1 /*
   2  * Copyright (c) 2016, 2022, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2016, 2022 SAP SE. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/codeBuffer.hpp"
  28 #include "asm/macroAssembler.inline.hpp"
  29 #include "compiler/disassembler.hpp"
  30 #include "gc/shared/barrierSet.hpp"
  31 #include "gc/shared/barrierSetAssembler.hpp"
  32 #include "gc/shared/collectedHeap.inline.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "gc/shared/cardTableBarrierSet.hpp"
  35 #include "memory/resourceArea.hpp"
  36 #include "memory/universe.hpp"
  37 #include "oops/accessDecorators.hpp"
  38 #include "oops/compressedKlass.inline.hpp"
  39 #include "oops/compressedOops.inline.hpp"
  40 #include "oops/klass.inline.hpp"
  41 #include "prims/methodHandles.hpp"
  42 #include "registerSaver_s390.hpp"
  43 #include "runtime/icache.hpp"
  44 #include "runtime/interfaceSupport.inline.hpp"
  45 #include "runtime/objectMonitor.hpp"
  46 #include "runtime/os.hpp"
  47 #include "runtime/safepoint.hpp"
  48 #include "runtime/safepointMechanism.hpp"
  49 #include "runtime/sharedRuntime.hpp"
  50 #include "runtime/stubRoutines.hpp"
  51 #include "utilities/events.hpp"
  52 #include "utilities/macros.hpp"
  53 #include "utilities/powerOfTwo.hpp"
  54 
  55 #include <ucontext.h>
  56 
  57 #define BLOCK_COMMENT(str) block_comment(str)
  58 #define BIND(label)        bind(label); BLOCK_COMMENT(#label ":")
  59 
  60 // Move 32-bit register if destination and source are different.
  61 void MacroAssembler::lr_if_needed(Register rd, Register rs) {
  62   if (rs != rd) { z_lr(rd, rs); }
  63 }
  64 
  65 // Move register if destination and source are different.
  66 void MacroAssembler::lgr_if_needed(Register rd, Register rs) {
  67   if (rs != rd) { z_lgr(rd, rs); }
  68 }
  69 
  70 // Zero-extend 32-bit register into 64-bit register if destination and source are different.
  71 void MacroAssembler::llgfr_if_needed(Register rd, Register rs) {
  72   if (rs != rd) { z_llgfr(rd, rs); }
  73 }
  74 
  75 // Move float register if destination and source are different.
  76 void MacroAssembler::ldr_if_needed(FloatRegister rd, FloatRegister rs) {
  77   if (rs != rd) { z_ldr(rd, rs); }
  78 }
  79 
  80 // Move integer register if destination and source are different.
  81 // It is assumed that shorter-than-int types are already
  82 // appropriately sign-extended.
  83 void MacroAssembler::move_reg_if_needed(Register dst, BasicType dst_type, Register src,
  84                                         BasicType src_type) {
  85   assert((dst_type != T_FLOAT) && (dst_type != T_DOUBLE), "use move_freg for float types");
  86   assert((src_type != T_FLOAT) && (src_type != T_DOUBLE), "use move_freg for float types");
  87 
  88   if (dst_type == src_type) {
  89     lgr_if_needed(dst, src); // Just move all 64 bits.
  90     return;
  91   }
  92 
  93   switch (dst_type) {
  94     // Do not support these types for now.
  95     //  case T_BOOLEAN:
  96     case T_BYTE:  // signed byte
  97       switch (src_type) {
  98         case T_INT:
  99           z_lgbr(dst, src);
 100           break;
 101         default:
 102           ShouldNotReachHere();
 103       }
 104       return;
 105 
 106     case T_CHAR:
 107     case T_SHORT:
 108       switch (src_type) {
 109         case T_INT:
 110           if (dst_type == T_CHAR) {
 111             z_llghr(dst, src);
 112           } else {
 113             z_lghr(dst, src);
 114           }
 115           break;
 116         default:
 117           ShouldNotReachHere();
 118       }
 119       return;
 120 
 121     case T_INT:
 122       switch (src_type) {
 123         case T_BOOLEAN:
 124         case T_BYTE:
 125         case T_CHAR:
 126         case T_SHORT:
 127         case T_INT:
 128         case T_LONG:
 129         case T_OBJECT:
 130         case T_ARRAY:
 131         case T_VOID:
 132         case T_ADDRESS:
 133           lr_if_needed(dst, src);
 134           // llgfr_if_needed(dst, src);  // zero-extend (in case we need to find a bug).
 135           return;
 136 
 137         default:
 138           assert(false, "non-integer src type");
 139           return;
 140       }
 141     case T_LONG:
 142       switch (src_type) {
 143         case T_BOOLEAN:
 144         case T_BYTE:
 145         case T_CHAR:
 146         case T_SHORT:
 147         case T_INT:
 148           z_lgfr(dst, src); // sign extension
 149           return;
 150 
 151         case T_LONG:
 152         case T_OBJECT:
 153         case T_ARRAY:
 154         case T_VOID:
 155         case T_ADDRESS:
 156           lgr_if_needed(dst, src);
 157           return;
 158 
 159         default:
 160           assert(false, "non-integer src type");
 161           return;
 162       }
 163       return;
 164     case T_OBJECT:
 165     case T_ARRAY:
 166     case T_VOID:
 167     case T_ADDRESS:
 168       switch (src_type) {
 169         // These types don't make sense to be converted to pointers:
 170         //      case T_BOOLEAN:
 171         //      case T_BYTE:
 172         //      case T_CHAR:
 173         //      case T_SHORT:
 174 
 175         case T_INT:
 176           z_llgfr(dst, src); // zero extension
 177           return;
 178 
 179         case T_LONG:
 180         case T_OBJECT:
 181         case T_ARRAY:
 182         case T_VOID:
 183         case T_ADDRESS:
 184           lgr_if_needed(dst, src);
 185           return;
 186 
 187         default:
 188           assert(false, "non-integer src type");
 189           return;
 190       }
 191       return;
 192     default:
 193       assert(false, "non-integer dst type");
 194       return;
 195   }
 196 }
 197 
 198 // Move float register if destination and source are different.
 199 void MacroAssembler::move_freg_if_needed(FloatRegister dst, BasicType dst_type,
 200                                          FloatRegister src, BasicType src_type) {
 201   assert((dst_type == T_FLOAT) || (dst_type == T_DOUBLE), "use move_reg for int types");
 202   assert((src_type == T_FLOAT) || (src_type == T_DOUBLE), "use move_reg for int types");
 203   if (dst_type == src_type) {
 204     ldr_if_needed(dst, src); // Just move all 64 bits.
 205   } else {
 206     switch (dst_type) {
 207       case T_FLOAT:
 208         assert(src_type == T_DOUBLE, "invalid float type combination");
 209         z_ledbr(dst, src);
 210         return;
 211       case T_DOUBLE:
 212         assert(src_type == T_FLOAT, "invalid float type combination");
 213         z_ldebr(dst, src);
 214         return;
 215       default:
 216         assert(false, "non-float dst type");
 217         return;
 218     }
 219   }
 220 }
 221 
 222 // Optimized emitter for reg to mem operations.
 223 // Uses modern instructions if running on modern hardware, classic instructions
 224 // otherwise. Prefers (usually shorter) classic instructions if applicable.
 225 // Data register (reg) cannot be used as work register.
 226 //
 227 // Don't rely on register locking, instead pass a scratch register (Z_R0 by default).
 228 // CAUTION! Passing registers >= Z_R2 may produce bad results on old CPUs!
 229 void MacroAssembler::freg2mem_opt(FloatRegister reg,
 230                                   int64_t       disp,
 231                                   Register      index,
 232                                   Register      base,
 233                                   void (MacroAssembler::*modern) (FloatRegister, int64_t, Register, Register),
 234                                   void (MacroAssembler::*classic)(FloatRegister, int64_t, Register, Register),
 235                                   Register      scratch) {
 236   index = (index == noreg) ? Z_R0 : index;
 237   if (Displacement::is_shortDisp(disp)) {
 238     (this->*classic)(reg, disp, index, base);
 239   } else {
 240     if (Displacement::is_validDisp(disp)) {
 241       (this->*modern)(reg, disp, index, base);
 242     } else {
 243       if (scratch != Z_R0 && scratch != Z_R1) {
 244         (this->*modern)(reg, disp, index, base);      // Will fail with disp out of range.
 245       } else {
 246         if (scratch != Z_R0) {   // scratch == Z_R1
 247           if ((scratch == index) || (index == base)) {
 248             (this->*modern)(reg, disp, index, base);  // Will fail with disp out of range.
 249           } else {
 250             add2reg(scratch, disp, base);
 251             (this->*classic)(reg, 0, index, scratch);
 252             if (base == scratch) {
 253               add2reg(base, -disp);  // Restore base.
 254             }
 255           }
 256         } else {   // scratch == Z_R0
 257           z_lgr(scratch, base);
 258           add2reg(base, disp);
 259           (this->*classic)(reg, 0, index, base);
 260           z_lgr(base, scratch);      // Restore base.
 261         }
 262       }
 263     }
 264   }
 265 }
 266 
 267 void MacroAssembler::freg2mem_opt(FloatRegister reg, const Address &a, bool is_double) {
 268   if (is_double) {
 269     freg2mem_opt(reg, a.disp20(), a.indexOrR0(), a.baseOrR0(), MODERN_FFUN(z_stdy), CLASSIC_FFUN(z_std));
 270   } else {
 271     freg2mem_opt(reg, a.disp20(), a.indexOrR0(), a.baseOrR0(), MODERN_FFUN(z_stey), CLASSIC_FFUN(z_ste));
 272   }
 273 }
 274 
 275 // Optimized emitter for mem to reg operations.
 276 // Uses modern instructions if running on modern hardware, classic instructions
 277 // otherwise. Prefers (usually shorter) classic instructions if applicable.
 278 // data register (reg) cannot be used as work register.
 279 //
 280 // Don't rely on register locking, instead pass a scratch register (Z_R0 by default).
 281 // CAUTION! Passing registers >= Z_R2 may produce bad results on old CPUs!
 282 void MacroAssembler::mem2freg_opt(FloatRegister reg,
 283                                   int64_t       disp,
 284                                   Register      index,
 285                                   Register      base,
 286                                   void (MacroAssembler::*modern) (FloatRegister, int64_t, Register, Register),
 287                                   void (MacroAssembler::*classic)(FloatRegister, int64_t, Register, Register),
 288                                   Register      scratch) {
 289   index = (index == noreg) ? Z_R0 : index;
 290   if (Displacement::is_shortDisp(disp)) {
 291     (this->*classic)(reg, disp, index, base);
 292   } else {
 293     if (Displacement::is_validDisp(disp)) {
 294       (this->*modern)(reg, disp, index, base);
 295     } else {
 296       if (scratch != Z_R0 && scratch != Z_R1) {
 297         (this->*modern)(reg, disp, index, base);      // Will fail with disp out of range.
 298       } else {
 299         if (scratch != Z_R0) {   // scratch == Z_R1
 300           if ((scratch == index) || (index == base)) {
 301             (this->*modern)(reg, disp, index, base);  // Will fail with disp out of range.
 302           } else {
 303             add2reg(scratch, disp, base);
 304             (this->*classic)(reg, 0, index, scratch);
 305             if (base == scratch) {
 306               add2reg(base, -disp);  // Restore base.
 307             }
 308           }
 309         } else {   // scratch == Z_R0
 310           z_lgr(scratch, base);
 311           add2reg(base, disp);
 312           (this->*classic)(reg, 0, index, base);
 313           z_lgr(base, scratch);      // Restore base.
 314         }
 315       }
 316     }
 317   }
 318 }
 319 
 320 void MacroAssembler::mem2freg_opt(FloatRegister reg, const Address &a, bool is_double) {
 321   if (is_double) {
 322     mem2freg_opt(reg, a.disp20(), a.indexOrR0(), a.baseOrR0(), MODERN_FFUN(z_ldy), CLASSIC_FFUN(z_ld));
 323   } else {
 324     mem2freg_opt(reg, a.disp20(), a.indexOrR0(), a.baseOrR0(), MODERN_FFUN(z_ley), CLASSIC_FFUN(z_le));
 325   }
 326 }
 327 
 328 // Optimized emitter for reg to mem operations.
 329 // Uses modern instructions if running on modern hardware, classic instructions
 330 // otherwise. Prefers (usually shorter) classic instructions if applicable.
 331 // Data register (reg) cannot be used as work register.
 332 //
 333 // Don't rely on register locking, instead pass a scratch register
 334 // (Z_R0 by default)
 335 // CAUTION! passing registers >= Z_R2 may produce bad results on old CPUs!
 336 void MacroAssembler::reg2mem_opt(Register reg,
 337                                  int64_t  disp,
 338                                  Register index,
 339                                  Register base,
 340                                  void (MacroAssembler::*modern) (Register, int64_t, Register, Register),
 341                                  void (MacroAssembler::*classic)(Register, int64_t, Register, Register),
 342                                  Register scratch) {
 343   index = (index == noreg) ? Z_R0 : index;
 344   if (Displacement::is_shortDisp(disp)) {
 345     (this->*classic)(reg, disp, index, base);
 346   } else {
 347     if (Displacement::is_validDisp(disp)) {
 348       (this->*modern)(reg, disp, index, base);
 349     } else {
 350       if (scratch != Z_R0 && scratch != Z_R1) {
 351         (this->*modern)(reg, disp, index, base);      // Will fail with disp out of range.
 352       } else {
 353         if (scratch != Z_R0) {   // scratch == Z_R1
 354           if ((scratch == index) || (index == base)) {
 355             (this->*modern)(reg, disp, index, base);  // Will fail with disp out of range.
 356           } else {
 357             add2reg(scratch, disp, base);
 358             (this->*classic)(reg, 0, index, scratch);
 359             if (base == scratch) {
 360               add2reg(base, -disp);  // Restore base.
 361             }
 362           }
 363         } else {   // scratch == Z_R0
 364           if ((scratch == reg) || (scratch == base) || (reg == base)) {
 365             (this->*modern)(reg, disp, index, base);  // Will fail with disp out of range.
 366           } else {
 367             z_lgr(scratch, base);
 368             add2reg(base, disp);
 369             (this->*classic)(reg, 0, index, base);
 370             z_lgr(base, scratch);    // Restore base.
 371           }
 372         }
 373       }
 374     }
 375   }
 376 }
 377 
 378 int MacroAssembler::reg2mem_opt(Register reg, const Address &a, bool is_double) {
 379   int store_offset = offset();
 380   if (is_double) {
 381     reg2mem_opt(reg, a.disp20(), a.indexOrR0(), a.baseOrR0(), MODERN_IFUN(z_stg), CLASSIC_IFUN(z_stg));
 382   } else {
 383     reg2mem_opt(reg, a.disp20(), a.indexOrR0(), a.baseOrR0(), MODERN_IFUN(z_sty), CLASSIC_IFUN(z_st));
 384   }
 385   return store_offset;
 386 }
 387 
 388 // Optimized emitter for mem to reg operations.
 389 // Uses modern instructions if running on modern hardware, classic instructions
 390 // otherwise. Prefers (usually shorter) classic instructions if applicable.
 391 // Data register (reg) will be used as work register where possible.
 392 void MacroAssembler::mem2reg_opt(Register reg,
 393                                  int64_t  disp,
 394                                  Register index,
 395                                  Register base,
 396                                  void (MacroAssembler::*modern) (Register, int64_t, Register, Register),
 397                                  void (MacroAssembler::*classic)(Register, int64_t, Register, Register)) {
 398   index = (index == noreg) ? Z_R0 : index;
 399   if (Displacement::is_shortDisp(disp)) {
 400     (this->*classic)(reg, disp, index, base);
 401   } else {
 402     if (Displacement::is_validDisp(disp)) {
 403       (this->*modern)(reg, disp, index, base);
 404     } else {
 405       if ((reg == index) && (reg == base)) {
 406         z_sllg(reg, reg, 1);
 407         add2reg(reg, disp);
 408         (this->*classic)(reg, 0, noreg, reg);
 409       } else if ((reg == index) && (reg != Z_R0)) {
 410         add2reg(reg, disp);
 411         (this->*classic)(reg, 0, reg, base);
 412       } else if (reg == base) {
 413         add2reg(reg, disp);
 414         (this->*classic)(reg, 0, index, reg);
 415       } else if (reg != Z_R0) {
 416         add2reg(reg, disp, base);
 417         (this->*classic)(reg, 0, index, reg);
 418       } else { // reg == Z_R0 && reg != base here
 419         add2reg(base, disp);
 420         (this->*classic)(reg, 0, index, base);
 421         add2reg(base, -disp);
 422       }
 423     }
 424   }
 425 }
 426 
 427 void MacroAssembler::mem2reg_opt(Register reg, const Address &a, bool is_double) {
 428   if (is_double) {
 429     z_lg(reg, a);
 430   } else {
 431     mem2reg_opt(reg, a.disp20(), a.indexOrR0(), a.baseOrR0(), MODERN_IFUN(z_ly), CLASSIC_IFUN(z_l));
 432   }
 433 }
 434 
 435 void MacroAssembler::mem2reg_signed_opt(Register reg, const Address &a) {
 436   mem2reg_opt(reg, a.disp20(), a.indexOrR0(), a.baseOrR0(), MODERN_IFUN(z_lgf), CLASSIC_IFUN(z_lgf));
 437 }
 438 
 439 void MacroAssembler::and_imm(Register r, long mask,
 440                              Register tmp /* = Z_R0 */,
 441                              bool wide    /* = false */) {
 442   assert(wide || Immediate::is_simm32(mask), "mask value too large");
 443 
 444   if (!wide) {
 445     z_nilf(r, mask);
 446     return;
 447   }
 448 
 449   assert(r != tmp, " need a different temporary register !");
 450   load_const_optimized(tmp, mask);
 451   z_ngr(r, tmp);
 452 }
 453 
 454 // Calculate the 1's complement.
 455 // Note: The condition code is neither preserved nor correctly set by this code!!!
 456 // Note: (wide == false) does not protect the high order half of the target register
 457 //       from alteration. It only serves as optimization hint for 32-bit results.
 458 void MacroAssembler::not_(Register r1, Register r2, bool wide) {
 459 
 460   if ((r2 == noreg) || (r2 == r1)) { // Calc 1's complement in place.
 461     z_xilf(r1, -1);
 462     if (wide) {
 463       z_xihf(r1, -1);
 464     }
 465   } else { // Distinct src and dst registers.
 466     load_const_optimized(r1, -1);
 467     z_xgr(r1, r2);
 468   }
 469 }
 470 
 471 unsigned long MacroAssembler::create_mask(int lBitPos, int rBitPos) {
 472   assert(lBitPos >=  0,      "zero is  leftmost bit position");
 473   assert(rBitPos <= 63,      "63   is rightmost bit position");
 474   assert(lBitPos <= rBitPos, "inverted selection interval");
 475   return (lBitPos == 0 ? (unsigned long)(-1L) : ((1UL<<(63-lBitPos+1))-1)) & (~((1UL<<(63-rBitPos))-1));
 476 }
 477 
 478 // Helper function for the "Rotate_then_<logicalOP>" emitters.
 479 // Rotate src, then mask register contents such that only bits in range survive.
 480 // For oneBits == false, all bits not in range are set to 0. Useful for deleting all bits outside range.
 481 // For oneBits == true,  all bits not in range are set to 1. Useful for preserving all bits outside range.
 482 // The caller must ensure that the selected range only contains bits with defined value.
 483 void MacroAssembler::rotate_then_mask(Register dst, Register src, int lBitPos, int rBitPos,
 484                                       int nRotate, bool src32bit, bool dst32bit, bool oneBits) {
 485   assert(!(dst32bit && lBitPos < 32), "selection interval out of range for int destination");
 486   bool sll4rll = (nRotate >= 0) && (nRotate <= (63-rBitPos)); // Substitute SLL(G) for RLL(G).
 487   bool srl4rll = (nRotate <  0) && (-nRotate <= lBitPos);     // Substitute SRL(G) for RLL(G).
 488   //  Pre-determine which parts of dst will be zero after shift/rotate.
 489   bool llZero  =  sll4rll && (nRotate >= 16);
 490   bool lhZero  = (sll4rll && (nRotate >= 32)) || (srl4rll && (nRotate <= -48));
 491   bool lfZero  = llZero && lhZero;
 492   bool hlZero  = (sll4rll && (nRotate >= 48)) || (srl4rll && (nRotate <= -32));
 493   bool hhZero  =                                 (srl4rll && (nRotate <= -16));
 494   bool hfZero  = hlZero && hhZero;
 495 
 496   // rotate then mask src operand.
 497   // if oneBits == true,  all bits outside selected range are 1s.
 498   // if oneBits == false, all bits outside selected range are 0s.
 499   if (src32bit) {   // There might be garbage in the upper 32 bits which will get masked away.
 500     if (dst32bit) {
 501       z_rll(dst, src, nRotate);   // Copy and rotate, upper half of reg remains undisturbed.
 502     } else {
 503       if      (sll4rll) { z_sllg(dst, src,  nRotate); }
 504       else if (srl4rll) { z_srlg(dst, src, -nRotate); }
 505       else              { z_rllg(dst, src,  nRotate); }
 506     }
 507   } else {
 508     if      (sll4rll) { z_sllg(dst, src,  nRotate); }
 509     else if (srl4rll) { z_srlg(dst, src, -nRotate); }
 510     else              { z_rllg(dst, src,  nRotate); }
 511   }
 512 
 513   unsigned long  range_mask    = create_mask(lBitPos, rBitPos);
 514   unsigned int   range_mask_h  = (unsigned int)(range_mask >> 32);
 515   unsigned int   range_mask_l  = (unsigned int)range_mask;
 516   unsigned short range_mask_hh = (unsigned short)(range_mask >> 48);
 517   unsigned short range_mask_hl = (unsigned short)(range_mask >> 32);
 518   unsigned short range_mask_lh = (unsigned short)(range_mask >> 16);
 519   unsigned short range_mask_ll = (unsigned short)range_mask;
 520   // Works for z9 and newer H/W.
 521   if (oneBits) {
 522     if ((~range_mask_l) != 0)                { z_oilf(dst, ~range_mask_l); } // All bits outside range become 1s.
 523     if (((~range_mask_h) != 0) && !dst32bit) { z_oihf(dst, ~range_mask_h); }
 524   } else {
 525     // All bits outside range become 0s
 526     if (((~range_mask_l) != 0) &&              !lfZero) {
 527       z_nilf(dst, range_mask_l);
 528     }
 529     if (((~range_mask_h) != 0) && !dst32bit && !hfZero) {
 530       z_nihf(dst, range_mask_h);
 531     }
 532   }
 533 }
 534 
 535 // Rotate src, then insert selected range from rotated src into dst.
 536 // Clear dst before, if requested.
 537 void MacroAssembler::rotate_then_insert(Register dst, Register src, int lBitPos, int rBitPos,
 538                                         int nRotate, bool clear_dst) {
 539   // This version does not depend on src being zero-extended int2long.
 540   nRotate &= 0x003f;                                       // For risbg, pretend it's an unsigned value.
 541   z_risbg(dst, src, lBitPos, rBitPos, nRotate, clear_dst); // Rotate, then insert selected, clear the rest.
 542 }
 543 
 544 // Rotate src, then and selected range from rotated src into dst.
 545 // Set condition code only if so requested. Otherwise it is unpredictable.
 546 // See performance note in macroAssembler_s390.hpp for important information.
 547 void MacroAssembler::rotate_then_and(Register dst, Register src, int lBitPos, int rBitPos,
 548                                      int nRotate, bool test_only) {
 549   guarantee(!test_only, "Emitter not fit for test_only instruction variant.");
 550   // This version does not depend on src being zero-extended int2long.
 551   nRotate &= 0x003f;                                       // For risbg, pretend it's an unsigned value.
 552   z_rxsbg(dst, src, lBitPos, rBitPos, nRotate, test_only); // Rotate, then xor selected.
 553 }
 554 
 555 // Rotate src, then or selected range from rotated src into dst.
 556 // Set condition code only if so requested. Otherwise it is unpredictable.
 557 // See performance note in macroAssembler_s390.hpp for important information.
 558 void MacroAssembler::rotate_then_or(Register dst, Register src,  int  lBitPos,  int  rBitPos,
 559                                     int nRotate, bool test_only) {
 560   guarantee(!test_only, "Emitter not fit for test_only instruction variant.");
 561   // This version does not depend on src being zero-extended int2long.
 562   nRotate &= 0x003f;                                       // For risbg, pretend it's an unsigned value.
 563   z_rosbg(dst, src, lBitPos, rBitPos, nRotate, test_only); // Rotate, then xor selected.
 564 }
 565 
 566 // Rotate src, then xor selected range from rotated src into dst.
 567 // Set condition code only if so requested. Otherwise it is unpredictable.
 568 // See performance note in macroAssembler_s390.hpp for important information.
 569 void MacroAssembler::rotate_then_xor(Register dst, Register src,  int  lBitPos,  int  rBitPos,
 570                                      int nRotate, bool test_only) {
 571   guarantee(!test_only, "Emitter not fit for test_only instruction variant.");
 572     // This version does not depend on src being zero-extended int2long.
 573   nRotate &= 0x003f;                                       // For risbg, pretend it's an unsigned value.
 574   z_rxsbg(dst, src, lBitPos, rBitPos, nRotate, test_only); // Rotate, then xor selected.
 575 }
 576 
 577 void MacroAssembler::add64(Register r1, RegisterOrConstant inc) {
 578   if (inc.is_register()) {
 579     z_agr(r1, inc.as_register());
 580   } else { // constant
 581     intptr_t imm = inc.as_constant();
 582     add2reg(r1, imm);
 583   }
 584 }
 585 // Helper function to multiply the 64bit contents of a register by a 16bit constant.
 586 // The optimization tries to avoid the mghi instruction, since it uses the FPU for
 587 // calculation and is thus rather slow.
 588 //
 589 // There is no handling for special cases, e.g. cval==0 or cval==1.
 590 //
 591 // Returns len of generated code block.
 592 unsigned int MacroAssembler::mul_reg64_const16(Register rval, Register work, int cval) {
 593   int block_start = offset();
 594 
 595   bool sign_flip = cval < 0;
 596   cval = sign_flip ? -cval : cval;
 597 
 598   BLOCK_COMMENT("Reg64*Con16 {");
 599 
 600   int bit1 = cval & -cval;
 601   if (bit1 == cval) {
 602     z_sllg(rval, rval, exact_log2(bit1));
 603     if (sign_flip) { z_lcgr(rval, rval); }
 604   } else {
 605     int bit2 = (cval-bit1) & -(cval-bit1);
 606     if ((bit1+bit2) == cval) {
 607       z_sllg(work, rval, exact_log2(bit1));
 608       z_sllg(rval, rval, exact_log2(bit2));
 609       z_agr(rval, work);
 610       if (sign_flip) { z_lcgr(rval, rval); }
 611     } else {
 612       if (sign_flip) { z_mghi(rval, -cval); }
 613       else           { z_mghi(rval,  cval); }
 614     }
 615   }
 616   BLOCK_COMMENT("} Reg64*Con16");
 617 
 618   int block_end = offset();
 619   return block_end - block_start;
 620 }
 621 
 622 // Generic operation r1 := r2 + imm.
 623 //
 624 // Should produce the best code for each supported CPU version.
 625 // r2 == noreg yields r1 := r1 + imm
 626 // imm == 0 emits either no instruction or r1 := r2 !
 627 // NOTES: 1) Don't use this function where fixed sized
 628 //           instruction sequences are required!!!
 629 //        2) Don't use this function if condition code
 630 //           setting is required!
 631 //        3) Despite being declared as int64_t, the parameter imm
 632 //           must be a simm_32 value (= signed 32-bit integer).
 633 void MacroAssembler::add2reg(Register r1, int64_t imm, Register r2) {
 634   assert(Immediate::is_simm32(imm), "probably an implicit conversion went wrong");
 635 
 636   if (r2 == noreg) { r2 = r1; }
 637 
 638   // Handle special case imm == 0.
 639   if (imm == 0) {
 640     lgr_if_needed(r1, r2);
 641     // Nothing else to do.
 642     return;
 643   }
 644 
 645   if (!PreferLAoverADD || (r2 == Z_R0)) {
 646     bool distinctOpnds = VM_Version::has_DistinctOpnds();
 647 
 648     // Can we encode imm in 16 bits signed?
 649     if (Immediate::is_simm16(imm)) {
 650       if (r1 == r2) {
 651         z_aghi(r1, imm);
 652         return;
 653       }
 654       if (distinctOpnds) {
 655         z_aghik(r1, r2, imm);
 656         return;
 657       }
 658       z_lgr(r1, r2);
 659       z_aghi(r1, imm);
 660       return;
 661     }
 662   } else {
 663     // Can we encode imm in 12 bits unsigned?
 664     if (Displacement::is_shortDisp(imm)) {
 665       z_la(r1, imm, r2);
 666       return;
 667     }
 668     // Can we encode imm in 20 bits signed?
 669     if (Displacement::is_validDisp(imm)) {
 670       // Always use LAY instruction, so we don't need the tmp register.
 671       z_lay(r1, imm, r2);
 672       return;
 673     }
 674 
 675   }
 676 
 677   // Can handle it (all possible values) with long immediates.
 678   lgr_if_needed(r1, r2);
 679   z_agfi(r1, imm);
 680 }
 681 
 682 // Generic operation r := b + x + d
 683 //
 684 // Addition of several operands with address generation semantics - sort of:
 685 //  - no restriction on the registers. Any register will do for any operand.
 686 //  - x == noreg: operand will be disregarded.
 687 //  - b == noreg: will use (contents of) result reg as operand (r := r + d).
 688 //  - x == Z_R0:  just disregard
 689 //  - b == Z_R0:  use as operand. This is not address generation semantics!!!
 690 //
 691 // The same restrictions as on add2reg() are valid!!!
 692 void MacroAssembler::add2reg_with_index(Register r, int64_t d, Register x, Register b) {
 693   assert(Immediate::is_simm32(d), "probably an implicit conversion went wrong");
 694 
 695   if (x == noreg) { x = Z_R0; }
 696   if (b == noreg) { b = r; }
 697 
 698   // Handle special case x == R0.
 699   if (x == Z_R0) {
 700     // Can simply add the immediate value to the base register.
 701     add2reg(r, d, b);
 702     return;
 703   }
 704 
 705   if (!PreferLAoverADD || (b == Z_R0)) {
 706     bool distinctOpnds = VM_Version::has_DistinctOpnds();
 707     // Handle special case d == 0.
 708     if (d == 0) {
 709       if (b == x)        { z_sllg(r, b, 1); return; }
 710       if (r == x)        { z_agr(r, b);     return; }
 711       if (r == b)        { z_agr(r, x);     return; }
 712       if (distinctOpnds) { z_agrk(r, x, b); return; }
 713       z_lgr(r, b);
 714       z_agr(r, x);
 715     } else {
 716       if (x == b)             { z_sllg(r, x, 1); }
 717       else if (r == x)        { z_agr(r, b); }
 718       else if (r == b)        { z_agr(r, x); }
 719       else if (distinctOpnds) { z_agrk(r, x, b); }
 720       else {
 721         z_lgr(r, b);
 722         z_agr(r, x);
 723       }
 724       add2reg(r, d);
 725     }
 726   } else {
 727     // Can we encode imm in 12 bits unsigned?
 728     if (Displacement::is_shortDisp(d)) {
 729       z_la(r, d, x, b);
 730       return;
 731     }
 732     // Can we encode imm in 20 bits signed?
 733     if (Displacement::is_validDisp(d)) {
 734       z_lay(r, d, x, b);
 735       return;
 736     }
 737     z_la(r, 0, x, b);
 738     add2reg(r, d);
 739   }
 740 }
 741 
 742 // Generic emitter (32bit) for direct memory increment.
 743 // For optimal code, do not specify Z_R0 as temp register.
 744 void MacroAssembler::add2mem_32(const Address &a, int64_t imm, Register tmp) {
 745   if (VM_Version::has_MemWithImmALUOps() && Immediate::is_simm8(imm)) {
 746     z_asi(a, imm);
 747   } else {
 748     z_lgf(tmp, a);
 749     add2reg(tmp, imm);
 750     z_st(tmp, a);
 751   }
 752 }
 753 
 754 void MacroAssembler::add2mem_64(const Address &a, int64_t imm, Register tmp) {
 755   if (VM_Version::has_MemWithImmALUOps() && Immediate::is_simm8(imm)) {
 756     z_agsi(a, imm);
 757   } else {
 758     z_lg(tmp, a);
 759     add2reg(tmp, imm);
 760     z_stg(tmp, a);
 761   }
 762 }
 763 
 764 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed) {
 765   switch (size_in_bytes) {
 766     case  8: z_lg(dst, src); break;
 767     case  4: is_signed ? z_lgf(dst, src) : z_llgf(dst, src); break;
 768     case  2: is_signed ? z_lgh(dst, src) : z_llgh(dst, src); break;
 769     case  1: is_signed ? z_lgb(dst, src) : z_llgc(dst, src); break;
 770     default: ShouldNotReachHere();
 771   }
 772 }
 773 
 774 void MacroAssembler::store_sized_value(Register src, Address dst, size_t size_in_bytes) {
 775   switch (size_in_bytes) {
 776     case  8: z_stg(src, dst); break;
 777     case  4: z_st(src, dst); break;
 778     case  2: z_sth(src, dst); break;
 779     case  1: z_stc(src, dst); break;
 780     default: ShouldNotReachHere();
 781   }
 782 }
 783 
 784 // Split a si20 offset (20bit, signed) into an ui12 offset (12bit, unsigned) and
 785 // a high-order summand in register tmp.
 786 //
 787 // return value: <  0: No split required, si20 actually has property uimm12.
 788 //               >= 0: Split performed. Use return value as uimm12 displacement and
 789 //                     tmp as index register.
 790 int MacroAssembler::split_largeoffset(int64_t si20_offset, Register tmp, bool fixed_codelen, bool accumulate) {
 791   assert(Immediate::is_simm20(si20_offset), "sanity");
 792   int lg_off = (int)si20_offset &  0x0fff; // Punch out low-order 12 bits, always positive.
 793   int ll_off = (int)si20_offset & ~0x0fff; // Force low-order 12 bits to zero.
 794   assert((Displacement::is_shortDisp(si20_offset) && (ll_off == 0)) ||
 795          !Displacement::is_shortDisp(si20_offset), "unexpected offset values");
 796   assert((lg_off+ll_off) == si20_offset, "offset splitup error");
 797 
 798   Register work = accumulate? Z_R0 : tmp;
 799 
 800   if (fixed_codelen) {          // Len of code = 10 = 4 + 6.
 801     z_lghi(work, ll_off>>12);   // Implicit sign extension.
 802     z_slag(work, work, 12);
 803   } else {                      // Len of code = 0..10.
 804     if (ll_off == 0) { return -1; }
 805     // ll_off has 8 significant bits (at most) plus sign.
 806     if ((ll_off & 0x0000f000) == 0) {    // Non-zero bits only in upper halfbyte.
 807       z_llilh(work, ll_off >> 16);
 808       if (ll_off < 0) {                  // Sign-extension required.
 809         z_lgfr(work, work);
 810       }
 811     } else {
 812       if ((ll_off & 0x000f0000) == 0) {  // Non-zero bits only in lower halfbyte.
 813         z_llill(work, ll_off);
 814       } else {                           // Non-zero bits in both halfbytes.
 815         z_lghi(work, ll_off>>12);        // Implicit sign extension.
 816         z_slag(work, work, 12);
 817       }
 818     }
 819   }
 820   if (accumulate) { z_algr(tmp, work); } // len of code += 4
 821   return lg_off;
 822 }
 823 
 824 void MacroAssembler::load_float_largeoffset(FloatRegister t, int64_t si20, Register a, Register tmp) {
 825   if (Displacement::is_validDisp(si20)) {
 826     z_ley(t, si20, a);
 827   } else {
 828     // Fixed_codelen = true is a simple way to ensure that the size of load_float_largeoffset
 829     // does not depend on si20 (scratch buffer emit size == code buffer emit size for constant
 830     // pool loads).
 831     bool accumulate    = true;
 832     bool fixed_codelen = true;
 833     Register work;
 834 
 835     if (fixed_codelen) {
 836       z_lgr(tmp, a);  // Lgr_if_needed not applicable due to fixed_codelen.
 837     } else {
 838       accumulate = (a == tmp);
 839     }
 840     work = tmp;
 841 
 842     int disp12 = split_largeoffset(si20, work, fixed_codelen, accumulate);
 843     if (disp12 < 0) {
 844       z_le(t, si20, work);
 845     } else {
 846       if (accumulate) {
 847         z_le(t, disp12, work);
 848       } else {
 849         z_le(t, disp12, work, a);
 850       }
 851     }
 852   }
 853 }
 854 
 855 void MacroAssembler::load_double_largeoffset(FloatRegister t, int64_t si20, Register a, Register tmp) {
 856   if (Displacement::is_validDisp(si20)) {
 857     z_ldy(t, si20, a);
 858   } else {
 859     // Fixed_codelen = true is a simple way to ensure that the size of load_double_largeoffset
 860     // does not depend on si20 (scratch buffer emit size == code buffer emit size for constant
 861     // pool loads).
 862     bool accumulate    = true;
 863     bool fixed_codelen = true;
 864     Register work;
 865 
 866     if (fixed_codelen) {
 867       z_lgr(tmp, a);  // Lgr_if_needed not applicable due to fixed_codelen.
 868     } else {
 869       accumulate = (a == tmp);
 870     }
 871     work = tmp;
 872 
 873     int disp12 = split_largeoffset(si20, work, fixed_codelen, accumulate);
 874     if (disp12 < 0) {
 875       z_ld(t, si20, work);
 876     } else {
 877       if (accumulate) {
 878         z_ld(t, disp12, work);
 879       } else {
 880         z_ld(t, disp12, work, a);
 881       }
 882     }
 883   }
 884 }
 885 
 886 // PCrelative TOC access.
 887 // Returns distance (in bytes) from current position to start of consts section.
 888 // Returns 0 (zero) if no consts section exists or if it has size zero.
 889 long MacroAssembler::toc_distance() {
 890   CodeSection* cs = code()->consts();
 891   return (long)((cs != NULL) ? cs->start()-pc() : 0);
 892 }
 893 
 894 // Implementation on x86/sparc assumes that constant and instruction section are
 895 // adjacent, but this doesn't hold. Two special situations may occur, that we must
 896 // be able to handle:
 897 //   1. const section may be located apart from the inst section.
 898 //   2. const section may be empty
 899 // In both cases, we use the const section's start address to compute the "TOC",
 900 // this seems to occur only temporarily; in the final step we always seem to end up
 901 // with the pc-relatice variant.
 902 //
 903 // PC-relative offset could be +/-2**32 -> use long for disp
 904 // Furthermore: makes no sense to have special code for
 905 // adjacent const and inst sections.
 906 void MacroAssembler::load_toc(Register Rtoc) {
 907   // Simply use distance from start of const section (should be patched in the end).
 908   long disp = toc_distance();
 909 
 910   RelocationHolder rspec = internal_word_Relocation::spec(pc() + disp);
 911   relocate(rspec);
 912   z_larl(Rtoc, RelAddr::pcrel_off32(disp));  // Offset is in halfwords.
 913 }
 914 
 915 // PCrelative TOC access.
 916 // Load from anywhere pcrelative (with relocation of load instr)
 917 void MacroAssembler::load_long_pcrelative(Register Rdst, address dataLocation) {
 918   address          pc             = this->pc();
 919   ptrdiff_t        total_distance = dataLocation - pc;
 920   RelocationHolder rspec          = internal_word_Relocation::spec(dataLocation);
 921 
 922   assert((total_distance & 0x01L) == 0, "halfword alignment is mandatory");
 923   assert(total_distance != 0, "sanity");
 924 
 925   // Some extra safety net.
 926   if (!RelAddr::is_in_range_of_RelAddr32(total_distance)) {
 927     guarantee(RelAddr::is_in_range_of_RelAddr32(total_distance), "load_long_pcrelative can't handle distance " INTPTR_FORMAT, total_distance);
 928   }
 929 
 930   (this)->relocate(rspec, relocInfo::pcrel_addr_format);
 931   z_lgrl(Rdst, RelAddr::pcrel_off32(total_distance));
 932 }
 933 
 934 
 935 // PCrelative TOC access.
 936 // Load from anywhere pcrelative (with relocation of load instr)
 937 // loaded addr has to be relocated when added to constant pool.
 938 void MacroAssembler::load_addr_pcrelative(Register Rdst, address addrLocation) {
 939   address          pc             = this->pc();
 940   ptrdiff_t        total_distance = addrLocation - pc;
 941   RelocationHolder rspec          = internal_word_Relocation::spec(addrLocation);
 942 
 943   assert((total_distance & 0x01L) == 0, "halfword alignment is mandatory");
 944 
 945   // Some extra safety net.
 946   if (!RelAddr::is_in_range_of_RelAddr32(total_distance)) {
 947     guarantee(RelAddr::is_in_range_of_RelAddr32(total_distance), "load_long_pcrelative can't handle distance " INTPTR_FORMAT, total_distance);
 948   }
 949 
 950   (this)->relocate(rspec, relocInfo::pcrel_addr_format);
 951   z_lgrl(Rdst, RelAddr::pcrel_off32(total_distance));
 952 }
 953 
 954 // Generic operation: load a value from memory and test.
 955 // CondCode indicates the sign (<0, ==0, >0) of the loaded value.
 956 void MacroAssembler::load_and_test_byte(Register dst, const Address &a) {
 957   z_lb(dst, a);
 958   z_ltr(dst, dst);
 959 }
 960 
 961 void MacroAssembler::load_and_test_short(Register dst, const Address &a) {
 962   int64_t disp = a.disp20();
 963   if (Displacement::is_shortDisp(disp)) {
 964     z_lh(dst, a);
 965   } else if (Displacement::is_longDisp(disp)) {
 966     z_lhy(dst, a);
 967   } else {
 968     guarantee(false, "displacement out of range");
 969   }
 970   z_ltr(dst, dst);
 971 }
 972 
 973 void MacroAssembler::load_and_test_int(Register dst, const Address &a) {
 974   z_lt(dst, a);
 975 }
 976 
 977 void MacroAssembler::load_and_test_int2long(Register dst, const Address &a) {
 978   z_ltgf(dst, a);
 979 }
 980 
 981 void MacroAssembler::load_and_test_long(Register dst, const Address &a) {
 982   z_ltg(dst, a);
 983 }
 984 
 985 // Test a bit in memory.
 986 void MacroAssembler::testbit(const Address &a, unsigned int bit) {
 987   assert(a.index() == noreg, "no index reg allowed in testbit");
 988   if (bit <= 7) {
 989     z_tm(a.disp() + 3, a.base(), 1 << bit);
 990   } else if (bit <= 15) {
 991     z_tm(a.disp() + 2, a.base(), 1 << (bit - 8));
 992   } else if (bit <= 23) {
 993     z_tm(a.disp() + 1, a.base(), 1 << (bit - 16));
 994   } else if (bit <= 31) {
 995     z_tm(a.disp() + 0, a.base(), 1 << (bit - 24));
 996   } else {
 997     ShouldNotReachHere();
 998   }
 999 }
1000 
1001 // Test a bit in a register. Result is reflected in CC.
1002 void MacroAssembler::testbit(Register r, unsigned int bitPos) {
1003   if (bitPos < 16) {
1004     z_tmll(r, 1U<<bitPos);
1005   } else if (bitPos < 32) {
1006     z_tmlh(r, 1U<<(bitPos-16));
1007   } else if (bitPos < 48) {
1008     z_tmhl(r, 1U<<(bitPos-32));
1009   } else if (bitPos < 64) {
1010     z_tmhh(r, 1U<<(bitPos-48));
1011   } else {
1012     ShouldNotReachHere();
1013   }
1014 }
1015 
1016 void MacroAssembler::prefetch_read(Address a) {
1017   z_pfd(1, a.disp20(), a.indexOrR0(), a.base());
1018 }
1019 void MacroAssembler::prefetch_update(Address a) {
1020   z_pfd(2, a.disp20(), a.indexOrR0(), a.base());
1021 }
1022 
1023 // Clear a register, i.e. load const zero into reg.
1024 // Return len (in bytes) of generated instruction(s).
1025 // whole_reg: Clear 64 bits if true, 32 bits otherwise.
1026 // set_cc:    Use instruction that sets the condition code, if true.
1027 int MacroAssembler::clear_reg(Register r, bool whole_reg, bool set_cc) {
1028   unsigned int start_off = offset();
1029   if (whole_reg) {
1030     set_cc ? z_xgr(r, r) : z_laz(r, 0, Z_R0);
1031   } else {  // Only 32bit register.
1032     set_cc ? z_xr(r, r) : z_lhi(r, 0);
1033   }
1034   return offset() - start_off;
1035 }
1036 
1037 #ifdef ASSERT
1038 int MacroAssembler::preset_reg(Register r, unsigned long pattern, int pattern_len) {
1039   switch (pattern_len) {
1040     case 1:
1041       pattern = (pattern & 0x000000ff)  | ((pattern & 0x000000ff)<<8);
1042     case 2:
1043       pattern = (pattern & 0x0000ffff)  | ((pattern & 0x0000ffff)<<16);
1044     case 4:
1045       pattern = (pattern & 0xffffffffL) | ((pattern & 0xffffffffL)<<32);
1046     case 8:
1047       return load_const_optimized_rtn_len(r, pattern, true);
1048       break;
1049     default:
1050       guarantee(false, "preset_reg: bad len");
1051   }
1052   return 0;
1053 }
1054 #endif
1055 
1056 // addr: Address descriptor of memory to clear index register will not be used !
1057 // size: Number of bytes to clear.
1058 //    !!! DO NOT USE THEM FOR ATOMIC MEMORY CLEARING !!!
1059 //    !!! Use store_const() instead                  !!!
1060 void MacroAssembler::clear_mem(const Address& addr, unsigned size) {
1061   guarantee(size <= 256, "MacroAssembler::clear_mem: size too large");
1062 
1063   if (size == 1) {
1064     z_mvi(addr, 0);
1065     return;
1066   }
1067 
1068   switch (size) {
1069     case 2: z_mvhhi(addr, 0);
1070       return;
1071     case 4: z_mvhi(addr, 0);
1072       return;
1073     case 8: z_mvghi(addr, 0);
1074       return;
1075     default: ; // Fallthru to xc.
1076   }
1077 
1078   z_xc(addr, size, addr);
1079 }
1080 
1081 void MacroAssembler::align(int modulus) {
1082   while (offset() % modulus != 0) z_nop();
1083 }
1084 
1085 // Special version for non-relocateable code if required alignment
1086 // is larger than CodeEntryAlignment.
1087 void MacroAssembler::align_address(int modulus) {
1088   while ((uintptr_t)pc() % modulus != 0) z_nop();
1089 }
1090 
1091 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
1092                                          Register temp_reg,
1093                                          int64_t extra_slot_offset) {
1094   // On Z, we can have index and disp in an Address. So don't call argument_offset,
1095   // which issues an unnecessary add instruction.
1096   int stackElementSize = Interpreter::stackElementSize;
1097   int64_t offset = extra_slot_offset * stackElementSize;
1098   const Register argbase = Z_esp;
1099   if (arg_slot.is_constant()) {
1100     offset += arg_slot.as_constant() * stackElementSize;
1101     return Address(argbase, offset);
1102   }
1103   // else
1104   assert(temp_reg != noreg, "must specify");
1105   assert(temp_reg != Z_ARG1, "base and index are conflicting");
1106   z_sllg(temp_reg, arg_slot.as_register(), exact_log2(stackElementSize)); // tempreg = arg_slot << 3
1107   return Address(argbase, temp_reg, offset);
1108 }
1109 
1110 
1111 //===================================================================
1112 //===   START   C O N S T A N T S   I N   C O D E   S T R E A M   ===
1113 //===================================================================
1114 //===            P A T CH A B L E   C O N S T A N T S             ===
1115 //===================================================================
1116 
1117 
1118 //---------------------------------------------------
1119 //  Load (patchable) constant into register
1120 //---------------------------------------------------
1121 
1122 
1123 // Load absolute address (and try to optimize).
1124 //   Note: This method is usable only for position-fixed code,
1125 //         referring to a position-fixed target location.
1126 //         If not so, relocations and patching must be used.
1127 void MacroAssembler::load_absolute_address(Register d, address addr) {
1128   assert(addr != NULL, "should not happen");
1129   BLOCK_COMMENT("load_absolute_address:");
1130   if (addr == NULL) {
1131     z_larl(d, pc()); // Dummy emit for size calc.
1132     return;
1133   }
1134 
1135   if (RelAddr::is_in_range_of_RelAddr32(addr, pc())) {
1136     z_larl(d, addr);
1137     return;
1138   }
1139 
1140   load_const_optimized(d, (long)addr);
1141 }
1142 
1143 // Load a 64bit constant.
1144 // Patchable code sequence, but not atomically patchable.
1145 // Make sure to keep code size constant -> no value-dependent optimizations.
1146 // Do not kill condition code.
1147 void MacroAssembler::load_const(Register t, long x) {
1148   // Note: Right shift is only cleanly defined for unsigned types
1149   //       or for signed types with nonnegative values.
1150   Assembler::z_iihf(t, (long)((unsigned long)x >> 32));
1151   Assembler::z_iilf(t, (long)((unsigned long)x & 0xffffffffUL));
1152 }
1153 
1154 // Load a 32bit constant into a 64bit register, sign-extend or zero-extend.
1155 // Patchable code sequence, but not atomically patchable.
1156 // Make sure to keep code size constant -> no value-dependent optimizations.
1157 // Do not kill condition code.
1158 void MacroAssembler::load_const_32to64(Register t, int64_t x, bool sign_extend) {
1159   if (sign_extend) { Assembler::z_lgfi(t, x); }
1160   else             { Assembler::z_llilf(t, x); }
1161 }
1162 
1163 // Load narrow oop constant, no decompression.
1164 void MacroAssembler::load_narrow_oop(Register t, narrowOop a) {
1165   assert(UseCompressedOops, "must be on to call this method");
1166   load_const_32to64(t, CompressedOops::narrow_oop_value(a), false /*sign_extend*/);
1167 }
1168 
1169 // Load narrow klass constant, compression required.
1170 void MacroAssembler::load_narrow_klass(Register t, Klass* k) {
1171   assert(UseCompressedClassPointers, "must be on to call this method");
1172   narrowKlass encoded_k = CompressedKlassPointers::encode(k);
1173   load_const_32to64(t, encoded_k, false /*sign_extend*/);
1174 }
1175 
1176 //------------------------------------------------------
1177 //  Compare (patchable) constant with register.
1178 //------------------------------------------------------
1179 
1180 // Compare narrow oop in reg with narrow oop constant, no decompression.
1181 void MacroAssembler::compare_immediate_narrow_oop(Register oop1, narrowOop oop2) {
1182   assert(UseCompressedOops, "must be on to call this method");
1183 
1184   Assembler::z_clfi(oop1, CompressedOops::narrow_oop_value(oop2));
1185 }
1186 
1187 // Compare narrow oop in reg with narrow oop constant, no decompression.
1188 void MacroAssembler::compare_immediate_narrow_klass(Register klass1, Klass* klass2) {
1189   assert(UseCompressedClassPointers, "must be on to call this method");
1190   narrowKlass encoded_k = CompressedKlassPointers::encode(klass2);
1191 
1192   Assembler::z_clfi(klass1, encoded_k);
1193 }
1194 
1195 //----------------------------------------------------------
1196 //  Check which kind of load_constant we have here.
1197 //----------------------------------------------------------
1198 
1199 // Detection of CPU version dependent load_const sequence.
1200 // The detection is valid only for code sequences generated by load_const,
1201 // not load_const_optimized.
1202 bool MacroAssembler::is_load_const(address a) {
1203   unsigned long inst1, inst2;
1204   unsigned int  len1,  len2;
1205 
1206   len1 = get_instruction(a, &inst1);
1207   len2 = get_instruction(a + len1, &inst2);
1208 
1209   return is_z_iihf(inst1) && is_z_iilf(inst2);
1210 }
1211 
1212 // Detection of CPU version dependent load_const_32to64 sequence.
1213 // Mostly used for narrow oops and narrow Klass pointers.
1214 // The detection is valid only for code sequences generated by load_const_32to64.
1215 bool MacroAssembler::is_load_const_32to64(address pos) {
1216   unsigned long inst1, inst2;
1217   unsigned int len1;
1218 
1219   len1 = get_instruction(pos, &inst1);
1220   return is_z_llilf(inst1);
1221 }
1222 
1223 // Detection of compare_immediate_narrow sequence.
1224 // The detection is valid only for code sequences generated by compare_immediate_narrow_oop.
1225 bool MacroAssembler::is_compare_immediate32(address pos) {
1226   return is_equal(pos, CLFI_ZOPC, RIL_MASK);
1227 }
1228 
1229 // Detection of compare_immediate_narrow sequence.
1230 // The detection is valid only for code sequences generated by compare_immediate_narrow_oop.
1231 bool MacroAssembler::is_compare_immediate_narrow_oop(address pos) {
1232   return is_compare_immediate32(pos);
1233   }
1234 
1235 // Detection of compare_immediate_narrow sequence.
1236 // The detection is valid only for code sequences generated by compare_immediate_narrow_klass.
1237 bool MacroAssembler::is_compare_immediate_narrow_klass(address pos) {
1238   return is_compare_immediate32(pos);
1239 }
1240 
1241 //-----------------------------------
1242 //  patch the load_constant
1243 //-----------------------------------
1244 
1245 // CPU-version dependent patching of load_const.
1246 void MacroAssembler::patch_const(address a, long x) {
1247   assert(is_load_const(a), "not a load of a constant");
1248   // Note: Right shift is only cleanly defined for unsigned types
1249   //       or for signed types with nonnegative values.
1250   set_imm32((address)a, (long)((unsigned long)x >> 32));
1251   set_imm32((address)(a + 6), (long)((unsigned long)x & 0xffffffffUL));
1252 }
1253 
1254 // Patching the value of CPU version dependent load_const_32to64 sequence.
1255 // The passed ptr MUST be in compressed format!
1256 int MacroAssembler::patch_load_const_32to64(address pos, int64_t np) {
1257   assert(is_load_const_32to64(pos), "not a load of a narrow ptr (oop or klass)");
1258 
1259   set_imm32(pos, np);
1260   return 6;
1261 }
1262 
1263 // Patching the value of CPU version dependent compare_immediate_narrow sequence.
1264 // The passed ptr MUST be in compressed format!
1265 int MacroAssembler::patch_compare_immediate_32(address pos, int64_t np) {
1266   assert(is_compare_immediate32(pos), "not a compressed ptr compare");
1267 
1268   set_imm32(pos, np);
1269   return 6;
1270 }
1271 
1272 // Patching the immediate value of CPU version dependent load_narrow_oop sequence.
1273 // The passed ptr must NOT be in compressed format!
1274 int MacroAssembler::patch_load_narrow_oop(address pos, oop o) {
1275   assert(UseCompressedOops, "Can only patch compressed oops");
1276   return patch_load_const_32to64(pos, CompressedOops::narrow_oop_value(o));
1277 }
1278 
1279 // Patching the immediate value of CPU version dependent load_narrow_klass sequence.
1280 // The passed ptr must NOT be in compressed format!
1281 int MacroAssembler::patch_load_narrow_klass(address pos, Klass* k) {
1282   assert(UseCompressedClassPointers, "Can only patch compressed klass pointers");
1283 
1284   narrowKlass nk = CompressedKlassPointers::encode(k);
1285   return patch_load_const_32to64(pos, nk);
1286 }
1287 
1288 // Patching the immediate value of CPU version dependent compare_immediate_narrow_oop sequence.
1289 // The passed ptr must NOT be in compressed format!
1290 int MacroAssembler::patch_compare_immediate_narrow_oop(address pos, oop o) {
1291   assert(UseCompressedOops, "Can only patch compressed oops");
1292   return patch_compare_immediate_32(pos, CompressedOops::narrow_oop_value(o));
1293 }
1294 
1295 // Patching the immediate value of CPU version dependent compare_immediate_narrow_klass sequence.
1296 // The passed ptr must NOT be in compressed format!
1297 int MacroAssembler::patch_compare_immediate_narrow_klass(address pos, Klass* k) {
1298   assert(UseCompressedClassPointers, "Can only patch compressed klass pointers");
1299 
1300   narrowKlass nk = CompressedKlassPointers::encode(k);
1301   return patch_compare_immediate_32(pos, nk);
1302 }
1303 
1304 //------------------------------------------------------------------------
1305 //  Extract the constant from a load_constant instruction stream.
1306 //------------------------------------------------------------------------
1307 
1308 // Get constant from a load_const sequence.
1309 long MacroAssembler::get_const(address a) {
1310   assert(is_load_const(a), "not a load of a constant");
1311   unsigned long x;
1312   x =  (((unsigned long) (get_imm32(a,0) & 0xffffffff)) << 32);
1313   x |= (((unsigned long) (get_imm32(a,1) & 0xffffffff)));
1314   return (long) x;
1315 }
1316 
1317 //--------------------------------------
1318 //  Store a constant in memory.
1319 //--------------------------------------
1320 
1321 // General emitter to move a constant to memory.
1322 // The store is atomic.
1323 //  o Address must be given in RS format (no index register)
1324 //  o Displacement should be 12bit unsigned for efficiency. 20bit signed also supported.
1325 //  o Constant can be 1, 2, 4, or 8 bytes, signed or unsigned.
1326 //  o Memory slot can be 1, 2, 4, or 8 bytes, signed or unsigned.
1327 //  o Memory slot must be at least as wide as constant, will assert otherwise.
1328 //  o Signed constants will sign-extend, unsigned constants will zero-extend to slot width.
1329 int MacroAssembler::store_const(const Address &dest, long imm,
1330                                 unsigned int lm, unsigned int lc,
1331                                 Register scratch) {
1332   int64_t  disp = dest.disp();
1333   Register base = dest.base();
1334   assert(!dest.has_index(), "not supported");
1335   assert((lm==1)||(lm==2)||(lm==4)||(lm==8), "memory   length not supported");
1336   assert((lc==1)||(lc==2)||(lc==4)||(lc==8), "constant length not supported");
1337   assert(lm>=lc, "memory slot too small");
1338   assert(lc==8 || Immediate::is_simm(imm, lc*8), "const out of range");
1339   assert(Displacement::is_validDisp(disp), "displacement out of range");
1340 
1341   bool is_shortDisp = Displacement::is_shortDisp(disp);
1342   int store_offset = -1;
1343 
1344   // For target len == 1 it's easy.
1345   if (lm == 1) {
1346     store_offset = offset();
1347     if (is_shortDisp) {
1348       z_mvi(disp, base, imm);
1349       return store_offset;
1350     } else {
1351       z_mviy(disp, base, imm);
1352       return store_offset;
1353     }
1354   }
1355 
1356   // All the "good stuff" takes an unsigned displacement.
1357   if (is_shortDisp) {
1358     // NOTE: Cannot use clear_mem for imm==0, because it is not atomic.
1359 
1360     store_offset = offset();
1361     switch (lm) {
1362       case 2:  // Lc == 1 handled correctly here, even for unsigned. Instruction does no widening.
1363         z_mvhhi(disp, base, imm);
1364         return store_offset;
1365       case 4:
1366         if (Immediate::is_simm16(imm)) {
1367           z_mvhi(disp, base, imm);
1368           return store_offset;
1369         }
1370         break;
1371       case 8:
1372         if (Immediate::is_simm16(imm)) {
1373           z_mvghi(disp, base, imm);
1374           return store_offset;
1375         }
1376         break;
1377       default:
1378         ShouldNotReachHere();
1379         break;
1380     }
1381   }
1382 
1383   //  Can't optimize, so load value and store it.
1384   guarantee(scratch != noreg, " need a scratch register here !");
1385   if (imm != 0) {
1386     load_const_optimized(scratch, imm);  // Preserves CC anyway.
1387   } else {
1388     // Leave CC alone!!
1389     (void) clear_reg(scratch, true, false); // Indicate unused result.
1390   }
1391 
1392   store_offset = offset();
1393   if (is_shortDisp) {
1394     switch (lm) {
1395       case 2:
1396         z_sth(scratch, disp, Z_R0, base);
1397         return store_offset;
1398       case 4:
1399         z_st(scratch, disp, Z_R0, base);
1400         return store_offset;
1401       case 8:
1402         z_stg(scratch, disp, Z_R0, base);
1403         return store_offset;
1404       default:
1405         ShouldNotReachHere();
1406         break;
1407     }
1408   } else {
1409     switch (lm) {
1410       case 2:
1411         z_sthy(scratch, disp, Z_R0, base);
1412         return store_offset;
1413       case 4:
1414         z_sty(scratch, disp, Z_R0, base);
1415         return store_offset;
1416       case 8:
1417         z_stg(scratch, disp, Z_R0, base);
1418         return store_offset;
1419       default:
1420         ShouldNotReachHere();
1421         break;
1422     }
1423   }
1424   return -1; // should not reach here
1425 }
1426 
1427 //===================================================================
1428 //===       N O T   P A T CH A B L E   C O N S T A N T S          ===
1429 //===================================================================
1430 
1431 // Load constant x into register t with a fast instruction sequence
1432 // depending on the bits in x. Preserves CC under all circumstances.
1433 int MacroAssembler::load_const_optimized_rtn_len(Register t, long x, bool emit) {
1434   if (x == 0) {
1435     int len;
1436     if (emit) {
1437       len = clear_reg(t, true, false);
1438     } else {
1439       len = 4;
1440     }
1441     return len;
1442   }
1443 
1444   if (Immediate::is_simm16(x)) {
1445     if (emit) { z_lghi(t, x); }
1446     return 4;
1447   }
1448 
1449   // 64 bit value: | part1 | part2 | part3 | part4 |
1450   // At least one part is not zero!
1451   // Note: Right shift is only cleanly defined for unsigned types
1452   //       or for signed types with nonnegative values.
1453   int part1 = (int)((unsigned long)x >> 48) & 0x0000ffff;
1454   int part2 = (int)((unsigned long)x >> 32) & 0x0000ffff;
1455   int part3 = (int)((unsigned long)x >> 16) & 0x0000ffff;
1456   int part4 = (int)x & 0x0000ffff;
1457   int part12 = (int)((unsigned long)x >> 32);
1458   int part34 = (int)x;
1459 
1460   // Lower word only (unsigned).
1461   if (part12 == 0) {
1462     if (part3 == 0) {
1463       if (emit) z_llill(t, part4);
1464       return 4;
1465     }
1466     if (part4 == 0) {
1467       if (emit) z_llilh(t, part3);
1468       return 4;
1469     }
1470     if (emit) z_llilf(t, part34);
1471     return 6;
1472   }
1473 
1474   // Upper word only.
1475   if (part34 == 0) {
1476     if (part1 == 0) {
1477       if (emit) z_llihl(t, part2);
1478       return 4;
1479     }
1480     if (part2 == 0) {
1481       if (emit) z_llihh(t, part1);
1482       return 4;
1483     }
1484     if (emit) z_llihf(t, part12);
1485     return 6;
1486   }
1487 
1488   // Lower word only (signed).
1489   if ((part1 == 0x0000ffff) && (part2 == 0x0000ffff) && ((part3 & 0x00008000) != 0)) {
1490     if (emit) z_lgfi(t, part34);
1491     return 6;
1492   }
1493 
1494   int len = 0;
1495 
1496   if ((part1 == 0) || (part2 == 0)) {
1497     if (part1 == 0) {
1498       if (emit) z_llihl(t, part2);
1499       len += 4;
1500     } else {
1501       if (emit) z_llihh(t, part1);
1502       len += 4;
1503     }
1504   } else {
1505     if (emit) z_llihf(t, part12);
1506     len += 6;
1507   }
1508 
1509   if ((part3 == 0) || (part4 == 0)) {
1510     if (part3 == 0) {
1511       if (emit) z_iill(t, part4);
1512       len += 4;
1513     } else {
1514       if (emit) z_iilh(t, part3);
1515       len += 4;
1516     }
1517   } else {
1518     if (emit) z_iilf(t, part34);
1519     len += 6;
1520   }
1521   return len;
1522 }
1523 
1524 //=====================================================================
1525 //===     H I G H E R   L E V E L   B R A N C H   E M I T T E R S   ===
1526 //=====================================================================
1527 
1528 // Note: In the worst case, one of the scratch registers is destroyed!!!
1529 void MacroAssembler::compare32_and_branch(Register r1, RegisterOrConstant x2, branch_condition cond, Label& lbl) {
1530   // Right operand is constant.
1531   if (x2.is_constant()) {
1532     jlong value = x2.as_constant();
1533     compare_and_branch_optimized(r1, value, cond, lbl, /*len64=*/false, /*has_sign=*/true);
1534     return;
1535   }
1536 
1537   // Right operand is in register.
1538   compare_and_branch_optimized(r1, x2.as_register(), cond, lbl, /*len64=*/false, /*has_sign=*/true);
1539 }
1540 
1541 // Note: In the worst case, one of the scratch registers is destroyed!!!
1542 void MacroAssembler::compareU32_and_branch(Register r1, RegisterOrConstant x2, branch_condition cond, Label& lbl) {
1543   // Right operand is constant.
1544   if (x2.is_constant()) {
1545     jlong value = x2.as_constant();
1546     compare_and_branch_optimized(r1, value, cond, lbl, /*len64=*/false, /*has_sign=*/false);
1547     return;
1548   }
1549 
1550   // Right operand is in register.
1551   compare_and_branch_optimized(r1, x2.as_register(), cond, lbl, /*len64=*/false, /*has_sign=*/false);
1552 }
1553 
1554 // Note: In the worst case, one of the scratch registers is destroyed!!!
1555 void MacroAssembler::compare64_and_branch(Register r1, RegisterOrConstant x2, branch_condition cond, Label& lbl) {
1556   // Right operand is constant.
1557   if (x2.is_constant()) {
1558     jlong value = x2.as_constant();
1559     compare_and_branch_optimized(r1, value, cond, lbl, /*len64=*/true, /*has_sign=*/true);
1560     return;
1561   }
1562 
1563   // Right operand is in register.
1564   compare_and_branch_optimized(r1, x2.as_register(), cond, lbl, /*len64=*/true, /*has_sign=*/true);
1565 }
1566 
1567 void MacroAssembler::compareU64_and_branch(Register r1, RegisterOrConstant x2, branch_condition cond, Label& lbl) {
1568   // Right operand is constant.
1569   if (x2.is_constant()) {
1570     jlong value = x2.as_constant();
1571     compare_and_branch_optimized(r1, value, cond, lbl, /*len64=*/true, /*has_sign=*/false);
1572     return;
1573   }
1574 
1575   // Right operand is in register.
1576   compare_and_branch_optimized(r1, x2.as_register(), cond, lbl, /*len64=*/true, /*has_sign=*/false);
1577 }
1578 
1579 // Generate an optimal branch to the branch target.
1580 // Optimal means that a relative branch (brc or brcl) is used if the
1581 // branch distance is short enough. Loading the target address into a
1582 // register and branching via reg is used as fallback only.
1583 //
1584 // Used registers:
1585 //   Z_R1 - work reg. Holds branch target address.
1586 //          Used in fallback case only.
1587 //
1588 // This version of branch_optimized is good for cases where the target address is known
1589 // and constant, i.e. is never changed (no relocation, no patching).
1590 void MacroAssembler::branch_optimized(Assembler::branch_condition cond, address branch_addr) {
1591   address branch_origin = pc();
1592 
1593   if (RelAddr::is_in_range_of_RelAddr16(branch_addr, branch_origin)) {
1594     z_brc(cond, branch_addr);
1595   } else if (RelAddr::is_in_range_of_RelAddr32(branch_addr, branch_origin)) {
1596     z_brcl(cond, branch_addr);
1597   } else {
1598     load_const_optimized(Z_R1, branch_addr);  // CC must not get killed by load_const_optimized.
1599     z_bcr(cond, Z_R1);
1600   }
1601 }
1602 
1603 // This version of branch_optimized is good for cases where the target address
1604 // is potentially not yet known at the time the code is emitted.
1605 //
1606 // One very common case is a branch to an unbound label which is handled here.
1607 // The caller might know (or hope) that the branch distance is short enough
1608 // to be encoded in a 16bit relative address. In this case he will pass a
1609 // NearLabel branch_target.
1610 // Care must be taken with unbound labels. Each call to target(label) creates
1611 // an entry in the patch queue for that label to patch all references of the label
1612 // once it gets bound. Those recorded patch locations must be patchable. Otherwise,
1613 // an assertion fires at patch time.
1614 void MacroAssembler::branch_optimized(Assembler::branch_condition cond, Label& branch_target) {
1615   if (branch_target.is_bound()) {
1616     address branch_addr = target(branch_target);
1617     branch_optimized(cond, branch_addr);
1618   } else if (branch_target.is_near()) {
1619     z_brc(cond, branch_target);  // Caller assures that the target will be in range for z_brc.
1620   } else {
1621     z_brcl(cond, branch_target); // Let's hope target is in range. Otherwise, we will abort at patch time.
1622   }
1623 }
1624 
1625 // Generate an optimal compare and branch to the branch target.
1626 // Optimal means that a relative branch (clgrj, brc or brcl) is used if the
1627 // branch distance is short enough. Loading the target address into a
1628 // register and branching via reg is used as fallback only.
1629 //
1630 // Input:
1631 //   r1 - left compare operand
1632 //   r2 - right compare operand
1633 void MacroAssembler::compare_and_branch_optimized(Register r1,
1634                                                   Register r2,
1635                                                   Assembler::branch_condition cond,
1636                                                   address  branch_addr,
1637                                                   bool     len64,
1638                                                   bool     has_sign) {
1639   unsigned int casenum = (len64?2:0)+(has_sign?0:1);
1640 
1641   address branch_origin = pc();
1642   if (VM_Version::has_CompareBranch() && RelAddr::is_in_range_of_RelAddr16(branch_addr, branch_origin)) {
1643     switch (casenum) {
1644       case 0: z_crj( r1, r2, cond, branch_addr); break;
1645       case 1: z_clrj (r1, r2, cond, branch_addr); break;
1646       case 2: z_cgrj(r1, r2, cond, branch_addr); break;
1647       case 3: z_clgrj(r1, r2, cond, branch_addr); break;
1648       default: ShouldNotReachHere(); break;
1649     }
1650   } else {
1651     switch (casenum) {
1652       case 0: z_cr( r1, r2); break;
1653       case 1: z_clr(r1, r2); break;
1654       case 2: z_cgr(r1, r2); break;
1655       case 3: z_clgr(r1, r2); break;
1656       default: ShouldNotReachHere(); break;
1657     }
1658     branch_optimized(cond, branch_addr);
1659   }
1660 }
1661 
1662 // Generate an optimal compare and branch to the branch target.
1663 // Optimal means that a relative branch (clgij, brc or brcl) is used if the
1664 // branch distance is short enough. Loading the target address into a
1665 // register and branching via reg is used as fallback only.
1666 //
1667 // Input:
1668 //   r1 - left compare operand (in register)
1669 //   x2 - right compare operand (immediate)
1670 void MacroAssembler::compare_and_branch_optimized(Register r1,
1671                                                   jlong    x2,
1672                                                   Assembler::branch_condition cond,
1673                                                   Label&   branch_target,
1674                                                   bool     len64,
1675                                                   bool     has_sign) {
1676   address      branch_origin = pc();
1677   bool         x2_imm8       = (has_sign && Immediate::is_simm8(x2)) || (!has_sign && Immediate::is_uimm8(x2));
1678   bool         is_RelAddr16  = branch_target.is_near() ||
1679                                (branch_target.is_bound() &&
1680                                 RelAddr::is_in_range_of_RelAddr16(target(branch_target), branch_origin));
1681   unsigned int casenum       = (len64?2:0)+(has_sign?0:1);
1682 
1683   if (VM_Version::has_CompareBranch() && is_RelAddr16 && x2_imm8) {
1684     switch (casenum) {
1685       case 0: z_cij( r1, x2, cond, branch_target); break;
1686       case 1: z_clij(r1, x2, cond, branch_target); break;
1687       case 2: z_cgij(r1, x2, cond, branch_target); break;
1688       case 3: z_clgij(r1, x2, cond, branch_target); break;
1689       default: ShouldNotReachHere(); break;
1690     }
1691     return;
1692   }
1693 
1694   if (x2 == 0) {
1695     switch (casenum) {
1696       case 0: z_ltr(r1, r1); break;
1697       case 1: z_ltr(r1, r1); break; // Caution: unsigned test only provides zero/notZero indication!
1698       case 2: z_ltgr(r1, r1); break;
1699       case 3: z_ltgr(r1, r1); break; // Caution: unsigned test only provides zero/notZero indication!
1700       default: ShouldNotReachHere(); break;
1701     }
1702   } else {
1703     if ((has_sign && Immediate::is_simm16(x2)) || (!has_sign && Immediate::is_uimm(x2, 15))) {
1704       switch (casenum) {
1705         case 0: z_chi(r1, x2); break;
1706         case 1: z_chi(r1, x2); break; // positive immediate < 2**15
1707         case 2: z_cghi(r1, x2); break;
1708         case 3: z_cghi(r1, x2); break; // positive immediate < 2**15
1709         default: break;
1710       }
1711     } else if ( (has_sign && Immediate::is_simm32(x2)) || (!has_sign && Immediate::is_uimm32(x2)) ) {
1712       switch (casenum) {
1713         case 0: z_cfi( r1, x2); break;
1714         case 1: z_clfi(r1, x2); break;
1715         case 2: z_cgfi(r1, x2); break;
1716         case 3: z_clgfi(r1, x2); break;
1717         default: ShouldNotReachHere(); break;
1718       }
1719     } else {
1720       // No instruction with immediate operand possible, so load into register.
1721       Register scratch = (r1 != Z_R0) ? Z_R0 : Z_R1;
1722       load_const_optimized(scratch, x2);
1723       switch (casenum) {
1724         case 0: z_cr( r1, scratch); break;
1725         case 1: z_clr(r1, scratch); break;
1726         case 2: z_cgr(r1, scratch); break;
1727         case 3: z_clgr(r1, scratch); break;
1728         default: ShouldNotReachHere(); break;
1729       }
1730     }
1731   }
1732   branch_optimized(cond, branch_target);
1733 }
1734 
1735 // Generate an optimal compare and branch to the branch target.
1736 // Optimal means that a relative branch (clgrj, brc or brcl) is used if the
1737 // branch distance is short enough. Loading the target address into a
1738 // register and branching via reg is used as fallback only.
1739 //
1740 // Input:
1741 //   r1 - left compare operand
1742 //   r2 - right compare operand
1743 void MacroAssembler::compare_and_branch_optimized(Register r1,
1744                                                   Register r2,
1745                                                   Assembler::branch_condition cond,
1746                                                   Label&   branch_target,
1747                                                   bool     len64,
1748                                                   bool     has_sign) {
1749   unsigned int casenum = (len64 ? 2 : 0) + (has_sign ? 0 : 1);
1750 
1751   if (branch_target.is_bound()) {
1752     address branch_addr = target(branch_target);
1753     compare_and_branch_optimized(r1, r2, cond, branch_addr, len64, has_sign);
1754   } else {
1755     if (VM_Version::has_CompareBranch() && branch_target.is_near()) {
1756       switch (casenum) {
1757         case 0: z_crj(  r1, r2, cond, branch_target); break;
1758         case 1: z_clrj( r1, r2, cond, branch_target); break;
1759         case 2: z_cgrj( r1, r2, cond, branch_target); break;
1760         case 3: z_clgrj(r1, r2, cond, branch_target); break;
1761         default: ShouldNotReachHere(); break;
1762       }
1763     } else {
1764       switch (casenum) {
1765         case 0: z_cr( r1, r2); break;
1766         case 1: z_clr(r1, r2); break;
1767         case 2: z_cgr(r1, r2); break;
1768         case 3: z_clgr(r1, r2); break;
1769         default: ShouldNotReachHere(); break;
1770       }
1771       branch_optimized(cond, branch_target);
1772     }
1773   }
1774 }
1775 
1776 //===========================================================================
1777 //===   END     H I G H E R   L E V E L   B R A N C H   E M I T T E R S   ===
1778 //===========================================================================
1779 
1780 AddressLiteral MacroAssembler::allocate_metadata_address(Metadata* obj) {
1781   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
1782   int index = oop_recorder()->allocate_metadata_index(obj);
1783   RelocationHolder rspec = metadata_Relocation::spec(index);
1784   return AddressLiteral((address)obj, rspec);
1785 }
1786 
1787 AddressLiteral MacroAssembler::constant_metadata_address(Metadata* obj) {
1788   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
1789   int index = oop_recorder()->find_index(obj);
1790   RelocationHolder rspec = metadata_Relocation::spec(index);
1791   return AddressLiteral((address)obj, rspec);
1792 }
1793 
1794 AddressLiteral MacroAssembler::allocate_oop_address(jobject obj) {
1795   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
1796   int oop_index = oop_recorder()->allocate_oop_index(obj);
1797   return AddressLiteral(address(obj), oop_Relocation::spec(oop_index));
1798 }
1799 
1800 AddressLiteral MacroAssembler::constant_oop_address(jobject obj) {
1801   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
1802   int oop_index = oop_recorder()->find_index(obj);
1803   return AddressLiteral(address(obj), oop_Relocation::spec(oop_index));
1804 }
1805 
1806 // NOTE: destroys r
1807 void MacroAssembler::c2bool(Register r, Register t) {
1808   z_lcr(t, r);   // t = -r
1809   z_or(r, t);    // r = -r OR r
1810   z_srl(r, 31);  // Yields 0 if r was 0, 1 otherwise.
1811 }
1812 
1813 // Patch instruction `inst' at offset `inst_pos' to refer to `dest_pos'
1814 // and return the resulting instruction.
1815 // Dest_pos and inst_pos are 32 bit only. These parms can only designate
1816 // relative positions.
1817 // Use correct argument types. Do not pre-calculate distance.
1818 unsigned long MacroAssembler::patched_branch(address dest_pos, unsigned long inst, address inst_pos) {
1819   int c = 0;
1820   unsigned long patched_inst = 0;
1821   if (is_call_pcrelative_short(inst) ||
1822       is_branch_pcrelative_short(inst) ||
1823       is_branchoncount_pcrelative_short(inst) ||
1824       is_branchonindex32_pcrelative_short(inst)) {
1825     c = 1;
1826     int m = fmask(15, 0);    // simm16(-1, 16, 32);
1827     int v = simm16(RelAddr::pcrel_off16(dest_pos, inst_pos), 16, 32);
1828     patched_inst = (inst & ~m) | v;
1829   } else if (is_compareandbranch_pcrelative_short(inst)) {
1830     c = 2;
1831     long m = fmask(31, 16);  // simm16(-1, 16, 48);
1832     long v = simm16(RelAddr::pcrel_off16(dest_pos, inst_pos), 16, 48);
1833     patched_inst = (inst & ~m) | v;
1834   } else if (is_branchonindex64_pcrelative_short(inst)) {
1835     c = 3;
1836     long m = fmask(31, 16);  // simm16(-1, 16, 48);
1837     long v = simm16(RelAddr::pcrel_off16(dest_pos, inst_pos), 16, 48);
1838     patched_inst = (inst & ~m) | v;
1839   } else if (is_call_pcrelative_long(inst) || is_branch_pcrelative_long(inst)) {
1840     c = 4;
1841     long m = fmask(31, 0);  // simm32(-1, 16, 48);
1842     long v = simm32(RelAddr::pcrel_off32(dest_pos, inst_pos), 16, 48);
1843     patched_inst = (inst & ~m) | v;
1844   } else if (is_pcrelative_long(inst)) { // These are the non-branch pc-relative instructions.
1845     c = 5;
1846     long m = fmask(31, 0);  // simm32(-1, 16, 48);
1847     long v = simm32(RelAddr::pcrel_off32(dest_pos, inst_pos), 16, 48);
1848     patched_inst = (inst & ~m) | v;
1849   } else {
1850     print_dbg_msg(tty, inst, "not a relative branch", 0);
1851     dump_code_range(tty, inst_pos, 32, "not a pcrelative branch");
1852     ShouldNotReachHere();
1853   }
1854 
1855   long new_off = get_pcrel_offset(patched_inst);
1856   if (new_off != (dest_pos-inst_pos)) {
1857     tty->print_cr("case %d: dest_pos = %p, inst_pos = %p, disp = %ld(%12.12lx)", c, dest_pos, inst_pos, new_off, new_off);
1858     print_dbg_msg(tty, inst,         "<- original instruction: branch patching error", 0);
1859     print_dbg_msg(tty, patched_inst, "<- patched  instruction: branch patching error", 0);
1860 #ifdef LUCY_DBG
1861     VM_Version::z_SIGSEGV();
1862 #endif
1863     ShouldNotReachHere();
1864   }
1865   return patched_inst;
1866 }
1867 
1868 // Only called when binding labels (share/vm/asm/assembler.cpp)
1869 // Pass arguments as intended. Do not pre-calculate distance.
1870 void MacroAssembler::pd_patch_instruction(address branch, address target, const char* file, int line) {
1871   unsigned long stub_inst;
1872   int           inst_len = get_instruction(branch, &stub_inst);
1873 
1874   set_instruction(branch, patched_branch(target, stub_inst, branch), inst_len);
1875 }
1876 
1877 
1878 // Extract relative address (aka offset).
1879 // inv_simm16 works for 4-byte instructions only.
1880 // compare and branch instructions are 6-byte and have a 16bit offset "in the middle".
1881 long MacroAssembler::get_pcrel_offset(unsigned long inst) {
1882 
1883   if (MacroAssembler::is_pcrelative_short(inst)) {
1884     if (((inst&0xFFFFffff00000000UL) == 0) && ((inst&0x00000000FFFF0000UL) != 0)) {
1885       return RelAddr::inv_pcrel_off16(inv_simm16(inst));
1886     } else {
1887       return RelAddr::inv_pcrel_off16(inv_simm16_48(inst));
1888     }
1889   }
1890 
1891   if (MacroAssembler::is_pcrelative_long(inst)) {
1892     return RelAddr::inv_pcrel_off32(inv_simm32(inst));
1893   }
1894 
1895   print_dbg_msg(tty, inst, "not a pcrelative instruction", 6);
1896 #ifdef LUCY_DBG
1897   VM_Version::z_SIGSEGV();
1898 #else
1899   ShouldNotReachHere();
1900 #endif
1901   return -1;
1902 }
1903 
1904 long MacroAssembler::get_pcrel_offset(address pc) {
1905   unsigned long inst;
1906   unsigned int  len = get_instruction(pc, &inst);
1907 
1908 #ifdef ASSERT
1909   long offset;
1910   if (MacroAssembler::is_pcrelative_short(inst) || MacroAssembler::is_pcrelative_long(inst)) {
1911     offset = get_pcrel_offset(inst);
1912   } else {
1913     offset = -1;
1914   }
1915 
1916   if (offset == -1) {
1917     dump_code_range(tty, pc, 32, "not a pcrelative instruction");
1918 #ifdef LUCY_DBG
1919     VM_Version::z_SIGSEGV();
1920 #else
1921     ShouldNotReachHere();
1922 #endif
1923   }
1924   return offset;
1925 #else
1926   return get_pcrel_offset(inst);
1927 #endif // ASSERT
1928 }
1929 
1930 // Get target address from pc-relative instructions.
1931 address MacroAssembler::get_target_addr_pcrel(address pc) {
1932   assert(is_pcrelative_long(pc), "not a pcrelative instruction");
1933   return pc + get_pcrel_offset(pc);
1934 }
1935 
1936 // Patch pc relative load address.
1937 void MacroAssembler::patch_target_addr_pcrel(address pc, address con) {
1938   unsigned long inst;
1939   // Offset is +/- 2**32 -> use long.
1940   ptrdiff_t distance = con - pc;
1941 
1942   get_instruction(pc, &inst);
1943 
1944   if (is_pcrelative_short(inst)) {
1945     *(short *)(pc+2) = RelAddr::pcrel_off16(con, pc);  // Instructions are at least 2-byte aligned, no test required.
1946 
1947     // Some extra safety net.
1948     if (!RelAddr::is_in_range_of_RelAddr16(distance)) {
1949       print_dbg_msg(tty, inst, "distance out of range (16bit)", 4);
1950       dump_code_range(tty, pc, 32, "distance out of range (16bit)");
1951       guarantee(RelAddr::is_in_range_of_RelAddr16(distance), "too far away (more than +/- 2**16");
1952     }
1953     return;
1954   }
1955 
1956   if (is_pcrelative_long(inst)) {
1957     *(int *)(pc+2)   = RelAddr::pcrel_off32(con, pc);
1958 
1959     // Some Extra safety net.
1960     if (!RelAddr::is_in_range_of_RelAddr32(distance)) {
1961       print_dbg_msg(tty, inst, "distance out of range (32bit)", 6);
1962       dump_code_range(tty, pc, 32, "distance out of range (32bit)");
1963       guarantee(RelAddr::is_in_range_of_RelAddr32(distance), "too far away (more than +/- 2**32");
1964     }
1965     return;
1966   }
1967 
1968   guarantee(false, "not a pcrelative instruction to patch!");
1969 }
1970 
1971 // "Current PC" here means the address just behind the basr instruction.
1972 address MacroAssembler::get_PC(Register result) {
1973   z_basr(result, Z_R0); // Don't branch, just save next instruction address in result.
1974   return pc();
1975 }
1976 
1977 // Get current PC + offset.
1978 // Offset given in bytes, must be even!
1979 // "Current PC" here means the address of the larl instruction plus the given offset.
1980 address MacroAssembler::get_PC(Register result, int64_t offset) {
1981   address here = pc();
1982   z_larl(result, offset/2); // Save target instruction address in result.
1983   return here + offset;
1984 }
1985 
1986 void MacroAssembler::instr_size(Register size, Register pc) {
1987   // Extract 2 most significant bits of current instruction.
1988   z_llgc(size, Address(pc));
1989   z_srl(size, 6);
1990   // Compute (x+3)&6 which translates 0->2, 1->4, 2->4, 3->6.
1991   z_ahi(size, 3);
1992   z_nill(size, 6);
1993 }
1994 
1995 // Resize_frame with SP(new) = SP(old) - [offset].
1996 void MacroAssembler::resize_frame_sub(Register offset, Register fp, bool load_fp)
1997 {
1998   assert_different_registers(offset, fp, Z_SP);
1999   if (load_fp) { z_lg(fp, _z_abi(callers_sp), Z_SP); }
2000 
2001   z_sgr(Z_SP, offset);
2002   z_stg(fp, _z_abi(callers_sp), Z_SP);
2003 }
2004 
2005 // Resize_frame with SP(new) = [newSP] + offset.
2006 //   This emitter is useful if we already have calculated a pointer
2007 //   into the to-be-allocated stack space, e.g. with special alignment properties,
2008 //   but need some additional space, e.g. for spilling.
2009 //   newSP    is the pre-calculated pointer. It must not be modified.
2010 //   fp       holds, or is filled with, the frame pointer.
2011 //   offset   is the additional increment which is added to addr to form the new SP.
2012 //            Note: specify a negative value to reserve more space!
2013 //   load_fp == true  only indicates that fp is not pre-filled with the frame pointer.
2014 //                    It does not guarantee that fp contains the frame pointer at the end.
2015 void MacroAssembler::resize_frame_abs_with_offset(Register newSP, Register fp, int offset, bool load_fp) {
2016   assert_different_registers(newSP, fp, Z_SP);
2017 
2018   if (load_fp) {
2019     z_lg(fp, _z_abi(callers_sp), Z_SP);
2020   }
2021 
2022   add2reg(Z_SP, offset, newSP);
2023   z_stg(fp, _z_abi(callers_sp), Z_SP);
2024 }
2025 
2026 // Resize_frame with SP(new) = [newSP].
2027 //   load_fp == true  only indicates that fp is not pre-filled with the frame pointer.
2028 //                    It does not guarantee that fp contains the frame pointer at the end.
2029 void MacroAssembler::resize_frame_absolute(Register newSP, Register fp, bool load_fp) {
2030   assert_different_registers(newSP, fp, Z_SP);
2031 
2032   if (load_fp) {
2033     z_lg(fp, _z_abi(callers_sp), Z_SP); // need to use load/store.
2034   }
2035 
2036   z_lgr(Z_SP, newSP);
2037   if (newSP != Z_R0) { // make sure we generate correct code, no matter what register newSP uses.
2038     z_stg(fp, _z_abi(callers_sp), newSP);
2039   } else {
2040     z_stg(fp, _z_abi(callers_sp), Z_SP);
2041   }
2042 }
2043 
2044 // Resize_frame with SP(new) = SP(old) + offset.
2045 void MacroAssembler::resize_frame(RegisterOrConstant offset, Register fp, bool load_fp) {
2046   assert_different_registers(fp, Z_SP);
2047 
2048   if (load_fp) {
2049     z_lg(fp, _z_abi(callers_sp), Z_SP);
2050   }
2051   add64(Z_SP, offset);
2052   z_stg(fp, _z_abi(callers_sp), Z_SP);
2053 }
2054 
2055 void MacroAssembler::push_frame(Register bytes, Register old_sp, bool copy_sp, bool bytes_with_inverted_sign) {
2056 #ifdef ASSERT
2057   assert_different_registers(bytes, old_sp, Z_SP);
2058   if (!copy_sp) {
2059     z_cgr(old_sp, Z_SP);
2060     asm_assert_eq("[old_sp]!=[Z_SP]", 0x211);
2061   }
2062 #endif
2063   if (copy_sp) { z_lgr(old_sp, Z_SP); }
2064   if (bytes_with_inverted_sign) {
2065     z_agr(Z_SP, bytes);
2066   } else {
2067     z_sgr(Z_SP, bytes); // Z_sgfr sufficient, but probably not faster.
2068   }
2069   z_stg(old_sp, _z_abi(callers_sp), Z_SP);
2070 }
2071 
2072 unsigned int MacroAssembler::push_frame(unsigned int bytes, Register scratch) {
2073   long offset = Assembler::align(bytes, frame::alignment_in_bytes);
2074   assert(offset > 0, "should push a frame with positive size, size = %ld.", offset);
2075   assert(Displacement::is_validDisp(-offset), "frame size out of range, size = %ld", offset);
2076 
2077   // We must not write outside the current stack bounds (given by Z_SP).
2078   // Thus, we have to first update Z_SP and then store the previous SP as stack linkage.
2079   // We rely on Z_R0 by default to be available as scratch.
2080   z_lgr(scratch, Z_SP);
2081   add2reg(Z_SP, -offset);
2082   z_stg(scratch, _z_abi(callers_sp), Z_SP);
2083 #ifdef ASSERT
2084   // Just make sure nobody uses the value in the default scratch register.
2085   // When another register is used, the caller might rely on it containing the frame pointer.
2086   if (scratch == Z_R0) {
2087     z_iihf(scratch, 0xbaadbabe);
2088     z_iilf(scratch, 0xdeadbeef);
2089   }
2090 #endif
2091   return offset;
2092 }
2093 
2094 // Push a frame of size `bytes' plus abi160 on top.
2095 unsigned int MacroAssembler::push_frame_abi160(unsigned int bytes) {
2096   BLOCK_COMMENT("push_frame_abi160 {");
2097   unsigned int res = push_frame(bytes + frame::z_abi_160_size);
2098   BLOCK_COMMENT("} push_frame_abi160");
2099   return res;
2100 }
2101 
2102 // Pop current C frame.
2103 void MacroAssembler::pop_frame() {
2104   BLOCK_COMMENT("pop_frame:");
2105   Assembler::z_lg(Z_SP, _z_abi(callers_sp), Z_SP);
2106 }
2107 
2108 // Pop current C frame and restore return PC register (Z_R14).
2109 void MacroAssembler::pop_frame_restore_retPC(int frame_size_in_bytes) {
2110   BLOCK_COMMENT("pop_frame_restore_retPC:");
2111   int retPC_offset = _z_abi16(return_pc) + frame_size_in_bytes;
2112   // If possible, pop frame by add instead of load (a penny saved is a penny got :-).
2113   if (Displacement::is_validDisp(retPC_offset)) {
2114     z_lg(Z_R14, retPC_offset, Z_SP);
2115     add2reg(Z_SP, frame_size_in_bytes);
2116   } else {
2117     add2reg(Z_SP, frame_size_in_bytes);
2118     restore_return_pc();
2119   }
2120 }
2121 
2122 void MacroAssembler::call_VM_leaf_base(address entry_point, bool allow_relocation) {
2123   if (allow_relocation) {
2124     call_c(entry_point);
2125   } else {
2126     call_c_static(entry_point);
2127   }
2128 }
2129 
2130 void MacroAssembler::call_VM_leaf_base(address entry_point) {
2131   bool allow_relocation = true;
2132   call_VM_leaf_base(entry_point, allow_relocation);
2133 }
2134 
2135 void MacroAssembler::call_VM_base(Register oop_result,
2136                                   Register last_java_sp,
2137                                   address  entry_point,
2138                                   bool     allow_relocation,
2139                                   bool     check_exceptions) { // Defaults to true.
2140   // Allow_relocation indicates, if true, that the generated code shall
2141   // be fit for code relocation or referenced data relocation. In other
2142   // words: all addresses must be considered variable. PC-relative addressing
2143   // is not possible then.
2144   // On the other hand, if (allow_relocation == false), addresses and offsets
2145   // may be considered stable, enabling us to take advantage of some PC-relative
2146   // addressing tweaks. These might improve performance and reduce code size.
2147 
2148   // Determine last_java_sp register.
2149   if (!last_java_sp->is_valid()) {
2150     last_java_sp = Z_SP;  // Load Z_SP as SP.
2151   }
2152 
2153   set_top_ijava_frame_at_SP_as_last_Java_frame(last_java_sp, Z_R1, allow_relocation);
2154 
2155   // ARG1 must hold thread address.
2156   z_lgr(Z_ARG1, Z_thread);
2157 
2158   address return_pc = NULL;
2159   if (allow_relocation) {
2160     return_pc = call_c(entry_point);
2161   } else {
2162     return_pc = call_c_static(entry_point);
2163   }
2164 
2165   reset_last_Java_frame(allow_relocation);
2166 
2167   // C++ interp handles this in the interpreter.
2168   check_and_handle_popframe(Z_thread);
2169   check_and_handle_earlyret(Z_thread);
2170 
2171   // Check for pending exceptions.
2172   if (check_exceptions) {
2173     // Check for pending exceptions (java_thread is set upon return).
2174     load_and_test_long(Z_R0_scratch, Address(Z_thread, Thread::pending_exception_offset()));
2175 
2176     // This used to conditionally jump to forward_exception however it is
2177     // possible if we relocate that the branch will not reach. So we must jump
2178     // around so we can always reach.
2179 
2180     Label ok;
2181     z_bre(ok); // Bcondequal is the same as bcondZero.
2182     call_stub(StubRoutines::forward_exception_entry());
2183     bind(ok);
2184   }
2185 
2186   // Get oop result if there is one and reset the value in the thread.
2187   if (oop_result->is_valid()) {
2188     get_vm_result(oop_result);
2189   }
2190 
2191   _last_calls_return_pc = return_pc;  // Wipe out other (error handling) calls.
2192 }
2193 
2194 void MacroAssembler::call_VM_base(Register oop_result,
2195                                   Register last_java_sp,
2196                                   address  entry_point,
2197                                   bool     check_exceptions) { // Defaults to true.
2198   bool allow_relocation = true;
2199   call_VM_base(oop_result, last_java_sp, entry_point, allow_relocation, check_exceptions);
2200 }
2201 
2202 // VM calls without explicit last_java_sp.
2203 
2204 void MacroAssembler::call_VM(Register oop_result, address entry_point, bool check_exceptions) {
2205   // Call takes possible detour via InterpreterMacroAssembler.
2206   call_VM_base(oop_result, noreg, entry_point, true, check_exceptions);
2207 }
2208 
2209 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) {
2210   // Z_ARG1 is reserved for the thread.
2211   lgr_if_needed(Z_ARG2, arg_1);
2212   call_VM(oop_result, entry_point, check_exceptions);
2213 }
2214 
2215 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
2216   // Z_ARG1 is reserved for the thread.
2217   lgr_if_needed(Z_ARG2, arg_1);
2218   assert(arg_2 != Z_ARG2, "smashed argument");
2219   lgr_if_needed(Z_ARG3, arg_2);
2220   call_VM(oop_result, entry_point, check_exceptions);
2221 }
2222 
2223 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2,
2224                              Register arg_3, bool check_exceptions) {
2225   // Z_ARG1 is reserved for the thread.
2226   lgr_if_needed(Z_ARG2, arg_1);
2227   assert(arg_2 != Z_ARG2, "smashed argument");
2228   lgr_if_needed(Z_ARG3, arg_2);
2229   assert(arg_3 != Z_ARG2 && arg_3 != Z_ARG3, "smashed argument");
2230   lgr_if_needed(Z_ARG4, arg_3);
2231   call_VM(oop_result, entry_point, check_exceptions);
2232 }
2233 
2234 // VM static calls without explicit last_java_sp.
2235 
2236 void MacroAssembler::call_VM_static(Register oop_result, address entry_point, bool check_exceptions) {
2237   // Call takes possible detour via InterpreterMacroAssembler.
2238   call_VM_base(oop_result, noreg, entry_point, false, check_exceptions);
2239 }
2240 
2241 void MacroAssembler::call_VM_static(Register oop_result, address entry_point, Register arg_1, Register arg_2,
2242                                     Register arg_3, bool check_exceptions) {
2243   // Z_ARG1 is reserved for the thread.
2244   lgr_if_needed(Z_ARG2, arg_1);
2245   assert(arg_2 != Z_ARG2, "smashed argument");
2246   lgr_if_needed(Z_ARG3, arg_2);
2247   assert(arg_3 != Z_ARG2 && arg_3 != Z_ARG3, "smashed argument");
2248   lgr_if_needed(Z_ARG4, arg_3);
2249   call_VM_static(oop_result, entry_point, check_exceptions);
2250 }
2251 
2252 // VM calls with explicit last_java_sp.
2253 
2254 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, bool check_exceptions) {
2255   // Call takes possible detour via InterpreterMacroAssembler.
2256   call_VM_base(oop_result, last_java_sp, entry_point, true, check_exceptions);
2257 }
2258 
2259 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions) {
2260    // Z_ARG1 is reserved for the thread.
2261    lgr_if_needed(Z_ARG2, arg_1);
2262    call_VM(oop_result, last_java_sp, entry_point, check_exceptions);
2263 }
2264 
2265 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1,
2266                              Register arg_2, bool check_exceptions) {
2267    // Z_ARG1 is reserved for the thread.
2268    lgr_if_needed(Z_ARG2, arg_1);
2269    assert(arg_2 != Z_ARG2, "smashed argument");
2270    lgr_if_needed(Z_ARG3, arg_2);
2271    call_VM(oop_result, last_java_sp, entry_point, check_exceptions);
2272 }
2273 
2274 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1,
2275                              Register arg_2, Register arg_3, bool check_exceptions) {
2276   // Z_ARG1 is reserved for the thread.
2277   lgr_if_needed(Z_ARG2, arg_1);
2278   assert(arg_2 != Z_ARG2, "smashed argument");
2279   lgr_if_needed(Z_ARG3, arg_2);
2280   assert(arg_3 != Z_ARG2 && arg_3 != Z_ARG3, "smashed argument");
2281   lgr_if_needed(Z_ARG4, arg_3);
2282   call_VM(oop_result, last_java_sp, entry_point, check_exceptions);
2283 }
2284 
2285 // VM leaf calls.
2286 
2287 void MacroAssembler::call_VM_leaf(address entry_point) {
2288   // Call takes possible detour via InterpreterMacroAssembler.
2289   call_VM_leaf_base(entry_point, true);
2290 }
2291 
2292 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1) {
2293   if (arg_1 != noreg) lgr_if_needed(Z_ARG1, arg_1);
2294   call_VM_leaf(entry_point);
2295 }
2296 
2297 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1, Register arg_2) {
2298   if (arg_1 != noreg) lgr_if_needed(Z_ARG1, arg_1);
2299   assert(arg_2 != Z_ARG1, "smashed argument");
2300   if (arg_2 != noreg) lgr_if_needed(Z_ARG2, arg_2);
2301   call_VM_leaf(entry_point);
2302 }
2303 
2304 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3) {
2305   if (arg_1 != noreg) lgr_if_needed(Z_ARG1, arg_1);
2306   assert(arg_2 != Z_ARG1, "smashed argument");
2307   if (arg_2 != noreg) lgr_if_needed(Z_ARG2, arg_2);
2308   assert(arg_3 != Z_ARG1 && arg_3 != Z_ARG2, "smashed argument");
2309   if (arg_3 != noreg) lgr_if_needed(Z_ARG3, arg_3);
2310   call_VM_leaf(entry_point);
2311 }
2312 
2313 // Static VM leaf calls.
2314 // Really static VM leaf calls are never patched.
2315 
2316 void MacroAssembler::call_VM_leaf_static(address entry_point) {
2317   // Call takes possible detour via InterpreterMacroAssembler.
2318   call_VM_leaf_base(entry_point, false);
2319 }
2320 
2321 void MacroAssembler::call_VM_leaf_static(address entry_point, Register arg_1) {
2322   if (arg_1 != noreg) lgr_if_needed(Z_ARG1, arg_1);
2323   call_VM_leaf_static(entry_point);
2324 }
2325 
2326 void MacroAssembler::call_VM_leaf_static(address entry_point, Register arg_1, Register arg_2) {
2327   if (arg_1 != noreg) lgr_if_needed(Z_ARG1, arg_1);
2328   assert(arg_2 != Z_ARG1, "smashed argument");
2329   if (arg_2 != noreg) lgr_if_needed(Z_ARG2, arg_2);
2330   call_VM_leaf_static(entry_point);
2331 }
2332 
2333 void MacroAssembler::call_VM_leaf_static(address entry_point, Register arg_1, Register arg_2, Register arg_3) {
2334   if (arg_1 != noreg) lgr_if_needed(Z_ARG1, arg_1);
2335   assert(arg_2 != Z_ARG1, "smashed argument");
2336   if (arg_2 != noreg) lgr_if_needed(Z_ARG2, arg_2);
2337   assert(arg_3 != Z_ARG1 && arg_3 != Z_ARG2, "smashed argument");
2338   if (arg_3 != noreg) lgr_if_needed(Z_ARG3, arg_3);
2339   call_VM_leaf_static(entry_point);
2340 }
2341 
2342 // Don't use detour via call_c(reg).
2343 address MacroAssembler::call_c(address function_entry) {
2344   load_const(Z_R1, function_entry);
2345   return call(Z_R1);
2346 }
2347 
2348 // Variant for really static (non-relocatable) calls which are never patched.
2349 address MacroAssembler::call_c_static(address function_entry) {
2350   load_absolute_address(Z_R1, function_entry);
2351 #if 0 // def ASSERT
2352   // Verify that call site did not move.
2353   load_const_optimized(Z_R0, function_entry);
2354   z_cgr(Z_R1, Z_R0);
2355   z_brc(bcondEqual, 3);
2356   z_illtrap(0xba);
2357 #endif
2358   return call(Z_R1);
2359 }
2360 
2361 address MacroAssembler::call_c_opt(address function_entry) {
2362   bool success = call_far_patchable(function_entry, -2 /* emit relocation + constant */);
2363   _last_calls_return_pc = success ? pc() : NULL;
2364   return _last_calls_return_pc;
2365 }
2366 
2367 // Identify a call_far_patchable instruction: LARL + LG + BASR
2368 //
2369 //    nop                   ; optionally, if required for alignment
2370 //    lgrl rx,A(TOC entry)  ; PC-relative access into constant pool
2371 //    basr Z_R14,rx         ; end of this instruction must be aligned to a word boundary
2372 //
2373 // Code pattern will eventually get patched into variant2 (see below for detection code).
2374 //
2375 bool MacroAssembler::is_call_far_patchable_variant0_at(address instruction_addr) {
2376   address iaddr = instruction_addr;
2377 
2378   // Check for the actual load instruction.
2379   if (!is_load_const_from_toc(iaddr)) { return false; }
2380   iaddr += load_const_from_toc_size();
2381 
2382   // Check for the call (BASR) instruction, finally.
2383   assert(iaddr-instruction_addr+call_byregister_size() == call_far_patchable_size(), "size mismatch");
2384   return is_call_byregister(iaddr);
2385 }
2386 
2387 // Identify a call_far_patchable instruction: BRASL
2388 //
2389 // Code pattern to suits atomic patching:
2390 //    nop                       ; Optionally, if required for alignment.
2391 //    nop    ...                ; Multiple filler nops to compensate for size difference (variant0 is longer).
2392 //    nop                       ; For code pattern detection: Prepend each BRASL with a nop.
2393 //    brasl  Z_R14,<reladdr>    ; End of code must be 4-byte aligned !
2394 bool MacroAssembler::is_call_far_patchable_variant2_at(address instruction_addr) {
2395   const address call_addr = (address)((intptr_t)instruction_addr + call_far_patchable_size() - call_far_pcrelative_size());
2396 
2397   // Check for correct number of leading nops.
2398   address iaddr;
2399   for (iaddr = instruction_addr; iaddr < call_addr; iaddr += nop_size()) {
2400     if (!is_z_nop(iaddr)) { return false; }
2401   }
2402   assert(iaddr == call_addr, "sanity");
2403 
2404   // --> Check for call instruction.
2405   if (is_call_far_pcrelative(call_addr)) {
2406     assert(call_addr-instruction_addr+call_far_pcrelative_size() == call_far_patchable_size(), "size mismatch");
2407     return true;
2408   }
2409 
2410   return false;
2411 }
2412 
2413 // Emit a NOT mt-safely patchable 64 bit absolute call.
2414 // If toc_offset == -2, then the destination of the call (= target) is emitted
2415 //                      to the constant pool and a runtime_call relocation is added
2416 //                      to the code buffer.
2417 // If toc_offset != -2, target must already be in the constant pool at
2418 //                      _ctableStart+toc_offset (a caller can retrieve toc_offset
2419 //                      from the runtime_call relocation).
2420 // Special handling of emitting to scratch buffer when there is no constant pool.
2421 // Slightly changed code pattern. We emit an additional nop if we would
2422 // not end emitting at a word aligned address. This is to ensure
2423 // an atomically patchable displacement in brasl instructions.
2424 //
2425 // A call_far_patchable comes in different flavors:
2426 //  - LARL(CP) / LG(CP) / BR (address in constant pool, access via CP register)
2427 //  - LGRL(CP) / BR          (address in constant pool, pc-relative access)
2428 //  - BRASL                  (relative address of call target coded in instruction)
2429 // All flavors occupy the same amount of space. Length differences are compensated
2430 // by leading nops, such that the instruction sequence always ends at the same
2431 // byte offset. This is required to keep the return offset constant.
2432 // Furthermore, the return address (the end of the instruction sequence) is forced
2433 // to be on a 4-byte boundary. This is required for atomic patching, should we ever
2434 // need to patch the call target of the BRASL flavor.
2435 // RETURN value: false, if no constant pool entry could be allocated, true otherwise.
2436 bool MacroAssembler::call_far_patchable(address target, int64_t tocOffset) {
2437   // Get current pc and ensure word alignment for end of instr sequence.
2438   const address start_pc = pc();
2439   const intptr_t       start_off = offset();
2440   assert(!call_far_patchable_requires_alignment_nop(start_pc), "call_far_patchable requires aligned address");
2441   const ptrdiff_t      dist      = (ptrdiff_t)(target - (start_pc + 2)); // Prepend each BRASL with a nop.
2442   const bool emit_target_to_pool = (tocOffset == -2) && !code_section()->scratch_emit();
2443   const bool emit_relative_call  = !emit_target_to_pool &&
2444                                    RelAddr::is_in_range_of_RelAddr32(dist) &&
2445                                    ReoptimizeCallSequences &&
2446                                    !code_section()->scratch_emit();
2447 
2448   if (emit_relative_call) {
2449     // Add padding to get the same size as below.
2450     const unsigned int padding = call_far_patchable_size() - call_far_pcrelative_size();
2451     unsigned int current_padding;
2452     for (current_padding = 0; current_padding < padding; current_padding += nop_size()) { z_nop(); }
2453     assert(current_padding == padding, "sanity");
2454 
2455     // relative call: len = 2(nop) + 6 (brasl)
2456     // CodeBlob resize cannot occur in this case because
2457     // this call is emitted into pre-existing space.
2458     z_nop(); // Prepend each BRASL with a nop.
2459     z_brasl(Z_R14, target);
2460   } else {
2461     // absolute call: Get address from TOC.
2462     // len = (load TOC){6|0} + (load from TOC){6} + (basr){2} = {14|8}
2463     if (emit_target_to_pool) {
2464       // When emitting the call for the first time, we do not need to use
2465       // the pc-relative version. It will be patched anyway, when the code
2466       // buffer is copied.
2467       // Relocation is not needed when !ReoptimizeCallSequences.
2468       relocInfo::relocType rt = ReoptimizeCallSequences ? relocInfo::runtime_call_w_cp_type : relocInfo::none;
2469       AddressLiteral dest(target, rt);
2470       // Store_oop_in_toc() adds dest to the constant table. As side effect, this kills
2471       // inst_mark(). Reset if possible.
2472       bool reset_mark = (inst_mark() == pc());
2473       tocOffset = store_oop_in_toc(dest);
2474       if (reset_mark) { set_inst_mark(); }
2475       if (tocOffset == -1) {
2476         return false; // Couldn't create constant pool entry.
2477       }
2478     }
2479     assert(offset() == start_off, "emit no code before this point!");
2480 
2481     address tocPos = pc() + tocOffset;
2482     if (emit_target_to_pool) {
2483       tocPos = code()->consts()->start() + tocOffset;
2484     }
2485     load_long_pcrelative(Z_R14, tocPos);
2486     z_basr(Z_R14, Z_R14);
2487   }
2488 
2489 #ifdef ASSERT
2490   // Assert that we can identify the emitted call.
2491   assert(is_call_far_patchable_at(addr_at(start_off)), "can't identify emitted call");
2492   assert(offset() == start_off+call_far_patchable_size(), "wrong size");
2493 
2494   if (emit_target_to_pool) {
2495     assert(get_dest_of_call_far_patchable_at(addr_at(start_off), code()->consts()->start()) == target,
2496            "wrong encoding of dest address");
2497   }
2498 #endif
2499   return true; // success
2500 }
2501 
2502 // Identify a call_far_patchable instruction.
2503 // For more detailed information see header comment of call_far_patchable.
2504 bool MacroAssembler::is_call_far_patchable_at(address instruction_addr) {
2505   return is_call_far_patchable_variant2_at(instruction_addr)  || // short version: BRASL
2506          is_call_far_patchable_variant0_at(instruction_addr);    // long version LARL + LG + BASR
2507 }
2508 
2509 // Does the call_far_patchable instruction use a pc-relative encoding
2510 // of the call destination?
2511 bool MacroAssembler::is_call_far_patchable_pcrelative_at(address instruction_addr) {
2512   // Variant 2 is pc-relative.
2513   return is_call_far_patchable_variant2_at(instruction_addr);
2514 }
2515 
2516 bool MacroAssembler::is_call_far_pcrelative(address instruction_addr) {
2517   // Prepend each BRASL with a nop.
2518   return is_z_nop(instruction_addr) && is_z_brasl(instruction_addr + nop_size());  // Match at position after one nop required.
2519 }
2520 
2521 // Set destination address of a call_far_patchable instruction.
2522 void MacroAssembler::set_dest_of_call_far_patchable_at(address instruction_addr, address dest, int64_t tocOffset) {
2523   ResourceMark rm;
2524 
2525   // Now that CP entry is verified, patch call to a pc-relative call (if circumstances permit).
2526   int code_size = MacroAssembler::call_far_patchable_size();
2527   CodeBuffer buf(instruction_addr, code_size);
2528   MacroAssembler masm(&buf);
2529   masm.call_far_patchable(dest, tocOffset);
2530   ICache::invalidate_range(instruction_addr, code_size); // Empty on z.
2531 }
2532 
2533 // Get dest address of a call_far_patchable instruction.
2534 address MacroAssembler::get_dest_of_call_far_patchable_at(address instruction_addr, address ctable) {
2535   // Dynamic TOC: absolute address in constant pool.
2536   // Check variant2 first, it is more frequent.
2537 
2538   // Relative address encoded in call instruction.
2539   if (is_call_far_patchable_variant2_at(instruction_addr)) {
2540     return MacroAssembler::get_target_addr_pcrel(instruction_addr + nop_size()); // Prepend each BRASL with a nop.
2541 
2542   // Absolute address in constant pool.
2543   } else if (is_call_far_patchable_variant0_at(instruction_addr)) {
2544     address iaddr = instruction_addr;
2545 
2546     long    tocOffset = get_load_const_from_toc_offset(iaddr);
2547     address tocLoc    = iaddr + tocOffset;
2548     return *(address *)(tocLoc);
2549   } else {
2550     fprintf(stderr, "MacroAssembler::get_dest_of_call_far_patchable_at has a problem at %p:\n", instruction_addr);
2551     fprintf(stderr, "not a call_far_patchable: %16.16lx %16.16lx, len = %d\n",
2552             *(unsigned long*)instruction_addr,
2553             *(unsigned long*)(instruction_addr+8),
2554             call_far_patchable_size());
2555     Disassembler::decode(instruction_addr, instruction_addr+call_far_patchable_size());
2556     ShouldNotReachHere();
2557     return NULL;
2558   }
2559 }
2560 
2561 void MacroAssembler::align_call_far_patchable(address pc) {
2562   if (call_far_patchable_requires_alignment_nop(pc)) { z_nop(); }
2563 }
2564 
2565 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
2566 }
2567 
2568 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
2569 }
2570 
2571 // Read from the polling page.
2572 // Use TM or TMY instruction, depending on read offset.
2573 //   offset = 0: Use TM, safepoint polling.
2574 //   offset < 0: Use TMY, profiling safepoint polling.
2575 void MacroAssembler::load_from_polling_page(Register polling_page_address, int64_t offset) {
2576   if (Immediate::is_uimm12(offset)) {
2577     z_tm(offset, polling_page_address, mask_safepoint);
2578   } else {
2579     z_tmy(offset, polling_page_address, mask_profiling);
2580   }
2581 }
2582 
2583 // Check whether z_instruction is a read access to the polling page
2584 // which was emitted by load_from_polling_page(..).
2585 bool MacroAssembler::is_load_from_polling_page(address instr_loc) {
2586   unsigned long z_instruction;
2587   unsigned int  ilen = get_instruction(instr_loc, &z_instruction);
2588 
2589   if (ilen == 2) { return false; } // It's none of the allowed instructions.
2590 
2591   if (ilen == 4) {
2592     if (!is_z_tm(z_instruction)) { return false; } // It's len=4, but not a z_tm. fail.
2593 
2594     int ms = inv_mask(z_instruction,8,32);  // mask
2595     int ra = inv_reg(z_instruction,16,32);  // base register
2596     int ds = inv_uimm12(z_instruction);     // displacement
2597 
2598     if (!(ds == 0 && ra != 0 && ms == mask_safepoint)) {
2599       return false; // It's not a z_tm(0, ra, mask_safepoint). Fail.
2600     }
2601 
2602   } else { /* if (ilen == 6) */
2603 
2604     assert(!is_z_lg(z_instruction), "old form (LG) polling page access. Please fix and use TM(Y).");
2605 
2606     if (!is_z_tmy(z_instruction)) { return false; } // It's len=6, but not a z_tmy. fail.
2607 
2608     int ms = inv_mask(z_instruction,8,48);  // mask
2609     int ra = inv_reg(z_instruction,16,48);  // base register
2610     int ds = inv_simm20(z_instruction);     // displacement
2611   }
2612 
2613   return true;
2614 }
2615 
2616 // Extract poll address from instruction and ucontext.
2617 address MacroAssembler::get_poll_address(address instr_loc, void* ucontext) {
2618   assert(ucontext != NULL, "must have ucontext");
2619   ucontext_t* uc = (ucontext_t*) ucontext;
2620   unsigned long z_instruction;
2621   unsigned int ilen = get_instruction(instr_loc, &z_instruction);
2622 
2623   if (ilen == 4 && is_z_tm(z_instruction)) {
2624     int ra = inv_reg(z_instruction, 16, 32);  // base register
2625     int ds = inv_uimm12(z_instruction);       // displacement
2626     address addr = (address)uc->uc_mcontext.gregs[ra];
2627     return addr + ds;
2628   } else if (ilen == 6 && is_z_tmy(z_instruction)) {
2629     int ra = inv_reg(z_instruction, 16, 48);  // base register
2630     int ds = inv_simm20(z_instruction);       // displacement
2631     address addr = (address)uc->uc_mcontext.gregs[ra];
2632     return addr + ds;
2633   }
2634 
2635   ShouldNotReachHere();
2636   return NULL;
2637 }
2638 
2639 // Extract poll register from instruction.
2640 uint MacroAssembler::get_poll_register(address instr_loc) {
2641   unsigned long z_instruction;
2642   unsigned int ilen = get_instruction(instr_loc, &z_instruction);
2643 
2644   if (ilen == 4 && is_z_tm(z_instruction)) {
2645     return (uint)inv_reg(z_instruction, 16, 32);  // base register
2646   } else if (ilen == 6 && is_z_tmy(z_instruction)) {
2647     return (uint)inv_reg(z_instruction, 16, 48);  // base register
2648   }
2649 
2650   ShouldNotReachHere();
2651   return 0;
2652 }
2653 
2654 void MacroAssembler::safepoint_poll(Label& slow_path, Register temp_reg) {
2655   const Address poll_byte_addr(Z_thread, in_bytes(JavaThread::polling_word_offset()) + 7 /* Big Endian */);
2656   // Armed page has poll_bit set.
2657   z_tm(poll_byte_addr, SafepointMechanism::poll_bit());
2658   z_brnaz(slow_path);
2659 }
2660 
2661 // Don't rely on register locking, always use Z_R1 as scratch register instead.
2662 void MacroAssembler::bang_stack_with_offset(int offset) {
2663   // Stack grows down, caller passes positive offset.
2664   assert(offset > 0, "must bang with positive offset");
2665   if (Displacement::is_validDisp(-offset)) {
2666     z_tmy(-offset, Z_SP, mask_stackbang);
2667   } else {
2668     add2reg(Z_R1, -offset, Z_SP);    // Do not destroy Z_SP!!!
2669     z_tm(0, Z_R1, mask_stackbang);  // Just banging.
2670   }
2671 }
2672 
2673 void MacroAssembler::reserved_stack_check(Register return_pc) {
2674   // Test if reserved zone needs to be enabled.
2675   Label no_reserved_zone_enabling;
2676   assert(return_pc == Z_R14, "Return pc must be in R14 before z_br() to StackOverflow stub.");
2677   BLOCK_COMMENT("reserved_stack_check {");
2678 
2679   z_clg(Z_SP, Address(Z_thread, JavaThread::reserved_stack_activation_offset()));
2680   z_brl(no_reserved_zone_enabling);
2681 
2682   // Enable reserved zone again, throw stack overflow exception.
2683   save_return_pc();
2684   push_frame_abi160(0);
2685   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), Z_thread);
2686   pop_frame();
2687   restore_return_pc();
2688 
2689   load_const_optimized(Z_R1, StubRoutines::throw_delayed_StackOverflowError_entry());
2690   // Don't use call() or z_basr(), they will invalidate Z_R14 which contains the return pc.
2691   z_br(Z_R1);
2692 
2693   should_not_reach_here();
2694 
2695   bind(no_reserved_zone_enabling);
2696   BLOCK_COMMENT("} reserved_stack_check");
2697 }
2698 
2699 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
2700 void MacroAssembler::tlab_allocate(Register obj,
2701                                    Register var_size_in_bytes,
2702                                    int con_size_in_bytes,
2703                                    Register t1,
2704                                    Label& slow_case) {
2705   assert_different_registers(obj, var_size_in_bytes, t1);
2706   Register end = t1;
2707   Register thread = Z_thread;
2708 
2709   z_lg(obj, Address(thread, JavaThread::tlab_top_offset()));
2710   if (var_size_in_bytes == noreg) {
2711     z_lay(end, Address(obj, con_size_in_bytes));
2712   } else {
2713     z_lay(end, Address(obj, var_size_in_bytes));
2714   }
2715   z_cg(end, Address(thread, JavaThread::tlab_end_offset()));
2716   branch_optimized(bcondHigh, slow_case);
2717 
2718   // Update the tlab top pointer.
2719   z_stg(end, Address(thread, JavaThread::tlab_top_offset()));
2720 
2721   // Recover var_size_in_bytes if necessary.
2722   if (var_size_in_bytes == end) {
2723     z_sgr(var_size_in_bytes, obj);
2724   }
2725 }
2726 
2727 // Emitter for interface method lookup.
2728 //   input: recv_klass, intf_klass, itable_index
2729 //   output: method_result
2730 //   kills: itable_index, temp1_reg, Z_R0, Z_R1
2731 // TODO: Temp2_reg is unused. we may use this emitter also in the itable stubs.
2732 // If the register is still not needed then, remove it.
2733 void MacroAssembler::lookup_interface_method(Register           recv_klass,
2734                                              Register           intf_klass,
2735                                              RegisterOrConstant itable_index,
2736                                              Register           method_result,
2737                                              Register           temp1_reg,
2738                                              Label&             no_such_interface,
2739                                              bool               return_method) {
2740 
2741   const Register vtable_len = temp1_reg;    // Used to compute itable_entry_addr.
2742   const Register itable_entry_addr = Z_R1_scratch;
2743   const Register itable_interface = Z_R0_scratch;
2744 
2745   BLOCK_COMMENT("lookup_interface_method {");
2746 
2747   // Load start of itable entries into itable_entry_addr.
2748   z_llgf(vtable_len, Address(recv_klass, Klass::vtable_length_offset()));
2749   z_sllg(vtable_len, vtable_len, exact_log2(vtableEntry::size_in_bytes()));
2750 
2751   // Loop over all itable entries until desired interfaceOop(Rinterface) found.
2752   const int vtable_base_offset = in_bytes(Klass::vtable_start_offset());
2753 
2754   add2reg_with_index(itable_entry_addr,
2755                      vtable_base_offset + itableOffsetEntry::interface_offset_in_bytes(),
2756                      recv_klass, vtable_len);
2757 
2758   const int itable_offset_search_inc = itableOffsetEntry::size() * wordSize;
2759   Label     search;
2760 
2761   bind(search);
2762 
2763   // Handle IncompatibleClassChangeError.
2764   // If the entry is NULL then we've reached the end of the table
2765   // without finding the expected interface, so throw an exception.
2766   load_and_test_long(itable_interface, Address(itable_entry_addr));
2767   z_bre(no_such_interface);
2768 
2769   add2reg(itable_entry_addr, itable_offset_search_inc);
2770   z_cgr(itable_interface, intf_klass);
2771   z_brne(search);
2772 
2773   // Entry found and itable_entry_addr points to it, get offset of vtable for interface.
2774   if (return_method) {
2775     const int vtable_offset_offset = (itableOffsetEntry::offset_offset_in_bytes() -
2776                                       itableOffsetEntry::interface_offset_in_bytes()) -
2777                                      itable_offset_search_inc;
2778 
2779     // Compute itableMethodEntry and get method and entry point
2780     // we use addressing with index and displacement, since the formula
2781     // for computing the entry's offset has a fixed and a dynamic part,
2782     // the latter depending on the matched interface entry and on the case,
2783     // that the itable index has been passed as a register, not a constant value.
2784     int method_offset = itableMethodEntry::method_offset_in_bytes();
2785                              // Fixed part (displacement), common operand.
2786     Register itable_offset = method_result;  // Dynamic part (index register).
2787 
2788     if (itable_index.is_register()) {
2789        // Compute the method's offset in that register, for the formula, see the
2790        // else-clause below.
2791        z_sllg(itable_offset, itable_index.as_register(), exact_log2(itableMethodEntry::size() * wordSize));
2792        z_agf(itable_offset, vtable_offset_offset, itable_entry_addr);
2793     } else {
2794       // Displacement increases.
2795       method_offset += itableMethodEntry::size() * wordSize * itable_index.as_constant();
2796 
2797       // Load index from itable.
2798       z_llgf(itable_offset, vtable_offset_offset, itable_entry_addr);
2799     }
2800 
2801     // Finally load the method's oop.
2802     z_lg(method_result, method_offset, itable_offset, recv_klass);
2803   }
2804   BLOCK_COMMENT("} lookup_interface_method");
2805 }
2806 
2807 // Lookup for virtual method invocation.
2808 void MacroAssembler::lookup_virtual_method(Register           recv_klass,
2809                                            RegisterOrConstant vtable_index,
2810                                            Register           method_result) {
2811   assert_different_registers(recv_klass, vtable_index.register_or_noreg());
2812   assert(vtableEntry::size() * wordSize == wordSize,
2813          "else adjust the scaling in the code below");
2814 
2815   BLOCK_COMMENT("lookup_virtual_method {");
2816 
2817   const int base = in_bytes(Klass::vtable_start_offset());
2818 
2819   if (vtable_index.is_constant()) {
2820     // Load with base + disp.
2821     Address vtable_entry_addr(recv_klass,
2822                               vtable_index.as_constant() * wordSize +
2823                               base +
2824                               vtableEntry::method_offset_in_bytes());
2825 
2826     z_lg(method_result, vtable_entry_addr);
2827   } else {
2828     // Shift index properly and load with base + index + disp.
2829     Register vindex = vtable_index.as_register();
2830     Address  vtable_entry_addr(recv_klass, vindex,
2831                                base + vtableEntry::method_offset_in_bytes());
2832 
2833     z_sllg(vindex, vindex, exact_log2(wordSize));
2834     z_lg(method_result, vtable_entry_addr);
2835   }
2836   BLOCK_COMMENT("} lookup_virtual_method");
2837 }
2838 
2839 // Factor out code to call ic_miss_handler.
2840 // Generate code to call the inline cache miss handler.
2841 //
2842 // In most cases, this code will be generated out-of-line.
2843 // The method parameters are intended to provide some variability.
2844 //   ICM          - Label which has to be bound to the start of useful code (past any traps).
2845 //   trapMarker   - Marking byte for the generated illtrap instructions (if any).
2846 //                  Any value except 0x00 is supported.
2847 //                  = 0x00 - do not generate illtrap instructions.
2848 //                         use nops to fill unused space.
2849 //   requiredSize - required size of the generated code. If the actually
2850 //                  generated code is smaller, use padding instructions to fill up.
2851 //                  = 0 - no size requirement, no padding.
2852 //   scratch      - scratch register to hold branch target address.
2853 //
2854 //  The method returns the code offset of the bound label.
2855 unsigned int MacroAssembler::call_ic_miss_handler(Label& ICM, int trapMarker, int requiredSize, Register scratch) {
2856   intptr_t startOffset = offset();
2857 
2858   // Prevent entry at content_begin().
2859   if (trapMarker != 0) {
2860     z_illtrap(trapMarker);
2861   }
2862 
2863   // Load address of inline cache miss code into scratch register
2864   // and branch to cache miss handler.
2865   BLOCK_COMMENT("IC miss handler {");
2866   BIND(ICM);
2867   unsigned int   labelOffset = offset();
2868   AddressLiteral icmiss(SharedRuntime::get_ic_miss_stub());
2869 
2870   load_const_optimized(scratch, icmiss);
2871   z_br(scratch);
2872 
2873   // Fill unused space.
2874   if (requiredSize > 0) {
2875     while ((offset() - startOffset) < requiredSize) {
2876       if (trapMarker == 0) {
2877         z_nop();
2878       } else {
2879         z_illtrap(trapMarker);
2880       }
2881     }
2882   }
2883   BLOCK_COMMENT("} IC miss handler");
2884   return labelOffset;
2885 }
2886 
2887 void MacroAssembler::nmethod_UEP(Label& ic_miss) {
2888   Register ic_reg       = Z_inline_cache;
2889   int      klass_offset = oopDesc::klass_offset_in_bytes();
2890   if (!ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(klass_offset)) {
2891     if (VM_Version::has_CompareBranch()) {
2892       z_cgij(Z_ARG1, 0, Assembler::bcondEqual, ic_miss);
2893     } else {
2894       z_ltgr(Z_ARG1, Z_ARG1);
2895       z_bre(ic_miss);
2896     }
2897   }
2898   // Compare cached class against klass from receiver.
2899   compare_klass_ptr(ic_reg, klass_offset, Z_ARG1, false);
2900   z_brne(ic_miss);
2901 }
2902 
2903 void MacroAssembler::check_klass_subtype_fast_path(Register   sub_klass,
2904                                                    Register   super_klass,
2905                                                    Register   temp1_reg,
2906                                                    Label*     L_success,
2907                                                    Label*     L_failure,
2908                                                    Label*     L_slow_path,
2909                                                    RegisterOrConstant super_check_offset) {
2910 
2911   const int sc_offset  = in_bytes(Klass::secondary_super_cache_offset());
2912   const int sco_offset = in_bytes(Klass::super_check_offset_offset());
2913 
2914   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
2915   bool need_slow_path = (must_load_sco ||
2916                          super_check_offset.constant_or_zero() == sc_offset);
2917 
2918   // Input registers must not overlap.
2919   assert_different_registers(sub_klass, super_klass, temp1_reg);
2920   if (super_check_offset.is_register()) {
2921     assert_different_registers(sub_klass, super_klass,
2922                                super_check_offset.as_register());
2923   } else if (must_load_sco) {
2924     assert(temp1_reg != noreg, "supply either a temp or a register offset");
2925   }
2926 
2927   const Register Rsuper_check_offset = temp1_reg;
2928 
2929   NearLabel L_fallthrough;
2930   int label_nulls = 0;
2931   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
2932   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
2933   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
2934   assert(label_nulls <= 1 ||
2935          (L_slow_path == &L_fallthrough && label_nulls <= 2 && !need_slow_path),
2936          "at most one NULL in the batch, usually");
2937 
2938   BLOCK_COMMENT("check_klass_subtype_fast_path {");
2939   // If the pointers are equal, we are done (e.g., String[] elements).
2940   // This self-check enables sharing of secondary supertype arrays among
2941   // non-primary types such as array-of-interface. Otherwise, each such
2942   // type would need its own customized SSA.
2943   // We move this check to the front of the fast path because many
2944   // type checks are in fact trivially successful in this manner,
2945   // so we get a nicely predicted branch right at the start of the check.
2946   compare64_and_branch(sub_klass, super_klass, bcondEqual, *L_success);
2947 
2948   // Check the supertype display, which is uint.
2949   if (must_load_sco) {
2950     z_llgf(Rsuper_check_offset, sco_offset, super_klass);
2951     super_check_offset = RegisterOrConstant(Rsuper_check_offset);
2952   }
2953   Address super_check_addr(sub_klass, super_check_offset, 0);
2954   z_cg(super_klass, super_check_addr); // compare w/ displayed supertype
2955 
2956   // This check has worked decisively for primary supers.
2957   // Secondary supers are sought in the super_cache ('super_cache_addr').
2958   // (Secondary supers are interfaces and very deeply nested subtypes.)
2959   // This works in the same check above because of a tricky aliasing
2960   // between the super_cache and the primary super display elements.
2961   // (The 'super_check_addr' can address either, as the case requires.)
2962   // Note that the cache is updated below if it does not help us find
2963   // what we need immediately.
2964   // So if it was a primary super, we can just fail immediately.
2965   // Otherwise, it's the slow path for us (no success at this point).
2966 
2967   // Hacked jmp, which may only be used just before L_fallthrough.
2968 #define final_jmp(label)                                                \
2969   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
2970   else                            { branch_optimized(Assembler::bcondAlways, label); } /*omit semicolon*/
2971 
2972   if (super_check_offset.is_register()) {
2973     branch_optimized(Assembler::bcondEqual, *L_success);
2974     z_cfi(super_check_offset.as_register(), sc_offset);
2975     if (L_failure == &L_fallthrough) {
2976       branch_optimized(Assembler::bcondEqual, *L_slow_path);
2977     } else {
2978       branch_optimized(Assembler::bcondNotEqual, *L_failure);
2979       final_jmp(*L_slow_path);
2980     }
2981   } else if (super_check_offset.as_constant() == sc_offset) {
2982     // Need a slow path; fast failure is impossible.
2983     if (L_slow_path == &L_fallthrough) {
2984       branch_optimized(Assembler::bcondEqual, *L_success);
2985     } else {
2986       branch_optimized(Assembler::bcondNotEqual, *L_slow_path);
2987       final_jmp(*L_success);
2988     }
2989   } else {
2990     // No slow path; it's a fast decision.
2991     if (L_failure == &L_fallthrough) {
2992       branch_optimized(Assembler::bcondEqual, *L_success);
2993     } else {
2994       branch_optimized(Assembler::bcondNotEqual, *L_failure);
2995       final_jmp(*L_success);
2996     }
2997   }
2998 
2999   bind(L_fallthrough);
3000 #undef local_brc
3001 #undef final_jmp
3002   BLOCK_COMMENT("} check_klass_subtype_fast_path");
3003   // fallthru (to slow path)
3004 }
3005 
3006 void MacroAssembler::check_klass_subtype_slow_path(Register Rsubklass,
3007                                                    Register Rsuperklass,
3008                                                    Register Rarray_ptr,  // tmp
3009                                                    Register Rlength,     // tmp
3010                                                    Label* L_success,
3011                                                    Label* L_failure) {
3012   // Input registers must not overlap.
3013   // Also check for R1 which is explicitly used here.
3014   assert_different_registers(Z_R1, Rsubklass, Rsuperklass, Rarray_ptr, Rlength);
3015   NearLabel L_fallthrough;
3016   int label_nulls = 0;
3017   if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; }
3018   if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; }
3019   assert(label_nulls <= 1, "at most one NULL in the batch");
3020 
3021   const int ss_offset = in_bytes(Klass::secondary_supers_offset());
3022   const int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
3023 
3024   const int length_offset = Array<Klass*>::length_offset_in_bytes();
3025   const int base_offset   = Array<Klass*>::base_offset_in_bytes();
3026 
3027   // Hacked jmp, which may only be used just before L_fallthrough.
3028 #define final_jmp(label)                                                \
3029   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
3030   else                            branch_optimized(Assembler::bcondAlways, label) /*omit semicolon*/
3031 
3032   NearLabel loop_iterate, loop_count, match;
3033 
3034   BLOCK_COMMENT("check_klass_subtype_slow_path {");
3035   z_lg(Rarray_ptr, ss_offset, Rsubklass);
3036 
3037   load_and_test_int(Rlength, Address(Rarray_ptr, length_offset));
3038   branch_optimized(Assembler::bcondZero, *L_failure);
3039 
3040   // Oops in table are NO MORE compressed.
3041   z_cg(Rsuperklass, base_offset, Rarray_ptr); // Check array element for match.
3042   z_bre(match);                               // Shortcut for array length = 1.
3043 
3044   // No match yet, so we must walk the array's elements.
3045   z_lngfr(Rlength, Rlength);
3046   z_sllg(Rlength, Rlength, LogBytesPerWord); // -#bytes of cache array
3047   z_llill(Z_R1, BytesPerWord);               // Set increment/end index.
3048   add2reg(Rlength, 2 * BytesPerWord);        // start index  = -(n-2)*BytesPerWord
3049   z_slgr(Rarray_ptr, Rlength);               // start addr: +=  (n-2)*BytesPerWord
3050   z_bru(loop_count);
3051 
3052   BIND(loop_iterate);
3053   z_cg(Rsuperklass, base_offset, Rlength, Rarray_ptr); // Check array element for match.
3054   z_bre(match);
3055   BIND(loop_count);
3056   z_brxlg(Rlength, Z_R1, loop_iterate);
3057 
3058   // Rsuperklass not found among secondary super classes -> failure.
3059   branch_optimized(Assembler::bcondAlways, *L_failure);
3060 
3061   // Got a hit. Return success (zero result). Set cache.
3062   // Cache load doesn't happen here. For speed it is directly emitted by the compiler.
3063 
3064   BIND(match);
3065 
3066   z_stg(Rsuperklass, sc_offset, Rsubklass); // Save result to cache.
3067 
3068   final_jmp(*L_success);
3069 
3070   // Exit to the surrounding code.
3071   BIND(L_fallthrough);
3072 #undef local_brc
3073 #undef final_jmp
3074   BLOCK_COMMENT("} check_klass_subtype_slow_path");
3075 }
3076 
3077 // Emitter for combining fast and slow path.
3078 void MacroAssembler::check_klass_subtype(Register sub_klass,
3079                                          Register super_klass,
3080                                          Register temp1_reg,
3081                                          Register temp2_reg,
3082                                          Label&   L_success) {
3083   NearLabel failure;
3084   BLOCK_COMMENT(err_msg("check_klass_subtype(%s subclass of %s) {", sub_klass->name(), super_klass->name()));
3085   check_klass_subtype_fast_path(sub_klass, super_klass, temp1_reg,
3086                                 &L_success, &failure, NULL);
3087   check_klass_subtype_slow_path(sub_klass, super_klass,
3088                                 temp1_reg, temp2_reg, &L_success, NULL);
3089   BIND(failure);
3090   BLOCK_COMMENT("} check_klass_subtype");
3091 }
3092 
3093 void MacroAssembler::clinit_barrier(Register klass, Register thread, Label* L_fast_path, Label* L_slow_path) {
3094   assert(L_fast_path != NULL || L_slow_path != NULL, "at least one is required");
3095 
3096   Label L_fallthrough;
3097   if (L_fast_path == NULL) {
3098     L_fast_path = &L_fallthrough;
3099   } else if (L_slow_path == NULL) {
3100     L_slow_path = &L_fallthrough;
3101   }
3102 
3103   // Fast path check: class is fully initialized
3104   z_cli(Address(klass, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized);
3105   z_bre(*L_fast_path);
3106 
3107   // Fast path check: current thread is initializer thread
3108   z_cg(thread, Address(klass, InstanceKlass::init_thread_offset()));
3109   if (L_slow_path == &L_fallthrough) {
3110     z_bre(*L_fast_path);
3111   } else if (L_fast_path == &L_fallthrough) {
3112     z_brne(*L_slow_path);
3113   } else {
3114     Unimplemented();
3115   }
3116 
3117   bind(L_fallthrough);
3118 }
3119 
3120 // Increment a counter at counter_address when the eq condition code is
3121 // set. Kills registers tmp1_reg and tmp2_reg and preserves the condition code.
3122 void MacroAssembler::increment_counter_eq(address counter_address, Register tmp1_reg, Register tmp2_reg) {
3123   Label l;
3124   z_brne(l);
3125   load_const(tmp1_reg, counter_address);
3126   add2mem_32(Address(tmp1_reg), 1, tmp2_reg);
3127   z_cr(tmp1_reg, tmp1_reg); // Set cc to eq.
3128   bind(l);
3129 }
3130 
3131 void MacroAssembler::compiler_fast_lock_object(Register oop, Register box, Register temp1, Register temp2) {
3132   Register displacedHeader = temp1;
3133   Register currentHeader = temp1;
3134   Register temp = temp2;
3135   NearLabel done, object_has_monitor;
3136 
3137   BLOCK_COMMENT("compiler_fast_lock_object {");
3138 
3139   // Load markWord from oop into mark.
3140   z_lg(displacedHeader, 0, oop);
3141 
3142   if (DiagnoseSyncOnValueBasedClasses != 0) {
3143     load_klass(Z_R1_scratch, oop);
3144     z_l(Z_R1_scratch, Address(Z_R1_scratch, Klass::access_flags_offset()));
3145     assert((JVM_ACC_IS_VALUE_BASED_CLASS & 0xFFFF) == 0, "or change following instruction");
3146     z_nilh(Z_R1_scratch, JVM_ACC_IS_VALUE_BASED_CLASS >> 16);
3147     z_brne(done);
3148   }
3149 
3150   // Handle existing monitor.
3151   // The object has an existing monitor iff (mark & monitor_value) != 0.
3152   guarantee(Immediate::is_uimm16(markWord::monitor_value), "must be half-word");
3153   z_lr(temp, displacedHeader);
3154   z_nill(temp, markWord::monitor_value);
3155   z_brne(object_has_monitor);
3156 
3157   // Set mark to markWord | markWord::unlocked_value.
3158   z_oill(displacedHeader, markWord::unlocked_value);
3159 
3160   // Load Compare Value application register.
3161 
3162   // Memory Fence (in cmpxchgd)
3163   // Compare object markWord with mark and if equal exchange scratch1 with object markWord.
3164 
3165   // If the compare-and-swap succeeded, then we found an unlocked object and we
3166   // have now locked it.
3167   z_csg(displacedHeader, box, 0, oop);
3168   assert(currentHeader==displacedHeader, "must be same register"); // Identified two registers from z/Architecture.
3169   z_bre(done);
3170 
3171   // We did not see an unlocked object so try the fast recursive case.
3172 
3173   z_sgr(currentHeader, Z_SP);
3174   load_const_optimized(temp, (~(os::vm_page_size()-1) | markWord::lock_mask_in_place));
3175 
3176   z_ngr(currentHeader, temp);
3177   //   z_brne(done);
3178   //   z_release();
3179 
3180   z_bru(done);
3181 
3182   Register zero = temp;
3183   Register monitor_tagged = displacedHeader; // Tagged with markWord::monitor_value.
3184   bind(object_has_monitor);
3185   // The object's monitor m is unlocked iff m->owner == NULL,
3186   // otherwise m->owner may contain a thread or a stack address.
3187   //
3188   // Try to CAS m->owner from NULL to current thread.
3189   z_lghi(zero, 0);
3190   // If m->owner is null, then csg succeeds and sets m->owner=THREAD and CR=EQ.
3191   z_csg(zero, Z_thread, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner), monitor_tagged);
3192 #ifdef ASSERT
3193   z_brne(done);
3194   // We've acquired the monitor, check some invariants.
3195   // Invariant 1: _recursions should be 0.
3196   asm_assert_mem8_is_zero(OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions), monitor_tagged,
3197                           "monitor->_recursions should be 0", -1);
3198   z_ltgr(zero, zero); // Set CR=EQ.
3199 #endif
3200   bind(done);
3201 
3202   BLOCK_COMMENT("} compiler_fast_lock_object");
3203   // If locking was successful, CR should indicate 'EQ'.
3204   // The compiler or the native wrapper generates a branch to the runtime call
3205   // _complete_monitor_locking_Java.
3206 }
3207 
3208 void MacroAssembler::compiler_fast_unlock_object(Register oop, Register box, Register temp1, Register temp2) {
3209   Register displacedHeader = temp1;
3210   Register currentHeader = temp2;
3211   Register temp = temp1;
3212   Register monitor = temp2;
3213 
3214   Label done, object_has_monitor;
3215 
3216   BLOCK_COMMENT("compiler_fast_unlock_object {");
3217 
3218   // Handle existing monitor.
3219   // The object has an existing monitor iff (mark & monitor_value) != 0.
3220   z_lg(currentHeader, oopDesc::mark_offset_in_bytes(), oop);
3221   guarantee(Immediate::is_uimm16(markWord::monitor_value), "must be half-word");
3222   z_nill(currentHeader, markWord::monitor_value);
3223   z_brne(object_has_monitor);
3224 
3225   // Check if it is still a light weight lock, this is true if we see
3226   // the stack address of the basicLock in the markWord of the object
3227   // copy box to currentHeader such that csg does not kill it.
3228   z_lgr(currentHeader, box);
3229   z_csg(currentHeader, displacedHeader, 0, oop);
3230   z_bru(done); // Csg sets CR as desired.
3231 
3232   // Handle existing monitor.
3233   bind(object_has_monitor);
3234   z_lg(currentHeader, oopDesc::mark_offset_in_bytes(), oop);    // CurrentHeader is tagged with monitor_value set.
3235   load_and_test_long(temp, Address(currentHeader, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
3236   z_brne(done);
3237   load_and_test_long(temp, Address(currentHeader, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
3238   z_brne(done);
3239   load_and_test_long(temp, Address(currentHeader, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
3240   z_brne(done);
3241   load_and_test_long(temp, Address(currentHeader, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
3242   z_brne(done);
3243   z_release();
3244   z_stg(temp/*=0*/, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner), currentHeader);
3245 
3246   bind(done);
3247 
3248   BLOCK_COMMENT("} compiler_fast_unlock_object");
3249   // flag == EQ indicates success
3250   // flag == NE indicates failure
3251 }
3252 
3253 void MacroAssembler::resolve_jobject(Register value, Register tmp1, Register tmp2) {
3254   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
3255   bs->resolve_jobject(this, value, tmp1, tmp2);
3256 }
3257 
3258 // Last_Java_sp must comply to the rules in frame_s390.hpp.
3259 void MacroAssembler::set_last_Java_frame(Register last_Java_sp, Register last_Java_pc, bool allow_relocation) {
3260   BLOCK_COMMENT("set_last_Java_frame {");
3261 
3262   // Always set last_Java_pc and flags first because once last_Java_sp
3263   // is visible has_last_Java_frame is true and users will look at the
3264   // rest of the fields. (Note: flags should always be zero before we
3265   // get here so doesn't need to be set.)
3266 
3267   // Verify that last_Java_pc was zeroed on return to Java.
3268   if (allow_relocation) {
3269     asm_assert_mem8_is_zero(in_bytes(JavaThread::last_Java_pc_offset()),
3270                             Z_thread,
3271                             "last_Java_pc not zeroed before leaving Java",
3272                             0x200);
3273   } else {
3274     asm_assert_mem8_is_zero_static(in_bytes(JavaThread::last_Java_pc_offset()),
3275                                    Z_thread,
3276                                    "last_Java_pc not zeroed before leaving Java",
3277                                    0x200);
3278   }
3279 
3280   // When returning from calling out from Java mode the frame anchor's
3281   // last_Java_pc will always be set to NULL. It is set here so that
3282   // if we are doing a call to native (not VM) that we capture the
3283   // known pc and don't have to rely on the native call having a
3284   // standard frame linkage where we can find the pc.
3285   if (last_Java_pc!=noreg) {
3286     z_stg(last_Java_pc, Address(Z_thread, JavaThread::last_Java_pc_offset()));
3287   }
3288 
3289   // This membar release is not required on z/Architecture, since the sequence of stores
3290   // in maintained. Nevertheless, we leave it in to document the required ordering.
3291   // The implementation of z_release() should be empty.
3292   // z_release();
3293 
3294   z_stg(last_Java_sp, Address(Z_thread, JavaThread::last_Java_sp_offset()));
3295   BLOCK_COMMENT("} set_last_Java_frame");
3296 }
3297 
3298 void MacroAssembler::reset_last_Java_frame(bool allow_relocation) {
3299   BLOCK_COMMENT("reset_last_Java_frame {");
3300 
3301   if (allow_relocation) {
3302     asm_assert_mem8_isnot_zero(in_bytes(JavaThread::last_Java_sp_offset()),
3303                                Z_thread,
3304                                "SP was not set, still zero",
3305                                0x202);
3306   } else {
3307     asm_assert_mem8_isnot_zero_static(in_bytes(JavaThread::last_Java_sp_offset()),
3308                                       Z_thread,
3309                                       "SP was not set, still zero",
3310                                       0x202);
3311   }
3312 
3313   // _last_Java_sp = 0
3314   // Clearing storage must be atomic here, so don't use clear_mem()!
3315   store_const(Address(Z_thread, JavaThread::last_Java_sp_offset()), 0);
3316 
3317   // _last_Java_pc = 0
3318   store_const(Address(Z_thread, JavaThread::last_Java_pc_offset()), 0);
3319 
3320   BLOCK_COMMENT("} reset_last_Java_frame");
3321   return;
3322 }
3323 
3324 void MacroAssembler::set_top_ijava_frame_at_SP_as_last_Java_frame(Register sp, Register tmp1, bool allow_relocation) {
3325   assert_different_registers(sp, tmp1);
3326 
3327   // We cannot trust that code generated by the C++ compiler saves R14
3328   // to z_abi_160.return_pc, because sometimes it spills R14 using stmg at
3329   // z_abi_160.gpr14 (e.g. InterpreterRuntime::_new()).
3330   // Therefore we load the PC into tmp1 and let set_last_Java_frame() save
3331   // it into the frame anchor.
3332   get_PC(tmp1);
3333   set_last_Java_frame(/*sp=*/sp, /*pc=*/tmp1, allow_relocation);
3334 }
3335 
3336 void MacroAssembler::set_thread_state(JavaThreadState new_state) {
3337   z_release();
3338 
3339   assert(Immediate::is_uimm16(_thread_max_state), "enum value out of range for instruction");
3340   assert(sizeof(JavaThreadState) == sizeof(int), "enum value must have base type int");
3341   store_const(Address(Z_thread, JavaThread::thread_state_offset()), new_state, Z_R0, false);
3342 }
3343 
3344 void MacroAssembler::get_vm_result(Register oop_result) {
3345   verify_thread();
3346 
3347   z_lg(oop_result, Address(Z_thread, JavaThread::vm_result_offset()));
3348   clear_mem(Address(Z_thread, JavaThread::vm_result_offset()), sizeof(void*));
3349 
3350   verify_oop(oop_result, FILE_AND_LINE);
3351 }
3352 
3353 void MacroAssembler::get_vm_result_2(Register result) {
3354   verify_thread();
3355 
3356   z_lg(result, Address(Z_thread, JavaThread::vm_result_2_offset()));
3357   clear_mem(Address(Z_thread, JavaThread::vm_result_2_offset()), sizeof(void*));
3358 }
3359 
3360 // We require that C code which does not return a value in vm_result will
3361 // leave it undisturbed.
3362 void MacroAssembler::set_vm_result(Register oop_result) {
3363   z_stg(oop_result, Address(Z_thread, JavaThread::vm_result_offset()));
3364 }
3365 
3366 // Explicit null checks (used for method handle code).
3367 void MacroAssembler::null_check(Register reg, Register tmp, int64_t offset) {
3368   if (!ImplicitNullChecks) {
3369     NearLabel ok;
3370 
3371     compare64_and_branch(reg, (intptr_t) 0, Assembler::bcondNotEqual, ok);
3372 
3373     // We just put the address into reg if it was 0 (tmp==Z_R0 is allowed so we can't use it for the address).
3374     address exception_entry = Interpreter::throw_NullPointerException_entry();
3375     load_absolute_address(reg, exception_entry);
3376     z_br(reg);
3377 
3378     bind(ok);
3379   } else {
3380     if (needs_explicit_null_check((intptr_t)offset)) {
3381       // Provoke OS NULL exception if reg = NULL by
3382       // accessing M[reg] w/o changing any registers.
3383       z_lg(tmp, 0, reg);
3384     }
3385     // else
3386       // Nothing to do, (later) access of M[reg + offset]
3387       // will provoke OS NULL exception if reg = NULL.
3388   }
3389 }
3390 
3391 //-------------------------------------
3392 //  Compressed Klass Pointers
3393 //-------------------------------------
3394 
3395 // Klass oop manipulations if compressed.
3396 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
3397   Register current = (src != noreg) ? src : dst; // Klass is in dst if no src provided. (dst == src) also possible.
3398   address  base    = CompressedKlassPointers::base();
3399   int      shift   = CompressedKlassPointers::shift();
3400   bool     need_zero_extend = base != 0;
3401   assert(UseCompressedClassPointers, "only for compressed klass ptrs");
3402 
3403   BLOCK_COMMENT("cKlass encoder {");
3404 
3405 #ifdef ASSERT
3406   Label ok;
3407   z_tmll(current, KlassAlignmentInBytes-1); // Check alignment.
3408   z_brc(Assembler::bcondAllZero, ok);
3409   // The plain disassembler does not recognize illtrap. It instead displays
3410   // a 32-bit value. Issuing two illtraps assures the disassembler finds
3411   // the proper beginning of the next instruction.
3412   z_illtrap(0xee);
3413   z_illtrap(0xee);
3414   bind(ok);
3415 #endif
3416 
3417   // Scale down the incoming klass pointer first.
3418   // We then can be sure we calculate an offset that fits into 32 bit.
3419   // More generally speaking: all subsequent calculations are purely 32-bit.
3420   if (shift != 0) {
3421     assert (LogKlassAlignmentInBytes == shift, "decode alg wrong");
3422     z_srlg(dst, current, shift);
3423     current = dst;
3424   }
3425 
3426   if (base != NULL) {
3427     // Use scaled-down base address parts to match scaled-down klass pointer.
3428     unsigned int base_h = ((unsigned long)base)>>(32+shift);
3429     unsigned int base_l = (unsigned int)(((unsigned long)base)>>shift);
3430 
3431     // General considerations:
3432     //  - when calculating (current_h - base_h), all digits must cancel (become 0).
3433     //    Otherwise, we would end up with a compressed klass pointer which doesn't
3434     //    fit into 32-bit.
3435     //  - Only bit#33 of the difference could potentially be non-zero. For that
3436     //    to happen, (current_l < base_l) must hold. In this case, the subtraction
3437     //    will create a borrow out of bit#32, nicely killing bit#33.
3438     //  - With the above, we only need to consider current_l and base_l to
3439     //    calculate the result.
3440     //  - Both values are treated as unsigned. The unsigned subtraction is
3441     //    replaced by adding (unsigned) the 2's complement of the subtrahend.
3442 
3443     if (base_l == 0) {
3444       //  - By theory, the calculation to be performed here (current_h - base_h) MUST
3445       //    cancel all high-word bits. Otherwise, we would end up with an offset
3446       //    (i.e. compressed klass pointer) that does not fit into 32 bit.
3447       //  - current_l remains unchanged.
3448       //  - Therefore, we can replace all calculation with just a
3449       //    zero-extending load 32 to 64 bit.
3450       //  - Even that can be replaced with a conditional load if dst != current.
3451       //    (this is a local view. The shift step may have requested zero-extension).
3452     } else {
3453       if ((base_h == 0) && is_uimm(base_l, 31)) {
3454         // If we happen to find that (base_h == 0), and that base_l is within the range
3455         // which can be represented by a signed int, then we can use 64bit signed add with
3456         // (-base_l) as 32bit signed immediate operand. The add will take care of the
3457         // upper 32 bits of the result, saving us the need of an extra zero extension.
3458         // For base_l to be in the required range, it must not have the most significant
3459         // bit (aka sign bit) set.
3460         lgr_if_needed(dst, current); // no zero/sign extension in this case!
3461         z_agfi(dst, -(int)base_l);   // base_l must be passed as signed.
3462         need_zero_extend = false;
3463         current = dst;
3464       } else {
3465         // To begin with, we may need to copy and/or zero-extend the register operand.
3466         // We have to calculate (current_l - base_l). Because there is no unsigend
3467         // subtract instruction with immediate operand, we add the 2's complement of base_l.
3468         if (need_zero_extend) {
3469           z_llgfr(dst, current);
3470           need_zero_extend = false;
3471         } else {
3472           llgfr_if_needed(dst, current);
3473         }
3474         current = dst;
3475         z_alfi(dst, -base_l);
3476       }
3477     }
3478   }
3479 
3480   if (need_zero_extend) {
3481     // We must zero-extend the calculated result. It may have some leftover bits in
3482     // the hi-word because we only did optimized calculations.
3483     z_llgfr(dst, current);
3484   } else {
3485     llgfr_if_needed(dst, current); // zero-extension while copying comes at no extra cost.
3486   }
3487 
3488   BLOCK_COMMENT("} cKlass encoder");
3489 }
3490 
3491 // This function calculates the size of the code generated by
3492 //   decode_klass_not_null(register dst, Register src)
3493 // when (Universe::heap() != NULL). Hence, if the instructions
3494 // it generates change, then this method needs to be updated.
3495 int MacroAssembler::instr_size_for_decode_klass_not_null() {
3496   address  base    = CompressedKlassPointers::base();
3497   int shift_size   = CompressedKlassPointers::shift() == 0 ? 0 : 6; /* sllg */
3498   int addbase_size = 0;
3499   assert(UseCompressedClassPointers, "only for compressed klass ptrs");
3500 
3501   if (base != NULL) {
3502     unsigned int base_h = ((unsigned long)base)>>32;
3503     unsigned int base_l = (unsigned int)((unsigned long)base);
3504     if ((base_h != 0) && (base_l == 0) && VM_Version::has_HighWordInstr()) {
3505       addbase_size += 6; /* aih */
3506     } else if ((base_h == 0) && (base_l != 0)) {
3507       addbase_size += 6; /* algfi */
3508     } else {
3509       addbase_size += load_const_size();
3510       addbase_size += 4; /* algr */
3511     }
3512   }
3513 #ifdef ASSERT
3514   addbase_size += 10;
3515   addbase_size += 2; // Extra sigill.
3516 #endif
3517   return addbase_size + shift_size;
3518 }
3519 
3520 // !!! If the instructions that get generated here change
3521 //     then function instr_size_for_decode_klass_not_null()
3522 //     needs to get updated.
3523 // This variant of decode_klass_not_null() must generate predictable code!
3524 // The code must only depend on globally known parameters.
3525 void MacroAssembler::decode_klass_not_null(Register dst) {
3526   address  base    = CompressedKlassPointers::base();
3527   int      shift   = CompressedKlassPointers::shift();
3528   int      beg_off = offset();
3529   assert(UseCompressedClassPointers, "only for compressed klass ptrs");
3530 
3531   BLOCK_COMMENT("cKlass decoder (const size) {");
3532 
3533   if (shift != 0) { // Shift required?
3534     z_sllg(dst, dst, shift);
3535   }
3536   if (base != NULL) {
3537     unsigned int base_h = ((unsigned long)base)>>32;
3538     unsigned int base_l = (unsigned int)((unsigned long)base);
3539     if ((base_h != 0) && (base_l == 0) && VM_Version::has_HighWordInstr()) {
3540       z_aih(dst, base_h);     // Base has no set bits in lower half.
3541     } else if ((base_h == 0) && (base_l != 0)) {
3542       z_algfi(dst, base_l);   // Base has no set bits in upper half.
3543     } else {
3544       load_const(Z_R0, base); // Base has set bits everywhere.
3545       z_algr(dst, Z_R0);
3546     }
3547   }
3548 
3549 #ifdef ASSERT
3550   Label ok;
3551   z_tmll(dst, KlassAlignmentInBytes-1); // Check alignment.
3552   z_brc(Assembler::bcondAllZero, ok);
3553   // The plain disassembler does not recognize illtrap. It instead displays
3554   // a 32-bit value. Issuing two illtraps assures the disassembler finds
3555   // the proper beginning of the next instruction.
3556   z_illtrap(0xd1);
3557   z_illtrap(0xd1);
3558   bind(ok);
3559 #endif
3560   assert(offset() == beg_off + instr_size_for_decode_klass_not_null(), "Code gen mismatch.");
3561 
3562   BLOCK_COMMENT("} cKlass decoder (const size)");
3563 }
3564 
3565 // This variant of decode_klass_not_null() is for cases where
3566 //  1) the size of the generated instructions may vary
3567 //  2) the result is (potentially) stored in a register different from the source.
3568 void MacroAssembler::decode_klass_not_null(Register dst, Register src) {
3569   address base  = CompressedKlassPointers::base();
3570   int     shift = CompressedKlassPointers::shift();
3571   assert(UseCompressedClassPointers, "only for compressed klass ptrs");
3572 
3573   BLOCK_COMMENT("cKlass decoder {");
3574 
3575   if (src == noreg) src = dst;
3576 
3577   if (shift != 0) { // Shift or at least move required?
3578     z_sllg(dst, src, shift);
3579   } else {
3580     lgr_if_needed(dst, src);
3581   }
3582 
3583   if (base != NULL) {
3584     unsigned int base_h = ((unsigned long)base)>>32;
3585     unsigned int base_l = (unsigned int)((unsigned long)base);
3586     if ((base_h != 0) && (base_l == 0) && VM_Version::has_HighWordInstr()) {
3587       z_aih(dst, base_h);     // Base has not set bits in lower half.
3588     } else if ((base_h == 0) && (base_l != 0)) {
3589       z_algfi(dst, base_l);   // Base has no set bits in upper half.
3590     } else {
3591       load_const_optimized(Z_R0, base); // Base has set bits everywhere.
3592       z_algr(dst, Z_R0);
3593     }
3594   }
3595 
3596 #ifdef ASSERT
3597   Label ok;
3598   z_tmll(dst, KlassAlignmentInBytes-1); // Check alignment.
3599   z_brc(Assembler::bcondAllZero, ok);
3600   // The plain disassembler does not recognize illtrap. It instead displays
3601   // a 32-bit value. Issuing two illtraps assures the disassembler finds
3602   // the proper beginning of the next instruction.
3603   z_illtrap(0xd2);
3604   z_illtrap(0xd2);
3605   bind(ok);
3606 #endif
3607   BLOCK_COMMENT("} cKlass decoder");
3608 }
3609 
3610 void MacroAssembler::load_klass(Register klass, Address mem) {
3611   if (UseCompressedClassPointers) {
3612     z_llgf(klass, mem);
3613     // Attention: no null check here!
3614     decode_klass_not_null(klass);
3615   } else {
3616     z_lg(klass, mem);
3617   }
3618 }
3619 
3620 void MacroAssembler::load_klass(Register klass, Register src_oop) {
3621   if (UseCompressedClassPointers) {
3622     z_llgf(klass, oopDesc::klass_offset_in_bytes(), src_oop);
3623     // Attention: no null check here!
3624     decode_klass_not_null(klass);
3625   } else {
3626     z_lg(klass, oopDesc::klass_offset_in_bytes(), src_oop);
3627   }
3628 }
3629 
3630 void MacroAssembler::store_klass(Register klass, Register dst_oop, Register ck) {
3631   if (UseCompressedClassPointers) {
3632     assert_different_registers(dst_oop, klass, Z_R0);
3633     if (ck == noreg) ck = klass;
3634     encode_klass_not_null(ck, klass);
3635     z_st(ck, Address(dst_oop, oopDesc::klass_offset_in_bytes()));
3636   } else {
3637     z_stg(klass, Address(dst_oop, oopDesc::klass_offset_in_bytes()));
3638   }
3639 }
3640 
3641 void MacroAssembler::store_klass_gap(Register s, Register d) {
3642   if (UseCompressedClassPointers) {
3643     assert(s != d, "not enough registers");
3644     // Support s = noreg.
3645     if (s != noreg) {
3646       z_st(s, Address(d, oopDesc::klass_gap_offset_in_bytes()));
3647     } else {
3648       z_mvhi(Address(d, oopDesc::klass_gap_offset_in_bytes()), 0);
3649     }
3650   }
3651 }
3652 
3653 // Compare klass ptr in memory against klass ptr in register.
3654 //
3655 // Rop1            - klass in register, always uncompressed.
3656 // disp            - Offset of klass in memory, compressed/uncompressed, depending on runtime flag.
3657 // Rbase           - Base address of cKlass in memory.
3658 // maybeNULL       - True if Rop1 possibly is a NULL.
3659 void MacroAssembler::compare_klass_ptr(Register Rop1, int64_t disp, Register Rbase, bool maybeNULL) {
3660 
3661   BLOCK_COMMENT("compare klass ptr {");
3662 
3663   if (UseCompressedClassPointers) {
3664     const int shift = CompressedKlassPointers::shift();
3665     address   base  = CompressedKlassPointers::base();
3666 
3667     assert((shift == 0) || (shift == LogKlassAlignmentInBytes), "cKlass encoder detected bad shift");
3668     assert_different_registers(Rop1, Z_R0);
3669     assert_different_registers(Rop1, Rbase, Z_R1);
3670 
3671     // First encode register oop and then compare with cOop in memory.
3672     // This sequence saves an unnecessary cOop load and decode.
3673     if (base == NULL) {
3674       if (shift == 0) {
3675         z_cl(Rop1, disp, Rbase);     // Unscaled
3676       } else {
3677         z_srlg(Z_R0, Rop1, shift);   // ZeroBased
3678         z_cl(Z_R0, disp, Rbase);
3679       }
3680     } else {                         // HeapBased
3681 #ifdef ASSERT
3682       bool     used_R0 = true;
3683       bool     used_R1 = true;
3684 #endif
3685       Register current = Rop1;
3686       Label    done;
3687 
3688       if (maybeNULL) {       // NULL ptr must be preserved!
3689         z_ltgr(Z_R0, current);
3690         z_bre(done);
3691         current = Z_R0;
3692       }
3693 
3694       unsigned int base_h = ((unsigned long)base)>>32;
3695       unsigned int base_l = (unsigned int)((unsigned long)base);
3696       if ((base_h != 0) && (base_l == 0) && VM_Version::has_HighWordInstr()) {
3697         lgr_if_needed(Z_R0, current);
3698         z_aih(Z_R0, -((int)base_h));     // Base has no set bits in lower half.
3699       } else if ((base_h == 0) && (base_l != 0)) {
3700         lgr_if_needed(Z_R0, current);
3701         z_agfi(Z_R0, -(int)base_l);
3702       } else {
3703         int pow2_offset = get_oop_base_complement(Z_R1, ((uint64_t)(intptr_t)base));
3704         add2reg_with_index(Z_R0, pow2_offset, Z_R1, Rop1); // Subtract base by adding complement.
3705       }
3706 
3707       if (shift != 0) {
3708         z_srlg(Z_R0, Z_R0, shift);
3709       }
3710       bind(done);
3711       z_cl(Z_R0, disp, Rbase);
3712 #ifdef ASSERT
3713       if (used_R0) preset_reg(Z_R0, 0xb05bUL, 2);
3714       if (used_R1) preset_reg(Z_R1, 0xb06bUL, 2);
3715 #endif
3716     }
3717   } else {
3718     z_clg(Rop1, disp, Z_R0, Rbase);
3719   }
3720   BLOCK_COMMENT("} compare klass ptr");
3721 }
3722 
3723 //---------------------------
3724 //  Compressed oops
3725 //---------------------------
3726 
3727 void MacroAssembler::encode_heap_oop(Register oop) {
3728   oop_encoder(oop, oop, true /*maybe null*/);
3729 }
3730 
3731 void MacroAssembler::encode_heap_oop_not_null(Register oop) {
3732   oop_encoder(oop, oop, false /*not null*/);
3733 }
3734 
3735 // Called with something derived from the oop base. e.g. oop_base>>3.
3736 int MacroAssembler::get_oop_base_pow2_offset(uint64_t oop_base) {
3737   unsigned int oop_base_ll = ((unsigned int)(oop_base >>  0)) & 0xffff;
3738   unsigned int oop_base_lh = ((unsigned int)(oop_base >> 16)) & 0xffff;
3739   unsigned int oop_base_hl = ((unsigned int)(oop_base >> 32)) & 0xffff;
3740   unsigned int oop_base_hh = ((unsigned int)(oop_base >> 48)) & 0xffff;
3741   unsigned int n_notzero_parts = (oop_base_ll == 0 ? 0:1)
3742                                + (oop_base_lh == 0 ? 0:1)
3743                                + (oop_base_hl == 0 ? 0:1)
3744                                + (oop_base_hh == 0 ? 0:1);
3745 
3746   assert(oop_base != 0, "This is for HeapBased cOops only");
3747 
3748   if (n_notzero_parts != 1) { //  Check if oop_base is just a few pages shy of a power of 2.
3749     uint64_t pow2_offset = 0x10000 - oop_base_ll;
3750     if (pow2_offset < 0x8000) {  // This might not be necessary.
3751       uint64_t oop_base2 = oop_base + pow2_offset;
3752 
3753       oop_base_ll = ((unsigned int)(oop_base2 >>  0)) & 0xffff;
3754       oop_base_lh = ((unsigned int)(oop_base2 >> 16)) & 0xffff;
3755       oop_base_hl = ((unsigned int)(oop_base2 >> 32)) & 0xffff;
3756       oop_base_hh = ((unsigned int)(oop_base2 >> 48)) & 0xffff;
3757       n_notzero_parts = (oop_base_ll == 0 ? 0:1) +
3758                         (oop_base_lh == 0 ? 0:1) +
3759                         (oop_base_hl == 0 ? 0:1) +
3760                         (oop_base_hh == 0 ? 0:1);
3761       if (n_notzero_parts == 1) {
3762         assert(-(int64_t)pow2_offset != (int64_t)-1, "We use -1 to signal uninitialized base register");
3763         return -pow2_offset;
3764       }
3765     }
3766   }
3767   return 0;
3768 }
3769 
3770 // If base address is offset from a straight power of two by just a few pages,
3771 // return this offset to the caller for a possible later composite add.
3772 // TODO/FIX: will only work correctly for 4k pages.
3773 int MacroAssembler::get_oop_base(Register Rbase, uint64_t oop_base) {
3774   int pow2_offset = get_oop_base_pow2_offset(oop_base);
3775 
3776   load_const_optimized(Rbase, oop_base - pow2_offset); // Best job possible.
3777 
3778   return pow2_offset;
3779 }
3780 
3781 int MacroAssembler::get_oop_base_complement(Register Rbase, uint64_t oop_base) {
3782   int offset = get_oop_base(Rbase, oop_base);
3783   z_lcgr(Rbase, Rbase);
3784   return -offset;
3785 }
3786 
3787 // Compare compressed oop in memory against oop in register.
3788 // Rop1            - Oop in register.
3789 // disp            - Offset of cOop in memory.
3790 // Rbase           - Base address of cOop in memory.
3791 // maybeNULL       - True if Rop1 possibly is a NULL.
3792 // maybeNULLtarget - Branch target for Rop1 == NULL, if flow control shall NOT continue with compare instruction.
3793 void MacroAssembler::compare_heap_oop(Register Rop1, Address mem, bool maybeNULL) {
3794   Register Rbase  = mem.baseOrR0();
3795   Register Rindex = mem.indexOrR0();
3796   int64_t  disp   = mem.disp();
3797 
3798   const int shift = CompressedOops::shift();
3799   address   base  = CompressedOops::base();
3800 
3801   assert(UseCompressedOops, "must be on to call this method");
3802   assert(Universe::heap() != NULL, "java heap must be initialized to call this method");
3803   assert((shift == 0) || (shift == LogMinObjAlignmentInBytes), "cOop encoder detected bad shift");
3804   assert_different_registers(Rop1, Z_R0);
3805   assert_different_registers(Rop1, Rbase, Z_R1);
3806   assert_different_registers(Rop1, Rindex, Z_R1);
3807 
3808   BLOCK_COMMENT("compare heap oop {");
3809 
3810   // First encode register oop and then compare with cOop in memory.
3811   // This sequence saves an unnecessary cOop load and decode.
3812   if (base == NULL) {
3813     if (shift == 0) {
3814       z_cl(Rop1, disp, Rindex, Rbase);  // Unscaled
3815     } else {
3816       z_srlg(Z_R0, Rop1, shift);        // ZeroBased
3817       z_cl(Z_R0, disp, Rindex, Rbase);
3818     }
3819   } else {                              // HeapBased
3820 #ifdef ASSERT
3821     bool  used_R0 = true;
3822     bool  used_R1 = true;
3823 #endif
3824     Label done;
3825     int   pow2_offset = get_oop_base_complement(Z_R1, ((uint64_t)(intptr_t)base));
3826 
3827     if (maybeNULL) {       // NULL ptr must be preserved!
3828       z_ltgr(Z_R0, Rop1);
3829       z_bre(done);
3830     }
3831 
3832     add2reg_with_index(Z_R0, pow2_offset, Z_R1, Rop1);
3833     z_srlg(Z_R0, Z_R0, shift);
3834 
3835     bind(done);
3836     z_cl(Z_R0, disp, Rindex, Rbase);
3837 #ifdef ASSERT
3838     if (used_R0) preset_reg(Z_R0, 0xb05bUL, 2);
3839     if (used_R1) preset_reg(Z_R1, 0xb06bUL, 2);
3840 #endif
3841   }
3842   BLOCK_COMMENT("} compare heap oop");
3843 }
3844 
3845 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators,
3846                                      const Address& addr, Register val,
3847                                      Register tmp1, Register tmp2, Register tmp3) {
3848   assert((decorators & ~(AS_RAW | IN_HEAP | IN_NATIVE | IS_ARRAY | IS_NOT_NULL |
3849                          ON_UNKNOWN_OOP_REF)) == 0, "unsupported decorator");
3850   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
3851   decorators = AccessInternal::decorator_fixup(decorators);
3852   bool as_raw = (decorators & AS_RAW) != 0;
3853   if (as_raw) {
3854     bs->BarrierSetAssembler::store_at(this, decorators, type,
3855                                       addr, val,
3856                                       tmp1, tmp2, tmp3);
3857   } else {
3858     bs->store_at(this, decorators, type,
3859                  addr, val,
3860                  tmp1, tmp2, tmp3);
3861   }
3862 }
3863 
3864 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators,
3865                                     const Address& addr, Register dst,
3866                                     Register tmp1, Register tmp2, Label *is_null) {
3867   assert((decorators & ~(AS_RAW | IN_HEAP | IN_NATIVE | IS_ARRAY | IS_NOT_NULL |
3868                          ON_PHANTOM_OOP_REF | ON_WEAK_OOP_REF)) == 0, "unsupported decorator");
3869   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
3870   decorators = AccessInternal::decorator_fixup(decorators);
3871   bool as_raw = (decorators & AS_RAW) != 0;
3872   if (as_raw) {
3873     bs->BarrierSetAssembler::load_at(this, decorators, type,
3874                                      addr, dst,
3875                                      tmp1, tmp2, is_null);
3876   } else {
3877     bs->load_at(this, decorators, type,
3878                 addr, dst,
3879                 tmp1, tmp2, is_null);
3880   }
3881 }
3882 
3883 void MacroAssembler::load_heap_oop(Register dest, const Address &a,
3884                                    Register tmp1, Register tmp2,
3885                                    DecoratorSet decorators, Label *is_null) {
3886   access_load_at(T_OBJECT, IN_HEAP | decorators, a, dest, tmp1, tmp2, is_null);
3887 }
3888 
3889 void MacroAssembler::store_heap_oop(Register Roop, const Address &a,
3890                                     Register tmp1, Register tmp2, Register tmp3,
3891                                     DecoratorSet decorators) {
3892   access_store_at(T_OBJECT, IN_HEAP | decorators, a, Roop, tmp1, tmp2, tmp3);
3893 }
3894 
3895 //-------------------------------------------------
3896 // Encode compressed oop. Generally usable encoder.
3897 //-------------------------------------------------
3898 // Rsrc - contains regular oop on entry. It remains unchanged.
3899 // Rdst - contains compressed oop on exit.
3900 // Rdst and Rsrc may indicate same register, in which case Rsrc does not remain unchanged.
3901 //
3902 // Rdst must not indicate scratch register Z_R1 (Z_R1_scratch) for functionality.
3903 // Rdst should not indicate scratch register Z_R0 (Z_R0_scratch) for performance.
3904 //
3905 // only32bitValid is set, if later code only uses the lower 32 bits. In this
3906 // case we must not fix the upper 32 bits.
3907 void MacroAssembler::oop_encoder(Register Rdst, Register Rsrc, bool maybeNULL,
3908                                  Register Rbase, int pow2_offset, bool only32bitValid) {
3909 
3910   const address oop_base  = CompressedOops::base();
3911   const int     oop_shift = CompressedOops::shift();
3912   const bool    disjoint  = CompressedOops::base_disjoint();
3913 
3914   assert(UseCompressedOops, "must be on to call this method");
3915   assert(Universe::heap() != NULL, "java heap must be initialized to call this encoder");
3916   assert((oop_shift == 0) || (oop_shift == LogMinObjAlignmentInBytes), "cOop encoder detected bad shift");
3917 
3918   if (disjoint || (oop_base == NULL)) {
3919     BLOCK_COMMENT("cOop encoder zeroBase {");
3920     if (oop_shift == 0) {
3921       if (oop_base != NULL && !only32bitValid) {
3922         z_llgfr(Rdst, Rsrc); // Clear upper bits in case the register will be decoded again.
3923       } else {
3924         lgr_if_needed(Rdst, Rsrc);
3925       }
3926     } else {
3927       z_srlg(Rdst, Rsrc, oop_shift);
3928       if (oop_base != NULL && !only32bitValid) {
3929         z_llgfr(Rdst, Rdst); // Clear upper bits in case the register will be decoded again.
3930       }
3931     }
3932     BLOCK_COMMENT("} cOop encoder zeroBase");
3933     return;
3934   }
3935 
3936   bool used_R0 = false;
3937   bool used_R1 = false;
3938 
3939   BLOCK_COMMENT("cOop encoder general {");
3940   assert_different_registers(Rdst, Z_R1);
3941   assert_different_registers(Rsrc, Rbase);
3942   if (maybeNULL) {
3943     Label done;
3944     // We reorder shifting and subtracting, so that we can compare
3945     // and shift in parallel:
3946     //
3947     // cycle 0:  potential LoadN, base = <const>
3948     // cycle 1:  base = !base     dst = src >> 3,    cmp cr = (src != 0)
3949     // cycle 2:  if (cr) br,      dst = dst + base + offset
3950 
3951     // Get oop_base components.
3952     if (pow2_offset == -1) {
3953       if (Rdst == Rbase) {
3954         if (Rdst == Z_R1 || Rsrc == Z_R1) {
3955           Rbase = Z_R0;
3956           used_R0 = true;
3957         } else {
3958           Rdst = Z_R1;
3959           used_R1 = true;
3960         }
3961       }
3962       if (Rbase == Z_R1) {
3963         used_R1 = true;
3964       }
3965       pow2_offset = get_oop_base_complement(Rbase, ((uint64_t)(intptr_t)oop_base) >> oop_shift);
3966     }
3967     assert_different_registers(Rdst, Rbase);
3968 
3969     // Check for NULL oop (must be left alone) and shift.
3970     if (oop_shift != 0) {  // Shift out alignment bits
3971       if (((intptr_t)oop_base&0xc000000000000000L) == 0L) { // We are sure: no single address will have the leftmost bit set.
3972         z_srag(Rdst, Rsrc, oop_shift);  // Arithmetic shift sets the condition code.
3973       } else {
3974         z_srlg(Rdst, Rsrc, oop_shift);
3975         z_ltgr(Rsrc, Rsrc);  // This is the recommended way of testing for zero.
3976         // This probably is faster, as it does not write a register. No!
3977         // z_cghi(Rsrc, 0);
3978       }
3979     } else {
3980       z_ltgr(Rdst, Rsrc);   // Move NULL to result register.
3981     }
3982     z_bre(done);
3983 
3984     // Subtract oop_base components.
3985     if ((Rdst == Z_R0) || (Rbase == Z_R0)) {
3986       z_algr(Rdst, Rbase);
3987       if (pow2_offset != 0) { add2reg(Rdst, pow2_offset); }
3988     } else {
3989       add2reg_with_index(Rdst, pow2_offset, Rbase, Rdst);
3990     }
3991     if (!only32bitValid) {
3992       z_llgfr(Rdst, Rdst); // Clear upper bits in case the register will be decoded again.
3993     }
3994     bind(done);
3995 
3996   } else {  // not null
3997     // Get oop_base components.
3998     if (pow2_offset == -1) {
3999       pow2_offset = get_oop_base_complement(Rbase, (uint64_t)(intptr_t)oop_base);
4000     }
4001 
4002     // Subtract oop_base components and shift.
4003     if (Rdst == Z_R0 || Rsrc == Z_R0 || Rbase == Z_R0) {
4004       // Don't use lay instruction.
4005       if (Rdst == Rsrc) {
4006         z_algr(Rdst, Rbase);
4007       } else {
4008         lgr_if_needed(Rdst, Rbase);
4009         z_algr(Rdst, Rsrc);
4010       }
4011       if (pow2_offset != 0) add2reg(Rdst, pow2_offset);
4012     } else {
4013       add2reg_with_index(Rdst, pow2_offset, Rbase, Rsrc);
4014     }
4015     if (oop_shift != 0) {   // Shift out alignment bits.
4016       z_srlg(Rdst, Rdst, oop_shift);
4017     }
4018     if (!only32bitValid) {
4019       z_llgfr(Rdst, Rdst); // Clear upper bits in case the register will be decoded again.
4020     }
4021   }
4022 #ifdef ASSERT
4023   if (used_R0 && Rdst != Z_R0 && Rsrc != Z_R0) { preset_reg(Z_R0, 0xb01bUL, 2); }
4024   if (used_R1 && Rdst != Z_R1 && Rsrc != Z_R1) { preset_reg(Z_R1, 0xb02bUL, 2); }
4025 #endif
4026   BLOCK_COMMENT("} cOop encoder general");
4027 }
4028 
4029 //-------------------------------------------------
4030 // decode compressed oop. Generally usable decoder.
4031 //-------------------------------------------------
4032 // Rsrc - contains compressed oop on entry.
4033 // Rdst - contains regular oop on exit.
4034 // Rdst and Rsrc may indicate same register.
4035 // Rdst must not be the same register as Rbase, if Rbase was preloaded (before call).
4036 // Rdst can be the same register as Rbase. Then, either Z_R0 or Z_R1 must be available as scratch.
4037 // Rbase - register to use for the base
4038 // pow2_offset - offset of base to nice value. If -1, base must be loaded.
4039 // For performance, it is good to
4040 //  - avoid Z_R0 for any of the argument registers.
4041 //  - keep Rdst and Rsrc distinct from Rbase. Rdst == Rsrc is ok for performance.
4042 //  - avoid Z_R1 for Rdst if Rdst == Rbase.
4043 void MacroAssembler::oop_decoder(Register Rdst, Register Rsrc, bool maybeNULL, Register Rbase, int pow2_offset) {
4044 
4045   const address oop_base  = CompressedOops::base();
4046   const int     oop_shift = CompressedOops::shift();
4047   const bool    disjoint  = CompressedOops::base_disjoint();
4048 
4049   assert(UseCompressedOops, "must be on to call this method");
4050   assert(Universe::heap() != NULL, "java heap must be initialized to call this decoder");
4051   assert((oop_shift == 0) || (oop_shift == LogMinObjAlignmentInBytes),
4052          "cOop encoder detected bad shift");
4053 
4054   // cOops are always loaded zero-extended from memory. No explicit zero-extension necessary.
4055 
4056   if (oop_base != NULL) {
4057     unsigned int oop_base_hl = ((unsigned int)((uint64_t)(intptr_t)oop_base >> 32)) & 0xffff;
4058     unsigned int oop_base_hh = ((unsigned int)((uint64_t)(intptr_t)oop_base >> 48)) & 0xffff;
4059     unsigned int oop_base_hf = ((unsigned int)((uint64_t)(intptr_t)oop_base >> 32)) & 0xFFFFffff;
4060     if (disjoint && (oop_base_hl == 0 || oop_base_hh == 0)) {
4061       BLOCK_COMMENT("cOop decoder disjointBase {");
4062       // We do not need to load the base. Instead, we can install the upper bits
4063       // with an OR instead of an ADD.
4064       Label done;
4065 
4066       // Rsrc contains a narrow oop. Thus we are sure the leftmost <oop_shift> bits will never be set.
4067       if (maybeNULL) {  // NULL ptr must be preserved!
4068         z_slag(Rdst, Rsrc, oop_shift);  // Arithmetic shift sets the condition code.
4069         z_bre(done);
4070       } else {
4071         z_sllg(Rdst, Rsrc, oop_shift);  // Logical shift leaves condition code alone.
4072       }
4073       if ((oop_base_hl != 0) && (oop_base_hh != 0)) {
4074         z_oihf(Rdst, oop_base_hf);
4075       } else if (oop_base_hl != 0) {
4076         z_oihl(Rdst, oop_base_hl);
4077       } else {
4078         assert(oop_base_hh != 0, "not heapbased mode");
4079         z_oihh(Rdst, oop_base_hh);
4080       }
4081       bind(done);
4082       BLOCK_COMMENT("} cOop decoder disjointBase");
4083     } else {
4084       BLOCK_COMMENT("cOop decoder general {");
4085       // There are three decode steps:
4086       //   scale oop offset (shift left)
4087       //   get base (in reg) and pow2_offset (constant)
4088       //   add base, pow2_offset, and oop offset
4089       // The following register overlap situations may exist:
4090       // Rdst == Rsrc,  Rbase any other
4091       //   not a problem. Scaling in-place leaves Rbase undisturbed.
4092       //   Loading Rbase does not impact the scaled offset.
4093       // Rdst == Rbase, Rsrc  any other
4094       //   scaling would destroy a possibly preloaded Rbase. Loading Rbase
4095       //   would destroy the scaled offset.
4096       //   Remedy: use Rdst_tmp if Rbase has been preloaded.
4097       //           use Rbase_tmp if base has to be loaded.
4098       // Rsrc == Rbase, Rdst  any other
4099       //   Only possible without preloaded Rbase.
4100       //   Loading Rbase does not destroy compressed oop because it was scaled into Rdst before.
4101       // Rsrc == Rbase, Rdst == Rbase
4102       //   Only possible without preloaded Rbase.
4103       //   Loading Rbase would destroy compressed oop. Scaling in-place is ok.
4104       //   Remedy: use Rbase_tmp.
4105       //
4106       Label    done;
4107       Register Rdst_tmp       = Rdst;
4108       Register Rbase_tmp      = Rbase;
4109       bool     used_R0        = false;
4110       bool     used_R1        = false;
4111       bool     base_preloaded = pow2_offset >= 0;
4112       guarantee(!(base_preloaded && (Rsrc == Rbase)), "Register clash, check caller");
4113       assert(oop_shift != 0, "room for optimization");
4114 
4115       // Check if we need to use scratch registers.
4116       if (Rdst == Rbase) {
4117         assert(!(((Rdst == Z_R0) && (Rsrc == Z_R1)) || ((Rdst == Z_R1) && (Rsrc == Z_R0))), "need a scratch reg");
4118         if (Rdst != Rsrc) {
4119           if (base_preloaded) { Rdst_tmp  = (Rdst == Z_R1) ? Z_R0 : Z_R1; }
4120           else                { Rbase_tmp = (Rdst == Z_R1) ? Z_R0 : Z_R1; }
4121         } else {
4122           Rbase_tmp = (Rdst == Z_R1) ? Z_R0 : Z_R1;
4123         }
4124       }
4125       if (base_preloaded) lgr_if_needed(Rbase_tmp, Rbase);
4126 
4127       // Scale oop and check for NULL.
4128       // Rsrc contains a narrow oop. Thus we are sure the leftmost <oop_shift> bits will never be set.
4129       if (maybeNULL) {  // NULL ptr must be preserved!
4130         z_slag(Rdst_tmp, Rsrc, oop_shift);  // Arithmetic shift sets the condition code.
4131         z_bre(done);
4132       } else {
4133         z_sllg(Rdst_tmp, Rsrc, oop_shift);  // Logical shift leaves condition code alone.
4134       }
4135 
4136       // Get oop_base components.
4137       if (!base_preloaded) {
4138         pow2_offset = get_oop_base(Rbase_tmp, (uint64_t)(intptr_t)oop_base);
4139       }
4140 
4141       // Add up all components.
4142       if ((Rbase_tmp == Z_R0) || (Rdst_tmp == Z_R0)) {
4143         z_algr(Rdst_tmp, Rbase_tmp);
4144         if (pow2_offset != 0) { add2reg(Rdst_tmp, pow2_offset); }
4145       } else {
4146         add2reg_with_index(Rdst_tmp, pow2_offset, Rbase_tmp, Rdst_tmp);
4147       }
4148 
4149       bind(done);
4150       lgr_if_needed(Rdst, Rdst_tmp);
4151 #ifdef ASSERT
4152       if (used_R0 && Rdst != Z_R0 && Rsrc != Z_R0) { preset_reg(Z_R0, 0xb03bUL, 2); }
4153       if (used_R1 && Rdst != Z_R1 && Rsrc != Z_R1) { preset_reg(Z_R1, 0xb04bUL, 2); }
4154 #endif
4155       BLOCK_COMMENT("} cOop decoder general");
4156     }
4157   } else {
4158     BLOCK_COMMENT("cOop decoder zeroBase {");
4159     if (oop_shift == 0) {
4160       lgr_if_needed(Rdst, Rsrc);
4161     } else {
4162       z_sllg(Rdst, Rsrc, oop_shift);
4163     }
4164     BLOCK_COMMENT("} cOop decoder zeroBase");
4165   }
4166 }
4167 
4168 // ((OopHandle)result).resolve();
4169 void MacroAssembler::resolve_oop_handle(Register result) {
4170   // OopHandle::resolve is an indirection.
4171   z_lg(result, 0, result);
4172 }
4173 
4174 void MacroAssembler::load_mirror_from_const_method(Register mirror, Register const_method) {
4175   mem2reg_opt(mirror, Address(const_method, ConstMethod::constants_offset()));
4176   mem2reg_opt(mirror, Address(mirror, ConstantPool::pool_holder_offset_in_bytes()));
4177   mem2reg_opt(mirror, Address(mirror, Klass::java_mirror_offset()));
4178   resolve_oop_handle(mirror);
4179 }
4180 
4181 void MacroAssembler::load_method_holder(Register holder, Register method) {
4182   mem2reg_opt(holder, Address(method, Method::const_offset()));
4183   mem2reg_opt(holder, Address(holder, ConstMethod::constants_offset()));
4184   mem2reg_opt(holder, Address(holder, ConstantPool::pool_holder_offset_in_bytes()));
4185 }
4186 
4187 //---------------------------------------------------------------
4188 //---  Operations on arrays.
4189 //---------------------------------------------------------------
4190 
4191 // Compiler ensures base is doubleword aligned and cnt is #doublewords.
4192 // Emitter does not KILL cnt and base arguments, since they need to be copied to
4193 // work registers anyway.
4194 // Actually, only r0, r1, and r5 are killed.
4195 unsigned int MacroAssembler::Clear_Array(Register cnt_arg, Register base_pointer_arg, Register odd_tmp_reg) {
4196 
4197   int      block_start = offset();
4198   Register dst_len  = Z_R1;    // Holds dst len  for MVCLE.
4199   Register dst_addr = Z_R0;    // Holds dst addr for MVCLE.
4200 
4201   Label doXC, doMVCLE, done;
4202 
4203   BLOCK_COMMENT("Clear_Array {");
4204 
4205   // Check for zero len and convert to long.
4206   z_ltgfr(odd_tmp_reg, cnt_arg);
4207   z_bre(done);                    // Nothing to do if len == 0.
4208 
4209   // Prefetch data to be cleared.
4210   if (VM_Version::has_Prefetch()) {
4211     z_pfd(0x02,   0, Z_R0, base_pointer_arg);
4212     z_pfd(0x02, 256, Z_R0, base_pointer_arg);
4213   }
4214 
4215   z_sllg(dst_len, odd_tmp_reg, 3); // #bytes to clear.
4216   z_cghi(odd_tmp_reg, 32);         // Check for len <= 256 bytes (<=32 DW).
4217   z_brnh(doXC);                    // If so, use executed XC to clear.
4218 
4219   // MVCLE: initialize long arrays (general case).
4220   bind(doMVCLE);
4221   z_lgr(dst_addr, base_pointer_arg);
4222   // Pass 0 as source length to MVCLE: destination will be filled with padding byte 0.
4223   // The even register of the register pair is not killed.
4224   clear_reg(odd_tmp_reg, true, false);
4225   MacroAssembler::move_long_ext(dst_addr, as_Register(odd_tmp_reg->encoding()-1), 0);
4226   z_bru(done);
4227 
4228   // XC: initialize short arrays.
4229   Label XC_template; // Instr template, never exec directly!
4230     bind(XC_template);
4231     z_xc(0,0,base_pointer_arg,0,base_pointer_arg);
4232 
4233   bind(doXC);
4234     add2reg(dst_len, -1);               // Get #bytes-1 for EXECUTE.
4235     if (VM_Version::has_ExecuteExtensions()) {
4236       z_exrl(dst_len, XC_template);     // Execute XC with var. len.
4237     } else {
4238       z_larl(odd_tmp_reg, XC_template);
4239       z_ex(dst_len,0,Z_R0,odd_tmp_reg); // Execute XC with var. len.
4240     }
4241     // z_bru(done);      // fallthru
4242 
4243   bind(done);
4244 
4245   BLOCK_COMMENT("} Clear_Array");
4246 
4247   int block_end = offset();
4248   return block_end - block_start;
4249 }
4250 
4251 // Compiler ensures base is doubleword aligned and cnt is count of doublewords.
4252 // Emitter does not KILL any arguments nor work registers.
4253 // Emitter generates up to 16 XC instructions, depending on the array length.
4254 unsigned int MacroAssembler::Clear_Array_Const(long cnt, Register base) {
4255   int  block_start    = offset();
4256   int  off;
4257   int  lineSize_Bytes = AllocatePrefetchStepSize;
4258   int  lineSize_DW    = AllocatePrefetchStepSize>>LogBytesPerWord;
4259   bool doPrefetch     = VM_Version::has_Prefetch();
4260   int  XC_maxlen      = 256;
4261   int  numXCInstr     = cnt > 0 ? (cnt*BytesPerWord-1)/XC_maxlen+1 : 0;
4262 
4263   BLOCK_COMMENT("Clear_Array_Const {");
4264   assert(cnt*BytesPerWord <= 4096, "ClearArrayConst can handle 4k only");
4265 
4266   // Do less prefetching for very short arrays.
4267   if (numXCInstr > 0) {
4268     // Prefetch only some cache lines, then begin clearing.
4269     if (doPrefetch) {
4270       if (cnt*BytesPerWord <= lineSize_Bytes/4) {  // If less than 1/4 of a cache line to clear,
4271         z_pfd(0x02, 0, Z_R0, base);                // prefetch just the first cache line.
4272       } else {
4273         assert(XC_maxlen == lineSize_Bytes, "ClearArrayConst needs 256B cache lines");
4274         for (off = 0; (off < AllocatePrefetchLines) && (off <= numXCInstr); off ++) {
4275           z_pfd(0x02, off*lineSize_Bytes, Z_R0, base);
4276         }
4277       }
4278     }
4279 
4280     for (off=0; off<(numXCInstr-1); off++) {
4281       z_xc(off*XC_maxlen, XC_maxlen-1, base, off*XC_maxlen, base);
4282 
4283       // Prefetch some cache lines in advance.
4284       if (doPrefetch && (off <= numXCInstr-AllocatePrefetchLines)) {
4285         z_pfd(0x02, (off+AllocatePrefetchLines)*lineSize_Bytes, Z_R0, base);
4286       }
4287     }
4288     if (off*XC_maxlen < cnt*BytesPerWord) {
4289       z_xc(off*XC_maxlen, (cnt*BytesPerWord-off*XC_maxlen)-1, base, off*XC_maxlen, base);
4290     }
4291   }
4292   BLOCK_COMMENT("} Clear_Array_Const");
4293 
4294   int block_end = offset();
4295   return block_end - block_start;
4296 }
4297 
4298 // Compiler ensures base is doubleword aligned and cnt is #doublewords.
4299 // Emitter does not KILL cnt and base arguments, since they need to be copied to
4300 // work registers anyway.
4301 // Actually, only r0, r1, (which are work registers) and odd_tmp_reg are killed.
4302 //
4303 // For very large arrays, exploit MVCLE H/W support.
4304 // MVCLE instruction automatically exploits H/W-optimized page mover.
4305 // - Bytes up to next page boundary are cleared with a series of XC to self.
4306 // - All full pages are cleared with the page mover H/W assist.
4307 // - Remaining bytes are again cleared by a series of XC to self.
4308 //
4309 unsigned int MacroAssembler::Clear_Array_Const_Big(long cnt, Register base_pointer_arg, Register odd_tmp_reg) {
4310 
4311   int      block_start = offset();
4312   Register dst_len  = Z_R1;      // Holds dst len  for MVCLE.
4313   Register dst_addr = Z_R0;      // Holds dst addr for MVCLE.
4314 
4315   BLOCK_COMMENT("Clear_Array_Const_Big {");
4316 
4317   // Get len to clear.
4318   load_const_optimized(dst_len, (long)cnt*8L);  // in Bytes = #DW*8
4319 
4320   // Prepare other args to MVCLE.
4321   z_lgr(dst_addr, base_pointer_arg);
4322   // Pass 0 as source length to MVCLE: destination will be filled with padding byte 0.
4323   // The even register of the register pair is not killed.
4324   (void) clear_reg(odd_tmp_reg, true, false);  // Src len of MVCLE is zero.
4325   MacroAssembler::move_long_ext(dst_addr, as_Register(odd_tmp_reg->encoding() - 1), 0);
4326   BLOCK_COMMENT("} Clear_Array_Const_Big");
4327 
4328   int block_end = offset();
4329   return block_end - block_start;
4330 }
4331 
4332 // Allocator.
4333 unsigned int MacroAssembler::CopyRawMemory_AlignedDisjoint(Register src_reg, Register dst_reg,
4334                                                            Register cnt_reg,
4335                                                            Register tmp1_reg, Register tmp2_reg) {
4336   // Tmp1 is oddReg.
4337   // Tmp2 is evenReg.
4338 
4339   int block_start = offset();
4340   Label doMVC, doMVCLE, done, MVC_template;
4341 
4342   BLOCK_COMMENT("CopyRawMemory_AlignedDisjoint {");
4343 
4344   // Check for zero len and convert to long.
4345   z_ltgfr(cnt_reg, cnt_reg);      // Remember casted value for doSTG case.
4346   z_bre(done);                    // Nothing to do if len == 0.
4347 
4348   z_sllg(Z_R1, cnt_reg, 3);       // Dst len in bytes. calc early to have the result ready.
4349 
4350   z_cghi(cnt_reg, 32);            // Check for len <= 256 bytes (<=32 DW).
4351   z_brnh(doMVC);                  // If so, use executed MVC to clear.
4352 
4353   bind(doMVCLE);                  // A lot of data (more than 256 bytes).
4354   // Prep dest reg pair.
4355   z_lgr(Z_R0, dst_reg);           // dst addr
4356   // Dst len already in Z_R1.
4357   // Prep src reg pair.
4358   z_lgr(tmp2_reg, src_reg);       // src addr
4359   z_lgr(tmp1_reg, Z_R1);          // Src len same as dst len.
4360 
4361   // Do the copy.
4362   move_long_ext(Z_R0, tmp2_reg, 0xb0); // Bypass cache.
4363   z_bru(done);                         // All done.
4364 
4365   bind(MVC_template);             // Just some data (not more than 256 bytes).
4366   z_mvc(0, 0, dst_reg, 0, src_reg);
4367 
4368   bind(doMVC);
4369 
4370   if (VM_Version::has_ExecuteExtensions()) {
4371     add2reg(Z_R1, -1);
4372   } else {
4373     add2reg(tmp1_reg, -1, Z_R1);
4374     z_larl(Z_R1, MVC_template);
4375   }
4376 
4377   if (VM_Version::has_Prefetch()) {
4378     z_pfd(1,  0,Z_R0,src_reg);
4379     z_pfd(2,  0,Z_R0,dst_reg);
4380     //    z_pfd(1,256,Z_R0,src_reg);    // Assume very short copy.
4381     //    z_pfd(2,256,Z_R0,dst_reg);
4382   }
4383 
4384   if (VM_Version::has_ExecuteExtensions()) {
4385     z_exrl(Z_R1, MVC_template);
4386   } else {
4387     z_ex(tmp1_reg, 0, Z_R0, Z_R1);
4388   }
4389 
4390   bind(done);
4391 
4392   BLOCK_COMMENT("} CopyRawMemory_AlignedDisjoint");
4393 
4394   int block_end = offset();
4395   return block_end - block_start;
4396 }
4397 
4398 //-------------------------------------------------
4399 //   Constants (scalar and oop) in constant pool
4400 //-------------------------------------------------
4401 
4402 // Add a non-relocated constant to the CP.
4403 int MacroAssembler::store_const_in_toc(AddressLiteral& val) {
4404   long    value  = val.value();
4405   address tocPos = long_constant(value);
4406 
4407   if (tocPos != NULL) {
4408     int tocOffset = (int)(tocPos - code()->consts()->start());
4409     return tocOffset;
4410   }
4411   // Address_constant returned NULL, so no constant entry has been created.
4412   // In that case, we return a "fatal" offset, just in case that subsequently
4413   // generated access code is executed.
4414   return -1;
4415 }
4416 
4417 // Returns the TOC offset where the address is stored.
4418 // Add a relocated constant to the CP.
4419 int MacroAssembler::store_oop_in_toc(AddressLiteral& oop) {
4420   // Use RelocationHolder::none for the constant pool entry.
4421   // Otherwise we will end up with a failing NativeCall::verify(x),
4422   // where x is the address of the constant pool entry.
4423   address tocPos = address_constant((address)oop.value(), RelocationHolder::none);
4424 
4425   if (tocPos != NULL) {
4426     int              tocOffset = (int)(tocPos - code()->consts()->start());
4427     RelocationHolder rsp = oop.rspec();
4428     Relocation      *rel = rsp.reloc();
4429 
4430     // Store toc_offset in relocation, used by call_far_patchable.
4431     if ((relocInfo::relocType)rel->type() == relocInfo::runtime_call_w_cp_type) {
4432       ((runtime_call_w_cp_Relocation *)(rel))->set_constant_pool_offset(tocOffset);
4433     }
4434     // Relocate at the load's pc.
4435     relocate(rsp);
4436 
4437     return tocOffset;
4438   }
4439   // Address_constant returned NULL, so no constant entry has been created
4440   // in that case, we return a "fatal" offset, just in case that subsequently
4441   // generated access code is executed.
4442   return -1;
4443 }
4444 
4445 bool MacroAssembler::load_const_from_toc(Register dst, AddressLiteral& a, Register Rtoc) {
4446   int     tocOffset = store_const_in_toc(a);
4447   if (tocOffset == -1) return false;
4448   address tocPos    = tocOffset + code()->consts()->start();
4449   assert((address)code()->consts()->start() != NULL, "Please add CP address");
4450   relocate(a.rspec());
4451   load_long_pcrelative(dst, tocPos);
4452   return true;
4453 }
4454 
4455 bool MacroAssembler::load_oop_from_toc(Register dst, AddressLiteral& a, Register Rtoc) {
4456   int     tocOffset = store_oop_in_toc(a);
4457   if (tocOffset == -1) return false;
4458   address tocPos    = tocOffset + code()->consts()->start();
4459   assert((address)code()->consts()->start() != NULL, "Please add CP address");
4460 
4461   load_addr_pcrelative(dst, tocPos);
4462   return true;
4463 }
4464 
4465 // If the instruction sequence at the given pc is a load_const_from_toc
4466 // sequence, return the value currently stored at the referenced position
4467 // in the TOC.
4468 intptr_t MacroAssembler::get_const_from_toc(address pc) {
4469 
4470   assert(is_load_const_from_toc(pc), "must be load_const_from_pool");
4471 
4472   long    offset  = get_load_const_from_toc_offset(pc);
4473   address dataLoc = NULL;
4474   if (is_load_const_from_toc_pcrelative(pc)) {
4475     dataLoc = pc + offset;
4476   } else {
4477     CodeBlob* cb = CodeCache::find_blob(pc);
4478     assert(cb && cb->is_nmethod(), "sanity");
4479     nmethod* nm = (nmethod*)cb;
4480     dataLoc = nm->ctable_begin() + offset;
4481   }
4482   return *(intptr_t *)dataLoc;
4483 }
4484 
4485 // If the instruction sequence at the given pc is a load_const_from_toc
4486 // sequence, copy the passed-in new_data value into the referenced
4487 // position in the TOC.
4488 void MacroAssembler::set_const_in_toc(address pc, unsigned long new_data, CodeBlob *cb) {
4489   assert(is_load_const_from_toc(pc), "must be load_const_from_pool");
4490 
4491   long    offset = MacroAssembler::get_load_const_from_toc_offset(pc);
4492   address dataLoc = NULL;
4493   if (is_load_const_from_toc_pcrelative(pc)) {
4494     dataLoc = pc+offset;
4495   } else {
4496     nmethod* nm = CodeCache::find_nmethod(pc);
4497     assert((cb == NULL) || (nm == (nmethod*)cb), "instruction address should be in CodeBlob");
4498     dataLoc = nm->ctable_begin() + offset;
4499   }
4500   if (*(unsigned long *)dataLoc != new_data) { // Prevent cache invalidation: update only if necessary.
4501     *(unsigned long *)dataLoc = new_data;
4502   }
4503 }
4504 
4505 // Dynamic TOC. Getter must only be called if "a" is a load_const_from_toc
4506 // site. Verify by calling is_load_const_from_toc() before!!
4507 // Offset is +/- 2**32 -> use long.
4508 long MacroAssembler::get_load_const_from_toc_offset(address a) {
4509   assert(is_load_const_from_toc_pcrelative(a), "expected pc relative load");
4510   //  expected code sequence:
4511   //    z_lgrl(t, simm32);    len = 6
4512   unsigned long inst;
4513   unsigned int  len = get_instruction(a, &inst);
4514   return get_pcrel_offset(inst);
4515 }
4516 
4517 //**********************************************************************************
4518 //  inspection of generated instruction sequences for a particular pattern
4519 //**********************************************************************************
4520 
4521 bool MacroAssembler::is_load_const_from_toc_pcrelative(address a) {
4522 #ifdef ASSERT
4523   unsigned long inst;
4524   unsigned int  len = get_instruction(a+2, &inst);
4525   if ((len == 6) && is_load_pcrelative_long(a) && is_call_pcrelative_long(inst)) {
4526     const int range = 128;
4527     Assembler::dump_code_range(tty, a, range, "instr(a) == z_lgrl && instr(a+2) == z_brasl");
4528     VM_Version::z_SIGSEGV();
4529   }
4530 #endif
4531   // expected code sequence:
4532   //   z_lgrl(t, relAddr32);    len = 6
4533   //TODO: verify accessed data is in CP, if possible.
4534   return is_load_pcrelative_long(a);  // TODO: might be too general. Currently, only lgrl is used.
4535 }
4536 
4537 bool MacroAssembler::is_load_const_from_toc_call(address a) {
4538   return is_load_const_from_toc(a) && is_call_byregister(a + load_const_from_toc_size());
4539 }
4540 
4541 bool MacroAssembler::is_load_const_call(address a) {
4542   return is_load_const(a) && is_call_byregister(a + load_const_size());
4543 }
4544 
4545 //-------------------------------------------------
4546 //   Emitters for some really CICS instructions
4547 //-------------------------------------------------
4548 
4549 void MacroAssembler::move_long_ext(Register dst, Register src, unsigned int pad) {
4550   assert(dst->encoding()%2==0, "must be an even/odd register pair");
4551   assert(src->encoding()%2==0, "must be an even/odd register pair");
4552   assert(pad<256, "must be a padding BYTE");
4553 
4554   Label retry;
4555   bind(retry);
4556   Assembler::z_mvcle(dst, src, pad);
4557   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
4558 }
4559 
4560 void MacroAssembler::compare_long_ext(Register left, Register right, unsigned int pad) {
4561   assert(left->encoding() % 2 == 0, "must be an even/odd register pair");
4562   assert(right->encoding() % 2 == 0, "must be an even/odd register pair");
4563   assert(pad<256, "must be a padding BYTE");
4564 
4565   Label retry;
4566   bind(retry);
4567   Assembler::z_clcle(left, right, pad, Z_R0);
4568   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
4569 }
4570 
4571 void MacroAssembler::compare_long_uni(Register left, Register right, unsigned int pad) {
4572   assert(left->encoding() % 2 == 0, "must be an even/odd register pair");
4573   assert(right->encoding() % 2 == 0, "must be an even/odd register pair");
4574   assert(pad<=0xfff, "must be a padding HALFWORD");
4575   assert(VM_Version::has_ETF2(), "instruction must be available");
4576 
4577   Label retry;
4578   bind(retry);
4579   Assembler::z_clclu(left, right, pad, Z_R0);
4580   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
4581 }
4582 
4583 void MacroAssembler::search_string(Register end, Register start) {
4584   assert(end->encoding() != 0, "end address must not be in R0");
4585   assert(start->encoding() != 0, "start address must not be in R0");
4586 
4587   Label retry;
4588   bind(retry);
4589   Assembler::z_srst(end, start);
4590   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
4591 }
4592 
4593 void MacroAssembler::search_string_uni(Register end, Register start) {
4594   assert(end->encoding() != 0, "end address must not be in R0");
4595   assert(start->encoding() != 0, "start address must not be in R0");
4596   assert(VM_Version::has_ETF3(), "instruction must be available");
4597 
4598   Label retry;
4599   bind(retry);
4600   Assembler::z_srstu(end, start);
4601   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
4602 }
4603 
4604 void MacroAssembler::kmac(Register srcBuff) {
4605   assert(srcBuff->encoding()     != 0, "src buffer address can't be in Z_R0");
4606   assert(srcBuff->encoding() % 2 == 0, "src buffer/len must be an even/odd register pair");
4607 
4608   Label retry;
4609   bind(retry);
4610   Assembler::z_kmac(Z_R0, srcBuff);
4611   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
4612 }
4613 
4614 void MacroAssembler::kimd(Register srcBuff) {
4615   assert(srcBuff->encoding()     != 0, "src buffer address can't be in Z_R0");
4616   assert(srcBuff->encoding() % 2 == 0, "src buffer/len must be an even/odd register pair");
4617 
4618   Label retry;
4619   bind(retry);
4620   Assembler::z_kimd(Z_R0, srcBuff);
4621   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
4622 }
4623 
4624 void MacroAssembler::klmd(Register srcBuff) {
4625   assert(srcBuff->encoding()     != 0, "src buffer address can't be in Z_R0");
4626   assert(srcBuff->encoding() % 2 == 0, "src buffer/len must be an even/odd register pair");
4627 
4628   Label retry;
4629   bind(retry);
4630   Assembler::z_klmd(Z_R0, srcBuff);
4631   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
4632 }
4633 
4634 void MacroAssembler::km(Register dstBuff, Register srcBuff) {
4635   // DstBuff and srcBuff are allowed to be the same register (encryption in-place).
4636   // DstBuff and srcBuff storage must not overlap destructively, and neither must overlap the parameter block.
4637   assert(srcBuff->encoding()     != 0, "src buffer address can't be in Z_R0");
4638   assert(dstBuff->encoding() % 2 == 0, "dst buffer addr must be an even register");
4639   assert(srcBuff->encoding() % 2 == 0, "src buffer addr/len must be an even/odd register pair");
4640 
4641   Label retry;
4642   bind(retry);
4643   Assembler::z_km(dstBuff, srcBuff);
4644   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
4645 }
4646 
4647 void MacroAssembler::kmc(Register dstBuff, Register srcBuff) {
4648   // DstBuff and srcBuff are allowed to be the same register (encryption in-place).
4649   // DstBuff and srcBuff storage must not overlap destructively, and neither must overlap the parameter block.
4650   assert(srcBuff->encoding()     != 0, "src buffer address can't be in Z_R0");
4651   assert(dstBuff->encoding() % 2 == 0, "dst buffer addr must be an even register");
4652   assert(srcBuff->encoding() % 2 == 0, "src buffer addr/len must be an even/odd register pair");
4653 
4654   Label retry;
4655   bind(retry);
4656   Assembler::z_kmc(dstBuff, srcBuff);
4657   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
4658 }
4659 
4660 void MacroAssembler::kmctr(Register dstBuff, Register ctrBuff, Register srcBuff) {
4661   // DstBuff and srcBuff are allowed to be the same register (encryption in-place).
4662   // DstBuff and srcBuff storage must not overlap destructively, and neither must overlap the parameter block.
4663   assert(srcBuff->encoding()     != 0, "src buffer address can't be in Z_R0");
4664   assert(dstBuff->encoding()     != 0, "dst buffer address can't be in Z_R0");
4665   assert(ctrBuff->encoding()     != 0, "ctr buffer address can't be in Z_R0");
4666   assert(ctrBuff->encoding() % 2 == 0, "ctr buffer addr must be an even register");
4667   assert(dstBuff->encoding() % 2 == 0, "dst buffer addr must be an even register");
4668   assert(srcBuff->encoding() % 2 == 0, "src buffer addr/len must be an even/odd register pair");
4669 
4670   Label retry;
4671   bind(retry);
4672   Assembler::z_kmctr(dstBuff, ctrBuff, srcBuff);
4673   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
4674 }
4675 
4676 void MacroAssembler::cksm(Register crcBuff, Register srcBuff) {
4677   assert(srcBuff->encoding() % 2 == 0, "src buffer addr/len must be an even/odd register pair");
4678 
4679   Label retry;
4680   bind(retry);
4681   Assembler::z_cksm(crcBuff, srcBuff);
4682   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
4683 }
4684 
4685 void MacroAssembler::translate_oo(Register r1, Register r2, uint m3) {
4686   assert(r1->encoding() % 2 == 0, "dst addr/src len must be an even/odd register pair");
4687   assert((m3 & 0b1110) == 0, "Unused mask bits must be zero");
4688 
4689   Label retry;
4690   bind(retry);
4691   Assembler::z_troo(r1, r2, m3);
4692   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
4693 }
4694 
4695 void MacroAssembler::translate_ot(Register r1, Register r2, uint m3) {
4696   assert(r1->encoding() % 2 == 0, "dst addr/src len must be an even/odd register pair");
4697   assert((m3 & 0b1110) == 0, "Unused mask bits must be zero");
4698 
4699   Label retry;
4700   bind(retry);
4701   Assembler::z_trot(r1, r2, m3);
4702   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
4703 }
4704 
4705 void MacroAssembler::translate_to(Register r1, Register r2, uint m3) {
4706   assert(r1->encoding() % 2 == 0, "dst addr/src len must be an even/odd register pair");
4707   assert((m3 & 0b1110) == 0, "Unused mask bits must be zero");
4708 
4709   Label retry;
4710   bind(retry);
4711   Assembler::z_trto(r1, r2, m3);
4712   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
4713 }
4714 
4715 void MacroAssembler::translate_tt(Register r1, Register r2, uint m3) {
4716   assert(r1->encoding() % 2 == 0, "dst addr/src len must be an even/odd register pair");
4717   assert((m3 & 0b1110) == 0, "Unused mask bits must be zero");
4718 
4719   Label retry;
4720   bind(retry);
4721   Assembler::z_trtt(r1, r2, m3);
4722   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
4723 }
4724 
4725 //---------------------------------------
4726 // Helpers for Intrinsic Emitters
4727 //---------------------------------------
4728 
4729 /**
4730  * uint32_t crc;
4731  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
4732  */
4733 void MacroAssembler::fold_byte_crc32(Register crc, Register val, Register table, Register tmp) {
4734   assert_different_registers(crc, table, tmp);
4735   assert_different_registers(val, table);
4736   if (crc == val) {      // Must rotate first to use the unmodified value.
4737     rotate_then_insert(tmp, val, 56-2, 63-2, 2, true);  // Insert byte 7 of val, shifted left by 2, into byte 6..7 of tmp, clear the rest.
4738     z_srl(crc, 8);       // Unsigned shift, clear leftmost 8 bits.
4739   } else {
4740     z_srl(crc, 8);       // Unsigned shift, clear leftmost 8 bits.
4741     rotate_then_insert(tmp, val, 56-2, 63-2, 2, true);  // Insert byte 7 of val, shifted left by 2, into byte 6..7 of tmp, clear the rest.
4742   }
4743   z_x(crc, Address(table, tmp, 0));
4744 }
4745 
4746 /**
4747  * uint32_t crc;
4748  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
4749  */
4750 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
4751   fold_byte_crc32(crc, crc, table, tmp);
4752 }
4753 
4754 /**
4755  * Emits code to update CRC-32 with a byte value according to constants in table.
4756  *
4757  * @param [in,out]crc Register containing the crc.
4758  * @param [in]val     Register containing the byte to fold into the CRC.
4759  * @param [in]table   Register containing the table of crc constants.
4760  *
4761  * uint32_t crc;
4762  * val = crc_table[(val ^ crc) & 0xFF];
4763  * crc = val ^ (crc >> 8);
4764  */
4765 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
4766   z_xr(val, crc);
4767   fold_byte_crc32(crc, val, table, val);
4768 }
4769 
4770 
4771 /**
4772  * @param crc   register containing existing CRC (32-bit)
4773  * @param buf   register pointing to input byte buffer (byte*)
4774  * @param len   register containing number of bytes
4775  * @param table register pointing to CRC table
4776  */
4777 void MacroAssembler::update_byteLoop_crc32(Register crc, Register buf, Register len, Register table, Register data) {
4778   assert_different_registers(crc, buf, len, table, data);
4779 
4780   Label L_mainLoop, L_done;
4781   const int mainLoop_stepping = 1;
4782 
4783   // Process all bytes in a single-byte loop.
4784   z_ltr(len, len);
4785   z_brnh(L_done);
4786 
4787   bind(L_mainLoop);
4788     z_llgc(data, Address(buf, (intptr_t)0));// Current byte of input buffer (zero extended). Avoids garbage in upper half of register.
4789     add2reg(buf, mainLoop_stepping);        // Advance buffer position.
4790     update_byte_crc32(crc, data, table);
4791     z_brct(len, L_mainLoop);                // Iterate.
4792 
4793   bind(L_done);
4794 }
4795 
4796 /**
4797  * Emits code to update CRC-32 with a 4-byte value according to constants in table.
4798  * Implementation according to jdk/src/share/native/java/util/zip/zlib-1.2.8/crc32.c.
4799  *
4800  */
4801 void MacroAssembler::update_1word_crc32(Register crc, Register buf, Register table, int bufDisp, int bufInc,
4802                                         Register t0,  Register t1,  Register t2,    Register t3) {
4803   // This is what we implement (the DOBIG4 part):
4804   //
4805   // #define DOBIG4 c ^= *++buf4; \
4806   //         c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \
4807   //             crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24]
4808   // #define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4
4809   // Pre-calculate (constant) column offsets, use columns 4..7 for big-endian.
4810   const int ix0 = 4*(4*CRC32_COLUMN_SIZE);
4811   const int ix1 = 5*(4*CRC32_COLUMN_SIZE);
4812   const int ix2 = 6*(4*CRC32_COLUMN_SIZE);
4813   const int ix3 = 7*(4*CRC32_COLUMN_SIZE);
4814 
4815   // XOR crc with next four bytes of buffer.
4816   lgr_if_needed(t0, crc);
4817   z_x(t0, Address(buf, bufDisp));
4818   if (bufInc != 0) {
4819     add2reg(buf, bufInc);
4820   }
4821 
4822   // Chop crc into 4 single-byte pieces, shifted left 2 bits, to form the table indices.
4823   rotate_then_insert(t3, t0, 56-2, 63-2, 2,    true);  // ((c >>  0) & 0xff) << 2
4824   rotate_then_insert(t2, t0, 56-2, 63-2, 2-8,  true);  // ((c >>  8) & 0xff) << 2
4825   rotate_then_insert(t1, t0, 56-2, 63-2, 2-16, true);  // ((c >> 16) & 0xff) << 2
4826   rotate_then_insert(t0, t0, 56-2, 63-2, 2-24, true);  // ((c >> 24) & 0xff) << 2
4827 
4828   // XOR indexed table values to calculate updated crc.
4829   z_ly(t2, Address(table, t2, (intptr_t)ix1));
4830   z_ly(t0, Address(table, t0, (intptr_t)ix3));
4831   z_xy(t2, Address(table, t3, (intptr_t)ix0));
4832   z_xy(t0, Address(table, t1, (intptr_t)ix2));
4833   z_xr(t0, t2);           // Now t0 contains the updated CRC value.
4834   lgr_if_needed(crc, t0);
4835 }
4836 
4837 /**
4838  * @param crc   register containing existing CRC (32-bit)
4839  * @param buf   register pointing to input byte buffer (byte*)
4840  * @param len   register containing number of bytes
4841  * @param table register pointing to CRC table
4842  *
4843  * uses Z_R10..Z_R13 as work register. Must be saved/restored by caller!
4844  */
4845 void MacroAssembler::kernel_crc32_1word(Register crc, Register buf, Register len, Register table,
4846                                         Register t0,  Register t1,  Register t2,  Register t3,
4847                                         bool invertCRC) {
4848   assert_different_registers(crc, buf, len, table);
4849 
4850   Label L_mainLoop, L_tail;
4851   Register  data = t0;
4852   Register  ctr  = Z_R0;
4853   const int mainLoop_stepping = 4;
4854   const int log_stepping      = exact_log2(mainLoop_stepping);
4855 
4856   // Don't test for len <= 0 here. This pathological case should not occur anyway.
4857   // Optimizing for it by adding a test and a branch seems to be a waste of CPU cycles.
4858   // The situation itself is detected and handled correctly by the conditional branches
4859   // following aghi(len, -stepping) and aghi(len, +stepping).
4860 
4861   if (invertCRC) {
4862     not_(crc, noreg, false);           // 1s complement of crc
4863   }
4864 
4865   // Check for short (<4 bytes) buffer.
4866   z_srag(ctr, len, log_stepping);
4867   z_brnh(L_tail);
4868 
4869   z_lrvr(crc, crc);          // Revert byte order because we are dealing with big-endian data.
4870   rotate_then_insert(len, len, 64-log_stepping, 63, 0, true); // #bytes for tailLoop
4871 
4872   BIND(L_mainLoop);
4873     update_1word_crc32(crc, buf, table, 0, mainLoop_stepping, crc, t1, t2, t3);
4874     z_brct(ctr, L_mainLoop); // Iterate.
4875 
4876   z_lrvr(crc, crc);          // Revert byte order back to original.
4877 
4878   // Process last few (<8) bytes of buffer.
4879   BIND(L_tail);
4880   update_byteLoop_crc32(crc, buf, len, table, data);
4881 
4882   if (invertCRC) {
4883     not_(crc, noreg, false);           // 1s complement of crc
4884   }
4885 }
4886 
4887 /**
4888  * @param crc   register containing existing CRC (32-bit)
4889  * @param buf   register pointing to input byte buffer (byte*)
4890  * @param len   register containing number of bytes
4891  * @param table register pointing to CRC table
4892  */
4893 void MacroAssembler::kernel_crc32_1byte(Register crc, Register buf, Register len, Register table,
4894                                         Register t0,  Register t1,  Register t2,  Register t3,
4895                                         bool invertCRC) {
4896   assert_different_registers(crc, buf, len, table);
4897   Register data = t0;
4898 
4899   if (invertCRC) {
4900     not_(crc, noreg, false);           // 1s complement of crc
4901   }
4902 
4903   update_byteLoop_crc32(crc, buf, len, table, data);
4904 
4905   if (invertCRC) {
4906     not_(crc, noreg, false);           // 1s complement of crc
4907   }
4908 }
4909 
4910 void MacroAssembler::kernel_crc32_singleByte(Register crc, Register buf, Register len, Register table, Register tmp,
4911                                              bool invertCRC) {
4912   assert_different_registers(crc, buf, len, table, tmp);
4913 
4914   if (invertCRC) {
4915     not_(crc, noreg, false);           // 1s complement of crc
4916   }
4917 
4918   z_llgc(tmp, Address(buf, (intptr_t)0));  // Current byte of input buffer (zero extended). Avoids garbage in upper half of register.
4919   update_byte_crc32(crc, tmp, table);
4920 
4921   if (invertCRC) {
4922     not_(crc, noreg, false);           // 1s complement of crc
4923   }
4924 }
4925 
4926 void MacroAssembler::kernel_crc32_singleByteReg(Register crc, Register val, Register table,
4927                                                 bool invertCRC) {
4928   assert_different_registers(crc, val, table);
4929 
4930   if (invertCRC) {
4931     not_(crc, noreg, false);           // 1s complement of crc
4932   }
4933 
4934   update_byte_crc32(crc, val, table);
4935 
4936   if (invertCRC) {
4937     not_(crc, noreg, false);           // 1s complement of crc
4938   }
4939 }
4940 
4941 //
4942 // Code for BigInteger::multiplyToLen() intrinsic.
4943 //
4944 
4945 // dest_lo += src1 + src2
4946 // dest_hi += carry1 + carry2
4947 // Z_R7 is destroyed !
4948 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo,
4949                                      Register src1, Register src2) {
4950   clear_reg(Z_R7);
4951   z_algr(dest_lo, src1);
4952   z_alcgr(dest_hi, Z_R7);
4953   z_algr(dest_lo, src2);
4954   z_alcgr(dest_hi, Z_R7);
4955 }
4956 
4957 // Multiply 64 bit by 64 bit first loop.
4958 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart,
4959                                            Register x_xstart,
4960                                            Register y, Register y_idx,
4961                                            Register z,
4962                                            Register carry,
4963                                            Register product,
4964                                            Register idx, Register kdx) {
4965   // jlong carry, x[], y[], z[];
4966   // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx--, kdx--) {
4967   //   huge_128 product = y[idx] * x[xstart] + carry;
4968   //   z[kdx] = (jlong)product;
4969   //   carry  = (jlong)(product >>> 64);
4970   // }
4971   // z[xstart] = carry;
4972 
4973   Label L_first_loop, L_first_loop_exit;
4974   Label L_one_x, L_one_y, L_multiply;
4975 
4976   z_aghi(xstart, -1);
4977   z_brl(L_one_x);   // Special case: length of x is 1.
4978 
4979   // Load next two integers of x.
4980   z_sllg(Z_R1_scratch, xstart, LogBytesPerInt);
4981   mem2reg_opt(x_xstart, Address(x, Z_R1_scratch, 0));
4982 
4983 
4984   bind(L_first_loop);
4985 
4986   z_aghi(idx, -1);
4987   z_brl(L_first_loop_exit);
4988   z_aghi(idx, -1);
4989   z_brl(L_one_y);
4990 
4991   // Load next two integers of y.
4992   z_sllg(Z_R1_scratch, idx, LogBytesPerInt);
4993   mem2reg_opt(y_idx, Address(y, Z_R1_scratch, 0));
4994 
4995 
4996   bind(L_multiply);
4997 
4998   Register multiplicand = product->successor();
4999   Register product_low = multiplicand;
5000 
5001   lgr_if_needed(multiplicand, x_xstart);
5002   z_mlgr(product, y_idx);     // multiplicand * y_idx -> product::multiplicand
5003   clear_reg(Z_R7);
5004   z_algr(product_low, carry); // Add carry to result.
5005   z_alcgr(product, Z_R7);     // Add carry of the last addition.
5006   add2reg(kdx, -2);
5007 
5008   // Store result.
5009   z_sllg(Z_R7, kdx, LogBytesPerInt);
5010   reg2mem_opt(product_low, Address(z, Z_R7, 0));
5011   lgr_if_needed(carry, product);
5012   z_bru(L_first_loop);
5013 
5014 
5015   bind(L_one_y); // Load one 32 bit portion of y as (0,value).
5016 
5017   clear_reg(y_idx);
5018   mem2reg_opt(y_idx, Address(y, (intptr_t) 0), false);
5019   z_bru(L_multiply);
5020 
5021 
5022   bind(L_one_x); // Load one 32 bit portion of x as (0,value).
5023 
5024   clear_reg(x_xstart);
5025   mem2reg_opt(x_xstart, Address(x, (intptr_t) 0), false);
5026   z_bru(L_first_loop);
5027 
5028   bind(L_first_loop_exit);
5029 }
5030 
5031 // Multiply 64 bit by 64 bit and add 128 bit.
5032 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y,
5033                                             Register z,
5034                                             Register yz_idx, Register idx,
5035                                             Register carry, Register product,
5036                                             int offset) {
5037   // huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
5038   // z[kdx] = (jlong)product;
5039 
5040   Register multiplicand = product->successor();
5041   Register product_low = multiplicand;
5042 
5043   z_sllg(Z_R7, idx, LogBytesPerInt);
5044   mem2reg_opt(yz_idx, Address(y, Z_R7, offset));
5045 
5046   lgr_if_needed(multiplicand, x_xstart);
5047   z_mlgr(product, yz_idx); // multiplicand * yz_idx -> product::multiplicand
5048   mem2reg_opt(yz_idx, Address(z, Z_R7, offset));
5049 
5050   add2_with_carry(product, product_low, carry, yz_idx);
5051 
5052   z_sllg(Z_R7, idx, LogBytesPerInt);
5053   reg2mem_opt(product_low, Address(z, Z_R7, offset));
5054 
5055 }
5056 
5057 // Multiply 128 bit by 128 bit. Unrolled inner loop.
5058 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart,
5059                                              Register y, Register z,
5060                                              Register yz_idx, Register idx,
5061                                              Register jdx,
5062                                              Register carry, Register product,
5063                                              Register carry2) {
5064   // jlong carry, x[], y[], z[];
5065   // int kdx = ystart+1;
5066   // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
5067   //   huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
5068   //   z[kdx+idx+1] = (jlong)product;
5069   //   jlong carry2 = (jlong)(product >>> 64);
5070   //   product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
5071   //   z[kdx+idx] = (jlong)product;
5072   //   carry = (jlong)(product >>> 64);
5073   // }
5074   // idx += 2;
5075   // if (idx > 0) {
5076   //   product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
5077   //   z[kdx+idx] = (jlong)product;
5078   //   carry = (jlong)(product >>> 64);
5079   // }
5080 
5081   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
5082 
5083   // scale the index
5084   lgr_if_needed(jdx, idx);
5085   and_imm(jdx, 0xfffffffffffffffcL);
5086   rshift(jdx, 2);
5087 
5088 
5089   bind(L_third_loop);
5090 
5091   z_aghi(jdx, -1);
5092   z_brl(L_third_loop_exit);
5093   add2reg(idx, -4);
5094 
5095   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8);
5096   lgr_if_needed(carry2, product);
5097 
5098   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0);
5099   lgr_if_needed(carry, product);
5100   z_bru(L_third_loop);
5101 
5102 
5103   bind(L_third_loop_exit);  // Handle any left-over operand parts.
5104 
5105   and_imm(idx, 0x3);
5106   z_brz(L_post_third_loop_done);
5107 
5108   Label L_check_1;
5109 
5110   z_aghi(idx, -2);
5111   z_brl(L_check_1);
5112 
5113   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0);
5114   lgr_if_needed(carry, product);
5115 
5116 
5117   bind(L_check_1);
5118 
5119   add2reg(idx, 0x2);
5120   and_imm(idx, 0x1);
5121   z_aghi(idx, -1);
5122   z_brl(L_post_third_loop_done);
5123 
5124   Register   multiplicand = product->successor();
5125   Register   product_low = multiplicand;
5126 
5127   z_sllg(Z_R7, idx, LogBytesPerInt);
5128   clear_reg(yz_idx);
5129   mem2reg_opt(yz_idx, Address(y, Z_R7, 0), false);
5130   lgr_if_needed(multiplicand, x_xstart);
5131   z_mlgr(product, yz_idx); // multiplicand * yz_idx -> product::multiplicand
5132   clear_reg(yz_idx);
5133   mem2reg_opt(yz_idx, Address(z, Z_R7, 0), false);
5134 
5135   add2_with_carry(product, product_low, yz_idx, carry);
5136 
5137   z_sllg(Z_R7, idx, LogBytesPerInt);
5138   reg2mem_opt(product_low, Address(z, Z_R7, 0), false);
5139   rshift(product_low, 32);
5140 
5141   lshift(product, 32);
5142   z_ogr(product_low, product);
5143   lgr_if_needed(carry, product_low);
5144 
5145   bind(L_post_third_loop_done);
5146 }
5147 
5148 void MacroAssembler::multiply_to_len(Register x, Register xlen,
5149                                      Register y, Register ylen,
5150                                      Register z,
5151                                      Register tmp1, Register tmp2,
5152                                      Register tmp3, Register tmp4,
5153                                      Register tmp5) {
5154   ShortBranchVerifier sbv(this);
5155 
5156   assert_different_registers(x, xlen, y, ylen, z,
5157                              tmp1, tmp2, tmp3, tmp4, tmp5, Z_R1_scratch, Z_R7);
5158   assert_different_registers(x, xlen, y, ylen, z,
5159                              tmp1, tmp2, tmp3, tmp4, tmp5, Z_R8);
5160 
5161   z_stmg(Z_R7, Z_R13, _z_abi(gpr7), Z_SP);
5162 
5163   // In openJdk, we store the argument as 32-bit value to slot.
5164   Address zlen(Z_SP, _z_abi(remaining_cargs));  // Int in long on big endian.
5165 
5166   const Register idx = tmp1;
5167   const Register kdx = tmp2;
5168   const Register xstart = tmp3;
5169 
5170   const Register y_idx = tmp4;
5171   const Register carry = tmp5;
5172   const Register product  = Z_R0_scratch;
5173   const Register x_xstart = Z_R8;
5174 
5175   // First Loop.
5176   //
5177   //   final static long LONG_MASK = 0xffffffffL;
5178   //   int xstart = xlen - 1;
5179   //   int ystart = ylen - 1;
5180   //   long carry = 0;
5181   //   for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
5182   //     long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
5183   //     z[kdx] = (int)product;
5184   //     carry = product >>> 32;
5185   //   }
5186   //   z[xstart] = (int)carry;
5187   //
5188 
5189   lgr_if_needed(idx, ylen);  // idx = ylen
5190   z_llgf(kdx, zlen);         // C2 does not respect int to long conversion for stub calls, thus load zero-extended.
5191   clear_reg(carry);          // carry = 0
5192 
5193   Label L_done;
5194 
5195   lgr_if_needed(xstart, xlen);
5196   z_aghi(xstart, -1);
5197   z_brl(L_done);
5198 
5199   multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
5200 
5201   NearLabel L_second_loop;
5202   compare64_and_branch(kdx, RegisterOrConstant((intptr_t) 0), bcondEqual, L_second_loop);
5203 
5204   NearLabel L_carry;
5205   z_aghi(kdx, -1);
5206   z_brz(L_carry);
5207 
5208   // Store lower 32 bits of carry.
5209   z_sllg(Z_R1_scratch, kdx, LogBytesPerInt);
5210   reg2mem_opt(carry, Address(z, Z_R1_scratch, 0), false);
5211   rshift(carry, 32);
5212   z_aghi(kdx, -1);
5213 
5214 
5215   bind(L_carry);
5216 
5217   // Store upper 32 bits of carry.
5218   z_sllg(Z_R1_scratch, kdx, LogBytesPerInt);
5219   reg2mem_opt(carry, Address(z, Z_R1_scratch, 0), false);
5220 
5221   // Second and third (nested) loops.
5222   //
5223   // for (int i = xstart-1; i >= 0; i--) { // Second loop
5224   //   carry = 0;
5225   //   for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
5226   //     long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
5227   //                    (z[k] & LONG_MASK) + carry;
5228   //     z[k] = (int)product;
5229   //     carry = product >>> 32;
5230   //   }
5231   //   z[i] = (int)carry;
5232   // }
5233   //
5234   // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
5235 
5236   const Register jdx = tmp1;
5237 
5238   bind(L_second_loop);
5239 
5240   clear_reg(carry);           // carry = 0;
5241   lgr_if_needed(jdx, ylen);   // j = ystart+1
5242 
5243   z_aghi(xstart, -1);         // i = xstart-1;
5244   z_brl(L_done);
5245 
5246   // Use free slots in the current stackframe instead of push/pop.
5247   Address zsave(Z_SP, _z_abi(carg_1));
5248   reg2mem_opt(z, zsave);
5249 
5250 
5251   Label L_last_x;
5252 
5253   z_sllg(Z_R1_scratch, xstart, LogBytesPerInt);
5254   load_address(z, Address(z, Z_R1_scratch, 4)); // z = z + k - j
5255   z_aghi(xstart, -1);                           // i = xstart-1;
5256   z_brl(L_last_x);
5257 
5258   z_sllg(Z_R1_scratch, xstart, LogBytesPerInt);
5259   mem2reg_opt(x_xstart, Address(x, Z_R1_scratch, 0));
5260 
5261 
5262   Label L_third_loop_prologue;
5263 
5264   bind(L_third_loop_prologue);
5265 
5266   Address xsave(Z_SP, _z_abi(carg_2));
5267   Address xlensave(Z_SP, _z_abi(carg_3));
5268   Address ylensave(Z_SP, _z_abi(carg_4));
5269 
5270   reg2mem_opt(x, xsave);
5271   reg2mem_opt(xstart, xlensave);
5272   reg2mem_opt(ylen, ylensave);
5273 
5274 
5275   multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x);
5276 
5277   mem2reg_opt(z, zsave);
5278   mem2reg_opt(x, xsave);
5279   mem2reg_opt(xlen, xlensave);   // This is the decrement of the loop counter!
5280   mem2reg_opt(ylen, ylensave);
5281 
5282   add2reg(tmp3, 1, xlen);
5283   z_sllg(Z_R1_scratch, tmp3, LogBytesPerInt);
5284   reg2mem_opt(carry, Address(z, Z_R1_scratch, 0), false);
5285   z_aghi(tmp3, -1);
5286   z_brl(L_done);
5287 
5288   rshift(carry, 32);
5289   z_sllg(Z_R1_scratch, tmp3, LogBytesPerInt);
5290   reg2mem_opt(carry, Address(z, Z_R1_scratch, 0), false);
5291   z_bru(L_second_loop);
5292 
5293   // Next infrequent code is moved outside loops.
5294   bind(L_last_x);
5295 
5296   clear_reg(x_xstart);
5297   mem2reg_opt(x_xstart, Address(x, (intptr_t) 0), false);
5298   z_bru(L_third_loop_prologue);
5299 
5300   bind(L_done);
5301 
5302   z_lmg(Z_R7, Z_R13, _z_abi(gpr7), Z_SP);
5303 }
5304 
5305 #ifndef PRODUCT
5306 // Assert if CC indicates "not equal" (check_equal==true) or "equal" (check_equal==false).
5307 void MacroAssembler::asm_assert(bool check_equal, const char *msg, int id) {
5308   Label ok;
5309   if (check_equal) {
5310     z_bre(ok);
5311   } else {
5312     z_brne(ok);
5313   }
5314   stop(msg, id);
5315   bind(ok);
5316 }
5317 
5318 // Assert if CC indicates "low".
5319 void MacroAssembler::asm_assert_low(const char *msg, int id) {
5320   Label ok;
5321   z_brnl(ok);
5322   stop(msg, id);
5323   bind(ok);
5324 }
5325 
5326 // Assert if CC indicates "high".
5327 void MacroAssembler::asm_assert_high(const char *msg, int id) {
5328   Label ok;
5329   z_brnh(ok);
5330   stop(msg, id);
5331   bind(ok);
5332 }
5333 
5334 // Assert if CC indicates "not equal" (check_equal==true) or "equal" (check_equal==false)
5335 // generate non-relocatable code.
5336 void MacroAssembler::asm_assert_static(bool check_equal, const char *msg, int id) {
5337   Label ok;
5338   if (check_equal) { z_bre(ok); }
5339   else             { z_brne(ok); }
5340   stop_static(msg, id);
5341   bind(ok);
5342 }
5343 
5344 void MacroAssembler::asm_assert_mems_zero(bool check_equal, bool allow_relocation, int size, int64_t mem_offset,
5345                                           Register mem_base, const char* msg, int id) {
5346   switch (size) {
5347     case 4:
5348       load_and_test_int(Z_R0, Address(mem_base, mem_offset));
5349       break;
5350     case 8:
5351       load_and_test_long(Z_R0,  Address(mem_base, mem_offset));
5352       break;
5353     default:
5354       ShouldNotReachHere();
5355   }
5356   if (allow_relocation) { asm_assert(check_equal, msg, id); }
5357   else                  { asm_assert_static(check_equal, msg, id); }
5358 }
5359 
5360 // Check the condition
5361 //   expected_size == FP - SP
5362 // after transformation:
5363 //   expected_size - FP + SP == 0
5364 // Destroys Register expected_size if no tmp register is passed.
5365 void MacroAssembler::asm_assert_frame_size(Register expected_size, Register tmp, const char* msg, int id) {
5366   if (tmp == noreg) {
5367     tmp = expected_size;
5368   } else {
5369     if (tmp != expected_size) {
5370       z_lgr(tmp, expected_size);
5371     }
5372     z_algr(tmp, Z_SP);
5373     z_slg(tmp, 0, Z_R0, Z_SP);
5374     asm_assert_eq(msg, id);
5375   }
5376 }
5377 #endif // !PRODUCT
5378 
5379 void MacroAssembler::verify_thread() {
5380   if (VerifyThread) {
5381     unimplemented("", 117);
5382   }
5383 }
5384 
5385 // Save and restore functions: Exclude Z_R0.
5386 void MacroAssembler::save_volatile_regs(Register dst, int offset, bool include_fp, bool include_flags) {
5387   z_stmg(Z_R1, Z_R5, offset, dst); offset += 5 * BytesPerWord;
5388   if (include_fp) {
5389     z_std(Z_F0, Address(dst, offset)); offset += BytesPerWord;
5390     z_std(Z_F1, Address(dst, offset)); offset += BytesPerWord;
5391     z_std(Z_F2, Address(dst, offset)); offset += BytesPerWord;
5392     z_std(Z_F3, Address(dst, offset)); offset += BytesPerWord;
5393     z_std(Z_F4, Address(dst, offset)); offset += BytesPerWord;
5394     z_std(Z_F5, Address(dst, offset)); offset += BytesPerWord;
5395     z_std(Z_F6, Address(dst, offset)); offset += BytesPerWord;
5396     z_std(Z_F7, Address(dst, offset)); offset += BytesPerWord;
5397   }
5398   if (include_flags) {
5399     Label done;
5400     z_mvi(Address(dst, offset), 2); // encoding: equal
5401     z_bre(done);
5402     z_mvi(Address(dst, offset), 4); // encoding: higher
5403     z_brh(done);
5404     z_mvi(Address(dst, offset), 1); // encoding: lower
5405     bind(done);
5406   }
5407 }
5408 void MacroAssembler::restore_volatile_regs(Register src, int offset, bool include_fp, bool include_flags) {
5409   z_lmg(Z_R1, Z_R5, offset, src); offset += 5 * BytesPerWord;
5410   if (include_fp) {
5411     z_ld(Z_F0, Address(src, offset)); offset += BytesPerWord;
5412     z_ld(Z_F1, Address(src, offset)); offset += BytesPerWord;
5413     z_ld(Z_F2, Address(src, offset)); offset += BytesPerWord;
5414     z_ld(Z_F3, Address(src, offset)); offset += BytesPerWord;
5415     z_ld(Z_F4, Address(src, offset)); offset += BytesPerWord;
5416     z_ld(Z_F5, Address(src, offset)); offset += BytesPerWord;
5417     z_ld(Z_F6, Address(src, offset)); offset += BytesPerWord;
5418     z_ld(Z_F7, Address(src, offset)); offset += BytesPerWord;
5419   }
5420   if (include_flags) {
5421     z_cli(Address(src, offset), 2); // see encoding above
5422   }
5423 }
5424 
5425 // Plausibility check for oops.
5426 void MacroAssembler::verify_oop(Register oop, const char* msg) {
5427   if (!VerifyOops) return;
5428 
5429   BLOCK_COMMENT("verify_oop {");
5430   unsigned int nbytes_save = (5 + 8 + 1) * BytesPerWord;
5431   address entry_addr = StubRoutines::verify_oop_subroutine_entry_address();
5432 
5433   save_return_pc();
5434 
5435   // Push frame, but preserve flags
5436   z_lgr(Z_R0, Z_SP);
5437   z_lay(Z_SP, -((int64_t)nbytes_save + frame::z_abi_160_size), Z_SP);
5438   z_stg(Z_R0, _z_abi(callers_sp), Z_SP);
5439 
5440   save_volatile_regs(Z_SP, frame::z_abi_160_size, true, true);
5441 
5442   lgr_if_needed(Z_ARG2, oop);
5443   load_const_optimized(Z_ARG1, (address)msg);
5444   load_const_optimized(Z_R1, entry_addr);
5445   z_lg(Z_R1, 0, Z_R1);
5446   call_c(Z_R1);
5447 
5448   restore_volatile_regs(Z_SP, frame::z_abi_160_size, true, true);
5449   pop_frame();
5450   restore_return_pc();
5451 
5452   BLOCK_COMMENT("} verify_oop ");
5453 }
5454 
5455 void MacroAssembler::verify_oop_addr(Address addr, const char* msg) {
5456   if (!VerifyOops) return;
5457 
5458   BLOCK_COMMENT("verify_oop {");
5459   unsigned int nbytes_save = (5 + 8) * BytesPerWord;
5460   address entry_addr = StubRoutines::verify_oop_subroutine_entry_address();
5461 
5462   save_return_pc();
5463   unsigned int frame_size = push_frame_abi160(nbytes_save); // kills Z_R0
5464   save_volatile_regs(Z_SP, frame::z_abi_160_size, true, false);
5465 
5466   z_lg(Z_ARG2, addr.plus_disp(frame_size));
5467   load_const_optimized(Z_ARG1, (address)msg);
5468   load_const_optimized(Z_R1, entry_addr);
5469   z_lg(Z_R1, 0, Z_R1);
5470   call_c(Z_R1);
5471 
5472   restore_volatile_regs(Z_SP, frame::z_abi_160_size, true, false);
5473   pop_frame();
5474   restore_return_pc();
5475 
5476   BLOCK_COMMENT("} verify_oop ");
5477 }
5478 
5479 const char* MacroAssembler::stop_types[] = {
5480   "stop",
5481   "untested",
5482   "unimplemented",
5483   "shouldnotreachhere"
5484 };
5485 
5486 static void stop_on_request(const char* tp, const char* msg) {
5487   tty->print("Z assembly code requires stop: (%s) %s\n", tp, msg);
5488   guarantee(false, "Z assembly code requires stop: %s", msg);
5489 }
5490 
5491 void MacroAssembler::stop(int type, const char* msg, int id) {
5492   BLOCK_COMMENT(err_msg("stop: %s {", msg));
5493 
5494   // Setup arguments.
5495   load_const(Z_ARG1, (void*) stop_types[type%stop_end]);
5496   load_const(Z_ARG2, (void*) msg);
5497   get_PC(Z_R14);     // Following code pushes a frame without entering a new function. Use current pc as return address.
5498   save_return_pc();  // Saves return pc Z_R14.
5499   push_frame_abi160(0);
5500   call_VM_leaf(CAST_FROM_FN_PTR(address, stop_on_request), Z_ARG1, Z_ARG2);
5501   // The plain disassembler does not recognize illtrap. It instead displays
5502   // a 32-bit value. Issuing two illtraps assures the disassembler finds
5503   // the proper beginning of the next instruction.
5504   z_illtrap(); // Illegal instruction.
5505   z_illtrap(); // Illegal instruction.
5506 
5507   BLOCK_COMMENT(" } stop");
5508 }
5509 
5510 // Special version of stop() for code size reduction.
5511 // Reuses the previously generated call sequence, if any.
5512 // Generates the call sequence on its own, if necessary.
5513 // Note: This code will work only in non-relocatable code!
5514 //       The relative address of the data elements (arg1, arg2) must not change.
5515 //       The reentry point must not move relative to it's users. This prerequisite
5516 //       should be given for "hand-written" code, if all chain calls are in the same code blob.
5517 //       Generated code must not undergo any transformation, e.g. ShortenBranches, to be safe.
5518 address MacroAssembler::stop_chain(address reentry, int type, const char* msg, int id, bool allow_relocation) {
5519   BLOCK_COMMENT(err_msg("stop_chain(%s,%s): %s {", reentry==NULL?"init":"cont", allow_relocation?"reloc ":"static", msg));
5520 
5521   // Setup arguments.
5522   if (allow_relocation) {
5523     // Relocatable version (for comparison purposes). Remove after some time.
5524     load_const(Z_ARG1, (void*) stop_types[type%stop_end]);
5525     load_const(Z_ARG2, (void*) msg);
5526   } else {
5527     load_absolute_address(Z_ARG1, (address)stop_types[type%stop_end]);
5528     load_absolute_address(Z_ARG2, (address)msg);
5529   }
5530   if ((reentry != NULL) && RelAddr::is_in_range_of_RelAddr16(reentry, pc())) {
5531     BLOCK_COMMENT("branch to reentry point:");
5532     z_brc(bcondAlways, reentry);
5533   } else {
5534     BLOCK_COMMENT("reentry point:");
5535     reentry = pc();      // Re-entry point for subsequent stop calls.
5536     save_return_pc();    // Saves return pc Z_R14.
5537     push_frame_abi160(0);
5538     if (allow_relocation) {
5539       reentry = NULL;    // Prevent reentry if code relocation is allowed.
5540       call_VM_leaf(CAST_FROM_FN_PTR(address, stop_on_request), Z_ARG1, Z_ARG2);
5541     } else {
5542       call_VM_leaf_static(CAST_FROM_FN_PTR(address, stop_on_request), Z_ARG1, Z_ARG2);
5543     }
5544     z_illtrap(); // Illegal instruction as emergency stop, should the above call return.
5545   }
5546   BLOCK_COMMENT(" } stop_chain");
5547 
5548   return reentry;
5549 }
5550 
5551 // Special version of stop() for code size reduction.
5552 // Assumes constant relative addresses for data and runtime call.
5553 void MacroAssembler::stop_static(int type, const char* msg, int id) {
5554   stop_chain(NULL, type, msg, id, false);
5555 }
5556 
5557 void MacroAssembler::stop_subroutine() {
5558   unimplemented("stop_subroutine", 710);
5559 }
5560 
5561 // Prints msg to stdout from within generated code..
5562 void MacroAssembler::warn(const char* msg) {
5563   RegisterSaver::save_live_registers(this, RegisterSaver::all_registers, Z_R14);
5564   load_absolute_address(Z_R1, (address) warning);
5565   load_absolute_address(Z_ARG1, (address) msg);
5566   (void) call(Z_R1);
5567   RegisterSaver::restore_live_registers(this, RegisterSaver::all_registers);
5568 }
5569 
5570 #ifndef PRODUCT
5571 
5572 // Write pattern 0x0101010101010101 in region [low-before, high+after].
5573 void MacroAssembler::zap_from_to(Register low, Register high, Register val, Register addr, int before, int after) {
5574   if (!ZapEmptyStackFields) return;
5575   BLOCK_COMMENT("zap memory region {");
5576   load_const_optimized(val, 0x0101010101010101);
5577   int size = before + after;
5578   if (low == high && size < 5 && size > 0) {
5579     int offset = -before*BytesPerWord;
5580     for (int i = 0; i < size; ++i) {
5581       z_stg(val, Address(low, offset));
5582       offset +=(1*BytesPerWord);
5583     }
5584   } else {
5585     add2reg(addr, -before*BytesPerWord, low);
5586     if (after) {
5587 #ifdef ASSERT
5588       jlong check = after * BytesPerWord;
5589       assert(Immediate::is_simm32(check) && Immediate::is_simm32(-check), "value not encodable !");
5590 #endif
5591       add2reg(high, after * BytesPerWord);
5592     }
5593     NearLabel loop;
5594     bind(loop);
5595     z_stg(val, Address(addr));
5596     add2reg(addr, 8);
5597     compare64_and_branch(addr, high, bcondNotHigh, loop);
5598     if (after) {
5599       add2reg(high, -after * BytesPerWord);
5600     }
5601   }
5602   BLOCK_COMMENT("} zap memory region");
5603 }
5604 #endif // !PRODUCT
5605 
5606 SkipIfEqual::SkipIfEqual(MacroAssembler* masm, const bool* flag_addr, bool value, Register _rscratch) {
5607   _masm = masm;
5608   _masm->load_absolute_address(_rscratch, (address)flag_addr);
5609   _masm->load_and_test_int(_rscratch, Address(_rscratch));
5610   if (value) {
5611     _masm->z_brne(_label); // Skip if true, i.e. != 0.
5612   } else {
5613     _masm->z_bre(_label);  // Skip if false, i.e. == 0.
5614   }
5615 }
5616 
5617 SkipIfEqual::~SkipIfEqual() {
5618   _masm->bind(_label);
5619 }