1 /* 2 * Copyright (c) 1997, 2022, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "compiler/disassembler.hpp" 28 #include "gc/shared/collectedHeap.hpp" 29 #include "gc/shared/tlab_globals.hpp" 30 #include "interpreter/interpreter.hpp" 31 #include "interpreter/interpreterRuntime.hpp" 32 #include "interpreter/interp_masm.hpp" 33 #include "interpreter/templateTable.hpp" 34 #include "memory/universe.hpp" 35 #include "oops/methodData.hpp" 36 #include "oops/objArrayKlass.hpp" 37 #include "oops/oop.inline.hpp" 38 #include "prims/jvmtiExport.hpp" 39 #include "prims/methodHandles.hpp" 40 #include "runtime/frame.inline.hpp" 41 #include "runtime/safepointMechanism.hpp" 42 #include "runtime/sharedRuntime.hpp" 43 #include "runtime/stubRoutines.hpp" 44 #include "runtime/synchronizer.hpp" 45 #include "utilities/macros.hpp" 46 47 #define __ Disassembler::hook<InterpreterMacroAssembler>(__FILE__, __LINE__, _masm)-> 48 49 // Global Register Names 50 static const Register rbcp = LP64_ONLY(r13) NOT_LP64(rsi); 51 static const Register rlocals = LP64_ONLY(r14) NOT_LP64(rdi); 52 53 // Address Computation: local variables 54 static inline Address iaddress(int n) { 55 return Address(rlocals, Interpreter::local_offset_in_bytes(n)); 56 } 57 58 static inline Address laddress(int n) { 59 return iaddress(n + 1); 60 } 61 62 #ifndef _LP64 63 static inline Address haddress(int n) { 64 return iaddress(n + 0); 65 } 66 #endif 67 68 static inline Address faddress(int n) { 69 return iaddress(n); 70 } 71 72 static inline Address daddress(int n) { 73 return laddress(n); 74 } 75 76 static inline Address aaddress(int n) { 77 return iaddress(n); 78 } 79 80 static inline Address iaddress(Register r) { 81 return Address(rlocals, r, Address::times_ptr); 82 } 83 84 static inline Address laddress(Register r) { 85 return Address(rlocals, r, Address::times_ptr, Interpreter::local_offset_in_bytes(1)); 86 } 87 88 #ifndef _LP64 89 static inline Address haddress(Register r) { 90 return Address(rlocals, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(0)); 91 } 92 #endif 93 94 static inline Address faddress(Register r) { 95 return iaddress(r); 96 } 97 98 static inline Address daddress(Register r) { 99 return laddress(r); 100 } 101 102 static inline Address aaddress(Register r) { 103 return iaddress(r); 104 } 105 106 107 // expression stack 108 // (Note: Must not use symmetric equivalents at_rsp_m1/2 since they store 109 // data beyond the rsp which is potentially unsafe in an MT environment; 110 // an interrupt may overwrite that data.) 111 static inline Address at_rsp () { 112 return Address(rsp, 0); 113 } 114 115 // At top of Java expression stack which may be different than esp(). It 116 // isn't for category 1 objects. 117 static inline Address at_tos () { 118 return Address(rsp, Interpreter::expr_offset_in_bytes(0)); 119 } 120 121 static inline Address at_tos_p1() { 122 return Address(rsp, Interpreter::expr_offset_in_bytes(1)); 123 } 124 125 static inline Address at_tos_p2() { 126 return Address(rsp, Interpreter::expr_offset_in_bytes(2)); 127 } 128 129 // Condition conversion 130 static Assembler::Condition j_not(TemplateTable::Condition cc) { 131 switch (cc) { 132 case TemplateTable::equal : return Assembler::notEqual; 133 case TemplateTable::not_equal : return Assembler::equal; 134 case TemplateTable::less : return Assembler::greaterEqual; 135 case TemplateTable::less_equal : return Assembler::greater; 136 case TemplateTable::greater : return Assembler::lessEqual; 137 case TemplateTable::greater_equal: return Assembler::less; 138 } 139 ShouldNotReachHere(); 140 return Assembler::zero; 141 } 142 143 144 145 // Miscellaneous helper routines 146 // Store an oop (or NULL) at the address described by obj. 147 // If val == noreg this means store a NULL 148 149 150 static void do_oop_store(InterpreterMacroAssembler* _masm, 151 Address dst, 152 Register val, 153 DecoratorSet decorators = 0) { 154 assert(val == noreg || val == rax, "parameter is just for looks"); 155 __ store_heap_oop(dst, val, 156 NOT_LP64(rdx) LP64_ONLY(rscratch2), 157 NOT_LP64(rbx) LP64_ONLY(r9), 158 NOT_LP64(rsi) LP64_ONLY(r8), decorators); 159 } 160 161 static void do_oop_load(InterpreterMacroAssembler* _masm, 162 Address src, 163 Register dst, 164 DecoratorSet decorators = 0) { 165 __ load_heap_oop(dst, src, rdx, rbx, decorators); 166 } 167 168 Address TemplateTable::at_bcp(int offset) { 169 assert(_desc->uses_bcp(), "inconsistent uses_bcp information"); 170 return Address(rbcp, offset); 171 } 172 173 174 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg, 175 Register temp_reg, bool load_bc_into_bc_reg/*=true*/, 176 int byte_no) { 177 if (!RewriteBytecodes) return; 178 Label L_patch_done; 179 180 switch (bc) { 181 case Bytecodes::_fast_aputfield: 182 case Bytecodes::_fast_bputfield: 183 case Bytecodes::_fast_zputfield: 184 case Bytecodes::_fast_cputfield: 185 case Bytecodes::_fast_dputfield: 186 case Bytecodes::_fast_fputfield: 187 case Bytecodes::_fast_iputfield: 188 case Bytecodes::_fast_lputfield: 189 case Bytecodes::_fast_sputfield: 190 { 191 // We skip bytecode quickening for putfield instructions when 192 // the put_code written to the constant pool cache is zero. 193 // This is required so that every execution of this instruction 194 // calls out to InterpreterRuntime::resolve_get_put to do 195 // additional, required work. 196 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 197 assert(load_bc_into_bc_reg, "we use bc_reg as temp"); 198 __ get_cache_and_index_and_bytecode_at_bcp(temp_reg, bc_reg, temp_reg, byte_no, 1); 199 __ movl(bc_reg, bc); 200 __ cmpl(temp_reg, (int) 0); 201 __ jcc(Assembler::zero, L_patch_done); // don't patch 202 } 203 break; 204 default: 205 assert(byte_no == -1, "sanity"); 206 // the pair bytecodes have already done the load. 207 if (load_bc_into_bc_reg) { 208 __ movl(bc_reg, bc); 209 } 210 } 211 212 if (JvmtiExport::can_post_breakpoint()) { 213 Label L_fast_patch; 214 // if a breakpoint is present we can't rewrite the stream directly 215 __ movzbl(temp_reg, at_bcp(0)); 216 __ cmpl(temp_reg, Bytecodes::_breakpoint); 217 __ jcc(Assembler::notEqual, L_fast_patch); 218 __ get_method(temp_reg); 219 // Let breakpoint table handling rewrite to quicker bytecode 220 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), temp_reg, rbcp, bc_reg); 221 #ifndef ASSERT 222 __ jmpb(L_patch_done); 223 #else 224 __ jmp(L_patch_done); 225 #endif 226 __ bind(L_fast_patch); 227 } 228 229 #ifdef ASSERT 230 Label L_okay; 231 __ load_unsigned_byte(temp_reg, at_bcp(0)); 232 __ cmpl(temp_reg, (int) Bytecodes::java_code(bc)); 233 __ jcc(Assembler::equal, L_okay); 234 __ cmpl(temp_reg, bc_reg); 235 __ jcc(Assembler::equal, L_okay); 236 __ stop("patching the wrong bytecode"); 237 __ bind(L_okay); 238 #endif 239 240 // patch bytecode 241 __ movb(at_bcp(0), bc_reg); 242 __ bind(L_patch_done); 243 } 244 // Individual instructions 245 246 247 void TemplateTable::nop() { 248 transition(vtos, vtos); 249 // nothing to do 250 } 251 252 void TemplateTable::shouldnotreachhere() { 253 transition(vtos, vtos); 254 __ stop("shouldnotreachhere bytecode"); 255 } 256 257 void TemplateTable::aconst_null() { 258 transition(vtos, atos); 259 __ xorl(rax, rax); 260 } 261 262 void TemplateTable::iconst(int value) { 263 transition(vtos, itos); 264 if (value == 0) { 265 __ xorl(rax, rax); 266 } else { 267 __ movl(rax, value); 268 } 269 } 270 271 void TemplateTable::lconst(int value) { 272 transition(vtos, ltos); 273 if (value == 0) { 274 __ xorl(rax, rax); 275 } else { 276 __ movl(rax, value); 277 } 278 #ifndef _LP64 279 assert(value >= 0, "check this code"); 280 __ xorptr(rdx, rdx); 281 #endif 282 } 283 284 285 286 void TemplateTable::fconst(int value) { 287 transition(vtos, ftos); 288 if (UseSSE >= 1) { 289 static float one = 1.0f, two = 2.0f; 290 switch (value) { 291 case 0: 292 __ xorps(xmm0, xmm0); 293 break; 294 case 1: 295 __ movflt(xmm0, ExternalAddress((address) &one), rscratch1); 296 break; 297 case 2: 298 __ movflt(xmm0, ExternalAddress((address) &two), rscratch1); 299 break; 300 default: 301 ShouldNotReachHere(); 302 break; 303 } 304 } else { 305 #ifdef _LP64 306 ShouldNotReachHere(); 307 #else 308 if (value == 0) { __ fldz(); 309 } else if (value == 1) { __ fld1(); 310 } else if (value == 2) { __ fld1(); __ fld1(); __ faddp(); // should do a better solution here 311 } else { ShouldNotReachHere(); 312 } 313 #endif // _LP64 314 } 315 } 316 317 void TemplateTable::dconst(int value) { 318 transition(vtos, dtos); 319 if (UseSSE >= 2) { 320 static double one = 1.0; 321 switch (value) { 322 case 0: 323 __ xorpd(xmm0, xmm0); 324 break; 325 case 1: 326 __ movdbl(xmm0, ExternalAddress((address) &one), rscratch1); 327 break; 328 default: 329 ShouldNotReachHere(); 330 break; 331 } 332 } else { 333 #ifdef _LP64 334 ShouldNotReachHere(); 335 #else 336 if (value == 0) { __ fldz(); 337 } else if (value == 1) { __ fld1(); 338 } else { ShouldNotReachHere(); 339 } 340 #endif 341 } 342 } 343 344 void TemplateTable::bipush() { 345 transition(vtos, itos); 346 __ load_signed_byte(rax, at_bcp(1)); 347 } 348 349 void TemplateTable::sipush() { 350 transition(vtos, itos); 351 __ load_unsigned_short(rax, at_bcp(1)); 352 __ bswapl(rax); 353 __ sarl(rax, 16); 354 } 355 356 void TemplateTable::ldc(LdcType type) { 357 transition(vtos, vtos); 358 Register rarg = NOT_LP64(rcx) LP64_ONLY(c_rarg1); 359 Label call_ldc, notFloat, notClass, notInt, Done; 360 361 if (is_ldc_wide(type)) { 362 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); 363 } else { 364 __ load_unsigned_byte(rbx, at_bcp(1)); 365 } 366 367 __ get_cpool_and_tags(rcx, rax); 368 const int base_offset = ConstantPool::header_size() * wordSize; 369 const int tags_offset = Array<u1>::base_offset_in_bytes(); 370 371 // get type 372 __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset)); 373 374 // unresolved class - get the resolved class 375 __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass); 376 __ jccb(Assembler::equal, call_ldc); 377 378 // unresolved class in error state - call into runtime to throw the error 379 // from the first resolution attempt 380 __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError); 381 __ jccb(Assembler::equal, call_ldc); 382 383 // resolved class - need to call vm to get java mirror of the class 384 __ cmpl(rdx, JVM_CONSTANT_Class); 385 __ jcc(Assembler::notEqual, notClass); 386 387 __ bind(call_ldc); 388 389 __ movl(rarg, is_ldc_wide(type) ? 1 : 0); 390 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), rarg); 391 392 __ push(atos); 393 __ jmp(Done); 394 395 __ bind(notClass); 396 __ cmpl(rdx, JVM_CONSTANT_Float); 397 __ jccb(Assembler::notEqual, notFloat); 398 399 // ftos 400 __ load_float(Address(rcx, rbx, Address::times_ptr, base_offset)); 401 __ push(ftos); 402 __ jmp(Done); 403 404 __ bind(notFloat); 405 __ cmpl(rdx, JVM_CONSTANT_Integer); 406 __ jccb(Assembler::notEqual, notInt); 407 408 // itos 409 __ movl(rax, Address(rcx, rbx, Address::times_ptr, base_offset)); 410 __ push(itos); 411 __ jmp(Done); 412 413 // assume the tag is for condy; if not, the VM runtime will tell us 414 __ bind(notInt); 415 condy_helper(Done); 416 417 __ bind(Done); 418 } 419 420 // Fast path for caching oop constants. 421 void TemplateTable::fast_aldc(LdcType type) { 422 transition(vtos, atos); 423 424 Register result = rax; 425 Register tmp = rdx; 426 Register rarg = NOT_LP64(rcx) LP64_ONLY(c_rarg1); 427 int index_size = is_ldc_wide(type) ? sizeof(u2) : sizeof(u1); 428 429 Label resolved; 430 431 // We are resolved if the resolved reference cache entry contains a 432 // non-null object (String, MethodType, etc.) 433 assert_different_registers(result, tmp); 434 __ get_cache_index_at_bcp(tmp, 1, index_size); 435 __ load_resolved_reference_at_index(result, tmp); 436 __ testptr(result, result); 437 __ jcc(Assembler::notZero, resolved); 438 439 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); 440 441 // first time invocation - must resolve first 442 __ movl(rarg, (int)bytecode()); 443 __ call_VM(result, entry, rarg); 444 __ bind(resolved); 445 446 { // Check for the null sentinel. 447 // If we just called the VM, it already did the mapping for us, 448 // but it's harmless to retry. 449 Label notNull; 450 ExternalAddress null_sentinel((address)Universe::the_null_sentinel_addr()); 451 __ movptr(tmp, null_sentinel); 452 __ resolve_oop_handle(tmp, rscratch2); 453 __ cmpoop(tmp, result); 454 __ jccb(Assembler::notEqual, notNull); 455 __ xorptr(result, result); // NULL object reference 456 __ bind(notNull); 457 } 458 459 if (VerifyOops) { 460 __ verify_oop(result); 461 } 462 } 463 464 void TemplateTable::ldc2_w() { 465 transition(vtos, vtos); 466 Label notDouble, notLong, Done; 467 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); 468 469 __ get_cpool_and_tags(rcx, rax); 470 const int base_offset = ConstantPool::header_size() * wordSize; 471 const int tags_offset = Array<u1>::base_offset_in_bytes(); 472 473 // get type 474 __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset)); 475 __ cmpl(rdx, JVM_CONSTANT_Double); 476 __ jccb(Assembler::notEqual, notDouble); 477 478 // dtos 479 __ load_double(Address(rcx, rbx, Address::times_ptr, base_offset)); 480 __ push(dtos); 481 482 __ jmp(Done); 483 __ bind(notDouble); 484 __ cmpl(rdx, JVM_CONSTANT_Long); 485 __ jccb(Assembler::notEqual, notLong); 486 487 // ltos 488 __ movptr(rax, Address(rcx, rbx, Address::times_ptr, base_offset + 0 * wordSize)); 489 NOT_LP64(__ movptr(rdx, Address(rcx, rbx, Address::times_ptr, base_offset + 1 * wordSize))); 490 __ push(ltos); 491 __ jmp(Done); 492 493 __ bind(notLong); 494 condy_helper(Done); 495 496 __ bind(Done); 497 } 498 499 void TemplateTable::condy_helper(Label& Done) { 500 const Register obj = rax; 501 const Register off = rbx; 502 const Register flags = rcx; 503 const Register rarg = NOT_LP64(rcx) LP64_ONLY(c_rarg1); 504 __ movl(rarg, (int)bytecode()); 505 call_VM(obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc), rarg); 506 #ifndef _LP64 507 // borrow rdi from locals 508 __ get_thread(rdi); 509 __ get_vm_result_2(flags, rdi); 510 __ restore_locals(); 511 #else 512 __ get_vm_result_2(flags, r15_thread); 513 #endif 514 // VMr = obj = base address to find primitive value to push 515 // VMr2 = flags = (tos, off) using format of CPCE::_flags 516 __ movl(off, flags); 517 __ andl(off, ConstantPoolCacheEntry::field_index_mask); 518 const Address field(obj, off, Address::times_1, 0*wordSize); 519 520 // What sort of thing are we loading? 521 __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift); 522 __ andl(flags, ConstantPoolCacheEntry::tos_state_mask); 523 524 switch (bytecode()) { 525 case Bytecodes::_ldc: 526 case Bytecodes::_ldc_w: 527 { 528 // tos in (itos, ftos, stos, btos, ctos, ztos) 529 Label notInt, notFloat, notShort, notByte, notChar, notBool; 530 __ cmpl(flags, itos); 531 __ jccb(Assembler::notEqual, notInt); 532 // itos 533 __ movl(rax, field); 534 __ push(itos); 535 __ jmp(Done); 536 537 __ bind(notInt); 538 __ cmpl(flags, ftos); 539 __ jccb(Assembler::notEqual, notFloat); 540 // ftos 541 __ load_float(field); 542 __ push(ftos); 543 __ jmp(Done); 544 545 __ bind(notFloat); 546 __ cmpl(flags, stos); 547 __ jccb(Assembler::notEqual, notShort); 548 // stos 549 __ load_signed_short(rax, field); 550 __ push(stos); 551 __ jmp(Done); 552 553 __ bind(notShort); 554 __ cmpl(flags, btos); 555 __ jccb(Assembler::notEqual, notByte); 556 // btos 557 __ load_signed_byte(rax, field); 558 __ push(btos); 559 __ jmp(Done); 560 561 __ bind(notByte); 562 __ cmpl(flags, ctos); 563 __ jccb(Assembler::notEqual, notChar); 564 // ctos 565 __ load_unsigned_short(rax, field); 566 __ push(ctos); 567 __ jmp(Done); 568 569 __ bind(notChar); 570 __ cmpl(flags, ztos); 571 __ jccb(Assembler::notEqual, notBool); 572 // ztos 573 __ load_signed_byte(rax, field); 574 __ push(ztos); 575 __ jmp(Done); 576 577 __ bind(notBool); 578 break; 579 } 580 581 case Bytecodes::_ldc2_w: 582 { 583 Label notLong, notDouble; 584 __ cmpl(flags, ltos); 585 __ jccb(Assembler::notEqual, notLong); 586 // ltos 587 // Loading high word first because movptr clobbers rax 588 NOT_LP64(__ movptr(rdx, field.plus_disp(4))); 589 __ movptr(rax, field); 590 __ push(ltos); 591 __ jmp(Done); 592 593 __ bind(notLong); 594 __ cmpl(flags, dtos); 595 __ jccb(Assembler::notEqual, notDouble); 596 // dtos 597 __ load_double(field); 598 __ push(dtos); 599 __ jmp(Done); 600 601 __ bind(notDouble); 602 break; 603 } 604 605 default: 606 ShouldNotReachHere(); 607 } 608 609 __ stop("bad ldc/condy"); 610 } 611 612 void TemplateTable::locals_index(Register reg, int offset) { 613 __ load_unsigned_byte(reg, at_bcp(offset)); 614 __ negptr(reg); 615 } 616 617 void TemplateTable::iload() { 618 iload_internal(); 619 } 620 621 void TemplateTable::nofast_iload() { 622 iload_internal(may_not_rewrite); 623 } 624 625 void TemplateTable::iload_internal(RewriteControl rc) { 626 transition(vtos, itos); 627 if (RewriteFrequentPairs && rc == may_rewrite) { 628 Label rewrite, done; 629 const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 630 LP64_ONLY(assert(rbx != bc, "register damaged")); 631 632 // get next byte 633 __ load_unsigned_byte(rbx, 634 at_bcp(Bytecodes::length_for(Bytecodes::_iload))); 635 // if _iload, wait to rewrite to iload2. We only want to rewrite the 636 // last two iloads in a pair. Comparing against fast_iload means that 637 // the next bytecode is neither an iload or a caload, and therefore 638 // an iload pair. 639 __ cmpl(rbx, Bytecodes::_iload); 640 __ jcc(Assembler::equal, done); 641 642 __ cmpl(rbx, Bytecodes::_fast_iload); 643 __ movl(bc, Bytecodes::_fast_iload2); 644 645 __ jccb(Assembler::equal, rewrite); 646 647 // if _caload, rewrite to fast_icaload 648 __ cmpl(rbx, Bytecodes::_caload); 649 __ movl(bc, Bytecodes::_fast_icaload); 650 __ jccb(Assembler::equal, rewrite); 651 652 // rewrite so iload doesn't check again. 653 __ movl(bc, Bytecodes::_fast_iload); 654 655 // rewrite 656 // bc: fast bytecode 657 __ bind(rewrite); 658 patch_bytecode(Bytecodes::_iload, bc, rbx, false); 659 __ bind(done); 660 } 661 662 // Get the local value into tos 663 locals_index(rbx); 664 __ movl(rax, iaddress(rbx)); 665 } 666 667 void TemplateTable::fast_iload2() { 668 transition(vtos, itos); 669 locals_index(rbx); 670 __ movl(rax, iaddress(rbx)); 671 __ push(itos); 672 locals_index(rbx, 3); 673 __ movl(rax, iaddress(rbx)); 674 } 675 676 void TemplateTable::fast_iload() { 677 transition(vtos, itos); 678 locals_index(rbx); 679 __ movl(rax, iaddress(rbx)); 680 } 681 682 void TemplateTable::lload() { 683 transition(vtos, ltos); 684 locals_index(rbx); 685 __ movptr(rax, laddress(rbx)); 686 NOT_LP64(__ movl(rdx, haddress(rbx))); 687 } 688 689 void TemplateTable::fload() { 690 transition(vtos, ftos); 691 locals_index(rbx); 692 __ load_float(faddress(rbx)); 693 } 694 695 void TemplateTable::dload() { 696 transition(vtos, dtos); 697 locals_index(rbx); 698 __ load_double(daddress(rbx)); 699 } 700 701 void TemplateTable::aload() { 702 transition(vtos, atos); 703 locals_index(rbx); 704 __ movptr(rax, aaddress(rbx)); 705 } 706 707 void TemplateTable::locals_index_wide(Register reg) { 708 __ load_unsigned_short(reg, at_bcp(2)); 709 __ bswapl(reg); 710 __ shrl(reg, 16); 711 __ negptr(reg); 712 } 713 714 void TemplateTable::wide_iload() { 715 transition(vtos, itos); 716 locals_index_wide(rbx); 717 __ movl(rax, iaddress(rbx)); 718 } 719 720 void TemplateTable::wide_lload() { 721 transition(vtos, ltos); 722 locals_index_wide(rbx); 723 __ movptr(rax, laddress(rbx)); 724 NOT_LP64(__ movl(rdx, haddress(rbx))); 725 } 726 727 void TemplateTable::wide_fload() { 728 transition(vtos, ftos); 729 locals_index_wide(rbx); 730 __ load_float(faddress(rbx)); 731 } 732 733 void TemplateTable::wide_dload() { 734 transition(vtos, dtos); 735 locals_index_wide(rbx); 736 __ load_double(daddress(rbx)); 737 } 738 739 void TemplateTable::wide_aload() { 740 transition(vtos, atos); 741 locals_index_wide(rbx); 742 __ movptr(rax, aaddress(rbx)); 743 } 744 745 void TemplateTable::index_check(Register array, Register index) { 746 // Pop ptr into array 747 __ pop_ptr(array); 748 index_check_without_pop(array, index); 749 } 750 751 void TemplateTable::index_check_without_pop(Register array, Register index) { 752 // destroys rbx 753 // check array 754 __ null_check(array, arrayOopDesc::length_offset_in_bytes()); 755 // sign extend index for use by indexed load 756 __ movl2ptr(index, index); 757 // check index 758 __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes())); 759 if (index != rbx) { 760 // ??? convention: move aberrant index into rbx for exception message 761 assert(rbx != array, "different registers"); 762 __ movl(rbx, index); 763 } 764 Label skip; 765 __ jccb(Assembler::below, skip); 766 // Pass array to create more detailed exceptions. 767 __ mov(NOT_LP64(rax) LP64_ONLY(c_rarg1), array); 768 __ jump(ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry)); 769 __ bind(skip); 770 } 771 772 void TemplateTable::iaload() { 773 transition(itos, itos); 774 // rax: index 775 // rdx: array 776 index_check(rdx, rax); // kills rbx 777 __ access_load_at(T_INT, IN_HEAP | IS_ARRAY, rax, 778 Address(rdx, rax, Address::times_4, 779 arrayOopDesc::base_offset_in_bytes(T_INT)), 780 noreg, noreg); 781 } 782 783 void TemplateTable::laload() { 784 transition(itos, ltos); 785 // rax: index 786 // rdx: array 787 index_check(rdx, rax); // kills rbx 788 NOT_LP64(__ mov(rbx, rax)); 789 // rbx,: index 790 __ access_load_at(T_LONG, IN_HEAP | IS_ARRAY, noreg /* ltos */, 791 Address(rdx, rbx, Address::times_8, 792 arrayOopDesc::base_offset_in_bytes(T_LONG)), 793 noreg, noreg); 794 } 795 796 797 798 void TemplateTable::faload() { 799 transition(itos, ftos); 800 // rax: index 801 // rdx: array 802 index_check(rdx, rax); // kills rbx 803 __ access_load_at(T_FLOAT, IN_HEAP | IS_ARRAY, noreg /* ftos */, 804 Address(rdx, rax, 805 Address::times_4, 806 arrayOopDesc::base_offset_in_bytes(T_FLOAT)), 807 noreg, noreg); 808 } 809 810 void TemplateTable::daload() { 811 transition(itos, dtos); 812 // rax: index 813 // rdx: array 814 index_check(rdx, rax); // kills rbx 815 __ access_load_at(T_DOUBLE, IN_HEAP | IS_ARRAY, noreg /* dtos */, 816 Address(rdx, rax, 817 Address::times_8, 818 arrayOopDesc::base_offset_in_bytes(T_DOUBLE)), 819 noreg, noreg); 820 } 821 822 void TemplateTable::aaload() { 823 transition(itos, atos); 824 // rax: index 825 // rdx: array 826 index_check(rdx, rax); // kills rbx 827 do_oop_load(_masm, 828 Address(rdx, rax, 829 UseCompressedOops ? Address::times_4 : Address::times_ptr, 830 arrayOopDesc::base_offset_in_bytes(T_OBJECT)), 831 rax, 832 IS_ARRAY); 833 } 834 835 void TemplateTable::baload() { 836 transition(itos, itos); 837 // rax: index 838 // rdx: array 839 index_check(rdx, rax); // kills rbx 840 __ access_load_at(T_BYTE, IN_HEAP | IS_ARRAY, rax, 841 Address(rdx, rax, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)), 842 noreg, noreg); 843 } 844 845 void TemplateTable::caload() { 846 transition(itos, itos); 847 // rax: index 848 // rdx: array 849 index_check(rdx, rax); // kills rbx 850 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, rax, 851 Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)), 852 noreg, noreg); 853 } 854 855 // iload followed by caload frequent pair 856 void TemplateTable::fast_icaload() { 857 transition(vtos, itos); 858 // load index out of locals 859 locals_index(rbx); 860 __ movl(rax, iaddress(rbx)); 861 862 // rax: index 863 // rdx: array 864 index_check(rdx, rax); // kills rbx 865 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, rax, 866 Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)), 867 noreg, noreg); 868 } 869 870 871 void TemplateTable::saload() { 872 transition(itos, itos); 873 // rax: index 874 // rdx: array 875 index_check(rdx, rax); // kills rbx 876 __ access_load_at(T_SHORT, IN_HEAP | IS_ARRAY, rax, 877 Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_SHORT)), 878 noreg, noreg); 879 } 880 881 void TemplateTable::iload(int n) { 882 transition(vtos, itos); 883 __ movl(rax, iaddress(n)); 884 } 885 886 void TemplateTable::lload(int n) { 887 transition(vtos, ltos); 888 __ movptr(rax, laddress(n)); 889 NOT_LP64(__ movptr(rdx, haddress(n))); 890 } 891 892 void TemplateTable::fload(int n) { 893 transition(vtos, ftos); 894 __ load_float(faddress(n)); 895 } 896 897 void TemplateTable::dload(int n) { 898 transition(vtos, dtos); 899 __ load_double(daddress(n)); 900 } 901 902 void TemplateTable::aload(int n) { 903 transition(vtos, atos); 904 __ movptr(rax, aaddress(n)); 905 } 906 907 void TemplateTable::aload_0() { 908 aload_0_internal(); 909 } 910 911 void TemplateTable::nofast_aload_0() { 912 aload_0_internal(may_not_rewrite); 913 } 914 915 void TemplateTable::aload_0_internal(RewriteControl rc) { 916 transition(vtos, atos); 917 // According to bytecode histograms, the pairs: 918 // 919 // _aload_0, _fast_igetfield 920 // _aload_0, _fast_agetfield 921 // _aload_0, _fast_fgetfield 922 // 923 // occur frequently. If RewriteFrequentPairs is set, the (slow) 924 // _aload_0 bytecode checks if the next bytecode is either 925 // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then 926 // rewrites the current bytecode into a pair bytecode; otherwise it 927 // rewrites the current bytecode into _fast_aload_0 that doesn't do 928 // the pair check anymore. 929 // 930 // Note: If the next bytecode is _getfield, the rewrite must be 931 // delayed, otherwise we may miss an opportunity for a pair. 932 // 933 // Also rewrite frequent pairs 934 // aload_0, aload_1 935 // aload_0, iload_1 936 // These bytecodes with a small amount of code are most profitable 937 // to rewrite 938 if (RewriteFrequentPairs && rc == may_rewrite) { 939 Label rewrite, done; 940 941 const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 942 LP64_ONLY(assert(rbx != bc, "register damaged")); 943 944 // get next byte 945 __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0))); 946 947 // if _getfield then wait with rewrite 948 __ cmpl(rbx, Bytecodes::_getfield); 949 __ jcc(Assembler::equal, done); 950 951 // if _igetfield then rewrite to _fast_iaccess_0 952 assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 953 __ cmpl(rbx, Bytecodes::_fast_igetfield); 954 __ movl(bc, Bytecodes::_fast_iaccess_0); 955 __ jccb(Assembler::equal, rewrite); 956 957 // if _agetfield then rewrite to _fast_aaccess_0 958 assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 959 __ cmpl(rbx, Bytecodes::_fast_agetfield); 960 __ movl(bc, Bytecodes::_fast_aaccess_0); 961 __ jccb(Assembler::equal, rewrite); 962 963 // if _fgetfield then rewrite to _fast_faccess_0 964 assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 965 __ cmpl(rbx, Bytecodes::_fast_fgetfield); 966 __ movl(bc, Bytecodes::_fast_faccess_0); 967 __ jccb(Assembler::equal, rewrite); 968 969 // else rewrite to _fast_aload0 970 assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition"); 971 __ movl(bc, Bytecodes::_fast_aload_0); 972 973 // rewrite 974 // bc: fast bytecode 975 __ bind(rewrite); 976 patch_bytecode(Bytecodes::_aload_0, bc, rbx, false); 977 978 __ bind(done); 979 } 980 981 // Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop). 982 aload(0); 983 } 984 985 void TemplateTable::istore() { 986 transition(itos, vtos); 987 locals_index(rbx); 988 __ movl(iaddress(rbx), rax); 989 } 990 991 992 void TemplateTable::lstore() { 993 transition(ltos, vtos); 994 locals_index(rbx); 995 __ movptr(laddress(rbx), rax); 996 NOT_LP64(__ movptr(haddress(rbx), rdx)); 997 } 998 999 void TemplateTable::fstore() { 1000 transition(ftos, vtos); 1001 locals_index(rbx); 1002 __ store_float(faddress(rbx)); 1003 } 1004 1005 void TemplateTable::dstore() { 1006 transition(dtos, vtos); 1007 locals_index(rbx); 1008 __ store_double(daddress(rbx)); 1009 } 1010 1011 void TemplateTable::astore() { 1012 transition(vtos, vtos); 1013 __ pop_ptr(rax); 1014 locals_index(rbx); 1015 __ movptr(aaddress(rbx), rax); 1016 } 1017 1018 void TemplateTable::wide_istore() { 1019 transition(vtos, vtos); 1020 __ pop_i(); 1021 locals_index_wide(rbx); 1022 __ movl(iaddress(rbx), rax); 1023 } 1024 1025 void TemplateTable::wide_lstore() { 1026 transition(vtos, vtos); 1027 NOT_LP64(__ pop_l(rax, rdx)); 1028 LP64_ONLY(__ pop_l()); 1029 locals_index_wide(rbx); 1030 __ movptr(laddress(rbx), rax); 1031 NOT_LP64(__ movl(haddress(rbx), rdx)); 1032 } 1033 1034 void TemplateTable::wide_fstore() { 1035 #ifdef _LP64 1036 transition(vtos, vtos); 1037 __ pop_f(xmm0); 1038 locals_index_wide(rbx); 1039 __ movflt(faddress(rbx), xmm0); 1040 #else 1041 wide_istore(); 1042 #endif 1043 } 1044 1045 void TemplateTable::wide_dstore() { 1046 #ifdef _LP64 1047 transition(vtos, vtos); 1048 __ pop_d(xmm0); 1049 locals_index_wide(rbx); 1050 __ movdbl(daddress(rbx), xmm0); 1051 #else 1052 wide_lstore(); 1053 #endif 1054 } 1055 1056 void TemplateTable::wide_astore() { 1057 transition(vtos, vtos); 1058 __ pop_ptr(rax); 1059 locals_index_wide(rbx); 1060 __ movptr(aaddress(rbx), rax); 1061 } 1062 1063 void TemplateTable::iastore() { 1064 transition(itos, vtos); 1065 __ pop_i(rbx); 1066 // rax: value 1067 // rbx: index 1068 // rdx: array 1069 index_check(rdx, rbx); // prefer index in rbx 1070 __ access_store_at(T_INT, IN_HEAP | IS_ARRAY, 1071 Address(rdx, rbx, Address::times_4, 1072 arrayOopDesc::base_offset_in_bytes(T_INT)), 1073 rax, noreg, noreg, noreg); 1074 } 1075 1076 void TemplateTable::lastore() { 1077 transition(ltos, vtos); 1078 __ pop_i(rbx); 1079 // rax,: low(value) 1080 // rcx: array 1081 // rdx: high(value) 1082 index_check(rcx, rbx); // prefer index in rbx, 1083 // rbx,: index 1084 __ access_store_at(T_LONG, IN_HEAP | IS_ARRAY, 1085 Address(rcx, rbx, Address::times_8, 1086 arrayOopDesc::base_offset_in_bytes(T_LONG)), 1087 noreg /* ltos */, noreg, noreg, noreg); 1088 } 1089 1090 1091 void TemplateTable::fastore() { 1092 transition(ftos, vtos); 1093 __ pop_i(rbx); 1094 // value is in UseSSE >= 1 ? xmm0 : ST(0) 1095 // rbx: index 1096 // rdx: array 1097 index_check(rdx, rbx); // prefer index in rbx 1098 __ access_store_at(T_FLOAT, IN_HEAP | IS_ARRAY, 1099 Address(rdx, rbx, Address::times_4, 1100 arrayOopDesc::base_offset_in_bytes(T_FLOAT)), 1101 noreg /* ftos */, noreg, noreg, noreg); 1102 } 1103 1104 void TemplateTable::dastore() { 1105 transition(dtos, vtos); 1106 __ pop_i(rbx); 1107 // value is in UseSSE >= 2 ? xmm0 : ST(0) 1108 // rbx: index 1109 // rdx: array 1110 index_check(rdx, rbx); // prefer index in rbx 1111 __ access_store_at(T_DOUBLE, IN_HEAP | IS_ARRAY, 1112 Address(rdx, rbx, Address::times_8, 1113 arrayOopDesc::base_offset_in_bytes(T_DOUBLE)), 1114 noreg /* dtos */, noreg, noreg, noreg); 1115 } 1116 1117 void TemplateTable::aastore() { 1118 Label is_null, ok_is_subtype, done; 1119 transition(vtos, vtos); 1120 // stack: ..., array, index, value 1121 __ movptr(rax, at_tos()); // value 1122 __ movl(rcx, at_tos_p1()); // index 1123 __ movptr(rdx, at_tos_p2()); // array 1124 1125 Address element_address(rdx, rcx, 1126 UseCompressedOops? Address::times_4 : Address::times_ptr, 1127 arrayOopDesc::base_offset_in_bytes(T_OBJECT)); 1128 1129 index_check_without_pop(rdx, rcx); // kills rbx 1130 __ testptr(rax, rax); 1131 __ jcc(Assembler::zero, is_null); 1132 1133 // Move subklass into rbx 1134 __ load_klass(rbx, rax, rscratch1); 1135 // Move superklass into rax 1136 __ load_klass(rax, rdx, rscratch1); 1137 __ movptr(rax, Address(rax, 1138 ObjArrayKlass::element_klass_offset())); 1139 1140 // Generate subtype check. Blows rcx, rdi 1141 // Superklass in rax. Subklass in rbx. 1142 __ gen_subtype_check(rbx, ok_is_subtype); 1143 1144 // Come here on failure 1145 // object is at TOS 1146 __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry)); 1147 1148 // Come here on success 1149 __ bind(ok_is_subtype); 1150 1151 // Get the value we will store 1152 __ movptr(rax, at_tos()); 1153 __ movl(rcx, at_tos_p1()); // index 1154 // Now store using the appropriate barrier 1155 do_oop_store(_masm, element_address, rax, IS_ARRAY); 1156 __ jmp(done); 1157 1158 // Have a NULL in rax, rdx=array, ecx=index. Store NULL at ary[idx] 1159 __ bind(is_null); 1160 __ profile_null_seen(rbx); 1161 1162 // Store a NULL 1163 do_oop_store(_masm, element_address, noreg, IS_ARRAY); 1164 1165 // Pop stack arguments 1166 __ bind(done); 1167 __ addptr(rsp, 3 * Interpreter::stackElementSize); 1168 } 1169 1170 void TemplateTable::bastore() { 1171 transition(itos, vtos); 1172 __ pop_i(rbx); 1173 // rax: value 1174 // rbx: index 1175 // rdx: array 1176 index_check(rdx, rbx); // prefer index in rbx 1177 // Need to check whether array is boolean or byte 1178 // since both types share the bastore bytecode. 1179 __ load_klass(rcx, rdx, rscratch1); 1180 __ movl(rcx, Address(rcx, Klass::layout_helper_offset())); 1181 int diffbit = Klass::layout_helper_boolean_diffbit(); 1182 __ testl(rcx, diffbit); 1183 Label L_skip; 1184 __ jccb(Assembler::zero, L_skip); 1185 __ andl(rax, 1); // if it is a T_BOOLEAN array, mask the stored value to 0/1 1186 __ bind(L_skip); 1187 __ access_store_at(T_BYTE, IN_HEAP | IS_ARRAY, 1188 Address(rdx, rbx,Address::times_1, 1189 arrayOopDesc::base_offset_in_bytes(T_BYTE)), 1190 rax, noreg, noreg, noreg); 1191 } 1192 1193 void TemplateTable::castore() { 1194 transition(itos, vtos); 1195 __ pop_i(rbx); 1196 // rax: value 1197 // rbx: index 1198 // rdx: array 1199 index_check(rdx, rbx); // prefer index in rbx 1200 __ access_store_at(T_CHAR, IN_HEAP | IS_ARRAY, 1201 Address(rdx, rbx, Address::times_2, 1202 arrayOopDesc::base_offset_in_bytes(T_CHAR)), 1203 rax, noreg, noreg, noreg); 1204 } 1205 1206 1207 void TemplateTable::sastore() { 1208 castore(); 1209 } 1210 1211 void TemplateTable::istore(int n) { 1212 transition(itos, vtos); 1213 __ movl(iaddress(n), rax); 1214 } 1215 1216 void TemplateTable::lstore(int n) { 1217 transition(ltos, vtos); 1218 __ movptr(laddress(n), rax); 1219 NOT_LP64(__ movptr(haddress(n), rdx)); 1220 } 1221 1222 void TemplateTable::fstore(int n) { 1223 transition(ftos, vtos); 1224 __ store_float(faddress(n)); 1225 } 1226 1227 void TemplateTable::dstore(int n) { 1228 transition(dtos, vtos); 1229 __ store_double(daddress(n)); 1230 } 1231 1232 1233 void TemplateTable::astore(int n) { 1234 transition(vtos, vtos); 1235 __ pop_ptr(rax); 1236 __ movptr(aaddress(n), rax); 1237 } 1238 1239 void TemplateTable::pop() { 1240 transition(vtos, vtos); 1241 __ addptr(rsp, Interpreter::stackElementSize); 1242 } 1243 1244 void TemplateTable::pop2() { 1245 transition(vtos, vtos); 1246 __ addptr(rsp, 2 * Interpreter::stackElementSize); 1247 } 1248 1249 1250 void TemplateTable::dup() { 1251 transition(vtos, vtos); 1252 __ load_ptr(0, rax); 1253 __ push_ptr(rax); 1254 // stack: ..., a, a 1255 } 1256 1257 void TemplateTable::dup_x1() { 1258 transition(vtos, vtos); 1259 // stack: ..., a, b 1260 __ load_ptr( 0, rax); // load b 1261 __ load_ptr( 1, rcx); // load a 1262 __ store_ptr(1, rax); // store b 1263 __ store_ptr(0, rcx); // store a 1264 __ push_ptr(rax); // push b 1265 // stack: ..., b, a, b 1266 } 1267 1268 void TemplateTable::dup_x2() { 1269 transition(vtos, vtos); 1270 // stack: ..., a, b, c 1271 __ load_ptr( 0, rax); // load c 1272 __ load_ptr( 2, rcx); // load a 1273 __ store_ptr(2, rax); // store c in a 1274 __ push_ptr(rax); // push c 1275 // stack: ..., c, b, c, c 1276 __ load_ptr( 2, rax); // load b 1277 __ store_ptr(2, rcx); // store a in b 1278 // stack: ..., c, a, c, c 1279 __ store_ptr(1, rax); // store b in c 1280 // stack: ..., c, a, b, c 1281 } 1282 1283 void TemplateTable::dup2() { 1284 transition(vtos, vtos); 1285 // stack: ..., a, b 1286 __ load_ptr(1, rax); // load a 1287 __ push_ptr(rax); // push a 1288 __ load_ptr(1, rax); // load b 1289 __ push_ptr(rax); // push b 1290 // stack: ..., a, b, a, b 1291 } 1292 1293 1294 void TemplateTable::dup2_x1() { 1295 transition(vtos, vtos); 1296 // stack: ..., a, b, c 1297 __ load_ptr( 0, rcx); // load c 1298 __ load_ptr( 1, rax); // load b 1299 __ push_ptr(rax); // push b 1300 __ push_ptr(rcx); // push c 1301 // stack: ..., a, b, c, b, c 1302 __ store_ptr(3, rcx); // store c in b 1303 // stack: ..., a, c, c, b, c 1304 __ load_ptr( 4, rcx); // load a 1305 __ store_ptr(2, rcx); // store a in 2nd c 1306 // stack: ..., a, c, a, b, c 1307 __ store_ptr(4, rax); // store b in a 1308 // stack: ..., b, c, a, b, c 1309 } 1310 1311 void TemplateTable::dup2_x2() { 1312 transition(vtos, vtos); 1313 // stack: ..., a, b, c, d 1314 __ load_ptr( 0, rcx); // load d 1315 __ load_ptr( 1, rax); // load c 1316 __ push_ptr(rax); // push c 1317 __ push_ptr(rcx); // push d 1318 // stack: ..., a, b, c, d, c, d 1319 __ load_ptr( 4, rax); // load b 1320 __ store_ptr(2, rax); // store b in d 1321 __ store_ptr(4, rcx); // store d in b 1322 // stack: ..., a, d, c, b, c, d 1323 __ load_ptr( 5, rcx); // load a 1324 __ load_ptr( 3, rax); // load c 1325 __ store_ptr(3, rcx); // store a in c 1326 __ store_ptr(5, rax); // store c in a 1327 // stack: ..., c, d, a, b, c, d 1328 } 1329 1330 void TemplateTable::swap() { 1331 transition(vtos, vtos); 1332 // stack: ..., a, b 1333 __ load_ptr( 1, rcx); // load a 1334 __ load_ptr( 0, rax); // load b 1335 __ store_ptr(0, rcx); // store a in b 1336 __ store_ptr(1, rax); // store b in a 1337 // stack: ..., b, a 1338 } 1339 1340 void TemplateTable::iop2(Operation op) { 1341 transition(itos, itos); 1342 switch (op) { 1343 case add : __ pop_i(rdx); __ addl (rax, rdx); break; 1344 case sub : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break; 1345 case mul : __ pop_i(rdx); __ imull(rax, rdx); break; 1346 case _and : __ pop_i(rdx); __ andl (rax, rdx); break; 1347 case _or : __ pop_i(rdx); __ orl (rax, rdx); break; 1348 case _xor : __ pop_i(rdx); __ xorl (rax, rdx); break; 1349 case shl : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax); break; 1350 case shr : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax); break; 1351 case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax); break; 1352 default : ShouldNotReachHere(); 1353 } 1354 } 1355 1356 void TemplateTable::lop2(Operation op) { 1357 transition(ltos, ltos); 1358 #ifdef _LP64 1359 switch (op) { 1360 case add : __ pop_l(rdx); __ addptr(rax, rdx); break; 1361 case sub : __ mov(rdx, rax); __ pop_l(rax); __ subptr(rax, rdx); break; 1362 case _and : __ pop_l(rdx); __ andptr(rax, rdx); break; 1363 case _or : __ pop_l(rdx); __ orptr (rax, rdx); break; 1364 case _xor : __ pop_l(rdx); __ xorptr(rax, rdx); break; 1365 default : ShouldNotReachHere(); 1366 } 1367 #else 1368 __ pop_l(rbx, rcx); 1369 switch (op) { 1370 case add : __ addl(rax, rbx); __ adcl(rdx, rcx); break; 1371 case sub : __ subl(rbx, rax); __ sbbl(rcx, rdx); 1372 __ mov (rax, rbx); __ mov (rdx, rcx); break; 1373 case _and : __ andl(rax, rbx); __ andl(rdx, rcx); break; 1374 case _or : __ orl (rax, rbx); __ orl (rdx, rcx); break; 1375 case _xor : __ xorl(rax, rbx); __ xorl(rdx, rcx); break; 1376 default : ShouldNotReachHere(); 1377 } 1378 #endif 1379 } 1380 1381 void TemplateTable::idiv() { 1382 transition(itos, itos); 1383 __ movl(rcx, rax); 1384 __ pop_i(rax); 1385 // Note: could xor rax and ecx and compare with (-1 ^ min_int). If 1386 // they are not equal, one could do a normal division (no correction 1387 // needed), which may speed up this implementation for the common case. 1388 // (see also JVM spec., p.243 & p.271) 1389 __ corrected_idivl(rcx); 1390 } 1391 1392 void TemplateTable::irem() { 1393 transition(itos, itos); 1394 __ movl(rcx, rax); 1395 __ pop_i(rax); 1396 // Note: could xor rax and ecx and compare with (-1 ^ min_int). If 1397 // they are not equal, one could do a normal division (no correction 1398 // needed), which may speed up this implementation for the common case. 1399 // (see also JVM spec., p.243 & p.271) 1400 __ corrected_idivl(rcx); 1401 __ movl(rax, rdx); 1402 } 1403 1404 void TemplateTable::lmul() { 1405 transition(ltos, ltos); 1406 #ifdef _LP64 1407 __ pop_l(rdx); 1408 __ imulq(rax, rdx); 1409 #else 1410 __ pop_l(rbx, rcx); 1411 __ push(rcx); __ push(rbx); 1412 __ push(rdx); __ push(rax); 1413 __ lmul(2 * wordSize, 0); 1414 __ addptr(rsp, 4 * wordSize); // take off temporaries 1415 #endif 1416 } 1417 1418 void TemplateTable::ldiv() { 1419 transition(ltos, ltos); 1420 #ifdef _LP64 1421 __ mov(rcx, rax); 1422 __ pop_l(rax); 1423 // generate explicit div0 check 1424 __ testq(rcx, rcx); 1425 __ jump_cc(Assembler::zero, 1426 ExternalAddress(Interpreter::_throw_ArithmeticException_entry)); 1427 // Note: could xor rax and rcx and compare with (-1 ^ min_int). If 1428 // they are not equal, one could do a normal division (no correction 1429 // needed), which may speed up this implementation for the common case. 1430 // (see also JVM spec., p.243 & p.271) 1431 __ corrected_idivq(rcx); // kills rbx 1432 #else 1433 __ pop_l(rbx, rcx); 1434 __ push(rcx); __ push(rbx); 1435 __ push(rdx); __ push(rax); 1436 // check if y = 0 1437 __ orl(rax, rdx); 1438 __ jump_cc(Assembler::zero, 1439 ExternalAddress(Interpreter::_throw_ArithmeticException_entry)); 1440 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::ldiv)); 1441 __ addptr(rsp, 4 * wordSize); // take off temporaries 1442 #endif 1443 } 1444 1445 void TemplateTable::lrem() { 1446 transition(ltos, ltos); 1447 #ifdef _LP64 1448 __ mov(rcx, rax); 1449 __ pop_l(rax); 1450 __ testq(rcx, rcx); 1451 __ jump_cc(Assembler::zero, 1452 ExternalAddress(Interpreter::_throw_ArithmeticException_entry)); 1453 // Note: could xor rax and rcx and compare with (-1 ^ min_int). If 1454 // they are not equal, one could do a normal division (no correction 1455 // needed), which may speed up this implementation for the common case. 1456 // (see also JVM spec., p.243 & p.271) 1457 __ corrected_idivq(rcx); // kills rbx 1458 __ mov(rax, rdx); 1459 #else 1460 __ pop_l(rbx, rcx); 1461 __ push(rcx); __ push(rbx); 1462 __ push(rdx); __ push(rax); 1463 // check if y = 0 1464 __ orl(rax, rdx); 1465 __ jump_cc(Assembler::zero, 1466 ExternalAddress(Interpreter::_throw_ArithmeticException_entry)); 1467 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::lrem)); 1468 __ addptr(rsp, 4 * wordSize); 1469 #endif 1470 } 1471 1472 void TemplateTable::lshl() { 1473 transition(itos, ltos); 1474 __ movl(rcx, rax); // get shift count 1475 #ifdef _LP64 1476 __ pop_l(rax); // get shift value 1477 __ shlq(rax); 1478 #else 1479 __ pop_l(rax, rdx); // get shift value 1480 __ lshl(rdx, rax); 1481 #endif 1482 } 1483 1484 void TemplateTable::lshr() { 1485 #ifdef _LP64 1486 transition(itos, ltos); 1487 __ movl(rcx, rax); // get shift count 1488 __ pop_l(rax); // get shift value 1489 __ sarq(rax); 1490 #else 1491 transition(itos, ltos); 1492 __ mov(rcx, rax); // get shift count 1493 __ pop_l(rax, rdx); // get shift value 1494 __ lshr(rdx, rax, true); 1495 #endif 1496 } 1497 1498 void TemplateTable::lushr() { 1499 transition(itos, ltos); 1500 #ifdef _LP64 1501 __ movl(rcx, rax); // get shift count 1502 __ pop_l(rax); // get shift value 1503 __ shrq(rax); 1504 #else 1505 __ mov(rcx, rax); // get shift count 1506 __ pop_l(rax, rdx); // get shift value 1507 __ lshr(rdx, rax); 1508 #endif 1509 } 1510 1511 void TemplateTable::fop2(Operation op) { 1512 transition(ftos, ftos); 1513 1514 if (UseSSE >= 1) { 1515 switch (op) { 1516 case add: 1517 __ addss(xmm0, at_rsp()); 1518 __ addptr(rsp, Interpreter::stackElementSize); 1519 break; 1520 case sub: 1521 __ movflt(xmm1, xmm0); 1522 __ pop_f(xmm0); 1523 __ subss(xmm0, xmm1); 1524 break; 1525 case mul: 1526 __ mulss(xmm0, at_rsp()); 1527 __ addptr(rsp, Interpreter::stackElementSize); 1528 break; 1529 case div: 1530 __ movflt(xmm1, xmm0); 1531 __ pop_f(xmm0); 1532 __ divss(xmm0, xmm1); 1533 break; 1534 case rem: 1535 // On x86_64 platforms the SharedRuntime::frem method is called to perform the 1536 // modulo operation. The frem method calls the function 1537 // double fmod(double x, double y) in math.h. The documentation of fmod states: 1538 // "If x or y is a NaN, a NaN is returned." without specifying what type of NaN 1539 // (signalling or quiet) is returned. 1540 // 1541 // On x86_32 platforms the FPU is used to perform the modulo operation. The 1542 // reason is that on 32-bit Windows the sign of modulo operations diverges from 1543 // what is considered the standard (e.g., -0.0f % -3.14f is 0.0f (and not -0.0f). 1544 // The fprem instruction used on x86_32 is functionally equivalent to 1545 // SharedRuntime::frem in that it returns a NaN. 1546 #ifdef _LP64 1547 __ movflt(xmm1, xmm0); 1548 __ pop_f(xmm0); 1549 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), 2); 1550 #else // !_LP64 1551 __ push_f(xmm0); 1552 __ pop_f(); 1553 __ fld_s(at_rsp()); 1554 __ fremr(rax); 1555 __ f2ieee(); 1556 __ pop(rax); // pop second operand off the stack 1557 __ push_f(); 1558 __ pop_f(xmm0); 1559 #endif // _LP64 1560 break; 1561 default: 1562 ShouldNotReachHere(); 1563 break; 1564 } 1565 } else { 1566 #ifdef _LP64 1567 ShouldNotReachHere(); 1568 #else // !_LP64 1569 switch (op) { 1570 case add: __ fadd_s (at_rsp()); break; 1571 case sub: __ fsubr_s(at_rsp()); break; 1572 case mul: __ fmul_s (at_rsp()); break; 1573 case div: __ fdivr_s(at_rsp()); break; 1574 case rem: __ fld_s (at_rsp()); __ fremr(rax); break; 1575 default : ShouldNotReachHere(); 1576 } 1577 __ f2ieee(); 1578 __ pop(rax); // pop second operand off the stack 1579 #endif // _LP64 1580 } 1581 } 1582 1583 void TemplateTable::dop2(Operation op) { 1584 transition(dtos, dtos); 1585 if (UseSSE >= 2) { 1586 switch (op) { 1587 case add: 1588 __ addsd(xmm0, at_rsp()); 1589 __ addptr(rsp, 2 * Interpreter::stackElementSize); 1590 break; 1591 case sub: 1592 __ movdbl(xmm1, xmm0); 1593 __ pop_d(xmm0); 1594 __ subsd(xmm0, xmm1); 1595 break; 1596 case mul: 1597 __ mulsd(xmm0, at_rsp()); 1598 __ addptr(rsp, 2 * Interpreter::stackElementSize); 1599 break; 1600 case div: 1601 __ movdbl(xmm1, xmm0); 1602 __ pop_d(xmm0); 1603 __ divsd(xmm0, xmm1); 1604 break; 1605 case rem: 1606 // Similar to fop2(), the modulo operation is performed using the 1607 // SharedRuntime::drem method (on x86_64 platforms) or using the 1608 // FPU (on x86_32 platforms) for the same reasons as mentioned in fop2(). 1609 #ifdef _LP64 1610 __ movdbl(xmm1, xmm0); 1611 __ pop_d(xmm0); 1612 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), 2); 1613 #else // !_LP64 1614 __ push_d(xmm0); 1615 __ pop_d(); 1616 __ fld_d(at_rsp()); 1617 __ fremr(rax); 1618 __ d2ieee(); 1619 __ pop(rax); 1620 __ pop(rdx); 1621 __ push_d(); 1622 __ pop_d(xmm0); 1623 #endif // _LP64 1624 break; 1625 default: 1626 ShouldNotReachHere(); 1627 break; 1628 } 1629 } else { 1630 #ifdef _LP64 1631 ShouldNotReachHere(); 1632 #else // !_LP64 1633 switch (op) { 1634 case add: __ fadd_d (at_rsp()); break; 1635 case sub: __ fsubr_d(at_rsp()); break; 1636 case mul: { 1637 // strict semantics 1638 __ fld_x(ExternalAddress(StubRoutines::x86::addr_fpu_subnormal_bias1())); 1639 __ fmulp(); 1640 __ fmul_d (at_rsp()); 1641 __ fld_x(ExternalAddress(StubRoutines::x86::addr_fpu_subnormal_bias2())); 1642 __ fmulp(); 1643 break; 1644 } 1645 case div: { 1646 // strict semantics 1647 __ fld_x(ExternalAddress(StubRoutines::x86::addr_fpu_subnormal_bias1())); 1648 __ fmul_d (at_rsp()); 1649 __ fdivrp(); 1650 __ fld_x(ExternalAddress(StubRoutines::x86::addr_fpu_subnormal_bias2())); 1651 __ fmulp(); 1652 break; 1653 } 1654 case rem: __ fld_d (at_rsp()); __ fremr(rax); break; 1655 default : ShouldNotReachHere(); 1656 } 1657 __ d2ieee(); 1658 // Pop double precision number from rsp. 1659 __ pop(rax); 1660 __ pop(rdx); 1661 #endif // _LP64 1662 } 1663 } 1664 1665 void TemplateTable::ineg() { 1666 transition(itos, itos); 1667 __ negl(rax); 1668 } 1669 1670 void TemplateTable::lneg() { 1671 transition(ltos, ltos); 1672 LP64_ONLY(__ negq(rax)); 1673 NOT_LP64(__ lneg(rdx, rax)); 1674 } 1675 1676 // Note: 'double' and 'long long' have 32-bits alignment on x86. 1677 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) { 1678 // Use the expression (adr)&(~0xF) to provide 128-bits aligned address 1679 // of 128-bits operands for SSE instructions. 1680 jlong *operand = (jlong*)(((intptr_t)adr)&((intptr_t)(~0xF))); 1681 // Store the value to a 128-bits operand. 1682 operand[0] = lo; 1683 operand[1] = hi; 1684 return operand; 1685 } 1686 1687 // Buffer for 128-bits masks used by SSE instructions. 1688 static jlong float_signflip_pool[2*2]; 1689 static jlong double_signflip_pool[2*2]; 1690 1691 void TemplateTable::fneg() { 1692 transition(ftos, ftos); 1693 if (UseSSE >= 1) { 1694 static jlong *float_signflip = double_quadword(&float_signflip_pool[1], CONST64(0x8000000080000000), CONST64(0x8000000080000000)); 1695 __ xorps(xmm0, ExternalAddress((address) float_signflip), rscratch1); 1696 } else { 1697 LP64_ONLY(ShouldNotReachHere()); 1698 NOT_LP64(__ fchs()); 1699 } 1700 } 1701 1702 void TemplateTable::dneg() { 1703 transition(dtos, dtos); 1704 if (UseSSE >= 2) { 1705 static jlong *double_signflip = 1706 double_quadword(&double_signflip_pool[1], CONST64(0x8000000000000000), CONST64(0x8000000000000000)); 1707 __ xorpd(xmm0, ExternalAddress((address) double_signflip), rscratch1); 1708 } else { 1709 #ifdef _LP64 1710 ShouldNotReachHere(); 1711 #else 1712 __ fchs(); 1713 #endif 1714 } 1715 } 1716 1717 void TemplateTable::iinc() { 1718 transition(vtos, vtos); 1719 __ load_signed_byte(rdx, at_bcp(2)); // get constant 1720 locals_index(rbx); 1721 __ addl(iaddress(rbx), rdx); 1722 } 1723 1724 void TemplateTable::wide_iinc() { 1725 transition(vtos, vtos); 1726 __ movl(rdx, at_bcp(4)); // get constant 1727 locals_index_wide(rbx); 1728 __ bswapl(rdx); // swap bytes & sign-extend constant 1729 __ sarl(rdx, 16); 1730 __ addl(iaddress(rbx), rdx); 1731 // Note: should probably use only one movl to get both 1732 // the index and the constant -> fix this 1733 } 1734 1735 void TemplateTable::convert() { 1736 #ifdef _LP64 1737 // Checking 1738 #ifdef ASSERT 1739 { 1740 TosState tos_in = ilgl; 1741 TosState tos_out = ilgl; 1742 switch (bytecode()) { 1743 case Bytecodes::_i2l: // fall through 1744 case Bytecodes::_i2f: // fall through 1745 case Bytecodes::_i2d: // fall through 1746 case Bytecodes::_i2b: // fall through 1747 case Bytecodes::_i2c: // fall through 1748 case Bytecodes::_i2s: tos_in = itos; break; 1749 case Bytecodes::_l2i: // fall through 1750 case Bytecodes::_l2f: // fall through 1751 case Bytecodes::_l2d: tos_in = ltos; break; 1752 case Bytecodes::_f2i: // fall through 1753 case Bytecodes::_f2l: // fall through 1754 case Bytecodes::_f2d: tos_in = ftos; break; 1755 case Bytecodes::_d2i: // fall through 1756 case Bytecodes::_d2l: // fall through 1757 case Bytecodes::_d2f: tos_in = dtos; break; 1758 default : ShouldNotReachHere(); 1759 } 1760 switch (bytecode()) { 1761 case Bytecodes::_l2i: // fall through 1762 case Bytecodes::_f2i: // fall through 1763 case Bytecodes::_d2i: // fall through 1764 case Bytecodes::_i2b: // fall through 1765 case Bytecodes::_i2c: // fall through 1766 case Bytecodes::_i2s: tos_out = itos; break; 1767 case Bytecodes::_i2l: // fall through 1768 case Bytecodes::_f2l: // fall through 1769 case Bytecodes::_d2l: tos_out = ltos; break; 1770 case Bytecodes::_i2f: // fall through 1771 case Bytecodes::_l2f: // fall through 1772 case Bytecodes::_d2f: tos_out = ftos; break; 1773 case Bytecodes::_i2d: // fall through 1774 case Bytecodes::_l2d: // fall through 1775 case Bytecodes::_f2d: tos_out = dtos; break; 1776 default : ShouldNotReachHere(); 1777 } 1778 transition(tos_in, tos_out); 1779 } 1780 #endif // ASSERT 1781 1782 static const int64_t is_nan = 0x8000000000000000L; 1783 1784 // Conversion 1785 switch (bytecode()) { 1786 case Bytecodes::_i2l: 1787 __ movslq(rax, rax); 1788 break; 1789 case Bytecodes::_i2f: 1790 __ cvtsi2ssl(xmm0, rax); 1791 break; 1792 case Bytecodes::_i2d: 1793 __ cvtsi2sdl(xmm0, rax); 1794 break; 1795 case Bytecodes::_i2b: 1796 __ movsbl(rax, rax); 1797 break; 1798 case Bytecodes::_i2c: 1799 __ movzwl(rax, rax); 1800 break; 1801 case Bytecodes::_i2s: 1802 __ movswl(rax, rax); 1803 break; 1804 case Bytecodes::_l2i: 1805 __ movl(rax, rax); 1806 break; 1807 case Bytecodes::_l2f: 1808 __ cvtsi2ssq(xmm0, rax); 1809 break; 1810 case Bytecodes::_l2d: 1811 __ cvtsi2sdq(xmm0, rax); 1812 break; 1813 case Bytecodes::_f2i: 1814 { 1815 Label L; 1816 __ cvttss2sil(rax, xmm0); 1817 __ cmpl(rax, 0x80000000); // NaN or overflow/underflow? 1818 __ jcc(Assembler::notEqual, L); 1819 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1); 1820 __ bind(L); 1821 } 1822 break; 1823 case Bytecodes::_f2l: 1824 { 1825 Label L; 1826 __ cvttss2siq(rax, xmm0); 1827 // NaN or overflow/underflow? 1828 __ cmp64(rax, ExternalAddress((address) &is_nan), rscratch1); 1829 __ jcc(Assembler::notEqual, L); 1830 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1); 1831 __ bind(L); 1832 } 1833 break; 1834 case Bytecodes::_f2d: 1835 __ cvtss2sd(xmm0, xmm0); 1836 break; 1837 case Bytecodes::_d2i: 1838 { 1839 Label L; 1840 __ cvttsd2sil(rax, xmm0); 1841 __ cmpl(rax, 0x80000000); // NaN or overflow/underflow? 1842 __ jcc(Assembler::notEqual, L); 1843 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1); 1844 __ bind(L); 1845 } 1846 break; 1847 case Bytecodes::_d2l: 1848 { 1849 Label L; 1850 __ cvttsd2siq(rax, xmm0); 1851 // NaN or overflow/underflow? 1852 __ cmp64(rax, ExternalAddress((address) &is_nan), rscratch1); 1853 __ jcc(Assembler::notEqual, L); 1854 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1); 1855 __ bind(L); 1856 } 1857 break; 1858 case Bytecodes::_d2f: 1859 __ cvtsd2ss(xmm0, xmm0); 1860 break; 1861 default: 1862 ShouldNotReachHere(); 1863 } 1864 #else // !_LP64 1865 // Checking 1866 #ifdef ASSERT 1867 { TosState tos_in = ilgl; 1868 TosState tos_out = ilgl; 1869 switch (bytecode()) { 1870 case Bytecodes::_i2l: // fall through 1871 case Bytecodes::_i2f: // fall through 1872 case Bytecodes::_i2d: // fall through 1873 case Bytecodes::_i2b: // fall through 1874 case Bytecodes::_i2c: // fall through 1875 case Bytecodes::_i2s: tos_in = itos; break; 1876 case Bytecodes::_l2i: // fall through 1877 case Bytecodes::_l2f: // fall through 1878 case Bytecodes::_l2d: tos_in = ltos; break; 1879 case Bytecodes::_f2i: // fall through 1880 case Bytecodes::_f2l: // fall through 1881 case Bytecodes::_f2d: tos_in = ftos; break; 1882 case Bytecodes::_d2i: // fall through 1883 case Bytecodes::_d2l: // fall through 1884 case Bytecodes::_d2f: tos_in = dtos; break; 1885 default : ShouldNotReachHere(); 1886 } 1887 switch (bytecode()) { 1888 case Bytecodes::_l2i: // fall through 1889 case Bytecodes::_f2i: // fall through 1890 case Bytecodes::_d2i: // fall through 1891 case Bytecodes::_i2b: // fall through 1892 case Bytecodes::_i2c: // fall through 1893 case Bytecodes::_i2s: tos_out = itos; break; 1894 case Bytecodes::_i2l: // fall through 1895 case Bytecodes::_f2l: // fall through 1896 case Bytecodes::_d2l: tos_out = ltos; break; 1897 case Bytecodes::_i2f: // fall through 1898 case Bytecodes::_l2f: // fall through 1899 case Bytecodes::_d2f: tos_out = ftos; break; 1900 case Bytecodes::_i2d: // fall through 1901 case Bytecodes::_l2d: // fall through 1902 case Bytecodes::_f2d: tos_out = dtos; break; 1903 default : ShouldNotReachHere(); 1904 } 1905 transition(tos_in, tos_out); 1906 } 1907 #endif // ASSERT 1908 1909 // Conversion 1910 // (Note: use push(rcx)/pop(rcx) for 1/2-word stack-ptr manipulation) 1911 switch (bytecode()) { 1912 case Bytecodes::_i2l: 1913 __ extend_sign(rdx, rax); 1914 break; 1915 case Bytecodes::_i2f: 1916 if (UseSSE >= 1) { 1917 __ cvtsi2ssl(xmm0, rax); 1918 } else { 1919 __ push(rax); // store int on tos 1920 __ fild_s(at_rsp()); // load int to ST0 1921 __ f2ieee(); // truncate to float size 1922 __ pop(rcx); // adjust rsp 1923 } 1924 break; 1925 case Bytecodes::_i2d: 1926 if (UseSSE >= 2) { 1927 __ cvtsi2sdl(xmm0, rax); 1928 } else { 1929 __ push(rax); // add one slot for d2ieee() 1930 __ push(rax); // store int on tos 1931 __ fild_s(at_rsp()); // load int to ST0 1932 __ d2ieee(); // truncate to double size 1933 __ pop(rcx); // adjust rsp 1934 __ pop(rcx); 1935 } 1936 break; 1937 case Bytecodes::_i2b: 1938 __ shll(rax, 24); // truncate upper 24 bits 1939 __ sarl(rax, 24); // and sign-extend byte 1940 LP64_ONLY(__ movsbl(rax, rax)); 1941 break; 1942 case Bytecodes::_i2c: 1943 __ andl(rax, 0xFFFF); // truncate upper 16 bits 1944 LP64_ONLY(__ movzwl(rax, rax)); 1945 break; 1946 case Bytecodes::_i2s: 1947 __ shll(rax, 16); // truncate upper 16 bits 1948 __ sarl(rax, 16); // and sign-extend short 1949 LP64_ONLY(__ movswl(rax, rax)); 1950 break; 1951 case Bytecodes::_l2i: 1952 /* nothing to do */ 1953 break; 1954 case Bytecodes::_l2f: 1955 // On 64-bit platforms, the cvtsi2ssq instruction is used to convert 1956 // 64-bit long values to floats. On 32-bit platforms it is not possible 1957 // to use that instruction with 64-bit operands, therefore the FPU is 1958 // used to perform the conversion. 1959 __ push(rdx); // store long on tos 1960 __ push(rax); 1961 __ fild_d(at_rsp()); // load long to ST0 1962 __ f2ieee(); // truncate to float size 1963 __ pop(rcx); // adjust rsp 1964 __ pop(rcx); 1965 if (UseSSE >= 1) { 1966 __ push_f(); 1967 __ pop_f(xmm0); 1968 } 1969 break; 1970 case Bytecodes::_l2d: 1971 // On 32-bit platforms the FPU is used for conversion because on 1972 // 32-bit platforms it is not not possible to use the cvtsi2sdq 1973 // instruction with 64-bit operands. 1974 __ push(rdx); // store long on tos 1975 __ push(rax); 1976 __ fild_d(at_rsp()); // load long to ST0 1977 __ d2ieee(); // truncate to double size 1978 __ pop(rcx); // adjust rsp 1979 __ pop(rcx); 1980 if (UseSSE >= 2) { 1981 __ push_d(); 1982 __ pop_d(xmm0); 1983 } 1984 break; 1985 case Bytecodes::_f2i: 1986 // SharedRuntime::f2i does not differentiate between sNaNs and qNaNs 1987 // as it returns 0 for any NaN. 1988 if (UseSSE >= 1) { 1989 __ push_f(xmm0); 1990 } else { 1991 __ push(rcx); // reserve space for argument 1992 __ fstp_s(at_rsp()); // pass float argument on stack 1993 } 1994 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1); 1995 break; 1996 case Bytecodes::_f2l: 1997 // SharedRuntime::f2l does not differentiate between sNaNs and qNaNs 1998 // as it returns 0 for any NaN. 1999 if (UseSSE >= 1) { 2000 __ push_f(xmm0); 2001 } else { 2002 __ push(rcx); // reserve space for argument 2003 __ fstp_s(at_rsp()); // pass float argument on stack 2004 } 2005 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1); 2006 break; 2007 case Bytecodes::_f2d: 2008 if (UseSSE < 1) { 2009 /* nothing to do */ 2010 } else if (UseSSE == 1) { 2011 __ push_f(xmm0); 2012 __ pop_f(); 2013 } else { // UseSSE >= 2 2014 __ cvtss2sd(xmm0, xmm0); 2015 } 2016 break; 2017 case Bytecodes::_d2i: 2018 if (UseSSE >= 2) { 2019 __ push_d(xmm0); 2020 } else { 2021 __ push(rcx); // reserve space for argument 2022 __ push(rcx); 2023 __ fstp_d(at_rsp()); // pass double argument on stack 2024 } 2025 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 2); 2026 break; 2027 case Bytecodes::_d2l: 2028 if (UseSSE >= 2) { 2029 __ push_d(xmm0); 2030 } else { 2031 __ push(rcx); // reserve space for argument 2032 __ push(rcx); 2033 __ fstp_d(at_rsp()); // pass double argument on stack 2034 } 2035 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 2); 2036 break; 2037 case Bytecodes::_d2f: 2038 if (UseSSE <= 1) { 2039 __ push(rcx); // reserve space for f2ieee() 2040 __ f2ieee(); // truncate to float size 2041 __ pop(rcx); // adjust rsp 2042 if (UseSSE == 1) { 2043 // The cvtsd2ss instruction is not available if UseSSE==1, therefore 2044 // the conversion is performed using the FPU in this case. 2045 __ push_f(); 2046 __ pop_f(xmm0); 2047 } 2048 } else { // UseSSE >= 2 2049 __ cvtsd2ss(xmm0, xmm0); 2050 } 2051 break; 2052 default : 2053 ShouldNotReachHere(); 2054 } 2055 #endif // _LP64 2056 } 2057 2058 void TemplateTable::lcmp() { 2059 transition(ltos, itos); 2060 #ifdef _LP64 2061 Label done; 2062 __ pop_l(rdx); 2063 __ cmpq(rdx, rax); 2064 __ movl(rax, -1); 2065 __ jccb(Assembler::less, done); 2066 __ setb(Assembler::notEqual, rax); 2067 __ movzbl(rax, rax); 2068 __ bind(done); 2069 #else 2070 2071 // y = rdx:rax 2072 __ pop_l(rbx, rcx); // get x = rcx:rbx 2073 __ lcmp2int(rcx, rbx, rdx, rax);// rcx := cmp(x, y) 2074 __ mov(rax, rcx); 2075 #endif 2076 } 2077 2078 void TemplateTable::float_cmp(bool is_float, int unordered_result) { 2079 if ((is_float && UseSSE >= 1) || 2080 (!is_float && UseSSE >= 2)) { 2081 Label done; 2082 if (is_float) { 2083 // XXX get rid of pop here, use ... reg, mem32 2084 __ pop_f(xmm1); 2085 __ ucomiss(xmm1, xmm0); 2086 } else { 2087 // XXX get rid of pop here, use ... reg, mem64 2088 __ pop_d(xmm1); 2089 __ ucomisd(xmm1, xmm0); 2090 } 2091 if (unordered_result < 0) { 2092 __ movl(rax, -1); 2093 __ jccb(Assembler::parity, done); 2094 __ jccb(Assembler::below, done); 2095 __ setb(Assembler::notEqual, rdx); 2096 __ movzbl(rax, rdx); 2097 } else { 2098 __ movl(rax, 1); 2099 __ jccb(Assembler::parity, done); 2100 __ jccb(Assembler::above, done); 2101 __ movl(rax, 0); 2102 __ jccb(Assembler::equal, done); 2103 __ decrementl(rax); 2104 } 2105 __ bind(done); 2106 } else { 2107 #ifdef _LP64 2108 ShouldNotReachHere(); 2109 #else // !_LP64 2110 if (is_float) { 2111 __ fld_s(at_rsp()); 2112 } else { 2113 __ fld_d(at_rsp()); 2114 __ pop(rdx); 2115 } 2116 __ pop(rcx); 2117 __ fcmp2int(rax, unordered_result < 0); 2118 #endif // _LP64 2119 } 2120 } 2121 2122 void TemplateTable::branch(bool is_jsr, bool is_wide) { 2123 __ get_method(rcx); // rcx holds method 2124 __ profile_taken_branch(rax, rbx); // rax holds updated MDP, rbx 2125 // holds bumped taken count 2126 2127 const ByteSize be_offset = MethodCounters::backedge_counter_offset() + 2128 InvocationCounter::counter_offset(); 2129 const ByteSize inv_offset = MethodCounters::invocation_counter_offset() + 2130 InvocationCounter::counter_offset(); 2131 2132 // Load up edx with the branch displacement 2133 if (is_wide) { 2134 __ movl(rdx, at_bcp(1)); 2135 } else { 2136 __ load_signed_short(rdx, at_bcp(1)); 2137 } 2138 __ bswapl(rdx); 2139 2140 if (!is_wide) { 2141 __ sarl(rdx, 16); 2142 } 2143 LP64_ONLY(__ movl2ptr(rdx, rdx)); 2144 2145 // Handle all the JSR stuff here, then exit. 2146 // It's much shorter and cleaner than intermingling with the non-JSR 2147 // normal-branch stuff occurring below. 2148 if (is_jsr) { 2149 // Pre-load the next target bytecode into rbx 2150 __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1, 0)); 2151 2152 // compute return address as bci in rax 2153 __ lea(rax, at_bcp((is_wide ? 5 : 3) - 2154 in_bytes(ConstMethod::codes_offset()))); 2155 __ subptr(rax, Address(rcx, Method::const_offset())); 2156 // Adjust the bcp in r13 by the displacement in rdx 2157 __ addptr(rbcp, rdx); 2158 // jsr returns atos that is not an oop 2159 __ push_i(rax); 2160 __ dispatch_only(vtos, true); 2161 return; 2162 } 2163 2164 // Normal (non-jsr) branch handling 2165 2166 // Adjust the bcp in r13 by the displacement in rdx 2167 __ addptr(rbcp, rdx); 2168 2169 assert(UseLoopCounter || !UseOnStackReplacement, 2170 "on-stack-replacement requires loop counters"); 2171 Label backedge_counter_overflow; 2172 Label dispatch; 2173 if (UseLoopCounter) { 2174 // increment backedge counter for backward branches 2175 // rax: MDO 2176 // rbx: MDO bumped taken-count 2177 // rcx: method 2178 // rdx: target offset 2179 // r13: target bcp 2180 // r14: locals pointer 2181 __ testl(rdx, rdx); // check if forward or backward branch 2182 __ jcc(Assembler::positive, dispatch); // count only if backward branch 2183 2184 // check if MethodCounters exists 2185 Label has_counters; 2186 __ movptr(rax, Address(rcx, Method::method_counters_offset())); 2187 __ testptr(rax, rax); 2188 __ jcc(Assembler::notZero, has_counters); 2189 __ push(rdx); 2190 __ push(rcx); 2191 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters), 2192 rcx); 2193 __ pop(rcx); 2194 __ pop(rdx); 2195 __ movptr(rax, Address(rcx, Method::method_counters_offset())); 2196 __ testptr(rax, rax); 2197 __ jcc(Assembler::zero, dispatch); 2198 __ bind(has_counters); 2199 2200 Label no_mdo; 2201 if (ProfileInterpreter) { 2202 // Are we profiling? 2203 __ movptr(rbx, Address(rcx, in_bytes(Method::method_data_offset()))); 2204 __ testptr(rbx, rbx); 2205 __ jccb(Assembler::zero, no_mdo); 2206 // Increment the MDO backedge counter 2207 const Address mdo_backedge_counter(rbx, in_bytes(MethodData::backedge_counter_offset()) + 2208 in_bytes(InvocationCounter::counter_offset())); 2209 const Address mask(rbx, in_bytes(MethodData::backedge_mask_offset())); 2210 __ increment_mask_and_jump(mdo_backedge_counter, mask, rax, 2211 UseOnStackReplacement ? &backedge_counter_overflow : NULL); 2212 __ jmp(dispatch); 2213 } 2214 __ bind(no_mdo); 2215 // Increment backedge counter in MethodCounters* 2216 __ movptr(rcx, Address(rcx, Method::method_counters_offset())); 2217 const Address mask(rcx, in_bytes(MethodCounters::backedge_mask_offset())); 2218 __ increment_mask_and_jump(Address(rcx, be_offset), mask, rax, 2219 UseOnStackReplacement ? &backedge_counter_overflow : NULL); 2220 __ bind(dispatch); 2221 } 2222 2223 // Pre-load the next target bytecode into rbx 2224 __ load_unsigned_byte(rbx, Address(rbcp, 0)); 2225 2226 // continue with the bytecode @ target 2227 // rax: return bci for jsr's, unused otherwise 2228 // rbx: target bytecode 2229 // r13: target bcp 2230 __ dispatch_only(vtos, true); 2231 2232 if (UseLoopCounter) { 2233 if (UseOnStackReplacement) { 2234 Label set_mdp; 2235 // invocation counter overflow 2236 __ bind(backedge_counter_overflow); 2237 __ negptr(rdx); 2238 __ addptr(rdx, rbcp); // branch bcp 2239 // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp) 2240 __ call_VM(noreg, 2241 CAST_FROM_FN_PTR(address, 2242 InterpreterRuntime::frequency_counter_overflow), 2243 rdx); 2244 2245 // rax: osr nmethod (osr ok) or NULL (osr not possible) 2246 // rdx: scratch 2247 // r14: locals pointer 2248 // r13: bcp 2249 __ testptr(rax, rax); // test result 2250 __ jcc(Assembler::zero, dispatch); // no osr if null 2251 // nmethod may have been invalidated (VM may block upon call_VM return) 2252 __ cmpb(Address(rax, nmethod::state_offset()), nmethod::in_use); 2253 __ jcc(Assembler::notEqual, dispatch); 2254 2255 // We have the address of an on stack replacement routine in rax. 2256 // In preparation of invoking it, first we must migrate the locals 2257 // and monitors from off the interpreter frame on the stack. 2258 // Ensure to save the osr nmethod over the migration call, 2259 // it will be preserved in rbx. 2260 __ mov(rbx, rax); 2261 2262 NOT_LP64(__ get_thread(rcx)); 2263 2264 call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin)); 2265 2266 // rax is OSR buffer, move it to expected parameter location 2267 LP64_ONLY(__ mov(j_rarg0, rax)); 2268 NOT_LP64(__ mov(rcx, rax)); 2269 // We use j_rarg definitions here so that registers don't conflict as parameter 2270 // registers change across platforms as we are in the midst of a calling 2271 // sequence to the OSR nmethod and we don't want collision. These are NOT parameters. 2272 2273 const Register retaddr = LP64_ONLY(j_rarg2) NOT_LP64(rdi); 2274 const Register sender_sp = LP64_ONLY(j_rarg1) NOT_LP64(rdx); 2275 2276 // pop the interpreter frame 2277 __ movptr(sender_sp, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp 2278 __ leave(); // remove frame anchor 2279 __ pop(retaddr); // get return address 2280 __ mov(rsp, sender_sp); // set sp to sender sp 2281 // Ensure compiled code always sees stack at proper alignment 2282 __ andptr(rsp, -(StackAlignmentInBytes)); 2283 2284 // unlike x86 we need no specialized return from compiled code 2285 // to the interpreter or the call stub. 2286 2287 // push the return address 2288 __ push(retaddr); 2289 2290 // and begin the OSR nmethod 2291 __ jmp(Address(rbx, nmethod::osr_entry_point_offset())); 2292 } 2293 } 2294 } 2295 2296 void TemplateTable::if_0cmp(Condition cc) { 2297 transition(itos, vtos); 2298 // assume branch is more often taken than not (loops use backward branches) 2299 Label not_taken; 2300 __ testl(rax, rax); 2301 __ jcc(j_not(cc), not_taken); 2302 branch(false, false); 2303 __ bind(not_taken); 2304 __ profile_not_taken_branch(rax); 2305 } 2306 2307 void TemplateTable::if_icmp(Condition cc) { 2308 transition(itos, vtos); 2309 // assume branch is more often taken than not (loops use backward branches) 2310 Label not_taken; 2311 __ pop_i(rdx); 2312 __ cmpl(rdx, rax); 2313 __ jcc(j_not(cc), not_taken); 2314 branch(false, false); 2315 __ bind(not_taken); 2316 __ profile_not_taken_branch(rax); 2317 } 2318 2319 void TemplateTable::if_nullcmp(Condition cc) { 2320 transition(atos, vtos); 2321 // assume branch is more often taken than not (loops use backward branches) 2322 Label not_taken; 2323 __ testptr(rax, rax); 2324 __ jcc(j_not(cc), not_taken); 2325 branch(false, false); 2326 __ bind(not_taken); 2327 __ profile_not_taken_branch(rax); 2328 } 2329 2330 void TemplateTable::if_acmp(Condition cc) { 2331 transition(atos, vtos); 2332 // assume branch is more often taken than not (loops use backward branches) 2333 Label not_taken; 2334 __ pop_ptr(rdx); 2335 __ cmpoop(rdx, rax); 2336 __ jcc(j_not(cc), not_taken); 2337 branch(false, false); 2338 __ bind(not_taken); 2339 __ profile_not_taken_branch(rax); 2340 } 2341 2342 void TemplateTable::ret() { 2343 transition(vtos, vtos); 2344 locals_index(rbx); 2345 LP64_ONLY(__ movslq(rbx, iaddress(rbx))); // get return bci, compute return bcp 2346 NOT_LP64(__ movptr(rbx, iaddress(rbx))); 2347 __ profile_ret(rbx, rcx); 2348 __ get_method(rax); 2349 __ movptr(rbcp, Address(rax, Method::const_offset())); 2350 __ lea(rbcp, Address(rbcp, rbx, Address::times_1, 2351 ConstMethod::codes_offset())); 2352 __ dispatch_next(vtos, 0, true); 2353 } 2354 2355 void TemplateTable::wide_ret() { 2356 transition(vtos, vtos); 2357 locals_index_wide(rbx); 2358 __ movptr(rbx, aaddress(rbx)); // get return bci, compute return bcp 2359 __ profile_ret(rbx, rcx); 2360 __ get_method(rax); 2361 __ movptr(rbcp, Address(rax, Method::const_offset())); 2362 __ lea(rbcp, Address(rbcp, rbx, Address::times_1, ConstMethod::codes_offset())); 2363 __ dispatch_next(vtos, 0, true); 2364 } 2365 2366 void TemplateTable::tableswitch() { 2367 Label default_case, continue_execution; 2368 transition(itos, vtos); 2369 2370 // align r13/rsi 2371 __ lea(rbx, at_bcp(BytesPerInt)); 2372 __ andptr(rbx, -BytesPerInt); 2373 // load lo & hi 2374 __ movl(rcx, Address(rbx, BytesPerInt)); 2375 __ movl(rdx, Address(rbx, 2 * BytesPerInt)); 2376 __ bswapl(rcx); 2377 __ bswapl(rdx); 2378 // check against lo & hi 2379 __ cmpl(rax, rcx); 2380 __ jcc(Assembler::less, default_case); 2381 __ cmpl(rax, rdx); 2382 __ jcc(Assembler::greater, default_case); 2383 // lookup dispatch offset 2384 __ subl(rax, rcx); 2385 __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt)); 2386 __ profile_switch_case(rax, rbx, rcx); 2387 // continue execution 2388 __ bind(continue_execution); 2389 __ bswapl(rdx); 2390 LP64_ONLY(__ movl2ptr(rdx, rdx)); 2391 __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1)); 2392 __ addptr(rbcp, rdx); 2393 __ dispatch_only(vtos, true); 2394 // handle default 2395 __ bind(default_case); 2396 __ profile_switch_default(rax); 2397 __ movl(rdx, Address(rbx, 0)); 2398 __ jmp(continue_execution); 2399 } 2400 2401 void TemplateTable::lookupswitch() { 2402 transition(itos, itos); 2403 __ stop("lookupswitch bytecode should have been rewritten"); 2404 } 2405 2406 void TemplateTable::fast_linearswitch() { 2407 transition(itos, vtos); 2408 Label loop_entry, loop, found, continue_execution; 2409 // bswap rax so we can avoid bswapping the table entries 2410 __ bswapl(rax); 2411 // align r13 2412 __ lea(rbx, at_bcp(BytesPerInt)); // btw: should be able to get rid of 2413 // this instruction (change offsets 2414 // below) 2415 __ andptr(rbx, -BytesPerInt); 2416 // set counter 2417 __ movl(rcx, Address(rbx, BytesPerInt)); 2418 __ bswapl(rcx); 2419 __ jmpb(loop_entry); 2420 // table search 2421 __ bind(loop); 2422 __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * BytesPerInt)); 2423 __ jcc(Assembler::equal, found); 2424 __ bind(loop_entry); 2425 __ decrementl(rcx); 2426 __ jcc(Assembler::greaterEqual, loop); 2427 // default case 2428 __ profile_switch_default(rax); 2429 __ movl(rdx, Address(rbx, 0)); 2430 __ jmp(continue_execution); 2431 // entry found -> get offset 2432 __ bind(found); 2433 __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * BytesPerInt)); 2434 __ profile_switch_case(rcx, rax, rbx); 2435 // continue execution 2436 __ bind(continue_execution); 2437 __ bswapl(rdx); 2438 __ movl2ptr(rdx, rdx); 2439 __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1)); 2440 __ addptr(rbcp, rdx); 2441 __ dispatch_only(vtos, true); 2442 } 2443 2444 void TemplateTable::fast_binaryswitch() { 2445 transition(itos, vtos); 2446 // Implementation using the following core algorithm: 2447 // 2448 // int binary_search(int key, LookupswitchPair* array, int n) { 2449 // // Binary search according to "Methodik des Programmierens" by 2450 // // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985. 2451 // int i = 0; 2452 // int j = n; 2453 // while (i+1 < j) { 2454 // // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q) 2455 // // with Q: for all i: 0 <= i < n: key < a[i] 2456 // // where a stands for the array and assuming that the (inexisting) 2457 // // element a[n] is infinitely big. 2458 // int h = (i + j) >> 1; 2459 // // i < h < j 2460 // if (key < array[h].fast_match()) { 2461 // j = h; 2462 // } else { 2463 // i = h; 2464 // } 2465 // } 2466 // // R: a[i] <= key < a[i+1] or Q 2467 // // (i.e., if key is within array, i is the correct index) 2468 // return i; 2469 // } 2470 2471 // Register allocation 2472 const Register key = rax; // already set (tosca) 2473 const Register array = rbx; 2474 const Register i = rcx; 2475 const Register j = rdx; 2476 const Register h = rdi; 2477 const Register temp = rsi; 2478 2479 // Find array start 2480 NOT_LP64(__ save_bcp()); 2481 2482 __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to 2483 // get rid of this 2484 // instruction (change 2485 // offsets below) 2486 __ andptr(array, -BytesPerInt); 2487 2488 // Initialize i & j 2489 __ xorl(i, i); // i = 0; 2490 __ movl(j, Address(array, -BytesPerInt)); // j = length(array); 2491 2492 // Convert j into native byteordering 2493 __ bswapl(j); 2494 2495 // And start 2496 Label entry; 2497 __ jmp(entry); 2498 2499 // binary search loop 2500 { 2501 Label loop; 2502 __ bind(loop); 2503 // int h = (i + j) >> 1; 2504 __ leal(h, Address(i, j, Address::times_1)); // h = i + j; 2505 __ sarl(h, 1); // h = (i + j) >> 1; 2506 // if (key < array[h].fast_match()) { 2507 // j = h; 2508 // } else { 2509 // i = h; 2510 // } 2511 // Convert array[h].match to native byte-ordering before compare 2512 __ movl(temp, Address(array, h, Address::times_8)); 2513 __ bswapl(temp); 2514 __ cmpl(key, temp); 2515 // j = h if (key < array[h].fast_match()) 2516 __ cmov32(Assembler::less, j, h); 2517 // i = h if (key >= array[h].fast_match()) 2518 __ cmov32(Assembler::greaterEqual, i, h); 2519 // while (i+1 < j) 2520 __ bind(entry); 2521 __ leal(h, Address(i, 1)); // i+1 2522 __ cmpl(h, j); // i+1 < j 2523 __ jcc(Assembler::less, loop); 2524 } 2525 2526 // end of binary search, result index is i (must check again!) 2527 Label default_case; 2528 // Convert array[i].match to native byte-ordering before compare 2529 __ movl(temp, Address(array, i, Address::times_8)); 2530 __ bswapl(temp); 2531 __ cmpl(key, temp); 2532 __ jcc(Assembler::notEqual, default_case); 2533 2534 // entry found -> j = offset 2535 __ movl(j , Address(array, i, Address::times_8, BytesPerInt)); 2536 __ profile_switch_case(i, key, array); 2537 __ bswapl(j); 2538 LP64_ONLY(__ movslq(j, j)); 2539 2540 NOT_LP64(__ restore_bcp()); 2541 NOT_LP64(__ restore_locals()); // restore rdi 2542 2543 __ load_unsigned_byte(rbx, Address(rbcp, j, Address::times_1)); 2544 __ addptr(rbcp, j); 2545 __ dispatch_only(vtos, true); 2546 2547 // default case -> j = default offset 2548 __ bind(default_case); 2549 __ profile_switch_default(i); 2550 __ movl(j, Address(array, -2 * BytesPerInt)); 2551 __ bswapl(j); 2552 LP64_ONLY(__ movslq(j, j)); 2553 2554 NOT_LP64(__ restore_bcp()); 2555 NOT_LP64(__ restore_locals()); 2556 2557 __ load_unsigned_byte(rbx, Address(rbcp, j, Address::times_1)); 2558 __ addptr(rbcp, j); 2559 __ dispatch_only(vtos, true); 2560 } 2561 2562 void TemplateTable::_return(TosState state) { 2563 transition(state, state); 2564 2565 assert(_desc->calls_vm(), 2566 "inconsistent calls_vm information"); // call in remove_activation 2567 2568 if (_desc->bytecode() == Bytecodes::_return_register_finalizer) { 2569 assert(state == vtos, "only valid state"); 2570 Register robj = LP64_ONLY(c_rarg1) NOT_LP64(rax); 2571 __ movptr(robj, aaddress(0)); 2572 __ load_klass(rdi, robj, rscratch1); 2573 __ movl(rdi, Address(rdi, Klass::access_flags_offset())); 2574 __ testl(rdi, JVM_ACC_HAS_FINALIZER); 2575 Label skip_register_finalizer; 2576 __ jcc(Assembler::zero, skip_register_finalizer); 2577 2578 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), robj); 2579 2580 __ bind(skip_register_finalizer); 2581 } 2582 2583 if (_desc->bytecode() != Bytecodes::_return_register_finalizer) { 2584 Label no_safepoint; 2585 NOT_PRODUCT(__ block_comment("Thread-local Safepoint poll")); 2586 #ifdef _LP64 2587 __ testb(Address(r15_thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit()); 2588 #else 2589 const Register thread = rdi; 2590 __ get_thread(thread); 2591 __ testb(Address(thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit()); 2592 #endif 2593 __ jcc(Assembler::zero, no_safepoint); 2594 __ push(state); 2595 __ push_cont_fastpath(); 2596 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 2597 InterpreterRuntime::at_safepoint)); 2598 __ pop_cont_fastpath(); 2599 __ pop(state); 2600 __ bind(no_safepoint); 2601 } 2602 2603 // Narrow result if state is itos but result type is smaller. 2604 // Need to narrow in the return bytecode rather than in generate_return_entry 2605 // since compiled code callers expect the result to already be narrowed. 2606 if (state == itos) { 2607 __ narrow(rax); 2608 } 2609 __ remove_activation(state, rbcp); 2610 2611 __ jmp(rbcp); 2612 } 2613 2614 // ---------------------------------------------------------------------------- 2615 // Volatile variables demand their effects be made known to all CPU's 2616 // in order. Store buffers on most chips allow reads & writes to 2617 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode 2618 // without some kind of memory barrier (i.e., it's not sufficient that 2619 // the interpreter does not reorder volatile references, the hardware 2620 // also must not reorder them). 2621 // 2622 // According to the new Java Memory Model (JMM): 2623 // (1) All volatiles are serialized wrt to each other. ALSO reads & 2624 // writes act as acquire & release, so: 2625 // (2) A read cannot let unrelated NON-volatile memory refs that 2626 // happen after the read float up to before the read. It's OK for 2627 // non-volatile memory refs that happen before the volatile read to 2628 // float down below it. 2629 // (3) Similar a volatile write cannot let unrelated NON-volatile 2630 // memory refs that happen BEFORE the write float down to after the 2631 // write. It's OK for non-volatile memory refs that happen after the 2632 // volatile write to float up before it. 2633 // 2634 // We only put in barriers around volatile refs (they are expensive), 2635 // not _between_ memory refs (that would require us to track the 2636 // flavor of the previous memory refs). Requirements (2) and (3) 2637 // require some barriers before volatile stores and after volatile 2638 // loads. These nearly cover requirement (1) but miss the 2639 // volatile-store-volatile-load case. This final case is placed after 2640 // volatile-stores although it could just as well go before 2641 // volatile-loads. 2642 2643 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint ) { 2644 // Helper function to insert a is-volatile test and memory barrier 2645 __ membar(order_constraint); 2646 } 2647 2648 void TemplateTable::resolve_cache_and_index(int byte_no, 2649 Register cache, 2650 Register index, 2651 size_t index_size) { 2652 const Register temp = rbx; 2653 assert_different_registers(cache, index, temp); 2654 2655 Label L_clinit_barrier_slow; 2656 Label resolved; 2657 2658 Bytecodes::Code code = bytecode(); 2659 switch (code) { 2660 case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break; 2661 case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break; 2662 default: break; 2663 } 2664 2665 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 2666 __ get_cache_and_index_and_bytecode_at_bcp(cache, index, temp, byte_no, 1, index_size); 2667 __ cmpl(temp, code); // have we resolved this bytecode? 2668 __ jcc(Assembler::equal, resolved); 2669 2670 // resolve first time through 2671 // Class initialization barrier slow path lands here as well. 2672 __ bind(L_clinit_barrier_slow); 2673 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache); 2674 __ movl(temp, code); 2675 __ call_VM(noreg, entry, temp); 2676 // Update registers with resolved info 2677 __ get_cache_and_index_at_bcp(cache, index, 1, index_size); 2678 2679 __ bind(resolved); 2680 2681 // Class initialization barrier for static methods 2682 if (VM_Version::supports_fast_class_init_checks() && bytecode() == Bytecodes::_invokestatic) { 2683 const Register method = temp; 2684 const Register klass = temp; 2685 const Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg); 2686 assert(thread != noreg, "x86_32 not supported"); 2687 2688 __ load_resolved_method_at_index(byte_no, method, cache, index); 2689 __ load_method_holder(klass, method); 2690 __ clinit_barrier(klass, thread, NULL /*L_fast_path*/, &L_clinit_barrier_slow); 2691 } 2692 } 2693 2694 // The cache and index registers must be set before call 2695 void TemplateTable::load_field_cp_cache_entry(Register obj, 2696 Register cache, 2697 Register index, 2698 Register off, 2699 Register flags, 2700 bool is_static = false) { 2701 assert_different_registers(cache, index, flags, off); 2702 2703 ByteSize cp_base_offset = ConstantPoolCache::base_offset(); 2704 // Field offset 2705 __ movptr(off, Address(cache, index, Address::times_ptr, 2706 in_bytes(cp_base_offset + 2707 ConstantPoolCacheEntry::f2_offset()))); 2708 // Flags 2709 __ movl(flags, Address(cache, index, Address::times_ptr, 2710 in_bytes(cp_base_offset + 2711 ConstantPoolCacheEntry::flags_offset()))); 2712 2713 // klass overwrite register 2714 if (is_static) { 2715 __ movptr(obj, Address(cache, index, Address::times_ptr, 2716 in_bytes(cp_base_offset + 2717 ConstantPoolCacheEntry::f1_offset()))); 2718 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 2719 __ movptr(obj, Address(obj, mirror_offset)); 2720 __ resolve_oop_handle(obj, rscratch2); 2721 } 2722 } 2723 2724 void TemplateTable::load_invoke_cp_cache_entry(int byte_no, 2725 Register method, 2726 Register itable_index, 2727 Register flags, 2728 bool is_invokevirtual, 2729 bool is_invokevfinal, /*unused*/ 2730 bool is_invokedynamic) { 2731 // setup registers 2732 const Register cache = rcx; 2733 const Register index = rdx; 2734 assert_different_registers(method, flags); 2735 assert_different_registers(method, cache, index); 2736 assert_different_registers(itable_index, flags); 2737 assert_different_registers(itable_index, cache, index); 2738 // determine constant pool cache field offsets 2739 assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant"); 2740 const int flags_offset = in_bytes(ConstantPoolCache::base_offset() + 2741 ConstantPoolCacheEntry::flags_offset()); 2742 // access constant pool cache fields 2743 const int index_offset = in_bytes(ConstantPoolCache::base_offset() + 2744 ConstantPoolCacheEntry::f2_offset()); 2745 2746 size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2)); 2747 resolve_cache_and_index(byte_no, cache, index, index_size); 2748 __ load_resolved_method_at_index(byte_no, method, cache, index); 2749 2750 if (itable_index != noreg) { 2751 // pick up itable or appendix index from f2 also: 2752 __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset)); 2753 } 2754 __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset)); 2755 } 2756 2757 // The registers cache and index expected to be set before call. 2758 // Correct values of the cache and index registers are preserved. 2759 void TemplateTable::jvmti_post_field_access(Register cache, 2760 Register index, 2761 bool is_static, 2762 bool has_tos) { 2763 if (JvmtiExport::can_post_field_access()) { 2764 // Check to see if a field access watch has been set before we take 2765 // the time to call into the VM. 2766 Label L1; 2767 assert_different_registers(cache, index, rax); 2768 __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); 2769 __ testl(rax,rax); 2770 __ jcc(Assembler::zero, L1); 2771 2772 // cache entry pointer 2773 __ addptr(cache, in_bytes(ConstantPoolCache::base_offset())); 2774 __ shll(index, LogBytesPerWord); 2775 __ addptr(cache, index); 2776 if (is_static) { 2777 __ xorptr(rax, rax); // NULL object reference 2778 } else { 2779 __ pop(atos); // Get the object 2780 __ verify_oop(rax); 2781 __ push(atos); // Restore stack state 2782 } 2783 // rax,: object pointer or NULL 2784 // cache: cache entry pointer 2785 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), 2786 rax, cache); 2787 __ get_cache_and_index_at_bcp(cache, index, 1); 2788 __ bind(L1); 2789 } 2790 } 2791 2792 void TemplateTable::pop_and_check_object(Register r) { 2793 __ pop_ptr(r); 2794 __ null_check(r); // for field access must check obj. 2795 __ verify_oop(r); 2796 } 2797 2798 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc) { 2799 transition(vtos, vtos); 2800 2801 const Register cache = rcx; 2802 const Register index = rdx; 2803 const Register obj = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 2804 const Register off = rbx; 2805 const Register flags = rax; 2806 const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // uses same reg as obj, so don't mix them 2807 2808 resolve_cache_and_index(byte_no, cache, index, sizeof(u2)); 2809 jvmti_post_field_access(cache, index, is_static, false); 2810 load_field_cp_cache_entry(obj, cache, index, off, flags, is_static); 2811 2812 if (!is_static) pop_and_check_object(obj); 2813 2814 const Address field(obj, off, Address::times_1, 0*wordSize); 2815 2816 Label Done, notByte, notBool, notInt, notShort, notChar, notLong, notFloat, notObj; 2817 2818 __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift); 2819 // Make sure we don't need to mask edx after the above shift 2820 assert(btos == 0, "change code, btos != 0"); 2821 2822 __ andl(flags, ConstantPoolCacheEntry::tos_state_mask); 2823 2824 __ jcc(Assembler::notZero, notByte); 2825 // btos 2826 __ access_load_at(T_BYTE, IN_HEAP, rax, field, noreg, noreg); 2827 __ push(btos); 2828 // Rewrite bytecode to be faster 2829 if (!is_static && rc == may_rewrite) { 2830 patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx); 2831 } 2832 __ jmp(Done); 2833 2834 __ bind(notByte); 2835 __ cmpl(flags, ztos); 2836 __ jcc(Assembler::notEqual, notBool); 2837 2838 // ztos (same code as btos) 2839 __ access_load_at(T_BOOLEAN, IN_HEAP, rax, field, noreg, noreg); 2840 __ push(ztos); 2841 // Rewrite bytecode to be faster 2842 if (!is_static && rc == may_rewrite) { 2843 // use btos rewriting, no truncating to t/f bit is needed for getfield. 2844 patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx); 2845 } 2846 __ jmp(Done); 2847 2848 __ bind(notBool); 2849 __ cmpl(flags, atos); 2850 __ jcc(Assembler::notEqual, notObj); 2851 // atos 2852 do_oop_load(_masm, field, rax); 2853 __ push(atos); 2854 if (!is_static && rc == may_rewrite) { 2855 patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx); 2856 } 2857 __ jmp(Done); 2858 2859 __ bind(notObj); 2860 __ cmpl(flags, itos); 2861 __ jcc(Assembler::notEqual, notInt); 2862 // itos 2863 __ access_load_at(T_INT, IN_HEAP, rax, field, noreg, noreg); 2864 __ push(itos); 2865 // Rewrite bytecode to be faster 2866 if (!is_static && rc == may_rewrite) { 2867 patch_bytecode(Bytecodes::_fast_igetfield, bc, rbx); 2868 } 2869 __ jmp(Done); 2870 2871 __ bind(notInt); 2872 __ cmpl(flags, ctos); 2873 __ jcc(Assembler::notEqual, notChar); 2874 // ctos 2875 __ access_load_at(T_CHAR, IN_HEAP, rax, field, noreg, noreg); 2876 __ push(ctos); 2877 // Rewrite bytecode to be faster 2878 if (!is_static && rc == may_rewrite) { 2879 patch_bytecode(Bytecodes::_fast_cgetfield, bc, rbx); 2880 } 2881 __ jmp(Done); 2882 2883 __ bind(notChar); 2884 __ cmpl(flags, stos); 2885 __ jcc(Assembler::notEqual, notShort); 2886 // stos 2887 __ access_load_at(T_SHORT, IN_HEAP, rax, field, noreg, noreg); 2888 __ push(stos); 2889 // Rewrite bytecode to be faster 2890 if (!is_static && rc == may_rewrite) { 2891 patch_bytecode(Bytecodes::_fast_sgetfield, bc, rbx); 2892 } 2893 __ jmp(Done); 2894 2895 __ bind(notShort); 2896 __ cmpl(flags, ltos); 2897 __ jcc(Assembler::notEqual, notLong); 2898 // ltos 2899 // Generate code as if volatile (x86_32). There just aren't enough registers to 2900 // save that information and this code is faster than the test. 2901 __ access_load_at(T_LONG, IN_HEAP | MO_RELAXED, noreg /* ltos */, field, noreg, noreg); 2902 __ push(ltos); 2903 // Rewrite bytecode to be faster 2904 LP64_ONLY(if (!is_static && rc == may_rewrite) patch_bytecode(Bytecodes::_fast_lgetfield, bc, rbx)); 2905 __ jmp(Done); 2906 2907 __ bind(notLong); 2908 __ cmpl(flags, ftos); 2909 __ jcc(Assembler::notEqual, notFloat); 2910 // ftos 2911 2912 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg); 2913 __ push(ftos); 2914 // Rewrite bytecode to be faster 2915 if (!is_static && rc == may_rewrite) { 2916 patch_bytecode(Bytecodes::_fast_fgetfield, bc, rbx); 2917 } 2918 __ jmp(Done); 2919 2920 __ bind(notFloat); 2921 #ifdef ASSERT 2922 Label notDouble; 2923 __ cmpl(flags, dtos); 2924 __ jcc(Assembler::notEqual, notDouble); 2925 #endif 2926 // dtos 2927 // MO_RELAXED: for the case of volatile field, in fact it adds no extra work for the underlying implementation 2928 __ access_load_at(T_DOUBLE, IN_HEAP | MO_RELAXED, noreg /* dtos */, field, noreg, noreg); 2929 __ push(dtos); 2930 // Rewrite bytecode to be faster 2931 if (!is_static && rc == may_rewrite) { 2932 patch_bytecode(Bytecodes::_fast_dgetfield, bc, rbx); 2933 } 2934 #ifdef ASSERT 2935 __ jmp(Done); 2936 2937 __ bind(notDouble); 2938 __ stop("Bad state"); 2939 #endif 2940 2941 __ bind(Done); 2942 // [jk] not needed currently 2943 // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadLoad | 2944 // Assembler::LoadStore)); 2945 } 2946 2947 void TemplateTable::getfield(int byte_no) { 2948 getfield_or_static(byte_no, false); 2949 } 2950 2951 void TemplateTable::nofast_getfield(int byte_no) { 2952 getfield_or_static(byte_no, false, may_not_rewrite); 2953 } 2954 2955 void TemplateTable::getstatic(int byte_no) { 2956 getfield_or_static(byte_no, true); 2957 } 2958 2959 2960 // The registers cache and index expected to be set before call. 2961 // The function may destroy various registers, just not the cache and index registers. 2962 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) { 2963 2964 const Register robj = LP64_ONLY(c_rarg2) NOT_LP64(rax); 2965 const Register RBX = LP64_ONLY(c_rarg1) NOT_LP64(rbx); 2966 const Register RCX = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 2967 const Register RDX = LP64_ONLY(rscratch1) NOT_LP64(rdx); 2968 2969 ByteSize cp_base_offset = ConstantPoolCache::base_offset(); 2970 2971 if (JvmtiExport::can_post_field_modification()) { 2972 // Check to see if a field modification watch has been set before 2973 // we take the time to call into the VM. 2974 Label L1; 2975 assert_different_registers(cache, index, rax); 2976 __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); 2977 __ testl(rax, rax); 2978 __ jcc(Assembler::zero, L1); 2979 2980 __ get_cache_and_index_at_bcp(robj, RDX, 1); 2981 2982 2983 if (is_static) { 2984 // Life is simple. Null out the object pointer. 2985 __ xorl(RBX, RBX); 2986 2987 } else { 2988 // Life is harder. The stack holds the value on top, followed by 2989 // the object. We don't know the size of the value, though; it 2990 // could be one or two words depending on its type. As a result, 2991 // we must find the type to determine where the object is. 2992 #ifndef _LP64 2993 Label two_word, valsize_known; 2994 #endif 2995 __ movl(RCX, Address(robj, RDX, 2996 Address::times_ptr, 2997 in_bytes(cp_base_offset + 2998 ConstantPoolCacheEntry::flags_offset()))); 2999 NOT_LP64(__ mov(rbx, rsp)); 3000 __ shrl(RCX, ConstantPoolCacheEntry::tos_state_shift); 3001 3002 // Make sure we don't need to mask rcx after the above shift 3003 ConstantPoolCacheEntry::verify_tos_state_shift(); 3004 #ifdef _LP64 3005 __ movptr(c_rarg1, at_tos_p1()); // initially assume a one word jvalue 3006 __ cmpl(c_rarg3, ltos); 3007 __ cmovptr(Assembler::equal, 3008 c_rarg1, at_tos_p2()); // ltos (two word jvalue) 3009 __ cmpl(c_rarg3, dtos); 3010 __ cmovptr(Assembler::equal, 3011 c_rarg1, at_tos_p2()); // dtos (two word jvalue) 3012 #else 3013 __ cmpl(rcx, ltos); 3014 __ jccb(Assembler::equal, two_word); 3015 __ cmpl(rcx, dtos); 3016 __ jccb(Assembler::equal, two_word); 3017 __ addptr(rbx, Interpreter::expr_offset_in_bytes(1)); // one word jvalue (not ltos, dtos) 3018 __ jmpb(valsize_known); 3019 3020 __ bind(two_word); 3021 __ addptr(rbx, Interpreter::expr_offset_in_bytes(2)); // two words jvalue 3022 3023 __ bind(valsize_known); 3024 // setup object pointer 3025 __ movptr(rbx, Address(rbx, 0)); 3026 #endif 3027 } 3028 // cache entry pointer 3029 __ addptr(robj, in_bytes(cp_base_offset)); 3030 __ shll(RDX, LogBytesPerWord); 3031 __ addptr(robj, RDX); 3032 // object (tos) 3033 __ mov(RCX, rsp); 3034 // c_rarg1: object pointer set up above (NULL if static) 3035 // c_rarg2: cache entry pointer 3036 // c_rarg3: jvalue object on the stack 3037 __ call_VM(noreg, 3038 CAST_FROM_FN_PTR(address, 3039 InterpreterRuntime::post_field_modification), 3040 RBX, robj, RCX); 3041 __ get_cache_and_index_at_bcp(cache, index, 1); 3042 __ bind(L1); 3043 } 3044 } 3045 3046 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) { 3047 transition(vtos, vtos); 3048 3049 const Register cache = rcx; 3050 const Register index = rdx; 3051 const Register obj = rcx; 3052 const Register off = rbx; 3053 const Register flags = rax; 3054 3055 resolve_cache_and_index(byte_no, cache, index, sizeof(u2)); 3056 jvmti_post_field_mod(cache, index, is_static); 3057 load_field_cp_cache_entry(obj, cache, index, off, flags, is_static); 3058 3059 // [jk] not needed currently 3060 // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore | 3061 // Assembler::StoreStore)); 3062 3063 Label notVolatile, Done; 3064 __ movl(rdx, flags); 3065 __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift); 3066 __ andl(rdx, 0x1); 3067 3068 // Check for volatile store 3069 __ testl(rdx, rdx); 3070 __ jcc(Assembler::zero, notVolatile); 3071 3072 putfield_or_static_helper(byte_no, is_static, rc, obj, off, flags); 3073 volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad | 3074 Assembler::StoreStore)); 3075 __ jmp(Done); 3076 __ bind(notVolatile); 3077 3078 putfield_or_static_helper(byte_no, is_static, rc, obj, off, flags); 3079 3080 __ bind(Done); 3081 } 3082 3083 void TemplateTable::putfield_or_static_helper(int byte_no, bool is_static, RewriteControl rc, 3084 Register obj, Register off, Register flags) { 3085 3086 // field addresses 3087 const Address field(obj, off, Address::times_1, 0*wordSize); 3088 NOT_LP64( const Address hi(obj, off, Address::times_1, 1*wordSize);) 3089 3090 Label notByte, notBool, notInt, notShort, notChar, 3091 notLong, notFloat, notObj; 3092 Label Done; 3093 3094 const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 3095 3096 __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift); 3097 3098 assert(btos == 0, "change code, btos != 0"); 3099 __ andl(flags, ConstantPoolCacheEntry::tos_state_mask); 3100 __ jcc(Assembler::notZero, notByte); 3101 3102 // btos 3103 { 3104 __ pop(btos); 3105 if (!is_static) pop_and_check_object(obj); 3106 __ access_store_at(T_BYTE, IN_HEAP, field, rax, noreg, noreg, noreg); 3107 if (!is_static && rc == may_rewrite) { 3108 patch_bytecode(Bytecodes::_fast_bputfield, bc, rbx, true, byte_no); 3109 } 3110 __ jmp(Done); 3111 } 3112 3113 __ bind(notByte); 3114 __ cmpl(flags, ztos); 3115 __ jcc(Assembler::notEqual, notBool); 3116 3117 // ztos 3118 { 3119 __ pop(ztos); 3120 if (!is_static) pop_and_check_object(obj); 3121 __ access_store_at(T_BOOLEAN, IN_HEAP, field, rax, noreg, noreg, noreg); 3122 if (!is_static && rc == may_rewrite) { 3123 patch_bytecode(Bytecodes::_fast_zputfield, bc, rbx, true, byte_no); 3124 } 3125 __ jmp(Done); 3126 } 3127 3128 __ bind(notBool); 3129 __ cmpl(flags, atos); 3130 __ jcc(Assembler::notEqual, notObj); 3131 3132 // atos 3133 { 3134 __ pop(atos); 3135 if (!is_static) pop_and_check_object(obj); 3136 // Store into the field 3137 do_oop_store(_masm, field, rax); 3138 if (!is_static && rc == may_rewrite) { 3139 patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx, true, byte_no); 3140 } 3141 __ jmp(Done); 3142 } 3143 3144 __ bind(notObj); 3145 __ cmpl(flags, itos); 3146 __ jcc(Assembler::notEqual, notInt); 3147 3148 // itos 3149 { 3150 __ pop(itos); 3151 if (!is_static) pop_and_check_object(obj); 3152 __ access_store_at(T_INT, IN_HEAP, field, rax, noreg, noreg, noreg); 3153 if (!is_static && rc == may_rewrite) { 3154 patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx, true, byte_no); 3155 } 3156 __ jmp(Done); 3157 } 3158 3159 __ bind(notInt); 3160 __ cmpl(flags, ctos); 3161 __ jcc(Assembler::notEqual, notChar); 3162 3163 // ctos 3164 { 3165 __ pop(ctos); 3166 if (!is_static) pop_and_check_object(obj); 3167 __ access_store_at(T_CHAR, IN_HEAP, field, rax, noreg, noreg, noreg); 3168 if (!is_static && rc == may_rewrite) { 3169 patch_bytecode(Bytecodes::_fast_cputfield, bc, rbx, true, byte_no); 3170 } 3171 __ jmp(Done); 3172 } 3173 3174 __ bind(notChar); 3175 __ cmpl(flags, stos); 3176 __ jcc(Assembler::notEqual, notShort); 3177 3178 // stos 3179 { 3180 __ pop(stos); 3181 if (!is_static) pop_and_check_object(obj); 3182 __ access_store_at(T_SHORT, IN_HEAP, field, rax, noreg, noreg, noreg); 3183 if (!is_static && rc == may_rewrite) { 3184 patch_bytecode(Bytecodes::_fast_sputfield, bc, rbx, true, byte_no); 3185 } 3186 __ jmp(Done); 3187 } 3188 3189 __ bind(notShort); 3190 __ cmpl(flags, ltos); 3191 __ jcc(Assembler::notEqual, notLong); 3192 3193 // ltos 3194 { 3195 __ pop(ltos); 3196 if (!is_static) pop_and_check_object(obj); 3197 // MO_RELAXED: generate atomic store for the case of volatile field (important for x86_32) 3198 __ access_store_at(T_LONG, IN_HEAP | MO_RELAXED, field, noreg /* ltos*/, noreg, noreg, noreg); 3199 #ifdef _LP64 3200 if (!is_static && rc == may_rewrite) { 3201 patch_bytecode(Bytecodes::_fast_lputfield, bc, rbx, true, byte_no); 3202 } 3203 #endif // _LP64 3204 __ jmp(Done); 3205 } 3206 3207 __ bind(notLong); 3208 __ cmpl(flags, ftos); 3209 __ jcc(Assembler::notEqual, notFloat); 3210 3211 // ftos 3212 { 3213 __ pop(ftos); 3214 if (!is_static) pop_and_check_object(obj); 3215 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos */, noreg, noreg, noreg); 3216 if (!is_static && rc == may_rewrite) { 3217 patch_bytecode(Bytecodes::_fast_fputfield, bc, rbx, true, byte_no); 3218 } 3219 __ jmp(Done); 3220 } 3221 3222 __ bind(notFloat); 3223 #ifdef ASSERT 3224 Label notDouble; 3225 __ cmpl(flags, dtos); 3226 __ jcc(Assembler::notEqual, notDouble); 3227 #endif 3228 3229 // dtos 3230 { 3231 __ pop(dtos); 3232 if (!is_static) pop_and_check_object(obj); 3233 // MO_RELAXED: for the case of volatile field, in fact it adds no extra work for the underlying implementation 3234 __ access_store_at(T_DOUBLE, IN_HEAP | MO_RELAXED, field, noreg /* dtos */, noreg, noreg, noreg); 3235 if (!is_static && rc == may_rewrite) { 3236 patch_bytecode(Bytecodes::_fast_dputfield, bc, rbx, true, byte_no); 3237 } 3238 } 3239 3240 #ifdef ASSERT 3241 __ jmp(Done); 3242 3243 __ bind(notDouble); 3244 __ stop("Bad state"); 3245 #endif 3246 3247 __ bind(Done); 3248 } 3249 3250 void TemplateTable::putfield(int byte_no) { 3251 putfield_or_static(byte_no, false); 3252 } 3253 3254 void TemplateTable::nofast_putfield(int byte_no) { 3255 putfield_or_static(byte_no, false, may_not_rewrite); 3256 } 3257 3258 void TemplateTable::putstatic(int byte_no) { 3259 putfield_or_static(byte_no, true); 3260 } 3261 3262 void TemplateTable::jvmti_post_fast_field_mod() { 3263 3264 const Register scratch = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 3265 3266 if (JvmtiExport::can_post_field_modification()) { 3267 // Check to see if a field modification watch has been set before 3268 // we take the time to call into the VM. 3269 Label L2; 3270 __ mov32(scratch, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); 3271 __ testl(scratch, scratch); 3272 __ jcc(Assembler::zero, L2); 3273 __ pop_ptr(rbx); // copy the object pointer from tos 3274 __ verify_oop(rbx); 3275 __ push_ptr(rbx); // put the object pointer back on tos 3276 // Save tos values before call_VM() clobbers them. Since we have 3277 // to do it for every data type, we use the saved values as the 3278 // jvalue object. 3279 switch (bytecode()) { // load values into the jvalue object 3280 case Bytecodes::_fast_aputfield: __ push_ptr(rax); break; 3281 case Bytecodes::_fast_bputfield: // fall through 3282 case Bytecodes::_fast_zputfield: // fall through 3283 case Bytecodes::_fast_sputfield: // fall through 3284 case Bytecodes::_fast_cputfield: // fall through 3285 case Bytecodes::_fast_iputfield: __ push_i(rax); break; 3286 case Bytecodes::_fast_dputfield: __ push(dtos); break; 3287 case Bytecodes::_fast_fputfield: __ push(ftos); break; 3288 case Bytecodes::_fast_lputfield: __ push_l(rax); break; 3289 3290 default: 3291 ShouldNotReachHere(); 3292 } 3293 __ mov(scratch, rsp); // points to jvalue on the stack 3294 // access constant pool cache entry 3295 LP64_ONLY(__ get_cache_entry_pointer_at_bcp(c_rarg2, rax, 1)); 3296 NOT_LP64(__ get_cache_entry_pointer_at_bcp(rax, rdx, 1)); 3297 __ verify_oop(rbx); 3298 // rbx: object pointer copied above 3299 // c_rarg2: cache entry pointer 3300 // c_rarg3: jvalue object on the stack 3301 LP64_ONLY(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, c_rarg2, c_rarg3)); 3302 NOT_LP64(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, rax, rcx)); 3303 3304 switch (bytecode()) { // restore tos values 3305 case Bytecodes::_fast_aputfield: __ pop_ptr(rax); break; 3306 case Bytecodes::_fast_bputfield: // fall through 3307 case Bytecodes::_fast_zputfield: // fall through 3308 case Bytecodes::_fast_sputfield: // fall through 3309 case Bytecodes::_fast_cputfield: // fall through 3310 case Bytecodes::_fast_iputfield: __ pop_i(rax); break; 3311 case Bytecodes::_fast_dputfield: __ pop(dtos); break; 3312 case Bytecodes::_fast_fputfield: __ pop(ftos); break; 3313 case Bytecodes::_fast_lputfield: __ pop_l(rax); break; 3314 default: break; 3315 } 3316 __ bind(L2); 3317 } 3318 } 3319 3320 void TemplateTable::fast_storefield(TosState state) { 3321 transition(state, vtos); 3322 3323 ByteSize base = ConstantPoolCache::base_offset(); 3324 3325 jvmti_post_fast_field_mod(); 3326 3327 // access constant pool cache 3328 __ get_cache_and_index_at_bcp(rcx, rbx, 1); 3329 3330 // test for volatile with rdx but rdx is tos register for lputfield. 3331 __ movl(rdx, Address(rcx, rbx, Address::times_ptr, 3332 in_bytes(base + 3333 ConstantPoolCacheEntry::flags_offset()))); 3334 3335 // replace index with field offset from cache entry 3336 __ movptr(rbx, Address(rcx, rbx, Address::times_ptr, 3337 in_bytes(base + ConstantPoolCacheEntry::f2_offset()))); 3338 3339 // [jk] not needed currently 3340 // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore | 3341 // Assembler::StoreStore)); 3342 3343 Label notVolatile, Done; 3344 __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift); 3345 __ andl(rdx, 0x1); 3346 3347 // Get object from stack 3348 pop_and_check_object(rcx); 3349 3350 // field address 3351 const Address field(rcx, rbx, Address::times_1); 3352 3353 // Check for volatile store 3354 __ testl(rdx, rdx); 3355 __ jcc(Assembler::zero, notVolatile); 3356 3357 fast_storefield_helper(field, rax); 3358 volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad | 3359 Assembler::StoreStore)); 3360 __ jmp(Done); 3361 __ bind(notVolatile); 3362 3363 fast_storefield_helper(field, rax); 3364 3365 __ bind(Done); 3366 } 3367 3368 void TemplateTable::fast_storefield_helper(Address field, Register rax) { 3369 3370 // access field 3371 switch (bytecode()) { 3372 case Bytecodes::_fast_aputfield: 3373 do_oop_store(_masm, field, rax); 3374 break; 3375 case Bytecodes::_fast_lputfield: 3376 #ifdef _LP64 3377 __ access_store_at(T_LONG, IN_HEAP, field, noreg /* ltos */, noreg, noreg, noreg); 3378 #else 3379 __ stop("should not be rewritten"); 3380 #endif 3381 break; 3382 case Bytecodes::_fast_iputfield: 3383 __ access_store_at(T_INT, IN_HEAP, field, rax, noreg, noreg, noreg); 3384 break; 3385 case Bytecodes::_fast_zputfield: 3386 __ access_store_at(T_BOOLEAN, IN_HEAP, field, rax, noreg, noreg, noreg); 3387 break; 3388 case Bytecodes::_fast_bputfield: 3389 __ access_store_at(T_BYTE, IN_HEAP, field, rax, noreg, noreg, noreg); 3390 break; 3391 case Bytecodes::_fast_sputfield: 3392 __ access_store_at(T_SHORT, IN_HEAP, field, rax, noreg, noreg, noreg); 3393 break; 3394 case Bytecodes::_fast_cputfield: 3395 __ access_store_at(T_CHAR, IN_HEAP, field, rax, noreg, noreg, noreg); 3396 break; 3397 case Bytecodes::_fast_fputfield: 3398 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos*/, noreg, noreg, noreg); 3399 break; 3400 case Bytecodes::_fast_dputfield: 3401 __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos*/, noreg, noreg, noreg); 3402 break; 3403 default: 3404 ShouldNotReachHere(); 3405 } 3406 } 3407 3408 void TemplateTable::fast_accessfield(TosState state) { 3409 transition(atos, state); 3410 3411 // Do the JVMTI work here to avoid disturbing the register state below 3412 if (JvmtiExport::can_post_field_access()) { 3413 // Check to see if a field access watch has been set before we 3414 // take the time to call into the VM. 3415 Label L1; 3416 __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); 3417 __ testl(rcx, rcx); 3418 __ jcc(Assembler::zero, L1); 3419 // access constant pool cache entry 3420 LP64_ONLY(__ get_cache_entry_pointer_at_bcp(c_rarg2, rcx, 1)); 3421 NOT_LP64(__ get_cache_entry_pointer_at_bcp(rcx, rdx, 1)); 3422 __ verify_oop(rax); 3423 __ push_ptr(rax); // save object pointer before call_VM() clobbers it 3424 LP64_ONLY(__ mov(c_rarg1, rax)); 3425 // c_rarg1: object pointer copied above 3426 // c_rarg2: cache entry pointer 3427 LP64_ONLY(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), c_rarg1, c_rarg2)); 3428 NOT_LP64(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), rax, rcx)); 3429 __ pop_ptr(rax); // restore object pointer 3430 __ bind(L1); 3431 } 3432 3433 // access constant pool cache 3434 __ get_cache_and_index_at_bcp(rcx, rbx, 1); 3435 // replace index with field offset from cache entry 3436 // [jk] not needed currently 3437 // __ movl(rdx, Address(rcx, rbx, Address::times_8, 3438 // in_bytes(ConstantPoolCache::base_offset() + 3439 // ConstantPoolCacheEntry::flags_offset()))); 3440 // __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift); 3441 // __ andl(rdx, 0x1); 3442 // 3443 __ movptr(rbx, Address(rcx, rbx, Address::times_ptr, 3444 in_bytes(ConstantPoolCache::base_offset() + 3445 ConstantPoolCacheEntry::f2_offset()))); 3446 3447 // rax: object 3448 __ verify_oop(rax); 3449 __ null_check(rax); 3450 Address field(rax, rbx, Address::times_1); 3451 3452 // access field 3453 switch (bytecode()) { 3454 case Bytecodes::_fast_agetfield: 3455 do_oop_load(_masm, field, rax); 3456 __ verify_oop(rax); 3457 break; 3458 case Bytecodes::_fast_lgetfield: 3459 #ifdef _LP64 3460 __ access_load_at(T_LONG, IN_HEAP, noreg /* ltos */, field, noreg, noreg); 3461 #else 3462 __ stop("should not be rewritten"); 3463 #endif 3464 break; 3465 case Bytecodes::_fast_igetfield: 3466 __ access_load_at(T_INT, IN_HEAP, rax, field, noreg, noreg); 3467 break; 3468 case Bytecodes::_fast_bgetfield: 3469 __ access_load_at(T_BYTE, IN_HEAP, rax, field, noreg, noreg); 3470 break; 3471 case Bytecodes::_fast_sgetfield: 3472 __ access_load_at(T_SHORT, IN_HEAP, rax, field, noreg, noreg); 3473 break; 3474 case Bytecodes::_fast_cgetfield: 3475 __ access_load_at(T_CHAR, IN_HEAP, rax, field, noreg, noreg); 3476 break; 3477 case Bytecodes::_fast_fgetfield: 3478 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg); 3479 break; 3480 case Bytecodes::_fast_dgetfield: 3481 __ access_load_at(T_DOUBLE, IN_HEAP, noreg /* dtos */, field, noreg, noreg); 3482 break; 3483 default: 3484 ShouldNotReachHere(); 3485 } 3486 // [jk] not needed currently 3487 // Label notVolatile; 3488 // __ testl(rdx, rdx); 3489 // __ jcc(Assembler::zero, notVolatile); 3490 // __ membar(Assembler::LoadLoad); 3491 // __ bind(notVolatile); 3492 } 3493 3494 void TemplateTable::fast_xaccess(TosState state) { 3495 transition(vtos, state); 3496 3497 // get receiver 3498 __ movptr(rax, aaddress(0)); 3499 // access constant pool cache 3500 __ get_cache_and_index_at_bcp(rcx, rdx, 2); 3501 __ movptr(rbx, 3502 Address(rcx, rdx, Address::times_ptr, 3503 in_bytes(ConstantPoolCache::base_offset() + 3504 ConstantPoolCacheEntry::f2_offset()))); 3505 // make sure exception is reported in correct bcp range (getfield is 3506 // next instruction) 3507 __ increment(rbcp); 3508 __ null_check(rax); 3509 const Address field = Address(rax, rbx, Address::times_1, 0*wordSize); 3510 switch (state) { 3511 case itos: 3512 __ access_load_at(T_INT, IN_HEAP, rax, field, noreg, noreg); 3513 break; 3514 case atos: 3515 do_oop_load(_masm, field, rax); 3516 __ verify_oop(rax); 3517 break; 3518 case ftos: 3519 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg); 3520 break; 3521 default: 3522 ShouldNotReachHere(); 3523 } 3524 3525 // [jk] not needed currently 3526 // Label notVolatile; 3527 // __ movl(rdx, Address(rcx, rdx, Address::times_8, 3528 // in_bytes(ConstantPoolCache::base_offset() + 3529 // ConstantPoolCacheEntry::flags_offset()))); 3530 // __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift); 3531 // __ testl(rdx, 0x1); 3532 // __ jcc(Assembler::zero, notVolatile); 3533 // __ membar(Assembler::LoadLoad); 3534 // __ bind(notVolatile); 3535 3536 __ decrement(rbcp); 3537 } 3538 3539 //----------------------------------------------------------------------------- 3540 // Calls 3541 3542 void TemplateTable::prepare_invoke(int byte_no, 3543 Register method, // linked method (or i-klass) 3544 Register index, // itable index, MethodType, etc. 3545 Register recv, // if caller wants to see it 3546 Register flags // if caller wants to test it 3547 ) { 3548 // determine flags 3549 const Bytecodes::Code code = bytecode(); 3550 const bool is_invokeinterface = code == Bytecodes::_invokeinterface; 3551 const bool is_invokedynamic = code == Bytecodes::_invokedynamic; 3552 const bool is_invokehandle = code == Bytecodes::_invokehandle; 3553 const bool is_invokevirtual = code == Bytecodes::_invokevirtual; 3554 const bool is_invokespecial = code == Bytecodes::_invokespecial; 3555 const bool load_receiver = (recv != noreg); 3556 const bool save_flags = (flags != noreg); 3557 assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), ""); 3558 assert(save_flags == (is_invokeinterface || is_invokevirtual), "need flags for vfinal"); 3559 assert(flags == noreg || flags == rdx, ""); 3560 assert(recv == noreg || recv == rcx, ""); 3561 3562 // setup registers & access constant pool cache 3563 if (recv == noreg) recv = rcx; 3564 if (flags == noreg) flags = rdx; 3565 assert_different_registers(method, index, recv, flags); 3566 3567 // save 'interpreter return address' 3568 __ save_bcp(); 3569 3570 load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic); 3571 3572 // maybe push appendix to arguments (just before return address) 3573 if (is_invokedynamic || is_invokehandle) { 3574 Label L_no_push; 3575 __ testl(flags, (1 << ConstantPoolCacheEntry::has_appendix_shift)); 3576 __ jcc(Assembler::zero, L_no_push); 3577 // Push the appendix as a trailing parameter. 3578 // This must be done before we get the receiver, 3579 // since the parameter_size includes it. 3580 __ push(rbx); 3581 __ mov(rbx, index); 3582 __ load_resolved_reference_at_index(index, rbx); 3583 __ pop(rbx); 3584 __ push(index); // push appendix (MethodType, CallSite, etc.) 3585 __ bind(L_no_push); 3586 } 3587 3588 // load receiver if needed (after appendix is pushed so parameter size is correct) 3589 // Note: no return address pushed yet 3590 if (load_receiver) { 3591 __ movl(recv, flags); 3592 __ andl(recv, ConstantPoolCacheEntry::parameter_size_mask); 3593 const int no_return_pc_pushed_yet = -1; // argument slot correction before we push return address 3594 const int receiver_is_at_end = -1; // back off one slot to get receiver 3595 Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end); 3596 __ movptr(recv, recv_addr); 3597 __ verify_oop(recv); 3598 } 3599 3600 if (save_flags) { 3601 __ movl(rbcp, flags); 3602 } 3603 3604 // compute return type 3605 __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift); 3606 // Make sure we don't need to mask flags after the above shift 3607 ConstantPoolCacheEntry::verify_tos_state_shift(); 3608 // load return address 3609 { 3610 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code); 3611 ExternalAddress table(table_addr); 3612 #ifdef _LP64 3613 __ lea(rscratch1, table); 3614 __ movptr(flags, Address(rscratch1, flags, Address::times_ptr)); 3615 #else 3616 __ movptr(flags, ArrayAddress(table, Address(noreg, flags, Address::times_ptr))); 3617 #endif // _LP64 3618 } 3619 3620 // push return address 3621 __ push(flags); 3622 3623 // Restore flags value from the constant pool cache, and restore rsi 3624 // for later null checks. r13 is the bytecode pointer 3625 if (save_flags) { 3626 __ movl(flags, rbcp); 3627 __ restore_bcp(); 3628 } 3629 } 3630 3631 void TemplateTable::invokevirtual_helper(Register index, 3632 Register recv, 3633 Register flags) { 3634 // Uses temporary registers rax, rdx 3635 assert_different_registers(index, recv, rax, rdx); 3636 assert(index == rbx, ""); 3637 assert(recv == rcx, ""); 3638 3639 // Test for an invoke of a final method 3640 Label notFinal; 3641 __ movl(rax, flags); 3642 __ andl(rax, (1 << ConstantPoolCacheEntry::is_vfinal_shift)); 3643 __ jcc(Assembler::zero, notFinal); 3644 3645 const Register method = index; // method must be rbx 3646 assert(method == rbx, 3647 "Method* must be rbx for interpreter calling convention"); 3648 3649 // do the call - the index is actually the method to call 3650 // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method* 3651 3652 // It's final, need a null check here! 3653 __ null_check(recv); 3654 3655 // profile this call 3656 __ profile_final_call(rax); 3657 __ profile_arguments_type(rax, method, rbcp, true); 3658 3659 __ jump_from_interpreted(method, rax); 3660 3661 __ bind(notFinal); 3662 3663 // get receiver klass 3664 __ load_klass_check_null(rax, recv, rscratch1); 3665 3666 // profile this call 3667 __ profile_virtual_call(rax, rlocals, rdx); 3668 // get target Method* & entry point 3669 __ lookup_virtual_method(rax, index, method); 3670 3671 __ profile_arguments_type(rdx, method, rbcp, true); 3672 __ jump_from_interpreted(method, rdx); 3673 } 3674 3675 void TemplateTable::invokevirtual(int byte_no) { 3676 transition(vtos, vtos); 3677 assert(byte_no == f2_byte, "use this argument"); 3678 prepare_invoke(byte_no, 3679 rbx, // method or vtable index 3680 noreg, // unused itable index 3681 rcx, rdx); // recv, flags 3682 3683 // rbx: index 3684 // rcx: receiver 3685 // rdx: flags 3686 3687 invokevirtual_helper(rbx, rcx, rdx); 3688 } 3689 3690 void TemplateTable::invokespecial(int byte_no) { 3691 transition(vtos, vtos); 3692 assert(byte_no == f1_byte, "use this argument"); 3693 prepare_invoke(byte_no, rbx, noreg, // get f1 Method* 3694 rcx); // get receiver also for null check 3695 __ verify_oop(rcx); 3696 __ null_check(rcx); 3697 // do the call 3698 __ profile_call(rax); 3699 __ profile_arguments_type(rax, rbx, rbcp, false); 3700 __ jump_from_interpreted(rbx, rax); 3701 } 3702 3703 void TemplateTable::invokestatic(int byte_no) { 3704 transition(vtos, vtos); 3705 assert(byte_no == f1_byte, "use this argument"); 3706 prepare_invoke(byte_no, rbx); // get f1 Method* 3707 // do the call 3708 __ profile_call(rax); 3709 __ profile_arguments_type(rax, rbx, rbcp, false); 3710 __ jump_from_interpreted(rbx, rax); 3711 } 3712 3713 3714 void TemplateTable::fast_invokevfinal(int byte_no) { 3715 transition(vtos, vtos); 3716 assert(byte_no == f2_byte, "use this argument"); 3717 __ stop("fast_invokevfinal not used on x86"); 3718 } 3719 3720 3721 void TemplateTable::invokeinterface(int byte_no) { 3722 transition(vtos, vtos); 3723 assert(byte_no == f1_byte, "use this argument"); 3724 prepare_invoke(byte_no, rax, rbx, // get f1 Klass*, f2 Method* 3725 rcx, rdx); // recv, flags 3726 3727 // rax: reference klass (from f1) if interface method 3728 // rbx: method (from f2) 3729 // rcx: receiver 3730 // rdx: flags 3731 3732 // First check for Object case, then private interface method, 3733 // then regular interface method. 3734 3735 // Special case of invokeinterface called for virtual method of 3736 // java.lang.Object. See cpCache.cpp for details. 3737 Label notObjectMethod; 3738 __ movl(rlocals, rdx); 3739 __ andl(rlocals, (1 << ConstantPoolCacheEntry::is_forced_virtual_shift)); 3740 __ jcc(Assembler::zero, notObjectMethod); 3741 invokevirtual_helper(rbx, rcx, rdx); 3742 // no return from above 3743 __ bind(notObjectMethod); 3744 3745 Label no_such_interface; // for receiver subtype check 3746 Register recvKlass; // used for exception processing 3747 3748 // Check for private method invocation - indicated by vfinal 3749 Label notVFinal; 3750 __ movl(rlocals, rdx); 3751 __ andl(rlocals, (1 << ConstantPoolCacheEntry::is_vfinal_shift)); 3752 __ jcc(Assembler::zero, notVFinal); 3753 3754 // Get receiver klass into rlocals - also a null check 3755 __ load_klass_check_null(rlocals, rcx, rscratch1); 3756 3757 Label subtype; 3758 __ check_klass_subtype(rlocals, rax, rbcp, subtype); 3759 // If we get here the typecheck failed 3760 recvKlass = rdx; 3761 __ mov(recvKlass, rlocals); // shuffle receiver class for exception use 3762 __ jmp(no_such_interface); 3763 3764 __ bind(subtype); 3765 3766 // do the call - rbx is actually the method to call 3767 3768 __ profile_final_call(rdx); 3769 __ profile_arguments_type(rdx, rbx, rbcp, true); 3770 3771 __ jump_from_interpreted(rbx, rdx); 3772 // no return from above 3773 __ bind(notVFinal); 3774 3775 // Get receiver klass into rdx - also a null check 3776 __ restore_locals(); // restore r14 3777 __ load_klass_check_null(rdx, rcx, rscratch1); 3778 3779 Label no_such_method; 3780 3781 // Preserve method for throw_AbstractMethodErrorVerbose. 3782 __ mov(rcx, rbx); 3783 // Receiver subtype check against REFC. 3784 // Superklass in rax. Subklass in rdx. Blows rcx, rdi. 3785 __ lookup_interface_method(// inputs: rec. class, interface, itable index 3786 rdx, rax, noreg, 3787 // outputs: scan temp. reg, scan temp. reg 3788 rbcp, rlocals, 3789 no_such_interface, 3790 /*return_method=*/false); 3791 3792 // profile this call 3793 __ restore_bcp(); // rbcp was destroyed by receiver type check 3794 __ profile_virtual_call(rdx, rbcp, rlocals); 3795 3796 // Get declaring interface class from method, and itable index 3797 __ load_method_holder(rax, rbx); 3798 __ movl(rbx, Address(rbx, Method::itable_index_offset())); 3799 __ subl(rbx, Method::itable_index_max); 3800 __ negl(rbx); 3801 3802 // Preserve recvKlass for throw_AbstractMethodErrorVerbose. 3803 __ mov(rlocals, rdx); 3804 __ lookup_interface_method(// inputs: rec. class, interface, itable index 3805 rlocals, rax, rbx, 3806 // outputs: method, scan temp. reg 3807 rbx, rbcp, 3808 no_such_interface); 3809 3810 // rbx: Method* to call 3811 // rcx: receiver 3812 // Check for abstract method error 3813 // Note: This should be done more efficiently via a throw_abstract_method_error 3814 // interpreter entry point and a conditional jump to it in case of a null 3815 // method. 3816 __ testptr(rbx, rbx); 3817 __ jcc(Assembler::zero, no_such_method); 3818 3819 __ profile_arguments_type(rdx, rbx, rbcp, true); 3820 3821 // do the call 3822 // rcx: receiver 3823 // rbx,: Method* 3824 __ jump_from_interpreted(rbx, rdx); 3825 __ should_not_reach_here(); 3826 3827 // exception handling code follows... 3828 // note: must restore interpreter registers to canonical 3829 // state for exception handling to work correctly! 3830 3831 __ bind(no_such_method); 3832 // throw exception 3833 __ pop(rbx); // pop return address (pushed by prepare_invoke) 3834 __ restore_bcp(); // rbcp must be correct for exception handler (was destroyed) 3835 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3836 // Pass arguments for generating a verbose error message. 3837 #ifdef _LP64 3838 recvKlass = c_rarg1; 3839 Register method = c_rarg2; 3840 if (recvKlass != rdx) { __ movq(recvKlass, rdx); } 3841 if (method != rcx) { __ movq(method, rcx); } 3842 #else 3843 recvKlass = rdx; 3844 Register method = rcx; 3845 #endif 3846 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodErrorVerbose), 3847 recvKlass, method); 3848 // The call_VM checks for exception, so we should never return here. 3849 __ should_not_reach_here(); 3850 3851 __ bind(no_such_interface); 3852 // throw exception 3853 __ pop(rbx); // pop return address (pushed by prepare_invoke) 3854 __ restore_bcp(); // rbcp must be correct for exception handler (was destroyed) 3855 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3856 // Pass arguments for generating a verbose error message. 3857 LP64_ONLY( if (recvKlass != rdx) { __ movq(recvKlass, rdx); } ) 3858 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose), 3859 recvKlass, rax); 3860 // the call_VM checks for exception, so we should never return here. 3861 __ should_not_reach_here(); 3862 } 3863 3864 void TemplateTable::invokehandle(int byte_no) { 3865 transition(vtos, vtos); 3866 assert(byte_no == f1_byte, "use this argument"); 3867 const Register rbx_method = rbx; 3868 const Register rax_mtype = rax; 3869 const Register rcx_recv = rcx; 3870 const Register rdx_flags = rdx; 3871 3872 prepare_invoke(byte_no, rbx_method, rax_mtype, rcx_recv); 3873 __ verify_method_ptr(rbx_method); 3874 __ verify_oop(rcx_recv); 3875 __ null_check(rcx_recv); 3876 3877 // rax: MethodType object (from cpool->resolved_references[f1], if necessary) 3878 // rbx: MH.invokeExact_MT method (from f2) 3879 3880 // Note: rax_mtype is already pushed (if necessary) by prepare_invoke 3881 3882 // FIXME: profile the LambdaForm also 3883 __ profile_final_call(rax); 3884 __ profile_arguments_type(rdx, rbx_method, rbcp, true); 3885 3886 __ jump_from_interpreted(rbx_method, rdx); 3887 } 3888 3889 void TemplateTable::invokedynamic(int byte_no) { 3890 transition(vtos, vtos); 3891 assert(byte_no == f1_byte, "use this argument"); 3892 3893 const Register rbx_method = rbx; 3894 const Register rax_callsite = rax; 3895 3896 prepare_invoke(byte_no, rbx_method, rax_callsite); 3897 3898 // rax: CallSite object (from cpool->resolved_references[f1]) 3899 // rbx: MH.linkToCallSite method (from f2) 3900 3901 // Note: rax_callsite is already pushed by prepare_invoke 3902 3903 // %%% should make a type profile for any invokedynamic that takes a ref argument 3904 // profile this call 3905 __ profile_call(rbcp); 3906 __ profile_arguments_type(rdx, rbx_method, rbcp, false); 3907 3908 __ verify_oop(rax_callsite); 3909 3910 __ jump_from_interpreted(rbx_method, rdx); 3911 } 3912 3913 //----------------------------------------------------------------------------- 3914 // Allocation 3915 3916 void TemplateTable::_new() { 3917 transition(vtos, atos); 3918 __ get_unsigned_2_byte_index_at_bcp(rdx, 1); 3919 Label slow_case; 3920 Label slow_case_no_pop; 3921 Label done; 3922 Label initialize_header; 3923 3924 __ get_cpool_and_tags(rcx, rax); 3925 3926 // Make sure the class we're about to instantiate has been resolved. 3927 // This is done before loading InstanceKlass to be consistent with the order 3928 // how Constant Pool is updated (see ConstantPool::klass_at_put) 3929 const int tags_offset = Array<u1>::base_offset_in_bytes(); 3930 __ cmpb(Address(rax, rdx, Address::times_1, tags_offset), JVM_CONSTANT_Class); 3931 __ jcc(Assembler::notEqual, slow_case_no_pop); 3932 3933 // get InstanceKlass 3934 __ load_resolved_klass_at_index(rcx, rcx, rdx); 3935 __ push(rcx); // save the contexts of klass for initializing the header 3936 3937 // make sure klass is initialized & doesn't have finalizer 3938 // make sure klass is fully initialized 3939 __ cmpb(Address(rcx, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized); 3940 __ jcc(Assembler::notEqual, slow_case); 3941 3942 // get instance_size in InstanceKlass (scaled to a count of bytes) 3943 __ movl(rdx, Address(rcx, Klass::layout_helper_offset())); 3944 // test to see if it has a finalizer or is malformed in some way 3945 __ testl(rdx, Klass::_lh_instance_slow_path_bit); 3946 __ jcc(Assembler::notZero, slow_case); 3947 3948 // Allocate the instance: 3949 // If TLAB is enabled: 3950 // Try to allocate in the TLAB. 3951 // If fails, go to the slow path. 3952 // Initialize the allocation. 3953 // Exit. 3954 // 3955 // Go to slow path. 3956 3957 const Register thread = LP64_ONLY(r15_thread) NOT_LP64(rcx); 3958 3959 if (UseTLAB) { 3960 NOT_LP64(__ get_thread(thread);) 3961 __ tlab_allocate(thread, rax, rdx, 0, rcx, rbx, slow_case); 3962 if (ZeroTLAB) { 3963 // the fields have been already cleared 3964 __ jmp(initialize_header); 3965 } 3966 3967 // The object is initialized before the header. If the object size is 3968 // zero, go directly to the header initialization. 3969 int header_size = align_up(oopDesc::base_offset_in_bytes(), BytesPerLong); 3970 __ decrement(rdx, header_size); 3971 __ jcc(Assembler::zero, initialize_header); 3972 3973 // Initialize topmost object field, divide rdx by 8, check if odd and 3974 // test if zero. 3975 __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code) 3976 __ shrl(rdx, LogBytesPerLong); // divide by 2*oopSize and set carry flag if odd 3977 3978 // rdx must have been multiple of 8 3979 #ifdef ASSERT 3980 // make sure rdx was multiple of 8 3981 Label L; 3982 // Ignore partial flag stall after shrl() since it is debug VM 3983 __ jcc(Assembler::carryClear, L); 3984 __ stop("object size is not multiple of 2 - adjust this code"); 3985 __ bind(L); 3986 // rdx must be > 0, no extra check needed here 3987 #endif 3988 3989 // initialize remaining object fields: rdx was a multiple of 8 3990 { Label loop; 3991 __ bind(loop); 3992 __ movptr(Address(rax, rdx, Address::times_8, header_size - 1*oopSize), rcx); 3993 NOT_LP64(__ movptr(Address(rax, rdx, Address::times_8, header_size - 2*oopSize), rcx)); 3994 __ decrement(rdx); 3995 __ jcc(Assembler::notZero, loop); 3996 } 3997 3998 // initialize object header only. 3999 __ bind(initialize_header); 4000 if (UseCompactObjectHeaders) { 4001 __ pop(rcx); // get saved klass back in the register. 4002 __ movptr(rbx, Address(rcx, Klass::prototype_header_offset())); 4003 __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()), rbx); 4004 } else { 4005 __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()), 4006 (intptr_t)markWord::prototype().value()); // header 4007 __ pop(rcx); // get saved klass back in the register. 4008 #ifdef _LP64 4009 __ xorl(rsi, rsi); // use zero reg to clear memory (shorter code) 4010 __ store_klass_gap(rax, rsi); // zero klass gap for compressed oops 4011 #endif 4012 __ store_klass(rax, rcx, rscratch1); // klass 4013 } 4014 4015 { 4016 SkipIfEqual skip_if(_masm, &DTraceAllocProbes, 0, rscratch1); 4017 // Trigger dtrace event for fastpath 4018 __ push(atos); 4019 __ call_VM_leaf( 4020 CAST_FROM_FN_PTR(address, static_cast<int (*)(oopDesc*)>(SharedRuntime::dtrace_object_alloc)), rax); 4021 __ pop(atos); 4022 } 4023 4024 __ jmp(done); 4025 } 4026 4027 // slow case 4028 __ bind(slow_case); 4029 __ pop(rcx); // restore stack pointer to what it was when we came in. 4030 __ bind(slow_case_no_pop); 4031 4032 Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rax); 4033 Register rarg2 = LP64_ONLY(c_rarg2) NOT_LP64(rdx); 4034 4035 __ get_constant_pool(rarg1); 4036 __ get_unsigned_2_byte_index_at_bcp(rarg2, 1); 4037 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), rarg1, rarg2); 4038 __ verify_oop(rax); 4039 4040 // continue 4041 __ bind(done); 4042 } 4043 4044 void TemplateTable::newarray() { 4045 transition(itos, atos); 4046 Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rdx); 4047 __ load_unsigned_byte(rarg1, at_bcp(1)); 4048 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), 4049 rarg1, rax); 4050 } 4051 4052 void TemplateTable::anewarray() { 4053 transition(itos, atos); 4054 4055 Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rcx); 4056 Register rarg2 = LP64_ONLY(c_rarg2) NOT_LP64(rdx); 4057 4058 __ get_unsigned_2_byte_index_at_bcp(rarg2, 1); 4059 __ get_constant_pool(rarg1); 4060 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), 4061 rarg1, rarg2, rax); 4062 } 4063 4064 void TemplateTable::arraylength() { 4065 transition(atos, itos); 4066 __ null_check(rax, arrayOopDesc::length_offset_in_bytes()); 4067 __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes())); 4068 } 4069 4070 void TemplateTable::checkcast() { 4071 transition(atos, atos); 4072 Label done, is_null, ok_is_subtype, quicked, resolved; 4073 __ testptr(rax, rax); // object is in rax 4074 __ jcc(Assembler::zero, is_null); 4075 4076 // Get cpool & tags index 4077 __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array 4078 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index 4079 // See if bytecode has already been quicked 4080 __ cmpb(Address(rdx, rbx, 4081 Address::times_1, 4082 Array<u1>::base_offset_in_bytes()), 4083 JVM_CONSTANT_Class); 4084 __ jcc(Assembler::equal, quicked); 4085 __ push(atos); // save receiver for result, and for GC 4086 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 4087 4088 // vm_result_2 has metadata result 4089 #ifndef _LP64 4090 // borrow rdi from locals 4091 __ get_thread(rdi); 4092 __ get_vm_result_2(rax, rdi); 4093 __ restore_locals(); 4094 #else 4095 __ get_vm_result_2(rax, r15_thread); 4096 #endif 4097 4098 __ pop_ptr(rdx); // restore receiver 4099 __ jmpb(resolved); 4100 4101 // Get superklass in rax and subklass in rbx 4102 __ bind(quicked); 4103 __ mov(rdx, rax); // Save object in rdx; rax needed for subtype check 4104 __ load_resolved_klass_at_index(rax, rcx, rbx); 4105 4106 __ bind(resolved); 4107 __ load_klass(rbx, rdx, rscratch1); 4108 4109 // Generate subtype check. Blows rcx, rdi. Object in rdx. 4110 // Superklass in rax. Subklass in rbx. 4111 __ gen_subtype_check(rbx, ok_is_subtype); 4112 4113 // Come here on failure 4114 __ push_ptr(rdx); 4115 // object is at TOS 4116 __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry)); 4117 4118 // Come here on success 4119 __ bind(ok_is_subtype); 4120 __ mov(rax, rdx); // Restore object in rdx 4121 4122 // Collect counts on whether this check-cast sees NULLs a lot or not. 4123 if (ProfileInterpreter) { 4124 __ jmp(done); 4125 __ bind(is_null); 4126 __ profile_null_seen(rcx); 4127 } else { 4128 __ bind(is_null); // same as 'done' 4129 } 4130 __ bind(done); 4131 } 4132 4133 void TemplateTable::instanceof() { 4134 transition(atos, itos); 4135 Label done, is_null, ok_is_subtype, quicked, resolved; 4136 __ testptr(rax, rax); 4137 __ jcc(Assembler::zero, is_null); 4138 4139 // Get cpool & tags index 4140 __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array 4141 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index 4142 // See if bytecode has already been quicked 4143 __ cmpb(Address(rdx, rbx, 4144 Address::times_1, 4145 Array<u1>::base_offset_in_bytes()), 4146 JVM_CONSTANT_Class); 4147 __ jcc(Assembler::equal, quicked); 4148 4149 __ push(atos); // save receiver for result, and for GC 4150 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 4151 // vm_result_2 has metadata result 4152 4153 #ifndef _LP64 4154 // borrow rdi from locals 4155 __ get_thread(rdi); 4156 __ get_vm_result_2(rax, rdi); 4157 __ restore_locals(); 4158 #else 4159 __ get_vm_result_2(rax, r15_thread); 4160 #endif 4161 4162 __ pop_ptr(rdx); // restore receiver 4163 __ verify_oop(rdx); 4164 __ load_klass(rdx, rdx, rscratch1); 4165 __ jmpb(resolved); 4166 4167 // Get superklass in rax and subklass in rdx 4168 __ bind(quicked); 4169 __ load_klass(rdx, rax, rscratch1); 4170 __ load_resolved_klass_at_index(rax, rcx, rbx); 4171 4172 __ bind(resolved); 4173 4174 // Generate subtype check. Blows rcx, rdi 4175 // Superklass in rax. Subklass in rdx. 4176 __ gen_subtype_check(rdx, ok_is_subtype); 4177 4178 // Come here on failure 4179 __ xorl(rax, rax); 4180 __ jmpb(done); 4181 // Come here on success 4182 __ bind(ok_is_subtype); 4183 __ movl(rax, 1); 4184 4185 // Collect counts on whether this test sees NULLs a lot or not. 4186 if (ProfileInterpreter) { 4187 __ jmp(done); 4188 __ bind(is_null); 4189 __ profile_null_seen(rcx); 4190 } else { 4191 __ bind(is_null); // same as 'done' 4192 } 4193 __ bind(done); 4194 // rax = 0: obj == NULL or obj is not an instanceof the specified klass 4195 // rax = 1: obj != NULL and obj is an instanceof the specified klass 4196 } 4197 4198 4199 //---------------------------------------------------------------------------------------------------- 4200 // Breakpoints 4201 void TemplateTable::_breakpoint() { 4202 // Note: We get here even if we are single stepping.. 4203 // jbug insists on setting breakpoints at every bytecode 4204 // even if we are in single step mode. 4205 4206 transition(vtos, vtos); 4207 4208 Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rcx); 4209 4210 // get the unpatched byte code 4211 __ get_method(rarg); 4212 __ call_VM(noreg, 4213 CAST_FROM_FN_PTR(address, 4214 InterpreterRuntime::get_original_bytecode_at), 4215 rarg, rbcp); 4216 __ mov(rbx, rax); // why? 4217 4218 // post the breakpoint event 4219 __ get_method(rarg); 4220 __ call_VM(noreg, 4221 CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), 4222 rarg, rbcp); 4223 4224 // complete the execution of original bytecode 4225 __ dispatch_only_normal(vtos); 4226 } 4227 4228 //----------------------------------------------------------------------------- 4229 // Exceptions 4230 4231 void TemplateTable::athrow() { 4232 transition(atos, vtos); 4233 __ null_check(rax); 4234 __ jump(ExternalAddress(Interpreter::throw_exception_entry())); 4235 } 4236 4237 //----------------------------------------------------------------------------- 4238 // Synchronization 4239 // 4240 // Note: monitorenter & exit are symmetric routines; which is reflected 4241 // in the assembly code structure as well 4242 // 4243 // Stack layout: 4244 // 4245 // [expressions ] <--- rsp = expression stack top 4246 // .. 4247 // [expressions ] 4248 // [monitor entry] <--- monitor block top = expression stack bot 4249 // .. 4250 // [monitor entry] 4251 // [frame data ] <--- monitor block bot 4252 // ... 4253 // [saved rbp ] <--- rbp 4254 void TemplateTable::monitorenter() { 4255 transition(atos, vtos); 4256 4257 // check for NULL object 4258 __ null_check(rax); 4259 4260 const Address monitor_block_top( 4261 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 4262 const Address monitor_block_bot( 4263 rbp, frame::interpreter_frame_initial_sp_offset * wordSize); 4264 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; 4265 4266 Label allocated; 4267 4268 Register rtop = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 4269 Register rbot = LP64_ONLY(c_rarg2) NOT_LP64(rbx); 4270 Register rmon = LP64_ONLY(c_rarg1) NOT_LP64(rdx); 4271 4272 // initialize entry pointer 4273 __ xorl(rmon, rmon); // points to free slot or NULL 4274 4275 // find a free slot in the monitor block (result in rmon) 4276 { 4277 Label entry, loop, exit; 4278 __ movptr(rtop, monitor_block_top); // points to current entry, 4279 // starting with top-most entry 4280 __ lea(rbot, monitor_block_bot); // points to word before bottom 4281 // of monitor block 4282 __ jmpb(entry); 4283 4284 __ bind(loop); 4285 // check if current entry is used 4286 __ cmpptr(Address(rtop, BasicObjectLock::obj_offset_in_bytes()), NULL_WORD); 4287 // if not used then remember entry in rmon 4288 __ cmovptr(Assembler::equal, rmon, rtop); // cmov => cmovptr 4289 // check if current entry is for same object 4290 __ cmpptr(rax, Address(rtop, BasicObjectLock::obj_offset_in_bytes())); 4291 // if same object then stop searching 4292 __ jccb(Assembler::equal, exit); 4293 // otherwise advance to next entry 4294 __ addptr(rtop, entry_size); 4295 __ bind(entry); 4296 // check if bottom reached 4297 __ cmpptr(rtop, rbot); 4298 // if not at bottom then check this entry 4299 __ jcc(Assembler::notEqual, loop); 4300 __ bind(exit); 4301 } 4302 4303 __ testptr(rmon, rmon); // check if a slot has been found 4304 __ jcc(Assembler::notZero, allocated); // if found, continue with that one 4305 4306 // allocate one if there's no free slot 4307 { 4308 Label entry, loop; 4309 // 1. compute new pointers // rsp: old expression stack top 4310 __ movptr(rmon, monitor_block_bot); // rmon: old expression stack bottom 4311 __ subptr(rsp, entry_size); // move expression stack top 4312 __ subptr(rmon, entry_size); // move expression stack bottom 4313 __ mov(rtop, rsp); // set start value for copy loop 4314 __ movptr(monitor_block_bot, rmon); // set new monitor block bottom 4315 __ jmp(entry); 4316 // 2. move expression stack contents 4317 __ bind(loop); 4318 __ movptr(rbot, Address(rtop, entry_size)); // load expression stack 4319 // word from old location 4320 __ movptr(Address(rtop, 0), rbot); // and store it at new location 4321 __ addptr(rtop, wordSize); // advance to next word 4322 __ bind(entry); 4323 __ cmpptr(rtop, rmon); // check if bottom reached 4324 __ jcc(Assembler::notEqual, loop); // if not at bottom then 4325 // copy next word 4326 } 4327 4328 // call run-time routine 4329 // rmon: points to monitor entry 4330 __ bind(allocated); 4331 4332 // Increment bcp to point to the next bytecode, so exception 4333 // handling for async. exceptions work correctly. 4334 // The object has already been popped from the stack, so the 4335 // expression stack looks correct. 4336 __ increment(rbcp); 4337 4338 // store object 4339 __ movptr(Address(rmon, BasicObjectLock::obj_offset_in_bytes()), rax); 4340 __ lock_object(rmon); 4341 4342 // check to make sure this monitor doesn't cause stack overflow after locking 4343 __ save_bcp(); // in case of exception 4344 __ generate_stack_overflow_check(0); 4345 4346 // The bcp has already been incremented. Just need to dispatch to 4347 // next instruction. 4348 __ dispatch_next(vtos); 4349 } 4350 4351 void TemplateTable::monitorexit() { 4352 transition(atos, vtos); 4353 4354 // check for NULL object 4355 __ null_check(rax); 4356 4357 const Address monitor_block_top( 4358 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 4359 const Address monitor_block_bot( 4360 rbp, frame::interpreter_frame_initial_sp_offset * wordSize); 4361 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; 4362 4363 Register rtop = LP64_ONLY(c_rarg1) NOT_LP64(rdx); 4364 Register rbot = LP64_ONLY(c_rarg2) NOT_LP64(rbx); 4365 4366 Label found; 4367 4368 // find matching slot 4369 { 4370 Label entry, loop; 4371 __ movptr(rtop, monitor_block_top); // points to current entry, 4372 // starting with top-most entry 4373 __ lea(rbot, monitor_block_bot); // points to word before bottom 4374 // of monitor block 4375 __ jmpb(entry); 4376 4377 __ bind(loop); 4378 // check if current entry is for same object 4379 __ cmpptr(rax, Address(rtop, BasicObjectLock::obj_offset_in_bytes())); 4380 // if same object then stop searching 4381 __ jcc(Assembler::equal, found); 4382 // otherwise advance to next entry 4383 __ addptr(rtop, entry_size); 4384 __ bind(entry); 4385 // check if bottom reached 4386 __ cmpptr(rtop, rbot); 4387 // if not at bottom then check this entry 4388 __ jcc(Assembler::notEqual, loop); 4389 } 4390 4391 // error handling. Unlocking was not block-structured 4392 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 4393 InterpreterRuntime::throw_illegal_monitor_state_exception)); 4394 __ should_not_reach_here(); 4395 4396 // call run-time routine 4397 __ bind(found); 4398 __ push_ptr(rax); // make sure object is on stack (contract with oopMaps) 4399 __ unlock_object(rtop); 4400 __ pop_ptr(rax); // discard object 4401 } 4402 4403 // Wide instructions 4404 void TemplateTable::wide() { 4405 transition(vtos, vtos); 4406 __ load_unsigned_byte(rbx, at_bcp(1)); 4407 ExternalAddress wtable((address)Interpreter::_wentry_point); 4408 __ jump(ArrayAddress(wtable, Address(noreg, rbx, Address::times_ptr)), rscratch1); 4409 // Note: the rbcp increment step is part of the individual wide bytecode implementations 4410 } 4411 4412 // Multi arrays 4413 void TemplateTable::multianewarray() { 4414 transition(vtos, atos); 4415 4416 Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rax); 4417 __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions 4418 // last dim is on top of stack; we want address of first one: 4419 // first_addr = last_addr + (ndims - 1) * stackElementSize - 1*wordsize 4420 // the latter wordSize to point to the beginning of the array. 4421 __ lea(rarg, Address(rsp, rax, Interpreter::stackElementScale(), -wordSize)); 4422 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), rarg); 4423 __ load_unsigned_byte(rbx, at_bcp(3)); 4424 __ lea(rsp, Address(rsp, rbx, Interpreter::stackElementScale())); // get rid of counts 4425 }