1 /* 2 * Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "compiler/disassembler.hpp" 28 #include "gc/shared/collectedHeap.hpp" 29 #include "gc/shared/gc_globals.hpp" 30 #include "gc/shared/tlab_globals.hpp" 31 #include "interpreter/interpreter.hpp" 32 #include "interpreter/interpreterRuntime.hpp" 33 #include "interpreter/interp_masm.hpp" 34 #include "interpreter/templateTable.hpp" 35 #include "memory/universe.hpp" 36 #include "oops/methodData.hpp" 37 #include "oops/objArrayKlass.hpp" 38 #include "oops/oop.inline.hpp" 39 #include "oops/resolvedFieldEntry.hpp" 40 #include "oops/resolvedIndyEntry.hpp" 41 #include "prims/jvmtiExport.hpp" 42 #include "prims/methodHandles.hpp" 43 #include "runtime/frame.inline.hpp" 44 #include "runtime/safepointMechanism.hpp" 45 #include "runtime/sharedRuntime.hpp" 46 #include "runtime/stubRoutines.hpp" 47 #include "runtime/synchronizer.hpp" 48 #include "utilities/macros.hpp" 49 50 #define __ Disassembler::hook<InterpreterMacroAssembler>(__FILE__, __LINE__, _masm)-> 51 52 // Global Register Names 53 static const Register rbcp = LP64_ONLY(r13) NOT_LP64(rsi); 54 static const Register rlocals = LP64_ONLY(r14) NOT_LP64(rdi); 55 56 // Address Computation: local variables 57 static inline Address iaddress(int n) { 58 return Address(rlocals, Interpreter::local_offset_in_bytes(n)); 59 } 60 61 static inline Address laddress(int n) { 62 return iaddress(n + 1); 63 } 64 65 #ifndef _LP64 66 static inline Address haddress(int n) { 67 return iaddress(n + 0); 68 } 69 #endif 70 71 static inline Address faddress(int n) { 72 return iaddress(n); 73 } 74 75 static inline Address daddress(int n) { 76 return laddress(n); 77 } 78 79 static inline Address aaddress(int n) { 80 return iaddress(n); 81 } 82 83 static inline Address iaddress(Register r) { 84 return Address(rlocals, r, Address::times_ptr); 85 } 86 87 static inline Address laddress(Register r) { 88 return Address(rlocals, r, Address::times_ptr, Interpreter::local_offset_in_bytes(1)); 89 } 90 91 #ifndef _LP64 92 static inline Address haddress(Register r) { 93 return Address(rlocals, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(0)); 94 } 95 #endif 96 97 static inline Address faddress(Register r) { 98 return iaddress(r); 99 } 100 101 static inline Address daddress(Register r) { 102 return laddress(r); 103 } 104 105 static inline Address aaddress(Register r) { 106 return iaddress(r); 107 } 108 109 110 // expression stack 111 // (Note: Must not use symmetric equivalents at_rsp_m1/2 since they store 112 // data beyond the rsp which is potentially unsafe in an MT environment; 113 // an interrupt may overwrite that data.) 114 static inline Address at_rsp () { 115 return Address(rsp, 0); 116 } 117 118 // At top of Java expression stack which may be different than esp(). It 119 // isn't for category 1 objects. 120 static inline Address at_tos () { 121 return Address(rsp, Interpreter::expr_offset_in_bytes(0)); 122 } 123 124 static inline Address at_tos_p1() { 125 return Address(rsp, Interpreter::expr_offset_in_bytes(1)); 126 } 127 128 static inline Address at_tos_p2() { 129 return Address(rsp, Interpreter::expr_offset_in_bytes(2)); 130 } 131 132 // Condition conversion 133 static Assembler::Condition j_not(TemplateTable::Condition cc) { 134 switch (cc) { 135 case TemplateTable::equal : return Assembler::notEqual; 136 case TemplateTable::not_equal : return Assembler::equal; 137 case TemplateTable::less : return Assembler::greaterEqual; 138 case TemplateTable::less_equal : return Assembler::greater; 139 case TemplateTable::greater : return Assembler::lessEqual; 140 case TemplateTable::greater_equal: return Assembler::less; 141 } 142 ShouldNotReachHere(); 143 return Assembler::zero; 144 } 145 146 147 148 // Miscellaneous helper routines 149 // Store an oop (or null) at the address described by obj. 150 // If val == noreg this means store a null 151 152 153 static void do_oop_store(InterpreterMacroAssembler* _masm, 154 Address dst, 155 Register val, 156 DecoratorSet decorators = 0) { 157 assert(val == noreg || val == rax, "parameter is just for looks"); 158 __ store_heap_oop(dst, val, 159 NOT_LP64(rdx) LP64_ONLY(rscratch2), 160 NOT_LP64(rbx) LP64_ONLY(r9), 161 NOT_LP64(rsi) LP64_ONLY(r8), decorators); 162 } 163 164 static void do_oop_load(InterpreterMacroAssembler* _masm, 165 Address src, 166 Register dst, 167 DecoratorSet decorators = 0) { 168 __ load_heap_oop(dst, src, rdx, rbx, decorators); 169 } 170 171 Address TemplateTable::at_bcp(int offset) { 172 assert(_desc->uses_bcp(), "inconsistent uses_bcp information"); 173 return Address(rbcp, offset); 174 } 175 176 177 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg, 178 Register temp_reg, bool load_bc_into_bc_reg/*=true*/, 179 int byte_no) { 180 if (!RewriteBytecodes) return; 181 Label L_patch_done; 182 183 switch (bc) { 184 case Bytecodes::_fast_aputfield: 185 case Bytecodes::_fast_bputfield: 186 case Bytecodes::_fast_zputfield: 187 case Bytecodes::_fast_cputfield: 188 case Bytecodes::_fast_dputfield: 189 case Bytecodes::_fast_fputfield: 190 case Bytecodes::_fast_iputfield: 191 case Bytecodes::_fast_lputfield: 192 case Bytecodes::_fast_sputfield: 193 { 194 // We skip bytecode quickening for putfield instructions when 195 // the put_code written to the constant pool cache is zero. 196 // This is required so that every execution of this instruction 197 // calls out to InterpreterRuntime::resolve_get_put to do 198 // additional, required work. 199 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 200 assert(load_bc_into_bc_reg, "we use bc_reg as temp"); 201 __ load_field_entry(temp_reg, bc_reg); 202 if (byte_no == f1_byte) { 203 __ load_unsigned_byte(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::get_code_offset()))); 204 } else { 205 __ load_unsigned_byte(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::put_code_offset()))); 206 } 207 208 __ movl(bc_reg, bc); 209 __ cmpl(temp_reg, (int) 0); 210 __ jcc(Assembler::zero, L_patch_done); // don't patch 211 } 212 break; 213 default: 214 assert(byte_no == -1, "sanity"); 215 // the pair bytecodes have already done the load. 216 if (load_bc_into_bc_reg) { 217 __ movl(bc_reg, bc); 218 } 219 } 220 221 if (JvmtiExport::can_post_breakpoint()) { 222 Label L_fast_patch; 223 // if a breakpoint is present we can't rewrite the stream directly 224 __ movzbl(temp_reg, at_bcp(0)); 225 __ cmpl(temp_reg, Bytecodes::_breakpoint); 226 __ jcc(Assembler::notEqual, L_fast_patch); 227 __ get_method(temp_reg); 228 // Let breakpoint table handling rewrite to quicker bytecode 229 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), temp_reg, rbcp, bc_reg); 230 #ifndef ASSERT 231 __ jmpb(L_patch_done); 232 #else 233 __ jmp(L_patch_done); 234 #endif 235 __ bind(L_fast_patch); 236 } 237 238 #ifdef ASSERT 239 Label L_okay; 240 __ load_unsigned_byte(temp_reg, at_bcp(0)); 241 __ cmpl(temp_reg, (int) Bytecodes::java_code(bc)); 242 __ jcc(Assembler::equal, L_okay); 243 __ cmpl(temp_reg, bc_reg); 244 __ jcc(Assembler::equal, L_okay); 245 __ stop("patching the wrong bytecode"); 246 __ bind(L_okay); 247 #endif 248 249 // patch bytecode 250 __ movb(at_bcp(0), bc_reg); 251 __ bind(L_patch_done); 252 } 253 // Individual instructions 254 255 256 void TemplateTable::nop() { 257 transition(vtos, vtos); 258 // nothing to do 259 } 260 261 void TemplateTable::shouldnotreachhere() { 262 transition(vtos, vtos); 263 __ stop("shouldnotreachhere bytecode"); 264 } 265 266 void TemplateTable::aconst_null() { 267 transition(vtos, atos); 268 __ xorl(rax, rax); 269 } 270 271 void TemplateTable::iconst(int value) { 272 transition(vtos, itos); 273 if (value == 0) { 274 __ xorl(rax, rax); 275 } else { 276 __ movl(rax, value); 277 } 278 } 279 280 void TemplateTable::lconst(int value) { 281 transition(vtos, ltos); 282 if (value == 0) { 283 __ xorl(rax, rax); 284 } else { 285 __ movl(rax, value); 286 } 287 #ifndef _LP64 288 assert(value >= 0, "check this code"); 289 __ xorptr(rdx, rdx); 290 #endif 291 } 292 293 294 295 void TemplateTable::fconst(int value) { 296 transition(vtos, ftos); 297 if (UseSSE >= 1) { 298 static float one = 1.0f, two = 2.0f; 299 switch (value) { 300 case 0: 301 __ xorps(xmm0, xmm0); 302 break; 303 case 1: 304 __ movflt(xmm0, ExternalAddress((address) &one), rscratch1); 305 break; 306 case 2: 307 __ movflt(xmm0, ExternalAddress((address) &two), rscratch1); 308 break; 309 default: 310 ShouldNotReachHere(); 311 break; 312 } 313 } else { 314 #ifdef _LP64 315 ShouldNotReachHere(); 316 #else 317 if (value == 0) { __ fldz(); 318 } else if (value == 1) { __ fld1(); 319 } else if (value == 2) { __ fld1(); __ fld1(); __ faddp(); // should do a better solution here 320 } else { ShouldNotReachHere(); 321 } 322 #endif // _LP64 323 } 324 } 325 326 void TemplateTable::dconst(int value) { 327 transition(vtos, dtos); 328 if (UseSSE >= 2) { 329 static double one = 1.0; 330 switch (value) { 331 case 0: 332 __ xorpd(xmm0, xmm0); 333 break; 334 case 1: 335 __ movdbl(xmm0, ExternalAddress((address) &one), rscratch1); 336 break; 337 default: 338 ShouldNotReachHere(); 339 break; 340 } 341 } else { 342 #ifdef _LP64 343 ShouldNotReachHere(); 344 #else 345 if (value == 0) { __ fldz(); 346 } else if (value == 1) { __ fld1(); 347 } else { ShouldNotReachHere(); 348 } 349 #endif 350 } 351 } 352 353 void TemplateTable::bipush() { 354 transition(vtos, itos); 355 __ load_signed_byte(rax, at_bcp(1)); 356 } 357 358 void TemplateTable::sipush() { 359 transition(vtos, itos); 360 __ load_unsigned_short(rax, at_bcp(1)); 361 __ bswapl(rax); 362 __ sarl(rax, 16); 363 } 364 365 void TemplateTable::ldc(LdcType type) { 366 transition(vtos, vtos); 367 Register rarg = NOT_LP64(rcx) LP64_ONLY(c_rarg1); 368 Label call_ldc, notFloat, notClass, notInt, Done; 369 370 if (is_ldc_wide(type)) { 371 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); 372 } else { 373 __ load_unsigned_byte(rbx, at_bcp(1)); 374 } 375 376 __ get_cpool_and_tags(rcx, rax); 377 const int base_offset = ConstantPool::header_size() * wordSize; 378 const int tags_offset = Array<u1>::base_offset_in_bytes(); 379 380 // get type 381 __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset)); 382 383 // unresolved class - get the resolved class 384 __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass); 385 __ jccb(Assembler::equal, call_ldc); 386 387 // unresolved class in error state - call into runtime to throw the error 388 // from the first resolution attempt 389 __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError); 390 __ jccb(Assembler::equal, call_ldc); 391 392 // resolved class - need to call vm to get java mirror of the class 393 __ cmpl(rdx, JVM_CONSTANT_Class); 394 __ jcc(Assembler::notEqual, notClass); 395 396 __ bind(call_ldc); 397 398 __ movl(rarg, is_ldc_wide(type) ? 1 : 0); 399 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), rarg); 400 401 __ push(atos); 402 __ jmp(Done); 403 404 __ bind(notClass); 405 __ cmpl(rdx, JVM_CONSTANT_Float); 406 __ jccb(Assembler::notEqual, notFloat); 407 408 // ftos 409 __ load_float(Address(rcx, rbx, Address::times_ptr, base_offset)); 410 __ push(ftos); 411 __ jmp(Done); 412 413 __ bind(notFloat); 414 __ cmpl(rdx, JVM_CONSTANT_Integer); 415 __ jccb(Assembler::notEqual, notInt); 416 417 // itos 418 __ movl(rax, Address(rcx, rbx, Address::times_ptr, base_offset)); 419 __ push(itos); 420 __ jmp(Done); 421 422 // assume the tag is for condy; if not, the VM runtime will tell us 423 __ bind(notInt); 424 condy_helper(Done); 425 426 __ bind(Done); 427 } 428 429 // Fast path for caching oop constants. 430 void TemplateTable::fast_aldc(LdcType type) { 431 transition(vtos, atos); 432 433 Register result = rax; 434 Register tmp = rdx; 435 Register rarg = NOT_LP64(rcx) LP64_ONLY(c_rarg1); 436 int index_size = is_ldc_wide(type) ? sizeof(u2) : sizeof(u1); 437 438 Label resolved; 439 440 // We are resolved if the resolved reference cache entry contains a 441 // non-null object (String, MethodType, etc.) 442 assert_different_registers(result, tmp); 443 __ get_cache_index_at_bcp(tmp, 1, index_size); 444 __ load_resolved_reference_at_index(result, tmp); 445 __ testptr(result, result); 446 __ jcc(Assembler::notZero, resolved); 447 448 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); 449 450 // first time invocation - must resolve first 451 __ movl(rarg, (int)bytecode()); 452 __ call_VM(result, entry, rarg); 453 __ bind(resolved); 454 455 { // Check for the null sentinel. 456 // If we just called the VM, it already did the mapping for us, 457 // but it's harmless to retry. 458 Label notNull; 459 ExternalAddress null_sentinel((address)Universe::the_null_sentinel_addr()); 460 __ movptr(tmp, null_sentinel); 461 __ resolve_oop_handle(tmp, rscratch2); 462 __ cmpoop(tmp, result); 463 __ jccb(Assembler::notEqual, notNull); 464 __ xorptr(result, result); // null object reference 465 __ bind(notNull); 466 } 467 468 if (VerifyOops) { 469 __ verify_oop(result); 470 } 471 } 472 473 void TemplateTable::ldc2_w() { 474 transition(vtos, vtos); 475 Label notDouble, notLong, Done; 476 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); 477 478 __ get_cpool_and_tags(rcx, rax); 479 const int base_offset = ConstantPool::header_size() * wordSize; 480 const int tags_offset = Array<u1>::base_offset_in_bytes(); 481 482 // get type 483 __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset)); 484 __ cmpl(rdx, JVM_CONSTANT_Double); 485 __ jccb(Assembler::notEqual, notDouble); 486 487 // dtos 488 __ load_double(Address(rcx, rbx, Address::times_ptr, base_offset)); 489 __ push(dtos); 490 491 __ jmp(Done); 492 __ bind(notDouble); 493 __ cmpl(rdx, JVM_CONSTANT_Long); 494 __ jccb(Assembler::notEqual, notLong); 495 496 // ltos 497 __ movptr(rax, Address(rcx, rbx, Address::times_ptr, base_offset + 0 * wordSize)); 498 NOT_LP64(__ movptr(rdx, Address(rcx, rbx, Address::times_ptr, base_offset + 1 * wordSize))); 499 __ push(ltos); 500 __ jmp(Done); 501 502 __ bind(notLong); 503 condy_helper(Done); 504 505 __ bind(Done); 506 } 507 508 void TemplateTable::condy_helper(Label& Done) { 509 const Register obj = rax; 510 const Register off = rbx; 511 const Register flags = rcx; 512 const Register rarg = NOT_LP64(rcx) LP64_ONLY(c_rarg1); 513 __ movl(rarg, (int)bytecode()); 514 call_VM(obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc), rarg); 515 #ifndef _LP64 516 // borrow rdi from locals 517 __ get_thread(rdi); 518 __ get_vm_result_2(flags, rdi); 519 __ restore_locals(); 520 #else 521 __ get_vm_result_2(flags, r15_thread); 522 #endif 523 // VMr = obj = base address to find primitive value to push 524 // VMr2 = flags = (tos, off) using format of CPCE::_flags 525 __ movl(off, flags); 526 __ andl(off, ConstantPoolCacheEntry::field_index_mask); 527 const Address field(obj, off, Address::times_1, 0*wordSize); 528 529 // What sort of thing are we loading? 530 __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift); 531 __ andl(flags, ConstantPoolCacheEntry::tos_state_mask); 532 533 switch (bytecode()) { 534 case Bytecodes::_ldc: 535 case Bytecodes::_ldc_w: 536 { 537 // tos in (itos, ftos, stos, btos, ctos, ztos) 538 Label notInt, notFloat, notShort, notByte, notChar, notBool; 539 __ cmpl(flags, itos); 540 __ jccb(Assembler::notEqual, notInt); 541 // itos 542 __ movl(rax, field); 543 __ push(itos); 544 __ jmp(Done); 545 546 __ bind(notInt); 547 __ cmpl(flags, ftos); 548 __ jccb(Assembler::notEqual, notFloat); 549 // ftos 550 __ load_float(field); 551 __ push(ftos); 552 __ jmp(Done); 553 554 __ bind(notFloat); 555 __ cmpl(flags, stos); 556 __ jccb(Assembler::notEqual, notShort); 557 // stos 558 __ load_signed_short(rax, field); 559 __ push(stos); 560 __ jmp(Done); 561 562 __ bind(notShort); 563 __ cmpl(flags, btos); 564 __ jccb(Assembler::notEqual, notByte); 565 // btos 566 __ load_signed_byte(rax, field); 567 __ push(btos); 568 __ jmp(Done); 569 570 __ bind(notByte); 571 __ cmpl(flags, ctos); 572 __ jccb(Assembler::notEqual, notChar); 573 // ctos 574 __ load_unsigned_short(rax, field); 575 __ push(ctos); 576 __ jmp(Done); 577 578 __ bind(notChar); 579 __ cmpl(flags, ztos); 580 __ jccb(Assembler::notEqual, notBool); 581 // ztos 582 __ load_signed_byte(rax, field); 583 __ push(ztos); 584 __ jmp(Done); 585 586 __ bind(notBool); 587 break; 588 } 589 590 case Bytecodes::_ldc2_w: 591 { 592 Label notLong, notDouble; 593 __ cmpl(flags, ltos); 594 __ jccb(Assembler::notEqual, notLong); 595 // ltos 596 // Loading high word first because movptr clobbers rax 597 NOT_LP64(__ movptr(rdx, field.plus_disp(4))); 598 __ movptr(rax, field); 599 __ push(ltos); 600 __ jmp(Done); 601 602 __ bind(notLong); 603 __ cmpl(flags, dtos); 604 __ jccb(Assembler::notEqual, notDouble); 605 // dtos 606 __ load_double(field); 607 __ push(dtos); 608 __ jmp(Done); 609 610 __ bind(notDouble); 611 break; 612 } 613 614 default: 615 ShouldNotReachHere(); 616 } 617 618 __ stop("bad ldc/condy"); 619 } 620 621 void TemplateTable::locals_index(Register reg, int offset) { 622 __ load_unsigned_byte(reg, at_bcp(offset)); 623 __ negptr(reg); 624 } 625 626 void TemplateTable::iload() { 627 iload_internal(); 628 } 629 630 void TemplateTable::nofast_iload() { 631 iload_internal(may_not_rewrite); 632 } 633 634 void TemplateTable::iload_internal(RewriteControl rc) { 635 transition(vtos, itos); 636 if (RewriteFrequentPairs && rc == may_rewrite) { 637 Label rewrite, done; 638 const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 639 LP64_ONLY(assert(rbx != bc, "register damaged")); 640 641 // get next byte 642 __ load_unsigned_byte(rbx, 643 at_bcp(Bytecodes::length_for(Bytecodes::_iload))); 644 // if _iload, wait to rewrite to iload2. We only want to rewrite the 645 // last two iloads in a pair. Comparing against fast_iload means that 646 // the next bytecode is neither an iload or a caload, and therefore 647 // an iload pair. 648 __ cmpl(rbx, Bytecodes::_iload); 649 __ jcc(Assembler::equal, done); 650 651 __ cmpl(rbx, Bytecodes::_fast_iload); 652 __ movl(bc, Bytecodes::_fast_iload2); 653 654 __ jccb(Assembler::equal, rewrite); 655 656 // if _caload, rewrite to fast_icaload 657 __ cmpl(rbx, Bytecodes::_caload); 658 __ movl(bc, Bytecodes::_fast_icaload); 659 __ jccb(Assembler::equal, rewrite); 660 661 // rewrite so iload doesn't check again. 662 __ movl(bc, Bytecodes::_fast_iload); 663 664 // rewrite 665 // bc: fast bytecode 666 __ bind(rewrite); 667 patch_bytecode(Bytecodes::_iload, bc, rbx, false); 668 __ bind(done); 669 } 670 671 // Get the local value into tos 672 locals_index(rbx); 673 __ movl(rax, iaddress(rbx)); 674 } 675 676 void TemplateTable::fast_iload2() { 677 transition(vtos, itos); 678 locals_index(rbx); 679 __ movl(rax, iaddress(rbx)); 680 __ push(itos); 681 locals_index(rbx, 3); 682 __ movl(rax, iaddress(rbx)); 683 } 684 685 void TemplateTable::fast_iload() { 686 transition(vtos, itos); 687 locals_index(rbx); 688 __ movl(rax, iaddress(rbx)); 689 } 690 691 void TemplateTable::lload() { 692 transition(vtos, ltos); 693 locals_index(rbx); 694 __ movptr(rax, laddress(rbx)); 695 NOT_LP64(__ movl(rdx, haddress(rbx))); 696 } 697 698 void TemplateTable::fload() { 699 transition(vtos, ftos); 700 locals_index(rbx); 701 __ load_float(faddress(rbx)); 702 } 703 704 void TemplateTable::dload() { 705 transition(vtos, dtos); 706 locals_index(rbx); 707 __ load_double(daddress(rbx)); 708 } 709 710 void TemplateTable::aload() { 711 transition(vtos, atos); 712 locals_index(rbx); 713 __ movptr(rax, aaddress(rbx)); 714 } 715 716 void TemplateTable::locals_index_wide(Register reg) { 717 __ load_unsigned_short(reg, at_bcp(2)); 718 __ bswapl(reg); 719 __ shrl(reg, 16); 720 __ negptr(reg); 721 } 722 723 void TemplateTable::wide_iload() { 724 transition(vtos, itos); 725 locals_index_wide(rbx); 726 __ movl(rax, iaddress(rbx)); 727 } 728 729 void TemplateTable::wide_lload() { 730 transition(vtos, ltos); 731 locals_index_wide(rbx); 732 __ movptr(rax, laddress(rbx)); 733 NOT_LP64(__ movl(rdx, haddress(rbx))); 734 } 735 736 void TemplateTable::wide_fload() { 737 transition(vtos, ftos); 738 locals_index_wide(rbx); 739 __ load_float(faddress(rbx)); 740 } 741 742 void TemplateTable::wide_dload() { 743 transition(vtos, dtos); 744 locals_index_wide(rbx); 745 __ load_double(daddress(rbx)); 746 } 747 748 void TemplateTable::wide_aload() { 749 transition(vtos, atos); 750 locals_index_wide(rbx); 751 __ movptr(rax, aaddress(rbx)); 752 } 753 754 void TemplateTable::index_check(Register array, Register index) { 755 // Pop ptr into array 756 __ pop_ptr(array); 757 index_check_without_pop(array, index); 758 } 759 760 void TemplateTable::index_check_without_pop(Register array, Register index) { 761 // destroys rbx 762 // sign extend index for use by indexed load 763 __ movl2ptr(index, index); 764 // check index 765 __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes())); 766 if (index != rbx) { 767 // ??? convention: move aberrant index into rbx for exception message 768 assert(rbx != array, "different registers"); 769 __ movl(rbx, index); 770 } 771 Label skip; 772 __ jccb(Assembler::below, skip); 773 // Pass array to create more detailed exceptions. 774 __ mov(NOT_LP64(rax) LP64_ONLY(c_rarg1), array); 775 __ jump(ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry)); 776 __ bind(skip); 777 } 778 779 void TemplateTable::iaload() { 780 transition(itos, itos); 781 // rax: index 782 // rdx: array 783 index_check(rdx, rax); // kills rbx 784 __ access_load_at(T_INT, IN_HEAP | IS_ARRAY, rax, 785 Address(rdx, rax, Address::times_4, 786 arrayOopDesc::base_offset_in_bytes(T_INT)), 787 noreg, noreg); 788 } 789 790 void TemplateTable::laload() { 791 transition(itos, ltos); 792 // rax: index 793 // rdx: array 794 index_check(rdx, rax); // kills rbx 795 NOT_LP64(__ mov(rbx, rax)); 796 // rbx,: index 797 __ access_load_at(T_LONG, IN_HEAP | IS_ARRAY, noreg /* ltos */, 798 Address(rdx, rbx, Address::times_8, 799 arrayOopDesc::base_offset_in_bytes(T_LONG)), 800 noreg, noreg); 801 } 802 803 804 805 void TemplateTable::faload() { 806 transition(itos, ftos); 807 // rax: index 808 // rdx: array 809 index_check(rdx, rax); // kills rbx 810 __ access_load_at(T_FLOAT, IN_HEAP | IS_ARRAY, noreg /* ftos */, 811 Address(rdx, rax, 812 Address::times_4, 813 arrayOopDesc::base_offset_in_bytes(T_FLOAT)), 814 noreg, noreg); 815 } 816 817 void TemplateTable::daload() { 818 transition(itos, dtos); 819 // rax: index 820 // rdx: array 821 index_check(rdx, rax); // kills rbx 822 __ access_load_at(T_DOUBLE, IN_HEAP | IS_ARRAY, noreg /* dtos */, 823 Address(rdx, rax, 824 Address::times_8, 825 arrayOopDesc::base_offset_in_bytes(T_DOUBLE)), 826 noreg, noreg); 827 } 828 829 void TemplateTable::aaload() { 830 transition(itos, atos); 831 // rax: index 832 // rdx: array 833 index_check(rdx, rax); // kills rbx 834 do_oop_load(_masm, 835 Address(rdx, rax, 836 UseCompressedOops ? Address::times_4 : Address::times_ptr, 837 arrayOopDesc::base_offset_in_bytes(T_OBJECT)), 838 rax, 839 IS_ARRAY); 840 } 841 842 void TemplateTable::baload() { 843 transition(itos, itos); 844 // rax: index 845 // rdx: array 846 index_check(rdx, rax); // kills rbx 847 __ access_load_at(T_BYTE, IN_HEAP | IS_ARRAY, rax, 848 Address(rdx, rax, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)), 849 noreg, noreg); 850 } 851 852 void TemplateTable::caload() { 853 transition(itos, itos); 854 // rax: index 855 // rdx: array 856 index_check(rdx, rax); // kills rbx 857 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, rax, 858 Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)), 859 noreg, noreg); 860 } 861 862 // iload followed by caload frequent pair 863 void TemplateTable::fast_icaload() { 864 transition(vtos, itos); 865 // load index out of locals 866 locals_index(rbx); 867 __ movl(rax, iaddress(rbx)); 868 869 // rax: index 870 // rdx: array 871 index_check(rdx, rax); // kills rbx 872 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, rax, 873 Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)), 874 noreg, noreg); 875 } 876 877 878 void TemplateTable::saload() { 879 transition(itos, itos); 880 // rax: index 881 // rdx: array 882 index_check(rdx, rax); // kills rbx 883 __ access_load_at(T_SHORT, IN_HEAP | IS_ARRAY, rax, 884 Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_SHORT)), 885 noreg, noreg); 886 } 887 888 void TemplateTable::iload(int n) { 889 transition(vtos, itos); 890 __ movl(rax, iaddress(n)); 891 } 892 893 void TemplateTable::lload(int n) { 894 transition(vtos, ltos); 895 __ movptr(rax, laddress(n)); 896 NOT_LP64(__ movptr(rdx, haddress(n))); 897 } 898 899 void TemplateTable::fload(int n) { 900 transition(vtos, ftos); 901 __ load_float(faddress(n)); 902 } 903 904 void TemplateTable::dload(int n) { 905 transition(vtos, dtos); 906 __ load_double(daddress(n)); 907 } 908 909 void TemplateTable::aload(int n) { 910 transition(vtos, atos); 911 __ movptr(rax, aaddress(n)); 912 } 913 914 void TemplateTable::aload_0() { 915 aload_0_internal(); 916 } 917 918 void TemplateTable::nofast_aload_0() { 919 aload_0_internal(may_not_rewrite); 920 } 921 922 void TemplateTable::aload_0_internal(RewriteControl rc) { 923 transition(vtos, atos); 924 // According to bytecode histograms, the pairs: 925 // 926 // _aload_0, _fast_igetfield 927 // _aload_0, _fast_agetfield 928 // _aload_0, _fast_fgetfield 929 // 930 // occur frequently. If RewriteFrequentPairs is set, the (slow) 931 // _aload_0 bytecode checks if the next bytecode is either 932 // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then 933 // rewrites the current bytecode into a pair bytecode; otherwise it 934 // rewrites the current bytecode into _fast_aload_0 that doesn't do 935 // the pair check anymore. 936 // 937 // Note: If the next bytecode is _getfield, the rewrite must be 938 // delayed, otherwise we may miss an opportunity for a pair. 939 // 940 // Also rewrite frequent pairs 941 // aload_0, aload_1 942 // aload_0, iload_1 943 // These bytecodes with a small amount of code are most profitable 944 // to rewrite 945 if (RewriteFrequentPairs && rc == may_rewrite) { 946 Label rewrite, done; 947 948 const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 949 LP64_ONLY(assert(rbx != bc, "register damaged")); 950 951 // get next byte 952 __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0))); 953 954 // if _getfield then wait with rewrite 955 __ cmpl(rbx, Bytecodes::_getfield); 956 __ jcc(Assembler::equal, done); 957 958 // if _igetfield then rewrite to _fast_iaccess_0 959 assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 960 __ cmpl(rbx, Bytecodes::_fast_igetfield); 961 __ movl(bc, Bytecodes::_fast_iaccess_0); 962 __ jccb(Assembler::equal, rewrite); 963 964 // if _agetfield then rewrite to _fast_aaccess_0 965 assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 966 __ cmpl(rbx, Bytecodes::_fast_agetfield); 967 __ movl(bc, Bytecodes::_fast_aaccess_0); 968 __ jccb(Assembler::equal, rewrite); 969 970 // if _fgetfield then rewrite to _fast_faccess_0 971 assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 972 __ cmpl(rbx, Bytecodes::_fast_fgetfield); 973 __ movl(bc, Bytecodes::_fast_faccess_0); 974 __ jccb(Assembler::equal, rewrite); 975 976 // else rewrite to _fast_aload0 977 assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition"); 978 __ movl(bc, Bytecodes::_fast_aload_0); 979 980 // rewrite 981 // bc: fast bytecode 982 __ bind(rewrite); 983 patch_bytecode(Bytecodes::_aload_0, bc, rbx, false); 984 985 __ bind(done); 986 } 987 988 // Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop). 989 aload(0); 990 } 991 992 void TemplateTable::istore() { 993 transition(itos, vtos); 994 locals_index(rbx); 995 __ movl(iaddress(rbx), rax); 996 } 997 998 999 void TemplateTable::lstore() { 1000 transition(ltos, vtos); 1001 locals_index(rbx); 1002 __ movptr(laddress(rbx), rax); 1003 NOT_LP64(__ movptr(haddress(rbx), rdx)); 1004 } 1005 1006 void TemplateTable::fstore() { 1007 transition(ftos, vtos); 1008 locals_index(rbx); 1009 __ store_float(faddress(rbx)); 1010 } 1011 1012 void TemplateTable::dstore() { 1013 transition(dtos, vtos); 1014 locals_index(rbx); 1015 __ store_double(daddress(rbx)); 1016 } 1017 1018 void TemplateTable::astore() { 1019 transition(vtos, vtos); 1020 __ pop_ptr(rax); 1021 locals_index(rbx); 1022 __ movptr(aaddress(rbx), rax); 1023 } 1024 1025 void TemplateTable::wide_istore() { 1026 transition(vtos, vtos); 1027 __ pop_i(); 1028 locals_index_wide(rbx); 1029 __ movl(iaddress(rbx), rax); 1030 } 1031 1032 void TemplateTable::wide_lstore() { 1033 transition(vtos, vtos); 1034 NOT_LP64(__ pop_l(rax, rdx)); 1035 LP64_ONLY(__ pop_l()); 1036 locals_index_wide(rbx); 1037 __ movptr(laddress(rbx), rax); 1038 NOT_LP64(__ movl(haddress(rbx), rdx)); 1039 } 1040 1041 void TemplateTable::wide_fstore() { 1042 #ifdef _LP64 1043 transition(vtos, vtos); 1044 __ pop_f(xmm0); 1045 locals_index_wide(rbx); 1046 __ movflt(faddress(rbx), xmm0); 1047 #else 1048 wide_istore(); 1049 #endif 1050 } 1051 1052 void TemplateTable::wide_dstore() { 1053 #ifdef _LP64 1054 transition(vtos, vtos); 1055 __ pop_d(xmm0); 1056 locals_index_wide(rbx); 1057 __ movdbl(daddress(rbx), xmm0); 1058 #else 1059 wide_lstore(); 1060 #endif 1061 } 1062 1063 void TemplateTable::wide_astore() { 1064 transition(vtos, vtos); 1065 __ pop_ptr(rax); 1066 locals_index_wide(rbx); 1067 __ movptr(aaddress(rbx), rax); 1068 } 1069 1070 void TemplateTable::iastore() { 1071 transition(itos, vtos); 1072 __ pop_i(rbx); 1073 // rax: value 1074 // rbx: index 1075 // rdx: array 1076 index_check(rdx, rbx); // prefer index in rbx 1077 __ access_store_at(T_INT, IN_HEAP | IS_ARRAY, 1078 Address(rdx, rbx, Address::times_4, 1079 arrayOopDesc::base_offset_in_bytes(T_INT)), 1080 rax, noreg, noreg, noreg); 1081 } 1082 1083 void TemplateTable::lastore() { 1084 transition(ltos, vtos); 1085 __ pop_i(rbx); 1086 // rax,: low(value) 1087 // rcx: array 1088 // rdx: high(value) 1089 index_check(rcx, rbx); // prefer index in rbx, 1090 // rbx,: index 1091 __ access_store_at(T_LONG, IN_HEAP | IS_ARRAY, 1092 Address(rcx, rbx, Address::times_8, 1093 arrayOopDesc::base_offset_in_bytes(T_LONG)), 1094 noreg /* ltos */, noreg, noreg, noreg); 1095 } 1096 1097 1098 void TemplateTable::fastore() { 1099 transition(ftos, vtos); 1100 __ pop_i(rbx); 1101 // value is in UseSSE >= 1 ? xmm0 : ST(0) 1102 // rbx: index 1103 // rdx: array 1104 index_check(rdx, rbx); // prefer index in rbx 1105 __ access_store_at(T_FLOAT, IN_HEAP | IS_ARRAY, 1106 Address(rdx, rbx, Address::times_4, 1107 arrayOopDesc::base_offset_in_bytes(T_FLOAT)), 1108 noreg /* ftos */, noreg, noreg, noreg); 1109 } 1110 1111 void TemplateTable::dastore() { 1112 transition(dtos, vtos); 1113 __ pop_i(rbx); 1114 // value is in UseSSE >= 2 ? xmm0 : ST(0) 1115 // rbx: index 1116 // rdx: array 1117 index_check(rdx, rbx); // prefer index in rbx 1118 __ access_store_at(T_DOUBLE, IN_HEAP | IS_ARRAY, 1119 Address(rdx, rbx, Address::times_8, 1120 arrayOopDesc::base_offset_in_bytes(T_DOUBLE)), 1121 noreg /* dtos */, noreg, noreg, noreg); 1122 } 1123 1124 void TemplateTable::aastore() { 1125 Label is_null, ok_is_subtype, done; 1126 transition(vtos, vtos); 1127 // stack: ..., array, index, value 1128 __ movptr(rax, at_tos()); // value 1129 __ movl(rcx, at_tos_p1()); // index 1130 __ movptr(rdx, at_tos_p2()); // array 1131 1132 Address element_address(rdx, rcx, 1133 UseCompressedOops? Address::times_4 : Address::times_ptr, 1134 arrayOopDesc::base_offset_in_bytes(T_OBJECT)); 1135 1136 index_check_without_pop(rdx, rcx); // kills rbx 1137 __ testptr(rax, rax); 1138 __ jcc(Assembler::zero, is_null); 1139 1140 // Move subklass into rbx 1141 __ load_klass(rbx, rax, rscratch1); 1142 // Move superklass into rax 1143 __ load_klass(rax, rdx, rscratch1); 1144 __ movptr(rax, Address(rax, 1145 ObjArrayKlass::element_klass_offset())); 1146 1147 // Generate subtype check. Blows rcx, rdi 1148 // Superklass in rax. Subklass in rbx. 1149 __ gen_subtype_check(rbx, ok_is_subtype); 1150 1151 // Come here on failure 1152 // object is at TOS 1153 __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry)); 1154 1155 // Come here on success 1156 __ bind(ok_is_subtype); 1157 1158 // Get the value we will store 1159 __ movptr(rax, at_tos()); 1160 __ movl(rcx, at_tos_p1()); // index 1161 // Now store using the appropriate barrier 1162 do_oop_store(_masm, element_address, rax, IS_ARRAY); 1163 __ jmp(done); 1164 1165 // Have a null in rax, rdx=array, ecx=index. Store null at ary[idx] 1166 __ bind(is_null); 1167 __ profile_null_seen(rbx); 1168 1169 // Store a null 1170 do_oop_store(_masm, element_address, noreg, IS_ARRAY); 1171 1172 // Pop stack arguments 1173 __ bind(done); 1174 __ addptr(rsp, 3 * Interpreter::stackElementSize); 1175 } 1176 1177 void TemplateTable::bastore() { 1178 transition(itos, vtos); 1179 __ pop_i(rbx); 1180 // rax: value 1181 // rbx: index 1182 // rdx: array 1183 index_check(rdx, rbx); // prefer index in rbx 1184 // Need to check whether array is boolean or byte 1185 // since both types share the bastore bytecode. 1186 __ load_klass(rcx, rdx, rscratch1); 1187 __ movl(rcx, Address(rcx, Klass::layout_helper_offset())); 1188 int diffbit = Klass::layout_helper_boolean_diffbit(); 1189 __ testl(rcx, diffbit); 1190 Label L_skip; 1191 __ jccb(Assembler::zero, L_skip); 1192 __ andl(rax, 1); // if it is a T_BOOLEAN array, mask the stored value to 0/1 1193 __ bind(L_skip); 1194 __ access_store_at(T_BYTE, IN_HEAP | IS_ARRAY, 1195 Address(rdx, rbx,Address::times_1, 1196 arrayOopDesc::base_offset_in_bytes(T_BYTE)), 1197 rax, noreg, noreg, noreg); 1198 } 1199 1200 void TemplateTable::castore() { 1201 transition(itos, vtos); 1202 __ pop_i(rbx); 1203 // rax: value 1204 // rbx: index 1205 // rdx: array 1206 index_check(rdx, rbx); // prefer index in rbx 1207 __ access_store_at(T_CHAR, IN_HEAP | IS_ARRAY, 1208 Address(rdx, rbx, Address::times_2, 1209 arrayOopDesc::base_offset_in_bytes(T_CHAR)), 1210 rax, noreg, noreg, noreg); 1211 } 1212 1213 1214 void TemplateTable::sastore() { 1215 castore(); 1216 } 1217 1218 void TemplateTable::istore(int n) { 1219 transition(itos, vtos); 1220 __ movl(iaddress(n), rax); 1221 } 1222 1223 void TemplateTable::lstore(int n) { 1224 transition(ltos, vtos); 1225 __ movptr(laddress(n), rax); 1226 NOT_LP64(__ movptr(haddress(n), rdx)); 1227 } 1228 1229 void TemplateTable::fstore(int n) { 1230 transition(ftos, vtos); 1231 __ store_float(faddress(n)); 1232 } 1233 1234 void TemplateTable::dstore(int n) { 1235 transition(dtos, vtos); 1236 __ store_double(daddress(n)); 1237 } 1238 1239 1240 void TemplateTable::astore(int n) { 1241 transition(vtos, vtos); 1242 __ pop_ptr(rax); 1243 __ movptr(aaddress(n), rax); 1244 } 1245 1246 void TemplateTable::pop() { 1247 transition(vtos, vtos); 1248 __ addptr(rsp, Interpreter::stackElementSize); 1249 } 1250 1251 void TemplateTable::pop2() { 1252 transition(vtos, vtos); 1253 __ addptr(rsp, 2 * Interpreter::stackElementSize); 1254 } 1255 1256 1257 void TemplateTable::dup() { 1258 transition(vtos, vtos); 1259 __ load_ptr(0, rax); 1260 __ push_ptr(rax); 1261 // stack: ..., a, a 1262 } 1263 1264 void TemplateTable::dup_x1() { 1265 transition(vtos, vtos); 1266 // stack: ..., a, b 1267 __ load_ptr( 0, rax); // load b 1268 __ load_ptr( 1, rcx); // load a 1269 __ store_ptr(1, rax); // store b 1270 __ store_ptr(0, rcx); // store a 1271 __ push_ptr(rax); // push b 1272 // stack: ..., b, a, b 1273 } 1274 1275 void TemplateTable::dup_x2() { 1276 transition(vtos, vtos); 1277 // stack: ..., a, b, c 1278 __ load_ptr( 0, rax); // load c 1279 __ load_ptr( 2, rcx); // load a 1280 __ store_ptr(2, rax); // store c in a 1281 __ push_ptr(rax); // push c 1282 // stack: ..., c, b, c, c 1283 __ load_ptr( 2, rax); // load b 1284 __ store_ptr(2, rcx); // store a in b 1285 // stack: ..., c, a, c, c 1286 __ store_ptr(1, rax); // store b in c 1287 // stack: ..., c, a, b, c 1288 } 1289 1290 void TemplateTable::dup2() { 1291 transition(vtos, vtos); 1292 // stack: ..., a, b 1293 __ load_ptr(1, rax); // load a 1294 __ push_ptr(rax); // push a 1295 __ load_ptr(1, rax); // load b 1296 __ push_ptr(rax); // push b 1297 // stack: ..., a, b, a, b 1298 } 1299 1300 1301 void TemplateTable::dup2_x1() { 1302 transition(vtos, vtos); 1303 // stack: ..., a, b, c 1304 __ load_ptr( 0, rcx); // load c 1305 __ load_ptr( 1, rax); // load b 1306 __ push_ptr(rax); // push b 1307 __ push_ptr(rcx); // push c 1308 // stack: ..., a, b, c, b, c 1309 __ store_ptr(3, rcx); // store c in b 1310 // stack: ..., a, c, c, b, c 1311 __ load_ptr( 4, rcx); // load a 1312 __ store_ptr(2, rcx); // store a in 2nd c 1313 // stack: ..., a, c, a, b, c 1314 __ store_ptr(4, rax); // store b in a 1315 // stack: ..., b, c, a, b, c 1316 } 1317 1318 void TemplateTable::dup2_x2() { 1319 transition(vtos, vtos); 1320 // stack: ..., a, b, c, d 1321 __ load_ptr( 0, rcx); // load d 1322 __ load_ptr( 1, rax); // load c 1323 __ push_ptr(rax); // push c 1324 __ push_ptr(rcx); // push d 1325 // stack: ..., a, b, c, d, c, d 1326 __ load_ptr( 4, rax); // load b 1327 __ store_ptr(2, rax); // store b in d 1328 __ store_ptr(4, rcx); // store d in b 1329 // stack: ..., a, d, c, b, c, d 1330 __ load_ptr( 5, rcx); // load a 1331 __ load_ptr( 3, rax); // load c 1332 __ store_ptr(3, rcx); // store a in c 1333 __ store_ptr(5, rax); // store c in a 1334 // stack: ..., c, d, a, b, c, d 1335 } 1336 1337 void TemplateTable::swap() { 1338 transition(vtos, vtos); 1339 // stack: ..., a, b 1340 __ load_ptr( 1, rcx); // load a 1341 __ load_ptr( 0, rax); // load b 1342 __ store_ptr(0, rcx); // store a in b 1343 __ store_ptr(1, rax); // store b in a 1344 // stack: ..., b, a 1345 } 1346 1347 void TemplateTable::iop2(Operation op) { 1348 transition(itos, itos); 1349 switch (op) { 1350 case add : __ pop_i(rdx); __ addl (rax, rdx); break; 1351 case sub : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break; 1352 case mul : __ pop_i(rdx); __ imull(rax, rdx); break; 1353 case _and : __ pop_i(rdx); __ andl (rax, rdx); break; 1354 case _or : __ pop_i(rdx); __ orl (rax, rdx); break; 1355 case _xor : __ pop_i(rdx); __ xorl (rax, rdx); break; 1356 case shl : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax); break; 1357 case shr : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax); break; 1358 case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax); break; 1359 default : ShouldNotReachHere(); 1360 } 1361 } 1362 1363 void TemplateTable::lop2(Operation op) { 1364 transition(ltos, ltos); 1365 #ifdef _LP64 1366 switch (op) { 1367 case add : __ pop_l(rdx); __ addptr(rax, rdx); break; 1368 case sub : __ mov(rdx, rax); __ pop_l(rax); __ subptr(rax, rdx); break; 1369 case _and : __ pop_l(rdx); __ andptr(rax, rdx); break; 1370 case _or : __ pop_l(rdx); __ orptr (rax, rdx); break; 1371 case _xor : __ pop_l(rdx); __ xorptr(rax, rdx); break; 1372 default : ShouldNotReachHere(); 1373 } 1374 #else 1375 __ pop_l(rbx, rcx); 1376 switch (op) { 1377 case add : __ addl(rax, rbx); __ adcl(rdx, rcx); break; 1378 case sub : __ subl(rbx, rax); __ sbbl(rcx, rdx); 1379 __ mov (rax, rbx); __ mov (rdx, rcx); break; 1380 case _and : __ andl(rax, rbx); __ andl(rdx, rcx); break; 1381 case _or : __ orl (rax, rbx); __ orl (rdx, rcx); break; 1382 case _xor : __ xorl(rax, rbx); __ xorl(rdx, rcx); break; 1383 default : ShouldNotReachHere(); 1384 } 1385 #endif 1386 } 1387 1388 void TemplateTable::idiv() { 1389 transition(itos, itos); 1390 __ movl(rcx, rax); 1391 __ pop_i(rax); 1392 // Note: could xor rax and ecx and compare with (-1 ^ min_int). If 1393 // they are not equal, one could do a normal division (no correction 1394 // needed), which may speed up this implementation for the common case. 1395 // (see also JVM spec., p.243 & p.271) 1396 __ corrected_idivl(rcx); 1397 } 1398 1399 void TemplateTable::irem() { 1400 transition(itos, itos); 1401 __ movl(rcx, rax); 1402 __ pop_i(rax); 1403 // Note: could xor rax and ecx and compare with (-1 ^ min_int). If 1404 // they are not equal, one could do a normal division (no correction 1405 // needed), which may speed up this implementation for the common case. 1406 // (see also JVM spec., p.243 & p.271) 1407 __ corrected_idivl(rcx); 1408 __ movl(rax, rdx); 1409 } 1410 1411 void TemplateTable::lmul() { 1412 transition(ltos, ltos); 1413 #ifdef _LP64 1414 __ pop_l(rdx); 1415 __ imulq(rax, rdx); 1416 #else 1417 __ pop_l(rbx, rcx); 1418 __ push(rcx); __ push(rbx); 1419 __ push(rdx); __ push(rax); 1420 __ lmul(2 * wordSize, 0); 1421 __ addptr(rsp, 4 * wordSize); // take off temporaries 1422 #endif 1423 } 1424 1425 void TemplateTable::ldiv() { 1426 transition(ltos, ltos); 1427 #ifdef _LP64 1428 __ mov(rcx, rax); 1429 __ pop_l(rax); 1430 // generate explicit div0 check 1431 __ testq(rcx, rcx); 1432 __ jump_cc(Assembler::zero, 1433 ExternalAddress(Interpreter::_throw_ArithmeticException_entry)); 1434 // Note: could xor rax and rcx and compare with (-1 ^ min_int). If 1435 // they are not equal, one could do a normal division (no correction 1436 // needed), which may speed up this implementation for the common case. 1437 // (see also JVM spec., p.243 & p.271) 1438 __ corrected_idivq(rcx); // kills rbx 1439 #else 1440 __ pop_l(rbx, rcx); 1441 __ push(rcx); __ push(rbx); 1442 __ push(rdx); __ push(rax); 1443 // check if y = 0 1444 __ orl(rax, rdx); 1445 __ jump_cc(Assembler::zero, 1446 ExternalAddress(Interpreter::_throw_ArithmeticException_entry)); 1447 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::ldiv)); 1448 __ addptr(rsp, 4 * wordSize); // take off temporaries 1449 #endif 1450 } 1451 1452 void TemplateTable::lrem() { 1453 transition(ltos, ltos); 1454 #ifdef _LP64 1455 __ mov(rcx, rax); 1456 __ pop_l(rax); 1457 __ testq(rcx, rcx); 1458 __ jump_cc(Assembler::zero, 1459 ExternalAddress(Interpreter::_throw_ArithmeticException_entry)); 1460 // Note: could xor rax and rcx and compare with (-1 ^ min_int). If 1461 // they are not equal, one could do a normal division (no correction 1462 // needed), which may speed up this implementation for the common case. 1463 // (see also JVM spec., p.243 & p.271) 1464 __ corrected_idivq(rcx); // kills rbx 1465 __ mov(rax, rdx); 1466 #else 1467 __ pop_l(rbx, rcx); 1468 __ push(rcx); __ push(rbx); 1469 __ push(rdx); __ push(rax); 1470 // check if y = 0 1471 __ orl(rax, rdx); 1472 __ jump_cc(Assembler::zero, 1473 ExternalAddress(Interpreter::_throw_ArithmeticException_entry)); 1474 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::lrem)); 1475 __ addptr(rsp, 4 * wordSize); 1476 #endif 1477 } 1478 1479 void TemplateTable::lshl() { 1480 transition(itos, ltos); 1481 __ movl(rcx, rax); // get shift count 1482 #ifdef _LP64 1483 __ pop_l(rax); // get shift value 1484 __ shlq(rax); 1485 #else 1486 __ pop_l(rax, rdx); // get shift value 1487 __ lshl(rdx, rax); 1488 #endif 1489 } 1490 1491 void TemplateTable::lshr() { 1492 #ifdef _LP64 1493 transition(itos, ltos); 1494 __ movl(rcx, rax); // get shift count 1495 __ pop_l(rax); // get shift value 1496 __ sarq(rax); 1497 #else 1498 transition(itos, ltos); 1499 __ mov(rcx, rax); // get shift count 1500 __ pop_l(rax, rdx); // get shift value 1501 __ lshr(rdx, rax, true); 1502 #endif 1503 } 1504 1505 void TemplateTable::lushr() { 1506 transition(itos, ltos); 1507 #ifdef _LP64 1508 __ movl(rcx, rax); // get shift count 1509 __ pop_l(rax); // get shift value 1510 __ shrq(rax); 1511 #else 1512 __ mov(rcx, rax); // get shift count 1513 __ pop_l(rax, rdx); // get shift value 1514 __ lshr(rdx, rax); 1515 #endif 1516 } 1517 1518 void TemplateTable::fop2(Operation op) { 1519 transition(ftos, ftos); 1520 1521 if (UseSSE >= 1) { 1522 switch (op) { 1523 case add: 1524 __ addss(xmm0, at_rsp()); 1525 __ addptr(rsp, Interpreter::stackElementSize); 1526 break; 1527 case sub: 1528 __ movflt(xmm1, xmm0); 1529 __ pop_f(xmm0); 1530 __ subss(xmm0, xmm1); 1531 break; 1532 case mul: 1533 __ mulss(xmm0, at_rsp()); 1534 __ addptr(rsp, Interpreter::stackElementSize); 1535 break; 1536 case div: 1537 __ movflt(xmm1, xmm0); 1538 __ pop_f(xmm0); 1539 __ divss(xmm0, xmm1); 1540 break; 1541 case rem: 1542 // On x86_64 platforms the SharedRuntime::frem method is called to perform the 1543 // modulo operation. The frem method calls the function 1544 // double fmod(double x, double y) in math.h. The documentation of fmod states: 1545 // "If x or y is a NaN, a NaN is returned." without specifying what type of NaN 1546 // (signalling or quiet) is returned. 1547 // 1548 // On x86_32 platforms the FPU is used to perform the modulo operation. The 1549 // reason is that on 32-bit Windows the sign of modulo operations diverges from 1550 // what is considered the standard (e.g., -0.0f % -3.14f is 0.0f (and not -0.0f). 1551 // The fprem instruction used on x86_32 is functionally equivalent to 1552 // SharedRuntime::frem in that it returns a NaN. 1553 #ifdef _LP64 1554 __ movflt(xmm1, xmm0); 1555 __ pop_f(xmm0); 1556 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), 2); 1557 #else // !_LP64 1558 __ push_f(xmm0); 1559 __ pop_f(); 1560 __ fld_s(at_rsp()); 1561 __ fremr(rax); 1562 __ f2ieee(); 1563 __ pop(rax); // pop second operand off the stack 1564 __ push_f(); 1565 __ pop_f(xmm0); 1566 #endif // _LP64 1567 break; 1568 default: 1569 ShouldNotReachHere(); 1570 break; 1571 } 1572 } else { 1573 #ifdef _LP64 1574 ShouldNotReachHere(); 1575 #else // !_LP64 1576 switch (op) { 1577 case add: __ fadd_s (at_rsp()); break; 1578 case sub: __ fsubr_s(at_rsp()); break; 1579 case mul: __ fmul_s (at_rsp()); break; 1580 case div: __ fdivr_s(at_rsp()); break; 1581 case rem: __ fld_s (at_rsp()); __ fremr(rax); break; 1582 default : ShouldNotReachHere(); 1583 } 1584 __ f2ieee(); 1585 __ pop(rax); // pop second operand off the stack 1586 #endif // _LP64 1587 } 1588 } 1589 1590 void TemplateTable::dop2(Operation op) { 1591 transition(dtos, dtos); 1592 if (UseSSE >= 2) { 1593 switch (op) { 1594 case add: 1595 __ addsd(xmm0, at_rsp()); 1596 __ addptr(rsp, 2 * Interpreter::stackElementSize); 1597 break; 1598 case sub: 1599 __ movdbl(xmm1, xmm0); 1600 __ pop_d(xmm0); 1601 __ subsd(xmm0, xmm1); 1602 break; 1603 case mul: 1604 __ mulsd(xmm0, at_rsp()); 1605 __ addptr(rsp, 2 * Interpreter::stackElementSize); 1606 break; 1607 case div: 1608 __ movdbl(xmm1, xmm0); 1609 __ pop_d(xmm0); 1610 __ divsd(xmm0, xmm1); 1611 break; 1612 case rem: 1613 // Similar to fop2(), the modulo operation is performed using the 1614 // SharedRuntime::drem method (on x86_64 platforms) or using the 1615 // FPU (on x86_32 platforms) for the same reasons as mentioned in fop2(). 1616 #ifdef _LP64 1617 __ movdbl(xmm1, xmm0); 1618 __ pop_d(xmm0); 1619 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), 2); 1620 #else // !_LP64 1621 __ push_d(xmm0); 1622 __ pop_d(); 1623 __ fld_d(at_rsp()); 1624 __ fremr(rax); 1625 __ d2ieee(); 1626 __ pop(rax); 1627 __ pop(rdx); 1628 __ push_d(); 1629 __ pop_d(xmm0); 1630 #endif // _LP64 1631 break; 1632 default: 1633 ShouldNotReachHere(); 1634 break; 1635 } 1636 } else { 1637 #ifdef _LP64 1638 ShouldNotReachHere(); 1639 #else // !_LP64 1640 switch (op) { 1641 case add: __ fadd_d (at_rsp()); break; 1642 case sub: __ fsubr_d(at_rsp()); break; 1643 case mul: { 1644 // strict semantics 1645 __ fld_x(ExternalAddress(StubRoutines::x86::addr_fpu_subnormal_bias1())); 1646 __ fmulp(); 1647 __ fmul_d (at_rsp()); 1648 __ fld_x(ExternalAddress(StubRoutines::x86::addr_fpu_subnormal_bias2())); 1649 __ fmulp(); 1650 break; 1651 } 1652 case div: { 1653 // strict semantics 1654 __ fld_x(ExternalAddress(StubRoutines::x86::addr_fpu_subnormal_bias1())); 1655 __ fmul_d (at_rsp()); 1656 __ fdivrp(); 1657 __ fld_x(ExternalAddress(StubRoutines::x86::addr_fpu_subnormal_bias2())); 1658 __ fmulp(); 1659 break; 1660 } 1661 case rem: __ fld_d (at_rsp()); __ fremr(rax); break; 1662 default : ShouldNotReachHere(); 1663 } 1664 __ d2ieee(); 1665 // Pop double precision number from rsp. 1666 __ pop(rax); 1667 __ pop(rdx); 1668 #endif // _LP64 1669 } 1670 } 1671 1672 void TemplateTable::ineg() { 1673 transition(itos, itos); 1674 __ negl(rax); 1675 } 1676 1677 void TemplateTable::lneg() { 1678 transition(ltos, ltos); 1679 LP64_ONLY(__ negq(rax)); 1680 NOT_LP64(__ lneg(rdx, rax)); 1681 } 1682 1683 // Note: 'double' and 'long long' have 32-bits alignment on x86. 1684 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) { 1685 // Use the expression (adr)&(~0xF) to provide 128-bits aligned address 1686 // of 128-bits operands for SSE instructions. 1687 jlong *operand = (jlong*)(((intptr_t)adr)&((intptr_t)(~0xF))); 1688 // Store the value to a 128-bits operand. 1689 operand[0] = lo; 1690 operand[1] = hi; 1691 return operand; 1692 } 1693 1694 // Buffer for 128-bits masks used by SSE instructions. 1695 static jlong float_signflip_pool[2*2]; 1696 static jlong double_signflip_pool[2*2]; 1697 1698 void TemplateTable::fneg() { 1699 transition(ftos, ftos); 1700 if (UseSSE >= 1) { 1701 static jlong *float_signflip = double_quadword(&float_signflip_pool[1], CONST64(0x8000000080000000), CONST64(0x8000000080000000)); 1702 __ xorps(xmm0, ExternalAddress((address) float_signflip), rscratch1); 1703 } else { 1704 LP64_ONLY(ShouldNotReachHere()); 1705 NOT_LP64(__ fchs()); 1706 } 1707 } 1708 1709 void TemplateTable::dneg() { 1710 transition(dtos, dtos); 1711 if (UseSSE >= 2) { 1712 static jlong *double_signflip = 1713 double_quadword(&double_signflip_pool[1], CONST64(0x8000000000000000), CONST64(0x8000000000000000)); 1714 __ xorpd(xmm0, ExternalAddress((address) double_signflip), rscratch1); 1715 } else { 1716 #ifdef _LP64 1717 ShouldNotReachHere(); 1718 #else 1719 __ fchs(); 1720 #endif 1721 } 1722 } 1723 1724 void TemplateTable::iinc() { 1725 transition(vtos, vtos); 1726 __ load_signed_byte(rdx, at_bcp(2)); // get constant 1727 locals_index(rbx); 1728 __ addl(iaddress(rbx), rdx); 1729 } 1730 1731 void TemplateTable::wide_iinc() { 1732 transition(vtos, vtos); 1733 __ movl(rdx, at_bcp(4)); // get constant 1734 locals_index_wide(rbx); 1735 __ bswapl(rdx); // swap bytes & sign-extend constant 1736 __ sarl(rdx, 16); 1737 __ addl(iaddress(rbx), rdx); 1738 // Note: should probably use only one movl to get both 1739 // the index and the constant -> fix this 1740 } 1741 1742 void TemplateTable::convert() { 1743 #ifdef _LP64 1744 // Checking 1745 #ifdef ASSERT 1746 { 1747 TosState tos_in = ilgl; 1748 TosState tos_out = ilgl; 1749 switch (bytecode()) { 1750 case Bytecodes::_i2l: // fall through 1751 case Bytecodes::_i2f: // fall through 1752 case Bytecodes::_i2d: // fall through 1753 case Bytecodes::_i2b: // fall through 1754 case Bytecodes::_i2c: // fall through 1755 case Bytecodes::_i2s: tos_in = itos; break; 1756 case Bytecodes::_l2i: // fall through 1757 case Bytecodes::_l2f: // fall through 1758 case Bytecodes::_l2d: tos_in = ltos; break; 1759 case Bytecodes::_f2i: // fall through 1760 case Bytecodes::_f2l: // fall through 1761 case Bytecodes::_f2d: tos_in = ftos; break; 1762 case Bytecodes::_d2i: // fall through 1763 case Bytecodes::_d2l: // fall through 1764 case Bytecodes::_d2f: tos_in = dtos; break; 1765 default : ShouldNotReachHere(); 1766 } 1767 switch (bytecode()) { 1768 case Bytecodes::_l2i: // fall through 1769 case Bytecodes::_f2i: // fall through 1770 case Bytecodes::_d2i: // fall through 1771 case Bytecodes::_i2b: // fall through 1772 case Bytecodes::_i2c: // fall through 1773 case Bytecodes::_i2s: tos_out = itos; break; 1774 case Bytecodes::_i2l: // fall through 1775 case Bytecodes::_f2l: // fall through 1776 case Bytecodes::_d2l: tos_out = ltos; break; 1777 case Bytecodes::_i2f: // fall through 1778 case Bytecodes::_l2f: // fall through 1779 case Bytecodes::_d2f: tos_out = ftos; break; 1780 case Bytecodes::_i2d: // fall through 1781 case Bytecodes::_l2d: // fall through 1782 case Bytecodes::_f2d: tos_out = dtos; break; 1783 default : ShouldNotReachHere(); 1784 } 1785 transition(tos_in, tos_out); 1786 } 1787 #endif // ASSERT 1788 1789 static const int64_t is_nan = 0x8000000000000000L; 1790 1791 // Conversion 1792 switch (bytecode()) { 1793 case Bytecodes::_i2l: 1794 __ movslq(rax, rax); 1795 break; 1796 case Bytecodes::_i2f: 1797 __ cvtsi2ssl(xmm0, rax); 1798 break; 1799 case Bytecodes::_i2d: 1800 __ cvtsi2sdl(xmm0, rax); 1801 break; 1802 case Bytecodes::_i2b: 1803 __ movsbl(rax, rax); 1804 break; 1805 case Bytecodes::_i2c: 1806 __ movzwl(rax, rax); 1807 break; 1808 case Bytecodes::_i2s: 1809 __ movswl(rax, rax); 1810 break; 1811 case Bytecodes::_l2i: 1812 __ movl(rax, rax); 1813 break; 1814 case Bytecodes::_l2f: 1815 __ cvtsi2ssq(xmm0, rax); 1816 break; 1817 case Bytecodes::_l2d: 1818 __ cvtsi2sdq(xmm0, rax); 1819 break; 1820 case Bytecodes::_f2i: 1821 { 1822 Label L; 1823 __ cvttss2sil(rax, xmm0); 1824 __ cmpl(rax, 0x80000000); // NaN or overflow/underflow? 1825 __ jcc(Assembler::notEqual, L); 1826 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1); 1827 __ bind(L); 1828 } 1829 break; 1830 case Bytecodes::_f2l: 1831 { 1832 Label L; 1833 __ cvttss2siq(rax, xmm0); 1834 // NaN or overflow/underflow? 1835 __ cmp64(rax, ExternalAddress((address) &is_nan), rscratch1); 1836 __ jcc(Assembler::notEqual, L); 1837 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1); 1838 __ bind(L); 1839 } 1840 break; 1841 case Bytecodes::_f2d: 1842 __ cvtss2sd(xmm0, xmm0); 1843 break; 1844 case Bytecodes::_d2i: 1845 { 1846 Label L; 1847 __ cvttsd2sil(rax, xmm0); 1848 __ cmpl(rax, 0x80000000); // NaN or overflow/underflow? 1849 __ jcc(Assembler::notEqual, L); 1850 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1); 1851 __ bind(L); 1852 } 1853 break; 1854 case Bytecodes::_d2l: 1855 { 1856 Label L; 1857 __ cvttsd2siq(rax, xmm0); 1858 // NaN or overflow/underflow? 1859 __ cmp64(rax, ExternalAddress((address) &is_nan), rscratch1); 1860 __ jcc(Assembler::notEqual, L); 1861 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1); 1862 __ bind(L); 1863 } 1864 break; 1865 case Bytecodes::_d2f: 1866 __ cvtsd2ss(xmm0, xmm0); 1867 break; 1868 default: 1869 ShouldNotReachHere(); 1870 } 1871 #else // !_LP64 1872 // Checking 1873 #ifdef ASSERT 1874 { TosState tos_in = ilgl; 1875 TosState tos_out = ilgl; 1876 switch (bytecode()) { 1877 case Bytecodes::_i2l: // fall through 1878 case Bytecodes::_i2f: // fall through 1879 case Bytecodes::_i2d: // fall through 1880 case Bytecodes::_i2b: // fall through 1881 case Bytecodes::_i2c: // fall through 1882 case Bytecodes::_i2s: tos_in = itos; break; 1883 case Bytecodes::_l2i: // fall through 1884 case Bytecodes::_l2f: // fall through 1885 case Bytecodes::_l2d: tos_in = ltos; break; 1886 case Bytecodes::_f2i: // fall through 1887 case Bytecodes::_f2l: // fall through 1888 case Bytecodes::_f2d: tos_in = ftos; break; 1889 case Bytecodes::_d2i: // fall through 1890 case Bytecodes::_d2l: // fall through 1891 case Bytecodes::_d2f: tos_in = dtos; break; 1892 default : ShouldNotReachHere(); 1893 } 1894 switch (bytecode()) { 1895 case Bytecodes::_l2i: // fall through 1896 case Bytecodes::_f2i: // fall through 1897 case Bytecodes::_d2i: // fall through 1898 case Bytecodes::_i2b: // fall through 1899 case Bytecodes::_i2c: // fall through 1900 case Bytecodes::_i2s: tos_out = itos; break; 1901 case Bytecodes::_i2l: // fall through 1902 case Bytecodes::_f2l: // fall through 1903 case Bytecodes::_d2l: tos_out = ltos; break; 1904 case Bytecodes::_i2f: // fall through 1905 case Bytecodes::_l2f: // fall through 1906 case Bytecodes::_d2f: tos_out = ftos; break; 1907 case Bytecodes::_i2d: // fall through 1908 case Bytecodes::_l2d: // fall through 1909 case Bytecodes::_f2d: tos_out = dtos; break; 1910 default : ShouldNotReachHere(); 1911 } 1912 transition(tos_in, tos_out); 1913 } 1914 #endif // ASSERT 1915 1916 // Conversion 1917 // (Note: use push(rcx)/pop(rcx) for 1/2-word stack-ptr manipulation) 1918 switch (bytecode()) { 1919 case Bytecodes::_i2l: 1920 __ extend_sign(rdx, rax); 1921 break; 1922 case Bytecodes::_i2f: 1923 if (UseSSE >= 1) { 1924 __ cvtsi2ssl(xmm0, rax); 1925 } else { 1926 __ push(rax); // store int on tos 1927 __ fild_s(at_rsp()); // load int to ST0 1928 __ f2ieee(); // truncate to float size 1929 __ pop(rcx); // adjust rsp 1930 } 1931 break; 1932 case Bytecodes::_i2d: 1933 if (UseSSE >= 2) { 1934 __ cvtsi2sdl(xmm0, rax); 1935 } else { 1936 __ push(rax); // add one slot for d2ieee() 1937 __ push(rax); // store int on tos 1938 __ fild_s(at_rsp()); // load int to ST0 1939 __ d2ieee(); // truncate to double size 1940 __ pop(rcx); // adjust rsp 1941 __ pop(rcx); 1942 } 1943 break; 1944 case Bytecodes::_i2b: 1945 __ shll(rax, 24); // truncate upper 24 bits 1946 __ sarl(rax, 24); // and sign-extend byte 1947 LP64_ONLY(__ movsbl(rax, rax)); 1948 break; 1949 case Bytecodes::_i2c: 1950 __ andl(rax, 0xFFFF); // truncate upper 16 bits 1951 LP64_ONLY(__ movzwl(rax, rax)); 1952 break; 1953 case Bytecodes::_i2s: 1954 __ shll(rax, 16); // truncate upper 16 bits 1955 __ sarl(rax, 16); // and sign-extend short 1956 LP64_ONLY(__ movswl(rax, rax)); 1957 break; 1958 case Bytecodes::_l2i: 1959 /* nothing to do */ 1960 break; 1961 case Bytecodes::_l2f: 1962 // On 64-bit platforms, the cvtsi2ssq instruction is used to convert 1963 // 64-bit long values to floats. On 32-bit platforms it is not possible 1964 // to use that instruction with 64-bit operands, therefore the FPU is 1965 // used to perform the conversion. 1966 __ push(rdx); // store long on tos 1967 __ push(rax); 1968 __ fild_d(at_rsp()); // load long to ST0 1969 __ f2ieee(); // truncate to float size 1970 __ pop(rcx); // adjust rsp 1971 __ pop(rcx); 1972 if (UseSSE >= 1) { 1973 __ push_f(); 1974 __ pop_f(xmm0); 1975 } 1976 break; 1977 case Bytecodes::_l2d: 1978 // On 32-bit platforms the FPU is used for conversion because on 1979 // 32-bit platforms it is not not possible to use the cvtsi2sdq 1980 // instruction with 64-bit operands. 1981 __ push(rdx); // store long on tos 1982 __ push(rax); 1983 __ fild_d(at_rsp()); // load long to ST0 1984 __ d2ieee(); // truncate to double size 1985 __ pop(rcx); // adjust rsp 1986 __ pop(rcx); 1987 if (UseSSE >= 2) { 1988 __ push_d(); 1989 __ pop_d(xmm0); 1990 } 1991 break; 1992 case Bytecodes::_f2i: 1993 // SharedRuntime::f2i does not differentiate between sNaNs and qNaNs 1994 // as it returns 0 for any NaN. 1995 if (UseSSE >= 1) { 1996 __ push_f(xmm0); 1997 } else { 1998 __ push(rcx); // reserve space for argument 1999 __ fstp_s(at_rsp()); // pass float argument on stack 2000 } 2001 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1); 2002 break; 2003 case Bytecodes::_f2l: 2004 // SharedRuntime::f2l does not differentiate between sNaNs and qNaNs 2005 // as it returns 0 for any NaN. 2006 if (UseSSE >= 1) { 2007 __ push_f(xmm0); 2008 } else { 2009 __ push(rcx); // reserve space for argument 2010 __ fstp_s(at_rsp()); // pass float argument on stack 2011 } 2012 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1); 2013 break; 2014 case Bytecodes::_f2d: 2015 if (UseSSE < 1) { 2016 /* nothing to do */ 2017 } else if (UseSSE == 1) { 2018 __ push_f(xmm0); 2019 __ pop_f(); 2020 } else { // UseSSE >= 2 2021 __ cvtss2sd(xmm0, xmm0); 2022 } 2023 break; 2024 case Bytecodes::_d2i: 2025 if (UseSSE >= 2) { 2026 __ push_d(xmm0); 2027 } else { 2028 __ push(rcx); // reserve space for argument 2029 __ push(rcx); 2030 __ fstp_d(at_rsp()); // pass double argument on stack 2031 } 2032 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 2); 2033 break; 2034 case Bytecodes::_d2l: 2035 if (UseSSE >= 2) { 2036 __ push_d(xmm0); 2037 } else { 2038 __ push(rcx); // reserve space for argument 2039 __ push(rcx); 2040 __ fstp_d(at_rsp()); // pass double argument on stack 2041 } 2042 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 2); 2043 break; 2044 case Bytecodes::_d2f: 2045 if (UseSSE <= 1) { 2046 __ push(rcx); // reserve space for f2ieee() 2047 __ f2ieee(); // truncate to float size 2048 __ pop(rcx); // adjust rsp 2049 if (UseSSE == 1) { 2050 // The cvtsd2ss instruction is not available if UseSSE==1, therefore 2051 // the conversion is performed using the FPU in this case. 2052 __ push_f(); 2053 __ pop_f(xmm0); 2054 } 2055 } else { // UseSSE >= 2 2056 __ cvtsd2ss(xmm0, xmm0); 2057 } 2058 break; 2059 default : 2060 ShouldNotReachHere(); 2061 } 2062 #endif // _LP64 2063 } 2064 2065 void TemplateTable::lcmp() { 2066 transition(ltos, itos); 2067 #ifdef _LP64 2068 Label done; 2069 __ pop_l(rdx); 2070 __ cmpq(rdx, rax); 2071 __ movl(rax, -1); 2072 __ jccb(Assembler::less, done); 2073 __ setb(Assembler::notEqual, rax); 2074 __ movzbl(rax, rax); 2075 __ bind(done); 2076 #else 2077 2078 // y = rdx:rax 2079 __ pop_l(rbx, rcx); // get x = rcx:rbx 2080 __ lcmp2int(rcx, rbx, rdx, rax);// rcx := cmp(x, y) 2081 __ mov(rax, rcx); 2082 #endif 2083 } 2084 2085 void TemplateTable::float_cmp(bool is_float, int unordered_result) { 2086 if ((is_float && UseSSE >= 1) || 2087 (!is_float && UseSSE >= 2)) { 2088 Label done; 2089 if (is_float) { 2090 // XXX get rid of pop here, use ... reg, mem32 2091 __ pop_f(xmm1); 2092 __ ucomiss(xmm1, xmm0); 2093 } else { 2094 // XXX get rid of pop here, use ... reg, mem64 2095 __ pop_d(xmm1); 2096 __ ucomisd(xmm1, xmm0); 2097 } 2098 if (unordered_result < 0) { 2099 __ movl(rax, -1); 2100 __ jccb(Assembler::parity, done); 2101 __ jccb(Assembler::below, done); 2102 __ setb(Assembler::notEqual, rdx); 2103 __ movzbl(rax, rdx); 2104 } else { 2105 __ movl(rax, 1); 2106 __ jccb(Assembler::parity, done); 2107 __ jccb(Assembler::above, done); 2108 __ movl(rax, 0); 2109 __ jccb(Assembler::equal, done); 2110 __ decrementl(rax); 2111 } 2112 __ bind(done); 2113 } else { 2114 #ifdef _LP64 2115 ShouldNotReachHere(); 2116 #else // !_LP64 2117 if (is_float) { 2118 __ fld_s(at_rsp()); 2119 } else { 2120 __ fld_d(at_rsp()); 2121 __ pop(rdx); 2122 } 2123 __ pop(rcx); 2124 __ fcmp2int(rax, unordered_result < 0); 2125 #endif // _LP64 2126 } 2127 } 2128 2129 void TemplateTable::branch(bool is_jsr, bool is_wide) { 2130 __ get_method(rcx); // rcx holds method 2131 __ profile_taken_branch(rax, rbx); // rax holds updated MDP, rbx 2132 // holds bumped taken count 2133 2134 const ByteSize be_offset = MethodCounters::backedge_counter_offset() + 2135 InvocationCounter::counter_offset(); 2136 const ByteSize inv_offset = MethodCounters::invocation_counter_offset() + 2137 InvocationCounter::counter_offset(); 2138 2139 // Load up edx with the branch displacement 2140 if (is_wide) { 2141 __ movl(rdx, at_bcp(1)); 2142 } else { 2143 __ load_signed_short(rdx, at_bcp(1)); 2144 } 2145 __ bswapl(rdx); 2146 2147 if (!is_wide) { 2148 __ sarl(rdx, 16); 2149 } 2150 LP64_ONLY(__ movl2ptr(rdx, rdx)); 2151 2152 // Handle all the JSR stuff here, then exit. 2153 // It's much shorter and cleaner than intermingling with the non-JSR 2154 // normal-branch stuff occurring below. 2155 if (is_jsr) { 2156 // Pre-load the next target bytecode into rbx 2157 __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1, 0)); 2158 2159 // compute return address as bci in rax 2160 __ lea(rax, at_bcp((is_wide ? 5 : 3) - 2161 in_bytes(ConstMethod::codes_offset()))); 2162 __ subptr(rax, Address(rcx, Method::const_offset())); 2163 // Adjust the bcp in r13 by the displacement in rdx 2164 __ addptr(rbcp, rdx); 2165 // jsr returns atos that is not an oop 2166 __ push_i(rax); 2167 __ dispatch_only(vtos, true); 2168 return; 2169 } 2170 2171 // Normal (non-jsr) branch handling 2172 2173 // Adjust the bcp in r13 by the displacement in rdx 2174 __ addptr(rbcp, rdx); 2175 2176 assert(UseLoopCounter || !UseOnStackReplacement, 2177 "on-stack-replacement requires loop counters"); 2178 Label backedge_counter_overflow; 2179 Label dispatch; 2180 if (UseLoopCounter) { 2181 // increment backedge counter for backward branches 2182 // rax: MDO 2183 // rbx: MDO bumped taken-count 2184 // rcx: method 2185 // rdx: target offset 2186 // r13: target bcp 2187 // r14: locals pointer 2188 __ testl(rdx, rdx); // check if forward or backward branch 2189 __ jcc(Assembler::positive, dispatch); // count only if backward branch 2190 2191 // check if MethodCounters exists 2192 Label has_counters; 2193 __ movptr(rax, Address(rcx, Method::method_counters_offset())); 2194 __ testptr(rax, rax); 2195 __ jcc(Assembler::notZero, has_counters); 2196 __ push(rdx); 2197 __ push(rcx); 2198 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters), 2199 rcx); 2200 __ pop(rcx); 2201 __ pop(rdx); 2202 __ movptr(rax, Address(rcx, Method::method_counters_offset())); 2203 __ testptr(rax, rax); 2204 __ jcc(Assembler::zero, dispatch); 2205 __ bind(has_counters); 2206 2207 Label no_mdo; 2208 if (ProfileInterpreter) { 2209 // Are we profiling? 2210 __ movptr(rbx, Address(rcx, in_bytes(Method::method_data_offset()))); 2211 __ testptr(rbx, rbx); 2212 __ jccb(Assembler::zero, no_mdo); 2213 // Increment the MDO backedge counter 2214 const Address mdo_backedge_counter(rbx, in_bytes(MethodData::backedge_counter_offset()) + 2215 in_bytes(InvocationCounter::counter_offset())); 2216 const Address mask(rbx, in_bytes(MethodData::backedge_mask_offset())); 2217 __ increment_mask_and_jump(mdo_backedge_counter, mask, rax, 2218 UseOnStackReplacement ? &backedge_counter_overflow : nullptr); 2219 __ jmp(dispatch); 2220 } 2221 __ bind(no_mdo); 2222 // Increment backedge counter in MethodCounters* 2223 __ movptr(rcx, Address(rcx, Method::method_counters_offset())); 2224 const Address mask(rcx, in_bytes(MethodCounters::backedge_mask_offset())); 2225 __ increment_mask_and_jump(Address(rcx, be_offset), mask, rax, 2226 UseOnStackReplacement ? &backedge_counter_overflow : nullptr); 2227 __ bind(dispatch); 2228 } 2229 2230 // Pre-load the next target bytecode into rbx 2231 __ load_unsigned_byte(rbx, Address(rbcp, 0)); 2232 2233 // continue with the bytecode @ target 2234 // rax: return bci for jsr's, unused otherwise 2235 // rbx: target bytecode 2236 // r13: target bcp 2237 __ dispatch_only(vtos, true); 2238 2239 if (UseLoopCounter) { 2240 if (UseOnStackReplacement) { 2241 Label set_mdp; 2242 // invocation counter overflow 2243 __ bind(backedge_counter_overflow); 2244 __ negptr(rdx); 2245 __ addptr(rdx, rbcp); // branch bcp 2246 // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp) 2247 __ call_VM(noreg, 2248 CAST_FROM_FN_PTR(address, 2249 InterpreterRuntime::frequency_counter_overflow), 2250 rdx); 2251 2252 // rax: osr nmethod (osr ok) or null (osr not possible) 2253 // rdx: scratch 2254 // r14: locals pointer 2255 // r13: bcp 2256 __ testptr(rax, rax); // test result 2257 __ jcc(Assembler::zero, dispatch); // no osr if null 2258 // nmethod may have been invalidated (VM may block upon call_VM return) 2259 __ cmpb(Address(rax, nmethod::state_offset()), nmethod::in_use); 2260 __ jcc(Assembler::notEqual, dispatch); 2261 2262 // We have the address of an on stack replacement routine in rax. 2263 // In preparation of invoking it, first we must migrate the locals 2264 // and monitors from off the interpreter frame on the stack. 2265 // Ensure to save the osr nmethod over the migration call, 2266 // it will be preserved in rbx. 2267 __ mov(rbx, rax); 2268 2269 NOT_LP64(__ get_thread(rcx)); 2270 2271 call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin)); 2272 2273 // rax is OSR buffer, move it to expected parameter location 2274 LP64_ONLY(__ mov(j_rarg0, rax)); 2275 NOT_LP64(__ mov(rcx, rax)); 2276 // We use j_rarg definitions here so that registers don't conflict as parameter 2277 // registers change across platforms as we are in the midst of a calling 2278 // sequence to the OSR nmethod and we don't want collision. These are NOT parameters. 2279 2280 const Register retaddr = LP64_ONLY(j_rarg2) NOT_LP64(rdi); 2281 const Register sender_sp = LP64_ONLY(j_rarg1) NOT_LP64(rdx); 2282 2283 // pop the interpreter frame 2284 __ movptr(sender_sp, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp 2285 __ leave(); // remove frame anchor 2286 __ pop(retaddr); // get return address 2287 __ mov(rsp, sender_sp); // set sp to sender sp 2288 // Ensure compiled code always sees stack at proper alignment 2289 __ andptr(rsp, -(StackAlignmentInBytes)); 2290 2291 // unlike x86 we need no specialized return from compiled code 2292 // to the interpreter or the call stub. 2293 2294 // push the return address 2295 __ push(retaddr); 2296 2297 // and begin the OSR nmethod 2298 __ jmp(Address(rbx, nmethod::osr_entry_point_offset())); 2299 } 2300 } 2301 } 2302 2303 void TemplateTable::if_0cmp(Condition cc) { 2304 transition(itos, vtos); 2305 // assume branch is more often taken than not (loops use backward branches) 2306 Label not_taken; 2307 __ testl(rax, rax); 2308 __ jcc(j_not(cc), not_taken); 2309 branch(false, false); 2310 __ bind(not_taken); 2311 __ profile_not_taken_branch(rax); 2312 } 2313 2314 void TemplateTable::if_icmp(Condition cc) { 2315 transition(itos, vtos); 2316 // assume branch is more often taken than not (loops use backward branches) 2317 Label not_taken; 2318 __ pop_i(rdx); 2319 __ cmpl(rdx, rax); 2320 __ jcc(j_not(cc), not_taken); 2321 branch(false, false); 2322 __ bind(not_taken); 2323 __ profile_not_taken_branch(rax); 2324 } 2325 2326 void TemplateTable::if_nullcmp(Condition cc) { 2327 transition(atos, vtos); 2328 // assume branch is more often taken than not (loops use backward branches) 2329 Label not_taken; 2330 __ testptr(rax, rax); 2331 __ jcc(j_not(cc), not_taken); 2332 branch(false, false); 2333 __ bind(not_taken); 2334 __ profile_not_taken_branch(rax); 2335 } 2336 2337 void TemplateTable::if_acmp(Condition cc) { 2338 transition(atos, vtos); 2339 // assume branch is more often taken than not (loops use backward branches) 2340 Label not_taken; 2341 __ pop_ptr(rdx); 2342 __ cmpoop(rdx, rax); 2343 __ jcc(j_not(cc), not_taken); 2344 branch(false, false); 2345 __ bind(not_taken); 2346 __ profile_not_taken_branch(rax); 2347 } 2348 2349 void TemplateTable::ret() { 2350 transition(vtos, vtos); 2351 locals_index(rbx); 2352 LP64_ONLY(__ movslq(rbx, iaddress(rbx))); // get return bci, compute return bcp 2353 NOT_LP64(__ movptr(rbx, iaddress(rbx))); 2354 __ profile_ret(rbx, rcx); 2355 __ get_method(rax); 2356 __ movptr(rbcp, Address(rax, Method::const_offset())); 2357 __ lea(rbcp, Address(rbcp, rbx, Address::times_1, 2358 ConstMethod::codes_offset())); 2359 __ dispatch_next(vtos, 0, true); 2360 } 2361 2362 void TemplateTable::wide_ret() { 2363 transition(vtos, vtos); 2364 locals_index_wide(rbx); 2365 __ movptr(rbx, aaddress(rbx)); // get return bci, compute return bcp 2366 __ profile_ret(rbx, rcx); 2367 __ get_method(rax); 2368 __ movptr(rbcp, Address(rax, Method::const_offset())); 2369 __ lea(rbcp, Address(rbcp, rbx, Address::times_1, ConstMethod::codes_offset())); 2370 __ dispatch_next(vtos, 0, true); 2371 } 2372 2373 void TemplateTable::tableswitch() { 2374 Label default_case, continue_execution; 2375 transition(itos, vtos); 2376 2377 // align r13/rsi 2378 __ lea(rbx, at_bcp(BytesPerInt)); 2379 __ andptr(rbx, -BytesPerInt); 2380 // load lo & hi 2381 __ movl(rcx, Address(rbx, BytesPerInt)); 2382 __ movl(rdx, Address(rbx, 2 * BytesPerInt)); 2383 __ bswapl(rcx); 2384 __ bswapl(rdx); 2385 // check against lo & hi 2386 __ cmpl(rax, rcx); 2387 __ jcc(Assembler::less, default_case); 2388 __ cmpl(rax, rdx); 2389 __ jcc(Assembler::greater, default_case); 2390 // lookup dispatch offset 2391 __ subl(rax, rcx); 2392 __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt)); 2393 __ profile_switch_case(rax, rbx, rcx); 2394 // continue execution 2395 __ bind(continue_execution); 2396 __ bswapl(rdx); 2397 LP64_ONLY(__ movl2ptr(rdx, rdx)); 2398 __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1)); 2399 __ addptr(rbcp, rdx); 2400 __ dispatch_only(vtos, true); 2401 // handle default 2402 __ bind(default_case); 2403 __ profile_switch_default(rax); 2404 __ movl(rdx, Address(rbx, 0)); 2405 __ jmp(continue_execution); 2406 } 2407 2408 void TemplateTable::lookupswitch() { 2409 transition(itos, itos); 2410 __ stop("lookupswitch bytecode should have been rewritten"); 2411 } 2412 2413 void TemplateTable::fast_linearswitch() { 2414 transition(itos, vtos); 2415 Label loop_entry, loop, found, continue_execution; 2416 // bswap rax so we can avoid bswapping the table entries 2417 __ bswapl(rax); 2418 // align r13 2419 __ lea(rbx, at_bcp(BytesPerInt)); // btw: should be able to get rid of 2420 // this instruction (change offsets 2421 // below) 2422 __ andptr(rbx, -BytesPerInt); 2423 // set counter 2424 __ movl(rcx, Address(rbx, BytesPerInt)); 2425 __ bswapl(rcx); 2426 __ jmpb(loop_entry); 2427 // table search 2428 __ bind(loop); 2429 __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * BytesPerInt)); 2430 __ jcc(Assembler::equal, found); 2431 __ bind(loop_entry); 2432 __ decrementl(rcx); 2433 __ jcc(Assembler::greaterEqual, loop); 2434 // default case 2435 __ profile_switch_default(rax); 2436 __ movl(rdx, Address(rbx, 0)); 2437 __ jmp(continue_execution); 2438 // entry found -> get offset 2439 __ bind(found); 2440 __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * BytesPerInt)); 2441 __ profile_switch_case(rcx, rax, rbx); 2442 // continue execution 2443 __ bind(continue_execution); 2444 __ bswapl(rdx); 2445 __ movl2ptr(rdx, rdx); 2446 __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1)); 2447 __ addptr(rbcp, rdx); 2448 __ dispatch_only(vtos, true); 2449 } 2450 2451 void TemplateTable::fast_binaryswitch() { 2452 transition(itos, vtos); 2453 // Implementation using the following core algorithm: 2454 // 2455 // int binary_search(int key, LookupswitchPair* array, int n) { 2456 // // Binary search according to "Methodik des Programmierens" by 2457 // // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985. 2458 // int i = 0; 2459 // int j = n; 2460 // while (i+1 < j) { 2461 // // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q) 2462 // // with Q: for all i: 0 <= i < n: key < a[i] 2463 // // where a stands for the array and assuming that the (inexisting) 2464 // // element a[n] is infinitely big. 2465 // int h = (i + j) >> 1; 2466 // // i < h < j 2467 // if (key < array[h].fast_match()) { 2468 // j = h; 2469 // } else { 2470 // i = h; 2471 // } 2472 // } 2473 // // R: a[i] <= key < a[i+1] or Q 2474 // // (i.e., if key is within array, i is the correct index) 2475 // return i; 2476 // } 2477 2478 // Register allocation 2479 const Register key = rax; // already set (tosca) 2480 const Register array = rbx; 2481 const Register i = rcx; 2482 const Register j = rdx; 2483 const Register h = rdi; 2484 const Register temp = rsi; 2485 2486 // Find array start 2487 NOT_LP64(__ save_bcp()); 2488 2489 __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to 2490 // get rid of this 2491 // instruction (change 2492 // offsets below) 2493 __ andptr(array, -BytesPerInt); 2494 2495 // Initialize i & j 2496 __ xorl(i, i); // i = 0; 2497 __ movl(j, Address(array, -BytesPerInt)); // j = length(array); 2498 2499 // Convert j into native byteordering 2500 __ bswapl(j); 2501 2502 // And start 2503 Label entry; 2504 __ jmp(entry); 2505 2506 // binary search loop 2507 { 2508 Label loop; 2509 __ bind(loop); 2510 // int h = (i + j) >> 1; 2511 __ leal(h, Address(i, j, Address::times_1)); // h = i + j; 2512 __ sarl(h, 1); // h = (i + j) >> 1; 2513 // if (key < array[h].fast_match()) { 2514 // j = h; 2515 // } else { 2516 // i = h; 2517 // } 2518 // Convert array[h].match to native byte-ordering before compare 2519 __ movl(temp, Address(array, h, Address::times_8)); 2520 __ bswapl(temp); 2521 __ cmpl(key, temp); 2522 // j = h if (key < array[h].fast_match()) 2523 __ cmov32(Assembler::less, j, h); 2524 // i = h if (key >= array[h].fast_match()) 2525 __ cmov32(Assembler::greaterEqual, i, h); 2526 // while (i+1 < j) 2527 __ bind(entry); 2528 __ leal(h, Address(i, 1)); // i+1 2529 __ cmpl(h, j); // i+1 < j 2530 __ jcc(Assembler::less, loop); 2531 } 2532 2533 // end of binary search, result index is i (must check again!) 2534 Label default_case; 2535 // Convert array[i].match to native byte-ordering before compare 2536 __ movl(temp, Address(array, i, Address::times_8)); 2537 __ bswapl(temp); 2538 __ cmpl(key, temp); 2539 __ jcc(Assembler::notEqual, default_case); 2540 2541 // entry found -> j = offset 2542 __ movl(j , Address(array, i, Address::times_8, BytesPerInt)); 2543 __ profile_switch_case(i, key, array); 2544 __ bswapl(j); 2545 LP64_ONLY(__ movslq(j, j)); 2546 2547 NOT_LP64(__ restore_bcp()); 2548 NOT_LP64(__ restore_locals()); // restore rdi 2549 2550 __ load_unsigned_byte(rbx, Address(rbcp, j, Address::times_1)); 2551 __ addptr(rbcp, j); 2552 __ dispatch_only(vtos, true); 2553 2554 // default case -> j = default offset 2555 __ bind(default_case); 2556 __ profile_switch_default(i); 2557 __ movl(j, Address(array, -2 * BytesPerInt)); 2558 __ bswapl(j); 2559 LP64_ONLY(__ movslq(j, j)); 2560 2561 NOT_LP64(__ restore_bcp()); 2562 NOT_LP64(__ restore_locals()); 2563 2564 __ load_unsigned_byte(rbx, Address(rbcp, j, Address::times_1)); 2565 __ addptr(rbcp, j); 2566 __ dispatch_only(vtos, true); 2567 } 2568 2569 void TemplateTable::_return(TosState state) { 2570 transition(state, state); 2571 2572 assert(_desc->calls_vm(), 2573 "inconsistent calls_vm information"); // call in remove_activation 2574 2575 if (_desc->bytecode() == Bytecodes::_return_register_finalizer) { 2576 assert(state == vtos, "only valid state"); 2577 Register robj = LP64_ONLY(c_rarg1) NOT_LP64(rax); 2578 __ movptr(robj, aaddress(0)); 2579 __ load_klass(rdi, robj, rscratch1); 2580 __ movl(rdi, Address(rdi, Klass::access_flags_offset())); 2581 __ testl(rdi, JVM_ACC_HAS_FINALIZER); 2582 Label skip_register_finalizer; 2583 __ jcc(Assembler::zero, skip_register_finalizer); 2584 2585 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), robj); 2586 2587 __ bind(skip_register_finalizer); 2588 } 2589 2590 if (_desc->bytecode() != Bytecodes::_return_register_finalizer) { 2591 Label no_safepoint; 2592 NOT_PRODUCT(__ block_comment("Thread-local Safepoint poll")); 2593 #ifdef _LP64 2594 __ testb(Address(r15_thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit()); 2595 #else 2596 const Register thread = rdi; 2597 __ get_thread(thread); 2598 __ testb(Address(thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit()); 2599 #endif 2600 __ jcc(Assembler::zero, no_safepoint); 2601 __ push(state); 2602 __ push_cont_fastpath(); 2603 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 2604 InterpreterRuntime::at_safepoint)); 2605 __ pop_cont_fastpath(); 2606 __ pop(state); 2607 __ bind(no_safepoint); 2608 } 2609 2610 // Narrow result if state is itos but result type is smaller. 2611 // Need to narrow in the return bytecode rather than in generate_return_entry 2612 // since compiled code callers expect the result to already be narrowed. 2613 if (state == itos) { 2614 __ narrow(rax); 2615 } 2616 __ remove_activation(state, rbcp); 2617 2618 __ jmp(rbcp); 2619 } 2620 2621 // ---------------------------------------------------------------------------- 2622 // Volatile variables demand their effects be made known to all CPU's 2623 // in order. Store buffers on most chips allow reads & writes to 2624 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode 2625 // without some kind of memory barrier (i.e., it's not sufficient that 2626 // the interpreter does not reorder volatile references, the hardware 2627 // also must not reorder them). 2628 // 2629 // According to the new Java Memory Model (JMM): 2630 // (1) All volatiles are serialized wrt to each other. ALSO reads & 2631 // writes act as acquire & release, so: 2632 // (2) A read cannot let unrelated NON-volatile memory refs that 2633 // happen after the read float up to before the read. It's OK for 2634 // non-volatile memory refs that happen before the volatile read to 2635 // float down below it. 2636 // (3) Similar a volatile write cannot let unrelated NON-volatile 2637 // memory refs that happen BEFORE the write float down to after the 2638 // write. It's OK for non-volatile memory refs that happen after the 2639 // volatile write to float up before it. 2640 // 2641 // We only put in barriers around volatile refs (they are expensive), 2642 // not _between_ memory refs (that would require us to track the 2643 // flavor of the previous memory refs). Requirements (2) and (3) 2644 // require some barriers before volatile stores and after volatile 2645 // loads. These nearly cover requirement (1) but miss the 2646 // volatile-store-volatile-load case. This final case is placed after 2647 // volatile-stores although it could just as well go before 2648 // volatile-loads. 2649 2650 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint ) { 2651 // Helper function to insert a is-volatile test and memory barrier 2652 __ membar(order_constraint); 2653 } 2654 2655 void TemplateTable::resolve_cache_and_index(int byte_no, 2656 Register cache, 2657 Register index, 2658 size_t index_size) { 2659 const Register temp = rbx; 2660 assert_different_registers(cache, index, temp); 2661 2662 Label L_clinit_barrier_slow; 2663 Label resolved; 2664 2665 Bytecodes::Code code = bytecode(); 2666 2667 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 2668 __ get_cache_and_index_and_bytecode_at_bcp(cache, index, temp, byte_no, 1, index_size); 2669 __ cmpl(temp, code); // have we resolved this bytecode? 2670 __ jcc(Assembler::equal, resolved); 2671 2672 // resolve first time through 2673 // Class initialization barrier slow path lands here as well. 2674 __ bind(L_clinit_barrier_slow); 2675 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache); 2676 __ movl(temp, code); 2677 __ call_VM(noreg, entry, temp); 2678 // Update registers with resolved info 2679 __ get_cache_and_index_at_bcp(cache, index, 1, index_size); 2680 2681 __ bind(resolved); 2682 2683 // Class initialization barrier for static methods 2684 if (VM_Version::supports_fast_class_init_checks() && bytecode() == Bytecodes::_invokestatic) { 2685 const Register method = temp; 2686 const Register klass = temp; 2687 const Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg); 2688 assert(thread != noreg, "x86_32 not supported"); 2689 2690 __ load_resolved_method_at_index(byte_no, method, cache, index); 2691 __ load_method_holder(klass, method); 2692 __ clinit_barrier(klass, thread, nullptr /*L_fast_path*/, &L_clinit_barrier_slow); 2693 } 2694 } 2695 2696 void TemplateTable::resolve_cache_and_index_for_field(int byte_no, 2697 Register cache, 2698 Register index) { 2699 const Register temp = rbx; 2700 assert_different_registers(cache, index, temp); 2701 2702 Label resolved; 2703 2704 Bytecodes::Code code = bytecode(); 2705 switch (code) { 2706 case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break; 2707 case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break; 2708 default: break; 2709 } 2710 2711 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 2712 __ load_field_entry(cache, index); 2713 if (byte_no == f1_byte) { 2714 __ load_unsigned_byte(temp, Address(cache, in_bytes(ResolvedFieldEntry::get_code_offset()))); 2715 } else { 2716 __ load_unsigned_byte(temp, Address(cache, in_bytes(ResolvedFieldEntry::put_code_offset()))); 2717 } 2718 __ cmpl(temp, code); // have we resolved this bytecode? 2719 __ jcc(Assembler::equal, resolved); 2720 2721 // resolve first time through 2722 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache); 2723 __ movl(temp, code); 2724 __ call_VM(noreg, entry, temp); 2725 // Update registers with resolved info 2726 __ load_field_entry(cache, index); 2727 2728 __ bind(resolved); 2729 } 2730 2731 void TemplateTable::load_resolved_field_entry(Register obj, 2732 Register cache, 2733 Register tos_state, 2734 Register offset, 2735 Register flags, 2736 bool is_static = false) { 2737 assert_different_registers(cache, tos_state, flags, offset); 2738 2739 // Field offset 2740 __ load_sized_value(offset, Address(cache, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/); 2741 2742 // Flags 2743 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedFieldEntry::flags_offset()))); 2744 2745 // TOS state 2746 __ load_unsigned_byte(tos_state, Address(cache, in_bytes(ResolvedFieldEntry::type_offset()))); 2747 2748 // Klass overwrite register 2749 if (is_static) { 2750 __ movptr(obj, Address(cache, ResolvedFieldEntry::field_holder_offset())); 2751 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 2752 __ movptr(obj, Address(obj, mirror_offset)); 2753 __ resolve_oop_handle(obj, rscratch2); 2754 } 2755 2756 } 2757 2758 // The cache and index registers must be set before call 2759 void TemplateTable::load_field_cp_cache_entry(Register obj, 2760 Register cache, 2761 Register index, 2762 Register off, 2763 Register flags, 2764 bool is_static = false) { 2765 assert_different_registers(cache, index, flags, off); 2766 2767 ByteSize cp_base_offset = ConstantPoolCache::base_offset(); 2768 // Field offset 2769 __ movptr(off, Address(cache, index, Address::times_ptr, 2770 in_bytes(cp_base_offset + 2771 ConstantPoolCacheEntry::f2_offset()))); 2772 // Flags 2773 __ movl(flags, Address(cache, index, Address::times_ptr, 2774 in_bytes(cp_base_offset + 2775 ConstantPoolCacheEntry::flags_offset()))); 2776 2777 // klass overwrite register 2778 if (is_static) { 2779 __ movptr(obj, Address(cache, index, Address::times_ptr, 2780 in_bytes(cp_base_offset + 2781 ConstantPoolCacheEntry::f1_offset()))); 2782 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 2783 __ movptr(obj, Address(obj, mirror_offset)); 2784 __ resolve_oop_handle(obj, rscratch2); 2785 } 2786 } 2787 2788 void TemplateTable::load_invokedynamic_entry(Register method) { 2789 // setup registers 2790 const Register appendix = rax; 2791 const Register cache = rcx; 2792 const Register index = rdx; 2793 assert_different_registers(method, appendix, cache, index); 2794 2795 __ save_bcp(); 2796 2797 Label resolved; 2798 2799 __ load_resolved_indy_entry(cache, index); 2800 __ movptr(method, Address(cache, in_bytes(ResolvedIndyEntry::method_offset()))); 2801 2802 // Compare the method to zero 2803 __ testptr(method, method); 2804 __ jcc(Assembler::notZero, resolved); 2805 2806 Bytecodes::Code code = bytecode(); 2807 2808 // Call to the interpreter runtime to resolve invokedynamic 2809 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache); 2810 __ movl(method, code); // this is essentially Bytecodes::_invokedynamic 2811 __ call_VM(noreg, entry, method); 2812 // Update registers with resolved info 2813 __ load_resolved_indy_entry(cache, index); 2814 __ movptr(method, Address(cache, in_bytes(ResolvedIndyEntry::method_offset()))); 2815 2816 #ifdef ASSERT 2817 __ testptr(method, method); 2818 __ jcc(Assembler::notZero, resolved); 2819 __ stop("Should be resolved by now"); 2820 #endif // ASSERT 2821 __ bind(resolved); 2822 2823 Label L_no_push; 2824 // Check if there is an appendix 2825 __ load_unsigned_byte(index, Address(cache, in_bytes(ResolvedIndyEntry::flags_offset()))); 2826 __ testl(index, (1 << ResolvedIndyEntry::has_appendix_shift)); 2827 __ jcc(Assembler::zero, L_no_push); 2828 2829 // Get appendix 2830 __ load_unsigned_short(index, Address(cache, in_bytes(ResolvedIndyEntry::resolved_references_index_offset()))); 2831 // Push the appendix as a trailing parameter 2832 // since the parameter_size includes it. 2833 __ load_resolved_reference_at_index(appendix, index); 2834 __ verify_oop(appendix); 2835 __ push(appendix); // push appendix (MethodType, CallSite, etc.) 2836 __ bind(L_no_push); 2837 2838 // compute return type 2839 __ load_unsigned_byte(index, Address(cache, in_bytes(ResolvedIndyEntry::result_type_offset()))); 2840 // load return address 2841 { 2842 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code); 2843 ExternalAddress table(table_addr); 2844 #ifdef _LP64 2845 __ lea(rscratch1, table); 2846 __ movptr(index, Address(rscratch1, index, Address::times_ptr)); 2847 #else 2848 __ movptr(index, ArrayAddress(table, Address(noreg, index, Address::times_ptr))); 2849 #endif // _LP64 2850 } 2851 2852 // push return address 2853 __ push(index); 2854 } 2855 2856 void TemplateTable::load_invoke_cp_cache_entry(int byte_no, 2857 Register method, 2858 Register itable_index, 2859 Register flags, 2860 bool is_invokevirtual, 2861 bool is_invokevfinal, /*unused*/ 2862 bool is_invokedynamic /*unused*/) { 2863 // setup registers 2864 const Register cache = rcx; 2865 const Register index = rdx; 2866 assert_different_registers(method, flags); 2867 assert_different_registers(method, cache, index); 2868 assert_different_registers(itable_index, flags); 2869 assert_different_registers(itable_index, cache, index); 2870 // determine constant pool cache field offsets 2871 assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant"); 2872 const int flags_offset = in_bytes(ConstantPoolCache::base_offset() + 2873 ConstantPoolCacheEntry::flags_offset()); 2874 // access constant pool cache fields 2875 const int index_offset = in_bytes(ConstantPoolCache::base_offset() + 2876 ConstantPoolCacheEntry::f2_offset()); 2877 2878 size_t index_size = sizeof(u2); 2879 resolve_cache_and_index(byte_no, cache, index, index_size); 2880 __ load_resolved_method_at_index(byte_no, method, cache, index); 2881 2882 if (itable_index != noreg) { 2883 // pick up itable or appendix index from f2 also: 2884 __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset)); 2885 } 2886 __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset)); 2887 } 2888 2889 // The registers cache and index expected to be set before call. 2890 // Correct values of the cache and index registers are preserved. 2891 void TemplateTable::jvmti_post_field_access(Register cache, 2892 Register index, 2893 bool is_static, 2894 bool has_tos) { 2895 if (JvmtiExport::can_post_field_access()) { 2896 // Check to see if a field access watch has been set before we take 2897 // the time to call into the VM. 2898 Label L1; 2899 assert_different_registers(cache, index, rax); 2900 __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); 2901 __ testl(rax,rax); 2902 __ jcc(Assembler::zero, L1); 2903 2904 // cache entry pointer 2905 __ load_field_entry(cache, index); 2906 if (is_static) { 2907 __ xorptr(rax, rax); // null object reference 2908 } else { 2909 __ pop(atos); // Get the object 2910 __ verify_oop(rax); 2911 __ push(atos); // Restore stack state 2912 } 2913 // rax,: object pointer or null 2914 // cache: cache entry pointer 2915 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), 2916 rax, cache); 2917 2918 __ load_field_entry(cache, index); 2919 __ bind(L1); 2920 } 2921 } 2922 2923 void TemplateTable::pop_and_check_object(Register r) { 2924 __ pop_ptr(r); 2925 __ null_check(r); // for field access must check obj. 2926 __ verify_oop(r); 2927 } 2928 2929 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc) { 2930 transition(vtos, vtos); 2931 2932 const Register obj = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 2933 const Register cache = rcx; 2934 const Register index = rdx; 2935 const Register off = rbx; 2936 const Register tos_state = rax; 2937 const Register flags = rdx; 2938 const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // uses same reg as obj, so don't mix them 2939 2940 resolve_cache_and_index_for_field(byte_no, cache, index); 2941 jvmti_post_field_access(cache, index, is_static, false); 2942 load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static); 2943 2944 if (!is_static) pop_and_check_object(obj); 2945 2946 const Address field(obj, off, Address::times_1, 0*wordSize); 2947 2948 Label Done, notByte, notBool, notInt, notShort, notChar, notLong, notFloat, notObj; 2949 2950 // Make sure we don't need to mask edx after the above shift 2951 assert(btos == 0, "change code, btos != 0"); 2952 __ testl(tos_state, tos_state); 2953 __ jcc(Assembler::notZero, notByte); 2954 2955 // btos 2956 __ access_load_at(T_BYTE, IN_HEAP, rax, field, noreg, noreg); 2957 __ push(btos); 2958 // Rewrite bytecode to be faster 2959 if (!is_static && rc == may_rewrite) { 2960 patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx); 2961 } 2962 __ jmp(Done); 2963 2964 __ bind(notByte); 2965 __ cmpl(tos_state, ztos); 2966 __ jcc(Assembler::notEqual, notBool); 2967 2968 // ztos (same code as btos) 2969 __ access_load_at(T_BOOLEAN, IN_HEAP, rax, field, noreg, noreg); 2970 __ push(ztos); 2971 // Rewrite bytecode to be faster 2972 if (!is_static && rc == may_rewrite) { 2973 // use btos rewriting, no truncating to t/f bit is needed for getfield. 2974 patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx); 2975 } 2976 __ jmp(Done); 2977 2978 __ bind(notBool); 2979 __ cmpl(tos_state, atos); 2980 __ jcc(Assembler::notEqual, notObj); 2981 // atos 2982 do_oop_load(_masm, field, rax); 2983 __ push(atos); 2984 if (!is_static && rc == may_rewrite) { 2985 patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx); 2986 } 2987 __ jmp(Done); 2988 2989 __ bind(notObj); 2990 __ cmpl(tos_state, itos); 2991 __ jcc(Assembler::notEqual, notInt); 2992 // itos 2993 __ access_load_at(T_INT, IN_HEAP, rax, field, noreg, noreg); 2994 __ push(itos); 2995 // Rewrite bytecode to be faster 2996 if (!is_static && rc == may_rewrite) { 2997 patch_bytecode(Bytecodes::_fast_igetfield, bc, rbx); 2998 } 2999 __ jmp(Done); 3000 3001 __ bind(notInt); 3002 __ cmpl(tos_state, ctos); 3003 __ jcc(Assembler::notEqual, notChar); 3004 // ctos 3005 __ access_load_at(T_CHAR, IN_HEAP, rax, field, noreg, noreg); 3006 __ push(ctos); 3007 // Rewrite bytecode to be faster 3008 if (!is_static && rc == may_rewrite) { 3009 patch_bytecode(Bytecodes::_fast_cgetfield, bc, rbx); 3010 } 3011 __ jmp(Done); 3012 3013 __ bind(notChar); 3014 __ cmpl(tos_state, stos); 3015 __ jcc(Assembler::notEqual, notShort); 3016 // stos 3017 __ access_load_at(T_SHORT, IN_HEAP, rax, field, noreg, noreg); 3018 __ push(stos); 3019 // Rewrite bytecode to be faster 3020 if (!is_static && rc == may_rewrite) { 3021 patch_bytecode(Bytecodes::_fast_sgetfield, bc, rbx); 3022 } 3023 __ jmp(Done); 3024 3025 __ bind(notShort); 3026 __ cmpl(tos_state, ltos); 3027 __ jcc(Assembler::notEqual, notLong); 3028 // ltos 3029 // Generate code as if volatile (x86_32). There just aren't enough registers to 3030 // save that information and this code is faster than the test. 3031 __ access_load_at(T_LONG, IN_HEAP | MO_RELAXED, noreg /* ltos */, field, noreg, noreg); 3032 __ push(ltos); 3033 // Rewrite bytecode to be faster 3034 LP64_ONLY(if (!is_static && rc == may_rewrite) patch_bytecode(Bytecodes::_fast_lgetfield, bc, rbx)); 3035 __ jmp(Done); 3036 3037 __ bind(notLong); 3038 __ cmpl(tos_state, ftos); 3039 __ jcc(Assembler::notEqual, notFloat); 3040 // ftos 3041 3042 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg); 3043 __ push(ftos); 3044 // Rewrite bytecode to be faster 3045 if (!is_static && rc == may_rewrite) { 3046 patch_bytecode(Bytecodes::_fast_fgetfield, bc, rbx); 3047 } 3048 __ jmp(Done); 3049 3050 __ bind(notFloat); 3051 #ifdef ASSERT 3052 Label notDouble; 3053 __ cmpl(tos_state, dtos); 3054 __ jcc(Assembler::notEqual, notDouble); 3055 #endif 3056 // dtos 3057 // MO_RELAXED: for the case of volatile field, in fact it adds no extra work for the underlying implementation 3058 __ access_load_at(T_DOUBLE, IN_HEAP | MO_RELAXED, noreg /* dtos */, field, noreg, noreg); 3059 __ push(dtos); 3060 // Rewrite bytecode to be faster 3061 if (!is_static && rc == may_rewrite) { 3062 patch_bytecode(Bytecodes::_fast_dgetfield, bc, rbx); 3063 } 3064 #ifdef ASSERT 3065 __ jmp(Done); 3066 3067 __ bind(notDouble); 3068 __ stop("Bad state"); 3069 #endif 3070 3071 __ bind(Done); 3072 // [jk] not needed currently 3073 // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadLoad | 3074 // Assembler::LoadStore)); 3075 } 3076 3077 void TemplateTable::getfield(int byte_no) { 3078 getfield_or_static(byte_no, false); 3079 } 3080 3081 void TemplateTable::nofast_getfield(int byte_no) { 3082 getfield_or_static(byte_no, false, may_not_rewrite); 3083 } 3084 3085 void TemplateTable::getstatic(int byte_no) { 3086 getfield_or_static(byte_no, true); 3087 } 3088 3089 3090 // The registers cache and index expected to be set before call. 3091 // The function may destroy various registers, just not the cache and index registers. 3092 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) { 3093 // Cache is rcx and index is rdx 3094 const Register entry = LP64_ONLY(c_rarg2) NOT_LP64(rax); // ResolvedFieldEntry 3095 const Register obj = LP64_ONLY(c_rarg1) NOT_LP64(rbx); // Object pointer 3096 const Register value = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // JValue object 3097 3098 if (JvmtiExport::can_post_field_modification()) { 3099 // Check to see if a field modification watch has been set before 3100 // we take the time to call into the VM. 3101 Label L1; 3102 assert_different_registers(cache, obj, rax); 3103 __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); 3104 __ testl(rax, rax); 3105 __ jcc(Assembler::zero, L1); 3106 3107 __ mov(entry, cache); 3108 3109 if (is_static) { 3110 // Life is simple. Null out the object pointer. 3111 __ xorl(obj, obj); 3112 3113 } else { 3114 // Life is harder. The stack holds the value on top, followed by 3115 // the object. We don't know the size of the value, though; it 3116 // could be one or two words depending on its type. As a result, 3117 // we must find the type to determine where the object is. 3118 #ifndef _LP64 3119 Label two_word, valsize_known; 3120 #endif 3121 __ load_unsigned_byte(value, Address(entry, in_bytes(ResolvedFieldEntry::type_offset()))); 3122 #ifdef _LP64 3123 __ movptr(obj, at_tos_p1()); // initially assume a one word jvalue 3124 __ cmpl(value, ltos); 3125 __ cmovptr(Assembler::equal, 3126 obj, at_tos_p2()); // ltos (two word jvalue) 3127 __ cmpl(value, dtos); 3128 __ cmovptr(Assembler::equal, 3129 obj, at_tos_p2()); // dtos (two word jvalue) 3130 #else 3131 __ mov(obj, rsp); 3132 __ cmpl(value, ltos); 3133 __ jccb(Assembler::equal, two_word); 3134 __ cmpl(value, dtos); 3135 __ jccb(Assembler::equal, two_word); 3136 __ addptr(obj, Interpreter::expr_offset_in_bytes(1)); // one word jvalue (not ltos, dtos) 3137 __ jmpb(valsize_known); 3138 3139 __ bind(two_word); 3140 __ addptr(obj, Interpreter::expr_offset_in_bytes(2)); // two words jvalue 3141 3142 __ bind(valsize_known); 3143 // setup object pointer 3144 __ movptr(obj, Address(obj, 0)); 3145 #endif 3146 } 3147 3148 // object (tos) 3149 __ mov(value, rsp); 3150 // obj: object pointer set up above (null if static) 3151 // cache: field entry pointer 3152 // value: jvalue object on the stack 3153 __ call_VM(noreg, 3154 CAST_FROM_FN_PTR(address, 3155 InterpreterRuntime::post_field_modification), 3156 obj, entry, value); 3157 // Reload field entry 3158 __ load_field_entry(cache, index); 3159 __ bind(L1); 3160 } 3161 } 3162 3163 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) { 3164 transition(vtos, vtos); 3165 3166 const Register obj = rcx; 3167 const Register cache = rcx; 3168 const Register index = rdx; 3169 const Register tos_state = rdx; 3170 const Register off = rbx; 3171 const Register flags = rax; 3172 3173 resolve_cache_and_index_for_field(byte_no, cache, index); 3174 jvmti_post_field_mod(cache, index, is_static); 3175 load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static); 3176 3177 // [jk] not needed currently 3178 // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore | 3179 // Assembler::StoreStore)); 3180 3181 Label notVolatile, Done; 3182 3183 // Check for volatile store 3184 __ andl(flags, (1 << ResolvedFieldEntry::is_volatile_shift)); 3185 __ testl(flags, flags); 3186 __ jcc(Assembler::zero, notVolatile); 3187 3188 putfield_or_static_helper(byte_no, is_static, rc, obj, off, tos_state); 3189 volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad | 3190 Assembler::StoreStore)); 3191 __ jmp(Done); 3192 __ bind(notVolatile); 3193 3194 putfield_or_static_helper(byte_no, is_static, rc, obj, off, tos_state); 3195 3196 __ bind(Done); 3197 } 3198 3199 void TemplateTable::putfield_or_static_helper(int byte_no, bool is_static, RewriteControl rc, 3200 Register obj, Register off, Register tos_state) { 3201 3202 // field addresses 3203 const Address field(obj, off, Address::times_1, 0*wordSize); 3204 NOT_LP64( const Address hi(obj, off, Address::times_1, 1*wordSize);) 3205 3206 Label notByte, notBool, notInt, notShort, notChar, 3207 notLong, notFloat, notObj; 3208 Label Done; 3209 3210 const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 3211 3212 // Test TOS state 3213 __ testl(tos_state, tos_state); 3214 __ jcc(Assembler::notZero, notByte); 3215 3216 // btos 3217 { 3218 __ pop(btos); 3219 if (!is_static) pop_and_check_object(obj); 3220 __ access_store_at(T_BYTE, IN_HEAP, field, rax, noreg, noreg, noreg); 3221 if (!is_static && rc == may_rewrite) { 3222 patch_bytecode(Bytecodes::_fast_bputfield, bc, rbx, true, byte_no); 3223 } 3224 __ jmp(Done); 3225 } 3226 3227 __ bind(notByte); 3228 __ cmpl(tos_state, ztos); 3229 __ jcc(Assembler::notEqual, notBool); 3230 3231 // ztos 3232 { 3233 __ pop(ztos); 3234 if (!is_static) pop_and_check_object(obj); 3235 __ access_store_at(T_BOOLEAN, IN_HEAP, field, rax, noreg, noreg, noreg); 3236 if (!is_static && rc == may_rewrite) { 3237 patch_bytecode(Bytecodes::_fast_zputfield, bc, rbx, true, byte_no); 3238 } 3239 __ jmp(Done); 3240 } 3241 3242 __ bind(notBool); 3243 __ cmpl(tos_state, atos); 3244 __ jcc(Assembler::notEqual, notObj); 3245 3246 // atos 3247 { 3248 __ pop(atos); 3249 if (!is_static) pop_and_check_object(obj); 3250 // Store into the field 3251 do_oop_store(_masm, field, rax); 3252 if (!is_static && rc == may_rewrite) { 3253 patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx, true, byte_no); 3254 } 3255 __ jmp(Done); 3256 } 3257 3258 __ bind(notObj); 3259 __ cmpl(tos_state, itos); 3260 __ jcc(Assembler::notEqual, notInt); 3261 3262 // itos 3263 { 3264 __ pop(itos); 3265 if (!is_static) pop_and_check_object(obj); 3266 __ access_store_at(T_INT, IN_HEAP, field, rax, noreg, noreg, noreg); 3267 if (!is_static && rc == may_rewrite) { 3268 patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx, true, byte_no); 3269 } 3270 __ jmp(Done); 3271 } 3272 3273 __ bind(notInt); 3274 __ cmpl(tos_state, ctos); 3275 __ jcc(Assembler::notEqual, notChar); 3276 3277 // ctos 3278 { 3279 __ pop(ctos); 3280 if (!is_static) pop_and_check_object(obj); 3281 __ access_store_at(T_CHAR, IN_HEAP, field, rax, noreg, noreg, noreg); 3282 if (!is_static && rc == may_rewrite) { 3283 patch_bytecode(Bytecodes::_fast_cputfield, bc, rbx, true, byte_no); 3284 } 3285 __ jmp(Done); 3286 } 3287 3288 __ bind(notChar); 3289 __ cmpl(tos_state, stos); 3290 __ jcc(Assembler::notEqual, notShort); 3291 3292 // stos 3293 { 3294 __ pop(stos); 3295 if (!is_static) pop_and_check_object(obj); 3296 __ access_store_at(T_SHORT, IN_HEAP, field, rax, noreg, noreg, noreg); 3297 if (!is_static && rc == may_rewrite) { 3298 patch_bytecode(Bytecodes::_fast_sputfield, bc, rbx, true, byte_no); 3299 } 3300 __ jmp(Done); 3301 } 3302 3303 __ bind(notShort); 3304 __ cmpl(tos_state, ltos); 3305 __ jcc(Assembler::notEqual, notLong); 3306 3307 // ltos 3308 { 3309 __ pop(ltos); 3310 if (!is_static) pop_and_check_object(obj); 3311 // MO_RELAXED: generate atomic store for the case of volatile field (important for x86_32) 3312 __ access_store_at(T_LONG, IN_HEAP | MO_RELAXED, field, noreg /* ltos*/, noreg, noreg, noreg); 3313 #ifdef _LP64 3314 if (!is_static && rc == may_rewrite) { 3315 patch_bytecode(Bytecodes::_fast_lputfield, bc, rbx, true, byte_no); 3316 } 3317 #endif // _LP64 3318 __ jmp(Done); 3319 } 3320 3321 __ bind(notLong); 3322 __ cmpl(tos_state, ftos); 3323 __ jcc(Assembler::notEqual, notFloat); 3324 3325 // ftos 3326 { 3327 __ pop(ftos); 3328 if (!is_static) pop_and_check_object(obj); 3329 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos */, noreg, noreg, noreg); 3330 if (!is_static && rc == may_rewrite) { 3331 patch_bytecode(Bytecodes::_fast_fputfield, bc, rbx, true, byte_no); 3332 } 3333 __ jmp(Done); 3334 } 3335 3336 __ bind(notFloat); 3337 #ifdef ASSERT 3338 Label notDouble; 3339 __ cmpl(tos_state, dtos); 3340 __ jcc(Assembler::notEqual, notDouble); 3341 #endif 3342 3343 // dtos 3344 { 3345 __ pop(dtos); 3346 if (!is_static) pop_and_check_object(obj); 3347 // MO_RELAXED: for the case of volatile field, in fact it adds no extra work for the underlying implementation 3348 __ access_store_at(T_DOUBLE, IN_HEAP | MO_RELAXED, field, noreg /* dtos */, noreg, noreg, noreg); 3349 if (!is_static && rc == may_rewrite) { 3350 patch_bytecode(Bytecodes::_fast_dputfield, bc, rbx, true, byte_no); 3351 } 3352 } 3353 3354 #ifdef ASSERT 3355 __ jmp(Done); 3356 3357 __ bind(notDouble); 3358 __ stop("Bad state"); 3359 #endif 3360 3361 __ bind(Done); 3362 } 3363 3364 void TemplateTable::putfield(int byte_no) { 3365 putfield_or_static(byte_no, false); 3366 } 3367 3368 void TemplateTable::nofast_putfield(int byte_no) { 3369 putfield_or_static(byte_no, false, may_not_rewrite); 3370 } 3371 3372 void TemplateTable::putstatic(int byte_no) { 3373 putfield_or_static(byte_no, true); 3374 } 3375 3376 void TemplateTable::jvmti_post_fast_field_mod() { 3377 3378 const Register scratch = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 3379 3380 if (JvmtiExport::can_post_field_modification()) { 3381 // Check to see if a field modification watch has been set before 3382 // we take the time to call into the VM. 3383 Label L2; 3384 __ mov32(scratch, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); 3385 __ testl(scratch, scratch); 3386 __ jcc(Assembler::zero, L2); 3387 __ pop_ptr(rbx); // copy the object pointer from tos 3388 __ verify_oop(rbx); 3389 __ push_ptr(rbx); // put the object pointer back on tos 3390 // Save tos values before call_VM() clobbers them. Since we have 3391 // to do it for every data type, we use the saved values as the 3392 // jvalue object. 3393 switch (bytecode()) { // load values into the jvalue object 3394 case Bytecodes::_fast_aputfield: __ push_ptr(rax); break; 3395 case Bytecodes::_fast_bputfield: // fall through 3396 case Bytecodes::_fast_zputfield: // fall through 3397 case Bytecodes::_fast_sputfield: // fall through 3398 case Bytecodes::_fast_cputfield: // fall through 3399 case Bytecodes::_fast_iputfield: __ push_i(rax); break; 3400 case Bytecodes::_fast_dputfield: __ push(dtos); break; 3401 case Bytecodes::_fast_fputfield: __ push(ftos); break; 3402 case Bytecodes::_fast_lputfield: __ push_l(rax); break; 3403 3404 default: 3405 ShouldNotReachHere(); 3406 } 3407 __ mov(scratch, rsp); // points to jvalue on the stack 3408 // access constant pool cache entry 3409 LP64_ONLY(__ load_field_entry(c_rarg2, rax)); 3410 NOT_LP64(__ load_field_entry(rax, rdx)); 3411 __ verify_oop(rbx); 3412 // rbx: object pointer copied above 3413 // c_rarg2: cache entry pointer 3414 // c_rarg3: jvalue object on the stack 3415 LP64_ONLY(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, c_rarg2, c_rarg3)); 3416 NOT_LP64(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, rax, rcx)); 3417 3418 switch (bytecode()) { // restore tos values 3419 case Bytecodes::_fast_aputfield: __ pop_ptr(rax); break; 3420 case Bytecodes::_fast_bputfield: // fall through 3421 case Bytecodes::_fast_zputfield: // fall through 3422 case Bytecodes::_fast_sputfield: // fall through 3423 case Bytecodes::_fast_cputfield: // fall through 3424 case Bytecodes::_fast_iputfield: __ pop_i(rax); break; 3425 case Bytecodes::_fast_dputfield: __ pop(dtos); break; 3426 case Bytecodes::_fast_fputfield: __ pop(ftos); break; 3427 case Bytecodes::_fast_lputfield: __ pop_l(rax); break; 3428 default: break; 3429 } 3430 __ bind(L2); 3431 } 3432 } 3433 3434 void TemplateTable::fast_storefield(TosState state) { 3435 transition(state, vtos); 3436 3437 Register cache = rcx; 3438 3439 Label notVolatile, Done; 3440 3441 jvmti_post_fast_field_mod(); 3442 3443 __ push(rax); 3444 __ load_field_entry(rcx, rax); 3445 load_resolved_field_entry(noreg, cache, rax, rbx, rdx); 3446 // RBX: field offset, RCX: RAX: TOS, RDX: flags 3447 __ andl(rdx, (1 << ResolvedFieldEntry::is_volatile_shift)); 3448 __ pop(rax); 3449 3450 // Get object from stack 3451 pop_and_check_object(rcx); 3452 3453 // field address 3454 const Address field(rcx, rbx, Address::times_1); 3455 3456 // Check for volatile store 3457 __ testl(rdx, rdx); 3458 __ jcc(Assembler::zero, notVolatile); 3459 3460 fast_storefield_helper(field, rax); 3461 volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad | 3462 Assembler::StoreStore)); 3463 __ jmp(Done); 3464 __ bind(notVolatile); 3465 3466 fast_storefield_helper(field, rax); 3467 3468 __ bind(Done); 3469 } 3470 3471 void TemplateTable::fast_storefield_helper(Address field, Register rax) { 3472 3473 // access field 3474 switch (bytecode()) { 3475 case Bytecodes::_fast_aputfield: 3476 do_oop_store(_masm, field, rax); 3477 break; 3478 case Bytecodes::_fast_lputfield: 3479 #ifdef _LP64 3480 __ access_store_at(T_LONG, IN_HEAP, field, noreg /* ltos */, noreg, noreg, noreg); 3481 #else 3482 __ stop("should not be rewritten"); 3483 #endif 3484 break; 3485 case Bytecodes::_fast_iputfield: 3486 __ access_store_at(T_INT, IN_HEAP, field, rax, noreg, noreg, noreg); 3487 break; 3488 case Bytecodes::_fast_zputfield: 3489 __ access_store_at(T_BOOLEAN, IN_HEAP, field, rax, noreg, noreg, noreg); 3490 break; 3491 case Bytecodes::_fast_bputfield: 3492 __ access_store_at(T_BYTE, IN_HEAP, field, rax, noreg, noreg, noreg); 3493 break; 3494 case Bytecodes::_fast_sputfield: 3495 __ access_store_at(T_SHORT, IN_HEAP, field, rax, noreg, noreg, noreg); 3496 break; 3497 case Bytecodes::_fast_cputfield: 3498 __ access_store_at(T_CHAR, IN_HEAP, field, rax, noreg, noreg, noreg); 3499 break; 3500 case Bytecodes::_fast_fputfield: 3501 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos*/, noreg, noreg, noreg); 3502 break; 3503 case Bytecodes::_fast_dputfield: 3504 __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos*/, noreg, noreg, noreg); 3505 break; 3506 default: 3507 ShouldNotReachHere(); 3508 } 3509 } 3510 3511 void TemplateTable::fast_accessfield(TosState state) { 3512 transition(atos, state); 3513 3514 // Do the JVMTI work here to avoid disturbing the register state below 3515 if (JvmtiExport::can_post_field_access()) { 3516 // Check to see if a field access watch has been set before we 3517 // take the time to call into the VM. 3518 Label L1; 3519 __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); 3520 __ testl(rcx, rcx); 3521 __ jcc(Assembler::zero, L1); 3522 // access constant pool cache entry 3523 LP64_ONLY(__ load_field_entry(c_rarg2, rcx)); 3524 NOT_LP64(__ load_field_entry(rcx, rdx)); 3525 __ verify_oop(rax); 3526 __ push_ptr(rax); // save object pointer before call_VM() clobbers it 3527 LP64_ONLY(__ mov(c_rarg1, rax)); 3528 // c_rarg1: object pointer copied above 3529 // c_rarg2: cache entry pointer 3530 LP64_ONLY(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), c_rarg1, c_rarg2)); 3531 NOT_LP64(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), rax, rcx)); 3532 __ pop_ptr(rax); // restore object pointer 3533 __ bind(L1); 3534 } 3535 3536 // access constant pool cache 3537 __ load_field_entry(rcx, rbx); 3538 __ load_sized_value(rbx, Address(rcx, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/); 3539 3540 // rax: object 3541 __ verify_oop(rax); 3542 __ null_check(rax); 3543 Address field(rax, rbx, Address::times_1); 3544 3545 // access field 3546 switch (bytecode()) { 3547 case Bytecodes::_fast_agetfield: 3548 do_oop_load(_masm, field, rax); 3549 __ verify_oop(rax); 3550 break; 3551 case Bytecodes::_fast_lgetfield: 3552 #ifdef _LP64 3553 __ access_load_at(T_LONG, IN_HEAP, noreg /* ltos */, field, noreg, noreg); 3554 #else 3555 __ stop("should not be rewritten"); 3556 #endif 3557 break; 3558 case Bytecodes::_fast_igetfield: 3559 __ access_load_at(T_INT, IN_HEAP, rax, field, noreg, noreg); 3560 break; 3561 case Bytecodes::_fast_bgetfield: 3562 __ access_load_at(T_BYTE, IN_HEAP, rax, field, noreg, noreg); 3563 break; 3564 case Bytecodes::_fast_sgetfield: 3565 __ access_load_at(T_SHORT, IN_HEAP, rax, field, noreg, noreg); 3566 break; 3567 case Bytecodes::_fast_cgetfield: 3568 __ access_load_at(T_CHAR, IN_HEAP, rax, field, noreg, noreg); 3569 break; 3570 case Bytecodes::_fast_fgetfield: 3571 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg); 3572 break; 3573 case Bytecodes::_fast_dgetfield: 3574 __ access_load_at(T_DOUBLE, IN_HEAP, noreg /* dtos */, field, noreg, noreg); 3575 break; 3576 default: 3577 ShouldNotReachHere(); 3578 } 3579 // [jk] not needed currently 3580 // Label notVolatile; 3581 // __ testl(rdx, rdx); 3582 // __ jcc(Assembler::zero, notVolatile); 3583 // __ membar(Assembler::LoadLoad); 3584 // __ bind(notVolatile); 3585 } 3586 3587 void TemplateTable::fast_xaccess(TosState state) { 3588 transition(vtos, state); 3589 3590 // get receiver 3591 __ movptr(rax, aaddress(0)); 3592 // access constant pool cache 3593 __ load_field_entry(rcx, rdx, 2); 3594 __ load_sized_value(rbx, Address(rcx, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/); 3595 3596 // make sure exception is reported in correct bcp range (getfield is 3597 // next instruction) 3598 __ increment(rbcp); 3599 __ null_check(rax); 3600 const Address field = Address(rax, rbx, Address::times_1, 0*wordSize); 3601 switch (state) { 3602 case itos: 3603 __ access_load_at(T_INT, IN_HEAP, rax, field, noreg, noreg); 3604 break; 3605 case atos: 3606 do_oop_load(_masm, field, rax); 3607 __ verify_oop(rax); 3608 break; 3609 case ftos: 3610 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg); 3611 break; 3612 default: 3613 ShouldNotReachHere(); 3614 } 3615 3616 // [jk] not needed currently 3617 // Label notVolatile; 3618 // __ movl(rdx, Address(rcx, rdx, Address::times_8, 3619 // in_bytes(ConstantPoolCache::base_offset() + 3620 // ConstantPoolCacheEntry::flags_offset()))); 3621 // __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift); 3622 // __ testl(rdx, 0x1); 3623 // __ jcc(Assembler::zero, notVolatile); 3624 // __ membar(Assembler::LoadLoad); 3625 // __ bind(notVolatile); 3626 3627 __ decrement(rbcp); 3628 } 3629 3630 //----------------------------------------------------------------------------- 3631 // Calls 3632 3633 void TemplateTable::prepare_invoke(int byte_no, 3634 Register method, // linked method (or i-klass) 3635 Register index, // itable index, MethodType, etc. 3636 Register recv, // if caller wants to see it 3637 Register flags // if caller wants to test it 3638 ) { 3639 // determine flags 3640 const Bytecodes::Code code = bytecode(); 3641 const bool is_invokeinterface = code == Bytecodes::_invokeinterface; 3642 const bool is_invokedynamic = code == Bytecodes::_invokedynamic; 3643 const bool is_invokehandle = code == Bytecodes::_invokehandle; 3644 const bool is_invokevirtual = code == Bytecodes::_invokevirtual; 3645 const bool is_invokespecial = code == Bytecodes::_invokespecial; 3646 const bool load_receiver = (recv != noreg); 3647 const bool save_flags = (flags != noreg); 3648 assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), ""); 3649 assert(save_flags == (is_invokeinterface || is_invokevirtual), "need flags for vfinal"); 3650 assert(flags == noreg || flags == rdx, ""); 3651 assert(recv == noreg || recv == rcx, ""); 3652 3653 // setup registers & access constant pool cache 3654 if (recv == noreg) recv = rcx; 3655 if (flags == noreg) flags = rdx; 3656 assert_different_registers(method, index, recv, flags); 3657 3658 // save 'interpreter return address' 3659 __ save_bcp(); 3660 3661 load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic); 3662 3663 // maybe push appendix to arguments (just before return address) 3664 if (is_invokehandle) { 3665 Label L_no_push; 3666 __ testl(flags, (1 << ConstantPoolCacheEntry::has_appendix_shift)); 3667 __ jcc(Assembler::zero, L_no_push); 3668 // Push the appendix as a trailing parameter. 3669 // This must be done before we get the receiver, 3670 // since the parameter_size includes it. 3671 __ push(rbx); 3672 __ mov(rbx, index); 3673 __ load_resolved_reference_at_index(index, rbx); 3674 __ pop(rbx); 3675 __ push(index); // push appendix (MethodType, CallSite, etc.) 3676 __ bind(L_no_push); 3677 } 3678 3679 // load receiver if needed (after appendix is pushed so parameter size is correct) 3680 // Note: no return address pushed yet 3681 if (load_receiver) { 3682 __ movl(recv, flags); 3683 __ andl(recv, ConstantPoolCacheEntry::parameter_size_mask); 3684 const int no_return_pc_pushed_yet = -1; // argument slot correction before we push return address 3685 const int receiver_is_at_end = -1; // back off one slot to get receiver 3686 Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end); 3687 __ movptr(recv, recv_addr); 3688 __ verify_oop(recv); 3689 } 3690 3691 if (save_flags) { 3692 __ movl(rbcp, flags); 3693 } 3694 3695 // compute return type 3696 __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift); 3697 // Make sure we don't need to mask flags after the above shift 3698 ConstantPoolCacheEntry::verify_tos_state_shift(); 3699 // load return address 3700 { 3701 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code); 3702 ExternalAddress table(table_addr); 3703 #ifdef _LP64 3704 __ lea(rscratch1, table); 3705 __ movptr(flags, Address(rscratch1, flags, Address::times_ptr)); 3706 #else 3707 __ movptr(flags, ArrayAddress(table, Address(noreg, flags, Address::times_ptr))); 3708 #endif // _LP64 3709 } 3710 3711 // push return address 3712 __ push(flags); 3713 3714 // Restore flags value from the constant pool cache, and restore rsi 3715 // for later null checks. r13 is the bytecode pointer 3716 if (save_flags) { 3717 __ movl(flags, rbcp); 3718 __ restore_bcp(); 3719 } 3720 } 3721 3722 void TemplateTable::invokevirtual_helper(Register index, 3723 Register recv, 3724 Register flags) { 3725 // Uses temporary registers rax, rdx 3726 assert_different_registers(index, recv, rax, rdx); 3727 assert(index == rbx, ""); 3728 assert(recv == rcx, ""); 3729 3730 // Test for an invoke of a final method 3731 Label notFinal; 3732 __ movl(rax, flags); 3733 __ andl(rax, (1 << ConstantPoolCacheEntry::is_vfinal_shift)); 3734 __ jcc(Assembler::zero, notFinal); 3735 3736 const Register method = index; // method must be rbx 3737 assert(method == rbx, 3738 "Method* must be rbx for interpreter calling convention"); 3739 3740 // do the call - the index is actually the method to call 3741 // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method* 3742 3743 // It's final, need a null check here! 3744 __ null_check(recv); 3745 3746 // profile this call 3747 __ profile_final_call(rax); 3748 __ profile_arguments_type(rax, method, rbcp, true); 3749 3750 __ jump_from_interpreted(method, rax); 3751 3752 __ bind(notFinal); 3753 3754 // get receiver klass 3755 __ load_klass(rax, recv, rscratch1); 3756 3757 // profile this call 3758 __ profile_virtual_call(rax, rlocals, rdx); 3759 // get target Method* & entry point 3760 __ lookup_virtual_method(rax, index, method); 3761 3762 __ profile_arguments_type(rdx, method, rbcp, true); 3763 __ jump_from_interpreted(method, rdx); 3764 } 3765 3766 void TemplateTable::invokevirtual(int byte_no) { 3767 transition(vtos, vtos); 3768 assert(byte_no == f2_byte, "use this argument"); 3769 prepare_invoke(byte_no, 3770 rbx, // method or vtable index 3771 noreg, // unused itable index 3772 rcx, rdx); // recv, flags 3773 3774 // rbx: index 3775 // rcx: receiver 3776 // rdx: flags 3777 3778 invokevirtual_helper(rbx, rcx, rdx); 3779 } 3780 3781 void TemplateTable::invokespecial(int byte_no) { 3782 transition(vtos, vtos); 3783 assert(byte_no == f1_byte, "use this argument"); 3784 prepare_invoke(byte_no, rbx, noreg, // get f1 Method* 3785 rcx); // get receiver also for null check 3786 __ verify_oop(rcx); 3787 __ null_check(rcx); 3788 // do the call 3789 __ profile_call(rax); 3790 __ profile_arguments_type(rax, rbx, rbcp, false); 3791 __ jump_from_interpreted(rbx, rax); 3792 } 3793 3794 void TemplateTable::invokestatic(int byte_no) { 3795 transition(vtos, vtos); 3796 assert(byte_no == f1_byte, "use this argument"); 3797 prepare_invoke(byte_no, rbx); // get f1 Method* 3798 // do the call 3799 __ profile_call(rax); 3800 __ profile_arguments_type(rax, rbx, rbcp, false); 3801 __ jump_from_interpreted(rbx, rax); 3802 } 3803 3804 3805 void TemplateTable::fast_invokevfinal(int byte_no) { 3806 transition(vtos, vtos); 3807 assert(byte_no == f2_byte, "use this argument"); 3808 __ stop("fast_invokevfinal not used on x86"); 3809 } 3810 3811 3812 void TemplateTable::invokeinterface(int byte_no) { 3813 transition(vtos, vtos); 3814 assert(byte_no == f1_byte, "use this argument"); 3815 prepare_invoke(byte_no, rax, rbx, // get f1 Klass*, f2 Method* 3816 rcx, rdx); // recv, flags 3817 3818 // rax: reference klass (from f1) if interface method 3819 // rbx: method (from f2) 3820 // rcx: receiver 3821 // rdx: flags 3822 3823 // First check for Object case, then private interface method, 3824 // then regular interface method. 3825 3826 // Special case of invokeinterface called for virtual method of 3827 // java.lang.Object. See cpCache.cpp for details. 3828 Label notObjectMethod; 3829 __ movl(rlocals, rdx); 3830 __ andl(rlocals, (1 << ConstantPoolCacheEntry::is_forced_virtual_shift)); 3831 __ jcc(Assembler::zero, notObjectMethod); 3832 invokevirtual_helper(rbx, rcx, rdx); 3833 // no return from above 3834 __ bind(notObjectMethod); 3835 3836 Label no_such_interface; // for receiver subtype check 3837 Register recvKlass; // used for exception processing 3838 3839 // Check for private method invocation - indicated by vfinal 3840 Label notVFinal; 3841 __ movl(rlocals, rdx); 3842 __ andl(rlocals, (1 << ConstantPoolCacheEntry::is_vfinal_shift)); 3843 __ jcc(Assembler::zero, notVFinal); 3844 3845 // Get receiver klass into rlocals - also a null check 3846 __ load_klass(rlocals, rcx, rscratch1); 3847 3848 Label subtype; 3849 __ check_klass_subtype(rlocals, rax, rbcp, subtype); 3850 // If we get here the typecheck failed 3851 recvKlass = rdx; 3852 __ mov(recvKlass, rlocals); // shuffle receiver class for exception use 3853 __ jmp(no_such_interface); 3854 3855 __ bind(subtype); 3856 3857 // do the call - rbx is actually the method to call 3858 3859 __ profile_final_call(rdx); 3860 __ profile_arguments_type(rdx, rbx, rbcp, true); 3861 3862 __ jump_from_interpreted(rbx, rdx); 3863 // no return from above 3864 __ bind(notVFinal); 3865 3866 // Get receiver klass into rdx - also a null check 3867 __ restore_locals(); // restore r14 3868 __ load_klass(rdx, rcx, rscratch1); 3869 3870 Label no_such_method; 3871 3872 // Preserve method for throw_AbstractMethodErrorVerbose. 3873 __ mov(rcx, rbx); 3874 // Receiver subtype check against REFC. 3875 // Superklass in rax. Subklass in rdx. Blows rcx, rdi. 3876 __ lookup_interface_method(// inputs: rec. class, interface, itable index 3877 rdx, rax, noreg, 3878 // outputs: scan temp. reg, scan temp. reg 3879 rbcp, rlocals, 3880 no_such_interface, 3881 /*return_method=*/false); 3882 3883 // profile this call 3884 __ restore_bcp(); // rbcp was destroyed by receiver type check 3885 __ profile_virtual_call(rdx, rbcp, rlocals); 3886 3887 // Get declaring interface class from method, and itable index 3888 __ load_method_holder(rax, rbx); 3889 __ movl(rbx, Address(rbx, Method::itable_index_offset())); 3890 __ subl(rbx, Method::itable_index_max); 3891 __ negl(rbx); 3892 3893 // Preserve recvKlass for throw_AbstractMethodErrorVerbose. 3894 __ mov(rlocals, rdx); 3895 __ lookup_interface_method(// inputs: rec. class, interface, itable index 3896 rlocals, rax, rbx, 3897 // outputs: method, scan temp. reg 3898 rbx, rbcp, 3899 no_such_interface); 3900 3901 // rbx: Method* to call 3902 // rcx: receiver 3903 // Check for abstract method error 3904 // Note: This should be done more efficiently via a throw_abstract_method_error 3905 // interpreter entry point and a conditional jump to it in case of a null 3906 // method. 3907 __ testptr(rbx, rbx); 3908 __ jcc(Assembler::zero, no_such_method); 3909 3910 __ profile_arguments_type(rdx, rbx, rbcp, true); 3911 3912 // do the call 3913 // rcx: receiver 3914 // rbx,: Method* 3915 __ jump_from_interpreted(rbx, rdx); 3916 __ should_not_reach_here(); 3917 3918 // exception handling code follows... 3919 // note: must restore interpreter registers to canonical 3920 // state for exception handling to work correctly! 3921 3922 __ bind(no_such_method); 3923 // throw exception 3924 __ pop(rbx); // pop return address (pushed by prepare_invoke) 3925 __ restore_bcp(); // rbcp must be correct for exception handler (was destroyed) 3926 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3927 // Pass arguments for generating a verbose error message. 3928 #ifdef _LP64 3929 recvKlass = c_rarg1; 3930 Register method = c_rarg2; 3931 if (recvKlass != rdx) { __ movq(recvKlass, rdx); } 3932 if (method != rcx) { __ movq(method, rcx); } 3933 #else 3934 recvKlass = rdx; 3935 Register method = rcx; 3936 #endif 3937 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodErrorVerbose), 3938 recvKlass, method); 3939 // The call_VM checks for exception, so we should never return here. 3940 __ should_not_reach_here(); 3941 3942 __ bind(no_such_interface); 3943 // throw exception 3944 __ pop(rbx); // pop return address (pushed by prepare_invoke) 3945 __ restore_bcp(); // rbcp must be correct for exception handler (was destroyed) 3946 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3947 // Pass arguments for generating a verbose error message. 3948 LP64_ONLY( if (recvKlass != rdx) { __ movq(recvKlass, rdx); } ) 3949 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose), 3950 recvKlass, rax); 3951 // the call_VM checks for exception, so we should never return here. 3952 __ should_not_reach_here(); 3953 } 3954 3955 void TemplateTable::invokehandle(int byte_no) { 3956 transition(vtos, vtos); 3957 assert(byte_no == f1_byte, "use this argument"); 3958 const Register rbx_method = rbx; 3959 const Register rax_mtype = rax; 3960 const Register rcx_recv = rcx; 3961 const Register rdx_flags = rdx; 3962 3963 prepare_invoke(byte_no, rbx_method, rax_mtype, rcx_recv); 3964 __ verify_method_ptr(rbx_method); 3965 __ verify_oop(rcx_recv); 3966 __ null_check(rcx_recv); 3967 3968 // rax: MethodType object (from cpool->resolved_references[f1], if necessary) 3969 // rbx: MH.invokeExact_MT method (from f2) 3970 3971 // Note: rax_mtype is already pushed (if necessary) by prepare_invoke 3972 3973 // FIXME: profile the LambdaForm also 3974 __ profile_final_call(rax); 3975 __ profile_arguments_type(rdx, rbx_method, rbcp, true); 3976 3977 __ jump_from_interpreted(rbx_method, rdx); 3978 } 3979 3980 void TemplateTable::invokedynamic(int byte_no) { 3981 transition(vtos, vtos); 3982 assert(byte_no == f1_byte, "use this argument"); 3983 3984 const Register rbx_method = rbx; 3985 const Register rax_callsite = rax; 3986 3987 load_invokedynamic_entry(rbx_method); 3988 // rax: CallSite object (from cpool->resolved_references[f1]) 3989 // rbx: MH.linkToCallSite method (from f2) 3990 3991 // Note: rax_callsite is already pushed by prepare_invoke 3992 3993 // %%% should make a type profile for any invokedynamic that takes a ref argument 3994 // profile this call 3995 __ profile_call(rbcp); 3996 __ profile_arguments_type(rdx, rbx_method, rbcp, false); 3997 3998 __ verify_oop(rax_callsite); 3999 4000 __ jump_from_interpreted(rbx_method, rdx); 4001 } 4002 4003 //----------------------------------------------------------------------------- 4004 // Allocation 4005 4006 void TemplateTable::_new() { 4007 transition(vtos, atos); 4008 __ get_unsigned_2_byte_index_at_bcp(rdx, 1); 4009 Label slow_case; 4010 Label slow_case_no_pop; 4011 Label done; 4012 Label initialize_header; 4013 4014 __ get_cpool_and_tags(rcx, rax); 4015 4016 // Make sure the class we're about to instantiate has been resolved. 4017 // This is done before loading InstanceKlass to be consistent with the order 4018 // how Constant Pool is updated (see ConstantPool::klass_at_put) 4019 const int tags_offset = Array<u1>::base_offset_in_bytes(); 4020 __ cmpb(Address(rax, rdx, Address::times_1, tags_offset), JVM_CONSTANT_Class); 4021 __ jcc(Assembler::notEqual, slow_case_no_pop); 4022 4023 // get InstanceKlass 4024 __ load_resolved_klass_at_index(rcx, rcx, rdx); 4025 __ push(rcx); // save the contexts of klass for initializing the header 4026 4027 // make sure klass is initialized & doesn't have finalizer 4028 // make sure klass is fully initialized 4029 __ cmpb(Address(rcx, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized); 4030 __ jcc(Assembler::notEqual, slow_case); 4031 4032 // get instance_size in InstanceKlass (scaled to a count of bytes) 4033 __ movl(rdx, Address(rcx, Klass::layout_helper_offset())); 4034 // test to see if it has a finalizer or is malformed in some way 4035 __ testl(rdx, Klass::_lh_instance_slow_path_bit); 4036 __ jcc(Assembler::notZero, slow_case); 4037 4038 // Allocate the instance: 4039 // If TLAB is enabled: 4040 // Try to allocate in the TLAB. 4041 // If fails, go to the slow path. 4042 // Initialize the allocation. 4043 // Exit. 4044 // 4045 // Go to slow path. 4046 4047 const Register thread = LP64_ONLY(r15_thread) NOT_LP64(rcx); 4048 4049 if (UseTLAB) { 4050 NOT_LP64(__ get_thread(thread);) 4051 __ tlab_allocate(thread, rax, rdx, 0, rcx, rbx, slow_case); 4052 if (ZeroTLAB) { 4053 // the fields have been already cleared 4054 __ jmp(initialize_header); 4055 } 4056 4057 // The object is initialized before the header. If the object size is 4058 // zero, go directly to the header initialization. 4059 __ decrement(rdx, sizeof(oopDesc)); 4060 __ jcc(Assembler::zero, initialize_header); 4061 4062 // Initialize topmost object field, divide rdx by 8, check if odd and 4063 // test if zero. 4064 __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code) 4065 __ shrl(rdx, LogBytesPerLong); // divide by 2*oopSize and set carry flag if odd 4066 4067 // rdx must have been multiple of 8 4068 #ifdef ASSERT 4069 // make sure rdx was multiple of 8 4070 Label L; 4071 // Ignore partial flag stall after shrl() since it is debug VM 4072 __ jcc(Assembler::carryClear, L); 4073 __ stop("object size is not multiple of 2 - adjust this code"); 4074 __ bind(L); 4075 // rdx must be > 0, no extra check needed here 4076 #endif 4077 4078 // initialize remaining object fields: rdx was a multiple of 8 4079 { Label loop; 4080 __ bind(loop); 4081 __ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 1*oopSize), rcx); 4082 NOT_LP64(__ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 2*oopSize), rcx)); 4083 __ decrement(rdx); 4084 __ jcc(Assembler::notZero, loop); 4085 } 4086 4087 // initialize object header only. 4088 __ bind(initialize_header); 4089 __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()), 4090 (intptr_t)markWord::prototype().value()); // header 4091 __ pop(rcx); // get saved klass back in the register. 4092 #ifdef _LP64 4093 __ xorl(rsi, rsi); // use zero reg to clear memory (shorter code) 4094 __ store_klass_gap(rax, rsi); // zero klass gap for compressed oops 4095 #endif 4096 __ store_klass(rax, rcx, rscratch1); // klass 4097 4098 { 4099 SkipIfEqual skip_if(_masm, &DTraceAllocProbes, 0, rscratch1); 4100 // Trigger dtrace event for fastpath 4101 __ push(atos); 4102 __ call_VM_leaf( 4103 CAST_FROM_FN_PTR(address, static_cast<int (*)(oopDesc*)>(SharedRuntime::dtrace_object_alloc)), rax); 4104 __ pop(atos); 4105 } 4106 4107 __ jmp(done); 4108 } 4109 4110 // slow case 4111 __ bind(slow_case); 4112 __ pop(rcx); // restore stack pointer to what it was when we came in. 4113 __ bind(slow_case_no_pop); 4114 4115 Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rax); 4116 Register rarg2 = LP64_ONLY(c_rarg2) NOT_LP64(rdx); 4117 4118 __ get_constant_pool(rarg1); 4119 __ get_unsigned_2_byte_index_at_bcp(rarg2, 1); 4120 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), rarg1, rarg2); 4121 __ verify_oop(rax); 4122 4123 // continue 4124 __ bind(done); 4125 } 4126 4127 void TemplateTable::newarray() { 4128 transition(itos, atos); 4129 Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rdx); 4130 __ load_unsigned_byte(rarg1, at_bcp(1)); 4131 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), 4132 rarg1, rax); 4133 } 4134 4135 void TemplateTable::anewarray() { 4136 transition(itos, atos); 4137 4138 Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rcx); 4139 Register rarg2 = LP64_ONLY(c_rarg2) NOT_LP64(rdx); 4140 4141 __ get_unsigned_2_byte_index_at_bcp(rarg2, 1); 4142 __ get_constant_pool(rarg1); 4143 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), 4144 rarg1, rarg2, rax); 4145 } 4146 4147 void TemplateTable::arraylength() { 4148 transition(atos, itos); 4149 __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes())); 4150 } 4151 4152 void TemplateTable::checkcast() { 4153 transition(atos, atos); 4154 Label done, is_null, ok_is_subtype, quicked, resolved; 4155 __ testptr(rax, rax); // object is in rax 4156 __ jcc(Assembler::zero, is_null); 4157 4158 // Get cpool & tags index 4159 __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array 4160 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index 4161 // See if bytecode has already been quicked 4162 __ cmpb(Address(rdx, rbx, 4163 Address::times_1, 4164 Array<u1>::base_offset_in_bytes()), 4165 JVM_CONSTANT_Class); 4166 __ jcc(Assembler::equal, quicked); 4167 __ push(atos); // save receiver for result, and for GC 4168 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 4169 4170 // vm_result_2 has metadata result 4171 #ifndef _LP64 4172 // borrow rdi from locals 4173 __ get_thread(rdi); 4174 __ get_vm_result_2(rax, rdi); 4175 __ restore_locals(); 4176 #else 4177 __ get_vm_result_2(rax, r15_thread); 4178 #endif 4179 4180 __ pop_ptr(rdx); // restore receiver 4181 __ jmpb(resolved); 4182 4183 // Get superklass in rax and subklass in rbx 4184 __ bind(quicked); 4185 __ mov(rdx, rax); // Save object in rdx; rax needed for subtype check 4186 __ load_resolved_klass_at_index(rax, rcx, rbx); 4187 4188 __ bind(resolved); 4189 __ load_klass(rbx, rdx, rscratch1); 4190 4191 // Generate subtype check. Blows rcx, rdi. Object in rdx. 4192 // Superklass in rax. Subklass in rbx. 4193 __ gen_subtype_check(rbx, ok_is_subtype); 4194 4195 // Come here on failure 4196 __ push_ptr(rdx); 4197 // object is at TOS 4198 __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry)); 4199 4200 // Come here on success 4201 __ bind(ok_is_subtype); 4202 __ mov(rax, rdx); // Restore object in rdx 4203 4204 // Collect counts on whether this check-cast sees nulls a lot or not. 4205 if (ProfileInterpreter) { 4206 __ jmp(done); 4207 __ bind(is_null); 4208 __ profile_null_seen(rcx); 4209 } else { 4210 __ bind(is_null); // same as 'done' 4211 } 4212 __ bind(done); 4213 } 4214 4215 void TemplateTable::instanceof() { 4216 transition(atos, itos); 4217 Label done, is_null, ok_is_subtype, quicked, resolved; 4218 __ testptr(rax, rax); 4219 __ jcc(Assembler::zero, is_null); 4220 4221 // Get cpool & tags index 4222 __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array 4223 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index 4224 // See if bytecode has already been quicked 4225 __ cmpb(Address(rdx, rbx, 4226 Address::times_1, 4227 Array<u1>::base_offset_in_bytes()), 4228 JVM_CONSTANT_Class); 4229 __ jcc(Assembler::equal, quicked); 4230 4231 __ push(atos); // save receiver for result, and for GC 4232 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 4233 // vm_result_2 has metadata result 4234 4235 #ifndef _LP64 4236 // borrow rdi from locals 4237 __ get_thread(rdi); 4238 __ get_vm_result_2(rax, rdi); 4239 __ restore_locals(); 4240 #else 4241 __ get_vm_result_2(rax, r15_thread); 4242 #endif 4243 4244 __ pop_ptr(rdx); // restore receiver 4245 __ verify_oop(rdx); 4246 __ load_klass(rdx, rdx, rscratch1); 4247 __ jmpb(resolved); 4248 4249 // Get superklass in rax and subklass in rdx 4250 __ bind(quicked); 4251 __ load_klass(rdx, rax, rscratch1); 4252 __ load_resolved_klass_at_index(rax, rcx, rbx); 4253 4254 __ bind(resolved); 4255 4256 // Generate subtype check. Blows rcx, rdi 4257 // Superklass in rax. Subklass in rdx. 4258 __ gen_subtype_check(rdx, ok_is_subtype); 4259 4260 // Come here on failure 4261 __ xorl(rax, rax); 4262 __ jmpb(done); 4263 // Come here on success 4264 __ bind(ok_is_subtype); 4265 __ movl(rax, 1); 4266 4267 // Collect counts on whether this test sees nulls a lot or not. 4268 if (ProfileInterpreter) { 4269 __ jmp(done); 4270 __ bind(is_null); 4271 __ profile_null_seen(rcx); 4272 } else { 4273 __ bind(is_null); // same as 'done' 4274 } 4275 __ bind(done); 4276 // rax = 0: obj == nullptr or obj is not an instanceof the specified klass 4277 // rax = 1: obj != nullptr and obj is an instanceof the specified klass 4278 } 4279 4280 4281 //---------------------------------------------------------------------------------------------------- 4282 // Breakpoints 4283 void TemplateTable::_breakpoint() { 4284 // Note: We get here even if we are single stepping.. 4285 // jbug insists on setting breakpoints at every bytecode 4286 // even if we are in single step mode. 4287 4288 transition(vtos, vtos); 4289 4290 Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rcx); 4291 4292 // get the unpatched byte code 4293 __ get_method(rarg); 4294 __ call_VM(noreg, 4295 CAST_FROM_FN_PTR(address, 4296 InterpreterRuntime::get_original_bytecode_at), 4297 rarg, rbcp); 4298 __ mov(rbx, rax); // why? 4299 4300 // post the breakpoint event 4301 __ get_method(rarg); 4302 __ call_VM(noreg, 4303 CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), 4304 rarg, rbcp); 4305 4306 // complete the execution of original bytecode 4307 __ dispatch_only_normal(vtos); 4308 } 4309 4310 //----------------------------------------------------------------------------- 4311 // Exceptions 4312 4313 void TemplateTable::athrow() { 4314 transition(atos, vtos); 4315 __ null_check(rax); 4316 __ jump(ExternalAddress(Interpreter::throw_exception_entry())); 4317 } 4318 4319 //----------------------------------------------------------------------------- 4320 // Synchronization 4321 // 4322 // Note: monitorenter & exit are symmetric routines; which is reflected 4323 // in the assembly code structure as well 4324 // 4325 // Stack layout: 4326 // 4327 // [expressions ] <--- rsp = expression stack top 4328 // .. 4329 // [expressions ] 4330 // [monitor entry] <--- monitor block top = expression stack bot 4331 // .. 4332 // [monitor entry] 4333 // [frame data ] <--- monitor block bot 4334 // ... 4335 // [saved rbp ] <--- rbp 4336 void TemplateTable::monitorenter() { 4337 transition(atos, vtos); 4338 4339 // check for null object 4340 __ null_check(rax); 4341 4342 const Address monitor_block_top( 4343 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 4344 const Address monitor_block_bot( 4345 rbp, frame::interpreter_frame_initial_sp_offset * wordSize); 4346 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; 4347 4348 Label allocated; 4349 4350 Register rtop = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 4351 Register rbot = LP64_ONLY(c_rarg2) NOT_LP64(rbx); 4352 Register rmon = LP64_ONLY(c_rarg1) NOT_LP64(rdx); 4353 4354 // initialize entry pointer 4355 __ xorl(rmon, rmon); // points to free slot or null 4356 4357 // find a free slot in the monitor block (result in rmon) 4358 { 4359 Label entry, loop, exit; 4360 __ movptr(rtop, monitor_block_top); // points to current entry, 4361 // starting with top-most entry 4362 __ lea(rbot, monitor_block_bot); // points to word before bottom 4363 // of monitor block 4364 __ jmpb(entry); 4365 4366 __ bind(loop); 4367 // check if current entry is used 4368 __ cmpptr(Address(rtop, BasicObjectLock::obj_offset()), NULL_WORD); 4369 // if not used then remember entry in rmon 4370 __ cmovptr(Assembler::equal, rmon, rtop); // cmov => cmovptr 4371 // check if current entry is for same object 4372 __ cmpptr(rax, Address(rtop, BasicObjectLock::obj_offset())); 4373 // if same object then stop searching 4374 __ jccb(Assembler::equal, exit); 4375 // otherwise advance to next entry 4376 __ addptr(rtop, entry_size); 4377 __ bind(entry); 4378 // check if bottom reached 4379 __ cmpptr(rtop, rbot); 4380 // if not at bottom then check this entry 4381 __ jcc(Assembler::notEqual, loop); 4382 __ bind(exit); 4383 } 4384 4385 __ testptr(rmon, rmon); // check if a slot has been found 4386 __ jcc(Assembler::notZero, allocated); // if found, continue with that one 4387 4388 // allocate one if there's no free slot 4389 { 4390 Label entry, loop; 4391 // 1. compute new pointers // rsp: old expression stack top 4392 __ movptr(rmon, monitor_block_bot); // rmon: old expression stack bottom 4393 __ subptr(rsp, entry_size); // move expression stack top 4394 __ subptr(rmon, entry_size); // move expression stack bottom 4395 __ mov(rtop, rsp); // set start value for copy loop 4396 __ movptr(monitor_block_bot, rmon); // set new monitor block bottom 4397 __ jmp(entry); 4398 // 2. move expression stack contents 4399 __ bind(loop); 4400 __ movptr(rbot, Address(rtop, entry_size)); // load expression stack 4401 // word from old location 4402 __ movptr(Address(rtop, 0), rbot); // and store it at new location 4403 __ addptr(rtop, wordSize); // advance to next word 4404 __ bind(entry); 4405 __ cmpptr(rtop, rmon); // check if bottom reached 4406 __ jcc(Assembler::notEqual, loop); // if not at bottom then 4407 // copy next word 4408 } 4409 4410 // call run-time routine 4411 // rmon: points to monitor entry 4412 __ bind(allocated); 4413 4414 // Increment bcp to point to the next bytecode, so exception 4415 // handling for async. exceptions work correctly. 4416 // The object has already been popped from the stack, so the 4417 // expression stack looks correct. 4418 __ increment(rbcp); 4419 4420 // store object 4421 __ movptr(Address(rmon, BasicObjectLock::obj_offset()), rax); 4422 __ lock_object(rmon); 4423 4424 // check to make sure this monitor doesn't cause stack overflow after locking 4425 __ save_bcp(); // in case of exception 4426 __ generate_stack_overflow_check(0); 4427 4428 // The bcp has already been incremented. Just need to dispatch to 4429 // next instruction. 4430 __ dispatch_next(vtos); 4431 } 4432 4433 void TemplateTable::monitorexit() { 4434 transition(atos, vtos); 4435 4436 // check for null object 4437 __ null_check(rax); 4438 4439 const Address monitor_block_top( 4440 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 4441 const Address monitor_block_bot( 4442 rbp, frame::interpreter_frame_initial_sp_offset * wordSize); 4443 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; 4444 4445 Register rtop = LP64_ONLY(c_rarg1) NOT_LP64(rdx); 4446 Register rbot = LP64_ONLY(c_rarg2) NOT_LP64(rbx); 4447 4448 Label found; 4449 4450 // find matching slot 4451 { 4452 Label entry, loop; 4453 __ movptr(rtop, monitor_block_top); // points to current entry, 4454 // starting with top-most entry 4455 __ lea(rbot, monitor_block_bot); // points to word before bottom 4456 // of monitor block 4457 __ jmpb(entry); 4458 4459 __ bind(loop); 4460 // check if current entry is for same object 4461 __ cmpptr(rax, Address(rtop, BasicObjectLock::obj_offset())); 4462 // if same object then stop searching 4463 __ jcc(Assembler::equal, found); 4464 // otherwise advance to next entry 4465 __ addptr(rtop, entry_size); 4466 __ bind(entry); 4467 // check if bottom reached 4468 __ cmpptr(rtop, rbot); 4469 // if not at bottom then check this entry 4470 __ jcc(Assembler::notEqual, loop); 4471 } 4472 4473 // error handling. Unlocking was not block-structured 4474 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 4475 InterpreterRuntime::throw_illegal_monitor_state_exception)); 4476 __ should_not_reach_here(); 4477 4478 // call run-time routine 4479 __ bind(found); 4480 __ push_ptr(rax); // make sure object is on stack (contract with oopMaps) 4481 __ unlock_object(rtop); 4482 __ pop_ptr(rax); // discard object 4483 } 4484 4485 // Wide instructions 4486 void TemplateTable::wide() { 4487 transition(vtos, vtos); 4488 __ load_unsigned_byte(rbx, at_bcp(1)); 4489 ExternalAddress wtable((address)Interpreter::_wentry_point); 4490 __ jump(ArrayAddress(wtable, Address(noreg, rbx, Address::times_ptr)), rscratch1); 4491 // Note: the rbcp increment step is part of the individual wide bytecode implementations 4492 } 4493 4494 // Multi arrays 4495 void TemplateTable::multianewarray() { 4496 transition(vtos, atos); 4497 4498 Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rax); 4499 __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions 4500 // last dim is on top of stack; we want address of first one: 4501 // first_addr = last_addr + (ndims - 1) * stackElementSize - 1*wordsize 4502 // the latter wordSize to point to the beginning of the array. 4503 __ lea(rarg, Address(rsp, rax, Interpreter::stackElementScale(), -wordSize)); 4504 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), rarg); 4505 __ load_unsigned_byte(rbx, at_bcp(3)); 4506 __ lea(rsp, Address(rsp, rbx, Interpreter::stackElementScale())); // get rid of counts 4507 }