"
 8794   %}
 8795 
 8796   ins_encode %{
 8797     Label Lskip;
 8798     __ ble(as_Register($dst$$reg), as_Register($src$$reg), Lskip);
 8799     __ mv(as_Register($dst$$reg), as_Register($src$$reg));
 8800     __ bind(Lskip);
 8801   %}
 8802 
 8803   ins_pipe(pipe_class_compare);
 8804 %}
 8805 
 8806 instruct maxI_reg_reg(iRegINoSp dst, iRegI src)
 8807 %{
 8808   match(Set dst (MaxI dst src));
 8809 
 8810   ins_cost(BRANCH_COST + ALU_COST);
 8811   format %{
 8812     "bge $dst, $src, skip\t#@maxI_reg_reg\n\t"
 8813     "mv  $dst, $src\n\t"
 8814     "skip:"
 8815   %}
 8816 
 8817   ins_encode %{
 8818     Label Lskip;
 8819     __ bge(as_Register($dst$$reg), as_Register($src$$reg), Lskip);
 8820     __ mv(as_Register($dst$$reg), as_Register($src$$reg));
 8821     __ bind(Lskip);
 8822   %}
 8823 
 8824   ins_pipe(pipe_class_compare);
 8825 %}
 8826 
 8827 // special case for comparing with zero
 8828 // n.b. this is selected in preference to the rule above because it
 8829 // avoids loading constant 0 into a source register
 8830 
 8831 instruct minI_reg_zero(iRegINoSp dst, immI0 zero)
 8832 %{
 8833   match(Set dst (MinI dst zero));
 8834   match(Set dst (MinI zero dst));
 8835 
 8836   ins_cost(BRANCH_COST + ALU_COST);
 8837   format %{
 8838     "blez $dst, skip\t#@minI_reg_zero\n\t"
 8839     "mv   $dst, zr\n\t"
 8840     "skip:"
 8841   %}
 8842 
 8843   ins_encode %{
 8844     Label Lskip;
 8845     __ blez(as_Register($dst$$reg), Lskip);
 8846     __ mv(as_Register($dst$$reg), zr);
 8847     __ bind(Lskip);
 8848   %}
 8849 
 8850   ins_pipe(pipe_class_compare);
 8851 %}
 8852 
 8853 instruct maxI_reg_zero(iRegINoSp dst, immI0 zero)
 8854 %{
 8855   match(Set dst (MaxI dst zero));
 8856   match(Set dst (MaxI zero dst));
 8857 
 8858   ins_cost(BRANCH_COST + ALU_COST);
 8859   format %{
 8860     "bgez $dst, skip\t#@maxI_reg_zero\n\t"
 8861     "mv   $dst, zr\n\t"
 8862     "skip:"
 8863   %}
 8864 
 8865   ins_encode %{
 8866     Label Lskip;
 8867     __ bgez(as_Register($dst$$reg), Lskip);
 8868     __ mv(as_Register($dst$$reg), zr);
 8869     __ bind(Lskip);
 8870   %}
 8871 
 8872   ins_pipe(pipe_class_compare);
 8873 %}
 8874 
 8875 instruct minI_rReg(iRegINoSp dst, iRegI src1, iRegI src2)
 8876 %{
 8877   match(Set dst (MinI src1 src2));
 8878 
 8879   effect(DEF dst, USE src1, USE src2);
 8880 
 8881   ins_cost(BRANCH_COST + ALU_COST * 2);
 8882   format %{
 8883     "ble $src1, $src2, Lsrc1\t#@minI_rReg\n\t"
 8884     "mv $dst, $src2\n\t"
 8885     "j Ldone\n\t"
 8886     "Lsrc1:\n\t"
 8887     "mv $dst, $src1\n\t"
 8888     "Ldone:"
 8889   %}
 8890 
 8891   ins_encode %{
 8892     Label Lsrc1, Ldone;
 8893     __ ble(as_Register($src1$$reg), as_Register($src2$$reg), Lsrc1);
 8894     __ mv(as_Register($dst$$reg), as_Register($src2$$reg));
 8895     __ j(Ldone);
 8896     __ bind(Lsrc1);
 8897     __ mv(as_Register($dst$$reg), as_Register($src1$$reg));
 8898     __ bind(Ldone);
 8899   %}
 8900 
 8901   ins_pipe(pipe_class_compare);
 8902 %}
 8903 
 8904 instruct maxI_rReg(iRegINoSp dst, iRegI src1, iRegI src2)
 8905 %{
 8906   match(Set dst (MaxI src1 src2));
 8907 
 8908   effect(DEF dst, USE src1, USE src2);
 8909 
 8910   ins_cost(BRANCH_COST + ALU_COST * 2);
 8911   format %{
 8912     "bge $src1, $src2, Lsrc1\t#@maxI_rReg\n\t"
 8913     "mv $dst, $src2\n\t"
 8914     "j Ldone\n\t"
 8915     "Lsrc1:\n\t"
 8916     "mv $dst, $src1\n\t"
 8917     "Ldone:"
 8918   %}
 8919 
 8920   ins_encode %{
 8921     Label Lsrc1, Ldone;
 8922     __ bge(as_Register($src1$$reg), as_Register($src2$$reg), Lsrc1);
 8923     __ mv(as_Register($dst$$reg), as_Register($src2$$reg));
 8924     __ j(Ldone);
 8925     __ bind(Lsrc1);
 8926     __ mv(as_Register($dst$$reg), as_Register($src1$$reg));
 8927     __ bind(Ldone);
 8928 
 8929   %}
 8930 
 8931   ins_pipe(pipe_class_compare);
 8932 %}
 8933 
 8934 // ============================================================================
 8935 // Branch Instructions
 8936 // Direct Branch.
 8937 instruct branch(label lbl)
 8938 %{
 8939   match(Goto);
 8940 
 8941   effect(USE lbl);
 8942 
 8943   ins_cost(BRANCH_COST);
 8944   format %{ "j  $lbl\t#@branch" %}
 8945 
 8946   ins_encode(riscv_enc_j(lbl));
 8947 
 8948   ins_pipe(pipe_branch);
 8949 %}
 8950 
 8951 // ============================================================================
 8952 // Compare and Branch Instructions
 8953 
 8954 // Patterns for short (< 12KiB) variants
 8955 
 8956 // Compare flags and branch near instructions.
 8957 instruct cmpFlag_branch(cmpOpEqNe cmp, rFlagsReg cr, label lbl) %{
 8958   match(If cmp cr);
 8959   effect(USE lbl);
 8960 
 8961   ins_cost(BRANCH_COST);
 8962   format %{ "b$cmp  $cr, zr, $lbl\t#@cmpFlag_branch" %}
 8963 
 8964   ins_encode %{
 8965     __ enc_cmpEqNe_imm0_branch($cmp$$cmpcode, as_Register($cr$$reg), *($lbl$$label));
 8966   %}
 8967   ins_pipe(pipe_cmpz_branch);
 8968   ins_short_branch(1);
 8969 %}
 8970 
 8971 // Compare signed int and branch near instructions
 8972 instruct cmpI_branch(cmpOp cmp, iRegI op1, iRegI op2, label lbl)
 8973 %{
 8974   // Same match rule as `far_cmpI_branch'.
 8975   match(If cmp (CmpI op1 op2));
 8976 
 8977   effect(USE lbl);
 8978 
 8979   ins_cost(BRANCH_COST);
 8980 
 8981   format %{ "b$cmp  $op1, $op2, $lbl\t#@cmpI_branch" %}
 8982 
 8983   ins_encode %{
 8984     __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), as_Register($op2$$reg), *($lbl$$label));
 8985   %}
 8986 
 8987   ins_pipe(pipe_cmp_branch);
 8988   ins_short_branch(1);
 8989 %}
 8990 
 8991 instruct cmpI_loop(cmpOp cmp, iRegI op1, iRegI op2, label lbl)
 8992 %{
 8993   // Same match rule as `far_cmpI_loop'.
 8994   match(CountedLoopEnd cmp (CmpI op1 op2));
 8995 
 8996   effect(USE lbl);
 8997 
 8998   ins_cost(BRANCH_COST);
 8999 
 9000   format %{ "b$cmp  $op1, $op2, $lbl\t#@cmpI_loop" %}
 9001 
 9002   ins_encode %{
 9003     __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), as_Register($op2$$reg), *($lbl$$label));
 9004   %}
 9005 
 9006   ins_pipe(pipe_cmp_branch);
 9007   ins_short_branch(1);
 9008 %}
 9009 
 9010 // Compare unsigned int and branch near instructions
 9011 instruct cmpU_branch(cmpOpU cmp, iRegI op1, iRegI op2, label lbl)
 9012 %{
 9013   // Same match rule as `far_cmpU_branch'.
 9014   match(If cmp (CmpU op1 op2));
 9015 
 9016   effect(USE lbl);
 9017 
 9018   ins_cost(BRANCH_COST);
 9019 
 9020   format %{ "b$cmp  $op1, $op2, $lbl\t#@cmpU_branch" %}
 9021 
 9022   ins_encode %{
 9023     __ cmp_branch($cmp$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, as_Register($op1$$reg),
 9024                   as_Register($op2$$reg), *($lbl$$label));
 9025   %}
 9026 
 9027   ins_pipe(pipe_cmp_branch);
 9028   ins_short_branch(1);
 9029 %}
 9030 
 9031 // Compare signed long and branch near instructions
 9032 instruct cmpL_branch(cmpOp cmp, iRegL op1, iRegL op2, label lbl)
 9033 %{
 9034   // Same match rule as `far_cmpL_branch'.
 9035   match(If cmp (CmpL op1 op2));
 9036 
 9037   effect(USE lbl);
 9038 
 9039   ins_cost(BRANCH_COST);
 9040 
 9041   format %{ "b$cmp  $op1, $op2, $lbl\t#@cmpL_branch" %}
 9042 
 9043   ins_encode %{
 9044     __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), as_Register($op2$$reg), *($lbl$$label));
 9045   %}
 9046 
 9047   ins_pipe(pipe_cmp_branch);
 9048   ins_short_branch(1);
 9049 %}
 9050 
 9051 instruct cmpL_loop(cmpOp cmp, iRegL op1, iRegL op2, label lbl)
 9052 %{
 9053   // Same match rule as `far_cmpL_loop'.
 9054   match(CountedLoopEnd cmp (CmpL op1 op2));
 9055 
 9056   effect(USE lbl);
 9057 
 9058   ins_cost(BRANCH_COST);
 9059 
 9060   format %{ "b$cmp  $op1, $op2, $lbl\t#@cmpL_loop" %}
 9061 
 9062   ins_encode %{
 9063     __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), as_Register($op2$$reg), *($lbl$$label));
 9064   %}
 9065 
 9066   ins_pipe(pipe_cmp_branch);
 9067   ins_short_branch(1);
 9068 %}
 9069 
 9070 // Compare unsigned long and branch near instructions
 9071 instruct cmpUL_branch(cmpOpU cmp, iRegL op1, iRegL op2, label lbl)
 9072 %{
 9073   // Same match rule as `far_cmpUL_branch'.
 9074   match(If cmp (CmpUL op1 op2));
 9075 
 9076   effect(USE lbl);
 9077 
 9078   ins_cost(BRANCH_COST);
 9079   format %{ "b$cmp  $op1, $op2, $lbl\t#@cmpUL_branch" %}
 9080 
 9081   ins_encode %{
 9082     __ cmp_branch($cmp$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, as_Register($op1$$reg),
 9083                   as_Register($op2$$reg), *($lbl$$label));
 9084   %}
 9085 
 9086   ins_pipe(pipe_cmp_branch);
 9087   ins_short_branch(1);
 9088 %}
 9089 
 9090 // Compare pointer and branch near instructions
 9091 instruct cmpP_branch(cmpOpU cmp, iRegP op1, iRegP op2, label lbl)
 9092 %{
 9093   // Same match rule as `far_cmpP_branch'.
 9094   match(If cmp (CmpP op1 op2));
 9095 
 9096   effect(USE lbl);
 9097 
 9098   ins_cost(BRANCH_COST);
 9099 
 9100   format %{ "b$cmp  $op1, $op2, $lbl\t#@cmpP_branch" %}
 9101 
 9102   ins_encode %{
 9103     __ cmp_branch($cmp$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, as_Register($op1$$reg),
 9104                   as_Register($op2$$reg), *($lbl$$label));
 9105   %}
 9106 
 9107   ins_pipe(pipe_cmp_branch);
 9108   ins_short_branch(1);
 9109 %}
 9110 
 9111 // Compare narrow pointer and branch near instructions
 9112 instruct cmpN_branch(cmpOpU cmp, iRegN op1, iRegN op2, label lbl)
 9113 %{
 9114   // Same match rule as `far_cmpN_branch'.
 9115   match(If cmp (CmpN op1 op2));
 9116 
 9117   effect(USE lbl);
 9118 
 9119   ins_cost(BRANCH_COST);
 9120 
 9121   format %{ "b$cmp  $op1, $op2, $lbl\t#@cmpN_branch" %}
 9122 
 9123   ins_encode %{
 9124     __ cmp_branch($cmp$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, as_Register($op1$$reg),
 9125                   as_Register($op2$$reg), *($lbl$$label));
 9126   %}
 9127 
 9128   ins_pipe(pipe_cmp_branch);
 9129   ins_short_branch(1);
 9130 %}
 9131 
 9132 // Compare float and branch near instructions
 9133 instruct cmpF_branch(cmpOp cmp, fRegF op1, fRegF op2, label lbl)
 9134 %{
 9135   // Same match rule as `far_cmpF_branch'.
 9136   match(If cmp (CmpF op1 op2));
 9137 
 9138   effect(USE lbl);
 9139 
 9140   ins_cost(XFER_COST + BRANCH_COST);
 9141   format %{ "float_b$cmp $op1, $op2, $lbl \t#@cmpF_branch"%}
 9142 
 9143   ins_encode %{
 9144     __ float_cmp_branch($cmp$$cmpcode, as_FloatRegister($op1$$reg), as_FloatRegister($op2$$reg), *($lbl$$label));
 9145   %}
 9146 
 9147   ins_pipe(pipe_class_compare);
 9148   ins_short_branch(1);
 9149 %}
 9150 
 9151 // Compare double and branch near instructions
 9152 instruct cmpD_branch(cmpOp cmp, fRegD op1, fRegD op2, label lbl)
 9153 %{
 9154   // Same match rule as `far_cmpD_branch'.
 9155   match(If cmp (CmpD op1 op2));
 9156   effect(USE lbl);
 9157 
 9158   ins_cost(XFER_COST + BRANCH_COST);
 9159   format %{ "double_b$cmp $op1, $op2, $lbl\t#@cmpD_branch"%}
 9160 
 9161   ins_encode %{
 9162     __ float_cmp_branch($cmp$$cmpcode | C2_MacroAssembler::double_branch_mask, as_FloatRegister($op1$$reg),
 9163                         as_FloatRegister($op2$$reg), *($lbl$$label));
 9164   %}
 9165 
 9166   ins_pipe(pipe_class_compare);
 9167   ins_short_branch(1);
 9168 %}
 9169 
 9170 // Compare signed int with zero and branch near instructions
 9171 instruct cmpI_reg_imm0_branch(cmpOp cmp, iRegI op1, immI0 zero, label lbl)
 9172 %{
 9173   // Same match rule as `far_cmpI_reg_imm0_branch'.
 9174   match(If cmp (CmpI op1 zero));
 9175 
 9176   effect(USE op1, USE lbl);
 9177 
 9178   ins_cost(BRANCH_COST);
 9179   format %{ "b$cmp  $op1, zr, $lbl\t#@cmpI_reg_imm0_branch" %}
 9180 
 9181   ins_encode %{
 9182     __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), zr, *($lbl$$label));
 9183   %}
 9184 
 9185   ins_pipe(pipe_cmpz_branch);
 9186   ins_short_branch(1);
 9187 %}
 9188 
 9189 instruct cmpI_reg_imm0_loop(cmpOp cmp, iRegI op1, immI0 zero, label lbl)
 9190 %{
 9191   // Same match rule as `far_cmpI_reg_imm0_loop'.
 9192   match(CountedLoopEnd cmp (CmpI op1 zero));
 9193 
 9194   effect(USE op1, USE lbl);
 9195 
 9196   ins_cost(BRANCH_COST);
 9197 
 9198   format %{ "b$cmp  $op1, zr, $lbl\t#@cmpI_reg_imm0_loop" %}
 9199 
 9200   ins_encode %{
 9201     __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), zr, *($lbl$$label));
 9202   %}
 9203 
 9204   ins_pipe(pipe_cmpz_branch);
 9205   ins_short_branch(1);
 9206 %}
 9207 
 9208 // Compare unsigned int with zero and branch near instructions
 9209 instruct cmpUEqNeLeGt_reg_imm0_branch(cmpOpUEqNeLeGt cmp, iRegI op1, immI0 zero, label lbl)
 9210 %{
 9211   // Same match rule as `far_cmpUEqNeLeGt_reg_imm0_branch'.
 9212   match(If cmp (CmpU op1 zero));
 9213 
 9214   effect(USE op1, USE lbl);
 9215 
 9216   ins_cost(BRANCH_COST);
 9217 
 9218   format %{ "b$cmp  $op1, zr, $lbl\t#@cmpUEqNeLeGt_reg_imm0_branch" %}
 9219 
 9220   ins_encode %{
 9221     __ enc_cmpUEqNeLeGt_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label));
 9222   %}
 9223 
 9224   ins_pipe(pipe_cmpz_branch);
 9225   ins_short_branch(1);
 9226 %}
 9227 
 9228 // Compare signed long with zero and branch near instructions
 9229 instruct cmpL_reg_imm0_branch(cmpOp cmp, iRegL op1, immL0 zero, label lbl)
 9230 %{
 9231   // Same match rule as `far_cmpL_reg_imm0_branch'.
 9232   match(If cmp (CmpL op1 zero));
 9233 
 9234   effect(USE op1, USE lbl);
 9235 
 9236   ins_cost(BRANCH_COST);
 9237 
 9238   format %{ "b$cmp  $op1, zr, $lbl\t#@cmpL_reg_imm0_branch" %}
 9239 
 9240   ins_encode %{
 9241     __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), zr, *($lbl$$label));
 9242   %}
 9243 
 9244   ins_pipe(pipe_cmpz_branch);
 9245   ins_short_branch(1);
 9246 %}
 9247 
 9248 instruct cmpL_reg_imm0_loop(cmpOp cmp, iRegL op1, immL0 zero, label lbl)
 9249 %{
 9250   // Same match rule as `far_cmpL_reg_imm0_loop'.
 9251   match(CountedLoopEnd cmp (CmpL op1 zero));
 9252 
 9253   effect(USE op1, USE lbl);
 9254 
 9255   ins_cost(BRANCH_COST);
 9256 
 9257   format %{ "b$cmp  $op1, zr, $lbl\t#@cmpL_reg_imm0_loop" %}
 9258 
 9259   ins_encode %{
 9260     __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), zr, *($lbl$$label));
 9261   %}
 9262 
 9263   ins_pipe(pipe_cmpz_branch);
 9264   ins_short_branch(1);
 9265 %}
 9266 
 9267 // Compare unsigned long with zero and branch near instructions
 9268 instruct cmpULEqNeLeGt_reg_imm0_branch(cmpOpUEqNeLeGt cmp, iRegL op1, immL0 zero, label lbl)
 9269 %{
 9270   // Same match rule as `far_cmpULEqNeLeGt_reg_imm0_branch'.
 9271   match(If cmp (CmpUL op1 zero));
 9272 
 9273   effect(USE op1, USE lbl);
 9274 
 9275   ins_cost(BRANCH_COST);
 9276 
 9277   format %{ "b$cmp  $op1, zr, $lbl\t#@cmpULEqNeLeGt_reg_imm0_branch" %}
 9278 
 9279   ins_encode %{
 9280     __ enc_cmpUEqNeLeGt_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label));
 9281   %}
 9282 
 9283   ins_pipe(pipe_cmpz_branch);
 9284   ins_short_branch(1);
 9285 %}
 9286 
 9287 // Compare pointer with zero and branch near instructions
 9288 instruct cmpP_imm0_branch(cmpOpEqNe cmp, iRegP op1, immP0 zero, label lbl) %{
 9289   // Same match rule as `far_cmpP_reg_imm0_branch'.
 9290   match(If cmp (CmpP op1 zero));
 9291   effect(USE lbl);
 9292 
 9293   ins_cost(BRANCH_COST);
 9294   format %{ "b$cmp   $op1, zr, $lbl\t#@cmpP_imm0_branch" %}
 9295 
 9296   ins_encode %{
 9297     __ enc_cmpEqNe_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label));
 9298   %}
 9299 
 9300   ins_pipe(pipe_cmpz_branch);
 9301   ins_short_branch(1);
 9302 %}
 9303 
 9304 // Compare narrow pointer with zero and branch near instructions
 9305 instruct cmpN_imm0_branch(cmpOpEqNe cmp, iRegN op1, immN0 zero, label lbl) %{
 9306   // Same match rule as `far_cmpN_reg_imm0_branch'.
 9307   match(If cmp (CmpN op1 zero));
 9308   effect(USE lbl);
 9309 
 9310   ins_cost(BRANCH_COST);
 9311 
 9312   format %{ "b$cmp  $op1, zr, $lbl\t#@cmpN_imm0_branch" %}
 9313 
 9314   ins_encode %{
 9315     __ enc_cmpEqNe_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label));
 9316   %}
 9317 
 9318   ins_pipe(pipe_cmpz_branch);
 9319   ins_short_branch(1);
 9320 %}
 9321 
 9322 // Compare narrow pointer with pointer zero and branch near instructions
 9323 instruct cmpP_narrowOop_imm0_branch(cmpOpEqNe cmp, iRegN op1, immP0 zero, label lbl) %{
 9324   // Same match rule as `far_cmpP_narrowOop_imm0_branch'.
 9325   match(If cmp (CmpP (DecodeN op1) zero));
 9326   effect(USE lbl);
 9327 
 9328   ins_cost(BRANCH_COST);
 9329   format %{ "b$cmp   $op1, zr, $lbl\t#@cmpP_narrowOop_imm0_branch" %}
 9330 
 9331   ins_encode %{
 9332     __ enc_cmpEqNe_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label));
 9333   %}
 9334 
 9335   ins_pipe(pipe_cmpz_branch);
 9336   ins_short_branch(1);
 9337 %}
 9338 
 9339 // Patterns for far (20KiB) variants
 9340 
 9341 instruct far_cmpFlag_branch(cmpOp cmp, rFlagsReg cr, label lbl) %{
 9342   match(If cmp cr);
 9343   effect(USE lbl);
 9344 
 9345   ins_cost(BRANCH_COST);
 9346   format %{ "far_b$cmp $cr, zr, $lbl\t#@far_cmpFlag_branch"%}
 9347 
 9348   ins_encode %{
 9349     __ enc_cmpEqNe_imm0_branch($cmp$$cmpcode, as_Register($cr$$reg), *($lbl$$label), /* is_far */ true);
 9350   %}
 9351 
 9352   ins_pipe(pipe_cmpz_branch);
 9353 %}
 9354 
 9355 // Compare signed int and branch far instructions
 9356 instruct far_cmpI_branch(cmpOp cmp, iRegI op1, iRegI op2, label lbl) %{
 9357   match(If cmp (CmpI op1 op2));
 9358   effect(USE lbl);
 9359 
 9360   ins_cost(BRANCH_COST * 2);
 9361 
 9362   // the format instruction [far_b$cmp] here is be used as two insructions
 9363   // in macroassembler: b$not_cmp(op1, op2, done), j($lbl), bind(done)
 9364   format %{ "far_b$cmp  $op1, $op2, $lbl\t#@far_cmpI_branch" %}
 9365 
 9366   ins_encode %{
 9367     __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), as_Register($op2$$reg), *($lbl$$label), /* is_far */ true);
 9368   %}
 9369 
 9370   ins_pipe(pipe_cmp_branch);
 9371 %}
 9372 
 9373 instruct far_cmpI_loop(cmpOp cmp, iRegI op1, iRegI op2, label lbl) %{
 9374   match(CountedLoopEnd cmp (CmpI op1 op2));
 9375   effect(USE lbl);
 9376 
 9377   ins_cost(BRANCH_COST * 2);
 9378   format %{ "far_b$cmp  $op1, $op2, $lbl\t#@far_cmpI_loop" %}
 9379 
 9380   ins_encode %{
 9381     __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), as_Register($op2$$reg), *($lbl$$label), /* is_far */ true);
 9382   %}
 9383 
 9384   ins_pipe(pipe_cmp_branch);
 9385 %}
 9386 
 9387 instruct far_cmpU_branch(cmpOpU cmp, iRegI op1, iRegI op2, label lbl) %{
 9388   match(If cmp (CmpU op1 op2));
 9389   effect(USE lbl);
 9390 
 9391   ins_cost(BRANCH_COST * 2);
 9392   format %{ "far_b$cmp $op1, $op2, $lbl\t#@far_cmpU_branch" %}
 9393 
 9394   ins_encode %{
 9395     __ cmp_branch($cmp$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, as_Register($op1$$reg),
 9396                        as_Register($op2$$reg), *($lbl$$label), /* is_far */ true);
 9397   %}
 9398 
 9399   ins_pipe(pipe_cmp_branch);
 9400 %}
 9401 
 9402 instruct far_cmpL_branch(cmpOp cmp, iRegL op1, iRegL op2, label lbl) %{
 9403   match(If cmp (CmpL op1 op2));
 9404   effect(USE lbl);
 9405 
 9406   ins_cost(BRANCH_COST * 2);
 9407   format %{ "far_b$cmp  $op1, $op2, $lbl\t#@far_cmpL_branch" %}
 9408 
 9409   ins_encode %{
 9410     __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), as_Register($op2$$reg), *($lbl$$label), /* is_far */ true);
 9411   %}
 9412 
 9413   ins_pipe(pipe_cmp_branch);
 9414 %}
 9415 
 9416 instruct far_cmpLloop(cmpOp cmp, iRegL op1, iRegL op2, label lbl) %{
 9417   match(CountedLoopEnd cmp (CmpL op1 op2));
 9418   effect(USE lbl);
 9419 
 9420   ins_cost(BRANCH_COST * 2);
 9421   format %{ "far_b$cmp  $op1, $op2, $lbl\t#@far_cmpL_loop" %}
 9422 
 9423   ins_encode %{
 9424     __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), as_Register($op2$$reg), *($lbl$$label), /* is_far */ true);
 9425   %}
 9426 
 9427   ins_pipe(pipe_cmp_branch);
 9428 %}
 9429 
 9430 instruct far_cmpUL_branch(cmpOpU cmp, iRegL op1, iRegL op2, label lbl) %{
 9431   match(If cmp (CmpUL op1 op2));
 9432   effect(USE lbl);
 9433 
 9434   ins_cost(BRANCH_COST * 2);
 9435   format %{ "far_b$cmp  $op1, $op2, $lbl\t#@far_cmpUL_branch" %}
 9436 
 9437   ins_encode %{
 9438     __ cmp_branch($cmp$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, as_Register($op1$$reg),
 9439                        as_Register($op2$$reg), *($lbl$$label), /* is_far */ true);
 9440   %}
 9441 
 9442   ins_pipe(pipe_cmp_branch);
 9443 %}
 9444 
 9445 instruct far_cmpP_branch(cmpOpU cmp, iRegP op1, iRegP op2, label lbl)
 9446 %{
 9447   match(If cmp (CmpP op1 op2));
 9448 
 9449   effect(USE lbl);
 9450 
 9451   ins_cost(BRANCH_COST * 2);
 9452 
 9453   format %{ "far_b$cmp  $op1, $op2, $lbl\t#@far_cmpP_branch" %}
 9454 
 9455   ins_encode %{
 9456     __ cmp_branch($cmp$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, as_Register($op1$$reg),
 9457                        as_Register($op2$$reg), *($lbl$$label), /* is_far */ true);
 9458   %}
 9459 
 9460   ins_pipe(pipe_cmp_branch);
 9461 %}
 9462 
 9463 instruct far_cmpN_branch(cmpOpU cmp, iRegN op1, iRegN op2, label lbl)
 9464 %{
 9465   match(If cmp (CmpN op1 op2));
 9466 
 9467   effect(USE lbl);
 9468 
 9469   ins_cost(BRANCH_COST * 2);
 9470 
 9471   format %{ "far_b$cmp  $op1, $op2, $lbl\t#@far_cmpN_branch" %}
 9472 
 9473   ins_encode %{
 9474     __ cmp_branch($cmp$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, as_Register($op1$$reg),
 9475                        as_Register($op2$$reg), *($lbl$$label), /* is_far */ true);
 9476   %}
 9477 
 9478   ins_pipe(pipe_cmp_branch);
 9479 %}
 9480 
 9481 // Float compare and branch instructions
 9482 instruct far_cmpF_branch(cmpOp cmp, fRegF op1, fRegF op2, label lbl)
 9483 %{
 9484   match(If cmp (CmpF op1 op2));
 9485 
 9486   effect(USE lbl);
 9487 
 9488   ins_cost(XFER_COST + BRANCH_COST * 2);
 9489   format %{ "far_float_b$cmp $op1, $op2, $lbl\t#@far_cmpF_branch"%}
 9490 
 9491   ins_encode %{
 9492     __ float_cmp_branch($cmp$$cmpcode, as_FloatRegister($op1$$reg), as_FloatRegister($op2$$reg),
 9493                         *($lbl$$label), /* is_far */ true);
 9494   %}
 9495 
 9496   ins_pipe(pipe_class_compare);
 9497 %}
 9498 
 9499 // Double compare and branch instructions
 9500 instruct far_cmpD_branch(cmpOp cmp, fRegD op1, fRegD op2, label lbl)
 9501 %{
 9502   match(If cmp (CmpD op1 op2));
 9503   effect(USE lbl);
 9504 
 9505   ins_cost(XFER_COST + BRANCH_COST * 2);
 9506   format %{ "far_double_b$cmp $op1, $op2, $lbl\t#@far_cmpD_branch"%}
 9507 
 9508   ins_encode %{
 9509     __ float_cmp_branch($cmp$$cmpcode | C2_MacroAssembler::double_branch_mask, as_FloatRegister($op1$$reg),
 9510                         as_FloatRegister($op2$$reg), *($lbl$$label), /* is_far */ true);
 9511   %}
 9512 
 9513   ins_pipe(pipe_class_compare);
 9514 %}
 9515 
 9516 instruct far_cmpI_reg_imm0_branch(cmpOp cmp, iRegI op1, immI0 zero, label lbl)
 9517 %{
 9518   match(If cmp (CmpI op1 zero));
 9519 
 9520   effect(USE op1, USE lbl);
 9521 
 9522   ins_cost(BRANCH_COST * 2);
 9523 
 9524   format %{ "far_b$cmp  $op1, zr, $lbl\t#@far_cmpI_reg_imm0_branch" %}
 9525 
 9526   ins_encode %{
 9527     __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), zr, *($lbl$$label), /* is_far */ true);
 9528   %}
 9529 
 9530   ins_pipe(pipe_cmpz_branch);
 9531 %}
 9532 
 9533 instruct far_cmpI_reg_imm0_loop(cmpOp cmp, iRegI op1, immI0 zero, label lbl)
 9534 %{
 9535   match(CountedLoopEnd cmp (CmpI op1 zero));
 9536 
 9537   effect(USE op1, USE lbl);
 9538 
 9539   ins_cost(BRANCH_COST * 2);
 9540 
 9541   format %{ "far_b$cmp  $op1, zr, $lbl\t#@far_cmpI_reg_imm0_loop" %}
 9542 
 9543   ins_encode %{
 9544     __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), zr, *($lbl$$label), /* is_far */ true);
 9545   %}
 9546 
 9547   ins_pipe(pipe_cmpz_branch);
 9548 %}
 9549 
 9550 instruct far_cmpUEqNeLeGt_imm0_branch(cmpOpUEqNeLeGt cmp, iRegI op1, immI0 zero, label lbl)
 9551 %{
 9552   match(If cmp (CmpU op1 zero));
 9553 
 9554   effect(USE op1, USE lbl);
 9555 
 9556   ins_cost(BRANCH_COST * 2);
 9557 
 9558   format %{ "far_b$cmp  $op1, zr, $lbl\t#@far_cmpUEqNeLeGt_imm0_branch" %}
 9559 
 9560   ins_encode %{
 9561     __ enc_cmpUEqNeLeGt_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label), /* is_far */ true);
 9562   %}
 9563 
 9564   ins_pipe(pipe_cmpz_branch);
 9565 %}
 9566 
 9567 // compare lt/ge unsigned instructs has no short instruct with same match
 9568 instruct far_cmpULtGe_reg_imm0_branch(cmpOpULtGe cmp, iRegI op1, immI0 zero, label lbl)
 9569 %{
 9570   match(If cmp (CmpU op1 zero));
 9571 
 9572   effect(USE op1, USE lbl);
 9573 
 9574   ins_cost(BRANCH_COST);
 9575 
 9576   format %{ "j  $lbl if $cmp == ge\t#@far_cmpULtGe_reg_imm0_branch" %}
 9577 
 9578   ins_encode(riscv_enc_far_cmpULtGe_imm0_branch(cmp, op1, lbl));
 9579 
 9580   ins_pipe(pipe_cmpz_branch);
 9581 %}
 9582 
 9583 instruct far_cmpL_reg_imm0_branch(cmpOp cmp, iRegL op1, immL0 zero, label lbl)
 9584 %{
 9585   match(If cmp (CmpL op1 zero));
 9586 
 9587   effect(USE op1, USE lbl);
 9588 
 9589   ins_cost(BRANCH_COST * 2);
 9590 
 9591   format %{ "far_b$cmp  $op1, zr, $lbl\t#@far_cmpL_reg_imm0_branch" %}
 9592 
 9593   ins_encode %{
 9594     __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), zr, *($lbl$$label), /* is_far */ true);
 9595   %}
 9596 
 9597   ins_pipe(pipe_cmpz_branch);
 9598 %}
 9599 
 9600 instruct far_cmpL_reg_imm0_loop(cmpOp cmp, iRegL op1, immL0 zero, label lbl)
 9601 %{
 9602   match(CountedLoopEnd cmp (CmpL op1 zero));
 9603 
 9604   effect(USE op1, USE lbl);
 9605 
 9606   ins_cost(BRANCH_COST * 2);
 9607 
 9608   format %{ "far_b$cmp  $op1, zr, $lbl\t#@far_cmpL_reg_imm0_loop" %}
 9609 
 9610   ins_encode %{
 9611     __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), zr, *($lbl$$label), /* is_far */ true);
 9612   %}
 9613 
 9614   ins_pipe(pipe_cmpz_branch);
 9615 %}
 9616 
 9617 instruct far_cmpULEqNeLeGt_reg_imm0_branch(cmpOpUEqNeLeGt cmp, iRegL op1, immL0 zero, label lbl)
 9618 %{
 9619   match(If cmp (CmpUL op1 zero));
 9620 
 9621   effect(USE op1, USE lbl);
 9622 
 9623   ins_cost(BRANCH_COST * 2);
 9624 
 9625   format %{ "far_b$cmp  $op1, zr, $lbl\t#@far_cmpULEqNeLeGt_reg_imm0_branch" %}
 9626 
 9627   ins_encode %{
 9628     __ enc_cmpUEqNeLeGt_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label), /* is_far */ true);
 9629   %}
 9630 
 9631   ins_pipe(pipe_cmpz_branch);
 9632 %}
 9633 
 9634 // compare lt/ge unsigned instructs has no short instruct with same match
 9635 instruct far_cmpULLtGe_reg_imm0_branch(cmpOpULtGe cmp, iRegL op1, immL0 zero, label lbl)
 9636 %{
 9637   match(If cmp (CmpUL op1 zero));
 9638 
 9639   effect(USE op1, USE lbl);
 9640 
 9641   ins_cost(BRANCH_COST);
 9642 
 9643   format %{ "j  $lbl if $cmp == ge\t#@far_cmpULLtGe_reg_imm0_branch" %}
 9644 
 9645   ins_encode(riscv_enc_far_cmpULtGe_imm0_branch(cmp, op1, lbl));
 9646 
 9647   ins_pipe(pipe_cmpz_branch);
 9648 %}
 9649 
 9650 instruct far_cmpP_imm0_branch(cmpOpEqNe cmp, iRegP op1, immP0 zero, label lbl) %{
 9651   match(If cmp (CmpP op1 zero));
 9652   effect(USE lbl);
 9653 
 9654   ins_cost(BRANCH_COST * 2);
 9655   format %{ "far_b$cmp   $op1, zr, $lbl\t#@far_cmpP_imm0_branch" %}
 9656 
 9657   ins_encode %{
 9658     __ enc_cmpEqNe_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label), /* is_far */ true);
 9659   %}
 9660 
 9661   ins_pipe(pipe_cmpz_branch);
 9662 %}
 9663 
 9664 instruct far_cmpN_imm0_branch(cmpOpEqNe cmp, iRegN op1, immN0 zero, label lbl) %{
 9665   match(If cmp (CmpN op1 zero));
 9666   effect(USE lbl);
 9667 
 9668   ins_cost(BRANCH_COST * 2);
 9669 
 9670   format %{ "far_b$cmp  $op1, zr, $lbl\t#@far_cmpN_imm0_branch" %}
 9671 
 9672   ins_encode %{
 9673     __ enc_cmpEqNe_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label), /* is_far */ true);
 9674   %}
 9675 
 9676   ins_pipe(pipe_cmpz_branch);
 9677 %}
 9678 
 9679 instruct far_cmpP_narrowOop_imm0_branch(cmpOpEqNe cmp, iRegN op1, immP0 zero, label lbl) %{
 9680   match(If cmp (CmpP (DecodeN op1) zero));
 9681   effect(USE lbl);
 9682 
 9683   ins_cost(BRANCH_COST * 2);
 9684   format %{ "far_b$cmp   $op1, zr, $lbl\t#@far_cmpP_narrowOop_imm0_branch" %}
 9685 
 9686   ins_encode %{
 9687     __ enc_cmpEqNe_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label), /* is_far */ true);
 9688   %}
 9689 
 9690   ins_pipe(pipe_cmpz_branch);
 9691 %}
 9692 
 9693 // ============================================================================
 9694 // Conditional Move Instructions
 9695 instruct cmovI_cmpI(iRegINoSp dst, iRegI src, iRegI op1, iRegI op2, cmpOp cop) %{
 9696   match(Set dst (CMoveI (Binary cop (CmpI op1 op2)) (Binary dst src)));
 9697   ins_cost(ALU_COST + BRANCH_COST);
 9698 
 9699   format %{
 9700     "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovI_cmpI\n\t"
 9701   %}
 9702 
 9703   ins_encode %{
 9704     __ enc_cmove($cop$$cmpcode,
 9705                  as_Register($op1$$reg), as_Register($op2$$reg),
 9706                  as_Register($dst$$reg), as_Register($src$$reg));
 9707   %}
 9708 
 9709   ins_pipe(pipe_class_compare);
 9710 %}
 9711 
 9712 instruct cmovI_cmpU(iRegINoSp dst, iRegI src, iRegI op1, iRegI op2, cmpOpU cop) %{
 9713   match(Set dst (CMoveI (Binary cop (CmpU op1 op2)) (Binary dst src)));
 9714   ins_cost(ALU_COST + BRANCH_COST);
 9715 
 9716   format %{
 9717     "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovI_cmpU\n\t"
 9718   %}
 9719 
 9720   ins_encode %{
 9721     __ enc_cmove($cop$$cmpcode | C2_MacroAssembler::unsigned_branch_mask,
 9722                  as_Register($op1$$reg), as_Register($op2$$reg),
 9723                  as_Register($dst$$reg), as_Register($src$$reg));
 9724   %}
 9725 
 9726   ins_pipe(pipe_class_compare);
 9727 %}
 9728 
 9729 instruct cmovI_cmpL(iRegINoSp dst, iRegI src, iRegL op1, iRegL op2, cmpOp cop) %{
 9730   match(Set dst (CMoveI (Binary cop (CmpL op1 op2)) (Binary dst src)));
 9731   ins_cost(ALU_COST + BRANCH_COST);
 9732 
 9733   format %{
 9734     "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovI_cmpL\n\t"
 9735   %}
 9736 
 9737   ins_encode %{
 9738     __ enc_cmove($cop$$cmpcode,
 9739                  as_Register($op1$$reg), as_Register($op2$$reg),
 9740                  as_Register($dst$$reg), as_Register($src$$reg));
 9741   %}
 9742 
 9743   ins_pipe(pipe_class_compare);
 9744 %}
 9745 
 9746 instruct cmovI_cmpUL(iRegINoSp dst, iRegI src, iRegL op1, iRegL op2, cmpOpU cop) %{
 9747   match(Set dst (CMoveI (Binary cop (CmpUL op1 op2)) (Binary dst src)));
 9748   ins_cost(ALU_COST + BRANCH_COST);
 9749 
 9750   format %{
 9751     "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovI_cmpUL\n\t"
 9752   %}
 9753 
 9754   ins_encode %{
 9755     __ enc_cmove($cop$$cmpcode | C2_MacroAssembler::unsigned_branch_mask,
 9756                  as_Register($op1$$reg), as_Register($op2$$reg),
 9757                  as_Register($dst$$reg), as_Register($src$$reg));
 9758   %}
 9759 
 9760   ins_pipe(pipe_class_compare);
 9761 %}
 9762 
 9763 instruct cmovI_cmpN(iRegINoSp dst, iRegI src, iRegN op1, iRegN op2, cmpOpU cop) %{
 9764   match(Set dst (CMoveI (Binary cop (CmpN op1 op2)) (Binary dst src)));
 9765   ins_cost(ALU_COST + BRANCH_COST);
 9766 
 9767   format %{
 9768     "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovI_cmpN\n\t"
 9769   %}
 9770 
 9771   ins_encode %{
 9772     __ enc_cmove($cop$$cmpcode | C2_MacroAssembler::unsigned_branch_mask,
 9773                  as_Register($op1$$reg), as_Register($op2$$reg),
 9774                  as_Register($dst$$reg), as_Register($src$$reg));
 9775   %}
 9776 
 9777   ins_pipe(pipe_class_compare);
 9778 %}
 9779 
 9780 instruct cmovI_cmpP(iRegINoSp dst, iRegI src, iRegP op1, iRegP op2, cmpOpU cop) %{
 9781   match(Set dst (CMoveI (Binary cop (CmpP op1 op2)) (Binary dst src)));
 9782   ins_cost(ALU_COST + BRANCH_COST);
 9783 
 9784   format %{
 9785     "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovI_cmpP\n\t"
 9786   %}
 9787 
 9788   ins_encode %{
 9789     __ enc_cmove($cop$$cmpcode | C2_MacroAssembler::unsigned_branch_mask,
 9790                  as_Register($op1$$reg), as_Register($op2$$reg),
 9791                  as_Register($dst$$reg), as_Register($src$$reg));
 9792   %}
 9793 
 9794   ins_pipe(pipe_class_compare);
 9795 %}
 9796 
 9797 instruct cmovL_cmpL(iRegLNoSp dst, iRegL src, iRegL op1, iRegL op2, cmpOp cop) %{
 9798   match(Set dst (CMoveL (Binary cop (CmpL op1 op2)) (Binary dst src)));
 9799   ins_cost(ALU_COST + BRANCH_COST);
 9800 
 9801   format %{
 9802     "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovL_cmpL\n\t"
 9803   %}
 9804 
 9805   ins_encode %{
 9806     __ enc_cmove($cop$$cmpcode,
 9807                  as_Register($op1$$reg), as_Register($op2$$reg),
 9808                  as_Register($dst$$reg), as_Register($src$$reg));
 9809   %}
 9810 
 9811   ins_pipe(pipe_class_compare);
 9812 %}
 9813 
 9814 instruct cmovL_cmpUL(iRegLNoSp dst, iRegL src, iRegL op1, iRegL op2, cmpOpU cop) %{
 9815   match(Set dst (CMoveL (Binary cop (CmpUL op1 op2)) (Binary dst src)));
 9816   ins_cost(ALU_COST + BRANCH_COST);
 9817 
 9818   format %{
 9819     "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovL_cmpUL\n\t"
 9820   %}
 9821 
 9822   ins_encode %{
 9823     __ enc_cmove($cop$$cmpcode | C2_MacroAssembler::unsigned_branch_mask,
 9824                  as_Register($op1$$reg), as_Register($op2$$reg),
 9825                  as_Register($dst$$reg), as_Register($src$$reg));
 9826   %}
 9827 
 9828   ins_pipe(pipe_class_compare);
 9829 %}
 9830 
 9831 instruct cmovL_cmpI(iRegLNoSp dst, iRegL src, iRegI op1, iRegI op2, cmpOp cop) %{
 9832   match(Set dst (CMoveL (Binary cop (CmpI op1 op2)) (Binary dst src)));
 9833   ins_cost(ALU_COST + BRANCH_COST);
 9834 
 9835   format %{
 9836     "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovL_cmpI\n\t"
 9837   %}
 9838 
 9839   ins_encode %{
 9840     __ enc_cmove($cop$$cmpcode,
 9841                  as_Register($op1$$reg), as_Register($op2$$reg),
 9842                  as_Register($dst$$reg), as_Register($src$$reg));
 9843   %}
 9844 
 9845   ins_pipe(pipe_class_compare);
 9846 %}
 9847 
 9848 instruct cmovL_cmpU(iRegLNoSp dst, iRegL src, iRegI op1, iRegI op2, cmpOpU cop) %{
 9849   match(Set dst (CMoveL (Binary cop (CmpU op1 op2)) (Binary dst src)));
 9850   ins_cost(ALU_COST + BRANCH_COST);
 9851 
 9852   format %{
 9853     "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovL_cmpU\n\t"
 9854   %}
 9855 
 9856   ins_encode %{
 9857     __ enc_cmove($cop$$cmpcode | C2_MacroAssembler::unsigned_branch_mask,
 9858                  as_Register($op1$$reg), as_Register($op2$$reg),
 9859                  as_Register($dst$$reg), as_Register($src$$reg));
 9860   %}
 9861 
 9862   ins_pipe(pipe_class_compare);
 9863 %}
 9864 
 9865 instruct cmovL_cmpN(iRegLNoSp dst, iRegL src, iRegN op1, iRegN op2, cmpOpU cop) %{
 9866   match(Set dst (CMoveL (Binary cop (CmpN op1 op2)) (Binary dst src)));
 9867   ins_cost(ALU_COST + BRANCH_COST);
 9868 
 9869   format %{
 9870     "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovL_cmpN\n\t"
 9871   %}
 9872 
 9873   ins_encode %{
 9874     __ enc_cmove($cop$$cmpcode | C2_MacroAssembler::unsigned_branch_mask,
 9875                  as_Register($op1$$reg), as_Register($op2$$reg),
 9876                  as_Register($dst$$reg), as_Register($src$$reg));
 9877   %}
 9878 
 9879   ins_pipe(pipe_class_compare);
 9880 %}
 9881 
 9882 instruct cmovL_cmpP(iRegLNoSp dst, iRegL src, iRegP op1, iRegP op2, cmpOpU cop) %{
 9883   match(Set dst (CMoveL (Binary cop (CmpP op1 op2)) (Binary dst src)));
 9884   ins_cost(ALU_COST + BRANCH_COST);
 9885 
 9886   format %{
 9887     "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovL_cmpP\n\t"
 9888   %}
 9889 
 9890   ins_encode %{
 9891     __ enc_cmove($cop$$cmpcode | C2_MacroAssembler::unsigned_branch_mask,
 9892                  as_Register($op1$$reg), as_Register($op2$$reg),
 9893                  as_Register($dst$$reg), as_Register($src$$reg));
 9894   %}
 9895 
 9896   ins_pipe(pipe_class_compare);
 9897 %}
 9898 
 9899 // ============================================================================
 9900 // Procedure Call/Return Instructions
 9901 
 9902 // Call Java Static Instruction
 9903 // Note: If this code changes, the corresponding ret_addr_offset() and
 9904 //       compute_padding() functions will have to be adjusted.
 9905 instruct CallStaticJavaDirect(method meth)
 9906 %{
 9907   match(CallStaticJava);
 9908 
 9909   effect(USE meth);
 9910 
 9911   ins_cost(BRANCH_COST);
 9912 
 9913   format %{ "CALL,static $meth\t#@CallStaticJavaDirect" %}
 9914 
 9915   ins_encode(riscv_enc_java_static_call(meth),
 9916              riscv_enc_call_epilog);
 9917 
 9918   ins_pipe(pipe_class_call);
 9919   ins_alignment(4);
 9920 %}
 9921 
 9922 // TO HERE
 9923 
 9924 // Call Java Dynamic Instruction
 9925 // Note: If this code changes, the corresponding ret_addr_offset() and
 9926 //       compute_padding() functions will have to be adjusted.
 9927 instruct CallDynamicJavaDirect(method meth)
 9928 %{
 9929   match(CallDynamicJava);
 9930 
 9931   effect(USE meth);
 9932 
 9933   ins_cost(BRANCH_COST + ALU_COST * 5);
 9934 
 9935   format %{ "CALL,dynamic $meth\t#@CallDynamicJavaDirect" %}
 9936 
 9937   ins_encode(riscv_enc_java_dynamic_call(meth),
 9938              riscv_enc_call_epilog);
 9939 
 9940   ins_pipe(pipe_class_call);
 9941   ins_alignment(4);
 9942 %}
 9943 
 9944 // Call Runtime Instruction
 9945 
 9946 instruct CallRuntimeDirect(method meth)
 9947 %{
 9948   match(CallRuntime);
 9949 
 9950   effect(USE meth);
 9951 
 9952   ins_cost(BRANCH_COST);
 9953 
 9954   format %{ "CALL, runtime $meth\t#@CallRuntimeDirect" %}
 9955 
 9956   ins_encode(riscv_enc_java_to_runtime(meth));
 9957 
 9958   ins_pipe(pipe_class_call);
 9959 %}
 9960 
 9961 // Call Runtime Instruction
 9962 
 9963 instruct CallLeafDirect(method meth)
 9964 %{
 9965   match(CallLeaf);
 9966 
 9967   effect(USE meth);
 9968 
 9969   ins_cost(BRANCH_COST);
 9970 
 9971   format %{ "CALL, runtime leaf $meth\t#@CallLeafDirect" %}
 9972 
 9973   ins_encode(riscv_enc_java_to_runtime(meth));
 9974 
 9975   ins_pipe(pipe_class_call);
 9976 %}
 9977 
 9978 // Call Runtime Instruction without safepoint and with vector arguments
 9979 
 9980 instruct CallLeafDirectVector(method meth)
 9981 %{
 9982   match(CallLeafVector);
 9983 
 9984   effect(USE meth);
 9985 
 9986   ins_cost(BRANCH_COST);
 9987 
 9988   format %{ "CALL, runtime leaf vector $meth" %}
 9989 
 9990   ins_encode(riscv_enc_java_to_runtime(meth));
 9991 
 9992   ins_pipe(pipe_class_call);
 9993 %}
 9994 
 9995 // Call Runtime Instruction
 9996 
 9997 instruct CallLeafNoFPDirect(method meth)
 9998 %{
 9999   match(CallLeafNoFP);
10000 
10001   effect(USE meth);
10002 
10003   ins_cost(BRANCH_COST);
10004 
10005   format %{ "CALL, runtime leaf nofp $meth\t#@CallLeafNoFPDirect" %}
10006 
10007   ins_encode(riscv_enc_java_to_runtime(meth));
10008 
10009   ins_pipe(pipe_class_call);
10010 %}
10011 
10012 // ============================================================================
10013 // Partial Subtype Check
10014 //
10015 // superklass array for an instance of the superklass.  Set a hidden
10016 // internal cache on a hit (cache is checked with exposed code in
10017 // gen_subtype_check()).  Return zero for a hit.  The encoding
10018 // ALSO sets flags.
10019 
10020 instruct partialSubtypeCheck(iRegP_R15 result, iRegP_R14 sub, iRegP_R10 super, iRegP_R12 tmp, rFlagsReg cr)
10021 %{
10022   match(Set result (PartialSubtypeCheck sub super));
10023   effect(KILL tmp, KILL cr);
10024 
10025   ins_cost(11 * DEFAULT_COST);
10026   format %{ "partialSubtypeCheck $result, $sub, $super\t#@partialSubtypeCheck" %}
10027 
10028   ins_encode(riscv_enc_partial_subtype_check(sub, super, tmp, result));
10029 
10030   opcode(0x1); // Force zero of result reg on hit
10031 
10032   ins_pipe(pipe_class_memory);
10033 %}
10034 
10035 instruct partialSubtypeCheckConstSuper(iRegP_R14 sub, iRegP_R10 super_reg, immP super_con, iRegP_R15 result,
10036                                        iRegP_R11 tmpR11, iRegP_R12 tmpR12, iRegP_R13 tmpR13, iRegP_R16 tmpR16, rFlagsReg cr)
10037 %{
10038   predicate(UseSecondarySupersTable);
10039   match(Set result (PartialSubtypeCheck sub (Binary super_reg super_con)));
10040   effect(TEMP tmpR11, TEMP tmpR12, TEMP tmpR13, TEMP tmpR16, KILL cr);
10041 
10042   ins_cost(7 * DEFAULT_COST); // needs to be less than competing nodes
10043   format %{ "partialSubtypeCheck $result, $sub, $super_reg, $super_con" %}
10044 
10045   ins_encode %{
10046     bool success = false;
10047     u1 super_klass_slot = ((Klass*)$super_con$$constant)->hash_slot();
10048     if (InlineSecondarySupersTest) {
10049       success = __ lookup_secondary_supers_table($sub$$Register, $super_reg$$Register, $result$$Register,
10050                                                  $tmpR11$$Register, $tmpR12$$Register, $tmpR13$$Register,
10051                                                  $tmpR16$$Register, super_klass_slot);
10052     } else {
10053       address call = __ reloc_call(RuntimeAddress(StubRoutines::lookup_secondary_supers_table_stub(super_klass_slot)));
10054       success = (call != nullptr);
10055     }
10056     if (!success) {
10057       ciEnv::current()->record_failure("CodeCache is full");
10058       return;
10059     }
10060   %}
10061 
10062   ins_pipe(pipe_class_memory);
10063 %}
10064 
10065 instruct partialSubtypeCheckVsZero(iRegP_R15 result, iRegP_R14 sub, iRegP_R10 super, iRegP_R12 tmp,
10066                                    immP0 zero, rFlagsReg cr)
10067 %{
10068   match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
10069   effect(KILL tmp, KILL result);
10070 
10071   ins_cost(11 * DEFAULT_COST);
10072   format %{ "partialSubtypeCheck $result, $sub, $super == 0\t#@partialSubtypeCheckVsZero" %}
10073 
10074   ins_encode(riscv_enc_partial_subtype_check(sub, super, tmp, result));
10075 
10076   opcode(0x0); // Don't zero result reg on hit
10077 
10078   ins_pipe(pipe_class_memory);
10079 %}
10080 
10081 instruct string_compareU(iRegP_R11 str1, iRegI_R12 cnt1, iRegP_R13 str2, iRegI_R14 cnt2,
10082                          iRegI_R10 result, iRegP_R28 tmp1, iRegL_R29 tmp2, iRegL_R30 tmp3, rFlagsReg cr)
10083 %{
10084   predicate(!UseRVV && ((StrCompNode *)n)->encoding() == StrIntrinsicNode::UU);
10085   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
10086   effect(KILL tmp1, KILL tmp2, KILL tmp3, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
10087 
10088   format %{ "String Compare $str1, $cnt1, $str2, $cnt2 -> $result\t#@string_compareU" %}
10089   ins_encode %{
10090     // Count is in 8-bit bytes; non-Compact chars are 16 bits.
10091     __ string_compare($str1$$Register, $str2$$Register,
10092                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
10093                       $tmp1$$Register, $tmp2$$Register, $tmp3$$Register,
10094                       StrIntrinsicNode::UU);
10095   %}
10096   ins_pipe(pipe_class_memory);
10097 %}
10098 
10099 instruct string_compareL(iRegP_R11 str1, iRegI_R12 cnt1, iRegP_R13 str2, iRegI_R14 cnt2,
10100                          iRegI_R10 result, iRegP_R28 tmp1, iRegL_R29 tmp2, iRegL_R30 tmp3, rFlagsReg cr)
10101 %{
10102   predicate(!UseRVV && ((StrCompNode *)n)->encoding() == StrIntrinsicNode::LL);
10103   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
10104   effect(KILL tmp1, KILL tmp2, KILL tmp3, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
10105 
10106   format %{ "String Compare $str1, $cnt1, $str2, $cnt2 -> $result\t#@string_compareL" %}
10107   ins_encode %{
10108     __ string_compare($str1$$Register, $str2$$Register,
10109                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
10110                       $tmp1$$Register, $tmp2$$Register, $tmp3$$Register,
10111                       StrIntrinsicNode::LL);
10112   %}
10113   ins_pipe(pipe_class_memory);
10114 %}
10115 
10116 instruct string_compareUL(iRegP_R11 str1, iRegI_R12 cnt1, iRegP_R13 str2, iRegI_R14 cnt2,
10117                           iRegI_R10 result, iRegP_R28 tmp1, iRegL_R29 tmp2, iRegL_R30 tmp3, rFlagsReg cr)
10118 %{
10119   predicate(!UseRVV && ((StrCompNode *)n)->encoding() == StrIntrinsicNode::UL);
10120   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
10121   effect(KILL tmp1, KILL tmp2, KILL tmp3, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
10122 
10123   format %{"String Compare $str1, $cnt1, $str2, $cnt2 -> $result\t#@string_compareUL" %}
10124   ins_encode %{
10125     __ string_compare($str1$$Register, $str2$$Register,
10126                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
10127                       $tmp1$$Register, $tmp2$$Register, $tmp3$$Register,
10128                       StrIntrinsicNode::UL);
10129   %}
10130   ins_pipe(pipe_class_memory);
10131 %}
10132 
10133 instruct string_compareLU(iRegP_R11 str1, iRegI_R12 cnt1, iRegP_R13 str2, iRegI_R14 cnt2,
10134                           iRegI_R10 result, iRegP_R28 tmp1, iRegL_R29 tmp2, iRegL_R30 tmp3,
10135                           rFlagsReg cr)
10136 %{
10137   predicate(!UseRVV && ((StrCompNode *)n)->encoding() == StrIntrinsicNode::LU);
10138   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
10139   effect(KILL tmp1, KILL tmp2, KILL tmp3, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
10140 
10141   format %{ "String Compare $str1, $cnt1, $str2, $cnt2 -> $result\t#@string_compareLU" %}
10142   ins_encode %{
10143     __ string_compare($str1$$Register, $str2$$Register,
10144                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
10145                       $tmp1$$Register, $tmp2$$Register, $tmp3$$Register,
10146                       StrIntrinsicNode::LU);
10147   %}
10148   ins_pipe(pipe_class_memory);
10149 %}
10150 
10151 instruct string_indexofUU(iRegP_R11 str1, iRegI_R12 cnt1, iRegP_R13 str2, iRegI_R14 cnt2,
10152                           iRegI_R10 result, iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3,
10153                           iRegINoSp tmp4, iRegINoSp tmp5, iRegINoSp tmp6, rFlagsReg cr)
10154 %{
10155   predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UU);
10156   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
10157   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, TEMP_DEF result,
10158          TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5, TEMP tmp6, KILL cr);
10159 
10160   format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result (UU)" %}
10161   ins_encode %{
10162     __ string_indexof($str1$$Register, $str2$$Register,
10163                       $cnt1$$Register, $cnt2$$Register,
10164                       $tmp1$$Register, $tmp2$$Register,
10165                       $tmp3$$Register, $tmp4$$Register,
10166                       $tmp5$$Register, $tmp6$$Register,
10167                       $result$$Register, StrIntrinsicNode::UU);
10168   %}
10169   ins_pipe(pipe_class_memory);
10170 %}
10171 
10172 instruct string_indexofLL(iRegP_R11 str1, iRegI_R12 cnt1, iRegP_R13 str2, iRegI_R14 cnt2,
10173                           iRegI_R10 result, iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3,
10174                           iRegINoSp tmp4, iRegINoSp tmp5, iRegINoSp tmp6, rFlagsReg cr)
10175 %{
10176   predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::LL);
10177   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
10178   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, TEMP_DEF result,
10179          TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5, TEMP tmp6, KILL cr);
10180 
10181   format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result (LL)" %}
10182   ins_encode %{
10183     __ string_indexof($str1$$Register, $str2$$Register,
10184                       $cnt1$$Register, $cnt2$$Register,
10185                       $tmp1$$Register, $tmp2$$Register,
10186                       $tmp3$$Register, $tmp4$$Register,
10187                       $tmp5$$Register, $tmp6$$Register,
10188                       $result$$Register, StrIntrinsicNode::LL);
10189   %}
10190   ins_pipe(pipe_class_memory);
10191 %}
10192 
10193 instruct string_indexofUL(iRegP_R11 str1, iRegI_R12 cnt1, iRegP_R13 str2, iRegI_R14 cnt2,
10194                           iRegI_R10 result, iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3,
10195                           iRegINoSp tmp4, iRegINoSp tmp5, iRegINoSp tmp6, rFlagsReg cr)
10196 %{
10197   predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UL);
10198   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
10199   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, TEMP_DEF result,
10200          TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5, TEMP tmp6, KILL cr);
10201   format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result (UL)" %}
10202 
10203   ins_encode %{
10204     __ string_indexof($str1$$Register, $str2$$Register,
10205                       $cnt1$$Register, $cnt2$$Register,
10206                       $tmp1$$Register, $tmp2$$Register,
10207                       $tmp3$$Register, $tmp4$$Register,
10208                       $tmp5$$Register, $tmp6$$Register,
10209                       $result$$Register, StrIntrinsicNode::UL);
10210   %}
10211   ins_pipe(pipe_class_memory);
10212 %}
10213 
10214 instruct string_indexof_conUU(iRegP_R11 str1, iRegI_R12 cnt1, iRegP_R13 str2,
10215                               immI_le_4 int_cnt2, iRegI_R10 result, iRegINoSp tmp1, iRegINoSp tmp2,
10216                               iRegINoSp tmp3, iRegINoSp tmp4, rFlagsReg cr)
10217 %{
10218   predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UU);
10219   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
10220   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, TEMP_DEF result,
10221          TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr);
10222 
10223   format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result (UU)" %}
10224 
10225   ins_encode %{
10226     int icnt2 = (int)$int_cnt2$$constant;
10227     __ string_indexof_linearscan($str1$$Register, $str2$$Register,
10228                                  $cnt1$$Register, zr,
10229                                  $tmp1$$Register, $tmp2$$Register,
10230                                  $tmp3$$Register, $tmp4$$Register,
10231                                  icnt2, $result$$Register, StrIntrinsicNode::UU);
10232   %}
10233   ins_pipe(pipe_class_memory);
10234 %}
10235 
10236 instruct string_indexof_conLL(iRegP_R11 str1, iRegI_R12 cnt1, iRegP_R13 str2,
10237                               immI_le_4 int_cnt2, iRegI_R10 result, iRegINoSp tmp1, iRegINoSp tmp2,
10238                               iRegINoSp tmp3, iRegINoSp tmp4, rFlagsReg cr)
10239 %{
10240   predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::LL);
10241   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
10242   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, TEMP_DEF result,
10243          TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr);
10244 
10245   format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result (LL)" %}
10246   ins_encode %{
10247     int icnt2 = (int)$int_cnt2$$constant;
10248     __ string_indexof_linearscan($str1$$Register, $str2$$Register,
10249                                  $cnt1$$Register, zr,
10250                                  $tmp1$$Register, $tmp2$$Register,
10251                                  $tmp3$$Register, $tmp4$$Register,
10252                                  icnt2, $result$$Register, StrIntrinsicNode::LL);
10253   %}
10254   ins_pipe(pipe_class_memory);
10255 %}
10256 
10257 instruct string_indexof_conUL(iRegP_R11 str1, iRegI_R12 cnt1, iRegP_R13 str2,
10258                               immI_1 int_cnt2, iRegI_R10 result, iRegINoSp tmp1, iRegINoSp tmp2,
10259                               iRegINoSp tmp3, iRegINoSp tmp4, rFlagsReg cr)
10260 %{
10261   predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UL);
10262   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
10263   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, TEMP_DEF result,
10264          TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr);
10265 
10266   format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result (UL)" %}
10267   ins_encode %{
10268     int icnt2 = (int)$int_cnt2$$constant;
10269     __ string_indexof_linearscan($str1$$Register, $str2$$Register,
10270                                  $cnt1$$Register, zr,
10271                                  $tmp1$$Register, $tmp2$$Register,
10272                                  $tmp3$$Register, $tmp4$$Register,
10273                                  icnt2, $result$$Register, StrIntrinsicNode::UL);
10274   %}
10275   ins_pipe(pipe_class_memory);
10276 %}
10277 
10278 instruct stringU_indexof_char(iRegP_R11 str1, iRegI_R12 cnt1, iRegI_R13 ch,
10279                               iRegI_R10 result, iRegINoSp tmp1, iRegINoSp tmp2,
10280                               iRegINoSp tmp3, iRegINoSp tmp4, rFlagsReg cr)
10281 %{
10282   match(Set result (StrIndexOfChar (Binary str1 cnt1) ch));
10283   predicate(!UseRVV && (((StrIndexOfCharNode*)n)->encoding() == StrIntrinsicNode::U));
10284   effect(USE_KILL str1, USE_KILL cnt1, USE_KILL ch, TEMP_DEF result,
10285          TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr);
10286 
10287   format %{ "StringUTF16 IndexOf char[] $str1, $cnt1, $ch -> $result" %}
10288   ins_encode %{
10289     __ string_indexof_char($str1$$Register, $cnt1$$Register, $ch$$Register,
10290                            $result$$Register, $tmp1$$Register, $tmp2$$Register,
10291                            $tmp3$$Register, $tmp4$$Register, false /* isU */);
10292   %}
10293   ins_pipe(pipe_class_memory);
10294 %}
10295 
10296 
10297 instruct stringL_indexof_char(iRegP_R11 str1, iRegI_R12 cnt1, iRegI_R13 ch,
10298                               iRegI_R10 result, iRegINoSp tmp1, iRegINoSp tmp2,
10299                               iRegINoSp tmp3, iRegINoSp tmp4, rFlagsReg cr)
10300 %{
10301   match(Set result (StrIndexOfChar (Binary str1 cnt1) ch));
10302   predicate(!UseRVV && (((StrIndexOfCharNode*)n)->encoding() == StrIntrinsicNode::L));
10303   effect(USE_KILL str1, USE_KILL cnt1, USE_KILL ch, TEMP_DEF result,
10304          TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr);
10305 
10306   format %{ "StringLatin1 IndexOf char[] $str1, $cnt1, $ch -> $result" %}
10307   ins_encode %{
10308     __ string_indexof_char($str1$$Register, $cnt1$$Register, $ch$$Register,
10309                            $result$$Register, $tmp1$$Register, $tmp2$$Register,
10310                            $tmp3$$Register, $tmp4$$Register, true /* isL */);
10311   %}
10312   ins_pipe(pipe_class_memory);
10313 %}
10314 
10315 // clearing of an array
10316 instruct clearArray_reg_reg(iRegL_R29 cnt, iRegP_R28 base, iRegP_R30 tmp1,
10317                             iRegP_R31 tmp2, rFlagsReg cr, Universe dummy)
10318 %{
10319   // temp registers must match the one used in StubGenerator::generate_zero_blocks()
10320   predicate(UseBlockZeroing || !UseRVV);
10321   match(Set dummy (ClearArray cnt base));
10322   effect(USE_KILL cnt, USE_KILL base, TEMP tmp1, TEMP tmp2, KILL cr);
10323 
10324   ins_cost(4 * DEFAULT_COST);
10325   format %{ "ClearArray $cnt, $base\t#@clearArray_reg_reg" %}
10326 
10327   ins_encode %{
10328     address tpc = __ zero_words($base$$Register, $cnt$$Register);
10329     if (tpc == nullptr) {
10330       ciEnv::current()->record_failure("CodeCache is full");
10331       return;
10332     }
10333   %}
10334 
10335   ins_pipe(pipe_class_memory);
10336 %}
10337 
10338 instruct clearArray_imm_reg(immL cnt, iRegP_R28 base, Universe dummy, rFlagsReg cr)
10339 %{
10340   predicate(!UseRVV && (uint64_t)n->in(2)->get_long()
10341             < (uint64_t)(BlockZeroingLowLimit >> LogBytesPerWord));
10342   match(Set dummy (ClearArray cnt base));
10343   effect(USE_KILL base, KILL cr);
10344 
10345   ins_cost(4 * DEFAULT_COST);
10346   format %{ "ClearArray $cnt, $base\t#@clearArray_imm_reg" %}
10347 
10348   ins_encode %{
10349     __ zero_words($base$$Register, (uint64_t)$cnt$$constant);
10350   %}
10351 
10352   ins_pipe(pipe_class_memory);
10353 %}
10354 
10355 instruct string_equalsL(iRegP_R11 str1, iRegP_R13 str2, iRegI_R14 cnt,
10356                         iRegI_R10 result, rFlagsReg cr)
10357 %{
10358   predicate(!UseRVV && ((StrEqualsNode*)n)->encoding() == StrIntrinsicNode::LL);
10359   match(Set result (StrEquals (Binary str1 str2) cnt));
10360   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL cr);
10361 
10362   format %{ "String Equals $str1, $str2, $cnt -> $result\t#@string_equalsL" %}
10363   ins_encode %{
10364     // Count is in 8-bit bytes; non-Compact chars are 16 bits.
10365     __ string_equals($str1$$Register, $str2$$Register,
10366                      $result$$Register, $cnt$$Register);
10367   %}
10368   ins_pipe(pipe_class_memory);
10369 %}
10370 
10371 instruct array_equalsB(iRegP_R11 ary1, iRegP_R12 ary2, iRegI_R10 result,
10372                        iRegP_R13 tmp1, iRegP_R14 tmp2, iRegP_R15 tmp3)
10373 %{
10374   predicate(!UseRVV && ((AryEqNode*)n)->encoding() == StrIntrinsicNode::LL);
10375   match(Set result (AryEq ary1 ary2));
10376   effect(USE_KILL ary1, USE_KILL ary2, TEMP tmp1, TEMP tmp2, TEMP tmp3);
10377 
10378   format %{ "Array Equals $ary1, $ary2 -> $result\t#@array_equalsB // KILL all" %}
10379   ins_encode %{
10380     __ arrays_equals($ary1$$Register, $ary2$$Register,
10381                      $tmp1$$Register, $tmp2$$Register, $tmp3$$Register,
10382                      $result$$Register, 1);
10383   %}
10384   ins_pipe(pipe_class_memory);
10385 %}
10386 
10387 instruct array_equalsC(iRegP_R11 ary1, iRegP_R12 ary2, iRegI_R10 result,
10388                        iRegP_R13 tmp1, iRegP_R14 tmp2, iRegP_R15 tmp3)
10389 %{
10390   predicate(!UseRVV && ((AryEqNode*)n)->encoding() == StrIntrinsicNode::UU);
10391   match(Set result (AryEq ary1 ary2));
10392   effect(USE_KILL ary1, USE_KILL ary2, TEMP tmp1, TEMP tmp2, TEMP tmp3);
10393 
10394   format %{ "Array Equals $ary1, $ary2 -> $result\t#@array_equalsC // KILL all" %}
10395   ins_encode %{
10396     __ arrays_equals($ary1$$Register, $ary2$$Register,
10397                      $tmp1$$Register, $tmp2$$Register, $tmp3$$Register,
10398                      $result$$Register, 2);
10399   %}
10400   ins_pipe(pipe_class_memory);
10401 %}
10402 
10403 // fast ArraysSupport.vectorizedHashCode
10404 instruct arrays_hashcode(iRegP_R11 ary, iRegI_R12 cnt, iRegI_R10 result, immI basic_type,
10405                          iRegLNoSp tmp1, iRegLNoSp tmp2,
10406                          iRegLNoSp tmp3, iRegLNoSp tmp4,
10407                          iRegLNoSp tmp5, iRegLNoSp tmp6, rFlagsReg cr)
10408 %{
10409   match(Set result (VectorizedHashCode (Binary ary cnt) (Binary result basic_type)));
10410   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5, TEMP tmp6,
10411          USE_KILL ary, USE_KILL cnt, USE basic_type, KILL cr);
10412 
10413   format %{ "Array HashCode array[] $ary,$cnt,$result,$basic_type -> $result   // KILL all" %}
10414   ins_encode %{
10415     __ arrays_hashcode($ary$$Register, $cnt$$Register, $result$$Register,
10416                        $tmp1$$Register, $tmp2$$Register, $tmp3$$Register,
10417                        $tmp4$$Register, $tmp5$$Register, $tmp6$$Register,
10418                        (BasicType)$basic_type$$constant);
10419   %}
10420   ins_pipe(pipe_class_memory);
10421 %}
10422 
10423 // ============================================================================
10424 // Safepoint Instructions
10425 
10426 instruct safePoint(iRegP poll)
10427 %{
10428   match(SafePoint poll);
10429 
10430   ins_cost(2 * LOAD_COST);
10431   format %{
10432     "lwu zr, [$poll]\t# Safepoint: poll for GC, #@safePoint"
10433   %}
10434   ins_encode %{
10435     __ read_polling_page(as_Register($poll$$reg), 0, relocInfo::poll_type);
10436   %}
10437   ins_pipe(pipe_serial); // ins_pipe(iload_reg_mem);
10438 %}
10439 
10440 // ============================================================================
10441 // This name is KNOWN by the ADLC and cannot be changed.
10442 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
10443 // for this guy.
10444 instruct tlsLoadP(javaThread_RegP dst)
10445 %{
10446   match(Set dst (ThreadLocal));
10447 
10448   ins_cost(0);
10449 
10450   format %{ " -- \t// $dst=Thread::current(), empty, #@tlsLoadP" %}
10451 
10452   size(0);
10453 
10454   ins_encode( /*empty*/ );
10455 
10456   ins_pipe(pipe_class_empty);
10457 %}
10458 
10459 // inlined locking and unlocking
10460 // using t1 as the 'flag' register to bridge the BoolNode producers and consumers
10461 instruct cmpFastLock(rFlagsReg cr, iRegP object, iRegP box,
10462                      iRegPNoSp tmp1, iRegPNoSp tmp2, iRegPNoSp tmp3, iRegPNoSp tmp4)
10463 %{
10464   predicate(LockingMode != LM_LIGHTWEIGHT);
10465   match(Set cr (FastLock object box));
10466   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4);
10467 
10468   ins_cost(10 * DEFAULT_COST);
10469   format %{ "fastlock $object,$box\t! kills $tmp1,$tmp2,$tmp3,$tmp4 #@cmpFastLock" %}
10470 
10471   ins_encode %{
10472     __ fast_lock($object$$Register, $box$$Register,
10473                  $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register);
10474   %}
10475 
10476   ins_pipe(pipe_serial);
10477 %}
10478 
10479 // using t1 as the 'flag' register to bridge the BoolNode producers and consumers
10480 instruct cmpFastUnlock(rFlagsReg cr, iRegP object, iRegP box, iRegPNoSp tmp1, iRegPNoSp tmp2)
10481 %{
10482   predicate(LockingMode != LM_LIGHTWEIGHT);
10483   match(Set cr (FastUnlock object box));
10484   effect(TEMP tmp1, TEMP tmp2);
10485 
10486   ins_cost(10 * DEFAULT_COST);
10487   format %{ "fastunlock $object,$box\t! kills $tmp1, $tmp2, #@cmpFastUnlock" %}
10488 
10489   ins_encode %{
10490     __ fast_unlock($object$$Register, $box$$Register, $tmp1$$Register, $tmp2$$Register);
10491   %}
10492 
10493   ins_pipe(pipe_serial);
10494 %}
10495 
10496 instruct cmpFastLockLightweight(rFlagsReg cr, iRegP object, iRegP box,
10497                                 iRegPNoSp tmp1, iRegPNoSp tmp2, iRegPNoSp tmp3, iRegPNoSp tmp4)
10498 %{
10499   predicate(LockingMode == LM_LIGHTWEIGHT);
10500   match(Set cr (FastLock object box));
10501   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4);
10502 
10503   ins_cost(10 * DEFAULT_COST);
10504   format %{ "fastlock $object,$box\t! kills $tmp1,$tmp2,$tmp3,$tmp4 #@cmpFastLockLightweight" %}
10505 
10506   ins_encode %{
10507     __ fast_lock_lightweight($object$$Register, $box$$Register,
10508                              $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register);
10509   %}
10510 
10511   ins_pipe(pipe_serial);
10512 %}
10513 
10514 instruct cmpFastUnlockLightweight(rFlagsReg cr, iRegP object, iRegP box,
10515                                   iRegPNoSp tmp1, iRegPNoSp tmp2, iRegPNoSp tmp3)
10516 %{
10517   predicate(LockingMode == LM_LIGHTWEIGHT);
10518   match(Set cr (FastUnlock object box));
10519   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3);
10520 
10521   ins_cost(10 * DEFAULT_COST);
10522   format %{ "fastunlock $object,$box\t! kills $tmp1,$tmp2,$tmp3 #@cmpFastUnlockLightweight" %}
10523 
10524   ins_encode %{
10525     __ fast_unlock_lightweight($object$$Register, $box$$Register,
10526                                $tmp1$$Register, $tmp2$$Register, $tmp3$$Register);
10527   %}
10528 
10529   ins_pipe(pipe_serial);
10530 %}
10531 
10532 // Tail Call; Jump from runtime stub to Java code.
10533 // Also known as an 'interprocedural jump'.
10534 // Target of jump will eventually return to caller.
10535 // TailJump below removes the return address.
10536 // Don't use fp for 'jump_target' because a MachEpilogNode has already been
10537 // emitted just above the TailCall which has reset fp to the caller state.
10538 instruct TailCalljmpInd(iRegPNoSpNoFp jump_target, inline_cache_RegP method_oop)
10539 %{
10540   match(TailCall jump_target method_oop);
10541 
10542   ins_cost(BRANCH_COST);
10543 
10544   format %{ "jalr $jump_target\t# $method_oop holds method oop, #@TailCalljmpInd." %}
10545 
10546   ins_encode(riscv_enc_tail_call(jump_target));
10547 
10548   ins_pipe(pipe_class_call);
10549 %}
10550 
10551 instruct TailjmpInd(iRegPNoSpNoFp jump_target, iRegP_R10 ex_oop)
10552 %{
10553   match(TailJump jump_target ex_oop);
10554 
10555   ins_cost(ALU_COST + BRANCH_COST);
10556 
10557   format %{ "jalr $jump_target\t# $ex_oop holds exception oop, #@TailjmpInd." %}
10558 
10559   ins_encode(riscv_enc_tail_jmp(jump_target));
10560 
10561   ins_pipe(pipe_class_call);
10562 %}
10563 
10564 // Forward exception.
10565 instruct ForwardExceptionjmp()
10566 %{
10567   match(ForwardException);
10568 
10569   ins_cost(BRANCH_COST);
10570 
10571   format %{ "j forward_exception_stub\t#@ForwardException" %}
10572 
10573   ins_encode %{
10574     __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
10575   %}
10576 
10577   ins_pipe(pipe_class_call);
10578 %}
10579 
10580 // Create exception oop: created by stack-crawling runtime code.
10581 // Created exception is now available to this handler, and is setup
10582 // just prior to jumping to this handler. No code emitted.
10583 instruct CreateException(iRegP_R10 ex_oop)
10584 %{
10585   match(Set ex_oop (CreateEx));
10586 
10587   ins_cost(0);
10588   format %{ " -- \t// exception oop; no code emitted, #@CreateException" %}
10589 
10590   size(0);
10591 
10592   ins_encode( /*empty*/ );
10593 
10594   ins_pipe(pipe_class_empty);
10595 %}
10596 
10597 // Rethrow exception: The exception oop will come in the first
10598 // argument position. Then JUMP (not call) to the rethrow stub code.
10599 instruct RethrowException()
10600 %{
10601   match(Rethrow);
10602 
10603   ins_cost(BRANCH_COST);
10604 
10605   format %{ "j rethrow_stub\t#@RethrowException" %}
10606 
10607   ins_encode(riscv_enc_rethrow());
10608 
10609   ins_pipe(pipe_class_call);
10610 %}
10611 
10612 // Return Instruction
10613 // epilog node loads ret address into ra as part of frame pop
10614 instruct Ret()
10615 %{
10616   match(Return);
10617 
10618   ins_cost(BRANCH_COST);
10619   format %{ "ret\t// return register, #@Ret" %}
10620 
10621   ins_encode(riscv_enc_ret());
10622 
10623   ins_pipe(pipe_branch);
10624 %}
10625 
10626 // Die now.
10627 instruct ShouldNotReachHere() %{
10628   match(Halt);
10629 
10630   ins_cost(BRANCH_COST);
10631 
10632   format %{ "#@ShouldNotReachHere" %}
10633 
10634   ins_encode %{
10635     if (is_reachable()) {
10636       __ stop(_halt_reason);
10637     }
10638   %}
10639 
10640   ins_pipe(pipe_class_default);
10641 %}
10642 
10643 
10644 //----------PEEPHOLE RULES-----------------------------------------------------
10645 // These must follow all instruction definitions as they use the names
10646 // defined in the instructions definitions.
10647 //
10648 // peepmatch ( root_instr_name [preceding_instruction]* );
10649 //
10650 // peepconstraint %{
10651 // (instruction_number.operand_name relational_op instruction_number.operand_name
10652 //  [, ...] );
10653 // // instruction numbers are zero-based using left to right order in peepmatch
10654 //
10655 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
10656 // // provide an instruction_number.operand_name for each operand that appears
10657 // // in the replacement instruction's match rule
10658 //
10659 // ---------VM FLAGS---------------------------------------------------------
10660 //
10661 // All peephole optimizations can be turned off using -XX:-OptoPeephole
10662 //
10663 // Each peephole rule is given an identifying number starting with zero and
10664 // increasing by one in the order seen by the parser.  An individual peephole
10665 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
10666 // on the command-line.
10667 //
10668 // ---------CURRENT LIMITATIONS----------------------------------------------
10669 //
10670 // Only match adjacent instructions in same basic block
10671 // Only equality constraints
10672 // Only constraints between operands, not (0.dest_reg == RAX_enc)
10673 // Only one replacement instruction
10674 //
10675 //----------SMARTSPILL RULES---------------------------------------------------
10676 // These must follow all instruction definitions as they use the names
10677 // defined in the instructions definitions.
10678 
10679 // Local Variables:
10680 // mode: c++
10681 // End: