1 /* 2 * Copyright (c) 2003, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "classfile/vmIntrinsics.hpp" 28 #include "compiler/oopMap.hpp" 29 #include "gc/shared/barrierSet.hpp" 30 #include "gc/shared/barrierSetAssembler.hpp" 31 #include "gc/shared/barrierSetNMethod.hpp" 32 #include "gc/shared/gc_globals.hpp" 33 #include "memory/universe.hpp" 34 #include "prims/jvmtiExport.hpp" 35 #include "prims/upcallLinker.hpp" 36 #include "runtime/arguments.hpp" 37 #include "runtime/javaThread.hpp" 38 #include "runtime/sharedRuntime.hpp" 39 #include "runtime/stubRoutines.hpp" 40 #include "stubGenerator_x86_64.hpp" 41 #ifdef COMPILER2 42 #include "opto/runtime.hpp" 43 #include "opto/c2_globals.hpp" 44 #endif 45 #if INCLUDE_JVMCI 46 #include "jvmci/jvmci_globals.hpp" 47 #endif 48 #if INCLUDE_JFR 49 #include "jfr/support/jfrIntrinsics.hpp" 50 #endif 51 52 // For a more detailed description of the stub routine structure 53 // see the comment in stubRoutines.hpp 54 55 #define __ _masm-> 56 #define TIMES_OOP (UseCompressedOops ? Address::times_4 : Address::times_8) 57 58 #ifdef PRODUCT 59 #define BLOCK_COMMENT(str) /* nothing */ 60 #else 61 #define BLOCK_COMMENT(str) __ block_comment(str) 62 #endif // PRODUCT 63 64 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") 65 66 // 67 // Linux Arguments: 68 // c_rarg0: call wrapper address address 69 // c_rarg1: result address 70 // c_rarg2: result type BasicType 71 // c_rarg3: method Method* 72 // c_rarg4: (interpreter) entry point address 73 // c_rarg5: parameters intptr_t* 74 // 16(rbp): parameter size (in words) int 75 // 24(rbp): thread Thread* 76 // 77 // [ return_from_Java ] <--- rsp 78 // [ argument word n ] 79 // ... 80 // -12 [ argument word 1 ] 81 // -11 [ saved r15 ] <--- rsp_after_call 82 // -10 [ saved r14 ] 83 // -9 [ saved r13 ] 84 // -8 [ saved r12 ] 85 // -7 [ saved rbx ] 86 // -6 [ call wrapper ] 87 // -5 [ result ] 88 // -4 [ result type ] 89 // -3 [ method ] 90 // -2 [ entry point ] 91 // -1 [ parameters ] 92 // 0 [ saved rbp ] <--- rbp 93 // 1 [ return address ] 94 // 2 [ parameter size ] 95 // 3 [ thread ] 96 // 97 // Windows Arguments: 98 // c_rarg0: call wrapper address address 99 // c_rarg1: result address 100 // c_rarg2: result type BasicType 101 // c_rarg3: method Method* 102 // 48(rbp): (interpreter) entry point address 103 // 56(rbp): parameters intptr_t* 104 // 64(rbp): parameter size (in words) int 105 // 72(rbp): thread Thread* 106 // 107 // [ return_from_Java ] <--- rsp 108 // [ argument word n ] 109 // ... 110 // -28 [ argument word 1 ] 111 // -27 [ saved xmm15 ] <--- rsp after_call 112 // [ saved xmm7-xmm14 ] 113 // -9 [ saved xmm6 ] (each xmm register takes 2 slots) 114 // -7 [ saved r15 ] 115 // -6 [ saved r14 ] 116 // -5 [ saved r13 ] 117 // -4 [ saved r12 ] 118 // -3 [ saved rdi ] 119 // -2 [ saved rsi ] 120 // -1 [ saved rbx ] 121 // 0 [ saved rbp ] <--- rbp 122 // 1 [ return address ] 123 // 2 [ call wrapper ] 124 // 3 [ result ] 125 // 4 [ result type ] 126 // 5 [ method ] 127 // 6 [ entry point ] 128 // 7 [ parameters ] 129 // 8 [ parameter size ] 130 // 9 [ thread ] 131 // 132 // Windows reserves the callers stack space for arguments 1-4. 133 // We spill c_rarg0-c_rarg3 to this space. 134 135 // Call stub stack layout word offsets from rbp 136 #ifdef _WIN64 137 enum call_stub_layout { 138 xmm_save_first = 6, // save from xmm6 139 xmm_save_last = 15, // to xmm15 140 xmm_save_base = -9, 141 rsp_after_call_off = xmm_save_base - 2 * (xmm_save_last - xmm_save_first), // -27 142 r15_off = -7, 143 r14_off = -6, 144 r13_off = -5, 145 r12_off = -4, 146 rdi_off = -3, 147 rsi_off = -2, 148 rbx_off = -1, 149 rbp_off = 0, 150 retaddr_off = 1, 151 call_wrapper_off = 2, 152 result_off = 3, 153 result_type_off = 4, 154 method_off = 5, 155 entry_point_off = 6, 156 parameters_off = 7, 157 parameter_size_off = 8, 158 thread_off = 9 159 }; 160 161 static Address xmm_save(int reg) { 162 assert(reg >= xmm_save_first && reg <= xmm_save_last, "XMM register number out of range"); 163 return Address(rbp, (xmm_save_base - (reg - xmm_save_first) * 2) * wordSize); 164 } 165 #else // !_WIN64 166 enum call_stub_layout { 167 rsp_after_call_off = -12, 168 mxcsr_off = rsp_after_call_off, 169 r15_off = -11, 170 r14_off = -10, 171 r13_off = -9, 172 r12_off = -8, 173 rbx_off = -7, 174 call_wrapper_off = -6, 175 result_off = -5, 176 result_type_off = -4, 177 method_off = -3, 178 entry_point_off = -2, 179 parameters_off = -1, 180 rbp_off = 0, 181 retaddr_off = 1, 182 parameter_size_off = 2, 183 thread_off = 3 184 }; 185 #endif // _WIN64 186 187 address StubGenerator::generate_call_stub(address& return_address) { 188 189 assert((int)frame::entry_frame_after_call_words == -(int)rsp_after_call_off + 1 && 190 (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off, 191 "adjust this code"); 192 StubCodeMark mark(this, "StubRoutines", "call_stub"); 193 address start = __ pc(); 194 195 // same as in generate_catch_exception()! 196 const Address rsp_after_call(rbp, rsp_after_call_off * wordSize); 197 198 const Address call_wrapper (rbp, call_wrapper_off * wordSize); 199 const Address result (rbp, result_off * wordSize); 200 const Address result_type (rbp, result_type_off * wordSize); 201 const Address method (rbp, method_off * wordSize); 202 const Address entry_point (rbp, entry_point_off * wordSize); 203 const Address parameters (rbp, parameters_off * wordSize); 204 const Address parameter_size(rbp, parameter_size_off * wordSize); 205 206 // same as in generate_catch_exception()! 207 const Address thread (rbp, thread_off * wordSize); 208 209 const Address r15_save(rbp, r15_off * wordSize); 210 const Address r14_save(rbp, r14_off * wordSize); 211 const Address r13_save(rbp, r13_off * wordSize); 212 const Address r12_save(rbp, r12_off * wordSize); 213 const Address rbx_save(rbp, rbx_off * wordSize); 214 215 // stub code 216 __ enter(); 217 __ subptr(rsp, -rsp_after_call_off * wordSize); 218 219 // save register parameters 220 #ifndef _WIN64 221 __ movptr(parameters, c_rarg5); // parameters 222 __ movptr(entry_point, c_rarg4); // entry_point 223 #endif 224 225 __ movptr(method, c_rarg3); // method 226 __ movl(result_type, c_rarg2); // result type 227 __ movptr(result, c_rarg1); // result 228 __ movptr(call_wrapper, c_rarg0); // call wrapper 229 230 // save regs belonging to calling function 231 __ movptr(rbx_save, rbx); 232 __ movptr(r12_save, r12); 233 __ movptr(r13_save, r13); 234 __ movptr(r14_save, r14); 235 __ movptr(r15_save, r15); 236 237 #ifdef _WIN64 238 int last_reg = 15; 239 for (int i = xmm_save_first; i <= last_reg; i++) { 240 __ movdqu(xmm_save(i), as_XMMRegister(i)); 241 } 242 243 const Address rdi_save(rbp, rdi_off * wordSize); 244 const Address rsi_save(rbp, rsi_off * wordSize); 245 246 __ movptr(rsi_save, rsi); 247 __ movptr(rdi_save, rdi); 248 #else 249 const Address mxcsr_save(rbp, mxcsr_off * wordSize); 250 { 251 Label skip_ldmx; 252 __ stmxcsr(mxcsr_save); 253 __ movl(rax, mxcsr_save); 254 __ andl(rax, 0xFFC0); // Mask out any pending exceptions (only check control and mask bits) 255 ExternalAddress mxcsr_std(StubRoutines::x86::addr_mxcsr_std()); 256 __ cmp32(rax, mxcsr_std, rscratch1); 257 __ jcc(Assembler::equal, skip_ldmx); 258 __ ldmxcsr(mxcsr_std, rscratch1); 259 __ bind(skip_ldmx); 260 } 261 #endif 262 263 // Load up thread register 264 __ movptr(r15_thread, thread); 265 __ reinit_heapbase(); 266 267 #ifdef ASSERT 268 // make sure we have no pending exceptions 269 { 270 Label L; 271 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD); 272 __ jcc(Assembler::equal, L); 273 __ stop("StubRoutines::call_stub: entered with pending exception"); 274 __ bind(L); 275 } 276 #endif 277 278 // pass parameters if any 279 BLOCK_COMMENT("pass parameters if any"); 280 Label parameters_done; 281 __ movl(c_rarg3, parameter_size); 282 __ testl(c_rarg3, c_rarg3); 283 __ jcc(Assembler::zero, parameters_done); 284 285 Label loop; 286 __ movptr(c_rarg2, parameters); // parameter pointer 287 __ movl(c_rarg1, c_rarg3); // parameter counter is in c_rarg1 288 __ BIND(loop); 289 __ movptr(rax, Address(c_rarg2, 0));// get parameter 290 __ addptr(c_rarg2, wordSize); // advance to next parameter 291 __ decrementl(c_rarg1); // decrement counter 292 __ push(rax); // pass parameter 293 __ jcc(Assembler::notZero, loop); 294 295 // call Java function 296 __ BIND(parameters_done); 297 __ movptr(rbx, method); // get Method* 298 __ movptr(c_rarg1, entry_point); // get entry_point 299 __ mov(r13, rsp); // set sender sp 300 BLOCK_COMMENT("call Java function"); 301 __ call(c_rarg1); 302 303 BLOCK_COMMENT("call_stub_return_address:"); 304 return_address = __ pc(); 305 306 // store result depending on type (everything that is not 307 // T_OBJECT, T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT) 308 __ movptr(c_rarg0, result); 309 Label is_long, is_float, is_double, exit; 310 __ movl(c_rarg1, result_type); 311 __ cmpl(c_rarg1, T_OBJECT); 312 __ jcc(Assembler::equal, is_long); 313 __ cmpl(c_rarg1, T_LONG); 314 __ jcc(Assembler::equal, is_long); 315 __ cmpl(c_rarg1, T_FLOAT); 316 __ jcc(Assembler::equal, is_float); 317 __ cmpl(c_rarg1, T_DOUBLE); 318 __ jcc(Assembler::equal, is_double); 319 #ifdef ASSERT 320 // make sure the type is INT 321 { 322 Label L; 323 __ cmpl(c_rarg1, T_INT); 324 __ jcc(Assembler::equal, L); 325 __ stop("StubRoutines::call_stub: unexpected result type"); 326 __ bind(L); 327 } 328 #endif 329 330 // handle T_INT case 331 __ movl(Address(c_rarg0, 0), rax); 332 333 __ BIND(exit); 334 335 // pop parameters 336 __ lea(rsp, rsp_after_call); 337 338 #ifdef ASSERT 339 // verify that threads correspond 340 { 341 Label L1, L2, L3; 342 __ cmpptr(r15_thread, thread); 343 __ jcc(Assembler::equal, L1); 344 __ stop("StubRoutines::call_stub: r15_thread is corrupted"); 345 __ bind(L1); 346 __ get_thread(rbx); 347 __ cmpptr(r15_thread, thread); 348 __ jcc(Assembler::equal, L2); 349 __ stop("StubRoutines::call_stub: r15_thread is modified by call"); 350 __ bind(L2); 351 __ cmpptr(r15_thread, rbx); 352 __ jcc(Assembler::equal, L3); 353 __ stop("StubRoutines::call_stub: threads must correspond"); 354 __ bind(L3); 355 } 356 #endif 357 358 __ pop_cont_fastpath(); 359 360 // restore regs belonging to calling function 361 #ifdef _WIN64 362 // emit the restores for xmm regs 363 for (int i = xmm_save_first; i <= last_reg; i++) { 364 __ movdqu(as_XMMRegister(i), xmm_save(i)); 365 } 366 #endif 367 __ movptr(r15, r15_save); 368 __ movptr(r14, r14_save); 369 __ movptr(r13, r13_save); 370 __ movptr(r12, r12_save); 371 __ movptr(rbx, rbx_save); 372 373 #ifdef _WIN64 374 __ movptr(rdi, rdi_save); 375 __ movptr(rsi, rsi_save); 376 #else 377 __ ldmxcsr(mxcsr_save); 378 #endif 379 380 // restore rsp 381 __ addptr(rsp, -rsp_after_call_off * wordSize); 382 383 // return 384 __ vzeroupper(); 385 __ pop(rbp); 386 __ ret(0); 387 388 // handle return types different from T_INT 389 __ BIND(is_long); 390 __ movq(Address(c_rarg0, 0), rax); 391 __ jmp(exit); 392 393 __ BIND(is_float); 394 __ movflt(Address(c_rarg0, 0), xmm0); 395 __ jmp(exit); 396 397 __ BIND(is_double); 398 __ movdbl(Address(c_rarg0, 0), xmm0); 399 __ jmp(exit); 400 401 return start; 402 } 403 404 // Return point for a Java call if there's an exception thrown in 405 // Java code. The exception is caught and transformed into a 406 // pending exception stored in JavaThread that can be tested from 407 // within the VM. 408 // 409 // Note: Usually the parameters are removed by the callee. In case 410 // of an exception crossing an activation frame boundary, that is 411 // not the case if the callee is compiled code => need to setup the 412 // rsp. 413 // 414 // rax: exception oop 415 416 address StubGenerator::generate_catch_exception() { 417 StubCodeMark mark(this, "StubRoutines", "catch_exception"); 418 address start = __ pc(); 419 420 // same as in generate_call_stub(): 421 const Address rsp_after_call(rbp, rsp_after_call_off * wordSize); 422 const Address thread (rbp, thread_off * wordSize); 423 424 #ifdef ASSERT 425 // verify that threads correspond 426 { 427 Label L1, L2, L3; 428 __ cmpptr(r15_thread, thread); 429 __ jcc(Assembler::equal, L1); 430 __ stop("StubRoutines::catch_exception: r15_thread is corrupted"); 431 __ bind(L1); 432 __ get_thread(rbx); 433 __ cmpptr(r15_thread, thread); 434 __ jcc(Assembler::equal, L2); 435 __ stop("StubRoutines::catch_exception: r15_thread is modified by call"); 436 __ bind(L2); 437 __ cmpptr(r15_thread, rbx); 438 __ jcc(Assembler::equal, L3); 439 __ stop("StubRoutines::catch_exception: threads must correspond"); 440 __ bind(L3); 441 } 442 #endif 443 444 // set pending exception 445 __ verify_oop(rax); 446 447 __ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax); 448 __ lea(rscratch1, ExternalAddress((address)__FILE__)); 449 __ movptr(Address(r15_thread, Thread::exception_file_offset()), rscratch1); 450 __ movl(Address(r15_thread, Thread::exception_line_offset()), (int) __LINE__); 451 452 // complete return to VM 453 assert(StubRoutines::_call_stub_return_address != nullptr, 454 "_call_stub_return_address must have been generated before"); 455 __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address)); 456 457 return start; 458 } 459 460 // Continuation point for runtime calls returning with a pending 461 // exception. The pending exception check happened in the runtime 462 // or native call stub. The pending exception in Thread is 463 // converted into a Java-level exception. 464 // 465 // Contract with Java-level exception handlers: 466 // rax: exception 467 // rdx: throwing pc 468 // 469 // NOTE: At entry of this stub, exception-pc must be on stack !! 470 471 address StubGenerator::generate_forward_exception() { 472 StubCodeMark mark(this, "StubRoutines", "forward exception"); 473 address start = __ pc(); 474 475 // Upon entry, the sp points to the return address returning into 476 // Java (interpreted or compiled) code; i.e., the return address 477 // becomes the throwing pc. 478 // 479 // Arguments pushed before the runtime call are still on the stack 480 // but the exception handler will reset the stack pointer -> 481 // ignore them. A potential result in registers can be ignored as 482 // well. 483 484 #ifdef ASSERT 485 // make sure this code is only executed if there is a pending exception 486 { 487 Label L; 488 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD); 489 __ jcc(Assembler::notEqual, L); 490 __ stop("StubRoutines::forward exception: no pending exception (1)"); 491 __ bind(L); 492 } 493 #endif 494 495 // compute exception handler into rbx 496 __ movptr(c_rarg0, Address(rsp, 0)); 497 BLOCK_COMMENT("call exception_handler_for_return_address"); 498 __ call_VM_leaf(CAST_FROM_FN_PTR(address, 499 SharedRuntime::exception_handler_for_return_address), 500 r15_thread, c_rarg0); 501 __ mov(rbx, rax); 502 503 // setup rax & rdx, remove return address & clear pending exception 504 __ pop(rdx); 505 __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset())); 506 __ movptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD); 507 508 #ifdef ASSERT 509 // make sure exception is set 510 { 511 Label L; 512 __ testptr(rax, rax); 513 __ jcc(Assembler::notEqual, L); 514 __ stop("StubRoutines::forward exception: no pending exception (2)"); 515 __ bind(L); 516 } 517 #endif 518 519 // continue at exception handler (return address removed) 520 // rax: exception 521 // rbx: exception handler 522 // rdx: throwing pc 523 __ verify_oop(rax); 524 __ jmp(rbx); 525 526 return start; 527 } 528 529 // Support for intptr_t OrderAccess::fence() 530 // 531 // Arguments : 532 // 533 // Result: 534 address StubGenerator::generate_orderaccess_fence() { 535 StubCodeMark mark(this, "StubRoutines", "orderaccess_fence"); 536 address start = __ pc(); 537 538 __ membar(Assembler::StoreLoad); 539 __ ret(0); 540 541 return start; 542 } 543 544 545 // Support for intptr_t get_previous_sp() 546 // 547 // This routine is used to find the previous stack pointer for the 548 // caller. 549 address StubGenerator::generate_get_previous_sp() { 550 StubCodeMark mark(this, "StubRoutines", "get_previous_sp"); 551 address start = __ pc(); 552 553 __ movptr(rax, rsp); 554 __ addptr(rax, 8); // return address is at the top of the stack. 555 __ ret(0); 556 557 return start; 558 } 559 560 //---------------------------------------------------------------------------------------------------- 561 // Support for void verify_mxcsr() 562 // 563 // This routine is used with -Xcheck:jni to verify that native 564 // JNI code does not return to Java code without restoring the 565 // MXCSR register to our expected state. 566 567 address StubGenerator::generate_verify_mxcsr() { 568 StubCodeMark mark(this, "StubRoutines", "verify_mxcsr"); 569 address start = __ pc(); 570 571 const Address mxcsr_save(rsp, 0); 572 573 if (CheckJNICalls) { 574 Label ok_ret; 575 ExternalAddress mxcsr_std(StubRoutines::x86::addr_mxcsr_std()); 576 __ push(rax); 577 __ subptr(rsp, wordSize); // allocate a temp location 578 __ stmxcsr(mxcsr_save); 579 __ movl(rax, mxcsr_save); 580 __ andl(rax, 0xFFC0); // Mask out any pending exceptions (only check control and mask bits) 581 __ cmp32(rax, mxcsr_std, rscratch1); 582 __ jcc(Assembler::equal, ok_ret); 583 584 __ warn("MXCSR changed by native JNI code, use -XX:+RestoreMXCSROnJNICall"); 585 586 __ ldmxcsr(mxcsr_std, rscratch1); 587 588 __ bind(ok_ret); 589 __ addptr(rsp, wordSize); 590 __ pop(rax); 591 } 592 593 __ ret(0); 594 595 return start; 596 } 597 598 address StubGenerator::generate_f2i_fixup() { 599 StubCodeMark mark(this, "StubRoutines", "f2i_fixup"); 600 Address inout(rsp, 5 * wordSize); // return address + 4 saves 601 602 address start = __ pc(); 603 604 Label L; 605 606 __ push(rax); 607 __ push(c_rarg3); 608 __ push(c_rarg2); 609 __ push(c_rarg1); 610 611 __ movl(rax, 0x7f800000); 612 __ xorl(c_rarg3, c_rarg3); 613 __ movl(c_rarg2, inout); 614 __ movl(c_rarg1, c_rarg2); 615 __ andl(c_rarg1, 0x7fffffff); 616 __ cmpl(rax, c_rarg1); // NaN? -> 0 617 __ jcc(Assembler::negative, L); 618 __ testl(c_rarg2, c_rarg2); // signed ? min_jint : max_jint 619 __ movl(c_rarg3, 0x80000000); 620 __ movl(rax, 0x7fffffff); 621 __ cmovl(Assembler::positive, c_rarg3, rax); 622 623 __ bind(L); 624 __ movptr(inout, c_rarg3); 625 626 __ pop(c_rarg1); 627 __ pop(c_rarg2); 628 __ pop(c_rarg3); 629 __ pop(rax); 630 631 __ ret(0); 632 633 return start; 634 } 635 636 address StubGenerator::generate_f2l_fixup() { 637 StubCodeMark mark(this, "StubRoutines", "f2l_fixup"); 638 Address inout(rsp, 5 * wordSize); // return address + 4 saves 639 address start = __ pc(); 640 641 Label L; 642 643 __ push(rax); 644 __ push(c_rarg3); 645 __ push(c_rarg2); 646 __ push(c_rarg1); 647 648 __ movl(rax, 0x7f800000); 649 __ xorl(c_rarg3, c_rarg3); 650 __ movl(c_rarg2, inout); 651 __ movl(c_rarg1, c_rarg2); 652 __ andl(c_rarg1, 0x7fffffff); 653 __ cmpl(rax, c_rarg1); // NaN? -> 0 654 __ jcc(Assembler::negative, L); 655 __ testl(c_rarg2, c_rarg2); // signed ? min_jlong : max_jlong 656 __ mov64(c_rarg3, 0x8000000000000000); 657 __ mov64(rax, 0x7fffffffffffffff); 658 __ cmov(Assembler::positive, c_rarg3, rax); 659 660 __ bind(L); 661 __ movptr(inout, c_rarg3); 662 663 __ pop(c_rarg1); 664 __ pop(c_rarg2); 665 __ pop(c_rarg3); 666 __ pop(rax); 667 668 __ ret(0); 669 670 return start; 671 } 672 673 address StubGenerator::generate_d2i_fixup() { 674 StubCodeMark mark(this, "StubRoutines", "d2i_fixup"); 675 Address inout(rsp, 6 * wordSize); // return address + 5 saves 676 677 address start = __ pc(); 678 679 Label L; 680 681 __ push(rax); 682 __ push(c_rarg3); 683 __ push(c_rarg2); 684 __ push(c_rarg1); 685 __ push(c_rarg0); 686 687 __ movl(rax, 0x7ff00000); 688 __ movq(c_rarg2, inout); 689 __ movl(c_rarg3, c_rarg2); 690 __ mov(c_rarg1, c_rarg2); 691 __ mov(c_rarg0, c_rarg2); 692 __ negl(c_rarg3); 693 __ shrptr(c_rarg1, 0x20); 694 __ orl(c_rarg3, c_rarg2); 695 __ andl(c_rarg1, 0x7fffffff); 696 __ xorl(c_rarg2, c_rarg2); 697 __ shrl(c_rarg3, 0x1f); 698 __ orl(c_rarg1, c_rarg3); 699 __ cmpl(rax, c_rarg1); 700 __ jcc(Assembler::negative, L); // NaN -> 0 701 __ testptr(c_rarg0, c_rarg0); // signed ? min_jint : max_jint 702 __ movl(c_rarg2, 0x80000000); 703 __ movl(rax, 0x7fffffff); 704 __ cmov(Assembler::positive, c_rarg2, rax); 705 706 __ bind(L); 707 __ movptr(inout, c_rarg2); 708 709 __ pop(c_rarg0); 710 __ pop(c_rarg1); 711 __ pop(c_rarg2); 712 __ pop(c_rarg3); 713 __ pop(rax); 714 715 __ ret(0); 716 717 return start; 718 } 719 720 address StubGenerator::generate_d2l_fixup() { 721 StubCodeMark mark(this, "StubRoutines", "d2l_fixup"); 722 Address inout(rsp, 6 * wordSize); // return address + 5 saves 723 724 address start = __ pc(); 725 726 Label L; 727 728 __ push(rax); 729 __ push(c_rarg3); 730 __ push(c_rarg2); 731 __ push(c_rarg1); 732 __ push(c_rarg0); 733 734 __ movl(rax, 0x7ff00000); 735 __ movq(c_rarg2, inout); 736 __ movl(c_rarg3, c_rarg2); 737 __ mov(c_rarg1, c_rarg2); 738 __ mov(c_rarg0, c_rarg2); 739 __ negl(c_rarg3); 740 __ shrptr(c_rarg1, 0x20); 741 __ orl(c_rarg3, c_rarg2); 742 __ andl(c_rarg1, 0x7fffffff); 743 __ xorl(c_rarg2, c_rarg2); 744 __ shrl(c_rarg3, 0x1f); 745 __ orl(c_rarg1, c_rarg3); 746 __ cmpl(rax, c_rarg1); 747 __ jcc(Assembler::negative, L); // NaN -> 0 748 __ testq(c_rarg0, c_rarg0); // signed ? min_jlong : max_jlong 749 __ mov64(c_rarg2, 0x8000000000000000); 750 __ mov64(rax, 0x7fffffffffffffff); 751 __ cmovq(Assembler::positive, c_rarg2, rax); 752 753 __ bind(L); 754 __ movq(inout, c_rarg2); 755 756 __ pop(c_rarg0); 757 __ pop(c_rarg1); 758 __ pop(c_rarg2); 759 __ pop(c_rarg3); 760 __ pop(rax); 761 762 __ ret(0); 763 764 return start; 765 } 766 767 address StubGenerator::generate_count_leading_zeros_lut(const char *stub_name) { 768 __ align64(); 769 StubCodeMark mark(this, "StubRoutines", stub_name); 770 address start = __ pc(); 771 772 __ emit_data64(0x0101010102020304, relocInfo::none); 773 __ emit_data64(0x0000000000000000, relocInfo::none); 774 __ emit_data64(0x0101010102020304, relocInfo::none); 775 __ emit_data64(0x0000000000000000, relocInfo::none); 776 __ emit_data64(0x0101010102020304, relocInfo::none); 777 __ emit_data64(0x0000000000000000, relocInfo::none); 778 __ emit_data64(0x0101010102020304, relocInfo::none); 779 __ emit_data64(0x0000000000000000, relocInfo::none); 780 781 return start; 782 } 783 784 address StubGenerator::generate_popcount_avx_lut(const char *stub_name) { 785 __ align64(); 786 StubCodeMark mark(this, "StubRoutines", stub_name); 787 address start = __ pc(); 788 789 __ emit_data64(0x0302020102010100, relocInfo::none); 790 __ emit_data64(0x0403030203020201, relocInfo::none); 791 __ emit_data64(0x0302020102010100, relocInfo::none); 792 __ emit_data64(0x0403030203020201, relocInfo::none); 793 __ emit_data64(0x0302020102010100, relocInfo::none); 794 __ emit_data64(0x0403030203020201, relocInfo::none); 795 __ emit_data64(0x0302020102010100, relocInfo::none); 796 __ emit_data64(0x0403030203020201, relocInfo::none); 797 798 return start; 799 } 800 801 address StubGenerator::generate_iota_indices(const char *stub_name) { 802 __ align(CodeEntryAlignment); 803 StubCodeMark mark(this, "StubRoutines", stub_name); 804 address start = __ pc(); 805 // B 806 __ emit_data64(0x0706050403020100, relocInfo::none); 807 __ emit_data64(0x0F0E0D0C0B0A0908, relocInfo::none); 808 __ emit_data64(0x1716151413121110, relocInfo::none); 809 __ emit_data64(0x1F1E1D1C1B1A1918, relocInfo::none); 810 __ emit_data64(0x2726252423222120, relocInfo::none); 811 __ emit_data64(0x2F2E2D2C2B2A2928, relocInfo::none); 812 __ emit_data64(0x3736353433323130, relocInfo::none); 813 __ emit_data64(0x3F3E3D3C3B3A3938, relocInfo::none); 814 // W 815 __ emit_data64(0x0003000200010000, relocInfo::none); 816 __ emit_data64(0x0007000600050004, relocInfo::none); 817 __ emit_data64(0x000B000A00090008, relocInfo::none); 818 __ emit_data64(0x000F000E000D000C, relocInfo::none); 819 __ emit_data64(0x0013001200110010, relocInfo::none); 820 __ emit_data64(0x0017001600150014, relocInfo::none); 821 __ emit_data64(0x001B001A00190018, relocInfo::none); 822 __ emit_data64(0x001F001E001D001C, relocInfo::none); 823 // D 824 __ emit_data64(0x0000000100000000, relocInfo::none); 825 __ emit_data64(0x0000000300000002, relocInfo::none); 826 __ emit_data64(0x0000000500000004, relocInfo::none); 827 __ emit_data64(0x0000000700000006, relocInfo::none); 828 __ emit_data64(0x0000000900000008, relocInfo::none); 829 __ emit_data64(0x0000000B0000000A, relocInfo::none); 830 __ emit_data64(0x0000000D0000000C, relocInfo::none); 831 __ emit_data64(0x0000000F0000000E, relocInfo::none); 832 // Q 833 __ emit_data64(0x0000000000000000, relocInfo::none); 834 __ emit_data64(0x0000000000000001, relocInfo::none); 835 __ emit_data64(0x0000000000000002, relocInfo::none); 836 __ emit_data64(0x0000000000000003, relocInfo::none); 837 __ emit_data64(0x0000000000000004, relocInfo::none); 838 __ emit_data64(0x0000000000000005, relocInfo::none); 839 __ emit_data64(0x0000000000000006, relocInfo::none); 840 __ emit_data64(0x0000000000000007, relocInfo::none); 841 // D - FP 842 __ emit_data64(0x3F80000000000000, relocInfo::none); // 0.0f, 1.0f 843 __ emit_data64(0x4040000040000000, relocInfo::none); // 2.0f, 3.0f 844 __ emit_data64(0x40A0000040800000, relocInfo::none); // 4.0f, 5.0f 845 __ emit_data64(0x40E0000040C00000, relocInfo::none); // 6.0f, 7.0f 846 __ emit_data64(0x4110000041000000, relocInfo::none); // 8.0f, 9.0f 847 __ emit_data64(0x4130000041200000, relocInfo::none); // 10.0f, 11.0f 848 __ emit_data64(0x4150000041400000, relocInfo::none); // 12.0f, 13.0f 849 __ emit_data64(0x4170000041600000, relocInfo::none); // 14.0f, 15.0f 850 // Q - FP 851 __ emit_data64(0x0000000000000000, relocInfo::none); // 0.0d 852 __ emit_data64(0x3FF0000000000000, relocInfo::none); // 1.0d 853 __ emit_data64(0x4000000000000000, relocInfo::none); // 2.0d 854 __ emit_data64(0x4008000000000000, relocInfo::none); // 3.0d 855 __ emit_data64(0x4010000000000000, relocInfo::none); // 4.0d 856 __ emit_data64(0x4014000000000000, relocInfo::none); // 5.0d 857 __ emit_data64(0x4018000000000000, relocInfo::none); // 6.0d 858 __ emit_data64(0x401c000000000000, relocInfo::none); // 7.0d 859 return start; 860 } 861 862 address StubGenerator::generate_vector_reverse_bit_lut(const char *stub_name) { 863 __ align(CodeEntryAlignment); 864 StubCodeMark mark(this, "StubRoutines", stub_name); 865 address start = __ pc(); 866 867 __ emit_data64(0x0E060A020C040800, relocInfo::none); 868 __ emit_data64(0x0F070B030D050901, relocInfo::none); 869 __ emit_data64(0x0E060A020C040800, relocInfo::none); 870 __ emit_data64(0x0F070B030D050901, relocInfo::none); 871 __ emit_data64(0x0E060A020C040800, relocInfo::none); 872 __ emit_data64(0x0F070B030D050901, relocInfo::none); 873 __ emit_data64(0x0E060A020C040800, relocInfo::none); 874 __ emit_data64(0x0F070B030D050901, relocInfo::none); 875 876 return start; 877 } 878 879 address StubGenerator::generate_vector_reverse_byte_perm_mask_long(const char *stub_name) { 880 __ align(CodeEntryAlignment); 881 StubCodeMark mark(this, "StubRoutines", stub_name); 882 address start = __ pc(); 883 884 __ emit_data64(0x0001020304050607, relocInfo::none); 885 __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none); 886 __ emit_data64(0x0001020304050607, relocInfo::none); 887 __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none); 888 __ emit_data64(0x0001020304050607, relocInfo::none); 889 __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none); 890 __ emit_data64(0x0001020304050607, relocInfo::none); 891 __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none); 892 893 return start; 894 } 895 896 address StubGenerator::generate_vector_reverse_byte_perm_mask_int(const char *stub_name) { 897 __ align(CodeEntryAlignment); 898 StubCodeMark mark(this, "StubRoutines", stub_name); 899 address start = __ pc(); 900 901 __ emit_data64(0x0405060700010203, relocInfo::none); 902 __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none); 903 __ emit_data64(0x0405060700010203, relocInfo::none); 904 __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none); 905 __ emit_data64(0x0405060700010203, relocInfo::none); 906 __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none); 907 __ emit_data64(0x0405060700010203, relocInfo::none); 908 __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none); 909 910 return start; 911 } 912 913 address StubGenerator::generate_vector_reverse_byte_perm_mask_short(const char *stub_name) { 914 __ align(CodeEntryAlignment); 915 StubCodeMark mark(this, "StubRoutines", stub_name); 916 address start = __ pc(); 917 918 __ emit_data64(0x0607040502030001, relocInfo::none); 919 __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none); 920 __ emit_data64(0x0607040502030001, relocInfo::none); 921 __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none); 922 __ emit_data64(0x0607040502030001, relocInfo::none); 923 __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none); 924 __ emit_data64(0x0607040502030001, relocInfo::none); 925 __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none); 926 927 return start; 928 } 929 930 address StubGenerator::generate_vector_byte_shuffle_mask(const char *stub_name) { 931 __ align(CodeEntryAlignment); 932 StubCodeMark mark(this, "StubRoutines", stub_name); 933 address start = __ pc(); 934 935 __ emit_data64(0x7070707070707070, relocInfo::none); 936 __ emit_data64(0x7070707070707070, relocInfo::none); 937 __ emit_data64(0xF0F0F0F0F0F0F0F0, relocInfo::none); 938 __ emit_data64(0xF0F0F0F0F0F0F0F0, relocInfo::none); 939 940 return start; 941 } 942 943 address StubGenerator::generate_fp_mask(const char *stub_name, int64_t mask) { 944 __ align(CodeEntryAlignment); 945 StubCodeMark mark(this, "StubRoutines", stub_name); 946 address start = __ pc(); 947 948 __ emit_data64( mask, relocInfo::none ); 949 __ emit_data64( mask, relocInfo::none ); 950 951 return start; 952 } 953 954 address StubGenerator::generate_compress_perm_table(const char *stub_name, int32_t esize) { 955 __ align(CodeEntryAlignment); 956 StubCodeMark mark(this, "StubRoutines", stub_name); 957 address start = __ pc(); 958 if (esize == 32) { 959 // Loop to generate 256 x 8 int compression permute index table. A row is 960 // accessed using 8 bit index computed using vector mask. An entry in 961 // a row holds either a valid permute index corresponding to set bit position 962 // or a -1 (default) value. 963 for (int mask = 0; mask < 256; mask++) { 964 int ctr = 0; 965 for (int j = 0; j < 8; j++) { 966 if (mask & (1 << j)) { 967 __ emit_data(j, relocInfo::none); 968 ctr++; 969 } 970 } 971 for (; ctr < 8; ctr++) { 972 __ emit_data(-1, relocInfo::none); 973 } 974 } 975 } else { 976 assert(esize == 64, ""); 977 // Loop to generate 16 x 4 long compression permute index table. A row is 978 // accessed using 4 bit index computed using vector mask. An entry in 979 // a row holds either a valid permute index pair for a quadword corresponding 980 // to set bit position or a -1 (default) value. 981 for (int mask = 0; mask < 16; mask++) { 982 int ctr = 0; 983 for (int j = 0; j < 4; j++) { 984 if (mask & (1 << j)) { 985 __ emit_data(2 * j, relocInfo::none); 986 __ emit_data(2 * j + 1, relocInfo::none); 987 ctr++; 988 } 989 } 990 for (; ctr < 4; ctr++) { 991 __ emit_data64(-1L, relocInfo::none); 992 } 993 } 994 } 995 return start; 996 } 997 998 address StubGenerator::generate_expand_perm_table(const char *stub_name, int32_t esize) { 999 __ align(CodeEntryAlignment); 1000 StubCodeMark mark(this, "StubRoutines", stub_name); 1001 address start = __ pc(); 1002 if (esize == 32) { 1003 // Loop to generate 256 x 8 int expand permute index table. A row is accessed 1004 // using 8 bit index computed using vector mask. An entry in a row holds either 1005 // a valid permute index (starting from least significant lane) placed at poisition 1006 // corresponding to set bit position or a -1 (default) value. 1007 for (int mask = 0; mask < 256; mask++) { 1008 int ctr = 0; 1009 for (int j = 0; j < 8; j++) { 1010 if (mask & (1 << j)) { 1011 __ emit_data(ctr++, relocInfo::none); 1012 } else { 1013 __ emit_data(-1, relocInfo::none); 1014 } 1015 } 1016 } 1017 } else { 1018 assert(esize == 64, ""); 1019 // Loop to generate 16 x 4 long expand permute index table. A row is accessed 1020 // using 4 bit index computed using vector mask. An entry in a row holds either 1021 // a valid doubleword permute index pair representing a quadword index (starting 1022 // from least significant lane) placed at poisition corresponding to set bit 1023 // position or a -1 (default) value. 1024 for (int mask = 0; mask < 16; mask++) { 1025 int ctr = 0; 1026 for (int j = 0; j < 4; j++) { 1027 if (mask & (1 << j)) { 1028 __ emit_data(2 * ctr, relocInfo::none); 1029 __ emit_data(2 * ctr + 1, relocInfo::none); 1030 ctr++; 1031 } else { 1032 __ emit_data64(-1L, relocInfo::none); 1033 } 1034 } 1035 } 1036 } 1037 return start; 1038 } 1039 1040 address StubGenerator::generate_vector_mask(const char *stub_name, int64_t mask) { 1041 __ align(CodeEntryAlignment); 1042 StubCodeMark mark(this, "StubRoutines", stub_name); 1043 address start = __ pc(); 1044 1045 __ emit_data64(mask, relocInfo::none); 1046 __ emit_data64(mask, relocInfo::none); 1047 __ emit_data64(mask, relocInfo::none); 1048 __ emit_data64(mask, relocInfo::none); 1049 __ emit_data64(mask, relocInfo::none); 1050 __ emit_data64(mask, relocInfo::none); 1051 __ emit_data64(mask, relocInfo::none); 1052 __ emit_data64(mask, relocInfo::none); 1053 1054 return start; 1055 } 1056 1057 address StubGenerator::generate_vector_byte_perm_mask(const char *stub_name) { 1058 __ align(CodeEntryAlignment); 1059 StubCodeMark mark(this, "StubRoutines", stub_name); 1060 address start = __ pc(); 1061 1062 __ emit_data64(0x0000000000000001, relocInfo::none); 1063 __ emit_data64(0x0000000000000003, relocInfo::none); 1064 __ emit_data64(0x0000000000000005, relocInfo::none); 1065 __ emit_data64(0x0000000000000007, relocInfo::none); 1066 __ emit_data64(0x0000000000000000, relocInfo::none); 1067 __ emit_data64(0x0000000000000002, relocInfo::none); 1068 __ emit_data64(0x0000000000000004, relocInfo::none); 1069 __ emit_data64(0x0000000000000006, relocInfo::none); 1070 1071 return start; 1072 } 1073 1074 address StubGenerator::generate_vector_fp_mask(const char *stub_name, int64_t mask) { 1075 __ align(CodeEntryAlignment); 1076 StubCodeMark mark(this, "StubRoutines", stub_name); 1077 address start = __ pc(); 1078 1079 __ emit_data64(mask, relocInfo::none); 1080 __ emit_data64(mask, relocInfo::none); 1081 __ emit_data64(mask, relocInfo::none); 1082 __ emit_data64(mask, relocInfo::none); 1083 __ emit_data64(mask, relocInfo::none); 1084 __ emit_data64(mask, relocInfo::none); 1085 __ emit_data64(mask, relocInfo::none); 1086 __ emit_data64(mask, relocInfo::none); 1087 1088 return start; 1089 } 1090 1091 address StubGenerator::generate_vector_custom_i32(const char *stub_name, Assembler::AvxVectorLen len, 1092 int32_t val0, int32_t val1, int32_t val2, int32_t val3, 1093 int32_t val4, int32_t val5, int32_t val6, int32_t val7, 1094 int32_t val8, int32_t val9, int32_t val10, int32_t val11, 1095 int32_t val12, int32_t val13, int32_t val14, int32_t val15) { 1096 __ align(CodeEntryAlignment); 1097 StubCodeMark mark(this, "StubRoutines", stub_name); 1098 address start = __ pc(); 1099 1100 assert(len != Assembler::AVX_NoVec, "vector len must be specified"); 1101 __ emit_data(val0, relocInfo::none, 0); 1102 __ emit_data(val1, relocInfo::none, 0); 1103 __ emit_data(val2, relocInfo::none, 0); 1104 __ emit_data(val3, relocInfo::none, 0); 1105 if (len >= Assembler::AVX_256bit) { 1106 __ emit_data(val4, relocInfo::none, 0); 1107 __ emit_data(val5, relocInfo::none, 0); 1108 __ emit_data(val6, relocInfo::none, 0); 1109 __ emit_data(val7, relocInfo::none, 0); 1110 if (len >= Assembler::AVX_512bit) { 1111 __ emit_data(val8, relocInfo::none, 0); 1112 __ emit_data(val9, relocInfo::none, 0); 1113 __ emit_data(val10, relocInfo::none, 0); 1114 __ emit_data(val11, relocInfo::none, 0); 1115 __ emit_data(val12, relocInfo::none, 0); 1116 __ emit_data(val13, relocInfo::none, 0); 1117 __ emit_data(val14, relocInfo::none, 0); 1118 __ emit_data(val15, relocInfo::none, 0); 1119 } 1120 } 1121 return start; 1122 } 1123 1124 // Non-destructive plausibility checks for oops 1125 // 1126 // Arguments: 1127 // all args on stack! 1128 // 1129 // Stack after saving c_rarg3: 1130 // [tos + 0]: saved c_rarg3 1131 // [tos + 1]: saved c_rarg2 1132 // [tos + 2]: saved r12 (several TemplateTable methods use it) 1133 // [tos + 3]: saved flags 1134 // [tos + 4]: return address 1135 // * [tos + 5]: error message (char*) 1136 // * [tos + 6]: object to verify (oop) 1137 // * [tos + 7]: saved rax - saved by caller and bashed 1138 // * [tos + 8]: saved r10 (rscratch1) - saved by caller 1139 // * = popped on exit 1140 address StubGenerator::generate_verify_oop() { 1141 StubCodeMark mark(this, "StubRoutines", "verify_oop"); 1142 address start = __ pc(); 1143 1144 Label exit, error; 1145 1146 __ pushf(); 1147 __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()), rscratch1); 1148 1149 __ push(r12); 1150 1151 // save c_rarg2 and c_rarg3 1152 __ push(c_rarg2); 1153 __ push(c_rarg3); 1154 1155 enum { 1156 // After previous pushes. 1157 oop_to_verify = 6 * wordSize, 1158 saved_rax = 7 * wordSize, 1159 saved_r10 = 8 * wordSize, 1160 1161 // Before the call to MacroAssembler::debug(), see below. 1162 return_addr = 16 * wordSize, 1163 error_msg = 17 * wordSize 1164 }; 1165 1166 // get object 1167 __ movptr(rax, Address(rsp, oop_to_verify)); 1168 1169 // make sure object is 'reasonable' 1170 __ testptr(rax, rax); 1171 __ jcc(Assembler::zero, exit); // if obj is null it is OK 1172 1173 BarrierSetAssembler* bs_asm = BarrierSet::barrier_set()->barrier_set_assembler(); 1174 bs_asm->check_oop(_masm, rax, c_rarg2, c_rarg3, error); 1175 1176 // return if everything seems ok 1177 __ bind(exit); 1178 __ movptr(rax, Address(rsp, saved_rax)); // get saved rax back 1179 __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back 1180 __ pop(c_rarg3); // restore c_rarg3 1181 __ pop(c_rarg2); // restore c_rarg2 1182 __ pop(r12); // restore r12 1183 __ popf(); // restore flags 1184 __ ret(4 * wordSize); // pop caller saved stuff 1185 1186 // handle errors 1187 __ bind(error); 1188 __ movptr(rax, Address(rsp, saved_rax)); // get saved rax back 1189 __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back 1190 __ pop(c_rarg3); // get saved c_rarg3 back 1191 __ pop(c_rarg2); // get saved c_rarg2 back 1192 __ pop(r12); // get saved r12 back 1193 __ popf(); // get saved flags off stack -- 1194 // will be ignored 1195 1196 __ pusha(); // push registers 1197 // (rip is already 1198 // already pushed) 1199 // debug(char* msg, int64_t pc, int64_t regs[]) 1200 // We've popped the registers we'd saved (c_rarg3, c_rarg2 and flags), and 1201 // pushed all the registers, so now the stack looks like: 1202 // [tos + 0] 16 saved registers 1203 // [tos + 16] return address 1204 // * [tos + 17] error message (char*) 1205 // * [tos + 18] object to verify (oop) 1206 // * [tos + 19] saved rax - saved by caller and bashed 1207 // * [tos + 20] saved r10 (rscratch1) - saved by caller 1208 // * = popped on exit 1209 1210 __ movptr(c_rarg0, Address(rsp, error_msg)); // pass address of error message 1211 __ movptr(c_rarg1, Address(rsp, return_addr)); // pass return address 1212 __ movq(c_rarg2, rsp); // pass address of regs on stack 1213 __ mov(r12, rsp); // remember rsp 1214 __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows 1215 __ andptr(rsp, -16); // align stack as required by ABI 1216 BLOCK_COMMENT("call MacroAssembler::debug"); 1217 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64))); 1218 __ hlt(); 1219 1220 return start; 1221 } 1222 1223 1224 // Shuffle first three arg regs on Windows into Linux/Solaris locations. 1225 // 1226 // Outputs: 1227 // rdi - rcx 1228 // rsi - rdx 1229 // rdx - r8 1230 // rcx - r9 1231 // 1232 // Registers r9 and r10 are used to save rdi and rsi on Windows, which latter 1233 // are non-volatile. r9 and r10 should not be used by the caller. 1234 // 1235 void StubGenerator::setup_arg_regs(int nargs) { 1236 const Register saved_rdi = r9; 1237 const Register saved_rsi = r10; 1238 assert(nargs == 3 || nargs == 4, "else fix"); 1239 #ifdef _WIN64 1240 assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9, 1241 "unexpected argument registers"); 1242 if (nargs == 4) { 1243 __ mov(rax, r9); // r9 is also saved_rdi 1244 } 1245 __ movptr(saved_rdi, rdi); 1246 __ movptr(saved_rsi, rsi); 1247 __ mov(rdi, rcx); // c_rarg0 1248 __ mov(rsi, rdx); // c_rarg1 1249 __ mov(rdx, r8); // c_rarg2 1250 if (nargs == 4) { 1251 __ mov(rcx, rax); // c_rarg3 (via rax) 1252 } 1253 #else 1254 assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx, 1255 "unexpected argument registers"); 1256 #endif 1257 DEBUG_ONLY(_regs_in_thread = false;) 1258 } 1259 1260 1261 void StubGenerator::restore_arg_regs() { 1262 assert(!_regs_in_thread, "wrong call to restore_arg_regs"); 1263 const Register saved_rdi = r9; 1264 const Register saved_rsi = r10; 1265 #ifdef _WIN64 1266 __ movptr(rdi, saved_rdi); 1267 __ movptr(rsi, saved_rsi); 1268 #endif 1269 } 1270 1271 1272 // This is used in places where r10 is a scratch register, and can 1273 // be adapted if r9 is needed also. 1274 void StubGenerator::setup_arg_regs_using_thread(int nargs) { 1275 const Register saved_r15 = r9; 1276 assert(nargs == 3 || nargs == 4, "else fix"); 1277 #ifdef _WIN64 1278 if (nargs == 4) { 1279 __ mov(rax, r9); // r9 is also saved_r15 1280 } 1281 __ mov(saved_r15, r15); // r15 is callee saved and needs to be restored 1282 __ get_thread(r15_thread); 1283 assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9, 1284 "unexpected argument registers"); 1285 __ movptr(Address(r15_thread, in_bytes(JavaThread::windows_saved_rdi_offset())), rdi); 1286 __ movptr(Address(r15_thread, in_bytes(JavaThread::windows_saved_rsi_offset())), rsi); 1287 1288 __ mov(rdi, rcx); // c_rarg0 1289 __ mov(rsi, rdx); // c_rarg1 1290 __ mov(rdx, r8); // c_rarg2 1291 if (nargs == 4) { 1292 __ mov(rcx, rax); // c_rarg3 (via rax) 1293 } 1294 #else 1295 assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx, 1296 "unexpected argument registers"); 1297 #endif 1298 DEBUG_ONLY(_regs_in_thread = true;) 1299 } 1300 1301 1302 void StubGenerator::restore_arg_regs_using_thread() { 1303 assert(_regs_in_thread, "wrong call to restore_arg_regs"); 1304 const Register saved_r15 = r9; 1305 #ifdef _WIN64 1306 __ get_thread(r15_thread); 1307 __ movptr(rsi, Address(r15_thread, in_bytes(JavaThread::windows_saved_rsi_offset()))); 1308 __ movptr(rdi, Address(r15_thread, in_bytes(JavaThread::windows_saved_rdi_offset()))); 1309 __ mov(r15, saved_r15); // r15 is callee saved and needs to be restored 1310 #endif 1311 } 1312 1313 1314 void StubGenerator::setup_argument_regs(BasicType type) { 1315 if (type == T_BYTE || type == T_SHORT) { 1316 setup_arg_regs(); // from => rdi, to => rsi, count => rdx 1317 // r9 and r10 may be used to save non-volatile registers 1318 } else { 1319 setup_arg_regs_using_thread(); // from => rdi, to => rsi, count => rdx 1320 // r9 is used to save r15_thread 1321 } 1322 } 1323 1324 1325 void StubGenerator::restore_argument_regs(BasicType type) { 1326 if (type == T_BYTE || type == T_SHORT) { 1327 restore_arg_regs(); 1328 } else { 1329 restore_arg_regs_using_thread(); 1330 } 1331 } 1332 1333 address StubGenerator::generate_data_cache_writeback() { 1334 const Register src = c_rarg0; // source address 1335 1336 __ align(CodeEntryAlignment); 1337 1338 StubCodeMark mark(this, "StubRoutines", "_data_cache_writeback"); 1339 1340 address start = __ pc(); 1341 1342 __ enter(); 1343 __ cache_wb(Address(src, 0)); 1344 __ leave(); 1345 __ ret(0); 1346 1347 return start; 1348 } 1349 1350 address StubGenerator::generate_data_cache_writeback_sync() { 1351 const Register is_pre = c_rarg0; // pre or post sync 1352 1353 __ align(CodeEntryAlignment); 1354 1355 StubCodeMark mark(this, "StubRoutines", "_data_cache_writeback_sync"); 1356 1357 // pre wbsync is a no-op 1358 // post wbsync translates to an sfence 1359 1360 Label skip; 1361 address start = __ pc(); 1362 1363 __ enter(); 1364 __ cmpl(is_pre, 0); 1365 __ jcc(Assembler::notEqual, skip); 1366 __ cache_wbsync(false); 1367 __ bind(skip); 1368 __ leave(); 1369 __ ret(0); 1370 1371 return start; 1372 } 1373 1374 // ofs and limit are use for multi-block byte array. 1375 // int com.sun.security.provider.MD5.implCompress(byte[] b, int ofs) 1376 address StubGenerator::generate_md5_implCompress(bool multi_block, const char *name) { 1377 __ align(CodeEntryAlignment); 1378 StubCodeMark mark(this, "StubRoutines", name); 1379 address start = __ pc(); 1380 1381 const Register buf_param = r15; 1382 const Address state_param(rsp, 0 * wordSize); 1383 const Address ofs_param (rsp, 1 * wordSize ); 1384 const Address limit_param(rsp, 1 * wordSize + 4); 1385 1386 __ enter(); 1387 __ push(rbx); 1388 __ push(rdi); 1389 __ push(rsi); 1390 __ push(r15); 1391 __ subptr(rsp, 2 * wordSize); 1392 1393 __ movptr(buf_param, c_rarg0); 1394 __ movptr(state_param, c_rarg1); 1395 if (multi_block) { 1396 __ movl(ofs_param, c_rarg2); 1397 __ movl(limit_param, c_rarg3); 1398 } 1399 __ fast_md5(buf_param, state_param, ofs_param, limit_param, multi_block); 1400 1401 __ addptr(rsp, 2 * wordSize); 1402 __ pop(r15); 1403 __ pop(rsi); 1404 __ pop(rdi); 1405 __ pop(rbx); 1406 __ leave(); 1407 __ ret(0); 1408 1409 return start; 1410 } 1411 1412 address StubGenerator::generate_upper_word_mask() { 1413 __ align64(); 1414 StubCodeMark mark(this, "StubRoutines", "upper_word_mask"); 1415 address start = __ pc(); 1416 1417 __ emit_data64(0x0000000000000000, relocInfo::none); 1418 __ emit_data64(0xFFFFFFFF00000000, relocInfo::none); 1419 1420 return start; 1421 } 1422 1423 address StubGenerator::generate_shuffle_byte_flip_mask() { 1424 __ align64(); 1425 StubCodeMark mark(this, "StubRoutines", "shuffle_byte_flip_mask"); 1426 address start = __ pc(); 1427 1428 __ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none); 1429 __ emit_data64(0x0001020304050607, relocInfo::none); 1430 1431 return start; 1432 } 1433 1434 // ofs and limit are use for multi-block byte array. 1435 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit) 1436 address StubGenerator::generate_sha1_implCompress(bool multi_block, const char *name) { 1437 __ align(CodeEntryAlignment); 1438 StubCodeMark mark(this, "StubRoutines", name); 1439 address start = __ pc(); 1440 1441 Register buf = c_rarg0; 1442 Register state = c_rarg1; 1443 Register ofs = c_rarg2; 1444 Register limit = c_rarg3; 1445 1446 const XMMRegister abcd = xmm0; 1447 const XMMRegister e0 = xmm1; 1448 const XMMRegister e1 = xmm2; 1449 const XMMRegister msg0 = xmm3; 1450 1451 const XMMRegister msg1 = xmm4; 1452 const XMMRegister msg2 = xmm5; 1453 const XMMRegister msg3 = xmm6; 1454 const XMMRegister shuf_mask = xmm7; 1455 1456 __ enter(); 1457 1458 __ subptr(rsp, 4 * wordSize); 1459 1460 __ fast_sha1(abcd, e0, e1, msg0, msg1, msg2, msg3, shuf_mask, 1461 buf, state, ofs, limit, rsp, multi_block); 1462 1463 __ addptr(rsp, 4 * wordSize); 1464 1465 __ leave(); 1466 __ ret(0); 1467 1468 return start; 1469 } 1470 1471 address StubGenerator::generate_pshuffle_byte_flip_mask() { 1472 __ align64(); 1473 StubCodeMark mark(this, "StubRoutines", "pshuffle_byte_flip_mask"); 1474 address start = __ pc(); 1475 1476 __ emit_data64(0x0405060700010203, relocInfo::none); 1477 __ emit_data64(0x0c0d0e0f08090a0b, relocInfo::none); 1478 1479 if (VM_Version::supports_avx2()) { 1480 __ emit_data64(0x0405060700010203, relocInfo::none); // second copy 1481 __ emit_data64(0x0c0d0e0f08090a0b, relocInfo::none); 1482 // _SHUF_00BA 1483 __ emit_data64(0x0b0a090803020100, relocInfo::none); 1484 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); 1485 __ emit_data64(0x0b0a090803020100, relocInfo::none); 1486 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); 1487 // _SHUF_DC00 1488 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); 1489 __ emit_data64(0x0b0a090803020100, relocInfo::none); 1490 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); 1491 __ emit_data64(0x0b0a090803020100, relocInfo::none); 1492 } 1493 1494 return start; 1495 } 1496 1497 //Mask for byte-swapping a couple of qwords in an XMM register using (v)pshufb. 1498 address StubGenerator::generate_pshuffle_byte_flip_mask_sha512() { 1499 __ align32(); 1500 StubCodeMark mark(this, "StubRoutines", "pshuffle_byte_flip_mask_sha512"); 1501 address start = __ pc(); 1502 1503 if (VM_Version::supports_avx2()) { 1504 __ emit_data64(0x0001020304050607, relocInfo::none); // PSHUFFLE_BYTE_FLIP_MASK 1505 __ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none); 1506 __ emit_data64(0x1011121314151617, relocInfo::none); 1507 __ emit_data64(0x18191a1b1c1d1e1f, relocInfo::none); 1508 __ emit_data64(0x0000000000000000, relocInfo::none); //MASK_YMM_LO 1509 __ emit_data64(0x0000000000000000, relocInfo::none); 1510 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); 1511 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); 1512 } 1513 1514 return start; 1515 } 1516 1517 // ofs and limit are use for multi-block byte array. 1518 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit) 1519 address StubGenerator::generate_sha256_implCompress(bool multi_block, const char *name) { 1520 assert(VM_Version::supports_sha() || VM_Version::supports_avx2(), ""); 1521 __ align(CodeEntryAlignment); 1522 StubCodeMark mark(this, "StubRoutines", name); 1523 address start = __ pc(); 1524 1525 Register buf = c_rarg0; 1526 Register state = c_rarg1; 1527 Register ofs = c_rarg2; 1528 Register limit = c_rarg3; 1529 1530 const XMMRegister msg = xmm0; 1531 const XMMRegister state0 = xmm1; 1532 const XMMRegister state1 = xmm2; 1533 const XMMRegister msgtmp0 = xmm3; 1534 1535 const XMMRegister msgtmp1 = xmm4; 1536 const XMMRegister msgtmp2 = xmm5; 1537 const XMMRegister msgtmp3 = xmm6; 1538 const XMMRegister msgtmp4 = xmm7; 1539 1540 const XMMRegister shuf_mask = xmm8; 1541 1542 __ enter(); 1543 1544 __ subptr(rsp, 4 * wordSize); 1545 1546 if (VM_Version::supports_sha()) { 1547 __ fast_sha256(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4, 1548 buf, state, ofs, limit, rsp, multi_block, shuf_mask); 1549 } else if (VM_Version::supports_avx2()) { 1550 __ sha256_AVX2(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4, 1551 buf, state, ofs, limit, rsp, multi_block, shuf_mask); 1552 } 1553 __ addptr(rsp, 4 * wordSize); 1554 __ vzeroupper(); 1555 __ leave(); 1556 __ ret(0); 1557 1558 return start; 1559 } 1560 1561 address StubGenerator::generate_sha512_implCompress(bool multi_block, const char *name) { 1562 assert(VM_Version::supports_avx2(), ""); 1563 assert(VM_Version::supports_bmi2(), ""); 1564 __ align(CodeEntryAlignment); 1565 StubCodeMark mark(this, "StubRoutines", name); 1566 address start = __ pc(); 1567 1568 Register buf = c_rarg0; 1569 Register state = c_rarg1; 1570 Register ofs = c_rarg2; 1571 Register limit = c_rarg3; 1572 1573 const XMMRegister msg = xmm0; 1574 const XMMRegister state0 = xmm1; 1575 const XMMRegister state1 = xmm2; 1576 const XMMRegister msgtmp0 = xmm3; 1577 const XMMRegister msgtmp1 = xmm4; 1578 const XMMRegister msgtmp2 = xmm5; 1579 const XMMRegister msgtmp3 = xmm6; 1580 const XMMRegister msgtmp4 = xmm7; 1581 1582 const XMMRegister shuf_mask = xmm8; 1583 1584 __ enter(); 1585 1586 __ sha512_AVX2(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4, 1587 buf, state, ofs, limit, rsp, multi_block, shuf_mask); 1588 1589 __ vzeroupper(); 1590 __ leave(); 1591 __ ret(0); 1592 1593 return start; 1594 } 1595 1596 address StubGenerator::base64_shuffle_addr() { 1597 __ align64(); 1598 StubCodeMark mark(this, "StubRoutines", "shuffle_base64"); 1599 address start = __ pc(); 1600 1601 assert(((unsigned long long)start & 0x3f) == 0, 1602 "Alignment problem (0x%08llx)", (unsigned long long)start); 1603 __ emit_data64(0x0405030401020001, relocInfo::none); 1604 __ emit_data64(0x0a0b090a07080607, relocInfo::none); 1605 __ emit_data64(0x10110f100d0e0c0d, relocInfo::none); 1606 __ emit_data64(0x1617151613141213, relocInfo::none); 1607 __ emit_data64(0x1c1d1b1c191a1819, relocInfo::none); 1608 __ emit_data64(0x222321221f201e1f, relocInfo::none); 1609 __ emit_data64(0x2829272825262425, relocInfo::none); 1610 __ emit_data64(0x2e2f2d2e2b2c2a2b, relocInfo::none); 1611 1612 return start; 1613 } 1614 1615 address StubGenerator::base64_avx2_shuffle_addr() { 1616 __ align32(); 1617 StubCodeMark mark(this, "StubRoutines", "avx2_shuffle_base64"); 1618 address start = __ pc(); 1619 1620 __ emit_data64(0x0809070805060405, relocInfo::none); 1621 __ emit_data64(0x0e0f0d0e0b0c0a0b, relocInfo::none); 1622 __ emit_data64(0x0405030401020001, relocInfo::none); 1623 __ emit_data64(0x0a0b090a07080607, relocInfo::none); 1624 1625 return start; 1626 } 1627 1628 address StubGenerator::base64_avx2_input_mask_addr() { 1629 __ align32(); 1630 StubCodeMark mark(this, "StubRoutines", "avx2_input_mask_base64"); 1631 address start = __ pc(); 1632 1633 __ emit_data64(0x8000000000000000, relocInfo::none); 1634 __ emit_data64(0x8000000080000000, relocInfo::none); 1635 __ emit_data64(0x8000000080000000, relocInfo::none); 1636 __ emit_data64(0x8000000080000000, relocInfo::none); 1637 1638 return start; 1639 } 1640 1641 address StubGenerator::base64_avx2_lut_addr() { 1642 __ align32(); 1643 StubCodeMark mark(this, "StubRoutines", "avx2_lut_base64"); 1644 address start = __ pc(); 1645 1646 __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none); 1647 __ emit_data64(0x0000f0edfcfcfcfc, relocInfo::none); 1648 __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none); 1649 __ emit_data64(0x0000f0edfcfcfcfc, relocInfo::none); 1650 1651 // URL LUT 1652 __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none); 1653 __ emit_data64(0x000020effcfcfcfc, relocInfo::none); 1654 __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none); 1655 __ emit_data64(0x000020effcfcfcfc, relocInfo::none); 1656 1657 return start; 1658 } 1659 1660 address StubGenerator::base64_encoding_table_addr() { 1661 __ align64(); 1662 StubCodeMark mark(this, "StubRoutines", "encoding_table_base64"); 1663 address start = __ pc(); 1664 1665 assert(((unsigned long long)start & 0x3f) == 0, "Alignment problem (0x%08llx)", (unsigned long long)start); 1666 __ emit_data64(0x4847464544434241, relocInfo::none); 1667 __ emit_data64(0x504f4e4d4c4b4a49, relocInfo::none); 1668 __ emit_data64(0x5857565554535251, relocInfo::none); 1669 __ emit_data64(0x6665646362615a59, relocInfo::none); 1670 __ emit_data64(0x6e6d6c6b6a696867, relocInfo::none); 1671 __ emit_data64(0x767574737271706f, relocInfo::none); 1672 __ emit_data64(0x333231307a797877, relocInfo::none); 1673 __ emit_data64(0x2f2b393837363534, relocInfo::none); 1674 1675 // URL table 1676 __ emit_data64(0x4847464544434241, relocInfo::none); 1677 __ emit_data64(0x504f4e4d4c4b4a49, relocInfo::none); 1678 __ emit_data64(0x5857565554535251, relocInfo::none); 1679 __ emit_data64(0x6665646362615a59, relocInfo::none); 1680 __ emit_data64(0x6e6d6c6b6a696867, relocInfo::none); 1681 __ emit_data64(0x767574737271706f, relocInfo::none); 1682 __ emit_data64(0x333231307a797877, relocInfo::none); 1683 __ emit_data64(0x5f2d393837363534, relocInfo::none); 1684 1685 return start; 1686 } 1687 1688 // Code for generating Base64 encoding. 1689 // Intrinsic function prototype in Base64.java: 1690 // private void encodeBlock(byte[] src, int sp, int sl, byte[] dst, int dp, 1691 // boolean isURL) { 1692 address StubGenerator::generate_base64_encodeBlock() 1693 { 1694 __ align(CodeEntryAlignment); 1695 StubCodeMark mark(this, "StubRoutines", "implEncode"); 1696 address start = __ pc(); 1697 1698 __ enter(); 1699 1700 // Save callee-saved registers before using them 1701 __ push(r12); 1702 __ push(r13); 1703 __ push(r14); 1704 __ push(r15); 1705 1706 // arguments 1707 const Register source = c_rarg0; // Source Array 1708 const Register start_offset = c_rarg1; // start offset 1709 const Register end_offset = c_rarg2; // end offset 1710 const Register dest = c_rarg3; // destination array 1711 1712 #ifndef _WIN64 1713 const Register dp = c_rarg4; // Position for writing to dest array 1714 const Register isURL = c_rarg5; // Base64 or URL character set 1715 #else 1716 const Address dp_mem(rbp, 6 * wordSize); // length is on stack on Win64 1717 const Address isURL_mem(rbp, 7 * wordSize); 1718 const Register isURL = r10; // pick the volatile windows register 1719 const Register dp = r12; 1720 __ movl(dp, dp_mem); 1721 __ movl(isURL, isURL_mem); 1722 #endif 1723 1724 const Register length = r14; 1725 const Register encode_table = r13; 1726 Label L_process3, L_exit, L_processdata, L_vbmiLoop, L_not512, L_32byteLoop; 1727 1728 // calculate length from offsets 1729 __ movl(length, end_offset); 1730 __ subl(length, start_offset); 1731 __ jcc(Assembler::lessEqual, L_exit); 1732 1733 // Code for 512-bit VBMI encoding. Encodes 48 input bytes into 64 1734 // output bytes. We read 64 input bytes and ignore the last 16, so be 1735 // sure not to read past the end of the input buffer. 1736 if (VM_Version::supports_avx512_vbmi()) { 1737 __ cmpl(length, 64); // Do not overrun input buffer. 1738 __ jcc(Assembler::below, L_not512); 1739 1740 __ shll(isURL, 6); // index into decode table based on isURL 1741 __ lea(encode_table, ExternalAddress(StubRoutines::x86::base64_encoding_table_addr())); 1742 __ addptr(encode_table, isURL); 1743 __ shrl(isURL, 6); // restore isURL 1744 1745 __ mov64(rax, 0x3036242a1016040aull); // Shifts 1746 __ evmovdquq(xmm3, ExternalAddress(StubRoutines::x86::base64_shuffle_addr()), Assembler::AVX_512bit, r15); 1747 __ evmovdquq(xmm2, Address(encode_table, 0), Assembler::AVX_512bit); 1748 __ evpbroadcastq(xmm1, rax, Assembler::AVX_512bit); 1749 1750 __ align32(); 1751 __ BIND(L_vbmiLoop); 1752 1753 __ vpermb(xmm0, xmm3, Address(source, start_offset), Assembler::AVX_512bit); 1754 __ subl(length, 48); 1755 1756 // Put the input bytes into the proper lanes for writing, then 1757 // encode them. 1758 __ evpmultishiftqb(xmm0, xmm1, xmm0, Assembler::AVX_512bit); 1759 __ vpermb(xmm0, xmm0, xmm2, Assembler::AVX_512bit); 1760 1761 // Write to destination 1762 __ evmovdquq(Address(dest, dp), xmm0, Assembler::AVX_512bit); 1763 1764 __ addptr(dest, 64); 1765 __ addptr(source, 48); 1766 __ cmpl(length, 64); 1767 __ jcc(Assembler::aboveEqual, L_vbmiLoop); 1768 1769 __ vzeroupper(); 1770 } 1771 1772 __ BIND(L_not512); 1773 if (VM_Version::supports_avx2()) { 1774 /* 1775 ** This AVX2 encoder is based off the paper at: 1776 ** https://dl.acm.org/doi/10.1145/3132709 1777 ** 1778 ** We use AVX2 SIMD instructions to encode 24 bytes into 32 1779 ** output bytes. 1780 ** 1781 */ 1782 // Lengths under 32 bytes are done with scalar routine 1783 __ cmpl(length, 31); 1784 __ jcc(Assembler::belowEqual, L_process3); 1785 1786 // Set up supporting constant table data 1787 __ vmovdqu(xmm9, ExternalAddress(StubRoutines::x86::base64_avx2_shuffle_addr()), rax); 1788 // 6-bit mask for 2nd and 4th (and multiples) 6-bit values 1789 __ movl(rax, 0x0fc0fc00); 1790 __ movdl(xmm8, rax); 1791 __ vmovdqu(xmm1, ExternalAddress(StubRoutines::x86::base64_avx2_input_mask_addr()), rax); 1792 __ vpbroadcastd(xmm8, xmm8, Assembler::AVX_256bit); 1793 1794 // Multiplication constant for "shifting" right by 6 and 10 1795 // bits 1796 __ movl(rax, 0x04000040); 1797 1798 __ subl(length, 24); 1799 __ movdl(xmm7, rax); 1800 __ vpbroadcastd(xmm7, xmm7, Assembler::AVX_256bit); 1801 1802 // For the first load, we mask off reading of the first 4 1803 // bytes into the register. This is so we can get 4 3-byte 1804 // chunks into each lane of the register, avoiding having to 1805 // handle end conditions. We then shuffle these bytes into a 1806 // specific order so that manipulation is easier. 1807 // 1808 // The initial read loads the XMM register like this: 1809 // 1810 // Lower 128-bit lane: 1811 // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+ 1812 // | XX | XX | XX | XX | A0 | A1 | A2 | B0 | B1 | B2 | C0 | C1 1813 // | C2 | D0 | D1 | D2 | 1814 // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+ 1815 // 1816 // Upper 128-bit lane: 1817 // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+ 1818 // | E0 | E1 | E2 | F0 | F1 | F2 | G0 | G1 | G2 | H0 | H1 | H2 1819 // | XX | XX | XX | XX | 1820 // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+ 1821 // 1822 // Where A0 is the first input byte, B0 is the fourth, etc. 1823 // The alphabetical significance denotes the 3 bytes to be 1824 // consumed and encoded into 4 bytes. 1825 // 1826 // We then shuffle the register so each 32-bit word contains 1827 // the sequence: 1828 // A1 A0 A2 A1, B1, B0, B2, B1, etc. 1829 // Each of these byte sequences are then manipulated into 4 1830 // 6-bit values ready for encoding. 1831 // 1832 // If we focus on one set of 3-byte chunks, changing the 1833 // nomenclature such that A0 => a, A1 => b, and A2 => c, we 1834 // shuffle such that each 24-bit chunk contains: 1835 // 1836 // b7 b6 b5 b4 b3 b2 b1 b0 | a7 a6 a5 a4 a3 a2 a1 a0 | c7 c6 1837 // c5 c4 c3 c2 c1 c0 | b7 b6 b5 b4 b3 b2 b1 b0 1838 // Explain this step. 1839 // b3 b2 b1 b0 c5 c4 c3 c2 | c1 c0 d5 d4 d3 d2 d1 d0 | a5 a4 1840 // a3 a2 a1 a0 b5 b4 | b3 b2 b1 b0 c5 c4 c3 c2 1841 // 1842 // W first and off all but bits 4-9 and 16-21 (c5..c0 and 1843 // a5..a0) and shift them using a vector multiplication 1844 // operation (vpmulhuw) which effectively shifts c right by 6 1845 // bits and a right by 10 bits. We similarly mask bits 10-15 1846 // (d5..d0) and 22-27 (b5..b0) and shift them left by 8 and 4 1847 // bits respectively. This is done using vpmullw. We end up 1848 // with 4 6-bit values, thus splitting the 3 input bytes, 1849 // ready for encoding: 1850 // 0 0 d5..d0 0 0 c5..c0 0 0 b5..b0 0 0 a5..a0 1851 // 1852 // For translation, we recognize that there are 5 distinct 1853 // ranges of legal Base64 characters as below: 1854 // 1855 // +-------------+-------------+------------+ 1856 // | 6-bit value | ASCII range | offset | 1857 // +-------------+-------------+------------+ 1858 // | 0..25 | A..Z | 65 | 1859 // | 26..51 | a..z | 71 | 1860 // | 52..61 | 0..9 | -4 | 1861 // | 62 | + or - | -19 or -17 | 1862 // | 63 | / or _ | -16 or 32 | 1863 // +-------------+-------------+------------+ 1864 // 1865 // We note that vpshufb does a parallel lookup in a 1866 // destination register using the lower 4 bits of bytes from a 1867 // source register. If we use a saturated subtraction and 1868 // subtract 51 from each 6-bit value, bytes from [0,51] 1869 // saturate to 0, and [52,63] map to a range of [1,12]. We 1870 // distinguish the [0,25] and [26,51] ranges by assigning a 1871 // value of 13 for all 6-bit values less than 26. We end up 1872 // with: 1873 // 1874 // +-------------+-------------+------------+ 1875 // | 6-bit value | Reduced | offset | 1876 // +-------------+-------------+------------+ 1877 // | 0..25 | 13 | 65 | 1878 // | 26..51 | 0 | 71 | 1879 // | 52..61 | 0..9 | -4 | 1880 // | 62 | 11 | -19 or -17 | 1881 // | 63 | 12 | -16 or 32 | 1882 // +-------------+-------------+------------+ 1883 // 1884 // We then use a final vpshufb to add the appropriate offset, 1885 // translating the bytes. 1886 // 1887 // Load input bytes - only 28 bytes. Mask the first load to 1888 // not load into the full register. 1889 __ vpmaskmovd(xmm1, xmm1, Address(source, start_offset, Address::times_1, -4), Assembler::AVX_256bit); 1890 1891 // Move 3-byte chunks of input (12 bytes) into 16 bytes, 1892 // ordering by: 1893 // 1, 0, 2, 1; 4, 3, 5, 4; etc. This groups 6-bit chunks 1894 // for easy masking 1895 __ vpshufb(xmm1, xmm1, xmm9, Assembler::AVX_256bit); 1896 1897 __ addl(start_offset, 24); 1898 1899 // Load masking register for first and third (and multiples) 1900 // 6-bit values. 1901 __ movl(rax, 0x003f03f0); 1902 __ movdl(xmm6, rax); 1903 __ vpbroadcastd(xmm6, xmm6, Assembler::AVX_256bit); 1904 // Multiplication constant for "shifting" left by 4 and 8 bits 1905 __ movl(rax, 0x01000010); 1906 __ movdl(xmm5, rax); 1907 __ vpbroadcastd(xmm5, xmm5, Assembler::AVX_256bit); 1908 1909 // Isolate 6-bit chunks of interest 1910 __ vpand(xmm0, xmm8, xmm1, Assembler::AVX_256bit); 1911 1912 // Load constants for encoding 1913 __ movl(rax, 0x19191919); 1914 __ movdl(xmm3, rax); 1915 __ vpbroadcastd(xmm3, xmm3, Assembler::AVX_256bit); 1916 __ movl(rax, 0x33333333); 1917 __ movdl(xmm4, rax); 1918 __ vpbroadcastd(xmm4, xmm4, Assembler::AVX_256bit); 1919 1920 // Shift output bytes 0 and 2 into proper lanes 1921 __ vpmulhuw(xmm2, xmm0, xmm7, Assembler::AVX_256bit); 1922 1923 // Mask and shift output bytes 1 and 3 into proper lanes and 1924 // combine 1925 __ vpand(xmm0, xmm6, xmm1, Assembler::AVX_256bit); 1926 __ vpmullw(xmm0, xmm5, xmm0, Assembler::AVX_256bit); 1927 __ vpor(xmm0, xmm0, xmm2, Assembler::AVX_256bit); 1928 1929 // Find out which are 0..25. This indicates which input 1930 // values fall in the range of 'A'-'Z', which require an 1931 // additional offset (see comments above) 1932 __ vpcmpgtb(xmm2, xmm0, xmm3, Assembler::AVX_256bit); 1933 __ vpsubusb(xmm1, xmm0, xmm4, Assembler::AVX_256bit); 1934 __ vpsubb(xmm1, xmm1, xmm2, Assembler::AVX_256bit); 1935 1936 // Load the proper lookup table 1937 __ lea(r11, ExternalAddress(StubRoutines::x86::base64_avx2_lut_addr())); 1938 __ movl(r15, isURL); 1939 __ shll(r15, 5); 1940 __ vmovdqu(xmm2, Address(r11, r15)); 1941 1942 // Shuffle the offsets based on the range calculation done 1943 // above. This allows us to add the correct offset to the 1944 // 6-bit value corresponding to the range documented above. 1945 __ vpshufb(xmm1, xmm2, xmm1, Assembler::AVX_256bit); 1946 __ vpaddb(xmm0, xmm1, xmm0, Assembler::AVX_256bit); 1947 1948 // Store the encoded bytes 1949 __ vmovdqu(Address(dest, dp), xmm0); 1950 __ addl(dp, 32); 1951 1952 __ cmpl(length, 31); 1953 __ jcc(Assembler::belowEqual, L_process3); 1954 1955 __ align32(); 1956 __ BIND(L_32byteLoop); 1957 1958 // Get next 32 bytes 1959 __ vmovdqu(xmm1, Address(source, start_offset, Address::times_1, -4)); 1960 1961 __ subl(length, 24); 1962 __ addl(start_offset, 24); 1963 1964 // This logic is identical to the above, with only constant 1965 // register loads removed. Shuffle the input, mask off 6-bit 1966 // chunks, shift them into place, then add the offset to 1967 // encode. 1968 __ vpshufb(xmm1, xmm1, xmm9, Assembler::AVX_256bit); 1969 1970 __ vpand(xmm0, xmm8, xmm1, Assembler::AVX_256bit); 1971 __ vpmulhuw(xmm10, xmm0, xmm7, Assembler::AVX_256bit); 1972 __ vpand(xmm0, xmm6, xmm1, Assembler::AVX_256bit); 1973 __ vpmullw(xmm0, xmm5, xmm0, Assembler::AVX_256bit); 1974 __ vpor(xmm0, xmm0, xmm10, Assembler::AVX_256bit); 1975 __ vpcmpgtb(xmm10, xmm0, xmm3, Assembler::AVX_256bit); 1976 __ vpsubusb(xmm1, xmm0, xmm4, Assembler::AVX_256bit); 1977 __ vpsubb(xmm1, xmm1, xmm10, Assembler::AVX_256bit); 1978 __ vpshufb(xmm1, xmm2, xmm1, Assembler::AVX_256bit); 1979 __ vpaddb(xmm0, xmm1, xmm0, Assembler::AVX_256bit); 1980 1981 // Store the encoded bytes 1982 __ vmovdqu(Address(dest, dp), xmm0); 1983 __ addl(dp, 32); 1984 1985 __ cmpl(length, 31); 1986 __ jcc(Assembler::above, L_32byteLoop); 1987 1988 __ BIND(L_process3); 1989 __ vzeroupper(); 1990 } else { 1991 __ BIND(L_process3); 1992 } 1993 1994 __ cmpl(length, 3); 1995 __ jcc(Assembler::below, L_exit); 1996 1997 // Load the encoding table based on isURL 1998 __ lea(r11, ExternalAddress(StubRoutines::x86::base64_encoding_table_addr())); 1999 __ movl(r15, isURL); 2000 __ shll(r15, 6); 2001 __ addptr(r11, r15); 2002 2003 __ BIND(L_processdata); 2004 2005 // Load 3 bytes 2006 __ load_unsigned_byte(r15, Address(source, start_offset)); 2007 __ load_unsigned_byte(r10, Address(source, start_offset, Address::times_1, 1)); 2008 __ load_unsigned_byte(r13, Address(source, start_offset, Address::times_1, 2)); 2009 2010 // Build a 32-bit word with bytes 1, 2, 0, 1 2011 __ movl(rax, r10); 2012 __ shll(r10, 24); 2013 __ orl(rax, r10); 2014 2015 __ subl(length, 3); 2016 2017 __ shll(r15, 8); 2018 __ shll(r13, 16); 2019 __ orl(rax, r15); 2020 2021 __ addl(start_offset, 3); 2022 2023 __ orl(rax, r13); 2024 // At this point, rax contains | byte1 | byte2 | byte0 | byte1 2025 // r13 has byte2 << 16 - need low-order 6 bits to translate. 2026 // This translated byte is the fourth output byte. 2027 __ shrl(r13, 16); 2028 __ andl(r13, 0x3f); 2029 2030 // The high-order 6 bits of r15 (byte0) is translated. 2031 // The translated byte is the first output byte. 2032 __ shrl(r15, 10); 2033 2034 __ load_unsigned_byte(r13, Address(r11, r13)); 2035 __ load_unsigned_byte(r15, Address(r11, r15)); 2036 2037 __ movb(Address(dest, dp, Address::times_1, 3), r13); 2038 2039 // Extract high-order 4 bits of byte1 and low-order 2 bits of byte0. 2040 // This translated byte is the second output byte. 2041 __ shrl(rax, 4); 2042 __ movl(r10, rax); 2043 __ andl(rax, 0x3f); 2044 2045 __ movb(Address(dest, dp, Address::times_1, 0), r15); 2046 2047 __ load_unsigned_byte(rax, Address(r11, rax)); 2048 2049 // Extract low-order 2 bits of byte1 and high-order 4 bits of byte2. 2050 // This translated byte is the third output byte. 2051 __ shrl(r10, 18); 2052 __ andl(r10, 0x3f); 2053 2054 __ load_unsigned_byte(r10, Address(r11, r10)); 2055 2056 __ movb(Address(dest, dp, Address::times_1, 1), rax); 2057 __ movb(Address(dest, dp, Address::times_1, 2), r10); 2058 2059 __ addl(dp, 4); 2060 __ cmpl(length, 3); 2061 __ jcc(Assembler::aboveEqual, L_processdata); 2062 2063 __ BIND(L_exit); 2064 __ pop(r15); 2065 __ pop(r14); 2066 __ pop(r13); 2067 __ pop(r12); 2068 __ leave(); 2069 __ ret(0); 2070 2071 return start; 2072 } 2073 2074 // base64 AVX512vbmi tables 2075 address StubGenerator::base64_vbmi_lookup_lo_addr() { 2076 __ align64(); 2077 StubCodeMark mark(this, "StubRoutines", "lookup_lo_base64"); 2078 address start = __ pc(); 2079 2080 assert(((unsigned long long)start & 0x3f) == 0, 2081 "Alignment problem (0x%08llx)", (unsigned long long)start); 2082 __ emit_data64(0x8080808080808080, relocInfo::none); 2083 __ emit_data64(0x8080808080808080, relocInfo::none); 2084 __ emit_data64(0x8080808080808080, relocInfo::none); 2085 __ emit_data64(0x8080808080808080, relocInfo::none); 2086 __ emit_data64(0x8080808080808080, relocInfo::none); 2087 __ emit_data64(0x3f8080803e808080, relocInfo::none); 2088 __ emit_data64(0x3b3a393837363534, relocInfo::none); 2089 __ emit_data64(0x8080808080803d3c, relocInfo::none); 2090 2091 return start; 2092 } 2093 2094 address StubGenerator::base64_vbmi_lookup_hi_addr() { 2095 __ align64(); 2096 StubCodeMark mark(this, "StubRoutines", "lookup_hi_base64"); 2097 address start = __ pc(); 2098 2099 assert(((unsigned long long)start & 0x3f) == 0, 2100 "Alignment problem (0x%08llx)", (unsigned long long)start); 2101 __ emit_data64(0x0605040302010080, relocInfo::none); 2102 __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none); 2103 __ emit_data64(0x161514131211100f, relocInfo::none); 2104 __ emit_data64(0x8080808080191817, relocInfo::none); 2105 __ emit_data64(0x201f1e1d1c1b1a80, relocInfo::none); 2106 __ emit_data64(0x2827262524232221, relocInfo::none); 2107 __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none); 2108 __ emit_data64(0x8080808080333231, relocInfo::none); 2109 2110 return start; 2111 } 2112 address StubGenerator::base64_vbmi_lookup_lo_url_addr() { 2113 __ align64(); 2114 StubCodeMark mark(this, "StubRoutines", "lookup_lo_base64url"); 2115 address start = __ pc(); 2116 2117 assert(((unsigned long long)start & 0x3f) == 0, 2118 "Alignment problem (0x%08llx)", (unsigned long long)start); 2119 __ emit_data64(0x8080808080808080, relocInfo::none); 2120 __ emit_data64(0x8080808080808080, relocInfo::none); 2121 __ emit_data64(0x8080808080808080, relocInfo::none); 2122 __ emit_data64(0x8080808080808080, relocInfo::none); 2123 __ emit_data64(0x8080808080808080, relocInfo::none); 2124 __ emit_data64(0x80803e8080808080, relocInfo::none); 2125 __ emit_data64(0x3b3a393837363534, relocInfo::none); 2126 __ emit_data64(0x8080808080803d3c, relocInfo::none); 2127 2128 return start; 2129 } 2130 2131 address StubGenerator::base64_vbmi_lookup_hi_url_addr() { 2132 __ align64(); 2133 StubCodeMark mark(this, "StubRoutines", "lookup_hi_base64url"); 2134 address start = __ pc(); 2135 2136 assert(((unsigned long long)start & 0x3f) == 0, 2137 "Alignment problem (0x%08llx)", (unsigned long long)start); 2138 __ emit_data64(0x0605040302010080, relocInfo::none); 2139 __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none); 2140 __ emit_data64(0x161514131211100f, relocInfo::none); 2141 __ emit_data64(0x3f80808080191817, relocInfo::none); 2142 __ emit_data64(0x201f1e1d1c1b1a80, relocInfo::none); 2143 __ emit_data64(0x2827262524232221, relocInfo::none); 2144 __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none); 2145 __ emit_data64(0x8080808080333231, relocInfo::none); 2146 2147 return start; 2148 } 2149 2150 address StubGenerator::base64_vbmi_pack_vec_addr() { 2151 __ align64(); 2152 StubCodeMark mark(this, "StubRoutines", "pack_vec_base64"); 2153 address start = __ pc(); 2154 2155 assert(((unsigned long long)start & 0x3f) == 0, 2156 "Alignment problem (0x%08llx)", (unsigned long long)start); 2157 __ emit_data64(0x090a040506000102, relocInfo::none); 2158 __ emit_data64(0x161011120c0d0e08, relocInfo::none); 2159 __ emit_data64(0x1c1d1e18191a1415, relocInfo::none); 2160 __ emit_data64(0x292a242526202122, relocInfo::none); 2161 __ emit_data64(0x363031322c2d2e28, relocInfo::none); 2162 __ emit_data64(0x3c3d3e38393a3435, relocInfo::none); 2163 __ emit_data64(0x0000000000000000, relocInfo::none); 2164 __ emit_data64(0x0000000000000000, relocInfo::none); 2165 2166 return start; 2167 } 2168 2169 address StubGenerator::base64_vbmi_join_0_1_addr() { 2170 __ align64(); 2171 StubCodeMark mark(this, "StubRoutines", "join_0_1_base64"); 2172 address start = __ pc(); 2173 2174 assert(((unsigned long long)start & 0x3f) == 0, 2175 "Alignment problem (0x%08llx)", (unsigned long long)start); 2176 __ emit_data64(0x090a040506000102, relocInfo::none); 2177 __ emit_data64(0x161011120c0d0e08, relocInfo::none); 2178 __ emit_data64(0x1c1d1e18191a1415, relocInfo::none); 2179 __ emit_data64(0x292a242526202122, relocInfo::none); 2180 __ emit_data64(0x363031322c2d2e28, relocInfo::none); 2181 __ emit_data64(0x3c3d3e38393a3435, relocInfo::none); 2182 __ emit_data64(0x494a444546404142, relocInfo::none); 2183 __ emit_data64(0x565051524c4d4e48, relocInfo::none); 2184 2185 return start; 2186 } 2187 2188 address StubGenerator::base64_vbmi_join_1_2_addr() { 2189 __ align64(); 2190 StubCodeMark mark(this, "StubRoutines", "join_1_2_base64"); 2191 address start = __ pc(); 2192 2193 assert(((unsigned long long)start & 0x3f) == 0, 2194 "Alignment problem (0x%08llx)", (unsigned long long)start); 2195 __ emit_data64(0x1c1d1e18191a1415, relocInfo::none); 2196 __ emit_data64(0x292a242526202122, relocInfo::none); 2197 __ emit_data64(0x363031322c2d2e28, relocInfo::none); 2198 __ emit_data64(0x3c3d3e38393a3435, relocInfo::none); 2199 __ emit_data64(0x494a444546404142, relocInfo::none); 2200 __ emit_data64(0x565051524c4d4e48, relocInfo::none); 2201 __ emit_data64(0x5c5d5e58595a5455, relocInfo::none); 2202 __ emit_data64(0x696a646566606162, relocInfo::none); 2203 2204 return start; 2205 } 2206 2207 address StubGenerator::base64_vbmi_join_2_3_addr() { 2208 __ align64(); 2209 StubCodeMark mark(this, "StubRoutines", "join_2_3_base64"); 2210 address start = __ pc(); 2211 2212 assert(((unsigned long long)start & 0x3f) == 0, 2213 "Alignment problem (0x%08llx)", (unsigned long long)start); 2214 __ emit_data64(0x363031322c2d2e28, relocInfo::none); 2215 __ emit_data64(0x3c3d3e38393a3435, relocInfo::none); 2216 __ emit_data64(0x494a444546404142, relocInfo::none); 2217 __ emit_data64(0x565051524c4d4e48, relocInfo::none); 2218 __ emit_data64(0x5c5d5e58595a5455, relocInfo::none); 2219 __ emit_data64(0x696a646566606162, relocInfo::none); 2220 __ emit_data64(0x767071726c6d6e68, relocInfo::none); 2221 __ emit_data64(0x7c7d7e78797a7475, relocInfo::none); 2222 2223 return start; 2224 } 2225 2226 address StubGenerator::base64_AVX2_decode_tables_addr() { 2227 __ align64(); 2228 StubCodeMark mark(this, "StubRoutines", "AVX2_tables_base64"); 2229 address start = __ pc(); 2230 2231 assert(((unsigned long long)start & 0x3f) == 0, 2232 "Alignment problem (0x%08llx)", (unsigned long long)start); 2233 __ emit_data(0x2f2f2f2f, relocInfo::none, 0); 2234 __ emit_data(0x5f5f5f5f, relocInfo::none, 0); // for URL 2235 2236 __ emit_data(0xffffffff, relocInfo::none, 0); 2237 __ emit_data(0xfcfcfcfc, relocInfo::none, 0); // for URL 2238 2239 // Permute table 2240 __ emit_data64(0x0000000100000000, relocInfo::none); 2241 __ emit_data64(0x0000000400000002, relocInfo::none); 2242 __ emit_data64(0x0000000600000005, relocInfo::none); 2243 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2244 2245 // Shuffle table 2246 __ emit_data64(0x090a040506000102, relocInfo::none); 2247 __ emit_data64(0xffffffff0c0d0e08, relocInfo::none); 2248 __ emit_data64(0x090a040506000102, relocInfo::none); 2249 __ emit_data64(0xffffffff0c0d0e08, relocInfo::none); 2250 2251 // merge table 2252 __ emit_data(0x01400140, relocInfo::none, 0); 2253 2254 // merge multiplier 2255 __ emit_data(0x00011000, relocInfo::none, 0); 2256 2257 return start; 2258 } 2259 2260 address StubGenerator::base64_AVX2_decode_LUT_tables_addr() { 2261 __ align64(); 2262 StubCodeMark mark(this, "StubRoutines", "AVX2_tables_URL_base64"); 2263 address start = __ pc(); 2264 2265 assert(((unsigned long long)start & 0x3f) == 0, 2266 "Alignment problem (0x%08llx)", (unsigned long long)start); 2267 // lut_lo 2268 __ emit_data64(0x1111111111111115, relocInfo::none); 2269 __ emit_data64(0x1a1b1b1b1a131111, relocInfo::none); 2270 __ emit_data64(0x1111111111111115, relocInfo::none); 2271 __ emit_data64(0x1a1b1b1b1a131111, relocInfo::none); 2272 2273 // lut_roll 2274 __ emit_data64(0xb9b9bfbf04131000, relocInfo::none); 2275 __ emit_data64(0x0000000000000000, relocInfo::none); 2276 __ emit_data64(0xb9b9bfbf04131000, relocInfo::none); 2277 __ emit_data64(0x0000000000000000, relocInfo::none); 2278 2279 // lut_lo URL 2280 __ emit_data64(0x1111111111111115, relocInfo::none); 2281 __ emit_data64(0x1b1b1a1b1b131111, relocInfo::none); 2282 __ emit_data64(0x1111111111111115, relocInfo::none); 2283 __ emit_data64(0x1b1b1a1b1b131111, relocInfo::none); 2284 2285 // lut_roll URL 2286 __ emit_data64(0xb9b9bfbf0411e000, relocInfo::none); 2287 __ emit_data64(0x0000000000000000, relocInfo::none); 2288 __ emit_data64(0xb9b9bfbf0411e000, relocInfo::none); 2289 __ emit_data64(0x0000000000000000, relocInfo::none); 2290 2291 // lut_hi 2292 __ emit_data64(0x0804080402011010, relocInfo::none); 2293 __ emit_data64(0x1010101010101010, relocInfo::none); 2294 __ emit_data64(0x0804080402011010, relocInfo::none); 2295 __ emit_data64(0x1010101010101010, relocInfo::none); 2296 2297 return start; 2298 } 2299 2300 address StubGenerator::base64_decoding_table_addr() { 2301 StubCodeMark mark(this, "StubRoutines", "decoding_table_base64"); 2302 address start = __ pc(); 2303 2304 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2305 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2306 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2307 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2308 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2309 __ emit_data64(0x3fffffff3effffff, relocInfo::none); 2310 __ emit_data64(0x3b3a393837363534, relocInfo::none); 2311 __ emit_data64(0xffffffffffff3d3c, relocInfo::none); 2312 __ emit_data64(0x06050403020100ff, relocInfo::none); 2313 __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none); 2314 __ emit_data64(0x161514131211100f, relocInfo::none); 2315 __ emit_data64(0xffffffffff191817, relocInfo::none); 2316 __ emit_data64(0x201f1e1d1c1b1aff, relocInfo::none); 2317 __ emit_data64(0x2827262524232221, relocInfo::none); 2318 __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none); 2319 __ emit_data64(0xffffffffff333231, relocInfo::none); 2320 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2321 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2322 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2323 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2324 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2325 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2326 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2327 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2328 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2329 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2330 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2331 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2332 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2333 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2334 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2335 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2336 2337 // URL table 2338 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2339 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2340 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2341 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2342 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2343 __ emit_data64(0xffff3effffffffff, relocInfo::none); 2344 __ emit_data64(0x3b3a393837363534, relocInfo::none); 2345 __ emit_data64(0xffffffffffff3d3c, relocInfo::none); 2346 __ emit_data64(0x06050403020100ff, relocInfo::none); 2347 __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none); 2348 __ emit_data64(0x161514131211100f, relocInfo::none); 2349 __ emit_data64(0x3fffffffff191817, relocInfo::none); 2350 __ emit_data64(0x201f1e1d1c1b1aff, relocInfo::none); 2351 __ emit_data64(0x2827262524232221, relocInfo::none); 2352 __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none); 2353 __ emit_data64(0xffffffffff333231, relocInfo::none); 2354 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2355 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2356 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2357 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2358 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2359 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2360 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2361 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2362 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2363 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2364 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2365 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2366 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2367 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2368 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2369 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2370 2371 return start; 2372 } 2373 2374 2375 // Code for generating Base64 decoding. 2376 // 2377 // Based on the article (and associated code) from https://arxiv.org/abs/1910.05109. 2378 // 2379 // Intrinsic function prototype in Base64.java: 2380 // private void decodeBlock(byte[] src, int sp, int sl, byte[] dst, int dp, boolean isURL, isMIME) { 2381 address StubGenerator::generate_base64_decodeBlock() { 2382 __ align(CodeEntryAlignment); 2383 StubCodeMark mark(this, "StubRoutines", "implDecode"); 2384 address start = __ pc(); 2385 2386 __ enter(); 2387 2388 // Save callee-saved registers before using them 2389 __ push(r12); 2390 __ push(r13); 2391 __ push(r14); 2392 __ push(r15); 2393 __ push(rbx); 2394 2395 // arguments 2396 const Register source = c_rarg0; // Source Array 2397 const Register start_offset = c_rarg1; // start offset 2398 const Register end_offset = c_rarg2; // end offset 2399 const Register dest = c_rarg3; // destination array 2400 const Register isMIME = rbx; 2401 2402 #ifndef _WIN64 2403 const Register dp = c_rarg4; // Position for writing to dest array 2404 const Register isURL = c_rarg5;// Base64 or URL character set 2405 __ movl(isMIME, Address(rbp, 2 * wordSize)); 2406 #else 2407 const Address dp_mem(rbp, 6 * wordSize); // length is on stack on Win64 2408 const Address isURL_mem(rbp, 7 * wordSize); 2409 const Register isURL = r10; // pick the volatile windows register 2410 const Register dp = r12; 2411 __ movl(dp, dp_mem); 2412 __ movl(isURL, isURL_mem); 2413 __ movl(isMIME, Address(rbp, 8 * wordSize)); 2414 #endif 2415 2416 const XMMRegister lookup_lo = xmm5; 2417 const XMMRegister lookup_hi = xmm6; 2418 const XMMRegister errorvec = xmm7; 2419 const XMMRegister pack16_op = xmm9; 2420 const XMMRegister pack32_op = xmm8; 2421 const XMMRegister input0 = xmm3; 2422 const XMMRegister input1 = xmm20; 2423 const XMMRegister input2 = xmm21; 2424 const XMMRegister input3 = xmm19; 2425 const XMMRegister join01 = xmm12; 2426 const XMMRegister join12 = xmm11; 2427 const XMMRegister join23 = xmm10; 2428 const XMMRegister translated0 = xmm2; 2429 const XMMRegister translated1 = xmm1; 2430 const XMMRegister translated2 = xmm0; 2431 const XMMRegister translated3 = xmm4; 2432 2433 const XMMRegister merged0 = xmm2; 2434 const XMMRegister merged1 = xmm1; 2435 const XMMRegister merged2 = xmm0; 2436 const XMMRegister merged3 = xmm4; 2437 const XMMRegister merge_ab_bc0 = xmm2; 2438 const XMMRegister merge_ab_bc1 = xmm1; 2439 const XMMRegister merge_ab_bc2 = xmm0; 2440 const XMMRegister merge_ab_bc3 = xmm4; 2441 2442 const XMMRegister pack24bits = xmm4; 2443 2444 const Register length = r14; 2445 const Register output_size = r13; 2446 const Register output_mask = r15; 2447 const KRegister input_mask = k1; 2448 2449 const XMMRegister input_initial_valid_b64 = xmm0; 2450 const XMMRegister tmp = xmm10; 2451 const XMMRegister mask = xmm0; 2452 const XMMRegister invalid_b64 = xmm1; 2453 2454 Label L_process256, L_process64, L_process64Loop, L_exit, L_processdata, L_loadURL; 2455 Label L_continue, L_finalBit, L_padding, L_donePadding, L_bruteForce; 2456 Label L_forceLoop, L_bottomLoop, L_checkMIME, L_exit_no_vzero, L_lastChunk; 2457 2458 // calculate length from offsets 2459 __ movl(length, end_offset); 2460 __ subl(length, start_offset); 2461 __ push(dest); // Save for return value calc 2462 2463 // If AVX512 VBMI not supported, just compile non-AVX code 2464 if(VM_Version::supports_avx512_vbmi() && 2465 VM_Version::supports_avx512bw()) { 2466 __ cmpl(length, 31); // 32-bytes is break-even for AVX-512 2467 __ jcc(Assembler::lessEqual, L_lastChunk); 2468 2469 __ cmpl(isMIME, 0); 2470 __ jcc(Assembler::notEqual, L_lastChunk); 2471 2472 // Load lookup tables based on isURL 2473 __ cmpl(isURL, 0); 2474 __ jcc(Assembler::notZero, L_loadURL); 2475 2476 __ evmovdquq(lookup_lo, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_lo_addr()), Assembler::AVX_512bit, r13); 2477 __ evmovdquq(lookup_hi, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_hi_addr()), Assembler::AVX_512bit, r13); 2478 2479 __ BIND(L_continue); 2480 2481 __ movl(r15, 0x01400140); 2482 __ evpbroadcastd(pack16_op, r15, Assembler::AVX_512bit); 2483 2484 __ movl(r15, 0x00011000); 2485 __ evpbroadcastd(pack32_op, r15, Assembler::AVX_512bit); 2486 2487 __ cmpl(length, 0xff); 2488 __ jcc(Assembler::lessEqual, L_process64); 2489 2490 // load masks required for decoding data 2491 __ BIND(L_processdata); 2492 __ evmovdquq(join01, ExternalAddress(StubRoutines::x86::base64_vbmi_join_0_1_addr()), Assembler::AVX_512bit,r13); 2493 __ evmovdquq(join12, ExternalAddress(StubRoutines::x86::base64_vbmi_join_1_2_addr()), Assembler::AVX_512bit, r13); 2494 __ evmovdquq(join23, ExternalAddress(StubRoutines::x86::base64_vbmi_join_2_3_addr()), Assembler::AVX_512bit, r13); 2495 2496 __ align32(); 2497 __ BIND(L_process256); 2498 // Grab input data 2499 __ evmovdquq(input0, Address(source, start_offset, Address::times_1, 0x00), Assembler::AVX_512bit); 2500 __ evmovdquq(input1, Address(source, start_offset, Address::times_1, 0x40), Assembler::AVX_512bit); 2501 __ evmovdquq(input2, Address(source, start_offset, Address::times_1, 0x80), Assembler::AVX_512bit); 2502 __ evmovdquq(input3, Address(source, start_offset, Address::times_1, 0xc0), Assembler::AVX_512bit); 2503 2504 // Copy the low part of the lookup table into the destination of the permutation 2505 __ evmovdquq(translated0, lookup_lo, Assembler::AVX_512bit); 2506 __ evmovdquq(translated1, lookup_lo, Assembler::AVX_512bit); 2507 __ evmovdquq(translated2, lookup_lo, Assembler::AVX_512bit); 2508 __ evmovdquq(translated3, lookup_lo, Assembler::AVX_512bit); 2509 2510 // Translate the base64 input into "decoded" bytes 2511 __ evpermt2b(translated0, input0, lookup_hi, Assembler::AVX_512bit); 2512 __ evpermt2b(translated1, input1, lookup_hi, Assembler::AVX_512bit); 2513 __ evpermt2b(translated2, input2, lookup_hi, Assembler::AVX_512bit); 2514 __ evpermt2b(translated3, input3, lookup_hi, Assembler::AVX_512bit); 2515 2516 // OR all of the translations together to check for errors (high-order bit of byte set) 2517 __ vpternlogd(input0, 0xfe, input1, input2, Assembler::AVX_512bit); 2518 2519 __ vpternlogd(input3, 0xfe, translated0, translated1, Assembler::AVX_512bit); 2520 __ vpternlogd(input0, 0xfe, translated2, translated3, Assembler::AVX_512bit); 2521 __ vpor(errorvec, input3, input0, Assembler::AVX_512bit); 2522 2523 // Check if there was an error - if so, try 64-byte chunks 2524 __ evpmovb2m(k3, errorvec, Assembler::AVX_512bit); 2525 __ kortestql(k3, k3); 2526 __ jcc(Assembler::notZero, L_process64); 2527 2528 // The merging and shuffling happens here 2529 // We multiply each byte pair [00dddddd | 00cccccc | 00bbbbbb | 00aaaaaa] 2530 // Multiply [00cccccc] by 2^6 added to [00dddddd] to get [0000cccc | ccdddddd] 2531 // The pack16_op is a vector of 0x01400140, so multiply D by 1 and C by 0x40 2532 __ vpmaddubsw(merge_ab_bc0, translated0, pack16_op, Assembler::AVX_512bit); 2533 __ vpmaddubsw(merge_ab_bc1, translated1, pack16_op, Assembler::AVX_512bit); 2534 __ vpmaddubsw(merge_ab_bc2, translated2, pack16_op, Assembler::AVX_512bit); 2535 __ vpmaddubsw(merge_ab_bc3, translated3, pack16_op, Assembler::AVX_512bit); 2536 2537 // Now do the same with packed 16-bit values. 2538 // We start with [0000cccc | ccdddddd | 0000aaaa | aabbbbbb] 2539 // pack32_op is 0x00011000 (2^12, 1), so this multiplies [0000aaaa | aabbbbbb] by 2^12 2540 // and adds [0000cccc | ccdddddd] to yield [00000000 | aaaaaabb | bbbbcccc | ccdddddd] 2541 __ vpmaddwd(merged0, merge_ab_bc0, pack32_op, Assembler::AVX_512bit); 2542 __ vpmaddwd(merged1, merge_ab_bc1, pack32_op, Assembler::AVX_512bit); 2543 __ vpmaddwd(merged2, merge_ab_bc2, pack32_op, Assembler::AVX_512bit); 2544 __ vpmaddwd(merged3, merge_ab_bc3, pack32_op, Assembler::AVX_512bit); 2545 2546 // The join vectors specify which byte from which vector goes into the outputs 2547 // One of every 4 bytes in the extended vector is zero, so we pack them into their 2548 // final positions in the register for storing (256 bytes in, 192 bytes out) 2549 __ evpermt2b(merged0, join01, merged1, Assembler::AVX_512bit); 2550 __ evpermt2b(merged1, join12, merged2, Assembler::AVX_512bit); 2551 __ evpermt2b(merged2, join23, merged3, Assembler::AVX_512bit); 2552 2553 // Store result 2554 __ evmovdquq(Address(dest, dp, Address::times_1, 0x00), merged0, Assembler::AVX_512bit); 2555 __ evmovdquq(Address(dest, dp, Address::times_1, 0x40), merged1, Assembler::AVX_512bit); 2556 __ evmovdquq(Address(dest, dp, Address::times_1, 0x80), merged2, Assembler::AVX_512bit); 2557 2558 __ addptr(source, 0x100); 2559 __ addptr(dest, 0xc0); 2560 __ subl(length, 0x100); 2561 __ cmpl(length, 64 * 4); 2562 __ jcc(Assembler::greaterEqual, L_process256); 2563 2564 // At this point, we've decoded 64 * 4 * n bytes. 2565 // The remaining length will be <= 64 * 4 - 1. 2566 // UNLESS there was an error decoding the first 256-byte chunk. In this 2567 // case, the length will be arbitrarily long. 2568 // 2569 // Note that this will be the path for MIME-encoded strings. 2570 2571 __ BIND(L_process64); 2572 2573 __ evmovdquq(pack24bits, ExternalAddress(StubRoutines::x86::base64_vbmi_pack_vec_addr()), Assembler::AVX_512bit, r13); 2574 2575 __ cmpl(length, 63); 2576 __ jcc(Assembler::lessEqual, L_finalBit); 2577 2578 __ mov64(rax, 0x0000ffffffffffff); 2579 __ kmovql(k2, rax); 2580 2581 __ align32(); 2582 __ BIND(L_process64Loop); 2583 2584 // Handle first 64-byte block 2585 2586 __ evmovdquq(input0, Address(source, start_offset), Assembler::AVX_512bit); 2587 __ evmovdquq(translated0, lookup_lo, Assembler::AVX_512bit); 2588 __ evpermt2b(translated0, input0, lookup_hi, Assembler::AVX_512bit); 2589 2590 __ vpor(errorvec, translated0, input0, Assembler::AVX_512bit); 2591 2592 // Check for error and bomb out before updating dest 2593 __ evpmovb2m(k3, errorvec, Assembler::AVX_512bit); 2594 __ kortestql(k3, k3); 2595 __ jcc(Assembler::notZero, L_exit); 2596 2597 // Pack output register, selecting correct byte ordering 2598 __ vpmaddubsw(merge_ab_bc0, translated0, pack16_op, Assembler::AVX_512bit); 2599 __ vpmaddwd(merged0, merge_ab_bc0, pack32_op, Assembler::AVX_512bit); 2600 __ vpermb(merged0, pack24bits, merged0, Assembler::AVX_512bit); 2601 2602 __ evmovdqub(Address(dest, dp), k2, merged0, true, Assembler::AVX_512bit); 2603 2604 __ subl(length, 64); 2605 __ addptr(source, 64); 2606 __ addptr(dest, 48); 2607 2608 __ cmpl(length, 64); 2609 __ jcc(Assembler::greaterEqual, L_process64Loop); 2610 2611 __ cmpl(length, 0); 2612 __ jcc(Assembler::lessEqual, L_exit); 2613 2614 __ BIND(L_finalBit); 2615 // Now have 1 to 63 bytes left to decode 2616 2617 // I was going to let Java take care of the final fragment 2618 // however it will repeatedly call this routine for every 4 bytes 2619 // of input data, so handle the rest here. 2620 __ movq(rax, -1); 2621 __ bzhiq(rax, rax, length); // Input mask in rax 2622 2623 __ movl(output_size, length); 2624 __ shrl(output_size, 2); // Find (len / 4) * 3 (output length) 2625 __ lea(output_size, Address(output_size, output_size, Address::times_2, 0)); 2626 // output_size in r13 2627 2628 // Strip pad characters, if any, and adjust length and mask 2629 __ addq(length, start_offset); 2630 __ cmpb(Address(source, length, Address::times_1, -1), '='); 2631 __ jcc(Assembler::equal, L_padding); 2632 2633 __ BIND(L_donePadding); 2634 __ subq(length, start_offset); 2635 2636 // Output size is (64 - output_size), output mask is (all 1s >> output_size). 2637 __ kmovql(input_mask, rax); 2638 __ movq(output_mask, -1); 2639 __ bzhiq(output_mask, output_mask, output_size); 2640 2641 // Load initial input with all valid base64 characters. Will be used 2642 // in merging source bytes to avoid masking when determining if an error occurred. 2643 __ movl(rax, 0x61616161); 2644 __ evpbroadcastd(input_initial_valid_b64, rax, Assembler::AVX_512bit); 2645 2646 // A register containing all invalid base64 decoded values 2647 __ movl(rax, 0x80808080); 2648 __ evpbroadcastd(invalid_b64, rax, Assembler::AVX_512bit); 2649 2650 // input_mask is in k1 2651 // output_size is in r13 2652 // output_mask is in r15 2653 // zmm0 - free 2654 // zmm1 - 0x00011000 2655 // zmm2 - 0x01400140 2656 // zmm3 - errorvec 2657 // zmm4 - pack vector 2658 // zmm5 - lookup_lo 2659 // zmm6 - lookup_hi 2660 // zmm7 - errorvec 2661 // zmm8 - 0x61616161 2662 // zmm9 - 0x80808080 2663 2664 // Load only the bytes from source, merging into our "fully-valid" register 2665 __ evmovdqub(input_initial_valid_b64, input_mask, Address(source, start_offset, Address::times_1, 0x0), true, Assembler::AVX_512bit); 2666 2667 // Decode all bytes within our merged input 2668 __ evmovdquq(tmp, lookup_lo, Assembler::AVX_512bit); 2669 __ evpermt2b(tmp, input_initial_valid_b64, lookup_hi, Assembler::AVX_512bit); 2670 __ evporq(mask, tmp, input_initial_valid_b64, Assembler::AVX_512bit); 2671 2672 // Check for error. Compare (decoded | initial) to all invalid. 2673 // If any bytes have their high-order bit set, then we have an error. 2674 __ evptestmb(k2, mask, invalid_b64, Assembler::AVX_512bit); 2675 __ kortestql(k2, k2); 2676 2677 // If we have an error, use the brute force loop to decode what we can (4-byte chunks). 2678 __ jcc(Assembler::notZero, L_bruteForce); 2679 2680 // Shuffle output bytes 2681 __ vpmaddubsw(tmp, tmp, pack16_op, Assembler::AVX_512bit); 2682 __ vpmaddwd(tmp, tmp, pack32_op, Assembler::AVX_512bit); 2683 2684 __ vpermb(tmp, pack24bits, tmp, Assembler::AVX_512bit); 2685 __ kmovql(k1, output_mask); 2686 __ evmovdqub(Address(dest, dp), k1, tmp, true, Assembler::AVX_512bit); 2687 2688 __ addptr(dest, output_size); 2689 2690 __ BIND(L_exit); 2691 __ vzeroupper(); 2692 __ pop(rax); // Get original dest value 2693 __ subptr(dest, rax); // Number of bytes converted 2694 __ movptr(rax, dest); 2695 __ pop(rbx); 2696 __ pop(r15); 2697 __ pop(r14); 2698 __ pop(r13); 2699 __ pop(r12); 2700 __ leave(); 2701 __ ret(0); 2702 2703 __ BIND(L_loadURL); 2704 __ evmovdquq(lookup_lo, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_lo_url_addr()), Assembler::AVX_512bit, r13); 2705 __ evmovdquq(lookup_hi, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_hi_url_addr()), Assembler::AVX_512bit, r13); 2706 __ jmp(L_continue); 2707 2708 __ BIND(L_padding); 2709 __ decrementq(output_size, 1); 2710 __ shrq(rax, 1); 2711 2712 __ cmpb(Address(source, length, Address::times_1, -2), '='); 2713 __ jcc(Assembler::notEqual, L_donePadding); 2714 2715 __ decrementq(output_size, 1); 2716 __ shrq(rax, 1); 2717 __ jmp(L_donePadding); 2718 2719 __ align32(); 2720 __ BIND(L_bruteForce); 2721 } // End of if(avx512_vbmi) 2722 2723 if (VM_Version::supports_avx2()) { 2724 Label L_tailProc, L_topLoop, L_enterLoop; 2725 2726 __ cmpl(isMIME, 0); 2727 __ jcc(Assembler::notEqual, L_lastChunk); 2728 2729 // Check for buffer too small (for algorithm) 2730 __ subl(length, 0x2c); 2731 __ jcc(Assembler::less, L_tailProc); 2732 2733 __ shll(isURL, 2); 2734 2735 // Algorithm adapted from https://arxiv.org/abs/1704.00605, "Faster Base64 2736 // Encoding and Decoding using AVX2 Instructions". URL modifications added. 2737 2738 // Set up constants 2739 __ lea(r13, ExternalAddress(StubRoutines::x86::base64_AVX2_decode_tables_addr())); 2740 __ vpbroadcastd(xmm4, Address(r13, isURL, Address::times_1), Assembler::AVX_256bit); // 2F or 5F 2741 __ vpbroadcastd(xmm10, Address(r13, isURL, Address::times_1, 0x08), Assembler::AVX_256bit); // -1 or -4 2742 __ vmovdqu(xmm12, Address(r13, 0x10)); // permute 2743 __ vmovdqu(xmm13, Address(r13, 0x30)); // shuffle 2744 __ vpbroadcastd(xmm7, Address(r13, 0x50), Assembler::AVX_256bit); // merge 2745 __ vpbroadcastd(xmm6, Address(r13, 0x54), Assembler::AVX_256bit); // merge mult 2746 2747 __ lea(r13, ExternalAddress(StubRoutines::x86::base64_AVX2_decode_LUT_tables_addr())); 2748 __ shll(isURL, 4); 2749 __ vmovdqu(xmm11, Address(r13, isURL, Address::times_1, 0x00)); // lut_lo 2750 __ vmovdqu(xmm8, Address(r13, isURL, Address::times_1, 0x20)); // lut_roll 2751 __ shrl(isURL, 6); // restore isURL 2752 __ vmovdqu(xmm9, Address(r13, 0x80)); // lut_hi 2753 __ jmp(L_enterLoop); 2754 2755 __ align32(); 2756 __ bind(L_topLoop); 2757 // Add in the offset value (roll) to get 6-bit out values 2758 __ vpaddb(xmm0, xmm0, xmm2, Assembler::AVX_256bit); 2759 // Merge and permute the output bits into appropriate output byte lanes 2760 __ vpmaddubsw(xmm0, xmm0, xmm7, Assembler::AVX_256bit); 2761 __ vpmaddwd(xmm0, xmm0, xmm6, Assembler::AVX_256bit); 2762 __ vpshufb(xmm0, xmm0, xmm13, Assembler::AVX_256bit); 2763 __ vpermd(xmm0, xmm12, xmm0, Assembler::AVX_256bit); 2764 // Store the output bytes 2765 __ vmovdqu(Address(dest, dp, Address::times_1, 0), xmm0); 2766 __ addptr(source, 0x20); 2767 __ addptr(dest, 0x18); 2768 __ subl(length, 0x20); 2769 __ jcc(Assembler::less, L_tailProc); 2770 2771 __ bind(L_enterLoop); 2772 2773 // Load in encoded string (32 bytes) 2774 __ vmovdqu(xmm2, Address(source, start_offset, Address::times_1, 0x0)); 2775 // Extract the high nibble for indexing into the lut tables. High 4 bits are don't care. 2776 __ vpsrld(xmm1, xmm2, 0x4, Assembler::AVX_256bit); 2777 __ vpand(xmm1, xmm4, xmm1, Assembler::AVX_256bit); 2778 // Extract the low nibble. 5F/2F will isolate the low-order 4 bits. High 4 bits are don't care. 2779 __ vpand(xmm3, xmm2, xmm4, Assembler::AVX_256bit); 2780 // Check for special-case (0x2F or 0x5F (URL)) 2781 __ vpcmpeqb(xmm0, xmm4, xmm2, Assembler::AVX_256bit); 2782 // Get the bitset based on the low nibble. vpshufb uses low-order 4 bits only. 2783 __ vpshufb(xmm3, xmm11, xmm3, Assembler::AVX_256bit); 2784 // Get the bit value of the high nibble 2785 __ vpshufb(xmm5, xmm9, xmm1, Assembler::AVX_256bit); 2786 // Make sure 2F / 5F shows as valid 2787 __ vpandn(xmm3, xmm0, xmm3, Assembler::AVX_256bit); 2788 // Make adjustment for roll index. For non-URL, this is a no-op, 2789 // for URL, this adjusts by -4. This is to properly index the 2790 // roll value for 2F / 5F. 2791 __ vpand(xmm0, xmm0, xmm10, Assembler::AVX_256bit); 2792 // If the and of the two is non-zero, we have an invalid input character 2793 __ vptest(xmm3, xmm5); 2794 // Extract the "roll" value - value to add to the input to get 6-bit out value 2795 __ vpaddb(xmm0, xmm0, xmm1, Assembler::AVX_256bit); // Handle 2F / 5F 2796 __ vpshufb(xmm0, xmm8, xmm0, Assembler::AVX_256bit); 2797 __ jcc(Assembler::equal, L_topLoop); // Fall through on error 2798 2799 __ bind(L_tailProc); 2800 2801 __ addl(length, 0x2c); 2802 2803 __ vzeroupper(); 2804 } 2805 2806 // Use non-AVX code to decode 4-byte chunks into 3 bytes of output 2807 2808 // Register state (Linux): 2809 // r12-15 - saved on stack 2810 // rdi - src 2811 // rsi - sp 2812 // rdx - sl 2813 // rcx - dst 2814 // r8 - dp 2815 // r9 - isURL 2816 2817 // Register state (Windows): 2818 // r12-15 - saved on stack 2819 // rcx - src 2820 // rdx - sp 2821 // r8 - sl 2822 // r9 - dst 2823 // r12 - dp 2824 // r10 - isURL 2825 2826 // Registers (common): 2827 // length (r14) - bytes in src 2828 2829 const Register decode_table = r11; 2830 const Register out_byte_count = rbx; 2831 const Register byte1 = r13; 2832 const Register byte2 = r15; 2833 const Register byte3 = WIN64_ONLY(r8) NOT_WIN64(rdx); 2834 const Register byte4 = WIN64_ONLY(r10) NOT_WIN64(r9); 2835 2836 __ bind(L_lastChunk); 2837 2838 __ shrl(length, 2); // Multiple of 4 bytes only - length is # 4-byte chunks 2839 __ cmpl(length, 0); 2840 __ jcc(Assembler::lessEqual, L_exit_no_vzero); 2841 2842 __ shll(isURL, 8); // index into decode table based on isURL 2843 __ lea(decode_table, ExternalAddress(StubRoutines::x86::base64_decoding_table_addr())); 2844 __ addptr(decode_table, isURL); 2845 2846 __ jmp(L_bottomLoop); 2847 2848 __ align32(); 2849 __ BIND(L_forceLoop); 2850 __ shll(byte1, 18); 2851 __ shll(byte2, 12); 2852 __ shll(byte3, 6); 2853 __ orl(byte1, byte2); 2854 __ orl(byte1, byte3); 2855 __ orl(byte1, byte4); 2856 2857 __ addptr(source, 4); 2858 2859 __ movb(Address(dest, dp, Address::times_1, 2), byte1); 2860 __ shrl(byte1, 8); 2861 __ movb(Address(dest, dp, Address::times_1, 1), byte1); 2862 __ shrl(byte1, 8); 2863 __ movb(Address(dest, dp, Address::times_1, 0), byte1); 2864 2865 __ addptr(dest, 3); 2866 __ decrementl(length, 1); 2867 __ jcc(Assembler::zero, L_exit_no_vzero); 2868 2869 __ BIND(L_bottomLoop); 2870 __ load_unsigned_byte(byte1, Address(source, start_offset, Address::times_1, 0x00)); 2871 __ load_unsigned_byte(byte2, Address(source, start_offset, Address::times_1, 0x01)); 2872 __ load_signed_byte(byte1, Address(decode_table, byte1)); 2873 __ load_signed_byte(byte2, Address(decode_table, byte2)); 2874 __ load_unsigned_byte(byte3, Address(source, start_offset, Address::times_1, 0x02)); 2875 __ load_unsigned_byte(byte4, Address(source, start_offset, Address::times_1, 0x03)); 2876 __ load_signed_byte(byte3, Address(decode_table, byte3)); 2877 __ load_signed_byte(byte4, Address(decode_table, byte4)); 2878 2879 __ mov(rax, byte1); 2880 __ orl(rax, byte2); 2881 __ orl(rax, byte3); 2882 __ orl(rax, byte4); 2883 __ jcc(Assembler::positive, L_forceLoop); 2884 2885 __ BIND(L_exit_no_vzero); 2886 __ pop(rax); // Get original dest value 2887 __ subptr(dest, rax); // Number of bytes converted 2888 __ movptr(rax, dest); 2889 __ pop(rbx); 2890 __ pop(r15); 2891 __ pop(r14); 2892 __ pop(r13); 2893 __ pop(r12); 2894 __ leave(); 2895 __ ret(0); 2896 2897 return start; 2898 } 2899 2900 2901 /** 2902 * Arguments: 2903 * 2904 * Inputs: 2905 * c_rarg0 - int crc 2906 * c_rarg1 - byte* buf 2907 * c_rarg2 - int length 2908 * 2909 * Output: 2910 * rax - int crc result 2911 */ 2912 address StubGenerator::generate_updateBytesCRC32() { 2913 assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions"); 2914 2915 __ align(CodeEntryAlignment); 2916 StubCodeMark mark(this, "StubRoutines", "updateBytesCRC32"); 2917 2918 address start = __ pc(); 2919 2920 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) 2921 // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...) 2922 // rscratch1: r10 2923 const Register crc = c_rarg0; // crc 2924 const Register buf = c_rarg1; // source java byte array address 2925 const Register len = c_rarg2; // length 2926 const Register table = c_rarg3; // crc_table address (reuse register) 2927 const Register tmp1 = r11; 2928 const Register tmp2 = r10; 2929 assert_different_registers(crc, buf, len, table, tmp1, tmp2, rax); 2930 2931 BLOCK_COMMENT("Entry:"); 2932 __ enter(); // required for proper stackwalking of RuntimeStub frame 2933 2934 if (VM_Version::supports_sse4_1() && VM_Version::supports_avx512_vpclmulqdq() && 2935 VM_Version::supports_avx512bw() && 2936 VM_Version::supports_avx512vl()) { 2937 // The constants used in the CRC32 algorithm requires the 1's compliment of the initial crc value. 2938 // However, the constant table for CRC32-C assumes the original crc value. Account for this 2939 // difference before calling and after returning. 2940 __ lea(table, ExternalAddress(StubRoutines::x86::crc_table_avx512_addr())); 2941 __ notl(crc); 2942 __ kernel_crc32_avx512(crc, buf, len, table, tmp1, tmp2); 2943 __ notl(crc); 2944 } else { 2945 __ kernel_crc32(crc, buf, len, table, tmp1); 2946 } 2947 2948 __ movl(rax, crc); 2949 __ vzeroupper(); 2950 __ leave(); // required for proper stackwalking of RuntimeStub frame 2951 __ ret(0); 2952 2953 return start; 2954 } 2955 2956 /** 2957 * Arguments: 2958 * 2959 * Inputs: 2960 * c_rarg0 - int crc 2961 * c_rarg1 - byte* buf 2962 * c_rarg2 - long length 2963 * c_rarg3 - table_start - optional (present only when doing a library_call, 2964 * not used by x86 algorithm) 2965 * 2966 * Output: 2967 * rax - int crc result 2968 */ 2969 address StubGenerator::generate_updateBytesCRC32C(bool is_pclmulqdq_supported) { 2970 assert(UseCRC32CIntrinsics, "need SSE4_2"); 2971 __ align(CodeEntryAlignment); 2972 StubCodeMark mark(this, "StubRoutines", "updateBytesCRC32C"); 2973 address start = __ pc(); 2974 2975 //reg.arg int#0 int#1 int#2 int#3 int#4 int#5 float regs 2976 //Windows RCX RDX R8 R9 none none XMM0..XMM3 2977 //Lin / Sol RDI RSI RDX RCX R8 R9 XMM0..XMM7 2978 const Register crc = c_rarg0; // crc 2979 const Register buf = c_rarg1; // source java byte array address 2980 const Register len = c_rarg2; // length 2981 const Register a = rax; 2982 const Register j = r9; 2983 const Register k = r10; 2984 const Register l = r11; 2985 #ifdef _WIN64 2986 const Register y = rdi; 2987 const Register z = rsi; 2988 #else 2989 const Register y = rcx; 2990 const Register z = r8; 2991 #endif 2992 assert_different_registers(crc, buf, len, a, j, k, l, y, z); 2993 2994 BLOCK_COMMENT("Entry:"); 2995 __ enter(); // required for proper stackwalking of RuntimeStub frame 2996 Label L_continue; 2997 2998 if (VM_Version::supports_sse4_1() && VM_Version::supports_avx512_vpclmulqdq() && 2999 VM_Version::supports_avx512bw() && 3000 VM_Version::supports_avx512vl()) { 3001 Label L_doSmall; 3002 3003 __ cmpl(len, 384); 3004 __ jcc(Assembler::lessEqual, L_doSmall); 3005 3006 __ lea(j, ExternalAddress(StubRoutines::x86::crc32c_table_avx512_addr())); 3007 __ kernel_crc32_avx512(crc, buf, len, j, l, k); 3008 3009 __ jmp(L_continue); 3010 3011 __ bind(L_doSmall); 3012 } 3013 #ifdef _WIN64 3014 __ push(y); 3015 __ push(z); 3016 #endif 3017 __ crc32c_ipl_alg2_alt2(crc, buf, len, 3018 a, j, k, 3019 l, y, z, 3020 c_farg0, c_farg1, c_farg2, 3021 is_pclmulqdq_supported); 3022 #ifdef _WIN64 3023 __ pop(z); 3024 __ pop(y); 3025 #endif 3026 3027 __ bind(L_continue); 3028 __ movl(rax, crc); 3029 __ vzeroupper(); 3030 __ leave(); // required for proper stackwalking of RuntimeStub frame 3031 __ ret(0); 3032 3033 return start; 3034 } 3035 3036 3037 /** 3038 * Arguments: 3039 * 3040 * Input: 3041 * c_rarg0 - x address 3042 * c_rarg1 - x length 3043 * c_rarg2 - y address 3044 * c_rarg3 - y length 3045 * not Win64 3046 * c_rarg4 - z address 3047 * Win64 3048 * rsp+40 - z address 3049 */ 3050 address StubGenerator::generate_multiplyToLen() { 3051 __ align(CodeEntryAlignment); 3052 StubCodeMark mark(this, "StubRoutines", "multiplyToLen"); 3053 address start = __ pc(); 3054 3055 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) 3056 // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...) 3057 const Register x = rdi; 3058 const Register xlen = rax; 3059 const Register y = rsi; 3060 const Register ylen = rcx; 3061 const Register z = r8; 3062 3063 // Next registers will be saved on stack in multiply_to_len(). 3064 const Register tmp0 = r11; 3065 const Register tmp1 = r12; 3066 const Register tmp2 = r13; 3067 const Register tmp3 = r14; 3068 const Register tmp4 = r15; 3069 const Register tmp5 = rbx; 3070 3071 BLOCK_COMMENT("Entry:"); 3072 __ enter(); // required for proper stackwalking of RuntimeStub frame 3073 3074 setup_arg_regs(4); // x => rdi, xlen => rsi, y => rdx 3075 // ylen => rcx, z => r8 3076 // r9 and r10 may be used to save non-volatile registers 3077 #ifdef _WIN64 3078 // last argument (#4) is on stack on Win64 3079 __ movptr(z, Address(rsp, 6 * wordSize)); 3080 #endif 3081 3082 __ movptr(xlen, rsi); 3083 __ movptr(y, rdx); 3084 __ multiply_to_len(x, xlen, y, ylen, z, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5); 3085 3086 restore_arg_regs(); 3087 3088 __ leave(); // required for proper stackwalking of RuntimeStub frame 3089 __ ret(0); 3090 3091 return start; 3092 } 3093 3094 /** 3095 * Arguments: 3096 * 3097 * Input: 3098 * c_rarg0 - obja address 3099 * c_rarg1 - objb address 3100 * c_rarg3 - length length 3101 * c_rarg4 - scale log2_array_indxscale 3102 * 3103 * Output: 3104 * rax - int >= mismatched index, < 0 bitwise complement of tail 3105 */ 3106 address StubGenerator::generate_vectorizedMismatch() { 3107 __ align(CodeEntryAlignment); 3108 StubCodeMark mark(this, "StubRoutines", "vectorizedMismatch"); 3109 address start = __ pc(); 3110 3111 BLOCK_COMMENT("Entry:"); 3112 __ enter(); 3113 3114 #ifdef _WIN64 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) 3115 const Register scale = c_rarg0; //rcx, will exchange with r9 3116 const Register objb = c_rarg1; //rdx 3117 const Register length = c_rarg2; //r8 3118 const Register obja = c_rarg3; //r9 3119 __ xchgq(obja, scale); //now obja and scale contains the correct contents 3120 3121 const Register tmp1 = r10; 3122 const Register tmp2 = r11; 3123 #endif 3124 #ifndef _WIN64 // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...) 3125 const Register obja = c_rarg0; //U:rdi 3126 const Register objb = c_rarg1; //U:rsi 3127 const Register length = c_rarg2; //U:rdx 3128 const Register scale = c_rarg3; //U:rcx 3129 const Register tmp1 = r8; 3130 const Register tmp2 = r9; 3131 #endif 3132 const Register result = rax; //return value 3133 const XMMRegister vec0 = xmm0; 3134 const XMMRegister vec1 = xmm1; 3135 const XMMRegister vec2 = xmm2; 3136 3137 __ vectorized_mismatch(obja, objb, length, scale, result, tmp1, tmp2, vec0, vec1, vec2); 3138 3139 __ vzeroupper(); 3140 __ leave(); 3141 __ ret(0); 3142 3143 return start; 3144 } 3145 3146 /** 3147 * Arguments: 3148 * 3149 // Input: 3150 // c_rarg0 - x address 3151 // c_rarg1 - x length 3152 // c_rarg2 - z address 3153 // c_rarg3 - z length 3154 * 3155 */ 3156 address StubGenerator::generate_squareToLen() { 3157 3158 __ align(CodeEntryAlignment); 3159 StubCodeMark mark(this, "StubRoutines", "squareToLen"); 3160 address start = __ pc(); 3161 3162 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) 3163 // Unix: rdi, rsi, rdx, rcx (c_rarg0, c_rarg1, ...) 3164 const Register x = rdi; 3165 const Register len = rsi; 3166 const Register z = r8; 3167 const Register zlen = rcx; 3168 3169 const Register tmp1 = r12; 3170 const Register tmp2 = r13; 3171 const Register tmp3 = r14; 3172 const Register tmp4 = r15; 3173 const Register tmp5 = rbx; 3174 3175 BLOCK_COMMENT("Entry:"); 3176 __ enter(); // required for proper stackwalking of RuntimeStub frame 3177 3178 setup_arg_regs(4); // x => rdi, len => rsi, z => rdx 3179 // zlen => rcx 3180 // r9 and r10 may be used to save non-volatile registers 3181 __ movptr(r8, rdx); 3182 __ square_to_len(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx, rax); 3183 3184 restore_arg_regs(); 3185 3186 __ leave(); // required for proper stackwalking of RuntimeStub frame 3187 __ ret(0); 3188 3189 return start; 3190 } 3191 3192 address StubGenerator::generate_method_entry_barrier() { 3193 __ align(CodeEntryAlignment); 3194 StubCodeMark mark(this, "StubRoutines", "nmethod_entry_barrier"); 3195 address start = __ pc(); 3196 3197 Label deoptimize_label; 3198 3199 __ push(-1); // cookie, this is used for writing the new rsp when deoptimizing 3200 3201 BLOCK_COMMENT("Entry:"); 3202 __ enter(); // save rbp 3203 3204 // save c_rarg0, because we want to use that value. 3205 // We could do without it but then we depend on the number of slots used by pusha 3206 __ push(c_rarg0); 3207 3208 __ lea(c_rarg0, Address(rsp, wordSize * 3)); // 1 for cookie, 1 for rbp, 1 for c_rarg0 - this should be the return address 3209 3210 __ pusha(); 3211 3212 // The method may have floats as arguments, and we must spill them before calling 3213 // the VM runtime. 3214 assert(Argument::n_float_register_parameters_j == 8, "Assumption"); 3215 const int xmm_size = wordSize * 2; 3216 const int xmm_spill_size = xmm_size * Argument::n_float_register_parameters_j; 3217 __ subptr(rsp, xmm_spill_size); 3218 __ movdqu(Address(rsp, xmm_size * 7), xmm7); 3219 __ movdqu(Address(rsp, xmm_size * 6), xmm6); 3220 __ movdqu(Address(rsp, xmm_size * 5), xmm5); 3221 __ movdqu(Address(rsp, xmm_size * 4), xmm4); 3222 __ movdqu(Address(rsp, xmm_size * 3), xmm3); 3223 __ movdqu(Address(rsp, xmm_size * 2), xmm2); 3224 __ movdqu(Address(rsp, xmm_size * 1), xmm1); 3225 __ movdqu(Address(rsp, xmm_size * 0), xmm0); 3226 3227 __ call_VM_leaf(CAST_FROM_FN_PTR(address, static_cast<int (*)(address*)>(BarrierSetNMethod::nmethod_stub_entry_barrier)), 1); 3228 3229 __ movdqu(xmm0, Address(rsp, xmm_size * 0)); 3230 __ movdqu(xmm1, Address(rsp, xmm_size * 1)); 3231 __ movdqu(xmm2, Address(rsp, xmm_size * 2)); 3232 __ movdqu(xmm3, Address(rsp, xmm_size * 3)); 3233 __ movdqu(xmm4, Address(rsp, xmm_size * 4)); 3234 __ movdqu(xmm5, Address(rsp, xmm_size * 5)); 3235 __ movdqu(xmm6, Address(rsp, xmm_size * 6)); 3236 __ movdqu(xmm7, Address(rsp, xmm_size * 7)); 3237 __ addptr(rsp, xmm_spill_size); 3238 3239 __ cmpl(rax, 1); // 1 means deoptimize 3240 __ jcc(Assembler::equal, deoptimize_label); 3241 3242 __ popa(); 3243 __ pop(c_rarg0); 3244 3245 __ leave(); 3246 3247 __ addptr(rsp, 1 * wordSize); // cookie 3248 __ ret(0); 3249 3250 3251 __ BIND(deoptimize_label); 3252 3253 __ popa(); 3254 __ pop(c_rarg0); 3255 3256 __ leave(); 3257 3258 // this can be taken out, but is good for verification purposes. getting a SIGSEGV 3259 // here while still having a correct stack is valuable 3260 __ testptr(rsp, Address(rsp, 0)); 3261 3262 __ movptr(rsp, Address(rsp, 0)); // new rsp was written in the barrier 3263 __ jmp(Address(rsp, -1 * wordSize)); // jmp target should be callers verified_entry_point 3264 3265 return start; 3266 } 3267 3268 /** 3269 * Arguments: 3270 * 3271 * Input: 3272 * c_rarg0 - out address 3273 * c_rarg1 - in address 3274 * c_rarg2 - offset 3275 * c_rarg3 - len 3276 * not Win64 3277 * c_rarg4 - k 3278 * Win64 3279 * rsp+40 - k 3280 */ 3281 address StubGenerator::generate_mulAdd() { 3282 __ align(CodeEntryAlignment); 3283 StubCodeMark mark(this, "StubRoutines", "mulAdd"); 3284 address start = __ pc(); 3285 3286 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) 3287 // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...) 3288 const Register out = rdi; 3289 const Register in = rsi; 3290 const Register offset = r11; 3291 const Register len = rcx; 3292 const Register k = r8; 3293 3294 // Next registers will be saved on stack in mul_add(). 3295 const Register tmp1 = r12; 3296 const Register tmp2 = r13; 3297 const Register tmp3 = r14; 3298 const Register tmp4 = r15; 3299 const Register tmp5 = rbx; 3300 3301 BLOCK_COMMENT("Entry:"); 3302 __ enter(); // required for proper stackwalking of RuntimeStub frame 3303 3304 setup_arg_regs(4); // out => rdi, in => rsi, offset => rdx 3305 // len => rcx, k => r8 3306 // r9 and r10 may be used to save non-volatile registers 3307 #ifdef _WIN64 3308 // last argument is on stack on Win64 3309 __ movl(k, Address(rsp, 6 * wordSize)); 3310 #endif 3311 __ movptr(r11, rdx); // move offset in rdx to offset(r11) 3312 __ mul_add(out, in, offset, len, k, tmp1, tmp2, tmp3, tmp4, tmp5, rdx, rax); 3313 3314 restore_arg_regs(); 3315 3316 __ leave(); // required for proper stackwalking of RuntimeStub frame 3317 __ ret(0); 3318 3319 return start; 3320 } 3321 3322 address StubGenerator::generate_bigIntegerRightShift() { 3323 __ align(CodeEntryAlignment); 3324 StubCodeMark mark(this, "StubRoutines", "bigIntegerRightShiftWorker"); 3325 address start = __ pc(); 3326 3327 Label Shift512Loop, ShiftTwo, ShiftTwoLoop, ShiftOne, Exit; 3328 // For Unix, the arguments are as follows: rdi, rsi, rdx, rcx, r8. 3329 const Register newArr = rdi; 3330 const Register oldArr = rsi; 3331 const Register newIdx = rdx; 3332 const Register shiftCount = rcx; // It was intentional to have shiftCount in rcx since it is used implicitly for shift. 3333 const Register totalNumIter = r8; 3334 3335 // For windows, we use r9 and r10 as temps to save rdi and rsi. Thus we cannot allocate them for our temps. 3336 // For everything else, we prefer using r9 and r10 since we do not have to save them before use. 3337 const Register tmp1 = r11; // Caller save. 3338 const Register tmp2 = rax; // Caller save. 3339 const Register tmp3 = WIN64_ONLY(r12) NOT_WIN64(r9); // Windows: Callee save. Linux: Caller save. 3340 const Register tmp4 = WIN64_ONLY(r13) NOT_WIN64(r10); // Windows: Callee save. Linux: Caller save. 3341 const Register tmp5 = r14; // Callee save. 3342 const Register tmp6 = r15; 3343 3344 const XMMRegister x0 = xmm0; 3345 const XMMRegister x1 = xmm1; 3346 const XMMRegister x2 = xmm2; 3347 3348 BLOCK_COMMENT("Entry:"); 3349 __ enter(); // required for proper stackwalking of RuntimeStub frame 3350 3351 #ifdef _WIN64 3352 setup_arg_regs(4); 3353 // For windows, since last argument is on stack, we need to move it to the appropriate register. 3354 __ movl(totalNumIter, Address(rsp, 6 * wordSize)); 3355 // Save callee save registers. 3356 __ push(tmp3); 3357 __ push(tmp4); 3358 #endif 3359 __ push(tmp5); 3360 3361 // Rename temps used throughout the code. 3362 const Register idx = tmp1; 3363 const Register nIdx = tmp2; 3364 3365 __ xorl(idx, idx); 3366 3367 // Start right shift from end of the array. 3368 // For example, if #iteration = 4 and newIdx = 1 3369 // then dest[4] = src[4] >> shiftCount | src[3] <<< (shiftCount - 32) 3370 // if #iteration = 4 and newIdx = 0 3371 // then dest[3] = src[4] >> shiftCount | src[3] <<< (shiftCount - 32) 3372 __ movl(idx, totalNumIter); 3373 __ movl(nIdx, idx); 3374 __ addl(nIdx, newIdx); 3375 3376 // If vectorization is enabled, check if the number of iterations is at least 64 3377 // If not, then go to ShifTwo processing 2 iterations 3378 if (VM_Version::supports_avx512_vbmi2()) { 3379 __ cmpptr(totalNumIter, (AVX3Threshold/64)); 3380 __ jcc(Assembler::less, ShiftTwo); 3381 3382 if (AVX3Threshold < 16 * 64) { 3383 __ cmpl(totalNumIter, 16); 3384 __ jcc(Assembler::less, ShiftTwo); 3385 } 3386 __ evpbroadcastd(x0, shiftCount, Assembler::AVX_512bit); 3387 __ subl(idx, 16); 3388 __ subl(nIdx, 16); 3389 __ BIND(Shift512Loop); 3390 __ evmovdqul(x2, Address(oldArr, idx, Address::times_4, 4), Assembler::AVX_512bit); 3391 __ evmovdqul(x1, Address(oldArr, idx, Address::times_4), Assembler::AVX_512bit); 3392 __ vpshrdvd(x2, x1, x0, Assembler::AVX_512bit); 3393 __ evmovdqul(Address(newArr, nIdx, Address::times_4), x2, Assembler::AVX_512bit); 3394 __ subl(nIdx, 16); 3395 __ subl(idx, 16); 3396 __ jcc(Assembler::greaterEqual, Shift512Loop); 3397 __ addl(idx, 16); 3398 __ addl(nIdx, 16); 3399 } 3400 __ BIND(ShiftTwo); 3401 __ cmpl(idx, 2); 3402 __ jcc(Assembler::less, ShiftOne); 3403 __ subl(idx, 2); 3404 __ subl(nIdx, 2); 3405 __ BIND(ShiftTwoLoop); 3406 __ movl(tmp5, Address(oldArr, idx, Address::times_4, 8)); 3407 __ movl(tmp4, Address(oldArr, idx, Address::times_4, 4)); 3408 __ movl(tmp3, Address(oldArr, idx, Address::times_4)); 3409 __ shrdl(tmp5, tmp4); 3410 __ shrdl(tmp4, tmp3); 3411 __ movl(Address(newArr, nIdx, Address::times_4, 4), tmp5); 3412 __ movl(Address(newArr, nIdx, Address::times_4), tmp4); 3413 __ subl(nIdx, 2); 3414 __ subl(idx, 2); 3415 __ jcc(Assembler::greaterEqual, ShiftTwoLoop); 3416 __ addl(idx, 2); 3417 __ addl(nIdx, 2); 3418 3419 // Do the last iteration 3420 __ BIND(ShiftOne); 3421 __ cmpl(idx, 1); 3422 __ jcc(Assembler::less, Exit); 3423 __ subl(idx, 1); 3424 __ subl(nIdx, 1); 3425 __ movl(tmp4, Address(oldArr, idx, Address::times_4, 4)); 3426 __ movl(tmp3, Address(oldArr, idx, Address::times_4)); 3427 __ shrdl(tmp4, tmp3); 3428 __ movl(Address(newArr, nIdx, Address::times_4), tmp4); 3429 __ BIND(Exit); 3430 __ vzeroupper(); 3431 // Restore callee save registers. 3432 __ pop(tmp5); 3433 #ifdef _WIN64 3434 __ pop(tmp4); 3435 __ pop(tmp3); 3436 restore_arg_regs(); 3437 #endif 3438 __ leave(); // required for proper stackwalking of RuntimeStub frame 3439 __ ret(0); 3440 3441 return start; 3442 } 3443 3444 /** 3445 * Arguments: 3446 * 3447 * Input: 3448 * c_rarg0 - newArr address 3449 * c_rarg1 - oldArr address 3450 * c_rarg2 - newIdx 3451 * c_rarg3 - shiftCount 3452 * not Win64 3453 * c_rarg4 - numIter 3454 * Win64 3455 * rsp40 - numIter 3456 */ 3457 address StubGenerator::generate_bigIntegerLeftShift() { 3458 __ align(CodeEntryAlignment); 3459 StubCodeMark mark(this, "StubRoutines", "bigIntegerLeftShiftWorker"); 3460 address start = __ pc(); 3461 3462 Label Shift512Loop, ShiftTwo, ShiftTwoLoop, ShiftOne, Exit; 3463 // For Unix, the arguments are as follows: rdi, rsi, rdx, rcx, r8. 3464 const Register newArr = rdi; 3465 const Register oldArr = rsi; 3466 const Register newIdx = rdx; 3467 const Register shiftCount = rcx; // It was intentional to have shiftCount in rcx since it is used implicitly for shift. 3468 const Register totalNumIter = r8; 3469 // For windows, we use r9 and r10 as temps to save rdi and rsi. Thus we cannot allocate them for our temps. 3470 // For everything else, we prefer using r9 and r10 since we do not have to save them before use. 3471 const Register tmp1 = r11; // Caller save. 3472 const Register tmp2 = rax; // Caller save. 3473 const Register tmp3 = WIN64_ONLY(r12) NOT_WIN64(r9); // Windows: Callee save. Linux: Caller save. 3474 const Register tmp4 = WIN64_ONLY(r13) NOT_WIN64(r10); // Windows: Callee save. Linux: Caller save. 3475 const Register tmp5 = r14; // Callee save. 3476 3477 const XMMRegister x0 = xmm0; 3478 const XMMRegister x1 = xmm1; 3479 const XMMRegister x2 = xmm2; 3480 BLOCK_COMMENT("Entry:"); 3481 __ enter(); // required for proper stackwalking of RuntimeStub frame 3482 3483 #ifdef _WIN64 3484 setup_arg_regs(4); 3485 // For windows, since last argument is on stack, we need to move it to the appropriate register. 3486 __ movl(totalNumIter, Address(rsp, 6 * wordSize)); 3487 // Save callee save registers. 3488 __ push(tmp3); 3489 __ push(tmp4); 3490 #endif 3491 __ push(tmp5); 3492 3493 // Rename temps used throughout the code 3494 const Register idx = tmp1; 3495 const Register numIterTmp = tmp2; 3496 3497 // Start idx from zero. 3498 __ xorl(idx, idx); 3499 // Compute interior pointer for new array. We do this so that we can use same index for both old and new arrays. 3500 __ lea(newArr, Address(newArr, newIdx, Address::times_4)); 3501 __ movl(numIterTmp, totalNumIter); 3502 3503 // If vectorization is enabled, check if the number of iterations is at least 64 3504 // If not, then go to ShiftTwo shifting two numbers at a time 3505 if (VM_Version::supports_avx512_vbmi2()) { 3506 __ cmpl(totalNumIter, (AVX3Threshold/64)); 3507 __ jcc(Assembler::less, ShiftTwo); 3508 3509 if (AVX3Threshold < 16 * 64) { 3510 __ cmpl(totalNumIter, 16); 3511 __ jcc(Assembler::less, ShiftTwo); 3512 } 3513 __ evpbroadcastd(x0, shiftCount, Assembler::AVX_512bit); 3514 __ subl(numIterTmp, 16); 3515 __ BIND(Shift512Loop); 3516 __ evmovdqul(x1, Address(oldArr, idx, Address::times_4), Assembler::AVX_512bit); 3517 __ evmovdqul(x2, Address(oldArr, idx, Address::times_4, 0x4), Assembler::AVX_512bit); 3518 __ vpshldvd(x1, x2, x0, Assembler::AVX_512bit); 3519 __ evmovdqul(Address(newArr, idx, Address::times_4), x1, Assembler::AVX_512bit); 3520 __ addl(idx, 16); 3521 __ subl(numIterTmp, 16); 3522 __ jcc(Assembler::greaterEqual, Shift512Loop); 3523 __ addl(numIterTmp, 16); 3524 } 3525 __ BIND(ShiftTwo); 3526 __ cmpl(totalNumIter, 1); 3527 __ jcc(Assembler::less, Exit); 3528 __ movl(tmp3, Address(oldArr, idx, Address::times_4)); 3529 __ subl(numIterTmp, 2); 3530 __ jcc(Assembler::less, ShiftOne); 3531 3532 __ BIND(ShiftTwoLoop); 3533 __ movl(tmp4, Address(oldArr, idx, Address::times_4, 0x4)); 3534 __ movl(tmp5, Address(oldArr, idx, Address::times_4, 0x8)); 3535 __ shldl(tmp3, tmp4); 3536 __ shldl(tmp4, tmp5); 3537 __ movl(Address(newArr, idx, Address::times_4), tmp3); 3538 __ movl(Address(newArr, idx, Address::times_4, 0x4), tmp4); 3539 __ movl(tmp3, tmp5); 3540 __ addl(idx, 2); 3541 __ subl(numIterTmp, 2); 3542 __ jcc(Assembler::greaterEqual, ShiftTwoLoop); 3543 3544 // Do the last iteration 3545 __ BIND(ShiftOne); 3546 __ addl(numIterTmp, 2); 3547 __ cmpl(numIterTmp, 1); 3548 __ jcc(Assembler::less, Exit); 3549 __ movl(tmp4, Address(oldArr, idx, Address::times_4, 0x4)); 3550 __ shldl(tmp3, tmp4); 3551 __ movl(Address(newArr, idx, Address::times_4), tmp3); 3552 3553 __ BIND(Exit); 3554 __ vzeroupper(); 3555 // Restore callee save registers. 3556 __ pop(tmp5); 3557 #ifdef _WIN64 3558 __ pop(tmp4); 3559 __ pop(tmp3); 3560 restore_arg_regs(); 3561 #endif 3562 __ leave(); // required for proper stackwalking of RuntimeStub frame 3563 __ ret(0); 3564 3565 return start; 3566 } 3567 3568 void StubGenerator::generate_libm_stubs() { 3569 if (UseLibmIntrinsic && InlineIntrinsics) { 3570 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dsin)) { 3571 StubRoutines::_dsin = generate_libmSin(); // from stubGenerator_x86_64_sin.cpp 3572 } 3573 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dcos)) { 3574 StubRoutines::_dcos = generate_libmCos(); // from stubGenerator_x86_64_cos.cpp 3575 } 3576 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dtan)) { 3577 StubRoutines::_dtan = generate_libmTan(); // from stubGenerator_x86_64_tan.cpp 3578 } 3579 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dexp)) { 3580 StubRoutines::_dexp = generate_libmExp(); // from stubGenerator_x86_64_exp.cpp 3581 } 3582 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dpow)) { 3583 StubRoutines::_dpow = generate_libmPow(); // from stubGenerator_x86_64_pow.cpp 3584 } 3585 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dlog)) { 3586 StubRoutines::_dlog = generate_libmLog(); // from stubGenerator_x86_64_log.cpp 3587 } 3588 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dlog10)) { 3589 StubRoutines::_dlog10 = generate_libmLog10(); // from stubGenerator_x86_64_log.cpp 3590 } 3591 } 3592 } 3593 3594 /** 3595 * Arguments: 3596 * 3597 * Input: 3598 * c_rarg0 - float16 jshort 3599 * 3600 * Output: 3601 * xmm0 - float 3602 */ 3603 address StubGenerator::generate_float16ToFloat() { 3604 StubCodeMark mark(this, "StubRoutines", "float16ToFloat"); 3605 3606 address start = __ pc(); 3607 3608 BLOCK_COMMENT("Entry:"); 3609 // No need for RuntimeStub frame since it is called only during JIT compilation 3610 3611 // Load value into xmm0 and convert 3612 __ flt16_to_flt(xmm0, c_rarg0); 3613 3614 __ ret(0); 3615 3616 return start; 3617 } 3618 3619 /** 3620 * Arguments: 3621 * 3622 * Input: 3623 * xmm0 - float 3624 * 3625 * Output: 3626 * rax - float16 jshort 3627 */ 3628 address StubGenerator::generate_floatToFloat16() { 3629 StubCodeMark mark(this, "StubRoutines", "floatToFloat16"); 3630 3631 address start = __ pc(); 3632 3633 BLOCK_COMMENT("Entry:"); 3634 // No need for RuntimeStub frame since it is called only during JIT compilation 3635 3636 // Convert and put result into rax 3637 __ flt_to_flt16(rax, xmm0, xmm1); 3638 3639 __ ret(0); 3640 3641 return start; 3642 } 3643 3644 address StubGenerator::generate_cont_thaw(const char* label, Continuation::thaw_kind kind) { 3645 if (!Continuations::enabled()) return nullptr; 3646 3647 bool return_barrier = Continuation::is_thaw_return_barrier(kind); 3648 bool return_barrier_exception = Continuation::is_thaw_return_barrier_exception(kind); 3649 3650 StubCodeMark mark(this, "StubRoutines", label); 3651 address start = __ pc(); 3652 3653 // TODO: Handle Valhalla return types. May require generating different return barriers. 3654 3655 if (!return_barrier) { 3656 // Pop return address. If we don't do this, we get a drift, 3657 // where the bottom-most frozen frame continuously grows. 3658 __ pop(c_rarg3); 3659 } else { 3660 __ movptr(rsp, Address(r15_thread, JavaThread::cont_entry_offset())); 3661 } 3662 3663 #ifdef ASSERT 3664 { 3665 Label L_good_sp; 3666 __ cmpptr(rsp, Address(r15_thread, JavaThread::cont_entry_offset())); 3667 __ jcc(Assembler::equal, L_good_sp); 3668 __ stop("Incorrect rsp at thaw entry"); 3669 __ BIND(L_good_sp); 3670 } 3671 #endif // ASSERT 3672 3673 if (return_barrier) { 3674 // Preserve possible return value from a method returning to the return barrier. 3675 __ push(rax); 3676 __ push_d(xmm0); 3677 } 3678 3679 __ movptr(c_rarg0, r15_thread); 3680 __ movptr(c_rarg1, (return_barrier ? 1 : 0)); 3681 __ call_VM_leaf(CAST_FROM_FN_PTR(address, Continuation::prepare_thaw), 2); 3682 __ movptr(rbx, rax); 3683 3684 if (return_barrier) { 3685 // Restore return value from a method returning to the return barrier. 3686 // No safepoint in the call to thaw, so even an oop return value should be OK. 3687 __ pop_d(xmm0); 3688 __ pop(rax); 3689 } 3690 3691 #ifdef ASSERT 3692 { 3693 Label L_good_sp; 3694 __ cmpptr(rsp, Address(r15_thread, JavaThread::cont_entry_offset())); 3695 __ jcc(Assembler::equal, L_good_sp); 3696 __ stop("Incorrect rsp after prepare thaw"); 3697 __ BIND(L_good_sp); 3698 } 3699 #endif // ASSERT 3700 3701 // rbx contains the size of the frames to thaw, 0 if overflow or no more frames 3702 Label L_thaw_success; 3703 __ testptr(rbx, rbx); 3704 __ jccb(Assembler::notZero, L_thaw_success); 3705 __ jump(ExternalAddress(StubRoutines::throw_StackOverflowError_entry())); 3706 __ bind(L_thaw_success); 3707 3708 // Make room for the thawed frames and align the stack. 3709 __ subptr(rsp, rbx); 3710 __ andptr(rsp, -StackAlignmentInBytes); 3711 3712 if (return_barrier) { 3713 // Preserve possible return value from a method returning to the return barrier. (Again.) 3714 __ push(rax); 3715 __ push_d(xmm0); 3716 } 3717 3718 // If we want, we can templatize thaw by kind, and have three different entries. 3719 __ movptr(c_rarg0, r15_thread); 3720 __ movptr(c_rarg1, kind); 3721 __ call_VM_leaf(Continuation::thaw_entry(), 2); 3722 __ movptr(rbx, rax); 3723 3724 if (return_barrier) { 3725 // Restore return value from a method returning to the return barrier. (Again.) 3726 // No safepoint in the call to thaw, so even an oop return value should be OK. 3727 __ pop_d(xmm0); 3728 __ pop(rax); 3729 } else { 3730 // Return 0 (success) from doYield. 3731 __ xorptr(rax, rax); 3732 } 3733 3734 // After thawing, rbx is the SP of the yielding frame. 3735 // Move there, and then to saved RBP slot. 3736 __ movptr(rsp, rbx); 3737 __ subptr(rsp, 2*wordSize); 3738 3739 if (return_barrier_exception) { 3740 __ movptr(c_rarg0, r15_thread); 3741 __ movptr(c_rarg1, Address(rsp, wordSize)); // return address 3742 3743 // rax still holds the original exception oop, save it before the call 3744 __ push(rax); 3745 3746 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), 2); 3747 __ movptr(rbx, rax); 3748 3749 // Continue at exception handler: 3750 // rax: exception oop 3751 // rbx: exception handler 3752 // rdx: exception pc 3753 __ pop(rax); 3754 __ verify_oop(rax); 3755 __ pop(rbp); // pop out RBP here too 3756 __ pop(rdx); 3757 __ jmp(rbx); 3758 } else { 3759 // We are "returning" into the topmost thawed frame; see Thaw::push_return_frame 3760 __ pop(rbp); 3761 __ ret(0); 3762 } 3763 3764 return start; 3765 } 3766 3767 address StubGenerator::generate_cont_thaw() { 3768 return generate_cont_thaw("Cont thaw", Continuation::thaw_top); 3769 } 3770 3771 // TODO: will probably need multiple return barriers depending on return type 3772 3773 address StubGenerator::generate_cont_returnBarrier() { 3774 return generate_cont_thaw("Cont thaw return barrier", Continuation::thaw_return_barrier); 3775 } 3776 3777 address StubGenerator::generate_cont_returnBarrier_exception() { 3778 return generate_cont_thaw("Cont thaw return barrier exception", Continuation::thaw_return_barrier_exception); 3779 } 3780 3781 #if INCLUDE_JFR 3782 3783 // For c2: c_rarg0 is junk, call to runtime to write a checkpoint. 3784 // It returns a jobject handle to the event writer. 3785 // The handle is dereferenced and the return value is the event writer oop. 3786 RuntimeStub* StubGenerator::generate_jfr_write_checkpoint() { 3787 enum layout { 3788 rbp_off, 3789 rbpH_off, 3790 return_off, 3791 return_off2, 3792 framesize // inclusive of return address 3793 }; 3794 3795 CodeBuffer code("jfr_write_checkpoint", 1024, 64); 3796 MacroAssembler* _masm = new MacroAssembler(&code); 3797 address start = __ pc(); 3798 3799 __ enter(); 3800 address the_pc = __ pc(); 3801 3802 int frame_complete = the_pc - start; 3803 3804 __ set_last_Java_frame(rsp, rbp, the_pc, rscratch1); 3805 __ movptr(c_rarg0, r15_thread); 3806 __ call_VM_leaf(CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::write_checkpoint), 1); 3807 __ reset_last_Java_frame(true); 3808 3809 // rax is jobject handle result, unpack and process it through a barrier. 3810 __ resolve_global_jobject(rax, r15_thread, c_rarg0); 3811 3812 __ leave(); 3813 __ ret(0); 3814 3815 OopMapSet* oop_maps = new OopMapSet(); 3816 OopMap* map = new OopMap(framesize, 1); 3817 oop_maps->add_gc_map(frame_complete, map); 3818 3819 RuntimeStub* stub = 3820 RuntimeStub::new_runtime_stub(code.name(), 3821 &code, 3822 frame_complete, 3823 (framesize >> (LogBytesPerWord - LogBytesPerInt)), 3824 oop_maps, 3825 false); 3826 return stub; 3827 } 3828 3829 // For c2: call to return a leased buffer. 3830 RuntimeStub* StubGenerator::generate_jfr_return_lease() { 3831 enum layout { 3832 rbp_off, 3833 rbpH_off, 3834 return_off, 3835 return_off2, 3836 framesize // inclusive of return address 3837 }; 3838 3839 CodeBuffer code("jfr_return_lease", 1024, 64); 3840 MacroAssembler* _masm = new MacroAssembler(&code); 3841 address start = __ pc(); 3842 3843 __ enter(); 3844 address the_pc = __ pc(); 3845 3846 int frame_complete = the_pc - start; 3847 3848 __ set_last_Java_frame(rsp, rbp, the_pc, rscratch2); 3849 __ movptr(c_rarg0, r15_thread); 3850 __ call_VM_leaf(CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::return_lease), 1); 3851 __ reset_last_Java_frame(true); 3852 3853 __ leave(); 3854 __ ret(0); 3855 3856 OopMapSet* oop_maps = new OopMapSet(); 3857 OopMap* map = new OopMap(framesize, 1); 3858 oop_maps->add_gc_map(frame_complete, map); 3859 3860 RuntimeStub* stub = 3861 RuntimeStub::new_runtime_stub(code.name(), 3862 &code, 3863 frame_complete, 3864 (framesize >> (LogBytesPerWord - LogBytesPerInt)), 3865 oop_maps, 3866 false); 3867 return stub; 3868 } 3869 3870 #endif // INCLUDE_JFR 3871 3872 // Continuation point for throwing of implicit exceptions that are 3873 // not handled in the current activation. Fabricates an exception 3874 // oop and initiates normal exception dispatching in this 3875 // frame. Since we need to preserve callee-saved values (currently 3876 // only for C2, but done for C1 as well) we need a callee-saved oop 3877 // map and therefore have to make these stubs into RuntimeStubs 3878 // rather than BufferBlobs. If the compiler needs all registers to 3879 // be preserved between the fault point and the exception handler 3880 // then it must assume responsibility for that in 3881 // AbstractCompiler::continuation_for_implicit_null_exception or 3882 // continuation_for_implicit_division_by_zero_exception. All other 3883 // implicit exceptions (e.g., NullPointerException or 3884 // AbstractMethodError on entry) are either at call sites or 3885 // otherwise assume that stack unwinding will be initiated, so 3886 // caller saved registers were assumed volatile in the compiler. 3887 address StubGenerator::generate_throw_exception(const char* name, 3888 address runtime_entry, 3889 Register arg1, 3890 Register arg2) { 3891 // Information about frame layout at time of blocking runtime call. 3892 // Note that we only have to preserve callee-saved registers since 3893 // the compilers are responsible for supplying a continuation point 3894 // if they expect all registers to be preserved. 3895 enum layout { 3896 rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt, 3897 rbp_off2, 3898 return_off, 3899 return_off2, 3900 framesize // inclusive of return address 3901 }; 3902 3903 int insts_size = 512; 3904 int locs_size = 64; 3905 3906 CodeBuffer code(name, insts_size, locs_size); 3907 OopMapSet* oop_maps = new OopMapSet(); 3908 MacroAssembler* _masm = new MacroAssembler(&code); 3909 3910 address start = __ pc(); 3911 3912 // This is an inlined and slightly modified version of call_VM 3913 // which has the ability to fetch the return PC out of 3914 // thread-local storage and also sets up last_Java_sp slightly 3915 // differently than the real call_VM 3916 3917 __ enter(); // required for proper stackwalking of RuntimeStub frame 3918 3919 assert(is_even(framesize/2), "sp not 16-byte aligned"); 3920 3921 // return address and rbp are already in place 3922 __ subptr(rsp, (framesize-4) << LogBytesPerInt); // prolog 3923 3924 int frame_complete = __ pc() - start; 3925 3926 // Set up last_Java_sp and last_Java_fp 3927 address the_pc = __ pc(); 3928 __ set_last_Java_frame(rsp, rbp, the_pc, rscratch1); 3929 __ andptr(rsp, -(StackAlignmentInBytes)); // Align stack 3930 3931 // Call runtime 3932 if (arg1 != noreg) { 3933 assert(arg2 != c_rarg1, "clobbered"); 3934 __ movptr(c_rarg1, arg1); 3935 } 3936 if (arg2 != noreg) { 3937 __ movptr(c_rarg2, arg2); 3938 } 3939 __ movptr(c_rarg0, r15_thread); 3940 BLOCK_COMMENT("call runtime_entry"); 3941 __ call(RuntimeAddress(runtime_entry)); 3942 3943 // Generate oop map 3944 OopMap* map = new OopMap(framesize, 0); 3945 3946 oop_maps->add_gc_map(the_pc - start, map); 3947 3948 __ reset_last_Java_frame(true); 3949 3950 __ leave(); // required for proper stackwalking of RuntimeStub frame 3951 3952 // check for pending exceptions 3953 #ifdef ASSERT 3954 Label L; 3955 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD); 3956 __ jcc(Assembler::notEqual, L); 3957 __ should_not_reach_here(); 3958 __ bind(L); 3959 #endif // ASSERT 3960 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 3961 3962 3963 // codeBlob framesize is in words (not VMRegImpl::slot_size) 3964 RuntimeStub* stub = 3965 RuntimeStub::new_runtime_stub(name, 3966 &code, 3967 frame_complete, 3968 (framesize >> (LogBytesPerWord - LogBytesPerInt)), 3969 oop_maps, false); 3970 return stub->entry_point(); 3971 } 3972 3973 // exception handler for upcall stubs 3974 address StubGenerator::generate_upcall_stub_exception_handler() { 3975 StubCodeMark mark(this, "StubRoutines", "upcall stub exception handler"); 3976 address start = __ pc(); 3977 3978 // native caller has no idea how to handle exceptions 3979 // we just crash here. Up to callee to catch exceptions. 3980 __ verify_oop(rax); 3981 __ vzeroupper(); 3982 __ mov(c_rarg0, rax); 3983 __ andptr(rsp, -StackAlignmentInBytes); // align stack as required by ABI 3984 __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows 3985 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, UpcallLinker::handle_uncaught_exception))); 3986 __ should_not_reach_here(); 3987 3988 return start; 3989 } 3990 3991 address StubGenerator::generate_lookup_secondary_supers_table_stub(u1 super_klass_index) { 3992 StubCodeMark mark(this, "StubRoutines", "lookup_secondary_supers_table"); 3993 3994 address start = __ pc(); 3995 3996 const Register 3997 r_super_klass = rax, 3998 r_sub_klass = rsi, 3999 result = rdi; 4000 4001 __ lookup_secondary_supers_table(r_sub_klass, r_super_klass, 4002 rdx, rcx, rbx, r11, // temps 4003 result, 4004 super_klass_index); 4005 __ ret(0); 4006 4007 return start; 4008 } 4009 4010 // Slow path implementation for UseSecondarySupersTable. 4011 address StubGenerator::generate_lookup_secondary_supers_table_slow_path_stub() { 4012 StubCodeMark mark(this, "StubRoutines", "lookup_secondary_supers_table"); 4013 4014 address start = __ pc(); 4015 4016 const Register 4017 r_super_klass = rax, 4018 r_array_base = rbx, 4019 r_array_index = rdx, 4020 r_sub_klass = rsi, 4021 r_bitmap = r11, 4022 result = rdi; 4023 4024 Label L_success; 4025 __ lookup_secondary_supers_table_slow_path(r_super_klass, r_array_base, r_array_index, r_bitmap, 4026 rcx, rdi, // temps 4027 &L_success); 4028 // bind(L_failure); 4029 __ movl(result, 1); 4030 __ ret(0); 4031 4032 __ bind(L_success); 4033 __ movl(result, 0); 4034 __ ret(0); 4035 4036 return start; 4037 } 4038 4039 void StubGenerator::create_control_words() { 4040 // Round to nearest, 64-bit mode, exceptions masked, flags specialized 4041 StubRoutines::x86::_mxcsr_std = EnableX86ECoreOpts ? 0x1FBF : 0x1F80; 4042 // Round to zero, 64-bit mode, exceptions masked, flags specialized 4043 StubRoutines::x86::_mxcsr_rz = EnableX86ECoreOpts ? 0x7FBF : 0x7F80; 4044 } 4045 4046 // Initialization 4047 void StubGenerator::generate_initial_stubs() { 4048 // Generates all stubs and initializes the entry points 4049 4050 // This platform-specific settings are needed by generate_call_stub() 4051 create_control_words(); 4052 4053 // Initialize table for unsafe copy memeory check. 4054 if (UnsafeMemoryAccess::_table == nullptr) { 4055 UnsafeMemoryAccess::create_table(16 + 4); // 16 for copyMemory; 4 for setMemory 4056 } 4057 4058 // entry points that exist in all platforms Note: This is code 4059 // that could be shared among different platforms - however the 4060 // benefit seems to be smaller than the disadvantage of having a 4061 // much more complicated generator structure. See also comment in 4062 // stubRoutines.hpp. 4063 4064 StubRoutines::_forward_exception_entry = generate_forward_exception(); 4065 4066 StubRoutines::_call_stub_entry = 4067 generate_call_stub(StubRoutines::_call_stub_return_address); 4068 4069 // is referenced by megamorphic call 4070 StubRoutines::_catch_exception_entry = generate_catch_exception(); 4071 4072 // atomic calls 4073 StubRoutines::_fence_entry = generate_orderaccess_fence(); 4074 4075 // platform dependent 4076 StubRoutines::x86::_get_previous_sp_entry = generate_get_previous_sp(); 4077 4078 StubRoutines::x86::_verify_mxcsr_entry = generate_verify_mxcsr(); 4079 4080 StubRoutines::x86::_f2i_fixup = generate_f2i_fixup(); 4081 StubRoutines::x86::_f2l_fixup = generate_f2l_fixup(); 4082 StubRoutines::x86::_d2i_fixup = generate_d2i_fixup(); 4083 StubRoutines::x86::_d2l_fixup = generate_d2l_fixup(); 4084 4085 StubRoutines::x86::_float_sign_mask = generate_fp_mask("float_sign_mask", 0x7FFFFFFF7FFFFFFF); 4086 StubRoutines::x86::_float_sign_flip = generate_fp_mask("float_sign_flip", 0x8000000080000000); 4087 StubRoutines::x86::_double_sign_mask = generate_fp_mask("double_sign_mask", 0x7FFFFFFFFFFFFFFF); 4088 StubRoutines::x86::_double_sign_flip = generate_fp_mask("double_sign_flip", 0x8000000000000000); 4089 4090 // Build this early so it's available for the interpreter. 4091 StubRoutines::_throw_StackOverflowError_entry = 4092 generate_throw_exception("StackOverflowError throw_exception", 4093 CAST_FROM_FN_PTR(address, 4094 SharedRuntime:: 4095 throw_StackOverflowError)); 4096 StubRoutines::_throw_delayed_StackOverflowError_entry = 4097 generate_throw_exception("delayed StackOverflowError throw_exception", 4098 CAST_FROM_FN_PTR(address, 4099 SharedRuntime:: 4100 throw_delayed_StackOverflowError)); 4101 if (UseCRC32Intrinsics) { 4102 // set table address before stub generation which use it 4103 StubRoutines::_crc_table_adr = (address)StubRoutines::x86::_crc_table; 4104 StubRoutines::_updateBytesCRC32 = generate_updateBytesCRC32(); 4105 } 4106 4107 if (UseCRC32CIntrinsics) { 4108 bool supports_clmul = VM_Version::supports_clmul(); 4109 StubRoutines::x86::generate_CRC32C_table(supports_clmul); 4110 StubRoutines::_crc32c_table_addr = (address)StubRoutines::x86::_crc32c_table; 4111 StubRoutines::_updateBytesCRC32C = generate_updateBytesCRC32C(supports_clmul); 4112 } 4113 4114 if (VM_Version::supports_float16()) { 4115 // For results consistency both intrinsics should be enabled. 4116 // vmIntrinsics checks InlineIntrinsics flag, no need to check it here. 4117 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_float16ToFloat) && 4118 vmIntrinsics::is_intrinsic_available(vmIntrinsics::_floatToFloat16)) { 4119 StubRoutines::_hf2f = generate_float16ToFloat(); 4120 StubRoutines::_f2hf = generate_floatToFloat16(); 4121 } 4122 } 4123 4124 generate_libm_stubs(); 4125 4126 StubRoutines::_fmod = generate_libmFmod(); // from stubGenerator_x86_64_fmod.cpp 4127 } 4128 4129 void StubGenerator::generate_continuation_stubs() { 4130 // Continuation stubs: 4131 StubRoutines::_cont_thaw = generate_cont_thaw(); 4132 StubRoutines::_cont_returnBarrier = generate_cont_returnBarrier(); 4133 StubRoutines::_cont_returnBarrierExc = generate_cont_returnBarrier_exception(); 4134 4135 JFR_ONLY(generate_jfr_stubs();) 4136 } 4137 4138 #if INCLUDE_JFR 4139 void StubGenerator::generate_jfr_stubs() { 4140 StubRoutines::_jfr_write_checkpoint_stub = generate_jfr_write_checkpoint(); 4141 StubRoutines::_jfr_write_checkpoint = StubRoutines::_jfr_write_checkpoint_stub->entry_point(); 4142 StubRoutines::_jfr_return_lease_stub = generate_jfr_return_lease(); 4143 StubRoutines::_jfr_return_lease = StubRoutines::_jfr_return_lease_stub->entry_point(); 4144 } 4145 #endif 4146 4147 void StubGenerator::generate_final_stubs() { 4148 // Generates the rest of stubs and initializes the entry points 4149 4150 // These entry points require SharedInfo::stack0 to be set up in 4151 // non-core builds and need to be relocatable, so they each 4152 // fabricate a RuntimeStub internally. 4153 StubRoutines::_throw_AbstractMethodError_entry = 4154 generate_throw_exception("AbstractMethodError throw_exception", 4155 CAST_FROM_FN_PTR(address, 4156 SharedRuntime:: 4157 throw_AbstractMethodError)); 4158 4159 StubRoutines::_throw_IncompatibleClassChangeError_entry = 4160 generate_throw_exception("IncompatibleClassChangeError throw_exception", 4161 CAST_FROM_FN_PTR(address, 4162 SharedRuntime:: 4163 throw_IncompatibleClassChangeError)); 4164 4165 StubRoutines::_throw_NullPointerException_at_call_entry = 4166 generate_throw_exception("NullPointerException at call throw_exception", 4167 CAST_FROM_FN_PTR(address, 4168 SharedRuntime:: 4169 throw_NullPointerException_at_call)); 4170 4171 // support for verify_oop (must happen after universe_init) 4172 if (VerifyOops) { 4173 StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop(); 4174 } 4175 4176 // data cache line writeback 4177 StubRoutines::_data_cache_writeback = generate_data_cache_writeback(); 4178 StubRoutines::_data_cache_writeback_sync = generate_data_cache_writeback_sync(); 4179 4180 // arraycopy stubs used by compilers 4181 generate_arraycopy_stubs(); 4182 4183 BarrierSetNMethod* bs_nm = BarrierSet::barrier_set()->barrier_set_nmethod(); 4184 if (bs_nm != nullptr) { 4185 StubRoutines::_method_entry_barrier = generate_method_entry_barrier(); 4186 } 4187 4188 if (UseVectorizedMismatchIntrinsic) { 4189 StubRoutines::_vectorizedMismatch = generate_vectorizedMismatch(); 4190 } 4191 4192 StubRoutines::_upcall_stub_exception_handler = generate_upcall_stub_exception_handler(); 4193 } 4194 4195 void StubGenerator::generate_compiler_stubs() { 4196 #if COMPILER2_OR_JVMCI 4197 4198 // Entry points that are C2 compiler specific. 4199 4200 StubRoutines::x86::_vector_float_sign_mask = generate_vector_mask("vector_float_sign_mask", 0x7FFFFFFF7FFFFFFF); 4201 StubRoutines::x86::_vector_float_sign_flip = generate_vector_mask("vector_float_sign_flip", 0x8000000080000000); 4202 StubRoutines::x86::_vector_double_sign_mask = generate_vector_mask("vector_double_sign_mask", 0x7FFFFFFFFFFFFFFF); 4203 StubRoutines::x86::_vector_double_sign_flip = generate_vector_mask("vector_double_sign_flip", 0x8000000000000000); 4204 StubRoutines::x86::_vector_all_bits_set = generate_vector_mask("vector_all_bits_set", 0xFFFFFFFFFFFFFFFF); 4205 StubRoutines::x86::_vector_int_mask_cmp_bits = generate_vector_mask("vector_int_mask_cmp_bits", 0x0000000100000001); 4206 StubRoutines::x86::_vector_short_to_byte_mask = generate_vector_mask("vector_short_to_byte_mask", 0x00ff00ff00ff00ff); 4207 StubRoutines::x86::_vector_byte_perm_mask = generate_vector_byte_perm_mask("vector_byte_perm_mask"); 4208 StubRoutines::x86::_vector_int_to_byte_mask = generate_vector_mask("vector_int_to_byte_mask", 0x000000ff000000ff); 4209 StubRoutines::x86::_vector_int_to_short_mask = generate_vector_mask("vector_int_to_short_mask", 0x0000ffff0000ffff); 4210 StubRoutines::x86::_vector_32_bit_mask = generate_vector_custom_i32("vector_32_bit_mask", Assembler::AVX_512bit, 4211 0xFFFFFFFF, 0, 0, 0); 4212 StubRoutines::x86::_vector_64_bit_mask = generate_vector_custom_i32("vector_64_bit_mask", Assembler::AVX_512bit, 4213 0xFFFFFFFF, 0xFFFFFFFF, 0, 0); 4214 StubRoutines::x86::_vector_int_shuffle_mask = generate_vector_mask("vector_int_shuffle_mask", 0x0302010003020100); 4215 StubRoutines::x86::_vector_byte_shuffle_mask = generate_vector_byte_shuffle_mask("vector_byte_shuffle_mask"); 4216 StubRoutines::x86::_vector_short_shuffle_mask = generate_vector_mask("vector_short_shuffle_mask", 0x0100010001000100); 4217 StubRoutines::x86::_vector_long_shuffle_mask = generate_vector_mask("vector_long_shuffle_mask", 0x0000000100000000); 4218 StubRoutines::x86::_vector_long_sign_mask = generate_vector_mask("vector_long_sign_mask", 0x8000000000000000); 4219 StubRoutines::x86::_vector_iota_indices = generate_iota_indices("iota_indices"); 4220 StubRoutines::x86::_vector_count_leading_zeros_lut = generate_count_leading_zeros_lut("count_leading_zeros_lut"); 4221 StubRoutines::x86::_vector_reverse_bit_lut = generate_vector_reverse_bit_lut("reverse_bit_lut"); 4222 StubRoutines::x86::_vector_reverse_byte_perm_mask_long = generate_vector_reverse_byte_perm_mask_long("perm_mask_long"); 4223 StubRoutines::x86::_vector_reverse_byte_perm_mask_int = generate_vector_reverse_byte_perm_mask_int("perm_mask_int"); 4224 StubRoutines::x86::_vector_reverse_byte_perm_mask_short = generate_vector_reverse_byte_perm_mask_short("perm_mask_short"); 4225 4226 if (VM_Version::supports_avx2() && !VM_Version::supports_avx512vl()) { 4227 StubRoutines::x86::_compress_perm_table32 = generate_compress_perm_table("compress_perm_table32", 32); 4228 StubRoutines::x86::_compress_perm_table64 = generate_compress_perm_table("compress_perm_table64", 64); 4229 StubRoutines::x86::_expand_perm_table32 = generate_expand_perm_table("expand_perm_table32", 32); 4230 StubRoutines::x86::_expand_perm_table64 = generate_expand_perm_table("expand_perm_table64", 64); 4231 } 4232 4233 if (VM_Version::supports_avx2() && !VM_Version::supports_avx512_vpopcntdq()) { 4234 // lut implementation influenced by counting 1s algorithm from section 5-1 of Hackers' Delight. 4235 StubRoutines::x86::_vector_popcount_lut = generate_popcount_avx_lut("popcount_lut"); 4236 } 4237 4238 generate_aes_stubs(); 4239 4240 generate_ghash_stubs(); 4241 4242 generate_chacha_stubs(); 4243 4244 #ifdef COMPILER2 4245 if ((UseAVX == 2) && EnableX86ECoreOpts) { 4246 generate_string_indexof(StubRoutines::_string_indexof_array); 4247 } 4248 #endif 4249 4250 if (UseAdler32Intrinsics) { 4251 StubRoutines::_updateBytesAdler32 = generate_updateBytesAdler32(); 4252 } 4253 4254 if (UsePoly1305Intrinsics) { 4255 StubRoutines::_poly1305_processBlocks = generate_poly1305_processBlocks(); 4256 } 4257 4258 if (UseIntPolyIntrinsics) { 4259 StubRoutines::_intpoly_montgomeryMult_P256 = generate_intpoly_montgomeryMult_P256(); 4260 StubRoutines::_intpoly_assign = generate_intpoly_assign(); 4261 } 4262 4263 if (UseMD5Intrinsics) { 4264 StubRoutines::_md5_implCompress = generate_md5_implCompress(false, "md5_implCompress"); 4265 StubRoutines::_md5_implCompressMB = generate_md5_implCompress(true, "md5_implCompressMB"); 4266 } 4267 4268 if (UseSHA1Intrinsics) { 4269 StubRoutines::x86::_upper_word_mask_addr = generate_upper_word_mask(); 4270 StubRoutines::x86::_shuffle_byte_flip_mask_addr = generate_shuffle_byte_flip_mask(); 4271 StubRoutines::_sha1_implCompress = generate_sha1_implCompress(false, "sha1_implCompress"); 4272 StubRoutines::_sha1_implCompressMB = generate_sha1_implCompress(true, "sha1_implCompressMB"); 4273 } 4274 4275 if (UseSHA256Intrinsics) { 4276 StubRoutines::x86::_k256_adr = (address)StubRoutines::x86::_k256; 4277 char* dst = (char*)StubRoutines::x86::_k256_W; 4278 char* src = (char*)StubRoutines::x86::_k256; 4279 for (int ii = 0; ii < 16; ++ii) { 4280 memcpy(dst + 32 * ii, src + 16 * ii, 16); 4281 memcpy(dst + 32 * ii + 16, src + 16 * ii, 16); 4282 } 4283 StubRoutines::x86::_k256_W_adr = (address)StubRoutines::x86::_k256_W; 4284 StubRoutines::x86::_pshuffle_byte_flip_mask_addr = generate_pshuffle_byte_flip_mask(); 4285 StubRoutines::_sha256_implCompress = generate_sha256_implCompress(false, "sha256_implCompress"); 4286 StubRoutines::_sha256_implCompressMB = generate_sha256_implCompress(true, "sha256_implCompressMB"); 4287 } 4288 4289 if (UseSHA512Intrinsics) { 4290 StubRoutines::x86::_k512_W_addr = (address)StubRoutines::x86::_k512_W; 4291 StubRoutines::x86::_pshuffle_byte_flip_mask_addr_sha512 = generate_pshuffle_byte_flip_mask_sha512(); 4292 StubRoutines::_sha512_implCompress = generate_sha512_implCompress(false, "sha512_implCompress"); 4293 StubRoutines::_sha512_implCompressMB = generate_sha512_implCompress(true, "sha512_implCompressMB"); 4294 } 4295 4296 if (UseBASE64Intrinsics) { 4297 if(VM_Version::supports_avx2()) { 4298 StubRoutines::x86::_avx2_shuffle_base64 = base64_avx2_shuffle_addr(); 4299 StubRoutines::x86::_avx2_input_mask_base64 = base64_avx2_input_mask_addr(); 4300 StubRoutines::x86::_avx2_lut_base64 = base64_avx2_lut_addr(); 4301 StubRoutines::x86::_avx2_decode_tables_base64 = base64_AVX2_decode_tables_addr(); 4302 StubRoutines::x86::_avx2_decode_lut_tables_base64 = base64_AVX2_decode_LUT_tables_addr(); 4303 } 4304 StubRoutines::x86::_encoding_table_base64 = base64_encoding_table_addr(); 4305 if (VM_Version::supports_avx512_vbmi()) { 4306 StubRoutines::x86::_shuffle_base64 = base64_shuffle_addr(); 4307 StubRoutines::x86::_lookup_lo_base64 = base64_vbmi_lookup_lo_addr(); 4308 StubRoutines::x86::_lookup_hi_base64 = base64_vbmi_lookup_hi_addr(); 4309 StubRoutines::x86::_lookup_lo_base64url = base64_vbmi_lookup_lo_url_addr(); 4310 StubRoutines::x86::_lookup_hi_base64url = base64_vbmi_lookup_hi_url_addr(); 4311 StubRoutines::x86::_pack_vec_base64 = base64_vbmi_pack_vec_addr(); 4312 StubRoutines::x86::_join_0_1_base64 = base64_vbmi_join_0_1_addr(); 4313 StubRoutines::x86::_join_1_2_base64 = base64_vbmi_join_1_2_addr(); 4314 StubRoutines::x86::_join_2_3_base64 = base64_vbmi_join_2_3_addr(); 4315 } 4316 StubRoutines::x86::_decoding_table_base64 = base64_decoding_table_addr(); 4317 StubRoutines::_base64_encodeBlock = generate_base64_encodeBlock(); 4318 StubRoutines::_base64_decodeBlock = generate_base64_decodeBlock(); 4319 } 4320 4321 #ifdef COMPILER2 4322 if (UseMultiplyToLenIntrinsic) { 4323 StubRoutines::_multiplyToLen = generate_multiplyToLen(); 4324 } 4325 if (UseSquareToLenIntrinsic) { 4326 StubRoutines::_squareToLen = generate_squareToLen(); 4327 } 4328 if (UseMulAddIntrinsic) { 4329 StubRoutines::_mulAdd = generate_mulAdd(); 4330 } 4331 if (VM_Version::supports_avx512_vbmi2()) { 4332 StubRoutines::_bigIntegerRightShiftWorker = generate_bigIntegerRightShift(); 4333 StubRoutines::_bigIntegerLeftShiftWorker = generate_bigIntegerLeftShift(); 4334 } 4335 if (UseSecondarySupersTable) { 4336 StubRoutines::_lookup_secondary_supers_table_slow_path_stub = generate_lookup_secondary_supers_table_slow_path_stub(); 4337 if (! InlineSecondarySupersTest) { 4338 for (int slot = 0; slot < Klass::SECONDARY_SUPERS_TABLE_SIZE; slot++) { 4339 StubRoutines::_lookup_secondary_supers_table_stubs[slot] = generate_lookup_secondary_supers_table_stub(slot); 4340 } 4341 } 4342 } 4343 if (UseMontgomeryMultiplyIntrinsic) { 4344 StubRoutines::_montgomeryMultiply 4345 = CAST_FROM_FN_PTR(address, SharedRuntime::montgomery_multiply); 4346 } 4347 if (UseMontgomerySquareIntrinsic) { 4348 StubRoutines::_montgomerySquare 4349 = CAST_FROM_FN_PTR(address, SharedRuntime::montgomery_square); 4350 } 4351 4352 // Load x86_64_sort library on supported hardware to enable SIMD sort and partition intrinsics 4353 4354 if (VM_Version::is_intel() && (VM_Version::supports_avx512dq() || VM_Version::supports_avx2())) { 4355 void *libsimdsort = nullptr; 4356 char ebuf_[1024]; 4357 char dll_name_simd_sort[JVM_MAXPATHLEN]; 4358 if (os::dll_locate_lib(dll_name_simd_sort, sizeof(dll_name_simd_sort), Arguments::get_dll_dir(), "simdsort")) { 4359 libsimdsort = os::dll_load(dll_name_simd_sort, ebuf_, sizeof ebuf_); 4360 } 4361 // Get addresses for SIMD sort and partition routines 4362 if (libsimdsort != nullptr) { 4363 log_info(library)("Loaded library %s, handle " INTPTR_FORMAT, JNI_LIB_PREFIX "simdsort" JNI_LIB_SUFFIX, p2i(libsimdsort)); 4364 4365 snprintf(ebuf_, sizeof(ebuf_), VM_Version::supports_avx512dq() ? "avx512_sort" : "avx2_sort"); 4366 StubRoutines::_array_sort = (address)os::dll_lookup(libsimdsort, ebuf_); 4367 4368 snprintf(ebuf_, sizeof(ebuf_), VM_Version::supports_avx512dq() ? "avx512_partition" : "avx2_partition"); 4369 StubRoutines::_array_partition = (address)os::dll_lookup(libsimdsort, ebuf_); 4370 } 4371 } 4372 4373 // Get svml stub routine addresses 4374 void *libjsvml = nullptr; 4375 char ebuf[1024]; 4376 char dll_name[JVM_MAXPATHLEN]; 4377 if (os::dll_locate_lib(dll_name, sizeof(dll_name), Arguments::get_dll_dir(), "jsvml")) { 4378 libjsvml = os::dll_load(dll_name, ebuf, sizeof ebuf); 4379 } 4380 if (libjsvml != nullptr) { 4381 // SVML method naming convention 4382 // All the methods are named as __jsvml_op<T><N>_ha_<VV> 4383 // Where: 4384 // ha stands for high accuracy 4385 // <T> is optional to indicate float/double 4386 // Set to f for vector float operation 4387 // Omitted for vector double operation 4388 // <N> is the number of elements in the vector 4389 // 1, 2, 4, 8, 16 4390 // e.g. 128 bit float vector has 4 float elements 4391 // <VV> indicates the avx/sse level: 4392 // z0 is AVX512, l9 is AVX2, e9 is AVX1 and ex is for SSE2 4393 // e.g. __jsvml_expf16_ha_z0 is the method for computing 16 element vector float exp using AVX 512 insns 4394 // __jsvml_exp8_ha_z0 is the method for computing 8 element vector double exp using AVX 512 insns 4395 4396 log_info(library)("Loaded library %s, handle " INTPTR_FORMAT, JNI_LIB_PREFIX "jsvml" JNI_LIB_SUFFIX, p2i(libjsvml)); 4397 if (UseAVX > 2) { 4398 for (int op = 0; op < VectorSupport::NUM_SVML_OP; op++) { 4399 int vop = VectorSupport::VECTOR_OP_SVML_START + op; 4400 if ((!VM_Version::supports_avx512dq()) && 4401 (vop == VectorSupport::VECTOR_OP_LOG || vop == VectorSupport::VECTOR_OP_LOG10 || vop == VectorSupport::VECTOR_OP_POW)) { 4402 continue; 4403 } 4404 snprintf(ebuf, sizeof(ebuf), "__jsvml_%sf16_ha_z0", VectorSupport::svmlname[op]); 4405 StubRoutines::_vector_f_math[VectorSupport::VEC_SIZE_512][op] = (address)os::dll_lookup(libjsvml, ebuf); 4406 4407 snprintf(ebuf, sizeof(ebuf), "__jsvml_%s8_ha_z0", VectorSupport::svmlname[op]); 4408 StubRoutines::_vector_d_math[VectorSupport::VEC_SIZE_512][op] = (address)os::dll_lookup(libjsvml, ebuf); 4409 } 4410 } 4411 const char* avx_sse_str = (UseAVX >= 2) ? "l9" : ((UseAVX == 1) ? "e9" : "ex"); 4412 for (int op = 0; op < VectorSupport::NUM_SVML_OP; op++) { 4413 int vop = VectorSupport::VECTOR_OP_SVML_START + op; 4414 if (vop == VectorSupport::VECTOR_OP_POW) { 4415 continue; 4416 } 4417 snprintf(ebuf, sizeof(ebuf), "__jsvml_%sf4_ha_%s", VectorSupport::svmlname[op], avx_sse_str); 4418 StubRoutines::_vector_f_math[VectorSupport::VEC_SIZE_64][op] = (address)os::dll_lookup(libjsvml, ebuf); 4419 4420 snprintf(ebuf, sizeof(ebuf), "__jsvml_%sf4_ha_%s", VectorSupport::svmlname[op], avx_sse_str); 4421 StubRoutines::_vector_f_math[VectorSupport::VEC_SIZE_128][op] = (address)os::dll_lookup(libjsvml, ebuf); 4422 4423 snprintf(ebuf, sizeof(ebuf), "__jsvml_%sf8_ha_%s", VectorSupport::svmlname[op], avx_sse_str); 4424 StubRoutines::_vector_f_math[VectorSupport::VEC_SIZE_256][op] = (address)os::dll_lookup(libjsvml, ebuf); 4425 4426 snprintf(ebuf, sizeof(ebuf), "__jsvml_%s1_ha_%s", VectorSupport::svmlname[op], avx_sse_str); 4427 StubRoutines::_vector_d_math[VectorSupport::VEC_SIZE_64][op] = (address)os::dll_lookup(libjsvml, ebuf); 4428 4429 snprintf(ebuf, sizeof(ebuf), "__jsvml_%s2_ha_%s", VectorSupport::svmlname[op], avx_sse_str); 4430 StubRoutines::_vector_d_math[VectorSupport::VEC_SIZE_128][op] = (address)os::dll_lookup(libjsvml, ebuf); 4431 4432 snprintf(ebuf, sizeof(ebuf), "__jsvml_%s4_ha_%s", VectorSupport::svmlname[op], avx_sse_str); 4433 StubRoutines::_vector_d_math[VectorSupport::VEC_SIZE_256][op] = (address)os::dll_lookup(libjsvml, ebuf); 4434 } 4435 } 4436 4437 #endif // COMPILER2 4438 #endif // COMPILER2_OR_JVMCI 4439 } 4440 4441 StubGenerator::StubGenerator(CodeBuffer* code, StubsKind kind) : StubCodeGenerator(code) { 4442 DEBUG_ONLY( _regs_in_thread = false; ) 4443 switch(kind) { 4444 case Initial_stubs: 4445 generate_initial_stubs(); 4446 break; 4447 case Continuation_stubs: 4448 generate_continuation_stubs(); 4449 break; 4450 case Compiler_stubs: 4451 generate_compiler_stubs(); 4452 break; 4453 case Final_stubs: 4454 generate_final_stubs(); 4455 break; 4456 default: 4457 fatal("unexpected stubs kind: %d", kind); 4458 break; 4459 }; 4460 } 4461 4462 void StubGenerator_generate(CodeBuffer* code, StubCodeGenerator::StubsKind kind) { 4463 StubGenerator g(code, kind); 4464 } 4465 4466 #undef __