1 /*
2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "asm/assembler.hpp"
26 #include "asm/assembler.inline.hpp"
27 #include "code/aotCodeCache.hpp"
28 #include "code/compiledIC.hpp"
29 #include "compiler/compiler_globals.hpp"
30 #include "compiler/disassembler.hpp"
31 #include "crc32c.h"
32 #include "gc/shared/barrierSet.hpp"
33 #include "gc/shared/barrierSetAssembler.hpp"
34 #include "gc/shared/collectedHeap.inline.hpp"
35 #include "gc/shared/tlab_globals.hpp"
36 #include "interpreter/bytecodeHistogram.hpp"
37 #include "interpreter/interpreter.hpp"
38 #include "interpreter/interpreterRuntime.hpp"
39 #include "jvm.h"
40 #include "memory/resourceArea.hpp"
41 #include "memory/universe.hpp"
42 #include "oops/accessDecorators.hpp"
43 #include "oops/compressedKlass.inline.hpp"
44 #include "oops/compressedOops.inline.hpp"
45 #include "oops/klass.inline.hpp"
46 #include "prims/methodHandles.hpp"
47 #include "runtime/continuation.hpp"
48 #include "runtime/interfaceSupport.inline.hpp"
49 #include "runtime/javaThread.hpp"
50 #include "runtime/jniHandles.hpp"
51 #include "runtime/objectMonitor.hpp"
52 #include "runtime/os.hpp"
53 #include "runtime/safepoint.hpp"
54 #include "runtime/safepointMechanism.hpp"
55 #include "runtime/sharedRuntime.hpp"
56 #include "runtime/stubRoutines.hpp"
57 #include "utilities/checkedCast.hpp"
58 #include "utilities/macros.hpp"
59
60 #ifdef PRODUCT
61 #define BLOCK_COMMENT(str) /* nothing */
62 #define STOP(error) stop(error)
63 #else
64 #define BLOCK_COMMENT(str) block_comment(str)
65 #define STOP(error) block_comment(error); stop(error)
66 #endif
67
68 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
69
70 #ifdef ASSERT
71 bool AbstractAssembler::pd_check_instruction_mark() { return true; }
72 #endif
73
74 static const Assembler::Condition reverse[] = {
75 Assembler::noOverflow /* overflow = 0x0 */ ,
76 Assembler::overflow /* noOverflow = 0x1 */ ,
77 Assembler::aboveEqual /* carrySet = 0x2, below = 0x2 */ ,
78 Assembler::below /* aboveEqual = 0x3, carryClear = 0x3 */ ,
79 Assembler::notZero /* zero = 0x4, equal = 0x4 */ ,
80 Assembler::zero /* notZero = 0x5, notEqual = 0x5 */ ,
81 Assembler::above /* belowEqual = 0x6 */ ,
82 Assembler::belowEqual /* above = 0x7 */ ,
83 Assembler::positive /* negative = 0x8 */ ,
84 Assembler::negative /* positive = 0x9 */ ,
85 Assembler::noParity /* parity = 0xa */ ,
86 Assembler::parity /* noParity = 0xb */ ,
87 Assembler::greaterEqual /* less = 0xc */ ,
88 Assembler::less /* greaterEqual = 0xd */ ,
89 Assembler::greater /* lessEqual = 0xe */ ,
90 Assembler::lessEqual /* greater = 0xf, */
91
92 };
93
94
95 // Implementation of MacroAssembler
96
97 Address MacroAssembler::as_Address(AddressLiteral adr) {
98 // amd64 always does this as a pc-rel
99 // we can be absolute or disp based on the instruction type
100 // jmp/call are displacements others are absolute
101 assert(!adr.is_lval(), "must be rval");
102 assert(reachable(adr), "must be");
103 return Address(checked_cast<int32_t>(adr.target() - pc()), adr.target(), adr.reloc());
104
105 }
106
107 Address MacroAssembler::as_Address(ArrayAddress adr, Register rscratch) {
108 AddressLiteral base = adr.base();
109 lea(rscratch, base);
110 Address index = adr.index();
111 assert(index._disp == 0, "must not have disp"); // maybe it can?
112 Address array(rscratch, index._index, index._scale, index._disp);
113 return array;
114 }
115
116 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
117 Label L, E;
118
119 #ifdef _WIN64
120 // Windows always allocates space for it's register args
121 assert(num_args <= 4, "only register arguments supported");
122 subq(rsp, frame::arg_reg_save_area_bytes);
123 #endif
124
125 // Align stack if necessary
126 testl(rsp, 15);
127 jcc(Assembler::zero, L);
128
129 subq(rsp, 8);
130 call(RuntimeAddress(entry_point));
131 addq(rsp, 8);
132 jmp(E);
133
134 bind(L);
135 call(RuntimeAddress(entry_point));
136
137 bind(E);
138
139 #ifdef _WIN64
140 // restore stack pointer
141 addq(rsp, frame::arg_reg_save_area_bytes);
142 #endif
143 }
144
145 void MacroAssembler::cmp64(Register src1, AddressLiteral src2, Register rscratch) {
146 assert(!src2.is_lval(), "should use cmpptr");
147 assert(rscratch != noreg || always_reachable(src2), "missing");
148
149 if (reachable(src2)) {
150 cmpq(src1, as_Address(src2));
151 } else {
152 lea(rscratch, src2);
153 Assembler::cmpq(src1, Address(rscratch, 0));
154 }
155 }
156
157 int MacroAssembler::corrected_idivq(Register reg) {
158 // Full implementation of Java ldiv and lrem; checks for special
159 // case as described in JVM spec., p.243 & p.271. The function
160 // returns the (pc) offset of the idivl instruction - may be needed
161 // for implicit exceptions.
162 //
163 // normal case special case
164 //
165 // input : rax: dividend min_long
166 // reg: divisor (may not be eax/edx) -1
167 //
168 // output: rax: quotient (= rax idiv reg) min_long
169 // rdx: remainder (= rax irem reg) 0
170 assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
171 static const int64_t min_long = 0x8000000000000000;
172 Label normal_case, special_case;
173
174 // check for special case
175 cmp64(rax, ExternalAddress((address) &min_long), rdx /*rscratch*/);
176 jcc(Assembler::notEqual, normal_case);
177 xorl(rdx, rdx); // prepare rdx for possible special case (where
178 // remainder = 0)
179 cmpq(reg, -1);
180 jcc(Assembler::equal, special_case);
181
182 // handle normal case
183 bind(normal_case);
184 cdqq();
185 int idivq_offset = offset();
186 idivq(reg);
187
188 // normal and special case exit
189 bind(special_case);
190
191 return idivq_offset;
192 }
193
194 void MacroAssembler::decrementq(Register reg, int value) {
195 if (value == min_jint) { subq(reg, value); return; }
196 if (value < 0) { incrementq(reg, -value); return; }
197 if (value == 0) { ; return; }
198 if (value == 1 && UseIncDec) { decq(reg) ; return; }
199 /* else */ { subq(reg, value) ; return; }
200 }
201
202 void MacroAssembler::decrementq(Address dst, int value) {
203 if (value == min_jint) { subq(dst, value); return; }
204 if (value < 0) { incrementq(dst, -value); return; }
205 if (value == 0) { ; return; }
206 if (value == 1 && UseIncDec) { decq(dst) ; return; }
207 /* else */ { subq(dst, value) ; return; }
208 }
209
210 void MacroAssembler::incrementq(AddressLiteral dst, Register rscratch) {
211 assert(rscratch != noreg || always_reachable(dst), "missing");
212
213 if (reachable(dst)) {
214 incrementq(as_Address(dst));
215 } else {
216 lea(rscratch, dst);
217 incrementq(Address(rscratch, 0));
218 }
219 }
220
221 void MacroAssembler::incrementq(Register reg, int value) {
222 if (value == min_jint) { addq(reg, value); return; }
223 if (value < 0) { decrementq(reg, -value); return; }
224 if (value == 0) { ; return; }
225 if (value == 1 && UseIncDec) { incq(reg) ; return; }
226 /* else */ { addq(reg, value) ; return; }
227 }
228
229 void MacroAssembler::incrementq(Address dst, int value) {
230 if (value == min_jint) { addq(dst, value); return; }
231 if (value < 0) { decrementq(dst, -value); return; }
232 if (value == 0) { ; return; }
233 if (value == 1 && UseIncDec) { incq(dst) ; return; }
234 /* else */ { addq(dst, value) ; return; }
235 }
236
237 // 32bit can do a case table jump in one instruction but we no longer allow the base
238 // to be installed in the Address class
239 void MacroAssembler::jump(ArrayAddress entry, Register rscratch) {
240 lea(rscratch, entry.base());
241 Address dispatch = entry.index();
242 assert(dispatch._base == noreg, "must be");
243 dispatch._base = rscratch;
244 jmp(dispatch);
245 }
246
247 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
248 ShouldNotReachHere(); // 64bit doesn't use two regs
249 cmpq(x_lo, y_lo);
250 }
251
252 void MacroAssembler::lea(Register dst, AddressLiteral src) {
253 mov_literal64(dst, (intptr_t)src.target(), src.rspec());
254 }
255
256 void MacroAssembler::lea(Address dst, AddressLiteral adr, Register rscratch) {
257 lea(rscratch, adr);
258 movptr(dst, rscratch);
259 }
260
261 void MacroAssembler::leave() {
262 // %%% is this really better? Why not on 32bit too?
263 emit_int8((unsigned char)0xC9); // LEAVE
264 }
265
266 void MacroAssembler::lneg(Register hi, Register lo) {
267 ShouldNotReachHere(); // 64bit doesn't use two regs
268 negq(lo);
269 }
270
271 void MacroAssembler::movoop(Register dst, jobject obj) {
272 mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
273 }
274
275 void MacroAssembler::movoop(Address dst, jobject obj, Register rscratch) {
276 mov_literal64(rscratch, (intptr_t)obj, oop_Relocation::spec_for_immediate());
277 movq(dst, rscratch);
278 }
279
280 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
281 mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
282 }
283
284 void MacroAssembler::mov_metadata(Address dst, Metadata* obj, Register rscratch) {
285 mov_literal64(rscratch, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
286 movq(dst, rscratch);
287 }
288
289 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
290 if (src.is_lval()) {
291 mov_literal64(dst, (intptr_t)src.target(), src.rspec());
292 } else {
293 if (reachable(src)) {
294 movq(dst, as_Address(src));
295 } else {
296 lea(dst, src);
297 movq(dst, Address(dst, 0));
298 }
299 }
300 }
301
302 void MacroAssembler::movptr(ArrayAddress dst, Register src, Register rscratch) {
303 movq(as_Address(dst, rscratch), src);
304 }
305
306 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
307 movq(dst, as_Address(src, dst /*rscratch*/));
308 }
309
310 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
311 void MacroAssembler::movptr(Address dst, intptr_t src, Register rscratch) {
312 if (is_simm32(src)) {
313 movptr(dst, checked_cast<int32_t>(src));
314 } else {
315 mov64(rscratch, src);
316 movq(dst, rscratch);
317 }
318 }
319
320 void MacroAssembler::pushoop(jobject obj, Register rscratch) {
321 movoop(rscratch, obj);
322 push(rscratch);
323 }
324
325 void MacroAssembler::pushklass(Metadata* obj, Register rscratch) {
326 mov_metadata(rscratch, obj);
327 push(rscratch);
328 }
329
330 void MacroAssembler::pushptr(AddressLiteral src, Register rscratch) {
331 lea(rscratch, src);
332 if (src.is_lval()) {
333 push(rscratch);
334 } else {
335 pushq(Address(rscratch, 0));
336 }
337 }
338
339 static void pass_arg0(MacroAssembler* masm, Register arg) {
340 if (c_rarg0 != arg ) {
341 masm->mov(c_rarg0, arg);
342 }
343 }
344
345 static void pass_arg1(MacroAssembler* masm, Register arg) {
346 if (c_rarg1 != arg ) {
347 masm->mov(c_rarg1, arg);
348 }
349 }
350
351 static void pass_arg2(MacroAssembler* masm, Register arg) {
352 if (c_rarg2 != arg ) {
353 masm->mov(c_rarg2, arg);
354 }
355 }
356
357 static void pass_arg3(MacroAssembler* masm, Register arg) {
358 if (c_rarg3 != arg ) {
359 masm->mov(c_rarg3, arg);
360 }
361 }
362
363 void MacroAssembler::stop(const char* msg) {
364 if (ShowMessageBoxOnError) {
365 address rip = pc();
366 pusha(); // get regs on stack
367 lea(c_rarg1, InternalAddress(rip));
368 movq(c_rarg2, rsp); // pass pointer to regs array
369 }
370 // Skip AOT caching C strings in scratch buffer.
371 const char* str = (code_section()->scratch_emit()) ? msg : AOTCodeCache::add_C_string(msg);
372 lea(c_rarg0, ExternalAddress((address) str));
373 andq(rsp, -16); // align stack as required by ABI
374 call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
375 hlt();
376 }
377
378 void MacroAssembler::warn(const char* msg) {
379 push(rbp);
380 movq(rbp, rsp);
381 andq(rsp, -16); // align stack as required by push_CPU_state and call
382 push_CPU_state(); // keeps alignment at 16 bytes
383
384 #ifdef _WIN64
385 // Windows always allocates space for its register args
386 subq(rsp, frame::arg_reg_save_area_bytes);
387 #endif
388 lea(c_rarg0, ExternalAddress((address) msg));
389 call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
390
391 #ifdef _WIN64
392 // restore stack pointer
393 addq(rsp, frame::arg_reg_save_area_bytes);
394 #endif
395 pop_CPU_state();
396 mov(rsp, rbp);
397 pop(rbp);
398 }
399
400 void MacroAssembler::print_state() {
401 address rip = pc();
402 pusha(); // get regs on stack
403 push(rbp);
404 movq(rbp, rsp);
405 andq(rsp, -16); // align stack as required by push_CPU_state and call
406 push_CPU_state(); // keeps alignment at 16 bytes
407
408 lea(c_rarg0, InternalAddress(rip));
409 lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array
410 call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1);
411
412 pop_CPU_state();
413 mov(rsp, rbp);
414 pop(rbp);
415 popa();
416 }
417
418 #ifndef PRODUCT
419 extern "C" void findpc(intptr_t x);
420 #endif
421
422 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
423 // In order to get locks to work, we need to fake a in_VM state
424 if (ShowMessageBoxOnError) {
425 JavaThread* thread = JavaThread::current();
426 JavaThreadState saved_state = thread->thread_state();
427 thread->set_thread_state(_thread_in_vm);
428 #ifndef PRODUCT
429 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
430 ttyLocker ttyl;
431 BytecodeCounter::print();
432 }
433 #endif
434 // To see where a verify_oop failed, get $ebx+40/X for this frame.
435 // XXX correct this offset for amd64
436 // This is the value of eip which points to where verify_oop will return.
437 if (os::message_box(msg, "Execution stopped, print registers?")) {
438 print_state64(pc, regs);
439 BREAKPOINT;
440 }
441 }
442 fatal("DEBUG MESSAGE: %s", msg);
443 }
444
445 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) {
446 ttyLocker ttyl;
447 DebuggingContext debugging{};
448 tty->print_cr("rip = 0x%016lx", (intptr_t)pc);
449 #ifndef PRODUCT
450 tty->cr();
451 findpc(pc);
452 tty->cr();
453 #endif
454 #define PRINT_REG(rax, value) \
455 { tty->print("%s = ", #rax); os::print_location(tty, value); }
456 PRINT_REG(rax, regs[15]);
457 PRINT_REG(rbx, regs[12]);
458 PRINT_REG(rcx, regs[14]);
459 PRINT_REG(rdx, regs[13]);
460 PRINT_REG(rdi, regs[8]);
461 PRINT_REG(rsi, regs[9]);
462 PRINT_REG(rbp, regs[10]);
463 // rsp is actually not stored by pusha(), compute the old rsp from regs (rsp after pusha): regs + 16 = old rsp
464 PRINT_REG(rsp, (intptr_t)(®s[16]));
465 PRINT_REG(r8 , regs[7]);
466 PRINT_REG(r9 , regs[6]);
467 PRINT_REG(r10, regs[5]);
468 PRINT_REG(r11, regs[4]);
469 PRINT_REG(r12, regs[3]);
470 PRINT_REG(r13, regs[2]);
471 PRINT_REG(r14, regs[1]);
472 PRINT_REG(r15, regs[0]);
473 #undef PRINT_REG
474 // Print some words near the top of the stack.
475 int64_t* rsp = ®s[16];
476 int64_t* dump_sp = rsp;
477 for (int col1 = 0; col1 < 8; col1++) {
478 tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
479 os::print_location(tty, *dump_sp++);
480 }
481 for (int row = 0; row < 25; row++) {
482 tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
483 for (int col = 0; col < 4; col++) {
484 tty->print(" 0x%016lx", (intptr_t)*dump_sp++);
485 }
486 tty->cr();
487 }
488 // Print some instructions around pc:
489 Disassembler::decode((address)pc-64, (address)pc);
490 tty->print_cr("--------");
491 Disassembler::decode((address)pc, (address)pc+32);
492 }
493
494 // The java_calling_convention describes stack locations as ideal slots on
495 // a frame with no abi restrictions. Since we must observe abi restrictions
496 // (like the placement of the register window) the slots must be biased by
497 // the following value.
498 static int reg2offset_in(VMReg r) {
499 // Account for saved rbp and return address
500 // This should really be in_preserve_stack_slots
501 return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size;
502 }
503
504 static int reg2offset_out(VMReg r) {
505 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
506 }
507
508 // A long move
509 void MacroAssembler::long_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) {
510
511 // The calling conventions assures us that each VMregpair is either
512 // all really one physical register or adjacent stack slots.
513
514 if (src.is_single_phys_reg() ) {
515 if (dst.is_single_phys_reg()) {
516 if (dst.first() != src.first()) {
517 mov(dst.first()->as_Register(), src.first()->as_Register());
518 }
519 } else {
520 assert(dst.is_single_reg(), "not a stack pair: (%s, %s), (%s, %s)",
521 src.first()->name(), src.second()->name(), dst.first()->name(), dst.second()->name());
522 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_Register());
523 }
524 } else if (dst.is_single_phys_reg()) {
525 assert(src.is_single_reg(), "not a stack pair");
526 movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias));
527 } else {
528 assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
529 movq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias));
530 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp);
531 }
532 }
533
534 // A double move
535 void MacroAssembler::double_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) {
536
537 // The calling conventions assures us that each VMregpair is either
538 // all really one physical register or adjacent stack slots.
539
540 if (src.is_single_phys_reg() ) {
541 if (dst.is_single_phys_reg()) {
542 // In theory these overlap but the ordering is such that this is likely a nop
543 if ( src.first() != dst.first()) {
544 movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister());
545 }
546 } else {
547 assert(dst.is_single_reg(), "not a stack pair");
548 movdbl(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_XMMRegister());
549 }
550 } else if (dst.is_single_phys_reg()) {
551 assert(src.is_single_reg(), "not a stack pair");
552 movdbl(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias));
553 } else {
554 assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
555 movq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias));
556 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp);
557 }
558 }
559
560
561 // A float arg may have to do float reg int reg conversion
562 void MacroAssembler::float_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) {
563 assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
564
565 // The calling conventions assures us that each VMregpair is either
566 // all really one physical register or adjacent stack slots.
567
568 if (src.first()->is_stack()) {
569 if (dst.first()->is_stack()) {
570 movl(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias));
571 movptr(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp);
572 } else {
573 // stack to reg
574 assert(dst.first()->is_XMMRegister(), "only expect xmm registers as parameters");
575 movflt(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias));
576 }
577 } else if (dst.first()->is_stack()) {
578 // reg to stack
579 assert(src.first()->is_XMMRegister(), "only expect xmm registers as parameters");
580 movflt(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_XMMRegister());
581 } else {
582 // reg to reg
583 // In theory these overlap but the ordering is such that this is likely a nop
584 if ( src.first() != dst.first()) {
585 movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister());
586 }
587 }
588 }
589
590 // On 64 bit we will store integer like items to the stack as
591 // 64 bits items (x86_32/64 abi) even though java would only store
592 // 32bits for a parameter. On 32bit it will simply be 32 bits
593 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
594 void MacroAssembler::move32_64(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) {
595 if (src.first()->is_stack()) {
596 if (dst.first()->is_stack()) {
597 // stack to stack
598 movslq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias));
599 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp);
600 } else {
601 // stack to reg
602 movslq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias));
603 }
604 } else if (dst.first()->is_stack()) {
605 // reg to stack
606 // Do we really have to sign extend???
607 // __ movslq(src.first()->as_Register(), src.first()->as_Register());
608 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_Register());
609 } else {
610 // Do we really have to sign extend???
611 // __ movslq(dst.first()->as_Register(), src.first()->as_Register());
612 if (dst.first() != src.first()) {
613 movq(dst.first()->as_Register(), src.first()->as_Register());
614 }
615 }
616 }
617
618 void MacroAssembler::move_ptr(VMRegPair src, VMRegPair dst) {
619 if (src.first()->is_stack()) {
620 if (dst.first()->is_stack()) {
621 // stack to stack
622 movq(rax, Address(rbp, reg2offset_in(src.first())));
623 movq(Address(rsp, reg2offset_out(dst.first())), rax);
624 } else {
625 // stack to reg
626 movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
627 }
628 } else if (dst.first()->is_stack()) {
629 // reg to stack
630 movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
631 } else {
632 if (dst.first() != src.first()) {
633 movq(dst.first()->as_Register(), src.first()->as_Register());
634 }
635 }
636 }
637
638 // An oop arg. Must pass a handle not the oop itself
639 void MacroAssembler::object_move(OopMap* map,
640 int oop_handle_offset,
641 int framesize_in_slots,
642 VMRegPair src,
643 VMRegPair dst,
644 bool is_receiver,
645 int* receiver_offset) {
646
647 // must pass a handle. First figure out the location we use as a handle
648
649 Register rHandle = dst.first()->is_stack() ? rax : dst.first()->as_Register();
650
651 // See if oop is null if it is we need no handle
652
653 if (src.first()->is_stack()) {
654
655 // Oop is already on the stack as an argument
656 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
657 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
658 if (is_receiver) {
659 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
660 }
661
662 cmpptr(Address(rbp, reg2offset_in(src.first())), NULL_WORD);
663 lea(rHandle, Address(rbp, reg2offset_in(src.first())));
664 // conditionally move a null
665 cmovptr(Assembler::equal, rHandle, Address(rbp, reg2offset_in(src.first())));
666 } else {
667
668 // Oop is in a register we must store it to the space we reserve
669 // on the stack for oop_handles and pass a handle if oop is non-null
670
671 const Register rOop = src.first()->as_Register();
672 int oop_slot;
673 if (rOop == j_rarg0)
674 oop_slot = 0;
675 else if (rOop == j_rarg1)
676 oop_slot = 1;
677 else if (rOop == j_rarg2)
678 oop_slot = 2;
679 else if (rOop == j_rarg3)
680 oop_slot = 3;
681 else if (rOop == j_rarg4)
682 oop_slot = 4;
683 else {
684 assert(rOop == j_rarg5, "wrong register");
685 oop_slot = 5;
686 }
687
688 oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset;
689 int offset = oop_slot*VMRegImpl::stack_slot_size;
690
691 map->set_oop(VMRegImpl::stack2reg(oop_slot));
692 // Store oop in handle area, may be null
693 movptr(Address(rsp, offset), rOop);
694 if (is_receiver) {
695 *receiver_offset = offset;
696 }
697
698 cmpptr(rOop, NULL_WORD);
699 lea(rHandle, Address(rsp, offset));
700 // conditionally move a null from the handle area where it was just stored
701 cmovptr(Assembler::equal, rHandle, Address(rsp, offset));
702 }
703
704 // If arg is on the stack then place it otherwise it is already in correct reg.
705 if (dst.first()->is_stack()) {
706 movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
707 }
708 }
709
710 void MacroAssembler::addptr(Register dst, int32_t imm32) {
711 addq(dst, imm32);
712 }
713
714 void MacroAssembler::addptr(Register dst, Register src) {
715 addq(dst, src);
716 }
717
718 void MacroAssembler::addptr(Address dst, Register src) {
719 addq(dst, src);
720 }
721
722 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src, Register rscratch) {
723 assert(rscratch != noreg || always_reachable(src), "missing");
724
725 if (reachable(src)) {
726 Assembler::addsd(dst, as_Address(src));
727 } else {
728 lea(rscratch, src);
729 Assembler::addsd(dst, Address(rscratch, 0));
730 }
731 }
732
733 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src, Register rscratch) {
734 assert(rscratch != noreg || always_reachable(src), "missing");
735
736 if (reachable(src)) {
737 addss(dst, as_Address(src));
738 } else {
739 lea(rscratch, src);
740 addss(dst, Address(rscratch, 0));
741 }
742 }
743
744 void MacroAssembler::addpd(XMMRegister dst, AddressLiteral src, Register rscratch) {
745 assert(rscratch != noreg || always_reachable(src), "missing");
746
747 if (reachable(src)) {
748 Assembler::addpd(dst, as_Address(src));
749 } else {
750 lea(rscratch, src);
751 Assembler::addpd(dst, Address(rscratch, 0));
752 }
753 }
754
755 // See 8273459. Function for ensuring 64-byte alignment, intended for stubs only.
756 // Stub code is generated once and never copied.
757 // NMethods can't use this because they get copied and we can't force alignment > 32 bytes.
758 void MacroAssembler::align64() {
759 align(64, (uint)(uintptr_t)pc());
760 }
761
762 void MacroAssembler::align32() {
763 align(32, (uint)(uintptr_t)pc());
764 }
765
766 void MacroAssembler::align(uint modulus) {
767 // 8273459: Ensure alignment is possible with current segment alignment
768 assert(modulus <= (uintx)CodeEntryAlignment, "Alignment must be <= CodeEntryAlignment");
769 align(modulus, offset());
770 }
771
772 void MacroAssembler::align(uint modulus, uint target) {
773 if (target % modulus != 0) {
774 nop(modulus - (target % modulus));
775 }
776 }
777
778 void MacroAssembler::push_f(XMMRegister r) {
779 subptr(rsp, wordSize);
780 movflt(Address(rsp, 0), r);
781 }
782
783 void MacroAssembler::pop_f(XMMRegister r) {
784 movflt(r, Address(rsp, 0));
785 addptr(rsp, wordSize);
786 }
787
788 void MacroAssembler::push_d(XMMRegister r) {
789 subptr(rsp, 2 * wordSize);
790 movdbl(Address(rsp, 0), r);
791 }
792
793 void MacroAssembler::pop_d(XMMRegister r) {
794 movdbl(r, Address(rsp, 0));
795 addptr(rsp, 2 * Interpreter::stackElementSize);
796 }
797
798 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src, Register rscratch) {
799 // Used in sign-masking with aligned address.
800 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
801 assert(rscratch != noreg || always_reachable(src), "missing");
802
803 if (UseAVX > 2 &&
804 (!VM_Version::supports_avx512dq() || !VM_Version::supports_avx512vl()) &&
805 (dst->encoding() >= 16)) {
806 vpand(dst, dst, src, AVX_512bit, rscratch);
807 } else if (reachable(src)) {
808 Assembler::andpd(dst, as_Address(src));
809 } else {
810 lea(rscratch, src);
811 Assembler::andpd(dst, Address(rscratch, 0));
812 }
813 }
814
815 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src, Register rscratch) {
816 // Used in sign-masking with aligned address.
817 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
818 assert(rscratch != noreg || always_reachable(src), "missing");
819
820 if (reachable(src)) {
821 Assembler::andps(dst, as_Address(src));
822 } else {
823 lea(rscratch, src);
824 Assembler::andps(dst, Address(rscratch, 0));
825 }
826 }
827
828 void MacroAssembler::andptr(Register dst, int32_t imm32) {
829 andq(dst, imm32);
830 }
831
832 void MacroAssembler::andq(Register dst, AddressLiteral src, Register rscratch) {
833 assert(rscratch != noreg || always_reachable(src), "missing");
834
835 if (reachable(src)) {
836 andq(dst, as_Address(src));
837 } else {
838 lea(rscratch, src);
839 andq(dst, Address(rscratch, 0));
840 }
841 }
842
843 void MacroAssembler::atomic_incl(Address counter_addr) {
844 lock();
845 incrementl(counter_addr);
846 }
847
848 void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register rscratch) {
849 assert(rscratch != noreg || always_reachable(counter_addr), "missing");
850
851 if (reachable(counter_addr)) {
852 atomic_incl(as_Address(counter_addr));
853 } else {
854 lea(rscratch, counter_addr);
855 atomic_incl(Address(rscratch, 0));
856 }
857 }
858
859 void MacroAssembler::atomic_incq(Address counter_addr) {
860 lock();
861 incrementq(counter_addr);
862 }
863
864 void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register rscratch) {
865 assert(rscratch != noreg || always_reachable(counter_addr), "missing");
866
867 if (reachable(counter_addr)) {
868 atomic_incq(as_Address(counter_addr));
869 } else {
870 lea(rscratch, counter_addr);
871 atomic_incq(Address(rscratch, 0));
872 }
873 }
874
875 // Writes to stack successive pages until offset reached to check for
876 // stack overflow + shadow pages. This clobbers tmp.
877 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
878 movptr(tmp, rsp);
879 // Bang stack for total size given plus shadow page size.
880 // Bang one page at a time because large size can bang beyond yellow and
881 // red zones.
882 Label loop;
883 bind(loop);
884 movl(Address(tmp, (-(int)os::vm_page_size())), size );
885 subptr(tmp, (int)os::vm_page_size());
886 subl(size, (int)os::vm_page_size());
887 jcc(Assembler::greater, loop);
888
889 // Bang down shadow pages too.
890 // At this point, (tmp-0) is the last address touched, so don't
891 // touch it again. (It was touched as (tmp-pagesize) but then tmp
892 // was post-decremented.) Skip this address by starting at i=1, and
893 // touch a few more pages below. N.B. It is important to touch all
894 // the way down including all pages in the shadow zone.
895 for (int i = 1; i < ((int)StackOverflow::stack_shadow_zone_size() / (int)os::vm_page_size()); i++) {
896 // this could be any sized move but this is can be a debugging crumb
897 // so the bigger the better.
898 movptr(Address(tmp, (-i*(int)os::vm_page_size())), size );
899 }
900 }
901
902 void MacroAssembler::reserved_stack_check() {
903 // testing if reserved zone needs to be enabled
904 Label no_reserved_zone_enabling;
905
906 cmpptr(rsp, Address(r15_thread, JavaThread::reserved_stack_activation_offset()));
907 jcc(Assembler::below, no_reserved_zone_enabling);
908
909 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), r15_thread);
910 jump(RuntimeAddress(SharedRuntime::throw_delayed_StackOverflowError_entry()));
911 should_not_reach_here();
912
913 bind(no_reserved_zone_enabling);
914 }
915
916 void MacroAssembler::c2bool(Register x) {
917 // implements x == 0 ? 0 : 1
918 // note: must only look at least-significant byte of x
919 // since C-style booleans are stored in one byte
920 // only! (was bug)
921 andl(x, 0xFF);
922 setb(Assembler::notZero, x);
923 }
924
925 // Wouldn't need if AddressLiteral version had new name
926 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
927 Assembler::call(L, rtype);
928 }
929
930 void MacroAssembler::call(Register entry) {
931 Assembler::call(entry);
932 }
933
934 void MacroAssembler::call(AddressLiteral entry, Register rscratch) {
935 assert(rscratch != noreg || always_reachable(entry), "missing");
936
937 if (reachable(entry)) {
938 Assembler::call_literal(entry.target(), entry.rspec());
939 } else {
940 lea(rscratch, entry);
941 Assembler::call(rscratch);
942 }
943 }
944
945 void MacroAssembler::ic_call(address entry, jint method_index) {
946 RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index);
947 // Needs full 64-bit immediate for later patching.
948 mov64(rax, (int64_t)Universe::non_oop_word());
949 call(AddressLiteral(entry, rh));
950 }
951
952 int MacroAssembler::ic_check_size() {
953 return UseCompactObjectHeaders ? 17 : 14;
954 }
955
956 int MacroAssembler::ic_check(int end_alignment) {
957 Register receiver = j_rarg0;
958 Register data = rax;
959 Register temp = rscratch1;
960
961 // The UEP of a code blob ensures that the VEP is padded. However, the padding of the UEP is placed
962 // before the inline cache check, so we don't have to execute any nop instructions when dispatching
963 // through the UEP, yet we can ensure that the VEP is aligned appropriately. That's why we align
964 // before the inline cache check here, and not after
965 align(end_alignment, offset() + ic_check_size());
966
967 int uep_offset = offset();
968
969 if (UseCompactObjectHeaders) {
970 load_narrow_klass_compact(temp, receiver);
971 cmpl(temp, Address(data, CompiledICData::speculated_klass_offset()));
972 } else if (UseCompressedClassPointers) {
973 movl(temp, Address(receiver, oopDesc::klass_offset_in_bytes()));
974 cmpl(temp, Address(data, CompiledICData::speculated_klass_offset()));
975 } else {
976 movptr(temp, Address(receiver, oopDesc::klass_offset_in_bytes()));
977 cmpptr(temp, Address(data, CompiledICData::speculated_klass_offset()));
978 }
979
980 // if inline cache check fails, then jump to runtime routine
981 jump_cc(Assembler::notEqual, RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
982 assert((offset() % end_alignment) == 0, "Misaligned verified entry point (%d, %d, %d)", uep_offset, offset(), end_alignment);
983
984 return uep_offset;
985 }
986
987 void MacroAssembler::emit_static_call_stub() {
988 // Static stub relocation also tags the Method* in the code-stream.
989 mov_metadata(rbx, (Metadata*) nullptr); // Method is zapped till fixup time.
990 // This is recognized as unresolved by relocs/nativeinst/ic code.
991 jump(RuntimeAddress(pc()));
992 }
993
994 // Implementation of call_VM versions
995
996 void MacroAssembler::call_VM(Register oop_result,
997 address entry_point,
998 bool check_exceptions) {
999 Label C, E;
1000 call(C, relocInfo::none);
1001 jmp(E);
1002
1003 bind(C);
1004 call_VM_helper(oop_result, entry_point, 0, check_exceptions);
1005 ret(0);
1006
1007 bind(E);
1008 }
1009
1010 void MacroAssembler::call_VM(Register oop_result,
1011 address entry_point,
1012 Register arg_1,
1013 bool check_exceptions) {
1014 Label C, E;
1015 call(C, relocInfo::none);
1016 jmp(E);
1017
1018 bind(C);
1019 pass_arg1(this, arg_1);
1020 call_VM_helper(oop_result, entry_point, 1, check_exceptions);
1021 ret(0);
1022
1023 bind(E);
1024 }
1025
1026 void MacroAssembler::call_VM(Register oop_result,
1027 address entry_point,
1028 Register arg_1,
1029 Register arg_2,
1030 bool check_exceptions) {
1031 Label C, E;
1032 call(C, relocInfo::none);
1033 jmp(E);
1034
1035 bind(C);
1036
1037 assert_different_registers(arg_1, c_rarg2);
1038
1039 pass_arg2(this, arg_2);
1040 pass_arg1(this, arg_1);
1041 call_VM_helper(oop_result, entry_point, 2, check_exceptions);
1042 ret(0);
1043
1044 bind(E);
1045 }
1046
1047 void MacroAssembler::call_VM(Register oop_result,
1048 address entry_point,
1049 Register arg_1,
1050 Register arg_2,
1051 Register arg_3,
1052 bool check_exceptions) {
1053 Label C, E;
1054 call(C, relocInfo::none);
1055 jmp(E);
1056
1057 bind(C);
1058
1059 assert_different_registers(arg_1, c_rarg2, c_rarg3);
1060 assert_different_registers(arg_2, c_rarg3);
1061 pass_arg3(this, arg_3);
1062 pass_arg2(this, arg_2);
1063 pass_arg1(this, arg_1);
1064 call_VM_helper(oop_result, entry_point, 3, check_exceptions);
1065 ret(0);
1066
1067 bind(E);
1068 }
1069
1070 void MacroAssembler::call_VM(Register oop_result,
1071 Register last_java_sp,
1072 address entry_point,
1073 int number_of_arguments,
1074 bool check_exceptions) {
1075 call_VM_base(oop_result, last_java_sp, entry_point, number_of_arguments, check_exceptions);
1076 }
1077
1078 void MacroAssembler::call_VM(Register oop_result,
1079 Register last_java_sp,
1080 address entry_point,
1081 Register arg_1,
1082 bool check_exceptions) {
1083 pass_arg1(this, arg_1);
1084 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
1085 }
1086
1087 void MacroAssembler::call_VM(Register oop_result,
1088 Register last_java_sp,
1089 address entry_point,
1090 Register arg_1,
1091 Register arg_2,
1092 bool check_exceptions) {
1093
1094 assert_different_registers(arg_1, c_rarg2);
1095 pass_arg2(this, arg_2);
1096 pass_arg1(this, arg_1);
1097 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
1098 }
1099
1100 void MacroAssembler::call_VM(Register oop_result,
1101 Register last_java_sp,
1102 address entry_point,
1103 Register arg_1,
1104 Register arg_2,
1105 Register arg_3,
1106 bool check_exceptions) {
1107 assert_different_registers(arg_1, c_rarg2, c_rarg3);
1108 assert_different_registers(arg_2, c_rarg3);
1109 pass_arg3(this, arg_3);
1110 pass_arg2(this, arg_2);
1111 pass_arg1(this, arg_1);
1112 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
1113 }
1114
1115 void MacroAssembler::super_call_VM(Register oop_result,
1116 Register last_java_sp,
1117 address entry_point,
1118 int number_of_arguments,
1119 bool check_exceptions) {
1120 MacroAssembler::call_VM_base(oop_result, last_java_sp, entry_point, number_of_arguments, check_exceptions);
1121 }
1122
1123 void MacroAssembler::super_call_VM(Register oop_result,
1124 Register last_java_sp,
1125 address entry_point,
1126 Register arg_1,
1127 bool check_exceptions) {
1128 pass_arg1(this, arg_1);
1129 super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
1130 }
1131
1132 void MacroAssembler::super_call_VM(Register oop_result,
1133 Register last_java_sp,
1134 address entry_point,
1135 Register arg_1,
1136 Register arg_2,
1137 bool check_exceptions) {
1138
1139 assert_different_registers(arg_1, c_rarg2);
1140 pass_arg2(this, arg_2);
1141 pass_arg1(this, arg_1);
1142 super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
1143 }
1144
1145 void MacroAssembler::super_call_VM(Register oop_result,
1146 Register last_java_sp,
1147 address entry_point,
1148 Register arg_1,
1149 Register arg_2,
1150 Register arg_3,
1151 bool check_exceptions) {
1152 assert_different_registers(arg_1, c_rarg2, c_rarg3);
1153 assert_different_registers(arg_2, c_rarg3);
1154 pass_arg3(this, arg_3);
1155 pass_arg2(this, arg_2);
1156 pass_arg1(this, arg_1);
1157 super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
1158 }
1159
1160 void MacroAssembler::call_VM_base(Register oop_result,
1161 Register last_java_sp,
1162 address entry_point,
1163 int number_of_arguments,
1164 bool check_exceptions) {
1165 Register java_thread = r15_thread;
1166
1167 // determine last_java_sp register
1168 if (!last_java_sp->is_valid()) {
1169 last_java_sp = rsp;
1170 }
1171 // debugging support
1172 assert(number_of_arguments >= 0 , "cannot have negative number of arguments");
1173 #ifdef ASSERT
1174 // TraceBytecodes does not use r12 but saves it over the call, so don't verify
1175 // r12 is the heapbase.
1176 if (UseCompressedOops && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");
1177 #endif // ASSERT
1178
1179 assert(java_thread != oop_result , "cannot use the same register for java_thread & oop_result");
1180 assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
1181
1182 // push java thread (becomes first argument of C function)
1183
1184 mov(c_rarg0, r15_thread);
1185
1186 // set last Java frame before call
1187 assert(last_java_sp != rbp, "can't use ebp/rbp");
1188
1189 // Only interpreter should have to set fp
1190 set_last_Java_frame(last_java_sp, rbp, nullptr, rscratch1);
1191
1192 // do the call, remove parameters
1193 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
1194
1195 #ifdef ASSERT
1196 // Check that thread register is not clobbered.
1197 guarantee(java_thread != rax, "change this code");
1198 push(rax);
1199 { Label L;
1200 get_thread_slow(rax);
1201 cmpptr(java_thread, rax);
1202 jcc(Assembler::equal, L);
1203 STOP("MacroAssembler::call_VM_base: java_thread not callee saved?");
1204 bind(L);
1205 }
1206 pop(rax);
1207 #endif
1208
1209 // reset last Java frame
1210 // Only interpreter should have to clear fp
1211 reset_last_Java_frame(true);
1212
1213 // C++ interp handles this in the interpreter
1214 check_and_handle_popframe();
1215 check_and_handle_earlyret();
1216
1217 if (check_exceptions) {
1218 // check for pending exceptions (java_thread is set upon return)
1219 cmpptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD);
1220 // This used to conditionally jump to forward_exception however it is
1221 // possible if we relocate that the branch will not reach. So we must jump
1222 // around so we can always reach
1223
1224 Label ok;
1225 jcc(Assembler::equal, ok);
1226 jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
1227 bind(ok);
1228 }
1229
1230 // get oop result if there is one and reset the value in the thread
1231 if (oop_result->is_valid()) {
1232 get_vm_result_oop(oop_result);
1233 }
1234 }
1235
1236 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
1237 // Calculate the value for last_Java_sp somewhat subtle.
1238 // call_VM does an intermediate call which places a return address on
1239 // the stack just under the stack pointer as the user finished with it.
1240 // This allows use to retrieve last_Java_pc from last_Java_sp[-1].
1241
1242 // We've pushed one address, correct last_Java_sp
1243 lea(rax, Address(rsp, wordSize));
1244
1245 call_VM_base(oop_result, rax, entry_point, number_of_arguments, check_exceptions);
1246 }
1247
1248 // Use this method when MacroAssembler version of call_VM_leaf_base() should be called from Interpreter.
1249 void MacroAssembler::call_VM_leaf0(address entry_point) {
1250 MacroAssembler::call_VM_leaf_base(entry_point, 0);
1251 }
1252
1253 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
1254 call_VM_leaf_base(entry_point, number_of_arguments);
1255 }
1256
1257 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
1258 pass_arg0(this, arg_0);
1259 call_VM_leaf(entry_point, 1);
1260 }
1261
1262 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
1263
1264 assert_different_registers(arg_0, c_rarg1);
1265 pass_arg1(this, arg_1);
1266 pass_arg0(this, arg_0);
1267 call_VM_leaf(entry_point, 2);
1268 }
1269
1270 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
1271 assert_different_registers(arg_0, c_rarg1, c_rarg2);
1272 assert_different_registers(arg_1, c_rarg2);
1273 pass_arg2(this, arg_2);
1274 pass_arg1(this, arg_1);
1275 pass_arg0(this, arg_0);
1276 call_VM_leaf(entry_point, 3);
1277 }
1278
1279 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
1280 assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3);
1281 assert_different_registers(arg_1, c_rarg2, c_rarg3);
1282 assert_different_registers(arg_2, c_rarg3);
1283 pass_arg3(this, arg_3);
1284 pass_arg2(this, arg_2);
1285 pass_arg1(this, arg_1);
1286 pass_arg0(this, arg_0);
1287 call_VM_leaf(entry_point, 3);
1288 }
1289
1290 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
1291 pass_arg0(this, arg_0);
1292 MacroAssembler::call_VM_leaf_base(entry_point, 1);
1293 }
1294
1295 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
1296 assert_different_registers(arg_0, c_rarg1);
1297 pass_arg1(this, arg_1);
1298 pass_arg0(this, arg_0);
1299 MacroAssembler::call_VM_leaf_base(entry_point, 2);
1300 }
1301
1302 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
1303 assert_different_registers(arg_0, c_rarg1, c_rarg2);
1304 assert_different_registers(arg_1, c_rarg2);
1305 pass_arg2(this, arg_2);
1306 pass_arg1(this, arg_1);
1307 pass_arg0(this, arg_0);
1308 MacroAssembler::call_VM_leaf_base(entry_point, 3);
1309 }
1310
1311 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
1312 assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3);
1313 assert_different_registers(arg_1, c_rarg2, c_rarg3);
1314 assert_different_registers(arg_2, c_rarg3);
1315 pass_arg3(this, arg_3);
1316 pass_arg2(this, arg_2);
1317 pass_arg1(this, arg_1);
1318 pass_arg0(this, arg_0);
1319 MacroAssembler::call_VM_leaf_base(entry_point, 4);
1320 }
1321
1322 void MacroAssembler::get_vm_result_oop(Register oop_result) {
1323 movptr(oop_result, Address(r15_thread, JavaThread::vm_result_oop_offset()));
1324 movptr(Address(r15_thread, JavaThread::vm_result_oop_offset()), NULL_WORD);
1325 verify_oop_msg(oop_result, "broken oop in call_VM_base");
1326 }
1327
1328 void MacroAssembler::get_vm_result_metadata(Register metadata_result) {
1329 movptr(metadata_result, Address(r15_thread, JavaThread::vm_result_metadata_offset()));
1330 movptr(Address(r15_thread, JavaThread::vm_result_metadata_offset()), NULL_WORD);
1331 }
1332
1333 void MacroAssembler::check_and_handle_earlyret() {
1334 }
1335
1336 void MacroAssembler::check_and_handle_popframe() {
1337 }
1338
1339 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm, Register rscratch) {
1340 assert(rscratch != noreg || always_reachable(src1), "missing");
1341
1342 if (reachable(src1)) {
1343 cmpl(as_Address(src1), imm);
1344 } else {
1345 lea(rscratch, src1);
1346 cmpl(Address(rscratch, 0), imm);
1347 }
1348 }
1349
1350 void MacroAssembler::cmp32(Register src1, AddressLiteral src2, Register rscratch) {
1351 assert(!src2.is_lval(), "use cmpptr");
1352 assert(rscratch != noreg || always_reachable(src2), "missing");
1353
1354 if (reachable(src2)) {
1355 cmpl(src1, as_Address(src2));
1356 } else {
1357 lea(rscratch, src2);
1358 cmpl(src1, Address(rscratch, 0));
1359 }
1360 }
1361
1362 void MacroAssembler::cmp32(Register src1, int32_t imm) {
1363 Assembler::cmpl(src1, imm);
1364 }
1365
1366 void MacroAssembler::cmp32(Register src1, Address src2) {
1367 Assembler::cmpl(src1, src2);
1368 }
1369
1370 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
1371 ucomisd(opr1, opr2);
1372
1373 Label L;
1374 if (unordered_is_less) {
1375 movl(dst, -1);
1376 jcc(Assembler::parity, L);
1377 jcc(Assembler::below , L);
1378 movl(dst, 0);
1379 jcc(Assembler::equal , L);
1380 increment(dst);
1381 } else { // unordered is greater
1382 movl(dst, 1);
1383 jcc(Assembler::parity, L);
1384 jcc(Assembler::above , L);
1385 movl(dst, 0);
1386 jcc(Assembler::equal , L);
1387 decrementl(dst);
1388 }
1389 bind(L);
1390 }
1391
1392 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
1393 ucomiss(opr1, opr2);
1394
1395 Label L;
1396 if (unordered_is_less) {
1397 movl(dst, -1);
1398 jcc(Assembler::parity, L);
1399 jcc(Assembler::below , L);
1400 movl(dst, 0);
1401 jcc(Assembler::equal , L);
1402 increment(dst);
1403 } else { // unordered is greater
1404 movl(dst, 1);
1405 jcc(Assembler::parity, L);
1406 jcc(Assembler::above , L);
1407 movl(dst, 0);
1408 jcc(Assembler::equal , L);
1409 decrementl(dst);
1410 }
1411 bind(L);
1412 }
1413
1414
1415 void MacroAssembler::cmp8(AddressLiteral src1, int imm, Register rscratch) {
1416 assert(rscratch != noreg || always_reachable(src1), "missing");
1417
1418 if (reachable(src1)) {
1419 cmpb(as_Address(src1), imm);
1420 } else {
1421 lea(rscratch, src1);
1422 cmpb(Address(rscratch, 0), imm);
1423 }
1424 }
1425
1426 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2, Register rscratch) {
1427 assert(rscratch != noreg || always_reachable(src2), "missing");
1428
1429 if (src2.is_lval()) {
1430 movptr(rscratch, src2);
1431 Assembler::cmpq(src1, rscratch);
1432 } else if (reachable(src2)) {
1433 cmpq(src1, as_Address(src2));
1434 } else {
1435 lea(rscratch, src2);
1436 Assembler::cmpq(src1, Address(rscratch, 0));
1437 }
1438 }
1439
1440 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2, Register rscratch) {
1441 assert(src2.is_lval(), "not a mem-mem compare");
1442 // moves src2's literal address
1443 movptr(rscratch, src2);
1444 Assembler::cmpq(src1, rscratch);
1445 }
1446
1447 void MacroAssembler::cmpoop(Register src1, Register src2) {
1448 cmpptr(src1, src2);
1449 }
1450
1451 void MacroAssembler::cmpoop(Register src1, Address src2) {
1452 cmpptr(src1, src2);
1453 }
1454
1455 void MacroAssembler::cmpoop(Register src1, jobject src2, Register rscratch) {
1456 movoop(rscratch, src2);
1457 cmpptr(src1, rscratch);
1458 }
1459
1460 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr, Register rscratch) {
1461 assert(rscratch != noreg || always_reachable(adr), "missing");
1462
1463 if (reachable(adr)) {
1464 lock();
1465 cmpxchgptr(reg, as_Address(adr));
1466 } else {
1467 lea(rscratch, adr);
1468 lock();
1469 cmpxchgptr(reg, Address(rscratch, 0));
1470 }
1471 }
1472
1473 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
1474 cmpxchgq(reg, adr);
1475 }
1476
1477 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src, Register rscratch) {
1478 assert(rscratch != noreg || always_reachable(src), "missing");
1479
1480 if (reachable(src)) {
1481 Assembler::comisd(dst, as_Address(src));
1482 } else {
1483 lea(rscratch, src);
1484 Assembler::comisd(dst, Address(rscratch, 0));
1485 }
1486 }
1487
1488 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src, Register rscratch) {
1489 assert(rscratch != noreg || always_reachable(src), "missing");
1490
1491 if (reachable(src)) {
1492 Assembler::comiss(dst, as_Address(src));
1493 } else {
1494 lea(rscratch, src);
1495 Assembler::comiss(dst, Address(rscratch, 0));
1496 }
1497 }
1498
1499
1500 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr, Register rscratch) {
1501 assert(rscratch != noreg || always_reachable(counter_addr), "missing");
1502
1503 Condition negated_cond = negate_condition(cond);
1504 Label L;
1505 jcc(negated_cond, L);
1506 pushf(); // Preserve flags
1507 atomic_incl(counter_addr, rscratch);
1508 popf();
1509 bind(L);
1510 }
1511
1512 int MacroAssembler::corrected_idivl(Register reg) {
1513 // Full implementation of Java idiv and irem; checks for
1514 // special case as described in JVM spec., p.243 & p.271.
1515 // The function returns the (pc) offset of the idivl
1516 // instruction - may be needed for implicit exceptions.
1517 //
1518 // normal case special case
1519 //
1520 // input : rax,: dividend min_int
1521 // reg: divisor (may not be rax,/rdx) -1
1522 //
1523 // output: rax,: quotient (= rax, idiv reg) min_int
1524 // rdx: remainder (= rax, irem reg) 0
1525 assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
1526 const int min_int = 0x80000000;
1527 Label normal_case, special_case;
1528
1529 // check for special case
1530 cmpl(rax, min_int);
1531 jcc(Assembler::notEqual, normal_case);
1532 xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
1533 cmpl(reg, -1);
1534 jcc(Assembler::equal, special_case);
1535
1536 // handle normal case
1537 bind(normal_case);
1538 cdql();
1539 int idivl_offset = offset();
1540 idivl(reg);
1541
1542 // normal and special case exit
1543 bind(special_case);
1544
1545 return idivl_offset;
1546 }
1547
1548
1549
1550 void MacroAssembler::decrementl(Register reg, int value) {
1551 if (value == min_jint) {subl(reg, value) ; return; }
1552 if (value < 0) { incrementl(reg, -value); return; }
1553 if (value == 0) { ; return; }
1554 if (value == 1 && UseIncDec) { decl(reg) ; return; }
1555 /* else */ { subl(reg, value) ; return; }
1556 }
1557
1558 void MacroAssembler::decrementl(Address dst, int value) {
1559 if (value == min_jint) {subl(dst, value) ; return; }
1560 if (value < 0) { incrementl(dst, -value); return; }
1561 if (value == 0) { ; return; }
1562 if (value == 1 && UseIncDec) { decl(dst) ; return; }
1563 /* else */ { subl(dst, value) ; return; }
1564 }
1565
1566 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
1567 assert(shift_value > 0, "illegal shift value");
1568 Label _is_positive;
1569 testl (reg, reg);
1570 jcc (Assembler::positive, _is_positive);
1571 int offset = (1 << shift_value) - 1 ;
1572
1573 if (offset == 1) {
1574 incrementl(reg);
1575 } else {
1576 addl(reg, offset);
1577 }
1578
1579 bind (_is_positive);
1580 sarl(reg, shift_value);
1581 }
1582
1583 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src, Register rscratch) {
1584 assert(rscratch != noreg || always_reachable(src), "missing");
1585
1586 if (reachable(src)) {
1587 Assembler::divsd(dst, as_Address(src));
1588 } else {
1589 lea(rscratch, src);
1590 Assembler::divsd(dst, Address(rscratch, 0));
1591 }
1592 }
1593
1594 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src, Register rscratch) {
1595 assert(rscratch != noreg || always_reachable(src), "missing");
1596
1597 if (reachable(src)) {
1598 Assembler::divss(dst, as_Address(src));
1599 } else {
1600 lea(rscratch, src);
1601 Assembler::divss(dst, Address(rscratch, 0));
1602 }
1603 }
1604
1605 void MacroAssembler::enter() {
1606 push(rbp);
1607 mov(rbp, rsp);
1608 }
1609
1610 void MacroAssembler::post_call_nop() {
1611 if (!Continuations::enabled()) {
1612 return;
1613 }
1614 InstructionMark im(this);
1615 relocate(post_call_nop_Relocation::spec());
1616 InlineSkippedInstructionsCounter skipCounter(this);
1617 emit_int8((uint8_t)0x0f);
1618 emit_int8((uint8_t)0x1f);
1619 emit_int8((uint8_t)0x84);
1620 emit_int8((uint8_t)0x00);
1621 emit_int32(0x00);
1622 }
1623
1624 void MacroAssembler::mulpd(XMMRegister dst, AddressLiteral src, Register rscratch) {
1625 assert(rscratch != noreg || always_reachable(src), "missing");
1626 if (reachable(src)) {
1627 Assembler::mulpd(dst, as_Address(src));
1628 } else {
1629 lea(rscratch, src);
1630 Assembler::mulpd(dst, Address(rscratch, 0));
1631 }
1632 }
1633
1634 // dst = c = a * b + c
1635 void MacroAssembler::fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) {
1636 Assembler::vfmadd231sd(c, a, b);
1637 if (dst != c) {
1638 movdbl(dst, c);
1639 }
1640 }
1641
1642 // dst = c = a * b + c
1643 void MacroAssembler::fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) {
1644 Assembler::vfmadd231ss(c, a, b);
1645 if (dst != c) {
1646 movflt(dst, c);
1647 }
1648 }
1649
1650 // dst = c = a * b + c
1651 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) {
1652 Assembler::vfmadd231pd(c, a, b, vector_len);
1653 if (dst != c) {
1654 vmovdqu(dst, c);
1655 }
1656 }
1657
1658 // dst = c = a * b + c
1659 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) {
1660 Assembler::vfmadd231ps(c, a, b, vector_len);
1661 if (dst != c) {
1662 vmovdqu(dst, c);
1663 }
1664 }
1665
1666 // dst = c = a * b + c
1667 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) {
1668 Assembler::vfmadd231pd(c, a, b, vector_len);
1669 if (dst != c) {
1670 vmovdqu(dst, c);
1671 }
1672 }
1673
1674 // dst = c = a * b + c
1675 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) {
1676 Assembler::vfmadd231ps(c, a, b, vector_len);
1677 if (dst != c) {
1678 vmovdqu(dst, c);
1679 }
1680 }
1681
1682 void MacroAssembler::incrementl(AddressLiteral dst, Register rscratch) {
1683 assert(rscratch != noreg || always_reachable(dst), "missing");
1684
1685 if (reachable(dst)) {
1686 incrementl(as_Address(dst));
1687 } else {
1688 lea(rscratch, dst);
1689 incrementl(Address(rscratch, 0));
1690 }
1691 }
1692
1693 void MacroAssembler::incrementl(ArrayAddress dst, Register rscratch) {
1694 incrementl(as_Address(dst, rscratch));
1695 }
1696
1697 void MacroAssembler::incrementl(Register reg, int value) {
1698 if (value == min_jint) {addl(reg, value) ; return; }
1699 if (value < 0) { decrementl(reg, -value); return; }
1700 if (value == 0) { ; return; }
1701 if (value == 1 && UseIncDec) { incl(reg) ; return; }
1702 /* else */ { addl(reg, value) ; return; }
1703 }
1704
1705 void MacroAssembler::incrementl(Address dst, int value) {
1706 if (value == min_jint) {addl(dst, value) ; return; }
1707 if (value < 0) { decrementl(dst, -value); return; }
1708 if (value == 0) { ; return; }
1709 if (value == 1 && UseIncDec) { incl(dst) ; return; }
1710 /* else */ { addl(dst, value) ; return; }
1711 }
1712
1713 void MacroAssembler::jump(AddressLiteral dst, Register rscratch) {
1714 assert(rscratch != noreg || always_reachable(dst), "missing");
1715 assert(!dst.rspec().reloc()->is_data(), "should not use ExternalAddress for jump");
1716 if (reachable(dst)) {
1717 jmp_literal(dst.target(), dst.rspec());
1718 } else {
1719 lea(rscratch, dst);
1720 jmp(rscratch);
1721 }
1722 }
1723
1724 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst, Register rscratch) {
1725 assert(rscratch != noreg || always_reachable(dst), "missing");
1726 assert(!dst.rspec().reloc()->is_data(), "should not use ExternalAddress for jump_cc");
1727 if (reachable(dst)) {
1728 InstructionMark im(this);
1729 relocate(dst.reloc());
1730 const int short_size = 2;
1731 const int long_size = 6;
1732 int offs = (intptr_t)dst.target() - ((intptr_t)pc());
1733 if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
1734 // 0111 tttn #8-bit disp
1735 emit_int8(0x70 | cc);
1736 emit_int8((offs - short_size) & 0xFF);
1737 } else {
1738 // 0000 1111 1000 tttn #32-bit disp
1739 emit_int8(0x0F);
1740 emit_int8((unsigned char)(0x80 | cc));
1741 emit_int32(offs - long_size);
1742 }
1743 } else {
1744 #ifdef ASSERT
1745 warning("reversing conditional branch");
1746 #endif /* ASSERT */
1747 Label skip;
1748 jccb(reverse[cc], skip);
1749 lea(rscratch, dst);
1750 Assembler::jmp(rscratch);
1751 bind(skip);
1752 }
1753 }
1754
1755 void MacroAssembler::cmp32_mxcsr_std(Address mxcsr_save, Register tmp, Register rscratch) {
1756 ExternalAddress mxcsr_std(StubRoutines::x86::addr_mxcsr_std());
1757 assert(rscratch != noreg || always_reachable(mxcsr_std), "missing");
1758
1759 stmxcsr(mxcsr_save);
1760 movl(tmp, mxcsr_save);
1761 if (EnableX86ECoreOpts) {
1762 // The mxcsr_std has status bits set for performance on ECore
1763 orl(tmp, 0x003f);
1764 } else {
1765 // Mask out status bits (only check control and mask bits)
1766 andl(tmp, 0xFFC0);
1767 }
1768 cmp32(tmp, mxcsr_std, rscratch);
1769 }
1770
1771 void MacroAssembler::ldmxcsr(AddressLiteral src, Register rscratch) {
1772 assert(rscratch != noreg || always_reachable(src), "missing");
1773
1774 if (reachable(src)) {
1775 Assembler::ldmxcsr(as_Address(src));
1776 } else {
1777 lea(rscratch, src);
1778 Assembler::ldmxcsr(Address(rscratch, 0));
1779 }
1780 }
1781
1782 int MacroAssembler::load_signed_byte(Register dst, Address src) {
1783 int off = offset();
1784 movsbl(dst, src); // movsxb
1785 return off;
1786 }
1787
1788 // Note: load_signed_short used to be called load_signed_word.
1789 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
1790 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
1791 // The term "word" in HotSpot means a 32- or 64-bit machine word.
1792 int MacroAssembler::load_signed_short(Register dst, Address src) {
1793 // This is dubious to me since it seems safe to do a signed 16 => 64 bit
1794 // version but this is what 64bit has always done. This seems to imply
1795 // that users are only using 32bits worth.
1796 int off = offset();
1797 movswl(dst, src); // movsxw
1798 return off;
1799 }
1800
1801 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
1802 // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
1803 // and "3.9 Partial Register Penalties", p. 22).
1804 int off = offset();
1805 movzbl(dst, src); // movzxb
1806 return off;
1807 }
1808
1809 // Note: load_unsigned_short used to be called load_unsigned_word.
1810 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
1811 // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
1812 // and "3.9 Partial Register Penalties", p. 22).
1813 int off = offset();
1814 movzwl(dst, src); // movzxw
1815 return off;
1816 }
1817
1818 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
1819 switch (size_in_bytes) {
1820 case 8: movq(dst, src); break;
1821 case 4: movl(dst, src); break;
1822 case 2: is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
1823 case 1: is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
1824 default: ShouldNotReachHere();
1825 }
1826 }
1827
1828 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
1829 switch (size_in_bytes) {
1830 case 8: movq(dst, src); break;
1831 case 4: movl(dst, src); break;
1832 case 2: movw(dst, src); break;
1833 case 1: movb(dst, src); break;
1834 default: ShouldNotReachHere();
1835 }
1836 }
1837
1838 void MacroAssembler::mov32(AddressLiteral dst, Register src, Register rscratch) {
1839 assert(rscratch != noreg || always_reachable(dst), "missing");
1840
1841 if (reachable(dst)) {
1842 movl(as_Address(dst), src);
1843 } else {
1844 lea(rscratch, dst);
1845 movl(Address(rscratch, 0), src);
1846 }
1847 }
1848
1849 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
1850 if (reachable(src)) {
1851 movl(dst, as_Address(src));
1852 } else {
1853 lea(dst, src);
1854 movl(dst, Address(dst, 0));
1855 }
1856 }
1857
1858 // C++ bool manipulation
1859
1860 void MacroAssembler::movbool(Register dst, Address src) {
1861 if(sizeof(bool) == 1)
1862 movb(dst, src);
1863 else if(sizeof(bool) == 2)
1864 movw(dst, src);
1865 else if(sizeof(bool) == 4)
1866 movl(dst, src);
1867 else
1868 // unsupported
1869 ShouldNotReachHere();
1870 }
1871
1872 void MacroAssembler::movbool(Address dst, bool boolconst) {
1873 if(sizeof(bool) == 1)
1874 movb(dst, (int) boolconst);
1875 else if(sizeof(bool) == 2)
1876 movw(dst, (int) boolconst);
1877 else if(sizeof(bool) == 4)
1878 movl(dst, (int) boolconst);
1879 else
1880 // unsupported
1881 ShouldNotReachHere();
1882 }
1883
1884 void MacroAssembler::movbool(Address dst, Register src) {
1885 if(sizeof(bool) == 1)
1886 movb(dst, src);
1887 else if(sizeof(bool) == 2)
1888 movw(dst, src);
1889 else if(sizeof(bool) == 4)
1890 movl(dst, src);
1891 else
1892 // unsupported
1893 ShouldNotReachHere();
1894 }
1895
1896 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src, Register rscratch) {
1897 assert(rscratch != noreg || always_reachable(src), "missing");
1898
1899 if (reachable(src)) {
1900 movdl(dst, as_Address(src));
1901 } else {
1902 lea(rscratch, src);
1903 movdl(dst, Address(rscratch, 0));
1904 }
1905 }
1906
1907 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src, Register rscratch) {
1908 assert(rscratch != noreg || always_reachable(src), "missing");
1909
1910 if (reachable(src)) {
1911 movq(dst, as_Address(src));
1912 } else {
1913 lea(rscratch, src);
1914 movq(dst, Address(rscratch, 0));
1915 }
1916 }
1917
1918 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src, Register rscratch) {
1919 assert(rscratch != noreg || always_reachable(src), "missing");
1920
1921 if (reachable(src)) {
1922 if (UseXmmLoadAndClearUpper) {
1923 movsd (dst, as_Address(src));
1924 } else {
1925 movlpd(dst, as_Address(src));
1926 }
1927 } else {
1928 lea(rscratch, src);
1929 if (UseXmmLoadAndClearUpper) {
1930 movsd (dst, Address(rscratch, 0));
1931 } else {
1932 movlpd(dst, Address(rscratch, 0));
1933 }
1934 }
1935 }
1936
1937 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src, Register rscratch) {
1938 assert(rscratch != noreg || always_reachable(src), "missing");
1939
1940 if (reachable(src)) {
1941 movss(dst, as_Address(src));
1942 } else {
1943 lea(rscratch, src);
1944 movss(dst, Address(rscratch, 0));
1945 }
1946 }
1947
1948 void MacroAssembler::movptr(Register dst, Register src) {
1949 movq(dst, src);
1950 }
1951
1952 void MacroAssembler::movptr(Register dst, Address src) {
1953 movq(dst, src);
1954 }
1955
1956 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
1957 void MacroAssembler::movptr(Register dst, intptr_t src) {
1958 if (is_uimm32(src)) {
1959 movl(dst, checked_cast<uint32_t>(src));
1960 } else if (is_simm32(src)) {
1961 movq(dst, checked_cast<int32_t>(src));
1962 } else {
1963 mov64(dst, src);
1964 }
1965 }
1966
1967 void MacroAssembler::movptr(Address dst, Register src) {
1968 movq(dst, src);
1969 }
1970
1971 void MacroAssembler::movptr(Address dst, int32_t src) {
1972 movslq(dst, src);
1973 }
1974
1975 void MacroAssembler::movdqu(Address dst, XMMRegister src) {
1976 assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
1977 Assembler::movdqu(dst, src);
1978 }
1979
1980 void MacroAssembler::movdqu(XMMRegister dst, Address src) {
1981 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
1982 Assembler::movdqu(dst, src);
1983 }
1984
1985 void MacroAssembler::movdqu(XMMRegister dst, XMMRegister src) {
1986 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
1987 Assembler::movdqu(dst, src);
1988 }
1989
1990 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src, Register rscratch) {
1991 assert(rscratch != noreg || always_reachable(src), "missing");
1992
1993 if (reachable(src)) {
1994 movdqu(dst, as_Address(src));
1995 } else {
1996 lea(rscratch, src);
1997 movdqu(dst, Address(rscratch, 0));
1998 }
1999 }
2000
2001 void MacroAssembler::vmovdqu(Address dst, XMMRegister src) {
2002 assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
2003 Assembler::vmovdqu(dst, src);
2004 }
2005
2006 void MacroAssembler::vmovdqu(XMMRegister dst, Address src) {
2007 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
2008 Assembler::vmovdqu(dst, src);
2009 }
2010
2011 void MacroAssembler::vmovdqu(XMMRegister dst, XMMRegister src) {
2012 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
2013 Assembler::vmovdqu(dst, src);
2014 }
2015
2016 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src, Register rscratch) {
2017 assert(rscratch != noreg || always_reachable(src), "missing");
2018
2019 if (reachable(src)) {
2020 vmovdqu(dst, as_Address(src));
2021 }
2022 else {
2023 lea(rscratch, src);
2024 vmovdqu(dst, Address(rscratch, 0));
2025 }
2026 }
2027
2028 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
2029 assert(rscratch != noreg || always_reachable(src), "missing");
2030
2031 if (vector_len == AVX_512bit) {
2032 evmovdquq(dst, src, AVX_512bit, rscratch);
2033 } else if (vector_len == AVX_256bit) {
2034 vmovdqu(dst, src, rscratch);
2035 } else {
2036 movdqu(dst, src, rscratch);
2037 }
2038 }
2039
2040 void MacroAssembler::vmovdqu(XMMRegister dst, XMMRegister src, int vector_len) {
2041 if (vector_len == AVX_512bit) {
2042 evmovdquq(dst, src, AVX_512bit);
2043 } else if (vector_len == AVX_256bit) {
2044 vmovdqu(dst, src);
2045 } else {
2046 movdqu(dst, src);
2047 }
2048 }
2049
2050 void MacroAssembler::vmovdqu(Address dst, XMMRegister src, int vector_len) {
2051 if (vector_len == AVX_512bit) {
2052 evmovdquq(dst, src, AVX_512bit);
2053 } else if (vector_len == AVX_256bit) {
2054 vmovdqu(dst, src);
2055 } else {
2056 movdqu(dst, src);
2057 }
2058 }
2059
2060 void MacroAssembler::vmovdqu(XMMRegister dst, Address src, int vector_len) {
2061 if (vector_len == AVX_512bit) {
2062 evmovdquq(dst, src, AVX_512bit);
2063 } else if (vector_len == AVX_256bit) {
2064 vmovdqu(dst, src);
2065 } else {
2066 movdqu(dst, src);
2067 }
2068 }
2069
2070 void MacroAssembler::vmovdqa(XMMRegister dst, AddressLiteral src, Register rscratch) {
2071 assert(rscratch != noreg || always_reachable(src), "missing");
2072
2073 if (reachable(src)) {
2074 vmovdqa(dst, as_Address(src));
2075 }
2076 else {
2077 lea(rscratch, src);
2078 vmovdqa(dst, Address(rscratch, 0));
2079 }
2080 }
2081
2082 void MacroAssembler::vmovdqa(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
2083 assert(rscratch != noreg || always_reachable(src), "missing");
2084
2085 if (vector_len == AVX_512bit) {
2086 evmovdqaq(dst, src, AVX_512bit, rscratch);
2087 } else if (vector_len == AVX_256bit) {
2088 vmovdqa(dst, src, rscratch);
2089 } else {
2090 movdqa(dst, src, rscratch);
2091 }
2092 }
2093
2094 void MacroAssembler::kmov(KRegister dst, Address src) {
2095 if (VM_Version::supports_avx512bw()) {
2096 kmovql(dst, src);
2097 } else {
2098 assert(VM_Version::supports_evex(), "");
2099 kmovwl(dst, src);
2100 }
2101 }
2102
2103 void MacroAssembler::kmov(Address dst, KRegister src) {
2104 if (VM_Version::supports_avx512bw()) {
2105 kmovql(dst, src);
2106 } else {
2107 assert(VM_Version::supports_evex(), "");
2108 kmovwl(dst, src);
2109 }
2110 }
2111
2112 void MacroAssembler::kmov(KRegister dst, KRegister src) {
2113 if (VM_Version::supports_avx512bw()) {
2114 kmovql(dst, src);
2115 } else {
2116 assert(VM_Version::supports_evex(), "");
2117 kmovwl(dst, src);
2118 }
2119 }
2120
2121 void MacroAssembler::kmov(Register dst, KRegister src) {
2122 if (VM_Version::supports_avx512bw()) {
2123 kmovql(dst, src);
2124 } else {
2125 assert(VM_Version::supports_evex(), "");
2126 kmovwl(dst, src);
2127 }
2128 }
2129
2130 void MacroAssembler::kmov(KRegister dst, Register src) {
2131 if (VM_Version::supports_avx512bw()) {
2132 kmovql(dst, src);
2133 } else {
2134 assert(VM_Version::supports_evex(), "");
2135 kmovwl(dst, src);
2136 }
2137 }
2138
2139 void MacroAssembler::kmovql(KRegister dst, AddressLiteral src, Register rscratch) {
2140 assert(rscratch != noreg || always_reachable(src), "missing");
2141
2142 if (reachable(src)) {
2143 kmovql(dst, as_Address(src));
2144 } else {
2145 lea(rscratch, src);
2146 kmovql(dst, Address(rscratch, 0));
2147 }
2148 }
2149
2150 void MacroAssembler::kmovwl(KRegister dst, AddressLiteral src, Register rscratch) {
2151 assert(rscratch != noreg || always_reachable(src), "missing");
2152
2153 if (reachable(src)) {
2154 kmovwl(dst, as_Address(src));
2155 } else {
2156 lea(rscratch, src);
2157 kmovwl(dst, Address(rscratch, 0));
2158 }
2159 }
2160
2161 void MacroAssembler::evmovdqub(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge,
2162 int vector_len, Register rscratch) {
2163 assert(rscratch != noreg || always_reachable(src), "missing");
2164
2165 if (reachable(src)) {
2166 Assembler::evmovdqub(dst, mask, as_Address(src), merge, vector_len);
2167 } else {
2168 lea(rscratch, src);
2169 Assembler::evmovdqub(dst, mask, Address(rscratch, 0), merge, vector_len);
2170 }
2171 }
2172
2173 void MacroAssembler::evmovdquw(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge,
2174 int vector_len, Register rscratch) {
2175 assert(rscratch != noreg || always_reachable(src), "missing");
2176
2177 if (reachable(src)) {
2178 Assembler::evmovdquw(dst, mask, as_Address(src), merge, vector_len);
2179 } else {
2180 lea(rscratch, src);
2181 Assembler::evmovdquw(dst, mask, Address(rscratch, 0), merge, vector_len);
2182 }
2183 }
2184
2185 void MacroAssembler::evmovdqul(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch) {
2186 assert(rscratch != noreg || always_reachable(src), "missing");
2187
2188 if (reachable(src)) {
2189 Assembler::evmovdqul(dst, mask, as_Address(src), merge, vector_len);
2190 } else {
2191 lea(rscratch, src);
2192 Assembler::evmovdqul(dst, mask, Address(rscratch, 0), merge, vector_len);
2193 }
2194 }
2195
2196 void MacroAssembler::evmovdquq(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch) {
2197 assert(rscratch != noreg || always_reachable(src), "missing");
2198
2199 if (reachable(src)) {
2200 Assembler::evmovdquq(dst, mask, as_Address(src), merge, vector_len);
2201 } else {
2202 lea(rscratch, src);
2203 Assembler::evmovdquq(dst, mask, Address(rscratch, 0), merge, vector_len);
2204 }
2205 }
2206
2207 void MacroAssembler::evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
2208 assert(rscratch != noreg || always_reachable(src), "missing");
2209
2210 if (reachable(src)) {
2211 Assembler::evmovdquq(dst, as_Address(src), vector_len);
2212 } else {
2213 lea(rscratch, src);
2214 Assembler::evmovdquq(dst, Address(rscratch, 0), vector_len);
2215 }
2216 }
2217
2218 void MacroAssembler::evmovdqaq(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch) {
2219 assert(rscratch != noreg || always_reachable(src), "missing");
2220
2221 if (reachable(src)) {
2222 Assembler::evmovdqaq(dst, mask, as_Address(src), merge, vector_len);
2223 } else {
2224 lea(rscratch, src);
2225 Assembler::evmovdqaq(dst, mask, Address(rscratch, 0), merge, vector_len);
2226 }
2227 }
2228
2229 void MacroAssembler::evmovdqaq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
2230 assert(rscratch != noreg || always_reachable(src), "missing");
2231
2232 if (reachable(src)) {
2233 Assembler::evmovdqaq(dst, as_Address(src), vector_len);
2234 } else {
2235 lea(rscratch, src);
2236 Assembler::evmovdqaq(dst, Address(rscratch, 0), vector_len);
2237 }
2238 }
2239
2240 void MacroAssembler::movapd(XMMRegister dst, AddressLiteral src, Register rscratch) {
2241 assert(rscratch != noreg || always_reachable(src), "missing");
2242
2243 if (reachable(src)) {
2244 Assembler::movapd(dst, as_Address(src));
2245 } else {
2246 lea(rscratch, src);
2247 Assembler::movapd(dst, Address(rscratch, 0));
2248 }
2249 }
2250
2251 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src, Register rscratch) {
2252 assert(rscratch != noreg || always_reachable(src), "missing");
2253
2254 if (reachable(src)) {
2255 Assembler::movdqa(dst, as_Address(src));
2256 } else {
2257 lea(rscratch, src);
2258 Assembler::movdqa(dst, Address(rscratch, 0));
2259 }
2260 }
2261
2262 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src, Register rscratch) {
2263 assert(rscratch != noreg || always_reachable(src), "missing");
2264
2265 if (reachable(src)) {
2266 Assembler::movsd(dst, as_Address(src));
2267 } else {
2268 lea(rscratch, src);
2269 Assembler::movsd(dst, Address(rscratch, 0));
2270 }
2271 }
2272
2273 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src, Register rscratch) {
2274 assert(rscratch != noreg || always_reachable(src), "missing");
2275
2276 if (reachable(src)) {
2277 Assembler::movss(dst, as_Address(src));
2278 } else {
2279 lea(rscratch, src);
2280 Assembler::movss(dst, Address(rscratch, 0));
2281 }
2282 }
2283
2284 void MacroAssembler::movddup(XMMRegister dst, AddressLiteral src, Register rscratch) {
2285 assert(rscratch != noreg || always_reachable(src), "missing");
2286
2287 if (reachable(src)) {
2288 Assembler::movddup(dst, as_Address(src));
2289 } else {
2290 lea(rscratch, src);
2291 Assembler::movddup(dst, Address(rscratch, 0));
2292 }
2293 }
2294
2295 void MacroAssembler::vmovddup(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
2296 assert(rscratch != noreg || always_reachable(src), "missing");
2297
2298 if (reachable(src)) {
2299 Assembler::vmovddup(dst, as_Address(src), vector_len);
2300 } else {
2301 lea(rscratch, src);
2302 Assembler::vmovddup(dst, Address(rscratch, 0), vector_len);
2303 }
2304 }
2305
2306 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src, Register rscratch) {
2307 assert(rscratch != noreg || always_reachable(src), "missing");
2308
2309 if (reachable(src)) {
2310 Assembler::mulsd(dst, as_Address(src));
2311 } else {
2312 lea(rscratch, src);
2313 Assembler::mulsd(dst, Address(rscratch, 0));
2314 }
2315 }
2316
2317 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src, Register rscratch) {
2318 assert(rscratch != noreg || always_reachable(src), "missing");
2319
2320 if (reachable(src)) {
2321 Assembler::mulss(dst, as_Address(src));
2322 } else {
2323 lea(rscratch, src);
2324 Assembler::mulss(dst, Address(rscratch, 0));
2325 }
2326 }
2327
2328 void MacroAssembler::null_check(Register reg, int offset) {
2329 if (needs_explicit_null_check(offset)) {
2330 // provoke OS null exception if reg is null by
2331 // accessing M[reg] w/o changing any (non-CC) registers
2332 // NOTE: cmpl is plenty here to provoke a segv
2333 cmpptr(rax, Address(reg, 0));
2334 // Note: should probably use testl(rax, Address(reg, 0));
2335 // may be shorter code (however, this version of
2336 // testl needs to be implemented first)
2337 } else {
2338 // nothing to do, (later) access of M[reg + offset]
2339 // will provoke OS null exception if reg is null
2340 }
2341 }
2342
2343 void MacroAssembler::os_breakpoint() {
2344 // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
2345 // (e.g., MSVC can't call ps() otherwise)
2346 call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
2347 }
2348
2349 void MacroAssembler::unimplemented(const char* what) {
2350 const char* buf = nullptr;
2351 {
2352 ResourceMark rm;
2353 stringStream ss;
2354 ss.print("unimplemented: %s", what);
2355 buf = code_string(ss.as_string());
2356 }
2357 stop(buf);
2358 }
2359
2360 #define XSTATE_BV 0x200
2361
2362 void MacroAssembler::pop_CPU_state() {
2363 pop_FPU_state();
2364 pop_IU_state();
2365 }
2366
2367 void MacroAssembler::pop_FPU_state() {
2368 fxrstor(Address(rsp, 0));
2369 addptr(rsp, FPUStateSizeInWords * wordSize);
2370 }
2371
2372 void MacroAssembler::pop_IU_state() {
2373 popa();
2374 addq(rsp, 8);
2375 popf();
2376 }
2377
2378 // Save Integer and Float state
2379 // Warning: Stack must be 16 byte aligned (64bit)
2380 void MacroAssembler::push_CPU_state() {
2381 push_IU_state();
2382 push_FPU_state();
2383 }
2384
2385 void MacroAssembler::push_FPU_state() {
2386 subptr(rsp, FPUStateSizeInWords * wordSize);
2387 fxsave(Address(rsp, 0));
2388 }
2389
2390 void MacroAssembler::push_IU_state() {
2391 // Push flags first because pusha kills them
2392 pushf();
2393 // Make sure rsp stays 16-byte aligned
2394 subq(rsp, 8);
2395 pusha();
2396 }
2397
2398 void MacroAssembler::push_cont_fastpath() {
2399 if (!Continuations::enabled()) return;
2400
2401 Label L_done;
2402 cmpptr(rsp, Address(r15_thread, JavaThread::cont_fastpath_offset()));
2403 jccb(Assembler::belowEqual, L_done);
2404 movptr(Address(r15_thread, JavaThread::cont_fastpath_offset()), rsp);
2405 bind(L_done);
2406 }
2407
2408 void MacroAssembler::pop_cont_fastpath() {
2409 if (!Continuations::enabled()) return;
2410
2411 Label L_done;
2412 cmpptr(rsp, Address(r15_thread, JavaThread::cont_fastpath_offset()));
2413 jccb(Assembler::below, L_done);
2414 movptr(Address(r15_thread, JavaThread::cont_fastpath_offset()), 0);
2415 bind(L_done);
2416 }
2417
2418 void MacroAssembler::inc_held_monitor_count() {
2419 incrementq(Address(r15_thread, JavaThread::held_monitor_count_offset()));
2420 }
2421
2422 void MacroAssembler::dec_held_monitor_count() {
2423 decrementq(Address(r15_thread, JavaThread::held_monitor_count_offset()));
2424 }
2425
2426 #ifdef ASSERT
2427 void MacroAssembler::stop_if_in_cont(Register cont, const char* name) {
2428 Label no_cont;
2429 movptr(cont, Address(r15_thread, JavaThread::cont_entry_offset()));
2430 testl(cont, cont);
2431 jcc(Assembler::zero, no_cont);
2432 stop(name);
2433 bind(no_cont);
2434 }
2435 #endif
2436
2437 void MacroAssembler::reset_last_Java_frame(bool clear_fp) { // determine java_thread register
2438 // we must set sp to zero to clear frame
2439 movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
2440 // must clear fp, so that compiled frames are not confused; it is
2441 // possible that we need it only for debugging
2442 if (clear_fp) {
2443 movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
2444 }
2445 // Always clear the pc because it could have been set by make_walkable()
2446 movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
2447 vzeroupper();
2448 }
2449
2450 void MacroAssembler::round_to(Register reg, int modulus) {
2451 addptr(reg, modulus - 1);
2452 andptr(reg, -modulus);
2453 }
2454
2455 void MacroAssembler::safepoint_poll(Label& slow_path, bool at_return, bool in_nmethod) {
2456 if (at_return) {
2457 // Note that when in_nmethod is set, the stack pointer is incremented before the poll. Therefore,
2458 // we may safely use rsp instead to perform the stack watermark check.
2459 cmpptr(in_nmethod ? rsp : rbp, Address(r15_thread, JavaThread::polling_word_offset()));
2460 jcc(Assembler::above, slow_path);
2461 return;
2462 }
2463 testb(Address(r15_thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit());
2464 jcc(Assembler::notZero, slow_path); // handshake bit set implies poll
2465 }
2466
2467 // Calls to C land
2468 //
2469 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
2470 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
2471 // has to be reset to 0. This is required to allow proper stack traversal.
2472 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
2473 Register last_java_fp,
2474 address last_java_pc,
2475 Register rscratch) {
2476 vzeroupper();
2477 // determine last_java_sp register
2478 if (!last_java_sp->is_valid()) {
2479 last_java_sp = rsp;
2480 }
2481 // last_java_fp is optional
2482 if (last_java_fp->is_valid()) {
2483 movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
2484 }
2485 // last_java_pc is optional
2486 if (last_java_pc != nullptr) {
2487 Address java_pc(r15_thread,
2488 JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
2489 lea(java_pc, InternalAddress(last_java_pc), rscratch);
2490 }
2491 movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
2492 }
2493
2494 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
2495 Register last_java_fp,
2496 Label &L,
2497 Register scratch) {
2498 lea(scratch, L);
2499 movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), scratch);
2500 set_last_Java_frame(last_java_sp, last_java_fp, nullptr, scratch);
2501 }
2502
2503 void MacroAssembler::shlptr(Register dst, int imm8) {
2504 shlq(dst, imm8);
2505 }
2506
2507 void MacroAssembler::shrptr(Register dst, int imm8) {
2508 shrq(dst, imm8);
2509 }
2510
2511 void MacroAssembler::sign_extend_byte(Register reg) {
2512 movsbl(reg, reg); // movsxb
2513 }
2514
2515 void MacroAssembler::sign_extend_short(Register reg) {
2516 movswl(reg, reg); // movsxw
2517 }
2518
2519 void MacroAssembler::testl(Address dst, int32_t imm32) {
2520 if (imm32 >= 0 && is8bit(imm32)) {
2521 testb(dst, imm32);
2522 } else {
2523 Assembler::testl(dst, imm32);
2524 }
2525 }
2526
2527 void MacroAssembler::testl(Register dst, int32_t imm32) {
2528 if (imm32 >= 0 && is8bit(imm32) && dst->has_byte_register()) {
2529 testb(dst, imm32);
2530 } else {
2531 Assembler::testl(dst, imm32);
2532 }
2533 }
2534
2535 void MacroAssembler::testl(Register dst, AddressLiteral src) {
2536 assert(always_reachable(src), "Address should be reachable");
2537 testl(dst, as_Address(src));
2538 }
2539
2540 void MacroAssembler::testq(Address dst, int32_t imm32) {
2541 if (imm32 >= 0) {
2542 testl(dst, imm32);
2543 } else {
2544 Assembler::testq(dst, imm32);
2545 }
2546 }
2547
2548 void MacroAssembler::testq(Register dst, int32_t imm32) {
2549 if (imm32 >= 0) {
2550 testl(dst, imm32);
2551 } else {
2552 Assembler::testq(dst, imm32);
2553 }
2554 }
2555
2556 void MacroAssembler::pcmpeqb(XMMRegister dst, XMMRegister src) {
2557 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
2558 Assembler::pcmpeqb(dst, src);
2559 }
2560
2561 void MacroAssembler::pcmpeqw(XMMRegister dst, XMMRegister src) {
2562 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
2563 Assembler::pcmpeqw(dst, src);
2564 }
2565
2566 void MacroAssembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
2567 assert((dst->encoding() < 16),"XMM register should be 0-15");
2568 Assembler::pcmpestri(dst, src, imm8);
2569 }
2570
2571 void MacroAssembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
2572 assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15");
2573 Assembler::pcmpestri(dst, src, imm8);
2574 }
2575
2576 void MacroAssembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
2577 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
2578 Assembler::pmovzxbw(dst, src);
2579 }
2580
2581 void MacroAssembler::pmovzxbw(XMMRegister dst, Address src) {
2582 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
2583 Assembler::pmovzxbw(dst, src);
2584 }
2585
2586 void MacroAssembler::pmovmskb(Register dst, XMMRegister src) {
2587 assert((src->encoding() < 16),"XMM register should be 0-15");
2588 Assembler::pmovmskb(dst, src);
2589 }
2590
2591 void MacroAssembler::ptest(XMMRegister dst, XMMRegister src) {
2592 assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15");
2593 Assembler::ptest(dst, src);
2594 }
2595
2596 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src, Register rscratch) {
2597 assert(rscratch != noreg || always_reachable(src), "missing");
2598
2599 if (reachable(src)) {
2600 Assembler::sqrtss(dst, as_Address(src));
2601 } else {
2602 lea(rscratch, src);
2603 Assembler::sqrtss(dst, Address(rscratch, 0));
2604 }
2605 }
2606
2607 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src, Register rscratch) {
2608 assert(rscratch != noreg || always_reachable(src), "missing");
2609
2610 if (reachable(src)) {
2611 Assembler::subsd(dst, as_Address(src));
2612 } else {
2613 lea(rscratch, src);
2614 Assembler::subsd(dst, Address(rscratch, 0));
2615 }
2616 }
2617
2618 void MacroAssembler::roundsd(XMMRegister dst, AddressLiteral src, int32_t rmode, Register rscratch) {
2619 assert(rscratch != noreg || always_reachable(src), "missing");
2620
2621 if (reachable(src)) {
2622 Assembler::roundsd(dst, as_Address(src), rmode);
2623 } else {
2624 lea(rscratch, src);
2625 Assembler::roundsd(dst, Address(rscratch, 0), rmode);
2626 }
2627 }
2628
2629 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src, Register rscratch) {
2630 assert(rscratch != noreg || always_reachable(src), "missing");
2631
2632 if (reachable(src)) {
2633 Assembler::subss(dst, as_Address(src));
2634 } else {
2635 lea(rscratch, src);
2636 Assembler::subss(dst, Address(rscratch, 0));
2637 }
2638 }
2639
2640 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src, Register rscratch) {
2641 assert(rscratch != noreg || always_reachable(src), "missing");
2642
2643 if (reachable(src)) {
2644 Assembler::ucomisd(dst, as_Address(src));
2645 } else {
2646 lea(rscratch, src);
2647 Assembler::ucomisd(dst, Address(rscratch, 0));
2648 }
2649 }
2650
2651 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src, Register rscratch) {
2652 assert(rscratch != noreg || always_reachable(src), "missing");
2653
2654 if (reachable(src)) {
2655 Assembler::ucomiss(dst, as_Address(src));
2656 } else {
2657 lea(rscratch, src);
2658 Assembler::ucomiss(dst, Address(rscratch, 0));
2659 }
2660 }
2661
2662 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src, Register rscratch) {
2663 assert(rscratch != noreg || always_reachable(src), "missing");
2664
2665 // Used in sign-bit flipping with aligned address.
2666 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
2667
2668 if (UseAVX > 2 &&
2669 (!VM_Version::supports_avx512dq() || !VM_Version::supports_avx512vl()) &&
2670 (dst->encoding() >= 16)) {
2671 vpxor(dst, dst, src, Assembler::AVX_512bit, rscratch);
2672 } else if (reachable(src)) {
2673 Assembler::xorpd(dst, as_Address(src));
2674 } else {
2675 lea(rscratch, src);
2676 Assembler::xorpd(dst, Address(rscratch, 0));
2677 }
2678 }
2679
2680 void MacroAssembler::xorpd(XMMRegister dst, XMMRegister src) {
2681 if (UseAVX > 2 &&
2682 (!VM_Version::supports_avx512dq() || !VM_Version::supports_avx512vl()) &&
2683 ((dst->encoding() >= 16) || (src->encoding() >= 16))) {
2684 Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
2685 } else {
2686 Assembler::xorpd(dst, src);
2687 }
2688 }
2689
2690 void MacroAssembler::xorps(XMMRegister dst, XMMRegister src) {
2691 if (UseAVX > 2 &&
2692 (!VM_Version::supports_avx512dq() || !VM_Version::supports_avx512vl()) &&
2693 ((dst->encoding() >= 16) || (src->encoding() >= 16))) {
2694 Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
2695 } else {
2696 Assembler::xorps(dst, src);
2697 }
2698 }
2699
2700 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src, Register rscratch) {
2701 assert(rscratch != noreg || always_reachable(src), "missing");
2702
2703 // Used in sign-bit flipping with aligned address.
2704 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
2705
2706 if (UseAVX > 2 &&
2707 (!VM_Version::supports_avx512dq() || !VM_Version::supports_avx512vl()) &&
2708 (dst->encoding() >= 16)) {
2709 vpxor(dst, dst, src, Assembler::AVX_512bit, rscratch);
2710 } else if (reachable(src)) {
2711 Assembler::xorps(dst, as_Address(src));
2712 } else {
2713 lea(rscratch, src);
2714 Assembler::xorps(dst, Address(rscratch, 0));
2715 }
2716 }
2717
2718 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src, Register rscratch) {
2719 assert(rscratch != noreg || always_reachable(src), "missing");
2720
2721 // Used in sign-bit flipping with aligned address.
2722 bool aligned_adr = (((intptr_t)src.target() & 15) == 0);
2723 assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes");
2724 if (reachable(src)) {
2725 Assembler::pshufb(dst, as_Address(src));
2726 } else {
2727 lea(rscratch, src);
2728 Assembler::pshufb(dst, Address(rscratch, 0));
2729 }
2730 }
2731
2732 // AVX 3-operands instructions
2733
2734 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
2735 assert(rscratch != noreg || always_reachable(src), "missing");
2736
2737 if (reachable(src)) {
2738 vaddsd(dst, nds, as_Address(src));
2739 } else {
2740 lea(rscratch, src);
2741 vaddsd(dst, nds, Address(rscratch, 0));
2742 }
2743 }
2744
2745 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
2746 assert(rscratch != noreg || always_reachable(src), "missing");
2747
2748 if (reachable(src)) {
2749 vaddss(dst, nds, as_Address(src));
2750 } else {
2751 lea(rscratch, src);
2752 vaddss(dst, nds, Address(rscratch, 0));
2753 }
2754 }
2755
2756 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
2757 assert(UseAVX > 0, "requires some form of AVX");
2758 assert(rscratch != noreg || always_reachable(src), "missing");
2759
2760 if (reachable(src)) {
2761 Assembler::vpaddb(dst, nds, as_Address(src), vector_len);
2762 } else {
2763 lea(rscratch, src);
2764 Assembler::vpaddb(dst, nds, Address(rscratch, 0), vector_len);
2765 }
2766 }
2767
2768 void MacroAssembler::vpaddd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
2769 assert(UseAVX > 0, "requires some form of AVX");
2770 assert(rscratch != noreg || always_reachable(src), "missing");
2771
2772 if (reachable(src)) {
2773 Assembler::vpaddd(dst, nds, as_Address(src), vector_len);
2774 } else {
2775 lea(rscratch, src);
2776 Assembler::vpaddd(dst, nds, Address(rscratch, 0), vector_len);
2777 }
2778 }
2779
2780 void MacroAssembler::vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch) {
2781 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
2782 assert(rscratch != noreg || always_reachable(negate_field), "missing");
2783
2784 vandps(dst, nds, negate_field, vector_len, rscratch);
2785 }
2786
2787 void MacroAssembler::vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch) {
2788 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
2789 assert(rscratch != noreg || always_reachable(negate_field), "missing");
2790
2791 vandpd(dst, nds, negate_field, vector_len, rscratch);
2792 }
2793
2794 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
2795 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
2796 Assembler::vpaddb(dst, nds, src, vector_len);
2797 }
2798
2799 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
2800 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
2801 Assembler::vpaddb(dst, nds, src, vector_len);
2802 }
2803
2804 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
2805 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
2806 Assembler::vpaddw(dst, nds, src, vector_len);
2807 }
2808
2809 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
2810 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
2811 Assembler::vpaddw(dst, nds, src, vector_len);
2812 }
2813
2814 void MacroAssembler::vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
2815 assert(rscratch != noreg || always_reachable(src), "missing");
2816
2817 if (reachable(src)) {
2818 Assembler::vpand(dst, nds, as_Address(src), vector_len);
2819 } else {
2820 lea(rscratch, src);
2821 Assembler::vpand(dst, nds, Address(rscratch, 0), vector_len);
2822 }
2823 }
2824
2825 void MacroAssembler::vpbroadcastd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
2826 assert(rscratch != noreg || always_reachable(src), "missing");
2827
2828 if (reachable(src)) {
2829 Assembler::vpbroadcastd(dst, as_Address(src), vector_len);
2830 } else {
2831 lea(rscratch, src);
2832 Assembler::vpbroadcastd(dst, Address(rscratch, 0), vector_len);
2833 }
2834 }
2835
2836 void MacroAssembler::vbroadcasti128(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
2837 assert(rscratch != noreg || always_reachable(src), "missing");
2838
2839 if (reachable(src)) {
2840 Assembler::vbroadcasti128(dst, as_Address(src), vector_len);
2841 } else {
2842 lea(rscratch, src);
2843 Assembler::vbroadcasti128(dst, Address(rscratch, 0), vector_len);
2844 }
2845 }
2846
2847 void MacroAssembler::vpbroadcastq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
2848 assert(rscratch != noreg || always_reachable(src), "missing");
2849
2850 if (reachable(src)) {
2851 Assembler::vpbroadcastq(dst, as_Address(src), vector_len);
2852 } else {
2853 lea(rscratch, src);
2854 Assembler::vpbroadcastq(dst, Address(rscratch, 0), vector_len);
2855 }
2856 }
2857
2858 void MacroAssembler::vbroadcastsd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
2859 assert(rscratch != noreg || always_reachable(src), "missing");
2860
2861 if (reachable(src)) {
2862 Assembler::vbroadcastsd(dst, as_Address(src), vector_len);
2863 } else {
2864 lea(rscratch, src);
2865 Assembler::vbroadcastsd(dst, Address(rscratch, 0), vector_len);
2866 }
2867 }
2868
2869 void MacroAssembler::vbroadcastss(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
2870 assert(rscratch != noreg || always_reachable(src), "missing");
2871
2872 if (reachable(src)) {
2873 Assembler::vbroadcastss(dst, as_Address(src), vector_len);
2874 } else {
2875 lea(rscratch, src);
2876 Assembler::vbroadcastss(dst, Address(rscratch, 0), vector_len);
2877 }
2878 }
2879
2880 // Vector float blend
2881 // vblendvps(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister mask, int vector_len, bool compute_mask = true, XMMRegister scratch = xnoreg)
2882 void MacroAssembler::vblendvps(XMMRegister dst, XMMRegister src1, XMMRegister src2, XMMRegister mask, int vector_len, bool compute_mask, XMMRegister scratch) {
2883 // WARN: Allow dst == (src1|src2), mask == scratch
2884 bool blend_emulation = EnableX86ECoreOpts && UseAVX > 1;
2885 bool scratch_available = scratch != xnoreg && scratch != src1 && scratch != src2 && scratch != dst;
2886 bool dst_available = dst != mask && (dst != src1 || dst != src2);
2887 if (blend_emulation && scratch_available && dst_available) {
2888 if (compute_mask) {
2889 vpsrad(scratch, mask, 32, vector_len);
2890 mask = scratch;
2891 }
2892 if (dst == src1) {
2893 vpandn(dst, mask, src1, vector_len); // if mask == 0, src1
2894 vpand (scratch, mask, src2, vector_len); // if mask == 1, src2
2895 } else {
2896 vpand (dst, mask, src2, vector_len); // if mask == 1, src2
2897 vpandn(scratch, mask, src1, vector_len); // if mask == 0, src1
2898 }
2899 vpor(dst, dst, scratch, vector_len);
2900 } else {
2901 Assembler::vblendvps(dst, src1, src2, mask, vector_len);
2902 }
2903 }
2904
2905 // vblendvpd(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister mask, int vector_len, bool compute_mask = true, XMMRegister scratch = xnoreg)
2906 void MacroAssembler::vblendvpd(XMMRegister dst, XMMRegister src1, XMMRegister src2, XMMRegister mask, int vector_len, bool compute_mask, XMMRegister scratch) {
2907 // WARN: Allow dst == (src1|src2), mask == scratch
2908 bool blend_emulation = EnableX86ECoreOpts && UseAVX > 1;
2909 bool scratch_available = scratch != xnoreg && scratch != src1 && scratch != src2 && scratch != dst && (!compute_mask || scratch != mask);
2910 bool dst_available = dst != mask && (dst != src1 || dst != src2);
2911 if (blend_emulation && scratch_available && dst_available) {
2912 if (compute_mask) {
2913 vpxor(scratch, scratch, scratch, vector_len);
2914 vpcmpgtq(scratch, scratch, mask, vector_len);
2915 mask = scratch;
2916 }
2917 if (dst == src1) {
2918 vpandn(dst, mask, src1, vector_len); // if mask == 0, src
2919 vpand (scratch, mask, src2, vector_len); // if mask == 1, src2
2920 } else {
2921 vpand (dst, mask, src2, vector_len); // if mask == 1, src2
2922 vpandn(scratch, mask, src1, vector_len); // if mask == 0, src
2923 }
2924 vpor(dst, dst, scratch, vector_len);
2925 } else {
2926 Assembler::vblendvpd(dst, src1, src2, mask, vector_len);
2927 }
2928 }
2929
2930 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
2931 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
2932 Assembler::vpcmpeqb(dst, nds, src, vector_len);
2933 }
2934
2935 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister src1, Address src2, int vector_len) {
2936 assert(((dst->encoding() < 16 && src1->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
2937 Assembler::vpcmpeqb(dst, src1, src2, vector_len);
2938 }
2939
2940 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
2941 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
2942 Assembler::vpcmpeqw(dst, nds, src, vector_len);
2943 }
2944
2945 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
2946 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
2947 Assembler::vpcmpeqw(dst, nds, src, vector_len);
2948 }
2949
2950 void MacroAssembler::evpcmpeqd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
2951 assert(rscratch != noreg || always_reachable(src), "missing");
2952
2953 if (reachable(src)) {
2954 Assembler::evpcmpeqd(kdst, mask, nds, as_Address(src), vector_len);
2955 } else {
2956 lea(rscratch, src);
2957 Assembler::evpcmpeqd(kdst, mask, nds, Address(rscratch, 0), vector_len);
2958 }
2959 }
2960
2961 void MacroAssembler::evpcmpd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src,
2962 int comparison, bool is_signed, int vector_len, Register rscratch) {
2963 assert(rscratch != noreg || always_reachable(src), "missing");
2964
2965 if (reachable(src)) {
2966 Assembler::evpcmpd(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len);
2967 } else {
2968 lea(rscratch, src);
2969 Assembler::evpcmpd(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len);
2970 }
2971 }
2972
2973 void MacroAssembler::evpcmpq(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src,
2974 int comparison, bool is_signed, int vector_len, Register rscratch) {
2975 assert(rscratch != noreg || always_reachable(src), "missing");
2976
2977 if (reachable(src)) {
2978 Assembler::evpcmpq(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len);
2979 } else {
2980 lea(rscratch, src);
2981 Assembler::evpcmpq(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len);
2982 }
2983 }
2984
2985 void MacroAssembler::evpcmpb(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src,
2986 int comparison, bool is_signed, int vector_len, Register rscratch) {
2987 assert(rscratch != noreg || always_reachable(src), "missing");
2988
2989 if (reachable(src)) {
2990 Assembler::evpcmpb(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len);
2991 } else {
2992 lea(rscratch, src);
2993 Assembler::evpcmpb(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len);
2994 }
2995 }
2996
2997 void MacroAssembler::evpcmpw(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src,
2998 int comparison, bool is_signed, int vector_len, Register rscratch) {
2999 assert(rscratch != noreg || always_reachable(src), "missing");
3000
3001 if (reachable(src)) {
3002 Assembler::evpcmpw(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len);
3003 } else {
3004 lea(rscratch, src);
3005 Assembler::evpcmpw(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len);
3006 }
3007 }
3008
3009 void MacroAssembler::vpcmpCC(XMMRegister dst, XMMRegister nds, XMMRegister src, int cond_encoding, Width width, int vector_len) {
3010 if (width == Assembler::Q) {
3011 Assembler::vpcmpCCq(dst, nds, src, cond_encoding, vector_len);
3012 } else {
3013 Assembler::vpcmpCCbwd(dst, nds, src, cond_encoding, vector_len);
3014 }
3015 }
3016
3017 void MacroAssembler::vpcmpCCW(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister xtmp, ComparisonPredicate cond, Width width, int vector_len) {
3018 int eq_cond_enc = 0x29;
3019 int gt_cond_enc = 0x37;
3020 if (width != Assembler::Q) {
3021 eq_cond_enc = 0x74 + width;
3022 gt_cond_enc = 0x64 + width;
3023 }
3024 switch (cond) {
3025 case eq:
3026 vpcmpCC(dst, nds, src, eq_cond_enc, width, vector_len);
3027 break;
3028 case neq:
3029 vpcmpCC(dst, nds, src, eq_cond_enc, width, vector_len);
3030 vallones(xtmp, vector_len);
3031 vpxor(dst, xtmp, dst, vector_len);
3032 break;
3033 case le:
3034 vpcmpCC(dst, nds, src, gt_cond_enc, width, vector_len);
3035 vallones(xtmp, vector_len);
3036 vpxor(dst, xtmp, dst, vector_len);
3037 break;
3038 case nlt:
3039 vpcmpCC(dst, src, nds, gt_cond_enc, width, vector_len);
3040 vallones(xtmp, vector_len);
3041 vpxor(dst, xtmp, dst, vector_len);
3042 break;
3043 case lt:
3044 vpcmpCC(dst, src, nds, gt_cond_enc, width, vector_len);
3045 break;
3046 case nle:
3047 vpcmpCC(dst, nds, src, gt_cond_enc, width, vector_len);
3048 break;
3049 default:
3050 assert(false, "Should not reach here");
3051 }
3052 }
3053
3054 void MacroAssembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) {
3055 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3056 Assembler::vpmovzxbw(dst, src, vector_len);
3057 }
3058
3059 void MacroAssembler::vpmovmskb(Register dst, XMMRegister src, int vector_len) {
3060 assert((src->encoding() < 16),"XMM register should be 0-15");
3061 Assembler::vpmovmskb(dst, src, vector_len);
3062 }
3063
3064 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3065 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3066 Assembler::vpmullw(dst, nds, src, vector_len);
3067 }
3068
3069 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3070 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3071 Assembler::vpmullw(dst, nds, src, vector_len);
3072 }
3073
3074 void MacroAssembler::vpmulld(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
3075 assert((UseAVX > 0), "AVX support is needed");
3076 assert(rscratch != noreg || always_reachable(src), "missing");
3077
3078 if (reachable(src)) {
3079 Assembler::vpmulld(dst, nds, as_Address(src), vector_len);
3080 } else {
3081 lea(rscratch, src);
3082 Assembler::vpmulld(dst, nds, Address(rscratch, 0), vector_len);
3083 }
3084 }
3085
3086 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3087 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3088 Assembler::vpsubb(dst, nds, src, vector_len);
3089 }
3090
3091 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3092 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3093 Assembler::vpsubb(dst, nds, src, vector_len);
3094 }
3095
3096 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3097 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3098 Assembler::vpsubw(dst, nds, src, vector_len);
3099 }
3100
3101 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3102 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3103 Assembler::vpsubw(dst, nds, src, vector_len);
3104 }
3105
3106 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
3107 assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3108 Assembler::vpsraw(dst, nds, shift, vector_len);
3109 }
3110
3111 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
3112 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3113 Assembler::vpsraw(dst, nds, shift, vector_len);
3114 }
3115
3116 void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
3117 assert(UseAVX > 2,"");
3118 if (!VM_Version::supports_avx512vl() && vector_len < 2) {
3119 vector_len = 2;
3120 }
3121 Assembler::evpsraq(dst, nds, shift, vector_len);
3122 }
3123
3124 void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
3125 assert(UseAVX > 2,"");
3126 if (!VM_Version::supports_avx512vl() && vector_len < 2) {
3127 vector_len = 2;
3128 }
3129 Assembler::evpsraq(dst, nds, shift, vector_len);
3130 }
3131
3132 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
3133 assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3134 Assembler::vpsrlw(dst, nds, shift, vector_len);
3135 }
3136
3137 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
3138 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3139 Assembler::vpsrlw(dst, nds, shift, vector_len);
3140 }
3141
3142 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
3143 assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3144 Assembler::vpsllw(dst, nds, shift, vector_len);
3145 }
3146
3147 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
3148 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3149 Assembler::vpsllw(dst, nds, shift, vector_len);
3150 }
3151
3152 void MacroAssembler::vptest(XMMRegister dst, XMMRegister src) {
3153 assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15");
3154 Assembler::vptest(dst, src);
3155 }
3156
3157 void MacroAssembler::punpcklbw(XMMRegister dst, XMMRegister src) {
3158 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3159 Assembler::punpcklbw(dst, src);
3160 }
3161
3162 void MacroAssembler::pshufd(XMMRegister dst, Address src, int mode) {
3163 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
3164 Assembler::pshufd(dst, src, mode);
3165 }
3166
3167 void MacroAssembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
3168 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3169 Assembler::pshuflw(dst, src, mode);
3170 }
3171
3172 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
3173 assert(rscratch != noreg || always_reachable(src), "missing");
3174
3175 if (reachable(src)) {
3176 vandpd(dst, nds, as_Address(src), vector_len);
3177 } else {
3178 lea(rscratch, src);
3179 vandpd(dst, nds, Address(rscratch, 0), vector_len);
3180 }
3181 }
3182
3183 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
3184 assert(rscratch != noreg || always_reachable(src), "missing");
3185
3186 if (reachable(src)) {
3187 vandps(dst, nds, as_Address(src), vector_len);
3188 } else {
3189 lea(rscratch, src);
3190 vandps(dst, nds, Address(rscratch, 0), vector_len);
3191 }
3192 }
3193
3194 void MacroAssembler::evpord(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src,
3195 bool merge, int vector_len, Register rscratch) {
3196 assert(rscratch != noreg || always_reachable(src), "missing");
3197
3198 if (reachable(src)) {
3199 Assembler::evpord(dst, mask, nds, as_Address(src), merge, vector_len);
3200 } else {
3201 lea(rscratch, src);
3202 Assembler::evpord(dst, mask, nds, Address(rscratch, 0), merge, vector_len);
3203 }
3204 }
3205
3206 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
3207 assert(rscratch != noreg || always_reachable(src), "missing");
3208
3209 if (reachable(src)) {
3210 vdivsd(dst, nds, as_Address(src));
3211 } else {
3212 lea(rscratch, src);
3213 vdivsd(dst, nds, Address(rscratch, 0));
3214 }
3215 }
3216
3217 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
3218 assert(rscratch != noreg || always_reachable(src), "missing");
3219
3220 if (reachable(src)) {
3221 vdivss(dst, nds, as_Address(src));
3222 } else {
3223 lea(rscratch, src);
3224 vdivss(dst, nds, Address(rscratch, 0));
3225 }
3226 }
3227
3228 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
3229 assert(rscratch != noreg || always_reachable(src), "missing");
3230
3231 if (reachable(src)) {
3232 vmulsd(dst, nds, as_Address(src));
3233 } else {
3234 lea(rscratch, src);
3235 vmulsd(dst, nds, Address(rscratch, 0));
3236 }
3237 }
3238
3239 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
3240 assert(rscratch != noreg || always_reachable(src), "missing");
3241
3242 if (reachable(src)) {
3243 vmulss(dst, nds, as_Address(src));
3244 } else {
3245 lea(rscratch, src);
3246 vmulss(dst, nds, Address(rscratch, 0));
3247 }
3248 }
3249
3250 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
3251 assert(rscratch != noreg || always_reachable(src), "missing");
3252
3253 if (reachable(src)) {
3254 vsubsd(dst, nds, as_Address(src));
3255 } else {
3256 lea(rscratch, src);
3257 vsubsd(dst, nds, Address(rscratch, 0));
3258 }
3259 }
3260
3261 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
3262 assert(rscratch != noreg || always_reachable(src), "missing");
3263
3264 if (reachable(src)) {
3265 vsubss(dst, nds, as_Address(src));
3266 } else {
3267 lea(rscratch, src);
3268 vsubss(dst, nds, Address(rscratch, 0));
3269 }
3270 }
3271
3272 void MacroAssembler::vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
3273 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
3274 assert(rscratch != noreg || always_reachable(src), "missing");
3275
3276 vxorps(dst, nds, src, Assembler::AVX_128bit, rscratch);
3277 }
3278
3279 void MacroAssembler::vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
3280 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
3281 assert(rscratch != noreg || always_reachable(src), "missing");
3282
3283 vxorpd(dst, nds, src, Assembler::AVX_128bit, rscratch);
3284 }
3285
3286 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
3287 assert(rscratch != noreg || always_reachable(src), "missing");
3288
3289 if (reachable(src)) {
3290 vxorpd(dst, nds, as_Address(src), vector_len);
3291 } else {
3292 lea(rscratch, src);
3293 vxorpd(dst, nds, Address(rscratch, 0), vector_len);
3294 }
3295 }
3296
3297 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
3298 assert(rscratch != noreg || always_reachable(src), "missing");
3299
3300 if (reachable(src)) {
3301 vxorps(dst, nds, as_Address(src), vector_len);
3302 } else {
3303 lea(rscratch, src);
3304 vxorps(dst, nds, Address(rscratch, 0), vector_len);
3305 }
3306 }
3307
3308 void MacroAssembler::vpxor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
3309 assert(rscratch != noreg || always_reachable(src), "missing");
3310
3311 if (UseAVX > 1 || (vector_len < 1)) {
3312 if (reachable(src)) {
3313 Assembler::vpxor(dst, nds, as_Address(src), vector_len);
3314 } else {
3315 lea(rscratch, src);
3316 Assembler::vpxor(dst, nds, Address(rscratch, 0), vector_len);
3317 }
3318 } else {
3319 MacroAssembler::vxorpd(dst, nds, src, vector_len, rscratch);
3320 }
3321 }
3322
3323 void MacroAssembler::vpermd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
3324 assert(rscratch != noreg || always_reachable(src), "missing");
3325
3326 if (reachable(src)) {
3327 Assembler::vpermd(dst, nds, as_Address(src), vector_len);
3328 } else {
3329 lea(rscratch, src);
3330 Assembler::vpermd(dst, nds, Address(rscratch, 0), vector_len);
3331 }
3332 }
3333
3334 void MacroAssembler::clear_jobject_tag(Register possibly_non_local) {
3335 const int32_t inverted_mask = ~static_cast<int32_t>(JNIHandles::tag_mask);
3336 STATIC_ASSERT(inverted_mask == -4); // otherwise check this code
3337 // The inverted mask is sign-extended
3338 andptr(possibly_non_local, inverted_mask);
3339 }
3340
3341 void MacroAssembler::resolve_jobject(Register value,
3342 Register tmp) {
3343 Register thread = r15_thread;
3344 assert_different_registers(value, thread, tmp);
3345 Label done, tagged, weak_tagged;
3346 testptr(value, value);
3347 jcc(Assembler::zero, done); // Use null as-is.
3348 testptr(value, JNIHandles::tag_mask); // Test for tag.
3349 jcc(Assembler::notZero, tagged);
3350
3351 // Resolve local handle
3352 access_load_at(T_OBJECT, IN_NATIVE | AS_RAW, value, Address(value, 0), tmp);
3353 verify_oop(value);
3354 jmp(done);
3355
3356 bind(tagged);
3357 testptr(value, JNIHandles::TypeTag::weak_global); // Test for weak tag.
3358 jcc(Assembler::notZero, weak_tagged);
3359
3360 // Resolve global handle
3361 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp);
3362 verify_oop(value);
3363 jmp(done);
3364
3365 bind(weak_tagged);
3366 // Resolve jweak.
3367 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF,
3368 value, Address(value, -JNIHandles::TypeTag::weak_global), tmp);
3369 verify_oop(value);
3370
3371 bind(done);
3372 }
3373
3374 void MacroAssembler::resolve_global_jobject(Register value,
3375 Register tmp) {
3376 Register thread = r15_thread;
3377 assert_different_registers(value, thread, tmp);
3378 Label done;
3379
3380 testptr(value, value);
3381 jcc(Assembler::zero, done); // Use null as-is.
3382
3383 #ifdef ASSERT
3384 {
3385 Label valid_global_tag;
3386 testptr(value, JNIHandles::TypeTag::global); // Test for global tag.
3387 jcc(Assembler::notZero, valid_global_tag);
3388 stop("non global jobject using resolve_global_jobject");
3389 bind(valid_global_tag);
3390 }
3391 #endif
3392
3393 // Resolve global handle
3394 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp);
3395 verify_oop(value);
3396
3397 bind(done);
3398 }
3399
3400 void MacroAssembler::subptr(Register dst, int32_t imm32) {
3401 subq(dst, imm32);
3402 }
3403
3404 // Force generation of a 4 byte immediate value even if it fits into 8bit
3405 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
3406 subq_imm32(dst, imm32);
3407 }
3408
3409 void MacroAssembler::subptr(Register dst, Register src) {
3410 subq(dst, src);
3411 }
3412
3413 // C++ bool manipulation
3414 void MacroAssembler::testbool(Register dst) {
3415 if(sizeof(bool) == 1)
3416 testb(dst, 0xff);
3417 else if(sizeof(bool) == 2) {
3418 // testw implementation needed for two byte bools
3419 ShouldNotReachHere();
3420 } else if(sizeof(bool) == 4)
3421 testl(dst, dst);
3422 else
3423 // unsupported
3424 ShouldNotReachHere();
3425 }
3426
3427 void MacroAssembler::testptr(Register dst, Register src) {
3428 testq(dst, src);
3429 }
3430
3431 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
3432 void MacroAssembler::tlab_allocate(Register obj,
3433 Register var_size_in_bytes,
3434 int con_size_in_bytes,
3435 Register t1,
3436 Register t2,
3437 Label& slow_case) {
3438 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
3439 bs->tlab_allocate(this, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case);
3440 }
3441
3442 RegSet MacroAssembler::call_clobbered_gp_registers() {
3443 RegSet regs;
3444 regs += RegSet::of(rax, rcx, rdx);
3445 #ifndef _WINDOWS
3446 regs += RegSet::of(rsi, rdi);
3447 #endif
3448 regs += RegSet::range(r8, r11);
3449 if (UseAPX) {
3450 regs += RegSet::range(r16, as_Register(Register::number_of_registers - 1));
3451 }
3452 return regs;
3453 }
3454
3455 XMMRegSet MacroAssembler::call_clobbered_xmm_registers() {
3456 int num_xmm_registers = XMMRegister::available_xmm_registers();
3457 #if defined(_WINDOWS)
3458 XMMRegSet result = XMMRegSet::range(xmm0, xmm5);
3459 if (num_xmm_registers > 16) {
3460 result += XMMRegSet::range(xmm16, as_XMMRegister(num_xmm_registers - 1));
3461 }
3462 return result;
3463 #else
3464 return XMMRegSet::range(xmm0, as_XMMRegister(num_xmm_registers - 1));
3465 #endif
3466 }
3467
3468 // C1 only ever uses the first double/float of the XMM register.
3469 static int xmm_save_size() { return sizeof(double); }
3470
3471 static void save_xmm_register(MacroAssembler* masm, int offset, XMMRegister reg) {
3472 masm->movdbl(Address(rsp, offset), reg);
3473 }
3474
3475 static void restore_xmm_register(MacroAssembler* masm, int offset, XMMRegister reg) {
3476 masm->movdbl(reg, Address(rsp, offset));
3477 }
3478
3479 static int register_section_sizes(RegSet gp_registers, XMMRegSet xmm_registers,
3480 bool save_fpu, int& gp_area_size, int& xmm_area_size) {
3481
3482 gp_area_size = align_up(gp_registers.size() * Register::max_slots_per_register * VMRegImpl::stack_slot_size,
3483 StackAlignmentInBytes);
3484 xmm_area_size = save_fpu ? xmm_registers.size() * xmm_save_size() : 0;
3485
3486 return gp_area_size + xmm_area_size;
3487 }
3488
3489 void MacroAssembler::push_call_clobbered_registers_except(RegSet exclude, bool save_fpu) {
3490 block_comment("push_call_clobbered_registers start");
3491 // Regular registers
3492 RegSet gp_registers_to_push = call_clobbered_gp_registers() - exclude;
3493
3494 int gp_area_size;
3495 int xmm_area_size;
3496 int total_save_size = register_section_sizes(gp_registers_to_push, call_clobbered_xmm_registers(), save_fpu,
3497 gp_area_size, xmm_area_size);
3498 subptr(rsp, total_save_size);
3499
3500 push_set(gp_registers_to_push, 0);
3501
3502 if (save_fpu) {
3503 push_set(call_clobbered_xmm_registers(), gp_area_size);
3504 }
3505
3506 block_comment("push_call_clobbered_registers end");
3507 }
3508
3509 void MacroAssembler::pop_call_clobbered_registers_except(RegSet exclude, bool restore_fpu) {
3510 block_comment("pop_call_clobbered_registers start");
3511
3512 RegSet gp_registers_to_pop = call_clobbered_gp_registers() - exclude;
3513
3514 int gp_area_size;
3515 int xmm_area_size;
3516 int total_save_size = register_section_sizes(gp_registers_to_pop, call_clobbered_xmm_registers(), restore_fpu,
3517 gp_area_size, xmm_area_size);
3518
3519 if (restore_fpu) {
3520 pop_set(call_clobbered_xmm_registers(), gp_area_size);
3521 }
3522
3523 pop_set(gp_registers_to_pop, 0);
3524
3525 addptr(rsp, total_save_size);
3526
3527 vzeroupper();
3528
3529 block_comment("pop_call_clobbered_registers end");
3530 }
3531
3532 void MacroAssembler::push_set(XMMRegSet set, int offset) {
3533 assert(is_aligned(set.size() * xmm_save_size(), StackAlignmentInBytes), "must be");
3534 int spill_offset = offset;
3535
3536 for (RegSetIterator<XMMRegister> it = set.begin(); *it != xnoreg; ++it) {
3537 save_xmm_register(this, spill_offset, *it);
3538 spill_offset += xmm_save_size();
3539 }
3540 }
3541
3542 void MacroAssembler::pop_set(XMMRegSet set, int offset) {
3543 int restore_size = set.size() * xmm_save_size();
3544 assert(is_aligned(restore_size, StackAlignmentInBytes), "must be");
3545
3546 int restore_offset = offset + restore_size - xmm_save_size();
3547
3548 for (ReverseRegSetIterator<XMMRegister> it = set.rbegin(); *it != xnoreg; ++it) {
3549 restore_xmm_register(this, restore_offset, *it);
3550 restore_offset -= xmm_save_size();
3551 }
3552 }
3553
3554 void MacroAssembler::push_set(RegSet set, int offset) {
3555 int spill_offset;
3556 if (offset == -1) {
3557 int register_push_size = set.size() * Register::max_slots_per_register * VMRegImpl::stack_slot_size;
3558 int aligned_size = align_up(register_push_size, StackAlignmentInBytes);
3559 subptr(rsp, aligned_size);
3560 spill_offset = 0;
3561 } else {
3562 spill_offset = offset;
3563 }
3564
3565 for (RegSetIterator<Register> it = set.begin(); *it != noreg; ++it) {
3566 movptr(Address(rsp, spill_offset), *it);
3567 spill_offset += Register::max_slots_per_register * VMRegImpl::stack_slot_size;
3568 }
3569 }
3570
3571 void MacroAssembler::pop_set(RegSet set, int offset) {
3572
3573 int gp_reg_size = Register::max_slots_per_register * VMRegImpl::stack_slot_size;
3574 int restore_size = set.size() * gp_reg_size;
3575 int aligned_size = align_up(restore_size, StackAlignmentInBytes);
3576
3577 int restore_offset;
3578 if (offset == -1) {
3579 restore_offset = restore_size - gp_reg_size;
3580 } else {
3581 restore_offset = offset + restore_size - gp_reg_size;
3582 }
3583 for (ReverseRegSetIterator<Register> it = set.rbegin(); *it != noreg; ++it) {
3584 movptr(*it, Address(rsp, restore_offset));
3585 restore_offset -= gp_reg_size;
3586 }
3587
3588 if (offset == -1) {
3589 addptr(rsp, aligned_size);
3590 }
3591 }
3592
3593 // Preserves the contents of address, destroys the contents length_in_bytes and temp.
3594 void MacroAssembler::zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp) {
3595 assert(address != length_in_bytes && address != temp && temp != length_in_bytes, "registers must be different");
3596 assert((offset_in_bytes & (BytesPerWord - 1)) == 0, "offset must be a multiple of BytesPerWord");
3597 Label done;
3598
3599 testptr(length_in_bytes, length_in_bytes);
3600 jcc(Assembler::zero, done);
3601
3602 // initialize topmost word, divide index by 2, check if odd and test if zero
3603 // note: for the remaining code to work, index must be a multiple of BytesPerWord
3604 #ifdef ASSERT
3605 {
3606 Label L;
3607 testptr(length_in_bytes, BytesPerWord - 1);
3608 jcc(Assembler::zero, L);
3609 stop("length must be a multiple of BytesPerWord");
3610 bind(L);
3611 }
3612 #endif
3613 Register index = length_in_bytes;
3614 xorptr(temp, temp); // use _zero reg to clear memory (shorter code)
3615 if (UseIncDec) {
3616 shrptr(index, 3); // divide by 8/16 and set carry flag if bit 2 was set
3617 } else {
3618 shrptr(index, 2); // use 2 instructions to avoid partial flag stall
3619 shrptr(index, 1);
3620 }
3621
3622 // initialize remaining object fields: index is a multiple of 2 now
3623 {
3624 Label loop;
3625 bind(loop);
3626 movptr(Address(address, index, Address::times_8, offset_in_bytes - 1*BytesPerWord), temp);
3627 decrement(index);
3628 jcc(Assembler::notZero, loop);
3629 }
3630
3631 bind(done);
3632 }
3633
3634 // Look up the method for a megamorphic invokeinterface call.
3635 // The target method is determined by <intf_klass, itable_index>.
3636 // The receiver klass is in recv_klass.
3637 // On success, the result will be in method_result, and execution falls through.
3638 // On failure, execution transfers to the given label.
3639 void MacroAssembler::lookup_interface_method(Register recv_klass,
3640 Register intf_klass,
3641 RegisterOrConstant itable_index,
3642 Register method_result,
3643 Register scan_temp,
3644 Label& L_no_such_interface,
3645 bool return_method) {
3646 assert_different_registers(recv_klass, intf_klass, scan_temp);
3647 assert_different_registers(method_result, intf_klass, scan_temp);
3648 assert(recv_klass != method_result || !return_method,
3649 "recv_klass can be destroyed when method isn't needed");
3650
3651 assert(itable_index.is_constant() || itable_index.as_register() == method_result,
3652 "caller must use same register for non-constant itable index as for method");
3653
3654 // Compute start of first itableOffsetEntry (which is at the end of the vtable)
3655 int vtable_base = in_bytes(Klass::vtable_start_offset());
3656 int itentry_off = in_bytes(itableMethodEntry::method_offset());
3657 int scan_step = itableOffsetEntry::size() * wordSize;
3658 int vte_size = vtableEntry::size_in_bytes();
3659 Address::ScaleFactor times_vte_scale = Address::times_ptr;
3660 assert(vte_size == wordSize, "else adjust times_vte_scale");
3661
3662 movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset()));
3663
3664 // Could store the aligned, prescaled offset in the klass.
3665 lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
3666
3667 if (return_method) {
3668 // Adjust recv_klass by scaled itable_index, so we can free itable_index.
3669 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
3670 lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
3671 }
3672
3673 // for (scan = klass->itable(); scan->interface() != nullptr; scan += scan_step) {
3674 // if (scan->interface() == intf) {
3675 // result = (klass + scan->offset() + itable_index);
3676 // }
3677 // }
3678 Label search, found_method;
3679
3680 for (int peel = 1; peel >= 0; peel--) {
3681 movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset()));
3682 cmpptr(intf_klass, method_result);
3683
3684 if (peel) {
3685 jccb(Assembler::equal, found_method);
3686 } else {
3687 jccb(Assembler::notEqual, search);
3688 // (invert the test to fall through to found_method...)
3689 }
3690
3691 if (!peel) break;
3692
3693 bind(search);
3694
3695 // Check that the previous entry is non-null. A null entry means that
3696 // the receiver class doesn't implement the interface, and wasn't the
3697 // same as when the caller was compiled.
3698 testptr(method_result, method_result);
3699 jcc(Assembler::zero, L_no_such_interface);
3700 addptr(scan_temp, scan_step);
3701 }
3702
3703 bind(found_method);
3704
3705 if (return_method) {
3706 // Got a hit.
3707 movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset()));
3708 movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
3709 }
3710 }
3711
3712 // Look up the method for a megamorphic invokeinterface call in a single pass over itable:
3713 // - check recv_klass (actual object class) is a subtype of resolved_klass from CompiledICData
3714 // - find a holder_klass (class that implements the method) vtable offset and get the method from vtable by index
3715 // The target method is determined by <holder_klass, itable_index>.
3716 // The receiver klass is in recv_klass.
3717 // On success, the result will be in method_result, and execution falls through.
3718 // On failure, execution transfers to the given label.
3719 void MacroAssembler::lookup_interface_method_stub(Register recv_klass,
3720 Register holder_klass,
3721 Register resolved_klass,
3722 Register method_result,
3723 Register scan_temp,
3724 Register temp_reg2,
3725 Register receiver,
3726 int itable_index,
3727 Label& L_no_such_interface) {
3728 assert_different_registers(recv_klass, method_result, holder_klass, resolved_klass, scan_temp, temp_reg2, receiver);
3729 Register temp_itbl_klass = method_result;
3730 Register temp_reg = (temp_reg2 == noreg ? recv_klass : temp_reg2); // reuse recv_klass register on 32-bit x86 impl
3731
3732 int vtable_base = in_bytes(Klass::vtable_start_offset());
3733 int itentry_off = in_bytes(itableMethodEntry::method_offset());
3734 int scan_step = itableOffsetEntry::size() * wordSize;
3735 int vte_size = vtableEntry::size_in_bytes();
3736 int ioffset = in_bytes(itableOffsetEntry::interface_offset());
3737 int ooffset = in_bytes(itableOffsetEntry::offset_offset());
3738 Address::ScaleFactor times_vte_scale = Address::times_ptr;
3739 assert(vte_size == wordSize, "adjust times_vte_scale");
3740
3741 Label L_loop_scan_resolved_entry, L_resolved_found, L_holder_found;
3742
3743 // temp_itbl_klass = recv_klass.itable[0]
3744 // scan_temp = &recv_klass.itable[0] + step
3745 movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset()));
3746 movptr(temp_itbl_klass, Address(recv_klass, scan_temp, times_vte_scale, vtable_base + ioffset));
3747 lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base + ioffset + scan_step));
3748 xorptr(temp_reg, temp_reg);
3749
3750 // Initial checks:
3751 // - if (holder_klass != resolved_klass), go to "scan for resolved"
3752 // - if (itable[0] == 0), no such interface
3753 // - if (itable[0] == holder_klass), shortcut to "holder found"
3754 cmpptr(holder_klass, resolved_klass);
3755 jccb(Assembler::notEqual, L_loop_scan_resolved_entry);
3756 testptr(temp_itbl_klass, temp_itbl_klass);
3757 jccb(Assembler::zero, L_no_such_interface);
3758 cmpptr(holder_klass, temp_itbl_klass);
3759 jccb(Assembler::equal, L_holder_found);
3760
3761 // Loop: Look for holder_klass record in itable
3762 // do {
3763 // tmp = itable[index];
3764 // index += step;
3765 // if (tmp == holder_klass) {
3766 // goto L_holder_found; // Found!
3767 // }
3768 // } while (tmp != 0);
3769 // goto L_no_such_interface // Not found.
3770 Label L_scan_holder;
3771 bind(L_scan_holder);
3772 movptr(temp_itbl_klass, Address(scan_temp, 0));
3773 addptr(scan_temp, scan_step);
3774 cmpptr(holder_klass, temp_itbl_klass);
3775 jccb(Assembler::equal, L_holder_found);
3776 testptr(temp_itbl_klass, temp_itbl_klass);
3777 jccb(Assembler::notZero, L_scan_holder);
3778
3779 jmpb(L_no_such_interface);
3780
3781 // Loop: Look for resolved_class record in itable
3782 // do {
3783 // tmp = itable[index];
3784 // index += step;
3785 // if (tmp == holder_klass) {
3786 // // Also check if we have met a holder klass
3787 // holder_tmp = itable[index-step-ioffset];
3788 // }
3789 // if (tmp == resolved_klass) {
3790 // goto L_resolved_found; // Found!
3791 // }
3792 // } while (tmp != 0);
3793 // goto L_no_such_interface // Not found.
3794 //
3795 Label L_loop_scan_resolved;
3796 bind(L_loop_scan_resolved);
3797 movptr(temp_itbl_klass, Address(scan_temp, 0));
3798 addptr(scan_temp, scan_step);
3799 bind(L_loop_scan_resolved_entry);
3800 cmpptr(holder_klass, temp_itbl_klass);
3801 cmovl(Assembler::equal, temp_reg, Address(scan_temp, ooffset - ioffset - scan_step));
3802 cmpptr(resolved_klass, temp_itbl_klass);
3803 jccb(Assembler::equal, L_resolved_found);
3804 testptr(temp_itbl_klass, temp_itbl_klass);
3805 jccb(Assembler::notZero, L_loop_scan_resolved);
3806
3807 jmpb(L_no_such_interface);
3808
3809 Label L_ready;
3810
3811 // See if we already have a holder klass. If not, go and scan for it.
3812 bind(L_resolved_found);
3813 testptr(temp_reg, temp_reg);
3814 jccb(Assembler::zero, L_scan_holder);
3815 jmpb(L_ready);
3816
3817 bind(L_holder_found);
3818 movl(temp_reg, Address(scan_temp, ooffset - ioffset - scan_step));
3819
3820 // Finally, temp_reg contains holder_klass vtable offset
3821 bind(L_ready);
3822 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
3823 if (temp_reg2 == noreg) { // recv_klass register is clobbered for 32-bit x86 impl
3824 load_klass(scan_temp, receiver, noreg);
3825 movptr(method_result, Address(scan_temp, temp_reg, Address::times_1, itable_index * wordSize + itentry_off));
3826 } else {
3827 movptr(method_result, Address(recv_klass, temp_reg, Address::times_1, itable_index * wordSize + itentry_off));
3828 }
3829 }
3830
3831
3832 // virtual method calling
3833 void MacroAssembler::lookup_virtual_method(Register recv_klass,
3834 RegisterOrConstant vtable_index,
3835 Register method_result) {
3836 const ByteSize base = Klass::vtable_start_offset();
3837 assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
3838 Address vtable_entry_addr(recv_klass,
3839 vtable_index, Address::times_ptr,
3840 base + vtableEntry::method_offset());
3841 movptr(method_result, vtable_entry_addr);
3842 }
3843
3844
3845 void MacroAssembler::check_klass_subtype(Register sub_klass,
3846 Register super_klass,
3847 Register temp_reg,
3848 Label& L_success) {
3849 Label L_failure;
3850 check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg, &L_success, &L_failure, nullptr);
3851 check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, nullptr);
3852 bind(L_failure);
3853 }
3854
3855
3856 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
3857 Register super_klass,
3858 Register temp_reg,
3859 Label* L_success,
3860 Label* L_failure,
3861 Label* L_slow_path,
3862 RegisterOrConstant super_check_offset) {
3863 assert_different_registers(sub_klass, super_klass, temp_reg);
3864 bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
3865 if (super_check_offset.is_register()) {
3866 assert_different_registers(sub_klass, super_klass,
3867 super_check_offset.as_register());
3868 } else if (must_load_sco) {
3869 assert(temp_reg != noreg, "supply either a temp or a register offset");
3870 }
3871
3872 Label L_fallthrough;
3873 int label_nulls = 0;
3874 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; }
3875 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; }
3876 if (L_slow_path == nullptr) { L_slow_path = &L_fallthrough; label_nulls++; }
3877 assert(label_nulls <= 1, "at most one null in the batch");
3878
3879 int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
3880 int sco_offset = in_bytes(Klass::super_check_offset_offset());
3881 Address super_check_offset_addr(super_klass, sco_offset);
3882
3883 // Hacked jcc, which "knows" that L_fallthrough, at least, is in
3884 // range of a jccb. If this routine grows larger, reconsider at
3885 // least some of these.
3886 #define local_jcc(assembler_cond, label) \
3887 if (&(label) == &L_fallthrough) jccb(assembler_cond, label); \
3888 else jcc( assembler_cond, label) /*omit semi*/
3889
3890 // Hacked jmp, which may only be used just before L_fallthrough.
3891 #define final_jmp(label) \
3892 if (&(label) == &L_fallthrough) { /*do nothing*/ } \
3893 else jmp(label) /*omit semi*/
3894
3895 // If the pointers are equal, we are done (e.g., String[] elements).
3896 // This self-check enables sharing of secondary supertype arrays among
3897 // non-primary types such as array-of-interface. Otherwise, each such
3898 // type would need its own customized SSA.
3899 // We move this check to the front of the fast path because many
3900 // type checks are in fact trivially successful in this manner,
3901 // so we get a nicely predicted branch right at the start of the check.
3902 cmpptr(sub_klass, super_klass);
3903 local_jcc(Assembler::equal, *L_success);
3904
3905 // Check the supertype display:
3906 if (must_load_sco) {
3907 // Positive movl does right thing on LP64.
3908 movl(temp_reg, super_check_offset_addr);
3909 super_check_offset = RegisterOrConstant(temp_reg);
3910 }
3911 Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
3912 cmpptr(super_klass, super_check_addr); // load displayed supertype
3913
3914 // This check has worked decisively for primary supers.
3915 // Secondary supers are sought in the super_cache ('super_cache_addr').
3916 // (Secondary supers are interfaces and very deeply nested subtypes.)
3917 // This works in the same check above because of a tricky aliasing
3918 // between the super_cache and the primary super display elements.
3919 // (The 'super_check_addr' can address either, as the case requires.)
3920 // Note that the cache is updated below if it does not help us find
3921 // what we need immediately.
3922 // So if it was a primary super, we can just fail immediately.
3923 // Otherwise, it's the slow path for us (no success at this point).
3924
3925 if (super_check_offset.is_register()) {
3926 local_jcc(Assembler::equal, *L_success);
3927 cmpl(super_check_offset.as_register(), sc_offset);
3928 if (L_failure == &L_fallthrough) {
3929 local_jcc(Assembler::equal, *L_slow_path);
3930 } else {
3931 local_jcc(Assembler::notEqual, *L_failure);
3932 final_jmp(*L_slow_path);
3933 }
3934 } else if (super_check_offset.as_constant() == sc_offset) {
3935 // Need a slow path; fast failure is impossible.
3936 if (L_slow_path == &L_fallthrough) {
3937 local_jcc(Assembler::equal, *L_success);
3938 } else {
3939 local_jcc(Assembler::notEqual, *L_slow_path);
3940 final_jmp(*L_success);
3941 }
3942 } else {
3943 // No slow path; it's a fast decision.
3944 if (L_failure == &L_fallthrough) {
3945 local_jcc(Assembler::equal, *L_success);
3946 } else {
3947 local_jcc(Assembler::notEqual, *L_failure);
3948 final_jmp(*L_success);
3949 }
3950 }
3951
3952 bind(L_fallthrough);
3953
3954 #undef local_jcc
3955 #undef final_jmp
3956 }
3957
3958
3959 void MacroAssembler::check_klass_subtype_slow_path_linear(Register sub_klass,
3960 Register super_klass,
3961 Register temp_reg,
3962 Register temp2_reg,
3963 Label* L_success,
3964 Label* L_failure,
3965 bool set_cond_codes) {
3966 assert_different_registers(sub_klass, super_klass, temp_reg);
3967 if (temp2_reg != noreg)
3968 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
3969 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
3970
3971 Label L_fallthrough;
3972 int label_nulls = 0;
3973 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; }
3974 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; }
3975 assert(label_nulls <= 1, "at most one null in the batch");
3976
3977 // a couple of useful fields in sub_klass:
3978 int ss_offset = in_bytes(Klass::secondary_supers_offset());
3979 int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
3980 Address secondary_supers_addr(sub_klass, ss_offset);
3981 Address super_cache_addr( sub_klass, sc_offset);
3982
3983 // Do a linear scan of the secondary super-klass chain.
3984 // This code is rarely used, so simplicity is a virtue here.
3985 // The repne_scan instruction uses fixed registers, which we must spill.
3986 // Don't worry too much about pre-existing connections with the input regs.
3987
3988 assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
3989 assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
3990
3991 // Get super_klass value into rax (even if it was in rdi or rcx).
3992 bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
3993 if (super_klass != rax) {
3994 if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
3995 mov(rax, super_klass);
3996 }
3997 if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
3998 if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
3999
4000 #ifndef PRODUCT
4001 uint* pst_counter = &SharedRuntime::_partial_subtype_ctr;
4002 ExternalAddress pst_counter_addr((address) pst_counter);
4003 lea(rcx, pst_counter_addr);
4004 incrementl(Address(rcx, 0));
4005 #endif //PRODUCT
4006
4007 // We will consult the secondary-super array.
4008 movptr(rdi, secondary_supers_addr);
4009 // Load the array length. (Positive movl does right thing on LP64.)
4010 movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes()));
4011 // Skip to start of data.
4012 addptr(rdi, Array<Klass*>::base_offset_in_bytes());
4013
4014 // Scan RCX words at [RDI] for an occurrence of RAX.
4015 // Set NZ/Z based on last compare.
4016 // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
4017 // not change flags (only scas instruction which is repeated sets flags).
4018 // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
4019
4020 testptr(rax,rax); // Set Z = 0
4021 repne_scan();
4022
4023 // Unspill the temp. registers:
4024 if (pushed_rdi) pop(rdi);
4025 if (pushed_rcx) pop(rcx);
4026 if (pushed_rax) pop(rax);
4027
4028 if (set_cond_codes) {
4029 // Special hack for the AD files: rdi is guaranteed non-zero.
4030 assert(!pushed_rdi, "rdi must be left non-null");
4031 // Also, the condition codes are properly set Z/NZ on succeed/failure.
4032 }
4033
4034 if (L_failure == &L_fallthrough)
4035 jccb(Assembler::notEqual, *L_failure);
4036 else jcc(Assembler::notEqual, *L_failure);
4037
4038 // Success. Cache the super we found and proceed in triumph.
4039 movptr(super_cache_addr, super_klass);
4040
4041 if (L_success != &L_fallthrough) {
4042 jmp(*L_success);
4043 }
4044
4045 #undef IS_A_TEMP
4046
4047 bind(L_fallthrough);
4048 }
4049
4050 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
4051 Register super_klass,
4052 Register temp_reg,
4053 Register temp2_reg,
4054 Label* L_success,
4055 Label* L_failure,
4056 bool set_cond_codes) {
4057 assert(set_cond_codes == false, "must be false on 64-bit x86");
4058 check_klass_subtype_slow_path
4059 (sub_klass, super_klass, temp_reg, temp2_reg, noreg, noreg,
4060 L_success, L_failure);
4061 }
4062
4063 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
4064 Register super_klass,
4065 Register temp_reg,
4066 Register temp2_reg,
4067 Register temp3_reg,
4068 Register temp4_reg,
4069 Label* L_success,
4070 Label* L_failure) {
4071 if (UseSecondarySupersTable) {
4072 check_klass_subtype_slow_path_table
4073 (sub_klass, super_klass, temp_reg, temp2_reg, temp3_reg, temp4_reg,
4074 L_success, L_failure);
4075 } else {
4076 check_klass_subtype_slow_path_linear
4077 (sub_klass, super_klass, temp_reg, temp2_reg, L_success, L_failure, /*set_cond_codes*/false);
4078 }
4079 }
4080
4081 Register MacroAssembler::allocate_if_noreg(Register r,
4082 RegSetIterator<Register> &available_regs,
4083 RegSet ®s_to_push) {
4084 if (!r->is_valid()) {
4085 r = *available_regs++;
4086 regs_to_push += r;
4087 }
4088 return r;
4089 }
4090
4091 void MacroAssembler::check_klass_subtype_slow_path_table(Register sub_klass,
4092 Register super_klass,
4093 Register temp_reg,
4094 Register temp2_reg,
4095 Register temp3_reg,
4096 Register result_reg,
4097 Label* L_success,
4098 Label* L_failure) {
4099 // NB! Callers may assume that, when temp2_reg is a valid register,
4100 // this code sets it to a nonzero value.
4101 bool temp2_reg_was_valid = temp2_reg->is_valid();
4102
4103 RegSet temps = RegSet::of(temp_reg, temp2_reg, temp3_reg);
4104
4105 Label L_fallthrough;
4106 int label_nulls = 0;
4107 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; }
4108 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; }
4109 assert(label_nulls <= 1, "at most one null in the batch");
4110
4111 BLOCK_COMMENT("check_klass_subtype_slow_path_table");
4112
4113 RegSetIterator<Register> available_regs
4114 = (RegSet::of(rax, rcx, rdx, r8) + r9 + r10 + r11 + r12 - temps - sub_klass - super_klass).begin();
4115
4116 RegSet pushed_regs;
4117
4118 temp_reg = allocate_if_noreg(temp_reg, available_regs, pushed_regs);
4119 temp2_reg = allocate_if_noreg(temp2_reg, available_regs, pushed_regs);
4120 temp3_reg = allocate_if_noreg(temp3_reg, available_regs, pushed_regs);
4121 result_reg = allocate_if_noreg(result_reg, available_regs, pushed_regs);
4122 Register temp4_reg = allocate_if_noreg(noreg, available_regs, pushed_regs);
4123
4124 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, temp3_reg, result_reg);
4125
4126 {
4127
4128 int register_push_size = pushed_regs.size() * Register::max_slots_per_register * VMRegImpl::stack_slot_size;
4129 int aligned_size = align_up(register_push_size, StackAlignmentInBytes);
4130 subptr(rsp, aligned_size);
4131 push_set(pushed_regs, 0);
4132
4133 lookup_secondary_supers_table_var(sub_klass,
4134 super_klass,
4135 temp_reg, temp2_reg, temp3_reg, temp4_reg, result_reg);
4136 cmpq(result_reg, 0);
4137
4138 // Unspill the temp. registers:
4139 pop_set(pushed_regs, 0);
4140 // Increment SP but do not clobber flags.
4141 lea(rsp, Address(rsp, aligned_size));
4142 }
4143
4144 if (temp2_reg_was_valid) {
4145 movq(temp2_reg, 1);
4146 }
4147
4148 jcc(Assembler::notEqual, *L_failure);
4149
4150 if (L_success != &L_fallthrough) {
4151 jmp(*L_success);
4152 }
4153
4154 bind(L_fallthrough);
4155 }
4156
4157 // population_count variant for running without the POPCNT
4158 // instruction, which was introduced with SSE4.2 in 2008.
4159 void MacroAssembler::population_count(Register dst, Register src,
4160 Register scratch1, Register scratch2) {
4161 assert_different_registers(src, scratch1, scratch2);
4162 if (UsePopCountInstruction) {
4163 Assembler::popcntq(dst, src);
4164 } else {
4165 assert_different_registers(src, scratch1, scratch2);
4166 assert_different_registers(dst, scratch1, scratch2);
4167 Label loop, done;
4168
4169 mov(scratch1, src);
4170 // dst = 0;
4171 // while(scratch1 != 0) {
4172 // dst++;
4173 // scratch1 &= (scratch1 - 1);
4174 // }
4175 xorl(dst, dst);
4176 testq(scratch1, scratch1);
4177 jccb(Assembler::equal, done);
4178 {
4179 bind(loop);
4180 incq(dst);
4181 movq(scratch2, scratch1);
4182 decq(scratch2);
4183 andq(scratch1, scratch2);
4184 jccb(Assembler::notEqual, loop);
4185 }
4186 bind(done);
4187 }
4188 #ifdef ASSERT
4189 mov64(scratch1, 0xCafeBabeDeadBeef);
4190 movq(scratch2, scratch1);
4191 #endif
4192 }
4193
4194 // Ensure that the inline code and the stub are using the same registers.
4195 #define LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS \
4196 do { \
4197 assert(r_super_klass == rax, "mismatch"); \
4198 assert(r_array_base == rbx, "mismatch"); \
4199 assert(r_array_length == rcx, "mismatch"); \
4200 assert(r_array_index == rdx, "mismatch"); \
4201 assert(r_sub_klass == rsi || r_sub_klass == noreg, "mismatch"); \
4202 assert(r_bitmap == r11 || r_bitmap == noreg, "mismatch"); \
4203 assert(result == rdi || result == noreg, "mismatch"); \
4204 } while(0)
4205
4206 // Versions of salq and rorq that don't need count to be in rcx
4207
4208 void MacroAssembler::salq(Register dest, Register count) {
4209 if (count == rcx) {
4210 Assembler::salq(dest);
4211 } else {
4212 assert_different_registers(rcx, dest);
4213 xchgq(rcx, count);
4214 Assembler::salq(dest);
4215 xchgq(rcx, count);
4216 }
4217 }
4218
4219 void MacroAssembler::rorq(Register dest, Register count) {
4220 if (count == rcx) {
4221 Assembler::rorq(dest);
4222 } else {
4223 assert_different_registers(rcx, dest);
4224 xchgq(rcx, count);
4225 Assembler::rorq(dest);
4226 xchgq(rcx, count);
4227 }
4228 }
4229
4230 // Return true: we succeeded in generating this code
4231 //
4232 // At runtime, return 0 in result if r_super_klass is a superclass of
4233 // r_sub_klass, otherwise return nonzero. Use this if you know the
4234 // super_klass_slot of the class you're looking for. This is always
4235 // the case for instanceof and checkcast.
4236 void MacroAssembler::lookup_secondary_supers_table_const(Register r_sub_klass,
4237 Register r_super_klass,
4238 Register temp1,
4239 Register temp2,
4240 Register temp3,
4241 Register temp4,
4242 Register result,
4243 u1 super_klass_slot) {
4244 assert_different_registers(r_sub_klass, r_super_klass, temp1, temp2, temp3, temp4, result);
4245
4246 Label L_fallthrough, L_success, L_failure;
4247
4248 BLOCK_COMMENT("lookup_secondary_supers_table {");
4249
4250 const Register
4251 r_array_index = temp1,
4252 r_array_length = temp2,
4253 r_array_base = temp3,
4254 r_bitmap = temp4;
4255
4256 LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS;
4257
4258 xorq(result, result); // = 0
4259
4260 movq(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset()));
4261 movq(r_array_index, r_bitmap);
4262
4263 // First check the bitmap to see if super_klass might be present. If
4264 // the bit is zero, we are certain that super_klass is not one of
4265 // the secondary supers.
4266 u1 bit = super_klass_slot;
4267 {
4268 // NB: If the count in a x86 shift instruction is 0, the flags are
4269 // not affected, so we do a testq instead.
4270 int shift_count = Klass::SECONDARY_SUPERS_TABLE_MASK - bit;
4271 if (shift_count != 0) {
4272 salq(r_array_index, shift_count);
4273 } else {
4274 testq(r_array_index, r_array_index);
4275 }
4276 }
4277 // We test the MSB of r_array_index, i.e. its sign bit
4278 jcc(Assembler::positive, L_failure);
4279
4280 // Get the first array index that can contain super_klass into r_array_index.
4281 if (bit != 0) {
4282 population_count(r_array_index, r_array_index, temp2, temp3);
4283 } else {
4284 movl(r_array_index, 1);
4285 }
4286 // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word.
4287
4288 // We will consult the secondary-super array.
4289 movptr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset())));
4290
4291 // We're asserting that the first word in an Array<Klass*> is the
4292 // length, and the second word is the first word of the data. If
4293 // that ever changes, r_array_base will have to be adjusted here.
4294 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code");
4295 assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code");
4296
4297 cmpq(r_super_klass, Address(r_array_base, r_array_index, Address::times_8));
4298 jccb(Assembler::equal, L_success);
4299
4300 // Is there another entry to check? Consult the bitmap.
4301 btq(r_bitmap, (bit + 1) & Klass::SECONDARY_SUPERS_TABLE_MASK);
4302 jccb(Assembler::carryClear, L_failure);
4303
4304 // Linear probe. Rotate the bitmap so that the next bit to test is
4305 // in Bit 1.
4306 if (bit != 0) {
4307 rorq(r_bitmap, bit);
4308 }
4309
4310 // Calls into the stub generated by lookup_secondary_supers_table_slow_path.
4311 // Arguments: r_super_klass, r_array_base, r_array_index, r_bitmap.
4312 // Kills: r_array_length.
4313 // Returns: result.
4314 call(RuntimeAddress(StubRoutines::lookup_secondary_supers_table_slow_path_stub()));
4315 // Result (0/1) is in rdi
4316 jmpb(L_fallthrough);
4317
4318 bind(L_failure);
4319 incq(result); // 0 => 1
4320
4321 bind(L_success);
4322 // result = 0;
4323
4324 bind(L_fallthrough);
4325 BLOCK_COMMENT("} lookup_secondary_supers_table");
4326
4327 if (VerifySecondarySupers) {
4328 verify_secondary_supers_table(r_sub_klass, r_super_klass, result,
4329 temp1, temp2, temp3);
4330 }
4331 }
4332
4333 // At runtime, return 0 in result if r_super_klass is a superclass of
4334 // r_sub_klass, otherwise return nonzero. Use this version of
4335 // lookup_secondary_supers_table() if you don't know ahead of time
4336 // which superclass will be searched for. Used by interpreter and
4337 // runtime stubs. It is larger and has somewhat greater latency than
4338 // the version above, which takes a constant super_klass_slot.
4339 void MacroAssembler::lookup_secondary_supers_table_var(Register r_sub_klass,
4340 Register r_super_klass,
4341 Register temp1,
4342 Register temp2,
4343 Register temp3,
4344 Register temp4,
4345 Register result) {
4346 assert_different_registers(r_sub_klass, r_super_klass, temp1, temp2, temp3, temp4, result);
4347 assert_different_registers(r_sub_klass, r_super_klass, rcx);
4348 RegSet temps = RegSet::of(temp1, temp2, temp3, temp4);
4349
4350 Label L_fallthrough, L_success, L_failure;
4351
4352 BLOCK_COMMENT("lookup_secondary_supers_table {");
4353
4354 RegSetIterator<Register> available_regs = (temps - rcx).begin();
4355
4356 // FIXME. Once we are sure that all paths reaching this point really
4357 // do pass rcx as one of our temps we can get rid of the following
4358 // workaround.
4359 assert(temps.contains(rcx), "fix this code");
4360
4361 // We prefer to have our shift count in rcx. If rcx is one of our
4362 // temps, use it for slot. If not, pick any of our temps.
4363 Register slot;
4364 if (!temps.contains(rcx)) {
4365 slot = *available_regs++;
4366 } else {
4367 slot = rcx;
4368 }
4369
4370 const Register r_array_index = *available_regs++;
4371 const Register r_bitmap = *available_regs++;
4372
4373 // The logic above guarantees this property, but we state it here.
4374 assert_different_registers(r_array_index, r_bitmap, rcx);
4375
4376 movq(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset()));
4377 movq(r_array_index, r_bitmap);
4378
4379 // First check the bitmap to see if super_klass might be present. If
4380 // the bit is zero, we are certain that super_klass is not one of
4381 // the secondary supers.
4382 movb(slot, Address(r_super_klass, Klass::hash_slot_offset()));
4383 xorl(slot, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 1)); // slot ^ 63 === 63 - slot (mod 64)
4384 salq(r_array_index, slot);
4385
4386 testq(r_array_index, r_array_index);
4387 // We test the MSB of r_array_index, i.e. its sign bit
4388 jcc(Assembler::positive, L_failure);
4389
4390 const Register r_array_base = *available_regs++;
4391
4392 // Get the first array index that can contain super_klass into r_array_index.
4393 // Note: Clobbers r_array_base and slot.
4394 population_count(r_array_index, r_array_index, /*temp2*/r_array_base, /*temp3*/slot);
4395
4396 // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word.
4397
4398 // We will consult the secondary-super array.
4399 movptr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset())));
4400
4401 // We're asserting that the first word in an Array<Klass*> is the
4402 // length, and the second word is the first word of the data. If
4403 // that ever changes, r_array_base will have to be adjusted here.
4404 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code");
4405 assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code");
4406
4407 cmpq(r_super_klass, Address(r_array_base, r_array_index, Address::times_8));
4408 jccb(Assembler::equal, L_success);
4409
4410 // Restore slot to its true value
4411 movb(slot, Address(r_super_klass, Klass::hash_slot_offset()));
4412
4413 // Linear probe. Rotate the bitmap so that the next bit to test is
4414 // in Bit 1.
4415 rorq(r_bitmap, slot);
4416
4417 // Is there another entry to check? Consult the bitmap.
4418 btq(r_bitmap, 1);
4419 jccb(Assembler::carryClear, L_failure);
4420
4421 // Calls into the stub generated by lookup_secondary_supers_table_slow_path.
4422 // Arguments: r_super_klass, r_array_base, r_array_index, r_bitmap.
4423 // Kills: r_array_length.
4424 // Returns: result.
4425 lookup_secondary_supers_table_slow_path(r_super_klass,
4426 r_array_base,
4427 r_array_index,
4428 r_bitmap,
4429 /*temp1*/result,
4430 /*temp2*/slot,
4431 &L_success,
4432 nullptr);
4433
4434 bind(L_failure);
4435 movq(result, 1);
4436 jmpb(L_fallthrough);
4437
4438 bind(L_success);
4439 xorq(result, result); // = 0
4440
4441 bind(L_fallthrough);
4442 BLOCK_COMMENT("} lookup_secondary_supers_table");
4443
4444 if (VerifySecondarySupers) {
4445 verify_secondary_supers_table(r_sub_klass, r_super_klass, result,
4446 temp1, temp2, temp3);
4447 }
4448 }
4449
4450 void MacroAssembler::repne_scanq(Register addr, Register value, Register count, Register limit,
4451 Label* L_success, Label* L_failure) {
4452 Label L_loop, L_fallthrough;
4453 {
4454 int label_nulls = 0;
4455 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; }
4456 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; }
4457 assert(label_nulls <= 1, "at most one null in the batch");
4458 }
4459 bind(L_loop);
4460 cmpq(value, Address(addr, count, Address::times_8));
4461 jcc(Assembler::equal, *L_success);
4462 addl(count, 1);
4463 cmpl(count, limit);
4464 jcc(Assembler::less, L_loop);
4465
4466 if (&L_fallthrough != L_failure) {
4467 jmp(*L_failure);
4468 }
4469 bind(L_fallthrough);
4470 }
4471
4472 // Called by code generated by check_klass_subtype_slow_path
4473 // above. This is called when there is a collision in the hashed
4474 // lookup in the secondary supers array.
4475 void MacroAssembler::lookup_secondary_supers_table_slow_path(Register r_super_klass,
4476 Register r_array_base,
4477 Register r_array_index,
4478 Register r_bitmap,
4479 Register temp1,
4480 Register temp2,
4481 Label* L_success,
4482 Label* L_failure) {
4483 assert_different_registers(r_super_klass, r_array_base, r_array_index, r_bitmap, temp1, temp2);
4484
4485 const Register
4486 r_array_length = temp1,
4487 r_sub_klass = noreg,
4488 result = noreg;
4489
4490 Label L_fallthrough;
4491 int label_nulls = 0;
4492 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; }
4493 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; }
4494 assert(label_nulls <= 1, "at most one null in the batch");
4495
4496 // Load the array length.
4497 movl(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes()));
4498 // And adjust the array base to point to the data.
4499 // NB! Effectively increments current slot index by 1.
4500 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "");
4501 addptr(r_array_base, Array<Klass*>::base_offset_in_bytes());
4502
4503 // Linear probe
4504 Label L_huge;
4505
4506 // The bitmap is full to bursting.
4507 // Implicit invariant: BITMAP_FULL implies (length > 0)
4508 cmpl(r_array_length, (int32_t)Klass::SECONDARY_SUPERS_TABLE_SIZE - 2);
4509 jcc(Assembler::greater, L_huge);
4510
4511 // NB! Our caller has checked bits 0 and 1 in the bitmap. The
4512 // current slot (at secondary_supers[r_array_index]) has not yet
4513 // been inspected, and r_array_index may be out of bounds if we
4514 // wrapped around the end of the array.
4515
4516 { // This is conventional linear probing, but instead of terminating
4517 // when a null entry is found in the table, we maintain a bitmap
4518 // in which a 0 indicates missing entries.
4519 // The check above guarantees there are 0s in the bitmap, so the loop
4520 // eventually terminates.
4521
4522 xorl(temp2, temp2); // = 0;
4523
4524 Label L_again;
4525 bind(L_again);
4526
4527 // Check for array wraparound.
4528 cmpl(r_array_index, r_array_length);
4529 cmovl(Assembler::greaterEqual, r_array_index, temp2);
4530
4531 cmpq(r_super_klass, Address(r_array_base, r_array_index, Address::times_8));
4532 jcc(Assembler::equal, *L_success);
4533
4534 // If the next bit in bitmap is zero, we're done.
4535 btq(r_bitmap, 2); // look-ahead check (Bit 2); Bits 0 and 1 are tested by now
4536 jcc(Assembler::carryClear, *L_failure);
4537
4538 rorq(r_bitmap, 1); // Bits 1/2 => 0/1
4539 addl(r_array_index, 1);
4540
4541 jmp(L_again);
4542 }
4543
4544 { // Degenerate case: more than 64 secondary supers.
4545 // FIXME: We could do something smarter here, maybe a vectorized
4546 // comparison or a binary search, but is that worth any added
4547 // complexity?
4548 bind(L_huge);
4549 xorl(r_array_index, r_array_index); // = 0
4550 repne_scanq(r_array_base, r_super_klass, r_array_index, r_array_length,
4551 L_success,
4552 (&L_fallthrough != L_failure ? L_failure : nullptr));
4553
4554 bind(L_fallthrough);
4555 }
4556 }
4557
4558 struct VerifyHelperArguments {
4559 Klass* _super;
4560 Klass* _sub;
4561 intptr_t _linear_result;
4562 intptr_t _table_result;
4563 };
4564
4565 static void verify_secondary_supers_table_helper(const char* msg, VerifyHelperArguments* args) {
4566 Klass::on_secondary_supers_verification_failure(args->_super,
4567 args->_sub,
4568 args->_linear_result,
4569 args->_table_result,
4570 msg);
4571 }
4572
4573 // Make sure that the hashed lookup and a linear scan agree.
4574 void MacroAssembler::verify_secondary_supers_table(Register r_sub_klass,
4575 Register r_super_klass,
4576 Register result,
4577 Register temp1,
4578 Register temp2,
4579 Register temp3) {
4580 const Register
4581 r_array_index = temp1,
4582 r_array_length = temp2,
4583 r_array_base = temp3,
4584 r_bitmap = noreg;
4585
4586 BLOCK_COMMENT("verify_secondary_supers_table {");
4587
4588 Label L_success, L_failure, L_check, L_done;
4589
4590 movptr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset())));
4591 movl(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes()));
4592 // And adjust the array base to point to the data.
4593 addptr(r_array_base, Array<Klass*>::base_offset_in_bytes());
4594
4595 testl(r_array_length, r_array_length); // array_length == 0?
4596 jcc(Assembler::zero, L_failure);
4597
4598 movl(r_array_index, 0);
4599 repne_scanq(r_array_base, r_super_klass, r_array_index, r_array_length, &L_success);
4600 // fall through to L_failure
4601
4602 const Register linear_result = r_array_index; // reuse temp1
4603
4604 bind(L_failure); // not present
4605 movl(linear_result, 1);
4606 jmp(L_check);
4607
4608 bind(L_success); // present
4609 movl(linear_result, 0);
4610
4611 bind(L_check);
4612 cmpl(linear_result, result);
4613 jcc(Assembler::equal, L_done);
4614
4615 { // To avoid calling convention issues, build a record on the stack
4616 // and pass the pointer to that instead.
4617 push(result);
4618 push(linear_result);
4619 push(r_sub_klass);
4620 push(r_super_klass);
4621 movptr(c_rarg1, rsp);
4622 movptr(c_rarg0, (uintptr_t) "mismatch");
4623 call(RuntimeAddress(CAST_FROM_FN_PTR(address, verify_secondary_supers_table_helper)));
4624 should_not_reach_here();
4625 }
4626 bind(L_done);
4627
4628 BLOCK_COMMENT("} verify_secondary_supers_table");
4629 }
4630
4631 #undef LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS
4632
4633 void MacroAssembler::clinit_barrier(Register klass, Label* L_fast_path, Label* L_slow_path) {
4634 assert(L_fast_path != nullptr || L_slow_path != nullptr, "at least one is required");
4635
4636 Label L_fallthrough;
4637 if (L_fast_path == nullptr) {
4638 L_fast_path = &L_fallthrough;
4639 } else if (L_slow_path == nullptr) {
4640 L_slow_path = &L_fallthrough;
4641 }
4642
4643 // Fast path check: class is fully initialized.
4644 // init_state needs acquire, but x86 is TSO, and so we are already good.
4645 cmpb(Address(klass, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized);
4646 jcc(Assembler::equal, *L_fast_path);
4647
4648 // Fast path check: current thread is initializer thread
4649 cmpptr(r15_thread, Address(klass, InstanceKlass::init_thread_offset()));
4650 if (L_slow_path == &L_fallthrough) {
4651 jcc(Assembler::equal, *L_fast_path);
4652 bind(*L_slow_path);
4653 } else if (L_fast_path == &L_fallthrough) {
4654 jcc(Assembler::notEqual, *L_slow_path);
4655 bind(*L_fast_path);
4656 } else {
4657 Unimplemented();
4658 }
4659 }
4660
4661 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
4662 if (VM_Version::supports_cmov()) {
4663 cmovl(cc, dst, src);
4664 } else {
4665 Label L;
4666 jccb(negate_condition(cc), L);
4667 movl(dst, src);
4668 bind(L);
4669 }
4670 }
4671
4672 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
4673 if (VM_Version::supports_cmov()) {
4674 cmovl(cc, dst, src);
4675 } else {
4676 Label L;
4677 jccb(negate_condition(cc), L);
4678 movl(dst, src);
4679 bind(L);
4680 }
4681 }
4682
4683 void MacroAssembler::_verify_oop(Register reg, const char* s, const char* file, int line) {
4684 if (!VerifyOops) return;
4685
4686 BLOCK_COMMENT("verify_oop {");
4687 push(rscratch1);
4688 push(rax); // save rax
4689 push(reg); // pass register argument
4690
4691 // Pass register number to verify_oop_subroutine
4692 const char* b = nullptr;
4693 {
4694 ResourceMark rm;
4695 stringStream ss;
4696 ss.print("verify_oop: %s: %s (%s:%d)", reg->name(), s, file, line);
4697 b = code_string(ss.as_string());
4698 }
4699 AddressLiteral buffer((address) b, external_word_Relocation::spec_for_immediate());
4700 pushptr(buffer.addr(), rscratch1);
4701
4702 // call indirectly to solve generation ordering problem
4703 movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
4704 call(rax);
4705 // Caller pops the arguments (oop, message) and restores rax, r10
4706 BLOCK_COMMENT("} verify_oop");
4707 }
4708
4709 void MacroAssembler::vallones(XMMRegister dst, int vector_len) {
4710 if (UseAVX > 2 && (vector_len == Assembler::AVX_512bit || VM_Version::supports_avx512vl())) {
4711 // Only pcmpeq has dependency breaking treatment (i.e the execution can begin without
4712 // waiting for the previous result on dst), not vpcmpeqd, so just use vpternlog
4713 vpternlogd(dst, 0xFF, dst, dst, vector_len);
4714 } else if (VM_Version::supports_avx()) {
4715 vpcmpeqd(dst, dst, dst, vector_len);
4716 } else {
4717 pcmpeqd(dst, dst);
4718 }
4719 }
4720
4721 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
4722 int extra_slot_offset) {
4723 // cf. TemplateTable::prepare_invoke(), if (load_receiver).
4724 int stackElementSize = Interpreter::stackElementSize;
4725 int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
4726 #ifdef ASSERT
4727 int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
4728 assert(offset1 - offset == stackElementSize, "correct arithmetic");
4729 #endif
4730 Register scale_reg = noreg;
4731 Address::ScaleFactor scale_factor = Address::no_scale;
4732 if (arg_slot.is_constant()) {
4733 offset += arg_slot.as_constant() * stackElementSize;
4734 } else {
4735 scale_reg = arg_slot.as_register();
4736 scale_factor = Address::times(stackElementSize);
4737 }
4738 offset += wordSize; // return PC is on stack
4739 return Address(rsp, scale_reg, scale_factor, offset);
4740 }
4741
4742 void MacroAssembler::_verify_oop_addr(Address addr, const char* s, const char* file, int line) {
4743 if (!VerifyOops) return;
4744
4745 push(rscratch1);
4746 push(rax); // save rax,
4747 // addr may contain rsp so we will have to adjust it based on the push
4748 // we just did (and on 64 bit we do two pushes)
4749 // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
4750 // stores rax into addr which is backwards of what was intended.
4751 if (addr.uses(rsp)) {
4752 lea(rax, addr);
4753 pushptr(Address(rax, 2 * BytesPerWord));
4754 } else {
4755 pushptr(addr);
4756 }
4757
4758 // Pass register number to verify_oop_subroutine
4759 const char* b = nullptr;
4760 {
4761 ResourceMark rm;
4762 stringStream ss;
4763 ss.print("verify_oop_addr: %s (%s:%d)", s, file, line);
4764 b = code_string(ss.as_string());
4765 }
4766 AddressLiteral buffer((address) b, external_word_Relocation::spec_for_immediate());
4767 pushptr(buffer.addr(), rscratch1);
4768
4769 // call indirectly to solve generation ordering problem
4770 movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
4771 call(rax);
4772 // Caller pops the arguments (addr, message) and restores rax, r10.
4773 }
4774
4775 void MacroAssembler::verify_tlab() {
4776 #ifdef ASSERT
4777 if (UseTLAB && VerifyOops) {
4778 Label next, ok;
4779 Register t1 = rsi;
4780
4781 push(t1);
4782
4783 movptr(t1, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())));
4784 cmpptr(t1, Address(r15_thread, in_bytes(JavaThread::tlab_start_offset())));
4785 jcc(Assembler::aboveEqual, next);
4786 STOP("assert(top >= start)");
4787 should_not_reach_here();
4788
4789 bind(next);
4790 movptr(t1, Address(r15_thread, in_bytes(JavaThread::tlab_end_offset())));
4791 cmpptr(t1, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())));
4792 jcc(Assembler::aboveEqual, ok);
4793 STOP("assert(top <= end)");
4794 should_not_reach_here();
4795
4796 bind(ok);
4797 pop(t1);
4798 }
4799 #endif
4800 }
4801
4802 class ControlWord {
4803 public:
4804 int32_t _value;
4805
4806 int rounding_control() const { return (_value >> 10) & 3 ; }
4807 int precision_control() const { return (_value >> 8) & 3 ; }
4808 bool precision() const { return ((_value >> 5) & 1) != 0; }
4809 bool underflow() const { return ((_value >> 4) & 1) != 0; }
4810 bool overflow() const { return ((_value >> 3) & 1) != 0; }
4811 bool zero_divide() const { return ((_value >> 2) & 1) != 0; }
4812 bool denormalized() const { return ((_value >> 1) & 1) != 0; }
4813 bool invalid() const { return ((_value >> 0) & 1) != 0; }
4814
4815 void print() const {
4816 // rounding control
4817 const char* rc;
4818 switch (rounding_control()) {
4819 case 0: rc = "round near"; break;
4820 case 1: rc = "round down"; break;
4821 case 2: rc = "round up "; break;
4822 case 3: rc = "chop "; break;
4823 default:
4824 rc = nullptr; // silence compiler warnings
4825 fatal("Unknown rounding control: %d", rounding_control());
4826 };
4827 // precision control
4828 const char* pc;
4829 switch (precision_control()) {
4830 case 0: pc = "24 bits "; break;
4831 case 1: pc = "reserved"; break;
4832 case 2: pc = "53 bits "; break;
4833 case 3: pc = "64 bits "; break;
4834 default:
4835 pc = nullptr; // silence compiler warnings
4836 fatal("Unknown precision control: %d", precision_control());
4837 };
4838 // flags
4839 char f[9];
4840 f[0] = ' ';
4841 f[1] = ' ';
4842 f[2] = (precision ()) ? 'P' : 'p';
4843 f[3] = (underflow ()) ? 'U' : 'u';
4844 f[4] = (overflow ()) ? 'O' : 'o';
4845 f[5] = (zero_divide ()) ? 'Z' : 'z';
4846 f[6] = (denormalized()) ? 'D' : 'd';
4847 f[7] = (invalid ()) ? 'I' : 'i';
4848 f[8] = '\x0';
4849 // output
4850 printf("%04x masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
4851 }
4852
4853 };
4854
4855 class StatusWord {
4856 public:
4857 int32_t _value;
4858
4859 bool busy() const { return ((_value >> 15) & 1) != 0; }
4860 bool C3() const { return ((_value >> 14) & 1) != 0; }
4861 bool C2() const { return ((_value >> 10) & 1) != 0; }
4862 bool C1() const { return ((_value >> 9) & 1) != 0; }
4863 bool C0() const { return ((_value >> 8) & 1) != 0; }
4864 int top() const { return (_value >> 11) & 7 ; }
4865 bool error_status() const { return ((_value >> 7) & 1) != 0; }
4866 bool stack_fault() const { return ((_value >> 6) & 1) != 0; }
4867 bool precision() const { return ((_value >> 5) & 1) != 0; }
4868 bool underflow() const { return ((_value >> 4) & 1) != 0; }
4869 bool overflow() const { return ((_value >> 3) & 1) != 0; }
4870 bool zero_divide() const { return ((_value >> 2) & 1) != 0; }
4871 bool denormalized() const { return ((_value >> 1) & 1) != 0; }
4872 bool invalid() const { return ((_value >> 0) & 1) != 0; }
4873
4874 void print() const {
4875 // condition codes
4876 char c[5];
4877 c[0] = (C3()) ? '3' : '-';
4878 c[1] = (C2()) ? '2' : '-';
4879 c[2] = (C1()) ? '1' : '-';
4880 c[3] = (C0()) ? '0' : '-';
4881 c[4] = '\x0';
4882 // flags
4883 char f[9];
4884 f[0] = (error_status()) ? 'E' : '-';
4885 f[1] = (stack_fault ()) ? 'S' : '-';
4886 f[2] = (precision ()) ? 'P' : '-';
4887 f[3] = (underflow ()) ? 'U' : '-';
4888 f[4] = (overflow ()) ? 'O' : '-';
4889 f[5] = (zero_divide ()) ? 'Z' : '-';
4890 f[6] = (denormalized()) ? 'D' : '-';
4891 f[7] = (invalid ()) ? 'I' : '-';
4892 f[8] = '\x0';
4893 // output
4894 printf("%04x flags = %s, cc = %s, top = %d", _value & 0xFFFF, f, c, top());
4895 }
4896
4897 };
4898
4899 class TagWord {
4900 public:
4901 int32_t _value;
4902
4903 int tag_at(int i) const { return (_value >> (i*2)) & 3; }
4904
4905 void print() const {
4906 printf("%04x", _value & 0xFFFF);
4907 }
4908
4909 };
4910
4911 class FPU_Register {
4912 public:
4913 int32_t _m0;
4914 int32_t _m1;
4915 int16_t _ex;
4916
4917 bool is_indefinite() const {
4918 return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
4919 }
4920
4921 void print() const {
4922 char sign = (_ex < 0) ? '-' : '+';
4923 const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : " ";
4924 printf("%c%04hx.%08x%08x %s", sign, _ex, _m1, _m0, kind);
4925 };
4926
4927 };
4928
4929 class FPU_State {
4930 public:
4931 enum {
4932 register_size = 10,
4933 number_of_registers = 8,
4934 register_mask = 7
4935 };
4936
4937 ControlWord _control_word;
4938 StatusWord _status_word;
4939 TagWord _tag_word;
4940 int32_t _error_offset;
4941 int32_t _error_selector;
4942 int32_t _data_offset;
4943 int32_t _data_selector;
4944 int8_t _register[register_size * number_of_registers];
4945
4946 int tag_for_st(int i) const { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
4947 FPU_Register* st(int i) const { return (FPU_Register*)&_register[register_size * i]; }
4948
4949 const char* tag_as_string(int tag) const {
4950 switch (tag) {
4951 case 0: return "valid";
4952 case 1: return "zero";
4953 case 2: return "special";
4954 case 3: return "empty";
4955 }
4956 ShouldNotReachHere();
4957 return nullptr;
4958 }
4959
4960 void print() const {
4961 // print computation registers
4962 { int t = _status_word.top();
4963 for (int i = 0; i < number_of_registers; i++) {
4964 int j = (i - t) & register_mask;
4965 printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
4966 st(j)->print();
4967 printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
4968 }
4969 }
4970 printf("\n");
4971 // print control registers
4972 printf("ctrl = "); _control_word.print(); printf("\n");
4973 printf("stat = "); _status_word .print(); printf("\n");
4974 printf("tags = "); _tag_word .print(); printf("\n");
4975 }
4976
4977 };
4978
4979 class Flag_Register {
4980 public:
4981 int32_t _value;
4982
4983 bool overflow() const { return ((_value >> 11) & 1) != 0; }
4984 bool direction() const { return ((_value >> 10) & 1) != 0; }
4985 bool sign() const { return ((_value >> 7) & 1) != 0; }
4986 bool zero() const { return ((_value >> 6) & 1) != 0; }
4987 bool auxiliary_carry() const { return ((_value >> 4) & 1) != 0; }
4988 bool parity() const { return ((_value >> 2) & 1) != 0; }
4989 bool carry() const { return ((_value >> 0) & 1) != 0; }
4990
4991 void print() const {
4992 // flags
4993 char f[8];
4994 f[0] = (overflow ()) ? 'O' : '-';
4995 f[1] = (direction ()) ? 'D' : '-';
4996 f[2] = (sign ()) ? 'S' : '-';
4997 f[3] = (zero ()) ? 'Z' : '-';
4998 f[4] = (auxiliary_carry()) ? 'A' : '-';
4999 f[5] = (parity ()) ? 'P' : '-';
5000 f[6] = (carry ()) ? 'C' : '-';
5001 f[7] = '\x0';
5002 // output
5003 printf("%08x flags = %s", _value, f);
5004 }
5005
5006 };
5007
5008 class IU_Register {
5009 public:
5010 int32_t _value;
5011
5012 void print() const {
5013 printf("%08x %11d", _value, _value);
5014 }
5015
5016 };
5017
5018 class IU_State {
5019 public:
5020 Flag_Register _eflags;
5021 IU_Register _rdi;
5022 IU_Register _rsi;
5023 IU_Register _rbp;
5024 IU_Register _rsp;
5025 IU_Register _rbx;
5026 IU_Register _rdx;
5027 IU_Register _rcx;
5028 IU_Register _rax;
5029
5030 void print() const {
5031 // computation registers
5032 printf("rax, = "); _rax.print(); printf("\n");
5033 printf("rbx, = "); _rbx.print(); printf("\n");
5034 printf("rcx = "); _rcx.print(); printf("\n");
5035 printf("rdx = "); _rdx.print(); printf("\n");
5036 printf("rdi = "); _rdi.print(); printf("\n");
5037 printf("rsi = "); _rsi.print(); printf("\n");
5038 printf("rbp, = "); _rbp.print(); printf("\n");
5039 printf("rsp = "); _rsp.print(); printf("\n");
5040 printf("\n");
5041 // control registers
5042 printf("flgs = "); _eflags.print(); printf("\n");
5043 }
5044 };
5045
5046
5047 class CPU_State {
5048 public:
5049 FPU_State _fpu_state;
5050 IU_State _iu_state;
5051
5052 void print() const {
5053 printf("--------------------------------------------------\n");
5054 _iu_state .print();
5055 printf("\n");
5056 _fpu_state.print();
5057 printf("--------------------------------------------------\n");
5058 }
5059
5060 };
5061
5062
5063 static void _print_CPU_state(CPU_State* state) {
5064 state->print();
5065 };
5066
5067
5068 void MacroAssembler::print_CPU_state() {
5069 push_CPU_state();
5070 push(rsp); // pass CPU state
5071 call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
5072 addptr(rsp, wordSize); // discard argument
5073 pop_CPU_state();
5074 }
5075
5076 void MacroAssembler::restore_cpu_control_state_after_jni(Register rscratch) {
5077 // Either restore the MXCSR register after returning from the JNI Call
5078 // or verify that it wasn't changed (with -Xcheck:jni flag).
5079 if (VM_Version::supports_sse()) {
5080 if (RestoreMXCSROnJNICalls) {
5081 ldmxcsr(ExternalAddress(StubRoutines::x86::addr_mxcsr_std()), rscratch);
5082 } else if (CheckJNICalls) {
5083 call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
5084 }
5085 }
5086 // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty.
5087 vzeroupper();
5088 }
5089
5090 // ((OopHandle)result).resolve();
5091 void MacroAssembler::resolve_oop_handle(Register result, Register tmp) {
5092 assert_different_registers(result, tmp);
5093
5094 // Only 64 bit platforms support GCs that require a tmp register
5095 // Only IN_HEAP loads require a thread_tmp register
5096 // OopHandle::resolve is an indirection like jobject.
5097 access_load_at(T_OBJECT, IN_NATIVE,
5098 result, Address(result, 0), tmp);
5099 }
5100
5101 // ((WeakHandle)result).resolve();
5102 void MacroAssembler::resolve_weak_handle(Register rresult, Register rtmp) {
5103 assert_different_registers(rresult, rtmp);
5104 Label resolved;
5105
5106 // A null weak handle resolves to null.
5107 cmpptr(rresult, 0);
5108 jcc(Assembler::equal, resolved);
5109
5110 // Only 64 bit platforms support GCs that require a tmp register
5111 // Only IN_HEAP loads require a thread_tmp register
5112 // WeakHandle::resolve is an indirection like jweak.
5113 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF,
5114 rresult, Address(rresult, 0), rtmp);
5115 bind(resolved);
5116 }
5117
5118 void MacroAssembler::load_mirror(Register mirror, Register method, Register tmp) {
5119 // get mirror
5120 const int mirror_offset = in_bytes(Klass::java_mirror_offset());
5121 load_method_holder(mirror, method);
5122 movptr(mirror, Address(mirror, mirror_offset));
5123 resolve_oop_handle(mirror, tmp);
5124 }
5125
5126 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) {
5127 load_method_holder(rresult, rmethod);
5128 movptr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset()));
5129 }
5130
5131 void MacroAssembler::load_method_holder(Register holder, Register method) {
5132 movptr(holder, Address(method, Method::const_offset())); // ConstMethod*
5133 movptr(holder, Address(holder, ConstMethod::constants_offset())); // ConstantPool*
5134 movptr(holder, Address(holder, ConstantPool::pool_holder_offset())); // InstanceKlass*
5135 }
5136
5137 void MacroAssembler::load_narrow_klass_compact(Register dst, Register src) {
5138 assert(UseCompactObjectHeaders, "expect compact object headers");
5139 movl(dst, Address(src, oopDesc::mark_offset_in_bytes()));
5140 shrl(dst, markWord::klass_shift);
5141 }
5142
5143 void MacroAssembler::load_klass(Register dst, Register src, Register tmp) {
5144 assert_different_registers(src, tmp);
5145 assert_different_registers(dst, tmp);
5146
5147 if (UseCompactObjectHeaders) {
5148 load_narrow_klass_compact(dst, src);
5149 decode_klass_not_null(dst, tmp);
5150 } else if (UseCompressedClassPointers) {
5151 movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
5152 decode_klass_not_null(dst, tmp);
5153 } else {
5154 movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
5155 }
5156 }
5157
5158 void MacroAssembler::store_klass(Register dst, Register src, Register tmp) {
5159 assert(!UseCompactObjectHeaders, "not with compact headers");
5160 assert_different_registers(src, tmp);
5161 assert_different_registers(dst, tmp);
5162 if (UseCompressedClassPointers) {
5163 encode_klass_not_null(src, tmp);
5164 movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
5165 } else {
5166 movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
5167 }
5168 }
5169
5170 void MacroAssembler::cmp_klass(Register klass, Register obj, Register tmp) {
5171 if (UseCompactObjectHeaders) {
5172 assert(tmp != noreg, "need tmp");
5173 assert_different_registers(klass, obj, tmp);
5174 load_narrow_klass_compact(tmp, obj);
5175 cmpl(klass, tmp);
5176 } else if (UseCompressedClassPointers) {
5177 cmpl(klass, Address(obj, oopDesc::klass_offset_in_bytes()));
5178 } else {
5179 cmpptr(klass, Address(obj, oopDesc::klass_offset_in_bytes()));
5180 }
5181 }
5182
5183 void MacroAssembler::cmp_klasses_from_objects(Register obj1, Register obj2, Register tmp1, Register tmp2) {
5184 if (UseCompactObjectHeaders) {
5185 assert(tmp2 != noreg, "need tmp2");
5186 assert_different_registers(obj1, obj2, tmp1, tmp2);
5187 load_narrow_klass_compact(tmp1, obj1);
5188 load_narrow_klass_compact(tmp2, obj2);
5189 cmpl(tmp1, tmp2);
5190 } else if (UseCompressedClassPointers) {
5191 movl(tmp1, Address(obj1, oopDesc::klass_offset_in_bytes()));
5192 cmpl(tmp1, Address(obj2, oopDesc::klass_offset_in_bytes()));
5193 } else {
5194 movptr(tmp1, Address(obj1, oopDesc::klass_offset_in_bytes()));
5195 cmpptr(tmp1, Address(obj2, oopDesc::klass_offset_in_bytes()));
5196 }
5197 }
5198
5199 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
5200 Register tmp1) {
5201 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
5202 decorators = AccessInternal::decorator_fixup(decorators, type);
5203 bool as_raw = (decorators & AS_RAW) != 0;
5204 if (as_raw) {
5205 bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1);
5206 } else {
5207 bs->load_at(this, decorators, type, dst, src, tmp1);
5208 }
5209 }
5210
5211 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register val,
5212 Register tmp1, Register tmp2, Register tmp3) {
5213 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
5214 decorators = AccessInternal::decorator_fixup(decorators, type);
5215 bool as_raw = (decorators & AS_RAW) != 0;
5216 if (as_raw) {
5217 bs->BarrierSetAssembler::store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3);
5218 } else {
5219 bs->store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3);
5220 }
5221 }
5222
5223 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1, DecoratorSet decorators) {
5224 access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1);
5225 }
5226
5227 // Doesn't do verification, generates fixed size code
5228 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1, DecoratorSet decorators) {
5229 access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1);
5230 }
5231
5232 void MacroAssembler::store_heap_oop(Address dst, Register val, Register tmp1,
5233 Register tmp2, Register tmp3, DecoratorSet decorators) {
5234 access_store_at(T_OBJECT, IN_HEAP | decorators, dst, val, tmp1, tmp2, tmp3);
5235 }
5236
5237 // Used for storing nulls.
5238 void MacroAssembler::store_heap_oop_null(Address dst) {
5239 access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg, noreg);
5240 }
5241
5242 void MacroAssembler::store_klass_gap(Register dst, Register src) {
5243 assert(!UseCompactObjectHeaders, "Don't use with compact headers");
5244 if (UseCompressedClassPointers) {
5245 // Store to klass gap in destination
5246 movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
5247 }
5248 }
5249
5250 #ifdef ASSERT
5251 void MacroAssembler::verify_heapbase(const char* msg) {
5252 assert (UseCompressedOops, "should be compressed");
5253 assert (Universe::heap() != nullptr, "java heap should be initialized");
5254 if (CheckCompressedOops) {
5255 Label ok;
5256 ExternalAddress src2(CompressedOops::base_addr());
5257 const bool is_src2_reachable = reachable(src2);
5258 if (!is_src2_reachable) {
5259 push(rscratch1); // cmpptr trashes rscratch1
5260 }
5261 cmpptr(r12_heapbase, src2, rscratch1);
5262 jcc(Assembler::equal, ok);
5263 STOP(msg);
5264 bind(ok);
5265 if (!is_src2_reachable) {
5266 pop(rscratch1);
5267 }
5268 }
5269 }
5270 #endif
5271
5272 // Algorithm must match oop.inline.hpp encode_heap_oop.
5273 void MacroAssembler::encode_heap_oop(Register r) {
5274 #ifdef ASSERT
5275 verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
5276 #endif
5277 verify_oop_msg(r, "broken oop in encode_heap_oop");
5278 if (CompressedOops::base() == nullptr) {
5279 if (CompressedOops::shift() != 0) {
5280 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5281 shrq(r, LogMinObjAlignmentInBytes);
5282 }
5283 return;
5284 }
5285 testq(r, r);
5286 cmovq(Assembler::equal, r, r12_heapbase);
5287 subq(r, r12_heapbase);
5288 shrq(r, LogMinObjAlignmentInBytes);
5289 }
5290
5291 void MacroAssembler::encode_heap_oop_not_null(Register r) {
5292 #ifdef ASSERT
5293 verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
5294 if (CheckCompressedOops) {
5295 Label ok;
5296 testq(r, r);
5297 jcc(Assembler::notEqual, ok);
5298 STOP("null oop passed to encode_heap_oop_not_null");
5299 bind(ok);
5300 }
5301 #endif
5302 verify_oop_msg(r, "broken oop in encode_heap_oop_not_null");
5303 if (CompressedOops::base() != nullptr) {
5304 subq(r, r12_heapbase);
5305 }
5306 if (CompressedOops::shift() != 0) {
5307 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5308 shrq(r, LogMinObjAlignmentInBytes);
5309 }
5310 }
5311
5312 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
5313 #ifdef ASSERT
5314 verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
5315 if (CheckCompressedOops) {
5316 Label ok;
5317 testq(src, src);
5318 jcc(Assembler::notEqual, ok);
5319 STOP("null oop passed to encode_heap_oop_not_null2");
5320 bind(ok);
5321 }
5322 #endif
5323 verify_oop_msg(src, "broken oop in encode_heap_oop_not_null2");
5324 if (dst != src) {
5325 movq(dst, src);
5326 }
5327 if (CompressedOops::base() != nullptr) {
5328 subq(dst, r12_heapbase);
5329 }
5330 if (CompressedOops::shift() != 0) {
5331 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5332 shrq(dst, LogMinObjAlignmentInBytes);
5333 }
5334 }
5335
5336 void MacroAssembler::decode_heap_oop(Register r) {
5337 #ifdef ASSERT
5338 verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
5339 #endif
5340 if (CompressedOops::base() == nullptr) {
5341 if (CompressedOops::shift() != 0) {
5342 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5343 shlq(r, LogMinObjAlignmentInBytes);
5344 }
5345 } else {
5346 Label done;
5347 shlq(r, LogMinObjAlignmentInBytes);
5348 jccb(Assembler::equal, done);
5349 addq(r, r12_heapbase);
5350 bind(done);
5351 }
5352 verify_oop_msg(r, "broken oop in decode_heap_oop");
5353 }
5354
5355 void MacroAssembler::decode_heap_oop_not_null(Register r) {
5356 // Note: it will change flags
5357 assert (UseCompressedOops, "should only be used for compressed headers");
5358 assert (Universe::heap() != nullptr, "java heap should be initialized");
5359 // Cannot assert, unverified entry point counts instructions (see .ad file)
5360 // vtableStubs also counts instructions in pd_code_size_limit.
5361 // Also do not verify_oop as this is called by verify_oop.
5362 if (CompressedOops::shift() != 0) {
5363 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5364 shlq(r, LogMinObjAlignmentInBytes);
5365 if (CompressedOops::base() != nullptr) {
5366 addq(r, r12_heapbase);
5367 }
5368 } else {
5369 assert (CompressedOops::base() == nullptr, "sanity");
5370 }
5371 }
5372
5373 void MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
5374 // Note: it will change flags
5375 assert (UseCompressedOops, "should only be used for compressed headers");
5376 assert (Universe::heap() != nullptr, "java heap should be initialized");
5377 // Cannot assert, unverified entry point counts instructions (see .ad file)
5378 // vtableStubs also counts instructions in pd_code_size_limit.
5379 // Also do not verify_oop as this is called by verify_oop.
5380 if (CompressedOops::shift() != 0) {
5381 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5382 if (LogMinObjAlignmentInBytes == Address::times_8) {
5383 leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
5384 } else {
5385 if (dst != src) {
5386 movq(dst, src);
5387 }
5388 shlq(dst, LogMinObjAlignmentInBytes);
5389 if (CompressedOops::base() != nullptr) {
5390 addq(dst, r12_heapbase);
5391 }
5392 }
5393 } else {
5394 assert (CompressedOops::base() == nullptr, "sanity");
5395 if (dst != src) {
5396 movq(dst, src);
5397 }
5398 }
5399 }
5400
5401 void MacroAssembler::encode_klass_not_null(Register r, Register tmp) {
5402 BLOCK_COMMENT("encode_klass_not_null {");
5403 assert_different_registers(r, tmp);
5404 if (CompressedKlassPointers::base() != nullptr) {
5405 if (AOTCodeCache::is_on_for_dump()) {
5406 movptr(tmp, ExternalAddress(CompressedKlassPointers::base_addr()));
5407 } else {
5408 movptr(tmp, (intptr_t)CompressedKlassPointers::base());
5409 }
5410 subq(r, tmp);
5411 }
5412 if (CompressedKlassPointers::shift() != 0) {
5413 shrq(r, CompressedKlassPointers::shift());
5414 }
5415 BLOCK_COMMENT("} encode_klass_not_null");
5416 }
5417
5418 void MacroAssembler::encode_and_move_klass_not_null(Register dst, Register src) {
5419 BLOCK_COMMENT("encode_and_move_klass_not_null {");
5420 assert_different_registers(src, dst);
5421 if (CompressedKlassPointers::base() != nullptr) {
5422 movptr(dst, -(intptr_t)CompressedKlassPointers::base());
5423 addq(dst, src);
5424 } else {
5425 movptr(dst, src);
5426 }
5427 if (CompressedKlassPointers::shift() != 0) {
5428 shrq(dst, CompressedKlassPointers::shift());
5429 }
5430 BLOCK_COMMENT("} encode_and_move_klass_not_null");
5431 }
5432
5433 void MacroAssembler::decode_klass_not_null(Register r, Register tmp) {
5434 BLOCK_COMMENT("decode_klass_not_null {");
5435 assert_different_registers(r, tmp);
5436 // Note: it will change flags
5437 assert(UseCompressedClassPointers, "should only be used for compressed headers");
5438 // Cannot assert, unverified entry point counts instructions (see .ad file)
5439 // vtableStubs also counts instructions in pd_code_size_limit.
5440 // Also do not verify_oop as this is called by verify_oop.
5441 if (CompressedKlassPointers::shift() != 0) {
5442 shlq(r, CompressedKlassPointers::shift());
5443 }
5444 if (CompressedKlassPointers::base() != nullptr) {
5445 if (AOTCodeCache::is_on_for_dump()) {
5446 movptr(tmp, ExternalAddress(CompressedKlassPointers::base_addr()));
5447 } else {
5448 movptr(tmp, (intptr_t)CompressedKlassPointers::base());
5449 }
5450 addq(r, tmp);
5451 }
5452 BLOCK_COMMENT("} decode_klass_not_null");
5453 }
5454
5455 void MacroAssembler::decode_and_move_klass_not_null(Register dst, Register src) {
5456 BLOCK_COMMENT("decode_and_move_klass_not_null {");
5457 assert_different_registers(src, dst);
5458 // Note: it will change flags
5459 assert (UseCompressedClassPointers, "should only be used for compressed headers");
5460 // Cannot assert, unverified entry point counts instructions (see .ad file)
5461 // vtableStubs also counts instructions in pd_code_size_limit.
5462 // Also do not verify_oop as this is called by verify_oop.
5463
5464 if (CompressedKlassPointers::base() == nullptr &&
5465 CompressedKlassPointers::shift() == 0) {
5466 // The best case scenario is that there is no base or shift. Then it is already
5467 // a pointer that needs nothing but a register rename.
5468 movl(dst, src);
5469 } else {
5470 if (CompressedKlassPointers::shift() <= Address::times_8) {
5471 if (CompressedKlassPointers::base() != nullptr) {
5472 movptr(dst, (intptr_t)CompressedKlassPointers::base());
5473 } else {
5474 xorq(dst, dst);
5475 }
5476 if (CompressedKlassPointers::shift() != 0) {
5477 assert(CompressedKlassPointers::shift() == Address::times_8, "klass not aligned on 64bits?");
5478 leaq(dst, Address(dst, src, Address::times_8, 0));
5479 } else {
5480 addq(dst, src);
5481 }
5482 } else {
5483 if (CompressedKlassPointers::base() != nullptr) {
5484 const intptr_t base_right_shifted =
5485 (intptr_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift();
5486 movptr(dst, base_right_shifted);
5487 } else {
5488 xorq(dst, dst);
5489 }
5490 addq(dst, src);
5491 shlq(dst, CompressedKlassPointers::shift());
5492 }
5493 }
5494 BLOCK_COMMENT("} decode_and_move_klass_not_null");
5495 }
5496
5497 void MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
5498 assert (UseCompressedOops, "should only be used for compressed headers");
5499 assert (Universe::heap() != nullptr, "java heap should be initialized");
5500 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
5501 int oop_index = oop_recorder()->find_index(obj);
5502 RelocationHolder rspec = oop_Relocation::spec(oop_index);
5503 mov_narrow_oop(dst, oop_index, rspec);
5504 }
5505
5506 void MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
5507 assert (UseCompressedOops, "should only be used for compressed headers");
5508 assert (Universe::heap() != nullptr, "java heap should be initialized");
5509 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
5510 int oop_index = oop_recorder()->find_index(obj);
5511 RelocationHolder rspec = oop_Relocation::spec(oop_index);
5512 mov_narrow_oop(dst, oop_index, rspec);
5513 }
5514
5515 void MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
5516 assert (UseCompressedClassPointers, "should only be used for compressed headers");
5517 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
5518 int klass_index = oop_recorder()->find_index(k);
5519 RelocationHolder rspec = metadata_Relocation::spec(klass_index);
5520 mov_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
5521 }
5522
5523 void MacroAssembler::set_narrow_klass(Address dst, Klass* k) {
5524 assert (UseCompressedClassPointers, "should only be used for compressed headers");
5525 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
5526 int klass_index = oop_recorder()->find_index(k);
5527 RelocationHolder rspec = metadata_Relocation::spec(klass_index);
5528 mov_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
5529 }
5530
5531 void MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
5532 assert (UseCompressedOops, "should only be used for compressed headers");
5533 assert (Universe::heap() != nullptr, "java heap should be initialized");
5534 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
5535 int oop_index = oop_recorder()->find_index(obj);
5536 RelocationHolder rspec = oop_Relocation::spec(oop_index);
5537 Assembler::cmp_narrow_oop(dst, oop_index, rspec);
5538 }
5539
5540 void MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
5541 assert (UseCompressedOops, "should only be used for compressed headers");
5542 assert (Universe::heap() != nullptr, "java heap should be initialized");
5543 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
5544 int oop_index = oop_recorder()->find_index(obj);
5545 RelocationHolder rspec = oop_Relocation::spec(oop_index);
5546 Assembler::cmp_narrow_oop(dst, oop_index, rspec);
5547 }
5548
5549 void MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) {
5550 assert (UseCompressedClassPointers, "should only be used for compressed headers");
5551 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
5552 int klass_index = oop_recorder()->find_index(k);
5553 RelocationHolder rspec = metadata_Relocation::spec(klass_index);
5554 Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
5555 }
5556
5557 void MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) {
5558 assert (UseCompressedClassPointers, "should only be used for compressed headers");
5559 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
5560 int klass_index = oop_recorder()->find_index(k);
5561 RelocationHolder rspec = metadata_Relocation::spec(klass_index);
5562 Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
5563 }
5564
5565 void MacroAssembler::reinit_heapbase() {
5566 if (UseCompressedOops) {
5567 if (Universe::heap() != nullptr) {
5568 if (CompressedOops::base() == nullptr) {
5569 MacroAssembler::xorptr(r12_heapbase, r12_heapbase);
5570 } else {
5571 mov64(r12_heapbase, (int64_t)CompressedOops::base());
5572 }
5573 } else {
5574 movptr(r12_heapbase, ExternalAddress(CompressedOops::base_addr()));
5575 }
5576 }
5577 }
5578
5579 #if COMPILER2_OR_JVMCI
5580
5581 // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM/ZMM registers
5582 void MacroAssembler::xmm_clear_mem(Register base, Register cnt, Register rtmp, XMMRegister xtmp, KRegister mask) {
5583 // cnt - number of qwords (8-byte words).
5584 // base - start address, qword aligned.
5585 Label L_zero_64_bytes, L_loop, L_sloop, L_tail, L_end;
5586 bool use64byteVector = (MaxVectorSize == 64) && (VM_Version::avx3_threshold() == 0);
5587 if (use64byteVector) {
5588 vpxor(xtmp, xtmp, xtmp, AVX_512bit);
5589 } else if (MaxVectorSize >= 32) {
5590 vpxor(xtmp, xtmp, xtmp, AVX_256bit);
5591 } else {
5592 pxor(xtmp, xtmp);
5593 }
5594 jmp(L_zero_64_bytes);
5595
5596 BIND(L_loop);
5597 if (MaxVectorSize >= 32) {
5598 fill64(base, 0, xtmp, use64byteVector);
5599 } else {
5600 movdqu(Address(base, 0), xtmp);
5601 movdqu(Address(base, 16), xtmp);
5602 movdqu(Address(base, 32), xtmp);
5603 movdqu(Address(base, 48), xtmp);
5604 }
5605 addptr(base, 64);
5606
5607 BIND(L_zero_64_bytes);
5608 subptr(cnt, 8);
5609 jccb(Assembler::greaterEqual, L_loop);
5610
5611 // Copy trailing 64 bytes
5612 if (use64byteVector) {
5613 addptr(cnt, 8);
5614 jccb(Assembler::equal, L_end);
5615 fill64_masked(3, base, 0, xtmp, mask, cnt, rtmp, true);
5616 jmp(L_end);
5617 } else {
5618 addptr(cnt, 4);
5619 jccb(Assembler::less, L_tail);
5620 if (MaxVectorSize >= 32) {
5621 vmovdqu(Address(base, 0), xtmp);
5622 } else {
5623 movdqu(Address(base, 0), xtmp);
5624 movdqu(Address(base, 16), xtmp);
5625 }
5626 }
5627 addptr(base, 32);
5628 subptr(cnt, 4);
5629
5630 BIND(L_tail);
5631 addptr(cnt, 4);
5632 jccb(Assembler::lessEqual, L_end);
5633 if (UseAVX > 2 && MaxVectorSize >= 32 && VM_Version::supports_avx512vl()) {
5634 fill32_masked(3, base, 0, xtmp, mask, cnt, rtmp);
5635 } else {
5636 decrement(cnt);
5637
5638 BIND(L_sloop);
5639 movq(Address(base, 0), xtmp);
5640 addptr(base, 8);
5641 decrement(cnt);
5642 jccb(Assembler::greaterEqual, L_sloop);
5643 }
5644 BIND(L_end);
5645 }
5646
5647 // Clearing constant sized memory using YMM/ZMM registers.
5648 void MacroAssembler::clear_mem(Register base, int cnt, Register rtmp, XMMRegister xtmp, KRegister mask) {
5649 assert(UseAVX > 2 && VM_Version::supports_avx512vl(), "");
5650 bool use64byteVector = (MaxVectorSize > 32) && (VM_Version::avx3_threshold() == 0);
5651
5652 int vector64_count = (cnt & (~0x7)) >> 3;
5653 cnt = cnt & 0x7;
5654 const int fill64_per_loop = 4;
5655 const int max_unrolled_fill64 = 8;
5656
5657 // 64 byte initialization loop.
5658 vpxor(xtmp, xtmp, xtmp, use64byteVector ? AVX_512bit : AVX_256bit);
5659 int start64 = 0;
5660 if (vector64_count > max_unrolled_fill64) {
5661 Label LOOP;
5662 Register index = rtmp;
5663
5664 start64 = vector64_count - (vector64_count % fill64_per_loop);
5665
5666 movl(index, 0);
5667 BIND(LOOP);
5668 for (int i = 0; i < fill64_per_loop; i++) {
5669 fill64(Address(base, index, Address::times_1, i * 64), xtmp, use64byteVector);
5670 }
5671 addl(index, fill64_per_loop * 64);
5672 cmpl(index, start64 * 64);
5673 jccb(Assembler::less, LOOP);
5674 }
5675 for (int i = start64; i < vector64_count; i++) {
5676 fill64(base, i * 64, xtmp, use64byteVector);
5677 }
5678
5679 // Clear remaining 64 byte tail.
5680 int disp = vector64_count * 64;
5681 if (cnt) {
5682 switch (cnt) {
5683 case 1:
5684 movq(Address(base, disp), xtmp);
5685 break;
5686 case 2:
5687 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_128bit);
5688 break;
5689 case 3:
5690 movl(rtmp, 0x7);
5691 kmovwl(mask, rtmp);
5692 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_256bit);
5693 break;
5694 case 4:
5695 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit);
5696 break;
5697 case 5:
5698 if (use64byteVector) {
5699 movl(rtmp, 0x1F);
5700 kmovwl(mask, rtmp);
5701 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit);
5702 } else {
5703 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit);
5704 movq(Address(base, disp + 32), xtmp);
5705 }
5706 break;
5707 case 6:
5708 if (use64byteVector) {
5709 movl(rtmp, 0x3F);
5710 kmovwl(mask, rtmp);
5711 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit);
5712 } else {
5713 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit);
5714 evmovdqu(T_LONG, k0, Address(base, disp + 32), xtmp, false, Assembler::AVX_128bit);
5715 }
5716 break;
5717 case 7:
5718 if (use64byteVector) {
5719 movl(rtmp, 0x7F);
5720 kmovwl(mask, rtmp);
5721 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit);
5722 } else {
5723 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit);
5724 movl(rtmp, 0x7);
5725 kmovwl(mask, rtmp);
5726 evmovdqu(T_LONG, mask, Address(base, disp + 32), xtmp, true, Assembler::AVX_256bit);
5727 }
5728 break;
5729 default:
5730 fatal("Unexpected length : %d\n",cnt);
5731 break;
5732 }
5733 }
5734 }
5735
5736 void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp, XMMRegister xtmp,
5737 bool is_large, KRegister mask) {
5738 // cnt - number of qwords (8-byte words).
5739 // base - start address, qword aligned.
5740 // is_large - if optimizers know cnt is larger than InitArrayShortSize
5741 assert(base==rdi, "base register must be edi for rep stos");
5742 assert(tmp==rax, "tmp register must be eax for rep stos");
5743 assert(cnt==rcx, "cnt register must be ecx for rep stos");
5744 assert(InitArrayShortSize % BytesPerLong == 0,
5745 "InitArrayShortSize should be the multiple of BytesPerLong");
5746
5747 Label DONE;
5748 if (!is_large || !UseXMMForObjInit) {
5749 xorptr(tmp, tmp);
5750 }
5751
5752 if (!is_large) {
5753 Label LOOP, LONG;
5754 cmpptr(cnt, InitArrayShortSize/BytesPerLong);
5755 jccb(Assembler::greater, LONG);
5756
5757 decrement(cnt);
5758 jccb(Assembler::negative, DONE); // Zero length
5759
5760 // Use individual pointer-sized stores for small counts:
5761 BIND(LOOP);
5762 movptr(Address(base, cnt, Address::times_ptr), tmp);
5763 decrement(cnt);
5764 jccb(Assembler::greaterEqual, LOOP);
5765 jmpb(DONE);
5766
5767 BIND(LONG);
5768 }
5769
5770 // Use longer rep-prefixed ops for non-small counts:
5771 if (UseFastStosb) {
5772 shlptr(cnt, 3); // convert to number of bytes
5773 rep_stosb();
5774 } else if (UseXMMForObjInit) {
5775 xmm_clear_mem(base, cnt, tmp, xtmp, mask);
5776 } else {
5777 rep_stos();
5778 }
5779
5780 BIND(DONE);
5781 }
5782
5783 #endif //COMPILER2_OR_JVMCI
5784
5785
5786 void MacroAssembler::generate_fill(BasicType t, bool aligned,
5787 Register to, Register value, Register count,
5788 Register rtmp, XMMRegister xtmp) {
5789 ShortBranchVerifier sbv(this);
5790 assert_different_registers(to, value, count, rtmp);
5791 Label L_exit;
5792 Label L_fill_2_bytes, L_fill_4_bytes;
5793
5794 #if defined(COMPILER2)
5795 if(MaxVectorSize >=32 &&
5796 VM_Version::supports_avx512vlbw() &&
5797 VM_Version::supports_bmi2()) {
5798 generate_fill_avx3(t, to, value, count, rtmp, xtmp);
5799 return;
5800 }
5801 #endif
5802
5803 int shift = -1;
5804 switch (t) {
5805 case T_BYTE:
5806 shift = 2;
5807 break;
5808 case T_SHORT:
5809 shift = 1;
5810 break;
5811 case T_INT:
5812 shift = 0;
5813 break;
5814 default: ShouldNotReachHere();
5815 }
5816
5817 if (t == T_BYTE) {
5818 andl(value, 0xff);
5819 movl(rtmp, value);
5820 shll(rtmp, 8);
5821 orl(value, rtmp);
5822 }
5823 if (t == T_SHORT) {
5824 andl(value, 0xffff);
5825 }
5826 if (t == T_BYTE || t == T_SHORT) {
5827 movl(rtmp, value);
5828 shll(rtmp, 16);
5829 orl(value, rtmp);
5830 }
5831
5832 cmpptr(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
5833 jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
5834 if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
5835 Label L_skip_align2;
5836 // align source address at 4 bytes address boundary
5837 if (t == T_BYTE) {
5838 Label L_skip_align1;
5839 // One byte misalignment happens only for byte arrays
5840 testptr(to, 1);
5841 jccb(Assembler::zero, L_skip_align1);
5842 movb(Address(to, 0), value);
5843 increment(to);
5844 decrement(count);
5845 BIND(L_skip_align1);
5846 }
5847 // Two bytes misalignment happens only for byte and short (char) arrays
5848 testptr(to, 2);
5849 jccb(Assembler::zero, L_skip_align2);
5850 movw(Address(to, 0), value);
5851 addptr(to, 2);
5852 subptr(count, 1<<(shift-1));
5853 BIND(L_skip_align2);
5854 }
5855 {
5856 Label L_fill_32_bytes;
5857 if (!UseUnalignedLoadStores) {
5858 // align to 8 bytes, we know we are 4 byte aligned to start
5859 testptr(to, 4);
5860 jccb(Assembler::zero, L_fill_32_bytes);
5861 movl(Address(to, 0), value);
5862 addptr(to, 4);
5863 subptr(count, 1<<shift);
5864 }
5865 BIND(L_fill_32_bytes);
5866 {
5867 Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
5868 movdl(xtmp, value);
5869 if (UseAVX >= 2 && UseUnalignedLoadStores) {
5870 Label L_check_fill_32_bytes;
5871 if (UseAVX > 2) {
5872 // Fill 64-byte chunks
5873 Label L_fill_64_bytes_loop_avx3, L_check_fill_64_bytes_avx2;
5874
5875 // If number of bytes to fill < VM_Version::avx3_threshold(), perform fill using AVX2
5876 cmpptr(count, VM_Version::avx3_threshold());
5877 jccb(Assembler::below, L_check_fill_64_bytes_avx2);
5878
5879 vpbroadcastd(xtmp, xtmp, Assembler::AVX_512bit);
5880
5881 subptr(count, 16 << shift);
5882 jccb(Assembler::less, L_check_fill_32_bytes);
5883 align(16);
5884
5885 BIND(L_fill_64_bytes_loop_avx3);
5886 evmovdqul(Address(to, 0), xtmp, Assembler::AVX_512bit);
5887 addptr(to, 64);
5888 subptr(count, 16 << shift);
5889 jcc(Assembler::greaterEqual, L_fill_64_bytes_loop_avx3);
5890 jmpb(L_check_fill_32_bytes);
5891
5892 BIND(L_check_fill_64_bytes_avx2);
5893 }
5894 // Fill 64-byte chunks
5895 Label L_fill_64_bytes_loop;
5896 vpbroadcastd(xtmp, xtmp, Assembler::AVX_256bit);
5897
5898 subptr(count, 16 << shift);
5899 jcc(Assembler::less, L_check_fill_32_bytes);
5900 align(16);
5901
5902 BIND(L_fill_64_bytes_loop);
5903 vmovdqu(Address(to, 0), xtmp);
5904 vmovdqu(Address(to, 32), xtmp);
5905 addptr(to, 64);
5906 subptr(count, 16 << shift);
5907 jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
5908
5909 BIND(L_check_fill_32_bytes);
5910 addptr(count, 8 << shift);
5911 jccb(Assembler::less, L_check_fill_8_bytes);
5912 vmovdqu(Address(to, 0), xtmp);
5913 addptr(to, 32);
5914 subptr(count, 8 << shift);
5915
5916 BIND(L_check_fill_8_bytes);
5917 // clean upper bits of YMM registers
5918 movdl(xtmp, value);
5919 pshufd(xtmp, xtmp, 0);
5920 } else {
5921 // Fill 32-byte chunks
5922 pshufd(xtmp, xtmp, 0);
5923
5924 subptr(count, 8 << shift);
5925 jcc(Assembler::less, L_check_fill_8_bytes);
5926 align(16);
5927
5928 BIND(L_fill_32_bytes_loop);
5929
5930 if (UseUnalignedLoadStores) {
5931 movdqu(Address(to, 0), xtmp);
5932 movdqu(Address(to, 16), xtmp);
5933 } else {
5934 movq(Address(to, 0), xtmp);
5935 movq(Address(to, 8), xtmp);
5936 movq(Address(to, 16), xtmp);
5937 movq(Address(to, 24), xtmp);
5938 }
5939
5940 addptr(to, 32);
5941 subptr(count, 8 << shift);
5942 jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
5943
5944 BIND(L_check_fill_8_bytes);
5945 }
5946 addptr(count, 8 << shift);
5947 jccb(Assembler::zero, L_exit);
5948 jmpb(L_fill_8_bytes);
5949
5950 //
5951 // length is too short, just fill qwords
5952 //
5953 BIND(L_fill_8_bytes_loop);
5954 movq(Address(to, 0), xtmp);
5955 addptr(to, 8);
5956 BIND(L_fill_8_bytes);
5957 subptr(count, 1 << (shift + 1));
5958 jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
5959 }
5960 }
5961 // fill trailing 4 bytes
5962 BIND(L_fill_4_bytes);
5963 testl(count, 1<<shift);
5964 jccb(Assembler::zero, L_fill_2_bytes);
5965 movl(Address(to, 0), value);
5966 if (t == T_BYTE || t == T_SHORT) {
5967 Label L_fill_byte;
5968 addptr(to, 4);
5969 BIND(L_fill_2_bytes);
5970 // fill trailing 2 bytes
5971 testl(count, 1<<(shift-1));
5972 jccb(Assembler::zero, L_fill_byte);
5973 movw(Address(to, 0), value);
5974 if (t == T_BYTE) {
5975 addptr(to, 2);
5976 BIND(L_fill_byte);
5977 // fill trailing byte
5978 testl(count, 1);
5979 jccb(Assembler::zero, L_exit);
5980 movb(Address(to, 0), value);
5981 } else {
5982 BIND(L_fill_byte);
5983 }
5984 } else {
5985 BIND(L_fill_2_bytes);
5986 }
5987 BIND(L_exit);
5988 }
5989
5990 void MacroAssembler::evpbroadcast(BasicType type, XMMRegister dst, Register src, int vector_len) {
5991 switch(type) {
5992 case T_BYTE:
5993 case T_BOOLEAN:
5994 evpbroadcastb(dst, src, vector_len);
5995 break;
5996 case T_SHORT:
5997 case T_CHAR:
5998 evpbroadcastw(dst, src, vector_len);
5999 break;
6000 case T_INT:
6001 case T_FLOAT:
6002 evpbroadcastd(dst, src, vector_len);
6003 break;
6004 case T_LONG:
6005 case T_DOUBLE:
6006 evpbroadcastq(dst, src, vector_len);
6007 break;
6008 default:
6009 fatal("Unhandled type : %s", type2name(type));
6010 break;
6011 }
6012 }
6013
6014 // encode char[] to byte[] in ISO_8859_1 or ASCII
6015 //@IntrinsicCandidate
6016 //private static int implEncodeISOArray(byte[] sa, int sp,
6017 //byte[] da, int dp, int len) {
6018 // int i = 0;
6019 // for (; i < len; i++) {
6020 // char c = StringUTF16.getChar(sa, sp++);
6021 // if (c > '\u00FF')
6022 // break;
6023 // da[dp++] = (byte)c;
6024 // }
6025 // return i;
6026 //}
6027 //
6028 //@IntrinsicCandidate
6029 //private static int implEncodeAsciiArray(char[] sa, int sp,
6030 // byte[] da, int dp, int len) {
6031 // int i = 0;
6032 // for (; i < len; i++) {
6033 // char c = sa[sp++];
6034 // if (c >= '\u0080')
6035 // break;
6036 // da[dp++] = (byte)c;
6037 // }
6038 // return i;
6039 //}
6040 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len,
6041 XMMRegister tmp1Reg, XMMRegister tmp2Reg,
6042 XMMRegister tmp3Reg, XMMRegister tmp4Reg,
6043 Register tmp5, Register result, bool ascii) {
6044
6045 // rsi: src
6046 // rdi: dst
6047 // rdx: len
6048 // rcx: tmp5
6049 // rax: result
6050 ShortBranchVerifier sbv(this);
6051 assert_different_registers(src, dst, len, tmp5, result);
6052 Label L_done, L_copy_1_char, L_copy_1_char_exit;
6053
6054 int mask = ascii ? 0xff80ff80 : 0xff00ff00;
6055 int short_mask = ascii ? 0xff80 : 0xff00;
6056
6057 // set result
6058 xorl(result, result);
6059 // check for zero length
6060 testl(len, len);
6061 jcc(Assembler::zero, L_done);
6062
6063 movl(result, len);
6064
6065 // Setup pointers
6066 lea(src, Address(src, len, Address::times_2)); // char[]
6067 lea(dst, Address(dst, len, Address::times_1)); // byte[]
6068 negptr(len);
6069
6070 if (UseSSE42Intrinsics || UseAVX >= 2) {
6071 Label L_copy_8_chars, L_copy_8_chars_exit;
6072 Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit;
6073
6074 if (UseAVX >= 2) {
6075 Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit;
6076 movl(tmp5, mask); // create mask to test for Unicode or non-ASCII chars in vector
6077 movdl(tmp1Reg, tmp5);
6078 vpbroadcastd(tmp1Reg, tmp1Reg, Assembler::AVX_256bit);
6079 jmp(L_chars_32_check);
6080
6081 bind(L_copy_32_chars);
6082 vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64));
6083 vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32));
6084 vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
6085 vptest(tmp2Reg, tmp1Reg); // check for Unicode or non-ASCII chars in vector
6086 jccb(Assembler::notZero, L_copy_32_chars_exit);
6087 vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
6088 vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector_len */ 1);
6089 vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg);
6090
6091 bind(L_chars_32_check);
6092 addptr(len, 32);
6093 jcc(Assembler::lessEqual, L_copy_32_chars);
6094
6095 bind(L_copy_32_chars_exit);
6096 subptr(len, 16);
6097 jccb(Assembler::greater, L_copy_16_chars_exit);
6098
6099 } else if (UseSSE42Intrinsics) {
6100 movl(tmp5, mask); // create mask to test for Unicode or non-ASCII chars in vector
6101 movdl(tmp1Reg, tmp5);
6102 pshufd(tmp1Reg, tmp1Reg, 0);
6103 jmpb(L_chars_16_check);
6104 }
6105
6106 bind(L_copy_16_chars);
6107 if (UseAVX >= 2) {
6108 vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32));
6109 vptest(tmp2Reg, tmp1Reg);
6110 jcc(Assembler::notZero, L_copy_16_chars_exit);
6111 vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector_len */ 1);
6112 vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector_len */ 1);
6113 } else {
6114 if (UseAVX > 0) {
6115 movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
6116 movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
6117 vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 0);
6118 } else {
6119 movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
6120 por(tmp2Reg, tmp3Reg);
6121 movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
6122 por(tmp2Reg, tmp4Reg);
6123 }
6124 ptest(tmp2Reg, tmp1Reg); // check for Unicode or non-ASCII chars in vector
6125 jccb(Assembler::notZero, L_copy_16_chars_exit);
6126 packuswb(tmp3Reg, tmp4Reg);
6127 }
6128 movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg);
6129
6130 bind(L_chars_16_check);
6131 addptr(len, 16);
6132 jcc(Assembler::lessEqual, L_copy_16_chars);
6133
6134 bind(L_copy_16_chars_exit);
6135 if (UseAVX >= 2) {
6136 // clean upper bits of YMM registers
6137 vpxor(tmp2Reg, tmp2Reg);
6138 vpxor(tmp3Reg, tmp3Reg);
6139 vpxor(tmp4Reg, tmp4Reg);
6140 movdl(tmp1Reg, tmp5);
6141 pshufd(tmp1Reg, tmp1Reg, 0);
6142 }
6143 subptr(len, 8);
6144 jccb(Assembler::greater, L_copy_8_chars_exit);
6145
6146 bind(L_copy_8_chars);
6147 movdqu(tmp3Reg, Address(src, len, Address::times_2, -16));
6148 ptest(tmp3Reg, tmp1Reg);
6149 jccb(Assembler::notZero, L_copy_8_chars_exit);
6150 packuswb(tmp3Reg, tmp1Reg);
6151 movq(Address(dst, len, Address::times_1, -8), tmp3Reg);
6152 addptr(len, 8);
6153 jccb(Assembler::lessEqual, L_copy_8_chars);
6154
6155 bind(L_copy_8_chars_exit);
6156 subptr(len, 8);
6157 jccb(Assembler::zero, L_done);
6158 }
6159
6160 bind(L_copy_1_char);
6161 load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0));
6162 testl(tmp5, short_mask); // check if Unicode or non-ASCII char
6163 jccb(Assembler::notZero, L_copy_1_char_exit);
6164 movb(Address(dst, len, Address::times_1, 0), tmp5);
6165 addptr(len, 1);
6166 jccb(Assembler::less, L_copy_1_char);
6167
6168 bind(L_copy_1_char_exit);
6169 addptr(result, len); // len is negative count of not processed elements
6170
6171 bind(L_done);
6172 }
6173
6174 /**
6175 * Helper for multiply_to_len().
6176 */
6177 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
6178 addq(dest_lo, src1);
6179 adcq(dest_hi, 0);
6180 addq(dest_lo, src2);
6181 adcq(dest_hi, 0);
6182 }
6183
6184 /**
6185 * Multiply 64 bit by 64 bit first loop.
6186 */
6187 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
6188 Register y, Register y_idx, Register z,
6189 Register carry, Register product,
6190 Register idx, Register kdx) {
6191 //
6192 // jlong carry, x[], y[], z[];
6193 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
6194 // huge_128 product = y[idx] * x[xstart] + carry;
6195 // z[kdx] = (jlong)product;
6196 // carry = (jlong)(product >>> 64);
6197 // }
6198 // z[xstart] = carry;
6199 //
6200
6201 Label L_first_loop, L_first_loop_exit;
6202 Label L_one_x, L_one_y, L_multiply;
6203
6204 decrementl(xstart);
6205 jcc(Assembler::negative, L_one_x);
6206
6207 movq(x_xstart, Address(x, xstart, Address::times_4, 0));
6208 rorq(x_xstart, 32); // convert big-endian to little-endian
6209
6210 bind(L_first_loop);
6211 decrementl(idx);
6212 jcc(Assembler::negative, L_first_loop_exit);
6213 decrementl(idx);
6214 jcc(Assembler::negative, L_one_y);
6215 movq(y_idx, Address(y, idx, Address::times_4, 0));
6216 rorq(y_idx, 32); // convert big-endian to little-endian
6217 bind(L_multiply);
6218 movq(product, x_xstart);
6219 mulq(y_idx); // product(rax) * y_idx -> rdx:rax
6220 addq(product, carry);
6221 adcq(rdx, 0);
6222 subl(kdx, 2);
6223 movl(Address(z, kdx, Address::times_4, 4), product);
6224 shrq(product, 32);
6225 movl(Address(z, kdx, Address::times_4, 0), product);
6226 movq(carry, rdx);
6227 jmp(L_first_loop);
6228
6229 bind(L_one_y);
6230 movl(y_idx, Address(y, 0));
6231 jmp(L_multiply);
6232
6233 bind(L_one_x);
6234 movl(x_xstart, Address(x, 0));
6235 jmp(L_first_loop);
6236
6237 bind(L_first_loop_exit);
6238 }
6239
6240 /**
6241 * Multiply 64 bit by 64 bit and add 128 bit.
6242 */
6243 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z,
6244 Register yz_idx, Register idx,
6245 Register carry, Register product, int offset) {
6246 // huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
6247 // z[kdx] = (jlong)product;
6248
6249 movq(yz_idx, Address(y, idx, Address::times_4, offset));
6250 rorq(yz_idx, 32); // convert big-endian to little-endian
6251 movq(product, x_xstart);
6252 mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax)
6253 movq(yz_idx, Address(z, idx, Address::times_4, offset));
6254 rorq(yz_idx, 32); // convert big-endian to little-endian
6255
6256 add2_with_carry(rdx, product, carry, yz_idx);
6257
6258 movl(Address(z, idx, Address::times_4, offset+4), product);
6259 shrq(product, 32);
6260 movl(Address(z, idx, Address::times_4, offset), product);
6261
6262 }
6263
6264 /**
6265 * Multiply 128 bit by 128 bit. Unrolled inner loop.
6266 */
6267 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
6268 Register yz_idx, Register idx, Register jdx,
6269 Register carry, Register product,
6270 Register carry2) {
6271 // jlong carry, x[], y[], z[];
6272 // int kdx = ystart+1;
6273 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
6274 // huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
6275 // z[kdx+idx+1] = (jlong)product;
6276 // jlong carry2 = (jlong)(product >>> 64);
6277 // product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
6278 // z[kdx+idx] = (jlong)product;
6279 // carry = (jlong)(product >>> 64);
6280 // }
6281 // idx += 2;
6282 // if (idx > 0) {
6283 // product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
6284 // z[kdx+idx] = (jlong)product;
6285 // carry = (jlong)(product >>> 64);
6286 // }
6287 //
6288
6289 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
6290
6291 movl(jdx, idx);
6292 andl(jdx, 0xFFFFFFFC);
6293 shrl(jdx, 2);
6294
6295 bind(L_third_loop);
6296 subl(jdx, 1);
6297 jcc(Assembler::negative, L_third_loop_exit);
6298 subl(idx, 4);
6299
6300 multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8);
6301 movq(carry2, rdx);
6302
6303 multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0);
6304 movq(carry, rdx);
6305 jmp(L_third_loop);
6306
6307 bind (L_third_loop_exit);
6308
6309 andl (idx, 0x3);
6310 jcc(Assembler::zero, L_post_third_loop_done);
6311
6312 Label L_check_1;
6313 subl(idx, 2);
6314 jcc(Assembler::negative, L_check_1);
6315
6316 multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0);
6317 movq(carry, rdx);
6318
6319 bind (L_check_1);
6320 addl (idx, 0x2);
6321 andl (idx, 0x1);
6322 subl(idx, 1);
6323 jcc(Assembler::negative, L_post_third_loop_done);
6324
6325 movl(yz_idx, Address(y, idx, Address::times_4, 0));
6326 movq(product, x_xstart);
6327 mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax)
6328 movl(yz_idx, Address(z, idx, Address::times_4, 0));
6329
6330 add2_with_carry(rdx, product, yz_idx, carry);
6331
6332 movl(Address(z, idx, Address::times_4, 0), product);
6333 shrq(product, 32);
6334
6335 shlq(rdx, 32);
6336 orq(product, rdx);
6337 movq(carry, product);
6338
6339 bind(L_post_third_loop_done);
6340 }
6341
6342 /**
6343 * Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop.
6344 *
6345 */
6346 void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z,
6347 Register carry, Register carry2,
6348 Register idx, Register jdx,
6349 Register yz_idx1, Register yz_idx2,
6350 Register tmp, Register tmp3, Register tmp4) {
6351 assert(UseBMI2Instructions, "should be used only when BMI2 is available");
6352
6353 // jlong carry, x[], y[], z[];
6354 // int kdx = ystart+1;
6355 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
6356 // huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry;
6357 // jlong carry2 = (jlong)(tmp3 >>> 64);
6358 // huge_128 tmp4 = (y[idx] * rdx) + z[kdx+idx] + carry2;
6359 // carry = (jlong)(tmp4 >>> 64);
6360 // z[kdx+idx+1] = (jlong)tmp3;
6361 // z[kdx+idx] = (jlong)tmp4;
6362 // }
6363 // idx += 2;
6364 // if (idx > 0) {
6365 // yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry;
6366 // z[kdx+idx] = (jlong)yz_idx1;
6367 // carry = (jlong)(yz_idx1 >>> 64);
6368 // }
6369 //
6370
6371 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
6372
6373 movl(jdx, idx);
6374 andl(jdx, 0xFFFFFFFC);
6375 shrl(jdx, 2);
6376
6377 bind(L_third_loop);
6378 subl(jdx, 1);
6379 jcc(Assembler::negative, L_third_loop_exit);
6380 subl(idx, 4);
6381
6382 movq(yz_idx1, Address(y, idx, Address::times_4, 8));
6383 rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
6384 movq(yz_idx2, Address(y, idx, Address::times_4, 0));
6385 rorxq(yz_idx2, yz_idx2, 32);
6386
6387 mulxq(tmp4, tmp3, yz_idx1); // yz_idx1 * rdx -> tmp4:tmp3
6388 mulxq(carry2, tmp, yz_idx2); // yz_idx2 * rdx -> carry2:tmp
6389
6390 movq(yz_idx1, Address(z, idx, Address::times_4, 8));
6391 rorxq(yz_idx1, yz_idx1, 32);
6392 movq(yz_idx2, Address(z, idx, Address::times_4, 0));
6393 rorxq(yz_idx2, yz_idx2, 32);
6394
6395 if (VM_Version::supports_adx()) {
6396 adcxq(tmp3, carry);
6397 adoxq(tmp3, yz_idx1);
6398
6399 adcxq(tmp4, tmp);
6400 adoxq(tmp4, yz_idx2);
6401
6402 movl(carry, 0); // does not affect flags
6403 adcxq(carry2, carry);
6404 adoxq(carry2, carry);
6405 } else {
6406 add2_with_carry(tmp4, tmp3, carry, yz_idx1);
6407 add2_with_carry(carry2, tmp4, tmp, yz_idx2);
6408 }
6409 movq(carry, carry2);
6410
6411 movl(Address(z, idx, Address::times_4, 12), tmp3);
6412 shrq(tmp3, 32);
6413 movl(Address(z, idx, Address::times_4, 8), tmp3);
6414
6415 movl(Address(z, idx, Address::times_4, 4), tmp4);
6416 shrq(tmp4, 32);
6417 movl(Address(z, idx, Address::times_4, 0), tmp4);
6418
6419 jmp(L_third_loop);
6420
6421 bind (L_third_loop_exit);
6422
6423 andl (idx, 0x3);
6424 jcc(Assembler::zero, L_post_third_loop_done);
6425
6426 Label L_check_1;
6427 subl(idx, 2);
6428 jcc(Assembler::negative, L_check_1);
6429
6430 movq(yz_idx1, Address(y, idx, Address::times_4, 0));
6431 rorxq(yz_idx1, yz_idx1, 32);
6432 mulxq(tmp4, tmp3, yz_idx1); // yz_idx1 * rdx -> tmp4:tmp3
6433 movq(yz_idx2, Address(z, idx, Address::times_4, 0));
6434 rorxq(yz_idx2, yz_idx2, 32);
6435
6436 add2_with_carry(tmp4, tmp3, carry, yz_idx2);
6437
6438 movl(Address(z, idx, Address::times_4, 4), tmp3);
6439 shrq(tmp3, 32);
6440 movl(Address(z, idx, Address::times_4, 0), tmp3);
6441 movq(carry, tmp4);
6442
6443 bind (L_check_1);
6444 addl (idx, 0x2);
6445 andl (idx, 0x1);
6446 subl(idx, 1);
6447 jcc(Assembler::negative, L_post_third_loop_done);
6448 movl(tmp4, Address(y, idx, Address::times_4, 0));
6449 mulxq(carry2, tmp3, tmp4); // tmp4 * rdx -> carry2:tmp3
6450 movl(tmp4, Address(z, idx, Address::times_4, 0));
6451
6452 add2_with_carry(carry2, tmp3, tmp4, carry);
6453
6454 movl(Address(z, idx, Address::times_4, 0), tmp3);
6455 shrq(tmp3, 32);
6456
6457 shlq(carry2, 32);
6458 orq(tmp3, carry2);
6459 movq(carry, tmp3);
6460
6461 bind(L_post_third_loop_done);
6462 }
6463
6464 /**
6465 * Code for BigInteger::multiplyToLen() intrinsic.
6466 *
6467 * rdi: x
6468 * rax: xlen
6469 * rsi: y
6470 * rcx: ylen
6471 * r8: z
6472 * r11: tmp0
6473 * r12: tmp1
6474 * r13: tmp2
6475 * r14: tmp3
6476 * r15: tmp4
6477 * rbx: tmp5
6478 *
6479 */
6480 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register tmp0,
6481 Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) {
6482 ShortBranchVerifier sbv(this);
6483 assert_different_registers(x, xlen, y, ylen, z, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, rdx);
6484
6485 push(tmp0);
6486 push(tmp1);
6487 push(tmp2);
6488 push(tmp3);
6489 push(tmp4);
6490 push(tmp5);
6491
6492 push(xlen);
6493
6494 const Register idx = tmp1;
6495 const Register kdx = tmp2;
6496 const Register xstart = tmp3;
6497
6498 const Register y_idx = tmp4;
6499 const Register carry = tmp5;
6500 const Register product = xlen;
6501 const Register x_xstart = tmp0;
6502
6503 // First Loop.
6504 //
6505 // final static long LONG_MASK = 0xffffffffL;
6506 // int xstart = xlen - 1;
6507 // int ystart = ylen - 1;
6508 // long carry = 0;
6509 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
6510 // long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
6511 // z[kdx] = (int)product;
6512 // carry = product >>> 32;
6513 // }
6514 // z[xstart] = (int)carry;
6515 //
6516
6517 movl(idx, ylen); // idx = ylen;
6518 lea(kdx, Address(xlen, ylen)); // kdx = xlen+ylen;
6519 xorq(carry, carry); // carry = 0;
6520
6521 Label L_done;
6522
6523 movl(xstart, xlen);
6524 decrementl(xstart);
6525 jcc(Assembler::negative, L_done);
6526
6527 multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
6528
6529 Label L_second_loop;
6530 testl(kdx, kdx);
6531 jcc(Assembler::zero, L_second_loop);
6532
6533 Label L_carry;
6534 subl(kdx, 1);
6535 jcc(Assembler::zero, L_carry);
6536
6537 movl(Address(z, kdx, Address::times_4, 0), carry);
6538 shrq(carry, 32);
6539 subl(kdx, 1);
6540
6541 bind(L_carry);
6542 movl(Address(z, kdx, Address::times_4, 0), carry);
6543
6544 // Second and third (nested) loops.
6545 //
6546 // for (int i = xstart-1; i >= 0; i--) { // Second loop
6547 // carry = 0;
6548 // for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
6549 // long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
6550 // (z[k] & LONG_MASK) + carry;
6551 // z[k] = (int)product;
6552 // carry = product >>> 32;
6553 // }
6554 // z[i] = (int)carry;
6555 // }
6556 //
6557 // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
6558
6559 const Register jdx = tmp1;
6560
6561 bind(L_second_loop);
6562 xorl(carry, carry); // carry = 0;
6563 movl(jdx, ylen); // j = ystart+1
6564
6565 subl(xstart, 1); // i = xstart-1;
6566 jcc(Assembler::negative, L_done);
6567
6568 push (z);
6569
6570 Label L_last_x;
6571 lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j
6572 subl(xstart, 1); // i = xstart-1;
6573 jcc(Assembler::negative, L_last_x);
6574
6575 if (UseBMI2Instructions) {
6576 movq(rdx, Address(x, xstart, Address::times_4, 0));
6577 rorxq(rdx, rdx, 32); // convert big-endian to little-endian
6578 } else {
6579 movq(x_xstart, Address(x, xstart, Address::times_4, 0));
6580 rorq(x_xstart, 32); // convert big-endian to little-endian
6581 }
6582
6583 Label L_third_loop_prologue;
6584 bind(L_third_loop_prologue);
6585
6586 push (x);
6587 push (xstart);
6588 push (ylen);
6589
6590
6591 if (UseBMI2Instructions) {
6592 multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4);
6593 } else { // !UseBMI2Instructions
6594 multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x);
6595 }
6596
6597 pop(ylen);
6598 pop(xlen);
6599 pop(x);
6600 pop(z);
6601
6602 movl(tmp3, xlen);
6603 addl(tmp3, 1);
6604 movl(Address(z, tmp3, Address::times_4, 0), carry);
6605 subl(tmp3, 1);
6606 jccb(Assembler::negative, L_done);
6607
6608 shrq(carry, 32);
6609 movl(Address(z, tmp3, Address::times_4, 0), carry);
6610 jmp(L_second_loop);
6611
6612 // Next infrequent code is moved outside loops.
6613 bind(L_last_x);
6614 if (UseBMI2Instructions) {
6615 movl(rdx, Address(x, 0));
6616 } else {
6617 movl(x_xstart, Address(x, 0));
6618 }
6619 jmp(L_third_loop_prologue);
6620
6621 bind(L_done);
6622
6623 pop(xlen);
6624
6625 pop(tmp5);
6626 pop(tmp4);
6627 pop(tmp3);
6628 pop(tmp2);
6629 pop(tmp1);
6630 pop(tmp0);
6631 }
6632
6633 void MacroAssembler::vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
6634 Register result, Register tmp1, Register tmp2, XMMRegister rymm0, XMMRegister rymm1, XMMRegister rymm2){
6635 assert(UseSSE42Intrinsics, "SSE4.2 must be enabled.");
6636 Label VECTOR16_LOOP, VECTOR8_LOOP, VECTOR4_LOOP;
6637 Label VECTOR8_TAIL, VECTOR4_TAIL;
6638 Label VECTOR32_NOT_EQUAL, VECTOR16_NOT_EQUAL, VECTOR8_NOT_EQUAL, VECTOR4_NOT_EQUAL;
6639 Label SAME_TILL_END, DONE;
6640 Label BYTES_LOOP, BYTES_TAIL, BYTES_NOT_EQUAL;
6641
6642 //scale is in rcx in both Win64 and Unix
6643 ShortBranchVerifier sbv(this);
6644
6645 shlq(length);
6646 xorq(result, result);
6647
6648 if ((AVX3Threshold == 0) && (UseAVX > 2) &&
6649 VM_Version::supports_avx512vlbw()) {
6650 Label VECTOR64_LOOP, VECTOR64_NOT_EQUAL, VECTOR32_TAIL;
6651
6652 cmpq(length, 64);
6653 jcc(Assembler::less, VECTOR32_TAIL);
6654
6655 movq(tmp1, length);
6656 andq(tmp1, 0x3F); // tail count
6657 andq(length, ~(0x3F)); //vector count
6658
6659 bind(VECTOR64_LOOP);
6660 // AVX512 code to compare 64 byte vectors.
6661 evmovdqub(rymm0, Address(obja, result), Assembler::AVX_512bit);
6662 evpcmpeqb(k7, rymm0, Address(objb, result), Assembler::AVX_512bit);
6663 kortestql(k7, k7);
6664 jcc(Assembler::aboveEqual, VECTOR64_NOT_EQUAL); // mismatch
6665 addq(result, 64);
6666 subq(length, 64);
6667 jccb(Assembler::notZero, VECTOR64_LOOP);
6668
6669 //bind(VECTOR64_TAIL);
6670 testq(tmp1, tmp1);
6671 jcc(Assembler::zero, SAME_TILL_END);
6672
6673 //bind(VECTOR64_TAIL);
6674 // AVX512 code to compare up to 63 byte vectors.
6675 mov64(tmp2, 0xFFFFFFFFFFFFFFFF);
6676 shlxq(tmp2, tmp2, tmp1);
6677 notq(tmp2);
6678 kmovql(k3, tmp2);
6679
6680 evmovdqub(rymm0, k3, Address(obja, result), false, Assembler::AVX_512bit);
6681 evpcmpeqb(k7, k3, rymm0, Address(objb, result), Assembler::AVX_512bit);
6682
6683 ktestql(k7, k3);
6684 jcc(Assembler::below, SAME_TILL_END); // not mismatch
6685
6686 bind(VECTOR64_NOT_EQUAL);
6687 kmovql(tmp1, k7);
6688 notq(tmp1);
6689 tzcntq(tmp1, tmp1);
6690 addq(result, tmp1);
6691 shrq(result);
6692 jmp(DONE);
6693 bind(VECTOR32_TAIL);
6694 }
6695
6696 cmpq(length, 8);
6697 jcc(Assembler::equal, VECTOR8_LOOP);
6698 jcc(Assembler::less, VECTOR4_TAIL);
6699
6700 if (UseAVX >= 2) {
6701 Label VECTOR16_TAIL, VECTOR32_LOOP;
6702
6703 cmpq(length, 16);
6704 jcc(Assembler::equal, VECTOR16_LOOP);
6705 jcc(Assembler::less, VECTOR8_LOOP);
6706
6707 cmpq(length, 32);
6708 jccb(Assembler::less, VECTOR16_TAIL);
6709
6710 subq(length, 32);
6711 bind(VECTOR32_LOOP);
6712 vmovdqu(rymm0, Address(obja, result));
6713 vmovdqu(rymm1, Address(objb, result));
6714 vpxor(rymm2, rymm0, rymm1, Assembler::AVX_256bit);
6715 vptest(rymm2, rymm2);
6716 jcc(Assembler::notZero, VECTOR32_NOT_EQUAL);//mismatch found
6717 addq(result, 32);
6718 subq(length, 32);
6719 jcc(Assembler::greaterEqual, VECTOR32_LOOP);
6720 addq(length, 32);
6721 jcc(Assembler::equal, SAME_TILL_END);
6722 //falling through if less than 32 bytes left //close the branch here.
6723
6724 bind(VECTOR16_TAIL);
6725 cmpq(length, 16);
6726 jccb(Assembler::less, VECTOR8_TAIL);
6727 bind(VECTOR16_LOOP);
6728 movdqu(rymm0, Address(obja, result));
6729 movdqu(rymm1, Address(objb, result));
6730 vpxor(rymm2, rymm0, rymm1, Assembler::AVX_128bit);
6731 ptest(rymm2, rymm2);
6732 jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
6733 addq(result, 16);
6734 subq(length, 16);
6735 jcc(Assembler::equal, SAME_TILL_END);
6736 //falling through if less than 16 bytes left
6737 } else {//regular intrinsics
6738
6739 cmpq(length, 16);
6740 jccb(Assembler::less, VECTOR8_TAIL);
6741
6742 subq(length, 16);
6743 bind(VECTOR16_LOOP);
6744 movdqu(rymm0, Address(obja, result));
6745 movdqu(rymm1, Address(objb, result));
6746 pxor(rymm0, rymm1);
6747 ptest(rymm0, rymm0);
6748 jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
6749 addq(result, 16);
6750 subq(length, 16);
6751 jccb(Assembler::greaterEqual, VECTOR16_LOOP);
6752 addq(length, 16);
6753 jcc(Assembler::equal, SAME_TILL_END);
6754 //falling through if less than 16 bytes left
6755 }
6756
6757 bind(VECTOR8_TAIL);
6758 cmpq(length, 8);
6759 jccb(Assembler::less, VECTOR4_TAIL);
6760 bind(VECTOR8_LOOP);
6761 movq(tmp1, Address(obja, result));
6762 movq(tmp2, Address(objb, result));
6763 xorq(tmp1, tmp2);
6764 testq(tmp1, tmp1);
6765 jcc(Assembler::notZero, VECTOR8_NOT_EQUAL);//mismatch found
6766 addq(result, 8);
6767 subq(length, 8);
6768 jcc(Assembler::equal, SAME_TILL_END);
6769 //falling through if less than 8 bytes left
6770
6771 bind(VECTOR4_TAIL);
6772 cmpq(length, 4);
6773 jccb(Assembler::less, BYTES_TAIL);
6774 bind(VECTOR4_LOOP);
6775 movl(tmp1, Address(obja, result));
6776 xorl(tmp1, Address(objb, result));
6777 testl(tmp1, tmp1);
6778 jcc(Assembler::notZero, VECTOR4_NOT_EQUAL);//mismatch found
6779 addq(result, 4);
6780 subq(length, 4);
6781 jcc(Assembler::equal, SAME_TILL_END);
6782 //falling through if less than 4 bytes left
6783
6784 bind(BYTES_TAIL);
6785 bind(BYTES_LOOP);
6786 load_unsigned_byte(tmp1, Address(obja, result));
6787 load_unsigned_byte(tmp2, Address(objb, result));
6788 xorl(tmp1, tmp2);
6789 testl(tmp1, tmp1);
6790 jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
6791 decq(length);
6792 jcc(Assembler::zero, SAME_TILL_END);
6793 incq(result);
6794 load_unsigned_byte(tmp1, Address(obja, result));
6795 load_unsigned_byte(tmp2, Address(objb, result));
6796 xorl(tmp1, tmp2);
6797 testl(tmp1, tmp1);
6798 jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
6799 decq(length);
6800 jcc(Assembler::zero, SAME_TILL_END);
6801 incq(result);
6802 load_unsigned_byte(tmp1, Address(obja, result));
6803 load_unsigned_byte(tmp2, Address(objb, result));
6804 xorl(tmp1, tmp2);
6805 testl(tmp1, tmp1);
6806 jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
6807 jmp(SAME_TILL_END);
6808
6809 if (UseAVX >= 2) {
6810 bind(VECTOR32_NOT_EQUAL);
6811 vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_256bit);
6812 vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_256bit);
6813 vpxor(rymm0, rymm0, rymm2, Assembler::AVX_256bit);
6814 vpmovmskb(tmp1, rymm0);
6815 bsfq(tmp1, tmp1);
6816 addq(result, tmp1);
6817 shrq(result);
6818 jmp(DONE);
6819 }
6820
6821 bind(VECTOR16_NOT_EQUAL);
6822 if (UseAVX >= 2) {
6823 vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_128bit);
6824 vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_128bit);
6825 pxor(rymm0, rymm2);
6826 } else {
6827 pcmpeqb(rymm2, rymm2);
6828 pxor(rymm0, rymm1);
6829 pcmpeqb(rymm0, rymm1);
6830 pxor(rymm0, rymm2);
6831 }
6832 pmovmskb(tmp1, rymm0);
6833 bsfq(tmp1, tmp1);
6834 addq(result, tmp1);
6835 shrq(result);
6836 jmpb(DONE);
6837
6838 bind(VECTOR8_NOT_EQUAL);
6839 bind(VECTOR4_NOT_EQUAL);
6840 bsfq(tmp1, tmp1);
6841 shrq(tmp1, 3);
6842 addq(result, tmp1);
6843 bind(BYTES_NOT_EQUAL);
6844 shrq(result);
6845 jmpb(DONE);
6846
6847 bind(SAME_TILL_END);
6848 mov64(result, -1);
6849
6850 bind(DONE);
6851 }
6852
6853 //Helper functions for square_to_len()
6854
6855 /**
6856 * Store the squares of x[], right shifted one bit (divided by 2) into z[]
6857 * Preserves x and z and modifies rest of the registers.
6858 */
6859 void MacroAssembler::square_rshift(Register x, Register xlen, Register z, Register tmp1, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
6860 // Perform square and right shift by 1
6861 // Handle odd xlen case first, then for even xlen do the following
6862 // jlong carry = 0;
6863 // for (int j=0, i=0; j < xlen; j+=2, i+=4) {
6864 // huge_128 product = x[j:j+1] * x[j:j+1];
6865 // z[i:i+1] = (carry << 63) | (jlong)(product >>> 65);
6866 // z[i+2:i+3] = (jlong)(product >>> 1);
6867 // carry = (jlong)product;
6868 // }
6869
6870 xorq(tmp5, tmp5); // carry
6871 xorq(rdxReg, rdxReg);
6872 xorl(tmp1, tmp1); // index for x
6873 xorl(tmp4, tmp4); // index for z
6874
6875 Label L_first_loop, L_first_loop_exit;
6876
6877 testl(xlen, 1);
6878 jccb(Assembler::zero, L_first_loop); //jump if xlen is even
6879
6880 // Square and right shift by 1 the odd element using 32 bit multiply
6881 movl(raxReg, Address(x, tmp1, Address::times_4, 0));
6882 imulq(raxReg, raxReg);
6883 shrq(raxReg, 1);
6884 adcq(tmp5, 0);
6885 movq(Address(z, tmp4, Address::times_4, 0), raxReg);
6886 incrementl(tmp1);
6887 addl(tmp4, 2);
6888
6889 // Square and right shift by 1 the rest using 64 bit multiply
6890 bind(L_first_loop);
6891 cmpptr(tmp1, xlen);
6892 jccb(Assembler::equal, L_first_loop_exit);
6893
6894 // Square
6895 movq(raxReg, Address(x, tmp1, Address::times_4, 0));
6896 rorq(raxReg, 32); // convert big-endian to little-endian
6897 mulq(raxReg); // 64-bit multiply rax * rax -> rdx:rax
6898
6899 // Right shift by 1 and save carry
6900 shrq(tmp5, 1); // rdx:rax:tmp5 = (tmp5:rdx:rax) >>> 1
6901 rcrq(rdxReg, 1);
6902 rcrq(raxReg, 1);
6903 adcq(tmp5, 0);
6904
6905 // Store result in z
6906 movq(Address(z, tmp4, Address::times_4, 0), rdxReg);
6907 movq(Address(z, tmp4, Address::times_4, 8), raxReg);
6908
6909 // Update indices for x and z
6910 addl(tmp1, 2);
6911 addl(tmp4, 4);
6912 jmp(L_first_loop);
6913
6914 bind(L_first_loop_exit);
6915 }
6916
6917
6918 /**
6919 * Perform the following multiply add operation using BMI2 instructions
6920 * carry:sum = sum + op1*op2 + carry
6921 * op2 should be in rdx
6922 * op2 is preserved, all other registers are modified
6923 */
6924 void MacroAssembler::multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry, Register tmp2) {
6925 // assert op2 is rdx
6926 mulxq(tmp2, op1, op1); // op1 * op2 -> tmp2:op1
6927 addq(sum, carry);
6928 adcq(tmp2, 0);
6929 addq(sum, op1);
6930 adcq(tmp2, 0);
6931 movq(carry, tmp2);
6932 }
6933
6934 /**
6935 * Perform the following multiply add operation:
6936 * carry:sum = sum + op1*op2 + carry
6937 * Preserves op1, op2 and modifies rest of registers
6938 */
6939 void MacroAssembler::multiply_add_64(Register sum, Register op1, Register op2, Register carry, Register rdxReg, Register raxReg) {
6940 // rdx:rax = op1 * op2
6941 movq(raxReg, op2);
6942 mulq(op1);
6943
6944 // rdx:rax = sum + carry + rdx:rax
6945 addq(sum, carry);
6946 adcq(rdxReg, 0);
6947 addq(sum, raxReg);
6948 adcq(rdxReg, 0);
6949
6950 // carry:sum = rdx:sum
6951 movq(carry, rdxReg);
6952 }
6953
6954 /**
6955 * Add 64 bit long carry into z[] with carry propagation.
6956 * Preserves z and carry register values and modifies rest of registers.
6957 *
6958 */
6959 void MacroAssembler::add_one_64(Register z, Register zlen, Register carry, Register tmp1) {
6960 Label L_fourth_loop, L_fourth_loop_exit;
6961
6962 movl(tmp1, 1);
6963 subl(zlen, 2);
6964 addq(Address(z, zlen, Address::times_4, 0), carry);
6965
6966 bind(L_fourth_loop);
6967 jccb(Assembler::carryClear, L_fourth_loop_exit);
6968 subl(zlen, 2);
6969 jccb(Assembler::negative, L_fourth_loop_exit);
6970 addq(Address(z, zlen, Address::times_4, 0), tmp1);
6971 jmp(L_fourth_loop);
6972 bind(L_fourth_loop_exit);
6973 }
6974
6975 /**
6976 * Shift z[] left by 1 bit.
6977 * Preserves x, len, z and zlen registers and modifies rest of the registers.
6978 *
6979 */
6980 void MacroAssembler::lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
6981
6982 Label L_fifth_loop, L_fifth_loop_exit;
6983
6984 // Fifth loop
6985 // Perform primitiveLeftShift(z, zlen, 1)
6986
6987 const Register prev_carry = tmp1;
6988 const Register new_carry = tmp4;
6989 const Register value = tmp2;
6990 const Register zidx = tmp3;
6991
6992 // int zidx, carry;
6993 // long value;
6994 // carry = 0;
6995 // for (zidx = zlen-2; zidx >=0; zidx -= 2) {
6996 // (carry:value) = (z[i] << 1) | carry ;
6997 // z[i] = value;
6998 // }
6999
7000 movl(zidx, zlen);
7001 xorl(prev_carry, prev_carry); // clear carry flag and prev_carry register
7002
7003 bind(L_fifth_loop);
7004 decl(zidx); // Use decl to preserve carry flag
7005 decl(zidx);
7006 jccb(Assembler::negative, L_fifth_loop_exit);
7007
7008 if (UseBMI2Instructions) {
7009 movq(value, Address(z, zidx, Address::times_4, 0));
7010 rclq(value, 1);
7011 rorxq(value, value, 32);
7012 movq(Address(z, zidx, Address::times_4, 0), value); // Store back in big endian form
7013 }
7014 else {
7015 // clear new_carry
7016 xorl(new_carry, new_carry);
7017
7018 // Shift z[i] by 1, or in previous carry and save new carry
7019 movq(value, Address(z, zidx, Address::times_4, 0));
7020 shlq(value, 1);
7021 adcl(new_carry, 0);
7022
7023 orq(value, prev_carry);
7024 rorq(value, 0x20);
7025 movq(Address(z, zidx, Address::times_4, 0), value); // Store back in big endian form
7026
7027 // Set previous carry = new carry
7028 movl(prev_carry, new_carry);
7029 }
7030 jmp(L_fifth_loop);
7031
7032 bind(L_fifth_loop_exit);
7033 }
7034
7035
7036 /**
7037 * Code for BigInteger::squareToLen() intrinsic
7038 *
7039 * rdi: x
7040 * rsi: len
7041 * r8: z
7042 * rcx: zlen
7043 * r12: tmp1
7044 * r13: tmp2
7045 * r14: tmp3
7046 * r15: tmp4
7047 * rbx: tmp5
7048 *
7049 */
7050 void MacroAssembler::square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
7051
7052 Label L_second_loop, L_second_loop_exit, L_third_loop, L_third_loop_exit, L_last_x, L_multiply;
7053 push(tmp1);
7054 push(tmp2);
7055 push(tmp3);
7056 push(tmp4);
7057 push(tmp5);
7058
7059 // First loop
7060 // Store the squares, right shifted one bit (i.e., divided by 2).
7061 square_rshift(x, len, z, tmp1, tmp3, tmp4, tmp5, rdxReg, raxReg);
7062
7063 // Add in off-diagonal sums.
7064 //
7065 // Second, third (nested) and fourth loops.
7066 // zlen +=2;
7067 // for (int xidx=len-2,zidx=zlen-4; xidx > 0; xidx-=2,zidx-=4) {
7068 // carry = 0;
7069 // long op2 = x[xidx:xidx+1];
7070 // for (int j=xidx-2,k=zidx; j >= 0; j-=2) {
7071 // k -= 2;
7072 // long op1 = x[j:j+1];
7073 // long sum = z[k:k+1];
7074 // carry:sum = multiply_add_64(sum, op1, op2, carry, tmp_regs);
7075 // z[k:k+1] = sum;
7076 // }
7077 // add_one_64(z, k, carry, tmp_regs);
7078 // }
7079
7080 const Register carry = tmp5;
7081 const Register sum = tmp3;
7082 const Register op1 = tmp4;
7083 Register op2 = tmp2;
7084
7085 push(zlen);
7086 push(len);
7087 addl(zlen,2);
7088 bind(L_second_loop);
7089 xorq(carry, carry);
7090 subl(zlen, 4);
7091 subl(len, 2);
7092 push(zlen);
7093 push(len);
7094 cmpl(len, 0);
7095 jccb(Assembler::lessEqual, L_second_loop_exit);
7096
7097 // Multiply an array by one 64 bit long.
7098 if (UseBMI2Instructions) {
7099 op2 = rdxReg;
7100 movq(op2, Address(x, len, Address::times_4, 0));
7101 rorxq(op2, op2, 32);
7102 }
7103 else {
7104 movq(op2, Address(x, len, Address::times_4, 0));
7105 rorq(op2, 32);
7106 }
7107
7108 bind(L_third_loop);
7109 decrementl(len);
7110 jccb(Assembler::negative, L_third_loop_exit);
7111 decrementl(len);
7112 jccb(Assembler::negative, L_last_x);
7113
7114 movq(op1, Address(x, len, Address::times_4, 0));
7115 rorq(op1, 32);
7116
7117 bind(L_multiply);
7118 subl(zlen, 2);
7119 movq(sum, Address(z, zlen, Address::times_4, 0));
7120
7121 // Multiply 64 bit by 64 bit and add 64 bits lower half and upper 64 bits as carry.
7122 if (UseBMI2Instructions) {
7123 multiply_add_64_bmi2(sum, op1, op2, carry, tmp2);
7124 }
7125 else {
7126 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
7127 }
7128
7129 movq(Address(z, zlen, Address::times_4, 0), sum);
7130
7131 jmp(L_third_loop);
7132 bind(L_third_loop_exit);
7133
7134 // Fourth loop
7135 // Add 64 bit long carry into z with carry propagation.
7136 // Uses offsetted zlen.
7137 add_one_64(z, zlen, carry, tmp1);
7138
7139 pop(len);
7140 pop(zlen);
7141 jmp(L_second_loop);
7142
7143 // Next infrequent code is moved outside loops.
7144 bind(L_last_x);
7145 movl(op1, Address(x, 0));
7146 jmp(L_multiply);
7147
7148 bind(L_second_loop_exit);
7149 pop(len);
7150 pop(zlen);
7151 pop(len);
7152 pop(zlen);
7153
7154 // Fifth loop
7155 // Shift z left 1 bit.
7156 lshift_by_1(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4);
7157
7158 // z[zlen-1] |= x[len-1] & 1;
7159 movl(tmp3, Address(x, len, Address::times_4, -4));
7160 andl(tmp3, 1);
7161 orl(Address(z, zlen, Address::times_4, -4), tmp3);
7162
7163 pop(tmp5);
7164 pop(tmp4);
7165 pop(tmp3);
7166 pop(tmp2);
7167 pop(tmp1);
7168 }
7169
7170 /**
7171 * Helper function for mul_add()
7172 * Multiply the in[] by int k and add to out[] starting at offset offs using
7173 * 128 bit by 32 bit multiply and return the carry in tmp5.
7174 * Only quad int aligned length of in[] is operated on in this function.
7175 * k is in rdxReg for BMI2Instructions, for others it is in tmp2.
7176 * This function preserves out, in and k registers.
7177 * len and offset point to the appropriate index in "in" & "out" correspondingly
7178 * tmp5 has the carry.
7179 * other registers are temporary and are modified.
7180 *
7181 */
7182 void MacroAssembler::mul_add_128_x_32_loop(Register out, Register in,
7183 Register offset, Register len, Register tmp1, Register tmp2, Register tmp3,
7184 Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
7185
7186 Label L_first_loop, L_first_loop_exit;
7187
7188 movl(tmp1, len);
7189 shrl(tmp1, 2);
7190
7191 bind(L_first_loop);
7192 subl(tmp1, 1);
7193 jccb(Assembler::negative, L_first_loop_exit);
7194
7195 subl(len, 4);
7196 subl(offset, 4);
7197
7198 Register op2 = tmp2;
7199 const Register sum = tmp3;
7200 const Register op1 = tmp4;
7201 const Register carry = tmp5;
7202
7203 if (UseBMI2Instructions) {
7204 op2 = rdxReg;
7205 }
7206
7207 movq(op1, Address(in, len, Address::times_4, 8));
7208 rorq(op1, 32);
7209 movq(sum, Address(out, offset, Address::times_4, 8));
7210 rorq(sum, 32);
7211 if (UseBMI2Instructions) {
7212 multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
7213 }
7214 else {
7215 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
7216 }
7217 // Store back in big endian from little endian
7218 rorq(sum, 0x20);
7219 movq(Address(out, offset, Address::times_4, 8), sum);
7220
7221 movq(op1, Address(in, len, Address::times_4, 0));
7222 rorq(op1, 32);
7223 movq(sum, Address(out, offset, Address::times_4, 0));
7224 rorq(sum, 32);
7225 if (UseBMI2Instructions) {
7226 multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
7227 }
7228 else {
7229 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
7230 }
7231 // Store back in big endian from little endian
7232 rorq(sum, 0x20);
7233 movq(Address(out, offset, Address::times_4, 0), sum);
7234
7235 jmp(L_first_loop);
7236 bind(L_first_loop_exit);
7237 }
7238
7239 /**
7240 * Code for BigInteger::mulAdd() intrinsic
7241 *
7242 * rdi: out
7243 * rsi: in
7244 * r11: offs (out.length - offset)
7245 * rcx: len
7246 * r8: k
7247 * r12: tmp1
7248 * r13: tmp2
7249 * r14: tmp3
7250 * r15: tmp4
7251 * rbx: tmp5
7252 * Multiply the in[] by word k and add to out[], return the carry in rax
7253 */
7254 void MacroAssembler::mul_add(Register out, Register in, Register offs,
7255 Register len, Register k, Register tmp1, Register tmp2, Register tmp3,
7256 Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
7257
7258 Label L_carry, L_last_in, L_done;
7259
7260 // carry = 0;
7261 // for (int j=len-1; j >= 0; j--) {
7262 // long product = (in[j] & LONG_MASK) * kLong +
7263 // (out[offs] & LONG_MASK) + carry;
7264 // out[offs--] = (int)product;
7265 // carry = product >>> 32;
7266 // }
7267 //
7268 push(tmp1);
7269 push(tmp2);
7270 push(tmp3);
7271 push(tmp4);
7272 push(tmp5);
7273
7274 Register op2 = tmp2;
7275 const Register sum = tmp3;
7276 const Register op1 = tmp4;
7277 const Register carry = tmp5;
7278
7279 if (UseBMI2Instructions) {
7280 op2 = rdxReg;
7281 movl(op2, k);
7282 }
7283 else {
7284 movl(op2, k);
7285 }
7286
7287 xorq(carry, carry);
7288
7289 //First loop
7290
7291 //Multiply in[] by k in a 4 way unrolled loop using 128 bit by 32 bit multiply
7292 //The carry is in tmp5
7293 mul_add_128_x_32_loop(out, in, offs, len, tmp1, tmp2, tmp3, tmp4, tmp5, rdxReg, raxReg);
7294
7295 //Multiply the trailing in[] entry using 64 bit by 32 bit, if any
7296 decrementl(len);
7297 jccb(Assembler::negative, L_carry);
7298 decrementl(len);
7299 jccb(Assembler::negative, L_last_in);
7300
7301 movq(op1, Address(in, len, Address::times_4, 0));
7302 rorq(op1, 32);
7303
7304 subl(offs, 2);
7305 movq(sum, Address(out, offs, Address::times_4, 0));
7306 rorq(sum, 32);
7307
7308 if (UseBMI2Instructions) {
7309 multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
7310 }
7311 else {
7312 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
7313 }
7314
7315 // Store back in big endian from little endian
7316 rorq(sum, 0x20);
7317 movq(Address(out, offs, Address::times_4, 0), sum);
7318
7319 testl(len, len);
7320 jccb(Assembler::zero, L_carry);
7321
7322 //Multiply the last in[] entry, if any
7323 bind(L_last_in);
7324 movl(op1, Address(in, 0));
7325 movl(sum, Address(out, offs, Address::times_4, -4));
7326
7327 movl(raxReg, k);
7328 mull(op1); //tmp4 * eax -> edx:eax
7329 addl(sum, carry);
7330 adcl(rdxReg, 0);
7331 addl(sum, raxReg);
7332 adcl(rdxReg, 0);
7333 movl(carry, rdxReg);
7334
7335 movl(Address(out, offs, Address::times_4, -4), sum);
7336
7337 bind(L_carry);
7338 //return tmp5/carry as carry in rax
7339 movl(rax, carry);
7340
7341 bind(L_done);
7342 pop(tmp5);
7343 pop(tmp4);
7344 pop(tmp3);
7345 pop(tmp2);
7346 pop(tmp1);
7347 }
7348
7349 /**
7350 * Emits code to update CRC-32 with a byte value according to constants in table
7351 *
7352 * @param [in,out]crc Register containing the crc.
7353 * @param [in]val Register containing the byte to fold into the CRC.
7354 * @param [in]table Register containing the table of crc constants.
7355 *
7356 * uint32_t crc;
7357 * val = crc_table[(val ^ crc) & 0xFF];
7358 * crc = val ^ (crc >> 8);
7359 *
7360 */
7361 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
7362 xorl(val, crc);
7363 andl(val, 0xFF);
7364 shrl(crc, 8); // unsigned shift
7365 xorl(crc, Address(table, val, Address::times_4, 0));
7366 }
7367
7368 /**
7369 * Fold 128-bit data chunk
7370 */
7371 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
7372 if (UseAVX > 0) {
7373 vpclmulhdq(xtmp, xK, xcrc); // [123:64]
7374 vpclmulldq(xcrc, xK, xcrc); // [63:0]
7375 vpxor(xcrc, xcrc, Address(buf, offset), 0 /* vector_len */);
7376 pxor(xcrc, xtmp);
7377 } else {
7378 movdqa(xtmp, xcrc);
7379 pclmulhdq(xtmp, xK); // [123:64]
7380 pclmulldq(xcrc, xK); // [63:0]
7381 pxor(xcrc, xtmp);
7382 movdqu(xtmp, Address(buf, offset));
7383 pxor(xcrc, xtmp);
7384 }
7385 }
7386
7387 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) {
7388 if (UseAVX > 0) {
7389 vpclmulhdq(xtmp, xK, xcrc);
7390 vpclmulldq(xcrc, xK, xcrc);
7391 pxor(xcrc, xbuf);
7392 pxor(xcrc, xtmp);
7393 } else {
7394 movdqa(xtmp, xcrc);
7395 pclmulhdq(xtmp, xK);
7396 pclmulldq(xcrc, xK);
7397 pxor(xcrc, xbuf);
7398 pxor(xcrc, xtmp);
7399 }
7400 }
7401
7402 /**
7403 * 8-bit folds to compute 32-bit CRC
7404 *
7405 * uint64_t xcrc;
7406 * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8);
7407 */
7408 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) {
7409 movdl(tmp, xcrc);
7410 andl(tmp, 0xFF);
7411 movdl(xtmp, Address(table, tmp, Address::times_4, 0));
7412 psrldq(xcrc, 1); // unsigned shift one byte
7413 pxor(xcrc, xtmp);
7414 }
7415
7416 /**
7417 * uint32_t crc;
7418 * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
7419 */
7420 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
7421 movl(tmp, crc);
7422 andl(tmp, 0xFF);
7423 shrl(crc, 8);
7424 xorl(crc, Address(table, tmp, Address::times_4, 0));
7425 }
7426
7427 /**
7428 * @param crc register containing existing CRC (32-bit)
7429 * @param buf register pointing to input byte buffer (byte*)
7430 * @param len register containing number of bytes
7431 * @param table register that will contain address of CRC table
7432 * @param tmp scratch register
7433 */
7434 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) {
7435 assert_different_registers(crc, buf, len, table, tmp, rax);
7436
7437 Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
7438 Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;
7439
7440 // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
7441 // context for the registers used, where all instructions below are using 128-bit mode
7442 // On EVEX without VL and BW, these instructions will all be AVX.
7443 lea(table, ExternalAddress(StubRoutines::crc_table_addr()));
7444 notl(crc); // ~crc
7445 cmpl(len, 16);
7446 jcc(Assembler::less, L_tail);
7447
7448 // Align buffer to 16 bytes
7449 movl(tmp, buf);
7450 andl(tmp, 0xF);
7451 jccb(Assembler::zero, L_aligned);
7452 subl(tmp, 16);
7453 addl(len, tmp);
7454
7455 align(4);
7456 BIND(L_align_loop);
7457 movsbl(rax, Address(buf, 0)); // load byte with sign extension
7458 update_byte_crc32(crc, rax, table);
7459 increment(buf);
7460 incrementl(tmp);
7461 jccb(Assembler::less, L_align_loop);
7462
7463 BIND(L_aligned);
7464 movl(tmp, len); // save
7465 shrl(len, 4);
7466 jcc(Assembler::zero, L_tail_restore);
7467
7468 // Fold crc into first bytes of vector
7469 movdqa(xmm1, Address(buf, 0));
7470 movdl(rax, xmm1);
7471 xorl(crc, rax);
7472 if (VM_Version::supports_sse4_1()) {
7473 pinsrd(xmm1, crc, 0);
7474 } else {
7475 pinsrw(xmm1, crc, 0);
7476 shrl(crc, 16);
7477 pinsrw(xmm1, crc, 1);
7478 }
7479 addptr(buf, 16);
7480 subl(len, 4); // len > 0
7481 jcc(Assembler::less, L_fold_tail);
7482
7483 movdqa(xmm2, Address(buf, 0));
7484 movdqa(xmm3, Address(buf, 16));
7485 movdqa(xmm4, Address(buf, 32));
7486 addptr(buf, 48);
7487 subl(len, 3);
7488 jcc(Assembler::lessEqual, L_fold_512b);
7489
7490 // Fold total 512 bits of polynomial on each iteration,
7491 // 128 bits per each of 4 parallel streams.
7492 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32), rscratch1);
7493
7494 align32();
7495 BIND(L_fold_512b_loop);
7496 fold_128bit_crc32(xmm1, xmm0, xmm5, buf, 0);
7497 fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16);
7498 fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32);
7499 fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48);
7500 addptr(buf, 64);
7501 subl(len, 4);
7502 jcc(Assembler::greater, L_fold_512b_loop);
7503
7504 // Fold 512 bits to 128 bits.
7505 BIND(L_fold_512b);
7506 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16), rscratch1);
7507 fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2);
7508 fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3);
7509 fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4);
7510
7511 // Fold the rest of 128 bits data chunks
7512 BIND(L_fold_tail);
7513 addl(len, 3);
7514 jccb(Assembler::lessEqual, L_fold_128b);
7515 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16), rscratch1);
7516
7517 BIND(L_fold_tail_loop);
7518 fold_128bit_crc32(xmm1, xmm0, xmm5, buf, 0);
7519 addptr(buf, 16);
7520 decrementl(len);
7521 jccb(Assembler::greater, L_fold_tail_loop);
7522
7523 // Fold 128 bits in xmm1 down into 32 bits in crc register.
7524 BIND(L_fold_128b);
7525 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()), rscratch1);
7526 if (UseAVX > 0) {
7527 vpclmulqdq(xmm2, xmm0, xmm1, 0x1);
7528 vpand(xmm3, xmm0, xmm2, 0 /* vector_len */);
7529 vpclmulqdq(xmm0, xmm0, xmm3, 0x1);
7530 } else {
7531 movdqa(xmm2, xmm0);
7532 pclmulqdq(xmm2, xmm1, 0x1);
7533 movdqa(xmm3, xmm0);
7534 pand(xmm3, xmm2);
7535 pclmulqdq(xmm0, xmm3, 0x1);
7536 }
7537 psrldq(xmm1, 8);
7538 psrldq(xmm2, 4);
7539 pxor(xmm0, xmm1);
7540 pxor(xmm0, xmm2);
7541
7542 // 8 8-bit folds to compute 32-bit CRC.
7543 for (int j = 0; j < 4; j++) {
7544 fold_8bit_crc32(xmm0, table, xmm1, rax);
7545 }
7546 movdl(crc, xmm0); // mov 32 bits to general register
7547 for (int j = 0; j < 4; j++) {
7548 fold_8bit_crc32(crc, table, rax);
7549 }
7550
7551 BIND(L_tail_restore);
7552 movl(len, tmp); // restore
7553 BIND(L_tail);
7554 andl(len, 0xf);
7555 jccb(Assembler::zero, L_exit);
7556
7557 // Fold the rest of bytes
7558 align(4);
7559 BIND(L_tail_loop);
7560 movsbl(rax, Address(buf, 0)); // load byte with sign extension
7561 update_byte_crc32(crc, rax, table);
7562 increment(buf);
7563 decrementl(len);
7564 jccb(Assembler::greater, L_tail_loop);
7565
7566 BIND(L_exit);
7567 notl(crc); // ~c
7568 }
7569
7570 // Helper function for AVX 512 CRC32
7571 // Fold 512-bit data chunks
7572 void MacroAssembler::fold512bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf,
7573 Register pos, int offset) {
7574 evmovdquq(xmm3, Address(buf, pos, Address::times_1, offset), Assembler::AVX_512bit);
7575 evpclmulqdq(xtmp, xcrc, xK, 0x10, Assembler::AVX_512bit); // [123:64]
7576 evpclmulqdq(xmm2, xcrc, xK, 0x01, Assembler::AVX_512bit); // [63:0]
7577 evpxorq(xcrc, xtmp, xmm2, Assembler::AVX_512bit /* vector_len */);
7578 evpxorq(xcrc, xcrc, xmm3, Assembler::AVX_512bit /* vector_len */);
7579 }
7580
7581 // Helper function for AVX 512 CRC32
7582 // Compute CRC32 for < 256B buffers
7583 void MacroAssembler::kernel_crc32_avx512_256B(Register crc, Register buf, Register len, Register table, Register pos,
7584 Register tmp1, Register tmp2, Label& L_barrett, Label& L_16B_reduction_loop,
7585 Label& L_get_last_two_xmms, Label& L_128_done, Label& L_cleanup) {
7586
7587 Label L_less_than_32, L_exact_16_left, L_less_than_16_left;
7588 Label L_less_than_8_left, L_less_than_4_left, L_less_than_2_left, L_zero_left;
7589 Label L_only_less_than_4, L_only_less_than_3, L_only_less_than_2;
7590
7591 // check if there is enough buffer to be able to fold 16B at a time
7592 cmpl(len, 32);
7593 jcc(Assembler::less, L_less_than_32);
7594
7595 // if there is, load the constants
7596 movdqu(xmm10, Address(table, 1 * 16)); //rk1 and rk2 in xmm10
7597 movdl(xmm0, crc); // get the initial crc value
7598 movdqu(xmm7, Address(buf, pos, Address::times_1, 0 * 16)); //load the plaintext
7599 pxor(xmm7, xmm0);
7600
7601 // update the buffer pointer
7602 addl(pos, 16);
7603 //update the counter.subtract 32 instead of 16 to save one instruction from the loop
7604 subl(len, 32);
7605 jmp(L_16B_reduction_loop);
7606
7607 bind(L_less_than_32);
7608 //mov initial crc to the return value. this is necessary for zero - length buffers.
7609 movl(rax, crc);
7610 testl(len, len);
7611 jcc(Assembler::equal, L_cleanup);
7612
7613 movdl(xmm0, crc); //get the initial crc value
7614
7615 cmpl(len, 16);
7616 jcc(Assembler::equal, L_exact_16_left);
7617 jcc(Assembler::less, L_less_than_16_left);
7618
7619 movdqu(xmm7, Address(buf, pos, Address::times_1, 0 * 16)); //load the plaintext
7620 pxor(xmm7, xmm0); //xor the initial crc value
7621 addl(pos, 16);
7622 subl(len, 16);
7623 movdqu(xmm10, Address(table, 1 * 16)); // rk1 and rk2 in xmm10
7624 jmp(L_get_last_two_xmms);
7625
7626 bind(L_less_than_16_left);
7627 //use stack space to load data less than 16 bytes, zero - out the 16B in memory first.
7628 pxor(xmm1, xmm1);
7629 movptr(tmp1, rsp);
7630 movdqu(Address(tmp1, 0 * 16), xmm1);
7631
7632 cmpl(len, 4);
7633 jcc(Assembler::less, L_only_less_than_4);
7634
7635 //backup the counter value
7636 movl(tmp2, len);
7637 cmpl(len, 8);
7638 jcc(Assembler::less, L_less_than_8_left);
7639
7640 //load 8 Bytes
7641 movq(rax, Address(buf, pos, Address::times_1, 0 * 16));
7642 movq(Address(tmp1, 0 * 16), rax);
7643 addptr(tmp1, 8);
7644 subl(len, 8);
7645 addl(pos, 8);
7646
7647 bind(L_less_than_8_left);
7648 cmpl(len, 4);
7649 jcc(Assembler::less, L_less_than_4_left);
7650
7651 //load 4 Bytes
7652 movl(rax, Address(buf, pos, Address::times_1, 0));
7653 movl(Address(tmp1, 0 * 16), rax);
7654 addptr(tmp1, 4);
7655 subl(len, 4);
7656 addl(pos, 4);
7657
7658 bind(L_less_than_4_left);
7659 cmpl(len, 2);
7660 jcc(Assembler::less, L_less_than_2_left);
7661
7662 // load 2 Bytes
7663 movw(rax, Address(buf, pos, Address::times_1, 0));
7664 movl(Address(tmp1, 0 * 16), rax);
7665 addptr(tmp1, 2);
7666 subl(len, 2);
7667 addl(pos, 2);
7668
7669 bind(L_less_than_2_left);
7670 cmpl(len, 1);
7671 jcc(Assembler::less, L_zero_left);
7672
7673 // load 1 Byte
7674 movb(rax, Address(buf, pos, Address::times_1, 0));
7675 movb(Address(tmp1, 0 * 16), rax);
7676
7677 bind(L_zero_left);
7678 movdqu(xmm7, Address(rsp, 0));
7679 pxor(xmm7, xmm0); //xor the initial crc value
7680
7681 lea(rax, ExternalAddress(StubRoutines::x86::shuf_table_crc32_avx512_addr()));
7682 movdqu(xmm0, Address(rax, tmp2));
7683 pshufb(xmm7, xmm0);
7684 jmp(L_128_done);
7685
7686 bind(L_exact_16_left);
7687 movdqu(xmm7, Address(buf, pos, Address::times_1, 0));
7688 pxor(xmm7, xmm0); //xor the initial crc value
7689 jmp(L_128_done);
7690
7691 bind(L_only_less_than_4);
7692 cmpl(len, 3);
7693 jcc(Assembler::less, L_only_less_than_3);
7694
7695 // load 3 Bytes
7696 movb(rax, Address(buf, pos, Address::times_1, 0));
7697 movb(Address(tmp1, 0), rax);
7698
7699 movb(rax, Address(buf, pos, Address::times_1, 1));
7700 movb(Address(tmp1, 1), rax);
7701
7702 movb(rax, Address(buf, pos, Address::times_1, 2));
7703 movb(Address(tmp1, 2), rax);
7704
7705 movdqu(xmm7, Address(rsp, 0));
7706 pxor(xmm7, xmm0); //xor the initial crc value
7707
7708 pslldq(xmm7, 0x5);
7709 jmp(L_barrett);
7710 bind(L_only_less_than_3);
7711 cmpl(len, 2);
7712 jcc(Assembler::less, L_only_less_than_2);
7713
7714 // load 2 Bytes
7715 movb(rax, Address(buf, pos, Address::times_1, 0));
7716 movb(Address(tmp1, 0), rax);
7717
7718 movb(rax, Address(buf, pos, Address::times_1, 1));
7719 movb(Address(tmp1, 1), rax);
7720
7721 movdqu(xmm7, Address(rsp, 0));
7722 pxor(xmm7, xmm0); //xor the initial crc value
7723
7724 pslldq(xmm7, 0x6);
7725 jmp(L_barrett);
7726
7727 bind(L_only_less_than_2);
7728 //load 1 Byte
7729 movb(rax, Address(buf, pos, Address::times_1, 0));
7730 movb(Address(tmp1, 0), rax);
7731
7732 movdqu(xmm7, Address(rsp, 0));
7733 pxor(xmm7, xmm0); //xor the initial crc value
7734
7735 pslldq(xmm7, 0x7);
7736 }
7737
7738 /**
7739 * Compute CRC32 using AVX512 instructions
7740 * param crc register containing existing CRC (32-bit)
7741 * param buf register pointing to input byte buffer (byte*)
7742 * param len register containing number of bytes
7743 * param table address of crc or crc32c table
7744 * param tmp1 scratch register
7745 * param tmp2 scratch register
7746 * return rax result register
7747 *
7748 * This routine is identical for crc32c with the exception of the precomputed constant
7749 * table which will be passed as the table argument. The calculation steps are
7750 * the same for both variants.
7751 */
7752 void MacroAssembler::kernel_crc32_avx512(Register crc, Register buf, Register len, Register table, Register tmp1, Register tmp2) {
7753 assert_different_registers(crc, buf, len, table, tmp1, tmp2, rax, r12);
7754
7755 Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
7756 Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;
7757 Label L_less_than_256, L_fold_128_B_loop, L_fold_256_B_loop;
7758 Label L_fold_128_B_register, L_final_reduction_for_128, L_16B_reduction_loop;
7759 Label L_128_done, L_get_last_two_xmms, L_barrett, L_cleanup;
7760
7761 const Register pos = r12;
7762 push(r12);
7763 subptr(rsp, 16 * 2 + 8);
7764
7765 // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
7766 // context for the registers used, where all instructions below are using 128-bit mode
7767 // On EVEX without VL and BW, these instructions will all be AVX.
7768 movl(pos, 0);
7769
7770 // check if smaller than 256B
7771 cmpl(len, 256);
7772 jcc(Assembler::less, L_less_than_256);
7773
7774 // load the initial crc value
7775 movdl(xmm10, crc);
7776
7777 // receive the initial 64B data, xor the initial crc value
7778 evmovdquq(xmm0, Address(buf, pos, Address::times_1, 0 * 64), Assembler::AVX_512bit);
7779 evmovdquq(xmm4, Address(buf, pos, Address::times_1, 1 * 64), Assembler::AVX_512bit);
7780 evpxorq(xmm0, xmm0, xmm10, Assembler::AVX_512bit);
7781 evbroadcasti32x4(xmm10, Address(table, 2 * 16), Assembler::AVX_512bit); //zmm10 has rk3 and rk4
7782
7783 subl(len, 256);
7784 cmpl(len, 256);
7785 jcc(Assembler::less, L_fold_128_B_loop);
7786
7787 evmovdquq(xmm7, Address(buf, pos, Address::times_1, 2 * 64), Assembler::AVX_512bit);
7788 evmovdquq(xmm8, Address(buf, pos, Address::times_1, 3 * 64), Assembler::AVX_512bit);
7789 evbroadcasti32x4(xmm16, Address(table, 0 * 16), Assembler::AVX_512bit); //zmm16 has rk-1 and rk-2
7790 subl(len, 256);
7791
7792 bind(L_fold_256_B_loop);
7793 addl(pos, 256);
7794 fold512bit_crc32_avx512(xmm0, xmm16, xmm1, buf, pos, 0 * 64);
7795 fold512bit_crc32_avx512(xmm4, xmm16, xmm1, buf, pos, 1 * 64);
7796 fold512bit_crc32_avx512(xmm7, xmm16, xmm1, buf, pos, 2 * 64);
7797 fold512bit_crc32_avx512(xmm8, xmm16, xmm1, buf, pos, 3 * 64);
7798
7799 subl(len, 256);
7800 jcc(Assembler::greaterEqual, L_fold_256_B_loop);
7801
7802 // Fold 256 into 128
7803 addl(pos, 256);
7804 evpclmulqdq(xmm1, xmm0, xmm10, 0x01, Assembler::AVX_512bit);
7805 evpclmulqdq(xmm2, xmm0, xmm10, 0x10, Assembler::AVX_512bit);
7806 vpternlogq(xmm7, 0x96, xmm1, xmm2, Assembler::AVX_512bit); // xor ABC
7807
7808 evpclmulqdq(xmm5, xmm4, xmm10, 0x01, Assembler::AVX_512bit);
7809 evpclmulqdq(xmm6, xmm4, xmm10, 0x10, Assembler::AVX_512bit);
7810 vpternlogq(xmm8, 0x96, xmm5, xmm6, Assembler::AVX_512bit); // xor ABC
7811
7812 evmovdquq(xmm0, xmm7, Assembler::AVX_512bit);
7813 evmovdquq(xmm4, xmm8, Assembler::AVX_512bit);
7814
7815 addl(len, 128);
7816 jmp(L_fold_128_B_register);
7817
7818 // at this section of the code, there is 128 * x + y(0 <= y<128) bytes of buffer.The fold_128_B_loop
7819 // loop will fold 128B at a time until we have 128 + y Bytes of buffer
7820
7821 // fold 128B at a time.This section of the code folds 8 xmm registers in parallel
7822 bind(L_fold_128_B_loop);
7823 addl(pos, 128);
7824 fold512bit_crc32_avx512(xmm0, xmm10, xmm1, buf, pos, 0 * 64);
7825 fold512bit_crc32_avx512(xmm4, xmm10, xmm1, buf, pos, 1 * 64);
7826
7827 subl(len, 128);
7828 jcc(Assembler::greaterEqual, L_fold_128_B_loop);
7829
7830 addl(pos, 128);
7831
7832 // at this point, the buffer pointer is pointing at the last y Bytes of the buffer, where 0 <= y < 128
7833 // the 128B of folded data is in 8 of the xmm registers : xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7
7834 bind(L_fold_128_B_register);
7835 evmovdquq(xmm16, Address(table, 5 * 16), Assembler::AVX_512bit); // multiply by rk9-rk16
7836 evmovdquq(xmm11, Address(table, 9 * 16), Assembler::AVX_512bit); // multiply by rk17-rk20, rk1,rk2, 0,0
7837 evpclmulqdq(xmm1, xmm0, xmm16, 0x01, Assembler::AVX_512bit);
7838 evpclmulqdq(xmm2, xmm0, xmm16, 0x10, Assembler::AVX_512bit);
7839 // save last that has no multiplicand
7840 vextracti64x2(xmm7, xmm4, 3);
7841
7842 evpclmulqdq(xmm5, xmm4, xmm11, 0x01, Assembler::AVX_512bit);
7843 evpclmulqdq(xmm6, xmm4, xmm11, 0x10, Assembler::AVX_512bit);
7844 // Needed later in reduction loop
7845 movdqu(xmm10, Address(table, 1 * 16));
7846 vpternlogq(xmm1, 0x96, xmm2, xmm5, Assembler::AVX_512bit); // xor ABC
7847 vpternlogq(xmm1, 0x96, xmm6, xmm7, Assembler::AVX_512bit); // xor ABC
7848
7849 // Swap 1,0,3,2 - 01 00 11 10
7850 evshufi64x2(xmm8, xmm1, xmm1, 0x4e, Assembler::AVX_512bit);
7851 evpxorq(xmm8, xmm8, xmm1, Assembler::AVX_256bit);
7852 vextracti128(xmm5, xmm8, 1);
7853 evpxorq(xmm7, xmm5, xmm8, Assembler::AVX_128bit);
7854
7855 // instead of 128, we add 128 - 16 to the loop counter to save 1 instruction from the loop
7856 // instead of a cmp instruction, we use the negative flag with the jl instruction
7857 addl(len, 128 - 16);
7858 jcc(Assembler::less, L_final_reduction_for_128);
7859
7860 bind(L_16B_reduction_loop);
7861 vpclmulqdq(xmm8, xmm7, xmm10, 0x01);
7862 vpclmulqdq(xmm7, xmm7, xmm10, 0x10);
7863 vpxor(xmm7, xmm7, xmm8, Assembler::AVX_128bit);
7864 movdqu(xmm0, Address(buf, pos, Address::times_1, 0 * 16));
7865 vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit);
7866 addl(pos, 16);
7867 subl(len, 16);
7868 jcc(Assembler::greaterEqual, L_16B_reduction_loop);
7869
7870 bind(L_final_reduction_for_128);
7871 addl(len, 16);
7872 jcc(Assembler::equal, L_128_done);
7873
7874 bind(L_get_last_two_xmms);
7875 movdqu(xmm2, xmm7);
7876 addl(pos, len);
7877 movdqu(xmm1, Address(buf, pos, Address::times_1, -16));
7878 subl(pos, len);
7879
7880 // get rid of the extra data that was loaded before
7881 // load the shift constant
7882 lea(rax, ExternalAddress(StubRoutines::x86::shuf_table_crc32_avx512_addr()));
7883 movdqu(xmm0, Address(rax, len));
7884 addl(rax, len);
7885
7886 vpshufb(xmm7, xmm7, xmm0, Assembler::AVX_128bit);
7887 //Change mask to 512
7888 vpxor(xmm0, xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr() + 2 * 16), Assembler::AVX_128bit, tmp2);
7889 vpshufb(xmm2, xmm2, xmm0, Assembler::AVX_128bit);
7890
7891 blendvpb(xmm2, xmm2, xmm1, xmm0, Assembler::AVX_128bit);
7892 vpclmulqdq(xmm8, xmm7, xmm10, 0x01);
7893 vpclmulqdq(xmm7, xmm7, xmm10, 0x10);
7894 vpxor(xmm7, xmm7, xmm8, Assembler::AVX_128bit);
7895 vpxor(xmm7, xmm7, xmm2, Assembler::AVX_128bit);
7896
7897 bind(L_128_done);
7898 // compute crc of a 128-bit value
7899 movdqu(xmm10, Address(table, 3 * 16));
7900 movdqu(xmm0, xmm7);
7901
7902 // 64b fold
7903 vpclmulqdq(xmm7, xmm7, xmm10, 0x0);
7904 vpsrldq(xmm0, xmm0, 0x8, Assembler::AVX_128bit);
7905 vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit);
7906
7907 // 32b fold
7908 movdqu(xmm0, xmm7);
7909 vpslldq(xmm7, xmm7, 0x4, Assembler::AVX_128bit);
7910 vpclmulqdq(xmm7, xmm7, xmm10, 0x10);
7911 vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit);
7912 jmp(L_barrett);
7913
7914 bind(L_less_than_256);
7915 kernel_crc32_avx512_256B(crc, buf, len, table, pos, tmp1, tmp2, L_barrett, L_16B_reduction_loop, L_get_last_two_xmms, L_128_done, L_cleanup);
7916
7917 //barrett reduction
7918 bind(L_barrett);
7919 vpand(xmm7, xmm7, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr() + 1 * 16), Assembler::AVX_128bit, tmp2);
7920 movdqu(xmm1, xmm7);
7921 movdqu(xmm2, xmm7);
7922 movdqu(xmm10, Address(table, 4 * 16));
7923
7924 pclmulqdq(xmm7, xmm10, 0x0);
7925 pxor(xmm7, xmm2);
7926 vpand(xmm7, xmm7, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr()), Assembler::AVX_128bit, tmp2);
7927 movdqu(xmm2, xmm7);
7928 pclmulqdq(xmm7, xmm10, 0x10);
7929 pxor(xmm7, xmm2);
7930 pxor(xmm7, xmm1);
7931 pextrd(crc, xmm7, 2);
7932
7933 bind(L_cleanup);
7934 addptr(rsp, 16 * 2 + 8);
7935 pop(r12);
7936 }
7937
7938 // S. Gueron / Information Processing Letters 112 (2012) 184
7939 // Algorithm 4: Computing carry-less multiplication using a precomputed lookup table.
7940 // Input: A 32 bit value B = [byte3, byte2, byte1, byte0].
7941 // Output: the 64-bit carry-less product of B * CONST
7942 void MacroAssembler::crc32c_ipl_alg4(Register in, uint32_t n,
7943 Register tmp1, Register tmp2, Register tmp3) {
7944 lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
7945 if (n > 0) {
7946 addq(tmp3, n * 256 * 8);
7947 }
7948 // Q1 = TABLEExt[n][B & 0xFF];
7949 movl(tmp1, in);
7950 andl(tmp1, 0x000000FF);
7951 shll(tmp1, 3);
7952 addq(tmp1, tmp3);
7953 movq(tmp1, Address(tmp1, 0));
7954
7955 // Q2 = TABLEExt[n][B >> 8 & 0xFF];
7956 movl(tmp2, in);
7957 shrl(tmp2, 8);
7958 andl(tmp2, 0x000000FF);
7959 shll(tmp2, 3);
7960 addq(tmp2, tmp3);
7961 movq(tmp2, Address(tmp2, 0));
7962
7963 shlq(tmp2, 8);
7964 xorq(tmp1, tmp2);
7965
7966 // Q3 = TABLEExt[n][B >> 16 & 0xFF];
7967 movl(tmp2, in);
7968 shrl(tmp2, 16);
7969 andl(tmp2, 0x000000FF);
7970 shll(tmp2, 3);
7971 addq(tmp2, tmp3);
7972 movq(tmp2, Address(tmp2, 0));
7973
7974 shlq(tmp2, 16);
7975 xorq(tmp1, tmp2);
7976
7977 // Q4 = TABLEExt[n][B >> 24 & 0xFF];
7978 shrl(in, 24);
7979 andl(in, 0x000000FF);
7980 shll(in, 3);
7981 addq(in, tmp3);
7982 movq(in, Address(in, 0));
7983
7984 shlq(in, 24);
7985 xorq(in, tmp1);
7986 // return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
7987 }
7988
7989 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
7990 Register in_out,
7991 uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
7992 XMMRegister w_xtmp2,
7993 Register tmp1,
7994 Register n_tmp2, Register n_tmp3) {
7995 if (is_pclmulqdq_supported) {
7996 movdl(w_xtmp1, in_out); // modified blindly
7997
7998 movl(tmp1, const_or_pre_comp_const_index);
7999 movdl(w_xtmp2, tmp1);
8000 pclmulqdq(w_xtmp1, w_xtmp2, 0);
8001
8002 movdq(in_out, w_xtmp1);
8003 } else {
8004 crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3);
8005 }
8006 }
8007
8008 // Recombination Alternative 2: No bit-reflections
8009 // T1 = (CRC_A * U1) << 1
8010 // T2 = (CRC_B * U2) << 1
8011 // C1 = T1 >> 32
8012 // C2 = T2 >> 32
8013 // T1 = T1 & 0xFFFFFFFF
8014 // T2 = T2 & 0xFFFFFFFF
8015 // T1 = CRC32(0, T1)
8016 // T2 = CRC32(0, T2)
8017 // C1 = C1 ^ T1
8018 // C2 = C2 ^ T2
8019 // CRC = C1 ^ C2 ^ CRC_C
8020 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
8021 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
8022 Register tmp1, Register tmp2,
8023 Register n_tmp3) {
8024 crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
8025 crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
8026 shlq(in_out, 1);
8027 movl(tmp1, in_out);
8028 shrq(in_out, 32);
8029 xorl(tmp2, tmp2);
8030 crc32(tmp2, tmp1, 4);
8031 xorl(in_out, tmp2); // we don't care about upper 32 bit contents here
8032 shlq(in1, 1);
8033 movl(tmp1, in1);
8034 shrq(in1, 32);
8035 xorl(tmp2, tmp2);
8036 crc32(tmp2, tmp1, 4);
8037 xorl(in1, tmp2);
8038 xorl(in_out, in1);
8039 xorl(in_out, in2);
8040 }
8041
8042 // Set N to predefined value
8043 // Subtract from a length of a buffer
8044 // execute in a loop:
8045 // CRC_A = 0xFFFFFFFF, CRC_B = 0, CRC_C = 0
8046 // for i = 1 to N do
8047 // CRC_A = CRC32(CRC_A, A[i])
8048 // CRC_B = CRC32(CRC_B, B[i])
8049 // CRC_C = CRC32(CRC_C, C[i])
8050 // end for
8051 // Recombine
8052 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
8053 Register in_out1, Register in_out2, Register in_out3,
8054 Register tmp1, Register tmp2, Register tmp3,
8055 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
8056 Register tmp4, Register tmp5,
8057 Register n_tmp6) {
8058 Label L_processPartitions;
8059 Label L_processPartition;
8060 Label L_exit;
8061
8062 bind(L_processPartitions);
8063 cmpl(in_out1, 3 * size);
8064 jcc(Assembler::less, L_exit);
8065 xorl(tmp1, tmp1);
8066 xorl(tmp2, tmp2);
8067 movq(tmp3, in_out2);
8068 addq(tmp3, size);
8069
8070 bind(L_processPartition);
8071 crc32(in_out3, Address(in_out2, 0), 8);
8072 crc32(tmp1, Address(in_out2, size), 8);
8073 crc32(tmp2, Address(in_out2, size * 2), 8);
8074 addq(in_out2, 8);
8075 cmpq(in_out2, tmp3);
8076 jcc(Assembler::less, L_processPartition);
8077 crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
8078 w_xtmp1, w_xtmp2, w_xtmp3,
8079 tmp4, tmp5,
8080 n_tmp6);
8081 addq(in_out2, 2 * size);
8082 subl(in_out1, 3 * size);
8083 jmp(L_processPartitions);
8084
8085 bind(L_exit);
8086 }
8087
8088 // Algorithm 2: Pipelined usage of the CRC32 instruction.
8089 // Input: A buffer I of L bytes.
8090 // Output: the CRC32C value of the buffer.
8091 // Notations:
8092 // Write L = 24N + r, with N = floor (L/24).
8093 // r = L mod 24 (0 <= r < 24).
8094 // Consider I as the concatenation of A|B|C|R, where A, B, C, each,
8095 // N quadwords, and R consists of r bytes.
8096 // A[j] = I [8j+7:8j], j= 0, 1, ..., N-1
8097 // B[j] = I [N + 8j+7:N + 8j], j= 0, 1, ..., N-1
8098 // C[j] = I [2N + 8j+7:2N + 8j], j= 0, 1, ..., N-1
8099 // if r > 0 R[j] = I [3N +j], j= 0, 1, ...,r-1
8100 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
8101 Register tmp1, Register tmp2, Register tmp3,
8102 Register tmp4, Register tmp5, Register tmp6,
8103 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
8104 bool is_pclmulqdq_supported) {
8105 uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
8106 Label L_wordByWord;
8107 Label L_byteByByteProlog;
8108 Label L_byteByByte;
8109 Label L_exit;
8110
8111 if (is_pclmulqdq_supported ) {
8112 const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::crc32c_table_addr();
8113 const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 1);
8114
8115 const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 2);
8116 const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 3);
8117
8118 const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 4);
8119 const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 5);
8120 assert((CRC32C_NUM_PRECOMPUTED_CONSTANTS - 1 ) == 5, "Checking whether you declared all of the constants based on the number of \"chunks\"");
8121 } else {
8122 const_or_pre_comp_const_index[0] = 1;
8123 const_or_pre_comp_const_index[1] = 0;
8124
8125 const_or_pre_comp_const_index[2] = 3;
8126 const_or_pre_comp_const_index[3] = 2;
8127
8128 const_or_pre_comp_const_index[4] = 5;
8129 const_or_pre_comp_const_index[5] = 4;
8130 }
8131 crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
8132 in2, in1, in_out,
8133 tmp1, tmp2, tmp3,
8134 w_xtmp1, w_xtmp2, w_xtmp3,
8135 tmp4, tmp5,
8136 tmp6);
8137 crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
8138 in2, in1, in_out,
8139 tmp1, tmp2, tmp3,
8140 w_xtmp1, w_xtmp2, w_xtmp3,
8141 tmp4, tmp5,
8142 tmp6);
8143 crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
8144 in2, in1, in_out,
8145 tmp1, tmp2, tmp3,
8146 w_xtmp1, w_xtmp2, w_xtmp3,
8147 tmp4, tmp5,
8148 tmp6);
8149 movl(tmp1, in2);
8150 andl(tmp1, 0x00000007);
8151 negl(tmp1);
8152 addl(tmp1, in2);
8153 addq(tmp1, in1);
8154
8155 cmpq(in1, tmp1);
8156 jccb(Assembler::greaterEqual, L_byteByByteProlog);
8157 align(16);
8158 BIND(L_wordByWord);
8159 crc32(in_out, Address(in1, 0), 8);
8160 addq(in1, 8);
8161 cmpq(in1, tmp1);
8162 jcc(Assembler::less, L_wordByWord);
8163
8164 BIND(L_byteByByteProlog);
8165 andl(in2, 0x00000007);
8166 movl(tmp2, 1);
8167
8168 cmpl(tmp2, in2);
8169 jccb(Assembler::greater, L_exit);
8170 BIND(L_byteByByte);
8171 crc32(in_out, Address(in1, 0), 1);
8172 incq(in1);
8173 incl(tmp2);
8174 cmpl(tmp2, in2);
8175 jcc(Assembler::lessEqual, L_byteByByte);
8176
8177 BIND(L_exit);
8178 }
8179 #undef BIND
8180 #undef BLOCK_COMMENT
8181
8182 // Compress char[] array to byte[].
8183 // Intrinsic for java.lang.StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len)
8184 // Return the array length if every element in array can be encoded,
8185 // otherwise, the index of first non-latin1 (> 0xff) character.
8186 // @IntrinsicCandidate
8187 // public static int compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) {
8188 // for (int i = 0; i < len; i++) {
8189 // char c = src[srcOff];
8190 // if (c > 0xff) {
8191 // return i; // return index of non-latin1 char
8192 // }
8193 // dst[dstOff] = (byte)c;
8194 // srcOff++;
8195 // dstOff++;
8196 // }
8197 // return len;
8198 // }
8199 void MacroAssembler::char_array_compress(Register src, Register dst, Register len,
8200 XMMRegister tmp1Reg, XMMRegister tmp2Reg,
8201 XMMRegister tmp3Reg, XMMRegister tmp4Reg,
8202 Register tmp5, Register result, KRegister mask1, KRegister mask2) {
8203 Label copy_chars_loop, done, reset_sp, copy_tail;
8204
8205 // rsi: src
8206 // rdi: dst
8207 // rdx: len
8208 // rcx: tmp5
8209 // rax: result
8210
8211 // rsi holds start addr of source char[] to be compressed
8212 // rdi holds start addr of destination byte[]
8213 // rdx holds length
8214
8215 assert(len != result, "");
8216
8217 // save length for return
8218 movl(result, len);
8219
8220 if ((AVX3Threshold == 0) && (UseAVX > 2) && // AVX512
8221 VM_Version::supports_avx512vlbw() &&
8222 VM_Version::supports_bmi2()) {
8223
8224 Label copy_32_loop, copy_loop_tail, below_threshold, reset_for_copy_tail;
8225
8226 // alignment
8227 Label post_alignment;
8228
8229 // if length of the string is less than 32, handle it the old fashioned way
8230 testl(len, -32);
8231 jcc(Assembler::zero, below_threshold);
8232
8233 // First check whether a character is compressible ( <= 0xFF).
8234 // Create mask to test for Unicode chars inside zmm vector
8235 movl(tmp5, 0x00FF);
8236 evpbroadcastw(tmp2Reg, tmp5, Assembler::AVX_512bit);
8237
8238 testl(len, -64);
8239 jccb(Assembler::zero, post_alignment);
8240
8241 movl(tmp5, dst);
8242 andl(tmp5, (32 - 1));
8243 negl(tmp5);
8244 andl(tmp5, (32 - 1));
8245
8246 // bail out when there is nothing to be done
8247 testl(tmp5, 0xFFFFFFFF);
8248 jccb(Assembler::zero, post_alignment);
8249
8250 // ~(~0 << len), where len is the # of remaining elements to process
8251 movl(len, 0xFFFFFFFF);
8252 shlxl(len, len, tmp5);
8253 notl(len);
8254 kmovdl(mask2, len);
8255 movl(len, result);
8256
8257 evmovdquw(tmp1Reg, mask2, Address(src, 0), /*merge*/ false, Assembler::AVX_512bit);
8258 evpcmpw(mask1, mask2, tmp1Reg, tmp2Reg, Assembler::le, /*signed*/ false, Assembler::AVX_512bit);
8259 ktestd(mask1, mask2);
8260 jcc(Assembler::carryClear, copy_tail);
8261
8262 evpmovwb(Address(dst, 0), mask2, tmp1Reg, Assembler::AVX_512bit);
8263
8264 addptr(src, tmp5);
8265 addptr(src, tmp5);
8266 addptr(dst, tmp5);
8267 subl(len, tmp5);
8268
8269 bind(post_alignment);
8270 // end of alignment
8271
8272 movl(tmp5, len);
8273 andl(tmp5, (32 - 1)); // tail count (in chars)
8274 andl(len, ~(32 - 1)); // vector count (in chars)
8275 jccb(Assembler::zero, copy_loop_tail);
8276
8277 lea(src, Address(src, len, Address::times_2));
8278 lea(dst, Address(dst, len, Address::times_1));
8279 negptr(len);
8280
8281 bind(copy_32_loop);
8282 evmovdquw(tmp1Reg, Address(src, len, Address::times_2), Assembler::AVX_512bit);
8283 evpcmpuw(mask1, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
8284 kortestdl(mask1, mask1);
8285 jccb(Assembler::carryClear, reset_for_copy_tail);
8286
8287 // All elements in current processed chunk are valid candidates for
8288 // compression. Write a truncated byte elements to the memory.
8289 evpmovwb(Address(dst, len, Address::times_1), tmp1Reg, Assembler::AVX_512bit);
8290 addptr(len, 32);
8291 jccb(Assembler::notZero, copy_32_loop);
8292
8293 bind(copy_loop_tail);
8294 // bail out when there is nothing to be done
8295 testl(tmp5, 0xFFFFFFFF);
8296 jcc(Assembler::zero, done);
8297
8298 movl(len, tmp5);
8299
8300 // ~(~0 << len), where len is the # of remaining elements to process
8301 movl(tmp5, 0xFFFFFFFF);
8302 shlxl(tmp5, tmp5, len);
8303 notl(tmp5);
8304
8305 kmovdl(mask2, tmp5);
8306
8307 evmovdquw(tmp1Reg, mask2, Address(src, 0), /*merge*/ false, Assembler::AVX_512bit);
8308 evpcmpw(mask1, mask2, tmp1Reg, tmp2Reg, Assembler::le, /*signed*/ false, Assembler::AVX_512bit);
8309 ktestd(mask1, mask2);
8310 jcc(Assembler::carryClear, copy_tail);
8311
8312 evpmovwb(Address(dst, 0), mask2, tmp1Reg, Assembler::AVX_512bit);
8313 jmp(done);
8314
8315 bind(reset_for_copy_tail);
8316 lea(src, Address(src, tmp5, Address::times_2));
8317 lea(dst, Address(dst, tmp5, Address::times_1));
8318 subptr(len, tmp5);
8319 jmp(copy_chars_loop);
8320
8321 bind(below_threshold);
8322 }
8323
8324 if (UseSSE42Intrinsics) {
8325 Label copy_32_loop, copy_16, copy_tail_sse, reset_for_copy_tail;
8326
8327 // vectored compression
8328 testl(len, 0xfffffff8);
8329 jcc(Assembler::zero, copy_tail);
8330
8331 movl(tmp5, 0xff00ff00); // create mask to test for Unicode chars in vectors
8332 movdl(tmp1Reg, tmp5);
8333 pshufd(tmp1Reg, tmp1Reg, 0); // store Unicode mask in tmp1Reg
8334
8335 andl(len, 0xfffffff0);
8336 jccb(Assembler::zero, copy_16);
8337
8338 // compress 16 chars per iter
8339 pxor(tmp4Reg, tmp4Reg);
8340
8341 lea(src, Address(src, len, Address::times_2));
8342 lea(dst, Address(dst, len, Address::times_1));
8343 negptr(len);
8344
8345 bind(copy_32_loop);
8346 movdqu(tmp2Reg, Address(src, len, Address::times_2)); // load 1st 8 characters
8347 por(tmp4Reg, tmp2Reg);
8348 movdqu(tmp3Reg, Address(src, len, Address::times_2, 16)); // load next 8 characters
8349 por(tmp4Reg, tmp3Reg);
8350 ptest(tmp4Reg, tmp1Reg); // check for Unicode chars in next vector
8351 jccb(Assembler::notZero, reset_for_copy_tail);
8352 packuswb(tmp2Reg, tmp3Reg); // only ASCII chars; compress each to 1 byte
8353 movdqu(Address(dst, len, Address::times_1), tmp2Reg);
8354 addptr(len, 16);
8355 jccb(Assembler::notZero, copy_32_loop);
8356
8357 // compress next vector of 8 chars (if any)
8358 bind(copy_16);
8359 // len = 0
8360 testl(result, 0x00000008); // check if there's a block of 8 chars to compress
8361 jccb(Assembler::zero, copy_tail_sse);
8362
8363 pxor(tmp3Reg, tmp3Reg);
8364
8365 movdqu(tmp2Reg, Address(src, 0));
8366 ptest(tmp2Reg, tmp1Reg); // check for Unicode chars in vector
8367 jccb(Assembler::notZero, reset_for_copy_tail);
8368 packuswb(tmp2Reg, tmp3Reg); // only LATIN1 chars; compress each to 1 byte
8369 movq(Address(dst, 0), tmp2Reg);
8370 addptr(src, 16);
8371 addptr(dst, 8);
8372 jmpb(copy_tail_sse);
8373
8374 bind(reset_for_copy_tail);
8375 movl(tmp5, result);
8376 andl(tmp5, 0x0000000f);
8377 lea(src, Address(src, tmp5, Address::times_2));
8378 lea(dst, Address(dst, tmp5, Address::times_1));
8379 subptr(len, tmp5);
8380 jmpb(copy_chars_loop);
8381
8382 bind(copy_tail_sse);
8383 movl(len, result);
8384 andl(len, 0x00000007); // tail count (in chars)
8385 }
8386 // compress 1 char per iter
8387 bind(copy_tail);
8388 testl(len, len);
8389 jccb(Assembler::zero, done);
8390 lea(src, Address(src, len, Address::times_2));
8391 lea(dst, Address(dst, len, Address::times_1));
8392 negptr(len);
8393
8394 bind(copy_chars_loop);
8395 load_unsigned_short(tmp5, Address(src, len, Address::times_2));
8396 testl(tmp5, 0xff00); // check if Unicode char
8397 jccb(Assembler::notZero, reset_sp);
8398 movb(Address(dst, len, Address::times_1), tmp5); // ASCII char; compress to 1 byte
8399 increment(len);
8400 jccb(Assembler::notZero, copy_chars_loop);
8401
8402 // add len then return (len will be zero if compress succeeded, otherwise negative)
8403 bind(reset_sp);
8404 addl(result, len);
8405
8406 bind(done);
8407 }
8408
8409 // Inflate byte[] array to char[].
8410 // ..\jdk\src\java.base\share\classes\java\lang\StringLatin1.java
8411 // @IntrinsicCandidate
8412 // private static void inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) {
8413 // for (int i = 0; i < len; i++) {
8414 // dst[dstOff++] = (char)(src[srcOff++] & 0xff);
8415 // }
8416 // }
8417 void MacroAssembler::byte_array_inflate(Register src, Register dst, Register len,
8418 XMMRegister tmp1, Register tmp2, KRegister mask) {
8419 Label copy_chars_loop, done, below_threshold, avx3_threshold;
8420 // rsi: src
8421 // rdi: dst
8422 // rdx: len
8423 // rcx: tmp2
8424
8425 // rsi holds start addr of source byte[] to be inflated
8426 // rdi holds start addr of destination char[]
8427 // rdx holds length
8428 assert_different_registers(src, dst, len, tmp2);
8429 movl(tmp2, len);
8430 if ((UseAVX > 2) && // AVX512
8431 VM_Version::supports_avx512vlbw() &&
8432 VM_Version::supports_bmi2()) {
8433
8434 Label copy_32_loop, copy_tail;
8435 Register tmp3_aliased = len;
8436
8437 // if length of the string is less than 16, handle it in an old fashioned way
8438 testl(len, -16);
8439 jcc(Assembler::zero, below_threshold);
8440
8441 testl(len, -1 * AVX3Threshold);
8442 jcc(Assembler::zero, avx3_threshold);
8443
8444 // In order to use only one arithmetic operation for the main loop we use
8445 // this pre-calculation
8446 andl(tmp2, (32 - 1)); // tail count (in chars), 32 element wide loop
8447 andl(len, -32); // vector count
8448 jccb(Assembler::zero, copy_tail);
8449
8450 lea(src, Address(src, len, Address::times_1));
8451 lea(dst, Address(dst, len, Address::times_2));
8452 negptr(len);
8453
8454
8455 // inflate 32 chars per iter
8456 bind(copy_32_loop);
8457 vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_512bit);
8458 evmovdquw(Address(dst, len, Address::times_2), tmp1, Assembler::AVX_512bit);
8459 addptr(len, 32);
8460 jcc(Assembler::notZero, copy_32_loop);
8461
8462 bind(copy_tail);
8463 // bail out when there is nothing to be done
8464 testl(tmp2, -1); // we don't destroy the contents of tmp2 here
8465 jcc(Assembler::zero, done);
8466
8467 // ~(~0 << length), where length is the # of remaining elements to process
8468 movl(tmp3_aliased, -1);
8469 shlxl(tmp3_aliased, tmp3_aliased, tmp2);
8470 notl(tmp3_aliased);
8471 kmovdl(mask, tmp3_aliased);
8472 evpmovzxbw(tmp1, mask, Address(src, 0), Assembler::AVX_512bit);
8473 evmovdquw(Address(dst, 0), mask, tmp1, /*merge*/ true, Assembler::AVX_512bit);
8474
8475 jmp(done);
8476 bind(avx3_threshold);
8477 }
8478 if (UseSSE42Intrinsics) {
8479 Label copy_16_loop, copy_8_loop, copy_bytes, copy_new_tail, copy_tail;
8480
8481 if (UseAVX > 1) {
8482 andl(tmp2, (16 - 1));
8483 andl(len, -16);
8484 jccb(Assembler::zero, copy_new_tail);
8485 } else {
8486 andl(tmp2, 0x00000007); // tail count (in chars)
8487 andl(len, 0xfffffff8); // vector count (in chars)
8488 jccb(Assembler::zero, copy_tail);
8489 }
8490
8491 // vectored inflation
8492 lea(src, Address(src, len, Address::times_1));
8493 lea(dst, Address(dst, len, Address::times_2));
8494 negptr(len);
8495
8496 if (UseAVX > 1) {
8497 bind(copy_16_loop);
8498 vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_256bit);
8499 vmovdqu(Address(dst, len, Address::times_2), tmp1);
8500 addptr(len, 16);
8501 jcc(Assembler::notZero, copy_16_loop);
8502
8503 bind(below_threshold);
8504 bind(copy_new_tail);
8505 movl(len, tmp2);
8506 andl(tmp2, 0x00000007);
8507 andl(len, 0xFFFFFFF8);
8508 jccb(Assembler::zero, copy_tail);
8509
8510 pmovzxbw(tmp1, Address(src, 0));
8511 movdqu(Address(dst, 0), tmp1);
8512 addptr(src, 8);
8513 addptr(dst, 2 * 8);
8514
8515 jmp(copy_tail, true);
8516 }
8517
8518 // inflate 8 chars per iter
8519 bind(copy_8_loop);
8520 pmovzxbw(tmp1, Address(src, len, Address::times_1)); // unpack to 8 words
8521 movdqu(Address(dst, len, Address::times_2), tmp1);
8522 addptr(len, 8);
8523 jcc(Assembler::notZero, copy_8_loop);
8524
8525 bind(copy_tail);
8526 movl(len, tmp2);
8527
8528 cmpl(len, 4);
8529 jccb(Assembler::less, copy_bytes);
8530
8531 movdl(tmp1, Address(src, 0)); // load 4 byte chars
8532 pmovzxbw(tmp1, tmp1);
8533 movq(Address(dst, 0), tmp1);
8534 subptr(len, 4);
8535 addptr(src, 4);
8536 addptr(dst, 8);
8537
8538 bind(copy_bytes);
8539 } else {
8540 bind(below_threshold);
8541 }
8542
8543 testl(len, len);
8544 jccb(Assembler::zero, done);
8545 lea(src, Address(src, len, Address::times_1));
8546 lea(dst, Address(dst, len, Address::times_2));
8547 negptr(len);
8548
8549 // inflate 1 char per iter
8550 bind(copy_chars_loop);
8551 load_unsigned_byte(tmp2, Address(src, len, Address::times_1)); // load byte char
8552 movw(Address(dst, len, Address::times_2), tmp2); // inflate byte char to word
8553 increment(len);
8554 jcc(Assembler::notZero, copy_chars_loop);
8555
8556 bind(done);
8557 }
8558
8559 void MacroAssembler::evmovdqu(BasicType type, KRegister kmask, XMMRegister dst, XMMRegister src, bool merge, int vector_len) {
8560 switch(type) {
8561 case T_BYTE:
8562 case T_BOOLEAN:
8563 evmovdqub(dst, kmask, src, merge, vector_len);
8564 break;
8565 case T_CHAR:
8566 case T_SHORT:
8567 evmovdquw(dst, kmask, src, merge, vector_len);
8568 break;
8569 case T_INT:
8570 case T_FLOAT:
8571 evmovdqul(dst, kmask, src, merge, vector_len);
8572 break;
8573 case T_LONG:
8574 case T_DOUBLE:
8575 evmovdquq(dst, kmask, src, merge, vector_len);
8576 break;
8577 default:
8578 fatal("Unexpected type argument %s", type2name(type));
8579 break;
8580 }
8581 }
8582
8583
8584 void MacroAssembler::evmovdqu(BasicType type, KRegister kmask, XMMRegister dst, Address src, bool merge, int vector_len) {
8585 switch(type) {
8586 case T_BYTE:
8587 case T_BOOLEAN:
8588 evmovdqub(dst, kmask, src, merge, vector_len);
8589 break;
8590 case T_CHAR:
8591 case T_SHORT:
8592 evmovdquw(dst, kmask, src, merge, vector_len);
8593 break;
8594 case T_INT:
8595 case T_FLOAT:
8596 evmovdqul(dst, kmask, src, merge, vector_len);
8597 break;
8598 case T_LONG:
8599 case T_DOUBLE:
8600 evmovdquq(dst, kmask, src, merge, vector_len);
8601 break;
8602 default:
8603 fatal("Unexpected type argument %s", type2name(type));
8604 break;
8605 }
8606 }
8607
8608 void MacroAssembler::evmovdqu(BasicType type, KRegister kmask, Address dst, XMMRegister src, bool merge, int vector_len) {
8609 switch(type) {
8610 case T_BYTE:
8611 case T_BOOLEAN:
8612 evmovdqub(dst, kmask, src, merge, vector_len);
8613 break;
8614 case T_CHAR:
8615 case T_SHORT:
8616 evmovdquw(dst, kmask, src, merge, vector_len);
8617 break;
8618 case T_INT:
8619 case T_FLOAT:
8620 evmovdqul(dst, kmask, src, merge, vector_len);
8621 break;
8622 case T_LONG:
8623 case T_DOUBLE:
8624 evmovdquq(dst, kmask, src, merge, vector_len);
8625 break;
8626 default:
8627 fatal("Unexpected type argument %s", type2name(type));
8628 break;
8629 }
8630 }
8631
8632 void MacroAssembler::knot(uint masklen, KRegister dst, KRegister src, KRegister ktmp, Register rtmp) {
8633 switch(masklen) {
8634 case 2:
8635 knotbl(dst, src);
8636 movl(rtmp, 3);
8637 kmovbl(ktmp, rtmp);
8638 kandbl(dst, ktmp, dst);
8639 break;
8640 case 4:
8641 knotbl(dst, src);
8642 movl(rtmp, 15);
8643 kmovbl(ktmp, rtmp);
8644 kandbl(dst, ktmp, dst);
8645 break;
8646 case 8:
8647 knotbl(dst, src);
8648 break;
8649 case 16:
8650 knotwl(dst, src);
8651 break;
8652 case 32:
8653 knotdl(dst, src);
8654 break;
8655 case 64:
8656 knotql(dst, src);
8657 break;
8658 default:
8659 fatal("Unexpected vector length %d", masklen);
8660 break;
8661 }
8662 }
8663
8664 void MacroAssembler::kand(BasicType type, KRegister dst, KRegister src1, KRegister src2) {
8665 switch(type) {
8666 case T_BOOLEAN:
8667 case T_BYTE:
8668 kandbl(dst, src1, src2);
8669 break;
8670 case T_CHAR:
8671 case T_SHORT:
8672 kandwl(dst, src1, src2);
8673 break;
8674 case T_INT:
8675 case T_FLOAT:
8676 kanddl(dst, src1, src2);
8677 break;
8678 case T_LONG:
8679 case T_DOUBLE:
8680 kandql(dst, src1, src2);
8681 break;
8682 default:
8683 fatal("Unexpected type argument %s", type2name(type));
8684 break;
8685 }
8686 }
8687
8688 void MacroAssembler::kor(BasicType type, KRegister dst, KRegister src1, KRegister src2) {
8689 switch(type) {
8690 case T_BOOLEAN:
8691 case T_BYTE:
8692 korbl(dst, src1, src2);
8693 break;
8694 case T_CHAR:
8695 case T_SHORT:
8696 korwl(dst, src1, src2);
8697 break;
8698 case T_INT:
8699 case T_FLOAT:
8700 kordl(dst, src1, src2);
8701 break;
8702 case T_LONG:
8703 case T_DOUBLE:
8704 korql(dst, src1, src2);
8705 break;
8706 default:
8707 fatal("Unexpected type argument %s", type2name(type));
8708 break;
8709 }
8710 }
8711
8712 void MacroAssembler::kxor(BasicType type, KRegister dst, KRegister src1, KRegister src2) {
8713 switch(type) {
8714 case T_BOOLEAN:
8715 case T_BYTE:
8716 kxorbl(dst, src1, src2);
8717 break;
8718 case T_CHAR:
8719 case T_SHORT:
8720 kxorwl(dst, src1, src2);
8721 break;
8722 case T_INT:
8723 case T_FLOAT:
8724 kxordl(dst, src1, src2);
8725 break;
8726 case T_LONG:
8727 case T_DOUBLE:
8728 kxorql(dst, src1, src2);
8729 break;
8730 default:
8731 fatal("Unexpected type argument %s", type2name(type));
8732 break;
8733 }
8734 }
8735
8736 void MacroAssembler::evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
8737 switch(type) {
8738 case T_BOOLEAN:
8739 case T_BYTE:
8740 evpermb(dst, mask, nds, src, merge, vector_len); break;
8741 case T_CHAR:
8742 case T_SHORT:
8743 evpermw(dst, mask, nds, src, merge, vector_len); break;
8744 case T_INT:
8745 case T_FLOAT:
8746 evpermd(dst, mask, nds, src, merge, vector_len); break;
8747 case T_LONG:
8748 case T_DOUBLE:
8749 evpermq(dst, mask, nds, src, merge, vector_len); break;
8750 default:
8751 fatal("Unexpected type argument %s", type2name(type)); break;
8752 }
8753 }
8754
8755 void MacroAssembler::evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) {
8756 switch(type) {
8757 case T_BOOLEAN:
8758 case T_BYTE:
8759 evpermb(dst, mask, nds, src, merge, vector_len); break;
8760 case T_CHAR:
8761 case T_SHORT:
8762 evpermw(dst, mask, nds, src, merge, vector_len); break;
8763 case T_INT:
8764 case T_FLOAT:
8765 evpermd(dst, mask, nds, src, merge, vector_len); break;
8766 case T_LONG:
8767 case T_DOUBLE:
8768 evpermq(dst, mask, nds, src, merge, vector_len); break;
8769 default:
8770 fatal("Unexpected type argument %s", type2name(type)); break;
8771 }
8772 }
8773
8774 void MacroAssembler::evpminu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) {
8775 switch(type) {
8776 case T_BYTE:
8777 evpminub(dst, mask, nds, src, merge, vector_len); break;
8778 case T_SHORT:
8779 evpminuw(dst, mask, nds, src, merge, vector_len); break;
8780 case T_INT:
8781 evpminud(dst, mask, nds, src, merge, vector_len); break;
8782 case T_LONG:
8783 evpminuq(dst, mask, nds, src, merge, vector_len); break;
8784 default:
8785 fatal("Unexpected type argument %s", type2name(type)); break;
8786 }
8787 }
8788
8789 void MacroAssembler::evpmaxu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) {
8790 switch(type) {
8791 case T_BYTE:
8792 evpmaxub(dst, mask, nds, src, merge, vector_len); break;
8793 case T_SHORT:
8794 evpmaxuw(dst, mask, nds, src, merge, vector_len); break;
8795 case T_INT:
8796 evpmaxud(dst, mask, nds, src, merge, vector_len); break;
8797 case T_LONG:
8798 evpmaxuq(dst, mask, nds, src, merge, vector_len); break;
8799 default:
8800 fatal("Unexpected type argument %s", type2name(type)); break;
8801 }
8802 }
8803
8804 void MacroAssembler::evpminu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
8805 switch(type) {
8806 case T_BYTE:
8807 evpminub(dst, mask, nds, src, merge, vector_len); break;
8808 case T_SHORT:
8809 evpminuw(dst, mask, nds, src, merge, vector_len); break;
8810 case T_INT:
8811 evpminud(dst, mask, nds, src, merge, vector_len); break;
8812 case T_LONG:
8813 evpminuq(dst, mask, nds, src, merge, vector_len); break;
8814 default:
8815 fatal("Unexpected type argument %s", type2name(type)); break;
8816 }
8817 }
8818
8819 void MacroAssembler::evpmaxu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
8820 switch(type) {
8821 case T_BYTE:
8822 evpmaxub(dst, mask, nds, src, merge, vector_len); break;
8823 case T_SHORT:
8824 evpmaxuw(dst, mask, nds, src, merge, vector_len); break;
8825 case T_INT:
8826 evpmaxud(dst, mask, nds, src, merge, vector_len); break;
8827 case T_LONG:
8828 evpmaxuq(dst, mask, nds, src, merge, vector_len); break;
8829 default:
8830 fatal("Unexpected type argument %s", type2name(type)); break;
8831 }
8832 }
8833
8834 void MacroAssembler::evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) {
8835 switch(type) {
8836 case T_BYTE:
8837 evpminsb(dst, mask, nds, src, merge, vector_len); break;
8838 case T_SHORT:
8839 evpminsw(dst, mask, nds, src, merge, vector_len); break;
8840 case T_INT:
8841 evpminsd(dst, mask, nds, src, merge, vector_len); break;
8842 case T_LONG:
8843 evpminsq(dst, mask, nds, src, merge, vector_len); break;
8844 case T_FLOAT:
8845 evminmaxps(dst, mask, nds, src, merge, AVX10_MINMAX_MIN_COMPARE_SIGN, vector_len); break;
8846 case T_DOUBLE:
8847 evminmaxpd(dst, mask, nds, src, merge, AVX10_MINMAX_MIN_COMPARE_SIGN, vector_len); break;
8848 default:
8849 fatal("Unexpected type argument %s", type2name(type)); break;
8850 }
8851 }
8852
8853 void MacroAssembler::evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) {
8854 switch(type) {
8855 case T_BYTE:
8856 evpmaxsb(dst, mask, nds, src, merge, vector_len); break;
8857 case T_SHORT:
8858 evpmaxsw(dst, mask, nds, src, merge, vector_len); break;
8859 case T_INT:
8860 evpmaxsd(dst, mask, nds, src, merge, vector_len); break;
8861 case T_LONG:
8862 evpmaxsq(dst, mask, nds, src, merge, vector_len); break;
8863 case T_FLOAT:
8864 evminmaxps(dst, mask, nds, src, merge, AVX10_MINMAX_MAX_COMPARE_SIGN, vector_len); break;
8865 case T_DOUBLE:
8866 evminmaxpd(dst, mask, nds, src, merge, AVX10_MINMAX_MAX_COMPARE_SIGN, vector_len); break;
8867 default:
8868 fatal("Unexpected type argument %s", type2name(type)); break;
8869 }
8870 }
8871
8872 void MacroAssembler::evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
8873 switch(type) {
8874 case T_BYTE:
8875 evpminsb(dst, mask, nds, src, merge, vector_len); break;
8876 case T_SHORT:
8877 evpminsw(dst, mask, nds, src, merge, vector_len); break;
8878 case T_INT:
8879 evpminsd(dst, mask, nds, src, merge, vector_len); break;
8880 case T_LONG:
8881 evpminsq(dst, mask, nds, src, merge, vector_len); break;
8882 case T_FLOAT:
8883 evminmaxps(dst, mask, nds, src, merge, AVX10_MINMAX_MIN_COMPARE_SIGN, vector_len); break;
8884 case T_DOUBLE:
8885 evminmaxpd(dst, mask, nds, src, merge, AVX10_MINMAX_MIN_COMPARE_SIGN, vector_len); break;
8886 default:
8887 fatal("Unexpected type argument %s", type2name(type)); break;
8888 }
8889 }
8890
8891 void MacroAssembler::evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
8892 switch(type) {
8893 case T_BYTE:
8894 evpmaxsb(dst, mask, nds, src, merge, vector_len); break;
8895 case T_SHORT:
8896 evpmaxsw(dst, mask, nds, src, merge, vector_len); break;
8897 case T_INT:
8898 evpmaxsd(dst, mask, nds, src, merge, vector_len); break;
8899 case T_LONG:
8900 evpmaxsq(dst, mask, nds, src, merge, vector_len); break;
8901 case T_FLOAT:
8902 evminmaxps(dst, mask, nds, src, merge, AVX10_MINMAX_MAX_COMPARE_SIGN, vector_len); break;
8903 case T_DOUBLE:
8904 evminmaxps(dst, mask, nds, src, merge, AVX10_MINMAX_MAX_COMPARE_SIGN, vector_len); break;
8905 default:
8906 fatal("Unexpected type argument %s", type2name(type)); break;
8907 }
8908 }
8909
8910 void MacroAssembler::evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
8911 switch(type) {
8912 case T_INT:
8913 evpxord(dst, mask, nds, src, merge, vector_len); break;
8914 case T_LONG:
8915 evpxorq(dst, mask, nds, src, merge, vector_len); break;
8916 default:
8917 fatal("Unexpected type argument %s", type2name(type)); break;
8918 }
8919 }
8920
8921 void MacroAssembler::evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) {
8922 switch(type) {
8923 case T_INT:
8924 evpxord(dst, mask, nds, src, merge, vector_len); break;
8925 case T_LONG:
8926 evpxorq(dst, mask, nds, src, merge, vector_len); break;
8927 default:
8928 fatal("Unexpected type argument %s", type2name(type)); break;
8929 }
8930 }
8931
8932 void MacroAssembler::evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
8933 switch(type) {
8934 case T_INT:
8935 Assembler::evpord(dst, mask, nds, src, merge, vector_len); break;
8936 case T_LONG:
8937 evporq(dst, mask, nds, src, merge, vector_len); break;
8938 default:
8939 fatal("Unexpected type argument %s", type2name(type)); break;
8940 }
8941 }
8942
8943 void MacroAssembler::evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) {
8944 switch(type) {
8945 case T_INT:
8946 Assembler::evpord(dst, mask, nds, src, merge, vector_len); break;
8947 case T_LONG:
8948 evporq(dst, mask, nds, src, merge, vector_len); break;
8949 default:
8950 fatal("Unexpected type argument %s", type2name(type)); break;
8951 }
8952 }
8953
8954 void MacroAssembler::evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
8955 switch(type) {
8956 case T_INT:
8957 evpandd(dst, mask, nds, src, merge, vector_len); break;
8958 case T_LONG:
8959 evpandq(dst, mask, nds, src, merge, vector_len); break;
8960 default:
8961 fatal("Unexpected type argument %s", type2name(type)); break;
8962 }
8963 }
8964
8965 void MacroAssembler::evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) {
8966 switch(type) {
8967 case T_INT:
8968 evpandd(dst, mask, nds, src, merge, vector_len); break;
8969 case T_LONG:
8970 evpandq(dst, mask, nds, src, merge, vector_len); break;
8971 default:
8972 fatal("Unexpected type argument %s", type2name(type)); break;
8973 }
8974 }
8975
8976 void MacroAssembler::kortest(uint masklen, KRegister src1, KRegister src2) {
8977 switch(masklen) {
8978 case 8:
8979 kortestbl(src1, src2);
8980 break;
8981 case 16:
8982 kortestwl(src1, src2);
8983 break;
8984 case 32:
8985 kortestdl(src1, src2);
8986 break;
8987 case 64:
8988 kortestql(src1, src2);
8989 break;
8990 default:
8991 fatal("Unexpected mask length %d", masklen);
8992 break;
8993 }
8994 }
8995
8996
8997 void MacroAssembler::ktest(uint masklen, KRegister src1, KRegister src2) {
8998 switch(masklen) {
8999 case 8:
9000 ktestbl(src1, src2);
9001 break;
9002 case 16:
9003 ktestwl(src1, src2);
9004 break;
9005 case 32:
9006 ktestdl(src1, src2);
9007 break;
9008 case 64:
9009 ktestql(src1, src2);
9010 break;
9011 default:
9012 fatal("Unexpected mask length %d", masklen);
9013 break;
9014 }
9015 }
9016
9017 void MacroAssembler::evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc) {
9018 switch(type) {
9019 case T_INT:
9020 evprold(dst, mask, src, shift, merge, vlen_enc); break;
9021 case T_LONG:
9022 evprolq(dst, mask, src, shift, merge, vlen_enc); break;
9023 default:
9024 fatal("Unexpected type argument %s", type2name(type)); break;
9025 break;
9026 }
9027 }
9028
9029 void MacroAssembler::evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc) {
9030 switch(type) {
9031 case T_INT:
9032 evprord(dst, mask, src, shift, merge, vlen_enc); break;
9033 case T_LONG:
9034 evprorq(dst, mask, src, shift, merge, vlen_enc); break;
9035 default:
9036 fatal("Unexpected type argument %s", type2name(type)); break;
9037 }
9038 }
9039
9040 void MacroAssembler::evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc) {
9041 switch(type) {
9042 case T_INT:
9043 evprolvd(dst, mask, src1, src2, merge, vlen_enc); break;
9044 case T_LONG:
9045 evprolvq(dst, mask, src1, src2, merge, vlen_enc); break;
9046 default:
9047 fatal("Unexpected type argument %s", type2name(type)); break;
9048 }
9049 }
9050
9051 void MacroAssembler::evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc) {
9052 switch(type) {
9053 case T_INT:
9054 evprorvd(dst, mask, src1, src2, merge, vlen_enc); break;
9055 case T_LONG:
9056 evprorvq(dst, mask, src1, src2, merge, vlen_enc); break;
9057 default:
9058 fatal("Unexpected type argument %s", type2name(type)); break;
9059 }
9060 }
9061
9062 void MacroAssembler::evpandq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
9063 assert(rscratch != noreg || always_reachable(src), "missing");
9064
9065 if (reachable(src)) {
9066 evpandq(dst, nds, as_Address(src), vector_len);
9067 } else {
9068 lea(rscratch, src);
9069 evpandq(dst, nds, Address(rscratch, 0), vector_len);
9070 }
9071 }
9072
9073 void MacroAssembler::evpaddq(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, bool merge, int vector_len, Register rscratch) {
9074 assert(rscratch != noreg || always_reachable(src), "missing");
9075
9076 if (reachable(src)) {
9077 Assembler::evpaddq(dst, mask, nds, as_Address(src), merge, vector_len);
9078 } else {
9079 lea(rscratch, src);
9080 Assembler::evpaddq(dst, mask, nds, Address(rscratch, 0), merge, vector_len);
9081 }
9082 }
9083
9084 void MacroAssembler::evporq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
9085 assert(rscratch != noreg || always_reachable(src), "missing");
9086
9087 if (reachable(src)) {
9088 evporq(dst, nds, as_Address(src), vector_len);
9089 } else {
9090 lea(rscratch, src);
9091 evporq(dst, nds, Address(rscratch, 0), vector_len);
9092 }
9093 }
9094
9095 void MacroAssembler::vpshufb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
9096 assert(rscratch != noreg || always_reachable(src), "missing");
9097
9098 if (reachable(src)) {
9099 vpshufb(dst, nds, as_Address(src), vector_len);
9100 } else {
9101 lea(rscratch, src);
9102 vpshufb(dst, nds, Address(rscratch, 0), vector_len);
9103 }
9104 }
9105
9106 void MacroAssembler::vpor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
9107 assert(rscratch != noreg || always_reachable(src), "missing");
9108
9109 if (reachable(src)) {
9110 Assembler::vpor(dst, nds, as_Address(src), vector_len);
9111 } else {
9112 lea(rscratch, src);
9113 Assembler::vpor(dst, nds, Address(rscratch, 0), vector_len);
9114 }
9115 }
9116
9117 void MacroAssembler::vpternlogq(XMMRegister dst, int imm8, XMMRegister src2, AddressLiteral src3, int vector_len, Register rscratch) {
9118 assert(rscratch != noreg || always_reachable(src3), "missing");
9119
9120 if (reachable(src3)) {
9121 vpternlogq(dst, imm8, src2, as_Address(src3), vector_len);
9122 } else {
9123 lea(rscratch, src3);
9124 vpternlogq(dst, imm8, src2, Address(rscratch, 0), vector_len);
9125 }
9126 }
9127
9128 #if COMPILER2_OR_JVMCI
9129
9130 void MacroAssembler::fill_masked(BasicType bt, Address dst, XMMRegister xmm, KRegister mask,
9131 Register length, Register temp, int vec_enc) {
9132 // Computing mask for predicated vector store.
9133 movptr(temp, -1);
9134 bzhiq(temp, temp, length);
9135 kmov(mask, temp);
9136 evmovdqu(bt, mask, dst, xmm, true, vec_enc);
9137 }
9138
9139 // Set memory operation for length "less than" 64 bytes.
9140 void MacroAssembler::fill64_masked(uint shift, Register dst, int disp,
9141 XMMRegister xmm, KRegister mask, Register length,
9142 Register temp, bool use64byteVector) {
9143 assert(MaxVectorSize >= 32, "vector length should be >= 32");
9144 const BasicType type[] = { T_BYTE, T_SHORT, T_INT, T_LONG};
9145 if (!use64byteVector) {
9146 fill32(dst, disp, xmm);
9147 subptr(length, 32 >> shift);
9148 fill32_masked(shift, dst, disp + 32, xmm, mask, length, temp);
9149 } else {
9150 assert(MaxVectorSize == 64, "vector length != 64");
9151 fill_masked(type[shift], Address(dst, disp), xmm, mask, length, temp, Assembler::AVX_512bit);
9152 }
9153 }
9154
9155
9156 void MacroAssembler::fill32_masked(uint shift, Register dst, int disp,
9157 XMMRegister xmm, KRegister mask, Register length,
9158 Register temp) {
9159 assert(MaxVectorSize >= 32, "vector length should be >= 32");
9160 const BasicType type[] = { T_BYTE, T_SHORT, T_INT, T_LONG};
9161 fill_masked(type[shift], Address(dst, disp), xmm, mask, length, temp, Assembler::AVX_256bit);
9162 }
9163
9164
9165 void MacroAssembler::fill32(Address dst, XMMRegister xmm) {
9166 assert(MaxVectorSize >= 32, "vector length should be >= 32");
9167 vmovdqu(dst, xmm);
9168 }
9169
9170 void MacroAssembler::fill32(Register dst, int disp, XMMRegister xmm) {
9171 fill32(Address(dst, disp), xmm);
9172 }
9173
9174 void MacroAssembler::fill64(Address dst, XMMRegister xmm, bool use64byteVector) {
9175 assert(MaxVectorSize >= 32, "vector length should be >= 32");
9176 if (!use64byteVector) {
9177 fill32(dst, xmm);
9178 fill32(dst.plus_disp(32), xmm);
9179 } else {
9180 evmovdquq(dst, xmm, Assembler::AVX_512bit);
9181 }
9182 }
9183
9184 void MacroAssembler::fill64(Register dst, int disp, XMMRegister xmm, bool use64byteVector) {
9185 fill64(Address(dst, disp), xmm, use64byteVector);
9186 }
9187
9188 void MacroAssembler::generate_fill_avx3(BasicType type, Register to, Register value,
9189 Register count, Register rtmp, XMMRegister xtmp) {
9190 Label L_exit;
9191 Label L_fill_start;
9192 Label L_fill_64_bytes;
9193 Label L_fill_96_bytes;
9194 Label L_fill_128_bytes;
9195 Label L_fill_128_bytes_loop;
9196 Label L_fill_128_loop_header;
9197 Label L_fill_128_bytes_loop_header;
9198 Label L_fill_128_bytes_loop_pre_header;
9199 Label L_fill_zmm_sequence;
9200
9201 int shift = -1;
9202 int avx3threshold = VM_Version::avx3_threshold();
9203 switch(type) {
9204 case T_BYTE: shift = 0;
9205 break;
9206 case T_SHORT: shift = 1;
9207 break;
9208 case T_INT: shift = 2;
9209 break;
9210 /* Uncomment when LONG fill stubs are supported.
9211 case T_LONG: shift = 3;
9212 break;
9213 */
9214 default:
9215 fatal("Unhandled type: %s\n", type2name(type));
9216 }
9217
9218 if ((avx3threshold != 0) || (MaxVectorSize == 32)) {
9219
9220 if (MaxVectorSize == 64) {
9221 cmpq(count, avx3threshold >> shift);
9222 jcc(Assembler::greater, L_fill_zmm_sequence);
9223 }
9224
9225 evpbroadcast(type, xtmp, value, Assembler::AVX_256bit);
9226
9227 bind(L_fill_start);
9228
9229 cmpq(count, 32 >> shift);
9230 jccb(Assembler::greater, L_fill_64_bytes);
9231 fill32_masked(shift, to, 0, xtmp, k2, count, rtmp);
9232 jmp(L_exit);
9233
9234 bind(L_fill_64_bytes);
9235 cmpq(count, 64 >> shift);
9236 jccb(Assembler::greater, L_fill_96_bytes);
9237 fill64_masked(shift, to, 0, xtmp, k2, count, rtmp);
9238 jmp(L_exit);
9239
9240 bind(L_fill_96_bytes);
9241 cmpq(count, 96 >> shift);
9242 jccb(Assembler::greater, L_fill_128_bytes);
9243 fill64(to, 0, xtmp);
9244 subq(count, 64 >> shift);
9245 fill32_masked(shift, to, 64, xtmp, k2, count, rtmp);
9246 jmp(L_exit);
9247
9248 bind(L_fill_128_bytes);
9249 cmpq(count, 128 >> shift);
9250 jccb(Assembler::greater, L_fill_128_bytes_loop_pre_header);
9251 fill64(to, 0, xtmp);
9252 fill32(to, 64, xtmp);
9253 subq(count, 96 >> shift);
9254 fill32_masked(shift, to, 96, xtmp, k2, count, rtmp);
9255 jmp(L_exit);
9256
9257 bind(L_fill_128_bytes_loop_pre_header);
9258 {
9259 mov(rtmp, to);
9260 andq(rtmp, 31);
9261 jccb(Assembler::zero, L_fill_128_bytes_loop_header);
9262 negq(rtmp);
9263 addq(rtmp, 32);
9264 mov64(r8, -1L);
9265 bzhiq(r8, r8, rtmp);
9266 kmovql(k2, r8);
9267 evmovdqu(T_BYTE, k2, Address(to, 0), xtmp, true, Assembler::AVX_256bit);
9268 addq(to, rtmp);
9269 shrq(rtmp, shift);
9270 subq(count, rtmp);
9271 }
9272
9273 cmpq(count, 128 >> shift);
9274 jcc(Assembler::less, L_fill_start);
9275
9276 bind(L_fill_128_bytes_loop_header);
9277 subq(count, 128 >> shift);
9278
9279 align32();
9280 bind(L_fill_128_bytes_loop);
9281 fill64(to, 0, xtmp);
9282 fill64(to, 64, xtmp);
9283 addq(to, 128);
9284 subq(count, 128 >> shift);
9285 jccb(Assembler::greaterEqual, L_fill_128_bytes_loop);
9286
9287 addq(count, 128 >> shift);
9288 jcc(Assembler::zero, L_exit);
9289 jmp(L_fill_start);
9290 }
9291
9292 if (MaxVectorSize == 64) {
9293 // Sequence using 64 byte ZMM register.
9294 Label L_fill_128_bytes_zmm;
9295 Label L_fill_192_bytes_zmm;
9296 Label L_fill_192_bytes_loop_zmm;
9297 Label L_fill_192_bytes_loop_header_zmm;
9298 Label L_fill_192_bytes_loop_pre_header_zmm;
9299 Label L_fill_start_zmm_sequence;
9300
9301 bind(L_fill_zmm_sequence);
9302 evpbroadcast(type, xtmp, value, Assembler::AVX_512bit);
9303
9304 bind(L_fill_start_zmm_sequence);
9305 cmpq(count, 64 >> shift);
9306 jccb(Assembler::greater, L_fill_128_bytes_zmm);
9307 fill64_masked(shift, to, 0, xtmp, k2, count, rtmp, true);
9308 jmp(L_exit);
9309
9310 bind(L_fill_128_bytes_zmm);
9311 cmpq(count, 128 >> shift);
9312 jccb(Assembler::greater, L_fill_192_bytes_zmm);
9313 fill64(to, 0, xtmp, true);
9314 subq(count, 64 >> shift);
9315 fill64_masked(shift, to, 64, xtmp, k2, count, rtmp, true);
9316 jmp(L_exit);
9317
9318 bind(L_fill_192_bytes_zmm);
9319 cmpq(count, 192 >> shift);
9320 jccb(Assembler::greater, L_fill_192_bytes_loop_pre_header_zmm);
9321 fill64(to, 0, xtmp, true);
9322 fill64(to, 64, xtmp, true);
9323 subq(count, 128 >> shift);
9324 fill64_masked(shift, to, 128, xtmp, k2, count, rtmp, true);
9325 jmp(L_exit);
9326
9327 bind(L_fill_192_bytes_loop_pre_header_zmm);
9328 {
9329 movq(rtmp, to);
9330 andq(rtmp, 63);
9331 jccb(Assembler::zero, L_fill_192_bytes_loop_header_zmm);
9332 negq(rtmp);
9333 addq(rtmp, 64);
9334 mov64(r8, -1L);
9335 bzhiq(r8, r8, rtmp);
9336 kmovql(k2, r8);
9337 evmovdqu(T_BYTE, k2, Address(to, 0), xtmp, true, Assembler::AVX_512bit);
9338 addq(to, rtmp);
9339 shrq(rtmp, shift);
9340 subq(count, rtmp);
9341 }
9342
9343 cmpq(count, 192 >> shift);
9344 jcc(Assembler::less, L_fill_start_zmm_sequence);
9345
9346 bind(L_fill_192_bytes_loop_header_zmm);
9347 subq(count, 192 >> shift);
9348
9349 align32();
9350 bind(L_fill_192_bytes_loop_zmm);
9351 fill64(to, 0, xtmp, true);
9352 fill64(to, 64, xtmp, true);
9353 fill64(to, 128, xtmp, true);
9354 addq(to, 192);
9355 subq(count, 192 >> shift);
9356 jccb(Assembler::greaterEqual, L_fill_192_bytes_loop_zmm);
9357
9358 addq(count, 192 >> shift);
9359 jcc(Assembler::zero, L_exit);
9360 jmp(L_fill_start_zmm_sequence);
9361 }
9362 bind(L_exit);
9363 }
9364 #endif //COMPILER2_OR_JVMCI
9365
9366
9367 void MacroAssembler::convert_f2i(Register dst, XMMRegister src) {
9368 Label done;
9369 cvttss2sil(dst, src);
9370 // Conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
9371 cmpl(dst, 0x80000000); // float_sign_flip
9372 jccb(Assembler::notEqual, done);
9373 subptr(rsp, 8);
9374 movflt(Address(rsp, 0), src);
9375 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::f2i_fixup())));
9376 pop(dst);
9377 bind(done);
9378 }
9379
9380 void MacroAssembler::convert_d2i(Register dst, XMMRegister src) {
9381 Label done;
9382 cvttsd2sil(dst, src);
9383 // Conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
9384 cmpl(dst, 0x80000000); // float_sign_flip
9385 jccb(Assembler::notEqual, done);
9386 subptr(rsp, 8);
9387 movdbl(Address(rsp, 0), src);
9388 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::d2i_fixup())));
9389 pop(dst);
9390 bind(done);
9391 }
9392
9393 void MacroAssembler::convert_f2l(Register dst, XMMRegister src) {
9394 Label done;
9395 cvttss2siq(dst, src);
9396 cmp64(dst, ExternalAddress((address) StubRoutines::x86::double_sign_flip()));
9397 jccb(Assembler::notEqual, done);
9398 subptr(rsp, 8);
9399 movflt(Address(rsp, 0), src);
9400 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::f2l_fixup())));
9401 pop(dst);
9402 bind(done);
9403 }
9404
9405 void MacroAssembler::round_float(Register dst, XMMRegister src, Register rtmp, Register rcx) {
9406 // Following code is line by line assembly translation rounding algorithm.
9407 // Please refer to java.lang.Math.round(float) algorithm for details.
9408 const int32_t FloatConsts_EXP_BIT_MASK = 0x7F800000;
9409 const int32_t FloatConsts_SIGNIFICAND_WIDTH = 24;
9410 const int32_t FloatConsts_EXP_BIAS = 127;
9411 const int32_t FloatConsts_SIGNIF_BIT_MASK = 0x007FFFFF;
9412 const int32_t MINUS_32 = 0xFFFFFFE0;
9413 Label L_special_case, L_block1, L_exit;
9414 movl(rtmp, FloatConsts_EXP_BIT_MASK);
9415 movdl(dst, src);
9416 andl(dst, rtmp);
9417 sarl(dst, FloatConsts_SIGNIFICAND_WIDTH - 1);
9418 movl(rtmp, FloatConsts_SIGNIFICAND_WIDTH - 2 + FloatConsts_EXP_BIAS);
9419 subl(rtmp, dst);
9420 movl(rcx, rtmp);
9421 movl(dst, MINUS_32);
9422 testl(rtmp, dst);
9423 jccb(Assembler::notEqual, L_special_case);
9424 movdl(dst, src);
9425 andl(dst, FloatConsts_SIGNIF_BIT_MASK);
9426 orl(dst, FloatConsts_SIGNIF_BIT_MASK + 1);
9427 movdl(rtmp, src);
9428 testl(rtmp, rtmp);
9429 jccb(Assembler::greaterEqual, L_block1);
9430 negl(dst);
9431 bind(L_block1);
9432 sarl(dst);
9433 addl(dst, 0x1);
9434 sarl(dst, 0x1);
9435 jmp(L_exit);
9436 bind(L_special_case);
9437 convert_f2i(dst, src);
9438 bind(L_exit);
9439 }
9440
9441 void MacroAssembler::round_double(Register dst, XMMRegister src, Register rtmp, Register rcx) {
9442 // Following code is line by line assembly translation rounding algorithm.
9443 // Please refer to java.lang.Math.round(double) algorithm for details.
9444 const int64_t DoubleConsts_EXP_BIT_MASK = 0x7FF0000000000000L;
9445 const int64_t DoubleConsts_SIGNIFICAND_WIDTH = 53;
9446 const int64_t DoubleConsts_EXP_BIAS = 1023;
9447 const int64_t DoubleConsts_SIGNIF_BIT_MASK = 0x000FFFFFFFFFFFFFL;
9448 const int64_t MINUS_64 = 0xFFFFFFFFFFFFFFC0L;
9449 Label L_special_case, L_block1, L_exit;
9450 mov64(rtmp, DoubleConsts_EXP_BIT_MASK);
9451 movq(dst, src);
9452 andq(dst, rtmp);
9453 sarq(dst, DoubleConsts_SIGNIFICAND_WIDTH - 1);
9454 mov64(rtmp, DoubleConsts_SIGNIFICAND_WIDTH - 2 + DoubleConsts_EXP_BIAS);
9455 subq(rtmp, dst);
9456 movq(rcx, rtmp);
9457 mov64(dst, MINUS_64);
9458 testq(rtmp, dst);
9459 jccb(Assembler::notEqual, L_special_case);
9460 movq(dst, src);
9461 mov64(rtmp, DoubleConsts_SIGNIF_BIT_MASK);
9462 andq(dst, rtmp);
9463 mov64(rtmp, DoubleConsts_SIGNIF_BIT_MASK + 1);
9464 orq(dst, rtmp);
9465 movq(rtmp, src);
9466 testq(rtmp, rtmp);
9467 jccb(Assembler::greaterEqual, L_block1);
9468 negq(dst);
9469 bind(L_block1);
9470 sarq(dst);
9471 addq(dst, 0x1);
9472 sarq(dst, 0x1);
9473 jmp(L_exit);
9474 bind(L_special_case);
9475 convert_d2l(dst, src);
9476 bind(L_exit);
9477 }
9478
9479 void MacroAssembler::convert_d2l(Register dst, XMMRegister src) {
9480 Label done;
9481 cvttsd2siq(dst, src);
9482 cmp64(dst, ExternalAddress((address) StubRoutines::x86::double_sign_flip()));
9483 jccb(Assembler::notEqual, done);
9484 subptr(rsp, 8);
9485 movdbl(Address(rsp, 0), src);
9486 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::d2l_fixup())));
9487 pop(dst);
9488 bind(done);
9489 }
9490
9491 void MacroAssembler::cache_wb(Address line)
9492 {
9493 // 64 bit cpus always support clflush
9494 assert(VM_Version::supports_clflush(), "clflush should be available");
9495 bool optimized = VM_Version::supports_clflushopt();
9496 bool no_evict = VM_Version::supports_clwb();
9497
9498 // prefer clwb (writeback without evict) otherwise
9499 // prefer clflushopt (potentially parallel writeback with evict)
9500 // otherwise fallback on clflush (serial writeback with evict)
9501
9502 if (optimized) {
9503 if (no_evict) {
9504 clwb(line);
9505 } else {
9506 clflushopt(line);
9507 }
9508 } else {
9509 // no need for fence when using CLFLUSH
9510 clflush(line);
9511 }
9512 }
9513
9514 void MacroAssembler::cache_wbsync(bool is_pre)
9515 {
9516 assert(VM_Version::supports_clflush(), "clflush should be available");
9517 bool optimized = VM_Version::supports_clflushopt();
9518 bool no_evict = VM_Version::supports_clwb();
9519
9520 // pick the correct implementation
9521
9522 if (!is_pre && (optimized || no_evict)) {
9523 // need an sfence for post flush when using clflushopt or clwb
9524 // otherwise no no need for any synchroniaztion
9525
9526 sfence();
9527 }
9528 }
9529
9530 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
9531 switch (cond) {
9532 // Note some conditions are synonyms for others
9533 case Assembler::zero: return Assembler::notZero;
9534 case Assembler::notZero: return Assembler::zero;
9535 case Assembler::less: return Assembler::greaterEqual;
9536 case Assembler::lessEqual: return Assembler::greater;
9537 case Assembler::greater: return Assembler::lessEqual;
9538 case Assembler::greaterEqual: return Assembler::less;
9539 case Assembler::below: return Assembler::aboveEqual;
9540 case Assembler::belowEqual: return Assembler::above;
9541 case Assembler::above: return Assembler::belowEqual;
9542 case Assembler::aboveEqual: return Assembler::below;
9543 case Assembler::overflow: return Assembler::noOverflow;
9544 case Assembler::noOverflow: return Assembler::overflow;
9545 case Assembler::negative: return Assembler::positive;
9546 case Assembler::positive: return Assembler::negative;
9547 case Assembler::parity: return Assembler::noParity;
9548 case Assembler::noParity: return Assembler::parity;
9549 }
9550 ShouldNotReachHere(); return Assembler::overflow;
9551 }
9552
9553 // This is simply a call to Thread::current()
9554 void MacroAssembler::get_thread_slow(Register thread) {
9555 if (thread != rax) {
9556 push(rax);
9557 }
9558 push(rdi);
9559 push(rsi);
9560 push(rdx);
9561 push(rcx);
9562 push(r8);
9563 push(r9);
9564 push(r10);
9565 push(r11);
9566
9567 MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, Thread::current), 0);
9568
9569 pop(r11);
9570 pop(r10);
9571 pop(r9);
9572 pop(r8);
9573 pop(rcx);
9574 pop(rdx);
9575 pop(rsi);
9576 pop(rdi);
9577 if (thread != rax) {
9578 mov(thread, rax);
9579 pop(rax);
9580 }
9581 }
9582
9583 void MacroAssembler::check_stack_alignment(Register sp, const char* msg, unsigned bias, Register tmp) {
9584 Label L_stack_ok;
9585 if (bias == 0) {
9586 testptr(sp, 2 * wordSize - 1);
9587 } else {
9588 // lea(tmp, Address(rsp, bias);
9589 mov(tmp, sp);
9590 addptr(tmp, bias);
9591 testptr(tmp, 2 * wordSize - 1);
9592 }
9593 jcc(Assembler::equal, L_stack_ok);
9594 block_comment(msg);
9595 stop(msg);
9596 bind(L_stack_ok);
9597 }
9598
9599 // Implements lightweight-locking.
9600 //
9601 // obj: the object to be locked
9602 // reg_rax: rax
9603 // thread: the thread which attempts to lock obj
9604 // tmp: a temporary register
9605 void MacroAssembler::lightweight_lock(Register basic_lock, Register obj, Register reg_rax, Register tmp, Label& slow) {
9606 Register thread = r15_thread;
9607
9608 assert(reg_rax == rax, "");
9609 assert_different_registers(basic_lock, obj, reg_rax, thread, tmp);
9610
9611 Label push;
9612 const Register top = tmp;
9613
9614 // Preload the markWord. It is important that this is the first
9615 // instruction emitted as it is part of C1's null check semantics.
9616 movptr(reg_rax, Address(obj, oopDesc::mark_offset_in_bytes()));
9617
9618 if (UseObjectMonitorTable) {
9619 // Clear cache in case fast locking succeeds or we need to take the slow-path.
9620 movptr(Address(basic_lock, BasicObjectLock::lock_offset() + in_ByteSize((BasicLock::object_monitor_cache_offset_in_bytes()))), 0);
9621 }
9622
9623 if (DiagnoseSyncOnValueBasedClasses != 0) {
9624 load_klass(tmp, obj, rscratch1);
9625 testb(Address(tmp, Klass::misc_flags_offset()), KlassFlags::_misc_is_value_based_class);
9626 jcc(Assembler::notZero, slow);
9627 }
9628
9629 // Load top.
9630 movl(top, Address(thread, JavaThread::lock_stack_top_offset()));
9631
9632 // Check if the lock-stack is full.
9633 cmpl(top, LockStack::end_offset());
9634 jcc(Assembler::greaterEqual, slow);
9635
9636 // Check for recursion.
9637 cmpptr(obj, Address(thread, top, Address::times_1, -oopSize));
9638 jcc(Assembler::equal, push);
9639
9640 // Check header for monitor (0b10).
9641 testptr(reg_rax, markWord::monitor_value);
9642 jcc(Assembler::notZero, slow);
9643
9644 // Try to lock. Transition lock bits 0b01 => 0b00
9645 movptr(tmp, reg_rax);
9646 andptr(tmp, ~(int32_t)markWord::unlocked_value);
9647 orptr(reg_rax, markWord::unlocked_value);
9648 lock(); cmpxchgptr(tmp, Address(obj, oopDesc::mark_offset_in_bytes()));
9649 jcc(Assembler::notEqual, slow);
9650
9651 // Restore top, CAS clobbers register.
9652 movl(top, Address(thread, JavaThread::lock_stack_top_offset()));
9653
9654 bind(push);
9655 // After successful lock, push object on lock-stack.
9656 movptr(Address(thread, top), obj);
9657 incrementl(top, oopSize);
9658 movl(Address(thread, JavaThread::lock_stack_top_offset()), top);
9659 }
9660
9661 // Implements lightweight-unlocking.
9662 //
9663 // obj: the object to be unlocked
9664 // reg_rax: rax
9665 // thread: the thread
9666 // tmp: a temporary register
9667 void MacroAssembler::lightweight_unlock(Register obj, Register reg_rax, Register tmp, Label& slow) {
9668 Register thread = r15_thread;
9669
9670 assert(reg_rax == rax, "");
9671 assert_different_registers(obj, reg_rax, thread, tmp);
9672
9673 Label unlocked, push_and_slow;
9674 const Register top = tmp;
9675
9676 // Check if obj is top of lock-stack.
9677 movl(top, Address(thread, JavaThread::lock_stack_top_offset()));
9678 cmpptr(obj, Address(thread, top, Address::times_1, -oopSize));
9679 jcc(Assembler::notEqual, slow);
9680
9681 // Pop lock-stack.
9682 DEBUG_ONLY(movptr(Address(thread, top, Address::times_1, -oopSize), 0);)
9683 subl(Address(thread, JavaThread::lock_stack_top_offset()), oopSize);
9684
9685 // Check if recursive.
9686 cmpptr(obj, Address(thread, top, Address::times_1, -2 * oopSize));
9687 jcc(Assembler::equal, unlocked);
9688
9689 // Not recursive. Check header for monitor (0b10).
9690 movptr(reg_rax, Address(obj, oopDesc::mark_offset_in_bytes()));
9691 testptr(reg_rax, markWord::monitor_value);
9692 jcc(Assembler::notZero, push_and_slow);
9693
9694 #ifdef ASSERT
9695 // Check header not unlocked (0b01).
9696 Label not_unlocked;
9697 testptr(reg_rax, markWord::unlocked_value);
9698 jcc(Assembler::zero, not_unlocked);
9699 stop("lightweight_unlock already unlocked");
9700 bind(not_unlocked);
9701 #endif
9702
9703 // Try to unlock. Transition lock bits 0b00 => 0b01
9704 movptr(tmp, reg_rax);
9705 orptr(tmp, markWord::unlocked_value);
9706 lock(); cmpxchgptr(tmp, Address(obj, oopDesc::mark_offset_in_bytes()));
9707 jcc(Assembler::equal, unlocked);
9708
9709 bind(push_and_slow);
9710 // Restore lock-stack and handle the unlock in runtime.
9711 #ifdef ASSERT
9712 movl(top, Address(thread, JavaThread::lock_stack_top_offset()));
9713 movptr(Address(thread, top), obj);
9714 #endif
9715 addl(Address(thread, JavaThread::lock_stack_top_offset()), oopSize);
9716 jmp(slow);
9717
9718 bind(unlocked);
9719 }
9720
9721 // Saves legacy GPRs state on stack.
9722 void MacroAssembler::save_legacy_gprs() {
9723 subq(rsp, 16 * wordSize);
9724 movq(Address(rsp, 15 * wordSize), rax);
9725 movq(Address(rsp, 14 * wordSize), rcx);
9726 movq(Address(rsp, 13 * wordSize), rdx);
9727 movq(Address(rsp, 12 * wordSize), rbx);
9728 movq(Address(rsp, 10 * wordSize), rbp);
9729 movq(Address(rsp, 9 * wordSize), rsi);
9730 movq(Address(rsp, 8 * wordSize), rdi);
9731 movq(Address(rsp, 7 * wordSize), r8);
9732 movq(Address(rsp, 6 * wordSize), r9);
9733 movq(Address(rsp, 5 * wordSize), r10);
9734 movq(Address(rsp, 4 * wordSize), r11);
9735 movq(Address(rsp, 3 * wordSize), r12);
9736 movq(Address(rsp, 2 * wordSize), r13);
9737 movq(Address(rsp, wordSize), r14);
9738 movq(Address(rsp, 0), r15);
9739 }
9740
9741 // Resotres back legacy GPRs state from stack.
9742 void MacroAssembler::restore_legacy_gprs() {
9743 movq(r15, Address(rsp, 0));
9744 movq(r14, Address(rsp, wordSize));
9745 movq(r13, Address(rsp, 2 * wordSize));
9746 movq(r12, Address(rsp, 3 * wordSize));
9747 movq(r11, Address(rsp, 4 * wordSize));
9748 movq(r10, Address(rsp, 5 * wordSize));
9749 movq(r9, Address(rsp, 6 * wordSize));
9750 movq(r8, Address(rsp, 7 * wordSize));
9751 movq(rdi, Address(rsp, 8 * wordSize));
9752 movq(rsi, Address(rsp, 9 * wordSize));
9753 movq(rbp, Address(rsp, 10 * wordSize));
9754 movq(rbx, Address(rsp, 12 * wordSize));
9755 movq(rdx, Address(rsp, 13 * wordSize));
9756 movq(rcx, Address(rsp, 14 * wordSize));
9757 movq(rax, Address(rsp, 15 * wordSize));
9758 addq(rsp, 16 * wordSize);
9759 }
9760
9761 void MacroAssembler::setcc(Assembler::Condition comparison, Register dst) {
9762 if (VM_Version::supports_apx_f()) {
9763 esetzucc(comparison, dst);
9764 } else {
9765 setb(comparison, dst);
9766 movzbl(dst, dst);
9767 }
9768 }