1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/assembler.hpp" 27 #include "asm/assembler.inline.hpp" 28 #include "code/compiledIC.hpp" 29 #include "compiler/compiler_globals.hpp" 30 #include "compiler/disassembler.hpp" 31 #include "crc32c.h" 32 #include "gc/shared/barrierSet.hpp" 33 #include "gc/shared/barrierSetAssembler.hpp" 34 #include "gc/shared/collectedHeap.inline.hpp" 35 #include "gc/shared/tlab_globals.hpp" 36 #include "interpreter/bytecodeHistogram.hpp" 37 #include "interpreter/interpreter.hpp" 38 #include "jvm.h" 39 #include "memory/resourceArea.hpp" 40 #include "memory/universe.hpp" 41 #include "oops/accessDecorators.hpp" 42 #include "oops/compressedKlass.inline.hpp" 43 #include "oops/compressedOops.inline.hpp" 44 #include "oops/klass.inline.hpp" 45 #include "prims/methodHandles.hpp" 46 #include "runtime/continuation.hpp" 47 #include "runtime/interfaceSupport.inline.hpp" 48 #include "runtime/javaThread.hpp" 49 #include "runtime/jniHandles.hpp" 50 #include "runtime/objectMonitor.hpp" 51 #include "runtime/os.hpp" 52 #include "runtime/safepoint.hpp" 53 #include "runtime/safepointMechanism.hpp" 54 #include "runtime/sharedRuntime.hpp" 55 #include "runtime/stubRoutines.hpp" 56 #include "utilities/checkedCast.hpp" 57 #include "utilities/macros.hpp" 58 59 #ifdef PRODUCT 60 #define BLOCK_COMMENT(str) /* nothing */ 61 #define STOP(error) stop(error) 62 #else 63 #define BLOCK_COMMENT(str) block_comment(str) 64 #define STOP(error) block_comment(error); stop(error) 65 #endif 66 67 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") 68 69 #ifdef ASSERT 70 bool AbstractAssembler::pd_check_instruction_mark() { return true; } 71 #endif 72 73 static const Assembler::Condition reverse[] = { 74 Assembler::noOverflow /* overflow = 0x0 */ , 75 Assembler::overflow /* noOverflow = 0x1 */ , 76 Assembler::aboveEqual /* carrySet = 0x2, below = 0x2 */ , 77 Assembler::below /* aboveEqual = 0x3, carryClear = 0x3 */ , 78 Assembler::notZero /* zero = 0x4, equal = 0x4 */ , 79 Assembler::zero /* notZero = 0x5, notEqual = 0x5 */ , 80 Assembler::above /* belowEqual = 0x6 */ , 81 Assembler::belowEqual /* above = 0x7 */ , 82 Assembler::positive /* negative = 0x8 */ , 83 Assembler::negative /* positive = 0x9 */ , 84 Assembler::noParity /* parity = 0xa */ , 85 Assembler::parity /* noParity = 0xb */ , 86 Assembler::greaterEqual /* less = 0xc */ , 87 Assembler::less /* greaterEqual = 0xd */ , 88 Assembler::greater /* lessEqual = 0xe */ , 89 Assembler::lessEqual /* greater = 0xf, */ 90 91 }; 92 93 94 // Implementation of MacroAssembler 95 96 // First all the versions that have distinct versions depending on 32/64 bit 97 // Unless the difference is trivial (1 line or so). 98 99 #ifndef _LP64 100 101 // 32bit versions 102 103 Address MacroAssembler::as_Address(AddressLiteral adr) { 104 return Address(adr.target(), adr.rspec()); 105 } 106 107 Address MacroAssembler::as_Address(ArrayAddress adr, Register rscratch) { 108 assert(rscratch == noreg, ""); 109 return Address::make_array(adr); 110 } 111 112 void MacroAssembler::call_VM_leaf_base(address entry_point, 113 int number_of_arguments) { 114 call(RuntimeAddress(entry_point)); 115 increment(rsp, number_of_arguments * wordSize); 116 } 117 118 void MacroAssembler::cmpklass(Address src1, Metadata* obj) { 119 cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate()); 120 } 121 122 123 void MacroAssembler::cmpklass(Register src1, Metadata* obj) { 124 cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate()); 125 } 126 127 void MacroAssembler::cmpoop(Address src1, jobject obj) { 128 cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate()); 129 } 130 131 void MacroAssembler::cmpoop(Register src1, jobject obj, Register rscratch) { 132 assert(rscratch == noreg, "redundant"); 133 cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate()); 134 } 135 136 void MacroAssembler::extend_sign(Register hi, Register lo) { 137 // According to Intel Doc. AP-526, "Integer Divide", p.18. 138 if (VM_Version::is_P6() && hi == rdx && lo == rax) { 139 cdql(); 140 } else { 141 movl(hi, lo); 142 sarl(hi, 31); 143 } 144 } 145 146 void MacroAssembler::jC2(Register tmp, Label& L) { 147 // set parity bit if FPU flag C2 is set (via rax) 148 save_rax(tmp); 149 fwait(); fnstsw_ax(); 150 sahf(); 151 restore_rax(tmp); 152 // branch 153 jcc(Assembler::parity, L); 154 } 155 156 void MacroAssembler::jnC2(Register tmp, Label& L) { 157 // set parity bit if FPU flag C2 is set (via rax) 158 save_rax(tmp); 159 fwait(); fnstsw_ax(); 160 sahf(); 161 restore_rax(tmp); 162 // branch 163 jcc(Assembler::noParity, L); 164 } 165 166 // 32bit can do a case table jump in one instruction but we no longer allow the base 167 // to be installed in the Address class 168 void MacroAssembler::jump(ArrayAddress entry, Register rscratch) { 169 assert(rscratch == noreg, "not needed"); 170 jmp(as_Address(entry, noreg)); 171 } 172 173 // Note: y_lo will be destroyed 174 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) { 175 // Long compare for Java (semantics as described in JVM spec.) 176 Label high, low, done; 177 178 cmpl(x_hi, y_hi); 179 jcc(Assembler::less, low); 180 jcc(Assembler::greater, high); 181 // x_hi is the return register 182 xorl(x_hi, x_hi); 183 cmpl(x_lo, y_lo); 184 jcc(Assembler::below, low); 185 jcc(Assembler::equal, done); 186 187 bind(high); 188 xorl(x_hi, x_hi); 189 increment(x_hi); 190 jmp(done); 191 192 bind(low); 193 xorl(x_hi, x_hi); 194 decrementl(x_hi); 195 196 bind(done); 197 } 198 199 void MacroAssembler::lea(Register dst, AddressLiteral src) { 200 mov_literal32(dst, (int32_t)src.target(), src.rspec()); 201 } 202 203 void MacroAssembler::lea(Address dst, AddressLiteral adr, Register rscratch) { 204 assert(rscratch == noreg, "not needed"); 205 206 // leal(dst, as_Address(adr)); 207 // see note in movl as to why we must use a move 208 mov_literal32(dst, (int32_t)adr.target(), adr.rspec()); 209 } 210 211 void MacroAssembler::leave() { 212 mov(rsp, rbp); 213 pop(rbp); 214 } 215 216 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) { 217 // Multiplication of two Java long values stored on the stack 218 // as illustrated below. Result is in rdx:rax. 219 // 220 // rsp ---> [ ?? ] \ \ 221 // .... | y_rsp_offset | 222 // [ y_lo ] / (in bytes) | x_rsp_offset 223 // [ y_hi ] | (in bytes) 224 // .... | 225 // [ x_lo ] / 226 // [ x_hi ] 227 // .... 228 // 229 // Basic idea: lo(result) = lo(x_lo * y_lo) 230 // hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi) 231 Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset); 232 Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset); 233 Label quick; 234 // load x_hi, y_hi and check if quick 235 // multiplication is possible 236 movl(rbx, x_hi); 237 movl(rcx, y_hi); 238 movl(rax, rbx); 239 orl(rbx, rcx); // rbx, = 0 <=> x_hi = 0 and y_hi = 0 240 jcc(Assembler::zero, quick); // if rbx, = 0 do quick multiply 241 // do full multiplication 242 // 1st step 243 mull(y_lo); // x_hi * y_lo 244 movl(rbx, rax); // save lo(x_hi * y_lo) in rbx, 245 // 2nd step 246 movl(rax, x_lo); 247 mull(rcx); // x_lo * y_hi 248 addl(rbx, rax); // add lo(x_lo * y_hi) to rbx, 249 // 3rd step 250 bind(quick); // note: rbx, = 0 if quick multiply! 251 movl(rax, x_lo); 252 mull(y_lo); // x_lo * y_lo 253 addl(rdx, rbx); // correct hi(x_lo * y_lo) 254 } 255 256 void MacroAssembler::lneg(Register hi, Register lo) { 257 negl(lo); 258 adcl(hi, 0); 259 negl(hi); 260 } 261 262 void MacroAssembler::lshl(Register hi, Register lo) { 263 // Java shift left long support (semantics as described in JVM spec., p.305) 264 // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n)) 265 // shift value is in rcx ! 266 assert(hi != rcx, "must not use rcx"); 267 assert(lo != rcx, "must not use rcx"); 268 const Register s = rcx; // shift count 269 const int n = BitsPerWord; 270 Label L; 271 andl(s, 0x3f); // s := s & 0x3f (s < 0x40) 272 cmpl(s, n); // if (s < n) 273 jcc(Assembler::less, L); // else (s >= n) 274 movl(hi, lo); // x := x << n 275 xorl(lo, lo); 276 // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n! 277 bind(L); // s (mod n) < n 278 shldl(hi, lo); // x := x << s 279 shll(lo); 280 } 281 282 283 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) { 284 // Java shift right long support (semantics as described in JVM spec., p.306 & p.310) 285 // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n)) 286 assert(hi != rcx, "must not use rcx"); 287 assert(lo != rcx, "must not use rcx"); 288 const Register s = rcx; // shift count 289 const int n = BitsPerWord; 290 Label L; 291 andl(s, 0x3f); // s := s & 0x3f (s < 0x40) 292 cmpl(s, n); // if (s < n) 293 jcc(Assembler::less, L); // else (s >= n) 294 movl(lo, hi); // x := x >> n 295 if (sign_extension) sarl(hi, 31); 296 else xorl(hi, hi); 297 // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n! 298 bind(L); // s (mod n) < n 299 shrdl(lo, hi); // x := x >> s 300 if (sign_extension) sarl(hi); 301 else shrl(hi); 302 } 303 304 void MacroAssembler::movoop(Register dst, jobject obj) { 305 mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate()); 306 } 307 308 void MacroAssembler::movoop(Address dst, jobject obj, Register rscratch) { 309 assert(rscratch == noreg, "redundant"); 310 mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate()); 311 } 312 313 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) { 314 mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate()); 315 } 316 317 void MacroAssembler::mov_metadata(Address dst, Metadata* obj, Register rscratch) { 318 assert(rscratch == noreg, "redundant"); 319 mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate()); 320 } 321 322 void MacroAssembler::movptr(Register dst, AddressLiteral src) { 323 if (src.is_lval()) { 324 mov_literal32(dst, (intptr_t)src.target(), src.rspec()); 325 } else { 326 movl(dst, as_Address(src)); 327 } 328 } 329 330 void MacroAssembler::movptr(ArrayAddress dst, Register src, Register rscratch) { 331 assert(rscratch == noreg, "redundant"); 332 movl(as_Address(dst, noreg), src); 333 } 334 335 void MacroAssembler::movptr(Register dst, ArrayAddress src) { 336 movl(dst, as_Address(src, noreg)); 337 } 338 339 void MacroAssembler::movptr(Address dst, intptr_t src, Register rscratch) { 340 assert(rscratch == noreg, "redundant"); 341 movl(dst, src); 342 } 343 344 void MacroAssembler::pushoop(jobject obj, Register rscratch) { 345 assert(rscratch == noreg, "redundant"); 346 push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate()); 347 } 348 349 void MacroAssembler::pushklass(Metadata* obj, Register rscratch) { 350 assert(rscratch == noreg, "redundant"); 351 push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate()); 352 } 353 354 void MacroAssembler::pushptr(AddressLiteral src, Register rscratch) { 355 assert(rscratch == noreg, "redundant"); 356 if (src.is_lval()) { 357 push_literal32((int32_t)src.target(), src.rspec()); 358 } else { 359 pushl(as_Address(src)); 360 } 361 } 362 363 static void pass_arg0(MacroAssembler* masm, Register arg) { 364 masm->push(arg); 365 } 366 367 static void pass_arg1(MacroAssembler* masm, Register arg) { 368 masm->push(arg); 369 } 370 371 static void pass_arg2(MacroAssembler* masm, Register arg) { 372 masm->push(arg); 373 } 374 375 static void pass_arg3(MacroAssembler* masm, Register arg) { 376 masm->push(arg); 377 } 378 379 #ifndef PRODUCT 380 extern "C" void findpc(intptr_t x); 381 #endif 382 383 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) { 384 // In order to get locks to work, we need to fake a in_VM state 385 JavaThread* thread = JavaThread::current(); 386 JavaThreadState saved_state = thread->thread_state(); 387 thread->set_thread_state(_thread_in_vm); 388 if (ShowMessageBoxOnError) { 389 JavaThread* thread = JavaThread::current(); 390 JavaThreadState saved_state = thread->thread_state(); 391 thread->set_thread_state(_thread_in_vm); 392 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { 393 ttyLocker ttyl; 394 BytecodeCounter::print(); 395 } 396 // To see where a verify_oop failed, get $ebx+40/X for this frame. 397 // This is the value of eip which points to where verify_oop will return. 398 if (os::message_box(msg, "Execution stopped, print registers?")) { 399 print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip); 400 BREAKPOINT; 401 } 402 } 403 fatal("DEBUG MESSAGE: %s", msg); 404 } 405 406 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) { 407 ttyLocker ttyl; 408 DebuggingContext debugging{}; 409 tty->print_cr("eip = 0x%08x", eip); 410 #ifndef PRODUCT 411 if ((WizardMode || Verbose) && PrintMiscellaneous) { 412 tty->cr(); 413 findpc(eip); 414 tty->cr(); 415 } 416 #endif 417 #define PRINT_REG(rax) \ 418 { tty->print("%s = ", #rax); os::print_location(tty, rax); } 419 PRINT_REG(rax); 420 PRINT_REG(rbx); 421 PRINT_REG(rcx); 422 PRINT_REG(rdx); 423 PRINT_REG(rdi); 424 PRINT_REG(rsi); 425 PRINT_REG(rbp); 426 PRINT_REG(rsp); 427 #undef PRINT_REG 428 // Print some words near top of staack. 429 int* dump_sp = (int*) rsp; 430 for (int col1 = 0; col1 < 8; col1++) { 431 tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp); 432 os::print_location(tty, *dump_sp++); 433 } 434 for (int row = 0; row < 16; row++) { 435 tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp); 436 for (int col = 0; col < 8; col++) { 437 tty->print(" 0x%08x", *dump_sp++); 438 } 439 tty->cr(); 440 } 441 // Print some instructions around pc: 442 Disassembler::decode((address)eip-64, (address)eip); 443 tty->print_cr("--------"); 444 Disassembler::decode((address)eip, (address)eip+32); 445 } 446 447 void MacroAssembler::stop(const char* msg) { 448 // push address of message 449 ExternalAddress message((address)msg); 450 pushptr(message.addr(), noreg); 451 { Label L; call(L, relocInfo::none); bind(L); } // push eip 452 pusha(); // push registers 453 call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32))); 454 hlt(); 455 } 456 457 void MacroAssembler::warn(const char* msg) { 458 push_CPU_state(); 459 460 // push address of message 461 ExternalAddress message((address)msg); 462 pushptr(message.addr(), noreg); 463 464 call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning))); 465 addl(rsp, wordSize); // discard argument 466 pop_CPU_state(); 467 } 468 469 void MacroAssembler::print_state() { 470 { Label L; call(L, relocInfo::none); bind(L); } // push eip 471 pusha(); // push registers 472 473 push_CPU_state(); 474 call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32))); 475 pop_CPU_state(); 476 477 popa(); 478 addl(rsp, wordSize); 479 } 480 481 #else // _LP64 482 483 // 64 bit versions 484 485 Address MacroAssembler::as_Address(AddressLiteral adr) { 486 // amd64 always does this as a pc-rel 487 // we can be absolute or disp based on the instruction type 488 // jmp/call are displacements others are absolute 489 assert(!adr.is_lval(), "must be rval"); 490 assert(reachable(adr), "must be"); 491 return Address(checked_cast<int32_t>(adr.target() - pc()), adr.target(), adr.reloc()); 492 493 } 494 495 Address MacroAssembler::as_Address(ArrayAddress adr, Register rscratch) { 496 AddressLiteral base = adr.base(); 497 lea(rscratch, base); 498 Address index = adr.index(); 499 assert(index._disp == 0, "must not have disp"); // maybe it can? 500 Address array(rscratch, index._index, index._scale, index._disp); 501 return array; 502 } 503 504 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) { 505 Label L, E; 506 507 #ifdef _WIN64 508 // Windows always allocates space for it's register args 509 assert(num_args <= 4, "only register arguments supported"); 510 subq(rsp, frame::arg_reg_save_area_bytes); 511 #endif 512 513 // Align stack if necessary 514 testl(rsp, 15); 515 jcc(Assembler::zero, L); 516 517 subq(rsp, 8); 518 call(RuntimeAddress(entry_point)); 519 addq(rsp, 8); 520 jmp(E); 521 522 bind(L); 523 call(RuntimeAddress(entry_point)); 524 525 bind(E); 526 527 #ifdef _WIN64 528 // restore stack pointer 529 addq(rsp, frame::arg_reg_save_area_bytes); 530 #endif 531 532 } 533 534 void MacroAssembler::cmp64(Register src1, AddressLiteral src2, Register rscratch) { 535 assert(!src2.is_lval(), "should use cmpptr"); 536 assert(rscratch != noreg || always_reachable(src2), "missing"); 537 538 if (reachable(src2)) { 539 cmpq(src1, as_Address(src2)); 540 } else { 541 lea(rscratch, src2); 542 Assembler::cmpq(src1, Address(rscratch, 0)); 543 } 544 } 545 546 int MacroAssembler::corrected_idivq(Register reg) { 547 // Full implementation of Java ldiv and lrem; checks for special 548 // case as described in JVM spec., p.243 & p.271. The function 549 // returns the (pc) offset of the idivl instruction - may be needed 550 // for implicit exceptions. 551 // 552 // normal case special case 553 // 554 // input : rax: dividend min_long 555 // reg: divisor (may not be eax/edx) -1 556 // 557 // output: rax: quotient (= rax idiv reg) min_long 558 // rdx: remainder (= rax irem reg) 0 559 assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register"); 560 static const int64_t min_long = 0x8000000000000000; 561 Label normal_case, special_case; 562 563 // check for special case 564 cmp64(rax, ExternalAddress((address) &min_long), rdx /*rscratch*/); 565 jcc(Assembler::notEqual, normal_case); 566 xorl(rdx, rdx); // prepare rdx for possible special case (where 567 // remainder = 0) 568 cmpq(reg, -1); 569 jcc(Assembler::equal, special_case); 570 571 // handle normal case 572 bind(normal_case); 573 cdqq(); 574 int idivq_offset = offset(); 575 idivq(reg); 576 577 // normal and special case exit 578 bind(special_case); 579 580 return idivq_offset; 581 } 582 583 void MacroAssembler::decrementq(Register reg, int value) { 584 if (value == min_jint) { subq(reg, value); return; } 585 if (value < 0) { incrementq(reg, -value); return; } 586 if (value == 0) { ; return; } 587 if (value == 1 && UseIncDec) { decq(reg) ; return; } 588 /* else */ { subq(reg, value) ; return; } 589 } 590 591 void MacroAssembler::decrementq(Address dst, int value) { 592 if (value == min_jint) { subq(dst, value); return; } 593 if (value < 0) { incrementq(dst, -value); return; } 594 if (value == 0) { ; return; } 595 if (value == 1 && UseIncDec) { decq(dst) ; return; } 596 /* else */ { subq(dst, value) ; return; } 597 } 598 599 void MacroAssembler::incrementq(AddressLiteral dst, Register rscratch) { 600 assert(rscratch != noreg || always_reachable(dst), "missing"); 601 602 if (reachable(dst)) { 603 incrementq(as_Address(dst)); 604 } else { 605 lea(rscratch, dst); 606 incrementq(Address(rscratch, 0)); 607 } 608 } 609 610 void MacroAssembler::incrementq(Register reg, int value) { 611 if (value == min_jint) { addq(reg, value); return; } 612 if (value < 0) { decrementq(reg, -value); return; } 613 if (value == 0) { ; return; } 614 if (value == 1 && UseIncDec) { incq(reg) ; return; } 615 /* else */ { addq(reg, value) ; return; } 616 } 617 618 void MacroAssembler::incrementq(Address dst, int value) { 619 if (value == min_jint) { addq(dst, value); return; } 620 if (value < 0) { decrementq(dst, -value); return; } 621 if (value == 0) { ; return; } 622 if (value == 1 && UseIncDec) { incq(dst) ; return; } 623 /* else */ { addq(dst, value) ; return; } 624 } 625 626 // 32bit can do a case table jump in one instruction but we no longer allow the base 627 // to be installed in the Address class 628 void MacroAssembler::jump(ArrayAddress entry, Register rscratch) { 629 lea(rscratch, entry.base()); 630 Address dispatch = entry.index(); 631 assert(dispatch._base == noreg, "must be"); 632 dispatch._base = rscratch; 633 jmp(dispatch); 634 } 635 636 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) { 637 ShouldNotReachHere(); // 64bit doesn't use two regs 638 cmpq(x_lo, y_lo); 639 } 640 641 void MacroAssembler::lea(Register dst, AddressLiteral src) { 642 mov_literal64(dst, (intptr_t)src.target(), src.rspec()); 643 } 644 645 void MacroAssembler::lea(Address dst, AddressLiteral adr, Register rscratch) { 646 lea(rscratch, adr); 647 movptr(dst, rscratch); 648 } 649 650 void MacroAssembler::leave() { 651 // %%% is this really better? Why not on 32bit too? 652 emit_int8((unsigned char)0xC9); // LEAVE 653 } 654 655 void MacroAssembler::lneg(Register hi, Register lo) { 656 ShouldNotReachHere(); // 64bit doesn't use two regs 657 negq(lo); 658 } 659 660 void MacroAssembler::movoop(Register dst, jobject obj) { 661 mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate()); 662 } 663 664 void MacroAssembler::movoop(Address dst, jobject obj, Register rscratch) { 665 mov_literal64(rscratch, (intptr_t)obj, oop_Relocation::spec_for_immediate()); 666 movq(dst, rscratch); 667 } 668 669 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) { 670 mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate()); 671 } 672 673 void MacroAssembler::mov_metadata(Address dst, Metadata* obj, Register rscratch) { 674 mov_literal64(rscratch, (intptr_t)obj, metadata_Relocation::spec_for_immediate()); 675 movq(dst, rscratch); 676 } 677 678 void MacroAssembler::movptr(Register dst, AddressLiteral src) { 679 if (src.is_lval()) { 680 mov_literal64(dst, (intptr_t)src.target(), src.rspec()); 681 } else { 682 if (reachable(src)) { 683 movq(dst, as_Address(src)); 684 } else { 685 lea(dst, src); 686 movq(dst, Address(dst, 0)); 687 } 688 } 689 } 690 691 void MacroAssembler::movptr(ArrayAddress dst, Register src, Register rscratch) { 692 movq(as_Address(dst, rscratch), src); 693 } 694 695 void MacroAssembler::movptr(Register dst, ArrayAddress src) { 696 movq(dst, as_Address(src, dst /*rscratch*/)); 697 } 698 699 // src should NEVER be a real pointer. Use AddressLiteral for true pointers 700 void MacroAssembler::movptr(Address dst, intptr_t src, Register rscratch) { 701 if (is_simm32(src)) { 702 movptr(dst, checked_cast<int32_t>(src)); 703 } else { 704 mov64(rscratch, src); 705 movq(dst, rscratch); 706 } 707 } 708 709 void MacroAssembler::pushoop(jobject obj, Register rscratch) { 710 movoop(rscratch, obj); 711 push(rscratch); 712 } 713 714 void MacroAssembler::pushklass(Metadata* obj, Register rscratch) { 715 mov_metadata(rscratch, obj); 716 push(rscratch); 717 } 718 719 void MacroAssembler::pushptr(AddressLiteral src, Register rscratch) { 720 lea(rscratch, src); 721 if (src.is_lval()) { 722 push(rscratch); 723 } else { 724 pushq(Address(rscratch, 0)); 725 } 726 } 727 728 void MacroAssembler::reset_last_Java_frame(bool clear_fp) { 729 reset_last_Java_frame(r15_thread, clear_fp); 730 } 731 732 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 733 Register last_java_fp, 734 address last_java_pc, 735 Register rscratch) { 736 set_last_Java_frame(r15_thread, last_java_sp, last_java_fp, last_java_pc, rscratch); 737 } 738 739 static void pass_arg0(MacroAssembler* masm, Register arg) { 740 if (c_rarg0 != arg ) { 741 masm->mov(c_rarg0, arg); 742 } 743 } 744 745 static void pass_arg1(MacroAssembler* masm, Register arg) { 746 if (c_rarg1 != arg ) { 747 masm->mov(c_rarg1, arg); 748 } 749 } 750 751 static void pass_arg2(MacroAssembler* masm, Register arg) { 752 if (c_rarg2 != arg ) { 753 masm->mov(c_rarg2, arg); 754 } 755 } 756 757 static void pass_arg3(MacroAssembler* masm, Register arg) { 758 if (c_rarg3 != arg ) { 759 masm->mov(c_rarg3, arg); 760 } 761 } 762 763 void MacroAssembler::stop(const char* msg) { 764 if (ShowMessageBoxOnError) { 765 address rip = pc(); 766 pusha(); // get regs on stack 767 lea(c_rarg1, InternalAddress(rip)); 768 movq(c_rarg2, rsp); // pass pointer to regs array 769 } 770 lea(c_rarg0, ExternalAddress((address) msg)); 771 andq(rsp, -16); // align stack as required by ABI 772 call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64))); 773 hlt(); 774 } 775 776 void MacroAssembler::warn(const char* msg) { 777 push(rbp); 778 movq(rbp, rsp); 779 andq(rsp, -16); // align stack as required by push_CPU_state and call 780 push_CPU_state(); // keeps alignment at 16 bytes 781 782 lea(c_rarg0, ExternalAddress((address) msg)); 783 call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning))); 784 785 pop_CPU_state(); 786 mov(rsp, rbp); 787 pop(rbp); 788 } 789 790 void MacroAssembler::print_state() { 791 address rip = pc(); 792 pusha(); // get regs on stack 793 push(rbp); 794 movq(rbp, rsp); 795 andq(rsp, -16); // align stack as required by push_CPU_state and call 796 push_CPU_state(); // keeps alignment at 16 bytes 797 798 lea(c_rarg0, InternalAddress(rip)); 799 lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array 800 call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1); 801 802 pop_CPU_state(); 803 mov(rsp, rbp); 804 pop(rbp); 805 popa(); 806 } 807 808 #ifndef PRODUCT 809 extern "C" void findpc(intptr_t x); 810 #endif 811 812 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) { 813 // In order to get locks to work, we need to fake a in_VM state 814 if (ShowMessageBoxOnError) { 815 JavaThread* thread = JavaThread::current(); 816 JavaThreadState saved_state = thread->thread_state(); 817 thread->set_thread_state(_thread_in_vm); 818 #ifndef PRODUCT 819 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { 820 ttyLocker ttyl; 821 BytecodeCounter::print(); 822 } 823 #endif 824 // To see where a verify_oop failed, get $ebx+40/X for this frame. 825 // XXX correct this offset for amd64 826 // This is the value of eip which points to where verify_oop will return. 827 if (os::message_box(msg, "Execution stopped, print registers?")) { 828 print_state64(pc, regs); 829 BREAKPOINT; 830 } 831 } 832 fatal("DEBUG MESSAGE: %s", msg); 833 } 834 835 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) { 836 ttyLocker ttyl; 837 DebuggingContext debugging{}; 838 tty->print_cr("rip = 0x%016lx", (intptr_t)pc); 839 #ifndef PRODUCT 840 tty->cr(); 841 findpc(pc); 842 tty->cr(); 843 #endif 844 #define PRINT_REG(rax, value) \ 845 { tty->print("%s = ", #rax); os::print_location(tty, value); } 846 PRINT_REG(rax, regs[15]); 847 PRINT_REG(rbx, regs[12]); 848 PRINT_REG(rcx, regs[14]); 849 PRINT_REG(rdx, regs[13]); 850 PRINT_REG(rdi, regs[8]); 851 PRINT_REG(rsi, regs[9]); 852 PRINT_REG(rbp, regs[10]); 853 // rsp is actually not stored by pusha(), compute the old rsp from regs (rsp after pusha): regs + 16 = old rsp 854 PRINT_REG(rsp, (intptr_t)(®s[16])); 855 PRINT_REG(r8 , regs[7]); 856 PRINT_REG(r9 , regs[6]); 857 PRINT_REG(r10, regs[5]); 858 PRINT_REG(r11, regs[4]); 859 PRINT_REG(r12, regs[3]); 860 PRINT_REG(r13, regs[2]); 861 PRINT_REG(r14, regs[1]); 862 PRINT_REG(r15, regs[0]); 863 #undef PRINT_REG 864 // Print some words near the top of the stack. 865 int64_t* rsp = ®s[16]; 866 int64_t* dump_sp = rsp; 867 for (int col1 = 0; col1 < 8; col1++) { 868 tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp); 869 os::print_location(tty, *dump_sp++); 870 } 871 for (int row = 0; row < 25; row++) { 872 tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp); 873 for (int col = 0; col < 4; col++) { 874 tty->print(" 0x%016lx", (intptr_t)*dump_sp++); 875 } 876 tty->cr(); 877 } 878 // Print some instructions around pc: 879 Disassembler::decode((address)pc-64, (address)pc); 880 tty->print_cr("--------"); 881 Disassembler::decode((address)pc, (address)pc+32); 882 } 883 884 // The java_calling_convention describes stack locations as ideal slots on 885 // a frame with no abi restrictions. Since we must observe abi restrictions 886 // (like the placement of the register window) the slots must be biased by 887 // the following value. 888 static int reg2offset_in(VMReg r) { 889 // Account for saved rbp and return address 890 // This should really be in_preserve_stack_slots 891 return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size; 892 } 893 894 static int reg2offset_out(VMReg r) { 895 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size; 896 } 897 898 // A long move 899 void MacroAssembler::long_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) { 900 901 // The calling conventions assures us that each VMregpair is either 902 // all really one physical register or adjacent stack slots. 903 904 if (src.is_single_phys_reg() ) { 905 if (dst.is_single_phys_reg()) { 906 if (dst.first() != src.first()) { 907 mov(dst.first()->as_Register(), src.first()->as_Register()); 908 } 909 } else { 910 assert(dst.is_single_reg(), "not a stack pair: (%s, %s), (%s, %s)", 911 src.first()->name(), src.second()->name(), dst.first()->name(), dst.second()->name()); 912 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_Register()); 913 } 914 } else if (dst.is_single_phys_reg()) { 915 assert(src.is_single_reg(), "not a stack pair"); 916 movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 917 } else { 918 assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs"); 919 movq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 920 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp); 921 } 922 } 923 924 // A double move 925 void MacroAssembler::double_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) { 926 927 // The calling conventions assures us that each VMregpair is either 928 // all really one physical register or adjacent stack slots. 929 930 if (src.is_single_phys_reg() ) { 931 if (dst.is_single_phys_reg()) { 932 // In theory these overlap but the ordering is such that this is likely a nop 933 if ( src.first() != dst.first()) { 934 movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister()); 935 } 936 } else { 937 assert(dst.is_single_reg(), "not a stack pair"); 938 movdbl(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_XMMRegister()); 939 } 940 } else if (dst.is_single_phys_reg()) { 941 assert(src.is_single_reg(), "not a stack pair"); 942 movdbl(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 943 } else { 944 assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs"); 945 movq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 946 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp); 947 } 948 } 949 950 951 // A float arg may have to do float reg int reg conversion 952 void MacroAssembler::float_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) { 953 assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move"); 954 955 // The calling conventions assures us that each VMregpair is either 956 // all really one physical register or adjacent stack slots. 957 958 if (src.first()->is_stack()) { 959 if (dst.first()->is_stack()) { 960 movl(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 961 movptr(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp); 962 } else { 963 // stack to reg 964 assert(dst.first()->is_XMMRegister(), "only expect xmm registers as parameters"); 965 movflt(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 966 } 967 } else if (dst.first()->is_stack()) { 968 // reg to stack 969 assert(src.first()->is_XMMRegister(), "only expect xmm registers as parameters"); 970 movflt(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_XMMRegister()); 971 } else { 972 // reg to reg 973 // In theory these overlap but the ordering is such that this is likely a nop 974 if ( src.first() != dst.first()) { 975 movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister()); 976 } 977 } 978 } 979 980 // On 64 bit we will store integer like items to the stack as 981 // 64 bits items (x86_32/64 abi) even though java would only store 982 // 32bits for a parameter. On 32bit it will simply be 32 bits 983 // So this routine will do 32->32 on 32bit and 32->64 on 64bit 984 void MacroAssembler::move32_64(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) { 985 if (src.first()->is_stack()) { 986 if (dst.first()->is_stack()) { 987 // stack to stack 988 movslq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 989 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp); 990 } else { 991 // stack to reg 992 movslq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 993 } 994 } else if (dst.first()->is_stack()) { 995 // reg to stack 996 // Do we really have to sign extend??? 997 // __ movslq(src.first()->as_Register(), src.first()->as_Register()); 998 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_Register()); 999 } else { 1000 // Do we really have to sign extend??? 1001 // __ movslq(dst.first()->as_Register(), src.first()->as_Register()); 1002 if (dst.first() != src.first()) { 1003 movq(dst.first()->as_Register(), src.first()->as_Register()); 1004 } 1005 } 1006 } 1007 1008 void MacroAssembler::move_ptr(VMRegPair src, VMRegPair dst) { 1009 if (src.first()->is_stack()) { 1010 if (dst.first()->is_stack()) { 1011 // stack to stack 1012 movq(rax, Address(rbp, reg2offset_in(src.first()))); 1013 movq(Address(rsp, reg2offset_out(dst.first())), rax); 1014 } else { 1015 // stack to reg 1016 movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()))); 1017 } 1018 } else if (dst.first()->is_stack()) { 1019 // reg to stack 1020 movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register()); 1021 } else { 1022 if (dst.first() != src.first()) { 1023 movq(dst.first()->as_Register(), src.first()->as_Register()); 1024 } 1025 } 1026 } 1027 1028 // An oop arg. Must pass a handle not the oop itself 1029 void MacroAssembler::object_move(OopMap* map, 1030 int oop_handle_offset, 1031 int framesize_in_slots, 1032 VMRegPair src, 1033 VMRegPair dst, 1034 bool is_receiver, 1035 int* receiver_offset) { 1036 1037 // must pass a handle. First figure out the location we use as a handle 1038 1039 Register rHandle = dst.first()->is_stack() ? rax : dst.first()->as_Register(); 1040 1041 // See if oop is null if it is we need no handle 1042 1043 if (src.first()->is_stack()) { 1044 1045 // Oop is already on the stack as an argument 1046 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots(); 1047 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots)); 1048 if (is_receiver) { 1049 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size; 1050 } 1051 1052 cmpptr(Address(rbp, reg2offset_in(src.first())), NULL_WORD); 1053 lea(rHandle, Address(rbp, reg2offset_in(src.first()))); 1054 // conditionally move a null 1055 cmovptr(Assembler::equal, rHandle, Address(rbp, reg2offset_in(src.first()))); 1056 } else { 1057 1058 // Oop is in a register we must store it to the space we reserve 1059 // on the stack for oop_handles and pass a handle if oop is non-null 1060 1061 const Register rOop = src.first()->as_Register(); 1062 int oop_slot; 1063 if (rOop == j_rarg0) 1064 oop_slot = 0; 1065 else if (rOop == j_rarg1) 1066 oop_slot = 1; 1067 else if (rOop == j_rarg2) 1068 oop_slot = 2; 1069 else if (rOop == j_rarg3) 1070 oop_slot = 3; 1071 else if (rOop == j_rarg4) 1072 oop_slot = 4; 1073 else { 1074 assert(rOop == j_rarg5, "wrong register"); 1075 oop_slot = 5; 1076 } 1077 1078 oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset; 1079 int offset = oop_slot*VMRegImpl::stack_slot_size; 1080 1081 map->set_oop(VMRegImpl::stack2reg(oop_slot)); 1082 // Store oop in handle area, may be null 1083 movptr(Address(rsp, offset), rOop); 1084 if (is_receiver) { 1085 *receiver_offset = offset; 1086 } 1087 1088 cmpptr(rOop, NULL_WORD); 1089 lea(rHandle, Address(rsp, offset)); 1090 // conditionally move a null from the handle area where it was just stored 1091 cmovptr(Assembler::equal, rHandle, Address(rsp, offset)); 1092 } 1093 1094 // If arg is on the stack then place it otherwise it is already in correct reg. 1095 if (dst.first()->is_stack()) { 1096 movptr(Address(rsp, reg2offset_out(dst.first())), rHandle); 1097 } 1098 } 1099 1100 #endif // _LP64 1101 1102 // Now versions that are common to 32/64 bit 1103 1104 void MacroAssembler::addptr(Register dst, int32_t imm32) { 1105 LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32)); 1106 } 1107 1108 void MacroAssembler::addptr(Register dst, Register src) { 1109 LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); 1110 } 1111 1112 void MacroAssembler::addptr(Address dst, Register src) { 1113 LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); 1114 } 1115 1116 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 1117 assert(rscratch != noreg || always_reachable(src), "missing"); 1118 1119 if (reachable(src)) { 1120 Assembler::addsd(dst, as_Address(src)); 1121 } else { 1122 lea(rscratch, src); 1123 Assembler::addsd(dst, Address(rscratch, 0)); 1124 } 1125 } 1126 1127 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src, Register rscratch) { 1128 assert(rscratch != noreg || always_reachable(src), "missing"); 1129 1130 if (reachable(src)) { 1131 addss(dst, as_Address(src)); 1132 } else { 1133 lea(rscratch, src); 1134 addss(dst, Address(rscratch, 0)); 1135 } 1136 } 1137 1138 void MacroAssembler::addpd(XMMRegister dst, AddressLiteral src, Register rscratch) { 1139 assert(rscratch != noreg || always_reachable(src), "missing"); 1140 1141 if (reachable(src)) { 1142 Assembler::addpd(dst, as_Address(src)); 1143 } else { 1144 lea(rscratch, src); 1145 Assembler::addpd(dst, Address(rscratch, 0)); 1146 } 1147 } 1148 1149 // See 8273459. Function for ensuring 64-byte alignment, intended for stubs only. 1150 // Stub code is generated once and never copied. 1151 // NMethods can't use this because they get copied and we can't force alignment > 32 bytes. 1152 void MacroAssembler::align64() { 1153 align(64, (uint)(uintptr_t)pc()); 1154 } 1155 1156 void MacroAssembler::align32() { 1157 align(32, (uint)(uintptr_t)pc()); 1158 } 1159 1160 void MacroAssembler::align(uint modulus) { 1161 // 8273459: Ensure alignment is possible with current segment alignment 1162 assert(modulus <= (uintx)CodeEntryAlignment, "Alignment must be <= CodeEntryAlignment"); 1163 align(modulus, offset()); 1164 } 1165 1166 void MacroAssembler::align(uint modulus, uint target) { 1167 if (target % modulus != 0) { 1168 nop(modulus - (target % modulus)); 1169 } 1170 } 1171 1172 void MacroAssembler::push_f(XMMRegister r) { 1173 subptr(rsp, wordSize); 1174 movflt(Address(rsp, 0), r); 1175 } 1176 1177 void MacroAssembler::pop_f(XMMRegister r) { 1178 movflt(r, Address(rsp, 0)); 1179 addptr(rsp, wordSize); 1180 } 1181 1182 void MacroAssembler::push_d(XMMRegister r) { 1183 subptr(rsp, 2 * wordSize); 1184 movdbl(Address(rsp, 0), r); 1185 } 1186 1187 void MacroAssembler::pop_d(XMMRegister r) { 1188 movdbl(r, Address(rsp, 0)); 1189 addptr(rsp, 2 * Interpreter::stackElementSize); 1190 } 1191 1192 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src, Register rscratch) { 1193 // Used in sign-masking with aligned address. 1194 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); 1195 assert(rscratch != noreg || always_reachable(src), "missing"); 1196 1197 if (reachable(src)) { 1198 Assembler::andpd(dst, as_Address(src)); 1199 } else { 1200 lea(rscratch, src); 1201 Assembler::andpd(dst, Address(rscratch, 0)); 1202 } 1203 } 1204 1205 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src, Register rscratch) { 1206 // Used in sign-masking with aligned address. 1207 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); 1208 assert(rscratch != noreg || always_reachable(src), "missing"); 1209 1210 if (reachable(src)) { 1211 Assembler::andps(dst, as_Address(src)); 1212 } else { 1213 lea(rscratch, src); 1214 Assembler::andps(dst, Address(rscratch, 0)); 1215 } 1216 } 1217 1218 void MacroAssembler::andptr(Register dst, int32_t imm32) { 1219 LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32)); 1220 } 1221 1222 #ifdef _LP64 1223 void MacroAssembler::andq(Register dst, AddressLiteral src, Register rscratch) { 1224 assert(rscratch != noreg || always_reachable(src), "missing"); 1225 1226 if (reachable(src)) { 1227 andq(dst, as_Address(src)); 1228 } else { 1229 lea(rscratch, src); 1230 andq(dst, Address(rscratch, 0)); 1231 } 1232 } 1233 #endif 1234 1235 void MacroAssembler::atomic_incl(Address counter_addr) { 1236 lock(); 1237 incrementl(counter_addr); 1238 } 1239 1240 void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register rscratch) { 1241 assert(rscratch != noreg || always_reachable(counter_addr), "missing"); 1242 1243 if (reachable(counter_addr)) { 1244 atomic_incl(as_Address(counter_addr)); 1245 } else { 1246 lea(rscratch, counter_addr); 1247 atomic_incl(Address(rscratch, 0)); 1248 } 1249 } 1250 1251 #ifdef _LP64 1252 void MacroAssembler::atomic_incq(Address counter_addr) { 1253 lock(); 1254 incrementq(counter_addr); 1255 } 1256 1257 void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register rscratch) { 1258 assert(rscratch != noreg || always_reachable(counter_addr), "missing"); 1259 1260 if (reachable(counter_addr)) { 1261 atomic_incq(as_Address(counter_addr)); 1262 } else { 1263 lea(rscratch, counter_addr); 1264 atomic_incq(Address(rscratch, 0)); 1265 } 1266 } 1267 #endif 1268 1269 // Writes to stack successive pages until offset reached to check for 1270 // stack overflow + shadow pages. This clobbers tmp. 1271 void MacroAssembler::bang_stack_size(Register size, Register tmp) { 1272 movptr(tmp, rsp); 1273 // Bang stack for total size given plus shadow page size. 1274 // Bang one page at a time because large size can bang beyond yellow and 1275 // red zones. 1276 Label loop; 1277 bind(loop); 1278 movl(Address(tmp, (-(int)os::vm_page_size())), size ); 1279 subptr(tmp, (int)os::vm_page_size()); 1280 subl(size, (int)os::vm_page_size()); 1281 jcc(Assembler::greater, loop); 1282 1283 // Bang down shadow pages too. 1284 // At this point, (tmp-0) is the last address touched, so don't 1285 // touch it again. (It was touched as (tmp-pagesize) but then tmp 1286 // was post-decremented.) Skip this address by starting at i=1, and 1287 // touch a few more pages below. N.B. It is important to touch all 1288 // the way down including all pages in the shadow zone. 1289 for (int i = 1; i < ((int)StackOverflow::stack_shadow_zone_size() / (int)os::vm_page_size()); i++) { 1290 // this could be any sized move but this is can be a debugging crumb 1291 // so the bigger the better. 1292 movptr(Address(tmp, (-i*(int)os::vm_page_size())), size ); 1293 } 1294 } 1295 1296 void MacroAssembler::reserved_stack_check() { 1297 // testing if reserved zone needs to be enabled 1298 Label no_reserved_zone_enabling; 1299 Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread); 1300 NOT_LP64(get_thread(rsi);) 1301 1302 cmpptr(rsp, Address(thread, JavaThread::reserved_stack_activation_offset())); 1303 jcc(Assembler::below, no_reserved_zone_enabling); 1304 1305 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), thread); 1306 jump(RuntimeAddress(StubRoutines::throw_delayed_StackOverflowError_entry())); 1307 should_not_reach_here(); 1308 1309 bind(no_reserved_zone_enabling); 1310 } 1311 1312 void MacroAssembler::c2bool(Register x) { 1313 // implements x == 0 ? 0 : 1 1314 // note: must only look at least-significant byte of x 1315 // since C-style booleans are stored in one byte 1316 // only! (was bug) 1317 andl(x, 0xFF); 1318 setb(Assembler::notZero, x); 1319 } 1320 1321 // Wouldn't need if AddressLiteral version had new name 1322 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) { 1323 Assembler::call(L, rtype); 1324 } 1325 1326 void MacroAssembler::call(Register entry) { 1327 Assembler::call(entry); 1328 } 1329 1330 void MacroAssembler::call(AddressLiteral entry, Register rscratch) { 1331 assert(rscratch != noreg || always_reachable(entry), "missing"); 1332 1333 if (reachable(entry)) { 1334 Assembler::call_literal(entry.target(), entry.rspec()); 1335 } else { 1336 lea(rscratch, entry); 1337 Assembler::call(rscratch); 1338 } 1339 } 1340 1341 void MacroAssembler::ic_call(address entry, jint method_index) { 1342 RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index); 1343 #ifdef _LP64 1344 // Needs full 64-bit immediate for later patching. 1345 mov64(rax, (int64_t)Universe::non_oop_word()); 1346 #else 1347 movptr(rax, (intptr_t)Universe::non_oop_word()); 1348 #endif 1349 call(AddressLiteral(entry, rh)); 1350 } 1351 1352 int MacroAssembler::ic_check_size() { 1353 return 1354 LP64_ONLY(UseCompactObjectHeaders ? 17 : 14) NOT_LP64(12); 1355 } 1356 1357 int MacroAssembler::ic_check(int end_alignment) { 1358 Register receiver = LP64_ONLY(j_rarg0) NOT_LP64(rcx); 1359 Register data = rax; 1360 Register temp = LP64_ONLY(rscratch1) NOT_LP64(rbx); 1361 1362 // The UEP of a code blob ensures that the VEP is padded. However, the padding of the UEP is placed 1363 // before the inline cache check, so we don't have to execute any nop instructions when dispatching 1364 // through the UEP, yet we can ensure that the VEP is aligned appropriately. That's why we align 1365 // before the inline cache check here, and not after 1366 align(end_alignment, offset() + ic_check_size()); 1367 1368 int uep_offset = offset(); 1369 1370 #ifdef _LP64 1371 if (UseCompactObjectHeaders) { 1372 load_nklass_compact(temp, receiver); 1373 cmpl(temp, Address(data, CompiledICData::speculated_klass_offset())); 1374 } else 1375 #endif 1376 if (UseCompressedClassPointers) { 1377 movl(temp, Address(receiver, oopDesc::klass_offset_in_bytes())); 1378 cmpl(temp, Address(data, CompiledICData::speculated_klass_offset())); 1379 } else { 1380 movptr(temp, Address(receiver, oopDesc::klass_offset_in_bytes())); 1381 cmpptr(temp, Address(data, CompiledICData::speculated_klass_offset())); 1382 } 1383 1384 // if inline cache check fails, then jump to runtime routine 1385 jump_cc(Assembler::notEqual, RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 1386 assert((offset() % end_alignment) == 0, "Misaligned verified entry point (%d, %d, %d)", uep_offset, offset(), end_alignment); 1387 1388 return uep_offset; 1389 } 1390 1391 void MacroAssembler::emit_static_call_stub() { 1392 // Static stub relocation also tags the Method* in the code-stream. 1393 mov_metadata(rbx, (Metadata*) nullptr); // Method is zapped till fixup time. 1394 // This is recognized as unresolved by relocs/nativeinst/ic code. 1395 jump(RuntimeAddress(pc())); 1396 } 1397 1398 // Implementation of call_VM versions 1399 1400 void MacroAssembler::call_VM(Register oop_result, 1401 address entry_point, 1402 bool check_exceptions) { 1403 Label C, E; 1404 call(C, relocInfo::none); 1405 jmp(E); 1406 1407 bind(C); 1408 call_VM_helper(oop_result, entry_point, 0, check_exceptions); 1409 ret(0); 1410 1411 bind(E); 1412 } 1413 1414 void MacroAssembler::call_VM(Register oop_result, 1415 address entry_point, 1416 Register arg_1, 1417 bool check_exceptions) { 1418 Label C, E; 1419 call(C, relocInfo::none); 1420 jmp(E); 1421 1422 bind(C); 1423 pass_arg1(this, arg_1); 1424 call_VM_helper(oop_result, entry_point, 1, check_exceptions); 1425 ret(0); 1426 1427 bind(E); 1428 } 1429 1430 void MacroAssembler::call_VM(Register oop_result, 1431 address entry_point, 1432 Register arg_1, 1433 Register arg_2, 1434 bool check_exceptions) { 1435 Label C, E; 1436 call(C, relocInfo::none); 1437 jmp(E); 1438 1439 bind(C); 1440 1441 LP64_ONLY(assert_different_registers(arg_1, c_rarg2)); 1442 1443 pass_arg2(this, arg_2); 1444 pass_arg1(this, arg_1); 1445 call_VM_helper(oop_result, entry_point, 2, check_exceptions); 1446 ret(0); 1447 1448 bind(E); 1449 } 1450 1451 void MacroAssembler::call_VM(Register oop_result, 1452 address entry_point, 1453 Register arg_1, 1454 Register arg_2, 1455 Register arg_3, 1456 bool check_exceptions) { 1457 Label C, E; 1458 call(C, relocInfo::none); 1459 jmp(E); 1460 1461 bind(C); 1462 1463 LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3)); 1464 LP64_ONLY(assert_different_registers(arg_2, c_rarg3)); 1465 pass_arg3(this, arg_3); 1466 pass_arg2(this, arg_2); 1467 pass_arg1(this, arg_1); 1468 call_VM_helper(oop_result, entry_point, 3, check_exceptions); 1469 ret(0); 1470 1471 bind(E); 1472 } 1473 1474 void MacroAssembler::call_VM(Register oop_result, 1475 Register last_java_sp, 1476 address entry_point, 1477 int number_of_arguments, 1478 bool check_exceptions) { 1479 Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg); 1480 call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions); 1481 } 1482 1483 void MacroAssembler::call_VM(Register oop_result, 1484 Register last_java_sp, 1485 address entry_point, 1486 Register arg_1, 1487 bool check_exceptions) { 1488 pass_arg1(this, arg_1); 1489 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); 1490 } 1491 1492 void MacroAssembler::call_VM(Register oop_result, 1493 Register last_java_sp, 1494 address entry_point, 1495 Register arg_1, 1496 Register arg_2, 1497 bool check_exceptions) { 1498 1499 LP64_ONLY(assert_different_registers(arg_1, c_rarg2)); 1500 pass_arg2(this, arg_2); 1501 pass_arg1(this, arg_1); 1502 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); 1503 } 1504 1505 void MacroAssembler::call_VM(Register oop_result, 1506 Register last_java_sp, 1507 address entry_point, 1508 Register arg_1, 1509 Register arg_2, 1510 Register arg_3, 1511 bool check_exceptions) { 1512 LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3)); 1513 LP64_ONLY(assert_different_registers(arg_2, c_rarg3)); 1514 pass_arg3(this, arg_3); 1515 pass_arg2(this, arg_2); 1516 pass_arg1(this, arg_1); 1517 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); 1518 } 1519 1520 void MacroAssembler::super_call_VM(Register oop_result, 1521 Register last_java_sp, 1522 address entry_point, 1523 int number_of_arguments, 1524 bool check_exceptions) { 1525 Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg); 1526 MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions); 1527 } 1528 1529 void MacroAssembler::super_call_VM(Register oop_result, 1530 Register last_java_sp, 1531 address entry_point, 1532 Register arg_1, 1533 bool check_exceptions) { 1534 pass_arg1(this, arg_1); 1535 super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); 1536 } 1537 1538 void MacroAssembler::super_call_VM(Register oop_result, 1539 Register last_java_sp, 1540 address entry_point, 1541 Register arg_1, 1542 Register arg_2, 1543 bool check_exceptions) { 1544 1545 LP64_ONLY(assert_different_registers(arg_1, c_rarg2)); 1546 pass_arg2(this, arg_2); 1547 pass_arg1(this, arg_1); 1548 super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); 1549 } 1550 1551 void MacroAssembler::super_call_VM(Register oop_result, 1552 Register last_java_sp, 1553 address entry_point, 1554 Register arg_1, 1555 Register arg_2, 1556 Register arg_3, 1557 bool check_exceptions) { 1558 LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3)); 1559 LP64_ONLY(assert_different_registers(arg_2, c_rarg3)); 1560 pass_arg3(this, arg_3); 1561 pass_arg2(this, arg_2); 1562 pass_arg1(this, arg_1); 1563 super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); 1564 } 1565 1566 void MacroAssembler::call_VM_base(Register oop_result, 1567 Register java_thread, 1568 Register last_java_sp, 1569 address entry_point, 1570 int number_of_arguments, 1571 bool check_exceptions) { 1572 // determine java_thread register 1573 if (!java_thread->is_valid()) { 1574 #ifdef _LP64 1575 java_thread = r15_thread; 1576 #else 1577 java_thread = rdi; 1578 get_thread(java_thread); 1579 #endif // LP64 1580 } 1581 // determine last_java_sp register 1582 if (!last_java_sp->is_valid()) { 1583 last_java_sp = rsp; 1584 } 1585 // debugging support 1586 assert(number_of_arguments >= 0 , "cannot have negative number of arguments"); 1587 LP64_ONLY(assert(java_thread == r15_thread, "unexpected register")); 1588 #ifdef ASSERT 1589 // TraceBytecodes does not use r12 but saves it over the call, so don't verify 1590 // r12 is the heapbase. 1591 LP64_ONLY(if (UseCompressedOops && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");) 1592 #endif // ASSERT 1593 1594 assert(java_thread != oop_result , "cannot use the same register for java_thread & oop_result"); 1595 assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp"); 1596 1597 // push java thread (becomes first argument of C function) 1598 1599 NOT_LP64(push(java_thread); number_of_arguments++); 1600 LP64_ONLY(mov(c_rarg0, r15_thread)); 1601 1602 // set last Java frame before call 1603 assert(last_java_sp != rbp, "can't use ebp/rbp"); 1604 1605 // Only interpreter should have to set fp 1606 set_last_Java_frame(java_thread, last_java_sp, rbp, nullptr, rscratch1); 1607 1608 // do the call, remove parameters 1609 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); 1610 1611 // restore the thread (cannot use the pushed argument since arguments 1612 // may be overwritten by C code generated by an optimizing compiler); 1613 // however can use the register value directly if it is callee saved. 1614 if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) { 1615 // rdi & rsi (also r15) are callee saved -> nothing to do 1616 #ifdef ASSERT 1617 guarantee(java_thread != rax, "change this code"); 1618 push(rax); 1619 { Label L; 1620 get_thread(rax); 1621 cmpptr(java_thread, rax); 1622 jcc(Assembler::equal, L); 1623 STOP("MacroAssembler::call_VM_base: rdi not callee saved?"); 1624 bind(L); 1625 } 1626 pop(rax); 1627 #endif 1628 } else { 1629 get_thread(java_thread); 1630 } 1631 // reset last Java frame 1632 // Only interpreter should have to clear fp 1633 reset_last_Java_frame(java_thread, true); 1634 1635 // C++ interp handles this in the interpreter 1636 check_and_handle_popframe(java_thread); 1637 check_and_handle_earlyret(java_thread); 1638 1639 if (check_exceptions) { 1640 // check for pending exceptions (java_thread is set upon return) 1641 cmpptr(Address(java_thread, Thread::pending_exception_offset()), NULL_WORD); 1642 #ifndef _LP64 1643 jump_cc(Assembler::notEqual, 1644 RuntimeAddress(StubRoutines::forward_exception_entry())); 1645 #else 1646 // This used to conditionally jump to forward_exception however it is 1647 // possible if we relocate that the branch will not reach. So we must jump 1648 // around so we can always reach 1649 1650 Label ok; 1651 jcc(Assembler::equal, ok); 1652 jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 1653 bind(ok); 1654 #endif // LP64 1655 } 1656 1657 // get oop result if there is one and reset the value in the thread 1658 if (oop_result->is_valid()) { 1659 get_vm_result(oop_result, java_thread); 1660 } 1661 } 1662 1663 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) { 1664 1665 // Calculate the value for last_Java_sp 1666 // somewhat subtle. call_VM does an intermediate call 1667 // which places a return address on the stack just under the 1668 // stack pointer as the user finished with it. This allows 1669 // use to retrieve last_Java_pc from last_Java_sp[-1]. 1670 // On 32bit we then have to push additional args on the stack to accomplish 1671 // the actual requested call. On 64bit call_VM only can use register args 1672 // so the only extra space is the return address that call_VM created. 1673 // This hopefully explains the calculations here. 1674 1675 #ifdef _LP64 1676 // We've pushed one address, correct last_Java_sp 1677 lea(rax, Address(rsp, wordSize)); 1678 #else 1679 lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize)); 1680 #endif // LP64 1681 1682 call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions); 1683 1684 } 1685 1686 // Use this method when MacroAssembler version of call_VM_leaf_base() should be called from Interpreter. 1687 void MacroAssembler::call_VM_leaf0(address entry_point) { 1688 MacroAssembler::call_VM_leaf_base(entry_point, 0); 1689 } 1690 1691 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) { 1692 call_VM_leaf_base(entry_point, number_of_arguments); 1693 } 1694 1695 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) { 1696 pass_arg0(this, arg_0); 1697 call_VM_leaf(entry_point, 1); 1698 } 1699 1700 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 1701 1702 LP64_ONLY(assert_different_registers(arg_0, c_rarg1)); 1703 pass_arg1(this, arg_1); 1704 pass_arg0(this, arg_0); 1705 call_VM_leaf(entry_point, 2); 1706 } 1707 1708 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { 1709 LP64_ONLY(assert_different_registers(arg_0, c_rarg1, c_rarg2)); 1710 LP64_ONLY(assert_different_registers(arg_1, c_rarg2)); 1711 pass_arg2(this, arg_2); 1712 pass_arg1(this, arg_1); 1713 pass_arg0(this, arg_0); 1714 call_VM_leaf(entry_point, 3); 1715 } 1716 1717 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) { 1718 LP64_ONLY(assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3)); 1719 LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3)); 1720 LP64_ONLY(assert_different_registers(arg_2, c_rarg3)); 1721 pass_arg3(this, arg_3); 1722 pass_arg2(this, arg_2); 1723 pass_arg1(this, arg_1); 1724 pass_arg0(this, arg_0); 1725 call_VM_leaf(entry_point, 3); 1726 } 1727 1728 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) { 1729 pass_arg0(this, arg_0); 1730 MacroAssembler::call_VM_leaf_base(entry_point, 1); 1731 } 1732 1733 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 1734 LP64_ONLY(assert_different_registers(arg_0, c_rarg1)); 1735 pass_arg1(this, arg_1); 1736 pass_arg0(this, arg_0); 1737 MacroAssembler::call_VM_leaf_base(entry_point, 2); 1738 } 1739 1740 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { 1741 LP64_ONLY(assert_different_registers(arg_0, c_rarg1, c_rarg2)); 1742 LP64_ONLY(assert_different_registers(arg_1, c_rarg2)); 1743 pass_arg2(this, arg_2); 1744 pass_arg1(this, arg_1); 1745 pass_arg0(this, arg_0); 1746 MacroAssembler::call_VM_leaf_base(entry_point, 3); 1747 } 1748 1749 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) { 1750 LP64_ONLY(assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3)); 1751 LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3)); 1752 LP64_ONLY(assert_different_registers(arg_2, c_rarg3)); 1753 pass_arg3(this, arg_3); 1754 pass_arg2(this, arg_2); 1755 pass_arg1(this, arg_1); 1756 pass_arg0(this, arg_0); 1757 MacroAssembler::call_VM_leaf_base(entry_point, 4); 1758 } 1759 1760 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) { 1761 movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset())); 1762 movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD); 1763 verify_oop_msg(oop_result, "broken oop in call_VM_base"); 1764 } 1765 1766 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) { 1767 movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset())); 1768 movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD); 1769 } 1770 1771 void MacroAssembler::check_and_handle_earlyret(Register java_thread) { 1772 } 1773 1774 void MacroAssembler::check_and_handle_popframe(Register java_thread) { 1775 } 1776 1777 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm, Register rscratch) { 1778 assert(rscratch != noreg || always_reachable(src1), "missing"); 1779 1780 if (reachable(src1)) { 1781 cmpl(as_Address(src1), imm); 1782 } else { 1783 lea(rscratch, src1); 1784 cmpl(Address(rscratch, 0), imm); 1785 } 1786 } 1787 1788 void MacroAssembler::cmp32(Register src1, AddressLiteral src2, Register rscratch) { 1789 assert(!src2.is_lval(), "use cmpptr"); 1790 assert(rscratch != noreg || always_reachable(src2), "missing"); 1791 1792 if (reachable(src2)) { 1793 cmpl(src1, as_Address(src2)); 1794 } else { 1795 lea(rscratch, src2); 1796 cmpl(src1, Address(rscratch, 0)); 1797 } 1798 } 1799 1800 void MacroAssembler::cmp32(Register src1, int32_t imm) { 1801 Assembler::cmpl(src1, imm); 1802 } 1803 1804 void MacroAssembler::cmp32(Register src1, Address src2) { 1805 Assembler::cmpl(src1, src2); 1806 } 1807 1808 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) { 1809 ucomisd(opr1, opr2); 1810 1811 Label L; 1812 if (unordered_is_less) { 1813 movl(dst, -1); 1814 jcc(Assembler::parity, L); 1815 jcc(Assembler::below , L); 1816 movl(dst, 0); 1817 jcc(Assembler::equal , L); 1818 increment(dst); 1819 } else { // unordered is greater 1820 movl(dst, 1); 1821 jcc(Assembler::parity, L); 1822 jcc(Assembler::above , L); 1823 movl(dst, 0); 1824 jcc(Assembler::equal , L); 1825 decrementl(dst); 1826 } 1827 bind(L); 1828 } 1829 1830 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) { 1831 ucomiss(opr1, opr2); 1832 1833 Label L; 1834 if (unordered_is_less) { 1835 movl(dst, -1); 1836 jcc(Assembler::parity, L); 1837 jcc(Assembler::below , L); 1838 movl(dst, 0); 1839 jcc(Assembler::equal , L); 1840 increment(dst); 1841 } else { // unordered is greater 1842 movl(dst, 1); 1843 jcc(Assembler::parity, L); 1844 jcc(Assembler::above , L); 1845 movl(dst, 0); 1846 jcc(Assembler::equal , L); 1847 decrementl(dst); 1848 } 1849 bind(L); 1850 } 1851 1852 1853 void MacroAssembler::cmp8(AddressLiteral src1, int imm, Register rscratch) { 1854 assert(rscratch != noreg || always_reachable(src1), "missing"); 1855 1856 if (reachable(src1)) { 1857 cmpb(as_Address(src1), imm); 1858 } else { 1859 lea(rscratch, src1); 1860 cmpb(Address(rscratch, 0), imm); 1861 } 1862 } 1863 1864 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2, Register rscratch) { 1865 #ifdef _LP64 1866 assert(rscratch != noreg || always_reachable(src2), "missing"); 1867 1868 if (src2.is_lval()) { 1869 movptr(rscratch, src2); 1870 Assembler::cmpq(src1, rscratch); 1871 } else if (reachable(src2)) { 1872 cmpq(src1, as_Address(src2)); 1873 } else { 1874 lea(rscratch, src2); 1875 Assembler::cmpq(src1, Address(rscratch, 0)); 1876 } 1877 #else 1878 assert(rscratch == noreg, "not needed"); 1879 if (src2.is_lval()) { 1880 cmp_literal32(src1, (int32_t)src2.target(), src2.rspec()); 1881 } else { 1882 cmpl(src1, as_Address(src2)); 1883 } 1884 #endif // _LP64 1885 } 1886 1887 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2, Register rscratch) { 1888 assert(src2.is_lval(), "not a mem-mem compare"); 1889 #ifdef _LP64 1890 // moves src2's literal address 1891 movptr(rscratch, src2); 1892 Assembler::cmpq(src1, rscratch); 1893 #else 1894 assert(rscratch == noreg, "not needed"); 1895 cmp_literal32(src1, (int32_t)src2.target(), src2.rspec()); 1896 #endif // _LP64 1897 } 1898 1899 void MacroAssembler::cmpoop(Register src1, Register src2) { 1900 cmpptr(src1, src2); 1901 } 1902 1903 void MacroAssembler::cmpoop(Register src1, Address src2) { 1904 cmpptr(src1, src2); 1905 } 1906 1907 #ifdef _LP64 1908 void MacroAssembler::cmpoop(Register src1, jobject src2, Register rscratch) { 1909 movoop(rscratch, src2); 1910 cmpptr(src1, rscratch); 1911 } 1912 #endif 1913 1914 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr, Register rscratch) { 1915 assert(rscratch != noreg || always_reachable(adr), "missing"); 1916 1917 if (reachable(adr)) { 1918 lock(); 1919 cmpxchgptr(reg, as_Address(adr)); 1920 } else { 1921 lea(rscratch, adr); 1922 lock(); 1923 cmpxchgptr(reg, Address(rscratch, 0)); 1924 } 1925 } 1926 1927 void MacroAssembler::cmpxchgptr(Register reg, Address adr) { 1928 LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr)); 1929 } 1930 1931 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src, Register rscratch) { 1932 assert(rscratch != noreg || always_reachable(src), "missing"); 1933 1934 if (reachable(src)) { 1935 Assembler::comisd(dst, as_Address(src)); 1936 } else { 1937 lea(rscratch, src); 1938 Assembler::comisd(dst, Address(rscratch, 0)); 1939 } 1940 } 1941 1942 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src, Register rscratch) { 1943 assert(rscratch != noreg || always_reachable(src), "missing"); 1944 1945 if (reachable(src)) { 1946 Assembler::comiss(dst, as_Address(src)); 1947 } else { 1948 lea(rscratch, src); 1949 Assembler::comiss(dst, Address(rscratch, 0)); 1950 } 1951 } 1952 1953 1954 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr, Register rscratch) { 1955 assert(rscratch != noreg || always_reachable(counter_addr), "missing"); 1956 1957 Condition negated_cond = negate_condition(cond); 1958 Label L; 1959 jcc(negated_cond, L); 1960 pushf(); // Preserve flags 1961 atomic_incl(counter_addr, rscratch); 1962 popf(); 1963 bind(L); 1964 } 1965 1966 int MacroAssembler::corrected_idivl(Register reg) { 1967 // Full implementation of Java idiv and irem; checks for 1968 // special case as described in JVM spec., p.243 & p.271. 1969 // The function returns the (pc) offset of the idivl 1970 // instruction - may be needed for implicit exceptions. 1971 // 1972 // normal case special case 1973 // 1974 // input : rax,: dividend min_int 1975 // reg: divisor (may not be rax,/rdx) -1 1976 // 1977 // output: rax,: quotient (= rax, idiv reg) min_int 1978 // rdx: remainder (= rax, irem reg) 0 1979 assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register"); 1980 const int min_int = 0x80000000; 1981 Label normal_case, special_case; 1982 1983 // check for special case 1984 cmpl(rax, min_int); 1985 jcc(Assembler::notEqual, normal_case); 1986 xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0) 1987 cmpl(reg, -1); 1988 jcc(Assembler::equal, special_case); 1989 1990 // handle normal case 1991 bind(normal_case); 1992 cdql(); 1993 int idivl_offset = offset(); 1994 idivl(reg); 1995 1996 // normal and special case exit 1997 bind(special_case); 1998 1999 return idivl_offset; 2000 } 2001 2002 2003 2004 void MacroAssembler::decrementl(Register reg, int value) { 2005 if (value == min_jint) {subl(reg, value) ; return; } 2006 if (value < 0) { incrementl(reg, -value); return; } 2007 if (value == 0) { ; return; } 2008 if (value == 1 && UseIncDec) { decl(reg) ; return; } 2009 /* else */ { subl(reg, value) ; return; } 2010 } 2011 2012 void MacroAssembler::decrementl(Address dst, int value) { 2013 if (value == min_jint) {subl(dst, value) ; return; } 2014 if (value < 0) { incrementl(dst, -value); return; } 2015 if (value == 0) { ; return; } 2016 if (value == 1 && UseIncDec) { decl(dst) ; return; } 2017 /* else */ { subl(dst, value) ; return; } 2018 } 2019 2020 void MacroAssembler::division_with_shift (Register reg, int shift_value) { 2021 assert(shift_value > 0, "illegal shift value"); 2022 Label _is_positive; 2023 testl (reg, reg); 2024 jcc (Assembler::positive, _is_positive); 2025 int offset = (1 << shift_value) - 1 ; 2026 2027 if (offset == 1) { 2028 incrementl(reg); 2029 } else { 2030 addl(reg, offset); 2031 } 2032 2033 bind (_is_positive); 2034 sarl(reg, shift_value); 2035 } 2036 2037 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2038 assert(rscratch != noreg || always_reachable(src), "missing"); 2039 2040 if (reachable(src)) { 2041 Assembler::divsd(dst, as_Address(src)); 2042 } else { 2043 lea(rscratch, src); 2044 Assembler::divsd(dst, Address(rscratch, 0)); 2045 } 2046 } 2047 2048 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src, Register rscratch) { 2049 assert(rscratch != noreg || always_reachable(src), "missing"); 2050 2051 if (reachable(src)) { 2052 Assembler::divss(dst, as_Address(src)); 2053 } else { 2054 lea(rscratch, src); 2055 Assembler::divss(dst, Address(rscratch, 0)); 2056 } 2057 } 2058 2059 void MacroAssembler::enter() { 2060 push(rbp); 2061 mov(rbp, rsp); 2062 } 2063 2064 void MacroAssembler::post_call_nop() { 2065 if (!Continuations::enabled()) { 2066 return; 2067 } 2068 InstructionMark im(this); 2069 relocate(post_call_nop_Relocation::spec()); 2070 InlineSkippedInstructionsCounter skipCounter(this); 2071 emit_int8((uint8_t)0x0f); 2072 emit_int8((uint8_t)0x1f); 2073 emit_int8((uint8_t)0x84); 2074 emit_int8((uint8_t)0x00); 2075 emit_int32(0x00); 2076 } 2077 2078 // A 5 byte nop that is safe for patching (see patch_verified_entry) 2079 void MacroAssembler::fat_nop() { 2080 if (UseAddressNop) { 2081 addr_nop_5(); 2082 } else { 2083 emit_int8((uint8_t)0x26); // es: 2084 emit_int8((uint8_t)0x2e); // cs: 2085 emit_int8((uint8_t)0x64); // fs: 2086 emit_int8((uint8_t)0x65); // gs: 2087 emit_int8((uint8_t)0x90); 2088 } 2089 } 2090 2091 #ifndef _LP64 2092 void MacroAssembler::fcmp(Register tmp) { 2093 fcmp(tmp, 1, true, true); 2094 } 2095 2096 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) { 2097 assert(!pop_right || pop_left, "usage error"); 2098 if (VM_Version::supports_cmov()) { 2099 assert(tmp == noreg, "unneeded temp"); 2100 if (pop_left) { 2101 fucomip(index); 2102 } else { 2103 fucomi(index); 2104 } 2105 if (pop_right) { 2106 fpop(); 2107 } 2108 } else { 2109 assert(tmp != noreg, "need temp"); 2110 if (pop_left) { 2111 if (pop_right) { 2112 fcompp(); 2113 } else { 2114 fcomp(index); 2115 } 2116 } else { 2117 fcom(index); 2118 } 2119 // convert FPU condition into eflags condition via rax, 2120 save_rax(tmp); 2121 fwait(); fnstsw_ax(); 2122 sahf(); 2123 restore_rax(tmp); 2124 } 2125 // condition codes set as follows: 2126 // 2127 // CF (corresponds to C0) if x < y 2128 // PF (corresponds to C2) if unordered 2129 // ZF (corresponds to C3) if x = y 2130 } 2131 2132 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) { 2133 fcmp2int(dst, unordered_is_less, 1, true, true); 2134 } 2135 2136 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) { 2137 fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right); 2138 Label L; 2139 if (unordered_is_less) { 2140 movl(dst, -1); 2141 jcc(Assembler::parity, L); 2142 jcc(Assembler::below , L); 2143 movl(dst, 0); 2144 jcc(Assembler::equal , L); 2145 increment(dst); 2146 } else { // unordered is greater 2147 movl(dst, 1); 2148 jcc(Assembler::parity, L); 2149 jcc(Assembler::above , L); 2150 movl(dst, 0); 2151 jcc(Assembler::equal , L); 2152 decrementl(dst); 2153 } 2154 bind(L); 2155 } 2156 2157 void MacroAssembler::fld_d(AddressLiteral src) { 2158 fld_d(as_Address(src)); 2159 } 2160 2161 void MacroAssembler::fld_s(AddressLiteral src) { 2162 fld_s(as_Address(src)); 2163 } 2164 2165 void MacroAssembler::fldcw(AddressLiteral src) { 2166 fldcw(as_Address(src)); 2167 } 2168 2169 void MacroAssembler::fpop() { 2170 ffree(); 2171 fincstp(); 2172 } 2173 2174 void MacroAssembler::fremr(Register tmp) { 2175 save_rax(tmp); 2176 { Label L; 2177 bind(L); 2178 fprem(); 2179 fwait(); fnstsw_ax(); 2180 sahf(); 2181 jcc(Assembler::parity, L); 2182 } 2183 restore_rax(tmp); 2184 // Result is in ST0. 2185 // Note: fxch & fpop to get rid of ST1 2186 // (otherwise FPU stack could overflow eventually) 2187 fxch(1); 2188 fpop(); 2189 } 2190 2191 void MacroAssembler::empty_FPU_stack() { 2192 if (VM_Version::supports_mmx()) { 2193 emms(); 2194 } else { 2195 for (int i = 8; i-- > 0; ) ffree(i); 2196 } 2197 } 2198 #endif // !LP64 2199 2200 void MacroAssembler::mulpd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2201 assert(rscratch != noreg || always_reachable(src), "missing"); 2202 if (reachable(src)) { 2203 Assembler::mulpd(dst, as_Address(src)); 2204 } else { 2205 lea(rscratch, src); 2206 Assembler::mulpd(dst, Address(rscratch, 0)); 2207 } 2208 } 2209 2210 void MacroAssembler::load_float(Address src) { 2211 #ifdef _LP64 2212 movflt(xmm0, src); 2213 #else 2214 if (UseSSE >= 1) { 2215 movflt(xmm0, src); 2216 } else { 2217 fld_s(src); 2218 } 2219 #endif // LP64 2220 } 2221 2222 void MacroAssembler::store_float(Address dst) { 2223 #ifdef _LP64 2224 movflt(dst, xmm0); 2225 #else 2226 if (UseSSE >= 1) { 2227 movflt(dst, xmm0); 2228 } else { 2229 fstp_s(dst); 2230 } 2231 #endif // LP64 2232 } 2233 2234 void MacroAssembler::load_double(Address src) { 2235 #ifdef _LP64 2236 movdbl(xmm0, src); 2237 #else 2238 if (UseSSE >= 2) { 2239 movdbl(xmm0, src); 2240 } else { 2241 fld_d(src); 2242 } 2243 #endif // LP64 2244 } 2245 2246 void MacroAssembler::store_double(Address dst) { 2247 #ifdef _LP64 2248 movdbl(dst, xmm0); 2249 #else 2250 if (UseSSE >= 2) { 2251 movdbl(dst, xmm0); 2252 } else { 2253 fstp_d(dst); 2254 } 2255 #endif // LP64 2256 } 2257 2258 // dst = c = a * b + c 2259 void MacroAssembler::fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) { 2260 Assembler::vfmadd231sd(c, a, b); 2261 if (dst != c) { 2262 movdbl(dst, c); 2263 } 2264 } 2265 2266 // dst = c = a * b + c 2267 void MacroAssembler::fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) { 2268 Assembler::vfmadd231ss(c, a, b); 2269 if (dst != c) { 2270 movflt(dst, c); 2271 } 2272 } 2273 2274 // dst = c = a * b + c 2275 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) { 2276 Assembler::vfmadd231pd(c, a, b, vector_len); 2277 if (dst != c) { 2278 vmovdqu(dst, c); 2279 } 2280 } 2281 2282 // dst = c = a * b + c 2283 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) { 2284 Assembler::vfmadd231ps(c, a, b, vector_len); 2285 if (dst != c) { 2286 vmovdqu(dst, c); 2287 } 2288 } 2289 2290 // dst = c = a * b + c 2291 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) { 2292 Assembler::vfmadd231pd(c, a, b, vector_len); 2293 if (dst != c) { 2294 vmovdqu(dst, c); 2295 } 2296 } 2297 2298 // dst = c = a * b + c 2299 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) { 2300 Assembler::vfmadd231ps(c, a, b, vector_len); 2301 if (dst != c) { 2302 vmovdqu(dst, c); 2303 } 2304 } 2305 2306 void MacroAssembler::incrementl(AddressLiteral dst, Register rscratch) { 2307 assert(rscratch != noreg || always_reachable(dst), "missing"); 2308 2309 if (reachable(dst)) { 2310 incrementl(as_Address(dst)); 2311 } else { 2312 lea(rscratch, dst); 2313 incrementl(Address(rscratch, 0)); 2314 } 2315 } 2316 2317 void MacroAssembler::incrementl(ArrayAddress dst, Register rscratch) { 2318 incrementl(as_Address(dst, rscratch)); 2319 } 2320 2321 void MacroAssembler::incrementl(Register reg, int value) { 2322 if (value == min_jint) {addl(reg, value) ; return; } 2323 if (value < 0) { decrementl(reg, -value); return; } 2324 if (value == 0) { ; return; } 2325 if (value == 1 && UseIncDec) { incl(reg) ; return; } 2326 /* else */ { addl(reg, value) ; return; } 2327 } 2328 2329 void MacroAssembler::incrementl(Address dst, int value) { 2330 if (value == min_jint) {addl(dst, value) ; return; } 2331 if (value < 0) { decrementl(dst, -value); return; } 2332 if (value == 0) { ; return; } 2333 if (value == 1 && UseIncDec) { incl(dst) ; return; } 2334 /* else */ { addl(dst, value) ; return; } 2335 } 2336 2337 void MacroAssembler::jump(AddressLiteral dst, Register rscratch) { 2338 assert(rscratch != noreg || always_reachable(dst), "missing"); 2339 2340 if (reachable(dst)) { 2341 jmp_literal(dst.target(), dst.rspec()); 2342 } else { 2343 lea(rscratch, dst); 2344 jmp(rscratch); 2345 } 2346 } 2347 2348 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst, Register rscratch) { 2349 assert(rscratch != noreg || always_reachable(dst), "missing"); 2350 2351 if (reachable(dst)) { 2352 InstructionMark im(this); 2353 relocate(dst.reloc()); 2354 const int short_size = 2; 2355 const int long_size = 6; 2356 int offs = (intptr_t)dst.target() - ((intptr_t)pc()); 2357 if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) { 2358 // 0111 tttn #8-bit disp 2359 emit_int8(0x70 | cc); 2360 emit_int8((offs - short_size) & 0xFF); 2361 } else { 2362 // 0000 1111 1000 tttn #32-bit disp 2363 emit_int8(0x0F); 2364 emit_int8((unsigned char)(0x80 | cc)); 2365 emit_int32(offs - long_size); 2366 } 2367 } else { 2368 #ifdef ASSERT 2369 warning("reversing conditional branch"); 2370 #endif /* ASSERT */ 2371 Label skip; 2372 jccb(reverse[cc], skip); 2373 lea(rscratch, dst); 2374 Assembler::jmp(rscratch); 2375 bind(skip); 2376 } 2377 } 2378 2379 void MacroAssembler::ldmxcsr(AddressLiteral src, Register rscratch) { 2380 assert(rscratch != noreg || always_reachable(src), "missing"); 2381 2382 if (reachable(src)) { 2383 Assembler::ldmxcsr(as_Address(src)); 2384 } else { 2385 lea(rscratch, src); 2386 Assembler::ldmxcsr(Address(rscratch, 0)); 2387 } 2388 } 2389 2390 int MacroAssembler::load_signed_byte(Register dst, Address src) { 2391 int off; 2392 if (LP64_ONLY(true ||) VM_Version::is_P6()) { 2393 off = offset(); 2394 movsbl(dst, src); // movsxb 2395 } else { 2396 off = load_unsigned_byte(dst, src); 2397 shll(dst, 24); 2398 sarl(dst, 24); 2399 } 2400 return off; 2401 } 2402 2403 // Note: load_signed_short used to be called load_signed_word. 2404 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler 2405 // manual, which means 16 bits, that usage is found nowhere in HotSpot code. 2406 // The term "word" in HotSpot means a 32- or 64-bit machine word. 2407 int MacroAssembler::load_signed_short(Register dst, Address src) { 2408 int off; 2409 if (LP64_ONLY(true ||) VM_Version::is_P6()) { 2410 // This is dubious to me since it seems safe to do a signed 16 => 64 bit 2411 // version but this is what 64bit has always done. This seems to imply 2412 // that users are only using 32bits worth. 2413 off = offset(); 2414 movswl(dst, src); // movsxw 2415 } else { 2416 off = load_unsigned_short(dst, src); 2417 shll(dst, 16); 2418 sarl(dst, 16); 2419 } 2420 return off; 2421 } 2422 2423 int MacroAssembler::load_unsigned_byte(Register dst, Address src) { 2424 // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16, 2425 // and "3.9 Partial Register Penalties", p. 22). 2426 int off; 2427 if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) { 2428 off = offset(); 2429 movzbl(dst, src); // movzxb 2430 } else { 2431 xorl(dst, dst); 2432 off = offset(); 2433 movb(dst, src); 2434 } 2435 return off; 2436 } 2437 2438 // Note: load_unsigned_short used to be called load_unsigned_word. 2439 int MacroAssembler::load_unsigned_short(Register dst, Address src) { 2440 // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16, 2441 // and "3.9 Partial Register Penalties", p. 22). 2442 int off; 2443 if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) { 2444 off = offset(); 2445 movzwl(dst, src); // movzxw 2446 } else { 2447 xorl(dst, dst); 2448 off = offset(); 2449 movw(dst, src); 2450 } 2451 return off; 2452 } 2453 2454 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) { 2455 switch (size_in_bytes) { 2456 #ifndef _LP64 2457 case 8: 2458 assert(dst2 != noreg, "second dest register required"); 2459 movl(dst, src); 2460 movl(dst2, src.plus_disp(BytesPerInt)); 2461 break; 2462 #else 2463 case 8: movq(dst, src); break; 2464 #endif 2465 case 4: movl(dst, src); break; 2466 case 2: is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break; 2467 case 1: is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break; 2468 default: ShouldNotReachHere(); 2469 } 2470 } 2471 2472 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) { 2473 switch (size_in_bytes) { 2474 #ifndef _LP64 2475 case 8: 2476 assert(src2 != noreg, "second source register required"); 2477 movl(dst, src); 2478 movl(dst.plus_disp(BytesPerInt), src2); 2479 break; 2480 #else 2481 case 8: movq(dst, src); break; 2482 #endif 2483 case 4: movl(dst, src); break; 2484 case 2: movw(dst, src); break; 2485 case 1: movb(dst, src); break; 2486 default: ShouldNotReachHere(); 2487 } 2488 } 2489 2490 void MacroAssembler::mov32(AddressLiteral dst, Register src, Register rscratch) { 2491 assert(rscratch != noreg || always_reachable(dst), "missing"); 2492 2493 if (reachable(dst)) { 2494 movl(as_Address(dst), src); 2495 } else { 2496 lea(rscratch, dst); 2497 movl(Address(rscratch, 0), src); 2498 } 2499 } 2500 2501 void MacroAssembler::mov32(Register dst, AddressLiteral src) { 2502 if (reachable(src)) { 2503 movl(dst, as_Address(src)); 2504 } else { 2505 lea(dst, src); 2506 movl(dst, Address(dst, 0)); 2507 } 2508 } 2509 2510 // C++ bool manipulation 2511 2512 void MacroAssembler::movbool(Register dst, Address src) { 2513 if(sizeof(bool) == 1) 2514 movb(dst, src); 2515 else if(sizeof(bool) == 2) 2516 movw(dst, src); 2517 else if(sizeof(bool) == 4) 2518 movl(dst, src); 2519 else 2520 // unsupported 2521 ShouldNotReachHere(); 2522 } 2523 2524 void MacroAssembler::movbool(Address dst, bool boolconst) { 2525 if(sizeof(bool) == 1) 2526 movb(dst, (int) boolconst); 2527 else if(sizeof(bool) == 2) 2528 movw(dst, (int) boolconst); 2529 else if(sizeof(bool) == 4) 2530 movl(dst, (int) boolconst); 2531 else 2532 // unsupported 2533 ShouldNotReachHere(); 2534 } 2535 2536 void MacroAssembler::movbool(Address dst, Register src) { 2537 if(sizeof(bool) == 1) 2538 movb(dst, src); 2539 else if(sizeof(bool) == 2) 2540 movw(dst, src); 2541 else if(sizeof(bool) == 4) 2542 movl(dst, src); 2543 else 2544 // unsupported 2545 ShouldNotReachHere(); 2546 } 2547 2548 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src, Register rscratch) { 2549 assert(rscratch != noreg || always_reachable(src), "missing"); 2550 2551 if (reachable(src)) { 2552 movdl(dst, as_Address(src)); 2553 } else { 2554 lea(rscratch, src); 2555 movdl(dst, Address(rscratch, 0)); 2556 } 2557 } 2558 2559 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src, Register rscratch) { 2560 assert(rscratch != noreg || always_reachable(src), "missing"); 2561 2562 if (reachable(src)) { 2563 movq(dst, as_Address(src)); 2564 } else { 2565 lea(rscratch, src); 2566 movq(dst, Address(rscratch, 0)); 2567 } 2568 } 2569 2570 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src, Register rscratch) { 2571 assert(rscratch != noreg || always_reachable(src), "missing"); 2572 2573 if (reachable(src)) { 2574 if (UseXmmLoadAndClearUpper) { 2575 movsd (dst, as_Address(src)); 2576 } else { 2577 movlpd(dst, as_Address(src)); 2578 } 2579 } else { 2580 lea(rscratch, src); 2581 if (UseXmmLoadAndClearUpper) { 2582 movsd (dst, Address(rscratch, 0)); 2583 } else { 2584 movlpd(dst, Address(rscratch, 0)); 2585 } 2586 } 2587 } 2588 2589 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src, Register rscratch) { 2590 assert(rscratch != noreg || always_reachable(src), "missing"); 2591 2592 if (reachable(src)) { 2593 movss(dst, as_Address(src)); 2594 } else { 2595 lea(rscratch, src); 2596 movss(dst, Address(rscratch, 0)); 2597 } 2598 } 2599 2600 void MacroAssembler::movptr(Register dst, Register src) { 2601 LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src)); 2602 } 2603 2604 void MacroAssembler::movptr(Register dst, Address src) { 2605 LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src)); 2606 } 2607 2608 // src should NEVER be a real pointer. Use AddressLiteral for true pointers 2609 void MacroAssembler::movptr(Register dst, intptr_t src) { 2610 #ifdef _LP64 2611 if (is_uimm32(src)) { 2612 movl(dst, checked_cast<uint32_t>(src)); 2613 } else if (is_simm32(src)) { 2614 movq(dst, checked_cast<int32_t>(src)); 2615 } else { 2616 mov64(dst, src); 2617 } 2618 #else 2619 movl(dst, src); 2620 #endif 2621 } 2622 2623 void MacroAssembler::movptr(Address dst, Register src) { 2624 LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src)); 2625 } 2626 2627 void MacroAssembler::movptr(Address dst, int32_t src) { 2628 LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); 2629 } 2630 2631 void MacroAssembler::movdqu(Address dst, XMMRegister src) { 2632 assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2633 Assembler::movdqu(dst, src); 2634 } 2635 2636 void MacroAssembler::movdqu(XMMRegister dst, Address src) { 2637 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2638 Assembler::movdqu(dst, src); 2639 } 2640 2641 void MacroAssembler::movdqu(XMMRegister dst, XMMRegister src) { 2642 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2643 Assembler::movdqu(dst, src); 2644 } 2645 2646 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src, Register rscratch) { 2647 assert(rscratch != noreg || always_reachable(src), "missing"); 2648 2649 if (reachable(src)) { 2650 movdqu(dst, as_Address(src)); 2651 } else { 2652 lea(rscratch, src); 2653 movdqu(dst, Address(rscratch, 0)); 2654 } 2655 } 2656 2657 void MacroAssembler::vmovdqu(Address dst, XMMRegister src) { 2658 assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2659 Assembler::vmovdqu(dst, src); 2660 } 2661 2662 void MacroAssembler::vmovdqu(XMMRegister dst, Address src) { 2663 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2664 Assembler::vmovdqu(dst, src); 2665 } 2666 2667 void MacroAssembler::vmovdqu(XMMRegister dst, XMMRegister src) { 2668 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2669 Assembler::vmovdqu(dst, src); 2670 } 2671 2672 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src, Register rscratch) { 2673 assert(rscratch != noreg || always_reachable(src), "missing"); 2674 2675 if (reachable(src)) { 2676 vmovdqu(dst, as_Address(src)); 2677 } 2678 else { 2679 lea(rscratch, src); 2680 vmovdqu(dst, Address(rscratch, 0)); 2681 } 2682 } 2683 2684 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2685 assert(rscratch != noreg || always_reachable(src), "missing"); 2686 2687 if (vector_len == AVX_512bit) { 2688 evmovdquq(dst, src, AVX_512bit, rscratch); 2689 } else if (vector_len == AVX_256bit) { 2690 vmovdqu(dst, src, rscratch); 2691 } else { 2692 movdqu(dst, src, rscratch); 2693 } 2694 } 2695 2696 void MacroAssembler::kmov(KRegister dst, Address src) { 2697 if (VM_Version::supports_avx512bw()) { 2698 kmovql(dst, src); 2699 } else { 2700 assert(VM_Version::supports_evex(), ""); 2701 kmovwl(dst, src); 2702 } 2703 } 2704 2705 void MacroAssembler::kmov(Address dst, KRegister src) { 2706 if (VM_Version::supports_avx512bw()) { 2707 kmovql(dst, src); 2708 } else { 2709 assert(VM_Version::supports_evex(), ""); 2710 kmovwl(dst, src); 2711 } 2712 } 2713 2714 void MacroAssembler::kmov(KRegister dst, KRegister src) { 2715 if (VM_Version::supports_avx512bw()) { 2716 kmovql(dst, src); 2717 } else { 2718 assert(VM_Version::supports_evex(), ""); 2719 kmovwl(dst, src); 2720 } 2721 } 2722 2723 void MacroAssembler::kmov(Register dst, KRegister src) { 2724 if (VM_Version::supports_avx512bw()) { 2725 kmovql(dst, src); 2726 } else { 2727 assert(VM_Version::supports_evex(), ""); 2728 kmovwl(dst, src); 2729 } 2730 } 2731 2732 void MacroAssembler::kmov(KRegister dst, Register src) { 2733 if (VM_Version::supports_avx512bw()) { 2734 kmovql(dst, src); 2735 } else { 2736 assert(VM_Version::supports_evex(), ""); 2737 kmovwl(dst, src); 2738 } 2739 } 2740 2741 void MacroAssembler::kmovql(KRegister dst, AddressLiteral src, Register rscratch) { 2742 assert(rscratch != noreg || always_reachable(src), "missing"); 2743 2744 if (reachable(src)) { 2745 kmovql(dst, as_Address(src)); 2746 } else { 2747 lea(rscratch, src); 2748 kmovql(dst, Address(rscratch, 0)); 2749 } 2750 } 2751 2752 void MacroAssembler::kmovwl(KRegister dst, AddressLiteral src, Register rscratch) { 2753 assert(rscratch != noreg || always_reachable(src), "missing"); 2754 2755 if (reachable(src)) { 2756 kmovwl(dst, as_Address(src)); 2757 } else { 2758 lea(rscratch, src); 2759 kmovwl(dst, Address(rscratch, 0)); 2760 } 2761 } 2762 2763 void MacroAssembler::evmovdqub(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, 2764 int vector_len, Register rscratch) { 2765 assert(rscratch != noreg || always_reachable(src), "missing"); 2766 2767 if (reachable(src)) { 2768 Assembler::evmovdqub(dst, mask, as_Address(src), merge, vector_len); 2769 } else { 2770 lea(rscratch, src); 2771 Assembler::evmovdqub(dst, mask, Address(rscratch, 0), merge, vector_len); 2772 } 2773 } 2774 2775 void MacroAssembler::evmovdquw(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, 2776 int vector_len, Register rscratch) { 2777 assert(rscratch != noreg || always_reachable(src), "missing"); 2778 2779 if (reachable(src)) { 2780 Assembler::evmovdquw(dst, mask, as_Address(src), merge, vector_len); 2781 } else { 2782 lea(rscratch, src); 2783 Assembler::evmovdquw(dst, mask, Address(rscratch, 0), merge, vector_len); 2784 } 2785 } 2786 2787 void MacroAssembler::evmovdqul(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch) { 2788 assert(rscratch != noreg || always_reachable(src), "missing"); 2789 2790 if (reachable(src)) { 2791 Assembler::evmovdqul(dst, mask, as_Address(src), merge, vector_len); 2792 } else { 2793 lea(rscratch, src); 2794 Assembler::evmovdqul(dst, mask, Address(rscratch, 0), merge, vector_len); 2795 } 2796 } 2797 2798 void MacroAssembler::evmovdquq(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch) { 2799 assert(rscratch != noreg || always_reachable(src), "missing"); 2800 2801 if (reachable(src)) { 2802 Assembler::evmovdquq(dst, mask, as_Address(src), merge, vector_len); 2803 } else { 2804 lea(rscratch, src); 2805 Assembler::evmovdquq(dst, mask, Address(rscratch, 0), merge, vector_len); 2806 } 2807 } 2808 2809 void MacroAssembler::evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2810 assert(rscratch != noreg || always_reachable(src), "missing"); 2811 2812 if (reachable(src)) { 2813 Assembler::evmovdquq(dst, as_Address(src), vector_len); 2814 } else { 2815 lea(rscratch, src); 2816 Assembler::evmovdquq(dst, Address(rscratch, 0), vector_len); 2817 } 2818 } 2819 2820 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src, Register rscratch) { 2821 assert(rscratch != noreg || always_reachable(src), "missing"); 2822 2823 if (reachable(src)) { 2824 Assembler::movdqa(dst, as_Address(src)); 2825 } else { 2826 lea(rscratch, src); 2827 Assembler::movdqa(dst, Address(rscratch, 0)); 2828 } 2829 } 2830 2831 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2832 assert(rscratch != noreg || always_reachable(src), "missing"); 2833 2834 if (reachable(src)) { 2835 Assembler::movsd(dst, as_Address(src)); 2836 } else { 2837 lea(rscratch, src); 2838 Assembler::movsd(dst, Address(rscratch, 0)); 2839 } 2840 } 2841 2842 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src, Register rscratch) { 2843 assert(rscratch != noreg || always_reachable(src), "missing"); 2844 2845 if (reachable(src)) { 2846 Assembler::movss(dst, as_Address(src)); 2847 } else { 2848 lea(rscratch, src); 2849 Assembler::movss(dst, Address(rscratch, 0)); 2850 } 2851 } 2852 2853 void MacroAssembler::movddup(XMMRegister dst, AddressLiteral src, Register rscratch) { 2854 assert(rscratch != noreg || always_reachable(src), "missing"); 2855 2856 if (reachable(src)) { 2857 Assembler::movddup(dst, as_Address(src)); 2858 } else { 2859 lea(rscratch, src); 2860 Assembler::movddup(dst, Address(rscratch, 0)); 2861 } 2862 } 2863 2864 void MacroAssembler::vmovddup(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2865 assert(rscratch != noreg || always_reachable(src), "missing"); 2866 2867 if (reachable(src)) { 2868 Assembler::vmovddup(dst, as_Address(src), vector_len); 2869 } else { 2870 lea(rscratch, src); 2871 Assembler::vmovddup(dst, Address(rscratch, 0), vector_len); 2872 } 2873 } 2874 2875 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2876 assert(rscratch != noreg || always_reachable(src), "missing"); 2877 2878 if (reachable(src)) { 2879 Assembler::mulsd(dst, as_Address(src)); 2880 } else { 2881 lea(rscratch, src); 2882 Assembler::mulsd(dst, Address(rscratch, 0)); 2883 } 2884 } 2885 2886 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src, Register rscratch) { 2887 assert(rscratch != noreg || always_reachable(src), "missing"); 2888 2889 if (reachable(src)) { 2890 Assembler::mulss(dst, as_Address(src)); 2891 } else { 2892 lea(rscratch, src); 2893 Assembler::mulss(dst, Address(rscratch, 0)); 2894 } 2895 } 2896 2897 void MacroAssembler::null_check(Register reg, int offset) { 2898 if (needs_explicit_null_check(offset)) { 2899 // provoke OS null exception if reg is null by 2900 // accessing M[reg] w/o changing any (non-CC) registers 2901 // NOTE: cmpl is plenty here to provoke a segv 2902 cmpptr(rax, Address(reg, 0)); 2903 // Note: should probably use testl(rax, Address(reg, 0)); 2904 // may be shorter code (however, this version of 2905 // testl needs to be implemented first) 2906 } else { 2907 // nothing to do, (later) access of M[reg + offset] 2908 // will provoke OS null exception if reg is null 2909 } 2910 } 2911 2912 void MacroAssembler::os_breakpoint() { 2913 // instead of directly emitting a breakpoint, call os:breakpoint for better debugability 2914 // (e.g., MSVC can't call ps() otherwise) 2915 call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint))); 2916 } 2917 2918 void MacroAssembler::unimplemented(const char* what) { 2919 const char* buf = nullptr; 2920 { 2921 ResourceMark rm; 2922 stringStream ss; 2923 ss.print("unimplemented: %s", what); 2924 buf = code_string(ss.as_string()); 2925 } 2926 stop(buf); 2927 } 2928 2929 #ifdef _LP64 2930 #define XSTATE_BV 0x200 2931 #endif 2932 2933 void MacroAssembler::pop_CPU_state() { 2934 pop_FPU_state(); 2935 pop_IU_state(); 2936 } 2937 2938 void MacroAssembler::pop_FPU_state() { 2939 #ifndef _LP64 2940 frstor(Address(rsp, 0)); 2941 #else 2942 fxrstor(Address(rsp, 0)); 2943 #endif 2944 addptr(rsp, FPUStateSizeInWords * wordSize); 2945 } 2946 2947 void MacroAssembler::pop_IU_state() { 2948 popa(); 2949 LP64_ONLY(addq(rsp, 8)); 2950 popf(); 2951 } 2952 2953 // Save Integer and Float state 2954 // Warning: Stack must be 16 byte aligned (64bit) 2955 void MacroAssembler::push_CPU_state() { 2956 push_IU_state(); 2957 push_FPU_state(); 2958 } 2959 2960 void MacroAssembler::push_FPU_state() { 2961 subptr(rsp, FPUStateSizeInWords * wordSize); 2962 #ifndef _LP64 2963 fnsave(Address(rsp, 0)); 2964 fwait(); 2965 #else 2966 fxsave(Address(rsp, 0)); 2967 #endif // LP64 2968 } 2969 2970 void MacroAssembler::push_IU_state() { 2971 // Push flags first because pusha kills them 2972 pushf(); 2973 // Make sure rsp stays 16-byte aligned 2974 LP64_ONLY(subq(rsp, 8)); 2975 pusha(); 2976 } 2977 2978 void MacroAssembler::push_cont_fastpath() { 2979 if (!Continuations::enabled()) return; 2980 2981 #ifndef _LP64 2982 Register rthread = rax; 2983 Register rrealsp = rbx; 2984 push(rthread); 2985 push(rrealsp); 2986 2987 get_thread(rthread); 2988 2989 // The code below wants the original RSP. 2990 // Move it back after the pushes above. 2991 movptr(rrealsp, rsp); 2992 addptr(rrealsp, 2*wordSize); 2993 #else 2994 Register rthread = r15_thread; 2995 Register rrealsp = rsp; 2996 #endif 2997 2998 Label done; 2999 cmpptr(rrealsp, Address(rthread, JavaThread::cont_fastpath_offset())); 3000 jccb(Assembler::belowEqual, done); 3001 movptr(Address(rthread, JavaThread::cont_fastpath_offset()), rrealsp); 3002 bind(done); 3003 3004 #ifndef _LP64 3005 pop(rrealsp); 3006 pop(rthread); 3007 #endif 3008 } 3009 3010 void MacroAssembler::pop_cont_fastpath() { 3011 if (!Continuations::enabled()) return; 3012 3013 #ifndef _LP64 3014 Register rthread = rax; 3015 Register rrealsp = rbx; 3016 push(rthread); 3017 push(rrealsp); 3018 3019 get_thread(rthread); 3020 3021 // The code below wants the original RSP. 3022 // Move it back after the pushes above. 3023 movptr(rrealsp, rsp); 3024 addptr(rrealsp, 2*wordSize); 3025 #else 3026 Register rthread = r15_thread; 3027 Register rrealsp = rsp; 3028 #endif 3029 3030 Label done; 3031 cmpptr(rrealsp, Address(rthread, JavaThread::cont_fastpath_offset())); 3032 jccb(Assembler::below, done); 3033 movptr(Address(rthread, JavaThread::cont_fastpath_offset()), 0); 3034 bind(done); 3035 3036 #ifndef _LP64 3037 pop(rrealsp); 3038 pop(rthread); 3039 #endif 3040 } 3041 3042 void MacroAssembler::inc_held_monitor_count() { 3043 #ifndef _LP64 3044 Register thread = rax; 3045 push(thread); 3046 get_thread(thread); 3047 incrementl(Address(thread, JavaThread::held_monitor_count_offset())); 3048 pop(thread); 3049 #else // LP64 3050 incrementq(Address(r15_thread, JavaThread::held_monitor_count_offset())); 3051 #endif 3052 } 3053 3054 void MacroAssembler::dec_held_monitor_count() { 3055 #ifndef _LP64 3056 Register thread = rax; 3057 push(thread); 3058 get_thread(thread); 3059 decrementl(Address(thread, JavaThread::held_monitor_count_offset())); 3060 pop(thread); 3061 #else // LP64 3062 decrementq(Address(r15_thread, JavaThread::held_monitor_count_offset())); 3063 #endif 3064 } 3065 3066 #ifdef ASSERT 3067 void MacroAssembler::stop_if_in_cont(Register cont, const char* name) { 3068 #ifdef _LP64 3069 Label no_cont; 3070 movptr(cont, Address(r15_thread, JavaThread::cont_entry_offset())); 3071 testl(cont, cont); 3072 jcc(Assembler::zero, no_cont); 3073 stop(name); 3074 bind(no_cont); 3075 #else 3076 Unimplemented(); 3077 #endif 3078 } 3079 #endif 3080 3081 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp) { // determine java_thread register 3082 if (!java_thread->is_valid()) { 3083 java_thread = rdi; 3084 get_thread(java_thread); 3085 } 3086 // we must set sp to zero to clear frame 3087 movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD); 3088 // must clear fp, so that compiled frames are not confused; it is 3089 // possible that we need it only for debugging 3090 if (clear_fp) { 3091 movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD); 3092 } 3093 // Always clear the pc because it could have been set by make_walkable() 3094 movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD); 3095 vzeroupper(); 3096 } 3097 3098 void MacroAssembler::restore_rax(Register tmp) { 3099 if (tmp == noreg) pop(rax); 3100 else if (tmp != rax) mov(rax, tmp); 3101 } 3102 3103 void MacroAssembler::round_to(Register reg, int modulus) { 3104 addptr(reg, modulus - 1); 3105 andptr(reg, -modulus); 3106 } 3107 3108 void MacroAssembler::save_rax(Register tmp) { 3109 if (tmp == noreg) push(rax); 3110 else if (tmp != rax) mov(tmp, rax); 3111 } 3112 3113 void MacroAssembler::safepoint_poll(Label& slow_path, Register thread_reg, bool at_return, bool in_nmethod) { 3114 if (at_return) { 3115 // Note that when in_nmethod is set, the stack pointer is incremented before the poll. Therefore, 3116 // we may safely use rsp instead to perform the stack watermark check. 3117 cmpptr(in_nmethod ? rsp : rbp, Address(thread_reg, JavaThread::polling_word_offset())); 3118 jcc(Assembler::above, slow_path); 3119 return; 3120 } 3121 testb(Address(thread_reg, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit()); 3122 jcc(Assembler::notZero, slow_path); // handshake bit set implies poll 3123 } 3124 3125 // Calls to C land 3126 // 3127 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded 3128 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp 3129 // has to be reset to 0. This is required to allow proper stack traversal. 3130 void MacroAssembler::set_last_Java_frame(Register java_thread, 3131 Register last_java_sp, 3132 Register last_java_fp, 3133 address last_java_pc, 3134 Register rscratch) { 3135 vzeroupper(); 3136 // determine java_thread register 3137 if (!java_thread->is_valid()) { 3138 java_thread = rdi; 3139 get_thread(java_thread); 3140 } 3141 // determine last_java_sp register 3142 if (!last_java_sp->is_valid()) { 3143 last_java_sp = rsp; 3144 } 3145 // last_java_fp is optional 3146 if (last_java_fp->is_valid()) { 3147 movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp); 3148 } 3149 // last_java_pc is optional 3150 if (last_java_pc != nullptr) { 3151 Address java_pc(java_thread, 3152 JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()); 3153 lea(java_pc, InternalAddress(last_java_pc), rscratch); 3154 } 3155 movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp); 3156 } 3157 3158 void MacroAssembler::shlptr(Register dst, int imm8) { 3159 LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8)); 3160 } 3161 3162 void MacroAssembler::shrptr(Register dst, int imm8) { 3163 LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8)); 3164 } 3165 3166 void MacroAssembler::sign_extend_byte(Register reg) { 3167 if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) { 3168 movsbl(reg, reg); // movsxb 3169 } else { 3170 shll(reg, 24); 3171 sarl(reg, 24); 3172 } 3173 } 3174 3175 void MacroAssembler::sign_extend_short(Register reg) { 3176 if (LP64_ONLY(true ||) VM_Version::is_P6()) { 3177 movswl(reg, reg); // movsxw 3178 } else { 3179 shll(reg, 16); 3180 sarl(reg, 16); 3181 } 3182 } 3183 3184 void MacroAssembler::testl(Address dst, int32_t imm32) { 3185 if (imm32 >= 0 && is8bit(imm32)) { 3186 testb(dst, imm32); 3187 } else { 3188 Assembler::testl(dst, imm32); 3189 } 3190 } 3191 3192 void MacroAssembler::testl(Register dst, int32_t imm32) { 3193 if (imm32 >= 0 && is8bit(imm32) && dst->has_byte_register()) { 3194 testb(dst, imm32); 3195 } else { 3196 Assembler::testl(dst, imm32); 3197 } 3198 } 3199 3200 void MacroAssembler::testl(Register dst, AddressLiteral src) { 3201 assert(always_reachable(src), "Address should be reachable"); 3202 testl(dst, as_Address(src)); 3203 } 3204 3205 #ifdef _LP64 3206 3207 void MacroAssembler::testq(Address dst, int32_t imm32) { 3208 if (imm32 >= 0) { 3209 testl(dst, imm32); 3210 } else { 3211 Assembler::testq(dst, imm32); 3212 } 3213 } 3214 3215 void MacroAssembler::testq(Register dst, int32_t imm32) { 3216 if (imm32 >= 0) { 3217 testl(dst, imm32); 3218 } else { 3219 Assembler::testq(dst, imm32); 3220 } 3221 } 3222 3223 #endif 3224 3225 void MacroAssembler::pcmpeqb(XMMRegister dst, XMMRegister src) { 3226 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3227 Assembler::pcmpeqb(dst, src); 3228 } 3229 3230 void MacroAssembler::pcmpeqw(XMMRegister dst, XMMRegister src) { 3231 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3232 Assembler::pcmpeqw(dst, src); 3233 } 3234 3235 void MacroAssembler::pcmpestri(XMMRegister dst, Address src, int imm8) { 3236 assert((dst->encoding() < 16),"XMM register should be 0-15"); 3237 Assembler::pcmpestri(dst, src, imm8); 3238 } 3239 3240 void MacroAssembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) { 3241 assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15"); 3242 Assembler::pcmpestri(dst, src, imm8); 3243 } 3244 3245 void MacroAssembler::pmovzxbw(XMMRegister dst, XMMRegister src) { 3246 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3247 Assembler::pmovzxbw(dst, src); 3248 } 3249 3250 void MacroAssembler::pmovzxbw(XMMRegister dst, Address src) { 3251 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3252 Assembler::pmovzxbw(dst, src); 3253 } 3254 3255 void MacroAssembler::pmovmskb(Register dst, XMMRegister src) { 3256 assert((src->encoding() < 16),"XMM register should be 0-15"); 3257 Assembler::pmovmskb(dst, src); 3258 } 3259 3260 void MacroAssembler::ptest(XMMRegister dst, XMMRegister src) { 3261 assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15"); 3262 Assembler::ptest(dst, src); 3263 } 3264 3265 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src, Register rscratch) { 3266 assert(rscratch != noreg || always_reachable(src), "missing"); 3267 3268 if (reachable(src)) { 3269 Assembler::sqrtss(dst, as_Address(src)); 3270 } else { 3271 lea(rscratch, src); 3272 Assembler::sqrtss(dst, Address(rscratch, 0)); 3273 } 3274 } 3275 3276 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 3277 assert(rscratch != noreg || always_reachable(src), "missing"); 3278 3279 if (reachable(src)) { 3280 Assembler::subsd(dst, as_Address(src)); 3281 } else { 3282 lea(rscratch, src); 3283 Assembler::subsd(dst, Address(rscratch, 0)); 3284 } 3285 } 3286 3287 void MacroAssembler::roundsd(XMMRegister dst, AddressLiteral src, int32_t rmode, Register rscratch) { 3288 assert(rscratch != noreg || always_reachable(src), "missing"); 3289 3290 if (reachable(src)) { 3291 Assembler::roundsd(dst, as_Address(src), rmode); 3292 } else { 3293 lea(rscratch, src); 3294 Assembler::roundsd(dst, Address(rscratch, 0), rmode); 3295 } 3296 } 3297 3298 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src, Register rscratch) { 3299 assert(rscratch != noreg || always_reachable(src), "missing"); 3300 3301 if (reachable(src)) { 3302 Assembler::subss(dst, as_Address(src)); 3303 } else { 3304 lea(rscratch, src); 3305 Assembler::subss(dst, Address(rscratch, 0)); 3306 } 3307 } 3308 3309 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src, Register rscratch) { 3310 assert(rscratch != noreg || always_reachable(src), "missing"); 3311 3312 if (reachable(src)) { 3313 Assembler::ucomisd(dst, as_Address(src)); 3314 } else { 3315 lea(rscratch, src); 3316 Assembler::ucomisd(dst, Address(rscratch, 0)); 3317 } 3318 } 3319 3320 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src, Register rscratch) { 3321 assert(rscratch != noreg || always_reachable(src), "missing"); 3322 3323 if (reachable(src)) { 3324 Assembler::ucomiss(dst, as_Address(src)); 3325 } else { 3326 lea(rscratch, src); 3327 Assembler::ucomiss(dst, Address(rscratch, 0)); 3328 } 3329 } 3330 3331 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src, Register rscratch) { 3332 assert(rscratch != noreg || always_reachable(src), "missing"); 3333 3334 // Used in sign-bit flipping with aligned address. 3335 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); 3336 if (reachable(src)) { 3337 Assembler::xorpd(dst, as_Address(src)); 3338 } else { 3339 lea(rscratch, src); 3340 Assembler::xorpd(dst, Address(rscratch, 0)); 3341 } 3342 } 3343 3344 void MacroAssembler::xorpd(XMMRegister dst, XMMRegister src) { 3345 if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) { 3346 Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit); 3347 } 3348 else { 3349 Assembler::xorpd(dst, src); 3350 } 3351 } 3352 3353 void MacroAssembler::xorps(XMMRegister dst, XMMRegister src) { 3354 if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) { 3355 Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit); 3356 } else { 3357 Assembler::xorps(dst, src); 3358 } 3359 } 3360 3361 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src, Register rscratch) { 3362 assert(rscratch != noreg || always_reachable(src), "missing"); 3363 3364 // Used in sign-bit flipping with aligned address. 3365 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); 3366 if (reachable(src)) { 3367 Assembler::xorps(dst, as_Address(src)); 3368 } else { 3369 lea(rscratch, src); 3370 Assembler::xorps(dst, Address(rscratch, 0)); 3371 } 3372 } 3373 3374 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src, Register rscratch) { 3375 assert(rscratch != noreg || always_reachable(src), "missing"); 3376 3377 // Used in sign-bit flipping with aligned address. 3378 bool aligned_adr = (((intptr_t)src.target() & 15) == 0); 3379 assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes"); 3380 if (reachable(src)) { 3381 Assembler::pshufb(dst, as_Address(src)); 3382 } else { 3383 lea(rscratch, src); 3384 Assembler::pshufb(dst, Address(rscratch, 0)); 3385 } 3386 } 3387 3388 // AVX 3-operands instructions 3389 3390 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3391 assert(rscratch != noreg || always_reachable(src), "missing"); 3392 3393 if (reachable(src)) { 3394 vaddsd(dst, nds, as_Address(src)); 3395 } else { 3396 lea(rscratch, src); 3397 vaddsd(dst, nds, Address(rscratch, 0)); 3398 } 3399 } 3400 3401 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3402 assert(rscratch != noreg || always_reachable(src), "missing"); 3403 3404 if (reachable(src)) { 3405 vaddss(dst, nds, as_Address(src)); 3406 } else { 3407 lea(rscratch, src); 3408 vaddss(dst, nds, Address(rscratch, 0)); 3409 } 3410 } 3411 3412 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3413 assert(UseAVX > 0, "requires some form of AVX"); 3414 assert(rscratch != noreg || always_reachable(src), "missing"); 3415 3416 if (reachable(src)) { 3417 Assembler::vpaddb(dst, nds, as_Address(src), vector_len); 3418 } else { 3419 lea(rscratch, src); 3420 Assembler::vpaddb(dst, nds, Address(rscratch, 0), vector_len); 3421 } 3422 } 3423 3424 void MacroAssembler::vpaddd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3425 assert(UseAVX > 0, "requires some form of AVX"); 3426 assert(rscratch != noreg || always_reachable(src), "missing"); 3427 3428 if (reachable(src)) { 3429 Assembler::vpaddd(dst, nds, as_Address(src), vector_len); 3430 } else { 3431 lea(rscratch, src); 3432 Assembler::vpaddd(dst, nds, Address(rscratch, 0), vector_len); 3433 } 3434 } 3435 3436 void MacroAssembler::vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch) { 3437 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15"); 3438 assert(rscratch != noreg || always_reachable(negate_field), "missing"); 3439 3440 vandps(dst, nds, negate_field, vector_len, rscratch); 3441 } 3442 3443 void MacroAssembler::vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch) { 3444 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15"); 3445 assert(rscratch != noreg || always_reachable(negate_field), "missing"); 3446 3447 vandpd(dst, nds, negate_field, vector_len, rscratch); 3448 } 3449 3450 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3451 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3452 Assembler::vpaddb(dst, nds, src, vector_len); 3453 } 3454 3455 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3456 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3457 Assembler::vpaddb(dst, nds, src, vector_len); 3458 } 3459 3460 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3461 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3462 Assembler::vpaddw(dst, nds, src, vector_len); 3463 } 3464 3465 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3466 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3467 Assembler::vpaddw(dst, nds, src, vector_len); 3468 } 3469 3470 void MacroAssembler::vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3471 assert(rscratch != noreg || always_reachable(src), "missing"); 3472 3473 if (reachable(src)) { 3474 Assembler::vpand(dst, nds, as_Address(src), vector_len); 3475 } else { 3476 lea(rscratch, src); 3477 Assembler::vpand(dst, nds, Address(rscratch, 0), vector_len); 3478 } 3479 } 3480 3481 void MacroAssembler::vpbroadcastd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 3482 assert(rscratch != noreg || always_reachable(src), "missing"); 3483 3484 if (reachable(src)) { 3485 Assembler::vpbroadcastd(dst, as_Address(src), vector_len); 3486 } else { 3487 lea(rscratch, src); 3488 Assembler::vpbroadcastd(dst, Address(rscratch, 0), vector_len); 3489 } 3490 } 3491 3492 void MacroAssembler::vpbroadcastq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 3493 assert(rscratch != noreg || always_reachable(src), "missing"); 3494 3495 if (reachable(src)) { 3496 Assembler::vpbroadcastq(dst, as_Address(src), vector_len); 3497 } else { 3498 lea(rscratch, src); 3499 Assembler::vpbroadcastq(dst, Address(rscratch, 0), vector_len); 3500 } 3501 } 3502 3503 void MacroAssembler::vbroadcastsd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 3504 assert(rscratch != noreg || always_reachable(src), "missing"); 3505 3506 if (reachable(src)) { 3507 Assembler::vbroadcastsd(dst, as_Address(src), vector_len); 3508 } else { 3509 lea(rscratch, src); 3510 Assembler::vbroadcastsd(dst, Address(rscratch, 0), vector_len); 3511 } 3512 } 3513 3514 void MacroAssembler::vbroadcastss(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 3515 assert(rscratch != noreg || always_reachable(src), "missing"); 3516 3517 if (reachable(src)) { 3518 Assembler::vbroadcastss(dst, as_Address(src), vector_len); 3519 } else { 3520 lea(rscratch, src); 3521 Assembler::vbroadcastss(dst, Address(rscratch, 0), vector_len); 3522 } 3523 } 3524 3525 // Vector float blend 3526 // vblendvps(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister mask, int vector_len, bool compute_mask = true, XMMRegister scratch = xnoreg) 3527 void MacroAssembler::vblendvps(XMMRegister dst, XMMRegister src1, XMMRegister src2, XMMRegister mask, int vector_len, bool compute_mask, XMMRegister scratch) { 3528 // WARN: Allow dst == (src1|src2), mask == scratch 3529 bool blend_emulation = EnableX86ECoreOpts && UseAVX > 1; 3530 bool scratch_available = scratch != xnoreg && scratch != src1 && scratch != src2 && scratch != dst; 3531 bool dst_available = dst != mask && (dst != src1 || dst != src2); 3532 if (blend_emulation && scratch_available && dst_available) { 3533 if (compute_mask) { 3534 vpsrad(scratch, mask, 32, vector_len); 3535 mask = scratch; 3536 } 3537 if (dst == src1) { 3538 vpandn(dst, mask, src1, vector_len); // if mask == 0, src1 3539 vpand (scratch, mask, src2, vector_len); // if mask == 1, src2 3540 } else { 3541 vpand (dst, mask, src2, vector_len); // if mask == 1, src2 3542 vpandn(scratch, mask, src1, vector_len); // if mask == 0, src1 3543 } 3544 vpor(dst, dst, scratch, vector_len); 3545 } else { 3546 Assembler::vblendvps(dst, src1, src2, mask, vector_len); 3547 } 3548 } 3549 3550 // vblendvpd(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister mask, int vector_len, bool compute_mask = true, XMMRegister scratch = xnoreg) 3551 void MacroAssembler::vblendvpd(XMMRegister dst, XMMRegister src1, XMMRegister src2, XMMRegister mask, int vector_len, bool compute_mask, XMMRegister scratch) { 3552 // WARN: Allow dst == (src1|src2), mask == scratch 3553 bool blend_emulation = EnableX86ECoreOpts && UseAVX > 1; 3554 bool scratch_available = scratch != xnoreg && scratch != src1 && scratch != src2 && scratch != dst && (!compute_mask || scratch != mask); 3555 bool dst_available = dst != mask && (dst != src1 || dst != src2); 3556 if (blend_emulation && scratch_available && dst_available) { 3557 if (compute_mask) { 3558 vpxor(scratch, scratch, scratch, vector_len); 3559 vpcmpgtq(scratch, scratch, mask, vector_len); 3560 mask = scratch; 3561 } 3562 if (dst == src1) { 3563 vpandn(dst, mask, src1, vector_len); // if mask == 0, src 3564 vpand (scratch, mask, src2, vector_len); // if mask == 1, src2 3565 } else { 3566 vpand (dst, mask, src2, vector_len); // if mask == 1, src2 3567 vpandn(scratch, mask, src1, vector_len); // if mask == 0, src 3568 } 3569 vpor(dst, dst, scratch, vector_len); 3570 } else { 3571 Assembler::vblendvpd(dst, src1, src2, mask, vector_len); 3572 } 3573 } 3574 3575 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3576 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3577 Assembler::vpcmpeqb(dst, nds, src, vector_len); 3578 } 3579 3580 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister src1, Address src2, int vector_len) { 3581 assert(((dst->encoding() < 16 && src1->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3582 Assembler::vpcmpeqb(dst, src1, src2, vector_len); 3583 } 3584 3585 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3586 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3587 Assembler::vpcmpeqw(dst, nds, src, vector_len); 3588 } 3589 3590 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3591 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3592 Assembler::vpcmpeqw(dst, nds, src, vector_len); 3593 } 3594 3595 void MacroAssembler::evpcmpeqd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3596 assert(rscratch != noreg || always_reachable(src), "missing"); 3597 3598 if (reachable(src)) { 3599 Assembler::evpcmpeqd(kdst, mask, nds, as_Address(src), vector_len); 3600 } else { 3601 lea(rscratch, src); 3602 Assembler::evpcmpeqd(kdst, mask, nds, Address(rscratch, 0), vector_len); 3603 } 3604 } 3605 3606 void MacroAssembler::evpcmpd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, 3607 int comparison, bool is_signed, int vector_len, Register rscratch) { 3608 assert(rscratch != noreg || always_reachable(src), "missing"); 3609 3610 if (reachable(src)) { 3611 Assembler::evpcmpd(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len); 3612 } else { 3613 lea(rscratch, src); 3614 Assembler::evpcmpd(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len); 3615 } 3616 } 3617 3618 void MacroAssembler::evpcmpq(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, 3619 int comparison, bool is_signed, int vector_len, Register rscratch) { 3620 assert(rscratch != noreg || always_reachable(src), "missing"); 3621 3622 if (reachable(src)) { 3623 Assembler::evpcmpq(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len); 3624 } else { 3625 lea(rscratch, src); 3626 Assembler::evpcmpq(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len); 3627 } 3628 } 3629 3630 void MacroAssembler::evpcmpb(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, 3631 int comparison, bool is_signed, int vector_len, Register rscratch) { 3632 assert(rscratch != noreg || always_reachable(src), "missing"); 3633 3634 if (reachable(src)) { 3635 Assembler::evpcmpb(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len); 3636 } else { 3637 lea(rscratch, src); 3638 Assembler::evpcmpb(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len); 3639 } 3640 } 3641 3642 void MacroAssembler::evpcmpw(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, 3643 int comparison, bool is_signed, int vector_len, Register rscratch) { 3644 assert(rscratch != noreg || always_reachable(src), "missing"); 3645 3646 if (reachable(src)) { 3647 Assembler::evpcmpw(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len); 3648 } else { 3649 lea(rscratch, src); 3650 Assembler::evpcmpw(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len); 3651 } 3652 } 3653 3654 void MacroAssembler::vpcmpCC(XMMRegister dst, XMMRegister nds, XMMRegister src, int cond_encoding, Width width, int vector_len) { 3655 if (width == Assembler::Q) { 3656 Assembler::vpcmpCCq(dst, nds, src, cond_encoding, vector_len); 3657 } else { 3658 Assembler::vpcmpCCbwd(dst, nds, src, cond_encoding, vector_len); 3659 } 3660 } 3661 3662 void MacroAssembler::vpcmpCCW(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister xtmp, ComparisonPredicate cond, Width width, int vector_len) { 3663 int eq_cond_enc = 0x29; 3664 int gt_cond_enc = 0x37; 3665 if (width != Assembler::Q) { 3666 eq_cond_enc = 0x74 + width; 3667 gt_cond_enc = 0x64 + width; 3668 } 3669 switch (cond) { 3670 case eq: 3671 vpcmpCC(dst, nds, src, eq_cond_enc, width, vector_len); 3672 break; 3673 case neq: 3674 vpcmpCC(dst, nds, src, eq_cond_enc, width, vector_len); 3675 vallones(xtmp, vector_len); 3676 vpxor(dst, xtmp, dst, vector_len); 3677 break; 3678 case le: 3679 vpcmpCC(dst, nds, src, gt_cond_enc, width, vector_len); 3680 vallones(xtmp, vector_len); 3681 vpxor(dst, xtmp, dst, vector_len); 3682 break; 3683 case nlt: 3684 vpcmpCC(dst, src, nds, gt_cond_enc, width, vector_len); 3685 vallones(xtmp, vector_len); 3686 vpxor(dst, xtmp, dst, vector_len); 3687 break; 3688 case lt: 3689 vpcmpCC(dst, src, nds, gt_cond_enc, width, vector_len); 3690 break; 3691 case nle: 3692 vpcmpCC(dst, nds, src, gt_cond_enc, width, vector_len); 3693 break; 3694 default: 3695 assert(false, "Should not reach here"); 3696 } 3697 } 3698 3699 void MacroAssembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) { 3700 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3701 Assembler::vpmovzxbw(dst, src, vector_len); 3702 } 3703 3704 void MacroAssembler::vpmovmskb(Register dst, XMMRegister src, int vector_len) { 3705 assert((src->encoding() < 16),"XMM register should be 0-15"); 3706 Assembler::vpmovmskb(dst, src, vector_len); 3707 } 3708 3709 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3710 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3711 Assembler::vpmullw(dst, nds, src, vector_len); 3712 } 3713 3714 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3715 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3716 Assembler::vpmullw(dst, nds, src, vector_len); 3717 } 3718 3719 void MacroAssembler::vpmulld(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3720 assert((UseAVX > 0), "AVX support is needed"); 3721 assert(rscratch != noreg || always_reachable(src), "missing"); 3722 3723 if (reachable(src)) { 3724 Assembler::vpmulld(dst, nds, as_Address(src), vector_len); 3725 } else { 3726 lea(rscratch, src); 3727 Assembler::vpmulld(dst, nds, Address(rscratch, 0), vector_len); 3728 } 3729 } 3730 3731 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3732 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3733 Assembler::vpsubb(dst, nds, src, vector_len); 3734 } 3735 3736 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3737 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3738 Assembler::vpsubb(dst, nds, src, vector_len); 3739 } 3740 3741 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3742 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3743 Assembler::vpsubw(dst, nds, src, vector_len); 3744 } 3745 3746 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3747 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3748 Assembler::vpsubw(dst, nds, src, vector_len); 3749 } 3750 3751 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) { 3752 assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3753 Assembler::vpsraw(dst, nds, shift, vector_len); 3754 } 3755 3756 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) { 3757 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3758 Assembler::vpsraw(dst, nds, shift, vector_len); 3759 } 3760 3761 void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) { 3762 assert(UseAVX > 2,""); 3763 if (!VM_Version::supports_avx512vl() && vector_len < 2) { 3764 vector_len = 2; 3765 } 3766 Assembler::evpsraq(dst, nds, shift, vector_len); 3767 } 3768 3769 void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, int shift, int vector_len) { 3770 assert(UseAVX > 2,""); 3771 if (!VM_Version::supports_avx512vl() && vector_len < 2) { 3772 vector_len = 2; 3773 } 3774 Assembler::evpsraq(dst, nds, shift, vector_len); 3775 } 3776 3777 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) { 3778 assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3779 Assembler::vpsrlw(dst, nds, shift, vector_len); 3780 } 3781 3782 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) { 3783 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3784 Assembler::vpsrlw(dst, nds, shift, vector_len); 3785 } 3786 3787 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) { 3788 assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3789 Assembler::vpsllw(dst, nds, shift, vector_len); 3790 } 3791 3792 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) { 3793 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3794 Assembler::vpsllw(dst, nds, shift, vector_len); 3795 } 3796 3797 void MacroAssembler::vptest(XMMRegister dst, XMMRegister src) { 3798 assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15"); 3799 Assembler::vptest(dst, src); 3800 } 3801 3802 void MacroAssembler::punpcklbw(XMMRegister dst, XMMRegister src) { 3803 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3804 Assembler::punpcklbw(dst, src); 3805 } 3806 3807 void MacroAssembler::pshufd(XMMRegister dst, Address src, int mode) { 3808 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 3809 Assembler::pshufd(dst, src, mode); 3810 } 3811 3812 void MacroAssembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) { 3813 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3814 Assembler::pshuflw(dst, src, mode); 3815 } 3816 3817 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3818 assert(rscratch != noreg || always_reachable(src), "missing"); 3819 3820 if (reachable(src)) { 3821 vandpd(dst, nds, as_Address(src), vector_len); 3822 } else { 3823 lea(rscratch, src); 3824 vandpd(dst, nds, Address(rscratch, 0), vector_len); 3825 } 3826 } 3827 3828 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3829 assert(rscratch != noreg || always_reachable(src), "missing"); 3830 3831 if (reachable(src)) { 3832 vandps(dst, nds, as_Address(src), vector_len); 3833 } else { 3834 lea(rscratch, src); 3835 vandps(dst, nds, Address(rscratch, 0), vector_len); 3836 } 3837 } 3838 3839 void MacroAssembler::evpord(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, 3840 bool merge, int vector_len, Register rscratch) { 3841 assert(rscratch != noreg || always_reachable(src), "missing"); 3842 3843 if (reachable(src)) { 3844 Assembler::evpord(dst, mask, nds, as_Address(src), merge, vector_len); 3845 } else { 3846 lea(rscratch, src); 3847 Assembler::evpord(dst, mask, nds, Address(rscratch, 0), merge, vector_len); 3848 } 3849 } 3850 3851 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3852 assert(rscratch != noreg || always_reachable(src), "missing"); 3853 3854 if (reachable(src)) { 3855 vdivsd(dst, nds, as_Address(src)); 3856 } else { 3857 lea(rscratch, src); 3858 vdivsd(dst, nds, Address(rscratch, 0)); 3859 } 3860 } 3861 3862 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3863 assert(rscratch != noreg || always_reachable(src), "missing"); 3864 3865 if (reachable(src)) { 3866 vdivss(dst, nds, as_Address(src)); 3867 } else { 3868 lea(rscratch, src); 3869 vdivss(dst, nds, Address(rscratch, 0)); 3870 } 3871 } 3872 3873 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3874 assert(rscratch != noreg || always_reachable(src), "missing"); 3875 3876 if (reachable(src)) { 3877 vmulsd(dst, nds, as_Address(src)); 3878 } else { 3879 lea(rscratch, src); 3880 vmulsd(dst, nds, Address(rscratch, 0)); 3881 } 3882 } 3883 3884 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3885 assert(rscratch != noreg || always_reachable(src), "missing"); 3886 3887 if (reachable(src)) { 3888 vmulss(dst, nds, as_Address(src)); 3889 } else { 3890 lea(rscratch, src); 3891 vmulss(dst, nds, Address(rscratch, 0)); 3892 } 3893 } 3894 3895 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3896 assert(rscratch != noreg || always_reachable(src), "missing"); 3897 3898 if (reachable(src)) { 3899 vsubsd(dst, nds, as_Address(src)); 3900 } else { 3901 lea(rscratch, src); 3902 vsubsd(dst, nds, Address(rscratch, 0)); 3903 } 3904 } 3905 3906 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3907 assert(rscratch != noreg || always_reachable(src), "missing"); 3908 3909 if (reachable(src)) { 3910 vsubss(dst, nds, as_Address(src)); 3911 } else { 3912 lea(rscratch, src); 3913 vsubss(dst, nds, Address(rscratch, 0)); 3914 } 3915 } 3916 3917 void MacroAssembler::vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3918 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15"); 3919 assert(rscratch != noreg || always_reachable(src), "missing"); 3920 3921 vxorps(dst, nds, src, Assembler::AVX_128bit, rscratch); 3922 } 3923 3924 void MacroAssembler::vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3925 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15"); 3926 assert(rscratch != noreg || always_reachable(src), "missing"); 3927 3928 vxorpd(dst, nds, src, Assembler::AVX_128bit, rscratch); 3929 } 3930 3931 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3932 assert(rscratch != noreg || always_reachable(src), "missing"); 3933 3934 if (reachable(src)) { 3935 vxorpd(dst, nds, as_Address(src), vector_len); 3936 } else { 3937 lea(rscratch, src); 3938 vxorpd(dst, nds, Address(rscratch, 0), vector_len); 3939 } 3940 } 3941 3942 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3943 assert(rscratch != noreg || always_reachable(src), "missing"); 3944 3945 if (reachable(src)) { 3946 vxorps(dst, nds, as_Address(src), vector_len); 3947 } else { 3948 lea(rscratch, src); 3949 vxorps(dst, nds, Address(rscratch, 0), vector_len); 3950 } 3951 } 3952 3953 void MacroAssembler::vpxor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3954 assert(rscratch != noreg || always_reachable(src), "missing"); 3955 3956 if (UseAVX > 1 || (vector_len < 1)) { 3957 if (reachable(src)) { 3958 Assembler::vpxor(dst, nds, as_Address(src), vector_len); 3959 } else { 3960 lea(rscratch, src); 3961 Assembler::vpxor(dst, nds, Address(rscratch, 0), vector_len); 3962 } 3963 } else { 3964 MacroAssembler::vxorpd(dst, nds, src, vector_len, rscratch); 3965 } 3966 } 3967 3968 void MacroAssembler::vpermd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3969 assert(rscratch != noreg || always_reachable(src), "missing"); 3970 3971 if (reachable(src)) { 3972 Assembler::vpermd(dst, nds, as_Address(src), vector_len); 3973 } else { 3974 lea(rscratch, src); 3975 Assembler::vpermd(dst, nds, Address(rscratch, 0), vector_len); 3976 } 3977 } 3978 3979 void MacroAssembler::clear_jobject_tag(Register possibly_non_local) { 3980 const int32_t inverted_mask = ~static_cast<int32_t>(JNIHandles::tag_mask); 3981 STATIC_ASSERT(inverted_mask == -4); // otherwise check this code 3982 // The inverted mask is sign-extended 3983 andptr(possibly_non_local, inverted_mask); 3984 } 3985 3986 void MacroAssembler::resolve_jobject(Register value, 3987 Register thread, 3988 Register tmp) { 3989 assert_different_registers(value, thread, tmp); 3990 Label done, tagged, weak_tagged; 3991 testptr(value, value); 3992 jcc(Assembler::zero, done); // Use null as-is. 3993 testptr(value, JNIHandles::tag_mask); // Test for tag. 3994 jcc(Assembler::notZero, tagged); 3995 3996 // Resolve local handle 3997 access_load_at(T_OBJECT, IN_NATIVE | AS_RAW, value, Address(value, 0), tmp, thread); 3998 verify_oop(value); 3999 jmp(done); 4000 4001 bind(tagged); 4002 testptr(value, JNIHandles::TypeTag::weak_global); // Test for weak tag. 4003 jcc(Assembler::notZero, weak_tagged); 4004 4005 // Resolve global handle 4006 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp, thread); 4007 verify_oop(value); 4008 jmp(done); 4009 4010 bind(weak_tagged); 4011 // Resolve jweak. 4012 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 4013 value, Address(value, -JNIHandles::TypeTag::weak_global), tmp, thread); 4014 verify_oop(value); 4015 4016 bind(done); 4017 } 4018 4019 void MacroAssembler::resolve_global_jobject(Register value, 4020 Register thread, 4021 Register tmp) { 4022 assert_different_registers(value, thread, tmp); 4023 Label done; 4024 4025 testptr(value, value); 4026 jcc(Assembler::zero, done); // Use null as-is. 4027 4028 #ifdef ASSERT 4029 { 4030 Label valid_global_tag; 4031 testptr(value, JNIHandles::TypeTag::global); // Test for global tag. 4032 jcc(Assembler::notZero, valid_global_tag); 4033 stop("non global jobject using resolve_global_jobject"); 4034 bind(valid_global_tag); 4035 } 4036 #endif 4037 4038 // Resolve global handle 4039 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp, thread); 4040 verify_oop(value); 4041 4042 bind(done); 4043 } 4044 4045 void MacroAssembler::subptr(Register dst, int32_t imm32) { 4046 LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32)); 4047 } 4048 4049 // Force generation of a 4 byte immediate value even if it fits into 8bit 4050 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) { 4051 LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32)); 4052 } 4053 4054 void MacroAssembler::subptr(Register dst, Register src) { 4055 LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); 4056 } 4057 4058 // C++ bool manipulation 4059 void MacroAssembler::testbool(Register dst) { 4060 if(sizeof(bool) == 1) 4061 testb(dst, 0xff); 4062 else if(sizeof(bool) == 2) { 4063 // testw implementation needed for two byte bools 4064 ShouldNotReachHere(); 4065 } else if(sizeof(bool) == 4) 4066 testl(dst, dst); 4067 else 4068 // unsupported 4069 ShouldNotReachHere(); 4070 } 4071 4072 void MacroAssembler::testptr(Register dst, Register src) { 4073 LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src)); 4074 } 4075 4076 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes. 4077 void MacroAssembler::tlab_allocate(Register thread, Register obj, 4078 Register var_size_in_bytes, 4079 int con_size_in_bytes, 4080 Register t1, 4081 Register t2, 4082 Label& slow_case) { 4083 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 4084 bs->tlab_allocate(this, thread, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case); 4085 } 4086 4087 RegSet MacroAssembler::call_clobbered_gp_registers() { 4088 RegSet regs; 4089 #ifdef _LP64 4090 regs += RegSet::of(rax, rcx, rdx); 4091 #ifndef WINDOWS 4092 regs += RegSet::of(rsi, rdi); 4093 #endif 4094 regs += RegSet::range(r8, r11); 4095 #else 4096 regs += RegSet::of(rax, rcx, rdx); 4097 #endif 4098 return regs; 4099 } 4100 4101 XMMRegSet MacroAssembler::call_clobbered_xmm_registers() { 4102 int num_xmm_registers = XMMRegister::available_xmm_registers(); 4103 #if defined(WINDOWS) && defined(_LP64) 4104 XMMRegSet result = XMMRegSet::range(xmm0, xmm5); 4105 if (num_xmm_registers > 16) { 4106 result += XMMRegSet::range(xmm16, as_XMMRegister(num_xmm_registers - 1)); 4107 } 4108 return result; 4109 #else 4110 return XMMRegSet::range(xmm0, as_XMMRegister(num_xmm_registers - 1)); 4111 #endif 4112 } 4113 4114 static int FPUSaveAreaSize = align_up(108, StackAlignmentInBytes); // 108 bytes needed for FPU state by fsave/frstor 4115 4116 #ifndef _LP64 4117 static bool use_x87_registers() { return UseSSE < 2; } 4118 #endif 4119 static bool use_xmm_registers() { return UseSSE >= 1; } 4120 4121 // C1 only ever uses the first double/float of the XMM register. 4122 static int xmm_save_size() { return UseSSE >= 2 ? sizeof(double) : sizeof(float); } 4123 4124 static void save_xmm_register(MacroAssembler* masm, int offset, XMMRegister reg) { 4125 if (UseSSE == 1) { 4126 masm->movflt(Address(rsp, offset), reg); 4127 } else { 4128 masm->movdbl(Address(rsp, offset), reg); 4129 } 4130 } 4131 4132 static void restore_xmm_register(MacroAssembler* masm, int offset, XMMRegister reg) { 4133 if (UseSSE == 1) { 4134 masm->movflt(reg, Address(rsp, offset)); 4135 } else { 4136 masm->movdbl(reg, Address(rsp, offset)); 4137 } 4138 } 4139 4140 static int register_section_sizes(RegSet gp_registers, XMMRegSet xmm_registers, 4141 bool save_fpu, int& gp_area_size, 4142 int& fp_area_size, int& xmm_area_size) { 4143 4144 gp_area_size = align_up(gp_registers.size() * Register::max_slots_per_register * VMRegImpl::stack_slot_size, 4145 StackAlignmentInBytes); 4146 #ifdef _LP64 4147 fp_area_size = 0; 4148 #else 4149 fp_area_size = (save_fpu && use_x87_registers()) ? FPUSaveAreaSize : 0; 4150 #endif 4151 xmm_area_size = (save_fpu && use_xmm_registers()) ? xmm_registers.size() * xmm_save_size() : 0; 4152 4153 return gp_area_size + fp_area_size + xmm_area_size; 4154 } 4155 4156 void MacroAssembler::push_call_clobbered_registers_except(RegSet exclude, bool save_fpu) { 4157 block_comment("push_call_clobbered_registers start"); 4158 // Regular registers 4159 RegSet gp_registers_to_push = call_clobbered_gp_registers() - exclude; 4160 4161 int gp_area_size; 4162 int fp_area_size; 4163 int xmm_area_size; 4164 int total_save_size = register_section_sizes(gp_registers_to_push, call_clobbered_xmm_registers(), save_fpu, 4165 gp_area_size, fp_area_size, xmm_area_size); 4166 subptr(rsp, total_save_size); 4167 4168 push_set(gp_registers_to_push, 0); 4169 4170 #ifndef _LP64 4171 if (save_fpu && use_x87_registers()) { 4172 fnsave(Address(rsp, gp_area_size)); 4173 fwait(); 4174 } 4175 #endif 4176 if (save_fpu && use_xmm_registers()) { 4177 push_set(call_clobbered_xmm_registers(), gp_area_size + fp_area_size); 4178 } 4179 4180 block_comment("push_call_clobbered_registers end"); 4181 } 4182 4183 void MacroAssembler::pop_call_clobbered_registers_except(RegSet exclude, bool restore_fpu) { 4184 block_comment("pop_call_clobbered_registers start"); 4185 4186 RegSet gp_registers_to_pop = call_clobbered_gp_registers() - exclude; 4187 4188 int gp_area_size; 4189 int fp_area_size; 4190 int xmm_area_size; 4191 int total_save_size = register_section_sizes(gp_registers_to_pop, call_clobbered_xmm_registers(), restore_fpu, 4192 gp_area_size, fp_area_size, xmm_area_size); 4193 4194 if (restore_fpu && use_xmm_registers()) { 4195 pop_set(call_clobbered_xmm_registers(), gp_area_size + fp_area_size); 4196 } 4197 #ifndef _LP64 4198 if (restore_fpu && use_x87_registers()) { 4199 frstor(Address(rsp, gp_area_size)); 4200 } 4201 #endif 4202 4203 pop_set(gp_registers_to_pop, 0); 4204 4205 addptr(rsp, total_save_size); 4206 4207 vzeroupper(); 4208 4209 block_comment("pop_call_clobbered_registers end"); 4210 } 4211 4212 void MacroAssembler::push_set(XMMRegSet set, int offset) { 4213 assert(is_aligned(set.size() * xmm_save_size(), StackAlignmentInBytes), "must be"); 4214 int spill_offset = offset; 4215 4216 for (RegSetIterator<XMMRegister> it = set.begin(); *it != xnoreg; ++it) { 4217 save_xmm_register(this, spill_offset, *it); 4218 spill_offset += xmm_save_size(); 4219 } 4220 } 4221 4222 void MacroAssembler::pop_set(XMMRegSet set, int offset) { 4223 int restore_size = set.size() * xmm_save_size(); 4224 assert(is_aligned(restore_size, StackAlignmentInBytes), "must be"); 4225 4226 int restore_offset = offset + restore_size - xmm_save_size(); 4227 4228 for (ReverseRegSetIterator<XMMRegister> it = set.rbegin(); *it != xnoreg; ++it) { 4229 restore_xmm_register(this, restore_offset, *it); 4230 restore_offset -= xmm_save_size(); 4231 } 4232 } 4233 4234 void MacroAssembler::push_set(RegSet set, int offset) { 4235 int spill_offset; 4236 if (offset == -1) { 4237 int register_push_size = set.size() * Register::max_slots_per_register * VMRegImpl::stack_slot_size; 4238 int aligned_size = align_up(register_push_size, StackAlignmentInBytes); 4239 subptr(rsp, aligned_size); 4240 spill_offset = 0; 4241 } else { 4242 spill_offset = offset; 4243 } 4244 4245 for (RegSetIterator<Register> it = set.begin(); *it != noreg; ++it) { 4246 movptr(Address(rsp, spill_offset), *it); 4247 spill_offset += Register::max_slots_per_register * VMRegImpl::stack_slot_size; 4248 } 4249 } 4250 4251 void MacroAssembler::pop_set(RegSet set, int offset) { 4252 4253 int gp_reg_size = Register::max_slots_per_register * VMRegImpl::stack_slot_size; 4254 int restore_size = set.size() * gp_reg_size; 4255 int aligned_size = align_up(restore_size, StackAlignmentInBytes); 4256 4257 int restore_offset; 4258 if (offset == -1) { 4259 restore_offset = restore_size - gp_reg_size; 4260 } else { 4261 restore_offset = offset + restore_size - gp_reg_size; 4262 } 4263 for (ReverseRegSetIterator<Register> it = set.rbegin(); *it != noreg; ++it) { 4264 movptr(*it, Address(rsp, restore_offset)); 4265 restore_offset -= gp_reg_size; 4266 } 4267 4268 if (offset == -1) { 4269 addptr(rsp, aligned_size); 4270 } 4271 } 4272 4273 // Preserves the contents of address, destroys the contents length_in_bytes and temp. 4274 void MacroAssembler::zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp) { 4275 assert(address != length_in_bytes && address != temp && temp != length_in_bytes, "registers must be different"); 4276 assert((offset_in_bytes & (BytesPerWord - 1)) == 0, "offset must be a multiple of BytesPerWord"); 4277 Label done; 4278 4279 testptr(length_in_bytes, length_in_bytes); 4280 jcc(Assembler::zero, done); 4281 4282 // initialize topmost word, divide index by 2, check if odd and test if zero 4283 // note: for the remaining code to work, index must be a multiple of BytesPerWord 4284 #ifdef ASSERT 4285 { 4286 Label L; 4287 testptr(length_in_bytes, BytesPerWord - 1); 4288 jcc(Assembler::zero, L); 4289 stop("length must be a multiple of BytesPerWord"); 4290 bind(L); 4291 } 4292 #endif 4293 Register index = length_in_bytes; 4294 xorptr(temp, temp); // use _zero reg to clear memory (shorter code) 4295 if (UseIncDec) { 4296 shrptr(index, 3); // divide by 8/16 and set carry flag if bit 2 was set 4297 } else { 4298 shrptr(index, 2); // use 2 instructions to avoid partial flag stall 4299 shrptr(index, 1); 4300 } 4301 #ifndef _LP64 4302 // index could have not been a multiple of 8 (i.e., bit 2 was set) 4303 { 4304 Label even; 4305 // note: if index was a multiple of 8, then it cannot 4306 // be 0 now otherwise it must have been 0 before 4307 // => if it is even, we don't need to check for 0 again 4308 jcc(Assembler::carryClear, even); 4309 // clear topmost word (no jump would be needed if conditional assignment worked here) 4310 movptr(Address(address, index, Address::times_8, offset_in_bytes - 0*BytesPerWord), temp); 4311 // index could be 0 now, must check again 4312 jcc(Assembler::zero, done); 4313 bind(even); 4314 } 4315 #endif // !_LP64 4316 // initialize remaining object fields: index is a multiple of 2 now 4317 { 4318 Label loop; 4319 bind(loop); 4320 movptr(Address(address, index, Address::times_8, offset_in_bytes - 1*BytesPerWord), temp); 4321 NOT_LP64(movptr(Address(address, index, Address::times_8, offset_in_bytes - 2*BytesPerWord), temp);) 4322 decrement(index); 4323 jcc(Assembler::notZero, loop); 4324 } 4325 4326 bind(done); 4327 } 4328 4329 // Look up the method for a megamorphic invokeinterface call. 4330 // The target method is determined by <intf_klass, itable_index>. 4331 // The receiver klass is in recv_klass. 4332 // On success, the result will be in method_result, and execution falls through. 4333 // On failure, execution transfers to the given label. 4334 void MacroAssembler::lookup_interface_method(Register recv_klass, 4335 Register intf_klass, 4336 RegisterOrConstant itable_index, 4337 Register method_result, 4338 Register scan_temp, 4339 Label& L_no_such_interface, 4340 bool return_method) { 4341 assert_different_registers(recv_klass, intf_klass, scan_temp); 4342 assert_different_registers(method_result, intf_klass, scan_temp); 4343 assert(recv_klass != method_result || !return_method, 4344 "recv_klass can be destroyed when method isn't needed"); 4345 4346 assert(itable_index.is_constant() || itable_index.as_register() == method_result, 4347 "caller must use same register for non-constant itable index as for method"); 4348 4349 // Compute start of first itableOffsetEntry (which is at the end of the vtable) 4350 int vtable_base = in_bytes(Klass::vtable_start_offset()); 4351 int itentry_off = in_bytes(itableMethodEntry::method_offset()); 4352 int scan_step = itableOffsetEntry::size() * wordSize; 4353 int vte_size = vtableEntry::size_in_bytes(); 4354 Address::ScaleFactor times_vte_scale = Address::times_ptr; 4355 assert(vte_size == wordSize, "else adjust times_vte_scale"); 4356 4357 movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 4358 4359 // Could store the aligned, prescaled offset in the klass. 4360 lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base)); 4361 4362 if (return_method) { 4363 // Adjust recv_klass by scaled itable_index, so we can free itable_index. 4364 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); 4365 lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off)); 4366 } 4367 4368 // for (scan = klass->itable(); scan->interface() != nullptr; scan += scan_step) { 4369 // if (scan->interface() == intf) { 4370 // result = (klass + scan->offset() + itable_index); 4371 // } 4372 // } 4373 Label search, found_method; 4374 4375 for (int peel = 1; peel >= 0; peel--) { 4376 movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset())); 4377 cmpptr(intf_klass, method_result); 4378 4379 if (peel) { 4380 jccb(Assembler::equal, found_method); 4381 } else { 4382 jccb(Assembler::notEqual, search); 4383 // (invert the test to fall through to found_method...) 4384 } 4385 4386 if (!peel) break; 4387 4388 bind(search); 4389 4390 // Check that the previous entry is non-null. A null entry means that 4391 // the receiver class doesn't implement the interface, and wasn't the 4392 // same as when the caller was compiled. 4393 testptr(method_result, method_result); 4394 jcc(Assembler::zero, L_no_such_interface); 4395 addptr(scan_temp, scan_step); 4396 } 4397 4398 bind(found_method); 4399 4400 if (return_method) { 4401 // Got a hit. 4402 movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset())); 4403 movptr(method_result, Address(recv_klass, scan_temp, Address::times_1)); 4404 } 4405 } 4406 4407 // Look up the method for a megamorphic invokeinterface call in a single pass over itable: 4408 // - check recv_klass (actual object class) is a subtype of resolved_klass from CompiledICData 4409 // - find a holder_klass (class that implements the method) vtable offset and get the method from vtable by index 4410 // The target method is determined by <holder_klass, itable_index>. 4411 // The receiver klass is in recv_klass. 4412 // On success, the result will be in method_result, and execution falls through. 4413 // On failure, execution transfers to the given label. 4414 void MacroAssembler::lookup_interface_method_stub(Register recv_klass, 4415 Register holder_klass, 4416 Register resolved_klass, 4417 Register method_result, 4418 Register scan_temp, 4419 Register temp_reg2, 4420 Register receiver, 4421 int itable_index, 4422 Label& L_no_such_interface) { 4423 assert_different_registers(recv_klass, method_result, holder_klass, resolved_klass, scan_temp, temp_reg2, receiver); 4424 Register temp_itbl_klass = method_result; 4425 Register temp_reg = (temp_reg2 == noreg ? recv_klass : temp_reg2); // reuse recv_klass register on 32-bit x86 impl 4426 4427 int vtable_base = in_bytes(Klass::vtable_start_offset()); 4428 int itentry_off = in_bytes(itableMethodEntry::method_offset()); 4429 int scan_step = itableOffsetEntry::size() * wordSize; 4430 int vte_size = vtableEntry::size_in_bytes(); 4431 int ioffset = in_bytes(itableOffsetEntry::interface_offset()); 4432 int ooffset = in_bytes(itableOffsetEntry::offset_offset()); 4433 Address::ScaleFactor times_vte_scale = Address::times_ptr; 4434 assert(vte_size == wordSize, "adjust times_vte_scale"); 4435 4436 Label L_loop_scan_resolved_entry, L_resolved_found, L_holder_found; 4437 4438 // temp_itbl_klass = recv_klass.itable[0] 4439 // scan_temp = &recv_klass.itable[0] + step 4440 movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 4441 movptr(temp_itbl_klass, Address(recv_klass, scan_temp, times_vte_scale, vtable_base + ioffset)); 4442 lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base + ioffset + scan_step)); 4443 xorptr(temp_reg, temp_reg); 4444 4445 // Initial checks: 4446 // - if (holder_klass != resolved_klass), go to "scan for resolved" 4447 // - if (itable[0] == 0), no such interface 4448 // - if (itable[0] == holder_klass), shortcut to "holder found" 4449 cmpptr(holder_klass, resolved_klass); 4450 jccb(Assembler::notEqual, L_loop_scan_resolved_entry); 4451 testptr(temp_itbl_klass, temp_itbl_klass); 4452 jccb(Assembler::zero, L_no_such_interface); 4453 cmpptr(holder_klass, temp_itbl_klass); 4454 jccb(Assembler::equal, L_holder_found); 4455 4456 // Loop: Look for holder_klass record in itable 4457 // do { 4458 // tmp = itable[index]; 4459 // index += step; 4460 // if (tmp == holder_klass) { 4461 // goto L_holder_found; // Found! 4462 // } 4463 // } while (tmp != 0); 4464 // goto L_no_such_interface // Not found. 4465 Label L_scan_holder; 4466 bind(L_scan_holder); 4467 movptr(temp_itbl_klass, Address(scan_temp, 0)); 4468 addptr(scan_temp, scan_step); 4469 cmpptr(holder_klass, temp_itbl_klass); 4470 jccb(Assembler::equal, L_holder_found); 4471 testptr(temp_itbl_klass, temp_itbl_klass); 4472 jccb(Assembler::notZero, L_scan_holder); 4473 4474 jmpb(L_no_such_interface); 4475 4476 // Loop: Look for resolved_class record in itable 4477 // do { 4478 // tmp = itable[index]; 4479 // index += step; 4480 // if (tmp == holder_klass) { 4481 // // Also check if we have met a holder klass 4482 // holder_tmp = itable[index-step-ioffset]; 4483 // } 4484 // if (tmp == resolved_klass) { 4485 // goto L_resolved_found; // Found! 4486 // } 4487 // } while (tmp != 0); 4488 // goto L_no_such_interface // Not found. 4489 // 4490 Label L_loop_scan_resolved; 4491 bind(L_loop_scan_resolved); 4492 movptr(temp_itbl_klass, Address(scan_temp, 0)); 4493 addptr(scan_temp, scan_step); 4494 bind(L_loop_scan_resolved_entry); 4495 cmpptr(holder_klass, temp_itbl_klass); 4496 cmovl(Assembler::equal, temp_reg, Address(scan_temp, ooffset - ioffset - scan_step)); 4497 cmpptr(resolved_klass, temp_itbl_klass); 4498 jccb(Assembler::equal, L_resolved_found); 4499 testptr(temp_itbl_klass, temp_itbl_klass); 4500 jccb(Assembler::notZero, L_loop_scan_resolved); 4501 4502 jmpb(L_no_such_interface); 4503 4504 Label L_ready; 4505 4506 // See if we already have a holder klass. If not, go and scan for it. 4507 bind(L_resolved_found); 4508 testptr(temp_reg, temp_reg); 4509 jccb(Assembler::zero, L_scan_holder); 4510 jmpb(L_ready); 4511 4512 bind(L_holder_found); 4513 movl(temp_reg, Address(scan_temp, ooffset - ioffset - scan_step)); 4514 4515 // Finally, temp_reg contains holder_klass vtable offset 4516 bind(L_ready); 4517 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); 4518 if (temp_reg2 == noreg) { // recv_klass register is clobbered for 32-bit x86 impl 4519 load_klass(scan_temp, receiver, noreg); 4520 movptr(method_result, Address(scan_temp, temp_reg, Address::times_1, itable_index * wordSize + itentry_off)); 4521 } else { 4522 movptr(method_result, Address(recv_klass, temp_reg, Address::times_1, itable_index * wordSize + itentry_off)); 4523 } 4524 } 4525 4526 4527 // virtual method calling 4528 void MacroAssembler::lookup_virtual_method(Register recv_klass, 4529 RegisterOrConstant vtable_index, 4530 Register method_result) { 4531 const ByteSize base = Klass::vtable_start_offset(); 4532 assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below"); 4533 Address vtable_entry_addr(recv_klass, 4534 vtable_index, Address::times_ptr, 4535 base + vtableEntry::method_offset()); 4536 movptr(method_result, vtable_entry_addr); 4537 } 4538 4539 4540 void MacroAssembler::check_klass_subtype(Register sub_klass, 4541 Register super_klass, 4542 Register temp_reg, 4543 Label& L_success) { 4544 Label L_failure; 4545 check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg, &L_success, &L_failure, nullptr); 4546 check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, nullptr); 4547 bind(L_failure); 4548 } 4549 4550 4551 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass, 4552 Register super_klass, 4553 Register temp_reg, 4554 Label* L_success, 4555 Label* L_failure, 4556 Label* L_slow_path, 4557 RegisterOrConstant super_check_offset) { 4558 assert_different_registers(sub_klass, super_klass, temp_reg); 4559 bool must_load_sco = (super_check_offset.constant_or_zero() == -1); 4560 if (super_check_offset.is_register()) { 4561 assert_different_registers(sub_klass, super_klass, 4562 super_check_offset.as_register()); 4563 } else if (must_load_sco) { 4564 assert(temp_reg != noreg, "supply either a temp or a register offset"); 4565 } 4566 4567 Label L_fallthrough; 4568 int label_nulls = 0; 4569 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 4570 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 4571 if (L_slow_path == nullptr) { L_slow_path = &L_fallthrough; label_nulls++; } 4572 assert(label_nulls <= 1, "at most one null in the batch"); 4573 4574 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 4575 int sco_offset = in_bytes(Klass::super_check_offset_offset()); 4576 Address super_check_offset_addr(super_klass, sco_offset); 4577 4578 // Hacked jcc, which "knows" that L_fallthrough, at least, is in 4579 // range of a jccb. If this routine grows larger, reconsider at 4580 // least some of these. 4581 #define local_jcc(assembler_cond, label) \ 4582 if (&(label) == &L_fallthrough) jccb(assembler_cond, label); \ 4583 else jcc( assembler_cond, label) /*omit semi*/ 4584 4585 // Hacked jmp, which may only be used just before L_fallthrough. 4586 #define final_jmp(label) \ 4587 if (&(label) == &L_fallthrough) { /*do nothing*/ } \ 4588 else jmp(label) /*omit semi*/ 4589 4590 // If the pointers are equal, we are done (e.g., String[] elements). 4591 // This self-check enables sharing of secondary supertype arrays among 4592 // non-primary types such as array-of-interface. Otherwise, each such 4593 // type would need its own customized SSA. 4594 // We move this check to the front of the fast path because many 4595 // type checks are in fact trivially successful in this manner, 4596 // so we get a nicely predicted branch right at the start of the check. 4597 cmpptr(sub_klass, super_klass); 4598 local_jcc(Assembler::equal, *L_success); 4599 4600 // Check the supertype display: 4601 if (must_load_sco) { 4602 // Positive movl does right thing on LP64. 4603 movl(temp_reg, super_check_offset_addr); 4604 super_check_offset = RegisterOrConstant(temp_reg); 4605 } 4606 Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0); 4607 cmpptr(super_klass, super_check_addr); // load displayed supertype 4608 4609 // This check has worked decisively for primary supers. 4610 // Secondary supers are sought in the super_cache ('super_cache_addr'). 4611 // (Secondary supers are interfaces and very deeply nested subtypes.) 4612 // This works in the same check above because of a tricky aliasing 4613 // between the super_cache and the primary super display elements. 4614 // (The 'super_check_addr' can address either, as the case requires.) 4615 // Note that the cache is updated below if it does not help us find 4616 // what we need immediately. 4617 // So if it was a primary super, we can just fail immediately. 4618 // Otherwise, it's the slow path for us (no success at this point). 4619 4620 if (super_check_offset.is_register()) { 4621 local_jcc(Assembler::equal, *L_success); 4622 cmpl(super_check_offset.as_register(), sc_offset); 4623 if (L_failure == &L_fallthrough) { 4624 local_jcc(Assembler::equal, *L_slow_path); 4625 } else { 4626 local_jcc(Assembler::notEqual, *L_failure); 4627 final_jmp(*L_slow_path); 4628 } 4629 } else if (super_check_offset.as_constant() == sc_offset) { 4630 // Need a slow path; fast failure is impossible. 4631 if (L_slow_path == &L_fallthrough) { 4632 local_jcc(Assembler::equal, *L_success); 4633 } else { 4634 local_jcc(Assembler::notEqual, *L_slow_path); 4635 final_jmp(*L_success); 4636 } 4637 } else { 4638 // No slow path; it's a fast decision. 4639 if (L_failure == &L_fallthrough) { 4640 local_jcc(Assembler::equal, *L_success); 4641 } else { 4642 local_jcc(Assembler::notEqual, *L_failure); 4643 final_jmp(*L_success); 4644 } 4645 } 4646 4647 bind(L_fallthrough); 4648 4649 #undef local_jcc 4650 #undef final_jmp 4651 } 4652 4653 4654 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, 4655 Register super_klass, 4656 Register temp_reg, 4657 Register temp2_reg, 4658 Label* L_success, 4659 Label* L_failure, 4660 bool set_cond_codes) { 4661 assert_different_registers(sub_klass, super_klass, temp_reg); 4662 if (temp2_reg != noreg) 4663 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg); 4664 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg) 4665 4666 Label L_fallthrough; 4667 int label_nulls = 0; 4668 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 4669 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 4670 assert(label_nulls <= 1, "at most one null in the batch"); 4671 4672 // a couple of useful fields in sub_klass: 4673 int ss_offset = in_bytes(Klass::secondary_supers_offset()); 4674 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 4675 Address secondary_supers_addr(sub_klass, ss_offset); 4676 Address super_cache_addr( sub_klass, sc_offset); 4677 4678 // Do a linear scan of the secondary super-klass chain. 4679 // This code is rarely used, so simplicity is a virtue here. 4680 // The repne_scan instruction uses fixed registers, which we must spill. 4681 // Don't worry too much about pre-existing connections with the input regs. 4682 4683 assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super) 4684 assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter) 4685 4686 // Get super_klass value into rax (even if it was in rdi or rcx). 4687 bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false; 4688 if (super_klass != rax) { 4689 if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; } 4690 mov(rax, super_klass); 4691 } 4692 if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; } 4693 if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; } 4694 4695 #ifndef PRODUCT 4696 uint* pst_counter = &SharedRuntime::_partial_subtype_ctr; 4697 ExternalAddress pst_counter_addr((address) pst_counter); 4698 NOT_LP64( incrementl(pst_counter_addr) ); 4699 LP64_ONLY( lea(rcx, pst_counter_addr) ); 4700 LP64_ONLY( incrementl(Address(rcx, 0)) ); 4701 #endif //PRODUCT 4702 4703 // We will consult the secondary-super array. 4704 movptr(rdi, secondary_supers_addr); 4705 // Load the array length. (Positive movl does right thing on LP64.) 4706 movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes())); 4707 // Skip to start of data. 4708 addptr(rdi, Array<Klass*>::base_offset_in_bytes()); 4709 4710 // Scan RCX words at [RDI] for an occurrence of RAX. 4711 // Set NZ/Z based on last compare. 4712 // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does 4713 // not change flags (only scas instruction which is repeated sets flags). 4714 // Set Z = 0 (not equal) before 'repne' to indicate that class was not found. 4715 4716 testptr(rax,rax); // Set Z = 0 4717 repne_scan(); 4718 4719 // Unspill the temp. registers: 4720 if (pushed_rdi) pop(rdi); 4721 if (pushed_rcx) pop(rcx); 4722 if (pushed_rax) pop(rax); 4723 4724 if (set_cond_codes) { 4725 // Special hack for the AD files: rdi is guaranteed non-zero. 4726 assert(!pushed_rdi, "rdi must be left non-null"); 4727 // Also, the condition codes are properly set Z/NZ on succeed/failure. 4728 } 4729 4730 if (L_failure == &L_fallthrough) 4731 jccb(Assembler::notEqual, *L_failure); 4732 else jcc(Assembler::notEqual, *L_failure); 4733 4734 // Success. Cache the super we found and proceed in triumph. 4735 movptr(super_cache_addr, super_klass); 4736 4737 if (L_success != &L_fallthrough) { 4738 jmp(*L_success); 4739 } 4740 4741 #undef IS_A_TEMP 4742 4743 bind(L_fallthrough); 4744 } 4745 4746 #ifdef _LP64 4747 4748 // population_count variant for running without the POPCNT 4749 // instruction, which was introduced with SSE4.2 in 2008. 4750 void MacroAssembler::population_count(Register dst, Register src, 4751 Register scratch1, Register scratch2) { 4752 assert_different_registers(src, scratch1, scratch2); 4753 if (UsePopCountInstruction) { 4754 Assembler::popcntq(dst, src); 4755 } else { 4756 assert_different_registers(src, scratch1, scratch2); 4757 assert_different_registers(dst, scratch1, scratch2); 4758 Label loop, done; 4759 4760 mov(scratch1, src); 4761 // dst = 0; 4762 // while(scratch1 != 0) { 4763 // dst++; 4764 // scratch1 &= (scratch1 - 1); 4765 // } 4766 xorl(dst, dst); 4767 testq(scratch1, scratch1); 4768 jccb(Assembler::equal, done); 4769 { 4770 bind(loop); 4771 incq(dst); 4772 movq(scratch2, scratch1); 4773 decq(scratch2); 4774 andq(scratch1, scratch2); 4775 jccb(Assembler::notEqual, loop); 4776 } 4777 bind(done); 4778 } 4779 } 4780 4781 // Ensure that the inline code and the stub are using the same registers. 4782 #define LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS \ 4783 do { \ 4784 assert(r_super_klass == rax, "mismatch"); \ 4785 assert(r_array_base == rbx, "mismatch"); \ 4786 assert(r_array_length == rcx, "mismatch"); \ 4787 assert(r_array_index == rdx, "mismatch"); \ 4788 assert(r_sub_klass == rsi || r_sub_klass == noreg, "mismatch"); \ 4789 assert(r_bitmap == r11 || r_bitmap == noreg, "mismatch"); \ 4790 assert(result == rdi || result == noreg, "mismatch"); \ 4791 } while(0) 4792 4793 void MacroAssembler::lookup_secondary_supers_table(Register r_sub_klass, 4794 Register r_super_klass, 4795 Register temp1, 4796 Register temp2, 4797 Register temp3, 4798 Register temp4, 4799 Register result, 4800 u1 super_klass_slot) { 4801 assert_different_registers(r_sub_klass, r_super_klass, temp1, temp2, temp3, temp4, result); 4802 4803 Label L_fallthrough, L_success, L_failure; 4804 4805 BLOCK_COMMENT("lookup_secondary_supers_table {"); 4806 4807 const Register 4808 r_array_index = temp1, 4809 r_array_length = temp2, 4810 r_array_base = temp3, 4811 r_bitmap = temp4; 4812 4813 LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS; 4814 4815 xorq(result, result); // = 0 4816 4817 movq(r_bitmap, Address(r_sub_klass, Klass::bitmap_offset())); 4818 movq(r_array_index, r_bitmap); 4819 4820 // First check the bitmap to see if super_klass might be present. If 4821 // the bit is zero, we are certain that super_klass is not one of 4822 // the secondary supers. 4823 u1 bit = super_klass_slot; 4824 { 4825 // NB: If the count in a x86 shift instruction is 0, the flags are 4826 // not affected, so we do a testq instead. 4827 int shift_count = Klass::SECONDARY_SUPERS_TABLE_MASK - bit; 4828 if (shift_count != 0) { 4829 salq(r_array_index, shift_count); 4830 } else { 4831 testq(r_array_index, r_array_index); 4832 } 4833 } 4834 // We test the MSB of r_array_index, i.e. its sign bit 4835 jcc(Assembler::positive, L_failure); 4836 4837 // Get the first array index that can contain super_klass into r_array_index. 4838 if (bit != 0) { 4839 population_count(r_array_index, r_array_index, temp2, temp3); 4840 } else { 4841 movl(r_array_index, 1); 4842 } 4843 // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word. 4844 4845 // We will consult the secondary-super array. 4846 movptr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 4847 4848 // We're asserting that the first word in an Array<Klass*> is the 4849 // length, and the second word is the first word of the data. If 4850 // that ever changes, r_array_base will have to be adjusted here. 4851 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code"); 4852 assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code"); 4853 4854 cmpq(r_super_klass, Address(r_array_base, r_array_index, Address::times_8)); 4855 jccb(Assembler::equal, L_success); 4856 4857 // Is there another entry to check? Consult the bitmap. 4858 btq(r_bitmap, (bit + 1) & Klass::SECONDARY_SUPERS_TABLE_MASK); 4859 jccb(Assembler::carryClear, L_failure); 4860 4861 // Linear probe. Rotate the bitmap so that the next bit to test is 4862 // in Bit 1. 4863 if (bit != 0) { 4864 rorq(r_bitmap, bit); 4865 } 4866 4867 // Calls into the stub generated by lookup_secondary_supers_table_slow_path. 4868 // Arguments: r_super_klass, r_array_base, r_array_index, r_bitmap. 4869 // Kills: r_array_length. 4870 // Returns: result. 4871 call(RuntimeAddress(StubRoutines::lookup_secondary_supers_table_slow_path_stub())); 4872 // Result (0/1) is in rdi 4873 jmpb(L_fallthrough); 4874 4875 bind(L_failure); 4876 incq(result); // 0 => 1 4877 4878 bind(L_success); 4879 // result = 0; 4880 4881 bind(L_fallthrough); 4882 BLOCK_COMMENT("} lookup_secondary_supers_table"); 4883 4884 if (VerifySecondarySupers) { 4885 verify_secondary_supers_table(r_sub_klass, r_super_klass, result, 4886 temp1, temp2, temp3); 4887 } 4888 } 4889 4890 void MacroAssembler::repne_scanq(Register addr, Register value, Register count, Register limit, 4891 Label* L_success, Label* L_failure) { 4892 Label L_loop, L_fallthrough; 4893 { 4894 int label_nulls = 0; 4895 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 4896 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 4897 assert(label_nulls <= 1, "at most one null in the batch"); 4898 } 4899 bind(L_loop); 4900 cmpq(value, Address(addr, count, Address::times_8)); 4901 jcc(Assembler::equal, *L_success); 4902 addl(count, 1); 4903 cmpl(count, limit); 4904 jcc(Assembler::less, L_loop); 4905 4906 if (&L_fallthrough != L_failure) { 4907 jmp(*L_failure); 4908 } 4909 bind(L_fallthrough); 4910 } 4911 4912 // Called by code generated by check_klass_subtype_slow_path 4913 // above. This is called when there is a collision in the hashed 4914 // lookup in the secondary supers array. 4915 void MacroAssembler::lookup_secondary_supers_table_slow_path(Register r_super_klass, 4916 Register r_array_base, 4917 Register r_array_index, 4918 Register r_bitmap, 4919 Register temp1, 4920 Register temp2, 4921 Label* L_success, 4922 Label* L_failure) { 4923 assert_different_registers(r_super_klass, r_array_base, r_array_index, r_bitmap, temp1, temp2); 4924 4925 const Register 4926 r_array_length = temp1, 4927 r_sub_klass = noreg, 4928 result = noreg; 4929 4930 LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS; 4931 4932 Label L_fallthrough; 4933 int label_nulls = 0; 4934 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 4935 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 4936 assert(label_nulls <= 1, "at most one null in the batch"); 4937 4938 // Load the array length. 4939 movl(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes())); 4940 // And adjust the array base to point to the data. 4941 // NB! Effectively increments current slot index by 1. 4942 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, ""); 4943 addptr(r_array_base, Array<Klass*>::base_offset_in_bytes()); 4944 4945 // Linear probe 4946 Label L_huge; 4947 4948 // The bitmap is full to bursting. 4949 // Implicit invariant: BITMAP_FULL implies (length > 0) 4950 assert(Klass::SECONDARY_SUPERS_BITMAP_FULL == ~uintx(0), ""); 4951 cmpq(r_bitmap, (int32_t)-1); // sign-extends immediate to 64-bit value 4952 jcc(Assembler::equal, L_huge); 4953 4954 // NB! Our caller has checked bits 0 and 1 in the bitmap. The 4955 // current slot (at secondary_supers[r_array_index]) has not yet 4956 // been inspected, and r_array_index may be out of bounds if we 4957 // wrapped around the end of the array. 4958 4959 { // This is conventional linear probing, but instead of terminating 4960 // when a null entry is found in the table, we maintain a bitmap 4961 // in which a 0 indicates missing entries. 4962 // The check above guarantees there are 0s in the bitmap, so the loop 4963 // eventually terminates. 4964 4965 xorl(temp2, temp2); // = 0; 4966 4967 Label L_again; 4968 bind(L_again); 4969 4970 // Check for array wraparound. 4971 cmpl(r_array_index, r_array_length); 4972 cmovl(Assembler::greaterEqual, r_array_index, temp2); 4973 4974 cmpq(r_super_klass, Address(r_array_base, r_array_index, Address::times_8)); 4975 jcc(Assembler::equal, *L_success); 4976 4977 // If the next bit in bitmap is zero, we're done. 4978 btq(r_bitmap, 2); // look-ahead check (Bit 2); Bits 0 and 1 are tested by now 4979 jcc(Assembler::carryClear, *L_failure); 4980 4981 rorq(r_bitmap, 1); // Bits 1/2 => 0/1 4982 addl(r_array_index, 1); 4983 4984 jmp(L_again); 4985 } 4986 4987 { // Degenerate case: more than 64 secondary supers. 4988 // FIXME: We could do something smarter here, maybe a vectorized 4989 // comparison or a binary search, but is that worth any added 4990 // complexity? 4991 bind(L_huge); 4992 xorl(r_array_index, r_array_index); // = 0 4993 repne_scanq(r_array_base, r_super_klass, r_array_index, r_array_length, 4994 L_success, 4995 (&L_fallthrough != L_failure ? L_failure : nullptr)); 4996 4997 bind(L_fallthrough); 4998 } 4999 } 5000 5001 struct VerifyHelperArguments { 5002 Klass* _super; 5003 Klass* _sub; 5004 intptr_t _linear_result; 5005 intptr_t _table_result; 5006 }; 5007 5008 static void verify_secondary_supers_table_helper(const char* msg, VerifyHelperArguments* args) { 5009 Klass::on_secondary_supers_verification_failure(args->_super, 5010 args->_sub, 5011 args->_linear_result, 5012 args->_table_result, 5013 msg); 5014 } 5015 5016 // Make sure that the hashed lookup and a linear scan agree. 5017 void MacroAssembler::verify_secondary_supers_table(Register r_sub_klass, 5018 Register r_super_klass, 5019 Register result, 5020 Register temp1, 5021 Register temp2, 5022 Register temp3) { 5023 const Register 5024 r_array_index = temp1, 5025 r_array_length = temp2, 5026 r_array_base = temp3, 5027 r_bitmap = noreg; 5028 5029 LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS; 5030 5031 BLOCK_COMMENT("verify_secondary_supers_table {"); 5032 5033 Label L_success, L_failure, L_check, L_done; 5034 5035 movptr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 5036 movl(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes())); 5037 // And adjust the array base to point to the data. 5038 addptr(r_array_base, Array<Klass*>::base_offset_in_bytes()); 5039 5040 testl(r_array_length, r_array_length); // array_length == 0? 5041 jcc(Assembler::zero, L_failure); 5042 5043 movl(r_array_index, 0); 5044 repne_scanq(r_array_base, r_super_klass, r_array_index, r_array_length, &L_success); 5045 // fall through to L_failure 5046 5047 const Register linear_result = r_array_index; // reuse temp1 5048 5049 bind(L_failure); // not present 5050 movl(linear_result, 1); 5051 jmp(L_check); 5052 5053 bind(L_success); // present 5054 movl(linear_result, 0); 5055 5056 bind(L_check); 5057 cmpl(linear_result, result); 5058 jcc(Assembler::equal, L_done); 5059 5060 { // To avoid calling convention issues, build a record on the stack 5061 // and pass the pointer to that instead. 5062 push(result); 5063 push(linear_result); 5064 push(r_sub_klass); 5065 push(r_super_klass); 5066 movptr(c_rarg1, rsp); 5067 movptr(c_rarg0, (uintptr_t) "mismatch"); 5068 call(RuntimeAddress(CAST_FROM_FN_PTR(address, verify_secondary_supers_table_helper))); 5069 should_not_reach_here(); 5070 } 5071 bind(L_done); 5072 5073 BLOCK_COMMENT("} verify_secondary_supers_table"); 5074 } 5075 5076 #undef LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS 5077 5078 #endif // LP64 5079 5080 void MacroAssembler::clinit_barrier(Register klass, Register thread, Label* L_fast_path, Label* L_slow_path) { 5081 assert(L_fast_path != nullptr || L_slow_path != nullptr, "at least one is required"); 5082 5083 Label L_fallthrough; 5084 if (L_fast_path == nullptr) { 5085 L_fast_path = &L_fallthrough; 5086 } else if (L_slow_path == nullptr) { 5087 L_slow_path = &L_fallthrough; 5088 } 5089 5090 // Fast path check: class is fully initialized 5091 cmpb(Address(klass, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized); 5092 jcc(Assembler::equal, *L_fast_path); 5093 5094 // Fast path check: current thread is initializer thread 5095 cmpptr(thread, Address(klass, InstanceKlass::init_thread_offset())); 5096 if (L_slow_path == &L_fallthrough) { 5097 jcc(Assembler::equal, *L_fast_path); 5098 bind(*L_slow_path); 5099 } else if (L_fast_path == &L_fallthrough) { 5100 jcc(Assembler::notEqual, *L_slow_path); 5101 bind(*L_fast_path); 5102 } else { 5103 Unimplemented(); 5104 } 5105 } 5106 5107 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) { 5108 if (VM_Version::supports_cmov()) { 5109 cmovl(cc, dst, src); 5110 } else { 5111 Label L; 5112 jccb(negate_condition(cc), L); 5113 movl(dst, src); 5114 bind(L); 5115 } 5116 } 5117 5118 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) { 5119 if (VM_Version::supports_cmov()) { 5120 cmovl(cc, dst, src); 5121 } else { 5122 Label L; 5123 jccb(negate_condition(cc), L); 5124 movl(dst, src); 5125 bind(L); 5126 } 5127 } 5128 5129 void MacroAssembler::_verify_oop(Register reg, const char* s, const char* file, int line) { 5130 if (!VerifyOops) return; 5131 5132 BLOCK_COMMENT("verify_oop {"); 5133 #ifdef _LP64 5134 push(rscratch1); 5135 #endif 5136 push(rax); // save rax 5137 push(reg); // pass register argument 5138 5139 // Pass register number to verify_oop_subroutine 5140 const char* b = nullptr; 5141 { 5142 ResourceMark rm; 5143 stringStream ss; 5144 ss.print("verify_oop: %s: %s (%s:%d)", reg->name(), s, file, line); 5145 b = code_string(ss.as_string()); 5146 } 5147 ExternalAddress buffer((address) b); 5148 pushptr(buffer.addr(), rscratch1); 5149 5150 // call indirectly to solve generation ordering problem 5151 movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); 5152 call(rax); 5153 // Caller pops the arguments (oop, message) and restores rax, r10 5154 BLOCK_COMMENT("} verify_oop"); 5155 } 5156 5157 void MacroAssembler::vallones(XMMRegister dst, int vector_len) { 5158 if (UseAVX > 2 && (vector_len == Assembler::AVX_512bit || VM_Version::supports_avx512vl())) { 5159 // Only pcmpeq has dependency breaking treatment (i.e the execution can begin without 5160 // waiting for the previous result on dst), not vpcmpeqd, so just use vpternlog 5161 vpternlogd(dst, 0xFF, dst, dst, vector_len); 5162 } else if (VM_Version::supports_avx()) { 5163 vpcmpeqd(dst, dst, dst, vector_len); 5164 } else { 5165 assert(VM_Version::supports_sse2(), ""); 5166 pcmpeqd(dst, dst); 5167 } 5168 } 5169 5170 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot, 5171 int extra_slot_offset) { 5172 // cf. TemplateTable::prepare_invoke(), if (load_receiver). 5173 int stackElementSize = Interpreter::stackElementSize; 5174 int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0); 5175 #ifdef ASSERT 5176 int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1); 5177 assert(offset1 - offset == stackElementSize, "correct arithmetic"); 5178 #endif 5179 Register scale_reg = noreg; 5180 Address::ScaleFactor scale_factor = Address::no_scale; 5181 if (arg_slot.is_constant()) { 5182 offset += arg_slot.as_constant() * stackElementSize; 5183 } else { 5184 scale_reg = arg_slot.as_register(); 5185 scale_factor = Address::times(stackElementSize); 5186 } 5187 offset += wordSize; // return PC is on stack 5188 return Address(rsp, scale_reg, scale_factor, offset); 5189 } 5190 5191 void MacroAssembler::_verify_oop_addr(Address addr, const char* s, const char* file, int line) { 5192 if (!VerifyOops) return; 5193 5194 #ifdef _LP64 5195 push(rscratch1); 5196 #endif 5197 push(rax); // save rax, 5198 // addr may contain rsp so we will have to adjust it based on the push 5199 // we just did (and on 64 bit we do two pushes) 5200 // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which 5201 // stores rax into addr which is backwards of what was intended. 5202 if (addr.uses(rsp)) { 5203 lea(rax, addr); 5204 pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord)); 5205 } else { 5206 pushptr(addr); 5207 } 5208 5209 // Pass register number to verify_oop_subroutine 5210 const char* b = nullptr; 5211 { 5212 ResourceMark rm; 5213 stringStream ss; 5214 ss.print("verify_oop_addr: %s (%s:%d)", s, file, line); 5215 b = code_string(ss.as_string()); 5216 } 5217 ExternalAddress buffer((address) b); 5218 pushptr(buffer.addr(), rscratch1); 5219 5220 // call indirectly to solve generation ordering problem 5221 movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); 5222 call(rax); 5223 // Caller pops the arguments (addr, message) and restores rax, r10. 5224 } 5225 5226 void MacroAssembler::verify_tlab() { 5227 #ifdef ASSERT 5228 if (UseTLAB && VerifyOops) { 5229 Label next, ok; 5230 Register t1 = rsi; 5231 Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread); 5232 5233 push(t1); 5234 NOT_LP64(push(thread_reg)); 5235 NOT_LP64(get_thread(thread_reg)); 5236 5237 movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset()))); 5238 cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset()))); 5239 jcc(Assembler::aboveEqual, next); 5240 STOP("assert(top >= start)"); 5241 should_not_reach_here(); 5242 5243 bind(next); 5244 movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset()))); 5245 cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset()))); 5246 jcc(Assembler::aboveEqual, ok); 5247 STOP("assert(top <= end)"); 5248 should_not_reach_here(); 5249 5250 bind(ok); 5251 NOT_LP64(pop(thread_reg)); 5252 pop(t1); 5253 } 5254 #endif 5255 } 5256 5257 class ControlWord { 5258 public: 5259 int32_t _value; 5260 5261 int rounding_control() const { return (_value >> 10) & 3 ; } 5262 int precision_control() const { return (_value >> 8) & 3 ; } 5263 bool precision() const { return ((_value >> 5) & 1) != 0; } 5264 bool underflow() const { return ((_value >> 4) & 1) != 0; } 5265 bool overflow() const { return ((_value >> 3) & 1) != 0; } 5266 bool zero_divide() const { return ((_value >> 2) & 1) != 0; } 5267 bool denormalized() const { return ((_value >> 1) & 1) != 0; } 5268 bool invalid() const { return ((_value >> 0) & 1) != 0; } 5269 5270 void print() const { 5271 // rounding control 5272 const char* rc; 5273 switch (rounding_control()) { 5274 case 0: rc = "round near"; break; 5275 case 1: rc = "round down"; break; 5276 case 2: rc = "round up "; break; 5277 case 3: rc = "chop "; break; 5278 default: 5279 rc = nullptr; // silence compiler warnings 5280 fatal("Unknown rounding control: %d", rounding_control()); 5281 }; 5282 // precision control 5283 const char* pc; 5284 switch (precision_control()) { 5285 case 0: pc = "24 bits "; break; 5286 case 1: pc = "reserved"; break; 5287 case 2: pc = "53 bits "; break; 5288 case 3: pc = "64 bits "; break; 5289 default: 5290 pc = nullptr; // silence compiler warnings 5291 fatal("Unknown precision control: %d", precision_control()); 5292 }; 5293 // flags 5294 char f[9]; 5295 f[0] = ' '; 5296 f[1] = ' '; 5297 f[2] = (precision ()) ? 'P' : 'p'; 5298 f[3] = (underflow ()) ? 'U' : 'u'; 5299 f[4] = (overflow ()) ? 'O' : 'o'; 5300 f[5] = (zero_divide ()) ? 'Z' : 'z'; 5301 f[6] = (denormalized()) ? 'D' : 'd'; 5302 f[7] = (invalid ()) ? 'I' : 'i'; 5303 f[8] = '\x0'; 5304 // output 5305 printf("%04x masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc); 5306 } 5307 5308 }; 5309 5310 class StatusWord { 5311 public: 5312 int32_t _value; 5313 5314 bool busy() const { return ((_value >> 15) & 1) != 0; } 5315 bool C3() const { return ((_value >> 14) & 1) != 0; } 5316 bool C2() const { return ((_value >> 10) & 1) != 0; } 5317 bool C1() const { return ((_value >> 9) & 1) != 0; } 5318 bool C0() const { return ((_value >> 8) & 1) != 0; } 5319 int top() const { return (_value >> 11) & 7 ; } 5320 bool error_status() const { return ((_value >> 7) & 1) != 0; } 5321 bool stack_fault() const { return ((_value >> 6) & 1) != 0; } 5322 bool precision() const { return ((_value >> 5) & 1) != 0; } 5323 bool underflow() const { return ((_value >> 4) & 1) != 0; } 5324 bool overflow() const { return ((_value >> 3) & 1) != 0; } 5325 bool zero_divide() const { return ((_value >> 2) & 1) != 0; } 5326 bool denormalized() const { return ((_value >> 1) & 1) != 0; } 5327 bool invalid() const { return ((_value >> 0) & 1) != 0; } 5328 5329 void print() const { 5330 // condition codes 5331 char c[5]; 5332 c[0] = (C3()) ? '3' : '-'; 5333 c[1] = (C2()) ? '2' : '-'; 5334 c[2] = (C1()) ? '1' : '-'; 5335 c[3] = (C0()) ? '0' : '-'; 5336 c[4] = '\x0'; 5337 // flags 5338 char f[9]; 5339 f[0] = (error_status()) ? 'E' : '-'; 5340 f[1] = (stack_fault ()) ? 'S' : '-'; 5341 f[2] = (precision ()) ? 'P' : '-'; 5342 f[3] = (underflow ()) ? 'U' : '-'; 5343 f[4] = (overflow ()) ? 'O' : '-'; 5344 f[5] = (zero_divide ()) ? 'Z' : '-'; 5345 f[6] = (denormalized()) ? 'D' : '-'; 5346 f[7] = (invalid ()) ? 'I' : '-'; 5347 f[8] = '\x0'; 5348 // output 5349 printf("%04x flags = %s, cc = %s, top = %d", _value & 0xFFFF, f, c, top()); 5350 } 5351 5352 }; 5353 5354 class TagWord { 5355 public: 5356 int32_t _value; 5357 5358 int tag_at(int i) const { return (_value >> (i*2)) & 3; } 5359 5360 void print() const { 5361 printf("%04x", _value & 0xFFFF); 5362 } 5363 5364 }; 5365 5366 class FPU_Register { 5367 public: 5368 int32_t _m0; 5369 int32_t _m1; 5370 int16_t _ex; 5371 5372 bool is_indefinite() const { 5373 return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0; 5374 } 5375 5376 void print() const { 5377 char sign = (_ex < 0) ? '-' : '+'; 5378 const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : " "; 5379 printf("%c%04hx.%08x%08x %s", sign, _ex, _m1, _m0, kind); 5380 }; 5381 5382 }; 5383 5384 class FPU_State { 5385 public: 5386 enum { 5387 register_size = 10, 5388 number_of_registers = 8, 5389 register_mask = 7 5390 }; 5391 5392 ControlWord _control_word; 5393 StatusWord _status_word; 5394 TagWord _tag_word; 5395 int32_t _error_offset; 5396 int32_t _error_selector; 5397 int32_t _data_offset; 5398 int32_t _data_selector; 5399 int8_t _register[register_size * number_of_registers]; 5400 5401 int tag_for_st(int i) const { return _tag_word.tag_at((_status_word.top() + i) & register_mask); } 5402 FPU_Register* st(int i) const { return (FPU_Register*)&_register[register_size * i]; } 5403 5404 const char* tag_as_string(int tag) const { 5405 switch (tag) { 5406 case 0: return "valid"; 5407 case 1: return "zero"; 5408 case 2: return "special"; 5409 case 3: return "empty"; 5410 } 5411 ShouldNotReachHere(); 5412 return nullptr; 5413 } 5414 5415 void print() const { 5416 // print computation registers 5417 { int t = _status_word.top(); 5418 for (int i = 0; i < number_of_registers; i++) { 5419 int j = (i - t) & register_mask; 5420 printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j); 5421 st(j)->print(); 5422 printf(" %s\n", tag_as_string(_tag_word.tag_at(i))); 5423 } 5424 } 5425 printf("\n"); 5426 // print control registers 5427 printf("ctrl = "); _control_word.print(); printf("\n"); 5428 printf("stat = "); _status_word .print(); printf("\n"); 5429 printf("tags = "); _tag_word .print(); printf("\n"); 5430 } 5431 5432 }; 5433 5434 class Flag_Register { 5435 public: 5436 int32_t _value; 5437 5438 bool overflow() const { return ((_value >> 11) & 1) != 0; } 5439 bool direction() const { return ((_value >> 10) & 1) != 0; } 5440 bool sign() const { return ((_value >> 7) & 1) != 0; } 5441 bool zero() const { return ((_value >> 6) & 1) != 0; } 5442 bool auxiliary_carry() const { return ((_value >> 4) & 1) != 0; } 5443 bool parity() const { return ((_value >> 2) & 1) != 0; } 5444 bool carry() const { return ((_value >> 0) & 1) != 0; } 5445 5446 void print() const { 5447 // flags 5448 char f[8]; 5449 f[0] = (overflow ()) ? 'O' : '-'; 5450 f[1] = (direction ()) ? 'D' : '-'; 5451 f[2] = (sign ()) ? 'S' : '-'; 5452 f[3] = (zero ()) ? 'Z' : '-'; 5453 f[4] = (auxiliary_carry()) ? 'A' : '-'; 5454 f[5] = (parity ()) ? 'P' : '-'; 5455 f[6] = (carry ()) ? 'C' : '-'; 5456 f[7] = '\x0'; 5457 // output 5458 printf("%08x flags = %s", _value, f); 5459 } 5460 5461 }; 5462 5463 class IU_Register { 5464 public: 5465 int32_t _value; 5466 5467 void print() const { 5468 printf("%08x %11d", _value, _value); 5469 } 5470 5471 }; 5472 5473 class IU_State { 5474 public: 5475 Flag_Register _eflags; 5476 IU_Register _rdi; 5477 IU_Register _rsi; 5478 IU_Register _rbp; 5479 IU_Register _rsp; 5480 IU_Register _rbx; 5481 IU_Register _rdx; 5482 IU_Register _rcx; 5483 IU_Register _rax; 5484 5485 void print() const { 5486 // computation registers 5487 printf("rax, = "); _rax.print(); printf("\n"); 5488 printf("rbx, = "); _rbx.print(); printf("\n"); 5489 printf("rcx = "); _rcx.print(); printf("\n"); 5490 printf("rdx = "); _rdx.print(); printf("\n"); 5491 printf("rdi = "); _rdi.print(); printf("\n"); 5492 printf("rsi = "); _rsi.print(); printf("\n"); 5493 printf("rbp, = "); _rbp.print(); printf("\n"); 5494 printf("rsp = "); _rsp.print(); printf("\n"); 5495 printf("\n"); 5496 // control registers 5497 printf("flgs = "); _eflags.print(); printf("\n"); 5498 } 5499 }; 5500 5501 5502 class CPU_State { 5503 public: 5504 FPU_State _fpu_state; 5505 IU_State _iu_state; 5506 5507 void print() const { 5508 printf("--------------------------------------------------\n"); 5509 _iu_state .print(); 5510 printf("\n"); 5511 _fpu_state.print(); 5512 printf("--------------------------------------------------\n"); 5513 } 5514 5515 }; 5516 5517 5518 static void _print_CPU_state(CPU_State* state) { 5519 state->print(); 5520 }; 5521 5522 5523 void MacroAssembler::print_CPU_state() { 5524 push_CPU_state(); 5525 push(rsp); // pass CPU state 5526 call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state))); 5527 addptr(rsp, wordSize); // discard argument 5528 pop_CPU_state(); 5529 } 5530 5531 5532 #ifndef _LP64 5533 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) { 5534 static int counter = 0; 5535 FPU_State* fs = &state->_fpu_state; 5536 counter++; 5537 // For leaf calls, only verify that the top few elements remain empty. 5538 // We only need 1 empty at the top for C2 code. 5539 if( stack_depth < 0 ) { 5540 if( fs->tag_for_st(7) != 3 ) { 5541 printf("FPR7 not empty\n"); 5542 state->print(); 5543 assert(false, "error"); 5544 return false; 5545 } 5546 return true; // All other stack states do not matter 5547 } 5548 5549 assert((fs->_control_word._value & 0xffff) == StubRoutines::x86::fpu_cntrl_wrd_std(), 5550 "bad FPU control word"); 5551 5552 // compute stack depth 5553 int i = 0; 5554 while (i < FPU_State::number_of_registers && fs->tag_for_st(i) < 3) i++; 5555 int d = i; 5556 while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++; 5557 // verify findings 5558 if (i != FPU_State::number_of_registers) { 5559 // stack not contiguous 5560 printf("%s: stack not contiguous at ST%d\n", s, i); 5561 state->print(); 5562 assert(false, "error"); 5563 return false; 5564 } 5565 // check if computed stack depth corresponds to expected stack depth 5566 if (stack_depth < 0) { 5567 // expected stack depth is -stack_depth or less 5568 if (d > -stack_depth) { 5569 // too many elements on the stack 5570 printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d); 5571 state->print(); 5572 assert(false, "error"); 5573 return false; 5574 } 5575 } else { 5576 // expected stack depth is stack_depth 5577 if (d != stack_depth) { 5578 // wrong stack depth 5579 printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d); 5580 state->print(); 5581 assert(false, "error"); 5582 return false; 5583 } 5584 } 5585 // everything is cool 5586 return true; 5587 } 5588 5589 void MacroAssembler::verify_FPU(int stack_depth, const char* s) { 5590 if (!VerifyFPU) return; 5591 push_CPU_state(); 5592 push(rsp); // pass CPU state 5593 ExternalAddress msg((address) s); 5594 // pass message string s 5595 pushptr(msg.addr(), noreg); 5596 push(stack_depth); // pass stack depth 5597 call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU))); 5598 addptr(rsp, 3 * wordSize); // discard arguments 5599 // check for error 5600 { Label L; 5601 testl(rax, rax); 5602 jcc(Assembler::notZero, L); 5603 int3(); // break if error condition 5604 bind(L); 5605 } 5606 pop_CPU_state(); 5607 } 5608 #endif // _LP64 5609 5610 void MacroAssembler::restore_cpu_control_state_after_jni(Register rscratch) { 5611 // Either restore the MXCSR register after returning from the JNI Call 5612 // or verify that it wasn't changed (with -Xcheck:jni flag). 5613 if (VM_Version::supports_sse()) { 5614 if (RestoreMXCSROnJNICalls) { 5615 ldmxcsr(ExternalAddress(StubRoutines::x86::addr_mxcsr_std()), rscratch); 5616 } else if (CheckJNICalls) { 5617 call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry())); 5618 } 5619 } 5620 // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty. 5621 vzeroupper(); 5622 5623 #ifndef _LP64 5624 // Either restore the x87 floating pointer control word after returning 5625 // from the JNI call or verify that it wasn't changed. 5626 if (CheckJNICalls) { 5627 call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry())); 5628 } 5629 #endif // _LP64 5630 } 5631 5632 // ((OopHandle)result).resolve(); 5633 void MacroAssembler::resolve_oop_handle(Register result, Register tmp) { 5634 assert_different_registers(result, tmp); 5635 5636 // Only 64 bit platforms support GCs that require a tmp register 5637 // Only IN_HEAP loads require a thread_tmp register 5638 // OopHandle::resolve is an indirection like jobject. 5639 access_load_at(T_OBJECT, IN_NATIVE, 5640 result, Address(result, 0), tmp, /*tmp_thread*/noreg); 5641 } 5642 5643 // ((WeakHandle)result).resolve(); 5644 void MacroAssembler::resolve_weak_handle(Register rresult, Register rtmp) { 5645 assert_different_registers(rresult, rtmp); 5646 Label resolved; 5647 5648 // A null weak handle resolves to null. 5649 cmpptr(rresult, 0); 5650 jcc(Assembler::equal, resolved); 5651 5652 // Only 64 bit platforms support GCs that require a tmp register 5653 // Only IN_HEAP loads require a thread_tmp register 5654 // WeakHandle::resolve is an indirection like jweak. 5655 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 5656 rresult, Address(rresult, 0), rtmp, /*tmp_thread*/noreg); 5657 bind(resolved); 5658 } 5659 5660 void MacroAssembler::load_mirror(Register mirror, Register method, Register tmp) { 5661 // get mirror 5662 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 5663 load_method_holder(mirror, method); 5664 movptr(mirror, Address(mirror, mirror_offset)); 5665 resolve_oop_handle(mirror, tmp); 5666 } 5667 5668 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) { 5669 load_method_holder(rresult, rmethod); 5670 movptr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset())); 5671 } 5672 5673 void MacroAssembler::load_method_holder(Register holder, Register method) { 5674 movptr(holder, Address(method, Method::const_offset())); // ConstMethod* 5675 movptr(holder, Address(holder, ConstMethod::constants_offset())); // ConstantPool* 5676 movptr(holder, Address(holder, ConstantPool::pool_holder_offset())); // InstanceKlass* 5677 } 5678 5679 #ifdef _LP64 5680 void MacroAssembler::load_nklass_compact(Register dst, Register src) { 5681 assert(UseCompactObjectHeaders, "expect compact object headers"); 5682 movq(dst, Address(src, oopDesc::mark_offset_in_bytes())); 5683 shrq(dst, markWord::klass_shift); 5684 } 5685 #endif 5686 5687 void MacroAssembler::load_klass(Register dst, Register src, Register tmp) { 5688 BLOCK_COMMENT("load_klass"); 5689 assert_different_registers(src, tmp); 5690 assert_different_registers(dst, tmp); 5691 #ifdef _LP64 5692 if (UseCompactObjectHeaders) { 5693 load_nklass_compact(dst, src); 5694 decode_klass_not_null(dst, tmp); 5695 } else if (UseCompressedClassPointers) { 5696 movl(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5697 decode_klass_not_null(dst, tmp); 5698 } else 5699 #endif 5700 { 5701 movptr(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5702 } 5703 } 5704 5705 void MacroAssembler::store_klass(Register dst, Register src, Register tmp) { 5706 assert(!UseCompactObjectHeaders, "not with compact headers"); 5707 assert_different_registers(src, tmp); 5708 assert_different_registers(dst, tmp); 5709 #ifdef _LP64 5710 if (UseCompressedClassPointers) { 5711 encode_klass_not_null(src, tmp); 5712 movl(Address(dst, oopDesc::klass_offset_in_bytes()), src); 5713 } else 5714 #endif 5715 movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src); 5716 } 5717 5718 void MacroAssembler::cmp_klass(Register klass, Register obj, Register tmp) { 5719 BLOCK_COMMENT("cmp_klass 1"); 5720 #ifdef _LP64 5721 if (UseCompactObjectHeaders) { 5722 load_nklass_compact(tmp, obj); 5723 cmpl(klass, tmp); 5724 } else if (UseCompressedClassPointers) { 5725 cmpl(klass, Address(obj, oopDesc::klass_offset_in_bytes())); 5726 } else 5727 #endif 5728 { 5729 cmpptr(klass, Address(obj, oopDesc::klass_offset_in_bytes())); 5730 } 5731 } 5732 5733 void MacroAssembler::cmp_klass(Register src, Register dst, Register tmp1, Register tmp2) { 5734 BLOCK_COMMENT("cmp_klass 2"); 5735 #ifdef _LP64 5736 if (UseCompactObjectHeaders) { 5737 assert(tmp2 != noreg, "need tmp2"); 5738 assert_different_registers(src, dst, tmp1, tmp2); 5739 load_nklass_compact(tmp1, src); 5740 load_nklass_compact(tmp2, dst); 5741 cmpl(tmp1, tmp2); 5742 } else if (UseCompressedClassPointers) { 5743 movl(tmp1, Address(src, oopDesc::klass_offset_in_bytes())); 5744 cmpl(tmp1, Address(dst, oopDesc::klass_offset_in_bytes())); 5745 } else 5746 #endif 5747 { 5748 movptr(tmp1, Address(src, oopDesc::klass_offset_in_bytes())); 5749 cmpptr(tmp1, Address(dst, oopDesc::klass_offset_in_bytes())); 5750 } 5751 } 5752 5753 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src, 5754 Register tmp1, Register thread_tmp) { 5755 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5756 decorators = AccessInternal::decorator_fixup(decorators, type); 5757 bool as_raw = (decorators & AS_RAW) != 0; 5758 if (as_raw) { 5759 bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, thread_tmp); 5760 } else { 5761 bs->load_at(this, decorators, type, dst, src, tmp1, thread_tmp); 5762 } 5763 } 5764 5765 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register val, 5766 Register tmp1, Register tmp2, Register tmp3) { 5767 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5768 decorators = AccessInternal::decorator_fixup(decorators, type); 5769 bool as_raw = (decorators & AS_RAW) != 0; 5770 if (as_raw) { 5771 bs->BarrierSetAssembler::store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 5772 } else { 5773 bs->store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 5774 } 5775 } 5776 5777 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1, 5778 Register thread_tmp, DecoratorSet decorators) { 5779 access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, thread_tmp); 5780 } 5781 5782 // Doesn't do verification, generates fixed size code 5783 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1, 5784 Register thread_tmp, DecoratorSet decorators) { 5785 access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, thread_tmp); 5786 } 5787 5788 void MacroAssembler::store_heap_oop(Address dst, Register val, Register tmp1, 5789 Register tmp2, Register tmp3, DecoratorSet decorators) { 5790 access_store_at(T_OBJECT, IN_HEAP | decorators, dst, val, tmp1, tmp2, tmp3); 5791 } 5792 5793 // Used for storing nulls. 5794 void MacroAssembler::store_heap_oop_null(Address dst) { 5795 access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg, noreg); 5796 } 5797 5798 #ifdef _LP64 5799 void MacroAssembler::store_klass_gap(Register dst, Register src) { 5800 assert(!UseCompactObjectHeaders, "Don't use with compact headers"); 5801 if (UseCompressedClassPointers) { 5802 // Store to klass gap in destination 5803 movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src); 5804 } 5805 } 5806 5807 #ifdef ASSERT 5808 void MacroAssembler::verify_heapbase(const char* msg) { 5809 assert (UseCompressedOops, "should be compressed"); 5810 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5811 if (CheckCompressedOops) { 5812 Label ok; 5813 ExternalAddress src2(CompressedOops::ptrs_base_addr()); 5814 const bool is_src2_reachable = reachable(src2); 5815 if (!is_src2_reachable) { 5816 push(rscratch1); // cmpptr trashes rscratch1 5817 } 5818 cmpptr(r12_heapbase, src2, rscratch1); 5819 jcc(Assembler::equal, ok); 5820 STOP(msg); 5821 bind(ok); 5822 if (!is_src2_reachable) { 5823 pop(rscratch1); 5824 } 5825 } 5826 } 5827 #endif 5828 5829 // Algorithm must match oop.inline.hpp encode_heap_oop. 5830 void MacroAssembler::encode_heap_oop(Register r) { 5831 #ifdef ASSERT 5832 verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?"); 5833 #endif 5834 verify_oop_msg(r, "broken oop in encode_heap_oop"); 5835 if (CompressedOops::base() == nullptr) { 5836 if (CompressedOops::shift() != 0) { 5837 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5838 shrq(r, LogMinObjAlignmentInBytes); 5839 } 5840 return; 5841 } 5842 testq(r, r); 5843 cmovq(Assembler::equal, r, r12_heapbase); 5844 subq(r, r12_heapbase); 5845 shrq(r, LogMinObjAlignmentInBytes); 5846 } 5847 5848 void MacroAssembler::encode_heap_oop_not_null(Register r) { 5849 #ifdef ASSERT 5850 verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?"); 5851 if (CheckCompressedOops) { 5852 Label ok; 5853 testq(r, r); 5854 jcc(Assembler::notEqual, ok); 5855 STOP("null oop passed to encode_heap_oop_not_null"); 5856 bind(ok); 5857 } 5858 #endif 5859 verify_oop_msg(r, "broken oop in encode_heap_oop_not_null"); 5860 if (CompressedOops::base() != nullptr) { 5861 subq(r, r12_heapbase); 5862 } 5863 if (CompressedOops::shift() != 0) { 5864 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5865 shrq(r, LogMinObjAlignmentInBytes); 5866 } 5867 } 5868 5869 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) { 5870 #ifdef ASSERT 5871 verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?"); 5872 if (CheckCompressedOops) { 5873 Label ok; 5874 testq(src, src); 5875 jcc(Assembler::notEqual, ok); 5876 STOP("null oop passed to encode_heap_oop_not_null2"); 5877 bind(ok); 5878 } 5879 #endif 5880 verify_oop_msg(src, "broken oop in encode_heap_oop_not_null2"); 5881 if (dst != src) { 5882 movq(dst, src); 5883 } 5884 if (CompressedOops::base() != nullptr) { 5885 subq(dst, r12_heapbase); 5886 } 5887 if (CompressedOops::shift() != 0) { 5888 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5889 shrq(dst, LogMinObjAlignmentInBytes); 5890 } 5891 } 5892 5893 void MacroAssembler::decode_heap_oop(Register r) { 5894 #ifdef ASSERT 5895 verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?"); 5896 #endif 5897 if (CompressedOops::base() == nullptr) { 5898 if (CompressedOops::shift() != 0) { 5899 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5900 shlq(r, LogMinObjAlignmentInBytes); 5901 } 5902 } else { 5903 Label done; 5904 shlq(r, LogMinObjAlignmentInBytes); 5905 jccb(Assembler::equal, done); 5906 addq(r, r12_heapbase); 5907 bind(done); 5908 } 5909 verify_oop_msg(r, "broken oop in decode_heap_oop"); 5910 } 5911 5912 void MacroAssembler::decode_heap_oop_not_null(Register r) { 5913 // Note: it will change flags 5914 assert (UseCompressedOops, "should only be used for compressed headers"); 5915 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5916 // Cannot assert, unverified entry point counts instructions (see .ad file) 5917 // vtableStubs also counts instructions in pd_code_size_limit. 5918 // Also do not verify_oop as this is called by verify_oop. 5919 if (CompressedOops::shift() != 0) { 5920 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5921 shlq(r, LogMinObjAlignmentInBytes); 5922 if (CompressedOops::base() != nullptr) { 5923 addq(r, r12_heapbase); 5924 } 5925 } else { 5926 assert (CompressedOops::base() == nullptr, "sanity"); 5927 } 5928 } 5929 5930 void MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) { 5931 // Note: it will change flags 5932 assert (UseCompressedOops, "should only be used for compressed headers"); 5933 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5934 // Cannot assert, unverified entry point counts instructions (see .ad file) 5935 // vtableStubs also counts instructions in pd_code_size_limit. 5936 // Also do not verify_oop as this is called by verify_oop. 5937 if (CompressedOops::shift() != 0) { 5938 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5939 if (LogMinObjAlignmentInBytes == Address::times_8) { 5940 leaq(dst, Address(r12_heapbase, src, Address::times_8, 0)); 5941 } else { 5942 if (dst != src) { 5943 movq(dst, src); 5944 } 5945 shlq(dst, LogMinObjAlignmentInBytes); 5946 if (CompressedOops::base() != nullptr) { 5947 addq(dst, r12_heapbase); 5948 } 5949 } 5950 } else { 5951 assert (CompressedOops::base() == nullptr, "sanity"); 5952 if (dst != src) { 5953 movq(dst, src); 5954 } 5955 } 5956 } 5957 5958 void MacroAssembler::encode_klass_not_null(Register r, Register tmp) { 5959 assert_different_registers(r, tmp); 5960 if (CompressedKlassPointers::base() != nullptr) { 5961 mov64(tmp, (int64_t)CompressedKlassPointers::base()); 5962 subq(r, tmp); 5963 } 5964 if (CompressedKlassPointers::shift() != 0) { 5965 shrq(r, CompressedKlassPointers::shift()); 5966 } 5967 } 5968 5969 void MacroAssembler::encode_and_move_klass_not_null(Register dst, Register src) { 5970 assert_different_registers(src, dst); 5971 if (CompressedKlassPointers::base() != nullptr) { 5972 mov64(dst, -(int64_t)CompressedKlassPointers::base()); 5973 addq(dst, src); 5974 } else { 5975 movptr(dst, src); 5976 } 5977 if (CompressedKlassPointers::shift() != 0) { 5978 shrq(dst, CompressedKlassPointers::shift()); 5979 } 5980 } 5981 5982 void MacroAssembler::decode_klass_not_null(Register r, Register tmp) { 5983 assert_different_registers(r, tmp); 5984 // Note: it will change flags 5985 assert(UseCompressedClassPointers, "should only be used for compressed headers"); 5986 // Cannot assert, unverified entry point counts instructions (see .ad file) 5987 // vtableStubs also counts instructions in pd_code_size_limit. 5988 // Also do not verify_oop as this is called by verify_oop. 5989 if (CompressedKlassPointers::shift() != 0) { 5990 shlq(r, CompressedKlassPointers::shift()); 5991 } 5992 if (CompressedKlassPointers::base() != nullptr) { 5993 mov64(tmp, (int64_t)CompressedKlassPointers::base()); 5994 addq(r, tmp); 5995 } 5996 } 5997 5998 void MacroAssembler::decode_and_move_klass_not_null(Register dst, Register src) { 5999 assert_different_registers(src, dst); 6000 // Note: it will change flags 6001 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 6002 // Cannot assert, unverified entry point counts instructions (see .ad file) 6003 // vtableStubs also counts instructions in pd_code_size_limit. 6004 // Also do not verify_oop as this is called by verify_oop. 6005 6006 if (CompressedKlassPointers::base() == nullptr && 6007 CompressedKlassPointers::shift() == 0) { 6008 // The best case scenario is that there is no base or shift. Then it is already 6009 // a pointer that needs nothing but a register rename. 6010 movl(dst, src); 6011 } else { 6012 if (CompressedKlassPointers::shift() <= Address::times_8) { 6013 if (CompressedKlassPointers::base() != nullptr) { 6014 mov64(dst, (int64_t)CompressedKlassPointers::base()); 6015 } else { 6016 xorq(dst, dst); 6017 } 6018 if (CompressedKlassPointers::shift() != 0) { 6019 assert(CompressedKlassPointers::shift() == Address::times_8, "klass not aligned on 64bits?"); 6020 leaq(dst, Address(dst, src, Address::times_8, 0)); 6021 } else { 6022 addq(dst, src); 6023 } 6024 } else { 6025 if (CompressedKlassPointers::base() != nullptr) { 6026 const uint64_t base_right_shifted = 6027 (uint64_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift(); 6028 mov64(dst, base_right_shifted); 6029 } else { 6030 xorq(dst, dst); 6031 } 6032 addq(dst, src); 6033 shlq(dst, CompressedKlassPointers::shift()); 6034 } 6035 } 6036 } 6037 6038 void MacroAssembler::set_narrow_oop(Register dst, jobject obj) { 6039 assert (UseCompressedOops, "should only be used for compressed headers"); 6040 assert (Universe::heap() != nullptr, "java heap should be initialized"); 6041 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6042 int oop_index = oop_recorder()->find_index(obj); 6043 RelocationHolder rspec = oop_Relocation::spec(oop_index); 6044 mov_narrow_oop(dst, oop_index, rspec); 6045 } 6046 6047 void MacroAssembler::set_narrow_oop(Address dst, jobject obj) { 6048 assert (UseCompressedOops, "should only be used for compressed headers"); 6049 assert (Universe::heap() != nullptr, "java heap should be initialized"); 6050 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6051 int oop_index = oop_recorder()->find_index(obj); 6052 RelocationHolder rspec = oop_Relocation::spec(oop_index); 6053 mov_narrow_oop(dst, oop_index, rspec); 6054 } 6055 6056 void MacroAssembler::set_narrow_klass(Register dst, Klass* k) { 6057 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 6058 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6059 int klass_index = oop_recorder()->find_index(k); 6060 RelocationHolder rspec = metadata_Relocation::spec(klass_index); 6061 mov_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec); 6062 } 6063 6064 void MacroAssembler::set_narrow_klass(Address dst, Klass* k) { 6065 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 6066 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6067 int klass_index = oop_recorder()->find_index(k); 6068 RelocationHolder rspec = metadata_Relocation::spec(klass_index); 6069 mov_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec); 6070 } 6071 6072 void MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) { 6073 assert (UseCompressedOops, "should only be used for compressed headers"); 6074 assert (Universe::heap() != nullptr, "java heap should be initialized"); 6075 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6076 int oop_index = oop_recorder()->find_index(obj); 6077 RelocationHolder rspec = oop_Relocation::spec(oop_index); 6078 Assembler::cmp_narrow_oop(dst, oop_index, rspec); 6079 } 6080 6081 void MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) { 6082 assert (UseCompressedOops, "should only be used for compressed headers"); 6083 assert (Universe::heap() != nullptr, "java heap should be initialized"); 6084 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6085 int oop_index = oop_recorder()->find_index(obj); 6086 RelocationHolder rspec = oop_Relocation::spec(oop_index); 6087 Assembler::cmp_narrow_oop(dst, oop_index, rspec); 6088 } 6089 6090 void MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) { 6091 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 6092 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6093 int klass_index = oop_recorder()->find_index(k); 6094 RelocationHolder rspec = metadata_Relocation::spec(klass_index); 6095 Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec); 6096 } 6097 6098 void MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) { 6099 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 6100 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6101 int klass_index = oop_recorder()->find_index(k); 6102 RelocationHolder rspec = metadata_Relocation::spec(klass_index); 6103 Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec); 6104 } 6105 6106 void MacroAssembler::reinit_heapbase() { 6107 if (UseCompressedOops) { 6108 if (Universe::heap() != nullptr) { 6109 if (CompressedOops::base() == nullptr) { 6110 MacroAssembler::xorptr(r12_heapbase, r12_heapbase); 6111 } else { 6112 mov64(r12_heapbase, (int64_t)CompressedOops::ptrs_base()); 6113 } 6114 } else { 6115 movptr(r12_heapbase, ExternalAddress(CompressedOops::ptrs_base_addr())); 6116 } 6117 } 6118 } 6119 6120 #endif // _LP64 6121 6122 #if COMPILER2_OR_JVMCI 6123 6124 // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM/ZMM registers 6125 void MacroAssembler::xmm_clear_mem(Register base, Register cnt, Register rtmp, XMMRegister xtmp, KRegister mask) { 6126 // cnt - number of qwords (8-byte words). 6127 // base - start address, qword aligned. 6128 Label L_zero_64_bytes, L_loop, L_sloop, L_tail, L_end; 6129 bool use64byteVector = (MaxVectorSize == 64) && (VM_Version::avx3_threshold() == 0); 6130 if (use64byteVector) { 6131 vpxor(xtmp, xtmp, xtmp, AVX_512bit); 6132 } else if (MaxVectorSize >= 32) { 6133 vpxor(xtmp, xtmp, xtmp, AVX_256bit); 6134 } else { 6135 pxor(xtmp, xtmp); 6136 } 6137 jmp(L_zero_64_bytes); 6138 6139 BIND(L_loop); 6140 if (MaxVectorSize >= 32) { 6141 fill64(base, 0, xtmp, use64byteVector); 6142 } else { 6143 movdqu(Address(base, 0), xtmp); 6144 movdqu(Address(base, 16), xtmp); 6145 movdqu(Address(base, 32), xtmp); 6146 movdqu(Address(base, 48), xtmp); 6147 } 6148 addptr(base, 64); 6149 6150 BIND(L_zero_64_bytes); 6151 subptr(cnt, 8); 6152 jccb(Assembler::greaterEqual, L_loop); 6153 6154 // Copy trailing 64 bytes 6155 if (use64byteVector) { 6156 addptr(cnt, 8); 6157 jccb(Assembler::equal, L_end); 6158 fill64_masked(3, base, 0, xtmp, mask, cnt, rtmp, true); 6159 jmp(L_end); 6160 } else { 6161 addptr(cnt, 4); 6162 jccb(Assembler::less, L_tail); 6163 if (MaxVectorSize >= 32) { 6164 vmovdqu(Address(base, 0), xtmp); 6165 } else { 6166 movdqu(Address(base, 0), xtmp); 6167 movdqu(Address(base, 16), xtmp); 6168 } 6169 } 6170 addptr(base, 32); 6171 subptr(cnt, 4); 6172 6173 BIND(L_tail); 6174 addptr(cnt, 4); 6175 jccb(Assembler::lessEqual, L_end); 6176 if (UseAVX > 2 && MaxVectorSize >= 32 && VM_Version::supports_avx512vl()) { 6177 fill32_masked(3, base, 0, xtmp, mask, cnt, rtmp); 6178 } else { 6179 decrement(cnt); 6180 6181 BIND(L_sloop); 6182 movq(Address(base, 0), xtmp); 6183 addptr(base, 8); 6184 decrement(cnt); 6185 jccb(Assembler::greaterEqual, L_sloop); 6186 } 6187 BIND(L_end); 6188 } 6189 6190 // Clearing constant sized memory using YMM/ZMM registers. 6191 void MacroAssembler::clear_mem(Register base, int cnt, Register rtmp, XMMRegister xtmp, KRegister mask) { 6192 assert(UseAVX > 2 && VM_Version::supports_avx512vl(), ""); 6193 bool use64byteVector = (MaxVectorSize > 32) && (VM_Version::avx3_threshold() == 0); 6194 6195 int vector64_count = (cnt & (~0x7)) >> 3; 6196 cnt = cnt & 0x7; 6197 const int fill64_per_loop = 4; 6198 const int max_unrolled_fill64 = 8; 6199 6200 // 64 byte initialization loop. 6201 vpxor(xtmp, xtmp, xtmp, use64byteVector ? AVX_512bit : AVX_256bit); 6202 int start64 = 0; 6203 if (vector64_count > max_unrolled_fill64) { 6204 Label LOOP; 6205 Register index = rtmp; 6206 6207 start64 = vector64_count - (vector64_count % fill64_per_loop); 6208 6209 movl(index, 0); 6210 BIND(LOOP); 6211 for (int i = 0; i < fill64_per_loop; i++) { 6212 fill64(Address(base, index, Address::times_1, i * 64), xtmp, use64byteVector); 6213 } 6214 addl(index, fill64_per_loop * 64); 6215 cmpl(index, start64 * 64); 6216 jccb(Assembler::less, LOOP); 6217 } 6218 for (int i = start64; i < vector64_count; i++) { 6219 fill64(base, i * 64, xtmp, use64byteVector); 6220 } 6221 6222 // Clear remaining 64 byte tail. 6223 int disp = vector64_count * 64; 6224 if (cnt) { 6225 switch (cnt) { 6226 case 1: 6227 movq(Address(base, disp), xtmp); 6228 break; 6229 case 2: 6230 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_128bit); 6231 break; 6232 case 3: 6233 movl(rtmp, 0x7); 6234 kmovwl(mask, rtmp); 6235 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_256bit); 6236 break; 6237 case 4: 6238 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit); 6239 break; 6240 case 5: 6241 if (use64byteVector) { 6242 movl(rtmp, 0x1F); 6243 kmovwl(mask, rtmp); 6244 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit); 6245 } else { 6246 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit); 6247 movq(Address(base, disp + 32), xtmp); 6248 } 6249 break; 6250 case 6: 6251 if (use64byteVector) { 6252 movl(rtmp, 0x3F); 6253 kmovwl(mask, rtmp); 6254 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit); 6255 } else { 6256 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit); 6257 evmovdqu(T_LONG, k0, Address(base, disp + 32), xtmp, false, Assembler::AVX_128bit); 6258 } 6259 break; 6260 case 7: 6261 if (use64byteVector) { 6262 movl(rtmp, 0x7F); 6263 kmovwl(mask, rtmp); 6264 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit); 6265 } else { 6266 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit); 6267 movl(rtmp, 0x7); 6268 kmovwl(mask, rtmp); 6269 evmovdqu(T_LONG, mask, Address(base, disp + 32), xtmp, true, Assembler::AVX_256bit); 6270 } 6271 break; 6272 default: 6273 fatal("Unexpected length : %d\n",cnt); 6274 break; 6275 } 6276 } 6277 } 6278 6279 void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp, XMMRegister xtmp, 6280 bool is_large, KRegister mask) { 6281 // cnt - number of qwords (8-byte words). 6282 // base - start address, qword aligned. 6283 // is_large - if optimizers know cnt is larger than InitArrayShortSize 6284 assert(base==rdi, "base register must be edi for rep stos"); 6285 assert(tmp==rax, "tmp register must be eax for rep stos"); 6286 assert(cnt==rcx, "cnt register must be ecx for rep stos"); 6287 assert(InitArrayShortSize % BytesPerLong == 0, 6288 "InitArrayShortSize should be the multiple of BytesPerLong"); 6289 6290 Label DONE; 6291 if (!is_large || !UseXMMForObjInit) { 6292 xorptr(tmp, tmp); 6293 } 6294 6295 if (!is_large) { 6296 Label LOOP, LONG; 6297 cmpptr(cnt, InitArrayShortSize/BytesPerLong); 6298 jccb(Assembler::greater, LONG); 6299 6300 NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM 6301 6302 decrement(cnt); 6303 jccb(Assembler::negative, DONE); // Zero length 6304 6305 // Use individual pointer-sized stores for small counts: 6306 BIND(LOOP); 6307 movptr(Address(base, cnt, Address::times_ptr), tmp); 6308 decrement(cnt); 6309 jccb(Assembler::greaterEqual, LOOP); 6310 jmpb(DONE); 6311 6312 BIND(LONG); 6313 } 6314 6315 // Use longer rep-prefixed ops for non-small counts: 6316 if (UseFastStosb) { 6317 shlptr(cnt, 3); // convert to number of bytes 6318 rep_stosb(); 6319 } else if (UseXMMForObjInit) { 6320 xmm_clear_mem(base, cnt, tmp, xtmp, mask); 6321 } else { 6322 NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM 6323 rep_stos(); 6324 } 6325 6326 BIND(DONE); 6327 } 6328 6329 #endif //COMPILER2_OR_JVMCI 6330 6331 6332 void MacroAssembler::generate_fill(BasicType t, bool aligned, 6333 Register to, Register value, Register count, 6334 Register rtmp, XMMRegister xtmp) { 6335 ShortBranchVerifier sbv(this); 6336 assert_different_registers(to, value, count, rtmp); 6337 Label L_exit; 6338 Label L_fill_2_bytes, L_fill_4_bytes; 6339 6340 #if defined(COMPILER2) && defined(_LP64) 6341 if(MaxVectorSize >=32 && 6342 VM_Version::supports_avx512vlbw() && 6343 VM_Version::supports_bmi2()) { 6344 generate_fill_avx3(t, to, value, count, rtmp, xtmp); 6345 return; 6346 } 6347 #endif 6348 6349 int shift = -1; 6350 switch (t) { 6351 case T_BYTE: 6352 shift = 2; 6353 break; 6354 case T_SHORT: 6355 shift = 1; 6356 break; 6357 case T_INT: 6358 shift = 0; 6359 break; 6360 default: ShouldNotReachHere(); 6361 } 6362 6363 if (t == T_BYTE) { 6364 andl(value, 0xff); 6365 movl(rtmp, value); 6366 shll(rtmp, 8); 6367 orl(value, rtmp); 6368 } 6369 if (t == T_SHORT) { 6370 andl(value, 0xffff); 6371 } 6372 if (t == T_BYTE || t == T_SHORT) { 6373 movl(rtmp, value); 6374 shll(rtmp, 16); 6375 orl(value, rtmp); 6376 } 6377 6378 cmpptr(count, 2<<shift); // Short arrays (< 8 bytes) fill by element 6379 jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp 6380 if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) { 6381 Label L_skip_align2; 6382 // align source address at 4 bytes address boundary 6383 if (t == T_BYTE) { 6384 Label L_skip_align1; 6385 // One byte misalignment happens only for byte arrays 6386 testptr(to, 1); 6387 jccb(Assembler::zero, L_skip_align1); 6388 movb(Address(to, 0), value); 6389 increment(to); 6390 decrement(count); 6391 BIND(L_skip_align1); 6392 } 6393 // Two bytes misalignment happens only for byte and short (char) arrays 6394 testptr(to, 2); 6395 jccb(Assembler::zero, L_skip_align2); 6396 movw(Address(to, 0), value); 6397 addptr(to, 2); 6398 subptr(count, 1<<(shift-1)); 6399 BIND(L_skip_align2); 6400 } 6401 if (UseSSE < 2) { 6402 Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes; 6403 // Fill 32-byte chunks 6404 subptr(count, 8 << shift); 6405 jcc(Assembler::less, L_check_fill_8_bytes); 6406 align(16); 6407 6408 BIND(L_fill_32_bytes_loop); 6409 6410 for (int i = 0; i < 32; i += 4) { 6411 movl(Address(to, i), value); 6412 } 6413 6414 addptr(to, 32); 6415 subptr(count, 8 << shift); 6416 jcc(Assembler::greaterEqual, L_fill_32_bytes_loop); 6417 BIND(L_check_fill_8_bytes); 6418 addptr(count, 8 << shift); 6419 jccb(Assembler::zero, L_exit); 6420 jmpb(L_fill_8_bytes); 6421 6422 // 6423 // length is too short, just fill qwords 6424 // 6425 BIND(L_fill_8_bytes_loop); 6426 movl(Address(to, 0), value); 6427 movl(Address(to, 4), value); 6428 addptr(to, 8); 6429 BIND(L_fill_8_bytes); 6430 subptr(count, 1 << (shift + 1)); 6431 jcc(Assembler::greaterEqual, L_fill_8_bytes_loop); 6432 // fall through to fill 4 bytes 6433 } else { 6434 Label L_fill_32_bytes; 6435 if (!UseUnalignedLoadStores) { 6436 // align to 8 bytes, we know we are 4 byte aligned to start 6437 testptr(to, 4); 6438 jccb(Assembler::zero, L_fill_32_bytes); 6439 movl(Address(to, 0), value); 6440 addptr(to, 4); 6441 subptr(count, 1<<shift); 6442 } 6443 BIND(L_fill_32_bytes); 6444 { 6445 assert( UseSSE >= 2, "supported cpu only" ); 6446 Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes; 6447 movdl(xtmp, value); 6448 if (UseAVX >= 2 && UseUnalignedLoadStores) { 6449 Label L_check_fill_32_bytes; 6450 if (UseAVX > 2) { 6451 // Fill 64-byte chunks 6452 Label L_fill_64_bytes_loop_avx3, L_check_fill_64_bytes_avx2; 6453 6454 // If number of bytes to fill < VM_Version::avx3_threshold(), perform fill using AVX2 6455 cmpptr(count, VM_Version::avx3_threshold()); 6456 jccb(Assembler::below, L_check_fill_64_bytes_avx2); 6457 6458 vpbroadcastd(xtmp, xtmp, Assembler::AVX_512bit); 6459 6460 subptr(count, 16 << shift); 6461 jccb(Assembler::less, L_check_fill_32_bytes); 6462 align(16); 6463 6464 BIND(L_fill_64_bytes_loop_avx3); 6465 evmovdqul(Address(to, 0), xtmp, Assembler::AVX_512bit); 6466 addptr(to, 64); 6467 subptr(count, 16 << shift); 6468 jcc(Assembler::greaterEqual, L_fill_64_bytes_loop_avx3); 6469 jmpb(L_check_fill_32_bytes); 6470 6471 BIND(L_check_fill_64_bytes_avx2); 6472 } 6473 // Fill 64-byte chunks 6474 Label L_fill_64_bytes_loop; 6475 vpbroadcastd(xtmp, xtmp, Assembler::AVX_256bit); 6476 6477 subptr(count, 16 << shift); 6478 jcc(Assembler::less, L_check_fill_32_bytes); 6479 align(16); 6480 6481 BIND(L_fill_64_bytes_loop); 6482 vmovdqu(Address(to, 0), xtmp); 6483 vmovdqu(Address(to, 32), xtmp); 6484 addptr(to, 64); 6485 subptr(count, 16 << shift); 6486 jcc(Assembler::greaterEqual, L_fill_64_bytes_loop); 6487 6488 BIND(L_check_fill_32_bytes); 6489 addptr(count, 8 << shift); 6490 jccb(Assembler::less, L_check_fill_8_bytes); 6491 vmovdqu(Address(to, 0), xtmp); 6492 addptr(to, 32); 6493 subptr(count, 8 << shift); 6494 6495 BIND(L_check_fill_8_bytes); 6496 // clean upper bits of YMM registers 6497 movdl(xtmp, value); 6498 pshufd(xtmp, xtmp, 0); 6499 } else { 6500 // Fill 32-byte chunks 6501 pshufd(xtmp, xtmp, 0); 6502 6503 subptr(count, 8 << shift); 6504 jcc(Assembler::less, L_check_fill_8_bytes); 6505 align(16); 6506 6507 BIND(L_fill_32_bytes_loop); 6508 6509 if (UseUnalignedLoadStores) { 6510 movdqu(Address(to, 0), xtmp); 6511 movdqu(Address(to, 16), xtmp); 6512 } else { 6513 movq(Address(to, 0), xtmp); 6514 movq(Address(to, 8), xtmp); 6515 movq(Address(to, 16), xtmp); 6516 movq(Address(to, 24), xtmp); 6517 } 6518 6519 addptr(to, 32); 6520 subptr(count, 8 << shift); 6521 jcc(Assembler::greaterEqual, L_fill_32_bytes_loop); 6522 6523 BIND(L_check_fill_8_bytes); 6524 } 6525 addptr(count, 8 << shift); 6526 jccb(Assembler::zero, L_exit); 6527 jmpb(L_fill_8_bytes); 6528 6529 // 6530 // length is too short, just fill qwords 6531 // 6532 BIND(L_fill_8_bytes_loop); 6533 movq(Address(to, 0), xtmp); 6534 addptr(to, 8); 6535 BIND(L_fill_8_bytes); 6536 subptr(count, 1 << (shift + 1)); 6537 jcc(Assembler::greaterEqual, L_fill_8_bytes_loop); 6538 } 6539 } 6540 // fill trailing 4 bytes 6541 BIND(L_fill_4_bytes); 6542 testl(count, 1<<shift); 6543 jccb(Assembler::zero, L_fill_2_bytes); 6544 movl(Address(to, 0), value); 6545 if (t == T_BYTE || t == T_SHORT) { 6546 Label L_fill_byte; 6547 addptr(to, 4); 6548 BIND(L_fill_2_bytes); 6549 // fill trailing 2 bytes 6550 testl(count, 1<<(shift-1)); 6551 jccb(Assembler::zero, L_fill_byte); 6552 movw(Address(to, 0), value); 6553 if (t == T_BYTE) { 6554 addptr(to, 2); 6555 BIND(L_fill_byte); 6556 // fill trailing byte 6557 testl(count, 1); 6558 jccb(Assembler::zero, L_exit); 6559 movb(Address(to, 0), value); 6560 } else { 6561 BIND(L_fill_byte); 6562 } 6563 } else { 6564 BIND(L_fill_2_bytes); 6565 } 6566 BIND(L_exit); 6567 } 6568 6569 void MacroAssembler::evpbroadcast(BasicType type, XMMRegister dst, Register src, int vector_len) { 6570 switch(type) { 6571 case T_BYTE: 6572 case T_BOOLEAN: 6573 evpbroadcastb(dst, src, vector_len); 6574 break; 6575 case T_SHORT: 6576 case T_CHAR: 6577 evpbroadcastw(dst, src, vector_len); 6578 break; 6579 case T_INT: 6580 case T_FLOAT: 6581 evpbroadcastd(dst, src, vector_len); 6582 break; 6583 case T_LONG: 6584 case T_DOUBLE: 6585 evpbroadcastq(dst, src, vector_len); 6586 break; 6587 default: 6588 fatal("Unhandled type : %s", type2name(type)); 6589 break; 6590 } 6591 } 6592 6593 // encode char[] to byte[] in ISO_8859_1 or ASCII 6594 //@IntrinsicCandidate 6595 //private static int implEncodeISOArray(byte[] sa, int sp, 6596 //byte[] da, int dp, int len) { 6597 // int i = 0; 6598 // for (; i < len; i++) { 6599 // char c = StringUTF16.getChar(sa, sp++); 6600 // if (c > '\u00FF') 6601 // break; 6602 // da[dp++] = (byte)c; 6603 // } 6604 // return i; 6605 //} 6606 // 6607 //@IntrinsicCandidate 6608 //private static int implEncodeAsciiArray(char[] sa, int sp, 6609 // byte[] da, int dp, int len) { 6610 // int i = 0; 6611 // for (; i < len; i++) { 6612 // char c = sa[sp++]; 6613 // if (c >= '\u0080') 6614 // break; 6615 // da[dp++] = (byte)c; 6616 // } 6617 // return i; 6618 //} 6619 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len, 6620 XMMRegister tmp1Reg, XMMRegister tmp2Reg, 6621 XMMRegister tmp3Reg, XMMRegister tmp4Reg, 6622 Register tmp5, Register result, bool ascii) { 6623 6624 // rsi: src 6625 // rdi: dst 6626 // rdx: len 6627 // rcx: tmp5 6628 // rax: result 6629 ShortBranchVerifier sbv(this); 6630 assert_different_registers(src, dst, len, tmp5, result); 6631 Label L_done, L_copy_1_char, L_copy_1_char_exit; 6632 6633 int mask = ascii ? 0xff80ff80 : 0xff00ff00; 6634 int short_mask = ascii ? 0xff80 : 0xff00; 6635 6636 // set result 6637 xorl(result, result); 6638 // check for zero length 6639 testl(len, len); 6640 jcc(Assembler::zero, L_done); 6641 6642 movl(result, len); 6643 6644 // Setup pointers 6645 lea(src, Address(src, len, Address::times_2)); // char[] 6646 lea(dst, Address(dst, len, Address::times_1)); // byte[] 6647 negptr(len); 6648 6649 if (UseSSE42Intrinsics || UseAVX >= 2) { 6650 Label L_copy_8_chars, L_copy_8_chars_exit; 6651 Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit; 6652 6653 if (UseAVX >= 2) { 6654 Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit; 6655 movl(tmp5, mask); // create mask to test for Unicode or non-ASCII chars in vector 6656 movdl(tmp1Reg, tmp5); 6657 vpbroadcastd(tmp1Reg, tmp1Reg, Assembler::AVX_256bit); 6658 jmp(L_chars_32_check); 6659 6660 bind(L_copy_32_chars); 6661 vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64)); 6662 vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32)); 6663 vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1); 6664 vptest(tmp2Reg, tmp1Reg); // check for Unicode or non-ASCII chars in vector 6665 jccb(Assembler::notZero, L_copy_32_chars_exit); 6666 vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1); 6667 vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector_len */ 1); 6668 vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg); 6669 6670 bind(L_chars_32_check); 6671 addptr(len, 32); 6672 jcc(Assembler::lessEqual, L_copy_32_chars); 6673 6674 bind(L_copy_32_chars_exit); 6675 subptr(len, 16); 6676 jccb(Assembler::greater, L_copy_16_chars_exit); 6677 6678 } else if (UseSSE42Intrinsics) { 6679 movl(tmp5, mask); // create mask to test for Unicode or non-ASCII chars in vector 6680 movdl(tmp1Reg, tmp5); 6681 pshufd(tmp1Reg, tmp1Reg, 0); 6682 jmpb(L_chars_16_check); 6683 } 6684 6685 bind(L_copy_16_chars); 6686 if (UseAVX >= 2) { 6687 vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32)); 6688 vptest(tmp2Reg, tmp1Reg); 6689 jcc(Assembler::notZero, L_copy_16_chars_exit); 6690 vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector_len */ 1); 6691 vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector_len */ 1); 6692 } else { 6693 if (UseAVX > 0) { 6694 movdqu(tmp3Reg, Address(src, len, Address::times_2, -32)); 6695 movdqu(tmp4Reg, Address(src, len, Address::times_2, -16)); 6696 vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 0); 6697 } else { 6698 movdqu(tmp3Reg, Address(src, len, Address::times_2, -32)); 6699 por(tmp2Reg, tmp3Reg); 6700 movdqu(tmp4Reg, Address(src, len, Address::times_2, -16)); 6701 por(tmp2Reg, tmp4Reg); 6702 } 6703 ptest(tmp2Reg, tmp1Reg); // check for Unicode or non-ASCII chars in vector 6704 jccb(Assembler::notZero, L_copy_16_chars_exit); 6705 packuswb(tmp3Reg, tmp4Reg); 6706 } 6707 movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg); 6708 6709 bind(L_chars_16_check); 6710 addptr(len, 16); 6711 jcc(Assembler::lessEqual, L_copy_16_chars); 6712 6713 bind(L_copy_16_chars_exit); 6714 if (UseAVX >= 2) { 6715 // clean upper bits of YMM registers 6716 vpxor(tmp2Reg, tmp2Reg); 6717 vpxor(tmp3Reg, tmp3Reg); 6718 vpxor(tmp4Reg, tmp4Reg); 6719 movdl(tmp1Reg, tmp5); 6720 pshufd(tmp1Reg, tmp1Reg, 0); 6721 } 6722 subptr(len, 8); 6723 jccb(Assembler::greater, L_copy_8_chars_exit); 6724 6725 bind(L_copy_8_chars); 6726 movdqu(tmp3Reg, Address(src, len, Address::times_2, -16)); 6727 ptest(tmp3Reg, tmp1Reg); 6728 jccb(Assembler::notZero, L_copy_8_chars_exit); 6729 packuswb(tmp3Reg, tmp1Reg); 6730 movq(Address(dst, len, Address::times_1, -8), tmp3Reg); 6731 addptr(len, 8); 6732 jccb(Assembler::lessEqual, L_copy_8_chars); 6733 6734 bind(L_copy_8_chars_exit); 6735 subptr(len, 8); 6736 jccb(Assembler::zero, L_done); 6737 } 6738 6739 bind(L_copy_1_char); 6740 load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0)); 6741 testl(tmp5, short_mask); // check if Unicode or non-ASCII char 6742 jccb(Assembler::notZero, L_copy_1_char_exit); 6743 movb(Address(dst, len, Address::times_1, 0), tmp5); 6744 addptr(len, 1); 6745 jccb(Assembler::less, L_copy_1_char); 6746 6747 bind(L_copy_1_char_exit); 6748 addptr(result, len); // len is negative count of not processed elements 6749 6750 bind(L_done); 6751 } 6752 6753 #ifdef _LP64 6754 /** 6755 * Helper for multiply_to_len(). 6756 */ 6757 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) { 6758 addq(dest_lo, src1); 6759 adcq(dest_hi, 0); 6760 addq(dest_lo, src2); 6761 adcq(dest_hi, 0); 6762 } 6763 6764 /** 6765 * Multiply 64 bit by 64 bit first loop. 6766 */ 6767 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, 6768 Register y, Register y_idx, Register z, 6769 Register carry, Register product, 6770 Register idx, Register kdx) { 6771 // 6772 // jlong carry, x[], y[], z[]; 6773 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 6774 // huge_128 product = y[idx] * x[xstart] + carry; 6775 // z[kdx] = (jlong)product; 6776 // carry = (jlong)(product >>> 64); 6777 // } 6778 // z[xstart] = carry; 6779 // 6780 6781 Label L_first_loop, L_first_loop_exit; 6782 Label L_one_x, L_one_y, L_multiply; 6783 6784 decrementl(xstart); 6785 jcc(Assembler::negative, L_one_x); 6786 6787 movq(x_xstart, Address(x, xstart, Address::times_4, 0)); 6788 rorq(x_xstart, 32); // convert big-endian to little-endian 6789 6790 bind(L_first_loop); 6791 decrementl(idx); 6792 jcc(Assembler::negative, L_first_loop_exit); 6793 decrementl(idx); 6794 jcc(Assembler::negative, L_one_y); 6795 movq(y_idx, Address(y, idx, Address::times_4, 0)); 6796 rorq(y_idx, 32); // convert big-endian to little-endian 6797 bind(L_multiply); 6798 movq(product, x_xstart); 6799 mulq(y_idx); // product(rax) * y_idx -> rdx:rax 6800 addq(product, carry); 6801 adcq(rdx, 0); 6802 subl(kdx, 2); 6803 movl(Address(z, kdx, Address::times_4, 4), product); 6804 shrq(product, 32); 6805 movl(Address(z, kdx, Address::times_4, 0), product); 6806 movq(carry, rdx); 6807 jmp(L_first_loop); 6808 6809 bind(L_one_y); 6810 movl(y_idx, Address(y, 0)); 6811 jmp(L_multiply); 6812 6813 bind(L_one_x); 6814 movl(x_xstart, Address(x, 0)); 6815 jmp(L_first_loop); 6816 6817 bind(L_first_loop_exit); 6818 } 6819 6820 /** 6821 * Multiply 64 bit by 64 bit and add 128 bit. 6822 */ 6823 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z, 6824 Register yz_idx, Register idx, 6825 Register carry, Register product, int offset) { 6826 // huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry; 6827 // z[kdx] = (jlong)product; 6828 6829 movq(yz_idx, Address(y, idx, Address::times_4, offset)); 6830 rorq(yz_idx, 32); // convert big-endian to little-endian 6831 movq(product, x_xstart); 6832 mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax) 6833 movq(yz_idx, Address(z, idx, Address::times_4, offset)); 6834 rorq(yz_idx, 32); // convert big-endian to little-endian 6835 6836 add2_with_carry(rdx, product, carry, yz_idx); 6837 6838 movl(Address(z, idx, Address::times_4, offset+4), product); 6839 shrq(product, 32); 6840 movl(Address(z, idx, Address::times_4, offset), product); 6841 6842 } 6843 6844 /** 6845 * Multiply 128 bit by 128 bit. Unrolled inner loop. 6846 */ 6847 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z, 6848 Register yz_idx, Register idx, Register jdx, 6849 Register carry, Register product, 6850 Register carry2) { 6851 // jlong carry, x[], y[], z[]; 6852 // int kdx = ystart+1; 6853 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop 6854 // huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry; 6855 // z[kdx+idx+1] = (jlong)product; 6856 // jlong carry2 = (jlong)(product >>> 64); 6857 // product = (y[idx] * x_xstart) + z[kdx+idx] + carry2; 6858 // z[kdx+idx] = (jlong)product; 6859 // carry = (jlong)(product >>> 64); 6860 // } 6861 // idx += 2; 6862 // if (idx > 0) { 6863 // product = (y[idx] * x_xstart) + z[kdx+idx] + carry; 6864 // z[kdx+idx] = (jlong)product; 6865 // carry = (jlong)(product >>> 64); 6866 // } 6867 // 6868 6869 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done; 6870 6871 movl(jdx, idx); 6872 andl(jdx, 0xFFFFFFFC); 6873 shrl(jdx, 2); 6874 6875 bind(L_third_loop); 6876 subl(jdx, 1); 6877 jcc(Assembler::negative, L_third_loop_exit); 6878 subl(idx, 4); 6879 6880 multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8); 6881 movq(carry2, rdx); 6882 6883 multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0); 6884 movq(carry, rdx); 6885 jmp(L_third_loop); 6886 6887 bind (L_third_loop_exit); 6888 6889 andl (idx, 0x3); 6890 jcc(Assembler::zero, L_post_third_loop_done); 6891 6892 Label L_check_1; 6893 subl(idx, 2); 6894 jcc(Assembler::negative, L_check_1); 6895 6896 multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0); 6897 movq(carry, rdx); 6898 6899 bind (L_check_1); 6900 addl (idx, 0x2); 6901 andl (idx, 0x1); 6902 subl(idx, 1); 6903 jcc(Assembler::negative, L_post_third_loop_done); 6904 6905 movl(yz_idx, Address(y, idx, Address::times_4, 0)); 6906 movq(product, x_xstart); 6907 mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax) 6908 movl(yz_idx, Address(z, idx, Address::times_4, 0)); 6909 6910 add2_with_carry(rdx, product, yz_idx, carry); 6911 6912 movl(Address(z, idx, Address::times_4, 0), product); 6913 shrq(product, 32); 6914 6915 shlq(rdx, 32); 6916 orq(product, rdx); 6917 movq(carry, product); 6918 6919 bind(L_post_third_loop_done); 6920 } 6921 6922 /** 6923 * Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop. 6924 * 6925 */ 6926 void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z, 6927 Register carry, Register carry2, 6928 Register idx, Register jdx, 6929 Register yz_idx1, Register yz_idx2, 6930 Register tmp, Register tmp3, Register tmp4) { 6931 assert(UseBMI2Instructions, "should be used only when BMI2 is available"); 6932 6933 // jlong carry, x[], y[], z[]; 6934 // int kdx = ystart+1; 6935 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop 6936 // huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry; 6937 // jlong carry2 = (jlong)(tmp3 >>> 64); 6938 // huge_128 tmp4 = (y[idx] * rdx) + z[kdx+idx] + carry2; 6939 // carry = (jlong)(tmp4 >>> 64); 6940 // z[kdx+idx+1] = (jlong)tmp3; 6941 // z[kdx+idx] = (jlong)tmp4; 6942 // } 6943 // idx += 2; 6944 // if (idx > 0) { 6945 // yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry; 6946 // z[kdx+idx] = (jlong)yz_idx1; 6947 // carry = (jlong)(yz_idx1 >>> 64); 6948 // } 6949 // 6950 6951 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done; 6952 6953 movl(jdx, idx); 6954 andl(jdx, 0xFFFFFFFC); 6955 shrl(jdx, 2); 6956 6957 bind(L_third_loop); 6958 subl(jdx, 1); 6959 jcc(Assembler::negative, L_third_loop_exit); 6960 subl(idx, 4); 6961 6962 movq(yz_idx1, Address(y, idx, Address::times_4, 8)); 6963 rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian 6964 movq(yz_idx2, Address(y, idx, Address::times_4, 0)); 6965 rorxq(yz_idx2, yz_idx2, 32); 6966 6967 mulxq(tmp4, tmp3, yz_idx1); // yz_idx1 * rdx -> tmp4:tmp3 6968 mulxq(carry2, tmp, yz_idx2); // yz_idx2 * rdx -> carry2:tmp 6969 6970 movq(yz_idx1, Address(z, idx, Address::times_4, 8)); 6971 rorxq(yz_idx1, yz_idx1, 32); 6972 movq(yz_idx2, Address(z, idx, Address::times_4, 0)); 6973 rorxq(yz_idx2, yz_idx2, 32); 6974 6975 if (VM_Version::supports_adx()) { 6976 adcxq(tmp3, carry); 6977 adoxq(tmp3, yz_idx1); 6978 6979 adcxq(tmp4, tmp); 6980 adoxq(tmp4, yz_idx2); 6981 6982 movl(carry, 0); // does not affect flags 6983 adcxq(carry2, carry); 6984 adoxq(carry2, carry); 6985 } else { 6986 add2_with_carry(tmp4, tmp3, carry, yz_idx1); 6987 add2_with_carry(carry2, tmp4, tmp, yz_idx2); 6988 } 6989 movq(carry, carry2); 6990 6991 movl(Address(z, idx, Address::times_4, 12), tmp3); 6992 shrq(tmp3, 32); 6993 movl(Address(z, idx, Address::times_4, 8), tmp3); 6994 6995 movl(Address(z, idx, Address::times_4, 4), tmp4); 6996 shrq(tmp4, 32); 6997 movl(Address(z, idx, Address::times_4, 0), tmp4); 6998 6999 jmp(L_third_loop); 7000 7001 bind (L_third_loop_exit); 7002 7003 andl (idx, 0x3); 7004 jcc(Assembler::zero, L_post_third_loop_done); 7005 7006 Label L_check_1; 7007 subl(idx, 2); 7008 jcc(Assembler::negative, L_check_1); 7009 7010 movq(yz_idx1, Address(y, idx, Address::times_4, 0)); 7011 rorxq(yz_idx1, yz_idx1, 32); 7012 mulxq(tmp4, tmp3, yz_idx1); // yz_idx1 * rdx -> tmp4:tmp3 7013 movq(yz_idx2, Address(z, idx, Address::times_4, 0)); 7014 rorxq(yz_idx2, yz_idx2, 32); 7015 7016 add2_with_carry(tmp4, tmp3, carry, yz_idx2); 7017 7018 movl(Address(z, idx, Address::times_4, 4), tmp3); 7019 shrq(tmp3, 32); 7020 movl(Address(z, idx, Address::times_4, 0), tmp3); 7021 movq(carry, tmp4); 7022 7023 bind (L_check_1); 7024 addl (idx, 0x2); 7025 andl (idx, 0x1); 7026 subl(idx, 1); 7027 jcc(Assembler::negative, L_post_third_loop_done); 7028 movl(tmp4, Address(y, idx, Address::times_4, 0)); 7029 mulxq(carry2, tmp3, tmp4); // tmp4 * rdx -> carry2:tmp3 7030 movl(tmp4, Address(z, idx, Address::times_4, 0)); 7031 7032 add2_with_carry(carry2, tmp3, tmp4, carry); 7033 7034 movl(Address(z, idx, Address::times_4, 0), tmp3); 7035 shrq(tmp3, 32); 7036 7037 shlq(carry2, 32); 7038 orq(tmp3, carry2); 7039 movq(carry, tmp3); 7040 7041 bind(L_post_third_loop_done); 7042 } 7043 7044 /** 7045 * Code for BigInteger::multiplyToLen() intrinsic. 7046 * 7047 * rdi: x 7048 * rax: xlen 7049 * rsi: y 7050 * rcx: ylen 7051 * r8: z 7052 * r11: tmp0 7053 * r12: tmp1 7054 * r13: tmp2 7055 * r14: tmp3 7056 * r15: tmp4 7057 * rbx: tmp5 7058 * 7059 */ 7060 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register tmp0, 7061 Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) { 7062 ShortBranchVerifier sbv(this); 7063 assert_different_registers(x, xlen, y, ylen, z, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, rdx); 7064 7065 push(tmp0); 7066 push(tmp1); 7067 push(tmp2); 7068 push(tmp3); 7069 push(tmp4); 7070 push(tmp5); 7071 7072 push(xlen); 7073 7074 const Register idx = tmp1; 7075 const Register kdx = tmp2; 7076 const Register xstart = tmp3; 7077 7078 const Register y_idx = tmp4; 7079 const Register carry = tmp5; 7080 const Register product = xlen; 7081 const Register x_xstart = tmp0; 7082 7083 // First Loop. 7084 // 7085 // final static long LONG_MASK = 0xffffffffL; 7086 // int xstart = xlen - 1; 7087 // int ystart = ylen - 1; 7088 // long carry = 0; 7089 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 7090 // long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry; 7091 // z[kdx] = (int)product; 7092 // carry = product >>> 32; 7093 // } 7094 // z[xstart] = (int)carry; 7095 // 7096 7097 movl(idx, ylen); // idx = ylen; 7098 lea(kdx, Address(xlen, ylen)); // kdx = xlen+ylen; 7099 xorq(carry, carry); // carry = 0; 7100 7101 Label L_done; 7102 7103 movl(xstart, xlen); 7104 decrementl(xstart); 7105 jcc(Assembler::negative, L_done); 7106 7107 multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx); 7108 7109 Label L_second_loop; 7110 testl(kdx, kdx); 7111 jcc(Assembler::zero, L_second_loop); 7112 7113 Label L_carry; 7114 subl(kdx, 1); 7115 jcc(Assembler::zero, L_carry); 7116 7117 movl(Address(z, kdx, Address::times_4, 0), carry); 7118 shrq(carry, 32); 7119 subl(kdx, 1); 7120 7121 bind(L_carry); 7122 movl(Address(z, kdx, Address::times_4, 0), carry); 7123 7124 // Second and third (nested) loops. 7125 // 7126 // for (int i = xstart-1; i >= 0; i--) { // Second loop 7127 // carry = 0; 7128 // for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop 7129 // long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) + 7130 // (z[k] & LONG_MASK) + carry; 7131 // z[k] = (int)product; 7132 // carry = product >>> 32; 7133 // } 7134 // z[i] = (int)carry; 7135 // } 7136 // 7137 // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx 7138 7139 const Register jdx = tmp1; 7140 7141 bind(L_second_loop); 7142 xorl(carry, carry); // carry = 0; 7143 movl(jdx, ylen); // j = ystart+1 7144 7145 subl(xstart, 1); // i = xstart-1; 7146 jcc(Assembler::negative, L_done); 7147 7148 push (z); 7149 7150 Label L_last_x; 7151 lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j 7152 subl(xstart, 1); // i = xstart-1; 7153 jcc(Assembler::negative, L_last_x); 7154 7155 if (UseBMI2Instructions) { 7156 movq(rdx, Address(x, xstart, Address::times_4, 0)); 7157 rorxq(rdx, rdx, 32); // convert big-endian to little-endian 7158 } else { 7159 movq(x_xstart, Address(x, xstart, Address::times_4, 0)); 7160 rorq(x_xstart, 32); // convert big-endian to little-endian 7161 } 7162 7163 Label L_third_loop_prologue; 7164 bind(L_third_loop_prologue); 7165 7166 push (x); 7167 push (xstart); 7168 push (ylen); 7169 7170 7171 if (UseBMI2Instructions) { 7172 multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4); 7173 } else { // !UseBMI2Instructions 7174 multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x); 7175 } 7176 7177 pop(ylen); 7178 pop(xlen); 7179 pop(x); 7180 pop(z); 7181 7182 movl(tmp3, xlen); 7183 addl(tmp3, 1); 7184 movl(Address(z, tmp3, Address::times_4, 0), carry); 7185 subl(tmp3, 1); 7186 jccb(Assembler::negative, L_done); 7187 7188 shrq(carry, 32); 7189 movl(Address(z, tmp3, Address::times_4, 0), carry); 7190 jmp(L_second_loop); 7191 7192 // Next infrequent code is moved outside loops. 7193 bind(L_last_x); 7194 if (UseBMI2Instructions) { 7195 movl(rdx, Address(x, 0)); 7196 } else { 7197 movl(x_xstart, Address(x, 0)); 7198 } 7199 jmp(L_third_loop_prologue); 7200 7201 bind(L_done); 7202 7203 pop(xlen); 7204 7205 pop(tmp5); 7206 pop(tmp4); 7207 pop(tmp3); 7208 pop(tmp2); 7209 pop(tmp1); 7210 pop(tmp0); 7211 } 7212 7213 void MacroAssembler::vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale, 7214 Register result, Register tmp1, Register tmp2, XMMRegister rymm0, XMMRegister rymm1, XMMRegister rymm2){ 7215 assert(UseSSE42Intrinsics, "SSE4.2 must be enabled."); 7216 Label VECTOR16_LOOP, VECTOR8_LOOP, VECTOR4_LOOP; 7217 Label VECTOR8_TAIL, VECTOR4_TAIL; 7218 Label VECTOR32_NOT_EQUAL, VECTOR16_NOT_EQUAL, VECTOR8_NOT_EQUAL, VECTOR4_NOT_EQUAL; 7219 Label SAME_TILL_END, DONE; 7220 Label BYTES_LOOP, BYTES_TAIL, BYTES_NOT_EQUAL; 7221 7222 //scale is in rcx in both Win64 and Unix 7223 ShortBranchVerifier sbv(this); 7224 7225 shlq(length); 7226 xorq(result, result); 7227 7228 if ((AVX3Threshold == 0) && (UseAVX > 2) && 7229 VM_Version::supports_avx512vlbw()) { 7230 Label VECTOR64_LOOP, VECTOR64_NOT_EQUAL, VECTOR32_TAIL; 7231 7232 cmpq(length, 64); 7233 jcc(Assembler::less, VECTOR32_TAIL); 7234 7235 movq(tmp1, length); 7236 andq(tmp1, 0x3F); // tail count 7237 andq(length, ~(0x3F)); //vector count 7238 7239 bind(VECTOR64_LOOP); 7240 // AVX512 code to compare 64 byte vectors. 7241 evmovdqub(rymm0, Address(obja, result), Assembler::AVX_512bit); 7242 evpcmpeqb(k7, rymm0, Address(objb, result), Assembler::AVX_512bit); 7243 kortestql(k7, k7); 7244 jcc(Assembler::aboveEqual, VECTOR64_NOT_EQUAL); // mismatch 7245 addq(result, 64); 7246 subq(length, 64); 7247 jccb(Assembler::notZero, VECTOR64_LOOP); 7248 7249 //bind(VECTOR64_TAIL); 7250 testq(tmp1, tmp1); 7251 jcc(Assembler::zero, SAME_TILL_END); 7252 7253 //bind(VECTOR64_TAIL); 7254 // AVX512 code to compare up to 63 byte vectors. 7255 mov64(tmp2, 0xFFFFFFFFFFFFFFFF); 7256 shlxq(tmp2, tmp2, tmp1); 7257 notq(tmp2); 7258 kmovql(k3, tmp2); 7259 7260 evmovdqub(rymm0, k3, Address(obja, result), false, Assembler::AVX_512bit); 7261 evpcmpeqb(k7, k3, rymm0, Address(objb, result), Assembler::AVX_512bit); 7262 7263 ktestql(k7, k3); 7264 jcc(Assembler::below, SAME_TILL_END); // not mismatch 7265 7266 bind(VECTOR64_NOT_EQUAL); 7267 kmovql(tmp1, k7); 7268 notq(tmp1); 7269 tzcntq(tmp1, tmp1); 7270 addq(result, tmp1); 7271 shrq(result); 7272 jmp(DONE); 7273 bind(VECTOR32_TAIL); 7274 } 7275 7276 cmpq(length, 8); 7277 jcc(Assembler::equal, VECTOR8_LOOP); 7278 jcc(Assembler::less, VECTOR4_TAIL); 7279 7280 if (UseAVX >= 2) { 7281 Label VECTOR16_TAIL, VECTOR32_LOOP; 7282 7283 cmpq(length, 16); 7284 jcc(Assembler::equal, VECTOR16_LOOP); 7285 jcc(Assembler::less, VECTOR8_LOOP); 7286 7287 cmpq(length, 32); 7288 jccb(Assembler::less, VECTOR16_TAIL); 7289 7290 subq(length, 32); 7291 bind(VECTOR32_LOOP); 7292 vmovdqu(rymm0, Address(obja, result)); 7293 vmovdqu(rymm1, Address(objb, result)); 7294 vpxor(rymm2, rymm0, rymm1, Assembler::AVX_256bit); 7295 vptest(rymm2, rymm2); 7296 jcc(Assembler::notZero, VECTOR32_NOT_EQUAL);//mismatch found 7297 addq(result, 32); 7298 subq(length, 32); 7299 jcc(Assembler::greaterEqual, VECTOR32_LOOP); 7300 addq(length, 32); 7301 jcc(Assembler::equal, SAME_TILL_END); 7302 //falling through if less than 32 bytes left //close the branch here. 7303 7304 bind(VECTOR16_TAIL); 7305 cmpq(length, 16); 7306 jccb(Assembler::less, VECTOR8_TAIL); 7307 bind(VECTOR16_LOOP); 7308 movdqu(rymm0, Address(obja, result)); 7309 movdqu(rymm1, Address(objb, result)); 7310 vpxor(rymm2, rymm0, rymm1, Assembler::AVX_128bit); 7311 ptest(rymm2, rymm2); 7312 jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found 7313 addq(result, 16); 7314 subq(length, 16); 7315 jcc(Assembler::equal, SAME_TILL_END); 7316 //falling through if less than 16 bytes left 7317 } else {//regular intrinsics 7318 7319 cmpq(length, 16); 7320 jccb(Assembler::less, VECTOR8_TAIL); 7321 7322 subq(length, 16); 7323 bind(VECTOR16_LOOP); 7324 movdqu(rymm0, Address(obja, result)); 7325 movdqu(rymm1, Address(objb, result)); 7326 pxor(rymm0, rymm1); 7327 ptest(rymm0, rymm0); 7328 jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found 7329 addq(result, 16); 7330 subq(length, 16); 7331 jccb(Assembler::greaterEqual, VECTOR16_LOOP); 7332 addq(length, 16); 7333 jcc(Assembler::equal, SAME_TILL_END); 7334 //falling through if less than 16 bytes left 7335 } 7336 7337 bind(VECTOR8_TAIL); 7338 cmpq(length, 8); 7339 jccb(Assembler::less, VECTOR4_TAIL); 7340 bind(VECTOR8_LOOP); 7341 movq(tmp1, Address(obja, result)); 7342 movq(tmp2, Address(objb, result)); 7343 xorq(tmp1, tmp2); 7344 testq(tmp1, tmp1); 7345 jcc(Assembler::notZero, VECTOR8_NOT_EQUAL);//mismatch found 7346 addq(result, 8); 7347 subq(length, 8); 7348 jcc(Assembler::equal, SAME_TILL_END); 7349 //falling through if less than 8 bytes left 7350 7351 bind(VECTOR4_TAIL); 7352 cmpq(length, 4); 7353 jccb(Assembler::less, BYTES_TAIL); 7354 bind(VECTOR4_LOOP); 7355 movl(tmp1, Address(obja, result)); 7356 xorl(tmp1, Address(objb, result)); 7357 testl(tmp1, tmp1); 7358 jcc(Assembler::notZero, VECTOR4_NOT_EQUAL);//mismatch found 7359 addq(result, 4); 7360 subq(length, 4); 7361 jcc(Assembler::equal, SAME_TILL_END); 7362 //falling through if less than 4 bytes left 7363 7364 bind(BYTES_TAIL); 7365 bind(BYTES_LOOP); 7366 load_unsigned_byte(tmp1, Address(obja, result)); 7367 load_unsigned_byte(tmp2, Address(objb, result)); 7368 xorl(tmp1, tmp2); 7369 testl(tmp1, tmp1); 7370 jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found 7371 decq(length); 7372 jcc(Assembler::zero, SAME_TILL_END); 7373 incq(result); 7374 load_unsigned_byte(tmp1, Address(obja, result)); 7375 load_unsigned_byte(tmp2, Address(objb, result)); 7376 xorl(tmp1, tmp2); 7377 testl(tmp1, tmp1); 7378 jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found 7379 decq(length); 7380 jcc(Assembler::zero, SAME_TILL_END); 7381 incq(result); 7382 load_unsigned_byte(tmp1, Address(obja, result)); 7383 load_unsigned_byte(tmp2, Address(objb, result)); 7384 xorl(tmp1, tmp2); 7385 testl(tmp1, tmp1); 7386 jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found 7387 jmp(SAME_TILL_END); 7388 7389 if (UseAVX >= 2) { 7390 bind(VECTOR32_NOT_EQUAL); 7391 vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_256bit); 7392 vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_256bit); 7393 vpxor(rymm0, rymm0, rymm2, Assembler::AVX_256bit); 7394 vpmovmskb(tmp1, rymm0); 7395 bsfq(tmp1, tmp1); 7396 addq(result, tmp1); 7397 shrq(result); 7398 jmp(DONE); 7399 } 7400 7401 bind(VECTOR16_NOT_EQUAL); 7402 if (UseAVX >= 2) { 7403 vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_128bit); 7404 vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_128bit); 7405 pxor(rymm0, rymm2); 7406 } else { 7407 pcmpeqb(rymm2, rymm2); 7408 pxor(rymm0, rymm1); 7409 pcmpeqb(rymm0, rymm1); 7410 pxor(rymm0, rymm2); 7411 } 7412 pmovmskb(tmp1, rymm0); 7413 bsfq(tmp1, tmp1); 7414 addq(result, tmp1); 7415 shrq(result); 7416 jmpb(DONE); 7417 7418 bind(VECTOR8_NOT_EQUAL); 7419 bind(VECTOR4_NOT_EQUAL); 7420 bsfq(tmp1, tmp1); 7421 shrq(tmp1, 3); 7422 addq(result, tmp1); 7423 bind(BYTES_NOT_EQUAL); 7424 shrq(result); 7425 jmpb(DONE); 7426 7427 bind(SAME_TILL_END); 7428 mov64(result, -1); 7429 7430 bind(DONE); 7431 } 7432 7433 //Helper functions for square_to_len() 7434 7435 /** 7436 * Store the squares of x[], right shifted one bit (divided by 2) into z[] 7437 * Preserves x and z and modifies rest of the registers. 7438 */ 7439 void MacroAssembler::square_rshift(Register x, Register xlen, Register z, Register tmp1, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) { 7440 // Perform square and right shift by 1 7441 // Handle odd xlen case first, then for even xlen do the following 7442 // jlong carry = 0; 7443 // for (int j=0, i=0; j < xlen; j+=2, i+=4) { 7444 // huge_128 product = x[j:j+1] * x[j:j+1]; 7445 // z[i:i+1] = (carry << 63) | (jlong)(product >>> 65); 7446 // z[i+2:i+3] = (jlong)(product >>> 1); 7447 // carry = (jlong)product; 7448 // } 7449 7450 xorq(tmp5, tmp5); // carry 7451 xorq(rdxReg, rdxReg); 7452 xorl(tmp1, tmp1); // index for x 7453 xorl(tmp4, tmp4); // index for z 7454 7455 Label L_first_loop, L_first_loop_exit; 7456 7457 testl(xlen, 1); 7458 jccb(Assembler::zero, L_first_loop); //jump if xlen is even 7459 7460 // Square and right shift by 1 the odd element using 32 bit multiply 7461 movl(raxReg, Address(x, tmp1, Address::times_4, 0)); 7462 imulq(raxReg, raxReg); 7463 shrq(raxReg, 1); 7464 adcq(tmp5, 0); 7465 movq(Address(z, tmp4, Address::times_4, 0), raxReg); 7466 incrementl(tmp1); 7467 addl(tmp4, 2); 7468 7469 // Square and right shift by 1 the rest using 64 bit multiply 7470 bind(L_first_loop); 7471 cmpptr(tmp1, xlen); 7472 jccb(Assembler::equal, L_first_loop_exit); 7473 7474 // Square 7475 movq(raxReg, Address(x, tmp1, Address::times_4, 0)); 7476 rorq(raxReg, 32); // convert big-endian to little-endian 7477 mulq(raxReg); // 64-bit multiply rax * rax -> rdx:rax 7478 7479 // Right shift by 1 and save carry 7480 shrq(tmp5, 1); // rdx:rax:tmp5 = (tmp5:rdx:rax) >>> 1 7481 rcrq(rdxReg, 1); 7482 rcrq(raxReg, 1); 7483 adcq(tmp5, 0); 7484 7485 // Store result in z 7486 movq(Address(z, tmp4, Address::times_4, 0), rdxReg); 7487 movq(Address(z, tmp4, Address::times_4, 8), raxReg); 7488 7489 // Update indices for x and z 7490 addl(tmp1, 2); 7491 addl(tmp4, 4); 7492 jmp(L_first_loop); 7493 7494 bind(L_first_loop_exit); 7495 } 7496 7497 7498 /** 7499 * Perform the following multiply add operation using BMI2 instructions 7500 * carry:sum = sum + op1*op2 + carry 7501 * op2 should be in rdx 7502 * op2 is preserved, all other registers are modified 7503 */ 7504 void MacroAssembler::multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry, Register tmp2) { 7505 // assert op2 is rdx 7506 mulxq(tmp2, op1, op1); // op1 * op2 -> tmp2:op1 7507 addq(sum, carry); 7508 adcq(tmp2, 0); 7509 addq(sum, op1); 7510 adcq(tmp2, 0); 7511 movq(carry, tmp2); 7512 } 7513 7514 /** 7515 * Perform the following multiply add operation: 7516 * carry:sum = sum + op1*op2 + carry 7517 * Preserves op1, op2 and modifies rest of registers 7518 */ 7519 void MacroAssembler::multiply_add_64(Register sum, Register op1, Register op2, Register carry, Register rdxReg, Register raxReg) { 7520 // rdx:rax = op1 * op2 7521 movq(raxReg, op2); 7522 mulq(op1); 7523 7524 // rdx:rax = sum + carry + rdx:rax 7525 addq(sum, carry); 7526 adcq(rdxReg, 0); 7527 addq(sum, raxReg); 7528 adcq(rdxReg, 0); 7529 7530 // carry:sum = rdx:sum 7531 movq(carry, rdxReg); 7532 } 7533 7534 /** 7535 * Add 64 bit long carry into z[] with carry propagation. 7536 * Preserves z and carry register values and modifies rest of registers. 7537 * 7538 */ 7539 void MacroAssembler::add_one_64(Register z, Register zlen, Register carry, Register tmp1) { 7540 Label L_fourth_loop, L_fourth_loop_exit; 7541 7542 movl(tmp1, 1); 7543 subl(zlen, 2); 7544 addq(Address(z, zlen, Address::times_4, 0), carry); 7545 7546 bind(L_fourth_loop); 7547 jccb(Assembler::carryClear, L_fourth_loop_exit); 7548 subl(zlen, 2); 7549 jccb(Assembler::negative, L_fourth_loop_exit); 7550 addq(Address(z, zlen, Address::times_4, 0), tmp1); 7551 jmp(L_fourth_loop); 7552 bind(L_fourth_loop_exit); 7553 } 7554 7555 /** 7556 * Shift z[] left by 1 bit. 7557 * Preserves x, len, z and zlen registers and modifies rest of the registers. 7558 * 7559 */ 7560 void MacroAssembler::lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4) { 7561 7562 Label L_fifth_loop, L_fifth_loop_exit; 7563 7564 // Fifth loop 7565 // Perform primitiveLeftShift(z, zlen, 1) 7566 7567 const Register prev_carry = tmp1; 7568 const Register new_carry = tmp4; 7569 const Register value = tmp2; 7570 const Register zidx = tmp3; 7571 7572 // int zidx, carry; 7573 // long value; 7574 // carry = 0; 7575 // for (zidx = zlen-2; zidx >=0; zidx -= 2) { 7576 // (carry:value) = (z[i] << 1) | carry ; 7577 // z[i] = value; 7578 // } 7579 7580 movl(zidx, zlen); 7581 xorl(prev_carry, prev_carry); // clear carry flag and prev_carry register 7582 7583 bind(L_fifth_loop); 7584 decl(zidx); // Use decl to preserve carry flag 7585 decl(zidx); 7586 jccb(Assembler::negative, L_fifth_loop_exit); 7587 7588 if (UseBMI2Instructions) { 7589 movq(value, Address(z, zidx, Address::times_4, 0)); 7590 rclq(value, 1); 7591 rorxq(value, value, 32); 7592 movq(Address(z, zidx, Address::times_4, 0), value); // Store back in big endian form 7593 } 7594 else { 7595 // clear new_carry 7596 xorl(new_carry, new_carry); 7597 7598 // Shift z[i] by 1, or in previous carry and save new carry 7599 movq(value, Address(z, zidx, Address::times_4, 0)); 7600 shlq(value, 1); 7601 adcl(new_carry, 0); 7602 7603 orq(value, prev_carry); 7604 rorq(value, 0x20); 7605 movq(Address(z, zidx, Address::times_4, 0), value); // Store back in big endian form 7606 7607 // Set previous carry = new carry 7608 movl(prev_carry, new_carry); 7609 } 7610 jmp(L_fifth_loop); 7611 7612 bind(L_fifth_loop_exit); 7613 } 7614 7615 7616 /** 7617 * Code for BigInteger::squareToLen() intrinsic 7618 * 7619 * rdi: x 7620 * rsi: len 7621 * r8: z 7622 * rcx: zlen 7623 * r12: tmp1 7624 * r13: tmp2 7625 * r14: tmp3 7626 * r15: tmp4 7627 * rbx: tmp5 7628 * 7629 */ 7630 void MacroAssembler::square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) { 7631 7632 Label L_second_loop, L_second_loop_exit, L_third_loop, L_third_loop_exit, L_last_x, L_multiply; 7633 push(tmp1); 7634 push(tmp2); 7635 push(tmp3); 7636 push(tmp4); 7637 push(tmp5); 7638 7639 // First loop 7640 // Store the squares, right shifted one bit (i.e., divided by 2). 7641 square_rshift(x, len, z, tmp1, tmp3, tmp4, tmp5, rdxReg, raxReg); 7642 7643 // Add in off-diagonal sums. 7644 // 7645 // Second, third (nested) and fourth loops. 7646 // zlen +=2; 7647 // for (int xidx=len-2,zidx=zlen-4; xidx > 0; xidx-=2,zidx-=4) { 7648 // carry = 0; 7649 // long op2 = x[xidx:xidx+1]; 7650 // for (int j=xidx-2,k=zidx; j >= 0; j-=2) { 7651 // k -= 2; 7652 // long op1 = x[j:j+1]; 7653 // long sum = z[k:k+1]; 7654 // carry:sum = multiply_add_64(sum, op1, op2, carry, tmp_regs); 7655 // z[k:k+1] = sum; 7656 // } 7657 // add_one_64(z, k, carry, tmp_regs); 7658 // } 7659 7660 const Register carry = tmp5; 7661 const Register sum = tmp3; 7662 const Register op1 = tmp4; 7663 Register op2 = tmp2; 7664 7665 push(zlen); 7666 push(len); 7667 addl(zlen,2); 7668 bind(L_second_loop); 7669 xorq(carry, carry); 7670 subl(zlen, 4); 7671 subl(len, 2); 7672 push(zlen); 7673 push(len); 7674 cmpl(len, 0); 7675 jccb(Assembler::lessEqual, L_second_loop_exit); 7676 7677 // Multiply an array by one 64 bit long. 7678 if (UseBMI2Instructions) { 7679 op2 = rdxReg; 7680 movq(op2, Address(x, len, Address::times_4, 0)); 7681 rorxq(op2, op2, 32); 7682 } 7683 else { 7684 movq(op2, Address(x, len, Address::times_4, 0)); 7685 rorq(op2, 32); 7686 } 7687 7688 bind(L_third_loop); 7689 decrementl(len); 7690 jccb(Assembler::negative, L_third_loop_exit); 7691 decrementl(len); 7692 jccb(Assembler::negative, L_last_x); 7693 7694 movq(op1, Address(x, len, Address::times_4, 0)); 7695 rorq(op1, 32); 7696 7697 bind(L_multiply); 7698 subl(zlen, 2); 7699 movq(sum, Address(z, zlen, Address::times_4, 0)); 7700 7701 // Multiply 64 bit by 64 bit and add 64 bits lower half and upper 64 bits as carry. 7702 if (UseBMI2Instructions) { 7703 multiply_add_64_bmi2(sum, op1, op2, carry, tmp2); 7704 } 7705 else { 7706 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg); 7707 } 7708 7709 movq(Address(z, zlen, Address::times_4, 0), sum); 7710 7711 jmp(L_third_loop); 7712 bind(L_third_loop_exit); 7713 7714 // Fourth loop 7715 // Add 64 bit long carry into z with carry propagation. 7716 // Uses offsetted zlen. 7717 add_one_64(z, zlen, carry, tmp1); 7718 7719 pop(len); 7720 pop(zlen); 7721 jmp(L_second_loop); 7722 7723 // Next infrequent code is moved outside loops. 7724 bind(L_last_x); 7725 movl(op1, Address(x, 0)); 7726 jmp(L_multiply); 7727 7728 bind(L_second_loop_exit); 7729 pop(len); 7730 pop(zlen); 7731 pop(len); 7732 pop(zlen); 7733 7734 // Fifth loop 7735 // Shift z left 1 bit. 7736 lshift_by_1(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4); 7737 7738 // z[zlen-1] |= x[len-1] & 1; 7739 movl(tmp3, Address(x, len, Address::times_4, -4)); 7740 andl(tmp3, 1); 7741 orl(Address(z, zlen, Address::times_4, -4), tmp3); 7742 7743 pop(tmp5); 7744 pop(tmp4); 7745 pop(tmp3); 7746 pop(tmp2); 7747 pop(tmp1); 7748 } 7749 7750 /** 7751 * Helper function for mul_add() 7752 * Multiply the in[] by int k and add to out[] starting at offset offs using 7753 * 128 bit by 32 bit multiply and return the carry in tmp5. 7754 * Only quad int aligned length of in[] is operated on in this function. 7755 * k is in rdxReg for BMI2Instructions, for others it is in tmp2. 7756 * This function preserves out, in and k registers. 7757 * len and offset point to the appropriate index in "in" & "out" correspondingly 7758 * tmp5 has the carry. 7759 * other registers are temporary and are modified. 7760 * 7761 */ 7762 void MacroAssembler::mul_add_128_x_32_loop(Register out, Register in, 7763 Register offset, Register len, Register tmp1, Register tmp2, Register tmp3, 7764 Register tmp4, Register tmp5, Register rdxReg, Register raxReg) { 7765 7766 Label L_first_loop, L_first_loop_exit; 7767 7768 movl(tmp1, len); 7769 shrl(tmp1, 2); 7770 7771 bind(L_first_loop); 7772 subl(tmp1, 1); 7773 jccb(Assembler::negative, L_first_loop_exit); 7774 7775 subl(len, 4); 7776 subl(offset, 4); 7777 7778 Register op2 = tmp2; 7779 const Register sum = tmp3; 7780 const Register op1 = tmp4; 7781 const Register carry = tmp5; 7782 7783 if (UseBMI2Instructions) { 7784 op2 = rdxReg; 7785 } 7786 7787 movq(op1, Address(in, len, Address::times_4, 8)); 7788 rorq(op1, 32); 7789 movq(sum, Address(out, offset, Address::times_4, 8)); 7790 rorq(sum, 32); 7791 if (UseBMI2Instructions) { 7792 multiply_add_64_bmi2(sum, op1, op2, carry, raxReg); 7793 } 7794 else { 7795 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg); 7796 } 7797 // Store back in big endian from little endian 7798 rorq(sum, 0x20); 7799 movq(Address(out, offset, Address::times_4, 8), sum); 7800 7801 movq(op1, Address(in, len, Address::times_4, 0)); 7802 rorq(op1, 32); 7803 movq(sum, Address(out, offset, Address::times_4, 0)); 7804 rorq(sum, 32); 7805 if (UseBMI2Instructions) { 7806 multiply_add_64_bmi2(sum, op1, op2, carry, raxReg); 7807 } 7808 else { 7809 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg); 7810 } 7811 // Store back in big endian from little endian 7812 rorq(sum, 0x20); 7813 movq(Address(out, offset, Address::times_4, 0), sum); 7814 7815 jmp(L_first_loop); 7816 bind(L_first_loop_exit); 7817 } 7818 7819 /** 7820 * Code for BigInteger::mulAdd() intrinsic 7821 * 7822 * rdi: out 7823 * rsi: in 7824 * r11: offs (out.length - offset) 7825 * rcx: len 7826 * r8: k 7827 * r12: tmp1 7828 * r13: tmp2 7829 * r14: tmp3 7830 * r15: tmp4 7831 * rbx: tmp5 7832 * Multiply the in[] by word k and add to out[], return the carry in rax 7833 */ 7834 void MacroAssembler::mul_add(Register out, Register in, Register offs, 7835 Register len, Register k, Register tmp1, Register tmp2, Register tmp3, 7836 Register tmp4, Register tmp5, Register rdxReg, Register raxReg) { 7837 7838 Label L_carry, L_last_in, L_done; 7839 7840 // carry = 0; 7841 // for (int j=len-1; j >= 0; j--) { 7842 // long product = (in[j] & LONG_MASK) * kLong + 7843 // (out[offs] & LONG_MASK) + carry; 7844 // out[offs--] = (int)product; 7845 // carry = product >>> 32; 7846 // } 7847 // 7848 push(tmp1); 7849 push(tmp2); 7850 push(tmp3); 7851 push(tmp4); 7852 push(tmp5); 7853 7854 Register op2 = tmp2; 7855 const Register sum = tmp3; 7856 const Register op1 = tmp4; 7857 const Register carry = tmp5; 7858 7859 if (UseBMI2Instructions) { 7860 op2 = rdxReg; 7861 movl(op2, k); 7862 } 7863 else { 7864 movl(op2, k); 7865 } 7866 7867 xorq(carry, carry); 7868 7869 //First loop 7870 7871 //Multiply in[] by k in a 4 way unrolled loop using 128 bit by 32 bit multiply 7872 //The carry is in tmp5 7873 mul_add_128_x_32_loop(out, in, offs, len, tmp1, tmp2, tmp3, tmp4, tmp5, rdxReg, raxReg); 7874 7875 //Multiply the trailing in[] entry using 64 bit by 32 bit, if any 7876 decrementl(len); 7877 jccb(Assembler::negative, L_carry); 7878 decrementl(len); 7879 jccb(Assembler::negative, L_last_in); 7880 7881 movq(op1, Address(in, len, Address::times_4, 0)); 7882 rorq(op1, 32); 7883 7884 subl(offs, 2); 7885 movq(sum, Address(out, offs, Address::times_4, 0)); 7886 rorq(sum, 32); 7887 7888 if (UseBMI2Instructions) { 7889 multiply_add_64_bmi2(sum, op1, op2, carry, raxReg); 7890 } 7891 else { 7892 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg); 7893 } 7894 7895 // Store back in big endian from little endian 7896 rorq(sum, 0x20); 7897 movq(Address(out, offs, Address::times_4, 0), sum); 7898 7899 testl(len, len); 7900 jccb(Assembler::zero, L_carry); 7901 7902 //Multiply the last in[] entry, if any 7903 bind(L_last_in); 7904 movl(op1, Address(in, 0)); 7905 movl(sum, Address(out, offs, Address::times_4, -4)); 7906 7907 movl(raxReg, k); 7908 mull(op1); //tmp4 * eax -> edx:eax 7909 addl(sum, carry); 7910 adcl(rdxReg, 0); 7911 addl(sum, raxReg); 7912 adcl(rdxReg, 0); 7913 movl(carry, rdxReg); 7914 7915 movl(Address(out, offs, Address::times_4, -4), sum); 7916 7917 bind(L_carry); 7918 //return tmp5/carry as carry in rax 7919 movl(rax, carry); 7920 7921 bind(L_done); 7922 pop(tmp5); 7923 pop(tmp4); 7924 pop(tmp3); 7925 pop(tmp2); 7926 pop(tmp1); 7927 } 7928 #endif 7929 7930 /** 7931 * Emits code to update CRC-32 with a byte value according to constants in table 7932 * 7933 * @param [in,out]crc Register containing the crc. 7934 * @param [in]val Register containing the byte to fold into the CRC. 7935 * @param [in]table Register containing the table of crc constants. 7936 * 7937 * uint32_t crc; 7938 * val = crc_table[(val ^ crc) & 0xFF]; 7939 * crc = val ^ (crc >> 8); 7940 * 7941 */ 7942 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) { 7943 xorl(val, crc); 7944 andl(val, 0xFF); 7945 shrl(crc, 8); // unsigned shift 7946 xorl(crc, Address(table, val, Address::times_4, 0)); 7947 } 7948 7949 /** 7950 * Fold 128-bit data chunk 7951 */ 7952 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) { 7953 if (UseAVX > 0) { 7954 vpclmulhdq(xtmp, xK, xcrc); // [123:64] 7955 vpclmulldq(xcrc, xK, xcrc); // [63:0] 7956 vpxor(xcrc, xcrc, Address(buf, offset), 0 /* vector_len */); 7957 pxor(xcrc, xtmp); 7958 } else { 7959 movdqa(xtmp, xcrc); 7960 pclmulhdq(xtmp, xK); // [123:64] 7961 pclmulldq(xcrc, xK); // [63:0] 7962 pxor(xcrc, xtmp); 7963 movdqu(xtmp, Address(buf, offset)); 7964 pxor(xcrc, xtmp); 7965 } 7966 } 7967 7968 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) { 7969 if (UseAVX > 0) { 7970 vpclmulhdq(xtmp, xK, xcrc); 7971 vpclmulldq(xcrc, xK, xcrc); 7972 pxor(xcrc, xbuf); 7973 pxor(xcrc, xtmp); 7974 } else { 7975 movdqa(xtmp, xcrc); 7976 pclmulhdq(xtmp, xK); 7977 pclmulldq(xcrc, xK); 7978 pxor(xcrc, xbuf); 7979 pxor(xcrc, xtmp); 7980 } 7981 } 7982 7983 /** 7984 * 8-bit folds to compute 32-bit CRC 7985 * 7986 * uint64_t xcrc; 7987 * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8); 7988 */ 7989 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) { 7990 movdl(tmp, xcrc); 7991 andl(tmp, 0xFF); 7992 movdl(xtmp, Address(table, tmp, Address::times_4, 0)); 7993 psrldq(xcrc, 1); // unsigned shift one byte 7994 pxor(xcrc, xtmp); 7995 } 7996 7997 /** 7998 * uint32_t crc; 7999 * timesXtoThe32[crc & 0xFF] ^ (crc >> 8); 8000 */ 8001 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) { 8002 movl(tmp, crc); 8003 andl(tmp, 0xFF); 8004 shrl(crc, 8); 8005 xorl(crc, Address(table, tmp, Address::times_4, 0)); 8006 } 8007 8008 /** 8009 * @param crc register containing existing CRC (32-bit) 8010 * @param buf register pointing to input byte buffer (byte*) 8011 * @param len register containing number of bytes 8012 * @param table register that will contain address of CRC table 8013 * @param tmp scratch register 8014 */ 8015 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) { 8016 assert_different_registers(crc, buf, len, table, tmp, rax); 8017 8018 Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned; 8019 Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop; 8020 8021 // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge 8022 // context for the registers used, where all instructions below are using 128-bit mode 8023 // On EVEX without VL and BW, these instructions will all be AVX. 8024 lea(table, ExternalAddress(StubRoutines::crc_table_addr())); 8025 notl(crc); // ~crc 8026 cmpl(len, 16); 8027 jcc(Assembler::less, L_tail); 8028 8029 // Align buffer to 16 bytes 8030 movl(tmp, buf); 8031 andl(tmp, 0xF); 8032 jccb(Assembler::zero, L_aligned); 8033 subl(tmp, 16); 8034 addl(len, tmp); 8035 8036 align(4); 8037 BIND(L_align_loop); 8038 movsbl(rax, Address(buf, 0)); // load byte with sign extension 8039 update_byte_crc32(crc, rax, table); 8040 increment(buf); 8041 incrementl(tmp); 8042 jccb(Assembler::less, L_align_loop); 8043 8044 BIND(L_aligned); 8045 movl(tmp, len); // save 8046 shrl(len, 4); 8047 jcc(Assembler::zero, L_tail_restore); 8048 8049 // Fold crc into first bytes of vector 8050 movdqa(xmm1, Address(buf, 0)); 8051 movdl(rax, xmm1); 8052 xorl(crc, rax); 8053 if (VM_Version::supports_sse4_1()) { 8054 pinsrd(xmm1, crc, 0); 8055 } else { 8056 pinsrw(xmm1, crc, 0); 8057 shrl(crc, 16); 8058 pinsrw(xmm1, crc, 1); 8059 } 8060 addptr(buf, 16); 8061 subl(len, 4); // len > 0 8062 jcc(Assembler::less, L_fold_tail); 8063 8064 movdqa(xmm2, Address(buf, 0)); 8065 movdqa(xmm3, Address(buf, 16)); 8066 movdqa(xmm4, Address(buf, 32)); 8067 addptr(buf, 48); 8068 subl(len, 3); 8069 jcc(Assembler::lessEqual, L_fold_512b); 8070 8071 // Fold total 512 bits of polynomial on each iteration, 8072 // 128 bits per each of 4 parallel streams. 8073 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32), rscratch1); 8074 8075 align32(); 8076 BIND(L_fold_512b_loop); 8077 fold_128bit_crc32(xmm1, xmm0, xmm5, buf, 0); 8078 fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16); 8079 fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32); 8080 fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48); 8081 addptr(buf, 64); 8082 subl(len, 4); 8083 jcc(Assembler::greater, L_fold_512b_loop); 8084 8085 // Fold 512 bits to 128 bits. 8086 BIND(L_fold_512b); 8087 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16), rscratch1); 8088 fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2); 8089 fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3); 8090 fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4); 8091 8092 // Fold the rest of 128 bits data chunks 8093 BIND(L_fold_tail); 8094 addl(len, 3); 8095 jccb(Assembler::lessEqual, L_fold_128b); 8096 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16), rscratch1); 8097 8098 BIND(L_fold_tail_loop); 8099 fold_128bit_crc32(xmm1, xmm0, xmm5, buf, 0); 8100 addptr(buf, 16); 8101 decrementl(len); 8102 jccb(Assembler::greater, L_fold_tail_loop); 8103 8104 // Fold 128 bits in xmm1 down into 32 bits in crc register. 8105 BIND(L_fold_128b); 8106 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()), rscratch1); 8107 if (UseAVX > 0) { 8108 vpclmulqdq(xmm2, xmm0, xmm1, 0x1); 8109 vpand(xmm3, xmm0, xmm2, 0 /* vector_len */); 8110 vpclmulqdq(xmm0, xmm0, xmm3, 0x1); 8111 } else { 8112 movdqa(xmm2, xmm0); 8113 pclmulqdq(xmm2, xmm1, 0x1); 8114 movdqa(xmm3, xmm0); 8115 pand(xmm3, xmm2); 8116 pclmulqdq(xmm0, xmm3, 0x1); 8117 } 8118 psrldq(xmm1, 8); 8119 psrldq(xmm2, 4); 8120 pxor(xmm0, xmm1); 8121 pxor(xmm0, xmm2); 8122 8123 // 8 8-bit folds to compute 32-bit CRC. 8124 for (int j = 0; j < 4; j++) { 8125 fold_8bit_crc32(xmm0, table, xmm1, rax); 8126 } 8127 movdl(crc, xmm0); // mov 32 bits to general register 8128 for (int j = 0; j < 4; j++) { 8129 fold_8bit_crc32(crc, table, rax); 8130 } 8131 8132 BIND(L_tail_restore); 8133 movl(len, tmp); // restore 8134 BIND(L_tail); 8135 andl(len, 0xf); 8136 jccb(Assembler::zero, L_exit); 8137 8138 // Fold the rest of bytes 8139 align(4); 8140 BIND(L_tail_loop); 8141 movsbl(rax, Address(buf, 0)); // load byte with sign extension 8142 update_byte_crc32(crc, rax, table); 8143 increment(buf); 8144 decrementl(len); 8145 jccb(Assembler::greater, L_tail_loop); 8146 8147 BIND(L_exit); 8148 notl(crc); // ~c 8149 } 8150 8151 #ifdef _LP64 8152 // Helper function for AVX 512 CRC32 8153 // Fold 512-bit data chunks 8154 void MacroAssembler::fold512bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, 8155 Register pos, int offset) { 8156 evmovdquq(xmm3, Address(buf, pos, Address::times_1, offset), Assembler::AVX_512bit); 8157 evpclmulqdq(xtmp, xcrc, xK, 0x10, Assembler::AVX_512bit); // [123:64] 8158 evpclmulqdq(xmm2, xcrc, xK, 0x01, Assembler::AVX_512bit); // [63:0] 8159 evpxorq(xcrc, xtmp, xmm2, Assembler::AVX_512bit /* vector_len */); 8160 evpxorq(xcrc, xcrc, xmm3, Assembler::AVX_512bit /* vector_len */); 8161 } 8162 8163 // Helper function for AVX 512 CRC32 8164 // Compute CRC32 for < 256B buffers 8165 void MacroAssembler::kernel_crc32_avx512_256B(Register crc, Register buf, Register len, Register table, Register pos, 8166 Register tmp1, Register tmp2, Label& L_barrett, Label& L_16B_reduction_loop, 8167 Label& L_get_last_two_xmms, Label& L_128_done, Label& L_cleanup) { 8168 8169 Label L_less_than_32, L_exact_16_left, L_less_than_16_left; 8170 Label L_less_than_8_left, L_less_than_4_left, L_less_than_2_left, L_zero_left; 8171 Label L_only_less_than_4, L_only_less_than_3, L_only_less_than_2; 8172 8173 // check if there is enough buffer to be able to fold 16B at a time 8174 cmpl(len, 32); 8175 jcc(Assembler::less, L_less_than_32); 8176 8177 // if there is, load the constants 8178 movdqu(xmm10, Address(table, 1 * 16)); //rk1 and rk2 in xmm10 8179 movdl(xmm0, crc); // get the initial crc value 8180 movdqu(xmm7, Address(buf, pos, Address::times_1, 0 * 16)); //load the plaintext 8181 pxor(xmm7, xmm0); 8182 8183 // update the buffer pointer 8184 addl(pos, 16); 8185 //update the counter.subtract 32 instead of 16 to save one instruction from the loop 8186 subl(len, 32); 8187 jmp(L_16B_reduction_loop); 8188 8189 bind(L_less_than_32); 8190 //mov initial crc to the return value. this is necessary for zero - length buffers. 8191 movl(rax, crc); 8192 testl(len, len); 8193 jcc(Assembler::equal, L_cleanup); 8194 8195 movdl(xmm0, crc); //get the initial crc value 8196 8197 cmpl(len, 16); 8198 jcc(Assembler::equal, L_exact_16_left); 8199 jcc(Assembler::less, L_less_than_16_left); 8200 8201 movdqu(xmm7, Address(buf, pos, Address::times_1, 0 * 16)); //load the plaintext 8202 pxor(xmm7, xmm0); //xor the initial crc value 8203 addl(pos, 16); 8204 subl(len, 16); 8205 movdqu(xmm10, Address(table, 1 * 16)); // rk1 and rk2 in xmm10 8206 jmp(L_get_last_two_xmms); 8207 8208 bind(L_less_than_16_left); 8209 //use stack space to load data less than 16 bytes, zero - out the 16B in memory first. 8210 pxor(xmm1, xmm1); 8211 movptr(tmp1, rsp); 8212 movdqu(Address(tmp1, 0 * 16), xmm1); 8213 8214 cmpl(len, 4); 8215 jcc(Assembler::less, L_only_less_than_4); 8216 8217 //backup the counter value 8218 movl(tmp2, len); 8219 cmpl(len, 8); 8220 jcc(Assembler::less, L_less_than_8_left); 8221 8222 //load 8 Bytes 8223 movq(rax, Address(buf, pos, Address::times_1, 0 * 16)); 8224 movq(Address(tmp1, 0 * 16), rax); 8225 addptr(tmp1, 8); 8226 subl(len, 8); 8227 addl(pos, 8); 8228 8229 bind(L_less_than_8_left); 8230 cmpl(len, 4); 8231 jcc(Assembler::less, L_less_than_4_left); 8232 8233 //load 4 Bytes 8234 movl(rax, Address(buf, pos, Address::times_1, 0)); 8235 movl(Address(tmp1, 0 * 16), rax); 8236 addptr(tmp1, 4); 8237 subl(len, 4); 8238 addl(pos, 4); 8239 8240 bind(L_less_than_4_left); 8241 cmpl(len, 2); 8242 jcc(Assembler::less, L_less_than_2_left); 8243 8244 // load 2 Bytes 8245 movw(rax, Address(buf, pos, Address::times_1, 0)); 8246 movl(Address(tmp1, 0 * 16), rax); 8247 addptr(tmp1, 2); 8248 subl(len, 2); 8249 addl(pos, 2); 8250 8251 bind(L_less_than_2_left); 8252 cmpl(len, 1); 8253 jcc(Assembler::less, L_zero_left); 8254 8255 // load 1 Byte 8256 movb(rax, Address(buf, pos, Address::times_1, 0)); 8257 movb(Address(tmp1, 0 * 16), rax); 8258 8259 bind(L_zero_left); 8260 movdqu(xmm7, Address(rsp, 0)); 8261 pxor(xmm7, xmm0); //xor the initial crc value 8262 8263 lea(rax, ExternalAddress(StubRoutines::x86::shuf_table_crc32_avx512_addr())); 8264 movdqu(xmm0, Address(rax, tmp2)); 8265 pshufb(xmm7, xmm0); 8266 jmp(L_128_done); 8267 8268 bind(L_exact_16_left); 8269 movdqu(xmm7, Address(buf, pos, Address::times_1, 0)); 8270 pxor(xmm7, xmm0); //xor the initial crc value 8271 jmp(L_128_done); 8272 8273 bind(L_only_less_than_4); 8274 cmpl(len, 3); 8275 jcc(Assembler::less, L_only_less_than_3); 8276 8277 // load 3 Bytes 8278 movb(rax, Address(buf, pos, Address::times_1, 0)); 8279 movb(Address(tmp1, 0), rax); 8280 8281 movb(rax, Address(buf, pos, Address::times_1, 1)); 8282 movb(Address(tmp1, 1), rax); 8283 8284 movb(rax, Address(buf, pos, Address::times_1, 2)); 8285 movb(Address(tmp1, 2), rax); 8286 8287 movdqu(xmm7, Address(rsp, 0)); 8288 pxor(xmm7, xmm0); //xor the initial crc value 8289 8290 pslldq(xmm7, 0x5); 8291 jmp(L_barrett); 8292 bind(L_only_less_than_3); 8293 cmpl(len, 2); 8294 jcc(Assembler::less, L_only_less_than_2); 8295 8296 // load 2 Bytes 8297 movb(rax, Address(buf, pos, Address::times_1, 0)); 8298 movb(Address(tmp1, 0), rax); 8299 8300 movb(rax, Address(buf, pos, Address::times_1, 1)); 8301 movb(Address(tmp1, 1), rax); 8302 8303 movdqu(xmm7, Address(rsp, 0)); 8304 pxor(xmm7, xmm0); //xor the initial crc value 8305 8306 pslldq(xmm7, 0x6); 8307 jmp(L_barrett); 8308 8309 bind(L_only_less_than_2); 8310 //load 1 Byte 8311 movb(rax, Address(buf, pos, Address::times_1, 0)); 8312 movb(Address(tmp1, 0), rax); 8313 8314 movdqu(xmm7, Address(rsp, 0)); 8315 pxor(xmm7, xmm0); //xor the initial crc value 8316 8317 pslldq(xmm7, 0x7); 8318 } 8319 8320 /** 8321 * Compute CRC32 using AVX512 instructions 8322 * param crc register containing existing CRC (32-bit) 8323 * param buf register pointing to input byte buffer (byte*) 8324 * param len register containing number of bytes 8325 * param table address of crc or crc32c table 8326 * param tmp1 scratch register 8327 * param tmp2 scratch register 8328 * return rax result register 8329 * 8330 * This routine is identical for crc32c with the exception of the precomputed constant 8331 * table which will be passed as the table argument. The calculation steps are 8332 * the same for both variants. 8333 */ 8334 void MacroAssembler::kernel_crc32_avx512(Register crc, Register buf, Register len, Register table, Register tmp1, Register tmp2) { 8335 assert_different_registers(crc, buf, len, table, tmp1, tmp2, rax, r12); 8336 8337 Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned; 8338 Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop; 8339 Label L_less_than_256, L_fold_128_B_loop, L_fold_256_B_loop; 8340 Label L_fold_128_B_register, L_final_reduction_for_128, L_16B_reduction_loop; 8341 Label L_128_done, L_get_last_two_xmms, L_barrett, L_cleanup; 8342 8343 const Register pos = r12; 8344 push(r12); 8345 subptr(rsp, 16 * 2 + 8); 8346 8347 // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge 8348 // context for the registers used, where all instructions below are using 128-bit mode 8349 // On EVEX without VL and BW, these instructions will all be AVX. 8350 movl(pos, 0); 8351 8352 // check if smaller than 256B 8353 cmpl(len, 256); 8354 jcc(Assembler::less, L_less_than_256); 8355 8356 // load the initial crc value 8357 movdl(xmm10, crc); 8358 8359 // receive the initial 64B data, xor the initial crc value 8360 evmovdquq(xmm0, Address(buf, pos, Address::times_1, 0 * 64), Assembler::AVX_512bit); 8361 evmovdquq(xmm4, Address(buf, pos, Address::times_1, 1 * 64), Assembler::AVX_512bit); 8362 evpxorq(xmm0, xmm0, xmm10, Assembler::AVX_512bit); 8363 evbroadcasti32x4(xmm10, Address(table, 2 * 16), Assembler::AVX_512bit); //zmm10 has rk3 and rk4 8364 8365 subl(len, 256); 8366 cmpl(len, 256); 8367 jcc(Assembler::less, L_fold_128_B_loop); 8368 8369 evmovdquq(xmm7, Address(buf, pos, Address::times_1, 2 * 64), Assembler::AVX_512bit); 8370 evmovdquq(xmm8, Address(buf, pos, Address::times_1, 3 * 64), Assembler::AVX_512bit); 8371 evbroadcasti32x4(xmm16, Address(table, 0 * 16), Assembler::AVX_512bit); //zmm16 has rk-1 and rk-2 8372 subl(len, 256); 8373 8374 bind(L_fold_256_B_loop); 8375 addl(pos, 256); 8376 fold512bit_crc32_avx512(xmm0, xmm16, xmm1, buf, pos, 0 * 64); 8377 fold512bit_crc32_avx512(xmm4, xmm16, xmm1, buf, pos, 1 * 64); 8378 fold512bit_crc32_avx512(xmm7, xmm16, xmm1, buf, pos, 2 * 64); 8379 fold512bit_crc32_avx512(xmm8, xmm16, xmm1, buf, pos, 3 * 64); 8380 8381 subl(len, 256); 8382 jcc(Assembler::greaterEqual, L_fold_256_B_loop); 8383 8384 // Fold 256 into 128 8385 addl(pos, 256); 8386 evpclmulqdq(xmm1, xmm0, xmm10, 0x01, Assembler::AVX_512bit); 8387 evpclmulqdq(xmm2, xmm0, xmm10, 0x10, Assembler::AVX_512bit); 8388 vpternlogq(xmm7, 0x96, xmm1, xmm2, Assembler::AVX_512bit); // xor ABC 8389 8390 evpclmulqdq(xmm5, xmm4, xmm10, 0x01, Assembler::AVX_512bit); 8391 evpclmulqdq(xmm6, xmm4, xmm10, 0x10, Assembler::AVX_512bit); 8392 vpternlogq(xmm8, 0x96, xmm5, xmm6, Assembler::AVX_512bit); // xor ABC 8393 8394 evmovdquq(xmm0, xmm7, Assembler::AVX_512bit); 8395 evmovdquq(xmm4, xmm8, Assembler::AVX_512bit); 8396 8397 addl(len, 128); 8398 jmp(L_fold_128_B_register); 8399 8400 // at this section of the code, there is 128 * x + y(0 <= y<128) bytes of buffer.The fold_128_B_loop 8401 // loop will fold 128B at a time until we have 128 + y Bytes of buffer 8402 8403 // fold 128B at a time.This section of the code folds 8 xmm registers in parallel 8404 bind(L_fold_128_B_loop); 8405 addl(pos, 128); 8406 fold512bit_crc32_avx512(xmm0, xmm10, xmm1, buf, pos, 0 * 64); 8407 fold512bit_crc32_avx512(xmm4, xmm10, xmm1, buf, pos, 1 * 64); 8408 8409 subl(len, 128); 8410 jcc(Assembler::greaterEqual, L_fold_128_B_loop); 8411 8412 addl(pos, 128); 8413 8414 // at this point, the buffer pointer is pointing at the last y Bytes of the buffer, where 0 <= y < 128 8415 // the 128B of folded data is in 8 of the xmm registers : xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7 8416 bind(L_fold_128_B_register); 8417 evmovdquq(xmm16, Address(table, 5 * 16), Assembler::AVX_512bit); // multiply by rk9-rk16 8418 evmovdquq(xmm11, Address(table, 9 * 16), Assembler::AVX_512bit); // multiply by rk17-rk20, rk1,rk2, 0,0 8419 evpclmulqdq(xmm1, xmm0, xmm16, 0x01, Assembler::AVX_512bit); 8420 evpclmulqdq(xmm2, xmm0, xmm16, 0x10, Assembler::AVX_512bit); 8421 // save last that has no multiplicand 8422 vextracti64x2(xmm7, xmm4, 3); 8423 8424 evpclmulqdq(xmm5, xmm4, xmm11, 0x01, Assembler::AVX_512bit); 8425 evpclmulqdq(xmm6, xmm4, xmm11, 0x10, Assembler::AVX_512bit); 8426 // Needed later in reduction loop 8427 movdqu(xmm10, Address(table, 1 * 16)); 8428 vpternlogq(xmm1, 0x96, xmm2, xmm5, Assembler::AVX_512bit); // xor ABC 8429 vpternlogq(xmm1, 0x96, xmm6, xmm7, Assembler::AVX_512bit); // xor ABC 8430 8431 // Swap 1,0,3,2 - 01 00 11 10 8432 evshufi64x2(xmm8, xmm1, xmm1, 0x4e, Assembler::AVX_512bit); 8433 evpxorq(xmm8, xmm8, xmm1, Assembler::AVX_256bit); 8434 vextracti128(xmm5, xmm8, 1); 8435 evpxorq(xmm7, xmm5, xmm8, Assembler::AVX_128bit); 8436 8437 // instead of 128, we add 128 - 16 to the loop counter to save 1 instruction from the loop 8438 // instead of a cmp instruction, we use the negative flag with the jl instruction 8439 addl(len, 128 - 16); 8440 jcc(Assembler::less, L_final_reduction_for_128); 8441 8442 bind(L_16B_reduction_loop); 8443 vpclmulqdq(xmm8, xmm7, xmm10, 0x01); 8444 vpclmulqdq(xmm7, xmm7, xmm10, 0x10); 8445 vpxor(xmm7, xmm7, xmm8, Assembler::AVX_128bit); 8446 movdqu(xmm0, Address(buf, pos, Address::times_1, 0 * 16)); 8447 vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit); 8448 addl(pos, 16); 8449 subl(len, 16); 8450 jcc(Assembler::greaterEqual, L_16B_reduction_loop); 8451 8452 bind(L_final_reduction_for_128); 8453 addl(len, 16); 8454 jcc(Assembler::equal, L_128_done); 8455 8456 bind(L_get_last_two_xmms); 8457 movdqu(xmm2, xmm7); 8458 addl(pos, len); 8459 movdqu(xmm1, Address(buf, pos, Address::times_1, -16)); 8460 subl(pos, len); 8461 8462 // get rid of the extra data that was loaded before 8463 // load the shift constant 8464 lea(rax, ExternalAddress(StubRoutines::x86::shuf_table_crc32_avx512_addr())); 8465 movdqu(xmm0, Address(rax, len)); 8466 addl(rax, len); 8467 8468 vpshufb(xmm7, xmm7, xmm0, Assembler::AVX_128bit); 8469 //Change mask to 512 8470 vpxor(xmm0, xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr() + 2 * 16), Assembler::AVX_128bit, tmp2); 8471 vpshufb(xmm2, xmm2, xmm0, Assembler::AVX_128bit); 8472 8473 blendvpb(xmm2, xmm2, xmm1, xmm0, Assembler::AVX_128bit); 8474 vpclmulqdq(xmm8, xmm7, xmm10, 0x01); 8475 vpclmulqdq(xmm7, xmm7, xmm10, 0x10); 8476 vpxor(xmm7, xmm7, xmm8, Assembler::AVX_128bit); 8477 vpxor(xmm7, xmm7, xmm2, Assembler::AVX_128bit); 8478 8479 bind(L_128_done); 8480 // compute crc of a 128-bit value 8481 movdqu(xmm10, Address(table, 3 * 16)); 8482 movdqu(xmm0, xmm7); 8483 8484 // 64b fold 8485 vpclmulqdq(xmm7, xmm7, xmm10, 0x0); 8486 vpsrldq(xmm0, xmm0, 0x8, Assembler::AVX_128bit); 8487 vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit); 8488 8489 // 32b fold 8490 movdqu(xmm0, xmm7); 8491 vpslldq(xmm7, xmm7, 0x4, Assembler::AVX_128bit); 8492 vpclmulqdq(xmm7, xmm7, xmm10, 0x10); 8493 vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit); 8494 jmp(L_barrett); 8495 8496 bind(L_less_than_256); 8497 kernel_crc32_avx512_256B(crc, buf, len, table, pos, tmp1, tmp2, L_barrett, L_16B_reduction_loop, L_get_last_two_xmms, L_128_done, L_cleanup); 8498 8499 //barrett reduction 8500 bind(L_barrett); 8501 vpand(xmm7, xmm7, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr() + 1 * 16), Assembler::AVX_128bit, tmp2); 8502 movdqu(xmm1, xmm7); 8503 movdqu(xmm2, xmm7); 8504 movdqu(xmm10, Address(table, 4 * 16)); 8505 8506 pclmulqdq(xmm7, xmm10, 0x0); 8507 pxor(xmm7, xmm2); 8508 vpand(xmm7, xmm7, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr()), Assembler::AVX_128bit, tmp2); 8509 movdqu(xmm2, xmm7); 8510 pclmulqdq(xmm7, xmm10, 0x10); 8511 pxor(xmm7, xmm2); 8512 pxor(xmm7, xmm1); 8513 pextrd(crc, xmm7, 2); 8514 8515 bind(L_cleanup); 8516 addptr(rsp, 16 * 2 + 8); 8517 pop(r12); 8518 } 8519 8520 // S. Gueron / Information Processing Letters 112 (2012) 184 8521 // Algorithm 4: Computing carry-less multiplication using a precomputed lookup table. 8522 // Input: A 32 bit value B = [byte3, byte2, byte1, byte0]. 8523 // Output: the 64-bit carry-less product of B * CONST 8524 void MacroAssembler::crc32c_ipl_alg4(Register in, uint32_t n, 8525 Register tmp1, Register tmp2, Register tmp3) { 8526 lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr())); 8527 if (n > 0) { 8528 addq(tmp3, n * 256 * 8); 8529 } 8530 // Q1 = TABLEExt[n][B & 0xFF]; 8531 movl(tmp1, in); 8532 andl(tmp1, 0x000000FF); 8533 shll(tmp1, 3); 8534 addq(tmp1, tmp3); 8535 movq(tmp1, Address(tmp1, 0)); 8536 8537 // Q2 = TABLEExt[n][B >> 8 & 0xFF]; 8538 movl(tmp2, in); 8539 shrl(tmp2, 8); 8540 andl(tmp2, 0x000000FF); 8541 shll(tmp2, 3); 8542 addq(tmp2, tmp3); 8543 movq(tmp2, Address(tmp2, 0)); 8544 8545 shlq(tmp2, 8); 8546 xorq(tmp1, tmp2); 8547 8548 // Q3 = TABLEExt[n][B >> 16 & 0xFF]; 8549 movl(tmp2, in); 8550 shrl(tmp2, 16); 8551 andl(tmp2, 0x000000FF); 8552 shll(tmp2, 3); 8553 addq(tmp2, tmp3); 8554 movq(tmp2, Address(tmp2, 0)); 8555 8556 shlq(tmp2, 16); 8557 xorq(tmp1, tmp2); 8558 8559 // Q4 = TABLEExt[n][B >> 24 & 0xFF]; 8560 shrl(in, 24); 8561 andl(in, 0x000000FF); 8562 shll(in, 3); 8563 addq(in, tmp3); 8564 movq(in, Address(in, 0)); 8565 8566 shlq(in, 24); 8567 xorq(in, tmp1); 8568 // return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24; 8569 } 8570 8571 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1, 8572 Register in_out, 8573 uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported, 8574 XMMRegister w_xtmp2, 8575 Register tmp1, 8576 Register n_tmp2, Register n_tmp3) { 8577 if (is_pclmulqdq_supported) { 8578 movdl(w_xtmp1, in_out); // modified blindly 8579 8580 movl(tmp1, const_or_pre_comp_const_index); 8581 movdl(w_xtmp2, tmp1); 8582 pclmulqdq(w_xtmp1, w_xtmp2, 0); 8583 8584 movdq(in_out, w_xtmp1); 8585 } else { 8586 crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3); 8587 } 8588 } 8589 8590 // Recombination Alternative 2: No bit-reflections 8591 // T1 = (CRC_A * U1) << 1 8592 // T2 = (CRC_B * U2) << 1 8593 // C1 = T1 >> 32 8594 // C2 = T2 >> 32 8595 // T1 = T1 & 0xFFFFFFFF 8596 // T2 = T2 & 0xFFFFFFFF 8597 // T1 = CRC32(0, T1) 8598 // T2 = CRC32(0, T2) 8599 // C1 = C1 ^ T1 8600 // C2 = C2 ^ T2 8601 // CRC = C1 ^ C2 ^ CRC_C 8602 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2, 8603 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 8604 Register tmp1, Register tmp2, 8605 Register n_tmp3) { 8606 crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3); 8607 crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3); 8608 shlq(in_out, 1); 8609 movl(tmp1, in_out); 8610 shrq(in_out, 32); 8611 xorl(tmp2, tmp2); 8612 crc32(tmp2, tmp1, 4); 8613 xorl(in_out, tmp2); // we don't care about upper 32 bit contents here 8614 shlq(in1, 1); 8615 movl(tmp1, in1); 8616 shrq(in1, 32); 8617 xorl(tmp2, tmp2); 8618 crc32(tmp2, tmp1, 4); 8619 xorl(in1, tmp2); 8620 xorl(in_out, in1); 8621 xorl(in_out, in2); 8622 } 8623 8624 // Set N to predefined value 8625 // Subtract from a length of a buffer 8626 // execute in a loop: 8627 // CRC_A = 0xFFFFFFFF, CRC_B = 0, CRC_C = 0 8628 // for i = 1 to N do 8629 // CRC_A = CRC32(CRC_A, A[i]) 8630 // CRC_B = CRC32(CRC_B, B[i]) 8631 // CRC_C = CRC32(CRC_C, C[i]) 8632 // end for 8633 // Recombine 8634 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, 8635 Register in_out1, Register in_out2, Register in_out3, 8636 Register tmp1, Register tmp2, Register tmp3, 8637 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 8638 Register tmp4, Register tmp5, 8639 Register n_tmp6) { 8640 Label L_processPartitions; 8641 Label L_processPartition; 8642 Label L_exit; 8643 8644 bind(L_processPartitions); 8645 cmpl(in_out1, 3 * size); 8646 jcc(Assembler::less, L_exit); 8647 xorl(tmp1, tmp1); 8648 xorl(tmp2, tmp2); 8649 movq(tmp3, in_out2); 8650 addq(tmp3, size); 8651 8652 bind(L_processPartition); 8653 crc32(in_out3, Address(in_out2, 0), 8); 8654 crc32(tmp1, Address(in_out2, size), 8); 8655 crc32(tmp2, Address(in_out2, size * 2), 8); 8656 addq(in_out2, 8); 8657 cmpq(in_out2, tmp3); 8658 jcc(Assembler::less, L_processPartition); 8659 crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2, 8660 w_xtmp1, w_xtmp2, w_xtmp3, 8661 tmp4, tmp5, 8662 n_tmp6); 8663 addq(in_out2, 2 * size); 8664 subl(in_out1, 3 * size); 8665 jmp(L_processPartitions); 8666 8667 bind(L_exit); 8668 } 8669 #else 8670 void MacroAssembler::crc32c_ipl_alg4(Register in_out, uint32_t n, 8671 Register tmp1, Register tmp2, Register tmp3, 8672 XMMRegister xtmp1, XMMRegister xtmp2) { 8673 lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr())); 8674 if (n > 0) { 8675 addl(tmp3, n * 256 * 8); 8676 } 8677 // Q1 = TABLEExt[n][B & 0xFF]; 8678 movl(tmp1, in_out); 8679 andl(tmp1, 0x000000FF); 8680 shll(tmp1, 3); 8681 addl(tmp1, tmp3); 8682 movq(xtmp1, Address(tmp1, 0)); 8683 8684 // Q2 = TABLEExt[n][B >> 8 & 0xFF]; 8685 movl(tmp2, in_out); 8686 shrl(tmp2, 8); 8687 andl(tmp2, 0x000000FF); 8688 shll(tmp2, 3); 8689 addl(tmp2, tmp3); 8690 movq(xtmp2, Address(tmp2, 0)); 8691 8692 psllq(xtmp2, 8); 8693 pxor(xtmp1, xtmp2); 8694 8695 // Q3 = TABLEExt[n][B >> 16 & 0xFF]; 8696 movl(tmp2, in_out); 8697 shrl(tmp2, 16); 8698 andl(tmp2, 0x000000FF); 8699 shll(tmp2, 3); 8700 addl(tmp2, tmp3); 8701 movq(xtmp2, Address(tmp2, 0)); 8702 8703 psllq(xtmp2, 16); 8704 pxor(xtmp1, xtmp2); 8705 8706 // Q4 = TABLEExt[n][B >> 24 & 0xFF]; 8707 shrl(in_out, 24); 8708 andl(in_out, 0x000000FF); 8709 shll(in_out, 3); 8710 addl(in_out, tmp3); 8711 movq(xtmp2, Address(in_out, 0)); 8712 8713 psllq(xtmp2, 24); 8714 pxor(xtmp1, xtmp2); // Result in CXMM 8715 // return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24; 8716 } 8717 8718 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1, 8719 Register in_out, 8720 uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported, 8721 XMMRegister w_xtmp2, 8722 Register tmp1, 8723 Register n_tmp2, Register n_tmp3) { 8724 if (is_pclmulqdq_supported) { 8725 movdl(w_xtmp1, in_out); 8726 8727 movl(tmp1, const_or_pre_comp_const_index); 8728 movdl(w_xtmp2, tmp1); 8729 pclmulqdq(w_xtmp1, w_xtmp2, 0); 8730 // Keep result in XMM since GPR is 32 bit in length 8731 } else { 8732 crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3, w_xtmp1, w_xtmp2); 8733 } 8734 } 8735 8736 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2, 8737 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 8738 Register tmp1, Register tmp2, 8739 Register n_tmp3) { 8740 crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3); 8741 crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3); 8742 8743 psllq(w_xtmp1, 1); 8744 movdl(tmp1, w_xtmp1); 8745 psrlq(w_xtmp1, 32); 8746 movdl(in_out, w_xtmp1); 8747 8748 xorl(tmp2, tmp2); 8749 crc32(tmp2, tmp1, 4); 8750 xorl(in_out, tmp2); 8751 8752 psllq(w_xtmp2, 1); 8753 movdl(tmp1, w_xtmp2); 8754 psrlq(w_xtmp2, 32); 8755 movdl(in1, w_xtmp2); 8756 8757 xorl(tmp2, tmp2); 8758 crc32(tmp2, tmp1, 4); 8759 xorl(in1, tmp2); 8760 xorl(in_out, in1); 8761 xorl(in_out, in2); 8762 } 8763 8764 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, 8765 Register in_out1, Register in_out2, Register in_out3, 8766 Register tmp1, Register tmp2, Register tmp3, 8767 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 8768 Register tmp4, Register tmp5, 8769 Register n_tmp6) { 8770 Label L_processPartitions; 8771 Label L_processPartition; 8772 Label L_exit; 8773 8774 bind(L_processPartitions); 8775 cmpl(in_out1, 3 * size); 8776 jcc(Assembler::less, L_exit); 8777 xorl(tmp1, tmp1); 8778 xorl(tmp2, tmp2); 8779 movl(tmp3, in_out2); 8780 addl(tmp3, size); 8781 8782 bind(L_processPartition); 8783 crc32(in_out3, Address(in_out2, 0), 4); 8784 crc32(tmp1, Address(in_out2, size), 4); 8785 crc32(tmp2, Address(in_out2, size*2), 4); 8786 crc32(in_out3, Address(in_out2, 0+4), 4); 8787 crc32(tmp1, Address(in_out2, size+4), 4); 8788 crc32(tmp2, Address(in_out2, size*2+4), 4); 8789 addl(in_out2, 8); 8790 cmpl(in_out2, tmp3); 8791 jcc(Assembler::less, L_processPartition); 8792 8793 push(tmp3); 8794 push(in_out1); 8795 push(in_out2); 8796 tmp4 = tmp3; 8797 tmp5 = in_out1; 8798 n_tmp6 = in_out2; 8799 8800 crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2, 8801 w_xtmp1, w_xtmp2, w_xtmp3, 8802 tmp4, tmp5, 8803 n_tmp6); 8804 8805 pop(in_out2); 8806 pop(in_out1); 8807 pop(tmp3); 8808 8809 addl(in_out2, 2 * size); 8810 subl(in_out1, 3 * size); 8811 jmp(L_processPartitions); 8812 8813 bind(L_exit); 8814 } 8815 #endif //LP64 8816 8817 #ifdef _LP64 8818 // Algorithm 2: Pipelined usage of the CRC32 instruction. 8819 // Input: A buffer I of L bytes. 8820 // Output: the CRC32C value of the buffer. 8821 // Notations: 8822 // Write L = 24N + r, with N = floor (L/24). 8823 // r = L mod 24 (0 <= r < 24). 8824 // Consider I as the concatenation of A|B|C|R, where A, B, C, each, 8825 // N quadwords, and R consists of r bytes. 8826 // A[j] = I [8j+7:8j], j= 0, 1, ..., N-1 8827 // B[j] = I [N + 8j+7:N + 8j], j= 0, 1, ..., N-1 8828 // C[j] = I [2N + 8j+7:2N + 8j], j= 0, 1, ..., N-1 8829 // if r > 0 R[j] = I [3N +j], j= 0, 1, ...,r-1 8830 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2, 8831 Register tmp1, Register tmp2, Register tmp3, 8832 Register tmp4, Register tmp5, Register tmp6, 8833 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 8834 bool is_pclmulqdq_supported) { 8835 uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS]; 8836 Label L_wordByWord; 8837 Label L_byteByByteProlog; 8838 Label L_byteByByte; 8839 Label L_exit; 8840 8841 if (is_pclmulqdq_supported ) { 8842 const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr; 8843 const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr+1); 8844 8845 const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2); 8846 const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3); 8847 8848 const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4); 8849 const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5); 8850 assert((CRC32C_NUM_PRECOMPUTED_CONSTANTS - 1 ) == 5, "Checking whether you declared all of the constants based on the number of \"chunks\""); 8851 } else { 8852 const_or_pre_comp_const_index[0] = 1; 8853 const_or_pre_comp_const_index[1] = 0; 8854 8855 const_or_pre_comp_const_index[2] = 3; 8856 const_or_pre_comp_const_index[3] = 2; 8857 8858 const_or_pre_comp_const_index[4] = 5; 8859 const_or_pre_comp_const_index[5] = 4; 8860 } 8861 crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported, 8862 in2, in1, in_out, 8863 tmp1, tmp2, tmp3, 8864 w_xtmp1, w_xtmp2, w_xtmp3, 8865 tmp4, tmp5, 8866 tmp6); 8867 crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported, 8868 in2, in1, in_out, 8869 tmp1, tmp2, tmp3, 8870 w_xtmp1, w_xtmp2, w_xtmp3, 8871 tmp4, tmp5, 8872 tmp6); 8873 crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported, 8874 in2, in1, in_out, 8875 tmp1, tmp2, tmp3, 8876 w_xtmp1, w_xtmp2, w_xtmp3, 8877 tmp4, tmp5, 8878 tmp6); 8879 movl(tmp1, in2); 8880 andl(tmp1, 0x00000007); 8881 negl(tmp1); 8882 addl(tmp1, in2); 8883 addq(tmp1, in1); 8884 8885 cmpq(in1, tmp1); 8886 jccb(Assembler::greaterEqual, L_byteByByteProlog); 8887 align(16); 8888 BIND(L_wordByWord); 8889 crc32(in_out, Address(in1, 0), 8); 8890 addq(in1, 8); 8891 cmpq(in1, tmp1); 8892 jcc(Assembler::less, L_wordByWord); 8893 8894 BIND(L_byteByByteProlog); 8895 andl(in2, 0x00000007); 8896 movl(tmp2, 1); 8897 8898 cmpl(tmp2, in2); 8899 jccb(Assembler::greater, L_exit); 8900 BIND(L_byteByByte); 8901 crc32(in_out, Address(in1, 0), 1); 8902 incq(in1); 8903 incl(tmp2); 8904 cmpl(tmp2, in2); 8905 jcc(Assembler::lessEqual, L_byteByByte); 8906 8907 BIND(L_exit); 8908 } 8909 #else 8910 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2, 8911 Register tmp1, Register tmp2, Register tmp3, 8912 Register tmp4, Register tmp5, Register tmp6, 8913 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 8914 bool is_pclmulqdq_supported) { 8915 uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS]; 8916 Label L_wordByWord; 8917 Label L_byteByByteProlog; 8918 Label L_byteByByte; 8919 Label L_exit; 8920 8921 if (is_pclmulqdq_supported) { 8922 const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr; 8923 const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 1); 8924 8925 const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2); 8926 const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3); 8927 8928 const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4); 8929 const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5); 8930 } else { 8931 const_or_pre_comp_const_index[0] = 1; 8932 const_or_pre_comp_const_index[1] = 0; 8933 8934 const_or_pre_comp_const_index[2] = 3; 8935 const_or_pre_comp_const_index[3] = 2; 8936 8937 const_or_pre_comp_const_index[4] = 5; 8938 const_or_pre_comp_const_index[5] = 4; 8939 } 8940 crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported, 8941 in2, in1, in_out, 8942 tmp1, tmp2, tmp3, 8943 w_xtmp1, w_xtmp2, w_xtmp3, 8944 tmp4, tmp5, 8945 tmp6); 8946 crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported, 8947 in2, in1, in_out, 8948 tmp1, tmp2, tmp3, 8949 w_xtmp1, w_xtmp2, w_xtmp3, 8950 tmp4, tmp5, 8951 tmp6); 8952 crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported, 8953 in2, in1, in_out, 8954 tmp1, tmp2, tmp3, 8955 w_xtmp1, w_xtmp2, w_xtmp3, 8956 tmp4, tmp5, 8957 tmp6); 8958 movl(tmp1, in2); 8959 andl(tmp1, 0x00000007); 8960 negl(tmp1); 8961 addl(tmp1, in2); 8962 addl(tmp1, in1); 8963 8964 BIND(L_wordByWord); 8965 cmpl(in1, tmp1); 8966 jcc(Assembler::greaterEqual, L_byteByByteProlog); 8967 crc32(in_out, Address(in1,0), 4); 8968 addl(in1, 4); 8969 jmp(L_wordByWord); 8970 8971 BIND(L_byteByByteProlog); 8972 andl(in2, 0x00000007); 8973 movl(tmp2, 1); 8974 8975 BIND(L_byteByByte); 8976 cmpl(tmp2, in2); 8977 jccb(Assembler::greater, L_exit); 8978 movb(tmp1, Address(in1, 0)); 8979 crc32(in_out, tmp1, 1); 8980 incl(in1); 8981 incl(tmp2); 8982 jmp(L_byteByByte); 8983 8984 BIND(L_exit); 8985 } 8986 #endif // LP64 8987 #undef BIND 8988 #undef BLOCK_COMMENT 8989 8990 // Compress char[] array to byte[]. 8991 // Intrinsic for java.lang.StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) 8992 // Return the array length if every element in array can be encoded, 8993 // otherwise, the index of first non-latin1 (> 0xff) character. 8994 // @IntrinsicCandidate 8995 // public static int compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) { 8996 // for (int i = 0; i < len; i++) { 8997 // char c = src[srcOff]; 8998 // if (c > 0xff) { 8999 // return i; // return index of non-latin1 char 9000 // } 9001 // dst[dstOff] = (byte)c; 9002 // srcOff++; 9003 // dstOff++; 9004 // } 9005 // return len; 9006 // } 9007 void MacroAssembler::char_array_compress(Register src, Register dst, Register len, 9008 XMMRegister tmp1Reg, XMMRegister tmp2Reg, 9009 XMMRegister tmp3Reg, XMMRegister tmp4Reg, 9010 Register tmp5, Register result, KRegister mask1, KRegister mask2) { 9011 Label copy_chars_loop, done, reset_sp, copy_tail; 9012 9013 // rsi: src 9014 // rdi: dst 9015 // rdx: len 9016 // rcx: tmp5 9017 // rax: result 9018 9019 // rsi holds start addr of source char[] to be compressed 9020 // rdi holds start addr of destination byte[] 9021 // rdx holds length 9022 9023 assert(len != result, ""); 9024 9025 // save length for return 9026 movl(result, len); 9027 9028 if ((AVX3Threshold == 0) && (UseAVX > 2) && // AVX512 9029 VM_Version::supports_avx512vlbw() && 9030 VM_Version::supports_bmi2()) { 9031 9032 Label copy_32_loop, copy_loop_tail, below_threshold, reset_for_copy_tail; 9033 9034 // alignment 9035 Label post_alignment; 9036 9037 // if length of the string is less than 32, handle it the old fashioned way 9038 testl(len, -32); 9039 jcc(Assembler::zero, below_threshold); 9040 9041 // First check whether a character is compressible ( <= 0xFF). 9042 // Create mask to test for Unicode chars inside zmm vector 9043 movl(tmp5, 0x00FF); 9044 evpbroadcastw(tmp2Reg, tmp5, Assembler::AVX_512bit); 9045 9046 testl(len, -64); 9047 jccb(Assembler::zero, post_alignment); 9048 9049 movl(tmp5, dst); 9050 andl(tmp5, (32 - 1)); 9051 negl(tmp5); 9052 andl(tmp5, (32 - 1)); 9053 9054 // bail out when there is nothing to be done 9055 testl(tmp5, 0xFFFFFFFF); 9056 jccb(Assembler::zero, post_alignment); 9057 9058 // ~(~0 << len), where len is the # of remaining elements to process 9059 movl(len, 0xFFFFFFFF); 9060 shlxl(len, len, tmp5); 9061 notl(len); 9062 kmovdl(mask2, len); 9063 movl(len, result); 9064 9065 evmovdquw(tmp1Reg, mask2, Address(src, 0), /*merge*/ false, Assembler::AVX_512bit); 9066 evpcmpw(mask1, mask2, tmp1Reg, tmp2Reg, Assembler::le, /*signed*/ false, Assembler::AVX_512bit); 9067 ktestd(mask1, mask2); 9068 jcc(Assembler::carryClear, copy_tail); 9069 9070 evpmovwb(Address(dst, 0), mask2, tmp1Reg, Assembler::AVX_512bit); 9071 9072 addptr(src, tmp5); 9073 addptr(src, tmp5); 9074 addptr(dst, tmp5); 9075 subl(len, tmp5); 9076 9077 bind(post_alignment); 9078 // end of alignment 9079 9080 movl(tmp5, len); 9081 andl(tmp5, (32 - 1)); // tail count (in chars) 9082 andl(len, ~(32 - 1)); // vector count (in chars) 9083 jccb(Assembler::zero, copy_loop_tail); 9084 9085 lea(src, Address(src, len, Address::times_2)); 9086 lea(dst, Address(dst, len, Address::times_1)); 9087 negptr(len); 9088 9089 bind(copy_32_loop); 9090 evmovdquw(tmp1Reg, Address(src, len, Address::times_2), Assembler::AVX_512bit); 9091 evpcmpuw(mask1, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit); 9092 kortestdl(mask1, mask1); 9093 jccb(Assembler::carryClear, reset_for_copy_tail); 9094 9095 // All elements in current processed chunk are valid candidates for 9096 // compression. Write a truncated byte elements to the memory. 9097 evpmovwb(Address(dst, len, Address::times_1), tmp1Reg, Assembler::AVX_512bit); 9098 addptr(len, 32); 9099 jccb(Assembler::notZero, copy_32_loop); 9100 9101 bind(copy_loop_tail); 9102 // bail out when there is nothing to be done 9103 testl(tmp5, 0xFFFFFFFF); 9104 jcc(Assembler::zero, done); 9105 9106 movl(len, tmp5); 9107 9108 // ~(~0 << len), where len is the # of remaining elements to process 9109 movl(tmp5, 0xFFFFFFFF); 9110 shlxl(tmp5, tmp5, len); 9111 notl(tmp5); 9112 9113 kmovdl(mask2, tmp5); 9114 9115 evmovdquw(tmp1Reg, mask2, Address(src, 0), /*merge*/ false, Assembler::AVX_512bit); 9116 evpcmpw(mask1, mask2, tmp1Reg, tmp2Reg, Assembler::le, /*signed*/ false, Assembler::AVX_512bit); 9117 ktestd(mask1, mask2); 9118 jcc(Assembler::carryClear, copy_tail); 9119 9120 evpmovwb(Address(dst, 0), mask2, tmp1Reg, Assembler::AVX_512bit); 9121 jmp(done); 9122 9123 bind(reset_for_copy_tail); 9124 lea(src, Address(src, tmp5, Address::times_2)); 9125 lea(dst, Address(dst, tmp5, Address::times_1)); 9126 subptr(len, tmp5); 9127 jmp(copy_chars_loop); 9128 9129 bind(below_threshold); 9130 } 9131 9132 if (UseSSE42Intrinsics) { 9133 Label copy_32_loop, copy_16, copy_tail_sse, reset_for_copy_tail; 9134 9135 // vectored compression 9136 testl(len, 0xfffffff8); 9137 jcc(Assembler::zero, copy_tail); 9138 9139 movl(tmp5, 0xff00ff00); // create mask to test for Unicode chars in vectors 9140 movdl(tmp1Reg, tmp5); 9141 pshufd(tmp1Reg, tmp1Reg, 0); // store Unicode mask in tmp1Reg 9142 9143 andl(len, 0xfffffff0); 9144 jccb(Assembler::zero, copy_16); 9145 9146 // compress 16 chars per iter 9147 pxor(tmp4Reg, tmp4Reg); 9148 9149 lea(src, Address(src, len, Address::times_2)); 9150 lea(dst, Address(dst, len, Address::times_1)); 9151 negptr(len); 9152 9153 bind(copy_32_loop); 9154 movdqu(tmp2Reg, Address(src, len, Address::times_2)); // load 1st 8 characters 9155 por(tmp4Reg, tmp2Reg); 9156 movdqu(tmp3Reg, Address(src, len, Address::times_2, 16)); // load next 8 characters 9157 por(tmp4Reg, tmp3Reg); 9158 ptest(tmp4Reg, tmp1Reg); // check for Unicode chars in next vector 9159 jccb(Assembler::notZero, reset_for_copy_tail); 9160 packuswb(tmp2Reg, tmp3Reg); // only ASCII chars; compress each to 1 byte 9161 movdqu(Address(dst, len, Address::times_1), tmp2Reg); 9162 addptr(len, 16); 9163 jccb(Assembler::notZero, copy_32_loop); 9164 9165 // compress next vector of 8 chars (if any) 9166 bind(copy_16); 9167 // len = 0 9168 testl(result, 0x00000008); // check if there's a block of 8 chars to compress 9169 jccb(Assembler::zero, copy_tail_sse); 9170 9171 pxor(tmp3Reg, tmp3Reg); 9172 9173 movdqu(tmp2Reg, Address(src, 0)); 9174 ptest(tmp2Reg, tmp1Reg); // check for Unicode chars in vector 9175 jccb(Assembler::notZero, reset_for_copy_tail); 9176 packuswb(tmp2Reg, tmp3Reg); // only LATIN1 chars; compress each to 1 byte 9177 movq(Address(dst, 0), tmp2Reg); 9178 addptr(src, 16); 9179 addptr(dst, 8); 9180 jmpb(copy_tail_sse); 9181 9182 bind(reset_for_copy_tail); 9183 movl(tmp5, result); 9184 andl(tmp5, 0x0000000f); 9185 lea(src, Address(src, tmp5, Address::times_2)); 9186 lea(dst, Address(dst, tmp5, Address::times_1)); 9187 subptr(len, tmp5); 9188 jmpb(copy_chars_loop); 9189 9190 bind(copy_tail_sse); 9191 movl(len, result); 9192 andl(len, 0x00000007); // tail count (in chars) 9193 } 9194 // compress 1 char per iter 9195 bind(copy_tail); 9196 testl(len, len); 9197 jccb(Assembler::zero, done); 9198 lea(src, Address(src, len, Address::times_2)); 9199 lea(dst, Address(dst, len, Address::times_1)); 9200 negptr(len); 9201 9202 bind(copy_chars_loop); 9203 load_unsigned_short(tmp5, Address(src, len, Address::times_2)); 9204 testl(tmp5, 0xff00); // check if Unicode char 9205 jccb(Assembler::notZero, reset_sp); 9206 movb(Address(dst, len, Address::times_1), tmp5); // ASCII char; compress to 1 byte 9207 increment(len); 9208 jccb(Assembler::notZero, copy_chars_loop); 9209 9210 // add len then return (len will be zero if compress succeeded, otherwise negative) 9211 bind(reset_sp); 9212 addl(result, len); 9213 9214 bind(done); 9215 } 9216 9217 // Inflate byte[] array to char[]. 9218 // ..\jdk\src\java.base\share\classes\java\lang\StringLatin1.java 9219 // @IntrinsicCandidate 9220 // private static void inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) { 9221 // for (int i = 0; i < len; i++) { 9222 // dst[dstOff++] = (char)(src[srcOff++] & 0xff); 9223 // } 9224 // } 9225 void MacroAssembler::byte_array_inflate(Register src, Register dst, Register len, 9226 XMMRegister tmp1, Register tmp2, KRegister mask) { 9227 Label copy_chars_loop, done, below_threshold, avx3_threshold; 9228 // rsi: src 9229 // rdi: dst 9230 // rdx: len 9231 // rcx: tmp2 9232 9233 // rsi holds start addr of source byte[] to be inflated 9234 // rdi holds start addr of destination char[] 9235 // rdx holds length 9236 assert_different_registers(src, dst, len, tmp2); 9237 movl(tmp2, len); 9238 if ((UseAVX > 2) && // AVX512 9239 VM_Version::supports_avx512vlbw() && 9240 VM_Version::supports_bmi2()) { 9241 9242 Label copy_32_loop, copy_tail; 9243 Register tmp3_aliased = len; 9244 9245 // if length of the string is less than 16, handle it in an old fashioned way 9246 testl(len, -16); 9247 jcc(Assembler::zero, below_threshold); 9248 9249 testl(len, -1 * AVX3Threshold); 9250 jcc(Assembler::zero, avx3_threshold); 9251 9252 // In order to use only one arithmetic operation for the main loop we use 9253 // this pre-calculation 9254 andl(tmp2, (32 - 1)); // tail count (in chars), 32 element wide loop 9255 andl(len, -32); // vector count 9256 jccb(Assembler::zero, copy_tail); 9257 9258 lea(src, Address(src, len, Address::times_1)); 9259 lea(dst, Address(dst, len, Address::times_2)); 9260 negptr(len); 9261 9262 9263 // inflate 32 chars per iter 9264 bind(copy_32_loop); 9265 vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_512bit); 9266 evmovdquw(Address(dst, len, Address::times_2), tmp1, Assembler::AVX_512bit); 9267 addptr(len, 32); 9268 jcc(Assembler::notZero, copy_32_loop); 9269 9270 bind(copy_tail); 9271 // bail out when there is nothing to be done 9272 testl(tmp2, -1); // we don't destroy the contents of tmp2 here 9273 jcc(Assembler::zero, done); 9274 9275 // ~(~0 << length), where length is the # of remaining elements to process 9276 movl(tmp3_aliased, -1); 9277 shlxl(tmp3_aliased, tmp3_aliased, tmp2); 9278 notl(tmp3_aliased); 9279 kmovdl(mask, tmp3_aliased); 9280 evpmovzxbw(tmp1, mask, Address(src, 0), Assembler::AVX_512bit); 9281 evmovdquw(Address(dst, 0), mask, tmp1, /*merge*/ true, Assembler::AVX_512bit); 9282 9283 jmp(done); 9284 bind(avx3_threshold); 9285 } 9286 if (UseSSE42Intrinsics) { 9287 Label copy_16_loop, copy_8_loop, copy_bytes, copy_new_tail, copy_tail; 9288 9289 if (UseAVX > 1) { 9290 andl(tmp2, (16 - 1)); 9291 andl(len, -16); 9292 jccb(Assembler::zero, copy_new_tail); 9293 } else { 9294 andl(tmp2, 0x00000007); // tail count (in chars) 9295 andl(len, 0xfffffff8); // vector count (in chars) 9296 jccb(Assembler::zero, copy_tail); 9297 } 9298 9299 // vectored inflation 9300 lea(src, Address(src, len, Address::times_1)); 9301 lea(dst, Address(dst, len, Address::times_2)); 9302 negptr(len); 9303 9304 if (UseAVX > 1) { 9305 bind(copy_16_loop); 9306 vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_256bit); 9307 vmovdqu(Address(dst, len, Address::times_2), tmp1); 9308 addptr(len, 16); 9309 jcc(Assembler::notZero, copy_16_loop); 9310 9311 bind(below_threshold); 9312 bind(copy_new_tail); 9313 movl(len, tmp2); 9314 andl(tmp2, 0x00000007); 9315 andl(len, 0xFFFFFFF8); 9316 jccb(Assembler::zero, copy_tail); 9317 9318 pmovzxbw(tmp1, Address(src, 0)); 9319 movdqu(Address(dst, 0), tmp1); 9320 addptr(src, 8); 9321 addptr(dst, 2 * 8); 9322 9323 jmp(copy_tail, true); 9324 } 9325 9326 // inflate 8 chars per iter 9327 bind(copy_8_loop); 9328 pmovzxbw(tmp1, Address(src, len, Address::times_1)); // unpack to 8 words 9329 movdqu(Address(dst, len, Address::times_2), tmp1); 9330 addptr(len, 8); 9331 jcc(Assembler::notZero, copy_8_loop); 9332 9333 bind(copy_tail); 9334 movl(len, tmp2); 9335 9336 cmpl(len, 4); 9337 jccb(Assembler::less, copy_bytes); 9338 9339 movdl(tmp1, Address(src, 0)); // load 4 byte chars 9340 pmovzxbw(tmp1, tmp1); 9341 movq(Address(dst, 0), tmp1); 9342 subptr(len, 4); 9343 addptr(src, 4); 9344 addptr(dst, 8); 9345 9346 bind(copy_bytes); 9347 } else { 9348 bind(below_threshold); 9349 } 9350 9351 testl(len, len); 9352 jccb(Assembler::zero, done); 9353 lea(src, Address(src, len, Address::times_1)); 9354 lea(dst, Address(dst, len, Address::times_2)); 9355 negptr(len); 9356 9357 // inflate 1 char per iter 9358 bind(copy_chars_loop); 9359 load_unsigned_byte(tmp2, Address(src, len, Address::times_1)); // load byte char 9360 movw(Address(dst, len, Address::times_2), tmp2); // inflate byte char to word 9361 increment(len); 9362 jcc(Assembler::notZero, copy_chars_loop); 9363 9364 bind(done); 9365 } 9366 9367 9368 void MacroAssembler::evmovdqu(BasicType type, KRegister kmask, XMMRegister dst, Address src, bool merge, int vector_len) { 9369 switch(type) { 9370 case T_BYTE: 9371 case T_BOOLEAN: 9372 evmovdqub(dst, kmask, src, merge, vector_len); 9373 break; 9374 case T_CHAR: 9375 case T_SHORT: 9376 evmovdquw(dst, kmask, src, merge, vector_len); 9377 break; 9378 case T_INT: 9379 case T_FLOAT: 9380 evmovdqul(dst, kmask, src, merge, vector_len); 9381 break; 9382 case T_LONG: 9383 case T_DOUBLE: 9384 evmovdquq(dst, kmask, src, merge, vector_len); 9385 break; 9386 default: 9387 fatal("Unexpected type argument %s", type2name(type)); 9388 break; 9389 } 9390 } 9391 9392 void MacroAssembler::evmovdqu(BasicType type, KRegister kmask, Address dst, XMMRegister src, bool merge, int vector_len) { 9393 switch(type) { 9394 case T_BYTE: 9395 case T_BOOLEAN: 9396 evmovdqub(dst, kmask, src, merge, vector_len); 9397 break; 9398 case T_CHAR: 9399 case T_SHORT: 9400 evmovdquw(dst, kmask, src, merge, vector_len); 9401 break; 9402 case T_INT: 9403 case T_FLOAT: 9404 evmovdqul(dst, kmask, src, merge, vector_len); 9405 break; 9406 case T_LONG: 9407 case T_DOUBLE: 9408 evmovdquq(dst, kmask, src, merge, vector_len); 9409 break; 9410 default: 9411 fatal("Unexpected type argument %s", type2name(type)); 9412 break; 9413 } 9414 } 9415 9416 void MacroAssembler::knot(uint masklen, KRegister dst, KRegister src, KRegister ktmp, Register rtmp) { 9417 switch(masklen) { 9418 case 2: 9419 knotbl(dst, src); 9420 movl(rtmp, 3); 9421 kmovbl(ktmp, rtmp); 9422 kandbl(dst, ktmp, dst); 9423 break; 9424 case 4: 9425 knotbl(dst, src); 9426 movl(rtmp, 15); 9427 kmovbl(ktmp, rtmp); 9428 kandbl(dst, ktmp, dst); 9429 break; 9430 case 8: 9431 knotbl(dst, src); 9432 break; 9433 case 16: 9434 knotwl(dst, src); 9435 break; 9436 case 32: 9437 knotdl(dst, src); 9438 break; 9439 case 64: 9440 knotql(dst, src); 9441 break; 9442 default: 9443 fatal("Unexpected vector length %d", masklen); 9444 break; 9445 } 9446 } 9447 9448 void MacroAssembler::kand(BasicType type, KRegister dst, KRegister src1, KRegister src2) { 9449 switch(type) { 9450 case T_BOOLEAN: 9451 case T_BYTE: 9452 kandbl(dst, src1, src2); 9453 break; 9454 case T_CHAR: 9455 case T_SHORT: 9456 kandwl(dst, src1, src2); 9457 break; 9458 case T_INT: 9459 case T_FLOAT: 9460 kanddl(dst, src1, src2); 9461 break; 9462 case T_LONG: 9463 case T_DOUBLE: 9464 kandql(dst, src1, src2); 9465 break; 9466 default: 9467 fatal("Unexpected type argument %s", type2name(type)); 9468 break; 9469 } 9470 } 9471 9472 void MacroAssembler::kor(BasicType type, KRegister dst, KRegister src1, KRegister src2) { 9473 switch(type) { 9474 case T_BOOLEAN: 9475 case T_BYTE: 9476 korbl(dst, src1, src2); 9477 break; 9478 case T_CHAR: 9479 case T_SHORT: 9480 korwl(dst, src1, src2); 9481 break; 9482 case T_INT: 9483 case T_FLOAT: 9484 kordl(dst, src1, src2); 9485 break; 9486 case T_LONG: 9487 case T_DOUBLE: 9488 korql(dst, src1, src2); 9489 break; 9490 default: 9491 fatal("Unexpected type argument %s", type2name(type)); 9492 break; 9493 } 9494 } 9495 9496 void MacroAssembler::kxor(BasicType type, KRegister dst, KRegister src1, KRegister src2) { 9497 switch(type) { 9498 case T_BOOLEAN: 9499 case T_BYTE: 9500 kxorbl(dst, src1, src2); 9501 break; 9502 case T_CHAR: 9503 case T_SHORT: 9504 kxorwl(dst, src1, src2); 9505 break; 9506 case T_INT: 9507 case T_FLOAT: 9508 kxordl(dst, src1, src2); 9509 break; 9510 case T_LONG: 9511 case T_DOUBLE: 9512 kxorql(dst, src1, src2); 9513 break; 9514 default: 9515 fatal("Unexpected type argument %s", type2name(type)); 9516 break; 9517 } 9518 } 9519 9520 void MacroAssembler::evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9521 switch(type) { 9522 case T_BOOLEAN: 9523 case T_BYTE: 9524 evpermb(dst, mask, nds, src, merge, vector_len); break; 9525 case T_CHAR: 9526 case T_SHORT: 9527 evpermw(dst, mask, nds, src, merge, vector_len); break; 9528 case T_INT: 9529 case T_FLOAT: 9530 evpermd(dst, mask, nds, src, merge, vector_len); break; 9531 case T_LONG: 9532 case T_DOUBLE: 9533 evpermq(dst, mask, nds, src, merge, vector_len); break; 9534 default: 9535 fatal("Unexpected type argument %s", type2name(type)); break; 9536 } 9537 } 9538 9539 void MacroAssembler::evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9540 switch(type) { 9541 case T_BOOLEAN: 9542 case T_BYTE: 9543 evpermb(dst, mask, nds, src, merge, vector_len); break; 9544 case T_CHAR: 9545 case T_SHORT: 9546 evpermw(dst, mask, nds, src, merge, vector_len); break; 9547 case T_INT: 9548 case T_FLOAT: 9549 evpermd(dst, mask, nds, src, merge, vector_len); break; 9550 case T_LONG: 9551 case T_DOUBLE: 9552 evpermq(dst, mask, nds, src, merge, vector_len); break; 9553 default: 9554 fatal("Unexpected type argument %s", type2name(type)); break; 9555 } 9556 } 9557 9558 void MacroAssembler::evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9559 switch(type) { 9560 case T_BYTE: 9561 evpminsb(dst, mask, nds, src, merge, vector_len); break; 9562 case T_SHORT: 9563 evpminsw(dst, mask, nds, src, merge, vector_len); break; 9564 case T_INT: 9565 evpminsd(dst, mask, nds, src, merge, vector_len); break; 9566 case T_LONG: 9567 evpminsq(dst, mask, nds, src, merge, vector_len); break; 9568 default: 9569 fatal("Unexpected type argument %s", type2name(type)); break; 9570 } 9571 } 9572 9573 void MacroAssembler::evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9574 switch(type) { 9575 case T_BYTE: 9576 evpmaxsb(dst, mask, nds, src, merge, vector_len); break; 9577 case T_SHORT: 9578 evpmaxsw(dst, mask, nds, src, merge, vector_len); break; 9579 case T_INT: 9580 evpmaxsd(dst, mask, nds, src, merge, vector_len); break; 9581 case T_LONG: 9582 evpmaxsq(dst, mask, nds, src, merge, vector_len); break; 9583 default: 9584 fatal("Unexpected type argument %s", type2name(type)); break; 9585 } 9586 } 9587 9588 void MacroAssembler::evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9589 switch(type) { 9590 case T_BYTE: 9591 evpminsb(dst, mask, nds, src, merge, vector_len); break; 9592 case T_SHORT: 9593 evpminsw(dst, mask, nds, src, merge, vector_len); break; 9594 case T_INT: 9595 evpminsd(dst, mask, nds, src, merge, vector_len); break; 9596 case T_LONG: 9597 evpminsq(dst, mask, nds, src, merge, vector_len); break; 9598 default: 9599 fatal("Unexpected type argument %s", type2name(type)); break; 9600 } 9601 } 9602 9603 void MacroAssembler::evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9604 switch(type) { 9605 case T_BYTE: 9606 evpmaxsb(dst, mask, nds, src, merge, vector_len); break; 9607 case T_SHORT: 9608 evpmaxsw(dst, mask, nds, src, merge, vector_len); break; 9609 case T_INT: 9610 evpmaxsd(dst, mask, nds, src, merge, vector_len); break; 9611 case T_LONG: 9612 evpmaxsq(dst, mask, nds, src, merge, vector_len); break; 9613 default: 9614 fatal("Unexpected type argument %s", type2name(type)); break; 9615 } 9616 } 9617 9618 void MacroAssembler::evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9619 switch(type) { 9620 case T_INT: 9621 evpxord(dst, mask, nds, src, merge, vector_len); break; 9622 case T_LONG: 9623 evpxorq(dst, mask, nds, src, merge, vector_len); break; 9624 default: 9625 fatal("Unexpected type argument %s", type2name(type)); break; 9626 } 9627 } 9628 9629 void MacroAssembler::evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9630 switch(type) { 9631 case T_INT: 9632 evpxord(dst, mask, nds, src, merge, vector_len); break; 9633 case T_LONG: 9634 evpxorq(dst, mask, nds, src, merge, vector_len); break; 9635 default: 9636 fatal("Unexpected type argument %s", type2name(type)); break; 9637 } 9638 } 9639 9640 void MacroAssembler::evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9641 switch(type) { 9642 case T_INT: 9643 Assembler::evpord(dst, mask, nds, src, merge, vector_len); break; 9644 case T_LONG: 9645 evporq(dst, mask, nds, src, merge, vector_len); break; 9646 default: 9647 fatal("Unexpected type argument %s", type2name(type)); break; 9648 } 9649 } 9650 9651 void MacroAssembler::evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9652 switch(type) { 9653 case T_INT: 9654 Assembler::evpord(dst, mask, nds, src, merge, vector_len); break; 9655 case T_LONG: 9656 evporq(dst, mask, nds, src, merge, vector_len); break; 9657 default: 9658 fatal("Unexpected type argument %s", type2name(type)); break; 9659 } 9660 } 9661 9662 void MacroAssembler::evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9663 switch(type) { 9664 case T_INT: 9665 evpandd(dst, mask, nds, src, merge, vector_len); break; 9666 case T_LONG: 9667 evpandq(dst, mask, nds, src, merge, vector_len); break; 9668 default: 9669 fatal("Unexpected type argument %s", type2name(type)); break; 9670 } 9671 } 9672 9673 void MacroAssembler::evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9674 switch(type) { 9675 case T_INT: 9676 evpandd(dst, mask, nds, src, merge, vector_len); break; 9677 case T_LONG: 9678 evpandq(dst, mask, nds, src, merge, vector_len); break; 9679 default: 9680 fatal("Unexpected type argument %s", type2name(type)); break; 9681 } 9682 } 9683 9684 void MacroAssembler::kortest(uint masklen, KRegister src1, KRegister src2) { 9685 switch(masklen) { 9686 case 8: 9687 kortestbl(src1, src2); 9688 break; 9689 case 16: 9690 kortestwl(src1, src2); 9691 break; 9692 case 32: 9693 kortestdl(src1, src2); 9694 break; 9695 case 64: 9696 kortestql(src1, src2); 9697 break; 9698 default: 9699 fatal("Unexpected mask length %d", masklen); 9700 break; 9701 } 9702 } 9703 9704 9705 void MacroAssembler::ktest(uint masklen, KRegister src1, KRegister src2) { 9706 switch(masklen) { 9707 case 8: 9708 ktestbl(src1, src2); 9709 break; 9710 case 16: 9711 ktestwl(src1, src2); 9712 break; 9713 case 32: 9714 ktestdl(src1, src2); 9715 break; 9716 case 64: 9717 ktestql(src1, src2); 9718 break; 9719 default: 9720 fatal("Unexpected mask length %d", masklen); 9721 break; 9722 } 9723 } 9724 9725 void MacroAssembler::evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc) { 9726 switch(type) { 9727 case T_INT: 9728 evprold(dst, mask, src, shift, merge, vlen_enc); break; 9729 case T_LONG: 9730 evprolq(dst, mask, src, shift, merge, vlen_enc); break; 9731 default: 9732 fatal("Unexpected type argument %s", type2name(type)); break; 9733 break; 9734 } 9735 } 9736 9737 void MacroAssembler::evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc) { 9738 switch(type) { 9739 case T_INT: 9740 evprord(dst, mask, src, shift, merge, vlen_enc); break; 9741 case T_LONG: 9742 evprorq(dst, mask, src, shift, merge, vlen_enc); break; 9743 default: 9744 fatal("Unexpected type argument %s", type2name(type)); break; 9745 } 9746 } 9747 9748 void MacroAssembler::evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc) { 9749 switch(type) { 9750 case T_INT: 9751 evprolvd(dst, mask, src1, src2, merge, vlen_enc); break; 9752 case T_LONG: 9753 evprolvq(dst, mask, src1, src2, merge, vlen_enc); break; 9754 default: 9755 fatal("Unexpected type argument %s", type2name(type)); break; 9756 } 9757 } 9758 9759 void MacroAssembler::evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc) { 9760 switch(type) { 9761 case T_INT: 9762 evprorvd(dst, mask, src1, src2, merge, vlen_enc); break; 9763 case T_LONG: 9764 evprorvq(dst, mask, src1, src2, merge, vlen_enc); break; 9765 default: 9766 fatal("Unexpected type argument %s", type2name(type)); break; 9767 } 9768 } 9769 9770 void MacroAssembler::evpandq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 9771 assert(rscratch != noreg || always_reachable(src), "missing"); 9772 9773 if (reachable(src)) { 9774 evpandq(dst, nds, as_Address(src), vector_len); 9775 } else { 9776 lea(rscratch, src); 9777 evpandq(dst, nds, Address(rscratch, 0), vector_len); 9778 } 9779 } 9780 9781 void MacroAssembler::evpaddq(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, bool merge, int vector_len, Register rscratch) { 9782 assert(rscratch != noreg || always_reachable(src), "missing"); 9783 9784 if (reachable(src)) { 9785 Assembler::evpaddq(dst, mask, nds, as_Address(src), merge, vector_len); 9786 } else { 9787 lea(rscratch, src); 9788 Assembler::evpaddq(dst, mask, nds, Address(rscratch, 0), merge, vector_len); 9789 } 9790 } 9791 9792 void MacroAssembler::evporq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 9793 assert(rscratch != noreg || always_reachable(src), "missing"); 9794 9795 if (reachable(src)) { 9796 evporq(dst, nds, as_Address(src), vector_len); 9797 } else { 9798 lea(rscratch, src); 9799 evporq(dst, nds, Address(rscratch, 0), vector_len); 9800 } 9801 } 9802 9803 void MacroAssembler::vpshufb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 9804 assert(rscratch != noreg || always_reachable(src), "missing"); 9805 9806 if (reachable(src)) { 9807 vpshufb(dst, nds, as_Address(src), vector_len); 9808 } else { 9809 lea(rscratch, src); 9810 vpshufb(dst, nds, Address(rscratch, 0), vector_len); 9811 } 9812 } 9813 9814 void MacroAssembler::vpor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 9815 assert(rscratch != noreg || always_reachable(src), "missing"); 9816 9817 if (reachable(src)) { 9818 Assembler::vpor(dst, nds, as_Address(src), vector_len); 9819 } else { 9820 lea(rscratch, src); 9821 Assembler::vpor(dst, nds, Address(rscratch, 0), vector_len); 9822 } 9823 } 9824 9825 void MacroAssembler::vpternlogq(XMMRegister dst, int imm8, XMMRegister src2, AddressLiteral src3, int vector_len, Register rscratch) { 9826 assert(rscratch != noreg || always_reachable(src3), "missing"); 9827 9828 if (reachable(src3)) { 9829 vpternlogq(dst, imm8, src2, as_Address(src3), vector_len); 9830 } else { 9831 lea(rscratch, src3); 9832 vpternlogq(dst, imm8, src2, Address(rscratch, 0), vector_len); 9833 } 9834 } 9835 9836 #if COMPILER2_OR_JVMCI 9837 9838 void MacroAssembler::fill_masked(BasicType bt, Address dst, XMMRegister xmm, KRegister mask, 9839 Register length, Register temp, int vec_enc) { 9840 // Computing mask for predicated vector store. 9841 movptr(temp, -1); 9842 bzhiq(temp, temp, length); 9843 kmov(mask, temp); 9844 evmovdqu(bt, mask, dst, xmm, true, vec_enc); 9845 } 9846 9847 // Set memory operation for length "less than" 64 bytes. 9848 void MacroAssembler::fill64_masked(uint shift, Register dst, int disp, 9849 XMMRegister xmm, KRegister mask, Register length, 9850 Register temp, bool use64byteVector) { 9851 assert(MaxVectorSize >= 32, "vector length should be >= 32"); 9852 const BasicType type[] = { T_BYTE, T_SHORT, T_INT, T_LONG}; 9853 if (!use64byteVector) { 9854 fill32(dst, disp, xmm); 9855 subptr(length, 32 >> shift); 9856 fill32_masked(shift, dst, disp + 32, xmm, mask, length, temp); 9857 } else { 9858 assert(MaxVectorSize == 64, "vector length != 64"); 9859 fill_masked(type[shift], Address(dst, disp), xmm, mask, length, temp, Assembler::AVX_512bit); 9860 } 9861 } 9862 9863 9864 void MacroAssembler::fill32_masked(uint shift, Register dst, int disp, 9865 XMMRegister xmm, KRegister mask, Register length, 9866 Register temp) { 9867 assert(MaxVectorSize >= 32, "vector length should be >= 32"); 9868 const BasicType type[] = { T_BYTE, T_SHORT, T_INT, T_LONG}; 9869 fill_masked(type[shift], Address(dst, disp), xmm, mask, length, temp, Assembler::AVX_256bit); 9870 } 9871 9872 9873 void MacroAssembler::fill32(Address dst, XMMRegister xmm) { 9874 assert(MaxVectorSize >= 32, "vector length should be >= 32"); 9875 vmovdqu(dst, xmm); 9876 } 9877 9878 void MacroAssembler::fill32(Register dst, int disp, XMMRegister xmm) { 9879 fill32(Address(dst, disp), xmm); 9880 } 9881 9882 void MacroAssembler::fill64(Address dst, XMMRegister xmm, bool use64byteVector) { 9883 assert(MaxVectorSize >= 32, "vector length should be >= 32"); 9884 if (!use64byteVector) { 9885 fill32(dst, xmm); 9886 fill32(dst.plus_disp(32), xmm); 9887 } else { 9888 evmovdquq(dst, xmm, Assembler::AVX_512bit); 9889 } 9890 } 9891 9892 void MacroAssembler::fill64(Register dst, int disp, XMMRegister xmm, bool use64byteVector) { 9893 fill64(Address(dst, disp), xmm, use64byteVector); 9894 } 9895 9896 #ifdef _LP64 9897 void MacroAssembler::generate_fill_avx3(BasicType type, Register to, Register value, 9898 Register count, Register rtmp, XMMRegister xtmp) { 9899 Label L_exit; 9900 Label L_fill_start; 9901 Label L_fill_64_bytes; 9902 Label L_fill_96_bytes; 9903 Label L_fill_128_bytes; 9904 Label L_fill_128_bytes_loop; 9905 Label L_fill_128_loop_header; 9906 Label L_fill_128_bytes_loop_header; 9907 Label L_fill_128_bytes_loop_pre_header; 9908 Label L_fill_zmm_sequence; 9909 9910 int shift = -1; 9911 int avx3threshold = VM_Version::avx3_threshold(); 9912 switch(type) { 9913 case T_BYTE: shift = 0; 9914 break; 9915 case T_SHORT: shift = 1; 9916 break; 9917 case T_INT: shift = 2; 9918 break; 9919 /* Uncomment when LONG fill stubs are supported. 9920 case T_LONG: shift = 3; 9921 break; 9922 */ 9923 default: 9924 fatal("Unhandled type: %s\n", type2name(type)); 9925 } 9926 9927 if ((avx3threshold != 0) || (MaxVectorSize == 32)) { 9928 9929 if (MaxVectorSize == 64) { 9930 cmpq(count, avx3threshold >> shift); 9931 jcc(Assembler::greater, L_fill_zmm_sequence); 9932 } 9933 9934 evpbroadcast(type, xtmp, value, Assembler::AVX_256bit); 9935 9936 bind(L_fill_start); 9937 9938 cmpq(count, 32 >> shift); 9939 jccb(Assembler::greater, L_fill_64_bytes); 9940 fill32_masked(shift, to, 0, xtmp, k2, count, rtmp); 9941 jmp(L_exit); 9942 9943 bind(L_fill_64_bytes); 9944 cmpq(count, 64 >> shift); 9945 jccb(Assembler::greater, L_fill_96_bytes); 9946 fill64_masked(shift, to, 0, xtmp, k2, count, rtmp); 9947 jmp(L_exit); 9948 9949 bind(L_fill_96_bytes); 9950 cmpq(count, 96 >> shift); 9951 jccb(Assembler::greater, L_fill_128_bytes); 9952 fill64(to, 0, xtmp); 9953 subq(count, 64 >> shift); 9954 fill32_masked(shift, to, 64, xtmp, k2, count, rtmp); 9955 jmp(L_exit); 9956 9957 bind(L_fill_128_bytes); 9958 cmpq(count, 128 >> shift); 9959 jccb(Assembler::greater, L_fill_128_bytes_loop_pre_header); 9960 fill64(to, 0, xtmp); 9961 fill32(to, 64, xtmp); 9962 subq(count, 96 >> shift); 9963 fill32_masked(shift, to, 96, xtmp, k2, count, rtmp); 9964 jmp(L_exit); 9965 9966 bind(L_fill_128_bytes_loop_pre_header); 9967 { 9968 mov(rtmp, to); 9969 andq(rtmp, 31); 9970 jccb(Assembler::zero, L_fill_128_bytes_loop_header); 9971 negq(rtmp); 9972 addq(rtmp, 32); 9973 mov64(r8, -1L); 9974 bzhiq(r8, r8, rtmp); 9975 kmovql(k2, r8); 9976 evmovdqu(T_BYTE, k2, Address(to, 0), xtmp, true, Assembler::AVX_256bit); 9977 addq(to, rtmp); 9978 shrq(rtmp, shift); 9979 subq(count, rtmp); 9980 } 9981 9982 cmpq(count, 128 >> shift); 9983 jcc(Assembler::less, L_fill_start); 9984 9985 bind(L_fill_128_bytes_loop_header); 9986 subq(count, 128 >> shift); 9987 9988 align32(); 9989 bind(L_fill_128_bytes_loop); 9990 fill64(to, 0, xtmp); 9991 fill64(to, 64, xtmp); 9992 addq(to, 128); 9993 subq(count, 128 >> shift); 9994 jccb(Assembler::greaterEqual, L_fill_128_bytes_loop); 9995 9996 addq(count, 128 >> shift); 9997 jcc(Assembler::zero, L_exit); 9998 jmp(L_fill_start); 9999 } 10000 10001 if (MaxVectorSize == 64) { 10002 // Sequence using 64 byte ZMM register. 10003 Label L_fill_128_bytes_zmm; 10004 Label L_fill_192_bytes_zmm; 10005 Label L_fill_192_bytes_loop_zmm; 10006 Label L_fill_192_bytes_loop_header_zmm; 10007 Label L_fill_192_bytes_loop_pre_header_zmm; 10008 Label L_fill_start_zmm_sequence; 10009 10010 bind(L_fill_zmm_sequence); 10011 evpbroadcast(type, xtmp, value, Assembler::AVX_512bit); 10012 10013 bind(L_fill_start_zmm_sequence); 10014 cmpq(count, 64 >> shift); 10015 jccb(Assembler::greater, L_fill_128_bytes_zmm); 10016 fill64_masked(shift, to, 0, xtmp, k2, count, rtmp, true); 10017 jmp(L_exit); 10018 10019 bind(L_fill_128_bytes_zmm); 10020 cmpq(count, 128 >> shift); 10021 jccb(Assembler::greater, L_fill_192_bytes_zmm); 10022 fill64(to, 0, xtmp, true); 10023 subq(count, 64 >> shift); 10024 fill64_masked(shift, to, 64, xtmp, k2, count, rtmp, true); 10025 jmp(L_exit); 10026 10027 bind(L_fill_192_bytes_zmm); 10028 cmpq(count, 192 >> shift); 10029 jccb(Assembler::greater, L_fill_192_bytes_loop_pre_header_zmm); 10030 fill64(to, 0, xtmp, true); 10031 fill64(to, 64, xtmp, true); 10032 subq(count, 128 >> shift); 10033 fill64_masked(shift, to, 128, xtmp, k2, count, rtmp, true); 10034 jmp(L_exit); 10035 10036 bind(L_fill_192_bytes_loop_pre_header_zmm); 10037 { 10038 movq(rtmp, to); 10039 andq(rtmp, 63); 10040 jccb(Assembler::zero, L_fill_192_bytes_loop_header_zmm); 10041 negq(rtmp); 10042 addq(rtmp, 64); 10043 mov64(r8, -1L); 10044 bzhiq(r8, r8, rtmp); 10045 kmovql(k2, r8); 10046 evmovdqu(T_BYTE, k2, Address(to, 0), xtmp, true, Assembler::AVX_512bit); 10047 addq(to, rtmp); 10048 shrq(rtmp, shift); 10049 subq(count, rtmp); 10050 } 10051 10052 cmpq(count, 192 >> shift); 10053 jcc(Assembler::less, L_fill_start_zmm_sequence); 10054 10055 bind(L_fill_192_bytes_loop_header_zmm); 10056 subq(count, 192 >> shift); 10057 10058 align32(); 10059 bind(L_fill_192_bytes_loop_zmm); 10060 fill64(to, 0, xtmp, true); 10061 fill64(to, 64, xtmp, true); 10062 fill64(to, 128, xtmp, true); 10063 addq(to, 192); 10064 subq(count, 192 >> shift); 10065 jccb(Assembler::greaterEqual, L_fill_192_bytes_loop_zmm); 10066 10067 addq(count, 192 >> shift); 10068 jcc(Assembler::zero, L_exit); 10069 jmp(L_fill_start_zmm_sequence); 10070 } 10071 bind(L_exit); 10072 } 10073 #endif 10074 #endif //COMPILER2_OR_JVMCI 10075 10076 10077 #ifdef _LP64 10078 void MacroAssembler::convert_f2i(Register dst, XMMRegister src) { 10079 Label done; 10080 cvttss2sil(dst, src); 10081 // Conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub 10082 cmpl(dst, 0x80000000); // float_sign_flip 10083 jccb(Assembler::notEqual, done); 10084 subptr(rsp, 8); 10085 movflt(Address(rsp, 0), src); 10086 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::f2i_fixup()))); 10087 pop(dst); 10088 bind(done); 10089 } 10090 10091 void MacroAssembler::convert_d2i(Register dst, XMMRegister src) { 10092 Label done; 10093 cvttsd2sil(dst, src); 10094 // Conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub 10095 cmpl(dst, 0x80000000); // float_sign_flip 10096 jccb(Assembler::notEqual, done); 10097 subptr(rsp, 8); 10098 movdbl(Address(rsp, 0), src); 10099 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::d2i_fixup()))); 10100 pop(dst); 10101 bind(done); 10102 } 10103 10104 void MacroAssembler::convert_f2l(Register dst, XMMRegister src) { 10105 Label done; 10106 cvttss2siq(dst, src); 10107 cmp64(dst, ExternalAddress((address) StubRoutines::x86::double_sign_flip())); 10108 jccb(Assembler::notEqual, done); 10109 subptr(rsp, 8); 10110 movflt(Address(rsp, 0), src); 10111 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::f2l_fixup()))); 10112 pop(dst); 10113 bind(done); 10114 } 10115 10116 void MacroAssembler::round_float(Register dst, XMMRegister src, Register rtmp, Register rcx) { 10117 // Following code is line by line assembly translation rounding algorithm. 10118 // Please refer to java.lang.Math.round(float) algorithm for details. 10119 const int32_t FloatConsts_EXP_BIT_MASK = 0x7F800000; 10120 const int32_t FloatConsts_SIGNIFICAND_WIDTH = 24; 10121 const int32_t FloatConsts_EXP_BIAS = 127; 10122 const int32_t FloatConsts_SIGNIF_BIT_MASK = 0x007FFFFF; 10123 const int32_t MINUS_32 = 0xFFFFFFE0; 10124 Label L_special_case, L_block1, L_exit; 10125 movl(rtmp, FloatConsts_EXP_BIT_MASK); 10126 movdl(dst, src); 10127 andl(dst, rtmp); 10128 sarl(dst, FloatConsts_SIGNIFICAND_WIDTH - 1); 10129 movl(rtmp, FloatConsts_SIGNIFICAND_WIDTH - 2 + FloatConsts_EXP_BIAS); 10130 subl(rtmp, dst); 10131 movl(rcx, rtmp); 10132 movl(dst, MINUS_32); 10133 testl(rtmp, dst); 10134 jccb(Assembler::notEqual, L_special_case); 10135 movdl(dst, src); 10136 andl(dst, FloatConsts_SIGNIF_BIT_MASK); 10137 orl(dst, FloatConsts_SIGNIF_BIT_MASK + 1); 10138 movdl(rtmp, src); 10139 testl(rtmp, rtmp); 10140 jccb(Assembler::greaterEqual, L_block1); 10141 negl(dst); 10142 bind(L_block1); 10143 sarl(dst); 10144 addl(dst, 0x1); 10145 sarl(dst, 0x1); 10146 jmp(L_exit); 10147 bind(L_special_case); 10148 convert_f2i(dst, src); 10149 bind(L_exit); 10150 } 10151 10152 void MacroAssembler::round_double(Register dst, XMMRegister src, Register rtmp, Register rcx) { 10153 // Following code is line by line assembly translation rounding algorithm. 10154 // Please refer to java.lang.Math.round(double) algorithm for details. 10155 const int64_t DoubleConsts_EXP_BIT_MASK = 0x7FF0000000000000L; 10156 const int64_t DoubleConsts_SIGNIFICAND_WIDTH = 53; 10157 const int64_t DoubleConsts_EXP_BIAS = 1023; 10158 const int64_t DoubleConsts_SIGNIF_BIT_MASK = 0x000FFFFFFFFFFFFFL; 10159 const int64_t MINUS_64 = 0xFFFFFFFFFFFFFFC0L; 10160 Label L_special_case, L_block1, L_exit; 10161 mov64(rtmp, DoubleConsts_EXP_BIT_MASK); 10162 movq(dst, src); 10163 andq(dst, rtmp); 10164 sarq(dst, DoubleConsts_SIGNIFICAND_WIDTH - 1); 10165 mov64(rtmp, DoubleConsts_SIGNIFICAND_WIDTH - 2 + DoubleConsts_EXP_BIAS); 10166 subq(rtmp, dst); 10167 movq(rcx, rtmp); 10168 mov64(dst, MINUS_64); 10169 testq(rtmp, dst); 10170 jccb(Assembler::notEqual, L_special_case); 10171 movq(dst, src); 10172 mov64(rtmp, DoubleConsts_SIGNIF_BIT_MASK); 10173 andq(dst, rtmp); 10174 mov64(rtmp, DoubleConsts_SIGNIF_BIT_MASK + 1); 10175 orq(dst, rtmp); 10176 movq(rtmp, src); 10177 testq(rtmp, rtmp); 10178 jccb(Assembler::greaterEqual, L_block1); 10179 negq(dst); 10180 bind(L_block1); 10181 sarq(dst); 10182 addq(dst, 0x1); 10183 sarq(dst, 0x1); 10184 jmp(L_exit); 10185 bind(L_special_case); 10186 convert_d2l(dst, src); 10187 bind(L_exit); 10188 } 10189 10190 void MacroAssembler::convert_d2l(Register dst, XMMRegister src) { 10191 Label done; 10192 cvttsd2siq(dst, src); 10193 cmp64(dst, ExternalAddress((address) StubRoutines::x86::double_sign_flip())); 10194 jccb(Assembler::notEqual, done); 10195 subptr(rsp, 8); 10196 movdbl(Address(rsp, 0), src); 10197 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::d2l_fixup()))); 10198 pop(dst); 10199 bind(done); 10200 } 10201 10202 void MacroAssembler::cache_wb(Address line) 10203 { 10204 // 64 bit cpus always support clflush 10205 assert(VM_Version::supports_clflush(), "clflush should be available"); 10206 bool optimized = VM_Version::supports_clflushopt(); 10207 bool no_evict = VM_Version::supports_clwb(); 10208 10209 // prefer clwb (writeback without evict) otherwise 10210 // prefer clflushopt (potentially parallel writeback with evict) 10211 // otherwise fallback on clflush (serial writeback with evict) 10212 10213 if (optimized) { 10214 if (no_evict) { 10215 clwb(line); 10216 } else { 10217 clflushopt(line); 10218 } 10219 } else { 10220 // no need for fence when using CLFLUSH 10221 clflush(line); 10222 } 10223 } 10224 10225 void MacroAssembler::cache_wbsync(bool is_pre) 10226 { 10227 assert(VM_Version::supports_clflush(), "clflush should be available"); 10228 bool optimized = VM_Version::supports_clflushopt(); 10229 bool no_evict = VM_Version::supports_clwb(); 10230 10231 // pick the correct implementation 10232 10233 if (!is_pre && (optimized || no_evict)) { 10234 // need an sfence for post flush when using clflushopt or clwb 10235 // otherwise no no need for any synchroniaztion 10236 10237 sfence(); 10238 } 10239 } 10240 10241 #endif // _LP64 10242 10243 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) { 10244 switch (cond) { 10245 // Note some conditions are synonyms for others 10246 case Assembler::zero: return Assembler::notZero; 10247 case Assembler::notZero: return Assembler::zero; 10248 case Assembler::less: return Assembler::greaterEqual; 10249 case Assembler::lessEqual: return Assembler::greater; 10250 case Assembler::greater: return Assembler::lessEqual; 10251 case Assembler::greaterEqual: return Assembler::less; 10252 case Assembler::below: return Assembler::aboveEqual; 10253 case Assembler::belowEqual: return Assembler::above; 10254 case Assembler::above: return Assembler::belowEqual; 10255 case Assembler::aboveEqual: return Assembler::below; 10256 case Assembler::overflow: return Assembler::noOverflow; 10257 case Assembler::noOverflow: return Assembler::overflow; 10258 case Assembler::negative: return Assembler::positive; 10259 case Assembler::positive: return Assembler::negative; 10260 case Assembler::parity: return Assembler::noParity; 10261 case Assembler::noParity: return Assembler::parity; 10262 } 10263 ShouldNotReachHere(); return Assembler::overflow; 10264 } 10265 10266 SkipIfEqual::SkipIfEqual( 10267 MacroAssembler* masm, const bool* flag_addr, bool value, Register rscratch) { 10268 _masm = masm; 10269 _masm->cmp8(ExternalAddress((address)flag_addr), value, rscratch); 10270 _masm->jcc(Assembler::equal, _label); 10271 } 10272 10273 SkipIfEqual::~SkipIfEqual() { 10274 _masm->bind(_label); 10275 } 10276 10277 // 32-bit Windows has its own fast-path implementation 10278 // of get_thread 10279 #if !defined(WIN32) || defined(_LP64) 10280 10281 // This is simply a call to Thread::current() 10282 void MacroAssembler::get_thread(Register thread) { 10283 if (thread != rax) { 10284 push(rax); 10285 } 10286 LP64_ONLY(push(rdi);) 10287 LP64_ONLY(push(rsi);) 10288 push(rdx); 10289 push(rcx); 10290 #ifdef _LP64 10291 push(r8); 10292 push(r9); 10293 push(r10); 10294 push(r11); 10295 #endif 10296 10297 MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, Thread::current), 0); 10298 10299 #ifdef _LP64 10300 pop(r11); 10301 pop(r10); 10302 pop(r9); 10303 pop(r8); 10304 #endif 10305 pop(rcx); 10306 pop(rdx); 10307 LP64_ONLY(pop(rsi);) 10308 LP64_ONLY(pop(rdi);) 10309 if (thread != rax) { 10310 mov(thread, rax); 10311 pop(rax); 10312 } 10313 } 10314 10315 10316 #endif // !WIN32 || _LP64 10317 10318 void MacroAssembler::check_stack_alignment(Register sp, const char* msg, unsigned bias, Register tmp) { 10319 Label L_stack_ok; 10320 if (bias == 0) { 10321 testptr(sp, 2 * wordSize - 1); 10322 } else { 10323 // lea(tmp, Address(rsp, bias); 10324 mov(tmp, sp); 10325 addptr(tmp, bias); 10326 testptr(tmp, 2 * wordSize - 1); 10327 } 10328 jcc(Assembler::equal, L_stack_ok); 10329 block_comment(msg); 10330 stop(msg); 10331 bind(L_stack_ok); 10332 } 10333 10334 // Implements lightweight-locking. 10335 // 10336 // obj: the object to be locked 10337 // reg_rax: rax 10338 // thread: the thread which attempts to lock obj 10339 // tmp: a temporary register 10340 void MacroAssembler::lightweight_lock(Register basic_lock, Register obj, Register reg_rax, Register thread, Register tmp, Label& slow) { 10341 assert(reg_rax == rax, ""); 10342 assert_different_registers(basic_lock, obj, reg_rax, thread, tmp); 10343 10344 Label push; 10345 const Register top = tmp; 10346 10347 // Preload the markWord. It is important that this is the first 10348 // instruction emitted as it is part of C1's null check semantics. 10349 movptr(reg_rax, Address(obj, oopDesc::mark_offset_in_bytes())); 10350 10351 if (UseObjectMonitorTable) { 10352 // Clear cache in case fast locking succeeds. 10353 movptr(Address(basic_lock, BasicObjectLock::lock_offset() + in_ByteSize((BasicLock::object_monitor_cache_offset_in_bytes()))), 0); 10354 } 10355 10356 // Load top. 10357 movl(top, Address(thread, JavaThread::lock_stack_top_offset())); 10358 10359 // Check if the lock-stack is full. 10360 cmpl(top, LockStack::end_offset()); 10361 jcc(Assembler::greaterEqual, slow); 10362 10363 // Check for recursion. 10364 cmpptr(obj, Address(thread, top, Address::times_1, -oopSize)); 10365 jcc(Assembler::equal, push); 10366 10367 // Check header for monitor (0b10). 10368 testptr(reg_rax, markWord::monitor_value); 10369 jcc(Assembler::notZero, slow); 10370 10371 // Try to lock. Transition lock bits 0b01 => 0b00 10372 movptr(tmp, reg_rax); 10373 andptr(tmp, ~(int32_t)markWord::unlocked_value); 10374 orptr(reg_rax, markWord::unlocked_value); 10375 lock(); cmpxchgptr(tmp, Address(obj, oopDesc::mark_offset_in_bytes())); 10376 jcc(Assembler::notEqual, slow); 10377 10378 // Restore top, CAS clobbers register. 10379 movl(top, Address(thread, JavaThread::lock_stack_top_offset())); 10380 10381 bind(push); 10382 // After successful lock, push object on lock-stack. 10383 movptr(Address(thread, top), obj); 10384 incrementl(top, oopSize); 10385 movl(Address(thread, JavaThread::lock_stack_top_offset()), top); 10386 } 10387 10388 // Implements lightweight-unlocking. 10389 // 10390 // obj: the object to be unlocked 10391 // reg_rax: rax 10392 // thread: the thread 10393 // tmp: a temporary register 10394 void MacroAssembler::lightweight_unlock(Register obj, Register reg_rax, Register thread, Register tmp, Label& slow) { 10395 assert(reg_rax == rax, ""); 10396 assert_different_registers(obj, reg_rax, thread, tmp); 10397 10398 Label unlocked, push_and_slow; 10399 const Register top = tmp; 10400 10401 // Check if obj is top of lock-stack. 10402 movl(top, Address(thread, JavaThread::lock_stack_top_offset())); 10403 cmpptr(obj, Address(thread, top, Address::times_1, -oopSize)); 10404 jcc(Assembler::notEqual, slow); 10405 10406 // Pop lock-stack. 10407 DEBUG_ONLY(movptr(Address(thread, top, Address::times_1, -oopSize), 0);) 10408 subl(Address(thread, JavaThread::lock_stack_top_offset()), oopSize); 10409 10410 // Check if recursive. 10411 cmpptr(obj, Address(thread, top, Address::times_1, -2 * oopSize)); 10412 jcc(Assembler::equal, unlocked); 10413 10414 // Not recursive. Check header for monitor (0b10). 10415 movptr(reg_rax, Address(obj, oopDesc::mark_offset_in_bytes())); 10416 testptr(reg_rax, markWord::monitor_value); 10417 jcc(Assembler::notZero, push_and_slow); 10418 10419 #ifdef ASSERT 10420 // Check header not unlocked (0b01). 10421 Label not_unlocked; 10422 testptr(reg_rax, markWord::unlocked_value); 10423 jcc(Assembler::zero, not_unlocked); 10424 stop("lightweight_unlock already unlocked"); 10425 bind(not_unlocked); 10426 #endif 10427 10428 // Try to unlock. Transition lock bits 0b00 => 0b01 10429 movptr(tmp, reg_rax); 10430 orptr(tmp, markWord::unlocked_value); 10431 lock(); cmpxchgptr(tmp, Address(obj, oopDesc::mark_offset_in_bytes())); 10432 jcc(Assembler::equal, unlocked); 10433 10434 bind(push_and_slow); 10435 // Restore lock-stack and handle the unlock in runtime. 10436 #ifdef ASSERT 10437 movl(top, Address(thread, JavaThread::lock_stack_top_offset())); 10438 movptr(Address(thread, top), obj); 10439 #endif 10440 addl(Address(thread, JavaThread::lock_stack_top_offset()), oopSize); 10441 jmp(slow); 10442 10443 bind(unlocked); 10444 }