1 /* 2 * Copyright (c) 1999, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "c1/c1_CodeStubs.hpp" 27 #include "c1/c1_FrameMap.hpp" 28 #include "c1/c1_LIRAssembler.hpp" 29 #include "c1/c1_MacroAssembler.hpp" 30 #include "c1/c1_Runtime1.hpp" 31 #include "classfile/javaClasses.hpp" 32 #include "nativeInst_x86.hpp" 33 #include "runtime/objectMonitor.hpp" 34 #include "runtime/sharedRuntime.hpp" 35 #include "utilities/align.hpp" 36 #include "utilities/macros.hpp" 37 #include "vmreg_x86.inline.hpp" 38 39 40 #define __ ce->masm()-> 41 42 #ifndef _LP64 43 float ConversionStub::float_zero = 0.0; 44 double ConversionStub::double_zero = 0.0; 45 46 void ConversionStub::emit_code(LIR_Assembler* ce) { 47 __ bind(_entry); 48 assert(bytecode() == Bytecodes::_f2i || bytecode() == Bytecodes::_d2i, "other conversions do not require stub"); 49 50 51 if (input()->is_single_xmm()) { 52 __ comiss(input()->as_xmm_float_reg(), 53 ExternalAddress((address)&float_zero)); 54 } else if (input()->is_double_xmm()) { 55 __ comisd(input()->as_xmm_double_reg(), 56 ExternalAddress((address)&double_zero)); 57 } else { 58 __ push(rax); 59 __ ftst(); 60 __ fnstsw_ax(); 61 __ sahf(); 62 __ pop(rax); 63 } 64 65 Label NaN, do_return; 66 __ jccb(Assembler::parity, NaN); 67 __ jccb(Assembler::below, do_return); 68 69 // input is > 0 -> return maxInt 70 // result register already contains 0x80000000, so subtracting 1 gives 0x7fffffff 71 __ decrement(result()->as_register()); 72 __ jmpb(do_return); 73 74 // input is NaN -> return 0 75 __ bind(NaN); 76 __ xorptr(result()->as_register(), result()->as_register()); 77 78 __ bind(do_return); 79 __ jmp(_continuation); 80 } 81 #endif // !_LP64 82 83 void C1SafepointPollStub::emit_code(LIR_Assembler* ce) { 84 __ bind(_entry); 85 InternalAddress safepoint_pc(ce->masm()->pc() - ce->masm()->offset() + safepoint_offset()); 86 #ifdef _LP64 87 __ lea(rscratch1, safepoint_pc); 88 __ movptr(Address(r15_thread, JavaThread::saved_exception_pc_offset()), rscratch1); 89 #else 90 const Register tmp1 = rcx; 91 const Register tmp2 = rdx; 92 __ push(tmp1); 93 __ push(tmp2); 94 95 __ lea(tmp1, safepoint_pc); 96 __ get_thread(tmp2); 97 __ movptr(Address(tmp2, JavaThread::saved_exception_pc_offset()), tmp1); 98 99 __ pop(tmp2); 100 __ pop(tmp1); 101 #endif /* _LP64 */ 102 assert(SharedRuntime::polling_page_return_handler_blob() != nullptr, 103 "polling page return stub not created yet"); 104 105 address stub = SharedRuntime::polling_page_return_handler_blob()->entry_point(); 106 __ jump(RuntimeAddress(stub)); 107 } 108 109 void CounterOverflowStub::emit_code(LIR_Assembler* ce) { 110 __ bind(_entry); 111 Metadata *m = _method->as_constant_ptr()->as_metadata(); 112 ce->store_parameter(m, 1); 113 ce->store_parameter(_bci, 0); 114 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::counter_overflow_id))); 115 ce->add_call_info_here(_info); 116 ce->verify_oop_map(_info); 117 __ jmp(_continuation); 118 } 119 120 void RangeCheckStub::emit_code(LIR_Assembler* ce) { 121 __ bind(_entry); 122 if (_info->deoptimize_on_exception()) { 123 address a = Runtime1::entry_for(Runtime1::predicate_failed_trap_id); 124 __ call(RuntimeAddress(a)); 125 ce->add_call_info_here(_info); 126 ce->verify_oop_map(_info); 127 debug_only(__ should_not_reach_here()); 128 return; 129 } 130 131 // pass the array index on stack because all registers must be preserved 132 if (_index->is_cpu_register()) { 133 ce->store_parameter(_index->as_register(), 0); 134 } else { 135 ce->store_parameter(_index->as_jint(), 0); 136 } 137 Runtime1::StubID stub_id; 138 if (_throw_index_out_of_bounds_exception) { 139 stub_id = Runtime1::throw_index_exception_id; 140 } else { 141 stub_id = Runtime1::throw_range_check_failed_id; 142 ce->store_parameter(_array->as_pointer_register(), 1); 143 } 144 __ call(RuntimeAddress(Runtime1::entry_for(stub_id))); 145 ce->add_call_info_here(_info); 146 ce->verify_oop_map(_info); 147 debug_only(__ should_not_reach_here()); 148 } 149 150 PredicateFailedStub::PredicateFailedStub(CodeEmitInfo* info) { 151 _info = new CodeEmitInfo(info); 152 } 153 154 void PredicateFailedStub::emit_code(LIR_Assembler* ce) { 155 __ bind(_entry); 156 address a = Runtime1::entry_for(Runtime1::predicate_failed_trap_id); 157 __ call(RuntimeAddress(a)); 158 ce->add_call_info_here(_info); 159 ce->verify_oop_map(_info); 160 debug_only(__ should_not_reach_here()); 161 } 162 163 void DivByZeroStub::emit_code(LIR_Assembler* ce) { 164 if (_offset != -1) { 165 ce->compilation()->implicit_exception_table()->append(_offset, __ offset()); 166 } 167 __ bind(_entry); 168 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::throw_div0_exception_id))); 169 ce->add_call_info_here(_info); 170 debug_only(__ should_not_reach_here()); 171 } 172 173 174 // Implementation of NewInstanceStub 175 176 NewInstanceStub::NewInstanceStub(LIR_Opr klass_reg, LIR_Opr result, ciInstanceKlass* klass, CodeEmitInfo* info, Runtime1::StubID stub_id) { 177 _result = result; 178 _klass = klass; 179 _klass_reg = klass_reg; 180 _info = new CodeEmitInfo(info); 181 assert(stub_id == Runtime1::new_instance_id || 182 stub_id == Runtime1::fast_new_instance_id || 183 stub_id == Runtime1::fast_new_instance_init_check_id, 184 "need new_instance id"); 185 _stub_id = stub_id; 186 } 187 188 189 void NewInstanceStub::emit_code(LIR_Assembler* ce) { 190 assert(__ rsp_offset() == 0, "frame size should be fixed"); 191 __ bind(_entry); 192 __ movptr(rdx, _klass_reg->as_register()); 193 __ call(RuntimeAddress(Runtime1::entry_for(_stub_id))); 194 ce->add_call_info_here(_info); 195 ce->verify_oop_map(_info); 196 assert(_result->as_register() == rax, "result must in rax,"); 197 __ jmp(_continuation); 198 } 199 200 201 // Implementation of NewTypeArrayStub 202 203 NewTypeArrayStub::NewTypeArrayStub(LIR_Opr klass_reg, LIR_Opr length, LIR_Opr result, CodeEmitInfo* info) { 204 _klass_reg = klass_reg; 205 _length = length; 206 _result = result; 207 _info = new CodeEmitInfo(info); 208 } 209 210 211 void NewTypeArrayStub::emit_code(LIR_Assembler* ce) { 212 assert(__ rsp_offset() == 0, "frame size should be fixed"); 213 __ bind(_entry); 214 assert(_length->as_register() == rbx, "length must in rbx,"); 215 assert(_klass_reg->as_register() == rdx, "klass_reg must in rdx"); 216 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::new_type_array_id))); 217 ce->add_call_info_here(_info); 218 ce->verify_oop_map(_info); 219 assert(_result->as_register() == rax, "result must in rax,"); 220 __ jmp(_continuation); 221 } 222 223 224 // Implementation of NewObjectArrayStub 225 226 NewObjectArrayStub::NewObjectArrayStub(LIR_Opr klass_reg, LIR_Opr length, LIR_Opr result, CodeEmitInfo* info) { 227 _klass_reg = klass_reg; 228 _result = result; 229 _length = length; 230 _info = new CodeEmitInfo(info); 231 } 232 233 234 void NewObjectArrayStub::emit_code(LIR_Assembler* ce) { 235 assert(__ rsp_offset() == 0, "frame size should be fixed"); 236 __ bind(_entry); 237 assert(_length->as_register() == rbx, "length must in rbx,"); 238 assert(_klass_reg->as_register() == rdx, "klass_reg must in rdx"); 239 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::new_object_array_id))); 240 ce->add_call_info_here(_info); 241 ce->verify_oop_map(_info); 242 assert(_result->as_register() == rax, "result must in rax,"); 243 __ jmp(_continuation); 244 } 245 246 void MonitorEnterStub::emit_code(LIR_Assembler* ce) { 247 assert(__ rsp_offset() == 0, "frame size should be fixed"); 248 __ bind(_entry); 249 ce->store_parameter(_obj_reg->as_register(), 1); 250 ce->store_parameter(_lock_reg->as_register(), 0); 251 Runtime1::StubID enter_id; 252 if (ce->compilation()->has_fpu_code()) { 253 enter_id = Runtime1::monitorenter_id; 254 } else { 255 enter_id = Runtime1::monitorenter_nofpu_id; 256 } 257 __ call(RuntimeAddress(Runtime1::entry_for(enter_id))); 258 ce->add_call_info_here(_info); 259 ce->verify_oop_map(_info); 260 __ jmp(_continuation); 261 } 262 263 264 void MonitorExitStub::emit_code(LIR_Assembler* ce) { 265 __ bind(_entry); 266 if (_compute_lock) { 267 // lock_reg was destroyed by fast unlocking attempt => recompute it 268 ce->monitor_address(_monitor_ix, _lock_reg); 269 } 270 ce->store_parameter(_lock_reg->as_register(), 0); 271 // note: non-blocking leaf routine => no call info needed 272 Runtime1::StubID exit_id; 273 if (ce->compilation()->has_fpu_code()) { 274 exit_id = Runtime1::monitorexit_id; 275 } else { 276 exit_id = Runtime1::monitorexit_nofpu_id; 277 } 278 __ call(RuntimeAddress(Runtime1::entry_for(exit_id))); 279 __ jmp(_continuation); 280 } 281 282 // Implementation of patching: 283 // - Copy the code at given offset to an inlined buffer (first the bytes, then the number of bytes) 284 // - Replace original code with a call to the stub 285 // At Runtime: 286 // - call to stub, jump to runtime 287 // - in runtime: preserve all registers (rspecially objects, i.e., source and destination object) 288 // - in runtime: after initializing class, restore original code, reexecute instruction 289 290 int PatchingStub::_patch_info_offset = -NativeGeneralJump::instruction_size; 291 292 void PatchingStub::align_patch_site(MacroAssembler* masm) { 293 // We're patching a 5-7 byte instruction on intel and we need to 294 // make sure that we don't see a piece of the instruction. It 295 // appears mostly impossible on Intel to simply invalidate other 296 // processors caches and since they may do aggressive prefetch it's 297 // very hard to make a guess about what code might be in the icache. 298 // Force the instruction to be double word aligned so that it 299 // doesn't span a cache line. 300 masm->align(align_up((int)NativeGeneralJump::instruction_size, wordSize)); 301 } 302 303 void PatchingStub::emit_code(LIR_Assembler* ce) { 304 assert(NativeCall::instruction_size <= _bytes_to_copy && _bytes_to_copy <= 0xFF, "not enough room for call"); 305 306 Label call_patch; 307 308 // static field accesses have special semantics while the class 309 // initializer is being run so we emit a test which can be used to 310 // check that this code is being executed by the initializing 311 // thread. 312 address being_initialized_entry = __ pc(); 313 if (CommentedAssembly) { 314 __ block_comment(" patch template"); 315 } 316 if (_id == load_klass_id) { 317 // produce a copy of the load klass instruction for use by the being initialized case 318 #ifdef ASSERT 319 address start = __ pc(); 320 #endif 321 Metadata* o = nullptr; 322 __ mov_metadata(_obj, o); 323 #ifdef ASSERT 324 for (int i = 0; i < _bytes_to_copy; i++) { 325 address ptr = (address)(_pc_start + i); 326 int a_byte = (*ptr) & 0xFF; 327 assert(a_byte == *start++, "should be the same code"); 328 } 329 #endif 330 } else if (_id == load_mirror_id) { 331 // produce a copy of the load mirror instruction for use by the being 332 // initialized case 333 #ifdef ASSERT 334 address start = __ pc(); 335 #endif 336 jobject o = nullptr; 337 __ movoop(_obj, o); 338 #ifdef ASSERT 339 for (int i = 0; i < _bytes_to_copy; i++) { 340 address ptr = (address)(_pc_start + i); 341 int a_byte = (*ptr) & 0xFF; 342 assert(a_byte == *start++, "should be the same code"); 343 } 344 #endif 345 } else { 346 // make a copy the code which is going to be patched. 347 for (int i = 0; i < _bytes_to_copy; i++) { 348 address ptr = (address)(_pc_start + i); 349 int a_byte = (*ptr) & 0xFF; 350 __ emit_int8(a_byte); 351 *ptr = 0x90; // make the site look like a nop 352 } 353 } 354 355 address end_of_patch = __ pc(); 356 int bytes_to_skip = 0; 357 if (_id == load_mirror_id) { 358 int offset = __ offset(); 359 if (CommentedAssembly) { 360 __ block_comment(" being_initialized check"); 361 } 362 assert(_obj != noreg, "must be a valid register"); 363 Register tmp = rax; 364 Register tmp2 = rbx; 365 __ push(tmp); 366 __ push(tmp2); 367 // Load without verification to keep code size small. We need it because 368 // begin_initialized_entry_offset has to fit in a byte. Also, we know it's not null. 369 __ movptr(tmp2, Address(_obj, java_lang_Class::klass_offset())); 370 __ get_thread(tmp); 371 __ cmpptr(tmp, Address(tmp2, InstanceKlass::init_thread_offset())); 372 __ pop(tmp2); 373 __ pop(tmp); 374 __ jcc(Assembler::notEqual, call_patch); 375 376 // access_field patches may execute the patched code before it's 377 // copied back into place so we need to jump back into the main 378 // code of the nmethod to continue execution. 379 __ jmp(_patch_site_continuation); 380 381 // make sure this extra code gets skipped 382 bytes_to_skip += __ offset() - offset; 383 } 384 if (CommentedAssembly) { 385 __ block_comment("patch data encoded as movl"); 386 } 387 // Now emit the patch record telling the runtime how to find the 388 // pieces of the patch. We only need 3 bytes but for readability of 389 // the disassembly we make the data look like a movl reg, imm32, 390 // which requires 5 bytes 391 int sizeof_patch_record = 5; 392 bytes_to_skip += sizeof_patch_record; 393 394 // emit the offsets needed to find the code to patch 395 int being_initialized_entry_offset = __ pc() - being_initialized_entry + sizeof_patch_record; 396 397 __ emit_int8((unsigned char)0xB8); 398 __ emit_int8(0); 399 __ emit_int8(being_initialized_entry_offset); 400 __ emit_int8(bytes_to_skip); 401 __ emit_int8(_bytes_to_copy); 402 address patch_info_pc = __ pc(); 403 assert(patch_info_pc - end_of_patch == bytes_to_skip, "incorrect patch info"); 404 405 address entry = __ pc(); 406 NativeGeneralJump::insert_unconditional((address)_pc_start, entry); 407 address target = nullptr; 408 relocInfo::relocType reloc_type = relocInfo::none; 409 switch (_id) { 410 case access_field_id: target = Runtime1::entry_for(Runtime1::access_field_patching_id); break; 411 case load_klass_id: target = Runtime1::entry_for(Runtime1::load_klass_patching_id); reloc_type = relocInfo::metadata_type; break; 412 case load_mirror_id: target = Runtime1::entry_for(Runtime1::load_mirror_patching_id); reloc_type = relocInfo::oop_type; break; 413 case load_appendix_id: target = Runtime1::entry_for(Runtime1::load_appendix_patching_id); reloc_type = relocInfo::oop_type; break; 414 default: ShouldNotReachHere(); 415 } 416 __ bind(call_patch); 417 418 if (CommentedAssembly) { 419 __ block_comment("patch entry point"); 420 } 421 __ call(RuntimeAddress(target)); 422 assert(_patch_info_offset == (patch_info_pc - __ pc()), "must not change"); 423 ce->add_call_info_here(_info); 424 int jmp_off = __ offset(); 425 __ jmp(_patch_site_entry); 426 // Add enough nops so deoptimization can overwrite the jmp above with a call 427 // and not destroy the world. We cannot use fat nops here, since the concurrent 428 // code rewrite may transiently create the illegal instruction sequence. 429 for (int j = __ offset() ; j < jmp_off + 5 ; j++ ) { 430 __ nop(); 431 } 432 if (_id == load_klass_id || _id == load_mirror_id || _id == load_appendix_id) { 433 CodeSection* cs = __ code_section(); 434 RelocIterator iter(cs, (address)_pc_start, (address)(_pc_start + 1)); 435 relocInfo::change_reloc_info_for_address(&iter, (address) _pc_start, reloc_type, relocInfo::none); 436 } 437 } 438 439 440 void DeoptimizeStub::emit_code(LIR_Assembler* ce) { 441 __ bind(_entry); 442 ce->store_parameter(_trap_request, 0); 443 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::deoptimize_id))); 444 ce->add_call_info_here(_info); 445 DEBUG_ONLY(__ should_not_reach_here()); 446 } 447 448 449 void ImplicitNullCheckStub::emit_code(LIR_Assembler* ce) { 450 address a; 451 if (_info->deoptimize_on_exception()) { 452 // Deoptimize, do not throw the exception, because it is probably wrong to do it here. 453 a = Runtime1::entry_for(Runtime1::predicate_failed_trap_id); 454 } else { 455 a = Runtime1::entry_for(Runtime1::throw_null_pointer_exception_id); 456 } 457 458 ce->compilation()->implicit_exception_table()->append(_offset, __ offset()); 459 __ bind(_entry); 460 __ call(RuntimeAddress(a)); 461 ce->add_call_info_here(_info); 462 ce->verify_oop_map(_info); 463 debug_only(__ should_not_reach_here()); 464 } 465 466 467 void SimpleExceptionStub::emit_code(LIR_Assembler* ce) { 468 assert(__ rsp_offset() == 0, "frame size should be fixed"); 469 470 __ bind(_entry); 471 // pass the object on stack because all registers must be preserved 472 if (_obj->is_cpu_register()) { 473 ce->store_parameter(_obj->as_register(), 0); 474 } 475 __ call(RuntimeAddress(Runtime1::entry_for(_stub))); 476 ce->add_call_info_here(_info); 477 debug_only(__ should_not_reach_here()); 478 } 479 480 481 void ArrayCopyStub::emit_code(LIR_Assembler* ce) { 482 //---------------slow case: call to native----------------- 483 __ bind(_entry); 484 // Figure out where the args should go 485 // This should really convert the IntrinsicID to the Method* and signature 486 // but I don't know how to do that. 487 // 488 VMRegPair args[5]; 489 BasicType signature[5] = { T_OBJECT, T_INT, T_OBJECT, T_INT, T_INT}; 490 SharedRuntime::java_calling_convention(signature, args, 5); 491 492 // push parameters 493 // (src, src_pos, dest, destPos, length) 494 Register r[5]; 495 r[0] = src()->as_register(); 496 r[1] = src_pos()->as_register(); 497 r[2] = dst()->as_register(); 498 r[3] = dst_pos()->as_register(); 499 r[4] = length()->as_register(); 500 501 // next registers will get stored on the stack 502 for (int i = 0; i < 5 ; i++ ) { 503 VMReg r_1 = args[i].first(); 504 if (r_1->is_stack()) { 505 int st_off = r_1->reg2stack() * wordSize; 506 __ movptr (Address(rsp, st_off), r[i]); 507 } else { 508 assert(r[i] == args[i].first()->as_Register(), "Wrong register for arg "); 509 } 510 } 511 512 ce->align_call(lir_static_call); 513 514 ce->emit_static_call_stub(); 515 if (ce->compilation()->bailed_out()) { 516 return; // CodeCache is full 517 } 518 AddressLiteral resolve(SharedRuntime::get_resolve_static_call_stub(), 519 relocInfo::static_call_type); 520 __ call(resolve); 521 ce->add_call_info_here(info()); 522 523 #ifndef PRODUCT 524 if (PrintC1Statistics) { 525 __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_slowcase_cnt), rscratch1); 526 } 527 #endif 528 529 __ jmp(_continuation); 530 } 531 532 #undef __