1 /*
   2  * Copyright (c) 2016, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2016, 2024 SAP SE. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 // Major contributions by AHa, AS, JL, ML.
  27 
  28 #include "precompiled.hpp"
  29 #include "asm/macroAssembler.inline.hpp"
  30 #include "gc/shared/barrierSet.hpp"
  31 #include "gc/shared/barrierSetAssembler.hpp"
  32 #include "interp_masm_s390.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "interpreter/interpreterRuntime.hpp"
  35 #include "oops/arrayOop.hpp"
  36 #include "oops/markWord.hpp"
  37 #include "oops/methodCounters.hpp"
  38 #include "oops/methodData.hpp"
  39 #include "oops/resolvedFieldEntry.hpp"
  40 #include "oops/resolvedIndyEntry.hpp"
  41 #include "oops/resolvedMethodEntry.hpp"
  42 #include "prims/jvmtiExport.hpp"
  43 #include "prims/jvmtiThreadState.hpp"
  44 #include "runtime/basicLock.hpp"
  45 #include "runtime/frame.inline.hpp"
  46 #include "runtime/javaThread.hpp"
  47 #include "runtime/safepointMechanism.hpp"
  48 #include "runtime/sharedRuntime.hpp"
  49 #include "utilities/macros.hpp"
  50 #include "utilities/powerOfTwo.hpp"
  51 
  52 // Implementation of InterpreterMacroAssembler.
  53 // This file specializes the assembler with interpreter-specific macros.
  54 
  55 #ifdef PRODUCT
  56 #define BLOCK_COMMENT(str)
  57 #define BIND(label)        bind(label);
  58 #else
  59 #define BLOCK_COMMENT(str) block_comment(str)
  60 #define BIND(label)        bind(label); BLOCK_COMMENT(#label ":")
  61 #endif
  62 
  63 void InterpreterMacroAssembler::jump_to_entry(address entry, Register Rscratch) {
  64   assert(entry != nullptr, "Entry must have been generated by now");
  65   assert(Rscratch != Z_R0, "Can't use R0 for addressing");
  66   branch_optimized(Assembler::bcondAlways, entry);
  67 }
  68 
  69 void InterpreterMacroAssembler::empty_expression_stack(void) {
  70   get_monitors(Z_R1_scratch);
  71   add2reg(Z_esp, -Interpreter::stackElementSize, Z_R1_scratch);
  72 }
  73 
  74 // Dispatch code executed in the prolog of a bytecode which does not do it's
  75 // own dispatch.
  76 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) {
  77   // On z/Architecture we are short on registers, therefore we do not preload the
  78   // dispatch address of the next bytecode.
  79 }
  80 
  81 // Dispatch code executed in the epilog of a bytecode which does not do it's
  82 // own dispatch.
  83 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
  84   dispatch_next(state, step);
  85 }
  86 
  87 void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr, bool generate_poll) {
  88   z_llgc(Z_bytecode, bcp_incr, Z_R0, Z_bcp);  // Load next bytecode.
  89   add2reg(Z_bcp, bcp_incr);                   // Advance bcp. Add2reg produces optimal code.
  90   dispatch_base(state, Interpreter::dispatch_table(state), generate_poll);
  91 }
  92 
  93 // Common code to dispatch and dispatch_only.
  94 // Dispatch value in Lbyte_code and increment Lbcp.
  95 
  96 void InterpreterMacroAssembler::dispatch_base(TosState state, address* table, bool generate_poll) {
  97   verify_FPU(1, state);
  98 
  99 #ifdef ASSERT
 100   address reentry = nullptr;
 101   { Label OK;
 102     // Check if the frame pointer in Z_fp is correct.
 103     z_cg(Z_fp, 0, Z_SP);
 104     z_bre(OK);
 105     reentry = stop_chain_static(reentry, "invalid frame pointer Z_fp: " FILE_AND_LINE);
 106     bind(OK);
 107   }
 108   { Label OK;
 109     // check if the locals pointer in Z_locals is correct
 110     z_cg(Z_locals, _z_ijava_state_neg(locals), Z_fp);
 111     z_bre(OK);
 112     reentry = stop_chain_static(reentry, "invalid locals pointer Z_locals: " FILE_AND_LINE);
 113     bind(OK);
 114   }
 115 #endif
 116 
 117   // TODO: Maybe implement +VerifyActivationFrameSize here.
 118   verify_oop(Z_tos, state);
 119 
 120   // Dispatch table to use.
 121   load_absolute_address(Z_tmp_1, (address)table);  // Z_tmp_1 = table;
 122 
 123   if (generate_poll) {
 124     address *sfpt_tbl = Interpreter::safept_table(state);
 125     if (table != sfpt_tbl) {
 126       Label dispatch;
 127       const Address poll_byte_addr(Z_thread, in_bytes(JavaThread::polling_word_offset()) + 7 /* Big Endian */);
 128       // Armed page has poll_bit set, if poll bit is cleared just continue.
 129       z_tm(poll_byte_addr, SafepointMechanism::poll_bit());
 130       z_braz(dispatch);
 131       load_absolute_address(Z_tmp_1, (address)sfpt_tbl);  // Z_tmp_1 = table;
 132       bind(dispatch);
 133     }
 134   }
 135 
 136   // 0 <= Z_bytecode < 256 => Use a 32 bit shift, because it is shorter than sllg.
 137   // Z_bytecode must have been loaded zero-extended for this approach to be correct.
 138   z_sll(Z_bytecode, LogBytesPerWord, Z_R0);   // Multiply by wordSize.
 139   z_lg(Z_tmp_1, 0, Z_bytecode, Z_tmp_1);      // Get entry addr.
 140 
 141   z_br(Z_tmp_1);
 142 }
 143 
 144 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) {
 145   dispatch_base(state, Interpreter::dispatch_table(state), generate_poll);
 146 }
 147 
 148 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
 149   dispatch_base(state, Interpreter::normal_table(state));
 150 }
 151 
 152 void InterpreterMacroAssembler::dispatch_via(TosState state, address *table) {
 153   // Load current bytecode.
 154   z_llgc(Z_bytecode, Address(Z_bcp, (intptr_t)0));
 155   dispatch_base(state, table);
 156 }
 157 
 158 // The following call_VM*_base() methods overload and mask the respective
 159 // declarations/definitions in class MacroAssembler. They are meant as a "detour"
 160 // to perform additional, template interpreter specific tasks before actually
 161 // calling their MacroAssembler counterparts.
 162 
 163 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point) {
 164   bool allow_relocation = true; // Fenerally valid variant. Assume code is relocated.
 165   // interpreter specific
 166   // Note: No need to save/restore bcp (Z_R13) pointer since these are callee
 167   // saved registers and no blocking/ GC can happen in leaf calls.
 168 
 169   // super call
 170   MacroAssembler::call_VM_leaf_base(entry_point, allow_relocation);
 171 }
 172 
 173 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point, bool allow_relocation) {
 174   // interpreter specific
 175   // Note: No need to save/restore bcp (Z_R13) pointer since these are callee
 176   // saved registers and no blocking/ GC can happen in leaf calls.
 177 
 178   // super call
 179   MacroAssembler::call_VM_leaf_base(entry_point, allow_relocation);
 180 }
 181 
 182 void InterpreterMacroAssembler::call_VM_base(Register oop_result, Register last_java_sp,
 183                                              address entry_point, bool check_exceptions) {
 184   bool allow_relocation = true; // Fenerally valid variant. Assume code is relocated.
 185   // interpreter specific
 186 
 187   save_bcp();
 188   save_esp();
 189   // super call
 190   MacroAssembler::call_VM_base(oop_result, last_java_sp,
 191                                entry_point, allow_relocation, check_exceptions);
 192   restore_bcp();
 193 }
 194 
 195 void InterpreterMacroAssembler::call_VM_base(Register oop_result, Register last_java_sp,
 196                                              address entry_point, bool allow_relocation,
 197                                              bool check_exceptions) {
 198   // interpreter specific
 199 
 200   save_bcp();
 201   save_esp();
 202   // super call
 203   MacroAssembler::call_VM_base(oop_result, last_java_sp,
 204                                entry_point, allow_relocation, check_exceptions);
 205   restore_bcp();
 206 }
 207 
 208 void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) {
 209   if (JvmtiExport::can_pop_frame()) {
 210     BLOCK_COMMENT("check_and_handle_popframe {");
 211     Label L;
 212     // Initiate popframe handling only if it is not already being
 213     // processed. If the flag has the popframe_processing bit set, it
 214     // means that this code is called *during* popframe handling - we
 215     // don't want to reenter.
 216     // TODO: Check if all four state combinations could be visible.
 217     // If (processing and !pending) is an invisible/impossible state,
 218     // there is optimization potential by testing both bits at once.
 219     // Then, All_Zeroes and All_Ones means skip, Mixed means doit.
 220     testbit(Address(Z_thread, JavaThread::popframe_condition_offset()),
 221             exact_log2(JavaThread::popframe_pending_bit));
 222     z_bfalse(L);
 223     testbit(Address(Z_thread, JavaThread::popframe_condition_offset()),
 224             exact_log2(JavaThread::popframe_processing_bit));
 225     z_btrue(L);
 226 
 227     // Call Interpreter::remove_activation_preserving_args_entry() to get the
 228     // address of the same-named entrypoint in the generated interpreter code.
 229     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
 230     // The above call should (as its only effect) return the contents of the field
 231     // _remove_activation_preserving_args_entry in Z_RET.
 232     // We just jump there to have the work done.
 233     z_br(Z_RET);
 234     // There is no way for control to fall thru here.
 235 
 236     bind(L);
 237     BLOCK_COMMENT("} check_and_handle_popframe");
 238   }
 239 }
 240 
 241 
 242 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
 243   Register RjvmtiState = Z_R1_scratch;
 244   int      tos_off     = in_bytes(JvmtiThreadState::earlyret_tos_offset());
 245   int      oop_off     = in_bytes(JvmtiThreadState::earlyret_oop_offset());
 246   int      val_off     = in_bytes(JvmtiThreadState::earlyret_value_offset());
 247   int      state_off   = in_bytes(JavaThread::jvmti_thread_state_offset());
 248 
 249   z_lg(RjvmtiState, state_off, Z_thread);
 250 
 251   switch (state) {
 252     case atos: z_lg(Z_tos, oop_off, RjvmtiState);
 253       store_const(Address(RjvmtiState, oop_off), 0L, 8, 8, Z_R0_scratch);
 254                                                     break;
 255     case ltos: z_lg(Z_tos, val_off, RjvmtiState);   break;
 256     case btos: // fall through
 257     case ztos: // fall through
 258     case ctos: // fall through
 259     case stos: // fall through
 260     case itos: z_llgf(Z_tos, val_off, RjvmtiState); break;
 261     case ftos: z_le(Z_ftos, val_off, RjvmtiState);  break;
 262     case dtos: z_ld(Z_ftos, val_off, RjvmtiState);  break;
 263     case vtos:   /* nothing to do */                break;
 264     default  : ShouldNotReachHere();
 265   }
 266 
 267   // Clean up tos value in the jvmti thread state.
 268   store_const(Address(RjvmtiState, val_off),   0L, 8, 8, Z_R0_scratch);
 269   // Set tos state field to illegal value.
 270   store_const(Address(RjvmtiState, tos_off), ilgl, 4, 1, Z_R0_scratch);
 271 }
 272 
 273 void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
 274   if (JvmtiExport::can_force_early_return()) {
 275     BLOCK_COMMENT("check_and_handle_earlyret {");
 276     Label L;
 277     // arg regs are save, because we are just behind the call in call_VM_base
 278     Register jvmti_thread_state = Z_ARG2;
 279     Register tmp                = Z_ARG3;
 280     load_and_test_long(jvmti_thread_state, Address(Z_thread, JavaThread::jvmti_thread_state_offset()));
 281     z_bre(L); // if (thread->jvmti_thread_state() == nullptr) exit;
 282 
 283     // Initiate earlyret handling only if it is not already being processed.
 284     // If the flag has the earlyret_processing bit set, it means that this code
 285     // is called *during* earlyret handling - we don't want to reenter.
 286 
 287     assert((JvmtiThreadState::earlyret_pending != 0) && (JvmtiThreadState::earlyret_inactive == 0),
 288           "must fix this check, when changing the values of the earlyret enum");
 289     assert(JvmtiThreadState::earlyret_pending == 1, "must fix this check, when changing the values of the earlyret enum");
 290 
 291     load_and_test_int(tmp, Address(jvmti_thread_state, JvmtiThreadState::earlyret_state_offset()));
 292     z_brz(L); // if (thread->jvmti_thread_state()->_earlyret_state != JvmtiThreadState::earlyret_pending) exit;
 293 
 294     // Call Interpreter::remove_activation_early_entry() to get the address of the
 295     // same-named entrypoint in the generated interpreter code.
 296     assert(sizeof(TosState) == 4, "unexpected size");
 297     z_l(Z_ARG1, Address(jvmti_thread_state, JvmtiThreadState::earlyret_tos_offset()));
 298     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), Z_ARG1);
 299     // The above call should (as its only effect) return the contents of the field
 300     // _remove_activation_preserving_args_entry in Z_RET.
 301     // We just jump there to have the work done.
 302     z_br(Z_RET);
 303     // There is no way for control to fall thru here.
 304 
 305     bind(L);
 306     BLOCK_COMMENT("} check_and_handle_earlyret");
 307   }
 308 }
 309 
 310 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2) {
 311   lgr_if_needed(Z_ARG1, arg_1);
 312   assert(arg_2 != Z_ARG1, "smashed argument");
 313   lgr_if_needed(Z_ARG2, arg_2);
 314   MacroAssembler::call_VM_leaf_base(entry_point, true);
 315 }
 316 
 317 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index, int bcp_offset, size_t index_size) {
 318   Address param(Z_bcp, bcp_offset);
 319 
 320   BLOCK_COMMENT("get_cache_index_at_bcp {");
 321   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 322   if (index_size == sizeof(u2)) {
 323     load_sized_value(index, param, 2, false /*signed*/);
 324   } else if (index_size == sizeof(u4)) {
 325 
 326     load_sized_value(index, param, 4, false);
 327 
 328     // Check if the secondary index definition is still ~x, otherwise
 329     // we have to change the following assembler code to calculate the
 330     // plain index.
 331     assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
 332     not_(index);  // Convert to plain index.
 333   } else if (index_size == sizeof(u1)) {
 334     z_llgc(index, param);
 335   } else {
 336     ShouldNotReachHere();
 337   }
 338   BLOCK_COMMENT("}");
 339 }
 340 
 341 void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) {
 342   // Get index out of bytecode pointer.
 343   get_cache_index_at_bcp(index, 1, sizeof(u4));
 344 
 345   // Get the address of the ResolvedIndyEntry array
 346   get_constant_pool_cache(cache);
 347   z_lg(cache, Address(cache, in_bytes(ConstantPoolCache::invokedynamic_entries_offset())));
 348 
 349   // Scale the index to form a byte offset into the ResolvedIndyEntry array
 350   size_t entry_size = sizeof(ResolvedIndyEntry);
 351   if (is_power_of_2(entry_size)) {
 352     z_sllg(index, index, exact_log2(entry_size));
 353   } else {
 354     z_mghi(index, entry_size);
 355   }
 356 
 357   // Calculate the final field address.
 358   z_la(cache, Array<ResolvedIndyEntry>::base_offset_in_bytes(), index, cache);
 359 }
 360 
 361 void InterpreterMacroAssembler::load_field_entry(Register cache, Register index, int bcp_offset) {
 362   // Get field index out of bytecode pointer.
 363   get_cache_index_at_bcp(index, bcp_offset, sizeof(u2));
 364 
 365   // Get the address of the ResolvedFieldEntry array.
 366   get_constant_pool_cache(cache);
 367   z_lg(cache, Address(cache, in_bytes(ConstantPoolCache::field_entries_offset())));
 368 
 369   // Scale the index to form a byte offset into the ResolvedFieldEntry array
 370   size_t entry_size = sizeof(ResolvedFieldEntry);
 371   if (is_power_of_2(entry_size)) {
 372     z_sllg(index, index, exact_log2(entry_size));
 373   } else {
 374     z_mghi(index, entry_size);
 375   }
 376 
 377   // Calculate the final field address.
 378   z_la(cache, Array<ResolvedFieldEntry>::base_offset_in_bytes(), index, cache);
 379 }
 380 
 381 void InterpreterMacroAssembler::load_method_entry(Register cache, Register index, int bcp_offset) {
 382   // Get field index out of bytecode pointer.
 383   get_cache_index_at_bcp(index, bcp_offset, sizeof(u2));
 384 
 385   // Get the address of the ResolvedMethodEntry array.
 386   get_constant_pool_cache(cache);
 387   z_lg(cache, Address(cache, in_bytes(ConstantPoolCache::method_entries_offset())));
 388 
 389   // Scale the index to form a byte offset into the ResolvedMethodEntry array
 390   size_t entry_size = sizeof(ResolvedMethodEntry);
 391   if (is_power_of_2(entry_size)) {
 392     z_sllg(index, index, exact_log2(entry_size));
 393   } else {
 394     z_mghi(index, entry_size);
 395   }
 396 
 397   // Calculate the final field address.
 398   z_la(cache, Array<ResolvedMethodEntry>::base_offset_in_bytes(), index, cache);
 399 }
 400 
 401 // Load object from cpool->resolved_references(index).
 402 void InterpreterMacroAssembler::load_resolved_reference_at_index(Register result, Register index) {
 403   assert_different_registers(result, index);
 404   get_constant_pool(result);
 405 
 406   // Convert
 407   //  - from field index to resolved_references() index and
 408   //  - from word index to byte offset.
 409   // Since this is a java object, it is potentially compressed.
 410   Register tmp = index;  // reuse
 411   z_sllg(index, index, LogBytesPerHeapOop); // Offset into resolved references array.
 412   // Load pointer for resolved_references[] objArray.
 413   z_lg(result, in_bytes(ConstantPool::cache_offset()), result);
 414   z_lg(result, in_bytes(ConstantPoolCache::resolved_references_offset()), result);
 415   resolve_oop_handle(result); // Load resolved references array itself.
 416 #ifdef ASSERT
 417   NearLabel index_ok;
 418   z_lgf(Z_R0, Address(result, arrayOopDesc::length_offset_in_bytes()));
 419   z_sllg(Z_R0, Z_R0, LogBytesPerHeapOop);
 420   compare64_and_branch(tmp, Z_R0, Assembler::bcondLow, index_ok);
 421   stop("resolved reference index out of bounds", 0x09256);
 422   bind(index_ok);
 423 #endif
 424   z_agr(result, index);    // Address of indexed array element.
 425   load_heap_oop(result, Address(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT)), tmp, noreg);
 426 }
 427 
 428 // load cpool->resolved_klass_at(index)
 429 void InterpreterMacroAssembler::load_resolved_klass_at_offset(Register cpool, Register offset, Register iklass) {
 430   // int value = *(Rcpool->int_at_addr(which));
 431   // int resolved_klass_index = extract_low_short_from_int(value);
 432   z_llgh(offset, Address(cpool, offset, sizeof(ConstantPool) + 2)); // offset = resolved_klass_index (s390 is big-endian)
 433   z_sllg(offset, offset, LogBytesPerWord);                          // Convert 'index' to 'offset'
 434   z_lg(iklass, Address(cpool, ConstantPool::resolved_klasses_offset())); // iklass = cpool->_resolved_klasses
 435   z_lg(iklass, Address(iklass, offset, Array<Klass*>::base_offset_in_bytes()));
 436 }
 437 
 438 // Generate a subtype check: branch to ok_is_subtype if sub_klass is
 439 // a subtype of super_klass. Blows registers Rsuper_klass, Rsub_klass, tmp1, tmp2.
 440 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
 441                                                   Register Rsuper_klass,
 442                                                   Register Rtmp1,
 443                                                   Register Rtmp2,
 444                                                   Label &ok_is_subtype) {
 445   // Profile the not-null value's klass.
 446   profile_typecheck(Rtmp1, Rsub_klass, Rtmp2);
 447 
 448   // Do the check.
 449   check_klass_subtype(Rsub_klass, Rsuper_klass, Rtmp1, Rtmp2, ok_is_subtype);
 450 }
 451 
 452 // Pop topmost element from stack. It just disappears.
 453 // Useful if consumed previously by access via stackTop().
 454 void InterpreterMacroAssembler::popx(int len) {
 455   add2reg(Z_esp, len*Interpreter::stackElementSize);
 456   debug_only(verify_esp(Z_esp, Z_R1_scratch));
 457 }
 458 
 459 // Get Address object of stack top. No checks. No pop.
 460 // Purpose: - Provide address of stack operand to exploit reg-mem operations.
 461 //          - Avoid RISC-like mem2reg - reg-reg-op sequence.
 462 Address InterpreterMacroAssembler::stackTop() {
 463   return Address(Z_esp, Interpreter::expr_offset_in_bytes(0));
 464 }
 465 
 466 void InterpreterMacroAssembler::pop_i(Register r) {
 467   z_l(r, Interpreter::expr_offset_in_bytes(0), Z_esp);
 468   add2reg(Z_esp, Interpreter::stackElementSize);
 469   assert_different_registers(r, Z_R1_scratch);
 470   debug_only(verify_esp(Z_esp, Z_R1_scratch));
 471 }
 472 
 473 void InterpreterMacroAssembler::pop_ptr(Register r) {
 474   z_lg(r, Interpreter::expr_offset_in_bytes(0), Z_esp);
 475   add2reg(Z_esp, Interpreter::stackElementSize);
 476   assert_different_registers(r, Z_R1_scratch);
 477   debug_only(verify_esp(Z_esp, Z_R1_scratch));
 478 }
 479 
 480 void InterpreterMacroAssembler::pop_l(Register r) {
 481   z_lg(r, Interpreter::expr_offset_in_bytes(0), Z_esp);
 482   add2reg(Z_esp, 2*Interpreter::stackElementSize);
 483   assert_different_registers(r, Z_R1_scratch);
 484   debug_only(verify_esp(Z_esp, Z_R1_scratch));
 485 }
 486 
 487 void InterpreterMacroAssembler::pop_f(FloatRegister f) {
 488   mem2freg_opt(f, Address(Z_esp, Interpreter::expr_offset_in_bytes(0)), false);
 489   add2reg(Z_esp, Interpreter::stackElementSize);
 490   debug_only(verify_esp(Z_esp, Z_R1_scratch));
 491 }
 492 
 493 void InterpreterMacroAssembler::pop_d(FloatRegister f) {
 494   mem2freg_opt(f, Address(Z_esp, Interpreter::expr_offset_in_bytes(0)), true);
 495   add2reg(Z_esp, 2*Interpreter::stackElementSize);
 496   debug_only(verify_esp(Z_esp, Z_R1_scratch));
 497 }
 498 
 499 void InterpreterMacroAssembler::push_i(Register r) {
 500   assert_different_registers(r, Z_R1_scratch);
 501   debug_only(verify_esp(Z_esp, Z_R1_scratch));
 502   z_st(r, Address(Z_esp));
 503   add2reg(Z_esp, -Interpreter::stackElementSize);
 504 }
 505 
 506 void InterpreterMacroAssembler::push_ptr(Register r) {
 507   z_stg(r, Address(Z_esp));
 508   add2reg(Z_esp, -Interpreter::stackElementSize);
 509 }
 510 
 511 void InterpreterMacroAssembler::push_l(Register r) {
 512   assert_different_registers(r, Z_R1_scratch);
 513   debug_only(verify_esp(Z_esp, Z_R1_scratch));
 514   int offset = -Interpreter::stackElementSize;
 515   z_stg(r, Address(Z_esp, offset));
 516   clear_mem(Address(Z_esp), Interpreter::stackElementSize);
 517   add2reg(Z_esp, 2 * offset);
 518 }
 519 
 520 void InterpreterMacroAssembler::push_f(FloatRegister f) {
 521   debug_only(verify_esp(Z_esp, Z_R1_scratch));
 522   freg2mem_opt(f, Address(Z_esp), false);
 523   add2reg(Z_esp, -Interpreter::stackElementSize);
 524 }
 525 
 526 void InterpreterMacroAssembler::push_d(FloatRegister d) {
 527   debug_only(verify_esp(Z_esp, Z_R1_scratch));
 528   int offset = -Interpreter::stackElementSize;
 529   freg2mem_opt(d, Address(Z_esp, offset));
 530   add2reg(Z_esp, 2 * offset);
 531 }
 532 
 533 void InterpreterMacroAssembler::push(TosState state) {
 534   verify_oop(Z_tos, state);
 535   switch (state) {
 536     case atos: push_ptr();           break;
 537     case btos: push_i();             break;
 538     case ztos:
 539     case ctos:
 540     case stos: push_i();             break;
 541     case itos: push_i();             break;
 542     case ltos: push_l();             break;
 543     case ftos: push_f();             break;
 544     case dtos: push_d();             break;
 545     case vtos: /* nothing to do */   break;
 546     default  : ShouldNotReachHere();
 547   }
 548 }
 549 
 550 void InterpreterMacroAssembler::pop(TosState state) {
 551   switch (state) {
 552     case atos: pop_ptr(Z_tos);       break;
 553     case btos: pop_i(Z_tos);         break;
 554     case ztos:
 555     case ctos:
 556     case stos: pop_i(Z_tos);         break;
 557     case itos: pop_i(Z_tos);         break;
 558     case ltos: pop_l(Z_tos);         break;
 559     case ftos: pop_f(Z_ftos);        break;
 560     case dtos: pop_d(Z_ftos);        break;
 561     case vtos: /* nothing to do */   break;
 562     default  : ShouldNotReachHere();
 563   }
 564   verify_oop(Z_tos, state);
 565 }
 566 
 567 // Helpers for swap and dup.
 568 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
 569   z_lg(val, Address(Z_esp, Interpreter::expr_offset_in_bytes(n)));
 570 }
 571 
 572 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
 573   z_stg(val, Address(Z_esp, Interpreter::expr_offset_in_bytes(n)));
 574 }
 575 
 576 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted(Register method) {
 577   // Satisfy interpreter calling convention (see generate_normal_entry()).
 578   z_lgr(Z_R10, Z_SP); // Set sender sp (aka initial caller sp, aka unextended sp).
 579   // Record top_frame_sp, because the callee might modify it, if it's compiled.
 580   z_stg(Z_SP, _z_ijava_state_neg(top_frame_sp), Z_fp);
 581   save_bcp();
 582   save_esp();
 583   z_lgr(Z_method, method); // Set Z_method (kills Z_fp!).
 584 }
 585 
 586 // Jump to from_interpreted entry of a call unless single stepping is possible
 587 // in this thread in which case we must call the i2i entry.
 588 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
 589   assert_different_registers(method, Z_R10 /*used for initial_caller_sp*/, temp);
 590   prepare_to_jump_from_interpreted(method);
 591 
 592   if (JvmtiExport::can_post_interpreter_events()) {
 593     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
 594     // compiled code in threads for which the event is enabled. Check here for
 595     // interp_only_mode if these events CAN be enabled.
 596     z_lg(Z_R1_scratch, Address(method, Method::from_interpreted_offset()));
 597     MacroAssembler::load_and_test_int(Z_R0_scratch, Address(Z_thread, JavaThread::interp_only_mode_offset()));
 598     z_bcr(bcondEqual, Z_R1_scratch); // Run compiled code if zero.
 599     // Run interpreted.
 600     z_lg(Z_R1_scratch, Address(method, Method::interpreter_entry_offset()));
 601     z_br(Z_R1_scratch);
 602   } else {
 603     // Run compiled code.
 604     z_lg(Z_R1_scratch, Address(method, Method::from_interpreted_offset()));
 605     z_br(Z_R1_scratch);
 606   }
 607 }
 608 
 609 #ifdef ASSERT
 610 void InterpreterMacroAssembler::verify_esp(Register Resp, Register Rtemp) {
 611   // About to read or write Resp[0].
 612   // Make sure it is not in the monitors or the TOP_IJAVA_FRAME_ABI.
 613   address reentry = nullptr;
 614 
 615   {
 616     // Check if the frame pointer in Z_fp is correct.
 617     NearLabel OK;
 618     z_cg(Z_fp, 0, Z_SP);
 619     z_bre(OK);
 620     reentry = stop_chain_static(reentry, "invalid frame pointer Z_fp");
 621     bind(OK);
 622   }
 623   {
 624     // Resp must not point into or below the operand stack,
 625     // i.e. IJAVA_STATE.monitors > Resp.
 626     NearLabel OK;
 627     Register Rmonitors = Rtemp;
 628     z_lg(Rmonitors, _z_ijava_state_neg(monitors), Z_fp);
 629     compareU64_and_branch(Rmonitors, Resp, bcondHigh, OK);
 630     reentry = stop_chain_static(reentry, "too many pops: Z_esp points into monitor area");
 631     bind(OK);
 632   }
 633   {
 634     // Resp may point to the last word of TOP_IJAVA_FRAME_ABI, but not below
 635     // i.e. !(Z_SP + frame::z_top_ijava_frame_abi_size - Interpreter::stackElementSize > Resp).
 636     NearLabel OK;
 637     Register Rabi_bottom = Rtemp;
 638     add2reg(Rabi_bottom, frame::z_top_ijava_frame_abi_size - Interpreter::stackElementSize, Z_SP);
 639     compareU64_and_branch(Rabi_bottom, Resp, bcondNotHigh, OK);
 640     reentry = stop_chain_static(reentry, "too many pushes: Z_esp points into TOP_IJAVA_FRAME_ABI");
 641     bind(OK);
 642   }
 643 }
 644 
 645 void InterpreterMacroAssembler::asm_assert_ijava_state_magic(Register tmp) {
 646   Label magic_ok;
 647   load_const_optimized(tmp, frame::z_istate_magic_number);
 648   z_cg(tmp, Address(Z_fp, _z_ijava_state_neg(magic)));
 649   z_bre(magic_ok);
 650   stop_static("error: wrong magic number in ijava_state access");
 651   bind(magic_ok);
 652 }
 653 #endif // ASSERT
 654 
 655 void InterpreterMacroAssembler::save_bcp() {
 656   z_stg(Z_bcp, Address(Z_fp, _z_ijava_state_neg(bcp)));
 657   asm_assert_ijava_state_magic(Z_bcp);
 658   NOT_PRODUCT(z_lg(Z_bcp, Address(Z_fp, _z_ijava_state_neg(bcp))));
 659 }
 660 
 661 void InterpreterMacroAssembler::restore_bcp() {
 662   asm_assert_ijava_state_magic(Z_bcp);
 663   z_lg(Z_bcp, Address(Z_fp, _z_ijava_state_neg(bcp)));
 664 }
 665 
 666 void InterpreterMacroAssembler::save_esp() {
 667   z_stg(Z_esp, Address(Z_fp, _z_ijava_state_neg(esp)));
 668 }
 669 
 670 void InterpreterMacroAssembler::restore_esp() {
 671   asm_assert_ijava_state_magic(Z_esp);
 672   z_lg(Z_esp, Address(Z_fp, _z_ijava_state_neg(esp)));
 673 }
 674 
 675 void InterpreterMacroAssembler::get_monitors(Register reg) {
 676   asm_assert_ijava_state_magic(reg);
 677   mem2reg_opt(reg, Address(Z_fp, _z_ijava_state_neg(monitors)));
 678 }
 679 
 680 void InterpreterMacroAssembler::save_monitors(Register reg) {
 681   reg2mem_opt(reg, Address(Z_fp, _z_ijava_state_neg(monitors)));
 682 }
 683 
 684 void InterpreterMacroAssembler::get_mdp(Register mdp) {
 685   z_lg(mdp, _z_ijava_state_neg(mdx), Z_fp);
 686 }
 687 
 688 void InterpreterMacroAssembler::save_mdp(Register mdp) {
 689   z_stg(mdp, _z_ijava_state_neg(mdx), Z_fp);
 690 }
 691 
 692 // Values that are only read (besides initialization).
 693 void InterpreterMacroAssembler::restore_locals() {
 694   asm_assert_ijava_state_magic(Z_locals);
 695   z_lg(Z_locals, Address(Z_fp, _z_ijava_state_neg(locals)));
 696 }
 697 
 698 void InterpreterMacroAssembler::get_method(Register reg) {
 699   asm_assert_ijava_state_magic(reg);
 700   z_lg(reg, Address(Z_fp, _z_ijava_state_neg(method)));
 701 }
 702 
 703 void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(Register Rdst, int bcp_offset,
 704                                                           signedOrNot is_signed) {
 705   // Rdst is an 8-byte return value!!!
 706 
 707   // Unaligned loads incur only a small penalty on z/Architecture. The penalty
 708   // is a few (2..3) ticks, even when the load crosses a cache line
 709   // boundary. In case of a cache miss, the stall could, of course, be
 710   // much longer.
 711 
 712   switch (is_signed) {
 713     case Signed:
 714       z_lgh(Rdst, bcp_offset, Z_R0, Z_bcp);
 715      break;
 716    case Unsigned:
 717      z_llgh(Rdst, bcp_offset, Z_R0, Z_bcp);
 718      break;
 719    default:
 720      ShouldNotReachHere();
 721   }
 722 }
 723 
 724 
 725 void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(Register Rdst, int bcp_offset,
 726                                                           setCCOrNot set_cc) {
 727   // Rdst is an 8-byte return value!!!
 728 
 729   // Unaligned loads incur only a small penalty on z/Architecture. The penalty
 730   // is a few (2..3) ticks, even when the load crosses a cache line
 731   // boundary. In case of a cache miss, the stall could, of course, be
 732   // much longer.
 733 
 734   // Both variants implement a sign-extending int2long load.
 735   if (set_cc == set_CC) {
 736     load_and_test_int2long(Rdst, Address(Z_bcp, (intptr_t)bcp_offset));
 737   } else {
 738     mem2reg_signed_opt(    Rdst, Address(Z_bcp, (intptr_t)bcp_offset));
 739   }
 740 }
 741 
 742 void InterpreterMacroAssembler::get_constant_pool(Register Rdst) {
 743   get_method(Rdst);
 744   mem2reg_opt(Rdst, Address(Rdst, Method::const_offset()));
 745   mem2reg_opt(Rdst, Address(Rdst, ConstMethod::constants_offset()));
 746 }
 747 
 748 void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) {
 749   get_constant_pool(Rdst);
 750   mem2reg_opt(Rdst, Address(Rdst, ConstantPool::cache_offset()));
 751 }
 752 
 753 void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) {
 754   get_constant_pool(Rcpool);
 755   mem2reg_opt(Rtags, Address(Rcpool, ConstantPool::tags_offset()));
 756 }
 757 
 758 // Unlock if synchronized method.
 759 //
 760 // Unlock the receiver if this is a synchronized method.
 761 // Unlock any Java monitors from synchronized blocks.
 762 //
 763 // If there are locked Java monitors
 764 //   If throw_monitor_exception
 765 //     throws IllegalMonitorStateException
 766 //   Else if install_monitor_exception
 767 //     installs IllegalMonitorStateException
 768 //   Else
 769 //     no error processing
 770 void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state,
 771                                                               bool throw_monitor_exception,
 772                                                               bool install_monitor_exception) {
 773   NearLabel unlocked, unlock, no_unlock;
 774 
 775   {
 776     Register R_method = Z_ARG2;
 777     Register R_do_not_unlock_if_synchronized = Z_ARG3;
 778 
 779     // Get the value of _do_not_unlock_if_synchronized into G1_scratch.
 780     const Address do_not_unlock_if_synchronized(Z_thread,
 781                                                 JavaThread::do_not_unlock_if_synchronized_offset());
 782     load_sized_value(R_do_not_unlock_if_synchronized, do_not_unlock_if_synchronized, 1, false /*unsigned*/);
 783     z_mvi(do_not_unlock_if_synchronized, false); // Reset the flag.
 784 
 785     // Check if synchronized method.
 786     get_method(R_method);
 787     verify_oop(Z_tos, state);
 788     push(state); // Save tos/result.
 789     testbit(method2_(R_method, access_flags), JVM_ACC_SYNCHRONIZED_BIT);
 790     z_bfalse(unlocked);
 791 
 792     // Don't unlock anything if the _do_not_unlock_if_synchronized flag
 793     // is set.
 794     compareU64_and_branch(R_do_not_unlock_if_synchronized, (intptr_t)0L, bcondNotEqual, no_unlock);
 795   }
 796 
 797   // unlock monitor
 798 
 799   // BasicObjectLock will be first in list, since this is a
 800   // synchronized method. However, need to check that the object has
 801   // not been unlocked by an explicit monitorexit bytecode.
 802   const Address monitor(Z_fp, -(frame::z_ijava_state_size + (int) sizeof(BasicObjectLock)));
 803   // We use Z_ARG2 so that if we go slow path it will be the correct
 804   // register for unlock_object to pass to VM directly.
 805   load_address(Z_ARG2, monitor); // Address of first monitor.
 806   z_lg(Z_ARG3, Address(Z_ARG2, BasicObjectLock::obj_offset()));
 807   compareU64_and_branch(Z_ARG3, (intptr_t)0L, bcondNotEqual, unlock);
 808 
 809   if (throw_monitor_exception) {
 810     // Entry already unlocked need to throw an exception.
 811     MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
 812     should_not_reach_here();
 813   } else {
 814     // Monitor already unlocked during a stack unroll.
 815     // If requested, install an illegal_monitor_state_exception.
 816     // Continue with stack unrolling.
 817     if (install_monitor_exception) {
 818       MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
 819     }
 820    z_bru(unlocked);
 821   }
 822 
 823   bind(unlock);
 824 
 825   unlock_object(Z_ARG2);
 826 
 827   bind(unlocked);
 828 
 829   // I0, I1: Might contain return value
 830 
 831   // Check that all monitors are unlocked.
 832   {
 833     NearLabel loop, exception, entry, restart;
 834     const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
 835     // We use Z_ARG2 so that if we go slow path it will be the correct
 836     // register for unlock_object to pass to VM directly.
 837     Register R_current_monitor = Z_ARG2;
 838     Register R_monitor_block_bot = Z_ARG1;
 839     const Address monitor_block_top(Z_fp, _z_ijava_state_neg(monitors));
 840     const Address monitor_block_bot(Z_fp, -frame::z_ijava_state_size);
 841 
 842     bind(restart);
 843     // Starting with top-most entry.
 844     z_lg(R_current_monitor, monitor_block_top);
 845     // Points to word before bottom of monitor block.
 846     load_address(R_monitor_block_bot, monitor_block_bot);
 847     z_bru(entry);
 848 
 849     // Entry already locked, need to throw exception.
 850     bind(exception);
 851 
 852     if (throw_monitor_exception) {
 853       // Throw exception.
 854       MacroAssembler::call_VM(noreg,
 855                               CAST_FROM_FN_PTR(address, InterpreterRuntime::
 856                                                throw_illegal_monitor_state_exception));
 857       should_not_reach_here();
 858     } else {
 859       // Stack unrolling. Unlock object and install illegal_monitor_exception.
 860       // Unlock does not block, so don't have to worry about the frame.
 861       // We don't have to preserve c_rarg1 since we are going to throw an exception.
 862       unlock_object(R_current_monitor);
 863       if (install_monitor_exception) {
 864         call_VM(noreg, CAST_FROM_FN_PTR(address,
 865                                         InterpreterRuntime::
 866                                         new_illegal_monitor_state_exception));
 867       }
 868       z_bru(restart);
 869     }
 870 
 871     bind(loop);
 872     // Check if current entry is used.
 873     load_and_test_long(Z_R0_scratch, Address(R_current_monitor, BasicObjectLock::obj_offset()));
 874     z_brne(exception);
 875 
 876     add2reg(R_current_monitor, entry_size); // Otherwise advance to next entry.
 877     bind(entry);
 878     compareU64_and_branch(R_current_monitor, R_monitor_block_bot, bcondNotEqual, loop);
 879   }
 880 
 881   bind(no_unlock);
 882   pop(state);
 883   verify_oop(Z_tos, state);
 884 }
 885 
 886 void InterpreterMacroAssembler::narrow(Register result, Register ret_type) {
 887   get_method(ret_type);
 888   z_lg(ret_type, Address(ret_type, in_bytes(Method::const_offset())));
 889   z_lb(ret_type, Address(ret_type, in_bytes(ConstMethod::result_type_offset())));
 890 
 891   Label notBool, notByte, notChar, done;
 892 
 893   // common case first
 894   compareU32_and_branch(ret_type, T_INT, bcondEqual, done);
 895 
 896   compareU32_and_branch(ret_type, T_BOOLEAN, bcondNotEqual, notBool);
 897   z_nilf(result, 0x1);
 898   z_bru(done);
 899 
 900   bind(notBool);
 901   compareU32_and_branch(ret_type, T_BYTE, bcondNotEqual, notByte);
 902   z_lbr(result, result);
 903   z_bru(done);
 904 
 905   bind(notByte);
 906   compareU32_and_branch(ret_type, T_CHAR, bcondNotEqual, notChar);
 907   z_nilf(result, 0xffff);
 908   z_bru(done);
 909 
 910   bind(notChar);
 911   // compareU32_and_branch(ret_type, T_SHORT, bcondNotEqual, notShort);
 912   z_lhr(result, result);
 913 
 914   // Nothing to do for T_INT
 915   bind(done);
 916 }
 917 
 918 // remove activation
 919 //
 920 // Unlock the receiver if this is a synchronized method.
 921 // Unlock any Java monitors from synchronized blocks.
 922 // Remove the activation from the stack.
 923 //
 924 // If there are locked Java monitors
 925 //   If throw_monitor_exception
 926 //     throws IllegalMonitorStateException
 927 //   Else if install_monitor_exception
 928 //     installs IllegalMonitorStateException
 929 //   Else
 930 //     no error processing
 931 void InterpreterMacroAssembler::remove_activation(TosState state,
 932                                                   Register return_pc,
 933                                                   bool throw_monitor_exception,
 934                                                   bool install_monitor_exception,
 935                                                   bool notify_jvmti) {
 936   BLOCK_COMMENT("remove_activation {");
 937   unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception);
 938 
 939   // Save result (push state before jvmti call and pop it afterwards) and notify jvmti.
 940   notify_method_exit(false, state, notify_jvmti ? NotifyJVMTI : SkipNotifyJVMTI);
 941 
 942   if (StackReservedPages > 0) {
 943     BLOCK_COMMENT("reserved_stack_check:");
 944     // Test if reserved zone needs to be enabled.
 945     Label no_reserved_zone_enabling;
 946 
 947     // check if already enabled - if so no re-enabling needed
 948     assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size");
 949     z_ly(Z_R0, Address(Z_thread, JavaThread::stack_guard_state_offset()));
 950     compare32_and_branch(Z_R0, StackOverflow::stack_guard_enabled, bcondEqual, no_reserved_zone_enabling);
 951 
 952     // Compare frame pointers. There is no good stack pointer, as with stack
 953     // frame compression we can get different SPs when we do calls. A subsequent
 954     // call could have a smaller SP, so that this compare succeeds for an
 955     // inner call of the method annotated with ReservedStack.
 956     z_lg(Z_R0, Address(Z_SP, (intptr_t)_z_abi(callers_sp)));
 957     z_clg(Z_R0, Address(Z_thread, JavaThread::reserved_stack_activation_offset())); // Compare with frame pointer in memory.
 958     z_brl(no_reserved_zone_enabling);
 959 
 960     // Enable reserved zone again, throw stack overflow exception.
 961     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), Z_thread);
 962     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_delayed_StackOverflowError));
 963 
 964     should_not_reach_here();
 965 
 966     bind(no_reserved_zone_enabling);
 967   }
 968 
 969   verify_oop(Z_tos, state);
 970 
 971   pop_interpreter_frame(return_pc, Z_ARG2, Z_ARG3);
 972   BLOCK_COMMENT("} remove_activation");
 973 }
 974 
 975 // lock object
 976 //
 977 // Registers alive
 978 //   monitor (Z_R10) - Address of the BasicObjectLock to be used for locking,
 979 //             which must be initialized with the object to lock.
 980 //   object  (Z_R11, Z_R2) - Address of the object to be locked.
 981 //  templateTable (monitorenter) is using Z_R2 for object
 982 void InterpreterMacroAssembler::lock_object(Register monitor, Register object) {
 983 
 984   if (LockingMode == LM_MONITOR) {
 985     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), monitor);
 986     return;
 987   }
 988 
 989   // template code: (for LM_LEGACY)
 990   //
 991   // markWord displaced_header = obj->mark().set_unlocked();
 992   // monitor->lock()->set_displaced_header(displaced_header);
 993   // if (Atomic::cmpxchg(/*addr*/obj->mark_addr(), /*cmp*/displaced_header, /*ex=*/monitor) == displaced_header) {
 994   //   // We stored the monitor address into the object's mark word.
 995   // } else if (THREAD->is_lock_owned((address)displaced_header))
 996   //   // Simple recursive case.
 997   //   monitor->lock()->set_displaced_header(nullptr);
 998   // } else {
 999   //   // Slow path.
1000   //   InterpreterRuntime::monitorenter(THREAD, monitor);
1001   // }
1002 
1003   const int hdr_offset = oopDesc::mark_offset_in_bytes();
1004 
1005   const Register header           = Z_ARG5;
1006   const Register object_mark_addr = Z_ARG4;
1007   const Register current_header   = Z_ARG5;
1008   const Register tmp              = Z_R1_scratch;
1009 
1010   NearLabel done, slow_case;
1011 
1012   // markWord header = obj->mark().set_unlocked();
1013 
1014   // Load markWord from object into header.
1015   z_lg(header, hdr_offset, object);
1016 
1017   if (DiagnoseSyncOnValueBasedClasses != 0) {
1018     load_klass(tmp, object);
1019     testbit(Address(tmp, Klass::access_flags_offset()), exact_log2(JVM_ACC_IS_VALUE_BASED_CLASS));
1020     z_btrue(slow_case);
1021   }
1022 
1023   if (LockingMode == LM_LIGHTWEIGHT) {
1024     lightweight_lock(object, /* mark word */ header, tmp, slow_case);
1025   } else if (LockingMode == LM_LEGACY) {
1026 
1027     // Set header to be (markWord of object | UNLOCK_VALUE).
1028     // This will not change anything if it was unlocked before.
1029     z_oill(header, markWord::unlocked_value);
1030 
1031     // monitor->lock()->set_displaced_header(displaced_header);
1032     const int lock_offset = in_bytes(BasicObjectLock::lock_offset());
1033     const int mark_offset = lock_offset + BasicLock::displaced_header_offset_in_bytes();
1034 
1035     // Initialize the box (Must happen before we update the object mark!).
1036     z_stg(header, mark_offset, monitor);
1037 
1038     // if (Atomic::cmpxchg(/*addr*/obj->mark_addr(), /*cmp*/displaced_header, /*ex=*/monitor) == displaced_header) {
1039 
1040     // not necessary, use offset in instruction directly.
1041     // add2reg(object_mark_addr, hdr_offset, object);
1042 
1043     // Store stack address of the BasicObjectLock (this is monitor) into object.
1044     z_csg(header, monitor, hdr_offset, object);
1045     assert(current_header == header,
1046            "must be same register"); // Identified two registers from z/Architecture.
1047 
1048     z_bre(done);
1049 
1050     // } else if (THREAD->is_lock_owned((address)displaced_header))
1051     //   // Simple recursive case.
1052     //   monitor->lock()->set_displaced_header(nullptr);
1053 
1054     // We did not see an unlocked object so try the fast recursive case.
1055 
1056     // Check if owner is self by comparing the value in the markWord of object
1057     // (current_header) with the stack pointer.
1058     z_sgr(current_header, Z_SP);
1059 
1060     assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
1061 
1062     // The prior sequence "LGR, NGR, LTGR" can be done better
1063     // (Z_R1 is temp and not used after here).
1064     load_const_optimized(Z_R0, (~(os::vm_page_size() - 1) | markWord::lock_mask_in_place));
1065     z_ngr(Z_R0, current_header); // AND sets CC (result eq/ne 0)
1066 
1067     // If condition is true we are done and hence we can store 0 in the displaced
1068     // header indicating it is a recursive lock and be done.
1069     z_brne(slow_case);
1070     z_release();  // Member unnecessary on zarch AND because the above csg does a sync before and after.
1071     z_stg(Z_R0/*==0!*/, mark_offset, monitor);
1072   }
1073   z_bru(done);
1074   // } else {
1075   //   // Slow path.
1076   //   InterpreterRuntime::monitorenter(THREAD, monitor);
1077 
1078   // None of the above fast optimizations worked so we have to get into the
1079   // slow case of monitor enter.
1080   bind(slow_case);
1081   if (LockingMode == LM_LIGHTWEIGHT) {
1082     // for lightweight locking we need to use monitorenter_obj, see interpreterRuntime.cpp
1083     call_VM(noreg,
1084             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter_obj),
1085             object);
1086   } else {
1087     call_VM(noreg,
1088             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
1089             monitor);
1090   }
1091   // }
1092 
1093   bind(done);
1094 }
1095 
1096 // Unlocks an object. Used in monitorexit bytecode and remove_activation.
1097 //
1098 // Registers alive
1099 //   monitor - address of the BasicObjectLock to be used for locking,
1100 //             which must be initialized with the object to lock.
1101 //
1102 // Throw IllegalMonitorException if object is not locked by current thread.
1103 void InterpreterMacroAssembler::unlock_object(Register monitor, Register object) {
1104 
1105   if (LockingMode == LM_MONITOR) {
1106     call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), monitor);
1107     return;
1108   }
1109 
1110 // else {
1111   // template code: (for LM_LEGACY):
1112   //
1113   // if ((displaced_header = monitor->displaced_header()) == nullptr) {
1114   //   // Recursive unlock. Mark the monitor unlocked by setting the object field to null.
1115   //   monitor->set_obj(nullptr);
1116   // } else if (Atomic::cmpxchg(obj->mark_addr(), monitor, displaced_header) == monitor) {
1117   //   // We swapped the unlocked mark in displaced_header into the object's mark word.
1118   //   monitor->set_obj(nullptr);
1119   // } else {
1120   //   // Slow path.
1121   //   InterpreterRuntime::monitorexit(monitor);
1122   // }
1123 
1124   const int hdr_offset = oopDesc::mark_offset_in_bytes();
1125 
1126   const Register header         = Z_ARG4;
1127   const Register current_header = Z_R1_scratch;
1128   Address obj_entry(monitor, BasicObjectLock::obj_offset());
1129   Label done, slow_case;
1130 
1131   if (object == noreg) {
1132     // In the template interpreter, we must assure that the object
1133     // entry in the monitor is cleared on all paths. Thus we move
1134     // loading up to here, and clear the entry afterwards.
1135     object = Z_ARG3; // Use Z_ARG3 if caller didn't pass object.
1136     z_lg(object, obj_entry);
1137   }
1138 
1139   assert_different_registers(monitor, object, header, current_header);
1140 
1141   // if ((displaced_header = monitor->displaced_header()) == nullptr) {
1142   //   // Recursive unlock. Mark the monitor unlocked by setting the object field to null.
1143   //   monitor->set_obj(nullptr);
1144 
1145   // monitor->lock()->set_displaced_header(displaced_header);
1146   const int lock_offset = in_bytes(BasicObjectLock::lock_offset());
1147   const int mark_offset = lock_offset + BasicLock::displaced_header_offset_in_bytes();
1148 
1149   clear_mem(obj_entry, sizeof(oop));
1150   if (LockingMode != LM_LIGHTWEIGHT) {
1151     // Test first if we are in the fast recursive case.
1152     MacroAssembler::load_and_test_long(header, Address(monitor, mark_offset));
1153     z_bre(done); // header == 0 -> goto done
1154   }
1155 
1156   // } else if (Atomic::cmpxchg(obj->mark_addr(), monitor, displaced_header) == monitor) {
1157   //   // We swapped the unlocked mark in displaced_header into the object's mark word.
1158   //   monitor->set_obj(nullptr);
1159 
1160   // If we still have a lightweight lock, unlock the object and be done.
1161   if (LockingMode == LM_LIGHTWEIGHT) {
1162     // Check for non-symmetric locking. This is allowed by the spec and the interpreter
1163     // must handle it.
1164 
1165     Register tmp = current_header;
1166 
1167     // First check for lock-stack underflow.
1168     z_lgf(tmp, Address(Z_thread, JavaThread::lock_stack_top_offset()));
1169     compareU32_and_branch(tmp, (unsigned)LockStack::start_offset(), Assembler::bcondNotHigh, slow_case);
1170 
1171     // Then check if the top of the lock-stack matches the unlocked object.
1172     z_aghi(tmp, -oopSize);
1173     z_lg(tmp, Address(Z_thread, tmp));
1174     compare64_and_branch(tmp, object, Assembler::bcondNotEqual, slow_case);
1175 
1176     z_lg(header, Address(object, hdr_offset));
1177     z_lgr(tmp, header);
1178     z_nill(tmp, markWord::monitor_value);
1179     z_brne(slow_case);
1180 
1181     lightweight_unlock(object, header, tmp, slow_case);
1182 
1183     z_bru(done);
1184   } else {
1185     // The markword is expected to be at offset 0.
1186     // This is not required on s390, at least not here.
1187     assert(hdr_offset == 0, "unlock_object: review code below");
1188 
1189     // We have the displaced header in header. If the lock is still
1190     // lightweight, it will contain the monitor address and we'll store the
1191     // displaced header back into the object's mark word.
1192     z_lgr(current_header, monitor);
1193     z_csg(current_header, header, hdr_offset, object);
1194     z_bre(done);
1195   }
1196 
1197   // } else {
1198   //   // Slow path.
1199   //   InterpreterRuntime::monitorexit(monitor);
1200 
1201   // The lock has been converted into a heavy lock and hence
1202   // we need to get into the slow case.
1203   bind(slow_case);
1204   z_stg(object, obj_entry);   // Restore object entry, has been cleared above.
1205   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), monitor);
1206 
1207   // }
1208 
1209   bind(done);
1210 }
1211 
1212 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, Label& zero_continue) {
1213   assert(ProfileInterpreter, "must be profiling interpreter");
1214   load_and_test_long(mdp, Address(Z_fp, _z_ijava_state_neg(mdx)));
1215   z_brz(zero_continue);
1216 }
1217 
1218 // Set the method data pointer for the current bcp.
1219 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
1220   assert(ProfileInterpreter, "must be profiling interpreter");
1221   Label    set_mdp;
1222   Register mdp    = Z_ARG4;
1223   Register method = Z_ARG5;
1224 
1225   get_method(method);
1226   // Test MDO to avoid the call if it is null.
1227   load_and_test_long(mdp, method2_(method, method_data));
1228   z_brz(set_mdp);
1229 
1230   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), method, Z_bcp);
1231   // Z_RET: mdi
1232   // Mdo is guaranteed to be non-zero here, we checked for it before the call.
1233   assert(method->is_nonvolatile(), "choose nonvolatile reg or reload from frame");
1234   z_lg(mdp, method2_(method, method_data)); // Must reload, mdp is volatile reg.
1235   add2reg_with_index(mdp, in_bytes(MethodData::data_offset()), Z_RET, mdp);
1236 
1237   bind(set_mdp);
1238   save_mdp(mdp);
1239 }
1240 
1241 void InterpreterMacroAssembler::verify_method_data_pointer() {
1242   assert(ProfileInterpreter, "must be profiling interpreter");
1243 #ifdef ASSERT
1244   NearLabel verify_continue;
1245   Register bcp_expected = Z_ARG3;
1246   Register mdp    = Z_ARG4;
1247   Register method = Z_ARG5;
1248 
1249   test_method_data_pointer(mdp, verify_continue); // If mdp is zero, continue
1250   get_method(method);
1251 
1252   // If the mdp is valid, it will point to a DataLayout header which is
1253   // consistent with the bcp. The converse is highly probable also.
1254   load_sized_value(bcp_expected, Address(mdp, DataLayout::bci_offset()), 2, false /*signed*/);
1255   z_ag(bcp_expected, Address(method, Method::const_offset()));
1256   load_address(bcp_expected, Address(bcp_expected, ConstMethod::codes_offset()));
1257   compareU64_and_branch(bcp_expected, Z_bcp, bcondEqual, verify_continue);
1258   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), method, Z_bcp, mdp);
1259   bind(verify_continue);
1260 #endif // ASSERT
1261 }
1262 
1263 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, int constant, Register value) {
1264   assert(ProfileInterpreter, "must be profiling interpreter");
1265   z_stg(value, constant, mdp_in);
1266 }
1267 
1268 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
1269                                                       int constant,
1270                                                       Register tmp,
1271                                                       bool decrement) {
1272   assert_different_registers(mdp_in, tmp);
1273   // counter address
1274   Address data(mdp_in, constant);
1275   const int delta = decrement ? -DataLayout::counter_increment : DataLayout::counter_increment;
1276   add2mem_64(Address(mdp_in, constant), delta, tmp);
1277 }
1278 
1279 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
1280                                                 int flag_byte_constant) {
1281   assert(ProfileInterpreter, "must be profiling interpreter");
1282   // Set the flag.
1283   z_oi(Address(mdp_in, DataLayout::flags_offset()), flag_byte_constant);
1284 }
1285 
1286 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
1287                                                  int offset,
1288                                                  Register value,
1289                                                  Register test_value_out,
1290                                                  Label& not_equal_continue) {
1291   assert(ProfileInterpreter, "must be profiling interpreter");
1292   if (test_value_out == noreg) {
1293     z_cg(value, Address(mdp_in, offset));
1294     z_brne(not_equal_continue);
1295   } else {
1296     // Put the test value into a register, so caller can use it:
1297     z_lg(test_value_out, Address(mdp_in, offset));
1298     compareU64_and_branch(test_value_out, value, bcondNotEqual, not_equal_continue);
1299   }
1300 }
1301 
1302 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, int offset_of_disp) {
1303   update_mdp_by_offset(mdp_in, noreg, offset_of_disp);
1304 }
1305 
1306 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1307                                                      Register dataidx,
1308                                                      int offset_of_disp) {
1309   assert(ProfileInterpreter, "must be profiling interpreter");
1310   Address disp_address(mdp_in, dataidx, offset_of_disp);
1311   Assembler::z_ag(mdp_in, disp_address);
1312   save_mdp(mdp_in);
1313 }
1314 
1315 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, int constant) {
1316   assert(ProfileInterpreter, "must be profiling interpreter");
1317   add2reg(mdp_in, constant);
1318   save_mdp(mdp_in);
1319 }
1320 
1321 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
1322   assert(ProfileInterpreter, "must be profiling interpreter");
1323   assert(return_bci->is_nonvolatile(), "choose nonvolatile reg or save/restore");
1324   call_VM(noreg,
1325           CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
1326           return_bci);
1327 }
1328 
1329 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, Register bumped_count) {
1330   if (ProfileInterpreter) {
1331     Label profile_continue;
1332 
1333     // If no method data exists, go to profile_continue.
1334     // Otherwise, assign to mdp.
1335     test_method_data_pointer(mdp, profile_continue);
1336 
1337     // We are taking a branch. Increment the taken count.
1338     // We inline increment_mdp_data_at to return bumped_count in a register
1339     //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
1340     Address data(mdp, JumpData::taken_offset());
1341     z_lg(bumped_count, data);
1342     // 64-bit overflow is very unlikely. Saturation to 32-bit values is
1343     // performed when reading the counts.
1344     add2reg(bumped_count, DataLayout::counter_increment);
1345     z_stg(bumped_count, data); // Store back out
1346 
1347     // The method data pointer needs to be updated to reflect the new target.
1348     update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
1349     bind(profile_continue);
1350   }
1351 }
1352 
1353 // Kills Z_R1_scratch.
1354 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
1355   if (ProfileInterpreter) {
1356     Label profile_continue;
1357 
1358     // If no method data exists, go to profile_continue.
1359     test_method_data_pointer(mdp, profile_continue);
1360 
1361     // We are taking a branch. Increment the not taken count.
1362     increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()), Z_R1_scratch);
1363 
1364     // The method data pointer needs to be updated to correspond to
1365     // the next bytecode.
1366     update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
1367     bind(profile_continue);
1368   }
1369 }
1370 
1371 // Kills: Z_R1_scratch.
1372 void InterpreterMacroAssembler::profile_call(Register mdp) {
1373   if (ProfileInterpreter) {
1374     Label profile_continue;
1375 
1376     // If no method data exists, go to profile_continue.
1377     test_method_data_pointer(mdp, profile_continue);
1378 
1379     // We are making a call. Increment the count.
1380     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1381 
1382     // The method data pointer needs to be updated to reflect the new target.
1383     update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
1384     bind(profile_continue);
1385   }
1386 }
1387 
1388 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
1389   if (ProfileInterpreter) {
1390     Label profile_continue;
1391 
1392     // If no method data exists, go to profile_continue.
1393     test_method_data_pointer(mdp, profile_continue);
1394 
1395     // We are making a call. Increment the count.
1396     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1397 
1398     // The method data pointer needs to be updated to reflect the new target.
1399     update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1400     bind(profile_continue);
1401   }
1402 }
1403 
1404 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1405                                                      Register mdp,
1406                                                      Register reg2,
1407                                                      bool receiver_can_be_null) {
1408   if (ProfileInterpreter) {
1409     NearLabel profile_continue;
1410 
1411     // If no method data exists, go to profile_continue.
1412     test_method_data_pointer(mdp, profile_continue);
1413 
1414     NearLabel skip_receiver_profile;
1415     if (receiver_can_be_null) {
1416       NearLabel not_null;
1417       compareU64_and_branch(receiver, (intptr_t)0L, bcondNotEqual, not_null);
1418       // We are making a call. Increment the count for null receiver.
1419       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1420       z_bru(skip_receiver_profile);
1421       bind(not_null);
1422     }
1423 
1424     // Record the receiver type.
1425     record_klass_in_profile(receiver, mdp, reg2);
1426     bind(skip_receiver_profile);
1427 
1428     // The method data pointer needs to be updated to reflect the new target.
1429     update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1430     bind(profile_continue);
1431   }
1432 }
1433 
1434 // This routine creates a state machine for updating the multi-row
1435 // type profile at a virtual call site (or other type-sensitive bytecode).
1436 // The machine visits each row (of receiver/count) until the receiver type
1437 // is found, or until it runs out of rows. At the same time, it remembers
1438 // the location of the first empty row. (An empty row records null for its
1439 // receiver, and can be allocated for a newly-observed receiver type.)
1440 // Because there are two degrees of freedom in the state, a simple linear
1441 // search will not work; it must be a decision tree. Hence this helper
1442 // function is recursive, to generate the required tree structured code.
1443 // It's the interpreter, so we are trading off code space for speed.
1444 // See below for example code.
1445 void InterpreterMacroAssembler::record_klass_in_profile_helper(
1446                                         Register receiver, Register mdp,
1447                                         Register reg2, int start_row,
1448                                         Label& done) {
1449   if (TypeProfileWidth == 0) {
1450     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1451     return;
1452   }
1453 
1454   int last_row = VirtualCallData::row_limit() - 1;
1455   assert(start_row <= last_row, "must be work left to do");
1456   // Test this row for both the receiver and for null.
1457   // Take any of three different outcomes:
1458   //   1. found receiver => increment count and goto done
1459   //   2. found null => keep looking for case 1, maybe allocate this cell
1460   //   3. found something else => keep looking for cases 1 and 2
1461   // Case 3 is handled by a recursive call.
1462   for (int row = start_row; row <= last_row; row++) {
1463     NearLabel next_test;
1464     bool test_for_null_also = (row == start_row);
1465 
1466     // See if the receiver is receiver[n].
1467     int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
1468     test_mdp_data_at(mdp, recvr_offset, receiver,
1469                      (test_for_null_also ? reg2 : noreg),
1470                      next_test);
1471     // (Reg2 now contains the receiver from the CallData.)
1472 
1473     // The receiver is receiver[n]. Increment count[n].
1474     int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
1475     increment_mdp_data_at(mdp, count_offset);
1476     z_bru(done);
1477     bind(next_test);
1478 
1479     if (test_for_null_also) {
1480       Label found_null;
1481       // Failed the equality check on receiver[n]... Test for null.
1482       z_ltgr(reg2, reg2);
1483       if (start_row == last_row) {
1484         // The only thing left to do is handle the null case.
1485         z_brz(found_null);
1486         // Receiver did not match any saved receiver and there is no empty row for it.
1487         // Increment total counter to indicate polymorphic case.
1488         increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1489         z_bru(done);
1490         bind(found_null);
1491         break;
1492       }
1493       // Since null is rare, make it be the branch-taken case.
1494       z_brz(found_null);
1495 
1496       // Put all the "Case 3" tests here.
1497       record_klass_in_profile_helper(receiver, mdp, reg2, start_row + 1, done);
1498 
1499       // Found a null. Keep searching for a matching receiver,
1500       // but remember that this is an empty (unused) slot.
1501       bind(found_null);
1502     }
1503   }
1504 
1505   // In the fall-through case, we found no matching receiver, but we
1506   // observed the receiver[start_row] is null.
1507 
1508   // Fill in the receiver field and increment the count.
1509   int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
1510   set_mdp_data_at(mdp, recvr_offset, receiver);
1511   int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
1512   load_const_optimized(reg2, DataLayout::counter_increment);
1513   set_mdp_data_at(mdp, count_offset, reg2);
1514   if (start_row > 0) {
1515     z_bru(done);
1516   }
1517 }
1518 
1519 // Example state machine code for three profile rows:
1520 //   // main copy of decision tree, rooted at row[1]
1521 //   if (row[0].rec == rec) { row[0].incr(); goto done; }
1522 //   if (row[0].rec != nullptr) {
1523 //     // inner copy of decision tree, rooted at row[1]
1524 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1525 //     if (row[1].rec != nullptr) {
1526 //       // degenerate decision tree, rooted at row[2]
1527 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1528 //       if (row[2].rec != nullptr) { count.incr(); goto done; } // overflow
1529 //       row[2].init(rec); goto done;
1530 //     } else {
1531 //       // remember row[1] is empty
1532 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1533 //       row[1].init(rec); goto done;
1534 //     }
1535 //   } else {
1536 //     // remember row[0] is empty
1537 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1538 //     if (row[2].rec == rec) { row[2].incr(); goto done; }
1539 //     row[0].init(rec); goto done;
1540 //   }
1541 //   done:
1542 
1543 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1544                                                         Register mdp, Register reg2) {
1545   assert(ProfileInterpreter, "must be profiling");
1546   Label done;
1547 
1548   record_klass_in_profile_helper(receiver, mdp, reg2, 0, done);
1549 
1550   bind (done);
1551 }
1552 
1553 void InterpreterMacroAssembler::profile_ret(Register return_bci, Register mdp) {
1554   if (ProfileInterpreter) {
1555     NearLabel profile_continue;
1556     uint row;
1557 
1558     // If no method data exists, go to profile_continue.
1559     test_method_data_pointer(mdp, profile_continue);
1560 
1561     // Update the total ret count.
1562     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1563 
1564     for (row = 0; row < RetData::row_limit(); row++) {
1565       NearLabel next_test;
1566 
1567       // See if return_bci is equal to bci[n]:
1568       test_mdp_data_at(mdp,
1569                        in_bytes(RetData::bci_offset(row)),
1570                        return_bci, noreg,
1571                        next_test);
1572 
1573       // Return_bci is equal to bci[n]. Increment the count.
1574       increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
1575 
1576       // The method data pointer needs to be updated to reflect the new target.
1577       update_mdp_by_offset(mdp, in_bytes(RetData::bci_displacement_offset(row)));
1578       z_bru(profile_continue);
1579       bind(next_test);
1580     }
1581 
1582     update_mdp_for_ret(return_bci);
1583 
1584     bind(profile_continue);
1585   }
1586 }
1587 
1588 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1589   if (ProfileInterpreter) {
1590     Label profile_continue;
1591 
1592     // If no method data exists, go to profile_continue.
1593     test_method_data_pointer(mdp, profile_continue);
1594 
1595     set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1596 
1597     // The method data pointer needs to be updated.
1598     int mdp_delta = in_bytes(BitData::bit_data_size());
1599     if (TypeProfileCasts) {
1600       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1601     }
1602     update_mdp_by_constant(mdp, mdp_delta);
1603 
1604     bind(profile_continue);
1605   }
1606 }
1607 
1608 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
1609   if (ProfileInterpreter) {
1610     Label profile_continue;
1611 
1612     // If no method data exists, go to profile_continue.
1613     test_method_data_pointer(mdp, profile_continue);
1614 
1615     // The method data pointer needs to be updated.
1616     int mdp_delta = in_bytes(BitData::bit_data_size());
1617     if (TypeProfileCasts) {
1618       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1619 
1620       // Record the object type.
1621       record_klass_in_profile(klass, mdp, reg2);
1622     }
1623     update_mdp_by_constant(mdp, mdp_delta);
1624 
1625     bind(profile_continue);
1626   }
1627 }
1628 
1629 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
1630   if (ProfileInterpreter) {
1631     Label profile_continue;
1632 
1633     // If no method data exists, go to profile_continue.
1634     test_method_data_pointer(mdp, profile_continue);
1635 
1636     // Update the default case count.
1637     increment_mdp_data_at(mdp, in_bytes(MultiBranchData::default_count_offset()));
1638 
1639     // The method data pointer needs to be updated.
1640     update_mdp_by_offset(mdp, in_bytes(MultiBranchData::default_displacement_offset()));
1641 
1642     bind(profile_continue);
1643   }
1644 }
1645 
1646 // Kills: index, scratch1, scratch2.
1647 void InterpreterMacroAssembler::profile_switch_case(Register index,
1648                                                     Register mdp,
1649                                                     Register scratch1,
1650                                                     Register scratch2) {
1651   if (ProfileInterpreter) {
1652     Label profile_continue;
1653     assert_different_registers(index, mdp, scratch1, scratch2);
1654 
1655     // If no method data exists, go to profile_continue.
1656     test_method_data_pointer(mdp, profile_continue);
1657 
1658     // Build the base (index * per_case_size_in_bytes()) +
1659     // case_array_offset_in_bytes().
1660     z_sllg(index, index, exact_log2(in_bytes(MultiBranchData::per_case_size())));
1661     add2reg(index, in_bytes(MultiBranchData::case_array_offset()));
1662 
1663     // Add the calculated base to the mdp -> address of the case' data.
1664     Address case_data_addr(mdp, index);
1665     Register case_data = scratch1;
1666     load_address(case_data, case_data_addr);
1667 
1668     // Update the case count.
1669     increment_mdp_data_at(case_data,
1670                           in_bytes(MultiBranchData::relative_count_offset()),
1671                           scratch2);
1672 
1673     // The method data pointer needs to be updated.
1674     update_mdp_by_offset(mdp,
1675                          index,
1676                          in_bytes(MultiBranchData::relative_displacement_offset()));
1677 
1678     bind(profile_continue);
1679   }
1680 }
1681 
1682 // kills: R0, R1, flags, loads klass from obj (if not null)
1683 void InterpreterMacroAssembler::profile_obj_type(Register obj, Address mdo_addr, Register klass, bool cmp_done) {
1684   NearLabel null_seen, init_klass, do_nothing, do_update;
1685 
1686   // Klass = obj is allowed.
1687   const Register tmp = Z_R1;
1688   assert_different_registers(obj, mdo_addr.base(), tmp, Z_R0);
1689   assert_different_registers(klass, mdo_addr.base(), tmp, Z_R0);
1690 
1691   z_lg(tmp, mdo_addr);
1692   if (cmp_done) {
1693     z_brz(null_seen);
1694   } else {
1695     compareU64_and_branch(obj, (intptr_t)0, Assembler::bcondEqual, null_seen);
1696   }
1697 
1698   MacroAssembler::verify_oop(obj, FILE_AND_LINE);
1699   load_klass(klass, obj);
1700 
1701   // Klass seen before, nothing to do (regardless of unknown bit).
1702   z_lgr(Z_R0, tmp);
1703   assert(Immediate::is_uimm(~TypeEntries::type_klass_mask, 16), "or change following instruction");
1704   z_nill(Z_R0, TypeEntries::type_klass_mask & 0xFFFF);
1705   compareU64_and_branch(Z_R0, klass, Assembler::bcondEqual, do_nothing);
1706 
1707   // Already unknown. Nothing to do anymore.
1708   z_tmll(tmp, TypeEntries::type_unknown);
1709   z_brc(Assembler::bcondAllOne, do_nothing);
1710 
1711   z_lgr(Z_R0, tmp);
1712   assert(Immediate::is_uimm(~TypeEntries::type_mask, 16), "or change following instruction");
1713   z_nill(Z_R0, TypeEntries::type_mask & 0xFFFF);
1714   compareU64_and_branch(Z_R0, (intptr_t)0, Assembler::bcondEqual, init_klass);
1715 
1716   // Different than before. Cannot keep accurate profile.
1717   z_oill(tmp, TypeEntries::type_unknown);
1718   z_bru(do_update);
1719 
1720   bind(init_klass);
1721   // Combine klass and null_seen bit (only used if (tmp & type_mask)==0).
1722   z_ogr(tmp, klass);
1723   z_bru(do_update);
1724 
1725   bind(null_seen);
1726   // Set null_seen if obj is 0.
1727   z_oill(tmp, TypeEntries::null_seen);
1728   // fallthru: z_bru(do_update);
1729 
1730   bind(do_update);
1731   z_stg(tmp, mdo_addr);
1732 
1733   bind(do_nothing);
1734 }
1735 
1736 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) {
1737   if (!ProfileInterpreter) {
1738     return;
1739   }
1740 
1741   assert_different_registers(mdp, callee, tmp);
1742 
1743   if (MethodData::profile_arguments() || MethodData::profile_return()) {
1744     Label profile_continue;
1745 
1746     test_method_data_pointer(mdp, profile_continue);
1747 
1748     int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
1749 
1750     z_cliy(in_bytes(DataLayout::tag_offset()) - off_to_start, mdp,
1751            is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag);
1752     z_brne(profile_continue);
1753 
1754     if (MethodData::profile_arguments()) {
1755       NearLabel done;
1756       int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
1757       add2reg(mdp, off_to_args);
1758 
1759       for (int i = 0; i < TypeProfileArgsLimit; i++) {
1760         if (i > 0 || MethodData::profile_return()) {
1761           // If return value type is profiled we may have no argument to profile.
1762           z_lg(tmp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, mdp);
1763           add2reg(tmp, -i*TypeStackSlotEntries::per_arg_count());
1764           compare64_and_branch(tmp, TypeStackSlotEntries::per_arg_count(), Assembler::bcondLow, done);
1765         }
1766         z_lg(tmp, Address(callee, Method::const_offset()));
1767         z_lgh(tmp, Address(tmp, ConstMethod::size_of_parameters_offset()));
1768         // Stack offset o (zero based) from the start of the argument
1769         // list. For n arguments translates into offset n - o - 1 from
1770         // the end of the argument list. But there is an extra slot at
1771         // the top of the stack. So the offset is n - o from Lesp.
1772         z_sg(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args));
1773         z_sllg(tmp, tmp, Interpreter::logStackElementSize);
1774         Address stack_slot_addr(tmp, Z_esp);
1775         z_ltg(tmp, stack_slot_addr);
1776 
1777         Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args);
1778         profile_obj_type(tmp, mdo_arg_addr, tmp, /*ltg did compare to 0*/ true);
1779 
1780         int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
1781         add2reg(mdp, to_add);
1782         off_to_args += to_add;
1783       }
1784 
1785       if (MethodData::profile_return()) {
1786         z_lg(tmp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, mdp);
1787         add2reg(tmp, -TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
1788       }
1789 
1790       bind(done);
1791 
1792       if (MethodData::profile_return()) {
1793         // We're right after the type profile for the last
1794         // argument. Tmp is the number of cells left in the
1795         // CallTypeData/VirtualCallTypeData to reach its end. Non null
1796         // if there's a return to profile.
1797         assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
1798         z_sllg(tmp, tmp, exact_log2(DataLayout::cell_size));
1799         z_agr(mdp, tmp);
1800       }
1801       z_stg(mdp, _z_ijava_state_neg(mdx), Z_fp);
1802     } else {
1803       assert(MethodData::profile_return(), "either profile call args or call ret");
1804       update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size()));
1805     }
1806 
1807     // Mdp points right after the end of the
1808     // CallTypeData/VirtualCallTypeData, right after the cells for the
1809     // return value type if there's one.
1810     bind(profile_continue);
1811   }
1812 }
1813 
1814 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) {
1815   assert_different_registers(mdp, ret, tmp);
1816   if (ProfileInterpreter && MethodData::profile_return()) {
1817     Label profile_continue;
1818 
1819     test_method_data_pointer(mdp, profile_continue);
1820 
1821     if (MethodData::profile_return_jsr292_only()) {
1822       // If we don't profile all invoke bytecodes we must make sure
1823       // it's a bytecode we indeed profile. We can't go back to the
1824       // beginning of the ProfileData we intend to update to check its
1825       // type because we're right after it and we don't known its
1826       // length.
1827       NearLabel do_profile;
1828       Address bc(Z_bcp);
1829       z_lb(tmp, bc);
1830       compare32_and_branch(tmp, Bytecodes::_invokedynamic, Assembler::bcondEqual, do_profile);
1831       compare32_and_branch(tmp, Bytecodes::_invokehandle, Assembler::bcondEqual, do_profile);
1832       get_method(tmp);
1833       // Supplement to 8139891: _intrinsic_id exceeded 1-byte size limit.
1834       if (Method::intrinsic_id_size_in_bytes() == 1) {
1835         z_cli(in_bytes(Method::intrinsic_id_offset()), tmp, static_cast<int>(vmIntrinsics::_compiledLambdaForm));
1836       } else {
1837         assert(Method::intrinsic_id_size_in_bytes() == 2, "size error: check Method::_intrinsic_id");
1838         z_lh(tmp, in_bytes(Method::intrinsic_id_offset()), Z_R0, tmp);
1839         z_chi(tmp, static_cast<int>(vmIntrinsics::_compiledLambdaForm));
1840       }
1841       z_brne(profile_continue);
1842 
1843       bind(do_profile);
1844     }
1845 
1846     Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size()));
1847     profile_obj_type(ret, mdo_ret_addr, tmp);
1848 
1849     bind(profile_continue);
1850   }
1851 }
1852 
1853 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) {
1854   if (ProfileInterpreter && MethodData::profile_parameters()) {
1855     Label profile_continue, done;
1856 
1857     test_method_data_pointer(mdp, profile_continue);
1858 
1859     // Load the offset of the area within the MDO used for
1860     // parameters. If it's negative we're not profiling any parameters.
1861     Address parm_di_addr(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()));
1862     load_and_test_int2long(tmp1, parm_di_addr);
1863     z_brl(profile_continue);
1864 
1865     // Compute a pointer to the area for parameters from the offset
1866     // and move the pointer to the slot for the last
1867     // parameters. Collect profiling from last parameter down.
1868     // mdo start + parameters offset + array length - 1
1869 
1870     // Pointer to the parameter area in the MDO.
1871     z_agr(mdp, tmp1);
1872 
1873     // Offset of the current profile entry to update.
1874     const Register entry_offset = tmp1;
1875     // entry_offset = array len in number of cells.
1876     z_lg(entry_offset, Address(mdp, ArrayData::array_len_offset()));
1877     // entry_offset (number of cells) = array len - size of 1 entry
1878     add2reg(entry_offset, -TypeStackSlotEntries::per_arg_count());
1879     // entry_offset in bytes
1880     z_sllg(entry_offset, entry_offset, exact_log2(DataLayout::cell_size));
1881 
1882     Label loop;
1883     bind(loop);
1884 
1885     Address arg_off(mdp, entry_offset, ParametersTypeData::stack_slot_offset(0));
1886     Address arg_type(mdp, entry_offset, ParametersTypeData::type_offset(0));
1887 
1888     // Load offset on the stack from the slot for this parameter.
1889     z_lg(tmp2, arg_off);
1890     z_sllg(tmp2, tmp2, Interpreter::logStackElementSize);
1891     z_lcgr(tmp2); // Negate.
1892 
1893     // Profile the parameter.
1894     z_ltg(tmp2, Address(Z_locals, tmp2));
1895     profile_obj_type(tmp2, arg_type, tmp2, /*ltg did compare to 0*/ true);
1896 
1897     // Go to next parameter.
1898     z_aghi(entry_offset, -TypeStackSlotEntries::per_arg_count() * DataLayout::cell_size);
1899     z_brnl(loop);
1900 
1901     bind(profile_continue);
1902   }
1903 }
1904 
1905 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
1906 void InterpreterMacroAssembler::increment_mask_and_jump(Address          counter_addr,
1907                                                         int              increment,
1908                                                         Address          mask,
1909                                                         Register         scratch,
1910                                                         bool             preloaded,
1911                                                         branch_condition cond,
1912                                                         Label           *where) {
1913   assert_different_registers(counter_addr.base(), scratch);
1914   if (preloaded) {
1915     add2reg(scratch, increment);
1916     reg2mem_opt(scratch, counter_addr, false);
1917   } else {
1918     if (VM_Version::has_MemWithImmALUOps() && Immediate::is_simm8(increment) && counter_addr.is_RSYform()) {
1919       z_alsi(counter_addr.disp20(), counter_addr.base(), increment);
1920       mem2reg_signed_opt(scratch, counter_addr);
1921     } else {
1922       mem2reg_signed_opt(scratch, counter_addr);
1923       add2reg(scratch, increment);
1924       reg2mem_opt(scratch, counter_addr, false);
1925     }
1926   }
1927   z_n(scratch, mask);
1928   if (where) { z_brc(cond, *where); }
1929 }
1930 
1931 // Get MethodCounters object for given method. Lazily allocated if necessary.
1932 //   method    - Ptr to Method object.
1933 //   Rcounters - Ptr to MethodCounters object associated with Method object.
1934 //   skip      - Exit point if MethodCounters object can't be created (OOM condition).
1935 void InterpreterMacroAssembler::get_method_counters(Register Rmethod,
1936                                                     Register Rcounters,
1937                                                     Label& skip) {
1938   assert_different_registers(Rmethod, Rcounters);
1939 
1940   BLOCK_COMMENT("get MethodCounters object {");
1941 
1942   Label has_counters;
1943   load_and_test_long(Rcounters, Address(Rmethod, Method::method_counters_offset()));
1944   z_brnz(has_counters);
1945 
1946   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters), Rmethod);
1947   z_ltgr(Rcounters, Z_RET); // Runtime call returns MethodCounters object.
1948   z_brz(skip); // No MethodCounters, out of memory.
1949 
1950   bind(has_counters);
1951 
1952   BLOCK_COMMENT("} get MethodCounters object");
1953 }
1954 
1955 // Increment invocation counter in MethodCounters object.
1956 // Return (invocation_counter+backedge_counter) as "result" in RctrSum.
1957 // Counter values are all unsigned.
1958 void InterpreterMacroAssembler::increment_invocation_counter(Register Rcounters, Register RctrSum) {
1959   assert(UseCompiler, "incrementing must be useful");
1960   assert_different_registers(Rcounters, RctrSum);
1961 
1962   int increment          = InvocationCounter::count_increment;
1963   int inv_counter_offset = in_bytes(MethodCounters::invocation_counter_offset() + InvocationCounter::counter_offset());
1964   int be_counter_offset  = in_bytes(MethodCounters::backedge_counter_offset()   + InvocationCounter::counter_offset());
1965 
1966   BLOCK_COMMENT("Increment invocation counter {");
1967 
1968   if (VM_Version::has_MemWithImmALUOps() && Immediate::is_simm8(increment)) {
1969     // Increment the invocation counter in place,
1970     // then add the incremented value to the backedge counter.
1971     z_l(RctrSum, be_counter_offset, Rcounters);
1972     z_alsi(inv_counter_offset, Rcounters, increment);     // Atomic increment @no extra cost!
1973     z_nilf(RctrSum, InvocationCounter::count_mask_value); // Mask off state bits.
1974     z_al(RctrSum, inv_counter_offset, Z_R0, Rcounters);
1975   } else {
1976     // This path is optimized for low register consumption
1977     // at the cost of somewhat higher operand delays.
1978     // It does not need an extra temp register.
1979 
1980     // Update the invocation counter.
1981     z_l(RctrSum, inv_counter_offset, Rcounters);
1982     if (RctrSum == Z_R0) {
1983       z_ahi(RctrSum, increment);
1984     } else {
1985       add2reg(RctrSum, increment);
1986     }
1987     z_st(RctrSum, inv_counter_offset, Rcounters);
1988 
1989     // Mask off the state bits.
1990     z_nilf(RctrSum, InvocationCounter::count_mask_value);
1991 
1992     // Add the backedge counter to the updated invocation counter to
1993     // form the result.
1994     z_al(RctrSum, be_counter_offset, Z_R0, Rcounters);
1995   }
1996 
1997   BLOCK_COMMENT("} Increment invocation counter");
1998 
1999   // Note that this macro must leave the backedge_count + invocation_count in Rtmp!
2000 }
2001 
2002 
2003 // increment backedge counter in MethodCounters object.
2004 // return (invocation_counter+backedge_counter) as "result" in RctrSum
2005 // counter values are all unsigned!
2006 void InterpreterMacroAssembler::increment_backedge_counter(Register Rcounters, Register RctrSum) {
2007   assert(UseCompiler, "incrementing must be useful");
2008   assert_different_registers(Rcounters, RctrSum);
2009 
2010   int increment          = InvocationCounter::count_increment;
2011   int inv_counter_offset = in_bytes(MethodCounters::invocation_counter_offset() + InvocationCounter::counter_offset());
2012   int be_counter_offset  = in_bytes(MethodCounters::backedge_counter_offset()   + InvocationCounter::counter_offset());
2013 
2014   BLOCK_COMMENT("Increment backedge counter {");
2015 
2016   if (VM_Version::has_MemWithImmALUOps() && Immediate::is_simm8(increment)) {
2017     // Increment the invocation counter in place,
2018     // then add the incremented value to the backedge counter.
2019     z_l(RctrSum, inv_counter_offset, Rcounters);
2020     z_alsi(be_counter_offset, Rcounters, increment);      // Atomic increment @no extra cost!
2021     z_nilf(RctrSum, InvocationCounter::count_mask_value); // Mask off state bits.
2022     z_al(RctrSum, be_counter_offset, Z_R0, Rcounters);
2023   } else {
2024     // This path is optimized for low register consumption
2025     // at the cost of somewhat higher operand delays.
2026     // It does not need an extra temp register.
2027 
2028     // Update the invocation counter.
2029     z_l(RctrSum, be_counter_offset, Rcounters);
2030     if (RctrSum == Z_R0) {
2031       z_ahi(RctrSum, increment);
2032     } else {
2033       add2reg(RctrSum, increment);
2034     }
2035     z_st(RctrSum, be_counter_offset, Rcounters);
2036 
2037     // Mask off the state bits.
2038     z_nilf(RctrSum, InvocationCounter::count_mask_value);
2039 
2040     // Add the backedge counter to the updated invocation counter to
2041     // form the result.
2042     z_al(RctrSum, inv_counter_offset, Z_R0, Rcounters);
2043   }
2044 
2045   BLOCK_COMMENT("} Increment backedge counter");
2046 
2047   // Note that this macro must leave the backedge_count + invocation_count in Rtmp!
2048 }
2049 
2050 // Add an InterpMonitorElem to stack (see frame_s390.hpp).
2051 void InterpreterMacroAssembler::add_monitor_to_stack(bool     stack_is_empty,
2052                                                      Register Rtemp1,
2053                                                      Register Rtemp2,
2054                                                      Register Rtemp3) {
2055 
2056   const Register Rcurr_slot = Rtemp1;
2057   const Register Rlimit     = Rtemp2;
2058   const jint delta = -frame::interpreter_frame_monitor_size_in_bytes();
2059 
2060   assert((delta & LongAlignmentMask) == 0,
2061          "sizeof BasicObjectLock must be even number of doublewords");
2062   assert(2 * wordSize == -delta, "this works only as long as delta == -2*wordSize");
2063   assert(Rcurr_slot != Z_R0, "Register must be usable as base register");
2064   assert_different_registers(Rlimit, Rcurr_slot, Rtemp3);
2065 
2066   get_monitors(Rlimit);
2067 
2068   // Adjust stack pointer for additional monitor entry.
2069   resize_frame(RegisterOrConstant((intptr_t) delta), Z_fp, false);
2070 
2071   if (!stack_is_empty) {
2072     // Must copy stack contents down.
2073     NearLabel next, done;
2074 
2075     // Rtemp := addr(Tos), Z_esp is pointing below it!
2076     add2reg(Rcurr_slot, wordSize, Z_esp);
2077 
2078     // Nothing to do, if already at monitor area.
2079     compareU64_and_branch(Rcurr_slot, Rlimit, bcondNotLow, done);
2080 
2081     bind(next);
2082 
2083     // Move one stack slot.
2084     mem2reg_opt(Rtemp3, Address(Rcurr_slot));
2085     reg2mem_opt(Rtemp3, Address(Rcurr_slot, delta));
2086     add2reg(Rcurr_slot, wordSize);
2087     compareU64_and_branch(Rcurr_slot, Rlimit, bcondLow, next); // Are we done?
2088 
2089     bind(done);
2090     // Done copying stack.
2091   }
2092 
2093   // Adjust expression stack and monitor pointers.
2094   add2reg(Z_esp, delta);
2095   add2reg(Rlimit, delta);
2096   save_monitors(Rlimit);
2097 }
2098 
2099 // Note: Index holds the offset in bytes afterwards.
2100 // You can use this to store a new value (with Llocals as the base).
2101 void InterpreterMacroAssembler::access_local_int(Register index, Register dst) {
2102   z_sllg(index, index, LogBytesPerWord);
2103   mem2reg_opt(dst, Address(Z_locals, index), false);
2104 }
2105 
2106 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
2107   if (state == atos) { MacroAssembler::verify_oop(reg, FILE_AND_LINE); }
2108 }
2109 
2110 // Inline assembly for:
2111 //
2112 // if (thread is in interp_only_mode) {
2113 //   InterpreterRuntime::post_method_entry();
2114 // }
2115 
2116 void InterpreterMacroAssembler::notify_method_entry() {
2117 
2118   // JVMTI
2119   // Whenever JVMTI puts a thread in interp_only_mode, method
2120   // entry/exit events are sent for that thread to track stack
2121   // depth. If it is possible to enter interp_only_mode we add
2122   // the code to check if the event should be sent.
2123   if (JvmtiExport::can_post_interpreter_events()) {
2124     Label jvmti_post_done;
2125     MacroAssembler::load_and_test_int(Z_R0, Address(Z_thread, JavaThread::interp_only_mode_offset()));
2126     z_bre(jvmti_post_done);
2127     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
2128     bind(jvmti_post_done);
2129   }
2130 }
2131 
2132 // Inline assembly for:
2133 //
2134 // if (thread is in interp_only_mode) {
2135 //   if (!native_method) save result
2136 //   InterpreterRuntime::post_method_exit();
2137 //   if (!native_method) restore result
2138 // }
2139 // if (DTraceMethodProbes) {
2140 //   SharedRuntime::dtrace_method_exit(thread, method);
2141 // }
2142 //
2143 // For native methods their result is stored in z_ijava_state.lresult
2144 // and z_ijava_state.fresult before coming here.
2145 // Java methods have their result stored in the expression stack.
2146 //
2147 // Notice the dependency to frame::interpreter_frame_result().
2148 void InterpreterMacroAssembler::notify_method_exit(bool native_method,
2149                                                    TosState state,
2150                                                    NotifyMethodExitMode mode) {
2151   // JVMTI
2152   // Whenever JVMTI puts a thread in interp_only_mode, method
2153   // entry/exit events are sent for that thread to track stack
2154   // depth. If it is possible to enter interp_only_mode we add
2155   // the code to check if the event should be sent.
2156   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
2157     Label jvmti_post_done;
2158     MacroAssembler::load_and_test_int(Z_R0, Address(Z_thread, JavaThread::interp_only_mode_offset()));
2159     z_bre(jvmti_post_done);
2160     if (!native_method) push(state); // see frame::interpreter_frame_result()
2161     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
2162     if (!native_method) pop(state);
2163     bind(jvmti_post_done);
2164   }
2165 
2166 #if 0
2167   // Dtrace currently not supported on z/Architecture.
2168   {
2169     SkipIfEqual skip(this, &DTraceMethodProbes, false);
2170     push(state);
2171     get_method(c_rarg1);
2172     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2173                  r15_thread, c_rarg1);
2174     pop(state);
2175   }
2176 #endif
2177 }
2178 
2179 void InterpreterMacroAssembler::skip_if_jvmti_mode(Label &Lskip, Register Rscratch) {
2180   if (!JvmtiExport::can_post_interpreter_events()) {
2181     return;
2182   }
2183 
2184   load_and_test_int(Rscratch, Address(Z_thread, JavaThread::interp_only_mode_offset()));
2185   z_brnz(Lskip);
2186 
2187 }
2188 
2189 // Pop the topmost TOP_IJAVA_FRAME and set it's sender_sp as new Z_SP.
2190 // The return pc is loaded into the register return_pc.
2191 //
2192 // Registers updated:
2193 //     return_pc  - The return pc of the calling frame.
2194 //     tmp1, tmp2 - scratch
2195 void InterpreterMacroAssembler::pop_interpreter_frame(Register return_pc, Register tmp1, Register tmp2) {
2196   // F0  Z_SP -> caller_sp (F1's)
2197   //             ...
2198   //             sender_sp (F1's)
2199   //             ...
2200   // F1  Z_fp -> caller_sp (F2's)
2201   //             return_pc (Continuation after return from F0.)
2202   //             ...
2203   // F2          caller_sp
2204 
2205   // Remove F0's activation. Restoring Z_SP to sender_sp reverts modifications
2206   // (a) by a c2i adapter and (b) by generate_fixed_frame().
2207   // In case (a) the new top frame F1 is an unextended compiled frame.
2208   // In case (b) F1 is converted from PARENT_IJAVA_FRAME to TOP_IJAVA_FRAME.
2209 
2210   // Case (b) seems to be redundant when returning to a interpreted caller,
2211   // because then the caller's top_frame_sp is installed as sp (see
2212   // TemplateInterpreterGenerator::generate_return_entry_for ()). But
2213   // pop_interpreter_frame() is also used in exception handling and there the
2214   // frame type of the caller is unknown, therefore top_frame_sp cannot be used,
2215   // so it is important that sender_sp is the caller's sp as TOP_IJAVA_FRAME.
2216 
2217   Register R_f1_sender_sp = tmp1;
2218   Register R_f2_sp = tmp2;
2219 
2220   // First check for the interpreter frame's magic.
2221   asm_assert_ijava_state_magic(R_f2_sp/*tmp*/);
2222   z_lg(R_f2_sp, _z_parent_ijava_frame_abi(callers_sp), Z_fp);
2223   z_lg(R_f1_sender_sp, _z_ijava_state_neg(sender_sp), Z_fp);
2224   if (return_pc->is_valid())
2225     z_lg(return_pc, _z_parent_ijava_frame_abi(return_pc), Z_fp);
2226   // Pop F0 by resizing to R_f1_sender_sp and using R_f2_sp as fp.
2227   resize_frame_absolute(R_f1_sender_sp, R_f2_sp, false/*load fp*/);
2228 
2229 #ifdef ASSERT
2230   // The return_pc in the new top frame is dead... at least that's my
2231   // current understanding; to assert this I overwrite it.
2232   load_const_optimized(Z_ARG3, 0xb00b1);
2233   z_stg(Z_ARG3, _z_parent_ijava_frame_abi(return_pc), Z_SP);
2234 #endif
2235 }
2236 
2237 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
2238   if (VerifyFPU) {
2239     unimplemented("verifyFPU");
2240   }
2241 }