1 /* 2 * Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "compiler/compiler_globals.hpp" 27 #include "interp_masm_x86.hpp" 28 #include "interpreter/interpreter.hpp" 29 #include "interpreter/interpreterRuntime.hpp" 30 #include "logging/log.hpp" 31 #include "oops/arrayOop.hpp" 32 #include "oops/markWord.hpp" 33 #include "oops/methodData.hpp" 34 #include "oops/method.hpp" 35 #include "prims/jvmtiExport.hpp" 36 #include "prims/jvmtiThreadState.hpp" 37 #include "runtime/basicLock.hpp" 38 #include "runtime/frame.inline.hpp" 39 #include "runtime/javaThread.hpp" 40 #include "runtime/safepointMechanism.hpp" 41 #include "runtime/sharedRuntime.hpp" 42 #include "utilities/powerOfTwo.hpp" 43 44 // Implementation of InterpreterMacroAssembler 45 46 void InterpreterMacroAssembler::jump_to_entry(address entry) { 47 assert(entry, "Entry must have been generated by now"); 48 jump(RuntimeAddress(entry)); 49 } 50 51 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) { 52 Label update, next, none; 53 54 interp_verify_oop(obj, atos); 55 56 testptr(obj, obj); 57 jccb(Assembler::notZero, update); 58 orptr(mdo_addr, TypeEntries::null_seen); 59 jmpb(next); 60 61 bind(update); 62 load_klass(obj, obj, rscratch1); 63 64 xorptr(obj, mdo_addr); 65 testptr(obj, TypeEntries::type_klass_mask); 66 jccb(Assembler::zero, next); // klass seen before, nothing to 67 // do. The unknown bit may have been 68 // set already but no need to check. 69 70 testptr(obj, TypeEntries::type_unknown); 71 jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore. 72 73 cmpptr(mdo_addr, 0); 74 jccb(Assembler::equal, none); 75 cmpptr(mdo_addr, TypeEntries::null_seen); 76 jccb(Assembler::equal, none); 77 // There is a chance that the checks above (re-reading profiling 78 // data from memory) fail if another thread has just set the 79 // profiling to this obj's klass 80 xorptr(obj, mdo_addr); 81 testptr(obj, TypeEntries::type_klass_mask); 82 jccb(Assembler::zero, next); 83 84 // different than before. Cannot keep accurate profile. 85 orptr(mdo_addr, TypeEntries::type_unknown); 86 jmpb(next); 87 88 bind(none); 89 // first time here. Set profile type. 90 movptr(mdo_addr, obj); 91 92 bind(next); 93 } 94 95 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) { 96 if (!ProfileInterpreter) { 97 return; 98 } 99 100 if (MethodData::profile_arguments() || MethodData::profile_return()) { 101 Label profile_continue; 102 103 test_method_data_pointer(mdp, profile_continue); 104 105 int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size()); 106 107 cmpb(Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start), is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag); 108 jcc(Assembler::notEqual, profile_continue); 109 110 if (MethodData::profile_arguments()) { 111 Label done; 112 int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset()); 113 addptr(mdp, off_to_args); 114 115 for (int i = 0; i < TypeProfileArgsLimit; i++) { 116 if (i > 0 || MethodData::profile_return()) { 117 // If return value type is profiled we may have no argument to profile 118 movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args)); 119 subl(tmp, i*TypeStackSlotEntries::per_arg_count()); 120 cmpl(tmp, TypeStackSlotEntries::per_arg_count()); 121 jcc(Assembler::less, done); 122 } 123 movptr(tmp, Address(callee, Method::const_offset())); 124 load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset())); 125 // stack offset o (zero based) from the start of the argument 126 // list, for n arguments translates into offset n - o - 1 from 127 // the end of the argument list 128 subptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args)); 129 subl(tmp, 1); 130 Address arg_addr = argument_address(tmp); 131 movptr(tmp, arg_addr); 132 133 Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args); 134 profile_obj_type(tmp, mdo_arg_addr); 135 136 int to_add = in_bytes(TypeStackSlotEntries::per_arg_size()); 137 addptr(mdp, to_add); 138 off_to_args += to_add; 139 } 140 141 if (MethodData::profile_return()) { 142 movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args)); 143 subl(tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count()); 144 } 145 146 bind(done); 147 148 if (MethodData::profile_return()) { 149 // We're right after the type profile for the last 150 // argument. tmp is the number of cells left in the 151 // CallTypeData/VirtualCallTypeData to reach its end. Non null 152 // if there's a return to profile. 153 assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type"); 154 shll(tmp, log2i_exact((int)DataLayout::cell_size)); 155 addptr(mdp, tmp); 156 } 157 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp); 158 } else { 159 assert(MethodData::profile_return(), "either profile call args or call ret"); 160 update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size())); 161 } 162 163 // mdp points right after the end of the 164 // CallTypeData/VirtualCallTypeData, right after the cells for the 165 // return value type if there's one 166 167 bind(profile_continue); 168 } 169 } 170 171 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) { 172 assert_different_registers(mdp, ret, tmp, _bcp_register); 173 if (ProfileInterpreter && MethodData::profile_return()) { 174 Label profile_continue; 175 176 test_method_data_pointer(mdp, profile_continue); 177 178 if (MethodData::profile_return_jsr292_only()) { 179 assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2"); 180 181 // If we don't profile all invoke bytecodes we must make sure 182 // it's a bytecode we indeed profile. We can't go back to the 183 // beginning of the ProfileData we intend to update to check its 184 // type because we're right after it and we don't known its 185 // length 186 Label do_profile; 187 cmpb(Address(_bcp_register, 0), Bytecodes::_invokedynamic); 188 jcc(Assembler::equal, do_profile); 189 cmpb(Address(_bcp_register, 0), Bytecodes::_invokehandle); 190 jcc(Assembler::equal, do_profile); 191 get_method(tmp); 192 cmpw(Address(tmp, Method::intrinsic_id_offset_in_bytes()), static_cast<int>(vmIntrinsics::_compiledLambdaForm)); 193 jcc(Assembler::notEqual, profile_continue); 194 195 bind(do_profile); 196 } 197 198 Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size())); 199 mov(tmp, ret); 200 profile_obj_type(tmp, mdo_ret_addr); 201 202 bind(profile_continue); 203 } 204 } 205 206 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) { 207 if (ProfileInterpreter && MethodData::profile_parameters()) { 208 Label profile_continue; 209 210 test_method_data_pointer(mdp, profile_continue); 211 212 // Load the offset of the area within the MDO used for 213 // parameters. If it's negative we're not profiling any parameters 214 movl(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()))); 215 testl(tmp1, tmp1); 216 jcc(Assembler::negative, profile_continue); 217 218 // Compute a pointer to the area for parameters from the offset 219 // and move the pointer to the slot for the last 220 // parameters. Collect profiling from last parameter down. 221 // mdo start + parameters offset + array length - 1 222 addptr(mdp, tmp1); 223 movptr(tmp1, Address(mdp, ArrayData::array_len_offset())); 224 decrement(tmp1, TypeStackSlotEntries::per_arg_count()); 225 226 Label loop; 227 bind(loop); 228 229 int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0)); 230 int type_base = in_bytes(ParametersTypeData::type_offset(0)); 231 Address::ScaleFactor per_arg_scale = Address::times(DataLayout::cell_size); 232 Address arg_off(mdp, tmp1, per_arg_scale, off_base); 233 Address arg_type(mdp, tmp1, per_arg_scale, type_base); 234 235 // load offset on the stack from the slot for this parameter 236 movptr(tmp2, arg_off); 237 negptr(tmp2); 238 // read the parameter from the local area 239 movptr(tmp2, Address(_locals_register, tmp2, Interpreter::stackElementScale())); 240 241 // profile the parameter 242 profile_obj_type(tmp2, arg_type); 243 244 // go to next parameter 245 decrement(tmp1, TypeStackSlotEntries::per_arg_count()); 246 jcc(Assembler::positive, loop); 247 248 bind(profile_continue); 249 } 250 } 251 252 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point, 253 int number_of_arguments) { 254 // interpreter specific 255 // 256 // Note: No need to save/restore bcp & locals registers 257 // since these are callee saved registers and no blocking/ 258 // GC can happen in leaf calls. 259 // Further Note: DO NOT save/restore bcp/locals. If a caller has 260 // already saved them so that it can use rsi/rdi as temporaries 261 // then a save/restore here will DESTROY the copy the caller 262 // saved! There used to be a save_bcp() that only happened in 263 // the ASSERT path (no restore_bcp). Which caused bizarre failures 264 // when jvm built with ASSERTs. 265 #ifdef ASSERT 266 { 267 Label L; 268 cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD); 269 jcc(Assembler::equal, L); 270 stop("InterpreterMacroAssembler::call_VM_leaf_base:" 271 " last_sp != NULL"); 272 bind(L); 273 } 274 #endif 275 // super call 276 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); 277 // interpreter specific 278 // LP64: Used to ASSERT that r13/r14 were equal to frame's bcp/locals 279 // but since they may not have been saved (and we don't want to 280 // save them here (see note above) the assert is invalid. 281 } 282 283 void InterpreterMacroAssembler::call_VM_base(Register oop_result, 284 Register java_thread, 285 Register last_java_sp, 286 address entry_point, 287 int number_of_arguments, 288 bool check_exceptions) { 289 // interpreter specific 290 // 291 // Note: Could avoid restoring locals ptr (callee saved) - however doesn't 292 // really make a difference for these runtime calls, since they are 293 // slow anyway. Btw., bcp must be saved/restored since it may change 294 // due to GC. 295 NOT_LP64(assert(java_thread == noreg , "not expecting a precomputed java thread");) 296 save_bcp(); 297 #ifdef ASSERT 298 { 299 Label L; 300 cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD); 301 jcc(Assembler::equal, L); 302 stop("InterpreterMacroAssembler::call_VM_base:" 303 " last_sp != NULL"); 304 bind(L); 305 } 306 #endif /* ASSERT */ 307 // super call 308 MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp, 309 entry_point, number_of_arguments, 310 check_exceptions); 311 // interpreter specific 312 restore_bcp(); 313 restore_locals(); 314 } 315 316 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) { 317 if (JvmtiExport::can_pop_frame()) { 318 Label L; 319 // Initiate popframe handling only if it is not already being 320 // processed. If the flag has the popframe_processing bit set, it 321 // means that this code is called *during* popframe handling - we 322 // don't want to reenter. 323 // This method is only called just after the call into the vm in 324 // call_VM_base, so the arg registers are available. 325 Register pop_cond = NOT_LP64(java_thread) // Not clear if any other register is available on 32 bit 326 LP64_ONLY(c_rarg0); 327 movl(pop_cond, Address(java_thread, JavaThread::popframe_condition_offset())); 328 testl(pop_cond, JavaThread::popframe_pending_bit); 329 jcc(Assembler::zero, L); 330 testl(pop_cond, JavaThread::popframe_processing_bit); 331 jcc(Assembler::notZero, L); 332 // Call Interpreter::remove_activation_preserving_args_entry() to get the 333 // address of the same-named entrypoint in the generated interpreter code. 334 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry)); 335 jmp(rax); 336 bind(L); 337 NOT_LP64(get_thread(java_thread);) 338 } 339 } 340 341 void InterpreterMacroAssembler::load_earlyret_value(TosState state) { 342 Register thread = LP64_ONLY(r15_thread) NOT_LP64(rcx); 343 NOT_LP64(get_thread(thread);) 344 movptr(rcx, Address(thread, JavaThread::jvmti_thread_state_offset())); 345 const Address tos_addr(rcx, JvmtiThreadState::earlyret_tos_offset()); 346 const Address oop_addr(rcx, JvmtiThreadState::earlyret_oop_offset()); 347 const Address val_addr(rcx, JvmtiThreadState::earlyret_value_offset()); 348 #ifdef _LP64 349 switch (state) { 350 case atos: movptr(rax, oop_addr); 351 movptr(oop_addr, NULL_WORD); 352 interp_verify_oop(rax, state); break; 353 case ltos: movptr(rax, val_addr); break; 354 case btos: // fall through 355 case ztos: // fall through 356 case ctos: // fall through 357 case stos: // fall through 358 case itos: movl(rax, val_addr); break; 359 case ftos: load_float(val_addr); break; 360 case dtos: load_double(val_addr); break; 361 case vtos: /* nothing to do */ break; 362 default : ShouldNotReachHere(); 363 } 364 // Clean up tos value in the thread object 365 movl(tos_addr, ilgl); 366 movl(val_addr, NULL_WORD); 367 #else 368 const Address val_addr1(rcx, JvmtiThreadState::earlyret_value_offset() 369 + in_ByteSize(wordSize)); 370 switch (state) { 371 case atos: movptr(rax, oop_addr); 372 movptr(oop_addr, NULL_WORD); 373 interp_verify_oop(rax, state); break; 374 case ltos: 375 movl(rdx, val_addr1); // fall through 376 case btos: // fall through 377 case ztos: // fall through 378 case ctos: // fall through 379 case stos: // fall through 380 case itos: movl(rax, val_addr); break; 381 case ftos: load_float(val_addr); break; 382 case dtos: load_double(val_addr); break; 383 case vtos: /* nothing to do */ break; 384 default : ShouldNotReachHere(); 385 } 386 #endif // _LP64 387 // Clean up tos value in the thread object 388 movl(tos_addr, ilgl); 389 movptr(val_addr, NULL_WORD); 390 NOT_LP64(movptr(val_addr1, NULL_WORD);) 391 } 392 393 394 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) { 395 if (JvmtiExport::can_force_early_return()) { 396 Label L; 397 Register tmp = LP64_ONLY(c_rarg0) NOT_LP64(java_thread); 398 Register rthread = LP64_ONLY(r15_thread) NOT_LP64(java_thread); 399 400 movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset())); 401 testptr(tmp, tmp); 402 jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == NULL) exit; 403 404 // Initiate earlyret handling only if it is not already being processed. 405 // If the flag has the earlyret_processing bit set, it means that this code 406 // is called *during* earlyret handling - we don't want to reenter. 407 movl(tmp, Address(tmp, JvmtiThreadState::earlyret_state_offset())); 408 cmpl(tmp, JvmtiThreadState::earlyret_pending); 409 jcc(Assembler::notEqual, L); 410 411 // Call Interpreter::remove_activation_early_entry() to get the address of the 412 // same-named entrypoint in the generated interpreter code. 413 NOT_LP64(get_thread(java_thread);) 414 movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset())); 415 #ifdef _LP64 416 movl(tmp, Address(tmp, JvmtiThreadState::earlyret_tos_offset())); 417 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), tmp); 418 #else 419 pushl(Address(tmp, JvmtiThreadState::earlyret_tos_offset())); 420 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), 1); 421 #endif // _LP64 422 jmp(rax); 423 bind(L); 424 NOT_LP64(get_thread(java_thread);) 425 } 426 } 427 428 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) { 429 assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode"); 430 load_unsigned_short(reg, Address(_bcp_register, bcp_offset)); 431 bswapl(reg); 432 shrl(reg, 16); 433 } 434 435 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index, 436 int bcp_offset, 437 size_t index_size) { 438 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); 439 if (index_size == sizeof(u2)) { 440 load_unsigned_short(index, Address(_bcp_register, bcp_offset)); 441 } else if (index_size == sizeof(u4)) { 442 movl(index, Address(_bcp_register, bcp_offset)); 443 // Check if the secondary index definition is still ~x, otherwise 444 // we have to change the following assembler code to calculate the 445 // plain index. 446 assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line"); 447 notl(index); // convert to plain index 448 } else if (index_size == sizeof(u1)) { 449 load_unsigned_byte(index, Address(_bcp_register, bcp_offset)); 450 } else { 451 ShouldNotReachHere(); 452 } 453 } 454 455 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, 456 Register index, 457 int bcp_offset, 458 size_t index_size) { 459 assert_different_registers(cache, index); 460 get_cache_index_at_bcp(index, bcp_offset, index_size); 461 movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize)); 462 assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below"); 463 // convert from field index to ConstantPoolCacheEntry index 464 assert(exact_log2(in_words(ConstantPoolCacheEntry::size())) == 2, "else change next line"); 465 shll(index, 2); 466 } 467 468 void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache, 469 Register index, 470 Register bytecode, 471 int byte_no, 472 int bcp_offset, 473 size_t index_size) { 474 get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size); 475 // We use a 32-bit load here since the layout of 64-bit words on 476 // little-endian machines allow us that. 477 movl(bytecode, Address(cache, index, Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset())); 478 const int shift_count = (1 + byte_no) * BitsPerByte; 479 assert((byte_no == TemplateTable::f1_byte && shift_count == ConstantPoolCacheEntry::bytecode_1_shift) || 480 (byte_no == TemplateTable::f2_byte && shift_count == ConstantPoolCacheEntry::bytecode_2_shift), 481 "correct shift count"); 482 shrl(bytecode, shift_count); 483 assert(ConstantPoolCacheEntry::bytecode_1_mask == ConstantPoolCacheEntry::bytecode_2_mask, "common mask"); 484 andl(bytecode, ConstantPoolCacheEntry::bytecode_1_mask); 485 } 486 487 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, 488 Register tmp, 489 int bcp_offset, 490 size_t index_size) { 491 assert_different_registers(cache, tmp); 492 493 get_cache_index_at_bcp(tmp, bcp_offset, index_size); 494 assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below"); 495 // convert from field index to ConstantPoolCacheEntry index 496 // and from word offset to byte offset 497 assert(exact_log2(in_bytes(ConstantPoolCacheEntry::size_in_bytes())) == 2 + LogBytesPerWord, "else change next line"); 498 shll(tmp, 2 + LogBytesPerWord); 499 movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize)); 500 // skip past the header 501 addptr(cache, in_bytes(ConstantPoolCache::base_offset())); 502 addptr(cache, tmp); // construct pointer to cache entry 503 } 504 505 // Load object from cpool->resolved_references(index) 506 void InterpreterMacroAssembler::load_resolved_reference_at_index(Register result, 507 Register index, 508 Register tmp) { 509 assert_different_registers(result, index); 510 511 get_constant_pool(result); 512 // load pointer for resolved_references[] objArray 513 movptr(result, Address(result, ConstantPool::cache_offset_in_bytes())); 514 movptr(result, Address(result, ConstantPoolCache::resolved_references_offset_in_bytes())); 515 resolve_oop_handle(result, tmp); 516 load_heap_oop(result, Address(result, index, 517 UseCompressedOops ? Address::times_4 : Address::times_ptr, 518 arrayOopDesc::base_offset_in_bytes(T_OBJECT)), tmp); 519 } 520 521 // load cpool->resolved_klass_at(index) 522 void InterpreterMacroAssembler::load_resolved_klass_at_index(Register klass, 523 Register cpool, 524 Register index) { 525 assert_different_registers(cpool, index); 526 527 movw(index, Address(cpool, index, Address::times_ptr, sizeof(ConstantPool))); 528 Register resolved_klasses = cpool; 529 movptr(resolved_klasses, Address(cpool, ConstantPool::resolved_klasses_offset_in_bytes())); 530 movptr(klass, Address(resolved_klasses, index, Address::times_ptr, Array<Klass*>::base_offset_in_bytes())); 531 } 532 533 void InterpreterMacroAssembler::load_resolved_method_at_index(int byte_no, 534 Register method, 535 Register cache, 536 Register index) { 537 assert_different_registers(cache, index); 538 539 const int method_offset = in_bytes( 540 ConstantPoolCache::base_offset() + 541 ((byte_no == TemplateTable::f2_byte) 542 ? ConstantPoolCacheEntry::f2_offset() 543 : ConstantPoolCacheEntry::f1_offset())); 544 545 movptr(method, Address(cache, index, Address::times_ptr, method_offset)); // get f1 Method* 546 } 547 548 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a 549 // subtype of super_klass. 550 // 551 // Args: 552 // rax: superklass 553 // Rsub_klass: subklass 554 // 555 // Kills: 556 // rcx, rdi 557 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, 558 Label& ok_is_subtype) { 559 assert(Rsub_klass != rax, "rax holds superklass"); 560 LP64_ONLY(assert(Rsub_klass != r14, "r14 holds locals");) 561 LP64_ONLY(assert(Rsub_klass != r13, "r13 holds bcp");) 562 assert(Rsub_klass != rcx, "rcx holds 2ndary super array length"); 563 assert(Rsub_klass != rdi, "rdi holds 2ndary super array scan ptr"); 564 565 // Profile the not-null value's klass. 566 profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, reloads rdi 567 568 // Do the check. 569 check_klass_subtype(Rsub_klass, rax, rcx, ok_is_subtype); // blows rcx 570 571 // Profile the failure of the check. 572 profile_typecheck_failed(rcx); // blows rcx 573 } 574 575 576 #ifndef _LP64 577 void InterpreterMacroAssembler::f2ieee() { 578 if (IEEEPrecision) { 579 fstp_s(Address(rsp, 0)); 580 fld_s(Address(rsp, 0)); 581 } 582 } 583 584 585 void InterpreterMacroAssembler::d2ieee() { 586 if (IEEEPrecision) { 587 fstp_d(Address(rsp, 0)); 588 fld_d(Address(rsp, 0)); 589 } 590 } 591 #endif // _LP64 592 593 // Java Expression Stack 594 595 void InterpreterMacroAssembler::pop_ptr(Register r) { 596 pop(r); 597 } 598 599 void InterpreterMacroAssembler::push_ptr(Register r) { 600 push(r); 601 } 602 603 void InterpreterMacroAssembler::push_i(Register r) { 604 push(r); 605 } 606 607 void InterpreterMacroAssembler::push_i_or_ptr(Register r) { 608 push(r); 609 } 610 611 void InterpreterMacroAssembler::push_f(XMMRegister r) { 612 subptr(rsp, wordSize); 613 movflt(Address(rsp, 0), r); 614 } 615 616 void InterpreterMacroAssembler::pop_f(XMMRegister r) { 617 movflt(r, Address(rsp, 0)); 618 addptr(rsp, wordSize); 619 } 620 621 void InterpreterMacroAssembler::push_d(XMMRegister r) { 622 subptr(rsp, 2 * wordSize); 623 movdbl(Address(rsp, 0), r); 624 } 625 626 void InterpreterMacroAssembler::pop_d(XMMRegister r) { 627 movdbl(r, Address(rsp, 0)); 628 addptr(rsp, 2 * Interpreter::stackElementSize); 629 } 630 631 #ifdef _LP64 632 void InterpreterMacroAssembler::pop_i(Register r) { 633 // XXX can't use pop currently, upper half non clean 634 movl(r, Address(rsp, 0)); 635 addptr(rsp, wordSize); 636 } 637 638 void InterpreterMacroAssembler::pop_l(Register r) { 639 movq(r, Address(rsp, 0)); 640 addptr(rsp, 2 * Interpreter::stackElementSize); 641 } 642 643 void InterpreterMacroAssembler::push_l(Register r) { 644 subptr(rsp, 2 * wordSize); 645 movptr(Address(rsp, Interpreter::expr_offset_in_bytes(0)), r ); 646 movptr(Address(rsp, Interpreter::expr_offset_in_bytes(1)), NULL_WORD ); 647 } 648 649 void InterpreterMacroAssembler::pop(TosState state) { 650 switch (state) { 651 case atos: pop_ptr(); break; 652 case btos: 653 case ztos: 654 case ctos: 655 case stos: 656 case itos: pop_i(); break; 657 case ltos: pop_l(); break; 658 case ftos: pop_f(xmm0); break; 659 case dtos: pop_d(xmm0); break; 660 case vtos: /* nothing to do */ break; 661 default: ShouldNotReachHere(); 662 } 663 interp_verify_oop(rax, state); 664 } 665 666 void InterpreterMacroAssembler::push(TosState state) { 667 interp_verify_oop(rax, state); 668 switch (state) { 669 case atos: push_ptr(); break; 670 case btos: 671 case ztos: 672 case ctos: 673 case stos: 674 case itos: push_i(); break; 675 case ltos: push_l(); break; 676 case ftos: push_f(xmm0); break; 677 case dtos: push_d(xmm0); break; 678 case vtos: /* nothing to do */ break; 679 default : ShouldNotReachHere(); 680 } 681 } 682 #else 683 void InterpreterMacroAssembler::pop_i(Register r) { 684 pop(r); 685 } 686 687 void InterpreterMacroAssembler::pop_l(Register lo, Register hi) { 688 pop(lo); 689 pop(hi); 690 } 691 692 void InterpreterMacroAssembler::pop_f() { 693 fld_s(Address(rsp, 0)); 694 addptr(rsp, 1 * wordSize); 695 } 696 697 void InterpreterMacroAssembler::pop_d() { 698 fld_d(Address(rsp, 0)); 699 addptr(rsp, 2 * wordSize); 700 } 701 702 703 void InterpreterMacroAssembler::pop(TosState state) { 704 switch (state) { 705 case atos: pop_ptr(rax); break; 706 case btos: // fall through 707 case ztos: // fall through 708 case ctos: // fall through 709 case stos: // fall through 710 case itos: pop_i(rax); break; 711 case ltos: pop_l(rax, rdx); break; 712 case ftos: 713 if (UseSSE >= 1) { 714 pop_f(xmm0); 715 } else { 716 pop_f(); 717 } 718 break; 719 case dtos: 720 if (UseSSE >= 2) { 721 pop_d(xmm0); 722 } else { 723 pop_d(); 724 } 725 break; 726 case vtos: /* nothing to do */ break; 727 default : ShouldNotReachHere(); 728 } 729 interp_verify_oop(rax, state); 730 } 731 732 733 void InterpreterMacroAssembler::push_l(Register lo, Register hi) { 734 push(hi); 735 push(lo); 736 } 737 738 void InterpreterMacroAssembler::push_f() { 739 // Do not schedule for no AGI! Never write beyond rsp! 740 subptr(rsp, 1 * wordSize); 741 fstp_s(Address(rsp, 0)); 742 } 743 744 void InterpreterMacroAssembler::push_d() { 745 // Do not schedule for no AGI! Never write beyond rsp! 746 subptr(rsp, 2 * wordSize); 747 fstp_d(Address(rsp, 0)); 748 } 749 750 751 void InterpreterMacroAssembler::push(TosState state) { 752 interp_verify_oop(rax, state); 753 switch (state) { 754 case atos: push_ptr(rax); break; 755 case btos: // fall through 756 case ztos: // fall through 757 case ctos: // fall through 758 case stos: // fall through 759 case itos: push_i(rax); break; 760 case ltos: push_l(rax, rdx); break; 761 case ftos: 762 if (UseSSE >= 1) { 763 push_f(xmm0); 764 } else { 765 push_f(); 766 } 767 break; 768 case dtos: 769 if (UseSSE >= 2) { 770 push_d(xmm0); 771 } else { 772 push_d(); 773 } 774 break; 775 case vtos: /* nothing to do */ break; 776 default : ShouldNotReachHere(); 777 } 778 } 779 #endif // _LP64 780 781 782 // Helpers for swap and dup 783 void InterpreterMacroAssembler::load_ptr(int n, Register val) { 784 movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n))); 785 } 786 787 void InterpreterMacroAssembler::store_ptr(int n, Register val) { 788 movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val); 789 } 790 791 792 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() { 793 // set sender sp 794 lea(_bcp_register, Address(rsp, wordSize)); 795 // record last_sp 796 movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), _bcp_register); 797 } 798 799 800 // Jump to from_interpreted entry of a call unless single stepping is possible 801 // in this thread in which case we must call the i2i entry 802 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) { 803 prepare_to_jump_from_interpreted(); 804 805 if (JvmtiExport::can_post_interpreter_events()) { 806 Label run_compiled_code; 807 // JVMTI events, such as single-stepping, are implemented partly by avoiding running 808 // compiled code in threads for which the event is enabled. Check here for 809 // interp_only_mode if these events CAN be enabled. 810 // interp_only is an int, on little endian it is sufficient to test the byte only 811 // Is a cmpl faster? 812 LP64_ONLY(temp = r15_thread;) 813 NOT_LP64(get_thread(temp);) 814 cmpb(Address(temp, JavaThread::interp_only_mode_offset()), 0); 815 jccb(Assembler::zero, run_compiled_code); 816 jmp(Address(method, Method::interpreter_entry_offset())); 817 bind(run_compiled_code); 818 } 819 820 jmp(Address(method, Method::from_interpreted_offset())); 821 } 822 823 // The following two routines provide a hook so that an implementation 824 // can schedule the dispatch in two parts. x86 does not do this. 825 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) { 826 // Nothing x86 specific to be done here 827 } 828 829 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) { 830 dispatch_next(state, step); 831 } 832 833 void InterpreterMacroAssembler::dispatch_base(TosState state, 834 address* table, 835 bool verifyoop, 836 bool generate_poll) { 837 verify_FPU(1, state); 838 if (VerifyActivationFrameSize) { 839 Label L; 840 mov(rcx, rbp); 841 subptr(rcx, rsp); 842 int32_t min_frame_size = 843 (frame::link_offset - frame::interpreter_frame_initial_sp_offset) * 844 wordSize; 845 cmpptr(rcx, min_frame_size); 846 jcc(Assembler::greaterEqual, L); 847 stop("broken stack frame"); 848 bind(L); 849 } 850 if (verifyoop) { 851 interp_verify_oop(rax, state); 852 } 853 854 address* const safepoint_table = Interpreter::safept_table(state); 855 #ifdef _LP64 856 Label no_safepoint, dispatch; 857 if (table != safepoint_table && generate_poll) { 858 NOT_PRODUCT(block_comment("Thread-local Safepoint poll")); 859 testb(Address(r15_thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit()); 860 861 jccb(Assembler::zero, no_safepoint); 862 lea(rscratch1, ExternalAddress((address)safepoint_table)); 863 jmpb(dispatch); 864 } 865 866 bind(no_safepoint); 867 lea(rscratch1, ExternalAddress((address)table)); 868 bind(dispatch); 869 jmp(Address(rscratch1, rbx, Address::times_8)); 870 871 #else 872 Address index(noreg, rbx, Address::times_ptr); 873 if (table != safepoint_table && generate_poll) { 874 NOT_PRODUCT(block_comment("Thread-local Safepoint poll")); 875 Label no_safepoint; 876 const Register thread = rcx; 877 get_thread(thread); 878 testb(Address(thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit()); 879 880 jccb(Assembler::zero, no_safepoint); 881 ArrayAddress dispatch_addr(ExternalAddress((address)safepoint_table), index); 882 jump(dispatch_addr, noreg); 883 bind(no_safepoint); 884 } 885 886 { 887 ArrayAddress dispatch_addr(ExternalAddress((address)table), index); 888 jump(dispatch_addr, noreg); 889 } 890 #endif // _LP64 891 } 892 893 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) { 894 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll); 895 } 896 897 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) { 898 dispatch_base(state, Interpreter::normal_table(state)); 899 } 900 901 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) { 902 dispatch_base(state, Interpreter::normal_table(state), false); 903 } 904 905 906 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) { 907 // load next bytecode (load before advancing _bcp_register to prevent AGI) 908 load_unsigned_byte(rbx, Address(_bcp_register, step)); 909 // advance _bcp_register 910 increment(_bcp_register, step); 911 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll); 912 } 913 914 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) { 915 // load current bytecode 916 load_unsigned_byte(rbx, Address(_bcp_register, 0)); 917 dispatch_base(state, table); 918 } 919 920 void InterpreterMacroAssembler::narrow(Register result) { 921 922 // Get method->_constMethod->_result_type 923 movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize)); 924 movptr(rcx, Address(rcx, Method::const_offset())); 925 load_unsigned_byte(rcx, Address(rcx, ConstMethod::result_type_offset())); 926 927 Label done, notBool, notByte, notChar; 928 929 // common case first 930 cmpl(rcx, T_INT); 931 jcc(Assembler::equal, done); 932 933 // mask integer result to narrower return type. 934 cmpl(rcx, T_BOOLEAN); 935 jcc(Assembler::notEqual, notBool); 936 andl(result, 0x1); 937 jmp(done); 938 939 bind(notBool); 940 cmpl(rcx, T_BYTE); 941 jcc(Assembler::notEqual, notByte); 942 LP64_ONLY(movsbl(result, result);) 943 NOT_LP64(shll(result, 24);) // truncate upper 24 bits 944 NOT_LP64(sarl(result, 24);) // and sign-extend byte 945 jmp(done); 946 947 bind(notByte); 948 cmpl(rcx, T_CHAR); 949 jcc(Assembler::notEqual, notChar); 950 LP64_ONLY(movzwl(result, result);) 951 NOT_LP64(andl(result, 0xFFFF);) // truncate upper 16 bits 952 jmp(done); 953 954 bind(notChar); 955 // cmpl(rcx, T_SHORT); // all that's left 956 // jcc(Assembler::notEqual, done); 957 LP64_ONLY(movswl(result, result);) 958 NOT_LP64(shll(result, 16);) // truncate upper 16 bits 959 NOT_LP64(sarl(result, 16);) // and sign-extend short 960 961 // Nothing to do for T_INT 962 bind(done); 963 } 964 965 // remove activation 966 // 967 // Apply stack watermark barrier. 968 // Unlock the receiver if this is a synchronized method. 969 // Unlock any Java monitors from synchronized blocks. 970 // Remove the activation from the stack. 971 // 972 // If there are locked Java monitors 973 // If throw_monitor_exception 974 // throws IllegalMonitorStateException 975 // Else if install_monitor_exception 976 // installs IllegalMonitorStateException 977 // Else 978 // no error processing 979 void InterpreterMacroAssembler::remove_activation( 980 TosState state, 981 Register ret_addr, 982 bool throw_monitor_exception, 983 bool install_monitor_exception, 984 bool notify_jvmdi) { 985 // Note: Registers rdx xmm0 may be in use for the 986 // result check if synchronized method 987 Label unlocked, unlock, no_unlock; 988 989 const Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx); 990 const Register robj = LP64_ONLY(c_rarg1) NOT_LP64(rdx); 991 const Register rmon = LP64_ONLY(c_rarg1) NOT_LP64(rcx); 992 // monitor pointers need different register 993 // because rdx may have the result in it 994 NOT_LP64(get_thread(rthread);) 995 996 // The below poll is for the stack watermark barrier. It allows fixing up frames lazily, 997 // that would normally not be safe to use. Such bad returns into unsafe territory of 998 // the stack, will call InterpreterRuntime::at_unwind. 999 Label slow_path; 1000 Label fast_path; 1001 safepoint_poll(slow_path, rthread, true /* at_return */, false /* in_nmethod */); 1002 jmp(fast_path); 1003 bind(slow_path); 1004 push(state); 1005 set_last_Java_frame(rthread, noreg, rbp, (address)pc(), rscratch1); 1006 super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), rthread); 1007 NOT_LP64(get_thread(rthread);) // call_VM clobbered it, restore 1008 reset_last_Java_frame(rthread, true); 1009 pop(state); 1010 bind(fast_path); 1011 1012 // get the value of _do_not_unlock_if_synchronized into rdx 1013 const Address do_not_unlock_if_synchronized(rthread, 1014 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); 1015 movbool(rbx, do_not_unlock_if_synchronized); 1016 movbool(do_not_unlock_if_synchronized, false); // reset the flag 1017 1018 // get method access flags 1019 movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize)); 1020 movl(rcx, Address(rcx, Method::access_flags_offset())); 1021 testl(rcx, JVM_ACC_SYNCHRONIZED); 1022 jcc(Assembler::zero, unlocked); 1023 1024 // Don't unlock anything if the _do_not_unlock_if_synchronized flag 1025 // is set. 1026 testbool(rbx); 1027 jcc(Assembler::notZero, no_unlock); 1028 1029 // unlock monitor 1030 push(state); // save result 1031 1032 // BasicObjectLock will be first in list, since this is a 1033 // synchronized method. However, need to check that the object has 1034 // not been unlocked by an explicit monitorexit bytecode. 1035 const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * 1036 wordSize - (int) sizeof(BasicObjectLock)); 1037 // We use c_rarg1/rdx so that if we go slow path it will be the correct 1038 // register for unlock_object to pass to VM directly 1039 lea(robj, monitor); // address of first monitor 1040 1041 movptr(rax, Address(robj, BasicObjectLock::obj_offset_in_bytes())); 1042 testptr(rax, rax); 1043 jcc(Assembler::notZero, unlock); 1044 1045 pop(state); 1046 if (throw_monitor_exception) { 1047 // Entry already unlocked, need to throw exception 1048 NOT_LP64(empty_FPU_stack();) // remove possible return value from FPU-stack, otherwise stack could overflow 1049 call_VM(noreg, CAST_FROM_FN_PTR(address, 1050 InterpreterRuntime::throw_illegal_monitor_state_exception)); 1051 should_not_reach_here(); 1052 } else { 1053 // Monitor already unlocked during a stack unroll. If requested, 1054 // install an illegal_monitor_state_exception. Continue with 1055 // stack unrolling. 1056 if (install_monitor_exception) { 1057 NOT_LP64(empty_FPU_stack();) 1058 call_VM(noreg, CAST_FROM_FN_PTR(address, 1059 InterpreterRuntime::new_illegal_monitor_state_exception)); 1060 } 1061 jmp(unlocked); 1062 } 1063 1064 bind(unlock); 1065 unlock_object(robj); 1066 pop(state); 1067 1068 // Check that for block-structured locking (i.e., that all locked 1069 // objects has been unlocked) 1070 bind(unlocked); 1071 1072 // rax, rdx: Might contain return value 1073 1074 // Check that all monitors are unlocked 1075 { 1076 Label loop, exception, entry, restart; 1077 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; 1078 const Address monitor_block_top( 1079 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 1080 const Address monitor_block_bot( 1081 rbp, frame::interpreter_frame_initial_sp_offset * wordSize); 1082 1083 bind(restart); 1084 // We use c_rarg1 so that if we go slow path it will be the correct 1085 // register for unlock_object to pass to VM directly 1086 movptr(rmon, monitor_block_top); // points to current entry, starting 1087 // with top-most entry 1088 lea(rbx, monitor_block_bot); // points to word before bottom of 1089 // monitor block 1090 jmp(entry); 1091 1092 // Entry already locked, need to throw exception 1093 bind(exception); 1094 1095 if (throw_monitor_exception) { 1096 // Throw exception 1097 NOT_LP64(empty_FPU_stack();) 1098 MacroAssembler::call_VM(noreg, 1099 CAST_FROM_FN_PTR(address, InterpreterRuntime:: 1100 throw_illegal_monitor_state_exception)); 1101 should_not_reach_here(); 1102 } else { 1103 // Stack unrolling. Unlock object and install illegal_monitor_exception. 1104 // Unlock does not block, so don't have to worry about the frame. 1105 // We don't have to preserve c_rarg1 since we are going to throw an exception. 1106 1107 push(state); 1108 mov(robj, rmon); // nop if robj and rmon are the same 1109 unlock_object(robj); 1110 pop(state); 1111 1112 if (install_monitor_exception) { 1113 NOT_LP64(empty_FPU_stack();) 1114 call_VM(noreg, CAST_FROM_FN_PTR(address, 1115 InterpreterRuntime:: 1116 new_illegal_monitor_state_exception)); 1117 } 1118 1119 jmp(restart); 1120 } 1121 1122 bind(loop); 1123 // check if current entry is used 1124 cmpptr(Address(rmon, BasicObjectLock::obj_offset_in_bytes()), NULL_WORD); 1125 jcc(Assembler::notEqual, exception); 1126 1127 addptr(rmon, entry_size); // otherwise advance to next entry 1128 bind(entry); 1129 cmpptr(rmon, rbx); // check if bottom reached 1130 jcc(Assembler::notEqual, loop); // if not at bottom then check this entry 1131 } 1132 1133 bind(no_unlock); 1134 1135 // jvmti support 1136 if (notify_jvmdi) { 1137 notify_method_exit(state, NotifyJVMTI); // preserve TOSCA 1138 } else { 1139 notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA 1140 } 1141 1142 // remove activation 1143 // get sender sp 1144 movptr(rbx, 1145 Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); 1146 if (StackReservedPages > 0) { 1147 // testing if reserved zone needs to be re-enabled 1148 Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx); 1149 Label no_reserved_zone_enabling; 1150 1151 NOT_LP64(get_thread(rthread);) 1152 1153 cmpl(Address(rthread, JavaThread::stack_guard_state_offset()), StackOverflow::stack_guard_enabled); 1154 jcc(Assembler::equal, no_reserved_zone_enabling); 1155 1156 cmpptr(rbx, Address(rthread, JavaThread::reserved_stack_activation_offset())); 1157 jcc(Assembler::lessEqual, no_reserved_zone_enabling); 1158 1159 call_VM_leaf( 1160 CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread); 1161 call_VM(noreg, CAST_FROM_FN_PTR(address, 1162 InterpreterRuntime::throw_delayed_StackOverflowError)); 1163 should_not_reach_here(); 1164 1165 bind(no_reserved_zone_enabling); 1166 } 1167 leave(); // remove frame anchor 1168 pop(ret_addr); // get return address 1169 mov(rsp, rbx); // set sp to sender sp 1170 pop_cont_fastpath(); 1171 } 1172 1173 void InterpreterMacroAssembler::get_method_counters(Register method, 1174 Register mcs, Label& skip) { 1175 Label has_counters; 1176 movptr(mcs, Address(method, Method::method_counters_offset())); 1177 testptr(mcs, mcs); 1178 jcc(Assembler::notZero, has_counters); 1179 call_VM(noreg, CAST_FROM_FN_PTR(address, 1180 InterpreterRuntime::build_method_counters), method); 1181 movptr(mcs, Address(method,Method::method_counters_offset())); 1182 testptr(mcs, mcs); 1183 jcc(Assembler::zero, skip); // No MethodCounters allocated, OutOfMemory 1184 bind(has_counters); 1185 } 1186 1187 1188 // Lock object 1189 // 1190 // Args: 1191 // rdx, c_rarg1: BasicObjectLock to be used for locking 1192 // 1193 // Kills: 1194 // rax, rbx 1195 void InterpreterMacroAssembler::lock_object(Register lock_reg) { 1196 assert(lock_reg == LP64_ONLY(c_rarg1) NOT_LP64(rdx), 1197 "The argument is only for looks. It must be c_rarg1"); 1198 1199 if (UseHeavyMonitors) { 1200 call_VM(noreg, 1201 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 1202 lock_reg); 1203 } else { 1204 Label count_locking, done, slow_case; 1205 1206 const Register swap_reg = rax; // Must use rax for cmpxchg instruction 1207 const Register tmp_reg = rbx; 1208 const Register obj_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // Will contain the oop 1209 const Register rklass_decode_tmp = rscratch1; 1210 1211 const int obj_offset = BasicObjectLock::obj_offset_in_bytes(); 1212 const int lock_offset = BasicObjectLock::lock_offset_in_bytes (); 1213 const int mark_offset = lock_offset + 1214 BasicLock::displaced_header_offset_in_bytes(); 1215 1216 // Load object pointer into obj_reg 1217 movptr(obj_reg, Address(lock_reg, obj_offset)); 1218 1219 if (DiagnoseSyncOnValueBasedClasses != 0) { 1220 load_klass(tmp_reg, obj_reg, rklass_decode_tmp); 1221 movl(tmp_reg, Address(tmp_reg, Klass::access_flags_offset())); 1222 testl(tmp_reg, JVM_ACC_IS_VALUE_BASED_CLASS); 1223 jcc(Assembler::notZero, slow_case); 1224 } 1225 1226 // Load immediate 1 into swap_reg %rax 1227 movl(swap_reg, 1); 1228 1229 // Load (object->mark() | 1) into swap_reg %rax 1230 orptr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1231 1232 // Save (object->mark() | 1) into BasicLock's displaced header 1233 movptr(Address(lock_reg, mark_offset), swap_reg); 1234 1235 assert(lock_offset == 0, 1236 "displaced header must be first word in BasicObjectLock"); 1237 1238 lock(); 1239 cmpxchgptr(lock_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1240 jcc(Assembler::zero, count_locking); 1241 1242 const int zero_bits = LP64_ONLY(7) NOT_LP64(3); 1243 1244 // Fast check for recursive lock. 1245 // 1246 // Can apply the optimization only if this is a stack lock 1247 // allocated in this thread. For efficiency, we can focus on 1248 // recently allocated stack locks (instead of reading the stack 1249 // base and checking whether 'mark' points inside the current 1250 // thread stack): 1251 // 1) (mark & zero_bits) == 0, and 1252 // 2) rsp <= mark < mark + os::pagesize() 1253 // 1254 // Warning: rsp + os::pagesize can overflow the stack base. We must 1255 // neither apply the optimization for an inflated lock allocated 1256 // just above the thread stack (this is why condition 1 matters) 1257 // nor apply the optimization if the stack lock is inside the stack 1258 // of another thread. The latter is avoided even in case of overflow 1259 // because we have guard pages at the end of all stacks. Hence, if 1260 // we go over the stack base and hit the stack of another thread, 1261 // this should not be in a writeable area that could contain a 1262 // stack lock allocated by that thread. As a consequence, a stack 1263 // lock less than page size away from rsp is guaranteed to be 1264 // owned by the current thread. 1265 // 1266 // These 3 tests can be done by evaluating the following 1267 // expression: ((mark - rsp) & (zero_bits - os::vm_page_size())), 1268 // assuming both stack pointer and pagesize have their 1269 // least significant bits clear. 1270 // NOTE: the mark is in swap_reg %rax as the result of cmpxchg 1271 subptr(swap_reg, rsp); 1272 andptr(swap_reg, zero_bits - (int)os::vm_page_size()); 1273 1274 // Save the test result, for recursive case, the result is zero 1275 movptr(Address(lock_reg, mark_offset), swap_reg); 1276 jcc(Assembler::notZero, slow_case); 1277 1278 bind(count_locking); 1279 inc_held_monitor_count(); 1280 jmp(done); 1281 1282 bind(slow_case); 1283 1284 // Call the runtime routine for slow case 1285 call_VM(noreg, 1286 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 1287 lock_reg); 1288 1289 bind(done); 1290 } 1291 } 1292 1293 1294 // Unlocks an object. Used in monitorexit bytecode and 1295 // remove_activation. Throws an IllegalMonitorException if object is 1296 // not locked by current thread. 1297 // 1298 // Args: 1299 // rdx, c_rarg1: BasicObjectLock for lock 1300 // 1301 // Kills: 1302 // rax 1303 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs) 1304 // rscratch1 (scratch reg) 1305 // rax, rbx, rcx, rdx 1306 void InterpreterMacroAssembler::unlock_object(Register lock_reg) { 1307 assert(lock_reg == LP64_ONLY(c_rarg1) NOT_LP64(rdx), 1308 "The argument is only for looks. It must be c_rarg1"); 1309 1310 if (UseHeavyMonitors) { 1311 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 1312 } else { 1313 Label count_locking, done, slow_case; 1314 1315 const Register swap_reg = rax; // Must use rax for cmpxchg instruction 1316 const Register header_reg = LP64_ONLY(c_rarg2) NOT_LP64(rbx); // Will contain the old oopMark 1317 const Register obj_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // Will contain the oop 1318 1319 save_bcp(); // Save in case of exception 1320 1321 // Convert from BasicObjectLock structure to object and BasicLock 1322 // structure Store the BasicLock address into %rax 1323 lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes())); 1324 1325 // Load oop into obj_reg(%c_rarg3) 1326 movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes())); 1327 1328 // Free entry 1329 movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), NULL_WORD); 1330 1331 // Load the old header from BasicLock structure 1332 movptr(header_reg, Address(swap_reg, 1333 BasicLock::displaced_header_offset_in_bytes())); 1334 1335 // Test for recursion 1336 testptr(header_reg, header_reg); 1337 1338 // zero for recursive case 1339 jcc(Assembler::zero, count_locking); 1340 1341 // Atomic swap back the old header 1342 lock(); 1343 cmpxchgptr(header_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1344 1345 // zero for simple unlock of a stack-lock case 1346 jcc(Assembler::notZero, slow_case); 1347 1348 bind(count_locking); 1349 dec_held_monitor_count(); 1350 jmp(done); 1351 1352 bind(slow_case); 1353 // Call the runtime routine for slow case. 1354 movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), obj_reg); // restore obj 1355 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 1356 1357 bind(done); 1358 1359 restore_bcp(); 1360 } 1361 } 1362 1363 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, 1364 Label& zero_continue) { 1365 assert(ProfileInterpreter, "must be profiling interpreter"); 1366 movptr(mdp, Address(rbp, frame::interpreter_frame_mdp_offset * wordSize)); 1367 testptr(mdp, mdp); 1368 jcc(Assembler::zero, zero_continue); 1369 } 1370 1371 1372 // Set the method data pointer for the current bcp. 1373 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() { 1374 assert(ProfileInterpreter, "must be profiling interpreter"); 1375 Label set_mdp; 1376 push(rax); 1377 push(rbx); 1378 1379 get_method(rbx); 1380 // Test MDO to avoid the call if it is NULL. 1381 movptr(rax, Address(rbx, in_bytes(Method::method_data_offset()))); 1382 testptr(rax, rax); 1383 jcc(Assembler::zero, set_mdp); 1384 // rbx: method 1385 // _bcp_register: bcp 1386 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, _bcp_register); 1387 // rax: mdi 1388 // mdo is guaranteed to be non-zero here, we checked for it before the call. 1389 movptr(rbx, Address(rbx, in_bytes(Method::method_data_offset()))); 1390 addptr(rbx, in_bytes(MethodData::data_offset())); 1391 addptr(rax, rbx); 1392 bind(set_mdp); 1393 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), rax); 1394 pop(rbx); 1395 pop(rax); 1396 } 1397 1398 void InterpreterMacroAssembler::verify_method_data_pointer() { 1399 assert(ProfileInterpreter, "must be profiling interpreter"); 1400 #ifdef ASSERT 1401 Label verify_continue; 1402 push(rax); 1403 push(rbx); 1404 Register arg3_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 1405 Register arg2_reg = LP64_ONLY(c_rarg2) NOT_LP64(rdx); 1406 push(arg3_reg); 1407 push(arg2_reg); 1408 test_method_data_pointer(arg3_reg, verify_continue); // If mdp is zero, continue 1409 get_method(rbx); 1410 1411 // If the mdp is valid, it will point to a DataLayout header which is 1412 // consistent with the bcp. The converse is highly probable also. 1413 load_unsigned_short(arg2_reg, 1414 Address(arg3_reg, in_bytes(DataLayout::bci_offset()))); 1415 addptr(arg2_reg, Address(rbx, Method::const_offset())); 1416 lea(arg2_reg, Address(arg2_reg, ConstMethod::codes_offset())); 1417 cmpptr(arg2_reg, _bcp_register); 1418 jcc(Assembler::equal, verify_continue); 1419 // rbx: method 1420 // _bcp_register: bcp 1421 // c_rarg3: mdp 1422 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), 1423 rbx, _bcp_register, arg3_reg); 1424 bind(verify_continue); 1425 pop(arg2_reg); 1426 pop(arg3_reg); 1427 pop(rbx); 1428 pop(rax); 1429 #endif // ASSERT 1430 } 1431 1432 1433 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, 1434 int constant, 1435 Register value) { 1436 assert(ProfileInterpreter, "must be profiling interpreter"); 1437 Address data(mdp_in, constant); 1438 movptr(data, value); 1439 } 1440 1441 1442 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 1443 int constant, 1444 bool decrement) { 1445 // Counter address 1446 Address data(mdp_in, constant); 1447 1448 increment_mdp_data_at(data, decrement); 1449 } 1450 1451 void InterpreterMacroAssembler::increment_mdp_data_at(Address data, 1452 bool decrement) { 1453 assert(ProfileInterpreter, "must be profiling interpreter"); 1454 // %%% this does 64bit counters at best it is wasting space 1455 // at worst it is a rare bug when counters overflow 1456 1457 if (decrement) { 1458 // Decrement the register. Set condition codes. 1459 addptr(data, -DataLayout::counter_increment); 1460 // If the decrement causes the counter to overflow, stay negative 1461 Label L; 1462 jcc(Assembler::negative, L); 1463 addptr(data, DataLayout::counter_increment); 1464 bind(L); 1465 } else { 1466 assert(DataLayout::counter_increment == 1, 1467 "flow-free idiom only works with 1"); 1468 // Increment the register. Set carry flag. 1469 addptr(data, DataLayout::counter_increment); 1470 // If the increment causes the counter to overflow, pull back by 1. 1471 sbbptr(data, 0); 1472 } 1473 } 1474 1475 1476 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 1477 Register reg, 1478 int constant, 1479 bool decrement) { 1480 Address data(mdp_in, reg, Address::times_1, constant); 1481 1482 increment_mdp_data_at(data, decrement); 1483 } 1484 1485 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, 1486 int flag_byte_constant) { 1487 assert(ProfileInterpreter, "must be profiling interpreter"); 1488 int header_offset = in_bytes(DataLayout::flags_offset()); 1489 int header_bits = flag_byte_constant; 1490 // Set the flag 1491 orb(Address(mdp_in, header_offset), header_bits); 1492 } 1493 1494 1495 1496 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in, 1497 int offset, 1498 Register value, 1499 Register test_value_out, 1500 Label& not_equal_continue) { 1501 assert(ProfileInterpreter, "must be profiling interpreter"); 1502 if (test_value_out == noreg) { 1503 cmpptr(value, Address(mdp_in, offset)); 1504 } else { 1505 // Put the test value into a register, so caller can use it: 1506 movptr(test_value_out, Address(mdp_in, offset)); 1507 cmpptr(test_value_out, value); 1508 } 1509 jcc(Assembler::notEqual, not_equal_continue); 1510 } 1511 1512 1513 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1514 int offset_of_disp) { 1515 assert(ProfileInterpreter, "must be profiling interpreter"); 1516 Address disp_address(mdp_in, offset_of_disp); 1517 addptr(mdp_in, disp_address); 1518 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in); 1519 } 1520 1521 1522 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1523 Register reg, 1524 int offset_of_disp) { 1525 assert(ProfileInterpreter, "must be profiling interpreter"); 1526 Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp); 1527 addptr(mdp_in, disp_address); 1528 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in); 1529 } 1530 1531 1532 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, 1533 int constant) { 1534 assert(ProfileInterpreter, "must be profiling interpreter"); 1535 addptr(mdp_in, constant); 1536 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in); 1537 } 1538 1539 1540 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) { 1541 assert(ProfileInterpreter, "must be profiling interpreter"); 1542 push(return_bci); // save/restore across call_VM 1543 call_VM(noreg, 1544 CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), 1545 return_bci); 1546 pop(return_bci); 1547 } 1548 1549 1550 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, 1551 Register bumped_count) { 1552 if (ProfileInterpreter) { 1553 Label profile_continue; 1554 1555 // If no method data exists, go to profile_continue. 1556 // Otherwise, assign to mdp 1557 test_method_data_pointer(mdp, profile_continue); 1558 1559 // We are taking a branch. Increment the taken count. 1560 // We inline increment_mdp_data_at to return bumped_count in a register 1561 //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset())); 1562 Address data(mdp, in_bytes(JumpData::taken_offset())); 1563 movptr(bumped_count, data); 1564 assert(DataLayout::counter_increment == 1, 1565 "flow-free idiom only works with 1"); 1566 addptr(bumped_count, DataLayout::counter_increment); 1567 sbbptr(bumped_count, 0); 1568 movptr(data, bumped_count); // Store back out 1569 1570 // The method data pointer needs to be updated to reflect the new target. 1571 update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset())); 1572 bind(profile_continue); 1573 } 1574 } 1575 1576 1577 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) { 1578 if (ProfileInterpreter) { 1579 Label profile_continue; 1580 1581 // If no method data exists, go to profile_continue. 1582 test_method_data_pointer(mdp, profile_continue); 1583 1584 // We are taking a branch. Increment the not taken count. 1585 increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset())); 1586 1587 // The method data pointer needs to be updated to correspond to 1588 // the next bytecode 1589 update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size())); 1590 bind(profile_continue); 1591 } 1592 } 1593 1594 void InterpreterMacroAssembler::profile_call(Register mdp) { 1595 if (ProfileInterpreter) { 1596 Label profile_continue; 1597 1598 // If no method data exists, go to profile_continue. 1599 test_method_data_pointer(mdp, profile_continue); 1600 1601 // We are making a call. Increment the count. 1602 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1603 1604 // The method data pointer needs to be updated to reflect the new target. 1605 update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size())); 1606 bind(profile_continue); 1607 } 1608 } 1609 1610 1611 void InterpreterMacroAssembler::profile_final_call(Register mdp) { 1612 if (ProfileInterpreter) { 1613 Label profile_continue; 1614 1615 // If no method data exists, go to profile_continue. 1616 test_method_data_pointer(mdp, profile_continue); 1617 1618 // We are making a call. Increment the count. 1619 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1620 1621 // The method data pointer needs to be updated to reflect the new target. 1622 update_mdp_by_constant(mdp, 1623 in_bytes(VirtualCallData:: 1624 virtual_call_data_size())); 1625 bind(profile_continue); 1626 } 1627 } 1628 1629 1630 void InterpreterMacroAssembler::profile_virtual_call(Register receiver, 1631 Register mdp, 1632 Register reg2, 1633 bool receiver_can_be_null) { 1634 if (ProfileInterpreter) { 1635 Label profile_continue; 1636 1637 // If no method data exists, go to profile_continue. 1638 test_method_data_pointer(mdp, profile_continue); 1639 1640 Label skip_receiver_profile; 1641 if (receiver_can_be_null) { 1642 Label not_null; 1643 testptr(receiver, receiver); 1644 jccb(Assembler::notZero, not_null); 1645 // We are making a call. Increment the count for null receiver. 1646 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1647 jmp(skip_receiver_profile); 1648 bind(not_null); 1649 } 1650 1651 // Record the receiver type. 1652 record_klass_in_profile(receiver, mdp, reg2, true); 1653 bind(skip_receiver_profile); 1654 1655 // The method data pointer needs to be updated to reflect the new target. 1656 update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size())); 1657 bind(profile_continue); 1658 } 1659 } 1660 1661 // This routine creates a state machine for updating the multi-row 1662 // type profile at a virtual call site (or other type-sensitive bytecode). 1663 // The machine visits each row (of receiver/count) until the receiver type 1664 // is found, or until it runs out of rows. At the same time, it remembers 1665 // the location of the first empty row. (An empty row records null for its 1666 // receiver, and can be allocated for a newly-observed receiver type.) 1667 // Because there are two degrees of freedom in the state, a simple linear 1668 // search will not work; it must be a decision tree. Hence this helper 1669 // function is recursive, to generate the required tree structured code. 1670 // It's the interpreter, so we are trading off code space for speed. 1671 // See below for example code. 1672 void InterpreterMacroAssembler::record_klass_in_profile_helper( 1673 Register receiver, Register mdp, 1674 Register reg2, int start_row, 1675 Label& done, bool is_virtual_call) { 1676 if (TypeProfileWidth == 0) { 1677 if (is_virtual_call) { 1678 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1679 } 1680 #if INCLUDE_JVMCI 1681 else if (EnableJVMCI) { 1682 increment_mdp_data_at(mdp, in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset())); 1683 } 1684 #endif // INCLUDE_JVMCI 1685 } else { 1686 int non_profiled_offset = -1; 1687 if (is_virtual_call) { 1688 non_profiled_offset = in_bytes(CounterData::count_offset()); 1689 } 1690 #if INCLUDE_JVMCI 1691 else if (EnableJVMCI) { 1692 non_profiled_offset = in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset()); 1693 } 1694 #endif // INCLUDE_JVMCI 1695 1696 record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth, 1697 &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset, non_profiled_offset); 1698 } 1699 } 1700 1701 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp, 1702 Register reg2, int start_row, Label& done, int total_rows, 1703 OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn, 1704 int non_profiled_offset) { 1705 int last_row = total_rows - 1; 1706 assert(start_row <= last_row, "must be work left to do"); 1707 // Test this row for both the item and for null. 1708 // Take any of three different outcomes: 1709 // 1. found item => increment count and goto done 1710 // 2. found null => keep looking for case 1, maybe allocate this cell 1711 // 3. found something else => keep looking for cases 1 and 2 1712 // Case 3 is handled by a recursive call. 1713 for (int row = start_row; row <= last_row; row++) { 1714 Label next_test; 1715 bool test_for_null_also = (row == start_row); 1716 1717 // See if the item is item[n]. 1718 int item_offset = in_bytes(item_offset_fn(row)); 1719 test_mdp_data_at(mdp, item_offset, item, 1720 (test_for_null_also ? reg2 : noreg), 1721 next_test); 1722 // (Reg2 now contains the item from the CallData.) 1723 1724 // The item is item[n]. Increment count[n]. 1725 int count_offset = in_bytes(item_count_offset_fn(row)); 1726 increment_mdp_data_at(mdp, count_offset); 1727 jmp(done); 1728 bind(next_test); 1729 1730 if (test_for_null_also) { 1731 // Failed the equality check on item[n]... Test for null. 1732 testptr(reg2, reg2); 1733 if (start_row == last_row) { 1734 // The only thing left to do is handle the null case. 1735 if (non_profiled_offset >= 0) { 1736 Label found_null; 1737 jccb(Assembler::zero, found_null); 1738 // Item did not match any saved item and there is no empty row for it. 1739 // Increment total counter to indicate polymorphic case. 1740 increment_mdp_data_at(mdp, non_profiled_offset); 1741 jmp(done); 1742 bind(found_null); 1743 } else { 1744 jcc(Assembler::notZero, done); 1745 } 1746 break; 1747 } 1748 Label found_null; 1749 // Since null is rare, make it be the branch-taken case. 1750 jcc(Assembler::zero, found_null); 1751 1752 // Put all the "Case 3" tests here. 1753 record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows, 1754 item_offset_fn, item_count_offset_fn, non_profiled_offset); 1755 1756 // Found a null. Keep searching for a matching item, 1757 // but remember that this is an empty (unused) slot. 1758 bind(found_null); 1759 } 1760 } 1761 1762 // In the fall-through case, we found no matching item, but we 1763 // observed the item[start_row] is NULL. 1764 1765 // Fill in the item field and increment the count. 1766 int item_offset = in_bytes(item_offset_fn(start_row)); 1767 set_mdp_data_at(mdp, item_offset, item); 1768 int count_offset = in_bytes(item_count_offset_fn(start_row)); 1769 movl(reg2, DataLayout::counter_increment); 1770 set_mdp_data_at(mdp, count_offset, reg2); 1771 if (start_row > 0) { 1772 jmp(done); 1773 } 1774 } 1775 1776 // Example state machine code for three profile rows: 1777 // // main copy of decision tree, rooted at row[1] 1778 // if (row[0].rec == rec) { row[0].incr(); goto done; } 1779 // if (row[0].rec != NULL) { 1780 // // inner copy of decision tree, rooted at row[1] 1781 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1782 // if (row[1].rec != NULL) { 1783 // // degenerate decision tree, rooted at row[2] 1784 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1785 // if (row[2].rec != NULL) { count.incr(); goto done; } // overflow 1786 // row[2].init(rec); goto done; 1787 // } else { 1788 // // remember row[1] is empty 1789 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1790 // row[1].init(rec); goto done; 1791 // } 1792 // } else { 1793 // // remember row[0] is empty 1794 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1795 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1796 // row[0].init(rec); goto done; 1797 // } 1798 // done: 1799 1800 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver, 1801 Register mdp, Register reg2, 1802 bool is_virtual_call) { 1803 assert(ProfileInterpreter, "must be profiling"); 1804 Label done; 1805 1806 record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call); 1807 1808 bind (done); 1809 } 1810 1811 void InterpreterMacroAssembler::profile_ret(Register return_bci, 1812 Register mdp) { 1813 if (ProfileInterpreter) { 1814 Label profile_continue; 1815 uint row; 1816 1817 // If no method data exists, go to profile_continue. 1818 test_method_data_pointer(mdp, profile_continue); 1819 1820 // Update the total ret count. 1821 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1822 1823 for (row = 0; row < RetData::row_limit(); row++) { 1824 Label next_test; 1825 1826 // See if return_bci is equal to bci[n]: 1827 test_mdp_data_at(mdp, 1828 in_bytes(RetData::bci_offset(row)), 1829 return_bci, noreg, 1830 next_test); 1831 1832 // return_bci is equal to bci[n]. Increment the count. 1833 increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row))); 1834 1835 // The method data pointer needs to be updated to reflect the new target. 1836 update_mdp_by_offset(mdp, 1837 in_bytes(RetData::bci_displacement_offset(row))); 1838 jmp(profile_continue); 1839 bind(next_test); 1840 } 1841 1842 update_mdp_for_ret(return_bci); 1843 1844 bind(profile_continue); 1845 } 1846 } 1847 1848 1849 void InterpreterMacroAssembler::profile_null_seen(Register mdp) { 1850 if (ProfileInterpreter) { 1851 Label profile_continue; 1852 1853 // If no method data exists, go to profile_continue. 1854 test_method_data_pointer(mdp, profile_continue); 1855 1856 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant()); 1857 1858 // The method data pointer needs to be updated. 1859 int mdp_delta = in_bytes(BitData::bit_data_size()); 1860 if (TypeProfileCasts) { 1861 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1862 } 1863 update_mdp_by_constant(mdp, mdp_delta); 1864 1865 bind(profile_continue); 1866 } 1867 } 1868 1869 1870 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) { 1871 if (ProfileInterpreter && TypeProfileCasts) { 1872 Label profile_continue; 1873 1874 // If no method data exists, go to profile_continue. 1875 test_method_data_pointer(mdp, profile_continue); 1876 1877 int count_offset = in_bytes(CounterData::count_offset()); 1878 // Back up the address, since we have already bumped the mdp. 1879 count_offset -= in_bytes(VirtualCallData::virtual_call_data_size()); 1880 1881 // *Decrement* the counter. We expect to see zero or small negatives. 1882 increment_mdp_data_at(mdp, count_offset, true); 1883 1884 bind (profile_continue); 1885 } 1886 } 1887 1888 1889 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) { 1890 if (ProfileInterpreter) { 1891 Label profile_continue; 1892 1893 // If no method data exists, go to profile_continue. 1894 test_method_data_pointer(mdp, profile_continue); 1895 1896 // The method data pointer needs to be updated. 1897 int mdp_delta = in_bytes(BitData::bit_data_size()); 1898 if (TypeProfileCasts) { 1899 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1900 1901 // Record the object type. 1902 record_klass_in_profile(klass, mdp, reg2, false); 1903 NOT_LP64(assert(reg2 == rdi, "we know how to fix this blown reg");) 1904 NOT_LP64(restore_locals();) // Restore EDI 1905 } 1906 update_mdp_by_constant(mdp, mdp_delta); 1907 1908 bind(profile_continue); 1909 } 1910 } 1911 1912 1913 void InterpreterMacroAssembler::profile_switch_default(Register mdp) { 1914 if (ProfileInterpreter) { 1915 Label profile_continue; 1916 1917 // If no method data exists, go to profile_continue. 1918 test_method_data_pointer(mdp, profile_continue); 1919 1920 // Update the default case count 1921 increment_mdp_data_at(mdp, 1922 in_bytes(MultiBranchData::default_count_offset())); 1923 1924 // The method data pointer needs to be updated. 1925 update_mdp_by_offset(mdp, 1926 in_bytes(MultiBranchData:: 1927 default_displacement_offset())); 1928 1929 bind(profile_continue); 1930 } 1931 } 1932 1933 1934 void InterpreterMacroAssembler::profile_switch_case(Register index, 1935 Register mdp, 1936 Register reg2) { 1937 if (ProfileInterpreter) { 1938 Label profile_continue; 1939 1940 // If no method data exists, go to profile_continue. 1941 test_method_data_pointer(mdp, profile_continue); 1942 1943 // Build the base (index * per_case_size_in_bytes()) + 1944 // case_array_offset_in_bytes() 1945 movl(reg2, in_bytes(MultiBranchData::per_case_size())); 1946 imulptr(index, reg2); // XXX l ? 1947 addptr(index, in_bytes(MultiBranchData::case_array_offset())); // XXX l ? 1948 1949 // Update the case count 1950 increment_mdp_data_at(mdp, 1951 index, 1952 in_bytes(MultiBranchData::relative_count_offset())); 1953 1954 // The method data pointer needs to be updated. 1955 update_mdp_by_offset(mdp, 1956 index, 1957 in_bytes(MultiBranchData:: 1958 relative_displacement_offset())); 1959 1960 bind(profile_continue); 1961 } 1962 } 1963 1964 1965 1966 void InterpreterMacroAssembler::_interp_verify_oop(Register reg, TosState state, const char* file, int line) { 1967 if (state == atos) { 1968 MacroAssembler::_verify_oop_checked(reg, "broken oop", file, line); 1969 } 1970 } 1971 1972 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) { 1973 #ifndef _LP64 1974 if ((state == ftos && UseSSE < 1) || 1975 (state == dtos && UseSSE < 2)) { 1976 MacroAssembler::verify_FPU(stack_depth); 1977 } 1978 #endif 1979 } 1980 1981 // Jump if ((*counter_addr += increment) & mask) == 0 1982 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr, Address mask, 1983 Register scratch, Label* where) { 1984 // This update is actually not atomic and can lose a number of updates 1985 // under heavy contention, but the alternative of using the (contended) 1986 // atomic update here penalizes profiling paths too much. 1987 movl(scratch, counter_addr); 1988 incrementl(scratch, InvocationCounter::count_increment); 1989 movl(counter_addr, scratch); 1990 andl(scratch, mask); 1991 if (where != NULL) { 1992 jcc(Assembler::zero, *where); 1993 } 1994 } 1995 1996 void InterpreterMacroAssembler::notify_method_entry() { 1997 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1998 // track stack depth. If it is possible to enter interp_only_mode we add 1999 // the code to check if the event should be sent. 2000 Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx); 2001 Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rbx); 2002 if (JvmtiExport::can_post_interpreter_events()) { 2003 Label L; 2004 NOT_LP64(get_thread(rthread);) 2005 movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset())); 2006 testl(rdx, rdx); 2007 jcc(Assembler::zero, L); 2008 call_VM(noreg, CAST_FROM_FN_PTR(address, 2009 InterpreterRuntime::post_method_entry)); 2010 bind(L); 2011 } 2012 2013 { 2014 SkipIfEqual skip(this, &DTraceMethodProbes, false, rscratch1); 2015 NOT_LP64(get_thread(rthread);) 2016 get_method(rarg); 2017 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), 2018 rthread, rarg); 2019 } 2020 2021 // RedefineClasses() tracing support for obsolete method entry 2022 if (log_is_enabled(Trace, redefine, class, obsolete)) { 2023 NOT_LP64(get_thread(rthread);) 2024 get_method(rarg); 2025 call_VM_leaf( 2026 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), 2027 rthread, rarg); 2028 } 2029 } 2030 2031 2032 void InterpreterMacroAssembler::notify_method_exit( 2033 TosState state, NotifyMethodExitMode mode) { 2034 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 2035 // track stack depth. If it is possible to enter interp_only_mode we add 2036 // the code to check if the event should be sent. 2037 Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx); 2038 Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rbx); 2039 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) { 2040 Label L; 2041 // Note: frame::interpreter_frame_result has a dependency on how the 2042 // method result is saved across the call to post_method_exit. If this 2043 // is changed then the interpreter_frame_result implementation will 2044 // need to be updated too. 2045 2046 // template interpreter will leave the result on the top of the stack. 2047 push(state); 2048 NOT_LP64(get_thread(rthread);) 2049 movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset())); 2050 testl(rdx, rdx); 2051 jcc(Assembler::zero, L); 2052 call_VM(noreg, 2053 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit)); 2054 bind(L); 2055 pop(state); 2056 } 2057 2058 { 2059 SkipIfEqual skip(this, &DTraceMethodProbes, false, rscratch1); 2060 push(state); 2061 NOT_LP64(get_thread(rthread);) 2062 get_method(rarg); 2063 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 2064 rthread, rarg); 2065 pop(state); 2066 } 2067 }