1 /* 2 * Copyright (c) 2003, 2023, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved. 4 * Copyright (c) 2020, 2023, Huawei Technologies Co., Ltd. All rights reserved. 5 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 6 * 7 * This code is free software; you can redistribute it and/or modify it 8 * under the terms of the GNU General Public License version 2 only, as 9 * published by the Free Software Foundation. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 * 25 */ 26 27 #include "precompiled.hpp" 28 #include "asm/macroAssembler.hpp" 29 #include "asm/macroAssembler.inline.hpp" 30 #include "code/compiledIC.hpp" 31 #include "code/debugInfoRec.hpp" 32 #include "code/icBuffer.hpp" 33 #include "code/vtableStubs.hpp" 34 #include "compiler/oopMap.hpp" 35 #include "gc/shared/barrierSetAssembler.hpp" 36 #include "interpreter/interp_masm.hpp" 37 #include "interpreter/interpreter.hpp" 38 #include "logging/log.hpp" 39 #include "memory/resourceArea.hpp" 40 #include "nativeInst_riscv.hpp" 41 #include "oops/compiledICHolder.hpp" 42 #include "oops/klass.inline.hpp" 43 #include "oops/method.inline.hpp" 44 #include "prims/methodHandles.hpp" 45 #include "runtime/continuation.hpp" 46 #include "runtime/continuationEntry.inline.hpp" 47 #include "runtime/globals.hpp" 48 #include "runtime/jniHandles.hpp" 49 #include "runtime/safepointMechanism.hpp" 50 #include "runtime/sharedRuntime.hpp" 51 #include "runtime/signature.hpp" 52 #include "runtime/stubRoutines.hpp" 53 #include "runtime/vframeArray.hpp" 54 #include "utilities/align.hpp" 55 #include "utilities/formatBuffer.hpp" 56 #include "vmreg_riscv.inline.hpp" 57 #ifdef COMPILER1 58 #include "c1/c1_Runtime1.hpp" 59 #endif 60 #ifdef COMPILER2 61 #include "adfiles/ad_riscv.hpp" 62 #include "opto/runtime.hpp" 63 #endif 64 #if INCLUDE_JVMCI 65 #include "jvmci/jvmciJavaClasses.hpp" 66 #endif 67 68 #define __ masm-> 69 70 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size; 71 72 class SimpleRuntimeFrame { 73 public: 74 75 // Most of the runtime stubs have this simple frame layout. 76 // This class exists to make the layout shared in one place. 77 // Offsets are for compiler stack slots, which are jints. 78 enum layout { 79 // The frame sender code expects that fp will be in the "natural" place and 80 // will override any oopMap setting for it. We must therefore force the layout 81 // so that it agrees with the frame sender code. 82 // we don't expect any arg reg save area so riscv asserts that 83 // frame::arg_reg_save_area_bytes == 0 84 fp_off = 0, fp_off2, 85 return_off, return_off2, 86 framesize 87 }; 88 }; 89 90 class RegisterSaver { 91 const bool _save_vectors; 92 public: 93 RegisterSaver(bool save_vectors) : _save_vectors(UseRVV && save_vectors) {} 94 ~RegisterSaver() {} 95 OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words); 96 void restore_live_registers(MacroAssembler* masm); 97 98 // Offsets into the register save area 99 // Used by deoptimization when it is managing result register 100 // values on its own 101 // gregs:28, float_register:32; except: x1(ra) & x2(sp) & gp(x3) & tp(x4) 102 // |---v0---|<---SP 103 // |---v1---|save vectors only in generate_handler_blob 104 // |-- .. --| 105 // |---v31--|----- 106 // |---f0---| 107 // |---f1---| 108 // | .. | 109 // |---f31--| 110 // |---reserved slot for stack alignment---| 111 // |---x5---| 112 // | x6 | 113 // |---.. --| 114 // |---x31--| 115 // |---fp---| 116 // |---ra---| 117 int v0_offset_in_bytes(void) { return 0; } 118 int f0_offset_in_bytes(void) { 119 int f0_offset = 0; 120 #ifdef COMPILER2 121 if (_save_vectors) { 122 f0_offset += Matcher::scalable_vector_reg_size(T_INT) * VectorRegister::number_of_registers * 123 BytesPerInt; 124 } 125 #endif 126 return f0_offset; 127 } 128 int reserved_slot_offset_in_bytes(void) { 129 return f0_offset_in_bytes() + 130 FloatRegister::max_slots_per_register * 131 FloatRegister::number_of_registers * 132 BytesPerInt; 133 } 134 135 int reg_offset_in_bytes(Register r) { 136 assert (r->encoding() > 4, "ra, sp, gp and tp not saved"); 137 return reserved_slot_offset_in_bytes() + (r->encoding() - 4 /* x1, x2, x3, x4 */) * wordSize; 138 } 139 140 int freg_offset_in_bytes(FloatRegister f) { 141 return f0_offset_in_bytes() + f->encoding() * wordSize; 142 } 143 144 int ra_offset_in_bytes(void) { 145 return reserved_slot_offset_in_bytes() + 146 (Register::number_of_registers - 3) * 147 Register::max_slots_per_register * 148 BytesPerInt; 149 } 150 }; 151 152 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) { 153 int vector_size_in_bytes = 0; 154 int vector_size_in_slots = 0; 155 #ifdef COMPILER2 156 if (_save_vectors) { 157 vector_size_in_bytes += Matcher::scalable_vector_reg_size(T_BYTE); 158 vector_size_in_slots += Matcher::scalable_vector_reg_size(T_INT); 159 } 160 #endif 161 162 int frame_size_in_bytes = align_up(additional_frame_words * wordSize + ra_offset_in_bytes() + wordSize, 16); 163 // OopMap frame size is in compiler stack slots (jint's) not bytes or words 164 int frame_size_in_slots = frame_size_in_bytes / BytesPerInt; 165 // The caller will allocate additional_frame_words 166 int additional_frame_slots = additional_frame_words * wordSize / BytesPerInt; 167 // CodeBlob frame size is in words. 168 int frame_size_in_words = frame_size_in_bytes / wordSize; 169 *total_frame_words = frame_size_in_words; 170 171 // Save Integer, Float and Vector registers. 172 __ enter(); 173 __ push_CPU_state(_save_vectors, vector_size_in_bytes); 174 175 // Set an oopmap for the call site. This oopmap will map all 176 // oop-registers and debug-info registers as callee-saved. This 177 // will allow deoptimization at this safepoint to find all possible 178 // debug-info recordings, as well as let GC find all oops. 179 180 OopMapSet *oop_maps = new OopMapSet(); 181 OopMap* oop_map = new OopMap(frame_size_in_slots, 0); 182 assert_cond(oop_maps != nullptr && oop_map != nullptr); 183 184 int sp_offset_in_slots = 0; 185 int step_in_slots = 0; 186 if (_save_vectors) { 187 step_in_slots = vector_size_in_slots; 188 for (int i = 0; i < VectorRegister::number_of_registers; i++, sp_offset_in_slots += step_in_slots) { 189 VectorRegister r = as_VectorRegister(i); 190 oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset_in_slots), r->as_VMReg()); 191 } 192 } 193 194 step_in_slots = FloatRegister::max_slots_per_register; 195 for (int i = 0; i < FloatRegister::number_of_registers; i++, sp_offset_in_slots += step_in_slots) { 196 FloatRegister r = as_FloatRegister(i); 197 oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset_in_slots), r->as_VMReg()); 198 } 199 200 step_in_slots = Register::max_slots_per_register; 201 // skip the slot reserved for alignment, see MacroAssembler::push_reg; 202 // also skip x5 ~ x6 on the stack because they are caller-saved registers. 203 sp_offset_in_slots += Register::max_slots_per_register * 3; 204 // besides, we ignore x0 ~ x4 because push_CPU_state won't push them on the stack. 205 for (int i = 7; i < Register::number_of_registers; i++, sp_offset_in_slots += step_in_slots) { 206 Register r = as_Register(i); 207 if (r != xthread) { 208 oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset_in_slots + additional_frame_slots), r->as_VMReg()); 209 } 210 } 211 212 return oop_map; 213 } 214 215 void RegisterSaver::restore_live_registers(MacroAssembler* masm) { 216 #ifdef COMPILER2 217 __ pop_CPU_state(_save_vectors, Matcher::scalable_vector_reg_size(T_BYTE)); 218 #else 219 #if !INCLUDE_JVMCI 220 assert(!_save_vectors, "vectors are generated only by C2 and JVMCI"); 221 #endif 222 __ pop_CPU_state(_save_vectors); 223 #endif 224 __ leave(); 225 } 226 227 // Is vector's size (in bytes) bigger than a size saved by default? 228 // riscv does not ovlerlay the floating-point registers on vector registers like aarch64. 229 bool SharedRuntime::is_wide_vector(int size) { 230 return UseRVV; 231 } 232 233 // --------------------------------------------------------------------------- 234 // Read the array of BasicTypes from a signature, and compute where the 235 // arguments should go. Values in the VMRegPair regs array refer to 4-byte 236 // quantities. Values less than VMRegImpl::stack0 are registers, those above 237 // refer to 4-byte stack slots. All stack slots are based off of the stack pointer 238 // as framesizes are fixed. 239 // VMRegImpl::stack0 refers to the first slot 0(sp). 240 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher. 241 // Register up to Register::number_of_registers) are the 64-bit 242 // integer registers. 243 244 // Note: the INPUTS in sig_bt are in units of Java argument words, 245 // which are 64-bit. The OUTPUTS are in 32-bit units. 246 247 // The Java calling convention is a "shifted" version of the C ABI. 248 // By skipping the first C ABI register we can call non-static jni 249 // methods with small numbers of arguments without having to shuffle 250 // the arguments at all. Since we control the java ABI we ought to at 251 // least get some advantage out of it. 252 253 int SharedRuntime::java_calling_convention(const BasicType *sig_bt, 254 VMRegPair *regs, 255 int total_args_passed) { 256 // Create the mapping between argument positions and 257 // registers. 258 static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = { 259 j_rarg0, j_rarg1, j_rarg2, j_rarg3, 260 j_rarg4, j_rarg5, j_rarg6, j_rarg7 261 }; 262 static const FloatRegister FP_ArgReg[Argument::n_float_register_parameters_j] = { 263 j_farg0, j_farg1, j_farg2, j_farg3, 264 j_farg4, j_farg5, j_farg6, j_farg7 265 }; 266 267 uint int_args = 0; 268 uint fp_args = 0; 269 uint stk_args = 0; // inc by 2 each time 270 271 for (int i = 0; i < total_args_passed; i++) { 272 switch (sig_bt[i]) { 273 case T_BOOLEAN: // fall through 274 case T_CHAR: // fall through 275 case T_BYTE: // fall through 276 case T_SHORT: // fall through 277 case T_INT: 278 if (int_args < Argument::n_int_register_parameters_j) { 279 regs[i].set1(INT_ArgReg[int_args++]->as_VMReg()); 280 } else { 281 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 282 stk_args += 2; 283 } 284 break; 285 case T_VOID: 286 // halves of T_LONG or T_DOUBLE 287 assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half"); 288 regs[i].set_bad(); 289 break; 290 case T_LONG: // fall through 291 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 292 case T_OBJECT: // fall through 293 case T_ARRAY: // fall through 294 case T_ADDRESS: 295 if (int_args < Argument::n_int_register_parameters_j) { 296 regs[i].set2(INT_ArgReg[int_args++]->as_VMReg()); 297 } else { 298 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 299 stk_args += 2; 300 } 301 break; 302 case T_FLOAT: 303 if (fp_args < Argument::n_float_register_parameters_j) { 304 regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg()); 305 } else { 306 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 307 stk_args += 2; 308 } 309 break; 310 case T_DOUBLE: 311 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 312 if (fp_args < Argument::n_float_register_parameters_j) { 313 regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg()); 314 } else { 315 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 316 stk_args += 2; 317 } 318 break; 319 default: 320 ShouldNotReachHere(); 321 } 322 } 323 324 return align_up(stk_args, 2); 325 } 326 327 // Patch the callers callsite with entry to compiled code if it exists. 328 static void patch_callers_callsite(MacroAssembler *masm) { 329 Label L; 330 __ ld(t0, Address(xmethod, in_bytes(Method::code_offset()))); 331 __ beqz(t0, L); 332 333 __ enter(); 334 __ push_CPU_state(); 335 336 // VM needs caller's callsite 337 // VM needs target method 338 // This needs to be a long call since we will relocate this adapter to 339 // the codeBuffer and it may not reach 340 341 #ifndef PRODUCT 342 assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area"); 343 #endif 344 345 __ mv(c_rarg0, xmethod); 346 __ mv(c_rarg1, ra); 347 RuntimeAddress target(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)); 348 __ relocate(target.rspec(), [&] { 349 int32_t offset; 350 __ la_patchable(t0, target, offset); 351 __ jalr(x1, t0, offset); 352 }); 353 354 __ pop_CPU_state(); 355 // restore sp 356 __ leave(); 357 __ bind(L); 358 } 359 360 static void gen_c2i_adapter(MacroAssembler *masm, 361 int total_args_passed, 362 int comp_args_on_stack, 363 const BasicType *sig_bt, 364 const VMRegPair *regs, 365 Label& skip_fixup) { 366 // Before we get into the guts of the C2I adapter, see if we should be here 367 // at all. We've come from compiled code and are attempting to jump to the 368 // interpreter, which means the caller made a static call to get here 369 // (vcalls always get a compiled target if there is one). Check for a 370 // compiled target. If there is one, we need to patch the caller's call. 371 patch_callers_callsite(masm); 372 373 __ bind(skip_fixup); 374 375 int words_pushed = 0; 376 377 // Since all args are passed on the stack, total_args_passed * 378 // Interpreter::stackElementSize is the space we need. 379 380 int extraspace = total_args_passed * Interpreter::stackElementSize; 381 382 __ mv(x19_sender_sp, sp); 383 384 // stack is aligned, keep it that way 385 extraspace = align_up(extraspace, 2 * wordSize); 386 387 if (extraspace) { 388 __ sub(sp, sp, extraspace); 389 } 390 391 // Now write the args into the outgoing interpreter space 392 for (int i = 0; i < total_args_passed; i++) { 393 if (sig_bt[i] == T_VOID) { 394 assert(i > 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "missing half"); 395 continue; 396 } 397 398 // offset to start parameters 399 int st_off = (total_args_passed - i - 1) * Interpreter::stackElementSize; 400 int next_off = st_off - Interpreter::stackElementSize; 401 402 // Say 4 args: 403 // i st_off 404 // 0 32 T_LONG 405 // 1 24 T_VOID 406 // 2 16 T_OBJECT 407 // 3 8 T_BOOL 408 // - 0 return address 409 // 410 // However to make thing extra confusing. Because we can fit a Java long/double in 411 // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter 412 // leaves one slot empty and only stores to a single slot. In this case the 413 // slot that is occupied is the T_VOID slot. See I said it was confusing. 414 415 VMReg r_1 = regs[i].first(); 416 VMReg r_2 = regs[i].second(); 417 if (!r_1->is_valid()) { 418 assert(!r_2->is_valid(), ""); 419 continue; 420 } 421 if (r_1->is_stack()) { 422 // memory to memory use t0 423 int ld_off = (r_1->reg2stack() * VMRegImpl::stack_slot_size 424 + extraspace 425 + words_pushed * wordSize); 426 if (!r_2->is_valid()) { 427 __ lwu(t0, Address(sp, ld_off)); 428 __ sd(t0, Address(sp, st_off), /*temp register*/esp); 429 } else { 430 __ ld(t0, Address(sp, ld_off), /*temp register*/esp); 431 432 // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG 433 // T_DOUBLE and T_LONG use two slots in the interpreter 434 if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) { 435 // ld_off == LSW, ld_off+wordSize == MSW 436 // st_off == MSW, next_off == LSW 437 __ sd(t0, Address(sp, next_off), /*temp register*/esp); 438 #ifdef ASSERT 439 // Overwrite the unused slot with known junk 440 __ mv(t0, 0xdeadffffdeadaaaaul); 441 __ sd(t0, Address(sp, st_off), /*temp register*/esp); 442 #endif /* ASSERT */ 443 } else { 444 __ sd(t0, Address(sp, st_off), /*temp register*/esp); 445 } 446 } 447 } else if (r_1->is_Register()) { 448 Register r = r_1->as_Register(); 449 if (!r_2->is_valid()) { 450 // must be only an int (or less ) so move only 32bits to slot 451 __ sd(r, Address(sp, st_off)); 452 } else { 453 // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG 454 // T_DOUBLE and T_LONG use two slots in the interpreter 455 if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) { 456 // long/double in gpr 457 #ifdef ASSERT 458 // Overwrite the unused slot with known junk 459 __ mv(t0, 0xdeadffffdeadaaabul); 460 __ sd(t0, Address(sp, st_off), /*temp register*/esp); 461 #endif /* ASSERT */ 462 __ sd(r, Address(sp, next_off)); 463 } else { 464 __ sd(r, Address(sp, st_off)); 465 } 466 } 467 } else { 468 assert(r_1->is_FloatRegister(), ""); 469 if (!r_2->is_valid()) { 470 // only a float use just part of the slot 471 __ fsw(r_1->as_FloatRegister(), Address(sp, st_off)); 472 } else { 473 #ifdef ASSERT 474 // Overwrite the unused slot with known junk 475 __ mv(t0, 0xdeadffffdeadaaacul); 476 __ sd(t0, Address(sp, st_off), /*temp register*/esp); 477 #endif /* ASSERT */ 478 __ fsd(r_1->as_FloatRegister(), Address(sp, next_off)); 479 } 480 } 481 } 482 483 __ mv(esp, sp); // Interp expects args on caller's expression stack 484 485 __ ld(t0, Address(xmethod, in_bytes(Method::interpreter_entry_offset()))); 486 __ jr(t0); 487 } 488 489 void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm, 490 int total_args_passed, 491 int comp_args_on_stack, 492 const BasicType *sig_bt, 493 const VMRegPair *regs) { 494 // Note: x19_sender_sp contains the senderSP on entry. We must 495 // preserve it since we may do a i2c -> c2i transition if we lose a 496 // race where compiled code goes non-entrant while we get args 497 // ready. 498 499 // Cut-out for having no stack args. 500 int comp_words_on_stack = align_up(comp_args_on_stack * VMRegImpl::stack_slot_size, wordSize) >> LogBytesPerWord; 501 if (comp_args_on_stack != 0) { 502 __ sub(t0, sp, comp_words_on_stack * wordSize); 503 __ andi(sp, t0, -16); 504 } 505 506 // Will jump to the compiled code just as if compiled code was doing it. 507 // Pre-load the register-jump target early, to schedule it better. 508 __ ld(t1, Address(xmethod, in_bytes(Method::from_compiled_offset()))); 509 510 #if INCLUDE_JVMCI 511 if (EnableJVMCI) { 512 // check if this call should be routed towards a specific entry point 513 __ ld(t0, Address(xthread, in_bytes(JavaThread::jvmci_alternate_call_target_offset()))); 514 Label no_alternative_target; 515 __ beqz(t0, no_alternative_target); 516 __ mv(t1, t0); 517 __ sd(zr, Address(xthread, in_bytes(JavaThread::jvmci_alternate_call_target_offset()))); 518 __ bind(no_alternative_target); 519 } 520 #endif // INCLUDE_JVMCI 521 522 // Now generate the shuffle code. 523 for (int i = 0; i < total_args_passed; i++) { 524 if (sig_bt[i] == T_VOID) { 525 assert(i > 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "missing half"); 526 continue; 527 } 528 529 // Pick up 0, 1 or 2 words from SP+offset. 530 531 assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(), 532 "scrambled load targets?"); 533 // Load in argument order going down. 534 int ld_off = (total_args_passed - i - 1) * Interpreter::stackElementSize; 535 // Point to interpreter value (vs. tag) 536 int next_off = ld_off - Interpreter::stackElementSize; 537 538 VMReg r_1 = regs[i].first(); 539 VMReg r_2 = regs[i].second(); 540 if (!r_1->is_valid()) { 541 assert(!r_2->is_valid(), ""); 542 continue; 543 } 544 if (r_1->is_stack()) { 545 // Convert stack slot to an SP offset (+ wordSize to account for return address ) 546 int st_off = regs[i].first()->reg2stack() * VMRegImpl::stack_slot_size; 547 if (!r_2->is_valid()) { 548 __ lw(t0, Address(esp, ld_off)); 549 __ sd(t0, Address(sp, st_off), /*temp register*/t2); 550 } else { 551 // 552 // We are using two optoregs. This can be either T_OBJECT, 553 // T_ADDRESS, T_LONG, or T_DOUBLE the interpreter allocates 554 // two slots but only uses one for thr T_LONG or T_DOUBLE case 555 // So we must adjust where to pick up the data to match the 556 // interpreter. 557 // 558 // Interpreter local[n] == MSW, local[n+1] == LSW however locals 559 // are accessed as negative so LSW is at LOW address 560 561 // ld_off is MSW so get LSW 562 const int offset = (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) ? 563 next_off : ld_off; 564 __ ld(t0, Address(esp, offset)); 565 // st_off is LSW (i.e. reg.first()) 566 __ sd(t0, Address(sp, st_off), /*temp register*/t2); 567 } 568 } else if (r_1->is_Register()) { // Register argument 569 Register r = r_1->as_Register(); 570 if (r_2->is_valid()) { 571 // 572 // We are using two VMRegs. This can be either T_OBJECT, 573 // T_ADDRESS, T_LONG, or T_DOUBLE the interpreter allocates 574 // two slots but only uses one for thr T_LONG or T_DOUBLE case 575 // So we must adjust where to pick up the data to match the 576 // interpreter. 577 578 const int offset = (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) ? 579 next_off : ld_off; 580 581 // this can be a misaligned move 582 __ ld(r, Address(esp, offset)); 583 } else { 584 // sign extend and use a full word? 585 __ lw(r, Address(esp, ld_off)); 586 } 587 } else { 588 if (!r_2->is_valid()) { 589 __ flw(r_1->as_FloatRegister(), Address(esp, ld_off)); 590 } else { 591 __ fld(r_1->as_FloatRegister(), Address(esp, next_off)); 592 } 593 } 594 } 595 596 __ push_cont_fastpath(xthread); // Set JavaThread::_cont_fastpath to the sp of the oldest interpreted frame we know about 597 598 // 6243940 We might end up in handle_wrong_method if 599 // the callee is deoptimized as we race thru here. If that 600 // happens we don't want to take a safepoint because the 601 // caller frame will look interpreted and arguments are now 602 // "compiled" so it is much better to make this transition 603 // invisible to the stack walking code. Unfortunately if 604 // we try and find the callee by normal means a safepoint 605 // is possible. So we stash the desired callee in the thread 606 // and the vm will find there should this case occur. 607 608 __ sd(xmethod, Address(xthread, JavaThread::callee_target_offset())); 609 610 __ jr(t1); 611 } 612 613 // --------------------------------------------------------------- 614 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm, 615 int total_args_passed, 616 int comp_args_on_stack, 617 const BasicType *sig_bt, 618 const VMRegPair *regs, 619 AdapterFingerPrint* fingerprint) { 620 address i2c_entry = __ pc(); 621 gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs); 622 623 address c2i_unverified_entry = __ pc(); 624 Label skip_fixup; 625 626 Label ok; 627 628 const Register holder = t1; 629 const Register receiver = j_rarg0; 630 const Register tmp = t2; // A call-clobbered register not used for arg passing 631 632 // ------------------------------------------------------------------------- 633 // Generate a C2I adapter. On entry we know xmethod holds the Method* during calls 634 // to the interpreter. The args start out packed in the compiled layout. They 635 // need to be unpacked into the interpreter layout. This will almost always 636 // require some stack space. We grow the current (compiled) stack, then repack 637 // the args. We finally end in a jump to the generic interpreter entry point. 638 // On exit from the interpreter, the interpreter will restore our SP (lest the 639 // compiled code, which relies solely on SP and not FP, get sick). 640 641 { 642 __ block_comment("c2i_unverified_entry {"); 643 __ load_klass(t0, receiver, tmp); 644 __ ld(tmp, Address(holder, CompiledICHolder::holder_klass_offset())); 645 __ ld(xmethod, Address(holder, CompiledICHolder::holder_metadata_offset())); 646 __ beq(t0, tmp, ok); 647 __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 648 649 __ bind(ok); 650 // Method might have been compiled since the call site was patched to 651 // interpreted; if that is the case treat it as a miss so we can get 652 // the call site corrected. 653 __ ld(t0, Address(xmethod, in_bytes(Method::code_offset()))); 654 __ beqz(t0, skip_fixup); 655 __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 656 __ block_comment("} c2i_unverified_entry"); 657 } 658 659 address c2i_entry = __ pc(); 660 661 // Class initialization barrier for static methods 662 address c2i_no_clinit_check_entry = nullptr; 663 if (VM_Version::supports_fast_class_init_checks()) { 664 Label L_skip_barrier; 665 666 { // Bypass the barrier for non-static methods 667 __ lwu(t0, Address(xmethod, Method::access_flags_offset())); 668 __ test_bit(t1, t0, exact_log2(JVM_ACC_STATIC)); 669 __ beqz(t1, L_skip_barrier); // non-static 670 } 671 672 __ load_method_holder(t1, xmethod); 673 __ clinit_barrier(t1, t0, &L_skip_barrier); 674 __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 675 676 __ bind(L_skip_barrier); 677 c2i_no_clinit_check_entry = __ pc(); 678 } 679 680 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 681 bs->c2i_entry_barrier(masm); 682 683 gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup); 684 685 return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, c2i_no_clinit_check_entry); 686 } 687 688 int SharedRuntime::vector_calling_convention(VMRegPair *regs, 689 uint num_bits, 690 uint total_args_passed) { 691 Unimplemented(); 692 return 0; 693 } 694 695 int SharedRuntime::c_calling_convention(const BasicType *sig_bt, 696 VMRegPair *regs, 697 VMRegPair *regs2, 698 int total_args_passed) { 699 assert(regs2 == nullptr, "not needed on riscv"); 700 701 // We return the amount of VMRegImpl stack slots we need to reserve for all 702 // the arguments NOT counting out_preserve_stack_slots. 703 704 static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = { 705 c_rarg0, c_rarg1, c_rarg2, c_rarg3, 706 c_rarg4, c_rarg5, c_rarg6, c_rarg7 707 }; 708 static const FloatRegister FP_ArgReg[Argument::n_float_register_parameters_c] = { 709 c_farg0, c_farg1, c_farg2, c_farg3, 710 c_farg4, c_farg5, c_farg6, c_farg7 711 }; 712 713 uint int_args = 0; 714 uint fp_args = 0; 715 uint stk_args = 0; // inc by 2 each time 716 717 for (int i = 0; i < total_args_passed; i++) { 718 switch (sig_bt[i]) { 719 case T_BOOLEAN: // fall through 720 case T_CHAR: // fall through 721 case T_BYTE: // fall through 722 case T_SHORT: // fall through 723 case T_INT: 724 if (int_args < Argument::n_int_register_parameters_c) { 725 regs[i].set1(INT_ArgReg[int_args++]->as_VMReg()); 726 } else { 727 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 728 stk_args += 2; 729 } 730 break; 731 case T_LONG: // fall through 732 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 733 case T_OBJECT: // fall through 734 case T_ARRAY: // fall through 735 case T_ADDRESS: // fall through 736 case T_METADATA: 737 if (int_args < Argument::n_int_register_parameters_c) { 738 regs[i].set2(INT_ArgReg[int_args++]->as_VMReg()); 739 } else { 740 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 741 stk_args += 2; 742 } 743 break; 744 case T_FLOAT: 745 if (fp_args < Argument::n_float_register_parameters_c) { 746 regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg()); 747 } else if (int_args < Argument::n_int_register_parameters_c) { 748 regs[i].set1(INT_ArgReg[int_args++]->as_VMReg()); 749 } else { 750 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 751 stk_args += 2; 752 } 753 break; 754 case T_DOUBLE: 755 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 756 if (fp_args < Argument::n_float_register_parameters_c) { 757 regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg()); 758 } else if (int_args < Argument::n_int_register_parameters_c) { 759 regs[i].set2(INT_ArgReg[int_args++]->as_VMReg()); 760 } else { 761 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 762 stk_args += 2; 763 } 764 break; 765 case T_VOID: // Halves of longs and doubles 766 assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half"); 767 regs[i].set_bad(); 768 break; 769 default: 770 ShouldNotReachHere(); 771 } 772 } 773 774 return stk_args; 775 } 776 777 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) { 778 // We always ignore the frame_slots arg and just use the space just below frame pointer 779 // which by this time is free to use 780 switch (ret_type) { 781 case T_FLOAT: 782 __ fsw(f10, Address(fp, -3 * wordSize)); 783 break; 784 case T_DOUBLE: 785 __ fsd(f10, Address(fp, -3 * wordSize)); 786 break; 787 case T_VOID: break; 788 default: { 789 __ sd(x10, Address(fp, -3 * wordSize)); 790 } 791 } 792 } 793 794 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) { 795 // We always ignore the frame_slots arg and just use the space just below frame pointer 796 // which by this time is free to use 797 switch (ret_type) { 798 case T_FLOAT: 799 __ flw(f10, Address(fp, -3 * wordSize)); 800 break; 801 case T_DOUBLE: 802 __ fld(f10, Address(fp, -3 * wordSize)); 803 break; 804 case T_VOID: break; 805 default: { 806 __ ld(x10, Address(fp, -3 * wordSize)); 807 } 808 } 809 } 810 811 static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) { 812 RegSet x; 813 for ( int i = first_arg ; i < arg_count ; i++ ) { 814 if (args[i].first()->is_Register()) { 815 x = x + args[i].first()->as_Register(); 816 } else if (args[i].first()->is_FloatRegister()) { 817 __ addi(sp, sp, -2 * wordSize); 818 __ fsd(args[i].first()->as_FloatRegister(), Address(sp, 0)); 819 } 820 } 821 __ push_reg(x, sp); 822 } 823 824 static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) { 825 RegSet x; 826 for ( int i = first_arg ; i < arg_count ; i++ ) { 827 if (args[i].first()->is_Register()) { 828 x = x + args[i].first()->as_Register(); 829 } else { 830 ; 831 } 832 } 833 __ pop_reg(x, sp); 834 for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) { 835 if (args[i].first()->is_Register()) { 836 ; 837 } else if (args[i].first()->is_FloatRegister()) { 838 __ fld(args[i].first()->as_FloatRegister(), Address(sp, 0)); 839 __ add(sp, sp, 2 * wordSize); 840 } 841 } 842 } 843 844 static void verify_oop_args(MacroAssembler* masm, 845 const methodHandle& method, 846 const BasicType* sig_bt, 847 const VMRegPair* regs) { 848 const Register temp_reg = x9; // not part of any compiled calling seq 849 if (VerifyOops) { 850 for (int i = 0; i < method->size_of_parameters(); i++) { 851 if (sig_bt[i] == T_OBJECT || 852 sig_bt[i] == T_ARRAY) { 853 VMReg r = regs[i].first(); 854 assert(r->is_valid(), "bad oop arg"); 855 if (r->is_stack()) { 856 __ ld(temp_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size)); 857 __ verify_oop(temp_reg); 858 } else { 859 __ verify_oop(r->as_Register()); 860 } 861 } 862 } 863 } 864 } 865 866 // on exit, sp points to the ContinuationEntry 867 static OopMap* continuation_enter_setup(MacroAssembler* masm, int& stack_slots) { 868 assert(ContinuationEntry::size() % VMRegImpl::stack_slot_size == 0, ""); 869 assert(in_bytes(ContinuationEntry::cont_offset()) % VMRegImpl::stack_slot_size == 0, ""); 870 assert(in_bytes(ContinuationEntry::chunk_offset()) % VMRegImpl::stack_slot_size == 0, ""); 871 872 stack_slots += (int)ContinuationEntry::size() / wordSize; 873 __ sub(sp, sp, (int)ContinuationEntry::size()); // place Continuation metadata 874 875 OopMap* map = new OopMap(((int)ContinuationEntry::size() + wordSize) / VMRegImpl::stack_slot_size, 0 /* arg_slots*/); 876 877 __ ld(t0, Address(xthread, JavaThread::cont_entry_offset())); 878 __ sd(t0, Address(sp, ContinuationEntry::parent_offset())); 879 __ sd(sp, Address(xthread, JavaThread::cont_entry_offset())); 880 881 return map; 882 } 883 884 // on entry c_rarg1 points to the continuation 885 // sp points to ContinuationEntry 886 // c_rarg3 -- isVirtualThread 887 static void fill_continuation_entry(MacroAssembler* masm) { 888 #ifdef ASSERT 889 __ mv(t0, ContinuationEntry::cookie_value()); 890 __ sw(t0, Address(sp, ContinuationEntry::cookie_offset())); 891 #endif 892 893 __ sd(c_rarg1, Address(sp, ContinuationEntry::cont_offset())); 894 __ sw(c_rarg3, Address(sp, ContinuationEntry::flags_offset())); 895 __ sd(zr, Address(sp, ContinuationEntry::chunk_offset())); 896 __ sw(zr, Address(sp, ContinuationEntry::argsize_offset())); 897 __ sw(zr, Address(sp, ContinuationEntry::pin_count_offset())); 898 899 __ ld(t0, Address(xthread, JavaThread::cont_fastpath_offset())); 900 __ sd(t0, Address(sp, ContinuationEntry::parent_cont_fastpath_offset())); 901 __ ld(t0, Address(xthread, JavaThread::held_monitor_count_offset())); 902 __ sd(t0, Address(sp, ContinuationEntry::parent_held_monitor_count_offset())); 903 904 __ sd(zr, Address(xthread, JavaThread::cont_fastpath_offset())); 905 __ sd(zr, Address(xthread, JavaThread::held_monitor_count_offset())); 906 } 907 908 // on entry, sp points to the ContinuationEntry 909 // on exit, fp points to the spilled fp + 2 * wordSize in the entry frame 910 static void continuation_enter_cleanup(MacroAssembler* masm) { 911 #ifndef PRODUCT 912 Label OK; 913 __ ld(t0, Address(xthread, JavaThread::cont_entry_offset())); 914 __ beq(sp, t0, OK); 915 __ stop("incorrect sp"); 916 __ bind(OK); 917 #endif 918 919 __ ld(t0, Address(sp, ContinuationEntry::parent_cont_fastpath_offset())); 920 __ sd(t0, Address(xthread, JavaThread::cont_fastpath_offset())); 921 __ ld(t0, Address(sp, ContinuationEntry::parent_held_monitor_count_offset())); 922 __ sd(t0, Address(xthread, JavaThread::held_monitor_count_offset())); 923 924 __ ld(t0, Address(sp, ContinuationEntry::parent_offset())); 925 __ sd(t0, Address(xthread, JavaThread::cont_entry_offset())); 926 __ add(fp, sp, (int)ContinuationEntry::size() + 2 * wordSize /* 2 extra words to match up with leave() */); 927 } 928 929 // enterSpecial(Continuation c, boolean isContinue, boolean isVirtualThread) 930 // On entry: c_rarg1 -- the continuation object 931 // c_rarg2 -- isContinue 932 // c_rarg3 -- isVirtualThread 933 static void gen_continuation_enter(MacroAssembler* masm, 934 const methodHandle& method, 935 const BasicType* sig_bt, 936 const VMRegPair* regs, 937 int& exception_offset, 938 OopMapSet*oop_maps, 939 int& frame_complete, 940 int& stack_slots, 941 int& interpreted_entry_offset, 942 int& compiled_entry_offset) { 943 // verify_oop_args(masm, method, sig_bt, regs); 944 Address resolve(SharedRuntime::get_resolve_static_call_stub(), relocInfo::static_call_type); 945 946 address start = __ pc(); 947 948 Label call_thaw, exit; 949 950 // i2i entry used at interp_only_mode only 951 interpreted_entry_offset = __ pc() - start; 952 { 953 #ifdef ASSERT 954 Label is_interp_only; 955 __ lw(t0, Address(xthread, JavaThread::interp_only_mode_offset())); 956 __ bnez(t0, is_interp_only); 957 __ stop("enterSpecial interpreter entry called when not in interp_only_mode"); 958 __ bind(is_interp_only); 959 #endif 960 961 // Read interpreter arguments into registers (this is an ad-hoc i2c adapter) 962 __ ld(c_rarg1, Address(esp, Interpreter::stackElementSize * 2)); 963 __ ld(c_rarg2, Address(esp, Interpreter::stackElementSize * 1)); 964 __ ld(c_rarg3, Address(esp, Interpreter::stackElementSize * 0)); 965 __ push_cont_fastpath(xthread); 966 967 __ enter(); 968 stack_slots = 2; // will be adjusted in setup 969 OopMap* map = continuation_enter_setup(masm, stack_slots); 970 // The frame is complete here, but we only record it for the compiled entry, so the frame would appear unsafe, 971 // but that's okay because at the very worst we'll miss an async sample, but we're in interp_only_mode anyway. 972 973 fill_continuation_entry(masm); 974 975 __ bnez(c_rarg2, call_thaw); 976 977 // Make sure the call is patchable 978 __ align(NativeInstruction::instruction_size); 979 980 const address tr_call = __ trampoline_call(resolve); 981 if (tr_call == nullptr) { 982 fatal("CodeCache is full at gen_continuation_enter"); 983 } 984 985 oop_maps->add_gc_map(__ pc() - start, map); 986 __ post_call_nop(); 987 988 __ j(exit); 989 990 CodeBuffer* cbuf = masm->code_section()->outer(); 991 address stub = CompiledStaticCall::emit_to_interp_stub(*cbuf, tr_call); 992 if (stub == nullptr) { 993 fatal("CodeCache is full at gen_continuation_enter"); 994 } 995 } 996 997 // compiled entry 998 __ align(CodeEntryAlignment); 999 compiled_entry_offset = __ pc() - start; 1000 1001 __ enter(); 1002 stack_slots = 2; // will be adjusted in setup 1003 OopMap* map = continuation_enter_setup(masm, stack_slots); 1004 frame_complete = __ pc() - start; 1005 1006 fill_continuation_entry(masm); 1007 1008 __ bnez(c_rarg2, call_thaw); 1009 1010 // Make sure the call is patchable 1011 __ align(NativeInstruction::instruction_size); 1012 1013 const address tr_call = __ trampoline_call(resolve); 1014 if (tr_call == nullptr) { 1015 fatal("CodeCache is full at gen_continuation_enter"); 1016 } 1017 1018 oop_maps->add_gc_map(__ pc() - start, map); 1019 __ post_call_nop(); 1020 1021 __ j(exit); 1022 1023 __ bind(call_thaw); 1024 1025 __ rt_call(CAST_FROM_FN_PTR(address, StubRoutines::cont_thaw())); 1026 oop_maps->add_gc_map(__ pc() - start, map->deep_copy()); 1027 ContinuationEntry::_return_pc_offset = __ pc() - start; 1028 __ post_call_nop(); 1029 1030 __ bind(exit); 1031 continuation_enter_cleanup(masm); 1032 __ leave(); 1033 __ ret(); 1034 1035 // exception handling 1036 exception_offset = __ pc() - start; 1037 { 1038 __ mv(x9, x10); // save return value contaning the exception oop in callee-saved x9 1039 1040 continuation_enter_cleanup(masm); 1041 1042 __ ld(c_rarg1, Address(fp, -1 * wordSize)); // return address 1043 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), xthread, c_rarg1); 1044 1045 // see OptoRuntime::generate_exception_blob: x10 -- exception oop, x13 -- exception pc 1046 1047 __ mv(x11, x10); // the exception handler 1048 __ mv(x10, x9); // restore return value contaning the exception oop 1049 __ verify_oop(x10); 1050 1051 __ leave(); 1052 __ mv(x13, ra); 1053 __ jr(x11); // the exception handler 1054 } 1055 1056 CodeBuffer* cbuf = masm->code_section()->outer(); 1057 address stub = CompiledStaticCall::emit_to_interp_stub(*cbuf, tr_call); 1058 if (stub == nullptr) { 1059 fatal("CodeCache is full at gen_continuation_enter"); 1060 } 1061 } 1062 1063 static void gen_continuation_yield(MacroAssembler* masm, 1064 const methodHandle& method, 1065 const BasicType* sig_bt, 1066 const VMRegPair* regs, 1067 OopMapSet* oop_maps, 1068 int& frame_complete, 1069 int& stack_slots, 1070 int& compiled_entry_offset) { 1071 enum layout { 1072 fp_off, 1073 fp_off2, 1074 return_off, 1075 return_off2, 1076 framesize // inclusive of return address 1077 }; 1078 // assert(is_even(framesize/2), "sp not 16-byte aligned"); 1079 1080 stack_slots = framesize / VMRegImpl::slots_per_word; 1081 assert(stack_slots == 2, "recheck layout"); 1082 1083 address start = __ pc(); 1084 1085 compiled_entry_offset = __ pc() - start; 1086 __ enter(); 1087 1088 __ mv(c_rarg1, sp); 1089 1090 frame_complete = __ pc() - start; 1091 address the_pc = __ pc(); 1092 1093 __ post_call_nop(); // this must be exactly after the pc value that is pushed into the frame info, we use this nop for fast CodeBlob lookup 1094 1095 __ mv(c_rarg0, xthread); 1096 __ set_last_Java_frame(sp, fp, the_pc, t0); 1097 __ call_VM_leaf(Continuation::freeze_entry(), 2); 1098 __ reset_last_Java_frame(true); 1099 1100 Label pinned; 1101 1102 __ bnez(x10, pinned); 1103 1104 // We've succeeded, set sp to the ContinuationEntry 1105 __ ld(sp, Address(xthread, JavaThread::cont_entry_offset())); 1106 continuation_enter_cleanup(masm); 1107 1108 __ bind(pinned); // pinned -- return to caller 1109 1110 // handle pending exception thrown by freeze 1111 __ ld(t0, Address(xthread, in_bytes(Thread::pending_exception_offset()))); 1112 Label ok; 1113 __ beqz(t0, ok); 1114 __ leave(); 1115 __ la(t0, RuntimeAddress(StubRoutines::forward_exception_entry())); 1116 __ jr(t0); 1117 __ bind(ok); 1118 1119 __ leave(); 1120 __ ret(); 1121 1122 OopMap* map = new OopMap(framesize, 1); 1123 oop_maps->add_gc_map(the_pc - start, map); 1124 } 1125 1126 static void gen_special_dispatch(MacroAssembler* masm, 1127 const methodHandle& method, 1128 const BasicType* sig_bt, 1129 const VMRegPair* regs) { 1130 verify_oop_args(masm, method, sig_bt, regs); 1131 vmIntrinsics::ID iid = method->intrinsic_id(); 1132 1133 // Now write the args into the outgoing interpreter space 1134 bool has_receiver = false; 1135 Register receiver_reg = noreg; 1136 int member_arg_pos = -1; 1137 Register member_reg = noreg; 1138 int ref_kind = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid); 1139 if (ref_kind != 0) { 1140 member_arg_pos = method->size_of_parameters() - 1; // trailing MemberName argument 1141 member_reg = x9; // known to be free at this point 1142 has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind); 1143 } else if (iid == vmIntrinsics::_invokeBasic) { 1144 has_receiver = true; 1145 } else if (iid == vmIntrinsics::_linkToNative) { 1146 member_arg_pos = method->size_of_parameters() - 1; // trailing NativeEntryPoint argument 1147 member_reg = x9; // known to be free at this point 1148 } else { 1149 fatal("unexpected intrinsic id %d", vmIntrinsics::as_int(iid)); 1150 } 1151 1152 if (member_reg != noreg) { 1153 // Load the member_arg into register, if necessary. 1154 SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs); 1155 VMReg r = regs[member_arg_pos].first(); 1156 if (r->is_stack()) { 1157 __ ld(member_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size)); 1158 } else { 1159 // no data motion is needed 1160 member_reg = r->as_Register(); 1161 } 1162 } 1163 1164 if (has_receiver) { 1165 // Make sure the receiver is loaded into a register. 1166 assert(method->size_of_parameters() > 0, "oob"); 1167 assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object"); 1168 VMReg r = regs[0].first(); 1169 assert(r->is_valid(), "bad receiver arg"); 1170 if (r->is_stack()) { 1171 // Porting note: This assumes that compiled calling conventions always 1172 // pass the receiver oop in a register. If this is not true on some 1173 // platform, pick a temp and load the receiver from stack. 1174 fatal("receiver always in a register"); 1175 receiver_reg = x12; // known to be free at this point 1176 __ ld(receiver_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size)); 1177 } else { 1178 // no data motion is needed 1179 receiver_reg = r->as_Register(); 1180 } 1181 } 1182 1183 // Figure out which address we are really jumping to: 1184 MethodHandles::generate_method_handle_dispatch(masm, iid, 1185 receiver_reg, member_reg, /*for_compiler_entry:*/ true); 1186 } 1187 1188 // --------------------------------------------------------------------------- 1189 // Generate a native wrapper for a given method. The method takes arguments 1190 // in the Java compiled code convention, marshals them to the native 1191 // convention (handlizes oops, etc), transitions to native, makes the call, 1192 // returns to java state (possibly blocking), unhandlizes any result and 1193 // returns. 1194 // 1195 // Critical native functions are a shorthand for the use of 1196 // GetPrimtiveArrayCritical and disallow the use of any other JNI 1197 // functions. The wrapper is expected to unpack the arguments before 1198 // passing them to the callee and perform checks before and after the 1199 // native call to ensure that they GCLocker 1200 // lock_critical/unlock_critical semantics are followed. Some other 1201 // parts of JNI setup are skipped like the tear down of the JNI handle 1202 // block and the check for pending exceptions it's impossible for them 1203 // to be thrown. 1204 // 1205 // They are roughly structured like this: 1206 // if (GCLocker::needs_gc()) SharedRuntime::block_for_jni_critical() 1207 // tranistion to thread_in_native 1208 // unpack array arguments and call native entry point 1209 // check for safepoint in progress 1210 // check if any thread suspend flags are set 1211 // call into JVM and possible unlock the JNI critical 1212 // if a GC was suppressed while in the critical native. 1213 // transition back to thread_in_Java 1214 // return to caller 1215 // 1216 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm, 1217 const methodHandle& method, 1218 int compile_id, 1219 BasicType* in_sig_bt, 1220 VMRegPair* in_regs, 1221 BasicType ret_type) { 1222 if (method->is_continuation_native_intrinsic()) { 1223 int exception_offset = -1; 1224 OopMapSet* oop_maps = new OopMapSet(); 1225 int frame_complete = -1; 1226 int stack_slots = -1; 1227 int interpreted_entry_offset = -1; 1228 int vep_offset = -1; 1229 if (method->is_continuation_enter_intrinsic()) { 1230 gen_continuation_enter(masm, 1231 method, 1232 in_sig_bt, 1233 in_regs, 1234 exception_offset, 1235 oop_maps, 1236 frame_complete, 1237 stack_slots, 1238 interpreted_entry_offset, 1239 vep_offset); 1240 } else if (method->is_continuation_yield_intrinsic()) { 1241 gen_continuation_yield(masm, 1242 method, 1243 in_sig_bt, 1244 in_regs, 1245 oop_maps, 1246 frame_complete, 1247 stack_slots, 1248 vep_offset); 1249 } else { 1250 guarantee(false, "Unknown Continuation native intrinsic"); 1251 } 1252 1253 #ifdef ASSERT 1254 if (method->is_continuation_enter_intrinsic()) { 1255 assert(interpreted_entry_offset != -1, "Must be set"); 1256 assert(exception_offset != -1, "Must be set"); 1257 } else { 1258 assert(interpreted_entry_offset == -1, "Must be unset"); 1259 assert(exception_offset == -1, "Must be unset"); 1260 } 1261 assert(frame_complete != -1, "Must be set"); 1262 assert(stack_slots != -1, "Must be set"); 1263 assert(vep_offset != -1, "Must be set"); 1264 #endif 1265 1266 __ flush(); 1267 nmethod* nm = nmethod::new_native_nmethod(method, 1268 compile_id, 1269 masm->code(), 1270 vep_offset, 1271 frame_complete, 1272 stack_slots, 1273 in_ByteSize(-1), 1274 in_ByteSize(-1), 1275 oop_maps, 1276 exception_offset); 1277 if (method->is_continuation_enter_intrinsic()) { 1278 ContinuationEntry::set_enter_code(nm, interpreted_entry_offset); 1279 } else if (method->is_continuation_yield_intrinsic()) { 1280 _cont_doYield_stub = nm; 1281 } else { 1282 guarantee(false, "Unknown Continuation native intrinsic"); 1283 } 1284 return nm; 1285 } 1286 1287 if (method->is_method_handle_intrinsic()) { 1288 vmIntrinsics::ID iid = method->intrinsic_id(); 1289 intptr_t start = (intptr_t)__ pc(); 1290 int vep_offset = ((intptr_t)__ pc()) - start; 1291 1292 // First instruction must be a nop as it may need to be patched on deoptimisation 1293 { 1294 Assembler::IncompressibleRegion ir(masm); // keep the nop as 4 bytes for patching. 1295 MacroAssembler::assert_alignment(__ pc()); 1296 __ nop(); // 4 bytes 1297 } 1298 gen_special_dispatch(masm, 1299 method, 1300 in_sig_bt, 1301 in_regs); 1302 int frame_complete = ((intptr_t)__ pc()) - start; // not complete, period 1303 __ flush(); 1304 int stack_slots = SharedRuntime::out_preserve_stack_slots(); // no out slots at all, actually 1305 return nmethod::new_native_nmethod(method, 1306 compile_id, 1307 masm->code(), 1308 vep_offset, 1309 frame_complete, 1310 stack_slots / VMRegImpl::slots_per_word, 1311 in_ByteSize(-1), 1312 in_ByteSize(-1), 1313 (OopMapSet*)nullptr); 1314 } 1315 address native_func = method->native_function(); 1316 assert(native_func != nullptr, "must have function"); 1317 1318 // An OopMap for lock (and class if static) 1319 OopMapSet *oop_maps = new OopMapSet(); 1320 assert_cond(oop_maps != nullptr); 1321 intptr_t start = (intptr_t)__ pc(); 1322 1323 // We have received a description of where all the java arg are located 1324 // on entry to the wrapper. We need to convert these args to where 1325 // the jni function will expect them. To figure out where they go 1326 // we convert the java signature to a C signature by inserting 1327 // the hidden arguments as arg[0] and possibly arg[1] (static method) 1328 1329 const int total_in_args = method->size_of_parameters(); 1330 int total_c_args = total_in_args + (method->is_static() ? 2 : 1); 1331 1332 BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args); 1333 VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args); 1334 BasicType* in_elem_bt = nullptr; 1335 1336 int argc = 0; 1337 out_sig_bt[argc++] = T_ADDRESS; 1338 if (method->is_static()) { 1339 out_sig_bt[argc++] = T_OBJECT; 1340 } 1341 1342 for (int i = 0; i < total_in_args ; i++) { 1343 out_sig_bt[argc++] = in_sig_bt[i]; 1344 } 1345 1346 // Now figure out where the args must be stored and how much stack space 1347 // they require. 1348 int out_arg_slots = c_calling_convention(out_sig_bt, out_regs, nullptr, total_c_args); 1349 1350 // Compute framesize for the wrapper. We need to handlize all oops in 1351 // incoming registers 1352 1353 // Calculate the total number of stack slots we will need. 1354 1355 // First count the abi requirement plus all of the outgoing args 1356 int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots; 1357 1358 // Now the space for the inbound oop handle area 1359 int total_save_slots = 8 * VMRegImpl::slots_per_word; // 8 arguments passed in registers 1360 1361 int oop_handle_offset = stack_slots; 1362 stack_slots += total_save_slots; 1363 1364 // Now any space we need for handlizing a klass if static method 1365 1366 int klass_slot_offset = 0; 1367 int klass_offset = -1; 1368 int lock_slot_offset = 0; 1369 bool is_static = false; 1370 1371 if (method->is_static()) { 1372 klass_slot_offset = stack_slots; 1373 stack_slots += VMRegImpl::slots_per_word; 1374 klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size; 1375 is_static = true; 1376 } 1377 1378 // Plus a lock if needed 1379 1380 if (method->is_synchronized()) { 1381 lock_slot_offset = stack_slots; 1382 stack_slots += VMRegImpl::slots_per_word; 1383 } 1384 1385 // Now a place (+2) to save return values or temp during shuffling 1386 // + 4 for return address (which we own) and saved fp 1387 stack_slots += 6; 1388 1389 // Ok The space we have allocated will look like: 1390 // 1391 // 1392 // FP-> | | 1393 // | 2 slots (ra) | 1394 // | 2 slots (fp) | 1395 // |---------------------| 1396 // | 2 slots for moves | 1397 // |---------------------| 1398 // | lock box (if sync) | 1399 // |---------------------| <- lock_slot_offset 1400 // | klass (if static) | 1401 // |---------------------| <- klass_slot_offset 1402 // | oopHandle area | 1403 // |---------------------| <- oop_handle_offset (8 java arg registers) 1404 // | outbound memory | 1405 // | based arguments | 1406 // | | 1407 // |---------------------| 1408 // | | 1409 // SP-> | out_preserved_slots | 1410 // 1411 // 1412 1413 1414 // Now compute actual number of stack words we need rounding to make 1415 // stack properly aligned. 1416 stack_slots = align_up(stack_slots, StackAlignmentInSlots); 1417 1418 int stack_size = stack_slots * VMRegImpl::stack_slot_size; 1419 1420 // First thing make an ic check to see if we should even be here 1421 1422 // We are free to use all registers as temps without saving them and 1423 // restoring them except fp. fp is the only callee save register 1424 // as far as the interpreter and the compiler(s) are concerned. 1425 1426 1427 const Register ic_reg = t1; 1428 const Register receiver = j_rarg0; 1429 1430 Label hit; 1431 Label exception_pending; 1432 1433 __ verify_oop(receiver); 1434 assert_different_registers(ic_reg, receiver, t0, t2); 1435 __ cmp_klass(receiver, ic_reg, t0, t2 /* call-clobbered t2 as a tmp */, hit); 1436 1437 __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 1438 1439 // Verified entry point must be aligned 1440 __ align(8); 1441 1442 __ bind(hit); 1443 1444 int vep_offset = ((intptr_t)__ pc()) - start; 1445 1446 // If we have to make this method not-entrant we'll overwrite its 1447 // first instruction with a jump. 1448 { 1449 Assembler::IncompressibleRegion ir(masm); // keep the nop as 4 bytes for patching. 1450 MacroAssembler::assert_alignment(__ pc()); 1451 __ nop(); // 4 bytes 1452 } 1453 1454 if (VM_Version::supports_fast_class_init_checks() && method->needs_clinit_barrier()) { 1455 Label L_skip_barrier; 1456 __ mov_metadata(t1, method->method_holder()); // InstanceKlass* 1457 __ clinit_barrier(t1, t0, &L_skip_barrier); 1458 __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 1459 1460 __ bind(L_skip_barrier); 1461 } 1462 1463 // Generate stack overflow check 1464 __ bang_stack_with_offset(checked_cast<int>(StackOverflow::stack_shadow_zone_size())); 1465 1466 // Generate a new frame for the wrapper. 1467 __ enter(); 1468 // -2 because return address is already present and so is saved fp 1469 __ sub(sp, sp, stack_size - 2 * wordSize); 1470 1471 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 1472 assert_cond(bs != nullptr); 1473 bs->nmethod_entry_barrier(masm, nullptr /* slow_path */, nullptr /* continuation */, nullptr /* guard */); 1474 1475 // Frame is now completed as far as size and linkage. 1476 int frame_complete = ((intptr_t)__ pc()) - start; 1477 1478 // We use x18 as the oop handle for the receiver/klass 1479 // It is callee save so it survives the call to native 1480 1481 const Register oop_handle_reg = x18; 1482 1483 // 1484 // We immediately shuffle the arguments so that any vm call we have to 1485 // make from here on out (sync slow path, jvmti, etc.) we will have 1486 // captured the oops from our caller and have a valid oopMap for 1487 // them. 1488 1489 // ----------------- 1490 // The Grand Shuffle 1491 1492 // The Java calling convention is either equal (linux) or denser (win64) than the 1493 // c calling convention. However the because of the jni_env argument the c calling 1494 // convention always has at least one more (and two for static) arguments than Java. 1495 // Therefore if we move the args from java -> c backwards then we will never have 1496 // a register->register conflict and we don't have to build a dependency graph 1497 // and figure out how to break any cycles. 1498 // 1499 1500 // Record esp-based slot for receiver on stack for non-static methods 1501 int receiver_offset = -1; 1502 1503 // This is a trick. We double the stack slots so we can claim 1504 // the oops in the caller's frame. Since we are sure to have 1505 // more args than the caller doubling is enough to make 1506 // sure we can capture all the incoming oop args from the 1507 // caller. 1508 // 1509 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/); 1510 assert_cond(map != nullptr); 1511 1512 int float_args = 0; 1513 int int_args = 0; 1514 1515 #ifdef ASSERT 1516 bool reg_destroyed[Register::number_of_registers]; 1517 bool freg_destroyed[FloatRegister::number_of_registers]; 1518 for ( int r = 0 ; r < Register::number_of_registers ; r++ ) { 1519 reg_destroyed[r] = false; 1520 } 1521 for ( int f = 0 ; f < FloatRegister::number_of_registers ; f++ ) { 1522 freg_destroyed[f] = false; 1523 } 1524 1525 #endif /* ASSERT */ 1526 1527 // For JNI natives the incoming and outgoing registers are offset upwards. 1528 GrowableArray<int> arg_order(2 * total_in_args); 1529 VMRegPair tmp_vmreg; 1530 tmp_vmreg.set2(x9->as_VMReg()); 1531 1532 for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) { 1533 arg_order.push(i); 1534 arg_order.push(c_arg); 1535 } 1536 1537 int temploc = -1; 1538 for (int ai = 0; ai < arg_order.length(); ai += 2) { 1539 int i = arg_order.at(ai); 1540 int c_arg = arg_order.at(ai + 1); 1541 __ block_comment(err_msg("mv %d -> %d", i, c_arg)); 1542 assert(c_arg != -1 && i != -1, "wrong order"); 1543 #ifdef ASSERT 1544 if (in_regs[i].first()->is_Register()) { 1545 assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!"); 1546 } else if (in_regs[i].first()->is_FloatRegister()) { 1547 assert(!freg_destroyed[in_regs[i].first()->as_FloatRegister()->encoding()], "destroyed reg!"); 1548 } 1549 if (out_regs[c_arg].first()->is_Register()) { 1550 reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true; 1551 } else if (out_regs[c_arg].first()->is_FloatRegister()) { 1552 freg_destroyed[out_regs[c_arg].first()->as_FloatRegister()->encoding()] = true; 1553 } 1554 #endif /* ASSERT */ 1555 switch (in_sig_bt[i]) { 1556 case T_ARRAY: 1557 case T_OBJECT: 1558 __ object_move(map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg], 1559 ((i == 0) && (!is_static)), 1560 &receiver_offset); 1561 int_args++; 1562 break; 1563 case T_VOID: 1564 break; 1565 1566 case T_FLOAT: 1567 __ float_move(in_regs[i], out_regs[c_arg]); 1568 float_args++; 1569 break; 1570 1571 case T_DOUBLE: 1572 assert( i + 1 < total_in_args && 1573 in_sig_bt[i + 1] == T_VOID && 1574 out_sig_bt[c_arg + 1] == T_VOID, "bad arg list"); 1575 __ double_move(in_regs[i], out_regs[c_arg]); 1576 float_args++; 1577 break; 1578 1579 case T_LONG : 1580 __ long_move(in_regs[i], out_regs[c_arg]); 1581 int_args++; 1582 break; 1583 1584 case T_ADDRESS: 1585 assert(false, "found T_ADDRESS in java args"); 1586 break; 1587 1588 default: 1589 __ move32_64(in_regs[i], out_regs[c_arg]); 1590 int_args++; 1591 } 1592 } 1593 1594 // point c_arg at the first arg that is already loaded in case we 1595 // need to spill before we call out 1596 int c_arg = total_c_args - total_in_args; 1597 1598 // Pre-load a static method's oop into c_rarg1. 1599 if (method->is_static()) { 1600 1601 // load oop into a register 1602 __ movoop(c_rarg1, 1603 JNIHandles::make_local(method->method_holder()->java_mirror())); 1604 1605 // Now handlize the static class mirror it's known not-null. 1606 __ sd(c_rarg1, Address(sp, klass_offset)); 1607 map->set_oop(VMRegImpl::stack2reg(klass_slot_offset)); 1608 1609 // Now get the handle 1610 __ la(c_rarg1, Address(sp, klass_offset)); 1611 // and protect the arg if we must spill 1612 c_arg--; 1613 } 1614 1615 // Change state to native (we save the return address in the thread, since it might not 1616 // be pushed on the stack when we do a stack traversal). 1617 // We use the same pc/oopMap repeatedly when we call out 1618 1619 Label native_return; 1620 __ set_last_Java_frame(sp, noreg, native_return, t0); 1621 1622 Label dtrace_method_entry, dtrace_method_entry_done; 1623 { 1624 ExternalAddress target((address)&DTraceMethodProbes); 1625 __ relocate(target.rspec(), [&] { 1626 int32_t offset; 1627 __ la_patchable(t0, target, offset); 1628 __ lbu(t0, Address(t0, offset)); 1629 }); 1630 __ bnez(t0, dtrace_method_entry); 1631 __ bind(dtrace_method_entry_done); 1632 } 1633 1634 // RedefineClasses() tracing support for obsolete method entry 1635 if (log_is_enabled(Trace, redefine, class, obsolete)) { 1636 // protect the args we've loaded 1637 save_args(masm, total_c_args, c_arg, out_regs); 1638 __ mov_metadata(c_rarg1, method()); 1639 __ call_VM_leaf( 1640 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), 1641 xthread, c_rarg1); 1642 restore_args(masm, total_c_args, c_arg, out_regs); 1643 } 1644 1645 // Lock a synchronized method 1646 1647 // Register definitions used by locking and unlocking 1648 1649 const Register swap_reg = x10; 1650 const Register obj_reg = x9; // Will contain the oop 1651 const Register lock_reg = x30; // Address of compiler lock object (BasicLock) 1652 const Register old_hdr = x30; // value of old header at unlock time 1653 const Register tmp = ra; 1654 1655 Label slow_path_lock; 1656 Label lock_done; 1657 1658 if (method->is_synchronized()) { 1659 Label count; 1660 1661 const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes(); 1662 1663 // Get the handle (the 2nd argument) 1664 __ mv(oop_handle_reg, c_rarg1); 1665 1666 // Get address of the box 1667 1668 __ la(lock_reg, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size)); 1669 1670 // Load the oop from the handle 1671 __ ld(obj_reg, Address(oop_handle_reg, 0)); 1672 1673 if (LockingMode == LM_MONITOR) { 1674 __ j(slow_path_lock); 1675 } else if (LockingMode == LM_LEGACY) { 1676 // Load (object->mark() | 1) into swap_reg % x10 1677 __ ld(t0, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1678 __ ori(swap_reg, t0, 1); 1679 1680 // Save (object->mark() | 1) into BasicLock's displaced header 1681 __ sd(swap_reg, Address(lock_reg, mark_word_offset)); 1682 1683 // src -> dest if dest == x10 else x10 <- dest 1684 __ cmpxchg_obj_header(x10, lock_reg, obj_reg, t0, count, /*fallthrough*/nullptr); 1685 1686 // Test if the oopMark is an obvious stack pointer, i.e., 1687 // 1) (mark & 3) == 0, and 1688 // 2) sp <= mark < mark + os::pagesize() 1689 // These 3 tests can be done by evaluating the following 1690 // expression: ((mark - sp) & (3 - os::vm_page_size())), 1691 // assuming both stack pointer and pagesize have their 1692 // least significant 2 bits clear. 1693 // NOTE: the oopMark is in swap_reg % 10 as the result of cmpxchg 1694 1695 __ sub(swap_reg, swap_reg, sp); 1696 __ andi(swap_reg, swap_reg, 3 - (int)os::vm_page_size()); 1697 1698 // Save the test result, for recursive case, the result is zero 1699 __ sd(swap_reg, Address(lock_reg, mark_word_offset)); 1700 __ bnez(swap_reg, slow_path_lock); 1701 } else { 1702 assert(LockingMode == LM_LIGHTWEIGHT, ""); 1703 __ ld(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1704 __ fast_lock(obj_reg, swap_reg, tmp, t0, slow_path_lock); 1705 } 1706 1707 __ bind(count); 1708 __ increment(Address(xthread, JavaThread::held_monitor_count_offset())); 1709 1710 // Slow path will re-enter here 1711 __ bind(lock_done); 1712 } 1713 1714 1715 // Finally just about ready to make the JNI call 1716 1717 // get JNIEnv* which is first argument to native 1718 __ la(c_rarg0, Address(xthread, in_bytes(JavaThread::jni_environment_offset()))); 1719 1720 // Now set thread in native 1721 __ la(t1, Address(xthread, JavaThread::thread_state_offset())); 1722 __ mv(t0, _thread_in_native); 1723 __ membar(MacroAssembler::LoadStore | MacroAssembler::StoreStore); 1724 __ sw(t0, Address(t1)); 1725 1726 __ rt_call(native_func); 1727 1728 __ bind(native_return); 1729 1730 intptr_t return_pc = (intptr_t) __ pc(); 1731 oop_maps->add_gc_map(return_pc - start, map); 1732 1733 // Unpack native results. 1734 if (ret_type != T_OBJECT && ret_type != T_ARRAY) { 1735 __ cast_primitive_type(ret_type, x10); 1736 } 1737 1738 Label safepoint_in_progress, safepoint_in_progress_done; 1739 Label after_transition; 1740 1741 // Switch thread to "native transition" state before reading the synchronization state. 1742 // This additional state is necessary because reading and testing the synchronization 1743 // state is not atomic w.r.t. GC, as this scenario demonstrates: 1744 // Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted. 1745 // VM thread changes sync state to synchronizing and suspends threads for GC. 1746 // Thread A is resumed to finish this native method, but doesn't block here since it 1747 // didn't see any synchronization is progress, and escapes. 1748 __ mv(t0, _thread_in_native_trans); 1749 1750 __ sw(t0, Address(xthread, JavaThread::thread_state_offset())); 1751 1752 // Force this write out before the read below 1753 if (!UseSystemMemoryBarrier) { 1754 __ membar(MacroAssembler::AnyAny); 1755 } 1756 1757 // check for safepoint operation in progress and/or pending suspend requests 1758 { 1759 // We need an acquire here to ensure that any subsequent load of the 1760 // global SafepointSynchronize::_state flag is ordered after this load 1761 // of the thread-local polling word. We don't want this poll to 1762 // return false (i.e. not safepointing) and a later poll of the global 1763 // SafepointSynchronize::_state spuriously to return true. 1764 // This is to avoid a race when we're in a native->Java transition 1765 // racing the code which wakes up from a safepoint. 1766 1767 __ safepoint_poll(safepoint_in_progress, true /* at_return */, true /* acquire */, false /* in_nmethod */); 1768 __ lwu(t0, Address(xthread, JavaThread::suspend_flags_offset())); 1769 __ bnez(t0, safepoint_in_progress); 1770 __ bind(safepoint_in_progress_done); 1771 } 1772 1773 // change thread state 1774 __ la(t1, Address(xthread, JavaThread::thread_state_offset())); 1775 __ mv(t0, _thread_in_Java); 1776 __ membar(MacroAssembler::LoadStore | MacroAssembler::StoreStore); 1777 __ sw(t0, Address(t1)); 1778 __ bind(after_transition); 1779 1780 Label reguard; 1781 Label reguard_done; 1782 __ lbu(t0, Address(xthread, JavaThread::stack_guard_state_offset())); 1783 __ mv(t1, StackOverflow::stack_guard_yellow_reserved_disabled); 1784 __ beq(t0, t1, reguard); 1785 __ bind(reguard_done); 1786 1787 // native result if any is live 1788 1789 // Unlock 1790 Label unlock_done; 1791 Label slow_path_unlock; 1792 if (method->is_synchronized()) { 1793 1794 // Get locked oop from the handle we passed to jni 1795 __ ld(obj_reg, Address(oop_handle_reg, 0)); 1796 1797 Label done, not_recursive; 1798 1799 if (LockingMode == LM_LEGACY) { 1800 // Simple recursive lock? 1801 __ ld(t0, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size)); 1802 __ bnez(t0, not_recursive); 1803 __ decrement(Address(xthread, JavaThread::held_monitor_count_offset())); 1804 __ j(done); 1805 } 1806 1807 __ bind(not_recursive); 1808 1809 // Must save x10 if if it is live now because cmpxchg must use it 1810 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) { 1811 save_native_result(masm, ret_type, stack_slots); 1812 } 1813 1814 if (LockingMode == LM_MONITOR) { 1815 __ j(slow_path_unlock); 1816 } else if (LockingMode == LM_LEGACY) { 1817 // get address of the stack lock 1818 __ la(x10, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size)); 1819 // get old displaced header 1820 __ ld(old_hdr, Address(x10, 0)); 1821 1822 // Atomic swap old header if oop still contains the stack lock 1823 Label count; 1824 __ cmpxchg_obj_header(x10, old_hdr, obj_reg, t0, count, &slow_path_unlock); 1825 __ bind(count); 1826 __ decrement(Address(xthread, JavaThread::held_monitor_count_offset())); 1827 } else { 1828 assert(LockingMode == LM_LIGHTWEIGHT, ""); 1829 __ ld(old_hdr, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1830 __ test_bit(t0, old_hdr, exact_log2(markWord::monitor_value)); 1831 __ bnez(t0, slow_path_unlock); 1832 __ fast_unlock(obj_reg, old_hdr, swap_reg, t0, slow_path_unlock); 1833 __ decrement(Address(xthread, JavaThread::held_monitor_count_offset())); 1834 } 1835 1836 // slow path re-enters here 1837 __ bind(unlock_done); 1838 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) { 1839 restore_native_result(masm, ret_type, stack_slots); 1840 } 1841 1842 __ bind(done); 1843 } 1844 1845 Label dtrace_method_exit, dtrace_method_exit_done; 1846 { 1847 ExternalAddress target((address)&DTraceMethodProbes); 1848 __ relocate(target.rspec(), [&] { 1849 int32_t offset; 1850 __ la_patchable(t0, target, offset); 1851 __ lbu(t0, Address(t0, offset)); 1852 }); 1853 __ bnez(t0, dtrace_method_exit); 1854 __ bind(dtrace_method_exit_done); 1855 } 1856 1857 __ reset_last_Java_frame(false); 1858 1859 // Unbox oop result, e.g. JNIHandles::resolve result. 1860 if (is_reference_type(ret_type)) { 1861 __ resolve_jobject(x10, x11, x12); 1862 } 1863 1864 if (CheckJNICalls) { 1865 // clear_pending_jni_exception_check 1866 __ sd(zr, Address(xthread, JavaThread::pending_jni_exception_check_fn_offset())); 1867 } 1868 1869 // reset handle block 1870 __ ld(x12, Address(xthread, JavaThread::active_handles_offset())); 1871 __ sd(zr, Address(x12, JNIHandleBlock::top_offset())); 1872 1873 __ leave(); 1874 1875 // Any exception pending? 1876 __ ld(t0, Address(xthread, in_bytes(Thread::pending_exception_offset()))); 1877 __ bnez(t0, exception_pending); 1878 1879 // We're done 1880 __ ret(); 1881 1882 // Unexpected paths are out of line and go here 1883 1884 // forward the exception 1885 __ bind(exception_pending); 1886 1887 // and forward the exception 1888 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 1889 1890 // Slow path locking & unlocking 1891 if (method->is_synchronized()) { 1892 1893 __ block_comment("Slow path lock {"); 1894 __ bind(slow_path_lock); 1895 1896 // has last_Java_frame setup. No exceptions so do vanilla call not call_VM 1897 // args are (oop obj, BasicLock* lock, JavaThread* thread) 1898 1899 // protect the args we've loaded 1900 save_args(masm, total_c_args, c_arg, out_regs); 1901 1902 __ mv(c_rarg0, obj_reg); 1903 __ mv(c_rarg1, lock_reg); 1904 __ mv(c_rarg2, xthread); 1905 1906 // Not a leaf but we have last_Java_frame setup as we want 1907 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3); 1908 restore_args(masm, total_c_args, c_arg, out_regs); 1909 1910 #ifdef ASSERT 1911 { Label L; 1912 __ ld(t0, Address(xthread, in_bytes(Thread::pending_exception_offset()))); 1913 __ beqz(t0, L); 1914 __ stop("no pending exception allowed on exit from monitorenter"); 1915 __ bind(L); 1916 } 1917 #endif 1918 __ j(lock_done); 1919 1920 __ block_comment("} Slow path lock"); 1921 1922 __ block_comment("Slow path unlock {"); 1923 __ bind(slow_path_unlock); 1924 1925 if (ret_type == T_FLOAT || ret_type == T_DOUBLE) { 1926 save_native_result(masm, ret_type, stack_slots); 1927 } 1928 1929 __ mv(c_rarg2, xthread); 1930 __ la(c_rarg1, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size)); 1931 __ mv(c_rarg0, obj_reg); 1932 1933 // Save pending exception around call to VM (which contains an EXCEPTION_MARK) 1934 // NOTE that obj_reg == x9 currently 1935 __ ld(x9, Address(xthread, in_bytes(Thread::pending_exception_offset()))); 1936 __ sd(zr, Address(xthread, in_bytes(Thread::pending_exception_offset()))); 1937 1938 __ rt_call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)); 1939 1940 #ifdef ASSERT 1941 { 1942 Label L; 1943 __ ld(t0, Address(xthread, in_bytes(Thread::pending_exception_offset()))); 1944 __ beqz(t0, L); 1945 __ stop("no pending exception allowed on exit complete_monitor_unlocking_C"); 1946 __ bind(L); 1947 } 1948 #endif /* ASSERT */ 1949 1950 __ sd(x9, Address(xthread, in_bytes(Thread::pending_exception_offset()))); 1951 1952 if (ret_type == T_FLOAT || ret_type == T_DOUBLE) { 1953 restore_native_result(masm, ret_type, stack_slots); 1954 } 1955 __ j(unlock_done); 1956 1957 __ block_comment("} Slow path unlock"); 1958 1959 } // synchronized 1960 1961 // SLOW PATH Reguard the stack if needed 1962 1963 __ bind(reguard); 1964 save_native_result(masm, ret_type, stack_slots); 1965 __ rt_call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)); 1966 restore_native_result(masm, ret_type, stack_slots); 1967 // and continue 1968 __ j(reguard_done); 1969 1970 // SLOW PATH safepoint 1971 { 1972 __ block_comment("safepoint {"); 1973 __ bind(safepoint_in_progress); 1974 1975 // Don't use call_VM as it will see a possible pending exception and forward it 1976 // and never return here preventing us from clearing _last_native_pc down below. 1977 // 1978 save_native_result(masm, ret_type, stack_slots); 1979 __ mv(c_rarg0, xthread); 1980 #ifndef PRODUCT 1981 assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area"); 1982 #endif 1983 RuntimeAddress target(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)); 1984 __ relocate(target.rspec(), [&] { 1985 int32_t offset; 1986 __ la_patchable(t0, target, offset); 1987 __ jalr(x1, t0, offset); 1988 }); 1989 1990 // Restore any method result value 1991 restore_native_result(masm, ret_type, stack_slots); 1992 1993 __ j(safepoint_in_progress_done); 1994 __ block_comment("} safepoint"); 1995 } 1996 1997 // SLOW PATH dtrace support 1998 { 1999 __ block_comment("dtrace entry {"); 2000 __ bind(dtrace_method_entry); 2001 2002 // We have all of the arguments setup at this point. We must not touch any register 2003 // argument registers at this point (what if we save/restore them there are no oop? 2004 2005 save_args(masm, total_c_args, c_arg, out_regs); 2006 __ mov_metadata(c_rarg1, method()); 2007 __ call_VM_leaf( 2008 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), 2009 xthread, c_rarg1); 2010 restore_args(masm, total_c_args, c_arg, out_regs); 2011 __ j(dtrace_method_entry_done); 2012 __ block_comment("} dtrace entry"); 2013 } 2014 2015 { 2016 __ block_comment("dtrace exit {"); 2017 __ bind(dtrace_method_exit); 2018 save_native_result(masm, ret_type, stack_slots); 2019 __ mov_metadata(c_rarg1, method()); 2020 __ call_VM_leaf( 2021 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 2022 xthread, c_rarg1); 2023 restore_native_result(masm, ret_type, stack_slots); 2024 __ j(dtrace_method_exit_done); 2025 __ block_comment("} dtrace exit"); 2026 } 2027 2028 __ flush(); 2029 2030 nmethod *nm = nmethod::new_native_nmethod(method, 2031 compile_id, 2032 masm->code(), 2033 vep_offset, 2034 frame_complete, 2035 stack_slots / VMRegImpl::slots_per_word, 2036 (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)), 2037 in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size), 2038 oop_maps); 2039 assert(nm != nullptr, "create native nmethod fail!"); 2040 return nm; 2041 } 2042 2043 // this function returns the adjust size (in number of words) to a c2i adapter 2044 // activation for use during deoptimization 2045 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) { 2046 assert(callee_locals >= callee_parameters, 2047 "test and remove; got more parms than locals"); 2048 if (callee_locals < callee_parameters) { 2049 return 0; // No adjustment for negative locals 2050 } 2051 int diff = (callee_locals - callee_parameters) * Interpreter::stackElementWords; 2052 // diff is counted in stack words 2053 return align_up(diff, 2); 2054 } 2055 2056 //------------------------------generate_deopt_blob---------------------------- 2057 void SharedRuntime::generate_deopt_blob() { 2058 // Allocate space for the code 2059 ResourceMark rm; 2060 // Setup code generation tools 2061 int pad = 0; 2062 #if INCLUDE_JVMCI 2063 if (EnableJVMCI) { 2064 pad += 512; // Increase the buffer size when compiling for JVMCI 2065 } 2066 #endif 2067 CodeBuffer buffer("deopt_blob", 2048 + pad, 1024); 2068 MacroAssembler* masm = new MacroAssembler(&buffer); 2069 int frame_size_in_words = -1; 2070 OopMap* map = nullptr; 2071 OopMapSet *oop_maps = new OopMapSet(); 2072 assert_cond(masm != nullptr && oop_maps != nullptr); 2073 RegisterSaver reg_saver(COMPILER2_OR_JVMCI != 0); 2074 2075 // ------------- 2076 // This code enters when returning to a de-optimized nmethod. A return 2077 // address has been pushed on the stack, and return values are in 2078 // registers. 2079 // If we are doing a normal deopt then we were called from the patched 2080 // nmethod from the point we returned to the nmethod. So the return 2081 // address on the stack is wrong by NativeCall::instruction_size 2082 // We will adjust the value so it looks like we have the original return 2083 // address on the stack (like when we eagerly deoptimized). 2084 // In the case of an exception pending when deoptimizing, we enter 2085 // with a return address on the stack that points after the call we patched 2086 // into the exception handler. We have the following register state from, 2087 // e.g., the forward exception stub (see stubGenerator_riscv.cpp). 2088 // x10: exception oop 2089 // x9: exception handler 2090 // x13: throwing pc 2091 // So in this case we simply jam x13 into the useless return address and 2092 // the stack looks just like we want. 2093 // 2094 // At this point we need to de-opt. We save the argument return 2095 // registers. We call the first C routine, fetch_unroll_info(). This 2096 // routine captures the return values and returns a structure which 2097 // describes the current frame size and the sizes of all replacement frames. 2098 // The current frame is compiled code and may contain many inlined 2099 // functions, each with their own JVM state. We pop the current frame, then 2100 // push all the new frames. Then we call the C routine unpack_frames() to 2101 // populate these frames. Finally unpack_frames() returns us the new target 2102 // address. Notice that callee-save registers are BLOWN here; they have 2103 // already been captured in the vframeArray at the time the return PC was 2104 // patched. 2105 address start = __ pc(); 2106 Label cont; 2107 2108 // Prolog for non exception case! 2109 2110 // Save everything in sight. 2111 map = reg_saver.save_live_registers(masm, 0, &frame_size_in_words); 2112 2113 // Normal deoptimization. Save exec mode for unpack_frames. 2114 __ mv(xcpool, Deoptimization::Unpack_deopt); // callee-saved 2115 __ j(cont); 2116 2117 int reexecute_offset = __ pc() - start; 2118 #if INCLUDE_JVMCI && !defined(COMPILER1) 2119 if (EnableJVMCI && UseJVMCICompiler) { 2120 // JVMCI does not use this kind of deoptimization 2121 __ should_not_reach_here(); 2122 } 2123 #endif 2124 2125 // Reexecute case 2126 // return address is the pc describes what bci to do re-execute at 2127 2128 // No need to update map as each call to save_live_registers will produce identical oopmap 2129 (void) reg_saver.save_live_registers(masm, 0, &frame_size_in_words); 2130 2131 __ mv(xcpool, Deoptimization::Unpack_reexecute); // callee-saved 2132 __ j(cont); 2133 2134 #if INCLUDE_JVMCI 2135 Label after_fetch_unroll_info_call; 2136 int implicit_exception_uncommon_trap_offset = 0; 2137 int uncommon_trap_offset = 0; 2138 2139 if (EnableJVMCI) { 2140 implicit_exception_uncommon_trap_offset = __ pc() - start; 2141 2142 __ ld(ra, Address(xthread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset()))); 2143 __ sd(zr, Address(xthread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset()))); 2144 2145 uncommon_trap_offset = __ pc() - start; 2146 2147 // Save everything in sight. 2148 reg_saver.save_live_registers(masm, 0, &frame_size_in_words); 2149 // fetch_unroll_info needs to call last_java_frame() 2150 Label retaddr; 2151 __ set_last_Java_frame(sp, noreg, retaddr, t0); 2152 2153 __ lw(c_rarg1, Address(xthread, in_bytes(JavaThread::pending_deoptimization_offset()))); 2154 __ mv(t0, -1); 2155 __ sw(t0, Address(xthread, in_bytes(JavaThread::pending_deoptimization_offset()))); 2156 2157 __ mv(xcpool, Deoptimization::Unpack_reexecute); 2158 __ mv(c_rarg0, xthread); 2159 __ orrw(c_rarg2, zr, xcpool); // exec mode 2160 RuntimeAddress target(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)); 2161 __ relocate(target.rspec(), [&] { 2162 int32_t offset; 2163 __ la_patchable(t0, target, offset); 2164 __ jalr(x1, t0, offset); 2165 }); 2166 __ bind(retaddr); 2167 oop_maps->add_gc_map( __ pc()-start, map->deep_copy()); 2168 2169 __ reset_last_Java_frame(false); 2170 2171 __ j(after_fetch_unroll_info_call); 2172 } // EnableJVMCI 2173 #endif // INCLUDE_JVMCI 2174 2175 int exception_offset = __ pc() - start; 2176 2177 // Prolog for exception case 2178 2179 // all registers are dead at this entry point, except for x10, and 2180 // x13 which contain the exception oop and exception pc 2181 // respectively. Set them in TLS and fall thru to the 2182 // unpack_with_exception_in_tls entry point. 2183 2184 __ sd(x13, Address(xthread, JavaThread::exception_pc_offset())); 2185 __ sd(x10, Address(xthread, JavaThread::exception_oop_offset())); 2186 2187 int exception_in_tls_offset = __ pc() - start; 2188 2189 // new implementation because exception oop is now passed in JavaThread 2190 2191 // Prolog for exception case 2192 // All registers must be preserved because they might be used by LinearScan 2193 // Exceptiop oop and throwing PC are passed in JavaThread 2194 // tos: stack at point of call to method that threw the exception (i.e. only 2195 // args are on the stack, no return address) 2196 2197 // The return address pushed by save_live_registers will be patched 2198 // later with the throwing pc. The correct value is not available 2199 // now because loading it from memory would destroy registers. 2200 2201 // NB: The SP at this point must be the SP of the method that is 2202 // being deoptimized. Deoptimization assumes that the frame created 2203 // here by save_live_registers is immediately below the method's SP. 2204 // This is a somewhat fragile mechanism. 2205 2206 // Save everything in sight. 2207 map = reg_saver.save_live_registers(masm, 0, &frame_size_in_words); 2208 2209 // Now it is safe to overwrite any register 2210 2211 // Deopt during an exception. Save exec mode for unpack_frames. 2212 __ mv(xcpool, Deoptimization::Unpack_exception); // callee-saved 2213 2214 // load throwing pc from JavaThread and patch it as the return address 2215 // of the current frame. Then clear the field in JavaThread 2216 2217 __ ld(x13, Address(xthread, JavaThread::exception_pc_offset())); 2218 __ sd(x13, Address(fp, frame::return_addr_offset * wordSize)); 2219 __ sd(zr, Address(xthread, JavaThread::exception_pc_offset())); 2220 2221 #ifdef ASSERT 2222 // verify that there is really an exception oop in JavaThread 2223 __ ld(x10, Address(xthread, JavaThread::exception_oop_offset())); 2224 __ verify_oop(x10); 2225 2226 // verify that there is no pending exception 2227 Label no_pending_exception; 2228 __ ld(t0, Address(xthread, Thread::pending_exception_offset())); 2229 __ beqz(t0, no_pending_exception); 2230 __ stop("must not have pending exception here"); 2231 __ bind(no_pending_exception); 2232 #endif 2233 2234 __ bind(cont); 2235 2236 // Call C code. Need thread and this frame, but NOT official VM entry 2237 // crud. We cannot block on this call, no GC can happen. 2238 // 2239 // UnrollBlock* fetch_unroll_info(JavaThread* thread) 2240 2241 // fetch_unroll_info needs to call last_java_frame(). 2242 2243 Label retaddr; 2244 __ set_last_Java_frame(sp, noreg, retaddr, t0); 2245 #ifdef ASSERT 2246 { 2247 Label L; 2248 __ ld(t0, Address(xthread, 2249 JavaThread::last_Java_fp_offset())); 2250 __ beqz(t0, L); 2251 __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared"); 2252 __ bind(L); 2253 } 2254 #endif // ASSERT 2255 __ mv(c_rarg0, xthread); 2256 __ mv(c_rarg1, xcpool); 2257 RuntimeAddress target(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)); 2258 __ relocate(target.rspec(), [&] { 2259 int32_t offset; 2260 __ la_patchable(t0, target, offset); 2261 __ jalr(x1, t0, offset); 2262 }); 2263 __ bind(retaddr); 2264 2265 // Need to have an oopmap that tells fetch_unroll_info where to 2266 // find any register it might need. 2267 oop_maps->add_gc_map(__ pc() - start, map); 2268 2269 __ reset_last_Java_frame(false); 2270 2271 #if INCLUDE_JVMCI 2272 if (EnableJVMCI) { 2273 __ bind(after_fetch_unroll_info_call); 2274 } 2275 #endif 2276 2277 // Load UnrollBlock* into x15 2278 __ mv(x15, x10); 2279 2280 __ lwu(xcpool, Address(x15, Deoptimization::UnrollBlock::unpack_kind_offset())); 2281 Label noException; 2282 __ mv(t0, Deoptimization::Unpack_exception); 2283 __ bne(xcpool, t0, noException); // Was exception pending? 2284 __ ld(x10, Address(xthread, JavaThread::exception_oop_offset())); 2285 __ ld(x13, Address(xthread, JavaThread::exception_pc_offset())); 2286 __ sd(zr, Address(xthread, JavaThread::exception_oop_offset())); 2287 __ sd(zr, Address(xthread, JavaThread::exception_pc_offset())); 2288 2289 __ verify_oop(x10); 2290 2291 // Overwrite the result registers with the exception results. 2292 __ sd(x10, Address(sp, reg_saver.reg_offset_in_bytes(x10))); 2293 2294 __ bind(noException); 2295 2296 // Only register save data is on the stack. 2297 // Now restore the result registers. Everything else is either dead 2298 // or captured in the vframeArray. 2299 2300 // Restore fp result register 2301 __ fld(f10, Address(sp, reg_saver.freg_offset_in_bytes(f10))); 2302 // Restore integer result register 2303 __ ld(x10, Address(sp, reg_saver.reg_offset_in_bytes(x10))); 2304 2305 // Pop all of the register save area off the stack 2306 __ add(sp, sp, frame_size_in_words * wordSize); 2307 2308 // All of the register save area has been popped of the stack. Only the 2309 // return address remains. 2310 2311 // Pop all the frames we must move/replace. 2312 // 2313 // Frame picture (youngest to oldest) 2314 // 1: self-frame (no frame link) 2315 // 2: deopting frame (no frame link) 2316 // 3: caller of deopting frame (could be compiled/interpreted). 2317 // 2318 // Note: by leaving the return address of self-frame on the stack 2319 // and using the size of frame 2 to adjust the stack 2320 // when we are done the return to frame 3 will still be on the stack. 2321 2322 // Pop deoptimized frame 2323 __ lwu(x12, Address(x15, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset())); 2324 __ sub(x12, x12, 2 * wordSize); 2325 __ add(sp, sp, x12); 2326 __ ld(fp, Address(sp, 0)); 2327 __ ld(ra, Address(sp, wordSize)); 2328 __ addi(sp, sp, 2 * wordSize); 2329 // RA should now be the return address to the caller (3) 2330 2331 #ifdef ASSERT 2332 // Compilers generate code that bang the stack by as much as the 2333 // interpreter would need. So this stack banging should never 2334 // trigger a fault. Verify that it does not on non product builds. 2335 __ lwu(x9, Address(x15, Deoptimization::UnrollBlock::total_frame_sizes_offset())); 2336 __ bang_stack_size(x9, x12); 2337 #endif 2338 // Load address of array of frame pcs into x12 2339 __ ld(x12, Address(x15, Deoptimization::UnrollBlock::frame_pcs_offset())); 2340 2341 // Load address of array of frame sizes into x14 2342 __ ld(x14, Address(x15, Deoptimization::UnrollBlock::frame_sizes_offset())); 2343 2344 // Load counter into x13 2345 __ lwu(x13, Address(x15, Deoptimization::UnrollBlock::number_of_frames_offset())); 2346 2347 // Now adjust the caller's stack to make up for the extra locals 2348 // but record the original sp so that we can save it in the skeletal interpreter 2349 // frame and the stack walking of interpreter_sender will get the unextended sp 2350 // value and not the "real" sp value. 2351 2352 const Register sender_sp = x16; 2353 2354 __ mv(sender_sp, sp); 2355 __ lwu(x9, Address(x15, 2356 Deoptimization::UnrollBlock:: 2357 caller_adjustment_offset())); 2358 __ sub(sp, sp, x9); 2359 2360 // Push interpreter frames in a loop 2361 __ mv(t0, 0xDEADDEAD); // Make a recognizable pattern 2362 __ mv(t1, t0); 2363 Label loop; 2364 __ bind(loop); 2365 __ ld(x9, Address(x14, 0)); // Load frame size 2366 __ addi(x14, x14, wordSize); 2367 __ sub(x9, x9, 2 * wordSize); // We'll push pc and fp by hand 2368 __ ld(ra, Address(x12, 0)); // Load pc 2369 __ addi(x12, x12, wordSize); 2370 __ enter(); // Save old & set new fp 2371 __ sub(sp, sp, x9); // Prolog 2372 // This value is corrected by layout_activation_impl 2373 __ sd(zr, Address(fp, frame::interpreter_frame_last_sp_offset * wordSize)); 2374 __ sd(sender_sp, Address(fp, frame::interpreter_frame_sender_sp_offset * wordSize)); // Make it walkable 2375 __ mv(sender_sp, sp); // Pass sender_sp to next frame 2376 __ addi(x13, x13, -1); // Decrement counter 2377 __ bnez(x13, loop); 2378 2379 // Re-push self-frame 2380 __ ld(ra, Address(x12)); 2381 __ enter(); 2382 2383 // Allocate a full sized register save area. We subtract 2 because 2384 // enter() just pushed 2 words 2385 __ sub(sp, sp, (frame_size_in_words - 2) * wordSize); 2386 2387 // Restore frame locals after moving the frame 2388 __ fsd(f10, Address(sp, reg_saver.freg_offset_in_bytes(f10))); 2389 __ sd(x10, Address(sp, reg_saver.reg_offset_in_bytes(x10))); 2390 2391 // Call C code. Need thread but NOT official VM entry 2392 // crud. We cannot block on this call, no GC can happen. Call should 2393 // restore return values to their stack-slots with the new SP. 2394 // 2395 // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode) 2396 2397 // Use fp because the frames look interpreted now 2398 // Don't need the precise return PC here, just precise enough to point into this code blob. 2399 address the_pc = __ pc(); 2400 __ set_last_Java_frame(sp, fp, the_pc, t0); 2401 2402 __ mv(c_rarg0, xthread); 2403 __ mv(c_rarg1, xcpool); // second arg: exec_mode 2404 target = RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)); 2405 __ relocate(target.rspec(), [&] { 2406 int32_t offset; 2407 __ la_patchable(t0, target, offset); 2408 __ jalr(x1, t0, offset); 2409 }); 2410 2411 // Set an oopmap for the call site 2412 // Use the same PC we used for the last java frame 2413 oop_maps->add_gc_map(the_pc - start, 2414 new OopMap(frame_size_in_words, 0)); 2415 2416 // Clear fp AND pc 2417 __ reset_last_Java_frame(true); 2418 2419 // Collect return values 2420 __ fld(f10, Address(sp, reg_saver.freg_offset_in_bytes(f10))); 2421 __ ld(x10, Address(sp, reg_saver.reg_offset_in_bytes(x10))); 2422 2423 // Pop self-frame. 2424 __ leave(); // Epilog 2425 2426 // Jump to interpreter 2427 __ ret(); 2428 2429 // Make sure all code is generated 2430 masm->flush(); 2431 2432 _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words); 2433 assert(_deopt_blob != nullptr, "create deoptimization blob fail!"); 2434 _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset); 2435 #if INCLUDE_JVMCI 2436 if (EnableJVMCI) { 2437 _deopt_blob->set_uncommon_trap_offset(uncommon_trap_offset); 2438 _deopt_blob->set_implicit_exception_uncommon_trap_offset(implicit_exception_uncommon_trap_offset); 2439 } 2440 #endif 2441 } 2442 2443 // Number of stack slots between incoming argument block and the start of 2444 // a new frame. The PROLOG must add this many slots to the stack. The 2445 // EPILOG must remove this many slots. 2446 // RISCV needs two words for RA (return address) and FP (frame pointer). 2447 uint SharedRuntime::in_preserve_stack_slots() { 2448 return 2 * VMRegImpl::slots_per_word; 2449 } 2450 2451 uint SharedRuntime::out_preserve_stack_slots() { 2452 return 0; 2453 } 2454 2455 #ifdef COMPILER2 2456 //------------------------------generate_uncommon_trap_blob-------------------- 2457 void SharedRuntime::generate_uncommon_trap_blob() { 2458 // Allocate space for the code 2459 ResourceMark rm; 2460 // Setup code generation tools 2461 CodeBuffer buffer("uncommon_trap_blob", 2048, 1024); 2462 MacroAssembler* masm = new MacroAssembler(&buffer); 2463 assert_cond(masm != nullptr); 2464 2465 assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned"); 2466 2467 address start = __ pc(); 2468 2469 // Push self-frame. We get here with a return address in RA 2470 // and sp should be 16 byte aligned 2471 // push fp and retaddr by hand 2472 __ addi(sp, sp, -2 * wordSize); 2473 __ sd(ra, Address(sp, wordSize)); 2474 __ sd(fp, Address(sp, 0)); 2475 // we don't expect an arg reg save area 2476 #ifndef PRODUCT 2477 assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area"); 2478 #endif 2479 // compiler left unloaded_class_index in j_rarg0 move to where the 2480 // runtime expects it. 2481 __ sign_extend(c_rarg1, j_rarg0, 32); 2482 2483 // we need to set the past SP to the stack pointer of the stub frame 2484 // and the pc to the address where this runtime call will return 2485 // although actually any pc in this code blob will do). 2486 Label retaddr; 2487 __ set_last_Java_frame(sp, noreg, retaddr, t0); 2488 2489 // Call C code. Need thread but NOT official VM entry 2490 // crud. We cannot block on this call, no GC can happen. Call should 2491 // capture callee-saved registers as well as return values. 2492 // 2493 // UnrollBlock* uncommon_trap(JavaThread* thread, jint unloaded_class_index, jint exec_mode) 2494 // 2495 // n.b. 3 gp args, 0 fp args, integral return type 2496 2497 __ mv(c_rarg0, xthread); 2498 __ mv(c_rarg2, Deoptimization::Unpack_uncommon_trap); 2499 RuntimeAddress target(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)); 2500 __ relocate(target.rspec(), [&] { 2501 int32_t offset; 2502 __ la_patchable(t0, target, offset); 2503 __ jalr(x1, t0, offset); 2504 }); 2505 __ bind(retaddr); 2506 2507 // Set an oopmap for the call site 2508 OopMapSet* oop_maps = new OopMapSet(); 2509 OopMap* map = new OopMap(SimpleRuntimeFrame::framesize, 0); 2510 assert_cond(oop_maps != nullptr && map != nullptr); 2511 2512 // location of fp is known implicitly by the frame sender code 2513 2514 oop_maps->add_gc_map(__ pc() - start, map); 2515 2516 __ reset_last_Java_frame(false); 2517 2518 // move UnrollBlock* into x14 2519 __ mv(x14, x10); 2520 2521 #ifdef ASSERT 2522 { Label L; 2523 __ lwu(t0, Address(x14, Deoptimization::UnrollBlock::unpack_kind_offset())); 2524 __ mv(t1, Deoptimization::Unpack_uncommon_trap); 2525 __ beq(t0, t1, L); 2526 __ stop("SharedRuntime::generate_uncommon_trap_blob: expected Unpack_uncommon_trap"); 2527 __ bind(L); 2528 } 2529 #endif 2530 2531 // Pop all the frames we must move/replace. 2532 // 2533 // Frame picture (youngest to oldest) 2534 // 1: self-frame (no frame link) 2535 // 2: deopting frame (no frame link) 2536 // 3: caller of deopting frame (could be compiled/interpreted). 2537 2538 __ add(sp, sp, (SimpleRuntimeFrame::framesize) << LogBytesPerInt); // Epilog! 2539 2540 // Pop deoptimized frame (int) 2541 __ lwu(x12, Address(x14, 2542 Deoptimization::UnrollBlock:: 2543 size_of_deoptimized_frame_offset())); 2544 __ sub(x12, x12, 2 * wordSize); 2545 __ add(sp, sp, x12); 2546 __ ld(fp, Address(sp, 0)); 2547 __ ld(ra, Address(sp, wordSize)); 2548 __ addi(sp, sp, 2 * wordSize); 2549 // RA should now be the return address to the caller (3) frame 2550 2551 #ifdef ASSERT 2552 // Compilers generate code that bang the stack by as much as the 2553 // interpreter would need. So this stack banging should never 2554 // trigger a fault. Verify that it does not on non product builds. 2555 __ lwu(x11, Address(x14, 2556 Deoptimization::UnrollBlock:: 2557 total_frame_sizes_offset())); 2558 __ bang_stack_size(x11, x12); 2559 #endif 2560 2561 // Load address of array of frame pcs into x12 (address*) 2562 __ ld(x12, Address(x14, 2563 Deoptimization::UnrollBlock::frame_pcs_offset())); 2564 2565 // Load address of array of frame sizes into x15 (intptr_t*) 2566 __ ld(x15, Address(x14, 2567 Deoptimization::UnrollBlock:: 2568 frame_sizes_offset())); 2569 2570 // Counter 2571 __ lwu(x13, Address(x14, 2572 Deoptimization::UnrollBlock:: 2573 number_of_frames_offset())); // (int) 2574 2575 // Now adjust the caller's stack to make up for the extra locals but 2576 // record the original sp so that we can save it in the skeletal 2577 // interpreter frame and the stack walking of interpreter_sender 2578 // will get the unextended sp value and not the "real" sp value. 2579 2580 const Register sender_sp = t1; // temporary register 2581 2582 __ lwu(x11, Address(x14, 2583 Deoptimization::UnrollBlock:: 2584 caller_adjustment_offset())); // (int) 2585 __ mv(sender_sp, sp); 2586 __ sub(sp, sp, x11); 2587 2588 // Push interpreter frames in a loop 2589 Label loop; 2590 __ bind(loop); 2591 __ ld(x11, Address(x15, 0)); // Load frame size 2592 __ sub(x11, x11, 2 * wordSize); // We'll push pc and fp by hand 2593 __ ld(ra, Address(x12, 0)); // Save return address 2594 __ enter(); // and old fp & set new fp 2595 __ sub(sp, sp, x11); // Prolog 2596 __ sd(sender_sp, Address(fp, frame::interpreter_frame_sender_sp_offset * wordSize)); // Make it walkable 2597 // This value is corrected by layout_activation_impl 2598 __ sd(zr, Address(fp, frame::interpreter_frame_last_sp_offset * wordSize)); 2599 __ mv(sender_sp, sp); // Pass sender_sp to next frame 2600 __ add(x15, x15, wordSize); // Bump array pointer (sizes) 2601 __ add(x12, x12, wordSize); // Bump array pointer (pcs) 2602 __ subw(x13, x13, 1); // Decrement counter 2603 __ bgtz(x13, loop); 2604 __ ld(ra, Address(x12, 0)); // save final return address 2605 // Re-push self-frame 2606 __ enter(); // & old fp & set new fp 2607 2608 // Use fp because the frames look interpreted now 2609 // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP. 2610 // Don't need the precise return PC here, just precise enough to point into this code blob. 2611 address the_pc = __ pc(); 2612 __ set_last_Java_frame(sp, fp, the_pc, t0); 2613 2614 // Call C code. Need thread but NOT official VM entry 2615 // crud. We cannot block on this call, no GC can happen. Call should 2616 // restore return values to their stack-slots with the new SP. 2617 // 2618 // BasicType unpack_frames(JavaThread* thread, int exec_mode) 2619 // 2620 2621 // n.b. 2 gp args, 0 fp args, integral return type 2622 2623 // sp should already be aligned 2624 __ mv(c_rarg0, xthread); 2625 __ mv(c_rarg1, Deoptimization::Unpack_uncommon_trap); 2626 target = RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)); 2627 __ relocate(target.rspec(), [&] { 2628 int32_t offset; 2629 __ la_patchable(t0, target, offset); 2630 __ jalr(x1, t0, offset); 2631 }); 2632 2633 // Set an oopmap for the call site 2634 // Use the same PC we used for the last java frame 2635 oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0)); 2636 2637 // Clear fp AND pc 2638 __ reset_last_Java_frame(true); 2639 2640 // Pop self-frame. 2641 __ leave(); // Epilog 2642 2643 // Jump to interpreter 2644 __ ret(); 2645 2646 // Make sure all code is generated 2647 masm->flush(); 2648 2649 _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, 2650 SimpleRuntimeFrame::framesize >> 1); 2651 } 2652 #endif // COMPILER2 2653 2654 //------------------------------generate_handler_blob------ 2655 // 2656 // Generate a special Compile2Runtime blob that saves all registers, 2657 // and setup oopmap. 2658 // 2659 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) { 2660 ResourceMark rm; 2661 OopMapSet *oop_maps = new OopMapSet(); 2662 assert_cond(oop_maps != nullptr); 2663 OopMap* map = nullptr; 2664 2665 // Allocate space for the code. Setup code generation tools. 2666 CodeBuffer buffer("handler_blob", 2048, 1024); 2667 MacroAssembler* masm = new MacroAssembler(&buffer); 2668 assert_cond(masm != nullptr); 2669 2670 address start = __ pc(); 2671 address call_pc = nullptr; 2672 int frame_size_in_words = -1; 2673 bool cause_return = (poll_type == POLL_AT_RETURN); 2674 RegisterSaver reg_saver(poll_type == POLL_AT_VECTOR_LOOP /* save_vectors */); 2675 2676 // Save Integer and Float registers. 2677 map = reg_saver.save_live_registers(masm, 0, &frame_size_in_words); 2678 2679 // The following is basically a call_VM. However, we need the precise 2680 // address of the call in order to generate an oopmap. Hence, we do all the 2681 // work ourselves. 2682 2683 Label retaddr; 2684 __ set_last_Java_frame(sp, noreg, retaddr, t0); 2685 2686 // The return address must always be correct so that frame constructor never 2687 // sees an invalid pc. 2688 2689 if (!cause_return) { 2690 // overwrite the return address pushed by save_live_registers 2691 // Additionally, x18 is a callee-saved register so we can look at 2692 // it later to determine if someone changed the return address for 2693 // us! 2694 __ ld(x18, Address(xthread, JavaThread::saved_exception_pc_offset())); 2695 __ sd(x18, Address(fp, frame::return_addr_offset * wordSize)); 2696 } 2697 2698 // Do the call 2699 __ mv(c_rarg0, xthread); 2700 RuntimeAddress target(call_ptr); 2701 __ relocate(target.rspec(), [&] { 2702 int32_t offset; 2703 __ la_patchable(t0, target, offset); 2704 __ jalr(x1, t0, offset); 2705 }); 2706 __ bind(retaddr); 2707 2708 // Set an oopmap for the call site. This oopmap will map all 2709 // oop-registers and debug-info registers as callee-saved. This 2710 // will allow deoptimization at this safepoint to find all possible 2711 // debug-info recordings, as well as let GC find all oops. 2712 2713 oop_maps->add_gc_map( __ pc() - start, map); 2714 2715 Label noException; 2716 2717 __ reset_last_Java_frame(false); 2718 2719 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 2720 2721 __ ld(t0, Address(xthread, Thread::pending_exception_offset())); 2722 __ beqz(t0, noException); 2723 2724 // Exception pending 2725 2726 reg_saver.restore_live_registers(masm); 2727 2728 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 2729 2730 // No exception case 2731 __ bind(noException); 2732 2733 Label no_adjust, bail; 2734 if (!cause_return) { 2735 // If our stashed return pc was modified by the runtime we avoid touching it 2736 __ ld(t0, Address(fp, frame::return_addr_offset * wordSize)); 2737 __ bne(x18, t0, no_adjust); 2738 2739 #ifdef ASSERT 2740 // Verify the correct encoding of the poll we're about to skip. 2741 // See NativeInstruction::is_lwu_to_zr() 2742 __ lwu(t0, Address(x18)); 2743 __ andi(t1, t0, 0b0000011); 2744 __ mv(t2, 0b0000011); 2745 __ bne(t1, t2, bail); // 0-6:0b0000011 2746 __ srli(t1, t0, 7); 2747 __ andi(t1, t1, 0b00000); 2748 __ bnez(t1, bail); // 7-11:0b00000 2749 __ srli(t1, t0, 12); 2750 __ andi(t1, t1, 0b110); 2751 __ mv(t2, 0b110); 2752 __ bne(t1, t2, bail); // 12-14:0b110 2753 #endif 2754 // Adjust return pc forward to step over the safepoint poll instruction 2755 __ add(x18, x18, NativeInstruction::instruction_size); 2756 __ sd(x18, Address(fp, frame::return_addr_offset * wordSize)); 2757 } 2758 2759 __ bind(no_adjust); 2760 // Normal exit, restore registers and exit. 2761 2762 reg_saver.restore_live_registers(masm); 2763 __ ret(); 2764 2765 #ifdef ASSERT 2766 __ bind(bail); 2767 __ stop("Attempting to adjust pc to skip safepoint poll but the return point is not what we expected"); 2768 #endif 2769 2770 // Make sure all code is generated 2771 masm->flush(); 2772 2773 // Fill-out other meta info 2774 return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words); 2775 } 2776 2777 // 2778 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss 2779 // 2780 // Generate a stub that calls into vm to find out the proper destination 2781 // of a java call. All the argument registers are live at this point 2782 // but since this is generic code we don't know what they are and the caller 2783 // must do any gc of the args. 2784 // 2785 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) { 2786 assert(StubRoutines::forward_exception_entry() != nullptr, "must be generated before"); 2787 2788 // allocate space for the code 2789 ResourceMark rm; 2790 2791 CodeBuffer buffer(name, 1000, 512); 2792 MacroAssembler* masm = new MacroAssembler(&buffer); 2793 assert_cond(masm != nullptr); 2794 2795 int frame_size_in_words = -1; 2796 RegisterSaver reg_saver(false /* save_vectors */); 2797 2798 OopMapSet *oop_maps = new OopMapSet(); 2799 assert_cond(oop_maps != nullptr); 2800 OopMap* map = nullptr; 2801 2802 int start = __ offset(); 2803 2804 map = reg_saver.save_live_registers(masm, 0, &frame_size_in_words); 2805 2806 int frame_complete = __ offset(); 2807 2808 { 2809 Label retaddr; 2810 __ set_last_Java_frame(sp, noreg, retaddr, t0); 2811 2812 __ mv(c_rarg0, xthread); 2813 RuntimeAddress target(destination); 2814 __ relocate(target.rspec(), [&] { 2815 int32_t offset; 2816 __ la_patchable(t0, target, offset); 2817 __ jalr(x1, t0, offset); 2818 }); 2819 __ bind(retaddr); 2820 } 2821 2822 // Set an oopmap for the call site. 2823 // We need this not only for callee-saved registers, but also for volatile 2824 // registers that the compiler might be keeping live across a safepoint. 2825 2826 oop_maps->add_gc_map( __ offset() - start, map); 2827 2828 // x10 contains the address we are going to jump to assuming no exception got installed 2829 2830 // clear last_Java_sp 2831 __ reset_last_Java_frame(false); 2832 // check for pending exceptions 2833 Label pending; 2834 __ ld(t0, Address(xthread, Thread::pending_exception_offset())); 2835 __ bnez(t0, pending); 2836 2837 // get the returned Method* 2838 __ get_vm_result_2(xmethod, xthread); 2839 __ sd(xmethod, Address(sp, reg_saver.reg_offset_in_bytes(xmethod))); 2840 2841 // x10 is where we want to jump, overwrite t0 which is saved and temporary 2842 __ sd(x10, Address(sp, reg_saver.reg_offset_in_bytes(t0))); 2843 reg_saver.restore_live_registers(masm); 2844 2845 // We are back to the original state on entry and ready to go. 2846 2847 __ jr(t0); 2848 2849 // Pending exception after the safepoint 2850 2851 __ bind(pending); 2852 2853 reg_saver.restore_live_registers(masm); 2854 2855 // exception pending => remove activation and forward to exception handler 2856 2857 __ sd(zr, Address(xthread, JavaThread::vm_result_offset())); 2858 2859 __ ld(x10, Address(xthread, Thread::pending_exception_offset())); 2860 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 2861 2862 // ------------- 2863 // make sure all code is generated 2864 masm->flush(); 2865 2866 // return the blob 2867 return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true); 2868 } 2869 2870 #ifdef COMPILER2 2871 //------------------------------generate_exception_blob--------------------------- 2872 // creates exception blob at the end 2873 // Using exception blob, this code is jumped from a compiled method. 2874 // (see emit_exception_handler in riscv.ad file) 2875 // 2876 // Given an exception pc at a call we call into the runtime for the 2877 // handler in this method. This handler might merely restore state 2878 // (i.e. callee save registers) unwind the frame and jump to the 2879 // exception handler for the nmethod if there is no Java level handler 2880 // for the nmethod. 2881 // 2882 // This code is entered with a jmp. 2883 // 2884 // Arguments: 2885 // x10: exception oop 2886 // x13: exception pc 2887 // 2888 // Results: 2889 // x10: exception oop 2890 // x13: exception pc in caller 2891 // destination: exception handler of caller 2892 // 2893 // Note: the exception pc MUST be at a call (precise debug information) 2894 // Registers x10, x13, x12, x14, x15, t0 are not callee saved. 2895 // 2896 2897 void OptoRuntime::generate_exception_blob() { 2898 assert(!OptoRuntime::is_callee_saved_register(R13_num), ""); 2899 assert(!OptoRuntime::is_callee_saved_register(R10_num), ""); 2900 assert(!OptoRuntime::is_callee_saved_register(R12_num), ""); 2901 2902 assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned"); 2903 2904 // Allocate space for the code 2905 ResourceMark rm; 2906 // Setup code generation tools 2907 CodeBuffer buffer("exception_blob", 2048, 1024); 2908 MacroAssembler* masm = new MacroAssembler(&buffer); 2909 assert_cond(masm != nullptr); 2910 2911 // TODO check various assumptions made here 2912 // 2913 // make sure we do so before running this 2914 2915 address start = __ pc(); 2916 2917 // push fp and retaddr by hand 2918 // Exception pc is 'return address' for stack walker 2919 __ addi(sp, sp, -2 * wordSize); 2920 __ sd(ra, Address(sp, wordSize)); 2921 __ sd(fp, Address(sp)); 2922 // there are no callee save registers and we don't expect an 2923 // arg reg save area 2924 #ifndef PRODUCT 2925 assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area"); 2926 #endif 2927 // Store exception in Thread object. We cannot pass any arguments to the 2928 // handle_exception call, since we do not want to make any assumption 2929 // about the size of the frame where the exception happened in. 2930 __ sd(x10, Address(xthread, JavaThread::exception_oop_offset())); 2931 __ sd(x13, Address(xthread, JavaThread::exception_pc_offset())); 2932 2933 // This call does all the hard work. It checks if an exception handler 2934 // exists in the method. 2935 // If so, it returns the handler address. 2936 // If not, it prepares for stack-unwinding, restoring the callee-save 2937 // registers of the frame being removed. 2938 // 2939 // address OptoRuntime::handle_exception_C(JavaThread* thread) 2940 // 2941 // n.b. 1 gp arg, 0 fp args, integral return type 2942 2943 // the stack should always be aligned 2944 address the_pc = __ pc(); 2945 __ set_last_Java_frame(sp, noreg, the_pc, t0); 2946 __ mv(c_rarg0, xthread); 2947 RuntimeAddress target(CAST_FROM_FN_PTR(address, OptoRuntime::handle_exception_C)); 2948 __ relocate(target.rspec(), [&] { 2949 int32_t offset; 2950 __ la_patchable(t0, target, offset); 2951 __ jalr(x1, t0, offset); 2952 }); 2953 2954 2955 // handle_exception_C is a special VM call which does not require an explicit 2956 // instruction sync afterwards. 2957 2958 // Set an oopmap for the call site. This oopmap will only be used if we 2959 // are unwinding the stack. Hence, all locations will be dead. 2960 // Callee-saved registers will be the same as the frame above (i.e., 2961 // handle_exception_stub), since they were restored when we got the 2962 // exception. 2963 2964 OopMapSet* oop_maps = new OopMapSet(); 2965 assert_cond(oop_maps != nullptr); 2966 2967 oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0)); 2968 2969 __ reset_last_Java_frame(false); 2970 2971 // Restore callee-saved registers 2972 2973 // fp is an implicitly saved callee saved register (i.e. the calling 2974 // convention will save restore it in prolog/epilog) Other than that 2975 // there are no callee save registers now that adapter frames are gone. 2976 // and we dont' expect an arg reg save area 2977 __ ld(fp, Address(sp)); 2978 __ ld(x13, Address(sp, wordSize)); 2979 __ addi(sp, sp , 2 * wordSize); 2980 2981 // x10: exception handler 2982 2983 // We have a handler in x10 (could be deopt blob). 2984 __ mv(t0, x10); 2985 2986 // Get the exception oop 2987 __ ld(x10, Address(xthread, JavaThread::exception_oop_offset())); 2988 // Get the exception pc in case we are deoptimized 2989 __ ld(x14, Address(xthread, JavaThread::exception_pc_offset())); 2990 #ifdef ASSERT 2991 __ sd(zr, Address(xthread, JavaThread::exception_handler_pc_offset())); 2992 __ sd(zr, Address(xthread, JavaThread::exception_pc_offset())); 2993 #endif 2994 // Clear the exception oop so GC no longer processes it as a root. 2995 __ sd(zr, Address(xthread, JavaThread::exception_oop_offset())); 2996 2997 // x10: exception oop 2998 // t0: exception handler 2999 // x14: exception pc 3000 // Jump to handler 3001 3002 __ jr(t0); 3003 3004 // Make sure all code is generated 3005 masm->flush(); 3006 3007 // Set exception blob 3008 _exception_blob = ExceptionBlob::create(&buffer, oop_maps, SimpleRuntimeFrame::framesize >> 1); 3009 } 3010 #endif // COMPILER2