1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "asm/assembler.hpp" 26 #include "asm/assembler.inline.hpp" 27 #include "code/compiledIC.hpp" 28 #include "compiler/compiler_globals.hpp" 29 #include "compiler/disassembler.hpp" 30 #include "crc32c.h" 31 #include "gc/shared/barrierSet.hpp" 32 #include "gc/shared/barrierSetAssembler.hpp" 33 #include "gc/shared/collectedHeap.inline.hpp" 34 #include "gc/shared/tlab_globals.hpp" 35 #include "interpreter/bytecodeHistogram.hpp" 36 #include "interpreter/interpreter.hpp" 37 #include "interpreter/interpreterRuntime.hpp" 38 #include "jvm.h" 39 #include "memory/resourceArea.hpp" 40 #include "memory/universe.hpp" 41 #include "oops/accessDecorators.hpp" 42 #include "oops/compressedKlass.inline.hpp" 43 #include "oops/compressedOops.inline.hpp" 44 #include "oops/klass.inline.hpp" 45 #include "prims/methodHandles.hpp" 46 #include "runtime/continuation.hpp" 47 #include "runtime/interfaceSupport.inline.hpp" 48 #include "runtime/javaThread.hpp" 49 #include "runtime/jniHandles.hpp" 50 #include "runtime/objectMonitor.hpp" 51 #include "runtime/os.hpp" 52 #include "runtime/safepoint.hpp" 53 #include "runtime/safepointMechanism.hpp" 54 #include "runtime/sharedRuntime.hpp" 55 #include "runtime/stubRoutines.hpp" 56 #include "utilities/checkedCast.hpp" 57 #include "utilities/macros.hpp" 58 59 #ifdef PRODUCT 60 #define BLOCK_COMMENT(str) /* nothing */ 61 #define STOP(error) stop(error) 62 #else 63 #define BLOCK_COMMENT(str) block_comment(str) 64 #define STOP(error) block_comment(error); stop(error) 65 #endif 66 67 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") 68 69 #ifdef ASSERT 70 bool AbstractAssembler::pd_check_instruction_mark() { return true; } 71 #endif 72 73 static const Assembler::Condition reverse[] = { 74 Assembler::noOverflow /* overflow = 0x0 */ , 75 Assembler::overflow /* noOverflow = 0x1 */ , 76 Assembler::aboveEqual /* carrySet = 0x2, below = 0x2 */ , 77 Assembler::below /* aboveEqual = 0x3, carryClear = 0x3 */ , 78 Assembler::notZero /* zero = 0x4, equal = 0x4 */ , 79 Assembler::zero /* notZero = 0x5, notEqual = 0x5 */ , 80 Assembler::above /* belowEqual = 0x6 */ , 81 Assembler::belowEqual /* above = 0x7 */ , 82 Assembler::positive /* negative = 0x8 */ , 83 Assembler::negative /* positive = 0x9 */ , 84 Assembler::noParity /* parity = 0xa */ , 85 Assembler::parity /* noParity = 0xb */ , 86 Assembler::greaterEqual /* less = 0xc */ , 87 Assembler::less /* greaterEqual = 0xd */ , 88 Assembler::greater /* lessEqual = 0xe */ , 89 Assembler::lessEqual /* greater = 0xf, */ 90 91 }; 92 93 94 // Implementation of MacroAssembler 95 96 // First all the versions that have distinct versions depending on 32/64 bit 97 // Unless the difference is trivial (1 line or so). 98 99 #ifndef _LP64 100 101 // 32bit versions 102 103 Address MacroAssembler::as_Address(AddressLiteral adr) { 104 return Address(adr.target(), adr.rspec()); 105 } 106 107 Address MacroAssembler::as_Address(ArrayAddress adr, Register rscratch) { 108 assert(rscratch == noreg, ""); 109 return Address::make_array(adr); 110 } 111 112 void MacroAssembler::call_VM_leaf_base(address entry_point, 113 int number_of_arguments) { 114 call(RuntimeAddress(entry_point)); 115 increment(rsp, number_of_arguments * wordSize); 116 } 117 118 void MacroAssembler::cmpklass(Address src1, Metadata* obj) { 119 cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate()); 120 } 121 122 123 void MacroAssembler::cmpklass(Register src1, Metadata* obj) { 124 cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate()); 125 } 126 127 void MacroAssembler::cmpoop(Address src1, jobject obj) { 128 cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate()); 129 } 130 131 void MacroAssembler::cmpoop(Register src1, jobject obj, Register rscratch) { 132 assert(rscratch == noreg, "redundant"); 133 cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate()); 134 } 135 136 void MacroAssembler::extend_sign(Register hi, Register lo) { 137 // According to Intel Doc. AP-526, "Integer Divide", p.18. 138 if (VM_Version::is_P6() && hi == rdx && lo == rax) { 139 cdql(); 140 } else { 141 movl(hi, lo); 142 sarl(hi, 31); 143 } 144 } 145 146 void MacroAssembler::jC2(Register tmp, Label& L) { 147 // set parity bit if FPU flag C2 is set (via rax) 148 save_rax(tmp); 149 fwait(); fnstsw_ax(); 150 sahf(); 151 restore_rax(tmp); 152 // branch 153 jcc(Assembler::parity, L); 154 } 155 156 void MacroAssembler::jnC2(Register tmp, Label& L) { 157 // set parity bit if FPU flag C2 is set (via rax) 158 save_rax(tmp); 159 fwait(); fnstsw_ax(); 160 sahf(); 161 restore_rax(tmp); 162 // branch 163 jcc(Assembler::noParity, L); 164 } 165 166 // 32bit can do a case table jump in one instruction but we no longer allow the base 167 // to be installed in the Address class 168 void MacroAssembler::jump(ArrayAddress entry, Register rscratch) { 169 assert(rscratch == noreg, "not needed"); 170 jmp(as_Address(entry, noreg)); 171 } 172 173 // Note: y_lo will be destroyed 174 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) { 175 // Long compare for Java (semantics as described in JVM spec.) 176 Label high, low, done; 177 178 cmpl(x_hi, y_hi); 179 jcc(Assembler::less, low); 180 jcc(Assembler::greater, high); 181 // x_hi is the return register 182 xorl(x_hi, x_hi); 183 cmpl(x_lo, y_lo); 184 jcc(Assembler::below, low); 185 jcc(Assembler::equal, done); 186 187 bind(high); 188 xorl(x_hi, x_hi); 189 increment(x_hi); 190 jmp(done); 191 192 bind(low); 193 xorl(x_hi, x_hi); 194 decrementl(x_hi); 195 196 bind(done); 197 } 198 199 void MacroAssembler::lea(Register dst, AddressLiteral src) { 200 mov_literal32(dst, (int32_t)src.target(), src.rspec()); 201 } 202 203 void MacroAssembler::lea(Address dst, AddressLiteral adr, Register rscratch) { 204 assert(rscratch == noreg, "not needed"); 205 206 // leal(dst, as_Address(adr)); 207 // see note in movl as to why we must use a move 208 mov_literal32(dst, (int32_t)adr.target(), adr.rspec()); 209 } 210 211 void MacroAssembler::leave() { 212 mov(rsp, rbp); 213 pop(rbp); 214 } 215 216 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) { 217 // Multiplication of two Java long values stored on the stack 218 // as illustrated below. Result is in rdx:rax. 219 // 220 // rsp ---> [ ?? ] \ \ 221 // .... | y_rsp_offset | 222 // [ y_lo ] / (in bytes) | x_rsp_offset 223 // [ y_hi ] | (in bytes) 224 // .... | 225 // [ x_lo ] / 226 // [ x_hi ] 227 // .... 228 // 229 // Basic idea: lo(result) = lo(x_lo * y_lo) 230 // hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi) 231 Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset); 232 Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset); 233 Label quick; 234 // load x_hi, y_hi and check if quick 235 // multiplication is possible 236 movl(rbx, x_hi); 237 movl(rcx, y_hi); 238 movl(rax, rbx); 239 orl(rbx, rcx); // rbx, = 0 <=> x_hi = 0 and y_hi = 0 240 jcc(Assembler::zero, quick); // if rbx, = 0 do quick multiply 241 // do full multiplication 242 // 1st step 243 mull(y_lo); // x_hi * y_lo 244 movl(rbx, rax); // save lo(x_hi * y_lo) in rbx, 245 // 2nd step 246 movl(rax, x_lo); 247 mull(rcx); // x_lo * y_hi 248 addl(rbx, rax); // add lo(x_lo * y_hi) to rbx, 249 // 3rd step 250 bind(quick); // note: rbx, = 0 if quick multiply! 251 movl(rax, x_lo); 252 mull(y_lo); // x_lo * y_lo 253 addl(rdx, rbx); // correct hi(x_lo * y_lo) 254 } 255 256 void MacroAssembler::lneg(Register hi, Register lo) { 257 negl(lo); 258 adcl(hi, 0); 259 negl(hi); 260 } 261 262 void MacroAssembler::lshl(Register hi, Register lo) { 263 // Java shift left long support (semantics as described in JVM spec., p.305) 264 // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n)) 265 // shift value is in rcx ! 266 assert(hi != rcx, "must not use rcx"); 267 assert(lo != rcx, "must not use rcx"); 268 const Register s = rcx; // shift count 269 const int n = BitsPerWord; 270 Label L; 271 andl(s, 0x3f); // s := s & 0x3f (s < 0x40) 272 cmpl(s, n); // if (s < n) 273 jcc(Assembler::less, L); // else (s >= n) 274 movl(hi, lo); // x := x << n 275 xorl(lo, lo); 276 // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n! 277 bind(L); // s (mod n) < n 278 shldl(hi, lo); // x := x << s 279 shll(lo); 280 } 281 282 283 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) { 284 // Java shift right long support (semantics as described in JVM spec., p.306 & p.310) 285 // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n)) 286 assert(hi != rcx, "must not use rcx"); 287 assert(lo != rcx, "must not use rcx"); 288 const Register s = rcx; // shift count 289 const int n = BitsPerWord; 290 Label L; 291 andl(s, 0x3f); // s := s & 0x3f (s < 0x40) 292 cmpl(s, n); // if (s < n) 293 jcc(Assembler::less, L); // else (s >= n) 294 movl(lo, hi); // x := x >> n 295 if (sign_extension) sarl(hi, 31); 296 else xorl(hi, hi); 297 // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n! 298 bind(L); // s (mod n) < n 299 shrdl(lo, hi); // x := x >> s 300 if (sign_extension) sarl(hi); 301 else shrl(hi); 302 } 303 304 void MacroAssembler::movoop(Register dst, jobject obj) { 305 mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate()); 306 } 307 308 void MacroAssembler::movoop(Address dst, jobject obj, Register rscratch) { 309 assert(rscratch == noreg, "redundant"); 310 mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate()); 311 } 312 313 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) { 314 mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate()); 315 } 316 317 void MacroAssembler::mov_metadata(Address dst, Metadata* obj, Register rscratch) { 318 assert(rscratch == noreg, "redundant"); 319 mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate()); 320 } 321 322 void MacroAssembler::movptr(Register dst, AddressLiteral src) { 323 if (src.is_lval()) { 324 mov_literal32(dst, (intptr_t)src.target(), src.rspec()); 325 } else { 326 movl(dst, as_Address(src)); 327 } 328 } 329 330 void MacroAssembler::movptr(ArrayAddress dst, Register src, Register rscratch) { 331 assert(rscratch == noreg, "redundant"); 332 movl(as_Address(dst, noreg), src); 333 } 334 335 void MacroAssembler::movptr(Register dst, ArrayAddress src) { 336 movl(dst, as_Address(src, noreg)); 337 } 338 339 void MacroAssembler::movptr(Address dst, intptr_t src, Register rscratch) { 340 assert(rscratch == noreg, "redundant"); 341 movl(dst, src); 342 } 343 344 void MacroAssembler::pushoop(jobject obj, Register rscratch) { 345 assert(rscratch == noreg, "redundant"); 346 push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate()); 347 } 348 349 void MacroAssembler::pushklass(Metadata* obj, Register rscratch) { 350 assert(rscratch == noreg, "redundant"); 351 push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate()); 352 } 353 354 void MacroAssembler::pushptr(AddressLiteral src, Register rscratch) { 355 assert(rscratch == noreg, "redundant"); 356 if (src.is_lval()) { 357 push_literal32((int32_t)src.target(), src.rspec()); 358 } else { 359 pushl(as_Address(src)); 360 } 361 } 362 363 static void pass_arg0(MacroAssembler* masm, Register arg) { 364 masm->push(arg); 365 } 366 367 static void pass_arg1(MacroAssembler* masm, Register arg) { 368 masm->push(arg); 369 } 370 371 static void pass_arg2(MacroAssembler* masm, Register arg) { 372 masm->push(arg); 373 } 374 375 static void pass_arg3(MacroAssembler* masm, Register arg) { 376 masm->push(arg); 377 } 378 379 #ifndef PRODUCT 380 extern "C" void findpc(intptr_t x); 381 #endif 382 383 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) { 384 // In order to get locks to work, we need to fake a in_VM state 385 JavaThread* thread = JavaThread::current(); 386 JavaThreadState saved_state = thread->thread_state(); 387 thread->set_thread_state(_thread_in_vm); 388 if (ShowMessageBoxOnError) { 389 JavaThread* thread = JavaThread::current(); 390 JavaThreadState saved_state = thread->thread_state(); 391 thread->set_thread_state(_thread_in_vm); 392 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { 393 ttyLocker ttyl; 394 BytecodeCounter::print(); 395 } 396 // To see where a verify_oop failed, get $ebx+40/X for this frame. 397 // This is the value of eip which points to where verify_oop will return. 398 if (os::message_box(msg, "Execution stopped, print registers?")) { 399 print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip); 400 BREAKPOINT; 401 } 402 } 403 fatal("DEBUG MESSAGE: %s", msg); 404 } 405 406 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) { 407 ttyLocker ttyl; 408 DebuggingContext debugging{}; 409 tty->print_cr("eip = 0x%08x", eip); 410 #ifndef PRODUCT 411 if ((WizardMode || Verbose) && PrintMiscellaneous) { 412 tty->cr(); 413 findpc(eip); 414 tty->cr(); 415 } 416 #endif 417 #define PRINT_REG(rax) \ 418 { tty->print("%s = ", #rax); os::print_location(tty, rax); } 419 PRINT_REG(rax); 420 PRINT_REG(rbx); 421 PRINT_REG(rcx); 422 PRINT_REG(rdx); 423 PRINT_REG(rdi); 424 PRINT_REG(rsi); 425 PRINT_REG(rbp); 426 PRINT_REG(rsp); 427 #undef PRINT_REG 428 // Print some words near top of staack. 429 int* dump_sp = (int*) rsp; 430 for (int col1 = 0; col1 < 8; col1++) { 431 tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp); 432 os::print_location(tty, *dump_sp++); 433 } 434 for (int row = 0; row < 16; row++) { 435 tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp); 436 for (int col = 0; col < 8; col++) { 437 tty->print(" 0x%08x", *dump_sp++); 438 } 439 tty->cr(); 440 } 441 // Print some instructions around pc: 442 Disassembler::decode((address)eip-64, (address)eip); 443 tty->print_cr("--------"); 444 Disassembler::decode((address)eip, (address)eip+32); 445 } 446 447 void MacroAssembler::stop(const char* msg) { 448 // push address of message 449 ExternalAddress message((address)msg); 450 pushptr(message.addr(), noreg); 451 { Label L; call(L, relocInfo::none); bind(L); } // push eip 452 pusha(); // push registers 453 call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32))); 454 hlt(); 455 } 456 457 void MacroAssembler::warn(const char* msg) { 458 push_CPU_state(); 459 460 // push address of message 461 ExternalAddress message((address)msg); 462 pushptr(message.addr(), noreg); 463 464 call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning))); 465 addl(rsp, wordSize); // discard argument 466 pop_CPU_state(); 467 } 468 469 void MacroAssembler::print_state() { 470 { Label L; call(L, relocInfo::none); bind(L); } // push eip 471 pusha(); // push registers 472 473 push_CPU_state(); 474 call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32))); 475 pop_CPU_state(); 476 477 popa(); 478 addl(rsp, wordSize); 479 } 480 481 #else // _LP64 482 483 // 64 bit versions 484 485 Address MacroAssembler::as_Address(AddressLiteral adr) { 486 // amd64 always does this as a pc-rel 487 // we can be absolute or disp based on the instruction type 488 // jmp/call are displacements others are absolute 489 assert(!adr.is_lval(), "must be rval"); 490 assert(reachable(adr), "must be"); 491 return Address(checked_cast<int32_t>(adr.target() - pc()), adr.target(), adr.reloc()); 492 493 } 494 495 Address MacroAssembler::as_Address(ArrayAddress adr, Register rscratch) { 496 AddressLiteral base = adr.base(); 497 lea(rscratch, base); 498 Address index = adr.index(); 499 assert(index._disp == 0, "must not have disp"); // maybe it can? 500 Address array(rscratch, index._index, index._scale, index._disp); 501 return array; 502 } 503 504 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) { 505 Label L, E; 506 507 #ifdef _WIN64 508 // Windows always allocates space for it's register args 509 assert(num_args <= 4, "only register arguments supported"); 510 subq(rsp, frame::arg_reg_save_area_bytes); 511 #endif 512 513 // Align stack if necessary 514 testl(rsp, 15); 515 jcc(Assembler::zero, L); 516 517 subq(rsp, 8); 518 call(RuntimeAddress(entry_point)); 519 addq(rsp, 8); 520 jmp(E); 521 522 bind(L); 523 call(RuntimeAddress(entry_point)); 524 525 bind(E); 526 527 #ifdef _WIN64 528 // restore stack pointer 529 addq(rsp, frame::arg_reg_save_area_bytes); 530 #endif 531 } 532 533 void MacroAssembler::cmp64(Register src1, AddressLiteral src2, Register rscratch) { 534 assert(!src2.is_lval(), "should use cmpptr"); 535 assert(rscratch != noreg || always_reachable(src2), "missing"); 536 537 if (reachable(src2)) { 538 cmpq(src1, as_Address(src2)); 539 } else { 540 lea(rscratch, src2); 541 Assembler::cmpq(src1, Address(rscratch, 0)); 542 } 543 } 544 545 int MacroAssembler::corrected_idivq(Register reg) { 546 // Full implementation of Java ldiv and lrem; checks for special 547 // case as described in JVM spec., p.243 & p.271. The function 548 // returns the (pc) offset of the idivl instruction - may be needed 549 // for implicit exceptions. 550 // 551 // normal case special case 552 // 553 // input : rax: dividend min_long 554 // reg: divisor (may not be eax/edx) -1 555 // 556 // output: rax: quotient (= rax idiv reg) min_long 557 // rdx: remainder (= rax irem reg) 0 558 assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register"); 559 static const int64_t min_long = 0x8000000000000000; 560 Label normal_case, special_case; 561 562 // check for special case 563 cmp64(rax, ExternalAddress((address) &min_long), rdx /*rscratch*/); 564 jcc(Assembler::notEqual, normal_case); 565 xorl(rdx, rdx); // prepare rdx for possible special case (where 566 // remainder = 0) 567 cmpq(reg, -1); 568 jcc(Assembler::equal, special_case); 569 570 // handle normal case 571 bind(normal_case); 572 cdqq(); 573 int idivq_offset = offset(); 574 idivq(reg); 575 576 // normal and special case exit 577 bind(special_case); 578 579 return idivq_offset; 580 } 581 582 void MacroAssembler::decrementq(Register reg, int value) { 583 if (value == min_jint) { subq(reg, value); return; } 584 if (value < 0) { incrementq(reg, -value); return; } 585 if (value == 0) { ; return; } 586 if (value == 1 && UseIncDec) { decq(reg) ; return; } 587 /* else */ { subq(reg, value) ; return; } 588 } 589 590 void MacroAssembler::decrementq(Address dst, int value) { 591 if (value == min_jint) { subq(dst, value); return; } 592 if (value < 0) { incrementq(dst, -value); return; } 593 if (value == 0) { ; return; } 594 if (value == 1 && UseIncDec) { decq(dst) ; return; } 595 /* else */ { subq(dst, value) ; return; } 596 } 597 598 void MacroAssembler::incrementq(AddressLiteral dst, Register rscratch) { 599 assert(rscratch != noreg || always_reachable(dst), "missing"); 600 601 if (reachable(dst)) { 602 incrementq(as_Address(dst)); 603 } else { 604 lea(rscratch, dst); 605 incrementq(Address(rscratch, 0)); 606 } 607 } 608 609 void MacroAssembler::incrementq(Register reg, int value) { 610 if (value == min_jint) { addq(reg, value); return; } 611 if (value < 0) { decrementq(reg, -value); return; } 612 if (value == 0) { ; return; } 613 if (value == 1 && UseIncDec) { incq(reg) ; return; } 614 /* else */ { addq(reg, value) ; return; } 615 } 616 617 void MacroAssembler::incrementq(Address dst, int value) { 618 if (value == min_jint) { addq(dst, value); return; } 619 if (value < 0) { decrementq(dst, -value); return; } 620 if (value == 0) { ; return; } 621 if (value == 1 && UseIncDec) { incq(dst) ; return; } 622 /* else */ { addq(dst, value) ; return; } 623 } 624 625 // 32bit can do a case table jump in one instruction but we no longer allow the base 626 // to be installed in the Address class 627 void MacroAssembler::jump(ArrayAddress entry, Register rscratch) { 628 lea(rscratch, entry.base()); 629 Address dispatch = entry.index(); 630 assert(dispatch._base == noreg, "must be"); 631 dispatch._base = rscratch; 632 jmp(dispatch); 633 } 634 635 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) { 636 ShouldNotReachHere(); // 64bit doesn't use two regs 637 cmpq(x_lo, y_lo); 638 } 639 640 void MacroAssembler::lea(Register dst, AddressLiteral src) { 641 mov_literal64(dst, (intptr_t)src.target(), src.rspec()); 642 } 643 644 void MacroAssembler::lea(Address dst, AddressLiteral adr, Register rscratch) { 645 lea(rscratch, adr); 646 movptr(dst, rscratch); 647 } 648 649 void MacroAssembler::leave() { 650 // %%% is this really better? Why not on 32bit too? 651 emit_int8((unsigned char)0xC9); // LEAVE 652 } 653 654 void MacroAssembler::lneg(Register hi, Register lo) { 655 ShouldNotReachHere(); // 64bit doesn't use two regs 656 negq(lo); 657 } 658 659 void MacroAssembler::movoop(Register dst, jobject obj) { 660 mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate()); 661 } 662 663 void MacroAssembler::movoop(Address dst, jobject obj, Register rscratch) { 664 mov_literal64(rscratch, (intptr_t)obj, oop_Relocation::spec_for_immediate()); 665 movq(dst, rscratch); 666 } 667 668 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) { 669 mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate()); 670 } 671 672 void MacroAssembler::mov_metadata(Address dst, Metadata* obj, Register rscratch) { 673 mov_literal64(rscratch, (intptr_t)obj, metadata_Relocation::spec_for_immediate()); 674 movq(dst, rscratch); 675 } 676 677 void MacroAssembler::movptr(Register dst, AddressLiteral src) { 678 if (src.is_lval()) { 679 mov_literal64(dst, (intptr_t)src.target(), src.rspec()); 680 } else { 681 if (reachable(src)) { 682 movq(dst, as_Address(src)); 683 } else { 684 lea(dst, src); 685 movq(dst, Address(dst, 0)); 686 } 687 } 688 } 689 690 void MacroAssembler::movptr(ArrayAddress dst, Register src, Register rscratch) { 691 movq(as_Address(dst, rscratch), src); 692 } 693 694 void MacroAssembler::movptr(Register dst, ArrayAddress src) { 695 movq(dst, as_Address(src, dst /*rscratch*/)); 696 } 697 698 // src should NEVER be a real pointer. Use AddressLiteral for true pointers 699 void MacroAssembler::movptr(Address dst, intptr_t src, Register rscratch) { 700 if (is_simm32(src)) { 701 movptr(dst, checked_cast<int32_t>(src)); 702 } else { 703 mov64(rscratch, src); 704 movq(dst, rscratch); 705 } 706 } 707 708 void MacroAssembler::pushoop(jobject obj, Register rscratch) { 709 movoop(rscratch, obj); 710 push(rscratch); 711 } 712 713 void MacroAssembler::pushklass(Metadata* obj, Register rscratch) { 714 mov_metadata(rscratch, obj); 715 push(rscratch); 716 } 717 718 void MacroAssembler::pushptr(AddressLiteral src, Register rscratch) { 719 lea(rscratch, src); 720 if (src.is_lval()) { 721 push(rscratch); 722 } else { 723 pushq(Address(rscratch, 0)); 724 } 725 } 726 727 void MacroAssembler::reset_last_Java_frame(bool clear_fp) { 728 reset_last_Java_frame(r15_thread, clear_fp); 729 } 730 731 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 732 Register last_java_fp, 733 address last_java_pc, 734 Register rscratch) { 735 set_last_Java_frame(r15_thread, last_java_sp, last_java_fp, last_java_pc, rscratch); 736 } 737 738 static void pass_arg0(MacroAssembler* masm, Register arg) { 739 if (c_rarg0 != arg ) { 740 masm->mov(c_rarg0, arg); 741 } 742 } 743 744 static void pass_arg1(MacroAssembler* masm, Register arg) { 745 if (c_rarg1 != arg ) { 746 masm->mov(c_rarg1, arg); 747 } 748 } 749 750 static void pass_arg2(MacroAssembler* masm, Register arg) { 751 if (c_rarg2 != arg ) { 752 masm->mov(c_rarg2, arg); 753 } 754 } 755 756 static void pass_arg3(MacroAssembler* masm, Register arg) { 757 if (c_rarg3 != arg ) { 758 masm->mov(c_rarg3, arg); 759 } 760 } 761 762 void MacroAssembler::stop(const char* msg) { 763 if (ShowMessageBoxOnError) { 764 address rip = pc(); 765 pusha(); // get regs on stack 766 lea(c_rarg1, InternalAddress(rip)); 767 movq(c_rarg2, rsp); // pass pointer to regs array 768 } 769 lea(c_rarg0, ExternalAddress((address) msg)); 770 andq(rsp, -16); // align stack as required by ABI 771 call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64))); 772 hlt(); 773 } 774 775 void MacroAssembler::warn(const char* msg) { 776 push(rbp); 777 movq(rbp, rsp); 778 andq(rsp, -16); // align stack as required by push_CPU_state and call 779 push_CPU_state(); // keeps alignment at 16 bytes 780 781 #ifdef _WIN64 782 // Windows always allocates space for its register args 783 subq(rsp, frame::arg_reg_save_area_bytes); 784 #endif 785 lea(c_rarg0, ExternalAddress((address) msg)); 786 call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning))); 787 788 #ifdef _WIN64 789 // restore stack pointer 790 addq(rsp, frame::arg_reg_save_area_bytes); 791 #endif 792 pop_CPU_state(); 793 mov(rsp, rbp); 794 pop(rbp); 795 } 796 797 void MacroAssembler::print_state() { 798 address rip = pc(); 799 pusha(); // get regs on stack 800 push(rbp); 801 movq(rbp, rsp); 802 andq(rsp, -16); // align stack as required by push_CPU_state and call 803 push_CPU_state(); // keeps alignment at 16 bytes 804 805 lea(c_rarg0, InternalAddress(rip)); 806 lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array 807 call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1); 808 809 pop_CPU_state(); 810 mov(rsp, rbp); 811 pop(rbp); 812 popa(); 813 } 814 815 #ifndef PRODUCT 816 extern "C" void findpc(intptr_t x); 817 #endif 818 819 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) { 820 // In order to get locks to work, we need to fake a in_VM state 821 if (ShowMessageBoxOnError) { 822 JavaThread* thread = JavaThread::current(); 823 JavaThreadState saved_state = thread->thread_state(); 824 thread->set_thread_state(_thread_in_vm); 825 #ifndef PRODUCT 826 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { 827 ttyLocker ttyl; 828 BytecodeCounter::print(); 829 } 830 #endif 831 // To see where a verify_oop failed, get $ebx+40/X for this frame. 832 // XXX correct this offset for amd64 833 // This is the value of eip which points to where verify_oop will return. 834 if (os::message_box(msg, "Execution stopped, print registers?")) { 835 print_state64(pc, regs); 836 BREAKPOINT; 837 } 838 } 839 fatal("DEBUG MESSAGE: %s", msg); 840 } 841 842 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) { 843 ttyLocker ttyl; 844 DebuggingContext debugging{}; 845 tty->print_cr("rip = 0x%016lx", (intptr_t)pc); 846 #ifndef PRODUCT 847 tty->cr(); 848 findpc(pc); 849 tty->cr(); 850 #endif 851 #define PRINT_REG(rax, value) \ 852 { tty->print("%s = ", #rax); os::print_location(tty, value); } 853 PRINT_REG(rax, regs[15]); 854 PRINT_REG(rbx, regs[12]); 855 PRINT_REG(rcx, regs[14]); 856 PRINT_REG(rdx, regs[13]); 857 PRINT_REG(rdi, regs[8]); 858 PRINT_REG(rsi, regs[9]); 859 PRINT_REG(rbp, regs[10]); 860 // rsp is actually not stored by pusha(), compute the old rsp from regs (rsp after pusha): regs + 16 = old rsp 861 PRINT_REG(rsp, (intptr_t)(®s[16])); 862 PRINT_REG(r8 , regs[7]); 863 PRINT_REG(r9 , regs[6]); 864 PRINT_REG(r10, regs[5]); 865 PRINT_REG(r11, regs[4]); 866 PRINT_REG(r12, regs[3]); 867 PRINT_REG(r13, regs[2]); 868 PRINT_REG(r14, regs[1]); 869 PRINT_REG(r15, regs[0]); 870 #undef PRINT_REG 871 // Print some words near the top of the stack. 872 int64_t* rsp = ®s[16]; 873 int64_t* dump_sp = rsp; 874 for (int col1 = 0; col1 < 8; col1++) { 875 tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp); 876 os::print_location(tty, *dump_sp++); 877 } 878 for (int row = 0; row < 25; row++) { 879 tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp); 880 for (int col = 0; col < 4; col++) { 881 tty->print(" 0x%016lx", (intptr_t)*dump_sp++); 882 } 883 tty->cr(); 884 } 885 // Print some instructions around pc: 886 Disassembler::decode((address)pc-64, (address)pc); 887 tty->print_cr("--------"); 888 Disassembler::decode((address)pc, (address)pc+32); 889 } 890 891 // The java_calling_convention describes stack locations as ideal slots on 892 // a frame with no abi restrictions. Since we must observe abi restrictions 893 // (like the placement of the register window) the slots must be biased by 894 // the following value. 895 static int reg2offset_in(VMReg r) { 896 // Account for saved rbp and return address 897 // This should really be in_preserve_stack_slots 898 return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size; 899 } 900 901 static int reg2offset_out(VMReg r) { 902 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size; 903 } 904 905 // A long move 906 void MacroAssembler::long_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) { 907 908 // The calling conventions assures us that each VMregpair is either 909 // all really one physical register or adjacent stack slots. 910 911 if (src.is_single_phys_reg() ) { 912 if (dst.is_single_phys_reg()) { 913 if (dst.first() != src.first()) { 914 mov(dst.first()->as_Register(), src.first()->as_Register()); 915 } 916 } else { 917 assert(dst.is_single_reg(), "not a stack pair: (%s, %s), (%s, %s)", 918 src.first()->name(), src.second()->name(), dst.first()->name(), dst.second()->name()); 919 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_Register()); 920 } 921 } else if (dst.is_single_phys_reg()) { 922 assert(src.is_single_reg(), "not a stack pair"); 923 movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 924 } else { 925 assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs"); 926 movq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 927 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp); 928 } 929 } 930 931 // A double move 932 void MacroAssembler::double_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) { 933 934 // The calling conventions assures us that each VMregpair is either 935 // all really one physical register or adjacent stack slots. 936 937 if (src.is_single_phys_reg() ) { 938 if (dst.is_single_phys_reg()) { 939 // In theory these overlap but the ordering is such that this is likely a nop 940 if ( src.first() != dst.first()) { 941 movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister()); 942 } 943 } else { 944 assert(dst.is_single_reg(), "not a stack pair"); 945 movdbl(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_XMMRegister()); 946 } 947 } else if (dst.is_single_phys_reg()) { 948 assert(src.is_single_reg(), "not a stack pair"); 949 movdbl(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 950 } else { 951 assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs"); 952 movq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 953 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp); 954 } 955 } 956 957 958 // A float arg may have to do float reg int reg conversion 959 void MacroAssembler::float_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) { 960 assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move"); 961 962 // The calling conventions assures us that each VMregpair is either 963 // all really one physical register or adjacent stack slots. 964 965 if (src.first()->is_stack()) { 966 if (dst.first()->is_stack()) { 967 movl(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 968 movptr(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp); 969 } else { 970 // stack to reg 971 assert(dst.first()->is_XMMRegister(), "only expect xmm registers as parameters"); 972 movflt(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 973 } 974 } else if (dst.first()->is_stack()) { 975 // reg to stack 976 assert(src.first()->is_XMMRegister(), "only expect xmm registers as parameters"); 977 movflt(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_XMMRegister()); 978 } else { 979 // reg to reg 980 // In theory these overlap but the ordering is such that this is likely a nop 981 if ( src.first() != dst.first()) { 982 movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister()); 983 } 984 } 985 } 986 987 // On 64 bit we will store integer like items to the stack as 988 // 64 bits items (x86_32/64 abi) even though java would only store 989 // 32bits for a parameter. On 32bit it will simply be 32 bits 990 // So this routine will do 32->32 on 32bit and 32->64 on 64bit 991 void MacroAssembler::move32_64(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) { 992 if (src.first()->is_stack()) { 993 if (dst.first()->is_stack()) { 994 // stack to stack 995 movslq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 996 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp); 997 } else { 998 // stack to reg 999 movslq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 1000 } 1001 } else if (dst.first()->is_stack()) { 1002 // reg to stack 1003 // Do we really have to sign extend??? 1004 // __ movslq(src.first()->as_Register(), src.first()->as_Register()); 1005 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_Register()); 1006 } else { 1007 // Do we really have to sign extend??? 1008 // __ movslq(dst.first()->as_Register(), src.first()->as_Register()); 1009 if (dst.first() != src.first()) { 1010 movq(dst.first()->as_Register(), src.first()->as_Register()); 1011 } 1012 } 1013 } 1014 1015 void MacroAssembler::move_ptr(VMRegPair src, VMRegPair dst) { 1016 if (src.first()->is_stack()) { 1017 if (dst.first()->is_stack()) { 1018 // stack to stack 1019 movq(rax, Address(rbp, reg2offset_in(src.first()))); 1020 movq(Address(rsp, reg2offset_out(dst.first())), rax); 1021 } else { 1022 // stack to reg 1023 movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()))); 1024 } 1025 } else if (dst.first()->is_stack()) { 1026 // reg to stack 1027 movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register()); 1028 } else { 1029 if (dst.first() != src.first()) { 1030 movq(dst.first()->as_Register(), src.first()->as_Register()); 1031 } 1032 } 1033 } 1034 1035 // An oop arg. Must pass a handle not the oop itself 1036 void MacroAssembler::object_move(OopMap* map, 1037 int oop_handle_offset, 1038 int framesize_in_slots, 1039 VMRegPair src, 1040 VMRegPair dst, 1041 bool is_receiver, 1042 int* receiver_offset) { 1043 1044 // must pass a handle. First figure out the location we use as a handle 1045 1046 Register rHandle = dst.first()->is_stack() ? rax : dst.first()->as_Register(); 1047 1048 // See if oop is null if it is we need no handle 1049 1050 if (src.first()->is_stack()) { 1051 1052 // Oop is already on the stack as an argument 1053 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots(); 1054 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots)); 1055 if (is_receiver) { 1056 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size; 1057 } 1058 1059 cmpptr(Address(rbp, reg2offset_in(src.first())), NULL_WORD); 1060 lea(rHandle, Address(rbp, reg2offset_in(src.first()))); 1061 // conditionally move a null 1062 cmovptr(Assembler::equal, rHandle, Address(rbp, reg2offset_in(src.first()))); 1063 } else { 1064 1065 // Oop is in a register we must store it to the space we reserve 1066 // on the stack for oop_handles and pass a handle if oop is non-null 1067 1068 const Register rOop = src.first()->as_Register(); 1069 int oop_slot; 1070 if (rOop == j_rarg0) 1071 oop_slot = 0; 1072 else if (rOop == j_rarg1) 1073 oop_slot = 1; 1074 else if (rOop == j_rarg2) 1075 oop_slot = 2; 1076 else if (rOop == j_rarg3) 1077 oop_slot = 3; 1078 else if (rOop == j_rarg4) 1079 oop_slot = 4; 1080 else { 1081 assert(rOop == j_rarg5, "wrong register"); 1082 oop_slot = 5; 1083 } 1084 1085 oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset; 1086 int offset = oop_slot*VMRegImpl::stack_slot_size; 1087 1088 map->set_oop(VMRegImpl::stack2reg(oop_slot)); 1089 // Store oop in handle area, may be null 1090 movptr(Address(rsp, offset), rOop); 1091 if (is_receiver) { 1092 *receiver_offset = offset; 1093 } 1094 1095 cmpptr(rOop, NULL_WORD); 1096 lea(rHandle, Address(rsp, offset)); 1097 // conditionally move a null from the handle area where it was just stored 1098 cmovptr(Assembler::equal, rHandle, Address(rsp, offset)); 1099 } 1100 1101 // If arg is on the stack then place it otherwise it is already in correct reg. 1102 if (dst.first()->is_stack()) { 1103 movptr(Address(rsp, reg2offset_out(dst.first())), rHandle); 1104 } 1105 } 1106 1107 #endif // _LP64 1108 1109 // Now versions that are common to 32/64 bit 1110 1111 void MacroAssembler::addptr(Register dst, int32_t imm32) { 1112 LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32)); 1113 } 1114 1115 void MacroAssembler::addptr(Register dst, Register src) { 1116 LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); 1117 } 1118 1119 void MacroAssembler::addptr(Address dst, Register src) { 1120 LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); 1121 } 1122 1123 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 1124 assert(rscratch != noreg || always_reachable(src), "missing"); 1125 1126 if (reachable(src)) { 1127 Assembler::addsd(dst, as_Address(src)); 1128 } else { 1129 lea(rscratch, src); 1130 Assembler::addsd(dst, Address(rscratch, 0)); 1131 } 1132 } 1133 1134 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src, Register rscratch) { 1135 assert(rscratch != noreg || always_reachable(src), "missing"); 1136 1137 if (reachable(src)) { 1138 addss(dst, as_Address(src)); 1139 } else { 1140 lea(rscratch, src); 1141 addss(dst, Address(rscratch, 0)); 1142 } 1143 } 1144 1145 void MacroAssembler::addpd(XMMRegister dst, AddressLiteral src, Register rscratch) { 1146 assert(rscratch != noreg || always_reachable(src), "missing"); 1147 1148 if (reachable(src)) { 1149 Assembler::addpd(dst, as_Address(src)); 1150 } else { 1151 lea(rscratch, src); 1152 Assembler::addpd(dst, Address(rscratch, 0)); 1153 } 1154 } 1155 1156 // See 8273459. Function for ensuring 64-byte alignment, intended for stubs only. 1157 // Stub code is generated once and never copied. 1158 // NMethods can't use this because they get copied and we can't force alignment > 32 bytes. 1159 void MacroAssembler::align64() { 1160 align(64, (uint)(uintptr_t)pc()); 1161 } 1162 1163 void MacroAssembler::align32() { 1164 align(32, (uint)(uintptr_t)pc()); 1165 } 1166 1167 void MacroAssembler::align(uint modulus) { 1168 // 8273459: Ensure alignment is possible with current segment alignment 1169 assert(modulus <= (uintx)CodeEntryAlignment, "Alignment must be <= CodeEntryAlignment"); 1170 align(modulus, offset()); 1171 } 1172 1173 void MacroAssembler::align(uint modulus, uint target) { 1174 if (target % modulus != 0) { 1175 nop(modulus - (target % modulus)); 1176 } 1177 } 1178 1179 void MacroAssembler::push_f(XMMRegister r) { 1180 subptr(rsp, wordSize); 1181 movflt(Address(rsp, 0), r); 1182 } 1183 1184 void MacroAssembler::pop_f(XMMRegister r) { 1185 movflt(r, Address(rsp, 0)); 1186 addptr(rsp, wordSize); 1187 } 1188 1189 void MacroAssembler::push_d(XMMRegister r) { 1190 subptr(rsp, 2 * wordSize); 1191 movdbl(Address(rsp, 0), r); 1192 } 1193 1194 void MacroAssembler::pop_d(XMMRegister r) { 1195 movdbl(r, Address(rsp, 0)); 1196 addptr(rsp, 2 * Interpreter::stackElementSize); 1197 } 1198 1199 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src, Register rscratch) { 1200 // Used in sign-masking with aligned address. 1201 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); 1202 assert(rscratch != noreg || always_reachable(src), "missing"); 1203 1204 if (UseAVX > 2 && 1205 (!VM_Version::supports_avx512dq() || !VM_Version::supports_avx512vl()) && 1206 (dst->encoding() >= 16)) { 1207 vpand(dst, dst, src, AVX_512bit, rscratch); 1208 } else if (reachable(src)) { 1209 Assembler::andpd(dst, as_Address(src)); 1210 } else { 1211 lea(rscratch, src); 1212 Assembler::andpd(dst, Address(rscratch, 0)); 1213 } 1214 } 1215 1216 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src, Register rscratch) { 1217 // Used in sign-masking with aligned address. 1218 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); 1219 assert(rscratch != noreg || always_reachable(src), "missing"); 1220 1221 if (reachable(src)) { 1222 Assembler::andps(dst, as_Address(src)); 1223 } else { 1224 lea(rscratch, src); 1225 Assembler::andps(dst, Address(rscratch, 0)); 1226 } 1227 } 1228 1229 void MacroAssembler::andptr(Register dst, int32_t imm32) { 1230 LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32)); 1231 } 1232 1233 #ifdef _LP64 1234 void MacroAssembler::andq(Register dst, AddressLiteral src, Register rscratch) { 1235 assert(rscratch != noreg || always_reachable(src), "missing"); 1236 1237 if (reachable(src)) { 1238 andq(dst, as_Address(src)); 1239 } else { 1240 lea(rscratch, src); 1241 andq(dst, Address(rscratch, 0)); 1242 } 1243 } 1244 #endif 1245 1246 void MacroAssembler::atomic_incl(Address counter_addr) { 1247 lock(); 1248 incrementl(counter_addr); 1249 } 1250 1251 void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register rscratch) { 1252 assert(rscratch != noreg || always_reachable(counter_addr), "missing"); 1253 1254 if (reachable(counter_addr)) { 1255 atomic_incl(as_Address(counter_addr)); 1256 } else { 1257 lea(rscratch, counter_addr); 1258 atomic_incl(Address(rscratch, 0)); 1259 } 1260 } 1261 1262 #ifdef _LP64 1263 void MacroAssembler::atomic_incq(Address counter_addr) { 1264 lock(); 1265 incrementq(counter_addr); 1266 } 1267 1268 void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register rscratch) { 1269 assert(rscratch != noreg || always_reachable(counter_addr), "missing"); 1270 1271 if (reachable(counter_addr)) { 1272 atomic_incq(as_Address(counter_addr)); 1273 } else { 1274 lea(rscratch, counter_addr); 1275 atomic_incq(Address(rscratch, 0)); 1276 } 1277 } 1278 #endif 1279 1280 // Writes to stack successive pages until offset reached to check for 1281 // stack overflow + shadow pages. This clobbers tmp. 1282 void MacroAssembler::bang_stack_size(Register size, Register tmp) { 1283 movptr(tmp, rsp); 1284 // Bang stack for total size given plus shadow page size. 1285 // Bang one page at a time because large size can bang beyond yellow and 1286 // red zones. 1287 Label loop; 1288 bind(loop); 1289 movl(Address(tmp, (-(int)os::vm_page_size())), size ); 1290 subptr(tmp, (int)os::vm_page_size()); 1291 subl(size, (int)os::vm_page_size()); 1292 jcc(Assembler::greater, loop); 1293 1294 // Bang down shadow pages too. 1295 // At this point, (tmp-0) is the last address touched, so don't 1296 // touch it again. (It was touched as (tmp-pagesize) but then tmp 1297 // was post-decremented.) Skip this address by starting at i=1, and 1298 // touch a few more pages below. N.B. It is important to touch all 1299 // the way down including all pages in the shadow zone. 1300 for (int i = 1; i < ((int)StackOverflow::stack_shadow_zone_size() / (int)os::vm_page_size()); i++) { 1301 // this could be any sized move but this is can be a debugging crumb 1302 // so the bigger the better. 1303 movptr(Address(tmp, (-i*(int)os::vm_page_size())), size ); 1304 } 1305 } 1306 1307 void MacroAssembler::reserved_stack_check() { 1308 // testing if reserved zone needs to be enabled 1309 Label no_reserved_zone_enabling; 1310 Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread); 1311 NOT_LP64(get_thread(rsi);) 1312 1313 cmpptr(rsp, Address(thread, JavaThread::reserved_stack_activation_offset())); 1314 jcc(Assembler::below, no_reserved_zone_enabling); 1315 1316 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), thread); 1317 jump(RuntimeAddress(SharedRuntime::throw_delayed_StackOverflowError_entry())); 1318 should_not_reach_here(); 1319 1320 bind(no_reserved_zone_enabling); 1321 } 1322 1323 void MacroAssembler::c2bool(Register x) { 1324 // implements x == 0 ? 0 : 1 1325 // note: must only look at least-significant byte of x 1326 // since C-style booleans are stored in one byte 1327 // only! (was bug) 1328 andl(x, 0xFF); 1329 setb(Assembler::notZero, x); 1330 } 1331 1332 // Wouldn't need if AddressLiteral version had new name 1333 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) { 1334 Assembler::call(L, rtype); 1335 } 1336 1337 void MacroAssembler::call(Register entry) { 1338 Assembler::call(entry); 1339 } 1340 1341 void MacroAssembler::call(AddressLiteral entry, Register rscratch) { 1342 assert(rscratch != noreg || always_reachable(entry), "missing"); 1343 1344 if (reachable(entry)) { 1345 Assembler::call_literal(entry.target(), entry.rspec()); 1346 } else { 1347 lea(rscratch, entry); 1348 Assembler::call(rscratch); 1349 } 1350 } 1351 1352 void MacroAssembler::ic_call(address entry, jint method_index) { 1353 RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index); 1354 #ifdef _LP64 1355 // Needs full 64-bit immediate for later patching. 1356 mov64(rax, (int64_t)Universe::non_oop_word()); 1357 #else 1358 movptr(rax, (intptr_t)Universe::non_oop_word()); 1359 #endif 1360 call(AddressLiteral(entry, rh)); 1361 } 1362 1363 int MacroAssembler::ic_check_size() { 1364 return 1365 LP64_ONLY(UseCompactObjectHeaders ? 17 : 14) NOT_LP64(12); 1366 } 1367 1368 int MacroAssembler::ic_check(int end_alignment) { 1369 Register receiver = LP64_ONLY(j_rarg0) NOT_LP64(rcx); 1370 Register data = rax; 1371 Register temp = LP64_ONLY(rscratch1) NOT_LP64(rbx); 1372 1373 // The UEP of a code blob ensures that the VEP is padded. However, the padding of the UEP is placed 1374 // before the inline cache check, so we don't have to execute any nop instructions when dispatching 1375 // through the UEP, yet we can ensure that the VEP is aligned appropriately. That's why we align 1376 // before the inline cache check here, and not after 1377 align(end_alignment, offset() + ic_check_size()); 1378 1379 int uep_offset = offset(); 1380 1381 #ifdef _LP64 1382 if (UseCompactObjectHeaders) { 1383 load_narrow_klass_compact(temp, receiver); 1384 cmpl(temp, Address(data, CompiledICData::speculated_klass_offset())); 1385 } else 1386 #endif 1387 if (UseCompressedClassPointers) { 1388 movl(temp, Address(receiver, oopDesc::klass_offset_in_bytes())); 1389 cmpl(temp, Address(data, CompiledICData::speculated_klass_offset())); 1390 } else { 1391 movptr(temp, Address(receiver, oopDesc::klass_offset_in_bytes())); 1392 cmpptr(temp, Address(data, CompiledICData::speculated_klass_offset())); 1393 } 1394 1395 // if inline cache check fails, then jump to runtime routine 1396 jump_cc(Assembler::notEqual, RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 1397 assert((offset() % end_alignment) == 0, "Misaligned verified entry point (%d, %d, %d)", uep_offset, offset(), end_alignment); 1398 1399 return uep_offset; 1400 } 1401 1402 void MacroAssembler::emit_static_call_stub() { 1403 // Static stub relocation also tags the Method* in the code-stream. 1404 mov_metadata(rbx, (Metadata*) nullptr); // Method is zapped till fixup time. 1405 // This is recognized as unresolved by relocs/nativeinst/ic code. 1406 jump(RuntimeAddress(pc())); 1407 } 1408 1409 // Implementation of call_VM versions 1410 1411 void MacroAssembler::call_VM(Register oop_result, 1412 address entry_point, 1413 bool check_exceptions) { 1414 Label C, E; 1415 call(C, relocInfo::none); 1416 jmp(E); 1417 1418 bind(C); 1419 call_VM_helper(oop_result, entry_point, 0, check_exceptions); 1420 ret(0); 1421 1422 bind(E); 1423 } 1424 1425 void MacroAssembler::call_VM(Register oop_result, 1426 address entry_point, 1427 Register arg_1, 1428 bool check_exceptions) { 1429 Label C, E; 1430 call(C, relocInfo::none); 1431 jmp(E); 1432 1433 bind(C); 1434 pass_arg1(this, arg_1); 1435 call_VM_helper(oop_result, entry_point, 1, check_exceptions); 1436 ret(0); 1437 1438 bind(E); 1439 } 1440 1441 void MacroAssembler::call_VM(Register oop_result, 1442 address entry_point, 1443 Register arg_1, 1444 Register arg_2, 1445 bool check_exceptions) { 1446 Label C, E; 1447 call(C, relocInfo::none); 1448 jmp(E); 1449 1450 bind(C); 1451 1452 LP64_ONLY(assert_different_registers(arg_1, c_rarg2)); 1453 1454 pass_arg2(this, arg_2); 1455 pass_arg1(this, arg_1); 1456 call_VM_helper(oop_result, entry_point, 2, check_exceptions); 1457 ret(0); 1458 1459 bind(E); 1460 } 1461 1462 void MacroAssembler::call_VM(Register oop_result, 1463 address entry_point, 1464 Register arg_1, 1465 Register arg_2, 1466 Register arg_3, 1467 bool check_exceptions) { 1468 Label C, E; 1469 call(C, relocInfo::none); 1470 jmp(E); 1471 1472 bind(C); 1473 1474 LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3)); 1475 LP64_ONLY(assert_different_registers(arg_2, c_rarg3)); 1476 pass_arg3(this, arg_3); 1477 pass_arg2(this, arg_2); 1478 pass_arg1(this, arg_1); 1479 call_VM_helper(oop_result, entry_point, 3, check_exceptions); 1480 ret(0); 1481 1482 bind(E); 1483 } 1484 1485 void MacroAssembler::call_VM(Register oop_result, 1486 Register last_java_sp, 1487 address entry_point, 1488 int number_of_arguments, 1489 bool check_exceptions) { 1490 Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg); 1491 call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions); 1492 } 1493 1494 void MacroAssembler::call_VM(Register oop_result, 1495 Register last_java_sp, 1496 address entry_point, 1497 Register arg_1, 1498 bool check_exceptions) { 1499 pass_arg1(this, arg_1); 1500 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); 1501 } 1502 1503 void MacroAssembler::call_VM(Register oop_result, 1504 Register last_java_sp, 1505 address entry_point, 1506 Register arg_1, 1507 Register arg_2, 1508 bool check_exceptions) { 1509 1510 LP64_ONLY(assert_different_registers(arg_1, c_rarg2)); 1511 pass_arg2(this, arg_2); 1512 pass_arg1(this, arg_1); 1513 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); 1514 } 1515 1516 void MacroAssembler::call_VM(Register oop_result, 1517 Register last_java_sp, 1518 address entry_point, 1519 Register arg_1, 1520 Register arg_2, 1521 Register arg_3, 1522 bool check_exceptions) { 1523 LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3)); 1524 LP64_ONLY(assert_different_registers(arg_2, c_rarg3)); 1525 pass_arg3(this, arg_3); 1526 pass_arg2(this, arg_2); 1527 pass_arg1(this, arg_1); 1528 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); 1529 } 1530 1531 void MacroAssembler::super_call_VM(Register oop_result, 1532 Register last_java_sp, 1533 address entry_point, 1534 int number_of_arguments, 1535 bool check_exceptions) { 1536 Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg); 1537 MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions); 1538 } 1539 1540 void MacroAssembler::super_call_VM(Register oop_result, 1541 Register last_java_sp, 1542 address entry_point, 1543 Register arg_1, 1544 bool check_exceptions) { 1545 pass_arg1(this, arg_1); 1546 super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); 1547 } 1548 1549 void MacroAssembler::super_call_VM(Register oop_result, 1550 Register last_java_sp, 1551 address entry_point, 1552 Register arg_1, 1553 Register arg_2, 1554 bool check_exceptions) { 1555 1556 LP64_ONLY(assert_different_registers(arg_1, c_rarg2)); 1557 pass_arg2(this, arg_2); 1558 pass_arg1(this, arg_1); 1559 super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); 1560 } 1561 1562 void MacroAssembler::super_call_VM(Register oop_result, 1563 Register last_java_sp, 1564 address entry_point, 1565 Register arg_1, 1566 Register arg_2, 1567 Register arg_3, 1568 bool check_exceptions) { 1569 LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3)); 1570 LP64_ONLY(assert_different_registers(arg_2, c_rarg3)); 1571 pass_arg3(this, arg_3); 1572 pass_arg2(this, arg_2); 1573 pass_arg1(this, arg_1); 1574 super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); 1575 } 1576 1577 void MacroAssembler::call_VM_base(Register oop_result, 1578 Register java_thread, 1579 Register last_java_sp, 1580 address entry_point, 1581 int number_of_arguments, 1582 bool check_exceptions) { 1583 // determine java_thread register 1584 if (!java_thread->is_valid()) { 1585 #ifdef _LP64 1586 java_thread = r15_thread; 1587 #else 1588 java_thread = rdi; 1589 get_thread(java_thread); 1590 #endif // LP64 1591 } 1592 // determine last_java_sp register 1593 if (!last_java_sp->is_valid()) { 1594 last_java_sp = rsp; 1595 } 1596 // debugging support 1597 assert(number_of_arguments >= 0 , "cannot have negative number of arguments"); 1598 LP64_ONLY(assert(java_thread == r15_thread, "unexpected register")); 1599 #ifdef ASSERT 1600 // TraceBytecodes does not use r12 but saves it over the call, so don't verify 1601 // r12 is the heapbase. 1602 LP64_ONLY(if (UseCompressedOops && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");) 1603 #endif // ASSERT 1604 1605 assert(java_thread != oop_result , "cannot use the same register for java_thread & oop_result"); 1606 assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp"); 1607 1608 // push java thread (becomes first argument of C function) 1609 1610 NOT_LP64(push(java_thread); number_of_arguments++); 1611 LP64_ONLY(mov(c_rarg0, r15_thread)); 1612 1613 // set last Java frame before call 1614 assert(last_java_sp != rbp, "can't use ebp/rbp"); 1615 1616 // Only interpreter should have to set fp 1617 set_last_Java_frame(java_thread, last_java_sp, rbp, nullptr, rscratch1); 1618 1619 // do the call, remove parameters 1620 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); 1621 1622 // restore the thread (cannot use the pushed argument since arguments 1623 // may be overwritten by C code generated by an optimizing compiler); 1624 // however can use the register value directly if it is callee saved. 1625 if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) { 1626 // rdi & rsi (also r15) are callee saved -> nothing to do 1627 #ifdef ASSERT 1628 guarantee(java_thread != rax, "change this code"); 1629 push(rax); 1630 { Label L; 1631 get_thread(rax); 1632 cmpptr(java_thread, rax); 1633 jcc(Assembler::equal, L); 1634 STOP("MacroAssembler::call_VM_base: rdi not callee saved?"); 1635 bind(L); 1636 } 1637 pop(rax); 1638 #endif 1639 } else { 1640 get_thread(java_thread); 1641 } 1642 // reset last Java frame 1643 // Only interpreter should have to clear fp 1644 reset_last_Java_frame(java_thread, true); 1645 1646 // C++ interp handles this in the interpreter 1647 check_and_handle_popframe(java_thread); 1648 check_and_handle_earlyret(java_thread); 1649 1650 if (check_exceptions) { 1651 // check for pending exceptions (java_thread is set upon return) 1652 cmpptr(Address(java_thread, Thread::pending_exception_offset()), NULL_WORD); 1653 #ifndef _LP64 1654 jump_cc(Assembler::notEqual, 1655 RuntimeAddress(StubRoutines::forward_exception_entry())); 1656 #else 1657 // This used to conditionally jump to forward_exception however it is 1658 // possible if we relocate that the branch will not reach. So we must jump 1659 // around so we can always reach 1660 1661 Label ok; 1662 jcc(Assembler::equal, ok); 1663 jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 1664 bind(ok); 1665 #endif // LP64 1666 } 1667 1668 // get oop result if there is one and reset the value in the thread 1669 if (oop_result->is_valid()) { 1670 get_vm_result(oop_result, java_thread); 1671 } 1672 } 1673 1674 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) { 1675 1676 // Calculate the value for last_Java_sp 1677 // somewhat subtle. call_VM does an intermediate call 1678 // which places a return address on the stack just under the 1679 // stack pointer as the user finished with it. This allows 1680 // use to retrieve last_Java_pc from last_Java_sp[-1]. 1681 // On 32bit we then have to push additional args on the stack to accomplish 1682 // the actual requested call. On 64bit call_VM only can use register args 1683 // so the only extra space is the return address that call_VM created. 1684 // This hopefully explains the calculations here. 1685 1686 #ifdef _LP64 1687 // We've pushed one address, correct last_Java_sp 1688 lea(rax, Address(rsp, wordSize)); 1689 #else 1690 lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize)); 1691 #endif // LP64 1692 1693 call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions); 1694 1695 } 1696 1697 // Use this method when MacroAssembler version of call_VM_leaf_base() should be called from Interpreter. 1698 void MacroAssembler::call_VM_leaf0(address entry_point) { 1699 MacroAssembler::call_VM_leaf_base(entry_point, 0); 1700 } 1701 1702 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) { 1703 call_VM_leaf_base(entry_point, number_of_arguments); 1704 } 1705 1706 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) { 1707 pass_arg0(this, arg_0); 1708 call_VM_leaf(entry_point, 1); 1709 } 1710 1711 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 1712 1713 LP64_ONLY(assert_different_registers(arg_0, c_rarg1)); 1714 pass_arg1(this, arg_1); 1715 pass_arg0(this, arg_0); 1716 call_VM_leaf(entry_point, 2); 1717 } 1718 1719 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { 1720 LP64_ONLY(assert_different_registers(arg_0, c_rarg1, c_rarg2)); 1721 LP64_ONLY(assert_different_registers(arg_1, c_rarg2)); 1722 pass_arg2(this, arg_2); 1723 pass_arg1(this, arg_1); 1724 pass_arg0(this, arg_0); 1725 call_VM_leaf(entry_point, 3); 1726 } 1727 1728 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) { 1729 LP64_ONLY(assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3)); 1730 LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3)); 1731 LP64_ONLY(assert_different_registers(arg_2, c_rarg3)); 1732 pass_arg3(this, arg_3); 1733 pass_arg2(this, arg_2); 1734 pass_arg1(this, arg_1); 1735 pass_arg0(this, arg_0); 1736 call_VM_leaf(entry_point, 3); 1737 } 1738 1739 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) { 1740 pass_arg0(this, arg_0); 1741 MacroAssembler::call_VM_leaf_base(entry_point, 1); 1742 } 1743 1744 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 1745 LP64_ONLY(assert_different_registers(arg_0, c_rarg1)); 1746 pass_arg1(this, arg_1); 1747 pass_arg0(this, arg_0); 1748 MacroAssembler::call_VM_leaf_base(entry_point, 2); 1749 } 1750 1751 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { 1752 LP64_ONLY(assert_different_registers(arg_0, c_rarg1, c_rarg2)); 1753 LP64_ONLY(assert_different_registers(arg_1, c_rarg2)); 1754 pass_arg2(this, arg_2); 1755 pass_arg1(this, arg_1); 1756 pass_arg0(this, arg_0); 1757 MacroAssembler::call_VM_leaf_base(entry_point, 3); 1758 } 1759 1760 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) { 1761 LP64_ONLY(assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3)); 1762 LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3)); 1763 LP64_ONLY(assert_different_registers(arg_2, c_rarg3)); 1764 pass_arg3(this, arg_3); 1765 pass_arg2(this, arg_2); 1766 pass_arg1(this, arg_1); 1767 pass_arg0(this, arg_0); 1768 MacroAssembler::call_VM_leaf_base(entry_point, 4); 1769 } 1770 1771 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) { 1772 movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset())); 1773 movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD); 1774 verify_oop_msg(oop_result, "broken oop in call_VM_base"); 1775 } 1776 1777 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) { 1778 movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset())); 1779 movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD); 1780 } 1781 1782 void MacroAssembler::check_and_handle_earlyret(Register java_thread) { 1783 } 1784 1785 void MacroAssembler::check_and_handle_popframe(Register java_thread) { 1786 } 1787 1788 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm, Register rscratch) { 1789 assert(rscratch != noreg || always_reachable(src1), "missing"); 1790 1791 if (reachable(src1)) { 1792 cmpl(as_Address(src1), imm); 1793 } else { 1794 lea(rscratch, src1); 1795 cmpl(Address(rscratch, 0), imm); 1796 } 1797 } 1798 1799 void MacroAssembler::cmp32(Register src1, AddressLiteral src2, Register rscratch) { 1800 assert(!src2.is_lval(), "use cmpptr"); 1801 assert(rscratch != noreg || always_reachable(src2), "missing"); 1802 1803 if (reachable(src2)) { 1804 cmpl(src1, as_Address(src2)); 1805 } else { 1806 lea(rscratch, src2); 1807 cmpl(src1, Address(rscratch, 0)); 1808 } 1809 } 1810 1811 void MacroAssembler::cmp32(Register src1, int32_t imm) { 1812 Assembler::cmpl(src1, imm); 1813 } 1814 1815 void MacroAssembler::cmp32(Register src1, Address src2) { 1816 Assembler::cmpl(src1, src2); 1817 } 1818 1819 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) { 1820 ucomisd(opr1, opr2); 1821 1822 Label L; 1823 if (unordered_is_less) { 1824 movl(dst, -1); 1825 jcc(Assembler::parity, L); 1826 jcc(Assembler::below , L); 1827 movl(dst, 0); 1828 jcc(Assembler::equal , L); 1829 increment(dst); 1830 } else { // unordered is greater 1831 movl(dst, 1); 1832 jcc(Assembler::parity, L); 1833 jcc(Assembler::above , L); 1834 movl(dst, 0); 1835 jcc(Assembler::equal , L); 1836 decrementl(dst); 1837 } 1838 bind(L); 1839 } 1840 1841 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) { 1842 ucomiss(opr1, opr2); 1843 1844 Label L; 1845 if (unordered_is_less) { 1846 movl(dst, -1); 1847 jcc(Assembler::parity, L); 1848 jcc(Assembler::below , L); 1849 movl(dst, 0); 1850 jcc(Assembler::equal , L); 1851 increment(dst); 1852 } else { // unordered is greater 1853 movl(dst, 1); 1854 jcc(Assembler::parity, L); 1855 jcc(Assembler::above , L); 1856 movl(dst, 0); 1857 jcc(Assembler::equal , L); 1858 decrementl(dst); 1859 } 1860 bind(L); 1861 } 1862 1863 1864 void MacroAssembler::cmp8(AddressLiteral src1, int imm, Register rscratch) { 1865 assert(rscratch != noreg || always_reachable(src1), "missing"); 1866 1867 if (reachable(src1)) { 1868 cmpb(as_Address(src1), imm); 1869 } else { 1870 lea(rscratch, src1); 1871 cmpb(Address(rscratch, 0), imm); 1872 } 1873 } 1874 1875 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2, Register rscratch) { 1876 #ifdef _LP64 1877 assert(rscratch != noreg || always_reachable(src2), "missing"); 1878 1879 if (src2.is_lval()) { 1880 movptr(rscratch, src2); 1881 Assembler::cmpq(src1, rscratch); 1882 } else if (reachable(src2)) { 1883 cmpq(src1, as_Address(src2)); 1884 } else { 1885 lea(rscratch, src2); 1886 Assembler::cmpq(src1, Address(rscratch, 0)); 1887 } 1888 #else 1889 assert(rscratch == noreg, "not needed"); 1890 if (src2.is_lval()) { 1891 cmp_literal32(src1, (int32_t)src2.target(), src2.rspec()); 1892 } else { 1893 cmpl(src1, as_Address(src2)); 1894 } 1895 #endif // _LP64 1896 } 1897 1898 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2, Register rscratch) { 1899 assert(src2.is_lval(), "not a mem-mem compare"); 1900 #ifdef _LP64 1901 // moves src2's literal address 1902 movptr(rscratch, src2); 1903 Assembler::cmpq(src1, rscratch); 1904 #else 1905 assert(rscratch == noreg, "not needed"); 1906 cmp_literal32(src1, (int32_t)src2.target(), src2.rspec()); 1907 #endif // _LP64 1908 } 1909 1910 void MacroAssembler::cmpoop(Register src1, Register src2) { 1911 cmpptr(src1, src2); 1912 } 1913 1914 void MacroAssembler::cmpoop(Register src1, Address src2) { 1915 cmpptr(src1, src2); 1916 } 1917 1918 #ifdef _LP64 1919 void MacroAssembler::cmpoop(Register src1, jobject src2, Register rscratch) { 1920 movoop(rscratch, src2); 1921 cmpptr(src1, rscratch); 1922 } 1923 #endif 1924 1925 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr, Register rscratch) { 1926 assert(rscratch != noreg || always_reachable(adr), "missing"); 1927 1928 if (reachable(adr)) { 1929 lock(); 1930 cmpxchgptr(reg, as_Address(adr)); 1931 } else { 1932 lea(rscratch, adr); 1933 lock(); 1934 cmpxchgptr(reg, Address(rscratch, 0)); 1935 } 1936 } 1937 1938 void MacroAssembler::cmpxchgptr(Register reg, Address adr) { 1939 LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr)); 1940 } 1941 1942 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src, Register rscratch) { 1943 assert(rscratch != noreg || always_reachable(src), "missing"); 1944 1945 if (reachable(src)) { 1946 Assembler::comisd(dst, as_Address(src)); 1947 } else { 1948 lea(rscratch, src); 1949 Assembler::comisd(dst, Address(rscratch, 0)); 1950 } 1951 } 1952 1953 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src, Register rscratch) { 1954 assert(rscratch != noreg || always_reachable(src), "missing"); 1955 1956 if (reachable(src)) { 1957 Assembler::comiss(dst, as_Address(src)); 1958 } else { 1959 lea(rscratch, src); 1960 Assembler::comiss(dst, Address(rscratch, 0)); 1961 } 1962 } 1963 1964 1965 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr, Register rscratch) { 1966 assert(rscratch != noreg || always_reachable(counter_addr), "missing"); 1967 1968 Condition negated_cond = negate_condition(cond); 1969 Label L; 1970 jcc(negated_cond, L); 1971 pushf(); // Preserve flags 1972 atomic_incl(counter_addr, rscratch); 1973 popf(); 1974 bind(L); 1975 } 1976 1977 int MacroAssembler::corrected_idivl(Register reg) { 1978 // Full implementation of Java idiv and irem; checks for 1979 // special case as described in JVM spec., p.243 & p.271. 1980 // The function returns the (pc) offset of the idivl 1981 // instruction - may be needed for implicit exceptions. 1982 // 1983 // normal case special case 1984 // 1985 // input : rax,: dividend min_int 1986 // reg: divisor (may not be rax,/rdx) -1 1987 // 1988 // output: rax,: quotient (= rax, idiv reg) min_int 1989 // rdx: remainder (= rax, irem reg) 0 1990 assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register"); 1991 const int min_int = 0x80000000; 1992 Label normal_case, special_case; 1993 1994 // check for special case 1995 cmpl(rax, min_int); 1996 jcc(Assembler::notEqual, normal_case); 1997 xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0) 1998 cmpl(reg, -1); 1999 jcc(Assembler::equal, special_case); 2000 2001 // handle normal case 2002 bind(normal_case); 2003 cdql(); 2004 int idivl_offset = offset(); 2005 idivl(reg); 2006 2007 // normal and special case exit 2008 bind(special_case); 2009 2010 return idivl_offset; 2011 } 2012 2013 2014 2015 void MacroAssembler::decrementl(Register reg, int value) { 2016 if (value == min_jint) {subl(reg, value) ; return; } 2017 if (value < 0) { incrementl(reg, -value); return; } 2018 if (value == 0) { ; return; } 2019 if (value == 1 && UseIncDec) { decl(reg) ; return; } 2020 /* else */ { subl(reg, value) ; return; } 2021 } 2022 2023 void MacroAssembler::decrementl(Address dst, int value) { 2024 if (value == min_jint) {subl(dst, value) ; return; } 2025 if (value < 0) { incrementl(dst, -value); return; } 2026 if (value == 0) { ; return; } 2027 if (value == 1 && UseIncDec) { decl(dst) ; return; } 2028 /* else */ { subl(dst, value) ; return; } 2029 } 2030 2031 void MacroAssembler::division_with_shift (Register reg, int shift_value) { 2032 assert(shift_value > 0, "illegal shift value"); 2033 Label _is_positive; 2034 testl (reg, reg); 2035 jcc (Assembler::positive, _is_positive); 2036 int offset = (1 << shift_value) - 1 ; 2037 2038 if (offset == 1) { 2039 incrementl(reg); 2040 } else { 2041 addl(reg, offset); 2042 } 2043 2044 bind (_is_positive); 2045 sarl(reg, shift_value); 2046 } 2047 2048 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2049 assert(rscratch != noreg || always_reachable(src), "missing"); 2050 2051 if (reachable(src)) { 2052 Assembler::divsd(dst, as_Address(src)); 2053 } else { 2054 lea(rscratch, src); 2055 Assembler::divsd(dst, Address(rscratch, 0)); 2056 } 2057 } 2058 2059 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src, Register rscratch) { 2060 assert(rscratch != noreg || always_reachable(src), "missing"); 2061 2062 if (reachable(src)) { 2063 Assembler::divss(dst, as_Address(src)); 2064 } else { 2065 lea(rscratch, src); 2066 Assembler::divss(dst, Address(rscratch, 0)); 2067 } 2068 } 2069 2070 void MacroAssembler::enter() { 2071 push(rbp); 2072 mov(rbp, rsp); 2073 } 2074 2075 void MacroAssembler::post_call_nop() { 2076 if (!Continuations::enabled()) { 2077 return; 2078 } 2079 InstructionMark im(this); 2080 relocate(post_call_nop_Relocation::spec()); 2081 InlineSkippedInstructionsCounter skipCounter(this); 2082 emit_int8((uint8_t)0x0f); 2083 emit_int8((uint8_t)0x1f); 2084 emit_int8((uint8_t)0x84); 2085 emit_int8((uint8_t)0x00); 2086 emit_int32(0x00); 2087 } 2088 2089 // A 5 byte nop that is safe for patching (see patch_verified_entry) 2090 void MacroAssembler::fat_nop() { 2091 if (UseAddressNop) { 2092 addr_nop_5(); 2093 } else { 2094 emit_int8((uint8_t)0x26); // es: 2095 emit_int8((uint8_t)0x2e); // cs: 2096 emit_int8((uint8_t)0x64); // fs: 2097 emit_int8((uint8_t)0x65); // gs: 2098 emit_int8((uint8_t)0x90); 2099 } 2100 } 2101 2102 #ifndef _LP64 2103 void MacroAssembler::fcmp(Register tmp) { 2104 fcmp(tmp, 1, true, true); 2105 } 2106 2107 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) { 2108 assert(!pop_right || pop_left, "usage error"); 2109 if (VM_Version::supports_cmov()) { 2110 assert(tmp == noreg, "unneeded temp"); 2111 if (pop_left) { 2112 fucomip(index); 2113 } else { 2114 fucomi(index); 2115 } 2116 if (pop_right) { 2117 fpop(); 2118 } 2119 } else { 2120 assert(tmp != noreg, "need temp"); 2121 if (pop_left) { 2122 if (pop_right) { 2123 fcompp(); 2124 } else { 2125 fcomp(index); 2126 } 2127 } else { 2128 fcom(index); 2129 } 2130 // convert FPU condition into eflags condition via rax, 2131 save_rax(tmp); 2132 fwait(); fnstsw_ax(); 2133 sahf(); 2134 restore_rax(tmp); 2135 } 2136 // condition codes set as follows: 2137 // 2138 // CF (corresponds to C0) if x < y 2139 // PF (corresponds to C2) if unordered 2140 // ZF (corresponds to C3) if x = y 2141 } 2142 2143 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) { 2144 fcmp2int(dst, unordered_is_less, 1, true, true); 2145 } 2146 2147 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) { 2148 fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right); 2149 Label L; 2150 if (unordered_is_less) { 2151 movl(dst, -1); 2152 jcc(Assembler::parity, L); 2153 jcc(Assembler::below , L); 2154 movl(dst, 0); 2155 jcc(Assembler::equal , L); 2156 increment(dst); 2157 } else { // unordered is greater 2158 movl(dst, 1); 2159 jcc(Assembler::parity, L); 2160 jcc(Assembler::above , L); 2161 movl(dst, 0); 2162 jcc(Assembler::equal , L); 2163 decrementl(dst); 2164 } 2165 bind(L); 2166 } 2167 2168 void MacroAssembler::fld_d(AddressLiteral src) { 2169 fld_d(as_Address(src)); 2170 } 2171 2172 void MacroAssembler::fld_s(AddressLiteral src) { 2173 fld_s(as_Address(src)); 2174 } 2175 2176 void MacroAssembler::fldcw(AddressLiteral src) { 2177 fldcw(as_Address(src)); 2178 } 2179 2180 void MacroAssembler::fpop() { 2181 ffree(); 2182 fincstp(); 2183 } 2184 2185 void MacroAssembler::fremr(Register tmp) { 2186 save_rax(tmp); 2187 { Label L; 2188 bind(L); 2189 fprem(); 2190 fwait(); fnstsw_ax(); 2191 sahf(); 2192 jcc(Assembler::parity, L); 2193 } 2194 restore_rax(tmp); 2195 // Result is in ST0. 2196 // Note: fxch & fpop to get rid of ST1 2197 // (otherwise FPU stack could overflow eventually) 2198 fxch(1); 2199 fpop(); 2200 } 2201 2202 void MacroAssembler::empty_FPU_stack() { 2203 if (VM_Version::supports_mmx()) { 2204 emms(); 2205 } else { 2206 for (int i = 8; i-- > 0; ) ffree(i); 2207 } 2208 } 2209 #endif // !LP64 2210 2211 void MacroAssembler::mulpd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2212 assert(rscratch != noreg || always_reachable(src), "missing"); 2213 if (reachable(src)) { 2214 Assembler::mulpd(dst, as_Address(src)); 2215 } else { 2216 lea(rscratch, src); 2217 Assembler::mulpd(dst, Address(rscratch, 0)); 2218 } 2219 } 2220 2221 void MacroAssembler::load_float(Address src) { 2222 #ifdef _LP64 2223 movflt(xmm0, src); 2224 #else 2225 if (UseSSE >= 1) { 2226 movflt(xmm0, src); 2227 } else { 2228 fld_s(src); 2229 } 2230 #endif // LP64 2231 } 2232 2233 void MacroAssembler::store_float(Address dst) { 2234 #ifdef _LP64 2235 movflt(dst, xmm0); 2236 #else 2237 if (UseSSE >= 1) { 2238 movflt(dst, xmm0); 2239 } else { 2240 fstp_s(dst); 2241 } 2242 #endif // LP64 2243 } 2244 2245 void MacroAssembler::load_double(Address src) { 2246 #ifdef _LP64 2247 movdbl(xmm0, src); 2248 #else 2249 if (UseSSE >= 2) { 2250 movdbl(xmm0, src); 2251 } else { 2252 fld_d(src); 2253 } 2254 #endif // LP64 2255 } 2256 2257 void MacroAssembler::store_double(Address dst) { 2258 #ifdef _LP64 2259 movdbl(dst, xmm0); 2260 #else 2261 if (UseSSE >= 2) { 2262 movdbl(dst, xmm0); 2263 } else { 2264 fstp_d(dst); 2265 } 2266 #endif // LP64 2267 } 2268 2269 // dst = c = a * b + c 2270 void MacroAssembler::fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) { 2271 Assembler::vfmadd231sd(c, a, b); 2272 if (dst != c) { 2273 movdbl(dst, c); 2274 } 2275 } 2276 2277 // dst = c = a * b + c 2278 void MacroAssembler::fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) { 2279 Assembler::vfmadd231ss(c, a, b); 2280 if (dst != c) { 2281 movflt(dst, c); 2282 } 2283 } 2284 2285 // dst = c = a * b + c 2286 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) { 2287 Assembler::vfmadd231pd(c, a, b, vector_len); 2288 if (dst != c) { 2289 vmovdqu(dst, c); 2290 } 2291 } 2292 2293 // dst = c = a * b + c 2294 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) { 2295 Assembler::vfmadd231ps(c, a, b, vector_len); 2296 if (dst != c) { 2297 vmovdqu(dst, c); 2298 } 2299 } 2300 2301 // dst = c = a * b + c 2302 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) { 2303 Assembler::vfmadd231pd(c, a, b, vector_len); 2304 if (dst != c) { 2305 vmovdqu(dst, c); 2306 } 2307 } 2308 2309 // dst = c = a * b + c 2310 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) { 2311 Assembler::vfmadd231ps(c, a, b, vector_len); 2312 if (dst != c) { 2313 vmovdqu(dst, c); 2314 } 2315 } 2316 2317 void MacroAssembler::incrementl(AddressLiteral dst, Register rscratch) { 2318 assert(rscratch != noreg || always_reachable(dst), "missing"); 2319 2320 if (reachable(dst)) { 2321 incrementl(as_Address(dst)); 2322 } else { 2323 lea(rscratch, dst); 2324 incrementl(Address(rscratch, 0)); 2325 } 2326 } 2327 2328 void MacroAssembler::incrementl(ArrayAddress dst, Register rscratch) { 2329 incrementl(as_Address(dst, rscratch)); 2330 } 2331 2332 void MacroAssembler::incrementl(Register reg, int value) { 2333 if (value == min_jint) {addl(reg, value) ; return; } 2334 if (value < 0) { decrementl(reg, -value); return; } 2335 if (value == 0) { ; return; } 2336 if (value == 1 && UseIncDec) { incl(reg) ; return; } 2337 /* else */ { addl(reg, value) ; return; } 2338 } 2339 2340 void MacroAssembler::incrementl(Address dst, int value) { 2341 if (value == min_jint) {addl(dst, value) ; return; } 2342 if (value < 0) { decrementl(dst, -value); return; } 2343 if (value == 0) { ; return; } 2344 if (value == 1 && UseIncDec) { incl(dst) ; return; } 2345 /* else */ { addl(dst, value) ; return; } 2346 } 2347 2348 void MacroAssembler::jump(AddressLiteral dst, Register rscratch) { 2349 assert(rscratch != noreg || always_reachable(dst), "missing"); 2350 assert(!dst.rspec().reloc()->is_data(), "should not use ExternalAddress for jump"); 2351 if (reachable(dst)) { 2352 jmp_literal(dst.target(), dst.rspec()); 2353 } else { 2354 lea(rscratch, dst); 2355 jmp(rscratch); 2356 } 2357 } 2358 2359 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst, Register rscratch) { 2360 assert(rscratch != noreg || always_reachable(dst), "missing"); 2361 assert(!dst.rspec().reloc()->is_data(), "should not use ExternalAddress for jump_cc"); 2362 if (reachable(dst)) { 2363 InstructionMark im(this); 2364 relocate(dst.reloc()); 2365 const int short_size = 2; 2366 const int long_size = 6; 2367 int offs = (intptr_t)dst.target() - ((intptr_t)pc()); 2368 if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) { 2369 // 0111 tttn #8-bit disp 2370 emit_int8(0x70 | cc); 2371 emit_int8((offs - short_size) & 0xFF); 2372 } else { 2373 // 0000 1111 1000 tttn #32-bit disp 2374 emit_int8(0x0F); 2375 emit_int8((unsigned char)(0x80 | cc)); 2376 emit_int32(offs - long_size); 2377 } 2378 } else { 2379 #ifdef ASSERT 2380 warning("reversing conditional branch"); 2381 #endif /* ASSERT */ 2382 Label skip; 2383 jccb(reverse[cc], skip); 2384 lea(rscratch, dst); 2385 Assembler::jmp(rscratch); 2386 bind(skip); 2387 } 2388 } 2389 2390 void MacroAssembler::cmp32_mxcsr_std(Address mxcsr_save, Register tmp, Register rscratch) { 2391 ExternalAddress mxcsr_std(StubRoutines::x86::addr_mxcsr_std()); 2392 assert(rscratch != noreg || always_reachable(mxcsr_std), "missing"); 2393 2394 stmxcsr(mxcsr_save); 2395 movl(tmp, mxcsr_save); 2396 if (EnableX86ECoreOpts) { 2397 // The mxcsr_std has status bits set for performance on ECore 2398 orl(tmp, 0x003f); 2399 } else { 2400 // Mask out status bits (only check control and mask bits) 2401 andl(tmp, 0xFFC0); 2402 } 2403 cmp32(tmp, mxcsr_std, rscratch); 2404 } 2405 2406 void MacroAssembler::ldmxcsr(AddressLiteral src, Register rscratch) { 2407 assert(rscratch != noreg || always_reachable(src), "missing"); 2408 2409 if (reachable(src)) { 2410 Assembler::ldmxcsr(as_Address(src)); 2411 } else { 2412 lea(rscratch, src); 2413 Assembler::ldmxcsr(Address(rscratch, 0)); 2414 } 2415 } 2416 2417 int MacroAssembler::load_signed_byte(Register dst, Address src) { 2418 int off; 2419 if (LP64_ONLY(true ||) VM_Version::is_P6()) { 2420 off = offset(); 2421 movsbl(dst, src); // movsxb 2422 } else { 2423 off = load_unsigned_byte(dst, src); 2424 shll(dst, 24); 2425 sarl(dst, 24); 2426 } 2427 return off; 2428 } 2429 2430 // Note: load_signed_short used to be called load_signed_word. 2431 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler 2432 // manual, which means 16 bits, that usage is found nowhere in HotSpot code. 2433 // The term "word" in HotSpot means a 32- or 64-bit machine word. 2434 int MacroAssembler::load_signed_short(Register dst, Address src) { 2435 int off; 2436 if (LP64_ONLY(true ||) VM_Version::is_P6()) { 2437 // This is dubious to me since it seems safe to do a signed 16 => 64 bit 2438 // version but this is what 64bit has always done. This seems to imply 2439 // that users are only using 32bits worth. 2440 off = offset(); 2441 movswl(dst, src); // movsxw 2442 } else { 2443 off = load_unsigned_short(dst, src); 2444 shll(dst, 16); 2445 sarl(dst, 16); 2446 } 2447 return off; 2448 } 2449 2450 int MacroAssembler::load_unsigned_byte(Register dst, Address src) { 2451 // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16, 2452 // and "3.9 Partial Register Penalties", p. 22). 2453 int off; 2454 if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) { 2455 off = offset(); 2456 movzbl(dst, src); // movzxb 2457 } else { 2458 xorl(dst, dst); 2459 off = offset(); 2460 movb(dst, src); 2461 } 2462 return off; 2463 } 2464 2465 // Note: load_unsigned_short used to be called load_unsigned_word. 2466 int MacroAssembler::load_unsigned_short(Register dst, Address src) { 2467 // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16, 2468 // and "3.9 Partial Register Penalties", p. 22). 2469 int off; 2470 if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) { 2471 off = offset(); 2472 movzwl(dst, src); // movzxw 2473 } else { 2474 xorl(dst, dst); 2475 off = offset(); 2476 movw(dst, src); 2477 } 2478 return off; 2479 } 2480 2481 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) { 2482 switch (size_in_bytes) { 2483 #ifndef _LP64 2484 case 8: 2485 assert(dst2 != noreg, "second dest register required"); 2486 movl(dst, src); 2487 movl(dst2, src.plus_disp(BytesPerInt)); 2488 break; 2489 #else 2490 case 8: movq(dst, src); break; 2491 #endif 2492 case 4: movl(dst, src); break; 2493 case 2: is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break; 2494 case 1: is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break; 2495 default: ShouldNotReachHere(); 2496 } 2497 } 2498 2499 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) { 2500 switch (size_in_bytes) { 2501 #ifndef _LP64 2502 case 8: 2503 assert(src2 != noreg, "second source register required"); 2504 movl(dst, src); 2505 movl(dst.plus_disp(BytesPerInt), src2); 2506 break; 2507 #else 2508 case 8: movq(dst, src); break; 2509 #endif 2510 case 4: movl(dst, src); break; 2511 case 2: movw(dst, src); break; 2512 case 1: movb(dst, src); break; 2513 default: ShouldNotReachHere(); 2514 } 2515 } 2516 2517 void MacroAssembler::mov32(AddressLiteral dst, Register src, Register rscratch) { 2518 assert(rscratch != noreg || always_reachable(dst), "missing"); 2519 2520 if (reachable(dst)) { 2521 movl(as_Address(dst), src); 2522 } else { 2523 lea(rscratch, dst); 2524 movl(Address(rscratch, 0), src); 2525 } 2526 } 2527 2528 void MacroAssembler::mov32(Register dst, AddressLiteral src) { 2529 if (reachable(src)) { 2530 movl(dst, as_Address(src)); 2531 } else { 2532 lea(dst, src); 2533 movl(dst, Address(dst, 0)); 2534 } 2535 } 2536 2537 // C++ bool manipulation 2538 2539 void MacroAssembler::movbool(Register dst, Address src) { 2540 if(sizeof(bool) == 1) 2541 movb(dst, src); 2542 else if(sizeof(bool) == 2) 2543 movw(dst, src); 2544 else if(sizeof(bool) == 4) 2545 movl(dst, src); 2546 else 2547 // unsupported 2548 ShouldNotReachHere(); 2549 } 2550 2551 void MacroAssembler::movbool(Address dst, bool boolconst) { 2552 if(sizeof(bool) == 1) 2553 movb(dst, (int) boolconst); 2554 else if(sizeof(bool) == 2) 2555 movw(dst, (int) boolconst); 2556 else if(sizeof(bool) == 4) 2557 movl(dst, (int) boolconst); 2558 else 2559 // unsupported 2560 ShouldNotReachHere(); 2561 } 2562 2563 void MacroAssembler::movbool(Address dst, Register src) { 2564 if(sizeof(bool) == 1) 2565 movb(dst, src); 2566 else if(sizeof(bool) == 2) 2567 movw(dst, src); 2568 else if(sizeof(bool) == 4) 2569 movl(dst, src); 2570 else 2571 // unsupported 2572 ShouldNotReachHere(); 2573 } 2574 2575 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src, Register rscratch) { 2576 assert(rscratch != noreg || always_reachable(src), "missing"); 2577 2578 if (reachable(src)) { 2579 movdl(dst, as_Address(src)); 2580 } else { 2581 lea(rscratch, src); 2582 movdl(dst, Address(rscratch, 0)); 2583 } 2584 } 2585 2586 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src, Register rscratch) { 2587 assert(rscratch != noreg || always_reachable(src), "missing"); 2588 2589 if (reachable(src)) { 2590 movq(dst, as_Address(src)); 2591 } else { 2592 lea(rscratch, src); 2593 movq(dst, Address(rscratch, 0)); 2594 } 2595 } 2596 2597 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src, Register rscratch) { 2598 assert(rscratch != noreg || always_reachable(src), "missing"); 2599 2600 if (reachable(src)) { 2601 if (UseXmmLoadAndClearUpper) { 2602 movsd (dst, as_Address(src)); 2603 } else { 2604 movlpd(dst, as_Address(src)); 2605 } 2606 } else { 2607 lea(rscratch, src); 2608 if (UseXmmLoadAndClearUpper) { 2609 movsd (dst, Address(rscratch, 0)); 2610 } else { 2611 movlpd(dst, Address(rscratch, 0)); 2612 } 2613 } 2614 } 2615 2616 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src, Register rscratch) { 2617 assert(rscratch != noreg || always_reachable(src), "missing"); 2618 2619 if (reachable(src)) { 2620 movss(dst, as_Address(src)); 2621 } else { 2622 lea(rscratch, src); 2623 movss(dst, Address(rscratch, 0)); 2624 } 2625 } 2626 2627 void MacroAssembler::movptr(Register dst, Register src) { 2628 LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src)); 2629 } 2630 2631 void MacroAssembler::movptr(Register dst, Address src) { 2632 LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src)); 2633 } 2634 2635 // src should NEVER be a real pointer. Use AddressLiteral for true pointers 2636 void MacroAssembler::movptr(Register dst, intptr_t src) { 2637 #ifdef _LP64 2638 if (is_uimm32(src)) { 2639 movl(dst, checked_cast<uint32_t>(src)); 2640 } else if (is_simm32(src)) { 2641 movq(dst, checked_cast<int32_t>(src)); 2642 } else { 2643 mov64(dst, src); 2644 } 2645 #else 2646 movl(dst, src); 2647 #endif 2648 } 2649 2650 void MacroAssembler::movptr(Address dst, Register src) { 2651 LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src)); 2652 } 2653 2654 void MacroAssembler::movptr(Address dst, int32_t src) { 2655 LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); 2656 } 2657 2658 void MacroAssembler::movdqu(Address dst, XMMRegister src) { 2659 assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2660 Assembler::movdqu(dst, src); 2661 } 2662 2663 void MacroAssembler::movdqu(XMMRegister dst, Address src) { 2664 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2665 Assembler::movdqu(dst, src); 2666 } 2667 2668 void MacroAssembler::movdqu(XMMRegister dst, XMMRegister src) { 2669 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2670 Assembler::movdqu(dst, src); 2671 } 2672 2673 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src, Register rscratch) { 2674 assert(rscratch != noreg || always_reachable(src), "missing"); 2675 2676 if (reachable(src)) { 2677 movdqu(dst, as_Address(src)); 2678 } else { 2679 lea(rscratch, src); 2680 movdqu(dst, Address(rscratch, 0)); 2681 } 2682 } 2683 2684 void MacroAssembler::vmovdqu(Address dst, XMMRegister src) { 2685 assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2686 Assembler::vmovdqu(dst, src); 2687 } 2688 2689 void MacroAssembler::vmovdqu(XMMRegister dst, Address src) { 2690 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2691 Assembler::vmovdqu(dst, src); 2692 } 2693 2694 void MacroAssembler::vmovdqu(XMMRegister dst, XMMRegister src) { 2695 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2696 Assembler::vmovdqu(dst, src); 2697 } 2698 2699 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src, Register rscratch) { 2700 assert(rscratch != noreg || always_reachable(src), "missing"); 2701 2702 if (reachable(src)) { 2703 vmovdqu(dst, as_Address(src)); 2704 } 2705 else { 2706 lea(rscratch, src); 2707 vmovdqu(dst, Address(rscratch, 0)); 2708 } 2709 } 2710 2711 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2712 assert(rscratch != noreg || always_reachable(src), "missing"); 2713 2714 if (vector_len == AVX_512bit) { 2715 evmovdquq(dst, src, AVX_512bit, rscratch); 2716 } else if (vector_len == AVX_256bit) { 2717 vmovdqu(dst, src, rscratch); 2718 } else { 2719 movdqu(dst, src, rscratch); 2720 } 2721 } 2722 2723 void MacroAssembler::vmovdqu(XMMRegister dst, XMMRegister src, int vector_len) { 2724 if (vector_len == AVX_512bit) { 2725 evmovdquq(dst, src, AVX_512bit); 2726 } else if (vector_len == AVX_256bit) { 2727 vmovdqu(dst, src); 2728 } else { 2729 movdqu(dst, src); 2730 } 2731 } 2732 2733 void MacroAssembler::vmovdqu(Address dst, XMMRegister src, int vector_len) { 2734 if (vector_len == AVX_512bit) { 2735 evmovdquq(dst, src, AVX_512bit); 2736 } else if (vector_len == AVX_256bit) { 2737 vmovdqu(dst, src); 2738 } else { 2739 movdqu(dst, src); 2740 } 2741 } 2742 2743 void MacroAssembler::vmovdqu(XMMRegister dst, Address src, int vector_len) { 2744 if (vector_len == AVX_512bit) { 2745 evmovdquq(dst, src, AVX_512bit); 2746 } else if (vector_len == AVX_256bit) { 2747 vmovdqu(dst, src); 2748 } else { 2749 movdqu(dst, src); 2750 } 2751 } 2752 2753 void MacroAssembler::vmovdqa(XMMRegister dst, AddressLiteral src, Register rscratch) { 2754 assert(rscratch != noreg || always_reachable(src), "missing"); 2755 2756 if (reachable(src)) { 2757 vmovdqa(dst, as_Address(src)); 2758 } 2759 else { 2760 lea(rscratch, src); 2761 vmovdqa(dst, Address(rscratch, 0)); 2762 } 2763 } 2764 2765 void MacroAssembler::vmovdqa(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2766 assert(rscratch != noreg || always_reachable(src), "missing"); 2767 2768 if (vector_len == AVX_512bit) { 2769 evmovdqaq(dst, src, AVX_512bit, rscratch); 2770 } else if (vector_len == AVX_256bit) { 2771 vmovdqa(dst, src, rscratch); 2772 } else { 2773 movdqa(dst, src, rscratch); 2774 } 2775 } 2776 2777 void MacroAssembler::kmov(KRegister dst, Address src) { 2778 if (VM_Version::supports_avx512bw()) { 2779 kmovql(dst, src); 2780 } else { 2781 assert(VM_Version::supports_evex(), ""); 2782 kmovwl(dst, src); 2783 } 2784 } 2785 2786 void MacroAssembler::kmov(Address dst, KRegister src) { 2787 if (VM_Version::supports_avx512bw()) { 2788 kmovql(dst, src); 2789 } else { 2790 assert(VM_Version::supports_evex(), ""); 2791 kmovwl(dst, src); 2792 } 2793 } 2794 2795 void MacroAssembler::kmov(KRegister dst, KRegister src) { 2796 if (VM_Version::supports_avx512bw()) { 2797 kmovql(dst, src); 2798 } else { 2799 assert(VM_Version::supports_evex(), ""); 2800 kmovwl(dst, src); 2801 } 2802 } 2803 2804 void MacroAssembler::kmov(Register dst, KRegister src) { 2805 if (VM_Version::supports_avx512bw()) { 2806 kmovql(dst, src); 2807 } else { 2808 assert(VM_Version::supports_evex(), ""); 2809 kmovwl(dst, src); 2810 } 2811 } 2812 2813 void MacroAssembler::kmov(KRegister dst, Register src) { 2814 if (VM_Version::supports_avx512bw()) { 2815 kmovql(dst, src); 2816 } else { 2817 assert(VM_Version::supports_evex(), ""); 2818 kmovwl(dst, src); 2819 } 2820 } 2821 2822 void MacroAssembler::kmovql(KRegister dst, AddressLiteral src, Register rscratch) { 2823 assert(rscratch != noreg || always_reachable(src), "missing"); 2824 2825 if (reachable(src)) { 2826 kmovql(dst, as_Address(src)); 2827 } else { 2828 lea(rscratch, src); 2829 kmovql(dst, Address(rscratch, 0)); 2830 } 2831 } 2832 2833 void MacroAssembler::kmovwl(KRegister dst, AddressLiteral src, Register rscratch) { 2834 assert(rscratch != noreg || always_reachable(src), "missing"); 2835 2836 if (reachable(src)) { 2837 kmovwl(dst, as_Address(src)); 2838 } else { 2839 lea(rscratch, src); 2840 kmovwl(dst, Address(rscratch, 0)); 2841 } 2842 } 2843 2844 void MacroAssembler::evmovdqub(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, 2845 int vector_len, Register rscratch) { 2846 assert(rscratch != noreg || always_reachable(src), "missing"); 2847 2848 if (reachable(src)) { 2849 Assembler::evmovdqub(dst, mask, as_Address(src), merge, vector_len); 2850 } else { 2851 lea(rscratch, src); 2852 Assembler::evmovdqub(dst, mask, Address(rscratch, 0), merge, vector_len); 2853 } 2854 } 2855 2856 void MacroAssembler::evmovdquw(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, 2857 int vector_len, Register rscratch) { 2858 assert(rscratch != noreg || always_reachable(src), "missing"); 2859 2860 if (reachable(src)) { 2861 Assembler::evmovdquw(dst, mask, as_Address(src), merge, vector_len); 2862 } else { 2863 lea(rscratch, src); 2864 Assembler::evmovdquw(dst, mask, Address(rscratch, 0), merge, vector_len); 2865 } 2866 } 2867 2868 void MacroAssembler::evmovdqul(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch) { 2869 assert(rscratch != noreg || always_reachable(src), "missing"); 2870 2871 if (reachable(src)) { 2872 Assembler::evmovdqul(dst, mask, as_Address(src), merge, vector_len); 2873 } else { 2874 lea(rscratch, src); 2875 Assembler::evmovdqul(dst, mask, Address(rscratch, 0), merge, vector_len); 2876 } 2877 } 2878 2879 void MacroAssembler::evmovdquq(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch) { 2880 assert(rscratch != noreg || always_reachable(src), "missing"); 2881 2882 if (reachable(src)) { 2883 Assembler::evmovdquq(dst, mask, as_Address(src), merge, vector_len); 2884 } else { 2885 lea(rscratch, src); 2886 Assembler::evmovdquq(dst, mask, Address(rscratch, 0), merge, vector_len); 2887 } 2888 } 2889 2890 void MacroAssembler::evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2891 assert(rscratch != noreg || always_reachable(src), "missing"); 2892 2893 if (reachable(src)) { 2894 Assembler::evmovdquq(dst, as_Address(src), vector_len); 2895 } else { 2896 lea(rscratch, src); 2897 Assembler::evmovdquq(dst, Address(rscratch, 0), vector_len); 2898 } 2899 } 2900 2901 void MacroAssembler::evmovdqaq(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch) { 2902 assert(rscratch != noreg || always_reachable(src), "missing"); 2903 2904 if (reachable(src)) { 2905 Assembler::evmovdqaq(dst, mask, as_Address(src), merge, vector_len); 2906 } else { 2907 lea(rscratch, src); 2908 Assembler::evmovdqaq(dst, mask, Address(rscratch, 0), merge, vector_len); 2909 } 2910 } 2911 2912 void MacroAssembler::evmovdqaq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2913 assert(rscratch != noreg || always_reachable(src), "missing"); 2914 2915 if (reachable(src)) { 2916 Assembler::evmovdqaq(dst, as_Address(src), vector_len); 2917 } else { 2918 lea(rscratch, src); 2919 Assembler::evmovdqaq(dst, Address(rscratch, 0), vector_len); 2920 } 2921 } 2922 2923 2924 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src, Register rscratch) { 2925 assert(rscratch != noreg || always_reachable(src), "missing"); 2926 2927 if (reachable(src)) { 2928 Assembler::movdqa(dst, as_Address(src)); 2929 } else { 2930 lea(rscratch, src); 2931 Assembler::movdqa(dst, Address(rscratch, 0)); 2932 } 2933 } 2934 2935 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2936 assert(rscratch != noreg || always_reachable(src), "missing"); 2937 2938 if (reachable(src)) { 2939 Assembler::movsd(dst, as_Address(src)); 2940 } else { 2941 lea(rscratch, src); 2942 Assembler::movsd(dst, Address(rscratch, 0)); 2943 } 2944 } 2945 2946 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src, Register rscratch) { 2947 assert(rscratch != noreg || always_reachable(src), "missing"); 2948 2949 if (reachable(src)) { 2950 Assembler::movss(dst, as_Address(src)); 2951 } else { 2952 lea(rscratch, src); 2953 Assembler::movss(dst, Address(rscratch, 0)); 2954 } 2955 } 2956 2957 void MacroAssembler::movddup(XMMRegister dst, AddressLiteral src, Register rscratch) { 2958 assert(rscratch != noreg || always_reachable(src), "missing"); 2959 2960 if (reachable(src)) { 2961 Assembler::movddup(dst, as_Address(src)); 2962 } else { 2963 lea(rscratch, src); 2964 Assembler::movddup(dst, Address(rscratch, 0)); 2965 } 2966 } 2967 2968 void MacroAssembler::vmovddup(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2969 assert(rscratch != noreg || always_reachable(src), "missing"); 2970 2971 if (reachable(src)) { 2972 Assembler::vmovddup(dst, as_Address(src), vector_len); 2973 } else { 2974 lea(rscratch, src); 2975 Assembler::vmovddup(dst, Address(rscratch, 0), vector_len); 2976 } 2977 } 2978 2979 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2980 assert(rscratch != noreg || always_reachable(src), "missing"); 2981 2982 if (reachable(src)) { 2983 Assembler::mulsd(dst, as_Address(src)); 2984 } else { 2985 lea(rscratch, src); 2986 Assembler::mulsd(dst, Address(rscratch, 0)); 2987 } 2988 } 2989 2990 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src, Register rscratch) { 2991 assert(rscratch != noreg || always_reachable(src), "missing"); 2992 2993 if (reachable(src)) { 2994 Assembler::mulss(dst, as_Address(src)); 2995 } else { 2996 lea(rscratch, src); 2997 Assembler::mulss(dst, Address(rscratch, 0)); 2998 } 2999 } 3000 3001 void MacroAssembler::null_check(Register reg, int offset) { 3002 if (needs_explicit_null_check(offset)) { 3003 // provoke OS null exception if reg is null by 3004 // accessing M[reg] w/o changing any (non-CC) registers 3005 // NOTE: cmpl is plenty here to provoke a segv 3006 cmpptr(rax, Address(reg, 0)); 3007 // Note: should probably use testl(rax, Address(reg, 0)); 3008 // may be shorter code (however, this version of 3009 // testl needs to be implemented first) 3010 } else { 3011 // nothing to do, (later) access of M[reg + offset] 3012 // will provoke OS null exception if reg is null 3013 } 3014 } 3015 3016 void MacroAssembler::os_breakpoint() { 3017 // instead of directly emitting a breakpoint, call os:breakpoint for better debugability 3018 // (e.g., MSVC can't call ps() otherwise) 3019 call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint))); 3020 } 3021 3022 void MacroAssembler::unimplemented(const char* what) { 3023 const char* buf = nullptr; 3024 { 3025 ResourceMark rm; 3026 stringStream ss; 3027 ss.print("unimplemented: %s", what); 3028 buf = code_string(ss.as_string()); 3029 } 3030 stop(buf); 3031 } 3032 3033 #ifdef _LP64 3034 #define XSTATE_BV 0x200 3035 #endif 3036 3037 void MacroAssembler::pop_CPU_state() { 3038 pop_FPU_state(); 3039 pop_IU_state(); 3040 } 3041 3042 void MacroAssembler::pop_FPU_state() { 3043 #ifndef _LP64 3044 frstor(Address(rsp, 0)); 3045 #else 3046 fxrstor(Address(rsp, 0)); 3047 #endif 3048 addptr(rsp, FPUStateSizeInWords * wordSize); 3049 } 3050 3051 void MacroAssembler::pop_IU_state() { 3052 popa(); 3053 LP64_ONLY(addq(rsp, 8)); 3054 popf(); 3055 } 3056 3057 // Save Integer and Float state 3058 // Warning: Stack must be 16 byte aligned (64bit) 3059 void MacroAssembler::push_CPU_state() { 3060 push_IU_state(); 3061 push_FPU_state(); 3062 } 3063 3064 void MacroAssembler::push_FPU_state() { 3065 subptr(rsp, FPUStateSizeInWords * wordSize); 3066 #ifndef _LP64 3067 fnsave(Address(rsp, 0)); 3068 fwait(); 3069 #else 3070 fxsave(Address(rsp, 0)); 3071 #endif // LP64 3072 } 3073 3074 void MacroAssembler::push_IU_state() { 3075 // Push flags first because pusha kills them 3076 pushf(); 3077 // Make sure rsp stays 16-byte aligned 3078 LP64_ONLY(subq(rsp, 8)); 3079 pusha(); 3080 } 3081 3082 void MacroAssembler::push_cont_fastpath() { 3083 if (!Continuations::enabled()) return; 3084 3085 #ifndef _LP64 3086 Register rthread = rax; 3087 Register rrealsp = rbx; 3088 push(rthread); 3089 push(rrealsp); 3090 3091 get_thread(rthread); 3092 3093 // The code below wants the original RSP. 3094 // Move it back after the pushes above. 3095 movptr(rrealsp, rsp); 3096 addptr(rrealsp, 2*wordSize); 3097 #else 3098 Register rthread = r15_thread; 3099 Register rrealsp = rsp; 3100 #endif 3101 3102 Label done; 3103 cmpptr(rrealsp, Address(rthread, JavaThread::cont_fastpath_offset())); 3104 jccb(Assembler::belowEqual, done); 3105 movptr(Address(rthread, JavaThread::cont_fastpath_offset()), rrealsp); 3106 bind(done); 3107 3108 #ifndef _LP64 3109 pop(rrealsp); 3110 pop(rthread); 3111 #endif 3112 } 3113 3114 void MacroAssembler::pop_cont_fastpath() { 3115 if (!Continuations::enabled()) return; 3116 3117 #ifndef _LP64 3118 Register rthread = rax; 3119 Register rrealsp = rbx; 3120 push(rthread); 3121 push(rrealsp); 3122 3123 get_thread(rthread); 3124 3125 // The code below wants the original RSP. 3126 // Move it back after the pushes above. 3127 movptr(rrealsp, rsp); 3128 addptr(rrealsp, 2*wordSize); 3129 #else 3130 Register rthread = r15_thread; 3131 Register rrealsp = rsp; 3132 #endif 3133 3134 Label done; 3135 cmpptr(rrealsp, Address(rthread, JavaThread::cont_fastpath_offset())); 3136 jccb(Assembler::below, done); 3137 movptr(Address(rthread, JavaThread::cont_fastpath_offset()), 0); 3138 bind(done); 3139 3140 #ifndef _LP64 3141 pop(rrealsp); 3142 pop(rthread); 3143 #endif 3144 } 3145 3146 void MacroAssembler::inc_held_monitor_count() { 3147 #ifdef _LP64 3148 incrementq(Address(r15_thread, JavaThread::held_monitor_count_offset())); 3149 #endif 3150 } 3151 3152 void MacroAssembler::dec_held_monitor_count() { 3153 #ifdef _LP64 3154 decrementq(Address(r15_thread, JavaThread::held_monitor_count_offset())); 3155 #endif 3156 } 3157 3158 #ifdef ASSERT 3159 void MacroAssembler::stop_if_in_cont(Register cont, const char* name) { 3160 #ifdef _LP64 3161 Label no_cont; 3162 movptr(cont, Address(r15_thread, JavaThread::cont_entry_offset())); 3163 testl(cont, cont); 3164 jcc(Assembler::zero, no_cont); 3165 stop(name); 3166 bind(no_cont); 3167 #else 3168 Unimplemented(); 3169 #endif 3170 } 3171 #endif 3172 3173 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp) { // determine java_thread register 3174 if (!java_thread->is_valid()) { 3175 java_thread = rdi; 3176 get_thread(java_thread); 3177 } 3178 // we must set sp to zero to clear frame 3179 movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD); 3180 // must clear fp, so that compiled frames are not confused; it is 3181 // possible that we need it only for debugging 3182 if (clear_fp) { 3183 movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD); 3184 } 3185 // Always clear the pc because it could have been set by make_walkable() 3186 movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD); 3187 vzeroupper(); 3188 } 3189 3190 void MacroAssembler::restore_rax(Register tmp) { 3191 if (tmp == noreg) pop(rax); 3192 else if (tmp != rax) mov(rax, tmp); 3193 } 3194 3195 void MacroAssembler::round_to(Register reg, int modulus) { 3196 addptr(reg, modulus - 1); 3197 andptr(reg, -modulus); 3198 } 3199 3200 void MacroAssembler::save_rax(Register tmp) { 3201 if (tmp == noreg) push(rax); 3202 else if (tmp != rax) mov(tmp, rax); 3203 } 3204 3205 void MacroAssembler::safepoint_poll(Label& slow_path, Register thread_reg, bool at_return, bool in_nmethod) { 3206 if (at_return) { 3207 // Note that when in_nmethod is set, the stack pointer is incremented before the poll. Therefore, 3208 // we may safely use rsp instead to perform the stack watermark check. 3209 cmpptr(in_nmethod ? rsp : rbp, Address(thread_reg, JavaThread::polling_word_offset())); 3210 jcc(Assembler::above, slow_path); 3211 return; 3212 } 3213 testb(Address(thread_reg, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit()); 3214 jcc(Assembler::notZero, slow_path); // handshake bit set implies poll 3215 } 3216 3217 // Calls to C land 3218 // 3219 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded 3220 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp 3221 // has to be reset to 0. This is required to allow proper stack traversal. 3222 void MacroAssembler::set_last_Java_frame(Register java_thread, 3223 Register last_java_sp, 3224 Register last_java_fp, 3225 address last_java_pc, 3226 Register rscratch) { 3227 vzeroupper(); 3228 // determine java_thread register 3229 if (!java_thread->is_valid()) { 3230 java_thread = rdi; 3231 get_thread(java_thread); 3232 } 3233 // determine last_java_sp register 3234 if (!last_java_sp->is_valid()) { 3235 last_java_sp = rsp; 3236 } 3237 // last_java_fp is optional 3238 if (last_java_fp->is_valid()) { 3239 movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp); 3240 } 3241 // last_java_pc is optional 3242 if (last_java_pc != nullptr) { 3243 Address java_pc(java_thread, 3244 JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()); 3245 lea(java_pc, InternalAddress(last_java_pc), rscratch); 3246 } 3247 movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp); 3248 } 3249 3250 #ifdef _LP64 3251 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 3252 Register last_java_fp, 3253 Label &L, 3254 Register scratch) { 3255 lea(scratch, L); 3256 movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), scratch); 3257 set_last_Java_frame(r15_thread, last_java_sp, last_java_fp, nullptr, scratch); 3258 } 3259 #endif 3260 3261 void MacroAssembler::shlptr(Register dst, int imm8) { 3262 LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8)); 3263 } 3264 3265 void MacroAssembler::shrptr(Register dst, int imm8) { 3266 LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8)); 3267 } 3268 3269 void MacroAssembler::sign_extend_byte(Register reg) { 3270 if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) { 3271 movsbl(reg, reg); // movsxb 3272 } else { 3273 shll(reg, 24); 3274 sarl(reg, 24); 3275 } 3276 } 3277 3278 void MacroAssembler::sign_extend_short(Register reg) { 3279 if (LP64_ONLY(true ||) VM_Version::is_P6()) { 3280 movswl(reg, reg); // movsxw 3281 } else { 3282 shll(reg, 16); 3283 sarl(reg, 16); 3284 } 3285 } 3286 3287 void MacroAssembler::testl(Address dst, int32_t imm32) { 3288 if (imm32 >= 0 && is8bit(imm32)) { 3289 testb(dst, imm32); 3290 } else { 3291 Assembler::testl(dst, imm32); 3292 } 3293 } 3294 3295 void MacroAssembler::testl(Register dst, int32_t imm32) { 3296 if (imm32 >= 0 && is8bit(imm32) && dst->has_byte_register()) { 3297 testb(dst, imm32); 3298 } else { 3299 Assembler::testl(dst, imm32); 3300 } 3301 } 3302 3303 void MacroAssembler::testl(Register dst, AddressLiteral src) { 3304 assert(always_reachable(src), "Address should be reachable"); 3305 testl(dst, as_Address(src)); 3306 } 3307 3308 #ifdef _LP64 3309 3310 void MacroAssembler::testq(Address dst, int32_t imm32) { 3311 if (imm32 >= 0) { 3312 testl(dst, imm32); 3313 } else { 3314 Assembler::testq(dst, imm32); 3315 } 3316 } 3317 3318 void MacroAssembler::testq(Register dst, int32_t imm32) { 3319 if (imm32 >= 0) { 3320 testl(dst, imm32); 3321 } else { 3322 Assembler::testq(dst, imm32); 3323 } 3324 } 3325 3326 #endif 3327 3328 void MacroAssembler::pcmpeqb(XMMRegister dst, XMMRegister src) { 3329 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3330 Assembler::pcmpeqb(dst, src); 3331 } 3332 3333 void MacroAssembler::pcmpeqw(XMMRegister dst, XMMRegister src) { 3334 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3335 Assembler::pcmpeqw(dst, src); 3336 } 3337 3338 void MacroAssembler::pcmpestri(XMMRegister dst, Address src, int imm8) { 3339 assert((dst->encoding() < 16),"XMM register should be 0-15"); 3340 Assembler::pcmpestri(dst, src, imm8); 3341 } 3342 3343 void MacroAssembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) { 3344 assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15"); 3345 Assembler::pcmpestri(dst, src, imm8); 3346 } 3347 3348 void MacroAssembler::pmovzxbw(XMMRegister dst, XMMRegister src) { 3349 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3350 Assembler::pmovzxbw(dst, src); 3351 } 3352 3353 void MacroAssembler::pmovzxbw(XMMRegister dst, Address src) { 3354 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3355 Assembler::pmovzxbw(dst, src); 3356 } 3357 3358 void MacroAssembler::pmovmskb(Register dst, XMMRegister src) { 3359 assert((src->encoding() < 16),"XMM register should be 0-15"); 3360 Assembler::pmovmskb(dst, src); 3361 } 3362 3363 void MacroAssembler::ptest(XMMRegister dst, XMMRegister src) { 3364 assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15"); 3365 Assembler::ptest(dst, src); 3366 } 3367 3368 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src, Register rscratch) { 3369 assert(rscratch != noreg || always_reachable(src), "missing"); 3370 3371 if (reachable(src)) { 3372 Assembler::sqrtss(dst, as_Address(src)); 3373 } else { 3374 lea(rscratch, src); 3375 Assembler::sqrtss(dst, Address(rscratch, 0)); 3376 } 3377 } 3378 3379 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 3380 assert(rscratch != noreg || always_reachable(src), "missing"); 3381 3382 if (reachable(src)) { 3383 Assembler::subsd(dst, as_Address(src)); 3384 } else { 3385 lea(rscratch, src); 3386 Assembler::subsd(dst, Address(rscratch, 0)); 3387 } 3388 } 3389 3390 void MacroAssembler::roundsd(XMMRegister dst, AddressLiteral src, int32_t rmode, Register rscratch) { 3391 assert(rscratch != noreg || always_reachable(src), "missing"); 3392 3393 if (reachable(src)) { 3394 Assembler::roundsd(dst, as_Address(src), rmode); 3395 } else { 3396 lea(rscratch, src); 3397 Assembler::roundsd(dst, Address(rscratch, 0), rmode); 3398 } 3399 } 3400 3401 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src, Register rscratch) { 3402 assert(rscratch != noreg || always_reachable(src), "missing"); 3403 3404 if (reachable(src)) { 3405 Assembler::subss(dst, as_Address(src)); 3406 } else { 3407 lea(rscratch, src); 3408 Assembler::subss(dst, Address(rscratch, 0)); 3409 } 3410 } 3411 3412 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src, Register rscratch) { 3413 assert(rscratch != noreg || always_reachable(src), "missing"); 3414 3415 if (reachable(src)) { 3416 Assembler::ucomisd(dst, as_Address(src)); 3417 } else { 3418 lea(rscratch, src); 3419 Assembler::ucomisd(dst, Address(rscratch, 0)); 3420 } 3421 } 3422 3423 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src, Register rscratch) { 3424 assert(rscratch != noreg || always_reachable(src), "missing"); 3425 3426 if (reachable(src)) { 3427 Assembler::ucomiss(dst, as_Address(src)); 3428 } else { 3429 lea(rscratch, src); 3430 Assembler::ucomiss(dst, Address(rscratch, 0)); 3431 } 3432 } 3433 3434 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src, Register rscratch) { 3435 assert(rscratch != noreg || always_reachable(src), "missing"); 3436 3437 // Used in sign-bit flipping with aligned address. 3438 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); 3439 3440 if (UseAVX > 2 && 3441 (!VM_Version::supports_avx512dq() || !VM_Version::supports_avx512vl()) && 3442 (dst->encoding() >= 16)) { 3443 vpxor(dst, dst, src, Assembler::AVX_512bit, rscratch); 3444 } else if (reachable(src)) { 3445 Assembler::xorpd(dst, as_Address(src)); 3446 } else { 3447 lea(rscratch, src); 3448 Assembler::xorpd(dst, Address(rscratch, 0)); 3449 } 3450 } 3451 3452 void MacroAssembler::xorpd(XMMRegister dst, XMMRegister src) { 3453 if (UseAVX > 2 && 3454 (!VM_Version::supports_avx512dq() || !VM_Version::supports_avx512vl()) && 3455 ((dst->encoding() >= 16) || (src->encoding() >= 16))) { 3456 Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit); 3457 } else { 3458 Assembler::xorpd(dst, src); 3459 } 3460 } 3461 3462 void MacroAssembler::xorps(XMMRegister dst, XMMRegister src) { 3463 if (UseAVX > 2 && 3464 (!VM_Version::supports_avx512dq() || !VM_Version::supports_avx512vl()) && 3465 ((dst->encoding() >= 16) || (src->encoding() >= 16))) { 3466 Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit); 3467 } else { 3468 Assembler::xorps(dst, src); 3469 } 3470 } 3471 3472 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src, Register rscratch) { 3473 assert(rscratch != noreg || always_reachable(src), "missing"); 3474 3475 // Used in sign-bit flipping with aligned address. 3476 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); 3477 3478 if (UseAVX > 2 && 3479 (!VM_Version::supports_avx512dq() || !VM_Version::supports_avx512vl()) && 3480 (dst->encoding() >= 16)) { 3481 vpxor(dst, dst, src, Assembler::AVX_512bit, rscratch); 3482 } else if (reachable(src)) { 3483 Assembler::xorps(dst, as_Address(src)); 3484 } else { 3485 lea(rscratch, src); 3486 Assembler::xorps(dst, Address(rscratch, 0)); 3487 } 3488 } 3489 3490 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src, Register rscratch) { 3491 assert(rscratch != noreg || always_reachable(src), "missing"); 3492 3493 // Used in sign-bit flipping with aligned address. 3494 bool aligned_adr = (((intptr_t)src.target() & 15) == 0); 3495 assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes"); 3496 if (reachable(src)) { 3497 Assembler::pshufb(dst, as_Address(src)); 3498 } else { 3499 lea(rscratch, src); 3500 Assembler::pshufb(dst, Address(rscratch, 0)); 3501 } 3502 } 3503 3504 // AVX 3-operands instructions 3505 3506 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3507 assert(rscratch != noreg || always_reachable(src), "missing"); 3508 3509 if (reachable(src)) { 3510 vaddsd(dst, nds, as_Address(src)); 3511 } else { 3512 lea(rscratch, src); 3513 vaddsd(dst, nds, Address(rscratch, 0)); 3514 } 3515 } 3516 3517 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3518 assert(rscratch != noreg || always_reachable(src), "missing"); 3519 3520 if (reachable(src)) { 3521 vaddss(dst, nds, as_Address(src)); 3522 } else { 3523 lea(rscratch, src); 3524 vaddss(dst, nds, Address(rscratch, 0)); 3525 } 3526 } 3527 3528 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3529 assert(UseAVX > 0, "requires some form of AVX"); 3530 assert(rscratch != noreg || always_reachable(src), "missing"); 3531 3532 if (reachable(src)) { 3533 Assembler::vpaddb(dst, nds, as_Address(src), vector_len); 3534 } else { 3535 lea(rscratch, src); 3536 Assembler::vpaddb(dst, nds, Address(rscratch, 0), vector_len); 3537 } 3538 } 3539 3540 void MacroAssembler::vpaddd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3541 assert(UseAVX > 0, "requires some form of AVX"); 3542 assert(rscratch != noreg || always_reachable(src), "missing"); 3543 3544 if (reachable(src)) { 3545 Assembler::vpaddd(dst, nds, as_Address(src), vector_len); 3546 } else { 3547 lea(rscratch, src); 3548 Assembler::vpaddd(dst, nds, Address(rscratch, 0), vector_len); 3549 } 3550 } 3551 3552 void MacroAssembler::vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch) { 3553 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15"); 3554 assert(rscratch != noreg || always_reachable(negate_field), "missing"); 3555 3556 vandps(dst, nds, negate_field, vector_len, rscratch); 3557 } 3558 3559 void MacroAssembler::vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch) { 3560 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15"); 3561 assert(rscratch != noreg || always_reachable(negate_field), "missing"); 3562 3563 vandpd(dst, nds, negate_field, vector_len, rscratch); 3564 } 3565 3566 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3567 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3568 Assembler::vpaddb(dst, nds, src, vector_len); 3569 } 3570 3571 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3572 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3573 Assembler::vpaddb(dst, nds, src, vector_len); 3574 } 3575 3576 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3577 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3578 Assembler::vpaddw(dst, nds, src, vector_len); 3579 } 3580 3581 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3582 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3583 Assembler::vpaddw(dst, nds, src, vector_len); 3584 } 3585 3586 void MacroAssembler::vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3587 assert(rscratch != noreg || always_reachable(src), "missing"); 3588 3589 if (reachable(src)) { 3590 Assembler::vpand(dst, nds, as_Address(src), vector_len); 3591 } else { 3592 lea(rscratch, src); 3593 Assembler::vpand(dst, nds, Address(rscratch, 0), vector_len); 3594 } 3595 } 3596 3597 void MacroAssembler::vpbroadcastd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 3598 assert(rscratch != noreg || always_reachable(src), "missing"); 3599 3600 if (reachable(src)) { 3601 Assembler::vpbroadcastd(dst, as_Address(src), vector_len); 3602 } else { 3603 lea(rscratch, src); 3604 Assembler::vpbroadcastd(dst, Address(rscratch, 0), vector_len); 3605 } 3606 } 3607 3608 void MacroAssembler::vbroadcasti128(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 3609 assert(rscratch != noreg || always_reachable(src), "missing"); 3610 3611 if (reachable(src)) { 3612 Assembler::vbroadcasti128(dst, as_Address(src), vector_len); 3613 } else { 3614 lea(rscratch, src); 3615 Assembler::vbroadcasti128(dst, Address(rscratch, 0), vector_len); 3616 } 3617 } 3618 3619 void MacroAssembler::vpbroadcastq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 3620 assert(rscratch != noreg || always_reachable(src), "missing"); 3621 3622 if (reachable(src)) { 3623 Assembler::vpbroadcastq(dst, as_Address(src), vector_len); 3624 } else { 3625 lea(rscratch, src); 3626 Assembler::vpbroadcastq(dst, Address(rscratch, 0), vector_len); 3627 } 3628 } 3629 3630 void MacroAssembler::vbroadcastsd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 3631 assert(rscratch != noreg || always_reachable(src), "missing"); 3632 3633 if (reachable(src)) { 3634 Assembler::vbroadcastsd(dst, as_Address(src), vector_len); 3635 } else { 3636 lea(rscratch, src); 3637 Assembler::vbroadcastsd(dst, Address(rscratch, 0), vector_len); 3638 } 3639 } 3640 3641 void MacroAssembler::vbroadcastss(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 3642 assert(rscratch != noreg || always_reachable(src), "missing"); 3643 3644 if (reachable(src)) { 3645 Assembler::vbroadcastss(dst, as_Address(src), vector_len); 3646 } else { 3647 lea(rscratch, src); 3648 Assembler::vbroadcastss(dst, Address(rscratch, 0), vector_len); 3649 } 3650 } 3651 3652 // Vector float blend 3653 // vblendvps(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister mask, int vector_len, bool compute_mask = true, XMMRegister scratch = xnoreg) 3654 void MacroAssembler::vblendvps(XMMRegister dst, XMMRegister src1, XMMRegister src2, XMMRegister mask, int vector_len, bool compute_mask, XMMRegister scratch) { 3655 // WARN: Allow dst == (src1|src2), mask == scratch 3656 bool blend_emulation = EnableX86ECoreOpts && UseAVX > 1; 3657 bool scratch_available = scratch != xnoreg && scratch != src1 && scratch != src2 && scratch != dst; 3658 bool dst_available = dst != mask && (dst != src1 || dst != src2); 3659 if (blend_emulation && scratch_available && dst_available) { 3660 if (compute_mask) { 3661 vpsrad(scratch, mask, 32, vector_len); 3662 mask = scratch; 3663 } 3664 if (dst == src1) { 3665 vpandn(dst, mask, src1, vector_len); // if mask == 0, src1 3666 vpand (scratch, mask, src2, vector_len); // if mask == 1, src2 3667 } else { 3668 vpand (dst, mask, src2, vector_len); // if mask == 1, src2 3669 vpandn(scratch, mask, src1, vector_len); // if mask == 0, src1 3670 } 3671 vpor(dst, dst, scratch, vector_len); 3672 } else { 3673 Assembler::vblendvps(dst, src1, src2, mask, vector_len); 3674 } 3675 } 3676 3677 // vblendvpd(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister mask, int vector_len, bool compute_mask = true, XMMRegister scratch = xnoreg) 3678 void MacroAssembler::vblendvpd(XMMRegister dst, XMMRegister src1, XMMRegister src2, XMMRegister mask, int vector_len, bool compute_mask, XMMRegister scratch) { 3679 // WARN: Allow dst == (src1|src2), mask == scratch 3680 bool blend_emulation = EnableX86ECoreOpts && UseAVX > 1; 3681 bool scratch_available = scratch != xnoreg && scratch != src1 && scratch != src2 && scratch != dst && (!compute_mask || scratch != mask); 3682 bool dst_available = dst != mask && (dst != src1 || dst != src2); 3683 if (blend_emulation && scratch_available && dst_available) { 3684 if (compute_mask) { 3685 vpxor(scratch, scratch, scratch, vector_len); 3686 vpcmpgtq(scratch, scratch, mask, vector_len); 3687 mask = scratch; 3688 } 3689 if (dst == src1) { 3690 vpandn(dst, mask, src1, vector_len); // if mask == 0, src 3691 vpand (scratch, mask, src2, vector_len); // if mask == 1, src2 3692 } else { 3693 vpand (dst, mask, src2, vector_len); // if mask == 1, src2 3694 vpandn(scratch, mask, src1, vector_len); // if mask == 0, src 3695 } 3696 vpor(dst, dst, scratch, vector_len); 3697 } else { 3698 Assembler::vblendvpd(dst, src1, src2, mask, vector_len); 3699 } 3700 } 3701 3702 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3703 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3704 Assembler::vpcmpeqb(dst, nds, src, vector_len); 3705 } 3706 3707 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister src1, Address src2, int vector_len) { 3708 assert(((dst->encoding() < 16 && src1->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3709 Assembler::vpcmpeqb(dst, src1, src2, vector_len); 3710 } 3711 3712 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3713 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3714 Assembler::vpcmpeqw(dst, nds, src, vector_len); 3715 } 3716 3717 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3718 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3719 Assembler::vpcmpeqw(dst, nds, src, vector_len); 3720 } 3721 3722 void MacroAssembler::evpcmpeqd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3723 assert(rscratch != noreg || always_reachable(src), "missing"); 3724 3725 if (reachable(src)) { 3726 Assembler::evpcmpeqd(kdst, mask, nds, as_Address(src), vector_len); 3727 } else { 3728 lea(rscratch, src); 3729 Assembler::evpcmpeqd(kdst, mask, nds, Address(rscratch, 0), vector_len); 3730 } 3731 } 3732 3733 void MacroAssembler::evpcmpd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, 3734 int comparison, bool is_signed, int vector_len, Register rscratch) { 3735 assert(rscratch != noreg || always_reachable(src), "missing"); 3736 3737 if (reachable(src)) { 3738 Assembler::evpcmpd(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len); 3739 } else { 3740 lea(rscratch, src); 3741 Assembler::evpcmpd(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len); 3742 } 3743 } 3744 3745 void MacroAssembler::evpcmpq(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, 3746 int comparison, bool is_signed, int vector_len, Register rscratch) { 3747 assert(rscratch != noreg || always_reachable(src), "missing"); 3748 3749 if (reachable(src)) { 3750 Assembler::evpcmpq(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len); 3751 } else { 3752 lea(rscratch, src); 3753 Assembler::evpcmpq(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len); 3754 } 3755 } 3756 3757 void MacroAssembler::evpcmpb(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, 3758 int comparison, bool is_signed, int vector_len, Register rscratch) { 3759 assert(rscratch != noreg || always_reachable(src), "missing"); 3760 3761 if (reachable(src)) { 3762 Assembler::evpcmpb(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len); 3763 } else { 3764 lea(rscratch, src); 3765 Assembler::evpcmpb(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len); 3766 } 3767 } 3768 3769 void MacroAssembler::evpcmpw(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, 3770 int comparison, bool is_signed, int vector_len, Register rscratch) { 3771 assert(rscratch != noreg || always_reachable(src), "missing"); 3772 3773 if (reachable(src)) { 3774 Assembler::evpcmpw(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len); 3775 } else { 3776 lea(rscratch, src); 3777 Assembler::evpcmpw(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len); 3778 } 3779 } 3780 3781 void MacroAssembler::vpcmpCC(XMMRegister dst, XMMRegister nds, XMMRegister src, int cond_encoding, Width width, int vector_len) { 3782 if (width == Assembler::Q) { 3783 Assembler::vpcmpCCq(dst, nds, src, cond_encoding, vector_len); 3784 } else { 3785 Assembler::vpcmpCCbwd(dst, nds, src, cond_encoding, vector_len); 3786 } 3787 } 3788 3789 void MacroAssembler::vpcmpCCW(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister xtmp, ComparisonPredicate cond, Width width, int vector_len) { 3790 int eq_cond_enc = 0x29; 3791 int gt_cond_enc = 0x37; 3792 if (width != Assembler::Q) { 3793 eq_cond_enc = 0x74 + width; 3794 gt_cond_enc = 0x64 + width; 3795 } 3796 switch (cond) { 3797 case eq: 3798 vpcmpCC(dst, nds, src, eq_cond_enc, width, vector_len); 3799 break; 3800 case neq: 3801 vpcmpCC(dst, nds, src, eq_cond_enc, width, vector_len); 3802 vallones(xtmp, vector_len); 3803 vpxor(dst, xtmp, dst, vector_len); 3804 break; 3805 case le: 3806 vpcmpCC(dst, nds, src, gt_cond_enc, width, vector_len); 3807 vallones(xtmp, vector_len); 3808 vpxor(dst, xtmp, dst, vector_len); 3809 break; 3810 case nlt: 3811 vpcmpCC(dst, src, nds, gt_cond_enc, width, vector_len); 3812 vallones(xtmp, vector_len); 3813 vpxor(dst, xtmp, dst, vector_len); 3814 break; 3815 case lt: 3816 vpcmpCC(dst, src, nds, gt_cond_enc, width, vector_len); 3817 break; 3818 case nle: 3819 vpcmpCC(dst, nds, src, gt_cond_enc, width, vector_len); 3820 break; 3821 default: 3822 assert(false, "Should not reach here"); 3823 } 3824 } 3825 3826 void MacroAssembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) { 3827 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3828 Assembler::vpmovzxbw(dst, src, vector_len); 3829 } 3830 3831 void MacroAssembler::vpmovmskb(Register dst, XMMRegister src, int vector_len) { 3832 assert((src->encoding() < 16),"XMM register should be 0-15"); 3833 Assembler::vpmovmskb(dst, src, vector_len); 3834 } 3835 3836 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3837 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3838 Assembler::vpmullw(dst, nds, src, vector_len); 3839 } 3840 3841 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3842 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3843 Assembler::vpmullw(dst, nds, src, vector_len); 3844 } 3845 3846 void MacroAssembler::vpmulld(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3847 assert((UseAVX > 0), "AVX support is needed"); 3848 assert(rscratch != noreg || always_reachable(src), "missing"); 3849 3850 if (reachable(src)) { 3851 Assembler::vpmulld(dst, nds, as_Address(src), vector_len); 3852 } else { 3853 lea(rscratch, src); 3854 Assembler::vpmulld(dst, nds, Address(rscratch, 0), vector_len); 3855 } 3856 } 3857 3858 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3859 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3860 Assembler::vpsubb(dst, nds, src, vector_len); 3861 } 3862 3863 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3864 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3865 Assembler::vpsubb(dst, nds, src, vector_len); 3866 } 3867 3868 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3869 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3870 Assembler::vpsubw(dst, nds, src, vector_len); 3871 } 3872 3873 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3874 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3875 Assembler::vpsubw(dst, nds, src, vector_len); 3876 } 3877 3878 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) { 3879 assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3880 Assembler::vpsraw(dst, nds, shift, vector_len); 3881 } 3882 3883 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) { 3884 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3885 Assembler::vpsraw(dst, nds, shift, vector_len); 3886 } 3887 3888 void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) { 3889 assert(UseAVX > 2,""); 3890 if (!VM_Version::supports_avx512vl() && vector_len < 2) { 3891 vector_len = 2; 3892 } 3893 Assembler::evpsraq(dst, nds, shift, vector_len); 3894 } 3895 3896 void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, int shift, int vector_len) { 3897 assert(UseAVX > 2,""); 3898 if (!VM_Version::supports_avx512vl() && vector_len < 2) { 3899 vector_len = 2; 3900 } 3901 Assembler::evpsraq(dst, nds, shift, vector_len); 3902 } 3903 3904 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) { 3905 assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3906 Assembler::vpsrlw(dst, nds, shift, vector_len); 3907 } 3908 3909 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) { 3910 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3911 Assembler::vpsrlw(dst, nds, shift, vector_len); 3912 } 3913 3914 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) { 3915 assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3916 Assembler::vpsllw(dst, nds, shift, vector_len); 3917 } 3918 3919 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) { 3920 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3921 Assembler::vpsllw(dst, nds, shift, vector_len); 3922 } 3923 3924 void MacroAssembler::vptest(XMMRegister dst, XMMRegister src) { 3925 assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15"); 3926 Assembler::vptest(dst, src); 3927 } 3928 3929 void MacroAssembler::punpcklbw(XMMRegister dst, XMMRegister src) { 3930 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3931 Assembler::punpcklbw(dst, src); 3932 } 3933 3934 void MacroAssembler::pshufd(XMMRegister dst, Address src, int mode) { 3935 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 3936 Assembler::pshufd(dst, src, mode); 3937 } 3938 3939 void MacroAssembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) { 3940 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3941 Assembler::pshuflw(dst, src, mode); 3942 } 3943 3944 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3945 assert(rscratch != noreg || always_reachable(src), "missing"); 3946 3947 if (reachable(src)) { 3948 vandpd(dst, nds, as_Address(src), vector_len); 3949 } else { 3950 lea(rscratch, src); 3951 vandpd(dst, nds, Address(rscratch, 0), vector_len); 3952 } 3953 } 3954 3955 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3956 assert(rscratch != noreg || always_reachable(src), "missing"); 3957 3958 if (reachable(src)) { 3959 vandps(dst, nds, as_Address(src), vector_len); 3960 } else { 3961 lea(rscratch, src); 3962 vandps(dst, nds, Address(rscratch, 0), vector_len); 3963 } 3964 } 3965 3966 void MacroAssembler::evpord(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, 3967 bool merge, int vector_len, Register rscratch) { 3968 assert(rscratch != noreg || always_reachable(src), "missing"); 3969 3970 if (reachable(src)) { 3971 Assembler::evpord(dst, mask, nds, as_Address(src), merge, vector_len); 3972 } else { 3973 lea(rscratch, src); 3974 Assembler::evpord(dst, mask, nds, Address(rscratch, 0), merge, vector_len); 3975 } 3976 } 3977 3978 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3979 assert(rscratch != noreg || always_reachable(src), "missing"); 3980 3981 if (reachable(src)) { 3982 vdivsd(dst, nds, as_Address(src)); 3983 } else { 3984 lea(rscratch, src); 3985 vdivsd(dst, nds, Address(rscratch, 0)); 3986 } 3987 } 3988 3989 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3990 assert(rscratch != noreg || always_reachable(src), "missing"); 3991 3992 if (reachable(src)) { 3993 vdivss(dst, nds, as_Address(src)); 3994 } else { 3995 lea(rscratch, src); 3996 vdivss(dst, nds, Address(rscratch, 0)); 3997 } 3998 } 3999 4000 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 4001 assert(rscratch != noreg || always_reachable(src), "missing"); 4002 4003 if (reachable(src)) { 4004 vmulsd(dst, nds, as_Address(src)); 4005 } else { 4006 lea(rscratch, src); 4007 vmulsd(dst, nds, Address(rscratch, 0)); 4008 } 4009 } 4010 4011 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 4012 assert(rscratch != noreg || always_reachable(src), "missing"); 4013 4014 if (reachable(src)) { 4015 vmulss(dst, nds, as_Address(src)); 4016 } else { 4017 lea(rscratch, src); 4018 vmulss(dst, nds, Address(rscratch, 0)); 4019 } 4020 } 4021 4022 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 4023 assert(rscratch != noreg || always_reachable(src), "missing"); 4024 4025 if (reachable(src)) { 4026 vsubsd(dst, nds, as_Address(src)); 4027 } else { 4028 lea(rscratch, src); 4029 vsubsd(dst, nds, Address(rscratch, 0)); 4030 } 4031 } 4032 4033 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 4034 assert(rscratch != noreg || always_reachable(src), "missing"); 4035 4036 if (reachable(src)) { 4037 vsubss(dst, nds, as_Address(src)); 4038 } else { 4039 lea(rscratch, src); 4040 vsubss(dst, nds, Address(rscratch, 0)); 4041 } 4042 } 4043 4044 void MacroAssembler::vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 4045 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15"); 4046 assert(rscratch != noreg || always_reachable(src), "missing"); 4047 4048 vxorps(dst, nds, src, Assembler::AVX_128bit, rscratch); 4049 } 4050 4051 void MacroAssembler::vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 4052 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15"); 4053 assert(rscratch != noreg || always_reachable(src), "missing"); 4054 4055 vxorpd(dst, nds, src, Assembler::AVX_128bit, rscratch); 4056 } 4057 4058 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 4059 assert(rscratch != noreg || always_reachable(src), "missing"); 4060 4061 if (reachable(src)) { 4062 vxorpd(dst, nds, as_Address(src), vector_len); 4063 } else { 4064 lea(rscratch, src); 4065 vxorpd(dst, nds, Address(rscratch, 0), vector_len); 4066 } 4067 } 4068 4069 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 4070 assert(rscratch != noreg || always_reachable(src), "missing"); 4071 4072 if (reachable(src)) { 4073 vxorps(dst, nds, as_Address(src), vector_len); 4074 } else { 4075 lea(rscratch, src); 4076 vxorps(dst, nds, Address(rscratch, 0), vector_len); 4077 } 4078 } 4079 4080 void MacroAssembler::vpxor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 4081 assert(rscratch != noreg || always_reachable(src), "missing"); 4082 4083 if (UseAVX > 1 || (vector_len < 1)) { 4084 if (reachable(src)) { 4085 Assembler::vpxor(dst, nds, as_Address(src), vector_len); 4086 } else { 4087 lea(rscratch, src); 4088 Assembler::vpxor(dst, nds, Address(rscratch, 0), vector_len); 4089 } 4090 } else { 4091 MacroAssembler::vxorpd(dst, nds, src, vector_len, rscratch); 4092 } 4093 } 4094 4095 void MacroAssembler::vpermd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 4096 assert(rscratch != noreg || always_reachable(src), "missing"); 4097 4098 if (reachable(src)) { 4099 Assembler::vpermd(dst, nds, as_Address(src), vector_len); 4100 } else { 4101 lea(rscratch, src); 4102 Assembler::vpermd(dst, nds, Address(rscratch, 0), vector_len); 4103 } 4104 } 4105 4106 void MacroAssembler::clear_jobject_tag(Register possibly_non_local) { 4107 const int32_t inverted_mask = ~static_cast<int32_t>(JNIHandles::tag_mask); 4108 STATIC_ASSERT(inverted_mask == -4); // otherwise check this code 4109 // The inverted mask is sign-extended 4110 andptr(possibly_non_local, inverted_mask); 4111 } 4112 4113 void MacroAssembler::resolve_jobject(Register value, 4114 Register thread, 4115 Register tmp) { 4116 assert_different_registers(value, thread, tmp); 4117 Label done, tagged, weak_tagged; 4118 testptr(value, value); 4119 jcc(Assembler::zero, done); // Use null as-is. 4120 testptr(value, JNIHandles::tag_mask); // Test for tag. 4121 jcc(Assembler::notZero, tagged); 4122 4123 // Resolve local handle 4124 access_load_at(T_OBJECT, IN_NATIVE | AS_RAW, value, Address(value, 0), tmp, thread); 4125 verify_oop(value); 4126 jmp(done); 4127 4128 bind(tagged); 4129 testptr(value, JNIHandles::TypeTag::weak_global); // Test for weak tag. 4130 jcc(Assembler::notZero, weak_tagged); 4131 4132 // Resolve global handle 4133 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp, thread); 4134 verify_oop(value); 4135 jmp(done); 4136 4137 bind(weak_tagged); 4138 // Resolve jweak. 4139 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 4140 value, Address(value, -JNIHandles::TypeTag::weak_global), tmp, thread); 4141 verify_oop(value); 4142 4143 bind(done); 4144 } 4145 4146 void MacroAssembler::resolve_global_jobject(Register value, 4147 Register thread, 4148 Register tmp) { 4149 assert_different_registers(value, thread, tmp); 4150 Label done; 4151 4152 testptr(value, value); 4153 jcc(Assembler::zero, done); // Use null as-is. 4154 4155 #ifdef ASSERT 4156 { 4157 Label valid_global_tag; 4158 testptr(value, JNIHandles::TypeTag::global); // Test for global tag. 4159 jcc(Assembler::notZero, valid_global_tag); 4160 stop("non global jobject using resolve_global_jobject"); 4161 bind(valid_global_tag); 4162 } 4163 #endif 4164 4165 // Resolve global handle 4166 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp, thread); 4167 verify_oop(value); 4168 4169 bind(done); 4170 } 4171 4172 void MacroAssembler::subptr(Register dst, int32_t imm32) { 4173 LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32)); 4174 } 4175 4176 // Force generation of a 4 byte immediate value even if it fits into 8bit 4177 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) { 4178 LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32)); 4179 } 4180 4181 void MacroAssembler::subptr(Register dst, Register src) { 4182 LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); 4183 } 4184 4185 // C++ bool manipulation 4186 void MacroAssembler::testbool(Register dst) { 4187 if(sizeof(bool) == 1) 4188 testb(dst, 0xff); 4189 else if(sizeof(bool) == 2) { 4190 // testw implementation needed for two byte bools 4191 ShouldNotReachHere(); 4192 } else if(sizeof(bool) == 4) 4193 testl(dst, dst); 4194 else 4195 // unsupported 4196 ShouldNotReachHere(); 4197 } 4198 4199 void MacroAssembler::testptr(Register dst, Register src) { 4200 LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src)); 4201 } 4202 4203 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes. 4204 void MacroAssembler::tlab_allocate(Register thread, Register obj, 4205 Register var_size_in_bytes, 4206 int con_size_in_bytes, 4207 Register t1, 4208 Register t2, 4209 Label& slow_case) { 4210 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 4211 bs->tlab_allocate(this, thread, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case); 4212 } 4213 4214 RegSet MacroAssembler::call_clobbered_gp_registers() { 4215 RegSet regs; 4216 #ifdef _LP64 4217 regs += RegSet::of(rax, rcx, rdx); 4218 #ifndef _WINDOWS 4219 regs += RegSet::of(rsi, rdi); 4220 #endif 4221 regs += RegSet::range(r8, r11); 4222 #else 4223 regs += RegSet::of(rax, rcx, rdx); 4224 #endif 4225 #ifdef _LP64 4226 if (UseAPX) { 4227 regs += RegSet::range(r16, as_Register(Register::number_of_registers - 1)); 4228 } 4229 #endif 4230 return regs; 4231 } 4232 4233 XMMRegSet MacroAssembler::call_clobbered_xmm_registers() { 4234 int num_xmm_registers = XMMRegister::available_xmm_registers(); 4235 #if defined(_WINDOWS) 4236 XMMRegSet result = XMMRegSet::range(xmm0, xmm5); 4237 if (num_xmm_registers > 16) { 4238 result += XMMRegSet::range(xmm16, as_XMMRegister(num_xmm_registers - 1)); 4239 } 4240 return result; 4241 #else 4242 return XMMRegSet::range(xmm0, as_XMMRegister(num_xmm_registers - 1)); 4243 #endif 4244 } 4245 4246 static int FPUSaveAreaSize = align_up(108, StackAlignmentInBytes); // 108 bytes needed for FPU state by fsave/frstor 4247 4248 #ifndef _LP64 4249 static bool use_x87_registers() { return UseSSE < 2; } 4250 #endif 4251 static bool use_xmm_registers() { return UseSSE >= 1; } 4252 4253 // C1 only ever uses the first double/float of the XMM register. 4254 static int xmm_save_size() { return UseSSE >= 2 ? sizeof(double) : sizeof(float); } 4255 4256 static void save_xmm_register(MacroAssembler* masm, int offset, XMMRegister reg) { 4257 if (UseSSE == 1) { 4258 masm->movflt(Address(rsp, offset), reg); 4259 } else { 4260 masm->movdbl(Address(rsp, offset), reg); 4261 } 4262 } 4263 4264 static void restore_xmm_register(MacroAssembler* masm, int offset, XMMRegister reg) { 4265 if (UseSSE == 1) { 4266 masm->movflt(reg, Address(rsp, offset)); 4267 } else { 4268 masm->movdbl(reg, Address(rsp, offset)); 4269 } 4270 } 4271 4272 static int register_section_sizes(RegSet gp_registers, XMMRegSet xmm_registers, 4273 bool save_fpu, int& gp_area_size, 4274 int& fp_area_size, int& xmm_area_size) { 4275 4276 gp_area_size = align_up(gp_registers.size() * Register::max_slots_per_register * VMRegImpl::stack_slot_size, 4277 StackAlignmentInBytes); 4278 #ifdef _LP64 4279 fp_area_size = 0; 4280 #else 4281 fp_area_size = (save_fpu && use_x87_registers()) ? FPUSaveAreaSize : 0; 4282 #endif 4283 xmm_area_size = (save_fpu && use_xmm_registers()) ? xmm_registers.size() * xmm_save_size() : 0; 4284 4285 return gp_area_size + fp_area_size + xmm_area_size; 4286 } 4287 4288 void MacroAssembler::push_call_clobbered_registers_except(RegSet exclude, bool save_fpu) { 4289 block_comment("push_call_clobbered_registers start"); 4290 // Regular registers 4291 RegSet gp_registers_to_push = call_clobbered_gp_registers() - exclude; 4292 4293 int gp_area_size; 4294 int fp_area_size; 4295 int xmm_area_size; 4296 int total_save_size = register_section_sizes(gp_registers_to_push, call_clobbered_xmm_registers(), save_fpu, 4297 gp_area_size, fp_area_size, xmm_area_size); 4298 subptr(rsp, total_save_size); 4299 4300 push_set(gp_registers_to_push, 0); 4301 4302 #ifndef _LP64 4303 if (save_fpu && use_x87_registers()) { 4304 fnsave(Address(rsp, gp_area_size)); 4305 fwait(); 4306 } 4307 #endif 4308 if (save_fpu && use_xmm_registers()) { 4309 push_set(call_clobbered_xmm_registers(), gp_area_size + fp_area_size); 4310 } 4311 4312 block_comment("push_call_clobbered_registers end"); 4313 } 4314 4315 void MacroAssembler::pop_call_clobbered_registers_except(RegSet exclude, bool restore_fpu) { 4316 block_comment("pop_call_clobbered_registers start"); 4317 4318 RegSet gp_registers_to_pop = call_clobbered_gp_registers() - exclude; 4319 4320 int gp_area_size; 4321 int fp_area_size; 4322 int xmm_area_size; 4323 int total_save_size = register_section_sizes(gp_registers_to_pop, call_clobbered_xmm_registers(), restore_fpu, 4324 gp_area_size, fp_area_size, xmm_area_size); 4325 4326 if (restore_fpu && use_xmm_registers()) { 4327 pop_set(call_clobbered_xmm_registers(), gp_area_size + fp_area_size); 4328 } 4329 #ifndef _LP64 4330 if (restore_fpu && use_x87_registers()) { 4331 frstor(Address(rsp, gp_area_size)); 4332 } 4333 #endif 4334 4335 pop_set(gp_registers_to_pop, 0); 4336 4337 addptr(rsp, total_save_size); 4338 4339 vzeroupper(); 4340 4341 block_comment("pop_call_clobbered_registers end"); 4342 } 4343 4344 void MacroAssembler::push_set(XMMRegSet set, int offset) { 4345 assert(is_aligned(set.size() * xmm_save_size(), StackAlignmentInBytes), "must be"); 4346 int spill_offset = offset; 4347 4348 for (RegSetIterator<XMMRegister> it = set.begin(); *it != xnoreg; ++it) { 4349 save_xmm_register(this, spill_offset, *it); 4350 spill_offset += xmm_save_size(); 4351 } 4352 } 4353 4354 void MacroAssembler::pop_set(XMMRegSet set, int offset) { 4355 int restore_size = set.size() * xmm_save_size(); 4356 assert(is_aligned(restore_size, StackAlignmentInBytes), "must be"); 4357 4358 int restore_offset = offset + restore_size - xmm_save_size(); 4359 4360 for (ReverseRegSetIterator<XMMRegister> it = set.rbegin(); *it != xnoreg; ++it) { 4361 restore_xmm_register(this, restore_offset, *it); 4362 restore_offset -= xmm_save_size(); 4363 } 4364 } 4365 4366 void MacroAssembler::push_set(RegSet set, int offset) { 4367 int spill_offset; 4368 if (offset == -1) { 4369 int register_push_size = set.size() * Register::max_slots_per_register * VMRegImpl::stack_slot_size; 4370 int aligned_size = align_up(register_push_size, StackAlignmentInBytes); 4371 subptr(rsp, aligned_size); 4372 spill_offset = 0; 4373 } else { 4374 spill_offset = offset; 4375 } 4376 4377 for (RegSetIterator<Register> it = set.begin(); *it != noreg; ++it) { 4378 movptr(Address(rsp, spill_offset), *it); 4379 spill_offset += Register::max_slots_per_register * VMRegImpl::stack_slot_size; 4380 } 4381 } 4382 4383 void MacroAssembler::pop_set(RegSet set, int offset) { 4384 4385 int gp_reg_size = Register::max_slots_per_register * VMRegImpl::stack_slot_size; 4386 int restore_size = set.size() * gp_reg_size; 4387 int aligned_size = align_up(restore_size, StackAlignmentInBytes); 4388 4389 int restore_offset; 4390 if (offset == -1) { 4391 restore_offset = restore_size - gp_reg_size; 4392 } else { 4393 restore_offset = offset + restore_size - gp_reg_size; 4394 } 4395 for (ReverseRegSetIterator<Register> it = set.rbegin(); *it != noreg; ++it) { 4396 movptr(*it, Address(rsp, restore_offset)); 4397 restore_offset -= gp_reg_size; 4398 } 4399 4400 if (offset == -1) { 4401 addptr(rsp, aligned_size); 4402 } 4403 } 4404 4405 // Preserves the contents of address, destroys the contents length_in_bytes and temp. 4406 void MacroAssembler::zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp) { 4407 assert(address != length_in_bytes && address != temp && temp != length_in_bytes, "registers must be different"); 4408 assert((offset_in_bytes & (BytesPerWord - 1)) == 0, "offset must be a multiple of BytesPerWord"); 4409 Label done; 4410 4411 testptr(length_in_bytes, length_in_bytes); 4412 jcc(Assembler::zero, done); 4413 4414 // initialize topmost word, divide index by 2, check if odd and test if zero 4415 // note: for the remaining code to work, index must be a multiple of BytesPerWord 4416 #ifdef ASSERT 4417 { 4418 Label L; 4419 testptr(length_in_bytes, BytesPerWord - 1); 4420 jcc(Assembler::zero, L); 4421 stop("length must be a multiple of BytesPerWord"); 4422 bind(L); 4423 } 4424 #endif 4425 Register index = length_in_bytes; 4426 xorptr(temp, temp); // use _zero reg to clear memory (shorter code) 4427 if (UseIncDec) { 4428 shrptr(index, 3); // divide by 8/16 and set carry flag if bit 2 was set 4429 } else { 4430 shrptr(index, 2); // use 2 instructions to avoid partial flag stall 4431 shrptr(index, 1); 4432 } 4433 #ifndef _LP64 4434 // index could have not been a multiple of 8 (i.e., bit 2 was set) 4435 { 4436 Label even; 4437 // note: if index was a multiple of 8, then it cannot 4438 // be 0 now otherwise it must have been 0 before 4439 // => if it is even, we don't need to check for 0 again 4440 jcc(Assembler::carryClear, even); 4441 // clear topmost word (no jump would be needed if conditional assignment worked here) 4442 movptr(Address(address, index, Address::times_8, offset_in_bytes - 0*BytesPerWord), temp); 4443 // index could be 0 now, must check again 4444 jcc(Assembler::zero, done); 4445 bind(even); 4446 } 4447 #endif // !_LP64 4448 // initialize remaining object fields: index is a multiple of 2 now 4449 { 4450 Label loop; 4451 bind(loop); 4452 movptr(Address(address, index, Address::times_8, offset_in_bytes - 1*BytesPerWord), temp); 4453 NOT_LP64(movptr(Address(address, index, Address::times_8, offset_in_bytes - 2*BytesPerWord), temp);) 4454 decrement(index); 4455 jcc(Assembler::notZero, loop); 4456 } 4457 4458 bind(done); 4459 } 4460 4461 // Look up the method for a megamorphic invokeinterface call. 4462 // The target method is determined by <intf_klass, itable_index>. 4463 // The receiver klass is in recv_klass. 4464 // On success, the result will be in method_result, and execution falls through. 4465 // On failure, execution transfers to the given label. 4466 void MacroAssembler::lookup_interface_method(Register recv_klass, 4467 Register intf_klass, 4468 RegisterOrConstant itable_index, 4469 Register method_result, 4470 Register scan_temp, 4471 Label& L_no_such_interface, 4472 bool return_method) { 4473 assert_different_registers(recv_klass, intf_klass, scan_temp); 4474 assert_different_registers(method_result, intf_klass, scan_temp); 4475 assert(recv_klass != method_result || !return_method, 4476 "recv_klass can be destroyed when method isn't needed"); 4477 4478 assert(itable_index.is_constant() || itable_index.as_register() == method_result, 4479 "caller must use same register for non-constant itable index as for method"); 4480 4481 // Compute start of first itableOffsetEntry (which is at the end of the vtable) 4482 int vtable_base = in_bytes(Klass::vtable_start_offset()); 4483 int itentry_off = in_bytes(itableMethodEntry::method_offset()); 4484 int scan_step = itableOffsetEntry::size() * wordSize; 4485 int vte_size = vtableEntry::size_in_bytes(); 4486 Address::ScaleFactor times_vte_scale = Address::times_ptr; 4487 assert(vte_size == wordSize, "else adjust times_vte_scale"); 4488 4489 movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 4490 4491 // Could store the aligned, prescaled offset in the klass. 4492 lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base)); 4493 4494 if (return_method) { 4495 // Adjust recv_klass by scaled itable_index, so we can free itable_index. 4496 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); 4497 lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off)); 4498 } 4499 4500 // for (scan = klass->itable(); scan->interface() != nullptr; scan += scan_step) { 4501 // if (scan->interface() == intf) { 4502 // result = (klass + scan->offset() + itable_index); 4503 // } 4504 // } 4505 Label search, found_method; 4506 4507 for (int peel = 1; peel >= 0; peel--) { 4508 movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset())); 4509 cmpptr(intf_klass, method_result); 4510 4511 if (peel) { 4512 jccb(Assembler::equal, found_method); 4513 } else { 4514 jccb(Assembler::notEqual, search); 4515 // (invert the test to fall through to found_method...) 4516 } 4517 4518 if (!peel) break; 4519 4520 bind(search); 4521 4522 // Check that the previous entry is non-null. A null entry means that 4523 // the receiver class doesn't implement the interface, and wasn't the 4524 // same as when the caller was compiled. 4525 testptr(method_result, method_result); 4526 jcc(Assembler::zero, L_no_such_interface); 4527 addptr(scan_temp, scan_step); 4528 } 4529 4530 bind(found_method); 4531 4532 if (return_method) { 4533 // Got a hit. 4534 movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset())); 4535 movptr(method_result, Address(recv_klass, scan_temp, Address::times_1)); 4536 } 4537 } 4538 4539 // Look up the method for a megamorphic invokeinterface call in a single pass over itable: 4540 // - check recv_klass (actual object class) is a subtype of resolved_klass from CompiledICData 4541 // - find a holder_klass (class that implements the method) vtable offset and get the method from vtable by index 4542 // The target method is determined by <holder_klass, itable_index>. 4543 // The receiver klass is in recv_klass. 4544 // On success, the result will be in method_result, and execution falls through. 4545 // On failure, execution transfers to the given label. 4546 void MacroAssembler::lookup_interface_method_stub(Register recv_klass, 4547 Register holder_klass, 4548 Register resolved_klass, 4549 Register method_result, 4550 Register scan_temp, 4551 Register temp_reg2, 4552 Register receiver, 4553 int itable_index, 4554 Label& L_no_such_interface) { 4555 assert_different_registers(recv_klass, method_result, holder_klass, resolved_klass, scan_temp, temp_reg2, receiver); 4556 Register temp_itbl_klass = method_result; 4557 Register temp_reg = (temp_reg2 == noreg ? recv_klass : temp_reg2); // reuse recv_klass register on 32-bit x86 impl 4558 4559 int vtable_base = in_bytes(Klass::vtable_start_offset()); 4560 int itentry_off = in_bytes(itableMethodEntry::method_offset()); 4561 int scan_step = itableOffsetEntry::size() * wordSize; 4562 int vte_size = vtableEntry::size_in_bytes(); 4563 int ioffset = in_bytes(itableOffsetEntry::interface_offset()); 4564 int ooffset = in_bytes(itableOffsetEntry::offset_offset()); 4565 Address::ScaleFactor times_vte_scale = Address::times_ptr; 4566 assert(vte_size == wordSize, "adjust times_vte_scale"); 4567 4568 Label L_loop_scan_resolved_entry, L_resolved_found, L_holder_found; 4569 4570 // temp_itbl_klass = recv_klass.itable[0] 4571 // scan_temp = &recv_klass.itable[0] + step 4572 movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 4573 movptr(temp_itbl_klass, Address(recv_klass, scan_temp, times_vte_scale, vtable_base + ioffset)); 4574 lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base + ioffset + scan_step)); 4575 xorptr(temp_reg, temp_reg); 4576 4577 // Initial checks: 4578 // - if (holder_klass != resolved_klass), go to "scan for resolved" 4579 // - if (itable[0] == 0), no such interface 4580 // - if (itable[0] == holder_klass), shortcut to "holder found" 4581 cmpptr(holder_klass, resolved_klass); 4582 jccb(Assembler::notEqual, L_loop_scan_resolved_entry); 4583 testptr(temp_itbl_klass, temp_itbl_klass); 4584 jccb(Assembler::zero, L_no_such_interface); 4585 cmpptr(holder_klass, temp_itbl_klass); 4586 jccb(Assembler::equal, L_holder_found); 4587 4588 // Loop: Look for holder_klass record in itable 4589 // do { 4590 // tmp = itable[index]; 4591 // index += step; 4592 // if (tmp == holder_klass) { 4593 // goto L_holder_found; // Found! 4594 // } 4595 // } while (tmp != 0); 4596 // goto L_no_such_interface // Not found. 4597 Label L_scan_holder; 4598 bind(L_scan_holder); 4599 movptr(temp_itbl_klass, Address(scan_temp, 0)); 4600 addptr(scan_temp, scan_step); 4601 cmpptr(holder_klass, temp_itbl_klass); 4602 jccb(Assembler::equal, L_holder_found); 4603 testptr(temp_itbl_klass, temp_itbl_klass); 4604 jccb(Assembler::notZero, L_scan_holder); 4605 4606 jmpb(L_no_such_interface); 4607 4608 // Loop: Look for resolved_class record in itable 4609 // do { 4610 // tmp = itable[index]; 4611 // index += step; 4612 // if (tmp == holder_klass) { 4613 // // Also check if we have met a holder klass 4614 // holder_tmp = itable[index-step-ioffset]; 4615 // } 4616 // if (tmp == resolved_klass) { 4617 // goto L_resolved_found; // Found! 4618 // } 4619 // } while (tmp != 0); 4620 // goto L_no_such_interface // Not found. 4621 // 4622 Label L_loop_scan_resolved; 4623 bind(L_loop_scan_resolved); 4624 movptr(temp_itbl_klass, Address(scan_temp, 0)); 4625 addptr(scan_temp, scan_step); 4626 bind(L_loop_scan_resolved_entry); 4627 cmpptr(holder_klass, temp_itbl_klass); 4628 cmovl(Assembler::equal, temp_reg, Address(scan_temp, ooffset - ioffset - scan_step)); 4629 cmpptr(resolved_klass, temp_itbl_klass); 4630 jccb(Assembler::equal, L_resolved_found); 4631 testptr(temp_itbl_klass, temp_itbl_klass); 4632 jccb(Assembler::notZero, L_loop_scan_resolved); 4633 4634 jmpb(L_no_such_interface); 4635 4636 Label L_ready; 4637 4638 // See if we already have a holder klass. If not, go and scan for it. 4639 bind(L_resolved_found); 4640 testptr(temp_reg, temp_reg); 4641 jccb(Assembler::zero, L_scan_holder); 4642 jmpb(L_ready); 4643 4644 bind(L_holder_found); 4645 movl(temp_reg, Address(scan_temp, ooffset - ioffset - scan_step)); 4646 4647 // Finally, temp_reg contains holder_klass vtable offset 4648 bind(L_ready); 4649 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); 4650 if (temp_reg2 == noreg) { // recv_klass register is clobbered for 32-bit x86 impl 4651 load_klass(scan_temp, receiver, noreg); 4652 movptr(method_result, Address(scan_temp, temp_reg, Address::times_1, itable_index * wordSize + itentry_off)); 4653 } else { 4654 movptr(method_result, Address(recv_klass, temp_reg, Address::times_1, itable_index * wordSize + itentry_off)); 4655 } 4656 } 4657 4658 4659 // virtual method calling 4660 void MacroAssembler::lookup_virtual_method(Register recv_klass, 4661 RegisterOrConstant vtable_index, 4662 Register method_result) { 4663 const ByteSize base = Klass::vtable_start_offset(); 4664 assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below"); 4665 Address vtable_entry_addr(recv_klass, 4666 vtable_index, Address::times_ptr, 4667 base + vtableEntry::method_offset()); 4668 movptr(method_result, vtable_entry_addr); 4669 } 4670 4671 4672 void MacroAssembler::check_klass_subtype(Register sub_klass, 4673 Register super_klass, 4674 Register temp_reg, 4675 Label& L_success) { 4676 Label L_failure; 4677 check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg, &L_success, &L_failure, nullptr); 4678 check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, nullptr); 4679 bind(L_failure); 4680 } 4681 4682 4683 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass, 4684 Register super_klass, 4685 Register temp_reg, 4686 Label* L_success, 4687 Label* L_failure, 4688 Label* L_slow_path, 4689 RegisterOrConstant super_check_offset) { 4690 assert_different_registers(sub_klass, super_klass, temp_reg); 4691 bool must_load_sco = (super_check_offset.constant_or_zero() == -1); 4692 if (super_check_offset.is_register()) { 4693 assert_different_registers(sub_klass, super_klass, 4694 super_check_offset.as_register()); 4695 } else if (must_load_sco) { 4696 assert(temp_reg != noreg, "supply either a temp or a register offset"); 4697 } 4698 4699 Label L_fallthrough; 4700 int label_nulls = 0; 4701 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 4702 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 4703 if (L_slow_path == nullptr) { L_slow_path = &L_fallthrough; label_nulls++; } 4704 assert(label_nulls <= 1, "at most one null in the batch"); 4705 4706 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 4707 int sco_offset = in_bytes(Klass::super_check_offset_offset()); 4708 Address super_check_offset_addr(super_klass, sco_offset); 4709 4710 // Hacked jcc, which "knows" that L_fallthrough, at least, is in 4711 // range of a jccb. If this routine grows larger, reconsider at 4712 // least some of these. 4713 #define local_jcc(assembler_cond, label) \ 4714 if (&(label) == &L_fallthrough) jccb(assembler_cond, label); \ 4715 else jcc( assembler_cond, label) /*omit semi*/ 4716 4717 // Hacked jmp, which may only be used just before L_fallthrough. 4718 #define final_jmp(label) \ 4719 if (&(label) == &L_fallthrough) { /*do nothing*/ } \ 4720 else jmp(label) /*omit semi*/ 4721 4722 // If the pointers are equal, we are done (e.g., String[] elements). 4723 // This self-check enables sharing of secondary supertype arrays among 4724 // non-primary types such as array-of-interface. Otherwise, each such 4725 // type would need its own customized SSA. 4726 // We move this check to the front of the fast path because many 4727 // type checks are in fact trivially successful in this manner, 4728 // so we get a nicely predicted branch right at the start of the check. 4729 cmpptr(sub_klass, super_klass); 4730 local_jcc(Assembler::equal, *L_success); 4731 4732 // Check the supertype display: 4733 if (must_load_sco) { 4734 // Positive movl does right thing on LP64. 4735 movl(temp_reg, super_check_offset_addr); 4736 super_check_offset = RegisterOrConstant(temp_reg); 4737 } 4738 Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0); 4739 cmpptr(super_klass, super_check_addr); // load displayed supertype 4740 4741 // This check has worked decisively for primary supers. 4742 // Secondary supers are sought in the super_cache ('super_cache_addr'). 4743 // (Secondary supers are interfaces and very deeply nested subtypes.) 4744 // This works in the same check above because of a tricky aliasing 4745 // between the super_cache and the primary super display elements. 4746 // (The 'super_check_addr' can address either, as the case requires.) 4747 // Note that the cache is updated below if it does not help us find 4748 // what we need immediately. 4749 // So if it was a primary super, we can just fail immediately. 4750 // Otherwise, it's the slow path for us (no success at this point). 4751 4752 if (super_check_offset.is_register()) { 4753 local_jcc(Assembler::equal, *L_success); 4754 cmpl(super_check_offset.as_register(), sc_offset); 4755 if (L_failure == &L_fallthrough) { 4756 local_jcc(Assembler::equal, *L_slow_path); 4757 } else { 4758 local_jcc(Assembler::notEqual, *L_failure); 4759 final_jmp(*L_slow_path); 4760 } 4761 } else if (super_check_offset.as_constant() == sc_offset) { 4762 // Need a slow path; fast failure is impossible. 4763 if (L_slow_path == &L_fallthrough) { 4764 local_jcc(Assembler::equal, *L_success); 4765 } else { 4766 local_jcc(Assembler::notEqual, *L_slow_path); 4767 final_jmp(*L_success); 4768 } 4769 } else { 4770 // No slow path; it's a fast decision. 4771 if (L_failure == &L_fallthrough) { 4772 local_jcc(Assembler::equal, *L_success); 4773 } else { 4774 local_jcc(Assembler::notEqual, *L_failure); 4775 final_jmp(*L_success); 4776 } 4777 } 4778 4779 bind(L_fallthrough); 4780 4781 #undef local_jcc 4782 #undef final_jmp 4783 } 4784 4785 4786 void MacroAssembler::check_klass_subtype_slow_path_linear(Register sub_klass, 4787 Register super_klass, 4788 Register temp_reg, 4789 Register temp2_reg, 4790 Label* L_success, 4791 Label* L_failure, 4792 bool set_cond_codes) { 4793 assert_different_registers(sub_klass, super_klass, temp_reg); 4794 if (temp2_reg != noreg) 4795 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg); 4796 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg) 4797 4798 Label L_fallthrough; 4799 int label_nulls = 0; 4800 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 4801 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 4802 assert(label_nulls <= 1, "at most one null in the batch"); 4803 4804 // a couple of useful fields in sub_klass: 4805 int ss_offset = in_bytes(Klass::secondary_supers_offset()); 4806 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 4807 Address secondary_supers_addr(sub_klass, ss_offset); 4808 Address super_cache_addr( sub_klass, sc_offset); 4809 4810 // Do a linear scan of the secondary super-klass chain. 4811 // This code is rarely used, so simplicity is a virtue here. 4812 // The repne_scan instruction uses fixed registers, which we must spill. 4813 // Don't worry too much about pre-existing connections with the input regs. 4814 4815 assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super) 4816 assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter) 4817 4818 // Get super_klass value into rax (even if it was in rdi or rcx). 4819 bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false; 4820 if (super_klass != rax) { 4821 if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; } 4822 mov(rax, super_klass); 4823 } 4824 if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; } 4825 if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; } 4826 4827 #ifndef PRODUCT 4828 uint* pst_counter = &SharedRuntime::_partial_subtype_ctr; 4829 ExternalAddress pst_counter_addr((address) pst_counter); 4830 NOT_LP64( incrementl(pst_counter_addr) ); 4831 LP64_ONLY( lea(rcx, pst_counter_addr) ); 4832 LP64_ONLY( incrementl(Address(rcx, 0)) ); 4833 #endif //PRODUCT 4834 4835 // We will consult the secondary-super array. 4836 movptr(rdi, secondary_supers_addr); 4837 // Load the array length. (Positive movl does right thing on LP64.) 4838 movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes())); 4839 // Skip to start of data. 4840 addptr(rdi, Array<Klass*>::base_offset_in_bytes()); 4841 4842 // Scan RCX words at [RDI] for an occurrence of RAX. 4843 // Set NZ/Z based on last compare. 4844 // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does 4845 // not change flags (only scas instruction which is repeated sets flags). 4846 // Set Z = 0 (not equal) before 'repne' to indicate that class was not found. 4847 4848 testptr(rax,rax); // Set Z = 0 4849 repne_scan(); 4850 4851 // Unspill the temp. registers: 4852 if (pushed_rdi) pop(rdi); 4853 if (pushed_rcx) pop(rcx); 4854 if (pushed_rax) pop(rax); 4855 4856 if (set_cond_codes) { 4857 // Special hack for the AD files: rdi is guaranteed non-zero. 4858 assert(!pushed_rdi, "rdi must be left non-null"); 4859 // Also, the condition codes are properly set Z/NZ on succeed/failure. 4860 } 4861 4862 if (L_failure == &L_fallthrough) 4863 jccb(Assembler::notEqual, *L_failure); 4864 else jcc(Assembler::notEqual, *L_failure); 4865 4866 // Success. Cache the super we found and proceed in triumph. 4867 movptr(super_cache_addr, super_klass); 4868 4869 if (L_success != &L_fallthrough) { 4870 jmp(*L_success); 4871 } 4872 4873 #undef IS_A_TEMP 4874 4875 bind(L_fallthrough); 4876 } 4877 4878 #ifndef _LP64 4879 4880 // 32-bit x86 only: always use the linear search. 4881 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, 4882 Register super_klass, 4883 Register temp_reg, 4884 Register temp2_reg, 4885 Label* L_success, 4886 Label* L_failure, 4887 bool set_cond_codes) { 4888 check_klass_subtype_slow_path_linear 4889 (sub_klass, super_klass, temp_reg, temp2_reg, L_success, L_failure, set_cond_codes); 4890 } 4891 4892 #else // _LP64 4893 4894 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, 4895 Register super_klass, 4896 Register temp_reg, 4897 Register temp2_reg, 4898 Label* L_success, 4899 Label* L_failure, 4900 bool set_cond_codes) { 4901 assert(set_cond_codes == false, "must be false on 64-bit x86"); 4902 check_klass_subtype_slow_path 4903 (sub_klass, super_klass, temp_reg, temp2_reg, noreg, noreg, 4904 L_success, L_failure); 4905 } 4906 4907 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, 4908 Register super_klass, 4909 Register temp_reg, 4910 Register temp2_reg, 4911 Register temp3_reg, 4912 Register temp4_reg, 4913 Label* L_success, 4914 Label* L_failure) { 4915 if (UseSecondarySupersTable) { 4916 check_klass_subtype_slow_path_table 4917 (sub_klass, super_klass, temp_reg, temp2_reg, temp3_reg, temp4_reg, 4918 L_success, L_failure); 4919 } else { 4920 check_klass_subtype_slow_path_linear 4921 (sub_klass, super_klass, temp_reg, temp2_reg, L_success, L_failure, /*set_cond_codes*/false); 4922 } 4923 } 4924 4925 Register MacroAssembler::allocate_if_noreg(Register r, 4926 RegSetIterator<Register> &available_regs, 4927 RegSet ®s_to_push) { 4928 if (!r->is_valid()) { 4929 r = *available_regs++; 4930 regs_to_push += r; 4931 } 4932 return r; 4933 } 4934 4935 void MacroAssembler::check_klass_subtype_slow_path_table(Register sub_klass, 4936 Register super_klass, 4937 Register temp_reg, 4938 Register temp2_reg, 4939 Register temp3_reg, 4940 Register result_reg, 4941 Label* L_success, 4942 Label* L_failure) { 4943 // NB! Callers may assume that, when temp2_reg is a valid register, 4944 // this code sets it to a nonzero value. 4945 bool temp2_reg_was_valid = temp2_reg->is_valid(); 4946 4947 RegSet temps = RegSet::of(temp_reg, temp2_reg, temp3_reg); 4948 4949 Label L_fallthrough; 4950 int label_nulls = 0; 4951 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 4952 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 4953 assert(label_nulls <= 1, "at most one null in the batch"); 4954 4955 BLOCK_COMMENT("check_klass_subtype_slow_path_table"); 4956 4957 RegSetIterator<Register> available_regs 4958 = (RegSet::of(rax, rcx, rdx, r8) + r9 + r10 + r11 + r12 - temps - sub_klass - super_klass).begin(); 4959 4960 RegSet pushed_regs; 4961 4962 temp_reg = allocate_if_noreg(temp_reg, available_regs, pushed_regs); 4963 temp2_reg = allocate_if_noreg(temp2_reg, available_regs, pushed_regs); 4964 temp3_reg = allocate_if_noreg(temp3_reg, available_regs, pushed_regs); 4965 result_reg = allocate_if_noreg(result_reg, available_regs, pushed_regs); 4966 Register temp4_reg = allocate_if_noreg(noreg, available_regs, pushed_regs); 4967 4968 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, temp3_reg, result_reg); 4969 4970 { 4971 4972 int register_push_size = pushed_regs.size() * Register::max_slots_per_register * VMRegImpl::stack_slot_size; 4973 int aligned_size = align_up(register_push_size, StackAlignmentInBytes); 4974 subptr(rsp, aligned_size); 4975 push_set(pushed_regs, 0); 4976 4977 lookup_secondary_supers_table_var(sub_klass, 4978 super_klass, 4979 temp_reg, temp2_reg, temp3_reg, temp4_reg, result_reg); 4980 cmpq(result_reg, 0); 4981 4982 // Unspill the temp. registers: 4983 pop_set(pushed_regs, 0); 4984 // Increment SP but do not clobber flags. 4985 lea(rsp, Address(rsp, aligned_size)); 4986 } 4987 4988 if (temp2_reg_was_valid) { 4989 movq(temp2_reg, 1); 4990 } 4991 4992 jcc(Assembler::notEqual, *L_failure); 4993 4994 if (L_success != &L_fallthrough) { 4995 jmp(*L_success); 4996 } 4997 4998 bind(L_fallthrough); 4999 } 5000 5001 // population_count variant for running without the POPCNT 5002 // instruction, which was introduced with SSE4.2 in 2008. 5003 void MacroAssembler::population_count(Register dst, Register src, 5004 Register scratch1, Register scratch2) { 5005 assert_different_registers(src, scratch1, scratch2); 5006 if (UsePopCountInstruction) { 5007 Assembler::popcntq(dst, src); 5008 } else { 5009 assert_different_registers(src, scratch1, scratch2); 5010 assert_different_registers(dst, scratch1, scratch2); 5011 Label loop, done; 5012 5013 mov(scratch1, src); 5014 // dst = 0; 5015 // while(scratch1 != 0) { 5016 // dst++; 5017 // scratch1 &= (scratch1 - 1); 5018 // } 5019 xorl(dst, dst); 5020 testq(scratch1, scratch1); 5021 jccb(Assembler::equal, done); 5022 { 5023 bind(loop); 5024 incq(dst); 5025 movq(scratch2, scratch1); 5026 decq(scratch2); 5027 andq(scratch1, scratch2); 5028 jccb(Assembler::notEqual, loop); 5029 } 5030 bind(done); 5031 } 5032 #ifdef ASSERT 5033 mov64(scratch1, 0xCafeBabeDeadBeef); 5034 movq(scratch2, scratch1); 5035 #endif 5036 } 5037 5038 // Ensure that the inline code and the stub are using the same registers. 5039 #define LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS \ 5040 do { \ 5041 assert(r_super_klass == rax, "mismatch"); \ 5042 assert(r_array_base == rbx, "mismatch"); \ 5043 assert(r_array_length == rcx, "mismatch"); \ 5044 assert(r_array_index == rdx, "mismatch"); \ 5045 assert(r_sub_klass == rsi || r_sub_klass == noreg, "mismatch"); \ 5046 assert(r_bitmap == r11 || r_bitmap == noreg, "mismatch"); \ 5047 assert(result == rdi || result == noreg, "mismatch"); \ 5048 } while(0) 5049 5050 // Versions of salq and rorq that don't need count to be in rcx 5051 5052 void MacroAssembler::salq(Register dest, Register count) { 5053 if (count == rcx) { 5054 Assembler::salq(dest); 5055 } else { 5056 assert_different_registers(rcx, dest); 5057 xchgq(rcx, count); 5058 Assembler::salq(dest); 5059 xchgq(rcx, count); 5060 } 5061 } 5062 5063 void MacroAssembler::rorq(Register dest, Register count) { 5064 if (count == rcx) { 5065 Assembler::rorq(dest); 5066 } else { 5067 assert_different_registers(rcx, dest); 5068 xchgq(rcx, count); 5069 Assembler::rorq(dest); 5070 xchgq(rcx, count); 5071 } 5072 } 5073 5074 // Return true: we succeeded in generating this code 5075 // 5076 // At runtime, return 0 in result if r_super_klass is a superclass of 5077 // r_sub_klass, otherwise return nonzero. Use this if you know the 5078 // super_klass_slot of the class you're looking for. This is always 5079 // the case for instanceof and checkcast. 5080 void MacroAssembler::lookup_secondary_supers_table_const(Register r_sub_klass, 5081 Register r_super_klass, 5082 Register temp1, 5083 Register temp2, 5084 Register temp3, 5085 Register temp4, 5086 Register result, 5087 u1 super_klass_slot) { 5088 assert_different_registers(r_sub_klass, r_super_klass, temp1, temp2, temp3, temp4, result); 5089 5090 Label L_fallthrough, L_success, L_failure; 5091 5092 BLOCK_COMMENT("lookup_secondary_supers_table {"); 5093 5094 const Register 5095 r_array_index = temp1, 5096 r_array_length = temp2, 5097 r_array_base = temp3, 5098 r_bitmap = temp4; 5099 5100 LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS; 5101 5102 xorq(result, result); // = 0 5103 5104 movq(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 5105 movq(r_array_index, r_bitmap); 5106 5107 // First check the bitmap to see if super_klass might be present. If 5108 // the bit is zero, we are certain that super_klass is not one of 5109 // the secondary supers. 5110 u1 bit = super_klass_slot; 5111 { 5112 // NB: If the count in a x86 shift instruction is 0, the flags are 5113 // not affected, so we do a testq instead. 5114 int shift_count = Klass::SECONDARY_SUPERS_TABLE_MASK - bit; 5115 if (shift_count != 0) { 5116 salq(r_array_index, shift_count); 5117 } else { 5118 testq(r_array_index, r_array_index); 5119 } 5120 } 5121 // We test the MSB of r_array_index, i.e. its sign bit 5122 jcc(Assembler::positive, L_failure); 5123 5124 // Get the first array index that can contain super_klass into r_array_index. 5125 if (bit != 0) { 5126 population_count(r_array_index, r_array_index, temp2, temp3); 5127 } else { 5128 movl(r_array_index, 1); 5129 } 5130 // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word. 5131 5132 // We will consult the secondary-super array. 5133 movptr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 5134 5135 // We're asserting that the first word in an Array<Klass*> is the 5136 // length, and the second word is the first word of the data. If 5137 // that ever changes, r_array_base will have to be adjusted here. 5138 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code"); 5139 assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code"); 5140 5141 cmpq(r_super_klass, Address(r_array_base, r_array_index, Address::times_8)); 5142 jccb(Assembler::equal, L_success); 5143 5144 // Is there another entry to check? Consult the bitmap. 5145 btq(r_bitmap, (bit + 1) & Klass::SECONDARY_SUPERS_TABLE_MASK); 5146 jccb(Assembler::carryClear, L_failure); 5147 5148 // Linear probe. Rotate the bitmap so that the next bit to test is 5149 // in Bit 1. 5150 if (bit != 0) { 5151 rorq(r_bitmap, bit); 5152 } 5153 5154 // Calls into the stub generated by lookup_secondary_supers_table_slow_path. 5155 // Arguments: r_super_klass, r_array_base, r_array_index, r_bitmap. 5156 // Kills: r_array_length. 5157 // Returns: result. 5158 call(RuntimeAddress(StubRoutines::lookup_secondary_supers_table_slow_path_stub())); 5159 // Result (0/1) is in rdi 5160 jmpb(L_fallthrough); 5161 5162 bind(L_failure); 5163 incq(result); // 0 => 1 5164 5165 bind(L_success); 5166 // result = 0; 5167 5168 bind(L_fallthrough); 5169 BLOCK_COMMENT("} lookup_secondary_supers_table"); 5170 5171 if (VerifySecondarySupers) { 5172 verify_secondary_supers_table(r_sub_klass, r_super_klass, result, 5173 temp1, temp2, temp3); 5174 } 5175 } 5176 5177 // At runtime, return 0 in result if r_super_klass is a superclass of 5178 // r_sub_klass, otherwise return nonzero. Use this version of 5179 // lookup_secondary_supers_table() if you don't know ahead of time 5180 // which superclass will be searched for. Used by interpreter and 5181 // runtime stubs. It is larger and has somewhat greater latency than 5182 // the version above, which takes a constant super_klass_slot. 5183 void MacroAssembler::lookup_secondary_supers_table_var(Register r_sub_klass, 5184 Register r_super_klass, 5185 Register temp1, 5186 Register temp2, 5187 Register temp3, 5188 Register temp4, 5189 Register result) { 5190 assert_different_registers(r_sub_klass, r_super_klass, temp1, temp2, temp3, temp4, result); 5191 assert_different_registers(r_sub_klass, r_super_klass, rcx); 5192 RegSet temps = RegSet::of(temp1, temp2, temp3, temp4); 5193 5194 Label L_fallthrough, L_success, L_failure; 5195 5196 BLOCK_COMMENT("lookup_secondary_supers_table {"); 5197 5198 RegSetIterator<Register> available_regs = (temps - rcx).begin(); 5199 5200 // FIXME. Once we are sure that all paths reaching this point really 5201 // do pass rcx as one of our temps we can get rid of the following 5202 // workaround. 5203 assert(temps.contains(rcx), "fix this code"); 5204 5205 // We prefer to have our shift count in rcx. If rcx is one of our 5206 // temps, use it for slot. If not, pick any of our temps. 5207 Register slot; 5208 if (!temps.contains(rcx)) { 5209 slot = *available_regs++; 5210 } else { 5211 slot = rcx; 5212 } 5213 5214 const Register r_array_index = *available_regs++; 5215 const Register r_bitmap = *available_regs++; 5216 5217 // The logic above guarantees this property, but we state it here. 5218 assert_different_registers(r_array_index, r_bitmap, rcx); 5219 5220 movq(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 5221 movq(r_array_index, r_bitmap); 5222 5223 // First check the bitmap to see if super_klass might be present. If 5224 // the bit is zero, we are certain that super_klass is not one of 5225 // the secondary supers. 5226 movb(slot, Address(r_super_klass, Klass::hash_slot_offset())); 5227 xorl(slot, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 1)); // slot ^ 63 === 63 - slot (mod 64) 5228 salq(r_array_index, slot); 5229 5230 testq(r_array_index, r_array_index); 5231 // We test the MSB of r_array_index, i.e. its sign bit 5232 jcc(Assembler::positive, L_failure); 5233 5234 const Register r_array_base = *available_regs++; 5235 5236 // Get the first array index that can contain super_klass into r_array_index. 5237 // Note: Clobbers r_array_base and slot. 5238 population_count(r_array_index, r_array_index, /*temp2*/r_array_base, /*temp3*/slot); 5239 5240 // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word. 5241 5242 // We will consult the secondary-super array. 5243 movptr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 5244 5245 // We're asserting that the first word in an Array<Klass*> is the 5246 // length, and the second word is the first word of the data. If 5247 // that ever changes, r_array_base will have to be adjusted here. 5248 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code"); 5249 assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code"); 5250 5251 cmpq(r_super_klass, Address(r_array_base, r_array_index, Address::times_8)); 5252 jccb(Assembler::equal, L_success); 5253 5254 // Restore slot to its true value 5255 movb(slot, Address(r_super_klass, Klass::hash_slot_offset())); 5256 5257 // Linear probe. Rotate the bitmap so that the next bit to test is 5258 // in Bit 1. 5259 rorq(r_bitmap, slot); 5260 5261 // Is there another entry to check? Consult the bitmap. 5262 btq(r_bitmap, 1); 5263 jccb(Assembler::carryClear, L_failure); 5264 5265 // Calls into the stub generated by lookup_secondary_supers_table_slow_path. 5266 // Arguments: r_super_klass, r_array_base, r_array_index, r_bitmap. 5267 // Kills: r_array_length. 5268 // Returns: result. 5269 lookup_secondary_supers_table_slow_path(r_super_klass, 5270 r_array_base, 5271 r_array_index, 5272 r_bitmap, 5273 /*temp1*/result, 5274 /*temp2*/slot, 5275 &L_success, 5276 nullptr); 5277 5278 bind(L_failure); 5279 movq(result, 1); 5280 jmpb(L_fallthrough); 5281 5282 bind(L_success); 5283 xorq(result, result); // = 0 5284 5285 bind(L_fallthrough); 5286 BLOCK_COMMENT("} lookup_secondary_supers_table"); 5287 5288 if (VerifySecondarySupers) { 5289 verify_secondary_supers_table(r_sub_klass, r_super_klass, result, 5290 temp1, temp2, temp3); 5291 } 5292 } 5293 5294 void MacroAssembler::repne_scanq(Register addr, Register value, Register count, Register limit, 5295 Label* L_success, Label* L_failure) { 5296 Label L_loop, L_fallthrough; 5297 { 5298 int label_nulls = 0; 5299 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 5300 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 5301 assert(label_nulls <= 1, "at most one null in the batch"); 5302 } 5303 bind(L_loop); 5304 cmpq(value, Address(addr, count, Address::times_8)); 5305 jcc(Assembler::equal, *L_success); 5306 addl(count, 1); 5307 cmpl(count, limit); 5308 jcc(Assembler::less, L_loop); 5309 5310 if (&L_fallthrough != L_failure) { 5311 jmp(*L_failure); 5312 } 5313 bind(L_fallthrough); 5314 } 5315 5316 // Called by code generated by check_klass_subtype_slow_path 5317 // above. This is called when there is a collision in the hashed 5318 // lookup in the secondary supers array. 5319 void MacroAssembler::lookup_secondary_supers_table_slow_path(Register r_super_klass, 5320 Register r_array_base, 5321 Register r_array_index, 5322 Register r_bitmap, 5323 Register temp1, 5324 Register temp2, 5325 Label* L_success, 5326 Label* L_failure) { 5327 assert_different_registers(r_super_klass, r_array_base, r_array_index, r_bitmap, temp1, temp2); 5328 5329 const Register 5330 r_array_length = temp1, 5331 r_sub_klass = noreg, 5332 result = noreg; 5333 5334 Label L_fallthrough; 5335 int label_nulls = 0; 5336 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 5337 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 5338 assert(label_nulls <= 1, "at most one null in the batch"); 5339 5340 // Load the array length. 5341 movl(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes())); 5342 // And adjust the array base to point to the data. 5343 // NB! Effectively increments current slot index by 1. 5344 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, ""); 5345 addptr(r_array_base, Array<Klass*>::base_offset_in_bytes()); 5346 5347 // Linear probe 5348 Label L_huge; 5349 5350 // The bitmap is full to bursting. 5351 // Implicit invariant: BITMAP_FULL implies (length > 0) 5352 cmpl(r_array_length, (int32_t)Klass::SECONDARY_SUPERS_TABLE_SIZE - 2); 5353 jcc(Assembler::greater, L_huge); 5354 5355 // NB! Our caller has checked bits 0 and 1 in the bitmap. The 5356 // current slot (at secondary_supers[r_array_index]) has not yet 5357 // been inspected, and r_array_index may be out of bounds if we 5358 // wrapped around the end of the array. 5359 5360 { // This is conventional linear probing, but instead of terminating 5361 // when a null entry is found in the table, we maintain a bitmap 5362 // in which a 0 indicates missing entries. 5363 // The check above guarantees there are 0s in the bitmap, so the loop 5364 // eventually terminates. 5365 5366 xorl(temp2, temp2); // = 0; 5367 5368 Label L_again; 5369 bind(L_again); 5370 5371 // Check for array wraparound. 5372 cmpl(r_array_index, r_array_length); 5373 cmovl(Assembler::greaterEqual, r_array_index, temp2); 5374 5375 cmpq(r_super_klass, Address(r_array_base, r_array_index, Address::times_8)); 5376 jcc(Assembler::equal, *L_success); 5377 5378 // If the next bit in bitmap is zero, we're done. 5379 btq(r_bitmap, 2); // look-ahead check (Bit 2); Bits 0 and 1 are tested by now 5380 jcc(Assembler::carryClear, *L_failure); 5381 5382 rorq(r_bitmap, 1); // Bits 1/2 => 0/1 5383 addl(r_array_index, 1); 5384 5385 jmp(L_again); 5386 } 5387 5388 { // Degenerate case: more than 64 secondary supers. 5389 // FIXME: We could do something smarter here, maybe a vectorized 5390 // comparison or a binary search, but is that worth any added 5391 // complexity? 5392 bind(L_huge); 5393 xorl(r_array_index, r_array_index); // = 0 5394 repne_scanq(r_array_base, r_super_klass, r_array_index, r_array_length, 5395 L_success, 5396 (&L_fallthrough != L_failure ? L_failure : nullptr)); 5397 5398 bind(L_fallthrough); 5399 } 5400 } 5401 5402 struct VerifyHelperArguments { 5403 Klass* _super; 5404 Klass* _sub; 5405 intptr_t _linear_result; 5406 intptr_t _table_result; 5407 }; 5408 5409 static void verify_secondary_supers_table_helper(const char* msg, VerifyHelperArguments* args) { 5410 Klass::on_secondary_supers_verification_failure(args->_super, 5411 args->_sub, 5412 args->_linear_result, 5413 args->_table_result, 5414 msg); 5415 } 5416 5417 // Make sure that the hashed lookup and a linear scan agree. 5418 void MacroAssembler::verify_secondary_supers_table(Register r_sub_klass, 5419 Register r_super_klass, 5420 Register result, 5421 Register temp1, 5422 Register temp2, 5423 Register temp3) { 5424 const Register 5425 r_array_index = temp1, 5426 r_array_length = temp2, 5427 r_array_base = temp3, 5428 r_bitmap = noreg; 5429 5430 BLOCK_COMMENT("verify_secondary_supers_table {"); 5431 5432 Label L_success, L_failure, L_check, L_done; 5433 5434 movptr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 5435 movl(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes())); 5436 // And adjust the array base to point to the data. 5437 addptr(r_array_base, Array<Klass*>::base_offset_in_bytes()); 5438 5439 testl(r_array_length, r_array_length); // array_length == 0? 5440 jcc(Assembler::zero, L_failure); 5441 5442 movl(r_array_index, 0); 5443 repne_scanq(r_array_base, r_super_klass, r_array_index, r_array_length, &L_success); 5444 // fall through to L_failure 5445 5446 const Register linear_result = r_array_index; // reuse temp1 5447 5448 bind(L_failure); // not present 5449 movl(linear_result, 1); 5450 jmp(L_check); 5451 5452 bind(L_success); // present 5453 movl(linear_result, 0); 5454 5455 bind(L_check); 5456 cmpl(linear_result, result); 5457 jcc(Assembler::equal, L_done); 5458 5459 { // To avoid calling convention issues, build a record on the stack 5460 // and pass the pointer to that instead. 5461 push(result); 5462 push(linear_result); 5463 push(r_sub_klass); 5464 push(r_super_klass); 5465 movptr(c_rarg1, rsp); 5466 movptr(c_rarg0, (uintptr_t) "mismatch"); 5467 call(RuntimeAddress(CAST_FROM_FN_PTR(address, verify_secondary_supers_table_helper))); 5468 should_not_reach_here(); 5469 } 5470 bind(L_done); 5471 5472 BLOCK_COMMENT("} verify_secondary_supers_table"); 5473 } 5474 5475 #undef LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS 5476 5477 #endif // LP64 5478 5479 void MacroAssembler::clinit_barrier(Register klass, Register thread, Label* L_fast_path, Label* L_slow_path) { 5480 assert(L_fast_path != nullptr || L_slow_path != nullptr, "at least one is required"); 5481 5482 Label L_fallthrough; 5483 if (L_fast_path == nullptr) { 5484 L_fast_path = &L_fallthrough; 5485 } else if (L_slow_path == nullptr) { 5486 L_slow_path = &L_fallthrough; 5487 } 5488 5489 // Fast path check: class is fully initialized. 5490 // init_state needs acquire, but x86 is TSO, and so we are already good. 5491 cmpb(Address(klass, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized); 5492 jcc(Assembler::equal, *L_fast_path); 5493 5494 // Fast path check: current thread is initializer thread 5495 cmpptr(thread, Address(klass, InstanceKlass::init_thread_offset())); 5496 if (L_slow_path == &L_fallthrough) { 5497 jcc(Assembler::equal, *L_fast_path); 5498 bind(*L_slow_path); 5499 } else if (L_fast_path == &L_fallthrough) { 5500 jcc(Assembler::notEqual, *L_slow_path); 5501 bind(*L_fast_path); 5502 } else { 5503 Unimplemented(); 5504 } 5505 } 5506 5507 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) { 5508 if (VM_Version::supports_cmov()) { 5509 cmovl(cc, dst, src); 5510 } else { 5511 Label L; 5512 jccb(negate_condition(cc), L); 5513 movl(dst, src); 5514 bind(L); 5515 } 5516 } 5517 5518 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) { 5519 if (VM_Version::supports_cmov()) { 5520 cmovl(cc, dst, src); 5521 } else { 5522 Label L; 5523 jccb(negate_condition(cc), L); 5524 movl(dst, src); 5525 bind(L); 5526 } 5527 } 5528 5529 void MacroAssembler::_verify_oop(Register reg, const char* s, const char* file, int line) { 5530 if (!VerifyOops) return; 5531 5532 BLOCK_COMMENT("verify_oop {"); 5533 #ifdef _LP64 5534 push(rscratch1); 5535 #endif 5536 push(rax); // save rax 5537 push(reg); // pass register argument 5538 5539 // Pass register number to verify_oop_subroutine 5540 const char* b = nullptr; 5541 { 5542 ResourceMark rm; 5543 stringStream ss; 5544 ss.print("verify_oop: %s: %s (%s:%d)", reg->name(), s, file, line); 5545 b = code_string(ss.as_string()); 5546 } 5547 AddressLiteral buffer((address) b, external_word_Relocation::spec_for_immediate()); 5548 pushptr(buffer.addr(), rscratch1); 5549 5550 // call indirectly to solve generation ordering problem 5551 movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); 5552 call(rax); 5553 // Caller pops the arguments (oop, message) and restores rax, r10 5554 BLOCK_COMMENT("} verify_oop"); 5555 } 5556 5557 void MacroAssembler::vallones(XMMRegister dst, int vector_len) { 5558 if (UseAVX > 2 && (vector_len == Assembler::AVX_512bit || VM_Version::supports_avx512vl())) { 5559 // Only pcmpeq has dependency breaking treatment (i.e the execution can begin without 5560 // waiting for the previous result on dst), not vpcmpeqd, so just use vpternlog 5561 vpternlogd(dst, 0xFF, dst, dst, vector_len); 5562 } else if (VM_Version::supports_avx()) { 5563 vpcmpeqd(dst, dst, dst, vector_len); 5564 } else { 5565 pcmpeqd(dst, dst); 5566 } 5567 } 5568 5569 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot, 5570 int extra_slot_offset) { 5571 // cf. TemplateTable::prepare_invoke(), if (load_receiver). 5572 int stackElementSize = Interpreter::stackElementSize; 5573 int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0); 5574 #ifdef ASSERT 5575 int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1); 5576 assert(offset1 - offset == stackElementSize, "correct arithmetic"); 5577 #endif 5578 Register scale_reg = noreg; 5579 Address::ScaleFactor scale_factor = Address::no_scale; 5580 if (arg_slot.is_constant()) { 5581 offset += arg_slot.as_constant() * stackElementSize; 5582 } else { 5583 scale_reg = arg_slot.as_register(); 5584 scale_factor = Address::times(stackElementSize); 5585 } 5586 offset += wordSize; // return PC is on stack 5587 return Address(rsp, scale_reg, scale_factor, offset); 5588 } 5589 5590 void MacroAssembler::_verify_oop_addr(Address addr, const char* s, const char* file, int line) { 5591 if (!VerifyOops) return; 5592 5593 #ifdef _LP64 5594 push(rscratch1); 5595 #endif 5596 push(rax); // save rax, 5597 // addr may contain rsp so we will have to adjust it based on the push 5598 // we just did (and on 64 bit we do two pushes) 5599 // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which 5600 // stores rax into addr which is backwards of what was intended. 5601 if (addr.uses(rsp)) { 5602 lea(rax, addr); 5603 pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord)); 5604 } else { 5605 pushptr(addr); 5606 } 5607 5608 // Pass register number to verify_oop_subroutine 5609 const char* b = nullptr; 5610 { 5611 ResourceMark rm; 5612 stringStream ss; 5613 ss.print("verify_oop_addr: %s (%s:%d)", s, file, line); 5614 b = code_string(ss.as_string()); 5615 } 5616 AddressLiteral buffer((address) b, external_word_Relocation::spec_for_immediate()); 5617 pushptr(buffer.addr(), rscratch1); 5618 5619 // call indirectly to solve generation ordering problem 5620 movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); 5621 call(rax); 5622 // Caller pops the arguments (addr, message) and restores rax, r10. 5623 } 5624 5625 void MacroAssembler::verify_tlab() { 5626 #ifdef ASSERT 5627 if (UseTLAB && VerifyOops) { 5628 Label next, ok; 5629 Register t1 = rsi; 5630 Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread); 5631 5632 push(t1); 5633 NOT_LP64(push(thread_reg)); 5634 NOT_LP64(get_thread(thread_reg)); 5635 5636 movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset()))); 5637 cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset()))); 5638 jcc(Assembler::aboveEqual, next); 5639 STOP("assert(top >= start)"); 5640 should_not_reach_here(); 5641 5642 bind(next); 5643 movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset()))); 5644 cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset()))); 5645 jcc(Assembler::aboveEqual, ok); 5646 STOP("assert(top <= end)"); 5647 should_not_reach_here(); 5648 5649 bind(ok); 5650 NOT_LP64(pop(thread_reg)); 5651 pop(t1); 5652 } 5653 #endif 5654 } 5655 5656 class ControlWord { 5657 public: 5658 int32_t _value; 5659 5660 int rounding_control() const { return (_value >> 10) & 3 ; } 5661 int precision_control() const { return (_value >> 8) & 3 ; } 5662 bool precision() const { return ((_value >> 5) & 1) != 0; } 5663 bool underflow() const { return ((_value >> 4) & 1) != 0; } 5664 bool overflow() const { return ((_value >> 3) & 1) != 0; } 5665 bool zero_divide() const { return ((_value >> 2) & 1) != 0; } 5666 bool denormalized() const { return ((_value >> 1) & 1) != 0; } 5667 bool invalid() const { return ((_value >> 0) & 1) != 0; } 5668 5669 void print() const { 5670 // rounding control 5671 const char* rc; 5672 switch (rounding_control()) { 5673 case 0: rc = "round near"; break; 5674 case 1: rc = "round down"; break; 5675 case 2: rc = "round up "; break; 5676 case 3: rc = "chop "; break; 5677 default: 5678 rc = nullptr; // silence compiler warnings 5679 fatal("Unknown rounding control: %d", rounding_control()); 5680 }; 5681 // precision control 5682 const char* pc; 5683 switch (precision_control()) { 5684 case 0: pc = "24 bits "; break; 5685 case 1: pc = "reserved"; break; 5686 case 2: pc = "53 bits "; break; 5687 case 3: pc = "64 bits "; break; 5688 default: 5689 pc = nullptr; // silence compiler warnings 5690 fatal("Unknown precision control: %d", precision_control()); 5691 }; 5692 // flags 5693 char f[9]; 5694 f[0] = ' '; 5695 f[1] = ' '; 5696 f[2] = (precision ()) ? 'P' : 'p'; 5697 f[3] = (underflow ()) ? 'U' : 'u'; 5698 f[4] = (overflow ()) ? 'O' : 'o'; 5699 f[5] = (zero_divide ()) ? 'Z' : 'z'; 5700 f[6] = (denormalized()) ? 'D' : 'd'; 5701 f[7] = (invalid ()) ? 'I' : 'i'; 5702 f[8] = '\x0'; 5703 // output 5704 printf("%04x masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc); 5705 } 5706 5707 }; 5708 5709 class StatusWord { 5710 public: 5711 int32_t _value; 5712 5713 bool busy() const { return ((_value >> 15) & 1) != 0; } 5714 bool C3() const { return ((_value >> 14) & 1) != 0; } 5715 bool C2() const { return ((_value >> 10) & 1) != 0; } 5716 bool C1() const { return ((_value >> 9) & 1) != 0; } 5717 bool C0() const { return ((_value >> 8) & 1) != 0; } 5718 int top() const { return (_value >> 11) & 7 ; } 5719 bool error_status() const { return ((_value >> 7) & 1) != 0; } 5720 bool stack_fault() const { return ((_value >> 6) & 1) != 0; } 5721 bool precision() const { return ((_value >> 5) & 1) != 0; } 5722 bool underflow() const { return ((_value >> 4) & 1) != 0; } 5723 bool overflow() const { return ((_value >> 3) & 1) != 0; } 5724 bool zero_divide() const { return ((_value >> 2) & 1) != 0; } 5725 bool denormalized() const { return ((_value >> 1) & 1) != 0; } 5726 bool invalid() const { return ((_value >> 0) & 1) != 0; } 5727 5728 void print() const { 5729 // condition codes 5730 char c[5]; 5731 c[0] = (C3()) ? '3' : '-'; 5732 c[1] = (C2()) ? '2' : '-'; 5733 c[2] = (C1()) ? '1' : '-'; 5734 c[3] = (C0()) ? '0' : '-'; 5735 c[4] = '\x0'; 5736 // flags 5737 char f[9]; 5738 f[0] = (error_status()) ? 'E' : '-'; 5739 f[1] = (stack_fault ()) ? 'S' : '-'; 5740 f[2] = (precision ()) ? 'P' : '-'; 5741 f[3] = (underflow ()) ? 'U' : '-'; 5742 f[4] = (overflow ()) ? 'O' : '-'; 5743 f[5] = (zero_divide ()) ? 'Z' : '-'; 5744 f[6] = (denormalized()) ? 'D' : '-'; 5745 f[7] = (invalid ()) ? 'I' : '-'; 5746 f[8] = '\x0'; 5747 // output 5748 printf("%04x flags = %s, cc = %s, top = %d", _value & 0xFFFF, f, c, top()); 5749 } 5750 5751 }; 5752 5753 class TagWord { 5754 public: 5755 int32_t _value; 5756 5757 int tag_at(int i) const { return (_value >> (i*2)) & 3; } 5758 5759 void print() const { 5760 printf("%04x", _value & 0xFFFF); 5761 } 5762 5763 }; 5764 5765 class FPU_Register { 5766 public: 5767 int32_t _m0; 5768 int32_t _m1; 5769 int16_t _ex; 5770 5771 bool is_indefinite() const { 5772 return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0; 5773 } 5774 5775 void print() const { 5776 char sign = (_ex < 0) ? '-' : '+'; 5777 const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : " "; 5778 printf("%c%04hx.%08x%08x %s", sign, _ex, _m1, _m0, kind); 5779 }; 5780 5781 }; 5782 5783 class FPU_State { 5784 public: 5785 enum { 5786 register_size = 10, 5787 number_of_registers = 8, 5788 register_mask = 7 5789 }; 5790 5791 ControlWord _control_word; 5792 StatusWord _status_word; 5793 TagWord _tag_word; 5794 int32_t _error_offset; 5795 int32_t _error_selector; 5796 int32_t _data_offset; 5797 int32_t _data_selector; 5798 int8_t _register[register_size * number_of_registers]; 5799 5800 int tag_for_st(int i) const { return _tag_word.tag_at((_status_word.top() + i) & register_mask); } 5801 FPU_Register* st(int i) const { return (FPU_Register*)&_register[register_size * i]; } 5802 5803 const char* tag_as_string(int tag) const { 5804 switch (tag) { 5805 case 0: return "valid"; 5806 case 1: return "zero"; 5807 case 2: return "special"; 5808 case 3: return "empty"; 5809 } 5810 ShouldNotReachHere(); 5811 return nullptr; 5812 } 5813 5814 void print() const { 5815 // print computation registers 5816 { int t = _status_word.top(); 5817 for (int i = 0; i < number_of_registers; i++) { 5818 int j = (i - t) & register_mask; 5819 printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j); 5820 st(j)->print(); 5821 printf(" %s\n", tag_as_string(_tag_word.tag_at(i))); 5822 } 5823 } 5824 printf("\n"); 5825 // print control registers 5826 printf("ctrl = "); _control_word.print(); printf("\n"); 5827 printf("stat = "); _status_word .print(); printf("\n"); 5828 printf("tags = "); _tag_word .print(); printf("\n"); 5829 } 5830 5831 }; 5832 5833 class Flag_Register { 5834 public: 5835 int32_t _value; 5836 5837 bool overflow() const { return ((_value >> 11) & 1) != 0; } 5838 bool direction() const { return ((_value >> 10) & 1) != 0; } 5839 bool sign() const { return ((_value >> 7) & 1) != 0; } 5840 bool zero() const { return ((_value >> 6) & 1) != 0; } 5841 bool auxiliary_carry() const { return ((_value >> 4) & 1) != 0; } 5842 bool parity() const { return ((_value >> 2) & 1) != 0; } 5843 bool carry() const { return ((_value >> 0) & 1) != 0; } 5844 5845 void print() const { 5846 // flags 5847 char f[8]; 5848 f[0] = (overflow ()) ? 'O' : '-'; 5849 f[1] = (direction ()) ? 'D' : '-'; 5850 f[2] = (sign ()) ? 'S' : '-'; 5851 f[3] = (zero ()) ? 'Z' : '-'; 5852 f[4] = (auxiliary_carry()) ? 'A' : '-'; 5853 f[5] = (parity ()) ? 'P' : '-'; 5854 f[6] = (carry ()) ? 'C' : '-'; 5855 f[7] = '\x0'; 5856 // output 5857 printf("%08x flags = %s", _value, f); 5858 } 5859 5860 }; 5861 5862 class IU_Register { 5863 public: 5864 int32_t _value; 5865 5866 void print() const { 5867 printf("%08x %11d", _value, _value); 5868 } 5869 5870 }; 5871 5872 class IU_State { 5873 public: 5874 Flag_Register _eflags; 5875 IU_Register _rdi; 5876 IU_Register _rsi; 5877 IU_Register _rbp; 5878 IU_Register _rsp; 5879 IU_Register _rbx; 5880 IU_Register _rdx; 5881 IU_Register _rcx; 5882 IU_Register _rax; 5883 5884 void print() const { 5885 // computation registers 5886 printf("rax, = "); _rax.print(); printf("\n"); 5887 printf("rbx, = "); _rbx.print(); printf("\n"); 5888 printf("rcx = "); _rcx.print(); printf("\n"); 5889 printf("rdx = "); _rdx.print(); printf("\n"); 5890 printf("rdi = "); _rdi.print(); printf("\n"); 5891 printf("rsi = "); _rsi.print(); printf("\n"); 5892 printf("rbp, = "); _rbp.print(); printf("\n"); 5893 printf("rsp = "); _rsp.print(); printf("\n"); 5894 printf("\n"); 5895 // control registers 5896 printf("flgs = "); _eflags.print(); printf("\n"); 5897 } 5898 }; 5899 5900 5901 class CPU_State { 5902 public: 5903 FPU_State _fpu_state; 5904 IU_State _iu_state; 5905 5906 void print() const { 5907 printf("--------------------------------------------------\n"); 5908 _iu_state .print(); 5909 printf("\n"); 5910 _fpu_state.print(); 5911 printf("--------------------------------------------------\n"); 5912 } 5913 5914 }; 5915 5916 5917 static void _print_CPU_state(CPU_State* state) { 5918 state->print(); 5919 }; 5920 5921 5922 void MacroAssembler::print_CPU_state() { 5923 push_CPU_state(); 5924 push(rsp); // pass CPU state 5925 call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state))); 5926 addptr(rsp, wordSize); // discard argument 5927 pop_CPU_state(); 5928 } 5929 5930 5931 #ifndef _LP64 5932 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) { 5933 static int counter = 0; 5934 FPU_State* fs = &state->_fpu_state; 5935 counter++; 5936 // For leaf calls, only verify that the top few elements remain empty. 5937 // We only need 1 empty at the top for C2 code. 5938 if( stack_depth < 0 ) { 5939 if( fs->tag_for_st(7) != 3 ) { 5940 printf("FPR7 not empty\n"); 5941 state->print(); 5942 assert(false, "error"); 5943 return false; 5944 } 5945 return true; // All other stack states do not matter 5946 } 5947 5948 assert((fs->_control_word._value & 0xffff) == StubRoutines::x86::fpu_cntrl_wrd_std(), 5949 "bad FPU control word"); 5950 5951 // compute stack depth 5952 int i = 0; 5953 while (i < FPU_State::number_of_registers && fs->tag_for_st(i) < 3) i++; 5954 int d = i; 5955 while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++; 5956 // verify findings 5957 if (i != FPU_State::number_of_registers) { 5958 // stack not contiguous 5959 printf("%s: stack not contiguous at ST%d\n", s, i); 5960 state->print(); 5961 assert(false, "error"); 5962 return false; 5963 } 5964 // check if computed stack depth corresponds to expected stack depth 5965 if (stack_depth < 0) { 5966 // expected stack depth is -stack_depth or less 5967 if (d > -stack_depth) { 5968 // too many elements on the stack 5969 printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d); 5970 state->print(); 5971 assert(false, "error"); 5972 return false; 5973 } 5974 } else { 5975 // expected stack depth is stack_depth 5976 if (d != stack_depth) { 5977 // wrong stack depth 5978 printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d); 5979 state->print(); 5980 assert(false, "error"); 5981 return false; 5982 } 5983 } 5984 // everything is cool 5985 return true; 5986 } 5987 5988 void MacroAssembler::verify_FPU(int stack_depth, const char* s) { 5989 if (!VerifyFPU) return; 5990 push_CPU_state(); 5991 push(rsp); // pass CPU state 5992 ExternalAddress msg((address) s); 5993 // pass message string s 5994 pushptr(msg.addr(), noreg); 5995 push(stack_depth); // pass stack depth 5996 call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU))); 5997 addptr(rsp, 3 * wordSize); // discard arguments 5998 // check for error 5999 { Label L; 6000 testl(rax, rax); 6001 jcc(Assembler::notZero, L); 6002 int3(); // break if error condition 6003 bind(L); 6004 } 6005 pop_CPU_state(); 6006 } 6007 #endif // _LP64 6008 6009 void MacroAssembler::restore_cpu_control_state_after_jni(Register rscratch) { 6010 // Either restore the MXCSR register after returning from the JNI Call 6011 // or verify that it wasn't changed (with -Xcheck:jni flag). 6012 if (VM_Version::supports_sse()) { 6013 if (RestoreMXCSROnJNICalls) { 6014 ldmxcsr(ExternalAddress(StubRoutines::x86::addr_mxcsr_std()), rscratch); 6015 } else if (CheckJNICalls) { 6016 call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry())); 6017 } 6018 } 6019 // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty. 6020 vzeroupper(); 6021 6022 #ifndef _LP64 6023 // Either restore the x87 floating pointer control word after returning 6024 // from the JNI call or verify that it wasn't changed. 6025 if (CheckJNICalls) { 6026 call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry())); 6027 } 6028 #endif // _LP64 6029 } 6030 6031 // ((OopHandle)result).resolve(); 6032 void MacroAssembler::resolve_oop_handle(Register result, Register tmp) { 6033 assert_different_registers(result, tmp); 6034 6035 // Only 64 bit platforms support GCs that require a tmp register 6036 // Only IN_HEAP loads require a thread_tmp register 6037 // OopHandle::resolve is an indirection like jobject. 6038 access_load_at(T_OBJECT, IN_NATIVE, 6039 result, Address(result, 0), tmp, /*tmp_thread*/noreg); 6040 } 6041 6042 // ((WeakHandle)result).resolve(); 6043 void MacroAssembler::resolve_weak_handle(Register rresult, Register rtmp) { 6044 assert_different_registers(rresult, rtmp); 6045 Label resolved; 6046 6047 // A null weak handle resolves to null. 6048 cmpptr(rresult, 0); 6049 jcc(Assembler::equal, resolved); 6050 6051 // Only 64 bit platforms support GCs that require a tmp register 6052 // Only IN_HEAP loads require a thread_tmp register 6053 // WeakHandle::resolve is an indirection like jweak. 6054 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 6055 rresult, Address(rresult, 0), rtmp, /*tmp_thread*/noreg); 6056 bind(resolved); 6057 } 6058 6059 void MacroAssembler::load_mirror(Register mirror, Register method, Register tmp) { 6060 // get mirror 6061 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 6062 load_method_holder(mirror, method); 6063 movptr(mirror, Address(mirror, mirror_offset)); 6064 resolve_oop_handle(mirror, tmp); 6065 } 6066 6067 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) { 6068 load_method_holder(rresult, rmethod); 6069 movptr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset())); 6070 } 6071 6072 void MacroAssembler::load_method_holder(Register holder, Register method) { 6073 movptr(holder, Address(method, Method::const_offset())); // ConstMethod* 6074 movptr(holder, Address(holder, ConstMethod::constants_offset())); // ConstantPool* 6075 movptr(holder, Address(holder, ConstantPool::pool_holder_offset())); // InstanceKlass* 6076 } 6077 6078 #ifdef _LP64 6079 void MacroAssembler::load_narrow_klass_compact(Register dst, Register src) { 6080 assert(UseCompactObjectHeaders, "expect compact object headers"); 6081 movl(dst, Address(src, oopDesc::mark_offset_in_bytes())); 6082 shrl(dst, markWord::klass_shift); 6083 } 6084 #endif 6085 6086 void MacroAssembler::load_klass(Register dst, Register src, Register tmp) { 6087 assert_different_registers(src, tmp); 6088 assert_different_registers(dst, tmp); 6089 #ifdef _LP64 6090 if (UseCompactObjectHeaders) { 6091 load_narrow_klass_compact(dst, src); 6092 decode_klass_not_null(dst, tmp); 6093 } else if (UseCompressedClassPointers) { 6094 movl(dst, Address(src, oopDesc::klass_offset_in_bytes())); 6095 decode_klass_not_null(dst, tmp); 6096 } else 6097 #endif 6098 { 6099 movptr(dst, Address(src, oopDesc::klass_offset_in_bytes())); 6100 } 6101 } 6102 6103 void MacroAssembler::store_klass(Register dst, Register src, Register tmp) { 6104 assert(!UseCompactObjectHeaders, "not with compact headers"); 6105 assert_different_registers(src, tmp); 6106 assert_different_registers(dst, tmp); 6107 #ifdef _LP64 6108 if (UseCompressedClassPointers) { 6109 encode_klass_not_null(src, tmp); 6110 movl(Address(dst, oopDesc::klass_offset_in_bytes()), src); 6111 } else 6112 #endif 6113 movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src); 6114 } 6115 6116 void MacroAssembler::cmp_klass(Register klass, Register obj, Register tmp) { 6117 #ifdef _LP64 6118 if (UseCompactObjectHeaders) { 6119 assert(tmp != noreg, "need tmp"); 6120 assert_different_registers(klass, obj, tmp); 6121 load_narrow_klass_compact(tmp, obj); 6122 cmpl(klass, tmp); 6123 } else if (UseCompressedClassPointers) { 6124 cmpl(klass, Address(obj, oopDesc::klass_offset_in_bytes())); 6125 } else 6126 #endif 6127 { 6128 cmpptr(klass, Address(obj, oopDesc::klass_offset_in_bytes())); 6129 } 6130 } 6131 6132 void MacroAssembler::cmp_klasses_from_objects(Register obj1, Register obj2, Register tmp1, Register tmp2) { 6133 #ifdef _LP64 6134 if (UseCompactObjectHeaders) { 6135 assert(tmp2 != noreg, "need tmp2"); 6136 assert_different_registers(obj1, obj2, tmp1, tmp2); 6137 load_narrow_klass_compact(tmp1, obj1); 6138 load_narrow_klass_compact(tmp2, obj2); 6139 cmpl(tmp1, tmp2); 6140 } else if (UseCompressedClassPointers) { 6141 movl(tmp1, Address(obj1, oopDesc::klass_offset_in_bytes())); 6142 cmpl(tmp1, Address(obj2, oopDesc::klass_offset_in_bytes())); 6143 } else 6144 #endif 6145 { 6146 movptr(tmp1, Address(obj1, oopDesc::klass_offset_in_bytes())); 6147 cmpptr(tmp1, Address(obj2, oopDesc::klass_offset_in_bytes())); 6148 } 6149 } 6150 6151 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src, 6152 Register tmp1, Register thread_tmp) { 6153 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 6154 decorators = AccessInternal::decorator_fixup(decorators, type); 6155 bool as_raw = (decorators & AS_RAW) != 0; 6156 if (as_raw) { 6157 bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, thread_tmp); 6158 } else { 6159 bs->load_at(this, decorators, type, dst, src, tmp1, thread_tmp); 6160 } 6161 } 6162 6163 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register val, 6164 Register tmp1, Register tmp2, Register tmp3) { 6165 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 6166 decorators = AccessInternal::decorator_fixup(decorators, type); 6167 bool as_raw = (decorators & AS_RAW) != 0; 6168 if (as_raw) { 6169 bs->BarrierSetAssembler::store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 6170 } else { 6171 bs->store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 6172 } 6173 } 6174 6175 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1, 6176 Register thread_tmp, DecoratorSet decorators) { 6177 access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, thread_tmp); 6178 } 6179 6180 // Doesn't do verification, generates fixed size code 6181 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1, 6182 Register thread_tmp, DecoratorSet decorators) { 6183 access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, thread_tmp); 6184 } 6185 6186 void MacroAssembler::store_heap_oop(Address dst, Register val, Register tmp1, 6187 Register tmp2, Register tmp3, DecoratorSet decorators) { 6188 access_store_at(T_OBJECT, IN_HEAP | decorators, dst, val, tmp1, tmp2, tmp3); 6189 } 6190 6191 // Used for storing nulls. 6192 void MacroAssembler::store_heap_oop_null(Address dst) { 6193 access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg, noreg); 6194 } 6195 6196 #ifdef _LP64 6197 void MacroAssembler::store_klass_gap(Register dst, Register src) { 6198 assert(!UseCompactObjectHeaders, "Don't use with compact headers"); 6199 if (UseCompressedClassPointers) { 6200 // Store to klass gap in destination 6201 movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src); 6202 } 6203 } 6204 6205 #ifdef ASSERT 6206 void MacroAssembler::verify_heapbase(const char* msg) { 6207 assert (UseCompressedOops, "should be compressed"); 6208 assert (Universe::heap() != nullptr, "java heap should be initialized"); 6209 if (CheckCompressedOops) { 6210 Label ok; 6211 ExternalAddress src2(CompressedOops::base_addr()); 6212 const bool is_src2_reachable = reachable(src2); 6213 if (!is_src2_reachable) { 6214 push(rscratch1); // cmpptr trashes rscratch1 6215 } 6216 cmpptr(r12_heapbase, src2, rscratch1); 6217 jcc(Assembler::equal, ok); 6218 STOP(msg); 6219 bind(ok); 6220 if (!is_src2_reachable) { 6221 pop(rscratch1); 6222 } 6223 } 6224 } 6225 #endif 6226 6227 // Algorithm must match oop.inline.hpp encode_heap_oop. 6228 void MacroAssembler::encode_heap_oop(Register r) { 6229 #ifdef ASSERT 6230 verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?"); 6231 #endif 6232 verify_oop_msg(r, "broken oop in encode_heap_oop"); 6233 if (CompressedOops::base() == nullptr) { 6234 if (CompressedOops::shift() != 0) { 6235 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 6236 shrq(r, LogMinObjAlignmentInBytes); 6237 } 6238 return; 6239 } 6240 testq(r, r); 6241 cmovq(Assembler::equal, r, r12_heapbase); 6242 subq(r, r12_heapbase); 6243 shrq(r, LogMinObjAlignmentInBytes); 6244 } 6245 6246 void MacroAssembler::encode_heap_oop_not_null(Register r) { 6247 #ifdef ASSERT 6248 verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?"); 6249 if (CheckCompressedOops) { 6250 Label ok; 6251 testq(r, r); 6252 jcc(Assembler::notEqual, ok); 6253 STOP("null oop passed to encode_heap_oop_not_null"); 6254 bind(ok); 6255 } 6256 #endif 6257 verify_oop_msg(r, "broken oop in encode_heap_oop_not_null"); 6258 if (CompressedOops::base() != nullptr) { 6259 subq(r, r12_heapbase); 6260 } 6261 if (CompressedOops::shift() != 0) { 6262 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 6263 shrq(r, LogMinObjAlignmentInBytes); 6264 } 6265 } 6266 6267 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) { 6268 #ifdef ASSERT 6269 verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?"); 6270 if (CheckCompressedOops) { 6271 Label ok; 6272 testq(src, src); 6273 jcc(Assembler::notEqual, ok); 6274 STOP("null oop passed to encode_heap_oop_not_null2"); 6275 bind(ok); 6276 } 6277 #endif 6278 verify_oop_msg(src, "broken oop in encode_heap_oop_not_null2"); 6279 if (dst != src) { 6280 movq(dst, src); 6281 } 6282 if (CompressedOops::base() != nullptr) { 6283 subq(dst, r12_heapbase); 6284 } 6285 if (CompressedOops::shift() != 0) { 6286 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 6287 shrq(dst, LogMinObjAlignmentInBytes); 6288 } 6289 } 6290 6291 void MacroAssembler::decode_heap_oop(Register r) { 6292 #ifdef ASSERT 6293 verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?"); 6294 #endif 6295 if (CompressedOops::base() == nullptr) { 6296 if (CompressedOops::shift() != 0) { 6297 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 6298 shlq(r, LogMinObjAlignmentInBytes); 6299 } 6300 } else { 6301 Label done; 6302 shlq(r, LogMinObjAlignmentInBytes); 6303 jccb(Assembler::equal, done); 6304 addq(r, r12_heapbase); 6305 bind(done); 6306 } 6307 verify_oop_msg(r, "broken oop in decode_heap_oop"); 6308 } 6309 6310 void MacroAssembler::decode_heap_oop_not_null(Register r) { 6311 // Note: it will change flags 6312 assert (UseCompressedOops, "should only be used for compressed headers"); 6313 assert (Universe::heap() != nullptr, "java heap should be initialized"); 6314 // Cannot assert, unverified entry point counts instructions (see .ad file) 6315 // vtableStubs also counts instructions in pd_code_size_limit. 6316 // Also do not verify_oop as this is called by verify_oop. 6317 if (CompressedOops::shift() != 0) { 6318 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 6319 shlq(r, LogMinObjAlignmentInBytes); 6320 if (CompressedOops::base() != nullptr) { 6321 addq(r, r12_heapbase); 6322 } 6323 } else { 6324 assert (CompressedOops::base() == nullptr, "sanity"); 6325 } 6326 } 6327 6328 void MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) { 6329 // Note: it will change flags 6330 assert (UseCompressedOops, "should only be used for compressed headers"); 6331 assert (Universe::heap() != nullptr, "java heap should be initialized"); 6332 // Cannot assert, unverified entry point counts instructions (see .ad file) 6333 // vtableStubs also counts instructions in pd_code_size_limit. 6334 // Also do not verify_oop as this is called by verify_oop. 6335 if (CompressedOops::shift() != 0) { 6336 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 6337 if (LogMinObjAlignmentInBytes == Address::times_8) { 6338 leaq(dst, Address(r12_heapbase, src, Address::times_8, 0)); 6339 } else { 6340 if (dst != src) { 6341 movq(dst, src); 6342 } 6343 shlq(dst, LogMinObjAlignmentInBytes); 6344 if (CompressedOops::base() != nullptr) { 6345 addq(dst, r12_heapbase); 6346 } 6347 } 6348 } else { 6349 assert (CompressedOops::base() == nullptr, "sanity"); 6350 if (dst != src) { 6351 movq(dst, src); 6352 } 6353 } 6354 } 6355 6356 void MacroAssembler::encode_klass_not_null(Register r, Register tmp) { 6357 assert_different_registers(r, tmp); 6358 if (CompressedKlassPointers::base() != nullptr) { 6359 mov64(tmp, (int64_t)CompressedKlassPointers::base()); 6360 subq(r, tmp); 6361 } 6362 if (CompressedKlassPointers::shift() != 0) { 6363 shrq(r, CompressedKlassPointers::shift()); 6364 } 6365 } 6366 6367 void MacroAssembler::encode_and_move_klass_not_null(Register dst, Register src) { 6368 assert_different_registers(src, dst); 6369 if (CompressedKlassPointers::base() != nullptr) { 6370 mov64(dst, -(int64_t)CompressedKlassPointers::base()); 6371 addq(dst, src); 6372 } else { 6373 movptr(dst, src); 6374 } 6375 if (CompressedKlassPointers::shift() != 0) { 6376 shrq(dst, CompressedKlassPointers::shift()); 6377 } 6378 } 6379 6380 void MacroAssembler::decode_klass_not_null(Register r, Register tmp) { 6381 assert_different_registers(r, tmp); 6382 // Note: it will change flags 6383 assert(UseCompressedClassPointers, "should only be used for compressed headers"); 6384 // Cannot assert, unverified entry point counts instructions (see .ad file) 6385 // vtableStubs also counts instructions in pd_code_size_limit. 6386 // Also do not verify_oop as this is called by verify_oop. 6387 if (CompressedKlassPointers::shift() != 0) { 6388 shlq(r, CompressedKlassPointers::shift()); 6389 } 6390 if (CompressedKlassPointers::base() != nullptr) { 6391 mov64(tmp, (int64_t)CompressedKlassPointers::base()); 6392 addq(r, tmp); 6393 } 6394 } 6395 6396 void MacroAssembler::decode_and_move_klass_not_null(Register dst, Register src) { 6397 assert_different_registers(src, dst); 6398 // Note: it will change flags 6399 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 6400 // Cannot assert, unverified entry point counts instructions (see .ad file) 6401 // vtableStubs also counts instructions in pd_code_size_limit. 6402 // Also do not verify_oop as this is called by verify_oop. 6403 6404 if (CompressedKlassPointers::base() == nullptr && 6405 CompressedKlassPointers::shift() == 0) { 6406 // The best case scenario is that there is no base or shift. Then it is already 6407 // a pointer that needs nothing but a register rename. 6408 movl(dst, src); 6409 } else { 6410 if (CompressedKlassPointers::shift() <= Address::times_8) { 6411 if (CompressedKlassPointers::base() != nullptr) { 6412 mov64(dst, (int64_t)CompressedKlassPointers::base()); 6413 } else { 6414 xorq(dst, dst); 6415 } 6416 if (CompressedKlassPointers::shift() != 0) { 6417 assert(CompressedKlassPointers::shift() == Address::times_8, "klass not aligned on 64bits?"); 6418 leaq(dst, Address(dst, src, Address::times_8, 0)); 6419 } else { 6420 addq(dst, src); 6421 } 6422 } else { 6423 if (CompressedKlassPointers::base() != nullptr) { 6424 const uint64_t base_right_shifted = 6425 (uint64_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift(); 6426 mov64(dst, base_right_shifted); 6427 } else { 6428 xorq(dst, dst); 6429 } 6430 addq(dst, src); 6431 shlq(dst, CompressedKlassPointers::shift()); 6432 } 6433 } 6434 } 6435 6436 void MacroAssembler::set_narrow_oop(Register dst, jobject obj) { 6437 assert (UseCompressedOops, "should only be used for compressed headers"); 6438 assert (Universe::heap() != nullptr, "java heap should be initialized"); 6439 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6440 int oop_index = oop_recorder()->find_index(obj); 6441 RelocationHolder rspec = oop_Relocation::spec(oop_index); 6442 mov_narrow_oop(dst, oop_index, rspec); 6443 } 6444 6445 void MacroAssembler::set_narrow_oop(Address dst, jobject obj) { 6446 assert (UseCompressedOops, "should only be used for compressed headers"); 6447 assert (Universe::heap() != nullptr, "java heap should be initialized"); 6448 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6449 int oop_index = oop_recorder()->find_index(obj); 6450 RelocationHolder rspec = oop_Relocation::spec(oop_index); 6451 mov_narrow_oop(dst, oop_index, rspec); 6452 } 6453 6454 void MacroAssembler::set_narrow_klass(Register dst, Klass* k) { 6455 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 6456 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6457 int klass_index = oop_recorder()->find_index(k); 6458 RelocationHolder rspec = metadata_Relocation::spec(klass_index); 6459 mov_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec); 6460 } 6461 6462 void MacroAssembler::set_narrow_klass(Address dst, Klass* k) { 6463 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 6464 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6465 int klass_index = oop_recorder()->find_index(k); 6466 RelocationHolder rspec = metadata_Relocation::spec(klass_index); 6467 mov_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec); 6468 } 6469 6470 void MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) { 6471 assert (UseCompressedOops, "should only be used for compressed headers"); 6472 assert (Universe::heap() != nullptr, "java heap should be initialized"); 6473 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6474 int oop_index = oop_recorder()->find_index(obj); 6475 RelocationHolder rspec = oop_Relocation::spec(oop_index); 6476 Assembler::cmp_narrow_oop(dst, oop_index, rspec); 6477 } 6478 6479 void MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) { 6480 assert (UseCompressedOops, "should only be used for compressed headers"); 6481 assert (Universe::heap() != nullptr, "java heap should be initialized"); 6482 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6483 int oop_index = oop_recorder()->find_index(obj); 6484 RelocationHolder rspec = oop_Relocation::spec(oop_index); 6485 Assembler::cmp_narrow_oop(dst, oop_index, rspec); 6486 } 6487 6488 void MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) { 6489 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 6490 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6491 int klass_index = oop_recorder()->find_index(k); 6492 RelocationHolder rspec = metadata_Relocation::spec(klass_index); 6493 Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec); 6494 } 6495 6496 void MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) { 6497 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 6498 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6499 int klass_index = oop_recorder()->find_index(k); 6500 RelocationHolder rspec = metadata_Relocation::spec(klass_index); 6501 Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec); 6502 } 6503 6504 void MacroAssembler::reinit_heapbase() { 6505 if (UseCompressedOops) { 6506 if (Universe::heap() != nullptr) { 6507 if (CompressedOops::base() == nullptr) { 6508 MacroAssembler::xorptr(r12_heapbase, r12_heapbase); 6509 } else { 6510 mov64(r12_heapbase, (int64_t)CompressedOops::base()); 6511 } 6512 } else { 6513 movptr(r12_heapbase, ExternalAddress(CompressedOops::base_addr())); 6514 } 6515 } 6516 } 6517 6518 #endif // _LP64 6519 6520 #if COMPILER2_OR_JVMCI 6521 6522 // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM/ZMM registers 6523 void MacroAssembler::xmm_clear_mem(Register base, Register cnt, Register rtmp, XMMRegister xtmp, KRegister mask) { 6524 // cnt - number of qwords (8-byte words). 6525 // base - start address, qword aligned. 6526 Label L_zero_64_bytes, L_loop, L_sloop, L_tail, L_end; 6527 bool use64byteVector = (MaxVectorSize == 64) && (VM_Version::avx3_threshold() == 0); 6528 if (use64byteVector) { 6529 vpxor(xtmp, xtmp, xtmp, AVX_512bit); 6530 } else if (MaxVectorSize >= 32) { 6531 vpxor(xtmp, xtmp, xtmp, AVX_256bit); 6532 } else { 6533 pxor(xtmp, xtmp); 6534 } 6535 jmp(L_zero_64_bytes); 6536 6537 BIND(L_loop); 6538 if (MaxVectorSize >= 32) { 6539 fill64(base, 0, xtmp, use64byteVector); 6540 } else { 6541 movdqu(Address(base, 0), xtmp); 6542 movdqu(Address(base, 16), xtmp); 6543 movdqu(Address(base, 32), xtmp); 6544 movdqu(Address(base, 48), xtmp); 6545 } 6546 addptr(base, 64); 6547 6548 BIND(L_zero_64_bytes); 6549 subptr(cnt, 8); 6550 jccb(Assembler::greaterEqual, L_loop); 6551 6552 // Copy trailing 64 bytes 6553 if (use64byteVector) { 6554 addptr(cnt, 8); 6555 jccb(Assembler::equal, L_end); 6556 fill64_masked(3, base, 0, xtmp, mask, cnt, rtmp, true); 6557 jmp(L_end); 6558 } else { 6559 addptr(cnt, 4); 6560 jccb(Assembler::less, L_tail); 6561 if (MaxVectorSize >= 32) { 6562 vmovdqu(Address(base, 0), xtmp); 6563 } else { 6564 movdqu(Address(base, 0), xtmp); 6565 movdqu(Address(base, 16), xtmp); 6566 } 6567 } 6568 addptr(base, 32); 6569 subptr(cnt, 4); 6570 6571 BIND(L_tail); 6572 addptr(cnt, 4); 6573 jccb(Assembler::lessEqual, L_end); 6574 if (UseAVX > 2 && MaxVectorSize >= 32 && VM_Version::supports_avx512vl()) { 6575 fill32_masked(3, base, 0, xtmp, mask, cnt, rtmp); 6576 } else { 6577 decrement(cnt); 6578 6579 BIND(L_sloop); 6580 movq(Address(base, 0), xtmp); 6581 addptr(base, 8); 6582 decrement(cnt); 6583 jccb(Assembler::greaterEqual, L_sloop); 6584 } 6585 BIND(L_end); 6586 } 6587 6588 // Clearing constant sized memory using YMM/ZMM registers. 6589 void MacroAssembler::clear_mem(Register base, int cnt, Register rtmp, XMMRegister xtmp, KRegister mask) { 6590 assert(UseAVX > 2 && VM_Version::supports_avx512vl(), ""); 6591 bool use64byteVector = (MaxVectorSize > 32) && (VM_Version::avx3_threshold() == 0); 6592 6593 int vector64_count = (cnt & (~0x7)) >> 3; 6594 cnt = cnt & 0x7; 6595 const int fill64_per_loop = 4; 6596 const int max_unrolled_fill64 = 8; 6597 6598 // 64 byte initialization loop. 6599 vpxor(xtmp, xtmp, xtmp, use64byteVector ? AVX_512bit : AVX_256bit); 6600 int start64 = 0; 6601 if (vector64_count > max_unrolled_fill64) { 6602 Label LOOP; 6603 Register index = rtmp; 6604 6605 start64 = vector64_count - (vector64_count % fill64_per_loop); 6606 6607 movl(index, 0); 6608 BIND(LOOP); 6609 for (int i = 0; i < fill64_per_loop; i++) { 6610 fill64(Address(base, index, Address::times_1, i * 64), xtmp, use64byteVector); 6611 } 6612 addl(index, fill64_per_loop * 64); 6613 cmpl(index, start64 * 64); 6614 jccb(Assembler::less, LOOP); 6615 } 6616 for (int i = start64; i < vector64_count; i++) { 6617 fill64(base, i * 64, xtmp, use64byteVector); 6618 } 6619 6620 // Clear remaining 64 byte tail. 6621 int disp = vector64_count * 64; 6622 if (cnt) { 6623 switch (cnt) { 6624 case 1: 6625 movq(Address(base, disp), xtmp); 6626 break; 6627 case 2: 6628 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_128bit); 6629 break; 6630 case 3: 6631 movl(rtmp, 0x7); 6632 kmovwl(mask, rtmp); 6633 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_256bit); 6634 break; 6635 case 4: 6636 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit); 6637 break; 6638 case 5: 6639 if (use64byteVector) { 6640 movl(rtmp, 0x1F); 6641 kmovwl(mask, rtmp); 6642 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit); 6643 } else { 6644 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit); 6645 movq(Address(base, disp + 32), xtmp); 6646 } 6647 break; 6648 case 6: 6649 if (use64byteVector) { 6650 movl(rtmp, 0x3F); 6651 kmovwl(mask, rtmp); 6652 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit); 6653 } else { 6654 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit); 6655 evmovdqu(T_LONG, k0, Address(base, disp + 32), xtmp, false, Assembler::AVX_128bit); 6656 } 6657 break; 6658 case 7: 6659 if (use64byteVector) { 6660 movl(rtmp, 0x7F); 6661 kmovwl(mask, rtmp); 6662 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit); 6663 } else { 6664 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit); 6665 movl(rtmp, 0x7); 6666 kmovwl(mask, rtmp); 6667 evmovdqu(T_LONG, mask, Address(base, disp + 32), xtmp, true, Assembler::AVX_256bit); 6668 } 6669 break; 6670 default: 6671 fatal("Unexpected length : %d\n",cnt); 6672 break; 6673 } 6674 } 6675 } 6676 6677 void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp, XMMRegister xtmp, 6678 bool is_large, KRegister mask) { 6679 // cnt - number of qwords (8-byte words). 6680 // base - start address, qword aligned. 6681 // is_large - if optimizers know cnt is larger than InitArrayShortSize 6682 assert(base==rdi, "base register must be edi for rep stos"); 6683 assert(tmp==rax, "tmp register must be eax for rep stos"); 6684 assert(cnt==rcx, "cnt register must be ecx for rep stos"); 6685 assert(InitArrayShortSize % BytesPerLong == 0, 6686 "InitArrayShortSize should be the multiple of BytesPerLong"); 6687 6688 Label DONE; 6689 if (!is_large || !UseXMMForObjInit) { 6690 xorptr(tmp, tmp); 6691 } 6692 6693 if (!is_large) { 6694 Label LOOP, LONG; 6695 cmpptr(cnt, InitArrayShortSize/BytesPerLong); 6696 jccb(Assembler::greater, LONG); 6697 6698 NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM 6699 6700 decrement(cnt); 6701 jccb(Assembler::negative, DONE); // Zero length 6702 6703 // Use individual pointer-sized stores for small counts: 6704 BIND(LOOP); 6705 movptr(Address(base, cnt, Address::times_ptr), tmp); 6706 decrement(cnt); 6707 jccb(Assembler::greaterEqual, LOOP); 6708 jmpb(DONE); 6709 6710 BIND(LONG); 6711 } 6712 6713 // Use longer rep-prefixed ops for non-small counts: 6714 if (UseFastStosb) { 6715 shlptr(cnt, 3); // convert to number of bytes 6716 rep_stosb(); 6717 } else if (UseXMMForObjInit) { 6718 xmm_clear_mem(base, cnt, tmp, xtmp, mask); 6719 } else { 6720 NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM 6721 rep_stos(); 6722 } 6723 6724 BIND(DONE); 6725 } 6726 6727 #endif //COMPILER2_OR_JVMCI 6728 6729 6730 void MacroAssembler::generate_fill(BasicType t, bool aligned, 6731 Register to, Register value, Register count, 6732 Register rtmp, XMMRegister xtmp) { 6733 ShortBranchVerifier sbv(this); 6734 assert_different_registers(to, value, count, rtmp); 6735 Label L_exit; 6736 Label L_fill_2_bytes, L_fill_4_bytes; 6737 6738 #if defined(COMPILER2) && defined(_LP64) 6739 if(MaxVectorSize >=32 && 6740 VM_Version::supports_avx512vlbw() && 6741 VM_Version::supports_bmi2()) { 6742 generate_fill_avx3(t, to, value, count, rtmp, xtmp); 6743 return; 6744 } 6745 #endif 6746 6747 int shift = -1; 6748 switch (t) { 6749 case T_BYTE: 6750 shift = 2; 6751 break; 6752 case T_SHORT: 6753 shift = 1; 6754 break; 6755 case T_INT: 6756 shift = 0; 6757 break; 6758 default: ShouldNotReachHere(); 6759 } 6760 6761 if (t == T_BYTE) { 6762 andl(value, 0xff); 6763 movl(rtmp, value); 6764 shll(rtmp, 8); 6765 orl(value, rtmp); 6766 } 6767 if (t == T_SHORT) { 6768 andl(value, 0xffff); 6769 } 6770 if (t == T_BYTE || t == T_SHORT) { 6771 movl(rtmp, value); 6772 shll(rtmp, 16); 6773 orl(value, rtmp); 6774 } 6775 6776 cmpptr(count, 2<<shift); // Short arrays (< 8 bytes) fill by element 6777 jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp 6778 if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) { 6779 Label L_skip_align2; 6780 // align source address at 4 bytes address boundary 6781 if (t == T_BYTE) { 6782 Label L_skip_align1; 6783 // One byte misalignment happens only for byte arrays 6784 testptr(to, 1); 6785 jccb(Assembler::zero, L_skip_align1); 6786 movb(Address(to, 0), value); 6787 increment(to); 6788 decrement(count); 6789 BIND(L_skip_align1); 6790 } 6791 // Two bytes misalignment happens only for byte and short (char) arrays 6792 testptr(to, 2); 6793 jccb(Assembler::zero, L_skip_align2); 6794 movw(Address(to, 0), value); 6795 addptr(to, 2); 6796 subptr(count, 1<<(shift-1)); 6797 BIND(L_skip_align2); 6798 } 6799 if (UseSSE < 2) { 6800 Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes; 6801 // Fill 32-byte chunks 6802 subptr(count, 8 << shift); 6803 jcc(Assembler::less, L_check_fill_8_bytes); 6804 align(16); 6805 6806 BIND(L_fill_32_bytes_loop); 6807 6808 for (int i = 0; i < 32; i += 4) { 6809 movl(Address(to, i), value); 6810 } 6811 6812 addptr(to, 32); 6813 subptr(count, 8 << shift); 6814 jcc(Assembler::greaterEqual, L_fill_32_bytes_loop); 6815 BIND(L_check_fill_8_bytes); 6816 addptr(count, 8 << shift); 6817 jccb(Assembler::zero, L_exit); 6818 jmpb(L_fill_8_bytes); 6819 6820 // 6821 // length is too short, just fill qwords 6822 // 6823 BIND(L_fill_8_bytes_loop); 6824 movl(Address(to, 0), value); 6825 movl(Address(to, 4), value); 6826 addptr(to, 8); 6827 BIND(L_fill_8_bytes); 6828 subptr(count, 1 << (shift + 1)); 6829 jcc(Assembler::greaterEqual, L_fill_8_bytes_loop); 6830 // fall through to fill 4 bytes 6831 } else { 6832 Label L_fill_32_bytes; 6833 if (!UseUnalignedLoadStores) { 6834 // align to 8 bytes, we know we are 4 byte aligned to start 6835 testptr(to, 4); 6836 jccb(Assembler::zero, L_fill_32_bytes); 6837 movl(Address(to, 0), value); 6838 addptr(to, 4); 6839 subptr(count, 1<<shift); 6840 } 6841 BIND(L_fill_32_bytes); 6842 { 6843 assert( UseSSE >= 2, "supported cpu only" ); 6844 Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes; 6845 movdl(xtmp, value); 6846 if (UseAVX >= 2 && UseUnalignedLoadStores) { 6847 Label L_check_fill_32_bytes; 6848 if (UseAVX > 2) { 6849 // Fill 64-byte chunks 6850 Label L_fill_64_bytes_loop_avx3, L_check_fill_64_bytes_avx2; 6851 6852 // If number of bytes to fill < VM_Version::avx3_threshold(), perform fill using AVX2 6853 cmpptr(count, VM_Version::avx3_threshold()); 6854 jccb(Assembler::below, L_check_fill_64_bytes_avx2); 6855 6856 vpbroadcastd(xtmp, xtmp, Assembler::AVX_512bit); 6857 6858 subptr(count, 16 << shift); 6859 jccb(Assembler::less, L_check_fill_32_bytes); 6860 align(16); 6861 6862 BIND(L_fill_64_bytes_loop_avx3); 6863 evmovdqul(Address(to, 0), xtmp, Assembler::AVX_512bit); 6864 addptr(to, 64); 6865 subptr(count, 16 << shift); 6866 jcc(Assembler::greaterEqual, L_fill_64_bytes_loop_avx3); 6867 jmpb(L_check_fill_32_bytes); 6868 6869 BIND(L_check_fill_64_bytes_avx2); 6870 } 6871 // Fill 64-byte chunks 6872 Label L_fill_64_bytes_loop; 6873 vpbroadcastd(xtmp, xtmp, Assembler::AVX_256bit); 6874 6875 subptr(count, 16 << shift); 6876 jcc(Assembler::less, L_check_fill_32_bytes); 6877 align(16); 6878 6879 BIND(L_fill_64_bytes_loop); 6880 vmovdqu(Address(to, 0), xtmp); 6881 vmovdqu(Address(to, 32), xtmp); 6882 addptr(to, 64); 6883 subptr(count, 16 << shift); 6884 jcc(Assembler::greaterEqual, L_fill_64_bytes_loop); 6885 6886 BIND(L_check_fill_32_bytes); 6887 addptr(count, 8 << shift); 6888 jccb(Assembler::less, L_check_fill_8_bytes); 6889 vmovdqu(Address(to, 0), xtmp); 6890 addptr(to, 32); 6891 subptr(count, 8 << shift); 6892 6893 BIND(L_check_fill_8_bytes); 6894 // clean upper bits of YMM registers 6895 movdl(xtmp, value); 6896 pshufd(xtmp, xtmp, 0); 6897 } else { 6898 // Fill 32-byte chunks 6899 pshufd(xtmp, xtmp, 0); 6900 6901 subptr(count, 8 << shift); 6902 jcc(Assembler::less, L_check_fill_8_bytes); 6903 align(16); 6904 6905 BIND(L_fill_32_bytes_loop); 6906 6907 if (UseUnalignedLoadStores) { 6908 movdqu(Address(to, 0), xtmp); 6909 movdqu(Address(to, 16), xtmp); 6910 } else { 6911 movq(Address(to, 0), xtmp); 6912 movq(Address(to, 8), xtmp); 6913 movq(Address(to, 16), xtmp); 6914 movq(Address(to, 24), xtmp); 6915 } 6916 6917 addptr(to, 32); 6918 subptr(count, 8 << shift); 6919 jcc(Assembler::greaterEqual, L_fill_32_bytes_loop); 6920 6921 BIND(L_check_fill_8_bytes); 6922 } 6923 addptr(count, 8 << shift); 6924 jccb(Assembler::zero, L_exit); 6925 jmpb(L_fill_8_bytes); 6926 6927 // 6928 // length is too short, just fill qwords 6929 // 6930 BIND(L_fill_8_bytes_loop); 6931 movq(Address(to, 0), xtmp); 6932 addptr(to, 8); 6933 BIND(L_fill_8_bytes); 6934 subptr(count, 1 << (shift + 1)); 6935 jcc(Assembler::greaterEqual, L_fill_8_bytes_loop); 6936 } 6937 } 6938 // fill trailing 4 bytes 6939 BIND(L_fill_4_bytes); 6940 testl(count, 1<<shift); 6941 jccb(Assembler::zero, L_fill_2_bytes); 6942 movl(Address(to, 0), value); 6943 if (t == T_BYTE || t == T_SHORT) { 6944 Label L_fill_byte; 6945 addptr(to, 4); 6946 BIND(L_fill_2_bytes); 6947 // fill trailing 2 bytes 6948 testl(count, 1<<(shift-1)); 6949 jccb(Assembler::zero, L_fill_byte); 6950 movw(Address(to, 0), value); 6951 if (t == T_BYTE) { 6952 addptr(to, 2); 6953 BIND(L_fill_byte); 6954 // fill trailing byte 6955 testl(count, 1); 6956 jccb(Assembler::zero, L_exit); 6957 movb(Address(to, 0), value); 6958 } else { 6959 BIND(L_fill_byte); 6960 } 6961 } else { 6962 BIND(L_fill_2_bytes); 6963 } 6964 BIND(L_exit); 6965 } 6966 6967 void MacroAssembler::evpbroadcast(BasicType type, XMMRegister dst, Register src, int vector_len) { 6968 switch(type) { 6969 case T_BYTE: 6970 case T_BOOLEAN: 6971 evpbroadcastb(dst, src, vector_len); 6972 break; 6973 case T_SHORT: 6974 case T_CHAR: 6975 evpbroadcastw(dst, src, vector_len); 6976 break; 6977 case T_INT: 6978 case T_FLOAT: 6979 evpbroadcastd(dst, src, vector_len); 6980 break; 6981 case T_LONG: 6982 case T_DOUBLE: 6983 evpbroadcastq(dst, src, vector_len); 6984 break; 6985 default: 6986 fatal("Unhandled type : %s", type2name(type)); 6987 break; 6988 } 6989 } 6990 6991 // encode char[] to byte[] in ISO_8859_1 or ASCII 6992 //@IntrinsicCandidate 6993 //private static int implEncodeISOArray(byte[] sa, int sp, 6994 //byte[] da, int dp, int len) { 6995 // int i = 0; 6996 // for (; i < len; i++) { 6997 // char c = StringUTF16.getChar(sa, sp++); 6998 // if (c > '\u00FF') 6999 // break; 7000 // da[dp++] = (byte)c; 7001 // } 7002 // return i; 7003 //} 7004 // 7005 //@IntrinsicCandidate 7006 //private static int implEncodeAsciiArray(char[] sa, int sp, 7007 // byte[] da, int dp, int len) { 7008 // int i = 0; 7009 // for (; i < len; i++) { 7010 // char c = sa[sp++]; 7011 // if (c >= '\u0080') 7012 // break; 7013 // da[dp++] = (byte)c; 7014 // } 7015 // return i; 7016 //} 7017 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len, 7018 XMMRegister tmp1Reg, XMMRegister tmp2Reg, 7019 XMMRegister tmp3Reg, XMMRegister tmp4Reg, 7020 Register tmp5, Register result, bool ascii) { 7021 7022 // rsi: src 7023 // rdi: dst 7024 // rdx: len 7025 // rcx: tmp5 7026 // rax: result 7027 ShortBranchVerifier sbv(this); 7028 assert_different_registers(src, dst, len, tmp5, result); 7029 Label L_done, L_copy_1_char, L_copy_1_char_exit; 7030 7031 int mask = ascii ? 0xff80ff80 : 0xff00ff00; 7032 int short_mask = ascii ? 0xff80 : 0xff00; 7033 7034 // set result 7035 xorl(result, result); 7036 // check for zero length 7037 testl(len, len); 7038 jcc(Assembler::zero, L_done); 7039 7040 movl(result, len); 7041 7042 // Setup pointers 7043 lea(src, Address(src, len, Address::times_2)); // char[] 7044 lea(dst, Address(dst, len, Address::times_1)); // byte[] 7045 negptr(len); 7046 7047 if (UseSSE42Intrinsics || UseAVX >= 2) { 7048 Label L_copy_8_chars, L_copy_8_chars_exit; 7049 Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit; 7050 7051 if (UseAVX >= 2) { 7052 Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit; 7053 movl(tmp5, mask); // create mask to test for Unicode or non-ASCII chars in vector 7054 movdl(tmp1Reg, tmp5); 7055 vpbroadcastd(tmp1Reg, tmp1Reg, Assembler::AVX_256bit); 7056 jmp(L_chars_32_check); 7057 7058 bind(L_copy_32_chars); 7059 vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64)); 7060 vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32)); 7061 vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1); 7062 vptest(tmp2Reg, tmp1Reg); // check for Unicode or non-ASCII chars in vector 7063 jccb(Assembler::notZero, L_copy_32_chars_exit); 7064 vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1); 7065 vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector_len */ 1); 7066 vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg); 7067 7068 bind(L_chars_32_check); 7069 addptr(len, 32); 7070 jcc(Assembler::lessEqual, L_copy_32_chars); 7071 7072 bind(L_copy_32_chars_exit); 7073 subptr(len, 16); 7074 jccb(Assembler::greater, L_copy_16_chars_exit); 7075 7076 } else if (UseSSE42Intrinsics) { 7077 movl(tmp5, mask); // create mask to test for Unicode or non-ASCII chars in vector 7078 movdl(tmp1Reg, tmp5); 7079 pshufd(tmp1Reg, tmp1Reg, 0); 7080 jmpb(L_chars_16_check); 7081 } 7082 7083 bind(L_copy_16_chars); 7084 if (UseAVX >= 2) { 7085 vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32)); 7086 vptest(tmp2Reg, tmp1Reg); 7087 jcc(Assembler::notZero, L_copy_16_chars_exit); 7088 vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector_len */ 1); 7089 vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector_len */ 1); 7090 } else { 7091 if (UseAVX > 0) { 7092 movdqu(tmp3Reg, Address(src, len, Address::times_2, -32)); 7093 movdqu(tmp4Reg, Address(src, len, Address::times_2, -16)); 7094 vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 0); 7095 } else { 7096 movdqu(tmp3Reg, Address(src, len, Address::times_2, -32)); 7097 por(tmp2Reg, tmp3Reg); 7098 movdqu(tmp4Reg, Address(src, len, Address::times_2, -16)); 7099 por(tmp2Reg, tmp4Reg); 7100 } 7101 ptest(tmp2Reg, tmp1Reg); // check for Unicode or non-ASCII chars in vector 7102 jccb(Assembler::notZero, L_copy_16_chars_exit); 7103 packuswb(tmp3Reg, tmp4Reg); 7104 } 7105 movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg); 7106 7107 bind(L_chars_16_check); 7108 addptr(len, 16); 7109 jcc(Assembler::lessEqual, L_copy_16_chars); 7110 7111 bind(L_copy_16_chars_exit); 7112 if (UseAVX >= 2) { 7113 // clean upper bits of YMM registers 7114 vpxor(tmp2Reg, tmp2Reg); 7115 vpxor(tmp3Reg, tmp3Reg); 7116 vpxor(tmp4Reg, tmp4Reg); 7117 movdl(tmp1Reg, tmp5); 7118 pshufd(tmp1Reg, tmp1Reg, 0); 7119 } 7120 subptr(len, 8); 7121 jccb(Assembler::greater, L_copy_8_chars_exit); 7122 7123 bind(L_copy_8_chars); 7124 movdqu(tmp3Reg, Address(src, len, Address::times_2, -16)); 7125 ptest(tmp3Reg, tmp1Reg); 7126 jccb(Assembler::notZero, L_copy_8_chars_exit); 7127 packuswb(tmp3Reg, tmp1Reg); 7128 movq(Address(dst, len, Address::times_1, -8), tmp3Reg); 7129 addptr(len, 8); 7130 jccb(Assembler::lessEqual, L_copy_8_chars); 7131 7132 bind(L_copy_8_chars_exit); 7133 subptr(len, 8); 7134 jccb(Assembler::zero, L_done); 7135 } 7136 7137 bind(L_copy_1_char); 7138 load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0)); 7139 testl(tmp5, short_mask); // check if Unicode or non-ASCII char 7140 jccb(Assembler::notZero, L_copy_1_char_exit); 7141 movb(Address(dst, len, Address::times_1, 0), tmp5); 7142 addptr(len, 1); 7143 jccb(Assembler::less, L_copy_1_char); 7144 7145 bind(L_copy_1_char_exit); 7146 addptr(result, len); // len is negative count of not processed elements 7147 7148 bind(L_done); 7149 } 7150 7151 #ifdef _LP64 7152 /** 7153 * Helper for multiply_to_len(). 7154 */ 7155 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) { 7156 addq(dest_lo, src1); 7157 adcq(dest_hi, 0); 7158 addq(dest_lo, src2); 7159 adcq(dest_hi, 0); 7160 } 7161 7162 /** 7163 * Multiply 64 bit by 64 bit first loop. 7164 */ 7165 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, 7166 Register y, Register y_idx, Register z, 7167 Register carry, Register product, 7168 Register idx, Register kdx) { 7169 // 7170 // jlong carry, x[], y[], z[]; 7171 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 7172 // huge_128 product = y[idx] * x[xstart] + carry; 7173 // z[kdx] = (jlong)product; 7174 // carry = (jlong)(product >>> 64); 7175 // } 7176 // z[xstart] = carry; 7177 // 7178 7179 Label L_first_loop, L_first_loop_exit; 7180 Label L_one_x, L_one_y, L_multiply; 7181 7182 decrementl(xstart); 7183 jcc(Assembler::negative, L_one_x); 7184 7185 movq(x_xstart, Address(x, xstart, Address::times_4, 0)); 7186 rorq(x_xstart, 32); // convert big-endian to little-endian 7187 7188 bind(L_first_loop); 7189 decrementl(idx); 7190 jcc(Assembler::negative, L_first_loop_exit); 7191 decrementl(idx); 7192 jcc(Assembler::negative, L_one_y); 7193 movq(y_idx, Address(y, idx, Address::times_4, 0)); 7194 rorq(y_idx, 32); // convert big-endian to little-endian 7195 bind(L_multiply); 7196 movq(product, x_xstart); 7197 mulq(y_idx); // product(rax) * y_idx -> rdx:rax 7198 addq(product, carry); 7199 adcq(rdx, 0); 7200 subl(kdx, 2); 7201 movl(Address(z, kdx, Address::times_4, 4), product); 7202 shrq(product, 32); 7203 movl(Address(z, kdx, Address::times_4, 0), product); 7204 movq(carry, rdx); 7205 jmp(L_first_loop); 7206 7207 bind(L_one_y); 7208 movl(y_idx, Address(y, 0)); 7209 jmp(L_multiply); 7210 7211 bind(L_one_x); 7212 movl(x_xstart, Address(x, 0)); 7213 jmp(L_first_loop); 7214 7215 bind(L_first_loop_exit); 7216 } 7217 7218 /** 7219 * Multiply 64 bit by 64 bit and add 128 bit. 7220 */ 7221 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z, 7222 Register yz_idx, Register idx, 7223 Register carry, Register product, int offset) { 7224 // huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry; 7225 // z[kdx] = (jlong)product; 7226 7227 movq(yz_idx, Address(y, idx, Address::times_4, offset)); 7228 rorq(yz_idx, 32); // convert big-endian to little-endian 7229 movq(product, x_xstart); 7230 mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax) 7231 movq(yz_idx, Address(z, idx, Address::times_4, offset)); 7232 rorq(yz_idx, 32); // convert big-endian to little-endian 7233 7234 add2_with_carry(rdx, product, carry, yz_idx); 7235 7236 movl(Address(z, idx, Address::times_4, offset+4), product); 7237 shrq(product, 32); 7238 movl(Address(z, idx, Address::times_4, offset), product); 7239 7240 } 7241 7242 /** 7243 * Multiply 128 bit by 128 bit. Unrolled inner loop. 7244 */ 7245 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z, 7246 Register yz_idx, Register idx, Register jdx, 7247 Register carry, Register product, 7248 Register carry2) { 7249 // jlong carry, x[], y[], z[]; 7250 // int kdx = ystart+1; 7251 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop 7252 // huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry; 7253 // z[kdx+idx+1] = (jlong)product; 7254 // jlong carry2 = (jlong)(product >>> 64); 7255 // product = (y[idx] * x_xstart) + z[kdx+idx] + carry2; 7256 // z[kdx+idx] = (jlong)product; 7257 // carry = (jlong)(product >>> 64); 7258 // } 7259 // idx += 2; 7260 // if (idx > 0) { 7261 // product = (y[idx] * x_xstart) + z[kdx+idx] + carry; 7262 // z[kdx+idx] = (jlong)product; 7263 // carry = (jlong)(product >>> 64); 7264 // } 7265 // 7266 7267 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done; 7268 7269 movl(jdx, idx); 7270 andl(jdx, 0xFFFFFFFC); 7271 shrl(jdx, 2); 7272 7273 bind(L_third_loop); 7274 subl(jdx, 1); 7275 jcc(Assembler::negative, L_third_loop_exit); 7276 subl(idx, 4); 7277 7278 multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8); 7279 movq(carry2, rdx); 7280 7281 multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0); 7282 movq(carry, rdx); 7283 jmp(L_third_loop); 7284 7285 bind (L_third_loop_exit); 7286 7287 andl (idx, 0x3); 7288 jcc(Assembler::zero, L_post_third_loop_done); 7289 7290 Label L_check_1; 7291 subl(idx, 2); 7292 jcc(Assembler::negative, L_check_1); 7293 7294 multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0); 7295 movq(carry, rdx); 7296 7297 bind (L_check_1); 7298 addl (idx, 0x2); 7299 andl (idx, 0x1); 7300 subl(idx, 1); 7301 jcc(Assembler::negative, L_post_third_loop_done); 7302 7303 movl(yz_idx, Address(y, idx, Address::times_4, 0)); 7304 movq(product, x_xstart); 7305 mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax) 7306 movl(yz_idx, Address(z, idx, Address::times_4, 0)); 7307 7308 add2_with_carry(rdx, product, yz_idx, carry); 7309 7310 movl(Address(z, idx, Address::times_4, 0), product); 7311 shrq(product, 32); 7312 7313 shlq(rdx, 32); 7314 orq(product, rdx); 7315 movq(carry, product); 7316 7317 bind(L_post_third_loop_done); 7318 } 7319 7320 /** 7321 * Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop. 7322 * 7323 */ 7324 void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z, 7325 Register carry, Register carry2, 7326 Register idx, Register jdx, 7327 Register yz_idx1, Register yz_idx2, 7328 Register tmp, Register tmp3, Register tmp4) { 7329 assert(UseBMI2Instructions, "should be used only when BMI2 is available"); 7330 7331 // jlong carry, x[], y[], z[]; 7332 // int kdx = ystart+1; 7333 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop 7334 // huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry; 7335 // jlong carry2 = (jlong)(tmp3 >>> 64); 7336 // huge_128 tmp4 = (y[idx] * rdx) + z[kdx+idx] + carry2; 7337 // carry = (jlong)(tmp4 >>> 64); 7338 // z[kdx+idx+1] = (jlong)tmp3; 7339 // z[kdx+idx] = (jlong)tmp4; 7340 // } 7341 // idx += 2; 7342 // if (idx > 0) { 7343 // yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry; 7344 // z[kdx+idx] = (jlong)yz_idx1; 7345 // carry = (jlong)(yz_idx1 >>> 64); 7346 // } 7347 // 7348 7349 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done; 7350 7351 movl(jdx, idx); 7352 andl(jdx, 0xFFFFFFFC); 7353 shrl(jdx, 2); 7354 7355 bind(L_third_loop); 7356 subl(jdx, 1); 7357 jcc(Assembler::negative, L_third_loop_exit); 7358 subl(idx, 4); 7359 7360 movq(yz_idx1, Address(y, idx, Address::times_4, 8)); 7361 rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian 7362 movq(yz_idx2, Address(y, idx, Address::times_4, 0)); 7363 rorxq(yz_idx2, yz_idx2, 32); 7364 7365 mulxq(tmp4, tmp3, yz_idx1); // yz_idx1 * rdx -> tmp4:tmp3 7366 mulxq(carry2, tmp, yz_idx2); // yz_idx2 * rdx -> carry2:tmp 7367 7368 movq(yz_idx1, Address(z, idx, Address::times_4, 8)); 7369 rorxq(yz_idx1, yz_idx1, 32); 7370 movq(yz_idx2, Address(z, idx, Address::times_4, 0)); 7371 rorxq(yz_idx2, yz_idx2, 32); 7372 7373 if (VM_Version::supports_adx()) { 7374 adcxq(tmp3, carry); 7375 adoxq(tmp3, yz_idx1); 7376 7377 adcxq(tmp4, tmp); 7378 adoxq(tmp4, yz_idx2); 7379 7380 movl(carry, 0); // does not affect flags 7381 adcxq(carry2, carry); 7382 adoxq(carry2, carry); 7383 } else { 7384 add2_with_carry(tmp4, tmp3, carry, yz_idx1); 7385 add2_with_carry(carry2, tmp4, tmp, yz_idx2); 7386 } 7387 movq(carry, carry2); 7388 7389 movl(Address(z, idx, Address::times_4, 12), tmp3); 7390 shrq(tmp3, 32); 7391 movl(Address(z, idx, Address::times_4, 8), tmp3); 7392 7393 movl(Address(z, idx, Address::times_4, 4), tmp4); 7394 shrq(tmp4, 32); 7395 movl(Address(z, idx, Address::times_4, 0), tmp4); 7396 7397 jmp(L_third_loop); 7398 7399 bind (L_third_loop_exit); 7400 7401 andl (idx, 0x3); 7402 jcc(Assembler::zero, L_post_third_loop_done); 7403 7404 Label L_check_1; 7405 subl(idx, 2); 7406 jcc(Assembler::negative, L_check_1); 7407 7408 movq(yz_idx1, Address(y, idx, Address::times_4, 0)); 7409 rorxq(yz_idx1, yz_idx1, 32); 7410 mulxq(tmp4, tmp3, yz_idx1); // yz_idx1 * rdx -> tmp4:tmp3 7411 movq(yz_idx2, Address(z, idx, Address::times_4, 0)); 7412 rorxq(yz_idx2, yz_idx2, 32); 7413 7414 add2_with_carry(tmp4, tmp3, carry, yz_idx2); 7415 7416 movl(Address(z, idx, Address::times_4, 4), tmp3); 7417 shrq(tmp3, 32); 7418 movl(Address(z, idx, Address::times_4, 0), tmp3); 7419 movq(carry, tmp4); 7420 7421 bind (L_check_1); 7422 addl (idx, 0x2); 7423 andl (idx, 0x1); 7424 subl(idx, 1); 7425 jcc(Assembler::negative, L_post_third_loop_done); 7426 movl(tmp4, Address(y, idx, Address::times_4, 0)); 7427 mulxq(carry2, tmp3, tmp4); // tmp4 * rdx -> carry2:tmp3 7428 movl(tmp4, Address(z, idx, Address::times_4, 0)); 7429 7430 add2_with_carry(carry2, tmp3, tmp4, carry); 7431 7432 movl(Address(z, idx, Address::times_4, 0), tmp3); 7433 shrq(tmp3, 32); 7434 7435 shlq(carry2, 32); 7436 orq(tmp3, carry2); 7437 movq(carry, tmp3); 7438 7439 bind(L_post_third_loop_done); 7440 } 7441 7442 /** 7443 * Code for BigInteger::multiplyToLen() intrinsic. 7444 * 7445 * rdi: x 7446 * rax: xlen 7447 * rsi: y 7448 * rcx: ylen 7449 * r8: z 7450 * r11: tmp0 7451 * r12: tmp1 7452 * r13: tmp2 7453 * r14: tmp3 7454 * r15: tmp4 7455 * rbx: tmp5 7456 * 7457 */ 7458 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register tmp0, 7459 Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) { 7460 ShortBranchVerifier sbv(this); 7461 assert_different_registers(x, xlen, y, ylen, z, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, rdx); 7462 7463 push(tmp0); 7464 push(tmp1); 7465 push(tmp2); 7466 push(tmp3); 7467 push(tmp4); 7468 push(tmp5); 7469 7470 push(xlen); 7471 7472 const Register idx = tmp1; 7473 const Register kdx = tmp2; 7474 const Register xstart = tmp3; 7475 7476 const Register y_idx = tmp4; 7477 const Register carry = tmp5; 7478 const Register product = xlen; 7479 const Register x_xstart = tmp0; 7480 7481 // First Loop. 7482 // 7483 // final static long LONG_MASK = 0xffffffffL; 7484 // int xstart = xlen - 1; 7485 // int ystart = ylen - 1; 7486 // long carry = 0; 7487 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 7488 // long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry; 7489 // z[kdx] = (int)product; 7490 // carry = product >>> 32; 7491 // } 7492 // z[xstart] = (int)carry; 7493 // 7494 7495 movl(idx, ylen); // idx = ylen; 7496 lea(kdx, Address(xlen, ylen)); // kdx = xlen+ylen; 7497 xorq(carry, carry); // carry = 0; 7498 7499 Label L_done; 7500 7501 movl(xstart, xlen); 7502 decrementl(xstart); 7503 jcc(Assembler::negative, L_done); 7504 7505 multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx); 7506 7507 Label L_second_loop; 7508 testl(kdx, kdx); 7509 jcc(Assembler::zero, L_second_loop); 7510 7511 Label L_carry; 7512 subl(kdx, 1); 7513 jcc(Assembler::zero, L_carry); 7514 7515 movl(Address(z, kdx, Address::times_4, 0), carry); 7516 shrq(carry, 32); 7517 subl(kdx, 1); 7518 7519 bind(L_carry); 7520 movl(Address(z, kdx, Address::times_4, 0), carry); 7521 7522 // Second and third (nested) loops. 7523 // 7524 // for (int i = xstart-1; i >= 0; i--) { // Second loop 7525 // carry = 0; 7526 // for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop 7527 // long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) + 7528 // (z[k] & LONG_MASK) + carry; 7529 // z[k] = (int)product; 7530 // carry = product >>> 32; 7531 // } 7532 // z[i] = (int)carry; 7533 // } 7534 // 7535 // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx 7536 7537 const Register jdx = tmp1; 7538 7539 bind(L_second_loop); 7540 xorl(carry, carry); // carry = 0; 7541 movl(jdx, ylen); // j = ystart+1 7542 7543 subl(xstart, 1); // i = xstart-1; 7544 jcc(Assembler::negative, L_done); 7545 7546 push (z); 7547 7548 Label L_last_x; 7549 lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j 7550 subl(xstart, 1); // i = xstart-1; 7551 jcc(Assembler::negative, L_last_x); 7552 7553 if (UseBMI2Instructions) { 7554 movq(rdx, Address(x, xstart, Address::times_4, 0)); 7555 rorxq(rdx, rdx, 32); // convert big-endian to little-endian 7556 } else { 7557 movq(x_xstart, Address(x, xstart, Address::times_4, 0)); 7558 rorq(x_xstart, 32); // convert big-endian to little-endian 7559 } 7560 7561 Label L_third_loop_prologue; 7562 bind(L_third_loop_prologue); 7563 7564 push (x); 7565 push (xstart); 7566 push (ylen); 7567 7568 7569 if (UseBMI2Instructions) { 7570 multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4); 7571 } else { // !UseBMI2Instructions 7572 multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x); 7573 } 7574 7575 pop(ylen); 7576 pop(xlen); 7577 pop(x); 7578 pop(z); 7579 7580 movl(tmp3, xlen); 7581 addl(tmp3, 1); 7582 movl(Address(z, tmp3, Address::times_4, 0), carry); 7583 subl(tmp3, 1); 7584 jccb(Assembler::negative, L_done); 7585 7586 shrq(carry, 32); 7587 movl(Address(z, tmp3, Address::times_4, 0), carry); 7588 jmp(L_second_loop); 7589 7590 // Next infrequent code is moved outside loops. 7591 bind(L_last_x); 7592 if (UseBMI2Instructions) { 7593 movl(rdx, Address(x, 0)); 7594 } else { 7595 movl(x_xstart, Address(x, 0)); 7596 } 7597 jmp(L_third_loop_prologue); 7598 7599 bind(L_done); 7600 7601 pop(xlen); 7602 7603 pop(tmp5); 7604 pop(tmp4); 7605 pop(tmp3); 7606 pop(tmp2); 7607 pop(tmp1); 7608 pop(tmp0); 7609 } 7610 7611 void MacroAssembler::vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale, 7612 Register result, Register tmp1, Register tmp2, XMMRegister rymm0, XMMRegister rymm1, XMMRegister rymm2){ 7613 assert(UseSSE42Intrinsics, "SSE4.2 must be enabled."); 7614 Label VECTOR16_LOOP, VECTOR8_LOOP, VECTOR4_LOOP; 7615 Label VECTOR8_TAIL, VECTOR4_TAIL; 7616 Label VECTOR32_NOT_EQUAL, VECTOR16_NOT_EQUAL, VECTOR8_NOT_EQUAL, VECTOR4_NOT_EQUAL; 7617 Label SAME_TILL_END, DONE; 7618 Label BYTES_LOOP, BYTES_TAIL, BYTES_NOT_EQUAL; 7619 7620 //scale is in rcx in both Win64 and Unix 7621 ShortBranchVerifier sbv(this); 7622 7623 shlq(length); 7624 xorq(result, result); 7625 7626 if ((AVX3Threshold == 0) && (UseAVX > 2) && 7627 VM_Version::supports_avx512vlbw()) { 7628 Label VECTOR64_LOOP, VECTOR64_NOT_EQUAL, VECTOR32_TAIL; 7629 7630 cmpq(length, 64); 7631 jcc(Assembler::less, VECTOR32_TAIL); 7632 7633 movq(tmp1, length); 7634 andq(tmp1, 0x3F); // tail count 7635 andq(length, ~(0x3F)); //vector count 7636 7637 bind(VECTOR64_LOOP); 7638 // AVX512 code to compare 64 byte vectors. 7639 evmovdqub(rymm0, Address(obja, result), Assembler::AVX_512bit); 7640 evpcmpeqb(k7, rymm0, Address(objb, result), Assembler::AVX_512bit); 7641 kortestql(k7, k7); 7642 jcc(Assembler::aboveEqual, VECTOR64_NOT_EQUAL); // mismatch 7643 addq(result, 64); 7644 subq(length, 64); 7645 jccb(Assembler::notZero, VECTOR64_LOOP); 7646 7647 //bind(VECTOR64_TAIL); 7648 testq(tmp1, tmp1); 7649 jcc(Assembler::zero, SAME_TILL_END); 7650 7651 //bind(VECTOR64_TAIL); 7652 // AVX512 code to compare up to 63 byte vectors. 7653 mov64(tmp2, 0xFFFFFFFFFFFFFFFF); 7654 shlxq(tmp2, tmp2, tmp1); 7655 notq(tmp2); 7656 kmovql(k3, tmp2); 7657 7658 evmovdqub(rymm0, k3, Address(obja, result), false, Assembler::AVX_512bit); 7659 evpcmpeqb(k7, k3, rymm0, Address(objb, result), Assembler::AVX_512bit); 7660 7661 ktestql(k7, k3); 7662 jcc(Assembler::below, SAME_TILL_END); // not mismatch 7663 7664 bind(VECTOR64_NOT_EQUAL); 7665 kmovql(tmp1, k7); 7666 notq(tmp1); 7667 tzcntq(tmp1, tmp1); 7668 addq(result, tmp1); 7669 shrq(result); 7670 jmp(DONE); 7671 bind(VECTOR32_TAIL); 7672 } 7673 7674 cmpq(length, 8); 7675 jcc(Assembler::equal, VECTOR8_LOOP); 7676 jcc(Assembler::less, VECTOR4_TAIL); 7677 7678 if (UseAVX >= 2) { 7679 Label VECTOR16_TAIL, VECTOR32_LOOP; 7680 7681 cmpq(length, 16); 7682 jcc(Assembler::equal, VECTOR16_LOOP); 7683 jcc(Assembler::less, VECTOR8_LOOP); 7684 7685 cmpq(length, 32); 7686 jccb(Assembler::less, VECTOR16_TAIL); 7687 7688 subq(length, 32); 7689 bind(VECTOR32_LOOP); 7690 vmovdqu(rymm0, Address(obja, result)); 7691 vmovdqu(rymm1, Address(objb, result)); 7692 vpxor(rymm2, rymm0, rymm1, Assembler::AVX_256bit); 7693 vptest(rymm2, rymm2); 7694 jcc(Assembler::notZero, VECTOR32_NOT_EQUAL);//mismatch found 7695 addq(result, 32); 7696 subq(length, 32); 7697 jcc(Assembler::greaterEqual, VECTOR32_LOOP); 7698 addq(length, 32); 7699 jcc(Assembler::equal, SAME_TILL_END); 7700 //falling through if less than 32 bytes left //close the branch here. 7701 7702 bind(VECTOR16_TAIL); 7703 cmpq(length, 16); 7704 jccb(Assembler::less, VECTOR8_TAIL); 7705 bind(VECTOR16_LOOP); 7706 movdqu(rymm0, Address(obja, result)); 7707 movdqu(rymm1, Address(objb, result)); 7708 vpxor(rymm2, rymm0, rymm1, Assembler::AVX_128bit); 7709 ptest(rymm2, rymm2); 7710 jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found 7711 addq(result, 16); 7712 subq(length, 16); 7713 jcc(Assembler::equal, SAME_TILL_END); 7714 //falling through if less than 16 bytes left 7715 } else {//regular intrinsics 7716 7717 cmpq(length, 16); 7718 jccb(Assembler::less, VECTOR8_TAIL); 7719 7720 subq(length, 16); 7721 bind(VECTOR16_LOOP); 7722 movdqu(rymm0, Address(obja, result)); 7723 movdqu(rymm1, Address(objb, result)); 7724 pxor(rymm0, rymm1); 7725 ptest(rymm0, rymm0); 7726 jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found 7727 addq(result, 16); 7728 subq(length, 16); 7729 jccb(Assembler::greaterEqual, VECTOR16_LOOP); 7730 addq(length, 16); 7731 jcc(Assembler::equal, SAME_TILL_END); 7732 //falling through if less than 16 bytes left 7733 } 7734 7735 bind(VECTOR8_TAIL); 7736 cmpq(length, 8); 7737 jccb(Assembler::less, VECTOR4_TAIL); 7738 bind(VECTOR8_LOOP); 7739 movq(tmp1, Address(obja, result)); 7740 movq(tmp2, Address(objb, result)); 7741 xorq(tmp1, tmp2); 7742 testq(tmp1, tmp1); 7743 jcc(Assembler::notZero, VECTOR8_NOT_EQUAL);//mismatch found 7744 addq(result, 8); 7745 subq(length, 8); 7746 jcc(Assembler::equal, SAME_TILL_END); 7747 //falling through if less than 8 bytes left 7748 7749 bind(VECTOR4_TAIL); 7750 cmpq(length, 4); 7751 jccb(Assembler::less, BYTES_TAIL); 7752 bind(VECTOR4_LOOP); 7753 movl(tmp1, Address(obja, result)); 7754 xorl(tmp1, Address(objb, result)); 7755 testl(tmp1, tmp1); 7756 jcc(Assembler::notZero, VECTOR4_NOT_EQUAL);//mismatch found 7757 addq(result, 4); 7758 subq(length, 4); 7759 jcc(Assembler::equal, SAME_TILL_END); 7760 //falling through if less than 4 bytes left 7761 7762 bind(BYTES_TAIL); 7763 bind(BYTES_LOOP); 7764 load_unsigned_byte(tmp1, Address(obja, result)); 7765 load_unsigned_byte(tmp2, Address(objb, result)); 7766 xorl(tmp1, tmp2); 7767 testl(tmp1, tmp1); 7768 jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found 7769 decq(length); 7770 jcc(Assembler::zero, SAME_TILL_END); 7771 incq(result); 7772 load_unsigned_byte(tmp1, Address(obja, result)); 7773 load_unsigned_byte(tmp2, Address(objb, result)); 7774 xorl(tmp1, tmp2); 7775 testl(tmp1, tmp1); 7776 jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found 7777 decq(length); 7778 jcc(Assembler::zero, SAME_TILL_END); 7779 incq(result); 7780 load_unsigned_byte(tmp1, Address(obja, result)); 7781 load_unsigned_byte(tmp2, Address(objb, result)); 7782 xorl(tmp1, tmp2); 7783 testl(tmp1, tmp1); 7784 jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found 7785 jmp(SAME_TILL_END); 7786 7787 if (UseAVX >= 2) { 7788 bind(VECTOR32_NOT_EQUAL); 7789 vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_256bit); 7790 vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_256bit); 7791 vpxor(rymm0, rymm0, rymm2, Assembler::AVX_256bit); 7792 vpmovmskb(tmp1, rymm0); 7793 bsfq(tmp1, tmp1); 7794 addq(result, tmp1); 7795 shrq(result); 7796 jmp(DONE); 7797 } 7798 7799 bind(VECTOR16_NOT_EQUAL); 7800 if (UseAVX >= 2) { 7801 vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_128bit); 7802 vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_128bit); 7803 pxor(rymm0, rymm2); 7804 } else { 7805 pcmpeqb(rymm2, rymm2); 7806 pxor(rymm0, rymm1); 7807 pcmpeqb(rymm0, rymm1); 7808 pxor(rymm0, rymm2); 7809 } 7810 pmovmskb(tmp1, rymm0); 7811 bsfq(tmp1, tmp1); 7812 addq(result, tmp1); 7813 shrq(result); 7814 jmpb(DONE); 7815 7816 bind(VECTOR8_NOT_EQUAL); 7817 bind(VECTOR4_NOT_EQUAL); 7818 bsfq(tmp1, tmp1); 7819 shrq(tmp1, 3); 7820 addq(result, tmp1); 7821 bind(BYTES_NOT_EQUAL); 7822 shrq(result); 7823 jmpb(DONE); 7824 7825 bind(SAME_TILL_END); 7826 mov64(result, -1); 7827 7828 bind(DONE); 7829 } 7830 7831 //Helper functions for square_to_len() 7832 7833 /** 7834 * Store the squares of x[], right shifted one bit (divided by 2) into z[] 7835 * Preserves x and z and modifies rest of the registers. 7836 */ 7837 void MacroAssembler::square_rshift(Register x, Register xlen, Register z, Register tmp1, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) { 7838 // Perform square and right shift by 1 7839 // Handle odd xlen case first, then for even xlen do the following 7840 // jlong carry = 0; 7841 // for (int j=0, i=0; j < xlen; j+=2, i+=4) { 7842 // huge_128 product = x[j:j+1] * x[j:j+1]; 7843 // z[i:i+1] = (carry << 63) | (jlong)(product >>> 65); 7844 // z[i+2:i+3] = (jlong)(product >>> 1); 7845 // carry = (jlong)product; 7846 // } 7847 7848 xorq(tmp5, tmp5); // carry 7849 xorq(rdxReg, rdxReg); 7850 xorl(tmp1, tmp1); // index for x 7851 xorl(tmp4, tmp4); // index for z 7852 7853 Label L_first_loop, L_first_loop_exit; 7854 7855 testl(xlen, 1); 7856 jccb(Assembler::zero, L_first_loop); //jump if xlen is even 7857 7858 // Square and right shift by 1 the odd element using 32 bit multiply 7859 movl(raxReg, Address(x, tmp1, Address::times_4, 0)); 7860 imulq(raxReg, raxReg); 7861 shrq(raxReg, 1); 7862 adcq(tmp5, 0); 7863 movq(Address(z, tmp4, Address::times_4, 0), raxReg); 7864 incrementl(tmp1); 7865 addl(tmp4, 2); 7866 7867 // Square and right shift by 1 the rest using 64 bit multiply 7868 bind(L_first_loop); 7869 cmpptr(tmp1, xlen); 7870 jccb(Assembler::equal, L_first_loop_exit); 7871 7872 // Square 7873 movq(raxReg, Address(x, tmp1, Address::times_4, 0)); 7874 rorq(raxReg, 32); // convert big-endian to little-endian 7875 mulq(raxReg); // 64-bit multiply rax * rax -> rdx:rax 7876 7877 // Right shift by 1 and save carry 7878 shrq(tmp5, 1); // rdx:rax:tmp5 = (tmp5:rdx:rax) >>> 1 7879 rcrq(rdxReg, 1); 7880 rcrq(raxReg, 1); 7881 adcq(tmp5, 0); 7882 7883 // Store result in z 7884 movq(Address(z, tmp4, Address::times_4, 0), rdxReg); 7885 movq(Address(z, tmp4, Address::times_4, 8), raxReg); 7886 7887 // Update indices for x and z 7888 addl(tmp1, 2); 7889 addl(tmp4, 4); 7890 jmp(L_first_loop); 7891 7892 bind(L_first_loop_exit); 7893 } 7894 7895 7896 /** 7897 * Perform the following multiply add operation using BMI2 instructions 7898 * carry:sum = sum + op1*op2 + carry 7899 * op2 should be in rdx 7900 * op2 is preserved, all other registers are modified 7901 */ 7902 void MacroAssembler::multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry, Register tmp2) { 7903 // assert op2 is rdx 7904 mulxq(tmp2, op1, op1); // op1 * op2 -> tmp2:op1 7905 addq(sum, carry); 7906 adcq(tmp2, 0); 7907 addq(sum, op1); 7908 adcq(tmp2, 0); 7909 movq(carry, tmp2); 7910 } 7911 7912 /** 7913 * Perform the following multiply add operation: 7914 * carry:sum = sum + op1*op2 + carry 7915 * Preserves op1, op2 and modifies rest of registers 7916 */ 7917 void MacroAssembler::multiply_add_64(Register sum, Register op1, Register op2, Register carry, Register rdxReg, Register raxReg) { 7918 // rdx:rax = op1 * op2 7919 movq(raxReg, op2); 7920 mulq(op1); 7921 7922 // rdx:rax = sum + carry + rdx:rax 7923 addq(sum, carry); 7924 adcq(rdxReg, 0); 7925 addq(sum, raxReg); 7926 adcq(rdxReg, 0); 7927 7928 // carry:sum = rdx:sum 7929 movq(carry, rdxReg); 7930 } 7931 7932 /** 7933 * Add 64 bit long carry into z[] with carry propagation. 7934 * Preserves z and carry register values and modifies rest of registers. 7935 * 7936 */ 7937 void MacroAssembler::add_one_64(Register z, Register zlen, Register carry, Register tmp1) { 7938 Label L_fourth_loop, L_fourth_loop_exit; 7939 7940 movl(tmp1, 1); 7941 subl(zlen, 2); 7942 addq(Address(z, zlen, Address::times_4, 0), carry); 7943 7944 bind(L_fourth_loop); 7945 jccb(Assembler::carryClear, L_fourth_loop_exit); 7946 subl(zlen, 2); 7947 jccb(Assembler::negative, L_fourth_loop_exit); 7948 addq(Address(z, zlen, Address::times_4, 0), tmp1); 7949 jmp(L_fourth_loop); 7950 bind(L_fourth_loop_exit); 7951 } 7952 7953 /** 7954 * Shift z[] left by 1 bit. 7955 * Preserves x, len, z and zlen registers and modifies rest of the registers. 7956 * 7957 */ 7958 void MacroAssembler::lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4) { 7959 7960 Label L_fifth_loop, L_fifth_loop_exit; 7961 7962 // Fifth loop 7963 // Perform primitiveLeftShift(z, zlen, 1) 7964 7965 const Register prev_carry = tmp1; 7966 const Register new_carry = tmp4; 7967 const Register value = tmp2; 7968 const Register zidx = tmp3; 7969 7970 // int zidx, carry; 7971 // long value; 7972 // carry = 0; 7973 // for (zidx = zlen-2; zidx >=0; zidx -= 2) { 7974 // (carry:value) = (z[i] << 1) | carry ; 7975 // z[i] = value; 7976 // } 7977 7978 movl(zidx, zlen); 7979 xorl(prev_carry, prev_carry); // clear carry flag and prev_carry register 7980 7981 bind(L_fifth_loop); 7982 decl(zidx); // Use decl to preserve carry flag 7983 decl(zidx); 7984 jccb(Assembler::negative, L_fifth_loop_exit); 7985 7986 if (UseBMI2Instructions) { 7987 movq(value, Address(z, zidx, Address::times_4, 0)); 7988 rclq(value, 1); 7989 rorxq(value, value, 32); 7990 movq(Address(z, zidx, Address::times_4, 0), value); // Store back in big endian form 7991 } 7992 else { 7993 // clear new_carry 7994 xorl(new_carry, new_carry); 7995 7996 // Shift z[i] by 1, or in previous carry and save new carry 7997 movq(value, Address(z, zidx, Address::times_4, 0)); 7998 shlq(value, 1); 7999 adcl(new_carry, 0); 8000 8001 orq(value, prev_carry); 8002 rorq(value, 0x20); 8003 movq(Address(z, zidx, Address::times_4, 0), value); // Store back in big endian form 8004 8005 // Set previous carry = new carry 8006 movl(prev_carry, new_carry); 8007 } 8008 jmp(L_fifth_loop); 8009 8010 bind(L_fifth_loop_exit); 8011 } 8012 8013 8014 /** 8015 * Code for BigInteger::squareToLen() intrinsic 8016 * 8017 * rdi: x 8018 * rsi: len 8019 * r8: z 8020 * rcx: zlen 8021 * r12: tmp1 8022 * r13: tmp2 8023 * r14: tmp3 8024 * r15: tmp4 8025 * rbx: tmp5 8026 * 8027 */ 8028 void MacroAssembler::square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) { 8029 8030 Label L_second_loop, L_second_loop_exit, L_third_loop, L_third_loop_exit, L_last_x, L_multiply; 8031 push(tmp1); 8032 push(tmp2); 8033 push(tmp3); 8034 push(tmp4); 8035 push(tmp5); 8036 8037 // First loop 8038 // Store the squares, right shifted one bit (i.e., divided by 2). 8039 square_rshift(x, len, z, tmp1, tmp3, tmp4, tmp5, rdxReg, raxReg); 8040 8041 // Add in off-diagonal sums. 8042 // 8043 // Second, third (nested) and fourth loops. 8044 // zlen +=2; 8045 // for (int xidx=len-2,zidx=zlen-4; xidx > 0; xidx-=2,zidx-=4) { 8046 // carry = 0; 8047 // long op2 = x[xidx:xidx+1]; 8048 // for (int j=xidx-2,k=zidx; j >= 0; j-=2) { 8049 // k -= 2; 8050 // long op1 = x[j:j+1]; 8051 // long sum = z[k:k+1]; 8052 // carry:sum = multiply_add_64(sum, op1, op2, carry, tmp_regs); 8053 // z[k:k+1] = sum; 8054 // } 8055 // add_one_64(z, k, carry, tmp_regs); 8056 // } 8057 8058 const Register carry = tmp5; 8059 const Register sum = tmp3; 8060 const Register op1 = tmp4; 8061 Register op2 = tmp2; 8062 8063 push(zlen); 8064 push(len); 8065 addl(zlen,2); 8066 bind(L_second_loop); 8067 xorq(carry, carry); 8068 subl(zlen, 4); 8069 subl(len, 2); 8070 push(zlen); 8071 push(len); 8072 cmpl(len, 0); 8073 jccb(Assembler::lessEqual, L_second_loop_exit); 8074 8075 // Multiply an array by one 64 bit long. 8076 if (UseBMI2Instructions) { 8077 op2 = rdxReg; 8078 movq(op2, Address(x, len, Address::times_4, 0)); 8079 rorxq(op2, op2, 32); 8080 } 8081 else { 8082 movq(op2, Address(x, len, Address::times_4, 0)); 8083 rorq(op2, 32); 8084 } 8085 8086 bind(L_third_loop); 8087 decrementl(len); 8088 jccb(Assembler::negative, L_third_loop_exit); 8089 decrementl(len); 8090 jccb(Assembler::negative, L_last_x); 8091 8092 movq(op1, Address(x, len, Address::times_4, 0)); 8093 rorq(op1, 32); 8094 8095 bind(L_multiply); 8096 subl(zlen, 2); 8097 movq(sum, Address(z, zlen, Address::times_4, 0)); 8098 8099 // Multiply 64 bit by 64 bit and add 64 bits lower half and upper 64 bits as carry. 8100 if (UseBMI2Instructions) { 8101 multiply_add_64_bmi2(sum, op1, op2, carry, tmp2); 8102 } 8103 else { 8104 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg); 8105 } 8106 8107 movq(Address(z, zlen, Address::times_4, 0), sum); 8108 8109 jmp(L_third_loop); 8110 bind(L_third_loop_exit); 8111 8112 // Fourth loop 8113 // Add 64 bit long carry into z with carry propagation. 8114 // Uses offsetted zlen. 8115 add_one_64(z, zlen, carry, tmp1); 8116 8117 pop(len); 8118 pop(zlen); 8119 jmp(L_second_loop); 8120 8121 // Next infrequent code is moved outside loops. 8122 bind(L_last_x); 8123 movl(op1, Address(x, 0)); 8124 jmp(L_multiply); 8125 8126 bind(L_second_loop_exit); 8127 pop(len); 8128 pop(zlen); 8129 pop(len); 8130 pop(zlen); 8131 8132 // Fifth loop 8133 // Shift z left 1 bit. 8134 lshift_by_1(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4); 8135 8136 // z[zlen-1] |= x[len-1] & 1; 8137 movl(tmp3, Address(x, len, Address::times_4, -4)); 8138 andl(tmp3, 1); 8139 orl(Address(z, zlen, Address::times_4, -4), tmp3); 8140 8141 pop(tmp5); 8142 pop(tmp4); 8143 pop(tmp3); 8144 pop(tmp2); 8145 pop(tmp1); 8146 } 8147 8148 /** 8149 * Helper function for mul_add() 8150 * Multiply the in[] by int k and add to out[] starting at offset offs using 8151 * 128 bit by 32 bit multiply and return the carry in tmp5. 8152 * Only quad int aligned length of in[] is operated on in this function. 8153 * k is in rdxReg for BMI2Instructions, for others it is in tmp2. 8154 * This function preserves out, in and k registers. 8155 * len and offset point to the appropriate index in "in" & "out" correspondingly 8156 * tmp5 has the carry. 8157 * other registers are temporary and are modified. 8158 * 8159 */ 8160 void MacroAssembler::mul_add_128_x_32_loop(Register out, Register in, 8161 Register offset, Register len, Register tmp1, Register tmp2, Register tmp3, 8162 Register tmp4, Register tmp5, Register rdxReg, Register raxReg) { 8163 8164 Label L_first_loop, L_first_loop_exit; 8165 8166 movl(tmp1, len); 8167 shrl(tmp1, 2); 8168 8169 bind(L_first_loop); 8170 subl(tmp1, 1); 8171 jccb(Assembler::negative, L_first_loop_exit); 8172 8173 subl(len, 4); 8174 subl(offset, 4); 8175 8176 Register op2 = tmp2; 8177 const Register sum = tmp3; 8178 const Register op1 = tmp4; 8179 const Register carry = tmp5; 8180 8181 if (UseBMI2Instructions) { 8182 op2 = rdxReg; 8183 } 8184 8185 movq(op1, Address(in, len, Address::times_4, 8)); 8186 rorq(op1, 32); 8187 movq(sum, Address(out, offset, Address::times_4, 8)); 8188 rorq(sum, 32); 8189 if (UseBMI2Instructions) { 8190 multiply_add_64_bmi2(sum, op1, op2, carry, raxReg); 8191 } 8192 else { 8193 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg); 8194 } 8195 // Store back in big endian from little endian 8196 rorq(sum, 0x20); 8197 movq(Address(out, offset, Address::times_4, 8), sum); 8198 8199 movq(op1, Address(in, len, Address::times_4, 0)); 8200 rorq(op1, 32); 8201 movq(sum, Address(out, offset, Address::times_4, 0)); 8202 rorq(sum, 32); 8203 if (UseBMI2Instructions) { 8204 multiply_add_64_bmi2(sum, op1, op2, carry, raxReg); 8205 } 8206 else { 8207 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg); 8208 } 8209 // Store back in big endian from little endian 8210 rorq(sum, 0x20); 8211 movq(Address(out, offset, Address::times_4, 0), sum); 8212 8213 jmp(L_first_loop); 8214 bind(L_first_loop_exit); 8215 } 8216 8217 /** 8218 * Code for BigInteger::mulAdd() intrinsic 8219 * 8220 * rdi: out 8221 * rsi: in 8222 * r11: offs (out.length - offset) 8223 * rcx: len 8224 * r8: k 8225 * r12: tmp1 8226 * r13: tmp2 8227 * r14: tmp3 8228 * r15: tmp4 8229 * rbx: tmp5 8230 * Multiply the in[] by word k and add to out[], return the carry in rax 8231 */ 8232 void MacroAssembler::mul_add(Register out, Register in, Register offs, 8233 Register len, Register k, Register tmp1, Register tmp2, Register tmp3, 8234 Register tmp4, Register tmp5, Register rdxReg, Register raxReg) { 8235 8236 Label L_carry, L_last_in, L_done; 8237 8238 // carry = 0; 8239 // for (int j=len-1; j >= 0; j--) { 8240 // long product = (in[j] & LONG_MASK) * kLong + 8241 // (out[offs] & LONG_MASK) + carry; 8242 // out[offs--] = (int)product; 8243 // carry = product >>> 32; 8244 // } 8245 // 8246 push(tmp1); 8247 push(tmp2); 8248 push(tmp3); 8249 push(tmp4); 8250 push(tmp5); 8251 8252 Register op2 = tmp2; 8253 const Register sum = tmp3; 8254 const Register op1 = tmp4; 8255 const Register carry = tmp5; 8256 8257 if (UseBMI2Instructions) { 8258 op2 = rdxReg; 8259 movl(op2, k); 8260 } 8261 else { 8262 movl(op2, k); 8263 } 8264 8265 xorq(carry, carry); 8266 8267 //First loop 8268 8269 //Multiply in[] by k in a 4 way unrolled loop using 128 bit by 32 bit multiply 8270 //The carry is in tmp5 8271 mul_add_128_x_32_loop(out, in, offs, len, tmp1, tmp2, tmp3, tmp4, tmp5, rdxReg, raxReg); 8272 8273 //Multiply the trailing in[] entry using 64 bit by 32 bit, if any 8274 decrementl(len); 8275 jccb(Assembler::negative, L_carry); 8276 decrementl(len); 8277 jccb(Assembler::negative, L_last_in); 8278 8279 movq(op1, Address(in, len, Address::times_4, 0)); 8280 rorq(op1, 32); 8281 8282 subl(offs, 2); 8283 movq(sum, Address(out, offs, Address::times_4, 0)); 8284 rorq(sum, 32); 8285 8286 if (UseBMI2Instructions) { 8287 multiply_add_64_bmi2(sum, op1, op2, carry, raxReg); 8288 } 8289 else { 8290 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg); 8291 } 8292 8293 // Store back in big endian from little endian 8294 rorq(sum, 0x20); 8295 movq(Address(out, offs, Address::times_4, 0), sum); 8296 8297 testl(len, len); 8298 jccb(Assembler::zero, L_carry); 8299 8300 //Multiply the last in[] entry, if any 8301 bind(L_last_in); 8302 movl(op1, Address(in, 0)); 8303 movl(sum, Address(out, offs, Address::times_4, -4)); 8304 8305 movl(raxReg, k); 8306 mull(op1); //tmp4 * eax -> edx:eax 8307 addl(sum, carry); 8308 adcl(rdxReg, 0); 8309 addl(sum, raxReg); 8310 adcl(rdxReg, 0); 8311 movl(carry, rdxReg); 8312 8313 movl(Address(out, offs, Address::times_4, -4), sum); 8314 8315 bind(L_carry); 8316 //return tmp5/carry as carry in rax 8317 movl(rax, carry); 8318 8319 bind(L_done); 8320 pop(tmp5); 8321 pop(tmp4); 8322 pop(tmp3); 8323 pop(tmp2); 8324 pop(tmp1); 8325 } 8326 #endif 8327 8328 /** 8329 * Emits code to update CRC-32 with a byte value according to constants in table 8330 * 8331 * @param [in,out]crc Register containing the crc. 8332 * @param [in]val Register containing the byte to fold into the CRC. 8333 * @param [in]table Register containing the table of crc constants. 8334 * 8335 * uint32_t crc; 8336 * val = crc_table[(val ^ crc) & 0xFF]; 8337 * crc = val ^ (crc >> 8); 8338 * 8339 */ 8340 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) { 8341 xorl(val, crc); 8342 andl(val, 0xFF); 8343 shrl(crc, 8); // unsigned shift 8344 xorl(crc, Address(table, val, Address::times_4, 0)); 8345 } 8346 8347 /** 8348 * Fold 128-bit data chunk 8349 */ 8350 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) { 8351 if (UseAVX > 0) { 8352 vpclmulhdq(xtmp, xK, xcrc); // [123:64] 8353 vpclmulldq(xcrc, xK, xcrc); // [63:0] 8354 vpxor(xcrc, xcrc, Address(buf, offset), 0 /* vector_len */); 8355 pxor(xcrc, xtmp); 8356 } else { 8357 movdqa(xtmp, xcrc); 8358 pclmulhdq(xtmp, xK); // [123:64] 8359 pclmulldq(xcrc, xK); // [63:0] 8360 pxor(xcrc, xtmp); 8361 movdqu(xtmp, Address(buf, offset)); 8362 pxor(xcrc, xtmp); 8363 } 8364 } 8365 8366 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) { 8367 if (UseAVX > 0) { 8368 vpclmulhdq(xtmp, xK, xcrc); 8369 vpclmulldq(xcrc, xK, xcrc); 8370 pxor(xcrc, xbuf); 8371 pxor(xcrc, xtmp); 8372 } else { 8373 movdqa(xtmp, xcrc); 8374 pclmulhdq(xtmp, xK); 8375 pclmulldq(xcrc, xK); 8376 pxor(xcrc, xbuf); 8377 pxor(xcrc, xtmp); 8378 } 8379 } 8380 8381 /** 8382 * 8-bit folds to compute 32-bit CRC 8383 * 8384 * uint64_t xcrc; 8385 * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8); 8386 */ 8387 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) { 8388 movdl(tmp, xcrc); 8389 andl(tmp, 0xFF); 8390 movdl(xtmp, Address(table, tmp, Address::times_4, 0)); 8391 psrldq(xcrc, 1); // unsigned shift one byte 8392 pxor(xcrc, xtmp); 8393 } 8394 8395 /** 8396 * uint32_t crc; 8397 * timesXtoThe32[crc & 0xFF] ^ (crc >> 8); 8398 */ 8399 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) { 8400 movl(tmp, crc); 8401 andl(tmp, 0xFF); 8402 shrl(crc, 8); 8403 xorl(crc, Address(table, tmp, Address::times_4, 0)); 8404 } 8405 8406 /** 8407 * @param crc register containing existing CRC (32-bit) 8408 * @param buf register pointing to input byte buffer (byte*) 8409 * @param len register containing number of bytes 8410 * @param table register that will contain address of CRC table 8411 * @param tmp scratch register 8412 */ 8413 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) { 8414 assert_different_registers(crc, buf, len, table, tmp, rax); 8415 8416 Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned; 8417 Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop; 8418 8419 // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge 8420 // context for the registers used, where all instructions below are using 128-bit mode 8421 // On EVEX without VL and BW, these instructions will all be AVX. 8422 lea(table, ExternalAddress(StubRoutines::crc_table_addr())); 8423 notl(crc); // ~crc 8424 cmpl(len, 16); 8425 jcc(Assembler::less, L_tail); 8426 8427 // Align buffer to 16 bytes 8428 movl(tmp, buf); 8429 andl(tmp, 0xF); 8430 jccb(Assembler::zero, L_aligned); 8431 subl(tmp, 16); 8432 addl(len, tmp); 8433 8434 align(4); 8435 BIND(L_align_loop); 8436 movsbl(rax, Address(buf, 0)); // load byte with sign extension 8437 update_byte_crc32(crc, rax, table); 8438 increment(buf); 8439 incrementl(tmp); 8440 jccb(Assembler::less, L_align_loop); 8441 8442 BIND(L_aligned); 8443 movl(tmp, len); // save 8444 shrl(len, 4); 8445 jcc(Assembler::zero, L_tail_restore); 8446 8447 // Fold crc into first bytes of vector 8448 movdqa(xmm1, Address(buf, 0)); 8449 movdl(rax, xmm1); 8450 xorl(crc, rax); 8451 if (VM_Version::supports_sse4_1()) { 8452 pinsrd(xmm1, crc, 0); 8453 } else { 8454 pinsrw(xmm1, crc, 0); 8455 shrl(crc, 16); 8456 pinsrw(xmm1, crc, 1); 8457 } 8458 addptr(buf, 16); 8459 subl(len, 4); // len > 0 8460 jcc(Assembler::less, L_fold_tail); 8461 8462 movdqa(xmm2, Address(buf, 0)); 8463 movdqa(xmm3, Address(buf, 16)); 8464 movdqa(xmm4, Address(buf, 32)); 8465 addptr(buf, 48); 8466 subl(len, 3); 8467 jcc(Assembler::lessEqual, L_fold_512b); 8468 8469 // Fold total 512 bits of polynomial on each iteration, 8470 // 128 bits per each of 4 parallel streams. 8471 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32), rscratch1); 8472 8473 align32(); 8474 BIND(L_fold_512b_loop); 8475 fold_128bit_crc32(xmm1, xmm0, xmm5, buf, 0); 8476 fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16); 8477 fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32); 8478 fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48); 8479 addptr(buf, 64); 8480 subl(len, 4); 8481 jcc(Assembler::greater, L_fold_512b_loop); 8482 8483 // Fold 512 bits to 128 bits. 8484 BIND(L_fold_512b); 8485 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16), rscratch1); 8486 fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2); 8487 fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3); 8488 fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4); 8489 8490 // Fold the rest of 128 bits data chunks 8491 BIND(L_fold_tail); 8492 addl(len, 3); 8493 jccb(Assembler::lessEqual, L_fold_128b); 8494 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16), rscratch1); 8495 8496 BIND(L_fold_tail_loop); 8497 fold_128bit_crc32(xmm1, xmm0, xmm5, buf, 0); 8498 addptr(buf, 16); 8499 decrementl(len); 8500 jccb(Assembler::greater, L_fold_tail_loop); 8501 8502 // Fold 128 bits in xmm1 down into 32 bits in crc register. 8503 BIND(L_fold_128b); 8504 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()), rscratch1); 8505 if (UseAVX > 0) { 8506 vpclmulqdq(xmm2, xmm0, xmm1, 0x1); 8507 vpand(xmm3, xmm0, xmm2, 0 /* vector_len */); 8508 vpclmulqdq(xmm0, xmm0, xmm3, 0x1); 8509 } else { 8510 movdqa(xmm2, xmm0); 8511 pclmulqdq(xmm2, xmm1, 0x1); 8512 movdqa(xmm3, xmm0); 8513 pand(xmm3, xmm2); 8514 pclmulqdq(xmm0, xmm3, 0x1); 8515 } 8516 psrldq(xmm1, 8); 8517 psrldq(xmm2, 4); 8518 pxor(xmm0, xmm1); 8519 pxor(xmm0, xmm2); 8520 8521 // 8 8-bit folds to compute 32-bit CRC. 8522 for (int j = 0; j < 4; j++) { 8523 fold_8bit_crc32(xmm0, table, xmm1, rax); 8524 } 8525 movdl(crc, xmm0); // mov 32 bits to general register 8526 for (int j = 0; j < 4; j++) { 8527 fold_8bit_crc32(crc, table, rax); 8528 } 8529 8530 BIND(L_tail_restore); 8531 movl(len, tmp); // restore 8532 BIND(L_tail); 8533 andl(len, 0xf); 8534 jccb(Assembler::zero, L_exit); 8535 8536 // Fold the rest of bytes 8537 align(4); 8538 BIND(L_tail_loop); 8539 movsbl(rax, Address(buf, 0)); // load byte with sign extension 8540 update_byte_crc32(crc, rax, table); 8541 increment(buf); 8542 decrementl(len); 8543 jccb(Assembler::greater, L_tail_loop); 8544 8545 BIND(L_exit); 8546 notl(crc); // ~c 8547 } 8548 8549 #ifdef _LP64 8550 // Helper function for AVX 512 CRC32 8551 // Fold 512-bit data chunks 8552 void MacroAssembler::fold512bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, 8553 Register pos, int offset) { 8554 evmovdquq(xmm3, Address(buf, pos, Address::times_1, offset), Assembler::AVX_512bit); 8555 evpclmulqdq(xtmp, xcrc, xK, 0x10, Assembler::AVX_512bit); // [123:64] 8556 evpclmulqdq(xmm2, xcrc, xK, 0x01, Assembler::AVX_512bit); // [63:0] 8557 evpxorq(xcrc, xtmp, xmm2, Assembler::AVX_512bit /* vector_len */); 8558 evpxorq(xcrc, xcrc, xmm3, Assembler::AVX_512bit /* vector_len */); 8559 } 8560 8561 // Helper function for AVX 512 CRC32 8562 // Compute CRC32 for < 256B buffers 8563 void MacroAssembler::kernel_crc32_avx512_256B(Register crc, Register buf, Register len, Register table, Register pos, 8564 Register tmp1, Register tmp2, Label& L_barrett, Label& L_16B_reduction_loop, 8565 Label& L_get_last_two_xmms, Label& L_128_done, Label& L_cleanup) { 8566 8567 Label L_less_than_32, L_exact_16_left, L_less_than_16_left; 8568 Label L_less_than_8_left, L_less_than_4_left, L_less_than_2_left, L_zero_left; 8569 Label L_only_less_than_4, L_only_less_than_3, L_only_less_than_2; 8570 8571 // check if there is enough buffer to be able to fold 16B at a time 8572 cmpl(len, 32); 8573 jcc(Assembler::less, L_less_than_32); 8574 8575 // if there is, load the constants 8576 movdqu(xmm10, Address(table, 1 * 16)); //rk1 and rk2 in xmm10 8577 movdl(xmm0, crc); // get the initial crc value 8578 movdqu(xmm7, Address(buf, pos, Address::times_1, 0 * 16)); //load the plaintext 8579 pxor(xmm7, xmm0); 8580 8581 // update the buffer pointer 8582 addl(pos, 16); 8583 //update the counter.subtract 32 instead of 16 to save one instruction from the loop 8584 subl(len, 32); 8585 jmp(L_16B_reduction_loop); 8586 8587 bind(L_less_than_32); 8588 //mov initial crc to the return value. this is necessary for zero - length buffers. 8589 movl(rax, crc); 8590 testl(len, len); 8591 jcc(Assembler::equal, L_cleanup); 8592 8593 movdl(xmm0, crc); //get the initial crc value 8594 8595 cmpl(len, 16); 8596 jcc(Assembler::equal, L_exact_16_left); 8597 jcc(Assembler::less, L_less_than_16_left); 8598 8599 movdqu(xmm7, Address(buf, pos, Address::times_1, 0 * 16)); //load the plaintext 8600 pxor(xmm7, xmm0); //xor the initial crc value 8601 addl(pos, 16); 8602 subl(len, 16); 8603 movdqu(xmm10, Address(table, 1 * 16)); // rk1 and rk2 in xmm10 8604 jmp(L_get_last_two_xmms); 8605 8606 bind(L_less_than_16_left); 8607 //use stack space to load data less than 16 bytes, zero - out the 16B in memory first. 8608 pxor(xmm1, xmm1); 8609 movptr(tmp1, rsp); 8610 movdqu(Address(tmp1, 0 * 16), xmm1); 8611 8612 cmpl(len, 4); 8613 jcc(Assembler::less, L_only_less_than_4); 8614 8615 //backup the counter value 8616 movl(tmp2, len); 8617 cmpl(len, 8); 8618 jcc(Assembler::less, L_less_than_8_left); 8619 8620 //load 8 Bytes 8621 movq(rax, Address(buf, pos, Address::times_1, 0 * 16)); 8622 movq(Address(tmp1, 0 * 16), rax); 8623 addptr(tmp1, 8); 8624 subl(len, 8); 8625 addl(pos, 8); 8626 8627 bind(L_less_than_8_left); 8628 cmpl(len, 4); 8629 jcc(Assembler::less, L_less_than_4_left); 8630 8631 //load 4 Bytes 8632 movl(rax, Address(buf, pos, Address::times_1, 0)); 8633 movl(Address(tmp1, 0 * 16), rax); 8634 addptr(tmp1, 4); 8635 subl(len, 4); 8636 addl(pos, 4); 8637 8638 bind(L_less_than_4_left); 8639 cmpl(len, 2); 8640 jcc(Assembler::less, L_less_than_2_left); 8641 8642 // load 2 Bytes 8643 movw(rax, Address(buf, pos, Address::times_1, 0)); 8644 movl(Address(tmp1, 0 * 16), rax); 8645 addptr(tmp1, 2); 8646 subl(len, 2); 8647 addl(pos, 2); 8648 8649 bind(L_less_than_2_left); 8650 cmpl(len, 1); 8651 jcc(Assembler::less, L_zero_left); 8652 8653 // load 1 Byte 8654 movb(rax, Address(buf, pos, Address::times_1, 0)); 8655 movb(Address(tmp1, 0 * 16), rax); 8656 8657 bind(L_zero_left); 8658 movdqu(xmm7, Address(rsp, 0)); 8659 pxor(xmm7, xmm0); //xor the initial crc value 8660 8661 lea(rax, ExternalAddress(StubRoutines::x86::shuf_table_crc32_avx512_addr())); 8662 movdqu(xmm0, Address(rax, tmp2)); 8663 pshufb(xmm7, xmm0); 8664 jmp(L_128_done); 8665 8666 bind(L_exact_16_left); 8667 movdqu(xmm7, Address(buf, pos, Address::times_1, 0)); 8668 pxor(xmm7, xmm0); //xor the initial crc value 8669 jmp(L_128_done); 8670 8671 bind(L_only_less_than_4); 8672 cmpl(len, 3); 8673 jcc(Assembler::less, L_only_less_than_3); 8674 8675 // load 3 Bytes 8676 movb(rax, Address(buf, pos, Address::times_1, 0)); 8677 movb(Address(tmp1, 0), rax); 8678 8679 movb(rax, Address(buf, pos, Address::times_1, 1)); 8680 movb(Address(tmp1, 1), rax); 8681 8682 movb(rax, Address(buf, pos, Address::times_1, 2)); 8683 movb(Address(tmp1, 2), rax); 8684 8685 movdqu(xmm7, Address(rsp, 0)); 8686 pxor(xmm7, xmm0); //xor the initial crc value 8687 8688 pslldq(xmm7, 0x5); 8689 jmp(L_barrett); 8690 bind(L_only_less_than_3); 8691 cmpl(len, 2); 8692 jcc(Assembler::less, L_only_less_than_2); 8693 8694 // load 2 Bytes 8695 movb(rax, Address(buf, pos, Address::times_1, 0)); 8696 movb(Address(tmp1, 0), rax); 8697 8698 movb(rax, Address(buf, pos, Address::times_1, 1)); 8699 movb(Address(tmp1, 1), rax); 8700 8701 movdqu(xmm7, Address(rsp, 0)); 8702 pxor(xmm7, xmm0); //xor the initial crc value 8703 8704 pslldq(xmm7, 0x6); 8705 jmp(L_barrett); 8706 8707 bind(L_only_less_than_2); 8708 //load 1 Byte 8709 movb(rax, Address(buf, pos, Address::times_1, 0)); 8710 movb(Address(tmp1, 0), rax); 8711 8712 movdqu(xmm7, Address(rsp, 0)); 8713 pxor(xmm7, xmm0); //xor the initial crc value 8714 8715 pslldq(xmm7, 0x7); 8716 } 8717 8718 /** 8719 * Compute CRC32 using AVX512 instructions 8720 * param crc register containing existing CRC (32-bit) 8721 * param buf register pointing to input byte buffer (byte*) 8722 * param len register containing number of bytes 8723 * param table address of crc or crc32c table 8724 * param tmp1 scratch register 8725 * param tmp2 scratch register 8726 * return rax result register 8727 * 8728 * This routine is identical for crc32c with the exception of the precomputed constant 8729 * table which will be passed as the table argument. The calculation steps are 8730 * the same for both variants. 8731 */ 8732 void MacroAssembler::kernel_crc32_avx512(Register crc, Register buf, Register len, Register table, Register tmp1, Register tmp2) { 8733 assert_different_registers(crc, buf, len, table, tmp1, tmp2, rax, r12); 8734 8735 Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned; 8736 Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop; 8737 Label L_less_than_256, L_fold_128_B_loop, L_fold_256_B_loop; 8738 Label L_fold_128_B_register, L_final_reduction_for_128, L_16B_reduction_loop; 8739 Label L_128_done, L_get_last_two_xmms, L_barrett, L_cleanup; 8740 8741 const Register pos = r12; 8742 push(r12); 8743 subptr(rsp, 16 * 2 + 8); 8744 8745 // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge 8746 // context for the registers used, where all instructions below are using 128-bit mode 8747 // On EVEX without VL and BW, these instructions will all be AVX. 8748 movl(pos, 0); 8749 8750 // check if smaller than 256B 8751 cmpl(len, 256); 8752 jcc(Assembler::less, L_less_than_256); 8753 8754 // load the initial crc value 8755 movdl(xmm10, crc); 8756 8757 // receive the initial 64B data, xor the initial crc value 8758 evmovdquq(xmm0, Address(buf, pos, Address::times_1, 0 * 64), Assembler::AVX_512bit); 8759 evmovdquq(xmm4, Address(buf, pos, Address::times_1, 1 * 64), Assembler::AVX_512bit); 8760 evpxorq(xmm0, xmm0, xmm10, Assembler::AVX_512bit); 8761 evbroadcasti32x4(xmm10, Address(table, 2 * 16), Assembler::AVX_512bit); //zmm10 has rk3 and rk4 8762 8763 subl(len, 256); 8764 cmpl(len, 256); 8765 jcc(Assembler::less, L_fold_128_B_loop); 8766 8767 evmovdquq(xmm7, Address(buf, pos, Address::times_1, 2 * 64), Assembler::AVX_512bit); 8768 evmovdquq(xmm8, Address(buf, pos, Address::times_1, 3 * 64), Assembler::AVX_512bit); 8769 evbroadcasti32x4(xmm16, Address(table, 0 * 16), Assembler::AVX_512bit); //zmm16 has rk-1 and rk-2 8770 subl(len, 256); 8771 8772 bind(L_fold_256_B_loop); 8773 addl(pos, 256); 8774 fold512bit_crc32_avx512(xmm0, xmm16, xmm1, buf, pos, 0 * 64); 8775 fold512bit_crc32_avx512(xmm4, xmm16, xmm1, buf, pos, 1 * 64); 8776 fold512bit_crc32_avx512(xmm7, xmm16, xmm1, buf, pos, 2 * 64); 8777 fold512bit_crc32_avx512(xmm8, xmm16, xmm1, buf, pos, 3 * 64); 8778 8779 subl(len, 256); 8780 jcc(Assembler::greaterEqual, L_fold_256_B_loop); 8781 8782 // Fold 256 into 128 8783 addl(pos, 256); 8784 evpclmulqdq(xmm1, xmm0, xmm10, 0x01, Assembler::AVX_512bit); 8785 evpclmulqdq(xmm2, xmm0, xmm10, 0x10, Assembler::AVX_512bit); 8786 vpternlogq(xmm7, 0x96, xmm1, xmm2, Assembler::AVX_512bit); // xor ABC 8787 8788 evpclmulqdq(xmm5, xmm4, xmm10, 0x01, Assembler::AVX_512bit); 8789 evpclmulqdq(xmm6, xmm4, xmm10, 0x10, Assembler::AVX_512bit); 8790 vpternlogq(xmm8, 0x96, xmm5, xmm6, Assembler::AVX_512bit); // xor ABC 8791 8792 evmovdquq(xmm0, xmm7, Assembler::AVX_512bit); 8793 evmovdquq(xmm4, xmm8, Assembler::AVX_512bit); 8794 8795 addl(len, 128); 8796 jmp(L_fold_128_B_register); 8797 8798 // at this section of the code, there is 128 * x + y(0 <= y<128) bytes of buffer.The fold_128_B_loop 8799 // loop will fold 128B at a time until we have 128 + y Bytes of buffer 8800 8801 // fold 128B at a time.This section of the code folds 8 xmm registers in parallel 8802 bind(L_fold_128_B_loop); 8803 addl(pos, 128); 8804 fold512bit_crc32_avx512(xmm0, xmm10, xmm1, buf, pos, 0 * 64); 8805 fold512bit_crc32_avx512(xmm4, xmm10, xmm1, buf, pos, 1 * 64); 8806 8807 subl(len, 128); 8808 jcc(Assembler::greaterEqual, L_fold_128_B_loop); 8809 8810 addl(pos, 128); 8811 8812 // at this point, the buffer pointer is pointing at the last y Bytes of the buffer, where 0 <= y < 128 8813 // the 128B of folded data is in 8 of the xmm registers : xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7 8814 bind(L_fold_128_B_register); 8815 evmovdquq(xmm16, Address(table, 5 * 16), Assembler::AVX_512bit); // multiply by rk9-rk16 8816 evmovdquq(xmm11, Address(table, 9 * 16), Assembler::AVX_512bit); // multiply by rk17-rk20, rk1,rk2, 0,0 8817 evpclmulqdq(xmm1, xmm0, xmm16, 0x01, Assembler::AVX_512bit); 8818 evpclmulqdq(xmm2, xmm0, xmm16, 0x10, Assembler::AVX_512bit); 8819 // save last that has no multiplicand 8820 vextracti64x2(xmm7, xmm4, 3); 8821 8822 evpclmulqdq(xmm5, xmm4, xmm11, 0x01, Assembler::AVX_512bit); 8823 evpclmulqdq(xmm6, xmm4, xmm11, 0x10, Assembler::AVX_512bit); 8824 // Needed later in reduction loop 8825 movdqu(xmm10, Address(table, 1 * 16)); 8826 vpternlogq(xmm1, 0x96, xmm2, xmm5, Assembler::AVX_512bit); // xor ABC 8827 vpternlogq(xmm1, 0x96, xmm6, xmm7, Assembler::AVX_512bit); // xor ABC 8828 8829 // Swap 1,0,3,2 - 01 00 11 10 8830 evshufi64x2(xmm8, xmm1, xmm1, 0x4e, Assembler::AVX_512bit); 8831 evpxorq(xmm8, xmm8, xmm1, Assembler::AVX_256bit); 8832 vextracti128(xmm5, xmm8, 1); 8833 evpxorq(xmm7, xmm5, xmm8, Assembler::AVX_128bit); 8834 8835 // instead of 128, we add 128 - 16 to the loop counter to save 1 instruction from the loop 8836 // instead of a cmp instruction, we use the negative flag with the jl instruction 8837 addl(len, 128 - 16); 8838 jcc(Assembler::less, L_final_reduction_for_128); 8839 8840 bind(L_16B_reduction_loop); 8841 vpclmulqdq(xmm8, xmm7, xmm10, 0x01); 8842 vpclmulqdq(xmm7, xmm7, xmm10, 0x10); 8843 vpxor(xmm7, xmm7, xmm8, Assembler::AVX_128bit); 8844 movdqu(xmm0, Address(buf, pos, Address::times_1, 0 * 16)); 8845 vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit); 8846 addl(pos, 16); 8847 subl(len, 16); 8848 jcc(Assembler::greaterEqual, L_16B_reduction_loop); 8849 8850 bind(L_final_reduction_for_128); 8851 addl(len, 16); 8852 jcc(Assembler::equal, L_128_done); 8853 8854 bind(L_get_last_two_xmms); 8855 movdqu(xmm2, xmm7); 8856 addl(pos, len); 8857 movdqu(xmm1, Address(buf, pos, Address::times_1, -16)); 8858 subl(pos, len); 8859 8860 // get rid of the extra data that was loaded before 8861 // load the shift constant 8862 lea(rax, ExternalAddress(StubRoutines::x86::shuf_table_crc32_avx512_addr())); 8863 movdqu(xmm0, Address(rax, len)); 8864 addl(rax, len); 8865 8866 vpshufb(xmm7, xmm7, xmm0, Assembler::AVX_128bit); 8867 //Change mask to 512 8868 vpxor(xmm0, xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr() + 2 * 16), Assembler::AVX_128bit, tmp2); 8869 vpshufb(xmm2, xmm2, xmm0, Assembler::AVX_128bit); 8870 8871 blendvpb(xmm2, xmm2, xmm1, xmm0, Assembler::AVX_128bit); 8872 vpclmulqdq(xmm8, xmm7, xmm10, 0x01); 8873 vpclmulqdq(xmm7, xmm7, xmm10, 0x10); 8874 vpxor(xmm7, xmm7, xmm8, Assembler::AVX_128bit); 8875 vpxor(xmm7, xmm7, xmm2, Assembler::AVX_128bit); 8876 8877 bind(L_128_done); 8878 // compute crc of a 128-bit value 8879 movdqu(xmm10, Address(table, 3 * 16)); 8880 movdqu(xmm0, xmm7); 8881 8882 // 64b fold 8883 vpclmulqdq(xmm7, xmm7, xmm10, 0x0); 8884 vpsrldq(xmm0, xmm0, 0x8, Assembler::AVX_128bit); 8885 vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit); 8886 8887 // 32b fold 8888 movdqu(xmm0, xmm7); 8889 vpslldq(xmm7, xmm7, 0x4, Assembler::AVX_128bit); 8890 vpclmulqdq(xmm7, xmm7, xmm10, 0x10); 8891 vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit); 8892 jmp(L_barrett); 8893 8894 bind(L_less_than_256); 8895 kernel_crc32_avx512_256B(crc, buf, len, table, pos, tmp1, tmp2, L_barrett, L_16B_reduction_loop, L_get_last_two_xmms, L_128_done, L_cleanup); 8896 8897 //barrett reduction 8898 bind(L_barrett); 8899 vpand(xmm7, xmm7, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr() + 1 * 16), Assembler::AVX_128bit, tmp2); 8900 movdqu(xmm1, xmm7); 8901 movdqu(xmm2, xmm7); 8902 movdqu(xmm10, Address(table, 4 * 16)); 8903 8904 pclmulqdq(xmm7, xmm10, 0x0); 8905 pxor(xmm7, xmm2); 8906 vpand(xmm7, xmm7, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr()), Assembler::AVX_128bit, tmp2); 8907 movdqu(xmm2, xmm7); 8908 pclmulqdq(xmm7, xmm10, 0x10); 8909 pxor(xmm7, xmm2); 8910 pxor(xmm7, xmm1); 8911 pextrd(crc, xmm7, 2); 8912 8913 bind(L_cleanup); 8914 addptr(rsp, 16 * 2 + 8); 8915 pop(r12); 8916 } 8917 8918 // S. Gueron / Information Processing Letters 112 (2012) 184 8919 // Algorithm 4: Computing carry-less multiplication using a precomputed lookup table. 8920 // Input: A 32 bit value B = [byte3, byte2, byte1, byte0]. 8921 // Output: the 64-bit carry-less product of B * CONST 8922 void MacroAssembler::crc32c_ipl_alg4(Register in, uint32_t n, 8923 Register tmp1, Register tmp2, Register tmp3) { 8924 lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr())); 8925 if (n > 0) { 8926 addq(tmp3, n * 256 * 8); 8927 } 8928 // Q1 = TABLEExt[n][B & 0xFF]; 8929 movl(tmp1, in); 8930 andl(tmp1, 0x000000FF); 8931 shll(tmp1, 3); 8932 addq(tmp1, tmp3); 8933 movq(tmp1, Address(tmp1, 0)); 8934 8935 // Q2 = TABLEExt[n][B >> 8 & 0xFF]; 8936 movl(tmp2, in); 8937 shrl(tmp2, 8); 8938 andl(tmp2, 0x000000FF); 8939 shll(tmp2, 3); 8940 addq(tmp2, tmp3); 8941 movq(tmp2, Address(tmp2, 0)); 8942 8943 shlq(tmp2, 8); 8944 xorq(tmp1, tmp2); 8945 8946 // Q3 = TABLEExt[n][B >> 16 & 0xFF]; 8947 movl(tmp2, in); 8948 shrl(tmp2, 16); 8949 andl(tmp2, 0x000000FF); 8950 shll(tmp2, 3); 8951 addq(tmp2, tmp3); 8952 movq(tmp2, Address(tmp2, 0)); 8953 8954 shlq(tmp2, 16); 8955 xorq(tmp1, tmp2); 8956 8957 // Q4 = TABLEExt[n][B >> 24 & 0xFF]; 8958 shrl(in, 24); 8959 andl(in, 0x000000FF); 8960 shll(in, 3); 8961 addq(in, tmp3); 8962 movq(in, Address(in, 0)); 8963 8964 shlq(in, 24); 8965 xorq(in, tmp1); 8966 // return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24; 8967 } 8968 8969 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1, 8970 Register in_out, 8971 uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported, 8972 XMMRegister w_xtmp2, 8973 Register tmp1, 8974 Register n_tmp2, Register n_tmp3) { 8975 if (is_pclmulqdq_supported) { 8976 movdl(w_xtmp1, in_out); // modified blindly 8977 8978 movl(tmp1, const_or_pre_comp_const_index); 8979 movdl(w_xtmp2, tmp1); 8980 pclmulqdq(w_xtmp1, w_xtmp2, 0); 8981 8982 movdq(in_out, w_xtmp1); 8983 } else { 8984 crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3); 8985 } 8986 } 8987 8988 // Recombination Alternative 2: No bit-reflections 8989 // T1 = (CRC_A * U1) << 1 8990 // T2 = (CRC_B * U2) << 1 8991 // C1 = T1 >> 32 8992 // C2 = T2 >> 32 8993 // T1 = T1 & 0xFFFFFFFF 8994 // T2 = T2 & 0xFFFFFFFF 8995 // T1 = CRC32(0, T1) 8996 // T2 = CRC32(0, T2) 8997 // C1 = C1 ^ T1 8998 // C2 = C2 ^ T2 8999 // CRC = C1 ^ C2 ^ CRC_C 9000 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2, 9001 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 9002 Register tmp1, Register tmp2, 9003 Register n_tmp3) { 9004 crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3); 9005 crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3); 9006 shlq(in_out, 1); 9007 movl(tmp1, in_out); 9008 shrq(in_out, 32); 9009 xorl(tmp2, tmp2); 9010 crc32(tmp2, tmp1, 4); 9011 xorl(in_out, tmp2); // we don't care about upper 32 bit contents here 9012 shlq(in1, 1); 9013 movl(tmp1, in1); 9014 shrq(in1, 32); 9015 xorl(tmp2, tmp2); 9016 crc32(tmp2, tmp1, 4); 9017 xorl(in1, tmp2); 9018 xorl(in_out, in1); 9019 xorl(in_out, in2); 9020 } 9021 9022 // Set N to predefined value 9023 // Subtract from a length of a buffer 9024 // execute in a loop: 9025 // CRC_A = 0xFFFFFFFF, CRC_B = 0, CRC_C = 0 9026 // for i = 1 to N do 9027 // CRC_A = CRC32(CRC_A, A[i]) 9028 // CRC_B = CRC32(CRC_B, B[i]) 9029 // CRC_C = CRC32(CRC_C, C[i]) 9030 // end for 9031 // Recombine 9032 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, 9033 Register in_out1, Register in_out2, Register in_out3, 9034 Register tmp1, Register tmp2, Register tmp3, 9035 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 9036 Register tmp4, Register tmp5, 9037 Register n_tmp6) { 9038 Label L_processPartitions; 9039 Label L_processPartition; 9040 Label L_exit; 9041 9042 bind(L_processPartitions); 9043 cmpl(in_out1, 3 * size); 9044 jcc(Assembler::less, L_exit); 9045 xorl(tmp1, tmp1); 9046 xorl(tmp2, tmp2); 9047 movq(tmp3, in_out2); 9048 addq(tmp3, size); 9049 9050 bind(L_processPartition); 9051 crc32(in_out3, Address(in_out2, 0), 8); 9052 crc32(tmp1, Address(in_out2, size), 8); 9053 crc32(tmp2, Address(in_out2, size * 2), 8); 9054 addq(in_out2, 8); 9055 cmpq(in_out2, tmp3); 9056 jcc(Assembler::less, L_processPartition); 9057 crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2, 9058 w_xtmp1, w_xtmp2, w_xtmp3, 9059 tmp4, tmp5, 9060 n_tmp6); 9061 addq(in_out2, 2 * size); 9062 subl(in_out1, 3 * size); 9063 jmp(L_processPartitions); 9064 9065 bind(L_exit); 9066 } 9067 #else 9068 void MacroAssembler::crc32c_ipl_alg4(Register in_out, uint32_t n, 9069 Register tmp1, Register tmp2, Register tmp3, 9070 XMMRegister xtmp1, XMMRegister xtmp2) { 9071 lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr())); 9072 if (n > 0) { 9073 addl(tmp3, n * 256 * 8); 9074 } 9075 // Q1 = TABLEExt[n][B & 0xFF]; 9076 movl(tmp1, in_out); 9077 andl(tmp1, 0x000000FF); 9078 shll(tmp1, 3); 9079 addl(tmp1, tmp3); 9080 movq(xtmp1, Address(tmp1, 0)); 9081 9082 // Q2 = TABLEExt[n][B >> 8 & 0xFF]; 9083 movl(tmp2, in_out); 9084 shrl(tmp2, 8); 9085 andl(tmp2, 0x000000FF); 9086 shll(tmp2, 3); 9087 addl(tmp2, tmp3); 9088 movq(xtmp2, Address(tmp2, 0)); 9089 9090 psllq(xtmp2, 8); 9091 pxor(xtmp1, xtmp2); 9092 9093 // Q3 = TABLEExt[n][B >> 16 & 0xFF]; 9094 movl(tmp2, in_out); 9095 shrl(tmp2, 16); 9096 andl(tmp2, 0x000000FF); 9097 shll(tmp2, 3); 9098 addl(tmp2, tmp3); 9099 movq(xtmp2, Address(tmp2, 0)); 9100 9101 psllq(xtmp2, 16); 9102 pxor(xtmp1, xtmp2); 9103 9104 // Q4 = TABLEExt[n][B >> 24 & 0xFF]; 9105 shrl(in_out, 24); 9106 andl(in_out, 0x000000FF); 9107 shll(in_out, 3); 9108 addl(in_out, tmp3); 9109 movq(xtmp2, Address(in_out, 0)); 9110 9111 psllq(xtmp2, 24); 9112 pxor(xtmp1, xtmp2); // Result in CXMM 9113 // return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24; 9114 } 9115 9116 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1, 9117 Register in_out, 9118 uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported, 9119 XMMRegister w_xtmp2, 9120 Register tmp1, 9121 Register n_tmp2, Register n_tmp3) { 9122 if (is_pclmulqdq_supported) { 9123 movdl(w_xtmp1, in_out); 9124 9125 movl(tmp1, const_or_pre_comp_const_index); 9126 movdl(w_xtmp2, tmp1); 9127 pclmulqdq(w_xtmp1, w_xtmp2, 0); 9128 // Keep result in XMM since GPR is 32 bit in length 9129 } else { 9130 crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3, w_xtmp1, w_xtmp2); 9131 } 9132 } 9133 9134 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2, 9135 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 9136 Register tmp1, Register tmp2, 9137 Register n_tmp3) { 9138 crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3); 9139 crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3); 9140 9141 psllq(w_xtmp1, 1); 9142 movdl(tmp1, w_xtmp1); 9143 psrlq(w_xtmp1, 32); 9144 movdl(in_out, w_xtmp1); 9145 9146 xorl(tmp2, tmp2); 9147 crc32(tmp2, tmp1, 4); 9148 xorl(in_out, tmp2); 9149 9150 psllq(w_xtmp2, 1); 9151 movdl(tmp1, w_xtmp2); 9152 psrlq(w_xtmp2, 32); 9153 movdl(in1, w_xtmp2); 9154 9155 xorl(tmp2, tmp2); 9156 crc32(tmp2, tmp1, 4); 9157 xorl(in1, tmp2); 9158 xorl(in_out, in1); 9159 xorl(in_out, in2); 9160 } 9161 9162 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, 9163 Register in_out1, Register in_out2, Register in_out3, 9164 Register tmp1, Register tmp2, Register tmp3, 9165 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 9166 Register tmp4, Register tmp5, 9167 Register n_tmp6) { 9168 Label L_processPartitions; 9169 Label L_processPartition; 9170 Label L_exit; 9171 9172 bind(L_processPartitions); 9173 cmpl(in_out1, 3 * size); 9174 jcc(Assembler::less, L_exit); 9175 xorl(tmp1, tmp1); 9176 xorl(tmp2, tmp2); 9177 movl(tmp3, in_out2); 9178 addl(tmp3, size); 9179 9180 bind(L_processPartition); 9181 crc32(in_out3, Address(in_out2, 0), 4); 9182 crc32(tmp1, Address(in_out2, size), 4); 9183 crc32(tmp2, Address(in_out2, size*2), 4); 9184 crc32(in_out3, Address(in_out2, 0+4), 4); 9185 crc32(tmp1, Address(in_out2, size+4), 4); 9186 crc32(tmp2, Address(in_out2, size*2+4), 4); 9187 addl(in_out2, 8); 9188 cmpl(in_out2, tmp3); 9189 jcc(Assembler::less, L_processPartition); 9190 9191 push(tmp3); 9192 push(in_out1); 9193 push(in_out2); 9194 tmp4 = tmp3; 9195 tmp5 = in_out1; 9196 n_tmp6 = in_out2; 9197 9198 crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2, 9199 w_xtmp1, w_xtmp2, w_xtmp3, 9200 tmp4, tmp5, 9201 n_tmp6); 9202 9203 pop(in_out2); 9204 pop(in_out1); 9205 pop(tmp3); 9206 9207 addl(in_out2, 2 * size); 9208 subl(in_out1, 3 * size); 9209 jmp(L_processPartitions); 9210 9211 bind(L_exit); 9212 } 9213 #endif //LP64 9214 9215 #ifdef _LP64 9216 // Algorithm 2: Pipelined usage of the CRC32 instruction. 9217 // Input: A buffer I of L bytes. 9218 // Output: the CRC32C value of the buffer. 9219 // Notations: 9220 // Write L = 24N + r, with N = floor (L/24). 9221 // r = L mod 24 (0 <= r < 24). 9222 // Consider I as the concatenation of A|B|C|R, where A, B, C, each, 9223 // N quadwords, and R consists of r bytes. 9224 // A[j] = I [8j+7:8j], j= 0, 1, ..., N-1 9225 // B[j] = I [N + 8j+7:N + 8j], j= 0, 1, ..., N-1 9226 // C[j] = I [2N + 8j+7:2N + 8j], j= 0, 1, ..., N-1 9227 // if r > 0 R[j] = I [3N +j], j= 0, 1, ...,r-1 9228 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2, 9229 Register tmp1, Register tmp2, Register tmp3, 9230 Register tmp4, Register tmp5, Register tmp6, 9231 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 9232 bool is_pclmulqdq_supported) { 9233 uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS]; 9234 Label L_wordByWord; 9235 Label L_byteByByteProlog; 9236 Label L_byteByByte; 9237 Label L_exit; 9238 9239 if (is_pclmulqdq_supported ) { 9240 const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::crc32c_table_addr(); 9241 const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 1); 9242 9243 const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 2); 9244 const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 3); 9245 9246 const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 4); 9247 const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 5); 9248 assert((CRC32C_NUM_PRECOMPUTED_CONSTANTS - 1 ) == 5, "Checking whether you declared all of the constants based on the number of \"chunks\""); 9249 } else { 9250 const_or_pre_comp_const_index[0] = 1; 9251 const_or_pre_comp_const_index[1] = 0; 9252 9253 const_or_pre_comp_const_index[2] = 3; 9254 const_or_pre_comp_const_index[3] = 2; 9255 9256 const_or_pre_comp_const_index[4] = 5; 9257 const_or_pre_comp_const_index[5] = 4; 9258 } 9259 crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported, 9260 in2, in1, in_out, 9261 tmp1, tmp2, tmp3, 9262 w_xtmp1, w_xtmp2, w_xtmp3, 9263 tmp4, tmp5, 9264 tmp6); 9265 crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported, 9266 in2, in1, in_out, 9267 tmp1, tmp2, tmp3, 9268 w_xtmp1, w_xtmp2, w_xtmp3, 9269 tmp4, tmp5, 9270 tmp6); 9271 crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported, 9272 in2, in1, in_out, 9273 tmp1, tmp2, tmp3, 9274 w_xtmp1, w_xtmp2, w_xtmp3, 9275 tmp4, tmp5, 9276 tmp6); 9277 movl(tmp1, in2); 9278 andl(tmp1, 0x00000007); 9279 negl(tmp1); 9280 addl(tmp1, in2); 9281 addq(tmp1, in1); 9282 9283 cmpq(in1, tmp1); 9284 jccb(Assembler::greaterEqual, L_byteByByteProlog); 9285 align(16); 9286 BIND(L_wordByWord); 9287 crc32(in_out, Address(in1, 0), 8); 9288 addq(in1, 8); 9289 cmpq(in1, tmp1); 9290 jcc(Assembler::less, L_wordByWord); 9291 9292 BIND(L_byteByByteProlog); 9293 andl(in2, 0x00000007); 9294 movl(tmp2, 1); 9295 9296 cmpl(tmp2, in2); 9297 jccb(Assembler::greater, L_exit); 9298 BIND(L_byteByByte); 9299 crc32(in_out, Address(in1, 0), 1); 9300 incq(in1); 9301 incl(tmp2); 9302 cmpl(tmp2, in2); 9303 jcc(Assembler::lessEqual, L_byteByByte); 9304 9305 BIND(L_exit); 9306 } 9307 #else 9308 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2, 9309 Register tmp1, Register tmp2, Register tmp3, 9310 Register tmp4, Register tmp5, Register tmp6, 9311 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 9312 bool is_pclmulqdq_supported) { 9313 uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS]; 9314 Label L_wordByWord; 9315 Label L_byteByByteProlog; 9316 Label L_byteByByte; 9317 Label L_exit; 9318 9319 if (is_pclmulqdq_supported) { 9320 const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::crc32c_table_addr(); 9321 const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 1); 9322 9323 const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 2); 9324 const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 3); 9325 9326 const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 4); 9327 const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 5); 9328 } else { 9329 const_or_pre_comp_const_index[0] = 1; 9330 const_or_pre_comp_const_index[1] = 0; 9331 9332 const_or_pre_comp_const_index[2] = 3; 9333 const_or_pre_comp_const_index[3] = 2; 9334 9335 const_or_pre_comp_const_index[4] = 5; 9336 const_or_pre_comp_const_index[5] = 4; 9337 } 9338 crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported, 9339 in2, in1, in_out, 9340 tmp1, tmp2, tmp3, 9341 w_xtmp1, w_xtmp2, w_xtmp3, 9342 tmp4, tmp5, 9343 tmp6); 9344 crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported, 9345 in2, in1, in_out, 9346 tmp1, tmp2, tmp3, 9347 w_xtmp1, w_xtmp2, w_xtmp3, 9348 tmp4, tmp5, 9349 tmp6); 9350 crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported, 9351 in2, in1, in_out, 9352 tmp1, tmp2, tmp3, 9353 w_xtmp1, w_xtmp2, w_xtmp3, 9354 tmp4, tmp5, 9355 tmp6); 9356 movl(tmp1, in2); 9357 andl(tmp1, 0x00000007); 9358 negl(tmp1); 9359 addl(tmp1, in2); 9360 addl(tmp1, in1); 9361 9362 BIND(L_wordByWord); 9363 cmpl(in1, tmp1); 9364 jcc(Assembler::greaterEqual, L_byteByByteProlog); 9365 crc32(in_out, Address(in1,0), 4); 9366 addl(in1, 4); 9367 jmp(L_wordByWord); 9368 9369 BIND(L_byteByByteProlog); 9370 andl(in2, 0x00000007); 9371 movl(tmp2, 1); 9372 9373 BIND(L_byteByByte); 9374 cmpl(tmp2, in2); 9375 jccb(Assembler::greater, L_exit); 9376 movb(tmp1, Address(in1, 0)); 9377 crc32(in_out, tmp1, 1); 9378 incl(in1); 9379 incl(tmp2); 9380 jmp(L_byteByByte); 9381 9382 BIND(L_exit); 9383 } 9384 #endif // LP64 9385 #undef BIND 9386 #undef BLOCK_COMMENT 9387 9388 // Compress char[] array to byte[]. 9389 // Intrinsic for java.lang.StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) 9390 // Return the array length if every element in array can be encoded, 9391 // otherwise, the index of first non-latin1 (> 0xff) character. 9392 // @IntrinsicCandidate 9393 // public static int compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) { 9394 // for (int i = 0; i < len; i++) { 9395 // char c = src[srcOff]; 9396 // if (c > 0xff) { 9397 // return i; // return index of non-latin1 char 9398 // } 9399 // dst[dstOff] = (byte)c; 9400 // srcOff++; 9401 // dstOff++; 9402 // } 9403 // return len; 9404 // } 9405 void MacroAssembler::char_array_compress(Register src, Register dst, Register len, 9406 XMMRegister tmp1Reg, XMMRegister tmp2Reg, 9407 XMMRegister tmp3Reg, XMMRegister tmp4Reg, 9408 Register tmp5, Register result, KRegister mask1, KRegister mask2) { 9409 Label copy_chars_loop, done, reset_sp, copy_tail; 9410 9411 // rsi: src 9412 // rdi: dst 9413 // rdx: len 9414 // rcx: tmp5 9415 // rax: result 9416 9417 // rsi holds start addr of source char[] to be compressed 9418 // rdi holds start addr of destination byte[] 9419 // rdx holds length 9420 9421 assert(len != result, ""); 9422 9423 // save length for return 9424 movl(result, len); 9425 9426 if ((AVX3Threshold == 0) && (UseAVX > 2) && // AVX512 9427 VM_Version::supports_avx512vlbw() && 9428 VM_Version::supports_bmi2()) { 9429 9430 Label copy_32_loop, copy_loop_tail, below_threshold, reset_for_copy_tail; 9431 9432 // alignment 9433 Label post_alignment; 9434 9435 // if length of the string is less than 32, handle it the old fashioned way 9436 testl(len, -32); 9437 jcc(Assembler::zero, below_threshold); 9438 9439 // First check whether a character is compressible ( <= 0xFF). 9440 // Create mask to test for Unicode chars inside zmm vector 9441 movl(tmp5, 0x00FF); 9442 evpbroadcastw(tmp2Reg, tmp5, Assembler::AVX_512bit); 9443 9444 testl(len, -64); 9445 jccb(Assembler::zero, post_alignment); 9446 9447 movl(tmp5, dst); 9448 andl(tmp5, (32 - 1)); 9449 negl(tmp5); 9450 andl(tmp5, (32 - 1)); 9451 9452 // bail out when there is nothing to be done 9453 testl(tmp5, 0xFFFFFFFF); 9454 jccb(Assembler::zero, post_alignment); 9455 9456 // ~(~0 << len), where len is the # of remaining elements to process 9457 movl(len, 0xFFFFFFFF); 9458 shlxl(len, len, tmp5); 9459 notl(len); 9460 kmovdl(mask2, len); 9461 movl(len, result); 9462 9463 evmovdquw(tmp1Reg, mask2, Address(src, 0), /*merge*/ false, Assembler::AVX_512bit); 9464 evpcmpw(mask1, mask2, tmp1Reg, tmp2Reg, Assembler::le, /*signed*/ false, Assembler::AVX_512bit); 9465 ktestd(mask1, mask2); 9466 jcc(Assembler::carryClear, copy_tail); 9467 9468 evpmovwb(Address(dst, 0), mask2, tmp1Reg, Assembler::AVX_512bit); 9469 9470 addptr(src, tmp5); 9471 addptr(src, tmp5); 9472 addptr(dst, tmp5); 9473 subl(len, tmp5); 9474 9475 bind(post_alignment); 9476 // end of alignment 9477 9478 movl(tmp5, len); 9479 andl(tmp5, (32 - 1)); // tail count (in chars) 9480 andl(len, ~(32 - 1)); // vector count (in chars) 9481 jccb(Assembler::zero, copy_loop_tail); 9482 9483 lea(src, Address(src, len, Address::times_2)); 9484 lea(dst, Address(dst, len, Address::times_1)); 9485 negptr(len); 9486 9487 bind(copy_32_loop); 9488 evmovdquw(tmp1Reg, Address(src, len, Address::times_2), Assembler::AVX_512bit); 9489 evpcmpuw(mask1, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit); 9490 kortestdl(mask1, mask1); 9491 jccb(Assembler::carryClear, reset_for_copy_tail); 9492 9493 // All elements in current processed chunk are valid candidates for 9494 // compression. Write a truncated byte elements to the memory. 9495 evpmovwb(Address(dst, len, Address::times_1), tmp1Reg, Assembler::AVX_512bit); 9496 addptr(len, 32); 9497 jccb(Assembler::notZero, copy_32_loop); 9498 9499 bind(copy_loop_tail); 9500 // bail out when there is nothing to be done 9501 testl(tmp5, 0xFFFFFFFF); 9502 jcc(Assembler::zero, done); 9503 9504 movl(len, tmp5); 9505 9506 // ~(~0 << len), where len is the # of remaining elements to process 9507 movl(tmp5, 0xFFFFFFFF); 9508 shlxl(tmp5, tmp5, len); 9509 notl(tmp5); 9510 9511 kmovdl(mask2, tmp5); 9512 9513 evmovdquw(tmp1Reg, mask2, Address(src, 0), /*merge*/ false, Assembler::AVX_512bit); 9514 evpcmpw(mask1, mask2, tmp1Reg, tmp2Reg, Assembler::le, /*signed*/ false, Assembler::AVX_512bit); 9515 ktestd(mask1, mask2); 9516 jcc(Assembler::carryClear, copy_tail); 9517 9518 evpmovwb(Address(dst, 0), mask2, tmp1Reg, Assembler::AVX_512bit); 9519 jmp(done); 9520 9521 bind(reset_for_copy_tail); 9522 lea(src, Address(src, tmp5, Address::times_2)); 9523 lea(dst, Address(dst, tmp5, Address::times_1)); 9524 subptr(len, tmp5); 9525 jmp(copy_chars_loop); 9526 9527 bind(below_threshold); 9528 } 9529 9530 if (UseSSE42Intrinsics) { 9531 Label copy_32_loop, copy_16, copy_tail_sse, reset_for_copy_tail; 9532 9533 // vectored compression 9534 testl(len, 0xfffffff8); 9535 jcc(Assembler::zero, copy_tail); 9536 9537 movl(tmp5, 0xff00ff00); // create mask to test for Unicode chars in vectors 9538 movdl(tmp1Reg, tmp5); 9539 pshufd(tmp1Reg, tmp1Reg, 0); // store Unicode mask in tmp1Reg 9540 9541 andl(len, 0xfffffff0); 9542 jccb(Assembler::zero, copy_16); 9543 9544 // compress 16 chars per iter 9545 pxor(tmp4Reg, tmp4Reg); 9546 9547 lea(src, Address(src, len, Address::times_2)); 9548 lea(dst, Address(dst, len, Address::times_1)); 9549 negptr(len); 9550 9551 bind(copy_32_loop); 9552 movdqu(tmp2Reg, Address(src, len, Address::times_2)); // load 1st 8 characters 9553 por(tmp4Reg, tmp2Reg); 9554 movdqu(tmp3Reg, Address(src, len, Address::times_2, 16)); // load next 8 characters 9555 por(tmp4Reg, tmp3Reg); 9556 ptest(tmp4Reg, tmp1Reg); // check for Unicode chars in next vector 9557 jccb(Assembler::notZero, reset_for_copy_tail); 9558 packuswb(tmp2Reg, tmp3Reg); // only ASCII chars; compress each to 1 byte 9559 movdqu(Address(dst, len, Address::times_1), tmp2Reg); 9560 addptr(len, 16); 9561 jccb(Assembler::notZero, copy_32_loop); 9562 9563 // compress next vector of 8 chars (if any) 9564 bind(copy_16); 9565 // len = 0 9566 testl(result, 0x00000008); // check if there's a block of 8 chars to compress 9567 jccb(Assembler::zero, copy_tail_sse); 9568 9569 pxor(tmp3Reg, tmp3Reg); 9570 9571 movdqu(tmp2Reg, Address(src, 0)); 9572 ptest(tmp2Reg, tmp1Reg); // check for Unicode chars in vector 9573 jccb(Assembler::notZero, reset_for_copy_tail); 9574 packuswb(tmp2Reg, tmp3Reg); // only LATIN1 chars; compress each to 1 byte 9575 movq(Address(dst, 0), tmp2Reg); 9576 addptr(src, 16); 9577 addptr(dst, 8); 9578 jmpb(copy_tail_sse); 9579 9580 bind(reset_for_copy_tail); 9581 movl(tmp5, result); 9582 andl(tmp5, 0x0000000f); 9583 lea(src, Address(src, tmp5, Address::times_2)); 9584 lea(dst, Address(dst, tmp5, Address::times_1)); 9585 subptr(len, tmp5); 9586 jmpb(copy_chars_loop); 9587 9588 bind(copy_tail_sse); 9589 movl(len, result); 9590 andl(len, 0x00000007); // tail count (in chars) 9591 } 9592 // compress 1 char per iter 9593 bind(copy_tail); 9594 testl(len, len); 9595 jccb(Assembler::zero, done); 9596 lea(src, Address(src, len, Address::times_2)); 9597 lea(dst, Address(dst, len, Address::times_1)); 9598 negptr(len); 9599 9600 bind(copy_chars_loop); 9601 load_unsigned_short(tmp5, Address(src, len, Address::times_2)); 9602 testl(tmp5, 0xff00); // check if Unicode char 9603 jccb(Assembler::notZero, reset_sp); 9604 movb(Address(dst, len, Address::times_1), tmp5); // ASCII char; compress to 1 byte 9605 increment(len); 9606 jccb(Assembler::notZero, copy_chars_loop); 9607 9608 // add len then return (len will be zero if compress succeeded, otherwise negative) 9609 bind(reset_sp); 9610 addl(result, len); 9611 9612 bind(done); 9613 } 9614 9615 // Inflate byte[] array to char[]. 9616 // ..\jdk\src\java.base\share\classes\java\lang\StringLatin1.java 9617 // @IntrinsicCandidate 9618 // private static void inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) { 9619 // for (int i = 0; i < len; i++) { 9620 // dst[dstOff++] = (char)(src[srcOff++] & 0xff); 9621 // } 9622 // } 9623 void MacroAssembler::byte_array_inflate(Register src, Register dst, Register len, 9624 XMMRegister tmp1, Register tmp2, KRegister mask) { 9625 Label copy_chars_loop, done, below_threshold, avx3_threshold; 9626 // rsi: src 9627 // rdi: dst 9628 // rdx: len 9629 // rcx: tmp2 9630 9631 // rsi holds start addr of source byte[] to be inflated 9632 // rdi holds start addr of destination char[] 9633 // rdx holds length 9634 assert_different_registers(src, dst, len, tmp2); 9635 movl(tmp2, len); 9636 if ((UseAVX > 2) && // AVX512 9637 VM_Version::supports_avx512vlbw() && 9638 VM_Version::supports_bmi2()) { 9639 9640 Label copy_32_loop, copy_tail; 9641 Register tmp3_aliased = len; 9642 9643 // if length of the string is less than 16, handle it in an old fashioned way 9644 testl(len, -16); 9645 jcc(Assembler::zero, below_threshold); 9646 9647 testl(len, -1 * AVX3Threshold); 9648 jcc(Assembler::zero, avx3_threshold); 9649 9650 // In order to use only one arithmetic operation for the main loop we use 9651 // this pre-calculation 9652 andl(tmp2, (32 - 1)); // tail count (in chars), 32 element wide loop 9653 andl(len, -32); // vector count 9654 jccb(Assembler::zero, copy_tail); 9655 9656 lea(src, Address(src, len, Address::times_1)); 9657 lea(dst, Address(dst, len, Address::times_2)); 9658 negptr(len); 9659 9660 9661 // inflate 32 chars per iter 9662 bind(copy_32_loop); 9663 vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_512bit); 9664 evmovdquw(Address(dst, len, Address::times_2), tmp1, Assembler::AVX_512bit); 9665 addptr(len, 32); 9666 jcc(Assembler::notZero, copy_32_loop); 9667 9668 bind(copy_tail); 9669 // bail out when there is nothing to be done 9670 testl(tmp2, -1); // we don't destroy the contents of tmp2 here 9671 jcc(Assembler::zero, done); 9672 9673 // ~(~0 << length), where length is the # of remaining elements to process 9674 movl(tmp3_aliased, -1); 9675 shlxl(tmp3_aliased, tmp3_aliased, tmp2); 9676 notl(tmp3_aliased); 9677 kmovdl(mask, tmp3_aliased); 9678 evpmovzxbw(tmp1, mask, Address(src, 0), Assembler::AVX_512bit); 9679 evmovdquw(Address(dst, 0), mask, tmp1, /*merge*/ true, Assembler::AVX_512bit); 9680 9681 jmp(done); 9682 bind(avx3_threshold); 9683 } 9684 if (UseSSE42Intrinsics) { 9685 Label copy_16_loop, copy_8_loop, copy_bytes, copy_new_tail, copy_tail; 9686 9687 if (UseAVX > 1) { 9688 andl(tmp2, (16 - 1)); 9689 andl(len, -16); 9690 jccb(Assembler::zero, copy_new_tail); 9691 } else { 9692 andl(tmp2, 0x00000007); // tail count (in chars) 9693 andl(len, 0xfffffff8); // vector count (in chars) 9694 jccb(Assembler::zero, copy_tail); 9695 } 9696 9697 // vectored inflation 9698 lea(src, Address(src, len, Address::times_1)); 9699 lea(dst, Address(dst, len, Address::times_2)); 9700 negptr(len); 9701 9702 if (UseAVX > 1) { 9703 bind(copy_16_loop); 9704 vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_256bit); 9705 vmovdqu(Address(dst, len, Address::times_2), tmp1); 9706 addptr(len, 16); 9707 jcc(Assembler::notZero, copy_16_loop); 9708 9709 bind(below_threshold); 9710 bind(copy_new_tail); 9711 movl(len, tmp2); 9712 andl(tmp2, 0x00000007); 9713 andl(len, 0xFFFFFFF8); 9714 jccb(Assembler::zero, copy_tail); 9715 9716 pmovzxbw(tmp1, Address(src, 0)); 9717 movdqu(Address(dst, 0), tmp1); 9718 addptr(src, 8); 9719 addptr(dst, 2 * 8); 9720 9721 jmp(copy_tail, true); 9722 } 9723 9724 // inflate 8 chars per iter 9725 bind(copy_8_loop); 9726 pmovzxbw(tmp1, Address(src, len, Address::times_1)); // unpack to 8 words 9727 movdqu(Address(dst, len, Address::times_2), tmp1); 9728 addptr(len, 8); 9729 jcc(Assembler::notZero, copy_8_loop); 9730 9731 bind(copy_tail); 9732 movl(len, tmp2); 9733 9734 cmpl(len, 4); 9735 jccb(Assembler::less, copy_bytes); 9736 9737 movdl(tmp1, Address(src, 0)); // load 4 byte chars 9738 pmovzxbw(tmp1, tmp1); 9739 movq(Address(dst, 0), tmp1); 9740 subptr(len, 4); 9741 addptr(src, 4); 9742 addptr(dst, 8); 9743 9744 bind(copy_bytes); 9745 } else { 9746 bind(below_threshold); 9747 } 9748 9749 testl(len, len); 9750 jccb(Assembler::zero, done); 9751 lea(src, Address(src, len, Address::times_1)); 9752 lea(dst, Address(dst, len, Address::times_2)); 9753 negptr(len); 9754 9755 // inflate 1 char per iter 9756 bind(copy_chars_loop); 9757 load_unsigned_byte(tmp2, Address(src, len, Address::times_1)); // load byte char 9758 movw(Address(dst, len, Address::times_2), tmp2); // inflate byte char to word 9759 increment(len); 9760 jcc(Assembler::notZero, copy_chars_loop); 9761 9762 bind(done); 9763 } 9764 9765 void MacroAssembler::evmovdqu(BasicType type, KRegister kmask, XMMRegister dst, XMMRegister src, bool merge, int vector_len) { 9766 switch(type) { 9767 case T_BYTE: 9768 case T_BOOLEAN: 9769 evmovdqub(dst, kmask, src, merge, vector_len); 9770 break; 9771 case T_CHAR: 9772 case T_SHORT: 9773 evmovdquw(dst, kmask, src, merge, vector_len); 9774 break; 9775 case T_INT: 9776 case T_FLOAT: 9777 evmovdqul(dst, kmask, src, merge, vector_len); 9778 break; 9779 case T_LONG: 9780 case T_DOUBLE: 9781 evmovdquq(dst, kmask, src, merge, vector_len); 9782 break; 9783 default: 9784 fatal("Unexpected type argument %s", type2name(type)); 9785 break; 9786 } 9787 } 9788 9789 9790 void MacroAssembler::evmovdqu(BasicType type, KRegister kmask, XMMRegister dst, Address src, bool merge, int vector_len) { 9791 switch(type) { 9792 case T_BYTE: 9793 case T_BOOLEAN: 9794 evmovdqub(dst, kmask, src, merge, vector_len); 9795 break; 9796 case T_CHAR: 9797 case T_SHORT: 9798 evmovdquw(dst, kmask, src, merge, vector_len); 9799 break; 9800 case T_INT: 9801 case T_FLOAT: 9802 evmovdqul(dst, kmask, src, merge, vector_len); 9803 break; 9804 case T_LONG: 9805 case T_DOUBLE: 9806 evmovdquq(dst, kmask, src, merge, vector_len); 9807 break; 9808 default: 9809 fatal("Unexpected type argument %s", type2name(type)); 9810 break; 9811 } 9812 } 9813 9814 void MacroAssembler::evmovdqu(BasicType type, KRegister kmask, Address dst, XMMRegister src, bool merge, int vector_len) { 9815 switch(type) { 9816 case T_BYTE: 9817 case T_BOOLEAN: 9818 evmovdqub(dst, kmask, src, merge, vector_len); 9819 break; 9820 case T_CHAR: 9821 case T_SHORT: 9822 evmovdquw(dst, kmask, src, merge, vector_len); 9823 break; 9824 case T_INT: 9825 case T_FLOAT: 9826 evmovdqul(dst, kmask, src, merge, vector_len); 9827 break; 9828 case T_LONG: 9829 case T_DOUBLE: 9830 evmovdquq(dst, kmask, src, merge, vector_len); 9831 break; 9832 default: 9833 fatal("Unexpected type argument %s", type2name(type)); 9834 break; 9835 } 9836 } 9837 9838 void MacroAssembler::knot(uint masklen, KRegister dst, KRegister src, KRegister ktmp, Register rtmp) { 9839 switch(masklen) { 9840 case 2: 9841 knotbl(dst, src); 9842 movl(rtmp, 3); 9843 kmovbl(ktmp, rtmp); 9844 kandbl(dst, ktmp, dst); 9845 break; 9846 case 4: 9847 knotbl(dst, src); 9848 movl(rtmp, 15); 9849 kmovbl(ktmp, rtmp); 9850 kandbl(dst, ktmp, dst); 9851 break; 9852 case 8: 9853 knotbl(dst, src); 9854 break; 9855 case 16: 9856 knotwl(dst, src); 9857 break; 9858 case 32: 9859 knotdl(dst, src); 9860 break; 9861 case 64: 9862 knotql(dst, src); 9863 break; 9864 default: 9865 fatal("Unexpected vector length %d", masklen); 9866 break; 9867 } 9868 } 9869 9870 void MacroAssembler::kand(BasicType type, KRegister dst, KRegister src1, KRegister src2) { 9871 switch(type) { 9872 case T_BOOLEAN: 9873 case T_BYTE: 9874 kandbl(dst, src1, src2); 9875 break; 9876 case T_CHAR: 9877 case T_SHORT: 9878 kandwl(dst, src1, src2); 9879 break; 9880 case T_INT: 9881 case T_FLOAT: 9882 kanddl(dst, src1, src2); 9883 break; 9884 case T_LONG: 9885 case T_DOUBLE: 9886 kandql(dst, src1, src2); 9887 break; 9888 default: 9889 fatal("Unexpected type argument %s", type2name(type)); 9890 break; 9891 } 9892 } 9893 9894 void MacroAssembler::kor(BasicType type, KRegister dst, KRegister src1, KRegister src2) { 9895 switch(type) { 9896 case T_BOOLEAN: 9897 case T_BYTE: 9898 korbl(dst, src1, src2); 9899 break; 9900 case T_CHAR: 9901 case T_SHORT: 9902 korwl(dst, src1, src2); 9903 break; 9904 case T_INT: 9905 case T_FLOAT: 9906 kordl(dst, src1, src2); 9907 break; 9908 case T_LONG: 9909 case T_DOUBLE: 9910 korql(dst, src1, src2); 9911 break; 9912 default: 9913 fatal("Unexpected type argument %s", type2name(type)); 9914 break; 9915 } 9916 } 9917 9918 void MacroAssembler::kxor(BasicType type, KRegister dst, KRegister src1, KRegister src2) { 9919 switch(type) { 9920 case T_BOOLEAN: 9921 case T_BYTE: 9922 kxorbl(dst, src1, src2); 9923 break; 9924 case T_CHAR: 9925 case T_SHORT: 9926 kxorwl(dst, src1, src2); 9927 break; 9928 case T_INT: 9929 case T_FLOAT: 9930 kxordl(dst, src1, src2); 9931 break; 9932 case T_LONG: 9933 case T_DOUBLE: 9934 kxorql(dst, src1, src2); 9935 break; 9936 default: 9937 fatal("Unexpected type argument %s", type2name(type)); 9938 break; 9939 } 9940 } 9941 9942 void MacroAssembler::evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9943 switch(type) { 9944 case T_BOOLEAN: 9945 case T_BYTE: 9946 evpermb(dst, mask, nds, src, merge, vector_len); break; 9947 case T_CHAR: 9948 case T_SHORT: 9949 evpermw(dst, mask, nds, src, merge, vector_len); break; 9950 case T_INT: 9951 case T_FLOAT: 9952 evpermd(dst, mask, nds, src, merge, vector_len); break; 9953 case T_LONG: 9954 case T_DOUBLE: 9955 evpermq(dst, mask, nds, src, merge, vector_len); break; 9956 default: 9957 fatal("Unexpected type argument %s", type2name(type)); break; 9958 } 9959 } 9960 9961 void MacroAssembler::evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9962 switch(type) { 9963 case T_BOOLEAN: 9964 case T_BYTE: 9965 evpermb(dst, mask, nds, src, merge, vector_len); break; 9966 case T_CHAR: 9967 case T_SHORT: 9968 evpermw(dst, mask, nds, src, merge, vector_len); break; 9969 case T_INT: 9970 case T_FLOAT: 9971 evpermd(dst, mask, nds, src, merge, vector_len); break; 9972 case T_LONG: 9973 case T_DOUBLE: 9974 evpermq(dst, mask, nds, src, merge, vector_len); break; 9975 default: 9976 fatal("Unexpected type argument %s", type2name(type)); break; 9977 } 9978 } 9979 9980 void MacroAssembler::evpminu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9981 switch(type) { 9982 case T_BYTE: 9983 evpminub(dst, mask, nds, src, merge, vector_len); break; 9984 case T_SHORT: 9985 evpminuw(dst, mask, nds, src, merge, vector_len); break; 9986 case T_INT: 9987 evpminud(dst, mask, nds, src, merge, vector_len); break; 9988 case T_LONG: 9989 evpminuq(dst, mask, nds, src, merge, vector_len); break; 9990 default: 9991 fatal("Unexpected type argument %s", type2name(type)); break; 9992 } 9993 } 9994 9995 void MacroAssembler::evpmaxu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9996 switch(type) { 9997 case T_BYTE: 9998 evpmaxub(dst, mask, nds, src, merge, vector_len); break; 9999 case T_SHORT: 10000 evpmaxuw(dst, mask, nds, src, merge, vector_len); break; 10001 case T_INT: 10002 evpmaxud(dst, mask, nds, src, merge, vector_len); break; 10003 case T_LONG: 10004 evpmaxuq(dst, mask, nds, src, merge, vector_len); break; 10005 default: 10006 fatal("Unexpected type argument %s", type2name(type)); break; 10007 } 10008 } 10009 10010 void MacroAssembler::evpminu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 10011 switch(type) { 10012 case T_BYTE: 10013 evpminub(dst, mask, nds, src, merge, vector_len); break; 10014 case T_SHORT: 10015 evpminuw(dst, mask, nds, src, merge, vector_len); break; 10016 case T_INT: 10017 evpminud(dst, mask, nds, src, merge, vector_len); break; 10018 case T_LONG: 10019 evpminuq(dst, mask, nds, src, merge, vector_len); break; 10020 default: 10021 fatal("Unexpected type argument %s", type2name(type)); break; 10022 } 10023 } 10024 10025 void MacroAssembler::evpmaxu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 10026 switch(type) { 10027 case T_BYTE: 10028 evpmaxub(dst, mask, nds, src, merge, vector_len); break; 10029 case T_SHORT: 10030 evpmaxuw(dst, mask, nds, src, merge, vector_len); break; 10031 case T_INT: 10032 evpmaxud(dst, mask, nds, src, merge, vector_len); break; 10033 case T_LONG: 10034 evpmaxuq(dst, mask, nds, src, merge, vector_len); break; 10035 default: 10036 fatal("Unexpected type argument %s", type2name(type)); break; 10037 } 10038 } 10039 10040 void MacroAssembler::evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 10041 switch(type) { 10042 case T_BYTE: 10043 evpminsb(dst, mask, nds, src, merge, vector_len); break; 10044 case T_SHORT: 10045 evpminsw(dst, mask, nds, src, merge, vector_len); break; 10046 case T_INT: 10047 evpminsd(dst, mask, nds, src, merge, vector_len); break; 10048 case T_LONG: 10049 evpminsq(dst, mask, nds, src, merge, vector_len); break; 10050 default: 10051 fatal("Unexpected type argument %s", type2name(type)); break; 10052 } 10053 } 10054 10055 void MacroAssembler::evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 10056 switch(type) { 10057 case T_BYTE: 10058 evpmaxsb(dst, mask, nds, src, merge, vector_len); break; 10059 case T_SHORT: 10060 evpmaxsw(dst, mask, nds, src, merge, vector_len); break; 10061 case T_INT: 10062 evpmaxsd(dst, mask, nds, src, merge, vector_len); break; 10063 case T_LONG: 10064 evpmaxsq(dst, mask, nds, src, merge, vector_len); break; 10065 default: 10066 fatal("Unexpected type argument %s", type2name(type)); break; 10067 } 10068 } 10069 10070 void MacroAssembler::evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 10071 switch(type) { 10072 case T_BYTE: 10073 evpminsb(dst, mask, nds, src, merge, vector_len); break; 10074 case T_SHORT: 10075 evpminsw(dst, mask, nds, src, merge, vector_len); break; 10076 case T_INT: 10077 evpminsd(dst, mask, nds, src, merge, vector_len); break; 10078 case T_LONG: 10079 evpminsq(dst, mask, nds, src, merge, vector_len); break; 10080 default: 10081 fatal("Unexpected type argument %s", type2name(type)); break; 10082 } 10083 } 10084 10085 void MacroAssembler::evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 10086 switch(type) { 10087 case T_BYTE: 10088 evpmaxsb(dst, mask, nds, src, merge, vector_len); break; 10089 case T_SHORT: 10090 evpmaxsw(dst, mask, nds, src, merge, vector_len); break; 10091 case T_INT: 10092 evpmaxsd(dst, mask, nds, src, merge, vector_len); break; 10093 case T_LONG: 10094 evpmaxsq(dst, mask, nds, src, merge, vector_len); break; 10095 default: 10096 fatal("Unexpected type argument %s", type2name(type)); break; 10097 } 10098 } 10099 10100 void MacroAssembler::evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 10101 switch(type) { 10102 case T_INT: 10103 evpxord(dst, mask, nds, src, merge, vector_len); break; 10104 case T_LONG: 10105 evpxorq(dst, mask, nds, src, merge, vector_len); break; 10106 default: 10107 fatal("Unexpected type argument %s", type2name(type)); break; 10108 } 10109 } 10110 10111 void MacroAssembler::evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 10112 switch(type) { 10113 case T_INT: 10114 evpxord(dst, mask, nds, src, merge, vector_len); break; 10115 case T_LONG: 10116 evpxorq(dst, mask, nds, src, merge, vector_len); break; 10117 default: 10118 fatal("Unexpected type argument %s", type2name(type)); break; 10119 } 10120 } 10121 10122 void MacroAssembler::evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 10123 switch(type) { 10124 case T_INT: 10125 Assembler::evpord(dst, mask, nds, src, merge, vector_len); break; 10126 case T_LONG: 10127 evporq(dst, mask, nds, src, merge, vector_len); break; 10128 default: 10129 fatal("Unexpected type argument %s", type2name(type)); break; 10130 } 10131 } 10132 10133 void MacroAssembler::evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 10134 switch(type) { 10135 case T_INT: 10136 Assembler::evpord(dst, mask, nds, src, merge, vector_len); break; 10137 case T_LONG: 10138 evporq(dst, mask, nds, src, merge, vector_len); break; 10139 default: 10140 fatal("Unexpected type argument %s", type2name(type)); break; 10141 } 10142 } 10143 10144 void MacroAssembler::evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 10145 switch(type) { 10146 case T_INT: 10147 evpandd(dst, mask, nds, src, merge, vector_len); break; 10148 case T_LONG: 10149 evpandq(dst, mask, nds, src, merge, vector_len); break; 10150 default: 10151 fatal("Unexpected type argument %s", type2name(type)); break; 10152 } 10153 } 10154 10155 void MacroAssembler::evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 10156 switch(type) { 10157 case T_INT: 10158 evpandd(dst, mask, nds, src, merge, vector_len); break; 10159 case T_LONG: 10160 evpandq(dst, mask, nds, src, merge, vector_len); break; 10161 default: 10162 fatal("Unexpected type argument %s", type2name(type)); break; 10163 } 10164 } 10165 10166 void MacroAssembler::kortest(uint masklen, KRegister src1, KRegister src2) { 10167 switch(masklen) { 10168 case 8: 10169 kortestbl(src1, src2); 10170 break; 10171 case 16: 10172 kortestwl(src1, src2); 10173 break; 10174 case 32: 10175 kortestdl(src1, src2); 10176 break; 10177 case 64: 10178 kortestql(src1, src2); 10179 break; 10180 default: 10181 fatal("Unexpected mask length %d", masklen); 10182 break; 10183 } 10184 } 10185 10186 10187 void MacroAssembler::ktest(uint masklen, KRegister src1, KRegister src2) { 10188 switch(masklen) { 10189 case 8: 10190 ktestbl(src1, src2); 10191 break; 10192 case 16: 10193 ktestwl(src1, src2); 10194 break; 10195 case 32: 10196 ktestdl(src1, src2); 10197 break; 10198 case 64: 10199 ktestql(src1, src2); 10200 break; 10201 default: 10202 fatal("Unexpected mask length %d", masklen); 10203 break; 10204 } 10205 } 10206 10207 void MacroAssembler::evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc) { 10208 switch(type) { 10209 case T_INT: 10210 evprold(dst, mask, src, shift, merge, vlen_enc); break; 10211 case T_LONG: 10212 evprolq(dst, mask, src, shift, merge, vlen_enc); break; 10213 default: 10214 fatal("Unexpected type argument %s", type2name(type)); break; 10215 break; 10216 } 10217 } 10218 10219 void MacroAssembler::evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc) { 10220 switch(type) { 10221 case T_INT: 10222 evprord(dst, mask, src, shift, merge, vlen_enc); break; 10223 case T_LONG: 10224 evprorq(dst, mask, src, shift, merge, vlen_enc); break; 10225 default: 10226 fatal("Unexpected type argument %s", type2name(type)); break; 10227 } 10228 } 10229 10230 void MacroAssembler::evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc) { 10231 switch(type) { 10232 case T_INT: 10233 evprolvd(dst, mask, src1, src2, merge, vlen_enc); break; 10234 case T_LONG: 10235 evprolvq(dst, mask, src1, src2, merge, vlen_enc); break; 10236 default: 10237 fatal("Unexpected type argument %s", type2name(type)); break; 10238 } 10239 } 10240 10241 void MacroAssembler::evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc) { 10242 switch(type) { 10243 case T_INT: 10244 evprorvd(dst, mask, src1, src2, merge, vlen_enc); break; 10245 case T_LONG: 10246 evprorvq(dst, mask, src1, src2, merge, vlen_enc); break; 10247 default: 10248 fatal("Unexpected type argument %s", type2name(type)); break; 10249 } 10250 } 10251 10252 void MacroAssembler::evpandq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 10253 assert(rscratch != noreg || always_reachable(src), "missing"); 10254 10255 if (reachable(src)) { 10256 evpandq(dst, nds, as_Address(src), vector_len); 10257 } else { 10258 lea(rscratch, src); 10259 evpandq(dst, nds, Address(rscratch, 0), vector_len); 10260 } 10261 } 10262 10263 void MacroAssembler::evpaddq(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, bool merge, int vector_len, Register rscratch) { 10264 assert(rscratch != noreg || always_reachable(src), "missing"); 10265 10266 if (reachable(src)) { 10267 Assembler::evpaddq(dst, mask, nds, as_Address(src), merge, vector_len); 10268 } else { 10269 lea(rscratch, src); 10270 Assembler::evpaddq(dst, mask, nds, Address(rscratch, 0), merge, vector_len); 10271 } 10272 } 10273 10274 void MacroAssembler::evporq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 10275 assert(rscratch != noreg || always_reachable(src), "missing"); 10276 10277 if (reachable(src)) { 10278 evporq(dst, nds, as_Address(src), vector_len); 10279 } else { 10280 lea(rscratch, src); 10281 evporq(dst, nds, Address(rscratch, 0), vector_len); 10282 } 10283 } 10284 10285 void MacroAssembler::vpshufb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 10286 assert(rscratch != noreg || always_reachable(src), "missing"); 10287 10288 if (reachable(src)) { 10289 vpshufb(dst, nds, as_Address(src), vector_len); 10290 } else { 10291 lea(rscratch, src); 10292 vpshufb(dst, nds, Address(rscratch, 0), vector_len); 10293 } 10294 } 10295 10296 void MacroAssembler::vpor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 10297 assert(rscratch != noreg || always_reachable(src), "missing"); 10298 10299 if (reachable(src)) { 10300 Assembler::vpor(dst, nds, as_Address(src), vector_len); 10301 } else { 10302 lea(rscratch, src); 10303 Assembler::vpor(dst, nds, Address(rscratch, 0), vector_len); 10304 } 10305 } 10306 10307 void MacroAssembler::vpternlogq(XMMRegister dst, int imm8, XMMRegister src2, AddressLiteral src3, int vector_len, Register rscratch) { 10308 assert(rscratch != noreg || always_reachable(src3), "missing"); 10309 10310 if (reachable(src3)) { 10311 vpternlogq(dst, imm8, src2, as_Address(src3), vector_len); 10312 } else { 10313 lea(rscratch, src3); 10314 vpternlogq(dst, imm8, src2, Address(rscratch, 0), vector_len); 10315 } 10316 } 10317 10318 #if COMPILER2_OR_JVMCI 10319 10320 void MacroAssembler::fill_masked(BasicType bt, Address dst, XMMRegister xmm, KRegister mask, 10321 Register length, Register temp, int vec_enc) { 10322 // Computing mask for predicated vector store. 10323 movptr(temp, -1); 10324 bzhiq(temp, temp, length); 10325 kmov(mask, temp); 10326 evmovdqu(bt, mask, dst, xmm, true, vec_enc); 10327 } 10328 10329 // Set memory operation for length "less than" 64 bytes. 10330 void MacroAssembler::fill64_masked(uint shift, Register dst, int disp, 10331 XMMRegister xmm, KRegister mask, Register length, 10332 Register temp, bool use64byteVector) { 10333 assert(MaxVectorSize >= 32, "vector length should be >= 32"); 10334 const BasicType type[] = { T_BYTE, T_SHORT, T_INT, T_LONG}; 10335 if (!use64byteVector) { 10336 fill32(dst, disp, xmm); 10337 subptr(length, 32 >> shift); 10338 fill32_masked(shift, dst, disp + 32, xmm, mask, length, temp); 10339 } else { 10340 assert(MaxVectorSize == 64, "vector length != 64"); 10341 fill_masked(type[shift], Address(dst, disp), xmm, mask, length, temp, Assembler::AVX_512bit); 10342 } 10343 } 10344 10345 10346 void MacroAssembler::fill32_masked(uint shift, Register dst, int disp, 10347 XMMRegister xmm, KRegister mask, Register length, 10348 Register temp) { 10349 assert(MaxVectorSize >= 32, "vector length should be >= 32"); 10350 const BasicType type[] = { T_BYTE, T_SHORT, T_INT, T_LONG}; 10351 fill_masked(type[shift], Address(dst, disp), xmm, mask, length, temp, Assembler::AVX_256bit); 10352 } 10353 10354 10355 void MacroAssembler::fill32(Address dst, XMMRegister xmm) { 10356 assert(MaxVectorSize >= 32, "vector length should be >= 32"); 10357 vmovdqu(dst, xmm); 10358 } 10359 10360 void MacroAssembler::fill32(Register dst, int disp, XMMRegister xmm) { 10361 fill32(Address(dst, disp), xmm); 10362 } 10363 10364 void MacroAssembler::fill64(Address dst, XMMRegister xmm, bool use64byteVector) { 10365 assert(MaxVectorSize >= 32, "vector length should be >= 32"); 10366 if (!use64byteVector) { 10367 fill32(dst, xmm); 10368 fill32(dst.plus_disp(32), xmm); 10369 } else { 10370 evmovdquq(dst, xmm, Assembler::AVX_512bit); 10371 } 10372 } 10373 10374 void MacroAssembler::fill64(Register dst, int disp, XMMRegister xmm, bool use64byteVector) { 10375 fill64(Address(dst, disp), xmm, use64byteVector); 10376 } 10377 10378 #ifdef _LP64 10379 void MacroAssembler::generate_fill_avx3(BasicType type, Register to, Register value, 10380 Register count, Register rtmp, XMMRegister xtmp) { 10381 Label L_exit; 10382 Label L_fill_start; 10383 Label L_fill_64_bytes; 10384 Label L_fill_96_bytes; 10385 Label L_fill_128_bytes; 10386 Label L_fill_128_bytes_loop; 10387 Label L_fill_128_loop_header; 10388 Label L_fill_128_bytes_loop_header; 10389 Label L_fill_128_bytes_loop_pre_header; 10390 Label L_fill_zmm_sequence; 10391 10392 int shift = -1; 10393 int avx3threshold = VM_Version::avx3_threshold(); 10394 switch(type) { 10395 case T_BYTE: shift = 0; 10396 break; 10397 case T_SHORT: shift = 1; 10398 break; 10399 case T_INT: shift = 2; 10400 break; 10401 /* Uncomment when LONG fill stubs are supported. 10402 case T_LONG: shift = 3; 10403 break; 10404 */ 10405 default: 10406 fatal("Unhandled type: %s\n", type2name(type)); 10407 } 10408 10409 if ((avx3threshold != 0) || (MaxVectorSize == 32)) { 10410 10411 if (MaxVectorSize == 64) { 10412 cmpq(count, avx3threshold >> shift); 10413 jcc(Assembler::greater, L_fill_zmm_sequence); 10414 } 10415 10416 evpbroadcast(type, xtmp, value, Assembler::AVX_256bit); 10417 10418 bind(L_fill_start); 10419 10420 cmpq(count, 32 >> shift); 10421 jccb(Assembler::greater, L_fill_64_bytes); 10422 fill32_masked(shift, to, 0, xtmp, k2, count, rtmp); 10423 jmp(L_exit); 10424 10425 bind(L_fill_64_bytes); 10426 cmpq(count, 64 >> shift); 10427 jccb(Assembler::greater, L_fill_96_bytes); 10428 fill64_masked(shift, to, 0, xtmp, k2, count, rtmp); 10429 jmp(L_exit); 10430 10431 bind(L_fill_96_bytes); 10432 cmpq(count, 96 >> shift); 10433 jccb(Assembler::greater, L_fill_128_bytes); 10434 fill64(to, 0, xtmp); 10435 subq(count, 64 >> shift); 10436 fill32_masked(shift, to, 64, xtmp, k2, count, rtmp); 10437 jmp(L_exit); 10438 10439 bind(L_fill_128_bytes); 10440 cmpq(count, 128 >> shift); 10441 jccb(Assembler::greater, L_fill_128_bytes_loop_pre_header); 10442 fill64(to, 0, xtmp); 10443 fill32(to, 64, xtmp); 10444 subq(count, 96 >> shift); 10445 fill32_masked(shift, to, 96, xtmp, k2, count, rtmp); 10446 jmp(L_exit); 10447 10448 bind(L_fill_128_bytes_loop_pre_header); 10449 { 10450 mov(rtmp, to); 10451 andq(rtmp, 31); 10452 jccb(Assembler::zero, L_fill_128_bytes_loop_header); 10453 negq(rtmp); 10454 addq(rtmp, 32); 10455 mov64(r8, -1L); 10456 bzhiq(r8, r8, rtmp); 10457 kmovql(k2, r8); 10458 evmovdqu(T_BYTE, k2, Address(to, 0), xtmp, true, Assembler::AVX_256bit); 10459 addq(to, rtmp); 10460 shrq(rtmp, shift); 10461 subq(count, rtmp); 10462 } 10463 10464 cmpq(count, 128 >> shift); 10465 jcc(Assembler::less, L_fill_start); 10466 10467 bind(L_fill_128_bytes_loop_header); 10468 subq(count, 128 >> shift); 10469 10470 align32(); 10471 bind(L_fill_128_bytes_loop); 10472 fill64(to, 0, xtmp); 10473 fill64(to, 64, xtmp); 10474 addq(to, 128); 10475 subq(count, 128 >> shift); 10476 jccb(Assembler::greaterEqual, L_fill_128_bytes_loop); 10477 10478 addq(count, 128 >> shift); 10479 jcc(Assembler::zero, L_exit); 10480 jmp(L_fill_start); 10481 } 10482 10483 if (MaxVectorSize == 64) { 10484 // Sequence using 64 byte ZMM register. 10485 Label L_fill_128_bytes_zmm; 10486 Label L_fill_192_bytes_zmm; 10487 Label L_fill_192_bytes_loop_zmm; 10488 Label L_fill_192_bytes_loop_header_zmm; 10489 Label L_fill_192_bytes_loop_pre_header_zmm; 10490 Label L_fill_start_zmm_sequence; 10491 10492 bind(L_fill_zmm_sequence); 10493 evpbroadcast(type, xtmp, value, Assembler::AVX_512bit); 10494 10495 bind(L_fill_start_zmm_sequence); 10496 cmpq(count, 64 >> shift); 10497 jccb(Assembler::greater, L_fill_128_bytes_zmm); 10498 fill64_masked(shift, to, 0, xtmp, k2, count, rtmp, true); 10499 jmp(L_exit); 10500 10501 bind(L_fill_128_bytes_zmm); 10502 cmpq(count, 128 >> shift); 10503 jccb(Assembler::greater, L_fill_192_bytes_zmm); 10504 fill64(to, 0, xtmp, true); 10505 subq(count, 64 >> shift); 10506 fill64_masked(shift, to, 64, xtmp, k2, count, rtmp, true); 10507 jmp(L_exit); 10508 10509 bind(L_fill_192_bytes_zmm); 10510 cmpq(count, 192 >> shift); 10511 jccb(Assembler::greater, L_fill_192_bytes_loop_pre_header_zmm); 10512 fill64(to, 0, xtmp, true); 10513 fill64(to, 64, xtmp, true); 10514 subq(count, 128 >> shift); 10515 fill64_masked(shift, to, 128, xtmp, k2, count, rtmp, true); 10516 jmp(L_exit); 10517 10518 bind(L_fill_192_bytes_loop_pre_header_zmm); 10519 { 10520 movq(rtmp, to); 10521 andq(rtmp, 63); 10522 jccb(Assembler::zero, L_fill_192_bytes_loop_header_zmm); 10523 negq(rtmp); 10524 addq(rtmp, 64); 10525 mov64(r8, -1L); 10526 bzhiq(r8, r8, rtmp); 10527 kmovql(k2, r8); 10528 evmovdqu(T_BYTE, k2, Address(to, 0), xtmp, true, Assembler::AVX_512bit); 10529 addq(to, rtmp); 10530 shrq(rtmp, shift); 10531 subq(count, rtmp); 10532 } 10533 10534 cmpq(count, 192 >> shift); 10535 jcc(Assembler::less, L_fill_start_zmm_sequence); 10536 10537 bind(L_fill_192_bytes_loop_header_zmm); 10538 subq(count, 192 >> shift); 10539 10540 align32(); 10541 bind(L_fill_192_bytes_loop_zmm); 10542 fill64(to, 0, xtmp, true); 10543 fill64(to, 64, xtmp, true); 10544 fill64(to, 128, xtmp, true); 10545 addq(to, 192); 10546 subq(count, 192 >> shift); 10547 jccb(Assembler::greaterEqual, L_fill_192_bytes_loop_zmm); 10548 10549 addq(count, 192 >> shift); 10550 jcc(Assembler::zero, L_exit); 10551 jmp(L_fill_start_zmm_sequence); 10552 } 10553 bind(L_exit); 10554 } 10555 #endif 10556 #endif //COMPILER2_OR_JVMCI 10557 10558 10559 #ifdef _LP64 10560 void MacroAssembler::convert_f2i(Register dst, XMMRegister src) { 10561 Label done; 10562 cvttss2sil(dst, src); 10563 // Conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub 10564 cmpl(dst, 0x80000000); // float_sign_flip 10565 jccb(Assembler::notEqual, done); 10566 subptr(rsp, 8); 10567 movflt(Address(rsp, 0), src); 10568 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::f2i_fixup()))); 10569 pop(dst); 10570 bind(done); 10571 } 10572 10573 void MacroAssembler::convert_d2i(Register dst, XMMRegister src) { 10574 Label done; 10575 cvttsd2sil(dst, src); 10576 // Conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub 10577 cmpl(dst, 0x80000000); // float_sign_flip 10578 jccb(Assembler::notEqual, done); 10579 subptr(rsp, 8); 10580 movdbl(Address(rsp, 0), src); 10581 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::d2i_fixup()))); 10582 pop(dst); 10583 bind(done); 10584 } 10585 10586 void MacroAssembler::convert_f2l(Register dst, XMMRegister src) { 10587 Label done; 10588 cvttss2siq(dst, src); 10589 cmp64(dst, ExternalAddress((address) StubRoutines::x86::double_sign_flip())); 10590 jccb(Assembler::notEqual, done); 10591 subptr(rsp, 8); 10592 movflt(Address(rsp, 0), src); 10593 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::f2l_fixup()))); 10594 pop(dst); 10595 bind(done); 10596 } 10597 10598 void MacroAssembler::round_float(Register dst, XMMRegister src, Register rtmp, Register rcx) { 10599 // Following code is line by line assembly translation rounding algorithm. 10600 // Please refer to java.lang.Math.round(float) algorithm for details. 10601 const int32_t FloatConsts_EXP_BIT_MASK = 0x7F800000; 10602 const int32_t FloatConsts_SIGNIFICAND_WIDTH = 24; 10603 const int32_t FloatConsts_EXP_BIAS = 127; 10604 const int32_t FloatConsts_SIGNIF_BIT_MASK = 0x007FFFFF; 10605 const int32_t MINUS_32 = 0xFFFFFFE0; 10606 Label L_special_case, L_block1, L_exit; 10607 movl(rtmp, FloatConsts_EXP_BIT_MASK); 10608 movdl(dst, src); 10609 andl(dst, rtmp); 10610 sarl(dst, FloatConsts_SIGNIFICAND_WIDTH - 1); 10611 movl(rtmp, FloatConsts_SIGNIFICAND_WIDTH - 2 + FloatConsts_EXP_BIAS); 10612 subl(rtmp, dst); 10613 movl(rcx, rtmp); 10614 movl(dst, MINUS_32); 10615 testl(rtmp, dst); 10616 jccb(Assembler::notEqual, L_special_case); 10617 movdl(dst, src); 10618 andl(dst, FloatConsts_SIGNIF_BIT_MASK); 10619 orl(dst, FloatConsts_SIGNIF_BIT_MASK + 1); 10620 movdl(rtmp, src); 10621 testl(rtmp, rtmp); 10622 jccb(Assembler::greaterEqual, L_block1); 10623 negl(dst); 10624 bind(L_block1); 10625 sarl(dst); 10626 addl(dst, 0x1); 10627 sarl(dst, 0x1); 10628 jmp(L_exit); 10629 bind(L_special_case); 10630 convert_f2i(dst, src); 10631 bind(L_exit); 10632 } 10633 10634 void MacroAssembler::round_double(Register dst, XMMRegister src, Register rtmp, Register rcx) { 10635 // Following code is line by line assembly translation rounding algorithm. 10636 // Please refer to java.lang.Math.round(double) algorithm for details. 10637 const int64_t DoubleConsts_EXP_BIT_MASK = 0x7FF0000000000000L; 10638 const int64_t DoubleConsts_SIGNIFICAND_WIDTH = 53; 10639 const int64_t DoubleConsts_EXP_BIAS = 1023; 10640 const int64_t DoubleConsts_SIGNIF_BIT_MASK = 0x000FFFFFFFFFFFFFL; 10641 const int64_t MINUS_64 = 0xFFFFFFFFFFFFFFC0L; 10642 Label L_special_case, L_block1, L_exit; 10643 mov64(rtmp, DoubleConsts_EXP_BIT_MASK); 10644 movq(dst, src); 10645 andq(dst, rtmp); 10646 sarq(dst, DoubleConsts_SIGNIFICAND_WIDTH - 1); 10647 mov64(rtmp, DoubleConsts_SIGNIFICAND_WIDTH - 2 + DoubleConsts_EXP_BIAS); 10648 subq(rtmp, dst); 10649 movq(rcx, rtmp); 10650 mov64(dst, MINUS_64); 10651 testq(rtmp, dst); 10652 jccb(Assembler::notEqual, L_special_case); 10653 movq(dst, src); 10654 mov64(rtmp, DoubleConsts_SIGNIF_BIT_MASK); 10655 andq(dst, rtmp); 10656 mov64(rtmp, DoubleConsts_SIGNIF_BIT_MASK + 1); 10657 orq(dst, rtmp); 10658 movq(rtmp, src); 10659 testq(rtmp, rtmp); 10660 jccb(Assembler::greaterEqual, L_block1); 10661 negq(dst); 10662 bind(L_block1); 10663 sarq(dst); 10664 addq(dst, 0x1); 10665 sarq(dst, 0x1); 10666 jmp(L_exit); 10667 bind(L_special_case); 10668 convert_d2l(dst, src); 10669 bind(L_exit); 10670 } 10671 10672 void MacroAssembler::convert_d2l(Register dst, XMMRegister src) { 10673 Label done; 10674 cvttsd2siq(dst, src); 10675 cmp64(dst, ExternalAddress((address) StubRoutines::x86::double_sign_flip())); 10676 jccb(Assembler::notEqual, done); 10677 subptr(rsp, 8); 10678 movdbl(Address(rsp, 0), src); 10679 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::d2l_fixup()))); 10680 pop(dst); 10681 bind(done); 10682 } 10683 10684 void MacroAssembler::cache_wb(Address line) 10685 { 10686 // 64 bit cpus always support clflush 10687 assert(VM_Version::supports_clflush(), "clflush should be available"); 10688 bool optimized = VM_Version::supports_clflushopt(); 10689 bool no_evict = VM_Version::supports_clwb(); 10690 10691 // prefer clwb (writeback without evict) otherwise 10692 // prefer clflushopt (potentially parallel writeback with evict) 10693 // otherwise fallback on clflush (serial writeback with evict) 10694 10695 if (optimized) { 10696 if (no_evict) { 10697 clwb(line); 10698 } else { 10699 clflushopt(line); 10700 } 10701 } else { 10702 // no need for fence when using CLFLUSH 10703 clflush(line); 10704 } 10705 } 10706 10707 void MacroAssembler::cache_wbsync(bool is_pre) 10708 { 10709 assert(VM_Version::supports_clflush(), "clflush should be available"); 10710 bool optimized = VM_Version::supports_clflushopt(); 10711 bool no_evict = VM_Version::supports_clwb(); 10712 10713 // pick the correct implementation 10714 10715 if (!is_pre && (optimized || no_evict)) { 10716 // need an sfence for post flush when using clflushopt or clwb 10717 // otherwise no no need for any synchroniaztion 10718 10719 sfence(); 10720 } 10721 } 10722 10723 #endif // _LP64 10724 10725 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) { 10726 switch (cond) { 10727 // Note some conditions are synonyms for others 10728 case Assembler::zero: return Assembler::notZero; 10729 case Assembler::notZero: return Assembler::zero; 10730 case Assembler::less: return Assembler::greaterEqual; 10731 case Assembler::lessEqual: return Assembler::greater; 10732 case Assembler::greater: return Assembler::lessEqual; 10733 case Assembler::greaterEqual: return Assembler::less; 10734 case Assembler::below: return Assembler::aboveEqual; 10735 case Assembler::belowEqual: return Assembler::above; 10736 case Assembler::above: return Assembler::belowEqual; 10737 case Assembler::aboveEqual: return Assembler::below; 10738 case Assembler::overflow: return Assembler::noOverflow; 10739 case Assembler::noOverflow: return Assembler::overflow; 10740 case Assembler::negative: return Assembler::positive; 10741 case Assembler::positive: return Assembler::negative; 10742 case Assembler::parity: return Assembler::noParity; 10743 case Assembler::noParity: return Assembler::parity; 10744 } 10745 ShouldNotReachHere(); return Assembler::overflow; 10746 } 10747 10748 // This is simply a call to Thread::current() 10749 void MacroAssembler::get_thread(Register thread) { 10750 if (thread != rax) { 10751 push(rax); 10752 } 10753 LP64_ONLY(push(rdi);) 10754 LP64_ONLY(push(rsi);) 10755 push(rdx); 10756 push(rcx); 10757 #ifdef _LP64 10758 push(r8); 10759 push(r9); 10760 push(r10); 10761 push(r11); 10762 #endif 10763 10764 MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, Thread::current), 0); 10765 10766 #ifdef _LP64 10767 pop(r11); 10768 pop(r10); 10769 pop(r9); 10770 pop(r8); 10771 #endif 10772 pop(rcx); 10773 pop(rdx); 10774 LP64_ONLY(pop(rsi);) 10775 LP64_ONLY(pop(rdi);) 10776 if (thread != rax) { 10777 mov(thread, rax); 10778 pop(rax); 10779 } 10780 } 10781 10782 void MacroAssembler::check_stack_alignment(Register sp, const char* msg, unsigned bias, Register tmp) { 10783 Label L_stack_ok; 10784 if (bias == 0) { 10785 testptr(sp, 2 * wordSize - 1); 10786 } else { 10787 // lea(tmp, Address(rsp, bias); 10788 mov(tmp, sp); 10789 addptr(tmp, bias); 10790 testptr(tmp, 2 * wordSize - 1); 10791 } 10792 jcc(Assembler::equal, L_stack_ok); 10793 block_comment(msg); 10794 stop(msg); 10795 bind(L_stack_ok); 10796 } 10797 10798 // Implements lightweight-locking. 10799 // 10800 // obj: the object to be locked 10801 // reg_rax: rax 10802 // thread: the thread which attempts to lock obj 10803 // tmp: a temporary register 10804 void MacroAssembler::lightweight_lock(Register basic_lock, Register obj, Register reg_rax, Register thread, Register tmp, Label& slow) { 10805 assert(reg_rax == rax, ""); 10806 assert_different_registers(basic_lock, obj, reg_rax, thread, tmp); 10807 10808 Label push; 10809 const Register top = tmp; 10810 10811 // Preload the markWord. It is important that this is the first 10812 // instruction emitted as it is part of C1's null check semantics. 10813 movptr(reg_rax, Address(obj, oopDesc::mark_offset_in_bytes())); 10814 10815 if (UseObjectMonitorTable) { 10816 // Clear cache in case fast locking succeeds. 10817 movptr(Address(basic_lock, BasicObjectLock::lock_offset() + in_ByteSize((BasicLock::object_monitor_cache_offset_in_bytes()))), 0); 10818 } 10819 10820 // Load top. 10821 movl(top, Address(thread, JavaThread::lock_stack_top_offset())); 10822 10823 // Check if the lock-stack is full. 10824 cmpl(top, LockStack::end_offset()); 10825 jcc(Assembler::greaterEqual, slow); 10826 10827 // Check for recursion. 10828 cmpptr(obj, Address(thread, top, Address::times_1, -oopSize)); 10829 jcc(Assembler::equal, push); 10830 10831 // Check header for monitor (0b10). 10832 testptr(reg_rax, markWord::monitor_value); 10833 jcc(Assembler::notZero, slow); 10834 10835 // Try to lock. Transition lock bits 0b01 => 0b00 10836 movptr(tmp, reg_rax); 10837 andptr(tmp, ~(int32_t)markWord::unlocked_value); 10838 orptr(reg_rax, markWord::unlocked_value); 10839 lock(); cmpxchgptr(tmp, Address(obj, oopDesc::mark_offset_in_bytes())); 10840 jcc(Assembler::notEqual, slow); 10841 10842 // Restore top, CAS clobbers register. 10843 movl(top, Address(thread, JavaThread::lock_stack_top_offset())); 10844 10845 bind(push); 10846 // After successful lock, push object on lock-stack. 10847 movptr(Address(thread, top), obj); 10848 incrementl(top, oopSize); 10849 movl(Address(thread, JavaThread::lock_stack_top_offset()), top); 10850 } 10851 10852 // Implements lightweight-unlocking. 10853 // 10854 // obj: the object to be unlocked 10855 // reg_rax: rax 10856 // thread: the thread 10857 // tmp: a temporary register 10858 void MacroAssembler::lightweight_unlock(Register obj, Register reg_rax, Register thread, Register tmp, Label& slow) { 10859 assert(reg_rax == rax, ""); 10860 assert_different_registers(obj, reg_rax, thread, tmp); 10861 10862 Label unlocked, push_and_slow; 10863 const Register top = tmp; 10864 10865 // Check if obj is top of lock-stack. 10866 movl(top, Address(thread, JavaThread::lock_stack_top_offset())); 10867 cmpptr(obj, Address(thread, top, Address::times_1, -oopSize)); 10868 jcc(Assembler::notEqual, slow); 10869 10870 // Pop lock-stack. 10871 DEBUG_ONLY(movptr(Address(thread, top, Address::times_1, -oopSize), 0);) 10872 subl(Address(thread, JavaThread::lock_stack_top_offset()), oopSize); 10873 10874 // Check if recursive. 10875 cmpptr(obj, Address(thread, top, Address::times_1, -2 * oopSize)); 10876 jcc(Assembler::equal, unlocked); 10877 10878 // Not recursive. Check header for monitor (0b10). 10879 movptr(reg_rax, Address(obj, oopDesc::mark_offset_in_bytes())); 10880 testptr(reg_rax, markWord::monitor_value); 10881 jcc(Assembler::notZero, push_and_slow); 10882 10883 #ifdef ASSERT 10884 // Check header not unlocked (0b01). 10885 Label not_unlocked; 10886 testptr(reg_rax, markWord::unlocked_value); 10887 jcc(Assembler::zero, not_unlocked); 10888 stop("lightweight_unlock already unlocked"); 10889 bind(not_unlocked); 10890 #endif 10891 10892 // Try to unlock. Transition lock bits 0b00 => 0b01 10893 movptr(tmp, reg_rax); 10894 orptr(tmp, markWord::unlocked_value); 10895 lock(); cmpxchgptr(tmp, Address(obj, oopDesc::mark_offset_in_bytes())); 10896 jcc(Assembler::equal, unlocked); 10897 10898 bind(push_and_slow); 10899 // Restore lock-stack and handle the unlock in runtime. 10900 #ifdef ASSERT 10901 movl(top, Address(thread, JavaThread::lock_stack_top_offset())); 10902 movptr(Address(thread, top), obj); 10903 #endif 10904 addl(Address(thread, JavaThread::lock_stack_top_offset()), oopSize); 10905 jmp(slow); 10906 10907 bind(unlocked); 10908 } 10909 10910 #ifdef _LP64 10911 // Saves legacy GPRs state on stack. 10912 void MacroAssembler::save_legacy_gprs() { 10913 subq(rsp, 16 * wordSize); 10914 movq(Address(rsp, 15 * wordSize), rax); 10915 movq(Address(rsp, 14 * wordSize), rcx); 10916 movq(Address(rsp, 13 * wordSize), rdx); 10917 movq(Address(rsp, 12 * wordSize), rbx); 10918 movq(Address(rsp, 10 * wordSize), rbp); 10919 movq(Address(rsp, 9 * wordSize), rsi); 10920 movq(Address(rsp, 8 * wordSize), rdi); 10921 movq(Address(rsp, 7 * wordSize), r8); 10922 movq(Address(rsp, 6 * wordSize), r9); 10923 movq(Address(rsp, 5 * wordSize), r10); 10924 movq(Address(rsp, 4 * wordSize), r11); 10925 movq(Address(rsp, 3 * wordSize), r12); 10926 movq(Address(rsp, 2 * wordSize), r13); 10927 movq(Address(rsp, wordSize), r14); 10928 movq(Address(rsp, 0), r15); 10929 } 10930 10931 // Resotres back legacy GPRs state from stack. 10932 void MacroAssembler::restore_legacy_gprs() { 10933 movq(r15, Address(rsp, 0)); 10934 movq(r14, Address(rsp, wordSize)); 10935 movq(r13, Address(rsp, 2 * wordSize)); 10936 movq(r12, Address(rsp, 3 * wordSize)); 10937 movq(r11, Address(rsp, 4 * wordSize)); 10938 movq(r10, Address(rsp, 5 * wordSize)); 10939 movq(r9, Address(rsp, 6 * wordSize)); 10940 movq(r8, Address(rsp, 7 * wordSize)); 10941 movq(rdi, Address(rsp, 8 * wordSize)); 10942 movq(rsi, Address(rsp, 9 * wordSize)); 10943 movq(rbp, Address(rsp, 10 * wordSize)); 10944 movq(rbx, Address(rsp, 12 * wordSize)); 10945 movq(rdx, Address(rsp, 13 * wordSize)); 10946 movq(rcx, Address(rsp, 14 * wordSize)); 10947 movq(rax, Address(rsp, 15 * wordSize)); 10948 addq(rsp, 16 * wordSize); 10949 } 10950 10951 void MacroAssembler::setcc(Assembler::Condition comparison, Register dst) { 10952 if (VM_Version::supports_apx_f()) { 10953 esetzucc(comparison, dst); 10954 } else { 10955 setb(comparison, dst); 10956 movzbl(dst, dst); 10957 } 10958 } 10959 #endif