1 /* 2 * Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef CPU_X86_MACROASSEMBLER_X86_HPP 26 #define CPU_X86_MACROASSEMBLER_X86_HPP 27 28 #include "asm/assembler.hpp" 29 #include "asm/register.hpp" 30 #include "code/vmreg.inline.hpp" 31 #include "compiler/oopMap.hpp" 32 #include "utilities/macros.hpp" 33 #include "runtime/rtmLocking.hpp" 34 #include "runtime/vm_version.hpp" 35 36 // MacroAssembler extends Assembler by frequently used macros. 37 // 38 // Instructions for which a 'better' code sequence exists depending 39 // on arguments should also go in here. 40 41 class MacroAssembler: public Assembler { 42 friend class LIR_Assembler; 43 friend class Runtime1; // as_Address() 44 45 public: 46 // Support for VM calls 47 // 48 // This is the base routine called by the different versions of call_VM_leaf. The interpreter 49 // may customize this version by overriding it for its purposes (e.g., to save/restore 50 // additional registers when doing a VM call). 51 52 virtual void call_VM_leaf_base( 53 address entry_point, // the entry point 54 int number_of_arguments // the number of arguments to pop after the call 55 ); 56 57 protected: 58 // This is the base routine called by the different versions of call_VM. The interpreter 59 // may customize this version by overriding it for its purposes (e.g., to save/restore 60 // additional registers when doing a VM call). 61 // 62 // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base 63 // returns the register which contains the thread upon return. If a thread register has been 64 // specified, the return value will correspond to that register. If no last_java_sp is specified 65 // (noreg) than rsp will be used instead. 66 virtual void call_VM_base( // returns the register containing the thread upon return 67 Register oop_result, // where an oop-result ends up if any; use noreg otherwise 68 Register java_thread, // the thread if computed before ; use noreg otherwise 69 Register last_java_sp, // to set up last_Java_frame in stubs; use noreg otherwise 70 address entry_point, // the entry point 71 int number_of_arguments, // the number of arguments (w/o thread) to pop after the call 72 bool check_exceptions // whether to check for pending exceptions after return 73 ); 74 75 void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true); 76 77 // helpers for FPU flag access 78 // tmp is a temporary register, if none is available use noreg 79 void save_rax (Register tmp); 80 void restore_rax(Register tmp); 81 82 public: 83 MacroAssembler(CodeBuffer* code) : Assembler(code) {} 84 85 // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code. 86 // The implementation is only non-empty for the InterpreterMacroAssembler, 87 // as only the interpreter handles PopFrame and ForceEarlyReturn requests. 88 virtual void check_and_handle_popframe(Register java_thread); 89 virtual void check_and_handle_earlyret(Register java_thread); 90 91 Address as_Address(AddressLiteral adr); 92 Address as_Address(ArrayAddress adr, Register rscratch); 93 94 // Support for null-checks 95 // 96 // Generates code that causes a null OS exception if the content of reg is null. 97 // If the accessed location is M[reg + offset] and the offset is known, provide the 98 // offset. No explicit code generation is needed if the offset is within a certain 99 // range (0 <= offset <= page_size). 100 101 void null_check(Register reg, int offset = -1); 102 static bool needs_explicit_null_check(intptr_t offset); 103 static bool uses_implicit_null_check(void* address); 104 105 // Required platform-specific helpers for Label::patch_instructions. 106 // They _shadow_ the declarations in AbstractAssembler, which are undefined. 107 void pd_patch_instruction(address branch, address target, const char* file, int line) { 108 unsigned char op = branch[0]; 109 assert(op == 0xE8 /* call */ || 110 op == 0xE9 /* jmp */ || 111 op == 0xEB /* short jmp */ || 112 (op & 0xF0) == 0x70 /* short jcc */ || 113 op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */ || 114 op == 0xC7 && branch[1] == 0xF8 /* xbegin */, 115 "Invalid opcode at patch point"); 116 117 if (op == 0xEB || (op & 0xF0) == 0x70) { 118 // short offset operators (jmp and jcc) 119 char* disp = (char*) &branch[1]; 120 int imm8 = checked_cast<int>(target - (address) &disp[1]); 121 guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset at %s:%d", 122 file == nullptr ? "<null>" : file, line); 123 *disp = (char)imm8; 124 } else { 125 int* disp = (int*) &branch[(op == 0x0F || op == 0xC7)? 2: 1]; 126 int imm32 = checked_cast<int>(target - (address) &disp[1]); 127 *disp = imm32; 128 } 129 } 130 131 // The following 4 methods return the offset of the appropriate move instruction 132 133 // Support for fast byte/short loading with zero extension (depending on particular CPU) 134 int load_unsigned_byte(Register dst, Address src); 135 int load_unsigned_short(Register dst, Address src); 136 137 // Support for fast byte/short loading with sign extension (depending on particular CPU) 138 int load_signed_byte(Register dst, Address src); 139 int load_signed_short(Register dst, Address src); 140 141 // Support for sign-extension (hi:lo = extend_sign(lo)) 142 void extend_sign(Register hi, Register lo); 143 144 // Load and store values by size and signed-ness 145 void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg); 146 void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg); 147 148 // Support for inc/dec with optimal instruction selection depending on value 149 150 void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; } 151 void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; } 152 void increment(Address dst, int value = 1) { LP64_ONLY(incrementq(dst, value)) NOT_LP64(incrementl(dst, value)) ; } 153 void decrement(Address dst, int value = 1) { LP64_ONLY(decrementq(dst, value)) NOT_LP64(decrementl(dst, value)) ; } 154 155 void decrementl(Address dst, int value = 1); 156 void decrementl(Register reg, int value = 1); 157 158 void decrementq(Register reg, int value = 1); 159 void decrementq(Address dst, int value = 1); 160 161 void incrementl(Address dst, int value = 1); 162 void incrementl(Register reg, int value = 1); 163 164 void incrementq(Register reg, int value = 1); 165 void incrementq(Address dst, int value = 1); 166 167 void incrementl(AddressLiteral dst, Register rscratch = noreg); 168 void incrementl(ArrayAddress dst, Register rscratch); 169 170 void incrementq(AddressLiteral dst, Register rscratch = noreg); 171 172 // Support optimal SSE move instructions. 173 void movflt(XMMRegister dst, XMMRegister src) { 174 if (dst-> encoding() == src->encoding()) return; 175 if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; } 176 else { movss (dst, src); return; } 177 } 178 void movflt(XMMRegister dst, Address src) { movss(dst, src); } 179 void movflt(XMMRegister dst, AddressLiteral src, Register rscratch = noreg); 180 void movflt(Address dst, XMMRegister src) { movss(dst, src); } 181 182 // Move with zero extension 183 void movfltz(XMMRegister dst, XMMRegister src) { movss(dst, src); } 184 185 void movdbl(XMMRegister dst, XMMRegister src) { 186 if (dst-> encoding() == src->encoding()) return; 187 if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; } 188 else { movsd (dst, src); return; } 189 } 190 191 void movdbl(XMMRegister dst, AddressLiteral src, Register rscratch = noreg); 192 193 void movdbl(XMMRegister dst, Address src) { 194 if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; } 195 else { movlpd(dst, src); return; } 196 } 197 void movdbl(Address dst, XMMRegister src) { movsd(dst, src); } 198 199 void flt_to_flt16(Register dst, XMMRegister src, XMMRegister tmp) { 200 // Use separate tmp XMM register because caller may 201 // requires src XMM register to be unchanged (as in x86.ad). 202 vcvtps2ph(tmp, src, 0x04, Assembler::AVX_128bit); 203 movdl(dst, tmp); 204 movswl(dst, dst); 205 } 206 207 void flt16_to_flt(XMMRegister dst, Register src) { 208 movdl(dst, src); 209 vcvtph2ps(dst, dst, Assembler::AVX_128bit); 210 } 211 212 // Alignment 213 void align32(); 214 void align64(); 215 void align(int modulus); 216 void align(int modulus, int target); 217 218 void post_call_nop(); 219 // A 5 byte nop that is safe for patching (see patch_verified_entry) 220 void fat_nop(); 221 222 // Stack frame creation/removal 223 void enter(); 224 void leave(); 225 226 // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information) 227 // The pointer will be loaded into the thread register. 228 void get_thread(Register thread); 229 230 #ifdef _LP64 231 // Support for argument shuffling 232 233 // bias in bytes 234 void move32_64(VMRegPair src, VMRegPair dst, Register tmp = rax, int in_stk_bias = 0, int out_stk_bias = 0); 235 void long_move(VMRegPair src, VMRegPair dst, Register tmp = rax, int in_stk_bias = 0, int out_stk_bias = 0); 236 void float_move(VMRegPair src, VMRegPair dst, Register tmp = rax, int in_stk_bias = 0, int out_stk_bias = 0); 237 void double_move(VMRegPair src, VMRegPair dst, Register tmp = rax, int in_stk_bias = 0, int out_stk_bias = 0); 238 void move_ptr(VMRegPair src, VMRegPair dst); 239 void object_move(OopMap* map, 240 int oop_handle_offset, 241 int framesize_in_slots, 242 VMRegPair src, 243 VMRegPair dst, 244 bool is_receiver, 245 int* receiver_offset); 246 #endif // _LP64 247 248 // Support for VM calls 249 // 250 // It is imperative that all calls into the VM are handled via the call_VM macros. 251 // They make sure that the stack linkage is setup correctly. call_VM's correspond 252 // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points. 253 254 255 void call_VM(Register oop_result, 256 address entry_point, 257 bool check_exceptions = true); 258 void call_VM(Register oop_result, 259 address entry_point, 260 Register arg_1, 261 bool check_exceptions = true); 262 void call_VM(Register oop_result, 263 address entry_point, 264 Register arg_1, Register arg_2, 265 bool check_exceptions = true); 266 void call_VM(Register oop_result, 267 address entry_point, 268 Register arg_1, Register arg_2, Register arg_3, 269 bool check_exceptions = true); 270 271 // Overloadings with last_Java_sp 272 void call_VM(Register oop_result, 273 Register last_java_sp, 274 address entry_point, 275 int number_of_arguments = 0, 276 bool check_exceptions = true); 277 void call_VM(Register oop_result, 278 Register last_java_sp, 279 address entry_point, 280 Register arg_1, bool 281 check_exceptions = true); 282 void call_VM(Register oop_result, 283 Register last_java_sp, 284 address entry_point, 285 Register arg_1, Register arg_2, 286 bool check_exceptions = true); 287 void call_VM(Register oop_result, 288 Register last_java_sp, 289 address entry_point, 290 Register arg_1, Register arg_2, Register arg_3, 291 bool check_exceptions = true); 292 293 void get_vm_result (Register oop_result, Register thread); 294 void get_vm_result_2(Register metadata_result, Register thread); 295 296 // These always tightly bind to MacroAssembler::call_VM_base 297 // bypassing the virtual implementation 298 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true); 299 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true); 300 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true); 301 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true); 302 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true); 303 304 void call_VM_leaf0(address entry_point); 305 void call_VM_leaf(address entry_point, 306 int number_of_arguments = 0); 307 void call_VM_leaf(address entry_point, 308 Register arg_1); 309 void call_VM_leaf(address entry_point, 310 Register arg_1, Register arg_2); 311 void call_VM_leaf(address entry_point, 312 Register arg_1, Register arg_2, Register arg_3); 313 314 void call_VM_leaf(address entry_point, 315 Register arg_1, Register arg_2, Register arg_3, Register arg_4); 316 317 // These always tightly bind to MacroAssembler::call_VM_leaf_base 318 // bypassing the virtual implementation 319 void super_call_VM_leaf(address entry_point); 320 void super_call_VM_leaf(address entry_point, Register arg_1); 321 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2); 322 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3); 323 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4); 324 325 // last Java Frame (fills frame anchor) 326 void set_last_Java_frame(Register thread, 327 Register last_java_sp, 328 Register last_java_fp, 329 address last_java_pc, 330 Register rscratch); 331 332 // thread in the default location (r15_thread on 64bit) 333 void set_last_Java_frame(Register last_java_sp, 334 Register last_java_fp, 335 address last_java_pc, 336 Register rscratch); 337 338 void reset_last_Java_frame(Register thread, bool clear_fp); 339 340 // thread in the default location (r15_thread on 64bit) 341 void reset_last_Java_frame(bool clear_fp); 342 343 // jobjects 344 void clear_jobject_tag(Register possibly_non_local); 345 void resolve_jobject(Register value, Register thread, Register tmp); 346 void resolve_global_jobject(Register value, Register thread, Register tmp); 347 348 // C 'boolean' to Java boolean: x == 0 ? 0 : 1 349 void c2bool(Register x); 350 351 // C++ bool manipulation 352 353 void movbool(Register dst, Address src); 354 void movbool(Address dst, bool boolconst); 355 void movbool(Address dst, Register src); 356 void testbool(Register dst); 357 358 void resolve_oop_handle(Register result, Register tmp); 359 void resolve_weak_handle(Register result, Register tmp); 360 void load_mirror(Register mirror, Register method, Register tmp); 361 void load_method_holder_cld(Register rresult, Register rmethod); 362 363 void load_method_holder(Register holder, Register method); 364 365 // oop manipulations 366 void load_klass(Register dst, Register src, Register tmp); 367 void store_klass(Register dst, Register src, Register tmp); 368 369 void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src, 370 Register tmp1, Register thread_tmp); 371 void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register val, 372 Register tmp1, Register tmp2, Register tmp3); 373 374 void load_heap_oop(Register dst, Address src, Register tmp1 = noreg, 375 Register thread_tmp = noreg, DecoratorSet decorators = 0); 376 void load_heap_oop_not_null(Register dst, Address src, Register tmp1 = noreg, 377 Register thread_tmp = noreg, DecoratorSet decorators = 0); 378 void store_heap_oop(Address dst, Register val, Register tmp1 = noreg, 379 Register tmp2 = noreg, Register tmp3 = noreg, DecoratorSet decorators = 0); 380 381 // Used for storing null. All other oop constants should be 382 // stored using routines that take a jobject. 383 void store_heap_oop_null(Address dst); 384 385 #ifdef _LP64 386 void store_klass_gap(Register dst, Register src); 387 388 // This dummy is to prevent a call to store_heap_oop from 389 // converting a zero (like null) into a Register by giving 390 // the compiler two choices it can't resolve 391 392 void store_heap_oop(Address dst, void* dummy); 393 394 void encode_heap_oop(Register r); 395 void decode_heap_oop(Register r); 396 void encode_heap_oop_not_null(Register r); 397 void decode_heap_oop_not_null(Register r); 398 void encode_heap_oop_not_null(Register dst, Register src); 399 void decode_heap_oop_not_null(Register dst, Register src); 400 401 void set_narrow_oop(Register dst, jobject obj); 402 void set_narrow_oop(Address dst, jobject obj); 403 void cmp_narrow_oop(Register dst, jobject obj); 404 void cmp_narrow_oop(Address dst, jobject obj); 405 406 void encode_klass_not_null(Register r, Register tmp); 407 void decode_klass_not_null(Register r, Register tmp); 408 void encode_and_move_klass_not_null(Register dst, Register src); 409 void decode_and_move_klass_not_null(Register dst, Register src); 410 void set_narrow_klass(Register dst, Klass* k); 411 void set_narrow_klass(Address dst, Klass* k); 412 void cmp_narrow_klass(Register dst, Klass* k); 413 void cmp_narrow_klass(Address dst, Klass* k); 414 415 // if heap base register is used - reinit it with the correct value 416 void reinit_heapbase(); 417 418 DEBUG_ONLY(void verify_heapbase(const char* msg);) 419 420 #endif // _LP64 421 422 // Int division/remainder for Java 423 // (as idivl, but checks for special case as described in JVM spec.) 424 // returns idivl instruction offset for implicit exception handling 425 int corrected_idivl(Register reg); 426 427 // Long division/remainder for Java 428 // (as idivq, but checks for special case as described in JVM spec.) 429 // returns idivq instruction offset for implicit exception handling 430 int corrected_idivq(Register reg); 431 432 void int3(); 433 434 // Long operation macros for a 32bit cpu 435 // Long negation for Java 436 void lneg(Register hi, Register lo); 437 438 // Long multiplication for Java 439 // (destroys contents of eax, ebx, ecx and edx) 440 void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y 441 442 // Long shifts for Java 443 // (semantics as described in JVM spec.) 444 void lshl(Register hi, Register lo); // hi:lo << (rcx & 0x3f) 445 void lshr(Register hi, Register lo, bool sign_extension = false); // hi:lo >> (rcx & 0x3f) 446 447 // Long compare for Java 448 // (semantics as described in JVM spec.) 449 void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y) 450 451 452 // misc 453 454 // Sign extension 455 void sign_extend_short(Register reg); 456 void sign_extend_byte(Register reg); 457 458 // Division by power of 2, rounding towards 0 459 void division_with_shift(Register reg, int shift_value); 460 461 #ifndef _LP64 462 // Compares the top-most stack entries on the FPU stack and sets the eflags as follows: 463 // 464 // CF (corresponds to C0) if x < y 465 // PF (corresponds to C2) if unordered 466 // ZF (corresponds to C3) if x = y 467 // 468 // The arguments are in reversed order on the stack (i.e., top of stack is first argument). 469 // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code) 470 void fcmp(Register tmp); 471 // Variant of the above which allows y to be further down the stack 472 // and which only pops x and y if specified. If pop_right is 473 // specified then pop_left must also be specified. 474 void fcmp(Register tmp, int index, bool pop_left, bool pop_right); 475 476 // Floating-point comparison for Java 477 // Compares the top-most stack entries on the FPU stack and stores the result in dst. 478 // The arguments are in reversed order on the stack (i.e., top of stack is first argument). 479 // (semantics as described in JVM spec.) 480 void fcmp2int(Register dst, bool unordered_is_less); 481 // Variant of the above which allows y to be further down the stack 482 // and which only pops x and y if specified. If pop_right is 483 // specified then pop_left must also be specified. 484 void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right); 485 486 // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards) 487 // tmp is a temporary register, if none is available use noreg 488 void fremr(Register tmp); 489 490 // only if +VerifyFPU 491 void verify_FPU(int stack_depth, const char* s = "illegal FPU state"); 492 #endif // !LP64 493 494 // dst = c = a * b + c 495 void fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c); 496 void fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c); 497 498 void vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len); 499 void vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len); 500 void vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len); 501 void vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len); 502 503 504 // same as fcmp2int, but using SSE2 505 void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less); 506 void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less); 507 508 // branch to L if FPU flag C2 is set/not set 509 // tmp is a temporary register, if none is available use noreg 510 void jC2 (Register tmp, Label& L); 511 void jnC2(Register tmp, Label& L); 512 513 // Load float value from 'address'. If UseSSE >= 1, the value is loaded into 514 // register xmm0. Otherwise, the value is loaded onto the FPU stack. 515 void load_float(Address src); 516 517 // Store float value to 'address'. If UseSSE >= 1, the value is stored 518 // from register xmm0. Otherwise, the value is stored from the FPU stack. 519 void store_float(Address dst); 520 521 // Load double value from 'address'. If UseSSE >= 2, the value is loaded into 522 // register xmm0. Otherwise, the value is loaded onto the FPU stack. 523 void load_double(Address src); 524 525 // Store double value to 'address'. If UseSSE >= 2, the value is stored 526 // from register xmm0. Otherwise, the value is stored from the FPU stack. 527 void store_double(Address dst); 528 529 #ifndef _LP64 530 // Pop ST (ffree & fincstp combined) 531 void fpop(); 532 533 void empty_FPU_stack(); 534 #endif // !_LP64 535 536 void push_IU_state(); 537 void pop_IU_state(); 538 539 void push_FPU_state(); 540 void pop_FPU_state(); 541 542 void push_CPU_state(); 543 void pop_CPU_state(); 544 545 void push_cont_fastpath(); 546 void pop_cont_fastpath(); 547 548 void inc_held_monitor_count(); 549 void dec_held_monitor_count(); 550 551 DEBUG_ONLY(void stop_if_in_cont(Register cont_reg, const char* name);) 552 553 // Round up to a power of two 554 void round_to(Register reg, int modulus); 555 556 private: 557 // General purpose and XMM registers potentially clobbered by native code; there 558 // is no need for FPU or AVX opmask related methods because C1/interpreter 559 // - we save/restore FPU state as a whole always 560 // - do not care about AVX-512 opmask 561 static RegSet call_clobbered_gp_registers(); 562 static XMMRegSet call_clobbered_xmm_registers(); 563 564 void push_set(XMMRegSet set, int offset); 565 void pop_set(XMMRegSet set, int offset); 566 567 public: 568 void push_set(RegSet set, int offset = -1); 569 void pop_set(RegSet set, int offset = -1); 570 571 // Push and pop everything that might be clobbered by a native 572 // runtime call. 573 // Only save the lower 64 bits of each vector register. 574 // Additional registers can be excluded in a passed RegSet. 575 void push_call_clobbered_registers_except(RegSet exclude, bool save_fpu = true); 576 void pop_call_clobbered_registers_except(RegSet exclude, bool restore_fpu = true); 577 578 void push_call_clobbered_registers(bool save_fpu = true) { 579 push_call_clobbered_registers_except(RegSet(), save_fpu); 580 } 581 void pop_call_clobbered_registers(bool restore_fpu = true) { 582 pop_call_clobbered_registers_except(RegSet(), restore_fpu); 583 } 584 585 // allocation 586 void tlab_allocate( 587 Register thread, // Current thread 588 Register obj, // result: pointer to object after successful allocation 589 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise 590 int con_size_in_bytes, // object size in bytes if known at compile time 591 Register t1, // temp register 592 Register t2, // temp register 593 Label& slow_case // continuation point if fast allocation fails 594 ); 595 void zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp); 596 597 // interface method calling 598 void lookup_interface_method(Register recv_klass, 599 Register intf_klass, 600 RegisterOrConstant itable_index, 601 Register method_result, 602 Register scan_temp, 603 Label& no_such_interface, 604 bool return_method = true); 605 606 void lookup_interface_method_stub(Register recv_klass, 607 Register holder_klass, 608 Register resolved_klass, 609 Register method_result, 610 Register scan_temp, 611 Register temp_reg2, 612 Register receiver, 613 int itable_index, 614 Label& L_no_such_interface); 615 616 // virtual method calling 617 void lookup_virtual_method(Register recv_klass, 618 RegisterOrConstant vtable_index, 619 Register method_result); 620 621 // Test sub_klass against super_klass, with fast and slow paths. 622 623 // The fast path produces a tri-state answer: yes / no / maybe-slow. 624 // One of the three labels can be null, meaning take the fall-through. 625 // If super_check_offset is -1, the value is loaded up from super_klass. 626 // No registers are killed, except temp_reg. 627 void check_klass_subtype_fast_path(Register sub_klass, 628 Register super_klass, 629 Register temp_reg, 630 Label* L_success, 631 Label* L_failure, 632 Label* L_slow_path, 633 RegisterOrConstant super_check_offset = RegisterOrConstant(-1)); 634 635 // The rest of the type check; must be wired to a corresponding fast path. 636 // It does not repeat the fast path logic, so don't use it standalone. 637 // The temp_reg and temp2_reg can be noreg, if no temps are available. 638 // Updates the sub's secondary super cache as necessary. 639 // If set_cond_codes, condition codes will be Z on success, NZ on failure. 640 void check_klass_subtype_slow_path(Register sub_klass, 641 Register super_klass, 642 Register temp_reg, 643 Register temp2_reg, 644 Label* L_success, 645 Label* L_failure, 646 bool set_cond_codes = false); 647 648 // Simplified, combined version, good for typical uses. 649 // Falls through on failure. 650 void check_klass_subtype(Register sub_klass, 651 Register super_klass, 652 Register temp_reg, 653 Label& L_success); 654 655 void clinit_barrier(Register klass, 656 Register thread, 657 Label* L_fast_path = nullptr, 658 Label* L_slow_path = nullptr); 659 660 // method handles (JSR 292) 661 Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0); 662 663 // Debugging 664 665 // only if +VerifyOops 666 void _verify_oop(Register reg, const char* s, const char* file, int line); 667 void _verify_oop_addr(Address addr, const char* s, const char* file, int line); 668 669 void _verify_oop_checked(Register reg, const char* s, const char* file, int line) { 670 if (VerifyOops) { 671 _verify_oop(reg, s, file, line); 672 } 673 } 674 void _verify_oop_addr_checked(Address reg, const char* s, const char* file, int line) { 675 if (VerifyOops) { 676 _verify_oop_addr(reg, s, file, line); 677 } 678 } 679 680 // TODO: verify method and klass metadata (compare against vptr?) 681 void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {} 682 void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){} 683 684 #define verify_oop(reg) _verify_oop_checked(reg, "broken oop " #reg, __FILE__, __LINE__) 685 #define verify_oop_msg(reg, msg) _verify_oop_checked(reg, "broken oop " #reg ", " #msg, __FILE__, __LINE__) 686 #define verify_oop_addr(addr) _verify_oop_addr_checked(addr, "broken oop addr " #addr, __FILE__, __LINE__) 687 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__) 688 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__) 689 690 // Verify or restore cpu control state after JNI call 691 void restore_cpu_control_state_after_jni(Register rscratch); 692 693 // prints msg, dumps registers and stops execution 694 void stop(const char* msg); 695 696 // prints msg and continues 697 void warn(const char* msg); 698 699 // dumps registers and other state 700 void print_state(); 701 702 static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg); 703 static void debug64(char* msg, int64_t pc, int64_t regs[]); 704 static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip); 705 static void print_state64(int64_t pc, int64_t regs[]); 706 707 void os_breakpoint(); 708 709 void untested() { stop("untested"); } 710 711 void unimplemented(const char* what = ""); 712 713 void should_not_reach_here() { stop("should not reach here"); } 714 715 void print_CPU_state(); 716 717 // Stack overflow checking 718 void bang_stack_with_offset(int offset) { 719 // stack grows down, caller passes positive offset 720 assert(offset > 0, "must bang with negative offset"); 721 movl(Address(rsp, (-offset)), rax); 722 } 723 724 // Writes to stack successive pages until offset reached to check for 725 // stack overflow + shadow pages. Also, clobbers tmp 726 void bang_stack_size(Register size, Register tmp); 727 728 // Check for reserved stack access in method being exited (for JIT) 729 void reserved_stack_check(); 730 731 void safepoint_poll(Label& slow_path, Register thread_reg, bool at_return, bool in_nmethod); 732 733 void verify_tlab(); 734 735 static Condition negate_condition(Condition cond); 736 737 // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit 738 // operands. In general the names are modified to avoid hiding the instruction in Assembler 739 // so that we don't need to implement all the varieties in the Assembler with trivial wrappers 740 // here in MacroAssembler. The major exception to this rule is call 741 742 // Arithmetics 743 744 745 void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; } 746 void addptr(Address dst, Register src); 747 748 void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); } 749 void addptr(Register dst, int32_t src); 750 void addptr(Register dst, Register src); 751 void addptr(Register dst, RegisterOrConstant src) { 752 if (src.is_constant()) addptr(dst, checked_cast<int>(src.as_constant())); 753 else addptr(dst, src.as_register()); 754 } 755 756 void andptr(Register dst, int32_t src); 757 void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; } 758 759 #ifdef _LP64 760 using Assembler::andq; 761 void andq(Register dst, AddressLiteral src, Register rscratch = noreg); 762 #endif 763 764 void cmp8(AddressLiteral src1, int imm, Register rscratch = noreg); 765 766 // renamed to drag out the casting of address to int32_t/intptr_t 767 void cmp32(Register src1, int32_t imm); 768 769 void cmp32(AddressLiteral src1, int32_t imm, Register rscratch = noreg); 770 // compare reg - mem, or reg - &mem 771 void cmp32(Register src1, AddressLiteral src2, Register rscratch = noreg); 772 773 void cmp32(Register src1, Address src2); 774 775 #ifndef _LP64 776 void cmpklass(Address dst, Metadata* obj); 777 void cmpklass(Register dst, Metadata* obj); 778 void cmpoop(Address dst, jobject obj); 779 #endif // _LP64 780 781 void cmpoop(Register src1, Register src2); 782 void cmpoop(Register src1, Address src2); 783 void cmpoop(Register dst, jobject obj, Register rscratch); 784 785 // NOTE src2 must be the lval. This is NOT an mem-mem compare 786 void cmpptr(Address src1, AddressLiteral src2, Register rscratch); 787 788 void cmpptr(Register src1, AddressLiteral src2, Register rscratch = noreg); 789 790 void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; } 791 void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; } 792 // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; } 793 794 void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; } 795 void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; } 796 797 // cmp64 to avoild hiding cmpq 798 void cmp64(Register src1, AddressLiteral src, Register rscratch = noreg); 799 800 void cmpxchgptr(Register reg, Address adr); 801 802 void locked_cmpxchgptr(Register reg, AddressLiteral adr, Register rscratch = noreg); 803 804 void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); } 805 void imulptr(Register dst, Register src, int imm32) { LP64_ONLY(imulq(dst, src, imm32)) NOT_LP64(imull(dst, src, imm32)); } 806 807 808 void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); } 809 810 void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); } 811 812 void shlptr(Register dst, int32_t shift); 813 void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); } 814 815 void shrptr(Register dst, int32_t shift); 816 void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); } 817 818 void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); } 819 void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); } 820 821 void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); } 822 823 void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); } 824 void subptr(Register dst, int32_t src); 825 // Force generation of a 4 byte immediate value even if it fits into 8bit 826 void subptr_imm32(Register dst, int32_t src); 827 void subptr(Register dst, Register src); 828 void subptr(Register dst, RegisterOrConstant src) { 829 if (src.is_constant()) subptr(dst, (int) src.as_constant()); 830 else subptr(dst, src.as_register()); 831 } 832 833 void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); } 834 void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); } 835 836 void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; } 837 void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; } 838 839 void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; } 840 841 842 843 // Helper functions for statistics gathering. 844 // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes. 845 void cond_inc32(Condition cond, AddressLiteral counter_addr, Register rscratch = noreg); 846 // Unconditional atomic increment. 847 void atomic_incl(Address counter_addr); 848 void atomic_incl(AddressLiteral counter_addr, Register rscratch = noreg); 849 #ifdef _LP64 850 void atomic_incq(Address counter_addr); 851 void atomic_incq(AddressLiteral counter_addr, Register rscratch = noreg); 852 #endif 853 void atomic_incptr(AddressLiteral counter_addr, Register rscratch = noreg) { LP64_ONLY(atomic_incq(counter_addr, rscratch)) NOT_LP64(atomic_incl(counter_addr, rscratch)) ; } 854 void atomic_incptr(Address counter_addr) { LP64_ONLY(atomic_incq(counter_addr)) NOT_LP64(atomic_incl(counter_addr)) ; } 855 856 void lea(Register dst, Address adr) { Assembler::lea(dst, adr); } 857 void lea(Register dst, AddressLiteral adr); 858 void lea(Address dst, AddressLiteral adr, Register rscratch); 859 860 void leal32(Register dst, Address src) { leal(dst, src); } 861 862 // Import other testl() methods from the parent class or else 863 // they will be hidden by the following overriding declaration. 864 using Assembler::testl; 865 void testl(Address dst, int32_t imm32); 866 void testl(Register dst, int32_t imm32); 867 void testl(Register dst, AddressLiteral src); // requires reachable address 868 using Assembler::testq; 869 void testq(Address dst, int32_t imm32); 870 void testq(Register dst, int32_t imm32); 871 872 void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); } 873 void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); } 874 void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); } 875 void orptr(Address dst, int32_t imm32) { LP64_ONLY(orq(dst, imm32)) NOT_LP64(orl(dst, imm32)); } 876 877 void testptr(Register src, int32_t imm32) { LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); } 878 void testptr(Register src1, Address src2) { LP64_ONLY(testq(src1, src2)) NOT_LP64(testl(src1, src2)); } 879 void testptr(Register src1, Register src2); 880 881 void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); } 882 void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); } 883 884 // Calls 885 886 void call(Label& L, relocInfo::relocType rtype); 887 void call(Register entry); 888 void call(Address addr) { Assembler::call(addr); } 889 890 // NOTE: this call transfers to the effective address of entry NOT 891 // the address contained by entry. This is because this is more natural 892 // for jumps/calls. 893 void call(AddressLiteral entry, Register rscratch = rax); 894 895 // Emit the CompiledIC call idiom 896 void ic_call(address entry, jint method_index = 0); 897 898 void emit_static_call_stub(); 899 900 // Jumps 901 902 // NOTE: these jumps transfer to the effective address of dst NOT 903 // the address contained by dst. This is because this is more natural 904 // for jumps/calls. 905 void jump(AddressLiteral dst, Register rscratch = noreg); 906 907 void jump_cc(Condition cc, AddressLiteral dst, Register rscratch = noreg); 908 909 // 32bit can do a case table jump in one instruction but we no longer allow the base 910 // to be installed in the Address class. This jump will transfer to the address 911 // contained in the location described by entry (not the address of entry) 912 void jump(ArrayAddress entry, Register rscratch); 913 914 // Floating 915 916 void push_f(XMMRegister r); 917 void pop_f(XMMRegister r); 918 void push_d(XMMRegister r); 919 void pop_d(XMMRegister r); 920 921 void andpd(XMMRegister dst, XMMRegister src) { Assembler::andpd(dst, src); } 922 void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); } 923 void andpd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg); 924 925 void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); } 926 void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); } 927 void andps(XMMRegister dst, AddressLiteral src, Register rscratch = noreg); 928 929 void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); } 930 void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); } 931 void comiss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg); 932 933 void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); } 934 void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); } 935 void comisd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg); 936 937 #ifndef _LP64 938 void fadd_s(Address src) { Assembler::fadd_s(src); } 939 void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); } 940 941 void fldcw(Address src) { Assembler::fldcw(src); } 942 void fldcw(AddressLiteral src); 943 944 void fld_s(int index) { Assembler::fld_s(index); } 945 void fld_s(Address src) { Assembler::fld_s(src); } 946 void fld_s(AddressLiteral src); 947 948 void fld_d(Address src) { Assembler::fld_d(src); } 949 void fld_d(AddressLiteral src); 950 951 void fld_x(Address src) { Assembler::fld_x(src); } 952 void fld_x(AddressLiteral src) { Assembler::fld_x(as_Address(src)); } 953 954 void fmul_s(Address src) { Assembler::fmul_s(src); } 955 void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); } 956 #endif // !_LP64 957 958 void ldmxcsr(Address src) { Assembler::ldmxcsr(src); } 959 void ldmxcsr(AddressLiteral src, Register rscratch = noreg); 960 961 #ifdef _LP64 962 private: 963 void sha256_AVX2_one_round_compute( 964 Register reg_old_h, 965 Register reg_a, 966 Register reg_b, 967 Register reg_c, 968 Register reg_d, 969 Register reg_e, 970 Register reg_f, 971 Register reg_g, 972 Register reg_h, 973 int iter); 974 void sha256_AVX2_four_rounds_compute_first(int start); 975 void sha256_AVX2_four_rounds_compute_last(int start); 976 void sha256_AVX2_one_round_and_sched( 977 XMMRegister xmm_0, /* == ymm4 on 0, 1, 2, 3 iterations, then rotate 4 registers left on 4, 8, 12 iterations */ 978 XMMRegister xmm_1, /* ymm5 */ /* full cycle is 16 iterations */ 979 XMMRegister xmm_2, /* ymm6 */ 980 XMMRegister xmm_3, /* ymm7 */ 981 Register reg_a, /* == eax on 0 iteration, then rotate 8 register right on each next iteration */ 982 Register reg_b, /* ebx */ /* full cycle is 8 iterations */ 983 Register reg_c, /* edi */ 984 Register reg_d, /* esi */ 985 Register reg_e, /* r8d */ 986 Register reg_f, /* r9d */ 987 Register reg_g, /* r10d */ 988 Register reg_h, /* r11d */ 989 int iter); 990 991 void addm(int disp, Register r1, Register r2); 992 993 void sha512_AVX2_one_round_compute(Register old_h, Register a, Register b, Register c, Register d, 994 Register e, Register f, Register g, Register h, int iteration); 995 996 void sha512_AVX2_one_round_and_schedule(XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, 997 Register a, Register b, Register c, Register d, Register e, Register f, 998 Register g, Register h, int iteration); 999 1000 void addmq(int disp, Register r1, Register r2); 1001 public: 1002 void sha256_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0, 1003 XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4, 1004 Register buf, Register state, Register ofs, Register limit, Register rsp, 1005 bool multi_block, XMMRegister shuf_mask); 1006 void sha512_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0, 1007 XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4, 1008 Register buf, Register state, Register ofs, Register limit, Register rsp, bool multi_block, 1009 XMMRegister shuf_mask); 1010 #endif // _LP64 1011 1012 void fast_md5(Register buf, Address state, Address ofs, Address limit, 1013 bool multi_block); 1014 1015 void fast_sha1(XMMRegister abcd, XMMRegister e0, XMMRegister e1, XMMRegister msg0, 1016 XMMRegister msg1, XMMRegister msg2, XMMRegister msg3, XMMRegister shuf_mask, 1017 Register buf, Register state, Register ofs, Register limit, Register rsp, 1018 bool multi_block); 1019 1020 #ifdef _LP64 1021 void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0, 1022 XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4, 1023 Register buf, Register state, Register ofs, Register limit, Register rsp, 1024 bool multi_block, XMMRegister shuf_mask); 1025 #else 1026 void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0, 1027 XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4, 1028 Register buf, Register state, Register ofs, Register limit, Register rsp, 1029 bool multi_block); 1030 #endif 1031 1032 void fast_exp(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, 1033 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, 1034 Register rax, Register rcx, Register rdx, Register tmp); 1035 1036 #ifndef _LP64 1037 private: 1038 // Initialized in macroAssembler_x86_constants.cpp 1039 static address ONES; 1040 static address L_2IL0FLOATPACKET_0; 1041 static address PI4_INV; 1042 static address PI4X3; 1043 static address PI4X4; 1044 1045 public: 1046 void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, 1047 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, 1048 Register rax, Register rcx, Register rdx, Register tmp1); 1049 1050 void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, 1051 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, 1052 Register rax, Register rcx, Register rdx, Register tmp); 1053 1054 void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4, 1055 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx, 1056 Register rdx, Register tmp); 1057 1058 void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, 1059 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, 1060 Register rax, Register rbx, Register rdx); 1061 1062 void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, 1063 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, 1064 Register rax, Register rcx, Register rdx, Register tmp); 1065 1066 void libm_sincos_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx, 1067 Register edx, Register ebx, Register esi, Register edi, 1068 Register ebp, Register esp); 1069 1070 void libm_reduce_pi04l(Register eax, Register ecx, Register edx, Register ebx, 1071 Register esi, Register edi, Register ebp, Register esp); 1072 1073 void libm_tancot_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx, 1074 Register edx, Register ebx, Register esi, Register edi, 1075 Register ebp, Register esp); 1076 1077 void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, 1078 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, 1079 Register rax, Register rcx, Register rdx, Register tmp); 1080 #endif // !_LP64 1081 1082 private: 1083 1084 // these are private because users should be doing movflt/movdbl 1085 1086 void movss(Address dst, XMMRegister src) { Assembler::movss(dst, src); } 1087 void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); } 1088 void movss(XMMRegister dst, Address src) { Assembler::movss(dst, src); } 1089 void movss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg); 1090 1091 void movlpd(XMMRegister dst, Address src) {Assembler::movlpd(dst, src); } 1092 void movlpd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg); 1093 1094 public: 1095 1096 void addsd(XMMRegister dst, XMMRegister src) { Assembler::addsd(dst, src); } 1097 void addsd(XMMRegister dst, Address src) { Assembler::addsd(dst, src); } 1098 void addsd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg); 1099 1100 void addss(XMMRegister dst, XMMRegister src) { Assembler::addss(dst, src); } 1101 void addss(XMMRegister dst, Address src) { Assembler::addss(dst, src); } 1102 void addss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg); 1103 1104 void addpd(XMMRegister dst, XMMRegister src) { Assembler::addpd(dst, src); } 1105 void addpd(XMMRegister dst, Address src) { Assembler::addpd(dst, src); } 1106 void addpd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg); 1107 1108 using Assembler::vbroadcastsd; 1109 void vbroadcastsd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg); 1110 1111 using Assembler::vbroadcastss; 1112 void vbroadcastss(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg); 1113 1114 void divsd(XMMRegister dst, XMMRegister src) { Assembler::divsd(dst, src); } 1115 void divsd(XMMRegister dst, Address src) { Assembler::divsd(dst, src); } 1116 void divsd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg); 1117 1118 void divss(XMMRegister dst, XMMRegister src) { Assembler::divss(dst, src); } 1119 void divss(XMMRegister dst, Address src) { Assembler::divss(dst, src); } 1120 void divss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg); 1121 1122 // Move Unaligned Double Quadword 1123 void movdqu(Address dst, XMMRegister src); 1124 void movdqu(XMMRegister dst, XMMRegister src); 1125 void movdqu(XMMRegister dst, Address src); 1126 void movdqu(XMMRegister dst, AddressLiteral src, Register rscratch = noreg); 1127 1128 void kmovwl(Register dst, KRegister src) { Assembler::kmovwl(dst, src); } 1129 void kmovwl(Address dst, KRegister src) { Assembler::kmovwl(dst, src); } 1130 void kmovwl(KRegister dst, KRegister src) { Assembler::kmovwl(dst, src); } 1131 void kmovwl(KRegister dst, Register src) { Assembler::kmovwl(dst, src); } 1132 void kmovwl(KRegister dst, Address src) { Assembler::kmovwl(dst, src); } 1133 void kmovwl(KRegister dst, AddressLiteral src, Register rscratch = noreg); 1134 1135 void kmovql(KRegister dst, KRegister src) { Assembler::kmovql(dst, src); } 1136 void kmovql(KRegister dst, Register src) { Assembler::kmovql(dst, src); } 1137 void kmovql(Register dst, KRegister src) { Assembler::kmovql(dst, src); } 1138 void kmovql(KRegister dst, Address src) { Assembler::kmovql(dst, src); } 1139 void kmovql(Address dst, KRegister src) { Assembler::kmovql(dst, src); } 1140 void kmovql(KRegister dst, AddressLiteral src, Register rscratch = noreg); 1141 1142 // Safe move operation, lowers down to 16bit moves for targets supporting 1143 // AVX512F feature and 64bit moves for targets supporting AVX512BW feature. 1144 void kmov(Address dst, KRegister src); 1145 void kmov(KRegister dst, Address src); 1146 void kmov(KRegister dst, KRegister src); 1147 void kmov(Register dst, KRegister src); 1148 void kmov(KRegister dst, Register src); 1149 1150 using Assembler::movddup; 1151 void movddup(XMMRegister dst, AddressLiteral src, Register rscratch = noreg); 1152 1153 using Assembler::vmovddup; 1154 void vmovddup(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg); 1155 1156 // AVX Unaligned forms 1157 void vmovdqu(Address dst, XMMRegister src); 1158 void vmovdqu(XMMRegister dst, Address src); 1159 void vmovdqu(XMMRegister dst, XMMRegister src); 1160 void vmovdqu(XMMRegister dst, AddressLiteral src, Register rscratch = noreg); 1161 void vmovdqu(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg); 1162 1163 // AVX512 Unaligned 1164 void evmovdqu(BasicType type, KRegister kmask, Address dst, XMMRegister src, bool merge, int vector_len); 1165 void evmovdqu(BasicType type, KRegister kmask, XMMRegister dst, Address src, bool merge, int vector_len); 1166 1167 void evmovdqub(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::evmovdqub(dst, src, vector_len); } 1168 void evmovdqub(XMMRegister dst, Address src, int vector_len) { Assembler::evmovdqub(dst, src, vector_len); } 1169 1170 void evmovdqub(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len) { 1171 if (dst->encoding() != src->encoding() || mask != k0) { 1172 Assembler::evmovdqub(dst, mask, src, merge, vector_len); 1173 } 1174 } 1175 void evmovdqub(Address dst, KRegister mask, XMMRegister src, bool merge, int vector_len) { Assembler::evmovdqub(dst, mask, src, merge, vector_len); } 1176 void evmovdqub(XMMRegister dst, KRegister mask, Address src, bool merge, int vector_len) { Assembler::evmovdqub(dst, mask, src, merge, vector_len); } 1177 void evmovdqub(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg); 1178 1179 void evmovdquw(Address dst, XMMRegister src, int vector_len) { Assembler::evmovdquw(dst, src, vector_len); } 1180 void evmovdquw(XMMRegister dst, Address src, int vector_len) { Assembler::evmovdquw(dst, src, vector_len); } 1181 1182 void evmovdquw(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len) { 1183 if (dst->encoding() != src->encoding() || mask != k0) { 1184 Assembler::evmovdquw(dst, mask, src, merge, vector_len); 1185 } 1186 } 1187 void evmovdquw(XMMRegister dst, KRegister mask, Address src, bool merge, int vector_len) { Assembler::evmovdquw(dst, mask, src, merge, vector_len); } 1188 void evmovdquw(Address dst, KRegister mask, XMMRegister src, bool merge, int vector_len) { Assembler::evmovdquw(dst, mask, src, merge, vector_len); } 1189 void evmovdquw(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg); 1190 1191 void evmovdqul(XMMRegister dst, XMMRegister src, int vector_len) { 1192 if (dst->encoding() != src->encoding()) { 1193 Assembler::evmovdqul(dst, src, vector_len); 1194 } 1195 } 1196 void evmovdqul(Address dst, XMMRegister src, int vector_len) { Assembler::evmovdqul(dst, src, vector_len); } 1197 void evmovdqul(XMMRegister dst, Address src, int vector_len) { Assembler::evmovdqul(dst, src, vector_len); } 1198 1199 void evmovdqul(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len) { 1200 if (dst->encoding() != src->encoding() || mask != k0) { 1201 Assembler::evmovdqul(dst, mask, src, merge, vector_len); 1202 } 1203 } 1204 void evmovdqul(Address dst, KRegister mask, XMMRegister src, bool merge, int vector_len) { Assembler::evmovdqul(dst, mask, src, merge, vector_len); } 1205 void evmovdqul(XMMRegister dst, KRegister mask, Address src, bool merge, int vector_len) { Assembler::evmovdqul(dst, mask, src, merge, vector_len); } 1206 void evmovdqul(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg); 1207 1208 void evmovdquq(XMMRegister dst, XMMRegister src, int vector_len) { 1209 if (dst->encoding() != src->encoding()) { 1210 Assembler::evmovdquq(dst, src, vector_len); 1211 } 1212 } 1213 void evmovdquq(XMMRegister dst, Address src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); } 1214 void evmovdquq(Address dst, XMMRegister src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); } 1215 void evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg); 1216 1217 void evmovdquq(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len) { 1218 if (dst->encoding() != src->encoding() || mask != k0) { 1219 Assembler::evmovdquq(dst, mask, src, merge, vector_len); 1220 } 1221 } 1222 void evmovdquq(Address dst, KRegister mask, XMMRegister src, bool merge, int vector_len) { Assembler::evmovdquq(dst, mask, src, merge, vector_len); } 1223 void evmovdquq(XMMRegister dst, KRegister mask, Address src, bool merge, int vector_len) { Assembler::evmovdquq(dst, mask, src, merge, vector_len); } 1224 void evmovdquq(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg); 1225 1226 // Move Aligned Double Quadword 1227 void movdqa(XMMRegister dst, XMMRegister src) { Assembler::movdqa(dst, src); } 1228 void movdqa(XMMRegister dst, Address src) { Assembler::movdqa(dst, src); } 1229 void movdqa(XMMRegister dst, AddressLiteral src, Register rscratch = noreg); 1230 1231 void movsd(Address dst, XMMRegister src) { Assembler::movsd(dst, src); } 1232 void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); } 1233 void movsd(XMMRegister dst, Address src) { Assembler::movsd(dst, src); } 1234 void movsd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg); 1235 1236 void mulpd(XMMRegister dst, XMMRegister src) { Assembler::mulpd(dst, src); } 1237 void mulpd(XMMRegister dst, Address src) { Assembler::mulpd(dst, src); } 1238 void mulpd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg); 1239 1240 void mulsd(XMMRegister dst, XMMRegister src) { Assembler::mulsd(dst, src); } 1241 void mulsd(XMMRegister dst, Address src) { Assembler::mulsd(dst, src); } 1242 void mulsd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg); 1243 1244 void mulss(XMMRegister dst, XMMRegister src) { Assembler::mulss(dst, src); } 1245 void mulss(XMMRegister dst, Address src) { Assembler::mulss(dst, src); } 1246 void mulss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg); 1247 1248 // Carry-Less Multiplication Quadword 1249 void pclmulldq(XMMRegister dst, XMMRegister src) { 1250 // 0x00 - multiply lower 64 bits [0:63] 1251 Assembler::pclmulqdq(dst, src, 0x00); 1252 } 1253 void pclmulhdq(XMMRegister dst, XMMRegister src) { 1254 // 0x11 - multiply upper 64 bits [64:127] 1255 Assembler::pclmulqdq(dst, src, 0x11); 1256 } 1257 1258 void pcmpeqb(XMMRegister dst, XMMRegister src); 1259 void pcmpeqw(XMMRegister dst, XMMRegister src); 1260 1261 void pcmpestri(XMMRegister dst, Address src, int imm8); 1262 void pcmpestri(XMMRegister dst, XMMRegister src, int imm8); 1263 1264 void pmovzxbw(XMMRegister dst, XMMRegister src); 1265 void pmovzxbw(XMMRegister dst, Address src); 1266 1267 void pmovmskb(Register dst, XMMRegister src); 1268 1269 void ptest(XMMRegister dst, XMMRegister src); 1270 1271 void roundsd(XMMRegister dst, XMMRegister src, int32_t rmode) { Assembler::roundsd(dst, src, rmode); } 1272 void roundsd(XMMRegister dst, Address src, int32_t rmode) { Assembler::roundsd(dst, src, rmode); } 1273 void roundsd(XMMRegister dst, AddressLiteral src, int32_t rmode, Register rscratch = noreg); 1274 1275 void sqrtss(XMMRegister dst, XMMRegister src) { Assembler::sqrtss(dst, src); } 1276 void sqrtss(XMMRegister dst, Address src) { Assembler::sqrtss(dst, src); } 1277 void sqrtss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg); 1278 1279 void subsd(XMMRegister dst, XMMRegister src) { Assembler::subsd(dst, src); } 1280 void subsd(XMMRegister dst, Address src) { Assembler::subsd(dst, src); } 1281 void subsd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg); 1282 1283 void subss(XMMRegister dst, XMMRegister src) { Assembler::subss(dst, src); } 1284 void subss(XMMRegister dst, Address src) { Assembler::subss(dst, src); } 1285 void subss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg); 1286 1287 void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); } 1288 void ucomiss(XMMRegister dst, Address src) { Assembler::ucomiss(dst, src); } 1289 void ucomiss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg); 1290 1291 void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); } 1292 void ucomisd(XMMRegister dst, Address src) { Assembler::ucomisd(dst, src); } 1293 void ucomisd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg); 1294 1295 // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values 1296 void xorpd(XMMRegister dst, XMMRegister src); 1297 void xorpd(XMMRegister dst, Address src) { Assembler::xorpd(dst, src); } 1298 void xorpd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg); 1299 1300 // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values 1301 void xorps(XMMRegister dst, XMMRegister src); 1302 void xorps(XMMRegister dst, Address src) { Assembler::xorps(dst, src); } 1303 void xorps(XMMRegister dst, AddressLiteral src, Register rscratch = noreg); 1304 1305 // Shuffle Bytes 1306 void pshufb(XMMRegister dst, XMMRegister src) { Assembler::pshufb(dst, src); } 1307 void pshufb(XMMRegister dst, Address src) { Assembler::pshufb(dst, src); } 1308 void pshufb(XMMRegister dst, AddressLiteral src, Register rscratch = noreg); 1309 // AVX 3-operands instructions 1310 1311 void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); } 1312 void vaddsd(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vaddsd(dst, nds, src); } 1313 void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg); 1314 1315 void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); } 1316 void vaddss(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vaddss(dst, nds, src); } 1317 void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg); 1318 1319 void vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch = noreg); 1320 void vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch = noreg); 1321 1322 void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); 1323 void vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len); 1324 void vpaddb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg); 1325 1326 void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); 1327 void vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len); 1328 1329 void vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpaddd(dst, nds, src, vector_len); } 1330 void vpaddd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vpaddd(dst, nds, src, vector_len); } 1331 void vpaddd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg); 1332 1333 void vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); } 1334 void vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); } 1335 void vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg); 1336 1337 using Assembler::vpbroadcastd; 1338 void vpbroadcastd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg); 1339 1340 using Assembler::vpbroadcastq; 1341 void vpbroadcastq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg); 1342 1343 void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); 1344 1345 void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); 1346 void evpcmpeqd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg); 1347 1348 // Vector compares 1349 void evpcmpd(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src, int comparison, bool is_signed, int vector_len) { 1350 Assembler::evpcmpd(kdst, mask, nds, src, comparison, is_signed, vector_len); 1351 } 1352 void evpcmpd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int comparison, bool is_signed, int vector_len, Register rscratch = noreg); 1353 1354 void evpcmpq(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src, int comparison, bool is_signed, int vector_len) { 1355 Assembler::evpcmpq(kdst, mask, nds, src, comparison, is_signed, vector_len); 1356 } 1357 void evpcmpq(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int comparison, bool is_signed, int vector_len, Register rscratch = noreg); 1358 1359 void evpcmpb(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src, int comparison, bool is_signed, int vector_len) { 1360 Assembler::evpcmpb(kdst, mask, nds, src, comparison, is_signed, vector_len); 1361 } 1362 void evpcmpb(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int comparison, bool is_signed, int vector_len, Register rscratch = noreg); 1363 1364 void evpcmpw(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src, int comparison, bool is_signed, int vector_len) { 1365 Assembler::evpcmpw(kdst, mask, nds, src, comparison, is_signed, vector_len); 1366 } 1367 void evpcmpw(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int comparison, bool is_signed, int vector_len, Register rscratch = noreg); 1368 1369 void evpbroadcast(BasicType type, XMMRegister dst, Register src, int vector_len); 1370 1371 // Emit comparison instruction for the specified comparison predicate. 1372 void vpcmpCCW(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister xtmp, ComparisonPredicate cond, Width width, int vector_len); 1373 void vpcmpCC(XMMRegister dst, XMMRegister nds, XMMRegister src, int cond_encoding, Width width, int vector_len); 1374 1375 void vpmovzxbw(XMMRegister dst, Address src, int vector_len); 1376 void vpmovzxbw(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::vpmovzxbw(dst, src, vector_len); } 1377 1378 void vpmovmskb(Register dst, XMMRegister src, int vector_len = Assembler::AVX_256bit); 1379 1380 void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); 1381 void vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len); 1382 1383 void vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpmulld(dst, nds, src, vector_len); } 1384 void vpmulld(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vpmulld(dst, nds, src, vector_len); } 1385 void vpmulld(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg); 1386 1387 void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); 1388 void vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len); 1389 1390 void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); 1391 void vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len); 1392 1393 void vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len); 1394 void vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len); 1395 1396 void evpsraq(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len); 1397 void evpsraq(XMMRegister dst, XMMRegister nds, int shift, int vector_len); 1398 1399 void evpsllw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) { 1400 if (!is_varshift) { 1401 Assembler::evpsllw(dst, mask, nds, src, merge, vector_len); 1402 } else { 1403 Assembler::evpsllvw(dst, mask, nds, src, merge, vector_len); 1404 } 1405 } 1406 void evpslld(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) { 1407 if (!is_varshift) { 1408 Assembler::evpslld(dst, mask, nds, src, merge, vector_len); 1409 } else { 1410 Assembler::evpsllvd(dst, mask, nds, src, merge, vector_len); 1411 } 1412 } 1413 void evpsllq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) { 1414 if (!is_varshift) { 1415 Assembler::evpsllq(dst, mask, nds, src, merge, vector_len); 1416 } else { 1417 Assembler::evpsllvq(dst, mask, nds, src, merge, vector_len); 1418 } 1419 } 1420 void evpsrlw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) { 1421 if (!is_varshift) { 1422 Assembler::evpsrlw(dst, mask, nds, src, merge, vector_len); 1423 } else { 1424 Assembler::evpsrlvw(dst, mask, nds, src, merge, vector_len); 1425 } 1426 } 1427 void evpsrld(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) { 1428 if (!is_varshift) { 1429 Assembler::evpsrld(dst, mask, nds, src, merge, vector_len); 1430 } else { 1431 Assembler::evpsrlvd(dst, mask, nds, src, merge, vector_len); 1432 } 1433 } 1434 void evpsrlq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) { 1435 if (!is_varshift) { 1436 Assembler::evpsrlq(dst, mask, nds, src, merge, vector_len); 1437 } else { 1438 Assembler::evpsrlvq(dst, mask, nds, src, merge, vector_len); 1439 } 1440 } 1441 void evpsraw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) { 1442 if (!is_varshift) { 1443 Assembler::evpsraw(dst, mask, nds, src, merge, vector_len); 1444 } else { 1445 Assembler::evpsravw(dst, mask, nds, src, merge, vector_len); 1446 } 1447 } 1448 void evpsrad(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) { 1449 if (!is_varshift) { 1450 Assembler::evpsrad(dst, mask, nds, src, merge, vector_len); 1451 } else { 1452 Assembler::evpsravd(dst, mask, nds, src, merge, vector_len); 1453 } 1454 } 1455 void evpsraq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) { 1456 if (!is_varshift) { 1457 Assembler::evpsraq(dst, mask, nds, src, merge, vector_len); 1458 } else { 1459 Assembler::evpsravq(dst, mask, nds, src, merge, vector_len); 1460 } 1461 } 1462 1463 void evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); 1464 void evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); 1465 void evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); 1466 void evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); 1467 1468 void vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len); 1469 void vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len); 1470 1471 void vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len); 1472 void vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len); 1473 1474 void vptest(XMMRegister dst, XMMRegister src); 1475 void vptest(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::vptest(dst, src, vector_len); } 1476 1477 void punpcklbw(XMMRegister dst, XMMRegister src); 1478 void punpcklbw(XMMRegister dst, Address src) { Assembler::punpcklbw(dst, src); } 1479 1480 void pshufd(XMMRegister dst, Address src, int mode); 1481 void pshufd(XMMRegister dst, XMMRegister src, int mode) { Assembler::pshufd(dst, src, mode); } 1482 1483 void pshuflw(XMMRegister dst, XMMRegister src, int mode); 1484 void pshuflw(XMMRegister dst, Address src, int mode) { Assembler::pshuflw(dst, src, mode); } 1485 1486 void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); } 1487 void vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); } 1488 void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg); 1489 1490 void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); } 1491 void vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); } 1492 void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg); 1493 1494 void evpord(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg); 1495 1496 void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); } 1497 void vdivsd(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vdivsd(dst, nds, src); } 1498 void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg); 1499 1500 void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); } 1501 void vdivss(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vdivss(dst, nds, src); } 1502 void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg); 1503 1504 void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); } 1505 void vmulsd(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vmulsd(dst, nds, src); } 1506 void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg); 1507 1508 void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); } 1509 void vmulss(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vmulss(dst, nds, src); } 1510 void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg); 1511 1512 void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); } 1513 void vsubsd(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vsubsd(dst, nds, src); } 1514 void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg); 1515 1516 void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); } 1517 void vsubss(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vsubss(dst, nds, src); } 1518 void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg); 1519 1520 void vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg); 1521 void vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg); 1522 1523 // AVX Vector instructions 1524 1525 void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); } 1526 void vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); } 1527 void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg); 1528 1529 void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); } 1530 void vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); } 1531 void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg); 1532 1533 void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 1534 if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2 1535 Assembler::vpxor(dst, nds, src, vector_len); 1536 else 1537 Assembler::vxorpd(dst, nds, src, vector_len); 1538 } 1539 void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 1540 if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2 1541 Assembler::vpxor(dst, nds, src, vector_len); 1542 else 1543 Assembler::vxorpd(dst, nds, src, vector_len); 1544 } 1545 void vpxor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg); 1546 1547 // Simple version for AVX2 256bit vectors 1548 void vpxor(XMMRegister dst, XMMRegister src) { 1549 assert(UseAVX >= 2, "Should be at least AVX2"); 1550 Assembler::vpxor(dst, dst, src, AVX_256bit); 1551 } 1552 void vpxor(XMMRegister dst, Address src) { 1553 assert(UseAVX >= 2, "Should be at least AVX2"); 1554 Assembler::vpxor(dst, dst, src, AVX_256bit); 1555 } 1556 1557 void vpermd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpermd(dst, nds, src, vector_len); } 1558 void vpermd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg); 1559 1560 void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) { 1561 if (UseAVX > 2 && VM_Version::supports_avx512novl()) { 1562 Assembler::vinserti32x4(dst, nds, src, imm8); 1563 } else if (UseAVX > 1) { 1564 // vinserti128 is available only in AVX2 1565 Assembler::vinserti128(dst, nds, src, imm8); 1566 } else { 1567 Assembler::vinsertf128(dst, nds, src, imm8); 1568 } 1569 } 1570 1571 void vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) { 1572 if (UseAVX > 2 && VM_Version::supports_avx512novl()) { 1573 Assembler::vinserti32x4(dst, nds, src, imm8); 1574 } else if (UseAVX > 1) { 1575 // vinserti128 is available only in AVX2 1576 Assembler::vinserti128(dst, nds, src, imm8); 1577 } else { 1578 Assembler::vinsertf128(dst, nds, src, imm8); 1579 } 1580 } 1581 1582 void vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) { 1583 if (UseAVX > 2 && VM_Version::supports_avx512novl()) { 1584 Assembler::vextracti32x4(dst, src, imm8); 1585 } else if (UseAVX > 1) { 1586 // vextracti128 is available only in AVX2 1587 Assembler::vextracti128(dst, src, imm8); 1588 } else { 1589 Assembler::vextractf128(dst, src, imm8); 1590 } 1591 } 1592 1593 void vextracti128(Address dst, XMMRegister src, uint8_t imm8) { 1594 if (UseAVX > 2 && VM_Version::supports_avx512novl()) { 1595 Assembler::vextracti32x4(dst, src, imm8); 1596 } else if (UseAVX > 1) { 1597 // vextracti128 is available only in AVX2 1598 Assembler::vextracti128(dst, src, imm8); 1599 } else { 1600 Assembler::vextractf128(dst, src, imm8); 1601 } 1602 } 1603 1604 // 128bit copy to/from high 128 bits of 256bit (YMM) vector registers 1605 void vinserti128_high(XMMRegister dst, XMMRegister src) { 1606 vinserti128(dst, dst, src, 1); 1607 } 1608 void vinserti128_high(XMMRegister dst, Address src) { 1609 vinserti128(dst, dst, src, 1); 1610 } 1611 void vextracti128_high(XMMRegister dst, XMMRegister src) { 1612 vextracti128(dst, src, 1); 1613 } 1614 void vextracti128_high(Address dst, XMMRegister src) { 1615 vextracti128(dst, src, 1); 1616 } 1617 1618 void vinsertf128_high(XMMRegister dst, XMMRegister src) { 1619 if (UseAVX > 2 && VM_Version::supports_avx512novl()) { 1620 Assembler::vinsertf32x4(dst, dst, src, 1); 1621 } else { 1622 Assembler::vinsertf128(dst, dst, src, 1); 1623 } 1624 } 1625 1626 void vinsertf128_high(XMMRegister dst, Address src) { 1627 if (UseAVX > 2 && VM_Version::supports_avx512novl()) { 1628 Assembler::vinsertf32x4(dst, dst, src, 1); 1629 } else { 1630 Assembler::vinsertf128(dst, dst, src, 1); 1631 } 1632 } 1633 1634 void vextractf128_high(XMMRegister dst, XMMRegister src) { 1635 if (UseAVX > 2 && VM_Version::supports_avx512novl()) { 1636 Assembler::vextractf32x4(dst, src, 1); 1637 } else { 1638 Assembler::vextractf128(dst, src, 1); 1639 } 1640 } 1641 1642 void vextractf128_high(Address dst, XMMRegister src) { 1643 if (UseAVX > 2 && VM_Version::supports_avx512novl()) { 1644 Assembler::vextractf32x4(dst, src, 1); 1645 } else { 1646 Assembler::vextractf128(dst, src, 1); 1647 } 1648 } 1649 1650 // 256bit copy to/from high 256 bits of 512bit (ZMM) vector registers 1651 void vinserti64x4_high(XMMRegister dst, XMMRegister src) { 1652 Assembler::vinserti64x4(dst, dst, src, 1); 1653 } 1654 void vinsertf64x4_high(XMMRegister dst, XMMRegister src) { 1655 Assembler::vinsertf64x4(dst, dst, src, 1); 1656 } 1657 void vextracti64x4_high(XMMRegister dst, XMMRegister src) { 1658 Assembler::vextracti64x4(dst, src, 1); 1659 } 1660 void vextractf64x4_high(XMMRegister dst, XMMRegister src) { 1661 Assembler::vextractf64x4(dst, src, 1); 1662 } 1663 void vextractf64x4_high(Address dst, XMMRegister src) { 1664 Assembler::vextractf64x4(dst, src, 1); 1665 } 1666 void vinsertf64x4_high(XMMRegister dst, Address src) { 1667 Assembler::vinsertf64x4(dst, dst, src, 1); 1668 } 1669 1670 // 128bit copy to/from low 128 bits of 256bit (YMM) vector registers 1671 void vinserti128_low(XMMRegister dst, XMMRegister src) { 1672 vinserti128(dst, dst, src, 0); 1673 } 1674 void vinserti128_low(XMMRegister dst, Address src) { 1675 vinserti128(dst, dst, src, 0); 1676 } 1677 void vextracti128_low(XMMRegister dst, XMMRegister src) { 1678 vextracti128(dst, src, 0); 1679 } 1680 void vextracti128_low(Address dst, XMMRegister src) { 1681 vextracti128(dst, src, 0); 1682 } 1683 1684 void vinsertf128_low(XMMRegister dst, XMMRegister src) { 1685 if (UseAVX > 2 && VM_Version::supports_avx512novl()) { 1686 Assembler::vinsertf32x4(dst, dst, src, 0); 1687 } else { 1688 Assembler::vinsertf128(dst, dst, src, 0); 1689 } 1690 } 1691 1692 void vinsertf128_low(XMMRegister dst, Address src) { 1693 if (UseAVX > 2 && VM_Version::supports_avx512novl()) { 1694 Assembler::vinsertf32x4(dst, dst, src, 0); 1695 } else { 1696 Assembler::vinsertf128(dst, dst, src, 0); 1697 } 1698 } 1699 1700 void vextractf128_low(XMMRegister dst, XMMRegister src) { 1701 if (UseAVX > 2 && VM_Version::supports_avx512novl()) { 1702 Assembler::vextractf32x4(dst, src, 0); 1703 } else { 1704 Assembler::vextractf128(dst, src, 0); 1705 } 1706 } 1707 1708 void vextractf128_low(Address dst, XMMRegister src) { 1709 if (UseAVX > 2 && VM_Version::supports_avx512novl()) { 1710 Assembler::vextractf32x4(dst, src, 0); 1711 } else { 1712 Assembler::vextractf128(dst, src, 0); 1713 } 1714 } 1715 1716 // 256bit copy to/from low 256 bits of 512bit (ZMM) vector registers 1717 void vinserti64x4_low(XMMRegister dst, XMMRegister src) { 1718 Assembler::vinserti64x4(dst, dst, src, 0); 1719 } 1720 void vinsertf64x4_low(XMMRegister dst, XMMRegister src) { 1721 Assembler::vinsertf64x4(dst, dst, src, 0); 1722 } 1723 void vextracti64x4_low(XMMRegister dst, XMMRegister src) { 1724 Assembler::vextracti64x4(dst, src, 0); 1725 } 1726 void vextractf64x4_low(XMMRegister dst, XMMRegister src) { 1727 Assembler::vextractf64x4(dst, src, 0); 1728 } 1729 void vextractf64x4_low(Address dst, XMMRegister src) { 1730 Assembler::vextractf64x4(dst, src, 0); 1731 } 1732 void vinsertf64x4_low(XMMRegister dst, Address src) { 1733 Assembler::vinsertf64x4(dst, dst, src, 0); 1734 } 1735 1736 // Carry-Less Multiplication Quadword 1737 void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) { 1738 // 0x00 - multiply lower 64 bits [0:63] 1739 Assembler::vpclmulqdq(dst, nds, src, 0x00); 1740 } 1741 void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) { 1742 // 0x11 - multiply upper 64 bits [64:127] 1743 Assembler::vpclmulqdq(dst, nds, src, 0x11); 1744 } 1745 void vpclmullqhqdq(XMMRegister dst, XMMRegister nds, XMMRegister src) { 1746 // 0x10 - multiply nds[0:63] and src[64:127] 1747 Assembler::vpclmulqdq(dst, nds, src, 0x10); 1748 } 1749 void vpclmulhqlqdq(XMMRegister dst, XMMRegister nds, XMMRegister src) { 1750 //0x01 - multiply nds[64:127] and src[0:63] 1751 Assembler::vpclmulqdq(dst, nds, src, 0x01); 1752 } 1753 1754 void evpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 1755 // 0x00 - multiply lower 64 bits [0:63] 1756 Assembler::evpclmulqdq(dst, nds, src, 0x00, vector_len); 1757 } 1758 void evpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 1759 // 0x11 - multiply upper 64 bits [64:127] 1760 Assembler::evpclmulqdq(dst, nds, src, 0x11, vector_len); 1761 } 1762 1763 // AVX-512 mask operations. 1764 void kand(BasicType etype, KRegister dst, KRegister src1, KRegister src2); 1765 void kor(BasicType type, KRegister dst, KRegister src1, KRegister src2); 1766 void knot(uint masklen, KRegister dst, KRegister src, KRegister ktmp = knoreg, Register rtmp = noreg); 1767 void kxor(BasicType type, KRegister dst, KRegister src1, KRegister src2); 1768 void kortest(uint masklen, KRegister src1, KRegister src2); 1769 void ktest(uint masklen, KRegister src1, KRegister src2); 1770 1771 void evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); 1772 void evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); 1773 1774 void evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); 1775 void evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); 1776 1777 void evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); 1778 void evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); 1779 1780 void evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); 1781 void evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); 1782 1783 void evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc); 1784 void evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc); 1785 void evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc); 1786 void evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc); 1787 1788 using Assembler::evpandq; 1789 void evpandq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg); 1790 1791 using Assembler::evporq; 1792 void evporq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg); 1793 1794 using Assembler::vpternlogq; 1795 void vpternlogq(XMMRegister dst, int imm8, XMMRegister src2, AddressLiteral src3, int vector_len, Register rscratch = noreg); 1796 1797 void cmov32( Condition cc, Register dst, Address src); 1798 void cmov32( Condition cc, Register dst, Register src); 1799 1800 void cmov( Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); } 1801 1802 void cmovptr(Condition cc, Register dst, Address src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); } 1803 void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); } 1804 1805 void movoop(Register dst, jobject obj); 1806 void movoop(Address dst, jobject obj, Register rscratch); 1807 1808 void mov_metadata(Register dst, Metadata* obj); 1809 void mov_metadata(Address dst, Metadata* obj, Register rscratch); 1810 1811 void movptr(Register dst, Register src); 1812 void movptr(Register dst, Address src); 1813 void movptr(Register dst, AddressLiteral src); 1814 void movptr(Register dst, ArrayAddress src); 1815 void movptr(Register dst, intptr_t src); 1816 void movptr(Address dst, Register src); 1817 void movptr(Address dst, int32_t imm); 1818 void movptr(Address dst, intptr_t src, Register rscratch); 1819 void movptr(ArrayAddress dst, Register src, Register rscratch); 1820 1821 void movptr(Register dst, RegisterOrConstant src) { 1822 if (src.is_constant()) movptr(dst, src.as_constant()); 1823 else movptr(dst, src.as_register()); 1824 } 1825 1826 1827 // to avoid hiding movl 1828 void mov32(Register dst, AddressLiteral src); 1829 void mov32(AddressLiteral dst, Register src, Register rscratch = noreg); 1830 1831 // Import other mov() methods from the parent class or else 1832 // they will be hidden by the following overriding declaration. 1833 using Assembler::movdl; 1834 void movdl(XMMRegister dst, AddressLiteral src, Register rscratch = noreg); 1835 1836 using Assembler::movq; 1837 void movq(XMMRegister dst, AddressLiteral src, Register rscratch = noreg); 1838 1839 // Can push value or effective address 1840 void pushptr(AddressLiteral src, Register rscratch); 1841 1842 void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); } 1843 void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); } 1844 1845 void pushoop(jobject obj, Register rscratch); 1846 void pushklass(Metadata* obj, Register rscratch); 1847 1848 // sign extend as need a l to ptr sized element 1849 void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); } 1850 void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); } 1851 1852 1853 public: 1854 // clear memory of size 'cnt' qwords, starting at 'base'; 1855 // if 'is_large' is set, do not try to produce short loop 1856 void clear_mem(Register base, Register cnt, Register rtmp, XMMRegister xtmp, bool is_large, KRegister mask=knoreg); 1857 1858 // clear memory initialization sequence for constant size; 1859 void clear_mem(Register base, int cnt, Register rtmp, XMMRegister xtmp, KRegister mask=knoreg); 1860 1861 // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM registers 1862 void xmm_clear_mem(Register base, Register cnt, Register rtmp, XMMRegister xtmp, KRegister mask=knoreg); 1863 1864 // Fill primitive arrays 1865 void generate_fill(BasicType t, bool aligned, 1866 Register to, Register value, Register count, 1867 Register rtmp, XMMRegister xtmp); 1868 1869 void encode_iso_array(Register src, Register dst, Register len, 1870 XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3, 1871 XMMRegister tmp4, Register tmp5, Register result, bool ascii); 1872 1873 #ifdef _LP64 1874 void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2); 1875 void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, 1876 Register y, Register y_idx, Register z, 1877 Register carry, Register product, 1878 Register idx, Register kdx); 1879 void multiply_add_128_x_128(Register x_xstart, Register y, Register z, 1880 Register yz_idx, Register idx, 1881 Register carry, Register product, int offset); 1882 void multiply_128_x_128_bmi2_loop(Register y, Register z, 1883 Register carry, Register carry2, 1884 Register idx, Register jdx, 1885 Register yz_idx1, Register yz_idx2, 1886 Register tmp, Register tmp3, Register tmp4); 1887 void multiply_128_x_128_loop(Register x_xstart, Register y, Register z, 1888 Register yz_idx, Register idx, Register jdx, 1889 Register carry, Register product, 1890 Register carry2); 1891 void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen, 1892 Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5); 1893 void square_rshift(Register x, Register len, Register z, Register tmp1, Register tmp3, 1894 Register tmp4, Register tmp5, Register rdxReg, Register raxReg); 1895 void multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry, 1896 Register tmp2); 1897 void multiply_add_64(Register sum, Register op1, Register op2, Register carry, 1898 Register rdxReg, Register raxReg); 1899 void add_one_64(Register z, Register zlen, Register carry, Register tmp1); 1900 void lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, 1901 Register tmp3, Register tmp4); 1902 void square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, 1903 Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg); 1904 1905 void mul_add_128_x_32_loop(Register out, Register in, Register offset, Register len, Register tmp1, 1906 Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, 1907 Register raxReg); 1908 void mul_add(Register out, Register in, Register offset, Register len, Register k, Register tmp1, 1909 Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, 1910 Register raxReg); 1911 void vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale, 1912 Register result, Register tmp1, Register tmp2, 1913 XMMRegister vec1, XMMRegister vec2, XMMRegister vec3); 1914 #endif 1915 1916 // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic. 1917 void update_byte_crc32(Register crc, Register val, Register table); 1918 void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp); 1919 1920 1921 #ifdef _LP64 1922 void kernel_crc32_avx512(Register crc, Register buf, Register len, Register table, Register tmp1, Register tmp2); 1923 void kernel_crc32_avx512_256B(Register crc, Register buf, Register len, Register key, Register pos, 1924 Register tmp1, Register tmp2, Label& L_barrett, Label& L_16B_reduction_loop, 1925 Label& L_get_last_two_xmms, Label& L_128_done, Label& L_cleanup); 1926 #endif // _LP64 1927 1928 // CRC32C code for java.util.zip.CRC32C::updateBytes() intrinsic 1929 // Note on a naming convention: 1930 // Prefix w = register only used on a Westmere+ architecture 1931 // Prefix n = register only used on a Nehalem architecture 1932 #ifdef _LP64 1933 void crc32c_ipl_alg4(Register in_out, uint32_t n, 1934 Register tmp1, Register tmp2, Register tmp3); 1935 #else 1936 void crc32c_ipl_alg4(Register in_out, uint32_t n, 1937 Register tmp1, Register tmp2, Register tmp3, 1938 XMMRegister xtmp1, XMMRegister xtmp2); 1939 #endif 1940 void crc32c_pclmulqdq(XMMRegister w_xtmp1, 1941 Register in_out, 1942 uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported, 1943 XMMRegister w_xtmp2, 1944 Register tmp1, 1945 Register n_tmp2, Register n_tmp3); 1946 void crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2, 1947 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 1948 Register tmp1, Register tmp2, 1949 Register n_tmp3); 1950 void crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, 1951 Register in_out1, Register in_out2, Register in_out3, 1952 Register tmp1, Register tmp2, Register tmp3, 1953 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 1954 Register tmp4, Register tmp5, 1955 Register n_tmp6); 1956 void crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2, 1957 Register tmp1, Register tmp2, Register tmp3, 1958 Register tmp4, Register tmp5, Register tmp6, 1959 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 1960 bool is_pclmulqdq_supported); 1961 // Fold 128-bit data chunk 1962 void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset); 1963 void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf); 1964 #ifdef _LP64 1965 // Fold 512-bit data chunk 1966 void fold512bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, Register pos, int offset); 1967 #endif // _LP64 1968 // Fold 8-bit data 1969 void fold_8bit_crc32(Register crc, Register table, Register tmp); 1970 void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp); 1971 1972 // Compress char[] array to byte[]. 1973 void char_array_compress(Register src, Register dst, Register len, 1974 XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3, 1975 XMMRegister tmp4, Register tmp5, Register result, 1976 KRegister mask1 = knoreg, KRegister mask2 = knoreg); 1977 1978 // Inflate byte[] array to char[]. 1979 void byte_array_inflate(Register src, Register dst, Register len, 1980 XMMRegister tmp1, Register tmp2, KRegister mask = knoreg); 1981 1982 void fill_masked(BasicType bt, Address dst, XMMRegister xmm, KRegister mask, 1983 Register length, Register temp, int vec_enc); 1984 1985 void fill64_masked(uint shift, Register dst, int disp, 1986 XMMRegister xmm, KRegister mask, Register length, 1987 Register temp, bool use64byteVector = false); 1988 1989 void fill32_masked(uint shift, Register dst, int disp, 1990 XMMRegister xmm, KRegister mask, Register length, 1991 Register temp); 1992 1993 void fill32(Address dst, XMMRegister xmm); 1994 1995 void fill32(Register dst, int disp, XMMRegister xmm); 1996 1997 void fill64(Address dst, XMMRegister xmm, bool use64byteVector = false); 1998 1999 void fill64(Register dst, int dis, XMMRegister xmm, bool use64byteVector = false); 2000 2001 #ifdef _LP64 2002 void convert_f2i(Register dst, XMMRegister src); 2003 void convert_d2i(Register dst, XMMRegister src); 2004 void convert_f2l(Register dst, XMMRegister src); 2005 void convert_d2l(Register dst, XMMRegister src); 2006 void round_double(Register dst, XMMRegister src, Register rtmp, Register rcx); 2007 void round_float(Register dst, XMMRegister src, Register rtmp, Register rcx); 2008 2009 void cache_wb(Address line); 2010 void cache_wbsync(bool is_pre); 2011 2012 #ifdef COMPILER2_OR_JVMCI 2013 void generate_fill_avx3(BasicType type, Register to, Register value, 2014 Register count, Register rtmp, XMMRegister xtmp); 2015 #endif // COMPILER2_OR_JVMCI 2016 #endif // _LP64 2017 2018 void vallones(XMMRegister dst, int vector_len); 2019 2020 void check_stack_alignment(Register sp, const char* msg, unsigned bias = 0, Register tmp = noreg); 2021 2022 void fast_lock_impl(Register obj, Register hdr, Register thread, Register tmp, Label& slow); 2023 void fast_unlock_impl(Register obj, Register hdr, Register tmp, Label& slow); 2024 }; 2025 2026 /** 2027 * class SkipIfEqual: 2028 * 2029 * Instantiating this class will result in assembly code being output that will 2030 * jump around any code emitted between the creation of the instance and it's 2031 * automatic destruction at the end of a scope block, depending on the value of 2032 * the flag passed to the constructor, which will be checked at run-time. 2033 */ 2034 class SkipIfEqual { 2035 private: 2036 MacroAssembler* _masm; 2037 Label _label; 2038 2039 public: 2040 SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value, Register rscratch); 2041 ~SkipIfEqual(); 2042 }; 2043 2044 #endif // CPU_X86_MACROASSEMBLER_X86_HPP