1 /* 2 * Copyright (c) 1997, 2022, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "compiler/disassembler.hpp" 28 #include "gc/shared/collectedHeap.hpp" 29 #include "gc/shared/tlab_globals.hpp" 30 #include "interpreter/interpreter.hpp" 31 #include "interpreter/interpreterRuntime.hpp" 32 #include "interpreter/interp_masm.hpp" 33 #include "interpreter/templateTable.hpp" 34 #include "memory/universe.hpp" 35 #include "oops/methodData.hpp" 36 #include "oops/objArrayKlass.hpp" 37 #include "oops/oop.inline.hpp" 38 #include "prims/jvmtiExport.hpp" 39 #include "prims/methodHandles.hpp" 40 #include "runtime/frame.inline.hpp" 41 #include "runtime/safepointMechanism.hpp" 42 #include "runtime/sharedRuntime.hpp" 43 #include "runtime/stubRoutines.hpp" 44 #include "runtime/synchronizer.hpp" 45 #include "utilities/macros.hpp" 46 47 #define __ Disassembler::hook<InterpreterMacroAssembler>(__FILE__, __LINE__, _masm)-> 48 49 // Global Register Names 50 static const Register rbcp = LP64_ONLY(r13) NOT_LP64(rsi); 51 static const Register rlocals = LP64_ONLY(r14) NOT_LP64(rdi); 52 53 // Address Computation: local variables 54 static inline Address iaddress(int n) { 55 return Address(rlocals, Interpreter::local_offset_in_bytes(n)); 56 } 57 58 static inline Address laddress(int n) { 59 return iaddress(n + 1); 60 } 61 62 #ifndef _LP64 63 static inline Address haddress(int n) { 64 return iaddress(n + 0); 65 } 66 #endif 67 68 static inline Address faddress(int n) { 69 return iaddress(n); 70 } 71 72 static inline Address daddress(int n) { 73 return laddress(n); 74 } 75 76 static inline Address aaddress(int n) { 77 return iaddress(n); 78 } 79 80 static inline Address iaddress(Register r) { 81 return Address(rlocals, r, Address::times_ptr); 82 } 83 84 static inline Address laddress(Register r) { 85 return Address(rlocals, r, Address::times_ptr, Interpreter::local_offset_in_bytes(1)); 86 } 87 88 #ifndef _LP64 89 static inline Address haddress(Register r) { 90 return Address(rlocals, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(0)); 91 } 92 #endif 93 94 static inline Address faddress(Register r) { 95 return iaddress(r); 96 } 97 98 static inline Address daddress(Register r) { 99 return laddress(r); 100 } 101 102 static inline Address aaddress(Register r) { 103 return iaddress(r); 104 } 105 106 107 // expression stack 108 // (Note: Must not use symmetric equivalents at_rsp_m1/2 since they store 109 // data beyond the rsp which is potentially unsafe in an MT environment; 110 // an interrupt may overwrite that data.) 111 static inline Address at_rsp () { 112 return Address(rsp, 0); 113 } 114 115 // At top of Java expression stack which may be different than esp(). It 116 // isn't for category 1 objects. 117 static inline Address at_tos () { 118 return Address(rsp, Interpreter::expr_offset_in_bytes(0)); 119 } 120 121 static inline Address at_tos_p1() { 122 return Address(rsp, Interpreter::expr_offset_in_bytes(1)); 123 } 124 125 static inline Address at_tos_p2() { 126 return Address(rsp, Interpreter::expr_offset_in_bytes(2)); 127 } 128 129 // Condition conversion 130 static Assembler::Condition j_not(TemplateTable::Condition cc) { 131 switch (cc) { 132 case TemplateTable::equal : return Assembler::notEqual; 133 case TemplateTable::not_equal : return Assembler::equal; 134 case TemplateTable::less : return Assembler::greaterEqual; 135 case TemplateTable::less_equal : return Assembler::greater; 136 case TemplateTable::greater : return Assembler::lessEqual; 137 case TemplateTable::greater_equal: return Assembler::less; 138 } 139 ShouldNotReachHere(); 140 return Assembler::zero; 141 } 142 143 144 145 // Miscellaneous helper routines 146 // Store an oop (or NULL) at the address described by obj. 147 // If val == noreg this means store a NULL 148 149 150 static void do_oop_store(InterpreterMacroAssembler* _masm, 151 Address dst, 152 Register val, 153 DecoratorSet decorators = 0) { 154 assert(val == noreg || val == rax, "parameter is just for looks"); 155 __ store_heap_oop(dst, val, rdx, rbx, LP64_ONLY(r8) NOT_LP64(rsi), decorators); 156 } 157 158 static void do_oop_load(InterpreterMacroAssembler* _masm, 159 Address src, 160 Register dst, 161 DecoratorSet decorators = 0) { 162 __ load_heap_oop(dst, src, rdx, rbx, decorators); 163 } 164 165 Address TemplateTable::at_bcp(int offset) { 166 assert(_desc->uses_bcp(), "inconsistent uses_bcp information"); 167 return Address(rbcp, offset); 168 } 169 170 171 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg, 172 Register temp_reg, bool load_bc_into_bc_reg/*=true*/, 173 int byte_no) { 174 if (!RewriteBytecodes) return; 175 Label L_patch_done; 176 177 switch (bc) { 178 case Bytecodes::_fast_aputfield: 179 case Bytecodes::_fast_bputfield: 180 case Bytecodes::_fast_zputfield: 181 case Bytecodes::_fast_cputfield: 182 case Bytecodes::_fast_dputfield: 183 case Bytecodes::_fast_fputfield: 184 case Bytecodes::_fast_iputfield: 185 case Bytecodes::_fast_lputfield: 186 case Bytecodes::_fast_sputfield: 187 { 188 // We skip bytecode quickening for putfield instructions when 189 // the put_code written to the constant pool cache is zero. 190 // This is required so that every execution of this instruction 191 // calls out to InterpreterRuntime::resolve_get_put to do 192 // additional, required work. 193 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 194 assert(load_bc_into_bc_reg, "we use bc_reg as temp"); 195 __ get_cache_and_index_and_bytecode_at_bcp(temp_reg, bc_reg, temp_reg, byte_no, 1); 196 __ movl(bc_reg, bc); 197 __ cmpl(temp_reg, (int) 0); 198 __ jcc(Assembler::zero, L_patch_done); // don't patch 199 } 200 break; 201 default: 202 assert(byte_no == -1, "sanity"); 203 // the pair bytecodes have already done the load. 204 if (load_bc_into_bc_reg) { 205 __ movl(bc_reg, bc); 206 } 207 } 208 209 if (JvmtiExport::can_post_breakpoint()) { 210 Label L_fast_patch; 211 // if a breakpoint is present we can't rewrite the stream directly 212 __ movzbl(temp_reg, at_bcp(0)); 213 __ cmpl(temp_reg, Bytecodes::_breakpoint); 214 __ jcc(Assembler::notEqual, L_fast_patch); 215 __ get_method(temp_reg); 216 // Let breakpoint table handling rewrite to quicker bytecode 217 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), temp_reg, rbcp, bc_reg); 218 #ifndef ASSERT 219 __ jmpb(L_patch_done); 220 #else 221 __ jmp(L_patch_done); 222 #endif 223 __ bind(L_fast_patch); 224 } 225 226 #ifdef ASSERT 227 Label L_okay; 228 __ load_unsigned_byte(temp_reg, at_bcp(0)); 229 __ cmpl(temp_reg, (int) Bytecodes::java_code(bc)); 230 __ jcc(Assembler::equal, L_okay); 231 __ cmpl(temp_reg, bc_reg); 232 __ jcc(Assembler::equal, L_okay); 233 __ stop("patching the wrong bytecode"); 234 __ bind(L_okay); 235 #endif 236 237 // patch bytecode 238 __ movb(at_bcp(0), bc_reg); 239 __ bind(L_patch_done); 240 } 241 // Individual instructions 242 243 244 void TemplateTable::nop() { 245 transition(vtos, vtos); 246 // nothing to do 247 } 248 249 void TemplateTable::shouldnotreachhere() { 250 transition(vtos, vtos); 251 __ stop("shouldnotreachhere bytecode"); 252 } 253 254 void TemplateTable::aconst_null() { 255 transition(vtos, atos); 256 __ xorl(rax, rax); 257 } 258 259 void TemplateTable::iconst(int value) { 260 transition(vtos, itos); 261 if (value == 0) { 262 __ xorl(rax, rax); 263 } else { 264 __ movl(rax, value); 265 } 266 } 267 268 void TemplateTable::lconst(int value) { 269 transition(vtos, ltos); 270 if (value == 0) { 271 __ xorl(rax, rax); 272 } else { 273 __ movl(rax, value); 274 } 275 #ifndef _LP64 276 assert(value >= 0, "check this code"); 277 __ xorptr(rdx, rdx); 278 #endif 279 } 280 281 282 283 void TemplateTable::fconst(int value) { 284 transition(vtos, ftos); 285 if (UseSSE >= 1) { 286 static float one = 1.0f, two = 2.0f; 287 switch (value) { 288 case 0: 289 __ xorps(xmm0, xmm0); 290 break; 291 case 1: 292 __ movflt(xmm0, ExternalAddress((address) &one)); 293 break; 294 case 2: 295 __ movflt(xmm0, ExternalAddress((address) &two)); 296 break; 297 default: 298 ShouldNotReachHere(); 299 break; 300 } 301 } else { 302 #ifdef _LP64 303 ShouldNotReachHere(); 304 #else 305 if (value == 0) { __ fldz(); 306 } else if (value == 1) { __ fld1(); 307 } else if (value == 2) { __ fld1(); __ fld1(); __ faddp(); // should do a better solution here 308 } else { ShouldNotReachHere(); 309 } 310 #endif // _LP64 311 } 312 } 313 314 void TemplateTable::dconst(int value) { 315 transition(vtos, dtos); 316 if (UseSSE >= 2) { 317 static double one = 1.0; 318 switch (value) { 319 case 0: 320 __ xorpd(xmm0, xmm0); 321 break; 322 case 1: 323 __ movdbl(xmm0, ExternalAddress((address) &one)); 324 break; 325 default: 326 ShouldNotReachHere(); 327 break; 328 } 329 } else { 330 #ifdef _LP64 331 ShouldNotReachHere(); 332 #else 333 if (value == 0) { __ fldz(); 334 } else if (value == 1) { __ fld1(); 335 } else { ShouldNotReachHere(); 336 } 337 #endif 338 } 339 } 340 341 void TemplateTable::bipush() { 342 transition(vtos, itos); 343 __ load_signed_byte(rax, at_bcp(1)); 344 } 345 346 void TemplateTable::sipush() { 347 transition(vtos, itos); 348 __ load_unsigned_short(rax, at_bcp(1)); 349 __ bswapl(rax); 350 __ sarl(rax, 16); 351 } 352 353 void TemplateTable::ldc(bool wide) { 354 transition(vtos, vtos); 355 Register rarg = NOT_LP64(rcx) LP64_ONLY(c_rarg1); 356 Label call_ldc, notFloat, notClass, notInt, Done; 357 358 if (wide) { 359 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); 360 } else { 361 __ load_unsigned_byte(rbx, at_bcp(1)); 362 } 363 364 __ get_cpool_and_tags(rcx, rax); 365 const int base_offset = ConstantPool::header_size() * wordSize; 366 const int tags_offset = Array<u1>::base_offset_in_bytes(); 367 368 // get type 369 __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset)); 370 371 // unresolved class - get the resolved class 372 __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass); 373 __ jccb(Assembler::equal, call_ldc); 374 375 // unresolved class in error state - call into runtime to throw the error 376 // from the first resolution attempt 377 __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError); 378 __ jccb(Assembler::equal, call_ldc); 379 380 // resolved class - need to call vm to get java mirror of the class 381 __ cmpl(rdx, JVM_CONSTANT_Class); 382 __ jcc(Assembler::notEqual, notClass); 383 384 __ bind(call_ldc); 385 386 __ movl(rarg, wide); 387 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), rarg); 388 389 __ push(atos); 390 __ jmp(Done); 391 392 __ bind(notClass); 393 __ cmpl(rdx, JVM_CONSTANT_Float); 394 __ jccb(Assembler::notEqual, notFloat); 395 396 // ftos 397 __ load_float(Address(rcx, rbx, Address::times_ptr, base_offset)); 398 __ push(ftos); 399 __ jmp(Done); 400 401 __ bind(notFloat); 402 __ cmpl(rdx, JVM_CONSTANT_Integer); 403 __ jccb(Assembler::notEqual, notInt); 404 405 // itos 406 __ movl(rax, Address(rcx, rbx, Address::times_ptr, base_offset)); 407 __ push(itos); 408 __ jmp(Done); 409 410 // assume the tag is for condy; if not, the VM runtime will tell us 411 __ bind(notInt); 412 condy_helper(Done); 413 414 __ bind(Done); 415 } 416 417 // Fast path for caching oop constants. 418 void TemplateTable::fast_aldc(bool wide) { 419 transition(vtos, atos); 420 421 Register result = rax; 422 Register tmp = rdx; 423 Register rarg = NOT_LP64(rcx) LP64_ONLY(c_rarg1); 424 int index_size = wide ? sizeof(u2) : sizeof(u1); 425 426 Label resolved; 427 428 // We are resolved if the resolved reference cache entry contains a 429 // non-null object (String, MethodType, etc.) 430 assert_different_registers(result, tmp); 431 __ get_cache_index_at_bcp(tmp, 1, index_size); 432 __ load_resolved_reference_at_index(result, tmp); 433 __ testptr(result, result); 434 __ jcc(Assembler::notZero, resolved); 435 436 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); 437 438 // first time invocation - must resolve first 439 __ movl(rarg, (int)bytecode()); 440 __ call_VM(result, entry, rarg); 441 __ bind(resolved); 442 443 { // Check for the null sentinel. 444 // If we just called the VM, it already did the mapping for us, 445 // but it's harmless to retry. 446 Label notNull; 447 ExternalAddress null_sentinel((address)Universe::the_null_sentinel_addr()); 448 __ movptr(tmp, null_sentinel); 449 __ resolve_oop_handle(tmp); 450 __ cmpoop(tmp, result); 451 __ jccb(Assembler::notEqual, notNull); 452 __ xorptr(result, result); // NULL object reference 453 __ bind(notNull); 454 } 455 456 if (VerifyOops) { 457 __ verify_oop(result); 458 } 459 } 460 461 void TemplateTable::ldc2_w() { 462 transition(vtos, vtos); 463 Label notDouble, notLong, Done; 464 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); 465 466 __ get_cpool_and_tags(rcx, rax); 467 const int base_offset = ConstantPool::header_size() * wordSize; 468 const int tags_offset = Array<u1>::base_offset_in_bytes(); 469 470 // get type 471 __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset)); 472 __ cmpl(rdx, JVM_CONSTANT_Double); 473 __ jccb(Assembler::notEqual, notDouble); 474 475 // dtos 476 __ load_double(Address(rcx, rbx, Address::times_ptr, base_offset)); 477 __ push(dtos); 478 479 __ jmp(Done); 480 __ bind(notDouble); 481 __ cmpl(rdx, JVM_CONSTANT_Long); 482 __ jccb(Assembler::notEqual, notLong); 483 484 // ltos 485 __ movptr(rax, Address(rcx, rbx, Address::times_ptr, base_offset + 0 * wordSize)); 486 NOT_LP64(__ movptr(rdx, Address(rcx, rbx, Address::times_ptr, base_offset + 1 * wordSize))); 487 __ push(ltos); 488 __ jmp(Done); 489 490 __ bind(notLong); 491 condy_helper(Done); 492 493 __ bind(Done); 494 } 495 496 void TemplateTable::condy_helper(Label& Done) { 497 const Register obj = rax; 498 const Register off = rbx; 499 const Register flags = rcx; 500 const Register rarg = NOT_LP64(rcx) LP64_ONLY(c_rarg1); 501 __ movl(rarg, (int)bytecode()); 502 call_VM(obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc), rarg); 503 #ifndef _LP64 504 // borrow rdi from locals 505 __ get_thread(rdi); 506 __ get_vm_result_2(flags, rdi); 507 __ restore_locals(); 508 #else 509 __ get_vm_result_2(flags, r15_thread); 510 #endif 511 // VMr = obj = base address to find primitive value to push 512 // VMr2 = flags = (tos, off) using format of CPCE::_flags 513 __ movl(off, flags); 514 __ andl(off, ConstantPoolCacheEntry::field_index_mask); 515 const Address field(obj, off, Address::times_1, 0*wordSize); 516 517 // What sort of thing are we loading? 518 __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift); 519 __ andl(flags, ConstantPoolCacheEntry::tos_state_mask); 520 521 switch (bytecode()) { 522 case Bytecodes::_ldc: 523 case Bytecodes::_ldc_w: 524 { 525 // tos in (itos, ftos, stos, btos, ctos, ztos) 526 Label notInt, notFloat, notShort, notByte, notChar, notBool; 527 __ cmpl(flags, itos); 528 __ jccb(Assembler::notEqual, notInt); 529 // itos 530 __ movl(rax, field); 531 __ push(itos); 532 __ jmp(Done); 533 534 __ bind(notInt); 535 __ cmpl(flags, ftos); 536 __ jccb(Assembler::notEqual, notFloat); 537 // ftos 538 __ load_float(field); 539 __ push(ftos); 540 __ jmp(Done); 541 542 __ bind(notFloat); 543 __ cmpl(flags, stos); 544 __ jccb(Assembler::notEqual, notShort); 545 // stos 546 __ load_signed_short(rax, field); 547 __ push(stos); 548 __ jmp(Done); 549 550 __ bind(notShort); 551 __ cmpl(flags, btos); 552 __ jccb(Assembler::notEqual, notByte); 553 // btos 554 __ load_signed_byte(rax, field); 555 __ push(btos); 556 __ jmp(Done); 557 558 __ bind(notByte); 559 __ cmpl(flags, ctos); 560 __ jccb(Assembler::notEqual, notChar); 561 // ctos 562 __ load_unsigned_short(rax, field); 563 __ push(ctos); 564 __ jmp(Done); 565 566 __ bind(notChar); 567 __ cmpl(flags, ztos); 568 __ jccb(Assembler::notEqual, notBool); 569 // ztos 570 __ load_signed_byte(rax, field); 571 __ push(ztos); 572 __ jmp(Done); 573 574 __ bind(notBool); 575 break; 576 } 577 578 case Bytecodes::_ldc2_w: 579 { 580 Label notLong, notDouble; 581 __ cmpl(flags, ltos); 582 __ jccb(Assembler::notEqual, notLong); 583 // ltos 584 // Loading high word first because movptr clobbers rax 585 NOT_LP64(__ movptr(rdx, field.plus_disp(4))); 586 __ movptr(rax, field); 587 __ push(ltos); 588 __ jmp(Done); 589 590 __ bind(notLong); 591 __ cmpl(flags, dtos); 592 __ jccb(Assembler::notEqual, notDouble); 593 // dtos 594 __ load_double(field); 595 __ push(dtos); 596 __ jmp(Done); 597 598 __ bind(notDouble); 599 break; 600 } 601 602 default: 603 ShouldNotReachHere(); 604 } 605 606 __ stop("bad ldc/condy"); 607 } 608 609 void TemplateTable::locals_index(Register reg, int offset) { 610 __ load_unsigned_byte(reg, at_bcp(offset)); 611 __ negptr(reg); 612 } 613 614 void TemplateTable::iload() { 615 iload_internal(); 616 } 617 618 void TemplateTable::nofast_iload() { 619 iload_internal(may_not_rewrite); 620 } 621 622 void TemplateTable::iload_internal(RewriteControl rc) { 623 transition(vtos, itos); 624 if (RewriteFrequentPairs && rc == may_rewrite) { 625 Label rewrite, done; 626 const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 627 LP64_ONLY(assert(rbx != bc, "register damaged")); 628 629 // get next byte 630 __ load_unsigned_byte(rbx, 631 at_bcp(Bytecodes::length_for(Bytecodes::_iload))); 632 // if _iload, wait to rewrite to iload2. We only want to rewrite the 633 // last two iloads in a pair. Comparing against fast_iload means that 634 // the next bytecode is neither an iload or a caload, and therefore 635 // an iload pair. 636 __ cmpl(rbx, Bytecodes::_iload); 637 __ jcc(Assembler::equal, done); 638 639 __ cmpl(rbx, Bytecodes::_fast_iload); 640 __ movl(bc, Bytecodes::_fast_iload2); 641 642 __ jccb(Assembler::equal, rewrite); 643 644 // if _caload, rewrite to fast_icaload 645 __ cmpl(rbx, Bytecodes::_caload); 646 __ movl(bc, Bytecodes::_fast_icaload); 647 __ jccb(Assembler::equal, rewrite); 648 649 // rewrite so iload doesn't check again. 650 __ movl(bc, Bytecodes::_fast_iload); 651 652 // rewrite 653 // bc: fast bytecode 654 __ bind(rewrite); 655 patch_bytecode(Bytecodes::_iload, bc, rbx, false); 656 __ bind(done); 657 } 658 659 // Get the local value into tos 660 locals_index(rbx); 661 __ movl(rax, iaddress(rbx)); 662 } 663 664 void TemplateTable::fast_iload2() { 665 transition(vtos, itos); 666 locals_index(rbx); 667 __ movl(rax, iaddress(rbx)); 668 __ push(itos); 669 locals_index(rbx, 3); 670 __ movl(rax, iaddress(rbx)); 671 } 672 673 void TemplateTable::fast_iload() { 674 transition(vtos, itos); 675 locals_index(rbx); 676 __ movl(rax, iaddress(rbx)); 677 } 678 679 void TemplateTable::lload() { 680 transition(vtos, ltos); 681 locals_index(rbx); 682 __ movptr(rax, laddress(rbx)); 683 NOT_LP64(__ movl(rdx, haddress(rbx))); 684 } 685 686 void TemplateTable::fload() { 687 transition(vtos, ftos); 688 locals_index(rbx); 689 __ load_float(faddress(rbx)); 690 } 691 692 void TemplateTable::dload() { 693 transition(vtos, dtos); 694 locals_index(rbx); 695 __ load_double(daddress(rbx)); 696 } 697 698 void TemplateTable::aload() { 699 transition(vtos, atos); 700 locals_index(rbx); 701 __ movptr(rax, aaddress(rbx)); 702 } 703 704 void TemplateTable::locals_index_wide(Register reg) { 705 __ load_unsigned_short(reg, at_bcp(2)); 706 __ bswapl(reg); 707 __ shrl(reg, 16); 708 __ negptr(reg); 709 } 710 711 void TemplateTable::wide_iload() { 712 transition(vtos, itos); 713 locals_index_wide(rbx); 714 __ movl(rax, iaddress(rbx)); 715 } 716 717 void TemplateTable::wide_lload() { 718 transition(vtos, ltos); 719 locals_index_wide(rbx); 720 __ movptr(rax, laddress(rbx)); 721 NOT_LP64(__ movl(rdx, haddress(rbx))); 722 } 723 724 void TemplateTable::wide_fload() { 725 transition(vtos, ftos); 726 locals_index_wide(rbx); 727 __ load_float(faddress(rbx)); 728 } 729 730 void TemplateTable::wide_dload() { 731 transition(vtos, dtos); 732 locals_index_wide(rbx); 733 __ load_double(daddress(rbx)); 734 } 735 736 void TemplateTable::wide_aload() { 737 transition(vtos, atos); 738 locals_index_wide(rbx); 739 __ movptr(rax, aaddress(rbx)); 740 } 741 742 void TemplateTable::index_check(Register array, Register index) { 743 // Pop ptr into array 744 __ pop_ptr(array); 745 index_check_without_pop(array, index); 746 } 747 748 void TemplateTable::index_check_without_pop(Register array, Register index) { 749 // destroys rbx 750 // check array 751 __ null_check(array, arrayOopDesc::length_offset_in_bytes()); 752 // sign extend index for use by indexed load 753 __ movl2ptr(index, index); 754 // check index 755 __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes())); 756 if (index != rbx) { 757 // ??? convention: move aberrant index into rbx for exception message 758 assert(rbx != array, "different registers"); 759 __ movl(rbx, index); 760 } 761 Label skip; 762 __ jccb(Assembler::below, skip); 763 // Pass array to create more detailed exceptions. 764 __ mov(NOT_LP64(rax) LP64_ONLY(c_rarg1), array); 765 __ jump(ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry)); 766 __ bind(skip); 767 } 768 769 void TemplateTable::iaload() { 770 transition(itos, itos); 771 // rax: index 772 // rdx: array 773 index_check(rdx, rax); // kills rbx 774 __ access_load_at(T_INT, IN_HEAP | IS_ARRAY, rax, 775 Address(rdx, rax, Address::times_4, 776 arrayOopDesc::base_offset_in_bytes(T_INT)), 777 noreg, noreg); 778 } 779 780 void TemplateTable::laload() { 781 transition(itos, ltos); 782 // rax: index 783 // rdx: array 784 index_check(rdx, rax); // kills rbx 785 NOT_LP64(__ mov(rbx, rax)); 786 // rbx,: index 787 __ access_load_at(T_LONG, IN_HEAP | IS_ARRAY, noreg /* ltos */, 788 Address(rdx, rbx, Address::times_8, 789 arrayOopDesc::base_offset_in_bytes(T_LONG)), 790 noreg, noreg); 791 } 792 793 794 795 void TemplateTable::faload() { 796 transition(itos, ftos); 797 // rax: index 798 // rdx: array 799 index_check(rdx, rax); // kills rbx 800 __ access_load_at(T_FLOAT, IN_HEAP | IS_ARRAY, noreg /* ftos */, 801 Address(rdx, rax, 802 Address::times_4, 803 arrayOopDesc::base_offset_in_bytes(T_FLOAT)), 804 noreg, noreg); 805 } 806 807 void TemplateTable::daload() { 808 transition(itos, dtos); 809 // rax: index 810 // rdx: array 811 index_check(rdx, rax); // kills rbx 812 __ access_load_at(T_DOUBLE, IN_HEAP | IS_ARRAY, noreg /* dtos */, 813 Address(rdx, rax, 814 Address::times_8, 815 arrayOopDesc::base_offset_in_bytes(T_DOUBLE)), 816 noreg, noreg); 817 } 818 819 void TemplateTable::aaload() { 820 transition(itos, atos); 821 // rax: index 822 // rdx: array 823 index_check(rdx, rax); // kills rbx 824 do_oop_load(_masm, 825 Address(rdx, rax, 826 UseCompressedOops ? Address::times_4 : Address::times_ptr, 827 arrayOopDesc::base_offset_in_bytes(T_OBJECT)), 828 rax, 829 IS_ARRAY); 830 } 831 832 void TemplateTable::baload() { 833 transition(itos, itos); 834 // rax: index 835 // rdx: array 836 index_check(rdx, rax); // kills rbx 837 __ access_load_at(T_BYTE, IN_HEAP | IS_ARRAY, rax, 838 Address(rdx, rax, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)), 839 noreg, noreg); 840 } 841 842 void TemplateTable::caload() { 843 transition(itos, itos); 844 // rax: index 845 // rdx: array 846 index_check(rdx, rax); // kills rbx 847 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, rax, 848 Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)), 849 noreg, noreg); 850 } 851 852 // iload followed by caload frequent pair 853 void TemplateTable::fast_icaload() { 854 transition(vtos, itos); 855 // load index out of locals 856 locals_index(rbx); 857 __ movl(rax, iaddress(rbx)); 858 859 // rax: index 860 // rdx: array 861 index_check(rdx, rax); // kills rbx 862 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, rax, 863 Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)), 864 noreg, noreg); 865 } 866 867 868 void TemplateTable::saload() { 869 transition(itos, itos); 870 // rax: index 871 // rdx: array 872 index_check(rdx, rax); // kills rbx 873 __ access_load_at(T_SHORT, IN_HEAP | IS_ARRAY, rax, 874 Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_SHORT)), 875 noreg, noreg); 876 } 877 878 void TemplateTable::iload(int n) { 879 transition(vtos, itos); 880 __ movl(rax, iaddress(n)); 881 } 882 883 void TemplateTable::lload(int n) { 884 transition(vtos, ltos); 885 __ movptr(rax, laddress(n)); 886 NOT_LP64(__ movptr(rdx, haddress(n))); 887 } 888 889 void TemplateTable::fload(int n) { 890 transition(vtos, ftos); 891 __ load_float(faddress(n)); 892 } 893 894 void TemplateTable::dload(int n) { 895 transition(vtos, dtos); 896 __ load_double(daddress(n)); 897 } 898 899 void TemplateTable::aload(int n) { 900 transition(vtos, atos); 901 __ movptr(rax, aaddress(n)); 902 } 903 904 void TemplateTable::aload_0() { 905 aload_0_internal(); 906 } 907 908 void TemplateTable::nofast_aload_0() { 909 aload_0_internal(may_not_rewrite); 910 } 911 912 void TemplateTable::aload_0_internal(RewriteControl rc) { 913 transition(vtos, atos); 914 // According to bytecode histograms, the pairs: 915 // 916 // _aload_0, _fast_igetfield 917 // _aload_0, _fast_agetfield 918 // _aload_0, _fast_fgetfield 919 // 920 // occur frequently. If RewriteFrequentPairs is set, the (slow) 921 // _aload_0 bytecode checks if the next bytecode is either 922 // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then 923 // rewrites the current bytecode into a pair bytecode; otherwise it 924 // rewrites the current bytecode into _fast_aload_0 that doesn't do 925 // the pair check anymore. 926 // 927 // Note: If the next bytecode is _getfield, the rewrite must be 928 // delayed, otherwise we may miss an opportunity for a pair. 929 // 930 // Also rewrite frequent pairs 931 // aload_0, aload_1 932 // aload_0, iload_1 933 // These bytecodes with a small amount of code are most profitable 934 // to rewrite 935 if (RewriteFrequentPairs && rc == may_rewrite) { 936 Label rewrite, done; 937 938 const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 939 LP64_ONLY(assert(rbx != bc, "register damaged")); 940 941 // get next byte 942 __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0))); 943 944 // if _getfield then wait with rewrite 945 __ cmpl(rbx, Bytecodes::_getfield); 946 __ jcc(Assembler::equal, done); 947 948 // if _igetfield then rewrite to _fast_iaccess_0 949 assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 950 __ cmpl(rbx, Bytecodes::_fast_igetfield); 951 __ movl(bc, Bytecodes::_fast_iaccess_0); 952 __ jccb(Assembler::equal, rewrite); 953 954 // if _agetfield then rewrite to _fast_aaccess_0 955 assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 956 __ cmpl(rbx, Bytecodes::_fast_agetfield); 957 __ movl(bc, Bytecodes::_fast_aaccess_0); 958 __ jccb(Assembler::equal, rewrite); 959 960 // if _fgetfield then rewrite to _fast_faccess_0 961 assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 962 __ cmpl(rbx, Bytecodes::_fast_fgetfield); 963 __ movl(bc, Bytecodes::_fast_faccess_0); 964 __ jccb(Assembler::equal, rewrite); 965 966 // else rewrite to _fast_aload0 967 assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition"); 968 __ movl(bc, Bytecodes::_fast_aload_0); 969 970 // rewrite 971 // bc: fast bytecode 972 __ bind(rewrite); 973 patch_bytecode(Bytecodes::_aload_0, bc, rbx, false); 974 975 __ bind(done); 976 } 977 978 // Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop). 979 aload(0); 980 } 981 982 void TemplateTable::istore() { 983 transition(itos, vtos); 984 locals_index(rbx); 985 __ movl(iaddress(rbx), rax); 986 } 987 988 989 void TemplateTable::lstore() { 990 transition(ltos, vtos); 991 locals_index(rbx); 992 __ movptr(laddress(rbx), rax); 993 NOT_LP64(__ movptr(haddress(rbx), rdx)); 994 } 995 996 void TemplateTable::fstore() { 997 transition(ftos, vtos); 998 locals_index(rbx); 999 __ store_float(faddress(rbx)); 1000 } 1001 1002 void TemplateTable::dstore() { 1003 transition(dtos, vtos); 1004 locals_index(rbx); 1005 __ store_double(daddress(rbx)); 1006 } 1007 1008 void TemplateTable::astore() { 1009 transition(vtos, vtos); 1010 __ pop_ptr(rax); 1011 locals_index(rbx); 1012 __ movptr(aaddress(rbx), rax); 1013 } 1014 1015 void TemplateTable::wide_istore() { 1016 transition(vtos, vtos); 1017 __ pop_i(); 1018 locals_index_wide(rbx); 1019 __ movl(iaddress(rbx), rax); 1020 } 1021 1022 void TemplateTable::wide_lstore() { 1023 transition(vtos, vtos); 1024 NOT_LP64(__ pop_l(rax, rdx)); 1025 LP64_ONLY(__ pop_l()); 1026 locals_index_wide(rbx); 1027 __ movptr(laddress(rbx), rax); 1028 NOT_LP64(__ movl(haddress(rbx), rdx)); 1029 } 1030 1031 void TemplateTable::wide_fstore() { 1032 #ifdef _LP64 1033 transition(vtos, vtos); 1034 __ pop_f(xmm0); 1035 locals_index_wide(rbx); 1036 __ movflt(faddress(rbx), xmm0); 1037 #else 1038 wide_istore(); 1039 #endif 1040 } 1041 1042 void TemplateTable::wide_dstore() { 1043 #ifdef _LP64 1044 transition(vtos, vtos); 1045 __ pop_d(xmm0); 1046 locals_index_wide(rbx); 1047 __ movdbl(daddress(rbx), xmm0); 1048 #else 1049 wide_lstore(); 1050 #endif 1051 } 1052 1053 void TemplateTable::wide_astore() { 1054 transition(vtos, vtos); 1055 __ pop_ptr(rax); 1056 locals_index_wide(rbx); 1057 __ movptr(aaddress(rbx), rax); 1058 } 1059 1060 void TemplateTable::iastore() { 1061 transition(itos, vtos); 1062 __ pop_i(rbx); 1063 // rax: value 1064 // rbx: index 1065 // rdx: array 1066 index_check(rdx, rbx); // prefer index in rbx 1067 __ access_store_at(T_INT, IN_HEAP | IS_ARRAY, 1068 Address(rdx, rbx, Address::times_4, 1069 arrayOopDesc::base_offset_in_bytes(T_INT)), 1070 rax, noreg, noreg, noreg); 1071 } 1072 1073 void TemplateTable::lastore() { 1074 transition(ltos, vtos); 1075 __ pop_i(rbx); 1076 // rax,: low(value) 1077 // rcx: array 1078 // rdx: high(value) 1079 index_check(rcx, rbx); // prefer index in rbx, 1080 // rbx,: index 1081 __ access_store_at(T_LONG, IN_HEAP | IS_ARRAY, 1082 Address(rcx, rbx, Address::times_8, 1083 arrayOopDesc::base_offset_in_bytes(T_LONG)), 1084 noreg /* ltos */, noreg, noreg, noreg); 1085 } 1086 1087 1088 void TemplateTable::fastore() { 1089 transition(ftos, vtos); 1090 __ pop_i(rbx); 1091 // value is in UseSSE >= 1 ? xmm0 : ST(0) 1092 // rbx: index 1093 // rdx: array 1094 index_check(rdx, rbx); // prefer index in rbx 1095 __ access_store_at(T_FLOAT, IN_HEAP | IS_ARRAY, 1096 Address(rdx, rbx, Address::times_4, 1097 arrayOopDesc::base_offset_in_bytes(T_FLOAT)), 1098 noreg /* ftos */, noreg, noreg, noreg); 1099 } 1100 1101 void TemplateTable::dastore() { 1102 transition(dtos, vtos); 1103 __ pop_i(rbx); 1104 // value is in UseSSE >= 2 ? xmm0 : ST(0) 1105 // rbx: index 1106 // rdx: array 1107 index_check(rdx, rbx); // prefer index in rbx 1108 __ access_store_at(T_DOUBLE, IN_HEAP | IS_ARRAY, 1109 Address(rdx, rbx, Address::times_8, 1110 arrayOopDesc::base_offset_in_bytes(T_DOUBLE)), 1111 noreg /* dtos */, noreg, noreg, noreg); 1112 } 1113 1114 void TemplateTable::aastore() { 1115 Label is_null, ok_is_subtype, done; 1116 transition(vtos, vtos); 1117 // stack: ..., array, index, value 1118 __ movptr(rax, at_tos()); // value 1119 __ movl(rcx, at_tos_p1()); // index 1120 __ movptr(rdx, at_tos_p2()); // array 1121 1122 Address element_address(rdx, rcx, 1123 UseCompressedOops? Address::times_4 : Address::times_ptr, 1124 arrayOopDesc::base_offset_in_bytes(T_OBJECT)); 1125 1126 index_check_without_pop(rdx, rcx); // kills rbx 1127 __ testptr(rax, rax); 1128 __ jcc(Assembler::zero, is_null); 1129 1130 Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg); 1131 // Move subklass into rbx 1132 __ load_klass(rbx, rax, tmp_load_klass); 1133 // Move superklass into rax 1134 __ load_klass(rax, rdx, tmp_load_klass); 1135 __ movptr(rax, Address(rax, 1136 ObjArrayKlass::element_klass_offset())); 1137 1138 // Generate subtype check. Blows rcx, rdi 1139 // Superklass in rax. Subklass in rbx. 1140 __ gen_subtype_check(rbx, ok_is_subtype); 1141 1142 // Come here on failure 1143 // object is at TOS 1144 __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry)); 1145 1146 // Come here on success 1147 __ bind(ok_is_subtype); 1148 1149 // Get the value we will store 1150 __ movptr(rax, at_tos()); 1151 __ movl(rcx, at_tos_p1()); // index 1152 // Now store using the appropriate barrier 1153 do_oop_store(_masm, element_address, rax, IS_ARRAY); 1154 __ jmp(done); 1155 1156 // Have a NULL in rax, rdx=array, ecx=index. Store NULL at ary[idx] 1157 __ bind(is_null); 1158 __ profile_null_seen(rbx); 1159 1160 // Store a NULL 1161 do_oop_store(_masm, element_address, noreg, IS_ARRAY); 1162 1163 // Pop stack arguments 1164 __ bind(done); 1165 __ addptr(rsp, 3 * Interpreter::stackElementSize); 1166 } 1167 1168 void TemplateTable::bastore() { 1169 transition(itos, vtos); 1170 __ pop_i(rbx); 1171 // rax: value 1172 // rbx: index 1173 // rdx: array 1174 index_check(rdx, rbx); // prefer index in rbx 1175 // Need to check whether array is boolean or byte 1176 // since both types share the bastore bytecode. 1177 Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg); 1178 __ load_klass(rcx, rdx, tmp_load_klass); 1179 __ movl(rcx, Address(rcx, Klass::layout_helper_offset())); 1180 int diffbit = Klass::layout_helper_boolean_diffbit(); 1181 __ testl(rcx, diffbit); 1182 Label L_skip; 1183 __ jccb(Assembler::zero, L_skip); 1184 __ andl(rax, 1); // if it is a T_BOOLEAN array, mask the stored value to 0/1 1185 __ bind(L_skip); 1186 __ access_store_at(T_BYTE, IN_HEAP | IS_ARRAY, 1187 Address(rdx, rbx,Address::times_1, 1188 arrayOopDesc::base_offset_in_bytes(T_BYTE)), 1189 rax, noreg, noreg, noreg); 1190 } 1191 1192 void TemplateTable::castore() { 1193 transition(itos, vtos); 1194 __ pop_i(rbx); 1195 // rax: value 1196 // rbx: index 1197 // rdx: array 1198 index_check(rdx, rbx); // prefer index in rbx 1199 __ access_store_at(T_CHAR, IN_HEAP | IS_ARRAY, 1200 Address(rdx, rbx, Address::times_2, 1201 arrayOopDesc::base_offset_in_bytes(T_CHAR)), 1202 rax, noreg, noreg, noreg); 1203 } 1204 1205 1206 void TemplateTable::sastore() { 1207 castore(); 1208 } 1209 1210 void TemplateTable::istore(int n) { 1211 transition(itos, vtos); 1212 __ movl(iaddress(n), rax); 1213 } 1214 1215 void TemplateTable::lstore(int n) { 1216 transition(ltos, vtos); 1217 __ movptr(laddress(n), rax); 1218 NOT_LP64(__ movptr(haddress(n), rdx)); 1219 } 1220 1221 void TemplateTable::fstore(int n) { 1222 transition(ftos, vtos); 1223 __ store_float(faddress(n)); 1224 } 1225 1226 void TemplateTable::dstore(int n) { 1227 transition(dtos, vtos); 1228 __ store_double(daddress(n)); 1229 } 1230 1231 1232 void TemplateTable::astore(int n) { 1233 transition(vtos, vtos); 1234 __ pop_ptr(rax); 1235 __ movptr(aaddress(n), rax); 1236 } 1237 1238 void TemplateTable::pop() { 1239 transition(vtos, vtos); 1240 __ addptr(rsp, Interpreter::stackElementSize); 1241 } 1242 1243 void TemplateTable::pop2() { 1244 transition(vtos, vtos); 1245 __ addptr(rsp, 2 * Interpreter::stackElementSize); 1246 } 1247 1248 1249 void TemplateTable::dup() { 1250 transition(vtos, vtos); 1251 __ load_ptr(0, rax); 1252 __ push_ptr(rax); 1253 // stack: ..., a, a 1254 } 1255 1256 void TemplateTable::dup_x1() { 1257 transition(vtos, vtos); 1258 // stack: ..., a, b 1259 __ load_ptr( 0, rax); // load b 1260 __ load_ptr( 1, rcx); // load a 1261 __ store_ptr(1, rax); // store b 1262 __ store_ptr(0, rcx); // store a 1263 __ push_ptr(rax); // push b 1264 // stack: ..., b, a, b 1265 } 1266 1267 void TemplateTable::dup_x2() { 1268 transition(vtos, vtos); 1269 // stack: ..., a, b, c 1270 __ load_ptr( 0, rax); // load c 1271 __ load_ptr( 2, rcx); // load a 1272 __ store_ptr(2, rax); // store c in a 1273 __ push_ptr(rax); // push c 1274 // stack: ..., c, b, c, c 1275 __ load_ptr( 2, rax); // load b 1276 __ store_ptr(2, rcx); // store a in b 1277 // stack: ..., c, a, c, c 1278 __ store_ptr(1, rax); // store b in c 1279 // stack: ..., c, a, b, c 1280 } 1281 1282 void TemplateTable::dup2() { 1283 transition(vtos, vtos); 1284 // stack: ..., a, b 1285 __ load_ptr(1, rax); // load a 1286 __ push_ptr(rax); // push a 1287 __ load_ptr(1, rax); // load b 1288 __ push_ptr(rax); // push b 1289 // stack: ..., a, b, a, b 1290 } 1291 1292 1293 void TemplateTable::dup2_x1() { 1294 transition(vtos, vtos); 1295 // stack: ..., a, b, c 1296 __ load_ptr( 0, rcx); // load c 1297 __ load_ptr( 1, rax); // load b 1298 __ push_ptr(rax); // push b 1299 __ push_ptr(rcx); // push c 1300 // stack: ..., a, b, c, b, c 1301 __ store_ptr(3, rcx); // store c in b 1302 // stack: ..., a, c, c, b, c 1303 __ load_ptr( 4, rcx); // load a 1304 __ store_ptr(2, rcx); // store a in 2nd c 1305 // stack: ..., a, c, a, b, c 1306 __ store_ptr(4, rax); // store b in a 1307 // stack: ..., b, c, a, b, c 1308 } 1309 1310 void TemplateTable::dup2_x2() { 1311 transition(vtos, vtos); 1312 // stack: ..., a, b, c, d 1313 __ load_ptr( 0, rcx); // load d 1314 __ load_ptr( 1, rax); // load c 1315 __ push_ptr(rax); // push c 1316 __ push_ptr(rcx); // push d 1317 // stack: ..., a, b, c, d, c, d 1318 __ load_ptr( 4, rax); // load b 1319 __ store_ptr(2, rax); // store b in d 1320 __ store_ptr(4, rcx); // store d in b 1321 // stack: ..., a, d, c, b, c, d 1322 __ load_ptr( 5, rcx); // load a 1323 __ load_ptr( 3, rax); // load c 1324 __ store_ptr(3, rcx); // store a in c 1325 __ store_ptr(5, rax); // store c in a 1326 // stack: ..., c, d, a, b, c, d 1327 } 1328 1329 void TemplateTable::swap() { 1330 transition(vtos, vtos); 1331 // stack: ..., a, b 1332 __ load_ptr( 1, rcx); // load a 1333 __ load_ptr( 0, rax); // load b 1334 __ store_ptr(0, rcx); // store a in b 1335 __ store_ptr(1, rax); // store b in a 1336 // stack: ..., b, a 1337 } 1338 1339 void TemplateTable::iop2(Operation op) { 1340 transition(itos, itos); 1341 switch (op) { 1342 case add : __ pop_i(rdx); __ addl (rax, rdx); break; 1343 case sub : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break; 1344 case mul : __ pop_i(rdx); __ imull(rax, rdx); break; 1345 case _and : __ pop_i(rdx); __ andl (rax, rdx); break; 1346 case _or : __ pop_i(rdx); __ orl (rax, rdx); break; 1347 case _xor : __ pop_i(rdx); __ xorl (rax, rdx); break; 1348 case shl : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax); break; 1349 case shr : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax); break; 1350 case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax); break; 1351 default : ShouldNotReachHere(); 1352 } 1353 } 1354 1355 void TemplateTable::lop2(Operation op) { 1356 transition(ltos, ltos); 1357 #ifdef _LP64 1358 switch (op) { 1359 case add : __ pop_l(rdx); __ addptr(rax, rdx); break; 1360 case sub : __ mov(rdx, rax); __ pop_l(rax); __ subptr(rax, rdx); break; 1361 case _and : __ pop_l(rdx); __ andptr(rax, rdx); break; 1362 case _or : __ pop_l(rdx); __ orptr (rax, rdx); break; 1363 case _xor : __ pop_l(rdx); __ xorptr(rax, rdx); break; 1364 default : ShouldNotReachHere(); 1365 } 1366 #else 1367 __ pop_l(rbx, rcx); 1368 switch (op) { 1369 case add : __ addl(rax, rbx); __ adcl(rdx, rcx); break; 1370 case sub : __ subl(rbx, rax); __ sbbl(rcx, rdx); 1371 __ mov (rax, rbx); __ mov (rdx, rcx); break; 1372 case _and : __ andl(rax, rbx); __ andl(rdx, rcx); break; 1373 case _or : __ orl (rax, rbx); __ orl (rdx, rcx); break; 1374 case _xor : __ xorl(rax, rbx); __ xorl(rdx, rcx); break; 1375 default : ShouldNotReachHere(); 1376 } 1377 #endif 1378 } 1379 1380 void TemplateTable::idiv() { 1381 transition(itos, itos); 1382 __ movl(rcx, rax); 1383 __ pop_i(rax); 1384 // Note: could xor rax and ecx and compare with (-1 ^ min_int). If 1385 // they are not equal, one could do a normal division (no correction 1386 // needed), which may speed up this implementation for the common case. 1387 // (see also JVM spec., p.243 & p.271) 1388 __ corrected_idivl(rcx); 1389 } 1390 1391 void TemplateTable::irem() { 1392 transition(itos, itos); 1393 __ movl(rcx, rax); 1394 __ pop_i(rax); 1395 // Note: could xor rax and ecx and compare with (-1 ^ min_int). If 1396 // they are not equal, one could do a normal division (no correction 1397 // needed), which may speed up this implementation for the common case. 1398 // (see also JVM spec., p.243 & p.271) 1399 __ corrected_idivl(rcx); 1400 __ movl(rax, rdx); 1401 } 1402 1403 void TemplateTable::lmul() { 1404 transition(ltos, ltos); 1405 #ifdef _LP64 1406 __ pop_l(rdx); 1407 __ imulq(rax, rdx); 1408 #else 1409 __ pop_l(rbx, rcx); 1410 __ push(rcx); __ push(rbx); 1411 __ push(rdx); __ push(rax); 1412 __ lmul(2 * wordSize, 0); 1413 __ addptr(rsp, 4 * wordSize); // take off temporaries 1414 #endif 1415 } 1416 1417 void TemplateTable::ldiv() { 1418 transition(ltos, ltos); 1419 #ifdef _LP64 1420 __ mov(rcx, rax); 1421 __ pop_l(rax); 1422 // generate explicit div0 check 1423 __ testq(rcx, rcx); 1424 __ jump_cc(Assembler::zero, 1425 ExternalAddress(Interpreter::_throw_ArithmeticException_entry)); 1426 // Note: could xor rax and rcx and compare with (-1 ^ min_int). If 1427 // they are not equal, one could do a normal division (no correction 1428 // needed), which may speed up this implementation for the common case. 1429 // (see also JVM spec., p.243 & p.271) 1430 __ corrected_idivq(rcx); // kills rbx 1431 #else 1432 __ pop_l(rbx, rcx); 1433 __ push(rcx); __ push(rbx); 1434 __ push(rdx); __ push(rax); 1435 // check if y = 0 1436 __ orl(rax, rdx); 1437 __ jump_cc(Assembler::zero, 1438 ExternalAddress(Interpreter::_throw_ArithmeticException_entry)); 1439 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::ldiv)); 1440 __ addptr(rsp, 4 * wordSize); // take off temporaries 1441 #endif 1442 } 1443 1444 void TemplateTable::lrem() { 1445 transition(ltos, ltos); 1446 #ifdef _LP64 1447 __ mov(rcx, rax); 1448 __ pop_l(rax); 1449 __ testq(rcx, rcx); 1450 __ jump_cc(Assembler::zero, 1451 ExternalAddress(Interpreter::_throw_ArithmeticException_entry)); 1452 // Note: could xor rax and rcx and compare with (-1 ^ min_int). If 1453 // they are not equal, one could do a normal division (no correction 1454 // needed), which may speed up this implementation for the common case. 1455 // (see also JVM spec., p.243 & p.271) 1456 __ corrected_idivq(rcx); // kills rbx 1457 __ mov(rax, rdx); 1458 #else 1459 __ pop_l(rbx, rcx); 1460 __ push(rcx); __ push(rbx); 1461 __ push(rdx); __ push(rax); 1462 // check if y = 0 1463 __ orl(rax, rdx); 1464 __ jump_cc(Assembler::zero, 1465 ExternalAddress(Interpreter::_throw_ArithmeticException_entry)); 1466 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::lrem)); 1467 __ addptr(rsp, 4 * wordSize); 1468 #endif 1469 } 1470 1471 void TemplateTable::lshl() { 1472 transition(itos, ltos); 1473 __ movl(rcx, rax); // get shift count 1474 #ifdef _LP64 1475 __ pop_l(rax); // get shift value 1476 __ shlq(rax); 1477 #else 1478 __ pop_l(rax, rdx); // get shift value 1479 __ lshl(rdx, rax); 1480 #endif 1481 } 1482 1483 void TemplateTable::lshr() { 1484 #ifdef _LP64 1485 transition(itos, ltos); 1486 __ movl(rcx, rax); // get shift count 1487 __ pop_l(rax); // get shift value 1488 __ sarq(rax); 1489 #else 1490 transition(itos, ltos); 1491 __ mov(rcx, rax); // get shift count 1492 __ pop_l(rax, rdx); // get shift value 1493 __ lshr(rdx, rax, true); 1494 #endif 1495 } 1496 1497 void TemplateTable::lushr() { 1498 transition(itos, ltos); 1499 #ifdef _LP64 1500 __ movl(rcx, rax); // get shift count 1501 __ pop_l(rax); // get shift value 1502 __ shrq(rax); 1503 #else 1504 __ mov(rcx, rax); // get shift count 1505 __ pop_l(rax, rdx); // get shift value 1506 __ lshr(rdx, rax); 1507 #endif 1508 } 1509 1510 void TemplateTable::fop2(Operation op) { 1511 transition(ftos, ftos); 1512 1513 if (UseSSE >= 1) { 1514 switch (op) { 1515 case add: 1516 __ addss(xmm0, at_rsp()); 1517 __ addptr(rsp, Interpreter::stackElementSize); 1518 break; 1519 case sub: 1520 __ movflt(xmm1, xmm0); 1521 __ pop_f(xmm0); 1522 __ subss(xmm0, xmm1); 1523 break; 1524 case mul: 1525 __ mulss(xmm0, at_rsp()); 1526 __ addptr(rsp, Interpreter::stackElementSize); 1527 break; 1528 case div: 1529 __ movflt(xmm1, xmm0); 1530 __ pop_f(xmm0); 1531 __ divss(xmm0, xmm1); 1532 break; 1533 case rem: 1534 // On x86_64 platforms the SharedRuntime::frem method is called to perform the 1535 // modulo operation. The frem method calls the function 1536 // double fmod(double x, double y) in math.h. The documentation of fmod states: 1537 // "If x or y is a NaN, a NaN is returned." without specifying what type of NaN 1538 // (signalling or quiet) is returned. 1539 // 1540 // On x86_32 platforms the FPU is used to perform the modulo operation. The 1541 // reason is that on 32-bit Windows the sign of modulo operations diverges from 1542 // what is considered the standard (e.g., -0.0f % -3.14f is 0.0f (and not -0.0f). 1543 // The fprem instruction used on x86_32 is functionally equivalent to 1544 // SharedRuntime::frem in that it returns a NaN. 1545 #ifdef _LP64 1546 __ movflt(xmm1, xmm0); 1547 __ pop_f(xmm0); 1548 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), 2); 1549 #else 1550 __ push_f(xmm0); 1551 __ pop_f(); 1552 __ fld_s(at_rsp()); 1553 __ fremr(rax); 1554 __ f2ieee(); 1555 __ pop(rax); // pop second operand off the stack 1556 __ push_f(); 1557 __ pop_f(xmm0); 1558 #endif 1559 break; 1560 default: 1561 ShouldNotReachHere(); 1562 break; 1563 } 1564 } else { 1565 #ifdef _LP64 1566 ShouldNotReachHere(); 1567 #else 1568 switch (op) { 1569 case add: __ fadd_s (at_rsp()); break; 1570 case sub: __ fsubr_s(at_rsp()); break; 1571 case mul: __ fmul_s (at_rsp()); break; 1572 case div: __ fdivr_s(at_rsp()); break; 1573 case rem: __ fld_s (at_rsp()); __ fremr(rax); break; 1574 default : ShouldNotReachHere(); 1575 } 1576 __ f2ieee(); 1577 __ pop(rax); // pop second operand off the stack 1578 #endif // _LP64 1579 } 1580 } 1581 1582 void TemplateTable::dop2(Operation op) { 1583 transition(dtos, dtos); 1584 if (UseSSE >= 2) { 1585 switch (op) { 1586 case add: 1587 __ addsd(xmm0, at_rsp()); 1588 __ addptr(rsp, 2 * Interpreter::stackElementSize); 1589 break; 1590 case sub: 1591 __ movdbl(xmm1, xmm0); 1592 __ pop_d(xmm0); 1593 __ subsd(xmm0, xmm1); 1594 break; 1595 case mul: 1596 __ mulsd(xmm0, at_rsp()); 1597 __ addptr(rsp, 2 * Interpreter::stackElementSize); 1598 break; 1599 case div: 1600 __ movdbl(xmm1, xmm0); 1601 __ pop_d(xmm0); 1602 __ divsd(xmm0, xmm1); 1603 break; 1604 case rem: 1605 // Similar to fop2(), the modulo operation is performed using the 1606 // SharedRuntime::drem method (on x86_64 platforms) or using the 1607 // FPU (on x86_32 platforms) for the same reasons as mentioned in fop2(). 1608 #ifdef _LP64 1609 __ movdbl(xmm1, xmm0); 1610 __ pop_d(xmm0); 1611 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), 2); 1612 #else 1613 __ push_d(xmm0); 1614 __ pop_d(); 1615 __ fld_d(at_rsp()); 1616 __ fremr(rax); 1617 __ d2ieee(); 1618 __ pop(rax); 1619 __ pop(rdx); 1620 __ push_d(); 1621 __ pop_d(xmm0); 1622 #endif 1623 break; 1624 default: 1625 ShouldNotReachHere(); 1626 break; 1627 } 1628 } else { 1629 #ifdef _LP64 1630 ShouldNotReachHere(); 1631 #else 1632 switch (op) { 1633 case add: __ fadd_d (at_rsp()); break; 1634 case sub: __ fsubr_d(at_rsp()); break; 1635 case mul: { 1636 // strict semantics 1637 __ fld_x(ExternalAddress(StubRoutines::x86::addr_fpu_subnormal_bias1())); 1638 __ fmulp(); 1639 __ fmul_d (at_rsp()); 1640 __ fld_x(ExternalAddress(StubRoutines::x86::addr_fpu_subnormal_bias2())); 1641 __ fmulp(); 1642 break; 1643 } 1644 case div: { 1645 // strict semantics 1646 __ fld_x(ExternalAddress(StubRoutines::x86::addr_fpu_subnormal_bias1())); 1647 __ fmul_d (at_rsp()); 1648 __ fdivrp(); 1649 __ fld_x(ExternalAddress(StubRoutines::x86::addr_fpu_subnormal_bias2())); 1650 __ fmulp(); 1651 break; 1652 } 1653 case rem: __ fld_d (at_rsp()); __ fremr(rax); break; 1654 default : ShouldNotReachHere(); 1655 } 1656 __ d2ieee(); 1657 // Pop double precision number from rsp. 1658 __ pop(rax); 1659 __ pop(rdx); 1660 #endif 1661 } 1662 } 1663 1664 void TemplateTable::ineg() { 1665 transition(itos, itos); 1666 __ negl(rax); 1667 } 1668 1669 void TemplateTable::lneg() { 1670 transition(ltos, ltos); 1671 LP64_ONLY(__ negq(rax)); 1672 NOT_LP64(__ lneg(rdx, rax)); 1673 } 1674 1675 // Note: 'double' and 'long long' have 32-bits alignment on x86. 1676 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) { 1677 // Use the expression (adr)&(~0xF) to provide 128-bits aligned address 1678 // of 128-bits operands for SSE instructions. 1679 jlong *operand = (jlong*)(((intptr_t)adr)&((intptr_t)(~0xF))); 1680 // Store the value to a 128-bits operand. 1681 operand[0] = lo; 1682 operand[1] = hi; 1683 return operand; 1684 } 1685 1686 // Buffer for 128-bits masks used by SSE instructions. 1687 static jlong float_signflip_pool[2*2]; 1688 static jlong double_signflip_pool[2*2]; 1689 1690 void TemplateTable::fneg() { 1691 transition(ftos, ftos); 1692 if (UseSSE >= 1) { 1693 static jlong *float_signflip = double_quadword(&float_signflip_pool[1], CONST64(0x8000000080000000), CONST64(0x8000000080000000)); 1694 __ xorps(xmm0, ExternalAddress((address) float_signflip)); 1695 } else { 1696 LP64_ONLY(ShouldNotReachHere()); 1697 NOT_LP64(__ fchs()); 1698 } 1699 } 1700 1701 void TemplateTable::dneg() { 1702 transition(dtos, dtos); 1703 if (UseSSE >= 2) { 1704 static jlong *double_signflip = 1705 double_quadword(&double_signflip_pool[1], CONST64(0x8000000000000000), CONST64(0x8000000000000000)); 1706 __ xorpd(xmm0, ExternalAddress((address) double_signflip)); 1707 } else { 1708 #ifdef _LP64 1709 ShouldNotReachHere(); 1710 #else 1711 __ fchs(); 1712 #endif 1713 } 1714 } 1715 1716 void TemplateTable::iinc() { 1717 transition(vtos, vtos); 1718 __ load_signed_byte(rdx, at_bcp(2)); // get constant 1719 locals_index(rbx); 1720 __ addl(iaddress(rbx), rdx); 1721 } 1722 1723 void TemplateTable::wide_iinc() { 1724 transition(vtos, vtos); 1725 __ movl(rdx, at_bcp(4)); // get constant 1726 locals_index_wide(rbx); 1727 __ bswapl(rdx); // swap bytes & sign-extend constant 1728 __ sarl(rdx, 16); 1729 __ addl(iaddress(rbx), rdx); 1730 // Note: should probably use only one movl to get both 1731 // the index and the constant -> fix this 1732 } 1733 1734 void TemplateTable::convert() { 1735 #ifdef _LP64 1736 // Checking 1737 #ifdef ASSERT 1738 { 1739 TosState tos_in = ilgl; 1740 TosState tos_out = ilgl; 1741 switch (bytecode()) { 1742 case Bytecodes::_i2l: // fall through 1743 case Bytecodes::_i2f: // fall through 1744 case Bytecodes::_i2d: // fall through 1745 case Bytecodes::_i2b: // fall through 1746 case Bytecodes::_i2c: // fall through 1747 case Bytecodes::_i2s: tos_in = itos; break; 1748 case Bytecodes::_l2i: // fall through 1749 case Bytecodes::_l2f: // fall through 1750 case Bytecodes::_l2d: tos_in = ltos; break; 1751 case Bytecodes::_f2i: // fall through 1752 case Bytecodes::_f2l: // fall through 1753 case Bytecodes::_f2d: tos_in = ftos; break; 1754 case Bytecodes::_d2i: // fall through 1755 case Bytecodes::_d2l: // fall through 1756 case Bytecodes::_d2f: tos_in = dtos; break; 1757 default : ShouldNotReachHere(); 1758 } 1759 switch (bytecode()) { 1760 case Bytecodes::_l2i: // fall through 1761 case Bytecodes::_f2i: // fall through 1762 case Bytecodes::_d2i: // fall through 1763 case Bytecodes::_i2b: // fall through 1764 case Bytecodes::_i2c: // fall through 1765 case Bytecodes::_i2s: tos_out = itos; break; 1766 case Bytecodes::_i2l: // fall through 1767 case Bytecodes::_f2l: // fall through 1768 case Bytecodes::_d2l: tos_out = ltos; break; 1769 case Bytecodes::_i2f: // fall through 1770 case Bytecodes::_l2f: // fall through 1771 case Bytecodes::_d2f: tos_out = ftos; break; 1772 case Bytecodes::_i2d: // fall through 1773 case Bytecodes::_l2d: // fall through 1774 case Bytecodes::_f2d: tos_out = dtos; break; 1775 default : ShouldNotReachHere(); 1776 } 1777 transition(tos_in, tos_out); 1778 } 1779 #endif // ASSERT 1780 1781 static const int64_t is_nan = 0x8000000000000000L; 1782 1783 // Conversion 1784 switch (bytecode()) { 1785 case Bytecodes::_i2l: 1786 __ movslq(rax, rax); 1787 break; 1788 case Bytecodes::_i2f: 1789 __ cvtsi2ssl(xmm0, rax); 1790 break; 1791 case Bytecodes::_i2d: 1792 __ cvtsi2sdl(xmm0, rax); 1793 break; 1794 case Bytecodes::_i2b: 1795 __ movsbl(rax, rax); 1796 break; 1797 case Bytecodes::_i2c: 1798 __ movzwl(rax, rax); 1799 break; 1800 case Bytecodes::_i2s: 1801 __ movswl(rax, rax); 1802 break; 1803 case Bytecodes::_l2i: 1804 __ movl(rax, rax); 1805 break; 1806 case Bytecodes::_l2f: 1807 __ cvtsi2ssq(xmm0, rax); 1808 break; 1809 case Bytecodes::_l2d: 1810 __ cvtsi2sdq(xmm0, rax); 1811 break; 1812 case Bytecodes::_f2i: 1813 { 1814 Label L; 1815 __ cvttss2sil(rax, xmm0); 1816 __ cmpl(rax, 0x80000000); // NaN or overflow/underflow? 1817 __ jcc(Assembler::notEqual, L); 1818 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1); 1819 __ bind(L); 1820 } 1821 break; 1822 case Bytecodes::_f2l: 1823 { 1824 Label L; 1825 __ cvttss2siq(rax, xmm0); 1826 // NaN or overflow/underflow? 1827 __ cmp64(rax, ExternalAddress((address) &is_nan)); 1828 __ jcc(Assembler::notEqual, L); 1829 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1); 1830 __ bind(L); 1831 } 1832 break; 1833 case Bytecodes::_f2d: 1834 __ cvtss2sd(xmm0, xmm0); 1835 break; 1836 case Bytecodes::_d2i: 1837 { 1838 Label L; 1839 __ cvttsd2sil(rax, xmm0); 1840 __ cmpl(rax, 0x80000000); // NaN or overflow/underflow? 1841 __ jcc(Assembler::notEqual, L); 1842 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1); 1843 __ bind(L); 1844 } 1845 break; 1846 case Bytecodes::_d2l: 1847 { 1848 Label L; 1849 __ cvttsd2siq(rax, xmm0); 1850 // NaN or overflow/underflow? 1851 __ cmp64(rax, ExternalAddress((address) &is_nan)); 1852 __ jcc(Assembler::notEqual, L); 1853 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1); 1854 __ bind(L); 1855 } 1856 break; 1857 case Bytecodes::_d2f: 1858 __ cvtsd2ss(xmm0, xmm0); 1859 break; 1860 default: 1861 ShouldNotReachHere(); 1862 } 1863 #else 1864 // Checking 1865 #ifdef ASSERT 1866 { TosState tos_in = ilgl; 1867 TosState tos_out = ilgl; 1868 switch (bytecode()) { 1869 case Bytecodes::_i2l: // fall through 1870 case Bytecodes::_i2f: // fall through 1871 case Bytecodes::_i2d: // fall through 1872 case Bytecodes::_i2b: // fall through 1873 case Bytecodes::_i2c: // fall through 1874 case Bytecodes::_i2s: tos_in = itos; break; 1875 case Bytecodes::_l2i: // fall through 1876 case Bytecodes::_l2f: // fall through 1877 case Bytecodes::_l2d: tos_in = ltos; break; 1878 case Bytecodes::_f2i: // fall through 1879 case Bytecodes::_f2l: // fall through 1880 case Bytecodes::_f2d: tos_in = ftos; break; 1881 case Bytecodes::_d2i: // fall through 1882 case Bytecodes::_d2l: // fall through 1883 case Bytecodes::_d2f: tos_in = dtos; break; 1884 default : ShouldNotReachHere(); 1885 } 1886 switch (bytecode()) { 1887 case Bytecodes::_l2i: // fall through 1888 case Bytecodes::_f2i: // fall through 1889 case Bytecodes::_d2i: // fall through 1890 case Bytecodes::_i2b: // fall through 1891 case Bytecodes::_i2c: // fall through 1892 case Bytecodes::_i2s: tos_out = itos; break; 1893 case Bytecodes::_i2l: // fall through 1894 case Bytecodes::_f2l: // fall through 1895 case Bytecodes::_d2l: tos_out = ltos; break; 1896 case Bytecodes::_i2f: // fall through 1897 case Bytecodes::_l2f: // fall through 1898 case Bytecodes::_d2f: tos_out = ftos; break; 1899 case Bytecodes::_i2d: // fall through 1900 case Bytecodes::_l2d: // fall through 1901 case Bytecodes::_f2d: tos_out = dtos; break; 1902 default : ShouldNotReachHere(); 1903 } 1904 transition(tos_in, tos_out); 1905 } 1906 #endif // ASSERT 1907 1908 // Conversion 1909 // (Note: use push(rcx)/pop(rcx) for 1/2-word stack-ptr manipulation) 1910 switch (bytecode()) { 1911 case Bytecodes::_i2l: 1912 __ extend_sign(rdx, rax); 1913 break; 1914 case Bytecodes::_i2f: 1915 if (UseSSE >= 1) { 1916 __ cvtsi2ssl(xmm0, rax); 1917 } else { 1918 __ push(rax); // store int on tos 1919 __ fild_s(at_rsp()); // load int to ST0 1920 __ f2ieee(); // truncate to float size 1921 __ pop(rcx); // adjust rsp 1922 } 1923 break; 1924 case Bytecodes::_i2d: 1925 if (UseSSE >= 2) { 1926 __ cvtsi2sdl(xmm0, rax); 1927 } else { 1928 __ push(rax); // add one slot for d2ieee() 1929 __ push(rax); // store int on tos 1930 __ fild_s(at_rsp()); // load int to ST0 1931 __ d2ieee(); // truncate to double size 1932 __ pop(rcx); // adjust rsp 1933 __ pop(rcx); 1934 } 1935 break; 1936 case Bytecodes::_i2b: 1937 __ shll(rax, 24); // truncate upper 24 bits 1938 __ sarl(rax, 24); // and sign-extend byte 1939 LP64_ONLY(__ movsbl(rax, rax)); 1940 break; 1941 case Bytecodes::_i2c: 1942 __ andl(rax, 0xFFFF); // truncate upper 16 bits 1943 LP64_ONLY(__ movzwl(rax, rax)); 1944 break; 1945 case Bytecodes::_i2s: 1946 __ shll(rax, 16); // truncate upper 16 bits 1947 __ sarl(rax, 16); // and sign-extend short 1948 LP64_ONLY(__ movswl(rax, rax)); 1949 break; 1950 case Bytecodes::_l2i: 1951 /* nothing to do */ 1952 break; 1953 case Bytecodes::_l2f: 1954 // On 64-bit platforms, the cvtsi2ssq instruction is used to convert 1955 // 64-bit long values to floats. On 32-bit platforms it is not possible 1956 // to use that instruction with 64-bit operands, therefore the FPU is 1957 // used to perform the conversion. 1958 __ push(rdx); // store long on tos 1959 __ push(rax); 1960 __ fild_d(at_rsp()); // load long to ST0 1961 __ f2ieee(); // truncate to float size 1962 __ pop(rcx); // adjust rsp 1963 __ pop(rcx); 1964 if (UseSSE >= 1) { 1965 __ push_f(); 1966 __ pop_f(xmm0); 1967 } 1968 break; 1969 case Bytecodes::_l2d: 1970 // On 32-bit platforms the FPU is used for conversion because on 1971 // 32-bit platforms it is not not possible to use the cvtsi2sdq 1972 // instruction with 64-bit operands. 1973 __ push(rdx); // store long on tos 1974 __ push(rax); 1975 __ fild_d(at_rsp()); // load long to ST0 1976 __ d2ieee(); // truncate to double size 1977 __ pop(rcx); // adjust rsp 1978 __ pop(rcx); 1979 if (UseSSE >= 2) { 1980 __ push_d(); 1981 __ pop_d(xmm0); 1982 } 1983 break; 1984 case Bytecodes::_f2i: 1985 // SharedRuntime::f2i does not differentiate between sNaNs and qNaNs 1986 // as it returns 0 for any NaN. 1987 if (UseSSE >= 1) { 1988 __ push_f(xmm0); 1989 } else { 1990 __ push(rcx); // reserve space for argument 1991 __ fstp_s(at_rsp()); // pass float argument on stack 1992 } 1993 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1); 1994 break; 1995 case Bytecodes::_f2l: 1996 // SharedRuntime::f2l does not differentiate between sNaNs and qNaNs 1997 // as it returns 0 for any NaN. 1998 if (UseSSE >= 1) { 1999 __ push_f(xmm0); 2000 } else { 2001 __ push(rcx); // reserve space for argument 2002 __ fstp_s(at_rsp()); // pass float argument on stack 2003 } 2004 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1); 2005 break; 2006 case Bytecodes::_f2d: 2007 if (UseSSE < 1) { 2008 /* nothing to do */ 2009 } else if (UseSSE == 1) { 2010 __ push_f(xmm0); 2011 __ pop_f(); 2012 } else { // UseSSE >= 2 2013 __ cvtss2sd(xmm0, xmm0); 2014 } 2015 break; 2016 case Bytecodes::_d2i: 2017 if (UseSSE >= 2) { 2018 __ push_d(xmm0); 2019 } else { 2020 __ push(rcx); // reserve space for argument 2021 __ push(rcx); 2022 __ fstp_d(at_rsp()); // pass double argument on stack 2023 } 2024 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 2); 2025 break; 2026 case Bytecodes::_d2l: 2027 if (UseSSE >= 2) { 2028 __ push_d(xmm0); 2029 } else { 2030 __ push(rcx); // reserve space for argument 2031 __ push(rcx); 2032 __ fstp_d(at_rsp()); // pass double argument on stack 2033 } 2034 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 2); 2035 break; 2036 case Bytecodes::_d2f: 2037 if (UseSSE <= 1) { 2038 __ push(rcx); // reserve space for f2ieee() 2039 __ f2ieee(); // truncate to float size 2040 __ pop(rcx); // adjust rsp 2041 if (UseSSE == 1) { 2042 // The cvtsd2ss instruction is not available if UseSSE==1, therefore 2043 // the conversion is performed using the FPU in this case. 2044 __ push_f(); 2045 __ pop_f(xmm0); 2046 } 2047 } else { // UseSSE >= 2 2048 __ cvtsd2ss(xmm0, xmm0); 2049 } 2050 break; 2051 default : 2052 ShouldNotReachHere(); 2053 } 2054 #endif 2055 } 2056 2057 void TemplateTable::lcmp() { 2058 transition(ltos, itos); 2059 #ifdef _LP64 2060 Label done; 2061 __ pop_l(rdx); 2062 __ cmpq(rdx, rax); 2063 __ movl(rax, -1); 2064 __ jccb(Assembler::less, done); 2065 __ setb(Assembler::notEqual, rax); 2066 __ movzbl(rax, rax); 2067 __ bind(done); 2068 #else 2069 2070 // y = rdx:rax 2071 __ pop_l(rbx, rcx); // get x = rcx:rbx 2072 __ lcmp2int(rcx, rbx, rdx, rax);// rcx := cmp(x, y) 2073 __ mov(rax, rcx); 2074 #endif 2075 } 2076 2077 void TemplateTable::float_cmp(bool is_float, int unordered_result) { 2078 if ((is_float && UseSSE >= 1) || 2079 (!is_float && UseSSE >= 2)) { 2080 Label done; 2081 if (is_float) { 2082 // XXX get rid of pop here, use ... reg, mem32 2083 __ pop_f(xmm1); 2084 __ ucomiss(xmm1, xmm0); 2085 } else { 2086 // XXX get rid of pop here, use ... reg, mem64 2087 __ pop_d(xmm1); 2088 __ ucomisd(xmm1, xmm0); 2089 } 2090 if (unordered_result < 0) { 2091 __ movl(rax, -1); 2092 __ jccb(Assembler::parity, done); 2093 __ jccb(Assembler::below, done); 2094 __ setb(Assembler::notEqual, rdx); 2095 __ movzbl(rax, rdx); 2096 } else { 2097 __ movl(rax, 1); 2098 __ jccb(Assembler::parity, done); 2099 __ jccb(Assembler::above, done); 2100 __ movl(rax, 0); 2101 __ jccb(Assembler::equal, done); 2102 __ decrementl(rax); 2103 } 2104 __ bind(done); 2105 } else { 2106 #ifdef _LP64 2107 ShouldNotReachHere(); 2108 #else 2109 if (is_float) { 2110 __ fld_s(at_rsp()); 2111 } else { 2112 __ fld_d(at_rsp()); 2113 __ pop(rdx); 2114 } 2115 __ pop(rcx); 2116 __ fcmp2int(rax, unordered_result < 0); 2117 #endif // _LP64 2118 } 2119 } 2120 2121 void TemplateTable::branch(bool is_jsr, bool is_wide) { 2122 __ get_method(rcx); // rcx holds method 2123 __ profile_taken_branch(rax, rbx); // rax holds updated MDP, rbx 2124 // holds bumped taken count 2125 2126 const ByteSize be_offset = MethodCounters::backedge_counter_offset() + 2127 InvocationCounter::counter_offset(); 2128 const ByteSize inv_offset = MethodCounters::invocation_counter_offset() + 2129 InvocationCounter::counter_offset(); 2130 2131 // Load up edx with the branch displacement 2132 if (is_wide) { 2133 __ movl(rdx, at_bcp(1)); 2134 } else { 2135 __ load_signed_short(rdx, at_bcp(1)); 2136 } 2137 __ bswapl(rdx); 2138 2139 if (!is_wide) { 2140 __ sarl(rdx, 16); 2141 } 2142 LP64_ONLY(__ movl2ptr(rdx, rdx)); 2143 2144 // Handle all the JSR stuff here, then exit. 2145 // It's much shorter and cleaner than intermingling with the non-JSR 2146 // normal-branch stuff occurring below. 2147 if (is_jsr) { 2148 // Pre-load the next target bytecode into rbx 2149 __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1, 0)); 2150 2151 // compute return address as bci in rax 2152 __ lea(rax, at_bcp((is_wide ? 5 : 3) - 2153 in_bytes(ConstMethod::codes_offset()))); 2154 __ subptr(rax, Address(rcx, Method::const_offset())); 2155 // Adjust the bcp in r13 by the displacement in rdx 2156 __ addptr(rbcp, rdx); 2157 // jsr returns atos that is not an oop 2158 __ push_i(rax); 2159 __ dispatch_only(vtos, true); 2160 return; 2161 } 2162 2163 // Normal (non-jsr) branch handling 2164 2165 // Adjust the bcp in r13 by the displacement in rdx 2166 __ addptr(rbcp, rdx); 2167 2168 assert(UseLoopCounter || !UseOnStackReplacement, 2169 "on-stack-replacement requires loop counters"); 2170 Label backedge_counter_overflow; 2171 Label dispatch; 2172 if (UseLoopCounter) { 2173 // increment backedge counter for backward branches 2174 // rax: MDO 2175 // rbx: MDO bumped taken-count 2176 // rcx: method 2177 // rdx: target offset 2178 // r13: target bcp 2179 // r14: locals pointer 2180 __ testl(rdx, rdx); // check if forward or backward branch 2181 __ jcc(Assembler::positive, dispatch); // count only if backward branch 2182 2183 // check if MethodCounters exists 2184 Label has_counters; 2185 __ movptr(rax, Address(rcx, Method::method_counters_offset())); 2186 __ testptr(rax, rax); 2187 __ jcc(Assembler::notZero, has_counters); 2188 __ push(rdx); 2189 __ push(rcx); 2190 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters), 2191 rcx); 2192 __ pop(rcx); 2193 __ pop(rdx); 2194 __ movptr(rax, Address(rcx, Method::method_counters_offset())); 2195 __ testptr(rax, rax); 2196 __ jcc(Assembler::zero, dispatch); 2197 __ bind(has_counters); 2198 2199 Label no_mdo; 2200 if (ProfileInterpreter) { 2201 // Are we profiling? 2202 __ movptr(rbx, Address(rcx, in_bytes(Method::method_data_offset()))); 2203 __ testptr(rbx, rbx); 2204 __ jccb(Assembler::zero, no_mdo); 2205 // Increment the MDO backedge counter 2206 const Address mdo_backedge_counter(rbx, in_bytes(MethodData::backedge_counter_offset()) + 2207 in_bytes(InvocationCounter::counter_offset())); 2208 const Address mask(rbx, in_bytes(MethodData::backedge_mask_offset())); 2209 __ increment_mask_and_jump(mdo_backedge_counter, mask, rax, 2210 UseOnStackReplacement ? &backedge_counter_overflow : NULL); 2211 __ jmp(dispatch); 2212 } 2213 __ bind(no_mdo); 2214 // Increment backedge counter in MethodCounters* 2215 __ movptr(rcx, Address(rcx, Method::method_counters_offset())); 2216 const Address mask(rcx, in_bytes(MethodCounters::backedge_mask_offset())); 2217 __ increment_mask_and_jump(Address(rcx, be_offset), mask, rax, 2218 UseOnStackReplacement ? &backedge_counter_overflow : NULL); 2219 __ bind(dispatch); 2220 } 2221 2222 // Pre-load the next target bytecode into rbx 2223 __ load_unsigned_byte(rbx, Address(rbcp, 0)); 2224 2225 // continue with the bytecode @ target 2226 // rax: return bci for jsr's, unused otherwise 2227 // rbx: target bytecode 2228 // r13: target bcp 2229 __ dispatch_only(vtos, true); 2230 2231 if (UseLoopCounter) { 2232 if (UseOnStackReplacement) { 2233 Label set_mdp; 2234 // invocation counter overflow 2235 __ bind(backedge_counter_overflow); 2236 __ negptr(rdx); 2237 __ addptr(rdx, rbcp); // branch bcp 2238 // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp) 2239 __ call_VM(noreg, 2240 CAST_FROM_FN_PTR(address, 2241 InterpreterRuntime::frequency_counter_overflow), 2242 rdx); 2243 2244 // rax: osr nmethod (osr ok) or NULL (osr not possible) 2245 // rdx: scratch 2246 // r14: locals pointer 2247 // r13: bcp 2248 __ testptr(rax, rax); // test result 2249 __ jcc(Assembler::zero, dispatch); // no osr if null 2250 // nmethod may have been invalidated (VM may block upon call_VM return) 2251 __ cmpb(Address(rax, nmethod::state_offset()), nmethod::in_use); 2252 __ jcc(Assembler::notEqual, dispatch); 2253 2254 // We have the address of an on stack replacement routine in rax. 2255 // In preparation of invoking it, first we must migrate the locals 2256 // and monitors from off the interpreter frame on the stack. 2257 // Ensure to save the osr nmethod over the migration call, 2258 // it will be preserved in rbx. 2259 __ mov(rbx, rax); 2260 2261 NOT_LP64(__ get_thread(rcx)); 2262 2263 call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin)); 2264 2265 // rax is OSR buffer, move it to expected parameter location 2266 LP64_ONLY(__ mov(j_rarg0, rax)); 2267 NOT_LP64(__ mov(rcx, rax)); 2268 // We use j_rarg definitions here so that registers don't conflict as parameter 2269 // registers change across platforms as we are in the midst of a calling 2270 // sequence to the OSR nmethod and we don't want collision. These are NOT parameters. 2271 2272 const Register retaddr = LP64_ONLY(j_rarg2) NOT_LP64(rdi); 2273 const Register sender_sp = LP64_ONLY(j_rarg1) NOT_LP64(rdx); 2274 2275 // pop the interpreter frame 2276 __ movptr(sender_sp, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp 2277 __ leave(); // remove frame anchor 2278 __ pop(retaddr); // get return address 2279 __ mov(rsp, sender_sp); // set sp to sender sp 2280 // Ensure compiled code always sees stack at proper alignment 2281 __ andptr(rsp, -(StackAlignmentInBytes)); 2282 2283 // unlike x86 we need no specialized return from compiled code 2284 // to the interpreter or the call stub. 2285 2286 // push the return address 2287 __ push(retaddr); 2288 2289 // and begin the OSR nmethod 2290 __ jmp(Address(rbx, nmethod::osr_entry_point_offset())); 2291 } 2292 } 2293 } 2294 2295 void TemplateTable::if_0cmp(Condition cc) { 2296 transition(itos, vtos); 2297 // assume branch is more often taken than not (loops use backward branches) 2298 Label not_taken; 2299 __ testl(rax, rax); 2300 __ jcc(j_not(cc), not_taken); 2301 branch(false, false); 2302 __ bind(not_taken); 2303 __ profile_not_taken_branch(rax); 2304 } 2305 2306 void TemplateTable::if_icmp(Condition cc) { 2307 transition(itos, vtos); 2308 // assume branch is more often taken than not (loops use backward branches) 2309 Label not_taken; 2310 __ pop_i(rdx); 2311 __ cmpl(rdx, rax); 2312 __ jcc(j_not(cc), not_taken); 2313 branch(false, false); 2314 __ bind(not_taken); 2315 __ profile_not_taken_branch(rax); 2316 } 2317 2318 void TemplateTable::if_nullcmp(Condition cc) { 2319 transition(atos, vtos); 2320 // assume branch is more often taken than not (loops use backward branches) 2321 Label not_taken; 2322 __ testptr(rax, rax); 2323 __ jcc(j_not(cc), not_taken); 2324 branch(false, false); 2325 __ bind(not_taken); 2326 __ profile_not_taken_branch(rax); 2327 } 2328 2329 void TemplateTable::if_acmp(Condition cc) { 2330 transition(atos, vtos); 2331 // assume branch is more often taken than not (loops use backward branches) 2332 Label not_taken; 2333 __ pop_ptr(rdx); 2334 __ cmpoop(rdx, rax); 2335 __ jcc(j_not(cc), not_taken); 2336 branch(false, false); 2337 __ bind(not_taken); 2338 __ profile_not_taken_branch(rax); 2339 } 2340 2341 void TemplateTable::ret() { 2342 transition(vtos, vtos); 2343 locals_index(rbx); 2344 LP64_ONLY(__ movslq(rbx, iaddress(rbx))); // get return bci, compute return bcp 2345 NOT_LP64(__ movptr(rbx, iaddress(rbx))); 2346 __ profile_ret(rbx, rcx); 2347 __ get_method(rax); 2348 __ movptr(rbcp, Address(rax, Method::const_offset())); 2349 __ lea(rbcp, Address(rbcp, rbx, Address::times_1, 2350 ConstMethod::codes_offset())); 2351 __ dispatch_next(vtos, 0, true); 2352 } 2353 2354 void TemplateTable::wide_ret() { 2355 transition(vtos, vtos); 2356 locals_index_wide(rbx); 2357 __ movptr(rbx, aaddress(rbx)); // get return bci, compute return bcp 2358 __ profile_ret(rbx, rcx); 2359 __ get_method(rax); 2360 __ movptr(rbcp, Address(rax, Method::const_offset())); 2361 __ lea(rbcp, Address(rbcp, rbx, Address::times_1, ConstMethod::codes_offset())); 2362 __ dispatch_next(vtos, 0, true); 2363 } 2364 2365 void TemplateTable::tableswitch() { 2366 Label default_case, continue_execution; 2367 transition(itos, vtos); 2368 2369 // align r13/rsi 2370 __ lea(rbx, at_bcp(BytesPerInt)); 2371 __ andptr(rbx, -BytesPerInt); 2372 // load lo & hi 2373 __ movl(rcx, Address(rbx, BytesPerInt)); 2374 __ movl(rdx, Address(rbx, 2 * BytesPerInt)); 2375 __ bswapl(rcx); 2376 __ bswapl(rdx); 2377 // check against lo & hi 2378 __ cmpl(rax, rcx); 2379 __ jcc(Assembler::less, default_case); 2380 __ cmpl(rax, rdx); 2381 __ jcc(Assembler::greater, default_case); 2382 // lookup dispatch offset 2383 __ subl(rax, rcx); 2384 __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt)); 2385 __ profile_switch_case(rax, rbx, rcx); 2386 // continue execution 2387 __ bind(continue_execution); 2388 __ bswapl(rdx); 2389 LP64_ONLY(__ movl2ptr(rdx, rdx)); 2390 __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1)); 2391 __ addptr(rbcp, rdx); 2392 __ dispatch_only(vtos, true); 2393 // handle default 2394 __ bind(default_case); 2395 __ profile_switch_default(rax); 2396 __ movl(rdx, Address(rbx, 0)); 2397 __ jmp(continue_execution); 2398 } 2399 2400 void TemplateTable::lookupswitch() { 2401 transition(itos, itos); 2402 __ stop("lookupswitch bytecode should have been rewritten"); 2403 } 2404 2405 void TemplateTable::fast_linearswitch() { 2406 transition(itos, vtos); 2407 Label loop_entry, loop, found, continue_execution; 2408 // bswap rax so we can avoid bswapping the table entries 2409 __ bswapl(rax); 2410 // align r13 2411 __ lea(rbx, at_bcp(BytesPerInt)); // btw: should be able to get rid of 2412 // this instruction (change offsets 2413 // below) 2414 __ andptr(rbx, -BytesPerInt); 2415 // set counter 2416 __ movl(rcx, Address(rbx, BytesPerInt)); 2417 __ bswapl(rcx); 2418 __ jmpb(loop_entry); 2419 // table search 2420 __ bind(loop); 2421 __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * BytesPerInt)); 2422 __ jcc(Assembler::equal, found); 2423 __ bind(loop_entry); 2424 __ decrementl(rcx); 2425 __ jcc(Assembler::greaterEqual, loop); 2426 // default case 2427 __ profile_switch_default(rax); 2428 __ movl(rdx, Address(rbx, 0)); 2429 __ jmp(continue_execution); 2430 // entry found -> get offset 2431 __ bind(found); 2432 __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * BytesPerInt)); 2433 __ profile_switch_case(rcx, rax, rbx); 2434 // continue execution 2435 __ bind(continue_execution); 2436 __ bswapl(rdx); 2437 __ movl2ptr(rdx, rdx); 2438 __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1)); 2439 __ addptr(rbcp, rdx); 2440 __ dispatch_only(vtos, true); 2441 } 2442 2443 void TemplateTable::fast_binaryswitch() { 2444 transition(itos, vtos); 2445 // Implementation using the following core algorithm: 2446 // 2447 // int binary_search(int key, LookupswitchPair* array, int n) { 2448 // // Binary search according to "Methodik des Programmierens" by 2449 // // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985. 2450 // int i = 0; 2451 // int j = n; 2452 // while (i+1 < j) { 2453 // // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q) 2454 // // with Q: for all i: 0 <= i < n: key < a[i] 2455 // // where a stands for the array and assuming that the (inexisting) 2456 // // element a[n] is infinitely big. 2457 // int h = (i + j) >> 1; 2458 // // i < h < j 2459 // if (key < array[h].fast_match()) { 2460 // j = h; 2461 // } else { 2462 // i = h; 2463 // } 2464 // } 2465 // // R: a[i] <= key < a[i+1] or Q 2466 // // (i.e., if key is within array, i is the correct index) 2467 // return i; 2468 // } 2469 2470 // Register allocation 2471 const Register key = rax; // already set (tosca) 2472 const Register array = rbx; 2473 const Register i = rcx; 2474 const Register j = rdx; 2475 const Register h = rdi; 2476 const Register temp = rsi; 2477 2478 // Find array start 2479 NOT_LP64(__ save_bcp()); 2480 2481 __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to 2482 // get rid of this 2483 // instruction (change 2484 // offsets below) 2485 __ andptr(array, -BytesPerInt); 2486 2487 // Initialize i & j 2488 __ xorl(i, i); // i = 0; 2489 __ movl(j, Address(array, -BytesPerInt)); // j = length(array); 2490 2491 // Convert j into native byteordering 2492 __ bswapl(j); 2493 2494 // And start 2495 Label entry; 2496 __ jmp(entry); 2497 2498 // binary search loop 2499 { 2500 Label loop; 2501 __ bind(loop); 2502 // int h = (i + j) >> 1; 2503 __ leal(h, Address(i, j, Address::times_1)); // h = i + j; 2504 __ sarl(h, 1); // h = (i + j) >> 1; 2505 // if (key < array[h].fast_match()) { 2506 // j = h; 2507 // } else { 2508 // i = h; 2509 // } 2510 // Convert array[h].match to native byte-ordering before compare 2511 __ movl(temp, Address(array, h, Address::times_8)); 2512 __ bswapl(temp); 2513 __ cmpl(key, temp); 2514 // j = h if (key < array[h].fast_match()) 2515 __ cmov32(Assembler::less, j, h); 2516 // i = h if (key >= array[h].fast_match()) 2517 __ cmov32(Assembler::greaterEqual, i, h); 2518 // while (i+1 < j) 2519 __ bind(entry); 2520 __ leal(h, Address(i, 1)); // i+1 2521 __ cmpl(h, j); // i+1 < j 2522 __ jcc(Assembler::less, loop); 2523 } 2524 2525 // end of binary search, result index is i (must check again!) 2526 Label default_case; 2527 // Convert array[i].match to native byte-ordering before compare 2528 __ movl(temp, Address(array, i, Address::times_8)); 2529 __ bswapl(temp); 2530 __ cmpl(key, temp); 2531 __ jcc(Assembler::notEqual, default_case); 2532 2533 // entry found -> j = offset 2534 __ movl(j , Address(array, i, Address::times_8, BytesPerInt)); 2535 __ profile_switch_case(i, key, array); 2536 __ bswapl(j); 2537 LP64_ONLY(__ movslq(j, j)); 2538 2539 NOT_LP64(__ restore_bcp()); 2540 NOT_LP64(__ restore_locals()); // restore rdi 2541 2542 __ load_unsigned_byte(rbx, Address(rbcp, j, Address::times_1)); 2543 __ addptr(rbcp, j); 2544 __ dispatch_only(vtos, true); 2545 2546 // default case -> j = default offset 2547 __ bind(default_case); 2548 __ profile_switch_default(i); 2549 __ movl(j, Address(array, -2 * BytesPerInt)); 2550 __ bswapl(j); 2551 LP64_ONLY(__ movslq(j, j)); 2552 2553 NOT_LP64(__ restore_bcp()); 2554 NOT_LP64(__ restore_locals()); 2555 2556 __ load_unsigned_byte(rbx, Address(rbcp, j, Address::times_1)); 2557 __ addptr(rbcp, j); 2558 __ dispatch_only(vtos, true); 2559 } 2560 2561 void TemplateTable::_return(TosState state) { 2562 transition(state, state); 2563 2564 assert(_desc->calls_vm(), 2565 "inconsistent calls_vm information"); // call in remove_activation 2566 2567 if (_desc->bytecode() == Bytecodes::_return_register_finalizer) { 2568 assert(state == vtos, "only valid state"); 2569 Register robj = LP64_ONLY(c_rarg1) NOT_LP64(rax); 2570 __ movptr(robj, aaddress(0)); 2571 Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg); 2572 __ load_klass(rdi, robj, tmp_load_klass); 2573 __ movl(rdi, Address(rdi, Klass::access_flags_offset())); 2574 __ testl(rdi, JVM_ACC_HAS_FINALIZER); 2575 Label skip_register_finalizer; 2576 __ jcc(Assembler::zero, skip_register_finalizer); 2577 2578 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), robj); 2579 2580 __ bind(skip_register_finalizer); 2581 } 2582 2583 if (_desc->bytecode() != Bytecodes::_return_register_finalizer) { 2584 Label no_safepoint; 2585 NOT_PRODUCT(__ block_comment("Thread-local Safepoint poll")); 2586 #ifdef _LP64 2587 __ testb(Address(r15_thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit()); 2588 #else 2589 const Register thread = rdi; 2590 __ get_thread(thread); 2591 __ testb(Address(thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit()); 2592 #endif 2593 __ jcc(Assembler::zero, no_safepoint); 2594 __ push(state); 2595 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 2596 InterpreterRuntime::at_safepoint)); 2597 __ pop(state); 2598 __ bind(no_safepoint); 2599 } 2600 2601 // Narrow result if state is itos but result type is smaller. 2602 // Need to narrow in the return bytecode rather than in generate_return_entry 2603 // since compiled code callers expect the result to already be narrowed. 2604 if (state == itos) { 2605 __ narrow(rax); 2606 } 2607 __ remove_activation(state, rbcp); 2608 2609 __ jmp(rbcp); 2610 } 2611 2612 // ---------------------------------------------------------------------------- 2613 // Volatile variables demand their effects be made known to all CPU's 2614 // in order. Store buffers on most chips allow reads & writes to 2615 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode 2616 // without some kind of memory barrier (i.e., it's not sufficient that 2617 // the interpreter does not reorder volatile references, the hardware 2618 // also must not reorder them). 2619 // 2620 // According to the new Java Memory Model (JMM): 2621 // (1) All volatiles are serialized wrt to each other. ALSO reads & 2622 // writes act as acquire & release, so: 2623 // (2) A read cannot let unrelated NON-volatile memory refs that 2624 // happen after the read float up to before the read. It's OK for 2625 // non-volatile memory refs that happen before the volatile read to 2626 // float down below it. 2627 // (3) Similar a volatile write cannot let unrelated NON-volatile 2628 // memory refs that happen BEFORE the write float down to after the 2629 // write. It's OK for non-volatile memory refs that happen after the 2630 // volatile write to float up before it. 2631 // 2632 // We only put in barriers around volatile refs (they are expensive), 2633 // not _between_ memory refs (that would require us to track the 2634 // flavor of the previous memory refs). Requirements (2) and (3) 2635 // require some barriers before volatile stores and after volatile 2636 // loads. These nearly cover requirement (1) but miss the 2637 // volatile-store-volatile-load case. This final case is placed after 2638 // volatile-stores although it could just as well go before 2639 // volatile-loads. 2640 2641 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint ) { 2642 // Helper function to insert a is-volatile test and memory barrier 2643 __ membar(order_constraint); 2644 } 2645 2646 void TemplateTable::resolve_cache_and_index(int byte_no, 2647 Register cache, 2648 Register index, 2649 size_t index_size) { 2650 const Register temp = rbx; 2651 assert_different_registers(cache, index, temp); 2652 2653 Label L_clinit_barrier_slow; 2654 Label resolved; 2655 2656 Bytecodes::Code code = bytecode(); 2657 switch (code) { 2658 case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break; 2659 case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break; 2660 default: break; 2661 } 2662 2663 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 2664 __ get_cache_and_index_and_bytecode_at_bcp(cache, index, temp, byte_no, 1, index_size); 2665 __ cmpl(temp, code); // have we resolved this bytecode? 2666 __ jcc(Assembler::equal, resolved); 2667 2668 // resolve first time through 2669 // Class initialization barrier slow path lands here as well. 2670 __ bind(L_clinit_barrier_slow); 2671 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache); 2672 __ movl(temp, code); 2673 __ call_VM(noreg, entry, temp); 2674 // Update registers with resolved info 2675 __ get_cache_and_index_at_bcp(cache, index, 1, index_size); 2676 2677 __ bind(resolved); 2678 2679 // Class initialization barrier for static methods 2680 if (VM_Version::supports_fast_class_init_checks() && bytecode() == Bytecodes::_invokestatic) { 2681 const Register method = temp; 2682 const Register klass = temp; 2683 const Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg); 2684 assert(thread != noreg, "x86_32 not supported"); 2685 2686 __ load_resolved_method_at_index(byte_no, method, cache, index); 2687 __ load_method_holder(klass, method); 2688 __ clinit_barrier(klass, thread, NULL /*L_fast_path*/, &L_clinit_barrier_slow); 2689 } 2690 } 2691 2692 // The cache and index registers must be set before call 2693 void TemplateTable::load_field_cp_cache_entry(Register obj, 2694 Register cache, 2695 Register index, 2696 Register off, 2697 Register flags, 2698 bool is_static = false) { 2699 assert_different_registers(cache, index, flags, off); 2700 2701 ByteSize cp_base_offset = ConstantPoolCache::base_offset(); 2702 // Field offset 2703 __ movptr(off, Address(cache, index, Address::times_ptr, 2704 in_bytes(cp_base_offset + 2705 ConstantPoolCacheEntry::f2_offset()))); 2706 // Flags 2707 __ movl(flags, Address(cache, index, Address::times_ptr, 2708 in_bytes(cp_base_offset + 2709 ConstantPoolCacheEntry::flags_offset()))); 2710 2711 // klass overwrite register 2712 if (is_static) { 2713 __ movptr(obj, Address(cache, index, Address::times_ptr, 2714 in_bytes(cp_base_offset + 2715 ConstantPoolCacheEntry::f1_offset()))); 2716 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 2717 __ movptr(obj, Address(obj, mirror_offset)); 2718 __ resolve_oop_handle(obj); 2719 } 2720 } 2721 2722 void TemplateTable::load_invoke_cp_cache_entry(int byte_no, 2723 Register method, 2724 Register itable_index, 2725 Register flags, 2726 bool is_invokevirtual, 2727 bool is_invokevfinal, /*unused*/ 2728 bool is_invokedynamic) { 2729 // setup registers 2730 const Register cache = rcx; 2731 const Register index = rdx; 2732 assert_different_registers(method, flags); 2733 assert_different_registers(method, cache, index); 2734 assert_different_registers(itable_index, flags); 2735 assert_different_registers(itable_index, cache, index); 2736 // determine constant pool cache field offsets 2737 assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant"); 2738 const int flags_offset = in_bytes(ConstantPoolCache::base_offset() + 2739 ConstantPoolCacheEntry::flags_offset()); 2740 // access constant pool cache fields 2741 const int index_offset = in_bytes(ConstantPoolCache::base_offset() + 2742 ConstantPoolCacheEntry::f2_offset()); 2743 2744 size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2)); 2745 resolve_cache_and_index(byte_no, cache, index, index_size); 2746 __ load_resolved_method_at_index(byte_no, method, cache, index); 2747 2748 if (itable_index != noreg) { 2749 // pick up itable or appendix index from f2 also: 2750 __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset)); 2751 } 2752 __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset)); 2753 } 2754 2755 // The registers cache and index expected to be set before call. 2756 // Correct values of the cache and index registers are preserved. 2757 void TemplateTable::jvmti_post_field_access(Register cache, 2758 Register index, 2759 bool is_static, 2760 bool has_tos) { 2761 if (JvmtiExport::can_post_field_access()) { 2762 // Check to see if a field access watch has been set before we take 2763 // the time to call into the VM. 2764 Label L1; 2765 assert_different_registers(cache, index, rax); 2766 __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); 2767 __ testl(rax,rax); 2768 __ jcc(Assembler::zero, L1); 2769 2770 // cache entry pointer 2771 __ addptr(cache, in_bytes(ConstantPoolCache::base_offset())); 2772 __ shll(index, LogBytesPerWord); 2773 __ addptr(cache, index); 2774 if (is_static) { 2775 __ xorptr(rax, rax); // NULL object reference 2776 } else { 2777 __ pop(atos); // Get the object 2778 __ verify_oop(rax); 2779 __ push(atos); // Restore stack state 2780 } 2781 // rax,: object pointer or NULL 2782 // cache: cache entry pointer 2783 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), 2784 rax, cache); 2785 __ get_cache_and_index_at_bcp(cache, index, 1); 2786 __ bind(L1); 2787 } 2788 } 2789 2790 void TemplateTable::pop_and_check_object(Register r) { 2791 __ pop_ptr(r); 2792 __ null_check(r); // for field access must check obj. 2793 __ verify_oop(r); 2794 } 2795 2796 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc) { 2797 transition(vtos, vtos); 2798 2799 const Register cache = rcx; 2800 const Register index = rdx; 2801 const Register obj = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 2802 const Register off = rbx; 2803 const Register flags = rax; 2804 const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // uses same reg as obj, so don't mix them 2805 2806 resolve_cache_and_index(byte_no, cache, index, sizeof(u2)); 2807 jvmti_post_field_access(cache, index, is_static, false); 2808 load_field_cp_cache_entry(obj, cache, index, off, flags, is_static); 2809 2810 if (!is_static) pop_and_check_object(obj); 2811 2812 const Address field(obj, off, Address::times_1, 0*wordSize); 2813 2814 Label Done, notByte, notBool, notInt, notShort, notChar, notLong, notFloat, notObj; 2815 2816 __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift); 2817 // Make sure we don't need to mask edx after the above shift 2818 assert(btos == 0, "change code, btos != 0"); 2819 2820 __ andl(flags, ConstantPoolCacheEntry::tos_state_mask); 2821 2822 __ jcc(Assembler::notZero, notByte); 2823 // btos 2824 __ access_load_at(T_BYTE, IN_HEAP, rax, field, noreg, noreg); 2825 __ push(btos); 2826 // Rewrite bytecode to be faster 2827 if (!is_static && rc == may_rewrite) { 2828 patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx); 2829 } 2830 __ jmp(Done); 2831 2832 __ bind(notByte); 2833 __ cmpl(flags, ztos); 2834 __ jcc(Assembler::notEqual, notBool); 2835 2836 // ztos (same code as btos) 2837 __ access_load_at(T_BOOLEAN, IN_HEAP, rax, field, noreg, noreg); 2838 __ push(ztos); 2839 // Rewrite bytecode to be faster 2840 if (!is_static && rc == may_rewrite) { 2841 // use btos rewriting, no truncating to t/f bit is needed for getfield. 2842 patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx); 2843 } 2844 __ jmp(Done); 2845 2846 __ bind(notBool); 2847 __ cmpl(flags, atos); 2848 __ jcc(Assembler::notEqual, notObj); 2849 // atos 2850 do_oop_load(_masm, field, rax); 2851 __ push(atos); 2852 if (!is_static && rc == may_rewrite) { 2853 patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx); 2854 } 2855 __ jmp(Done); 2856 2857 __ bind(notObj); 2858 __ cmpl(flags, itos); 2859 __ jcc(Assembler::notEqual, notInt); 2860 // itos 2861 __ access_load_at(T_INT, IN_HEAP, rax, field, noreg, noreg); 2862 __ push(itos); 2863 // Rewrite bytecode to be faster 2864 if (!is_static && rc == may_rewrite) { 2865 patch_bytecode(Bytecodes::_fast_igetfield, bc, rbx); 2866 } 2867 __ jmp(Done); 2868 2869 __ bind(notInt); 2870 __ cmpl(flags, ctos); 2871 __ jcc(Assembler::notEqual, notChar); 2872 // ctos 2873 __ access_load_at(T_CHAR, IN_HEAP, rax, field, noreg, noreg); 2874 __ push(ctos); 2875 // Rewrite bytecode to be faster 2876 if (!is_static && rc == may_rewrite) { 2877 patch_bytecode(Bytecodes::_fast_cgetfield, bc, rbx); 2878 } 2879 __ jmp(Done); 2880 2881 __ bind(notChar); 2882 __ cmpl(flags, stos); 2883 __ jcc(Assembler::notEqual, notShort); 2884 // stos 2885 __ access_load_at(T_SHORT, IN_HEAP, rax, field, noreg, noreg); 2886 __ push(stos); 2887 // Rewrite bytecode to be faster 2888 if (!is_static && rc == may_rewrite) { 2889 patch_bytecode(Bytecodes::_fast_sgetfield, bc, rbx); 2890 } 2891 __ jmp(Done); 2892 2893 __ bind(notShort); 2894 __ cmpl(flags, ltos); 2895 __ jcc(Assembler::notEqual, notLong); 2896 // ltos 2897 // Generate code as if volatile (x86_32). There just aren't enough registers to 2898 // save that information and this code is faster than the test. 2899 __ access_load_at(T_LONG, IN_HEAP | MO_RELAXED, noreg /* ltos */, field, noreg, noreg); 2900 __ push(ltos); 2901 // Rewrite bytecode to be faster 2902 LP64_ONLY(if (!is_static && rc == may_rewrite) patch_bytecode(Bytecodes::_fast_lgetfield, bc, rbx)); 2903 __ jmp(Done); 2904 2905 __ bind(notLong); 2906 __ cmpl(flags, ftos); 2907 __ jcc(Assembler::notEqual, notFloat); 2908 // ftos 2909 2910 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg); 2911 __ push(ftos); 2912 // Rewrite bytecode to be faster 2913 if (!is_static && rc == may_rewrite) { 2914 patch_bytecode(Bytecodes::_fast_fgetfield, bc, rbx); 2915 } 2916 __ jmp(Done); 2917 2918 __ bind(notFloat); 2919 #ifdef ASSERT 2920 Label notDouble; 2921 __ cmpl(flags, dtos); 2922 __ jcc(Assembler::notEqual, notDouble); 2923 #endif 2924 // dtos 2925 // MO_RELAXED: for the case of volatile field, in fact it adds no extra work for the underlying implementation 2926 __ access_load_at(T_DOUBLE, IN_HEAP | MO_RELAXED, noreg /* dtos */, field, noreg, noreg); 2927 __ push(dtos); 2928 // Rewrite bytecode to be faster 2929 if (!is_static && rc == may_rewrite) { 2930 patch_bytecode(Bytecodes::_fast_dgetfield, bc, rbx); 2931 } 2932 #ifdef ASSERT 2933 __ jmp(Done); 2934 2935 __ bind(notDouble); 2936 __ stop("Bad state"); 2937 #endif 2938 2939 __ bind(Done); 2940 // [jk] not needed currently 2941 // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadLoad | 2942 // Assembler::LoadStore)); 2943 } 2944 2945 void TemplateTable::getfield(int byte_no) { 2946 getfield_or_static(byte_no, false); 2947 } 2948 2949 void TemplateTable::nofast_getfield(int byte_no) { 2950 getfield_or_static(byte_no, false, may_not_rewrite); 2951 } 2952 2953 void TemplateTable::getstatic(int byte_no) { 2954 getfield_or_static(byte_no, true); 2955 } 2956 2957 2958 // The registers cache and index expected to be set before call. 2959 // The function may destroy various registers, just not the cache and index registers. 2960 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) { 2961 2962 const Register robj = LP64_ONLY(c_rarg2) NOT_LP64(rax); 2963 const Register RBX = LP64_ONLY(c_rarg1) NOT_LP64(rbx); 2964 const Register RCX = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 2965 const Register RDX = LP64_ONLY(rscratch1) NOT_LP64(rdx); 2966 2967 ByteSize cp_base_offset = ConstantPoolCache::base_offset(); 2968 2969 if (JvmtiExport::can_post_field_modification()) { 2970 // Check to see if a field modification watch has been set before 2971 // we take the time to call into the VM. 2972 Label L1; 2973 assert_different_registers(cache, index, rax); 2974 __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); 2975 __ testl(rax, rax); 2976 __ jcc(Assembler::zero, L1); 2977 2978 __ get_cache_and_index_at_bcp(robj, RDX, 1); 2979 2980 2981 if (is_static) { 2982 // Life is simple. Null out the object pointer. 2983 __ xorl(RBX, RBX); 2984 2985 } else { 2986 // Life is harder. The stack holds the value on top, followed by 2987 // the object. We don't know the size of the value, though; it 2988 // could be one or two words depending on its type. As a result, 2989 // we must find the type to determine where the object is. 2990 #ifndef _LP64 2991 Label two_word, valsize_known; 2992 #endif 2993 __ movl(RCX, Address(robj, RDX, 2994 Address::times_ptr, 2995 in_bytes(cp_base_offset + 2996 ConstantPoolCacheEntry::flags_offset()))); 2997 NOT_LP64(__ mov(rbx, rsp)); 2998 __ shrl(RCX, ConstantPoolCacheEntry::tos_state_shift); 2999 3000 // Make sure we don't need to mask rcx after the above shift 3001 ConstantPoolCacheEntry::verify_tos_state_shift(); 3002 #ifdef _LP64 3003 __ movptr(c_rarg1, at_tos_p1()); // initially assume a one word jvalue 3004 __ cmpl(c_rarg3, ltos); 3005 __ cmovptr(Assembler::equal, 3006 c_rarg1, at_tos_p2()); // ltos (two word jvalue) 3007 __ cmpl(c_rarg3, dtos); 3008 __ cmovptr(Assembler::equal, 3009 c_rarg1, at_tos_p2()); // dtos (two word jvalue) 3010 #else 3011 __ cmpl(rcx, ltos); 3012 __ jccb(Assembler::equal, two_word); 3013 __ cmpl(rcx, dtos); 3014 __ jccb(Assembler::equal, two_word); 3015 __ addptr(rbx, Interpreter::expr_offset_in_bytes(1)); // one word jvalue (not ltos, dtos) 3016 __ jmpb(valsize_known); 3017 3018 __ bind(two_word); 3019 __ addptr(rbx, Interpreter::expr_offset_in_bytes(2)); // two words jvalue 3020 3021 __ bind(valsize_known); 3022 // setup object pointer 3023 __ movptr(rbx, Address(rbx, 0)); 3024 #endif 3025 } 3026 // cache entry pointer 3027 __ addptr(robj, in_bytes(cp_base_offset)); 3028 __ shll(RDX, LogBytesPerWord); 3029 __ addptr(robj, RDX); 3030 // object (tos) 3031 __ mov(RCX, rsp); 3032 // c_rarg1: object pointer set up above (NULL if static) 3033 // c_rarg2: cache entry pointer 3034 // c_rarg3: jvalue object on the stack 3035 __ call_VM(noreg, 3036 CAST_FROM_FN_PTR(address, 3037 InterpreterRuntime::post_field_modification), 3038 RBX, robj, RCX); 3039 __ get_cache_and_index_at_bcp(cache, index, 1); 3040 __ bind(L1); 3041 } 3042 } 3043 3044 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) { 3045 transition(vtos, vtos); 3046 3047 const Register cache = rcx; 3048 const Register index = rdx; 3049 const Register obj = rcx; 3050 const Register off = rbx; 3051 const Register flags = rax; 3052 3053 resolve_cache_and_index(byte_no, cache, index, sizeof(u2)); 3054 jvmti_post_field_mod(cache, index, is_static); 3055 load_field_cp_cache_entry(obj, cache, index, off, flags, is_static); 3056 3057 // [jk] not needed currently 3058 // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore | 3059 // Assembler::StoreStore)); 3060 3061 Label notVolatile, Done; 3062 __ movl(rdx, flags); 3063 __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift); 3064 __ andl(rdx, 0x1); 3065 3066 // Check for volatile store 3067 __ testl(rdx, rdx); 3068 __ jcc(Assembler::zero, notVolatile); 3069 3070 putfield_or_static_helper(byte_no, is_static, rc, obj, off, flags); 3071 volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad | 3072 Assembler::StoreStore)); 3073 __ jmp(Done); 3074 __ bind(notVolatile); 3075 3076 putfield_or_static_helper(byte_no, is_static, rc, obj, off, flags); 3077 3078 __ bind(Done); 3079 } 3080 3081 void TemplateTable::putfield_or_static_helper(int byte_no, bool is_static, RewriteControl rc, 3082 Register obj, Register off, Register flags) { 3083 3084 // field addresses 3085 const Address field(obj, off, Address::times_1, 0*wordSize); 3086 NOT_LP64( const Address hi(obj, off, Address::times_1, 1*wordSize);) 3087 3088 Label notByte, notBool, notInt, notShort, notChar, 3089 notLong, notFloat, notObj; 3090 Label Done; 3091 3092 const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 3093 3094 __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift); 3095 3096 assert(btos == 0, "change code, btos != 0"); 3097 __ andl(flags, ConstantPoolCacheEntry::tos_state_mask); 3098 __ jcc(Assembler::notZero, notByte); 3099 3100 // btos 3101 { 3102 __ pop(btos); 3103 if (!is_static) pop_and_check_object(obj); 3104 __ access_store_at(T_BYTE, IN_HEAP, field, rax, noreg, noreg, noreg); 3105 if (!is_static && rc == may_rewrite) { 3106 patch_bytecode(Bytecodes::_fast_bputfield, bc, rbx, true, byte_no); 3107 } 3108 __ jmp(Done); 3109 } 3110 3111 __ bind(notByte); 3112 __ cmpl(flags, ztos); 3113 __ jcc(Assembler::notEqual, notBool); 3114 3115 // ztos 3116 { 3117 __ pop(ztos); 3118 if (!is_static) pop_and_check_object(obj); 3119 __ access_store_at(T_BOOLEAN, IN_HEAP, field, rax, noreg, noreg, noreg); 3120 if (!is_static && rc == may_rewrite) { 3121 patch_bytecode(Bytecodes::_fast_zputfield, bc, rbx, true, byte_no); 3122 } 3123 __ jmp(Done); 3124 } 3125 3126 __ bind(notBool); 3127 __ cmpl(flags, atos); 3128 __ jcc(Assembler::notEqual, notObj); 3129 3130 // atos 3131 { 3132 __ pop(atos); 3133 if (!is_static) pop_and_check_object(obj); 3134 // Store into the field 3135 do_oop_store(_masm, field, rax); 3136 if (!is_static && rc == may_rewrite) { 3137 patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx, true, byte_no); 3138 } 3139 __ jmp(Done); 3140 } 3141 3142 __ bind(notObj); 3143 __ cmpl(flags, itos); 3144 __ jcc(Assembler::notEqual, notInt); 3145 3146 // itos 3147 { 3148 __ pop(itos); 3149 if (!is_static) pop_and_check_object(obj); 3150 __ access_store_at(T_INT, IN_HEAP, field, rax, noreg, noreg, noreg); 3151 if (!is_static && rc == may_rewrite) { 3152 patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx, true, byte_no); 3153 } 3154 __ jmp(Done); 3155 } 3156 3157 __ bind(notInt); 3158 __ cmpl(flags, ctos); 3159 __ jcc(Assembler::notEqual, notChar); 3160 3161 // ctos 3162 { 3163 __ pop(ctos); 3164 if (!is_static) pop_and_check_object(obj); 3165 __ access_store_at(T_CHAR, IN_HEAP, field, rax, noreg, noreg, noreg); 3166 if (!is_static && rc == may_rewrite) { 3167 patch_bytecode(Bytecodes::_fast_cputfield, bc, rbx, true, byte_no); 3168 } 3169 __ jmp(Done); 3170 } 3171 3172 __ bind(notChar); 3173 __ cmpl(flags, stos); 3174 __ jcc(Assembler::notEqual, notShort); 3175 3176 // stos 3177 { 3178 __ pop(stos); 3179 if (!is_static) pop_and_check_object(obj); 3180 __ access_store_at(T_SHORT, IN_HEAP, field, rax, noreg, noreg, noreg); 3181 if (!is_static && rc == may_rewrite) { 3182 patch_bytecode(Bytecodes::_fast_sputfield, bc, rbx, true, byte_no); 3183 } 3184 __ jmp(Done); 3185 } 3186 3187 __ bind(notShort); 3188 __ cmpl(flags, ltos); 3189 __ jcc(Assembler::notEqual, notLong); 3190 3191 // ltos 3192 { 3193 __ pop(ltos); 3194 if (!is_static) pop_and_check_object(obj); 3195 // MO_RELAXED: generate atomic store for the case of volatile field (important for x86_32) 3196 __ access_store_at(T_LONG, IN_HEAP | MO_RELAXED, field, noreg /* ltos*/, noreg, noreg, noreg); 3197 #ifdef _LP64 3198 if (!is_static && rc == may_rewrite) { 3199 patch_bytecode(Bytecodes::_fast_lputfield, bc, rbx, true, byte_no); 3200 } 3201 #endif // _LP64 3202 __ jmp(Done); 3203 } 3204 3205 __ bind(notLong); 3206 __ cmpl(flags, ftos); 3207 __ jcc(Assembler::notEqual, notFloat); 3208 3209 // ftos 3210 { 3211 __ pop(ftos); 3212 if (!is_static) pop_and_check_object(obj); 3213 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos */, noreg, noreg, noreg); 3214 if (!is_static && rc == may_rewrite) { 3215 patch_bytecode(Bytecodes::_fast_fputfield, bc, rbx, true, byte_no); 3216 } 3217 __ jmp(Done); 3218 } 3219 3220 __ bind(notFloat); 3221 #ifdef ASSERT 3222 Label notDouble; 3223 __ cmpl(flags, dtos); 3224 __ jcc(Assembler::notEqual, notDouble); 3225 #endif 3226 3227 // dtos 3228 { 3229 __ pop(dtos); 3230 if (!is_static) pop_and_check_object(obj); 3231 // MO_RELAXED: for the case of volatile field, in fact it adds no extra work for the underlying implementation 3232 __ access_store_at(T_DOUBLE, IN_HEAP | MO_RELAXED, field, noreg /* dtos */, noreg, noreg, noreg); 3233 if (!is_static && rc == may_rewrite) { 3234 patch_bytecode(Bytecodes::_fast_dputfield, bc, rbx, true, byte_no); 3235 } 3236 } 3237 3238 #ifdef ASSERT 3239 __ jmp(Done); 3240 3241 __ bind(notDouble); 3242 __ stop("Bad state"); 3243 #endif 3244 3245 __ bind(Done); 3246 } 3247 3248 void TemplateTable::putfield(int byte_no) { 3249 putfield_or_static(byte_no, false); 3250 } 3251 3252 void TemplateTable::nofast_putfield(int byte_no) { 3253 putfield_or_static(byte_no, false, may_not_rewrite); 3254 } 3255 3256 void TemplateTable::putstatic(int byte_no) { 3257 putfield_or_static(byte_no, true); 3258 } 3259 3260 void TemplateTable::jvmti_post_fast_field_mod() { 3261 3262 const Register scratch = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 3263 3264 if (JvmtiExport::can_post_field_modification()) { 3265 // Check to see if a field modification watch has been set before 3266 // we take the time to call into the VM. 3267 Label L2; 3268 __ mov32(scratch, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); 3269 __ testl(scratch, scratch); 3270 __ jcc(Assembler::zero, L2); 3271 __ pop_ptr(rbx); // copy the object pointer from tos 3272 __ verify_oop(rbx); 3273 __ push_ptr(rbx); // put the object pointer back on tos 3274 // Save tos values before call_VM() clobbers them. Since we have 3275 // to do it for every data type, we use the saved values as the 3276 // jvalue object. 3277 switch (bytecode()) { // load values into the jvalue object 3278 case Bytecodes::_fast_aputfield: __ push_ptr(rax); break; 3279 case Bytecodes::_fast_bputfield: // fall through 3280 case Bytecodes::_fast_zputfield: // fall through 3281 case Bytecodes::_fast_sputfield: // fall through 3282 case Bytecodes::_fast_cputfield: // fall through 3283 case Bytecodes::_fast_iputfield: __ push_i(rax); break; 3284 case Bytecodes::_fast_dputfield: __ push(dtos); break; 3285 case Bytecodes::_fast_fputfield: __ push(ftos); break; 3286 case Bytecodes::_fast_lputfield: __ push_l(rax); break; 3287 3288 default: 3289 ShouldNotReachHere(); 3290 } 3291 __ mov(scratch, rsp); // points to jvalue on the stack 3292 // access constant pool cache entry 3293 LP64_ONLY(__ get_cache_entry_pointer_at_bcp(c_rarg2, rax, 1)); 3294 NOT_LP64(__ get_cache_entry_pointer_at_bcp(rax, rdx, 1)); 3295 __ verify_oop(rbx); 3296 // rbx: object pointer copied above 3297 // c_rarg2: cache entry pointer 3298 // c_rarg3: jvalue object on the stack 3299 LP64_ONLY(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, c_rarg2, c_rarg3)); 3300 NOT_LP64(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, rax, rcx)); 3301 3302 switch (bytecode()) { // restore tos values 3303 case Bytecodes::_fast_aputfield: __ pop_ptr(rax); break; 3304 case Bytecodes::_fast_bputfield: // fall through 3305 case Bytecodes::_fast_zputfield: // fall through 3306 case Bytecodes::_fast_sputfield: // fall through 3307 case Bytecodes::_fast_cputfield: // fall through 3308 case Bytecodes::_fast_iputfield: __ pop_i(rax); break; 3309 case Bytecodes::_fast_dputfield: __ pop(dtos); break; 3310 case Bytecodes::_fast_fputfield: __ pop(ftos); break; 3311 case Bytecodes::_fast_lputfield: __ pop_l(rax); break; 3312 default: break; 3313 } 3314 __ bind(L2); 3315 } 3316 } 3317 3318 void TemplateTable::fast_storefield(TosState state) { 3319 transition(state, vtos); 3320 3321 ByteSize base = ConstantPoolCache::base_offset(); 3322 3323 jvmti_post_fast_field_mod(); 3324 3325 // access constant pool cache 3326 __ get_cache_and_index_at_bcp(rcx, rbx, 1); 3327 3328 // test for volatile with rdx but rdx is tos register for lputfield. 3329 __ movl(rdx, Address(rcx, rbx, Address::times_ptr, 3330 in_bytes(base + 3331 ConstantPoolCacheEntry::flags_offset()))); 3332 3333 // replace index with field offset from cache entry 3334 __ movptr(rbx, Address(rcx, rbx, Address::times_ptr, 3335 in_bytes(base + ConstantPoolCacheEntry::f2_offset()))); 3336 3337 // [jk] not needed currently 3338 // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore | 3339 // Assembler::StoreStore)); 3340 3341 Label notVolatile, Done; 3342 __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift); 3343 __ andl(rdx, 0x1); 3344 3345 // Get object from stack 3346 pop_and_check_object(rcx); 3347 3348 // field address 3349 const Address field(rcx, rbx, Address::times_1); 3350 3351 // Check for volatile store 3352 __ testl(rdx, rdx); 3353 __ jcc(Assembler::zero, notVolatile); 3354 3355 fast_storefield_helper(field, rax); 3356 volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad | 3357 Assembler::StoreStore)); 3358 __ jmp(Done); 3359 __ bind(notVolatile); 3360 3361 fast_storefield_helper(field, rax); 3362 3363 __ bind(Done); 3364 } 3365 3366 void TemplateTable::fast_storefield_helper(Address field, Register rax) { 3367 3368 // access field 3369 switch (bytecode()) { 3370 case Bytecodes::_fast_aputfield: 3371 do_oop_store(_masm, field, rax); 3372 break; 3373 case Bytecodes::_fast_lputfield: 3374 #ifdef _LP64 3375 __ access_store_at(T_LONG, IN_HEAP, field, noreg /* ltos */, noreg, noreg, noreg); 3376 #else 3377 __ stop("should not be rewritten"); 3378 #endif 3379 break; 3380 case Bytecodes::_fast_iputfield: 3381 __ access_store_at(T_INT, IN_HEAP, field, rax, noreg, noreg, noreg); 3382 break; 3383 case Bytecodes::_fast_zputfield: 3384 __ access_store_at(T_BOOLEAN, IN_HEAP, field, rax, noreg, noreg, noreg); 3385 break; 3386 case Bytecodes::_fast_bputfield: 3387 __ access_store_at(T_BYTE, IN_HEAP, field, rax, noreg, noreg, noreg); 3388 break; 3389 case Bytecodes::_fast_sputfield: 3390 __ access_store_at(T_SHORT, IN_HEAP, field, rax, noreg, noreg, noreg); 3391 break; 3392 case Bytecodes::_fast_cputfield: 3393 __ access_store_at(T_CHAR, IN_HEAP, field, rax, noreg, noreg, noreg); 3394 break; 3395 case Bytecodes::_fast_fputfield: 3396 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos*/, noreg, noreg, noreg); 3397 break; 3398 case Bytecodes::_fast_dputfield: 3399 __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos*/, noreg, noreg, noreg); 3400 break; 3401 default: 3402 ShouldNotReachHere(); 3403 } 3404 } 3405 3406 void TemplateTable::fast_accessfield(TosState state) { 3407 transition(atos, state); 3408 3409 // Do the JVMTI work here to avoid disturbing the register state below 3410 if (JvmtiExport::can_post_field_access()) { 3411 // Check to see if a field access watch has been set before we 3412 // take the time to call into the VM. 3413 Label L1; 3414 __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); 3415 __ testl(rcx, rcx); 3416 __ jcc(Assembler::zero, L1); 3417 // access constant pool cache entry 3418 LP64_ONLY(__ get_cache_entry_pointer_at_bcp(c_rarg2, rcx, 1)); 3419 NOT_LP64(__ get_cache_entry_pointer_at_bcp(rcx, rdx, 1)); 3420 __ verify_oop(rax); 3421 __ push_ptr(rax); // save object pointer before call_VM() clobbers it 3422 LP64_ONLY(__ mov(c_rarg1, rax)); 3423 // c_rarg1: object pointer copied above 3424 // c_rarg2: cache entry pointer 3425 LP64_ONLY(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), c_rarg1, c_rarg2)); 3426 NOT_LP64(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), rax, rcx)); 3427 __ pop_ptr(rax); // restore object pointer 3428 __ bind(L1); 3429 } 3430 3431 // access constant pool cache 3432 __ get_cache_and_index_at_bcp(rcx, rbx, 1); 3433 // replace index with field offset from cache entry 3434 // [jk] not needed currently 3435 // __ movl(rdx, Address(rcx, rbx, Address::times_8, 3436 // in_bytes(ConstantPoolCache::base_offset() + 3437 // ConstantPoolCacheEntry::flags_offset()))); 3438 // __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift); 3439 // __ andl(rdx, 0x1); 3440 // 3441 __ movptr(rbx, Address(rcx, rbx, Address::times_ptr, 3442 in_bytes(ConstantPoolCache::base_offset() + 3443 ConstantPoolCacheEntry::f2_offset()))); 3444 3445 // rax: object 3446 __ verify_oop(rax); 3447 __ null_check(rax); 3448 Address field(rax, rbx, Address::times_1); 3449 3450 // access field 3451 switch (bytecode()) { 3452 case Bytecodes::_fast_agetfield: 3453 do_oop_load(_masm, field, rax); 3454 __ verify_oop(rax); 3455 break; 3456 case Bytecodes::_fast_lgetfield: 3457 #ifdef _LP64 3458 __ access_load_at(T_LONG, IN_HEAP, noreg /* ltos */, field, noreg, noreg); 3459 #else 3460 __ stop("should not be rewritten"); 3461 #endif 3462 break; 3463 case Bytecodes::_fast_igetfield: 3464 __ access_load_at(T_INT, IN_HEAP, rax, field, noreg, noreg); 3465 break; 3466 case Bytecodes::_fast_bgetfield: 3467 __ access_load_at(T_BYTE, IN_HEAP, rax, field, noreg, noreg); 3468 break; 3469 case Bytecodes::_fast_sgetfield: 3470 __ access_load_at(T_SHORT, IN_HEAP, rax, field, noreg, noreg); 3471 break; 3472 case Bytecodes::_fast_cgetfield: 3473 __ access_load_at(T_CHAR, IN_HEAP, rax, field, noreg, noreg); 3474 break; 3475 case Bytecodes::_fast_fgetfield: 3476 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg); 3477 break; 3478 case Bytecodes::_fast_dgetfield: 3479 __ access_load_at(T_DOUBLE, IN_HEAP, noreg /* dtos */, field, noreg, noreg); 3480 break; 3481 default: 3482 ShouldNotReachHere(); 3483 } 3484 // [jk] not needed currently 3485 // Label notVolatile; 3486 // __ testl(rdx, rdx); 3487 // __ jcc(Assembler::zero, notVolatile); 3488 // __ membar(Assembler::LoadLoad); 3489 // __ bind(notVolatile); 3490 } 3491 3492 void TemplateTable::fast_xaccess(TosState state) { 3493 transition(vtos, state); 3494 3495 // get receiver 3496 __ movptr(rax, aaddress(0)); 3497 // access constant pool cache 3498 __ get_cache_and_index_at_bcp(rcx, rdx, 2); 3499 __ movptr(rbx, 3500 Address(rcx, rdx, Address::times_ptr, 3501 in_bytes(ConstantPoolCache::base_offset() + 3502 ConstantPoolCacheEntry::f2_offset()))); 3503 // make sure exception is reported in correct bcp range (getfield is 3504 // next instruction) 3505 __ increment(rbcp); 3506 __ null_check(rax); 3507 const Address field = Address(rax, rbx, Address::times_1, 0*wordSize); 3508 switch (state) { 3509 case itos: 3510 __ access_load_at(T_INT, IN_HEAP, rax, field, noreg, noreg); 3511 break; 3512 case atos: 3513 do_oop_load(_masm, field, rax); 3514 __ verify_oop(rax); 3515 break; 3516 case ftos: 3517 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg); 3518 break; 3519 default: 3520 ShouldNotReachHere(); 3521 } 3522 3523 // [jk] not needed currently 3524 // Label notVolatile; 3525 // __ movl(rdx, Address(rcx, rdx, Address::times_8, 3526 // in_bytes(ConstantPoolCache::base_offset() + 3527 // ConstantPoolCacheEntry::flags_offset()))); 3528 // __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift); 3529 // __ testl(rdx, 0x1); 3530 // __ jcc(Assembler::zero, notVolatile); 3531 // __ membar(Assembler::LoadLoad); 3532 // __ bind(notVolatile); 3533 3534 __ decrement(rbcp); 3535 } 3536 3537 //----------------------------------------------------------------------------- 3538 // Calls 3539 3540 void TemplateTable::prepare_invoke(int byte_no, 3541 Register method, // linked method (or i-klass) 3542 Register index, // itable index, MethodType, etc. 3543 Register recv, // if caller wants to see it 3544 Register flags // if caller wants to test it 3545 ) { 3546 // determine flags 3547 const Bytecodes::Code code = bytecode(); 3548 const bool is_invokeinterface = code == Bytecodes::_invokeinterface; 3549 const bool is_invokedynamic = code == Bytecodes::_invokedynamic; 3550 const bool is_invokehandle = code == Bytecodes::_invokehandle; 3551 const bool is_invokevirtual = code == Bytecodes::_invokevirtual; 3552 const bool is_invokespecial = code == Bytecodes::_invokespecial; 3553 const bool load_receiver = (recv != noreg); 3554 const bool save_flags = (flags != noreg); 3555 assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), ""); 3556 assert(save_flags == (is_invokeinterface || is_invokevirtual), "need flags for vfinal"); 3557 assert(flags == noreg || flags == rdx, ""); 3558 assert(recv == noreg || recv == rcx, ""); 3559 3560 // setup registers & access constant pool cache 3561 if (recv == noreg) recv = rcx; 3562 if (flags == noreg) flags = rdx; 3563 assert_different_registers(method, index, recv, flags); 3564 3565 // save 'interpreter return address' 3566 __ save_bcp(); 3567 3568 load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic); 3569 3570 // maybe push appendix to arguments (just before return address) 3571 if (is_invokedynamic || is_invokehandle) { 3572 Label L_no_push; 3573 __ testl(flags, (1 << ConstantPoolCacheEntry::has_appendix_shift)); 3574 __ jcc(Assembler::zero, L_no_push); 3575 // Push the appendix as a trailing parameter. 3576 // This must be done before we get the receiver, 3577 // since the parameter_size includes it. 3578 __ push(rbx); 3579 __ mov(rbx, index); 3580 __ load_resolved_reference_at_index(index, rbx); 3581 __ pop(rbx); 3582 __ push(index); // push appendix (MethodType, CallSite, etc.) 3583 __ bind(L_no_push); 3584 } 3585 3586 // load receiver if needed (after appendix is pushed so parameter size is correct) 3587 // Note: no return address pushed yet 3588 if (load_receiver) { 3589 __ movl(recv, flags); 3590 __ andl(recv, ConstantPoolCacheEntry::parameter_size_mask); 3591 const int no_return_pc_pushed_yet = -1; // argument slot correction before we push return address 3592 const int receiver_is_at_end = -1; // back off one slot to get receiver 3593 Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end); 3594 __ movptr(recv, recv_addr); 3595 __ verify_oop(recv); 3596 } 3597 3598 if (save_flags) { 3599 __ movl(rbcp, flags); 3600 } 3601 3602 // compute return type 3603 __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift); 3604 // Make sure we don't need to mask flags after the above shift 3605 ConstantPoolCacheEntry::verify_tos_state_shift(); 3606 // load return address 3607 { 3608 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code); 3609 ExternalAddress table(table_addr); 3610 LP64_ONLY(__ lea(rscratch1, table)); 3611 LP64_ONLY(__ movptr(flags, Address(rscratch1, flags, Address::times_ptr))); 3612 NOT_LP64(__ movptr(flags, ArrayAddress(table, Address(noreg, flags, Address::times_ptr)))); 3613 } 3614 3615 // push return address 3616 __ push(flags); 3617 3618 // Restore flags value from the constant pool cache, and restore rsi 3619 // for later null checks. r13 is the bytecode pointer 3620 if (save_flags) { 3621 __ movl(flags, rbcp); 3622 __ restore_bcp(); 3623 } 3624 } 3625 3626 void TemplateTable::invokevirtual_helper(Register index, 3627 Register recv, 3628 Register flags) { 3629 // Uses temporary registers rax, rdx 3630 assert_different_registers(index, recv, rax, rdx); 3631 assert(index == rbx, ""); 3632 assert(recv == rcx, ""); 3633 3634 // Test for an invoke of a final method 3635 Label notFinal; 3636 __ movl(rax, flags); 3637 __ andl(rax, (1 << ConstantPoolCacheEntry::is_vfinal_shift)); 3638 __ jcc(Assembler::zero, notFinal); 3639 3640 const Register method = index; // method must be rbx 3641 assert(method == rbx, 3642 "Method* must be rbx for interpreter calling convention"); 3643 3644 // do the call - the index is actually the method to call 3645 // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method* 3646 3647 // It's final, need a null check here! 3648 __ null_check(recv); 3649 3650 // profile this call 3651 __ profile_final_call(rax); 3652 __ profile_arguments_type(rax, method, rbcp, true); 3653 3654 __ jump_from_interpreted(method, rax); 3655 3656 __ bind(notFinal); 3657 3658 // get receiver klass 3659 Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg); 3660 __ load_klass(rax, recv, tmp_load_klass, true); 3661 3662 // profile this call 3663 __ profile_virtual_call(rax, rlocals, rdx); 3664 // get target Method* & entry point 3665 __ lookup_virtual_method(rax, index, method); 3666 3667 __ profile_arguments_type(rdx, method, rbcp, true); 3668 __ jump_from_interpreted(method, rdx); 3669 } 3670 3671 void TemplateTable::invokevirtual(int byte_no) { 3672 transition(vtos, vtos); 3673 assert(byte_no == f2_byte, "use this argument"); 3674 prepare_invoke(byte_no, 3675 rbx, // method or vtable index 3676 noreg, // unused itable index 3677 rcx, rdx); // recv, flags 3678 3679 // rbx: index 3680 // rcx: receiver 3681 // rdx: flags 3682 3683 invokevirtual_helper(rbx, rcx, rdx); 3684 } 3685 3686 void TemplateTable::invokespecial(int byte_no) { 3687 transition(vtos, vtos); 3688 assert(byte_no == f1_byte, "use this argument"); 3689 prepare_invoke(byte_no, rbx, noreg, // get f1 Method* 3690 rcx); // get receiver also for null check 3691 __ verify_oop(rcx); 3692 __ null_check(rcx); 3693 // do the call 3694 __ profile_call(rax); 3695 __ profile_arguments_type(rax, rbx, rbcp, false); 3696 __ jump_from_interpreted(rbx, rax); 3697 } 3698 3699 void TemplateTable::invokestatic(int byte_no) { 3700 transition(vtos, vtos); 3701 assert(byte_no == f1_byte, "use this argument"); 3702 prepare_invoke(byte_no, rbx); // get f1 Method* 3703 // do the call 3704 __ profile_call(rax); 3705 __ profile_arguments_type(rax, rbx, rbcp, false); 3706 __ jump_from_interpreted(rbx, rax); 3707 } 3708 3709 3710 void TemplateTable::fast_invokevfinal(int byte_no) { 3711 transition(vtos, vtos); 3712 assert(byte_no == f2_byte, "use this argument"); 3713 __ stop("fast_invokevfinal not used on x86"); 3714 } 3715 3716 3717 void TemplateTable::invokeinterface(int byte_no) { 3718 transition(vtos, vtos); 3719 assert(byte_no == f1_byte, "use this argument"); 3720 prepare_invoke(byte_no, rax, rbx, // get f1 Klass*, f2 Method* 3721 rcx, rdx); // recv, flags 3722 3723 // rax: reference klass (from f1) if interface method 3724 // rbx: method (from f2) 3725 // rcx: receiver 3726 // rdx: flags 3727 3728 // First check for Object case, then private interface method, 3729 // then regular interface method. 3730 3731 // Special case of invokeinterface called for virtual method of 3732 // java.lang.Object. See cpCache.cpp for details. 3733 Label notObjectMethod; 3734 __ movl(rlocals, rdx); 3735 __ andl(rlocals, (1 << ConstantPoolCacheEntry::is_forced_virtual_shift)); 3736 __ jcc(Assembler::zero, notObjectMethod); 3737 invokevirtual_helper(rbx, rcx, rdx); 3738 // no return from above 3739 __ bind(notObjectMethod); 3740 3741 Label no_such_interface; // for receiver subtype check 3742 Register recvKlass; // used for exception processing 3743 3744 // Check for private method invocation - indicated by vfinal 3745 Label notVFinal; 3746 __ movl(rlocals, rdx); 3747 __ andl(rlocals, (1 << ConstantPoolCacheEntry::is_vfinal_shift)); 3748 __ jcc(Assembler::zero, notVFinal); 3749 3750 // Get receiver klass into rlocals - also a null check 3751 Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg); 3752 __ load_klass(rlocals, rcx, tmp_load_klass, true); 3753 3754 Label subtype; 3755 __ check_klass_subtype(rlocals, rax, rbcp, subtype); 3756 // If we get here the typecheck failed 3757 recvKlass = rdx; 3758 __ mov(recvKlass, rlocals); // shuffle receiver class for exception use 3759 __ jmp(no_such_interface); 3760 3761 __ bind(subtype); 3762 3763 // do the call - rbx is actually the method to call 3764 3765 __ profile_final_call(rdx); 3766 __ profile_arguments_type(rdx, rbx, rbcp, true); 3767 3768 __ jump_from_interpreted(rbx, rdx); 3769 // no return from above 3770 __ bind(notVFinal); 3771 3772 // Get receiver klass into rdx - also a null check 3773 __ restore_locals(); // restore r14 3774 __ load_klass(rdx, rcx, tmp_load_klass, true); 3775 3776 Label no_such_method; 3777 3778 // Preserve method for throw_AbstractMethodErrorVerbose. 3779 __ mov(rcx, rbx); 3780 // Receiver subtype check against REFC. 3781 // Superklass in rax. Subklass in rdx. Blows rcx, rdi. 3782 __ lookup_interface_method(// inputs: rec. class, interface, itable index 3783 rdx, rax, noreg, 3784 // outputs: scan temp. reg, scan temp. reg 3785 rbcp, rlocals, 3786 no_such_interface, 3787 /*return_method=*/false); 3788 3789 // profile this call 3790 __ restore_bcp(); // rbcp was destroyed by receiver type check 3791 __ profile_virtual_call(rdx, rbcp, rlocals); 3792 3793 // Get declaring interface class from method, and itable index 3794 __ load_method_holder(rax, rbx); 3795 __ movl(rbx, Address(rbx, Method::itable_index_offset())); 3796 __ subl(rbx, Method::itable_index_max); 3797 __ negl(rbx); 3798 3799 // Preserve recvKlass for throw_AbstractMethodErrorVerbose. 3800 __ mov(rlocals, rdx); 3801 __ lookup_interface_method(// inputs: rec. class, interface, itable index 3802 rlocals, rax, rbx, 3803 // outputs: method, scan temp. reg 3804 rbx, rbcp, 3805 no_such_interface); 3806 3807 // rbx: Method* to call 3808 // rcx: receiver 3809 // Check for abstract method error 3810 // Note: This should be done more efficiently via a throw_abstract_method_error 3811 // interpreter entry point and a conditional jump to it in case of a null 3812 // method. 3813 __ testptr(rbx, rbx); 3814 __ jcc(Assembler::zero, no_such_method); 3815 3816 __ profile_arguments_type(rdx, rbx, rbcp, true); 3817 3818 // do the call 3819 // rcx: receiver 3820 // rbx,: Method* 3821 __ jump_from_interpreted(rbx, rdx); 3822 __ should_not_reach_here(); 3823 3824 // exception handling code follows... 3825 // note: must restore interpreter registers to canonical 3826 // state for exception handling to work correctly! 3827 3828 __ bind(no_such_method); 3829 // throw exception 3830 __ pop(rbx); // pop return address (pushed by prepare_invoke) 3831 __ restore_bcp(); // rbcp must be correct for exception handler (was destroyed) 3832 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3833 // Pass arguments for generating a verbose error message. 3834 #ifdef _LP64 3835 recvKlass = c_rarg1; 3836 Register method = c_rarg2; 3837 if (recvKlass != rdx) { __ movq(recvKlass, rdx); } 3838 if (method != rcx) { __ movq(method, rcx); } 3839 #else 3840 recvKlass = rdx; 3841 Register method = rcx; 3842 #endif 3843 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodErrorVerbose), 3844 recvKlass, method); 3845 // The call_VM checks for exception, so we should never return here. 3846 __ should_not_reach_here(); 3847 3848 __ bind(no_such_interface); 3849 // throw exception 3850 __ pop(rbx); // pop return address (pushed by prepare_invoke) 3851 __ restore_bcp(); // rbcp must be correct for exception handler (was destroyed) 3852 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3853 // Pass arguments for generating a verbose error message. 3854 LP64_ONLY( if (recvKlass != rdx) { __ movq(recvKlass, rdx); } ) 3855 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose), 3856 recvKlass, rax); 3857 // the call_VM checks for exception, so we should never return here. 3858 __ should_not_reach_here(); 3859 } 3860 3861 void TemplateTable::invokehandle(int byte_no) { 3862 transition(vtos, vtos); 3863 assert(byte_no == f1_byte, "use this argument"); 3864 const Register rbx_method = rbx; 3865 const Register rax_mtype = rax; 3866 const Register rcx_recv = rcx; 3867 const Register rdx_flags = rdx; 3868 3869 prepare_invoke(byte_no, rbx_method, rax_mtype, rcx_recv); 3870 __ verify_method_ptr(rbx_method); 3871 __ verify_oop(rcx_recv); 3872 __ null_check(rcx_recv); 3873 3874 // rax: MethodType object (from cpool->resolved_references[f1], if necessary) 3875 // rbx: MH.invokeExact_MT method (from f2) 3876 3877 // Note: rax_mtype is already pushed (if necessary) by prepare_invoke 3878 3879 // FIXME: profile the LambdaForm also 3880 __ profile_final_call(rax); 3881 __ profile_arguments_type(rdx, rbx_method, rbcp, true); 3882 3883 __ jump_from_interpreted(rbx_method, rdx); 3884 } 3885 3886 void TemplateTable::invokedynamic(int byte_no) { 3887 transition(vtos, vtos); 3888 assert(byte_no == f1_byte, "use this argument"); 3889 3890 const Register rbx_method = rbx; 3891 const Register rax_callsite = rax; 3892 3893 prepare_invoke(byte_no, rbx_method, rax_callsite); 3894 3895 // rax: CallSite object (from cpool->resolved_references[f1]) 3896 // rbx: MH.linkToCallSite method (from f2) 3897 3898 // Note: rax_callsite is already pushed by prepare_invoke 3899 3900 // %%% should make a type profile for any invokedynamic that takes a ref argument 3901 // profile this call 3902 __ profile_call(rbcp); 3903 __ profile_arguments_type(rdx, rbx_method, rbcp, false); 3904 3905 __ verify_oop(rax_callsite); 3906 3907 __ jump_from_interpreted(rbx_method, rdx); 3908 } 3909 3910 //----------------------------------------------------------------------------- 3911 // Allocation 3912 3913 void TemplateTable::_new() { 3914 transition(vtos, atos); 3915 __ get_unsigned_2_byte_index_at_bcp(rdx, 1); 3916 Label slow_case; 3917 Label slow_case_no_pop; 3918 Label done; 3919 Label initialize_header; 3920 Label initialize_object; // including clearing the fields 3921 3922 __ get_cpool_and_tags(rcx, rax); 3923 3924 // Make sure the class we're about to instantiate has been resolved. 3925 // This is done before loading InstanceKlass to be consistent with the order 3926 // how Constant Pool is updated (see ConstantPool::klass_at_put) 3927 const int tags_offset = Array<u1>::base_offset_in_bytes(); 3928 __ cmpb(Address(rax, rdx, Address::times_1, tags_offset), JVM_CONSTANT_Class); 3929 __ jcc(Assembler::notEqual, slow_case_no_pop); 3930 3931 // get InstanceKlass 3932 __ load_resolved_klass_at_index(rcx, rcx, rdx); 3933 __ push(rcx); // save the contexts of klass for initializing the header 3934 3935 // make sure klass is initialized & doesn't have finalizer 3936 // make sure klass is fully initialized 3937 __ cmpb(Address(rcx, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized); 3938 __ jcc(Assembler::notEqual, slow_case); 3939 3940 // get instance_size in InstanceKlass (scaled to a count of bytes) 3941 __ movl(rdx, Address(rcx, Klass::layout_helper_offset())); 3942 // test to see if it has a finalizer or is malformed in some way 3943 __ testl(rdx, Klass::_lh_instance_slow_path_bit); 3944 __ jcc(Assembler::notZero, slow_case); 3945 3946 // Allocate the instance: 3947 // If TLAB is enabled: 3948 // Try to allocate in the TLAB. 3949 // If fails, go to the slow path. 3950 // Else If inline contiguous allocations are enabled: 3951 // Try to allocate in eden. 3952 // If fails due to heap end, go to slow path. 3953 // 3954 // If TLAB is enabled OR inline contiguous is enabled: 3955 // Initialize the allocation. 3956 // Exit. 3957 // 3958 // Go to slow path. 3959 3960 const bool allow_shared_alloc = 3961 Universe::heap()->supports_inline_contig_alloc(); 3962 3963 const Register thread = LP64_ONLY(r15_thread) NOT_LP64(rcx); 3964 #ifndef _LP64 3965 if (UseTLAB || allow_shared_alloc) { 3966 __ get_thread(thread); 3967 } 3968 #endif // _LP64 3969 3970 if (UseTLAB) { 3971 __ tlab_allocate(thread, rax, rdx, 0, rcx, rbx, slow_case); 3972 if (ZeroTLAB) { 3973 // the fields have been already cleared 3974 __ jmp(initialize_header); 3975 } else { 3976 // initialize both the header and fields 3977 __ jmp(initialize_object); 3978 } 3979 } else { 3980 // Allocation in the shared Eden, if allowed. 3981 // 3982 // rdx: instance size in bytes 3983 __ eden_allocate(thread, rax, rdx, 0, rbx, slow_case); 3984 } 3985 3986 // If UseTLAB or allow_shared_alloc are true, the object is created above and 3987 // there is an initialize need. Otherwise, skip and go to the slow path. 3988 if (UseTLAB || allow_shared_alloc) { 3989 // The object is initialized before the header. If the object size is 3990 // zero, go directly to the header initialization. 3991 __ bind(initialize_object); 3992 __ decrement(rdx, sizeof(oopDesc)); 3993 __ jcc(Assembler::zero, initialize_header); 3994 3995 // Initialize topmost object field, divide rdx by 8, check if odd and 3996 // test if zero. 3997 __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code) 3998 __ shrl(rdx, LogBytesPerLong); // divide by 2*oopSize and set carry flag if odd 3999 4000 // rdx must have been multiple of 8 4001 #ifdef ASSERT 4002 // make sure rdx was multiple of 8 4003 Label L; 4004 // Ignore partial flag stall after shrl() since it is debug VM 4005 __ jcc(Assembler::carryClear, L); 4006 __ stop("object size is not multiple of 2 - adjust this code"); 4007 __ bind(L); 4008 // rdx must be > 0, no extra check needed here 4009 #endif 4010 4011 // initialize remaining object fields: rdx was a multiple of 8 4012 { Label loop; 4013 __ bind(loop); 4014 __ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 1*oopSize), rcx); 4015 NOT_LP64(__ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 2*oopSize), rcx)); 4016 __ decrement(rdx); 4017 __ jcc(Assembler::notZero, loop); 4018 } 4019 4020 // initialize object header only. 4021 __ bind(initialize_header); 4022 __ pop(rcx); // get saved klass back in the register. 4023 __ movptr(rbx, Address(rcx, Klass::prototype_header_offset())); 4024 __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()), rbx); 4025 #ifndef _LP64 4026 __ store_klass(rax, rcx); // klass 4027 #endif 4028 4029 { 4030 SkipIfEqual skip_if(_masm, &DTraceAllocProbes, 0); 4031 // Trigger dtrace event for fastpath 4032 __ push(atos); 4033 __ call_VM_leaf( 4034 CAST_FROM_FN_PTR(address, static_cast<int (*)(oopDesc*)>(SharedRuntime::dtrace_object_alloc)), rax); 4035 __ pop(atos); 4036 } 4037 4038 __ jmp(done); 4039 } 4040 4041 // slow case 4042 __ bind(slow_case); 4043 __ pop(rcx); // restore stack pointer to what it was when we came in. 4044 __ bind(slow_case_no_pop); 4045 4046 Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rax); 4047 Register rarg2 = LP64_ONLY(c_rarg2) NOT_LP64(rdx); 4048 4049 __ get_constant_pool(rarg1); 4050 __ get_unsigned_2_byte_index_at_bcp(rarg2, 1); 4051 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), rarg1, rarg2); 4052 __ verify_oop(rax); 4053 4054 // continue 4055 __ bind(done); 4056 } 4057 4058 void TemplateTable::newarray() { 4059 transition(itos, atos); 4060 Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rdx); 4061 __ load_unsigned_byte(rarg1, at_bcp(1)); 4062 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), 4063 rarg1, rax); 4064 } 4065 4066 void TemplateTable::anewarray() { 4067 transition(itos, atos); 4068 4069 Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rcx); 4070 Register rarg2 = LP64_ONLY(c_rarg2) NOT_LP64(rdx); 4071 4072 __ get_unsigned_2_byte_index_at_bcp(rarg2, 1); 4073 __ get_constant_pool(rarg1); 4074 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), 4075 rarg1, rarg2, rax); 4076 } 4077 4078 void TemplateTable::arraylength() { 4079 transition(atos, itos); 4080 __ null_check(rax, arrayOopDesc::length_offset_in_bytes()); 4081 __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes())); 4082 } 4083 4084 void TemplateTable::checkcast() { 4085 transition(atos, atos); 4086 Label done, is_null, ok_is_subtype, quicked, resolved; 4087 __ testptr(rax, rax); // object is in rax 4088 __ jcc(Assembler::zero, is_null); 4089 4090 // Get cpool & tags index 4091 __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array 4092 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index 4093 // See if bytecode has already been quicked 4094 __ cmpb(Address(rdx, rbx, 4095 Address::times_1, 4096 Array<u1>::base_offset_in_bytes()), 4097 JVM_CONSTANT_Class); 4098 __ jcc(Assembler::equal, quicked); 4099 __ push(atos); // save receiver for result, and for GC 4100 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 4101 4102 // vm_result_2 has metadata result 4103 #ifndef _LP64 4104 // borrow rdi from locals 4105 __ get_thread(rdi); 4106 __ get_vm_result_2(rax, rdi); 4107 __ restore_locals(); 4108 #else 4109 __ get_vm_result_2(rax, r15_thread); 4110 #endif 4111 4112 __ pop_ptr(rdx); // restore receiver 4113 __ jmpb(resolved); 4114 4115 // Get superklass in rax and subklass in rbx 4116 __ bind(quicked); 4117 __ mov(rdx, rax); // Save object in rdx; rax needed for subtype check 4118 __ load_resolved_klass_at_index(rax, rcx, rbx); 4119 4120 __ bind(resolved); 4121 Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg); 4122 __ load_klass(rbx, rdx, tmp_load_klass); 4123 4124 // Generate subtype check. Blows rcx, rdi. Object in rdx. 4125 // Superklass in rax. Subklass in rbx. 4126 __ gen_subtype_check(rbx, ok_is_subtype); 4127 4128 // Come here on failure 4129 __ push_ptr(rdx); 4130 // object is at TOS 4131 __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry)); 4132 4133 // Come here on success 4134 __ bind(ok_is_subtype); 4135 __ mov(rax, rdx); // Restore object in rdx 4136 4137 // Collect counts on whether this check-cast sees NULLs a lot or not. 4138 if (ProfileInterpreter) { 4139 __ jmp(done); 4140 __ bind(is_null); 4141 __ profile_null_seen(rcx); 4142 } else { 4143 __ bind(is_null); // same as 'done' 4144 } 4145 __ bind(done); 4146 } 4147 4148 void TemplateTable::instanceof() { 4149 transition(atos, itos); 4150 Label done, is_null, ok_is_subtype, quicked, resolved; 4151 __ testptr(rax, rax); 4152 __ jcc(Assembler::zero, is_null); 4153 4154 // Get cpool & tags index 4155 __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array 4156 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index 4157 // See if bytecode has already been quicked 4158 __ cmpb(Address(rdx, rbx, 4159 Address::times_1, 4160 Array<u1>::base_offset_in_bytes()), 4161 JVM_CONSTANT_Class); 4162 __ jcc(Assembler::equal, quicked); 4163 4164 __ push(atos); // save receiver for result, and for GC 4165 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 4166 // vm_result_2 has metadata result 4167 4168 #ifndef _LP64 4169 // borrow rdi from locals 4170 __ get_thread(rdi); 4171 __ get_vm_result_2(rax, rdi); 4172 __ restore_locals(); 4173 #else 4174 __ get_vm_result_2(rax, r15_thread); 4175 #endif 4176 4177 __ pop_ptr(rdx); // restore receiver 4178 __ verify_oop(rdx); 4179 Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg); 4180 __ load_klass(rdx, rdx, tmp_load_klass); 4181 __ jmp(resolved); 4182 4183 // Get superklass in rax and subklass in rdx 4184 __ bind(quicked); 4185 __ load_klass(rdx, rax, tmp_load_klass); 4186 __ load_resolved_klass_at_index(rax, rcx, rbx); 4187 4188 __ bind(resolved); 4189 4190 // Generate subtype check. Blows rcx, rdi 4191 // Superklass in rax. Subklass in rdx. 4192 __ gen_subtype_check(rdx, ok_is_subtype); 4193 4194 // Come here on failure 4195 __ xorl(rax, rax); 4196 __ jmpb(done); 4197 // Come here on success 4198 __ bind(ok_is_subtype); 4199 __ movl(rax, 1); 4200 4201 // Collect counts on whether this test sees NULLs a lot or not. 4202 if (ProfileInterpreter) { 4203 __ jmp(done); 4204 __ bind(is_null); 4205 __ profile_null_seen(rcx); 4206 } else { 4207 __ bind(is_null); // same as 'done' 4208 } 4209 __ bind(done); 4210 // rax = 0: obj == NULL or obj is not an instanceof the specified klass 4211 // rax = 1: obj != NULL and obj is an instanceof the specified klass 4212 } 4213 4214 4215 //---------------------------------------------------------------------------------------------------- 4216 // Breakpoints 4217 void TemplateTable::_breakpoint() { 4218 // Note: We get here even if we are single stepping.. 4219 // jbug insists on setting breakpoints at every bytecode 4220 // even if we are in single step mode. 4221 4222 transition(vtos, vtos); 4223 4224 Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rcx); 4225 4226 // get the unpatched byte code 4227 __ get_method(rarg); 4228 __ call_VM(noreg, 4229 CAST_FROM_FN_PTR(address, 4230 InterpreterRuntime::get_original_bytecode_at), 4231 rarg, rbcp); 4232 __ mov(rbx, rax); // why? 4233 4234 // post the breakpoint event 4235 __ get_method(rarg); 4236 __ call_VM(noreg, 4237 CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), 4238 rarg, rbcp); 4239 4240 // complete the execution of original bytecode 4241 __ dispatch_only_normal(vtos); 4242 } 4243 4244 //----------------------------------------------------------------------------- 4245 // Exceptions 4246 4247 void TemplateTable::athrow() { 4248 transition(atos, vtos); 4249 __ null_check(rax); 4250 __ jump(ExternalAddress(Interpreter::throw_exception_entry())); 4251 } 4252 4253 //----------------------------------------------------------------------------- 4254 // Synchronization 4255 // 4256 // Note: monitorenter & exit are symmetric routines; which is reflected 4257 // in the assembly code structure as well 4258 // 4259 // Stack layout: 4260 // 4261 // [expressions ] <--- rsp = expression stack top 4262 // .. 4263 // [expressions ] 4264 // [monitor entry] <--- monitor block top = expression stack bot 4265 // .. 4266 // [monitor entry] 4267 // [frame data ] <--- monitor block bot 4268 // ... 4269 // [saved rbp ] <--- rbp 4270 void TemplateTable::monitorenter() { 4271 transition(atos, vtos); 4272 4273 // check for NULL object 4274 __ null_check(rax); 4275 4276 const Address monitor_block_top( 4277 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 4278 const Address monitor_block_bot( 4279 rbp, frame::interpreter_frame_initial_sp_offset * wordSize); 4280 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; 4281 4282 Label allocated; 4283 4284 Register rtop = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 4285 Register rbot = LP64_ONLY(c_rarg2) NOT_LP64(rbx); 4286 Register rmon = LP64_ONLY(c_rarg1) NOT_LP64(rdx); 4287 4288 // initialize entry pointer 4289 __ xorl(rmon, rmon); // points to free slot or NULL 4290 4291 // find a free slot in the monitor block (result in rmon) 4292 { 4293 Label entry, loop, exit; 4294 __ movptr(rtop, monitor_block_top); // points to current entry, 4295 // starting with top-most entry 4296 __ lea(rbot, monitor_block_bot); // points to word before bottom 4297 // of monitor block 4298 __ jmpb(entry); 4299 4300 __ bind(loop); 4301 // check if current entry is used 4302 __ cmpptr(Address(rtop, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL_WORD); 4303 // if not used then remember entry in rmon 4304 __ cmovptr(Assembler::equal, rmon, rtop); // cmov => cmovptr 4305 // check if current entry is for same object 4306 __ cmpptr(rax, Address(rtop, BasicObjectLock::obj_offset_in_bytes())); 4307 // if same object then stop searching 4308 __ jccb(Assembler::equal, exit); 4309 // otherwise advance to next entry 4310 __ addptr(rtop, entry_size); 4311 __ bind(entry); 4312 // check if bottom reached 4313 __ cmpptr(rtop, rbot); 4314 // if not at bottom then check this entry 4315 __ jcc(Assembler::notEqual, loop); 4316 __ bind(exit); 4317 } 4318 4319 __ testptr(rmon, rmon); // check if a slot has been found 4320 __ jcc(Assembler::notZero, allocated); // if found, continue with that one 4321 4322 // allocate one if there's no free slot 4323 { 4324 Label entry, loop; 4325 // 1. compute new pointers // rsp: old expression stack top 4326 __ movptr(rmon, monitor_block_bot); // rmon: old expression stack bottom 4327 __ subptr(rsp, entry_size); // move expression stack top 4328 __ subptr(rmon, entry_size); // move expression stack bottom 4329 __ mov(rtop, rsp); // set start value for copy loop 4330 __ movptr(monitor_block_bot, rmon); // set new monitor block bottom 4331 __ jmp(entry); 4332 // 2. move expression stack contents 4333 __ bind(loop); 4334 __ movptr(rbot, Address(rtop, entry_size)); // load expression stack 4335 // word from old location 4336 __ movptr(Address(rtop, 0), rbot); // and store it at new location 4337 __ addptr(rtop, wordSize); // advance to next word 4338 __ bind(entry); 4339 __ cmpptr(rtop, rmon); // check if bottom reached 4340 __ jcc(Assembler::notEqual, loop); // if not at bottom then 4341 // copy next word 4342 } 4343 4344 // call run-time routine 4345 // rmon: points to monitor entry 4346 __ bind(allocated); 4347 4348 // Increment bcp to point to the next bytecode, so exception 4349 // handling for async. exceptions work correctly. 4350 // The object has already been popped from the stack, so the 4351 // expression stack looks correct. 4352 __ increment(rbcp); 4353 4354 // store object 4355 __ movptr(Address(rmon, BasicObjectLock::obj_offset_in_bytes()), rax); 4356 __ lock_object(rmon); 4357 4358 // check to make sure this monitor doesn't cause stack overflow after locking 4359 __ save_bcp(); // in case of exception 4360 __ generate_stack_overflow_check(0); 4361 4362 // The bcp has already been incremented. Just need to dispatch to 4363 // next instruction. 4364 __ dispatch_next(vtos); 4365 } 4366 4367 void TemplateTable::monitorexit() { 4368 transition(atos, vtos); 4369 4370 // check for NULL object 4371 __ null_check(rax); 4372 4373 const Address monitor_block_top( 4374 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 4375 const Address monitor_block_bot( 4376 rbp, frame::interpreter_frame_initial_sp_offset * wordSize); 4377 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; 4378 4379 Register rtop = LP64_ONLY(c_rarg1) NOT_LP64(rdx); 4380 Register rbot = LP64_ONLY(c_rarg2) NOT_LP64(rbx); 4381 4382 Label found; 4383 4384 // find matching slot 4385 { 4386 Label entry, loop; 4387 __ movptr(rtop, monitor_block_top); // points to current entry, 4388 // starting with top-most entry 4389 __ lea(rbot, monitor_block_bot); // points to word before bottom 4390 // of monitor block 4391 __ jmpb(entry); 4392 4393 __ bind(loop); 4394 // check if current entry is for same object 4395 __ cmpptr(rax, Address(rtop, BasicObjectLock::obj_offset_in_bytes())); 4396 // if same object then stop searching 4397 __ jcc(Assembler::equal, found); 4398 // otherwise advance to next entry 4399 __ addptr(rtop, entry_size); 4400 __ bind(entry); 4401 // check if bottom reached 4402 __ cmpptr(rtop, rbot); 4403 // if not at bottom then check this entry 4404 __ jcc(Assembler::notEqual, loop); 4405 } 4406 4407 // error handling. Unlocking was not block-structured 4408 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 4409 InterpreterRuntime::throw_illegal_monitor_state_exception)); 4410 __ should_not_reach_here(); 4411 4412 // call run-time routine 4413 __ bind(found); 4414 __ push_ptr(rax); // make sure object is on stack (contract with oopMaps) 4415 __ unlock_object(rtop); 4416 __ pop_ptr(rax); // discard object 4417 } 4418 4419 // Wide instructions 4420 void TemplateTable::wide() { 4421 transition(vtos, vtos); 4422 __ load_unsigned_byte(rbx, at_bcp(1)); 4423 ExternalAddress wtable((address)Interpreter::_wentry_point); 4424 __ jump(ArrayAddress(wtable, Address(noreg, rbx, Address::times_ptr))); 4425 // Note: the rbcp increment step is part of the individual wide bytecode implementations 4426 } 4427 4428 // Multi arrays 4429 void TemplateTable::multianewarray() { 4430 transition(vtos, atos); 4431 4432 Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rax); 4433 __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions 4434 // last dim is on top of stack; we want address of first one: 4435 // first_addr = last_addr + (ndims - 1) * stackElementSize - 1*wordsize 4436 // the latter wordSize to point to the beginning of the array. 4437 __ lea(rarg, Address(rsp, rax, Interpreter::stackElementScale(), -wordSize)); 4438 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), rarg); 4439 __ load_unsigned_byte(rbx, at_bcp(3)); 4440 __ lea(rsp, Address(rsp, rbx, Interpreter::stackElementScale())); // get rid of counts 4441 }