1 // 2 // Copyright (c) 2003, 2024, Oracle and/or its affiliates. All rights reserved. 3 // Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved. 4 // Copyright (c) 2020, 2024, Huawei Technologies Co., Ltd. All rights reserved. 5 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 6 // 7 // This code is free software; you can redistribute it and/or modify it 8 // under the terms of the GNU General Public License version 2 only, as 9 // published by the Free Software Foundation. 10 // 11 // This code is distributed in the hope that it will be useful, but WITHOUT 12 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 // version 2 for more details (a copy is included in the LICENSE file that 15 // accompanied this code). 16 // 17 // You should have received a copy of the GNU General Public License version 18 // 2 along with this work; if not, write to the Free Software Foundation, 19 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 // 21 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 // or visit www.oracle.com if you need additional information or have any 23 // questions. 24 // 25 // 26 27 // RISCV Architecture Description File 28 29 //----------REGISTER DEFINITION BLOCK------------------------------------------ 30 // This information is used by the matcher and the register allocator to 31 // describe individual registers and classes of registers within the target 32 // architecture. 33 34 register %{ 35 //----------Architecture Description Register Definitions---------------------- 36 // General Registers 37 // "reg_def" name ( register save type, C convention save type, 38 // ideal register type, encoding ); 39 // Register Save Types: 40 // 41 // NS = No-Save: The register allocator assumes that these registers 42 // can be used without saving upon entry to the method, & 43 // that they do not need to be saved at call sites. 44 // 45 // SOC = Save-On-Call: The register allocator assumes that these registers 46 // can be used without saving upon entry to the method, 47 // but that they must be saved at call sites. 48 // 49 // SOE = Save-On-Entry: The register allocator assumes that these registers 50 // must be saved before using them upon entry to the 51 // method, but they do not need to be saved at call 52 // sites. 53 // 54 // AS = Always-Save: The register allocator assumes that these registers 55 // must be saved before using them upon entry to the 56 // method, & that they must be saved at call sites. 57 // 58 // Ideal Register Type is used to determine how to save & restore a 59 // register. Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get 60 // spilled with LoadP/StoreP. If the register supports both, use Op_RegI. 61 // 62 // The encoding number is the actual bit-pattern placed into the opcodes. 63 64 // We must define the 64 bit int registers in two 32 bit halves, the 65 // real lower register and a virtual upper half register. upper halves 66 // are used by the register allocator but are not actually supplied as 67 // operands to memory ops. 68 // 69 // follow the C1 compiler in making registers 70 // 71 // x7, x9-x17, x27-x31 volatile (caller save) 72 // x0-x4, x8, x23 system (no save, no allocate) 73 // x5-x6 non-allocatable (so we can use them as temporary regs) 74 75 // 76 // as regards Java usage. we don't use any callee save registers 77 // because this makes it difficult to de-optimise a frame (see comment 78 // in x86 implementation of Deoptimization::unwind_callee_save_values) 79 // 80 81 // General Registers 82 83 reg_def R0 ( NS, NS, Op_RegI, 0, x0->as_VMReg() ); // zr 84 reg_def R0_H ( NS, NS, Op_RegI, 0, x0->as_VMReg()->next() ); 85 reg_def R1 ( NS, SOC, Op_RegI, 1, x1->as_VMReg() ); // ra 86 reg_def R1_H ( NS, SOC, Op_RegI, 1, x1->as_VMReg()->next() ); 87 reg_def R2 ( NS, NS, Op_RegI, 2, x2->as_VMReg() ); // sp 88 reg_def R2_H ( NS, NS, Op_RegI, 2, x2->as_VMReg()->next() ); 89 reg_def R3 ( NS, NS, Op_RegI, 3, x3->as_VMReg() ); // gp 90 reg_def R3_H ( NS, NS, Op_RegI, 3, x3->as_VMReg()->next() ); 91 reg_def R4 ( NS, NS, Op_RegI, 4, x4->as_VMReg() ); // tp 92 reg_def R4_H ( NS, NS, Op_RegI, 4, x4->as_VMReg()->next() ); 93 reg_def R7 ( SOC, SOC, Op_RegI, 7, x7->as_VMReg() ); 94 reg_def R7_H ( SOC, SOC, Op_RegI, 7, x7->as_VMReg()->next() ); 95 reg_def R8 ( NS, SOE, Op_RegI, 8, x8->as_VMReg() ); // fp 96 reg_def R8_H ( NS, SOE, Op_RegI, 8, x8->as_VMReg()->next() ); 97 reg_def R9 ( SOC, SOE, Op_RegI, 9, x9->as_VMReg() ); 98 reg_def R9_H ( SOC, SOE, Op_RegI, 9, x9->as_VMReg()->next() ); 99 reg_def R10 ( SOC, SOC, Op_RegI, 10, x10->as_VMReg() ); 100 reg_def R10_H ( SOC, SOC, Op_RegI, 10, x10->as_VMReg()->next()); 101 reg_def R11 ( SOC, SOC, Op_RegI, 11, x11->as_VMReg() ); 102 reg_def R11_H ( SOC, SOC, Op_RegI, 11, x11->as_VMReg()->next()); 103 reg_def R12 ( SOC, SOC, Op_RegI, 12, x12->as_VMReg() ); 104 reg_def R12_H ( SOC, SOC, Op_RegI, 12, x12->as_VMReg()->next()); 105 reg_def R13 ( SOC, SOC, Op_RegI, 13, x13->as_VMReg() ); 106 reg_def R13_H ( SOC, SOC, Op_RegI, 13, x13->as_VMReg()->next()); 107 reg_def R14 ( SOC, SOC, Op_RegI, 14, x14->as_VMReg() ); 108 reg_def R14_H ( SOC, SOC, Op_RegI, 14, x14->as_VMReg()->next()); 109 reg_def R15 ( SOC, SOC, Op_RegI, 15, x15->as_VMReg() ); 110 reg_def R15_H ( SOC, SOC, Op_RegI, 15, x15->as_VMReg()->next()); 111 reg_def R16 ( SOC, SOC, Op_RegI, 16, x16->as_VMReg() ); 112 reg_def R16_H ( SOC, SOC, Op_RegI, 16, x16->as_VMReg()->next()); 113 reg_def R17 ( SOC, SOC, Op_RegI, 17, x17->as_VMReg() ); 114 reg_def R17_H ( SOC, SOC, Op_RegI, 17, x17->as_VMReg()->next()); 115 reg_def R18 ( SOC, SOE, Op_RegI, 18, x18->as_VMReg() ); 116 reg_def R18_H ( SOC, SOE, Op_RegI, 18, x18->as_VMReg()->next()); 117 reg_def R19 ( SOC, SOE, Op_RegI, 19, x19->as_VMReg() ); 118 reg_def R19_H ( SOC, SOE, Op_RegI, 19, x19->as_VMReg()->next()); 119 reg_def R20 ( SOC, SOE, Op_RegI, 20, x20->as_VMReg() ); // caller esp 120 reg_def R20_H ( SOC, SOE, Op_RegI, 20, x20->as_VMReg()->next()); 121 reg_def R21 ( SOC, SOE, Op_RegI, 21, x21->as_VMReg() ); 122 reg_def R21_H ( SOC, SOE, Op_RegI, 21, x21->as_VMReg()->next()); 123 reg_def R22 ( SOC, SOE, Op_RegI, 22, x22->as_VMReg() ); 124 reg_def R22_H ( SOC, SOE, Op_RegI, 22, x22->as_VMReg()->next()); 125 reg_def R23 ( NS, SOE, Op_RegI, 23, x23->as_VMReg() ); // java thread 126 reg_def R23_H ( NS, SOE, Op_RegI, 23, x23->as_VMReg()->next()); 127 reg_def R24 ( SOC, SOE, Op_RegI, 24, x24->as_VMReg() ); 128 reg_def R24_H ( SOC, SOE, Op_RegI, 24, x24->as_VMReg()->next()); 129 reg_def R25 ( SOC, SOE, Op_RegI, 25, x25->as_VMReg() ); 130 reg_def R25_H ( SOC, SOE, Op_RegI, 25, x25->as_VMReg()->next()); 131 reg_def R26 ( SOC, SOE, Op_RegI, 26, x26->as_VMReg() ); 132 reg_def R26_H ( SOC, SOE, Op_RegI, 26, x26->as_VMReg()->next()); 133 reg_def R27 ( SOC, SOE, Op_RegI, 27, x27->as_VMReg() ); // heapbase 134 reg_def R27_H ( SOC, SOE, Op_RegI, 27, x27->as_VMReg()->next()); 135 reg_def R28 ( SOC, SOC, Op_RegI, 28, x28->as_VMReg() ); 136 reg_def R28_H ( SOC, SOC, Op_RegI, 28, x28->as_VMReg()->next()); 137 reg_def R29 ( SOC, SOC, Op_RegI, 29, x29->as_VMReg() ); 138 reg_def R29_H ( SOC, SOC, Op_RegI, 29, x29->as_VMReg()->next()); 139 reg_def R30 ( SOC, SOC, Op_RegI, 30, x30->as_VMReg() ); 140 reg_def R30_H ( SOC, SOC, Op_RegI, 30, x30->as_VMReg()->next()); 141 reg_def R31 ( SOC, SOC, Op_RegI, 31, x31->as_VMReg() ); 142 reg_def R31_H ( SOC, SOC, Op_RegI, 31, x31->as_VMReg()->next()); 143 144 // ---------------------------- 145 // Float/Double Registers 146 // ---------------------------- 147 148 // Double Registers 149 150 // The rules of ADL require that double registers be defined in pairs. 151 // Each pair must be two 32-bit values, but not necessarily a pair of 152 // single float registers. In each pair, ADLC-assigned register numbers 153 // must be adjacent, with the lower number even. Finally, when the 154 // CPU stores such a register pair to memory, the word associated with 155 // the lower ADLC-assigned number must be stored to the lower address. 156 157 // RISCV has 32 floating-point registers. Each can store a single 158 // or double precision floating-point value. 159 160 // for Java use float registers f0-f31 are always save on call whereas 161 // the platform ABI treats f8-f9 and f18-f27 as callee save). Other 162 // float registers are SOC as per the platform spec 163 164 reg_def F0 ( SOC, SOC, Op_RegF, 0, f0->as_VMReg() ); 165 reg_def F0_H ( SOC, SOC, Op_RegF, 0, f0->as_VMReg()->next() ); 166 reg_def F1 ( SOC, SOC, Op_RegF, 1, f1->as_VMReg() ); 167 reg_def F1_H ( SOC, SOC, Op_RegF, 1, f1->as_VMReg()->next() ); 168 reg_def F2 ( SOC, SOC, Op_RegF, 2, f2->as_VMReg() ); 169 reg_def F2_H ( SOC, SOC, Op_RegF, 2, f2->as_VMReg()->next() ); 170 reg_def F3 ( SOC, SOC, Op_RegF, 3, f3->as_VMReg() ); 171 reg_def F3_H ( SOC, SOC, Op_RegF, 3, f3->as_VMReg()->next() ); 172 reg_def F4 ( SOC, SOC, Op_RegF, 4, f4->as_VMReg() ); 173 reg_def F4_H ( SOC, SOC, Op_RegF, 4, f4->as_VMReg()->next() ); 174 reg_def F5 ( SOC, SOC, Op_RegF, 5, f5->as_VMReg() ); 175 reg_def F5_H ( SOC, SOC, Op_RegF, 5, f5->as_VMReg()->next() ); 176 reg_def F6 ( SOC, SOC, Op_RegF, 6, f6->as_VMReg() ); 177 reg_def F6_H ( SOC, SOC, Op_RegF, 6, f6->as_VMReg()->next() ); 178 reg_def F7 ( SOC, SOC, Op_RegF, 7, f7->as_VMReg() ); 179 reg_def F7_H ( SOC, SOC, Op_RegF, 7, f7->as_VMReg()->next() ); 180 reg_def F8 ( SOC, SOE, Op_RegF, 8, f8->as_VMReg() ); 181 reg_def F8_H ( SOC, SOE, Op_RegF, 8, f8->as_VMReg()->next() ); 182 reg_def F9 ( SOC, SOE, Op_RegF, 9, f9->as_VMReg() ); 183 reg_def F9_H ( SOC, SOE, Op_RegF, 9, f9->as_VMReg()->next() ); 184 reg_def F10 ( SOC, SOC, Op_RegF, 10, f10->as_VMReg() ); 185 reg_def F10_H ( SOC, SOC, Op_RegF, 10, f10->as_VMReg()->next() ); 186 reg_def F11 ( SOC, SOC, Op_RegF, 11, f11->as_VMReg() ); 187 reg_def F11_H ( SOC, SOC, Op_RegF, 11, f11->as_VMReg()->next() ); 188 reg_def F12 ( SOC, SOC, Op_RegF, 12, f12->as_VMReg() ); 189 reg_def F12_H ( SOC, SOC, Op_RegF, 12, f12->as_VMReg()->next() ); 190 reg_def F13 ( SOC, SOC, Op_RegF, 13, f13->as_VMReg() ); 191 reg_def F13_H ( SOC, SOC, Op_RegF, 13, f13->as_VMReg()->next() ); 192 reg_def F14 ( SOC, SOC, Op_RegF, 14, f14->as_VMReg() ); 193 reg_def F14_H ( SOC, SOC, Op_RegF, 14, f14->as_VMReg()->next() ); 194 reg_def F15 ( SOC, SOC, Op_RegF, 15, f15->as_VMReg() ); 195 reg_def F15_H ( SOC, SOC, Op_RegF, 15, f15->as_VMReg()->next() ); 196 reg_def F16 ( SOC, SOC, Op_RegF, 16, f16->as_VMReg() ); 197 reg_def F16_H ( SOC, SOC, Op_RegF, 16, f16->as_VMReg()->next() ); 198 reg_def F17 ( SOC, SOC, Op_RegF, 17, f17->as_VMReg() ); 199 reg_def F17_H ( SOC, SOC, Op_RegF, 17, f17->as_VMReg()->next() ); 200 reg_def F18 ( SOC, SOE, Op_RegF, 18, f18->as_VMReg() ); 201 reg_def F18_H ( SOC, SOE, Op_RegF, 18, f18->as_VMReg()->next() ); 202 reg_def F19 ( SOC, SOE, Op_RegF, 19, f19->as_VMReg() ); 203 reg_def F19_H ( SOC, SOE, Op_RegF, 19, f19->as_VMReg()->next() ); 204 reg_def F20 ( SOC, SOE, Op_RegF, 20, f20->as_VMReg() ); 205 reg_def F20_H ( SOC, SOE, Op_RegF, 20, f20->as_VMReg()->next() ); 206 reg_def F21 ( SOC, SOE, Op_RegF, 21, f21->as_VMReg() ); 207 reg_def F21_H ( SOC, SOE, Op_RegF, 21, f21->as_VMReg()->next() ); 208 reg_def F22 ( SOC, SOE, Op_RegF, 22, f22->as_VMReg() ); 209 reg_def F22_H ( SOC, SOE, Op_RegF, 22, f22->as_VMReg()->next() ); 210 reg_def F23 ( SOC, SOE, Op_RegF, 23, f23->as_VMReg() ); 211 reg_def F23_H ( SOC, SOE, Op_RegF, 23, f23->as_VMReg()->next() ); 212 reg_def F24 ( SOC, SOE, Op_RegF, 24, f24->as_VMReg() ); 213 reg_def F24_H ( SOC, SOE, Op_RegF, 24, f24->as_VMReg()->next() ); 214 reg_def F25 ( SOC, SOE, Op_RegF, 25, f25->as_VMReg() ); 215 reg_def F25_H ( SOC, SOE, Op_RegF, 25, f25->as_VMReg()->next() ); 216 reg_def F26 ( SOC, SOE, Op_RegF, 26, f26->as_VMReg() ); 217 reg_def F26_H ( SOC, SOE, Op_RegF, 26, f26->as_VMReg()->next() ); 218 reg_def F27 ( SOC, SOE, Op_RegF, 27, f27->as_VMReg() ); 219 reg_def F27_H ( SOC, SOE, Op_RegF, 27, f27->as_VMReg()->next() ); 220 reg_def F28 ( SOC, SOC, Op_RegF, 28, f28->as_VMReg() ); 221 reg_def F28_H ( SOC, SOC, Op_RegF, 28, f28->as_VMReg()->next() ); 222 reg_def F29 ( SOC, SOC, Op_RegF, 29, f29->as_VMReg() ); 223 reg_def F29_H ( SOC, SOC, Op_RegF, 29, f29->as_VMReg()->next() ); 224 reg_def F30 ( SOC, SOC, Op_RegF, 30, f30->as_VMReg() ); 225 reg_def F30_H ( SOC, SOC, Op_RegF, 30, f30->as_VMReg()->next() ); 226 reg_def F31 ( SOC, SOC, Op_RegF, 31, f31->as_VMReg() ); 227 reg_def F31_H ( SOC, SOC, Op_RegF, 31, f31->as_VMReg()->next() ); 228 229 // ---------------------------- 230 // Vector Registers 231 // ---------------------------- 232 233 // For RVV vector registers, we simply extend vector register size to 4 234 // 'logical' slots. This is nominally 128 bits but it actually covers 235 // all possible 'physical' RVV vector register lengths from 128 ~ 1024 236 // bits. The 'physical' RVV vector register length is detected during 237 // startup, so the register allocator is able to identify the correct 238 // number of bytes needed for an RVV spill/unspill. 239 240 reg_def V0 ( SOC, SOC, Op_VecA, 0, v0->as_VMReg() ); 241 reg_def V0_H ( SOC, SOC, Op_VecA, 0, v0->as_VMReg()->next() ); 242 reg_def V0_J ( SOC, SOC, Op_VecA, 0, v0->as_VMReg()->next(2) ); 243 reg_def V0_K ( SOC, SOC, Op_VecA, 0, v0->as_VMReg()->next(3) ); 244 245 reg_def V1 ( SOC, SOC, Op_VecA, 1, v1->as_VMReg() ); 246 reg_def V1_H ( SOC, SOC, Op_VecA, 1, v1->as_VMReg()->next() ); 247 reg_def V1_J ( SOC, SOC, Op_VecA, 1, v1->as_VMReg()->next(2) ); 248 reg_def V1_K ( SOC, SOC, Op_VecA, 1, v1->as_VMReg()->next(3) ); 249 250 reg_def V2 ( SOC, SOC, Op_VecA, 2, v2->as_VMReg() ); 251 reg_def V2_H ( SOC, SOC, Op_VecA, 2, v2->as_VMReg()->next() ); 252 reg_def V2_J ( SOC, SOC, Op_VecA, 2, v2->as_VMReg()->next(2) ); 253 reg_def V2_K ( SOC, SOC, Op_VecA, 2, v2->as_VMReg()->next(3) ); 254 255 reg_def V3 ( SOC, SOC, Op_VecA, 3, v3->as_VMReg() ); 256 reg_def V3_H ( SOC, SOC, Op_VecA, 3, v3->as_VMReg()->next() ); 257 reg_def V3_J ( SOC, SOC, Op_VecA, 3, v3->as_VMReg()->next(2) ); 258 reg_def V3_K ( SOC, SOC, Op_VecA, 3, v3->as_VMReg()->next(3) ); 259 260 reg_def V4 ( SOC, SOC, Op_VecA, 4, v4->as_VMReg() ); 261 reg_def V4_H ( SOC, SOC, Op_VecA, 4, v4->as_VMReg()->next() ); 262 reg_def V4_J ( SOC, SOC, Op_VecA, 4, v4->as_VMReg()->next(2) ); 263 reg_def V4_K ( SOC, SOC, Op_VecA, 4, v4->as_VMReg()->next(3) ); 264 265 reg_def V5 ( SOC, SOC, Op_VecA, 5, v5->as_VMReg() ); 266 reg_def V5_H ( SOC, SOC, Op_VecA, 5, v5->as_VMReg()->next() ); 267 reg_def V5_J ( SOC, SOC, Op_VecA, 5, v5->as_VMReg()->next(2) ); 268 reg_def V5_K ( SOC, SOC, Op_VecA, 5, v5->as_VMReg()->next(3) ); 269 270 reg_def V6 ( SOC, SOC, Op_VecA, 6, v6->as_VMReg() ); 271 reg_def V6_H ( SOC, SOC, Op_VecA, 6, v6->as_VMReg()->next() ); 272 reg_def V6_J ( SOC, SOC, Op_VecA, 6, v6->as_VMReg()->next(2) ); 273 reg_def V6_K ( SOC, SOC, Op_VecA, 6, v6->as_VMReg()->next(3) ); 274 275 reg_def V7 ( SOC, SOC, Op_VecA, 7, v7->as_VMReg() ); 276 reg_def V7_H ( SOC, SOC, Op_VecA, 7, v7->as_VMReg()->next() ); 277 reg_def V7_J ( SOC, SOC, Op_VecA, 7, v7->as_VMReg()->next(2) ); 278 reg_def V7_K ( SOC, SOC, Op_VecA, 7, v7->as_VMReg()->next(3) ); 279 280 reg_def V8 ( SOC, SOC, Op_VecA, 8, v8->as_VMReg() ); 281 reg_def V8_H ( SOC, SOC, Op_VecA, 8, v8->as_VMReg()->next() ); 282 reg_def V8_J ( SOC, SOC, Op_VecA, 8, v8->as_VMReg()->next(2) ); 283 reg_def V8_K ( SOC, SOC, Op_VecA, 8, v8->as_VMReg()->next(3) ); 284 285 reg_def V9 ( SOC, SOC, Op_VecA, 9, v9->as_VMReg() ); 286 reg_def V9_H ( SOC, SOC, Op_VecA, 9, v9->as_VMReg()->next() ); 287 reg_def V9_J ( SOC, SOC, Op_VecA, 9, v9->as_VMReg()->next(2) ); 288 reg_def V9_K ( SOC, SOC, Op_VecA, 9, v9->as_VMReg()->next(3) ); 289 290 reg_def V10 ( SOC, SOC, Op_VecA, 10, v10->as_VMReg() ); 291 reg_def V10_H ( SOC, SOC, Op_VecA, 10, v10->as_VMReg()->next() ); 292 reg_def V10_J ( SOC, SOC, Op_VecA, 10, v10->as_VMReg()->next(2) ); 293 reg_def V10_K ( SOC, SOC, Op_VecA, 10, v10->as_VMReg()->next(3) ); 294 295 reg_def V11 ( SOC, SOC, Op_VecA, 11, v11->as_VMReg() ); 296 reg_def V11_H ( SOC, SOC, Op_VecA, 11, v11->as_VMReg()->next() ); 297 reg_def V11_J ( SOC, SOC, Op_VecA, 11, v11->as_VMReg()->next(2) ); 298 reg_def V11_K ( SOC, SOC, Op_VecA, 11, v11->as_VMReg()->next(3) ); 299 300 reg_def V12 ( SOC, SOC, Op_VecA, 12, v12->as_VMReg() ); 301 reg_def V12_H ( SOC, SOC, Op_VecA, 12, v12->as_VMReg()->next() ); 302 reg_def V12_J ( SOC, SOC, Op_VecA, 12, v12->as_VMReg()->next(2) ); 303 reg_def V12_K ( SOC, SOC, Op_VecA, 12, v12->as_VMReg()->next(3) ); 304 305 reg_def V13 ( SOC, SOC, Op_VecA, 13, v13->as_VMReg() ); 306 reg_def V13_H ( SOC, SOC, Op_VecA, 13, v13->as_VMReg()->next() ); 307 reg_def V13_J ( SOC, SOC, Op_VecA, 13, v13->as_VMReg()->next(2) ); 308 reg_def V13_K ( SOC, SOC, Op_VecA, 13, v13->as_VMReg()->next(3) ); 309 310 reg_def V14 ( SOC, SOC, Op_VecA, 14, v14->as_VMReg() ); 311 reg_def V14_H ( SOC, SOC, Op_VecA, 14, v14->as_VMReg()->next() ); 312 reg_def V14_J ( SOC, SOC, Op_VecA, 14, v14->as_VMReg()->next(2) ); 313 reg_def V14_K ( SOC, SOC, Op_VecA, 14, v14->as_VMReg()->next(3) ); 314 315 reg_def V15 ( SOC, SOC, Op_VecA, 15, v15->as_VMReg() ); 316 reg_def V15_H ( SOC, SOC, Op_VecA, 15, v15->as_VMReg()->next() ); 317 reg_def V15_J ( SOC, SOC, Op_VecA, 15, v15->as_VMReg()->next(2) ); 318 reg_def V15_K ( SOC, SOC, Op_VecA, 15, v15->as_VMReg()->next(3) ); 319 320 reg_def V16 ( SOC, SOC, Op_VecA, 16, v16->as_VMReg() ); 321 reg_def V16_H ( SOC, SOC, Op_VecA, 16, v16->as_VMReg()->next() ); 322 reg_def V16_J ( SOC, SOC, Op_VecA, 16, v16->as_VMReg()->next(2) ); 323 reg_def V16_K ( SOC, SOC, Op_VecA, 16, v16->as_VMReg()->next(3) ); 324 325 reg_def V17 ( SOC, SOC, Op_VecA, 17, v17->as_VMReg() ); 326 reg_def V17_H ( SOC, SOC, Op_VecA, 17, v17->as_VMReg()->next() ); 327 reg_def V17_J ( SOC, SOC, Op_VecA, 17, v17->as_VMReg()->next(2) ); 328 reg_def V17_K ( SOC, SOC, Op_VecA, 17, v17->as_VMReg()->next(3) ); 329 330 reg_def V18 ( SOC, SOC, Op_VecA, 18, v18->as_VMReg() ); 331 reg_def V18_H ( SOC, SOC, Op_VecA, 18, v18->as_VMReg()->next() ); 332 reg_def V18_J ( SOC, SOC, Op_VecA, 18, v18->as_VMReg()->next(2) ); 333 reg_def V18_K ( SOC, SOC, Op_VecA, 18, v18->as_VMReg()->next(3) ); 334 335 reg_def V19 ( SOC, SOC, Op_VecA, 19, v19->as_VMReg() ); 336 reg_def V19_H ( SOC, SOC, Op_VecA, 19, v19->as_VMReg()->next() ); 337 reg_def V19_J ( SOC, SOC, Op_VecA, 19, v19->as_VMReg()->next(2) ); 338 reg_def V19_K ( SOC, SOC, Op_VecA, 19, v19->as_VMReg()->next(3) ); 339 340 reg_def V20 ( SOC, SOC, Op_VecA, 20, v20->as_VMReg() ); 341 reg_def V20_H ( SOC, SOC, Op_VecA, 20, v20->as_VMReg()->next() ); 342 reg_def V20_J ( SOC, SOC, Op_VecA, 20, v20->as_VMReg()->next(2) ); 343 reg_def V20_K ( SOC, SOC, Op_VecA, 20, v20->as_VMReg()->next(3) ); 344 345 reg_def V21 ( SOC, SOC, Op_VecA, 21, v21->as_VMReg() ); 346 reg_def V21_H ( SOC, SOC, Op_VecA, 21, v21->as_VMReg()->next() ); 347 reg_def V21_J ( SOC, SOC, Op_VecA, 21, v21->as_VMReg()->next(2) ); 348 reg_def V21_K ( SOC, SOC, Op_VecA, 21, v21->as_VMReg()->next(3) ); 349 350 reg_def V22 ( SOC, SOC, Op_VecA, 22, v22->as_VMReg() ); 351 reg_def V22_H ( SOC, SOC, Op_VecA, 22, v22->as_VMReg()->next() ); 352 reg_def V22_J ( SOC, SOC, Op_VecA, 22, v22->as_VMReg()->next(2) ); 353 reg_def V22_K ( SOC, SOC, Op_VecA, 22, v22->as_VMReg()->next(3) ); 354 355 reg_def V23 ( SOC, SOC, Op_VecA, 23, v23->as_VMReg() ); 356 reg_def V23_H ( SOC, SOC, Op_VecA, 23, v23->as_VMReg()->next() ); 357 reg_def V23_J ( SOC, SOC, Op_VecA, 23, v23->as_VMReg()->next(2) ); 358 reg_def V23_K ( SOC, SOC, Op_VecA, 23, v23->as_VMReg()->next(3) ); 359 360 reg_def V24 ( SOC, SOC, Op_VecA, 24, v24->as_VMReg() ); 361 reg_def V24_H ( SOC, SOC, Op_VecA, 24, v24->as_VMReg()->next() ); 362 reg_def V24_J ( SOC, SOC, Op_VecA, 24, v24->as_VMReg()->next(2) ); 363 reg_def V24_K ( SOC, SOC, Op_VecA, 24, v24->as_VMReg()->next(3) ); 364 365 reg_def V25 ( SOC, SOC, Op_VecA, 25, v25->as_VMReg() ); 366 reg_def V25_H ( SOC, SOC, Op_VecA, 25, v25->as_VMReg()->next() ); 367 reg_def V25_J ( SOC, SOC, Op_VecA, 25, v25->as_VMReg()->next(2) ); 368 reg_def V25_K ( SOC, SOC, Op_VecA, 25, v25->as_VMReg()->next(3) ); 369 370 reg_def V26 ( SOC, SOC, Op_VecA, 26, v26->as_VMReg() ); 371 reg_def V26_H ( SOC, SOC, Op_VecA, 26, v26->as_VMReg()->next() ); 372 reg_def V26_J ( SOC, SOC, Op_VecA, 26, v26->as_VMReg()->next(2) ); 373 reg_def V26_K ( SOC, SOC, Op_VecA, 26, v26->as_VMReg()->next(3) ); 374 375 reg_def V27 ( SOC, SOC, Op_VecA, 27, v27->as_VMReg() ); 376 reg_def V27_H ( SOC, SOC, Op_VecA, 27, v27->as_VMReg()->next() ); 377 reg_def V27_J ( SOC, SOC, Op_VecA, 27, v27->as_VMReg()->next(2) ); 378 reg_def V27_K ( SOC, SOC, Op_VecA, 27, v27->as_VMReg()->next(3) ); 379 380 reg_def V28 ( SOC, SOC, Op_VecA, 28, v28->as_VMReg() ); 381 reg_def V28_H ( SOC, SOC, Op_VecA, 28, v28->as_VMReg()->next() ); 382 reg_def V28_J ( SOC, SOC, Op_VecA, 28, v28->as_VMReg()->next(2) ); 383 reg_def V28_K ( SOC, SOC, Op_VecA, 28, v28->as_VMReg()->next(3) ); 384 385 reg_def V29 ( SOC, SOC, Op_VecA, 29, v29->as_VMReg() ); 386 reg_def V29_H ( SOC, SOC, Op_VecA, 29, v29->as_VMReg()->next() ); 387 reg_def V29_J ( SOC, SOC, Op_VecA, 29, v29->as_VMReg()->next(2) ); 388 reg_def V29_K ( SOC, SOC, Op_VecA, 29, v29->as_VMReg()->next(3) ); 389 390 reg_def V30 ( SOC, SOC, Op_VecA, 30, v30->as_VMReg() ); 391 reg_def V30_H ( SOC, SOC, Op_VecA, 30, v30->as_VMReg()->next() ); 392 reg_def V30_J ( SOC, SOC, Op_VecA, 30, v30->as_VMReg()->next(2) ); 393 reg_def V30_K ( SOC, SOC, Op_VecA, 30, v30->as_VMReg()->next(3) ); 394 395 reg_def V31 ( SOC, SOC, Op_VecA, 31, v31->as_VMReg() ); 396 reg_def V31_H ( SOC, SOC, Op_VecA, 31, v31->as_VMReg()->next() ); 397 reg_def V31_J ( SOC, SOC, Op_VecA, 31, v31->as_VMReg()->next(2) ); 398 reg_def V31_K ( SOC, SOC, Op_VecA, 31, v31->as_VMReg()->next(3) ); 399 400 // ---------------------------- 401 // Special Registers 402 // ---------------------------- 403 404 // On riscv, the physical flag register is missing, so we use t1 instead, 405 // to bridge the RegFlag semantics in share/opto 406 407 reg_def RFLAGS (SOC, SOC, Op_RegFlags, 6, x6->as_VMReg() ); 408 409 // Specify priority of register selection within phases of register 410 // allocation. Highest priority is first. A useful heuristic is to 411 // give registers a low priority when they are required by machine 412 // instructions, like EAX and EDX on I486, and choose no-save registers 413 // before save-on-call, & save-on-call before save-on-entry. Registers 414 // which participate in fixed calling sequences should come last. 415 // Registers which are used as pairs must fall on an even boundary. 416 417 alloc_class chunk0( 418 // volatiles 419 R7, R7_H, 420 R28, R28_H, 421 R29, R29_H, 422 R30, R30_H, 423 R31, R31_H, 424 425 // arg registers 426 R10, R10_H, 427 R11, R11_H, 428 R12, R12_H, 429 R13, R13_H, 430 R14, R14_H, 431 R15, R15_H, 432 R16, R16_H, 433 R17, R17_H, 434 435 // non-volatiles 436 R9, R9_H, 437 R18, R18_H, 438 R19, R19_H, 439 R20, R20_H, 440 R21, R21_H, 441 R22, R22_H, 442 R24, R24_H, 443 R25, R25_H, 444 R26, R26_H, 445 446 // non-allocatable registers 447 R23, R23_H, // java thread 448 R27, R27_H, // heapbase 449 R4, R4_H, // thread 450 R8, R8_H, // fp 451 R0, R0_H, // zero 452 R1, R1_H, // ra 453 R2, R2_H, // sp 454 R3, R3_H, // gp 455 ); 456 457 alloc_class chunk1( 458 459 // no save 460 F0, F0_H, 461 F1, F1_H, 462 F2, F2_H, 463 F3, F3_H, 464 F4, F4_H, 465 F5, F5_H, 466 F6, F6_H, 467 F7, F7_H, 468 F28, F28_H, 469 F29, F29_H, 470 F30, F30_H, 471 F31, F31_H, 472 473 // arg registers 474 F10, F10_H, 475 F11, F11_H, 476 F12, F12_H, 477 F13, F13_H, 478 F14, F14_H, 479 F15, F15_H, 480 F16, F16_H, 481 F17, F17_H, 482 483 // non-volatiles 484 F8, F8_H, 485 F9, F9_H, 486 F18, F18_H, 487 F19, F19_H, 488 F20, F20_H, 489 F21, F21_H, 490 F22, F22_H, 491 F23, F23_H, 492 F24, F24_H, 493 F25, F25_H, 494 F26, F26_H, 495 F27, F27_H, 496 ); 497 498 alloc_class chunk2( 499 V0, V0_H, V0_J, V0_K, 500 V1, V1_H, V1_J, V1_K, 501 V2, V2_H, V2_J, V2_K, 502 V3, V3_H, V3_J, V3_K, 503 V4, V4_H, V4_J, V4_K, 504 V5, V5_H, V5_J, V5_K, 505 V6, V6_H, V6_J, V6_K, 506 V7, V7_H, V7_J, V7_K, 507 V8, V8_H, V8_J, V8_K, 508 V9, V9_H, V9_J, V9_K, 509 V10, V10_H, V10_J, V10_K, 510 V11, V11_H, V11_J, V11_K, 511 V12, V12_H, V12_J, V12_K, 512 V13, V13_H, V13_J, V13_K, 513 V14, V14_H, V14_J, V14_K, 514 V15, V15_H, V15_J, V15_K, 515 V16, V16_H, V16_J, V16_K, 516 V17, V17_H, V17_J, V17_K, 517 V18, V18_H, V18_J, V18_K, 518 V19, V19_H, V19_J, V19_K, 519 V20, V20_H, V20_J, V20_K, 520 V21, V21_H, V21_J, V21_K, 521 V22, V22_H, V22_J, V22_K, 522 V23, V23_H, V23_J, V23_K, 523 V24, V24_H, V24_J, V24_K, 524 V25, V25_H, V25_J, V25_K, 525 V26, V26_H, V26_J, V26_K, 526 V27, V27_H, V27_J, V27_K, 527 V28, V28_H, V28_J, V28_K, 528 V29, V29_H, V29_J, V29_K, 529 V30, V30_H, V30_J, V30_K, 530 V31, V31_H, V31_J, V31_K, 531 ); 532 533 alloc_class chunk3(RFLAGS); 534 535 //----------Architecture Description Register Classes-------------------------- 536 // Several register classes are automatically defined based upon information in 537 // this architecture description. 538 // 1) reg_class inline_cache_reg ( /* as def'd in frame section */ ) 539 // 2) reg_class stack_slots( /* one chunk of stack-based "registers" */ ) 540 // 541 542 // Class for all 32 bit general purpose registers 543 reg_class all_reg32( 544 R0, 545 R1, 546 R2, 547 R3, 548 R4, 549 R7, 550 R8, 551 R9, 552 R10, 553 R11, 554 R12, 555 R13, 556 R14, 557 R15, 558 R16, 559 R17, 560 R18, 561 R19, 562 R20, 563 R21, 564 R22, 565 R23, 566 R24, 567 R25, 568 R26, 569 R27, 570 R28, 571 R29, 572 R30, 573 R31 574 ); 575 576 // Class for any 32 bit integer registers (excluding zr) 577 reg_class any_reg32 %{ 578 return _ANY_REG32_mask; 579 %} 580 581 // Singleton class for R10 int register 582 reg_class int_r10_reg(R10); 583 584 // Singleton class for R12 int register 585 reg_class int_r12_reg(R12); 586 587 // Singleton class for R13 int register 588 reg_class int_r13_reg(R13); 589 590 // Singleton class for R14 int register 591 reg_class int_r14_reg(R14); 592 593 // Class for all long integer registers 594 reg_class all_reg( 595 R0, R0_H, 596 R1, R1_H, 597 R2, R2_H, 598 R3, R3_H, 599 R4, R4_H, 600 R7, R7_H, 601 R8, R8_H, 602 R9, R9_H, 603 R10, R10_H, 604 R11, R11_H, 605 R12, R12_H, 606 R13, R13_H, 607 R14, R14_H, 608 R15, R15_H, 609 R16, R16_H, 610 R17, R17_H, 611 R18, R18_H, 612 R19, R19_H, 613 R20, R20_H, 614 R21, R21_H, 615 R22, R22_H, 616 R23, R23_H, 617 R24, R24_H, 618 R25, R25_H, 619 R26, R26_H, 620 R27, R27_H, 621 R28, R28_H, 622 R29, R29_H, 623 R30, R30_H, 624 R31, R31_H 625 ); 626 627 // Class for all long integer registers (excluding zr) 628 reg_class any_reg %{ 629 return _ANY_REG_mask; 630 %} 631 632 // Class for non-allocatable 32 bit registers 633 reg_class non_allocatable_reg32( 634 R0, // zr 635 R1, // ra 636 R2, // sp 637 R3, // gp 638 R4, // tp 639 R23 // java thread 640 ); 641 642 // Class for non-allocatable 64 bit registers 643 reg_class non_allocatable_reg( 644 R0, R0_H, // zr 645 R1, R1_H, // ra 646 R2, R2_H, // sp 647 R3, R3_H, // gp 648 R4, R4_H, // tp 649 R23, R23_H // java thread 650 ); 651 652 // Class for all non-special integer registers 653 reg_class no_special_reg32 %{ 654 return _NO_SPECIAL_REG32_mask; 655 %} 656 657 // Class for all non-special long integer registers 658 reg_class no_special_reg %{ 659 return _NO_SPECIAL_REG_mask; 660 %} 661 662 reg_class ptr_reg %{ 663 return _PTR_REG_mask; 664 %} 665 666 // Class for all non_special pointer registers 667 reg_class no_special_ptr_reg %{ 668 return _NO_SPECIAL_PTR_REG_mask; 669 %} 670 671 // Class for all non_special pointer registers (excluding fp) 672 reg_class no_special_no_fp_ptr_reg %{ 673 return _NO_SPECIAL_NO_FP_PTR_REG_mask; 674 %} 675 676 // Class for 64 bit register r10 677 reg_class r10_reg( 678 R10, R10_H 679 ); 680 681 // Class for 64 bit register r11 682 reg_class r11_reg( 683 R11, R11_H 684 ); 685 686 // Class for 64 bit register r12 687 reg_class r12_reg( 688 R12, R12_H 689 ); 690 691 // Class for 64 bit register r13 692 reg_class r13_reg( 693 R13, R13_H 694 ); 695 696 // Class for 64 bit register r14 697 reg_class r14_reg( 698 R14, R14_H 699 ); 700 701 // Class for 64 bit register r15 702 reg_class r15_reg( 703 R15, R15_H 704 ); 705 706 // Class for 64 bit register r16 707 reg_class r16_reg( 708 R16, R16_H 709 ); 710 711 // Class for method register 712 reg_class method_reg( 713 R31, R31_H 714 ); 715 716 // Class for java thread register 717 reg_class java_thread_reg( 718 R23, R23_H 719 ); 720 721 reg_class r28_reg( 722 R28, R28_H 723 ); 724 725 reg_class r29_reg( 726 R29, R29_H 727 ); 728 729 reg_class r30_reg( 730 R30, R30_H 731 ); 732 733 reg_class r31_reg( 734 R31, R31_H 735 ); 736 737 // Class for zero registesr 738 reg_class zr_reg( 739 R0, R0_H 740 ); 741 742 // Class for thread register 743 reg_class thread_reg( 744 R4, R4_H 745 ); 746 747 // Class for frame pointer register 748 reg_class fp_reg( 749 R8, R8_H 750 ); 751 752 // Class for link register 753 reg_class ra_reg( 754 R1, R1_H 755 ); 756 757 // Class for long sp register 758 reg_class sp_reg( 759 R2, R2_H 760 ); 761 762 // Class for all float registers 763 reg_class float_reg( 764 F0, 765 F1, 766 F2, 767 F3, 768 F4, 769 F5, 770 F6, 771 F7, 772 F8, 773 F9, 774 F10, 775 F11, 776 F12, 777 F13, 778 F14, 779 F15, 780 F16, 781 F17, 782 F18, 783 F19, 784 F20, 785 F21, 786 F22, 787 F23, 788 F24, 789 F25, 790 F26, 791 F27, 792 F28, 793 F29, 794 F30, 795 F31 796 ); 797 798 // Double precision float registers have virtual `high halves' that 799 // are needed by the allocator. 800 // Class for all double registers 801 reg_class double_reg( 802 F0, F0_H, 803 F1, F1_H, 804 F2, F2_H, 805 F3, F3_H, 806 F4, F4_H, 807 F5, F5_H, 808 F6, F6_H, 809 F7, F7_H, 810 F8, F8_H, 811 F9, F9_H, 812 F10, F10_H, 813 F11, F11_H, 814 F12, F12_H, 815 F13, F13_H, 816 F14, F14_H, 817 F15, F15_H, 818 F16, F16_H, 819 F17, F17_H, 820 F18, F18_H, 821 F19, F19_H, 822 F20, F20_H, 823 F21, F21_H, 824 F22, F22_H, 825 F23, F23_H, 826 F24, F24_H, 827 F25, F25_H, 828 F26, F26_H, 829 F27, F27_H, 830 F28, F28_H, 831 F29, F29_H, 832 F30, F30_H, 833 F31, F31_H 834 ); 835 836 // Class for RVV vector registers 837 // Note: v0, v30 and v31 are used as mask registers. 838 reg_class vectora_reg( 839 V1, V1_H, V1_J, V1_K, 840 V2, V2_H, V2_J, V2_K, 841 V3, V3_H, V3_J, V3_K, 842 V4, V4_H, V4_J, V4_K, 843 V5, V5_H, V5_J, V5_K, 844 V6, V6_H, V6_J, V6_K, 845 V7, V7_H, V7_J, V7_K, 846 V8, V8_H, V8_J, V8_K, 847 V9, V9_H, V9_J, V9_K, 848 V10, V10_H, V10_J, V10_K, 849 V11, V11_H, V11_J, V11_K, 850 V12, V12_H, V12_J, V12_K, 851 V13, V13_H, V13_J, V13_K, 852 V14, V14_H, V14_J, V14_K, 853 V15, V15_H, V15_J, V15_K, 854 V16, V16_H, V16_J, V16_K, 855 V17, V17_H, V17_J, V17_K, 856 V18, V18_H, V18_J, V18_K, 857 V19, V19_H, V19_J, V19_K, 858 V20, V20_H, V20_J, V20_K, 859 V21, V21_H, V21_J, V21_K, 860 V22, V22_H, V22_J, V22_K, 861 V23, V23_H, V23_J, V23_K, 862 V24, V24_H, V24_J, V24_K, 863 V25, V25_H, V25_J, V25_K, 864 V26, V26_H, V26_J, V26_K, 865 V27, V27_H, V27_J, V27_K, 866 V28, V28_H, V28_J, V28_K, 867 V29, V29_H, V29_J, V29_K 868 ); 869 870 // Class for 64 bit register f0 871 reg_class f0_reg( 872 F0, F0_H 873 ); 874 875 // Class for 64 bit register f1 876 reg_class f1_reg( 877 F1, F1_H 878 ); 879 880 // Class for 64 bit register f2 881 reg_class f2_reg( 882 F2, F2_H 883 ); 884 885 // Class for 64 bit register f3 886 reg_class f3_reg( 887 F3, F3_H 888 ); 889 890 // class for vector register v1 891 reg_class v1_reg( 892 V1, V1_H, V1_J, V1_K 893 ); 894 895 // class for vector register v2 896 reg_class v2_reg( 897 V2, V2_H, V2_J, V2_K 898 ); 899 900 // class for vector register v3 901 reg_class v3_reg( 902 V3, V3_H, V3_J, V3_K 903 ); 904 905 // class for vector register v4 906 reg_class v4_reg( 907 V4, V4_H, V4_J, V4_K 908 ); 909 910 // class for vector register v5 911 reg_class v5_reg( 912 V5, V5_H, V5_J, V5_K 913 ); 914 915 // class for vector register v6 916 reg_class v6_reg( 917 V6, V6_H, V6_J, V6_K 918 ); 919 920 // class for vector register v7 921 reg_class v7_reg( 922 V7, V7_H, V7_J, V7_K 923 ); 924 925 // class for vector register v8 926 reg_class v8_reg( 927 V8, V8_H, V8_J, V8_K 928 ); 929 930 // class for vector register v9 931 reg_class v9_reg( 932 V9, V9_H, V9_J, V9_K 933 ); 934 935 // class for vector register v10 936 reg_class v10_reg( 937 V10, V10_H, V10_J, V10_K 938 ); 939 940 // class for vector register v11 941 reg_class v11_reg( 942 V11, V11_H, V11_J, V11_K 943 ); 944 945 // class for condition codes 946 reg_class reg_flags(RFLAGS); 947 948 // Class for RVV v0 mask register 949 // https://github.com/riscv/riscv-v-spec/blob/master/v-spec.adoc#53-vector-masking 950 // The mask value used to control execution of a masked vector 951 // instruction is always supplied by vector register v0. 952 reg_class vmask_reg_v0 ( 953 V0 954 ); 955 956 // Class for RVV mask registers 957 // We need two more vmask registers to do the vector mask logical ops, 958 // so define v30, v31 as mask register too. 959 reg_class vmask_reg ( 960 V0, 961 V30, 962 V31 963 ); 964 %} 965 966 //----------DEFINITION BLOCK--------------------------------------------------- 967 // Define name --> value mappings to inform the ADLC of an integer valued name 968 // Current support includes integer values in the range [0, 0x7FFFFFFF] 969 // Format: 970 // int_def <name> ( <int_value>, <expression>); 971 // Generated Code in ad_<arch>.hpp 972 // #define <name> (<expression>) 973 // // value == <int_value> 974 // Generated code in ad_<arch>.cpp adlc_verification() 975 // assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>"); 976 // 977 978 // we follow the ppc-aix port in using a simple cost model which ranks 979 // register operations as cheap, memory ops as more expensive and 980 // branches as most expensive. the first two have a low as well as a 981 // normal cost. huge cost appears to be a way of saying don't do 982 // something 983 984 definitions %{ 985 // The default cost (of a register move instruction). 986 int_def DEFAULT_COST ( 100, 100); 987 int_def ALU_COST ( 100, 1 * DEFAULT_COST); // unknown, const, arith, shift, slt, 988 // multi, auipc, nop, logical, move 989 int_def LOAD_COST ( 300, 3 * DEFAULT_COST); // load, fpload 990 int_def STORE_COST ( 100, 1 * DEFAULT_COST); // store, fpstore 991 int_def XFER_COST ( 300, 3 * DEFAULT_COST); // mfc, mtc, fcvt, fmove, fcmp 992 int_def FMVX_COST ( 100, 1 * DEFAULT_COST); // shuffles with no conversion 993 int_def BRANCH_COST ( 200, 2 * DEFAULT_COST); // branch, jmp, call 994 int_def IMUL_COST ( 1000, 10 * DEFAULT_COST); // imul 995 int_def IDIVSI_COST ( 3400, 34 * DEFAULT_COST); // idivsi 996 int_def IDIVDI_COST ( 6600, 66 * DEFAULT_COST); // idivdi 997 int_def FMUL_SINGLE_COST ( 500, 5 * DEFAULT_COST); // fmul, fmadd 998 int_def FMUL_DOUBLE_COST ( 700, 7 * DEFAULT_COST); // fmul, fmadd 999 int_def FDIV_COST ( 2000, 20 * DEFAULT_COST); // fdiv 1000 int_def FSQRT_COST ( 2500, 25 * DEFAULT_COST); // fsqrt 1001 int_def VOLATILE_REF_COST ( 1000, 10 * DEFAULT_COST); 1002 int_def CACHE_MISS_COST ( 2000, 20 * DEFAULT_COST); // typicall cache miss penalty 1003 %} 1004 1005 1006 1007 //----------SOURCE BLOCK------------------------------------------------------- 1008 // This is a block of C++ code which provides values, functions, and 1009 // definitions necessary in the rest of the architecture description 1010 1011 source_hpp %{ 1012 1013 #include "asm/macroAssembler.hpp" 1014 #include "gc/shared/barrierSetAssembler.hpp" 1015 #include "gc/shared/cardTable.hpp" 1016 #include "gc/shared/cardTableBarrierSet.hpp" 1017 #include "gc/shared/collectedHeap.hpp" 1018 #include "opto/addnode.hpp" 1019 #include "opto/convertnode.hpp" 1020 #include "runtime/objectMonitor.hpp" 1021 1022 extern RegMask _ANY_REG32_mask; 1023 extern RegMask _ANY_REG_mask; 1024 extern RegMask _PTR_REG_mask; 1025 extern RegMask _NO_SPECIAL_REG32_mask; 1026 extern RegMask _NO_SPECIAL_REG_mask; 1027 extern RegMask _NO_SPECIAL_PTR_REG_mask; 1028 extern RegMask _NO_SPECIAL_NO_FP_PTR_REG_mask; 1029 1030 class CallStubImpl { 1031 1032 //-------------------------------------------------------------- 1033 //---< Used for optimization in Compile::shorten_branches >--- 1034 //-------------------------------------------------------------- 1035 1036 public: 1037 // Size of call trampoline stub. 1038 static uint size_call_trampoline() { 1039 return 0; // no call trampolines on this platform 1040 } 1041 1042 // number of relocations needed by a call trampoline stub 1043 static uint reloc_call_trampoline() { 1044 return 0; // no call trampolines on this platform 1045 } 1046 }; 1047 1048 class HandlerImpl { 1049 1050 public: 1051 1052 static int emit_exception_handler(C2_MacroAssembler *masm); 1053 static int emit_deopt_handler(C2_MacroAssembler* masm); 1054 1055 static uint size_exception_handler() { 1056 return MacroAssembler::far_branch_size(); 1057 } 1058 1059 static uint size_deopt_handler() { 1060 // count auipc + far branch 1061 return NativeInstruction::instruction_size + MacroAssembler::far_branch_size(); 1062 } 1063 }; 1064 1065 class Node::PD { 1066 public: 1067 enum NodeFlags { 1068 _last_flag = Node::_last_flag 1069 }; 1070 }; 1071 1072 bool is_CAS(int opcode, bool maybe_volatile); 1073 1074 // predicate controlling translation of CompareAndSwapX 1075 bool needs_acquiring_load_reserved(const Node *load); 1076 1077 // predicate controlling addressing modes 1078 bool size_fits_all_mem_uses(AddPNode* addp, int shift); 1079 %} 1080 1081 source %{ 1082 1083 // Derived RegMask with conditionally allocatable registers 1084 1085 RegMask _ANY_REG32_mask; 1086 RegMask _ANY_REG_mask; 1087 RegMask _PTR_REG_mask; 1088 RegMask _NO_SPECIAL_REG32_mask; 1089 RegMask _NO_SPECIAL_REG_mask; 1090 RegMask _NO_SPECIAL_PTR_REG_mask; 1091 RegMask _NO_SPECIAL_NO_FP_PTR_REG_mask; 1092 1093 void reg_mask_init() { 1094 1095 _ANY_REG32_mask = _ALL_REG32_mask; 1096 _ANY_REG32_mask.Remove(OptoReg::as_OptoReg(x0->as_VMReg())); 1097 1098 _ANY_REG_mask = _ALL_REG_mask; 1099 _ANY_REG_mask.SUBTRACT(_ZR_REG_mask); 1100 1101 _PTR_REG_mask = _ALL_REG_mask; 1102 _PTR_REG_mask.SUBTRACT(_ZR_REG_mask); 1103 1104 _NO_SPECIAL_REG32_mask = _ALL_REG32_mask; 1105 _NO_SPECIAL_REG32_mask.SUBTRACT(_NON_ALLOCATABLE_REG32_mask); 1106 1107 _NO_SPECIAL_REG_mask = _ALL_REG_mask; 1108 _NO_SPECIAL_REG_mask.SUBTRACT(_NON_ALLOCATABLE_REG_mask); 1109 1110 _NO_SPECIAL_PTR_REG_mask = _ALL_REG_mask; 1111 _NO_SPECIAL_PTR_REG_mask.SUBTRACT(_NON_ALLOCATABLE_REG_mask); 1112 1113 // x27 is not allocatable when compressed oops is on 1114 if (UseCompressedOops) { 1115 _NO_SPECIAL_REG32_mask.Remove(OptoReg::as_OptoReg(x27->as_VMReg())); 1116 _NO_SPECIAL_REG_mask.Remove(OptoReg::as_OptoReg(x27->as_VMReg())); 1117 _NO_SPECIAL_PTR_REG_mask.Remove(OptoReg::as_OptoReg(x27->as_VMReg())); 1118 } 1119 1120 // x8 is not allocatable when PreserveFramePointer is on 1121 if (PreserveFramePointer) { 1122 _NO_SPECIAL_REG32_mask.Remove(OptoReg::as_OptoReg(x8->as_VMReg())); 1123 _NO_SPECIAL_REG_mask.Remove(OptoReg::as_OptoReg(x8->as_VMReg())); 1124 _NO_SPECIAL_PTR_REG_mask.Remove(OptoReg::as_OptoReg(x8->as_VMReg())); 1125 } 1126 1127 _NO_SPECIAL_NO_FP_PTR_REG_mask = _NO_SPECIAL_PTR_REG_mask; 1128 _NO_SPECIAL_NO_FP_PTR_REG_mask.Remove(OptoReg::as_OptoReg(x8->as_VMReg())); 1129 } 1130 1131 void PhaseOutput::pd_perform_mach_node_analysis() { 1132 } 1133 1134 int MachNode::pd_alignment_required() const { 1135 return 1; 1136 } 1137 1138 int MachNode::compute_padding(int current_offset) const { 1139 return 0; 1140 } 1141 1142 // is_CAS(int opcode, bool maybe_volatile) 1143 // 1144 // return true if opcode is one of the possible CompareAndSwapX 1145 // values otherwise false. 1146 bool is_CAS(int opcode, bool maybe_volatile) 1147 { 1148 switch (opcode) { 1149 // We handle these 1150 case Op_CompareAndSwapI: 1151 case Op_CompareAndSwapL: 1152 case Op_CompareAndSwapP: 1153 case Op_CompareAndSwapN: 1154 case Op_ShenandoahCompareAndSwapP: 1155 case Op_ShenandoahCompareAndSwapN: 1156 case Op_CompareAndSwapB: 1157 case Op_CompareAndSwapS: 1158 case Op_GetAndSetI: 1159 case Op_GetAndSetL: 1160 case Op_GetAndSetP: 1161 case Op_GetAndSetN: 1162 case Op_GetAndAddI: 1163 case Op_GetAndAddL: 1164 return true; 1165 case Op_CompareAndExchangeI: 1166 case Op_CompareAndExchangeN: 1167 case Op_CompareAndExchangeB: 1168 case Op_CompareAndExchangeS: 1169 case Op_CompareAndExchangeL: 1170 case Op_CompareAndExchangeP: 1171 case Op_WeakCompareAndSwapB: 1172 case Op_WeakCompareAndSwapS: 1173 case Op_WeakCompareAndSwapI: 1174 case Op_WeakCompareAndSwapL: 1175 case Op_WeakCompareAndSwapP: 1176 case Op_WeakCompareAndSwapN: 1177 case Op_ShenandoahWeakCompareAndSwapP: 1178 case Op_ShenandoahWeakCompareAndSwapN: 1179 case Op_ShenandoahCompareAndExchangeP: 1180 case Op_ShenandoahCompareAndExchangeN: 1181 return maybe_volatile; 1182 default: 1183 return false; 1184 } 1185 } 1186 1187 // predicate controlling translation of CAS 1188 // 1189 // returns true if CAS needs to use an acquiring load otherwise false 1190 bool needs_acquiring_load_reserved(const Node *n) 1191 { 1192 assert(n != nullptr && is_CAS(n->Opcode(), true), "expecting a compare and swap"); 1193 1194 LoadStoreNode* ldst = n->as_LoadStore(); 1195 if (n != nullptr && is_CAS(n->Opcode(), false)) { 1196 assert(ldst != nullptr && ldst->trailing_membar() != nullptr, "expected trailing membar"); 1197 } else { 1198 return ldst != nullptr && ldst->trailing_membar() != nullptr; 1199 } 1200 // so we can just return true here 1201 return true; 1202 } 1203 #define __ masm-> 1204 1205 // advance declarations for helper functions to convert register 1206 // indices to register objects 1207 1208 // the ad file has to provide implementations of certain methods 1209 // expected by the generic code 1210 // 1211 // REQUIRED FUNCTIONALITY 1212 1213 //============================================================================= 1214 1215 // !!!!! Special hack to get all types of calls to specify the byte offset 1216 // from the start of the call to the point where the return address 1217 // will point. 1218 1219 int MachCallStaticJavaNode::ret_addr_offset() 1220 { 1221 return 3 * NativeInstruction::instruction_size; // auipc + ld + jalr 1222 } 1223 1224 int MachCallDynamicJavaNode::ret_addr_offset() 1225 { 1226 return NativeMovConstReg::movptr2_instruction_size + (3 * NativeInstruction::instruction_size); // movptr2, auipc + ld + jal 1227 } 1228 1229 int MachCallRuntimeNode::ret_addr_offset() { 1230 // For address inside the code cache the call will be: 1231 // auipc + jalr 1232 // For real runtime callouts it will be 8 instructions 1233 // see riscv_enc_java_to_runtime 1234 // la(t0, retaddr) -> auipc + addi 1235 // sd(t0, Address(xthread, JavaThread::last_Java_pc_offset())) -> sd 1236 // movptr(t1, addr, offset, t0) -> lui + lui + slli + add 1237 // jalr(t1, offset) -> jalr 1238 if (CodeCache::contains(_entry_point)) { 1239 return 2 * NativeInstruction::instruction_size; 1240 } else { 1241 return 8 * NativeInstruction::instruction_size; 1242 } 1243 } 1244 1245 // 1246 // Compute padding required for nodes which need alignment 1247 // 1248 1249 // With RVC a call instruction may get 2-byte aligned. 1250 // The address of the call instruction needs to be 4-byte aligned to 1251 // ensure that it does not span a cache line so that it can be patched. 1252 int CallStaticJavaDirectNode::compute_padding(int current_offset) const 1253 { 1254 // to make sure the address of jal 4-byte aligned. 1255 return align_up(current_offset, alignment_required()) - current_offset; 1256 } 1257 1258 // With RVC a call instruction may get 2-byte aligned. 1259 // The address of the call instruction needs to be 4-byte aligned to 1260 // ensure that it does not span a cache line so that it can be patched. 1261 int CallDynamicJavaDirectNode::compute_padding(int current_offset) const 1262 { 1263 // skip the movptr2 in MacroAssembler::ic_call(): 1264 // lui, lui, slli, add, addi 1265 // Though movptr2() has already 4-byte aligned with or without RVC, 1266 // We need to prevent from further changes by explicitly calculating the size. 1267 current_offset += NativeMovConstReg::movptr2_instruction_size; 1268 // to make sure the address of jal 4-byte aligned. 1269 return align_up(current_offset, alignment_required()) - current_offset; 1270 } 1271 1272 //============================================================================= 1273 1274 #ifndef PRODUCT 1275 void MachBreakpointNode::format(PhaseRegAlloc *ra_, outputStream *st) const { 1276 assert_cond(st != nullptr); 1277 st->print("BREAKPOINT"); 1278 } 1279 #endif 1280 1281 void MachBreakpointNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const { 1282 __ ebreak(); 1283 } 1284 1285 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const { 1286 return MachNode::size(ra_); 1287 } 1288 1289 //============================================================================= 1290 1291 #ifndef PRODUCT 1292 void MachNopNode::format(PhaseRegAlloc*, outputStream* st) const { 1293 st->print("nop \t# %d bytes pad for loops and calls", _count); 1294 } 1295 #endif 1296 1297 void MachNopNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc*) const { 1298 Assembler::CompressibleRegion cr(masm); // nops shall be 2-byte under RVC for alignment purposes. 1299 for (int i = 0; i < _count; i++) { 1300 __ nop(); 1301 } 1302 } 1303 1304 uint MachNopNode::size(PhaseRegAlloc*) const { 1305 return _count * (UseRVC ? NativeInstruction::compressed_instruction_size : NativeInstruction::instruction_size); 1306 } 1307 1308 //============================================================================= 1309 const RegMask& MachConstantBaseNode::_out_RegMask = RegMask::Empty; 1310 1311 int ConstantTable::calculate_table_base_offset() const { 1312 return 0; // absolute addressing, no offset 1313 } 1314 1315 bool MachConstantBaseNode::requires_postalloc_expand() const { return false; } 1316 void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) { 1317 ShouldNotReachHere(); 1318 } 1319 1320 void MachConstantBaseNode::emit(C2_MacroAssembler* masm, PhaseRegAlloc* ra_) const { 1321 // Empty encoding 1322 } 1323 1324 uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const { 1325 return 0; 1326 } 1327 1328 #ifndef PRODUCT 1329 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const { 1330 assert_cond(st != nullptr); 1331 st->print("-- \t// MachConstantBaseNode (empty encoding)"); 1332 } 1333 #endif 1334 1335 #ifndef PRODUCT 1336 void MachPrologNode::format(PhaseRegAlloc *ra_, outputStream *st) const { 1337 assert_cond(st != nullptr && ra_ != nullptr); 1338 Compile* C = ra_->C; 1339 1340 int framesize = C->output()->frame_slots() << LogBytesPerInt; 1341 1342 if (C->output()->need_stack_bang(framesize)) { 1343 st->print("# stack bang size=%d\n\t", framesize); 1344 } 1345 1346 st->print("sd fp, [sp, #%d]\n\t", - 2 * wordSize); 1347 st->print("sd ra, [sp, #%d]\n\t", - wordSize); 1348 if (PreserveFramePointer) { st->print("sub fp, sp, #%d\n\t", 2 * wordSize); } 1349 st->print("sub sp, sp, #%d\n\t", framesize); 1350 1351 if (C->stub_function() == nullptr && BarrierSet::barrier_set()->barrier_set_nmethod() != nullptr) { 1352 st->print("ld t0, [guard]\n\t"); 1353 st->print("membar LoadLoad\n\t"); 1354 st->print("ld t1, [xthread, #thread_disarmed_guard_value_offset]\n\t"); 1355 st->print("beq t0, t1, skip\n\t"); 1356 st->print("jalr #nmethod_entry_barrier_stub\n\t"); 1357 st->print("j skip\n\t"); 1358 st->print("guard: int\n\t"); 1359 st->print("skip:\n\t"); 1360 } 1361 } 1362 #endif 1363 1364 void MachPrologNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const { 1365 assert_cond(ra_ != nullptr); 1366 Compile* C = ra_->C; 1367 1368 // n.b. frame size includes space for return pc and fp 1369 const int framesize = C->output()->frame_size_in_bytes(); 1370 1371 // insert a nop at the start of the prolog so we can patch in a 1372 // branch if we need to invalidate the method later 1373 { 1374 Assembler::IncompressibleRegion ir(masm); // keep the nop as 4 bytes for patching. 1375 MacroAssembler::assert_alignment(__ pc()); 1376 __ nop(); // 4 bytes 1377 } 1378 1379 assert_cond(C != nullptr); 1380 1381 if (C->clinit_barrier_on_entry()) { 1382 assert(!C->method()->holder()->is_not_initialized(), "initialization should have been started"); 1383 1384 Label L_skip_barrier; 1385 1386 __ mov_metadata(t1, C->method()->holder()->constant_encoding()); 1387 __ clinit_barrier(t1, t0, &L_skip_barrier); 1388 __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 1389 __ bind(L_skip_barrier); 1390 } 1391 1392 int bangsize = C->output()->bang_size_in_bytes(); 1393 if (C->output()->need_stack_bang(bangsize)) { 1394 __ generate_stack_overflow_check(bangsize); 1395 } 1396 1397 __ build_frame(framesize); 1398 1399 if (C->stub_function() == nullptr) { 1400 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 1401 if (BarrierSet::barrier_set()->barrier_set_nmethod() != nullptr) { 1402 // Dummy labels for just measuring the code size 1403 Label dummy_slow_path; 1404 Label dummy_continuation; 1405 Label dummy_guard; 1406 Label* slow_path = &dummy_slow_path; 1407 Label* continuation = &dummy_continuation; 1408 Label* guard = &dummy_guard; 1409 if (!Compile::current()->output()->in_scratch_emit_size()) { 1410 // Use real labels from actual stub when not emitting code for purpose of measuring its size 1411 C2EntryBarrierStub* stub = new (Compile::current()->comp_arena()) C2EntryBarrierStub(); 1412 Compile::current()->output()->add_stub(stub); 1413 slow_path = &stub->entry(); 1414 continuation = &stub->continuation(); 1415 guard = &stub->guard(); 1416 } 1417 // In the C2 code, we move the non-hot part of nmethod entry barriers out-of-line to a stub. 1418 bs->nmethod_entry_barrier(masm, slow_path, continuation, guard); 1419 } 1420 } 1421 1422 if (VerifyStackAtCalls) { 1423 Unimplemented(); 1424 } 1425 1426 C->output()->set_frame_complete(__ offset()); 1427 1428 if (C->has_mach_constant_base_node()) { 1429 // NOTE: We set the table base offset here because users might be 1430 // emitted before MachConstantBaseNode. 1431 ConstantTable& constant_table = C->output()->constant_table(); 1432 constant_table.set_table_base_offset(constant_table.calculate_table_base_offset()); 1433 } 1434 } 1435 1436 uint MachPrologNode::size(PhaseRegAlloc* ra_) const 1437 { 1438 assert_cond(ra_ != nullptr); 1439 return MachNode::size(ra_); // too many variables; just compute it 1440 // the hard way 1441 } 1442 1443 int MachPrologNode::reloc() const 1444 { 1445 return 0; 1446 } 1447 1448 //============================================================================= 1449 1450 #ifndef PRODUCT 1451 void MachEpilogNode::format(PhaseRegAlloc *ra_, outputStream *st) const { 1452 assert_cond(st != nullptr && ra_ != nullptr); 1453 Compile* C = ra_->C; 1454 assert_cond(C != nullptr); 1455 int framesize = C->output()->frame_size_in_bytes(); 1456 1457 st->print("# pop frame %d\n\t", framesize); 1458 1459 if (framesize == 0) { 1460 st->print("ld ra, [sp,#%d]\n\t", (2 * wordSize)); 1461 st->print("ld fp, [sp,#%d]\n\t", (3 * wordSize)); 1462 st->print("add sp, sp, #%d\n\t", (2 * wordSize)); 1463 } else { 1464 st->print("add sp, sp, #%d\n\t", framesize); 1465 st->print("ld ra, [sp,#%d]\n\t", - 2 * wordSize); 1466 st->print("ld fp, [sp,#%d]\n\t", - wordSize); 1467 } 1468 1469 if (do_polling() && C->is_method_compilation()) { 1470 st->print("# test polling word\n\t"); 1471 st->print("ld t0, [xthread,#%d]\n\t", in_bytes(JavaThread::polling_word_offset())); 1472 st->print("bgtu sp, t0, #slow_path"); 1473 } 1474 } 1475 #endif 1476 1477 void MachEpilogNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const { 1478 assert_cond(ra_ != nullptr); 1479 Compile* C = ra_->C; 1480 assert_cond(C != nullptr); 1481 int framesize = C->output()->frame_size_in_bytes(); 1482 1483 __ remove_frame(framesize); 1484 1485 if (StackReservedPages > 0 && C->has_reserved_stack_access()) { 1486 __ reserved_stack_check(); 1487 } 1488 1489 if (do_polling() && C->is_method_compilation()) { 1490 Label dummy_label; 1491 Label* code_stub = &dummy_label; 1492 if (!C->output()->in_scratch_emit_size()) { 1493 C2SafepointPollStub* stub = new (C->comp_arena()) C2SafepointPollStub(__ offset()); 1494 C->output()->add_stub(stub); 1495 code_stub = &stub->entry(); 1496 } 1497 __ relocate(relocInfo::poll_return_type); 1498 __ safepoint_poll(*code_stub, true /* at_return */, false /* acquire */, true /* in_nmethod */); 1499 } 1500 } 1501 1502 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const { 1503 assert_cond(ra_ != nullptr); 1504 // Variable size. Determine dynamically. 1505 return MachNode::size(ra_); 1506 } 1507 1508 int MachEpilogNode::reloc() const { 1509 // Return number of relocatable values contained in this instruction. 1510 return 1; // 1 for polling page. 1511 } 1512 const Pipeline * MachEpilogNode::pipeline() const { 1513 return MachNode::pipeline_class(); 1514 } 1515 1516 //============================================================================= 1517 1518 // Figure out which register class each belongs in: rc_int, rc_float or 1519 // rc_stack. 1520 enum RC { rc_bad, rc_int, rc_float, rc_vector, rc_stack }; 1521 1522 static enum RC rc_class(OptoReg::Name reg) { 1523 1524 if (reg == OptoReg::Bad) { 1525 return rc_bad; 1526 } 1527 1528 // we have 30 int registers * 2 halves 1529 // (t0 and t1 are omitted) 1530 int slots_of_int_registers = Register::max_slots_per_register * (Register::number_of_registers - 2); 1531 if (reg < slots_of_int_registers) { 1532 return rc_int; 1533 } 1534 1535 // we have 32 float register * 2 halves 1536 int slots_of_float_registers = FloatRegister::max_slots_per_register * FloatRegister::number_of_registers; 1537 if (reg < slots_of_int_registers + slots_of_float_registers) { 1538 return rc_float; 1539 } 1540 1541 // we have 32 vector register * 4 halves 1542 int slots_of_vector_registers = VectorRegister::max_slots_per_register * VectorRegister::number_of_registers; 1543 if (reg < slots_of_int_registers + slots_of_float_registers + slots_of_vector_registers) { 1544 return rc_vector; 1545 } 1546 1547 // Between vector regs & stack is the flags regs. 1548 assert(OptoReg::is_stack(reg), "blow up if spilling flags"); 1549 1550 return rc_stack; 1551 } 1552 1553 uint MachSpillCopyNode::implementation(C2_MacroAssembler *masm, PhaseRegAlloc *ra_, bool do_size, outputStream *st) const { 1554 assert_cond(ra_ != nullptr); 1555 Compile* C = ra_->C; 1556 1557 // Get registers to move. 1558 OptoReg::Name src_hi = ra_->get_reg_second(in(1)); 1559 OptoReg::Name src_lo = ra_->get_reg_first(in(1)); 1560 OptoReg::Name dst_hi = ra_->get_reg_second(this); 1561 OptoReg::Name dst_lo = ra_->get_reg_first(this); 1562 1563 enum RC src_hi_rc = rc_class(src_hi); 1564 enum RC src_lo_rc = rc_class(src_lo); 1565 enum RC dst_hi_rc = rc_class(dst_hi); 1566 enum RC dst_lo_rc = rc_class(dst_lo); 1567 1568 assert(src_lo != OptoReg::Bad && dst_lo != OptoReg::Bad, "must move at least 1 register"); 1569 1570 if (src_hi != OptoReg::Bad && !bottom_type()->isa_vectmask()) { 1571 assert((src_lo & 1) == 0 && src_lo + 1 == src_hi && 1572 (dst_lo & 1) == 0 && dst_lo + 1 == dst_hi, 1573 "expected aligned-adjacent pairs"); 1574 } 1575 1576 if (src_lo == dst_lo && src_hi == dst_hi) { 1577 return 0; // Self copy, no move. 1578 } 1579 1580 bool is64 = (src_lo & 1) == 0 && src_lo + 1 == src_hi && 1581 (dst_lo & 1) == 0 && dst_lo + 1 == dst_hi; 1582 int src_offset = ra_->reg2offset(src_lo); 1583 int dst_offset = ra_->reg2offset(dst_lo); 1584 1585 if (bottom_type()->isa_vect() != nullptr) { 1586 uint ireg = ideal_reg(); 1587 if (ireg == Op_VecA && masm) { 1588 int vector_reg_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 1589 if (src_lo_rc == rc_stack && dst_lo_rc == rc_stack) { 1590 // stack to stack 1591 __ spill_copy_vector_stack_to_stack(src_offset, dst_offset, 1592 vector_reg_size_in_bytes); 1593 } else if (src_lo_rc == rc_vector && dst_lo_rc == rc_stack) { 1594 // vpr to stack 1595 __ spill(as_VectorRegister(Matcher::_regEncode[src_lo]), ra_->reg2offset(dst_lo)); 1596 } else if (src_lo_rc == rc_stack && dst_lo_rc == rc_vector) { 1597 // stack to vpr 1598 __ unspill(as_VectorRegister(Matcher::_regEncode[dst_lo]), ra_->reg2offset(src_lo)); 1599 } else if (src_lo_rc == rc_vector && dst_lo_rc == rc_vector) { 1600 // vpr to vpr 1601 __ vmv1r_v(as_VectorRegister(Matcher::_regEncode[dst_lo]), as_VectorRegister(Matcher::_regEncode[src_lo])); 1602 } else { 1603 ShouldNotReachHere(); 1604 } 1605 } else if (bottom_type()->isa_vectmask() && masm) { 1606 int vmask_size_in_bytes = Matcher::scalable_predicate_reg_slots() * 32 / 8; 1607 if (src_lo_rc == rc_stack && dst_lo_rc == rc_stack) { 1608 // stack to stack 1609 __ spill_copy_vmask_stack_to_stack(src_offset, dst_offset, 1610 vmask_size_in_bytes); 1611 } else if (src_lo_rc == rc_vector && dst_lo_rc == rc_stack) { 1612 // vmask to stack 1613 __ spill_vmask(as_VectorRegister(Matcher::_regEncode[src_lo]), ra_->reg2offset(dst_lo)); 1614 } else if (src_lo_rc == rc_stack && dst_lo_rc == rc_vector) { 1615 // stack to vmask 1616 __ unspill_vmask(as_VectorRegister(Matcher::_regEncode[dst_lo]), ra_->reg2offset(src_lo)); 1617 } else if (src_lo_rc == rc_vector && dst_lo_rc == rc_vector) { 1618 // vmask to vmask 1619 __ vmv1r_v(as_VectorRegister(Matcher::_regEncode[dst_lo]), as_VectorRegister(Matcher::_regEncode[src_lo])); 1620 } else { 1621 ShouldNotReachHere(); 1622 } 1623 } 1624 } else if (masm != nullptr) { 1625 switch (src_lo_rc) { 1626 case rc_int: 1627 if (dst_lo_rc == rc_int) { // gpr --> gpr copy 1628 if (!is64 && this->ideal_reg() != Op_RegI) { // zero extended for narrow oop or klass 1629 __ zero_extend(as_Register(Matcher::_regEncode[dst_lo]), as_Register(Matcher::_regEncode[src_lo]), 32); 1630 } else { 1631 __ mv(as_Register(Matcher::_regEncode[dst_lo]), as_Register(Matcher::_regEncode[src_lo])); 1632 } 1633 } else if (dst_lo_rc == rc_float) { // gpr --> fpr copy 1634 if (is64) { 1635 __ fmv_d_x(as_FloatRegister(Matcher::_regEncode[dst_lo]), 1636 as_Register(Matcher::_regEncode[src_lo])); 1637 } else { 1638 __ fmv_w_x(as_FloatRegister(Matcher::_regEncode[dst_lo]), 1639 as_Register(Matcher::_regEncode[src_lo])); 1640 } 1641 } else { // gpr --> stack spill 1642 assert(dst_lo_rc == rc_stack, "spill to bad register class"); 1643 __ spill(as_Register(Matcher::_regEncode[src_lo]), is64, dst_offset); 1644 } 1645 break; 1646 case rc_float: 1647 if (dst_lo_rc == rc_int) { // fpr --> gpr copy 1648 if (is64) { 1649 __ fmv_x_d(as_Register(Matcher::_regEncode[dst_lo]), 1650 as_FloatRegister(Matcher::_regEncode[src_lo])); 1651 } else { 1652 __ fmv_x_w(as_Register(Matcher::_regEncode[dst_lo]), 1653 as_FloatRegister(Matcher::_regEncode[src_lo])); 1654 } 1655 } else if (dst_lo_rc == rc_float) { // fpr --> fpr copy 1656 if (is64) { 1657 __ fmv_d(as_FloatRegister(Matcher::_regEncode[dst_lo]), 1658 as_FloatRegister(Matcher::_regEncode[src_lo])); 1659 } else { 1660 __ fmv_s(as_FloatRegister(Matcher::_regEncode[dst_lo]), 1661 as_FloatRegister(Matcher::_regEncode[src_lo])); 1662 } 1663 } else { // fpr --> stack spill 1664 assert(dst_lo_rc == rc_stack, "spill to bad register class"); 1665 __ spill(as_FloatRegister(Matcher::_regEncode[src_lo]), 1666 is64, dst_offset); 1667 } 1668 break; 1669 case rc_stack: 1670 if (dst_lo_rc == rc_int) { // stack --> gpr load 1671 if (this->ideal_reg() == Op_RegI) { 1672 __ unspill(as_Register(Matcher::_regEncode[dst_lo]), is64, src_offset); 1673 } else { // // zero extended for narrow oop or klass 1674 __ unspillu(as_Register(Matcher::_regEncode[dst_lo]), is64, src_offset); 1675 } 1676 } else if (dst_lo_rc == rc_float) { // stack --> fpr load 1677 __ unspill(as_FloatRegister(Matcher::_regEncode[dst_lo]), 1678 is64, src_offset); 1679 } else { // stack --> stack copy 1680 assert(dst_lo_rc == rc_stack, "spill to bad register class"); 1681 if (this->ideal_reg() == Op_RegI) { 1682 __ unspill(t0, is64, src_offset); 1683 } else { // zero extended for narrow oop or klass 1684 __ unspillu(t0, is64, src_offset); 1685 } 1686 __ spill(t0, is64, dst_offset); 1687 } 1688 break; 1689 default: 1690 ShouldNotReachHere(); 1691 } 1692 } 1693 1694 if (st != nullptr) { 1695 st->print("spill "); 1696 if (src_lo_rc == rc_stack) { 1697 st->print("[sp, #%d] -> ", src_offset); 1698 } else { 1699 st->print("%s -> ", Matcher::regName[src_lo]); 1700 } 1701 if (dst_lo_rc == rc_stack) { 1702 st->print("[sp, #%d]", dst_offset); 1703 } else { 1704 st->print("%s", Matcher::regName[dst_lo]); 1705 } 1706 if (bottom_type()->isa_vect() && !bottom_type()->isa_vectmask()) { 1707 int vsize = 0; 1708 if (ideal_reg() == Op_VecA) { 1709 vsize = Matcher::scalable_vector_reg_size(T_BYTE) * 8; 1710 } else { 1711 ShouldNotReachHere(); 1712 } 1713 st->print("\t# vector spill size = %d", vsize); 1714 } else if (ideal_reg() == Op_RegVectMask) { 1715 assert(Matcher::supports_scalable_vector(), "bad register type for spill"); 1716 int vsize = Matcher::scalable_predicate_reg_slots() * 32; 1717 st->print("\t# vmask spill size = %d", vsize); 1718 } else { 1719 st->print("\t# spill size = %d", is64 ? 64 : 32); 1720 } 1721 } 1722 1723 return 0; 1724 } 1725 1726 #ifndef PRODUCT 1727 void MachSpillCopyNode::format(PhaseRegAlloc *ra_, outputStream *st) const { 1728 if (ra_ == nullptr) { 1729 st->print("N%d = SpillCopy(N%d)", _idx, in(1)->_idx); 1730 } else { 1731 implementation(nullptr, ra_, false, st); 1732 } 1733 } 1734 #endif 1735 1736 void MachSpillCopyNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const { 1737 implementation(masm, ra_, false, nullptr); 1738 } 1739 1740 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const { 1741 return MachNode::size(ra_); 1742 } 1743 1744 //============================================================================= 1745 1746 #ifndef PRODUCT 1747 void BoxLockNode::format(PhaseRegAlloc *ra_, outputStream *st) const { 1748 assert_cond(ra_ != nullptr && st != nullptr); 1749 int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()); 1750 int reg = ra_->get_reg_first(this); 1751 st->print("add %s, sp, #%d\t# box lock", 1752 Matcher::regName[reg], offset); 1753 } 1754 #endif 1755 1756 void BoxLockNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const { 1757 Assembler::IncompressibleRegion ir(masm); // Fixed length: see BoxLockNode::size() 1758 1759 assert_cond(ra_ != nullptr); 1760 int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()); 1761 int reg = ra_->get_encode(this); 1762 1763 if (Assembler::is_simm12(offset)) { 1764 __ addi(as_Register(reg), sp, offset); 1765 } else { 1766 __ li32(t0, offset); 1767 __ add(as_Register(reg), sp, t0); 1768 } 1769 } 1770 1771 uint BoxLockNode::size(PhaseRegAlloc *ra_) const { 1772 // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_). 1773 int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()); 1774 1775 if (Assembler::is_simm12(offset)) { 1776 return NativeInstruction::instruction_size; 1777 } else { 1778 return 3 * NativeInstruction::instruction_size; // lui + addiw + add; 1779 } 1780 } 1781 1782 //============================================================================= 1783 1784 #ifndef PRODUCT 1785 void MachUEPNode::format(PhaseRegAlloc* ra_, outputStream* st) const 1786 { 1787 assert_cond(st != nullptr); 1788 st->print_cr("# MachUEPNode"); 1789 if (UseCompressedClassPointers) { 1790 st->print_cr("\tlwu t1, [j_rarg0 + oopDesc::klass_offset_in_bytes()]\t# compressed klass"); 1791 st->print_cr("\tlwu t2, [t0 + CompiledICData::speculated_klass_offset()]\t# compressed klass"); 1792 } else { 1793 st->print_cr("\tld t1, [j_rarg0 + oopDesc::klass_offset_in_bytes()]\t# compressed klass"); 1794 st->print_cr("\tld t2, [t0 + CompiledICData::speculated_klass_offset()]\t# compressed klass"); 1795 } 1796 st->print_cr("\tbeq t1, t2, ic_hit"); 1797 st->print_cr("\tj, SharedRuntime::_ic_miss_stub\t # Inline cache check"); 1798 st->print_cr("\tic_hit:"); 1799 } 1800 #endif 1801 1802 void MachUEPNode::emit(C2_MacroAssembler* masm, PhaseRegAlloc* ra_) const 1803 { 1804 // This is the unverified entry point. 1805 __ ic_check(CodeEntryAlignment); 1806 1807 // Verified entry point must be properly 4 bytes aligned for patching by NativeJump::patch_verified_entry(). 1808 // ic_check() aligns to CodeEntryAlignment >= InteriorEntryAlignment(min 16) > NativeInstruction::instruction_size(4). 1809 assert(((__ offset()) % CodeEntryAlignment) == 0, "Misaligned verified entry point"); 1810 } 1811 1812 uint MachUEPNode::size(PhaseRegAlloc* ra_) const 1813 { 1814 assert_cond(ra_ != nullptr); 1815 return MachNode::size(ra_); 1816 } 1817 1818 // REQUIRED EMIT CODE 1819 1820 //============================================================================= 1821 1822 // Emit exception handler code. 1823 int HandlerImpl::emit_exception_handler(C2_MacroAssembler* masm) 1824 { 1825 // auipc t1, #exception_blob_entry_point 1826 // jr (offset)t1 1827 // Note that the code buffer's insts_mark is always relative to insts. 1828 // That's why we must use the macroassembler to generate a handler. 1829 address base = __ start_a_stub(size_exception_handler()); 1830 if (base == nullptr) { 1831 ciEnv::current()->record_failure("CodeCache is full"); 1832 return 0; // CodeBuffer::expand failed 1833 } 1834 int offset = __ offset(); 1835 __ far_jump(RuntimeAddress(OptoRuntime::exception_blob()->entry_point())); 1836 assert(__ offset() - offset <= (int) size_exception_handler(), "overflow"); 1837 __ end_a_stub(); 1838 return offset; 1839 } 1840 1841 // Emit deopt handler code. 1842 int HandlerImpl::emit_deopt_handler(C2_MacroAssembler* masm) 1843 { 1844 address base = __ start_a_stub(size_deopt_handler()); 1845 if (base == nullptr) { 1846 ciEnv::current()->record_failure("CodeCache is full"); 1847 return 0; // CodeBuffer::expand failed 1848 } 1849 int offset = __ offset(); 1850 1851 __ auipc(ra, 0); 1852 __ far_jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack())); 1853 1854 assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow"); 1855 __ end_a_stub(); 1856 return offset; 1857 1858 } 1859 // REQUIRED MATCHER CODE 1860 1861 //============================================================================= 1862 1863 bool Matcher::match_rule_supported(int opcode) { 1864 if (!has_match_rule(opcode)) { 1865 return false; 1866 } 1867 1868 switch (opcode) { 1869 case Op_OnSpinWait: 1870 return VM_Version::supports_on_spin_wait(); 1871 case Op_CacheWB: // fall through 1872 case Op_CacheWBPreSync: // fall through 1873 case Op_CacheWBPostSync: 1874 if (!VM_Version::supports_data_cache_line_flush()) { 1875 return false; 1876 } 1877 break; 1878 1879 case Op_StrCompressedCopy: // fall through 1880 case Op_StrInflatedCopy: // fall through 1881 case Op_CountPositives: // fall through 1882 case Op_EncodeISOArray: 1883 return UseRVV; 1884 1885 // Current test shows that, it brings performance gain when MaxVectorSize >= 32, but brings 1886 // regression when MaxVectorSize == 16. So only enable the intrinsic when MaxVectorSize >= 32. 1887 case Op_RoundVF: 1888 return UseRVV && MaxVectorSize >= 32; 1889 1890 // For double, current test shows that even with MaxVectorSize == 32, there is still some regression. 1891 // Although there is no hardware to verify it for now, from the trend of performance data on hardwares 1892 // (with vlenb == 16 and 32 respectively), it's promising to bring better performance rather than 1893 // regression for double when MaxVectorSize == 64+. So only enable the intrinsic when MaxVectorSize >= 64. 1894 case Op_RoundVD: 1895 return UseRVV && MaxVectorSize >= 64; 1896 1897 case Op_PopCountI: 1898 case Op_PopCountL: 1899 return UsePopCountInstruction; 1900 1901 case Op_ReverseBytesI: 1902 case Op_ReverseBytesL: 1903 case Op_ReverseBytesS: 1904 case Op_ReverseBytesUS: 1905 case Op_RotateRight: 1906 case Op_RotateLeft: 1907 case Op_CountLeadingZerosI: 1908 case Op_CountLeadingZerosL: 1909 case Op_CountTrailingZerosI: 1910 case Op_CountTrailingZerosL: 1911 return UseZbb; 1912 1913 case Op_FmaF: 1914 case Op_FmaD: 1915 case Op_FmaVF: 1916 case Op_FmaVD: 1917 return UseFMA; 1918 1919 case Op_ConvHF2F: 1920 case Op_ConvF2HF: 1921 return UseZfh; 1922 } 1923 1924 return true; // Per default match rules are supported. 1925 } 1926 1927 const RegMask* Matcher::predicate_reg_mask(void) { 1928 return &_VMASK_REG_mask; 1929 } 1930 1931 // Vector calling convention not yet implemented. 1932 bool Matcher::supports_vector_calling_convention(void) { 1933 return EnableVectorSupport && UseVectorStubs; 1934 } 1935 1936 OptoRegPair Matcher::vector_return_value(uint ideal_reg) { 1937 assert(EnableVectorSupport && UseVectorStubs, "sanity"); 1938 assert(ideal_reg == Op_VecA, "sanity"); 1939 // check more info at https://github.com/riscv-non-isa/riscv-elf-psabi-doc/blob/master/riscv-cc.adoc 1940 int lo = V8_num; 1941 int hi = V8_K_num; 1942 return OptoRegPair(hi, lo); 1943 } 1944 1945 // Is this branch offset short enough that a short branch can be used? 1946 // 1947 // NOTE: If the platform does not provide any short branch variants, then 1948 // this method should return false for offset 0. 1949 // |---label(L1)-----| 1950 // |-----------------| 1951 // |-----------------|----------eq: float------------------- 1952 // |-----------------| // far_cmpD_branch | cmpD_branch 1953 // |------- ---------| feq; | feq; 1954 // |-far_cmpD_branch-| beqz done; | bnez L; 1955 // |-----------------| j L; | 1956 // |-----------------| bind(done); | 1957 // |-----------------|-------------------------------------- 1958 // |-----------------| // so shortBrSize = br_size - 4; 1959 // |-----------------| // so offs = offset - shortBrSize + 4; 1960 // |---label(L2)-----| 1961 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) { 1962 // The passed offset is relative to address of the branch. 1963 int shortBrSize = br_size - 4; 1964 int offs = offset - shortBrSize + 4; 1965 return (-4096 <= offs && offs < 4096); 1966 } 1967 1968 // Vector width in bytes. 1969 int Matcher::vector_width_in_bytes(BasicType bt) { 1970 if (UseRVV) { 1971 // The MaxVectorSize should have been set by detecting RVV max vector register size when check UseRVV. 1972 // MaxVectorSize == VM_Version::_initial_vector_length 1973 int size = MaxVectorSize; 1974 // Minimum 2 values in vector 1975 if (size < 2 * type2aelembytes(bt)) size = 0; 1976 // But never < 4 1977 if (size < 4) size = 0; 1978 return size; 1979 } 1980 return 0; 1981 } 1982 1983 // Limits on vector size (number of elements) loaded into vector. 1984 int Matcher::max_vector_size(const BasicType bt) { 1985 return vector_width_in_bytes(bt) / type2aelembytes(bt); 1986 } 1987 1988 int Matcher::min_vector_size(const BasicType bt) { 1989 int max_size = max_vector_size(bt); 1990 // Limit the min vector size to 8 bytes. 1991 int size = 8 / type2aelembytes(bt); 1992 if (bt == T_BYTE) { 1993 // To support vector api shuffle/rearrange. 1994 size = 4; 1995 } else if (bt == T_BOOLEAN) { 1996 // To support vector api load/store mask. 1997 size = 2; 1998 } 1999 if (size < 2) size = 2; 2000 return MIN2(size, max_size); 2001 } 2002 2003 int Matcher::max_vector_size_auto_vectorization(const BasicType bt) { 2004 return Matcher::max_vector_size(bt); 2005 } 2006 2007 // Vector ideal reg. 2008 uint Matcher::vector_ideal_reg(int len) { 2009 assert(MaxVectorSize >= len, ""); 2010 if (UseRVV) { 2011 return Op_VecA; 2012 } 2013 2014 ShouldNotReachHere(); 2015 return 0; 2016 } 2017 2018 int Matcher::scalable_vector_reg_size(const BasicType bt) { 2019 return Matcher::max_vector_size(bt); 2020 } 2021 2022 MachOper* Matcher::pd_specialize_generic_vector_operand(MachOper* original_opnd, uint ideal_reg, bool is_temp) { 2023 ShouldNotReachHere(); // generic vector operands not supported 2024 return nullptr; 2025 } 2026 2027 bool Matcher::is_reg2reg_move(MachNode* m) { 2028 ShouldNotReachHere(); // generic vector operands not supported 2029 return false; 2030 } 2031 2032 bool Matcher::is_generic_vector(MachOper* opnd) { 2033 ShouldNotReachHere(); // generic vector operands not supported 2034 return false; 2035 } 2036 2037 // Return whether or not this register is ever used as an argument. 2038 // This function is used on startup to build the trampoline stubs in 2039 // generateOptoStub. Registers not mentioned will be killed by the VM 2040 // call in the trampoline, and arguments in those registers not be 2041 // available to the callee. 2042 bool Matcher::can_be_java_arg(int reg) 2043 { 2044 return 2045 reg == R10_num || reg == R10_H_num || 2046 reg == R11_num || reg == R11_H_num || 2047 reg == R12_num || reg == R12_H_num || 2048 reg == R13_num || reg == R13_H_num || 2049 reg == R14_num || reg == R14_H_num || 2050 reg == R15_num || reg == R15_H_num || 2051 reg == R16_num || reg == R16_H_num || 2052 reg == R17_num || reg == R17_H_num || 2053 reg == F10_num || reg == F10_H_num || 2054 reg == F11_num || reg == F11_H_num || 2055 reg == F12_num || reg == F12_H_num || 2056 reg == F13_num || reg == F13_H_num || 2057 reg == F14_num || reg == F14_H_num || 2058 reg == F15_num || reg == F15_H_num || 2059 reg == F16_num || reg == F16_H_num || 2060 reg == F17_num || reg == F17_H_num; 2061 } 2062 2063 bool Matcher::is_spillable_arg(int reg) 2064 { 2065 return can_be_java_arg(reg); 2066 } 2067 2068 uint Matcher::int_pressure_limit() 2069 { 2070 // A derived pointer is live at CallNode and then is flagged by RA 2071 // as a spilled LRG. Spilling heuristics(Spill-USE) explicitly skip 2072 // derived pointers and lastly fail to spill after reaching maximum 2073 // number of iterations. Lowering the default pressure threshold to 2074 // (_NO_SPECIAL_REG32_mask.Size() minus 1) forces CallNode to become 2075 // a high register pressure area of the code so that split_DEF can 2076 // generate DefinitionSpillCopy for the derived pointer. 2077 uint default_int_pressure_threshold = _NO_SPECIAL_REG32_mask.Size() - 1; 2078 if (!PreserveFramePointer) { 2079 // When PreserveFramePointer is off, frame pointer is allocatable, 2080 // but different from other SOC registers, it is excluded from 2081 // fatproj's mask because its save type is No-Save. Decrease 1 to 2082 // ensure high pressure at fatproj when PreserveFramePointer is off. 2083 // See check_pressure_at_fatproj(). 2084 default_int_pressure_threshold--; 2085 } 2086 return (INTPRESSURE == -1) ? default_int_pressure_threshold : INTPRESSURE; 2087 } 2088 2089 uint Matcher::float_pressure_limit() 2090 { 2091 // _FLOAT_REG_mask is generated by adlc from the float_reg register class. 2092 return (FLOATPRESSURE == -1) ? _FLOAT_REG_mask.Size() : FLOATPRESSURE; 2093 } 2094 2095 bool Matcher::use_asm_for_ldiv_by_con(jlong divisor) { 2096 return false; 2097 } 2098 2099 RegMask Matcher::divI_proj_mask() { 2100 ShouldNotReachHere(); 2101 return RegMask(); 2102 } 2103 2104 // Register for MODI projection of divmodI. 2105 RegMask Matcher::modI_proj_mask() { 2106 ShouldNotReachHere(); 2107 return RegMask(); 2108 } 2109 2110 // Register for DIVL projection of divmodL. 2111 RegMask Matcher::divL_proj_mask() { 2112 ShouldNotReachHere(); 2113 return RegMask(); 2114 } 2115 2116 // Register for MODL projection of divmodL. 2117 RegMask Matcher::modL_proj_mask() { 2118 ShouldNotReachHere(); 2119 return RegMask(); 2120 } 2121 2122 const RegMask Matcher::method_handle_invoke_SP_save_mask() { 2123 return FP_REG_mask(); 2124 } 2125 2126 bool size_fits_all_mem_uses(AddPNode* addp, int shift) { 2127 assert_cond(addp != nullptr); 2128 for (DUIterator_Fast imax, i = addp->fast_outs(imax); i < imax; i++) { 2129 Node* u = addp->fast_out(i); 2130 if (u != nullptr && u->is_Mem()) { 2131 int opsize = u->as_Mem()->memory_size(); 2132 assert(opsize > 0, "unexpected memory operand size"); 2133 if (u->as_Mem()->memory_size() != (1 << shift)) { 2134 return false; 2135 } 2136 } 2137 } 2138 return true; 2139 } 2140 2141 // Binary src (Replicate scalar/immediate) 2142 static bool is_vector_scalar_bitwise_pattern(Node* n, Node* m) { 2143 if (n == nullptr || m == nullptr) { 2144 return false; 2145 } 2146 2147 if (m->Opcode() != Op_Replicate) { 2148 return false; 2149 } 2150 2151 switch (n->Opcode()) { 2152 case Op_AndV: 2153 case Op_OrV: 2154 case Op_XorV: 2155 case Op_AddVB: 2156 case Op_AddVS: 2157 case Op_AddVI: 2158 case Op_AddVL: 2159 case Op_SubVB: 2160 case Op_SubVS: 2161 case Op_SubVI: 2162 case Op_SubVL: 2163 case Op_MulVB: 2164 case Op_MulVS: 2165 case Op_MulVI: 2166 case Op_MulVL: { 2167 return true; 2168 } 2169 default: 2170 return false; 2171 } 2172 } 2173 2174 // (XorV src (Replicate m1)) 2175 // (XorVMask src (MaskAll m1)) 2176 static bool is_vector_bitwise_not_pattern(Node* n, Node* m) { 2177 if (n != nullptr && m != nullptr) { 2178 return (n->Opcode() == Op_XorV || n->Opcode() == Op_XorVMask) && 2179 VectorNode::is_all_ones_vector(m); 2180 } 2181 return false; 2182 } 2183 2184 // Should the Matcher clone input 'm' of node 'n'? 2185 bool Matcher::pd_clone_node(Node* n, Node* m, Matcher::MStack& mstack) { 2186 assert_cond(m != nullptr); 2187 if (is_vshift_con_pattern(n, m) || // ShiftV src (ShiftCntV con) 2188 is_vector_bitwise_not_pattern(n, m) || 2189 is_vector_scalar_bitwise_pattern(n, m) || 2190 is_encode_and_store_pattern(n, m)) { 2191 mstack.push(m, Visit); 2192 return true; 2193 } 2194 return false; 2195 } 2196 2197 // Should the Matcher clone shifts on addressing modes, expecting them 2198 // to be subsumed into complex addressing expressions or compute them 2199 // into registers? 2200 bool Matcher::pd_clone_address_expressions(AddPNode* m, Matcher::MStack& mstack, VectorSet& address_visited) { 2201 return clone_base_plus_offset_address(m, mstack, address_visited); 2202 } 2203 2204 %} 2205 2206 2207 2208 //----------ENCODING BLOCK----------------------------------------------------- 2209 // This block specifies the encoding classes used by the compiler to 2210 // output byte streams. Encoding classes are parameterized macros 2211 // used by Machine Instruction Nodes in order to generate the bit 2212 // encoding of the instruction. Operands specify their base encoding 2213 // interface with the interface keyword. There are currently 2214 // supported four interfaces, REG_INTER, CONST_INTER, MEMORY_INTER, & 2215 // COND_INTER. REG_INTER causes an operand to generate a function 2216 // which returns its register number when queried. CONST_INTER causes 2217 // an operand to generate a function which returns the value of the 2218 // constant when queried. MEMORY_INTER causes an operand to generate 2219 // four functions which return the Base Register, the Index Register, 2220 // the Scale Value, and the Offset Value of the operand when queried. 2221 // COND_INTER causes an operand to generate six functions which return 2222 // the encoding code (ie - encoding bits for the instruction) 2223 // associated with each basic boolean condition for a conditional 2224 // instruction. 2225 // 2226 // Instructions specify two basic values for encoding. Again, a 2227 // function is available to check if the constant displacement is an 2228 // oop. They use the ins_encode keyword to specify their encoding 2229 // classes (which must be a sequence of enc_class names, and their 2230 // parameters, specified in the encoding block), and they use the 2231 // opcode keyword to specify, in order, their primary, secondary, and 2232 // tertiary opcode. Only the opcode sections which a particular 2233 // instruction needs for encoding need to be specified. 2234 encode %{ 2235 // BEGIN Non-volatile memory access 2236 2237 enc_class riscv_enc_mov_imm(iRegIorL dst, immIorL src) %{ 2238 int64_t con = (int64_t)$src$$constant; 2239 Register dst_reg = as_Register($dst$$reg); 2240 __ mv(dst_reg, con); 2241 %} 2242 2243 enc_class riscv_enc_mov_p(iRegP dst, immP src) %{ 2244 Register dst_reg = as_Register($dst$$reg); 2245 address con = (address)$src$$constant; 2246 if (con == nullptr || con == (address)1) { 2247 ShouldNotReachHere(); 2248 } else { 2249 relocInfo::relocType rtype = $src->constant_reloc(); 2250 if (rtype == relocInfo::oop_type) { 2251 __ movoop(dst_reg, (jobject)con); 2252 } else if (rtype == relocInfo::metadata_type) { 2253 __ mov_metadata(dst_reg, (Metadata*)con); 2254 } else { 2255 assert(rtype == relocInfo::none, "unexpected reloc type"); 2256 __ mv(dst_reg, $src$$constant); 2257 } 2258 } 2259 %} 2260 2261 enc_class riscv_enc_mov_p1(iRegP dst) %{ 2262 Register dst_reg = as_Register($dst$$reg); 2263 __ mv(dst_reg, 1); 2264 %} 2265 2266 enc_class riscv_enc_mov_byte_map_base(iRegP dst) %{ 2267 __ load_byte_map_base($dst$$Register); 2268 %} 2269 2270 enc_class riscv_enc_mov_n(iRegN dst, immN src) %{ 2271 Register dst_reg = as_Register($dst$$reg); 2272 address con = (address)$src$$constant; 2273 if (con == nullptr) { 2274 ShouldNotReachHere(); 2275 } else { 2276 relocInfo::relocType rtype = $src->constant_reloc(); 2277 assert(rtype == relocInfo::oop_type, "unexpected reloc type"); 2278 __ set_narrow_oop(dst_reg, (jobject)con); 2279 } 2280 %} 2281 2282 enc_class riscv_enc_mov_zero(iRegNorP dst) %{ 2283 Register dst_reg = as_Register($dst$$reg); 2284 __ mv(dst_reg, zr); 2285 %} 2286 2287 enc_class riscv_enc_mov_nk(iRegN dst, immNKlass src) %{ 2288 Register dst_reg = as_Register($dst$$reg); 2289 address con = (address)$src$$constant; 2290 if (con == nullptr) { 2291 ShouldNotReachHere(); 2292 } else { 2293 relocInfo::relocType rtype = $src->constant_reloc(); 2294 assert(rtype == relocInfo::metadata_type, "unexpected reloc type"); 2295 __ set_narrow_klass(dst_reg, (Klass *)con); 2296 } 2297 %} 2298 2299 enc_class riscv_enc_cmpxchgw(iRegINoSp res, memory mem, iRegI oldval, iRegI newval) %{ 2300 __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int32, 2301 /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register, 2302 /*result as bool*/ true); 2303 %} 2304 2305 enc_class riscv_enc_cmpxchgn(iRegINoSp res, memory mem, iRegI oldval, iRegI newval) %{ 2306 __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::uint32, 2307 /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register, 2308 /*result as bool*/ true); 2309 %} 2310 2311 enc_class riscv_enc_cmpxchg(iRegINoSp res, memory mem, iRegL oldval, iRegL newval) %{ 2312 __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int64, 2313 /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register, 2314 /*result as bool*/ true); 2315 %} 2316 2317 enc_class riscv_enc_cmpxchgw_acq(iRegINoSp res, memory mem, iRegI oldval, iRegI newval) %{ 2318 __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int32, 2319 /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register, 2320 /*result as bool*/ true); 2321 %} 2322 2323 enc_class riscv_enc_cmpxchgn_acq(iRegINoSp res, memory mem, iRegI oldval, iRegI newval) %{ 2324 __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::uint32, 2325 /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register, 2326 /*result as bool*/ true); 2327 %} 2328 2329 enc_class riscv_enc_cmpxchg_acq(iRegINoSp res, memory mem, iRegL oldval, iRegL newval) %{ 2330 __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int64, 2331 /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register, 2332 /*result as bool*/ true); 2333 %} 2334 2335 // compare and branch instruction encodings 2336 2337 enc_class riscv_enc_j(label lbl) %{ 2338 Label* L = $lbl$$label; 2339 __ j(*L); 2340 %} 2341 2342 enc_class riscv_enc_far_cmpULtGe_imm0_branch(cmpOpULtGe cmp, iRegIorL op1, label lbl) %{ 2343 Label* L = $lbl$$label; 2344 switch ($cmp$$cmpcode) { 2345 case(BoolTest::ge): 2346 __ j(*L); 2347 break; 2348 case(BoolTest::lt): 2349 break; 2350 default: 2351 Unimplemented(); 2352 } 2353 %} 2354 2355 // call instruction encodings 2356 2357 enc_class riscv_enc_partial_subtype_check(iRegP sub, iRegP super, iRegP temp, iRegP result) %{ 2358 Register sub_reg = as_Register($sub$$reg); 2359 Register super_reg = as_Register($super$$reg); 2360 Register temp_reg = as_Register($temp$$reg); 2361 Register result_reg = as_Register($result$$reg); 2362 Register cr_reg = t1; 2363 2364 Label miss; 2365 Label done; 2366 __ check_klass_subtype_slow_path(sub_reg, super_reg, temp_reg, result_reg, 2367 nullptr, &miss); 2368 if ($primary) { 2369 __ mv(result_reg, zr); 2370 } else { 2371 __ mv(cr_reg, zr); 2372 __ j(done); 2373 } 2374 2375 __ bind(miss); 2376 if (!$primary) { 2377 __ mv(cr_reg, 1); 2378 } 2379 2380 __ bind(done); 2381 %} 2382 2383 enc_class riscv_enc_java_static_call(method meth) %{ 2384 Assembler::IncompressibleRegion ir(masm); // Fixed length: see ret_addr_offset 2385 2386 address addr = (address)$meth$$method; 2387 address call = nullptr; 2388 assert_cond(addr != nullptr); 2389 if (!_method) { 2390 // A call to a runtime wrapper, e.g. new, new_typeArray_Java, uncommon_trap. 2391 call = __ reloc_call(Address(addr, relocInfo::runtime_call_type)); 2392 if (call == nullptr) { 2393 ciEnv::current()->record_failure("CodeCache is full"); 2394 return; 2395 } 2396 } else if (_method->intrinsic_id() == vmIntrinsicID::_ensureMaterializedForStackWalk) { 2397 // The NOP here is purely to ensure that eliding a call to 2398 // JVM_EnsureMaterializedForStackWalk doesn't change the code size. 2399 __ nop(); 2400 __ nop(); 2401 __ nop(); 2402 __ block_comment("call JVM_EnsureMaterializedForStackWalk (elided)"); 2403 } else { 2404 int method_index = resolved_method_index(masm); 2405 RelocationHolder rspec = _optimized_virtual ? opt_virtual_call_Relocation::spec(method_index) 2406 : static_call_Relocation::spec(method_index); 2407 call = __ reloc_call(Address(addr, rspec)); 2408 if (call == nullptr) { 2409 ciEnv::current()->record_failure("CodeCache is full"); 2410 return; 2411 } 2412 2413 if (CodeBuffer::supports_shared_stubs() && _method->can_be_statically_bound()) { 2414 // Calls of the same statically bound method can share 2415 // a stub to the interpreter. 2416 __ code()->shared_stub_to_interp_for(_method, call - (__ begin())); 2417 } else { 2418 // Emit stub for static call 2419 address stub = CompiledDirectCall::emit_to_interp_stub(masm, call); 2420 if (stub == nullptr) { 2421 ciEnv::current()->record_failure("CodeCache is full"); 2422 return; 2423 } 2424 } 2425 } 2426 2427 __ post_call_nop(); 2428 %} 2429 2430 enc_class riscv_enc_java_dynamic_call(method meth) %{ 2431 Assembler::IncompressibleRegion ir(masm); // Fixed length: see ret_addr_offset 2432 int method_index = resolved_method_index(masm); 2433 address call = __ ic_call((address)$meth$$method, method_index); 2434 if (call == nullptr) { 2435 ciEnv::current()->record_failure("CodeCache is full"); 2436 return; 2437 } 2438 2439 __ post_call_nop(); 2440 %} 2441 2442 enc_class riscv_enc_call_epilog() %{ 2443 if (VerifyStackAtCalls) { 2444 // Check that stack depth is unchanged: find majik cookie on stack 2445 __ call_Unimplemented(); 2446 } 2447 %} 2448 2449 enc_class riscv_enc_java_to_runtime(method meth) %{ 2450 Assembler::IncompressibleRegion ir(masm); // Fixed length: see ret_addr_offset 2451 2452 // Some calls to generated routines (arraycopy code) are scheduled by C2 2453 // as runtime calls. if so we can call them using a far call (they will be 2454 // in the code cache, thus in a reachable segment) otherwise we have to use 2455 // a movptr+jalr pair which loads the absolute address into a register. 2456 address entry = (address)$meth$$method; 2457 if (CodeCache::contains(entry)) { 2458 __ far_call(Address(entry, relocInfo::runtime_call_type)); 2459 __ post_call_nop(); 2460 } else { 2461 Label retaddr; 2462 // Make the anchor frame walkable 2463 __ la(t0, retaddr); 2464 __ sd(t0, Address(xthread, JavaThread::last_Java_pc_offset())); 2465 int32_t offset = 0; 2466 // No relocation needed 2467 __ movptr(t1, entry, offset, t0); // lui + lui + slli + add 2468 __ jalr(t1, offset); 2469 __ bind(retaddr); 2470 __ post_call_nop(); 2471 } 2472 %} 2473 2474 // arithmetic encodings 2475 2476 enc_class riscv_enc_divw(iRegI dst, iRegI src1, iRegI src2) %{ 2477 Register dst_reg = as_Register($dst$$reg); 2478 Register src1_reg = as_Register($src1$$reg); 2479 Register src2_reg = as_Register($src2$$reg); 2480 __ corrected_idivl(dst_reg, src1_reg, src2_reg, /* want_remainder */ false, /* is_signed */ true); 2481 %} 2482 2483 enc_class riscv_enc_divuw(iRegI dst, iRegI src1, iRegI src2) %{ 2484 Register dst_reg = as_Register($dst$$reg); 2485 Register src1_reg = as_Register($src1$$reg); 2486 Register src2_reg = as_Register($src2$$reg); 2487 __ corrected_idivl(dst_reg, src1_reg, src2_reg, /* want_remainder */ false, /* is_signed */ false); 2488 %} 2489 2490 enc_class riscv_enc_div(iRegI dst, iRegI src1, iRegI src2) %{ 2491 Register dst_reg = as_Register($dst$$reg); 2492 Register src1_reg = as_Register($src1$$reg); 2493 Register src2_reg = as_Register($src2$$reg); 2494 __ corrected_idivq(dst_reg, src1_reg, src2_reg, /* want_remainder */ false, /* is_signed */ true); 2495 %} 2496 2497 enc_class riscv_enc_divu(iRegI dst, iRegI src1, iRegI src2) %{ 2498 Register dst_reg = as_Register($dst$$reg); 2499 Register src1_reg = as_Register($src1$$reg); 2500 Register src2_reg = as_Register($src2$$reg); 2501 __ corrected_idivq(dst_reg, src1_reg, src2_reg, /* want_remainder */ false, /* is_signed */ false); 2502 %} 2503 2504 enc_class riscv_enc_modw(iRegI dst, iRegI src1, iRegI src2) %{ 2505 Register dst_reg = as_Register($dst$$reg); 2506 Register src1_reg = as_Register($src1$$reg); 2507 Register src2_reg = as_Register($src2$$reg); 2508 __ corrected_idivl(dst_reg, src1_reg, src2_reg, /* want_remainder */ true, /* is_signed */ true); 2509 %} 2510 2511 enc_class riscv_enc_moduw(iRegI dst, iRegI src1, iRegI src2) %{ 2512 Register dst_reg = as_Register($dst$$reg); 2513 Register src1_reg = as_Register($src1$$reg); 2514 Register src2_reg = as_Register($src2$$reg); 2515 __ corrected_idivl(dst_reg, src1_reg, src2_reg, /* want_remainder */ true, /* is_signed */ false); 2516 %} 2517 2518 enc_class riscv_enc_mod(iRegI dst, iRegI src1, iRegI src2) %{ 2519 Register dst_reg = as_Register($dst$$reg); 2520 Register src1_reg = as_Register($src1$$reg); 2521 Register src2_reg = as_Register($src2$$reg); 2522 __ corrected_idivq(dst_reg, src1_reg, src2_reg, /* want_remainder */ true, /* is_signed */ true); 2523 %} 2524 2525 enc_class riscv_enc_modu(iRegI dst, iRegI src1, iRegI src2) %{ 2526 Register dst_reg = as_Register($dst$$reg); 2527 Register src1_reg = as_Register($src1$$reg); 2528 Register src2_reg = as_Register($src2$$reg); 2529 __ corrected_idivq(dst_reg, src1_reg, src2_reg, /* want_remainder */ true, /* is_signed */ false); 2530 %} 2531 2532 enc_class riscv_enc_tail_call(iRegP jump_target) %{ 2533 Register target_reg = as_Register($jump_target$$reg); 2534 __ jr(target_reg); 2535 %} 2536 2537 enc_class riscv_enc_tail_jmp(iRegP jump_target) %{ 2538 Register target_reg = as_Register($jump_target$$reg); 2539 // exception oop should be in x10 2540 // ret addr has been popped into ra 2541 // callee expects it in x13 2542 __ mv(x13, ra); 2543 __ jr(target_reg); 2544 %} 2545 2546 enc_class riscv_enc_rethrow() %{ 2547 __ far_jump(RuntimeAddress(OptoRuntime::rethrow_stub())); 2548 %} 2549 2550 enc_class riscv_enc_ret() %{ 2551 __ ret(); 2552 %} 2553 2554 %} 2555 2556 //----------FRAME-------------------------------------------------------------- 2557 // Definition of frame structure and management information. 2558 // 2559 // S T A C K L A Y O U T Allocators stack-slot number 2560 // | (to get allocators register number 2561 // G Owned by | | v add OptoReg::stack0()) 2562 // r CALLER | | 2563 // o | +--------+ pad to even-align allocators stack-slot 2564 // w V | pad0 | numbers; owned by CALLER 2565 // t -----------+--------+----> Matcher::_in_arg_limit, unaligned 2566 // h ^ | in | 5 2567 // | | args | 4 Holes in incoming args owned by SELF 2568 // | | | | 3 2569 // | | +--------+ 2570 // V | | old out| Empty on Intel, window on Sparc 2571 // | old |preserve| Must be even aligned. 2572 // | SP-+--------+----> Matcher::_old_SP, even aligned 2573 // | | in | 3 area for Intel ret address 2574 // Owned by |preserve| Empty on Sparc. 2575 // SELF +--------+ 2576 // | | pad2 | 2 pad to align old SP 2577 // | +--------+ 1 2578 // | | locks | 0 2579 // | +--------+----> OptoReg::stack0(), even aligned 2580 // | | pad1 | 11 pad to align new SP 2581 // | +--------+ 2582 // | | | 10 2583 // | | spills | 9 spills 2584 // V | | 8 (pad0 slot for callee) 2585 // -----------+--------+----> Matcher::_out_arg_limit, unaligned 2586 // ^ | out | 7 2587 // | | args | 6 Holes in outgoing args owned by CALLEE 2588 // Owned by +--------+ 2589 // CALLEE | new out| 6 Empty on Intel, window on Sparc 2590 // | new |preserve| Must be even-aligned. 2591 // | SP-+--------+----> Matcher::_new_SP, even aligned 2592 // | | | 2593 // 2594 // Note 1: Only region 8-11 is determined by the allocator. Region 0-5 is 2595 // known from SELF's arguments and the Java calling convention. 2596 // Region 6-7 is determined per call site. 2597 // Note 2: If the calling convention leaves holes in the incoming argument 2598 // area, those holes are owned by SELF. Holes in the outgoing area 2599 // are owned by the CALLEE. Holes should not be necessary in the 2600 // incoming area, as the Java calling convention is completely under 2601 // the control of the AD file. Doubles can be sorted and packed to 2602 // avoid holes. Holes in the outgoing arguments may be necessary for 2603 // varargs C calling conventions. 2604 // Note 3: Region 0-3 is even aligned, with pad2 as needed. Region 3-5 is 2605 // even aligned with pad0 as needed. 2606 // Region 6 is even aligned. Region 6-7 is NOT even aligned; 2607 // (the latter is true on Intel but is it false on RISCV?) 2608 // region 6-11 is even aligned; it may be padded out more so that 2609 // the region from SP to FP meets the minimum stack alignment. 2610 // Note 4: For I2C adapters, the incoming FP may not meet the minimum stack 2611 // alignment. Region 11, pad1, may be dynamically extended so that 2612 // SP meets the minimum alignment. 2613 2614 frame %{ 2615 // These three registers define part of the calling convention 2616 // between compiled code and the interpreter. 2617 2618 // Inline Cache Register or methodOop for I2C. 2619 inline_cache_reg(R31); 2620 2621 // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset] 2622 cisc_spilling_operand_name(indOffset); 2623 2624 // Number of stack slots consumed by locking an object 2625 // generate Compile::sync_stack_slots 2626 // VMRegImpl::slots_per_word = wordSize / stack_slot_size = 8 / 4 = 2 2627 sync_stack_slots(1 * VMRegImpl::slots_per_word); 2628 2629 // Compiled code's Frame Pointer 2630 frame_pointer(R2); 2631 2632 // Interpreter stores its frame pointer in a register which is 2633 // stored to the stack by I2CAdaptors. 2634 // I2CAdaptors convert from interpreted java to compiled java. 2635 interpreter_frame_pointer(R8); 2636 2637 // Stack alignment requirement 2638 stack_alignment(StackAlignmentInBytes); // Alignment size in bytes (128-bit -> 16 bytes) 2639 2640 // Number of outgoing stack slots killed above the out_preserve_stack_slots 2641 // for calls to C. Supports the var-args backing area for register parms. 2642 varargs_C_out_slots_killed(frame::arg_reg_save_area_bytes / BytesPerInt); 2643 2644 // The after-PROLOG location of the return address. Location of 2645 // return address specifies a type (REG or STACK) and a number 2646 // representing the register number (i.e. - use a register name) or 2647 // stack slot. 2648 // Ret Addr is on stack in slot 0 if no locks or verification or alignment. 2649 // Otherwise, it is above the locks and verification slot and alignment word 2650 // TODO this may well be correct but need to check why that - 2 is there 2651 // ppc port uses 0 but we definitely need to allow for fixed_slots 2652 // which folds in the space used for monitors 2653 return_addr(STACK - 2 + 2654 align_up((Compile::current()->in_preserve_stack_slots() + 2655 Compile::current()->fixed_slots()), 2656 stack_alignment_in_slots())); 2657 2658 // Location of compiled Java return values. Same as C for now. 2659 return_value 2660 %{ 2661 assert(ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, 2662 "only return normal values"); 2663 2664 static const int lo[Op_RegL + 1] = { // enum name 2665 0, // Op_Node 2666 0, // Op_Set 2667 R10_num, // Op_RegN 2668 R10_num, // Op_RegI 2669 R10_num, // Op_RegP 2670 F10_num, // Op_RegF 2671 F10_num, // Op_RegD 2672 R10_num // Op_RegL 2673 }; 2674 2675 static const int hi[Op_RegL + 1] = { // enum name 2676 0, // Op_Node 2677 0, // Op_Set 2678 OptoReg::Bad, // Op_RegN 2679 OptoReg::Bad, // Op_RegI 2680 R10_H_num, // Op_RegP 2681 OptoReg::Bad, // Op_RegF 2682 F10_H_num, // Op_RegD 2683 R10_H_num // Op_RegL 2684 }; 2685 2686 return OptoRegPair(hi[ideal_reg], lo[ideal_reg]); 2687 %} 2688 %} 2689 2690 //----------ATTRIBUTES--------------------------------------------------------- 2691 //----------Operand Attributes------------------------------------------------- 2692 op_attrib op_cost(1); // Required cost attribute 2693 2694 //----------Instruction Attributes--------------------------------------------- 2695 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute 2696 ins_attrib ins_size(32); // Required size attribute (in bits) 2697 ins_attrib ins_short_branch(0); // Required flag: is this instruction 2698 // a non-matching short branch variant 2699 // of some long branch? 2700 ins_attrib ins_alignment(4); // Required alignment attribute (must 2701 // be a power of 2) specifies the 2702 // alignment that some part of the 2703 // instruction (not necessarily the 2704 // start) requires. If > 1, a 2705 // compute_padding() function must be 2706 // provided for the instruction 2707 2708 //----------OPERANDS----------------------------------------------------------- 2709 // Operand definitions must precede instruction definitions for correct parsing 2710 // in the ADLC because operands constitute user defined types which are used in 2711 // instruction definitions. 2712 2713 //----------Simple Operands---------------------------------------------------- 2714 2715 // Integer operands 32 bit 2716 // 32 bit immediate 2717 operand immI() 2718 %{ 2719 match(ConI); 2720 2721 op_cost(0); 2722 format %{ %} 2723 interface(CONST_INTER); 2724 %} 2725 2726 // 32 bit zero 2727 operand immI0() 2728 %{ 2729 predicate(n->get_int() == 0); 2730 match(ConI); 2731 2732 op_cost(0); 2733 format %{ %} 2734 interface(CONST_INTER); 2735 %} 2736 2737 // 32 bit unit increment 2738 operand immI_1() 2739 %{ 2740 predicate(n->get_int() == 1); 2741 match(ConI); 2742 2743 op_cost(0); 2744 format %{ %} 2745 interface(CONST_INTER); 2746 %} 2747 2748 // 32 bit unit decrement 2749 operand immI_M1() 2750 %{ 2751 predicate(n->get_int() == -1); 2752 match(ConI); 2753 2754 op_cost(0); 2755 format %{ %} 2756 interface(CONST_INTER); 2757 %} 2758 2759 // Unsigned Integer Immediate: 6-bit int, greater than 32 2760 operand uimmI6_ge32() %{ 2761 predicate(((unsigned int)(n->get_int()) < 64) && (n->get_int() >= 32)); 2762 match(ConI); 2763 op_cost(0); 2764 format %{ %} 2765 interface(CONST_INTER); 2766 %} 2767 2768 operand immI_le_4() 2769 %{ 2770 predicate(n->get_int() <= 4); 2771 match(ConI); 2772 2773 op_cost(0); 2774 format %{ %} 2775 interface(CONST_INTER); 2776 %} 2777 2778 operand immI_16() 2779 %{ 2780 predicate(n->get_int() == 16); 2781 match(ConI); 2782 op_cost(0); 2783 format %{ %} 2784 interface(CONST_INTER); 2785 %} 2786 2787 operand immI_24() 2788 %{ 2789 predicate(n->get_int() == 24); 2790 match(ConI); 2791 op_cost(0); 2792 format %{ %} 2793 interface(CONST_INTER); 2794 %} 2795 2796 operand immI_31() 2797 %{ 2798 predicate(n->get_int() == 31); 2799 match(ConI); 2800 2801 op_cost(0); 2802 format %{ %} 2803 interface(CONST_INTER); 2804 %} 2805 2806 operand immI_63() 2807 %{ 2808 predicate(n->get_int() == 63); 2809 match(ConI); 2810 2811 op_cost(0); 2812 format %{ %} 2813 interface(CONST_INTER); 2814 %} 2815 2816 // 32 bit integer valid for add immediate 2817 operand immIAdd() 2818 %{ 2819 predicate(Assembler::is_simm12((int64_t)n->get_int())); 2820 match(ConI); 2821 op_cost(0); 2822 format %{ %} 2823 interface(CONST_INTER); 2824 %} 2825 2826 // 32 bit integer valid for sub immediate 2827 operand immISub() 2828 %{ 2829 predicate(Assembler::is_simm12(-(int64_t)n->get_int())); 2830 match(ConI); 2831 op_cost(0); 2832 format %{ %} 2833 interface(CONST_INTER); 2834 %} 2835 2836 // 5 bit signed value. 2837 operand immI5() 2838 %{ 2839 predicate(n->get_int() <= 15 && n->get_int() >= -16); 2840 match(ConI); 2841 2842 op_cost(0); 2843 format %{ %} 2844 interface(CONST_INTER); 2845 %} 2846 2847 // 5 bit signed value (simm5) 2848 operand immL5() 2849 %{ 2850 predicate(n->get_long() <= 15 && n->get_long() >= -16); 2851 match(ConL); 2852 2853 op_cost(0); 2854 format %{ %} 2855 interface(CONST_INTER); 2856 %} 2857 2858 // Integer operands 64 bit 2859 // 64 bit immediate 2860 operand immL() 2861 %{ 2862 match(ConL); 2863 2864 op_cost(0); 2865 format %{ %} 2866 interface(CONST_INTER); 2867 %} 2868 2869 // 64 bit zero 2870 operand immL0() 2871 %{ 2872 predicate(n->get_long() == 0); 2873 match(ConL); 2874 2875 op_cost(0); 2876 format %{ %} 2877 interface(CONST_INTER); 2878 %} 2879 2880 // Pointer operands 2881 // Pointer Immediate 2882 operand immP() 2883 %{ 2884 match(ConP); 2885 2886 op_cost(0); 2887 format %{ %} 2888 interface(CONST_INTER); 2889 %} 2890 2891 // Null Pointer Immediate 2892 operand immP0() 2893 %{ 2894 predicate(n->get_ptr() == 0); 2895 match(ConP); 2896 2897 op_cost(0); 2898 format %{ %} 2899 interface(CONST_INTER); 2900 %} 2901 2902 // Pointer Immediate One 2903 // this is used in object initialization (initial object header) 2904 operand immP_1() 2905 %{ 2906 predicate(n->get_ptr() == 1); 2907 match(ConP); 2908 2909 op_cost(0); 2910 format %{ %} 2911 interface(CONST_INTER); 2912 %} 2913 2914 // Card Table Byte Map Base 2915 operand immByteMapBase() 2916 %{ 2917 // Get base of card map 2918 predicate(BarrierSet::barrier_set()->is_a(BarrierSet::CardTableBarrierSet) && 2919 (CardTable::CardValue*)n->get_ptr() == 2920 ((CardTableBarrierSet*)(BarrierSet::barrier_set()))->card_table()->byte_map_base()); 2921 match(ConP); 2922 2923 op_cost(0); 2924 format %{ %} 2925 interface(CONST_INTER); 2926 %} 2927 2928 // Int Immediate: low 16-bit mask 2929 operand immI_16bits() 2930 %{ 2931 predicate(n->get_int() == 0xFFFF); 2932 match(ConI); 2933 op_cost(0); 2934 format %{ %} 2935 interface(CONST_INTER); 2936 %} 2937 2938 operand immIpowerOf2() %{ 2939 predicate(is_power_of_2((juint)(n->get_int()))); 2940 match(ConI); 2941 op_cost(0); 2942 format %{ %} 2943 interface(CONST_INTER); 2944 %} 2945 2946 // Long Immediate: low 32-bit mask 2947 operand immL_32bits() 2948 %{ 2949 predicate(n->get_long() == 0xFFFFFFFFL); 2950 match(ConL); 2951 op_cost(0); 2952 format %{ %} 2953 interface(CONST_INTER); 2954 %} 2955 2956 // 64 bit unit decrement 2957 operand immL_M1() 2958 %{ 2959 predicate(n->get_long() == -1); 2960 match(ConL); 2961 2962 op_cost(0); 2963 format %{ %} 2964 interface(CONST_INTER); 2965 %} 2966 2967 2968 // 64 bit integer valid for add immediate 2969 operand immLAdd() 2970 %{ 2971 predicate(Assembler::is_simm12(n->get_long())); 2972 match(ConL); 2973 op_cost(0); 2974 format %{ %} 2975 interface(CONST_INTER); 2976 %} 2977 2978 // 64 bit integer valid for sub immediate 2979 operand immLSub() 2980 %{ 2981 predicate(Assembler::is_simm12(-(n->get_long()))); 2982 match(ConL); 2983 op_cost(0); 2984 format %{ %} 2985 interface(CONST_INTER); 2986 %} 2987 2988 // Narrow pointer operands 2989 // Narrow Pointer Immediate 2990 operand immN() 2991 %{ 2992 match(ConN); 2993 2994 op_cost(0); 2995 format %{ %} 2996 interface(CONST_INTER); 2997 %} 2998 2999 // Narrow Null Pointer Immediate 3000 operand immN0() 3001 %{ 3002 predicate(n->get_narrowcon() == 0); 3003 match(ConN); 3004 3005 op_cost(0); 3006 format %{ %} 3007 interface(CONST_INTER); 3008 %} 3009 3010 operand immNKlass() 3011 %{ 3012 match(ConNKlass); 3013 3014 op_cost(0); 3015 format %{ %} 3016 interface(CONST_INTER); 3017 %} 3018 3019 // Float and Double operands 3020 // Double Immediate 3021 operand immD() 3022 %{ 3023 match(ConD); 3024 op_cost(0); 3025 format %{ %} 3026 interface(CONST_INTER); 3027 %} 3028 3029 // Double Immediate: +0.0d 3030 operand immD0() 3031 %{ 3032 predicate(jlong_cast(n->getd()) == 0); 3033 match(ConD); 3034 3035 op_cost(0); 3036 format %{ %} 3037 interface(CONST_INTER); 3038 %} 3039 3040 // Float Immediate 3041 operand immF() 3042 %{ 3043 match(ConF); 3044 op_cost(0); 3045 format %{ %} 3046 interface(CONST_INTER); 3047 %} 3048 3049 // Float Immediate: +0.0f. 3050 operand immF0() 3051 %{ 3052 predicate(jint_cast(n->getf()) == 0); 3053 match(ConF); 3054 3055 op_cost(0); 3056 format %{ %} 3057 interface(CONST_INTER); 3058 %} 3059 3060 operand immIOffset() 3061 %{ 3062 predicate(Assembler::is_simm12(n->get_int())); 3063 match(ConI); 3064 op_cost(0); 3065 format %{ %} 3066 interface(CONST_INTER); 3067 %} 3068 3069 operand immLOffset() 3070 %{ 3071 predicate(Assembler::is_simm12(n->get_long())); 3072 match(ConL); 3073 op_cost(0); 3074 format %{ %} 3075 interface(CONST_INTER); 3076 %} 3077 3078 // Scale values 3079 operand immIScale() 3080 %{ 3081 predicate(1 <= n->get_int() && (n->get_int() <= 3)); 3082 match(ConI); 3083 3084 op_cost(0); 3085 format %{ %} 3086 interface(CONST_INTER); 3087 %} 3088 3089 // Integer 32 bit Register Operands 3090 operand iRegI() 3091 %{ 3092 constraint(ALLOC_IN_RC(any_reg32)); 3093 match(RegI); 3094 match(iRegINoSp); 3095 op_cost(0); 3096 format %{ %} 3097 interface(REG_INTER); 3098 %} 3099 3100 // Integer 32 bit Register not Special 3101 operand iRegINoSp() 3102 %{ 3103 constraint(ALLOC_IN_RC(no_special_reg32)); 3104 match(RegI); 3105 op_cost(0); 3106 format %{ %} 3107 interface(REG_INTER); 3108 %} 3109 3110 // Register R10 only 3111 operand iRegI_R10() 3112 %{ 3113 constraint(ALLOC_IN_RC(int_r10_reg)); 3114 match(RegI); 3115 match(iRegINoSp); 3116 op_cost(0); 3117 format %{ %} 3118 interface(REG_INTER); 3119 %} 3120 3121 // Register R12 only 3122 operand iRegI_R12() 3123 %{ 3124 constraint(ALLOC_IN_RC(int_r12_reg)); 3125 match(RegI); 3126 match(iRegINoSp); 3127 op_cost(0); 3128 format %{ %} 3129 interface(REG_INTER); 3130 %} 3131 3132 // Register R13 only 3133 operand iRegI_R13() 3134 %{ 3135 constraint(ALLOC_IN_RC(int_r13_reg)); 3136 match(RegI); 3137 match(iRegINoSp); 3138 op_cost(0); 3139 format %{ %} 3140 interface(REG_INTER); 3141 %} 3142 3143 // Register R14 only 3144 operand iRegI_R14() 3145 %{ 3146 constraint(ALLOC_IN_RC(int_r14_reg)); 3147 match(RegI); 3148 match(iRegINoSp); 3149 op_cost(0); 3150 format %{ %} 3151 interface(REG_INTER); 3152 %} 3153 3154 // Integer 64 bit Register Operands 3155 operand iRegL() 3156 %{ 3157 constraint(ALLOC_IN_RC(any_reg)); 3158 match(RegL); 3159 match(iRegLNoSp); 3160 op_cost(0); 3161 format %{ %} 3162 interface(REG_INTER); 3163 %} 3164 3165 // Integer 64 bit Register not Special 3166 operand iRegLNoSp() 3167 %{ 3168 constraint(ALLOC_IN_RC(no_special_reg)); 3169 match(RegL); 3170 match(iRegL_R10); 3171 format %{ %} 3172 interface(REG_INTER); 3173 %} 3174 3175 // Long 64 bit Register R29 only 3176 operand iRegL_R29() 3177 %{ 3178 constraint(ALLOC_IN_RC(r29_reg)); 3179 match(RegL); 3180 match(iRegLNoSp); 3181 op_cost(0); 3182 format %{ %} 3183 interface(REG_INTER); 3184 %} 3185 3186 // Long 64 bit Register R30 only 3187 operand iRegL_R30() 3188 %{ 3189 constraint(ALLOC_IN_RC(r30_reg)); 3190 match(RegL); 3191 match(iRegLNoSp); 3192 op_cost(0); 3193 format %{ %} 3194 interface(REG_INTER); 3195 %} 3196 3197 // Pointer Register Operands 3198 // Pointer Register 3199 operand iRegP() 3200 %{ 3201 constraint(ALLOC_IN_RC(ptr_reg)); 3202 match(RegP); 3203 match(iRegPNoSp); 3204 match(iRegP_R10); 3205 match(iRegP_R15); 3206 match(javaThread_RegP); 3207 op_cost(0); 3208 format %{ %} 3209 interface(REG_INTER); 3210 %} 3211 3212 // Pointer 64 bit Register not Special 3213 operand iRegPNoSp() 3214 %{ 3215 constraint(ALLOC_IN_RC(no_special_ptr_reg)); 3216 match(RegP); 3217 op_cost(0); 3218 format %{ %} 3219 interface(REG_INTER); 3220 %} 3221 3222 // This operand is not allowed to use fp even if 3223 // fp is not used to hold the frame pointer. 3224 operand iRegPNoSpNoFp() 3225 %{ 3226 constraint(ALLOC_IN_RC(no_special_no_fp_ptr_reg)); 3227 match(RegP); 3228 match(iRegPNoSp); 3229 op_cost(0); 3230 format %{ %} 3231 interface(REG_INTER); 3232 %} 3233 3234 operand iRegP_R10() 3235 %{ 3236 constraint(ALLOC_IN_RC(r10_reg)); 3237 match(RegP); 3238 // match(iRegP); 3239 match(iRegPNoSp); 3240 op_cost(0); 3241 format %{ %} 3242 interface(REG_INTER); 3243 %} 3244 3245 // Pointer 64 bit Register R11 only 3246 operand iRegP_R11() 3247 %{ 3248 constraint(ALLOC_IN_RC(r11_reg)); 3249 match(RegP); 3250 match(iRegPNoSp); 3251 op_cost(0); 3252 format %{ %} 3253 interface(REG_INTER); 3254 %} 3255 3256 operand iRegP_R12() 3257 %{ 3258 constraint(ALLOC_IN_RC(r12_reg)); 3259 match(RegP); 3260 // match(iRegP); 3261 match(iRegPNoSp); 3262 op_cost(0); 3263 format %{ %} 3264 interface(REG_INTER); 3265 %} 3266 3267 // Pointer 64 bit Register R13 only 3268 operand iRegP_R13() 3269 %{ 3270 constraint(ALLOC_IN_RC(r13_reg)); 3271 match(RegP); 3272 match(iRegPNoSp); 3273 op_cost(0); 3274 format %{ %} 3275 interface(REG_INTER); 3276 %} 3277 3278 operand iRegP_R14() 3279 %{ 3280 constraint(ALLOC_IN_RC(r14_reg)); 3281 match(RegP); 3282 // match(iRegP); 3283 match(iRegPNoSp); 3284 op_cost(0); 3285 format %{ %} 3286 interface(REG_INTER); 3287 %} 3288 3289 operand iRegP_R15() 3290 %{ 3291 constraint(ALLOC_IN_RC(r15_reg)); 3292 match(RegP); 3293 // match(iRegP); 3294 match(iRegPNoSp); 3295 op_cost(0); 3296 format %{ %} 3297 interface(REG_INTER); 3298 %} 3299 3300 operand iRegP_R16() 3301 %{ 3302 constraint(ALLOC_IN_RC(r16_reg)); 3303 match(RegP); 3304 match(iRegPNoSp); 3305 op_cost(0); 3306 format %{ %} 3307 interface(REG_INTER); 3308 %} 3309 3310 // Pointer 64 bit Register R28 only 3311 operand iRegP_R28() 3312 %{ 3313 constraint(ALLOC_IN_RC(r28_reg)); 3314 match(RegP); 3315 match(iRegPNoSp); 3316 op_cost(0); 3317 format %{ %} 3318 interface(REG_INTER); 3319 %} 3320 3321 // Pointer 64 bit Register R30 only 3322 operand iRegP_R30() 3323 %{ 3324 constraint(ALLOC_IN_RC(r30_reg)); 3325 match(RegP); 3326 match(iRegPNoSp); 3327 op_cost(0); 3328 format %{ %} 3329 interface(REG_INTER); 3330 %} 3331 3332 // Pointer 64 bit Register R31 only 3333 operand iRegP_R31() 3334 %{ 3335 constraint(ALLOC_IN_RC(r31_reg)); 3336 match(RegP); 3337 match(iRegPNoSp); 3338 op_cost(0); 3339 format %{ %} 3340 interface(REG_INTER); 3341 %} 3342 3343 // Pointer Register Operands 3344 // Narrow Pointer Register 3345 operand iRegN() 3346 %{ 3347 constraint(ALLOC_IN_RC(any_reg32)); 3348 match(RegN); 3349 match(iRegNNoSp); 3350 op_cost(0); 3351 format %{ %} 3352 interface(REG_INTER); 3353 %} 3354 3355 // Integer 64 bit Register not Special 3356 operand iRegNNoSp() 3357 %{ 3358 constraint(ALLOC_IN_RC(no_special_reg32)); 3359 match(RegN); 3360 op_cost(0); 3361 format %{ %} 3362 interface(REG_INTER); 3363 %} 3364 3365 // Long 64 bit Register R10 only 3366 operand iRegL_R10() 3367 %{ 3368 constraint(ALLOC_IN_RC(r10_reg)); 3369 match(RegL); 3370 match(iRegLNoSp); 3371 op_cost(0); 3372 format %{ %} 3373 interface(REG_INTER); 3374 %} 3375 3376 // Float Register 3377 // Float register operands 3378 operand fRegF() 3379 %{ 3380 constraint(ALLOC_IN_RC(float_reg)); 3381 match(RegF); 3382 3383 op_cost(0); 3384 format %{ %} 3385 interface(REG_INTER); 3386 %} 3387 3388 // Double Register 3389 // Double register operands 3390 operand fRegD() 3391 %{ 3392 constraint(ALLOC_IN_RC(double_reg)); 3393 match(RegD); 3394 3395 op_cost(0); 3396 format %{ %} 3397 interface(REG_INTER); 3398 %} 3399 3400 // Generic vector class. This will be used for 3401 // all vector operands. 3402 operand vReg() 3403 %{ 3404 constraint(ALLOC_IN_RC(vectora_reg)); 3405 match(VecA); 3406 op_cost(0); 3407 format %{ %} 3408 interface(REG_INTER); 3409 %} 3410 3411 operand vReg_V1() 3412 %{ 3413 constraint(ALLOC_IN_RC(v1_reg)); 3414 match(VecA); 3415 match(vReg); 3416 op_cost(0); 3417 format %{ %} 3418 interface(REG_INTER); 3419 %} 3420 3421 operand vReg_V2() 3422 %{ 3423 constraint(ALLOC_IN_RC(v2_reg)); 3424 match(VecA); 3425 match(vReg); 3426 op_cost(0); 3427 format %{ %} 3428 interface(REG_INTER); 3429 %} 3430 3431 operand vReg_V3() 3432 %{ 3433 constraint(ALLOC_IN_RC(v3_reg)); 3434 match(VecA); 3435 match(vReg); 3436 op_cost(0); 3437 format %{ %} 3438 interface(REG_INTER); 3439 %} 3440 3441 operand vReg_V4() 3442 %{ 3443 constraint(ALLOC_IN_RC(v4_reg)); 3444 match(VecA); 3445 match(vReg); 3446 op_cost(0); 3447 format %{ %} 3448 interface(REG_INTER); 3449 %} 3450 3451 operand vReg_V5() 3452 %{ 3453 constraint(ALLOC_IN_RC(v5_reg)); 3454 match(VecA); 3455 match(vReg); 3456 op_cost(0); 3457 format %{ %} 3458 interface(REG_INTER); 3459 %} 3460 3461 operand vReg_V6() 3462 %{ 3463 constraint(ALLOC_IN_RC(v6_reg)); 3464 match(VecA); 3465 match(vReg); 3466 op_cost(0); 3467 format %{ %} 3468 interface(REG_INTER); 3469 %} 3470 3471 operand vReg_V7() 3472 %{ 3473 constraint(ALLOC_IN_RC(v7_reg)); 3474 match(VecA); 3475 match(vReg); 3476 op_cost(0); 3477 format %{ %} 3478 interface(REG_INTER); 3479 %} 3480 3481 operand vReg_V8() 3482 %{ 3483 constraint(ALLOC_IN_RC(v8_reg)); 3484 match(VecA); 3485 match(vReg); 3486 op_cost(0); 3487 format %{ %} 3488 interface(REG_INTER); 3489 %} 3490 3491 operand vReg_V9() 3492 %{ 3493 constraint(ALLOC_IN_RC(v9_reg)); 3494 match(VecA); 3495 match(vReg); 3496 op_cost(0); 3497 format %{ %} 3498 interface(REG_INTER); 3499 %} 3500 3501 operand vReg_V10() 3502 %{ 3503 constraint(ALLOC_IN_RC(v10_reg)); 3504 match(VecA); 3505 match(vReg); 3506 op_cost(0); 3507 format %{ %} 3508 interface(REG_INTER); 3509 %} 3510 3511 operand vReg_V11() 3512 %{ 3513 constraint(ALLOC_IN_RC(v11_reg)); 3514 match(VecA); 3515 match(vReg); 3516 op_cost(0); 3517 format %{ %} 3518 interface(REG_INTER); 3519 %} 3520 3521 operand vRegMask() 3522 %{ 3523 constraint(ALLOC_IN_RC(vmask_reg)); 3524 match(RegVectMask); 3525 match(vRegMask_V0); 3526 op_cost(0); 3527 format %{ %} 3528 interface(REG_INTER); 3529 %} 3530 3531 // The mask value used to control execution of a masked 3532 // vector instruction is always supplied by vector register v0. 3533 operand vRegMask_V0() 3534 %{ 3535 constraint(ALLOC_IN_RC(vmask_reg_v0)); 3536 match(RegVectMask); 3537 match(vRegMask); 3538 op_cost(0); 3539 format %{ %} 3540 interface(REG_INTER); 3541 %} 3542 3543 // Java Thread Register 3544 operand javaThread_RegP(iRegP reg) 3545 %{ 3546 constraint(ALLOC_IN_RC(java_thread_reg)); // java_thread_reg 3547 match(reg); 3548 op_cost(0); 3549 format %{ %} 3550 interface(REG_INTER); 3551 %} 3552 3553 //----------Memory Operands---------------------------------------------------- 3554 // RISCV has only base_plus_offset and literal address mode, so no need to use 3555 // index and scale. Here set index as 0xffffffff and scale as 0x0. 3556 operand indirect(iRegP reg) 3557 %{ 3558 constraint(ALLOC_IN_RC(ptr_reg)); 3559 match(reg); 3560 op_cost(0); 3561 format %{ "[$reg]" %} 3562 interface(MEMORY_INTER) %{ 3563 base($reg); 3564 index(0xffffffff); 3565 scale(0x0); 3566 disp(0x0); 3567 %} 3568 %} 3569 3570 operand indOffI(iRegP reg, immIOffset off) 3571 %{ 3572 constraint(ALLOC_IN_RC(ptr_reg)); 3573 match(AddP reg off); 3574 op_cost(0); 3575 format %{ "[$reg, $off]" %} 3576 interface(MEMORY_INTER) %{ 3577 base($reg); 3578 index(0xffffffff); 3579 scale(0x0); 3580 disp($off); 3581 %} 3582 %} 3583 3584 operand indOffL(iRegP reg, immLOffset off) 3585 %{ 3586 constraint(ALLOC_IN_RC(ptr_reg)); 3587 match(AddP reg off); 3588 op_cost(0); 3589 format %{ "[$reg, $off]" %} 3590 interface(MEMORY_INTER) %{ 3591 base($reg); 3592 index(0xffffffff); 3593 scale(0x0); 3594 disp($off); 3595 %} 3596 %} 3597 3598 operand indirectN(iRegN reg) 3599 %{ 3600 predicate(CompressedOops::shift() == 0); 3601 constraint(ALLOC_IN_RC(ptr_reg)); 3602 match(DecodeN reg); 3603 op_cost(0); 3604 format %{ "[$reg]\t# narrow" %} 3605 interface(MEMORY_INTER) %{ 3606 base($reg); 3607 index(0xffffffff); 3608 scale(0x0); 3609 disp(0x0); 3610 %} 3611 %} 3612 3613 operand indOffIN(iRegN reg, immIOffset off) 3614 %{ 3615 predicate(CompressedOops::shift() == 0); 3616 constraint(ALLOC_IN_RC(ptr_reg)); 3617 match(AddP (DecodeN reg) off); 3618 op_cost(0); 3619 format %{ "[$reg, $off]\t# narrow" %} 3620 interface(MEMORY_INTER) %{ 3621 base($reg); 3622 index(0xffffffff); 3623 scale(0x0); 3624 disp($off); 3625 %} 3626 %} 3627 3628 operand indOffLN(iRegN reg, immLOffset off) 3629 %{ 3630 predicate(CompressedOops::shift() == 0); 3631 constraint(ALLOC_IN_RC(ptr_reg)); 3632 match(AddP (DecodeN reg) off); 3633 op_cost(0); 3634 format %{ "[$reg, $off]\t# narrow" %} 3635 interface(MEMORY_INTER) %{ 3636 base($reg); 3637 index(0xffffffff); 3638 scale(0x0); 3639 disp($off); 3640 %} 3641 %} 3642 3643 //----------Special Memory Operands-------------------------------------------- 3644 // Stack Slot Operand - This operand is used for loading and storing temporary 3645 // values on the stack where a match requires a value to 3646 // flow through memory. 3647 operand stackSlotI(sRegI reg) 3648 %{ 3649 constraint(ALLOC_IN_RC(stack_slots)); 3650 // No match rule because this operand is only generated in matching 3651 // match(RegI); 3652 format %{ "[$reg]" %} 3653 interface(MEMORY_INTER) %{ 3654 base(0x02); // RSP 3655 index(0xffffffff); // No Index 3656 scale(0x0); // No Scale 3657 disp($reg); // Stack Offset 3658 %} 3659 %} 3660 3661 operand stackSlotF(sRegF reg) 3662 %{ 3663 constraint(ALLOC_IN_RC(stack_slots)); 3664 // No match rule because this operand is only generated in matching 3665 // match(RegF); 3666 format %{ "[$reg]" %} 3667 interface(MEMORY_INTER) %{ 3668 base(0x02); // RSP 3669 index(0xffffffff); // No Index 3670 scale(0x0); // No Scale 3671 disp($reg); // Stack Offset 3672 %} 3673 %} 3674 3675 operand stackSlotD(sRegD reg) 3676 %{ 3677 constraint(ALLOC_IN_RC(stack_slots)); 3678 // No match rule because this operand is only generated in matching 3679 // match(RegD); 3680 format %{ "[$reg]" %} 3681 interface(MEMORY_INTER) %{ 3682 base(0x02); // RSP 3683 index(0xffffffff); // No Index 3684 scale(0x0); // No Scale 3685 disp($reg); // Stack Offset 3686 %} 3687 %} 3688 3689 operand stackSlotL(sRegL reg) 3690 %{ 3691 constraint(ALLOC_IN_RC(stack_slots)); 3692 // No match rule because this operand is only generated in matching 3693 // match(RegL); 3694 format %{ "[$reg]" %} 3695 interface(MEMORY_INTER) %{ 3696 base(0x02); // RSP 3697 index(0xffffffff); // No Index 3698 scale(0x0); // No Scale 3699 disp($reg); // Stack Offset 3700 %} 3701 %} 3702 3703 // Special operand allowing long args to int ops to be truncated for free 3704 3705 operand iRegL2I(iRegL reg) %{ 3706 3707 op_cost(0); 3708 3709 match(ConvL2I reg); 3710 3711 format %{ "l2i($reg)" %} 3712 3713 interface(REG_INTER) 3714 %} 3715 3716 3717 // Comparison Operands 3718 // NOTE: Label is a predefined operand which should not be redefined in 3719 // the AD file. It is generically handled within the ADLC. 3720 3721 //----------Conditional Branch Operands---------------------------------------- 3722 // Comparison Op - This is the operation of the comparison, and is limited to 3723 // the following set of codes: 3724 // L (<), LE (<=), G (>), GE (>=), E (==), NE (!=) 3725 // 3726 // Other attributes of the comparison, such as unsignedness, are specified 3727 // by the comparison instruction that sets a condition code flags register. 3728 // That result is represented by a flags operand whose subtype is appropriate 3729 // to the unsignedness (etc.) of the comparison. 3730 // 3731 // Later, the instruction which matches both the Comparison Op (a Bool) and 3732 // the flags (produced by the Cmp) specifies the coding of the comparison op 3733 // by matching a specific subtype of Bool operand below, such as cmpOpU. 3734 3735 3736 // used for signed integral comparisons and fp comparisons 3737 operand cmpOp() 3738 %{ 3739 match(Bool); 3740 3741 format %{ "" %} 3742 3743 // the values in interface derives from struct BoolTest::mask 3744 interface(COND_INTER) %{ 3745 equal(0x0, "eq"); 3746 greater(0x1, "gt"); 3747 overflow(0x2, "overflow"); 3748 less(0x3, "lt"); 3749 not_equal(0x4, "ne"); 3750 less_equal(0x5, "le"); 3751 no_overflow(0x6, "no_overflow"); 3752 greater_equal(0x7, "ge"); 3753 %} 3754 %} 3755 3756 // used for unsigned integral comparisons 3757 operand cmpOpU() 3758 %{ 3759 match(Bool); 3760 3761 format %{ "" %} 3762 // the values in interface derives from struct BoolTest::mask 3763 interface(COND_INTER) %{ 3764 equal(0x0, "eq"); 3765 greater(0x1, "gtu"); 3766 overflow(0x2, "overflow"); 3767 less(0x3, "ltu"); 3768 not_equal(0x4, "ne"); 3769 less_equal(0x5, "leu"); 3770 no_overflow(0x6, "no_overflow"); 3771 greater_equal(0x7, "geu"); 3772 %} 3773 %} 3774 3775 // used for certain integral comparisons which can be 3776 // converted to bxx instructions 3777 operand cmpOpEqNe() 3778 %{ 3779 match(Bool); 3780 op_cost(0); 3781 predicate(n->as_Bool()->_test._test == BoolTest::ne || 3782 n->as_Bool()->_test._test == BoolTest::eq); 3783 3784 format %{ "" %} 3785 interface(COND_INTER) %{ 3786 equal(0x0, "eq"); 3787 greater(0x1, "gt"); 3788 overflow(0x2, "overflow"); 3789 less(0x3, "lt"); 3790 not_equal(0x4, "ne"); 3791 less_equal(0x5, "le"); 3792 no_overflow(0x6, "no_overflow"); 3793 greater_equal(0x7, "ge"); 3794 %} 3795 %} 3796 3797 operand cmpOpULtGe() 3798 %{ 3799 match(Bool); 3800 op_cost(0); 3801 predicate(n->as_Bool()->_test._test == BoolTest::lt || 3802 n->as_Bool()->_test._test == BoolTest::ge); 3803 3804 format %{ "" %} 3805 interface(COND_INTER) %{ 3806 equal(0x0, "eq"); 3807 greater(0x1, "gtu"); 3808 overflow(0x2, "overflow"); 3809 less(0x3, "ltu"); 3810 not_equal(0x4, "ne"); 3811 less_equal(0x5, "leu"); 3812 no_overflow(0x6, "no_overflow"); 3813 greater_equal(0x7, "geu"); 3814 %} 3815 %} 3816 3817 operand cmpOpUEqNeLeGt() 3818 %{ 3819 match(Bool); 3820 op_cost(0); 3821 predicate(n->as_Bool()->_test._test == BoolTest::ne || 3822 n->as_Bool()->_test._test == BoolTest::eq || 3823 n->as_Bool()->_test._test == BoolTest::le || 3824 n->as_Bool()->_test._test == BoolTest::gt); 3825 3826 format %{ "" %} 3827 interface(COND_INTER) %{ 3828 equal(0x0, "eq"); 3829 greater(0x1, "gtu"); 3830 overflow(0x2, "overflow"); 3831 less(0x3, "ltu"); 3832 not_equal(0x4, "ne"); 3833 less_equal(0x5, "leu"); 3834 no_overflow(0x6, "no_overflow"); 3835 greater_equal(0x7, "geu"); 3836 %} 3837 %} 3838 3839 3840 // Flags register, used as output of compare logic 3841 operand rFlagsReg() 3842 %{ 3843 constraint(ALLOC_IN_RC(reg_flags)); 3844 match(RegFlags); 3845 3846 op_cost(0); 3847 format %{ "RFLAGS" %} 3848 interface(REG_INTER); 3849 %} 3850 3851 // Special Registers 3852 3853 // Method Register 3854 operand inline_cache_RegP(iRegP reg) 3855 %{ 3856 constraint(ALLOC_IN_RC(method_reg)); // inline_cache_reg 3857 match(reg); 3858 match(iRegPNoSp); 3859 op_cost(0); 3860 format %{ %} 3861 interface(REG_INTER); 3862 %} 3863 3864 //----------OPERAND CLASSES---------------------------------------------------- 3865 // Operand Classes are groups of operands that are used as to simplify 3866 // instruction definitions by not requiring the AD writer to specify 3867 // separate instructions for every form of operand when the 3868 // instruction accepts multiple operand types with the same basic 3869 // encoding and format. The classic case of this is memory operands. 3870 3871 // memory is used to define read/write location for load/store 3872 // instruction defs. we can turn a memory op into an Address 3873 3874 opclass memory(indirect, indOffI, indOffL, indirectN, indOffIN, indOffLN); 3875 3876 // iRegIorL2I is used for src inputs in rules for 32 bit int (I) 3877 // operations. it allows the src to be either an iRegI or a (ConvL2I 3878 // iRegL). in the latter case the l2i normally planted for a ConvL2I 3879 // can be elided because the 32-bit instruction will just employ the 3880 // lower 32 bits anyway. 3881 // 3882 // n.b. this does not elide all L2I conversions. if the truncated 3883 // value is consumed by more than one operation then the ConvL2I 3884 // cannot be bundled into the consuming nodes so an l2i gets planted 3885 // (actually an addiw $dst, $src, 0) and the downstream instructions 3886 // consume the result of the L2I as an iRegI input. That's a shame since 3887 // the addiw is actually redundant but its not too costly. 3888 3889 opclass iRegIorL2I(iRegI, iRegL2I); 3890 opclass iRegIorL(iRegI, iRegL); 3891 opclass iRegNorP(iRegN, iRegP); 3892 opclass iRegILNP(iRegI, iRegL, iRegN, iRegP); 3893 opclass iRegILNPNoSp(iRegINoSp, iRegLNoSp, iRegNNoSp, iRegPNoSp); 3894 opclass immIorL(immI, immL); 3895 3896 //----------PIPELINE----------------------------------------------------------- 3897 // Rules which define the behavior of the target architectures pipeline. 3898 3899 // For specific pipelines, e.g. generic RISC-V, define the stages of that pipeline 3900 //pipe_desc(ID, EX, MEM, WR); 3901 #define ID S0 3902 #define EX S1 3903 #define MEM S2 3904 #define WR S3 3905 3906 // Integer ALU reg operation 3907 pipeline %{ 3908 3909 attributes %{ 3910 // RISC-V instructions are of fixed length 3911 fixed_size_instructions; // Fixed size instructions TODO does 3912 max_instructions_per_bundle = 2; // Generic RISC-V 1, Sifive Series 7 2 3913 // RISC-V instructions come in 32-bit word units 3914 instruction_unit_size = 4; // An instruction is 4 bytes long 3915 instruction_fetch_unit_size = 64; // The processor fetches one line 3916 instruction_fetch_units = 1; // of 64 bytes 3917 3918 // List of nop instructions 3919 nops( MachNop ); 3920 %} 3921 3922 // We don't use an actual pipeline model so don't care about resources 3923 // or description. we do use pipeline classes to introduce fixed 3924 // latencies 3925 3926 //----------RESOURCES---------------------------------------------------------- 3927 // Resources are the functional units available to the machine 3928 3929 // Generic RISC-V pipeline 3930 // 1 decoder 3931 // 1 instruction decoded per cycle 3932 // 1 load/store ops per cycle, 1 branch, 1 FPU 3933 // 1 mul, 1 div 3934 3935 resources ( DECODE, 3936 ALU, 3937 MUL, 3938 DIV, 3939 BRANCH, 3940 LDST, 3941 FPU); 3942 3943 //----------PIPELINE DESCRIPTION----------------------------------------------- 3944 // Pipeline Description specifies the stages in the machine's pipeline 3945 3946 // Define the pipeline as a generic 6 stage pipeline 3947 pipe_desc(S0, S1, S2, S3, S4, S5); 3948 3949 //----------PIPELINE CLASSES--------------------------------------------------- 3950 // Pipeline Classes describe the stages in which input and output are 3951 // referenced by the hardware pipeline. 3952 3953 pipe_class fp_dop_reg_reg_s(fRegF dst, fRegF src1, fRegF src2) 3954 %{ 3955 single_instruction; 3956 src1 : S1(read); 3957 src2 : S2(read); 3958 dst : S5(write); 3959 DECODE : ID; 3960 FPU : S5; 3961 %} 3962 3963 pipe_class fp_dop_reg_reg_d(fRegD dst, fRegD src1, fRegD src2) 3964 %{ 3965 src1 : S1(read); 3966 src2 : S2(read); 3967 dst : S5(write); 3968 DECODE : ID; 3969 FPU : S5; 3970 %} 3971 3972 pipe_class fp_uop_s(fRegF dst, fRegF src) 3973 %{ 3974 single_instruction; 3975 src : S1(read); 3976 dst : S5(write); 3977 DECODE : ID; 3978 FPU : S5; 3979 %} 3980 3981 pipe_class fp_uop_d(fRegD dst, fRegD src) 3982 %{ 3983 single_instruction; 3984 src : S1(read); 3985 dst : S5(write); 3986 DECODE : ID; 3987 FPU : S5; 3988 %} 3989 3990 pipe_class fp_d2f(fRegF dst, fRegD src) 3991 %{ 3992 single_instruction; 3993 src : S1(read); 3994 dst : S5(write); 3995 DECODE : ID; 3996 FPU : S5; 3997 %} 3998 3999 pipe_class fp_f2d(fRegD dst, fRegF src) 4000 %{ 4001 single_instruction; 4002 src : S1(read); 4003 dst : S5(write); 4004 DECODE : ID; 4005 FPU : S5; 4006 %} 4007 4008 pipe_class fp_f2i(iRegINoSp dst, fRegF src) 4009 %{ 4010 single_instruction; 4011 src : S1(read); 4012 dst : S5(write); 4013 DECODE : ID; 4014 FPU : S5; 4015 %} 4016 4017 pipe_class fp_f2l(iRegLNoSp dst, fRegF src) 4018 %{ 4019 single_instruction; 4020 src : S1(read); 4021 dst : S5(write); 4022 DECODE : ID; 4023 FPU : S5; 4024 %} 4025 4026 pipe_class fp_i2f(fRegF dst, iRegIorL2I src) 4027 %{ 4028 single_instruction; 4029 src : S1(read); 4030 dst : S5(write); 4031 DECODE : ID; 4032 FPU : S5; 4033 %} 4034 4035 pipe_class fp_l2f(fRegF dst, iRegL src) 4036 %{ 4037 single_instruction; 4038 src : S1(read); 4039 dst : S5(write); 4040 DECODE : ID; 4041 FPU : S5; 4042 %} 4043 4044 pipe_class fp_d2i(iRegINoSp dst, fRegD src) 4045 %{ 4046 single_instruction; 4047 src : S1(read); 4048 dst : S5(write); 4049 DECODE : ID; 4050 FPU : S5; 4051 %} 4052 4053 pipe_class fp_d2l(iRegLNoSp dst, fRegD src) 4054 %{ 4055 single_instruction; 4056 src : S1(read); 4057 dst : S5(write); 4058 DECODE : ID; 4059 FPU : S5; 4060 %} 4061 4062 pipe_class fp_i2d(fRegD dst, iRegIorL2I src) 4063 %{ 4064 single_instruction; 4065 src : S1(read); 4066 dst : S5(write); 4067 DECODE : ID; 4068 FPU : S5; 4069 %} 4070 4071 pipe_class fp_l2d(fRegD dst, iRegIorL2I src) 4072 %{ 4073 single_instruction; 4074 src : S1(read); 4075 dst : S5(write); 4076 DECODE : ID; 4077 FPU : S5; 4078 %} 4079 4080 pipe_class fp_div_s(fRegF dst, fRegF src1, fRegF src2) 4081 %{ 4082 single_instruction; 4083 src1 : S1(read); 4084 src2 : S2(read); 4085 dst : S5(write); 4086 DECODE : ID; 4087 FPU : S5; 4088 %} 4089 4090 pipe_class fp_div_d(fRegD dst, fRegD src1, fRegD src2) 4091 %{ 4092 single_instruction; 4093 src1 : S1(read); 4094 src2 : S2(read); 4095 dst : S5(write); 4096 DECODE : ID; 4097 FPU : S5; 4098 %} 4099 4100 pipe_class fp_sqrt_s(fRegF dst, fRegF src1, fRegF src2) 4101 %{ 4102 single_instruction; 4103 src1 : S1(read); 4104 src2 : S2(read); 4105 dst : S5(write); 4106 DECODE : ID; 4107 FPU : S5; 4108 %} 4109 4110 pipe_class fp_sqrt_d(fRegD dst, fRegD src1, fRegD src2) 4111 %{ 4112 single_instruction; 4113 src1 : S1(read); 4114 src2 : S2(read); 4115 dst : S5(write); 4116 DECODE : ID; 4117 FPU : S5; 4118 %} 4119 4120 pipe_class fp_load_constant_s(fRegF dst) 4121 %{ 4122 single_instruction; 4123 dst : S5(write); 4124 DECODE : ID; 4125 FPU : S5; 4126 %} 4127 4128 pipe_class fp_load_constant_d(fRegD dst) 4129 %{ 4130 single_instruction; 4131 dst : S5(write); 4132 DECODE : ID; 4133 FPU : S5; 4134 %} 4135 4136 pipe_class fp_load_mem_s(fRegF dst, memory mem) 4137 %{ 4138 single_instruction; 4139 mem : S1(read); 4140 dst : S5(write); 4141 DECODE : ID; 4142 LDST : MEM; 4143 %} 4144 4145 pipe_class fp_load_mem_d(fRegD dst, memory mem) 4146 %{ 4147 single_instruction; 4148 mem : S1(read); 4149 dst : S5(write); 4150 DECODE : ID; 4151 LDST : MEM; 4152 %} 4153 4154 pipe_class fp_store_reg_s(fRegF src, memory mem) 4155 %{ 4156 single_instruction; 4157 src : S1(read); 4158 mem : S5(write); 4159 DECODE : ID; 4160 LDST : MEM; 4161 %} 4162 4163 pipe_class fp_store_reg_d(fRegD src, memory mem) 4164 %{ 4165 single_instruction; 4166 src : S1(read); 4167 mem : S5(write); 4168 DECODE : ID; 4169 LDST : MEM; 4170 %} 4171 4172 //------- Integer ALU operations -------------------------- 4173 4174 // Integer ALU reg-reg operation 4175 // Operands needs in ID, result generated in EX 4176 // E.g. ADD Rd, Rs1, Rs2 4177 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) 4178 %{ 4179 single_instruction; 4180 dst : EX(write); 4181 src1 : ID(read); 4182 src2 : ID(read); 4183 DECODE : ID; 4184 ALU : EX; 4185 %} 4186 4187 // Integer ALU reg operation with constant shift 4188 // E.g. SLLI Rd, Rs1, #shift 4189 pipe_class ialu_reg_shift(iRegI dst, iRegI src1) 4190 %{ 4191 single_instruction; 4192 dst : EX(write); 4193 src1 : ID(read); 4194 DECODE : ID; 4195 ALU : EX; 4196 %} 4197 4198 // Integer ALU reg-reg operation with variable shift 4199 // both operands must be available in ID 4200 // E.g. SLL Rd, Rs1, Rs2 4201 pipe_class ialu_reg_reg_vshift(iRegI dst, iRegI src1, iRegI src2) 4202 %{ 4203 single_instruction; 4204 dst : EX(write); 4205 src1 : ID(read); 4206 src2 : ID(read); 4207 DECODE : ID; 4208 ALU : EX; 4209 %} 4210 4211 // Integer ALU reg operation 4212 // E.g. NEG Rd, Rs2 4213 pipe_class ialu_reg(iRegI dst, iRegI src) 4214 %{ 4215 single_instruction; 4216 dst : EX(write); 4217 src : ID(read); 4218 DECODE : ID; 4219 ALU : EX; 4220 %} 4221 4222 // Integer ALU reg immediate operation 4223 // E.g. ADDI Rd, Rs1, #imm 4224 pipe_class ialu_reg_imm(iRegI dst, iRegI src1) 4225 %{ 4226 single_instruction; 4227 dst : EX(write); 4228 src1 : ID(read); 4229 DECODE : ID; 4230 ALU : EX; 4231 %} 4232 4233 // Integer ALU immediate operation (no source operands) 4234 // E.g. LI Rd, #imm 4235 pipe_class ialu_imm(iRegI dst) 4236 %{ 4237 single_instruction; 4238 dst : EX(write); 4239 DECODE : ID; 4240 ALU : EX; 4241 %} 4242 4243 //------- Multiply pipeline operations -------------------- 4244 4245 // Multiply reg-reg 4246 // E.g. MULW Rd, Rs1, Rs2 4247 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) 4248 %{ 4249 single_instruction; 4250 dst : WR(write); 4251 src1 : ID(read); 4252 src2 : ID(read); 4253 DECODE : ID; 4254 MUL : WR; 4255 %} 4256 4257 // E.g. MUL RD, Rs1, Rs2 4258 pipe_class lmul_reg_reg(iRegL dst, iRegL src1, iRegL src2) 4259 %{ 4260 single_instruction; 4261 fixed_latency(3); // Maximum latency for 64 bit mul 4262 dst : WR(write); 4263 src1 : ID(read); 4264 src2 : ID(read); 4265 DECODE : ID; 4266 MUL : WR; 4267 %} 4268 4269 //------- Divide pipeline operations -------------------- 4270 4271 // E.g. DIVW Rd, Rs1, Rs2 4272 pipe_class idiv_reg_reg(iRegI dst, iRegI src1, iRegI src2) 4273 %{ 4274 single_instruction; 4275 fixed_latency(8); // Maximum latency for 32 bit divide 4276 dst : WR(write); 4277 src1 : ID(read); 4278 src2 : ID(read); 4279 DECODE : ID; 4280 DIV : WR; 4281 %} 4282 4283 // E.g. DIV RD, Rs1, Rs2 4284 pipe_class ldiv_reg_reg(iRegL dst, iRegL src1, iRegL src2) 4285 %{ 4286 single_instruction; 4287 fixed_latency(16); // Maximum latency for 64 bit divide 4288 dst : WR(write); 4289 src1 : ID(read); 4290 src2 : ID(read); 4291 DECODE : ID; 4292 DIV : WR; 4293 %} 4294 4295 //------- Load pipeline operations ------------------------ 4296 4297 // Load - prefetch 4298 // Eg. PREFETCH_W mem 4299 pipe_class iload_prefetch(memory mem) 4300 %{ 4301 single_instruction; 4302 mem : ID(read); 4303 DECODE : ID; 4304 LDST : MEM; 4305 %} 4306 4307 // Load - reg, mem 4308 // E.g. LA Rd, mem 4309 pipe_class iload_reg_mem(iRegI dst, memory mem) 4310 %{ 4311 single_instruction; 4312 dst : WR(write); 4313 mem : ID(read); 4314 DECODE : ID; 4315 LDST : MEM; 4316 %} 4317 4318 // Load - reg, reg 4319 // E.g. LD Rd, Rs 4320 pipe_class iload_reg_reg(iRegI dst, iRegI src) 4321 %{ 4322 single_instruction; 4323 dst : WR(write); 4324 src : ID(read); 4325 DECODE : ID; 4326 LDST : MEM; 4327 %} 4328 4329 //------- Store pipeline operations ----------------------- 4330 4331 // Store - zr, mem 4332 // E.g. SD zr, mem 4333 pipe_class istore_mem(memory mem) 4334 %{ 4335 single_instruction; 4336 mem : ID(read); 4337 DECODE : ID; 4338 LDST : MEM; 4339 %} 4340 4341 // Store - reg, mem 4342 // E.g. SD Rs, mem 4343 pipe_class istore_reg_mem(iRegI src, memory mem) 4344 %{ 4345 single_instruction; 4346 mem : ID(read); 4347 src : EX(read); 4348 DECODE : ID; 4349 LDST : MEM; 4350 %} 4351 4352 // Store - reg, reg 4353 // E.g. SD Rs2, Rs1 4354 pipe_class istore_reg_reg(iRegI dst, iRegI src) 4355 %{ 4356 single_instruction; 4357 dst : ID(read); 4358 src : EX(read); 4359 DECODE : ID; 4360 LDST : MEM; 4361 %} 4362 4363 //------- Control transfer pipeline operations ------------ 4364 4365 // Branch 4366 pipe_class pipe_branch() 4367 %{ 4368 single_instruction; 4369 DECODE : ID; 4370 BRANCH : EX; 4371 %} 4372 4373 // Branch 4374 pipe_class pipe_branch_reg(iRegI src) 4375 %{ 4376 single_instruction; 4377 src : ID(read); 4378 DECODE : ID; 4379 BRANCH : EX; 4380 %} 4381 4382 // Compare & Branch 4383 // E.g. BEQ Rs1, Rs2, L 4384 pipe_class pipe_cmp_branch(iRegI src1, iRegI src2) 4385 %{ 4386 single_instruction; 4387 src1 : ID(read); 4388 src2 : ID(read); 4389 DECODE : ID; 4390 BRANCH : EX; 4391 %} 4392 4393 // E.g. BEQZ Rs, L 4394 pipe_class pipe_cmpz_branch(iRegI src) 4395 %{ 4396 single_instruction; 4397 src : ID(read); 4398 DECODE : ID; 4399 BRANCH : EX; 4400 %} 4401 4402 //------- Synchronisation operations ---------------------- 4403 // Any operation requiring serialization 4404 // E.g. FENCE/Atomic Ops/Load Acquire/Store Release 4405 pipe_class pipe_serial() 4406 %{ 4407 single_instruction; 4408 force_serialization; 4409 fixed_latency(16); 4410 DECODE : ID; 4411 LDST : MEM; 4412 %} 4413 4414 pipe_class pipe_slow() 4415 %{ 4416 instruction_count(10); 4417 multiple_bundles; 4418 force_serialization; 4419 fixed_latency(16); 4420 DECODE : ID; 4421 LDST : MEM; 4422 %} 4423 4424 // Empty pipeline class 4425 pipe_class pipe_class_empty() 4426 %{ 4427 single_instruction; 4428 fixed_latency(0); 4429 %} 4430 4431 // Default pipeline class. 4432 pipe_class pipe_class_default() 4433 %{ 4434 single_instruction; 4435 fixed_latency(2); 4436 %} 4437 4438 // Pipeline class for compares. 4439 pipe_class pipe_class_compare() 4440 %{ 4441 single_instruction; 4442 fixed_latency(16); 4443 %} 4444 4445 // Pipeline class for memory operations. 4446 pipe_class pipe_class_memory() 4447 %{ 4448 single_instruction; 4449 fixed_latency(16); 4450 %} 4451 4452 // Pipeline class for call. 4453 pipe_class pipe_class_call() 4454 %{ 4455 single_instruction; 4456 fixed_latency(100); 4457 %} 4458 4459 // Define the class for the Nop node. 4460 define %{ 4461 MachNop = pipe_class_empty; 4462 %} 4463 %} 4464 //----------INSTRUCTIONS------------------------------------------------------- 4465 // 4466 // match -- States which machine-independent subtree may be replaced 4467 // by this instruction. 4468 // ins_cost -- The estimated cost of this instruction is used by instruction 4469 // selection to identify a minimum cost tree of machine 4470 // instructions that matches a tree of machine-independent 4471 // instructions. 4472 // format -- A string providing the disassembly for this instruction. 4473 // The value of an instruction's operand may be inserted 4474 // by referring to it with a '$' prefix. 4475 // opcode -- Three instruction opcodes may be provided. These are referred 4476 // to within an encode class as $primary, $secondary, and $tertiary 4477 // rrspectively. The primary opcode is commonly used to 4478 // indicate the type of machine instruction, while secondary 4479 // and tertiary are often used for prefix options or addressing 4480 // modes. 4481 // ins_encode -- A list of encode classes with parameters. The encode class 4482 // name must have been defined in an 'enc_class' specification 4483 // in the encode section of the architecture description. 4484 4485 // ============================================================================ 4486 // Memory (Load/Store) Instructions 4487 4488 // Load Instructions 4489 4490 // Load Byte (8 bit signed) 4491 instruct loadB(iRegINoSp dst, memory mem) 4492 %{ 4493 match(Set dst (LoadB mem)); 4494 4495 ins_cost(LOAD_COST); 4496 format %{ "lb $dst, $mem\t# byte, #@loadB" %} 4497 4498 ins_encode %{ 4499 __ lb(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp)); 4500 %} 4501 4502 ins_pipe(iload_reg_mem); 4503 %} 4504 4505 // Load Byte (8 bit signed) into long 4506 instruct loadB2L(iRegLNoSp dst, memory mem) 4507 %{ 4508 match(Set dst (ConvI2L (LoadB mem))); 4509 4510 ins_cost(LOAD_COST); 4511 format %{ "lb $dst, $mem\t# byte, #@loadB2L" %} 4512 4513 ins_encode %{ 4514 __ lb(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp)); 4515 %} 4516 4517 ins_pipe(iload_reg_mem); 4518 %} 4519 4520 // Load Byte (8 bit unsigned) 4521 instruct loadUB(iRegINoSp dst, memory mem) 4522 %{ 4523 match(Set dst (LoadUB mem)); 4524 4525 ins_cost(LOAD_COST); 4526 format %{ "lbu $dst, $mem\t# byte, #@loadUB" %} 4527 4528 ins_encode %{ 4529 __ lbu(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp)); 4530 %} 4531 4532 ins_pipe(iload_reg_mem); 4533 %} 4534 4535 // Load Byte (8 bit unsigned) into long 4536 instruct loadUB2L(iRegLNoSp dst, memory mem) 4537 %{ 4538 match(Set dst (ConvI2L (LoadUB mem))); 4539 4540 ins_cost(LOAD_COST); 4541 format %{ "lbu $dst, $mem\t# byte, #@loadUB2L" %} 4542 4543 ins_encode %{ 4544 __ lbu(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp)); 4545 %} 4546 4547 ins_pipe(iload_reg_mem); 4548 %} 4549 4550 // Load Short (16 bit signed) 4551 instruct loadS(iRegINoSp dst, memory mem) 4552 %{ 4553 match(Set dst (LoadS mem)); 4554 4555 ins_cost(LOAD_COST); 4556 format %{ "lh $dst, $mem\t# short, #@loadS" %} 4557 4558 ins_encode %{ 4559 __ lh(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp)); 4560 %} 4561 4562 ins_pipe(iload_reg_mem); 4563 %} 4564 4565 // Load Short (16 bit signed) into long 4566 instruct loadS2L(iRegLNoSp dst, memory mem) 4567 %{ 4568 match(Set dst (ConvI2L (LoadS mem))); 4569 4570 ins_cost(LOAD_COST); 4571 format %{ "lh $dst, $mem\t# short, #@loadS2L" %} 4572 4573 ins_encode %{ 4574 __ lh(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp)); 4575 %} 4576 4577 ins_pipe(iload_reg_mem); 4578 %} 4579 4580 // Load Char (16 bit unsigned) 4581 instruct loadUS(iRegINoSp dst, memory mem) 4582 %{ 4583 match(Set dst (LoadUS mem)); 4584 4585 ins_cost(LOAD_COST); 4586 format %{ "lhu $dst, $mem\t# short, #@loadUS" %} 4587 4588 ins_encode %{ 4589 __ lhu(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp)); 4590 %} 4591 4592 ins_pipe(iload_reg_mem); 4593 %} 4594 4595 // Load Short/Char (16 bit unsigned) into long 4596 instruct loadUS2L(iRegLNoSp dst, memory mem) 4597 %{ 4598 match(Set dst (ConvI2L (LoadUS mem))); 4599 4600 ins_cost(LOAD_COST); 4601 format %{ "lhu $dst, $mem\t# short, #@loadUS2L" %} 4602 4603 ins_encode %{ 4604 __ lhu(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp)); 4605 %} 4606 4607 ins_pipe(iload_reg_mem); 4608 %} 4609 4610 // Load Integer (32 bit signed) 4611 instruct loadI(iRegINoSp dst, memory mem) 4612 %{ 4613 match(Set dst (LoadI mem)); 4614 4615 ins_cost(LOAD_COST); 4616 format %{ "lw $dst, $mem\t# int, #@loadI" %} 4617 4618 ins_encode %{ 4619 __ lw(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp)); 4620 %} 4621 4622 ins_pipe(iload_reg_mem); 4623 %} 4624 4625 // Load Integer (32 bit signed) into long 4626 instruct loadI2L(iRegLNoSp dst, memory mem) 4627 %{ 4628 match(Set dst (ConvI2L (LoadI mem))); 4629 4630 ins_cost(LOAD_COST); 4631 format %{ "lw $dst, $mem\t# int, #@loadI2L" %} 4632 4633 ins_encode %{ 4634 __ lw(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp)); 4635 %} 4636 4637 ins_pipe(iload_reg_mem); 4638 %} 4639 4640 // Load Integer (32 bit unsigned) into long 4641 instruct loadUI2L(iRegLNoSp dst, memory mem, immL_32bits mask) 4642 %{ 4643 match(Set dst (AndL (ConvI2L (LoadI mem)) mask)); 4644 4645 ins_cost(LOAD_COST); 4646 format %{ "lwu $dst, $mem\t# int, #@loadUI2L" %} 4647 4648 ins_encode %{ 4649 __ lwu(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp)); 4650 %} 4651 4652 ins_pipe(iload_reg_mem); 4653 %} 4654 4655 // Load Long (64 bit signed) 4656 instruct loadL(iRegLNoSp dst, memory mem) 4657 %{ 4658 match(Set dst (LoadL mem)); 4659 4660 ins_cost(LOAD_COST); 4661 format %{ "ld $dst, $mem\t# int, #@loadL" %} 4662 4663 ins_encode %{ 4664 __ ld(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp)); 4665 %} 4666 4667 ins_pipe(iload_reg_mem); 4668 %} 4669 4670 // Load Range 4671 instruct loadRange(iRegINoSp dst, memory mem) 4672 %{ 4673 match(Set dst (LoadRange mem)); 4674 4675 ins_cost(LOAD_COST); 4676 format %{ "lwu $dst, $mem\t# range, #@loadRange" %} 4677 4678 ins_encode %{ 4679 __ lwu(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp)); 4680 %} 4681 4682 ins_pipe(iload_reg_mem); 4683 %} 4684 4685 // Load Pointer 4686 instruct loadP(iRegPNoSp dst, memory mem) 4687 %{ 4688 match(Set dst (LoadP mem)); 4689 predicate(n->as_Load()->barrier_data() == 0); 4690 4691 ins_cost(LOAD_COST); 4692 format %{ "ld $dst, $mem\t# ptr, #@loadP" %} 4693 4694 ins_encode %{ 4695 __ ld(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp)); 4696 %} 4697 4698 ins_pipe(iload_reg_mem); 4699 %} 4700 4701 // Load Compressed Pointer 4702 instruct loadN(iRegNNoSp dst, memory mem) 4703 %{ 4704 predicate(n->as_Load()->barrier_data() == 0); 4705 match(Set dst (LoadN mem)); 4706 4707 ins_cost(LOAD_COST); 4708 format %{ "lwu $dst, $mem\t# compressed ptr, #@loadN" %} 4709 4710 ins_encode %{ 4711 __ lwu(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp)); 4712 %} 4713 4714 ins_pipe(iload_reg_mem); 4715 %} 4716 4717 // Load Klass Pointer 4718 instruct loadKlass(iRegPNoSp dst, memory mem) 4719 %{ 4720 match(Set dst (LoadKlass mem)); 4721 4722 ins_cost(LOAD_COST); 4723 format %{ "ld $dst, $mem\t# class, #@loadKlass" %} 4724 4725 ins_encode %{ 4726 __ ld(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp)); 4727 %} 4728 4729 ins_pipe(iload_reg_mem); 4730 %} 4731 4732 // Load Narrow Klass Pointer 4733 instruct loadNKlass(iRegNNoSp dst, memory mem) 4734 %{ 4735 predicate(!UseCompactObjectHeaders); 4736 match(Set dst (LoadNKlass mem)); 4737 4738 ins_cost(LOAD_COST); 4739 format %{ "lwu $dst, $mem\t# compressed class ptr, #@loadNKlass" %} 4740 4741 ins_encode %{ 4742 __ lwu(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp)); 4743 %} 4744 4745 ins_pipe(iload_reg_mem); 4746 %} 4747 4748 instruct loadNKlassCompactHeaders(iRegNNoSp dst, memory mem) 4749 %{ 4750 predicate(UseCompactObjectHeaders); 4751 match(Set dst (LoadNKlass mem)); 4752 4753 ins_cost(LOAD_COST); 4754 format %{ 4755 "lwu $dst, $mem\t# compressed klass ptr, shifted\n\t" 4756 "srli $dst, $dst, markWord::klass_shift_at_offset" 4757 %} 4758 4759 ins_encode %{ 4760 Unimplemented(); 4761 // __ lwu(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp)); 4762 // __ srli(as_Register($dst$$reg), as_Register($dst$$reg), (unsigned) markWord::klass_shift_at_offset); 4763 %} 4764 4765 ins_pipe(iload_reg_mem); 4766 %} 4767 4768 // Load Float 4769 instruct loadF(fRegF dst, memory mem) 4770 %{ 4771 match(Set dst (LoadF mem)); 4772 4773 ins_cost(LOAD_COST); 4774 format %{ "flw $dst, $mem\t# float, #@loadF" %} 4775 4776 ins_encode %{ 4777 __ flw(as_FloatRegister($dst$$reg), Address(as_Register($mem$$base), $mem$$disp)); 4778 %} 4779 4780 ins_pipe(fp_load_mem_s); 4781 %} 4782 4783 // Load Double 4784 instruct loadD(fRegD dst, memory mem) 4785 %{ 4786 match(Set dst (LoadD mem)); 4787 4788 ins_cost(LOAD_COST); 4789 format %{ "fld $dst, $mem\t# double, #@loadD" %} 4790 4791 ins_encode %{ 4792 __ fld(as_FloatRegister($dst$$reg), Address(as_Register($mem$$base), $mem$$disp)); 4793 %} 4794 4795 ins_pipe(fp_load_mem_d); 4796 %} 4797 4798 // Load Int Constant 4799 instruct loadConI(iRegINoSp dst, immI src) 4800 %{ 4801 match(Set dst src); 4802 4803 ins_cost(ALU_COST); 4804 format %{ "mv $dst, $src\t# int, #@loadConI" %} 4805 4806 ins_encode(riscv_enc_mov_imm(dst, src)); 4807 4808 ins_pipe(ialu_imm); 4809 %} 4810 4811 // Load Long Constant 4812 instruct loadConL(iRegLNoSp dst, immL src) 4813 %{ 4814 match(Set dst src); 4815 4816 ins_cost(ALU_COST); 4817 format %{ "mv $dst, $src\t# long, #@loadConL" %} 4818 4819 ins_encode(riscv_enc_mov_imm(dst, src)); 4820 4821 ins_pipe(ialu_imm); 4822 %} 4823 4824 // Load Pointer Constant 4825 instruct loadConP(iRegPNoSp dst, immP con) 4826 %{ 4827 match(Set dst con); 4828 4829 ins_cost(ALU_COST); 4830 format %{ "mv $dst, $con\t# ptr, #@loadConP" %} 4831 4832 ins_encode(riscv_enc_mov_p(dst, con)); 4833 4834 ins_pipe(ialu_imm); 4835 %} 4836 4837 // Load Null Pointer Constant 4838 instruct loadConP0(iRegPNoSp dst, immP0 con) 4839 %{ 4840 match(Set dst con); 4841 4842 ins_cost(ALU_COST); 4843 format %{ "mv $dst, $con\t# null pointer, #@loadConP0" %} 4844 4845 ins_encode(riscv_enc_mov_zero(dst)); 4846 4847 ins_pipe(ialu_imm); 4848 %} 4849 4850 // Load Pointer Constant One 4851 instruct loadConP1(iRegPNoSp dst, immP_1 con) 4852 %{ 4853 match(Set dst con); 4854 4855 ins_cost(ALU_COST); 4856 format %{ "mv $dst, $con\t# load ptr constant one, #@loadConP1" %} 4857 4858 ins_encode(riscv_enc_mov_p1(dst)); 4859 4860 ins_pipe(ialu_imm); 4861 %} 4862 4863 // Load Byte Map Base Constant 4864 instruct loadByteMapBase(iRegPNoSp dst, immByteMapBase con) 4865 %{ 4866 match(Set dst con); 4867 ins_cost(ALU_COST); 4868 format %{ "mv $dst, $con\t# Byte Map Base, #@loadByteMapBase" %} 4869 4870 ins_encode(riscv_enc_mov_byte_map_base(dst)); 4871 4872 ins_pipe(ialu_imm); 4873 %} 4874 4875 // Load Narrow Pointer Constant 4876 instruct loadConN(iRegNNoSp dst, immN con) 4877 %{ 4878 match(Set dst con); 4879 4880 ins_cost(ALU_COST * 4); 4881 format %{ "mv $dst, $con\t# compressed ptr, #@loadConN" %} 4882 4883 ins_encode(riscv_enc_mov_n(dst, con)); 4884 4885 ins_pipe(ialu_imm); 4886 %} 4887 4888 // Load Narrow Null Pointer Constant 4889 instruct loadConN0(iRegNNoSp dst, immN0 con) 4890 %{ 4891 match(Set dst con); 4892 4893 ins_cost(ALU_COST); 4894 format %{ "mv $dst, $con\t# compressed null pointer, #@loadConN0" %} 4895 4896 ins_encode(riscv_enc_mov_zero(dst)); 4897 4898 ins_pipe(ialu_imm); 4899 %} 4900 4901 // Load Narrow Klass Constant 4902 instruct loadConNKlass(iRegNNoSp dst, immNKlass con) 4903 %{ 4904 match(Set dst con); 4905 4906 ins_cost(ALU_COST * 6); 4907 format %{ "mv $dst, $con\t# compressed klass ptr, #@loadConNKlass" %} 4908 4909 ins_encode(riscv_enc_mov_nk(dst, con)); 4910 4911 ins_pipe(ialu_imm); 4912 %} 4913 4914 // Load Float Constant 4915 instruct loadConF(fRegF dst, immF con) %{ 4916 match(Set dst con); 4917 4918 ins_cost(LOAD_COST); 4919 format %{ 4920 "flw $dst, [$constantaddress]\t# load from constant table: float=$con, #@loadConF" 4921 %} 4922 4923 ins_encode %{ 4924 __ flw(as_FloatRegister($dst$$reg), $constantaddress($con)); 4925 %} 4926 4927 ins_pipe(fp_load_constant_s); 4928 %} 4929 4930 instruct loadConF0(fRegF dst, immF0 con) %{ 4931 match(Set dst con); 4932 4933 ins_cost(XFER_COST); 4934 4935 format %{ "fmv.w.x $dst, zr\t# float, #@loadConF0" %} 4936 4937 ins_encode %{ 4938 __ fmv_w_x(as_FloatRegister($dst$$reg), zr); 4939 %} 4940 4941 ins_pipe(fp_load_constant_s); 4942 %} 4943 4944 // Load Double Constant 4945 instruct loadConD(fRegD dst, immD con) %{ 4946 match(Set dst con); 4947 4948 ins_cost(LOAD_COST); 4949 format %{ 4950 "fld $dst, [$constantaddress]\t# load from constant table: double=$con, #@loadConD" 4951 %} 4952 4953 ins_encode %{ 4954 __ fld(as_FloatRegister($dst$$reg), $constantaddress($con)); 4955 %} 4956 4957 ins_pipe(fp_load_constant_d); 4958 %} 4959 4960 instruct loadConD0(fRegD dst, immD0 con) %{ 4961 match(Set dst con); 4962 4963 ins_cost(XFER_COST); 4964 4965 format %{ "fmv.d.x $dst, zr\t# double, #@loadConD0" %} 4966 4967 ins_encode %{ 4968 __ fmv_d_x(as_FloatRegister($dst$$reg), zr); 4969 %} 4970 4971 ins_pipe(fp_load_constant_d); 4972 %} 4973 4974 // Store Byte 4975 instruct storeB(iRegIorL2I src, memory mem) 4976 %{ 4977 match(Set mem (StoreB mem src)); 4978 4979 ins_cost(STORE_COST); 4980 format %{ "sb $src, $mem\t# byte, #@storeB" %} 4981 4982 ins_encode %{ 4983 __ sb(as_Register($src$$reg), Address(as_Register($mem$$base), $mem$$disp)); 4984 %} 4985 4986 ins_pipe(istore_reg_mem); 4987 %} 4988 4989 instruct storeimmB0(immI0 zero, memory mem) 4990 %{ 4991 match(Set mem (StoreB mem zero)); 4992 4993 ins_cost(STORE_COST); 4994 format %{ "sb zr, $mem\t# byte, #@storeimmB0" %} 4995 4996 ins_encode %{ 4997 __ sb(zr, Address(as_Register($mem$$base), $mem$$disp)); 4998 %} 4999 5000 ins_pipe(istore_mem); 5001 %} 5002 5003 // Store Char/Short 5004 instruct storeC(iRegIorL2I src, memory mem) 5005 %{ 5006 match(Set mem (StoreC mem src)); 5007 5008 ins_cost(STORE_COST); 5009 format %{ "sh $src, $mem\t# short, #@storeC" %} 5010 5011 ins_encode %{ 5012 __ sh(as_Register($src$$reg), Address(as_Register($mem$$base), $mem$$disp)); 5013 %} 5014 5015 ins_pipe(istore_reg_mem); 5016 %} 5017 5018 instruct storeimmC0(immI0 zero, memory mem) 5019 %{ 5020 match(Set mem (StoreC mem zero)); 5021 5022 ins_cost(STORE_COST); 5023 format %{ "sh zr, $mem\t# short, #@storeimmC0" %} 5024 5025 ins_encode %{ 5026 __ sh(zr, Address(as_Register($mem$$base), $mem$$disp)); 5027 %} 5028 5029 ins_pipe(istore_mem); 5030 %} 5031 5032 // Store Integer 5033 instruct storeI(iRegIorL2I src, memory mem) 5034 %{ 5035 match(Set mem(StoreI mem src)); 5036 5037 ins_cost(STORE_COST); 5038 format %{ "sw $src, $mem\t# int, #@storeI" %} 5039 5040 ins_encode %{ 5041 __ sw(as_Register($src$$reg), Address(as_Register($mem$$base), $mem$$disp)); 5042 %} 5043 5044 ins_pipe(istore_reg_mem); 5045 %} 5046 5047 instruct storeimmI0(immI0 zero, memory mem) 5048 %{ 5049 match(Set mem(StoreI mem zero)); 5050 5051 ins_cost(STORE_COST); 5052 format %{ "sw zr, $mem\t# int, #@storeimmI0" %} 5053 5054 ins_encode %{ 5055 __ sw(zr, Address(as_Register($mem$$base), $mem$$disp)); 5056 %} 5057 5058 ins_pipe(istore_mem); 5059 %} 5060 5061 // Store Long (64 bit signed) 5062 instruct storeL(iRegL src, memory mem) 5063 %{ 5064 match(Set mem (StoreL mem src)); 5065 5066 ins_cost(STORE_COST); 5067 format %{ "sd $src, $mem\t# long, #@storeL" %} 5068 5069 ins_encode %{ 5070 __ sd(as_Register($src$$reg), Address(as_Register($mem$$base), $mem$$disp)); 5071 %} 5072 5073 ins_pipe(istore_reg_mem); 5074 %} 5075 5076 // Store Long (64 bit signed) 5077 instruct storeimmL0(immL0 zero, memory mem) 5078 %{ 5079 match(Set mem (StoreL mem zero)); 5080 5081 ins_cost(STORE_COST); 5082 format %{ "sd zr, $mem\t# long, #@storeimmL0" %} 5083 5084 ins_encode %{ 5085 __ sd(zr, Address(as_Register($mem$$base), $mem$$disp)); 5086 %} 5087 5088 ins_pipe(istore_mem); 5089 %} 5090 5091 // Store Pointer 5092 instruct storeP(iRegP src, memory mem) 5093 %{ 5094 match(Set mem (StoreP mem src)); 5095 predicate(n->as_Store()->barrier_data() == 0); 5096 5097 ins_cost(STORE_COST); 5098 format %{ "sd $src, $mem\t# ptr, #@storeP" %} 5099 5100 ins_encode %{ 5101 __ sd(as_Register($src$$reg), Address(as_Register($mem$$base), $mem$$disp)); 5102 %} 5103 5104 ins_pipe(istore_reg_mem); 5105 %} 5106 5107 // Store Pointer 5108 instruct storeimmP0(immP0 zero, memory mem) 5109 %{ 5110 match(Set mem (StoreP mem zero)); 5111 predicate(n->as_Store()->barrier_data() == 0); 5112 5113 ins_cost(STORE_COST); 5114 format %{ "sd zr, $mem\t# ptr, #@storeimmP0" %} 5115 5116 ins_encode %{ 5117 __ sd(zr, Address(as_Register($mem$$base), $mem$$disp)); 5118 %} 5119 5120 ins_pipe(istore_mem); 5121 %} 5122 5123 // Store Compressed Pointer 5124 instruct storeN(iRegN src, memory mem) 5125 %{ 5126 predicate(n->as_Store()->barrier_data() == 0); 5127 match(Set mem (StoreN mem src)); 5128 5129 ins_cost(STORE_COST); 5130 format %{ "sw $src, $mem\t# compressed ptr, #@storeN" %} 5131 5132 ins_encode %{ 5133 __ sw(as_Register($src$$reg), Address(as_Register($mem$$base), $mem$$disp)); 5134 %} 5135 5136 ins_pipe(istore_reg_mem); 5137 %} 5138 5139 instruct storeImmN0(immN0 zero, memory mem) 5140 %{ 5141 predicate(n->as_Store()->barrier_data() == 0); 5142 match(Set mem (StoreN mem zero)); 5143 5144 ins_cost(STORE_COST); 5145 format %{ "sw zr, $mem\t# compressed ptr, #@storeImmN0" %} 5146 5147 ins_encode %{ 5148 __ sw(zr, Address(as_Register($mem$$base), $mem$$disp)); 5149 %} 5150 5151 ins_pipe(istore_reg_mem); 5152 %} 5153 5154 // Store Float 5155 instruct storeF(fRegF src, memory mem) 5156 %{ 5157 match(Set mem (StoreF mem src)); 5158 5159 ins_cost(STORE_COST); 5160 format %{ "fsw $src, $mem\t# float, #@storeF" %} 5161 5162 ins_encode %{ 5163 __ fsw(as_FloatRegister($src$$reg), Address(as_Register($mem$$base), $mem$$disp)); 5164 %} 5165 5166 ins_pipe(fp_store_reg_s); 5167 %} 5168 5169 // Store Double 5170 instruct storeD(fRegD src, memory mem) 5171 %{ 5172 match(Set mem (StoreD mem src)); 5173 5174 ins_cost(STORE_COST); 5175 format %{ "fsd $src, $mem\t# double, #@storeD" %} 5176 5177 ins_encode %{ 5178 __ fsd(as_FloatRegister($src$$reg), Address(as_Register($mem$$base), $mem$$disp)); 5179 %} 5180 5181 ins_pipe(fp_store_reg_d); 5182 %} 5183 5184 // Store Compressed Klass Pointer 5185 instruct storeNKlass(iRegN src, memory mem) 5186 %{ 5187 match(Set mem (StoreNKlass mem src)); 5188 5189 ins_cost(STORE_COST); 5190 format %{ "sw $src, $mem\t# compressed klass ptr, #@storeNKlass" %} 5191 5192 ins_encode %{ 5193 __ sw(as_Register($src$$reg), Address(as_Register($mem$$base), $mem$$disp)); 5194 %} 5195 5196 ins_pipe(istore_reg_mem); 5197 %} 5198 5199 // ============================================================================ 5200 // Prefetch instructions 5201 // Must be safe to execute with invalid address (cannot fault). 5202 5203 instruct prefetchalloc( memory mem ) %{ 5204 predicate(UseZicbop); 5205 match(PrefetchAllocation mem); 5206 5207 ins_cost(ALU_COST * 1); 5208 format %{ "prefetch_w $mem\t# Prefetch for write" %} 5209 5210 ins_encode %{ 5211 if (Assembler::is_simm12($mem$$disp)) { 5212 if (($mem$$disp & 0x1f) == 0) { 5213 __ prefetch_w(as_Register($mem$$base), $mem$$disp); 5214 } else { 5215 __ addi(t0, as_Register($mem$$base), $mem$$disp); 5216 __ prefetch_w(t0, 0); 5217 } 5218 } else { 5219 __ mv(t0, $mem$$disp); 5220 __ add(t0, as_Register($mem$$base), t0); 5221 __ prefetch_w(t0, 0); 5222 } 5223 %} 5224 5225 ins_pipe(iload_prefetch); 5226 %} 5227 5228 // ============================================================================ 5229 // Atomic operation instructions 5230 // 5231 5232 // standard CompareAndSwapX when we are using barriers 5233 // these have higher priority than the rules selected by a predicate 5234 instruct compareAndSwapB(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval, 5235 iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr) 5236 %{ 5237 match(Set res (CompareAndSwapB mem (Binary oldval newval))); 5238 5239 ins_cost(LOAD_COST + STORE_COST + ALU_COST * 10 + BRANCH_COST * 4); 5240 5241 effect(TEMP_DEF res, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3, KILL cr); 5242 5243 format %{ 5244 "cmpxchg $mem, $oldval, $newval\t# (byte) if $mem == $oldval then $mem <-- $newval\n\t" 5245 "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapB" 5246 %} 5247 5248 ins_encode %{ 5249 __ cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int8, 5250 Assembler::relaxed /* acquire */, Assembler::rl /* release */, $res$$Register, 5251 true /* result as bool */, $tmp1$$Register, $tmp2$$Register, $tmp3$$Register); 5252 %} 5253 5254 ins_pipe(pipe_slow); 5255 %} 5256 5257 instruct compareAndSwapS(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval, 5258 iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr) 5259 %{ 5260 match(Set res (CompareAndSwapS mem (Binary oldval newval))); 5261 5262 ins_cost(LOAD_COST + STORE_COST + ALU_COST * 11 + BRANCH_COST * 4); 5263 5264 effect(TEMP_DEF res, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3, KILL cr); 5265 5266 format %{ 5267 "cmpxchg $mem, $oldval, $newval\t# (short) if $mem == $oldval then $mem <-- $newval\n\t" 5268 "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapS" 5269 %} 5270 5271 ins_encode %{ 5272 __ cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int16, 5273 Assembler::relaxed /* acquire */, Assembler::rl /* release */, $res$$Register, 5274 true /* result as bool */, $tmp1$$Register, $tmp2$$Register, $tmp3$$Register); 5275 %} 5276 5277 ins_pipe(pipe_slow); 5278 %} 5279 5280 instruct compareAndSwapI(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval) 5281 %{ 5282 match(Set res (CompareAndSwapI mem (Binary oldval newval))); 5283 5284 ins_cost(LOAD_COST + STORE_COST + ALU_COST * 6 + BRANCH_COST * 4); 5285 5286 format %{ 5287 "cmpxchg $mem, $oldval, $newval\t# (int) if $mem == $oldval then $mem <-- $newval\n\t" 5288 "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapI" 5289 %} 5290 5291 ins_encode(riscv_enc_cmpxchgw(res, mem, oldval, newval)); 5292 5293 ins_pipe(pipe_slow); 5294 %} 5295 5296 instruct compareAndSwapL(iRegINoSp res, indirect mem, iRegL oldval, iRegL newval) 5297 %{ 5298 match(Set res (CompareAndSwapL mem (Binary oldval newval))); 5299 5300 ins_cost(LOAD_COST + STORE_COST + ALU_COST * 6 + BRANCH_COST * 4); 5301 5302 format %{ 5303 "cmpxchg $mem, $oldval, $newval\t# (long) if $mem == $oldval then $mem <-- $newval\n\t" 5304 "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapL" 5305 %} 5306 5307 ins_encode(riscv_enc_cmpxchg(res, mem, oldval, newval)); 5308 5309 ins_pipe(pipe_slow); 5310 %} 5311 5312 instruct compareAndSwapP(iRegINoSp res, indirect mem, iRegP oldval, iRegP newval) 5313 %{ 5314 predicate(n->as_LoadStore()->barrier_data() == 0); 5315 5316 match(Set res (CompareAndSwapP mem (Binary oldval newval))); 5317 5318 ins_cost(LOAD_COST + STORE_COST + ALU_COST * 6 + BRANCH_COST * 4); 5319 5320 format %{ 5321 "cmpxchg $mem, $oldval, $newval\t# (ptr) if $mem == $oldval then $mem <-- $newval\n\t" 5322 "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapP" 5323 %} 5324 5325 ins_encode(riscv_enc_cmpxchg(res, mem, oldval, newval)); 5326 5327 ins_pipe(pipe_slow); 5328 %} 5329 5330 instruct compareAndSwapN(iRegINoSp res, indirect mem, iRegN oldval, iRegN newval) 5331 %{ 5332 predicate(n->as_LoadStore()->barrier_data() == 0); 5333 match(Set res (CompareAndSwapN mem (Binary oldval newval))); 5334 5335 ins_cost(LOAD_COST + STORE_COST + ALU_COST * 8 + BRANCH_COST * 4); 5336 5337 format %{ 5338 "cmpxchg $mem, $oldval, $newval\t# (narrow oop) if $mem == $oldval then $mem <-- $newval\n\t" 5339 "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapN" 5340 %} 5341 5342 ins_encode(riscv_enc_cmpxchgn(res, mem, oldval, newval)); 5343 5344 ins_pipe(pipe_slow); 5345 %} 5346 5347 // alternative CompareAndSwapX when we are eliding barriers 5348 instruct compareAndSwapBAcq(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval, 5349 iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr) 5350 %{ 5351 predicate(needs_acquiring_load_reserved(n)); 5352 5353 match(Set res (CompareAndSwapB mem (Binary oldval newval))); 5354 5355 ins_cost(LOAD_COST + STORE_COST + ALU_COST * 10 + BRANCH_COST * 4); 5356 5357 effect(TEMP_DEF res, KILL cr, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3); 5358 5359 format %{ 5360 "cmpxchg_acq $mem, $oldval, $newval\t# (byte) if $mem == $oldval then $mem <-- $newval\n\t" 5361 "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapBAcq" 5362 %} 5363 5364 ins_encode %{ 5365 __ cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int8, 5366 Assembler::aq /* acquire */, Assembler::rl /* release */, $res$$Register, 5367 true /* result as bool */, $tmp1$$Register, $tmp2$$Register, $tmp3$$Register); 5368 %} 5369 5370 ins_pipe(pipe_slow); 5371 %} 5372 5373 instruct compareAndSwapSAcq(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval, 5374 iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr) 5375 %{ 5376 predicate(needs_acquiring_load_reserved(n)); 5377 5378 match(Set res (CompareAndSwapS mem (Binary oldval newval))); 5379 5380 ins_cost(LOAD_COST + STORE_COST + ALU_COST * 11 + BRANCH_COST * 4); 5381 5382 effect(TEMP_DEF res, KILL cr, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3); 5383 5384 format %{ 5385 "cmpxchg_acq $mem, $oldval, $newval\t# (short) if $mem == $oldval then $mem <-- $newval\n\t" 5386 "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapSAcq" 5387 %} 5388 5389 ins_encode %{ 5390 __ cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int16, 5391 Assembler::aq /* acquire */, Assembler::rl /* release */, $res$$Register, 5392 true /* result as bool */, $tmp1$$Register, $tmp2$$Register, $tmp3$$Register); 5393 %} 5394 5395 ins_pipe(pipe_slow); 5396 %} 5397 5398 instruct compareAndSwapIAcq(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval) 5399 %{ 5400 predicate(needs_acquiring_load_reserved(n)); 5401 5402 match(Set res (CompareAndSwapI mem (Binary oldval newval))); 5403 5404 ins_cost(LOAD_COST + STORE_COST + ALU_COST * 6 + BRANCH_COST * 4); 5405 5406 format %{ 5407 "cmpxchg_acq $mem, $oldval, $newval\t# (int) if $mem == $oldval then $mem <-- $newval\n\t" 5408 "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapIAcq" 5409 %} 5410 5411 ins_encode(riscv_enc_cmpxchgw_acq(res, mem, oldval, newval)); 5412 5413 ins_pipe(pipe_slow); 5414 %} 5415 5416 instruct compareAndSwapLAcq(iRegINoSp res, indirect mem, iRegL oldval, iRegL newval) 5417 %{ 5418 predicate(needs_acquiring_load_reserved(n)); 5419 5420 match(Set res (CompareAndSwapL mem (Binary oldval newval))); 5421 5422 ins_cost(LOAD_COST + STORE_COST + ALU_COST * 6 + BRANCH_COST * 4); 5423 5424 format %{ 5425 "cmpxchg_acq $mem, $oldval, $newval\t# (long) if $mem == $oldval then $mem <-- $newval\n\t" 5426 "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapLAcq" 5427 %} 5428 5429 ins_encode(riscv_enc_cmpxchg_acq(res, mem, oldval, newval)); 5430 5431 ins_pipe(pipe_slow); 5432 %} 5433 5434 instruct compareAndSwapPAcq(iRegINoSp res, indirect mem, iRegP oldval, iRegP newval) 5435 %{ 5436 predicate(needs_acquiring_load_reserved(n) && (n->as_LoadStore()->barrier_data() == 0)); 5437 5438 match(Set res (CompareAndSwapP mem (Binary oldval newval))); 5439 5440 ins_cost(LOAD_COST + STORE_COST + ALU_COST * 6 + BRANCH_COST * 4); 5441 5442 format %{ 5443 "cmpxchg_acq $mem, $oldval, $newval\t# (ptr) if $mem == $oldval then $mem <-- $newval\n\t" 5444 "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapPAcq" 5445 %} 5446 5447 ins_encode(riscv_enc_cmpxchg_acq(res, mem, oldval, newval)); 5448 5449 ins_pipe(pipe_slow); 5450 %} 5451 5452 instruct compareAndSwapNAcq(iRegINoSp res, indirect mem, iRegN oldval, iRegN newval) 5453 %{ 5454 predicate(needs_acquiring_load_reserved(n) && n->as_LoadStore()->barrier_data() == 0); 5455 5456 match(Set res (CompareAndSwapN mem (Binary oldval newval))); 5457 5458 ins_cost(LOAD_COST + STORE_COST + ALU_COST * 8 + BRANCH_COST * 4); 5459 5460 format %{ 5461 "cmpxchg_acq $mem, $oldval, $newval\t# (narrow oop) if $mem == $oldval then $mem <-- $newval\n\t" 5462 "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapNAcq" 5463 %} 5464 5465 ins_encode(riscv_enc_cmpxchgn_acq(res, mem, oldval, newval)); 5466 5467 ins_pipe(pipe_slow); 5468 %} 5469 5470 // Sundry CAS operations. Note that release is always true, 5471 // regardless of the memory ordering of the CAS. This is because we 5472 // need the volatile case to be sequentially consistent but there is 5473 // no trailing StoreLoad barrier emitted by C2. Unfortunately we 5474 // can't check the type of memory ordering here, so we always emit a 5475 // sc_d(w) with rl bit set. 5476 instruct compareAndExchangeB(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval, 5477 iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr) 5478 %{ 5479 match(Set res (CompareAndExchangeB mem (Binary oldval newval))); 5480 5481 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST * 5); 5482 5483 effect(TEMP_DEF res, KILL cr, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3); 5484 5485 format %{ 5486 "cmpxchg $res = $mem, $oldval, $newval\t# (byte, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeB" 5487 %} 5488 5489 ins_encode %{ 5490 __ cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int8, 5491 /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register, 5492 /*result_as_bool*/ false, $tmp1$$Register, $tmp2$$Register, $tmp3$$Register); 5493 %} 5494 5495 ins_pipe(pipe_slow); 5496 %} 5497 5498 instruct compareAndExchangeS(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval, 5499 iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr) 5500 %{ 5501 match(Set res (CompareAndExchangeS mem (Binary oldval newval))); 5502 5503 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST * 6); 5504 5505 effect(TEMP_DEF res, KILL cr, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3); 5506 5507 format %{ 5508 "cmpxchg $res = $mem, $oldval, $newval\t# (short, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeS" 5509 %} 5510 5511 ins_encode %{ 5512 __ cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int16, 5513 /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register, 5514 /*result_as_bool*/ false, $tmp1$$Register, $tmp2$$Register, $tmp3$$Register); 5515 %} 5516 5517 ins_pipe(pipe_slow); 5518 %} 5519 5520 instruct compareAndExchangeI(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval) 5521 %{ 5522 match(Set res (CompareAndExchangeI mem (Binary oldval newval))); 5523 5524 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST); 5525 5526 effect(TEMP_DEF res); 5527 5528 format %{ 5529 "cmpxchg $res = $mem, $oldval, $newval\t# (int, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeI" 5530 %} 5531 5532 ins_encode %{ 5533 __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int32, 5534 /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register); 5535 %} 5536 5537 ins_pipe(pipe_slow); 5538 %} 5539 5540 instruct compareAndExchangeL(iRegLNoSp res, indirect mem, iRegL oldval, iRegL newval) 5541 %{ 5542 match(Set res (CompareAndExchangeL mem (Binary oldval newval))); 5543 5544 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST); 5545 5546 effect(TEMP_DEF res); 5547 5548 format %{ 5549 "cmpxchg $res = $mem, $oldval, $newval\t# (long, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeL" 5550 %} 5551 5552 ins_encode %{ 5553 __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int64, 5554 /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register); 5555 %} 5556 5557 ins_pipe(pipe_slow); 5558 %} 5559 5560 instruct compareAndExchangeN(iRegNNoSp res, indirect mem, iRegN oldval, iRegN newval) 5561 %{ 5562 predicate(n->as_LoadStore()->barrier_data() == 0); 5563 match(Set res (CompareAndExchangeN mem (Binary oldval newval))); 5564 5565 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST * 3); 5566 5567 effect(TEMP_DEF res); 5568 5569 format %{ 5570 "cmpxchg $res = $mem, $oldval, $newval\t# (narrow oop, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeN" 5571 %} 5572 5573 ins_encode %{ 5574 __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::uint32, 5575 /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register); 5576 %} 5577 5578 ins_pipe(pipe_slow); 5579 %} 5580 5581 instruct compareAndExchangeP(iRegPNoSp res, indirect mem, iRegP oldval, iRegP newval) 5582 %{ 5583 predicate(n->as_LoadStore()->barrier_data() == 0); 5584 match(Set res (CompareAndExchangeP mem (Binary oldval newval))); 5585 5586 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST); 5587 5588 effect(TEMP_DEF res); 5589 5590 format %{ 5591 "cmpxchg $res = $mem, $oldval, $newval\t# (ptr, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeP" 5592 %} 5593 5594 ins_encode %{ 5595 __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int64, 5596 /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register); 5597 %} 5598 5599 ins_pipe(pipe_slow); 5600 %} 5601 5602 instruct compareAndExchangeBAcq(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval, 5603 iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr) 5604 %{ 5605 predicate(needs_acquiring_load_reserved(n)); 5606 5607 match(Set res (CompareAndExchangeB mem (Binary oldval newval))); 5608 5609 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST * 5); 5610 5611 effect(TEMP_DEF res, KILL cr, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3); 5612 5613 format %{ 5614 "cmpxchg_acq $res = $mem, $oldval, $newval\t# (byte, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeBAcq" 5615 %} 5616 5617 ins_encode %{ 5618 __ cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int8, 5619 /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register, 5620 /*result_as_bool*/ false, $tmp1$$Register, $tmp2$$Register, $tmp3$$Register); 5621 %} 5622 5623 ins_pipe(pipe_slow); 5624 %} 5625 5626 instruct compareAndExchangeSAcq(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval, 5627 iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr) 5628 %{ 5629 predicate(needs_acquiring_load_reserved(n)); 5630 5631 match(Set res (CompareAndExchangeS mem (Binary oldval newval))); 5632 5633 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST * 6); 5634 5635 effect(TEMP_DEF res, KILL cr, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3); 5636 5637 format %{ 5638 "cmpxchg_acq $res = $mem, $oldval, $newval\t# (short, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeSAcq" 5639 %} 5640 5641 ins_encode %{ 5642 __ cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int16, 5643 /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register, 5644 /*result_as_bool*/ false, $tmp1$$Register, $tmp2$$Register, $tmp3$$Register); 5645 %} 5646 5647 ins_pipe(pipe_slow); 5648 %} 5649 5650 instruct compareAndExchangeIAcq(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval) 5651 %{ 5652 predicate(needs_acquiring_load_reserved(n)); 5653 5654 match(Set res (CompareAndExchangeI mem (Binary oldval newval))); 5655 5656 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST); 5657 5658 effect(TEMP_DEF res); 5659 5660 format %{ 5661 "cmpxchg_acq $res = $mem, $oldval, $newval\t# (int, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeIAcq" 5662 %} 5663 5664 ins_encode %{ 5665 __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int32, 5666 /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register); 5667 %} 5668 5669 ins_pipe(pipe_slow); 5670 %} 5671 5672 instruct compareAndExchangeLAcq(iRegLNoSp res, indirect mem, iRegL oldval, iRegL newval) 5673 %{ 5674 predicate(needs_acquiring_load_reserved(n)); 5675 5676 match(Set res (CompareAndExchangeL mem (Binary oldval newval))); 5677 5678 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST); 5679 5680 effect(TEMP_DEF res); 5681 5682 format %{ 5683 "cmpxchg_acq $res = $mem, $oldval, $newval\t# (long, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeLAcq" 5684 %} 5685 5686 ins_encode %{ 5687 __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int64, 5688 /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register); 5689 %} 5690 5691 ins_pipe(pipe_slow); 5692 %} 5693 5694 instruct compareAndExchangeNAcq(iRegNNoSp res, indirect mem, iRegN oldval, iRegN newval) 5695 %{ 5696 predicate(needs_acquiring_load_reserved(n) && n->as_LoadStore()->barrier_data() == 0); 5697 5698 match(Set res (CompareAndExchangeN mem (Binary oldval newval))); 5699 5700 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST); 5701 5702 effect(TEMP_DEF res); 5703 5704 format %{ 5705 "cmpxchg_acq $res = $mem, $oldval, $newval\t# (narrow oop, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeNAcq" 5706 %} 5707 5708 ins_encode %{ 5709 __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::uint32, 5710 /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register); 5711 %} 5712 5713 ins_pipe(pipe_slow); 5714 %} 5715 5716 instruct compareAndExchangePAcq(iRegPNoSp res, indirect mem, iRegP oldval, iRegP newval) 5717 %{ 5718 predicate(needs_acquiring_load_reserved(n) && (n->as_LoadStore()->barrier_data() == 0)); 5719 5720 match(Set res (CompareAndExchangeP mem (Binary oldval newval))); 5721 5722 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST); 5723 5724 effect(TEMP_DEF res); 5725 5726 format %{ 5727 "cmpxchg_acq $res = $mem, $oldval, $newval\t# (ptr, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangePAcq" 5728 %} 5729 5730 ins_encode %{ 5731 __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int64, 5732 /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register); 5733 %} 5734 5735 ins_pipe(pipe_slow); 5736 %} 5737 5738 instruct weakCompareAndSwapB(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval, 5739 iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr) 5740 %{ 5741 match(Set res (WeakCompareAndSwapB mem (Binary oldval newval))); 5742 5743 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 6); 5744 5745 effect(TEMP_DEF res, KILL cr, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3); 5746 5747 format %{ 5748 "weak_cmpxchg $mem, $oldval, $newval\t# (byte, weak) if $mem == $oldval then $mem <-- $newval\n\t" 5749 "# $res == 1 when success, #@weakCompareAndSwapB" 5750 %} 5751 5752 ins_encode %{ 5753 __ weak_cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int8, 5754 /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register, 5755 $tmp1$$Register, $tmp2$$Register, $tmp3$$Register); 5756 %} 5757 5758 ins_pipe(pipe_slow); 5759 %} 5760 5761 instruct weakCompareAndSwapS(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval, 5762 iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr) 5763 %{ 5764 match(Set res (WeakCompareAndSwapS mem (Binary oldval newval))); 5765 5766 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 7); 5767 5768 effect(TEMP_DEF res, KILL cr, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3); 5769 5770 format %{ 5771 "weak_cmpxchg $mem, $oldval, $newval\t# (short, weak) if $mem == $oldval then $mem <-- $newval\n\t" 5772 "# $res == 1 when success, #@weakCompareAndSwapS" 5773 %} 5774 5775 ins_encode %{ 5776 __ weak_cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int16, 5777 /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register, 5778 $tmp1$$Register, $tmp2$$Register, $tmp3$$Register); 5779 %} 5780 5781 ins_pipe(pipe_slow); 5782 %} 5783 5784 instruct weakCompareAndSwapI(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval) 5785 %{ 5786 match(Set res (WeakCompareAndSwapI mem (Binary oldval newval))); 5787 5788 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 2); 5789 5790 format %{ 5791 "weak_cmpxchg $mem, $oldval, $newval\t# (int, weak) if $mem == $oldval then $mem <-- $newval\n\t" 5792 "# $res == 1 when success, #@weakCompareAndSwapI" 5793 %} 5794 5795 ins_encode %{ 5796 __ weak_cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int32, 5797 /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register); 5798 %} 5799 5800 ins_pipe(pipe_slow); 5801 %} 5802 5803 instruct weakCompareAndSwapL(iRegINoSp res, indirect mem, iRegL oldval, iRegL newval) 5804 %{ 5805 match(Set res (WeakCompareAndSwapL mem (Binary oldval newval))); 5806 5807 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 2); 5808 5809 format %{ 5810 "weak_cmpxchg $mem, $oldval, $newval\t# (long, weak) if $mem == $oldval then $mem <-- $newval\n\t" 5811 "# $res == 1 when success, #@weakCompareAndSwapL" 5812 %} 5813 5814 ins_encode %{ 5815 __ weak_cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int64, 5816 /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register); 5817 %} 5818 5819 ins_pipe(pipe_slow); 5820 %} 5821 5822 instruct weakCompareAndSwapN(iRegINoSp res, indirect mem, iRegN oldval, iRegN newval) 5823 %{ 5824 predicate(n->as_LoadStore()->barrier_data() == 0); 5825 match(Set res (WeakCompareAndSwapN mem (Binary oldval newval))); 5826 5827 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 4); 5828 5829 format %{ 5830 "weak_cmpxchg $mem, $oldval, $newval\t# (narrow oop, weak) if $mem == $oldval then $mem <-- $newval\n\t" 5831 "# $res == 1 when success, #@weakCompareAndSwapN" 5832 %} 5833 5834 ins_encode %{ 5835 __ weak_cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::uint32, 5836 /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register); 5837 %} 5838 5839 ins_pipe(pipe_slow); 5840 %} 5841 5842 instruct weakCompareAndSwapP(iRegINoSp res, indirect mem, iRegP oldval, iRegP newval) 5843 %{ 5844 predicate(n->as_LoadStore()->barrier_data() == 0); 5845 match(Set res (WeakCompareAndSwapP mem (Binary oldval newval))); 5846 5847 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 2); 5848 5849 format %{ 5850 "weak_cmpxchg $mem, $oldval, $newval\t# (ptr, weak) if $mem == $oldval then $mem <-- $newval\n\t" 5851 "# $res == 1 when success, #@weakCompareAndSwapP" 5852 %} 5853 5854 ins_encode %{ 5855 __ weak_cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int64, 5856 /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register); 5857 %} 5858 5859 ins_pipe(pipe_slow); 5860 %} 5861 5862 instruct weakCompareAndSwapBAcq(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval, 5863 iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr) 5864 %{ 5865 predicate(needs_acquiring_load_reserved(n)); 5866 5867 match(Set res (WeakCompareAndSwapB mem (Binary oldval newval))); 5868 5869 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 6); 5870 5871 effect(TEMP_DEF res, KILL cr, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3); 5872 5873 format %{ 5874 "weak_cmpxchg_acq $mem, $oldval, $newval\t# (byte, weak) if $mem == $oldval then $mem <-- $newval\n\t" 5875 "# $res == 1 when success, #@weakCompareAndSwapBAcq" 5876 %} 5877 5878 ins_encode %{ 5879 __ weak_cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int8, 5880 /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register, 5881 $tmp1$$Register, $tmp2$$Register, $tmp3$$Register); 5882 %} 5883 5884 ins_pipe(pipe_slow); 5885 %} 5886 5887 instruct weakCompareAndSwapSAcq(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval, 5888 iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr) 5889 %{ 5890 predicate(needs_acquiring_load_reserved(n)); 5891 5892 match(Set res (WeakCompareAndSwapS mem (Binary oldval newval))); 5893 5894 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 7); 5895 5896 effect(TEMP_DEF res, KILL cr, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3); 5897 5898 format %{ 5899 "weak_cmpxchg_acq $mem, $oldval, $newval\t# (short, weak) if $mem == $oldval then $mem <-- $newval\n\t" 5900 "# $res == 1 when success, #@weakCompareAndSwapSAcq" 5901 %} 5902 5903 ins_encode %{ 5904 __ weak_cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int16, 5905 /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register, 5906 $tmp1$$Register, $tmp2$$Register, $tmp3$$Register); 5907 %} 5908 5909 ins_pipe(pipe_slow); 5910 %} 5911 5912 instruct weakCompareAndSwapIAcq(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval) 5913 %{ 5914 predicate(needs_acquiring_load_reserved(n)); 5915 5916 match(Set res (WeakCompareAndSwapI mem (Binary oldval newval))); 5917 5918 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 2); 5919 5920 format %{ 5921 "weak_cmpxchg_acq $mem, $oldval, $newval\t# (int, weak) if $mem == $oldval then $mem <-- $newval\n\t" 5922 "# $res == 1 when success, #@weakCompareAndSwapIAcq" 5923 %} 5924 5925 ins_encode %{ 5926 __ weak_cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int32, 5927 /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register); 5928 %} 5929 5930 ins_pipe(pipe_slow); 5931 %} 5932 5933 instruct weakCompareAndSwapLAcq(iRegINoSp res, indirect mem, iRegL oldval, iRegL newval) 5934 %{ 5935 predicate(needs_acquiring_load_reserved(n)); 5936 5937 match(Set res (WeakCompareAndSwapL mem (Binary oldval newval))); 5938 5939 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 2); 5940 5941 format %{ 5942 "weak_cmpxchg_acq $mem, $oldval, $newval\t# (long, weak) if $mem == $oldval then $mem <-- $newval\n\t" 5943 "# $res == 1 when success, #@weakCompareAndSwapLAcq" 5944 %} 5945 5946 ins_encode %{ 5947 __ weak_cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int64, 5948 /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register); 5949 %} 5950 5951 ins_pipe(pipe_slow); 5952 %} 5953 5954 instruct weakCompareAndSwapNAcq(iRegINoSp res, indirect mem, iRegN oldval, iRegN newval) 5955 %{ 5956 predicate(needs_acquiring_load_reserved(n) && n->as_LoadStore()->barrier_data() == 0); 5957 5958 match(Set res (WeakCompareAndSwapN mem (Binary oldval newval))); 5959 5960 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 4); 5961 5962 format %{ 5963 "weak_cmpxchg_acq $mem, $oldval, $newval\t# (narrow oop, weak) if $mem == $oldval then $mem <-- $newval\n\t" 5964 "# $res == 1 when success, #@weakCompareAndSwapNAcq" 5965 %} 5966 5967 ins_encode %{ 5968 __ weak_cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::uint32, 5969 /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register); 5970 %} 5971 5972 ins_pipe(pipe_slow); 5973 %} 5974 5975 instruct weakCompareAndSwapPAcq(iRegINoSp res, indirect mem, iRegP oldval, iRegP newval) 5976 %{ 5977 predicate(needs_acquiring_load_reserved(n) && (n->as_LoadStore()->barrier_data() == 0)); 5978 5979 match(Set res (WeakCompareAndSwapP mem (Binary oldval newval))); 5980 5981 ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 2); 5982 5983 format %{ 5984 "weak_cmpxchg_acq $mem, $oldval, $newval\t# (ptr, weak) if $mem == $oldval then $mem <-- $newval\n\t" 5985 "\t# $res == 1 when success, #@weakCompareAndSwapPAcq" 5986 %} 5987 5988 ins_encode %{ 5989 __ weak_cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int64, 5990 /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register); 5991 %} 5992 5993 ins_pipe(pipe_slow); 5994 %} 5995 5996 instruct get_and_setI(indirect mem, iRegI newv, iRegINoSp prev) 5997 %{ 5998 match(Set prev (GetAndSetI mem newv)); 5999 6000 ins_cost(ALU_COST); 6001 6002 format %{ "atomic_xchgw $prev, $newv, [$mem]\t#@get_and_setI" %} 6003 6004 ins_encode %{ 6005 __ atomic_xchgw($prev$$Register, $newv$$Register, as_Register($mem$$base)); 6006 %} 6007 6008 ins_pipe(pipe_serial); 6009 %} 6010 6011 instruct get_and_setL(indirect mem, iRegL newv, iRegLNoSp prev) 6012 %{ 6013 match(Set prev (GetAndSetL mem newv)); 6014 6015 ins_cost(ALU_COST); 6016 6017 format %{ "atomic_xchg $prev, $newv, [$mem]\t#@get_and_setL" %} 6018 6019 ins_encode %{ 6020 __ atomic_xchg($prev$$Register, $newv$$Register, as_Register($mem$$base)); 6021 %} 6022 6023 ins_pipe(pipe_serial); 6024 %} 6025 6026 instruct get_and_setN(indirect mem, iRegN newv, iRegINoSp prev) 6027 %{ 6028 predicate(n->as_LoadStore()->barrier_data() == 0); 6029 6030 match(Set prev (GetAndSetN mem newv)); 6031 6032 ins_cost(ALU_COST); 6033 6034 format %{ "atomic_xchgwu $prev, $newv, [$mem]\t#@get_and_setN" %} 6035 6036 ins_encode %{ 6037 __ atomic_xchgwu($prev$$Register, $newv$$Register, as_Register($mem$$base)); 6038 %} 6039 6040 ins_pipe(pipe_serial); 6041 %} 6042 6043 instruct get_and_setP(indirect mem, iRegP newv, iRegPNoSp prev) 6044 %{ 6045 predicate(n->as_LoadStore()->barrier_data() == 0); 6046 match(Set prev (GetAndSetP mem newv)); 6047 6048 ins_cost(ALU_COST); 6049 6050 format %{ "atomic_xchg $prev, $newv, [$mem]\t#@get_and_setP" %} 6051 6052 ins_encode %{ 6053 __ atomic_xchg($prev$$Register, $newv$$Register, as_Register($mem$$base)); 6054 %} 6055 6056 ins_pipe(pipe_serial); 6057 %} 6058 6059 instruct get_and_setIAcq(indirect mem, iRegI newv, iRegINoSp prev) 6060 %{ 6061 predicate(needs_acquiring_load_reserved(n)); 6062 6063 match(Set prev (GetAndSetI mem newv)); 6064 6065 ins_cost(ALU_COST); 6066 6067 format %{ "atomic_xchgw_acq $prev, $newv, [$mem]\t#@get_and_setIAcq" %} 6068 6069 ins_encode %{ 6070 __ atomic_xchgalw($prev$$Register, $newv$$Register, as_Register($mem$$base)); 6071 %} 6072 6073 ins_pipe(pipe_serial); 6074 %} 6075 6076 instruct get_and_setLAcq(indirect mem, iRegL newv, iRegLNoSp prev) 6077 %{ 6078 predicate(needs_acquiring_load_reserved(n)); 6079 6080 match(Set prev (GetAndSetL mem newv)); 6081 6082 ins_cost(ALU_COST); 6083 6084 format %{ "atomic_xchg_acq $prev, $newv, [$mem]\t#@get_and_setLAcq" %} 6085 6086 ins_encode %{ 6087 __ atomic_xchgal($prev$$Register, $newv$$Register, as_Register($mem$$base)); 6088 %} 6089 6090 ins_pipe(pipe_serial); 6091 %} 6092 6093 instruct get_and_setNAcq(indirect mem, iRegN newv, iRegINoSp prev) 6094 %{ 6095 predicate(needs_acquiring_load_reserved(n) && n->as_LoadStore()->barrier_data() == 0); 6096 6097 match(Set prev (GetAndSetN mem newv)); 6098 6099 ins_cost(ALU_COST); 6100 6101 format %{ "atomic_xchgwu_acq $prev, $newv, [$mem]\t#@get_and_setNAcq" %} 6102 6103 ins_encode %{ 6104 __ atomic_xchgalwu($prev$$Register, $newv$$Register, as_Register($mem$$base)); 6105 %} 6106 6107 ins_pipe(pipe_serial); 6108 %} 6109 6110 instruct get_and_setPAcq(indirect mem, iRegP newv, iRegPNoSp prev) 6111 %{ 6112 predicate(needs_acquiring_load_reserved(n) && (n->as_LoadStore()->barrier_data() == 0)); 6113 6114 match(Set prev (GetAndSetP mem newv)); 6115 6116 ins_cost(ALU_COST); 6117 6118 format %{ "atomic_xchg_acq $prev, $newv, [$mem]\t#@get_and_setPAcq" %} 6119 6120 ins_encode %{ 6121 __ atomic_xchgal($prev$$Register, $newv$$Register, as_Register($mem$$base)); 6122 %} 6123 6124 ins_pipe(pipe_serial); 6125 %} 6126 6127 instruct get_and_addL(indirect mem, iRegLNoSp newval, iRegL incr) 6128 %{ 6129 match(Set newval (GetAndAddL mem incr)); 6130 6131 ins_cost(ALU_COST); 6132 6133 format %{ "get_and_addL $newval, [$mem], $incr\t#@get_and_addL" %} 6134 6135 ins_encode %{ 6136 __ atomic_add($newval$$Register, $incr$$Register, as_Register($mem$$base)); 6137 %} 6138 6139 ins_pipe(pipe_serial); 6140 %} 6141 6142 instruct get_and_addL_no_res(indirect mem, Universe dummy, iRegL incr) 6143 %{ 6144 predicate(n->as_LoadStore()->result_not_used()); 6145 6146 match(Set dummy (GetAndAddL mem incr)); 6147 6148 ins_cost(ALU_COST); 6149 6150 format %{ "get_and_addL [$mem], $incr\t#@get_and_addL_no_res" %} 6151 6152 ins_encode %{ 6153 __ atomic_add(noreg, $incr$$Register, as_Register($mem$$base)); 6154 %} 6155 6156 ins_pipe(pipe_serial); 6157 %} 6158 6159 instruct get_and_addLi(indirect mem, iRegLNoSp newval, immLAdd incr) 6160 %{ 6161 match(Set newval (GetAndAddL mem incr)); 6162 6163 ins_cost(ALU_COST); 6164 6165 format %{ "get_and_addL $newval, [$mem], $incr\t#@get_and_addLi" %} 6166 6167 ins_encode %{ 6168 __ atomic_add($newval$$Register, $incr$$constant, as_Register($mem$$base)); 6169 %} 6170 6171 ins_pipe(pipe_serial); 6172 %} 6173 6174 instruct get_and_addLi_no_res(indirect mem, Universe dummy, immLAdd incr) 6175 %{ 6176 predicate(n->as_LoadStore()->result_not_used()); 6177 6178 match(Set dummy (GetAndAddL mem incr)); 6179 6180 ins_cost(ALU_COST); 6181 6182 format %{ "get_and_addL [$mem], $incr\t#@get_and_addLi_no_res" %} 6183 6184 ins_encode %{ 6185 __ atomic_add(noreg, $incr$$constant, as_Register($mem$$base)); 6186 %} 6187 6188 ins_pipe(pipe_serial); 6189 %} 6190 6191 instruct get_and_addI(indirect mem, iRegINoSp newval, iRegIorL2I incr) 6192 %{ 6193 match(Set newval (GetAndAddI mem incr)); 6194 6195 ins_cost(ALU_COST); 6196 6197 format %{ "get_and_addI $newval, [$mem], $incr\t#@get_and_addI" %} 6198 6199 ins_encode %{ 6200 __ atomic_addw($newval$$Register, $incr$$Register, as_Register($mem$$base)); 6201 %} 6202 6203 ins_pipe(pipe_serial); 6204 %} 6205 6206 instruct get_and_addI_no_res(indirect mem, Universe dummy, iRegIorL2I incr) 6207 %{ 6208 predicate(n->as_LoadStore()->result_not_used()); 6209 6210 match(Set dummy (GetAndAddI mem incr)); 6211 6212 ins_cost(ALU_COST); 6213 6214 format %{ "get_and_addI [$mem], $incr\t#@get_and_addI_no_res" %} 6215 6216 ins_encode %{ 6217 __ atomic_addw(noreg, $incr$$Register, as_Register($mem$$base)); 6218 %} 6219 6220 ins_pipe(pipe_serial); 6221 %} 6222 6223 instruct get_and_addIi(indirect mem, iRegINoSp newval, immIAdd incr) 6224 %{ 6225 match(Set newval (GetAndAddI mem incr)); 6226 6227 ins_cost(ALU_COST); 6228 6229 format %{ "get_and_addI $newval, [$mem], $incr\t#@get_and_addIi" %} 6230 6231 ins_encode %{ 6232 __ atomic_addw($newval$$Register, $incr$$constant, as_Register($mem$$base)); 6233 %} 6234 6235 ins_pipe(pipe_serial); 6236 %} 6237 6238 instruct get_and_addIi_no_res(indirect mem, Universe dummy, immIAdd incr) 6239 %{ 6240 predicate(n->as_LoadStore()->result_not_used()); 6241 6242 match(Set dummy (GetAndAddI mem incr)); 6243 6244 ins_cost(ALU_COST); 6245 6246 format %{ "get_and_addI [$mem], $incr\t#@get_and_addIi_no_res" %} 6247 6248 ins_encode %{ 6249 __ atomic_addw(noreg, $incr$$constant, as_Register($mem$$base)); 6250 %} 6251 6252 ins_pipe(pipe_serial); 6253 %} 6254 6255 instruct get_and_addLAcq(indirect mem, iRegLNoSp newval, iRegL incr) 6256 %{ 6257 predicate(needs_acquiring_load_reserved(n)); 6258 6259 match(Set newval (GetAndAddL mem incr)); 6260 6261 ins_cost(ALU_COST); 6262 6263 format %{ "get_and_addL_acq $newval, [$mem], $incr\t#@get_and_addLAcq" %} 6264 6265 ins_encode %{ 6266 __ atomic_addal($newval$$Register, $incr$$Register, as_Register($mem$$base)); 6267 %} 6268 6269 ins_pipe(pipe_serial); 6270 %} 6271 6272 instruct get_and_addL_no_resAcq(indirect mem, Universe dummy, iRegL incr) %{ 6273 predicate(n->as_LoadStore()->result_not_used() && needs_acquiring_load_reserved(n)); 6274 6275 match(Set dummy (GetAndAddL mem incr)); 6276 6277 ins_cost(ALU_COST); 6278 6279 format %{ "get_and_addL_acq [$mem], $incr\t#@get_and_addL_no_resAcq" %} 6280 6281 ins_encode %{ 6282 __ atomic_addal(noreg, $incr$$Register, as_Register($mem$$base)); 6283 %} 6284 6285 ins_pipe(pipe_serial); 6286 %} 6287 6288 instruct get_and_addLiAcq(indirect mem, iRegLNoSp newval, immLAdd incr) 6289 %{ 6290 predicate(needs_acquiring_load_reserved(n)); 6291 6292 match(Set newval (GetAndAddL mem incr)); 6293 6294 ins_cost(ALU_COST); 6295 6296 format %{ "get_and_addL_acq $newval, [$mem], $incr\t#@get_and_addLiAcq" %} 6297 6298 ins_encode %{ 6299 __ atomic_addal($newval$$Register, $incr$$constant, as_Register($mem$$base)); 6300 %} 6301 6302 ins_pipe(pipe_serial); 6303 %} 6304 6305 instruct get_and_addLi_no_resAcq(indirect mem, Universe dummy, immLAdd incr) 6306 %{ 6307 predicate(n->as_LoadStore()->result_not_used() && needs_acquiring_load_reserved(n)); 6308 6309 match(Set dummy (GetAndAddL mem incr)); 6310 6311 ins_cost(ALU_COST); 6312 6313 format %{ "get_and_addL_acq [$mem], $incr\t#@get_and_addLi_no_resAcq" %} 6314 6315 ins_encode %{ 6316 __ atomic_addal(noreg, $incr$$constant, as_Register($mem$$base)); 6317 %} 6318 6319 ins_pipe(pipe_serial); 6320 %} 6321 6322 instruct get_and_addIAcq(indirect mem, iRegINoSp newval, iRegIorL2I incr) 6323 %{ 6324 predicate(needs_acquiring_load_reserved(n)); 6325 6326 match(Set newval (GetAndAddI mem incr)); 6327 6328 ins_cost(ALU_COST); 6329 6330 format %{ "get_and_addI_acq $newval, [$mem], $incr\t#@get_and_addIAcq" %} 6331 6332 ins_encode %{ 6333 __ atomic_addalw($newval$$Register, $incr$$Register, as_Register($mem$$base)); 6334 %} 6335 6336 ins_pipe(pipe_serial); 6337 %} 6338 6339 instruct get_and_addI_no_resAcq(indirect mem, Universe dummy, iRegIorL2I incr) 6340 %{ 6341 predicate(n->as_LoadStore()->result_not_used() && needs_acquiring_load_reserved(n)); 6342 6343 match(Set dummy (GetAndAddI mem incr)); 6344 6345 ins_cost(ALU_COST); 6346 6347 format %{ "get_and_addI_acq [$mem], $incr\t#@get_and_addI_no_resAcq" %} 6348 6349 ins_encode %{ 6350 __ atomic_addalw(noreg, $incr$$Register, as_Register($mem$$base)); 6351 %} 6352 6353 ins_pipe(pipe_serial); 6354 %} 6355 6356 instruct get_and_addIiAcq(indirect mem, iRegINoSp newval, immIAdd incr) 6357 %{ 6358 predicate(needs_acquiring_load_reserved(n)); 6359 6360 match(Set newval (GetAndAddI mem incr)); 6361 6362 ins_cost(ALU_COST); 6363 6364 format %{ "get_and_addI_acq $newval, [$mem], $incr\t#@get_and_addIiAcq" %} 6365 6366 ins_encode %{ 6367 __ atomic_addalw($newval$$Register, $incr$$constant, as_Register($mem$$base)); 6368 %} 6369 6370 ins_pipe(pipe_serial); 6371 %} 6372 6373 instruct get_and_addIi_no_resAcq(indirect mem, Universe dummy, immIAdd incr) 6374 %{ 6375 predicate(n->as_LoadStore()->result_not_used() && needs_acquiring_load_reserved(n)); 6376 6377 match(Set dummy (GetAndAddI mem incr)); 6378 6379 ins_cost(ALU_COST); 6380 6381 format %{ "get_and_addI_acq [$mem], $incr\t#@get_and_addIi_no_resAcq" %} 6382 6383 ins_encode %{ 6384 __ atomic_addalw(noreg, $incr$$constant, as_Register($mem$$base)); 6385 %} 6386 6387 ins_pipe(pipe_serial); 6388 %} 6389 6390 // ============================================================================ 6391 // Arithmetic Instructions 6392 // 6393 6394 // Integer Addition 6395 6396 // TODO 6397 // these currently employ operations which do not set CR and hence are 6398 // not flagged as killing CR but we would like to isolate the cases 6399 // where we want to set flags from those where we don't. need to work 6400 // out how to do that. 6401 instruct addI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{ 6402 match(Set dst (AddI src1 src2)); 6403 6404 ins_cost(ALU_COST); 6405 format %{ "addw $dst, $src1, $src2\t#@addI_reg_reg" %} 6406 6407 ins_encode %{ 6408 __ addw(as_Register($dst$$reg), 6409 as_Register($src1$$reg), 6410 as_Register($src2$$reg)); 6411 %} 6412 6413 ins_pipe(ialu_reg_reg); 6414 %} 6415 6416 instruct addI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immIAdd src2) %{ 6417 match(Set dst (AddI src1 src2)); 6418 6419 ins_cost(ALU_COST); 6420 format %{ "addiw $dst, $src1, $src2\t#@addI_reg_imm" %} 6421 6422 ins_encode %{ 6423 int32_t con = (int32_t)$src2$$constant; 6424 __ addiw(as_Register($dst$$reg), 6425 as_Register($src1$$reg), 6426 $src2$$constant); 6427 %} 6428 6429 ins_pipe(ialu_reg_imm); 6430 %} 6431 6432 instruct addI_reg_imm_l2i(iRegINoSp dst, iRegL src1, immIAdd src2) %{ 6433 match(Set dst (AddI (ConvL2I src1) src2)); 6434 6435 ins_cost(ALU_COST); 6436 format %{ "addiw $dst, $src1, $src2\t#@addI_reg_imm_l2i" %} 6437 6438 ins_encode %{ 6439 __ addiw(as_Register($dst$$reg), 6440 as_Register($src1$$reg), 6441 $src2$$constant); 6442 %} 6443 6444 ins_pipe(ialu_reg_imm); 6445 %} 6446 6447 // Pointer Addition 6448 instruct addP_reg_reg(iRegPNoSp dst, iRegP src1, iRegL src2) %{ 6449 match(Set dst (AddP src1 src2)); 6450 6451 ins_cost(ALU_COST); 6452 format %{ "add $dst, $src1, $src2\t# ptr, #@addP_reg_reg" %} 6453 6454 ins_encode %{ 6455 __ add(as_Register($dst$$reg), 6456 as_Register($src1$$reg), 6457 as_Register($src2$$reg)); 6458 %} 6459 6460 ins_pipe(ialu_reg_reg); 6461 %} 6462 6463 // If we shift more than 32 bits, we need not convert I2L. 6464 instruct lShiftL_regI_immGE32(iRegLNoSp dst, iRegI src, uimmI6_ge32 scale) %{ 6465 match(Set dst (LShiftL (ConvI2L src) scale)); 6466 ins_cost(ALU_COST); 6467 format %{ "slli $dst, $src, $scale & 63\t#@lShiftL_regI_immGE32" %} 6468 6469 ins_encode %{ 6470 __ slli(as_Register($dst$$reg), as_Register($src$$reg), $scale$$constant & 63); 6471 %} 6472 6473 ins_pipe(ialu_reg_shift); 6474 %} 6475 6476 // Pointer Immediate Addition 6477 // n.b. this needs to be more expensive than using an indirect memory 6478 // operand 6479 instruct addP_reg_imm(iRegPNoSp dst, iRegP src1, immLAdd src2) %{ 6480 match(Set dst (AddP src1 src2)); 6481 ins_cost(ALU_COST); 6482 format %{ "addi $dst, $src1, $src2\t# ptr, #@addP_reg_imm" %} 6483 6484 ins_encode %{ 6485 // src2 is imm, so actually call the addi 6486 __ add(as_Register($dst$$reg), 6487 as_Register($src1$$reg), 6488 $src2$$constant); 6489 %} 6490 6491 ins_pipe(ialu_reg_imm); 6492 %} 6493 6494 // Long Addition 6495 instruct addL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2) %{ 6496 match(Set dst (AddL src1 src2)); 6497 ins_cost(ALU_COST); 6498 format %{ "add $dst, $src1, $src2\t#@addL_reg_reg" %} 6499 6500 ins_encode %{ 6501 __ add(as_Register($dst$$reg), 6502 as_Register($src1$$reg), 6503 as_Register($src2$$reg)); 6504 %} 6505 6506 ins_pipe(ialu_reg_reg); 6507 %} 6508 6509 // No constant pool entries requiredLong Immediate Addition. 6510 instruct addL_reg_imm(iRegLNoSp dst, iRegL src1, immLAdd src2) %{ 6511 match(Set dst (AddL src1 src2)); 6512 ins_cost(ALU_COST); 6513 format %{ "addi $dst, $src1, $src2\t#@addL_reg_imm" %} 6514 6515 ins_encode %{ 6516 // src2 is imm, so actually call the addi 6517 __ add(as_Register($dst$$reg), 6518 as_Register($src1$$reg), 6519 $src2$$constant); 6520 %} 6521 6522 ins_pipe(ialu_reg_imm); 6523 %} 6524 6525 // Integer Subtraction 6526 instruct subI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{ 6527 match(Set dst (SubI src1 src2)); 6528 6529 ins_cost(ALU_COST); 6530 format %{ "subw $dst, $src1, $src2\t#@subI_reg_reg" %} 6531 6532 ins_encode %{ 6533 __ subw(as_Register($dst$$reg), 6534 as_Register($src1$$reg), 6535 as_Register($src2$$reg)); 6536 %} 6537 6538 ins_pipe(ialu_reg_reg); 6539 %} 6540 6541 // Immediate Subtraction 6542 instruct subI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immISub src2) %{ 6543 match(Set dst (SubI src1 src2)); 6544 6545 ins_cost(ALU_COST); 6546 format %{ "addiw $dst, $src1, -$src2\t#@subI_reg_imm" %} 6547 6548 ins_encode %{ 6549 // src2 is imm, so actually call the addiw 6550 __ subw(as_Register($dst$$reg), 6551 as_Register($src1$$reg), 6552 $src2$$constant); 6553 %} 6554 6555 ins_pipe(ialu_reg_imm); 6556 %} 6557 6558 // Long Subtraction 6559 instruct subL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2) %{ 6560 match(Set dst (SubL src1 src2)); 6561 ins_cost(ALU_COST); 6562 format %{ "sub $dst, $src1, $src2\t#@subL_reg_reg" %} 6563 6564 ins_encode %{ 6565 __ sub(as_Register($dst$$reg), 6566 as_Register($src1$$reg), 6567 as_Register($src2$$reg)); 6568 %} 6569 6570 ins_pipe(ialu_reg_reg); 6571 %} 6572 6573 // No constant pool entries requiredLong Immediate Subtraction. 6574 instruct subL_reg_imm(iRegLNoSp dst, iRegL src1, immLSub src2) %{ 6575 match(Set dst (SubL src1 src2)); 6576 ins_cost(ALU_COST); 6577 format %{ "addi $dst, $src1, -$src2\t#@subL_reg_imm" %} 6578 6579 ins_encode %{ 6580 // src2 is imm, so actually call the addi 6581 __ sub(as_Register($dst$$reg), 6582 as_Register($src1$$reg), 6583 $src2$$constant); 6584 %} 6585 6586 ins_pipe(ialu_reg_imm); 6587 %} 6588 6589 // Integer Negation (special case for sub) 6590 6591 instruct negI_reg(iRegINoSp dst, iRegIorL2I src, immI0 zero) %{ 6592 match(Set dst (SubI zero src)); 6593 ins_cost(ALU_COST); 6594 format %{ "subw $dst, x0, $src\t# int, #@negI_reg" %} 6595 6596 ins_encode %{ 6597 // actually call the subw 6598 __ negw(as_Register($dst$$reg), 6599 as_Register($src$$reg)); 6600 %} 6601 6602 ins_pipe(ialu_reg); 6603 %} 6604 6605 // Long Negation 6606 6607 instruct negL_reg(iRegLNoSp dst, iRegL src, immL0 zero) %{ 6608 match(Set dst (SubL zero src)); 6609 ins_cost(ALU_COST); 6610 format %{ "sub $dst, x0, $src\t# long, #@negL_reg" %} 6611 6612 ins_encode %{ 6613 // actually call the sub 6614 __ neg(as_Register($dst$$reg), 6615 as_Register($src$$reg)); 6616 %} 6617 6618 ins_pipe(ialu_reg); 6619 %} 6620 6621 // Integer Multiply 6622 6623 instruct mulI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{ 6624 match(Set dst (MulI src1 src2)); 6625 ins_cost(IMUL_COST); 6626 format %{ "mulw $dst, $src1, $src2\t#@mulI" %} 6627 6628 //this means 2 word multi, and no sign extend to 64 bits 6629 ins_encode %{ 6630 // riscv64 mulw will sign-extension to high 32 bits in dst reg 6631 __ mulw(as_Register($dst$$reg), 6632 as_Register($src1$$reg), 6633 as_Register($src2$$reg)); 6634 %} 6635 6636 ins_pipe(imul_reg_reg); 6637 %} 6638 6639 // Long Multiply 6640 6641 instruct mulL(iRegLNoSp dst, iRegL src1, iRegL src2) %{ 6642 match(Set dst (MulL src1 src2)); 6643 ins_cost(IMUL_COST); 6644 format %{ "mul $dst, $src1, $src2\t#@mulL" %} 6645 6646 ins_encode %{ 6647 __ mul(as_Register($dst$$reg), 6648 as_Register($src1$$reg), 6649 as_Register($src2$$reg)); 6650 %} 6651 6652 ins_pipe(lmul_reg_reg); 6653 %} 6654 6655 instruct mulHiL_rReg(iRegLNoSp dst, iRegL src1, iRegL src2) 6656 %{ 6657 match(Set dst (MulHiL src1 src2)); 6658 ins_cost(IMUL_COST); 6659 format %{ "mulh $dst, $src1, $src2\t# mulhi, #@mulHiL_rReg" %} 6660 6661 ins_encode %{ 6662 __ mulh(as_Register($dst$$reg), 6663 as_Register($src1$$reg), 6664 as_Register($src2$$reg)); 6665 %} 6666 6667 ins_pipe(lmul_reg_reg); 6668 %} 6669 6670 instruct umulHiL_rReg(iRegLNoSp dst, iRegL src1, iRegL src2) 6671 %{ 6672 match(Set dst (UMulHiL src1 src2)); 6673 ins_cost(IMUL_COST); 6674 format %{ "mulhu $dst, $src1, $src2\t# umulhi, #@umulHiL_rReg" %} 6675 6676 ins_encode %{ 6677 __ mulhu(as_Register($dst$$reg), 6678 as_Register($src1$$reg), 6679 as_Register($src2$$reg)); 6680 %} 6681 6682 ins_pipe(lmul_reg_reg); 6683 %} 6684 6685 // Integer Divide 6686 6687 instruct divI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{ 6688 match(Set dst (DivI src1 src2)); 6689 ins_cost(IDIVSI_COST); 6690 format %{ "divw $dst, $src1, $src2\t#@divI"%} 6691 6692 ins_encode(riscv_enc_divw(dst, src1, src2)); 6693 ins_pipe(idiv_reg_reg); 6694 %} 6695 6696 instruct UdivI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{ 6697 match(Set dst (UDivI src1 src2)); 6698 ins_cost(IDIVSI_COST); 6699 format %{ "divuw $dst, $src1, $src2\t#@UdivI"%} 6700 6701 ins_encode(riscv_enc_divuw(dst, src1, src2)); 6702 ins_pipe(idiv_reg_reg); 6703 %} 6704 6705 instruct signExtract(iRegINoSp dst, iRegIorL2I src1, immI_31 div1, immI_31 div2) %{ 6706 match(Set dst (URShiftI (RShiftI src1 div1) div2)); 6707 ins_cost(ALU_COST); 6708 format %{ "srliw $dst, $src1, $div1\t# int signExtract, #@signExtract" %} 6709 6710 ins_encode %{ 6711 __ srliw(as_Register($dst$$reg), as_Register($src1$$reg), 31); 6712 %} 6713 ins_pipe(ialu_reg_shift); 6714 %} 6715 6716 // Long Divide 6717 6718 instruct divL(iRegLNoSp dst, iRegL src1, iRegL src2) %{ 6719 match(Set dst (DivL src1 src2)); 6720 ins_cost(IDIVDI_COST); 6721 format %{ "div $dst, $src1, $src2\t#@divL" %} 6722 6723 ins_encode(riscv_enc_div(dst, src1, src2)); 6724 ins_pipe(ldiv_reg_reg); 6725 %} 6726 6727 instruct UdivL(iRegLNoSp dst, iRegL src1, iRegL src2) %{ 6728 match(Set dst (UDivL src1 src2)); 6729 ins_cost(IDIVDI_COST); 6730 6731 format %{ "divu $dst, $src1, $src2\t#@UdivL" %} 6732 6733 ins_encode(riscv_enc_divu(dst, src1, src2)); 6734 ins_pipe(ldiv_reg_reg); 6735 %} 6736 6737 instruct signExtractL(iRegLNoSp dst, iRegL src1, immI_63 div1, immI_63 div2) %{ 6738 match(Set dst (URShiftL (RShiftL src1 div1) div2)); 6739 ins_cost(ALU_COST); 6740 format %{ "srli $dst, $src1, $div1\t# long signExtract, #@signExtractL" %} 6741 6742 ins_encode %{ 6743 __ srli(as_Register($dst$$reg), as_Register($src1$$reg), 63); 6744 %} 6745 ins_pipe(ialu_reg_shift); 6746 %} 6747 6748 // Integer Remainder 6749 6750 instruct modI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{ 6751 match(Set dst (ModI src1 src2)); 6752 ins_cost(IDIVSI_COST); 6753 format %{ "remw $dst, $src1, $src2\t#@modI" %} 6754 6755 ins_encode(riscv_enc_modw(dst, src1, src2)); 6756 ins_pipe(ialu_reg_reg); 6757 %} 6758 6759 instruct UmodI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{ 6760 match(Set dst (UModI src1 src2)); 6761 ins_cost(IDIVSI_COST); 6762 format %{ "remuw $dst, $src1, $src2\t#@UmodI" %} 6763 6764 ins_encode(riscv_enc_moduw(dst, src1, src2)); 6765 ins_pipe(ialu_reg_reg); 6766 %} 6767 6768 // Long Remainder 6769 6770 instruct modL(iRegLNoSp dst, iRegL src1, iRegL src2) %{ 6771 match(Set dst (ModL src1 src2)); 6772 ins_cost(IDIVDI_COST); 6773 format %{ "rem $dst, $src1, $src2\t#@modL" %} 6774 6775 ins_encode(riscv_enc_mod(dst, src1, src2)); 6776 ins_pipe(ialu_reg_reg); 6777 %} 6778 6779 instruct UmodL(iRegLNoSp dst, iRegL src1, iRegL src2) %{ 6780 match(Set dst (UModL src1 src2)); 6781 ins_cost(IDIVDI_COST); 6782 format %{ "remu $dst, $src1, $src2\t#@UmodL" %} 6783 6784 ins_encode(riscv_enc_modu(dst, src1, src2)); 6785 ins_pipe(ialu_reg_reg); 6786 %} 6787 6788 // Integer Shifts 6789 6790 // Shift Left Register 6791 // In RV64I, only the low 5 bits of src2 are considered for the shift amount 6792 instruct lShiftI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{ 6793 match(Set dst (LShiftI src1 src2)); 6794 ins_cost(ALU_COST); 6795 format %{ "sllw $dst, $src1, $src2\t#@lShiftI_reg_reg" %} 6796 6797 ins_encode %{ 6798 __ sllw(as_Register($dst$$reg), 6799 as_Register($src1$$reg), 6800 as_Register($src2$$reg)); 6801 %} 6802 6803 ins_pipe(ialu_reg_reg_vshift); 6804 %} 6805 6806 // Shift Left Immediate 6807 instruct lShiftI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immI src2) %{ 6808 match(Set dst (LShiftI src1 src2)); 6809 ins_cost(ALU_COST); 6810 format %{ "slliw $dst, $src1, ($src2 & 0x1f)\t#@lShiftI_reg_imm" %} 6811 6812 ins_encode %{ 6813 // the shift amount is encoded in the lower 6814 // 5 bits of the I-immediate field for RV32I 6815 __ slliw(as_Register($dst$$reg), 6816 as_Register($src1$$reg), 6817 (unsigned) $src2$$constant & 0x1f); 6818 %} 6819 6820 ins_pipe(ialu_reg_shift); 6821 %} 6822 6823 // Shift Right Logical Register 6824 // In RV64I, only the low 5 bits of src2 are considered for the shift amount 6825 instruct urShiftI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{ 6826 match(Set dst (URShiftI src1 src2)); 6827 ins_cost(ALU_COST); 6828 format %{ "srlw $dst, $src1, $src2\t#@urShiftI_reg_reg" %} 6829 6830 ins_encode %{ 6831 __ srlw(as_Register($dst$$reg), 6832 as_Register($src1$$reg), 6833 as_Register($src2$$reg)); 6834 %} 6835 6836 ins_pipe(ialu_reg_reg_vshift); 6837 %} 6838 6839 // Shift Right Logical Immediate 6840 instruct urShiftI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immI src2) %{ 6841 match(Set dst (URShiftI src1 src2)); 6842 ins_cost(ALU_COST); 6843 format %{ "srliw $dst, $src1, ($src2 & 0x1f)\t#@urShiftI_reg_imm" %} 6844 6845 ins_encode %{ 6846 // the shift amount is encoded in the lower 6847 // 6 bits of the I-immediate field for RV64I 6848 __ srliw(as_Register($dst$$reg), 6849 as_Register($src1$$reg), 6850 (unsigned) $src2$$constant & 0x1f); 6851 %} 6852 6853 ins_pipe(ialu_reg_shift); 6854 %} 6855 6856 // Shift Right Arithmetic Register 6857 // In RV64I, only the low 5 bits of src2 are considered for the shift amount 6858 instruct rShiftI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{ 6859 match(Set dst (RShiftI src1 src2)); 6860 ins_cost(ALU_COST); 6861 format %{ "sraw $dst, $src1, $src2\t#@rShiftI_reg_reg" %} 6862 6863 ins_encode %{ 6864 // riscv will sign-ext dst high 32 bits 6865 __ sraw(as_Register($dst$$reg), 6866 as_Register($src1$$reg), 6867 as_Register($src2$$reg)); 6868 %} 6869 6870 ins_pipe(ialu_reg_reg_vshift); 6871 %} 6872 6873 // Shift Right Arithmetic Immediate 6874 instruct rShiftI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immI src2) %{ 6875 match(Set dst (RShiftI src1 src2)); 6876 ins_cost(ALU_COST); 6877 format %{ "sraiw $dst, $src1, ($src2 & 0x1f)\t#@rShiftI_reg_imm" %} 6878 6879 ins_encode %{ 6880 // riscv will sign-ext dst high 32 bits 6881 __ sraiw(as_Register($dst$$reg), 6882 as_Register($src1$$reg), 6883 (unsigned) $src2$$constant & 0x1f); 6884 %} 6885 6886 ins_pipe(ialu_reg_shift); 6887 %} 6888 6889 // Long Shifts 6890 6891 // Shift Left Register 6892 // In RV64I, only the low 6 bits of src2 are considered for the shift amount 6893 instruct lShiftL_reg_reg(iRegLNoSp dst, iRegL src1, iRegIorL2I src2) %{ 6894 match(Set dst (LShiftL src1 src2)); 6895 6896 ins_cost(ALU_COST); 6897 format %{ "sll $dst, $src1, $src2\t#@lShiftL_reg_reg" %} 6898 6899 ins_encode %{ 6900 __ sll(as_Register($dst$$reg), 6901 as_Register($src1$$reg), 6902 as_Register($src2$$reg)); 6903 %} 6904 6905 ins_pipe(ialu_reg_reg_vshift); 6906 %} 6907 6908 // Shift Left Immediate 6909 instruct lShiftL_reg_imm(iRegLNoSp dst, iRegL src1, immI src2) %{ 6910 match(Set dst (LShiftL src1 src2)); 6911 6912 ins_cost(ALU_COST); 6913 format %{ "slli $dst, $src1, ($src2 & 0x3f)\t#@lShiftL_reg_imm" %} 6914 6915 ins_encode %{ 6916 // the shift amount is encoded in the lower 6917 // 6 bits of the I-immediate field for RV64I 6918 __ slli(as_Register($dst$$reg), 6919 as_Register($src1$$reg), 6920 (unsigned) $src2$$constant & 0x3f); 6921 %} 6922 6923 ins_pipe(ialu_reg_shift); 6924 %} 6925 6926 // Shift Right Logical Register 6927 // In RV64I, only the low 6 bits of src2 are considered for the shift amount 6928 instruct urShiftL_reg_reg(iRegLNoSp dst, iRegL src1, iRegIorL2I src2) %{ 6929 match(Set dst (URShiftL src1 src2)); 6930 6931 ins_cost(ALU_COST); 6932 format %{ "srl $dst, $src1, $src2\t#@urShiftL_reg_reg" %} 6933 6934 ins_encode %{ 6935 __ srl(as_Register($dst$$reg), 6936 as_Register($src1$$reg), 6937 as_Register($src2$$reg)); 6938 %} 6939 6940 ins_pipe(ialu_reg_reg_vshift); 6941 %} 6942 6943 // Shift Right Logical Immediate 6944 instruct urShiftL_reg_imm(iRegLNoSp dst, iRegL src1, immI src2) %{ 6945 match(Set dst (URShiftL src1 src2)); 6946 6947 ins_cost(ALU_COST); 6948 format %{ "srli $dst, $src1, ($src2 & 0x3f)\t#@urShiftL_reg_imm" %} 6949 6950 ins_encode %{ 6951 // the shift amount is encoded in the lower 6952 // 6 bits of the I-immediate field for RV64I 6953 __ srli(as_Register($dst$$reg), 6954 as_Register($src1$$reg), 6955 (unsigned) $src2$$constant & 0x3f); 6956 %} 6957 6958 ins_pipe(ialu_reg_shift); 6959 %} 6960 6961 // A special-case pattern for card table stores. 6962 instruct urShiftP_reg_imm(iRegLNoSp dst, iRegP src1, immI src2) %{ 6963 match(Set dst (URShiftL (CastP2X src1) src2)); 6964 6965 ins_cost(ALU_COST); 6966 format %{ "srli $dst, p2x($src1), ($src2 & 0x3f)\t#@urShiftP_reg_imm" %} 6967 6968 ins_encode %{ 6969 // the shift amount is encoded in the lower 6970 // 6 bits of the I-immediate field for RV64I 6971 __ srli(as_Register($dst$$reg), 6972 as_Register($src1$$reg), 6973 (unsigned) $src2$$constant & 0x3f); 6974 %} 6975 6976 ins_pipe(ialu_reg_shift); 6977 %} 6978 6979 // Shift Right Arithmetic Register 6980 // In RV64I, only the low 6 bits of src2 are considered for the shift amount 6981 instruct rShiftL_reg_reg(iRegLNoSp dst, iRegL src1, iRegIorL2I src2) %{ 6982 match(Set dst (RShiftL src1 src2)); 6983 6984 ins_cost(ALU_COST); 6985 format %{ "sra $dst, $src1, $src2\t#@rShiftL_reg_reg" %} 6986 6987 ins_encode %{ 6988 __ sra(as_Register($dst$$reg), 6989 as_Register($src1$$reg), 6990 as_Register($src2$$reg)); 6991 %} 6992 6993 ins_pipe(ialu_reg_reg_vshift); 6994 %} 6995 6996 // Shift Right Arithmetic Immediate 6997 instruct rShiftL_reg_imm(iRegLNoSp dst, iRegL src1, immI src2) %{ 6998 match(Set dst (RShiftL src1 src2)); 6999 7000 ins_cost(ALU_COST); 7001 format %{ "srai $dst, $src1, ($src2 & 0x3f)\t#@rShiftL_reg_imm" %} 7002 7003 ins_encode %{ 7004 // the shift amount is encoded in the lower 7005 // 6 bits of the I-immediate field for RV64I 7006 __ srai(as_Register($dst$$reg), 7007 as_Register($src1$$reg), 7008 (unsigned) $src2$$constant & 0x3f); 7009 %} 7010 7011 ins_pipe(ialu_reg_shift); 7012 %} 7013 7014 instruct regI_not_reg(iRegINoSp dst, iRegI src1, immI_M1 m1) %{ 7015 match(Set dst (XorI src1 m1)); 7016 ins_cost(ALU_COST); 7017 format %{ "xori $dst, $src1, -1\t#@regI_not_reg" %} 7018 7019 ins_encode %{ 7020 __ xori(as_Register($dst$$reg), as_Register($src1$$reg), -1); 7021 %} 7022 7023 ins_pipe(ialu_reg_imm); 7024 %} 7025 7026 instruct regL_not_reg(iRegLNoSp dst, iRegL src1, immL_M1 m1) %{ 7027 match(Set dst (XorL src1 m1)); 7028 ins_cost(ALU_COST); 7029 format %{ "xori $dst, $src1, -1\t#@regL_not_reg" %} 7030 7031 ins_encode %{ 7032 __ xori(as_Register($dst$$reg), as_Register($src1$$reg), -1); 7033 %} 7034 7035 ins_pipe(ialu_reg_imm); 7036 %} 7037 7038 7039 // ============================================================================ 7040 // Floating Point Arithmetic Instructions 7041 7042 instruct addF_reg_reg(fRegF dst, fRegF src1, fRegF src2) %{ 7043 match(Set dst (AddF src1 src2)); 7044 7045 ins_cost(DEFAULT_COST * 5); 7046 format %{ "fadd.s $dst, $src1, $src2\t#@addF_reg_reg" %} 7047 7048 ins_encode %{ 7049 __ fadd_s(as_FloatRegister($dst$$reg), 7050 as_FloatRegister($src1$$reg), 7051 as_FloatRegister($src2$$reg)); 7052 %} 7053 7054 ins_pipe(fp_dop_reg_reg_s); 7055 %} 7056 7057 instruct addD_reg_reg(fRegD dst, fRegD src1, fRegD src2) %{ 7058 match(Set dst (AddD src1 src2)); 7059 7060 ins_cost(DEFAULT_COST * 5); 7061 format %{ "fadd.d $dst, $src1, $src2\t#@addD_reg_reg" %} 7062 7063 ins_encode %{ 7064 __ fadd_d(as_FloatRegister($dst$$reg), 7065 as_FloatRegister($src1$$reg), 7066 as_FloatRegister($src2$$reg)); 7067 %} 7068 7069 ins_pipe(fp_dop_reg_reg_d); 7070 %} 7071 7072 instruct subF_reg_reg(fRegF dst, fRegF src1, fRegF src2) %{ 7073 match(Set dst (SubF src1 src2)); 7074 7075 ins_cost(DEFAULT_COST * 5); 7076 format %{ "fsub.s $dst, $src1, $src2\t#@subF_reg_reg" %} 7077 7078 ins_encode %{ 7079 __ fsub_s(as_FloatRegister($dst$$reg), 7080 as_FloatRegister($src1$$reg), 7081 as_FloatRegister($src2$$reg)); 7082 %} 7083 7084 ins_pipe(fp_dop_reg_reg_s); 7085 %} 7086 7087 instruct subD_reg_reg(fRegD dst, fRegD src1, fRegD src2) %{ 7088 match(Set dst (SubD src1 src2)); 7089 7090 ins_cost(DEFAULT_COST * 5); 7091 format %{ "fsub.d $dst, $src1, $src2\t#@subD_reg_reg" %} 7092 7093 ins_encode %{ 7094 __ fsub_d(as_FloatRegister($dst$$reg), 7095 as_FloatRegister($src1$$reg), 7096 as_FloatRegister($src2$$reg)); 7097 %} 7098 7099 ins_pipe(fp_dop_reg_reg_d); 7100 %} 7101 7102 instruct mulF_reg_reg(fRegF dst, fRegF src1, fRegF src2) %{ 7103 match(Set dst (MulF src1 src2)); 7104 7105 ins_cost(FMUL_SINGLE_COST); 7106 format %{ "fmul.s $dst, $src1, $src2\t#@mulF_reg_reg" %} 7107 7108 ins_encode %{ 7109 __ fmul_s(as_FloatRegister($dst$$reg), 7110 as_FloatRegister($src1$$reg), 7111 as_FloatRegister($src2$$reg)); 7112 %} 7113 7114 ins_pipe(fp_dop_reg_reg_s); 7115 %} 7116 7117 instruct mulD_reg_reg(fRegD dst, fRegD src1, fRegD src2) %{ 7118 match(Set dst (MulD src1 src2)); 7119 7120 ins_cost(FMUL_DOUBLE_COST); 7121 format %{ "fmul.d $dst, $src1, $src2\t#@mulD_reg_reg" %} 7122 7123 ins_encode %{ 7124 __ fmul_d(as_FloatRegister($dst$$reg), 7125 as_FloatRegister($src1$$reg), 7126 as_FloatRegister($src2$$reg)); 7127 %} 7128 7129 ins_pipe(fp_dop_reg_reg_d); 7130 %} 7131 7132 // src1 * src2 + src3 7133 instruct maddF_reg_reg(fRegF dst, fRegF src1, fRegF src2, fRegF src3) %{ 7134 match(Set dst (FmaF src3 (Binary src1 src2))); 7135 7136 ins_cost(FMUL_SINGLE_COST); 7137 format %{ "fmadd.s $dst, $src1, $src2, $src3\t#@maddF_reg_reg" %} 7138 7139 ins_encode %{ 7140 assert(UseFMA, "Needs FMA instructions support."); 7141 __ fmadd_s(as_FloatRegister($dst$$reg), 7142 as_FloatRegister($src1$$reg), 7143 as_FloatRegister($src2$$reg), 7144 as_FloatRegister($src3$$reg)); 7145 %} 7146 7147 ins_pipe(pipe_class_default); 7148 %} 7149 7150 // src1 * src2 + src3 7151 instruct maddD_reg_reg(fRegD dst, fRegD src1, fRegD src2, fRegD src3) %{ 7152 match(Set dst (FmaD src3 (Binary src1 src2))); 7153 7154 ins_cost(FMUL_DOUBLE_COST); 7155 format %{ "fmadd.d $dst, $src1, $src2, $src3\t#@maddD_reg_reg" %} 7156 7157 ins_encode %{ 7158 assert(UseFMA, "Needs FMA instructions support."); 7159 __ fmadd_d(as_FloatRegister($dst$$reg), 7160 as_FloatRegister($src1$$reg), 7161 as_FloatRegister($src2$$reg), 7162 as_FloatRegister($src3$$reg)); 7163 %} 7164 7165 ins_pipe(pipe_class_default); 7166 %} 7167 7168 // src1 * src2 - src3 7169 instruct msubF_reg_reg(fRegF dst, fRegF src1, fRegF src2, fRegF src3) %{ 7170 match(Set dst (FmaF (NegF src3) (Binary src1 src2))); 7171 7172 ins_cost(FMUL_SINGLE_COST); 7173 format %{ "fmsub.s $dst, $src1, $src2, $src3\t#@msubF_reg_reg" %} 7174 7175 ins_encode %{ 7176 assert(UseFMA, "Needs FMA instructions support."); 7177 __ fmsub_s(as_FloatRegister($dst$$reg), 7178 as_FloatRegister($src1$$reg), 7179 as_FloatRegister($src2$$reg), 7180 as_FloatRegister($src3$$reg)); 7181 %} 7182 7183 ins_pipe(pipe_class_default); 7184 %} 7185 7186 // src1 * src2 - src3 7187 instruct msubD_reg_reg(fRegD dst, fRegD src1, fRegD src2, fRegD src3) %{ 7188 match(Set dst (FmaD (NegD src3) (Binary src1 src2))); 7189 7190 ins_cost(FMUL_DOUBLE_COST); 7191 format %{ "fmsub.d $dst, $src1, $src2, $src3\t#@msubD_reg_reg" %} 7192 7193 ins_encode %{ 7194 assert(UseFMA, "Needs FMA instructions support."); 7195 __ fmsub_d(as_FloatRegister($dst$$reg), 7196 as_FloatRegister($src1$$reg), 7197 as_FloatRegister($src2$$reg), 7198 as_FloatRegister($src3$$reg)); 7199 %} 7200 7201 ins_pipe(pipe_class_default); 7202 %} 7203 7204 // src1 * (-src2) + src3 7205 // "(-src1) * src2 + src3" has been idealized to "src2 * (-src1) + src3" 7206 instruct nmsubF_reg_reg(fRegF dst, fRegF src1, fRegF src2, fRegF src3) %{ 7207 match(Set dst (FmaF src3 (Binary src1 (NegF src2)))); 7208 7209 ins_cost(FMUL_SINGLE_COST); 7210 format %{ "fnmsub.s $dst, $src1, $src2, $src3\t#@nmsubF_reg_reg" %} 7211 7212 ins_encode %{ 7213 assert(UseFMA, "Needs FMA instructions support."); 7214 __ fnmsub_s(as_FloatRegister($dst$$reg), 7215 as_FloatRegister($src1$$reg), 7216 as_FloatRegister($src2$$reg), 7217 as_FloatRegister($src3$$reg)); 7218 %} 7219 7220 ins_pipe(pipe_class_default); 7221 %} 7222 7223 // src1 * (-src2) + src3 7224 // "(-src1) * src2 + src3" has been idealized to "src2 * (-src1) + src3" 7225 instruct nmsubD_reg_reg(fRegD dst, fRegD src1, fRegD src2, fRegD src3) %{ 7226 match(Set dst (FmaD src3 (Binary src1 (NegD src2)))); 7227 7228 ins_cost(FMUL_DOUBLE_COST); 7229 format %{ "fnmsub.d $dst, $src1, $src2, $src3\t#@nmsubD_reg_reg" %} 7230 7231 ins_encode %{ 7232 assert(UseFMA, "Needs FMA instructions support."); 7233 __ fnmsub_d(as_FloatRegister($dst$$reg), 7234 as_FloatRegister($src1$$reg), 7235 as_FloatRegister($src2$$reg), 7236 as_FloatRegister($src3$$reg)); 7237 %} 7238 7239 ins_pipe(pipe_class_default); 7240 %} 7241 7242 // src1 * (-src2) - src3 7243 // "(-src1) * src2 - src3" has been idealized to "src2 * (-src1) - src3" 7244 instruct nmaddF_reg_reg(fRegF dst, fRegF src1, fRegF src2, fRegF src3) %{ 7245 match(Set dst (FmaF (NegF src3) (Binary src1 (NegF src2)))); 7246 7247 ins_cost(FMUL_SINGLE_COST); 7248 format %{ "fnmadd.s $dst, $src1, $src2, $src3\t#@nmaddF_reg_reg" %} 7249 7250 ins_encode %{ 7251 assert(UseFMA, "Needs FMA instructions support."); 7252 __ fnmadd_s(as_FloatRegister($dst$$reg), 7253 as_FloatRegister($src1$$reg), 7254 as_FloatRegister($src2$$reg), 7255 as_FloatRegister($src3$$reg)); 7256 %} 7257 7258 ins_pipe(pipe_class_default); 7259 %} 7260 7261 // src1 * (-src2) - src3 7262 // "(-src1) * src2 - src3" has been idealized to "src2 * (-src1) - src3" 7263 instruct nmaddD_reg_reg(fRegD dst, fRegD src1, fRegD src2, fRegD src3) %{ 7264 match(Set dst (FmaD (NegD src3) (Binary src1 (NegD src2)))); 7265 7266 ins_cost(FMUL_DOUBLE_COST); 7267 format %{ "fnmadd.d $dst, $src1, $src2, $src3\t#@nmaddD_reg_reg" %} 7268 7269 ins_encode %{ 7270 assert(UseFMA, "Needs FMA instructions support."); 7271 __ fnmadd_d(as_FloatRegister($dst$$reg), 7272 as_FloatRegister($src1$$reg), 7273 as_FloatRegister($src2$$reg), 7274 as_FloatRegister($src3$$reg)); 7275 %} 7276 7277 ins_pipe(pipe_class_default); 7278 %} 7279 7280 // Math.max(FF)F 7281 instruct maxF_reg_reg(fRegF dst, fRegF src1, fRegF src2, rFlagsReg cr) %{ 7282 match(Set dst (MaxF src1 src2)); 7283 effect(TEMP_DEF dst, KILL cr); 7284 7285 format %{ "maxF $dst, $src1, $src2" %} 7286 7287 ins_encode %{ 7288 __ minmax_fp(as_FloatRegister($dst$$reg), 7289 as_FloatRegister($src1$$reg), as_FloatRegister($src2$$reg), 7290 false /* is_double */, false /* is_min */); 7291 %} 7292 7293 ins_pipe(pipe_class_default); 7294 %} 7295 7296 // Math.min(FF)F 7297 instruct minF_reg_reg(fRegF dst, fRegF src1, fRegF src2, rFlagsReg cr) %{ 7298 match(Set dst (MinF src1 src2)); 7299 effect(TEMP_DEF dst, KILL cr); 7300 7301 format %{ "minF $dst, $src1, $src2" %} 7302 7303 ins_encode %{ 7304 __ minmax_fp(as_FloatRegister($dst$$reg), 7305 as_FloatRegister($src1$$reg), as_FloatRegister($src2$$reg), 7306 false /* is_double */, true /* is_min */); 7307 %} 7308 7309 ins_pipe(pipe_class_default); 7310 %} 7311 7312 // Math.max(DD)D 7313 instruct maxD_reg_reg(fRegD dst, fRegD src1, fRegD src2, rFlagsReg cr) %{ 7314 match(Set dst (MaxD src1 src2)); 7315 effect(TEMP_DEF dst, KILL cr); 7316 7317 format %{ "maxD $dst, $src1, $src2" %} 7318 7319 ins_encode %{ 7320 __ minmax_fp(as_FloatRegister($dst$$reg), 7321 as_FloatRegister($src1$$reg), as_FloatRegister($src2$$reg), 7322 true /* is_double */, false /* is_min */); 7323 %} 7324 7325 ins_pipe(pipe_class_default); 7326 %} 7327 7328 // Math.min(DD)D 7329 instruct minD_reg_reg(fRegD dst, fRegD src1, fRegD src2, rFlagsReg cr) %{ 7330 match(Set dst (MinD src1 src2)); 7331 effect(TEMP_DEF dst, KILL cr); 7332 7333 format %{ "minD $dst, $src1, $src2" %} 7334 7335 ins_encode %{ 7336 __ minmax_fp(as_FloatRegister($dst$$reg), 7337 as_FloatRegister($src1$$reg), as_FloatRegister($src2$$reg), 7338 true /* is_double */, true /* is_min */); 7339 %} 7340 7341 ins_pipe(pipe_class_default); 7342 %} 7343 7344 // Float.isInfinite 7345 instruct isInfiniteF_reg_reg(iRegINoSp dst, fRegF src) 7346 %{ 7347 match(Set dst (IsInfiniteF src)); 7348 7349 format %{ "isInfinite $dst, $src" %} 7350 ins_encode %{ 7351 __ fclass_s(as_Register($dst$$reg), as_FloatRegister($src$$reg)); 7352 __ andi(as_Register($dst$$reg), as_Register($dst$$reg), Assembler::fclass_mask::inf); 7353 __ slt(as_Register($dst$$reg), zr, as_Register($dst$$reg)); 7354 %} 7355 7356 ins_pipe(pipe_class_default); 7357 %} 7358 7359 // Double.isInfinite 7360 instruct isInfiniteD_reg_reg(iRegINoSp dst, fRegD src) 7361 %{ 7362 match(Set dst (IsInfiniteD src)); 7363 7364 format %{ "isInfinite $dst, $src" %} 7365 ins_encode %{ 7366 __ fclass_d(as_Register($dst$$reg), as_FloatRegister($src$$reg)); 7367 __ andi(as_Register($dst$$reg), as_Register($dst$$reg), Assembler::fclass_mask::inf); 7368 __ slt(as_Register($dst$$reg), zr, as_Register($dst$$reg)); 7369 %} 7370 7371 ins_pipe(pipe_class_default); 7372 %} 7373 7374 // Float.isFinite 7375 instruct isFiniteF_reg_reg(iRegINoSp dst, fRegF src) 7376 %{ 7377 match(Set dst (IsFiniteF src)); 7378 7379 format %{ "isFinite $dst, $src" %} 7380 ins_encode %{ 7381 __ fclass_s(as_Register($dst$$reg), as_FloatRegister($src$$reg)); 7382 __ andi(as_Register($dst$$reg), as_Register($dst$$reg), Assembler::fclass_mask::finite); 7383 __ slt(as_Register($dst$$reg), zr, as_Register($dst$$reg)); 7384 %} 7385 7386 ins_pipe(pipe_class_default); 7387 %} 7388 7389 // Double.isFinite 7390 instruct isFiniteD_reg_reg(iRegINoSp dst, fRegD src) 7391 %{ 7392 match(Set dst (IsFiniteD src)); 7393 7394 format %{ "isFinite $dst, $src" %} 7395 ins_encode %{ 7396 __ fclass_d(as_Register($dst$$reg), as_FloatRegister($src$$reg)); 7397 __ andi(as_Register($dst$$reg), as_Register($dst$$reg), Assembler::fclass_mask::finite); 7398 __ slt(as_Register($dst$$reg), zr, as_Register($dst$$reg)); 7399 %} 7400 7401 ins_pipe(pipe_class_default); 7402 %} 7403 7404 instruct divF_reg_reg(fRegF dst, fRegF src1, fRegF src2) %{ 7405 match(Set dst (DivF src1 src2)); 7406 7407 ins_cost(FDIV_COST); 7408 format %{ "fdiv.s $dst, $src1, $src2\t#@divF_reg_reg" %} 7409 7410 ins_encode %{ 7411 __ fdiv_s(as_FloatRegister($dst$$reg), 7412 as_FloatRegister($src1$$reg), 7413 as_FloatRegister($src2$$reg)); 7414 %} 7415 7416 ins_pipe(fp_div_s); 7417 %} 7418 7419 instruct divD_reg_reg(fRegD dst, fRegD src1, fRegD src2) %{ 7420 match(Set dst (DivD src1 src2)); 7421 7422 ins_cost(FDIV_COST); 7423 format %{ "fdiv.d $dst, $src1, $src2\t#@divD_reg_reg" %} 7424 7425 ins_encode %{ 7426 __ fdiv_d(as_FloatRegister($dst$$reg), 7427 as_FloatRegister($src1$$reg), 7428 as_FloatRegister($src2$$reg)); 7429 %} 7430 7431 ins_pipe(fp_div_d); 7432 %} 7433 7434 instruct negF_reg_reg(fRegF dst, fRegF src) %{ 7435 match(Set dst (NegF src)); 7436 7437 ins_cost(XFER_COST); 7438 format %{ "fsgnjn.s $dst, $src, $src\t#@negF_reg_reg" %} 7439 7440 ins_encode %{ 7441 __ fneg_s(as_FloatRegister($dst$$reg), 7442 as_FloatRegister($src$$reg)); 7443 %} 7444 7445 ins_pipe(fp_uop_s); 7446 %} 7447 7448 instruct negD_reg_reg(fRegD dst, fRegD src) %{ 7449 match(Set dst (NegD src)); 7450 7451 ins_cost(XFER_COST); 7452 format %{ "fsgnjn.d $dst, $src, $src\t#@negD_reg_reg" %} 7453 7454 ins_encode %{ 7455 __ fneg_d(as_FloatRegister($dst$$reg), 7456 as_FloatRegister($src$$reg)); 7457 %} 7458 7459 ins_pipe(fp_uop_d); 7460 %} 7461 7462 instruct absI_reg(iRegINoSp dst, iRegIorL2I src) %{ 7463 match(Set dst (AbsI src)); 7464 7465 ins_cost(ALU_COST * 3); 7466 format %{ 7467 "sraiw t0, $src, 0x1f\n\t" 7468 "addw $dst, $src, t0\n\t" 7469 "xorr $dst, $dst, t0\t#@absI_reg" 7470 %} 7471 7472 ins_encode %{ 7473 __ sraiw(t0, as_Register($src$$reg), 0x1f); 7474 __ addw(as_Register($dst$$reg), as_Register($src$$reg), t0); 7475 __ xorr(as_Register($dst$$reg), as_Register($dst$$reg), t0); 7476 %} 7477 7478 ins_pipe(pipe_class_default); 7479 %} 7480 7481 instruct absL_reg(iRegLNoSp dst, iRegL src) %{ 7482 match(Set dst (AbsL src)); 7483 7484 ins_cost(ALU_COST * 3); 7485 format %{ 7486 "srai t0, $src, 0x3f\n\t" 7487 "add $dst, $src, t0\n\t" 7488 "xorr $dst, $dst, t0\t#@absL_reg" 7489 %} 7490 7491 ins_encode %{ 7492 __ srai(t0, as_Register($src$$reg), 0x3f); 7493 __ add(as_Register($dst$$reg), as_Register($src$$reg), t0); 7494 __ xorr(as_Register($dst$$reg), as_Register($dst$$reg), t0); 7495 %} 7496 7497 ins_pipe(pipe_class_default); 7498 %} 7499 7500 instruct absF_reg(fRegF dst, fRegF src) %{ 7501 match(Set dst (AbsF src)); 7502 7503 ins_cost(XFER_COST); 7504 format %{ "fsgnjx.s $dst, $src, $src\t#@absF_reg" %} 7505 ins_encode %{ 7506 __ fabs_s(as_FloatRegister($dst$$reg), 7507 as_FloatRegister($src$$reg)); 7508 %} 7509 7510 ins_pipe(fp_uop_s); 7511 %} 7512 7513 instruct absD_reg(fRegD dst, fRegD src) %{ 7514 match(Set dst (AbsD src)); 7515 7516 ins_cost(XFER_COST); 7517 format %{ "fsgnjx.d $dst, $src, $src\t#@absD_reg" %} 7518 ins_encode %{ 7519 __ fabs_d(as_FloatRegister($dst$$reg), 7520 as_FloatRegister($src$$reg)); 7521 %} 7522 7523 ins_pipe(fp_uop_d); 7524 %} 7525 7526 instruct sqrtF_reg(fRegF dst, fRegF src) %{ 7527 match(Set dst (SqrtF src)); 7528 7529 ins_cost(FSQRT_COST); 7530 format %{ "fsqrt.s $dst, $src\t#@sqrtF_reg" %} 7531 ins_encode %{ 7532 __ fsqrt_s(as_FloatRegister($dst$$reg), 7533 as_FloatRegister($src$$reg)); 7534 %} 7535 7536 ins_pipe(fp_sqrt_s); 7537 %} 7538 7539 instruct sqrtD_reg(fRegD dst, fRegD src) %{ 7540 match(Set dst (SqrtD src)); 7541 7542 ins_cost(FSQRT_COST); 7543 format %{ "fsqrt.d $dst, $src\t#@sqrtD_reg" %} 7544 ins_encode %{ 7545 __ fsqrt_d(as_FloatRegister($dst$$reg), 7546 as_FloatRegister($src$$reg)); 7547 %} 7548 7549 ins_pipe(fp_sqrt_d); 7550 %} 7551 7552 // Round Instruction 7553 instruct roundD_reg(fRegD dst, fRegD src, immI rmode, iRegLNoSp tmp1, iRegLNoSp tmp2, iRegLNoSp tmp3) %{ 7554 match(Set dst (RoundDoubleMode src rmode)); 7555 ins_cost(2 * XFER_COST + BRANCH_COST); 7556 effect(TEMP_DEF dst, TEMP tmp1, TEMP tmp2, TEMP tmp3); 7557 7558 format %{ "RoundDoubleMode $src, $rmode" %} 7559 ins_encode %{ 7560 __ round_double_mode(as_FloatRegister($dst$$reg), 7561 as_FloatRegister($src$$reg), $rmode$$constant, $tmp1$$Register, $tmp2$$Register, $tmp3$$Register); 7562 %} 7563 ins_pipe(pipe_class_default); 7564 %} 7565 7566 // Copysign and signum intrinsics 7567 7568 instruct copySignD_reg(fRegD dst, fRegD src1, fRegD src2, immD zero) %{ 7569 match(Set dst (CopySignD src1 (Binary src2 zero))); 7570 format %{ "CopySignD $dst $src1 $src2" %} 7571 ins_encode %{ 7572 FloatRegister dst = as_FloatRegister($dst$$reg), 7573 src1 = as_FloatRegister($src1$$reg), 7574 src2 = as_FloatRegister($src2$$reg); 7575 __ fsgnj_d(dst, src1, src2); 7576 %} 7577 ins_pipe(fp_dop_reg_reg_d); 7578 %} 7579 7580 instruct copySignF_reg(fRegF dst, fRegF src1, fRegF src2) %{ 7581 match(Set dst (CopySignF src1 src2)); 7582 format %{ "CopySignF $dst $src1 $src2" %} 7583 ins_encode %{ 7584 FloatRegister dst = as_FloatRegister($dst$$reg), 7585 src1 = as_FloatRegister($src1$$reg), 7586 src2 = as_FloatRegister($src2$$reg); 7587 __ fsgnj_s(dst, src1, src2); 7588 %} 7589 ins_pipe(fp_dop_reg_reg_s); 7590 %} 7591 7592 instruct signumD_reg(fRegD dst, immD zero, fRegD one) %{ 7593 match(Set dst (SignumD dst (Binary zero one))); 7594 format %{ "signumD $dst, $dst" %} 7595 ins_encode %{ 7596 __ signum_fp(as_FloatRegister($dst$$reg), as_FloatRegister($one$$reg), true /* is_double */); 7597 %} 7598 ins_pipe(pipe_class_default); 7599 %} 7600 7601 instruct signumF_reg(fRegF dst, immF zero, fRegF one) %{ 7602 match(Set dst (SignumF dst (Binary zero one))); 7603 format %{ "signumF $dst, $dst" %} 7604 ins_encode %{ 7605 __ signum_fp(as_FloatRegister($dst$$reg), as_FloatRegister($one$$reg), false /* is_double */); 7606 %} 7607 ins_pipe(pipe_class_default); 7608 %} 7609 7610 // Arithmetic Instructions End 7611 7612 // ============================================================================ 7613 // Logical Instructions 7614 7615 // Register And 7616 instruct andI_reg_reg(iRegINoSp dst, iRegI src1, iRegI src2) %{ 7617 match(Set dst (AndI src1 src2)); 7618 7619 format %{ "andr $dst, $src1, $src2\t#@andI_reg_reg" %} 7620 7621 ins_cost(ALU_COST); 7622 ins_encode %{ 7623 __ andr(as_Register($dst$$reg), 7624 as_Register($src1$$reg), 7625 as_Register($src2$$reg)); 7626 %} 7627 7628 ins_pipe(ialu_reg_reg); 7629 %} 7630 7631 // Immediate And 7632 instruct andI_reg_imm(iRegINoSp dst, iRegI src1, immIAdd src2) %{ 7633 match(Set dst (AndI src1 src2)); 7634 7635 format %{ "andi $dst, $src1, $src2\t#@andI_reg_imm" %} 7636 7637 ins_cost(ALU_COST); 7638 ins_encode %{ 7639 __ andi(as_Register($dst$$reg), 7640 as_Register($src1$$reg), 7641 (int32_t)($src2$$constant)); 7642 %} 7643 7644 ins_pipe(ialu_reg_imm); 7645 %} 7646 7647 // Register Or 7648 instruct orI_reg_reg(iRegINoSp dst, iRegI src1, iRegI src2) %{ 7649 match(Set dst (OrI src1 src2)); 7650 7651 format %{ "orr $dst, $src1, $src2\t#@orI_reg_reg" %} 7652 7653 ins_cost(ALU_COST); 7654 ins_encode %{ 7655 __ orr(as_Register($dst$$reg), 7656 as_Register($src1$$reg), 7657 as_Register($src2$$reg)); 7658 %} 7659 7660 ins_pipe(ialu_reg_reg); 7661 %} 7662 7663 // Immediate Or 7664 instruct orI_reg_imm(iRegINoSp dst, iRegI src1, immIAdd src2) %{ 7665 match(Set dst (OrI src1 src2)); 7666 7667 format %{ "ori $dst, $src1, $src2\t#@orI_reg_imm" %} 7668 7669 ins_cost(ALU_COST); 7670 ins_encode %{ 7671 __ ori(as_Register($dst$$reg), 7672 as_Register($src1$$reg), 7673 (int32_t)($src2$$constant)); 7674 %} 7675 7676 ins_pipe(ialu_reg_imm); 7677 %} 7678 7679 // Register Xor 7680 instruct xorI_reg_reg(iRegINoSp dst, iRegI src1, iRegI src2) %{ 7681 match(Set dst (XorI src1 src2)); 7682 7683 format %{ "xorr $dst, $src1, $src2\t#@xorI_reg_reg" %} 7684 7685 ins_cost(ALU_COST); 7686 ins_encode %{ 7687 __ xorr(as_Register($dst$$reg), 7688 as_Register($src1$$reg), 7689 as_Register($src2$$reg)); 7690 %} 7691 7692 ins_pipe(ialu_reg_reg); 7693 %} 7694 7695 // Immediate Xor 7696 instruct xorI_reg_imm(iRegINoSp dst, iRegI src1, immIAdd src2) %{ 7697 match(Set dst (XorI src1 src2)); 7698 7699 format %{ "xori $dst, $src1, $src2\t#@xorI_reg_imm" %} 7700 7701 ins_cost(ALU_COST); 7702 ins_encode %{ 7703 __ xori(as_Register($dst$$reg), 7704 as_Register($src1$$reg), 7705 (int32_t)($src2$$constant)); 7706 %} 7707 7708 ins_pipe(ialu_reg_imm); 7709 %} 7710 7711 // Register And Long 7712 instruct andL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2) %{ 7713 match(Set dst (AndL src1 src2)); 7714 7715 format %{ "andr $dst, $src1, $src2\t#@andL_reg_reg" %} 7716 7717 ins_cost(ALU_COST); 7718 ins_encode %{ 7719 __ andr(as_Register($dst$$reg), 7720 as_Register($src1$$reg), 7721 as_Register($src2$$reg)); 7722 %} 7723 7724 ins_pipe(ialu_reg_reg); 7725 %} 7726 7727 // Immediate And Long 7728 instruct andL_reg_imm(iRegLNoSp dst, iRegL src1, immLAdd src2) %{ 7729 match(Set dst (AndL src1 src2)); 7730 7731 format %{ "andi $dst, $src1, $src2\t#@andL_reg_imm" %} 7732 7733 ins_cost(ALU_COST); 7734 ins_encode %{ 7735 __ andi(as_Register($dst$$reg), 7736 as_Register($src1$$reg), 7737 (int32_t)($src2$$constant)); 7738 %} 7739 7740 ins_pipe(ialu_reg_imm); 7741 %} 7742 7743 // Register Or Long 7744 instruct orL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2) %{ 7745 match(Set dst (OrL src1 src2)); 7746 7747 format %{ "orr $dst, $src1, $src2\t#@orL_reg_reg" %} 7748 7749 ins_cost(ALU_COST); 7750 ins_encode %{ 7751 __ orr(as_Register($dst$$reg), 7752 as_Register($src1$$reg), 7753 as_Register($src2$$reg)); 7754 %} 7755 7756 ins_pipe(ialu_reg_reg); 7757 %} 7758 7759 // Immediate Or Long 7760 instruct orL_reg_imm(iRegLNoSp dst, iRegL src1, immLAdd src2) %{ 7761 match(Set dst (OrL src1 src2)); 7762 7763 format %{ "ori $dst, $src1, $src2\t#@orL_reg_imm" %} 7764 7765 ins_cost(ALU_COST); 7766 ins_encode %{ 7767 __ ori(as_Register($dst$$reg), 7768 as_Register($src1$$reg), 7769 (int32_t)($src2$$constant)); 7770 %} 7771 7772 ins_pipe(ialu_reg_imm); 7773 %} 7774 7775 // Register Xor Long 7776 instruct xorL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2) %{ 7777 match(Set dst (XorL src1 src2)); 7778 7779 format %{ "xorr $dst, $src1, $src2\t#@xorL_reg_reg" %} 7780 7781 ins_cost(ALU_COST); 7782 ins_encode %{ 7783 __ xorr(as_Register($dst$$reg), 7784 as_Register($src1$$reg), 7785 as_Register($src2$$reg)); 7786 %} 7787 7788 ins_pipe(ialu_reg_reg); 7789 %} 7790 7791 // Immediate Xor Long 7792 instruct xorL_reg_imm(iRegLNoSp dst, iRegL src1, immLAdd src2) %{ 7793 match(Set dst (XorL src1 src2)); 7794 7795 ins_cost(ALU_COST); 7796 format %{ "xori $dst, $src1, $src2\t#@xorL_reg_imm" %} 7797 7798 ins_encode %{ 7799 __ xori(as_Register($dst$$reg), 7800 as_Register($src1$$reg), 7801 (int32_t)($src2$$constant)); 7802 %} 7803 7804 ins_pipe(ialu_reg_imm); 7805 %} 7806 7807 // ============================================================================ 7808 // MemBar Instruction 7809 7810 instruct load_fence() %{ 7811 match(LoadFence); 7812 ins_cost(ALU_COST); 7813 7814 format %{ "#@load_fence" %} 7815 7816 ins_encode %{ 7817 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 7818 %} 7819 ins_pipe(pipe_serial); 7820 %} 7821 7822 instruct membar_acquire() %{ 7823 match(MemBarAcquire); 7824 ins_cost(ALU_COST); 7825 7826 format %{ "#@membar_acquire\n\t" 7827 "fence ir iorw" %} 7828 7829 ins_encode %{ 7830 __ block_comment("membar_acquire"); 7831 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 7832 %} 7833 7834 ins_pipe(pipe_serial); 7835 %} 7836 7837 instruct membar_acquire_lock() %{ 7838 match(MemBarAcquireLock); 7839 ins_cost(0); 7840 7841 format %{ "#@membar_acquire_lock (elided)" %} 7842 7843 ins_encode %{ 7844 __ block_comment("membar_acquire_lock (elided)"); 7845 %} 7846 7847 ins_pipe(pipe_serial); 7848 %} 7849 7850 instruct store_fence() %{ 7851 match(StoreFence); 7852 ins_cost(ALU_COST); 7853 7854 format %{ "#@store_fence" %} 7855 7856 ins_encode %{ 7857 __ membar(MacroAssembler::LoadStore | MacroAssembler::StoreStore); 7858 %} 7859 ins_pipe(pipe_serial); 7860 %} 7861 7862 instruct membar_release() %{ 7863 match(MemBarRelease); 7864 ins_cost(ALU_COST); 7865 7866 format %{ "#@membar_release\n\t" 7867 "fence iorw ow" %} 7868 7869 ins_encode %{ 7870 __ block_comment("membar_release"); 7871 __ membar(MacroAssembler::LoadStore | MacroAssembler::StoreStore); 7872 %} 7873 ins_pipe(pipe_serial); 7874 %} 7875 7876 instruct membar_storestore() %{ 7877 match(MemBarStoreStore); 7878 match(StoreStoreFence); 7879 ins_cost(ALU_COST); 7880 7881 format %{ "MEMBAR-store-store\t#@membar_storestore" %} 7882 7883 ins_encode %{ 7884 __ membar(MacroAssembler::StoreStore); 7885 %} 7886 ins_pipe(pipe_serial); 7887 %} 7888 7889 instruct membar_release_lock() %{ 7890 match(MemBarReleaseLock); 7891 ins_cost(0); 7892 7893 format %{ "#@membar_release_lock (elided)" %} 7894 7895 ins_encode %{ 7896 __ block_comment("membar_release_lock (elided)"); 7897 %} 7898 7899 ins_pipe(pipe_serial); 7900 %} 7901 7902 instruct membar_volatile() %{ 7903 match(MemBarVolatile); 7904 ins_cost(ALU_COST); 7905 7906 format %{ "#@membar_volatile\n\t" 7907 "fence iorw iorw"%} 7908 7909 ins_encode %{ 7910 __ block_comment("membar_volatile"); 7911 __ membar(MacroAssembler::StoreLoad); 7912 %} 7913 7914 ins_pipe(pipe_serial); 7915 %} 7916 7917 instruct spin_wait() %{ 7918 predicate(UseZihintpause); 7919 match(OnSpinWait); 7920 ins_cost(CACHE_MISS_COST); 7921 7922 format %{ "spin_wait" %} 7923 7924 ins_encode %{ 7925 __ pause(); 7926 %} 7927 7928 ins_pipe(pipe_serial); 7929 %} 7930 7931 // ============================================================================ 7932 // Cast Instructions (Java-level type cast) 7933 7934 instruct castX2P(iRegPNoSp dst, iRegL src) %{ 7935 match(Set dst (CastX2P src)); 7936 7937 ins_cost(ALU_COST); 7938 format %{ "mv $dst, $src\t# long -> ptr, #@castX2P" %} 7939 7940 ins_encode %{ 7941 if ($dst$$reg != $src$$reg) { 7942 __ mv(as_Register($dst$$reg), as_Register($src$$reg)); 7943 } 7944 %} 7945 7946 ins_pipe(ialu_reg); 7947 %} 7948 7949 instruct castP2X(iRegLNoSp dst, iRegP src) %{ 7950 match(Set dst (CastP2X src)); 7951 7952 ins_cost(ALU_COST); 7953 format %{ "mv $dst, $src\t# ptr -> long, #@castP2X" %} 7954 7955 ins_encode %{ 7956 if ($dst$$reg != $src$$reg) { 7957 __ mv(as_Register($dst$$reg), as_Register($src$$reg)); 7958 } 7959 %} 7960 7961 ins_pipe(ialu_reg); 7962 %} 7963 7964 instruct castPP(iRegPNoSp dst) 7965 %{ 7966 match(Set dst (CastPP dst)); 7967 ins_cost(0); 7968 7969 size(0); 7970 format %{ "# castPP of $dst, #@castPP" %} 7971 ins_encode(/* empty encoding */); 7972 ins_pipe(pipe_class_empty); 7973 %} 7974 7975 instruct castLL(iRegL dst) 7976 %{ 7977 match(Set dst (CastLL dst)); 7978 7979 size(0); 7980 format %{ "# castLL of $dst, #@castLL" %} 7981 ins_encode(/* empty encoding */); 7982 ins_cost(0); 7983 ins_pipe(pipe_class_empty); 7984 %} 7985 7986 instruct castII(iRegI dst) 7987 %{ 7988 match(Set dst (CastII dst)); 7989 7990 size(0); 7991 format %{ "# castII of $dst, #@castII" %} 7992 ins_encode(/* empty encoding */); 7993 ins_cost(0); 7994 ins_pipe(pipe_class_empty); 7995 %} 7996 7997 instruct checkCastPP(iRegPNoSp dst) 7998 %{ 7999 match(Set dst (CheckCastPP dst)); 8000 8001 size(0); 8002 ins_cost(0); 8003 format %{ "# checkcastPP of $dst, #@checkCastPP" %} 8004 ins_encode(/* empty encoding */); 8005 ins_pipe(pipe_class_empty); 8006 %} 8007 8008 instruct castFF(fRegF dst) 8009 %{ 8010 match(Set dst (CastFF dst)); 8011 8012 size(0); 8013 format %{ "# castFF of $dst" %} 8014 ins_encode(/* empty encoding */); 8015 ins_cost(0); 8016 ins_pipe(pipe_class_empty); 8017 %} 8018 8019 instruct castDD(fRegD dst) 8020 %{ 8021 match(Set dst (CastDD dst)); 8022 8023 size(0); 8024 format %{ "# castDD of $dst" %} 8025 ins_encode(/* empty encoding */); 8026 ins_cost(0); 8027 ins_pipe(pipe_class_empty); 8028 %} 8029 8030 instruct castVV(vReg dst) 8031 %{ 8032 match(Set dst (CastVV dst)); 8033 8034 size(0); 8035 format %{ "# castVV of $dst" %} 8036 ins_encode(/* empty encoding */); 8037 ins_cost(0); 8038 ins_pipe(pipe_class_empty); 8039 %} 8040 8041 // ============================================================================ 8042 // Convert Instructions 8043 8044 // int to bool 8045 instruct convI2Bool(iRegINoSp dst, iRegI src) 8046 %{ 8047 match(Set dst (Conv2B src)); 8048 8049 ins_cost(ALU_COST); 8050 format %{ "snez $dst, $src\t#@convI2Bool" %} 8051 8052 ins_encode %{ 8053 __ snez(as_Register($dst$$reg), as_Register($src$$reg)); 8054 %} 8055 8056 ins_pipe(ialu_reg); 8057 %} 8058 8059 // pointer to bool 8060 instruct convP2Bool(iRegINoSp dst, iRegP src) 8061 %{ 8062 match(Set dst (Conv2B src)); 8063 8064 ins_cost(ALU_COST); 8065 format %{ "snez $dst, $src\t#@convP2Bool" %} 8066 8067 ins_encode %{ 8068 __ snez(as_Register($dst$$reg), as_Register($src$$reg)); 8069 %} 8070 8071 ins_pipe(ialu_reg); 8072 %} 8073 8074 // int <-> long 8075 8076 instruct convI2L_reg_reg(iRegLNoSp dst, iRegIorL2I src) 8077 %{ 8078 match(Set dst (ConvI2L src)); 8079 8080 ins_cost(ALU_COST); 8081 format %{ "addw $dst, $src, zr\t#@convI2L_reg_reg" %} 8082 ins_encode %{ 8083 __ sign_extend(as_Register($dst$$reg), as_Register($src$$reg), 32); 8084 %} 8085 ins_pipe(ialu_reg); 8086 %} 8087 8088 instruct convL2I_reg(iRegINoSp dst, iRegL src) %{ 8089 match(Set dst (ConvL2I src)); 8090 8091 ins_cost(ALU_COST); 8092 format %{ "addw $dst, $src, zr\t#@convL2I_reg" %} 8093 8094 ins_encode %{ 8095 __ sign_extend(as_Register($dst$$reg), as_Register($src$$reg), 32); 8096 %} 8097 8098 ins_pipe(ialu_reg); 8099 %} 8100 8101 // int to unsigned long (Zero-extend) 8102 instruct convI2UL_reg_reg(iRegLNoSp dst, iRegIorL2I src, immL_32bits mask) 8103 %{ 8104 match(Set dst (AndL (ConvI2L src) mask)); 8105 8106 ins_cost(ALU_COST * 2); 8107 format %{ "zero_extend $dst, $src, 32\t# i2ul, #@convI2UL_reg_reg" %} 8108 8109 ins_encode %{ 8110 __ zero_extend(as_Register($dst$$reg), as_Register($src$$reg), 32); 8111 %} 8112 8113 ins_pipe(ialu_reg_shift); 8114 %} 8115 8116 // float <-> double 8117 8118 instruct convF2D_reg(fRegD dst, fRegF src) %{ 8119 match(Set dst (ConvF2D src)); 8120 8121 ins_cost(XFER_COST); 8122 format %{ "fcvt.d.s $dst, $src\t#@convF2D_reg" %} 8123 8124 ins_encode %{ 8125 __ fcvt_d_s(as_FloatRegister($dst$$reg), as_FloatRegister($src$$reg)); 8126 %} 8127 8128 ins_pipe(fp_f2d); 8129 %} 8130 8131 instruct convD2F_reg(fRegF dst, fRegD src) %{ 8132 match(Set dst (ConvD2F src)); 8133 8134 ins_cost(XFER_COST); 8135 format %{ "fcvt.s.d $dst, $src\t#@convD2F_reg" %} 8136 8137 ins_encode %{ 8138 __ fcvt_s_d(as_FloatRegister($dst$$reg), as_FloatRegister($src$$reg)); 8139 %} 8140 8141 ins_pipe(fp_d2f); 8142 %} 8143 8144 // single <-> half precision 8145 8146 instruct convHF2F_reg_reg(fRegF dst, iRegINoSp src, iRegINoSp tmp) %{ 8147 match(Set dst (ConvHF2F src)); 8148 effect(TEMP tmp); 8149 format %{ "fmv.h.x $dst, $src\t# move source from $src to $dst\n\t" 8150 "fcvt.s.h $dst, $dst\t# convert half to single precision" 8151 %} 8152 ins_encode %{ 8153 __ float16_to_float($dst$$FloatRegister, $src$$Register, $tmp$$Register); 8154 %} 8155 ins_pipe(pipe_slow); 8156 %} 8157 8158 instruct convF2HF_reg_reg(iRegINoSp dst, fRegF src, fRegF ftmp, iRegINoSp xtmp) %{ 8159 match(Set dst (ConvF2HF src)); 8160 effect(TEMP_DEF dst, TEMP ftmp, TEMP xtmp); 8161 format %{ "fcvt.h.s $ftmp, $src\t# convert single precision to half\n\t" 8162 "fmv.x.h $dst, $ftmp\t# move result from $ftmp to $dst" 8163 %} 8164 ins_encode %{ 8165 __ float_to_float16($dst$$Register, $src$$FloatRegister, $ftmp$$FloatRegister, $xtmp$$Register); 8166 %} 8167 ins_pipe(pipe_slow); 8168 %} 8169 8170 // float <-> int 8171 8172 instruct convF2I_reg_reg(iRegINoSp dst, fRegF src) %{ 8173 match(Set dst (ConvF2I src)); 8174 8175 ins_cost(XFER_COST); 8176 format %{ "fcvt.w.s $dst, $src\t#@convF2I_reg_reg" %} 8177 8178 ins_encode %{ 8179 __ fcvt_w_s_safe($dst$$Register, $src$$FloatRegister); 8180 %} 8181 8182 ins_pipe(fp_f2i); 8183 %} 8184 8185 instruct convI2F_reg_reg(fRegF dst, iRegIorL2I src) %{ 8186 match(Set dst (ConvI2F src)); 8187 8188 ins_cost(XFER_COST); 8189 format %{ "fcvt.s.w $dst, $src\t#@convI2F_reg_reg" %} 8190 8191 ins_encode %{ 8192 __ fcvt_s_w(as_FloatRegister($dst$$reg), as_Register($src$$reg)); 8193 %} 8194 8195 ins_pipe(fp_i2f); 8196 %} 8197 8198 // float <-> long 8199 8200 instruct convF2L_reg_reg(iRegLNoSp dst, fRegF src) %{ 8201 match(Set dst (ConvF2L src)); 8202 8203 ins_cost(XFER_COST); 8204 format %{ "fcvt.l.s $dst, $src\t#@convF2L_reg_reg" %} 8205 8206 ins_encode %{ 8207 __ fcvt_l_s_safe($dst$$Register, $src$$FloatRegister); 8208 %} 8209 8210 ins_pipe(fp_f2l); 8211 %} 8212 8213 instruct convL2F_reg_reg(fRegF dst, iRegL src) %{ 8214 match(Set dst (ConvL2F src)); 8215 8216 ins_cost(XFER_COST); 8217 format %{ "fcvt.s.l $dst, $src\t#@convL2F_reg_reg" %} 8218 8219 ins_encode %{ 8220 __ fcvt_s_l(as_FloatRegister($dst$$reg), as_Register($src$$reg)); 8221 %} 8222 8223 ins_pipe(fp_l2f); 8224 %} 8225 8226 // double <-> int 8227 8228 instruct convD2I_reg_reg(iRegINoSp dst, fRegD src) %{ 8229 match(Set dst (ConvD2I src)); 8230 8231 ins_cost(XFER_COST); 8232 format %{ "fcvt.w.d $dst, $src\t#@convD2I_reg_reg" %} 8233 8234 ins_encode %{ 8235 __ fcvt_w_d_safe($dst$$Register, $src$$FloatRegister); 8236 %} 8237 8238 ins_pipe(fp_d2i); 8239 %} 8240 8241 instruct convI2D_reg_reg(fRegD dst, iRegIorL2I src) %{ 8242 match(Set dst (ConvI2D src)); 8243 8244 ins_cost(XFER_COST); 8245 format %{ "fcvt.d.w $dst, $src\t#@convI2D_reg_reg" %} 8246 8247 ins_encode %{ 8248 __ fcvt_d_w(as_FloatRegister($dst$$reg), as_Register($src$$reg)); 8249 %} 8250 8251 ins_pipe(fp_i2d); 8252 %} 8253 8254 // double <-> long 8255 8256 instruct convD2L_reg_reg(iRegLNoSp dst, fRegD src) %{ 8257 match(Set dst (ConvD2L src)); 8258 8259 ins_cost(XFER_COST); 8260 format %{ "fcvt.l.d $dst, $src\t#@convD2L_reg_reg" %} 8261 8262 ins_encode %{ 8263 __ fcvt_l_d_safe($dst$$Register, $src$$FloatRegister); 8264 %} 8265 8266 ins_pipe(fp_d2l); 8267 %} 8268 8269 instruct convL2D_reg_reg(fRegD dst, iRegL src) %{ 8270 match(Set dst (ConvL2D src)); 8271 8272 ins_cost(XFER_COST); 8273 format %{ "fcvt.d.l $dst, $src\t#@convL2D_reg_reg" %} 8274 8275 ins_encode %{ 8276 __ fcvt_d_l(as_FloatRegister($dst$$reg), as_Register($src$$reg)); 8277 %} 8278 8279 ins_pipe(fp_l2d); 8280 %} 8281 8282 // Convert oop into int for vectors alignment masking 8283 instruct convP2I(iRegINoSp dst, iRegP src) %{ 8284 match(Set dst (ConvL2I (CastP2X src))); 8285 8286 ins_cost(ALU_COST * 2); 8287 format %{ "zero_extend $dst, $src, 32\t# ptr -> int, #@convP2I" %} 8288 8289 ins_encode %{ 8290 __ zero_extend($dst$$Register, $src$$Register, 32); 8291 %} 8292 8293 ins_pipe(ialu_reg); 8294 %} 8295 8296 // Convert compressed oop into int for vectors alignment masking 8297 // in case of 32bit oops (heap < 4Gb). 8298 instruct convN2I(iRegINoSp dst, iRegN src) 8299 %{ 8300 predicate(CompressedOops::shift() == 0); 8301 match(Set dst (ConvL2I (CastP2X (DecodeN src)))); 8302 8303 ins_cost(ALU_COST); 8304 format %{ "mv $dst, $src\t# compressed ptr -> int, #@convN2I" %} 8305 8306 ins_encode %{ 8307 __ mv($dst$$Register, $src$$Register); 8308 %} 8309 8310 ins_pipe(ialu_reg); 8311 %} 8312 8313 instruct round_double_reg(iRegLNoSp dst, fRegD src, fRegD ftmp) %{ 8314 match(Set dst (RoundD src)); 8315 8316 ins_cost(XFER_COST + BRANCH_COST); 8317 effect(TEMP ftmp); 8318 format %{ "java_round_double $dst, $src\t#@round_double_reg" %} 8319 8320 ins_encode %{ 8321 __ java_round_double($dst$$Register, as_FloatRegister($src$$reg), as_FloatRegister($ftmp$$reg)); 8322 %} 8323 8324 ins_pipe(pipe_slow); 8325 %} 8326 8327 instruct round_float_reg(iRegINoSp dst, fRegF src, fRegF ftmp) %{ 8328 match(Set dst (RoundF src)); 8329 8330 ins_cost(XFER_COST + BRANCH_COST); 8331 effect(TEMP ftmp); 8332 format %{ "java_round_float $dst, $src\t#@round_float_reg" %} 8333 8334 ins_encode %{ 8335 __ java_round_float($dst$$Register, as_FloatRegister($src$$reg), as_FloatRegister($ftmp$$reg)); 8336 %} 8337 8338 ins_pipe(pipe_slow); 8339 %} 8340 8341 // Convert oop pointer into compressed form 8342 instruct encodeHeapOop(iRegNNoSp dst, iRegP src) %{ 8343 predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull); 8344 match(Set dst (EncodeP src)); 8345 ins_cost(ALU_COST); 8346 format %{ "encode_heap_oop $dst, $src\t#@encodeHeapOop" %} 8347 ins_encode %{ 8348 Register s = $src$$Register; 8349 Register d = $dst$$Register; 8350 __ encode_heap_oop(d, s); 8351 %} 8352 ins_pipe(pipe_class_default); 8353 %} 8354 8355 instruct encodeHeapOop_not_null(iRegNNoSp dst, iRegP src) %{ 8356 predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull); 8357 match(Set dst (EncodeP src)); 8358 ins_cost(ALU_COST); 8359 format %{ "encode_heap_oop_not_null $dst, $src\t#@encodeHeapOop_not_null" %} 8360 ins_encode %{ 8361 __ encode_heap_oop_not_null($dst$$Register, $src$$Register); 8362 %} 8363 ins_pipe(pipe_class_default); 8364 %} 8365 8366 instruct decodeHeapOop(iRegPNoSp dst, iRegN src) %{ 8367 predicate(n->bottom_type()->is_ptr()->ptr() != TypePtr::NotNull && 8368 n->bottom_type()->is_ptr()->ptr() != TypePtr::Constant); 8369 match(Set dst (DecodeN src)); 8370 8371 ins_cost(0); 8372 format %{ "decode_heap_oop $dst, $src\t#@decodeHeapOop" %} 8373 ins_encode %{ 8374 Register s = $src$$Register; 8375 Register d = $dst$$Register; 8376 __ decode_heap_oop(d, s); 8377 %} 8378 ins_pipe(pipe_class_default); 8379 %} 8380 8381 instruct decodeHeapOop_not_null(iRegPNoSp dst, iRegN src) %{ 8382 predicate(n->bottom_type()->is_ptr()->ptr() == TypePtr::NotNull || 8383 n->bottom_type()->is_ptr()->ptr() == TypePtr::Constant); 8384 match(Set dst (DecodeN src)); 8385 8386 ins_cost(0); 8387 format %{ "decode_heap_oop_not_null $dst, $src\t#@decodeHeapOop_not_null" %} 8388 ins_encode %{ 8389 Register s = $src$$Register; 8390 Register d = $dst$$Register; 8391 __ decode_heap_oop_not_null(d, s); 8392 %} 8393 ins_pipe(pipe_class_default); 8394 %} 8395 8396 // Convert klass pointer into compressed form. 8397 instruct encodeKlass_not_null(iRegNNoSp dst, iRegP src) %{ 8398 match(Set dst (EncodePKlass src)); 8399 8400 ins_cost(ALU_COST); 8401 format %{ "encode_klass_not_null $dst, $src\t#@encodeKlass_not_null" %} 8402 8403 ins_encode %{ 8404 Register src_reg = as_Register($src$$reg); 8405 Register dst_reg = as_Register($dst$$reg); 8406 __ encode_klass_not_null(dst_reg, src_reg, t0); 8407 %} 8408 8409 ins_pipe(pipe_class_default); 8410 %} 8411 8412 instruct decodeKlass_not_null(iRegPNoSp dst, iRegN src, iRegPNoSp tmp) %{ 8413 match(Set dst (DecodeNKlass src)); 8414 8415 effect(TEMP tmp); 8416 8417 ins_cost(ALU_COST); 8418 format %{ "decode_klass_not_null $dst, $src\t#@decodeKlass_not_null" %} 8419 8420 ins_encode %{ 8421 Register src_reg = as_Register($src$$reg); 8422 Register dst_reg = as_Register($dst$$reg); 8423 Register tmp_reg = as_Register($tmp$$reg); 8424 __ decode_klass_not_null(dst_reg, src_reg, tmp_reg); 8425 %} 8426 8427 ins_pipe(pipe_class_default); 8428 %} 8429 8430 // stack <-> reg and reg <-> reg shuffles with no conversion 8431 8432 instruct MoveF2I_stack_reg(iRegINoSp dst, stackSlotF src) %{ 8433 8434 match(Set dst (MoveF2I src)); 8435 8436 effect(DEF dst, USE src); 8437 8438 ins_cost(LOAD_COST); 8439 8440 format %{ "lw $dst, $src\t#@MoveF2I_stack_reg" %} 8441 8442 ins_encode %{ 8443 __ lw(as_Register($dst$$reg), Address(sp, $src$$disp)); 8444 %} 8445 8446 ins_pipe(iload_reg_reg); 8447 8448 %} 8449 8450 instruct MoveI2F_stack_reg(fRegF dst, stackSlotI src) %{ 8451 8452 match(Set dst (MoveI2F src)); 8453 8454 effect(DEF dst, USE src); 8455 8456 ins_cost(LOAD_COST); 8457 8458 format %{ "flw $dst, $src\t#@MoveI2F_stack_reg" %} 8459 8460 ins_encode %{ 8461 __ flw(as_FloatRegister($dst$$reg), Address(sp, $src$$disp)); 8462 %} 8463 8464 ins_pipe(fp_load_mem_s); 8465 8466 %} 8467 8468 instruct MoveD2L_stack_reg(iRegLNoSp dst, stackSlotD src) %{ 8469 8470 match(Set dst (MoveD2L src)); 8471 8472 effect(DEF dst, USE src); 8473 8474 ins_cost(LOAD_COST); 8475 8476 format %{ "ld $dst, $src\t#@MoveD2L_stack_reg" %} 8477 8478 ins_encode %{ 8479 __ ld(as_Register($dst$$reg), Address(sp, $src$$disp)); 8480 %} 8481 8482 ins_pipe(iload_reg_reg); 8483 8484 %} 8485 8486 instruct MoveL2D_stack_reg(fRegD dst, stackSlotL src) %{ 8487 8488 match(Set dst (MoveL2D src)); 8489 8490 effect(DEF dst, USE src); 8491 8492 ins_cost(LOAD_COST); 8493 8494 format %{ "fld $dst, $src\t#@MoveL2D_stack_reg" %} 8495 8496 ins_encode %{ 8497 __ fld(as_FloatRegister($dst$$reg), Address(sp, $src$$disp)); 8498 %} 8499 8500 ins_pipe(fp_load_mem_d); 8501 8502 %} 8503 8504 instruct MoveF2I_reg_stack(stackSlotI dst, fRegF src) %{ 8505 8506 match(Set dst (MoveF2I src)); 8507 8508 effect(DEF dst, USE src); 8509 8510 ins_cost(STORE_COST); 8511 8512 format %{ "fsw $src, $dst\t#@MoveF2I_reg_stack" %} 8513 8514 ins_encode %{ 8515 __ fsw(as_FloatRegister($src$$reg), Address(sp, $dst$$disp)); 8516 %} 8517 8518 ins_pipe(fp_store_reg_s); 8519 8520 %} 8521 8522 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{ 8523 8524 match(Set dst (MoveI2F src)); 8525 8526 effect(DEF dst, USE src); 8527 8528 ins_cost(STORE_COST); 8529 8530 format %{ "sw $src, $dst\t#@MoveI2F_reg_stack" %} 8531 8532 ins_encode %{ 8533 __ sw(as_Register($src$$reg), Address(sp, $dst$$disp)); 8534 %} 8535 8536 ins_pipe(istore_reg_reg); 8537 8538 %} 8539 8540 instruct MoveD2L_reg_stack(stackSlotL dst, fRegD src) %{ 8541 8542 match(Set dst (MoveD2L src)); 8543 8544 effect(DEF dst, USE src); 8545 8546 ins_cost(STORE_COST); 8547 8548 format %{ "fsd $dst, $src\t#@MoveD2L_reg_stack" %} 8549 8550 ins_encode %{ 8551 __ fsd(as_FloatRegister($src$$reg), Address(sp, $dst$$disp)); 8552 %} 8553 8554 ins_pipe(fp_store_reg_d); 8555 8556 %} 8557 8558 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{ 8559 8560 match(Set dst (MoveL2D src)); 8561 8562 effect(DEF dst, USE src); 8563 8564 ins_cost(STORE_COST); 8565 8566 format %{ "sd $src, $dst\t#@MoveL2D_reg_stack" %} 8567 8568 ins_encode %{ 8569 __ sd(as_Register($src$$reg), Address(sp, $dst$$disp)); 8570 %} 8571 8572 ins_pipe(istore_reg_reg); 8573 8574 %} 8575 8576 instruct MoveF2I_reg_reg(iRegINoSp dst, fRegF src) %{ 8577 8578 match(Set dst (MoveF2I src)); 8579 8580 effect(DEF dst, USE src); 8581 8582 ins_cost(FMVX_COST); 8583 8584 format %{ "fmv.x.w $dst, $src\t#@MoveF2I_reg_reg" %} 8585 8586 ins_encode %{ 8587 __ fmv_x_w(as_Register($dst$$reg), as_FloatRegister($src$$reg)); 8588 %} 8589 8590 ins_pipe(fp_f2i); 8591 8592 %} 8593 8594 instruct MoveI2F_reg_reg(fRegF dst, iRegI src) %{ 8595 8596 match(Set dst (MoveI2F src)); 8597 8598 effect(DEF dst, USE src); 8599 8600 ins_cost(FMVX_COST); 8601 8602 format %{ "fmv.w.x $dst, $src\t#@MoveI2F_reg_reg" %} 8603 8604 ins_encode %{ 8605 __ fmv_w_x(as_FloatRegister($dst$$reg), as_Register($src$$reg)); 8606 %} 8607 8608 ins_pipe(fp_i2f); 8609 8610 %} 8611 8612 instruct MoveD2L_reg_reg(iRegLNoSp dst, fRegD src) %{ 8613 8614 match(Set dst (MoveD2L src)); 8615 8616 effect(DEF dst, USE src); 8617 8618 ins_cost(FMVX_COST); 8619 8620 format %{ "fmv.x.d $dst, $src\t#@MoveD2L_reg_reg" %} 8621 8622 ins_encode %{ 8623 __ fmv_x_d(as_Register($dst$$reg), as_FloatRegister($src$$reg)); 8624 %} 8625 8626 ins_pipe(fp_d2l); 8627 8628 %} 8629 8630 instruct MoveL2D_reg_reg(fRegD dst, iRegL src) %{ 8631 8632 match(Set dst (MoveL2D src)); 8633 8634 effect(DEF dst, USE src); 8635 8636 ins_cost(FMVX_COST); 8637 8638 format %{ "fmv.d.x $dst, $src\t#@MoveL2D_reg_reg" %} 8639 8640 ins_encode %{ 8641 __ fmv_d_x(as_FloatRegister($dst$$reg), as_Register($src$$reg)); 8642 %} 8643 8644 ins_pipe(fp_l2d); 8645 8646 %} 8647 8648 // ============================================================================ 8649 // Compare Instructions which set the result float comparisons in dest register. 8650 8651 instruct cmpF3_reg_reg(iRegINoSp dst, fRegF op1, fRegF op2) 8652 %{ 8653 match(Set dst (CmpF3 op1 op2)); 8654 8655 ins_cost(XFER_COST * 2 + BRANCH_COST + ALU_COST); 8656 format %{ "flt.s $dst, $op2, $op1\t#@cmpF3_reg_reg\n\t" 8657 "bgtz $dst, done\n\t" 8658 "feq.s $dst, $op1, $op2\n\t" 8659 "addi $dst, $dst, -1\n\t" 8660 "done:" 8661 %} 8662 8663 ins_encode %{ 8664 // we want -1 for unordered or less than, 0 for equal and 1 for greater than. 8665 __ float_compare(as_Register($dst$$reg), as_FloatRegister($op1$$reg), 8666 as_FloatRegister($op2$$reg), -1 /*unordered_result < 0*/); 8667 %} 8668 8669 ins_pipe(pipe_class_default); 8670 %} 8671 8672 instruct cmpD3_reg_reg(iRegINoSp dst, fRegD op1, fRegD op2) 8673 %{ 8674 match(Set dst (CmpD3 op1 op2)); 8675 8676 ins_cost(XFER_COST * 2 + BRANCH_COST + ALU_COST); 8677 format %{ "flt.d $dst, $op2, $op1\t#@cmpD3_reg_reg\n\t" 8678 "bgtz $dst, done\n\t" 8679 "feq.d $dst, $op1, $op2\n\t" 8680 "addi $dst, $dst, -1\n\t" 8681 "done:" 8682 %} 8683 8684 ins_encode %{ 8685 // we want -1 for unordered or less than, 0 for equal and 1 for greater than. 8686 __ double_compare(as_Register($dst$$reg), as_FloatRegister($op1$$reg), as_FloatRegister($op2$$reg), -1 /*unordered_result < 0*/); 8687 %} 8688 8689 ins_pipe(pipe_class_default); 8690 %} 8691 8692 instruct cmpL3_reg_reg(iRegINoSp dst, iRegL op1, iRegL op2) 8693 %{ 8694 match(Set dst (CmpL3 op1 op2)); 8695 8696 ins_cost(ALU_COST * 3 + BRANCH_COST); 8697 format %{ "slt $dst, $op2, $op1\t#@cmpL3_reg_reg\n\t" 8698 "bnez $dst, done\n\t" 8699 "slt $dst, $op1, $op2\n\t" 8700 "neg $dst, $dst\n\t" 8701 "done:" 8702 %} 8703 ins_encode %{ 8704 __ cmp_l2i(t0, as_Register($op1$$reg), as_Register($op2$$reg)); 8705 __ mv(as_Register($dst$$reg), t0); 8706 %} 8707 8708 ins_pipe(pipe_class_default); 8709 %} 8710 8711 instruct cmpUL3_reg_reg(iRegINoSp dst, iRegL op1, iRegL op2) 8712 %{ 8713 match(Set dst (CmpUL3 op1 op2)); 8714 8715 ins_cost(ALU_COST * 3 + BRANCH_COST); 8716 format %{ "sltu $dst, $op2, $op1\t#@cmpUL3_reg_reg\n\t" 8717 "bnez $dst, done\n\t" 8718 "sltu $dst, $op1, $op2\n\t" 8719 "neg $dst, $dst\n\t" 8720 "done:" 8721 %} 8722 ins_encode %{ 8723 __ cmp_ul2i(t0, as_Register($op1$$reg), as_Register($op2$$reg)); 8724 __ mv(as_Register($dst$$reg), t0); 8725 %} 8726 8727 ins_pipe(pipe_class_default); 8728 %} 8729 8730 instruct cmpU3_reg_reg(iRegINoSp dst, iRegI op1, iRegI op2) 8731 %{ 8732 match(Set dst (CmpU3 op1 op2)); 8733 8734 ins_cost(ALU_COST * 3 + BRANCH_COST); 8735 format %{ "sltu $dst, $op2, $op1\t#@cmpU3_reg_reg\n\t" 8736 "bnez $dst, done\n\t" 8737 "sltu $dst, $op1, $op2\n\t" 8738 "neg $dst, $dst\n\t" 8739 "done:" 8740 %} 8741 ins_encode %{ 8742 __ cmp_uw2i(t0, as_Register($op1$$reg), as_Register($op2$$reg)); 8743 __ mv(as_Register($dst$$reg), t0); 8744 %} 8745 8746 ins_pipe(pipe_class_default); 8747 %} 8748 8749 instruct cmpLTMask_reg_reg(iRegINoSp dst, iRegI p, iRegI q) 8750 %{ 8751 match(Set dst (CmpLTMask p q)); 8752 8753 ins_cost(2 * ALU_COST); 8754 8755 format %{ "slt $dst, $p, $q\t#@cmpLTMask_reg_reg\n\t" 8756 "subw $dst, zr, $dst\t#@cmpLTMask_reg_reg" 8757 %} 8758 8759 ins_encode %{ 8760 __ slt(as_Register($dst$$reg), as_Register($p$$reg), as_Register($q$$reg)); 8761 __ subw(as_Register($dst$$reg), zr, as_Register($dst$$reg)); 8762 %} 8763 8764 ins_pipe(ialu_reg_reg); 8765 %} 8766 8767 instruct cmpLTMask_reg_zero(iRegINoSp dst, iRegIorL2I op, immI0 zero) 8768 %{ 8769 match(Set dst (CmpLTMask op zero)); 8770 8771 ins_cost(ALU_COST); 8772 8773 format %{ "sraiw $dst, $dst, 31\t#@cmpLTMask_reg_reg" %} 8774 8775 ins_encode %{ 8776 __ sraiw(as_Register($dst$$reg), as_Register($op$$reg), 31); 8777 %} 8778 8779 ins_pipe(ialu_reg_shift); 8780 %} 8781 8782 8783 // ============================================================================ 8784 // Max and Min 8785 8786 instruct minI_reg_reg(iRegINoSp dst, iRegI src) 8787 %{ 8788 match(Set dst (MinI dst src)); 8789 8790 ins_cost(BRANCH_COST + ALU_COST); 8791 format %{ 8792 "ble $dst, $src, skip\t#@minI_reg_reg\n\t" 8793 "mv $dst, $src\n\t" 8794 "skip:" 8795 %} 8796 8797 ins_encode %{ 8798 Label Lskip; 8799 __ ble(as_Register($dst$$reg), as_Register($src$$reg), Lskip); 8800 __ mv(as_Register($dst$$reg), as_Register($src$$reg)); 8801 __ bind(Lskip); 8802 %} 8803 8804 ins_pipe(pipe_class_compare); 8805 %} 8806 8807 instruct maxI_reg_reg(iRegINoSp dst, iRegI src) 8808 %{ 8809 match(Set dst (MaxI dst src)); 8810 8811 ins_cost(BRANCH_COST + ALU_COST); 8812 format %{ 8813 "bge $dst, $src, skip\t#@maxI_reg_reg\n\t" 8814 "mv $dst, $src\n\t" 8815 "skip:" 8816 %} 8817 8818 ins_encode %{ 8819 Label Lskip; 8820 __ bge(as_Register($dst$$reg), as_Register($src$$reg), Lskip); 8821 __ mv(as_Register($dst$$reg), as_Register($src$$reg)); 8822 __ bind(Lskip); 8823 %} 8824 8825 ins_pipe(pipe_class_compare); 8826 %} 8827 8828 // special case for comparing with zero 8829 // n.b. this is selected in preference to the rule above because it 8830 // avoids loading constant 0 into a source register 8831 8832 instruct minI_reg_zero(iRegINoSp dst, immI0 zero) 8833 %{ 8834 match(Set dst (MinI dst zero)); 8835 match(Set dst (MinI zero dst)); 8836 8837 ins_cost(BRANCH_COST + ALU_COST); 8838 format %{ 8839 "blez $dst, skip\t#@minI_reg_zero\n\t" 8840 "mv $dst, zr\n\t" 8841 "skip:" 8842 %} 8843 8844 ins_encode %{ 8845 Label Lskip; 8846 __ blez(as_Register($dst$$reg), Lskip); 8847 __ mv(as_Register($dst$$reg), zr); 8848 __ bind(Lskip); 8849 %} 8850 8851 ins_pipe(pipe_class_compare); 8852 %} 8853 8854 instruct maxI_reg_zero(iRegINoSp dst, immI0 zero) 8855 %{ 8856 match(Set dst (MaxI dst zero)); 8857 match(Set dst (MaxI zero dst)); 8858 8859 ins_cost(BRANCH_COST + ALU_COST); 8860 format %{ 8861 "bgez $dst, skip\t#@maxI_reg_zero\n\t" 8862 "mv $dst, zr\n\t" 8863 "skip:" 8864 %} 8865 8866 ins_encode %{ 8867 Label Lskip; 8868 __ bgez(as_Register($dst$$reg), Lskip); 8869 __ mv(as_Register($dst$$reg), zr); 8870 __ bind(Lskip); 8871 %} 8872 8873 ins_pipe(pipe_class_compare); 8874 %} 8875 8876 instruct minI_rReg(iRegINoSp dst, iRegI src1, iRegI src2) 8877 %{ 8878 match(Set dst (MinI src1 src2)); 8879 8880 effect(DEF dst, USE src1, USE src2); 8881 8882 ins_cost(BRANCH_COST + ALU_COST * 2); 8883 format %{ 8884 "ble $src1, $src2, Lsrc1\t#@minI_rReg\n\t" 8885 "mv $dst, $src2\n\t" 8886 "j Ldone\n\t" 8887 "Lsrc1:\n\t" 8888 "mv $dst, $src1\n\t" 8889 "Ldone:" 8890 %} 8891 8892 ins_encode %{ 8893 Label Lsrc1, Ldone; 8894 __ ble(as_Register($src1$$reg), as_Register($src2$$reg), Lsrc1); 8895 __ mv(as_Register($dst$$reg), as_Register($src2$$reg)); 8896 __ j(Ldone); 8897 __ bind(Lsrc1); 8898 __ mv(as_Register($dst$$reg), as_Register($src1$$reg)); 8899 __ bind(Ldone); 8900 %} 8901 8902 ins_pipe(pipe_class_compare); 8903 %} 8904 8905 instruct maxI_rReg(iRegINoSp dst, iRegI src1, iRegI src2) 8906 %{ 8907 match(Set dst (MaxI src1 src2)); 8908 8909 effect(DEF dst, USE src1, USE src2); 8910 8911 ins_cost(BRANCH_COST + ALU_COST * 2); 8912 format %{ 8913 "bge $src1, $src2, Lsrc1\t#@maxI_rReg\n\t" 8914 "mv $dst, $src2\n\t" 8915 "j Ldone\n\t" 8916 "Lsrc1:\n\t" 8917 "mv $dst, $src1\n\t" 8918 "Ldone:" 8919 %} 8920 8921 ins_encode %{ 8922 Label Lsrc1, Ldone; 8923 __ bge(as_Register($src1$$reg), as_Register($src2$$reg), Lsrc1); 8924 __ mv(as_Register($dst$$reg), as_Register($src2$$reg)); 8925 __ j(Ldone); 8926 __ bind(Lsrc1); 8927 __ mv(as_Register($dst$$reg), as_Register($src1$$reg)); 8928 __ bind(Ldone); 8929 8930 %} 8931 8932 ins_pipe(pipe_class_compare); 8933 %} 8934 8935 // ============================================================================ 8936 // Branch Instructions 8937 // Direct Branch. 8938 instruct branch(label lbl) 8939 %{ 8940 match(Goto); 8941 8942 effect(USE lbl); 8943 8944 ins_cost(BRANCH_COST); 8945 format %{ "j $lbl\t#@branch" %} 8946 8947 ins_encode(riscv_enc_j(lbl)); 8948 8949 ins_pipe(pipe_branch); 8950 %} 8951 8952 // ============================================================================ 8953 // Compare and Branch Instructions 8954 8955 // Patterns for short (< 12KiB) variants 8956 8957 // Compare flags and branch near instructions. 8958 instruct cmpFlag_branch(cmpOpEqNe cmp, rFlagsReg cr, label lbl) %{ 8959 match(If cmp cr); 8960 effect(USE lbl); 8961 8962 ins_cost(BRANCH_COST); 8963 format %{ "b$cmp $cr, zr, $lbl\t#@cmpFlag_branch" %} 8964 8965 ins_encode %{ 8966 __ enc_cmpEqNe_imm0_branch($cmp$$cmpcode, as_Register($cr$$reg), *($lbl$$label)); 8967 %} 8968 ins_pipe(pipe_cmpz_branch); 8969 ins_short_branch(1); 8970 %} 8971 8972 // Compare signed int and branch near instructions 8973 instruct cmpI_branch(cmpOp cmp, iRegI op1, iRegI op2, label lbl) 8974 %{ 8975 // Same match rule as `far_cmpI_branch'. 8976 match(If cmp (CmpI op1 op2)); 8977 8978 effect(USE lbl); 8979 8980 ins_cost(BRANCH_COST); 8981 8982 format %{ "b$cmp $op1, $op2, $lbl\t#@cmpI_branch" %} 8983 8984 ins_encode %{ 8985 __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), as_Register($op2$$reg), *($lbl$$label)); 8986 %} 8987 8988 ins_pipe(pipe_cmp_branch); 8989 ins_short_branch(1); 8990 %} 8991 8992 instruct cmpI_loop(cmpOp cmp, iRegI op1, iRegI op2, label lbl) 8993 %{ 8994 // Same match rule as `far_cmpI_loop'. 8995 match(CountedLoopEnd cmp (CmpI op1 op2)); 8996 8997 effect(USE lbl); 8998 8999 ins_cost(BRANCH_COST); 9000 9001 format %{ "b$cmp $op1, $op2, $lbl\t#@cmpI_loop" %} 9002 9003 ins_encode %{ 9004 __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), as_Register($op2$$reg), *($lbl$$label)); 9005 %} 9006 9007 ins_pipe(pipe_cmp_branch); 9008 ins_short_branch(1); 9009 %} 9010 9011 // Compare unsigned int and branch near instructions 9012 instruct cmpU_branch(cmpOpU cmp, iRegI op1, iRegI op2, label lbl) 9013 %{ 9014 // Same match rule as `far_cmpU_branch'. 9015 match(If cmp (CmpU op1 op2)); 9016 9017 effect(USE lbl); 9018 9019 ins_cost(BRANCH_COST); 9020 9021 format %{ "b$cmp $op1, $op2, $lbl\t#@cmpU_branch" %} 9022 9023 ins_encode %{ 9024 __ cmp_branch($cmp$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, as_Register($op1$$reg), 9025 as_Register($op2$$reg), *($lbl$$label)); 9026 %} 9027 9028 ins_pipe(pipe_cmp_branch); 9029 ins_short_branch(1); 9030 %} 9031 9032 // Compare signed long and branch near instructions 9033 instruct cmpL_branch(cmpOp cmp, iRegL op1, iRegL op2, label lbl) 9034 %{ 9035 // Same match rule as `far_cmpL_branch'. 9036 match(If cmp (CmpL op1 op2)); 9037 9038 effect(USE lbl); 9039 9040 ins_cost(BRANCH_COST); 9041 9042 format %{ "b$cmp $op1, $op2, $lbl\t#@cmpL_branch" %} 9043 9044 ins_encode %{ 9045 __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), as_Register($op2$$reg), *($lbl$$label)); 9046 %} 9047 9048 ins_pipe(pipe_cmp_branch); 9049 ins_short_branch(1); 9050 %} 9051 9052 instruct cmpL_loop(cmpOp cmp, iRegL op1, iRegL op2, label lbl) 9053 %{ 9054 // Same match rule as `far_cmpL_loop'. 9055 match(CountedLoopEnd cmp (CmpL op1 op2)); 9056 9057 effect(USE lbl); 9058 9059 ins_cost(BRANCH_COST); 9060 9061 format %{ "b$cmp $op1, $op2, $lbl\t#@cmpL_loop" %} 9062 9063 ins_encode %{ 9064 __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), as_Register($op2$$reg), *($lbl$$label)); 9065 %} 9066 9067 ins_pipe(pipe_cmp_branch); 9068 ins_short_branch(1); 9069 %} 9070 9071 // Compare unsigned long and branch near instructions 9072 instruct cmpUL_branch(cmpOpU cmp, iRegL op1, iRegL op2, label lbl) 9073 %{ 9074 // Same match rule as `far_cmpUL_branch'. 9075 match(If cmp (CmpUL op1 op2)); 9076 9077 effect(USE lbl); 9078 9079 ins_cost(BRANCH_COST); 9080 format %{ "b$cmp $op1, $op2, $lbl\t#@cmpUL_branch" %} 9081 9082 ins_encode %{ 9083 __ cmp_branch($cmp$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, as_Register($op1$$reg), 9084 as_Register($op2$$reg), *($lbl$$label)); 9085 %} 9086 9087 ins_pipe(pipe_cmp_branch); 9088 ins_short_branch(1); 9089 %} 9090 9091 // Compare pointer and branch near instructions 9092 instruct cmpP_branch(cmpOpU cmp, iRegP op1, iRegP op2, label lbl) 9093 %{ 9094 // Same match rule as `far_cmpP_branch'. 9095 match(If cmp (CmpP op1 op2)); 9096 9097 effect(USE lbl); 9098 9099 ins_cost(BRANCH_COST); 9100 9101 format %{ "b$cmp $op1, $op2, $lbl\t#@cmpP_branch" %} 9102 9103 ins_encode %{ 9104 __ cmp_branch($cmp$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, as_Register($op1$$reg), 9105 as_Register($op2$$reg), *($lbl$$label)); 9106 %} 9107 9108 ins_pipe(pipe_cmp_branch); 9109 ins_short_branch(1); 9110 %} 9111 9112 // Compare narrow pointer and branch near instructions 9113 instruct cmpN_branch(cmpOpU cmp, iRegN op1, iRegN op2, label lbl) 9114 %{ 9115 // Same match rule as `far_cmpN_branch'. 9116 match(If cmp (CmpN op1 op2)); 9117 9118 effect(USE lbl); 9119 9120 ins_cost(BRANCH_COST); 9121 9122 format %{ "b$cmp $op1, $op2, $lbl\t#@cmpN_branch" %} 9123 9124 ins_encode %{ 9125 __ cmp_branch($cmp$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, as_Register($op1$$reg), 9126 as_Register($op2$$reg), *($lbl$$label)); 9127 %} 9128 9129 ins_pipe(pipe_cmp_branch); 9130 ins_short_branch(1); 9131 %} 9132 9133 // Compare float and branch near instructions 9134 instruct cmpF_branch(cmpOp cmp, fRegF op1, fRegF op2, label lbl) 9135 %{ 9136 // Same match rule as `far_cmpF_branch'. 9137 match(If cmp (CmpF op1 op2)); 9138 9139 effect(USE lbl); 9140 9141 ins_cost(XFER_COST + BRANCH_COST); 9142 format %{ "float_b$cmp $op1, $op2, $lbl \t#@cmpF_branch"%} 9143 9144 ins_encode %{ 9145 __ float_cmp_branch($cmp$$cmpcode, as_FloatRegister($op1$$reg), as_FloatRegister($op2$$reg), *($lbl$$label)); 9146 %} 9147 9148 ins_pipe(pipe_class_compare); 9149 ins_short_branch(1); 9150 %} 9151 9152 // Compare double and branch near instructions 9153 instruct cmpD_branch(cmpOp cmp, fRegD op1, fRegD op2, label lbl) 9154 %{ 9155 // Same match rule as `far_cmpD_branch'. 9156 match(If cmp (CmpD op1 op2)); 9157 effect(USE lbl); 9158 9159 ins_cost(XFER_COST + BRANCH_COST); 9160 format %{ "double_b$cmp $op1, $op2, $lbl\t#@cmpD_branch"%} 9161 9162 ins_encode %{ 9163 __ float_cmp_branch($cmp$$cmpcode | C2_MacroAssembler::double_branch_mask, as_FloatRegister($op1$$reg), 9164 as_FloatRegister($op2$$reg), *($lbl$$label)); 9165 %} 9166 9167 ins_pipe(pipe_class_compare); 9168 ins_short_branch(1); 9169 %} 9170 9171 // Compare signed int with zero and branch near instructions 9172 instruct cmpI_reg_imm0_branch(cmpOp cmp, iRegI op1, immI0 zero, label lbl) 9173 %{ 9174 // Same match rule as `far_cmpI_reg_imm0_branch'. 9175 match(If cmp (CmpI op1 zero)); 9176 9177 effect(USE op1, USE lbl); 9178 9179 ins_cost(BRANCH_COST); 9180 format %{ "b$cmp $op1, zr, $lbl\t#@cmpI_reg_imm0_branch" %} 9181 9182 ins_encode %{ 9183 __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), zr, *($lbl$$label)); 9184 %} 9185 9186 ins_pipe(pipe_cmpz_branch); 9187 ins_short_branch(1); 9188 %} 9189 9190 instruct cmpI_reg_imm0_loop(cmpOp cmp, iRegI op1, immI0 zero, label lbl) 9191 %{ 9192 // Same match rule as `far_cmpI_reg_imm0_loop'. 9193 match(CountedLoopEnd cmp (CmpI op1 zero)); 9194 9195 effect(USE op1, USE lbl); 9196 9197 ins_cost(BRANCH_COST); 9198 9199 format %{ "b$cmp $op1, zr, $lbl\t#@cmpI_reg_imm0_loop" %} 9200 9201 ins_encode %{ 9202 __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), zr, *($lbl$$label)); 9203 %} 9204 9205 ins_pipe(pipe_cmpz_branch); 9206 ins_short_branch(1); 9207 %} 9208 9209 // Compare unsigned int with zero and branch near instructions 9210 instruct cmpUEqNeLeGt_reg_imm0_branch(cmpOpUEqNeLeGt cmp, iRegI op1, immI0 zero, label lbl) 9211 %{ 9212 // Same match rule as `far_cmpUEqNeLeGt_reg_imm0_branch'. 9213 match(If cmp (CmpU op1 zero)); 9214 9215 effect(USE op1, USE lbl); 9216 9217 ins_cost(BRANCH_COST); 9218 9219 format %{ "b$cmp $op1, zr, $lbl\t#@cmpUEqNeLeGt_reg_imm0_branch" %} 9220 9221 ins_encode %{ 9222 __ enc_cmpUEqNeLeGt_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label)); 9223 %} 9224 9225 ins_pipe(pipe_cmpz_branch); 9226 ins_short_branch(1); 9227 %} 9228 9229 // Compare signed long with zero and branch near instructions 9230 instruct cmpL_reg_imm0_branch(cmpOp cmp, iRegL op1, immL0 zero, label lbl) 9231 %{ 9232 // Same match rule as `far_cmpL_reg_imm0_branch'. 9233 match(If cmp (CmpL op1 zero)); 9234 9235 effect(USE op1, USE lbl); 9236 9237 ins_cost(BRANCH_COST); 9238 9239 format %{ "b$cmp $op1, zr, $lbl\t#@cmpL_reg_imm0_branch" %} 9240 9241 ins_encode %{ 9242 __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), zr, *($lbl$$label)); 9243 %} 9244 9245 ins_pipe(pipe_cmpz_branch); 9246 ins_short_branch(1); 9247 %} 9248 9249 instruct cmpL_reg_imm0_loop(cmpOp cmp, iRegL op1, immL0 zero, label lbl) 9250 %{ 9251 // Same match rule as `far_cmpL_reg_imm0_loop'. 9252 match(CountedLoopEnd cmp (CmpL op1 zero)); 9253 9254 effect(USE op1, USE lbl); 9255 9256 ins_cost(BRANCH_COST); 9257 9258 format %{ "b$cmp $op1, zr, $lbl\t#@cmpL_reg_imm0_loop" %} 9259 9260 ins_encode %{ 9261 __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), zr, *($lbl$$label)); 9262 %} 9263 9264 ins_pipe(pipe_cmpz_branch); 9265 ins_short_branch(1); 9266 %} 9267 9268 // Compare unsigned long with zero and branch near instructions 9269 instruct cmpULEqNeLeGt_reg_imm0_branch(cmpOpUEqNeLeGt cmp, iRegL op1, immL0 zero, label lbl) 9270 %{ 9271 // Same match rule as `far_cmpULEqNeLeGt_reg_imm0_branch'. 9272 match(If cmp (CmpUL op1 zero)); 9273 9274 effect(USE op1, USE lbl); 9275 9276 ins_cost(BRANCH_COST); 9277 9278 format %{ "b$cmp $op1, zr, $lbl\t#@cmpULEqNeLeGt_reg_imm0_branch" %} 9279 9280 ins_encode %{ 9281 __ enc_cmpUEqNeLeGt_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label)); 9282 %} 9283 9284 ins_pipe(pipe_cmpz_branch); 9285 ins_short_branch(1); 9286 %} 9287 9288 // Compare pointer with zero and branch near instructions 9289 instruct cmpP_imm0_branch(cmpOpEqNe cmp, iRegP op1, immP0 zero, label lbl) %{ 9290 // Same match rule as `far_cmpP_reg_imm0_branch'. 9291 match(If cmp (CmpP op1 zero)); 9292 effect(USE lbl); 9293 9294 ins_cost(BRANCH_COST); 9295 format %{ "b$cmp $op1, zr, $lbl\t#@cmpP_imm0_branch" %} 9296 9297 ins_encode %{ 9298 __ enc_cmpEqNe_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label)); 9299 %} 9300 9301 ins_pipe(pipe_cmpz_branch); 9302 ins_short_branch(1); 9303 %} 9304 9305 // Compare narrow pointer with zero and branch near instructions 9306 instruct cmpN_imm0_branch(cmpOpEqNe cmp, iRegN op1, immN0 zero, label lbl) %{ 9307 // Same match rule as `far_cmpN_reg_imm0_branch'. 9308 match(If cmp (CmpN op1 zero)); 9309 effect(USE lbl); 9310 9311 ins_cost(BRANCH_COST); 9312 9313 format %{ "b$cmp $op1, zr, $lbl\t#@cmpN_imm0_branch" %} 9314 9315 ins_encode %{ 9316 __ enc_cmpEqNe_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label)); 9317 %} 9318 9319 ins_pipe(pipe_cmpz_branch); 9320 ins_short_branch(1); 9321 %} 9322 9323 // Compare narrow pointer with pointer zero and branch near instructions 9324 instruct cmpP_narrowOop_imm0_branch(cmpOpEqNe cmp, iRegN op1, immP0 zero, label lbl) %{ 9325 // Same match rule as `far_cmpP_narrowOop_imm0_branch'. 9326 match(If cmp (CmpP (DecodeN op1) zero)); 9327 effect(USE lbl); 9328 9329 ins_cost(BRANCH_COST); 9330 format %{ "b$cmp $op1, zr, $lbl\t#@cmpP_narrowOop_imm0_branch" %} 9331 9332 ins_encode %{ 9333 __ enc_cmpEqNe_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label)); 9334 %} 9335 9336 ins_pipe(pipe_cmpz_branch); 9337 ins_short_branch(1); 9338 %} 9339 9340 // Patterns for far (20KiB) variants 9341 9342 instruct far_cmpFlag_branch(cmpOp cmp, rFlagsReg cr, label lbl) %{ 9343 match(If cmp cr); 9344 effect(USE lbl); 9345 9346 ins_cost(BRANCH_COST); 9347 format %{ "far_b$cmp $cr, zr, $lbl\t#@far_cmpFlag_branch"%} 9348 9349 ins_encode %{ 9350 __ enc_cmpEqNe_imm0_branch($cmp$$cmpcode, as_Register($cr$$reg), *($lbl$$label), /* is_far */ true); 9351 %} 9352 9353 ins_pipe(pipe_cmpz_branch); 9354 %} 9355 9356 // Compare signed int and branch far instructions 9357 instruct far_cmpI_branch(cmpOp cmp, iRegI op1, iRegI op2, label lbl) %{ 9358 match(If cmp (CmpI op1 op2)); 9359 effect(USE lbl); 9360 9361 ins_cost(BRANCH_COST * 2); 9362 9363 // the format instruction [far_b$cmp] here is be used as two insructions 9364 // in macroassembler: b$not_cmp(op1, op2, done), j($lbl), bind(done) 9365 format %{ "far_b$cmp $op1, $op2, $lbl\t#@far_cmpI_branch" %} 9366 9367 ins_encode %{ 9368 __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), as_Register($op2$$reg), *($lbl$$label), /* is_far */ true); 9369 %} 9370 9371 ins_pipe(pipe_cmp_branch); 9372 %} 9373 9374 instruct far_cmpI_loop(cmpOp cmp, iRegI op1, iRegI op2, label lbl) %{ 9375 match(CountedLoopEnd cmp (CmpI op1 op2)); 9376 effect(USE lbl); 9377 9378 ins_cost(BRANCH_COST * 2); 9379 format %{ "far_b$cmp $op1, $op2, $lbl\t#@far_cmpI_loop" %} 9380 9381 ins_encode %{ 9382 __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), as_Register($op2$$reg), *($lbl$$label), /* is_far */ true); 9383 %} 9384 9385 ins_pipe(pipe_cmp_branch); 9386 %} 9387 9388 instruct far_cmpU_branch(cmpOpU cmp, iRegI op1, iRegI op2, label lbl) %{ 9389 match(If cmp (CmpU op1 op2)); 9390 effect(USE lbl); 9391 9392 ins_cost(BRANCH_COST * 2); 9393 format %{ "far_b$cmp $op1, $op2, $lbl\t#@far_cmpU_branch" %} 9394 9395 ins_encode %{ 9396 __ cmp_branch($cmp$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, as_Register($op1$$reg), 9397 as_Register($op2$$reg), *($lbl$$label), /* is_far */ true); 9398 %} 9399 9400 ins_pipe(pipe_cmp_branch); 9401 %} 9402 9403 instruct far_cmpL_branch(cmpOp cmp, iRegL op1, iRegL op2, label lbl) %{ 9404 match(If cmp (CmpL op1 op2)); 9405 effect(USE lbl); 9406 9407 ins_cost(BRANCH_COST * 2); 9408 format %{ "far_b$cmp $op1, $op2, $lbl\t#@far_cmpL_branch" %} 9409 9410 ins_encode %{ 9411 __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), as_Register($op2$$reg), *($lbl$$label), /* is_far */ true); 9412 %} 9413 9414 ins_pipe(pipe_cmp_branch); 9415 %} 9416 9417 instruct far_cmpLloop(cmpOp cmp, iRegL op1, iRegL op2, label lbl) %{ 9418 match(CountedLoopEnd cmp (CmpL op1 op2)); 9419 effect(USE lbl); 9420 9421 ins_cost(BRANCH_COST * 2); 9422 format %{ "far_b$cmp $op1, $op2, $lbl\t#@far_cmpL_loop" %} 9423 9424 ins_encode %{ 9425 __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), as_Register($op2$$reg), *($lbl$$label), /* is_far */ true); 9426 %} 9427 9428 ins_pipe(pipe_cmp_branch); 9429 %} 9430 9431 instruct far_cmpUL_branch(cmpOpU cmp, iRegL op1, iRegL op2, label lbl) %{ 9432 match(If cmp (CmpUL op1 op2)); 9433 effect(USE lbl); 9434 9435 ins_cost(BRANCH_COST * 2); 9436 format %{ "far_b$cmp $op1, $op2, $lbl\t#@far_cmpUL_branch" %} 9437 9438 ins_encode %{ 9439 __ cmp_branch($cmp$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, as_Register($op1$$reg), 9440 as_Register($op2$$reg), *($lbl$$label), /* is_far */ true); 9441 %} 9442 9443 ins_pipe(pipe_cmp_branch); 9444 %} 9445 9446 instruct far_cmpP_branch(cmpOpU cmp, iRegP op1, iRegP op2, label lbl) 9447 %{ 9448 match(If cmp (CmpP op1 op2)); 9449 9450 effect(USE lbl); 9451 9452 ins_cost(BRANCH_COST * 2); 9453 9454 format %{ "far_b$cmp $op1, $op2, $lbl\t#@far_cmpP_branch" %} 9455 9456 ins_encode %{ 9457 __ cmp_branch($cmp$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, as_Register($op1$$reg), 9458 as_Register($op2$$reg), *($lbl$$label), /* is_far */ true); 9459 %} 9460 9461 ins_pipe(pipe_cmp_branch); 9462 %} 9463 9464 instruct far_cmpN_branch(cmpOpU cmp, iRegN op1, iRegN op2, label lbl) 9465 %{ 9466 match(If cmp (CmpN op1 op2)); 9467 9468 effect(USE lbl); 9469 9470 ins_cost(BRANCH_COST * 2); 9471 9472 format %{ "far_b$cmp $op1, $op2, $lbl\t#@far_cmpN_branch" %} 9473 9474 ins_encode %{ 9475 __ cmp_branch($cmp$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, as_Register($op1$$reg), 9476 as_Register($op2$$reg), *($lbl$$label), /* is_far */ true); 9477 %} 9478 9479 ins_pipe(pipe_cmp_branch); 9480 %} 9481 9482 // Float compare and branch instructions 9483 instruct far_cmpF_branch(cmpOp cmp, fRegF op1, fRegF op2, label lbl) 9484 %{ 9485 match(If cmp (CmpF op1 op2)); 9486 9487 effect(USE lbl); 9488 9489 ins_cost(XFER_COST + BRANCH_COST * 2); 9490 format %{ "far_float_b$cmp $op1, $op2, $lbl\t#@far_cmpF_branch"%} 9491 9492 ins_encode %{ 9493 __ float_cmp_branch($cmp$$cmpcode, as_FloatRegister($op1$$reg), as_FloatRegister($op2$$reg), 9494 *($lbl$$label), /* is_far */ true); 9495 %} 9496 9497 ins_pipe(pipe_class_compare); 9498 %} 9499 9500 // Double compare and branch instructions 9501 instruct far_cmpD_branch(cmpOp cmp, fRegD op1, fRegD op2, label lbl) 9502 %{ 9503 match(If cmp (CmpD op1 op2)); 9504 effect(USE lbl); 9505 9506 ins_cost(XFER_COST + BRANCH_COST * 2); 9507 format %{ "far_double_b$cmp $op1, $op2, $lbl\t#@far_cmpD_branch"%} 9508 9509 ins_encode %{ 9510 __ float_cmp_branch($cmp$$cmpcode | C2_MacroAssembler::double_branch_mask, as_FloatRegister($op1$$reg), 9511 as_FloatRegister($op2$$reg), *($lbl$$label), /* is_far */ true); 9512 %} 9513 9514 ins_pipe(pipe_class_compare); 9515 %} 9516 9517 instruct far_cmpI_reg_imm0_branch(cmpOp cmp, iRegI op1, immI0 zero, label lbl) 9518 %{ 9519 match(If cmp (CmpI op1 zero)); 9520 9521 effect(USE op1, USE lbl); 9522 9523 ins_cost(BRANCH_COST * 2); 9524 9525 format %{ "far_b$cmp $op1, zr, $lbl\t#@far_cmpI_reg_imm0_branch" %} 9526 9527 ins_encode %{ 9528 __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), zr, *($lbl$$label), /* is_far */ true); 9529 %} 9530 9531 ins_pipe(pipe_cmpz_branch); 9532 %} 9533 9534 instruct far_cmpI_reg_imm0_loop(cmpOp cmp, iRegI op1, immI0 zero, label lbl) 9535 %{ 9536 match(CountedLoopEnd cmp (CmpI op1 zero)); 9537 9538 effect(USE op1, USE lbl); 9539 9540 ins_cost(BRANCH_COST * 2); 9541 9542 format %{ "far_b$cmp $op1, zr, $lbl\t#@far_cmpI_reg_imm0_loop" %} 9543 9544 ins_encode %{ 9545 __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), zr, *($lbl$$label), /* is_far */ true); 9546 %} 9547 9548 ins_pipe(pipe_cmpz_branch); 9549 %} 9550 9551 instruct far_cmpUEqNeLeGt_imm0_branch(cmpOpUEqNeLeGt cmp, iRegI op1, immI0 zero, label lbl) 9552 %{ 9553 match(If cmp (CmpU op1 zero)); 9554 9555 effect(USE op1, USE lbl); 9556 9557 ins_cost(BRANCH_COST * 2); 9558 9559 format %{ "far_b$cmp $op1, zr, $lbl\t#@far_cmpUEqNeLeGt_imm0_branch" %} 9560 9561 ins_encode %{ 9562 __ enc_cmpUEqNeLeGt_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label), /* is_far */ true); 9563 %} 9564 9565 ins_pipe(pipe_cmpz_branch); 9566 %} 9567 9568 // compare lt/ge unsigned instructs has no short instruct with same match 9569 instruct far_cmpULtGe_reg_imm0_branch(cmpOpULtGe cmp, iRegI op1, immI0 zero, label lbl) 9570 %{ 9571 match(If cmp (CmpU op1 zero)); 9572 9573 effect(USE op1, USE lbl); 9574 9575 ins_cost(BRANCH_COST); 9576 9577 format %{ "j $lbl if $cmp == ge\t#@far_cmpULtGe_reg_imm0_branch" %} 9578 9579 ins_encode(riscv_enc_far_cmpULtGe_imm0_branch(cmp, op1, lbl)); 9580 9581 ins_pipe(pipe_cmpz_branch); 9582 %} 9583 9584 instruct far_cmpL_reg_imm0_branch(cmpOp cmp, iRegL op1, immL0 zero, label lbl) 9585 %{ 9586 match(If cmp (CmpL op1 zero)); 9587 9588 effect(USE op1, USE lbl); 9589 9590 ins_cost(BRANCH_COST * 2); 9591 9592 format %{ "far_b$cmp $op1, zr, $lbl\t#@far_cmpL_reg_imm0_branch" %} 9593 9594 ins_encode %{ 9595 __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), zr, *($lbl$$label), /* is_far */ true); 9596 %} 9597 9598 ins_pipe(pipe_cmpz_branch); 9599 %} 9600 9601 instruct far_cmpL_reg_imm0_loop(cmpOp cmp, iRegL op1, immL0 zero, label lbl) 9602 %{ 9603 match(CountedLoopEnd cmp (CmpL op1 zero)); 9604 9605 effect(USE op1, USE lbl); 9606 9607 ins_cost(BRANCH_COST * 2); 9608 9609 format %{ "far_b$cmp $op1, zr, $lbl\t#@far_cmpL_reg_imm0_loop" %} 9610 9611 ins_encode %{ 9612 __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), zr, *($lbl$$label), /* is_far */ true); 9613 %} 9614 9615 ins_pipe(pipe_cmpz_branch); 9616 %} 9617 9618 instruct far_cmpULEqNeLeGt_reg_imm0_branch(cmpOpUEqNeLeGt cmp, iRegL op1, immL0 zero, label lbl) 9619 %{ 9620 match(If cmp (CmpUL op1 zero)); 9621 9622 effect(USE op1, USE lbl); 9623 9624 ins_cost(BRANCH_COST * 2); 9625 9626 format %{ "far_b$cmp $op1, zr, $lbl\t#@far_cmpULEqNeLeGt_reg_imm0_branch" %} 9627 9628 ins_encode %{ 9629 __ enc_cmpUEqNeLeGt_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label), /* is_far */ true); 9630 %} 9631 9632 ins_pipe(pipe_cmpz_branch); 9633 %} 9634 9635 // compare lt/ge unsigned instructs has no short instruct with same match 9636 instruct far_cmpULLtGe_reg_imm0_branch(cmpOpULtGe cmp, iRegL op1, immL0 zero, label lbl) 9637 %{ 9638 match(If cmp (CmpUL op1 zero)); 9639 9640 effect(USE op1, USE lbl); 9641 9642 ins_cost(BRANCH_COST); 9643 9644 format %{ "j $lbl if $cmp == ge\t#@far_cmpULLtGe_reg_imm0_branch" %} 9645 9646 ins_encode(riscv_enc_far_cmpULtGe_imm0_branch(cmp, op1, lbl)); 9647 9648 ins_pipe(pipe_cmpz_branch); 9649 %} 9650 9651 instruct far_cmpP_imm0_branch(cmpOpEqNe cmp, iRegP op1, immP0 zero, label lbl) %{ 9652 match(If cmp (CmpP op1 zero)); 9653 effect(USE lbl); 9654 9655 ins_cost(BRANCH_COST * 2); 9656 format %{ "far_b$cmp $op1, zr, $lbl\t#@far_cmpP_imm0_branch" %} 9657 9658 ins_encode %{ 9659 __ enc_cmpEqNe_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label), /* is_far */ true); 9660 %} 9661 9662 ins_pipe(pipe_cmpz_branch); 9663 %} 9664 9665 instruct far_cmpN_imm0_branch(cmpOpEqNe cmp, iRegN op1, immN0 zero, label lbl) %{ 9666 match(If cmp (CmpN op1 zero)); 9667 effect(USE lbl); 9668 9669 ins_cost(BRANCH_COST * 2); 9670 9671 format %{ "far_b$cmp $op1, zr, $lbl\t#@far_cmpN_imm0_branch" %} 9672 9673 ins_encode %{ 9674 __ enc_cmpEqNe_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label), /* is_far */ true); 9675 %} 9676 9677 ins_pipe(pipe_cmpz_branch); 9678 %} 9679 9680 instruct far_cmpP_narrowOop_imm0_branch(cmpOpEqNe cmp, iRegN op1, immP0 zero, label lbl) %{ 9681 match(If cmp (CmpP (DecodeN op1) zero)); 9682 effect(USE lbl); 9683 9684 ins_cost(BRANCH_COST * 2); 9685 format %{ "far_b$cmp $op1, zr, $lbl\t#@far_cmpP_narrowOop_imm0_branch" %} 9686 9687 ins_encode %{ 9688 __ enc_cmpEqNe_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label), /* is_far */ true); 9689 %} 9690 9691 ins_pipe(pipe_cmpz_branch); 9692 %} 9693 9694 // ============================================================================ 9695 // Conditional Move Instructions 9696 instruct cmovI_cmpI(iRegINoSp dst, iRegI src, iRegI op1, iRegI op2, cmpOp cop) %{ 9697 match(Set dst (CMoveI (Binary cop (CmpI op1 op2)) (Binary dst src))); 9698 ins_cost(ALU_COST + BRANCH_COST); 9699 9700 format %{ 9701 "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovI_cmpI\n\t" 9702 %} 9703 9704 ins_encode %{ 9705 __ enc_cmove($cop$$cmpcode, 9706 as_Register($op1$$reg), as_Register($op2$$reg), 9707 as_Register($dst$$reg), as_Register($src$$reg)); 9708 %} 9709 9710 ins_pipe(pipe_class_compare); 9711 %} 9712 9713 instruct cmovI_cmpU(iRegINoSp dst, iRegI src, iRegI op1, iRegI op2, cmpOpU cop) %{ 9714 match(Set dst (CMoveI (Binary cop (CmpU op1 op2)) (Binary dst src))); 9715 ins_cost(ALU_COST + BRANCH_COST); 9716 9717 format %{ 9718 "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovI_cmpU\n\t" 9719 %} 9720 9721 ins_encode %{ 9722 __ enc_cmove($cop$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, 9723 as_Register($op1$$reg), as_Register($op2$$reg), 9724 as_Register($dst$$reg), as_Register($src$$reg)); 9725 %} 9726 9727 ins_pipe(pipe_class_compare); 9728 %} 9729 9730 instruct cmovI_cmpL(iRegINoSp dst, iRegI src, iRegL op1, iRegL op2, cmpOp cop) %{ 9731 match(Set dst (CMoveI (Binary cop (CmpL op1 op2)) (Binary dst src))); 9732 ins_cost(ALU_COST + BRANCH_COST); 9733 9734 format %{ 9735 "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovI_cmpL\n\t" 9736 %} 9737 9738 ins_encode %{ 9739 __ enc_cmove($cop$$cmpcode, 9740 as_Register($op1$$reg), as_Register($op2$$reg), 9741 as_Register($dst$$reg), as_Register($src$$reg)); 9742 %} 9743 9744 ins_pipe(pipe_class_compare); 9745 %} 9746 9747 instruct cmovI_cmpUL(iRegINoSp dst, iRegI src, iRegL op1, iRegL op2, cmpOpU cop) %{ 9748 match(Set dst (CMoveI (Binary cop (CmpUL op1 op2)) (Binary dst src))); 9749 ins_cost(ALU_COST + BRANCH_COST); 9750 9751 format %{ 9752 "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovI_cmpUL\n\t" 9753 %} 9754 9755 ins_encode %{ 9756 __ enc_cmove($cop$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, 9757 as_Register($op1$$reg), as_Register($op2$$reg), 9758 as_Register($dst$$reg), as_Register($src$$reg)); 9759 %} 9760 9761 ins_pipe(pipe_class_compare); 9762 %} 9763 9764 instruct cmovI_cmpN(iRegINoSp dst, iRegI src, iRegN op1, iRegN op2, cmpOpU cop) %{ 9765 match(Set dst (CMoveI (Binary cop (CmpN op1 op2)) (Binary dst src))); 9766 ins_cost(ALU_COST + BRANCH_COST); 9767 9768 format %{ 9769 "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovI_cmpN\n\t" 9770 %} 9771 9772 ins_encode %{ 9773 __ enc_cmove($cop$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, 9774 as_Register($op1$$reg), as_Register($op2$$reg), 9775 as_Register($dst$$reg), as_Register($src$$reg)); 9776 %} 9777 9778 ins_pipe(pipe_class_compare); 9779 %} 9780 9781 instruct cmovI_cmpP(iRegINoSp dst, iRegI src, iRegP op1, iRegP op2, cmpOpU cop) %{ 9782 match(Set dst (CMoveI (Binary cop (CmpP op1 op2)) (Binary dst src))); 9783 ins_cost(ALU_COST + BRANCH_COST); 9784 9785 format %{ 9786 "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovI_cmpP\n\t" 9787 %} 9788 9789 ins_encode %{ 9790 __ enc_cmove($cop$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, 9791 as_Register($op1$$reg), as_Register($op2$$reg), 9792 as_Register($dst$$reg), as_Register($src$$reg)); 9793 %} 9794 9795 ins_pipe(pipe_class_compare); 9796 %} 9797 9798 instruct cmovL_cmpL(iRegLNoSp dst, iRegL src, iRegL op1, iRegL op2, cmpOp cop) %{ 9799 match(Set dst (CMoveL (Binary cop (CmpL op1 op2)) (Binary dst src))); 9800 ins_cost(ALU_COST + BRANCH_COST); 9801 9802 format %{ 9803 "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovL_cmpL\n\t" 9804 %} 9805 9806 ins_encode %{ 9807 __ enc_cmove($cop$$cmpcode, 9808 as_Register($op1$$reg), as_Register($op2$$reg), 9809 as_Register($dst$$reg), as_Register($src$$reg)); 9810 %} 9811 9812 ins_pipe(pipe_class_compare); 9813 %} 9814 9815 instruct cmovL_cmpUL(iRegLNoSp dst, iRegL src, iRegL op1, iRegL op2, cmpOpU cop) %{ 9816 match(Set dst (CMoveL (Binary cop (CmpUL op1 op2)) (Binary dst src))); 9817 ins_cost(ALU_COST + BRANCH_COST); 9818 9819 format %{ 9820 "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovL_cmpUL\n\t" 9821 %} 9822 9823 ins_encode %{ 9824 __ enc_cmove($cop$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, 9825 as_Register($op1$$reg), as_Register($op2$$reg), 9826 as_Register($dst$$reg), as_Register($src$$reg)); 9827 %} 9828 9829 ins_pipe(pipe_class_compare); 9830 %} 9831 9832 instruct cmovL_cmpI(iRegLNoSp dst, iRegL src, iRegI op1, iRegI op2, cmpOp cop) %{ 9833 match(Set dst (CMoveL (Binary cop (CmpI op1 op2)) (Binary dst src))); 9834 ins_cost(ALU_COST + BRANCH_COST); 9835 9836 format %{ 9837 "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovL_cmpI\n\t" 9838 %} 9839 9840 ins_encode %{ 9841 __ enc_cmove($cop$$cmpcode, 9842 as_Register($op1$$reg), as_Register($op2$$reg), 9843 as_Register($dst$$reg), as_Register($src$$reg)); 9844 %} 9845 9846 ins_pipe(pipe_class_compare); 9847 %} 9848 9849 instruct cmovL_cmpU(iRegLNoSp dst, iRegL src, iRegI op1, iRegI op2, cmpOpU cop) %{ 9850 match(Set dst (CMoveL (Binary cop (CmpU op1 op2)) (Binary dst src))); 9851 ins_cost(ALU_COST + BRANCH_COST); 9852 9853 format %{ 9854 "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovL_cmpU\n\t" 9855 %} 9856 9857 ins_encode %{ 9858 __ enc_cmove($cop$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, 9859 as_Register($op1$$reg), as_Register($op2$$reg), 9860 as_Register($dst$$reg), as_Register($src$$reg)); 9861 %} 9862 9863 ins_pipe(pipe_class_compare); 9864 %} 9865 9866 instruct cmovL_cmpN(iRegLNoSp dst, iRegL src, iRegN op1, iRegN op2, cmpOpU cop) %{ 9867 match(Set dst (CMoveL (Binary cop (CmpN op1 op2)) (Binary dst src))); 9868 ins_cost(ALU_COST + BRANCH_COST); 9869 9870 format %{ 9871 "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovL_cmpN\n\t" 9872 %} 9873 9874 ins_encode %{ 9875 __ enc_cmove($cop$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, 9876 as_Register($op1$$reg), as_Register($op2$$reg), 9877 as_Register($dst$$reg), as_Register($src$$reg)); 9878 %} 9879 9880 ins_pipe(pipe_class_compare); 9881 %} 9882 9883 instruct cmovL_cmpP(iRegLNoSp dst, iRegL src, iRegP op1, iRegP op2, cmpOpU cop) %{ 9884 match(Set dst (CMoveL (Binary cop (CmpP op1 op2)) (Binary dst src))); 9885 ins_cost(ALU_COST + BRANCH_COST); 9886 9887 format %{ 9888 "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovL_cmpP\n\t" 9889 %} 9890 9891 ins_encode %{ 9892 __ enc_cmove($cop$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, 9893 as_Register($op1$$reg), as_Register($op2$$reg), 9894 as_Register($dst$$reg), as_Register($src$$reg)); 9895 %} 9896 9897 ins_pipe(pipe_class_compare); 9898 %} 9899 9900 // ============================================================================ 9901 // Procedure Call/Return Instructions 9902 9903 // Call Java Static Instruction 9904 // Note: If this code changes, the corresponding ret_addr_offset() and 9905 // compute_padding() functions will have to be adjusted. 9906 instruct CallStaticJavaDirect(method meth) 9907 %{ 9908 match(CallStaticJava); 9909 9910 effect(USE meth); 9911 9912 ins_cost(BRANCH_COST); 9913 9914 format %{ "CALL,static $meth\t#@CallStaticJavaDirect" %} 9915 9916 ins_encode(riscv_enc_java_static_call(meth), 9917 riscv_enc_call_epilog); 9918 9919 ins_pipe(pipe_class_call); 9920 ins_alignment(4); 9921 %} 9922 9923 // TO HERE 9924 9925 // Call Java Dynamic Instruction 9926 // Note: If this code changes, the corresponding ret_addr_offset() and 9927 // compute_padding() functions will have to be adjusted. 9928 instruct CallDynamicJavaDirect(method meth) 9929 %{ 9930 match(CallDynamicJava); 9931 9932 effect(USE meth); 9933 9934 ins_cost(BRANCH_COST + ALU_COST * 5); 9935 9936 format %{ "CALL,dynamic $meth\t#@CallDynamicJavaDirect" %} 9937 9938 ins_encode(riscv_enc_java_dynamic_call(meth), 9939 riscv_enc_call_epilog); 9940 9941 ins_pipe(pipe_class_call); 9942 ins_alignment(4); 9943 %} 9944 9945 // Call Runtime Instruction 9946 9947 instruct CallRuntimeDirect(method meth) 9948 %{ 9949 match(CallRuntime); 9950 9951 effect(USE meth); 9952 9953 ins_cost(BRANCH_COST); 9954 9955 format %{ "CALL, runtime $meth\t#@CallRuntimeDirect" %} 9956 9957 ins_encode(riscv_enc_java_to_runtime(meth)); 9958 9959 ins_pipe(pipe_class_call); 9960 %} 9961 9962 // Call Runtime Instruction 9963 9964 instruct CallLeafDirect(method meth) 9965 %{ 9966 match(CallLeaf); 9967 9968 effect(USE meth); 9969 9970 ins_cost(BRANCH_COST); 9971 9972 format %{ "CALL, runtime leaf $meth\t#@CallLeafDirect" %} 9973 9974 ins_encode(riscv_enc_java_to_runtime(meth)); 9975 9976 ins_pipe(pipe_class_call); 9977 %} 9978 9979 // Call Runtime Instruction without safepoint and with vector arguments 9980 9981 instruct CallLeafDirectVector(method meth) 9982 %{ 9983 match(CallLeafVector); 9984 9985 effect(USE meth); 9986 9987 ins_cost(BRANCH_COST); 9988 9989 format %{ "CALL, runtime leaf vector $meth" %} 9990 9991 ins_encode(riscv_enc_java_to_runtime(meth)); 9992 9993 ins_pipe(pipe_class_call); 9994 %} 9995 9996 // Call Runtime Instruction 9997 9998 instruct CallLeafNoFPDirect(method meth) 9999 %{ 10000 match(CallLeafNoFP); 10001 10002 effect(USE meth); 10003 10004 ins_cost(BRANCH_COST); 10005 10006 format %{ "CALL, runtime leaf nofp $meth\t#@CallLeafNoFPDirect" %} 10007 10008 ins_encode(riscv_enc_java_to_runtime(meth)); 10009 10010 ins_pipe(pipe_class_call); 10011 %} 10012 10013 // ============================================================================ 10014 // Partial Subtype Check 10015 // 10016 // superklass array for an instance of the superklass. Set a hidden 10017 // internal cache on a hit (cache is checked with exposed code in 10018 // gen_subtype_check()). Return zero for a hit. The encoding 10019 // ALSO sets flags. 10020 10021 instruct partialSubtypeCheck(iRegP_R15 result, iRegP_R14 sub, iRegP_R10 super, iRegP_R12 tmp, rFlagsReg cr) 10022 %{ 10023 match(Set result (PartialSubtypeCheck sub super)); 10024 effect(KILL tmp, KILL cr); 10025 10026 ins_cost(11 * DEFAULT_COST); 10027 format %{ "partialSubtypeCheck $result, $sub, $super\t#@partialSubtypeCheck" %} 10028 10029 ins_encode(riscv_enc_partial_subtype_check(sub, super, tmp, result)); 10030 10031 opcode(0x1); // Force zero of result reg on hit 10032 10033 ins_pipe(pipe_class_memory); 10034 %} 10035 10036 instruct partialSubtypeCheckConstSuper(iRegP_R14 sub, iRegP_R10 super_reg, immP super_con, iRegP_R15 result, 10037 iRegP_R11 tmpR11, iRegP_R12 tmpR12, iRegP_R13 tmpR13, iRegP_R16 tmpR16, rFlagsReg cr) 10038 %{ 10039 predicate(UseSecondarySupersTable); 10040 match(Set result (PartialSubtypeCheck sub (Binary super_reg super_con))); 10041 effect(TEMP tmpR11, TEMP tmpR12, TEMP tmpR13, TEMP tmpR16, KILL cr); 10042 10043 ins_cost(7 * DEFAULT_COST); // needs to be less than competing nodes 10044 format %{ "partialSubtypeCheck $result, $sub, $super_reg, $super_con" %} 10045 10046 ins_encode %{ 10047 bool success = false; 10048 u1 super_klass_slot = ((Klass*)$super_con$$constant)->hash_slot(); 10049 if (InlineSecondarySupersTest) { 10050 success = __ lookup_secondary_supers_table($sub$$Register, $super_reg$$Register, $result$$Register, 10051 $tmpR11$$Register, $tmpR12$$Register, $tmpR13$$Register, 10052 $tmpR16$$Register, super_klass_slot); 10053 } else { 10054 address call = __ reloc_call(RuntimeAddress(StubRoutines::lookup_secondary_supers_table_stub(super_klass_slot))); 10055 success = (call != nullptr); 10056 } 10057 if (!success) { 10058 ciEnv::current()->record_failure("CodeCache is full"); 10059 return; 10060 } 10061 %} 10062 10063 ins_pipe(pipe_class_memory); 10064 %} 10065 10066 instruct partialSubtypeCheckVsZero(iRegP_R15 result, iRegP_R14 sub, iRegP_R10 super, iRegP_R12 tmp, 10067 immP0 zero, rFlagsReg cr) 10068 %{ 10069 match(Set cr (CmpP (PartialSubtypeCheck sub super) zero)); 10070 effect(KILL tmp, KILL result); 10071 10072 ins_cost(11 * DEFAULT_COST); 10073 format %{ "partialSubtypeCheck $result, $sub, $super == 0\t#@partialSubtypeCheckVsZero" %} 10074 10075 ins_encode(riscv_enc_partial_subtype_check(sub, super, tmp, result)); 10076 10077 opcode(0x0); // Don't zero result reg on hit 10078 10079 ins_pipe(pipe_class_memory); 10080 %} 10081 10082 instruct string_compareU(iRegP_R11 str1, iRegI_R12 cnt1, iRegP_R13 str2, iRegI_R14 cnt2, 10083 iRegI_R10 result, iRegP_R28 tmp1, iRegL_R29 tmp2, iRegL_R30 tmp3, rFlagsReg cr) 10084 %{ 10085 predicate(!UseRVV && ((StrCompNode *)n)->encoding() == StrIntrinsicNode::UU); 10086 match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2))); 10087 effect(KILL tmp1, KILL tmp2, KILL tmp3, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr); 10088 10089 format %{ "String Compare $str1, $cnt1, $str2, $cnt2 -> $result\t#@string_compareU" %} 10090 ins_encode %{ 10091 // Count is in 8-bit bytes; non-Compact chars are 16 bits. 10092 __ string_compare($str1$$Register, $str2$$Register, 10093 $cnt1$$Register, $cnt2$$Register, $result$$Register, 10094 $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, 10095 StrIntrinsicNode::UU); 10096 %} 10097 ins_pipe(pipe_class_memory); 10098 %} 10099 10100 instruct string_compareL(iRegP_R11 str1, iRegI_R12 cnt1, iRegP_R13 str2, iRegI_R14 cnt2, 10101 iRegI_R10 result, iRegP_R28 tmp1, iRegL_R29 tmp2, iRegL_R30 tmp3, rFlagsReg cr) 10102 %{ 10103 predicate(!UseRVV && ((StrCompNode *)n)->encoding() == StrIntrinsicNode::LL); 10104 match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2))); 10105 effect(KILL tmp1, KILL tmp2, KILL tmp3, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr); 10106 10107 format %{ "String Compare $str1, $cnt1, $str2, $cnt2 -> $result\t#@string_compareL" %} 10108 ins_encode %{ 10109 __ string_compare($str1$$Register, $str2$$Register, 10110 $cnt1$$Register, $cnt2$$Register, $result$$Register, 10111 $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, 10112 StrIntrinsicNode::LL); 10113 %} 10114 ins_pipe(pipe_class_memory); 10115 %} 10116 10117 instruct string_compareUL(iRegP_R11 str1, iRegI_R12 cnt1, iRegP_R13 str2, iRegI_R14 cnt2, 10118 iRegI_R10 result, iRegP_R28 tmp1, iRegL_R29 tmp2, iRegL_R30 tmp3, rFlagsReg cr) 10119 %{ 10120 predicate(!UseRVV && ((StrCompNode *)n)->encoding() == StrIntrinsicNode::UL); 10121 match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2))); 10122 effect(KILL tmp1, KILL tmp2, KILL tmp3, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr); 10123 10124 format %{"String Compare $str1, $cnt1, $str2, $cnt2 -> $result\t#@string_compareUL" %} 10125 ins_encode %{ 10126 __ string_compare($str1$$Register, $str2$$Register, 10127 $cnt1$$Register, $cnt2$$Register, $result$$Register, 10128 $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, 10129 StrIntrinsicNode::UL); 10130 %} 10131 ins_pipe(pipe_class_memory); 10132 %} 10133 10134 instruct string_compareLU(iRegP_R11 str1, iRegI_R12 cnt1, iRegP_R13 str2, iRegI_R14 cnt2, 10135 iRegI_R10 result, iRegP_R28 tmp1, iRegL_R29 tmp2, iRegL_R30 tmp3, 10136 rFlagsReg cr) 10137 %{ 10138 predicate(!UseRVV && ((StrCompNode *)n)->encoding() == StrIntrinsicNode::LU); 10139 match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2))); 10140 effect(KILL tmp1, KILL tmp2, KILL tmp3, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr); 10141 10142 format %{ "String Compare $str1, $cnt1, $str2, $cnt2 -> $result\t#@string_compareLU" %} 10143 ins_encode %{ 10144 __ string_compare($str1$$Register, $str2$$Register, 10145 $cnt1$$Register, $cnt2$$Register, $result$$Register, 10146 $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, 10147 StrIntrinsicNode::LU); 10148 %} 10149 ins_pipe(pipe_class_memory); 10150 %} 10151 10152 instruct string_indexofUU(iRegP_R11 str1, iRegI_R12 cnt1, iRegP_R13 str2, iRegI_R14 cnt2, 10153 iRegI_R10 result, iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, 10154 iRegINoSp tmp4, iRegINoSp tmp5, iRegINoSp tmp6, rFlagsReg cr) 10155 %{ 10156 predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UU); 10157 match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2))); 10158 effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, TEMP_DEF result, 10159 TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5, TEMP tmp6, KILL cr); 10160 10161 format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result (UU)" %} 10162 ins_encode %{ 10163 __ string_indexof($str1$$Register, $str2$$Register, 10164 $cnt1$$Register, $cnt2$$Register, 10165 $tmp1$$Register, $tmp2$$Register, 10166 $tmp3$$Register, $tmp4$$Register, 10167 $tmp5$$Register, $tmp6$$Register, 10168 $result$$Register, StrIntrinsicNode::UU); 10169 %} 10170 ins_pipe(pipe_class_memory); 10171 %} 10172 10173 instruct string_indexofLL(iRegP_R11 str1, iRegI_R12 cnt1, iRegP_R13 str2, iRegI_R14 cnt2, 10174 iRegI_R10 result, iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, 10175 iRegINoSp tmp4, iRegINoSp tmp5, iRegINoSp tmp6, rFlagsReg cr) 10176 %{ 10177 predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::LL); 10178 match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2))); 10179 effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, TEMP_DEF result, 10180 TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5, TEMP tmp6, KILL cr); 10181 10182 format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result (LL)" %} 10183 ins_encode %{ 10184 __ string_indexof($str1$$Register, $str2$$Register, 10185 $cnt1$$Register, $cnt2$$Register, 10186 $tmp1$$Register, $tmp2$$Register, 10187 $tmp3$$Register, $tmp4$$Register, 10188 $tmp5$$Register, $tmp6$$Register, 10189 $result$$Register, StrIntrinsicNode::LL); 10190 %} 10191 ins_pipe(pipe_class_memory); 10192 %} 10193 10194 instruct string_indexofUL(iRegP_R11 str1, iRegI_R12 cnt1, iRegP_R13 str2, iRegI_R14 cnt2, 10195 iRegI_R10 result, iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, 10196 iRegINoSp tmp4, iRegINoSp tmp5, iRegINoSp tmp6, rFlagsReg cr) 10197 %{ 10198 predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UL); 10199 match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2))); 10200 effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, TEMP_DEF result, 10201 TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5, TEMP tmp6, KILL cr); 10202 format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result (UL)" %} 10203 10204 ins_encode %{ 10205 __ string_indexof($str1$$Register, $str2$$Register, 10206 $cnt1$$Register, $cnt2$$Register, 10207 $tmp1$$Register, $tmp2$$Register, 10208 $tmp3$$Register, $tmp4$$Register, 10209 $tmp5$$Register, $tmp6$$Register, 10210 $result$$Register, StrIntrinsicNode::UL); 10211 %} 10212 ins_pipe(pipe_class_memory); 10213 %} 10214 10215 instruct string_indexof_conUU(iRegP_R11 str1, iRegI_R12 cnt1, iRegP_R13 str2, 10216 immI_le_4 int_cnt2, iRegI_R10 result, iRegINoSp tmp1, iRegINoSp tmp2, 10217 iRegINoSp tmp3, iRegINoSp tmp4, rFlagsReg cr) 10218 %{ 10219 predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UU); 10220 match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2))); 10221 effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, TEMP_DEF result, 10222 TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr); 10223 10224 format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result (UU)" %} 10225 10226 ins_encode %{ 10227 int icnt2 = (int)$int_cnt2$$constant; 10228 __ string_indexof_linearscan($str1$$Register, $str2$$Register, 10229 $cnt1$$Register, zr, 10230 $tmp1$$Register, $tmp2$$Register, 10231 $tmp3$$Register, $tmp4$$Register, 10232 icnt2, $result$$Register, StrIntrinsicNode::UU); 10233 %} 10234 ins_pipe(pipe_class_memory); 10235 %} 10236 10237 instruct string_indexof_conLL(iRegP_R11 str1, iRegI_R12 cnt1, iRegP_R13 str2, 10238 immI_le_4 int_cnt2, iRegI_R10 result, iRegINoSp tmp1, iRegINoSp tmp2, 10239 iRegINoSp tmp3, iRegINoSp tmp4, rFlagsReg cr) 10240 %{ 10241 predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::LL); 10242 match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2))); 10243 effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, TEMP_DEF result, 10244 TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr); 10245 10246 format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result (LL)" %} 10247 ins_encode %{ 10248 int icnt2 = (int)$int_cnt2$$constant; 10249 __ string_indexof_linearscan($str1$$Register, $str2$$Register, 10250 $cnt1$$Register, zr, 10251 $tmp1$$Register, $tmp2$$Register, 10252 $tmp3$$Register, $tmp4$$Register, 10253 icnt2, $result$$Register, StrIntrinsicNode::LL); 10254 %} 10255 ins_pipe(pipe_class_memory); 10256 %} 10257 10258 instruct string_indexof_conUL(iRegP_R11 str1, iRegI_R12 cnt1, iRegP_R13 str2, 10259 immI_1 int_cnt2, iRegI_R10 result, iRegINoSp tmp1, iRegINoSp tmp2, 10260 iRegINoSp tmp3, iRegINoSp tmp4, rFlagsReg cr) 10261 %{ 10262 predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UL); 10263 match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2))); 10264 effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, TEMP_DEF result, 10265 TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr); 10266 10267 format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result (UL)" %} 10268 ins_encode %{ 10269 int icnt2 = (int)$int_cnt2$$constant; 10270 __ string_indexof_linearscan($str1$$Register, $str2$$Register, 10271 $cnt1$$Register, zr, 10272 $tmp1$$Register, $tmp2$$Register, 10273 $tmp3$$Register, $tmp4$$Register, 10274 icnt2, $result$$Register, StrIntrinsicNode::UL); 10275 %} 10276 ins_pipe(pipe_class_memory); 10277 %} 10278 10279 instruct stringU_indexof_char(iRegP_R11 str1, iRegI_R12 cnt1, iRegI_R13 ch, 10280 iRegI_R10 result, iRegINoSp tmp1, iRegINoSp tmp2, 10281 iRegINoSp tmp3, iRegINoSp tmp4, rFlagsReg cr) 10282 %{ 10283 match(Set result (StrIndexOfChar (Binary str1 cnt1) ch)); 10284 predicate(!UseRVV && (((StrIndexOfCharNode*)n)->encoding() == StrIntrinsicNode::U)); 10285 effect(USE_KILL str1, USE_KILL cnt1, USE_KILL ch, TEMP_DEF result, 10286 TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr); 10287 10288 format %{ "StringUTF16 IndexOf char[] $str1, $cnt1, $ch -> $result" %} 10289 ins_encode %{ 10290 __ string_indexof_char($str1$$Register, $cnt1$$Register, $ch$$Register, 10291 $result$$Register, $tmp1$$Register, $tmp2$$Register, 10292 $tmp3$$Register, $tmp4$$Register, false /* isU */); 10293 %} 10294 ins_pipe(pipe_class_memory); 10295 %} 10296 10297 10298 instruct stringL_indexof_char(iRegP_R11 str1, iRegI_R12 cnt1, iRegI_R13 ch, 10299 iRegI_R10 result, iRegINoSp tmp1, iRegINoSp tmp2, 10300 iRegINoSp tmp3, iRegINoSp tmp4, rFlagsReg cr) 10301 %{ 10302 match(Set result (StrIndexOfChar (Binary str1 cnt1) ch)); 10303 predicate(!UseRVV && (((StrIndexOfCharNode*)n)->encoding() == StrIntrinsicNode::L)); 10304 effect(USE_KILL str1, USE_KILL cnt1, USE_KILL ch, TEMP_DEF result, 10305 TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr); 10306 10307 format %{ "StringLatin1 IndexOf char[] $str1, $cnt1, $ch -> $result" %} 10308 ins_encode %{ 10309 __ string_indexof_char($str1$$Register, $cnt1$$Register, $ch$$Register, 10310 $result$$Register, $tmp1$$Register, $tmp2$$Register, 10311 $tmp3$$Register, $tmp4$$Register, true /* isL */); 10312 %} 10313 ins_pipe(pipe_class_memory); 10314 %} 10315 10316 // clearing of an array 10317 instruct clearArray_reg_reg(iRegL_R29 cnt, iRegP_R28 base, iRegP_R30 tmp1, 10318 iRegP_R31 tmp2, rFlagsReg cr, Universe dummy) 10319 %{ 10320 // temp registers must match the one used in StubGenerator::generate_zero_blocks() 10321 predicate(UseBlockZeroing || !UseRVV); 10322 match(Set dummy (ClearArray cnt base)); 10323 effect(USE_KILL cnt, USE_KILL base, TEMP tmp1, TEMP tmp2, KILL cr); 10324 10325 ins_cost(4 * DEFAULT_COST); 10326 format %{ "ClearArray $cnt, $base\t#@clearArray_reg_reg" %} 10327 10328 ins_encode %{ 10329 address tpc = __ zero_words($base$$Register, $cnt$$Register); 10330 if (tpc == nullptr) { 10331 ciEnv::current()->record_failure("CodeCache is full"); 10332 return; 10333 } 10334 %} 10335 10336 ins_pipe(pipe_class_memory); 10337 %} 10338 10339 instruct clearArray_imm_reg(immL cnt, iRegP_R28 base, Universe dummy, rFlagsReg cr) 10340 %{ 10341 predicate(!UseRVV && (uint64_t)n->in(2)->get_long() 10342 < (uint64_t)(BlockZeroingLowLimit >> LogBytesPerWord)); 10343 match(Set dummy (ClearArray cnt base)); 10344 effect(USE_KILL base, KILL cr); 10345 10346 ins_cost(4 * DEFAULT_COST); 10347 format %{ "ClearArray $cnt, $base\t#@clearArray_imm_reg" %} 10348 10349 ins_encode %{ 10350 __ zero_words($base$$Register, (uint64_t)$cnt$$constant); 10351 %} 10352 10353 ins_pipe(pipe_class_memory); 10354 %} 10355 10356 instruct string_equalsL(iRegP_R11 str1, iRegP_R13 str2, iRegI_R14 cnt, 10357 iRegI_R10 result, rFlagsReg cr) 10358 %{ 10359 predicate(!UseRVV && ((StrEqualsNode*)n)->encoding() == StrIntrinsicNode::LL); 10360 match(Set result (StrEquals (Binary str1 str2) cnt)); 10361 effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL cr); 10362 10363 format %{ "String Equals $str1, $str2, $cnt -> $result\t#@string_equalsL" %} 10364 ins_encode %{ 10365 // Count is in 8-bit bytes; non-Compact chars are 16 bits. 10366 __ string_equals($str1$$Register, $str2$$Register, 10367 $result$$Register, $cnt$$Register); 10368 %} 10369 ins_pipe(pipe_class_memory); 10370 %} 10371 10372 instruct array_equalsB(iRegP_R11 ary1, iRegP_R12 ary2, iRegI_R10 result, 10373 iRegP_R13 tmp1, iRegP_R14 tmp2, iRegP_R15 tmp3) 10374 %{ 10375 predicate(!UseRVV && ((AryEqNode*)n)->encoding() == StrIntrinsicNode::LL); 10376 match(Set result (AryEq ary1 ary2)); 10377 effect(USE_KILL ary1, USE_KILL ary2, TEMP tmp1, TEMP tmp2, TEMP tmp3); 10378 10379 format %{ "Array Equals $ary1, $ary2 -> $result\t#@array_equalsB // KILL all" %} 10380 ins_encode %{ 10381 __ arrays_equals($ary1$$Register, $ary2$$Register, 10382 $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, 10383 $result$$Register, 1); 10384 %} 10385 ins_pipe(pipe_class_memory); 10386 %} 10387 10388 instruct array_equalsC(iRegP_R11 ary1, iRegP_R12 ary2, iRegI_R10 result, 10389 iRegP_R13 tmp1, iRegP_R14 tmp2, iRegP_R15 tmp3) 10390 %{ 10391 predicate(!UseRVV && ((AryEqNode*)n)->encoding() == StrIntrinsicNode::UU); 10392 match(Set result (AryEq ary1 ary2)); 10393 effect(USE_KILL ary1, USE_KILL ary2, TEMP tmp1, TEMP tmp2, TEMP tmp3); 10394 10395 format %{ "Array Equals $ary1, $ary2 -> $result\t#@array_equalsC // KILL all" %} 10396 ins_encode %{ 10397 __ arrays_equals($ary1$$Register, $ary2$$Register, 10398 $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, 10399 $result$$Register, 2); 10400 %} 10401 ins_pipe(pipe_class_memory); 10402 %} 10403 10404 // fast ArraysSupport.vectorizedHashCode 10405 instruct arrays_hashcode(iRegP_R11 ary, iRegI_R12 cnt, iRegI_R10 result, immI basic_type, 10406 iRegLNoSp tmp1, iRegLNoSp tmp2, 10407 iRegLNoSp tmp3, iRegLNoSp tmp4, 10408 iRegLNoSp tmp5, iRegLNoSp tmp6, rFlagsReg cr) 10409 %{ 10410 match(Set result (VectorizedHashCode (Binary ary cnt) (Binary result basic_type))); 10411 effect(TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5, TEMP tmp6, 10412 USE_KILL ary, USE_KILL cnt, USE basic_type, KILL cr); 10413 10414 format %{ "Array HashCode array[] $ary,$cnt,$result,$basic_type -> $result // KILL all" %} 10415 ins_encode %{ 10416 __ arrays_hashcode($ary$$Register, $cnt$$Register, $result$$Register, 10417 $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, 10418 $tmp4$$Register, $tmp5$$Register, $tmp6$$Register, 10419 (BasicType)$basic_type$$constant); 10420 %} 10421 ins_pipe(pipe_class_memory); 10422 %} 10423 10424 // ============================================================================ 10425 // Safepoint Instructions 10426 10427 instruct safePoint(iRegP poll) 10428 %{ 10429 match(SafePoint poll); 10430 10431 ins_cost(2 * LOAD_COST); 10432 format %{ 10433 "lwu zr, [$poll]\t# Safepoint: poll for GC, #@safePoint" 10434 %} 10435 ins_encode %{ 10436 __ read_polling_page(as_Register($poll$$reg), 0, relocInfo::poll_type); 10437 %} 10438 ins_pipe(pipe_serial); // ins_pipe(iload_reg_mem); 10439 %} 10440 10441 // ============================================================================ 10442 // This name is KNOWN by the ADLC and cannot be changed. 10443 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type 10444 // for this guy. 10445 instruct tlsLoadP(javaThread_RegP dst) 10446 %{ 10447 match(Set dst (ThreadLocal)); 10448 10449 ins_cost(0); 10450 10451 format %{ " -- \t// $dst=Thread::current(), empty, #@tlsLoadP" %} 10452 10453 size(0); 10454 10455 ins_encode( /*empty*/ ); 10456 10457 ins_pipe(pipe_class_empty); 10458 %} 10459 10460 // inlined locking and unlocking 10461 // using t1 as the 'flag' register to bridge the BoolNode producers and consumers 10462 instruct cmpFastLock(rFlagsReg cr, iRegP object, iRegP box, 10463 iRegPNoSp tmp1, iRegPNoSp tmp2, iRegPNoSp tmp3, iRegPNoSp tmp4) 10464 %{ 10465 predicate(LockingMode != LM_LIGHTWEIGHT); 10466 match(Set cr (FastLock object box)); 10467 effect(TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4); 10468 10469 ins_cost(10 * DEFAULT_COST); 10470 format %{ "fastlock $object,$box\t! kills $tmp1,$tmp2,$tmp3,$tmp4 #@cmpFastLock" %} 10471 10472 ins_encode %{ 10473 __ fast_lock($object$$Register, $box$$Register, 10474 $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register); 10475 %} 10476 10477 ins_pipe(pipe_serial); 10478 %} 10479 10480 // using t1 as the 'flag' register to bridge the BoolNode producers and consumers 10481 instruct cmpFastUnlock(rFlagsReg cr, iRegP object, iRegP box, iRegPNoSp tmp1, iRegPNoSp tmp2) 10482 %{ 10483 predicate(LockingMode != LM_LIGHTWEIGHT); 10484 match(Set cr (FastUnlock object box)); 10485 effect(TEMP tmp1, TEMP tmp2); 10486 10487 ins_cost(10 * DEFAULT_COST); 10488 format %{ "fastunlock $object,$box\t! kills $tmp1, $tmp2, #@cmpFastUnlock" %} 10489 10490 ins_encode %{ 10491 __ fast_unlock($object$$Register, $box$$Register, $tmp1$$Register, $tmp2$$Register); 10492 %} 10493 10494 ins_pipe(pipe_serial); 10495 %} 10496 10497 instruct cmpFastLockLightweight(rFlagsReg cr, iRegP object, iRegP box, 10498 iRegPNoSp tmp1, iRegPNoSp tmp2, iRegPNoSp tmp3, iRegPNoSp tmp4) 10499 %{ 10500 predicate(LockingMode == LM_LIGHTWEIGHT); 10501 match(Set cr (FastLock object box)); 10502 effect(TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4); 10503 10504 ins_cost(10 * DEFAULT_COST); 10505 format %{ "fastlock $object,$box\t! kills $tmp1,$tmp2,$tmp3,$tmp4 #@cmpFastLockLightweight" %} 10506 10507 ins_encode %{ 10508 __ fast_lock_lightweight($object$$Register, $box$$Register, 10509 $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register); 10510 %} 10511 10512 ins_pipe(pipe_serial); 10513 %} 10514 10515 instruct cmpFastUnlockLightweight(rFlagsReg cr, iRegP object, iRegP box, 10516 iRegPNoSp tmp1, iRegPNoSp tmp2, iRegPNoSp tmp3) 10517 %{ 10518 predicate(LockingMode == LM_LIGHTWEIGHT); 10519 match(Set cr (FastUnlock object box)); 10520 effect(TEMP tmp1, TEMP tmp2, TEMP tmp3); 10521 10522 ins_cost(10 * DEFAULT_COST); 10523 format %{ "fastunlock $object,$box\t! kills $tmp1,$tmp2,$tmp3 #@cmpFastUnlockLightweight" %} 10524 10525 ins_encode %{ 10526 __ fast_unlock_lightweight($object$$Register, $box$$Register, 10527 $tmp1$$Register, $tmp2$$Register, $tmp3$$Register); 10528 %} 10529 10530 ins_pipe(pipe_serial); 10531 %} 10532 10533 // Tail Call; Jump from runtime stub to Java code. 10534 // Also known as an 'interprocedural jump'. 10535 // Target of jump will eventually return to caller. 10536 // TailJump below removes the return address. 10537 // Don't use fp for 'jump_target' because a MachEpilogNode has already been 10538 // emitted just above the TailCall which has reset fp to the caller state. 10539 instruct TailCalljmpInd(iRegPNoSpNoFp jump_target, inline_cache_RegP method_oop) 10540 %{ 10541 match(TailCall jump_target method_oop); 10542 10543 ins_cost(BRANCH_COST); 10544 10545 format %{ "jalr $jump_target\t# $method_oop holds method oop, #@TailCalljmpInd." %} 10546 10547 ins_encode(riscv_enc_tail_call(jump_target)); 10548 10549 ins_pipe(pipe_class_call); 10550 %} 10551 10552 instruct TailjmpInd(iRegPNoSpNoFp jump_target, iRegP_R10 ex_oop) 10553 %{ 10554 match(TailJump jump_target ex_oop); 10555 10556 ins_cost(ALU_COST + BRANCH_COST); 10557 10558 format %{ "jalr $jump_target\t# $ex_oop holds exception oop, #@TailjmpInd." %} 10559 10560 ins_encode(riscv_enc_tail_jmp(jump_target)); 10561 10562 ins_pipe(pipe_class_call); 10563 %} 10564 10565 // Forward exception. 10566 instruct ForwardExceptionjmp() 10567 %{ 10568 match(ForwardException); 10569 10570 ins_cost(BRANCH_COST); 10571 10572 format %{ "j forward_exception_stub\t#@ForwardException" %} 10573 10574 ins_encode %{ 10575 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 10576 %} 10577 10578 ins_pipe(pipe_class_call); 10579 %} 10580 10581 // Create exception oop: created by stack-crawling runtime code. 10582 // Created exception is now available to this handler, and is setup 10583 // just prior to jumping to this handler. No code emitted. 10584 instruct CreateException(iRegP_R10 ex_oop) 10585 %{ 10586 match(Set ex_oop (CreateEx)); 10587 10588 ins_cost(0); 10589 format %{ " -- \t// exception oop; no code emitted, #@CreateException" %} 10590 10591 size(0); 10592 10593 ins_encode( /*empty*/ ); 10594 10595 ins_pipe(pipe_class_empty); 10596 %} 10597 10598 // Rethrow exception: The exception oop will come in the first 10599 // argument position. Then JUMP (not call) to the rethrow stub code. 10600 instruct RethrowException() 10601 %{ 10602 match(Rethrow); 10603 10604 ins_cost(BRANCH_COST); 10605 10606 format %{ "j rethrow_stub\t#@RethrowException" %} 10607 10608 ins_encode(riscv_enc_rethrow()); 10609 10610 ins_pipe(pipe_class_call); 10611 %} 10612 10613 // Return Instruction 10614 // epilog node loads ret address into ra as part of frame pop 10615 instruct Ret() 10616 %{ 10617 match(Return); 10618 10619 ins_cost(BRANCH_COST); 10620 format %{ "ret\t// return register, #@Ret" %} 10621 10622 ins_encode(riscv_enc_ret()); 10623 10624 ins_pipe(pipe_branch); 10625 %} 10626 10627 // Die now. 10628 instruct ShouldNotReachHere() %{ 10629 match(Halt); 10630 10631 ins_cost(BRANCH_COST); 10632 10633 format %{ "#@ShouldNotReachHere" %} 10634 10635 ins_encode %{ 10636 if (is_reachable()) { 10637 __ stop(_halt_reason); 10638 } 10639 %} 10640 10641 ins_pipe(pipe_class_default); 10642 %} 10643 10644 10645 //----------PEEPHOLE RULES----------------------------------------------------- 10646 // These must follow all instruction definitions as they use the names 10647 // defined in the instructions definitions. 10648 // 10649 // peepmatch ( root_instr_name [preceding_instruction]* ); 10650 // 10651 // peepconstraint %{ 10652 // (instruction_number.operand_name relational_op instruction_number.operand_name 10653 // [, ...] ); 10654 // // instruction numbers are zero-based using left to right order in peepmatch 10655 // 10656 // peepreplace ( instr_name ( [instruction_number.operand_name]* ) ); 10657 // // provide an instruction_number.operand_name for each operand that appears 10658 // // in the replacement instruction's match rule 10659 // 10660 // ---------VM FLAGS--------------------------------------------------------- 10661 // 10662 // All peephole optimizations can be turned off using -XX:-OptoPeephole 10663 // 10664 // Each peephole rule is given an identifying number starting with zero and 10665 // increasing by one in the order seen by the parser. An individual peephole 10666 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=# 10667 // on the command-line. 10668 // 10669 // ---------CURRENT LIMITATIONS---------------------------------------------- 10670 // 10671 // Only match adjacent instructions in same basic block 10672 // Only equality constraints 10673 // Only constraints between operands, not (0.dest_reg == RAX_enc) 10674 // Only one replacement instruction 10675 // 10676 //----------SMARTSPILL RULES--------------------------------------------------- 10677 // These must follow all instruction definitions as they use the names 10678 // defined in the instructions definitions. 10679 10680 // Local Variables: 10681 // mode: c++ 10682 // End: