1 /* 2 * Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "compiler/disassembler.hpp" 28 #include "gc/shared/collectedHeap.hpp" 29 #include "gc/shared/gc_globals.hpp" 30 #include "gc/shared/tlab_globals.hpp" 31 #include "interpreter/interpreter.hpp" 32 #include "interpreter/interpreterRuntime.hpp" 33 #include "interpreter/interp_masm.hpp" 34 #include "interpreter/templateTable.hpp" 35 #include "memory/universe.hpp" 36 #include "oops/methodCounters.hpp" 37 #include "oops/methodData.hpp" 38 #include "oops/objArrayKlass.hpp" 39 #include "oops/oop.inline.hpp" 40 #include "oops/resolvedFieldEntry.hpp" 41 #include "oops/resolvedIndyEntry.hpp" 42 #include "oops/resolvedMethodEntry.hpp" 43 #include "prims/jvmtiExport.hpp" 44 #include "prims/methodHandles.hpp" 45 #include "runtime/frame.inline.hpp" 46 #include "runtime/safepointMechanism.hpp" 47 #include "runtime/sharedRuntime.hpp" 48 #include "runtime/stubRoutines.hpp" 49 #include "runtime/synchronizer.hpp" 50 #include "utilities/macros.hpp" 51 52 #define __ Disassembler::hook<InterpreterMacroAssembler>(__FILE__, __LINE__, _masm)-> 53 54 // Global Register Names 55 static const Register rbcp = LP64_ONLY(r13) NOT_LP64(rsi); 56 static const Register rlocals = LP64_ONLY(r14) NOT_LP64(rdi); 57 58 // Address Computation: local variables 59 static inline Address iaddress(int n) { 60 return Address(rlocals, Interpreter::local_offset_in_bytes(n)); 61 } 62 63 static inline Address laddress(int n) { 64 return iaddress(n + 1); 65 } 66 67 #ifndef _LP64 68 static inline Address haddress(int n) { 69 return iaddress(n + 0); 70 } 71 #endif 72 73 static inline Address faddress(int n) { 74 return iaddress(n); 75 } 76 77 static inline Address daddress(int n) { 78 return laddress(n); 79 } 80 81 static inline Address aaddress(int n) { 82 return iaddress(n); 83 } 84 85 static inline Address iaddress(Register r) { 86 return Address(rlocals, r, Address::times_ptr); 87 } 88 89 static inline Address laddress(Register r) { 90 return Address(rlocals, r, Address::times_ptr, Interpreter::local_offset_in_bytes(1)); 91 } 92 93 #ifndef _LP64 94 static inline Address haddress(Register r) { 95 return Address(rlocals, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(0)); 96 } 97 #endif 98 99 static inline Address faddress(Register r) { 100 return iaddress(r); 101 } 102 103 static inline Address daddress(Register r) { 104 return laddress(r); 105 } 106 107 static inline Address aaddress(Register r) { 108 return iaddress(r); 109 } 110 111 112 // expression stack 113 // (Note: Must not use symmetric equivalents at_rsp_m1/2 since they store 114 // data beyond the rsp which is potentially unsafe in an MT environment; 115 // an interrupt may overwrite that data.) 116 static inline Address at_rsp () { 117 return Address(rsp, 0); 118 } 119 120 // At top of Java expression stack which may be different than esp(). It 121 // isn't for category 1 objects. 122 static inline Address at_tos () { 123 return Address(rsp, Interpreter::expr_offset_in_bytes(0)); 124 } 125 126 static inline Address at_tos_p1() { 127 return Address(rsp, Interpreter::expr_offset_in_bytes(1)); 128 } 129 130 static inline Address at_tos_p2() { 131 return Address(rsp, Interpreter::expr_offset_in_bytes(2)); 132 } 133 134 // Condition conversion 135 static Assembler::Condition j_not(TemplateTable::Condition cc) { 136 switch (cc) { 137 case TemplateTable::equal : return Assembler::notEqual; 138 case TemplateTable::not_equal : return Assembler::equal; 139 case TemplateTable::less : return Assembler::greaterEqual; 140 case TemplateTable::less_equal : return Assembler::greater; 141 case TemplateTable::greater : return Assembler::lessEqual; 142 case TemplateTable::greater_equal: return Assembler::less; 143 } 144 ShouldNotReachHere(); 145 return Assembler::zero; 146 } 147 148 149 150 // Miscellaneous helper routines 151 // Store an oop (or null) at the address described by obj. 152 // If val == noreg this means store a null 153 154 155 static void do_oop_store(InterpreterMacroAssembler* _masm, 156 Address dst, 157 Register val, 158 DecoratorSet decorators = 0) { 159 assert(val == noreg || val == rax, "parameter is just for looks"); 160 __ store_heap_oop(dst, val, 161 NOT_LP64(rdx) LP64_ONLY(rscratch2), 162 NOT_LP64(rbx) LP64_ONLY(r9), 163 NOT_LP64(rsi) LP64_ONLY(r8), decorators); 164 } 165 166 static void do_oop_load(InterpreterMacroAssembler* _masm, 167 Address src, 168 Register dst, 169 DecoratorSet decorators = 0) { 170 __ load_heap_oop(dst, src, rdx, rbx, decorators); 171 } 172 173 Address TemplateTable::at_bcp(int offset) { 174 assert(_desc->uses_bcp(), "inconsistent uses_bcp information"); 175 return Address(rbcp, offset); 176 } 177 178 179 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg, 180 Register temp_reg, bool load_bc_into_bc_reg/*=true*/, 181 int byte_no) { 182 if (!RewriteBytecodes) return; 183 Label L_patch_done; 184 185 switch (bc) { 186 case Bytecodes::_fast_aputfield: 187 case Bytecodes::_fast_bputfield: 188 case Bytecodes::_fast_zputfield: 189 case Bytecodes::_fast_cputfield: 190 case Bytecodes::_fast_dputfield: 191 case Bytecodes::_fast_fputfield: 192 case Bytecodes::_fast_iputfield: 193 case Bytecodes::_fast_lputfield: 194 case Bytecodes::_fast_sputfield: 195 { 196 // We skip bytecode quickening for putfield instructions when 197 // the put_code written to the constant pool cache is zero. 198 // This is required so that every execution of this instruction 199 // calls out to InterpreterRuntime::resolve_get_put to do 200 // additional, required work. 201 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 202 assert(load_bc_into_bc_reg, "we use bc_reg as temp"); 203 __ load_field_entry(temp_reg, bc_reg); 204 if (byte_no == f1_byte) { 205 __ load_unsigned_byte(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::get_code_offset()))); 206 } else { 207 __ load_unsigned_byte(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::put_code_offset()))); 208 } 209 210 __ movl(bc_reg, bc); 211 __ cmpl(temp_reg, (int) 0); 212 __ jcc(Assembler::zero, L_patch_done); // don't patch 213 } 214 break; 215 default: 216 assert(byte_no == -1, "sanity"); 217 // the pair bytecodes have already done the load. 218 if (load_bc_into_bc_reg) { 219 __ movl(bc_reg, bc); 220 } 221 } 222 223 if (JvmtiExport::can_post_breakpoint()) { 224 Label L_fast_patch; 225 // if a breakpoint is present we can't rewrite the stream directly 226 __ movzbl(temp_reg, at_bcp(0)); 227 __ cmpl(temp_reg, Bytecodes::_breakpoint); 228 __ jcc(Assembler::notEqual, L_fast_patch); 229 __ get_method(temp_reg); 230 // Let breakpoint table handling rewrite to quicker bytecode 231 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), temp_reg, rbcp, bc_reg); 232 #ifndef ASSERT 233 __ jmpb(L_patch_done); 234 #else 235 __ jmp(L_patch_done); 236 #endif 237 __ bind(L_fast_patch); 238 } 239 240 #ifdef ASSERT 241 Label L_okay; 242 __ load_unsigned_byte(temp_reg, at_bcp(0)); 243 __ cmpl(temp_reg, (int) Bytecodes::java_code(bc)); 244 __ jcc(Assembler::equal, L_okay); 245 __ cmpl(temp_reg, bc_reg); 246 __ jcc(Assembler::equal, L_okay); 247 __ stop("patching the wrong bytecode"); 248 __ bind(L_okay); 249 #endif 250 251 // patch bytecode 252 __ movb(at_bcp(0), bc_reg); 253 __ bind(L_patch_done); 254 } 255 // Individual instructions 256 257 258 void TemplateTable::nop() { 259 transition(vtos, vtos); 260 // nothing to do 261 } 262 263 void TemplateTable::shouldnotreachhere() { 264 transition(vtos, vtos); 265 __ stop("shouldnotreachhere bytecode"); 266 } 267 268 void TemplateTable::aconst_null() { 269 transition(vtos, atos); 270 __ xorl(rax, rax); 271 } 272 273 void TemplateTable::iconst(int value) { 274 transition(vtos, itos); 275 if (value == 0) { 276 __ xorl(rax, rax); 277 } else { 278 __ movl(rax, value); 279 } 280 } 281 282 void TemplateTable::lconst(int value) { 283 transition(vtos, ltos); 284 if (value == 0) { 285 __ xorl(rax, rax); 286 } else { 287 __ movl(rax, value); 288 } 289 #ifndef _LP64 290 assert(value >= 0, "check this code"); 291 __ xorptr(rdx, rdx); 292 #endif 293 } 294 295 296 297 void TemplateTable::fconst(int value) { 298 transition(vtos, ftos); 299 if (UseSSE >= 1) { 300 static float one = 1.0f, two = 2.0f; 301 switch (value) { 302 case 0: 303 __ xorps(xmm0, xmm0); 304 break; 305 case 1: 306 __ movflt(xmm0, ExternalAddress((address) &one), rscratch1); 307 break; 308 case 2: 309 __ movflt(xmm0, ExternalAddress((address) &two), rscratch1); 310 break; 311 default: 312 ShouldNotReachHere(); 313 break; 314 } 315 } else { 316 #ifdef _LP64 317 ShouldNotReachHere(); 318 #else 319 if (value == 0) { __ fldz(); 320 } else if (value == 1) { __ fld1(); 321 } else if (value == 2) { __ fld1(); __ fld1(); __ faddp(); // should do a better solution here 322 } else { ShouldNotReachHere(); 323 } 324 #endif // _LP64 325 } 326 } 327 328 void TemplateTable::dconst(int value) { 329 transition(vtos, dtos); 330 if (UseSSE >= 2) { 331 static double one = 1.0; 332 switch (value) { 333 case 0: 334 __ xorpd(xmm0, xmm0); 335 break; 336 case 1: 337 __ movdbl(xmm0, ExternalAddress((address) &one), rscratch1); 338 break; 339 default: 340 ShouldNotReachHere(); 341 break; 342 } 343 } else { 344 #ifdef _LP64 345 ShouldNotReachHere(); 346 #else 347 if (value == 0) { __ fldz(); 348 } else if (value == 1) { __ fld1(); 349 } else { ShouldNotReachHere(); 350 } 351 #endif 352 } 353 } 354 355 void TemplateTable::bipush() { 356 transition(vtos, itos); 357 __ load_signed_byte(rax, at_bcp(1)); 358 } 359 360 void TemplateTable::sipush() { 361 transition(vtos, itos); 362 __ load_unsigned_short(rax, at_bcp(1)); 363 __ bswapl(rax); 364 __ sarl(rax, 16); 365 } 366 367 void TemplateTable::ldc(LdcType type) { 368 transition(vtos, vtos); 369 Register rarg = NOT_LP64(rcx) LP64_ONLY(c_rarg1); 370 Label call_ldc, notFloat, notClass, notInt, Done; 371 372 if (is_ldc_wide(type)) { 373 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); 374 } else { 375 __ load_unsigned_byte(rbx, at_bcp(1)); 376 } 377 378 __ get_cpool_and_tags(rcx, rax); 379 const int base_offset = ConstantPool::header_size() * wordSize; 380 const int tags_offset = Array<u1>::base_offset_in_bytes(); 381 382 // get type 383 __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset)); 384 385 // unresolved class - get the resolved class 386 __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass); 387 __ jccb(Assembler::equal, call_ldc); 388 389 // unresolved class in error state - call into runtime to throw the error 390 // from the first resolution attempt 391 __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError); 392 __ jccb(Assembler::equal, call_ldc); 393 394 // resolved class - need to call vm to get java mirror of the class 395 __ cmpl(rdx, JVM_CONSTANT_Class); 396 __ jcc(Assembler::notEqual, notClass); 397 398 __ bind(call_ldc); 399 400 __ movl(rarg, is_ldc_wide(type) ? 1 : 0); 401 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), rarg); 402 403 __ push(atos); 404 __ jmp(Done); 405 406 __ bind(notClass); 407 __ cmpl(rdx, JVM_CONSTANT_Float); 408 __ jccb(Assembler::notEqual, notFloat); 409 410 // ftos 411 __ load_float(Address(rcx, rbx, Address::times_ptr, base_offset)); 412 __ push(ftos); 413 __ jmp(Done); 414 415 __ bind(notFloat); 416 __ cmpl(rdx, JVM_CONSTANT_Integer); 417 __ jccb(Assembler::notEqual, notInt); 418 419 // itos 420 __ movl(rax, Address(rcx, rbx, Address::times_ptr, base_offset)); 421 __ push(itos); 422 __ jmp(Done); 423 424 // assume the tag is for condy; if not, the VM runtime will tell us 425 __ bind(notInt); 426 condy_helper(Done); 427 428 __ bind(Done); 429 } 430 431 // Fast path for caching oop constants. 432 void TemplateTable::fast_aldc(LdcType type) { 433 transition(vtos, atos); 434 435 Register result = rax; 436 Register tmp = rdx; 437 Register rarg = NOT_LP64(rcx) LP64_ONLY(c_rarg1); 438 int index_size = is_ldc_wide(type) ? sizeof(u2) : sizeof(u1); 439 440 Label resolved; 441 442 // We are resolved if the resolved reference cache entry contains a 443 // non-null object (String, MethodType, etc.) 444 assert_different_registers(result, tmp); 445 __ get_cache_index_at_bcp(tmp, 1, index_size); 446 __ load_resolved_reference_at_index(result, tmp); 447 __ testptr(result, result); 448 __ jcc(Assembler::notZero, resolved); 449 450 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); 451 452 // first time invocation - must resolve first 453 __ movl(rarg, (int)bytecode()); 454 __ call_VM(result, entry, rarg); 455 __ bind(resolved); 456 457 { // Check for the null sentinel. 458 // If we just called the VM, it already did the mapping for us, 459 // but it's harmless to retry. 460 Label notNull; 461 ExternalAddress null_sentinel((address)Universe::the_null_sentinel_addr()); 462 __ movptr(tmp, null_sentinel); 463 __ resolve_oop_handle(tmp, rscratch2); 464 __ cmpoop(tmp, result); 465 __ jccb(Assembler::notEqual, notNull); 466 __ xorptr(result, result); // null object reference 467 __ bind(notNull); 468 } 469 470 if (VerifyOops) { 471 __ verify_oop(result); 472 } 473 } 474 475 void TemplateTable::ldc2_w() { 476 transition(vtos, vtos); 477 Label notDouble, notLong, Done; 478 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); 479 480 __ get_cpool_and_tags(rcx, rax); 481 const int base_offset = ConstantPool::header_size() * wordSize; 482 const int tags_offset = Array<u1>::base_offset_in_bytes(); 483 484 // get type 485 __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset)); 486 __ cmpl(rdx, JVM_CONSTANT_Double); 487 __ jccb(Assembler::notEqual, notDouble); 488 489 // dtos 490 __ load_double(Address(rcx, rbx, Address::times_ptr, base_offset)); 491 __ push(dtos); 492 493 __ jmp(Done); 494 __ bind(notDouble); 495 __ cmpl(rdx, JVM_CONSTANT_Long); 496 __ jccb(Assembler::notEqual, notLong); 497 498 // ltos 499 __ movptr(rax, Address(rcx, rbx, Address::times_ptr, base_offset + 0 * wordSize)); 500 NOT_LP64(__ movptr(rdx, Address(rcx, rbx, Address::times_ptr, base_offset + 1 * wordSize))); 501 __ push(ltos); 502 __ jmp(Done); 503 504 __ bind(notLong); 505 condy_helper(Done); 506 507 __ bind(Done); 508 } 509 510 void TemplateTable::condy_helper(Label& Done) { 511 const Register obj = rax; 512 const Register off = rbx; 513 const Register flags = rcx; 514 const Register rarg = NOT_LP64(rcx) LP64_ONLY(c_rarg1); 515 __ movl(rarg, (int)bytecode()); 516 call_VM(obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc), rarg); 517 #ifndef _LP64 518 // borrow rdi from locals 519 __ get_thread(rdi); 520 __ get_vm_result_2(flags, rdi); 521 __ restore_locals(); 522 #else 523 __ get_vm_result_2(flags, r15_thread); 524 #endif 525 // VMr = obj = base address to find primitive value to push 526 // VMr2 = flags = (tos, off) using format of CPCE::_flags 527 __ movl(off, flags); 528 __ andl(off, ConstantPoolCache::field_index_mask); 529 const Address field(obj, off, Address::times_1, 0*wordSize); 530 531 // What sort of thing are we loading? 532 __ shrl(flags, ConstantPoolCache::tos_state_shift); 533 __ andl(flags, ConstantPoolCache::tos_state_mask); 534 535 switch (bytecode()) { 536 case Bytecodes::_ldc: 537 case Bytecodes::_ldc_w: 538 { 539 // tos in (itos, ftos, stos, btos, ctos, ztos) 540 Label notInt, notFloat, notShort, notByte, notChar, notBool; 541 __ cmpl(flags, itos); 542 __ jccb(Assembler::notEqual, notInt); 543 // itos 544 __ movl(rax, field); 545 __ push(itos); 546 __ jmp(Done); 547 548 __ bind(notInt); 549 __ cmpl(flags, ftos); 550 __ jccb(Assembler::notEqual, notFloat); 551 // ftos 552 __ load_float(field); 553 __ push(ftos); 554 __ jmp(Done); 555 556 __ bind(notFloat); 557 __ cmpl(flags, stos); 558 __ jccb(Assembler::notEqual, notShort); 559 // stos 560 __ load_signed_short(rax, field); 561 __ push(stos); 562 __ jmp(Done); 563 564 __ bind(notShort); 565 __ cmpl(flags, btos); 566 __ jccb(Assembler::notEqual, notByte); 567 // btos 568 __ load_signed_byte(rax, field); 569 __ push(btos); 570 __ jmp(Done); 571 572 __ bind(notByte); 573 __ cmpl(flags, ctos); 574 __ jccb(Assembler::notEqual, notChar); 575 // ctos 576 __ load_unsigned_short(rax, field); 577 __ push(ctos); 578 __ jmp(Done); 579 580 __ bind(notChar); 581 __ cmpl(flags, ztos); 582 __ jccb(Assembler::notEqual, notBool); 583 // ztos 584 __ load_signed_byte(rax, field); 585 __ push(ztos); 586 __ jmp(Done); 587 588 __ bind(notBool); 589 break; 590 } 591 592 case Bytecodes::_ldc2_w: 593 { 594 Label notLong, notDouble; 595 __ cmpl(flags, ltos); 596 __ jccb(Assembler::notEqual, notLong); 597 // ltos 598 // Loading high word first because movptr clobbers rax 599 NOT_LP64(__ movptr(rdx, field.plus_disp(4))); 600 __ movptr(rax, field); 601 __ push(ltos); 602 __ jmp(Done); 603 604 __ bind(notLong); 605 __ cmpl(flags, dtos); 606 __ jccb(Assembler::notEqual, notDouble); 607 // dtos 608 __ load_double(field); 609 __ push(dtos); 610 __ jmp(Done); 611 612 __ bind(notDouble); 613 break; 614 } 615 616 default: 617 ShouldNotReachHere(); 618 } 619 620 __ stop("bad ldc/condy"); 621 } 622 623 void TemplateTable::locals_index(Register reg, int offset) { 624 __ load_unsigned_byte(reg, at_bcp(offset)); 625 __ negptr(reg); 626 } 627 628 void TemplateTable::iload() { 629 iload_internal(); 630 } 631 632 void TemplateTable::nofast_iload() { 633 iload_internal(may_not_rewrite); 634 } 635 636 void TemplateTable::iload_internal(RewriteControl rc) { 637 transition(vtos, itos); 638 if (RewriteFrequentPairs && rc == may_rewrite) { 639 Label rewrite, done; 640 const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 641 LP64_ONLY(assert(rbx != bc, "register damaged")); 642 643 // get next byte 644 __ load_unsigned_byte(rbx, 645 at_bcp(Bytecodes::length_for(Bytecodes::_iload))); 646 // if _iload, wait to rewrite to iload2. We only want to rewrite the 647 // last two iloads in a pair. Comparing against fast_iload means that 648 // the next bytecode is neither an iload or a caload, and therefore 649 // an iload pair. 650 __ cmpl(rbx, Bytecodes::_iload); 651 __ jcc(Assembler::equal, done); 652 653 __ cmpl(rbx, Bytecodes::_fast_iload); 654 __ movl(bc, Bytecodes::_fast_iload2); 655 656 __ jccb(Assembler::equal, rewrite); 657 658 // if _caload, rewrite to fast_icaload 659 __ cmpl(rbx, Bytecodes::_caload); 660 __ movl(bc, Bytecodes::_fast_icaload); 661 __ jccb(Assembler::equal, rewrite); 662 663 // rewrite so iload doesn't check again. 664 __ movl(bc, Bytecodes::_fast_iload); 665 666 // rewrite 667 // bc: fast bytecode 668 __ bind(rewrite); 669 patch_bytecode(Bytecodes::_iload, bc, rbx, false); 670 __ bind(done); 671 } 672 673 // Get the local value into tos 674 locals_index(rbx); 675 __ movl(rax, iaddress(rbx)); 676 } 677 678 void TemplateTable::fast_iload2() { 679 transition(vtos, itos); 680 locals_index(rbx); 681 __ movl(rax, iaddress(rbx)); 682 __ push(itos); 683 locals_index(rbx, 3); 684 __ movl(rax, iaddress(rbx)); 685 } 686 687 void TemplateTable::fast_iload() { 688 transition(vtos, itos); 689 locals_index(rbx); 690 __ movl(rax, iaddress(rbx)); 691 } 692 693 void TemplateTable::lload() { 694 transition(vtos, ltos); 695 locals_index(rbx); 696 __ movptr(rax, laddress(rbx)); 697 NOT_LP64(__ movl(rdx, haddress(rbx))); 698 } 699 700 void TemplateTable::fload() { 701 transition(vtos, ftos); 702 locals_index(rbx); 703 __ load_float(faddress(rbx)); 704 } 705 706 void TemplateTable::dload() { 707 transition(vtos, dtos); 708 locals_index(rbx); 709 __ load_double(daddress(rbx)); 710 } 711 712 void TemplateTable::aload() { 713 transition(vtos, atos); 714 locals_index(rbx); 715 __ movptr(rax, aaddress(rbx)); 716 } 717 718 void TemplateTable::locals_index_wide(Register reg) { 719 __ load_unsigned_short(reg, at_bcp(2)); 720 __ bswapl(reg); 721 __ shrl(reg, 16); 722 __ negptr(reg); 723 } 724 725 void TemplateTable::wide_iload() { 726 transition(vtos, itos); 727 locals_index_wide(rbx); 728 __ movl(rax, iaddress(rbx)); 729 } 730 731 void TemplateTable::wide_lload() { 732 transition(vtos, ltos); 733 locals_index_wide(rbx); 734 __ movptr(rax, laddress(rbx)); 735 NOT_LP64(__ movl(rdx, haddress(rbx))); 736 } 737 738 void TemplateTable::wide_fload() { 739 transition(vtos, ftos); 740 locals_index_wide(rbx); 741 __ load_float(faddress(rbx)); 742 } 743 744 void TemplateTable::wide_dload() { 745 transition(vtos, dtos); 746 locals_index_wide(rbx); 747 __ load_double(daddress(rbx)); 748 } 749 750 void TemplateTable::wide_aload() { 751 transition(vtos, atos); 752 locals_index_wide(rbx); 753 __ movptr(rax, aaddress(rbx)); 754 } 755 756 void TemplateTable::index_check(Register array, Register index) { 757 // Pop ptr into array 758 __ pop_ptr(array); 759 index_check_without_pop(array, index); 760 } 761 762 void TemplateTable::index_check_without_pop(Register array, Register index) { 763 // destroys rbx 764 // sign extend index for use by indexed load 765 __ movl2ptr(index, index); 766 // check index 767 __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes())); 768 if (index != rbx) { 769 // ??? convention: move aberrant index into rbx for exception message 770 assert(rbx != array, "different registers"); 771 __ movl(rbx, index); 772 } 773 Label skip; 774 __ jccb(Assembler::below, skip); 775 // Pass array to create more detailed exceptions. 776 __ mov(NOT_LP64(rax) LP64_ONLY(c_rarg1), array); 777 __ jump(ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry)); 778 __ bind(skip); 779 } 780 781 void TemplateTable::iaload() { 782 transition(itos, itos); 783 // rax: index 784 // rdx: array 785 index_check(rdx, rax); // kills rbx 786 __ access_load_at(T_INT, IN_HEAP | IS_ARRAY, rax, 787 Address(rdx, rax, Address::times_4, 788 arrayOopDesc::base_offset_in_bytes(T_INT)), 789 noreg, noreg); 790 } 791 792 void TemplateTable::laload() { 793 transition(itos, ltos); 794 // rax: index 795 // rdx: array 796 index_check(rdx, rax); // kills rbx 797 NOT_LP64(__ mov(rbx, rax)); 798 // rbx,: index 799 __ access_load_at(T_LONG, IN_HEAP | IS_ARRAY, noreg /* ltos */, 800 Address(rdx, rbx, Address::times_8, 801 arrayOopDesc::base_offset_in_bytes(T_LONG)), 802 noreg, noreg); 803 } 804 805 806 807 void TemplateTable::faload() { 808 transition(itos, ftos); 809 // rax: index 810 // rdx: array 811 index_check(rdx, rax); // kills rbx 812 __ access_load_at(T_FLOAT, IN_HEAP | IS_ARRAY, noreg /* ftos */, 813 Address(rdx, rax, 814 Address::times_4, 815 arrayOopDesc::base_offset_in_bytes(T_FLOAT)), 816 noreg, noreg); 817 } 818 819 void TemplateTable::daload() { 820 transition(itos, dtos); 821 // rax: index 822 // rdx: array 823 index_check(rdx, rax); // kills rbx 824 __ access_load_at(T_DOUBLE, IN_HEAP | IS_ARRAY, noreg /* dtos */, 825 Address(rdx, rax, 826 Address::times_8, 827 arrayOopDesc::base_offset_in_bytes(T_DOUBLE)), 828 noreg, noreg); 829 } 830 831 void TemplateTable::aaload() { 832 transition(itos, atos); 833 // rax: index 834 // rdx: array 835 index_check(rdx, rax); // kills rbx 836 do_oop_load(_masm, 837 Address(rdx, rax, 838 UseCompressedOops ? Address::times_4 : Address::times_ptr, 839 arrayOopDesc::base_offset_in_bytes(T_OBJECT)), 840 rax, 841 IS_ARRAY); 842 } 843 844 void TemplateTable::baload() { 845 transition(itos, itos); 846 // rax: index 847 // rdx: array 848 index_check(rdx, rax); // kills rbx 849 __ access_load_at(T_BYTE, IN_HEAP | IS_ARRAY, rax, 850 Address(rdx, rax, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)), 851 noreg, noreg); 852 } 853 854 void TemplateTable::caload() { 855 transition(itos, itos); 856 // rax: index 857 // rdx: array 858 index_check(rdx, rax); // kills rbx 859 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, rax, 860 Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)), 861 noreg, noreg); 862 } 863 864 // iload followed by caload frequent pair 865 void TemplateTable::fast_icaload() { 866 transition(vtos, itos); 867 // load index out of locals 868 locals_index(rbx); 869 __ movl(rax, iaddress(rbx)); 870 871 // rax: index 872 // rdx: array 873 index_check(rdx, rax); // kills rbx 874 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, rax, 875 Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)), 876 noreg, noreg); 877 } 878 879 880 void TemplateTable::saload() { 881 transition(itos, itos); 882 // rax: index 883 // rdx: array 884 index_check(rdx, rax); // kills rbx 885 __ access_load_at(T_SHORT, IN_HEAP | IS_ARRAY, rax, 886 Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_SHORT)), 887 noreg, noreg); 888 } 889 890 void TemplateTable::iload(int n) { 891 transition(vtos, itos); 892 __ movl(rax, iaddress(n)); 893 } 894 895 void TemplateTable::lload(int n) { 896 transition(vtos, ltos); 897 __ movptr(rax, laddress(n)); 898 NOT_LP64(__ movptr(rdx, haddress(n))); 899 } 900 901 void TemplateTable::fload(int n) { 902 transition(vtos, ftos); 903 __ load_float(faddress(n)); 904 } 905 906 void TemplateTable::dload(int n) { 907 transition(vtos, dtos); 908 __ load_double(daddress(n)); 909 } 910 911 void TemplateTable::aload(int n) { 912 transition(vtos, atos); 913 __ movptr(rax, aaddress(n)); 914 } 915 916 void TemplateTable::aload_0() { 917 aload_0_internal(); 918 } 919 920 void TemplateTable::nofast_aload_0() { 921 aload_0_internal(may_not_rewrite); 922 } 923 924 void TemplateTable::aload_0_internal(RewriteControl rc) { 925 transition(vtos, atos); 926 // According to bytecode histograms, the pairs: 927 // 928 // _aload_0, _fast_igetfield 929 // _aload_0, _fast_agetfield 930 // _aload_0, _fast_fgetfield 931 // 932 // occur frequently. If RewriteFrequentPairs is set, the (slow) 933 // _aload_0 bytecode checks if the next bytecode is either 934 // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then 935 // rewrites the current bytecode into a pair bytecode; otherwise it 936 // rewrites the current bytecode into _fast_aload_0 that doesn't do 937 // the pair check anymore. 938 // 939 // Note: If the next bytecode is _getfield, the rewrite must be 940 // delayed, otherwise we may miss an opportunity for a pair. 941 // 942 // Also rewrite frequent pairs 943 // aload_0, aload_1 944 // aload_0, iload_1 945 // These bytecodes with a small amount of code are most profitable 946 // to rewrite 947 if (RewriteFrequentPairs && rc == may_rewrite) { 948 Label rewrite, done; 949 950 const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 951 LP64_ONLY(assert(rbx != bc, "register damaged")); 952 953 // get next byte 954 __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0))); 955 956 // if _getfield then wait with rewrite 957 __ cmpl(rbx, Bytecodes::_getfield); 958 __ jcc(Assembler::equal, done); 959 960 // if _igetfield then rewrite to _fast_iaccess_0 961 assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 962 __ cmpl(rbx, Bytecodes::_fast_igetfield); 963 __ movl(bc, Bytecodes::_fast_iaccess_0); 964 __ jccb(Assembler::equal, rewrite); 965 966 // if _agetfield then rewrite to _fast_aaccess_0 967 assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 968 __ cmpl(rbx, Bytecodes::_fast_agetfield); 969 __ movl(bc, Bytecodes::_fast_aaccess_0); 970 __ jccb(Assembler::equal, rewrite); 971 972 // if _fgetfield then rewrite to _fast_faccess_0 973 assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 974 __ cmpl(rbx, Bytecodes::_fast_fgetfield); 975 __ movl(bc, Bytecodes::_fast_faccess_0); 976 __ jccb(Assembler::equal, rewrite); 977 978 // else rewrite to _fast_aload0 979 assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition"); 980 __ movl(bc, Bytecodes::_fast_aload_0); 981 982 // rewrite 983 // bc: fast bytecode 984 __ bind(rewrite); 985 patch_bytecode(Bytecodes::_aload_0, bc, rbx, false); 986 987 __ bind(done); 988 } 989 990 // Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop). 991 aload(0); 992 } 993 994 void TemplateTable::istore() { 995 transition(itos, vtos); 996 locals_index(rbx); 997 __ movl(iaddress(rbx), rax); 998 } 999 1000 1001 void TemplateTable::lstore() { 1002 transition(ltos, vtos); 1003 locals_index(rbx); 1004 __ movptr(laddress(rbx), rax); 1005 NOT_LP64(__ movptr(haddress(rbx), rdx)); 1006 } 1007 1008 void TemplateTable::fstore() { 1009 transition(ftos, vtos); 1010 locals_index(rbx); 1011 __ store_float(faddress(rbx)); 1012 } 1013 1014 void TemplateTable::dstore() { 1015 transition(dtos, vtos); 1016 locals_index(rbx); 1017 __ store_double(daddress(rbx)); 1018 } 1019 1020 void TemplateTable::astore() { 1021 transition(vtos, vtos); 1022 __ pop_ptr(rax); 1023 locals_index(rbx); 1024 __ movptr(aaddress(rbx), rax); 1025 } 1026 1027 void TemplateTable::wide_istore() { 1028 transition(vtos, vtos); 1029 __ pop_i(); 1030 locals_index_wide(rbx); 1031 __ movl(iaddress(rbx), rax); 1032 } 1033 1034 void TemplateTable::wide_lstore() { 1035 transition(vtos, vtos); 1036 NOT_LP64(__ pop_l(rax, rdx)); 1037 LP64_ONLY(__ pop_l()); 1038 locals_index_wide(rbx); 1039 __ movptr(laddress(rbx), rax); 1040 NOT_LP64(__ movl(haddress(rbx), rdx)); 1041 } 1042 1043 void TemplateTable::wide_fstore() { 1044 #ifdef _LP64 1045 transition(vtos, vtos); 1046 __ pop_f(xmm0); 1047 locals_index_wide(rbx); 1048 __ movflt(faddress(rbx), xmm0); 1049 #else 1050 wide_istore(); 1051 #endif 1052 } 1053 1054 void TemplateTable::wide_dstore() { 1055 #ifdef _LP64 1056 transition(vtos, vtos); 1057 __ pop_d(xmm0); 1058 locals_index_wide(rbx); 1059 __ movdbl(daddress(rbx), xmm0); 1060 #else 1061 wide_lstore(); 1062 #endif 1063 } 1064 1065 void TemplateTable::wide_astore() { 1066 transition(vtos, vtos); 1067 __ pop_ptr(rax); 1068 locals_index_wide(rbx); 1069 __ movptr(aaddress(rbx), rax); 1070 } 1071 1072 void TemplateTable::iastore() { 1073 transition(itos, vtos); 1074 __ pop_i(rbx); 1075 // rax: value 1076 // rbx: index 1077 // rdx: array 1078 index_check(rdx, rbx); // prefer index in rbx 1079 __ access_store_at(T_INT, IN_HEAP | IS_ARRAY, 1080 Address(rdx, rbx, Address::times_4, 1081 arrayOopDesc::base_offset_in_bytes(T_INT)), 1082 rax, noreg, noreg, noreg); 1083 } 1084 1085 void TemplateTable::lastore() { 1086 transition(ltos, vtos); 1087 __ pop_i(rbx); 1088 // rax,: low(value) 1089 // rcx: array 1090 // rdx: high(value) 1091 index_check(rcx, rbx); // prefer index in rbx, 1092 // rbx,: index 1093 __ access_store_at(T_LONG, IN_HEAP | IS_ARRAY, 1094 Address(rcx, rbx, Address::times_8, 1095 arrayOopDesc::base_offset_in_bytes(T_LONG)), 1096 noreg /* ltos */, noreg, noreg, noreg); 1097 } 1098 1099 1100 void TemplateTable::fastore() { 1101 transition(ftos, vtos); 1102 __ pop_i(rbx); 1103 // value is in UseSSE >= 1 ? xmm0 : ST(0) 1104 // rbx: index 1105 // rdx: array 1106 index_check(rdx, rbx); // prefer index in rbx 1107 __ access_store_at(T_FLOAT, IN_HEAP | IS_ARRAY, 1108 Address(rdx, rbx, Address::times_4, 1109 arrayOopDesc::base_offset_in_bytes(T_FLOAT)), 1110 noreg /* ftos */, noreg, noreg, noreg); 1111 } 1112 1113 void TemplateTable::dastore() { 1114 transition(dtos, vtos); 1115 __ pop_i(rbx); 1116 // value is in UseSSE >= 2 ? xmm0 : ST(0) 1117 // rbx: index 1118 // rdx: array 1119 index_check(rdx, rbx); // prefer index in rbx 1120 __ access_store_at(T_DOUBLE, IN_HEAP | IS_ARRAY, 1121 Address(rdx, rbx, Address::times_8, 1122 arrayOopDesc::base_offset_in_bytes(T_DOUBLE)), 1123 noreg /* dtos */, noreg, noreg, noreg); 1124 } 1125 1126 void TemplateTable::aastore() { 1127 Label is_null, ok_is_subtype, done; 1128 transition(vtos, vtos); 1129 // stack: ..., array, index, value 1130 __ movptr(rax, at_tos()); // value 1131 __ movl(rcx, at_tos_p1()); // index 1132 __ movptr(rdx, at_tos_p2()); // array 1133 1134 Address element_address(rdx, rcx, 1135 UseCompressedOops? Address::times_4 : Address::times_ptr, 1136 arrayOopDesc::base_offset_in_bytes(T_OBJECT)); 1137 1138 index_check_without_pop(rdx, rcx); // kills rbx 1139 __ testptr(rax, rax); 1140 __ jcc(Assembler::zero, is_null); 1141 1142 // Move subklass into rbx 1143 __ load_klass(rbx, rax, rscratch1); 1144 // Move superklass into rax 1145 __ load_klass(rax, rdx, rscratch1); 1146 __ movptr(rax, Address(rax, 1147 ObjArrayKlass::element_klass_offset())); 1148 1149 // Generate subtype check. Blows rcx, rdi 1150 // Superklass in rax. Subklass in rbx. 1151 __ gen_subtype_check(rbx, ok_is_subtype); 1152 1153 // Come here on failure 1154 // object is at TOS 1155 __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry)); 1156 1157 // Come here on success 1158 __ bind(ok_is_subtype); 1159 1160 // Get the value we will store 1161 __ movptr(rax, at_tos()); 1162 __ movl(rcx, at_tos_p1()); // index 1163 // Now store using the appropriate barrier 1164 do_oop_store(_masm, element_address, rax, IS_ARRAY); 1165 __ jmp(done); 1166 1167 // Have a null in rax, rdx=array, ecx=index. Store null at ary[idx] 1168 __ bind(is_null); 1169 __ profile_null_seen(rbx); 1170 1171 // Store a null 1172 do_oop_store(_masm, element_address, noreg, IS_ARRAY); 1173 1174 // Pop stack arguments 1175 __ bind(done); 1176 __ addptr(rsp, 3 * Interpreter::stackElementSize); 1177 } 1178 1179 void TemplateTable::bastore() { 1180 transition(itos, vtos); 1181 __ pop_i(rbx); 1182 // rax: value 1183 // rbx: index 1184 // rdx: array 1185 index_check(rdx, rbx); // prefer index in rbx 1186 // Need to check whether array is boolean or byte 1187 // since both types share the bastore bytecode. 1188 __ load_klass(rcx, rdx, rscratch1); 1189 __ movl(rcx, Address(rcx, Klass::layout_helper_offset())); 1190 int diffbit = Klass::layout_helper_boolean_diffbit(); 1191 __ testl(rcx, diffbit); 1192 Label L_skip; 1193 __ jccb(Assembler::zero, L_skip); 1194 __ andl(rax, 1); // if it is a T_BOOLEAN array, mask the stored value to 0/1 1195 __ bind(L_skip); 1196 __ access_store_at(T_BYTE, IN_HEAP | IS_ARRAY, 1197 Address(rdx, rbx,Address::times_1, 1198 arrayOopDesc::base_offset_in_bytes(T_BYTE)), 1199 rax, noreg, noreg, noreg); 1200 } 1201 1202 void TemplateTable::castore() { 1203 transition(itos, vtos); 1204 __ pop_i(rbx); 1205 // rax: value 1206 // rbx: index 1207 // rdx: array 1208 index_check(rdx, rbx); // prefer index in rbx 1209 __ access_store_at(T_CHAR, IN_HEAP | IS_ARRAY, 1210 Address(rdx, rbx, Address::times_2, 1211 arrayOopDesc::base_offset_in_bytes(T_CHAR)), 1212 rax, noreg, noreg, noreg); 1213 } 1214 1215 1216 void TemplateTable::sastore() { 1217 castore(); 1218 } 1219 1220 void TemplateTable::istore(int n) { 1221 transition(itos, vtos); 1222 __ movl(iaddress(n), rax); 1223 } 1224 1225 void TemplateTable::lstore(int n) { 1226 transition(ltos, vtos); 1227 __ movptr(laddress(n), rax); 1228 NOT_LP64(__ movptr(haddress(n), rdx)); 1229 } 1230 1231 void TemplateTable::fstore(int n) { 1232 transition(ftos, vtos); 1233 __ store_float(faddress(n)); 1234 } 1235 1236 void TemplateTable::dstore(int n) { 1237 transition(dtos, vtos); 1238 __ store_double(daddress(n)); 1239 } 1240 1241 1242 void TemplateTable::astore(int n) { 1243 transition(vtos, vtos); 1244 __ pop_ptr(rax); 1245 __ movptr(aaddress(n), rax); 1246 } 1247 1248 void TemplateTable::pop() { 1249 transition(vtos, vtos); 1250 __ addptr(rsp, Interpreter::stackElementSize); 1251 } 1252 1253 void TemplateTable::pop2() { 1254 transition(vtos, vtos); 1255 __ addptr(rsp, 2 * Interpreter::stackElementSize); 1256 } 1257 1258 1259 void TemplateTable::dup() { 1260 transition(vtos, vtos); 1261 __ load_ptr(0, rax); 1262 __ push_ptr(rax); 1263 // stack: ..., a, a 1264 } 1265 1266 void TemplateTable::dup_x1() { 1267 transition(vtos, vtos); 1268 // stack: ..., a, b 1269 __ load_ptr( 0, rax); // load b 1270 __ load_ptr( 1, rcx); // load a 1271 __ store_ptr(1, rax); // store b 1272 __ store_ptr(0, rcx); // store a 1273 __ push_ptr(rax); // push b 1274 // stack: ..., b, a, b 1275 } 1276 1277 void TemplateTable::dup_x2() { 1278 transition(vtos, vtos); 1279 // stack: ..., a, b, c 1280 __ load_ptr( 0, rax); // load c 1281 __ load_ptr( 2, rcx); // load a 1282 __ store_ptr(2, rax); // store c in a 1283 __ push_ptr(rax); // push c 1284 // stack: ..., c, b, c, c 1285 __ load_ptr( 2, rax); // load b 1286 __ store_ptr(2, rcx); // store a in b 1287 // stack: ..., c, a, c, c 1288 __ store_ptr(1, rax); // store b in c 1289 // stack: ..., c, a, b, c 1290 } 1291 1292 void TemplateTable::dup2() { 1293 transition(vtos, vtos); 1294 // stack: ..., a, b 1295 __ load_ptr(1, rax); // load a 1296 __ push_ptr(rax); // push a 1297 __ load_ptr(1, rax); // load b 1298 __ push_ptr(rax); // push b 1299 // stack: ..., a, b, a, b 1300 } 1301 1302 1303 void TemplateTable::dup2_x1() { 1304 transition(vtos, vtos); 1305 // stack: ..., a, b, c 1306 __ load_ptr( 0, rcx); // load c 1307 __ load_ptr( 1, rax); // load b 1308 __ push_ptr(rax); // push b 1309 __ push_ptr(rcx); // push c 1310 // stack: ..., a, b, c, b, c 1311 __ store_ptr(3, rcx); // store c in b 1312 // stack: ..., a, c, c, b, c 1313 __ load_ptr( 4, rcx); // load a 1314 __ store_ptr(2, rcx); // store a in 2nd c 1315 // stack: ..., a, c, a, b, c 1316 __ store_ptr(4, rax); // store b in a 1317 // stack: ..., b, c, a, b, c 1318 } 1319 1320 void TemplateTable::dup2_x2() { 1321 transition(vtos, vtos); 1322 // stack: ..., a, b, c, d 1323 __ load_ptr( 0, rcx); // load d 1324 __ load_ptr( 1, rax); // load c 1325 __ push_ptr(rax); // push c 1326 __ push_ptr(rcx); // push d 1327 // stack: ..., a, b, c, d, c, d 1328 __ load_ptr( 4, rax); // load b 1329 __ store_ptr(2, rax); // store b in d 1330 __ store_ptr(4, rcx); // store d in b 1331 // stack: ..., a, d, c, b, c, d 1332 __ load_ptr( 5, rcx); // load a 1333 __ load_ptr( 3, rax); // load c 1334 __ store_ptr(3, rcx); // store a in c 1335 __ store_ptr(5, rax); // store c in a 1336 // stack: ..., c, d, a, b, c, d 1337 } 1338 1339 void TemplateTable::swap() { 1340 transition(vtos, vtos); 1341 // stack: ..., a, b 1342 __ load_ptr( 1, rcx); // load a 1343 __ load_ptr( 0, rax); // load b 1344 __ store_ptr(0, rcx); // store a in b 1345 __ store_ptr(1, rax); // store b in a 1346 // stack: ..., b, a 1347 } 1348 1349 void TemplateTable::iop2(Operation op) { 1350 transition(itos, itos); 1351 switch (op) { 1352 case add : __ pop_i(rdx); __ addl (rax, rdx); break; 1353 case sub : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break; 1354 case mul : __ pop_i(rdx); __ imull(rax, rdx); break; 1355 case _and : __ pop_i(rdx); __ andl (rax, rdx); break; 1356 case _or : __ pop_i(rdx); __ orl (rax, rdx); break; 1357 case _xor : __ pop_i(rdx); __ xorl (rax, rdx); break; 1358 case shl : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax); break; 1359 case shr : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax); break; 1360 case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax); break; 1361 default : ShouldNotReachHere(); 1362 } 1363 } 1364 1365 void TemplateTable::lop2(Operation op) { 1366 transition(ltos, ltos); 1367 #ifdef _LP64 1368 switch (op) { 1369 case add : __ pop_l(rdx); __ addptr(rax, rdx); break; 1370 case sub : __ mov(rdx, rax); __ pop_l(rax); __ subptr(rax, rdx); break; 1371 case _and : __ pop_l(rdx); __ andptr(rax, rdx); break; 1372 case _or : __ pop_l(rdx); __ orptr (rax, rdx); break; 1373 case _xor : __ pop_l(rdx); __ xorptr(rax, rdx); break; 1374 default : ShouldNotReachHere(); 1375 } 1376 #else 1377 __ pop_l(rbx, rcx); 1378 switch (op) { 1379 case add : __ addl(rax, rbx); __ adcl(rdx, rcx); break; 1380 case sub : __ subl(rbx, rax); __ sbbl(rcx, rdx); 1381 __ mov (rax, rbx); __ mov (rdx, rcx); break; 1382 case _and : __ andl(rax, rbx); __ andl(rdx, rcx); break; 1383 case _or : __ orl (rax, rbx); __ orl (rdx, rcx); break; 1384 case _xor : __ xorl(rax, rbx); __ xorl(rdx, rcx); break; 1385 default : ShouldNotReachHere(); 1386 } 1387 #endif 1388 } 1389 1390 void TemplateTable::idiv() { 1391 transition(itos, itos); 1392 __ movl(rcx, rax); 1393 __ pop_i(rax); 1394 // Note: could xor rax and ecx and compare with (-1 ^ min_int). If 1395 // they are not equal, one could do a normal division (no correction 1396 // needed), which may speed up this implementation for the common case. 1397 // (see also JVM spec., p.243 & p.271) 1398 __ corrected_idivl(rcx); 1399 } 1400 1401 void TemplateTable::irem() { 1402 transition(itos, itos); 1403 __ movl(rcx, rax); 1404 __ pop_i(rax); 1405 // Note: could xor rax and ecx and compare with (-1 ^ min_int). If 1406 // they are not equal, one could do a normal division (no correction 1407 // needed), which may speed up this implementation for the common case. 1408 // (see also JVM spec., p.243 & p.271) 1409 __ corrected_idivl(rcx); 1410 __ movl(rax, rdx); 1411 } 1412 1413 void TemplateTable::lmul() { 1414 transition(ltos, ltos); 1415 #ifdef _LP64 1416 __ pop_l(rdx); 1417 __ imulq(rax, rdx); 1418 #else 1419 __ pop_l(rbx, rcx); 1420 __ push(rcx); __ push(rbx); 1421 __ push(rdx); __ push(rax); 1422 __ lmul(2 * wordSize, 0); 1423 __ addptr(rsp, 4 * wordSize); // take off temporaries 1424 #endif 1425 } 1426 1427 void TemplateTable::ldiv() { 1428 transition(ltos, ltos); 1429 #ifdef _LP64 1430 __ mov(rcx, rax); 1431 __ pop_l(rax); 1432 // generate explicit div0 check 1433 __ testq(rcx, rcx); 1434 __ jump_cc(Assembler::zero, 1435 ExternalAddress(Interpreter::_throw_ArithmeticException_entry)); 1436 // Note: could xor rax and rcx and compare with (-1 ^ min_int). If 1437 // they are not equal, one could do a normal division (no correction 1438 // needed), which may speed up this implementation for the common case. 1439 // (see also JVM spec., p.243 & p.271) 1440 __ corrected_idivq(rcx); // kills rbx 1441 #else 1442 __ pop_l(rbx, rcx); 1443 __ push(rcx); __ push(rbx); 1444 __ push(rdx); __ push(rax); 1445 // check if y = 0 1446 __ orl(rax, rdx); 1447 __ jump_cc(Assembler::zero, 1448 ExternalAddress(Interpreter::_throw_ArithmeticException_entry)); 1449 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::ldiv)); 1450 __ addptr(rsp, 4 * wordSize); // take off temporaries 1451 #endif 1452 } 1453 1454 void TemplateTable::lrem() { 1455 transition(ltos, ltos); 1456 #ifdef _LP64 1457 __ mov(rcx, rax); 1458 __ pop_l(rax); 1459 __ testq(rcx, rcx); 1460 __ jump_cc(Assembler::zero, 1461 ExternalAddress(Interpreter::_throw_ArithmeticException_entry)); 1462 // Note: could xor rax and rcx and compare with (-1 ^ min_int). If 1463 // they are not equal, one could do a normal division (no correction 1464 // needed), which may speed up this implementation for the common case. 1465 // (see also JVM spec., p.243 & p.271) 1466 __ corrected_idivq(rcx); // kills rbx 1467 __ mov(rax, rdx); 1468 #else 1469 __ pop_l(rbx, rcx); 1470 __ push(rcx); __ push(rbx); 1471 __ push(rdx); __ push(rax); 1472 // check if y = 0 1473 __ orl(rax, rdx); 1474 __ jump_cc(Assembler::zero, 1475 ExternalAddress(Interpreter::_throw_ArithmeticException_entry)); 1476 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::lrem)); 1477 __ addptr(rsp, 4 * wordSize); 1478 #endif 1479 } 1480 1481 void TemplateTable::lshl() { 1482 transition(itos, ltos); 1483 __ movl(rcx, rax); // get shift count 1484 #ifdef _LP64 1485 __ pop_l(rax); // get shift value 1486 __ shlq(rax); 1487 #else 1488 __ pop_l(rax, rdx); // get shift value 1489 __ lshl(rdx, rax); 1490 #endif 1491 } 1492 1493 void TemplateTable::lshr() { 1494 #ifdef _LP64 1495 transition(itos, ltos); 1496 __ movl(rcx, rax); // get shift count 1497 __ pop_l(rax); // get shift value 1498 __ sarq(rax); 1499 #else 1500 transition(itos, ltos); 1501 __ mov(rcx, rax); // get shift count 1502 __ pop_l(rax, rdx); // get shift value 1503 __ lshr(rdx, rax, true); 1504 #endif 1505 } 1506 1507 void TemplateTable::lushr() { 1508 transition(itos, ltos); 1509 #ifdef _LP64 1510 __ movl(rcx, rax); // get shift count 1511 __ pop_l(rax); // get shift value 1512 __ shrq(rax); 1513 #else 1514 __ mov(rcx, rax); // get shift count 1515 __ pop_l(rax, rdx); // get shift value 1516 __ lshr(rdx, rax); 1517 #endif 1518 } 1519 1520 void TemplateTable::fop2(Operation op) { 1521 transition(ftos, ftos); 1522 1523 if (UseSSE >= 1) { 1524 switch (op) { 1525 case add: 1526 __ addss(xmm0, at_rsp()); 1527 __ addptr(rsp, Interpreter::stackElementSize); 1528 break; 1529 case sub: 1530 __ movflt(xmm1, xmm0); 1531 __ pop_f(xmm0); 1532 __ subss(xmm0, xmm1); 1533 break; 1534 case mul: 1535 __ mulss(xmm0, at_rsp()); 1536 __ addptr(rsp, Interpreter::stackElementSize); 1537 break; 1538 case div: 1539 __ movflt(xmm1, xmm0); 1540 __ pop_f(xmm0); 1541 __ divss(xmm0, xmm1); 1542 break; 1543 case rem: 1544 // On x86_64 platforms the SharedRuntime::frem method is called to perform the 1545 // modulo operation. The frem method calls the function 1546 // double fmod(double x, double y) in math.h. The documentation of fmod states: 1547 // "If x or y is a NaN, a NaN is returned." without specifying what type of NaN 1548 // (signalling or quiet) is returned. 1549 // 1550 // On x86_32 platforms the FPU is used to perform the modulo operation. The 1551 // reason is that on 32-bit Windows the sign of modulo operations diverges from 1552 // what is considered the standard (e.g., -0.0f % -3.14f is 0.0f (and not -0.0f). 1553 // The fprem instruction used on x86_32 is functionally equivalent to 1554 // SharedRuntime::frem in that it returns a NaN. 1555 #ifdef _LP64 1556 __ movflt(xmm1, xmm0); 1557 __ pop_f(xmm0); 1558 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), 2); 1559 #else // !_LP64 1560 __ push_f(xmm0); 1561 __ pop_f(); 1562 __ fld_s(at_rsp()); 1563 __ fremr(rax); 1564 __ f2ieee(); 1565 __ pop(rax); // pop second operand off the stack 1566 __ push_f(); 1567 __ pop_f(xmm0); 1568 #endif // _LP64 1569 break; 1570 default: 1571 ShouldNotReachHere(); 1572 break; 1573 } 1574 } else { 1575 #ifdef _LP64 1576 ShouldNotReachHere(); 1577 #else // !_LP64 1578 switch (op) { 1579 case add: __ fadd_s (at_rsp()); break; 1580 case sub: __ fsubr_s(at_rsp()); break; 1581 case mul: __ fmul_s (at_rsp()); break; 1582 case div: __ fdivr_s(at_rsp()); break; 1583 case rem: __ fld_s (at_rsp()); __ fremr(rax); break; 1584 default : ShouldNotReachHere(); 1585 } 1586 __ f2ieee(); 1587 __ pop(rax); // pop second operand off the stack 1588 #endif // _LP64 1589 } 1590 } 1591 1592 void TemplateTable::dop2(Operation op) { 1593 transition(dtos, dtos); 1594 if (UseSSE >= 2) { 1595 switch (op) { 1596 case add: 1597 __ addsd(xmm0, at_rsp()); 1598 __ addptr(rsp, 2 * Interpreter::stackElementSize); 1599 break; 1600 case sub: 1601 __ movdbl(xmm1, xmm0); 1602 __ pop_d(xmm0); 1603 __ subsd(xmm0, xmm1); 1604 break; 1605 case mul: 1606 __ mulsd(xmm0, at_rsp()); 1607 __ addptr(rsp, 2 * Interpreter::stackElementSize); 1608 break; 1609 case div: 1610 __ movdbl(xmm1, xmm0); 1611 __ pop_d(xmm0); 1612 __ divsd(xmm0, xmm1); 1613 break; 1614 case rem: 1615 // Similar to fop2(), the modulo operation is performed using the 1616 // SharedRuntime::drem method (on x86_64 platforms) or using the 1617 // FPU (on x86_32 platforms) for the same reasons as mentioned in fop2(). 1618 #ifdef _LP64 1619 __ movdbl(xmm1, xmm0); 1620 __ pop_d(xmm0); 1621 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), 2); 1622 #else // !_LP64 1623 __ push_d(xmm0); 1624 __ pop_d(); 1625 __ fld_d(at_rsp()); 1626 __ fremr(rax); 1627 __ d2ieee(); 1628 __ pop(rax); 1629 __ pop(rdx); 1630 __ push_d(); 1631 __ pop_d(xmm0); 1632 #endif // _LP64 1633 break; 1634 default: 1635 ShouldNotReachHere(); 1636 break; 1637 } 1638 } else { 1639 #ifdef _LP64 1640 ShouldNotReachHere(); 1641 #else // !_LP64 1642 switch (op) { 1643 case add: __ fadd_d (at_rsp()); break; 1644 case sub: __ fsubr_d(at_rsp()); break; 1645 case mul: { 1646 // strict semantics 1647 __ fld_x(ExternalAddress(StubRoutines::x86::addr_fpu_subnormal_bias1())); 1648 __ fmulp(); 1649 __ fmul_d (at_rsp()); 1650 __ fld_x(ExternalAddress(StubRoutines::x86::addr_fpu_subnormal_bias2())); 1651 __ fmulp(); 1652 break; 1653 } 1654 case div: { 1655 // strict semantics 1656 __ fld_x(ExternalAddress(StubRoutines::x86::addr_fpu_subnormal_bias1())); 1657 __ fmul_d (at_rsp()); 1658 __ fdivrp(); 1659 __ fld_x(ExternalAddress(StubRoutines::x86::addr_fpu_subnormal_bias2())); 1660 __ fmulp(); 1661 break; 1662 } 1663 case rem: __ fld_d (at_rsp()); __ fremr(rax); break; 1664 default : ShouldNotReachHere(); 1665 } 1666 __ d2ieee(); 1667 // Pop double precision number from rsp. 1668 __ pop(rax); 1669 __ pop(rdx); 1670 #endif // _LP64 1671 } 1672 } 1673 1674 void TemplateTable::ineg() { 1675 transition(itos, itos); 1676 __ negl(rax); 1677 } 1678 1679 void TemplateTable::lneg() { 1680 transition(ltos, ltos); 1681 LP64_ONLY(__ negq(rax)); 1682 NOT_LP64(__ lneg(rdx, rax)); 1683 } 1684 1685 // Note: 'double' and 'long long' have 32-bits alignment on x86. 1686 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) { 1687 // Use the expression (adr)&(~0xF) to provide 128-bits aligned address 1688 // of 128-bits operands for SSE instructions. 1689 jlong *operand = (jlong*)(((intptr_t)adr)&((intptr_t)(~0xF))); 1690 // Store the value to a 128-bits operand. 1691 operand[0] = lo; 1692 operand[1] = hi; 1693 return operand; 1694 } 1695 1696 // Buffer for 128-bits masks used by SSE instructions. 1697 static jlong float_signflip_pool[2*2]; 1698 static jlong double_signflip_pool[2*2]; 1699 1700 void TemplateTable::fneg() { 1701 transition(ftos, ftos); 1702 if (UseSSE >= 1) { 1703 static jlong *float_signflip = double_quadword(&float_signflip_pool[1], CONST64(0x8000000080000000), CONST64(0x8000000080000000)); 1704 __ xorps(xmm0, ExternalAddress((address) float_signflip), rscratch1); 1705 } else { 1706 LP64_ONLY(ShouldNotReachHere()); 1707 NOT_LP64(__ fchs()); 1708 } 1709 } 1710 1711 void TemplateTable::dneg() { 1712 transition(dtos, dtos); 1713 if (UseSSE >= 2) { 1714 static jlong *double_signflip = 1715 double_quadword(&double_signflip_pool[1], CONST64(0x8000000000000000), CONST64(0x8000000000000000)); 1716 __ xorpd(xmm0, ExternalAddress((address) double_signflip), rscratch1); 1717 } else { 1718 #ifdef _LP64 1719 ShouldNotReachHere(); 1720 #else 1721 __ fchs(); 1722 #endif 1723 } 1724 } 1725 1726 void TemplateTable::iinc() { 1727 transition(vtos, vtos); 1728 __ load_signed_byte(rdx, at_bcp(2)); // get constant 1729 locals_index(rbx); 1730 __ addl(iaddress(rbx), rdx); 1731 } 1732 1733 void TemplateTable::wide_iinc() { 1734 transition(vtos, vtos); 1735 __ movl(rdx, at_bcp(4)); // get constant 1736 locals_index_wide(rbx); 1737 __ bswapl(rdx); // swap bytes & sign-extend constant 1738 __ sarl(rdx, 16); 1739 __ addl(iaddress(rbx), rdx); 1740 // Note: should probably use only one movl to get both 1741 // the index and the constant -> fix this 1742 } 1743 1744 void TemplateTable::convert() { 1745 #ifdef _LP64 1746 // Checking 1747 #ifdef ASSERT 1748 { 1749 TosState tos_in = ilgl; 1750 TosState tos_out = ilgl; 1751 switch (bytecode()) { 1752 case Bytecodes::_i2l: // fall through 1753 case Bytecodes::_i2f: // fall through 1754 case Bytecodes::_i2d: // fall through 1755 case Bytecodes::_i2b: // fall through 1756 case Bytecodes::_i2c: // fall through 1757 case Bytecodes::_i2s: tos_in = itos; break; 1758 case Bytecodes::_l2i: // fall through 1759 case Bytecodes::_l2f: // fall through 1760 case Bytecodes::_l2d: tos_in = ltos; break; 1761 case Bytecodes::_f2i: // fall through 1762 case Bytecodes::_f2l: // fall through 1763 case Bytecodes::_f2d: tos_in = ftos; break; 1764 case Bytecodes::_d2i: // fall through 1765 case Bytecodes::_d2l: // fall through 1766 case Bytecodes::_d2f: tos_in = dtos; break; 1767 default : ShouldNotReachHere(); 1768 } 1769 switch (bytecode()) { 1770 case Bytecodes::_l2i: // fall through 1771 case Bytecodes::_f2i: // fall through 1772 case Bytecodes::_d2i: // fall through 1773 case Bytecodes::_i2b: // fall through 1774 case Bytecodes::_i2c: // fall through 1775 case Bytecodes::_i2s: tos_out = itos; break; 1776 case Bytecodes::_i2l: // fall through 1777 case Bytecodes::_f2l: // fall through 1778 case Bytecodes::_d2l: tos_out = ltos; break; 1779 case Bytecodes::_i2f: // fall through 1780 case Bytecodes::_l2f: // fall through 1781 case Bytecodes::_d2f: tos_out = ftos; break; 1782 case Bytecodes::_i2d: // fall through 1783 case Bytecodes::_l2d: // fall through 1784 case Bytecodes::_f2d: tos_out = dtos; break; 1785 default : ShouldNotReachHere(); 1786 } 1787 transition(tos_in, tos_out); 1788 } 1789 #endif // ASSERT 1790 1791 static const int64_t is_nan = 0x8000000000000000L; 1792 1793 // Conversion 1794 switch (bytecode()) { 1795 case Bytecodes::_i2l: 1796 __ movslq(rax, rax); 1797 break; 1798 case Bytecodes::_i2f: 1799 __ cvtsi2ssl(xmm0, rax); 1800 break; 1801 case Bytecodes::_i2d: 1802 __ cvtsi2sdl(xmm0, rax); 1803 break; 1804 case Bytecodes::_i2b: 1805 __ movsbl(rax, rax); 1806 break; 1807 case Bytecodes::_i2c: 1808 __ movzwl(rax, rax); 1809 break; 1810 case Bytecodes::_i2s: 1811 __ movswl(rax, rax); 1812 break; 1813 case Bytecodes::_l2i: 1814 __ movl(rax, rax); 1815 break; 1816 case Bytecodes::_l2f: 1817 __ cvtsi2ssq(xmm0, rax); 1818 break; 1819 case Bytecodes::_l2d: 1820 __ cvtsi2sdq(xmm0, rax); 1821 break; 1822 case Bytecodes::_f2i: 1823 { 1824 Label L; 1825 __ cvttss2sil(rax, xmm0); 1826 __ cmpl(rax, 0x80000000); // NaN or overflow/underflow? 1827 __ jcc(Assembler::notEqual, L); 1828 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1); 1829 __ bind(L); 1830 } 1831 break; 1832 case Bytecodes::_f2l: 1833 { 1834 Label L; 1835 __ cvttss2siq(rax, xmm0); 1836 // NaN or overflow/underflow? 1837 __ cmp64(rax, ExternalAddress((address) &is_nan), rscratch1); 1838 __ jcc(Assembler::notEqual, L); 1839 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1); 1840 __ bind(L); 1841 } 1842 break; 1843 case Bytecodes::_f2d: 1844 __ cvtss2sd(xmm0, xmm0); 1845 break; 1846 case Bytecodes::_d2i: 1847 { 1848 Label L; 1849 __ cvttsd2sil(rax, xmm0); 1850 __ cmpl(rax, 0x80000000); // NaN or overflow/underflow? 1851 __ jcc(Assembler::notEqual, L); 1852 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1); 1853 __ bind(L); 1854 } 1855 break; 1856 case Bytecodes::_d2l: 1857 { 1858 Label L; 1859 __ cvttsd2siq(rax, xmm0); 1860 // NaN or overflow/underflow? 1861 __ cmp64(rax, ExternalAddress((address) &is_nan), rscratch1); 1862 __ jcc(Assembler::notEqual, L); 1863 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1); 1864 __ bind(L); 1865 } 1866 break; 1867 case Bytecodes::_d2f: 1868 __ cvtsd2ss(xmm0, xmm0); 1869 break; 1870 default: 1871 ShouldNotReachHere(); 1872 } 1873 #else // !_LP64 1874 // Checking 1875 #ifdef ASSERT 1876 { TosState tos_in = ilgl; 1877 TosState tos_out = ilgl; 1878 switch (bytecode()) { 1879 case Bytecodes::_i2l: // fall through 1880 case Bytecodes::_i2f: // fall through 1881 case Bytecodes::_i2d: // fall through 1882 case Bytecodes::_i2b: // fall through 1883 case Bytecodes::_i2c: // fall through 1884 case Bytecodes::_i2s: tos_in = itos; break; 1885 case Bytecodes::_l2i: // fall through 1886 case Bytecodes::_l2f: // fall through 1887 case Bytecodes::_l2d: tos_in = ltos; break; 1888 case Bytecodes::_f2i: // fall through 1889 case Bytecodes::_f2l: // fall through 1890 case Bytecodes::_f2d: tos_in = ftos; break; 1891 case Bytecodes::_d2i: // fall through 1892 case Bytecodes::_d2l: // fall through 1893 case Bytecodes::_d2f: tos_in = dtos; break; 1894 default : ShouldNotReachHere(); 1895 } 1896 switch (bytecode()) { 1897 case Bytecodes::_l2i: // fall through 1898 case Bytecodes::_f2i: // fall through 1899 case Bytecodes::_d2i: // fall through 1900 case Bytecodes::_i2b: // fall through 1901 case Bytecodes::_i2c: // fall through 1902 case Bytecodes::_i2s: tos_out = itos; break; 1903 case Bytecodes::_i2l: // fall through 1904 case Bytecodes::_f2l: // fall through 1905 case Bytecodes::_d2l: tos_out = ltos; break; 1906 case Bytecodes::_i2f: // fall through 1907 case Bytecodes::_l2f: // fall through 1908 case Bytecodes::_d2f: tos_out = ftos; break; 1909 case Bytecodes::_i2d: // fall through 1910 case Bytecodes::_l2d: // fall through 1911 case Bytecodes::_f2d: tos_out = dtos; break; 1912 default : ShouldNotReachHere(); 1913 } 1914 transition(tos_in, tos_out); 1915 } 1916 #endif // ASSERT 1917 1918 // Conversion 1919 // (Note: use push(rcx)/pop(rcx) for 1/2-word stack-ptr manipulation) 1920 switch (bytecode()) { 1921 case Bytecodes::_i2l: 1922 __ extend_sign(rdx, rax); 1923 break; 1924 case Bytecodes::_i2f: 1925 if (UseSSE >= 1) { 1926 __ cvtsi2ssl(xmm0, rax); 1927 } else { 1928 __ push(rax); // store int on tos 1929 __ fild_s(at_rsp()); // load int to ST0 1930 __ f2ieee(); // truncate to float size 1931 __ pop(rcx); // adjust rsp 1932 } 1933 break; 1934 case Bytecodes::_i2d: 1935 if (UseSSE >= 2) { 1936 __ cvtsi2sdl(xmm0, rax); 1937 } else { 1938 __ push(rax); // add one slot for d2ieee() 1939 __ push(rax); // store int on tos 1940 __ fild_s(at_rsp()); // load int to ST0 1941 __ d2ieee(); // truncate to double size 1942 __ pop(rcx); // adjust rsp 1943 __ pop(rcx); 1944 } 1945 break; 1946 case Bytecodes::_i2b: 1947 __ shll(rax, 24); // truncate upper 24 bits 1948 __ sarl(rax, 24); // and sign-extend byte 1949 LP64_ONLY(__ movsbl(rax, rax)); 1950 break; 1951 case Bytecodes::_i2c: 1952 __ andl(rax, 0xFFFF); // truncate upper 16 bits 1953 LP64_ONLY(__ movzwl(rax, rax)); 1954 break; 1955 case Bytecodes::_i2s: 1956 __ shll(rax, 16); // truncate upper 16 bits 1957 __ sarl(rax, 16); // and sign-extend short 1958 LP64_ONLY(__ movswl(rax, rax)); 1959 break; 1960 case Bytecodes::_l2i: 1961 /* nothing to do */ 1962 break; 1963 case Bytecodes::_l2f: 1964 // On 64-bit platforms, the cvtsi2ssq instruction is used to convert 1965 // 64-bit long values to floats. On 32-bit platforms it is not possible 1966 // to use that instruction with 64-bit operands, therefore the FPU is 1967 // used to perform the conversion. 1968 __ push(rdx); // store long on tos 1969 __ push(rax); 1970 __ fild_d(at_rsp()); // load long to ST0 1971 __ f2ieee(); // truncate to float size 1972 __ pop(rcx); // adjust rsp 1973 __ pop(rcx); 1974 if (UseSSE >= 1) { 1975 __ push_f(); 1976 __ pop_f(xmm0); 1977 } 1978 break; 1979 case Bytecodes::_l2d: 1980 // On 32-bit platforms the FPU is used for conversion because on 1981 // 32-bit platforms it is not not possible to use the cvtsi2sdq 1982 // instruction with 64-bit operands. 1983 __ push(rdx); // store long on tos 1984 __ push(rax); 1985 __ fild_d(at_rsp()); // load long to ST0 1986 __ d2ieee(); // truncate to double size 1987 __ pop(rcx); // adjust rsp 1988 __ pop(rcx); 1989 if (UseSSE >= 2) { 1990 __ push_d(); 1991 __ pop_d(xmm0); 1992 } 1993 break; 1994 case Bytecodes::_f2i: 1995 // SharedRuntime::f2i does not differentiate between sNaNs and qNaNs 1996 // as it returns 0 for any NaN. 1997 if (UseSSE >= 1) { 1998 __ push_f(xmm0); 1999 } else { 2000 __ push(rcx); // reserve space for argument 2001 __ fstp_s(at_rsp()); // pass float argument on stack 2002 } 2003 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1); 2004 break; 2005 case Bytecodes::_f2l: 2006 // SharedRuntime::f2l does not differentiate between sNaNs and qNaNs 2007 // as it returns 0 for any NaN. 2008 if (UseSSE >= 1) { 2009 __ push_f(xmm0); 2010 } else { 2011 __ push(rcx); // reserve space for argument 2012 __ fstp_s(at_rsp()); // pass float argument on stack 2013 } 2014 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1); 2015 break; 2016 case Bytecodes::_f2d: 2017 if (UseSSE < 1) { 2018 /* nothing to do */ 2019 } else if (UseSSE == 1) { 2020 __ push_f(xmm0); 2021 __ pop_f(); 2022 } else { // UseSSE >= 2 2023 __ cvtss2sd(xmm0, xmm0); 2024 } 2025 break; 2026 case Bytecodes::_d2i: 2027 if (UseSSE >= 2) { 2028 __ push_d(xmm0); 2029 } else { 2030 __ push(rcx); // reserve space for argument 2031 __ push(rcx); 2032 __ fstp_d(at_rsp()); // pass double argument on stack 2033 } 2034 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 2); 2035 break; 2036 case Bytecodes::_d2l: 2037 if (UseSSE >= 2) { 2038 __ push_d(xmm0); 2039 } else { 2040 __ push(rcx); // reserve space for argument 2041 __ push(rcx); 2042 __ fstp_d(at_rsp()); // pass double argument on stack 2043 } 2044 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 2); 2045 break; 2046 case Bytecodes::_d2f: 2047 if (UseSSE <= 1) { 2048 __ push(rcx); // reserve space for f2ieee() 2049 __ f2ieee(); // truncate to float size 2050 __ pop(rcx); // adjust rsp 2051 if (UseSSE == 1) { 2052 // The cvtsd2ss instruction is not available if UseSSE==1, therefore 2053 // the conversion is performed using the FPU in this case. 2054 __ push_f(); 2055 __ pop_f(xmm0); 2056 } 2057 } else { // UseSSE >= 2 2058 __ cvtsd2ss(xmm0, xmm0); 2059 } 2060 break; 2061 default : 2062 ShouldNotReachHere(); 2063 } 2064 #endif // _LP64 2065 } 2066 2067 void TemplateTable::lcmp() { 2068 transition(ltos, itos); 2069 #ifdef _LP64 2070 Label done; 2071 __ pop_l(rdx); 2072 __ cmpq(rdx, rax); 2073 __ movl(rax, -1); 2074 __ jccb(Assembler::less, done); 2075 __ setb(Assembler::notEqual, rax); 2076 __ movzbl(rax, rax); 2077 __ bind(done); 2078 #else 2079 2080 // y = rdx:rax 2081 __ pop_l(rbx, rcx); // get x = rcx:rbx 2082 __ lcmp2int(rcx, rbx, rdx, rax);// rcx := cmp(x, y) 2083 __ mov(rax, rcx); 2084 #endif 2085 } 2086 2087 void TemplateTable::float_cmp(bool is_float, int unordered_result) { 2088 if ((is_float && UseSSE >= 1) || 2089 (!is_float && UseSSE >= 2)) { 2090 Label done; 2091 if (is_float) { 2092 // XXX get rid of pop here, use ... reg, mem32 2093 __ pop_f(xmm1); 2094 __ ucomiss(xmm1, xmm0); 2095 } else { 2096 // XXX get rid of pop here, use ... reg, mem64 2097 __ pop_d(xmm1); 2098 __ ucomisd(xmm1, xmm0); 2099 } 2100 if (unordered_result < 0) { 2101 __ movl(rax, -1); 2102 __ jccb(Assembler::parity, done); 2103 __ jccb(Assembler::below, done); 2104 __ setb(Assembler::notEqual, rdx); 2105 __ movzbl(rax, rdx); 2106 } else { 2107 __ movl(rax, 1); 2108 __ jccb(Assembler::parity, done); 2109 __ jccb(Assembler::above, done); 2110 __ movl(rax, 0); 2111 __ jccb(Assembler::equal, done); 2112 __ decrementl(rax); 2113 } 2114 __ bind(done); 2115 } else { 2116 #ifdef _LP64 2117 ShouldNotReachHere(); 2118 #else // !_LP64 2119 if (is_float) { 2120 __ fld_s(at_rsp()); 2121 } else { 2122 __ fld_d(at_rsp()); 2123 __ pop(rdx); 2124 } 2125 __ pop(rcx); 2126 __ fcmp2int(rax, unordered_result < 0); 2127 #endif // _LP64 2128 } 2129 } 2130 2131 void TemplateTable::branch(bool is_jsr, bool is_wide) { 2132 __ get_method(rcx); // rcx holds method 2133 __ profile_taken_branch(rax, rbx); // rax holds updated MDP, rbx 2134 // holds bumped taken count 2135 2136 const ByteSize be_offset = MethodCounters::backedge_counter_offset() + 2137 InvocationCounter::counter_offset(); 2138 const ByteSize inv_offset = MethodCounters::invocation_counter_offset() + 2139 InvocationCounter::counter_offset(); 2140 2141 // Load up edx with the branch displacement 2142 if (is_wide) { 2143 __ movl(rdx, at_bcp(1)); 2144 } else { 2145 __ load_signed_short(rdx, at_bcp(1)); 2146 } 2147 __ bswapl(rdx); 2148 2149 if (!is_wide) { 2150 __ sarl(rdx, 16); 2151 } 2152 LP64_ONLY(__ movl2ptr(rdx, rdx)); 2153 2154 // Handle all the JSR stuff here, then exit. 2155 // It's much shorter and cleaner than intermingling with the non-JSR 2156 // normal-branch stuff occurring below. 2157 if (is_jsr) { 2158 // Pre-load the next target bytecode into rbx 2159 __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1, 0)); 2160 2161 // compute return address as bci in rax 2162 __ lea(rax, at_bcp((is_wide ? 5 : 3) - 2163 in_bytes(ConstMethod::codes_offset()))); 2164 __ subptr(rax, Address(rcx, Method::const_offset())); 2165 // Adjust the bcp in r13 by the displacement in rdx 2166 __ addptr(rbcp, rdx); 2167 // jsr returns atos that is not an oop 2168 __ push_i(rax); 2169 __ dispatch_only(vtos, true); 2170 return; 2171 } 2172 2173 // Normal (non-jsr) branch handling 2174 2175 // Adjust the bcp in r13 by the displacement in rdx 2176 __ addptr(rbcp, rdx); 2177 2178 assert(UseLoopCounter || !UseOnStackReplacement, 2179 "on-stack-replacement requires loop counters"); 2180 Label backedge_counter_overflow; 2181 Label dispatch; 2182 if (UseLoopCounter) { 2183 // increment backedge counter for backward branches 2184 // rax: MDO 2185 // rbx: MDO bumped taken-count 2186 // rcx: method 2187 // rdx: target offset 2188 // r13: target bcp 2189 // r14: locals pointer 2190 __ testl(rdx, rdx); // check if forward or backward branch 2191 __ jcc(Assembler::positive, dispatch); // count only if backward branch 2192 2193 // check if MethodCounters exists 2194 Label has_counters; 2195 __ movptr(rax, Address(rcx, Method::method_counters_offset())); 2196 __ testptr(rax, rax); 2197 __ jcc(Assembler::notZero, has_counters); 2198 __ push(rdx); 2199 __ push(rcx); 2200 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters), 2201 rcx); 2202 __ pop(rcx); 2203 __ pop(rdx); 2204 __ movptr(rax, Address(rcx, Method::method_counters_offset())); 2205 __ testptr(rax, rax); 2206 __ jcc(Assembler::zero, dispatch); 2207 __ bind(has_counters); 2208 2209 Label no_mdo; 2210 if (ProfileInterpreter) { 2211 // Are we profiling? 2212 __ movptr(rbx, Address(rcx, in_bytes(Method::method_data_offset()))); 2213 __ testptr(rbx, rbx); 2214 __ jccb(Assembler::zero, no_mdo); 2215 // Increment the MDO backedge counter 2216 const Address mdo_backedge_counter(rbx, in_bytes(MethodData::backedge_counter_offset()) + 2217 in_bytes(InvocationCounter::counter_offset())); 2218 const Address mask(rbx, in_bytes(MethodData::backedge_mask_offset())); 2219 __ increment_mask_and_jump(mdo_backedge_counter, mask, rax, 2220 UseOnStackReplacement ? &backedge_counter_overflow : nullptr); 2221 __ jmp(dispatch); 2222 } 2223 __ bind(no_mdo); 2224 // Increment backedge counter in MethodCounters* 2225 __ movptr(rcx, Address(rcx, Method::method_counters_offset())); 2226 const Address mask(rcx, in_bytes(MethodCounters::backedge_mask_offset())); 2227 __ increment_mask_and_jump(Address(rcx, be_offset), mask, rax, 2228 UseOnStackReplacement ? &backedge_counter_overflow : nullptr); 2229 __ bind(dispatch); 2230 } 2231 2232 // Pre-load the next target bytecode into rbx 2233 __ load_unsigned_byte(rbx, Address(rbcp, 0)); 2234 2235 // continue with the bytecode @ target 2236 // rax: return bci for jsr's, unused otherwise 2237 // rbx: target bytecode 2238 // r13: target bcp 2239 __ dispatch_only(vtos, true); 2240 2241 if (UseLoopCounter) { 2242 if (UseOnStackReplacement) { 2243 Label set_mdp; 2244 // invocation counter overflow 2245 __ bind(backedge_counter_overflow); 2246 __ negptr(rdx); 2247 __ addptr(rdx, rbcp); // branch bcp 2248 // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp) 2249 __ call_VM(noreg, 2250 CAST_FROM_FN_PTR(address, 2251 InterpreterRuntime::frequency_counter_overflow), 2252 rdx); 2253 2254 // rax: osr nmethod (osr ok) or null (osr not possible) 2255 // rdx: scratch 2256 // r14: locals pointer 2257 // r13: bcp 2258 __ testptr(rax, rax); // test result 2259 __ jcc(Assembler::zero, dispatch); // no osr if null 2260 // nmethod may have been invalidated (VM may block upon call_VM return) 2261 __ cmpb(Address(rax, nmethod::state_offset()), nmethod::in_use); 2262 __ jcc(Assembler::notEqual, dispatch); 2263 2264 // We have the address of an on stack replacement routine in rax. 2265 // In preparation of invoking it, first we must migrate the locals 2266 // and monitors from off the interpreter frame on the stack. 2267 // Ensure to save the osr nmethod over the migration call, 2268 // it will be preserved in rbx. 2269 __ mov(rbx, rax); 2270 2271 NOT_LP64(__ get_thread(rcx)); 2272 2273 call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin)); 2274 2275 // rax is OSR buffer, move it to expected parameter location 2276 LP64_ONLY(__ mov(j_rarg0, rax)); 2277 NOT_LP64(__ mov(rcx, rax)); 2278 // We use j_rarg definitions here so that registers don't conflict as parameter 2279 // registers change across platforms as we are in the midst of a calling 2280 // sequence to the OSR nmethod and we don't want collision. These are NOT parameters. 2281 2282 const Register retaddr = LP64_ONLY(j_rarg2) NOT_LP64(rdi); 2283 const Register sender_sp = LP64_ONLY(j_rarg1) NOT_LP64(rdx); 2284 2285 // pop the interpreter frame 2286 __ movptr(sender_sp, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp 2287 __ leave(); // remove frame anchor 2288 __ pop(retaddr); // get return address 2289 __ mov(rsp, sender_sp); // set sp to sender sp 2290 // Ensure compiled code always sees stack at proper alignment 2291 __ andptr(rsp, -(StackAlignmentInBytes)); 2292 2293 // unlike x86 we need no specialized return from compiled code 2294 // to the interpreter or the call stub. 2295 2296 // push the return address 2297 __ push(retaddr); 2298 2299 // and begin the OSR nmethod 2300 __ jmp(Address(rbx, nmethod::osr_entry_point_offset())); 2301 } 2302 } 2303 } 2304 2305 void TemplateTable::if_0cmp(Condition cc) { 2306 transition(itos, vtos); 2307 // assume branch is more often taken than not (loops use backward branches) 2308 Label not_taken; 2309 __ testl(rax, rax); 2310 __ jcc(j_not(cc), not_taken); 2311 branch(false, false); 2312 __ bind(not_taken); 2313 __ profile_not_taken_branch(rax); 2314 } 2315 2316 void TemplateTable::if_icmp(Condition cc) { 2317 transition(itos, vtos); 2318 // assume branch is more often taken than not (loops use backward branches) 2319 Label not_taken; 2320 __ pop_i(rdx); 2321 __ cmpl(rdx, rax); 2322 __ jcc(j_not(cc), not_taken); 2323 branch(false, false); 2324 __ bind(not_taken); 2325 __ profile_not_taken_branch(rax); 2326 } 2327 2328 void TemplateTable::if_nullcmp(Condition cc) { 2329 transition(atos, vtos); 2330 // assume branch is more often taken than not (loops use backward branches) 2331 Label not_taken; 2332 __ testptr(rax, rax); 2333 __ jcc(j_not(cc), not_taken); 2334 branch(false, false); 2335 __ bind(not_taken); 2336 __ profile_not_taken_branch(rax); 2337 } 2338 2339 void TemplateTable::if_acmp(Condition cc) { 2340 transition(atos, vtos); 2341 // assume branch is more often taken than not (loops use backward branches) 2342 Label not_taken; 2343 __ pop_ptr(rdx); 2344 __ cmpoop(rdx, rax); 2345 __ jcc(j_not(cc), not_taken); 2346 branch(false, false); 2347 __ bind(not_taken); 2348 __ profile_not_taken_branch(rax); 2349 } 2350 2351 void TemplateTable::ret() { 2352 transition(vtos, vtos); 2353 locals_index(rbx); 2354 LP64_ONLY(__ movslq(rbx, iaddress(rbx))); // get return bci, compute return bcp 2355 NOT_LP64(__ movptr(rbx, iaddress(rbx))); 2356 __ profile_ret(rbx, rcx); 2357 __ get_method(rax); 2358 __ movptr(rbcp, Address(rax, Method::const_offset())); 2359 __ lea(rbcp, Address(rbcp, rbx, Address::times_1, 2360 ConstMethod::codes_offset())); 2361 __ dispatch_next(vtos, 0, true); 2362 } 2363 2364 void TemplateTable::wide_ret() { 2365 transition(vtos, vtos); 2366 locals_index_wide(rbx); 2367 __ movptr(rbx, aaddress(rbx)); // get return bci, compute return bcp 2368 __ profile_ret(rbx, rcx); 2369 __ get_method(rax); 2370 __ movptr(rbcp, Address(rax, Method::const_offset())); 2371 __ lea(rbcp, Address(rbcp, rbx, Address::times_1, ConstMethod::codes_offset())); 2372 __ dispatch_next(vtos, 0, true); 2373 } 2374 2375 void TemplateTable::tableswitch() { 2376 Label default_case, continue_execution; 2377 transition(itos, vtos); 2378 2379 // align r13/rsi 2380 __ lea(rbx, at_bcp(BytesPerInt)); 2381 __ andptr(rbx, -BytesPerInt); 2382 // load lo & hi 2383 __ movl(rcx, Address(rbx, BytesPerInt)); 2384 __ movl(rdx, Address(rbx, 2 * BytesPerInt)); 2385 __ bswapl(rcx); 2386 __ bswapl(rdx); 2387 // check against lo & hi 2388 __ cmpl(rax, rcx); 2389 __ jcc(Assembler::less, default_case); 2390 __ cmpl(rax, rdx); 2391 __ jcc(Assembler::greater, default_case); 2392 // lookup dispatch offset 2393 __ subl(rax, rcx); 2394 __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt)); 2395 __ profile_switch_case(rax, rbx, rcx); 2396 // continue execution 2397 __ bind(continue_execution); 2398 __ bswapl(rdx); 2399 LP64_ONLY(__ movl2ptr(rdx, rdx)); 2400 __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1)); 2401 __ addptr(rbcp, rdx); 2402 __ dispatch_only(vtos, true); 2403 // handle default 2404 __ bind(default_case); 2405 __ profile_switch_default(rax); 2406 __ movl(rdx, Address(rbx, 0)); 2407 __ jmp(continue_execution); 2408 } 2409 2410 void TemplateTable::lookupswitch() { 2411 transition(itos, itos); 2412 __ stop("lookupswitch bytecode should have been rewritten"); 2413 } 2414 2415 void TemplateTable::fast_linearswitch() { 2416 transition(itos, vtos); 2417 Label loop_entry, loop, found, continue_execution; 2418 // bswap rax so we can avoid bswapping the table entries 2419 __ bswapl(rax); 2420 // align r13 2421 __ lea(rbx, at_bcp(BytesPerInt)); // btw: should be able to get rid of 2422 // this instruction (change offsets 2423 // below) 2424 __ andptr(rbx, -BytesPerInt); 2425 // set counter 2426 __ movl(rcx, Address(rbx, BytesPerInt)); 2427 __ bswapl(rcx); 2428 __ jmpb(loop_entry); 2429 // table search 2430 __ bind(loop); 2431 __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * BytesPerInt)); 2432 __ jcc(Assembler::equal, found); 2433 __ bind(loop_entry); 2434 __ decrementl(rcx); 2435 __ jcc(Assembler::greaterEqual, loop); 2436 // default case 2437 __ profile_switch_default(rax); 2438 __ movl(rdx, Address(rbx, 0)); 2439 __ jmp(continue_execution); 2440 // entry found -> get offset 2441 __ bind(found); 2442 __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * BytesPerInt)); 2443 __ profile_switch_case(rcx, rax, rbx); 2444 // continue execution 2445 __ bind(continue_execution); 2446 __ bswapl(rdx); 2447 __ movl2ptr(rdx, rdx); 2448 __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1)); 2449 __ addptr(rbcp, rdx); 2450 __ dispatch_only(vtos, true); 2451 } 2452 2453 void TemplateTable::fast_binaryswitch() { 2454 transition(itos, vtos); 2455 // Implementation using the following core algorithm: 2456 // 2457 // int binary_search(int key, LookupswitchPair* array, int n) { 2458 // // Binary search according to "Methodik des Programmierens" by 2459 // // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985. 2460 // int i = 0; 2461 // int j = n; 2462 // while (i+1 < j) { 2463 // // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q) 2464 // // with Q: for all i: 0 <= i < n: key < a[i] 2465 // // where a stands for the array and assuming that the (inexisting) 2466 // // element a[n] is infinitely big. 2467 // int h = (i + j) >> 1; 2468 // // i < h < j 2469 // if (key < array[h].fast_match()) { 2470 // j = h; 2471 // } else { 2472 // i = h; 2473 // } 2474 // } 2475 // // R: a[i] <= key < a[i+1] or Q 2476 // // (i.e., if key is within array, i is the correct index) 2477 // return i; 2478 // } 2479 2480 // Register allocation 2481 const Register key = rax; // already set (tosca) 2482 const Register array = rbx; 2483 const Register i = rcx; 2484 const Register j = rdx; 2485 const Register h = rdi; 2486 const Register temp = rsi; 2487 2488 // Find array start 2489 NOT_LP64(__ save_bcp()); 2490 2491 __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to 2492 // get rid of this 2493 // instruction (change 2494 // offsets below) 2495 __ andptr(array, -BytesPerInt); 2496 2497 // Initialize i & j 2498 __ xorl(i, i); // i = 0; 2499 __ movl(j, Address(array, -BytesPerInt)); // j = length(array); 2500 2501 // Convert j into native byteordering 2502 __ bswapl(j); 2503 2504 // And start 2505 Label entry; 2506 __ jmp(entry); 2507 2508 // binary search loop 2509 { 2510 Label loop; 2511 __ bind(loop); 2512 // int h = (i + j) >> 1; 2513 __ leal(h, Address(i, j, Address::times_1)); // h = i + j; 2514 __ sarl(h, 1); // h = (i + j) >> 1; 2515 // if (key < array[h].fast_match()) { 2516 // j = h; 2517 // } else { 2518 // i = h; 2519 // } 2520 // Convert array[h].match to native byte-ordering before compare 2521 __ movl(temp, Address(array, h, Address::times_8)); 2522 __ bswapl(temp); 2523 __ cmpl(key, temp); 2524 // j = h if (key < array[h].fast_match()) 2525 __ cmov32(Assembler::less, j, h); 2526 // i = h if (key >= array[h].fast_match()) 2527 __ cmov32(Assembler::greaterEqual, i, h); 2528 // while (i+1 < j) 2529 __ bind(entry); 2530 __ leal(h, Address(i, 1)); // i+1 2531 __ cmpl(h, j); // i+1 < j 2532 __ jcc(Assembler::less, loop); 2533 } 2534 2535 // end of binary search, result index is i (must check again!) 2536 Label default_case; 2537 // Convert array[i].match to native byte-ordering before compare 2538 __ movl(temp, Address(array, i, Address::times_8)); 2539 __ bswapl(temp); 2540 __ cmpl(key, temp); 2541 __ jcc(Assembler::notEqual, default_case); 2542 2543 // entry found -> j = offset 2544 __ movl(j , Address(array, i, Address::times_8, BytesPerInt)); 2545 __ profile_switch_case(i, key, array); 2546 __ bswapl(j); 2547 LP64_ONLY(__ movslq(j, j)); 2548 2549 NOT_LP64(__ restore_bcp()); 2550 NOT_LP64(__ restore_locals()); // restore rdi 2551 2552 __ load_unsigned_byte(rbx, Address(rbcp, j, Address::times_1)); 2553 __ addptr(rbcp, j); 2554 __ dispatch_only(vtos, true); 2555 2556 // default case -> j = default offset 2557 __ bind(default_case); 2558 __ profile_switch_default(i); 2559 __ movl(j, Address(array, -2 * BytesPerInt)); 2560 __ bswapl(j); 2561 LP64_ONLY(__ movslq(j, j)); 2562 2563 NOT_LP64(__ restore_bcp()); 2564 NOT_LP64(__ restore_locals()); 2565 2566 __ load_unsigned_byte(rbx, Address(rbcp, j, Address::times_1)); 2567 __ addptr(rbcp, j); 2568 __ dispatch_only(vtos, true); 2569 } 2570 2571 void TemplateTable::_return(TosState state) { 2572 transition(state, state); 2573 2574 assert(_desc->calls_vm(), 2575 "inconsistent calls_vm information"); // call in remove_activation 2576 2577 if (_desc->bytecode() == Bytecodes::_return_register_finalizer) { 2578 assert(state == vtos, "only valid state"); 2579 Register robj = LP64_ONLY(c_rarg1) NOT_LP64(rax); 2580 __ movptr(robj, aaddress(0)); 2581 __ load_klass(rdi, robj, rscratch1); 2582 __ movl(rdi, Address(rdi, Klass::access_flags_offset())); 2583 __ testl(rdi, JVM_ACC_HAS_FINALIZER); 2584 Label skip_register_finalizer; 2585 __ jcc(Assembler::zero, skip_register_finalizer); 2586 2587 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), robj); 2588 2589 __ bind(skip_register_finalizer); 2590 } 2591 2592 if (_desc->bytecode() != Bytecodes::_return_register_finalizer) { 2593 Label no_safepoint; 2594 NOT_PRODUCT(__ block_comment("Thread-local Safepoint poll")); 2595 #ifdef _LP64 2596 __ testb(Address(r15_thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit()); 2597 #else 2598 const Register thread = rdi; 2599 __ get_thread(thread); 2600 __ testb(Address(thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit()); 2601 #endif 2602 __ jcc(Assembler::zero, no_safepoint); 2603 __ push(state); 2604 __ push_cont_fastpath(); 2605 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 2606 InterpreterRuntime::at_safepoint)); 2607 __ pop_cont_fastpath(); 2608 __ pop(state); 2609 __ bind(no_safepoint); 2610 } 2611 2612 // Narrow result if state is itos but result type is smaller. 2613 // Need to narrow in the return bytecode rather than in generate_return_entry 2614 // since compiled code callers expect the result to already be narrowed. 2615 if (state == itos) { 2616 __ narrow(rax); 2617 } 2618 __ remove_activation(state, rbcp); 2619 2620 __ jmp(rbcp); 2621 } 2622 2623 // ---------------------------------------------------------------------------- 2624 // Volatile variables demand their effects be made known to all CPU's 2625 // in order. Store buffers on most chips allow reads & writes to 2626 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode 2627 // without some kind of memory barrier (i.e., it's not sufficient that 2628 // the interpreter does not reorder volatile references, the hardware 2629 // also must not reorder them). 2630 // 2631 // According to the new Java Memory Model (JMM): 2632 // (1) All volatiles are serialized wrt to each other. ALSO reads & 2633 // writes act as acquire & release, so: 2634 // (2) A read cannot let unrelated NON-volatile memory refs that 2635 // happen after the read float up to before the read. It's OK for 2636 // non-volatile memory refs that happen before the volatile read to 2637 // float down below it. 2638 // (3) Similar a volatile write cannot let unrelated NON-volatile 2639 // memory refs that happen BEFORE the write float down to after the 2640 // write. It's OK for non-volatile memory refs that happen after the 2641 // volatile write to float up before it. 2642 // 2643 // We only put in barriers around volatile refs (they are expensive), 2644 // not _between_ memory refs (that would require us to track the 2645 // flavor of the previous memory refs). Requirements (2) and (3) 2646 // require some barriers before volatile stores and after volatile 2647 // loads. These nearly cover requirement (1) but miss the 2648 // volatile-store-volatile-load case. This final case is placed after 2649 // volatile-stores although it could just as well go before 2650 // volatile-loads. 2651 2652 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint ) { 2653 // Helper function to insert a is-volatile test and memory barrier 2654 __ membar(order_constraint); 2655 } 2656 2657 void TemplateTable::resolve_cache_and_index_for_method(int byte_no, 2658 Register cache, 2659 Register index) { 2660 const Register temp = rbx; 2661 assert_different_registers(cache, index, temp); 2662 2663 Label L_clinit_barrier_slow; 2664 Label resolved; 2665 2666 Bytecodes::Code code = bytecode(); 2667 2668 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 2669 2670 __ load_method_entry(cache, index); 2671 switch(byte_no) { 2672 case f1_byte: 2673 __ load_unsigned_byte(temp, Address(cache, in_bytes(ResolvedMethodEntry::bytecode1_offset()))); 2674 break; 2675 case f2_byte: 2676 __ load_unsigned_byte(temp, Address(cache, in_bytes(ResolvedMethodEntry::bytecode2_offset()))); 2677 break; 2678 default: 2679 ShouldNotReachHere(); 2680 } 2681 __ cmpl(temp, code); // have we resolved this bytecode? 2682 __ jcc(Assembler::equal, resolved); 2683 2684 // resolve first time through 2685 // Class initialization barrier slow path lands here as well. 2686 __ bind(L_clinit_barrier_slow); 2687 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache); 2688 __ movl(temp, code); 2689 __ call_VM(noreg, entry, temp); 2690 // Update registers with resolved info 2691 __ load_method_entry(cache, index); 2692 2693 __ bind(resolved); 2694 2695 // Class initialization barrier for static methods 2696 if (VM_Version::supports_fast_class_init_checks() && bytecode() == Bytecodes::_invokestatic) { 2697 const Register method = temp; 2698 const Register klass = temp; 2699 const Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg); 2700 assert(thread != noreg, "x86_32 not supported"); 2701 2702 __ movptr(method, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2703 __ load_method_holder(klass, method); 2704 __ clinit_barrier(klass, thread, nullptr /*L_fast_path*/, &L_clinit_barrier_slow); 2705 } 2706 } 2707 2708 void TemplateTable::resolve_cache_and_index_for_field(int byte_no, 2709 Register cache, 2710 Register index) { 2711 const Register temp = rbx; 2712 assert_different_registers(cache, index, temp); 2713 2714 Label resolved; 2715 2716 Bytecodes::Code code = bytecode(); 2717 switch (code) { 2718 case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break; 2719 case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break; 2720 default: break; 2721 } 2722 2723 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 2724 __ load_field_entry(cache, index); 2725 if (byte_no == f1_byte) { 2726 __ load_unsigned_byte(temp, Address(cache, in_bytes(ResolvedFieldEntry::get_code_offset()))); 2727 } else { 2728 __ load_unsigned_byte(temp, Address(cache, in_bytes(ResolvedFieldEntry::put_code_offset()))); 2729 } 2730 __ cmpl(temp, code); // have we resolved this bytecode? 2731 __ jcc(Assembler::equal, resolved); 2732 2733 // resolve first time through 2734 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache); 2735 __ movl(temp, code); 2736 __ call_VM(noreg, entry, temp); 2737 // Update registers with resolved info 2738 __ load_field_entry(cache, index); 2739 2740 __ bind(resolved); 2741 } 2742 2743 void TemplateTable::load_resolved_field_entry(Register obj, 2744 Register cache, 2745 Register tos_state, 2746 Register offset, 2747 Register flags, 2748 bool is_static = false) { 2749 assert_different_registers(cache, tos_state, flags, offset); 2750 2751 // Field offset 2752 __ load_sized_value(offset, Address(cache, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/); 2753 2754 // Flags 2755 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedFieldEntry::flags_offset()))); 2756 2757 // TOS state 2758 __ load_unsigned_byte(tos_state, Address(cache, in_bytes(ResolvedFieldEntry::type_offset()))); 2759 2760 // Klass overwrite register 2761 if (is_static) { 2762 __ movptr(obj, Address(cache, ResolvedFieldEntry::field_holder_offset())); 2763 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 2764 __ movptr(obj, Address(obj, mirror_offset)); 2765 __ resolve_oop_handle(obj, rscratch2); 2766 } 2767 2768 } 2769 2770 void TemplateTable::load_invokedynamic_entry(Register method) { 2771 // setup registers 2772 const Register appendix = rax; 2773 const Register cache = rcx; 2774 const Register index = rdx; 2775 assert_different_registers(method, appendix, cache, index); 2776 2777 __ save_bcp(); 2778 2779 Label resolved; 2780 2781 __ load_resolved_indy_entry(cache, index); 2782 __ movptr(method, Address(cache, in_bytes(ResolvedIndyEntry::method_offset()))); 2783 2784 // Compare the method to zero 2785 __ testptr(method, method); 2786 __ jcc(Assembler::notZero, resolved); 2787 2788 Bytecodes::Code code = bytecode(); 2789 2790 // Call to the interpreter runtime to resolve invokedynamic 2791 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache); 2792 __ movl(method, code); // this is essentially Bytecodes::_invokedynamic 2793 __ call_VM(noreg, entry, method); 2794 // Update registers with resolved info 2795 __ load_resolved_indy_entry(cache, index); 2796 __ movptr(method, Address(cache, in_bytes(ResolvedIndyEntry::method_offset()))); 2797 2798 #ifdef ASSERT 2799 __ testptr(method, method); 2800 __ jcc(Assembler::notZero, resolved); 2801 __ stop("Should be resolved by now"); 2802 #endif // ASSERT 2803 __ bind(resolved); 2804 2805 Label L_no_push; 2806 // Check if there is an appendix 2807 __ load_unsigned_byte(index, Address(cache, in_bytes(ResolvedIndyEntry::flags_offset()))); 2808 __ testl(index, (1 << ResolvedIndyEntry::has_appendix_shift)); 2809 __ jcc(Assembler::zero, L_no_push); 2810 2811 // Get appendix 2812 __ load_unsigned_short(index, Address(cache, in_bytes(ResolvedIndyEntry::resolved_references_index_offset()))); 2813 // Push the appendix as a trailing parameter 2814 // since the parameter_size includes it. 2815 __ load_resolved_reference_at_index(appendix, index); 2816 __ verify_oop(appendix); 2817 __ push(appendix); // push appendix (MethodType, CallSite, etc.) 2818 __ bind(L_no_push); 2819 2820 // compute return type 2821 __ load_unsigned_byte(index, Address(cache, in_bytes(ResolvedIndyEntry::result_type_offset()))); 2822 // load return address 2823 { 2824 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code); 2825 ExternalAddress table(table_addr); 2826 #ifdef _LP64 2827 __ lea(rscratch1, table); 2828 __ movptr(index, Address(rscratch1, index, Address::times_ptr)); 2829 #else 2830 __ movptr(index, ArrayAddress(table, Address(noreg, index, Address::times_ptr))); 2831 #endif // _LP64 2832 } 2833 2834 // push return address 2835 __ push(index); 2836 } 2837 2838 void TemplateTable::load_resolved_method_entry_special_or_static(Register cache, 2839 Register method, 2840 Register flags) { 2841 // setup registers 2842 const Register index = rdx; 2843 assert_different_registers(cache, index); 2844 assert_different_registers(method, cache, flags); 2845 2846 // determine constant pool cache field offsets 2847 resolve_cache_and_index_for_method(f1_byte, cache, index); 2848 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset()))); 2849 __ movptr(method, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2850 } 2851 2852 void TemplateTable::load_resolved_method_entry_handle(Register cache, 2853 Register method, 2854 Register ref_index, 2855 Register flags) { 2856 // setup registers 2857 const Register index = rdx; 2858 assert_different_registers(cache, index); 2859 assert_different_registers(cache, method, ref_index, flags); 2860 2861 // determine constant pool cache field offsets 2862 resolve_cache_and_index_for_method(f1_byte, cache, index); 2863 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset()))); 2864 2865 // Maybe push appendix 2866 Label L_no_push; 2867 __ testl(flags, (1 << ResolvedMethodEntry::has_appendix_shift)); 2868 __ jcc(Assembler::zero, L_no_push); 2869 // invokehandle uses an index into the resolved references array 2870 __ load_unsigned_short(ref_index, Address(cache, in_bytes(ResolvedMethodEntry::resolved_references_index_offset()))); 2871 // Push the appendix as a trailing parameter. 2872 // This must be done before we get the receiver, 2873 // since the parameter_size includes it. 2874 Register appendix = method; 2875 __ load_resolved_reference_at_index(appendix, ref_index); 2876 __ push(appendix); // push appendix (MethodType, CallSite, etc.) 2877 __ bind(L_no_push); 2878 2879 __ movptr(method, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2880 } 2881 2882 void TemplateTable::load_resolved_method_entry_interface(Register cache, 2883 Register klass, 2884 Register method_or_table_index, 2885 Register flags) { 2886 // setup registers 2887 const Register index = rdx; 2888 assert_different_registers(cache, klass, method_or_table_index, flags); 2889 2890 // determine constant pool cache field offsets 2891 resolve_cache_and_index_for_method(f1_byte, cache, index); 2892 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset()))); 2893 2894 // Invokeinterface can behave in different ways: 2895 // If calling a method from java.lang.Object, the forced virtual flag is true so the invocation will 2896 // behave like an invokevirtual call. The state of the virtual final flag will determine whether a method or 2897 // vtable index is placed in the register. 2898 // Otherwise, the registers will be populated with the klass and method. 2899 2900 Label NotVirtual; Label NotVFinal; Label Done; 2901 __ testl(flags, 1 << ResolvedMethodEntry::is_forced_virtual_shift); 2902 __ jcc(Assembler::zero, NotVirtual); 2903 __ testl(flags, (1 << ResolvedMethodEntry::is_vfinal_shift)); 2904 __ jcc(Assembler::zero, NotVFinal); 2905 __ movptr(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2906 __ jmp(Done); 2907 2908 __ bind(NotVFinal); 2909 __ load_unsigned_short(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::table_index_offset()))); 2910 __ jmp(Done); 2911 2912 __ bind(NotVirtual); 2913 __ movptr(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2914 __ movptr(klass, Address(cache, in_bytes(ResolvedMethodEntry::klass_offset()))); 2915 __ bind(Done); 2916 } 2917 2918 void TemplateTable::load_resolved_method_entry_virtual(Register cache, 2919 Register method_or_table_index, 2920 Register flags) { 2921 // setup registers 2922 const Register index = rdx; 2923 assert_different_registers(index, cache); 2924 assert_different_registers(method_or_table_index, cache, flags); 2925 2926 // determine constant pool cache field offsets 2927 resolve_cache_and_index_for_method(f2_byte, cache, index); 2928 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset()))); 2929 2930 // method_or_table_index can either be an itable index or a method depending on the virtual final flag 2931 Label isVFinal; Label Done; 2932 __ testl(flags, (1 << ResolvedMethodEntry::is_vfinal_shift)); 2933 __ jcc(Assembler::notZero, isVFinal); 2934 __ load_unsigned_short(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::table_index_offset()))); 2935 __ jmp(Done); 2936 __ bind(isVFinal); 2937 __ movptr(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2938 __ bind(Done); 2939 } 2940 2941 // The registers cache and index expected to be set before call. 2942 // Correct values of the cache and index registers are preserved. 2943 void TemplateTable::jvmti_post_field_access(Register cache, 2944 Register index, 2945 bool is_static, 2946 bool has_tos) { 2947 if (JvmtiExport::can_post_field_access()) { 2948 // Check to see if a field access watch has been set before we take 2949 // the time to call into the VM. 2950 Label L1; 2951 assert_different_registers(cache, index, rax); 2952 __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); 2953 __ testl(rax,rax); 2954 __ jcc(Assembler::zero, L1); 2955 2956 // cache entry pointer 2957 __ load_field_entry(cache, index); 2958 if (is_static) { 2959 __ xorptr(rax, rax); // null object reference 2960 } else { 2961 __ pop(atos); // Get the object 2962 __ verify_oop(rax); 2963 __ push(atos); // Restore stack state 2964 } 2965 // rax,: object pointer or null 2966 // cache: cache entry pointer 2967 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), 2968 rax, cache); 2969 2970 __ load_field_entry(cache, index); 2971 __ bind(L1); 2972 } 2973 } 2974 2975 void TemplateTable::pop_and_check_object(Register r) { 2976 __ pop_ptr(r); 2977 __ null_check(r); // for field access must check obj. 2978 __ verify_oop(r); 2979 } 2980 2981 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc) { 2982 transition(vtos, vtos); 2983 2984 const Register obj = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 2985 const Register cache = rcx; 2986 const Register index = rdx; 2987 const Register off = rbx; 2988 const Register tos_state = rax; 2989 const Register flags = rdx; 2990 const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // uses same reg as obj, so don't mix them 2991 2992 resolve_cache_and_index_for_field(byte_no, cache, index); 2993 jvmti_post_field_access(cache, index, is_static, false); 2994 load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static); 2995 2996 if (!is_static) pop_and_check_object(obj); 2997 2998 const Address field(obj, off, Address::times_1, 0*wordSize); 2999 3000 Label Done, notByte, notBool, notInt, notShort, notChar, notLong, notFloat, notObj; 3001 3002 // Make sure we don't need to mask edx after the above shift 3003 assert(btos == 0, "change code, btos != 0"); 3004 __ testl(tos_state, tos_state); 3005 __ jcc(Assembler::notZero, notByte); 3006 3007 // btos 3008 __ access_load_at(T_BYTE, IN_HEAP, rax, field, noreg, noreg); 3009 __ push(btos); 3010 // Rewrite bytecode to be faster 3011 if (!is_static && rc == may_rewrite) { 3012 patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx); 3013 } 3014 __ jmp(Done); 3015 3016 __ bind(notByte); 3017 __ cmpl(tos_state, ztos); 3018 __ jcc(Assembler::notEqual, notBool); 3019 3020 // ztos (same code as btos) 3021 __ access_load_at(T_BOOLEAN, IN_HEAP, rax, field, noreg, noreg); 3022 __ push(ztos); 3023 // Rewrite bytecode to be faster 3024 if (!is_static && rc == may_rewrite) { 3025 // use btos rewriting, no truncating to t/f bit is needed for getfield. 3026 patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx); 3027 } 3028 __ jmp(Done); 3029 3030 __ bind(notBool); 3031 __ cmpl(tos_state, atos); 3032 __ jcc(Assembler::notEqual, notObj); 3033 // atos 3034 do_oop_load(_masm, field, rax); 3035 __ push(atos); 3036 if (!is_static && rc == may_rewrite) { 3037 patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx); 3038 } 3039 __ jmp(Done); 3040 3041 __ bind(notObj); 3042 __ cmpl(tos_state, itos); 3043 __ jcc(Assembler::notEqual, notInt); 3044 // itos 3045 __ access_load_at(T_INT, IN_HEAP, rax, field, noreg, noreg); 3046 __ push(itos); 3047 // Rewrite bytecode to be faster 3048 if (!is_static && rc == may_rewrite) { 3049 patch_bytecode(Bytecodes::_fast_igetfield, bc, rbx); 3050 } 3051 __ jmp(Done); 3052 3053 __ bind(notInt); 3054 __ cmpl(tos_state, ctos); 3055 __ jcc(Assembler::notEqual, notChar); 3056 // ctos 3057 __ access_load_at(T_CHAR, IN_HEAP, rax, field, noreg, noreg); 3058 __ push(ctos); 3059 // Rewrite bytecode to be faster 3060 if (!is_static && rc == may_rewrite) { 3061 patch_bytecode(Bytecodes::_fast_cgetfield, bc, rbx); 3062 } 3063 __ jmp(Done); 3064 3065 __ bind(notChar); 3066 __ cmpl(tos_state, stos); 3067 __ jcc(Assembler::notEqual, notShort); 3068 // stos 3069 __ access_load_at(T_SHORT, IN_HEAP, rax, field, noreg, noreg); 3070 __ push(stos); 3071 // Rewrite bytecode to be faster 3072 if (!is_static && rc == may_rewrite) { 3073 patch_bytecode(Bytecodes::_fast_sgetfield, bc, rbx); 3074 } 3075 __ jmp(Done); 3076 3077 __ bind(notShort); 3078 __ cmpl(tos_state, ltos); 3079 __ jcc(Assembler::notEqual, notLong); 3080 // ltos 3081 // Generate code as if volatile (x86_32). There just aren't enough registers to 3082 // save that information and this code is faster than the test. 3083 __ access_load_at(T_LONG, IN_HEAP | MO_RELAXED, noreg /* ltos */, field, noreg, noreg); 3084 __ push(ltos); 3085 // Rewrite bytecode to be faster 3086 LP64_ONLY(if (!is_static && rc == may_rewrite) patch_bytecode(Bytecodes::_fast_lgetfield, bc, rbx)); 3087 __ jmp(Done); 3088 3089 __ bind(notLong); 3090 __ cmpl(tos_state, ftos); 3091 __ jcc(Assembler::notEqual, notFloat); 3092 // ftos 3093 3094 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg); 3095 __ push(ftos); 3096 // Rewrite bytecode to be faster 3097 if (!is_static && rc == may_rewrite) { 3098 patch_bytecode(Bytecodes::_fast_fgetfield, bc, rbx); 3099 } 3100 __ jmp(Done); 3101 3102 __ bind(notFloat); 3103 #ifdef ASSERT 3104 Label notDouble; 3105 __ cmpl(tos_state, dtos); 3106 __ jcc(Assembler::notEqual, notDouble); 3107 #endif 3108 // dtos 3109 // MO_RELAXED: for the case of volatile field, in fact it adds no extra work for the underlying implementation 3110 __ access_load_at(T_DOUBLE, IN_HEAP | MO_RELAXED, noreg /* dtos */, field, noreg, noreg); 3111 __ push(dtos); 3112 // Rewrite bytecode to be faster 3113 if (!is_static && rc == may_rewrite) { 3114 patch_bytecode(Bytecodes::_fast_dgetfield, bc, rbx); 3115 } 3116 #ifdef ASSERT 3117 __ jmp(Done); 3118 3119 __ bind(notDouble); 3120 __ stop("Bad state"); 3121 #endif 3122 3123 __ bind(Done); 3124 // [jk] not needed currently 3125 // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadLoad | 3126 // Assembler::LoadStore)); 3127 } 3128 3129 void TemplateTable::getfield(int byte_no) { 3130 getfield_or_static(byte_no, false); 3131 } 3132 3133 void TemplateTable::nofast_getfield(int byte_no) { 3134 getfield_or_static(byte_no, false, may_not_rewrite); 3135 } 3136 3137 void TemplateTable::getstatic(int byte_no) { 3138 getfield_or_static(byte_no, true); 3139 } 3140 3141 3142 // The registers cache and index expected to be set before call. 3143 // The function may destroy various registers, just not the cache and index registers. 3144 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) { 3145 // Cache is rcx and index is rdx 3146 const Register entry = LP64_ONLY(c_rarg2) NOT_LP64(rax); // ResolvedFieldEntry 3147 const Register obj = LP64_ONLY(c_rarg1) NOT_LP64(rbx); // Object pointer 3148 const Register value = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // JValue object 3149 3150 if (JvmtiExport::can_post_field_modification()) { 3151 // Check to see if a field modification watch has been set before 3152 // we take the time to call into the VM. 3153 Label L1; 3154 assert_different_registers(cache, obj, rax); 3155 __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); 3156 __ testl(rax, rax); 3157 __ jcc(Assembler::zero, L1); 3158 3159 __ mov(entry, cache); 3160 3161 if (is_static) { 3162 // Life is simple. Null out the object pointer. 3163 __ xorl(obj, obj); 3164 3165 } else { 3166 // Life is harder. The stack holds the value on top, followed by 3167 // the object. We don't know the size of the value, though; it 3168 // could be one or two words depending on its type. As a result, 3169 // we must find the type to determine where the object is. 3170 #ifndef _LP64 3171 Label two_word, valsize_known; 3172 #endif 3173 __ load_unsigned_byte(value, Address(entry, in_bytes(ResolvedFieldEntry::type_offset()))); 3174 #ifdef _LP64 3175 __ movptr(obj, at_tos_p1()); // initially assume a one word jvalue 3176 __ cmpl(value, ltos); 3177 __ cmovptr(Assembler::equal, 3178 obj, at_tos_p2()); // ltos (two word jvalue) 3179 __ cmpl(value, dtos); 3180 __ cmovptr(Assembler::equal, 3181 obj, at_tos_p2()); // dtos (two word jvalue) 3182 #else 3183 __ mov(obj, rsp); 3184 __ cmpl(value, ltos); 3185 __ jccb(Assembler::equal, two_word); 3186 __ cmpl(value, dtos); 3187 __ jccb(Assembler::equal, two_word); 3188 __ addptr(obj, Interpreter::expr_offset_in_bytes(1)); // one word jvalue (not ltos, dtos) 3189 __ jmpb(valsize_known); 3190 3191 __ bind(two_word); 3192 __ addptr(obj, Interpreter::expr_offset_in_bytes(2)); // two words jvalue 3193 3194 __ bind(valsize_known); 3195 // setup object pointer 3196 __ movptr(obj, Address(obj, 0)); 3197 #endif 3198 } 3199 3200 // object (tos) 3201 __ mov(value, rsp); 3202 // obj: object pointer set up above (null if static) 3203 // cache: field entry pointer 3204 // value: jvalue object on the stack 3205 __ call_VM(noreg, 3206 CAST_FROM_FN_PTR(address, 3207 InterpreterRuntime::post_field_modification), 3208 obj, entry, value); 3209 // Reload field entry 3210 __ load_field_entry(cache, index); 3211 __ bind(L1); 3212 } 3213 } 3214 3215 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) { 3216 transition(vtos, vtos); 3217 3218 const Register obj = rcx; 3219 const Register cache = rcx; 3220 const Register index = rdx; 3221 const Register tos_state = rdx; 3222 const Register off = rbx; 3223 const Register flags = rax; 3224 3225 resolve_cache_and_index_for_field(byte_no, cache, index); 3226 jvmti_post_field_mod(cache, index, is_static); 3227 load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static); 3228 3229 // [jk] not needed currently 3230 // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore | 3231 // Assembler::StoreStore)); 3232 3233 Label notVolatile, Done; 3234 3235 // Check for volatile store 3236 __ andl(flags, (1 << ResolvedFieldEntry::is_volatile_shift)); 3237 __ testl(flags, flags); 3238 __ jcc(Assembler::zero, notVolatile); 3239 3240 putfield_or_static_helper(byte_no, is_static, rc, obj, off, tos_state); 3241 volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad | 3242 Assembler::StoreStore)); 3243 __ jmp(Done); 3244 __ bind(notVolatile); 3245 3246 putfield_or_static_helper(byte_no, is_static, rc, obj, off, tos_state); 3247 3248 __ bind(Done); 3249 } 3250 3251 void TemplateTable::putfield_or_static_helper(int byte_no, bool is_static, RewriteControl rc, 3252 Register obj, Register off, Register tos_state) { 3253 3254 // field addresses 3255 const Address field(obj, off, Address::times_1, 0*wordSize); 3256 NOT_LP64( const Address hi(obj, off, Address::times_1, 1*wordSize);) 3257 3258 Label notByte, notBool, notInt, notShort, notChar, 3259 notLong, notFloat, notObj; 3260 Label Done; 3261 3262 const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 3263 3264 // Test TOS state 3265 __ testl(tos_state, tos_state); 3266 __ jcc(Assembler::notZero, notByte); 3267 3268 // btos 3269 { 3270 __ pop(btos); 3271 if (!is_static) pop_and_check_object(obj); 3272 __ access_store_at(T_BYTE, IN_HEAP, field, rax, noreg, noreg, noreg); 3273 if (!is_static && rc == may_rewrite) { 3274 patch_bytecode(Bytecodes::_fast_bputfield, bc, rbx, true, byte_no); 3275 } 3276 __ jmp(Done); 3277 } 3278 3279 __ bind(notByte); 3280 __ cmpl(tos_state, ztos); 3281 __ jcc(Assembler::notEqual, notBool); 3282 3283 // ztos 3284 { 3285 __ pop(ztos); 3286 if (!is_static) pop_and_check_object(obj); 3287 __ access_store_at(T_BOOLEAN, IN_HEAP, field, rax, noreg, noreg, noreg); 3288 if (!is_static && rc == may_rewrite) { 3289 patch_bytecode(Bytecodes::_fast_zputfield, bc, rbx, true, byte_no); 3290 } 3291 __ jmp(Done); 3292 } 3293 3294 __ bind(notBool); 3295 __ cmpl(tos_state, atos); 3296 __ jcc(Assembler::notEqual, notObj); 3297 3298 // atos 3299 { 3300 __ pop(atos); 3301 if (!is_static) pop_and_check_object(obj); 3302 // Store into the field 3303 do_oop_store(_masm, field, rax); 3304 if (!is_static && rc == may_rewrite) { 3305 patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx, true, byte_no); 3306 } 3307 __ jmp(Done); 3308 } 3309 3310 __ bind(notObj); 3311 __ cmpl(tos_state, itos); 3312 __ jcc(Assembler::notEqual, notInt); 3313 3314 // itos 3315 { 3316 __ pop(itos); 3317 if (!is_static) pop_and_check_object(obj); 3318 __ access_store_at(T_INT, IN_HEAP, field, rax, noreg, noreg, noreg); 3319 if (!is_static && rc == may_rewrite) { 3320 patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx, true, byte_no); 3321 } 3322 __ jmp(Done); 3323 } 3324 3325 __ bind(notInt); 3326 __ cmpl(tos_state, ctos); 3327 __ jcc(Assembler::notEqual, notChar); 3328 3329 // ctos 3330 { 3331 __ pop(ctos); 3332 if (!is_static) pop_and_check_object(obj); 3333 __ access_store_at(T_CHAR, IN_HEAP, field, rax, noreg, noreg, noreg); 3334 if (!is_static && rc == may_rewrite) { 3335 patch_bytecode(Bytecodes::_fast_cputfield, bc, rbx, true, byte_no); 3336 } 3337 __ jmp(Done); 3338 } 3339 3340 __ bind(notChar); 3341 __ cmpl(tos_state, stos); 3342 __ jcc(Assembler::notEqual, notShort); 3343 3344 // stos 3345 { 3346 __ pop(stos); 3347 if (!is_static) pop_and_check_object(obj); 3348 __ access_store_at(T_SHORT, IN_HEAP, field, rax, noreg, noreg, noreg); 3349 if (!is_static && rc == may_rewrite) { 3350 patch_bytecode(Bytecodes::_fast_sputfield, bc, rbx, true, byte_no); 3351 } 3352 __ jmp(Done); 3353 } 3354 3355 __ bind(notShort); 3356 __ cmpl(tos_state, ltos); 3357 __ jcc(Assembler::notEqual, notLong); 3358 3359 // ltos 3360 { 3361 __ pop(ltos); 3362 if (!is_static) pop_and_check_object(obj); 3363 // MO_RELAXED: generate atomic store for the case of volatile field (important for x86_32) 3364 __ access_store_at(T_LONG, IN_HEAP | MO_RELAXED, field, noreg /* ltos*/, noreg, noreg, noreg); 3365 #ifdef _LP64 3366 if (!is_static && rc == may_rewrite) { 3367 patch_bytecode(Bytecodes::_fast_lputfield, bc, rbx, true, byte_no); 3368 } 3369 #endif // _LP64 3370 __ jmp(Done); 3371 } 3372 3373 __ bind(notLong); 3374 __ cmpl(tos_state, ftos); 3375 __ jcc(Assembler::notEqual, notFloat); 3376 3377 // ftos 3378 { 3379 __ pop(ftos); 3380 if (!is_static) pop_and_check_object(obj); 3381 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos */, noreg, noreg, noreg); 3382 if (!is_static && rc == may_rewrite) { 3383 patch_bytecode(Bytecodes::_fast_fputfield, bc, rbx, true, byte_no); 3384 } 3385 __ jmp(Done); 3386 } 3387 3388 __ bind(notFloat); 3389 #ifdef ASSERT 3390 Label notDouble; 3391 __ cmpl(tos_state, dtos); 3392 __ jcc(Assembler::notEqual, notDouble); 3393 #endif 3394 3395 // dtos 3396 { 3397 __ pop(dtos); 3398 if (!is_static) pop_and_check_object(obj); 3399 // MO_RELAXED: for the case of volatile field, in fact it adds no extra work for the underlying implementation 3400 __ access_store_at(T_DOUBLE, IN_HEAP | MO_RELAXED, field, noreg /* dtos */, noreg, noreg, noreg); 3401 if (!is_static && rc == may_rewrite) { 3402 patch_bytecode(Bytecodes::_fast_dputfield, bc, rbx, true, byte_no); 3403 } 3404 } 3405 3406 #ifdef ASSERT 3407 __ jmp(Done); 3408 3409 __ bind(notDouble); 3410 __ stop("Bad state"); 3411 #endif 3412 3413 __ bind(Done); 3414 } 3415 3416 void TemplateTable::putfield(int byte_no) { 3417 putfield_or_static(byte_no, false); 3418 } 3419 3420 void TemplateTable::nofast_putfield(int byte_no) { 3421 putfield_or_static(byte_no, false, may_not_rewrite); 3422 } 3423 3424 void TemplateTable::putstatic(int byte_no) { 3425 putfield_or_static(byte_no, true); 3426 } 3427 3428 void TemplateTable::jvmti_post_fast_field_mod() { 3429 3430 const Register scratch = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 3431 3432 if (JvmtiExport::can_post_field_modification()) { 3433 // Check to see if a field modification watch has been set before 3434 // we take the time to call into the VM. 3435 Label L2; 3436 __ mov32(scratch, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); 3437 __ testl(scratch, scratch); 3438 __ jcc(Assembler::zero, L2); 3439 __ pop_ptr(rbx); // copy the object pointer from tos 3440 __ verify_oop(rbx); 3441 __ push_ptr(rbx); // put the object pointer back on tos 3442 // Save tos values before call_VM() clobbers them. Since we have 3443 // to do it for every data type, we use the saved values as the 3444 // jvalue object. 3445 switch (bytecode()) { // load values into the jvalue object 3446 case Bytecodes::_fast_aputfield: __ push_ptr(rax); break; 3447 case Bytecodes::_fast_bputfield: // fall through 3448 case Bytecodes::_fast_zputfield: // fall through 3449 case Bytecodes::_fast_sputfield: // fall through 3450 case Bytecodes::_fast_cputfield: // fall through 3451 case Bytecodes::_fast_iputfield: __ push_i(rax); break; 3452 case Bytecodes::_fast_dputfield: __ push(dtos); break; 3453 case Bytecodes::_fast_fputfield: __ push(ftos); break; 3454 case Bytecodes::_fast_lputfield: __ push_l(rax); break; 3455 3456 default: 3457 ShouldNotReachHere(); 3458 } 3459 __ mov(scratch, rsp); // points to jvalue on the stack 3460 // access constant pool cache entry 3461 LP64_ONLY(__ load_field_entry(c_rarg2, rax)); 3462 NOT_LP64(__ load_field_entry(rax, rdx)); 3463 __ verify_oop(rbx); 3464 // rbx: object pointer copied above 3465 // c_rarg2: cache entry pointer 3466 // c_rarg3: jvalue object on the stack 3467 LP64_ONLY(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, c_rarg2, c_rarg3)); 3468 NOT_LP64(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, rax, rcx)); 3469 3470 switch (bytecode()) { // restore tos values 3471 case Bytecodes::_fast_aputfield: __ pop_ptr(rax); break; 3472 case Bytecodes::_fast_bputfield: // fall through 3473 case Bytecodes::_fast_zputfield: // fall through 3474 case Bytecodes::_fast_sputfield: // fall through 3475 case Bytecodes::_fast_cputfield: // fall through 3476 case Bytecodes::_fast_iputfield: __ pop_i(rax); break; 3477 case Bytecodes::_fast_dputfield: __ pop(dtos); break; 3478 case Bytecodes::_fast_fputfield: __ pop(ftos); break; 3479 case Bytecodes::_fast_lputfield: __ pop_l(rax); break; 3480 default: break; 3481 } 3482 __ bind(L2); 3483 } 3484 } 3485 3486 void TemplateTable::fast_storefield(TosState state) { 3487 transition(state, vtos); 3488 3489 Register cache = rcx; 3490 3491 Label notVolatile, Done; 3492 3493 jvmti_post_fast_field_mod(); 3494 3495 __ push(rax); 3496 __ load_field_entry(rcx, rax); 3497 load_resolved_field_entry(noreg, cache, rax, rbx, rdx); 3498 // RBX: field offset, RAX: TOS, RDX: flags 3499 __ andl(rdx, (1 << ResolvedFieldEntry::is_volatile_shift)); 3500 __ pop(rax); 3501 3502 // Get object from stack 3503 pop_and_check_object(rcx); 3504 3505 // field address 3506 const Address field(rcx, rbx, Address::times_1); 3507 3508 // Check for volatile store 3509 __ testl(rdx, rdx); 3510 __ jcc(Assembler::zero, notVolatile); 3511 3512 fast_storefield_helper(field, rax); 3513 volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad | 3514 Assembler::StoreStore)); 3515 __ jmp(Done); 3516 __ bind(notVolatile); 3517 3518 fast_storefield_helper(field, rax); 3519 3520 __ bind(Done); 3521 } 3522 3523 void TemplateTable::fast_storefield_helper(Address field, Register rax) { 3524 3525 // access field 3526 switch (bytecode()) { 3527 case Bytecodes::_fast_aputfield: 3528 do_oop_store(_masm, field, rax); 3529 break; 3530 case Bytecodes::_fast_lputfield: 3531 #ifdef _LP64 3532 __ access_store_at(T_LONG, IN_HEAP, field, noreg /* ltos */, noreg, noreg, noreg); 3533 #else 3534 __ stop("should not be rewritten"); 3535 #endif 3536 break; 3537 case Bytecodes::_fast_iputfield: 3538 __ access_store_at(T_INT, IN_HEAP, field, rax, noreg, noreg, noreg); 3539 break; 3540 case Bytecodes::_fast_zputfield: 3541 __ access_store_at(T_BOOLEAN, IN_HEAP, field, rax, noreg, noreg, noreg); 3542 break; 3543 case Bytecodes::_fast_bputfield: 3544 __ access_store_at(T_BYTE, IN_HEAP, field, rax, noreg, noreg, noreg); 3545 break; 3546 case Bytecodes::_fast_sputfield: 3547 __ access_store_at(T_SHORT, IN_HEAP, field, rax, noreg, noreg, noreg); 3548 break; 3549 case Bytecodes::_fast_cputfield: 3550 __ access_store_at(T_CHAR, IN_HEAP, field, rax, noreg, noreg, noreg); 3551 break; 3552 case Bytecodes::_fast_fputfield: 3553 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos*/, noreg, noreg, noreg); 3554 break; 3555 case Bytecodes::_fast_dputfield: 3556 __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos*/, noreg, noreg, noreg); 3557 break; 3558 default: 3559 ShouldNotReachHere(); 3560 } 3561 } 3562 3563 void TemplateTable::fast_accessfield(TosState state) { 3564 transition(atos, state); 3565 3566 // Do the JVMTI work here to avoid disturbing the register state below 3567 if (JvmtiExport::can_post_field_access()) { 3568 // Check to see if a field access watch has been set before we 3569 // take the time to call into the VM. 3570 Label L1; 3571 __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); 3572 __ testl(rcx, rcx); 3573 __ jcc(Assembler::zero, L1); 3574 // access constant pool cache entry 3575 LP64_ONLY(__ load_field_entry(c_rarg2, rcx)); 3576 NOT_LP64(__ load_field_entry(rcx, rdx)); 3577 __ verify_oop(rax); 3578 __ push_ptr(rax); // save object pointer before call_VM() clobbers it 3579 LP64_ONLY(__ mov(c_rarg1, rax)); 3580 // c_rarg1: object pointer copied above 3581 // c_rarg2: cache entry pointer 3582 LP64_ONLY(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), c_rarg1, c_rarg2)); 3583 NOT_LP64(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), rax, rcx)); 3584 __ pop_ptr(rax); // restore object pointer 3585 __ bind(L1); 3586 } 3587 3588 // access constant pool cache 3589 __ load_field_entry(rcx, rbx); 3590 __ load_sized_value(rbx, Address(rcx, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/); 3591 3592 // rax: object 3593 __ verify_oop(rax); 3594 __ null_check(rax); 3595 Address field(rax, rbx, Address::times_1); 3596 3597 // access field 3598 switch (bytecode()) { 3599 case Bytecodes::_fast_agetfield: 3600 do_oop_load(_masm, field, rax); 3601 __ verify_oop(rax); 3602 break; 3603 case Bytecodes::_fast_lgetfield: 3604 #ifdef _LP64 3605 __ access_load_at(T_LONG, IN_HEAP, noreg /* ltos */, field, noreg, noreg); 3606 #else 3607 __ stop("should not be rewritten"); 3608 #endif 3609 break; 3610 case Bytecodes::_fast_igetfield: 3611 __ access_load_at(T_INT, IN_HEAP, rax, field, noreg, noreg); 3612 break; 3613 case Bytecodes::_fast_bgetfield: 3614 __ access_load_at(T_BYTE, IN_HEAP, rax, field, noreg, noreg); 3615 break; 3616 case Bytecodes::_fast_sgetfield: 3617 __ access_load_at(T_SHORT, IN_HEAP, rax, field, noreg, noreg); 3618 break; 3619 case Bytecodes::_fast_cgetfield: 3620 __ access_load_at(T_CHAR, IN_HEAP, rax, field, noreg, noreg); 3621 break; 3622 case Bytecodes::_fast_fgetfield: 3623 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg); 3624 break; 3625 case Bytecodes::_fast_dgetfield: 3626 __ access_load_at(T_DOUBLE, IN_HEAP, noreg /* dtos */, field, noreg, noreg); 3627 break; 3628 default: 3629 ShouldNotReachHere(); 3630 } 3631 // [jk] not needed currently 3632 // Label notVolatile; 3633 // __ testl(rdx, rdx); 3634 // __ jcc(Assembler::zero, notVolatile); 3635 // __ membar(Assembler::LoadLoad); 3636 // __ bind(notVolatile); 3637 } 3638 3639 void TemplateTable::fast_xaccess(TosState state) { 3640 transition(vtos, state); 3641 3642 // get receiver 3643 __ movptr(rax, aaddress(0)); 3644 // access constant pool cache 3645 __ load_field_entry(rcx, rdx, 2); 3646 __ load_sized_value(rbx, Address(rcx, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/); 3647 3648 // make sure exception is reported in correct bcp range (getfield is 3649 // next instruction) 3650 __ increment(rbcp); 3651 __ null_check(rax); 3652 const Address field = Address(rax, rbx, Address::times_1, 0*wordSize); 3653 switch (state) { 3654 case itos: 3655 __ access_load_at(T_INT, IN_HEAP, rax, field, noreg, noreg); 3656 break; 3657 case atos: 3658 do_oop_load(_masm, field, rax); 3659 __ verify_oop(rax); 3660 break; 3661 case ftos: 3662 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg); 3663 break; 3664 default: 3665 ShouldNotReachHere(); 3666 } 3667 3668 // [jk] not needed currently 3669 // Label notVolatile; 3670 // __ movl(rdx, Address(rcx, rdx, Address::times_8, 3671 // in_bytes(ConstantPoolCache::base_offset() + 3672 // ConstantPoolCacheEntry::flags_offset()))); 3673 // __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift); 3674 // __ testl(rdx, 0x1); 3675 // __ jcc(Assembler::zero, notVolatile); 3676 // __ membar(Assembler::LoadLoad); 3677 // __ bind(notVolatile); 3678 3679 __ decrement(rbcp); 3680 } 3681 3682 //----------------------------------------------------------------------------- 3683 // Calls 3684 3685 void TemplateTable::prepare_invoke(Register cache, Register recv, Register flags) { 3686 // determine flags 3687 const Bytecodes::Code code = bytecode(); 3688 const bool load_receiver = (code != Bytecodes::_invokestatic) && (code != Bytecodes::_invokedynamic); 3689 assert_different_registers(recv, flags); 3690 3691 // save 'interpreter return address' 3692 __ save_bcp(); 3693 3694 // Save flags and load TOS 3695 __ movl(rbcp, flags); 3696 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::type_offset()))); 3697 3698 // load receiver if needed (after appendix is pushed so parameter size is correct) 3699 // Note: no return address pushed yet 3700 if (load_receiver) { 3701 __ load_unsigned_short(recv, Address(cache, in_bytes(ResolvedMethodEntry::num_parameters_offset()))); 3702 const int no_return_pc_pushed_yet = -1; // argument slot correction before we push return address 3703 const int receiver_is_at_end = -1; // back off one slot to get receiver 3704 Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end); 3705 __ movptr(recv, recv_addr); 3706 __ verify_oop(recv); 3707 } 3708 3709 // load return address 3710 { 3711 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code); 3712 ExternalAddress table(table_addr); 3713 #ifdef _LP64 3714 __ lea(rscratch1, table); 3715 __ movptr(flags, Address(rscratch1, flags, Address::times_ptr)); 3716 #else 3717 __ movptr(flags, ArrayAddress(table, Address(noreg, flags, Address::times_ptr))); 3718 #endif // _LP64 3719 } 3720 3721 // push return address 3722 __ push(flags); 3723 3724 // Restore flags value from the constant pool cache entry, and restore rsi 3725 // for later null checks. r13 is the bytecode pointer 3726 __ movl(flags, rbcp); 3727 __ restore_bcp(); 3728 } 3729 3730 void TemplateTable::invokevirtual_helper(Register index, 3731 Register recv, 3732 Register flags) { 3733 // Uses temporary registers rax, rdx 3734 assert_different_registers(index, recv, rax, rdx); 3735 assert(index == rbx, ""); 3736 assert(recv == rcx, ""); 3737 3738 // Test for an invoke of a final method 3739 Label notFinal; 3740 __ movl(rax, flags); 3741 __ andl(rax, (1 << ResolvedMethodEntry::is_vfinal_shift)); 3742 __ jcc(Assembler::zero, notFinal); 3743 3744 const Register method = index; // method must be rbx 3745 assert(method == rbx, 3746 "Method* must be rbx for interpreter calling convention"); 3747 3748 // do the call - the index is actually the method to call 3749 // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method* 3750 3751 // It's final, need a null check here! 3752 __ null_check(recv); 3753 3754 // profile this call 3755 __ profile_final_call(rax); 3756 __ profile_arguments_type(rax, method, rbcp, true); 3757 3758 __ jump_from_interpreted(method, rax); 3759 3760 __ bind(notFinal); 3761 3762 // get receiver klass 3763 __ load_klass(rax, recv, rscratch1); 3764 3765 // profile this call 3766 __ profile_virtual_call(rax, rlocals, rdx); 3767 // get target Method* & entry point 3768 __ lookup_virtual_method(rax, index, method); 3769 3770 __ profile_arguments_type(rdx, method, rbcp, true); 3771 __ jump_from_interpreted(method, rdx); 3772 } 3773 3774 void TemplateTable::invokevirtual(int byte_no) { 3775 transition(vtos, vtos); 3776 assert(byte_no == f2_byte, "use this argument"); 3777 3778 load_resolved_method_entry_virtual(rcx, // ResolvedMethodEntry* 3779 rbx, // Method or itable index 3780 rdx); // Flags 3781 prepare_invoke(rcx, // ResolvedMethodEntry* 3782 rcx, // Receiver 3783 rdx); // flags 3784 3785 // rbx: index 3786 // rcx: receiver 3787 // rdx: flags 3788 invokevirtual_helper(rbx, rcx, rdx); 3789 } 3790 3791 void TemplateTable::invokespecial(int byte_no) { 3792 transition(vtos, vtos); 3793 assert(byte_no == f1_byte, "use this argument"); 3794 3795 load_resolved_method_entry_special_or_static(rcx, // ResolvedMethodEntry* 3796 rbx, // Method* 3797 rdx); // flags 3798 prepare_invoke(rcx, 3799 rcx, // get receiver also for null check 3800 rdx); // flags 3801 3802 __ verify_oop(rcx); 3803 __ null_check(rcx); 3804 // do the call 3805 __ profile_call(rax); 3806 __ profile_arguments_type(rax, rbx, rbcp, false); 3807 __ jump_from_interpreted(rbx, rax); 3808 } 3809 3810 void TemplateTable::invokestatic(int byte_no) { 3811 transition(vtos, vtos); 3812 assert(byte_no == f1_byte, "use this argument"); 3813 3814 load_resolved_method_entry_special_or_static(rcx, // ResolvedMethodEntry* 3815 rbx, // Method* 3816 rdx // flags 3817 ); 3818 prepare_invoke(rcx, rcx, rdx); // cache and flags 3819 3820 // do the call 3821 __ profile_call(rax); 3822 __ profile_arguments_type(rax, rbx, rbcp, false); 3823 __ jump_from_interpreted(rbx, rax); 3824 } 3825 3826 3827 void TemplateTable::fast_invokevfinal(int byte_no) { 3828 transition(vtos, vtos); 3829 assert(byte_no == f2_byte, "use this argument"); 3830 __ stop("fast_invokevfinal not used on x86"); 3831 } 3832 3833 3834 void TemplateTable::invokeinterface(int byte_no) { 3835 transition(vtos, vtos); 3836 assert(byte_no == f1_byte, "use this argument"); 3837 3838 load_resolved_method_entry_interface(rcx, // ResolvedMethodEntry* 3839 rax, // Klass* 3840 rbx, // Method* or itable/vtable index 3841 rdx); // flags 3842 prepare_invoke(rcx, rcx, rdx); // receiver, flags 3843 3844 // First check for Object case, then private interface method, 3845 // then regular interface method. 3846 3847 // Special case of invokeinterface called for virtual method of 3848 // java.lang.Object. See cpCache.cpp for details. 3849 Label notObjectMethod; 3850 __ movl(rlocals, rdx); 3851 __ andl(rlocals, (1 << ResolvedMethodEntry::is_forced_virtual_shift)); 3852 __ jcc(Assembler::zero, notObjectMethod); 3853 3854 invokevirtual_helper(rbx, rcx, rdx); 3855 // no return from above 3856 __ bind(notObjectMethod); 3857 3858 Label no_such_interface; // for receiver subtype check 3859 Register recvKlass; // used for exception processing 3860 3861 // Check for private method invocation - indicated by vfinal 3862 Label notVFinal; 3863 __ movl(rlocals, rdx); 3864 __ andl(rlocals, (1 << ResolvedMethodEntry::is_vfinal_shift)); 3865 __ jcc(Assembler::zero, notVFinal); 3866 3867 // Get receiver klass into rlocals - also a null check 3868 __ load_klass(rlocals, rcx, rscratch1); 3869 3870 Label subtype; 3871 __ check_klass_subtype(rlocals, rax, rbcp, subtype); 3872 // If we get here the typecheck failed 3873 recvKlass = rdx; 3874 __ mov(recvKlass, rlocals); // shuffle receiver class for exception use 3875 __ jmp(no_such_interface); 3876 3877 __ bind(subtype); 3878 3879 // do the call - rbx is actually the method to call 3880 3881 __ profile_final_call(rdx); 3882 __ profile_arguments_type(rdx, rbx, rbcp, true); 3883 3884 __ jump_from_interpreted(rbx, rdx); 3885 // no return from above 3886 __ bind(notVFinal); 3887 3888 // Get receiver klass into rdx - also a null check 3889 __ restore_locals(); // restore r14 3890 __ load_klass(rdx, rcx, rscratch1); 3891 3892 Label no_such_method; 3893 3894 // Preserve method for throw_AbstractMethodErrorVerbose. 3895 __ mov(rcx, rbx); 3896 // Receiver subtype check against REFC. 3897 // Superklass in rax. Subklass in rdx. Blows rcx, rdi. 3898 __ lookup_interface_method(// inputs: rec. class, interface, itable index 3899 rdx, rax, noreg, 3900 // outputs: scan temp. reg, scan temp. reg 3901 rbcp, rlocals, 3902 no_such_interface, 3903 /*return_method=*/false); 3904 3905 // profile this call 3906 __ restore_bcp(); // rbcp was destroyed by receiver type check 3907 __ profile_virtual_call(rdx, rbcp, rlocals); 3908 3909 // Get declaring interface class from method, and itable index 3910 __ load_method_holder(rax, rbx); 3911 __ movl(rbx, Address(rbx, Method::itable_index_offset())); 3912 __ subl(rbx, Method::itable_index_max); 3913 __ negl(rbx); 3914 3915 // Preserve recvKlass for throw_AbstractMethodErrorVerbose. 3916 __ mov(rlocals, rdx); 3917 __ lookup_interface_method(// inputs: rec. class, interface, itable index 3918 rlocals, rax, rbx, 3919 // outputs: method, scan temp. reg 3920 rbx, rbcp, 3921 no_such_interface); 3922 3923 // rbx: Method* to call 3924 // rcx: receiver 3925 // Check for abstract method error 3926 // Note: This should be done more efficiently via a throw_abstract_method_error 3927 // interpreter entry point and a conditional jump to it in case of a null 3928 // method. 3929 __ testptr(rbx, rbx); 3930 __ jcc(Assembler::zero, no_such_method); 3931 3932 __ profile_arguments_type(rdx, rbx, rbcp, true); 3933 3934 // do the call 3935 // rcx: receiver 3936 // rbx,: Method* 3937 __ jump_from_interpreted(rbx, rdx); 3938 __ should_not_reach_here(); 3939 3940 // exception handling code follows... 3941 // note: must restore interpreter registers to canonical 3942 // state for exception handling to work correctly! 3943 3944 __ bind(no_such_method); 3945 // throw exception 3946 __ pop(rbx); // pop return address (pushed by prepare_invoke) 3947 __ restore_bcp(); // rbcp must be correct for exception handler (was destroyed) 3948 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3949 // Pass arguments for generating a verbose error message. 3950 #ifdef _LP64 3951 recvKlass = c_rarg1; 3952 Register method = c_rarg2; 3953 if (recvKlass != rdx) { __ movq(recvKlass, rdx); } 3954 if (method != rcx) { __ movq(method, rcx); } 3955 #else 3956 recvKlass = rdx; 3957 Register method = rcx; 3958 #endif 3959 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodErrorVerbose), 3960 recvKlass, method); 3961 // The call_VM checks for exception, so we should never return here. 3962 __ should_not_reach_here(); 3963 3964 __ bind(no_such_interface); 3965 // throw exception 3966 __ pop(rbx); // pop return address (pushed by prepare_invoke) 3967 __ restore_bcp(); // rbcp must be correct for exception handler (was destroyed) 3968 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3969 // Pass arguments for generating a verbose error message. 3970 LP64_ONLY( if (recvKlass != rdx) { __ movq(recvKlass, rdx); } ) 3971 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose), 3972 recvKlass, rax); 3973 // the call_VM checks for exception, so we should never return here. 3974 __ should_not_reach_here(); 3975 } 3976 3977 void TemplateTable::invokehandle(int byte_no) { 3978 transition(vtos, vtos); 3979 assert(byte_no == f1_byte, "use this argument"); 3980 const Register rbx_method = rbx; 3981 const Register rax_mtype = rax; 3982 const Register rcx_recv = rcx; 3983 const Register rdx_flags = rdx; 3984 3985 load_resolved_method_entry_handle(rcx, rbx_method, rax_mtype, rdx_flags); 3986 prepare_invoke(rcx, rcx_recv, rdx_flags); 3987 3988 __ verify_method_ptr(rbx_method); 3989 __ verify_oop(rcx_recv); 3990 __ null_check(rcx_recv); 3991 3992 // rax: MethodType object (from cpool->resolved_references[f1], if necessary) 3993 // rbx: MH.invokeExact_MT method 3994 3995 // Note: rax_mtype is already pushed (if necessary) 3996 3997 // FIXME: profile the LambdaForm also 3998 __ profile_final_call(rax); 3999 __ profile_arguments_type(rdx, rbx_method, rbcp, true); 4000 4001 __ jump_from_interpreted(rbx_method, rdx); 4002 } 4003 4004 void TemplateTable::invokedynamic(int byte_no) { 4005 transition(vtos, vtos); 4006 assert(byte_no == f1_byte, "use this argument"); 4007 4008 const Register rbx_method = rbx; 4009 const Register rax_callsite = rax; 4010 4011 load_invokedynamic_entry(rbx_method); 4012 // rax: CallSite object (from cpool->resolved_references[]) 4013 // rbx: MH.linkToCallSite method 4014 4015 // Note: rax_callsite is already pushed 4016 4017 // %%% should make a type profile for any invokedynamic that takes a ref argument 4018 // profile this call 4019 __ profile_call(rbcp); 4020 __ profile_arguments_type(rdx, rbx_method, rbcp, false); 4021 4022 __ verify_oop(rax_callsite); 4023 4024 __ jump_from_interpreted(rbx_method, rdx); 4025 } 4026 4027 //----------------------------------------------------------------------------- 4028 // Allocation 4029 4030 void TemplateTable::_new() { 4031 transition(vtos, atos); 4032 __ get_unsigned_2_byte_index_at_bcp(rdx, 1); 4033 Label slow_case; 4034 Label slow_case_no_pop; 4035 Label done; 4036 Label initialize_header; 4037 4038 __ get_cpool_and_tags(rcx, rax); 4039 4040 // Make sure the class we're about to instantiate has been resolved. 4041 // This is done before loading InstanceKlass to be consistent with the order 4042 // how Constant Pool is updated (see ConstantPool::klass_at_put) 4043 const int tags_offset = Array<u1>::base_offset_in_bytes(); 4044 __ cmpb(Address(rax, rdx, Address::times_1, tags_offset), JVM_CONSTANT_Class); 4045 __ jcc(Assembler::notEqual, slow_case_no_pop); 4046 4047 // get InstanceKlass 4048 __ load_resolved_klass_at_index(rcx, rcx, rdx); 4049 __ push(rcx); // save the contexts of klass for initializing the header 4050 4051 // make sure klass is initialized 4052 #ifdef _LP64 4053 assert(VM_Version::supports_fast_class_init_checks(), "must support fast class initialization checks"); 4054 __ clinit_barrier(rcx, r15_thread, nullptr /*L_fast_path*/, &slow_case); 4055 #else 4056 __ cmpb(Address(rcx, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized); 4057 __ jcc(Assembler::notEqual, slow_case); 4058 #endif 4059 4060 // get instance_size in InstanceKlass (scaled to a count of bytes) 4061 __ movl(rdx, Address(rcx, Klass::layout_helper_offset())); 4062 // test to see if it is malformed in some way 4063 __ testl(rdx, Klass::_lh_instance_slow_path_bit); 4064 __ jcc(Assembler::notZero, slow_case); 4065 4066 // Allocate the instance: 4067 // If TLAB is enabled: 4068 // Try to allocate in the TLAB. 4069 // If fails, go to the slow path. 4070 // Initialize the allocation. 4071 // Exit. 4072 // 4073 // Go to slow path. 4074 4075 const Register thread = LP64_ONLY(r15_thread) NOT_LP64(rcx); 4076 4077 if (UseTLAB) { 4078 NOT_LP64(__ get_thread(thread);) 4079 __ tlab_allocate(thread, rax, rdx, 0, rcx, rbx, slow_case); 4080 if (ZeroTLAB) { 4081 // the fields have been already cleared 4082 __ jmp(initialize_header); 4083 } 4084 4085 // The object is initialized before the header. If the object size is 4086 // zero, go directly to the header initialization. 4087 if (UseCompactObjectHeaders) { 4088 assert(is_aligned(oopDesc::base_offset_in_bytes(), BytesPerLong), "oop base offset must be 8-byte-aligned"); 4089 __ decrement(rdx, oopDesc::base_offset_in_bytes()); 4090 } else { 4091 __ decrement(rdx, sizeof(oopDesc)); 4092 } 4093 __ jcc(Assembler::zero, initialize_header); 4094 4095 // Initialize topmost object field, divide rdx by 8, check if odd and 4096 // test if zero. 4097 __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code) 4098 __ shrl(rdx, LogBytesPerLong); // divide by 2*oopSize and set carry flag if odd 4099 4100 // rdx must have been multiple of 8 4101 #ifdef ASSERT 4102 // make sure rdx was multiple of 8 4103 Label L; 4104 // Ignore partial flag stall after shrl() since it is debug VM 4105 __ jcc(Assembler::carryClear, L); 4106 __ stop("object size is not multiple of 2 - adjust this code"); 4107 __ bind(L); 4108 // rdx must be > 0, no extra check needed here 4109 #endif 4110 4111 // initialize remaining object fields: rdx was a multiple of 8 4112 { Label loop; 4113 __ bind(loop); 4114 if (UseCompactObjectHeaders) { 4115 assert(is_aligned(oopDesc::base_offset_in_bytes(), BytesPerLong), "oop base offset must be 8-byte-aligned"); 4116 int header_size = oopDesc::base_offset_in_bytes(); 4117 __ movptr(Address(rax, rdx, Address::times_8, header_size - 1*oopSize), rcx); 4118 NOT_LP64(__ movptr(Address(rax, rdx, Address::times_8, header_size - 2*oopSize), rcx)); 4119 } else { 4120 __ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 1*oopSize), rcx); 4121 NOT_LP64(__ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 2*oopSize), rcx)); 4122 } 4123 __ decrement(rdx); 4124 __ jcc(Assembler::notZero, loop); 4125 } 4126 4127 // initialize object header only. 4128 __ bind(initialize_header); 4129 if (UseCompactObjectHeaders) { 4130 __ pop(rcx); // get saved klass back in the register. 4131 __ movptr(rbx, Address(rcx, Klass::prototype_header_offset())); 4132 __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()), rbx); 4133 } else { 4134 __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()), 4135 (intptr_t)markWord::prototype().value()); // header 4136 __ pop(rcx); // get saved klass back in the register. 4137 #ifdef _LP64 4138 __ xorl(rsi, rsi); // use zero reg to clear memory (shorter code) 4139 __ store_klass_gap(rax, rsi); // zero klass gap for compressed oops 4140 #endif 4141 __ store_klass(rax, rcx, rscratch1); // klass 4142 } 4143 4144 { 4145 SkipIfEqual skip_if(_masm, &DTraceAllocProbes, 0, rscratch1); 4146 // Trigger dtrace event for fastpath 4147 __ push(atos); 4148 __ call_VM_leaf( 4149 CAST_FROM_FN_PTR(address, static_cast<int (*)(oopDesc*)>(SharedRuntime::dtrace_object_alloc)), rax); 4150 __ pop(atos); 4151 } 4152 4153 __ jmp(done); 4154 } 4155 4156 // slow case 4157 __ bind(slow_case); 4158 __ pop(rcx); // restore stack pointer to what it was when we came in. 4159 __ bind(slow_case_no_pop); 4160 4161 Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rax); 4162 Register rarg2 = LP64_ONLY(c_rarg2) NOT_LP64(rdx); 4163 4164 __ get_constant_pool(rarg1); 4165 __ get_unsigned_2_byte_index_at_bcp(rarg2, 1); 4166 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), rarg1, rarg2); 4167 __ verify_oop(rax); 4168 4169 // continue 4170 __ bind(done); 4171 } 4172 4173 void TemplateTable::newarray() { 4174 transition(itos, atos); 4175 Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rdx); 4176 __ load_unsigned_byte(rarg1, at_bcp(1)); 4177 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), 4178 rarg1, rax); 4179 } 4180 4181 void TemplateTable::anewarray() { 4182 transition(itos, atos); 4183 4184 Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rcx); 4185 Register rarg2 = LP64_ONLY(c_rarg2) NOT_LP64(rdx); 4186 4187 __ get_unsigned_2_byte_index_at_bcp(rarg2, 1); 4188 __ get_constant_pool(rarg1); 4189 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), 4190 rarg1, rarg2, rax); 4191 } 4192 4193 void TemplateTable::arraylength() { 4194 transition(atos, itos); 4195 __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes())); 4196 } 4197 4198 void TemplateTable::checkcast() { 4199 transition(atos, atos); 4200 Label done, is_null, ok_is_subtype, quicked, resolved; 4201 __ testptr(rax, rax); // object is in rax 4202 __ jcc(Assembler::zero, is_null); 4203 4204 // Get cpool & tags index 4205 __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array 4206 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index 4207 // See if bytecode has already been quicked 4208 __ cmpb(Address(rdx, rbx, 4209 Address::times_1, 4210 Array<u1>::base_offset_in_bytes()), 4211 JVM_CONSTANT_Class); 4212 __ jcc(Assembler::equal, quicked); 4213 __ push(atos); // save receiver for result, and for GC 4214 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 4215 4216 // vm_result_2 has metadata result 4217 #ifndef _LP64 4218 // borrow rdi from locals 4219 __ get_thread(rdi); 4220 __ get_vm_result_2(rax, rdi); 4221 __ restore_locals(); 4222 #else 4223 __ get_vm_result_2(rax, r15_thread); 4224 #endif 4225 4226 __ pop_ptr(rdx); // restore receiver 4227 __ jmpb(resolved); 4228 4229 // Get superklass in rax and subklass in rbx 4230 __ bind(quicked); 4231 __ mov(rdx, rax); // Save object in rdx; rax needed for subtype check 4232 __ load_resolved_klass_at_index(rax, rcx, rbx); 4233 4234 __ bind(resolved); 4235 __ load_klass(rbx, rdx, rscratch1); 4236 4237 // Generate subtype check. Blows rcx, rdi. Object in rdx. 4238 // Superklass in rax. Subklass in rbx. 4239 __ gen_subtype_check(rbx, ok_is_subtype); 4240 4241 // Come here on failure 4242 __ push_ptr(rdx); 4243 // object is at TOS 4244 __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry)); 4245 4246 // Come here on success 4247 __ bind(ok_is_subtype); 4248 __ mov(rax, rdx); // Restore object in rdx 4249 4250 // Collect counts on whether this check-cast sees nulls a lot or not. 4251 if (ProfileInterpreter) { 4252 __ jmp(done); 4253 __ bind(is_null); 4254 __ profile_null_seen(rcx); 4255 } else { 4256 __ bind(is_null); // same as 'done' 4257 } 4258 __ bind(done); 4259 } 4260 4261 void TemplateTable::instanceof() { 4262 transition(atos, itos); 4263 Label done, is_null, ok_is_subtype, quicked, resolved; 4264 __ testptr(rax, rax); 4265 __ jcc(Assembler::zero, is_null); 4266 4267 // Get cpool & tags index 4268 __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array 4269 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index 4270 // See if bytecode has already been quicked 4271 __ cmpb(Address(rdx, rbx, 4272 Address::times_1, 4273 Array<u1>::base_offset_in_bytes()), 4274 JVM_CONSTANT_Class); 4275 __ jcc(Assembler::equal, quicked); 4276 4277 __ push(atos); // save receiver for result, and for GC 4278 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 4279 // vm_result_2 has metadata result 4280 4281 #ifndef _LP64 4282 // borrow rdi from locals 4283 __ get_thread(rdi); 4284 __ get_vm_result_2(rax, rdi); 4285 __ restore_locals(); 4286 #else 4287 __ get_vm_result_2(rax, r15_thread); 4288 #endif 4289 4290 __ pop_ptr(rdx); // restore receiver 4291 __ verify_oop(rdx); 4292 __ load_klass(rdx, rdx, rscratch1); 4293 __ jmpb(resolved); 4294 4295 // Get superklass in rax and subklass in rdx 4296 __ bind(quicked); 4297 __ load_klass(rdx, rax, rscratch1); 4298 __ load_resolved_klass_at_index(rax, rcx, rbx); 4299 4300 __ bind(resolved); 4301 4302 // Generate subtype check. Blows rcx, rdi 4303 // Superklass in rax. Subklass in rdx. 4304 __ gen_subtype_check(rdx, ok_is_subtype); 4305 4306 // Come here on failure 4307 __ xorl(rax, rax); 4308 __ jmpb(done); 4309 // Come here on success 4310 __ bind(ok_is_subtype); 4311 __ movl(rax, 1); 4312 4313 // Collect counts on whether this test sees nulls a lot or not. 4314 if (ProfileInterpreter) { 4315 __ jmp(done); 4316 __ bind(is_null); 4317 __ profile_null_seen(rcx); 4318 } else { 4319 __ bind(is_null); // same as 'done' 4320 } 4321 __ bind(done); 4322 // rax = 0: obj == nullptr or obj is not an instanceof the specified klass 4323 // rax = 1: obj != nullptr and obj is an instanceof the specified klass 4324 } 4325 4326 4327 //---------------------------------------------------------------------------------------------------- 4328 // Breakpoints 4329 void TemplateTable::_breakpoint() { 4330 // Note: We get here even if we are single stepping.. 4331 // jbug insists on setting breakpoints at every bytecode 4332 // even if we are in single step mode. 4333 4334 transition(vtos, vtos); 4335 4336 Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rcx); 4337 4338 // get the unpatched byte code 4339 __ get_method(rarg); 4340 __ call_VM(noreg, 4341 CAST_FROM_FN_PTR(address, 4342 InterpreterRuntime::get_original_bytecode_at), 4343 rarg, rbcp); 4344 __ mov(rbx, rax); // why? 4345 4346 // post the breakpoint event 4347 __ get_method(rarg); 4348 __ call_VM(noreg, 4349 CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), 4350 rarg, rbcp); 4351 4352 // complete the execution of original bytecode 4353 __ dispatch_only_normal(vtos); 4354 } 4355 4356 //----------------------------------------------------------------------------- 4357 // Exceptions 4358 4359 void TemplateTable::athrow() { 4360 transition(atos, vtos); 4361 __ null_check(rax); 4362 __ jump(ExternalAddress(Interpreter::throw_exception_entry())); 4363 } 4364 4365 //----------------------------------------------------------------------------- 4366 // Synchronization 4367 // 4368 // Note: monitorenter & exit are symmetric routines; which is reflected 4369 // in the assembly code structure as well 4370 // 4371 // Stack layout: 4372 // 4373 // [expressions ] <--- rsp = expression stack top 4374 // .. 4375 // [expressions ] 4376 // [monitor entry] <--- monitor block top = expression stack bot 4377 // .. 4378 // [monitor entry] 4379 // [frame data ] <--- monitor block bot 4380 // ... 4381 // [saved rbp ] <--- rbp 4382 void TemplateTable::monitorenter() { 4383 transition(atos, vtos); 4384 4385 // check for null object 4386 __ null_check(rax); 4387 4388 const Address monitor_block_top( 4389 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 4390 const Address monitor_block_bot( 4391 rbp, frame::interpreter_frame_initial_sp_offset * wordSize); 4392 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 4393 4394 Label allocated; 4395 4396 Register rtop = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 4397 Register rbot = LP64_ONLY(c_rarg2) NOT_LP64(rbx); 4398 Register rmon = LP64_ONLY(c_rarg1) NOT_LP64(rdx); 4399 4400 // initialize entry pointer 4401 __ xorl(rmon, rmon); // points to free slot or null 4402 4403 // find a free slot in the monitor block (result in rmon) 4404 { 4405 Label entry, loop, exit; 4406 __ movptr(rtop, monitor_block_top); // derelativize pointer 4407 __ lea(rtop, Address(rbp, rtop, Address::times_ptr)); 4408 // rtop points to current entry, starting with top-most entry 4409 4410 __ lea(rbot, monitor_block_bot); // points to word before bottom 4411 // of monitor block 4412 __ jmpb(entry); 4413 4414 __ bind(loop); 4415 // check if current entry is used 4416 __ cmpptr(Address(rtop, BasicObjectLock::obj_offset()), NULL_WORD); 4417 // if not used then remember entry in rmon 4418 __ cmovptr(Assembler::equal, rmon, rtop); // cmov => cmovptr 4419 // check if current entry is for same object 4420 __ cmpptr(rax, Address(rtop, BasicObjectLock::obj_offset())); 4421 // if same object then stop searching 4422 __ jccb(Assembler::equal, exit); 4423 // otherwise advance to next entry 4424 __ addptr(rtop, entry_size); 4425 __ bind(entry); 4426 // check if bottom reached 4427 __ cmpptr(rtop, rbot); 4428 // if not at bottom then check this entry 4429 __ jcc(Assembler::notEqual, loop); 4430 __ bind(exit); 4431 } 4432 4433 __ testptr(rmon, rmon); // check if a slot has been found 4434 __ jcc(Assembler::notZero, allocated); // if found, continue with that one 4435 4436 // allocate one if there's no free slot 4437 { 4438 Label entry, loop; 4439 // 1. compute new pointers // rsp: old expression stack top 4440 __ movptr(rmon, monitor_block_bot); // rmon: old expression stack bottom 4441 __ lea(rmon, Address(rbp, rmon, Address::times_ptr)); 4442 __ subptr(rsp, entry_size); // move expression stack top 4443 __ subptr(rmon, entry_size); // move expression stack bottom 4444 __ mov(rtop, rsp); // set start value for copy loop 4445 __ subptr(monitor_block_bot, entry_size / wordSize); // set new monitor block bottom 4446 __ jmp(entry); 4447 // 2. move expression stack contents 4448 __ bind(loop); 4449 __ movptr(rbot, Address(rtop, entry_size)); // load expression stack 4450 // word from old location 4451 __ movptr(Address(rtop, 0), rbot); // and store it at new location 4452 __ addptr(rtop, wordSize); // advance to next word 4453 __ bind(entry); 4454 __ cmpptr(rtop, rmon); // check if bottom reached 4455 __ jcc(Assembler::notEqual, loop); // if not at bottom then 4456 // copy next word 4457 } 4458 4459 // call run-time routine 4460 // rmon: points to monitor entry 4461 __ bind(allocated); 4462 4463 // Increment bcp to point to the next bytecode, so exception 4464 // handling for async. exceptions work correctly. 4465 // The object has already been popped from the stack, so the 4466 // expression stack looks correct. 4467 __ increment(rbcp); 4468 4469 // store object 4470 __ movptr(Address(rmon, BasicObjectLock::obj_offset()), rax); 4471 __ lock_object(rmon); 4472 4473 // check to make sure this monitor doesn't cause stack overflow after locking 4474 __ save_bcp(); // in case of exception 4475 __ generate_stack_overflow_check(0); 4476 4477 // The bcp has already been incremented. Just need to dispatch to 4478 // next instruction. 4479 __ dispatch_next(vtos); 4480 } 4481 4482 void TemplateTable::monitorexit() { 4483 transition(atos, vtos); 4484 4485 // check for null object 4486 __ null_check(rax); 4487 4488 const Address monitor_block_top( 4489 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 4490 const Address monitor_block_bot( 4491 rbp, frame::interpreter_frame_initial_sp_offset * wordSize); 4492 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 4493 4494 Register rtop = LP64_ONLY(c_rarg1) NOT_LP64(rdx); 4495 Register rbot = LP64_ONLY(c_rarg2) NOT_LP64(rbx); 4496 4497 Label found; 4498 4499 // find matching slot 4500 { 4501 Label entry, loop; 4502 __ movptr(rtop, monitor_block_top); // derelativize pointer 4503 __ lea(rtop, Address(rbp, rtop, Address::times_ptr)); 4504 // rtop points to current entry, starting with top-most entry 4505 4506 __ lea(rbot, monitor_block_bot); // points to word before bottom 4507 // of monitor block 4508 __ jmpb(entry); 4509 4510 __ bind(loop); 4511 // check if current entry is for same object 4512 __ cmpptr(rax, Address(rtop, BasicObjectLock::obj_offset())); 4513 // if same object then stop searching 4514 __ jcc(Assembler::equal, found); 4515 // otherwise advance to next entry 4516 __ addptr(rtop, entry_size); 4517 __ bind(entry); 4518 // check if bottom reached 4519 __ cmpptr(rtop, rbot); 4520 // if not at bottom then check this entry 4521 __ jcc(Assembler::notEqual, loop); 4522 } 4523 4524 // error handling. Unlocking was not block-structured 4525 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 4526 InterpreterRuntime::throw_illegal_monitor_state_exception)); 4527 __ should_not_reach_here(); 4528 4529 // call run-time routine 4530 __ bind(found); 4531 __ push_ptr(rax); // make sure object is on stack (contract with oopMaps) 4532 __ unlock_object(rtop); 4533 __ pop_ptr(rax); // discard object 4534 } 4535 4536 // Wide instructions 4537 void TemplateTable::wide() { 4538 transition(vtos, vtos); 4539 __ load_unsigned_byte(rbx, at_bcp(1)); 4540 ExternalAddress wtable((address)Interpreter::_wentry_point); 4541 __ jump(ArrayAddress(wtable, Address(noreg, rbx, Address::times_ptr)), rscratch1); 4542 // Note: the rbcp increment step is part of the individual wide bytecode implementations 4543 } 4544 4545 // Multi arrays 4546 void TemplateTable::multianewarray() { 4547 transition(vtos, atos); 4548 4549 Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rax); 4550 __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions 4551 // last dim is on top of stack; we want address of first one: 4552 // first_addr = last_addr + (ndims - 1) * stackElementSize - 1*wordsize 4553 // the latter wordSize to point to the beginning of the array. 4554 __ lea(rarg, Address(rsp, rax, Interpreter::stackElementScale(), -wordSize)); 4555 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), rarg); 4556 __ load_unsigned_byte(rbx, at_bcp(3)); 4557 __ lea(rsp, Address(rsp, rbx, Interpreter::stackElementScale())); // get rid of counts 4558 }