1 /* 2 * Copyright (c) 2003, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "code/debugInfoRec.hpp" 29 #include "code/icBuffer.hpp" 30 #include "code/nativeInst.hpp" 31 #include "code/vtableStubs.hpp" 32 #include "compiler/oopMap.hpp" 33 #include "gc/shared/gcLocker.hpp" 34 #include "gc/shared/barrierSet.hpp" 35 #include "gc/shared/barrierSetAssembler.hpp" 36 #include "interpreter/interpreter.hpp" 37 #include "logging/log.hpp" 38 #include "memory/resourceArea.hpp" 39 #include "oops/compiledICHolder.hpp" 40 #include "oops/klass.inline.hpp" 41 #include "prims/methodHandles.hpp" 42 #include "runtime/jniHandles.hpp" 43 #include "runtime/safepointMechanism.hpp" 44 #include "runtime/sharedRuntime.hpp" 45 #include "runtime/signature.hpp" 46 #include "runtime/stubRoutines.hpp" 47 #include "runtime/vframeArray.hpp" 48 #include "runtime/vm_version.hpp" 49 #include "utilities/align.hpp" 50 #include "vmreg_x86.inline.hpp" 51 #ifdef COMPILER1 52 #include "c1/c1_Runtime1.hpp" 53 #endif 54 #ifdef COMPILER2 55 #include "opto/runtime.hpp" 56 #endif 57 58 #define __ masm-> 59 60 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size; 61 62 class RegisterSaver { 63 // Capture info about frame layout 64 #define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off 65 enum layout { 66 fpu_state_off = 0, 67 fpu_state_end = fpu_state_off+FPUStateSizeInWords, 68 st0_off, st0H_off, 69 st1_off, st1H_off, 70 st2_off, st2H_off, 71 st3_off, st3H_off, 72 st4_off, st4H_off, 73 st5_off, st5H_off, 74 st6_off, st6H_off, 75 st7_off, st7H_off, 76 xmm_off, 77 DEF_XMM_OFFS(0), 78 DEF_XMM_OFFS(1), 79 DEF_XMM_OFFS(2), 80 DEF_XMM_OFFS(3), 81 DEF_XMM_OFFS(4), 82 DEF_XMM_OFFS(5), 83 DEF_XMM_OFFS(6), 84 DEF_XMM_OFFS(7), 85 flags_off = xmm7_off + 16/BytesPerInt + 1, // 16-byte stack alignment fill word 86 rdi_off, 87 rsi_off, 88 ignore_off, // extra copy of rbp, 89 rsp_off, 90 rbx_off, 91 rdx_off, 92 rcx_off, 93 rax_off, 94 // The frame sender code expects that rbp will be in the "natural" place and 95 // will override any oopMap setting for it. We must therefore force the layout 96 // so that it agrees with the frame sender code. 97 rbp_off, 98 return_off, // slot for return address 99 reg_save_size }; 100 enum { FPU_regs_live = flags_off - fpu_state_end }; 101 102 public: 103 104 static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, 105 int* total_frame_words, bool verify_fpu = true, bool save_vectors = false); 106 static void restore_live_registers(MacroAssembler* masm, bool restore_vectors = false); 107 108 static int rax_offset() { return rax_off; } 109 static int rbx_offset() { return rbx_off; } 110 111 // Offsets into the register save area 112 // Used by deoptimization when it is managing result register 113 // values on its own 114 115 static int raxOffset(void) { return rax_off; } 116 static int rdxOffset(void) { return rdx_off; } 117 static int rbxOffset(void) { return rbx_off; } 118 static int xmm0Offset(void) { return xmm0_off; } 119 // This really returns a slot in the fp save area, which one is not important 120 static int fpResultOffset(void) { return st0_off; } 121 122 // During deoptimization only the result register need to be restored 123 // all the other values have already been extracted. 124 125 static void restore_result_registers(MacroAssembler* masm); 126 127 }; 128 129 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, 130 int* total_frame_words, bool verify_fpu, bool save_vectors) { 131 int num_xmm_regs = XMMRegister::number_of_registers; 132 int ymm_bytes = num_xmm_regs * 16; 133 int zmm_bytes = num_xmm_regs * 32; 134 #ifdef COMPILER2 135 int opmask_state_bytes = KRegister::number_of_registers * 8; 136 if (save_vectors) { 137 assert(UseAVX > 0, "Vectors larger than 16 byte long are supported only with AVX"); 138 assert(MaxVectorSize <= 64, "Only up to 64 byte long vectors are supported"); 139 // Save upper half of YMM registers 140 int vect_bytes = ymm_bytes; 141 if (UseAVX > 2) { 142 // Save upper half of ZMM registers as well 143 vect_bytes += zmm_bytes; 144 additional_frame_words += opmask_state_bytes / wordSize; 145 } 146 additional_frame_words += vect_bytes / wordSize; 147 } 148 #else 149 assert(!save_vectors, "vectors are generated only by C2"); 150 #endif 151 int frame_size_in_bytes = (reg_save_size + additional_frame_words) * wordSize; 152 int frame_words = frame_size_in_bytes / wordSize; 153 *total_frame_words = frame_words; 154 155 assert(FPUStateSizeInWords == 27, "update stack layout"); 156 157 // save registers, fpu state, and flags 158 // We assume caller has already has return address slot on the stack 159 // We push epb twice in this sequence because we want the real rbp, 160 // to be under the return like a normal enter and we want to use pusha 161 // We push by hand instead of using push. 162 __ enter(); 163 __ pusha(); 164 __ pushf(); 165 __ subptr(rsp,FPU_regs_live*wordSize); // Push FPU registers space 166 __ push_FPU_state(); // Save FPU state & init 167 168 if (verify_fpu) { 169 // Some stubs may have non standard FPU control word settings so 170 // only check and reset the value when it required to be the 171 // standard value. The safepoint blob in particular can be used 172 // in methods which are using the 24 bit control word for 173 // optimized float math. 174 175 #ifdef ASSERT 176 // Make sure the control word has the expected value 177 Label ok; 178 __ cmpw(Address(rsp, 0), StubRoutines::x86::fpu_cntrl_wrd_std()); 179 __ jccb(Assembler::equal, ok); 180 __ stop("corrupted control word detected"); 181 __ bind(ok); 182 #endif 183 184 // Reset the control word to guard against exceptions being unmasked 185 // since fstp_d can cause FPU stack underflow exceptions. Write it 186 // into the on stack copy and then reload that to make sure that the 187 // current and future values are correct. 188 __ movw(Address(rsp, 0), StubRoutines::x86::fpu_cntrl_wrd_std()); 189 } 190 191 __ frstor(Address(rsp, 0)); 192 if (!verify_fpu) { 193 // Set the control word so that exceptions are masked for the 194 // following code. 195 __ fldcw(ExternalAddress(StubRoutines::x86::addr_fpu_cntrl_wrd_std())); 196 } 197 198 int off = st0_off; 199 int delta = st1_off - off; 200 201 // Save the FPU registers in de-opt-able form 202 for (int n = 0; n < FloatRegister::number_of_registers; n++) { 203 __ fstp_d(Address(rsp, off*wordSize)); 204 off += delta; 205 } 206 207 off = xmm0_off; 208 delta = xmm1_off - off; 209 if(UseSSE == 1) { 210 // Save the XMM state 211 for (int n = 0; n < num_xmm_regs; n++) { 212 __ movflt(Address(rsp, off*wordSize), as_XMMRegister(n)); 213 off += delta; 214 } 215 } else if(UseSSE >= 2) { 216 // Save whole 128bit (16 bytes) XMM registers 217 for (int n = 0; n < num_xmm_regs; n++) { 218 __ movdqu(Address(rsp, off*wordSize), as_XMMRegister(n)); 219 off += delta; 220 } 221 } 222 223 #ifdef COMPILER2 224 if (save_vectors) { 225 __ subptr(rsp, ymm_bytes); 226 // Save upper half of YMM registers 227 for (int n = 0; n < num_xmm_regs; n++) { 228 __ vextractf128_high(Address(rsp, n*16), as_XMMRegister(n)); 229 } 230 if (UseAVX > 2) { 231 __ subptr(rsp, zmm_bytes); 232 // Save upper half of ZMM registers 233 for (int n = 0; n < num_xmm_regs; n++) { 234 __ vextractf64x4_high(Address(rsp, n*32), as_XMMRegister(n)); 235 } 236 __ subptr(rsp, opmask_state_bytes); 237 // Save opmask registers 238 for (int n = 0; n < KRegister::number_of_registers; n++) { 239 __ kmov(Address(rsp, n*8), as_KRegister(n)); 240 } 241 } 242 } 243 #else 244 assert(!save_vectors, "vectors are generated only by C2"); 245 #endif 246 247 __ vzeroupper(); 248 249 // Set an oopmap for the call site. This oopmap will map all 250 // oop-registers and debug-info registers as callee-saved. This 251 // will allow deoptimization at this safepoint to find all possible 252 // debug-info recordings, as well as let GC find all oops. 253 254 OopMapSet *oop_maps = new OopMapSet(); 255 OopMap* map = new OopMap( frame_words, 0 ); 256 257 #define STACK_OFFSET(x) VMRegImpl::stack2reg((x) + additional_frame_words) 258 #define NEXTREG(x) (x)->as_VMReg()->next() 259 260 map->set_callee_saved(STACK_OFFSET(rax_off), rax->as_VMReg()); 261 map->set_callee_saved(STACK_OFFSET(rcx_off), rcx->as_VMReg()); 262 map->set_callee_saved(STACK_OFFSET(rdx_off), rdx->as_VMReg()); 263 map->set_callee_saved(STACK_OFFSET(rbx_off), rbx->as_VMReg()); 264 // rbp, location is known implicitly, no oopMap 265 map->set_callee_saved(STACK_OFFSET(rsi_off), rsi->as_VMReg()); 266 map->set_callee_saved(STACK_OFFSET(rdi_off), rdi->as_VMReg()); 267 268 // %%% This is really a waste but we'll keep things as they were for now for the upper component 269 off = st0_off; 270 delta = st1_off - off; 271 for (int n = 0; n < FloatRegister::number_of_registers; n++) { 272 FloatRegister freg_name = as_FloatRegister(n); 273 map->set_callee_saved(STACK_OFFSET(off), freg_name->as_VMReg()); 274 map->set_callee_saved(STACK_OFFSET(off+1), NEXTREG(freg_name)); 275 off += delta; 276 } 277 off = xmm0_off; 278 delta = xmm1_off - off; 279 for (int n = 0; n < num_xmm_regs; n++) { 280 XMMRegister xmm_name = as_XMMRegister(n); 281 map->set_callee_saved(STACK_OFFSET(off), xmm_name->as_VMReg()); 282 map->set_callee_saved(STACK_OFFSET(off+1), NEXTREG(xmm_name)); 283 off += delta; 284 } 285 #undef NEXTREG 286 #undef STACK_OFFSET 287 288 return map; 289 } 290 291 void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_vectors) { 292 int opmask_state_bytes = 0; 293 int additional_frame_bytes = 0; 294 int num_xmm_regs = XMMRegister::number_of_registers; 295 int ymm_bytes = num_xmm_regs * 16; 296 int zmm_bytes = num_xmm_regs * 32; 297 // Recover XMM & FPU state 298 #ifdef COMPILER2 299 if (restore_vectors) { 300 assert(UseAVX > 0, "Vectors larger than 16 byte long are supported only with AVX"); 301 assert(MaxVectorSize <= 64, "Only up to 64 byte long vectors are supported"); 302 // Save upper half of YMM registers 303 additional_frame_bytes = ymm_bytes; 304 if (UseAVX > 2) { 305 // Save upper half of ZMM registers as well 306 additional_frame_bytes += zmm_bytes; 307 opmask_state_bytes = KRegister::number_of_registers * 8; 308 additional_frame_bytes += opmask_state_bytes; 309 } 310 } 311 #else 312 assert(!restore_vectors, "vectors are generated only by C2"); 313 #endif 314 315 int off = xmm0_off; 316 int delta = xmm1_off - off; 317 318 __ vzeroupper(); 319 320 if (UseSSE == 1) { 321 // Restore XMM registers 322 assert(additional_frame_bytes == 0, ""); 323 for (int n = 0; n < num_xmm_regs; n++) { 324 __ movflt(as_XMMRegister(n), Address(rsp, off*wordSize)); 325 off += delta; 326 } 327 } else if (UseSSE >= 2) { 328 // Restore whole 128bit (16 bytes) XMM registers. Do this before restoring YMM and 329 // ZMM because the movdqu instruction zeros the upper part of the XMM register. 330 for (int n = 0; n < num_xmm_regs; n++) { 331 __ movdqu(as_XMMRegister(n), Address(rsp, off*wordSize+additional_frame_bytes)); 332 off += delta; 333 } 334 } 335 336 if (restore_vectors) { 337 off = additional_frame_bytes - ymm_bytes; 338 // Restore upper half of YMM registers. 339 for (int n = 0; n < num_xmm_regs; n++) { 340 __ vinsertf128_high(as_XMMRegister(n), Address(rsp, n*16+off)); 341 } 342 if (UseAVX > 2) { 343 // Restore upper half of ZMM registers. 344 off = opmask_state_bytes; 345 for (int n = 0; n < num_xmm_regs; n++) { 346 __ vinsertf64x4_high(as_XMMRegister(n), Address(rsp, n*32+off)); 347 } 348 for (int n = 0; n < KRegister::number_of_registers; n++) { 349 __ kmov(as_KRegister(n), Address(rsp, n*8)); 350 } 351 } 352 __ addptr(rsp, additional_frame_bytes); 353 } 354 355 __ pop_FPU_state(); 356 __ addptr(rsp, FPU_regs_live*wordSize); // Pop FPU registers 357 358 __ popf(); 359 __ popa(); 360 // Get the rbp, described implicitly by the frame sender code (no oopMap) 361 __ pop(rbp); 362 } 363 364 void RegisterSaver::restore_result_registers(MacroAssembler* masm) { 365 366 // Just restore result register. Only used by deoptimization. By 367 // now any callee save register that needs to be restore to a c2 368 // caller of the deoptee has been extracted into the vframeArray 369 // and will be stuffed into the c2i adapter we create for later 370 // restoration so only result registers need to be restored here. 371 // 372 373 __ frstor(Address(rsp, 0)); // Restore fpu state 374 375 // Recover XMM & FPU state 376 if( UseSSE == 1 ) { 377 __ movflt(xmm0, Address(rsp, xmm0_off*wordSize)); 378 } else if( UseSSE >= 2 ) { 379 __ movdbl(xmm0, Address(rsp, xmm0_off*wordSize)); 380 } 381 __ movptr(rax, Address(rsp, rax_off*wordSize)); 382 __ movptr(rdx, Address(rsp, rdx_off*wordSize)); 383 // Pop all of the register save are off the stack except the return address 384 __ addptr(rsp, return_off * wordSize); 385 } 386 387 // Is vector's size (in bytes) bigger than a size saved by default? 388 // 16 bytes XMM registers are saved by default using SSE2 movdqu instructions. 389 // Note, MaxVectorSize == 0 with UseSSE < 2 and vectors are not generated. 390 bool SharedRuntime::is_wide_vector(int size) { 391 return size > 16; 392 } 393 394 // The java_calling_convention describes stack locations as ideal slots on 395 // a frame with no abi restrictions. Since we must observe abi restrictions 396 // (like the placement of the register window) the slots must be biased by 397 // the following value. 398 static int reg2offset_in(VMReg r) { 399 // Account for saved rbp, and return address 400 // This should really be in_preserve_stack_slots 401 return (r->reg2stack() + 2) * VMRegImpl::stack_slot_size; 402 } 403 404 static int reg2offset_out(VMReg r) { 405 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size; 406 } 407 408 // --------------------------------------------------------------------------- 409 // Read the array of BasicTypes from a signature, and compute where the 410 // arguments should go. Values in the VMRegPair regs array refer to 4-byte 411 // quantities. Values less than SharedInfo::stack0 are registers, those above 412 // refer to 4-byte stack slots. All stack slots are based off of the stack pointer 413 // as framesizes are fixed. 414 // VMRegImpl::stack0 refers to the first slot 0(sp). 415 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher. 416 // Register up to Register::number_of_registers are the 32-bit 417 // integer registers. 418 419 // Pass first two oop/int args in registers ECX and EDX. 420 // Pass first two float/double args in registers XMM0 and XMM1. 421 // Doubles have precedence, so if you pass a mix of floats and doubles 422 // the doubles will grab the registers before the floats will. 423 424 // Note: the INPUTS in sig_bt are in units of Java argument words, which are 425 // either 32-bit or 64-bit depending on the build. The OUTPUTS are in 32-bit 426 // units regardless of build. Of course for i486 there is no 64 bit build 427 428 429 // --------------------------------------------------------------------------- 430 // The compiled Java calling convention. 431 // Pass first two oop/int args in registers ECX and EDX. 432 // Pass first two float/double args in registers XMM0 and XMM1. 433 // Doubles have precedence, so if you pass a mix of floats and doubles 434 // the doubles will grab the registers before the floats will. 435 int SharedRuntime::java_calling_convention(const BasicType *sig_bt, 436 VMRegPair *regs, 437 int total_args_passed) { 438 uint stack = 0; // Starting stack position for args on stack 439 440 441 // Pass first two oop/int args in registers ECX and EDX. 442 uint reg_arg0 = 9999; 443 uint reg_arg1 = 9999; 444 445 // Pass first two float/double args in registers XMM0 and XMM1. 446 // Doubles have precedence, so if you pass a mix of floats and doubles 447 // the doubles will grab the registers before the floats will. 448 // CNC - TURNED OFF FOR non-SSE. 449 // On Intel we have to round all doubles (and most floats) at 450 // call sites by storing to the stack in any case. 451 // UseSSE=0 ==> Don't Use ==> 9999+0 452 // UseSSE=1 ==> Floats only ==> 9999+1 453 // UseSSE>=2 ==> Floats or doubles ==> 9999+2 454 enum { fltarg_dontuse = 9999+0, fltarg_float_only = 9999+1, fltarg_flt_dbl = 9999+2 }; 455 uint fargs = (UseSSE>=2) ? 2 : UseSSE; 456 uint freg_arg0 = 9999+fargs; 457 uint freg_arg1 = 9999+fargs; 458 459 // Pass doubles & longs aligned on the stack. First count stack slots for doubles 460 int i; 461 for( i = 0; i < total_args_passed; i++) { 462 if( sig_bt[i] == T_DOUBLE ) { 463 // first 2 doubles go in registers 464 if( freg_arg0 == fltarg_flt_dbl ) freg_arg0 = i; 465 else if( freg_arg1 == fltarg_flt_dbl ) freg_arg1 = i; 466 else // Else double is passed low on the stack to be aligned. 467 stack += 2; 468 } else if( sig_bt[i] == T_LONG ) { 469 stack += 2; 470 } 471 } 472 int dstack = 0; // Separate counter for placing doubles 473 474 // Now pick where all else goes. 475 for( i = 0; i < total_args_passed; i++) { 476 // From the type and the argument number (count) compute the location 477 switch( sig_bt[i] ) { 478 case T_SHORT: 479 case T_CHAR: 480 case T_BYTE: 481 case T_BOOLEAN: 482 case T_INT: 483 case T_ARRAY: 484 case T_OBJECT: 485 case T_ADDRESS: 486 if( reg_arg0 == 9999 ) { 487 reg_arg0 = i; 488 regs[i].set1(rcx->as_VMReg()); 489 } else if( reg_arg1 == 9999 ) { 490 reg_arg1 = i; 491 regs[i].set1(rdx->as_VMReg()); 492 } else { 493 regs[i].set1(VMRegImpl::stack2reg(stack++)); 494 } 495 break; 496 case T_FLOAT: 497 if( freg_arg0 == fltarg_flt_dbl || freg_arg0 == fltarg_float_only ) { 498 freg_arg0 = i; 499 regs[i].set1(xmm0->as_VMReg()); 500 } else if( freg_arg1 == fltarg_flt_dbl || freg_arg1 == fltarg_float_only ) { 501 freg_arg1 = i; 502 regs[i].set1(xmm1->as_VMReg()); 503 } else { 504 regs[i].set1(VMRegImpl::stack2reg(stack++)); 505 } 506 break; 507 case T_LONG: 508 assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "missing Half" ); 509 regs[i].set2(VMRegImpl::stack2reg(dstack)); 510 dstack += 2; 511 break; 512 case T_DOUBLE: 513 assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "missing Half" ); 514 if( freg_arg0 == (uint)i ) { 515 regs[i].set2(xmm0->as_VMReg()); 516 } else if( freg_arg1 == (uint)i ) { 517 regs[i].set2(xmm1->as_VMReg()); 518 } else { 519 regs[i].set2(VMRegImpl::stack2reg(dstack)); 520 dstack += 2; 521 } 522 break; 523 case T_VOID: regs[i].set_bad(); break; 524 break; 525 default: 526 ShouldNotReachHere(); 527 break; 528 } 529 } 530 531 // return value can be odd number of VMRegImpl stack slots make multiple of 2 532 return align_up(stack, 2); 533 } 534 535 // Patch the callers callsite with entry to compiled code if it exists. 536 static void patch_callers_callsite(MacroAssembler *masm) { 537 Label L; 538 __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), NULL_WORD); 539 __ jcc(Assembler::equal, L); 540 // Schedule the branch target address early. 541 // Call into the VM to patch the caller, then jump to compiled callee 542 // rax, isn't live so capture return address while we easily can 543 __ movptr(rax, Address(rsp, 0)); 544 __ pusha(); 545 __ pushf(); 546 547 if (UseSSE == 1) { 548 __ subptr(rsp, 2*wordSize); 549 __ movflt(Address(rsp, 0), xmm0); 550 __ movflt(Address(rsp, wordSize), xmm1); 551 } 552 if (UseSSE >= 2) { 553 __ subptr(rsp, 4*wordSize); 554 __ movdbl(Address(rsp, 0), xmm0); 555 __ movdbl(Address(rsp, 2*wordSize), xmm1); 556 } 557 #ifdef COMPILER2 558 // C2 may leave the stack dirty if not in SSE2+ mode 559 if (UseSSE >= 2) { 560 __ verify_FPU(0, "c2i transition should have clean FPU stack"); 561 } else { 562 __ empty_FPU_stack(); 563 } 564 #endif /* COMPILER2 */ 565 566 // VM needs caller's callsite 567 __ push(rax); 568 // VM needs target method 569 __ push(rbx); 570 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite))); 571 __ addptr(rsp, 2*wordSize); 572 573 if (UseSSE == 1) { 574 __ movflt(xmm0, Address(rsp, 0)); 575 __ movflt(xmm1, Address(rsp, wordSize)); 576 __ addptr(rsp, 2*wordSize); 577 } 578 if (UseSSE >= 2) { 579 __ movdbl(xmm0, Address(rsp, 0)); 580 __ movdbl(xmm1, Address(rsp, 2*wordSize)); 581 __ addptr(rsp, 4*wordSize); 582 } 583 584 __ popf(); 585 __ popa(); 586 __ bind(L); 587 } 588 589 590 static void move_c2i_double(MacroAssembler *masm, XMMRegister r, int st_off) { 591 int next_off = st_off - Interpreter::stackElementSize; 592 __ movdbl(Address(rsp, next_off), r); 593 } 594 595 static void gen_c2i_adapter(MacroAssembler *masm, 596 int total_args_passed, 597 int comp_args_on_stack, 598 const BasicType *sig_bt, 599 const VMRegPair *regs, 600 Label& skip_fixup) { 601 // Before we get into the guts of the C2I adapter, see if we should be here 602 // at all. We've come from compiled code and are attempting to jump to the 603 // interpreter, which means the caller made a static call to get here 604 // (vcalls always get a compiled target if there is one). Check for a 605 // compiled target. If there is one, we need to patch the caller's call. 606 patch_callers_callsite(masm); 607 608 __ bind(skip_fixup); 609 610 #ifdef COMPILER2 611 // C2 may leave the stack dirty if not in SSE2+ mode 612 if (UseSSE >= 2) { 613 __ verify_FPU(0, "c2i transition should have clean FPU stack"); 614 } else { 615 __ empty_FPU_stack(); 616 } 617 #endif /* COMPILER2 */ 618 619 // Since all args are passed on the stack, total_args_passed * interpreter_ 620 // stack_element_size is the 621 // space we need. 622 int extraspace = total_args_passed * Interpreter::stackElementSize; 623 624 // Get return address 625 __ pop(rax); 626 627 // set senderSP value 628 __ movptr(rsi, rsp); 629 630 __ subptr(rsp, extraspace); 631 632 // Now write the args into the outgoing interpreter space 633 for (int i = 0; i < total_args_passed; i++) { 634 if (sig_bt[i] == T_VOID) { 635 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half"); 636 continue; 637 } 638 639 // st_off points to lowest address on stack. 640 int st_off = ((total_args_passed - 1) - i) * Interpreter::stackElementSize; 641 int next_off = st_off - Interpreter::stackElementSize; 642 643 // Say 4 args: 644 // i st_off 645 // 0 12 T_LONG 646 // 1 8 T_VOID 647 // 2 4 T_OBJECT 648 // 3 0 T_BOOL 649 VMReg r_1 = regs[i].first(); 650 VMReg r_2 = regs[i].second(); 651 if (!r_1->is_valid()) { 652 assert(!r_2->is_valid(), ""); 653 continue; 654 } 655 656 if (r_1->is_stack()) { 657 // memory to memory use fpu stack top 658 int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace; 659 660 if (!r_2->is_valid()) { 661 __ movl(rdi, Address(rsp, ld_off)); 662 __ movptr(Address(rsp, st_off), rdi); 663 } else { 664 665 // ld_off == LSW, ld_off+VMRegImpl::stack_slot_size == MSW 666 // st_off == MSW, st_off-wordSize == LSW 667 668 __ movptr(rdi, Address(rsp, ld_off)); 669 __ movptr(Address(rsp, next_off), rdi); 670 __ movptr(rdi, Address(rsp, ld_off + wordSize)); 671 __ movptr(Address(rsp, st_off), rdi); 672 } 673 } else if (r_1->is_Register()) { 674 Register r = r_1->as_Register(); 675 if (!r_2->is_valid()) { 676 __ movl(Address(rsp, st_off), r); 677 } else { 678 // long/double in gpr 679 ShouldNotReachHere(); 680 } 681 } else { 682 assert(r_1->is_XMMRegister(), ""); 683 if (!r_2->is_valid()) { 684 __ movflt(Address(rsp, st_off), r_1->as_XMMRegister()); 685 } else { 686 assert(sig_bt[i] == T_DOUBLE || sig_bt[i] == T_LONG, "wrong type"); 687 move_c2i_double(masm, r_1->as_XMMRegister(), st_off); 688 } 689 } 690 } 691 692 // Schedule the branch target address early. 693 __ movptr(rcx, Address(rbx, in_bytes(Method::interpreter_entry_offset()))); 694 // And repush original return address 695 __ push(rax); 696 __ jmp(rcx); 697 } 698 699 700 static void move_i2c_double(MacroAssembler *masm, XMMRegister r, Register saved_sp, int ld_off) { 701 int next_val_off = ld_off - Interpreter::stackElementSize; 702 __ movdbl(r, Address(saved_sp, next_val_off)); 703 } 704 705 static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg, 706 address code_start, address code_end, 707 Label& L_ok) { 708 Label L_fail; 709 __ lea(temp_reg, ExternalAddress(code_start)); 710 __ cmpptr(pc_reg, temp_reg); 711 __ jcc(Assembler::belowEqual, L_fail); 712 __ lea(temp_reg, ExternalAddress(code_end)); 713 __ cmpptr(pc_reg, temp_reg); 714 __ jcc(Assembler::below, L_ok); 715 __ bind(L_fail); 716 } 717 718 void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm, 719 int total_args_passed, 720 int comp_args_on_stack, 721 const BasicType *sig_bt, 722 const VMRegPair *regs) { 723 // Note: rsi contains the senderSP on entry. We must preserve it since 724 // we may do a i2c -> c2i transition if we lose a race where compiled 725 // code goes non-entrant while we get args ready. 726 727 // Adapters can be frameless because they do not require the caller 728 // to perform additional cleanup work, such as correcting the stack pointer. 729 // An i2c adapter is frameless because the *caller* frame, which is interpreted, 730 // routinely repairs its own stack pointer (from interpreter_frame_last_sp), 731 // even if a callee has modified the stack pointer. 732 // A c2i adapter is frameless because the *callee* frame, which is interpreted, 733 // routinely repairs its caller's stack pointer (from sender_sp, which is set 734 // up via the senderSP register). 735 // In other words, if *either* the caller or callee is interpreted, we can 736 // get the stack pointer repaired after a call. 737 // This is why c2i and i2c adapters cannot be indefinitely composed. 738 // In particular, if a c2i adapter were to somehow call an i2c adapter, 739 // both caller and callee would be compiled methods, and neither would 740 // clean up the stack pointer changes performed by the two adapters. 741 // If this happens, control eventually transfers back to the compiled 742 // caller, but with an uncorrected stack, causing delayed havoc. 743 744 // Pick up the return address 745 __ movptr(rax, Address(rsp, 0)); 746 747 if (VerifyAdapterCalls && 748 (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) { 749 // So, let's test for cascading c2i/i2c adapters right now. 750 // assert(Interpreter::contains($return_addr) || 751 // StubRoutines::contains($return_addr), 752 // "i2c adapter must return to an interpreter frame"); 753 __ block_comment("verify_i2c { "); 754 Label L_ok; 755 if (Interpreter::code() != NULL) 756 range_check(masm, rax, rdi, 757 Interpreter::code()->code_start(), Interpreter::code()->code_end(), 758 L_ok); 759 if (StubRoutines::code1() != NULL) 760 range_check(masm, rax, rdi, 761 StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(), 762 L_ok); 763 if (StubRoutines::code2() != NULL) 764 range_check(masm, rax, rdi, 765 StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(), 766 L_ok); 767 const char* msg = "i2c adapter must return to an interpreter frame"; 768 __ block_comment(msg); 769 __ stop(msg); 770 __ bind(L_ok); 771 __ block_comment("} verify_i2ce "); 772 } 773 774 // Must preserve original SP for loading incoming arguments because 775 // we need to align the outgoing SP for compiled code. 776 __ movptr(rdi, rsp); 777 778 // Cut-out for having no stack args. Since up to 2 int/oop args are passed 779 // in registers, we will occasionally have no stack args. 780 int comp_words_on_stack = 0; 781 if (comp_args_on_stack) { 782 // Sig words on the stack are greater-than VMRegImpl::stack0. Those in 783 // registers are below. By subtracting stack0, we either get a negative 784 // number (all values in registers) or the maximum stack slot accessed. 785 // int comp_args_on_stack = VMRegImpl::reg2stack(max_arg); 786 // Convert 4-byte stack slots to words. 787 comp_words_on_stack = align_up(comp_args_on_stack*4, wordSize)>>LogBytesPerWord; 788 // Round up to miminum stack alignment, in wordSize 789 comp_words_on_stack = align_up(comp_words_on_stack, 2); 790 __ subptr(rsp, comp_words_on_stack * wordSize); 791 } 792 793 // Align the outgoing SP 794 __ andptr(rsp, -(StackAlignmentInBytes)); 795 796 // push the return address on the stack (note that pushing, rather 797 // than storing it, yields the correct frame alignment for the callee) 798 __ push(rax); 799 800 // Put saved SP in another register 801 const Register saved_sp = rax; 802 __ movptr(saved_sp, rdi); 803 804 805 // Will jump to the compiled code just as if compiled code was doing it. 806 // Pre-load the register-jump target early, to schedule it better. 807 __ movptr(rdi, Address(rbx, in_bytes(Method::from_compiled_offset()))); 808 809 // Now generate the shuffle code. Pick up all register args and move the 810 // rest through the floating point stack top. 811 for (int i = 0; i < total_args_passed; i++) { 812 if (sig_bt[i] == T_VOID) { 813 // Longs and doubles are passed in native word order, but misaligned 814 // in the 32-bit build. 815 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half"); 816 continue; 817 } 818 819 // Pick up 0, 1 or 2 words from SP+offset. 820 821 assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(), 822 "scrambled load targets?"); 823 // Load in argument order going down. 824 int ld_off = (total_args_passed - i) * Interpreter::stackElementSize; 825 // Point to interpreter value (vs. tag) 826 int next_off = ld_off - Interpreter::stackElementSize; 827 // 828 // 829 // 830 VMReg r_1 = regs[i].first(); 831 VMReg r_2 = regs[i].second(); 832 if (!r_1->is_valid()) { 833 assert(!r_2->is_valid(), ""); 834 continue; 835 } 836 if (r_1->is_stack()) { 837 // Convert stack slot to an SP offset (+ wordSize to account for return address ) 838 int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize; 839 840 // We can use rsi as a temp here because compiled code doesn't need rsi as an input 841 // and if we end up going thru a c2i because of a miss a reasonable value of rsi 842 // we be generated. 843 if (!r_2->is_valid()) { 844 // __ fld_s(Address(saved_sp, ld_off)); 845 // __ fstp_s(Address(rsp, st_off)); 846 __ movl(rsi, Address(saved_sp, ld_off)); 847 __ movptr(Address(rsp, st_off), rsi); 848 } else { 849 // Interpreter local[n] == MSW, local[n+1] == LSW however locals 850 // are accessed as negative so LSW is at LOW address 851 852 // ld_off is MSW so get LSW 853 // st_off is LSW (i.e. reg.first()) 854 // __ fld_d(Address(saved_sp, next_off)); 855 // __ fstp_d(Address(rsp, st_off)); 856 // 857 // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE 858 // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case 859 // So we must adjust where to pick up the data to match the interpreter. 860 // 861 // Interpreter local[n] == MSW, local[n+1] == LSW however locals 862 // are accessed as negative so LSW is at LOW address 863 864 // ld_off is MSW so get LSW 865 __ movptr(rsi, Address(saved_sp, next_off)); 866 __ movptr(Address(rsp, st_off), rsi); 867 __ movptr(rsi, Address(saved_sp, ld_off)); 868 __ movptr(Address(rsp, st_off + wordSize), rsi); 869 } 870 } else if (r_1->is_Register()) { // Register argument 871 Register r = r_1->as_Register(); 872 assert(r != rax, "must be different"); 873 if (r_2->is_valid()) { 874 // 875 // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE 876 // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case 877 // So we must adjust where to pick up the data to match the interpreter. 878 879 // this can be a misaligned move 880 __ movptr(r, Address(saved_sp, next_off)); 881 assert(r_2->as_Register() != rax, "need another temporary register"); 882 // Remember r_1 is low address (and LSB on x86) 883 // So r_2 gets loaded from high address regardless of the platform 884 __ movptr(r_2->as_Register(), Address(saved_sp, ld_off)); 885 } else { 886 __ movl(r, Address(saved_sp, ld_off)); 887 } 888 } else { 889 assert(r_1->is_XMMRegister(), ""); 890 if (!r_2->is_valid()) { 891 __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off)); 892 } else { 893 move_i2c_double(masm, r_1->as_XMMRegister(), saved_sp, ld_off); 894 } 895 } 896 } 897 898 // 6243940 We might end up in handle_wrong_method if 899 // the callee is deoptimized as we race thru here. If that 900 // happens we don't want to take a safepoint because the 901 // caller frame will look interpreted and arguments are now 902 // "compiled" so it is much better to make this transition 903 // invisible to the stack walking code. Unfortunately if 904 // we try and find the callee by normal means a safepoint 905 // is possible. So we stash the desired callee in the thread 906 // and the vm will find there should this case occur. 907 908 __ get_thread(rax); 909 __ movptr(Address(rax, JavaThread::callee_target_offset()), rbx); 910 911 // move Method* to rax, in case we end up in an c2i adapter. 912 // the c2i adapters expect Method* in rax, (c2) because c2's 913 // resolve stubs return the result (the method) in rax,. 914 // I'd love to fix this. 915 __ mov(rax, rbx); 916 917 __ jmp(rdi); 918 } 919 920 // --------------------------------------------------------------- 921 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm, 922 int total_args_passed, 923 int comp_args_on_stack, 924 const BasicType *sig_bt, 925 const VMRegPair *regs, 926 AdapterFingerPrint* fingerprint) { 927 address i2c_entry = __ pc(); 928 929 gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs); 930 931 // ------------------------------------------------------------------------- 932 // Generate a C2I adapter. On entry we know rbx, holds the Method* during calls 933 // to the interpreter. The args start out packed in the compiled layout. They 934 // need to be unpacked into the interpreter layout. This will almost always 935 // require some stack space. We grow the current (compiled) stack, then repack 936 // the args. We finally end in a jump to the generic interpreter entry point. 937 // On exit from the interpreter, the interpreter will restore our SP (lest the 938 // compiled code, which relies solely on SP and not EBP, get sick). 939 940 address c2i_unverified_entry = __ pc(); 941 Label skip_fixup; 942 943 Register holder = rax; 944 Register receiver = rcx; 945 Register temp = rbx; 946 947 { 948 949 Label missed; 950 __ movptr(temp, Address(receiver, oopDesc::klass_offset_in_bytes())); 951 __ cmpptr(temp, Address(holder, CompiledICHolder::holder_klass_offset())); 952 __ movptr(rbx, Address(holder, CompiledICHolder::holder_metadata_offset())); 953 __ jcc(Assembler::notEqual, missed); 954 // Method might have been compiled since the call site was patched to 955 // interpreted if that is the case treat it as a miss so we can get 956 // the call site corrected. 957 __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), NULL_WORD); 958 __ jcc(Assembler::equal, skip_fixup); 959 960 __ bind(missed); 961 __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 962 } 963 964 address c2i_entry = __ pc(); 965 966 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 967 bs->c2i_entry_barrier(masm); 968 969 gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup); 970 971 __ flush(); 972 return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry); 973 } 974 975 int SharedRuntime::c_calling_convention(const BasicType *sig_bt, 976 VMRegPair *regs, 977 VMRegPair *regs2, 978 int total_args_passed) { 979 assert(regs2 == NULL, "not needed on x86"); 980 // We return the amount of VMRegImpl stack slots we need to reserve for all 981 // the arguments NOT counting out_preserve_stack_slots. 982 983 uint stack = 0; // All arguments on stack 984 985 for( int i = 0; i < total_args_passed; i++) { 986 // From the type and the argument number (count) compute the location 987 switch( sig_bt[i] ) { 988 case T_BOOLEAN: 989 case T_CHAR: 990 case T_FLOAT: 991 case T_BYTE: 992 case T_SHORT: 993 case T_INT: 994 case T_OBJECT: 995 case T_ARRAY: 996 case T_ADDRESS: 997 case T_METADATA: 998 regs[i].set1(VMRegImpl::stack2reg(stack++)); 999 break; 1000 case T_LONG: 1001 case T_DOUBLE: // The stack numbering is reversed from Java 1002 // Since C arguments do not get reversed, the ordering for 1003 // doubles on the stack must be opposite the Java convention 1004 assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "missing Half" ); 1005 regs[i].set2(VMRegImpl::stack2reg(stack)); 1006 stack += 2; 1007 break; 1008 case T_VOID: regs[i].set_bad(); break; 1009 default: 1010 ShouldNotReachHere(); 1011 break; 1012 } 1013 } 1014 return stack; 1015 } 1016 1017 int SharedRuntime::vector_calling_convention(VMRegPair *regs, 1018 uint num_bits, 1019 uint total_args_passed) { 1020 Unimplemented(); 1021 return 0; 1022 } 1023 1024 // A simple move of integer like type 1025 static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) { 1026 if (src.first()->is_stack()) { 1027 if (dst.first()->is_stack()) { 1028 // stack to stack 1029 // __ ld(FP, reg2offset(src.first()), L5); 1030 // __ st(L5, SP, reg2offset(dst.first())); 1031 __ movl2ptr(rax, Address(rbp, reg2offset_in(src.first()))); 1032 __ movptr(Address(rsp, reg2offset_out(dst.first())), rax); 1033 } else { 1034 // stack to reg 1035 __ movl2ptr(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()))); 1036 } 1037 } else if (dst.first()->is_stack()) { 1038 // reg to stack 1039 // no need to sign extend on 64bit 1040 __ movptr(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register()); 1041 } else { 1042 if (dst.first() != src.first()) { 1043 __ mov(dst.first()->as_Register(), src.first()->as_Register()); 1044 } 1045 } 1046 } 1047 1048 // An oop arg. Must pass a handle not the oop itself 1049 static void object_move(MacroAssembler* masm, 1050 OopMap* map, 1051 int oop_handle_offset, 1052 int framesize_in_slots, 1053 VMRegPair src, 1054 VMRegPair dst, 1055 bool is_receiver, 1056 int* receiver_offset) { 1057 1058 // Because of the calling conventions we know that src can be a 1059 // register or a stack location. dst can only be a stack location. 1060 1061 assert(dst.first()->is_stack(), "must be stack"); 1062 // must pass a handle. First figure out the location we use as a handle 1063 1064 if (src.first()->is_stack()) { 1065 // Oop is already on the stack as an argument 1066 Register rHandle = rax; 1067 Label nil; 1068 __ xorptr(rHandle, rHandle); 1069 __ cmpptr(Address(rbp, reg2offset_in(src.first())), NULL_WORD); 1070 __ jcc(Assembler::equal, nil); 1071 __ lea(rHandle, Address(rbp, reg2offset_in(src.first()))); 1072 __ bind(nil); 1073 __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle); 1074 1075 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots(); 1076 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots)); 1077 if (is_receiver) { 1078 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size; 1079 } 1080 } else { 1081 // Oop is in a register we must store it to the space we reserve 1082 // on the stack for oop_handles 1083 const Register rOop = src.first()->as_Register(); 1084 const Register rHandle = rax; 1085 int oop_slot = (rOop == rcx ? 0 : 1) * VMRegImpl::slots_per_word + oop_handle_offset; 1086 int offset = oop_slot*VMRegImpl::stack_slot_size; 1087 Label skip; 1088 __ movptr(Address(rsp, offset), rOop); 1089 map->set_oop(VMRegImpl::stack2reg(oop_slot)); 1090 __ xorptr(rHandle, rHandle); 1091 __ cmpptr(rOop, NULL_WORD); 1092 __ jcc(Assembler::equal, skip); 1093 __ lea(rHandle, Address(rsp, offset)); 1094 __ bind(skip); 1095 // Store the handle parameter 1096 __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle); 1097 if (is_receiver) { 1098 *receiver_offset = offset; 1099 } 1100 } 1101 } 1102 1103 // A float arg may have to do float reg int reg conversion 1104 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) { 1105 assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move"); 1106 1107 // Because of the calling convention we know that src is either a stack location 1108 // or an xmm register. dst can only be a stack location. 1109 1110 assert(dst.first()->is_stack() && ( src.first()->is_stack() || src.first()->is_XMMRegister()), "bad parameters"); 1111 1112 if (src.first()->is_stack()) { 1113 __ movl(rax, Address(rbp, reg2offset_in(src.first()))); 1114 __ movptr(Address(rsp, reg2offset_out(dst.first())), rax); 1115 } else { 1116 // reg to stack 1117 __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister()); 1118 } 1119 } 1120 1121 // A long move 1122 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) { 1123 1124 // The only legal possibility for a long_move VMRegPair is: 1125 // 1: two stack slots (possibly unaligned) 1126 // as neither the java or C calling convention will use registers 1127 // for longs. 1128 1129 if (src.first()->is_stack() && dst.first()->is_stack()) { 1130 assert(src.second()->is_stack() && dst.second()->is_stack(), "must be all stack"); 1131 __ movptr(rax, Address(rbp, reg2offset_in(src.first()))); 1132 __ movptr(rbx, Address(rbp, reg2offset_in(src.second()))); 1133 __ movptr(Address(rsp, reg2offset_out(dst.first())), rax); 1134 __ movptr(Address(rsp, reg2offset_out(dst.second())), rbx); 1135 } else { 1136 ShouldNotReachHere(); 1137 } 1138 } 1139 1140 // A double move 1141 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) { 1142 1143 // The only legal possibilities for a double_move VMRegPair are: 1144 // The painful thing here is that like long_move a VMRegPair might be 1145 1146 // Because of the calling convention we know that src is either 1147 // 1: a single physical register (xmm registers only) 1148 // 2: two stack slots (possibly unaligned) 1149 // dst can only be a pair of stack slots. 1150 1151 assert(dst.first()->is_stack() && (src.first()->is_XMMRegister() || src.first()->is_stack()), "bad args"); 1152 1153 if (src.first()->is_stack()) { 1154 // source is all stack 1155 __ movptr(rax, Address(rbp, reg2offset_in(src.first()))); 1156 __ movptr(rbx, Address(rbp, reg2offset_in(src.second()))); 1157 __ movptr(Address(rsp, reg2offset_out(dst.first())), rax); 1158 __ movptr(Address(rsp, reg2offset_out(dst.second())), rbx); 1159 } else { 1160 // reg to stack 1161 // No worries about stack alignment 1162 __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister()); 1163 } 1164 } 1165 1166 1167 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) { 1168 // We always ignore the frame_slots arg and just use the space just below frame pointer 1169 // which by this time is free to use 1170 switch (ret_type) { 1171 case T_FLOAT: 1172 __ fstp_s(Address(rbp, -wordSize)); 1173 break; 1174 case T_DOUBLE: 1175 __ fstp_d(Address(rbp, -2*wordSize)); 1176 break; 1177 case T_VOID: break; 1178 case T_LONG: 1179 __ movptr(Address(rbp, -wordSize), rax); 1180 __ movptr(Address(rbp, -2*wordSize), rdx); 1181 break; 1182 default: { 1183 __ movptr(Address(rbp, -wordSize), rax); 1184 } 1185 } 1186 } 1187 1188 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) { 1189 // We always ignore the frame_slots arg and just use the space just below frame pointer 1190 // which by this time is free to use 1191 switch (ret_type) { 1192 case T_FLOAT: 1193 __ fld_s(Address(rbp, -wordSize)); 1194 break; 1195 case T_DOUBLE: 1196 __ fld_d(Address(rbp, -2*wordSize)); 1197 break; 1198 case T_LONG: 1199 __ movptr(rax, Address(rbp, -wordSize)); 1200 __ movptr(rdx, Address(rbp, -2*wordSize)); 1201 break; 1202 case T_VOID: break; 1203 default: { 1204 __ movptr(rax, Address(rbp, -wordSize)); 1205 } 1206 } 1207 } 1208 1209 static void verify_oop_args(MacroAssembler* masm, 1210 const methodHandle& method, 1211 const BasicType* sig_bt, 1212 const VMRegPair* regs) { 1213 Register temp_reg = rbx; // not part of any compiled calling seq 1214 if (VerifyOops) { 1215 for (int i = 0; i < method->size_of_parameters(); i++) { 1216 if (is_reference_type(sig_bt[i])) { 1217 VMReg r = regs[i].first(); 1218 assert(r->is_valid(), "bad oop arg"); 1219 if (r->is_stack()) { 1220 __ movptr(temp_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize)); 1221 __ verify_oop(temp_reg); 1222 } else { 1223 __ verify_oop(r->as_Register()); 1224 } 1225 } 1226 } 1227 } 1228 } 1229 1230 static void gen_special_dispatch(MacroAssembler* masm, 1231 const methodHandle& method, 1232 const BasicType* sig_bt, 1233 const VMRegPair* regs) { 1234 verify_oop_args(masm, method, sig_bt, regs); 1235 vmIntrinsics::ID iid = method->intrinsic_id(); 1236 1237 // Now write the args into the outgoing interpreter space 1238 bool has_receiver = false; 1239 Register receiver_reg = noreg; 1240 int member_arg_pos = -1; 1241 Register member_reg = noreg; 1242 int ref_kind = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid); 1243 if (ref_kind != 0) { 1244 member_arg_pos = method->size_of_parameters() - 1; // trailing MemberName argument 1245 member_reg = rbx; // known to be free at this point 1246 has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind); 1247 } else if (iid == vmIntrinsics::_invokeBasic) { 1248 has_receiver = true; 1249 } else { 1250 fatal("unexpected intrinsic id %d", vmIntrinsics::as_int(iid)); 1251 } 1252 1253 if (member_reg != noreg) { 1254 // Load the member_arg into register, if necessary. 1255 SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs); 1256 VMReg r = regs[member_arg_pos].first(); 1257 if (r->is_stack()) { 1258 __ movptr(member_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize)); 1259 } else { 1260 // no data motion is needed 1261 member_reg = r->as_Register(); 1262 } 1263 } 1264 1265 if (has_receiver) { 1266 // Make sure the receiver is loaded into a register. 1267 assert(method->size_of_parameters() > 0, "oob"); 1268 assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object"); 1269 VMReg r = regs[0].first(); 1270 assert(r->is_valid(), "bad receiver arg"); 1271 if (r->is_stack()) { 1272 // Porting note: This assumes that compiled calling conventions always 1273 // pass the receiver oop in a register. If this is not true on some 1274 // platform, pick a temp and load the receiver from stack. 1275 fatal("receiver always in a register"); 1276 receiver_reg = rcx; // known to be free at this point 1277 __ movptr(receiver_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize)); 1278 } else { 1279 // no data motion is needed 1280 receiver_reg = r->as_Register(); 1281 } 1282 } 1283 1284 // Figure out which address we are really jumping to: 1285 MethodHandles::generate_method_handle_dispatch(masm, iid, 1286 receiver_reg, member_reg, /*for_compiler_entry:*/ true); 1287 } 1288 1289 // --------------------------------------------------------------------------- 1290 // Generate a native wrapper for a given method. The method takes arguments 1291 // in the Java compiled code convention, marshals them to the native 1292 // convention (handlizes oops, etc), transitions to native, makes the call, 1293 // returns to java state (possibly blocking), unhandlizes any result and 1294 // returns. 1295 // 1296 // Critical native functions are a shorthand for the use of 1297 // GetPrimtiveArrayCritical and disallow the use of any other JNI 1298 // functions. The wrapper is expected to unpack the arguments before 1299 // passing them to the callee. Critical native functions leave the state _in_Java, 1300 // since they cannot stop for GC. 1301 // Some other parts of JNI setup are skipped like the tear down of the JNI handle 1302 // block and the check for pending exceptions it's impossible for them 1303 // to be thrown. 1304 // 1305 // 1306 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm, 1307 const methodHandle& method, 1308 int compile_id, 1309 BasicType* in_sig_bt, 1310 VMRegPair* in_regs, 1311 BasicType ret_type) { 1312 if (method->is_method_handle_intrinsic()) { 1313 vmIntrinsics::ID iid = method->intrinsic_id(); 1314 intptr_t start = (intptr_t)__ pc(); 1315 int vep_offset = ((intptr_t)__ pc()) - start; 1316 gen_special_dispatch(masm, 1317 method, 1318 in_sig_bt, 1319 in_regs); 1320 int frame_complete = ((intptr_t)__ pc()) - start; // not complete, period 1321 __ flush(); 1322 int stack_slots = SharedRuntime::out_preserve_stack_slots(); // no out slots at all, actually 1323 return nmethod::new_native_nmethod(method, 1324 compile_id, 1325 masm->code(), 1326 vep_offset, 1327 frame_complete, 1328 stack_slots / VMRegImpl::slots_per_word, 1329 in_ByteSize(-1), 1330 in_ByteSize(-1), 1331 (OopMapSet*)NULL); 1332 } 1333 address native_func = method->native_function(); 1334 assert(native_func != NULL, "must have function"); 1335 1336 // An OopMap for lock (and class if static) 1337 OopMapSet *oop_maps = new OopMapSet(); 1338 1339 // We have received a description of where all the java arg are located 1340 // on entry to the wrapper. We need to convert these args to where 1341 // the jni function will expect them. To figure out where they go 1342 // we convert the java signature to a C signature by inserting 1343 // the hidden arguments as arg[0] and possibly arg[1] (static method) 1344 1345 const int total_in_args = method->size_of_parameters(); 1346 int total_c_args = total_in_args + (method->is_static() ? 2 : 1); 1347 1348 BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args); 1349 VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args); 1350 BasicType* in_elem_bt = NULL; 1351 1352 int argc = 0; 1353 out_sig_bt[argc++] = T_ADDRESS; 1354 if (method->is_static()) { 1355 out_sig_bt[argc++] = T_OBJECT; 1356 } 1357 1358 for (int i = 0; i < total_in_args ; i++ ) { 1359 out_sig_bt[argc++] = in_sig_bt[i]; 1360 } 1361 1362 // Now figure out where the args must be stored and how much stack space 1363 // they require. 1364 int out_arg_slots; 1365 out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args); 1366 1367 // Compute framesize for the wrapper. We need to handlize all oops in 1368 // registers a max of 2 on x86. 1369 1370 // Calculate the total number of stack slots we will need. 1371 1372 // First count the abi requirement plus all of the outgoing args 1373 int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots; 1374 1375 // Now the space for the inbound oop handle area 1376 int total_save_slots = 2 * VMRegImpl::slots_per_word; // 2 arguments passed in registers 1377 1378 int oop_handle_offset = stack_slots; 1379 stack_slots += total_save_slots; 1380 1381 // Now any space we need for handlizing a klass if static method 1382 1383 int klass_slot_offset = 0; 1384 int klass_offset = -1; 1385 int lock_slot_offset = 0; 1386 bool is_static = false; 1387 1388 if (method->is_static()) { 1389 klass_slot_offset = stack_slots; 1390 stack_slots += VMRegImpl::slots_per_word; 1391 klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size; 1392 is_static = true; 1393 } 1394 1395 // Plus a lock if needed 1396 1397 if (method->is_synchronized()) { 1398 lock_slot_offset = stack_slots; 1399 stack_slots += VMRegImpl::slots_per_word; 1400 } 1401 1402 // Now a place (+2) to save return values or temp during shuffling 1403 // + 2 for return address (which we own) and saved rbp, 1404 stack_slots += 4; 1405 1406 // Ok The space we have allocated will look like: 1407 // 1408 // 1409 // FP-> | | 1410 // |---------------------| 1411 // | 2 slots for moves | 1412 // |---------------------| 1413 // | lock box (if sync) | 1414 // |---------------------| <- lock_slot_offset (-lock_slot_rbp_offset) 1415 // | klass (if static) | 1416 // |---------------------| <- klass_slot_offset 1417 // | oopHandle area | 1418 // |---------------------| <- oop_handle_offset (a max of 2 registers) 1419 // | outbound memory | 1420 // | based arguments | 1421 // | | 1422 // |---------------------| 1423 // | | 1424 // SP-> | out_preserved_slots | 1425 // 1426 // 1427 // **************************************************************************** 1428 // WARNING - on Windows Java Natives use pascal calling convention and pop the 1429 // arguments off of the stack after the jni call. Before the call we can use 1430 // instructions that are SP relative. After the jni call we switch to FP 1431 // relative instructions instead of re-adjusting the stack on windows. 1432 // **************************************************************************** 1433 1434 1435 // Now compute actual number of stack words we need rounding to make 1436 // stack properly aligned. 1437 stack_slots = align_up(stack_slots, StackAlignmentInSlots); 1438 1439 int stack_size = stack_slots * VMRegImpl::stack_slot_size; 1440 1441 intptr_t start = (intptr_t)__ pc(); 1442 1443 // First thing make an ic check to see if we should even be here 1444 1445 // We are free to use all registers as temps without saving them and 1446 // restoring them except rbp. rbp is the only callee save register 1447 // as far as the interpreter and the compiler(s) are concerned. 1448 1449 1450 const Register ic_reg = rax; 1451 const Register receiver = rcx; 1452 Label hit; 1453 Label exception_pending; 1454 1455 __ verify_oop(receiver); 1456 __ cmpptr(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes())); 1457 __ jcc(Assembler::equal, hit); 1458 1459 __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 1460 1461 // verified entry must be aligned for code patching. 1462 // and the first 5 bytes must be in the same cache line 1463 // if we align at 8 then we will be sure 5 bytes are in the same line 1464 __ align(8); 1465 1466 __ bind(hit); 1467 1468 int vep_offset = ((intptr_t)__ pc()) - start; 1469 1470 #ifdef COMPILER1 1471 // For Object.hashCode, System.identityHashCode try to pull hashCode from object header if available. 1472 if ((InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) || (method->intrinsic_id() == vmIntrinsics::_identityHashCode)) { 1473 inline_check_hashcode_from_object_header(masm, method, rcx /*obj_reg*/, rax /*result*/); 1474 } 1475 #endif // COMPILER1 1476 1477 // The instruction at the verified entry point must be 5 bytes or longer 1478 // because it can be patched on the fly by make_non_entrant. The stack bang 1479 // instruction fits that requirement. 1480 1481 // Generate stack overflow check 1482 __ bang_stack_with_offset((int)StackOverflow::stack_shadow_zone_size()); 1483 1484 // Generate a new frame for the wrapper. 1485 __ enter(); 1486 // -2 because return address is already present and so is saved rbp 1487 __ subptr(rsp, stack_size - 2*wordSize); 1488 1489 1490 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 1491 bs->nmethod_entry_barrier(masm, NULL /* slow_path */, NULL /* continuation */); 1492 1493 // Frame is now completed as far as size and linkage. 1494 int frame_complete = ((intptr_t)__ pc()) - start; 1495 1496 if (UseRTMLocking) { 1497 // Abort RTM transaction before calling JNI 1498 // because critical section will be large and will be 1499 // aborted anyway. Also nmethod could be deoptimized. 1500 __ xabort(0); 1501 } 1502 1503 // Calculate the difference between rsp and rbp,. We need to know it 1504 // after the native call because on windows Java Natives will pop 1505 // the arguments and it is painful to do rsp relative addressing 1506 // in a platform independent way. So after the call we switch to 1507 // rbp, relative addressing. 1508 1509 int fp_adjustment = stack_size - 2*wordSize; 1510 1511 #ifdef COMPILER2 1512 // C2 may leave the stack dirty if not in SSE2+ mode 1513 if (UseSSE >= 2) { 1514 __ verify_FPU(0, "c2i transition should have clean FPU stack"); 1515 } else { 1516 __ empty_FPU_stack(); 1517 } 1518 #endif /* COMPILER2 */ 1519 1520 // Compute the rbp, offset for any slots used after the jni call 1521 1522 int lock_slot_rbp_offset = (lock_slot_offset*VMRegImpl::stack_slot_size) - fp_adjustment; 1523 1524 // We use rdi as a thread pointer because it is callee save and 1525 // if we load it once it is usable thru the entire wrapper 1526 const Register thread = rdi; 1527 1528 // We use rsi as the oop handle for the receiver/klass 1529 // It is callee save so it survives the call to native 1530 1531 const Register oop_handle_reg = rsi; 1532 1533 __ get_thread(thread); 1534 1535 // 1536 // We immediately shuffle the arguments so that any vm call we have to 1537 // make from here on out (sync slow path, jvmti, etc.) we will have 1538 // captured the oops from our caller and have a valid oopMap for 1539 // them. 1540 1541 // ----------------- 1542 // The Grand Shuffle 1543 // 1544 // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv* 1545 // and, if static, the class mirror instead of a receiver. This pretty much 1546 // guarantees that register layout will not match (and x86 doesn't use reg 1547 // parms though amd does). Since the native abi doesn't use register args 1548 // and the java conventions does we don't have to worry about collisions. 1549 // All of our moved are reg->stack or stack->stack. 1550 // We ignore the extra arguments during the shuffle and handle them at the 1551 // last moment. The shuffle is described by the two calling convention 1552 // vectors we have in our possession. We simply walk the java vector to 1553 // get the source locations and the c vector to get the destinations. 1554 1555 int c_arg = method->is_static() ? 2 : 1; 1556 1557 // Record rsp-based slot for receiver on stack for non-static methods 1558 int receiver_offset = -1; 1559 1560 // This is a trick. We double the stack slots so we can claim 1561 // the oops in the caller's frame. Since we are sure to have 1562 // more args than the caller doubling is enough to make 1563 // sure we can capture all the incoming oop args from the 1564 // caller. 1565 // 1566 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/); 1567 1568 // Mark location of rbp, 1569 // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, rbp->as_VMReg()); 1570 1571 // We know that we only have args in at most two integer registers (rcx, rdx). So rax, rbx 1572 // Are free to temporaries if we have to do stack to steck moves. 1573 // All inbound args are referenced based on rbp, and all outbound args via rsp. 1574 1575 for (int i = 0; i < total_in_args ; i++, c_arg++ ) { 1576 switch (in_sig_bt[i]) { 1577 case T_ARRAY: 1578 case T_OBJECT: 1579 object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg], 1580 ((i == 0) && (!is_static)), 1581 &receiver_offset); 1582 break; 1583 case T_VOID: 1584 break; 1585 1586 case T_FLOAT: 1587 float_move(masm, in_regs[i], out_regs[c_arg]); 1588 break; 1589 1590 case T_DOUBLE: 1591 assert( i + 1 < total_in_args && 1592 in_sig_bt[i + 1] == T_VOID && 1593 out_sig_bt[c_arg+1] == T_VOID, "bad arg list"); 1594 double_move(masm, in_regs[i], out_regs[c_arg]); 1595 break; 1596 1597 case T_LONG : 1598 long_move(masm, in_regs[i], out_regs[c_arg]); 1599 break; 1600 1601 case T_ADDRESS: assert(false, "found T_ADDRESS in java args"); 1602 1603 default: 1604 simple_move32(masm, in_regs[i], out_regs[c_arg]); 1605 } 1606 } 1607 1608 // Pre-load a static method's oop into rsi. Used both by locking code and 1609 // the normal JNI call code. 1610 if (method->is_static()) { 1611 1612 // load opp into a register 1613 __ movoop(oop_handle_reg, JNIHandles::make_local(method->method_holder()->java_mirror())); 1614 1615 // Now handlize the static class mirror it's known not-null. 1616 __ movptr(Address(rsp, klass_offset), oop_handle_reg); 1617 map->set_oop(VMRegImpl::stack2reg(klass_slot_offset)); 1618 1619 // Now get the handle 1620 __ lea(oop_handle_reg, Address(rsp, klass_offset)); 1621 // store the klass handle as second argument 1622 __ movptr(Address(rsp, wordSize), oop_handle_reg); 1623 } 1624 1625 // Change state to native (we save the return address in the thread, since it might not 1626 // be pushed on the stack when we do a stack traversal). It is enough that the pc() 1627 // points into the right code segment. It does not have to be the correct return pc. 1628 // We use the same pc/oopMap repeatedly when we call out 1629 1630 intptr_t the_pc = (intptr_t) __ pc(); 1631 oop_maps->add_gc_map(the_pc - start, map); 1632 1633 __ set_last_Java_frame(thread, rsp, noreg, (address)the_pc, noreg); 1634 1635 1636 // We have all of the arguments setup at this point. We must not touch any register 1637 // argument registers at this point (what if we save/restore them there are no oop? 1638 1639 { 1640 SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0, noreg); 1641 __ mov_metadata(rax, method()); 1642 __ call_VM_leaf( 1643 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), 1644 thread, rax); 1645 } 1646 1647 // RedefineClasses() tracing support for obsolete method entry 1648 if (log_is_enabled(Trace, redefine, class, obsolete)) { 1649 __ mov_metadata(rax, method()); 1650 __ call_VM_leaf( 1651 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), 1652 thread, rax); 1653 } 1654 1655 // These are register definitions we need for locking/unlocking 1656 const Register swap_reg = rax; // Must use rax, for cmpxchg instruction 1657 const Register obj_reg = rcx; // Will contain the oop 1658 const Register lock_reg = rdx; // Address of compiler lock object (BasicLock) 1659 1660 Label slow_path_lock; 1661 Label lock_done; 1662 1663 // Lock a synchronized method 1664 if (method->is_synchronized()) { 1665 Label count_mon; 1666 1667 const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes(); 1668 1669 // Get the handle (the 2nd argument) 1670 __ movptr(oop_handle_reg, Address(rsp, wordSize)); 1671 1672 // Get address of the box 1673 1674 __ lea(lock_reg, Address(rbp, lock_slot_rbp_offset)); 1675 1676 // Load the oop from the handle 1677 __ movptr(obj_reg, Address(oop_handle_reg, 0)); 1678 1679 if (!UseHeavyMonitors) { 1680 // Load immediate 1 into swap_reg %rax, 1681 __ movptr(swap_reg, 1); 1682 1683 // Load (object->mark() | 1) into swap_reg %rax, 1684 __ orptr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1685 1686 // Save (object->mark() | 1) into BasicLock's displaced header 1687 __ movptr(Address(lock_reg, mark_word_offset), swap_reg); 1688 1689 // src -> dest iff dest == rax, else rax, <- dest 1690 // *obj_reg = lock_reg iff *obj_reg == rax, else rax, = *(obj_reg) 1691 __ lock(); 1692 __ cmpxchgptr(lock_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1693 __ jcc(Assembler::equal, count_mon); 1694 1695 // Test if the oopMark is an obvious stack pointer, i.e., 1696 // 1) (mark & 3) == 0, and 1697 // 2) rsp <= mark < mark + os::pagesize() 1698 // These 3 tests can be done by evaluating the following 1699 // expression: ((mark - rsp) & (3 - os::vm_page_size())), 1700 // assuming both stack pointer and pagesize have their 1701 // least significant 2 bits clear. 1702 // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg 1703 1704 __ subptr(swap_reg, rsp); 1705 __ andptr(swap_reg, 3 - (int)os::vm_page_size()); 1706 1707 // Save the test result, for recursive case, the result is zero 1708 __ movptr(Address(lock_reg, mark_word_offset), swap_reg); 1709 __ jcc(Assembler::notEqual, slow_path_lock); 1710 } else { 1711 __ jmp(slow_path_lock); 1712 } 1713 __ bind(count_mon); 1714 __ inc_held_monitor_count(); 1715 1716 // Slow path will re-enter here 1717 __ bind(lock_done); 1718 } 1719 1720 1721 // Finally just about ready to make the JNI call 1722 1723 // get JNIEnv* which is first argument to native 1724 __ lea(rdx, Address(thread, in_bytes(JavaThread::jni_environment_offset()))); 1725 __ movptr(Address(rsp, 0), rdx); 1726 1727 // Now set thread in native 1728 __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native); 1729 1730 __ call(RuntimeAddress(native_func)); 1731 1732 // Verify or restore cpu control state after JNI call 1733 __ restore_cpu_control_state_after_jni(noreg); 1734 1735 // WARNING - on Windows Java Natives use pascal calling convention and pop the 1736 // arguments off of the stack. We could just re-adjust the stack pointer here 1737 // and continue to do SP relative addressing but we instead switch to FP 1738 // relative addressing. 1739 1740 // Unpack native results. 1741 switch (ret_type) { 1742 case T_BOOLEAN: __ c2bool(rax); break; 1743 case T_CHAR : __ andptr(rax, 0xFFFF); break; 1744 case T_BYTE : __ sign_extend_byte (rax); break; 1745 case T_SHORT : __ sign_extend_short(rax); break; 1746 case T_INT : /* nothing to do */ break; 1747 case T_DOUBLE : 1748 case T_FLOAT : 1749 // Result is in st0 we'll save as needed 1750 break; 1751 case T_ARRAY: // Really a handle 1752 case T_OBJECT: // Really a handle 1753 break; // can't de-handlize until after safepoint check 1754 case T_VOID: break; 1755 case T_LONG: break; 1756 default : ShouldNotReachHere(); 1757 } 1758 1759 Label after_transition; 1760 1761 // Switch thread to "native transition" state before reading the synchronization state. 1762 // This additional state is necessary because reading and testing the synchronization 1763 // state is not atomic w.r.t. GC, as this scenario demonstrates: 1764 // Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted. 1765 // VM thread changes sync state to synchronizing and suspends threads for GC. 1766 // Thread A is resumed to finish this native method, but doesn't block here since it 1767 // didn't see any synchronization is progress, and escapes. 1768 __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans); 1769 1770 // Force this write out before the read below 1771 __ membar(Assembler::Membar_mask_bits( 1772 Assembler::LoadLoad | Assembler::LoadStore | 1773 Assembler::StoreLoad | Assembler::StoreStore)); 1774 1775 if (AlwaysRestoreFPU) { 1776 // Make sure the control word is correct. 1777 __ fldcw(ExternalAddress(StubRoutines::x86::addr_fpu_cntrl_wrd_std())); 1778 } 1779 1780 // check for safepoint operation in progress and/or pending suspend requests 1781 { Label Continue, slow_path; 1782 1783 __ safepoint_poll(slow_path, thread, true /* at_return */, false /* in_nmethod */); 1784 1785 __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0); 1786 __ jcc(Assembler::equal, Continue); 1787 __ bind(slow_path); 1788 1789 // Don't use call_VM as it will see a possible pending exception and forward it 1790 // and never return here preventing us from clearing _last_native_pc down below. 1791 // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are 1792 // preserved and correspond to the bcp/locals pointers. So we do a runtime call 1793 // by hand. 1794 // 1795 __ vzeroupper(); 1796 1797 save_native_result(masm, ret_type, stack_slots); 1798 __ push(thread); 1799 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, 1800 JavaThread::check_special_condition_for_native_trans))); 1801 __ increment(rsp, wordSize); 1802 // Restore any method result value 1803 restore_native_result(masm, ret_type, stack_slots); 1804 __ bind(Continue); 1805 } 1806 1807 // change thread state 1808 __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java); 1809 __ bind(after_transition); 1810 1811 Label reguard; 1812 Label reguard_done; 1813 __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), StackOverflow::stack_guard_yellow_reserved_disabled); 1814 __ jcc(Assembler::equal, reguard); 1815 1816 // slow path reguard re-enters here 1817 __ bind(reguard_done); 1818 1819 // Handle possible exception (will unlock if necessary) 1820 1821 // native result if any is live 1822 1823 // Unlock 1824 Label slow_path_unlock; 1825 Label unlock_done; 1826 if (method->is_synchronized()) { 1827 1828 Label fast_done; 1829 1830 // Get locked oop from the handle we passed to jni 1831 __ movptr(obj_reg, Address(oop_handle_reg, 0)); 1832 1833 if (!UseHeavyMonitors) { 1834 Label not_recur; 1835 // Simple recursive lock? 1836 __ cmpptr(Address(rbp, lock_slot_rbp_offset), NULL_WORD); 1837 __ jcc(Assembler::notEqual, not_recur); 1838 __ dec_held_monitor_count(); 1839 __ jmpb(fast_done); 1840 __ bind(not_recur); 1841 } 1842 1843 // Must save rax, if it is live now because cmpxchg must use it 1844 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) { 1845 save_native_result(masm, ret_type, stack_slots); 1846 } 1847 1848 if (!UseHeavyMonitors) { 1849 // get old displaced header 1850 __ movptr(rbx, Address(rbp, lock_slot_rbp_offset)); 1851 1852 // get address of the stack lock 1853 __ lea(rax, Address(rbp, lock_slot_rbp_offset)); 1854 1855 // Atomic swap old header if oop still contains the stack lock 1856 // src -> dest iff dest == rax, else rax, <- dest 1857 // *obj_reg = rbx, iff *obj_reg == rax, else rax, = *(obj_reg) 1858 __ lock(); 1859 __ cmpxchgptr(rbx, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1860 __ jcc(Assembler::notEqual, slow_path_unlock); 1861 __ dec_held_monitor_count(); 1862 } else { 1863 __ jmp(slow_path_unlock); 1864 } 1865 1866 // slow path re-enters here 1867 __ bind(unlock_done); 1868 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) { 1869 restore_native_result(masm, ret_type, stack_slots); 1870 } 1871 1872 __ bind(fast_done); 1873 } 1874 1875 { 1876 SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0, noreg); 1877 // Tell dtrace about this method exit 1878 save_native_result(masm, ret_type, stack_slots); 1879 __ mov_metadata(rax, method()); 1880 __ call_VM_leaf( 1881 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 1882 thread, rax); 1883 restore_native_result(masm, ret_type, stack_slots); 1884 } 1885 1886 // We can finally stop using that last_Java_frame we setup ages ago 1887 1888 __ reset_last_Java_frame(thread, false); 1889 1890 // Unbox oop result, e.g. JNIHandles::resolve value. 1891 if (is_reference_type(ret_type)) { 1892 __ resolve_jobject(rax /* value */, 1893 thread /* thread */, 1894 rcx /* tmp */); 1895 } 1896 1897 if (CheckJNICalls) { 1898 // clear_pending_jni_exception_check 1899 __ movptr(Address(thread, JavaThread::pending_jni_exception_check_fn_offset()), NULL_WORD); 1900 } 1901 1902 // reset handle block 1903 __ movptr(rcx, Address(thread, JavaThread::active_handles_offset())); 1904 __ movl(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), NULL_WORD); 1905 1906 // Any exception pending? 1907 __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD); 1908 __ jcc(Assembler::notEqual, exception_pending); 1909 1910 // no exception, we're almost done 1911 1912 // check that only result value is on FPU stack 1913 __ verify_FPU(ret_type == T_FLOAT || ret_type == T_DOUBLE ? 1 : 0, "native_wrapper normal exit"); 1914 1915 // Fixup floating pointer results so that result looks like a return from a compiled method 1916 if (ret_type == T_FLOAT) { 1917 if (UseSSE >= 1) { 1918 // Pop st0 and store as float and reload into xmm register 1919 __ fstp_s(Address(rbp, -4)); 1920 __ movflt(xmm0, Address(rbp, -4)); 1921 } 1922 } else if (ret_type == T_DOUBLE) { 1923 if (UseSSE >= 2) { 1924 // Pop st0 and store as double and reload into xmm register 1925 __ fstp_d(Address(rbp, -8)); 1926 __ movdbl(xmm0, Address(rbp, -8)); 1927 } 1928 } 1929 1930 // Return 1931 1932 __ leave(); 1933 __ ret(0); 1934 1935 // Unexpected paths are out of line and go here 1936 1937 // Slow path locking & unlocking 1938 if (method->is_synchronized()) { 1939 1940 // BEGIN Slow path lock 1941 1942 __ bind(slow_path_lock); 1943 1944 // has last_Java_frame setup. No exceptions so do vanilla call not call_VM 1945 // args are (oop obj, BasicLock* lock, JavaThread* thread) 1946 __ push(thread); 1947 __ push(lock_reg); 1948 __ push(obj_reg); 1949 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C))); 1950 __ addptr(rsp, 3*wordSize); 1951 1952 #ifdef ASSERT 1953 { Label L; 1954 __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD); 1955 __ jcc(Assembler::equal, L); 1956 __ stop("no pending exception allowed on exit from monitorenter"); 1957 __ bind(L); 1958 } 1959 #endif 1960 __ jmp(lock_done); 1961 1962 // END Slow path lock 1963 1964 // BEGIN Slow path unlock 1965 __ bind(slow_path_unlock); 1966 __ vzeroupper(); 1967 // Slow path unlock 1968 1969 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) { 1970 save_native_result(masm, ret_type, stack_slots); 1971 } 1972 // Save pending exception around call to VM (which contains an EXCEPTION_MARK) 1973 1974 __ pushptr(Address(thread, in_bytes(Thread::pending_exception_offset()))); 1975 __ movptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD); 1976 1977 1978 // should be a peal 1979 // +wordSize because of the push above 1980 // args are (oop obj, BasicLock* lock, JavaThread* thread) 1981 __ push(thread); 1982 __ lea(rax, Address(rbp, lock_slot_rbp_offset)); 1983 __ push(rax); 1984 1985 __ push(obj_reg); 1986 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C))); 1987 __ addptr(rsp, 3*wordSize); 1988 #ifdef ASSERT 1989 { 1990 Label L; 1991 __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD); 1992 __ jcc(Assembler::equal, L); 1993 __ stop("no pending exception allowed on exit complete_monitor_unlocking_C"); 1994 __ bind(L); 1995 } 1996 #endif /* ASSERT */ 1997 1998 __ popptr(Address(thread, in_bytes(Thread::pending_exception_offset()))); 1999 2000 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) { 2001 restore_native_result(masm, ret_type, stack_slots); 2002 } 2003 __ jmp(unlock_done); 2004 // END Slow path unlock 2005 2006 } 2007 2008 // SLOW PATH Reguard the stack if needed 2009 2010 __ bind(reguard); 2011 __ vzeroupper(); 2012 save_native_result(masm, ret_type, stack_slots); 2013 { 2014 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages))); 2015 } 2016 restore_native_result(masm, ret_type, stack_slots); 2017 __ jmp(reguard_done); 2018 2019 2020 // BEGIN EXCEPTION PROCESSING 2021 2022 // Forward the exception 2023 __ bind(exception_pending); 2024 2025 // remove possible return value from FPU register stack 2026 __ empty_FPU_stack(); 2027 2028 // pop our frame 2029 __ leave(); 2030 // and forward the exception 2031 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 2032 2033 __ flush(); 2034 2035 nmethod *nm = nmethod::new_native_nmethod(method, 2036 compile_id, 2037 masm->code(), 2038 vep_offset, 2039 frame_complete, 2040 stack_slots / VMRegImpl::slots_per_word, 2041 (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)), 2042 in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size), 2043 oop_maps); 2044 2045 return nm; 2046 2047 } 2048 2049 // this function returns the adjust size (in number of words) to a c2i adapter 2050 // activation for use during deoptimization 2051 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) { 2052 return (callee_locals - callee_parameters) * Interpreter::stackElementWords; 2053 } 2054 2055 2056 // Number of stack slots between incoming argument block and the start of 2057 // a new frame. The PROLOG must add this many slots to the stack. The 2058 // EPILOG must remove this many slots. Intel needs one slot for 2059 // return address and one for rbp, (must save rbp) 2060 uint SharedRuntime::in_preserve_stack_slots() { 2061 return 2+VerifyStackAtCalls; 2062 } 2063 2064 uint SharedRuntime::out_preserve_stack_slots() { 2065 return 0; 2066 } 2067 2068 //------------------------------generate_deopt_blob---------------------------- 2069 void SharedRuntime::generate_deopt_blob() { 2070 // allocate space for the code 2071 ResourceMark rm; 2072 // setup code generation tools 2073 // note: the buffer code size must account for StackShadowPages=50 2074 CodeBuffer buffer("deopt_blob", 1536, 1024); 2075 MacroAssembler* masm = new MacroAssembler(&buffer); 2076 int frame_size_in_words; 2077 OopMap* map = NULL; 2078 // Account for the extra args we place on the stack 2079 // by the time we call fetch_unroll_info 2080 const int additional_words = 2; // deopt kind, thread 2081 2082 OopMapSet *oop_maps = new OopMapSet(); 2083 2084 // ------------- 2085 // This code enters when returning to a de-optimized nmethod. A return 2086 // address has been pushed on the stack, and return values are in 2087 // registers. 2088 // If we are doing a normal deopt then we were called from the patched 2089 // nmethod from the point we returned to the nmethod. So the return 2090 // address on the stack is wrong by NativeCall::instruction_size 2091 // We will adjust the value to it looks like we have the original return 2092 // address on the stack (like when we eagerly deoptimized). 2093 // In the case of an exception pending with deoptimized then we enter 2094 // with a return address on the stack that points after the call we patched 2095 // into the exception handler. We have the following register state: 2096 // rax,: exception 2097 // rbx,: exception handler 2098 // rdx: throwing pc 2099 // So in this case we simply jam rdx into the useless return address and 2100 // the stack looks just like we want. 2101 // 2102 // At this point we need to de-opt. We save the argument return 2103 // registers. We call the first C routine, fetch_unroll_info(). This 2104 // routine captures the return values and returns a structure which 2105 // describes the current frame size and the sizes of all replacement frames. 2106 // The current frame is compiled code and may contain many inlined 2107 // functions, each with their own JVM state. We pop the current frame, then 2108 // push all the new frames. Then we call the C routine unpack_frames() to 2109 // populate these frames. Finally unpack_frames() returns us the new target 2110 // address. Notice that callee-save registers are BLOWN here; they have 2111 // already been captured in the vframeArray at the time the return PC was 2112 // patched. 2113 address start = __ pc(); 2114 Label cont; 2115 2116 // Prolog for non exception case! 2117 2118 // Save everything in sight. 2119 2120 map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false); 2121 // Normal deoptimization 2122 __ push(Deoptimization::Unpack_deopt); 2123 __ jmp(cont); 2124 2125 int reexecute_offset = __ pc() - start; 2126 2127 // Reexecute case 2128 // return address is the pc describes what bci to do re-execute at 2129 2130 // No need to update map as each call to save_live_registers will produce identical oopmap 2131 (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false); 2132 2133 __ push(Deoptimization::Unpack_reexecute); 2134 __ jmp(cont); 2135 2136 int exception_offset = __ pc() - start; 2137 2138 // Prolog for exception case 2139 2140 // all registers are dead at this entry point, except for rax, and 2141 // rdx which contain the exception oop and exception pc 2142 // respectively. Set them in TLS and fall thru to the 2143 // unpack_with_exception_in_tls entry point. 2144 2145 __ get_thread(rdi); 2146 __ movptr(Address(rdi, JavaThread::exception_pc_offset()), rdx); 2147 __ movptr(Address(rdi, JavaThread::exception_oop_offset()), rax); 2148 2149 int exception_in_tls_offset = __ pc() - start; 2150 2151 // new implementation because exception oop is now passed in JavaThread 2152 2153 // Prolog for exception case 2154 // All registers must be preserved because they might be used by LinearScan 2155 // Exceptiop oop and throwing PC are passed in JavaThread 2156 // tos: stack at point of call to method that threw the exception (i.e. only 2157 // args are on the stack, no return address) 2158 2159 // make room on stack for the return address 2160 // It will be patched later with the throwing pc. The correct value is not 2161 // available now because loading it from memory would destroy registers. 2162 __ push(0); 2163 2164 // Save everything in sight. 2165 2166 // No need to update map as each call to save_live_registers will produce identical oopmap 2167 (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false); 2168 2169 // Now it is safe to overwrite any register 2170 2171 // store the correct deoptimization type 2172 __ push(Deoptimization::Unpack_exception); 2173 2174 // load throwing pc from JavaThread and patch it as the return address 2175 // of the current frame. Then clear the field in JavaThread 2176 __ get_thread(rdi); 2177 __ movptr(rdx, Address(rdi, JavaThread::exception_pc_offset())); 2178 __ movptr(Address(rbp, wordSize), rdx); 2179 __ movptr(Address(rdi, JavaThread::exception_pc_offset()), NULL_WORD); 2180 2181 #ifdef ASSERT 2182 // verify that there is really an exception oop in JavaThread 2183 __ movptr(rax, Address(rdi, JavaThread::exception_oop_offset())); 2184 __ verify_oop(rax); 2185 2186 // verify that there is no pending exception 2187 Label no_pending_exception; 2188 __ movptr(rax, Address(rdi, Thread::pending_exception_offset())); 2189 __ testptr(rax, rax); 2190 __ jcc(Assembler::zero, no_pending_exception); 2191 __ stop("must not have pending exception here"); 2192 __ bind(no_pending_exception); 2193 #endif 2194 2195 __ bind(cont); 2196 2197 // Compiled code leaves the floating point stack dirty, empty it. 2198 __ empty_FPU_stack(); 2199 2200 2201 // Call C code. Need thread and this frame, but NOT official VM entry 2202 // crud. We cannot block on this call, no GC can happen. 2203 __ get_thread(rcx); 2204 __ push(rcx); 2205 // fetch_unroll_info needs to call last_java_frame() 2206 __ set_last_Java_frame(rcx, noreg, noreg, NULL, noreg); 2207 2208 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info))); 2209 2210 // Need to have an oopmap that tells fetch_unroll_info where to 2211 // find any register it might need. 2212 2213 oop_maps->add_gc_map( __ pc()-start, map); 2214 2215 // Discard args to fetch_unroll_info 2216 __ pop(rcx); 2217 __ pop(rcx); 2218 2219 __ get_thread(rcx); 2220 __ reset_last_Java_frame(rcx, false); 2221 2222 // Load UnrollBlock into EDI 2223 __ mov(rdi, rax); 2224 2225 // Move the unpack kind to a safe place in the UnrollBlock because 2226 // we are very short of registers 2227 2228 Address unpack_kind(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes()); 2229 // retrieve the deopt kind from the UnrollBlock. 2230 __ movl(rax, unpack_kind); 2231 2232 Label noException; 2233 __ cmpl(rax, Deoptimization::Unpack_exception); // Was exception pending? 2234 __ jcc(Assembler::notEqual, noException); 2235 __ movptr(rax, Address(rcx, JavaThread::exception_oop_offset())); 2236 __ movptr(rdx, Address(rcx, JavaThread::exception_pc_offset())); 2237 __ movptr(Address(rcx, JavaThread::exception_oop_offset()), NULL_WORD); 2238 __ movptr(Address(rcx, JavaThread::exception_pc_offset()), NULL_WORD); 2239 2240 __ verify_oop(rax); 2241 2242 // Overwrite the result registers with the exception results. 2243 __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax); 2244 __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx); 2245 2246 __ bind(noException); 2247 2248 // Stack is back to only having register save data on the stack. 2249 // Now restore the result registers. Everything else is either dead or captured 2250 // in the vframeArray. 2251 2252 RegisterSaver::restore_result_registers(masm); 2253 2254 // Non standard control word may be leaked out through a safepoint blob, and we can 2255 // deopt at a poll point with the non standard control word. However, we should make 2256 // sure the control word is correct after restore_result_registers. 2257 __ fldcw(ExternalAddress(StubRoutines::x86::addr_fpu_cntrl_wrd_std())); 2258 2259 // All of the register save area has been popped of the stack. Only the 2260 // return address remains. 2261 2262 // Pop all the frames we must move/replace. 2263 // 2264 // Frame picture (youngest to oldest) 2265 // 1: self-frame (no frame link) 2266 // 2: deopting frame (no frame link) 2267 // 3: caller of deopting frame (could be compiled/interpreted). 2268 // 2269 // Note: by leaving the return address of self-frame on the stack 2270 // and using the size of frame 2 to adjust the stack 2271 // when we are done the return to frame 3 will still be on the stack. 2272 2273 // Pop deoptimized frame 2274 __ addptr(rsp, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes())); 2275 2276 // sp should be pointing at the return address to the caller (3) 2277 2278 // Pick up the initial fp we should save 2279 // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved) 2280 __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes())); 2281 2282 #ifdef ASSERT 2283 // Compilers generate code that bang the stack by as much as the 2284 // interpreter would need. So this stack banging should never 2285 // trigger a fault. Verify that it does not on non product builds. 2286 __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes())); 2287 __ bang_stack_size(rbx, rcx); 2288 #endif 2289 2290 // Load array of frame pcs into ECX 2291 __ movptr(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes())); 2292 2293 __ pop(rsi); // trash the old pc 2294 2295 // Load array of frame sizes into ESI 2296 __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes())); 2297 2298 Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes()); 2299 2300 __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes())); 2301 __ movl(counter, rbx); 2302 2303 // Now adjust the caller's stack to make up for the extra locals 2304 // but record the original sp so that we can save it in the skeletal interpreter 2305 // frame and the stack walking of interpreter_sender will get the unextended sp 2306 // value and not the "real" sp value. 2307 2308 Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes()); 2309 __ movptr(sp_temp, rsp); 2310 __ movl2ptr(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes())); 2311 __ subptr(rsp, rbx); 2312 2313 // Push interpreter frames in a loop 2314 Label loop; 2315 __ bind(loop); 2316 __ movptr(rbx, Address(rsi, 0)); // Load frame size 2317 __ subptr(rbx, 2*wordSize); // we'll push pc and rbp, by hand 2318 __ pushptr(Address(rcx, 0)); // save return address 2319 __ enter(); // save old & set new rbp, 2320 __ subptr(rsp, rbx); // Prolog! 2321 __ movptr(rbx, sp_temp); // sender's sp 2322 // This value is corrected by layout_activation_impl 2323 __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD); 2324 __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable 2325 __ movptr(sp_temp, rsp); // pass to next frame 2326 __ addptr(rsi, wordSize); // Bump array pointer (sizes) 2327 __ addptr(rcx, wordSize); // Bump array pointer (pcs) 2328 __ decrementl(counter); // decrement counter 2329 __ jcc(Assembler::notZero, loop); 2330 __ pushptr(Address(rcx, 0)); // save final return address 2331 2332 // Re-push self-frame 2333 __ enter(); // save old & set new rbp, 2334 2335 // Return address and rbp, are in place 2336 // We'll push additional args later. Just allocate a full sized 2337 // register save area 2338 __ subptr(rsp, (frame_size_in_words-additional_words - 2) * wordSize); 2339 2340 // Restore frame locals after moving the frame 2341 __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax); 2342 __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx); 2343 __ fstp_d(Address(rsp, RegisterSaver::fpResultOffset()*wordSize)); // Pop float stack and store in local 2344 if( UseSSE>=2 ) __ movdbl(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0); 2345 if( UseSSE==1 ) __ movflt(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0); 2346 2347 // Set up the args to unpack_frame 2348 2349 __ pushl(unpack_kind); // get the unpack_kind value 2350 __ get_thread(rcx); 2351 __ push(rcx); 2352 2353 // set last_Java_sp, last_Java_fp 2354 __ set_last_Java_frame(rcx, noreg, rbp, NULL, noreg); 2355 2356 // Call C code. Need thread but NOT official VM entry 2357 // crud. We cannot block on this call, no GC can happen. Call should 2358 // restore return values to their stack-slots with the new SP. 2359 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames))); 2360 // Set an oopmap for the call site 2361 oop_maps->add_gc_map( __ pc()-start, new OopMap( frame_size_in_words, 0 )); 2362 2363 // rax, contains the return result type 2364 __ push(rax); 2365 2366 __ get_thread(rcx); 2367 __ reset_last_Java_frame(rcx, false); 2368 2369 // Collect return values 2370 __ movptr(rax,Address(rsp, (RegisterSaver::raxOffset() + additional_words + 1)*wordSize)); 2371 __ movptr(rdx,Address(rsp, (RegisterSaver::rdxOffset() + additional_words + 1)*wordSize)); 2372 2373 // Clear floating point stack before returning to interpreter 2374 __ empty_FPU_stack(); 2375 2376 // Check if we should push the float or double return value. 2377 Label results_done, yes_double_value; 2378 __ cmpl(Address(rsp, 0), T_DOUBLE); 2379 __ jcc (Assembler::zero, yes_double_value); 2380 __ cmpl(Address(rsp, 0), T_FLOAT); 2381 __ jcc (Assembler::notZero, results_done); 2382 2383 // return float value as expected by interpreter 2384 if( UseSSE>=1 ) __ movflt(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize)); 2385 else __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize)); 2386 __ jmp(results_done); 2387 2388 // return double value as expected by interpreter 2389 __ bind(yes_double_value); 2390 if( UseSSE>=2 ) __ movdbl(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize)); 2391 else __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize)); 2392 2393 __ bind(results_done); 2394 2395 // Pop self-frame. 2396 __ leave(); // Epilog! 2397 2398 // Jump to interpreter 2399 __ ret(0); 2400 2401 // ------------- 2402 // make sure all code is generated 2403 masm->flush(); 2404 2405 _deopt_blob = DeoptimizationBlob::create( &buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words); 2406 _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset); 2407 } 2408 2409 2410 #ifdef COMPILER2 2411 //------------------------------generate_uncommon_trap_blob-------------------- 2412 void SharedRuntime::generate_uncommon_trap_blob() { 2413 // allocate space for the code 2414 ResourceMark rm; 2415 // setup code generation tools 2416 CodeBuffer buffer("uncommon_trap_blob", 512, 512); 2417 MacroAssembler* masm = new MacroAssembler(&buffer); 2418 2419 enum frame_layout { 2420 arg0_off, // thread sp + 0 // Arg location for 2421 arg1_off, // unloaded_class_index sp + 1 // calling C 2422 arg2_off, // exec_mode sp + 2 2423 // The frame sender code expects that rbp will be in the "natural" place and 2424 // will override any oopMap setting for it. We must therefore force the layout 2425 // so that it agrees with the frame sender code. 2426 rbp_off, // callee saved register sp + 3 2427 return_off, // slot for return address sp + 4 2428 framesize 2429 }; 2430 2431 address start = __ pc(); 2432 2433 if (UseRTMLocking) { 2434 // Abort RTM transaction before possible nmethod deoptimization. 2435 __ xabort(0); 2436 } 2437 2438 // Push self-frame. 2439 __ subptr(rsp, return_off*wordSize); // Epilog! 2440 2441 // rbp, is an implicitly saved callee saved register (i.e. the calling 2442 // convention will save restore it in prolog/epilog) Other than that 2443 // there are no callee save registers no that adapter frames are gone. 2444 __ movptr(Address(rsp, rbp_off*wordSize), rbp); 2445 2446 // Clear the floating point exception stack 2447 __ empty_FPU_stack(); 2448 2449 // set last_Java_sp 2450 __ get_thread(rdx); 2451 __ set_last_Java_frame(rdx, noreg, noreg, NULL, noreg); 2452 2453 // Call C code. Need thread but NOT official VM entry 2454 // crud. We cannot block on this call, no GC can happen. Call should 2455 // capture callee-saved registers as well as return values. 2456 __ movptr(Address(rsp, arg0_off*wordSize), rdx); 2457 // argument already in ECX 2458 __ movl(Address(rsp, arg1_off*wordSize),rcx); 2459 __ movl(Address(rsp, arg2_off*wordSize), Deoptimization::Unpack_uncommon_trap); 2460 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap))); 2461 2462 // Set an oopmap for the call site 2463 OopMapSet *oop_maps = new OopMapSet(); 2464 OopMap* map = new OopMap( framesize, 0 ); 2465 // No oopMap for rbp, it is known implicitly 2466 2467 oop_maps->add_gc_map( __ pc()-start, map); 2468 2469 __ get_thread(rcx); 2470 2471 __ reset_last_Java_frame(rcx, false); 2472 2473 // Load UnrollBlock into EDI 2474 __ movptr(rdi, rax); 2475 2476 #ifdef ASSERT 2477 { Label L; 2478 __ cmpptr(Address(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes()), 2479 (int32_t)Deoptimization::Unpack_uncommon_trap); 2480 __ jcc(Assembler::equal, L); 2481 __ stop("SharedRuntime::generate_uncommon_trap_blob: expected Unpack_uncommon_trap"); 2482 __ bind(L); 2483 } 2484 #endif 2485 2486 // Pop all the frames we must move/replace. 2487 // 2488 // Frame picture (youngest to oldest) 2489 // 1: self-frame (no frame link) 2490 // 2: deopting frame (no frame link) 2491 // 3: caller of deopting frame (could be compiled/interpreted). 2492 2493 // Pop self-frame. We have no frame, and must rely only on EAX and ESP. 2494 __ addptr(rsp,(framesize-1)*wordSize); // Epilog! 2495 2496 // Pop deoptimized frame 2497 __ movl2ptr(rcx, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes())); 2498 __ addptr(rsp, rcx); 2499 2500 // sp should be pointing at the return address to the caller (3) 2501 2502 // Pick up the initial fp we should save 2503 // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved) 2504 __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes())); 2505 2506 #ifdef ASSERT 2507 // Compilers generate code that bang the stack by as much as the 2508 // interpreter would need. So this stack banging should never 2509 // trigger a fault. Verify that it does not on non product builds. 2510 __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes())); 2511 __ bang_stack_size(rbx, rcx); 2512 #endif 2513 2514 // Load array of frame pcs into ECX 2515 __ movl(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes())); 2516 2517 __ pop(rsi); // trash the pc 2518 2519 // Load array of frame sizes into ESI 2520 __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes())); 2521 2522 Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes()); 2523 2524 __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes())); 2525 __ movl(counter, rbx); 2526 2527 // Now adjust the caller's stack to make up for the extra locals 2528 // but record the original sp so that we can save it in the skeletal interpreter 2529 // frame and the stack walking of interpreter_sender will get the unextended sp 2530 // value and not the "real" sp value. 2531 2532 Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes()); 2533 __ movptr(sp_temp, rsp); 2534 __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes())); 2535 __ subptr(rsp, rbx); 2536 2537 // Push interpreter frames in a loop 2538 Label loop; 2539 __ bind(loop); 2540 __ movptr(rbx, Address(rsi, 0)); // Load frame size 2541 __ subptr(rbx, 2*wordSize); // we'll push pc and rbp, by hand 2542 __ pushptr(Address(rcx, 0)); // save return address 2543 __ enter(); // save old & set new rbp, 2544 __ subptr(rsp, rbx); // Prolog! 2545 __ movptr(rbx, sp_temp); // sender's sp 2546 // This value is corrected by layout_activation_impl 2547 __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD ); 2548 __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable 2549 __ movptr(sp_temp, rsp); // pass to next frame 2550 __ addptr(rsi, wordSize); // Bump array pointer (sizes) 2551 __ addptr(rcx, wordSize); // Bump array pointer (pcs) 2552 __ decrementl(counter); // decrement counter 2553 __ jcc(Assembler::notZero, loop); 2554 __ pushptr(Address(rcx, 0)); // save final return address 2555 2556 // Re-push self-frame 2557 __ enter(); // save old & set new rbp, 2558 __ subptr(rsp, (framesize-2) * wordSize); // Prolog! 2559 2560 2561 // set last_Java_sp, last_Java_fp 2562 __ get_thread(rdi); 2563 __ set_last_Java_frame(rdi, noreg, rbp, NULL, noreg); 2564 2565 // Call C code. Need thread but NOT official VM entry 2566 // crud. We cannot block on this call, no GC can happen. Call should 2567 // restore return values to their stack-slots with the new SP. 2568 __ movptr(Address(rsp,arg0_off*wordSize),rdi); 2569 __ movl(Address(rsp,arg1_off*wordSize), Deoptimization::Unpack_uncommon_trap); 2570 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames))); 2571 // Set an oopmap for the call site 2572 oop_maps->add_gc_map( __ pc()-start, new OopMap( framesize, 0 ) ); 2573 2574 __ get_thread(rdi); 2575 __ reset_last_Java_frame(rdi, true); 2576 2577 // Pop self-frame. 2578 __ leave(); // Epilog! 2579 2580 // Jump to interpreter 2581 __ ret(0); 2582 2583 // ------------- 2584 // make sure all code is generated 2585 masm->flush(); 2586 2587 _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, framesize); 2588 } 2589 #endif // COMPILER2 2590 2591 //------------------------------generate_handler_blob------ 2592 // 2593 // Generate a special Compile2Runtime blob that saves all registers, 2594 // setup oopmap, and calls safepoint code to stop the compiled code for 2595 // a safepoint. 2596 // 2597 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) { 2598 2599 // Account for thread arg in our frame 2600 const int additional_words = 1; 2601 int frame_size_in_words; 2602 2603 assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before"); 2604 2605 ResourceMark rm; 2606 OopMapSet *oop_maps = new OopMapSet(); 2607 OopMap* map; 2608 2609 // allocate space for the code 2610 // setup code generation tools 2611 CodeBuffer buffer("handler_blob", 2048, 1024); 2612 MacroAssembler* masm = new MacroAssembler(&buffer); 2613 2614 const Register java_thread = rdi; // callee-saved for VC++ 2615 address start = __ pc(); 2616 address call_pc = NULL; 2617 bool cause_return = (poll_type == POLL_AT_RETURN); 2618 bool save_vectors = (poll_type == POLL_AT_VECTOR_LOOP); 2619 2620 if (UseRTMLocking) { 2621 // Abort RTM transaction before calling runtime 2622 // because critical section will be large and will be 2623 // aborted anyway. Also nmethod could be deoptimized. 2624 __ xabort(0); 2625 } 2626 2627 // If cause_return is true we are at a poll_return and there is 2628 // the return address on the stack to the caller on the nmethod 2629 // that is safepoint. We can leave this return on the stack and 2630 // effectively complete the return and safepoint in the caller. 2631 // Otherwise we push space for a return address that the safepoint 2632 // handler will install later to make the stack walking sensible. 2633 if (!cause_return) 2634 __ push(rbx); // Make room for return address (or push it again) 2635 2636 map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false, save_vectors); 2637 2638 // The following is basically a call_VM. However, we need the precise 2639 // address of the call in order to generate an oopmap. Hence, we do all the 2640 // work ourselves. 2641 2642 // Push thread argument and setup last_Java_sp 2643 __ get_thread(java_thread); 2644 __ push(java_thread); 2645 __ set_last_Java_frame(java_thread, noreg, noreg, NULL, noreg); 2646 2647 // if this was not a poll_return then we need to correct the return address now. 2648 if (!cause_return) { 2649 // Get the return pc saved by the signal handler and stash it in its appropriate place on the stack. 2650 // Additionally, rbx is a callee saved register and we can look at it later to determine 2651 // if someone changed the return address for us! 2652 __ movptr(rbx, Address(java_thread, JavaThread::saved_exception_pc_offset())); 2653 __ movptr(Address(rbp, wordSize), rbx); 2654 } 2655 2656 // do the call 2657 __ call(RuntimeAddress(call_ptr)); 2658 2659 // Set an oopmap for the call site. This oopmap will map all 2660 // oop-registers and debug-info registers as callee-saved. This 2661 // will allow deoptimization at this safepoint to find all possible 2662 // debug-info recordings, as well as let GC find all oops. 2663 2664 oop_maps->add_gc_map( __ pc() - start, map); 2665 2666 // Discard arg 2667 __ pop(rcx); 2668 2669 Label noException; 2670 2671 // Clear last_Java_sp again 2672 __ get_thread(java_thread); 2673 __ reset_last_Java_frame(java_thread, false); 2674 2675 __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), NULL_WORD); 2676 __ jcc(Assembler::equal, noException); 2677 2678 // Exception pending 2679 RegisterSaver::restore_live_registers(masm, save_vectors); 2680 2681 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 2682 2683 __ bind(noException); 2684 2685 Label no_adjust, bail, not_special; 2686 if (!cause_return) { 2687 // If our stashed return pc was modified by the runtime we avoid touching it 2688 __ cmpptr(rbx, Address(rbp, wordSize)); 2689 __ jccb(Assembler::notEqual, no_adjust); 2690 2691 // Skip over the poll instruction. 2692 // See NativeInstruction::is_safepoint_poll() 2693 // Possible encodings: 2694 // 85 00 test %eax,(%rax) 2695 // 85 01 test %eax,(%rcx) 2696 // 85 02 test %eax,(%rdx) 2697 // 85 03 test %eax,(%rbx) 2698 // 85 06 test %eax,(%rsi) 2699 // 85 07 test %eax,(%rdi) 2700 // 2701 // 85 04 24 test %eax,(%rsp) 2702 // 85 45 00 test %eax,0x0(%rbp) 2703 2704 #ifdef ASSERT 2705 __ movptr(rax, rbx); // remember where 0x85 should be, for verification below 2706 #endif 2707 // rsp/rbp base encoding takes 3 bytes with the following register values: 2708 // rsp 0x04 2709 // rbp 0x05 2710 __ movzbl(rcx, Address(rbx, 1)); 2711 __ andptr(rcx, 0x07); // looking for 0x04 .. 0x05 2712 __ subptr(rcx, 4); // looking for 0x00 .. 0x01 2713 __ cmpptr(rcx, 1); 2714 __ jcc(Assembler::above, not_special); 2715 __ addptr(rbx, 1); 2716 __ bind(not_special); 2717 #ifdef ASSERT 2718 // Verify the correct encoding of the poll we're about to skip. 2719 __ cmpb(Address(rax, 0), NativeTstRegMem::instruction_code_memXregl); 2720 __ jcc(Assembler::notEqual, bail); 2721 // Mask out the modrm bits 2722 __ testb(Address(rax, 1), NativeTstRegMem::modrm_mask); 2723 // rax encodes to 0, so if the bits are nonzero it's incorrect 2724 __ jcc(Assembler::notZero, bail); 2725 #endif 2726 // Adjust return pc forward to step over the safepoint poll instruction 2727 __ addptr(rbx, 2); 2728 __ movptr(Address(rbp, wordSize), rbx); 2729 } 2730 2731 __ bind(no_adjust); 2732 // Normal exit, register restoring and exit 2733 RegisterSaver::restore_live_registers(masm, save_vectors); 2734 2735 __ ret(0); 2736 2737 #ifdef ASSERT 2738 __ bind(bail); 2739 __ stop("Attempting to adjust pc to skip safepoint poll but the return point is not what we expected"); 2740 #endif 2741 2742 // make sure all code is generated 2743 masm->flush(); 2744 2745 // Fill-out other meta info 2746 return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words); 2747 } 2748 2749 // 2750 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss 2751 // 2752 // Generate a stub that calls into vm to find out the proper destination 2753 // of a java call. All the argument registers are live at this point 2754 // but since this is generic code we don't know what they are and the caller 2755 // must do any gc of the args. 2756 // 2757 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) { 2758 assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before"); 2759 2760 // allocate space for the code 2761 ResourceMark rm; 2762 2763 CodeBuffer buffer(name, 1000, 512); 2764 MacroAssembler* masm = new MacroAssembler(&buffer); 2765 2766 int frame_size_words; 2767 enum frame_layout { 2768 thread_off, 2769 extra_words }; 2770 2771 OopMapSet *oop_maps = new OopMapSet(); 2772 OopMap* map = NULL; 2773 2774 int start = __ offset(); 2775 2776 map = RegisterSaver::save_live_registers(masm, extra_words, &frame_size_words); 2777 2778 int frame_complete = __ offset(); 2779 2780 const Register thread = rdi; 2781 __ get_thread(rdi); 2782 2783 __ push(thread); 2784 __ set_last_Java_frame(thread, noreg, rbp, NULL, noreg); 2785 2786 __ call(RuntimeAddress(destination)); 2787 2788 2789 // Set an oopmap for the call site. 2790 // We need this not only for callee-saved registers, but also for volatile 2791 // registers that the compiler might be keeping live across a safepoint. 2792 2793 oop_maps->add_gc_map( __ offset() - start, map); 2794 2795 // rax, contains the address we are going to jump to assuming no exception got installed 2796 2797 __ addptr(rsp, wordSize); 2798 2799 // clear last_Java_sp 2800 __ reset_last_Java_frame(thread, true); 2801 // check for pending exceptions 2802 Label pending; 2803 __ cmpptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD); 2804 __ jcc(Assembler::notEqual, pending); 2805 2806 // get the returned Method* 2807 __ get_vm_result_2(rbx, thread); 2808 __ movptr(Address(rsp, RegisterSaver::rbx_offset() * wordSize), rbx); 2809 2810 __ movptr(Address(rsp, RegisterSaver::rax_offset() * wordSize), rax); 2811 2812 RegisterSaver::restore_live_registers(masm); 2813 2814 // We are back to the original state on entry and ready to go. 2815 2816 __ jmp(rax); 2817 2818 // Pending exception after the safepoint 2819 2820 __ bind(pending); 2821 2822 RegisterSaver::restore_live_registers(masm); 2823 2824 // exception pending => remove activation and forward to exception handler 2825 2826 __ get_thread(thread); 2827 __ movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD); 2828 __ movptr(rax, Address(thread, Thread::pending_exception_offset())); 2829 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 2830 2831 // ------------- 2832 // make sure all code is generated 2833 masm->flush(); 2834 2835 // return the blob 2836 // frame_size_words or bytes?? 2837 return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true); 2838 }