1 /* 2 * Copyright (c) 1997, 2022, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "compiler/compiler_globals.hpp" 27 #include "interp_masm_x86.hpp" 28 #include "interpreter/interpreter.hpp" 29 #include "interpreter/interpreterRuntime.hpp" 30 #include "logging/log.hpp" 31 #include "oops/arrayOop.hpp" 32 #include "oops/markWord.hpp" 33 #include "oops/methodData.hpp" 34 #include "oops/method.hpp" 35 #include "prims/jvmtiExport.hpp" 36 #include "prims/jvmtiThreadState.hpp" 37 #include "runtime/basicLock.hpp" 38 #include "runtime/frame.inline.hpp" 39 #include "runtime/safepointMechanism.hpp" 40 #include "runtime/sharedRuntime.hpp" 41 #include "runtime/thread.inline.hpp" 42 #include "utilities/powerOfTwo.hpp" 43 44 // Implementation of InterpreterMacroAssembler 45 46 void InterpreterMacroAssembler::jump_to_entry(address entry) { 47 assert(entry, "Entry must have been generated by now"); 48 jump(RuntimeAddress(entry)); 49 } 50 51 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) { 52 Label update, next, none; 53 54 interp_verify_oop(obj, atos); 55 56 testptr(obj, obj); 57 jccb(Assembler::notZero, update); 58 orptr(mdo_addr, TypeEntries::null_seen); 59 jmpb(next); 60 61 bind(update); 62 Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg); 63 load_klass(obj, obj, tmp_load_klass); 64 65 xorptr(obj, mdo_addr); 66 testptr(obj, TypeEntries::type_klass_mask); 67 jccb(Assembler::zero, next); // klass seen before, nothing to 68 // do. The unknown bit may have been 69 // set already but no need to check. 70 71 testptr(obj, TypeEntries::type_unknown); 72 jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore. 73 74 cmpptr(mdo_addr, 0); 75 jccb(Assembler::equal, none); 76 cmpptr(mdo_addr, TypeEntries::null_seen); 77 jccb(Assembler::equal, none); 78 // There is a chance that the checks above (re-reading profiling 79 // data from memory) fail if another thread has just set the 80 // profiling to this obj's klass 81 xorptr(obj, mdo_addr); 82 testptr(obj, TypeEntries::type_klass_mask); 83 jccb(Assembler::zero, next); 84 85 // different than before. Cannot keep accurate profile. 86 orptr(mdo_addr, TypeEntries::type_unknown); 87 jmpb(next); 88 89 bind(none); 90 // first time here. Set profile type. 91 movptr(mdo_addr, obj); 92 93 bind(next); 94 } 95 96 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) { 97 if (!ProfileInterpreter) { 98 return; 99 } 100 101 if (MethodData::profile_arguments() || MethodData::profile_return()) { 102 Label profile_continue; 103 104 test_method_data_pointer(mdp, profile_continue); 105 106 int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size()); 107 108 cmpb(Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start), is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag); 109 jcc(Assembler::notEqual, profile_continue); 110 111 if (MethodData::profile_arguments()) { 112 Label done; 113 int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset()); 114 addptr(mdp, off_to_args); 115 116 for (int i = 0; i < TypeProfileArgsLimit; i++) { 117 if (i > 0 || MethodData::profile_return()) { 118 // If return value type is profiled we may have no argument to profile 119 movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args)); 120 subl(tmp, i*TypeStackSlotEntries::per_arg_count()); 121 cmpl(tmp, TypeStackSlotEntries::per_arg_count()); 122 jcc(Assembler::less, done); 123 } 124 movptr(tmp, Address(callee, Method::const_offset())); 125 load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset())); 126 // stack offset o (zero based) from the start of the argument 127 // list, for n arguments translates into offset n - o - 1 from 128 // the end of the argument list 129 subptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args)); 130 subl(tmp, 1); 131 Address arg_addr = argument_address(tmp); 132 movptr(tmp, arg_addr); 133 134 Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args); 135 profile_obj_type(tmp, mdo_arg_addr); 136 137 int to_add = in_bytes(TypeStackSlotEntries::per_arg_size()); 138 addptr(mdp, to_add); 139 off_to_args += to_add; 140 } 141 142 if (MethodData::profile_return()) { 143 movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args)); 144 subl(tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count()); 145 } 146 147 bind(done); 148 149 if (MethodData::profile_return()) { 150 // We're right after the type profile for the last 151 // argument. tmp is the number of cells left in the 152 // CallTypeData/VirtualCallTypeData to reach its end. Non null 153 // if there's a return to profile. 154 assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type"); 155 shll(tmp, log2i_exact((int)DataLayout::cell_size)); 156 addptr(mdp, tmp); 157 } 158 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp); 159 } else { 160 assert(MethodData::profile_return(), "either profile call args or call ret"); 161 update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size())); 162 } 163 164 // mdp points right after the end of the 165 // CallTypeData/VirtualCallTypeData, right after the cells for the 166 // return value type if there's one 167 168 bind(profile_continue); 169 } 170 } 171 172 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) { 173 assert_different_registers(mdp, ret, tmp, _bcp_register); 174 if (ProfileInterpreter && MethodData::profile_return()) { 175 Label profile_continue; 176 177 test_method_data_pointer(mdp, profile_continue); 178 179 if (MethodData::profile_return_jsr292_only()) { 180 assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2"); 181 182 // If we don't profile all invoke bytecodes we must make sure 183 // it's a bytecode we indeed profile. We can't go back to the 184 // beginning of the ProfileData we intend to update to check its 185 // type because we're right after it and we don't known its 186 // length 187 Label do_profile; 188 cmpb(Address(_bcp_register, 0), Bytecodes::_invokedynamic); 189 jcc(Assembler::equal, do_profile); 190 cmpb(Address(_bcp_register, 0), Bytecodes::_invokehandle); 191 jcc(Assembler::equal, do_profile); 192 get_method(tmp); 193 cmpw(Address(tmp, Method::intrinsic_id_offset_in_bytes()), static_cast<int>(vmIntrinsics::_compiledLambdaForm)); 194 jcc(Assembler::notEqual, profile_continue); 195 196 bind(do_profile); 197 } 198 199 Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size())); 200 mov(tmp, ret); 201 profile_obj_type(tmp, mdo_ret_addr); 202 203 bind(profile_continue); 204 } 205 } 206 207 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) { 208 if (ProfileInterpreter && MethodData::profile_parameters()) { 209 Label profile_continue; 210 211 test_method_data_pointer(mdp, profile_continue); 212 213 // Load the offset of the area within the MDO used for 214 // parameters. If it's negative we're not profiling any parameters 215 movl(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()))); 216 testl(tmp1, tmp1); 217 jcc(Assembler::negative, profile_continue); 218 219 // Compute a pointer to the area for parameters from the offset 220 // and move the pointer to the slot for the last 221 // parameters. Collect profiling from last parameter down. 222 // mdo start + parameters offset + array length - 1 223 addptr(mdp, tmp1); 224 movptr(tmp1, Address(mdp, ArrayData::array_len_offset())); 225 decrement(tmp1, TypeStackSlotEntries::per_arg_count()); 226 227 Label loop; 228 bind(loop); 229 230 int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0)); 231 int type_base = in_bytes(ParametersTypeData::type_offset(0)); 232 Address::ScaleFactor per_arg_scale = Address::times(DataLayout::cell_size); 233 Address arg_off(mdp, tmp1, per_arg_scale, off_base); 234 Address arg_type(mdp, tmp1, per_arg_scale, type_base); 235 236 // load offset on the stack from the slot for this parameter 237 movptr(tmp2, arg_off); 238 negptr(tmp2); 239 // read the parameter from the local area 240 movptr(tmp2, Address(_locals_register, tmp2, Interpreter::stackElementScale())); 241 242 // profile the parameter 243 profile_obj_type(tmp2, arg_type); 244 245 // go to next parameter 246 decrement(tmp1, TypeStackSlotEntries::per_arg_count()); 247 jcc(Assembler::positive, loop); 248 249 bind(profile_continue); 250 } 251 } 252 253 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point, 254 int number_of_arguments) { 255 // interpreter specific 256 // 257 // Note: No need to save/restore bcp & locals registers 258 // since these are callee saved registers and no blocking/ 259 // GC can happen in leaf calls. 260 // Further Note: DO NOT save/restore bcp/locals. If a caller has 261 // already saved them so that it can use rsi/rdi as temporaries 262 // then a save/restore here will DESTROY the copy the caller 263 // saved! There used to be a save_bcp() that only happened in 264 // the ASSERT path (no restore_bcp). Which caused bizarre failures 265 // when jvm built with ASSERTs. 266 #ifdef ASSERT 267 { 268 Label L; 269 cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD); 270 jcc(Assembler::equal, L); 271 stop("InterpreterMacroAssembler::call_VM_leaf_base:" 272 " last_sp != NULL"); 273 bind(L); 274 } 275 #endif 276 // super call 277 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); 278 // interpreter specific 279 // LP64: Used to ASSERT that r13/r14 were equal to frame's bcp/locals 280 // but since they may not have been saved (and we don't want to 281 // save them here (see note above) the assert is invalid. 282 } 283 284 void InterpreterMacroAssembler::call_VM_base(Register oop_result, 285 Register java_thread, 286 Register last_java_sp, 287 address entry_point, 288 int number_of_arguments, 289 bool check_exceptions) { 290 // interpreter specific 291 // 292 // Note: Could avoid restoring locals ptr (callee saved) - however doesn't 293 // really make a difference for these runtime calls, since they are 294 // slow anyway. Btw., bcp must be saved/restored since it may change 295 // due to GC. 296 NOT_LP64(assert(java_thread == noreg , "not expecting a precomputed java thread");) 297 save_bcp(); 298 #ifdef ASSERT 299 { 300 Label L; 301 cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD); 302 jcc(Assembler::equal, L); 303 stop("InterpreterMacroAssembler::call_VM_base:" 304 " last_sp != NULL"); 305 bind(L); 306 } 307 #endif /* ASSERT */ 308 // super call 309 MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp, 310 entry_point, number_of_arguments, 311 check_exceptions); 312 // interpreter specific 313 restore_bcp(); 314 restore_locals(); 315 } 316 317 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) { 318 if (JvmtiExport::can_pop_frame()) { 319 Label L; 320 // Initiate popframe handling only if it is not already being 321 // processed. If the flag has the popframe_processing bit set, it 322 // means that this code is called *during* popframe handling - we 323 // don't want to reenter. 324 // This method is only called just after the call into the vm in 325 // call_VM_base, so the arg registers are available. 326 Register pop_cond = NOT_LP64(java_thread) // Not clear if any other register is available on 32 bit 327 LP64_ONLY(c_rarg0); 328 movl(pop_cond, Address(java_thread, JavaThread::popframe_condition_offset())); 329 testl(pop_cond, JavaThread::popframe_pending_bit); 330 jcc(Assembler::zero, L); 331 testl(pop_cond, JavaThread::popframe_processing_bit); 332 jcc(Assembler::notZero, L); 333 // Call Interpreter::remove_activation_preserving_args_entry() to get the 334 // address of the same-named entrypoint in the generated interpreter code. 335 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry)); 336 jmp(rax); 337 bind(L); 338 NOT_LP64(get_thread(java_thread);) 339 } 340 } 341 342 void InterpreterMacroAssembler::load_earlyret_value(TosState state) { 343 Register thread = LP64_ONLY(r15_thread) NOT_LP64(rcx); 344 NOT_LP64(get_thread(thread);) 345 movptr(rcx, Address(thread, JavaThread::jvmti_thread_state_offset())); 346 const Address tos_addr(rcx, JvmtiThreadState::earlyret_tos_offset()); 347 const Address oop_addr(rcx, JvmtiThreadState::earlyret_oop_offset()); 348 const Address val_addr(rcx, JvmtiThreadState::earlyret_value_offset()); 349 #ifdef _LP64 350 switch (state) { 351 case atos: movptr(rax, oop_addr); 352 movptr(oop_addr, (int32_t)NULL_WORD); 353 interp_verify_oop(rax, state); break; 354 case ltos: movptr(rax, val_addr); break; 355 case btos: // fall through 356 case ztos: // fall through 357 case ctos: // fall through 358 case stos: // fall through 359 case itos: movl(rax, val_addr); break; 360 case ftos: load_float(val_addr); break; 361 case dtos: load_double(val_addr); break; 362 case vtos: /* nothing to do */ break; 363 default : ShouldNotReachHere(); 364 } 365 // Clean up tos value in the thread object 366 movl(tos_addr, (int) ilgl); 367 movl(val_addr, (int32_t) NULL_WORD); 368 #else 369 const Address val_addr1(rcx, JvmtiThreadState::earlyret_value_offset() 370 + in_ByteSize(wordSize)); 371 switch (state) { 372 case atos: movptr(rax, oop_addr); 373 movptr(oop_addr, NULL_WORD); 374 interp_verify_oop(rax, state); break; 375 case ltos: 376 movl(rdx, val_addr1); // fall through 377 case btos: // fall through 378 case ztos: // fall through 379 case ctos: // fall through 380 case stos: // fall through 381 case itos: movl(rax, val_addr); break; 382 case ftos: load_float(val_addr); break; 383 case dtos: load_double(val_addr); break; 384 case vtos: /* nothing to do */ break; 385 default : ShouldNotReachHere(); 386 } 387 #endif // _LP64 388 // Clean up tos value in the thread object 389 movl(tos_addr, (int32_t) ilgl); 390 movptr(val_addr, NULL_WORD); 391 NOT_LP64(movptr(val_addr1, NULL_WORD);) 392 } 393 394 395 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) { 396 if (JvmtiExport::can_force_early_return()) { 397 Label L; 398 Register tmp = LP64_ONLY(c_rarg0) NOT_LP64(java_thread); 399 Register rthread = LP64_ONLY(r15_thread) NOT_LP64(java_thread); 400 401 movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset())); 402 testptr(tmp, tmp); 403 jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == NULL) exit; 404 405 // Initiate earlyret handling only if it is not already being processed. 406 // If the flag has the earlyret_processing bit set, it means that this code 407 // is called *during* earlyret handling - we don't want to reenter. 408 movl(tmp, Address(tmp, JvmtiThreadState::earlyret_state_offset())); 409 cmpl(tmp, JvmtiThreadState::earlyret_pending); 410 jcc(Assembler::notEqual, L); 411 412 // Call Interpreter::remove_activation_early_entry() to get the address of the 413 // same-named entrypoint in the generated interpreter code. 414 NOT_LP64(get_thread(java_thread);) 415 movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset())); 416 #ifdef _LP64 417 movl(tmp, Address(tmp, JvmtiThreadState::earlyret_tos_offset())); 418 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), tmp); 419 #else 420 pushl(Address(tmp, JvmtiThreadState::earlyret_tos_offset())); 421 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), 1); 422 #endif // _LP64 423 jmp(rax); 424 bind(L); 425 NOT_LP64(get_thread(java_thread);) 426 } 427 } 428 429 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) { 430 assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode"); 431 load_unsigned_short(reg, Address(_bcp_register, bcp_offset)); 432 bswapl(reg); 433 shrl(reg, 16); 434 } 435 436 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index, 437 int bcp_offset, 438 size_t index_size) { 439 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); 440 if (index_size == sizeof(u2)) { 441 load_unsigned_short(index, Address(_bcp_register, bcp_offset)); 442 } else if (index_size == sizeof(u4)) { 443 movl(index, Address(_bcp_register, bcp_offset)); 444 // Check if the secondary index definition is still ~x, otherwise 445 // we have to change the following assembler code to calculate the 446 // plain index. 447 assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line"); 448 notl(index); // convert to plain index 449 } else if (index_size == sizeof(u1)) { 450 load_unsigned_byte(index, Address(_bcp_register, bcp_offset)); 451 } else { 452 ShouldNotReachHere(); 453 } 454 } 455 456 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, 457 Register index, 458 int bcp_offset, 459 size_t index_size) { 460 assert_different_registers(cache, index); 461 get_cache_index_at_bcp(index, bcp_offset, index_size); 462 movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize)); 463 assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below"); 464 // convert from field index to ConstantPoolCacheEntry index 465 assert(exact_log2(in_words(ConstantPoolCacheEntry::size())) == 2, "else change next line"); 466 shll(index, 2); 467 } 468 469 void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache, 470 Register index, 471 Register bytecode, 472 int byte_no, 473 int bcp_offset, 474 size_t index_size) { 475 get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size); 476 // We use a 32-bit load here since the layout of 64-bit words on 477 // little-endian machines allow us that. 478 movl(bytecode, Address(cache, index, Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset())); 479 const int shift_count = (1 + byte_no) * BitsPerByte; 480 assert((byte_no == TemplateTable::f1_byte && shift_count == ConstantPoolCacheEntry::bytecode_1_shift) || 481 (byte_no == TemplateTable::f2_byte && shift_count == ConstantPoolCacheEntry::bytecode_2_shift), 482 "correct shift count"); 483 shrl(bytecode, shift_count); 484 assert(ConstantPoolCacheEntry::bytecode_1_mask == ConstantPoolCacheEntry::bytecode_2_mask, "common mask"); 485 andl(bytecode, ConstantPoolCacheEntry::bytecode_1_mask); 486 } 487 488 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, 489 Register tmp, 490 int bcp_offset, 491 size_t index_size) { 492 assert_different_registers(cache, tmp); 493 494 get_cache_index_at_bcp(tmp, bcp_offset, index_size); 495 assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below"); 496 // convert from field index to ConstantPoolCacheEntry index 497 // and from word offset to byte offset 498 assert(exact_log2(in_bytes(ConstantPoolCacheEntry::size_in_bytes())) == 2 + LogBytesPerWord, "else change next line"); 499 shll(tmp, 2 + LogBytesPerWord); 500 movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize)); 501 // skip past the header 502 addptr(cache, in_bytes(ConstantPoolCache::base_offset())); 503 addptr(cache, tmp); // construct pointer to cache entry 504 } 505 506 // Load object from cpool->resolved_references(index) 507 void InterpreterMacroAssembler::load_resolved_reference_at_index(Register result, 508 Register index, 509 Register tmp) { 510 assert_different_registers(result, index); 511 512 get_constant_pool(result); 513 // load pointer for resolved_references[] objArray 514 movptr(result, Address(result, ConstantPool::cache_offset_in_bytes())); 515 movptr(result, Address(result, ConstantPoolCache::resolved_references_offset_in_bytes())); 516 resolve_oop_handle(result, tmp); 517 load_heap_oop(result, Address(result, index, 518 UseCompressedOops ? Address::times_4 : Address::times_ptr, 519 arrayOopDesc::base_offset_in_bytes(T_OBJECT)), tmp); 520 } 521 522 // load cpool->resolved_klass_at(index) 523 void InterpreterMacroAssembler::load_resolved_klass_at_index(Register klass, 524 Register cpool, 525 Register index) { 526 assert_different_registers(cpool, index); 527 528 movw(index, Address(cpool, index, Address::times_ptr, sizeof(ConstantPool))); 529 Register resolved_klasses = cpool; 530 movptr(resolved_klasses, Address(cpool, ConstantPool::resolved_klasses_offset_in_bytes())); 531 movptr(klass, Address(resolved_klasses, index, Address::times_ptr, Array<Klass*>::base_offset_in_bytes())); 532 } 533 534 void InterpreterMacroAssembler::load_resolved_method_at_index(int byte_no, 535 Register method, 536 Register cache, 537 Register index) { 538 assert_different_registers(cache, index); 539 540 const int method_offset = in_bytes( 541 ConstantPoolCache::base_offset() + 542 ((byte_no == TemplateTable::f2_byte) 543 ? ConstantPoolCacheEntry::f2_offset() 544 : ConstantPoolCacheEntry::f1_offset())); 545 546 movptr(method, Address(cache, index, Address::times_ptr, method_offset)); // get f1 Method* 547 } 548 549 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a 550 // subtype of super_klass. 551 // 552 // Args: 553 // rax: superklass 554 // Rsub_klass: subklass 555 // 556 // Kills: 557 // rcx, rdi 558 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, 559 Label& ok_is_subtype) { 560 assert(Rsub_klass != rax, "rax holds superklass"); 561 LP64_ONLY(assert(Rsub_klass != r14, "r14 holds locals");) 562 LP64_ONLY(assert(Rsub_klass != r13, "r13 holds bcp");) 563 assert(Rsub_klass != rcx, "rcx holds 2ndary super array length"); 564 assert(Rsub_klass != rdi, "rdi holds 2ndary super array scan ptr"); 565 566 // Profile the not-null value's klass. 567 profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, reloads rdi 568 569 // Do the check. 570 check_klass_subtype(Rsub_klass, rax, rcx, ok_is_subtype); // blows rcx 571 572 // Profile the failure of the check. 573 profile_typecheck_failed(rcx); // blows rcx 574 } 575 576 577 #ifndef _LP64 578 void InterpreterMacroAssembler::f2ieee() { 579 if (IEEEPrecision) { 580 fstp_s(Address(rsp, 0)); 581 fld_s(Address(rsp, 0)); 582 } 583 } 584 585 586 void InterpreterMacroAssembler::d2ieee() { 587 if (IEEEPrecision) { 588 fstp_d(Address(rsp, 0)); 589 fld_d(Address(rsp, 0)); 590 } 591 } 592 #endif // _LP64 593 594 // Java Expression Stack 595 596 void InterpreterMacroAssembler::pop_ptr(Register r) { 597 pop(r); 598 } 599 600 void InterpreterMacroAssembler::push_ptr(Register r) { 601 push(r); 602 } 603 604 void InterpreterMacroAssembler::push_i(Register r) { 605 push(r); 606 } 607 608 void InterpreterMacroAssembler::push_i_or_ptr(Register r) { 609 push(r); 610 } 611 612 void InterpreterMacroAssembler::push_f(XMMRegister r) { 613 subptr(rsp, wordSize); 614 movflt(Address(rsp, 0), r); 615 } 616 617 void InterpreterMacroAssembler::pop_f(XMMRegister r) { 618 movflt(r, Address(rsp, 0)); 619 addptr(rsp, wordSize); 620 } 621 622 void InterpreterMacroAssembler::push_d(XMMRegister r) { 623 subptr(rsp, 2 * wordSize); 624 movdbl(Address(rsp, 0), r); 625 } 626 627 void InterpreterMacroAssembler::pop_d(XMMRegister r) { 628 movdbl(r, Address(rsp, 0)); 629 addptr(rsp, 2 * Interpreter::stackElementSize); 630 } 631 632 #ifdef _LP64 633 void InterpreterMacroAssembler::pop_i(Register r) { 634 // XXX can't use pop currently, upper half non clean 635 movl(r, Address(rsp, 0)); 636 addptr(rsp, wordSize); 637 } 638 639 void InterpreterMacroAssembler::pop_l(Register r) { 640 movq(r, Address(rsp, 0)); 641 addptr(rsp, 2 * Interpreter::stackElementSize); 642 } 643 644 void InterpreterMacroAssembler::push_l(Register r) { 645 subptr(rsp, 2 * wordSize); 646 movptr(Address(rsp, Interpreter::expr_offset_in_bytes(0)), r ); 647 movptr(Address(rsp, Interpreter::expr_offset_in_bytes(1)), NULL_WORD ); 648 } 649 650 void InterpreterMacroAssembler::pop(TosState state) { 651 switch (state) { 652 case atos: pop_ptr(); break; 653 case btos: 654 case ztos: 655 case ctos: 656 case stos: 657 case itos: pop_i(); break; 658 case ltos: pop_l(); break; 659 case ftos: pop_f(xmm0); break; 660 case dtos: pop_d(xmm0); break; 661 case vtos: /* nothing to do */ break; 662 default: ShouldNotReachHere(); 663 } 664 interp_verify_oop(rax, state); 665 } 666 667 void InterpreterMacroAssembler::push(TosState state) { 668 interp_verify_oop(rax, state); 669 switch (state) { 670 case atos: push_ptr(); break; 671 case btos: 672 case ztos: 673 case ctos: 674 case stos: 675 case itos: push_i(); break; 676 case ltos: push_l(); break; 677 case ftos: push_f(xmm0); break; 678 case dtos: push_d(xmm0); break; 679 case vtos: /* nothing to do */ break; 680 default : ShouldNotReachHere(); 681 } 682 } 683 #else 684 void InterpreterMacroAssembler::pop_i(Register r) { 685 pop(r); 686 } 687 688 void InterpreterMacroAssembler::pop_l(Register lo, Register hi) { 689 pop(lo); 690 pop(hi); 691 } 692 693 void InterpreterMacroAssembler::pop_f() { 694 fld_s(Address(rsp, 0)); 695 addptr(rsp, 1 * wordSize); 696 } 697 698 void InterpreterMacroAssembler::pop_d() { 699 fld_d(Address(rsp, 0)); 700 addptr(rsp, 2 * wordSize); 701 } 702 703 704 void InterpreterMacroAssembler::pop(TosState state) { 705 switch (state) { 706 case atos: pop_ptr(rax); break; 707 case btos: // fall through 708 case ztos: // fall through 709 case ctos: // fall through 710 case stos: // fall through 711 case itos: pop_i(rax); break; 712 case ltos: pop_l(rax, rdx); break; 713 case ftos: 714 if (UseSSE >= 1) { 715 pop_f(xmm0); 716 } else { 717 pop_f(); 718 } 719 break; 720 case dtos: 721 if (UseSSE >= 2) { 722 pop_d(xmm0); 723 } else { 724 pop_d(); 725 } 726 break; 727 case vtos: /* nothing to do */ break; 728 default : ShouldNotReachHere(); 729 } 730 interp_verify_oop(rax, state); 731 } 732 733 734 void InterpreterMacroAssembler::push_l(Register lo, Register hi) { 735 push(hi); 736 push(lo); 737 } 738 739 void InterpreterMacroAssembler::push_f() { 740 // Do not schedule for no AGI! Never write beyond rsp! 741 subptr(rsp, 1 * wordSize); 742 fstp_s(Address(rsp, 0)); 743 } 744 745 void InterpreterMacroAssembler::push_d() { 746 // Do not schedule for no AGI! Never write beyond rsp! 747 subptr(rsp, 2 * wordSize); 748 fstp_d(Address(rsp, 0)); 749 } 750 751 752 void InterpreterMacroAssembler::push(TosState state) { 753 interp_verify_oop(rax, state); 754 switch (state) { 755 case atos: push_ptr(rax); break; 756 case btos: // fall through 757 case ztos: // fall through 758 case ctos: // fall through 759 case stos: // fall through 760 case itos: push_i(rax); break; 761 case ltos: push_l(rax, rdx); break; 762 case ftos: 763 if (UseSSE >= 1) { 764 push_f(xmm0); 765 } else { 766 push_f(); 767 } 768 break; 769 case dtos: 770 if (UseSSE >= 2) { 771 push_d(xmm0); 772 } else { 773 push_d(); 774 } 775 break; 776 case vtos: /* nothing to do */ break; 777 default : ShouldNotReachHere(); 778 } 779 } 780 #endif // _LP64 781 782 783 // Helpers for swap and dup 784 void InterpreterMacroAssembler::load_ptr(int n, Register val) { 785 movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n))); 786 } 787 788 void InterpreterMacroAssembler::store_ptr(int n, Register val) { 789 movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val); 790 } 791 792 793 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() { 794 // set sender sp 795 lea(_bcp_register, Address(rsp, wordSize)); 796 // record last_sp 797 movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), _bcp_register); 798 } 799 800 801 // Jump to from_interpreted entry of a call unless single stepping is possible 802 // in this thread in which case we must call the i2i entry 803 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) { 804 prepare_to_jump_from_interpreted(); 805 806 if (JvmtiExport::can_post_interpreter_events()) { 807 Label run_compiled_code; 808 // JVMTI events, such as single-stepping, are implemented partly by avoiding running 809 // compiled code in threads for which the event is enabled. Check here for 810 // interp_only_mode if these events CAN be enabled. 811 // interp_only is an int, on little endian it is sufficient to test the byte only 812 // Is a cmpl faster? 813 LP64_ONLY(temp = r15_thread;) 814 NOT_LP64(get_thread(temp);) 815 cmpb(Address(temp, JavaThread::interp_only_mode_offset()), 0); 816 jccb(Assembler::zero, run_compiled_code); 817 jmp(Address(method, Method::interpreter_entry_offset())); 818 bind(run_compiled_code); 819 } 820 821 jmp(Address(method, Method::from_interpreted_offset())); 822 } 823 824 // The following two routines provide a hook so that an implementation 825 // can schedule the dispatch in two parts. x86 does not do this. 826 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) { 827 // Nothing x86 specific to be done here 828 } 829 830 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) { 831 dispatch_next(state, step); 832 } 833 834 void InterpreterMacroAssembler::dispatch_base(TosState state, 835 address* table, 836 bool verifyoop, 837 bool generate_poll) { 838 verify_FPU(1, state); 839 if (VerifyActivationFrameSize) { 840 Label L; 841 mov(rcx, rbp); 842 subptr(rcx, rsp); 843 int32_t min_frame_size = 844 (frame::link_offset - frame::interpreter_frame_initial_sp_offset) * 845 wordSize; 846 cmpptr(rcx, (int32_t)min_frame_size); 847 jcc(Assembler::greaterEqual, L); 848 stop("broken stack frame"); 849 bind(L); 850 } 851 if (verifyoop) { 852 interp_verify_oop(rax, state); 853 } 854 855 address* const safepoint_table = Interpreter::safept_table(state); 856 #ifdef _LP64 857 Label no_safepoint, dispatch; 858 if (table != safepoint_table && generate_poll) { 859 NOT_PRODUCT(block_comment("Thread-local Safepoint poll")); 860 testb(Address(r15_thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit()); 861 862 jccb(Assembler::zero, no_safepoint); 863 lea(rscratch1, ExternalAddress((address)safepoint_table)); 864 jmpb(dispatch); 865 } 866 867 bind(no_safepoint); 868 lea(rscratch1, ExternalAddress((address)table)); 869 bind(dispatch); 870 jmp(Address(rscratch1, rbx, Address::times_8)); 871 872 #else 873 Address index(noreg, rbx, Address::times_ptr); 874 if (table != safepoint_table && generate_poll) { 875 NOT_PRODUCT(block_comment("Thread-local Safepoint poll")); 876 Label no_safepoint; 877 const Register thread = rcx; 878 get_thread(thread); 879 testb(Address(thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit()); 880 881 jccb(Assembler::zero, no_safepoint); 882 ArrayAddress dispatch_addr(ExternalAddress((address)safepoint_table), index); 883 jump(dispatch_addr); 884 bind(no_safepoint); 885 } 886 887 { 888 ArrayAddress dispatch_addr(ExternalAddress((address)table), index); 889 jump(dispatch_addr); 890 } 891 #endif // _LP64 892 } 893 894 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) { 895 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll); 896 } 897 898 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) { 899 dispatch_base(state, Interpreter::normal_table(state)); 900 } 901 902 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) { 903 dispatch_base(state, Interpreter::normal_table(state), false); 904 } 905 906 907 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) { 908 // load next bytecode (load before advancing _bcp_register to prevent AGI) 909 load_unsigned_byte(rbx, Address(_bcp_register, step)); 910 // advance _bcp_register 911 increment(_bcp_register, step); 912 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll); 913 } 914 915 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) { 916 // load current bytecode 917 load_unsigned_byte(rbx, Address(_bcp_register, 0)); 918 dispatch_base(state, table); 919 } 920 921 void InterpreterMacroAssembler::narrow(Register result) { 922 923 // Get method->_constMethod->_result_type 924 movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize)); 925 movptr(rcx, Address(rcx, Method::const_offset())); 926 load_unsigned_byte(rcx, Address(rcx, ConstMethod::result_type_offset())); 927 928 Label done, notBool, notByte, notChar; 929 930 // common case first 931 cmpl(rcx, T_INT); 932 jcc(Assembler::equal, done); 933 934 // mask integer result to narrower return type. 935 cmpl(rcx, T_BOOLEAN); 936 jcc(Assembler::notEqual, notBool); 937 andl(result, 0x1); 938 jmp(done); 939 940 bind(notBool); 941 cmpl(rcx, T_BYTE); 942 jcc(Assembler::notEqual, notByte); 943 LP64_ONLY(movsbl(result, result);) 944 NOT_LP64(shll(result, 24);) // truncate upper 24 bits 945 NOT_LP64(sarl(result, 24);) // and sign-extend byte 946 jmp(done); 947 948 bind(notByte); 949 cmpl(rcx, T_CHAR); 950 jcc(Assembler::notEqual, notChar); 951 LP64_ONLY(movzwl(result, result);) 952 NOT_LP64(andl(result, 0xFFFF);) // truncate upper 16 bits 953 jmp(done); 954 955 bind(notChar); 956 // cmpl(rcx, T_SHORT); // all that's left 957 // jcc(Assembler::notEqual, done); 958 LP64_ONLY(movswl(result, result);) 959 NOT_LP64(shll(result, 16);) // truncate upper 16 bits 960 NOT_LP64(sarl(result, 16);) // and sign-extend short 961 962 // Nothing to do for T_INT 963 bind(done); 964 } 965 966 // remove activation 967 // 968 // Apply stack watermark barrier. 969 // Unlock the receiver if this is a synchronized method. 970 // Unlock any Java monitors from synchronized blocks. 971 // Remove the activation from the stack. 972 // 973 // If there are locked Java monitors 974 // If throw_monitor_exception 975 // throws IllegalMonitorStateException 976 // Else if install_monitor_exception 977 // installs IllegalMonitorStateException 978 // Else 979 // no error processing 980 void InterpreterMacroAssembler::remove_activation( 981 TosState state, 982 Register ret_addr, 983 bool throw_monitor_exception, 984 bool install_monitor_exception, 985 bool notify_jvmdi) { 986 // Note: Registers rdx xmm0 may be in use for the 987 // result check if synchronized method 988 Label unlocked, unlock, no_unlock; 989 990 const Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx); 991 const Register robj = LP64_ONLY(c_rarg1) NOT_LP64(rdx); 992 const Register rmon = LP64_ONLY(c_rarg1) NOT_LP64(rcx); 993 // monitor pointers need different register 994 // because rdx may have the result in it 995 NOT_LP64(get_thread(rthread);) 996 997 // The below poll is for the stack watermark barrier. It allows fixing up frames lazily, 998 // that would normally not be safe to use. Such bad returns into unsafe territory of 999 // the stack, will call InterpreterRuntime::at_unwind. 1000 Label slow_path; 1001 Label fast_path; 1002 safepoint_poll(slow_path, rthread, true /* at_return */, false /* in_nmethod */); 1003 jmp(fast_path); 1004 bind(slow_path); 1005 push(state); 1006 set_last_Java_frame(rthread, noreg, rbp, (address)pc()); 1007 super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), rthread); 1008 NOT_LP64(get_thread(rthread);) // call_VM clobbered it, restore 1009 reset_last_Java_frame(rthread, true); 1010 pop(state); 1011 bind(fast_path); 1012 1013 // get the value of _do_not_unlock_if_synchronized into rdx 1014 const Address do_not_unlock_if_synchronized(rthread, 1015 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); 1016 movbool(rbx, do_not_unlock_if_synchronized); 1017 movbool(do_not_unlock_if_synchronized, false); // reset the flag 1018 1019 // get method access flags 1020 movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize)); 1021 movl(rcx, Address(rcx, Method::access_flags_offset())); 1022 testl(rcx, JVM_ACC_SYNCHRONIZED); 1023 jcc(Assembler::zero, unlocked); 1024 1025 // Don't unlock anything if the _do_not_unlock_if_synchronized flag 1026 // is set. 1027 testbool(rbx); 1028 jcc(Assembler::notZero, no_unlock); 1029 1030 // unlock monitor 1031 push(state); // save result 1032 1033 // BasicObjectLock will be first in list, since this is a 1034 // synchronized method. However, need to check that the object has 1035 // not been unlocked by an explicit monitorexit bytecode. 1036 const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * 1037 wordSize - (int) sizeof(BasicObjectLock)); 1038 // We use c_rarg1/rdx so that if we go slow path it will be the correct 1039 // register for unlock_object to pass to VM directly 1040 lea(robj, monitor); // address of first monitor 1041 1042 movptr(rax, Address(robj, BasicObjectLock::obj_offset_in_bytes())); 1043 testptr(rax, rax); 1044 jcc(Assembler::notZero, unlock); 1045 1046 pop(state); 1047 if (throw_monitor_exception) { 1048 // Entry already unlocked, need to throw exception 1049 NOT_LP64(empty_FPU_stack();) // remove possible return value from FPU-stack, otherwise stack could overflow 1050 call_VM(noreg, CAST_FROM_FN_PTR(address, 1051 InterpreterRuntime::throw_illegal_monitor_state_exception)); 1052 should_not_reach_here(); 1053 } else { 1054 // Monitor already unlocked during a stack unroll. If requested, 1055 // install an illegal_monitor_state_exception. Continue with 1056 // stack unrolling. 1057 if (install_monitor_exception) { 1058 NOT_LP64(empty_FPU_stack();) 1059 call_VM(noreg, CAST_FROM_FN_PTR(address, 1060 InterpreterRuntime::new_illegal_monitor_state_exception)); 1061 } 1062 jmp(unlocked); 1063 } 1064 1065 bind(unlock); 1066 unlock_object(robj); 1067 pop(state); 1068 1069 // Check that for block-structured locking (i.e., that all locked 1070 // objects has been unlocked) 1071 bind(unlocked); 1072 1073 // rax, rdx: Might contain return value 1074 1075 // Check that all monitors are unlocked 1076 { 1077 Label loop, exception, entry, restart; 1078 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; 1079 const Address monitor_block_top( 1080 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 1081 const Address monitor_block_bot( 1082 rbp, frame::interpreter_frame_initial_sp_offset * wordSize); 1083 1084 bind(restart); 1085 // We use c_rarg1 so that if we go slow path it will be the correct 1086 // register for unlock_object to pass to VM directly 1087 movptr(rmon, monitor_block_top); // points to current entry, starting 1088 // with top-most entry 1089 lea(rbx, monitor_block_bot); // points to word before bottom of 1090 // monitor block 1091 jmp(entry); 1092 1093 // Entry already locked, need to throw exception 1094 bind(exception); 1095 1096 if (throw_monitor_exception) { 1097 // Throw exception 1098 NOT_LP64(empty_FPU_stack();) 1099 MacroAssembler::call_VM(noreg, 1100 CAST_FROM_FN_PTR(address, InterpreterRuntime:: 1101 throw_illegal_monitor_state_exception)); 1102 should_not_reach_here(); 1103 } else { 1104 // Stack unrolling. Unlock object and install illegal_monitor_exception. 1105 // Unlock does not block, so don't have to worry about the frame. 1106 // We don't have to preserve c_rarg1 since we are going to throw an exception. 1107 1108 push(state); 1109 mov(robj, rmon); // nop if robj and rmon are the same 1110 unlock_object(robj); 1111 pop(state); 1112 1113 if (install_monitor_exception) { 1114 NOT_LP64(empty_FPU_stack();) 1115 call_VM(noreg, CAST_FROM_FN_PTR(address, 1116 InterpreterRuntime:: 1117 new_illegal_monitor_state_exception)); 1118 } 1119 1120 jmp(restart); 1121 } 1122 1123 bind(loop); 1124 // check if current entry is used 1125 cmpptr(Address(rmon, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL); 1126 jcc(Assembler::notEqual, exception); 1127 1128 addptr(rmon, entry_size); // otherwise advance to next entry 1129 bind(entry); 1130 cmpptr(rmon, rbx); // check if bottom reached 1131 jcc(Assembler::notEqual, loop); // if not at bottom then check this entry 1132 } 1133 1134 bind(no_unlock); 1135 1136 // jvmti support 1137 if (notify_jvmdi) { 1138 notify_method_exit(state, NotifyJVMTI); // preserve TOSCA 1139 } else { 1140 notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA 1141 } 1142 1143 // remove activation 1144 // get sender sp 1145 movptr(rbx, 1146 Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); 1147 if (StackReservedPages > 0) { 1148 // testing if reserved zone needs to be re-enabled 1149 Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx); 1150 Label no_reserved_zone_enabling; 1151 1152 NOT_LP64(get_thread(rthread);) 1153 1154 cmpl(Address(rthread, JavaThread::stack_guard_state_offset()), StackOverflow::stack_guard_enabled); 1155 jcc(Assembler::equal, no_reserved_zone_enabling); 1156 1157 cmpptr(rbx, Address(rthread, JavaThread::reserved_stack_activation_offset())); 1158 jcc(Assembler::lessEqual, no_reserved_zone_enabling); 1159 1160 call_VM_leaf( 1161 CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread); 1162 call_VM(noreg, CAST_FROM_FN_PTR(address, 1163 InterpreterRuntime::throw_delayed_StackOverflowError)); 1164 should_not_reach_here(); 1165 1166 bind(no_reserved_zone_enabling); 1167 } 1168 leave(); // remove frame anchor 1169 pop(ret_addr); // get return address 1170 mov(rsp, rbx); // set sp to sender sp 1171 } 1172 1173 void InterpreterMacroAssembler::get_method_counters(Register method, 1174 Register mcs, Label& skip) { 1175 Label has_counters; 1176 movptr(mcs, Address(method, Method::method_counters_offset())); 1177 testptr(mcs, mcs); 1178 jcc(Assembler::notZero, has_counters); 1179 call_VM(noreg, CAST_FROM_FN_PTR(address, 1180 InterpreterRuntime::build_method_counters), method); 1181 movptr(mcs, Address(method,Method::method_counters_offset())); 1182 testptr(mcs, mcs); 1183 jcc(Assembler::zero, skip); // No MethodCounters allocated, OutOfMemory 1184 bind(has_counters); 1185 } 1186 1187 1188 // Lock object 1189 // 1190 // Args: 1191 // rdx, c_rarg1: BasicObjectLock to be used for locking 1192 // 1193 // Kills: 1194 // rax, rbx 1195 void InterpreterMacroAssembler::lock_object(Register lock_reg) { 1196 assert(lock_reg == LP64_ONLY(c_rarg1) NOT_LP64(rdx), 1197 "The argument is only for looks. It must be c_rarg1"); 1198 1199 if (UseHeavyMonitors) { 1200 call_VM(noreg, 1201 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 1202 lock_reg); 1203 } else { 1204 Label done; 1205 1206 const Register swap_reg = rax; // Must use rax for cmpxchg instruction 1207 const Register tmp_reg = rbx; 1208 const Register obj_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // Will contain the oop 1209 const Register rklass_decode_tmp = LP64_ONLY(rscratch1) NOT_LP64(noreg); 1210 1211 const int obj_offset = BasicObjectLock::obj_offset_in_bytes(); 1212 const int lock_offset = BasicObjectLock::lock_offset_in_bytes (); 1213 const int mark_offset = lock_offset + 1214 BasicLock::displaced_header_offset_in_bytes(); 1215 1216 Label slow_case; 1217 1218 // Load object pointer into obj_reg 1219 movptr(obj_reg, Address(lock_reg, obj_offset)); 1220 1221 if (DiagnoseSyncOnValueBasedClasses != 0) { 1222 load_klass(tmp_reg, obj_reg, rklass_decode_tmp); 1223 movl(tmp_reg, Address(tmp_reg, Klass::access_flags_offset())); 1224 testl(tmp_reg, JVM_ACC_IS_VALUE_BASED_CLASS); 1225 jcc(Assembler::notZero, slow_case); 1226 } 1227 1228 // Load immediate 1 into swap_reg %rax 1229 movl(swap_reg, (int32_t)1); 1230 1231 // Load (object->mark() | 1) into swap_reg %rax 1232 orptr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1233 1234 // Save (object->mark() | 1) into BasicLock's displaced header 1235 movptr(Address(lock_reg, mark_offset), swap_reg); 1236 1237 assert(lock_offset == 0, 1238 "displaced header must be first word in BasicObjectLock"); 1239 1240 lock(); 1241 cmpxchgptr(lock_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1242 jcc(Assembler::zero, done); 1243 1244 const int zero_bits = LP64_ONLY(7) NOT_LP64(3); 1245 1246 // Fast check for recursive lock. 1247 // 1248 // Can apply the optimization only if this is a stack lock 1249 // allocated in this thread. For efficiency, we can focus on 1250 // recently allocated stack locks (instead of reading the stack 1251 // base and checking whether 'mark' points inside the current 1252 // thread stack): 1253 // 1) (mark & zero_bits) == 0, and 1254 // 2) rsp <= mark < mark + os::pagesize() 1255 // 1256 // Warning: rsp + os::pagesize can overflow the stack base. We must 1257 // neither apply the optimization for an inflated lock allocated 1258 // just above the thread stack (this is why condition 1 matters) 1259 // nor apply the optimization if the stack lock is inside the stack 1260 // of another thread. The latter is avoided even in case of overflow 1261 // because we have guard pages at the end of all stacks. Hence, if 1262 // we go over the stack base and hit the stack of another thread, 1263 // this should not be in a writeable area that could contain a 1264 // stack lock allocated by that thread. As a consequence, a stack 1265 // lock less than page size away from rsp is guaranteed to be 1266 // owned by the current thread. 1267 // 1268 // These 3 tests can be done by evaluating the following 1269 // expression: ((mark - rsp) & (zero_bits - os::vm_page_size())), 1270 // assuming both stack pointer and pagesize have their 1271 // least significant bits clear. 1272 // NOTE: the mark is in swap_reg %rax as the result of cmpxchg 1273 subptr(swap_reg, rsp); 1274 andptr(swap_reg, zero_bits - os::vm_page_size()); 1275 1276 // Save the test result, for recursive case, the result is zero 1277 movptr(Address(lock_reg, mark_offset), swap_reg); 1278 jcc(Assembler::zero, done); 1279 1280 bind(slow_case); 1281 1282 // Call the runtime routine for slow case 1283 call_VM(noreg, 1284 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 1285 lock_reg); 1286 1287 bind(done); 1288 } 1289 } 1290 1291 1292 // Unlocks an object. Used in monitorexit bytecode and 1293 // remove_activation. Throws an IllegalMonitorException if object is 1294 // not locked by current thread. 1295 // 1296 // Args: 1297 // rdx, c_rarg1: BasicObjectLock for lock 1298 // 1299 // Kills: 1300 // rax 1301 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs) 1302 // rscratch1 (scratch reg) 1303 // rax, rbx, rcx, rdx 1304 void InterpreterMacroAssembler::unlock_object(Register lock_reg) { 1305 assert(lock_reg == LP64_ONLY(c_rarg1) NOT_LP64(rdx), 1306 "The argument is only for looks. It must be c_rarg1"); 1307 1308 if (UseHeavyMonitors) { 1309 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 1310 } else { 1311 Label done; 1312 1313 const Register swap_reg = rax; // Must use rax for cmpxchg instruction 1314 const Register header_reg = LP64_ONLY(c_rarg2) NOT_LP64(rbx); // Will contain the old oopMark 1315 const Register obj_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // Will contain the oop 1316 1317 save_bcp(); // Save in case of exception 1318 1319 // Convert from BasicObjectLock structure to object and BasicLock 1320 // structure Store the BasicLock address into %rax 1321 lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes())); 1322 1323 // Load oop into obj_reg(%c_rarg3) 1324 movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes())); 1325 1326 // Free entry 1327 movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD); 1328 1329 // Load the old header from BasicLock structure 1330 movptr(header_reg, Address(swap_reg, 1331 BasicLock::displaced_header_offset_in_bytes())); 1332 1333 // Test for recursion 1334 testptr(header_reg, header_reg); 1335 1336 // zero for recursive case 1337 jcc(Assembler::zero, done); 1338 1339 // Atomic swap back the old header 1340 lock(); 1341 cmpxchgptr(header_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1342 1343 // zero for simple unlock of a stack-lock case 1344 jcc(Assembler::zero, done); 1345 1346 1347 // Call the runtime routine for slow case. 1348 movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), obj_reg); // restore obj 1349 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 1350 1351 bind(done); 1352 1353 restore_bcp(); 1354 } 1355 } 1356 1357 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, 1358 Label& zero_continue) { 1359 assert(ProfileInterpreter, "must be profiling interpreter"); 1360 movptr(mdp, Address(rbp, frame::interpreter_frame_mdp_offset * wordSize)); 1361 testptr(mdp, mdp); 1362 jcc(Assembler::zero, zero_continue); 1363 } 1364 1365 1366 // Set the method data pointer for the current bcp. 1367 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() { 1368 assert(ProfileInterpreter, "must be profiling interpreter"); 1369 Label set_mdp; 1370 push(rax); 1371 push(rbx); 1372 1373 get_method(rbx); 1374 // Test MDO to avoid the call if it is NULL. 1375 movptr(rax, Address(rbx, in_bytes(Method::method_data_offset()))); 1376 testptr(rax, rax); 1377 jcc(Assembler::zero, set_mdp); 1378 // rbx: method 1379 // _bcp_register: bcp 1380 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, _bcp_register); 1381 // rax: mdi 1382 // mdo is guaranteed to be non-zero here, we checked for it before the call. 1383 movptr(rbx, Address(rbx, in_bytes(Method::method_data_offset()))); 1384 addptr(rbx, in_bytes(MethodData::data_offset())); 1385 addptr(rax, rbx); 1386 bind(set_mdp); 1387 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), rax); 1388 pop(rbx); 1389 pop(rax); 1390 } 1391 1392 void InterpreterMacroAssembler::verify_method_data_pointer() { 1393 assert(ProfileInterpreter, "must be profiling interpreter"); 1394 #ifdef ASSERT 1395 Label verify_continue; 1396 push(rax); 1397 push(rbx); 1398 Register arg3_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 1399 Register arg2_reg = LP64_ONLY(c_rarg2) NOT_LP64(rdx); 1400 push(arg3_reg); 1401 push(arg2_reg); 1402 test_method_data_pointer(arg3_reg, verify_continue); // If mdp is zero, continue 1403 get_method(rbx); 1404 1405 // If the mdp is valid, it will point to a DataLayout header which is 1406 // consistent with the bcp. The converse is highly probable also. 1407 load_unsigned_short(arg2_reg, 1408 Address(arg3_reg, in_bytes(DataLayout::bci_offset()))); 1409 addptr(arg2_reg, Address(rbx, Method::const_offset())); 1410 lea(arg2_reg, Address(arg2_reg, ConstMethod::codes_offset())); 1411 cmpptr(arg2_reg, _bcp_register); 1412 jcc(Assembler::equal, verify_continue); 1413 // rbx: method 1414 // _bcp_register: bcp 1415 // c_rarg3: mdp 1416 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), 1417 rbx, _bcp_register, arg3_reg); 1418 bind(verify_continue); 1419 pop(arg2_reg); 1420 pop(arg3_reg); 1421 pop(rbx); 1422 pop(rax); 1423 #endif // ASSERT 1424 } 1425 1426 1427 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, 1428 int constant, 1429 Register value) { 1430 assert(ProfileInterpreter, "must be profiling interpreter"); 1431 Address data(mdp_in, constant); 1432 movptr(data, value); 1433 } 1434 1435 1436 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 1437 int constant, 1438 bool decrement) { 1439 // Counter address 1440 Address data(mdp_in, constant); 1441 1442 increment_mdp_data_at(data, decrement); 1443 } 1444 1445 void InterpreterMacroAssembler::increment_mdp_data_at(Address data, 1446 bool decrement) { 1447 assert(ProfileInterpreter, "must be profiling interpreter"); 1448 // %%% this does 64bit counters at best it is wasting space 1449 // at worst it is a rare bug when counters overflow 1450 1451 if (decrement) { 1452 // Decrement the register. Set condition codes. 1453 addptr(data, (int32_t) -DataLayout::counter_increment); 1454 // If the decrement causes the counter to overflow, stay negative 1455 Label L; 1456 jcc(Assembler::negative, L); 1457 addptr(data, (int32_t) DataLayout::counter_increment); 1458 bind(L); 1459 } else { 1460 assert(DataLayout::counter_increment == 1, 1461 "flow-free idiom only works with 1"); 1462 // Increment the register. Set carry flag. 1463 addptr(data, DataLayout::counter_increment); 1464 // If the increment causes the counter to overflow, pull back by 1. 1465 sbbptr(data, (int32_t)0); 1466 } 1467 } 1468 1469 1470 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 1471 Register reg, 1472 int constant, 1473 bool decrement) { 1474 Address data(mdp_in, reg, Address::times_1, constant); 1475 1476 increment_mdp_data_at(data, decrement); 1477 } 1478 1479 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, 1480 int flag_byte_constant) { 1481 assert(ProfileInterpreter, "must be profiling interpreter"); 1482 int header_offset = in_bytes(DataLayout::flags_offset()); 1483 int header_bits = flag_byte_constant; 1484 // Set the flag 1485 orb(Address(mdp_in, header_offset), header_bits); 1486 } 1487 1488 1489 1490 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in, 1491 int offset, 1492 Register value, 1493 Register test_value_out, 1494 Label& not_equal_continue) { 1495 assert(ProfileInterpreter, "must be profiling interpreter"); 1496 if (test_value_out == noreg) { 1497 cmpptr(value, Address(mdp_in, offset)); 1498 } else { 1499 // Put the test value into a register, so caller can use it: 1500 movptr(test_value_out, Address(mdp_in, offset)); 1501 cmpptr(test_value_out, value); 1502 } 1503 jcc(Assembler::notEqual, not_equal_continue); 1504 } 1505 1506 1507 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1508 int offset_of_disp) { 1509 assert(ProfileInterpreter, "must be profiling interpreter"); 1510 Address disp_address(mdp_in, offset_of_disp); 1511 addptr(mdp_in, disp_address); 1512 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in); 1513 } 1514 1515 1516 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1517 Register reg, 1518 int offset_of_disp) { 1519 assert(ProfileInterpreter, "must be profiling interpreter"); 1520 Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp); 1521 addptr(mdp_in, disp_address); 1522 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in); 1523 } 1524 1525 1526 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, 1527 int constant) { 1528 assert(ProfileInterpreter, "must be profiling interpreter"); 1529 addptr(mdp_in, constant); 1530 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in); 1531 } 1532 1533 1534 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) { 1535 assert(ProfileInterpreter, "must be profiling interpreter"); 1536 push(return_bci); // save/restore across call_VM 1537 call_VM(noreg, 1538 CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), 1539 return_bci); 1540 pop(return_bci); 1541 } 1542 1543 1544 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, 1545 Register bumped_count) { 1546 if (ProfileInterpreter) { 1547 Label profile_continue; 1548 1549 // If no method data exists, go to profile_continue. 1550 // Otherwise, assign to mdp 1551 test_method_data_pointer(mdp, profile_continue); 1552 1553 // We are taking a branch. Increment the taken count. 1554 // We inline increment_mdp_data_at to return bumped_count in a register 1555 //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset())); 1556 Address data(mdp, in_bytes(JumpData::taken_offset())); 1557 movptr(bumped_count, data); 1558 assert(DataLayout::counter_increment == 1, 1559 "flow-free idiom only works with 1"); 1560 addptr(bumped_count, DataLayout::counter_increment); 1561 sbbptr(bumped_count, 0); 1562 movptr(data, bumped_count); // Store back out 1563 1564 // The method data pointer needs to be updated to reflect the new target. 1565 update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset())); 1566 bind(profile_continue); 1567 } 1568 } 1569 1570 1571 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) { 1572 if (ProfileInterpreter) { 1573 Label profile_continue; 1574 1575 // If no method data exists, go to profile_continue. 1576 test_method_data_pointer(mdp, profile_continue); 1577 1578 // We are taking a branch. Increment the not taken count. 1579 increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset())); 1580 1581 // The method data pointer needs to be updated to correspond to 1582 // the next bytecode 1583 update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size())); 1584 bind(profile_continue); 1585 } 1586 } 1587 1588 void InterpreterMacroAssembler::profile_call(Register mdp) { 1589 if (ProfileInterpreter) { 1590 Label profile_continue; 1591 1592 // If no method data exists, go to profile_continue. 1593 test_method_data_pointer(mdp, profile_continue); 1594 1595 // We are making a call. Increment the count. 1596 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1597 1598 // The method data pointer needs to be updated to reflect the new target. 1599 update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size())); 1600 bind(profile_continue); 1601 } 1602 } 1603 1604 1605 void InterpreterMacroAssembler::profile_final_call(Register mdp) { 1606 if (ProfileInterpreter) { 1607 Label profile_continue; 1608 1609 // If no method data exists, go to profile_continue. 1610 test_method_data_pointer(mdp, profile_continue); 1611 1612 // We are making a call. Increment the count. 1613 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1614 1615 // The method data pointer needs to be updated to reflect the new target. 1616 update_mdp_by_constant(mdp, 1617 in_bytes(VirtualCallData:: 1618 virtual_call_data_size())); 1619 bind(profile_continue); 1620 } 1621 } 1622 1623 1624 void InterpreterMacroAssembler::profile_virtual_call(Register receiver, 1625 Register mdp, 1626 Register reg2, 1627 bool receiver_can_be_null) { 1628 if (ProfileInterpreter) { 1629 Label profile_continue; 1630 1631 // If no method data exists, go to profile_continue. 1632 test_method_data_pointer(mdp, profile_continue); 1633 1634 Label skip_receiver_profile; 1635 if (receiver_can_be_null) { 1636 Label not_null; 1637 testptr(receiver, receiver); 1638 jccb(Assembler::notZero, not_null); 1639 // We are making a call. Increment the count for null receiver. 1640 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1641 jmp(skip_receiver_profile); 1642 bind(not_null); 1643 } 1644 1645 // Record the receiver type. 1646 record_klass_in_profile(receiver, mdp, reg2, true); 1647 bind(skip_receiver_profile); 1648 1649 // The method data pointer needs to be updated to reflect the new target. 1650 update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size())); 1651 bind(profile_continue); 1652 } 1653 } 1654 1655 // This routine creates a state machine for updating the multi-row 1656 // type profile at a virtual call site (or other type-sensitive bytecode). 1657 // The machine visits each row (of receiver/count) until the receiver type 1658 // is found, or until it runs out of rows. At the same time, it remembers 1659 // the location of the first empty row. (An empty row records null for its 1660 // receiver, and can be allocated for a newly-observed receiver type.) 1661 // Because there are two degrees of freedom in the state, a simple linear 1662 // search will not work; it must be a decision tree. Hence this helper 1663 // function is recursive, to generate the required tree structured code. 1664 // It's the interpreter, so we are trading off code space for speed. 1665 // See below for example code. 1666 void InterpreterMacroAssembler::record_klass_in_profile_helper( 1667 Register receiver, Register mdp, 1668 Register reg2, int start_row, 1669 Label& done, bool is_virtual_call) { 1670 if (TypeProfileWidth == 0) { 1671 if (is_virtual_call) { 1672 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1673 } 1674 #if INCLUDE_JVMCI 1675 else if (EnableJVMCI) { 1676 increment_mdp_data_at(mdp, in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset())); 1677 } 1678 #endif // INCLUDE_JVMCI 1679 } else { 1680 int non_profiled_offset = -1; 1681 if (is_virtual_call) { 1682 non_profiled_offset = in_bytes(CounterData::count_offset()); 1683 } 1684 #if INCLUDE_JVMCI 1685 else if (EnableJVMCI) { 1686 non_profiled_offset = in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset()); 1687 } 1688 #endif // INCLUDE_JVMCI 1689 1690 record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth, 1691 &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset, non_profiled_offset); 1692 } 1693 } 1694 1695 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp, 1696 Register reg2, int start_row, Label& done, int total_rows, 1697 OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn, 1698 int non_profiled_offset) { 1699 int last_row = total_rows - 1; 1700 assert(start_row <= last_row, "must be work left to do"); 1701 // Test this row for both the item and for null. 1702 // Take any of three different outcomes: 1703 // 1. found item => increment count and goto done 1704 // 2. found null => keep looking for case 1, maybe allocate this cell 1705 // 3. found something else => keep looking for cases 1 and 2 1706 // Case 3 is handled by a recursive call. 1707 for (int row = start_row; row <= last_row; row++) { 1708 Label next_test; 1709 bool test_for_null_also = (row == start_row); 1710 1711 // See if the item is item[n]. 1712 int item_offset = in_bytes(item_offset_fn(row)); 1713 test_mdp_data_at(mdp, item_offset, item, 1714 (test_for_null_also ? reg2 : noreg), 1715 next_test); 1716 // (Reg2 now contains the item from the CallData.) 1717 1718 // The item is item[n]. Increment count[n]. 1719 int count_offset = in_bytes(item_count_offset_fn(row)); 1720 increment_mdp_data_at(mdp, count_offset); 1721 jmp(done); 1722 bind(next_test); 1723 1724 if (test_for_null_also) { 1725 // Failed the equality check on item[n]... Test for null. 1726 testptr(reg2, reg2); 1727 if (start_row == last_row) { 1728 // The only thing left to do is handle the null case. 1729 if (non_profiled_offset >= 0) { 1730 Label found_null; 1731 jccb(Assembler::zero, found_null); 1732 // Item did not match any saved item and there is no empty row for it. 1733 // Increment total counter to indicate polymorphic case. 1734 increment_mdp_data_at(mdp, non_profiled_offset); 1735 jmp(done); 1736 bind(found_null); 1737 } else { 1738 jcc(Assembler::notZero, done); 1739 } 1740 break; 1741 } 1742 Label found_null; 1743 // Since null is rare, make it be the branch-taken case. 1744 jcc(Assembler::zero, found_null); 1745 1746 // Put all the "Case 3" tests here. 1747 record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows, 1748 item_offset_fn, item_count_offset_fn, non_profiled_offset); 1749 1750 // Found a null. Keep searching for a matching item, 1751 // but remember that this is an empty (unused) slot. 1752 bind(found_null); 1753 } 1754 } 1755 1756 // In the fall-through case, we found no matching item, but we 1757 // observed the item[start_row] is NULL. 1758 1759 // Fill in the item field and increment the count. 1760 int item_offset = in_bytes(item_offset_fn(start_row)); 1761 set_mdp_data_at(mdp, item_offset, item); 1762 int count_offset = in_bytes(item_count_offset_fn(start_row)); 1763 movl(reg2, DataLayout::counter_increment); 1764 set_mdp_data_at(mdp, count_offset, reg2); 1765 if (start_row > 0) { 1766 jmp(done); 1767 } 1768 } 1769 1770 // Example state machine code for three profile rows: 1771 // // main copy of decision tree, rooted at row[1] 1772 // if (row[0].rec == rec) { row[0].incr(); goto done; } 1773 // if (row[0].rec != NULL) { 1774 // // inner copy of decision tree, rooted at row[1] 1775 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1776 // if (row[1].rec != NULL) { 1777 // // degenerate decision tree, rooted at row[2] 1778 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1779 // if (row[2].rec != NULL) { count.incr(); goto done; } // overflow 1780 // row[2].init(rec); goto done; 1781 // } else { 1782 // // remember row[1] is empty 1783 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1784 // row[1].init(rec); goto done; 1785 // } 1786 // } else { 1787 // // remember row[0] is empty 1788 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1789 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1790 // row[0].init(rec); goto done; 1791 // } 1792 // done: 1793 1794 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver, 1795 Register mdp, Register reg2, 1796 bool is_virtual_call) { 1797 assert(ProfileInterpreter, "must be profiling"); 1798 Label done; 1799 1800 record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call); 1801 1802 bind (done); 1803 } 1804 1805 void InterpreterMacroAssembler::profile_ret(Register return_bci, 1806 Register mdp) { 1807 if (ProfileInterpreter) { 1808 Label profile_continue; 1809 uint row; 1810 1811 // If no method data exists, go to profile_continue. 1812 test_method_data_pointer(mdp, profile_continue); 1813 1814 // Update the total ret count. 1815 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1816 1817 for (row = 0; row < RetData::row_limit(); row++) { 1818 Label next_test; 1819 1820 // See if return_bci is equal to bci[n]: 1821 test_mdp_data_at(mdp, 1822 in_bytes(RetData::bci_offset(row)), 1823 return_bci, noreg, 1824 next_test); 1825 1826 // return_bci is equal to bci[n]. Increment the count. 1827 increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row))); 1828 1829 // The method data pointer needs to be updated to reflect the new target. 1830 update_mdp_by_offset(mdp, 1831 in_bytes(RetData::bci_displacement_offset(row))); 1832 jmp(profile_continue); 1833 bind(next_test); 1834 } 1835 1836 update_mdp_for_ret(return_bci); 1837 1838 bind(profile_continue); 1839 } 1840 } 1841 1842 1843 void InterpreterMacroAssembler::profile_null_seen(Register mdp) { 1844 if (ProfileInterpreter) { 1845 Label profile_continue; 1846 1847 // If no method data exists, go to profile_continue. 1848 test_method_data_pointer(mdp, profile_continue); 1849 1850 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant()); 1851 1852 // The method data pointer needs to be updated. 1853 int mdp_delta = in_bytes(BitData::bit_data_size()); 1854 if (TypeProfileCasts) { 1855 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1856 } 1857 update_mdp_by_constant(mdp, mdp_delta); 1858 1859 bind(profile_continue); 1860 } 1861 } 1862 1863 1864 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) { 1865 if (ProfileInterpreter && TypeProfileCasts) { 1866 Label profile_continue; 1867 1868 // If no method data exists, go to profile_continue. 1869 test_method_data_pointer(mdp, profile_continue); 1870 1871 int count_offset = in_bytes(CounterData::count_offset()); 1872 // Back up the address, since we have already bumped the mdp. 1873 count_offset -= in_bytes(VirtualCallData::virtual_call_data_size()); 1874 1875 // *Decrement* the counter. We expect to see zero or small negatives. 1876 increment_mdp_data_at(mdp, count_offset, true); 1877 1878 bind (profile_continue); 1879 } 1880 } 1881 1882 1883 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) { 1884 if (ProfileInterpreter) { 1885 Label profile_continue; 1886 1887 // If no method data exists, go to profile_continue. 1888 test_method_data_pointer(mdp, profile_continue); 1889 1890 // The method data pointer needs to be updated. 1891 int mdp_delta = in_bytes(BitData::bit_data_size()); 1892 if (TypeProfileCasts) { 1893 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1894 1895 // Record the object type. 1896 record_klass_in_profile(klass, mdp, reg2, false); 1897 NOT_LP64(assert(reg2 == rdi, "we know how to fix this blown reg");) 1898 NOT_LP64(restore_locals();) // Restore EDI 1899 } 1900 update_mdp_by_constant(mdp, mdp_delta); 1901 1902 bind(profile_continue); 1903 } 1904 } 1905 1906 1907 void InterpreterMacroAssembler::profile_switch_default(Register mdp) { 1908 if (ProfileInterpreter) { 1909 Label profile_continue; 1910 1911 // If no method data exists, go to profile_continue. 1912 test_method_data_pointer(mdp, profile_continue); 1913 1914 // Update the default case count 1915 increment_mdp_data_at(mdp, 1916 in_bytes(MultiBranchData::default_count_offset())); 1917 1918 // The method data pointer needs to be updated. 1919 update_mdp_by_offset(mdp, 1920 in_bytes(MultiBranchData:: 1921 default_displacement_offset())); 1922 1923 bind(profile_continue); 1924 } 1925 } 1926 1927 1928 void InterpreterMacroAssembler::profile_switch_case(Register index, 1929 Register mdp, 1930 Register reg2) { 1931 if (ProfileInterpreter) { 1932 Label profile_continue; 1933 1934 // If no method data exists, go to profile_continue. 1935 test_method_data_pointer(mdp, profile_continue); 1936 1937 // Build the base (index * per_case_size_in_bytes()) + 1938 // case_array_offset_in_bytes() 1939 movl(reg2, in_bytes(MultiBranchData::per_case_size())); 1940 imulptr(index, reg2); // XXX l ? 1941 addptr(index, in_bytes(MultiBranchData::case_array_offset())); // XXX l ? 1942 1943 // Update the case count 1944 increment_mdp_data_at(mdp, 1945 index, 1946 in_bytes(MultiBranchData::relative_count_offset())); 1947 1948 // The method data pointer needs to be updated. 1949 update_mdp_by_offset(mdp, 1950 index, 1951 in_bytes(MultiBranchData:: 1952 relative_displacement_offset())); 1953 1954 bind(profile_continue); 1955 } 1956 } 1957 1958 1959 1960 void InterpreterMacroAssembler::_interp_verify_oop(Register reg, TosState state, const char* file, int line) { 1961 if (state == atos) { 1962 MacroAssembler::_verify_oop_checked(reg, "broken oop", file, line); 1963 } 1964 } 1965 1966 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) { 1967 #ifndef _LP64 1968 if ((state == ftos && UseSSE < 1) || 1969 (state == dtos && UseSSE < 2)) { 1970 MacroAssembler::verify_FPU(stack_depth); 1971 } 1972 #endif 1973 } 1974 1975 // Jump if ((*counter_addr += increment) & mask) == 0 1976 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr, Address mask, 1977 Register scratch, Label* where) { 1978 // This update is actually not atomic and can lose a number of updates 1979 // under heavy contention, but the alternative of using the (contended) 1980 // atomic update here penalizes profiling paths too much. 1981 movl(scratch, counter_addr); 1982 incrementl(scratch, InvocationCounter::count_increment); 1983 movl(counter_addr, scratch); 1984 andl(scratch, mask); 1985 if (where != NULL) { 1986 jcc(Assembler::zero, *where); 1987 } 1988 } 1989 1990 void InterpreterMacroAssembler::notify_method_entry() { 1991 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1992 // track stack depth. If it is possible to enter interp_only_mode we add 1993 // the code to check if the event should be sent. 1994 Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx); 1995 Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rbx); 1996 if (JvmtiExport::can_post_interpreter_events()) { 1997 Label L; 1998 NOT_LP64(get_thread(rthread);) 1999 movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset())); 2000 testl(rdx, rdx); 2001 jcc(Assembler::zero, L); 2002 call_VM(noreg, CAST_FROM_FN_PTR(address, 2003 InterpreterRuntime::post_method_entry)); 2004 bind(L); 2005 } 2006 2007 { 2008 SkipIfEqual skip(this, &DTraceMethodProbes, false); 2009 NOT_LP64(get_thread(rthread);) 2010 get_method(rarg); 2011 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), 2012 rthread, rarg); 2013 } 2014 2015 // RedefineClasses() tracing support for obsolete method entry 2016 if (log_is_enabled(Trace, redefine, class, obsolete)) { 2017 NOT_LP64(get_thread(rthread);) 2018 get_method(rarg); 2019 call_VM_leaf( 2020 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), 2021 rthread, rarg); 2022 } 2023 } 2024 2025 2026 void InterpreterMacroAssembler::notify_method_exit( 2027 TosState state, NotifyMethodExitMode mode) { 2028 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 2029 // track stack depth. If it is possible to enter interp_only_mode we add 2030 // the code to check if the event should be sent. 2031 Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx); 2032 Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rbx); 2033 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) { 2034 Label L; 2035 // Note: frame::interpreter_frame_result has a dependency on how the 2036 // method result is saved across the call to post_method_exit. If this 2037 // is changed then the interpreter_frame_result implementation will 2038 // need to be updated too. 2039 2040 // template interpreter will leave the result on the top of the stack. 2041 push(state); 2042 NOT_LP64(get_thread(rthread);) 2043 movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset())); 2044 testl(rdx, rdx); 2045 jcc(Assembler::zero, L); 2046 call_VM(noreg, 2047 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit)); 2048 bind(L); 2049 pop(state); 2050 } 2051 2052 { 2053 SkipIfEqual skip(this, &DTraceMethodProbes, false); 2054 push(state); 2055 NOT_LP64(get_thread(rthread);) 2056 get_method(rarg); 2057 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 2058 rthread, rarg); 2059 pop(state); 2060 } 2061 }