1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/assembler.hpp" 27 #include "asm/assembler.inline.hpp" 28 #include "code/compiledIC.hpp" 29 #include "compiler/compiler_globals.hpp" 30 #include "compiler/disassembler.hpp" 31 #include "crc32c.h" 32 #include "gc/shared/barrierSet.hpp" 33 #include "gc/shared/barrierSetAssembler.hpp" 34 #include "gc/shared/collectedHeap.inline.hpp" 35 #include "gc/shared/tlab_globals.hpp" 36 #include "interpreter/bytecodeHistogram.hpp" 37 #include "interpreter/interpreter.hpp" 38 #include "jvm.h" 39 #include "memory/resourceArea.hpp" 40 #include "memory/universe.hpp" 41 #include "oops/accessDecorators.hpp" 42 #include "oops/compressedKlass.inline.hpp" 43 #include "oops/compressedOops.inline.hpp" 44 #include "oops/klass.inline.hpp" 45 #include "prims/methodHandles.hpp" 46 #include "runtime/continuation.hpp" 47 #include "runtime/interfaceSupport.inline.hpp" 48 #include "runtime/javaThread.hpp" 49 #include "runtime/jniHandles.hpp" 50 #include "runtime/objectMonitor.hpp" 51 #include "runtime/os.hpp" 52 #include "runtime/safepoint.hpp" 53 #include "runtime/safepointMechanism.hpp" 54 #include "runtime/sharedRuntime.hpp" 55 #include "runtime/stubRoutines.hpp" 56 #include "utilities/checkedCast.hpp" 57 #include "utilities/macros.hpp" 58 59 #ifdef PRODUCT 60 #define BLOCK_COMMENT(str) /* nothing */ 61 #define STOP(error) stop(error) 62 #else 63 #define BLOCK_COMMENT(str) block_comment(str) 64 #define STOP(error) block_comment(error); stop(error) 65 #endif 66 67 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") 68 69 #ifdef ASSERT 70 bool AbstractAssembler::pd_check_instruction_mark() { return true; } 71 #endif 72 73 static const Assembler::Condition reverse[] = { 74 Assembler::noOverflow /* overflow = 0x0 */ , 75 Assembler::overflow /* noOverflow = 0x1 */ , 76 Assembler::aboveEqual /* carrySet = 0x2, below = 0x2 */ , 77 Assembler::below /* aboveEqual = 0x3, carryClear = 0x3 */ , 78 Assembler::notZero /* zero = 0x4, equal = 0x4 */ , 79 Assembler::zero /* notZero = 0x5, notEqual = 0x5 */ , 80 Assembler::above /* belowEqual = 0x6 */ , 81 Assembler::belowEqual /* above = 0x7 */ , 82 Assembler::positive /* negative = 0x8 */ , 83 Assembler::negative /* positive = 0x9 */ , 84 Assembler::noParity /* parity = 0xa */ , 85 Assembler::parity /* noParity = 0xb */ , 86 Assembler::greaterEqual /* less = 0xc */ , 87 Assembler::less /* greaterEqual = 0xd */ , 88 Assembler::greater /* lessEqual = 0xe */ , 89 Assembler::lessEqual /* greater = 0xf, */ 90 91 }; 92 93 94 // Implementation of MacroAssembler 95 96 // First all the versions that have distinct versions depending on 32/64 bit 97 // Unless the difference is trivial (1 line or so). 98 99 #ifndef _LP64 100 101 // 32bit versions 102 103 Address MacroAssembler::as_Address(AddressLiteral adr) { 104 return Address(adr.target(), adr.rspec()); 105 } 106 107 Address MacroAssembler::as_Address(ArrayAddress adr, Register rscratch) { 108 assert(rscratch == noreg, ""); 109 return Address::make_array(adr); 110 } 111 112 void MacroAssembler::call_VM_leaf_base(address entry_point, 113 int number_of_arguments) { 114 call(RuntimeAddress(entry_point)); 115 increment(rsp, number_of_arguments * wordSize); 116 } 117 118 void MacroAssembler::cmpklass(Address src1, Metadata* obj) { 119 cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate()); 120 } 121 122 123 void MacroAssembler::cmpklass(Register src1, Metadata* obj) { 124 cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate()); 125 } 126 127 void MacroAssembler::cmpoop(Address src1, jobject obj) { 128 cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate()); 129 } 130 131 void MacroAssembler::cmpoop(Register src1, jobject obj, Register rscratch) { 132 assert(rscratch == noreg, "redundant"); 133 cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate()); 134 } 135 136 void MacroAssembler::extend_sign(Register hi, Register lo) { 137 // According to Intel Doc. AP-526, "Integer Divide", p.18. 138 if (VM_Version::is_P6() && hi == rdx && lo == rax) { 139 cdql(); 140 } else { 141 movl(hi, lo); 142 sarl(hi, 31); 143 } 144 } 145 146 void MacroAssembler::jC2(Register tmp, Label& L) { 147 // set parity bit if FPU flag C2 is set (via rax) 148 save_rax(tmp); 149 fwait(); fnstsw_ax(); 150 sahf(); 151 restore_rax(tmp); 152 // branch 153 jcc(Assembler::parity, L); 154 } 155 156 void MacroAssembler::jnC2(Register tmp, Label& L) { 157 // set parity bit if FPU flag C2 is set (via rax) 158 save_rax(tmp); 159 fwait(); fnstsw_ax(); 160 sahf(); 161 restore_rax(tmp); 162 // branch 163 jcc(Assembler::noParity, L); 164 } 165 166 // 32bit can do a case table jump in one instruction but we no longer allow the base 167 // to be installed in the Address class 168 void MacroAssembler::jump(ArrayAddress entry, Register rscratch) { 169 assert(rscratch == noreg, "not needed"); 170 jmp(as_Address(entry, noreg)); 171 } 172 173 // Note: y_lo will be destroyed 174 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) { 175 // Long compare for Java (semantics as described in JVM spec.) 176 Label high, low, done; 177 178 cmpl(x_hi, y_hi); 179 jcc(Assembler::less, low); 180 jcc(Assembler::greater, high); 181 // x_hi is the return register 182 xorl(x_hi, x_hi); 183 cmpl(x_lo, y_lo); 184 jcc(Assembler::below, low); 185 jcc(Assembler::equal, done); 186 187 bind(high); 188 xorl(x_hi, x_hi); 189 increment(x_hi); 190 jmp(done); 191 192 bind(low); 193 xorl(x_hi, x_hi); 194 decrementl(x_hi); 195 196 bind(done); 197 } 198 199 void MacroAssembler::lea(Register dst, AddressLiteral src) { 200 mov_literal32(dst, (int32_t)src.target(), src.rspec()); 201 } 202 203 void MacroAssembler::lea(Address dst, AddressLiteral adr, Register rscratch) { 204 assert(rscratch == noreg, "not needed"); 205 206 // leal(dst, as_Address(adr)); 207 // see note in movl as to why we must use a move 208 mov_literal32(dst, (int32_t)adr.target(), adr.rspec()); 209 } 210 211 void MacroAssembler::leave() { 212 mov(rsp, rbp); 213 pop(rbp); 214 } 215 216 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) { 217 // Multiplication of two Java long values stored on the stack 218 // as illustrated below. Result is in rdx:rax. 219 // 220 // rsp ---> [ ?? ] \ \ 221 // .... | y_rsp_offset | 222 // [ y_lo ] / (in bytes) | x_rsp_offset 223 // [ y_hi ] | (in bytes) 224 // .... | 225 // [ x_lo ] / 226 // [ x_hi ] 227 // .... 228 // 229 // Basic idea: lo(result) = lo(x_lo * y_lo) 230 // hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi) 231 Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset); 232 Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset); 233 Label quick; 234 // load x_hi, y_hi and check if quick 235 // multiplication is possible 236 movl(rbx, x_hi); 237 movl(rcx, y_hi); 238 movl(rax, rbx); 239 orl(rbx, rcx); // rbx, = 0 <=> x_hi = 0 and y_hi = 0 240 jcc(Assembler::zero, quick); // if rbx, = 0 do quick multiply 241 // do full multiplication 242 // 1st step 243 mull(y_lo); // x_hi * y_lo 244 movl(rbx, rax); // save lo(x_hi * y_lo) in rbx, 245 // 2nd step 246 movl(rax, x_lo); 247 mull(rcx); // x_lo * y_hi 248 addl(rbx, rax); // add lo(x_lo * y_hi) to rbx, 249 // 3rd step 250 bind(quick); // note: rbx, = 0 if quick multiply! 251 movl(rax, x_lo); 252 mull(y_lo); // x_lo * y_lo 253 addl(rdx, rbx); // correct hi(x_lo * y_lo) 254 } 255 256 void MacroAssembler::lneg(Register hi, Register lo) { 257 negl(lo); 258 adcl(hi, 0); 259 negl(hi); 260 } 261 262 void MacroAssembler::lshl(Register hi, Register lo) { 263 // Java shift left long support (semantics as described in JVM spec., p.305) 264 // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n)) 265 // shift value is in rcx ! 266 assert(hi != rcx, "must not use rcx"); 267 assert(lo != rcx, "must not use rcx"); 268 const Register s = rcx; // shift count 269 const int n = BitsPerWord; 270 Label L; 271 andl(s, 0x3f); // s := s & 0x3f (s < 0x40) 272 cmpl(s, n); // if (s < n) 273 jcc(Assembler::less, L); // else (s >= n) 274 movl(hi, lo); // x := x << n 275 xorl(lo, lo); 276 // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n! 277 bind(L); // s (mod n) < n 278 shldl(hi, lo); // x := x << s 279 shll(lo); 280 } 281 282 283 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) { 284 // Java shift right long support (semantics as described in JVM spec., p.306 & p.310) 285 // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n)) 286 assert(hi != rcx, "must not use rcx"); 287 assert(lo != rcx, "must not use rcx"); 288 const Register s = rcx; // shift count 289 const int n = BitsPerWord; 290 Label L; 291 andl(s, 0x3f); // s := s & 0x3f (s < 0x40) 292 cmpl(s, n); // if (s < n) 293 jcc(Assembler::less, L); // else (s >= n) 294 movl(lo, hi); // x := x >> n 295 if (sign_extension) sarl(hi, 31); 296 else xorl(hi, hi); 297 // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n! 298 bind(L); // s (mod n) < n 299 shrdl(lo, hi); // x := x >> s 300 if (sign_extension) sarl(hi); 301 else shrl(hi); 302 } 303 304 void MacroAssembler::movoop(Register dst, jobject obj) { 305 mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate()); 306 } 307 308 void MacroAssembler::movoop(Address dst, jobject obj, Register rscratch) { 309 assert(rscratch == noreg, "redundant"); 310 mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate()); 311 } 312 313 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) { 314 mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate()); 315 } 316 317 void MacroAssembler::mov_metadata(Address dst, Metadata* obj, Register rscratch) { 318 assert(rscratch == noreg, "redundant"); 319 mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate()); 320 } 321 322 void MacroAssembler::movptr(Register dst, AddressLiteral src) { 323 if (src.is_lval()) { 324 mov_literal32(dst, (intptr_t)src.target(), src.rspec()); 325 } else { 326 movl(dst, as_Address(src)); 327 } 328 } 329 330 void MacroAssembler::movptr(ArrayAddress dst, Register src, Register rscratch) { 331 assert(rscratch == noreg, "redundant"); 332 movl(as_Address(dst, noreg), src); 333 } 334 335 void MacroAssembler::movptr(Register dst, ArrayAddress src) { 336 movl(dst, as_Address(src, noreg)); 337 } 338 339 void MacroAssembler::movptr(Address dst, intptr_t src, Register rscratch) { 340 assert(rscratch == noreg, "redundant"); 341 movl(dst, src); 342 } 343 344 void MacroAssembler::pushoop(jobject obj, Register rscratch) { 345 assert(rscratch == noreg, "redundant"); 346 push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate()); 347 } 348 349 void MacroAssembler::pushklass(Metadata* obj, Register rscratch) { 350 assert(rscratch == noreg, "redundant"); 351 push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate()); 352 } 353 354 void MacroAssembler::pushptr(AddressLiteral src, Register rscratch) { 355 assert(rscratch == noreg, "redundant"); 356 if (src.is_lval()) { 357 push_literal32((int32_t)src.target(), src.rspec()); 358 } else { 359 pushl(as_Address(src)); 360 } 361 } 362 363 static void pass_arg0(MacroAssembler* masm, Register arg) { 364 masm->push(arg); 365 } 366 367 static void pass_arg1(MacroAssembler* masm, Register arg) { 368 masm->push(arg); 369 } 370 371 static void pass_arg2(MacroAssembler* masm, Register arg) { 372 masm->push(arg); 373 } 374 375 static void pass_arg3(MacroAssembler* masm, Register arg) { 376 masm->push(arg); 377 } 378 379 #ifndef PRODUCT 380 extern "C" void findpc(intptr_t x); 381 #endif 382 383 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) { 384 // In order to get locks to work, we need to fake a in_VM state 385 JavaThread* thread = JavaThread::current(); 386 JavaThreadState saved_state = thread->thread_state(); 387 thread->set_thread_state(_thread_in_vm); 388 if (ShowMessageBoxOnError) { 389 JavaThread* thread = JavaThread::current(); 390 JavaThreadState saved_state = thread->thread_state(); 391 thread->set_thread_state(_thread_in_vm); 392 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { 393 ttyLocker ttyl; 394 BytecodeCounter::print(); 395 } 396 // To see where a verify_oop failed, get $ebx+40/X for this frame. 397 // This is the value of eip which points to where verify_oop will return. 398 if (os::message_box(msg, "Execution stopped, print registers?")) { 399 print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip); 400 BREAKPOINT; 401 } 402 } 403 fatal("DEBUG MESSAGE: %s", msg); 404 } 405 406 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) { 407 ttyLocker ttyl; 408 DebuggingContext debugging{}; 409 tty->print_cr("eip = 0x%08x", eip); 410 #ifndef PRODUCT 411 if ((WizardMode || Verbose) && PrintMiscellaneous) { 412 tty->cr(); 413 findpc(eip); 414 tty->cr(); 415 } 416 #endif 417 #define PRINT_REG(rax) \ 418 { tty->print("%s = ", #rax); os::print_location(tty, rax); } 419 PRINT_REG(rax); 420 PRINT_REG(rbx); 421 PRINT_REG(rcx); 422 PRINT_REG(rdx); 423 PRINT_REG(rdi); 424 PRINT_REG(rsi); 425 PRINT_REG(rbp); 426 PRINT_REG(rsp); 427 #undef PRINT_REG 428 // Print some words near top of staack. 429 int* dump_sp = (int*) rsp; 430 for (int col1 = 0; col1 < 8; col1++) { 431 tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp); 432 os::print_location(tty, *dump_sp++); 433 } 434 for (int row = 0; row < 16; row++) { 435 tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp); 436 for (int col = 0; col < 8; col++) { 437 tty->print(" 0x%08x", *dump_sp++); 438 } 439 tty->cr(); 440 } 441 // Print some instructions around pc: 442 Disassembler::decode((address)eip-64, (address)eip); 443 tty->print_cr("--------"); 444 Disassembler::decode((address)eip, (address)eip+32); 445 } 446 447 void MacroAssembler::stop(const char* msg) { 448 // push address of message 449 ExternalAddress message((address)msg); 450 pushptr(message.addr(), noreg); 451 { Label L; call(L, relocInfo::none); bind(L); } // push eip 452 pusha(); // push registers 453 call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32))); 454 hlt(); 455 } 456 457 void MacroAssembler::warn(const char* msg) { 458 push_CPU_state(); 459 460 // push address of message 461 ExternalAddress message((address)msg); 462 pushptr(message.addr(), noreg); 463 464 call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning))); 465 addl(rsp, wordSize); // discard argument 466 pop_CPU_state(); 467 } 468 469 void MacroAssembler::print_state() { 470 { Label L; call(L, relocInfo::none); bind(L); } // push eip 471 pusha(); // push registers 472 473 push_CPU_state(); 474 call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32))); 475 pop_CPU_state(); 476 477 popa(); 478 addl(rsp, wordSize); 479 } 480 481 #else // _LP64 482 483 // 64 bit versions 484 485 Address MacroAssembler::as_Address(AddressLiteral adr) { 486 // amd64 always does this as a pc-rel 487 // we can be absolute or disp based on the instruction type 488 // jmp/call are displacements others are absolute 489 assert(!adr.is_lval(), "must be rval"); 490 assert(reachable(adr), "must be"); 491 return Address(checked_cast<int32_t>(adr.target() - pc()), adr.target(), adr.reloc()); 492 493 } 494 495 Address MacroAssembler::as_Address(ArrayAddress adr, Register rscratch) { 496 AddressLiteral base = adr.base(); 497 lea(rscratch, base); 498 Address index = adr.index(); 499 assert(index._disp == 0, "must not have disp"); // maybe it can? 500 Address array(rscratch, index._index, index._scale, index._disp); 501 return array; 502 } 503 504 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) { 505 Label L, E; 506 507 #ifdef _WIN64 508 // Windows always allocates space for it's register args 509 assert(num_args <= 4, "only register arguments supported"); 510 subq(rsp, frame::arg_reg_save_area_bytes); 511 #endif 512 513 // Align stack if necessary 514 testl(rsp, 15); 515 jcc(Assembler::zero, L); 516 517 subq(rsp, 8); 518 call(RuntimeAddress(entry_point)); 519 addq(rsp, 8); 520 jmp(E); 521 522 bind(L); 523 call(RuntimeAddress(entry_point)); 524 525 bind(E); 526 527 #ifdef _WIN64 528 // restore stack pointer 529 addq(rsp, frame::arg_reg_save_area_bytes); 530 #endif 531 532 } 533 534 void MacroAssembler::cmp64(Register src1, AddressLiteral src2, Register rscratch) { 535 assert(!src2.is_lval(), "should use cmpptr"); 536 assert(rscratch != noreg || always_reachable(src2), "missing"); 537 538 if (reachable(src2)) { 539 cmpq(src1, as_Address(src2)); 540 } else { 541 lea(rscratch, src2); 542 Assembler::cmpq(src1, Address(rscratch, 0)); 543 } 544 } 545 546 int MacroAssembler::corrected_idivq(Register reg) { 547 // Full implementation of Java ldiv and lrem; checks for special 548 // case as described in JVM spec., p.243 & p.271. The function 549 // returns the (pc) offset of the idivl instruction - may be needed 550 // for implicit exceptions. 551 // 552 // normal case special case 553 // 554 // input : rax: dividend min_long 555 // reg: divisor (may not be eax/edx) -1 556 // 557 // output: rax: quotient (= rax idiv reg) min_long 558 // rdx: remainder (= rax irem reg) 0 559 assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register"); 560 static const int64_t min_long = 0x8000000000000000; 561 Label normal_case, special_case; 562 563 // check for special case 564 cmp64(rax, ExternalAddress((address) &min_long), rdx /*rscratch*/); 565 jcc(Assembler::notEqual, normal_case); 566 xorl(rdx, rdx); // prepare rdx for possible special case (where 567 // remainder = 0) 568 cmpq(reg, -1); 569 jcc(Assembler::equal, special_case); 570 571 // handle normal case 572 bind(normal_case); 573 cdqq(); 574 int idivq_offset = offset(); 575 idivq(reg); 576 577 // normal and special case exit 578 bind(special_case); 579 580 return idivq_offset; 581 } 582 583 void MacroAssembler::decrementq(Register reg, int value) { 584 if (value == min_jint) { subq(reg, value); return; } 585 if (value < 0) { incrementq(reg, -value); return; } 586 if (value == 0) { ; return; } 587 if (value == 1 && UseIncDec) { decq(reg) ; return; } 588 /* else */ { subq(reg, value) ; return; } 589 } 590 591 void MacroAssembler::decrementq(Address dst, int value) { 592 if (value == min_jint) { subq(dst, value); return; } 593 if (value < 0) { incrementq(dst, -value); return; } 594 if (value == 0) { ; return; } 595 if (value == 1 && UseIncDec) { decq(dst) ; return; } 596 /* else */ { subq(dst, value) ; return; } 597 } 598 599 void MacroAssembler::incrementq(AddressLiteral dst, Register rscratch) { 600 assert(rscratch != noreg || always_reachable(dst), "missing"); 601 602 if (reachable(dst)) { 603 incrementq(as_Address(dst)); 604 } else { 605 lea(rscratch, dst); 606 incrementq(Address(rscratch, 0)); 607 } 608 } 609 610 void MacroAssembler::incrementq(Register reg, int value) { 611 if (value == min_jint) { addq(reg, value); return; } 612 if (value < 0) { decrementq(reg, -value); return; } 613 if (value == 0) { ; return; } 614 if (value == 1 && UseIncDec) { incq(reg) ; return; } 615 /* else */ { addq(reg, value) ; return; } 616 } 617 618 void MacroAssembler::incrementq(Address dst, int value) { 619 if (value == min_jint) { addq(dst, value); return; } 620 if (value < 0) { decrementq(dst, -value); return; } 621 if (value == 0) { ; return; } 622 if (value == 1 && UseIncDec) { incq(dst) ; return; } 623 /* else */ { addq(dst, value) ; return; } 624 } 625 626 // 32bit can do a case table jump in one instruction but we no longer allow the base 627 // to be installed in the Address class 628 void MacroAssembler::jump(ArrayAddress entry, Register rscratch) { 629 lea(rscratch, entry.base()); 630 Address dispatch = entry.index(); 631 assert(dispatch._base == noreg, "must be"); 632 dispatch._base = rscratch; 633 jmp(dispatch); 634 } 635 636 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) { 637 ShouldNotReachHere(); // 64bit doesn't use two regs 638 cmpq(x_lo, y_lo); 639 } 640 641 void MacroAssembler::lea(Register dst, AddressLiteral src) { 642 mov_literal64(dst, (intptr_t)src.target(), src.rspec()); 643 } 644 645 void MacroAssembler::lea(Address dst, AddressLiteral adr, Register rscratch) { 646 lea(rscratch, adr); 647 movptr(dst, rscratch); 648 } 649 650 void MacroAssembler::leave() { 651 // %%% is this really better? Why not on 32bit too? 652 emit_int8((unsigned char)0xC9); // LEAVE 653 } 654 655 void MacroAssembler::lneg(Register hi, Register lo) { 656 ShouldNotReachHere(); // 64bit doesn't use two regs 657 negq(lo); 658 } 659 660 void MacroAssembler::movoop(Register dst, jobject obj) { 661 mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate()); 662 } 663 664 void MacroAssembler::movoop(Address dst, jobject obj, Register rscratch) { 665 mov_literal64(rscratch, (intptr_t)obj, oop_Relocation::spec_for_immediate()); 666 movq(dst, rscratch); 667 } 668 669 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) { 670 mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate()); 671 } 672 673 void MacroAssembler::mov_metadata(Address dst, Metadata* obj, Register rscratch) { 674 mov_literal64(rscratch, (intptr_t)obj, metadata_Relocation::spec_for_immediate()); 675 movq(dst, rscratch); 676 } 677 678 void MacroAssembler::movptr(Register dst, AddressLiteral src) { 679 if (src.is_lval()) { 680 mov_literal64(dst, (intptr_t)src.target(), src.rspec()); 681 } else { 682 if (reachable(src)) { 683 movq(dst, as_Address(src)); 684 } else { 685 lea(dst, src); 686 movq(dst, Address(dst, 0)); 687 } 688 } 689 } 690 691 void MacroAssembler::movptr(ArrayAddress dst, Register src, Register rscratch) { 692 movq(as_Address(dst, rscratch), src); 693 } 694 695 void MacroAssembler::movptr(Register dst, ArrayAddress src) { 696 movq(dst, as_Address(src, dst /*rscratch*/)); 697 } 698 699 // src should NEVER be a real pointer. Use AddressLiteral for true pointers 700 void MacroAssembler::movptr(Address dst, intptr_t src, Register rscratch) { 701 if (is_simm32(src)) { 702 movptr(dst, checked_cast<int32_t>(src)); 703 } else { 704 mov64(rscratch, src); 705 movq(dst, rscratch); 706 } 707 } 708 709 void MacroAssembler::pushoop(jobject obj, Register rscratch) { 710 movoop(rscratch, obj); 711 push(rscratch); 712 } 713 714 void MacroAssembler::pushklass(Metadata* obj, Register rscratch) { 715 mov_metadata(rscratch, obj); 716 push(rscratch); 717 } 718 719 void MacroAssembler::pushptr(AddressLiteral src, Register rscratch) { 720 lea(rscratch, src); 721 if (src.is_lval()) { 722 push(rscratch); 723 } else { 724 pushq(Address(rscratch, 0)); 725 } 726 } 727 728 void MacroAssembler::reset_last_Java_frame(bool clear_fp) { 729 reset_last_Java_frame(r15_thread, clear_fp); 730 } 731 732 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 733 Register last_java_fp, 734 address last_java_pc, 735 Register rscratch) { 736 set_last_Java_frame(r15_thread, last_java_sp, last_java_fp, last_java_pc, rscratch); 737 } 738 739 static void pass_arg0(MacroAssembler* masm, Register arg) { 740 if (c_rarg0 != arg ) { 741 masm->mov(c_rarg0, arg); 742 } 743 } 744 745 static void pass_arg1(MacroAssembler* masm, Register arg) { 746 if (c_rarg1 != arg ) { 747 masm->mov(c_rarg1, arg); 748 } 749 } 750 751 static void pass_arg2(MacroAssembler* masm, Register arg) { 752 if (c_rarg2 != arg ) { 753 masm->mov(c_rarg2, arg); 754 } 755 } 756 757 static void pass_arg3(MacroAssembler* masm, Register arg) { 758 if (c_rarg3 != arg ) { 759 masm->mov(c_rarg3, arg); 760 } 761 } 762 763 void MacroAssembler::stop(const char* msg) { 764 if (ShowMessageBoxOnError) { 765 address rip = pc(); 766 pusha(); // get regs on stack 767 lea(c_rarg1, InternalAddress(rip)); 768 movq(c_rarg2, rsp); // pass pointer to regs array 769 } 770 lea(c_rarg0, ExternalAddress((address) msg)); 771 andq(rsp, -16); // align stack as required by ABI 772 call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64))); 773 hlt(); 774 } 775 776 void MacroAssembler::warn(const char* msg) { 777 push(rbp); 778 movq(rbp, rsp); 779 andq(rsp, -16); // align stack as required by push_CPU_state and call 780 push_CPU_state(); // keeps alignment at 16 bytes 781 782 lea(c_rarg0, ExternalAddress((address) msg)); 783 call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning))); 784 785 pop_CPU_state(); 786 mov(rsp, rbp); 787 pop(rbp); 788 } 789 790 void MacroAssembler::print_state() { 791 address rip = pc(); 792 pusha(); // get regs on stack 793 push(rbp); 794 movq(rbp, rsp); 795 andq(rsp, -16); // align stack as required by push_CPU_state and call 796 push_CPU_state(); // keeps alignment at 16 bytes 797 798 lea(c_rarg0, InternalAddress(rip)); 799 lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array 800 call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1); 801 802 pop_CPU_state(); 803 mov(rsp, rbp); 804 pop(rbp); 805 popa(); 806 } 807 808 #ifndef PRODUCT 809 extern "C" void findpc(intptr_t x); 810 #endif 811 812 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) { 813 // In order to get locks to work, we need to fake a in_VM state 814 if (ShowMessageBoxOnError) { 815 JavaThread* thread = JavaThread::current(); 816 JavaThreadState saved_state = thread->thread_state(); 817 thread->set_thread_state(_thread_in_vm); 818 #ifndef PRODUCT 819 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { 820 ttyLocker ttyl; 821 BytecodeCounter::print(); 822 } 823 #endif 824 // To see where a verify_oop failed, get $ebx+40/X for this frame. 825 // XXX correct this offset for amd64 826 // This is the value of eip which points to where verify_oop will return. 827 if (os::message_box(msg, "Execution stopped, print registers?")) { 828 print_state64(pc, regs); 829 BREAKPOINT; 830 } 831 } 832 fatal("DEBUG MESSAGE: %s", msg); 833 } 834 835 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) { 836 ttyLocker ttyl; 837 DebuggingContext debugging{}; 838 tty->print_cr("rip = 0x%016lx", (intptr_t)pc); 839 #ifndef PRODUCT 840 tty->cr(); 841 findpc(pc); 842 tty->cr(); 843 #endif 844 #define PRINT_REG(rax, value) \ 845 { tty->print("%s = ", #rax); os::print_location(tty, value); } 846 PRINT_REG(rax, regs[15]); 847 PRINT_REG(rbx, regs[12]); 848 PRINT_REG(rcx, regs[14]); 849 PRINT_REG(rdx, regs[13]); 850 PRINT_REG(rdi, regs[8]); 851 PRINT_REG(rsi, regs[9]); 852 PRINT_REG(rbp, regs[10]); 853 // rsp is actually not stored by pusha(), compute the old rsp from regs (rsp after pusha): regs + 16 = old rsp 854 PRINT_REG(rsp, (intptr_t)(®s[16])); 855 PRINT_REG(r8 , regs[7]); 856 PRINT_REG(r9 , regs[6]); 857 PRINT_REG(r10, regs[5]); 858 PRINT_REG(r11, regs[4]); 859 PRINT_REG(r12, regs[3]); 860 PRINT_REG(r13, regs[2]); 861 PRINT_REG(r14, regs[1]); 862 PRINT_REG(r15, regs[0]); 863 #undef PRINT_REG 864 // Print some words near the top of the stack. 865 int64_t* rsp = ®s[16]; 866 int64_t* dump_sp = rsp; 867 for (int col1 = 0; col1 < 8; col1++) { 868 tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp); 869 os::print_location(tty, *dump_sp++); 870 } 871 for (int row = 0; row < 25; row++) { 872 tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp); 873 for (int col = 0; col < 4; col++) { 874 tty->print(" 0x%016lx", (intptr_t)*dump_sp++); 875 } 876 tty->cr(); 877 } 878 // Print some instructions around pc: 879 Disassembler::decode((address)pc-64, (address)pc); 880 tty->print_cr("--------"); 881 Disassembler::decode((address)pc, (address)pc+32); 882 } 883 884 // The java_calling_convention describes stack locations as ideal slots on 885 // a frame with no abi restrictions. Since we must observe abi restrictions 886 // (like the placement of the register window) the slots must be biased by 887 // the following value. 888 static int reg2offset_in(VMReg r) { 889 // Account for saved rbp and return address 890 // This should really be in_preserve_stack_slots 891 return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size; 892 } 893 894 static int reg2offset_out(VMReg r) { 895 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size; 896 } 897 898 // A long move 899 void MacroAssembler::long_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) { 900 901 // The calling conventions assures us that each VMregpair is either 902 // all really one physical register or adjacent stack slots. 903 904 if (src.is_single_phys_reg() ) { 905 if (dst.is_single_phys_reg()) { 906 if (dst.first() != src.first()) { 907 mov(dst.first()->as_Register(), src.first()->as_Register()); 908 } 909 } else { 910 assert(dst.is_single_reg(), "not a stack pair: (%s, %s), (%s, %s)", 911 src.first()->name(), src.second()->name(), dst.first()->name(), dst.second()->name()); 912 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_Register()); 913 } 914 } else if (dst.is_single_phys_reg()) { 915 assert(src.is_single_reg(), "not a stack pair"); 916 movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 917 } else { 918 assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs"); 919 movq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 920 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp); 921 } 922 } 923 924 // A double move 925 void MacroAssembler::double_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) { 926 927 // The calling conventions assures us that each VMregpair is either 928 // all really one physical register or adjacent stack slots. 929 930 if (src.is_single_phys_reg() ) { 931 if (dst.is_single_phys_reg()) { 932 // In theory these overlap but the ordering is such that this is likely a nop 933 if ( src.first() != dst.first()) { 934 movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister()); 935 } 936 } else { 937 assert(dst.is_single_reg(), "not a stack pair"); 938 movdbl(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_XMMRegister()); 939 } 940 } else if (dst.is_single_phys_reg()) { 941 assert(src.is_single_reg(), "not a stack pair"); 942 movdbl(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 943 } else { 944 assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs"); 945 movq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 946 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp); 947 } 948 } 949 950 951 // A float arg may have to do float reg int reg conversion 952 void MacroAssembler::float_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) { 953 assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move"); 954 955 // The calling conventions assures us that each VMregpair is either 956 // all really one physical register or adjacent stack slots. 957 958 if (src.first()->is_stack()) { 959 if (dst.first()->is_stack()) { 960 movl(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 961 movptr(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp); 962 } else { 963 // stack to reg 964 assert(dst.first()->is_XMMRegister(), "only expect xmm registers as parameters"); 965 movflt(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 966 } 967 } else if (dst.first()->is_stack()) { 968 // reg to stack 969 assert(src.first()->is_XMMRegister(), "only expect xmm registers as parameters"); 970 movflt(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_XMMRegister()); 971 } else { 972 // reg to reg 973 // In theory these overlap but the ordering is such that this is likely a nop 974 if ( src.first() != dst.first()) { 975 movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister()); 976 } 977 } 978 } 979 980 // On 64 bit we will store integer like items to the stack as 981 // 64 bits items (x86_32/64 abi) even though java would only store 982 // 32bits for a parameter. On 32bit it will simply be 32 bits 983 // So this routine will do 32->32 on 32bit and 32->64 on 64bit 984 void MacroAssembler::move32_64(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) { 985 if (src.first()->is_stack()) { 986 if (dst.first()->is_stack()) { 987 // stack to stack 988 movslq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 989 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp); 990 } else { 991 // stack to reg 992 movslq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 993 } 994 } else if (dst.first()->is_stack()) { 995 // reg to stack 996 // Do we really have to sign extend??? 997 // __ movslq(src.first()->as_Register(), src.first()->as_Register()); 998 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_Register()); 999 } else { 1000 // Do we really have to sign extend??? 1001 // __ movslq(dst.first()->as_Register(), src.first()->as_Register()); 1002 if (dst.first() != src.first()) { 1003 movq(dst.first()->as_Register(), src.first()->as_Register()); 1004 } 1005 } 1006 } 1007 1008 void MacroAssembler::move_ptr(VMRegPair src, VMRegPair dst) { 1009 if (src.first()->is_stack()) { 1010 if (dst.first()->is_stack()) { 1011 // stack to stack 1012 movq(rax, Address(rbp, reg2offset_in(src.first()))); 1013 movq(Address(rsp, reg2offset_out(dst.first())), rax); 1014 } else { 1015 // stack to reg 1016 movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()))); 1017 } 1018 } else if (dst.first()->is_stack()) { 1019 // reg to stack 1020 movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register()); 1021 } else { 1022 if (dst.first() != src.first()) { 1023 movq(dst.first()->as_Register(), src.first()->as_Register()); 1024 } 1025 } 1026 } 1027 1028 // An oop arg. Must pass a handle not the oop itself 1029 void MacroAssembler::object_move(OopMap* map, 1030 int oop_handle_offset, 1031 int framesize_in_slots, 1032 VMRegPair src, 1033 VMRegPair dst, 1034 bool is_receiver, 1035 int* receiver_offset) { 1036 1037 // must pass a handle. First figure out the location we use as a handle 1038 1039 Register rHandle = dst.first()->is_stack() ? rax : dst.first()->as_Register(); 1040 1041 // See if oop is null if it is we need no handle 1042 1043 if (src.first()->is_stack()) { 1044 1045 // Oop is already on the stack as an argument 1046 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots(); 1047 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots)); 1048 if (is_receiver) { 1049 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size; 1050 } 1051 1052 cmpptr(Address(rbp, reg2offset_in(src.first())), NULL_WORD); 1053 lea(rHandle, Address(rbp, reg2offset_in(src.first()))); 1054 // conditionally move a null 1055 cmovptr(Assembler::equal, rHandle, Address(rbp, reg2offset_in(src.first()))); 1056 } else { 1057 1058 // Oop is in a register we must store it to the space we reserve 1059 // on the stack for oop_handles and pass a handle if oop is non-null 1060 1061 const Register rOop = src.first()->as_Register(); 1062 int oop_slot; 1063 if (rOop == j_rarg0) 1064 oop_slot = 0; 1065 else if (rOop == j_rarg1) 1066 oop_slot = 1; 1067 else if (rOop == j_rarg2) 1068 oop_slot = 2; 1069 else if (rOop == j_rarg3) 1070 oop_slot = 3; 1071 else if (rOop == j_rarg4) 1072 oop_slot = 4; 1073 else { 1074 assert(rOop == j_rarg5, "wrong register"); 1075 oop_slot = 5; 1076 } 1077 1078 oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset; 1079 int offset = oop_slot*VMRegImpl::stack_slot_size; 1080 1081 map->set_oop(VMRegImpl::stack2reg(oop_slot)); 1082 // Store oop in handle area, may be null 1083 movptr(Address(rsp, offset), rOop); 1084 if (is_receiver) { 1085 *receiver_offset = offset; 1086 } 1087 1088 cmpptr(rOop, NULL_WORD); 1089 lea(rHandle, Address(rsp, offset)); 1090 // conditionally move a null from the handle area where it was just stored 1091 cmovptr(Assembler::equal, rHandle, Address(rsp, offset)); 1092 } 1093 1094 // If arg is on the stack then place it otherwise it is already in correct reg. 1095 if (dst.first()->is_stack()) { 1096 movptr(Address(rsp, reg2offset_out(dst.first())), rHandle); 1097 } 1098 } 1099 1100 #endif // _LP64 1101 1102 // Now versions that are common to 32/64 bit 1103 1104 void MacroAssembler::addptr(Register dst, int32_t imm32) { 1105 LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32)); 1106 } 1107 1108 void MacroAssembler::addptr(Register dst, Register src) { 1109 LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); 1110 } 1111 1112 void MacroAssembler::addptr(Address dst, Register src) { 1113 LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); 1114 } 1115 1116 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 1117 assert(rscratch != noreg || always_reachable(src), "missing"); 1118 1119 if (reachable(src)) { 1120 Assembler::addsd(dst, as_Address(src)); 1121 } else { 1122 lea(rscratch, src); 1123 Assembler::addsd(dst, Address(rscratch, 0)); 1124 } 1125 } 1126 1127 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src, Register rscratch) { 1128 assert(rscratch != noreg || always_reachable(src), "missing"); 1129 1130 if (reachable(src)) { 1131 addss(dst, as_Address(src)); 1132 } else { 1133 lea(rscratch, src); 1134 addss(dst, Address(rscratch, 0)); 1135 } 1136 } 1137 1138 void MacroAssembler::addpd(XMMRegister dst, AddressLiteral src, Register rscratch) { 1139 assert(rscratch != noreg || always_reachable(src), "missing"); 1140 1141 if (reachable(src)) { 1142 Assembler::addpd(dst, as_Address(src)); 1143 } else { 1144 lea(rscratch, src); 1145 Assembler::addpd(dst, Address(rscratch, 0)); 1146 } 1147 } 1148 1149 // See 8273459. Function for ensuring 64-byte alignment, intended for stubs only. 1150 // Stub code is generated once and never copied. 1151 // NMethods can't use this because they get copied and we can't force alignment > 32 bytes. 1152 void MacroAssembler::align64() { 1153 align(64, (uint)(uintptr_t)pc()); 1154 } 1155 1156 void MacroAssembler::align32() { 1157 align(32, (uint)(uintptr_t)pc()); 1158 } 1159 1160 void MacroAssembler::align(uint modulus) { 1161 // 8273459: Ensure alignment is possible with current segment alignment 1162 assert(modulus <= (uintx)CodeEntryAlignment, "Alignment must be <= CodeEntryAlignment"); 1163 align(modulus, offset()); 1164 } 1165 1166 void MacroAssembler::align(uint modulus, uint target) { 1167 if (target % modulus != 0) { 1168 nop(modulus - (target % modulus)); 1169 } 1170 } 1171 1172 void MacroAssembler::push_f(XMMRegister r) { 1173 subptr(rsp, wordSize); 1174 movflt(Address(rsp, 0), r); 1175 } 1176 1177 void MacroAssembler::pop_f(XMMRegister r) { 1178 movflt(r, Address(rsp, 0)); 1179 addptr(rsp, wordSize); 1180 } 1181 1182 void MacroAssembler::push_d(XMMRegister r) { 1183 subptr(rsp, 2 * wordSize); 1184 movdbl(Address(rsp, 0), r); 1185 } 1186 1187 void MacroAssembler::pop_d(XMMRegister r) { 1188 movdbl(r, Address(rsp, 0)); 1189 addptr(rsp, 2 * Interpreter::stackElementSize); 1190 } 1191 1192 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src, Register rscratch) { 1193 // Used in sign-masking with aligned address. 1194 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); 1195 assert(rscratch != noreg || always_reachable(src), "missing"); 1196 1197 if (reachable(src)) { 1198 Assembler::andpd(dst, as_Address(src)); 1199 } else { 1200 lea(rscratch, src); 1201 Assembler::andpd(dst, Address(rscratch, 0)); 1202 } 1203 } 1204 1205 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src, Register rscratch) { 1206 // Used in sign-masking with aligned address. 1207 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); 1208 assert(rscratch != noreg || always_reachable(src), "missing"); 1209 1210 if (reachable(src)) { 1211 Assembler::andps(dst, as_Address(src)); 1212 } else { 1213 lea(rscratch, src); 1214 Assembler::andps(dst, Address(rscratch, 0)); 1215 } 1216 } 1217 1218 void MacroAssembler::andptr(Register dst, int32_t imm32) { 1219 LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32)); 1220 } 1221 1222 #ifdef _LP64 1223 void MacroAssembler::andq(Register dst, AddressLiteral src, Register rscratch) { 1224 assert(rscratch != noreg || always_reachable(src), "missing"); 1225 1226 if (reachable(src)) { 1227 andq(dst, as_Address(src)); 1228 } else { 1229 lea(rscratch, src); 1230 andq(dst, Address(rscratch, 0)); 1231 } 1232 } 1233 #endif 1234 1235 void MacroAssembler::atomic_incl(Address counter_addr) { 1236 lock(); 1237 incrementl(counter_addr); 1238 } 1239 1240 void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register rscratch) { 1241 assert(rscratch != noreg || always_reachable(counter_addr), "missing"); 1242 1243 if (reachable(counter_addr)) { 1244 atomic_incl(as_Address(counter_addr)); 1245 } else { 1246 lea(rscratch, counter_addr); 1247 atomic_incl(Address(rscratch, 0)); 1248 } 1249 } 1250 1251 #ifdef _LP64 1252 void MacroAssembler::atomic_incq(Address counter_addr) { 1253 lock(); 1254 incrementq(counter_addr); 1255 } 1256 1257 void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register rscratch) { 1258 assert(rscratch != noreg || always_reachable(counter_addr), "missing"); 1259 1260 if (reachable(counter_addr)) { 1261 atomic_incq(as_Address(counter_addr)); 1262 } else { 1263 lea(rscratch, counter_addr); 1264 atomic_incq(Address(rscratch, 0)); 1265 } 1266 } 1267 #endif 1268 1269 // Writes to stack successive pages until offset reached to check for 1270 // stack overflow + shadow pages. This clobbers tmp. 1271 void MacroAssembler::bang_stack_size(Register size, Register tmp) { 1272 movptr(tmp, rsp); 1273 // Bang stack for total size given plus shadow page size. 1274 // Bang one page at a time because large size can bang beyond yellow and 1275 // red zones. 1276 Label loop; 1277 bind(loop); 1278 movl(Address(tmp, (-(int)os::vm_page_size())), size ); 1279 subptr(tmp, (int)os::vm_page_size()); 1280 subl(size, (int)os::vm_page_size()); 1281 jcc(Assembler::greater, loop); 1282 1283 // Bang down shadow pages too. 1284 // At this point, (tmp-0) is the last address touched, so don't 1285 // touch it again. (It was touched as (tmp-pagesize) but then tmp 1286 // was post-decremented.) Skip this address by starting at i=1, and 1287 // touch a few more pages below. N.B. It is important to touch all 1288 // the way down including all pages in the shadow zone. 1289 for (int i = 1; i < ((int)StackOverflow::stack_shadow_zone_size() / (int)os::vm_page_size()); i++) { 1290 // this could be any sized move but this is can be a debugging crumb 1291 // so the bigger the better. 1292 movptr(Address(tmp, (-i*(int)os::vm_page_size())), size ); 1293 } 1294 } 1295 1296 void MacroAssembler::reserved_stack_check() { 1297 // testing if reserved zone needs to be enabled 1298 Label no_reserved_zone_enabling; 1299 Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread); 1300 NOT_LP64(get_thread(rsi);) 1301 1302 cmpptr(rsp, Address(thread, JavaThread::reserved_stack_activation_offset())); 1303 jcc(Assembler::below, no_reserved_zone_enabling); 1304 1305 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), thread); 1306 jump(RuntimeAddress(StubRoutines::throw_delayed_StackOverflowError_entry())); 1307 should_not_reach_here(); 1308 1309 bind(no_reserved_zone_enabling); 1310 } 1311 1312 void MacroAssembler::c2bool(Register x) { 1313 // implements x == 0 ? 0 : 1 1314 // note: must only look at least-significant byte of x 1315 // since C-style booleans are stored in one byte 1316 // only! (was bug) 1317 andl(x, 0xFF); 1318 setb(Assembler::notZero, x); 1319 } 1320 1321 // Wouldn't need if AddressLiteral version had new name 1322 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) { 1323 Assembler::call(L, rtype); 1324 } 1325 1326 void MacroAssembler::call(Register entry) { 1327 Assembler::call(entry); 1328 } 1329 1330 void MacroAssembler::call(AddressLiteral entry, Register rscratch) { 1331 assert(rscratch != noreg || always_reachable(entry), "missing"); 1332 1333 if (reachable(entry)) { 1334 Assembler::call_literal(entry.target(), entry.rspec()); 1335 } else { 1336 lea(rscratch, entry); 1337 Assembler::call(rscratch); 1338 } 1339 } 1340 1341 void MacroAssembler::ic_call(address entry, jint method_index) { 1342 RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index); 1343 #ifdef _LP64 1344 // Needs full 64-bit immediate for later patching. 1345 mov64(rax, (int64_t)Universe::non_oop_word()); 1346 #else 1347 movptr(rax, (intptr_t)Universe::non_oop_word()); 1348 #endif 1349 call(AddressLiteral(entry, rh)); 1350 } 1351 1352 int MacroAssembler::ic_check_size() { 1353 return LP64_ONLY(14) NOT_LP64(12); 1354 } 1355 1356 int MacroAssembler::ic_check(int end_alignment) { 1357 Register receiver = LP64_ONLY(j_rarg0) NOT_LP64(rcx); 1358 Register data = rax; 1359 Register temp = LP64_ONLY(rscratch1) NOT_LP64(rbx); 1360 1361 // The UEP of a code blob ensures that the VEP is padded. However, the padding of the UEP is placed 1362 // before the inline cache check, so we don't have to execute any nop instructions when dispatching 1363 // through the UEP, yet we can ensure that the VEP is aligned appropriately. That's why we align 1364 // before the inline cache check here, and not after 1365 align(end_alignment, offset() + ic_check_size()); 1366 1367 int uep_offset = offset(); 1368 1369 if (UseCompressedClassPointers) { 1370 movl(temp, Address(receiver, oopDesc::klass_offset_in_bytes())); 1371 cmpl(temp, Address(data, CompiledICData::speculated_klass_offset())); 1372 } else { 1373 movptr(temp, Address(receiver, oopDesc::klass_offset_in_bytes())); 1374 cmpptr(temp, Address(data, CompiledICData::speculated_klass_offset())); 1375 } 1376 1377 // if inline cache check fails, then jump to runtime routine 1378 jump_cc(Assembler::notEqual, RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 1379 assert((offset() % end_alignment) == 0, "Misaligned verified entry point"); 1380 1381 return uep_offset; 1382 } 1383 1384 void MacroAssembler::emit_static_call_stub() { 1385 // Static stub relocation also tags the Method* in the code-stream. 1386 mov_metadata(rbx, (Metadata*) nullptr); // Method is zapped till fixup time. 1387 // This is recognized as unresolved by relocs/nativeinst/ic code. 1388 jump(RuntimeAddress(pc())); 1389 } 1390 1391 // Implementation of call_VM versions 1392 1393 void MacroAssembler::call_VM(Register oop_result, 1394 address entry_point, 1395 bool check_exceptions) { 1396 Label C, E; 1397 call(C, relocInfo::none); 1398 jmp(E); 1399 1400 bind(C); 1401 call_VM_helper(oop_result, entry_point, 0, check_exceptions); 1402 ret(0); 1403 1404 bind(E); 1405 } 1406 1407 void MacroAssembler::call_VM(Register oop_result, 1408 address entry_point, 1409 Register arg_1, 1410 bool check_exceptions) { 1411 Label C, E; 1412 call(C, relocInfo::none); 1413 jmp(E); 1414 1415 bind(C); 1416 pass_arg1(this, arg_1); 1417 call_VM_helper(oop_result, entry_point, 1, check_exceptions); 1418 ret(0); 1419 1420 bind(E); 1421 } 1422 1423 void MacroAssembler::call_VM(Register oop_result, 1424 address entry_point, 1425 Register arg_1, 1426 Register arg_2, 1427 bool check_exceptions) { 1428 Label C, E; 1429 call(C, relocInfo::none); 1430 jmp(E); 1431 1432 bind(C); 1433 1434 LP64_ONLY(assert_different_registers(arg_1, c_rarg2)); 1435 1436 pass_arg2(this, arg_2); 1437 pass_arg1(this, arg_1); 1438 call_VM_helper(oop_result, entry_point, 2, check_exceptions); 1439 ret(0); 1440 1441 bind(E); 1442 } 1443 1444 void MacroAssembler::call_VM(Register oop_result, 1445 address entry_point, 1446 Register arg_1, 1447 Register arg_2, 1448 Register arg_3, 1449 bool check_exceptions) { 1450 Label C, E; 1451 call(C, relocInfo::none); 1452 jmp(E); 1453 1454 bind(C); 1455 1456 LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3)); 1457 LP64_ONLY(assert_different_registers(arg_2, c_rarg3)); 1458 pass_arg3(this, arg_3); 1459 pass_arg2(this, arg_2); 1460 pass_arg1(this, arg_1); 1461 call_VM_helper(oop_result, entry_point, 3, check_exceptions); 1462 ret(0); 1463 1464 bind(E); 1465 } 1466 1467 void MacroAssembler::call_VM(Register oop_result, 1468 Register last_java_sp, 1469 address entry_point, 1470 int number_of_arguments, 1471 bool check_exceptions) { 1472 Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg); 1473 call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions); 1474 } 1475 1476 void MacroAssembler::call_VM(Register oop_result, 1477 Register last_java_sp, 1478 address entry_point, 1479 Register arg_1, 1480 bool check_exceptions) { 1481 pass_arg1(this, arg_1); 1482 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); 1483 } 1484 1485 void MacroAssembler::call_VM(Register oop_result, 1486 Register last_java_sp, 1487 address entry_point, 1488 Register arg_1, 1489 Register arg_2, 1490 bool check_exceptions) { 1491 1492 LP64_ONLY(assert_different_registers(arg_1, c_rarg2)); 1493 pass_arg2(this, arg_2); 1494 pass_arg1(this, arg_1); 1495 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); 1496 } 1497 1498 void MacroAssembler::call_VM(Register oop_result, 1499 Register last_java_sp, 1500 address entry_point, 1501 Register arg_1, 1502 Register arg_2, 1503 Register arg_3, 1504 bool check_exceptions) { 1505 LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3)); 1506 LP64_ONLY(assert_different_registers(arg_2, c_rarg3)); 1507 pass_arg3(this, arg_3); 1508 pass_arg2(this, arg_2); 1509 pass_arg1(this, arg_1); 1510 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); 1511 } 1512 1513 void MacroAssembler::super_call_VM(Register oop_result, 1514 Register last_java_sp, 1515 address entry_point, 1516 int number_of_arguments, 1517 bool check_exceptions) { 1518 Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg); 1519 MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions); 1520 } 1521 1522 void MacroAssembler::super_call_VM(Register oop_result, 1523 Register last_java_sp, 1524 address entry_point, 1525 Register arg_1, 1526 bool check_exceptions) { 1527 pass_arg1(this, arg_1); 1528 super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); 1529 } 1530 1531 void MacroAssembler::super_call_VM(Register oop_result, 1532 Register last_java_sp, 1533 address entry_point, 1534 Register arg_1, 1535 Register arg_2, 1536 bool check_exceptions) { 1537 1538 LP64_ONLY(assert_different_registers(arg_1, c_rarg2)); 1539 pass_arg2(this, arg_2); 1540 pass_arg1(this, arg_1); 1541 super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); 1542 } 1543 1544 void MacroAssembler::super_call_VM(Register oop_result, 1545 Register last_java_sp, 1546 address entry_point, 1547 Register arg_1, 1548 Register arg_2, 1549 Register arg_3, 1550 bool check_exceptions) { 1551 LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3)); 1552 LP64_ONLY(assert_different_registers(arg_2, c_rarg3)); 1553 pass_arg3(this, arg_3); 1554 pass_arg2(this, arg_2); 1555 pass_arg1(this, arg_1); 1556 super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); 1557 } 1558 1559 void MacroAssembler::call_VM_base(Register oop_result, 1560 Register java_thread, 1561 Register last_java_sp, 1562 address entry_point, 1563 int number_of_arguments, 1564 bool check_exceptions) { 1565 // determine java_thread register 1566 if (!java_thread->is_valid()) { 1567 #ifdef _LP64 1568 java_thread = r15_thread; 1569 #else 1570 java_thread = rdi; 1571 get_thread(java_thread); 1572 #endif // LP64 1573 } 1574 // determine last_java_sp register 1575 if (!last_java_sp->is_valid()) { 1576 last_java_sp = rsp; 1577 } 1578 // debugging support 1579 assert(number_of_arguments >= 0 , "cannot have negative number of arguments"); 1580 LP64_ONLY(assert(java_thread == r15_thread, "unexpected register")); 1581 #ifdef ASSERT 1582 // TraceBytecodes does not use r12 but saves it over the call, so don't verify 1583 // r12 is the heapbase. 1584 LP64_ONLY(if (UseCompressedOops && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");) 1585 #endif // ASSERT 1586 1587 assert(java_thread != oop_result , "cannot use the same register for java_thread & oop_result"); 1588 assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp"); 1589 1590 // push java thread (becomes first argument of C function) 1591 1592 NOT_LP64(push(java_thread); number_of_arguments++); 1593 LP64_ONLY(mov(c_rarg0, r15_thread)); 1594 1595 // set last Java frame before call 1596 assert(last_java_sp != rbp, "can't use ebp/rbp"); 1597 1598 // Only interpreter should have to set fp 1599 set_last_Java_frame(java_thread, last_java_sp, rbp, nullptr, rscratch1); 1600 1601 // do the call, remove parameters 1602 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); 1603 1604 // restore the thread (cannot use the pushed argument since arguments 1605 // may be overwritten by C code generated by an optimizing compiler); 1606 // however can use the register value directly if it is callee saved. 1607 if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) { 1608 // rdi & rsi (also r15) are callee saved -> nothing to do 1609 #ifdef ASSERT 1610 guarantee(java_thread != rax, "change this code"); 1611 push(rax); 1612 { Label L; 1613 get_thread(rax); 1614 cmpptr(java_thread, rax); 1615 jcc(Assembler::equal, L); 1616 STOP("MacroAssembler::call_VM_base: rdi not callee saved?"); 1617 bind(L); 1618 } 1619 pop(rax); 1620 #endif 1621 } else { 1622 get_thread(java_thread); 1623 } 1624 // reset last Java frame 1625 // Only interpreter should have to clear fp 1626 reset_last_Java_frame(java_thread, true); 1627 1628 // C++ interp handles this in the interpreter 1629 check_and_handle_popframe(java_thread); 1630 check_and_handle_earlyret(java_thread); 1631 1632 if (check_exceptions) { 1633 // check for pending exceptions (java_thread is set upon return) 1634 cmpptr(Address(java_thread, Thread::pending_exception_offset()), NULL_WORD); 1635 #ifndef _LP64 1636 jump_cc(Assembler::notEqual, 1637 RuntimeAddress(StubRoutines::forward_exception_entry())); 1638 #else 1639 // This used to conditionally jump to forward_exception however it is 1640 // possible if we relocate that the branch will not reach. So we must jump 1641 // around so we can always reach 1642 1643 Label ok; 1644 jcc(Assembler::equal, ok); 1645 jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 1646 bind(ok); 1647 #endif // LP64 1648 } 1649 1650 // get oop result if there is one and reset the value in the thread 1651 if (oop_result->is_valid()) { 1652 get_vm_result(oop_result, java_thread); 1653 } 1654 } 1655 1656 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) { 1657 1658 // Calculate the value for last_Java_sp 1659 // somewhat subtle. call_VM does an intermediate call 1660 // which places a return address on the stack just under the 1661 // stack pointer as the user finished with it. This allows 1662 // use to retrieve last_Java_pc from last_Java_sp[-1]. 1663 // On 32bit we then have to push additional args on the stack to accomplish 1664 // the actual requested call. On 64bit call_VM only can use register args 1665 // so the only extra space is the return address that call_VM created. 1666 // This hopefully explains the calculations here. 1667 1668 #ifdef _LP64 1669 // We've pushed one address, correct last_Java_sp 1670 lea(rax, Address(rsp, wordSize)); 1671 #else 1672 lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize)); 1673 #endif // LP64 1674 1675 call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions); 1676 1677 } 1678 1679 // Use this method when MacroAssembler version of call_VM_leaf_base() should be called from Interpreter. 1680 void MacroAssembler::call_VM_leaf0(address entry_point) { 1681 MacroAssembler::call_VM_leaf_base(entry_point, 0); 1682 } 1683 1684 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) { 1685 call_VM_leaf_base(entry_point, number_of_arguments); 1686 } 1687 1688 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) { 1689 pass_arg0(this, arg_0); 1690 call_VM_leaf(entry_point, 1); 1691 } 1692 1693 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 1694 1695 LP64_ONLY(assert_different_registers(arg_0, c_rarg1)); 1696 pass_arg1(this, arg_1); 1697 pass_arg0(this, arg_0); 1698 call_VM_leaf(entry_point, 2); 1699 } 1700 1701 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { 1702 LP64_ONLY(assert_different_registers(arg_0, c_rarg1, c_rarg2)); 1703 LP64_ONLY(assert_different_registers(arg_1, c_rarg2)); 1704 pass_arg2(this, arg_2); 1705 pass_arg1(this, arg_1); 1706 pass_arg0(this, arg_0); 1707 call_VM_leaf(entry_point, 3); 1708 } 1709 1710 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) { 1711 LP64_ONLY(assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3)); 1712 LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3)); 1713 LP64_ONLY(assert_different_registers(arg_2, c_rarg3)); 1714 pass_arg3(this, arg_3); 1715 pass_arg2(this, arg_2); 1716 pass_arg1(this, arg_1); 1717 pass_arg0(this, arg_0); 1718 call_VM_leaf(entry_point, 3); 1719 } 1720 1721 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) { 1722 pass_arg0(this, arg_0); 1723 MacroAssembler::call_VM_leaf_base(entry_point, 1); 1724 } 1725 1726 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 1727 LP64_ONLY(assert_different_registers(arg_0, c_rarg1)); 1728 pass_arg1(this, arg_1); 1729 pass_arg0(this, arg_0); 1730 MacroAssembler::call_VM_leaf_base(entry_point, 2); 1731 } 1732 1733 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { 1734 LP64_ONLY(assert_different_registers(arg_0, c_rarg1, c_rarg2)); 1735 LP64_ONLY(assert_different_registers(arg_1, c_rarg2)); 1736 pass_arg2(this, arg_2); 1737 pass_arg1(this, arg_1); 1738 pass_arg0(this, arg_0); 1739 MacroAssembler::call_VM_leaf_base(entry_point, 3); 1740 } 1741 1742 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) { 1743 LP64_ONLY(assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3)); 1744 LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3)); 1745 LP64_ONLY(assert_different_registers(arg_2, c_rarg3)); 1746 pass_arg3(this, arg_3); 1747 pass_arg2(this, arg_2); 1748 pass_arg1(this, arg_1); 1749 pass_arg0(this, arg_0); 1750 MacroAssembler::call_VM_leaf_base(entry_point, 4); 1751 } 1752 1753 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) { 1754 movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset())); 1755 movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD); 1756 verify_oop_msg(oop_result, "broken oop in call_VM_base"); 1757 } 1758 1759 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) { 1760 movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset())); 1761 movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD); 1762 } 1763 1764 void MacroAssembler::check_and_handle_earlyret(Register java_thread) { 1765 } 1766 1767 void MacroAssembler::check_and_handle_popframe(Register java_thread) { 1768 } 1769 1770 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm, Register rscratch) { 1771 assert(rscratch != noreg || always_reachable(src1), "missing"); 1772 1773 if (reachable(src1)) { 1774 cmpl(as_Address(src1), imm); 1775 } else { 1776 lea(rscratch, src1); 1777 cmpl(Address(rscratch, 0), imm); 1778 } 1779 } 1780 1781 void MacroAssembler::cmp32(Register src1, AddressLiteral src2, Register rscratch) { 1782 assert(!src2.is_lval(), "use cmpptr"); 1783 assert(rscratch != noreg || always_reachable(src2), "missing"); 1784 1785 if (reachable(src2)) { 1786 cmpl(src1, as_Address(src2)); 1787 } else { 1788 lea(rscratch, src2); 1789 cmpl(src1, Address(rscratch, 0)); 1790 } 1791 } 1792 1793 void MacroAssembler::cmp32(Register src1, int32_t imm) { 1794 Assembler::cmpl(src1, imm); 1795 } 1796 1797 void MacroAssembler::cmp32(Register src1, Address src2) { 1798 Assembler::cmpl(src1, src2); 1799 } 1800 1801 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) { 1802 ucomisd(opr1, opr2); 1803 1804 Label L; 1805 if (unordered_is_less) { 1806 movl(dst, -1); 1807 jcc(Assembler::parity, L); 1808 jcc(Assembler::below , L); 1809 movl(dst, 0); 1810 jcc(Assembler::equal , L); 1811 increment(dst); 1812 } else { // unordered is greater 1813 movl(dst, 1); 1814 jcc(Assembler::parity, L); 1815 jcc(Assembler::above , L); 1816 movl(dst, 0); 1817 jcc(Assembler::equal , L); 1818 decrementl(dst); 1819 } 1820 bind(L); 1821 } 1822 1823 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) { 1824 ucomiss(opr1, opr2); 1825 1826 Label L; 1827 if (unordered_is_less) { 1828 movl(dst, -1); 1829 jcc(Assembler::parity, L); 1830 jcc(Assembler::below , L); 1831 movl(dst, 0); 1832 jcc(Assembler::equal , L); 1833 increment(dst); 1834 } else { // unordered is greater 1835 movl(dst, 1); 1836 jcc(Assembler::parity, L); 1837 jcc(Assembler::above , L); 1838 movl(dst, 0); 1839 jcc(Assembler::equal , L); 1840 decrementl(dst); 1841 } 1842 bind(L); 1843 } 1844 1845 1846 void MacroAssembler::cmp8(AddressLiteral src1, int imm, Register rscratch) { 1847 assert(rscratch != noreg || always_reachable(src1), "missing"); 1848 1849 if (reachable(src1)) { 1850 cmpb(as_Address(src1), imm); 1851 } else { 1852 lea(rscratch, src1); 1853 cmpb(Address(rscratch, 0), imm); 1854 } 1855 } 1856 1857 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2, Register rscratch) { 1858 #ifdef _LP64 1859 assert(rscratch != noreg || always_reachable(src2), "missing"); 1860 1861 if (src2.is_lval()) { 1862 movptr(rscratch, src2); 1863 Assembler::cmpq(src1, rscratch); 1864 } else if (reachable(src2)) { 1865 cmpq(src1, as_Address(src2)); 1866 } else { 1867 lea(rscratch, src2); 1868 Assembler::cmpq(src1, Address(rscratch, 0)); 1869 } 1870 #else 1871 assert(rscratch == noreg, "not needed"); 1872 if (src2.is_lval()) { 1873 cmp_literal32(src1, (int32_t)src2.target(), src2.rspec()); 1874 } else { 1875 cmpl(src1, as_Address(src2)); 1876 } 1877 #endif // _LP64 1878 } 1879 1880 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2, Register rscratch) { 1881 assert(src2.is_lval(), "not a mem-mem compare"); 1882 #ifdef _LP64 1883 // moves src2's literal address 1884 movptr(rscratch, src2); 1885 Assembler::cmpq(src1, rscratch); 1886 #else 1887 assert(rscratch == noreg, "not needed"); 1888 cmp_literal32(src1, (int32_t)src2.target(), src2.rspec()); 1889 #endif // _LP64 1890 } 1891 1892 void MacroAssembler::cmpoop(Register src1, Register src2) { 1893 cmpptr(src1, src2); 1894 } 1895 1896 void MacroAssembler::cmpoop(Register src1, Address src2) { 1897 cmpptr(src1, src2); 1898 } 1899 1900 #ifdef _LP64 1901 void MacroAssembler::cmpoop(Register src1, jobject src2, Register rscratch) { 1902 movoop(rscratch, src2); 1903 cmpptr(src1, rscratch); 1904 } 1905 #endif 1906 1907 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr, Register rscratch) { 1908 assert(rscratch != noreg || always_reachable(adr), "missing"); 1909 1910 if (reachable(adr)) { 1911 lock(); 1912 cmpxchgptr(reg, as_Address(adr)); 1913 } else { 1914 lea(rscratch, adr); 1915 lock(); 1916 cmpxchgptr(reg, Address(rscratch, 0)); 1917 } 1918 } 1919 1920 void MacroAssembler::cmpxchgptr(Register reg, Address adr) { 1921 LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr)); 1922 } 1923 1924 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src, Register rscratch) { 1925 assert(rscratch != noreg || always_reachable(src), "missing"); 1926 1927 if (reachable(src)) { 1928 Assembler::comisd(dst, as_Address(src)); 1929 } else { 1930 lea(rscratch, src); 1931 Assembler::comisd(dst, Address(rscratch, 0)); 1932 } 1933 } 1934 1935 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src, Register rscratch) { 1936 assert(rscratch != noreg || always_reachable(src), "missing"); 1937 1938 if (reachable(src)) { 1939 Assembler::comiss(dst, as_Address(src)); 1940 } else { 1941 lea(rscratch, src); 1942 Assembler::comiss(dst, Address(rscratch, 0)); 1943 } 1944 } 1945 1946 1947 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr, Register rscratch) { 1948 assert(rscratch != noreg || always_reachable(counter_addr), "missing"); 1949 1950 Condition negated_cond = negate_condition(cond); 1951 Label L; 1952 jcc(negated_cond, L); 1953 pushf(); // Preserve flags 1954 atomic_incl(counter_addr, rscratch); 1955 popf(); 1956 bind(L); 1957 } 1958 1959 int MacroAssembler::corrected_idivl(Register reg) { 1960 // Full implementation of Java idiv and irem; checks for 1961 // special case as described in JVM spec., p.243 & p.271. 1962 // The function returns the (pc) offset of the idivl 1963 // instruction - may be needed for implicit exceptions. 1964 // 1965 // normal case special case 1966 // 1967 // input : rax,: dividend min_int 1968 // reg: divisor (may not be rax,/rdx) -1 1969 // 1970 // output: rax,: quotient (= rax, idiv reg) min_int 1971 // rdx: remainder (= rax, irem reg) 0 1972 assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register"); 1973 const int min_int = 0x80000000; 1974 Label normal_case, special_case; 1975 1976 // check for special case 1977 cmpl(rax, min_int); 1978 jcc(Assembler::notEqual, normal_case); 1979 xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0) 1980 cmpl(reg, -1); 1981 jcc(Assembler::equal, special_case); 1982 1983 // handle normal case 1984 bind(normal_case); 1985 cdql(); 1986 int idivl_offset = offset(); 1987 idivl(reg); 1988 1989 // normal and special case exit 1990 bind(special_case); 1991 1992 return idivl_offset; 1993 } 1994 1995 1996 1997 void MacroAssembler::decrementl(Register reg, int value) { 1998 if (value == min_jint) {subl(reg, value) ; return; } 1999 if (value < 0) { incrementl(reg, -value); return; } 2000 if (value == 0) { ; return; } 2001 if (value == 1 && UseIncDec) { decl(reg) ; return; } 2002 /* else */ { subl(reg, value) ; return; } 2003 } 2004 2005 void MacroAssembler::decrementl(Address dst, int value) { 2006 if (value == min_jint) {subl(dst, value) ; return; } 2007 if (value < 0) { incrementl(dst, -value); return; } 2008 if (value == 0) { ; return; } 2009 if (value == 1 && UseIncDec) { decl(dst) ; return; } 2010 /* else */ { subl(dst, value) ; return; } 2011 } 2012 2013 void MacroAssembler::division_with_shift (Register reg, int shift_value) { 2014 assert(shift_value > 0, "illegal shift value"); 2015 Label _is_positive; 2016 testl (reg, reg); 2017 jcc (Assembler::positive, _is_positive); 2018 int offset = (1 << shift_value) - 1 ; 2019 2020 if (offset == 1) { 2021 incrementl(reg); 2022 } else { 2023 addl(reg, offset); 2024 } 2025 2026 bind (_is_positive); 2027 sarl(reg, shift_value); 2028 } 2029 2030 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2031 assert(rscratch != noreg || always_reachable(src), "missing"); 2032 2033 if (reachable(src)) { 2034 Assembler::divsd(dst, as_Address(src)); 2035 } else { 2036 lea(rscratch, src); 2037 Assembler::divsd(dst, Address(rscratch, 0)); 2038 } 2039 } 2040 2041 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src, Register rscratch) { 2042 assert(rscratch != noreg || always_reachable(src), "missing"); 2043 2044 if (reachable(src)) { 2045 Assembler::divss(dst, as_Address(src)); 2046 } else { 2047 lea(rscratch, src); 2048 Assembler::divss(dst, Address(rscratch, 0)); 2049 } 2050 } 2051 2052 void MacroAssembler::enter() { 2053 push(rbp); 2054 mov(rbp, rsp); 2055 } 2056 2057 void MacroAssembler::post_call_nop() { 2058 if (!Continuations::enabled()) { 2059 return; 2060 } 2061 InstructionMark im(this); 2062 relocate(post_call_nop_Relocation::spec()); 2063 InlineSkippedInstructionsCounter skipCounter(this); 2064 emit_int8((uint8_t)0x0f); 2065 emit_int8((uint8_t)0x1f); 2066 emit_int8((uint8_t)0x84); 2067 emit_int8((uint8_t)0x00); 2068 emit_int32(0x00); 2069 } 2070 2071 // A 5 byte nop that is safe for patching (see patch_verified_entry) 2072 void MacroAssembler::fat_nop() { 2073 if (UseAddressNop) { 2074 addr_nop_5(); 2075 } else { 2076 emit_int8((uint8_t)0x26); // es: 2077 emit_int8((uint8_t)0x2e); // cs: 2078 emit_int8((uint8_t)0x64); // fs: 2079 emit_int8((uint8_t)0x65); // gs: 2080 emit_int8((uint8_t)0x90); 2081 } 2082 } 2083 2084 #ifndef _LP64 2085 void MacroAssembler::fcmp(Register tmp) { 2086 fcmp(tmp, 1, true, true); 2087 } 2088 2089 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) { 2090 assert(!pop_right || pop_left, "usage error"); 2091 if (VM_Version::supports_cmov()) { 2092 assert(tmp == noreg, "unneeded temp"); 2093 if (pop_left) { 2094 fucomip(index); 2095 } else { 2096 fucomi(index); 2097 } 2098 if (pop_right) { 2099 fpop(); 2100 } 2101 } else { 2102 assert(tmp != noreg, "need temp"); 2103 if (pop_left) { 2104 if (pop_right) { 2105 fcompp(); 2106 } else { 2107 fcomp(index); 2108 } 2109 } else { 2110 fcom(index); 2111 } 2112 // convert FPU condition into eflags condition via rax, 2113 save_rax(tmp); 2114 fwait(); fnstsw_ax(); 2115 sahf(); 2116 restore_rax(tmp); 2117 } 2118 // condition codes set as follows: 2119 // 2120 // CF (corresponds to C0) if x < y 2121 // PF (corresponds to C2) if unordered 2122 // ZF (corresponds to C3) if x = y 2123 } 2124 2125 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) { 2126 fcmp2int(dst, unordered_is_less, 1, true, true); 2127 } 2128 2129 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) { 2130 fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right); 2131 Label L; 2132 if (unordered_is_less) { 2133 movl(dst, -1); 2134 jcc(Assembler::parity, L); 2135 jcc(Assembler::below , L); 2136 movl(dst, 0); 2137 jcc(Assembler::equal , L); 2138 increment(dst); 2139 } else { // unordered is greater 2140 movl(dst, 1); 2141 jcc(Assembler::parity, L); 2142 jcc(Assembler::above , L); 2143 movl(dst, 0); 2144 jcc(Assembler::equal , L); 2145 decrementl(dst); 2146 } 2147 bind(L); 2148 } 2149 2150 void MacroAssembler::fld_d(AddressLiteral src) { 2151 fld_d(as_Address(src)); 2152 } 2153 2154 void MacroAssembler::fld_s(AddressLiteral src) { 2155 fld_s(as_Address(src)); 2156 } 2157 2158 void MacroAssembler::fldcw(AddressLiteral src) { 2159 fldcw(as_Address(src)); 2160 } 2161 2162 void MacroAssembler::fpop() { 2163 ffree(); 2164 fincstp(); 2165 } 2166 2167 void MacroAssembler::fremr(Register tmp) { 2168 save_rax(tmp); 2169 { Label L; 2170 bind(L); 2171 fprem(); 2172 fwait(); fnstsw_ax(); 2173 sahf(); 2174 jcc(Assembler::parity, L); 2175 } 2176 restore_rax(tmp); 2177 // Result is in ST0. 2178 // Note: fxch & fpop to get rid of ST1 2179 // (otherwise FPU stack could overflow eventually) 2180 fxch(1); 2181 fpop(); 2182 } 2183 2184 void MacroAssembler::empty_FPU_stack() { 2185 if (VM_Version::supports_mmx()) { 2186 emms(); 2187 } else { 2188 for (int i = 8; i-- > 0; ) ffree(i); 2189 } 2190 } 2191 #endif // !LP64 2192 2193 void MacroAssembler::mulpd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2194 assert(rscratch != noreg || always_reachable(src), "missing"); 2195 if (reachable(src)) { 2196 Assembler::mulpd(dst, as_Address(src)); 2197 } else { 2198 lea(rscratch, src); 2199 Assembler::mulpd(dst, Address(rscratch, 0)); 2200 } 2201 } 2202 2203 void MacroAssembler::load_float(Address src) { 2204 #ifdef _LP64 2205 movflt(xmm0, src); 2206 #else 2207 if (UseSSE >= 1) { 2208 movflt(xmm0, src); 2209 } else { 2210 fld_s(src); 2211 } 2212 #endif // LP64 2213 } 2214 2215 void MacroAssembler::store_float(Address dst) { 2216 #ifdef _LP64 2217 movflt(dst, xmm0); 2218 #else 2219 if (UseSSE >= 1) { 2220 movflt(dst, xmm0); 2221 } else { 2222 fstp_s(dst); 2223 } 2224 #endif // LP64 2225 } 2226 2227 void MacroAssembler::load_double(Address src) { 2228 #ifdef _LP64 2229 movdbl(xmm0, src); 2230 #else 2231 if (UseSSE >= 2) { 2232 movdbl(xmm0, src); 2233 } else { 2234 fld_d(src); 2235 } 2236 #endif // LP64 2237 } 2238 2239 void MacroAssembler::store_double(Address dst) { 2240 #ifdef _LP64 2241 movdbl(dst, xmm0); 2242 #else 2243 if (UseSSE >= 2) { 2244 movdbl(dst, xmm0); 2245 } else { 2246 fstp_d(dst); 2247 } 2248 #endif // LP64 2249 } 2250 2251 // dst = c = a * b + c 2252 void MacroAssembler::fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) { 2253 Assembler::vfmadd231sd(c, a, b); 2254 if (dst != c) { 2255 movdbl(dst, c); 2256 } 2257 } 2258 2259 // dst = c = a * b + c 2260 void MacroAssembler::fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) { 2261 Assembler::vfmadd231ss(c, a, b); 2262 if (dst != c) { 2263 movflt(dst, c); 2264 } 2265 } 2266 2267 // dst = c = a * b + c 2268 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) { 2269 Assembler::vfmadd231pd(c, a, b, vector_len); 2270 if (dst != c) { 2271 vmovdqu(dst, c); 2272 } 2273 } 2274 2275 // dst = c = a * b + c 2276 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) { 2277 Assembler::vfmadd231ps(c, a, b, vector_len); 2278 if (dst != c) { 2279 vmovdqu(dst, c); 2280 } 2281 } 2282 2283 // dst = c = a * b + c 2284 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) { 2285 Assembler::vfmadd231pd(c, a, b, vector_len); 2286 if (dst != c) { 2287 vmovdqu(dst, c); 2288 } 2289 } 2290 2291 // dst = c = a * b + c 2292 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) { 2293 Assembler::vfmadd231ps(c, a, b, vector_len); 2294 if (dst != c) { 2295 vmovdqu(dst, c); 2296 } 2297 } 2298 2299 void MacroAssembler::incrementl(AddressLiteral dst, Register rscratch) { 2300 assert(rscratch != noreg || always_reachable(dst), "missing"); 2301 2302 if (reachable(dst)) { 2303 incrementl(as_Address(dst)); 2304 } else { 2305 lea(rscratch, dst); 2306 incrementl(Address(rscratch, 0)); 2307 } 2308 } 2309 2310 void MacroAssembler::incrementl(ArrayAddress dst, Register rscratch) { 2311 incrementl(as_Address(dst, rscratch)); 2312 } 2313 2314 void MacroAssembler::incrementl(Register reg, int value) { 2315 if (value == min_jint) {addl(reg, value) ; return; } 2316 if (value < 0) { decrementl(reg, -value); return; } 2317 if (value == 0) { ; return; } 2318 if (value == 1 && UseIncDec) { incl(reg) ; return; } 2319 /* else */ { addl(reg, value) ; return; } 2320 } 2321 2322 void MacroAssembler::incrementl(Address dst, int value) { 2323 if (value == min_jint) {addl(dst, value) ; return; } 2324 if (value < 0) { decrementl(dst, -value); return; } 2325 if (value == 0) { ; return; } 2326 if (value == 1 && UseIncDec) { incl(dst) ; return; } 2327 /* else */ { addl(dst, value) ; return; } 2328 } 2329 2330 void MacroAssembler::jump(AddressLiteral dst, Register rscratch) { 2331 assert(rscratch != noreg || always_reachable(dst), "missing"); 2332 2333 if (reachable(dst)) { 2334 jmp_literal(dst.target(), dst.rspec()); 2335 } else { 2336 lea(rscratch, dst); 2337 jmp(rscratch); 2338 } 2339 } 2340 2341 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst, Register rscratch) { 2342 assert(rscratch != noreg || always_reachable(dst), "missing"); 2343 2344 if (reachable(dst)) { 2345 InstructionMark im(this); 2346 relocate(dst.reloc()); 2347 const int short_size = 2; 2348 const int long_size = 6; 2349 int offs = (intptr_t)dst.target() - ((intptr_t)pc()); 2350 if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) { 2351 // 0111 tttn #8-bit disp 2352 emit_int8(0x70 | cc); 2353 emit_int8((offs - short_size) & 0xFF); 2354 } else { 2355 // 0000 1111 1000 tttn #32-bit disp 2356 emit_int8(0x0F); 2357 emit_int8((unsigned char)(0x80 | cc)); 2358 emit_int32(offs - long_size); 2359 } 2360 } else { 2361 #ifdef ASSERT 2362 warning("reversing conditional branch"); 2363 #endif /* ASSERT */ 2364 Label skip; 2365 jccb(reverse[cc], skip); 2366 lea(rscratch, dst); 2367 Assembler::jmp(rscratch); 2368 bind(skip); 2369 } 2370 } 2371 2372 void MacroAssembler::ldmxcsr(AddressLiteral src, Register rscratch) { 2373 assert(rscratch != noreg || always_reachable(src), "missing"); 2374 2375 if (reachable(src)) { 2376 Assembler::ldmxcsr(as_Address(src)); 2377 } else { 2378 lea(rscratch, src); 2379 Assembler::ldmxcsr(Address(rscratch, 0)); 2380 } 2381 } 2382 2383 int MacroAssembler::load_signed_byte(Register dst, Address src) { 2384 int off; 2385 if (LP64_ONLY(true ||) VM_Version::is_P6()) { 2386 off = offset(); 2387 movsbl(dst, src); // movsxb 2388 } else { 2389 off = load_unsigned_byte(dst, src); 2390 shll(dst, 24); 2391 sarl(dst, 24); 2392 } 2393 return off; 2394 } 2395 2396 // Note: load_signed_short used to be called load_signed_word. 2397 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler 2398 // manual, which means 16 bits, that usage is found nowhere in HotSpot code. 2399 // The term "word" in HotSpot means a 32- or 64-bit machine word. 2400 int MacroAssembler::load_signed_short(Register dst, Address src) { 2401 int off; 2402 if (LP64_ONLY(true ||) VM_Version::is_P6()) { 2403 // This is dubious to me since it seems safe to do a signed 16 => 64 bit 2404 // version but this is what 64bit has always done. This seems to imply 2405 // that users are only using 32bits worth. 2406 off = offset(); 2407 movswl(dst, src); // movsxw 2408 } else { 2409 off = load_unsigned_short(dst, src); 2410 shll(dst, 16); 2411 sarl(dst, 16); 2412 } 2413 return off; 2414 } 2415 2416 int MacroAssembler::load_unsigned_byte(Register dst, Address src) { 2417 // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16, 2418 // and "3.9 Partial Register Penalties", p. 22). 2419 int off; 2420 if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) { 2421 off = offset(); 2422 movzbl(dst, src); // movzxb 2423 } else { 2424 xorl(dst, dst); 2425 off = offset(); 2426 movb(dst, src); 2427 } 2428 return off; 2429 } 2430 2431 // Note: load_unsigned_short used to be called load_unsigned_word. 2432 int MacroAssembler::load_unsigned_short(Register dst, Address src) { 2433 // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16, 2434 // and "3.9 Partial Register Penalties", p. 22). 2435 int off; 2436 if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) { 2437 off = offset(); 2438 movzwl(dst, src); // movzxw 2439 } else { 2440 xorl(dst, dst); 2441 off = offset(); 2442 movw(dst, src); 2443 } 2444 return off; 2445 } 2446 2447 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) { 2448 switch (size_in_bytes) { 2449 #ifndef _LP64 2450 case 8: 2451 assert(dst2 != noreg, "second dest register required"); 2452 movl(dst, src); 2453 movl(dst2, src.plus_disp(BytesPerInt)); 2454 break; 2455 #else 2456 case 8: movq(dst, src); break; 2457 #endif 2458 case 4: movl(dst, src); break; 2459 case 2: is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break; 2460 case 1: is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break; 2461 default: ShouldNotReachHere(); 2462 } 2463 } 2464 2465 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) { 2466 switch (size_in_bytes) { 2467 #ifndef _LP64 2468 case 8: 2469 assert(src2 != noreg, "second source register required"); 2470 movl(dst, src); 2471 movl(dst.plus_disp(BytesPerInt), src2); 2472 break; 2473 #else 2474 case 8: movq(dst, src); break; 2475 #endif 2476 case 4: movl(dst, src); break; 2477 case 2: movw(dst, src); break; 2478 case 1: movb(dst, src); break; 2479 default: ShouldNotReachHere(); 2480 } 2481 } 2482 2483 void MacroAssembler::mov32(AddressLiteral dst, Register src, Register rscratch) { 2484 assert(rscratch != noreg || always_reachable(dst), "missing"); 2485 2486 if (reachable(dst)) { 2487 movl(as_Address(dst), src); 2488 } else { 2489 lea(rscratch, dst); 2490 movl(Address(rscratch, 0), src); 2491 } 2492 } 2493 2494 void MacroAssembler::mov32(Register dst, AddressLiteral src) { 2495 if (reachable(src)) { 2496 movl(dst, as_Address(src)); 2497 } else { 2498 lea(dst, src); 2499 movl(dst, Address(dst, 0)); 2500 } 2501 } 2502 2503 // C++ bool manipulation 2504 2505 void MacroAssembler::movbool(Register dst, Address src) { 2506 if(sizeof(bool) == 1) 2507 movb(dst, src); 2508 else if(sizeof(bool) == 2) 2509 movw(dst, src); 2510 else if(sizeof(bool) == 4) 2511 movl(dst, src); 2512 else 2513 // unsupported 2514 ShouldNotReachHere(); 2515 } 2516 2517 void MacroAssembler::movbool(Address dst, bool boolconst) { 2518 if(sizeof(bool) == 1) 2519 movb(dst, (int) boolconst); 2520 else if(sizeof(bool) == 2) 2521 movw(dst, (int) boolconst); 2522 else if(sizeof(bool) == 4) 2523 movl(dst, (int) boolconst); 2524 else 2525 // unsupported 2526 ShouldNotReachHere(); 2527 } 2528 2529 void MacroAssembler::movbool(Address dst, Register src) { 2530 if(sizeof(bool) == 1) 2531 movb(dst, src); 2532 else if(sizeof(bool) == 2) 2533 movw(dst, src); 2534 else if(sizeof(bool) == 4) 2535 movl(dst, src); 2536 else 2537 // unsupported 2538 ShouldNotReachHere(); 2539 } 2540 2541 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src, Register rscratch) { 2542 assert(rscratch != noreg || always_reachable(src), "missing"); 2543 2544 if (reachable(src)) { 2545 movdl(dst, as_Address(src)); 2546 } else { 2547 lea(rscratch, src); 2548 movdl(dst, Address(rscratch, 0)); 2549 } 2550 } 2551 2552 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src, Register rscratch) { 2553 assert(rscratch != noreg || always_reachable(src), "missing"); 2554 2555 if (reachable(src)) { 2556 movq(dst, as_Address(src)); 2557 } else { 2558 lea(rscratch, src); 2559 movq(dst, Address(rscratch, 0)); 2560 } 2561 } 2562 2563 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src, Register rscratch) { 2564 assert(rscratch != noreg || always_reachable(src), "missing"); 2565 2566 if (reachable(src)) { 2567 if (UseXmmLoadAndClearUpper) { 2568 movsd (dst, as_Address(src)); 2569 } else { 2570 movlpd(dst, as_Address(src)); 2571 } 2572 } else { 2573 lea(rscratch, src); 2574 if (UseXmmLoadAndClearUpper) { 2575 movsd (dst, Address(rscratch, 0)); 2576 } else { 2577 movlpd(dst, Address(rscratch, 0)); 2578 } 2579 } 2580 } 2581 2582 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src, Register rscratch) { 2583 assert(rscratch != noreg || always_reachable(src), "missing"); 2584 2585 if (reachable(src)) { 2586 movss(dst, as_Address(src)); 2587 } else { 2588 lea(rscratch, src); 2589 movss(dst, Address(rscratch, 0)); 2590 } 2591 } 2592 2593 void MacroAssembler::movptr(Register dst, Register src) { 2594 LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src)); 2595 } 2596 2597 void MacroAssembler::movptr(Register dst, Address src) { 2598 LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src)); 2599 } 2600 2601 // src should NEVER be a real pointer. Use AddressLiteral for true pointers 2602 void MacroAssembler::movptr(Register dst, intptr_t src) { 2603 #ifdef _LP64 2604 if (is_uimm32(src)) { 2605 movl(dst, checked_cast<uint32_t>(src)); 2606 } else if (is_simm32(src)) { 2607 movq(dst, checked_cast<int32_t>(src)); 2608 } else { 2609 mov64(dst, src); 2610 } 2611 #else 2612 movl(dst, src); 2613 #endif 2614 } 2615 2616 void MacroAssembler::movptr(Address dst, Register src) { 2617 LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src)); 2618 } 2619 2620 void MacroAssembler::movptr(Address dst, int32_t src) { 2621 LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); 2622 } 2623 2624 void MacroAssembler::movdqu(Address dst, XMMRegister src) { 2625 assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2626 Assembler::movdqu(dst, src); 2627 } 2628 2629 void MacroAssembler::movdqu(XMMRegister dst, Address src) { 2630 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2631 Assembler::movdqu(dst, src); 2632 } 2633 2634 void MacroAssembler::movdqu(XMMRegister dst, XMMRegister src) { 2635 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2636 Assembler::movdqu(dst, src); 2637 } 2638 2639 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src, Register rscratch) { 2640 assert(rscratch != noreg || always_reachable(src), "missing"); 2641 2642 if (reachable(src)) { 2643 movdqu(dst, as_Address(src)); 2644 } else { 2645 lea(rscratch, src); 2646 movdqu(dst, Address(rscratch, 0)); 2647 } 2648 } 2649 2650 void MacroAssembler::vmovdqu(Address dst, XMMRegister src) { 2651 assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2652 Assembler::vmovdqu(dst, src); 2653 } 2654 2655 void MacroAssembler::vmovdqu(XMMRegister dst, Address src) { 2656 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2657 Assembler::vmovdqu(dst, src); 2658 } 2659 2660 void MacroAssembler::vmovdqu(XMMRegister dst, XMMRegister src) { 2661 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2662 Assembler::vmovdqu(dst, src); 2663 } 2664 2665 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src, Register rscratch) { 2666 assert(rscratch != noreg || always_reachable(src), "missing"); 2667 2668 if (reachable(src)) { 2669 vmovdqu(dst, as_Address(src)); 2670 } 2671 else { 2672 lea(rscratch, src); 2673 vmovdqu(dst, Address(rscratch, 0)); 2674 } 2675 } 2676 2677 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2678 assert(rscratch != noreg || always_reachable(src), "missing"); 2679 2680 if (vector_len == AVX_512bit) { 2681 evmovdquq(dst, src, AVX_512bit, rscratch); 2682 } else if (vector_len == AVX_256bit) { 2683 vmovdqu(dst, src, rscratch); 2684 } else { 2685 movdqu(dst, src, rscratch); 2686 } 2687 } 2688 2689 void MacroAssembler::kmov(KRegister dst, Address src) { 2690 if (VM_Version::supports_avx512bw()) { 2691 kmovql(dst, src); 2692 } else { 2693 assert(VM_Version::supports_evex(), ""); 2694 kmovwl(dst, src); 2695 } 2696 } 2697 2698 void MacroAssembler::kmov(Address dst, KRegister src) { 2699 if (VM_Version::supports_avx512bw()) { 2700 kmovql(dst, src); 2701 } else { 2702 assert(VM_Version::supports_evex(), ""); 2703 kmovwl(dst, src); 2704 } 2705 } 2706 2707 void MacroAssembler::kmov(KRegister dst, KRegister src) { 2708 if (VM_Version::supports_avx512bw()) { 2709 kmovql(dst, src); 2710 } else { 2711 assert(VM_Version::supports_evex(), ""); 2712 kmovwl(dst, src); 2713 } 2714 } 2715 2716 void MacroAssembler::kmov(Register dst, KRegister src) { 2717 if (VM_Version::supports_avx512bw()) { 2718 kmovql(dst, src); 2719 } else { 2720 assert(VM_Version::supports_evex(), ""); 2721 kmovwl(dst, src); 2722 } 2723 } 2724 2725 void MacroAssembler::kmov(KRegister dst, Register src) { 2726 if (VM_Version::supports_avx512bw()) { 2727 kmovql(dst, src); 2728 } else { 2729 assert(VM_Version::supports_evex(), ""); 2730 kmovwl(dst, src); 2731 } 2732 } 2733 2734 void MacroAssembler::kmovql(KRegister dst, AddressLiteral src, Register rscratch) { 2735 assert(rscratch != noreg || always_reachable(src), "missing"); 2736 2737 if (reachable(src)) { 2738 kmovql(dst, as_Address(src)); 2739 } else { 2740 lea(rscratch, src); 2741 kmovql(dst, Address(rscratch, 0)); 2742 } 2743 } 2744 2745 void MacroAssembler::kmovwl(KRegister dst, AddressLiteral src, Register rscratch) { 2746 assert(rscratch != noreg || always_reachable(src), "missing"); 2747 2748 if (reachable(src)) { 2749 kmovwl(dst, as_Address(src)); 2750 } else { 2751 lea(rscratch, src); 2752 kmovwl(dst, Address(rscratch, 0)); 2753 } 2754 } 2755 2756 void MacroAssembler::evmovdqub(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, 2757 int vector_len, Register rscratch) { 2758 assert(rscratch != noreg || always_reachable(src), "missing"); 2759 2760 if (reachable(src)) { 2761 Assembler::evmovdqub(dst, mask, as_Address(src), merge, vector_len); 2762 } else { 2763 lea(rscratch, src); 2764 Assembler::evmovdqub(dst, mask, Address(rscratch, 0), merge, vector_len); 2765 } 2766 } 2767 2768 void MacroAssembler::evmovdquw(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, 2769 int vector_len, Register rscratch) { 2770 assert(rscratch != noreg || always_reachable(src), "missing"); 2771 2772 if (reachable(src)) { 2773 Assembler::evmovdquw(dst, mask, as_Address(src), merge, vector_len); 2774 } else { 2775 lea(rscratch, src); 2776 Assembler::evmovdquw(dst, mask, Address(rscratch, 0), merge, vector_len); 2777 } 2778 } 2779 2780 void MacroAssembler::evmovdqul(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch) { 2781 assert(rscratch != noreg || always_reachable(src), "missing"); 2782 2783 if (reachable(src)) { 2784 Assembler::evmovdqul(dst, mask, as_Address(src), merge, vector_len); 2785 } else { 2786 lea(rscratch, src); 2787 Assembler::evmovdqul(dst, mask, Address(rscratch, 0), merge, vector_len); 2788 } 2789 } 2790 2791 void MacroAssembler::evmovdquq(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch) { 2792 assert(rscratch != noreg || always_reachable(src), "missing"); 2793 2794 if (reachable(src)) { 2795 Assembler::evmovdquq(dst, mask, as_Address(src), merge, vector_len); 2796 } else { 2797 lea(rscratch, src); 2798 Assembler::evmovdquq(dst, mask, Address(rscratch, 0), merge, vector_len); 2799 } 2800 } 2801 2802 void MacroAssembler::evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2803 assert(rscratch != noreg || always_reachable(src), "missing"); 2804 2805 if (reachable(src)) { 2806 Assembler::evmovdquq(dst, as_Address(src), vector_len); 2807 } else { 2808 lea(rscratch, src); 2809 Assembler::evmovdquq(dst, Address(rscratch, 0), vector_len); 2810 } 2811 } 2812 2813 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src, Register rscratch) { 2814 assert(rscratch != noreg || always_reachable(src), "missing"); 2815 2816 if (reachable(src)) { 2817 Assembler::movdqa(dst, as_Address(src)); 2818 } else { 2819 lea(rscratch, src); 2820 Assembler::movdqa(dst, Address(rscratch, 0)); 2821 } 2822 } 2823 2824 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2825 assert(rscratch != noreg || always_reachable(src), "missing"); 2826 2827 if (reachable(src)) { 2828 Assembler::movsd(dst, as_Address(src)); 2829 } else { 2830 lea(rscratch, src); 2831 Assembler::movsd(dst, Address(rscratch, 0)); 2832 } 2833 } 2834 2835 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src, Register rscratch) { 2836 assert(rscratch != noreg || always_reachable(src), "missing"); 2837 2838 if (reachable(src)) { 2839 Assembler::movss(dst, as_Address(src)); 2840 } else { 2841 lea(rscratch, src); 2842 Assembler::movss(dst, Address(rscratch, 0)); 2843 } 2844 } 2845 2846 void MacroAssembler::movddup(XMMRegister dst, AddressLiteral src, Register rscratch) { 2847 assert(rscratch != noreg || always_reachable(src), "missing"); 2848 2849 if (reachable(src)) { 2850 Assembler::movddup(dst, as_Address(src)); 2851 } else { 2852 lea(rscratch, src); 2853 Assembler::movddup(dst, Address(rscratch, 0)); 2854 } 2855 } 2856 2857 void MacroAssembler::vmovddup(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2858 assert(rscratch != noreg || always_reachable(src), "missing"); 2859 2860 if (reachable(src)) { 2861 Assembler::vmovddup(dst, as_Address(src), vector_len); 2862 } else { 2863 lea(rscratch, src); 2864 Assembler::vmovddup(dst, Address(rscratch, 0), vector_len); 2865 } 2866 } 2867 2868 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2869 assert(rscratch != noreg || always_reachable(src), "missing"); 2870 2871 if (reachable(src)) { 2872 Assembler::mulsd(dst, as_Address(src)); 2873 } else { 2874 lea(rscratch, src); 2875 Assembler::mulsd(dst, Address(rscratch, 0)); 2876 } 2877 } 2878 2879 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src, Register rscratch) { 2880 assert(rscratch != noreg || always_reachable(src), "missing"); 2881 2882 if (reachable(src)) { 2883 Assembler::mulss(dst, as_Address(src)); 2884 } else { 2885 lea(rscratch, src); 2886 Assembler::mulss(dst, Address(rscratch, 0)); 2887 } 2888 } 2889 2890 void MacroAssembler::null_check(Register reg, int offset) { 2891 if (needs_explicit_null_check(offset)) { 2892 // provoke OS null exception if reg is null by 2893 // accessing M[reg] w/o changing any (non-CC) registers 2894 // NOTE: cmpl is plenty here to provoke a segv 2895 cmpptr(rax, Address(reg, 0)); 2896 // Note: should probably use testl(rax, Address(reg, 0)); 2897 // may be shorter code (however, this version of 2898 // testl needs to be implemented first) 2899 } else { 2900 // nothing to do, (later) access of M[reg + offset] 2901 // will provoke OS null exception if reg is null 2902 } 2903 } 2904 2905 void MacroAssembler::os_breakpoint() { 2906 // instead of directly emitting a breakpoint, call os:breakpoint for better debugability 2907 // (e.g., MSVC can't call ps() otherwise) 2908 call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint))); 2909 } 2910 2911 void MacroAssembler::unimplemented(const char* what) { 2912 const char* buf = nullptr; 2913 { 2914 ResourceMark rm; 2915 stringStream ss; 2916 ss.print("unimplemented: %s", what); 2917 buf = code_string(ss.as_string()); 2918 } 2919 stop(buf); 2920 } 2921 2922 #ifdef _LP64 2923 #define XSTATE_BV 0x200 2924 #endif 2925 2926 void MacroAssembler::pop_CPU_state() { 2927 pop_FPU_state(); 2928 pop_IU_state(); 2929 } 2930 2931 void MacroAssembler::pop_FPU_state() { 2932 #ifndef _LP64 2933 frstor(Address(rsp, 0)); 2934 #else 2935 fxrstor(Address(rsp, 0)); 2936 #endif 2937 addptr(rsp, FPUStateSizeInWords * wordSize); 2938 } 2939 2940 void MacroAssembler::pop_IU_state() { 2941 popa(); 2942 LP64_ONLY(addq(rsp, 8)); 2943 popf(); 2944 } 2945 2946 // Save Integer and Float state 2947 // Warning: Stack must be 16 byte aligned (64bit) 2948 void MacroAssembler::push_CPU_state() { 2949 push_IU_state(); 2950 push_FPU_state(); 2951 } 2952 2953 void MacroAssembler::push_FPU_state() { 2954 subptr(rsp, FPUStateSizeInWords * wordSize); 2955 #ifndef _LP64 2956 fnsave(Address(rsp, 0)); 2957 fwait(); 2958 #else 2959 fxsave(Address(rsp, 0)); 2960 #endif // LP64 2961 } 2962 2963 void MacroAssembler::push_IU_state() { 2964 // Push flags first because pusha kills them 2965 pushf(); 2966 // Make sure rsp stays 16-byte aligned 2967 LP64_ONLY(subq(rsp, 8)); 2968 pusha(); 2969 } 2970 2971 void MacroAssembler::push_cont_fastpath() { 2972 if (!Continuations::enabled()) return; 2973 2974 #ifndef _LP64 2975 Register rthread = rax; 2976 Register rrealsp = rbx; 2977 push(rthread); 2978 push(rrealsp); 2979 2980 get_thread(rthread); 2981 2982 // The code below wants the original RSP. 2983 // Move it back after the pushes above. 2984 movptr(rrealsp, rsp); 2985 addptr(rrealsp, 2*wordSize); 2986 #else 2987 Register rthread = r15_thread; 2988 Register rrealsp = rsp; 2989 #endif 2990 2991 Label done; 2992 cmpptr(rrealsp, Address(rthread, JavaThread::cont_fastpath_offset())); 2993 jccb(Assembler::belowEqual, done); 2994 movptr(Address(rthread, JavaThread::cont_fastpath_offset()), rrealsp); 2995 bind(done); 2996 2997 #ifndef _LP64 2998 pop(rrealsp); 2999 pop(rthread); 3000 #endif 3001 } 3002 3003 void MacroAssembler::pop_cont_fastpath() { 3004 if (!Continuations::enabled()) return; 3005 3006 #ifndef _LP64 3007 Register rthread = rax; 3008 Register rrealsp = rbx; 3009 push(rthread); 3010 push(rrealsp); 3011 3012 get_thread(rthread); 3013 3014 // The code below wants the original RSP. 3015 // Move it back after the pushes above. 3016 movptr(rrealsp, rsp); 3017 addptr(rrealsp, 2*wordSize); 3018 #else 3019 Register rthread = r15_thread; 3020 Register rrealsp = rsp; 3021 #endif 3022 3023 Label done; 3024 cmpptr(rrealsp, Address(rthread, JavaThread::cont_fastpath_offset())); 3025 jccb(Assembler::below, done); 3026 movptr(Address(rthread, JavaThread::cont_fastpath_offset()), 0); 3027 bind(done); 3028 3029 #ifndef _LP64 3030 pop(rrealsp); 3031 pop(rthread); 3032 #endif 3033 } 3034 3035 void MacroAssembler::inc_held_monitor_count() { 3036 #ifndef _LP64 3037 Register thread = rax; 3038 push(thread); 3039 get_thread(thread); 3040 incrementl(Address(thread, JavaThread::held_monitor_count_offset())); 3041 pop(thread); 3042 #else // LP64 3043 incrementq(Address(r15_thread, JavaThread::held_monitor_count_offset())); 3044 #endif 3045 } 3046 3047 void MacroAssembler::dec_held_monitor_count() { 3048 #ifndef _LP64 3049 Register thread = rax; 3050 push(thread); 3051 get_thread(thread); 3052 decrementl(Address(thread, JavaThread::held_monitor_count_offset())); 3053 pop(thread); 3054 #else // LP64 3055 decrementq(Address(r15_thread, JavaThread::held_monitor_count_offset())); 3056 #endif 3057 } 3058 3059 #ifdef ASSERT 3060 void MacroAssembler::stop_if_in_cont(Register cont, const char* name) { 3061 #ifdef _LP64 3062 Label no_cont; 3063 movptr(cont, Address(r15_thread, JavaThread::cont_entry_offset())); 3064 testl(cont, cont); 3065 jcc(Assembler::zero, no_cont); 3066 stop(name); 3067 bind(no_cont); 3068 #else 3069 Unimplemented(); 3070 #endif 3071 } 3072 #endif 3073 3074 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp) { // determine java_thread register 3075 if (!java_thread->is_valid()) { 3076 java_thread = rdi; 3077 get_thread(java_thread); 3078 } 3079 // we must set sp to zero to clear frame 3080 movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD); 3081 // must clear fp, so that compiled frames are not confused; it is 3082 // possible that we need it only for debugging 3083 if (clear_fp) { 3084 movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD); 3085 } 3086 // Always clear the pc because it could have been set by make_walkable() 3087 movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD); 3088 vzeroupper(); 3089 } 3090 3091 void MacroAssembler::restore_rax(Register tmp) { 3092 if (tmp == noreg) pop(rax); 3093 else if (tmp != rax) mov(rax, tmp); 3094 } 3095 3096 void MacroAssembler::round_to(Register reg, int modulus) { 3097 addptr(reg, modulus - 1); 3098 andptr(reg, -modulus); 3099 } 3100 3101 void MacroAssembler::save_rax(Register tmp) { 3102 if (tmp == noreg) push(rax); 3103 else if (tmp != rax) mov(tmp, rax); 3104 } 3105 3106 void MacroAssembler::safepoint_poll(Label& slow_path, Register thread_reg, bool at_return, bool in_nmethod) { 3107 if (at_return) { 3108 // Note that when in_nmethod is set, the stack pointer is incremented before the poll. Therefore, 3109 // we may safely use rsp instead to perform the stack watermark check. 3110 cmpptr(in_nmethod ? rsp : rbp, Address(thread_reg, JavaThread::polling_word_offset())); 3111 jcc(Assembler::above, slow_path); 3112 return; 3113 } 3114 testb(Address(thread_reg, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit()); 3115 jcc(Assembler::notZero, slow_path); // handshake bit set implies poll 3116 } 3117 3118 // Calls to C land 3119 // 3120 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded 3121 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp 3122 // has to be reset to 0. This is required to allow proper stack traversal. 3123 void MacroAssembler::set_last_Java_frame(Register java_thread, 3124 Register last_java_sp, 3125 Register last_java_fp, 3126 address last_java_pc, 3127 Register rscratch) { 3128 vzeroupper(); 3129 // determine java_thread register 3130 if (!java_thread->is_valid()) { 3131 java_thread = rdi; 3132 get_thread(java_thread); 3133 } 3134 // determine last_java_sp register 3135 if (!last_java_sp->is_valid()) { 3136 last_java_sp = rsp; 3137 } 3138 // last_java_fp is optional 3139 if (last_java_fp->is_valid()) { 3140 movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp); 3141 } 3142 // last_java_pc is optional 3143 if (last_java_pc != nullptr) { 3144 Address java_pc(java_thread, 3145 JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()); 3146 lea(java_pc, InternalAddress(last_java_pc), rscratch); 3147 } 3148 movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp); 3149 } 3150 3151 void MacroAssembler::shlptr(Register dst, int imm8) { 3152 LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8)); 3153 } 3154 3155 void MacroAssembler::shrptr(Register dst, int imm8) { 3156 LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8)); 3157 } 3158 3159 void MacroAssembler::sign_extend_byte(Register reg) { 3160 if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) { 3161 movsbl(reg, reg); // movsxb 3162 } else { 3163 shll(reg, 24); 3164 sarl(reg, 24); 3165 } 3166 } 3167 3168 void MacroAssembler::sign_extend_short(Register reg) { 3169 if (LP64_ONLY(true ||) VM_Version::is_P6()) { 3170 movswl(reg, reg); // movsxw 3171 } else { 3172 shll(reg, 16); 3173 sarl(reg, 16); 3174 } 3175 } 3176 3177 void MacroAssembler::testl(Address dst, int32_t imm32) { 3178 if (imm32 >= 0 && is8bit(imm32)) { 3179 testb(dst, imm32); 3180 } else { 3181 Assembler::testl(dst, imm32); 3182 } 3183 } 3184 3185 void MacroAssembler::testl(Register dst, int32_t imm32) { 3186 if (imm32 >= 0 && is8bit(imm32) && dst->has_byte_register()) { 3187 testb(dst, imm32); 3188 } else { 3189 Assembler::testl(dst, imm32); 3190 } 3191 } 3192 3193 void MacroAssembler::testl(Register dst, AddressLiteral src) { 3194 assert(always_reachable(src), "Address should be reachable"); 3195 testl(dst, as_Address(src)); 3196 } 3197 3198 #ifdef _LP64 3199 3200 void MacroAssembler::testq(Address dst, int32_t imm32) { 3201 if (imm32 >= 0) { 3202 testl(dst, imm32); 3203 } else { 3204 Assembler::testq(dst, imm32); 3205 } 3206 } 3207 3208 void MacroAssembler::testq(Register dst, int32_t imm32) { 3209 if (imm32 >= 0) { 3210 testl(dst, imm32); 3211 } else { 3212 Assembler::testq(dst, imm32); 3213 } 3214 } 3215 3216 #endif 3217 3218 void MacroAssembler::pcmpeqb(XMMRegister dst, XMMRegister src) { 3219 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3220 Assembler::pcmpeqb(dst, src); 3221 } 3222 3223 void MacroAssembler::pcmpeqw(XMMRegister dst, XMMRegister src) { 3224 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3225 Assembler::pcmpeqw(dst, src); 3226 } 3227 3228 void MacroAssembler::pcmpestri(XMMRegister dst, Address src, int imm8) { 3229 assert((dst->encoding() < 16),"XMM register should be 0-15"); 3230 Assembler::pcmpestri(dst, src, imm8); 3231 } 3232 3233 void MacroAssembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) { 3234 assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15"); 3235 Assembler::pcmpestri(dst, src, imm8); 3236 } 3237 3238 void MacroAssembler::pmovzxbw(XMMRegister dst, XMMRegister src) { 3239 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3240 Assembler::pmovzxbw(dst, src); 3241 } 3242 3243 void MacroAssembler::pmovzxbw(XMMRegister dst, Address src) { 3244 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3245 Assembler::pmovzxbw(dst, src); 3246 } 3247 3248 void MacroAssembler::pmovmskb(Register dst, XMMRegister src) { 3249 assert((src->encoding() < 16),"XMM register should be 0-15"); 3250 Assembler::pmovmskb(dst, src); 3251 } 3252 3253 void MacroAssembler::ptest(XMMRegister dst, XMMRegister src) { 3254 assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15"); 3255 Assembler::ptest(dst, src); 3256 } 3257 3258 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src, Register rscratch) { 3259 assert(rscratch != noreg || always_reachable(src), "missing"); 3260 3261 if (reachable(src)) { 3262 Assembler::sqrtss(dst, as_Address(src)); 3263 } else { 3264 lea(rscratch, src); 3265 Assembler::sqrtss(dst, Address(rscratch, 0)); 3266 } 3267 } 3268 3269 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 3270 assert(rscratch != noreg || always_reachable(src), "missing"); 3271 3272 if (reachable(src)) { 3273 Assembler::subsd(dst, as_Address(src)); 3274 } else { 3275 lea(rscratch, src); 3276 Assembler::subsd(dst, Address(rscratch, 0)); 3277 } 3278 } 3279 3280 void MacroAssembler::roundsd(XMMRegister dst, AddressLiteral src, int32_t rmode, Register rscratch) { 3281 assert(rscratch != noreg || always_reachable(src), "missing"); 3282 3283 if (reachable(src)) { 3284 Assembler::roundsd(dst, as_Address(src), rmode); 3285 } else { 3286 lea(rscratch, src); 3287 Assembler::roundsd(dst, Address(rscratch, 0), rmode); 3288 } 3289 } 3290 3291 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src, Register rscratch) { 3292 assert(rscratch != noreg || always_reachable(src), "missing"); 3293 3294 if (reachable(src)) { 3295 Assembler::subss(dst, as_Address(src)); 3296 } else { 3297 lea(rscratch, src); 3298 Assembler::subss(dst, Address(rscratch, 0)); 3299 } 3300 } 3301 3302 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src, Register rscratch) { 3303 assert(rscratch != noreg || always_reachable(src), "missing"); 3304 3305 if (reachable(src)) { 3306 Assembler::ucomisd(dst, as_Address(src)); 3307 } else { 3308 lea(rscratch, src); 3309 Assembler::ucomisd(dst, Address(rscratch, 0)); 3310 } 3311 } 3312 3313 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src, Register rscratch) { 3314 assert(rscratch != noreg || always_reachable(src), "missing"); 3315 3316 if (reachable(src)) { 3317 Assembler::ucomiss(dst, as_Address(src)); 3318 } else { 3319 lea(rscratch, src); 3320 Assembler::ucomiss(dst, Address(rscratch, 0)); 3321 } 3322 } 3323 3324 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src, Register rscratch) { 3325 assert(rscratch != noreg || always_reachable(src), "missing"); 3326 3327 // Used in sign-bit flipping with aligned address. 3328 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); 3329 if (reachable(src)) { 3330 Assembler::xorpd(dst, as_Address(src)); 3331 } else { 3332 lea(rscratch, src); 3333 Assembler::xorpd(dst, Address(rscratch, 0)); 3334 } 3335 } 3336 3337 void MacroAssembler::xorpd(XMMRegister dst, XMMRegister src) { 3338 if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) { 3339 Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit); 3340 } 3341 else { 3342 Assembler::xorpd(dst, src); 3343 } 3344 } 3345 3346 void MacroAssembler::xorps(XMMRegister dst, XMMRegister src) { 3347 if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) { 3348 Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit); 3349 } else { 3350 Assembler::xorps(dst, src); 3351 } 3352 } 3353 3354 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src, Register rscratch) { 3355 assert(rscratch != noreg || always_reachable(src), "missing"); 3356 3357 // Used in sign-bit flipping with aligned address. 3358 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); 3359 if (reachable(src)) { 3360 Assembler::xorps(dst, as_Address(src)); 3361 } else { 3362 lea(rscratch, src); 3363 Assembler::xorps(dst, Address(rscratch, 0)); 3364 } 3365 } 3366 3367 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src, Register rscratch) { 3368 assert(rscratch != noreg || always_reachable(src), "missing"); 3369 3370 // Used in sign-bit flipping with aligned address. 3371 bool aligned_adr = (((intptr_t)src.target() & 15) == 0); 3372 assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes"); 3373 if (reachable(src)) { 3374 Assembler::pshufb(dst, as_Address(src)); 3375 } else { 3376 lea(rscratch, src); 3377 Assembler::pshufb(dst, Address(rscratch, 0)); 3378 } 3379 } 3380 3381 // AVX 3-operands instructions 3382 3383 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3384 assert(rscratch != noreg || always_reachable(src), "missing"); 3385 3386 if (reachable(src)) { 3387 vaddsd(dst, nds, as_Address(src)); 3388 } else { 3389 lea(rscratch, src); 3390 vaddsd(dst, nds, Address(rscratch, 0)); 3391 } 3392 } 3393 3394 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3395 assert(rscratch != noreg || always_reachable(src), "missing"); 3396 3397 if (reachable(src)) { 3398 vaddss(dst, nds, as_Address(src)); 3399 } else { 3400 lea(rscratch, src); 3401 vaddss(dst, nds, Address(rscratch, 0)); 3402 } 3403 } 3404 3405 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3406 assert(UseAVX > 0, "requires some form of AVX"); 3407 assert(rscratch != noreg || always_reachable(src), "missing"); 3408 3409 if (reachable(src)) { 3410 Assembler::vpaddb(dst, nds, as_Address(src), vector_len); 3411 } else { 3412 lea(rscratch, src); 3413 Assembler::vpaddb(dst, nds, Address(rscratch, 0), vector_len); 3414 } 3415 } 3416 3417 void MacroAssembler::vpaddd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3418 assert(UseAVX > 0, "requires some form of AVX"); 3419 assert(rscratch != noreg || always_reachable(src), "missing"); 3420 3421 if (reachable(src)) { 3422 Assembler::vpaddd(dst, nds, as_Address(src), vector_len); 3423 } else { 3424 lea(rscratch, src); 3425 Assembler::vpaddd(dst, nds, Address(rscratch, 0), vector_len); 3426 } 3427 } 3428 3429 void MacroAssembler::vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch) { 3430 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15"); 3431 assert(rscratch != noreg || always_reachable(negate_field), "missing"); 3432 3433 vandps(dst, nds, negate_field, vector_len, rscratch); 3434 } 3435 3436 void MacroAssembler::vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch) { 3437 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15"); 3438 assert(rscratch != noreg || always_reachable(negate_field), "missing"); 3439 3440 vandpd(dst, nds, negate_field, vector_len, rscratch); 3441 } 3442 3443 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3444 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3445 Assembler::vpaddb(dst, nds, src, vector_len); 3446 } 3447 3448 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3449 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3450 Assembler::vpaddb(dst, nds, src, vector_len); 3451 } 3452 3453 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3454 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3455 Assembler::vpaddw(dst, nds, src, vector_len); 3456 } 3457 3458 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3459 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3460 Assembler::vpaddw(dst, nds, src, vector_len); 3461 } 3462 3463 void MacroAssembler::vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3464 assert(rscratch != noreg || always_reachable(src), "missing"); 3465 3466 if (reachable(src)) { 3467 Assembler::vpand(dst, nds, as_Address(src), vector_len); 3468 } else { 3469 lea(rscratch, src); 3470 Assembler::vpand(dst, nds, Address(rscratch, 0), vector_len); 3471 } 3472 } 3473 3474 void MacroAssembler::vpbroadcastd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 3475 assert(rscratch != noreg || always_reachable(src), "missing"); 3476 3477 if (reachable(src)) { 3478 Assembler::vpbroadcastd(dst, as_Address(src), vector_len); 3479 } else { 3480 lea(rscratch, src); 3481 Assembler::vpbroadcastd(dst, Address(rscratch, 0), vector_len); 3482 } 3483 } 3484 3485 void MacroAssembler::vpbroadcastq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 3486 assert(rscratch != noreg || always_reachable(src), "missing"); 3487 3488 if (reachable(src)) { 3489 Assembler::vpbroadcastq(dst, as_Address(src), vector_len); 3490 } else { 3491 lea(rscratch, src); 3492 Assembler::vpbroadcastq(dst, Address(rscratch, 0), vector_len); 3493 } 3494 } 3495 3496 void MacroAssembler::vbroadcastsd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 3497 assert(rscratch != noreg || always_reachable(src), "missing"); 3498 3499 if (reachable(src)) { 3500 Assembler::vbroadcastsd(dst, as_Address(src), vector_len); 3501 } else { 3502 lea(rscratch, src); 3503 Assembler::vbroadcastsd(dst, Address(rscratch, 0), vector_len); 3504 } 3505 } 3506 3507 void MacroAssembler::vbroadcastss(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 3508 assert(rscratch != noreg || always_reachable(src), "missing"); 3509 3510 if (reachable(src)) { 3511 Assembler::vbroadcastss(dst, as_Address(src), vector_len); 3512 } else { 3513 lea(rscratch, src); 3514 Assembler::vbroadcastss(dst, Address(rscratch, 0), vector_len); 3515 } 3516 } 3517 3518 // Vector float blend 3519 // vblendvps(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister mask, int vector_len, bool compute_mask = true, XMMRegister scratch = xnoreg) 3520 void MacroAssembler::vblendvps(XMMRegister dst, XMMRegister src1, XMMRegister src2, XMMRegister mask, int vector_len, bool compute_mask, XMMRegister scratch) { 3521 // WARN: Allow dst == (src1|src2), mask == scratch 3522 bool blend_emulation = EnableX86ECoreOpts && UseAVX > 1; 3523 bool scratch_available = scratch != xnoreg && scratch != src1 && scratch != src2 && scratch != dst; 3524 bool dst_available = dst != mask && (dst != src1 || dst != src2); 3525 if (blend_emulation && scratch_available && dst_available) { 3526 if (compute_mask) { 3527 vpsrad(scratch, mask, 32, vector_len); 3528 mask = scratch; 3529 } 3530 if (dst == src1) { 3531 vpandn(dst, mask, src1, vector_len); // if mask == 0, src1 3532 vpand (scratch, mask, src2, vector_len); // if mask == 1, src2 3533 } else { 3534 vpand (dst, mask, src2, vector_len); // if mask == 1, src2 3535 vpandn(scratch, mask, src1, vector_len); // if mask == 0, src1 3536 } 3537 vpor(dst, dst, scratch, vector_len); 3538 } else { 3539 Assembler::vblendvps(dst, src1, src2, mask, vector_len); 3540 } 3541 } 3542 3543 // vblendvpd(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister mask, int vector_len, bool compute_mask = true, XMMRegister scratch = xnoreg) 3544 void MacroAssembler::vblendvpd(XMMRegister dst, XMMRegister src1, XMMRegister src2, XMMRegister mask, int vector_len, bool compute_mask, XMMRegister scratch) { 3545 // WARN: Allow dst == (src1|src2), mask == scratch 3546 bool blend_emulation = EnableX86ECoreOpts && UseAVX > 1; 3547 bool scratch_available = scratch != xnoreg && scratch != src1 && scratch != src2 && scratch != dst && (!compute_mask || scratch != mask); 3548 bool dst_available = dst != mask && (dst != src1 || dst != src2); 3549 if (blend_emulation && scratch_available && dst_available) { 3550 if (compute_mask) { 3551 vpxor(scratch, scratch, scratch, vector_len); 3552 vpcmpgtq(scratch, scratch, mask, vector_len); 3553 mask = scratch; 3554 } 3555 if (dst == src1) { 3556 vpandn(dst, mask, src1, vector_len); // if mask == 0, src 3557 vpand (scratch, mask, src2, vector_len); // if mask == 1, src2 3558 } else { 3559 vpand (dst, mask, src2, vector_len); // if mask == 1, src2 3560 vpandn(scratch, mask, src1, vector_len); // if mask == 0, src 3561 } 3562 vpor(dst, dst, scratch, vector_len); 3563 } else { 3564 Assembler::vblendvpd(dst, src1, src2, mask, vector_len); 3565 } 3566 } 3567 3568 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3569 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3570 Assembler::vpcmpeqb(dst, nds, src, vector_len); 3571 } 3572 3573 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister src1, Address src2, int vector_len) { 3574 assert(((dst->encoding() < 16 && src1->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3575 Assembler::vpcmpeqb(dst, src1, src2, vector_len); 3576 } 3577 3578 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3579 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3580 Assembler::vpcmpeqw(dst, nds, src, vector_len); 3581 } 3582 3583 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3584 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3585 Assembler::vpcmpeqw(dst, nds, src, vector_len); 3586 } 3587 3588 void MacroAssembler::evpcmpeqd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3589 assert(rscratch != noreg || always_reachable(src), "missing"); 3590 3591 if (reachable(src)) { 3592 Assembler::evpcmpeqd(kdst, mask, nds, as_Address(src), vector_len); 3593 } else { 3594 lea(rscratch, src); 3595 Assembler::evpcmpeqd(kdst, mask, nds, Address(rscratch, 0), vector_len); 3596 } 3597 } 3598 3599 void MacroAssembler::evpcmpd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, 3600 int comparison, bool is_signed, int vector_len, Register rscratch) { 3601 assert(rscratch != noreg || always_reachable(src), "missing"); 3602 3603 if (reachable(src)) { 3604 Assembler::evpcmpd(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len); 3605 } else { 3606 lea(rscratch, src); 3607 Assembler::evpcmpd(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len); 3608 } 3609 } 3610 3611 void MacroAssembler::evpcmpq(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, 3612 int comparison, bool is_signed, int vector_len, Register rscratch) { 3613 assert(rscratch != noreg || always_reachable(src), "missing"); 3614 3615 if (reachable(src)) { 3616 Assembler::evpcmpq(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len); 3617 } else { 3618 lea(rscratch, src); 3619 Assembler::evpcmpq(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len); 3620 } 3621 } 3622 3623 void MacroAssembler::evpcmpb(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, 3624 int comparison, bool is_signed, int vector_len, Register rscratch) { 3625 assert(rscratch != noreg || always_reachable(src), "missing"); 3626 3627 if (reachable(src)) { 3628 Assembler::evpcmpb(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len); 3629 } else { 3630 lea(rscratch, src); 3631 Assembler::evpcmpb(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len); 3632 } 3633 } 3634 3635 void MacroAssembler::evpcmpw(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, 3636 int comparison, bool is_signed, int vector_len, Register rscratch) { 3637 assert(rscratch != noreg || always_reachable(src), "missing"); 3638 3639 if (reachable(src)) { 3640 Assembler::evpcmpw(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len); 3641 } else { 3642 lea(rscratch, src); 3643 Assembler::evpcmpw(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len); 3644 } 3645 } 3646 3647 void MacroAssembler::vpcmpCC(XMMRegister dst, XMMRegister nds, XMMRegister src, int cond_encoding, Width width, int vector_len) { 3648 if (width == Assembler::Q) { 3649 Assembler::vpcmpCCq(dst, nds, src, cond_encoding, vector_len); 3650 } else { 3651 Assembler::vpcmpCCbwd(dst, nds, src, cond_encoding, vector_len); 3652 } 3653 } 3654 3655 void MacroAssembler::vpcmpCCW(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister xtmp, ComparisonPredicate cond, Width width, int vector_len) { 3656 int eq_cond_enc = 0x29; 3657 int gt_cond_enc = 0x37; 3658 if (width != Assembler::Q) { 3659 eq_cond_enc = 0x74 + width; 3660 gt_cond_enc = 0x64 + width; 3661 } 3662 switch (cond) { 3663 case eq: 3664 vpcmpCC(dst, nds, src, eq_cond_enc, width, vector_len); 3665 break; 3666 case neq: 3667 vpcmpCC(dst, nds, src, eq_cond_enc, width, vector_len); 3668 vallones(xtmp, vector_len); 3669 vpxor(dst, xtmp, dst, vector_len); 3670 break; 3671 case le: 3672 vpcmpCC(dst, nds, src, gt_cond_enc, width, vector_len); 3673 vallones(xtmp, vector_len); 3674 vpxor(dst, xtmp, dst, vector_len); 3675 break; 3676 case nlt: 3677 vpcmpCC(dst, src, nds, gt_cond_enc, width, vector_len); 3678 vallones(xtmp, vector_len); 3679 vpxor(dst, xtmp, dst, vector_len); 3680 break; 3681 case lt: 3682 vpcmpCC(dst, src, nds, gt_cond_enc, width, vector_len); 3683 break; 3684 case nle: 3685 vpcmpCC(dst, nds, src, gt_cond_enc, width, vector_len); 3686 break; 3687 default: 3688 assert(false, "Should not reach here"); 3689 } 3690 } 3691 3692 void MacroAssembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) { 3693 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3694 Assembler::vpmovzxbw(dst, src, vector_len); 3695 } 3696 3697 void MacroAssembler::vpmovmskb(Register dst, XMMRegister src, int vector_len) { 3698 assert((src->encoding() < 16),"XMM register should be 0-15"); 3699 Assembler::vpmovmskb(dst, src, vector_len); 3700 } 3701 3702 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3703 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3704 Assembler::vpmullw(dst, nds, src, vector_len); 3705 } 3706 3707 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3708 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3709 Assembler::vpmullw(dst, nds, src, vector_len); 3710 } 3711 3712 void MacroAssembler::vpmulld(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3713 assert((UseAVX > 0), "AVX support is needed"); 3714 assert(rscratch != noreg || always_reachable(src), "missing"); 3715 3716 if (reachable(src)) { 3717 Assembler::vpmulld(dst, nds, as_Address(src), vector_len); 3718 } else { 3719 lea(rscratch, src); 3720 Assembler::vpmulld(dst, nds, Address(rscratch, 0), vector_len); 3721 } 3722 } 3723 3724 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3725 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3726 Assembler::vpsubb(dst, nds, src, vector_len); 3727 } 3728 3729 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3730 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3731 Assembler::vpsubb(dst, nds, src, vector_len); 3732 } 3733 3734 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3735 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3736 Assembler::vpsubw(dst, nds, src, vector_len); 3737 } 3738 3739 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3740 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3741 Assembler::vpsubw(dst, nds, src, vector_len); 3742 } 3743 3744 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) { 3745 assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3746 Assembler::vpsraw(dst, nds, shift, vector_len); 3747 } 3748 3749 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) { 3750 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3751 Assembler::vpsraw(dst, nds, shift, vector_len); 3752 } 3753 3754 void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) { 3755 assert(UseAVX > 2,""); 3756 if (!VM_Version::supports_avx512vl() && vector_len < 2) { 3757 vector_len = 2; 3758 } 3759 Assembler::evpsraq(dst, nds, shift, vector_len); 3760 } 3761 3762 void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, int shift, int vector_len) { 3763 assert(UseAVX > 2,""); 3764 if (!VM_Version::supports_avx512vl() && vector_len < 2) { 3765 vector_len = 2; 3766 } 3767 Assembler::evpsraq(dst, nds, shift, vector_len); 3768 } 3769 3770 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) { 3771 assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3772 Assembler::vpsrlw(dst, nds, shift, vector_len); 3773 } 3774 3775 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) { 3776 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3777 Assembler::vpsrlw(dst, nds, shift, vector_len); 3778 } 3779 3780 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) { 3781 assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3782 Assembler::vpsllw(dst, nds, shift, vector_len); 3783 } 3784 3785 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) { 3786 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3787 Assembler::vpsllw(dst, nds, shift, vector_len); 3788 } 3789 3790 void MacroAssembler::vptest(XMMRegister dst, XMMRegister src) { 3791 assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15"); 3792 Assembler::vptest(dst, src); 3793 } 3794 3795 void MacroAssembler::punpcklbw(XMMRegister dst, XMMRegister src) { 3796 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3797 Assembler::punpcklbw(dst, src); 3798 } 3799 3800 void MacroAssembler::pshufd(XMMRegister dst, Address src, int mode) { 3801 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 3802 Assembler::pshufd(dst, src, mode); 3803 } 3804 3805 void MacroAssembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) { 3806 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3807 Assembler::pshuflw(dst, src, mode); 3808 } 3809 3810 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3811 assert(rscratch != noreg || always_reachable(src), "missing"); 3812 3813 if (reachable(src)) { 3814 vandpd(dst, nds, as_Address(src), vector_len); 3815 } else { 3816 lea(rscratch, src); 3817 vandpd(dst, nds, Address(rscratch, 0), vector_len); 3818 } 3819 } 3820 3821 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3822 assert(rscratch != noreg || always_reachable(src), "missing"); 3823 3824 if (reachable(src)) { 3825 vandps(dst, nds, as_Address(src), vector_len); 3826 } else { 3827 lea(rscratch, src); 3828 vandps(dst, nds, Address(rscratch, 0), vector_len); 3829 } 3830 } 3831 3832 void MacroAssembler::evpord(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, 3833 bool merge, int vector_len, Register rscratch) { 3834 assert(rscratch != noreg || always_reachable(src), "missing"); 3835 3836 if (reachable(src)) { 3837 Assembler::evpord(dst, mask, nds, as_Address(src), merge, vector_len); 3838 } else { 3839 lea(rscratch, src); 3840 Assembler::evpord(dst, mask, nds, Address(rscratch, 0), merge, vector_len); 3841 } 3842 } 3843 3844 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3845 assert(rscratch != noreg || always_reachable(src), "missing"); 3846 3847 if (reachable(src)) { 3848 vdivsd(dst, nds, as_Address(src)); 3849 } else { 3850 lea(rscratch, src); 3851 vdivsd(dst, nds, Address(rscratch, 0)); 3852 } 3853 } 3854 3855 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3856 assert(rscratch != noreg || always_reachable(src), "missing"); 3857 3858 if (reachable(src)) { 3859 vdivss(dst, nds, as_Address(src)); 3860 } else { 3861 lea(rscratch, src); 3862 vdivss(dst, nds, Address(rscratch, 0)); 3863 } 3864 } 3865 3866 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3867 assert(rscratch != noreg || always_reachable(src), "missing"); 3868 3869 if (reachable(src)) { 3870 vmulsd(dst, nds, as_Address(src)); 3871 } else { 3872 lea(rscratch, src); 3873 vmulsd(dst, nds, Address(rscratch, 0)); 3874 } 3875 } 3876 3877 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3878 assert(rscratch != noreg || always_reachable(src), "missing"); 3879 3880 if (reachable(src)) { 3881 vmulss(dst, nds, as_Address(src)); 3882 } else { 3883 lea(rscratch, src); 3884 vmulss(dst, nds, Address(rscratch, 0)); 3885 } 3886 } 3887 3888 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3889 assert(rscratch != noreg || always_reachable(src), "missing"); 3890 3891 if (reachable(src)) { 3892 vsubsd(dst, nds, as_Address(src)); 3893 } else { 3894 lea(rscratch, src); 3895 vsubsd(dst, nds, Address(rscratch, 0)); 3896 } 3897 } 3898 3899 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3900 assert(rscratch != noreg || always_reachable(src), "missing"); 3901 3902 if (reachable(src)) { 3903 vsubss(dst, nds, as_Address(src)); 3904 } else { 3905 lea(rscratch, src); 3906 vsubss(dst, nds, Address(rscratch, 0)); 3907 } 3908 } 3909 3910 void MacroAssembler::vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3911 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15"); 3912 assert(rscratch != noreg || always_reachable(src), "missing"); 3913 3914 vxorps(dst, nds, src, Assembler::AVX_128bit, rscratch); 3915 } 3916 3917 void MacroAssembler::vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3918 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15"); 3919 assert(rscratch != noreg || always_reachable(src), "missing"); 3920 3921 vxorpd(dst, nds, src, Assembler::AVX_128bit, rscratch); 3922 } 3923 3924 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3925 assert(rscratch != noreg || always_reachable(src), "missing"); 3926 3927 if (reachable(src)) { 3928 vxorpd(dst, nds, as_Address(src), vector_len); 3929 } else { 3930 lea(rscratch, src); 3931 vxorpd(dst, nds, Address(rscratch, 0), vector_len); 3932 } 3933 } 3934 3935 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3936 assert(rscratch != noreg || always_reachable(src), "missing"); 3937 3938 if (reachable(src)) { 3939 vxorps(dst, nds, as_Address(src), vector_len); 3940 } else { 3941 lea(rscratch, src); 3942 vxorps(dst, nds, Address(rscratch, 0), vector_len); 3943 } 3944 } 3945 3946 void MacroAssembler::vpxor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3947 assert(rscratch != noreg || always_reachable(src), "missing"); 3948 3949 if (UseAVX > 1 || (vector_len < 1)) { 3950 if (reachable(src)) { 3951 Assembler::vpxor(dst, nds, as_Address(src), vector_len); 3952 } else { 3953 lea(rscratch, src); 3954 Assembler::vpxor(dst, nds, Address(rscratch, 0), vector_len); 3955 } 3956 } else { 3957 MacroAssembler::vxorpd(dst, nds, src, vector_len, rscratch); 3958 } 3959 } 3960 3961 void MacroAssembler::vpermd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3962 assert(rscratch != noreg || always_reachable(src), "missing"); 3963 3964 if (reachable(src)) { 3965 Assembler::vpermd(dst, nds, as_Address(src), vector_len); 3966 } else { 3967 lea(rscratch, src); 3968 Assembler::vpermd(dst, nds, Address(rscratch, 0), vector_len); 3969 } 3970 } 3971 3972 void MacroAssembler::clear_jobject_tag(Register possibly_non_local) { 3973 const int32_t inverted_mask = ~static_cast<int32_t>(JNIHandles::tag_mask); 3974 STATIC_ASSERT(inverted_mask == -4); // otherwise check this code 3975 // The inverted mask is sign-extended 3976 andptr(possibly_non_local, inverted_mask); 3977 } 3978 3979 void MacroAssembler::resolve_jobject(Register value, 3980 Register thread, 3981 Register tmp) { 3982 assert_different_registers(value, thread, tmp); 3983 Label done, tagged, weak_tagged; 3984 testptr(value, value); 3985 jcc(Assembler::zero, done); // Use null as-is. 3986 testptr(value, JNIHandles::tag_mask); // Test for tag. 3987 jcc(Assembler::notZero, tagged); 3988 3989 // Resolve local handle 3990 access_load_at(T_OBJECT, IN_NATIVE | AS_RAW, value, Address(value, 0), tmp, thread); 3991 verify_oop(value); 3992 jmp(done); 3993 3994 bind(tagged); 3995 testptr(value, JNIHandles::TypeTag::weak_global); // Test for weak tag. 3996 jcc(Assembler::notZero, weak_tagged); 3997 3998 // Resolve global handle 3999 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp, thread); 4000 verify_oop(value); 4001 jmp(done); 4002 4003 bind(weak_tagged); 4004 // Resolve jweak. 4005 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 4006 value, Address(value, -JNIHandles::TypeTag::weak_global), tmp, thread); 4007 verify_oop(value); 4008 4009 bind(done); 4010 } 4011 4012 void MacroAssembler::resolve_global_jobject(Register value, 4013 Register thread, 4014 Register tmp) { 4015 assert_different_registers(value, thread, tmp); 4016 Label done; 4017 4018 testptr(value, value); 4019 jcc(Assembler::zero, done); // Use null as-is. 4020 4021 #ifdef ASSERT 4022 { 4023 Label valid_global_tag; 4024 testptr(value, JNIHandles::TypeTag::global); // Test for global tag. 4025 jcc(Assembler::notZero, valid_global_tag); 4026 stop("non global jobject using resolve_global_jobject"); 4027 bind(valid_global_tag); 4028 } 4029 #endif 4030 4031 // Resolve global handle 4032 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp, thread); 4033 verify_oop(value); 4034 4035 bind(done); 4036 } 4037 4038 void MacroAssembler::subptr(Register dst, int32_t imm32) { 4039 LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32)); 4040 } 4041 4042 // Force generation of a 4 byte immediate value even if it fits into 8bit 4043 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) { 4044 LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32)); 4045 } 4046 4047 void MacroAssembler::subptr(Register dst, Register src) { 4048 LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); 4049 } 4050 4051 // C++ bool manipulation 4052 void MacroAssembler::testbool(Register dst) { 4053 if(sizeof(bool) == 1) 4054 testb(dst, 0xff); 4055 else if(sizeof(bool) == 2) { 4056 // testw implementation needed for two byte bools 4057 ShouldNotReachHere(); 4058 } else if(sizeof(bool) == 4) 4059 testl(dst, dst); 4060 else 4061 // unsupported 4062 ShouldNotReachHere(); 4063 } 4064 4065 void MacroAssembler::testptr(Register dst, Register src) { 4066 LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src)); 4067 } 4068 4069 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes. 4070 void MacroAssembler::tlab_allocate(Register thread, Register obj, 4071 Register var_size_in_bytes, 4072 int con_size_in_bytes, 4073 Register t1, 4074 Register t2, 4075 Label& slow_case) { 4076 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 4077 bs->tlab_allocate(this, thread, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case); 4078 } 4079 4080 RegSet MacroAssembler::call_clobbered_gp_registers() { 4081 RegSet regs; 4082 #ifdef _LP64 4083 regs += RegSet::of(rax, rcx, rdx); 4084 #ifndef WINDOWS 4085 regs += RegSet::of(rsi, rdi); 4086 #endif 4087 regs += RegSet::range(r8, r11); 4088 #else 4089 regs += RegSet::of(rax, rcx, rdx); 4090 #endif 4091 return regs; 4092 } 4093 4094 XMMRegSet MacroAssembler::call_clobbered_xmm_registers() { 4095 int num_xmm_registers = XMMRegister::available_xmm_registers(); 4096 #if defined(WINDOWS) && defined(_LP64) 4097 XMMRegSet result = XMMRegSet::range(xmm0, xmm5); 4098 if (num_xmm_registers > 16) { 4099 result += XMMRegSet::range(xmm16, as_XMMRegister(num_xmm_registers - 1)); 4100 } 4101 return result; 4102 #else 4103 return XMMRegSet::range(xmm0, as_XMMRegister(num_xmm_registers - 1)); 4104 #endif 4105 } 4106 4107 static int FPUSaveAreaSize = align_up(108, StackAlignmentInBytes); // 108 bytes needed for FPU state by fsave/frstor 4108 4109 #ifndef _LP64 4110 static bool use_x87_registers() { return UseSSE < 2; } 4111 #endif 4112 static bool use_xmm_registers() { return UseSSE >= 1; } 4113 4114 // C1 only ever uses the first double/float of the XMM register. 4115 static int xmm_save_size() { return UseSSE >= 2 ? sizeof(double) : sizeof(float); } 4116 4117 static void save_xmm_register(MacroAssembler* masm, int offset, XMMRegister reg) { 4118 if (UseSSE == 1) { 4119 masm->movflt(Address(rsp, offset), reg); 4120 } else { 4121 masm->movdbl(Address(rsp, offset), reg); 4122 } 4123 } 4124 4125 static void restore_xmm_register(MacroAssembler* masm, int offset, XMMRegister reg) { 4126 if (UseSSE == 1) { 4127 masm->movflt(reg, Address(rsp, offset)); 4128 } else { 4129 masm->movdbl(reg, Address(rsp, offset)); 4130 } 4131 } 4132 4133 static int register_section_sizes(RegSet gp_registers, XMMRegSet xmm_registers, 4134 bool save_fpu, int& gp_area_size, 4135 int& fp_area_size, int& xmm_area_size) { 4136 4137 gp_area_size = align_up(gp_registers.size() * Register::max_slots_per_register * VMRegImpl::stack_slot_size, 4138 StackAlignmentInBytes); 4139 #ifdef _LP64 4140 fp_area_size = 0; 4141 #else 4142 fp_area_size = (save_fpu && use_x87_registers()) ? FPUSaveAreaSize : 0; 4143 #endif 4144 xmm_area_size = (save_fpu && use_xmm_registers()) ? xmm_registers.size() * xmm_save_size() : 0; 4145 4146 return gp_area_size + fp_area_size + xmm_area_size; 4147 } 4148 4149 void MacroAssembler::push_call_clobbered_registers_except(RegSet exclude, bool save_fpu) { 4150 block_comment("push_call_clobbered_registers start"); 4151 // Regular registers 4152 RegSet gp_registers_to_push = call_clobbered_gp_registers() - exclude; 4153 4154 int gp_area_size; 4155 int fp_area_size; 4156 int xmm_area_size; 4157 int total_save_size = register_section_sizes(gp_registers_to_push, call_clobbered_xmm_registers(), save_fpu, 4158 gp_area_size, fp_area_size, xmm_area_size); 4159 subptr(rsp, total_save_size); 4160 4161 push_set(gp_registers_to_push, 0); 4162 4163 #ifndef _LP64 4164 if (save_fpu && use_x87_registers()) { 4165 fnsave(Address(rsp, gp_area_size)); 4166 fwait(); 4167 } 4168 #endif 4169 if (save_fpu && use_xmm_registers()) { 4170 push_set(call_clobbered_xmm_registers(), gp_area_size + fp_area_size); 4171 } 4172 4173 block_comment("push_call_clobbered_registers end"); 4174 } 4175 4176 void MacroAssembler::pop_call_clobbered_registers_except(RegSet exclude, bool restore_fpu) { 4177 block_comment("pop_call_clobbered_registers start"); 4178 4179 RegSet gp_registers_to_pop = call_clobbered_gp_registers() - exclude; 4180 4181 int gp_area_size; 4182 int fp_area_size; 4183 int xmm_area_size; 4184 int total_save_size = register_section_sizes(gp_registers_to_pop, call_clobbered_xmm_registers(), restore_fpu, 4185 gp_area_size, fp_area_size, xmm_area_size); 4186 4187 if (restore_fpu && use_xmm_registers()) { 4188 pop_set(call_clobbered_xmm_registers(), gp_area_size + fp_area_size); 4189 } 4190 #ifndef _LP64 4191 if (restore_fpu && use_x87_registers()) { 4192 frstor(Address(rsp, gp_area_size)); 4193 } 4194 #endif 4195 4196 pop_set(gp_registers_to_pop, 0); 4197 4198 addptr(rsp, total_save_size); 4199 4200 vzeroupper(); 4201 4202 block_comment("pop_call_clobbered_registers end"); 4203 } 4204 4205 void MacroAssembler::push_set(XMMRegSet set, int offset) { 4206 assert(is_aligned(set.size() * xmm_save_size(), StackAlignmentInBytes), "must be"); 4207 int spill_offset = offset; 4208 4209 for (RegSetIterator<XMMRegister> it = set.begin(); *it != xnoreg; ++it) { 4210 save_xmm_register(this, spill_offset, *it); 4211 spill_offset += xmm_save_size(); 4212 } 4213 } 4214 4215 void MacroAssembler::pop_set(XMMRegSet set, int offset) { 4216 int restore_size = set.size() * xmm_save_size(); 4217 assert(is_aligned(restore_size, StackAlignmentInBytes), "must be"); 4218 4219 int restore_offset = offset + restore_size - xmm_save_size(); 4220 4221 for (ReverseRegSetIterator<XMMRegister> it = set.rbegin(); *it != xnoreg; ++it) { 4222 restore_xmm_register(this, restore_offset, *it); 4223 restore_offset -= xmm_save_size(); 4224 } 4225 } 4226 4227 void MacroAssembler::push_set(RegSet set, int offset) { 4228 int spill_offset; 4229 if (offset == -1) { 4230 int register_push_size = set.size() * Register::max_slots_per_register * VMRegImpl::stack_slot_size; 4231 int aligned_size = align_up(register_push_size, StackAlignmentInBytes); 4232 subptr(rsp, aligned_size); 4233 spill_offset = 0; 4234 } else { 4235 spill_offset = offset; 4236 } 4237 4238 for (RegSetIterator<Register> it = set.begin(); *it != noreg; ++it) { 4239 movptr(Address(rsp, spill_offset), *it); 4240 spill_offset += Register::max_slots_per_register * VMRegImpl::stack_slot_size; 4241 } 4242 } 4243 4244 void MacroAssembler::pop_set(RegSet set, int offset) { 4245 4246 int gp_reg_size = Register::max_slots_per_register * VMRegImpl::stack_slot_size; 4247 int restore_size = set.size() * gp_reg_size; 4248 int aligned_size = align_up(restore_size, StackAlignmentInBytes); 4249 4250 int restore_offset; 4251 if (offset == -1) { 4252 restore_offset = restore_size - gp_reg_size; 4253 } else { 4254 restore_offset = offset + restore_size - gp_reg_size; 4255 } 4256 for (ReverseRegSetIterator<Register> it = set.rbegin(); *it != noreg; ++it) { 4257 movptr(*it, Address(rsp, restore_offset)); 4258 restore_offset -= gp_reg_size; 4259 } 4260 4261 if (offset == -1) { 4262 addptr(rsp, aligned_size); 4263 } 4264 } 4265 4266 // Preserves the contents of address, destroys the contents length_in_bytes and temp. 4267 void MacroAssembler::zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp) { 4268 assert(address != length_in_bytes && address != temp && temp != length_in_bytes, "registers must be different"); 4269 assert((offset_in_bytes & (BytesPerWord - 1)) == 0, "offset must be a multiple of BytesPerWord"); 4270 Label done; 4271 4272 testptr(length_in_bytes, length_in_bytes); 4273 jcc(Assembler::zero, done); 4274 4275 // initialize topmost word, divide index by 2, check if odd and test if zero 4276 // note: for the remaining code to work, index must be a multiple of BytesPerWord 4277 #ifdef ASSERT 4278 { 4279 Label L; 4280 testptr(length_in_bytes, BytesPerWord - 1); 4281 jcc(Assembler::zero, L); 4282 stop("length must be a multiple of BytesPerWord"); 4283 bind(L); 4284 } 4285 #endif 4286 Register index = length_in_bytes; 4287 xorptr(temp, temp); // use _zero reg to clear memory (shorter code) 4288 if (UseIncDec) { 4289 shrptr(index, 3); // divide by 8/16 and set carry flag if bit 2 was set 4290 } else { 4291 shrptr(index, 2); // use 2 instructions to avoid partial flag stall 4292 shrptr(index, 1); 4293 } 4294 #ifndef _LP64 4295 // index could have not been a multiple of 8 (i.e., bit 2 was set) 4296 { 4297 Label even; 4298 // note: if index was a multiple of 8, then it cannot 4299 // be 0 now otherwise it must have been 0 before 4300 // => if it is even, we don't need to check for 0 again 4301 jcc(Assembler::carryClear, even); 4302 // clear topmost word (no jump would be needed if conditional assignment worked here) 4303 movptr(Address(address, index, Address::times_8, offset_in_bytes - 0*BytesPerWord), temp); 4304 // index could be 0 now, must check again 4305 jcc(Assembler::zero, done); 4306 bind(even); 4307 } 4308 #endif // !_LP64 4309 // initialize remaining object fields: index is a multiple of 2 now 4310 { 4311 Label loop; 4312 bind(loop); 4313 movptr(Address(address, index, Address::times_8, offset_in_bytes - 1*BytesPerWord), temp); 4314 NOT_LP64(movptr(Address(address, index, Address::times_8, offset_in_bytes - 2*BytesPerWord), temp);) 4315 decrement(index); 4316 jcc(Assembler::notZero, loop); 4317 } 4318 4319 bind(done); 4320 } 4321 4322 // Look up the method for a megamorphic invokeinterface call. 4323 // The target method is determined by <intf_klass, itable_index>. 4324 // The receiver klass is in recv_klass. 4325 // On success, the result will be in method_result, and execution falls through. 4326 // On failure, execution transfers to the given label. 4327 void MacroAssembler::lookup_interface_method(Register recv_klass, 4328 Register intf_klass, 4329 RegisterOrConstant itable_index, 4330 Register method_result, 4331 Register scan_temp, 4332 Label& L_no_such_interface, 4333 bool return_method) { 4334 assert_different_registers(recv_klass, intf_klass, scan_temp); 4335 assert_different_registers(method_result, intf_klass, scan_temp); 4336 assert(recv_klass != method_result || !return_method, 4337 "recv_klass can be destroyed when method isn't needed"); 4338 4339 assert(itable_index.is_constant() || itable_index.as_register() == method_result, 4340 "caller must use same register for non-constant itable index as for method"); 4341 4342 // Compute start of first itableOffsetEntry (which is at the end of the vtable) 4343 int vtable_base = in_bytes(Klass::vtable_start_offset()); 4344 int itentry_off = in_bytes(itableMethodEntry::method_offset()); 4345 int scan_step = itableOffsetEntry::size() * wordSize; 4346 int vte_size = vtableEntry::size_in_bytes(); 4347 Address::ScaleFactor times_vte_scale = Address::times_ptr; 4348 assert(vte_size == wordSize, "else adjust times_vte_scale"); 4349 4350 movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 4351 4352 // Could store the aligned, prescaled offset in the klass. 4353 lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base)); 4354 4355 if (return_method) { 4356 // Adjust recv_klass by scaled itable_index, so we can free itable_index. 4357 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); 4358 lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off)); 4359 } 4360 4361 // for (scan = klass->itable(); scan->interface() != nullptr; scan += scan_step) { 4362 // if (scan->interface() == intf) { 4363 // result = (klass + scan->offset() + itable_index); 4364 // } 4365 // } 4366 Label search, found_method; 4367 4368 for (int peel = 1; peel >= 0; peel--) { 4369 movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset())); 4370 cmpptr(intf_klass, method_result); 4371 4372 if (peel) { 4373 jccb(Assembler::equal, found_method); 4374 } else { 4375 jccb(Assembler::notEqual, search); 4376 // (invert the test to fall through to found_method...) 4377 } 4378 4379 if (!peel) break; 4380 4381 bind(search); 4382 4383 // Check that the previous entry is non-null. A null entry means that 4384 // the receiver class doesn't implement the interface, and wasn't the 4385 // same as when the caller was compiled. 4386 testptr(method_result, method_result); 4387 jcc(Assembler::zero, L_no_such_interface); 4388 addptr(scan_temp, scan_step); 4389 } 4390 4391 bind(found_method); 4392 4393 if (return_method) { 4394 // Got a hit. 4395 movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset())); 4396 movptr(method_result, Address(recv_klass, scan_temp, Address::times_1)); 4397 } 4398 } 4399 4400 // Look up the method for a megamorphic invokeinterface call in a single pass over itable: 4401 // - check recv_klass (actual object class) is a subtype of resolved_klass from CompiledICData 4402 // - find a holder_klass (class that implements the method) vtable offset and get the method from vtable by index 4403 // The target method is determined by <holder_klass, itable_index>. 4404 // The receiver klass is in recv_klass. 4405 // On success, the result will be in method_result, and execution falls through. 4406 // On failure, execution transfers to the given label. 4407 void MacroAssembler::lookup_interface_method_stub(Register recv_klass, 4408 Register holder_klass, 4409 Register resolved_klass, 4410 Register method_result, 4411 Register scan_temp, 4412 Register temp_reg2, 4413 Register receiver, 4414 int itable_index, 4415 Label& L_no_such_interface) { 4416 assert_different_registers(recv_klass, method_result, holder_klass, resolved_klass, scan_temp, temp_reg2, receiver); 4417 Register temp_itbl_klass = method_result; 4418 Register temp_reg = (temp_reg2 == noreg ? recv_klass : temp_reg2); // reuse recv_klass register on 32-bit x86 impl 4419 4420 int vtable_base = in_bytes(Klass::vtable_start_offset()); 4421 int itentry_off = in_bytes(itableMethodEntry::method_offset()); 4422 int scan_step = itableOffsetEntry::size() * wordSize; 4423 int vte_size = vtableEntry::size_in_bytes(); 4424 int ioffset = in_bytes(itableOffsetEntry::interface_offset()); 4425 int ooffset = in_bytes(itableOffsetEntry::offset_offset()); 4426 Address::ScaleFactor times_vte_scale = Address::times_ptr; 4427 assert(vte_size == wordSize, "adjust times_vte_scale"); 4428 4429 Label L_loop_scan_resolved_entry, L_resolved_found, L_holder_found; 4430 4431 // temp_itbl_klass = recv_klass.itable[0] 4432 // scan_temp = &recv_klass.itable[0] + step 4433 movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 4434 movptr(temp_itbl_klass, Address(recv_klass, scan_temp, times_vte_scale, vtable_base + ioffset)); 4435 lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base + ioffset + scan_step)); 4436 xorptr(temp_reg, temp_reg); 4437 4438 // Initial checks: 4439 // - if (holder_klass != resolved_klass), go to "scan for resolved" 4440 // - if (itable[0] == 0), no such interface 4441 // - if (itable[0] == holder_klass), shortcut to "holder found" 4442 cmpptr(holder_klass, resolved_klass); 4443 jccb(Assembler::notEqual, L_loop_scan_resolved_entry); 4444 testptr(temp_itbl_klass, temp_itbl_klass); 4445 jccb(Assembler::zero, L_no_such_interface); 4446 cmpptr(holder_klass, temp_itbl_klass); 4447 jccb(Assembler::equal, L_holder_found); 4448 4449 // Loop: Look for holder_klass record in itable 4450 // do { 4451 // tmp = itable[index]; 4452 // index += step; 4453 // if (tmp == holder_klass) { 4454 // goto L_holder_found; // Found! 4455 // } 4456 // } while (tmp != 0); 4457 // goto L_no_such_interface // Not found. 4458 Label L_scan_holder; 4459 bind(L_scan_holder); 4460 movptr(temp_itbl_klass, Address(scan_temp, 0)); 4461 addptr(scan_temp, scan_step); 4462 cmpptr(holder_klass, temp_itbl_klass); 4463 jccb(Assembler::equal, L_holder_found); 4464 testptr(temp_itbl_klass, temp_itbl_klass); 4465 jccb(Assembler::notZero, L_scan_holder); 4466 4467 jmpb(L_no_such_interface); 4468 4469 // Loop: Look for resolved_class record in itable 4470 // do { 4471 // tmp = itable[index]; 4472 // index += step; 4473 // if (tmp == holder_klass) { 4474 // // Also check if we have met a holder klass 4475 // holder_tmp = itable[index-step-ioffset]; 4476 // } 4477 // if (tmp == resolved_klass) { 4478 // goto L_resolved_found; // Found! 4479 // } 4480 // } while (tmp != 0); 4481 // goto L_no_such_interface // Not found. 4482 // 4483 Label L_loop_scan_resolved; 4484 bind(L_loop_scan_resolved); 4485 movptr(temp_itbl_klass, Address(scan_temp, 0)); 4486 addptr(scan_temp, scan_step); 4487 bind(L_loop_scan_resolved_entry); 4488 cmpptr(holder_klass, temp_itbl_klass); 4489 cmovl(Assembler::equal, temp_reg, Address(scan_temp, ooffset - ioffset - scan_step)); 4490 cmpptr(resolved_klass, temp_itbl_klass); 4491 jccb(Assembler::equal, L_resolved_found); 4492 testptr(temp_itbl_klass, temp_itbl_klass); 4493 jccb(Assembler::notZero, L_loop_scan_resolved); 4494 4495 jmpb(L_no_such_interface); 4496 4497 Label L_ready; 4498 4499 // See if we already have a holder klass. If not, go and scan for it. 4500 bind(L_resolved_found); 4501 testptr(temp_reg, temp_reg); 4502 jccb(Assembler::zero, L_scan_holder); 4503 jmpb(L_ready); 4504 4505 bind(L_holder_found); 4506 movl(temp_reg, Address(scan_temp, ooffset - ioffset - scan_step)); 4507 4508 // Finally, temp_reg contains holder_klass vtable offset 4509 bind(L_ready); 4510 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); 4511 if (temp_reg2 == noreg) { // recv_klass register is clobbered for 32-bit x86 impl 4512 load_klass(scan_temp, receiver, noreg); 4513 movptr(method_result, Address(scan_temp, temp_reg, Address::times_1, itable_index * wordSize + itentry_off)); 4514 } else { 4515 movptr(method_result, Address(recv_klass, temp_reg, Address::times_1, itable_index * wordSize + itentry_off)); 4516 } 4517 } 4518 4519 4520 // virtual method calling 4521 void MacroAssembler::lookup_virtual_method(Register recv_klass, 4522 RegisterOrConstant vtable_index, 4523 Register method_result) { 4524 const ByteSize base = Klass::vtable_start_offset(); 4525 assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below"); 4526 Address vtable_entry_addr(recv_klass, 4527 vtable_index, Address::times_ptr, 4528 base + vtableEntry::method_offset()); 4529 movptr(method_result, vtable_entry_addr); 4530 } 4531 4532 4533 void MacroAssembler::check_klass_subtype(Register sub_klass, 4534 Register super_klass, 4535 Register temp_reg, 4536 Label& L_success) { 4537 Label L_failure; 4538 check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg, &L_success, &L_failure, nullptr); 4539 check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, nullptr); 4540 bind(L_failure); 4541 } 4542 4543 4544 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass, 4545 Register super_klass, 4546 Register temp_reg, 4547 Label* L_success, 4548 Label* L_failure, 4549 Label* L_slow_path, 4550 RegisterOrConstant super_check_offset) { 4551 assert_different_registers(sub_klass, super_klass, temp_reg); 4552 bool must_load_sco = (super_check_offset.constant_or_zero() == -1); 4553 if (super_check_offset.is_register()) { 4554 assert_different_registers(sub_klass, super_klass, 4555 super_check_offset.as_register()); 4556 } else if (must_load_sco) { 4557 assert(temp_reg != noreg, "supply either a temp or a register offset"); 4558 } 4559 4560 Label L_fallthrough; 4561 int label_nulls = 0; 4562 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 4563 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 4564 if (L_slow_path == nullptr) { L_slow_path = &L_fallthrough; label_nulls++; } 4565 assert(label_nulls <= 1, "at most one null in the batch"); 4566 4567 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 4568 int sco_offset = in_bytes(Klass::super_check_offset_offset()); 4569 Address super_check_offset_addr(super_klass, sco_offset); 4570 4571 // Hacked jcc, which "knows" that L_fallthrough, at least, is in 4572 // range of a jccb. If this routine grows larger, reconsider at 4573 // least some of these. 4574 #define local_jcc(assembler_cond, label) \ 4575 if (&(label) == &L_fallthrough) jccb(assembler_cond, label); \ 4576 else jcc( assembler_cond, label) /*omit semi*/ 4577 4578 // Hacked jmp, which may only be used just before L_fallthrough. 4579 #define final_jmp(label) \ 4580 if (&(label) == &L_fallthrough) { /*do nothing*/ } \ 4581 else jmp(label) /*omit semi*/ 4582 4583 // If the pointers are equal, we are done (e.g., String[] elements). 4584 // This self-check enables sharing of secondary supertype arrays among 4585 // non-primary types such as array-of-interface. Otherwise, each such 4586 // type would need its own customized SSA. 4587 // We move this check to the front of the fast path because many 4588 // type checks are in fact trivially successful in this manner, 4589 // so we get a nicely predicted branch right at the start of the check. 4590 cmpptr(sub_klass, super_klass); 4591 local_jcc(Assembler::equal, *L_success); 4592 4593 // Check the supertype display: 4594 if (must_load_sco) { 4595 // Positive movl does right thing on LP64. 4596 movl(temp_reg, super_check_offset_addr); 4597 super_check_offset = RegisterOrConstant(temp_reg); 4598 } 4599 Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0); 4600 cmpptr(super_klass, super_check_addr); // load displayed supertype 4601 4602 // This check has worked decisively for primary supers. 4603 // Secondary supers are sought in the super_cache ('super_cache_addr'). 4604 // (Secondary supers are interfaces and very deeply nested subtypes.) 4605 // This works in the same check above because of a tricky aliasing 4606 // between the super_cache and the primary super display elements. 4607 // (The 'super_check_addr' can address either, as the case requires.) 4608 // Note that the cache is updated below if it does not help us find 4609 // what we need immediately. 4610 // So if it was a primary super, we can just fail immediately. 4611 // Otherwise, it's the slow path for us (no success at this point). 4612 4613 if (super_check_offset.is_register()) { 4614 local_jcc(Assembler::equal, *L_success); 4615 cmpl(super_check_offset.as_register(), sc_offset); 4616 if (L_failure == &L_fallthrough) { 4617 local_jcc(Assembler::equal, *L_slow_path); 4618 } else { 4619 local_jcc(Assembler::notEqual, *L_failure); 4620 final_jmp(*L_slow_path); 4621 } 4622 } else if (super_check_offset.as_constant() == sc_offset) { 4623 // Need a slow path; fast failure is impossible. 4624 if (L_slow_path == &L_fallthrough) { 4625 local_jcc(Assembler::equal, *L_success); 4626 } else { 4627 local_jcc(Assembler::notEqual, *L_slow_path); 4628 final_jmp(*L_success); 4629 } 4630 } else { 4631 // No slow path; it's a fast decision. 4632 if (L_failure == &L_fallthrough) { 4633 local_jcc(Assembler::equal, *L_success); 4634 } else { 4635 local_jcc(Assembler::notEqual, *L_failure); 4636 final_jmp(*L_success); 4637 } 4638 } 4639 4640 bind(L_fallthrough); 4641 4642 #undef local_jcc 4643 #undef final_jmp 4644 } 4645 4646 4647 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, 4648 Register super_klass, 4649 Register temp_reg, 4650 Register temp2_reg, 4651 Label* L_success, 4652 Label* L_failure, 4653 bool set_cond_codes) { 4654 assert_different_registers(sub_klass, super_klass, temp_reg); 4655 if (temp2_reg != noreg) 4656 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg); 4657 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg) 4658 4659 Label L_fallthrough; 4660 int label_nulls = 0; 4661 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 4662 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 4663 assert(label_nulls <= 1, "at most one null in the batch"); 4664 4665 // a couple of useful fields in sub_klass: 4666 int ss_offset = in_bytes(Klass::secondary_supers_offset()); 4667 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 4668 Address secondary_supers_addr(sub_klass, ss_offset); 4669 Address super_cache_addr( sub_klass, sc_offset); 4670 4671 // Do a linear scan of the secondary super-klass chain. 4672 // This code is rarely used, so simplicity is a virtue here. 4673 // The repne_scan instruction uses fixed registers, which we must spill. 4674 // Don't worry too much about pre-existing connections with the input regs. 4675 4676 assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super) 4677 assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter) 4678 4679 // Get super_klass value into rax (even if it was in rdi or rcx). 4680 bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false; 4681 if (super_klass != rax) { 4682 if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; } 4683 mov(rax, super_klass); 4684 } 4685 if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; } 4686 if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; } 4687 4688 #ifndef PRODUCT 4689 uint* pst_counter = &SharedRuntime::_partial_subtype_ctr; 4690 ExternalAddress pst_counter_addr((address) pst_counter); 4691 NOT_LP64( incrementl(pst_counter_addr) ); 4692 LP64_ONLY( lea(rcx, pst_counter_addr) ); 4693 LP64_ONLY( incrementl(Address(rcx, 0)) ); 4694 #endif //PRODUCT 4695 4696 // We will consult the secondary-super array. 4697 movptr(rdi, secondary_supers_addr); 4698 // Load the array length. (Positive movl does right thing on LP64.) 4699 movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes())); 4700 // Skip to start of data. 4701 addptr(rdi, Array<Klass*>::base_offset_in_bytes()); 4702 4703 // Scan RCX words at [RDI] for an occurrence of RAX. 4704 // Set NZ/Z based on last compare. 4705 // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does 4706 // not change flags (only scas instruction which is repeated sets flags). 4707 // Set Z = 0 (not equal) before 'repne' to indicate that class was not found. 4708 4709 testptr(rax,rax); // Set Z = 0 4710 repne_scan(); 4711 4712 // Unspill the temp. registers: 4713 if (pushed_rdi) pop(rdi); 4714 if (pushed_rcx) pop(rcx); 4715 if (pushed_rax) pop(rax); 4716 4717 if (set_cond_codes) { 4718 // Special hack for the AD files: rdi is guaranteed non-zero. 4719 assert(!pushed_rdi, "rdi must be left non-null"); 4720 // Also, the condition codes are properly set Z/NZ on succeed/failure. 4721 } 4722 4723 if (L_failure == &L_fallthrough) 4724 jccb(Assembler::notEqual, *L_failure); 4725 else jcc(Assembler::notEqual, *L_failure); 4726 4727 // Success. Cache the super we found and proceed in triumph. 4728 movptr(super_cache_addr, super_klass); 4729 4730 if (L_success != &L_fallthrough) { 4731 jmp(*L_success); 4732 } 4733 4734 #undef IS_A_TEMP 4735 4736 bind(L_fallthrough); 4737 } 4738 4739 #ifdef _LP64 4740 4741 // population_count variant for running without the POPCNT 4742 // instruction, which was introduced with SSE4.2 in 2008. 4743 void MacroAssembler::population_count(Register dst, Register src, 4744 Register scratch1, Register scratch2) { 4745 assert_different_registers(src, scratch1, scratch2); 4746 if (UsePopCountInstruction) { 4747 Assembler::popcntq(dst, src); 4748 } else { 4749 assert_different_registers(src, scratch1, scratch2); 4750 assert_different_registers(dst, scratch1, scratch2); 4751 Label loop, done; 4752 4753 mov(scratch1, src); 4754 // dst = 0; 4755 // while(scratch1 != 0) { 4756 // dst++; 4757 // scratch1 &= (scratch1 - 1); 4758 // } 4759 xorl(dst, dst); 4760 testq(scratch1, scratch1); 4761 jccb(Assembler::equal, done); 4762 { 4763 bind(loop); 4764 incq(dst); 4765 movq(scratch2, scratch1); 4766 decq(scratch2); 4767 andq(scratch1, scratch2); 4768 jccb(Assembler::notEqual, loop); 4769 } 4770 bind(done); 4771 } 4772 } 4773 4774 // Ensure that the inline code and the stub are using the same registers. 4775 #define LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS \ 4776 do { \ 4777 assert(r_super_klass == rax, "mismatch"); \ 4778 assert(r_array_base == rbx, "mismatch"); \ 4779 assert(r_array_length == rcx, "mismatch"); \ 4780 assert(r_array_index == rdx, "mismatch"); \ 4781 assert(r_sub_klass == rsi || r_sub_klass == noreg, "mismatch"); \ 4782 assert(r_bitmap == r11 || r_bitmap == noreg, "mismatch"); \ 4783 assert(result == rdi || result == noreg, "mismatch"); \ 4784 } while(0) 4785 4786 void MacroAssembler::lookup_secondary_supers_table(Register r_sub_klass, 4787 Register r_super_klass, 4788 Register temp1, 4789 Register temp2, 4790 Register temp3, 4791 Register temp4, 4792 Register result, 4793 u1 super_klass_slot) { 4794 assert_different_registers(r_sub_klass, r_super_klass, temp1, temp2, temp3, temp4, result); 4795 4796 Label L_fallthrough, L_success, L_failure; 4797 4798 BLOCK_COMMENT("lookup_secondary_supers_table {"); 4799 4800 const Register 4801 r_array_index = temp1, 4802 r_array_length = temp2, 4803 r_array_base = temp3, 4804 r_bitmap = temp4; 4805 4806 LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS; 4807 4808 xorq(result, result); // = 0 4809 4810 movq(r_bitmap, Address(r_sub_klass, Klass::bitmap_offset())); 4811 movq(r_array_index, r_bitmap); 4812 4813 // First check the bitmap to see if super_klass might be present. If 4814 // the bit is zero, we are certain that super_klass is not one of 4815 // the secondary supers. 4816 u1 bit = super_klass_slot; 4817 { 4818 // NB: If the count in a x86 shift instruction is 0, the flags are 4819 // not affected, so we do a testq instead. 4820 int shift_count = Klass::SECONDARY_SUPERS_TABLE_MASK - bit; 4821 if (shift_count != 0) { 4822 salq(r_array_index, shift_count); 4823 } else { 4824 testq(r_array_index, r_array_index); 4825 } 4826 } 4827 // We test the MSB of r_array_index, i.e. its sign bit 4828 jcc(Assembler::positive, L_failure); 4829 4830 // Get the first array index that can contain super_klass into r_array_index. 4831 if (bit != 0) { 4832 population_count(r_array_index, r_array_index, temp2, temp3); 4833 } else { 4834 movl(r_array_index, 1); 4835 } 4836 // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word. 4837 4838 // We will consult the secondary-super array. 4839 movptr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 4840 4841 // We're asserting that the first word in an Array<Klass*> is the 4842 // length, and the second word is the first word of the data. If 4843 // that ever changes, r_array_base will have to be adjusted here. 4844 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code"); 4845 assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code"); 4846 4847 cmpq(r_super_klass, Address(r_array_base, r_array_index, Address::times_8)); 4848 jccb(Assembler::equal, L_success); 4849 4850 // Is there another entry to check? Consult the bitmap. 4851 btq(r_bitmap, (bit + 1) & Klass::SECONDARY_SUPERS_TABLE_MASK); 4852 jccb(Assembler::carryClear, L_failure); 4853 4854 // Linear probe. Rotate the bitmap so that the next bit to test is 4855 // in Bit 1. 4856 if (bit != 0) { 4857 rorq(r_bitmap, bit); 4858 } 4859 4860 // Calls into the stub generated by lookup_secondary_supers_table_slow_path. 4861 // Arguments: r_super_klass, r_array_base, r_array_index, r_bitmap. 4862 // Kills: r_array_length. 4863 // Returns: result. 4864 call(RuntimeAddress(StubRoutines::lookup_secondary_supers_table_slow_path_stub())); 4865 // Result (0/1) is in rdi 4866 jmpb(L_fallthrough); 4867 4868 bind(L_failure); 4869 incq(result); // 0 => 1 4870 4871 bind(L_success); 4872 // result = 0; 4873 4874 bind(L_fallthrough); 4875 BLOCK_COMMENT("} lookup_secondary_supers_table"); 4876 4877 if (VerifySecondarySupers) { 4878 verify_secondary_supers_table(r_sub_klass, r_super_klass, result, 4879 temp1, temp2, temp3); 4880 } 4881 } 4882 4883 void MacroAssembler::repne_scanq(Register addr, Register value, Register count, Register limit, 4884 Label* L_success, Label* L_failure) { 4885 Label L_loop, L_fallthrough; 4886 { 4887 int label_nulls = 0; 4888 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 4889 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 4890 assert(label_nulls <= 1, "at most one null in the batch"); 4891 } 4892 bind(L_loop); 4893 cmpq(value, Address(addr, count, Address::times_8)); 4894 jcc(Assembler::equal, *L_success); 4895 addl(count, 1); 4896 cmpl(count, limit); 4897 jcc(Assembler::less, L_loop); 4898 4899 if (&L_fallthrough != L_failure) { 4900 jmp(*L_failure); 4901 } 4902 bind(L_fallthrough); 4903 } 4904 4905 // Called by code generated by check_klass_subtype_slow_path 4906 // above. This is called when there is a collision in the hashed 4907 // lookup in the secondary supers array. 4908 void MacroAssembler::lookup_secondary_supers_table_slow_path(Register r_super_klass, 4909 Register r_array_base, 4910 Register r_array_index, 4911 Register r_bitmap, 4912 Register temp1, 4913 Register temp2, 4914 Label* L_success, 4915 Label* L_failure) { 4916 assert_different_registers(r_super_klass, r_array_base, r_array_index, r_bitmap, temp1, temp2); 4917 4918 const Register 4919 r_array_length = temp1, 4920 r_sub_klass = noreg, 4921 result = noreg; 4922 4923 LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS; 4924 4925 Label L_fallthrough; 4926 int label_nulls = 0; 4927 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 4928 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 4929 assert(label_nulls <= 1, "at most one null in the batch"); 4930 4931 // Load the array length. 4932 movl(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes())); 4933 // And adjust the array base to point to the data. 4934 // NB! Effectively increments current slot index by 1. 4935 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, ""); 4936 addptr(r_array_base, Array<Klass*>::base_offset_in_bytes()); 4937 4938 // Linear probe 4939 Label L_huge; 4940 4941 // The bitmap is full to bursting. 4942 // Implicit invariant: BITMAP_FULL implies (length > 0) 4943 assert(Klass::SECONDARY_SUPERS_BITMAP_FULL == ~uintx(0), ""); 4944 cmpq(r_bitmap, (int32_t)-1); // sign-extends immediate to 64-bit value 4945 jcc(Assembler::equal, L_huge); 4946 4947 // NB! Our caller has checked bits 0 and 1 in the bitmap. The 4948 // current slot (at secondary_supers[r_array_index]) has not yet 4949 // been inspected, and r_array_index may be out of bounds if we 4950 // wrapped around the end of the array. 4951 4952 { // This is conventional linear probing, but instead of terminating 4953 // when a null entry is found in the table, we maintain a bitmap 4954 // in which a 0 indicates missing entries. 4955 // The check above guarantees there are 0s in the bitmap, so the loop 4956 // eventually terminates. 4957 4958 xorl(temp2, temp2); // = 0; 4959 4960 Label L_again; 4961 bind(L_again); 4962 4963 // Check for array wraparound. 4964 cmpl(r_array_index, r_array_length); 4965 cmovl(Assembler::greaterEqual, r_array_index, temp2); 4966 4967 cmpq(r_super_klass, Address(r_array_base, r_array_index, Address::times_8)); 4968 jcc(Assembler::equal, *L_success); 4969 4970 // If the next bit in bitmap is zero, we're done. 4971 btq(r_bitmap, 2); // look-ahead check (Bit 2); Bits 0 and 1 are tested by now 4972 jcc(Assembler::carryClear, *L_failure); 4973 4974 rorq(r_bitmap, 1); // Bits 1/2 => 0/1 4975 addl(r_array_index, 1); 4976 4977 jmp(L_again); 4978 } 4979 4980 { // Degenerate case: more than 64 secondary supers. 4981 // FIXME: We could do something smarter here, maybe a vectorized 4982 // comparison or a binary search, but is that worth any added 4983 // complexity? 4984 bind(L_huge); 4985 xorl(r_array_index, r_array_index); // = 0 4986 repne_scanq(r_array_base, r_super_klass, r_array_index, r_array_length, 4987 L_success, 4988 (&L_fallthrough != L_failure ? L_failure : nullptr)); 4989 4990 bind(L_fallthrough); 4991 } 4992 } 4993 4994 struct VerifyHelperArguments { 4995 Klass* _super; 4996 Klass* _sub; 4997 intptr_t _linear_result; 4998 intptr_t _table_result; 4999 }; 5000 5001 static void verify_secondary_supers_table_helper(const char* msg, VerifyHelperArguments* args) { 5002 Klass::on_secondary_supers_verification_failure(args->_super, 5003 args->_sub, 5004 args->_linear_result, 5005 args->_table_result, 5006 msg); 5007 } 5008 5009 // Make sure that the hashed lookup and a linear scan agree. 5010 void MacroAssembler::verify_secondary_supers_table(Register r_sub_klass, 5011 Register r_super_klass, 5012 Register result, 5013 Register temp1, 5014 Register temp2, 5015 Register temp3) { 5016 const Register 5017 r_array_index = temp1, 5018 r_array_length = temp2, 5019 r_array_base = temp3, 5020 r_bitmap = noreg; 5021 5022 LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS; 5023 5024 BLOCK_COMMENT("verify_secondary_supers_table {"); 5025 5026 Label L_success, L_failure, L_check, L_done; 5027 5028 movptr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 5029 movl(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes())); 5030 // And adjust the array base to point to the data. 5031 addptr(r_array_base, Array<Klass*>::base_offset_in_bytes()); 5032 5033 testl(r_array_length, r_array_length); // array_length == 0? 5034 jcc(Assembler::zero, L_failure); 5035 5036 movl(r_array_index, 0); 5037 repne_scanq(r_array_base, r_super_klass, r_array_index, r_array_length, &L_success); 5038 // fall through to L_failure 5039 5040 const Register linear_result = r_array_index; // reuse temp1 5041 5042 bind(L_failure); // not present 5043 movl(linear_result, 1); 5044 jmp(L_check); 5045 5046 bind(L_success); // present 5047 movl(linear_result, 0); 5048 5049 bind(L_check); 5050 cmpl(linear_result, result); 5051 jcc(Assembler::equal, L_done); 5052 5053 { // To avoid calling convention issues, build a record on the stack 5054 // and pass the pointer to that instead. 5055 push(result); 5056 push(linear_result); 5057 push(r_sub_klass); 5058 push(r_super_klass); 5059 movptr(c_rarg1, rsp); 5060 movptr(c_rarg0, (uintptr_t) "mismatch"); 5061 call(RuntimeAddress(CAST_FROM_FN_PTR(address, verify_secondary_supers_table_helper))); 5062 should_not_reach_here(); 5063 } 5064 bind(L_done); 5065 5066 BLOCK_COMMENT("} verify_secondary_supers_table"); 5067 } 5068 5069 #undef LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS 5070 5071 #endif // LP64 5072 5073 void MacroAssembler::clinit_barrier(Register klass, Register thread, Label* L_fast_path, Label* L_slow_path) { 5074 assert(L_fast_path != nullptr || L_slow_path != nullptr, "at least one is required"); 5075 5076 Label L_fallthrough; 5077 if (L_fast_path == nullptr) { 5078 L_fast_path = &L_fallthrough; 5079 } else if (L_slow_path == nullptr) { 5080 L_slow_path = &L_fallthrough; 5081 } 5082 5083 // Fast path check: class is fully initialized 5084 cmpb(Address(klass, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized); 5085 jcc(Assembler::equal, *L_fast_path); 5086 5087 // Fast path check: current thread is initializer thread 5088 cmpptr(thread, Address(klass, InstanceKlass::init_thread_offset())); 5089 if (L_slow_path == &L_fallthrough) { 5090 jcc(Assembler::equal, *L_fast_path); 5091 bind(*L_slow_path); 5092 } else if (L_fast_path == &L_fallthrough) { 5093 jcc(Assembler::notEqual, *L_slow_path); 5094 bind(*L_fast_path); 5095 } else { 5096 Unimplemented(); 5097 } 5098 } 5099 5100 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) { 5101 if (VM_Version::supports_cmov()) { 5102 cmovl(cc, dst, src); 5103 } else { 5104 Label L; 5105 jccb(negate_condition(cc), L); 5106 movl(dst, src); 5107 bind(L); 5108 } 5109 } 5110 5111 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) { 5112 if (VM_Version::supports_cmov()) { 5113 cmovl(cc, dst, src); 5114 } else { 5115 Label L; 5116 jccb(negate_condition(cc), L); 5117 movl(dst, src); 5118 bind(L); 5119 } 5120 } 5121 5122 void MacroAssembler::_verify_oop(Register reg, const char* s, const char* file, int line) { 5123 if (!VerifyOops) return; 5124 5125 BLOCK_COMMENT("verify_oop {"); 5126 #ifdef _LP64 5127 push(rscratch1); 5128 #endif 5129 push(rax); // save rax 5130 push(reg); // pass register argument 5131 5132 // Pass register number to verify_oop_subroutine 5133 const char* b = nullptr; 5134 { 5135 ResourceMark rm; 5136 stringStream ss; 5137 ss.print("verify_oop: %s: %s (%s:%d)", reg->name(), s, file, line); 5138 b = code_string(ss.as_string()); 5139 } 5140 ExternalAddress buffer((address) b); 5141 pushptr(buffer.addr(), rscratch1); 5142 5143 // call indirectly to solve generation ordering problem 5144 movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); 5145 call(rax); 5146 // Caller pops the arguments (oop, message) and restores rax, r10 5147 BLOCK_COMMENT("} verify_oop"); 5148 } 5149 5150 void MacroAssembler::vallones(XMMRegister dst, int vector_len) { 5151 if (UseAVX > 2 && (vector_len == Assembler::AVX_512bit || VM_Version::supports_avx512vl())) { 5152 // Only pcmpeq has dependency breaking treatment (i.e the execution can begin without 5153 // waiting for the previous result on dst), not vpcmpeqd, so just use vpternlog 5154 vpternlogd(dst, 0xFF, dst, dst, vector_len); 5155 } else if (VM_Version::supports_avx()) { 5156 vpcmpeqd(dst, dst, dst, vector_len); 5157 } else { 5158 assert(VM_Version::supports_sse2(), ""); 5159 pcmpeqd(dst, dst); 5160 } 5161 } 5162 5163 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot, 5164 int extra_slot_offset) { 5165 // cf. TemplateTable::prepare_invoke(), if (load_receiver). 5166 int stackElementSize = Interpreter::stackElementSize; 5167 int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0); 5168 #ifdef ASSERT 5169 int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1); 5170 assert(offset1 - offset == stackElementSize, "correct arithmetic"); 5171 #endif 5172 Register scale_reg = noreg; 5173 Address::ScaleFactor scale_factor = Address::no_scale; 5174 if (arg_slot.is_constant()) { 5175 offset += arg_slot.as_constant() * stackElementSize; 5176 } else { 5177 scale_reg = arg_slot.as_register(); 5178 scale_factor = Address::times(stackElementSize); 5179 } 5180 offset += wordSize; // return PC is on stack 5181 return Address(rsp, scale_reg, scale_factor, offset); 5182 } 5183 5184 void MacroAssembler::_verify_oop_addr(Address addr, const char* s, const char* file, int line) { 5185 if (!VerifyOops) return; 5186 5187 #ifdef _LP64 5188 push(rscratch1); 5189 #endif 5190 push(rax); // save rax, 5191 // addr may contain rsp so we will have to adjust it based on the push 5192 // we just did (and on 64 bit we do two pushes) 5193 // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which 5194 // stores rax into addr which is backwards of what was intended. 5195 if (addr.uses(rsp)) { 5196 lea(rax, addr); 5197 pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord)); 5198 } else { 5199 pushptr(addr); 5200 } 5201 5202 // Pass register number to verify_oop_subroutine 5203 const char* b = nullptr; 5204 { 5205 ResourceMark rm; 5206 stringStream ss; 5207 ss.print("verify_oop_addr: %s (%s:%d)", s, file, line); 5208 b = code_string(ss.as_string()); 5209 } 5210 ExternalAddress buffer((address) b); 5211 pushptr(buffer.addr(), rscratch1); 5212 5213 // call indirectly to solve generation ordering problem 5214 movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); 5215 call(rax); 5216 // Caller pops the arguments (addr, message) and restores rax, r10. 5217 } 5218 5219 void MacroAssembler::verify_tlab() { 5220 #ifdef ASSERT 5221 if (UseTLAB && VerifyOops) { 5222 Label next, ok; 5223 Register t1 = rsi; 5224 Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread); 5225 5226 push(t1); 5227 NOT_LP64(push(thread_reg)); 5228 NOT_LP64(get_thread(thread_reg)); 5229 5230 movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset()))); 5231 cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset()))); 5232 jcc(Assembler::aboveEqual, next); 5233 STOP("assert(top >= start)"); 5234 should_not_reach_here(); 5235 5236 bind(next); 5237 movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset()))); 5238 cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset()))); 5239 jcc(Assembler::aboveEqual, ok); 5240 STOP("assert(top <= end)"); 5241 should_not_reach_here(); 5242 5243 bind(ok); 5244 NOT_LP64(pop(thread_reg)); 5245 pop(t1); 5246 } 5247 #endif 5248 } 5249 5250 class ControlWord { 5251 public: 5252 int32_t _value; 5253 5254 int rounding_control() const { return (_value >> 10) & 3 ; } 5255 int precision_control() const { return (_value >> 8) & 3 ; } 5256 bool precision() const { return ((_value >> 5) & 1) != 0; } 5257 bool underflow() const { return ((_value >> 4) & 1) != 0; } 5258 bool overflow() const { return ((_value >> 3) & 1) != 0; } 5259 bool zero_divide() const { return ((_value >> 2) & 1) != 0; } 5260 bool denormalized() const { return ((_value >> 1) & 1) != 0; } 5261 bool invalid() const { return ((_value >> 0) & 1) != 0; } 5262 5263 void print() const { 5264 // rounding control 5265 const char* rc; 5266 switch (rounding_control()) { 5267 case 0: rc = "round near"; break; 5268 case 1: rc = "round down"; break; 5269 case 2: rc = "round up "; break; 5270 case 3: rc = "chop "; break; 5271 default: 5272 rc = nullptr; // silence compiler warnings 5273 fatal("Unknown rounding control: %d", rounding_control()); 5274 }; 5275 // precision control 5276 const char* pc; 5277 switch (precision_control()) { 5278 case 0: pc = "24 bits "; break; 5279 case 1: pc = "reserved"; break; 5280 case 2: pc = "53 bits "; break; 5281 case 3: pc = "64 bits "; break; 5282 default: 5283 pc = nullptr; // silence compiler warnings 5284 fatal("Unknown precision control: %d", precision_control()); 5285 }; 5286 // flags 5287 char f[9]; 5288 f[0] = ' '; 5289 f[1] = ' '; 5290 f[2] = (precision ()) ? 'P' : 'p'; 5291 f[3] = (underflow ()) ? 'U' : 'u'; 5292 f[4] = (overflow ()) ? 'O' : 'o'; 5293 f[5] = (zero_divide ()) ? 'Z' : 'z'; 5294 f[6] = (denormalized()) ? 'D' : 'd'; 5295 f[7] = (invalid ()) ? 'I' : 'i'; 5296 f[8] = '\x0'; 5297 // output 5298 printf("%04x masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc); 5299 } 5300 5301 }; 5302 5303 class StatusWord { 5304 public: 5305 int32_t _value; 5306 5307 bool busy() const { return ((_value >> 15) & 1) != 0; } 5308 bool C3() const { return ((_value >> 14) & 1) != 0; } 5309 bool C2() const { return ((_value >> 10) & 1) != 0; } 5310 bool C1() const { return ((_value >> 9) & 1) != 0; } 5311 bool C0() const { return ((_value >> 8) & 1) != 0; } 5312 int top() const { return (_value >> 11) & 7 ; } 5313 bool error_status() const { return ((_value >> 7) & 1) != 0; } 5314 bool stack_fault() const { return ((_value >> 6) & 1) != 0; } 5315 bool precision() const { return ((_value >> 5) & 1) != 0; } 5316 bool underflow() const { return ((_value >> 4) & 1) != 0; } 5317 bool overflow() const { return ((_value >> 3) & 1) != 0; } 5318 bool zero_divide() const { return ((_value >> 2) & 1) != 0; } 5319 bool denormalized() const { return ((_value >> 1) & 1) != 0; } 5320 bool invalid() const { return ((_value >> 0) & 1) != 0; } 5321 5322 void print() const { 5323 // condition codes 5324 char c[5]; 5325 c[0] = (C3()) ? '3' : '-'; 5326 c[1] = (C2()) ? '2' : '-'; 5327 c[2] = (C1()) ? '1' : '-'; 5328 c[3] = (C0()) ? '0' : '-'; 5329 c[4] = '\x0'; 5330 // flags 5331 char f[9]; 5332 f[0] = (error_status()) ? 'E' : '-'; 5333 f[1] = (stack_fault ()) ? 'S' : '-'; 5334 f[2] = (precision ()) ? 'P' : '-'; 5335 f[3] = (underflow ()) ? 'U' : '-'; 5336 f[4] = (overflow ()) ? 'O' : '-'; 5337 f[5] = (zero_divide ()) ? 'Z' : '-'; 5338 f[6] = (denormalized()) ? 'D' : '-'; 5339 f[7] = (invalid ()) ? 'I' : '-'; 5340 f[8] = '\x0'; 5341 // output 5342 printf("%04x flags = %s, cc = %s, top = %d", _value & 0xFFFF, f, c, top()); 5343 } 5344 5345 }; 5346 5347 class TagWord { 5348 public: 5349 int32_t _value; 5350 5351 int tag_at(int i) const { return (_value >> (i*2)) & 3; } 5352 5353 void print() const { 5354 printf("%04x", _value & 0xFFFF); 5355 } 5356 5357 }; 5358 5359 class FPU_Register { 5360 public: 5361 int32_t _m0; 5362 int32_t _m1; 5363 int16_t _ex; 5364 5365 bool is_indefinite() const { 5366 return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0; 5367 } 5368 5369 void print() const { 5370 char sign = (_ex < 0) ? '-' : '+'; 5371 const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : " "; 5372 printf("%c%04hx.%08x%08x %s", sign, _ex, _m1, _m0, kind); 5373 }; 5374 5375 }; 5376 5377 class FPU_State { 5378 public: 5379 enum { 5380 register_size = 10, 5381 number_of_registers = 8, 5382 register_mask = 7 5383 }; 5384 5385 ControlWord _control_word; 5386 StatusWord _status_word; 5387 TagWord _tag_word; 5388 int32_t _error_offset; 5389 int32_t _error_selector; 5390 int32_t _data_offset; 5391 int32_t _data_selector; 5392 int8_t _register[register_size * number_of_registers]; 5393 5394 int tag_for_st(int i) const { return _tag_word.tag_at((_status_word.top() + i) & register_mask); } 5395 FPU_Register* st(int i) const { return (FPU_Register*)&_register[register_size * i]; } 5396 5397 const char* tag_as_string(int tag) const { 5398 switch (tag) { 5399 case 0: return "valid"; 5400 case 1: return "zero"; 5401 case 2: return "special"; 5402 case 3: return "empty"; 5403 } 5404 ShouldNotReachHere(); 5405 return nullptr; 5406 } 5407 5408 void print() const { 5409 // print computation registers 5410 { int t = _status_word.top(); 5411 for (int i = 0; i < number_of_registers; i++) { 5412 int j = (i - t) & register_mask; 5413 printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j); 5414 st(j)->print(); 5415 printf(" %s\n", tag_as_string(_tag_word.tag_at(i))); 5416 } 5417 } 5418 printf("\n"); 5419 // print control registers 5420 printf("ctrl = "); _control_word.print(); printf("\n"); 5421 printf("stat = "); _status_word .print(); printf("\n"); 5422 printf("tags = "); _tag_word .print(); printf("\n"); 5423 } 5424 5425 }; 5426 5427 class Flag_Register { 5428 public: 5429 int32_t _value; 5430 5431 bool overflow() const { return ((_value >> 11) & 1) != 0; } 5432 bool direction() const { return ((_value >> 10) & 1) != 0; } 5433 bool sign() const { return ((_value >> 7) & 1) != 0; } 5434 bool zero() const { return ((_value >> 6) & 1) != 0; } 5435 bool auxiliary_carry() const { return ((_value >> 4) & 1) != 0; } 5436 bool parity() const { return ((_value >> 2) & 1) != 0; } 5437 bool carry() const { return ((_value >> 0) & 1) != 0; } 5438 5439 void print() const { 5440 // flags 5441 char f[8]; 5442 f[0] = (overflow ()) ? 'O' : '-'; 5443 f[1] = (direction ()) ? 'D' : '-'; 5444 f[2] = (sign ()) ? 'S' : '-'; 5445 f[3] = (zero ()) ? 'Z' : '-'; 5446 f[4] = (auxiliary_carry()) ? 'A' : '-'; 5447 f[5] = (parity ()) ? 'P' : '-'; 5448 f[6] = (carry ()) ? 'C' : '-'; 5449 f[7] = '\x0'; 5450 // output 5451 printf("%08x flags = %s", _value, f); 5452 } 5453 5454 }; 5455 5456 class IU_Register { 5457 public: 5458 int32_t _value; 5459 5460 void print() const { 5461 printf("%08x %11d", _value, _value); 5462 } 5463 5464 }; 5465 5466 class IU_State { 5467 public: 5468 Flag_Register _eflags; 5469 IU_Register _rdi; 5470 IU_Register _rsi; 5471 IU_Register _rbp; 5472 IU_Register _rsp; 5473 IU_Register _rbx; 5474 IU_Register _rdx; 5475 IU_Register _rcx; 5476 IU_Register _rax; 5477 5478 void print() const { 5479 // computation registers 5480 printf("rax, = "); _rax.print(); printf("\n"); 5481 printf("rbx, = "); _rbx.print(); printf("\n"); 5482 printf("rcx = "); _rcx.print(); printf("\n"); 5483 printf("rdx = "); _rdx.print(); printf("\n"); 5484 printf("rdi = "); _rdi.print(); printf("\n"); 5485 printf("rsi = "); _rsi.print(); printf("\n"); 5486 printf("rbp, = "); _rbp.print(); printf("\n"); 5487 printf("rsp = "); _rsp.print(); printf("\n"); 5488 printf("\n"); 5489 // control registers 5490 printf("flgs = "); _eflags.print(); printf("\n"); 5491 } 5492 }; 5493 5494 5495 class CPU_State { 5496 public: 5497 FPU_State _fpu_state; 5498 IU_State _iu_state; 5499 5500 void print() const { 5501 printf("--------------------------------------------------\n"); 5502 _iu_state .print(); 5503 printf("\n"); 5504 _fpu_state.print(); 5505 printf("--------------------------------------------------\n"); 5506 } 5507 5508 }; 5509 5510 5511 static void _print_CPU_state(CPU_State* state) { 5512 state->print(); 5513 }; 5514 5515 5516 void MacroAssembler::print_CPU_state() { 5517 push_CPU_state(); 5518 push(rsp); // pass CPU state 5519 call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state))); 5520 addptr(rsp, wordSize); // discard argument 5521 pop_CPU_state(); 5522 } 5523 5524 5525 #ifndef _LP64 5526 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) { 5527 static int counter = 0; 5528 FPU_State* fs = &state->_fpu_state; 5529 counter++; 5530 // For leaf calls, only verify that the top few elements remain empty. 5531 // We only need 1 empty at the top for C2 code. 5532 if( stack_depth < 0 ) { 5533 if( fs->tag_for_st(7) != 3 ) { 5534 printf("FPR7 not empty\n"); 5535 state->print(); 5536 assert(false, "error"); 5537 return false; 5538 } 5539 return true; // All other stack states do not matter 5540 } 5541 5542 assert((fs->_control_word._value & 0xffff) == StubRoutines::x86::fpu_cntrl_wrd_std(), 5543 "bad FPU control word"); 5544 5545 // compute stack depth 5546 int i = 0; 5547 while (i < FPU_State::number_of_registers && fs->tag_for_st(i) < 3) i++; 5548 int d = i; 5549 while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++; 5550 // verify findings 5551 if (i != FPU_State::number_of_registers) { 5552 // stack not contiguous 5553 printf("%s: stack not contiguous at ST%d\n", s, i); 5554 state->print(); 5555 assert(false, "error"); 5556 return false; 5557 } 5558 // check if computed stack depth corresponds to expected stack depth 5559 if (stack_depth < 0) { 5560 // expected stack depth is -stack_depth or less 5561 if (d > -stack_depth) { 5562 // too many elements on the stack 5563 printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d); 5564 state->print(); 5565 assert(false, "error"); 5566 return false; 5567 } 5568 } else { 5569 // expected stack depth is stack_depth 5570 if (d != stack_depth) { 5571 // wrong stack depth 5572 printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d); 5573 state->print(); 5574 assert(false, "error"); 5575 return false; 5576 } 5577 } 5578 // everything is cool 5579 return true; 5580 } 5581 5582 void MacroAssembler::verify_FPU(int stack_depth, const char* s) { 5583 if (!VerifyFPU) return; 5584 push_CPU_state(); 5585 push(rsp); // pass CPU state 5586 ExternalAddress msg((address) s); 5587 // pass message string s 5588 pushptr(msg.addr(), noreg); 5589 push(stack_depth); // pass stack depth 5590 call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU))); 5591 addptr(rsp, 3 * wordSize); // discard arguments 5592 // check for error 5593 { Label L; 5594 testl(rax, rax); 5595 jcc(Assembler::notZero, L); 5596 int3(); // break if error condition 5597 bind(L); 5598 } 5599 pop_CPU_state(); 5600 } 5601 #endif // _LP64 5602 5603 void MacroAssembler::restore_cpu_control_state_after_jni(Register rscratch) { 5604 // Either restore the MXCSR register after returning from the JNI Call 5605 // or verify that it wasn't changed (with -Xcheck:jni flag). 5606 if (VM_Version::supports_sse()) { 5607 if (RestoreMXCSROnJNICalls) { 5608 ldmxcsr(ExternalAddress(StubRoutines::x86::addr_mxcsr_std()), rscratch); 5609 } else if (CheckJNICalls) { 5610 call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry())); 5611 } 5612 } 5613 // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty. 5614 vzeroupper(); 5615 5616 #ifndef _LP64 5617 // Either restore the x87 floating pointer control word after returning 5618 // from the JNI call or verify that it wasn't changed. 5619 if (CheckJNICalls) { 5620 call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry())); 5621 } 5622 #endif // _LP64 5623 } 5624 5625 // ((OopHandle)result).resolve(); 5626 void MacroAssembler::resolve_oop_handle(Register result, Register tmp) { 5627 assert_different_registers(result, tmp); 5628 5629 // Only 64 bit platforms support GCs that require a tmp register 5630 // Only IN_HEAP loads require a thread_tmp register 5631 // OopHandle::resolve is an indirection like jobject. 5632 access_load_at(T_OBJECT, IN_NATIVE, 5633 result, Address(result, 0), tmp, /*tmp_thread*/noreg); 5634 } 5635 5636 // ((WeakHandle)result).resolve(); 5637 void MacroAssembler::resolve_weak_handle(Register rresult, Register rtmp) { 5638 assert_different_registers(rresult, rtmp); 5639 Label resolved; 5640 5641 // A null weak handle resolves to null. 5642 cmpptr(rresult, 0); 5643 jcc(Assembler::equal, resolved); 5644 5645 // Only 64 bit platforms support GCs that require a tmp register 5646 // Only IN_HEAP loads require a thread_tmp register 5647 // WeakHandle::resolve is an indirection like jweak. 5648 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 5649 rresult, Address(rresult, 0), rtmp, /*tmp_thread*/noreg); 5650 bind(resolved); 5651 } 5652 5653 void MacroAssembler::load_mirror(Register mirror, Register method, Register tmp) { 5654 // get mirror 5655 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 5656 load_method_holder(mirror, method); 5657 movptr(mirror, Address(mirror, mirror_offset)); 5658 resolve_oop_handle(mirror, tmp); 5659 } 5660 5661 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) { 5662 load_method_holder(rresult, rmethod); 5663 movptr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset())); 5664 } 5665 5666 void MacroAssembler::load_method_holder(Register holder, Register method) { 5667 movptr(holder, Address(method, Method::const_offset())); // ConstMethod* 5668 movptr(holder, Address(holder, ConstMethod::constants_offset())); // ConstantPool* 5669 movptr(holder, Address(holder, ConstantPool::pool_holder_offset())); // InstanceKlass* 5670 } 5671 5672 void MacroAssembler::load_klass(Register dst, Register src, Register tmp) { 5673 assert_different_registers(src, tmp); 5674 assert_different_registers(dst, tmp); 5675 #ifdef _LP64 5676 if (UseCompressedClassPointers) { 5677 movl(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5678 decode_klass_not_null(dst, tmp); 5679 } else 5680 #endif 5681 movptr(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5682 } 5683 5684 void MacroAssembler::store_klass(Register dst, Register src, Register tmp) { 5685 assert_different_registers(src, tmp); 5686 assert_different_registers(dst, tmp); 5687 #ifdef _LP64 5688 if (UseCompressedClassPointers) { 5689 encode_klass_not_null(src, tmp); 5690 movl(Address(dst, oopDesc::klass_offset_in_bytes()), src); 5691 } else 5692 #endif 5693 movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src); 5694 } 5695 5696 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src, 5697 Register tmp1, Register thread_tmp) { 5698 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5699 decorators = AccessInternal::decorator_fixup(decorators, type); 5700 bool as_raw = (decorators & AS_RAW) != 0; 5701 if (as_raw) { 5702 bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, thread_tmp); 5703 } else { 5704 bs->load_at(this, decorators, type, dst, src, tmp1, thread_tmp); 5705 } 5706 } 5707 5708 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register val, 5709 Register tmp1, Register tmp2, Register tmp3) { 5710 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5711 decorators = AccessInternal::decorator_fixup(decorators, type); 5712 bool as_raw = (decorators & AS_RAW) != 0; 5713 if (as_raw) { 5714 bs->BarrierSetAssembler::store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 5715 } else { 5716 bs->store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 5717 } 5718 } 5719 5720 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1, 5721 Register thread_tmp, DecoratorSet decorators) { 5722 access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, thread_tmp); 5723 } 5724 5725 // Doesn't do verification, generates fixed size code 5726 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1, 5727 Register thread_tmp, DecoratorSet decorators) { 5728 access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, thread_tmp); 5729 } 5730 5731 void MacroAssembler::store_heap_oop(Address dst, Register val, Register tmp1, 5732 Register tmp2, Register tmp3, DecoratorSet decorators) { 5733 access_store_at(T_OBJECT, IN_HEAP | decorators, dst, val, tmp1, tmp2, tmp3); 5734 } 5735 5736 // Used for storing nulls. 5737 void MacroAssembler::store_heap_oop_null(Address dst) { 5738 access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg, noreg); 5739 } 5740 5741 #ifdef _LP64 5742 void MacroAssembler::store_klass_gap(Register dst, Register src) { 5743 if (UseCompressedClassPointers) { 5744 // Store to klass gap in destination 5745 movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src); 5746 } 5747 } 5748 5749 #ifdef ASSERT 5750 void MacroAssembler::verify_heapbase(const char* msg) { 5751 assert (UseCompressedOops, "should be compressed"); 5752 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5753 if (CheckCompressedOops) { 5754 Label ok; 5755 ExternalAddress src2(CompressedOops::ptrs_base_addr()); 5756 const bool is_src2_reachable = reachable(src2); 5757 if (!is_src2_reachable) { 5758 push(rscratch1); // cmpptr trashes rscratch1 5759 } 5760 cmpptr(r12_heapbase, src2, rscratch1); 5761 jcc(Assembler::equal, ok); 5762 STOP(msg); 5763 bind(ok); 5764 if (!is_src2_reachable) { 5765 pop(rscratch1); 5766 } 5767 } 5768 } 5769 #endif 5770 5771 // Algorithm must match oop.inline.hpp encode_heap_oop. 5772 void MacroAssembler::encode_heap_oop(Register r) { 5773 #ifdef ASSERT 5774 verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?"); 5775 #endif 5776 verify_oop_msg(r, "broken oop in encode_heap_oop"); 5777 if (CompressedOops::base() == nullptr) { 5778 if (CompressedOops::shift() != 0) { 5779 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5780 shrq(r, LogMinObjAlignmentInBytes); 5781 } 5782 return; 5783 } 5784 testq(r, r); 5785 cmovq(Assembler::equal, r, r12_heapbase); 5786 subq(r, r12_heapbase); 5787 shrq(r, LogMinObjAlignmentInBytes); 5788 } 5789 5790 void MacroAssembler::encode_heap_oop_not_null(Register r) { 5791 #ifdef ASSERT 5792 verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?"); 5793 if (CheckCompressedOops) { 5794 Label ok; 5795 testq(r, r); 5796 jcc(Assembler::notEqual, ok); 5797 STOP("null oop passed to encode_heap_oop_not_null"); 5798 bind(ok); 5799 } 5800 #endif 5801 verify_oop_msg(r, "broken oop in encode_heap_oop_not_null"); 5802 if (CompressedOops::base() != nullptr) { 5803 subq(r, r12_heapbase); 5804 } 5805 if (CompressedOops::shift() != 0) { 5806 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5807 shrq(r, LogMinObjAlignmentInBytes); 5808 } 5809 } 5810 5811 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) { 5812 #ifdef ASSERT 5813 verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?"); 5814 if (CheckCompressedOops) { 5815 Label ok; 5816 testq(src, src); 5817 jcc(Assembler::notEqual, ok); 5818 STOP("null oop passed to encode_heap_oop_not_null2"); 5819 bind(ok); 5820 } 5821 #endif 5822 verify_oop_msg(src, "broken oop in encode_heap_oop_not_null2"); 5823 if (dst != src) { 5824 movq(dst, src); 5825 } 5826 if (CompressedOops::base() != nullptr) { 5827 subq(dst, r12_heapbase); 5828 } 5829 if (CompressedOops::shift() != 0) { 5830 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5831 shrq(dst, LogMinObjAlignmentInBytes); 5832 } 5833 } 5834 5835 void MacroAssembler::decode_heap_oop(Register r) { 5836 #ifdef ASSERT 5837 verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?"); 5838 #endif 5839 if (CompressedOops::base() == nullptr) { 5840 if (CompressedOops::shift() != 0) { 5841 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5842 shlq(r, LogMinObjAlignmentInBytes); 5843 } 5844 } else { 5845 Label done; 5846 shlq(r, LogMinObjAlignmentInBytes); 5847 jccb(Assembler::equal, done); 5848 addq(r, r12_heapbase); 5849 bind(done); 5850 } 5851 verify_oop_msg(r, "broken oop in decode_heap_oop"); 5852 } 5853 5854 void MacroAssembler::decode_heap_oop_not_null(Register r) { 5855 // Note: it will change flags 5856 assert (UseCompressedOops, "should only be used for compressed headers"); 5857 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5858 // Cannot assert, unverified entry point counts instructions (see .ad file) 5859 // vtableStubs also counts instructions in pd_code_size_limit. 5860 // Also do not verify_oop as this is called by verify_oop. 5861 if (CompressedOops::shift() != 0) { 5862 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5863 shlq(r, LogMinObjAlignmentInBytes); 5864 if (CompressedOops::base() != nullptr) { 5865 addq(r, r12_heapbase); 5866 } 5867 } else { 5868 assert (CompressedOops::base() == nullptr, "sanity"); 5869 } 5870 } 5871 5872 void MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) { 5873 // Note: it will change flags 5874 assert (UseCompressedOops, "should only be used for compressed headers"); 5875 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5876 // Cannot assert, unverified entry point counts instructions (see .ad file) 5877 // vtableStubs also counts instructions in pd_code_size_limit. 5878 // Also do not verify_oop as this is called by verify_oop. 5879 if (CompressedOops::shift() != 0) { 5880 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5881 if (LogMinObjAlignmentInBytes == Address::times_8) { 5882 leaq(dst, Address(r12_heapbase, src, Address::times_8, 0)); 5883 } else { 5884 if (dst != src) { 5885 movq(dst, src); 5886 } 5887 shlq(dst, LogMinObjAlignmentInBytes); 5888 if (CompressedOops::base() != nullptr) { 5889 addq(dst, r12_heapbase); 5890 } 5891 } 5892 } else { 5893 assert (CompressedOops::base() == nullptr, "sanity"); 5894 if (dst != src) { 5895 movq(dst, src); 5896 } 5897 } 5898 } 5899 5900 void MacroAssembler::encode_klass_not_null(Register r, Register tmp) { 5901 assert_different_registers(r, tmp); 5902 if (CompressedKlassPointers::base() != nullptr) { 5903 mov64(tmp, (int64_t)CompressedKlassPointers::base()); 5904 subq(r, tmp); 5905 } 5906 if (CompressedKlassPointers::shift() != 0) { 5907 assert (LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong"); 5908 shrq(r, LogKlassAlignmentInBytes); 5909 } 5910 } 5911 5912 void MacroAssembler::encode_and_move_klass_not_null(Register dst, Register src) { 5913 assert_different_registers(src, dst); 5914 if (CompressedKlassPointers::base() != nullptr) { 5915 mov64(dst, -(int64_t)CompressedKlassPointers::base()); 5916 addq(dst, src); 5917 } else { 5918 movptr(dst, src); 5919 } 5920 if (CompressedKlassPointers::shift() != 0) { 5921 assert (LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong"); 5922 shrq(dst, LogKlassAlignmentInBytes); 5923 } 5924 } 5925 5926 void MacroAssembler::decode_klass_not_null(Register r, Register tmp) { 5927 assert_different_registers(r, tmp); 5928 // Note: it will change flags 5929 assert(UseCompressedClassPointers, "should only be used for compressed headers"); 5930 // Cannot assert, unverified entry point counts instructions (see .ad file) 5931 // vtableStubs also counts instructions in pd_code_size_limit. 5932 // Also do not verify_oop as this is called by verify_oop. 5933 if (CompressedKlassPointers::shift() != 0) { 5934 assert(LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong"); 5935 shlq(r, LogKlassAlignmentInBytes); 5936 } 5937 if (CompressedKlassPointers::base() != nullptr) { 5938 mov64(tmp, (int64_t)CompressedKlassPointers::base()); 5939 addq(r, tmp); 5940 } 5941 } 5942 5943 void MacroAssembler::decode_and_move_klass_not_null(Register dst, Register src) { 5944 assert_different_registers(src, dst); 5945 // Note: it will change flags 5946 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5947 // Cannot assert, unverified entry point counts instructions (see .ad file) 5948 // vtableStubs also counts instructions in pd_code_size_limit. 5949 // Also do not verify_oop as this is called by verify_oop. 5950 5951 if (CompressedKlassPointers::base() == nullptr && 5952 CompressedKlassPointers::shift() == 0) { 5953 // The best case scenario is that there is no base or shift. Then it is already 5954 // a pointer that needs nothing but a register rename. 5955 movl(dst, src); 5956 } else { 5957 if (CompressedKlassPointers::base() != nullptr) { 5958 mov64(dst, (int64_t)CompressedKlassPointers::base()); 5959 } else { 5960 xorq(dst, dst); 5961 } 5962 if (CompressedKlassPointers::shift() != 0) { 5963 assert(LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong"); 5964 assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?"); 5965 leaq(dst, Address(dst, src, Address::times_8, 0)); 5966 } else { 5967 addq(dst, src); 5968 } 5969 } 5970 } 5971 5972 void MacroAssembler::set_narrow_oop(Register dst, jobject obj) { 5973 assert (UseCompressedOops, "should only be used for compressed headers"); 5974 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5975 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5976 int oop_index = oop_recorder()->find_index(obj); 5977 RelocationHolder rspec = oop_Relocation::spec(oop_index); 5978 mov_narrow_oop(dst, oop_index, rspec); 5979 } 5980 5981 void MacroAssembler::set_narrow_oop(Address dst, jobject obj) { 5982 assert (UseCompressedOops, "should only be used for compressed headers"); 5983 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5984 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5985 int oop_index = oop_recorder()->find_index(obj); 5986 RelocationHolder rspec = oop_Relocation::spec(oop_index); 5987 mov_narrow_oop(dst, oop_index, rspec); 5988 } 5989 5990 void MacroAssembler::set_narrow_klass(Register dst, Klass* k) { 5991 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5992 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5993 int klass_index = oop_recorder()->find_index(k); 5994 RelocationHolder rspec = metadata_Relocation::spec(klass_index); 5995 mov_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec); 5996 } 5997 5998 void MacroAssembler::set_narrow_klass(Address dst, Klass* k) { 5999 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 6000 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6001 int klass_index = oop_recorder()->find_index(k); 6002 RelocationHolder rspec = metadata_Relocation::spec(klass_index); 6003 mov_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec); 6004 } 6005 6006 void MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) { 6007 assert (UseCompressedOops, "should only be used for compressed headers"); 6008 assert (Universe::heap() != nullptr, "java heap should be initialized"); 6009 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6010 int oop_index = oop_recorder()->find_index(obj); 6011 RelocationHolder rspec = oop_Relocation::spec(oop_index); 6012 Assembler::cmp_narrow_oop(dst, oop_index, rspec); 6013 } 6014 6015 void MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) { 6016 assert (UseCompressedOops, "should only be used for compressed headers"); 6017 assert (Universe::heap() != nullptr, "java heap should be initialized"); 6018 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6019 int oop_index = oop_recorder()->find_index(obj); 6020 RelocationHolder rspec = oop_Relocation::spec(oop_index); 6021 Assembler::cmp_narrow_oop(dst, oop_index, rspec); 6022 } 6023 6024 void MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) { 6025 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 6026 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6027 int klass_index = oop_recorder()->find_index(k); 6028 RelocationHolder rspec = metadata_Relocation::spec(klass_index); 6029 Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec); 6030 } 6031 6032 void MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) { 6033 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 6034 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6035 int klass_index = oop_recorder()->find_index(k); 6036 RelocationHolder rspec = metadata_Relocation::spec(klass_index); 6037 Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec); 6038 } 6039 6040 void MacroAssembler::reinit_heapbase() { 6041 if (UseCompressedOops) { 6042 if (Universe::heap() != nullptr) { 6043 if (CompressedOops::base() == nullptr) { 6044 MacroAssembler::xorptr(r12_heapbase, r12_heapbase); 6045 } else { 6046 mov64(r12_heapbase, (int64_t)CompressedOops::ptrs_base()); 6047 } 6048 } else { 6049 movptr(r12_heapbase, ExternalAddress(CompressedOops::ptrs_base_addr())); 6050 } 6051 } 6052 } 6053 6054 #endif // _LP64 6055 6056 #if COMPILER2_OR_JVMCI 6057 6058 // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM/ZMM registers 6059 void MacroAssembler::xmm_clear_mem(Register base, Register cnt, Register rtmp, XMMRegister xtmp, KRegister mask) { 6060 // cnt - number of qwords (8-byte words). 6061 // base - start address, qword aligned. 6062 Label L_zero_64_bytes, L_loop, L_sloop, L_tail, L_end; 6063 bool use64byteVector = (MaxVectorSize == 64) && (VM_Version::avx3_threshold() == 0); 6064 if (use64byteVector) { 6065 vpxor(xtmp, xtmp, xtmp, AVX_512bit); 6066 } else if (MaxVectorSize >= 32) { 6067 vpxor(xtmp, xtmp, xtmp, AVX_256bit); 6068 } else { 6069 pxor(xtmp, xtmp); 6070 } 6071 jmp(L_zero_64_bytes); 6072 6073 BIND(L_loop); 6074 if (MaxVectorSize >= 32) { 6075 fill64(base, 0, xtmp, use64byteVector); 6076 } else { 6077 movdqu(Address(base, 0), xtmp); 6078 movdqu(Address(base, 16), xtmp); 6079 movdqu(Address(base, 32), xtmp); 6080 movdqu(Address(base, 48), xtmp); 6081 } 6082 addptr(base, 64); 6083 6084 BIND(L_zero_64_bytes); 6085 subptr(cnt, 8); 6086 jccb(Assembler::greaterEqual, L_loop); 6087 6088 // Copy trailing 64 bytes 6089 if (use64byteVector) { 6090 addptr(cnt, 8); 6091 jccb(Assembler::equal, L_end); 6092 fill64_masked(3, base, 0, xtmp, mask, cnt, rtmp, true); 6093 jmp(L_end); 6094 } else { 6095 addptr(cnt, 4); 6096 jccb(Assembler::less, L_tail); 6097 if (MaxVectorSize >= 32) { 6098 vmovdqu(Address(base, 0), xtmp); 6099 } else { 6100 movdqu(Address(base, 0), xtmp); 6101 movdqu(Address(base, 16), xtmp); 6102 } 6103 } 6104 addptr(base, 32); 6105 subptr(cnt, 4); 6106 6107 BIND(L_tail); 6108 addptr(cnt, 4); 6109 jccb(Assembler::lessEqual, L_end); 6110 if (UseAVX > 2 && MaxVectorSize >= 32 && VM_Version::supports_avx512vl()) { 6111 fill32_masked(3, base, 0, xtmp, mask, cnt, rtmp); 6112 } else { 6113 decrement(cnt); 6114 6115 BIND(L_sloop); 6116 movq(Address(base, 0), xtmp); 6117 addptr(base, 8); 6118 decrement(cnt); 6119 jccb(Assembler::greaterEqual, L_sloop); 6120 } 6121 BIND(L_end); 6122 } 6123 6124 // Clearing constant sized memory using YMM/ZMM registers. 6125 void MacroAssembler::clear_mem(Register base, int cnt, Register rtmp, XMMRegister xtmp, KRegister mask) { 6126 assert(UseAVX > 2 && VM_Version::supports_avx512vl(), ""); 6127 bool use64byteVector = (MaxVectorSize > 32) && (VM_Version::avx3_threshold() == 0); 6128 6129 int vector64_count = (cnt & (~0x7)) >> 3; 6130 cnt = cnt & 0x7; 6131 const int fill64_per_loop = 4; 6132 const int max_unrolled_fill64 = 8; 6133 6134 // 64 byte initialization loop. 6135 vpxor(xtmp, xtmp, xtmp, use64byteVector ? AVX_512bit : AVX_256bit); 6136 int start64 = 0; 6137 if (vector64_count > max_unrolled_fill64) { 6138 Label LOOP; 6139 Register index = rtmp; 6140 6141 start64 = vector64_count - (vector64_count % fill64_per_loop); 6142 6143 movl(index, 0); 6144 BIND(LOOP); 6145 for (int i = 0; i < fill64_per_loop; i++) { 6146 fill64(Address(base, index, Address::times_1, i * 64), xtmp, use64byteVector); 6147 } 6148 addl(index, fill64_per_loop * 64); 6149 cmpl(index, start64 * 64); 6150 jccb(Assembler::less, LOOP); 6151 } 6152 for (int i = start64; i < vector64_count; i++) { 6153 fill64(base, i * 64, xtmp, use64byteVector); 6154 } 6155 6156 // Clear remaining 64 byte tail. 6157 int disp = vector64_count * 64; 6158 if (cnt) { 6159 switch (cnt) { 6160 case 1: 6161 movq(Address(base, disp), xtmp); 6162 break; 6163 case 2: 6164 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_128bit); 6165 break; 6166 case 3: 6167 movl(rtmp, 0x7); 6168 kmovwl(mask, rtmp); 6169 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_256bit); 6170 break; 6171 case 4: 6172 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit); 6173 break; 6174 case 5: 6175 if (use64byteVector) { 6176 movl(rtmp, 0x1F); 6177 kmovwl(mask, rtmp); 6178 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit); 6179 } else { 6180 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit); 6181 movq(Address(base, disp + 32), xtmp); 6182 } 6183 break; 6184 case 6: 6185 if (use64byteVector) { 6186 movl(rtmp, 0x3F); 6187 kmovwl(mask, rtmp); 6188 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit); 6189 } else { 6190 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit); 6191 evmovdqu(T_LONG, k0, Address(base, disp + 32), xtmp, false, Assembler::AVX_128bit); 6192 } 6193 break; 6194 case 7: 6195 if (use64byteVector) { 6196 movl(rtmp, 0x7F); 6197 kmovwl(mask, rtmp); 6198 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit); 6199 } else { 6200 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit); 6201 movl(rtmp, 0x7); 6202 kmovwl(mask, rtmp); 6203 evmovdqu(T_LONG, mask, Address(base, disp + 32), xtmp, true, Assembler::AVX_256bit); 6204 } 6205 break; 6206 default: 6207 fatal("Unexpected length : %d\n",cnt); 6208 break; 6209 } 6210 } 6211 } 6212 6213 void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp, XMMRegister xtmp, 6214 bool is_large, KRegister mask) { 6215 // cnt - number of qwords (8-byte words). 6216 // base - start address, qword aligned. 6217 // is_large - if optimizers know cnt is larger than InitArrayShortSize 6218 assert(base==rdi, "base register must be edi for rep stos"); 6219 assert(tmp==rax, "tmp register must be eax for rep stos"); 6220 assert(cnt==rcx, "cnt register must be ecx for rep stos"); 6221 assert(InitArrayShortSize % BytesPerLong == 0, 6222 "InitArrayShortSize should be the multiple of BytesPerLong"); 6223 6224 Label DONE; 6225 if (!is_large || !UseXMMForObjInit) { 6226 xorptr(tmp, tmp); 6227 } 6228 6229 if (!is_large) { 6230 Label LOOP, LONG; 6231 cmpptr(cnt, InitArrayShortSize/BytesPerLong); 6232 jccb(Assembler::greater, LONG); 6233 6234 NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM 6235 6236 decrement(cnt); 6237 jccb(Assembler::negative, DONE); // Zero length 6238 6239 // Use individual pointer-sized stores for small counts: 6240 BIND(LOOP); 6241 movptr(Address(base, cnt, Address::times_ptr), tmp); 6242 decrement(cnt); 6243 jccb(Assembler::greaterEqual, LOOP); 6244 jmpb(DONE); 6245 6246 BIND(LONG); 6247 } 6248 6249 // Use longer rep-prefixed ops for non-small counts: 6250 if (UseFastStosb) { 6251 shlptr(cnt, 3); // convert to number of bytes 6252 rep_stosb(); 6253 } else if (UseXMMForObjInit) { 6254 xmm_clear_mem(base, cnt, tmp, xtmp, mask); 6255 } else { 6256 NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM 6257 rep_stos(); 6258 } 6259 6260 BIND(DONE); 6261 } 6262 6263 #endif //COMPILER2_OR_JVMCI 6264 6265 6266 void MacroAssembler::generate_fill(BasicType t, bool aligned, 6267 Register to, Register value, Register count, 6268 Register rtmp, XMMRegister xtmp) { 6269 ShortBranchVerifier sbv(this); 6270 assert_different_registers(to, value, count, rtmp); 6271 Label L_exit; 6272 Label L_fill_2_bytes, L_fill_4_bytes; 6273 6274 #if defined(COMPILER2) && defined(_LP64) 6275 if(MaxVectorSize >=32 && 6276 VM_Version::supports_avx512vlbw() && 6277 VM_Version::supports_bmi2()) { 6278 generate_fill_avx3(t, to, value, count, rtmp, xtmp); 6279 return; 6280 } 6281 #endif 6282 6283 int shift = -1; 6284 switch (t) { 6285 case T_BYTE: 6286 shift = 2; 6287 break; 6288 case T_SHORT: 6289 shift = 1; 6290 break; 6291 case T_INT: 6292 shift = 0; 6293 break; 6294 default: ShouldNotReachHere(); 6295 } 6296 6297 if (t == T_BYTE) { 6298 andl(value, 0xff); 6299 movl(rtmp, value); 6300 shll(rtmp, 8); 6301 orl(value, rtmp); 6302 } 6303 if (t == T_SHORT) { 6304 andl(value, 0xffff); 6305 } 6306 if (t == T_BYTE || t == T_SHORT) { 6307 movl(rtmp, value); 6308 shll(rtmp, 16); 6309 orl(value, rtmp); 6310 } 6311 6312 cmpptr(count, 2<<shift); // Short arrays (< 8 bytes) fill by element 6313 jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp 6314 if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) { 6315 Label L_skip_align2; 6316 // align source address at 4 bytes address boundary 6317 if (t == T_BYTE) { 6318 Label L_skip_align1; 6319 // One byte misalignment happens only for byte arrays 6320 testptr(to, 1); 6321 jccb(Assembler::zero, L_skip_align1); 6322 movb(Address(to, 0), value); 6323 increment(to); 6324 decrement(count); 6325 BIND(L_skip_align1); 6326 } 6327 // Two bytes misalignment happens only for byte and short (char) arrays 6328 testptr(to, 2); 6329 jccb(Assembler::zero, L_skip_align2); 6330 movw(Address(to, 0), value); 6331 addptr(to, 2); 6332 subptr(count, 1<<(shift-1)); 6333 BIND(L_skip_align2); 6334 } 6335 if (UseSSE < 2) { 6336 Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes; 6337 // Fill 32-byte chunks 6338 subptr(count, 8 << shift); 6339 jcc(Assembler::less, L_check_fill_8_bytes); 6340 align(16); 6341 6342 BIND(L_fill_32_bytes_loop); 6343 6344 for (int i = 0; i < 32; i += 4) { 6345 movl(Address(to, i), value); 6346 } 6347 6348 addptr(to, 32); 6349 subptr(count, 8 << shift); 6350 jcc(Assembler::greaterEqual, L_fill_32_bytes_loop); 6351 BIND(L_check_fill_8_bytes); 6352 addptr(count, 8 << shift); 6353 jccb(Assembler::zero, L_exit); 6354 jmpb(L_fill_8_bytes); 6355 6356 // 6357 // length is too short, just fill qwords 6358 // 6359 BIND(L_fill_8_bytes_loop); 6360 movl(Address(to, 0), value); 6361 movl(Address(to, 4), value); 6362 addptr(to, 8); 6363 BIND(L_fill_8_bytes); 6364 subptr(count, 1 << (shift + 1)); 6365 jcc(Assembler::greaterEqual, L_fill_8_bytes_loop); 6366 // fall through to fill 4 bytes 6367 } else { 6368 Label L_fill_32_bytes; 6369 if (!UseUnalignedLoadStores) { 6370 // align to 8 bytes, we know we are 4 byte aligned to start 6371 testptr(to, 4); 6372 jccb(Assembler::zero, L_fill_32_bytes); 6373 movl(Address(to, 0), value); 6374 addptr(to, 4); 6375 subptr(count, 1<<shift); 6376 } 6377 BIND(L_fill_32_bytes); 6378 { 6379 assert( UseSSE >= 2, "supported cpu only" ); 6380 Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes; 6381 movdl(xtmp, value); 6382 if (UseAVX >= 2 && UseUnalignedLoadStores) { 6383 Label L_check_fill_32_bytes; 6384 if (UseAVX > 2) { 6385 // Fill 64-byte chunks 6386 Label L_fill_64_bytes_loop_avx3, L_check_fill_64_bytes_avx2; 6387 6388 // If number of bytes to fill < VM_Version::avx3_threshold(), perform fill using AVX2 6389 cmpptr(count, VM_Version::avx3_threshold()); 6390 jccb(Assembler::below, L_check_fill_64_bytes_avx2); 6391 6392 vpbroadcastd(xtmp, xtmp, Assembler::AVX_512bit); 6393 6394 subptr(count, 16 << shift); 6395 jccb(Assembler::less, L_check_fill_32_bytes); 6396 align(16); 6397 6398 BIND(L_fill_64_bytes_loop_avx3); 6399 evmovdqul(Address(to, 0), xtmp, Assembler::AVX_512bit); 6400 addptr(to, 64); 6401 subptr(count, 16 << shift); 6402 jcc(Assembler::greaterEqual, L_fill_64_bytes_loop_avx3); 6403 jmpb(L_check_fill_32_bytes); 6404 6405 BIND(L_check_fill_64_bytes_avx2); 6406 } 6407 // Fill 64-byte chunks 6408 Label L_fill_64_bytes_loop; 6409 vpbroadcastd(xtmp, xtmp, Assembler::AVX_256bit); 6410 6411 subptr(count, 16 << shift); 6412 jcc(Assembler::less, L_check_fill_32_bytes); 6413 align(16); 6414 6415 BIND(L_fill_64_bytes_loop); 6416 vmovdqu(Address(to, 0), xtmp); 6417 vmovdqu(Address(to, 32), xtmp); 6418 addptr(to, 64); 6419 subptr(count, 16 << shift); 6420 jcc(Assembler::greaterEqual, L_fill_64_bytes_loop); 6421 6422 BIND(L_check_fill_32_bytes); 6423 addptr(count, 8 << shift); 6424 jccb(Assembler::less, L_check_fill_8_bytes); 6425 vmovdqu(Address(to, 0), xtmp); 6426 addptr(to, 32); 6427 subptr(count, 8 << shift); 6428 6429 BIND(L_check_fill_8_bytes); 6430 // clean upper bits of YMM registers 6431 movdl(xtmp, value); 6432 pshufd(xtmp, xtmp, 0); 6433 } else { 6434 // Fill 32-byte chunks 6435 pshufd(xtmp, xtmp, 0); 6436 6437 subptr(count, 8 << shift); 6438 jcc(Assembler::less, L_check_fill_8_bytes); 6439 align(16); 6440 6441 BIND(L_fill_32_bytes_loop); 6442 6443 if (UseUnalignedLoadStores) { 6444 movdqu(Address(to, 0), xtmp); 6445 movdqu(Address(to, 16), xtmp); 6446 } else { 6447 movq(Address(to, 0), xtmp); 6448 movq(Address(to, 8), xtmp); 6449 movq(Address(to, 16), xtmp); 6450 movq(Address(to, 24), xtmp); 6451 } 6452 6453 addptr(to, 32); 6454 subptr(count, 8 << shift); 6455 jcc(Assembler::greaterEqual, L_fill_32_bytes_loop); 6456 6457 BIND(L_check_fill_8_bytes); 6458 } 6459 addptr(count, 8 << shift); 6460 jccb(Assembler::zero, L_exit); 6461 jmpb(L_fill_8_bytes); 6462 6463 // 6464 // length is too short, just fill qwords 6465 // 6466 BIND(L_fill_8_bytes_loop); 6467 movq(Address(to, 0), xtmp); 6468 addptr(to, 8); 6469 BIND(L_fill_8_bytes); 6470 subptr(count, 1 << (shift + 1)); 6471 jcc(Assembler::greaterEqual, L_fill_8_bytes_loop); 6472 } 6473 } 6474 // fill trailing 4 bytes 6475 BIND(L_fill_4_bytes); 6476 testl(count, 1<<shift); 6477 jccb(Assembler::zero, L_fill_2_bytes); 6478 movl(Address(to, 0), value); 6479 if (t == T_BYTE || t == T_SHORT) { 6480 Label L_fill_byte; 6481 addptr(to, 4); 6482 BIND(L_fill_2_bytes); 6483 // fill trailing 2 bytes 6484 testl(count, 1<<(shift-1)); 6485 jccb(Assembler::zero, L_fill_byte); 6486 movw(Address(to, 0), value); 6487 if (t == T_BYTE) { 6488 addptr(to, 2); 6489 BIND(L_fill_byte); 6490 // fill trailing byte 6491 testl(count, 1); 6492 jccb(Assembler::zero, L_exit); 6493 movb(Address(to, 0), value); 6494 } else { 6495 BIND(L_fill_byte); 6496 } 6497 } else { 6498 BIND(L_fill_2_bytes); 6499 } 6500 BIND(L_exit); 6501 } 6502 6503 void MacroAssembler::evpbroadcast(BasicType type, XMMRegister dst, Register src, int vector_len) { 6504 switch(type) { 6505 case T_BYTE: 6506 case T_BOOLEAN: 6507 evpbroadcastb(dst, src, vector_len); 6508 break; 6509 case T_SHORT: 6510 case T_CHAR: 6511 evpbroadcastw(dst, src, vector_len); 6512 break; 6513 case T_INT: 6514 case T_FLOAT: 6515 evpbroadcastd(dst, src, vector_len); 6516 break; 6517 case T_LONG: 6518 case T_DOUBLE: 6519 evpbroadcastq(dst, src, vector_len); 6520 break; 6521 default: 6522 fatal("Unhandled type : %s", type2name(type)); 6523 break; 6524 } 6525 } 6526 6527 // encode char[] to byte[] in ISO_8859_1 or ASCII 6528 //@IntrinsicCandidate 6529 //private static int implEncodeISOArray(byte[] sa, int sp, 6530 //byte[] da, int dp, int len) { 6531 // int i = 0; 6532 // for (; i < len; i++) { 6533 // char c = StringUTF16.getChar(sa, sp++); 6534 // if (c > '\u00FF') 6535 // break; 6536 // da[dp++] = (byte)c; 6537 // } 6538 // return i; 6539 //} 6540 // 6541 //@IntrinsicCandidate 6542 //private static int implEncodeAsciiArray(char[] sa, int sp, 6543 // byte[] da, int dp, int len) { 6544 // int i = 0; 6545 // for (; i < len; i++) { 6546 // char c = sa[sp++]; 6547 // if (c >= '\u0080') 6548 // break; 6549 // da[dp++] = (byte)c; 6550 // } 6551 // return i; 6552 //} 6553 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len, 6554 XMMRegister tmp1Reg, XMMRegister tmp2Reg, 6555 XMMRegister tmp3Reg, XMMRegister tmp4Reg, 6556 Register tmp5, Register result, bool ascii) { 6557 6558 // rsi: src 6559 // rdi: dst 6560 // rdx: len 6561 // rcx: tmp5 6562 // rax: result 6563 ShortBranchVerifier sbv(this); 6564 assert_different_registers(src, dst, len, tmp5, result); 6565 Label L_done, L_copy_1_char, L_copy_1_char_exit; 6566 6567 int mask = ascii ? 0xff80ff80 : 0xff00ff00; 6568 int short_mask = ascii ? 0xff80 : 0xff00; 6569 6570 // set result 6571 xorl(result, result); 6572 // check for zero length 6573 testl(len, len); 6574 jcc(Assembler::zero, L_done); 6575 6576 movl(result, len); 6577 6578 // Setup pointers 6579 lea(src, Address(src, len, Address::times_2)); // char[] 6580 lea(dst, Address(dst, len, Address::times_1)); // byte[] 6581 negptr(len); 6582 6583 if (UseSSE42Intrinsics || UseAVX >= 2) { 6584 Label L_copy_8_chars, L_copy_8_chars_exit; 6585 Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit; 6586 6587 if (UseAVX >= 2) { 6588 Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit; 6589 movl(tmp5, mask); // create mask to test for Unicode or non-ASCII chars in vector 6590 movdl(tmp1Reg, tmp5); 6591 vpbroadcastd(tmp1Reg, tmp1Reg, Assembler::AVX_256bit); 6592 jmp(L_chars_32_check); 6593 6594 bind(L_copy_32_chars); 6595 vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64)); 6596 vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32)); 6597 vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1); 6598 vptest(tmp2Reg, tmp1Reg); // check for Unicode or non-ASCII chars in vector 6599 jccb(Assembler::notZero, L_copy_32_chars_exit); 6600 vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1); 6601 vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector_len */ 1); 6602 vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg); 6603 6604 bind(L_chars_32_check); 6605 addptr(len, 32); 6606 jcc(Assembler::lessEqual, L_copy_32_chars); 6607 6608 bind(L_copy_32_chars_exit); 6609 subptr(len, 16); 6610 jccb(Assembler::greater, L_copy_16_chars_exit); 6611 6612 } else if (UseSSE42Intrinsics) { 6613 movl(tmp5, mask); // create mask to test for Unicode or non-ASCII chars in vector 6614 movdl(tmp1Reg, tmp5); 6615 pshufd(tmp1Reg, tmp1Reg, 0); 6616 jmpb(L_chars_16_check); 6617 } 6618 6619 bind(L_copy_16_chars); 6620 if (UseAVX >= 2) { 6621 vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32)); 6622 vptest(tmp2Reg, tmp1Reg); 6623 jcc(Assembler::notZero, L_copy_16_chars_exit); 6624 vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector_len */ 1); 6625 vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector_len */ 1); 6626 } else { 6627 if (UseAVX > 0) { 6628 movdqu(tmp3Reg, Address(src, len, Address::times_2, -32)); 6629 movdqu(tmp4Reg, Address(src, len, Address::times_2, -16)); 6630 vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 0); 6631 } else { 6632 movdqu(tmp3Reg, Address(src, len, Address::times_2, -32)); 6633 por(tmp2Reg, tmp3Reg); 6634 movdqu(tmp4Reg, Address(src, len, Address::times_2, -16)); 6635 por(tmp2Reg, tmp4Reg); 6636 } 6637 ptest(tmp2Reg, tmp1Reg); // check for Unicode or non-ASCII chars in vector 6638 jccb(Assembler::notZero, L_copy_16_chars_exit); 6639 packuswb(tmp3Reg, tmp4Reg); 6640 } 6641 movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg); 6642 6643 bind(L_chars_16_check); 6644 addptr(len, 16); 6645 jcc(Assembler::lessEqual, L_copy_16_chars); 6646 6647 bind(L_copy_16_chars_exit); 6648 if (UseAVX >= 2) { 6649 // clean upper bits of YMM registers 6650 vpxor(tmp2Reg, tmp2Reg); 6651 vpxor(tmp3Reg, tmp3Reg); 6652 vpxor(tmp4Reg, tmp4Reg); 6653 movdl(tmp1Reg, tmp5); 6654 pshufd(tmp1Reg, tmp1Reg, 0); 6655 } 6656 subptr(len, 8); 6657 jccb(Assembler::greater, L_copy_8_chars_exit); 6658 6659 bind(L_copy_8_chars); 6660 movdqu(tmp3Reg, Address(src, len, Address::times_2, -16)); 6661 ptest(tmp3Reg, tmp1Reg); 6662 jccb(Assembler::notZero, L_copy_8_chars_exit); 6663 packuswb(tmp3Reg, tmp1Reg); 6664 movq(Address(dst, len, Address::times_1, -8), tmp3Reg); 6665 addptr(len, 8); 6666 jccb(Assembler::lessEqual, L_copy_8_chars); 6667 6668 bind(L_copy_8_chars_exit); 6669 subptr(len, 8); 6670 jccb(Assembler::zero, L_done); 6671 } 6672 6673 bind(L_copy_1_char); 6674 load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0)); 6675 testl(tmp5, short_mask); // check if Unicode or non-ASCII char 6676 jccb(Assembler::notZero, L_copy_1_char_exit); 6677 movb(Address(dst, len, Address::times_1, 0), tmp5); 6678 addptr(len, 1); 6679 jccb(Assembler::less, L_copy_1_char); 6680 6681 bind(L_copy_1_char_exit); 6682 addptr(result, len); // len is negative count of not processed elements 6683 6684 bind(L_done); 6685 } 6686 6687 #ifdef _LP64 6688 /** 6689 * Helper for multiply_to_len(). 6690 */ 6691 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) { 6692 addq(dest_lo, src1); 6693 adcq(dest_hi, 0); 6694 addq(dest_lo, src2); 6695 adcq(dest_hi, 0); 6696 } 6697 6698 /** 6699 * Multiply 64 bit by 64 bit first loop. 6700 */ 6701 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, 6702 Register y, Register y_idx, Register z, 6703 Register carry, Register product, 6704 Register idx, Register kdx) { 6705 // 6706 // jlong carry, x[], y[], z[]; 6707 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 6708 // huge_128 product = y[idx] * x[xstart] + carry; 6709 // z[kdx] = (jlong)product; 6710 // carry = (jlong)(product >>> 64); 6711 // } 6712 // z[xstart] = carry; 6713 // 6714 6715 Label L_first_loop, L_first_loop_exit; 6716 Label L_one_x, L_one_y, L_multiply; 6717 6718 decrementl(xstart); 6719 jcc(Assembler::negative, L_one_x); 6720 6721 movq(x_xstart, Address(x, xstart, Address::times_4, 0)); 6722 rorq(x_xstart, 32); // convert big-endian to little-endian 6723 6724 bind(L_first_loop); 6725 decrementl(idx); 6726 jcc(Assembler::negative, L_first_loop_exit); 6727 decrementl(idx); 6728 jcc(Assembler::negative, L_one_y); 6729 movq(y_idx, Address(y, idx, Address::times_4, 0)); 6730 rorq(y_idx, 32); // convert big-endian to little-endian 6731 bind(L_multiply); 6732 movq(product, x_xstart); 6733 mulq(y_idx); // product(rax) * y_idx -> rdx:rax 6734 addq(product, carry); 6735 adcq(rdx, 0); 6736 subl(kdx, 2); 6737 movl(Address(z, kdx, Address::times_4, 4), product); 6738 shrq(product, 32); 6739 movl(Address(z, kdx, Address::times_4, 0), product); 6740 movq(carry, rdx); 6741 jmp(L_first_loop); 6742 6743 bind(L_one_y); 6744 movl(y_idx, Address(y, 0)); 6745 jmp(L_multiply); 6746 6747 bind(L_one_x); 6748 movl(x_xstart, Address(x, 0)); 6749 jmp(L_first_loop); 6750 6751 bind(L_first_loop_exit); 6752 } 6753 6754 /** 6755 * Multiply 64 bit by 64 bit and add 128 bit. 6756 */ 6757 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z, 6758 Register yz_idx, Register idx, 6759 Register carry, Register product, int offset) { 6760 // huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry; 6761 // z[kdx] = (jlong)product; 6762 6763 movq(yz_idx, Address(y, idx, Address::times_4, offset)); 6764 rorq(yz_idx, 32); // convert big-endian to little-endian 6765 movq(product, x_xstart); 6766 mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax) 6767 movq(yz_idx, Address(z, idx, Address::times_4, offset)); 6768 rorq(yz_idx, 32); // convert big-endian to little-endian 6769 6770 add2_with_carry(rdx, product, carry, yz_idx); 6771 6772 movl(Address(z, idx, Address::times_4, offset+4), product); 6773 shrq(product, 32); 6774 movl(Address(z, idx, Address::times_4, offset), product); 6775 6776 } 6777 6778 /** 6779 * Multiply 128 bit by 128 bit. Unrolled inner loop. 6780 */ 6781 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z, 6782 Register yz_idx, Register idx, Register jdx, 6783 Register carry, Register product, 6784 Register carry2) { 6785 // jlong carry, x[], y[], z[]; 6786 // int kdx = ystart+1; 6787 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop 6788 // huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry; 6789 // z[kdx+idx+1] = (jlong)product; 6790 // jlong carry2 = (jlong)(product >>> 64); 6791 // product = (y[idx] * x_xstart) + z[kdx+idx] + carry2; 6792 // z[kdx+idx] = (jlong)product; 6793 // carry = (jlong)(product >>> 64); 6794 // } 6795 // idx += 2; 6796 // if (idx > 0) { 6797 // product = (y[idx] * x_xstart) + z[kdx+idx] + carry; 6798 // z[kdx+idx] = (jlong)product; 6799 // carry = (jlong)(product >>> 64); 6800 // } 6801 // 6802 6803 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done; 6804 6805 movl(jdx, idx); 6806 andl(jdx, 0xFFFFFFFC); 6807 shrl(jdx, 2); 6808 6809 bind(L_third_loop); 6810 subl(jdx, 1); 6811 jcc(Assembler::negative, L_third_loop_exit); 6812 subl(idx, 4); 6813 6814 multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8); 6815 movq(carry2, rdx); 6816 6817 multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0); 6818 movq(carry, rdx); 6819 jmp(L_third_loop); 6820 6821 bind (L_third_loop_exit); 6822 6823 andl (idx, 0x3); 6824 jcc(Assembler::zero, L_post_third_loop_done); 6825 6826 Label L_check_1; 6827 subl(idx, 2); 6828 jcc(Assembler::negative, L_check_1); 6829 6830 multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0); 6831 movq(carry, rdx); 6832 6833 bind (L_check_1); 6834 addl (idx, 0x2); 6835 andl (idx, 0x1); 6836 subl(idx, 1); 6837 jcc(Assembler::negative, L_post_third_loop_done); 6838 6839 movl(yz_idx, Address(y, idx, Address::times_4, 0)); 6840 movq(product, x_xstart); 6841 mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax) 6842 movl(yz_idx, Address(z, idx, Address::times_4, 0)); 6843 6844 add2_with_carry(rdx, product, yz_idx, carry); 6845 6846 movl(Address(z, idx, Address::times_4, 0), product); 6847 shrq(product, 32); 6848 6849 shlq(rdx, 32); 6850 orq(product, rdx); 6851 movq(carry, product); 6852 6853 bind(L_post_third_loop_done); 6854 } 6855 6856 /** 6857 * Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop. 6858 * 6859 */ 6860 void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z, 6861 Register carry, Register carry2, 6862 Register idx, Register jdx, 6863 Register yz_idx1, Register yz_idx2, 6864 Register tmp, Register tmp3, Register tmp4) { 6865 assert(UseBMI2Instructions, "should be used only when BMI2 is available"); 6866 6867 // jlong carry, x[], y[], z[]; 6868 // int kdx = ystart+1; 6869 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop 6870 // huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry; 6871 // jlong carry2 = (jlong)(tmp3 >>> 64); 6872 // huge_128 tmp4 = (y[idx] * rdx) + z[kdx+idx] + carry2; 6873 // carry = (jlong)(tmp4 >>> 64); 6874 // z[kdx+idx+1] = (jlong)tmp3; 6875 // z[kdx+idx] = (jlong)tmp4; 6876 // } 6877 // idx += 2; 6878 // if (idx > 0) { 6879 // yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry; 6880 // z[kdx+idx] = (jlong)yz_idx1; 6881 // carry = (jlong)(yz_idx1 >>> 64); 6882 // } 6883 // 6884 6885 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done; 6886 6887 movl(jdx, idx); 6888 andl(jdx, 0xFFFFFFFC); 6889 shrl(jdx, 2); 6890 6891 bind(L_third_loop); 6892 subl(jdx, 1); 6893 jcc(Assembler::negative, L_third_loop_exit); 6894 subl(idx, 4); 6895 6896 movq(yz_idx1, Address(y, idx, Address::times_4, 8)); 6897 rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian 6898 movq(yz_idx2, Address(y, idx, Address::times_4, 0)); 6899 rorxq(yz_idx2, yz_idx2, 32); 6900 6901 mulxq(tmp4, tmp3, yz_idx1); // yz_idx1 * rdx -> tmp4:tmp3 6902 mulxq(carry2, tmp, yz_idx2); // yz_idx2 * rdx -> carry2:tmp 6903 6904 movq(yz_idx1, Address(z, idx, Address::times_4, 8)); 6905 rorxq(yz_idx1, yz_idx1, 32); 6906 movq(yz_idx2, Address(z, idx, Address::times_4, 0)); 6907 rorxq(yz_idx2, yz_idx2, 32); 6908 6909 if (VM_Version::supports_adx()) { 6910 adcxq(tmp3, carry); 6911 adoxq(tmp3, yz_idx1); 6912 6913 adcxq(tmp4, tmp); 6914 adoxq(tmp4, yz_idx2); 6915 6916 movl(carry, 0); // does not affect flags 6917 adcxq(carry2, carry); 6918 adoxq(carry2, carry); 6919 } else { 6920 add2_with_carry(tmp4, tmp3, carry, yz_idx1); 6921 add2_with_carry(carry2, tmp4, tmp, yz_idx2); 6922 } 6923 movq(carry, carry2); 6924 6925 movl(Address(z, idx, Address::times_4, 12), tmp3); 6926 shrq(tmp3, 32); 6927 movl(Address(z, idx, Address::times_4, 8), tmp3); 6928 6929 movl(Address(z, idx, Address::times_4, 4), tmp4); 6930 shrq(tmp4, 32); 6931 movl(Address(z, idx, Address::times_4, 0), tmp4); 6932 6933 jmp(L_third_loop); 6934 6935 bind (L_third_loop_exit); 6936 6937 andl (idx, 0x3); 6938 jcc(Assembler::zero, L_post_third_loop_done); 6939 6940 Label L_check_1; 6941 subl(idx, 2); 6942 jcc(Assembler::negative, L_check_1); 6943 6944 movq(yz_idx1, Address(y, idx, Address::times_4, 0)); 6945 rorxq(yz_idx1, yz_idx1, 32); 6946 mulxq(tmp4, tmp3, yz_idx1); // yz_idx1 * rdx -> tmp4:tmp3 6947 movq(yz_idx2, Address(z, idx, Address::times_4, 0)); 6948 rorxq(yz_idx2, yz_idx2, 32); 6949 6950 add2_with_carry(tmp4, tmp3, carry, yz_idx2); 6951 6952 movl(Address(z, idx, Address::times_4, 4), tmp3); 6953 shrq(tmp3, 32); 6954 movl(Address(z, idx, Address::times_4, 0), tmp3); 6955 movq(carry, tmp4); 6956 6957 bind (L_check_1); 6958 addl (idx, 0x2); 6959 andl (idx, 0x1); 6960 subl(idx, 1); 6961 jcc(Assembler::negative, L_post_third_loop_done); 6962 movl(tmp4, Address(y, idx, Address::times_4, 0)); 6963 mulxq(carry2, tmp3, tmp4); // tmp4 * rdx -> carry2:tmp3 6964 movl(tmp4, Address(z, idx, Address::times_4, 0)); 6965 6966 add2_with_carry(carry2, tmp3, tmp4, carry); 6967 6968 movl(Address(z, idx, Address::times_4, 0), tmp3); 6969 shrq(tmp3, 32); 6970 6971 shlq(carry2, 32); 6972 orq(tmp3, carry2); 6973 movq(carry, tmp3); 6974 6975 bind(L_post_third_loop_done); 6976 } 6977 6978 /** 6979 * Code for BigInteger::multiplyToLen() intrinsic. 6980 * 6981 * rdi: x 6982 * rax: xlen 6983 * rsi: y 6984 * rcx: ylen 6985 * r8: z 6986 * r11: tmp0 6987 * r12: tmp1 6988 * r13: tmp2 6989 * r14: tmp3 6990 * r15: tmp4 6991 * rbx: tmp5 6992 * 6993 */ 6994 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register tmp0, 6995 Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) { 6996 ShortBranchVerifier sbv(this); 6997 assert_different_registers(x, xlen, y, ylen, z, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, rdx); 6998 6999 push(tmp0); 7000 push(tmp1); 7001 push(tmp2); 7002 push(tmp3); 7003 push(tmp4); 7004 push(tmp5); 7005 7006 push(xlen); 7007 7008 const Register idx = tmp1; 7009 const Register kdx = tmp2; 7010 const Register xstart = tmp3; 7011 7012 const Register y_idx = tmp4; 7013 const Register carry = tmp5; 7014 const Register product = xlen; 7015 const Register x_xstart = tmp0; 7016 7017 // First Loop. 7018 // 7019 // final static long LONG_MASK = 0xffffffffL; 7020 // int xstart = xlen - 1; 7021 // int ystart = ylen - 1; 7022 // long carry = 0; 7023 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 7024 // long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry; 7025 // z[kdx] = (int)product; 7026 // carry = product >>> 32; 7027 // } 7028 // z[xstart] = (int)carry; 7029 // 7030 7031 movl(idx, ylen); // idx = ylen; 7032 lea(kdx, Address(xlen, ylen)); // kdx = xlen+ylen; 7033 xorq(carry, carry); // carry = 0; 7034 7035 Label L_done; 7036 7037 movl(xstart, xlen); 7038 decrementl(xstart); 7039 jcc(Assembler::negative, L_done); 7040 7041 multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx); 7042 7043 Label L_second_loop; 7044 testl(kdx, kdx); 7045 jcc(Assembler::zero, L_second_loop); 7046 7047 Label L_carry; 7048 subl(kdx, 1); 7049 jcc(Assembler::zero, L_carry); 7050 7051 movl(Address(z, kdx, Address::times_4, 0), carry); 7052 shrq(carry, 32); 7053 subl(kdx, 1); 7054 7055 bind(L_carry); 7056 movl(Address(z, kdx, Address::times_4, 0), carry); 7057 7058 // Second and third (nested) loops. 7059 // 7060 // for (int i = xstart-1; i >= 0; i--) { // Second loop 7061 // carry = 0; 7062 // for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop 7063 // long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) + 7064 // (z[k] & LONG_MASK) + carry; 7065 // z[k] = (int)product; 7066 // carry = product >>> 32; 7067 // } 7068 // z[i] = (int)carry; 7069 // } 7070 // 7071 // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx 7072 7073 const Register jdx = tmp1; 7074 7075 bind(L_second_loop); 7076 xorl(carry, carry); // carry = 0; 7077 movl(jdx, ylen); // j = ystart+1 7078 7079 subl(xstart, 1); // i = xstart-1; 7080 jcc(Assembler::negative, L_done); 7081 7082 push (z); 7083 7084 Label L_last_x; 7085 lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j 7086 subl(xstart, 1); // i = xstart-1; 7087 jcc(Assembler::negative, L_last_x); 7088 7089 if (UseBMI2Instructions) { 7090 movq(rdx, Address(x, xstart, Address::times_4, 0)); 7091 rorxq(rdx, rdx, 32); // convert big-endian to little-endian 7092 } else { 7093 movq(x_xstart, Address(x, xstart, Address::times_4, 0)); 7094 rorq(x_xstart, 32); // convert big-endian to little-endian 7095 } 7096 7097 Label L_third_loop_prologue; 7098 bind(L_third_loop_prologue); 7099 7100 push (x); 7101 push (xstart); 7102 push (ylen); 7103 7104 7105 if (UseBMI2Instructions) { 7106 multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4); 7107 } else { // !UseBMI2Instructions 7108 multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x); 7109 } 7110 7111 pop(ylen); 7112 pop(xlen); 7113 pop(x); 7114 pop(z); 7115 7116 movl(tmp3, xlen); 7117 addl(tmp3, 1); 7118 movl(Address(z, tmp3, Address::times_4, 0), carry); 7119 subl(tmp3, 1); 7120 jccb(Assembler::negative, L_done); 7121 7122 shrq(carry, 32); 7123 movl(Address(z, tmp3, Address::times_4, 0), carry); 7124 jmp(L_second_loop); 7125 7126 // Next infrequent code is moved outside loops. 7127 bind(L_last_x); 7128 if (UseBMI2Instructions) { 7129 movl(rdx, Address(x, 0)); 7130 } else { 7131 movl(x_xstart, Address(x, 0)); 7132 } 7133 jmp(L_third_loop_prologue); 7134 7135 bind(L_done); 7136 7137 pop(xlen); 7138 7139 pop(tmp5); 7140 pop(tmp4); 7141 pop(tmp3); 7142 pop(tmp2); 7143 pop(tmp1); 7144 pop(tmp0); 7145 } 7146 7147 void MacroAssembler::vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale, 7148 Register result, Register tmp1, Register tmp2, XMMRegister rymm0, XMMRegister rymm1, XMMRegister rymm2){ 7149 assert(UseSSE42Intrinsics, "SSE4.2 must be enabled."); 7150 Label VECTOR16_LOOP, VECTOR8_LOOP, VECTOR4_LOOP; 7151 Label VECTOR8_TAIL, VECTOR4_TAIL; 7152 Label VECTOR32_NOT_EQUAL, VECTOR16_NOT_EQUAL, VECTOR8_NOT_EQUAL, VECTOR4_NOT_EQUAL; 7153 Label SAME_TILL_END, DONE; 7154 Label BYTES_LOOP, BYTES_TAIL, BYTES_NOT_EQUAL; 7155 7156 //scale is in rcx in both Win64 and Unix 7157 ShortBranchVerifier sbv(this); 7158 7159 shlq(length); 7160 xorq(result, result); 7161 7162 if ((AVX3Threshold == 0) && (UseAVX > 2) && 7163 VM_Version::supports_avx512vlbw()) { 7164 Label VECTOR64_LOOP, VECTOR64_NOT_EQUAL, VECTOR32_TAIL; 7165 7166 cmpq(length, 64); 7167 jcc(Assembler::less, VECTOR32_TAIL); 7168 7169 movq(tmp1, length); 7170 andq(tmp1, 0x3F); // tail count 7171 andq(length, ~(0x3F)); //vector count 7172 7173 bind(VECTOR64_LOOP); 7174 // AVX512 code to compare 64 byte vectors. 7175 evmovdqub(rymm0, Address(obja, result), Assembler::AVX_512bit); 7176 evpcmpeqb(k7, rymm0, Address(objb, result), Assembler::AVX_512bit); 7177 kortestql(k7, k7); 7178 jcc(Assembler::aboveEqual, VECTOR64_NOT_EQUAL); // mismatch 7179 addq(result, 64); 7180 subq(length, 64); 7181 jccb(Assembler::notZero, VECTOR64_LOOP); 7182 7183 //bind(VECTOR64_TAIL); 7184 testq(tmp1, tmp1); 7185 jcc(Assembler::zero, SAME_TILL_END); 7186 7187 //bind(VECTOR64_TAIL); 7188 // AVX512 code to compare up to 63 byte vectors. 7189 mov64(tmp2, 0xFFFFFFFFFFFFFFFF); 7190 shlxq(tmp2, tmp2, tmp1); 7191 notq(tmp2); 7192 kmovql(k3, tmp2); 7193 7194 evmovdqub(rymm0, k3, Address(obja, result), false, Assembler::AVX_512bit); 7195 evpcmpeqb(k7, k3, rymm0, Address(objb, result), Assembler::AVX_512bit); 7196 7197 ktestql(k7, k3); 7198 jcc(Assembler::below, SAME_TILL_END); // not mismatch 7199 7200 bind(VECTOR64_NOT_EQUAL); 7201 kmovql(tmp1, k7); 7202 notq(tmp1); 7203 tzcntq(tmp1, tmp1); 7204 addq(result, tmp1); 7205 shrq(result); 7206 jmp(DONE); 7207 bind(VECTOR32_TAIL); 7208 } 7209 7210 cmpq(length, 8); 7211 jcc(Assembler::equal, VECTOR8_LOOP); 7212 jcc(Assembler::less, VECTOR4_TAIL); 7213 7214 if (UseAVX >= 2) { 7215 Label VECTOR16_TAIL, VECTOR32_LOOP; 7216 7217 cmpq(length, 16); 7218 jcc(Assembler::equal, VECTOR16_LOOP); 7219 jcc(Assembler::less, VECTOR8_LOOP); 7220 7221 cmpq(length, 32); 7222 jccb(Assembler::less, VECTOR16_TAIL); 7223 7224 subq(length, 32); 7225 bind(VECTOR32_LOOP); 7226 vmovdqu(rymm0, Address(obja, result)); 7227 vmovdqu(rymm1, Address(objb, result)); 7228 vpxor(rymm2, rymm0, rymm1, Assembler::AVX_256bit); 7229 vptest(rymm2, rymm2); 7230 jcc(Assembler::notZero, VECTOR32_NOT_EQUAL);//mismatch found 7231 addq(result, 32); 7232 subq(length, 32); 7233 jcc(Assembler::greaterEqual, VECTOR32_LOOP); 7234 addq(length, 32); 7235 jcc(Assembler::equal, SAME_TILL_END); 7236 //falling through if less than 32 bytes left //close the branch here. 7237 7238 bind(VECTOR16_TAIL); 7239 cmpq(length, 16); 7240 jccb(Assembler::less, VECTOR8_TAIL); 7241 bind(VECTOR16_LOOP); 7242 movdqu(rymm0, Address(obja, result)); 7243 movdqu(rymm1, Address(objb, result)); 7244 vpxor(rymm2, rymm0, rymm1, Assembler::AVX_128bit); 7245 ptest(rymm2, rymm2); 7246 jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found 7247 addq(result, 16); 7248 subq(length, 16); 7249 jcc(Assembler::equal, SAME_TILL_END); 7250 //falling through if less than 16 bytes left 7251 } else {//regular intrinsics 7252 7253 cmpq(length, 16); 7254 jccb(Assembler::less, VECTOR8_TAIL); 7255 7256 subq(length, 16); 7257 bind(VECTOR16_LOOP); 7258 movdqu(rymm0, Address(obja, result)); 7259 movdqu(rymm1, Address(objb, result)); 7260 pxor(rymm0, rymm1); 7261 ptest(rymm0, rymm0); 7262 jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found 7263 addq(result, 16); 7264 subq(length, 16); 7265 jccb(Assembler::greaterEqual, VECTOR16_LOOP); 7266 addq(length, 16); 7267 jcc(Assembler::equal, SAME_TILL_END); 7268 //falling through if less than 16 bytes left 7269 } 7270 7271 bind(VECTOR8_TAIL); 7272 cmpq(length, 8); 7273 jccb(Assembler::less, VECTOR4_TAIL); 7274 bind(VECTOR8_LOOP); 7275 movq(tmp1, Address(obja, result)); 7276 movq(tmp2, Address(objb, result)); 7277 xorq(tmp1, tmp2); 7278 testq(tmp1, tmp1); 7279 jcc(Assembler::notZero, VECTOR8_NOT_EQUAL);//mismatch found 7280 addq(result, 8); 7281 subq(length, 8); 7282 jcc(Assembler::equal, SAME_TILL_END); 7283 //falling through if less than 8 bytes left 7284 7285 bind(VECTOR4_TAIL); 7286 cmpq(length, 4); 7287 jccb(Assembler::less, BYTES_TAIL); 7288 bind(VECTOR4_LOOP); 7289 movl(tmp1, Address(obja, result)); 7290 xorl(tmp1, Address(objb, result)); 7291 testl(tmp1, tmp1); 7292 jcc(Assembler::notZero, VECTOR4_NOT_EQUAL);//mismatch found 7293 addq(result, 4); 7294 subq(length, 4); 7295 jcc(Assembler::equal, SAME_TILL_END); 7296 //falling through if less than 4 bytes left 7297 7298 bind(BYTES_TAIL); 7299 bind(BYTES_LOOP); 7300 load_unsigned_byte(tmp1, Address(obja, result)); 7301 load_unsigned_byte(tmp2, Address(objb, result)); 7302 xorl(tmp1, tmp2); 7303 testl(tmp1, tmp1); 7304 jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found 7305 decq(length); 7306 jcc(Assembler::zero, SAME_TILL_END); 7307 incq(result); 7308 load_unsigned_byte(tmp1, Address(obja, result)); 7309 load_unsigned_byte(tmp2, Address(objb, result)); 7310 xorl(tmp1, tmp2); 7311 testl(tmp1, tmp1); 7312 jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found 7313 decq(length); 7314 jcc(Assembler::zero, SAME_TILL_END); 7315 incq(result); 7316 load_unsigned_byte(tmp1, Address(obja, result)); 7317 load_unsigned_byte(tmp2, Address(objb, result)); 7318 xorl(tmp1, tmp2); 7319 testl(tmp1, tmp1); 7320 jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found 7321 jmp(SAME_TILL_END); 7322 7323 if (UseAVX >= 2) { 7324 bind(VECTOR32_NOT_EQUAL); 7325 vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_256bit); 7326 vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_256bit); 7327 vpxor(rymm0, rymm0, rymm2, Assembler::AVX_256bit); 7328 vpmovmskb(tmp1, rymm0); 7329 bsfq(tmp1, tmp1); 7330 addq(result, tmp1); 7331 shrq(result); 7332 jmp(DONE); 7333 } 7334 7335 bind(VECTOR16_NOT_EQUAL); 7336 if (UseAVX >= 2) { 7337 vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_128bit); 7338 vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_128bit); 7339 pxor(rymm0, rymm2); 7340 } else { 7341 pcmpeqb(rymm2, rymm2); 7342 pxor(rymm0, rymm1); 7343 pcmpeqb(rymm0, rymm1); 7344 pxor(rymm0, rymm2); 7345 } 7346 pmovmskb(tmp1, rymm0); 7347 bsfq(tmp1, tmp1); 7348 addq(result, tmp1); 7349 shrq(result); 7350 jmpb(DONE); 7351 7352 bind(VECTOR8_NOT_EQUAL); 7353 bind(VECTOR4_NOT_EQUAL); 7354 bsfq(tmp1, tmp1); 7355 shrq(tmp1, 3); 7356 addq(result, tmp1); 7357 bind(BYTES_NOT_EQUAL); 7358 shrq(result); 7359 jmpb(DONE); 7360 7361 bind(SAME_TILL_END); 7362 mov64(result, -1); 7363 7364 bind(DONE); 7365 } 7366 7367 //Helper functions for square_to_len() 7368 7369 /** 7370 * Store the squares of x[], right shifted one bit (divided by 2) into z[] 7371 * Preserves x and z and modifies rest of the registers. 7372 */ 7373 void MacroAssembler::square_rshift(Register x, Register xlen, Register z, Register tmp1, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) { 7374 // Perform square and right shift by 1 7375 // Handle odd xlen case first, then for even xlen do the following 7376 // jlong carry = 0; 7377 // for (int j=0, i=0; j < xlen; j+=2, i+=4) { 7378 // huge_128 product = x[j:j+1] * x[j:j+1]; 7379 // z[i:i+1] = (carry << 63) | (jlong)(product >>> 65); 7380 // z[i+2:i+3] = (jlong)(product >>> 1); 7381 // carry = (jlong)product; 7382 // } 7383 7384 xorq(tmp5, tmp5); // carry 7385 xorq(rdxReg, rdxReg); 7386 xorl(tmp1, tmp1); // index for x 7387 xorl(tmp4, tmp4); // index for z 7388 7389 Label L_first_loop, L_first_loop_exit; 7390 7391 testl(xlen, 1); 7392 jccb(Assembler::zero, L_first_loop); //jump if xlen is even 7393 7394 // Square and right shift by 1 the odd element using 32 bit multiply 7395 movl(raxReg, Address(x, tmp1, Address::times_4, 0)); 7396 imulq(raxReg, raxReg); 7397 shrq(raxReg, 1); 7398 adcq(tmp5, 0); 7399 movq(Address(z, tmp4, Address::times_4, 0), raxReg); 7400 incrementl(tmp1); 7401 addl(tmp4, 2); 7402 7403 // Square and right shift by 1 the rest using 64 bit multiply 7404 bind(L_first_loop); 7405 cmpptr(tmp1, xlen); 7406 jccb(Assembler::equal, L_first_loop_exit); 7407 7408 // Square 7409 movq(raxReg, Address(x, tmp1, Address::times_4, 0)); 7410 rorq(raxReg, 32); // convert big-endian to little-endian 7411 mulq(raxReg); // 64-bit multiply rax * rax -> rdx:rax 7412 7413 // Right shift by 1 and save carry 7414 shrq(tmp5, 1); // rdx:rax:tmp5 = (tmp5:rdx:rax) >>> 1 7415 rcrq(rdxReg, 1); 7416 rcrq(raxReg, 1); 7417 adcq(tmp5, 0); 7418 7419 // Store result in z 7420 movq(Address(z, tmp4, Address::times_4, 0), rdxReg); 7421 movq(Address(z, tmp4, Address::times_4, 8), raxReg); 7422 7423 // Update indices for x and z 7424 addl(tmp1, 2); 7425 addl(tmp4, 4); 7426 jmp(L_first_loop); 7427 7428 bind(L_first_loop_exit); 7429 } 7430 7431 7432 /** 7433 * Perform the following multiply add operation using BMI2 instructions 7434 * carry:sum = sum + op1*op2 + carry 7435 * op2 should be in rdx 7436 * op2 is preserved, all other registers are modified 7437 */ 7438 void MacroAssembler::multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry, Register tmp2) { 7439 // assert op2 is rdx 7440 mulxq(tmp2, op1, op1); // op1 * op2 -> tmp2:op1 7441 addq(sum, carry); 7442 adcq(tmp2, 0); 7443 addq(sum, op1); 7444 adcq(tmp2, 0); 7445 movq(carry, tmp2); 7446 } 7447 7448 /** 7449 * Perform the following multiply add operation: 7450 * carry:sum = sum + op1*op2 + carry 7451 * Preserves op1, op2 and modifies rest of registers 7452 */ 7453 void MacroAssembler::multiply_add_64(Register sum, Register op1, Register op2, Register carry, Register rdxReg, Register raxReg) { 7454 // rdx:rax = op1 * op2 7455 movq(raxReg, op2); 7456 mulq(op1); 7457 7458 // rdx:rax = sum + carry + rdx:rax 7459 addq(sum, carry); 7460 adcq(rdxReg, 0); 7461 addq(sum, raxReg); 7462 adcq(rdxReg, 0); 7463 7464 // carry:sum = rdx:sum 7465 movq(carry, rdxReg); 7466 } 7467 7468 /** 7469 * Add 64 bit long carry into z[] with carry propagation. 7470 * Preserves z and carry register values and modifies rest of registers. 7471 * 7472 */ 7473 void MacroAssembler::add_one_64(Register z, Register zlen, Register carry, Register tmp1) { 7474 Label L_fourth_loop, L_fourth_loop_exit; 7475 7476 movl(tmp1, 1); 7477 subl(zlen, 2); 7478 addq(Address(z, zlen, Address::times_4, 0), carry); 7479 7480 bind(L_fourth_loop); 7481 jccb(Assembler::carryClear, L_fourth_loop_exit); 7482 subl(zlen, 2); 7483 jccb(Assembler::negative, L_fourth_loop_exit); 7484 addq(Address(z, zlen, Address::times_4, 0), tmp1); 7485 jmp(L_fourth_loop); 7486 bind(L_fourth_loop_exit); 7487 } 7488 7489 /** 7490 * Shift z[] left by 1 bit. 7491 * Preserves x, len, z and zlen registers and modifies rest of the registers. 7492 * 7493 */ 7494 void MacroAssembler::lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4) { 7495 7496 Label L_fifth_loop, L_fifth_loop_exit; 7497 7498 // Fifth loop 7499 // Perform primitiveLeftShift(z, zlen, 1) 7500 7501 const Register prev_carry = tmp1; 7502 const Register new_carry = tmp4; 7503 const Register value = tmp2; 7504 const Register zidx = tmp3; 7505 7506 // int zidx, carry; 7507 // long value; 7508 // carry = 0; 7509 // for (zidx = zlen-2; zidx >=0; zidx -= 2) { 7510 // (carry:value) = (z[i] << 1) | carry ; 7511 // z[i] = value; 7512 // } 7513 7514 movl(zidx, zlen); 7515 xorl(prev_carry, prev_carry); // clear carry flag and prev_carry register 7516 7517 bind(L_fifth_loop); 7518 decl(zidx); // Use decl to preserve carry flag 7519 decl(zidx); 7520 jccb(Assembler::negative, L_fifth_loop_exit); 7521 7522 if (UseBMI2Instructions) { 7523 movq(value, Address(z, zidx, Address::times_4, 0)); 7524 rclq(value, 1); 7525 rorxq(value, value, 32); 7526 movq(Address(z, zidx, Address::times_4, 0), value); // Store back in big endian form 7527 } 7528 else { 7529 // clear new_carry 7530 xorl(new_carry, new_carry); 7531 7532 // Shift z[i] by 1, or in previous carry and save new carry 7533 movq(value, Address(z, zidx, Address::times_4, 0)); 7534 shlq(value, 1); 7535 adcl(new_carry, 0); 7536 7537 orq(value, prev_carry); 7538 rorq(value, 0x20); 7539 movq(Address(z, zidx, Address::times_4, 0), value); // Store back in big endian form 7540 7541 // Set previous carry = new carry 7542 movl(prev_carry, new_carry); 7543 } 7544 jmp(L_fifth_loop); 7545 7546 bind(L_fifth_loop_exit); 7547 } 7548 7549 7550 /** 7551 * Code for BigInteger::squareToLen() intrinsic 7552 * 7553 * rdi: x 7554 * rsi: len 7555 * r8: z 7556 * rcx: zlen 7557 * r12: tmp1 7558 * r13: tmp2 7559 * r14: tmp3 7560 * r15: tmp4 7561 * rbx: tmp5 7562 * 7563 */ 7564 void MacroAssembler::square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) { 7565 7566 Label L_second_loop, L_second_loop_exit, L_third_loop, L_third_loop_exit, L_last_x, L_multiply; 7567 push(tmp1); 7568 push(tmp2); 7569 push(tmp3); 7570 push(tmp4); 7571 push(tmp5); 7572 7573 // First loop 7574 // Store the squares, right shifted one bit (i.e., divided by 2). 7575 square_rshift(x, len, z, tmp1, tmp3, tmp4, tmp5, rdxReg, raxReg); 7576 7577 // Add in off-diagonal sums. 7578 // 7579 // Second, third (nested) and fourth loops. 7580 // zlen +=2; 7581 // for (int xidx=len-2,zidx=zlen-4; xidx > 0; xidx-=2,zidx-=4) { 7582 // carry = 0; 7583 // long op2 = x[xidx:xidx+1]; 7584 // for (int j=xidx-2,k=zidx; j >= 0; j-=2) { 7585 // k -= 2; 7586 // long op1 = x[j:j+1]; 7587 // long sum = z[k:k+1]; 7588 // carry:sum = multiply_add_64(sum, op1, op2, carry, tmp_regs); 7589 // z[k:k+1] = sum; 7590 // } 7591 // add_one_64(z, k, carry, tmp_regs); 7592 // } 7593 7594 const Register carry = tmp5; 7595 const Register sum = tmp3; 7596 const Register op1 = tmp4; 7597 Register op2 = tmp2; 7598 7599 push(zlen); 7600 push(len); 7601 addl(zlen,2); 7602 bind(L_second_loop); 7603 xorq(carry, carry); 7604 subl(zlen, 4); 7605 subl(len, 2); 7606 push(zlen); 7607 push(len); 7608 cmpl(len, 0); 7609 jccb(Assembler::lessEqual, L_second_loop_exit); 7610 7611 // Multiply an array by one 64 bit long. 7612 if (UseBMI2Instructions) { 7613 op2 = rdxReg; 7614 movq(op2, Address(x, len, Address::times_4, 0)); 7615 rorxq(op2, op2, 32); 7616 } 7617 else { 7618 movq(op2, Address(x, len, Address::times_4, 0)); 7619 rorq(op2, 32); 7620 } 7621 7622 bind(L_third_loop); 7623 decrementl(len); 7624 jccb(Assembler::negative, L_third_loop_exit); 7625 decrementl(len); 7626 jccb(Assembler::negative, L_last_x); 7627 7628 movq(op1, Address(x, len, Address::times_4, 0)); 7629 rorq(op1, 32); 7630 7631 bind(L_multiply); 7632 subl(zlen, 2); 7633 movq(sum, Address(z, zlen, Address::times_4, 0)); 7634 7635 // Multiply 64 bit by 64 bit and add 64 bits lower half and upper 64 bits as carry. 7636 if (UseBMI2Instructions) { 7637 multiply_add_64_bmi2(sum, op1, op2, carry, tmp2); 7638 } 7639 else { 7640 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg); 7641 } 7642 7643 movq(Address(z, zlen, Address::times_4, 0), sum); 7644 7645 jmp(L_third_loop); 7646 bind(L_third_loop_exit); 7647 7648 // Fourth loop 7649 // Add 64 bit long carry into z with carry propagation. 7650 // Uses offsetted zlen. 7651 add_one_64(z, zlen, carry, tmp1); 7652 7653 pop(len); 7654 pop(zlen); 7655 jmp(L_second_loop); 7656 7657 // Next infrequent code is moved outside loops. 7658 bind(L_last_x); 7659 movl(op1, Address(x, 0)); 7660 jmp(L_multiply); 7661 7662 bind(L_second_loop_exit); 7663 pop(len); 7664 pop(zlen); 7665 pop(len); 7666 pop(zlen); 7667 7668 // Fifth loop 7669 // Shift z left 1 bit. 7670 lshift_by_1(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4); 7671 7672 // z[zlen-1] |= x[len-1] & 1; 7673 movl(tmp3, Address(x, len, Address::times_4, -4)); 7674 andl(tmp3, 1); 7675 orl(Address(z, zlen, Address::times_4, -4), tmp3); 7676 7677 pop(tmp5); 7678 pop(tmp4); 7679 pop(tmp3); 7680 pop(tmp2); 7681 pop(tmp1); 7682 } 7683 7684 /** 7685 * Helper function for mul_add() 7686 * Multiply the in[] by int k and add to out[] starting at offset offs using 7687 * 128 bit by 32 bit multiply and return the carry in tmp5. 7688 * Only quad int aligned length of in[] is operated on in this function. 7689 * k is in rdxReg for BMI2Instructions, for others it is in tmp2. 7690 * This function preserves out, in and k registers. 7691 * len and offset point to the appropriate index in "in" & "out" correspondingly 7692 * tmp5 has the carry. 7693 * other registers are temporary and are modified. 7694 * 7695 */ 7696 void MacroAssembler::mul_add_128_x_32_loop(Register out, Register in, 7697 Register offset, Register len, Register tmp1, Register tmp2, Register tmp3, 7698 Register tmp4, Register tmp5, Register rdxReg, Register raxReg) { 7699 7700 Label L_first_loop, L_first_loop_exit; 7701 7702 movl(tmp1, len); 7703 shrl(tmp1, 2); 7704 7705 bind(L_first_loop); 7706 subl(tmp1, 1); 7707 jccb(Assembler::negative, L_first_loop_exit); 7708 7709 subl(len, 4); 7710 subl(offset, 4); 7711 7712 Register op2 = tmp2; 7713 const Register sum = tmp3; 7714 const Register op1 = tmp4; 7715 const Register carry = tmp5; 7716 7717 if (UseBMI2Instructions) { 7718 op2 = rdxReg; 7719 } 7720 7721 movq(op1, Address(in, len, Address::times_4, 8)); 7722 rorq(op1, 32); 7723 movq(sum, Address(out, offset, Address::times_4, 8)); 7724 rorq(sum, 32); 7725 if (UseBMI2Instructions) { 7726 multiply_add_64_bmi2(sum, op1, op2, carry, raxReg); 7727 } 7728 else { 7729 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg); 7730 } 7731 // Store back in big endian from little endian 7732 rorq(sum, 0x20); 7733 movq(Address(out, offset, Address::times_4, 8), sum); 7734 7735 movq(op1, Address(in, len, Address::times_4, 0)); 7736 rorq(op1, 32); 7737 movq(sum, Address(out, offset, Address::times_4, 0)); 7738 rorq(sum, 32); 7739 if (UseBMI2Instructions) { 7740 multiply_add_64_bmi2(sum, op1, op2, carry, raxReg); 7741 } 7742 else { 7743 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg); 7744 } 7745 // Store back in big endian from little endian 7746 rorq(sum, 0x20); 7747 movq(Address(out, offset, Address::times_4, 0), sum); 7748 7749 jmp(L_first_loop); 7750 bind(L_first_loop_exit); 7751 } 7752 7753 /** 7754 * Code for BigInteger::mulAdd() intrinsic 7755 * 7756 * rdi: out 7757 * rsi: in 7758 * r11: offs (out.length - offset) 7759 * rcx: len 7760 * r8: k 7761 * r12: tmp1 7762 * r13: tmp2 7763 * r14: tmp3 7764 * r15: tmp4 7765 * rbx: tmp5 7766 * Multiply the in[] by word k and add to out[], return the carry in rax 7767 */ 7768 void MacroAssembler::mul_add(Register out, Register in, Register offs, 7769 Register len, Register k, Register tmp1, Register tmp2, Register tmp3, 7770 Register tmp4, Register tmp5, Register rdxReg, Register raxReg) { 7771 7772 Label L_carry, L_last_in, L_done; 7773 7774 // carry = 0; 7775 // for (int j=len-1; j >= 0; j--) { 7776 // long product = (in[j] & LONG_MASK) * kLong + 7777 // (out[offs] & LONG_MASK) + carry; 7778 // out[offs--] = (int)product; 7779 // carry = product >>> 32; 7780 // } 7781 // 7782 push(tmp1); 7783 push(tmp2); 7784 push(tmp3); 7785 push(tmp4); 7786 push(tmp5); 7787 7788 Register op2 = tmp2; 7789 const Register sum = tmp3; 7790 const Register op1 = tmp4; 7791 const Register carry = tmp5; 7792 7793 if (UseBMI2Instructions) { 7794 op2 = rdxReg; 7795 movl(op2, k); 7796 } 7797 else { 7798 movl(op2, k); 7799 } 7800 7801 xorq(carry, carry); 7802 7803 //First loop 7804 7805 //Multiply in[] by k in a 4 way unrolled loop using 128 bit by 32 bit multiply 7806 //The carry is in tmp5 7807 mul_add_128_x_32_loop(out, in, offs, len, tmp1, tmp2, tmp3, tmp4, tmp5, rdxReg, raxReg); 7808 7809 //Multiply the trailing in[] entry using 64 bit by 32 bit, if any 7810 decrementl(len); 7811 jccb(Assembler::negative, L_carry); 7812 decrementl(len); 7813 jccb(Assembler::negative, L_last_in); 7814 7815 movq(op1, Address(in, len, Address::times_4, 0)); 7816 rorq(op1, 32); 7817 7818 subl(offs, 2); 7819 movq(sum, Address(out, offs, Address::times_4, 0)); 7820 rorq(sum, 32); 7821 7822 if (UseBMI2Instructions) { 7823 multiply_add_64_bmi2(sum, op1, op2, carry, raxReg); 7824 } 7825 else { 7826 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg); 7827 } 7828 7829 // Store back in big endian from little endian 7830 rorq(sum, 0x20); 7831 movq(Address(out, offs, Address::times_4, 0), sum); 7832 7833 testl(len, len); 7834 jccb(Assembler::zero, L_carry); 7835 7836 //Multiply the last in[] entry, if any 7837 bind(L_last_in); 7838 movl(op1, Address(in, 0)); 7839 movl(sum, Address(out, offs, Address::times_4, -4)); 7840 7841 movl(raxReg, k); 7842 mull(op1); //tmp4 * eax -> edx:eax 7843 addl(sum, carry); 7844 adcl(rdxReg, 0); 7845 addl(sum, raxReg); 7846 adcl(rdxReg, 0); 7847 movl(carry, rdxReg); 7848 7849 movl(Address(out, offs, Address::times_4, -4), sum); 7850 7851 bind(L_carry); 7852 //return tmp5/carry as carry in rax 7853 movl(rax, carry); 7854 7855 bind(L_done); 7856 pop(tmp5); 7857 pop(tmp4); 7858 pop(tmp3); 7859 pop(tmp2); 7860 pop(tmp1); 7861 } 7862 #endif 7863 7864 /** 7865 * Emits code to update CRC-32 with a byte value according to constants in table 7866 * 7867 * @param [in,out]crc Register containing the crc. 7868 * @param [in]val Register containing the byte to fold into the CRC. 7869 * @param [in]table Register containing the table of crc constants. 7870 * 7871 * uint32_t crc; 7872 * val = crc_table[(val ^ crc) & 0xFF]; 7873 * crc = val ^ (crc >> 8); 7874 * 7875 */ 7876 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) { 7877 xorl(val, crc); 7878 andl(val, 0xFF); 7879 shrl(crc, 8); // unsigned shift 7880 xorl(crc, Address(table, val, Address::times_4, 0)); 7881 } 7882 7883 /** 7884 * Fold 128-bit data chunk 7885 */ 7886 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) { 7887 if (UseAVX > 0) { 7888 vpclmulhdq(xtmp, xK, xcrc); // [123:64] 7889 vpclmulldq(xcrc, xK, xcrc); // [63:0] 7890 vpxor(xcrc, xcrc, Address(buf, offset), 0 /* vector_len */); 7891 pxor(xcrc, xtmp); 7892 } else { 7893 movdqa(xtmp, xcrc); 7894 pclmulhdq(xtmp, xK); // [123:64] 7895 pclmulldq(xcrc, xK); // [63:0] 7896 pxor(xcrc, xtmp); 7897 movdqu(xtmp, Address(buf, offset)); 7898 pxor(xcrc, xtmp); 7899 } 7900 } 7901 7902 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) { 7903 if (UseAVX > 0) { 7904 vpclmulhdq(xtmp, xK, xcrc); 7905 vpclmulldq(xcrc, xK, xcrc); 7906 pxor(xcrc, xbuf); 7907 pxor(xcrc, xtmp); 7908 } else { 7909 movdqa(xtmp, xcrc); 7910 pclmulhdq(xtmp, xK); 7911 pclmulldq(xcrc, xK); 7912 pxor(xcrc, xbuf); 7913 pxor(xcrc, xtmp); 7914 } 7915 } 7916 7917 /** 7918 * 8-bit folds to compute 32-bit CRC 7919 * 7920 * uint64_t xcrc; 7921 * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8); 7922 */ 7923 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) { 7924 movdl(tmp, xcrc); 7925 andl(tmp, 0xFF); 7926 movdl(xtmp, Address(table, tmp, Address::times_4, 0)); 7927 psrldq(xcrc, 1); // unsigned shift one byte 7928 pxor(xcrc, xtmp); 7929 } 7930 7931 /** 7932 * uint32_t crc; 7933 * timesXtoThe32[crc & 0xFF] ^ (crc >> 8); 7934 */ 7935 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) { 7936 movl(tmp, crc); 7937 andl(tmp, 0xFF); 7938 shrl(crc, 8); 7939 xorl(crc, Address(table, tmp, Address::times_4, 0)); 7940 } 7941 7942 /** 7943 * @param crc register containing existing CRC (32-bit) 7944 * @param buf register pointing to input byte buffer (byte*) 7945 * @param len register containing number of bytes 7946 * @param table register that will contain address of CRC table 7947 * @param tmp scratch register 7948 */ 7949 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) { 7950 assert_different_registers(crc, buf, len, table, tmp, rax); 7951 7952 Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned; 7953 Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop; 7954 7955 // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge 7956 // context for the registers used, where all instructions below are using 128-bit mode 7957 // On EVEX without VL and BW, these instructions will all be AVX. 7958 lea(table, ExternalAddress(StubRoutines::crc_table_addr())); 7959 notl(crc); // ~crc 7960 cmpl(len, 16); 7961 jcc(Assembler::less, L_tail); 7962 7963 // Align buffer to 16 bytes 7964 movl(tmp, buf); 7965 andl(tmp, 0xF); 7966 jccb(Assembler::zero, L_aligned); 7967 subl(tmp, 16); 7968 addl(len, tmp); 7969 7970 align(4); 7971 BIND(L_align_loop); 7972 movsbl(rax, Address(buf, 0)); // load byte with sign extension 7973 update_byte_crc32(crc, rax, table); 7974 increment(buf); 7975 incrementl(tmp); 7976 jccb(Assembler::less, L_align_loop); 7977 7978 BIND(L_aligned); 7979 movl(tmp, len); // save 7980 shrl(len, 4); 7981 jcc(Assembler::zero, L_tail_restore); 7982 7983 // Fold crc into first bytes of vector 7984 movdqa(xmm1, Address(buf, 0)); 7985 movdl(rax, xmm1); 7986 xorl(crc, rax); 7987 if (VM_Version::supports_sse4_1()) { 7988 pinsrd(xmm1, crc, 0); 7989 } else { 7990 pinsrw(xmm1, crc, 0); 7991 shrl(crc, 16); 7992 pinsrw(xmm1, crc, 1); 7993 } 7994 addptr(buf, 16); 7995 subl(len, 4); // len > 0 7996 jcc(Assembler::less, L_fold_tail); 7997 7998 movdqa(xmm2, Address(buf, 0)); 7999 movdqa(xmm3, Address(buf, 16)); 8000 movdqa(xmm4, Address(buf, 32)); 8001 addptr(buf, 48); 8002 subl(len, 3); 8003 jcc(Assembler::lessEqual, L_fold_512b); 8004 8005 // Fold total 512 bits of polynomial on each iteration, 8006 // 128 bits per each of 4 parallel streams. 8007 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32), rscratch1); 8008 8009 align32(); 8010 BIND(L_fold_512b_loop); 8011 fold_128bit_crc32(xmm1, xmm0, xmm5, buf, 0); 8012 fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16); 8013 fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32); 8014 fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48); 8015 addptr(buf, 64); 8016 subl(len, 4); 8017 jcc(Assembler::greater, L_fold_512b_loop); 8018 8019 // Fold 512 bits to 128 bits. 8020 BIND(L_fold_512b); 8021 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16), rscratch1); 8022 fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2); 8023 fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3); 8024 fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4); 8025 8026 // Fold the rest of 128 bits data chunks 8027 BIND(L_fold_tail); 8028 addl(len, 3); 8029 jccb(Assembler::lessEqual, L_fold_128b); 8030 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16), rscratch1); 8031 8032 BIND(L_fold_tail_loop); 8033 fold_128bit_crc32(xmm1, xmm0, xmm5, buf, 0); 8034 addptr(buf, 16); 8035 decrementl(len); 8036 jccb(Assembler::greater, L_fold_tail_loop); 8037 8038 // Fold 128 bits in xmm1 down into 32 bits in crc register. 8039 BIND(L_fold_128b); 8040 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()), rscratch1); 8041 if (UseAVX > 0) { 8042 vpclmulqdq(xmm2, xmm0, xmm1, 0x1); 8043 vpand(xmm3, xmm0, xmm2, 0 /* vector_len */); 8044 vpclmulqdq(xmm0, xmm0, xmm3, 0x1); 8045 } else { 8046 movdqa(xmm2, xmm0); 8047 pclmulqdq(xmm2, xmm1, 0x1); 8048 movdqa(xmm3, xmm0); 8049 pand(xmm3, xmm2); 8050 pclmulqdq(xmm0, xmm3, 0x1); 8051 } 8052 psrldq(xmm1, 8); 8053 psrldq(xmm2, 4); 8054 pxor(xmm0, xmm1); 8055 pxor(xmm0, xmm2); 8056 8057 // 8 8-bit folds to compute 32-bit CRC. 8058 for (int j = 0; j < 4; j++) { 8059 fold_8bit_crc32(xmm0, table, xmm1, rax); 8060 } 8061 movdl(crc, xmm0); // mov 32 bits to general register 8062 for (int j = 0; j < 4; j++) { 8063 fold_8bit_crc32(crc, table, rax); 8064 } 8065 8066 BIND(L_tail_restore); 8067 movl(len, tmp); // restore 8068 BIND(L_tail); 8069 andl(len, 0xf); 8070 jccb(Assembler::zero, L_exit); 8071 8072 // Fold the rest of bytes 8073 align(4); 8074 BIND(L_tail_loop); 8075 movsbl(rax, Address(buf, 0)); // load byte with sign extension 8076 update_byte_crc32(crc, rax, table); 8077 increment(buf); 8078 decrementl(len); 8079 jccb(Assembler::greater, L_tail_loop); 8080 8081 BIND(L_exit); 8082 notl(crc); // ~c 8083 } 8084 8085 #ifdef _LP64 8086 // Helper function for AVX 512 CRC32 8087 // Fold 512-bit data chunks 8088 void MacroAssembler::fold512bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, 8089 Register pos, int offset) { 8090 evmovdquq(xmm3, Address(buf, pos, Address::times_1, offset), Assembler::AVX_512bit); 8091 evpclmulqdq(xtmp, xcrc, xK, 0x10, Assembler::AVX_512bit); // [123:64] 8092 evpclmulqdq(xmm2, xcrc, xK, 0x01, Assembler::AVX_512bit); // [63:0] 8093 evpxorq(xcrc, xtmp, xmm2, Assembler::AVX_512bit /* vector_len */); 8094 evpxorq(xcrc, xcrc, xmm3, Assembler::AVX_512bit /* vector_len */); 8095 } 8096 8097 // Helper function for AVX 512 CRC32 8098 // Compute CRC32 for < 256B buffers 8099 void MacroAssembler::kernel_crc32_avx512_256B(Register crc, Register buf, Register len, Register table, Register pos, 8100 Register tmp1, Register tmp2, Label& L_barrett, Label& L_16B_reduction_loop, 8101 Label& L_get_last_two_xmms, Label& L_128_done, Label& L_cleanup) { 8102 8103 Label L_less_than_32, L_exact_16_left, L_less_than_16_left; 8104 Label L_less_than_8_left, L_less_than_4_left, L_less_than_2_left, L_zero_left; 8105 Label L_only_less_than_4, L_only_less_than_3, L_only_less_than_2; 8106 8107 // check if there is enough buffer to be able to fold 16B at a time 8108 cmpl(len, 32); 8109 jcc(Assembler::less, L_less_than_32); 8110 8111 // if there is, load the constants 8112 movdqu(xmm10, Address(table, 1 * 16)); //rk1 and rk2 in xmm10 8113 movdl(xmm0, crc); // get the initial crc value 8114 movdqu(xmm7, Address(buf, pos, Address::times_1, 0 * 16)); //load the plaintext 8115 pxor(xmm7, xmm0); 8116 8117 // update the buffer pointer 8118 addl(pos, 16); 8119 //update the counter.subtract 32 instead of 16 to save one instruction from the loop 8120 subl(len, 32); 8121 jmp(L_16B_reduction_loop); 8122 8123 bind(L_less_than_32); 8124 //mov initial crc to the return value. this is necessary for zero - length buffers. 8125 movl(rax, crc); 8126 testl(len, len); 8127 jcc(Assembler::equal, L_cleanup); 8128 8129 movdl(xmm0, crc); //get the initial crc value 8130 8131 cmpl(len, 16); 8132 jcc(Assembler::equal, L_exact_16_left); 8133 jcc(Assembler::less, L_less_than_16_left); 8134 8135 movdqu(xmm7, Address(buf, pos, Address::times_1, 0 * 16)); //load the plaintext 8136 pxor(xmm7, xmm0); //xor the initial crc value 8137 addl(pos, 16); 8138 subl(len, 16); 8139 movdqu(xmm10, Address(table, 1 * 16)); // rk1 and rk2 in xmm10 8140 jmp(L_get_last_two_xmms); 8141 8142 bind(L_less_than_16_left); 8143 //use stack space to load data less than 16 bytes, zero - out the 16B in memory first. 8144 pxor(xmm1, xmm1); 8145 movptr(tmp1, rsp); 8146 movdqu(Address(tmp1, 0 * 16), xmm1); 8147 8148 cmpl(len, 4); 8149 jcc(Assembler::less, L_only_less_than_4); 8150 8151 //backup the counter value 8152 movl(tmp2, len); 8153 cmpl(len, 8); 8154 jcc(Assembler::less, L_less_than_8_left); 8155 8156 //load 8 Bytes 8157 movq(rax, Address(buf, pos, Address::times_1, 0 * 16)); 8158 movq(Address(tmp1, 0 * 16), rax); 8159 addptr(tmp1, 8); 8160 subl(len, 8); 8161 addl(pos, 8); 8162 8163 bind(L_less_than_8_left); 8164 cmpl(len, 4); 8165 jcc(Assembler::less, L_less_than_4_left); 8166 8167 //load 4 Bytes 8168 movl(rax, Address(buf, pos, Address::times_1, 0)); 8169 movl(Address(tmp1, 0 * 16), rax); 8170 addptr(tmp1, 4); 8171 subl(len, 4); 8172 addl(pos, 4); 8173 8174 bind(L_less_than_4_left); 8175 cmpl(len, 2); 8176 jcc(Assembler::less, L_less_than_2_left); 8177 8178 // load 2 Bytes 8179 movw(rax, Address(buf, pos, Address::times_1, 0)); 8180 movl(Address(tmp1, 0 * 16), rax); 8181 addptr(tmp1, 2); 8182 subl(len, 2); 8183 addl(pos, 2); 8184 8185 bind(L_less_than_2_left); 8186 cmpl(len, 1); 8187 jcc(Assembler::less, L_zero_left); 8188 8189 // load 1 Byte 8190 movb(rax, Address(buf, pos, Address::times_1, 0)); 8191 movb(Address(tmp1, 0 * 16), rax); 8192 8193 bind(L_zero_left); 8194 movdqu(xmm7, Address(rsp, 0)); 8195 pxor(xmm7, xmm0); //xor the initial crc value 8196 8197 lea(rax, ExternalAddress(StubRoutines::x86::shuf_table_crc32_avx512_addr())); 8198 movdqu(xmm0, Address(rax, tmp2)); 8199 pshufb(xmm7, xmm0); 8200 jmp(L_128_done); 8201 8202 bind(L_exact_16_left); 8203 movdqu(xmm7, Address(buf, pos, Address::times_1, 0)); 8204 pxor(xmm7, xmm0); //xor the initial crc value 8205 jmp(L_128_done); 8206 8207 bind(L_only_less_than_4); 8208 cmpl(len, 3); 8209 jcc(Assembler::less, L_only_less_than_3); 8210 8211 // load 3 Bytes 8212 movb(rax, Address(buf, pos, Address::times_1, 0)); 8213 movb(Address(tmp1, 0), rax); 8214 8215 movb(rax, Address(buf, pos, Address::times_1, 1)); 8216 movb(Address(tmp1, 1), rax); 8217 8218 movb(rax, Address(buf, pos, Address::times_1, 2)); 8219 movb(Address(tmp1, 2), rax); 8220 8221 movdqu(xmm7, Address(rsp, 0)); 8222 pxor(xmm7, xmm0); //xor the initial crc value 8223 8224 pslldq(xmm7, 0x5); 8225 jmp(L_barrett); 8226 bind(L_only_less_than_3); 8227 cmpl(len, 2); 8228 jcc(Assembler::less, L_only_less_than_2); 8229 8230 // load 2 Bytes 8231 movb(rax, Address(buf, pos, Address::times_1, 0)); 8232 movb(Address(tmp1, 0), rax); 8233 8234 movb(rax, Address(buf, pos, Address::times_1, 1)); 8235 movb(Address(tmp1, 1), rax); 8236 8237 movdqu(xmm7, Address(rsp, 0)); 8238 pxor(xmm7, xmm0); //xor the initial crc value 8239 8240 pslldq(xmm7, 0x6); 8241 jmp(L_barrett); 8242 8243 bind(L_only_less_than_2); 8244 //load 1 Byte 8245 movb(rax, Address(buf, pos, Address::times_1, 0)); 8246 movb(Address(tmp1, 0), rax); 8247 8248 movdqu(xmm7, Address(rsp, 0)); 8249 pxor(xmm7, xmm0); //xor the initial crc value 8250 8251 pslldq(xmm7, 0x7); 8252 } 8253 8254 /** 8255 * Compute CRC32 using AVX512 instructions 8256 * param crc register containing existing CRC (32-bit) 8257 * param buf register pointing to input byte buffer (byte*) 8258 * param len register containing number of bytes 8259 * param table address of crc or crc32c table 8260 * param tmp1 scratch register 8261 * param tmp2 scratch register 8262 * return rax result register 8263 * 8264 * This routine is identical for crc32c with the exception of the precomputed constant 8265 * table which will be passed as the table argument. The calculation steps are 8266 * the same for both variants. 8267 */ 8268 void MacroAssembler::kernel_crc32_avx512(Register crc, Register buf, Register len, Register table, Register tmp1, Register tmp2) { 8269 assert_different_registers(crc, buf, len, table, tmp1, tmp2, rax, r12); 8270 8271 Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned; 8272 Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop; 8273 Label L_less_than_256, L_fold_128_B_loop, L_fold_256_B_loop; 8274 Label L_fold_128_B_register, L_final_reduction_for_128, L_16B_reduction_loop; 8275 Label L_128_done, L_get_last_two_xmms, L_barrett, L_cleanup; 8276 8277 const Register pos = r12; 8278 push(r12); 8279 subptr(rsp, 16 * 2 + 8); 8280 8281 // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge 8282 // context for the registers used, where all instructions below are using 128-bit mode 8283 // On EVEX without VL and BW, these instructions will all be AVX. 8284 movl(pos, 0); 8285 8286 // check if smaller than 256B 8287 cmpl(len, 256); 8288 jcc(Assembler::less, L_less_than_256); 8289 8290 // load the initial crc value 8291 movdl(xmm10, crc); 8292 8293 // receive the initial 64B data, xor the initial crc value 8294 evmovdquq(xmm0, Address(buf, pos, Address::times_1, 0 * 64), Assembler::AVX_512bit); 8295 evmovdquq(xmm4, Address(buf, pos, Address::times_1, 1 * 64), Assembler::AVX_512bit); 8296 evpxorq(xmm0, xmm0, xmm10, Assembler::AVX_512bit); 8297 evbroadcasti32x4(xmm10, Address(table, 2 * 16), Assembler::AVX_512bit); //zmm10 has rk3 and rk4 8298 8299 subl(len, 256); 8300 cmpl(len, 256); 8301 jcc(Assembler::less, L_fold_128_B_loop); 8302 8303 evmovdquq(xmm7, Address(buf, pos, Address::times_1, 2 * 64), Assembler::AVX_512bit); 8304 evmovdquq(xmm8, Address(buf, pos, Address::times_1, 3 * 64), Assembler::AVX_512bit); 8305 evbroadcasti32x4(xmm16, Address(table, 0 * 16), Assembler::AVX_512bit); //zmm16 has rk-1 and rk-2 8306 subl(len, 256); 8307 8308 bind(L_fold_256_B_loop); 8309 addl(pos, 256); 8310 fold512bit_crc32_avx512(xmm0, xmm16, xmm1, buf, pos, 0 * 64); 8311 fold512bit_crc32_avx512(xmm4, xmm16, xmm1, buf, pos, 1 * 64); 8312 fold512bit_crc32_avx512(xmm7, xmm16, xmm1, buf, pos, 2 * 64); 8313 fold512bit_crc32_avx512(xmm8, xmm16, xmm1, buf, pos, 3 * 64); 8314 8315 subl(len, 256); 8316 jcc(Assembler::greaterEqual, L_fold_256_B_loop); 8317 8318 // Fold 256 into 128 8319 addl(pos, 256); 8320 evpclmulqdq(xmm1, xmm0, xmm10, 0x01, Assembler::AVX_512bit); 8321 evpclmulqdq(xmm2, xmm0, xmm10, 0x10, Assembler::AVX_512bit); 8322 vpternlogq(xmm7, 0x96, xmm1, xmm2, Assembler::AVX_512bit); // xor ABC 8323 8324 evpclmulqdq(xmm5, xmm4, xmm10, 0x01, Assembler::AVX_512bit); 8325 evpclmulqdq(xmm6, xmm4, xmm10, 0x10, Assembler::AVX_512bit); 8326 vpternlogq(xmm8, 0x96, xmm5, xmm6, Assembler::AVX_512bit); // xor ABC 8327 8328 evmovdquq(xmm0, xmm7, Assembler::AVX_512bit); 8329 evmovdquq(xmm4, xmm8, Assembler::AVX_512bit); 8330 8331 addl(len, 128); 8332 jmp(L_fold_128_B_register); 8333 8334 // at this section of the code, there is 128 * x + y(0 <= y<128) bytes of buffer.The fold_128_B_loop 8335 // loop will fold 128B at a time until we have 128 + y Bytes of buffer 8336 8337 // fold 128B at a time.This section of the code folds 8 xmm registers in parallel 8338 bind(L_fold_128_B_loop); 8339 addl(pos, 128); 8340 fold512bit_crc32_avx512(xmm0, xmm10, xmm1, buf, pos, 0 * 64); 8341 fold512bit_crc32_avx512(xmm4, xmm10, xmm1, buf, pos, 1 * 64); 8342 8343 subl(len, 128); 8344 jcc(Assembler::greaterEqual, L_fold_128_B_loop); 8345 8346 addl(pos, 128); 8347 8348 // at this point, the buffer pointer is pointing at the last y Bytes of the buffer, where 0 <= y < 128 8349 // the 128B of folded data is in 8 of the xmm registers : xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7 8350 bind(L_fold_128_B_register); 8351 evmovdquq(xmm16, Address(table, 5 * 16), Assembler::AVX_512bit); // multiply by rk9-rk16 8352 evmovdquq(xmm11, Address(table, 9 * 16), Assembler::AVX_512bit); // multiply by rk17-rk20, rk1,rk2, 0,0 8353 evpclmulqdq(xmm1, xmm0, xmm16, 0x01, Assembler::AVX_512bit); 8354 evpclmulqdq(xmm2, xmm0, xmm16, 0x10, Assembler::AVX_512bit); 8355 // save last that has no multiplicand 8356 vextracti64x2(xmm7, xmm4, 3); 8357 8358 evpclmulqdq(xmm5, xmm4, xmm11, 0x01, Assembler::AVX_512bit); 8359 evpclmulqdq(xmm6, xmm4, xmm11, 0x10, Assembler::AVX_512bit); 8360 // Needed later in reduction loop 8361 movdqu(xmm10, Address(table, 1 * 16)); 8362 vpternlogq(xmm1, 0x96, xmm2, xmm5, Assembler::AVX_512bit); // xor ABC 8363 vpternlogq(xmm1, 0x96, xmm6, xmm7, Assembler::AVX_512bit); // xor ABC 8364 8365 // Swap 1,0,3,2 - 01 00 11 10 8366 evshufi64x2(xmm8, xmm1, xmm1, 0x4e, Assembler::AVX_512bit); 8367 evpxorq(xmm8, xmm8, xmm1, Assembler::AVX_256bit); 8368 vextracti128(xmm5, xmm8, 1); 8369 evpxorq(xmm7, xmm5, xmm8, Assembler::AVX_128bit); 8370 8371 // instead of 128, we add 128 - 16 to the loop counter to save 1 instruction from the loop 8372 // instead of a cmp instruction, we use the negative flag with the jl instruction 8373 addl(len, 128 - 16); 8374 jcc(Assembler::less, L_final_reduction_for_128); 8375 8376 bind(L_16B_reduction_loop); 8377 vpclmulqdq(xmm8, xmm7, xmm10, 0x01); 8378 vpclmulqdq(xmm7, xmm7, xmm10, 0x10); 8379 vpxor(xmm7, xmm7, xmm8, Assembler::AVX_128bit); 8380 movdqu(xmm0, Address(buf, pos, Address::times_1, 0 * 16)); 8381 vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit); 8382 addl(pos, 16); 8383 subl(len, 16); 8384 jcc(Assembler::greaterEqual, L_16B_reduction_loop); 8385 8386 bind(L_final_reduction_for_128); 8387 addl(len, 16); 8388 jcc(Assembler::equal, L_128_done); 8389 8390 bind(L_get_last_two_xmms); 8391 movdqu(xmm2, xmm7); 8392 addl(pos, len); 8393 movdqu(xmm1, Address(buf, pos, Address::times_1, -16)); 8394 subl(pos, len); 8395 8396 // get rid of the extra data that was loaded before 8397 // load the shift constant 8398 lea(rax, ExternalAddress(StubRoutines::x86::shuf_table_crc32_avx512_addr())); 8399 movdqu(xmm0, Address(rax, len)); 8400 addl(rax, len); 8401 8402 vpshufb(xmm7, xmm7, xmm0, Assembler::AVX_128bit); 8403 //Change mask to 512 8404 vpxor(xmm0, xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr() + 2 * 16), Assembler::AVX_128bit, tmp2); 8405 vpshufb(xmm2, xmm2, xmm0, Assembler::AVX_128bit); 8406 8407 blendvpb(xmm2, xmm2, xmm1, xmm0, Assembler::AVX_128bit); 8408 vpclmulqdq(xmm8, xmm7, xmm10, 0x01); 8409 vpclmulqdq(xmm7, xmm7, xmm10, 0x10); 8410 vpxor(xmm7, xmm7, xmm8, Assembler::AVX_128bit); 8411 vpxor(xmm7, xmm7, xmm2, Assembler::AVX_128bit); 8412 8413 bind(L_128_done); 8414 // compute crc of a 128-bit value 8415 movdqu(xmm10, Address(table, 3 * 16)); 8416 movdqu(xmm0, xmm7); 8417 8418 // 64b fold 8419 vpclmulqdq(xmm7, xmm7, xmm10, 0x0); 8420 vpsrldq(xmm0, xmm0, 0x8, Assembler::AVX_128bit); 8421 vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit); 8422 8423 // 32b fold 8424 movdqu(xmm0, xmm7); 8425 vpslldq(xmm7, xmm7, 0x4, Assembler::AVX_128bit); 8426 vpclmulqdq(xmm7, xmm7, xmm10, 0x10); 8427 vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit); 8428 jmp(L_barrett); 8429 8430 bind(L_less_than_256); 8431 kernel_crc32_avx512_256B(crc, buf, len, table, pos, tmp1, tmp2, L_barrett, L_16B_reduction_loop, L_get_last_two_xmms, L_128_done, L_cleanup); 8432 8433 //barrett reduction 8434 bind(L_barrett); 8435 vpand(xmm7, xmm7, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr() + 1 * 16), Assembler::AVX_128bit, tmp2); 8436 movdqu(xmm1, xmm7); 8437 movdqu(xmm2, xmm7); 8438 movdqu(xmm10, Address(table, 4 * 16)); 8439 8440 pclmulqdq(xmm7, xmm10, 0x0); 8441 pxor(xmm7, xmm2); 8442 vpand(xmm7, xmm7, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr()), Assembler::AVX_128bit, tmp2); 8443 movdqu(xmm2, xmm7); 8444 pclmulqdq(xmm7, xmm10, 0x10); 8445 pxor(xmm7, xmm2); 8446 pxor(xmm7, xmm1); 8447 pextrd(crc, xmm7, 2); 8448 8449 bind(L_cleanup); 8450 addptr(rsp, 16 * 2 + 8); 8451 pop(r12); 8452 } 8453 8454 // S. Gueron / Information Processing Letters 112 (2012) 184 8455 // Algorithm 4: Computing carry-less multiplication using a precomputed lookup table. 8456 // Input: A 32 bit value B = [byte3, byte2, byte1, byte0]. 8457 // Output: the 64-bit carry-less product of B * CONST 8458 void MacroAssembler::crc32c_ipl_alg4(Register in, uint32_t n, 8459 Register tmp1, Register tmp2, Register tmp3) { 8460 lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr())); 8461 if (n > 0) { 8462 addq(tmp3, n * 256 * 8); 8463 } 8464 // Q1 = TABLEExt[n][B & 0xFF]; 8465 movl(tmp1, in); 8466 andl(tmp1, 0x000000FF); 8467 shll(tmp1, 3); 8468 addq(tmp1, tmp3); 8469 movq(tmp1, Address(tmp1, 0)); 8470 8471 // Q2 = TABLEExt[n][B >> 8 & 0xFF]; 8472 movl(tmp2, in); 8473 shrl(tmp2, 8); 8474 andl(tmp2, 0x000000FF); 8475 shll(tmp2, 3); 8476 addq(tmp2, tmp3); 8477 movq(tmp2, Address(tmp2, 0)); 8478 8479 shlq(tmp2, 8); 8480 xorq(tmp1, tmp2); 8481 8482 // Q3 = TABLEExt[n][B >> 16 & 0xFF]; 8483 movl(tmp2, in); 8484 shrl(tmp2, 16); 8485 andl(tmp2, 0x000000FF); 8486 shll(tmp2, 3); 8487 addq(tmp2, tmp3); 8488 movq(tmp2, Address(tmp2, 0)); 8489 8490 shlq(tmp2, 16); 8491 xorq(tmp1, tmp2); 8492 8493 // Q4 = TABLEExt[n][B >> 24 & 0xFF]; 8494 shrl(in, 24); 8495 andl(in, 0x000000FF); 8496 shll(in, 3); 8497 addq(in, tmp3); 8498 movq(in, Address(in, 0)); 8499 8500 shlq(in, 24); 8501 xorq(in, tmp1); 8502 // return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24; 8503 } 8504 8505 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1, 8506 Register in_out, 8507 uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported, 8508 XMMRegister w_xtmp2, 8509 Register tmp1, 8510 Register n_tmp2, Register n_tmp3) { 8511 if (is_pclmulqdq_supported) { 8512 movdl(w_xtmp1, in_out); // modified blindly 8513 8514 movl(tmp1, const_or_pre_comp_const_index); 8515 movdl(w_xtmp2, tmp1); 8516 pclmulqdq(w_xtmp1, w_xtmp2, 0); 8517 8518 movdq(in_out, w_xtmp1); 8519 } else { 8520 crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3); 8521 } 8522 } 8523 8524 // Recombination Alternative 2: No bit-reflections 8525 // T1 = (CRC_A * U1) << 1 8526 // T2 = (CRC_B * U2) << 1 8527 // C1 = T1 >> 32 8528 // C2 = T2 >> 32 8529 // T1 = T1 & 0xFFFFFFFF 8530 // T2 = T2 & 0xFFFFFFFF 8531 // T1 = CRC32(0, T1) 8532 // T2 = CRC32(0, T2) 8533 // C1 = C1 ^ T1 8534 // C2 = C2 ^ T2 8535 // CRC = C1 ^ C2 ^ CRC_C 8536 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2, 8537 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 8538 Register tmp1, Register tmp2, 8539 Register n_tmp3) { 8540 crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3); 8541 crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3); 8542 shlq(in_out, 1); 8543 movl(tmp1, in_out); 8544 shrq(in_out, 32); 8545 xorl(tmp2, tmp2); 8546 crc32(tmp2, tmp1, 4); 8547 xorl(in_out, tmp2); // we don't care about upper 32 bit contents here 8548 shlq(in1, 1); 8549 movl(tmp1, in1); 8550 shrq(in1, 32); 8551 xorl(tmp2, tmp2); 8552 crc32(tmp2, tmp1, 4); 8553 xorl(in1, tmp2); 8554 xorl(in_out, in1); 8555 xorl(in_out, in2); 8556 } 8557 8558 // Set N to predefined value 8559 // Subtract from a length of a buffer 8560 // execute in a loop: 8561 // CRC_A = 0xFFFFFFFF, CRC_B = 0, CRC_C = 0 8562 // for i = 1 to N do 8563 // CRC_A = CRC32(CRC_A, A[i]) 8564 // CRC_B = CRC32(CRC_B, B[i]) 8565 // CRC_C = CRC32(CRC_C, C[i]) 8566 // end for 8567 // Recombine 8568 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, 8569 Register in_out1, Register in_out2, Register in_out3, 8570 Register tmp1, Register tmp2, Register tmp3, 8571 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 8572 Register tmp4, Register tmp5, 8573 Register n_tmp6) { 8574 Label L_processPartitions; 8575 Label L_processPartition; 8576 Label L_exit; 8577 8578 bind(L_processPartitions); 8579 cmpl(in_out1, 3 * size); 8580 jcc(Assembler::less, L_exit); 8581 xorl(tmp1, tmp1); 8582 xorl(tmp2, tmp2); 8583 movq(tmp3, in_out2); 8584 addq(tmp3, size); 8585 8586 bind(L_processPartition); 8587 crc32(in_out3, Address(in_out2, 0), 8); 8588 crc32(tmp1, Address(in_out2, size), 8); 8589 crc32(tmp2, Address(in_out2, size * 2), 8); 8590 addq(in_out2, 8); 8591 cmpq(in_out2, tmp3); 8592 jcc(Assembler::less, L_processPartition); 8593 crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2, 8594 w_xtmp1, w_xtmp2, w_xtmp3, 8595 tmp4, tmp5, 8596 n_tmp6); 8597 addq(in_out2, 2 * size); 8598 subl(in_out1, 3 * size); 8599 jmp(L_processPartitions); 8600 8601 bind(L_exit); 8602 } 8603 #else 8604 void MacroAssembler::crc32c_ipl_alg4(Register in_out, uint32_t n, 8605 Register tmp1, Register tmp2, Register tmp3, 8606 XMMRegister xtmp1, XMMRegister xtmp2) { 8607 lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr())); 8608 if (n > 0) { 8609 addl(tmp3, n * 256 * 8); 8610 } 8611 // Q1 = TABLEExt[n][B & 0xFF]; 8612 movl(tmp1, in_out); 8613 andl(tmp1, 0x000000FF); 8614 shll(tmp1, 3); 8615 addl(tmp1, tmp3); 8616 movq(xtmp1, Address(tmp1, 0)); 8617 8618 // Q2 = TABLEExt[n][B >> 8 & 0xFF]; 8619 movl(tmp2, in_out); 8620 shrl(tmp2, 8); 8621 andl(tmp2, 0x000000FF); 8622 shll(tmp2, 3); 8623 addl(tmp2, tmp3); 8624 movq(xtmp2, Address(tmp2, 0)); 8625 8626 psllq(xtmp2, 8); 8627 pxor(xtmp1, xtmp2); 8628 8629 // Q3 = TABLEExt[n][B >> 16 & 0xFF]; 8630 movl(tmp2, in_out); 8631 shrl(tmp2, 16); 8632 andl(tmp2, 0x000000FF); 8633 shll(tmp2, 3); 8634 addl(tmp2, tmp3); 8635 movq(xtmp2, Address(tmp2, 0)); 8636 8637 psllq(xtmp2, 16); 8638 pxor(xtmp1, xtmp2); 8639 8640 // Q4 = TABLEExt[n][B >> 24 & 0xFF]; 8641 shrl(in_out, 24); 8642 andl(in_out, 0x000000FF); 8643 shll(in_out, 3); 8644 addl(in_out, tmp3); 8645 movq(xtmp2, Address(in_out, 0)); 8646 8647 psllq(xtmp2, 24); 8648 pxor(xtmp1, xtmp2); // Result in CXMM 8649 // return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24; 8650 } 8651 8652 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1, 8653 Register in_out, 8654 uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported, 8655 XMMRegister w_xtmp2, 8656 Register tmp1, 8657 Register n_tmp2, Register n_tmp3) { 8658 if (is_pclmulqdq_supported) { 8659 movdl(w_xtmp1, in_out); 8660 8661 movl(tmp1, const_or_pre_comp_const_index); 8662 movdl(w_xtmp2, tmp1); 8663 pclmulqdq(w_xtmp1, w_xtmp2, 0); 8664 // Keep result in XMM since GPR is 32 bit in length 8665 } else { 8666 crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3, w_xtmp1, w_xtmp2); 8667 } 8668 } 8669 8670 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2, 8671 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 8672 Register tmp1, Register tmp2, 8673 Register n_tmp3) { 8674 crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3); 8675 crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3); 8676 8677 psllq(w_xtmp1, 1); 8678 movdl(tmp1, w_xtmp1); 8679 psrlq(w_xtmp1, 32); 8680 movdl(in_out, w_xtmp1); 8681 8682 xorl(tmp2, tmp2); 8683 crc32(tmp2, tmp1, 4); 8684 xorl(in_out, tmp2); 8685 8686 psllq(w_xtmp2, 1); 8687 movdl(tmp1, w_xtmp2); 8688 psrlq(w_xtmp2, 32); 8689 movdl(in1, w_xtmp2); 8690 8691 xorl(tmp2, tmp2); 8692 crc32(tmp2, tmp1, 4); 8693 xorl(in1, tmp2); 8694 xorl(in_out, in1); 8695 xorl(in_out, in2); 8696 } 8697 8698 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, 8699 Register in_out1, Register in_out2, Register in_out3, 8700 Register tmp1, Register tmp2, Register tmp3, 8701 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 8702 Register tmp4, Register tmp5, 8703 Register n_tmp6) { 8704 Label L_processPartitions; 8705 Label L_processPartition; 8706 Label L_exit; 8707 8708 bind(L_processPartitions); 8709 cmpl(in_out1, 3 * size); 8710 jcc(Assembler::less, L_exit); 8711 xorl(tmp1, tmp1); 8712 xorl(tmp2, tmp2); 8713 movl(tmp3, in_out2); 8714 addl(tmp3, size); 8715 8716 bind(L_processPartition); 8717 crc32(in_out3, Address(in_out2, 0), 4); 8718 crc32(tmp1, Address(in_out2, size), 4); 8719 crc32(tmp2, Address(in_out2, size*2), 4); 8720 crc32(in_out3, Address(in_out2, 0+4), 4); 8721 crc32(tmp1, Address(in_out2, size+4), 4); 8722 crc32(tmp2, Address(in_out2, size*2+4), 4); 8723 addl(in_out2, 8); 8724 cmpl(in_out2, tmp3); 8725 jcc(Assembler::less, L_processPartition); 8726 8727 push(tmp3); 8728 push(in_out1); 8729 push(in_out2); 8730 tmp4 = tmp3; 8731 tmp5 = in_out1; 8732 n_tmp6 = in_out2; 8733 8734 crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2, 8735 w_xtmp1, w_xtmp2, w_xtmp3, 8736 tmp4, tmp5, 8737 n_tmp6); 8738 8739 pop(in_out2); 8740 pop(in_out1); 8741 pop(tmp3); 8742 8743 addl(in_out2, 2 * size); 8744 subl(in_out1, 3 * size); 8745 jmp(L_processPartitions); 8746 8747 bind(L_exit); 8748 } 8749 #endif //LP64 8750 8751 #ifdef _LP64 8752 // Algorithm 2: Pipelined usage of the CRC32 instruction. 8753 // Input: A buffer I of L bytes. 8754 // Output: the CRC32C value of the buffer. 8755 // Notations: 8756 // Write L = 24N + r, with N = floor (L/24). 8757 // r = L mod 24 (0 <= r < 24). 8758 // Consider I as the concatenation of A|B|C|R, where A, B, C, each, 8759 // N quadwords, and R consists of r bytes. 8760 // A[j] = I [8j+7:8j], j= 0, 1, ..., N-1 8761 // B[j] = I [N + 8j+7:N + 8j], j= 0, 1, ..., N-1 8762 // C[j] = I [2N + 8j+7:2N + 8j], j= 0, 1, ..., N-1 8763 // if r > 0 R[j] = I [3N +j], j= 0, 1, ...,r-1 8764 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2, 8765 Register tmp1, Register tmp2, Register tmp3, 8766 Register tmp4, Register tmp5, Register tmp6, 8767 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 8768 bool is_pclmulqdq_supported) { 8769 uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS]; 8770 Label L_wordByWord; 8771 Label L_byteByByteProlog; 8772 Label L_byteByByte; 8773 Label L_exit; 8774 8775 if (is_pclmulqdq_supported ) { 8776 const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr; 8777 const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr+1); 8778 8779 const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2); 8780 const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3); 8781 8782 const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4); 8783 const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5); 8784 assert((CRC32C_NUM_PRECOMPUTED_CONSTANTS - 1 ) == 5, "Checking whether you declared all of the constants based on the number of \"chunks\""); 8785 } else { 8786 const_or_pre_comp_const_index[0] = 1; 8787 const_or_pre_comp_const_index[1] = 0; 8788 8789 const_or_pre_comp_const_index[2] = 3; 8790 const_or_pre_comp_const_index[3] = 2; 8791 8792 const_or_pre_comp_const_index[4] = 5; 8793 const_or_pre_comp_const_index[5] = 4; 8794 } 8795 crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported, 8796 in2, in1, in_out, 8797 tmp1, tmp2, tmp3, 8798 w_xtmp1, w_xtmp2, w_xtmp3, 8799 tmp4, tmp5, 8800 tmp6); 8801 crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported, 8802 in2, in1, in_out, 8803 tmp1, tmp2, tmp3, 8804 w_xtmp1, w_xtmp2, w_xtmp3, 8805 tmp4, tmp5, 8806 tmp6); 8807 crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported, 8808 in2, in1, in_out, 8809 tmp1, tmp2, tmp3, 8810 w_xtmp1, w_xtmp2, w_xtmp3, 8811 tmp4, tmp5, 8812 tmp6); 8813 movl(tmp1, in2); 8814 andl(tmp1, 0x00000007); 8815 negl(tmp1); 8816 addl(tmp1, in2); 8817 addq(tmp1, in1); 8818 8819 cmpq(in1, tmp1); 8820 jccb(Assembler::greaterEqual, L_byteByByteProlog); 8821 align(16); 8822 BIND(L_wordByWord); 8823 crc32(in_out, Address(in1, 0), 8); 8824 addq(in1, 8); 8825 cmpq(in1, tmp1); 8826 jcc(Assembler::less, L_wordByWord); 8827 8828 BIND(L_byteByByteProlog); 8829 andl(in2, 0x00000007); 8830 movl(tmp2, 1); 8831 8832 cmpl(tmp2, in2); 8833 jccb(Assembler::greater, L_exit); 8834 BIND(L_byteByByte); 8835 crc32(in_out, Address(in1, 0), 1); 8836 incq(in1); 8837 incl(tmp2); 8838 cmpl(tmp2, in2); 8839 jcc(Assembler::lessEqual, L_byteByByte); 8840 8841 BIND(L_exit); 8842 } 8843 #else 8844 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2, 8845 Register tmp1, Register tmp2, Register tmp3, 8846 Register tmp4, Register tmp5, Register tmp6, 8847 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 8848 bool is_pclmulqdq_supported) { 8849 uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS]; 8850 Label L_wordByWord; 8851 Label L_byteByByteProlog; 8852 Label L_byteByByte; 8853 Label L_exit; 8854 8855 if (is_pclmulqdq_supported) { 8856 const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr; 8857 const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 1); 8858 8859 const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2); 8860 const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3); 8861 8862 const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4); 8863 const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5); 8864 } else { 8865 const_or_pre_comp_const_index[0] = 1; 8866 const_or_pre_comp_const_index[1] = 0; 8867 8868 const_or_pre_comp_const_index[2] = 3; 8869 const_or_pre_comp_const_index[3] = 2; 8870 8871 const_or_pre_comp_const_index[4] = 5; 8872 const_or_pre_comp_const_index[5] = 4; 8873 } 8874 crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported, 8875 in2, in1, in_out, 8876 tmp1, tmp2, tmp3, 8877 w_xtmp1, w_xtmp2, w_xtmp3, 8878 tmp4, tmp5, 8879 tmp6); 8880 crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported, 8881 in2, in1, in_out, 8882 tmp1, tmp2, tmp3, 8883 w_xtmp1, w_xtmp2, w_xtmp3, 8884 tmp4, tmp5, 8885 tmp6); 8886 crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported, 8887 in2, in1, in_out, 8888 tmp1, tmp2, tmp3, 8889 w_xtmp1, w_xtmp2, w_xtmp3, 8890 tmp4, tmp5, 8891 tmp6); 8892 movl(tmp1, in2); 8893 andl(tmp1, 0x00000007); 8894 negl(tmp1); 8895 addl(tmp1, in2); 8896 addl(tmp1, in1); 8897 8898 BIND(L_wordByWord); 8899 cmpl(in1, tmp1); 8900 jcc(Assembler::greaterEqual, L_byteByByteProlog); 8901 crc32(in_out, Address(in1,0), 4); 8902 addl(in1, 4); 8903 jmp(L_wordByWord); 8904 8905 BIND(L_byteByByteProlog); 8906 andl(in2, 0x00000007); 8907 movl(tmp2, 1); 8908 8909 BIND(L_byteByByte); 8910 cmpl(tmp2, in2); 8911 jccb(Assembler::greater, L_exit); 8912 movb(tmp1, Address(in1, 0)); 8913 crc32(in_out, tmp1, 1); 8914 incl(in1); 8915 incl(tmp2); 8916 jmp(L_byteByByte); 8917 8918 BIND(L_exit); 8919 } 8920 #endif // LP64 8921 #undef BIND 8922 #undef BLOCK_COMMENT 8923 8924 // Compress char[] array to byte[]. 8925 // Intrinsic for java.lang.StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) 8926 // Return the array length if every element in array can be encoded, 8927 // otherwise, the index of first non-latin1 (> 0xff) character. 8928 // @IntrinsicCandidate 8929 // public static int compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) { 8930 // for (int i = 0; i < len; i++) { 8931 // char c = src[srcOff]; 8932 // if (c > 0xff) { 8933 // return i; // return index of non-latin1 char 8934 // } 8935 // dst[dstOff] = (byte)c; 8936 // srcOff++; 8937 // dstOff++; 8938 // } 8939 // return len; 8940 // } 8941 void MacroAssembler::char_array_compress(Register src, Register dst, Register len, 8942 XMMRegister tmp1Reg, XMMRegister tmp2Reg, 8943 XMMRegister tmp3Reg, XMMRegister tmp4Reg, 8944 Register tmp5, Register result, KRegister mask1, KRegister mask2) { 8945 Label copy_chars_loop, done, reset_sp, copy_tail; 8946 8947 // rsi: src 8948 // rdi: dst 8949 // rdx: len 8950 // rcx: tmp5 8951 // rax: result 8952 8953 // rsi holds start addr of source char[] to be compressed 8954 // rdi holds start addr of destination byte[] 8955 // rdx holds length 8956 8957 assert(len != result, ""); 8958 8959 // save length for return 8960 movl(result, len); 8961 8962 if ((AVX3Threshold == 0) && (UseAVX > 2) && // AVX512 8963 VM_Version::supports_avx512vlbw() && 8964 VM_Version::supports_bmi2()) { 8965 8966 Label copy_32_loop, copy_loop_tail, below_threshold, reset_for_copy_tail; 8967 8968 // alignment 8969 Label post_alignment; 8970 8971 // if length of the string is less than 32, handle it the old fashioned way 8972 testl(len, -32); 8973 jcc(Assembler::zero, below_threshold); 8974 8975 // First check whether a character is compressible ( <= 0xFF). 8976 // Create mask to test for Unicode chars inside zmm vector 8977 movl(tmp5, 0x00FF); 8978 evpbroadcastw(tmp2Reg, tmp5, Assembler::AVX_512bit); 8979 8980 testl(len, -64); 8981 jccb(Assembler::zero, post_alignment); 8982 8983 movl(tmp5, dst); 8984 andl(tmp5, (32 - 1)); 8985 negl(tmp5); 8986 andl(tmp5, (32 - 1)); 8987 8988 // bail out when there is nothing to be done 8989 testl(tmp5, 0xFFFFFFFF); 8990 jccb(Assembler::zero, post_alignment); 8991 8992 // ~(~0 << len), where len is the # of remaining elements to process 8993 movl(len, 0xFFFFFFFF); 8994 shlxl(len, len, tmp5); 8995 notl(len); 8996 kmovdl(mask2, len); 8997 movl(len, result); 8998 8999 evmovdquw(tmp1Reg, mask2, Address(src, 0), /*merge*/ false, Assembler::AVX_512bit); 9000 evpcmpw(mask1, mask2, tmp1Reg, tmp2Reg, Assembler::le, /*signed*/ false, Assembler::AVX_512bit); 9001 ktestd(mask1, mask2); 9002 jcc(Assembler::carryClear, copy_tail); 9003 9004 evpmovwb(Address(dst, 0), mask2, tmp1Reg, Assembler::AVX_512bit); 9005 9006 addptr(src, tmp5); 9007 addptr(src, tmp5); 9008 addptr(dst, tmp5); 9009 subl(len, tmp5); 9010 9011 bind(post_alignment); 9012 // end of alignment 9013 9014 movl(tmp5, len); 9015 andl(tmp5, (32 - 1)); // tail count (in chars) 9016 andl(len, ~(32 - 1)); // vector count (in chars) 9017 jccb(Assembler::zero, copy_loop_tail); 9018 9019 lea(src, Address(src, len, Address::times_2)); 9020 lea(dst, Address(dst, len, Address::times_1)); 9021 negptr(len); 9022 9023 bind(copy_32_loop); 9024 evmovdquw(tmp1Reg, Address(src, len, Address::times_2), Assembler::AVX_512bit); 9025 evpcmpuw(mask1, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit); 9026 kortestdl(mask1, mask1); 9027 jccb(Assembler::carryClear, reset_for_copy_tail); 9028 9029 // All elements in current processed chunk are valid candidates for 9030 // compression. Write a truncated byte elements to the memory. 9031 evpmovwb(Address(dst, len, Address::times_1), tmp1Reg, Assembler::AVX_512bit); 9032 addptr(len, 32); 9033 jccb(Assembler::notZero, copy_32_loop); 9034 9035 bind(copy_loop_tail); 9036 // bail out when there is nothing to be done 9037 testl(tmp5, 0xFFFFFFFF); 9038 jcc(Assembler::zero, done); 9039 9040 movl(len, tmp5); 9041 9042 // ~(~0 << len), where len is the # of remaining elements to process 9043 movl(tmp5, 0xFFFFFFFF); 9044 shlxl(tmp5, tmp5, len); 9045 notl(tmp5); 9046 9047 kmovdl(mask2, tmp5); 9048 9049 evmovdquw(tmp1Reg, mask2, Address(src, 0), /*merge*/ false, Assembler::AVX_512bit); 9050 evpcmpw(mask1, mask2, tmp1Reg, tmp2Reg, Assembler::le, /*signed*/ false, Assembler::AVX_512bit); 9051 ktestd(mask1, mask2); 9052 jcc(Assembler::carryClear, copy_tail); 9053 9054 evpmovwb(Address(dst, 0), mask2, tmp1Reg, Assembler::AVX_512bit); 9055 jmp(done); 9056 9057 bind(reset_for_copy_tail); 9058 lea(src, Address(src, tmp5, Address::times_2)); 9059 lea(dst, Address(dst, tmp5, Address::times_1)); 9060 subptr(len, tmp5); 9061 jmp(copy_chars_loop); 9062 9063 bind(below_threshold); 9064 } 9065 9066 if (UseSSE42Intrinsics) { 9067 Label copy_32_loop, copy_16, copy_tail_sse, reset_for_copy_tail; 9068 9069 // vectored compression 9070 testl(len, 0xfffffff8); 9071 jcc(Assembler::zero, copy_tail); 9072 9073 movl(tmp5, 0xff00ff00); // create mask to test for Unicode chars in vectors 9074 movdl(tmp1Reg, tmp5); 9075 pshufd(tmp1Reg, tmp1Reg, 0); // store Unicode mask in tmp1Reg 9076 9077 andl(len, 0xfffffff0); 9078 jccb(Assembler::zero, copy_16); 9079 9080 // compress 16 chars per iter 9081 pxor(tmp4Reg, tmp4Reg); 9082 9083 lea(src, Address(src, len, Address::times_2)); 9084 lea(dst, Address(dst, len, Address::times_1)); 9085 negptr(len); 9086 9087 bind(copy_32_loop); 9088 movdqu(tmp2Reg, Address(src, len, Address::times_2)); // load 1st 8 characters 9089 por(tmp4Reg, tmp2Reg); 9090 movdqu(tmp3Reg, Address(src, len, Address::times_2, 16)); // load next 8 characters 9091 por(tmp4Reg, tmp3Reg); 9092 ptest(tmp4Reg, tmp1Reg); // check for Unicode chars in next vector 9093 jccb(Assembler::notZero, reset_for_copy_tail); 9094 packuswb(tmp2Reg, tmp3Reg); // only ASCII chars; compress each to 1 byte 9095 movdqu(Address(dst, len, Address::times_1), tmp2Reg); 9096 addptr(len, 16); 9097 jccb(Assembler::notZero, copy_32_loop); 9098 9099 // compress next vector of 8 chars (if any) 9100 bind(copy_16); 9101 // len = 0 9102 testl(result, 0x00000008); // check if there's a block of 8 chars to compress 9103 jccb(Assembler::zero, copy_tail_sse); 9104 9105 pxor(tmp3Reg, tmp3Reg); 9106 9107 movdqu(tmp2Reg, Address(src, 0)); 9108 ptest(tmp2Reg, tmp1Reg); // check for Unicode chars in vector 9109 jccb(Assembler::notZero, reset_for_copy_tail); 9110 packuswb(tmp2Reg, tmp3Reg); // only LATIN1 chars; compress each to 1 byte 9111 movq(Address(dst, 0), tmp2Reg); 9112 addptr(src, 16); 9113 addptr(dst, 8); 9114 jmpb(copy_tail_sse); 9115 9116 bind(reset_for_copy_tail); 9117 movl(tmp5, result); 9118 andl(tmp5, 0x0000000f); 9119 lea(src, Address(src, tmp5, Address::times_2)); 9120 lea(dst, Address(dst, tmp5, Address::times_1)); 9121 subptr(len, tmp5); 9122 jmpb(copy_chars_loop); 9123 9124 bind(copy_tail_sse); 9125 movl(len, result); 9126 andl(len, 0x00000007); // tail count (in chars) 9127 } 9128 // compress 1 char per iter 9129 bind(copy_tail); 9130 testl(len, len); 9131 jccb(Assembler::zero, done); 9132 lea(src, Address(src, len, Address::times_2)); 9133 lea(dst, Address(dst, len, Address::times_1)); 9134 negptr(len); 9135 9136 bind(copy_chars_loop); 9137 load_unsigned_short(tmp5, Address(src, len, Address::times_2)); 9138 testl(tmp5, 0xff00); // check if Unicode char 9139 jccb(Assembler::notZero, reset_sp); 9140 movb(Address(dst, len, Address::times_1), tmp5); // ASCII char; compress to 1 byte 9141 increment(len); 9142 jccb(Assembler::notZero, copy_chars_loop); 9143 9144 // add len then return (len will be zero if compress succeeded, otherwise negative) 9145 bind(reset_sp); 9146 addl(result, len); 9147 9148 bind(done); 9149 } 9150 9151 // Inflate byte[] array to char[]. 9152 // ..\jdk\src\java.base\share\classes\java\lang\StringLatin1.java 9153 // @IntrinsicCandidate 9154 // private static void inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) { 9155 // for (int i = 0; i < len; i++) { 9156 // dst[dstOff++] = (char)(src[srcOff++] & 0xff); 9157 // } 9158 // } 9159 void MacroAssembler::byte_array_inflate(Register src, Register dst, Register len, 9160 XMMRegister tmp1, Register tmp2, KRegister mask) { 9161 Label copy_chars_loop, done, below_threshold, avx3_threshold; 9162 // rsi: src 9163 // rdi: dst 9164 // rdx: len 9165 // rcx: tmp2 9166 9167 // rsi holds start addr of source byte[] to be inflated 9168 // rdi holds start addr of destination char[] 9169 // rdx holds length 9170 assert_different_registers(src, dst, len, tmp2); 9171 movl(tmp2, len); 9172 if ((UseAVX > 2) && // AVX512 9173 VM_Version::supports_avx512vlbw() && 9174 VM_Version::supports_bmi2()) { 9175 9176 Label copy_32_loop, copy_tail; 9177 Register tmp3_aliased = len; 9178 9179 // if length of the string is less than 16, handle it in an old fashioned way 9180 testl(len, -16); 9181 jcc(Assembler::zero, below_threshold); 9182 9183 testl(len, -1 * AVX3Threshold); 9184 jcc(Assembler::zero, avx3_threshold); 9185 9186 // In order to use only one arithmetic operation for the main loop we use 9187 // this pre-calculation 9188 andl(tmp2, (32 - 1)); // tail count (in chars), 32 element wide loop 9189 andl(len, -32); // vector count 9190 jccb(Assembler::zero, copy_tail); 9191 9192 lea(src, Address(src, len, Address::times_1)); 9193 lea(dst, Address(dst, len, Address::times_2)); 9194 negptr(len); 9195 9196 9197 // inflate 32 chars per iter 9198 bind(copy_32_loop); 9199 vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_512bit); 9200 evmovdquw(Address(dst, len, Address::times_2), tmp1, Assembler::AVX_512bit); 9201 addptr(len, 32); 9202 jcc(Assembler::notZero, copy_32_loop); 9203 9204 bind(copy_tail); 9205 // bail out when there is nothing to be done 9206 testl(tmp2, -1); // we don't destroy the contents of tmp2 here 9207 jcc(Assembler::zero, done); 9208 9209 // ~(~0 << length), where length is the # of remaining elements to process 9210 movl(tmp3_aliased, -1); 9211 shlxl(tmp3_aliased, tmp3_aliased, tmp2); 9212 notl(tmp3_aliased); 9213 kmovdl(mask, tmp3_aliased); 9214 evpmovzxbw(tmp1, mask, Address(src, 0), Assembler::AVX_512bit); 9215 evmovdquw(Address(dst, 0), mask, tmp1, /*merge*/ true, Assembler::AVX_512bit); 9216 9217 jmp(done); 9218 bind(avx3_threshold); 9219 } 9220 if (UseSSE42Intrinsics) { 9221 Label copy_16_loop, copy_8_loop, copy_bytes, copy_new_tail, copy_tail; 9222 9223 if (UseAVX > 1) { 9224 andl(tmp2, (16 - 1)); 9225 andl(len, -16); 9226 jccb(Assembler::zero, copy_new_tail); 9227 } else { 9228 andl(tmp2, 0x00000007); // tail count (in chars) 9229 andl(len, 0xfffffff8); // vector count (in chars) 9230 jccb(Assembler::zero, copy_tail); 9231 } 9232 9233 // vectored inflation 9234 lea(src, Address(src, len, Address::times_1)); 9235 lea(dst, Address(dst, len, Address::times_2)); 9236 negptr(len); 9237 9238 if (UseAVX > 1) { 9239 bind(copy_16_loop); 9240 vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_256bit); 9241 vmovdqu(Address(dst, len, Address::times_2), tmp1); 9242 addptr(len, 16); 9243 jcc(Assembler::notZero, copy_16_loop); 9244 9245 bind(below_threshold); 9246 bind(copy_new_tail); 9247 movl(len, tmp2); 9248 andl(tmp2, 0x00000007); 9249 andl(len, 0xFFFFFFF8); 9250 jccb(Assembler::zero, copy_tail); 9251 9252 pmovzxbw(tmp1, Address(src, 0)); 9253 movdqu(Address(dst, 0), tmp1); 9254 addptr(src, 8); 9255 addptr(dst, 2 * 8); 9256 9257 jmp(copy_tail, true); 9258 } 9259 9260 // inflate 8 chars per iter 9261 bind(copy_8_loop); 9262 pmovzxbw(tmp1, Address(src, len, Address::times_1)); // unpack to 8 words 9263 movdqu(Address(dst, len, Address::times_2), tmp1); 9264 addptr(len, 8); 9265 jcc(Assembler::notZero, copy_8_loop); 9266 9267 bind(copy_tail); 9268 movl(len, tmp2); 9269 9270 cmpl(len, 4); 9271 jccb(Assembler::less, copy_bytes); 9272 9273 movdl(tmp1, Address(src, 0)); // load 4 byte chars 9274 pmovzxbw(tmp1, tmp1); 9275 movq(Address(dst, 0), tmp1); 9276 subptr(len, 4); 9277 addptr(src, 4); 9278 addptr(dst, 8); 9279 9280 bind(copy_bytes); 9281 } else { 9282 bind(below_threshold); 9283 } 9284 9285 testl(len, len); 9286 jccb(Assembler::zero, done); 9287 lea(src, Address(src, len, Address::times_1)); 9288 lea(dst, Address(dst, len, Address::times_2)); 9289 negptr(len); 9290 9291 // inflate 1 char per iter 9292 bind(copy_chars_loop); 9293 load_unsigned_byte(tmp2, Address(src, len, Address::times_1)); // load byte char 9294 movw(Address(dst, len, Address::times_2), tmp2); // inflate byte char to word 9295 increment(len); 9296 jcc(Assembler::notZero, copy_chars_loop); 9297 9298 bind(done); 9299 } 9300 9301 9302 void MacroAssembler::evmovdqu(BasicType type, KRegister kmask, XMMRegister dst, Address src, bool merge, int vector_len) { 9303 switch(type) { 9304 case T_BYTE: 9305 case T_BOOLEAN: 9306 evmovdqub(dst, kmask, src, merge, vector_len); 9307 break; 9308 case T_CHAR: 9309 case T_SHORT: 9310 evmovdquw(dst, kmask, src, merge, vector_len); 9311 break; 9312 case T_INT: 9313 case T_FLOAT: 9314 evmovdqul(dst, kmask, src, merge, vector_len); 9315 break; 9316 case T_LONG: 9317 case T_DOUBLE: 9318 evmovdquq(dst, kmask, src, merge, vector_len); 9319 break; 9320 default: 9321 fatal("Unexpected type argument %s", type2name(type)); 9322 break; 9323 } 9324 } 9325 9326 void MacroAssembler::evmovdqu(BasicType type, KRegister kmask, Address dst, XMMRegister src, bool merge, int vector_len) { 9327 switch(type) { 9328 case T_BYTE: 9329 case T_BOOLEAN: 9330 evmovdqub(dst, kmask, src, merge, vector_len); 9331 break; 9332 case T_CHAR: 9333 case T_SHORT: 9334 evmovdquw(dst, kmask, src, merge, vector_len); 9335 break; 9336 case T_INT: 9337 case T_FLOAT: 9338 evmovdqul(dst, kmask, src, merge, vector_len); 9339 break; 9340 case T_LONG: 9341 case T_DOUBLE: 9342 evmovdquq(dst, kmask, src, merge, vector_len); 9343 break; 9344 default: 9345 fatal("Unexpected type argument %s", type2name(type)); 9346 break; 9347 } 9348 } 9349 9350 void MacroAssembler::knot(uint masklen, KRegister dst, KRegister src, KRegister ktmp, Register rtmp) { 9351 switch(masklen) { 9352 case 2: 9353 knotbl(dst, src); 9354 movl(rtmp, 3); 9355 kmovbl(ktmp, rtmp); 9356 kandbl(dst, ktmp, dst); 9357 break; 9358 case 4: 9359 knotbl(dst, src); 9360 movl(rtmp, 15); 9361 kmovbl(ktmp, rtmp); 9362 kandbl(dst, ktmp, dst); 9363 break; 9364 case 8: 9365 knotbl(dst, src); 9366 break; 9367 case 16: 9368 knotwl(dst, src); 9369 break; 9370 case 32: 9371 knotdl(dst, src); 9372 break; 9373 case 64: 9374 knotql(dst, src); 9375 break; 9376 default: 9377 fatal("Unexpected vector length %d", masklen); 9378 break; 9379 } 9380 } 9381 9382 void MacroAssembler::kand(BasicType type, KRegister dst, KRegister src1, KRegister src2) { 9383 switch(type) { 9384 case T_BOOLEAN: 9385 case T_BYTE: 9386 kandbl(dst, src1, src2); 9387 break; 9388 case T_CHAR: 9389 case T_SHORT: 9390 kandwl(dst, src1, src2); 9391 break; 9392 case T_INT: 9393 case T_FLOAT: 9394 kanddl(dst, src1, src2); 9395 break; 9396 case T_LONG: 9397 case T_DOUBLE: 9398 kandql(dst, src1, src2); 9399 break; 9400 default: 9401 fatal("Unexpected type argument %s", type2name(type)); 9402 break; 9403 } 9404 } 9405 9406 void MacroAssembler::kor(BasicType type, KRegister dst, KRegister src1, KRegister src2) { 9407 switch(type) { 9408 case T_BOOLEAN: 9409 case T_BYTE: 9410 korbl(dst, src1, src2); 9411 break; 9412 case T_CHAR: 9413 case T_SHORT: 9414 korwl(dst, src1, src2); 9415 break; 9416 case T_INT: 9417 case T_FLOAT: 9418 kordl(dst, src1, src2); 9419 break; 9420 case T_LONG: 9421 case T_DOUBLE: 9422 korql(dst, src1, src2); 9423 break; 9424 default: 9425 fatal("Unexpected type argument %s", type2name(type)); 9426 break; 9427 } 9428 } 9429 9430 void MacroAssembler::kxor(BasicType type, KRegister dst, KRegister src1, KRegister src2) { 9431 switch(type) { 9432 case T_BOOLEAN: 9433 case T_BYTE: 9434 kxorbl(dst, src1, src2); 9435 break; 9436 case T_CHAR: 9437 case T_SHORT: 9438 kxorwl(dst, src1, src2); 9439 break; 9440 case T_INT: 9441 case T_FLOAT: 9442 kxordl(dst, src1, src2); 9443 break; 9444 case T_LONG: 9445 case T_DOUBLE: 9446 kxorql(dst, src1, src2); 9447 break; 9448 default: 9449 fatal("Unexpected type argument %s", type2name(type)); 9450 break; 9451 } 9452 } 9453 9454 void MacroAssembler::evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9455 switch(type) { 9456 case T_BOOLEAN: 9457 case T_BYTE: 9458 evpermb(dst, mask, nds, src, merge, vector_len); break; 9459 case T_CHAR: 9460 case T_SHORT: 9461 evpermw(dst, mask, nds, src, merge, vector_len); break; 9462 case T_INT: 9463 case T_FLOAT: 9464 evpermd(dst, mask, nds, src, merge, vector_len); break; 9465 case T_LONG: 9466 case T_DOUBLE: 9467 evpermq(dst, mask, nds, src, merge, vector_len); break; 9468 default: 9469 fatal("Unexpected type argument %s", type2name(type)); break; 9470 } 9471 } 9472 9473 void MacroAssembler::evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9474 switch(type) { 9475 case T_BOOLEAN: 9476 case T_BYTE: 9477 evpermb(dst, mask, nds, src, merge, vector_len); break; 9478 case T_CHAR: 9479 case T_SHORT: 9480 evpermw(dst, mask, nds, src, merge, vector_len); break; 9481 case T_INT: 9482 case T_FLOAT: 9483 evpermd(dst, mask, nds, src, merge, vector_len); break; 9484 case T_LONG: 9485 case T_DOUBLE: 9486 evpermq(dst, mask, nds, src, merge, vector_len); break; 9487 default: 9488 fatal("Unexpected type argument %s", type2name(type)); break; 9489 } 9490 } 9491 9492 void MacroAssembler::evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9493 switch(type) { 9494 case T_BYTE: 9495 evpminsb(dst, mask, nds, src, merge, vector_len); break; 9496 case T_SHORT: 9497 evpminsw(dst, mask, nds, src, merge, vector_len); break; 9498 case T_INT: 9499 evpminsd(dst, mask, nds, src, merge, vector_len); break; 9500 case T_LONG: 9501 evpminsq(dst, mask, nds, src, merge, vector_len); break; 9502 default: 9503 fatal("Unexpected type argument %s", type2name(type)); break; 9504 } 9505 } 9506 9507 void MacroAssembler::evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9508 switch(type) { 9509 case T_BYTE: 9510 evpmaxsb(dst, mask, nds, src, merge, vector_len); break; 9511 case T_SHORT: 9512 evpmaxsw(dst, mask, nds, src, merge, vector_len); break; 9513 case T_INT: 9514 evpmaxsd(dst, mask, nds, src, merge, vector_len); break; 9515 case T_LONG: 9516 evpmaxsq(dst, mask, nds, src, merge, vector_len); break; 9517 default: 9518 fatal("Unexpected type argument %s", type2name(type)); break; 9519 } 9520 } 9521 9522 void MacroAssembler::evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9523 switch(type) { 9524 case T_BYTE: 9525 evpminsb(dst, mask, nds, src, merge, vector_len); break; 9526 case T_SHORT: 9527 evpminsw(dst, mask, nds, src, merge, vector_len); break; 9528 case T_INT: 9529 evpminsd(dst, mask, nds, src, merge, vector_len); break; 9530 case T_LONG: 9531 evpminsq(dst, mask, nds, src, merge, vector_len); break; 9532 default: 9533 fatal("Unexpected type argument %s", type2name(type)); break; 9534 } 9535 } 9536 9537 void MacroAssembler::evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9538 switch(type) { 9539 case T_BYTE: 9540 evpmaxsb(dst, mask, nds, src, merge, vector_len); break; 9541 case T_SHORT: 9542 evpmaxsw(dst, mask, nds, src, merge, vector_len); break; 9543 case T_INT: 9544 evpmaxsd(dst, mask, nds, src, merge, vector_len); break; 9545 case T_LONG: 9546 evpmaxsq(dst, mask, nds, src, merge, vector_len); break; 9547 default: 9548 fatal("Unexpected type argument %s", type2name(type)); break; 9549 } 9550 } 9551 9552 void MacroAssembler::evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9553 switch(type) { 9554 case T_INT: 9555 evpxord(dst, mask, nds, src, merge, vector_len); break; 9556 case T_LONG: 9557 evpxorq(dst, mask, nds, src, merge, vector_len); break; 9558 default: 9559 fatal("Unexpected type argument %s", type2name(type)); break; 9560 } 9561 } 9562 9563 void MacroAssembler::evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9564 switch(type) { 9565 case T_INT: 9566 evpxord(dst, mask, nds, src, merge, vector_len); break; 9567 case T_LONG: 9568 evpxorq(dst, mask, nds, src, merge, vector_len); break; 9569 default: 9570 fatal("Unexpected type argument %s", type2name(type)); break; 9571 } 9572 } 9573 9574 void MacroAssembler::evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9575 switch(type) { 9576 case T_INT: 9577 Assembler::evpord(dst, mask, nds, src, merge, vector_len); break; 9578 case T_LONG: 9579 evporq(dst, mask, nds, src, merge, vector_len); break; 9580 default: 9581 fatal("Unexpected type argument %s", type2name(type)); break; 9582 } 9583 } 9584 9585 void MacroAssembler::evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9586 switch(type) { 9587 case T_INT: 9588 Assembler::evpord(dst, mask, nds, src, merge, vector_len); break; 9589 case T_LONG: 9590 evporq(dst, mask, nds, src, merge, vector_len); break; 9591 default: 9592 fatal("Unexpected type argument %s", type2name(type)); break; 9593 } 9594 } 9595 9596 void MacroAssembler::evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9597 switch(type) { 9598 case T_INT: 9599 evpandd(dst, mask, nds, src, merge, vector_len); break; 9600 case T_LONG: 9601 evpandq(dst, mask, nds, src, merge, vector_len); break; 9602 default: 9603 fatal("Unexpected type argument %s", type2name(type)); break; 9604 } 9605 } 9606 9607 void MacroAssembler::evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9608 switch(type) { 9609 case T_INT: 9610 evpandd(dst, mask, nds, src, merge, vector_len); break; 9611 case T_LONG: 9612 evpandq(dst, mask, nds, src, merge, vector_len); break; 9613 default: 9614 fatal("Unexpected type argument %s", type2name(type)); break; 9615 } 9616 } 9617 9618 void MacroAssembler::kortest(uint masklen, KRegister src1, KRegister src2) { 9619 switch(masklen) { 9620 case 8: 9621 kortestbl(src1, src2); 9622 break; 9623 case 16: 9624 kortestwl(src1, src2); 9625 break; 9626 case 32: 9627 kortestdl(src1, src2); 9628 break; 9629 case 64: 9630 kortestql(src1, src2); 9631 break; 9632 default: 9633 fatal("Unexpected mask length %d", masklen); 9634 break; 9635 } 9636 } 9637 9638 9639 void MacroAssembler::ktest(uint masklen, KRegister src1, KRegister src2) { 9640 switch(masklen) { 9641 case 8: 9642 ktestbl(src1, src2); 9643 break; 9644 case 16: 9645 ktestwl(src1, src2); 9646 break; 9647 case 32: 9648 ktestdl(src1, src2); 9649 break; 9650 case 64: 9651 ktestql(src1, src2); 9652 break; 9653 default: 9654 fatal("Unexpected mask length %d", masklen); 9655 break; 9656 } 9657 } 9658 9659 void MacroAssembler::evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc) { 9660 switch(type) { 9661 case T_INT: 9662 evprold(dst, mask, src, shift, merge, vlen_enc); break; 9663 case T_LONG: 9664 evprolq(dst, mask, src, shift, merge, vlen_enc); break; 9665 default: 9666 fatal("Unexpected type argument %s", type2name(type)); break; 9667 break; 9668 } 9669 } 9670 9671 void MacroAssembler::evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc) { 9672 switch(type) { 9673 case T_INT: 9674 evprord(dst, mask, src, shift, merge, vlen_enc); break; 9675 case T_LONG: 9676 evprorq(dst, mask, src, shift, merge, vlen_enc); break; 9677 default: 9678 fatal("Unexpected type argument %s", type2name(type)); break; 9679 } 9680 } 9681 9682 void MacroAssembler::evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc) { 9683 switch(type) { 9684 case T_INT: 9685 evprolvd(dst, mask, src1, src2, merge, vlen_enc); break; 9686 case T_LONG: 9687 evprolvq(dst, mask, src1, src2, merge, vlen_enc); break; 9688 default: 9689 fatal("Unexpected type argument %s", type2name(type)); break; 9690 } 9691 } 9692 9693 void MacroAssembler::evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc) { 9694 switch(type) { 9695 case T_INT: 9696 evprorvd(dst, mask, src1, src2, merge, vlen_enc); break; 9697 case T_LONG: 9698 evprorvq(dst, mask, src1, src2, merge, vlen_enc); break; 9699 default: 9700 fatal("Unexpected type argument %s", type2name(type)); break; 9701 } 9702 } 9703 9704 void MacroAssembler::evpandq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 9705 assert(rscratch != noreg || always_reachable(src), "missing"); 9706 9707 if (reachable(src)) { 9708 evpandq(dst, nds, as_Address(src), vector_len); 9709 } else { 9710 lea(rscratch, src); 9711 evpandq(dst, nds, Address(rscratch, 0), vector_len); 9712 } 9713 } 9714 9715 void MacroAssembler::evpaddq(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, bool merge, int vector_len, Register rscratch) { 9716 assert(rscratch != noreg || always_reachable(src), "missing"); 9717 9718 if (reachable(src)) { 9719 Assembler::evpaddq(dst, mask, nds, as_Address(src), merge, vector_len); 9720 } else { 9721 lea(rscratch, src); 9722 Assembler::evpaddq(dst, mask, nds, Address(rscratch, 0), merge, vector_len); 9723 } 9724 } 9725 9726 void MacroAssembler::evporq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 9727 assert(rscratch != noreg || always_reachable(src), "missing"); 9728 9729 if (reachable(src)) { 9730 evporq(dst, nds, as_Address(src), vector_len); 9731 } else { 9732 lea(rscratch, src); 9733 evporq(dst, nds, Address(rscratch, 0), vector_len); 9734 } 9735 } 9736 9737 void MacroAssembler::vpshufb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 9738 assert(rscratch != noreg || always_reachable(src), "missing"); 9739 9740 if (reachable(src)) { 9741 vpshufb(dst, nds, as_Address(src), vector_len); 9742 } else { 9743 lea(rscratch, src); 9744 vpshufb(dst, nds, Address(rscratch, 0), vector_len); 9745 } 9746 } 9747 9748 void MacroAssembler::vpor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 9749 assert(rscratch != noreg || always_reachable(src), "missing"); 9750 9751 if (reachable(src)) { 9752 Assembler::vpor(dst, nds, as_Address(src), vector_len); 9753 } else { 9754 lea(rscratch, src); 9755 Assembler::vpor(dst, nds, Address(rscratch, 0), vector_len); 9756 } 9757 } 9758 9759 void MacroAssembler::vpternlogq(XMMRegister dst, int imm8, XMMRegister src2, AddressLiteral src3, int vector_len, Register rscratch) { 9760 assert(rscratch != noreg || always_reachable(src3), "missing"); 9761 9762 if (reachable(src3)) { 9763 vpternlogq(dst, imm8, src2, as_Address(src3), vector_len); 9764 } else { 9765 lea(rscratch, src3); 9766 vpternlogq(dst, imm8, src2, Address(rscratch, 0), vector_len); 9767 } 9768 } 9769 9770 #if COMPILER2_OR_JVMCI 9771 9772 void MacroAssembler::fill_masked(BasicType bt, Address dst, XMMRegister xmm, KRegister mask, 9773 Register length, Register temp, int vec_enc) { 9774 // Computing mask for predicated vector store. 9775 movptr(temp, -1); 9776 bzhiq(temp, temp, length); 9777 kmov(mask, temp); 9778 evmovdqu(bt, mask, dst, xmm, true, vec_enc); 9779 } 9780 9781 // Set memory operation for length "less than" 64 bytes. 9782 void MacroAssembler::fill64_masked(uint shift, Register dst, int disp, 9783 XMMRegister xmm, KRegister mask, Register length, 9784 Register temp, bool use64byteVector) { 9785 assert(MaxVectorSize >= 32, "vector length should be >= 32"); 9786 const BasicType type[] = { T_BYTE, T_SHORT, T_INT, T_LONG}; 9787 if (!use64byteVector) { 9788 fill32(dst, disp, xmm); 9789 subptr(length, 32 >> shift); 9790 fill32_masked(shift, dst, disp + 32, xmm, mask, length, temp); 9791 } else { 9792 assert(MaxVectorSize == 64, "vector length != 64"); 9793 fill_masked(type[shift], Address(dst, disp), xmm, mask, length, temp, Assembler::AVX_512bit); 9794 } 9795 } 9796 9797 9798 void MacroAssembler::fill32_masked(uint shift, Register dst, int disp, 9799 XMMRegister xmm, KRegister mask, Register length, 9800 Register temp) { 9801 assert(MaxVectorSize >= 32, "vector length should be >= 32"); 9802 const BasicType type[] = { T_BYTE, T_SHORT, T_INT, T_LONG}; 9803 fill_masked(type[shift], Address(dst, disp), xmm, mask, length, temp, Assembler::AVX_256bit); 9804 } 9805 9806 9807 void MacroAssembler::fill32(Address dst, XMMRegister xmm) { 9808 assert(MaxVectorSize >= 32, "vector length should be >= 32"); 9809 vmovdqu(dst, xmm); 9810 } 9811 9812 void MacroAssembler::fill32(Register dst, int disp, XMMRegister xmm) { 9813 fill32(Address(dst, disp), xmm); 9814 } 9815 9816 void MacroAssembler::fill64(Address dst, XMMRegister xmm, bool use64byteVector) { 9817 assert(MaxVectorSize >= 32, "vector length should be >= 32"); 9818 if (!use64byteVector) { 9819 fill32(dst, xmm); 9820 fill32(dst.plus_disp(32), xmm); 9821 } else { 9822 evmovdquq(dst, xmm, Assembler::AVX_512bit); 9823 } 9824 } 9825 9826 void MacroAssembler::fill64(Register dst, int disp, XMMRegister xmm, bool use64byteVector) { 9827 fill64(Address(dst, disp), xmm, use64byteVector); 9828 } 9829 9830 #ifdef _LP64 9831 void MacroAssembler::generate_fill_avx3(BasicType type, Register to, Register value, 9832 Register count, Register rtmp, XMMRegister xtmp) { 9833 Label L_exit; 9834 Label L_fill_start; 9835 Label L_fill_64_bytes; 9836 Label L_fill_96_bytes; 9837 Label L_fill_128_bytes; 9838 Label L_fill_128_bytes_loop; 9839 Label L_fill_128_loop_header; 9840 Label L_fill_128_bytes_loop_header; 9841 Label L_fill_128_bytes_loop_pre_header; 9842 Label L_fill_zmm_sequence; 9843 9844 int shift = -1; 9845 int avx3threshold = VM_Version::avx3_threshold(); 9846 switch(type) { 9847 case T_BYTE: shift = 0; 9848 break; 9849 case T_SHORT: shift = 1; 9850 break; 9851 case T_INT: shift = 2; 9852 break; 9853 /* Uncomment when LONG fill stubs are supported. 9854 case T_LONG: shift = 3; 9855 break; 9856 */ 9857 default: 9858 fatal("Unhandled type: %s\n", type2name(type)); 9859 } 9860 9861 if ((avx3threshold != 0) || (MaxVectorSize == 32)) { 9862 9863 if (MaxVectorSize == 64) { 9864 cmpq(count, avx3threshold >> shift); 9865 jcc(Assembler::greater, L_fill_zmm_sequence); 9866 } 9867 9868 evpbroadcast(type, xtmp, value, Assembler::AVX_256bit); 9869 9870 bind(L_fill_start); 9871 9872 cmpq(count, 32 >> shift); 9873 jccb(Assembler::greater, L_fill_64_bytes); 9874 fill32_masked(shift, to, 0, xtmp, k2, count, rtmp); 9875 jmp(L_exit); 9876 9877 bind(L_fill_64_bytes); 9878 cmpq(count, 64 >> shift); 9879 jccb(Assembler::greater, L_fill_96_bytes); 9880 fill64_masked(shift, to, 0, xtmp, k2, count, rtmp); 9881 jmp(L_exit); 9882 9883 bind(L_fill_96_bytes); 9884 cmpq(count, 96 >> shift); 9885 jccb(Assembler::greater, L_fill_128_bytes); 9886 fill64(to, 0, xtmp); 9887 subq(count, 64 >> shift); 9888 fill32_masked(shift, to, 64, xtmp, k2, count, rtmp); 9889 jmp(L_exit); 9890 9891 bind(L_fill_128_bytes); 9892 cmpq(count, 128 >> shift); 9893 jccb(Assembler::greater, L_fill_128_bytes_loop_pre_header); 9894 fill64(to, 0, xtmp); 9895 fill32(to, 64, xtmp); 9896 subq(count, 96 >> shift); 9897 fill32_masked(shift, to, 96, xtmp, k2, count, rtmp); 9898 jmp(L_exit); 9899 9900 bind(L_fill_128_bytes_loop_pre_header); 9901 { 9902 mov(rtmp, to); 9903 andq(rtmp, 31); 9904 jccb(Assembler::zero, L_fill_128_bytes_loop_header); 9905 negq(rtmp); 9906 addq(rtmp, 32); 9907 mov64(r8, -1L); 9908 bzhiq(r8, r8, rtmp); 9909 kmovql(k2, r8); 9910 evmovdqu(T_BYTE, k2, Address(to, 0), xtmp, true, Assembler::AVX_256bit); 9911 addq(to, rtmp); 9912 shrq(rtmp, shift); 9913 subq(count, rtmp); 9914 } 9915 9916 cmpq(count, 128 >> shift); 9917 jcc(Assembler::less, L_fill_start); 9918 9919 bind(L_fill_128_bytes_loop_header); 9920 subq(count, 128 >> shift); 9921 9922 align32(); 9923 bind(L_fill_128_bytes_loop); 9924 fill64(to, 0, xtmp); 9925 fill64(to, 64, xtmp); 9926 addq(to, 128); 9927 subq(count, 128 >> shift); 9928 jccb(Assembler::greaterEqual, L_fill_128_bytes_loop); 9929 9930 addq(count, 128 >> shift); 9931 jcc(Assembler::zero, L_exit); 9932 jmp(L_fill_start); 9933 } 9934 9935 if (MaxVectorSize == 64) { 9936 // Sequence using 64 byte ZMM register. 9937 Label L_fill_128_bytes_zmm; 9938 Label L_fill_192_bytes_zmm; 9939 Label L_fill_192_bytes_loop_zmm; 9940 Label L_fill_192_bytes_loop_header_zmm; 9941 Label L_fill_192_bytes_loop_pre_header_zmm; 9942 Label L_fill_start_zmm_sequence; 9943 9944 bind(L_fill_zmm_sequence); 9945 evpbroadcast(type, xtmp, value, Assembler::AVX_512bit); 9946 9947 bind(L_fill_start_zmm_sequence); 9948 cmpq(count, 64 >> shift); 9949 jccb(Assembler::greater, L_fill_128_bytes_zmm); 9950 fill64_masked(shift, to, 0, xtmp, k2, count, rtmp, true); 9951 jmp(L_exit); 9952 9953 bind(L_fill_128_bytes_zmm); 9954 cmpq(count, 128 >> shift); 9955 jccb(Assembler::greater, L_fill_192_bytes_zmm); 9956 fill64(to, 0, xtmp, true); 9957 subq(count, 64 >> shift); 9958 fill64_masked(shift, to, 64, xtmp, k2, count, rtmp, true); 9959 jmp(L_exit); 9960 9961 bind(L_fill_192_bytes_zmm); 9962 cmpq(count, 192 >> shift); 9963 jccb(Assembler::greater, L_fill_192_bytes_loop_pre_header_zmm); 9964 fill64(to, 0, xtmp, true); 9965 fill64(to, 64, xtmp, true); 9966 subq(count, 128 >> shift); 9967 fill64_masked(shift, to, 128, xtmp, k2, count, rtmp, true); 9968 jmp(L_exit); 9969 9970 bind(L_fill_192_bytes_loop_pre_header_zmm); 9971 { 9972 movq(rtmp, to); 9973 andq(rtmp, 63); 9974 jccb(Assembler::zero, L_fill_192_bytes_loop_header_zmm); 9975 negq(rtmp); 9976 addq(rtmp, 64); 9977 mov64(r8, -1L); 9978 bzhiq(r8, r8, rtmp); 9979 kmovql(k2, r8); 9980 evmovdqu(T_BYTE, k2, Address(to, 0), xtmp, true, Assembler::AVX_512bit); 9981 addq(to, rtmp); 9982 shrq(rtmp, shift); 9983 subq(count, rtmp); 9984 } 9985 9986 cmpq(count, 192 >> shift); 9987 jcc(Assembler::less, L_fill_start_zmm_sequence); 9988 9989 bind(L_fill_192_bytes_loop_header_zmm); 9990 subq(count, 192 >> shift); 9991 9992 align32(); 9993 bind(L_fill_192_bytes_loop_zmm); 9994 fill64(to, 0, xtmp, true); 9995 fill64(to, 64, xtmp, true); 9996 fill64(to, 128, xtmp, true); 9997 addq(to, 192); 9998 subq(count, 192 >> shift); 9999 jccb(Assembler::greaterEqual, L_fill_192_bytes_loop_zmm); 10000 10001 addq(count, 192 >> shift); 10002 jcc(Assembler::zero, L_exit); 10003 jmp(L_fill_start_zmm_sequence); 10004 } 10005 bind(L_exit); 10006 } 10007 #endif 10008 #endif //COMPILER2_OR_JVMCI 10009 10010 10011 #ifdef _LP64 10012 void MacroAssembler::convert_f2i(Register dst, XMMRegister src) { 10013 Label done; 10014 cvttss2sil(dst, src); 10015 // Conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub 10016 cmpl(dst, 0x80000000); // float_sign_flip 10017 jccb(Assembler::notEqual, done); 10018 subptr(rsp, 8); 10019 movflt(Address(rsp, 0), src); 10020 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::f2i_fixup()))); 10021 pop(dst); 10022 bind(done); 10023 } 10024 10025 void MacroAssembler::convert_d2i(Register dst, XMMRegister src) { 10026 Label done; 10027 cvttsd2sil(dst, src); 10028 // Conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub 10029 cmpl(dst, 0x80000000); // float_sign_flip 10030 jccb(Assembler::notEqual, done); 10031 subptr(rsp, 8); 10032 movdbl(Address(rsp, 0), src); 10033 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::d2i_fixup()))); 10034 pop(dst); 10035 bind(done); 10036 } 10037 10038 void MacroAssembler::convert_f2l(Register dst, XMMRegister src) { 10039 Label done; 10040 cvttss2siq(dst, src); 10041 cmp64(dst, ExternalAddress((address) StubRoutines::x86::double_sign_flip())); 10042 jccb(Assembler::notEqual, done); 10043 subptr(rsp, 8); 10044 movflt(Address(rsp, 0), src); 10045 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::f2l_fixup()))); 10046 pop(dst); 10047 bind(done); 10048 } 10049 10050 void MacroAssembler::round_float(Register dst, XMMRegister src, Register rtmp, Register rcx) { 10051 // Following code is line by line assembly translation rounding algorithm. 10052 // Please refer to java.lang.Math.round(float) algorithm for details. 10053 const int32_t FloatConsts_EXP_BIT_MASK = 0x7F800000; 10054 const int32_t FloatConsts_SIGNIFICAND_WIDTH = 24; 10055 const int32_t FloatConsts_EXP_BIAS = 127; 10056 const int32_t FloatConsts_SIGNIF_BIT_MASK = 0x007FFFFF; 10057 const int32_t MINUS_32 = 0xFFFFFFE0; 10058 Label L_special_case, L_block1, L_exit; 10059 movl(rtmp, FloatConsts_EXP_BIT_MASK); 10060 movdl(dst, src); 10061 andl(dst, rtmp); 10062 sarl(dst, FloatConsts_SIGNIFICAND_WIDTH - 1); 10063 movl(rtmp, FloatConsts_SIGNIFICAND_WIDTH - 2 + FloatConsts_EXP_BIAS); 10064 subl(rtmp, dst); 10065 movl(rcx, rtmp); 10066 movl(dst, MINUS_32); 10067 testl(rtmp, dst); 10068 jccb(Assembler::notEqual, L_special_case); 10069 movdl(dst, src); 10070 andl(dst, FloatConsts_SIGNIF_BIT_MASK); 10071 orl(dst, FloatConsts_SIGNIF_BIT_MASK + 1); 10072 movdl(rtmp, src); 10073 testl(rtmp, rtmp); 10074 jccb(Assembler::greaterEqual, L_block1); 10075 negl(dst); 10076 bind(L_block1); 10077 sarl(dst); 10078 addl(dst, 0x1); 10079 sarl(dst, 0x1); 10080 jmp(L_exit); 10081 bind(L_special_case); 10082 convert_f2i(dst, src); 10083 bind(L_exit); 10084 } 10085 10086 void MacroAssembler::round_double(Register dst, XMMRegister src, Register rtmp, Register rcx) { 10087 // Following code is line by line assembly translation rounding algorithm. 10088 // Please refer to java.lang.Math.round(double) algorithm for details. 10089 const int64_t DoubleConsts_EXP_BIT_MASK = 0x7FF0000000000000L; 10090 const int64_t DoubleConsts_SIGNIFICAND_WIDTH = 53; 10091 const int64_t DoubleConsts_EXP_BIAS = 1023; 10092 const int64_t DoubleConsts_SIGNIF_BIT_MASK = 0x000FFFFFFFFFFFFFL; 10093 const int64_t MINUS_64 = 0xFFFFFFFFFFFFFFC0L; 10094 Label L_special_case, L_block1, L_exit; 10095 mov64(rtmp, DoubleConsts_EXP_BIT_MASK); 10096 movq(dst, src); 10097 andq(dst, rtmp); 10098 sarq(dst, DoubleConsts_SIGNIFICAND_WIDTH - 1); 10099 mov64(rtmp, DoubleConsts_SIGNIFICAND_WIDTH - 2 + DoubleConsts_EXP_BIAS); 10100 subq(rtmp, dst); 10101 movq(rcx, rtmp); 10102 mov64(dst, MINUS_64); 10103 testq(rtmp, dst); 10104 jccb(Assembler::notEqual, L_special_case); 10105 movq(dst, src); 10106 mov64(rtmp, DoubleConsts_SIGNIF_BIT_MASK); 10107 andq(dst, rtmp); 10108 mov64(rtmp, DoubleConsts_SIGNIF_BIT_MASK + 1); 10109 orq(dst, rtmp); 10110 movq(rtmp, src); 10111 testq(rtmp, rtmp); 10112 jccb(Assembler::greaterEqual, L_block1); 10113 negq(dst); 10114 bind(L_block1); 10115 sarq(dst); 10116 addq(dst, 0x1); 10117 sarq(dst, 0x1); 10118 jmp(L_exit); 10119 bind(L_special_case); 10120 convert_d2l(dst, src); 10121 bind(L_exit); 10122 } 10123 10124 void MacroAssembler::convert_d2l(Register dst, XMMRegister src) { 10125 Label done; 10126 cvttsd2siq(dst, src); 10127 cmp64(dst, ExternalAddress((address) StubRoutines::x86::double_sign_flip())); 10128 jccb(Assembler::notEqual, done); 10129 subptr(rsp, 8); 10130 movdbl(Address(rsp, 0), src); 10131 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::d2l_fixup()))); 10132 pop(dst); 10133 bind(done); 10134 } 10135 10136 void MacroAssembler::cache_wb(Address line) 10137 { 10138 // 64 bit cpus always support clflush 10139 assert(VM_Version::supports_clflush(), "clflush should be available"); 10140 bool optimized = VM_Version::supports_clflushopt(); 10141 bool no_evict = VM_Version::supports_clwb(); 10142 10143 // prefer clwb (writeback without evict) otherwise 10144 // prefer clflushopt (potentially parallel writeback with evict) 10145 // otherwise fallback on clflush (serial writeback with evict) 10146 10147 if (optimized) { 10148 if (no_evict) { 10149 clwb(line); 10150 } else { 10151 clflushopt(line); 10152 } 10153 } else { 10154 // no need for fence when using CLFLUSH 10155 clflush(line); 10156 } 10157 } 10158 10159 void MacroAssembler::cache_wbsync(bool is_pre) 10160 { 10161 assert(VM_Version::supports_clflush(), "clflush should be available"); 10162 bool optimized = VM_Version::supports_clflushopt(); 10163 bool no_evict = VM_Version::supports_clwb(); 10164 10165 // pick the correct implementation 10166 10167 if (!is_pre && (optimized || no_evict)) { 10168 // need an sfence for post flush when using clflushopt or clwb 10169 // otherwise no no need for any synchroniaztion 10170 10171 sfence(); 10172 } 10173 } 10174 10175 #endif // _LP64 10176 10177 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) { 10178 switch (cond) { 10179 // Note some conditions are synonyms for others 10180 case Assembler::zero: return Assembler::notZero; 10181 case Assembler::notZero: return Assembler::zero; 10182 case Assembler::less: return Assembler::greaterEqual; 10183 case Assembler::lessEqual: return Assembler::greater; 10184 case Assembler::greater: return Assembler::lessEqual; 10185 case Assembler::greaterEqual: return Assembler::less; 10186 case Assembler::below: return Assembler::aboveEqual; 10187 case Assembler::belowEqual: return Assembler::above; 10188 case Assembler::above: return Assembler::belowEqual; 10189 case Assembler::aboveEqual: return Assembler::below; 10190 case Assembler::overflow: return Assembler::noOverflow; 10191 case Assembler::noOverflow: return Assembler::overflow; 10192 case Assembler::negative: return Assembler::positive; 10193 case Assembler::positive: return Assembler::negative; 10194 case Assembler::parity: return Assembler::noParity; 10195 case Assembler::noParity: return Assembler::parity; 10196 } 10197 ShouldNotReachHere(); return Assembler::overflow; 10198 } 10199 10200 SkipIfEqual::SkipIfEqual( 10201 MacroAssembler* masm, const bool* flag_addr, bool value, Register rscratch) { 10202 _masm = masm; 10203 _masm->cmp8(ExternalAddress((address)flag_addr), value, rscratch); 10204 _masm->jcc(Assembler::equal, _label); 10205 } 10206 10207 SkipIfEqual::~SkipIfEqual() { 10208 _masm->bind(_label); 10209 } 10210 10211 // 32-bit Windows has its own fast-path implementation 10212 // of get_thread 10213 #if !defined(WIN32) || defined(_LP64) 10214 10215 // This is simply a call to Thread::current() 10216 void MacroAssembler::get_thread(Register thread) { 10217 if (thread != rax) { 10218 push(rax); 10219 } 10220 LP64_ONLY(push(rdi);) 10221 LP64_ONLY(push(rsi);) 10222 push(rdx); 10223 push(rcx); 10224 #ifdef _LP64 10225 push(r8); 10226 push(r9); 10227 push(r10); 10228 push(r11); 10229 #endif 10230 10231 MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, Thread::current), 0); 10232 10233 #ifdef _LP64 10234 pop(r11); 10235 pop(r10); 10236 pop(r9); 10237 pop(r8); 10238 #endif 10239 pop(rcx); 10240 pop(rdx); 10241 LP64_ONLY(pop(rsi);) 10242 LP64_ONLY(pop(rdi);) 10243 if (thread != rax) { 10244 mov(thread, rax); 10245 pop(rax); 10246 } 10247 } 10248 10249 10250 #endif // !WIN32 || _LP64 10251 10252 void MacroAssembler::check_stack_alignment(Register sp, const char* msg, unsigned bias, Register tmp) { 10253 Label L_stack_ok; 10254 if (bias == 0) { 10255 testptr(sp, 2 * wordSize - 1); 10256 } else { 10257 // lea(tmp, Address(rsp, bias); 10258 mov(tmp, sp); 10259 addptr(tmp, bias); 10260 testptr(tmp, 2 * wordSize - 1); 10261 } 10262 jcc(Assembler::equal, L_stack_ok); 10263 block_comment(msg); 10264 stop(msg); 10265 bind(L_stack_ok); 10266 } 10267 10268 // Implements lightweight-locking. 10269 // 10270 // obj: the object to be locked 10271 // reg_rax: rax 10272 // thread: the thread which attempts to lock obj 10273 // tmp: a temporary register 10274 void MacroAssembler::lightweight_lock(Register obj, Register reg_rax, Register thread, Register tmp, Label& slow) { 10275 assert(reg_rax == rax, ""); 10276 assert_different_registers(obj, reg_rax, thread, tmp); 10277 10278 Label push; 10279 const Register top = tmp; 10280 10281 // Preload the markWord. It is important that this is the first 10282 // instruction emitted as it is part of C1's null check semantics. 10283 movptr(reg_rax, Address(obj, oopDesc::mark_offset_in_bytes())); 10284 10285 // Load top. 10286 movl(top, Address(thread, JavaThread::lock_stack_top_offset())); 10287 10288 // Check if the lock-stack is full. 10289 cmpl(top, LockStack::end_offset()); 10290 jcc(Assembler::greaterEqual, slow); 10291 10292 // Check for recursion. 10293 cmpptr(obj, Address(thread, top, Address::times_1, -oopSize)); 10294 jcc(Assembler::equal, push); 10295 10296 // Check header for monitor (0b10). 10297 testptr(reg_rax, markWord::monitor_value); 10298 jcc(Assembler::notZero, slow); 10299 10300 // Try to lock. Transition lock bits 0b01 => 0b00 10301 movptr(tmp, reg_rax); 10302 andptr(tmp, ~(int32_t)markWord::unlocked_value); 10303 orptr(reg_rax, markWord::unlocked_value); 10304 lock(); cmpxchgptr(tmp, Address(obj, oopDesc::mark_offset_in_bytes())); 10305 jcc(Assembler::notEqual, slow); 10306 10307 // Restore top, CAS clobbers register. 10308 movl(top, Address(thread, JavaThread::lock_stack_top_offset())); 10309 10310 bind(push); 10311 // After successful lock, push object on lock-stack. 10312 movptr(Address(thread, top), obj); 10313 incrementl(top, oopSize); 10314 movl(Address(thread, JavaThread::lock_stack_top_offset()), top); 10315 } 10316 10317 // Implements lightweight-unlocking. 10318 // 10319 // obj: the object to be unlocked 10320 // reg_rax: rax 10321 // thread: the thread 10322 // tmp: a temporary register 10323 // 10324 // x86_32 Note: reg_rax and thread may alias each other due to limited register 10325 // availiability. 10326 void MacroAssembler::lightweight_unlock(Register obj, Register reg_rax, Register thread, Register tmp, Label& slow) { 10327 assert(reg_rax == rax, ""); 10328 assert_different_registers(obj, reg_rax, tmp); 10329 LP64_ONLY(assert_different_registers(obj, reg_rax, thread, tmp);) 10330 10331 Label unlocked, push_and_slow; 10332 const Register top = tmp; 10333 10334 // Check if obj is top of lock-stack. 10335 movl(top, Address(thread, JavaThread::lock_stack_top_offset())); 10336 cmpptr(obj, Address(thread, top, Address::times_1, -oopSize)); 10337 jcc(Assembler::notEqual, slow); 10338 10339 // Pop lock-stack. 10340 DEBUG_ONLY(movptr(Address(thread, top, Address::times_1, -oopSize), 0);) 10341 subl(Address(thread, JavaThread::lock_stack_top_offset()), oopSize); 10342 10343 // Check if recursive. 10344 cmpptr(obj, Address(thread, top, Address::times_1, -2 * oopSize)); 10345 jcc(Assembler::equal, unlocked); 10346 10347 // Not recursive. Check header for monitor (0b10). 10348 movptr(reg_rax, Address(obj, oopDesc::mark_offset_in_bytes())); 10349 testptr(reg_rax, markWord::monitor_value); 10350 jcc(Assembler::notZero, push_and_slow); 10351 10352 #ifdef ASSERT 10353 // Check header not unlocked (0b01). 10354 Label not_unlocked; 10355 testptr(reg_rax, markWord::unlocked_value); 10356 jcc(Assembler::zero, not_unlocked); 10357 stop("lightweight_unlock already unlocked"); 10358 bind(not_unlocked); 10359 #endif 10360 10361 // Try to unlock. Transition lock bits 0b00 => 0b01 10362 movptr(tmp, reg_rax); 10363 orptr(tmp, markWord::unlocked_value); 10364 lock(); cmpxchgptr(tmp, Address(obj, oopDesc::mark_offset_in_bytes())); 10365 jcc(Assembler::equal, unlocked); 10366 10367 bind(push_and_slow); 10368 // Restore lock-stack and handle the unlock in runtime. 10369 if (thread == reg_rax) { 10370 // On x86_32 we may lose the thread. 10371 get_thread(thread); 10372 } 10373 #ifdef ASSERT 10374 movl(top, Address(thread, JavaThread::lock_stack_top_offset())); 10375 movptr(Address(thread, top), obj); 10376 #endif 10377 addl(Address(thread, JavaThread::lock_stack_top_offset()), oopSize); 10378 jmp(slow); 10379 10380 bind(unlocked); 10381 }