1 /* 2 * Copyright (c) 1999, 2022, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "c1/c1_CFGPrinter.hpp" 27 #include "c1/c1_Canonicalizer.hpp" 28 #include "c1/c1_Compilation.hpp" 29 #include "c1/c1_GraphBuilder.hpp" 30 #include "c1/c1_InstructionPrinter.hpp" 31 #include "ci/ciCallSite.hpp" 32 #include "ci/ciField.hpp" 33 #include "ci/ciKlass.hpp" 34 #include "ci/ciMemberName.hpp" 35 #include "ci/ciSymbols.hpp" 36 #include "ci/ciUtilities.inline.hpp" 37 #include "classfile/javaClasses.hpp" 38 #include "compiler/compilationPolicy.hpp" 39 #include "compiler/compileBroker.hpp" 40 #include "compiler/compilerEvent.hpp" 41 #include "interpreter/bytecode.hpp" 42 #include "jfr/jfrEvents.hpp" 43 #include "memory/resourceArea.hpp" 44 #include "oops/oop.inline.hpp" 45 #include "runtime/sharedRuntime.hpp" 46 #include "runtime/vm_version.hpp" 47 #include "utilities/bitMap.inline.hpp" 48 #include "utilities/powerOfTwo.hpp" 49 #include "utilities/macros.hpp" 50 #if INCLUDE_JFR 51 #include "jfr/jfr.hpp" 52 #endif 53 54 class BlockListBuilder { 55 private: 56 Compilation* _compilation; 57 IRScope* _scope; 58 59 BlockList _blocks; // internal list of all blocks 60 BlockList* _bci2block; // mapping from bci to blocks for GraphBuilder 61 GrowableArray<BlockList> _bci2block_successors; // Mapping bcis to their blocks successors while we dont have a blockend 62 63 // fields used by mark_loops 64 ResourceBitMap _active; // for iteration of control flow graph 65 ResourceBitMap _visited; // for iteration of control flow graph 66 GrowableArray<ResourceBitMap> _loop_map; // caches the information if a block is contained in a loop 67 int _next_loop_index; // next free loop number 68 int _next_block_number; // for reverse postorder numbering of blocks 69 int _block_id_start; 70 71 int bit_number(int block_id) const { return block_id - _block_id_start; } 72 // accessors 73 Compilation* compilation() const { return _compilation; } 74 IRScope* scope() const { return _scope; } 75 ciMethod* method() const { return scope()->method(); } 76 XHandlers* xhandlers() const { return scope()->xhandlers(); } 77 78 // unified bailout support 79 void bailout(const char* msg) const { compilation()->bailout(msg); } 80 bool bailed_out() const { return compilation()->bailed_out(); } 81 82 // helper functions 83 BlockBegin* make_block_at(int bci, BlockBegin* predecessor); 84 void handle_exceptions(BlockBegin* current, int cur_bci); 85 void handle_jsr(BlockBegin* current, int sr_bci, int next_bci); 86 void store_one(BlockBegin* current, int local); 87 void store_two(BlockBegin* current, int local); 88 void set_entries(int osr_bci); 89 void set_leaders(); 90 91 void make_loop_header(BlockBegin* block); 92 void mark_loops(); 93 BitMap& mark_loops(BlockBegin* b, bool in_subroutine); 94 95 // debugging 96 #ifndef PRODUCT 97 void print(); 98 #endif 99 100 int number_of_successors(BlockBegin* block); 101 BlockBegin* successor_at(BlockBegin* block, int i); 102 void add_successor(BlockBegin* block, BlockBegin* sux); 103 bool is_successor(BlockBegin* block, BlockBegin* sux); 104 105 public: 106 // creation 107 BlockListBuilder(Compilation* compilation, IRScope* scope, int osr_bci); 108 109 // accessors for GraphBuilder 110 BlockList* bci2block() const { return _bci2block; } 111 }; 112 113 114 // Implementation of BlockListBuilder 115 116 BlockListBuilder::BlockListBuilder(Compilation* compilation, IRScope* scope, int osr_bci) 117 : _compilation(compilation) 118 , _scope(scope) 119 , _blocks(16) 120 , _bci2block(new BlockList(scope->method()->code_size(), NULL)) 121 , _bci2block_successors(scope->method()->code_size()) 122 , _active() // size not known yet 123 , _visited() // size not known yet 124 , _loop_map() // size not known yet 125 , _next_loop_index(0) 126 , _next_block_number(0) 127 , _block_id_start(0) 128 { 129 set_entries(osr_bci); 130 set_leaders(); 131 CHECK_BAILOUT(); 132 133 mark_loops(); 134 NOT_PRODUCT(if (PrintInitialBlockList) print()); 135 136 // _bci2block still contains blocks with _end == null and > 0 sux in _bci2block_successors. 137 138 #ifndef PRODUCT 139 if (PrintCFGToFile) { 140 stringStream title; 141 title.print("BlockListBuilder "); 142 scope->method()->print_name(&title); 143 CFGPrinter::print_cfg(_bci2block, title.freeze(), false, false); 144 } 145 #endif 146 } 147 148 149 void BlockListBuilder::set_entries(int osr_bci) { 150 // generate start blocks 151 BlockBegin* std_entry = make_block_at(0, NULL); 152 if (scope()->caller() == NULL) { 153 std_entry->set(BlockBegin::std_entry_flag); 154 } 155 if (osr_bci != -1) { 156 BlockBegin* osr_entry = make_block_at(osr_bci, NULL); 157 osr_entry->set(BlockBegin::osr_entry_flag); 158 } 159 160 // generate exception entry blocks 161 XHandlers* list = xhandlers(); 162 const int n = list->length(); 163 for (int i = 0; i < n; i++) { 164 XHandler* h = list->handler_at(i); 165 BlockBegin* entry = make_block_at(h->handler_bci(), NULL); 166 entry->set(BlockBegin::exception_entry_flag); 167 h->set_entry_block(entry); 168 } 169 } 170 171 172 BlockBegin* BlockListBuilder::make_block_at(int cur_bci, BlockBegin* predecessor) { 173 assert(method()->bci_block_start().at(cur_bci), "wrong block starts of MethodLivenessAnalyzer"); 174 175 BlockBegin* block = _bci2block->at(cur_bci); 176 if (block == NULL) { 177 block = new BlockBegin(cur_bci); 178 block->init_stores_to_locals(method()->max_locals()); 179 _bci2block->at_put(cur_bci, block); 180 _bci2block_successors.at_put_grow(cur_bci, BlockList()); 181 _blocks.append(block); 182 183 assert(predecessor == NULL || predecessor->bci() < cur_bci, "targets for backward branches must already exist"); 184 } 185 186 if (predecessor != NULL) { 187 if (block->is_set(BlockBegin::exception_entry_flag)) { 188 BAILOUT_("Exception handler can be reached by both normal and exceptional control flow", block); 189 } 190 191 add_successor(predecessor, block); 192 block->increment_total_preds(); 193 } 194 195 return block; 196 } 197 198 199 inline void BlockListBuilder::store_one(BlockBegin* current, int local) { 200 current->stores_to_locals().set_bit(local); 201 } 202 inline void BlockListBuilder::store_two(BlockBegin* current, int local) { 203 store_one(current, local); 204 store_one(current, local + 1); 205 } 206 207 208 void BlockListBuilder::handle_exceptions(BlockBegin* current, int cur_bci) { 209 // Draws edges from a block to its exception handlers 210 XHandlers* list = xhandlers(); 211 const int n = list->length(); 212 213 for (int i = 0; i < n; i++) { 214 XHandler* h = list->handler_at(i); 215 216 if (h->covers(cur_bci)) { 217 BlockBegin* entry = h->entry_block(); 218 assert(entry != NULL && entry == _bci2block->at(h->handler_bci()), "entry must be set"); 219 assert(entry->is_set(BlockBegin::exception_entry_flag), "flag must be set"); 220 221 // add each exception handler only once 222 if(!is_successor(current, entry)) { 223 add_successor(current, entry); 224 entry->increment_total_preds(); 225 } 226 227 // stop when reaching catchall 228 if (h->catch_type() == 0) break; 229 } 230 } 231 } 232 233 void BlockListBuilder::handle_jsr(BlockBegin* current, int sr_bci, int next_bci) { 234 if (next_bci < method()->code_size()) { 235 // start a new block after jsr-bytecode and link this block into cfg 236 make_block_at(next_bci, current); 237 } 238 239 // start a new block at the subroutine entry at mark it with special flag 240 BlockBegin* sr_block = make_block_at(sr_bci, current); 241 if (!sr_block->is_set(BlockBegin::subroutine_entry_flag)) { 242 sr_block->set(BlockBegin::subroutine_entry_flag); 243 } 244 } 245 246 247 void BlockListBuilder::set_leaders() { 248 bool has_xhandlers = xhandlers()->has_handlers(); 249 BlockBegin* current = NULL; 250 251 // The information which bci starts a new block simplifies the analysis 252 // Without it, backward branches could jump to a bci where no block was created 253 // during bytecode iteration. This would require the creation of a new block at the 254 // branch target and a modification of the successor lists. 255 const BitMap& bci_block_start = method()->bci_block_start(); 256 257 int end_bci = method()->code_size(); 258 259 ciBytecodeStream s(method()); 260 while (s.next() != ciBytecodeStream::EOBC()) { 261 int cur_bci = s.cur_bci(); 262 263 if (bci_block_start.at(cur_bci)) { 264 current = make_block_at(cur_bci, current); 265 } 266 assert(current != NULL, "must have current block"); 267 268 if (has_xhandlers && GraphBuilder::can_trap(method(), s.cur_bc())) { 269 handle_exceptions(current, cur_bci); 270 } 271 272 switch (s.cur_bc()) { 273 // track stores to local variables for selective creation of phi functions 274 case Bytecodes::_iinc: store_one(current, s.get_index()); break; 275 case Bytecodes::_istore: store_one(current, s.get_index()); break; 276 case Bytecodes::_lstore: store_two(current, s.get_index()); break; 277 case Bytecodes::_fstore: store_one(current, s.get_index()); break; 278 case Bytecodes::_dstore: store_two(current, s.get_index()); break; 279 case Bytecodes::_astore: store_one(current, s.get_index()); break; 280 case Bytecodes::_istore_0: store_one(current, 0); break; 281 case Bytecodes::_istore_1: store_one(current, 1); break; 282 case Bytecodes::_istore_2: store_one(current, 2); break; 283 case Bytecodes::_istore_3: store_one(current, 3); break; 284 case Bytecodes::_lstore_0: store_two(current, 0); break; 285 case Bytecodes::_lstore_1: store_two(current, 1); break; 286 case Bytecodes::_lstore_2: store_two(current, 2); break; 287 case Bytecodes::_lstore_3: store_two(current, 3); break; 288 case Bytecodes::_fstore_0: store_one(current, 0); break; 289 case Bytecodes::_fstore_1: store_one(current, 1); break; 290 case Bytecodes::_fstore_2: store_one(current, 2); break; 291 case Bytecodes::_fstore_3: store_one(current, 3); break; 292 case Bytecodes::_dstore_0: store_two(current, 0); break; 293 case Bytecodes::_dstore_1: store_two(current, 1); break; 294 case Bytecodes::_dstore_2: store_two(current, 2); break; 295 case Bytecodes::_dstore_3: store_two(current, 3); break; 296 case Bytecodes::_astore_0: store_one(current, 0); break; 297 case Bytecodes::_astore_1: store_one(current, 1); break; 298 case Bytecodes::_astore_2: store_one(current, 2); break; 299 case Bytecodes::_astore_3: store_one(current, 3); break; 300 301 // track bytecodes that affect the control flow 302 case Bytecodes::_athrow: // fall through 303 case Bytecodes::_ret: // fall through 304 case Bytecodes::_ireturn: // fall through 305 case Bytecodes::_lreturn: // fall through 306 case Bytecodes::_freturn: // fall through 307 case Bytecodes::_dreturn: // fall through 308 case Bytecodes::_areturn: // fall through 309 case Bytecodes::_return: 310 current = NULL; 311 break; 312 313 case Bytecodes::_ifeq: // fall through 314 case Bytecodes::_ifne: // fall through 315 case Bytecodes::_iflt: // fall through 316 case Bytecodes::_ifge: // fall through 317 case Bytecodes::_ifgt: // fall through 318 case Bytecodes::_ifle: // fall through 319 case Bytecodes::_if_icmpeq: // fall through 320 case Bytecodes::_if_icmpne: // fall through 321 case Bytecodes::_if_icmplt: // fall through 322 case Bytecodes::_if_icmpge: // fall through 323 case Bytecodes::_if_icmpgt: // fall through 324 case Bytecodes::_if_icmple: // fall through 325 case Bytecodes::_if_acmpeq: // fall through 326 case Bytecodes::_if_acmpne: // fall through 327 case Bytecodes::_ifnull: // fall through 328 case Bytecodes::_ifnonnull: 329 if (s.next_bci() < end_bci) { 330 make_block_at(s.next_bci(), current); 331 } 332 make_block_at(s.get_dest(), current); 333 current = NULL; 334 break; 335 336 case Bytecodes::_goto: 337 make_block_at(s.get_dest(), current); 338 current = NULL; 339 break; 340 341 case Bytecodes::_goto_w: 342 make_block_at(s.get_far_dest(), current); 343 current = NULL; 344 break; 345 346 case Bytecodes::_jsr: 347 handle_jsr(current, s.get_dest(), s.next_bci()); 348 current = NULL; 349 break; 350 351 case Bytecodes::_jsr_w: 352 handle_jsr(current, s.get_far_dest(), s.next_bci()); 353 current = NULL; 354 break; 355 356 case Bytecodes::_tableswitch: { 357 // set block for each case 358 Bytecode_tableswitch sw(&s); 359 int l = sw.length(); 360 for (int i = 0; i < l; i++) { 361 make_block_at(cur_bci + sw.dest_offset_at(i), current); 362 } 363 make_block_at(cur_bci + sw.default_offset(), current); 364 current = NULL; 365 break; 366 } 367 368 case Bytecodes::_lookupswitch: { 369 // set block for each case 370 Bytecode_lookupswitch sw(&s); 371 int l = sw.number_of_pairs(); 372 for (int i = 0; i < l; i++) { 373 make_block_at(cur_bci + sw.pair_at(i).offset(), current); 374 } 375 make_block_at(cur_bci + sw.default_offset(), current); 376 current = NULL; 377 break; 378 } 379 380 default: 381 break; 382 } 383 } 384 } 385 386 387 void BlockListBuilder::mark_loops() { 388 ResourceMark rm; 389 390 const int number_of_blocks = _blocks.length(); 391 _active.initialize(number_of_blocks); 392 _visited.initialize(number_of_blocks); 393 _loop_map = GrowableArray<ResourceBitMap>(number_of_blocks, number_of_blocks, ResourceBitMap()); 394 for (int i = 0; i < number_of_blocks; i++) { 395 _loop_map.at(i).initialize(number_of_blocks); 396 } 397 _next_loop_index = 0; 398 _next_block_number = _blocks.length(); 399 400 // The loop detection algorithm works as follows: 401 // - We maintain the _loop_map, where for each block we have a bitmap indicating which loops contain this block. 402 // - The CFG is recursively traversed (depth-first) and if we detect a loop, we assign the loop a unique number that is stored 403 // in the bitmap associated with the loop header block. Until we return back through that loop header the bitmap contains 404 // only a single bit corresponding to the loop number. 405 // - The bit is then propagated for all the blocks in the loop after we exit them (post-order). There could be multiple bits 406 // of course in case of nested loops. 407 // - When we exit the loop header we remove that single bit and assign the real loop state for it. 408 // - Now, the tricky part here is how we detect irreducible loops. In the algorithm above the loop state bits 409 // are propagated to the predecessors. If we encounter an irreducible loop (a loop with multiple heads) we would see 410 // a node with some loop bit set that would then propagate back and be never cleared because we would 411 // never go back through the original loop header. Therefore if there are any irreducible loops the bits in the states 412 // for these loops are going to propagate back to the root. 413 BlockBegin* start = _bci2block->at(0); 414 _block_id_start = start->block_id(); 415 BitMap& loop_state = mark_loops(start, false); 416 if (!loop_state.is_empty()) { 417 compilation()->set_has_irreducible_loops(true); 418 } 419 assert(_next_block_number >= 0, "invalid block numbers"); 420 421 // Remove dangling Resource pointers before the ResourceMark goes out-of-scope. 422 _active.resize(0); 423 _visited.resize(0); 424 _loop_map.clear(); 425 } 426 427 void BlockListBuilder::make_loop_header(BlockBegin* block) { 428 int block_id = block->block_id(); 429 int block_bit = bit_number(block_id); 430 if (block->is_set(BlockBegin::exception_entry_flag)) { 431 // exception edges may look like loops but don't mark them as such 432 // since it screws up block ordering. 433 return; 434 } 435 if (!block->is_set(BlockBegin::parser_loop_header_flag)) { 436 block->set(BlockBegin::parser_loop_header_flag); 437 438 assert(_loop_map.at(block_bit).is_empty(), "must not be set yet"); 439 assert(0 <= _next_loop_index && _next_loop_index < _loop_map.length(), "_next_loop_index is too large"); 440 _loop_map.at(block_bit).set_bit(_next_loop_index++); 441 } else { 442 // block already marked as loop header 443 assert(_loop_map.at(block_bit).count_one_bits() == 1, "exactly one bit must be set"); 444 } 445 } 446 447 BitMap& BlockListBuilder::mark_loops(BlockBegin* block, bool in_subroutine) { 448 int block_id = block->block_id(); 449 int block_bit = bit_number(block_id); 450 if (_visited.at(block_bit)) { 451 if (_active.at(block_bit)) { 452 // reached block via backward branch 453 make_loop_header(block); 454 } 455 // return cached loop information for this block 456 return _loop_map.at(block_bit); 457 } 458 459 if (block->is_set(BlockBegin::subroutine_entry_flag)) { 460 in_subroutine = true; 461 } 462 463 // set active and visited bits before successors are processed 464 _visited.set_bit(block_bit); 465 _active.set_bit(block_bit); 466 467 ResourceMark rm; 468 ResourceBitMap loop_state(_loop_map.length()); 469 for (int i = number_of_successors(block) - 1; i >= 0; i--) { 470 BlockBegin* sux = successor_at(block, i); 471 // recursively process all successors 472 loop_state.set_union(mark_loops(sux, in_subroutine)); 473 } 474 475 // clear active-bit after all successors are processed 476 _active.clear_bit(block_bit); 477 478 // reverse-post-order numbering of all blocks 479 block->set_depth_first_number(_next_block_number); 480 _next_block_number--; 481 482 if (!loop_state.is_empty() || in_subroutine ) { 483 // block is contained at least in one loop, so phi functions are necessary 484 // phi functions are also necessary for all locals stored in a subroutine 485 scope()->requires_phi_function().set_union(block->stores_to_locals()); 486 } 487 488 if (block->is_set(BlockBegin::parser_loop_header_flag)) { 489 BitMap& header_loop_state = _loop_map.at(block_bit); 490 assert(header_loop_state.count_one_bits() == 1, "exactly one bit must be set"); 491 // remove the bit with the loop number for the state (header is outside of the loop) 492 loop_state.set_difference(header_loop_state); 493 } 494 495 // cache and return loop information for this block 496 _loop_map.at(block_bit).set_from(loop_state); 497 return _loop_map.at(block_bit); 498 } 499 500 inline int BlockListBuilder::number_of_successors(BlockBegin* block) 501 { 502 assert(_bci2block_successors.length() > block->bci(), "sux must exist"); 503 return _bci2block_successors.at(block->bci()).length(); 504 } 505 506 inline BlockBegin* BlockListBuilder::successor_at(BlockBegin* block, int i) 507 { 508 assert(_bci2block_successors.length() > block->bci(), "sux must exist"); 509 return _bci2block_successors.at(block->bci()).at(i); 510 } 511 512 inline void BlockListBuilder::add_successor(BlockBegin* block, BlockBegin* sux) 513 { 514 assert(_bci2block_successors.length() > block->bci(), "sux must exist"); 515 _bci2block_successors.at(block->bci()).append(sux); 516 } 517 518 inline bool BlockListBuilder::is_successor(BlockBegin* block, BlockBegin* sux) { 519 assert(_bci2block_successors.length() > block->bci(), "sux must exist"); 520 return _bci2block_successors.at(block->bci()).contains(sux); 521 } 522 523 #ifndef PRODUCT 524 525 int compare_depth_first(BlockBegin** a, BlockBegin** b) { 526 return (*a)->depth_first_number() - (*b)->depth_first_number(); 527 } 528 529 void BlockListBuilder::print() { 530 tty->print("----- initial block list of BlockListBuilder for method "); 531 method()->print_short_name(); 532 tty->cr(); 533 534 // better readability if blocks are sorted in processing order 535 _blocks.sort(compare_depth_first); 536 537 for (int i = 0; i < _blocks.length(); i++) { 538 BlockBegin* cur = _blocks.at(i); 539 tty->print("%4d: B%-4d bci: %-4d preds: %-4d ", cur->depth_first_number(), cur->block_id(), cur->bci(), cur->total_preds()); 540 541 tty->print(cur->is_set(BlockBegin::std_entry_flag) ? " std" : " "); 542 tty->print(cur->is_set(BlockBegin::osr_entry_flag) ? " osr" : " "); 543 tty->print(cur->is_set(BlockBegin::exception_entry_flag) ? " ex" : " "); 544 tty->print(cur->is_set(BlockBegin::subroutine_entry_flag) ? " sr" : " "); 545 tty->print(cur->is_set(BlockBegin::parser_loop_header_flag) ? " lh" : " "); 546 547 if (number_of_successors(cur) > 0) { 548 tty->print(" sux: "); 549 for (int j = 0; j < number_of_successors(cur); j++) { 550 BlockBegin* sux = successor_at(cur, j); 551 tty->print("B%d ", sux->block_id()); 552 } 553 } 554 tty->cr(); 555 } 556 } 557 558 #endif 559 560 561 // A simple growable array of Values indexed by ciFields 562 class FieldBuffer: public CompilationResourceObj { 563 private: 564 GrowableArray<Value> _values; 565 566 public: 567 FieldBuffer() {} 568 569 void kill() { 570 _values.trunc_to(0); 571 } 572 573 Value at(ciField* field) { 574 assert(field->holder()->is_loaded(), "must be a loaded field"); 575 int offset = field->offset(); 576 if (offset < _values.length()) { 577 return _values.at(offset); 578 } else { 579 return NULL; 580 } 581 } 582 583 void at_put(ciField* field, Value value) { 584 assert(field->holder()->is_loaded(), "must be a loaded field"); 585 int offset = field->offset(); 586 _values.at_put_grow(offset, value, NULL); 587 } 588 589 }; 590 591 592 // MemoryBuffer is fairly simple model of the current state of memory. 593 // It partitions memory into several pieces. The first piece is 594 // generic memory where little is known about the owner of the memory. 595 // This is conceptually represented by the tuple <O, F, V> which says 596 // that the field F of object O has value V. This is flattened so 597 // that F is represented by the offset of the field and the parallel 598 // arrays _objects and _values are used for O and V. Loads of O.F can 599 // simply use V. Newly allocated objects are kept in a separate list 600 // along with a parallel array for each object which represents the 601 // current value of its fields. Stores of the default value to fields 602 // which have never been stored to before are eliminated since they 603 // are redundant. Once newly allocated objects are stored into 604 // another object or they are passed out of the current compile they 605 // are treated like generic memory. 606 607 class MemoryBuffer: public CompilationResourceObj { 608 private: 609 FieldBuffer _values; 610 GrowableArray<Value> _objects; 611 GrowableArray<Value> _newobjects; 612 GrowableArray<FieldBuffer*> _fields; 613 614 public: 615 MemoryBuffer() {} 616 617 StoreField* store(StoreField* st) { 618 if (!EliminateFieldAccess) { 619 return st; 620 } 621 622 Value object = st->obj(); 623 Value value = st->value(); 624 ciField* field = st->field(); 625 if (field->holder()->is_loaded()) { 626 int offset = field->offset(); 627 int index = _newobjects.find(object); 628 if (index != -1) { 629 // newly allocated object with no other stores performed on this field 630 FieldBuffer* buf = _fields.at(index); 631 if (buf->at(field) == NULL && is_default_value(value)) { 632 #ifndef PRODUCT 633 if (PrintIRDuringConstruction && Verbose) { 634 tty->print_cr("Eliminated store for object %d:", index); 635 st->print_line(); 636 } 637 #endif 638 return NULL; 639 } else { 640 buf->at_put(field, value); 641 } 642 } else { 643 _objects.at_put_grow(offset, object, NULL); 644 _values.at_put(field, value); 645 } 646 647 store_value(value); 648 } else { 649 // if we held onto field names we could alias based on names but 650 // we don't know what's being stored to so kill it all. 651 kill(); 652 } 653 return st; 654 } 655 656 657 // return true if this value correspond to the default value of a field. 658 bool is_default_value(Value value) { 659 Constant* con = value->as_Constant(); 660 if (con) { 661 switch (con->type()->tag()) { 662 case intTag: return con->type()->as_IntConstant()->value() == 0; 663 case longTag: return con->type()->as_LongConstant()->value() == 0; 664 case floatTag: return jint_cast(con->type()->as_FloatConstant()->value()) == 0; 665 case doubleTag: return jlong_cast(con->type()->as_DoubleConstant()->value()) == jlong_cast(0); 666 case objectTag: return con->type() == objectNull; 667 default: ShouldNotReachHere(); 668 } 669 } 670 return false; 671 } 672 673 674 // return either the actual value of a load or the load itself 675 Value load(LoadField* load) { 676 if (!EliminateFieldAccess) { 677 return load; 678 } 679 680 if (strict_fp_requires_explicit_rounding && load->type()->is_float_kind()) { 681 #ifdef IA32 682 if (UseSSE < 2) { 683 // can't skip load since value might get rounded as a side effect 684 return load; 685 } 686 #else 687 Unimplemented(); 688 #endif // IA32 689 } 690 691 ciField* field = load->field(); 692 Value object = load->obj(); 693 if (field->holder()->is_loaded() && !field->is_volatile()) { 694 int offset = field->offset(); 695 Value result = NULL; 696 int index = _newobjects.find(object); 697 if (index != -1) { 698 result = _fields.at(index)->at(field); 699 } else if (_objects.at_grow(offset, NULL) == object) { 700 result = _values.at(field); 701 } 702 if (result != NULL) { 703 #ifndef PRODUCT 704 if (PrintIRDuringConstruction && Verbose) { 705 tty->print_cr("Eliminated load: "); 706 load->print_line(); 707 } 708 #endif 709 assert(result->type()->tag() == load->type()->tag(), "wrong types"); 710 return result; 711 } 712 } 713 return load; 714 } 715 716 // Record this newly allocated object 717 void new_instance(NewInstance* object) { 718 int index = _newobjects.length(); 719 _newobjects.append(object); 720 if (_fields.at_grow(index, NULL) == NULL) { 721 _fields.at_put(index, new FieldBuffer()); 722 } else { 723 _fields.at(index)->kill(); 724 } 725 } 726 727 void store_value(Value value) { 728 int index = _newobjects.find(value); 729 if (index != -1) { 730 // stored a newly allocated object into another object. 731 // Assume we've lost track of it as separate slice of memory. 732 // We could do better by keeping track of whether individual 733 // fields could alias each other. 734 _newobjects.remove_at(index); 735 // pull out the field info and store it at the end up the list 736 // of field info list to be reused later. 737 _fields.append(_fields.at(index)); 738 _fields.remove_at(index); 739 } 740 } 741 742 void kill() { 743 _newobjects.trunc_to(0); 744 _objects.trunc_to(0); 745 _values.kill(); 746 } 747 }; 748 749 750 // Implementation of GraphBuilder's ScopeData 751 752 GraphBuilder::ScopeData::ScopeData(ScopeData* parent) 753 : _parent(parent) 754 , _bci2block(NULL) 755 , _scope(NULL) 756 , _has_handler(false) 757 , _stream(NULL) 758 , _work_list(NULL) 759 , _caller_stack_size(-1) 760 , _continuation(NULL) 761 , _parsing_jsr(false) 762 , _jsr_xhandlers(NULL) 763 , _num_returns(0) 764 , _cleanup_block(NULL) 765 , _cleanup_return_prev(NULL) 766 , _cleanup_state(NULL) 767 , _ignore_return(false) 768 { 769 if (parent != NULL) { 770 _max_inline_size = (intx) ((float) NestedInliningSizeRatio * (float) parent->max_inline_size() / 100.0f); 771 } else { 772 _max_inline_size = C1MaxInlineSize; 773 } 774 if (_max_inline_size < C1MaxTrivialSize) { 775 _max_inline_size = C1MaxTrivialSize; 776 } 777 } 778 779 780 void GraphBuilder::kill_all() { 781 if (UseLocalValueNumbering) { 782 vmap()->kill_all(); 783 } 784 _memory->kill(); 785 } 786 787 788 BlockBegin* GraphBuilder::ScopeData::block_at(int bci) { 789 if (parsing_jsr()) { 790 // It is necessary to clone all blocks associated with a 791 // subroutine, including those for exception handlers in the scope 792 // of the method containing the jsr (because those exception 793 // handlers may contain ret instructions in some cases). 794 BlockBegin* block = bci2block()->at(bci); 795 if (block != NULL && block == parent()->bci2block()->at(bci)) { 796 BlockBegin* new_block = new BlockBegin(block->bci()); 797 if (PrintInitialBlockList) { 798 tty->print_cr("CFG: cloned block %d (bci %d) as block %d for jsr", 799 block->block_id(), block->bci(), new_block->block_id()); 800 } 801 // copy data from cloned blocked 802 new_block->set_depth_first_number(block->depth_first_number()); 803 if (block->is_set(BlockBegin::parser_loop_header_flag)) new_block->set(BlockBegin::parser_loop_header_flag); 804 // Preserve certain flags for assertion checking 805 if (block->is_set(BlockBegin::subroutine_entry_flag)) new_block->set(BlockBegin::subroutine_entry_flag); 806 if (block->is_set(BlockBegin::exception_entry_flag)) new_block->set(BlockBegin::exception_entry_flag); 807 808 // copy was_visited_flag to allow early detection of bailouts 809 // if a block that is used in a jsr has already been visited before, 810 // it is shared between the normal control flow and a subroutine 811 // BlockBegin::try_merge returns false when the flag is set, this leads 812 // to a compilation bailout 813 if (block->is_set(BlockBegin::was_visited_flag)) new_block->set(BlockBegin::was_visited_flag); 814 815 bci2block()->at_put(bci, new_block); 816 block = new_block; 817 } 818 return block; 819 } else { 820 return bci2block()->at(bci); 821 } 822 } 823 824 825 XHandlers* GraphBuilder::ScopeData::xhandlers() const { 826 if (_jsr_xhandlers == NULL) { 827 assert(!parsing_jsr(), ""); 828 return scope()->xhandlers(); 829 } 830 assert(parsing_jsr(), ""); 831 return _jsr_xhandlers; 832 } 833 834 835 void GraphBuilder::ScopeData::set_scope(IRScope* scope) { 836 _scope = scope; 837 bool parent_has_handler = false; 838 if (parent() != NULL) { 839 parent_has_handler = parent()->has_handler(); 840 } 841 _has_handler = parent_has_handler || scope->xhandlers()->has_handlers(); 842 } 843 844 845 void GraphBuilder::ScopeData::set_inline_cleanup_info(BlockBegin* block, 846 Instruction* return_prev, 847 ValueStack* return_state) { 848 _cleanup_block = block; 849 _cleanup_return_prev = return_prev; 850 _cleanup_state = return_state; 851 } 852 853 854 void GraphBuilder::ScopeData::add_to_work_list(BlockBegin* block) { 855 if (_work_list == NULL) { 856 _work_list = new BlockList(); 857 } 858 859 if (!block->is_set(BlockBegin::is_on_work_list_flag)) { 860 // Do not start parsing the continuation block while in a 861 // sub-scope 862 if (parsing_jsr()) { 863 if (block == jsr_continuation()) { 864 return; 865 } 866 } else { 867 if (block == continuation()) { 868 return; 869 } 870 } 871 block->set(BlockBegin::is_on_work_list_flag); 872 _work_list->push(block); 873 874 sort_top_into_worklist(_work_list, block); 875 } 876 } 877 878 879 void GraphBuilder::sort_top_into_worklist(BlockList* worklist, BlockBegin* top) { 880 assert(worklist->top() == top, ""); 881 // sort block descending into work list 882 const int dfn = top->depth_first_number(); 883 assert(dfn != -1, "unknown depth first number"); 884 int i = worklist->length()-2; 885 while (i >= 0) { 886 BlockBegin* b = worklist->at(i); 887 if (b->depth_first_number() < dfn) { 888 worklist->at_put(i+1, b); 889 } else { 890 break; 891 } 892 i --; 893 } 894 if (i >= -1) worklist->at_put(i + 1, top); 895 } 896 897 898 BlockBegin* GraphBuilder::ScopeData::remove_from_work_list() { 899 if (is_work_list_empty()) { 900 return NULL; 901 } 902 return _work_list->pop(); 903 } 904 905 906 bool GraphBuilder::ScopeData::is_work_list_empty() const { 907 return (_work_list == NULL || _work_list->length() == 0); 908 } 909 910 911 void GraphBuilder::ScopeData::setup_jsr_xhandlers() { 912 assert(parsing_jsr(), ""); 913 // clone all the exception handlers from the scope 914 XHandlers* handlers = new XHandlers(scope()->xhandlers()); 915 const int n = handlers->length(); 916 for (int i = 0; i < n; i++) { 917 // The XHandlers need to be adjusted to dispatch to the cloned 918 // handler block instead of the default one but the synthetic 919 // unlocker needs to be handled specially. The synthetic unlocker 920 // should be left alone since there can be only one and all code 921 // should dispatch to the same one. 922 XHandler* h = handlers->handler_at(i); 923 assert(h->handler_bci() != SynchronizationEntryBCI, "must be real"); 924 h->set_entry_block(block_at(h->handler_bci())); 925 } 926 _jsr_xhandlers = handlers; 927 } 928 929 930 int GraphBuilder::ScopeData::num_returns() { 931 if (parsing_jsr()) { 932 return parent()->num_returns(); 933 } 934 return _num_returns; 935 } 936 937 938 void GraphBuilder::ScopeData::incr_num_returns() { 939 if (parsing_jsr()) { 940 parent()->incr_num_returns(); 941 } else { 942 ++_num_returns; 943 } 944 } 945 946 947 // Implementation of GraphBuilder 948 949 #define INLINE_BAILOUT(msg) { inline_bailout(msg); return false; } 950 951 952 void GraphBuilder::load_constant() { 953 ciConstant con = stream()->get_constant(); 954 if (con.is_valid()) { 955 ValueType* t = illegalType; 956 ValueStack* patch_state = NULL; 957 switch (con.basic_type()) { 958 case T_BOOLEAN: t = new IntConstant (con.as_boolean()); break; 959 case T_BYTE : t = new IntConstant (con.as_byte ()); break; 960 case T_CHAR : t = new IntConstant (con.as_char ()); break; 961 case T_SHORT : t = new IntConstant (con.as_short ()); break; 962 case T_INT : t = new IntConstant (con.as_int ()); break; 963 case T_LONG : t = new LongConstant (con.as_long ()); break; 964 case T_FLOAT : t = new FloatConstant (con.as_float ()); break; 965 case T_DOUBLE : t = new DoubleConstant(con.as_double ()); break; 966 case T_ARRAY : // fall-through 967 case T_OBJECT : { 968 ciObject* obj = con.as_object(); 969 if (!obj->is_loaded() || (PatchALot && !stream()->is_string_constant())) { 970 // A Class, MethodType, MethodHandle, Dynamic, or String. 971 patch_state = copy_state_before(); 972 t = new ObjectConstant(obj); 973 } else { 974 // Might be a Class, MethodType, MethodHandle, or Dynamic constant 975 // result, which might turn out to be an array. 976 if (obj->is_null_object()) { 977 t = objectNull; 978 } else if (obj->is_array()) { 979 t = new ArrayConstant(obj->as_array()); 980 } else { 981 t = new InstanceConstant(obj->as_instance()); 982 } 983 } 984 break; 985 } 986 default: ShouldNotReachHere(); 987 } 988 Value x; 989 if (patch_state != NULL) { 990 // Arbitrary memory effects from running BSM or class loading (using custom loader) during linkage. 991 bool kills_memory = stream()->is_dynamic_constant() || 992 (!stream()->is_string_constant() && !method()->holder()->has_trusted_loader()); 993 x = new Constant(t, patch_state, kills_memory); 994 } else { 995 x = new Constant(t); 996 } 997 998 // Unbox the value at runtime, if needed. 999 // ConstantDynamic entry can be of a primitive type, but it is cached in boxed form. 1000 if (patch_state != NULL) { 1001 int index = stream()->get_constant_pool_index(); 1002 BasicType type = stream()->get_basic_type_for_constant_at(index); 1003 if (is_java_primitive(type)) { 1004 ciInstanceKlass* box_klass = ciEnv::current()->get_box_klass_for_primitive_type(type); 1005 assert(box_klass->is_loaded(), "sanity"); 1006 int offset = java_lang_boxing_object::value_offset(type); 1007 ciField* value_field = box_klass->get_field_by_offset(offset, false /*is_static*/); 1008 x = new LoadField(append(x), offset, value_field, false /*is_static*/, patch_state, false /*needs_patching*/); 1009 t = as_ValueType(type); 1010 } else { 1011 assert(is_reference_type(type), "not a reference: %s", type2name(type)); 1012 } 1013 } 1014 1015 push(t, append(x)); 1016 } else { 1017 BAILOUT("could not resolve a constant"); 1018 } 1019 } 1020 1021 1022 void GraphBuilder::load_local(ValueType* type, int index) { 1023 Value x = state()->local_at(index); 1024 assert(x != NULL && !x->type()->is_illegal(), "access of illegal local variable"); 1025 push(type, x); 1026 } 1027 1028 1029 void GraphBuilder::store_local(ValueType* type, int index) { 1030 Value x = pop(type); 1031 store_local(state(), x, index); 1032 } 1033 1034 1035 void GraphBuilder::store_local(ValueStack* state, Value x, int index) { 1036 if (parsing_jsr()) { 1037 // We need to do additional tracking of the location of the return 1038 // address for jsrs since we don't handle arbitrary jsr/ret 1039 // constructs. Here we are figuring out in which circumstances we 1040 // need to bail out. 1041 if (x->type()->is_address()) { 1042 scope_data()->set_jsr_return_address_local(index); 1043 1044 // Also check parent jsrs (if any) at this time to see whether 1045 // they are using this local. We don't handle skipping over a 1046 // ret. 1047 for (ScopeData* cur_scope_data = scope_data()->parent(); 1048 cur_scope_data != NULL && cur_scope_data->parsing_jsr() && cur_scope_data->scope() == scope(); 1049 cur_scope_data = cur_scope_data->parent()) { 1050 if (cur_scope_data->jsr_return_address_local() == index) { 1051 BAILOUT("subroutine overwrites return address from previous subroutine"); 1052 } 1053 } 1054 } else if (index == scope_data()->jsr_return_address_local()) { 1055 scope_data()->set_jsr_return_address_local(-1); 1056 } 1057 } 1058 1059 state->store_local(index, round_fp(x)); 1060 } 1061 1062 1063 void GraphBuilder::load_indexed(BasicType type) { 1064 // In case of in block code motion in range check elimination 1065 ValueStack* state_before = copy_state_indexed_access(); 1066 compilation()->set_has_access_indexed(true); 1067 Value index = ipop(); 1068 Value array = apop(); 1069 Value length = NULL; 1070 if (CSEArrayLength || 1071 (array->as_Constant() != NULL) || 1072 (array->as_AccessField() && array->as_AccessField()->field()->is_constant()) || 1073 (array->as_NewArray() && array->as_NewArray()->length() && array->as_NewArray()->length()->type()->is_constant()) || 1074 (array->as_NewMultiArray() && array->as_NewMultiArray()->dims()->at(0)->type()->is_constant())) { 1075 length = append(new ArrayLength(array, state_before)); 1076 } 1077 push(as_ValueType(type), append(new LoadIndexed(array, index, length, type, state_before))); 1078 } 1079 1080 1081 void GraphBuilder::store_indexed(BasicType type) { 1082 // In case of in block code motion in range check elimination 1083 ValueStack* state_before = copy_state_indexed_access(); 1084 compilation()->set_has_access_indexed(true); 1085 Value value = pop(as_ValueType(type)); 1086 Value index = ipop(); 1087 Value array = apop(); 1088 Value length = NULL; 1089 if (CSEArrayLength || 1090 (array->as_Constant() != NULL) || 1091 (array->as_AccessField() && array->as_AccessField()->field()->is_constant()) || 1092 (array->as_NewArray() && array->as_NewArray()->length() && array->as_NewArray()->length()->type()->is_constant()) || 1093 (array->as_NewMultiArray() && array->as_NewMultiArray()->dims()->at(0)->type()->is_constant())) { 1094 length = append(new ArrayLength(array, state_before)); 1095 } 1096 ciType* array_type = array->declared_type(); 1097 bool check_boolean = false; 1098 if (array_type != NULL) { 1099 if (array_type->is_loaded() && 1100 array_type->as_array_klass()->element_type()->basic_type() == T_BOOLEAN) { 1101 assert(type == T_BYTE, "boolean store uses bastore"); 1102 Value mask = append(new Constant(new IntConstant(1))); 1103 value = append(new LogicOp(Bytecodes::_iand, value, mask)); 1104 } 1105 } else if (type == T_BYTE) { 1106 check_boolean = true; 1107 } 1108 StoreIndexed* result = new StoreIndexed(array, index, length, type, value, state_before, check_boolean); 1109 append(result); 1110 _memory->store_value(value); 1111 1112 if (type == T_OBJECT && is_profiling()) { 1113 // Note that we'd collect profile data in this method if we wanted it. 1114 compilation()->set_would_profile(true); 1115 1116 if (profile_checkcasts()) { 1117 result->set_profiled_method(method()); 1118 result->set_profiled_bci(bci()); 1119 result->set_should_profile(true); 1120 } 1121 } 1122 } 1123 1124 1125 void GraphBuilder::stack_op(Bytecodes::Code code) { 1126 switch (code) { 1127 case Bytecodes::_pop: 1128 { state()->raw_pop(); 1129 } 1130 break; 1131 case Bytecodes::_pop2: 1132 { state()->raw_pop(); 1133 state()->raw_pop(); 1134 } 1135 break; 1136 case Bytecodes::_dup: 1137 { Value w = state()->raw_pop(); 1138 state()->raw_push(w); 1139 state()->raw_push(w); 1140 } 1141 break; 1142 case Bytecodes::_dup_x1: 1143 { Value w1 = state()->raw_pop(); 1144 Value w2 = state()->raw_pop(); 1145 state()->raw_push(w1); 1146 state()->raw_push(w2); 1147 state()->raw_push(w1); 1148 } 1149 break; 1150 case Bytecodes::_dup_x2: 1151 { Value w1 = state()->raw_pop(); 1152 Value w2 = state()->raw_pop(); 1153 Value w3 = state()->raw_pop(); 1154 state()->raw_push(w1); 1155 state()->raw_push(w3); 1156 state()->raw_push(w2); 1157 state()->raw_push(w1); 1158 } 1159 break; 1160 case Bytecodes::_dup2: 1161 { Value w1 = state()->raw_pop(); 1162 Value w2 = state()->raw_pop(); 1163 state()->raw_push(w2); 1164 state()->raw_push(w1); 1165 state()->raw_push(w2); 1166 state()->raw_push(w1); 1167 } 1168 break; 1169 case Bytecodes::_dup2_x1: 1170 { Value w1 = state()->raw_pop(); 1171 Value w2 = state()->raw_pop(); 1172 Value w3 = state()->raw_pop(); 1173 state()->raw_push(w2); 1174 state()->raw_push(w1); 1175 state()->raw_push(w3); 1176 state()->raw_push(w2); 1177 state()->raw_push(w1); 1178 } 1179 break; 1180 case Bytecodes::_dup2_x2: 1181 { Value w1 = state()->raw_pop(); 1182 Value w2 = state()->raw_pop(); 1183 Value w3 = state()->raw_pop(); 1184 Value w4 = state()->raw_pop(); 1185 state()->raw_push(w2); 1186 state()->raw_push(w1); 1187 state()->raw_push(w4); 1188 state()->raw_push(w3); 1189 state()->raw_push(w2); 1190 state()->raw_push(w1); 1191 } 1192 break; 1193 case Bytecodes::_swap: 1194 { Value w1 = state()->raw_pop(); 1195 Value w2 = state()->raw_pop(); 1196 state()->raw_push(w1); 1197 state()->raw_push(w2); 1198 } 1199 break; 1200 default: 1201 ShouldNotReachHere(); 1202 break; 1203 } 1204 } 1205 1206 1207 void GraphBuilder::arithmetic_op(ValueType* type, Bytecodes::Code code, ValueStack* state_before) { 1208 Value y = pop(type); 1209 Value x = pop(type); 1210 Value res = new ArithmeticOp(code, x, y, state_before); 1211 // Note: currently single-precision floating-point rounding on Intel is handled at the LIRGenerator level 1212 res = append(res); 1213 res = round_fp(res); 1214 push(type, res); 1215 } 1216 1217 1218 void GraphBuilder::negate_op(ValueType* type) { 1219 push(type, append(new NegateOp(pop(type)))); 1220 } 1221 1222 1223 void GraphBuilder::shift_op(ValueType* type, Bytecodes::Code code) { 1224 Value s = ipop(); 1225 Value x = pop(type); 1226 // try to simplify 1227 // Note: This code should go into the canonicalizer as soon as it can 1228 // can handle canonicalized forms that contain more than one node. 1229 if (CanonicalizeNodes && code == Bytecodes::_iushr) { 1230 // pattern: x >>> s 1231 IntConstant* s1 = s->type()->as_IntConstant(); 1232 if (s1 != NULL) { 1233 // pattern: x >>> s1, with s1 constant 1234 ShiftOp* l = x->as_ShiftOp(); 1235 if (l != NULL && l->op() == Bytecodes::_ishl) { 1236 // pattern: (a << b) >>> s1 1237 IntConstant* s0 = l->y()->type()->as_IntConstant(); 1238 if (s0 != NULL) { 1239 // pattern: (a << s0) >>> s1 1240 const int s0c = s0->value() & 0x1F; // only the low 5 bits are significant for shifts 1241 const int s1c = s1->value() & 0x1F; // only the low 5 bits are significant for shifts 1242 if (s0c == s1c) { 1243 if (s0c == 0) { 1244 // pattern: (a << 0) >>> 0 => simplify to: a 1245 ipush(l->x()); 1246 } else { 1247 // pattern: (a << s0c) >>> s0c => simplify to: a & m, with m constant 1248 assert(0 < s0c && s0c < BitsPerInt, "adjust code below to handle corner cases"); 1249 const int m = (1 << (BitsPerInt - s0c)) - 1; 1250 Value s = append(new Constant(new IntConstant(m))); 1251 ipush(append(new LogicOp(Bytecodes::_iand, l->x(), s))); 1252 } 1253 return; 1254 } 1255 } 1256 } 1257 } 1258 } 1259 // could not simplify 1260 push(type, append(new ShiftOp(code, x, s))); 1261 } 1262 1263 1264 void GraphBuilder::logic_op(ValueType* type, Bytecodes::Code code) { 1265 Value y = pop(type); 1266 Value x = pop(type); 1267 push(type, append(new LogicOp(code, x, y))); 1268 } 1269 1270 1271 void GraphBuilder::compare_op(ValueType* type, Bytecodes::Code code) { 1272 ValueStack* state_before = copy_state_before(); 1273 Value y = pop(type); 1274 Value x = pop(type); 1275 ipush(append(new CompareOp(code, x, y, state_before))); 1276 } 1277 1278 1279 void GraphBuilder::convert(Bytecodes::Code op, BasicType from, BasicType to) { 1280 push(as_ValueType(to), append(new Convert(op, pop(as_ValueType(from)), as_ValueType(to)))); 1281 } 1282 1283 1284 void GraphBuilder::increment() { 1285 int index = stream()->get_index(); 1286 int delta = stream()->is_wide() ? (signed short)Bytes::get_Java_u2(stream()->cur_bcp() + 4) : (signed char)(stream()->cur_bcp()[2]); 1287 load_local(intType, index); 1288 ipush(append(new Constant(new IntConstant(delta)))); 1289 arithmetic_op(intType, Bytecodes::_iadd); 1290 store_local(intType, index); 1291 } 1292 1293 1294 void GraphBuilder::_goto(int from_bci, int to_bci) { 1295 Goto *x = new Goto(block_at(to_bci), to_bci <= from_bci); 1296 if (is_profiling()) { 1297 compilation()->set_would_profile(true); 1298 x->set_profiled_bci(bci()); 1299 if (profile_branches()) { 1300 x->set_profiled_method(method()); 1301 x->set_should_profile(true); 1302 } 1303 } 1304 append(x); 1305 } 1306 1307 1308 void GraphBuilder::if_node(Value x, If::Condition cond, Value y, ValueStack* state_before) { 1309 BlockBegin* tsux = block_at(stream()->get_dest()); 1310 BlockBegin* fsux = block_at(stream()->next_bci()); 1311 bool is_bb = tsux->bci() < stream()->cur_bci() || fsux->bci() < stream()->cur_bci(); 1312 // In case of loop invariant code motion or predicate insertion 1313 // before the body of a loop the state is needed 1314 Instruction *i = append(new If(x, cond, false, y, tsux, fsux, (is_bb || compilation()->is_optimistic()) ? state_before : NULL, is_bb)); 1315 1316 assert(i->as_Goto() == NULL || 1317 (i->as_Goto()->sux_at(0) == tsux && i->as_Goto()->is_safepoint() == tsux->bci() < stream()->cur_bci()) || 1318 (i->as_Goto()->sux_at(0) == fsux && i->as_Goto()->is_safepoint() == fsux->bci() < stream()->cur_bci()), 1319 "safepoint state of Goto returned by canonicalizer incorrect"); 1320 1321 if (is_profiling()) { 1322 If* if_node = i->as_If(); 1323 if (if_node != NULL) { 1324 // Note that we'd collect profile data in this method if we wanted it. 1325 compilation()->set_would_profile(true); 1326 // At level 2 we need the proper bci to count backedges 1327 if_node->set_profiled_bci(bci()); 1328 if (profile_branches()) { 1329 // Successors can be rotated by the canonicalizer, check for this case. 1330 if_node->set_profiled_method(method()); 1331 if_node->set_should_profile(true); 1332 if (if_node->tsux() == fsux) { 1333 if_node->set_swapped(true); 1334 } 1335 } 1336 return; 1337 } 1338 1339 // Check if this If was reduced to Goto. 1340 Goto *goto_node = i->as_Goto(); 1341 if (goto_node != NULL) { 1342 compilation()->set_would_profile(true); 1343 goto_node->set_profiled_bci(bci()); 1344 if (profile_branches()) { 1345 goto_node->set_profiled_method(method()); 1346 goto_node->set_should_profile(true); 1347 // Find out which successor is used. 1348 if (goto_node->default_sux() == tsux) { 1349 goto_node->set_direction(Goto::taken); 1350 } else if (goto_node->default_sux() == fsux) { 1351 goto_node->set_direction(Goto::not_taken); 1352 } else { 1353 ShouldNotReachHere(); 1354 } 1355 } 1356 return; 1357 } 1358 } 1359 } 1360 1361 1362 void GraphBuilder::if_zero(ValueType* type, If::Condition cond) { 1363 Value y = append(new Constant(intZero)); 1364 ValueStack* state_before = copy_state_before(); 1365 Value x = ipop(); 1366 if_node(x, cond, y, state_before); 1367 } 1368 1369 1370 void GraphBuilder::if_null(ValueType* type, If::Condition cond) { 1371 Value y = append(new Constant(objectNull)); 1372 ValueStack* state_before = copy_state_before(); 1373 Value x = apop(); 1374 if_node(x, cond, y, state_before); 1375 } 1376 1377 1378 void GraphBuilder::if_same(ValueType* type, If::Condition cond) { 1379 ValueStack* state_before = copy_state_before(); 1380 Value y = pop(type); 1381 Value x = pop(type); 1382 if_node(x, cond, y, state_before); 1383 } 1384 1385 1386 void GraphBuilder::jsr(int dest) { 1387 // We only handle well-formed jsrs (those which are "block-structured"). 1388 // If the bytecodes are strange (jumping out of a jsr block) then we 1389 // might end up trying to re-parse a block containing a jsr which 1390 // has already been activated. Watch for this case and bail out. 1391 for (ScopeData* cur_scope_data = scope_data(); 1392 cur_scope_data != NULL && cur_scope_data->parsing_jsr() && cur_scope_data->scope() == scope(); 1393 cur_scope_data = cur_scope_data->parent()) { 1394 if (cur_scope_data->jsr_entry_bci() == dest) { 1395 BAILOUT("too-complicated jsr/ret structure"); 1396 } 1397 } 1398 1399 push(addressType, append(new Constant(new AddressConstant(next_bci())))); 1400 if (!try_inline_jsr(dest)) { 1401 return; // bailed out while parsing and inlining subroutine 1402 } 1403 } 1404 1405 1406 void GraphBuilder::ret(int local_index) { 1407 if (!parsing_jsr()) BAILOUT("ret encountered while not parsing subroutine"); 1408 1409 if (local_index != scope_data()->jsr_return_address_local()) { 1410 BAILOUT("can not handle complicated jsr/ret constructs"); 1411 } 1412 1413 // Rets simply become (NON-SAFEPOINT) gotos to the jsr continuation 1414 append(new Goto(scope_data()->jsr_continuation(), false)); 1415 } 1416 1417 1418 void GraphBuilder::table_switch() { 1419 Bytecode_tableswitch sw(stream()); 1420 const int l = sw.length(); 1421 if (CanonicalizeNodes && l == 1 && compilation()->env()->comp_level() != CompLevel_full_profile) { 1422 // total of 2 successors => use If instead of switch 1423 // Note: This code should go into the canonicalizer as soon as it can 1424 // can handle canonicalized forms that contain more than one node. 1425 Value key = append(new Constant(new IntConstant(sw.low_key()))); 1426 BlockBegin* tsux = block_at(bci() + sw.dest_offset_at(0)); 1427 BlockBegin* fsux = block_at(bci() + sw.default_offset()); 1428 bool is_bb = tsux->bci() < bci() || fsux->bci() < bci(); 1429 // In case of loop invariant code motion or predicate insertion 1430 // before the body of a loop the state is needed 1431 ValueStack* state_before = copy_state_if_bb(is_bb); 1432 append(new If(ipop(), If::eql, true, key, tsux, fsux, state_before, is_bb)); 1433 } else { 1434 // collect successors 1435 BlockList* sux = new BlockList(l + 1, NULL); 1436 int i; 1437 bool has_bb = false; 1438 for (i = 0; i < l; i++) { 1439 sux->at_put(i, block_at(bci() + sw.dest_offset_at(i))); 1440 if (sw.dest_offset_at(i) < 0) has_bb = true; 1441 } 1442 // add default successor 1443 if (sw.default_offset() < 0) has_bb = true; 1444 sux->at_put(i, block_at(bci() + sw.default_offset())); 1445 // In case of loop invariant code motion or predicate insertion 1446 // before the body of a loop the state is needed 1447 ValueStack* state_before = copy_state_if_bb(has_bb); 1448 Instruction* res = append(new TableSwitch(ipop(), sux, sw.low_key(), state_before, has_bb)); 1449 #ifdef ASSERT 1450 if (res->as_Goto()) { 1451 for (i = 0; i < l; i++) { 1452 if (sux->at(i) == res->as_Goto()->sux_at(0)) { 1453 assert(res->as_Goto()->is_safepoint() == sw.dest_offset_at(i) < 0, "safepoint state of Goto returned by canonicalizer incorrect"); 1454 } 1455 } 1456 } 1457 #endif 1458 } 1459 } 1460 1461 1462 void GraphBuilder::lookup_switch() { 1463 Bytecode_lookupswitch sw(stream()); 1464 const int l = sw.number_of_pairs(); 1465 if (CanonicalizeNodes && l == 1 && compilation()->env()->comp_level() != CompLevel_full_profile) { 1466 // total of 2 successors => use If instead of switch 1467 // Note: This code should go into the canonicalizer as soon as it can 1468 // can handle canonicalized forms that contain more than one node. 1469 // simplify to If 1470 LookupswitchPair pair = sw.pair_at(0); 1471 Value key = append(new Constant(new IntConstant(pair.match()))); 1472 BlockBegin* tsux = block_at(bci() + pair.offset()); 1473 BlockBegin* fsux = block_at(bci() + sw.default_offset()); 1474 bool is_bb = tsux->bci() < bci() || fsux->bci() < bci(); 1475 // In case of loop invariant code motion or predicate insertion 1476 // before the body of a loop the state is needed 1477 ValueStack* state_before = copy_state_if_bb(is_bb);; 1478 append(new If(ipop(), If::eql, true, key, tsux, fsux, state_before, is_bb)); 1479 } else { 1480 // collect successors & keys 1481 BlockList* sux = new BlockList(l + 1, NULL); 1482 intArray* keys = new intArray(l, l, 0); 1483 int i; 1484 bool has_bb = false; 1485 for (i = 0; i < l; i++) { 1486 LookupswitchPair pair = sw.pair_at(i); 1487 if (pair.offset() < 0) has_bb = true; 1488 sux->at_put(i, block_at(bci() + pair.offset())); 1489 keys->at_put(i, pair.match()); 1490 } 1491 // add default successor 1492 if (sw.default_offset() < 0) has_bb = true; 1493 sux->at_put(i, block_at(bci() + sw.default_offset())); 1494 // In case of loop invariant code motion or predicate insertion 1495 // before the body of a loop the state is needed 1496 ValueStack* state_before = copy_state_if_bb(has_bb); 1497 Instruction* res = append(new LookupSwitch(ipop(), sux, keys, state_before, has_bb)); 1498 #ifdef ASSERT 1499 if (res->as_Goto()) { 1500 for (i = 0; i < l; i++) { 1501 if (sux->at(i) == res->as_Goto()->sux_at(0)) { 1502 assert(res->as_Goto()->is_safepoint() == sw.pair_at(i).offset() < 0, "safepoint state of Goto returned by canonicalizer incorrect"); 1503 } 1504 } 1505 } 1506 #endif 1507 } 1508 } 1509 1510 void GraphBuilder::call_register_finalizer() { 1511 // If the receiver requires finalization then emit code to perform 1512 // the registration on return. 1513 1514 // Gather some type information about the receiver 1515 Value receiver = state()->local_at(0); 1516 assert(receiver != NULL, "must have a receiver"); 1517 ciType* declared_type = receiver->declared_type(); 1518 ciType* exact_type = receiver->exact_type(); 1519 if (exact_type == NULL && 1520 receiver->as_Local() && 1521 receiver->as_Local()->java_index() == 0) { 1522 ciInstanceKlass* ik = compilation()->method()->holder(); 1523 if (ik->is_final()) { 1524 exact_type = ik; 1525 } else if (UseCHA && !(ik->has_subklass() || ik->is_interface())) { 1526 // test class is leaf class 1527 compilation()->dependency_recorder()->assert_leaf_type(ik); 1528 exact_type = ik; 1529 } else { 1530 declared_type = ik; 1531 } 1532 } 1533 1534 // see if we know statically that registration isn't required 1535 bool needs_check = true; 1536 if (exact_type != NULL) { 1537 needs_check = exact_type->as_instance_klass()->has_finalizer(); 1538 } else if (declared_type != NULL) { 1539 ciInstanceKlass* ik = declared_type->as_instance_klass(); 1540 if (!Dependencies::has_finalizable_subclass(ik)) { 1541 compilation()->dependency_recorder()->assert_has_no_finalizable_subclasses(ik); 1542 needs_check = false; 1543 } 1544 } 1545 1546 if (needs_check) { 1547 // Perform the registration of finalizable objects. 1548 ValueStack* state_before = copy_state_for_exception(); 1549 load_local(objectType, 0); 1550 append_split(new Intrinsic(voidType, vmIntrinsics::_Object_init, 1551 state()->pop_arguments(1), 1552 true, state_before, true)); 1553 } 1554 } 1555 1556 1557 void GraphBuilder::method_return(Value x, bool ignore_return) { 1558 if (RegisterFinalizersAtInit && 1559 method()->intrinsic_id() == vmIntrinsics::_Object_init) { 1560 call_register_finalizer(); 1561 } 1562 1563 // The conditions for a memory barrier are described in Parse::do_exits(). 1564 bool need_mem_bar = false; 1565 if (method()->name() == ciSymbols::object_initializer_name() && 1566 (scope()->wrote_final() || 1567 (AlwaysSafeConstructors && scope()->wrote_fields()) || 1568 (support_IRIW_for_not_multiple_copy_atomic_cpu && scope()->wrote_volatile()))) { 1569 need_mem_bar = true; 1570 } 1571 1572 BasicType bt = method()->return_type()->basic_type(); 1573 switch (bt) { 1574 case T_BYTE: 1575 { 1576 Value shift = append(new Constant(new IntConstant(24))); 1577 x = append(new ShiftOp(Bytecodes::_ishl, x, shift)); 1578 x = append(new ShiftOp(Bytecodes::_ishr, x, shift)); 1579 break; 1580 } 1581 case T_SHORT: 1582 { 1583 Value shift = append(new Constant(new IntConstant(16))); 1584 x = append(new ShiftOp(Bytecodes::_ishl, x, shift)); 1585 x = append(new ShiftOp(Bytecodes::_ishr, x, shift)); 1586 break; 1587 } 1588 case T_CHAR: 1589 { 1590 Value mask = append(new Constant(new IntConstant(0xFFFF))); 1591 x = append(new LogicOp(Bytecodes::_iand, x, mask)); 1592 break; 1593 } 1594 case T_BOOLEAN: 1595 { 1596 Value mask = append(new Constant(new IntConstant(1))); 1597 x = append(new LogicOp(Bytecodes::_iand, x, mask)); 1598 break; 1599 } 1600 default: 1601 break; 1602 } 1603 1604 // Check to see whether we are inlining. If so, Return 1605 // instructions become Gotos to the continuation point. 1606 if (continuation() != NULL) { 1607 1608 int invoke_bci = state()->caller_state()->bci(); 1609 1610 if (x != NULL && !ignore_return) { 1611 ciMethod* caller = state()->scope()->caller()->method(); 1612 Bytecodes::Code invoke_raw_bc = caller->raw_code_at_bci(invoke_bci); 1613 if (invoke_raw_bc == Bytecodes::_invokehandle || invoke_raw_bc == Bytecodes::_invokedynamic) { 1614 ciType* declared_ret_type = caller->get_declared_signature_at_bci(invoke_bci)->return_type(); 1615 if (declared_ret_type->is_klass() && x->exact_type() == NULL && 1616 x->declared_type() != declared_ret_type && declared_ret_type != compilation()->env()->Object_klass()) { 1617 x = append(new TypeCast(declared_ret_type->as_klass(), x, copy_state_before())); 1618 } 1619 } 1620 } 1621 1622 assert(!method()->is_synchronized() || InlineSynchronizedMethods, "can not inline synchronized methods yet"); 1623 1624 if (compilation()->env()->dtrace_method_probes()) { 1625 // Report exit from inline methods 1626 Values* args = new Values(1); 1627 args->push(append(new Constant(new MethodConstant(method())))); 1628 append(new RuntimeCall(voidType, "dtrace_method_exit", CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), args)); 1629 } 1630 1631 // If the inlined method is synchronized, the monitor must be 1632 // released before we jump to the continuation block. 1633 if (method()->is_synchronized()) { 1634 assert(state()->locks_size() == 1, "receiver must be locked here"); 1635 monitorexit(state()->lock_at(0), SynchronizationEntryBCI); 1636 } 1637 1638 if (need_mem_bar) { 1639 append(new MemBar(lir_membar_storestore)); 1640 } 1641 1642 // State at end of inlined method is the state of the caller 1643 // without the method parameters on stack, including the 1644 // return value, if any, of the inlined method on operand stack. 1645 set_state(state()->caller_state()->copy_for_parsing()); 1646 if (x != NULL) { 1647 if (!ignore_return) { 1648 state()->push(x->type(), x); 1649 } 1650 if (profile_return() && x->type()->is_object_kind()) { 1651 ciMethod* caller = state()->scope()->method(); 1652 profile_return_type(x, method(), caller, invoke_bci); 1653 } 1654 } 1655 Goto* goto_callee = new Goto(continuation(), false); 1656 1657 // See whether this is the first return; if so, store off some 1658 // of the state for later examination 1659 if (num_returns() == 0) { 1660 set_inline_cleanup_info(); 1661 } 1662 1663 // The current bci() is in the wrong scope, so use the bci() of 1664 // the continuation point. 1665 append_with_bci(goto_callee, scope_data()->continuation()->bci()); 1666 incr_num_returns(); 1667 return; 1668 } 1669 1670 state()->truncate_stack(0); 1671 if (method()->is_synchronized()) { 1672 // perform the unlocking before exiting the method 1673 Value receiver; 1674 if (!method()->is_static()) { 1675 receiver = _initial_state->local_at(0); 1676 } else { 1677 receiver = append(new Constant(new ClassConstant(method()->holder()))); 1678 } 1679 append_split(new MonitorExit(receiver, state()->unlock())); 1680 } 1681 1682 if (need_mem_bar) { 1683 append(new MemBar(lir_membar_storestore)); 1684 } 1685 1686 assert(!ignore_return, "Ignoring return value works only for inlining"); 1687 append(new Return(x)); 1688 } 1689 1690 Value GraphBuilder::make_constant(ciConstant field_value, ciField* field) { 1691 if (!field_value.is_valid()) return NULL; 1692 1693 BasicType field_type = field_value.basic_type(); 1694 ValueType* value = as_ValueType(field_value); 1695 1696 // Attach dimension info to stable arrays. 1697 if (FoldStableValues && 1698 field->is_stable() && field_type == T_ARRAY && !field_value.is_null_or_zero()) { 1699 ciArray* array = field_value.as_object()->as_array(); 1700 jint dimension = field->type()->as_array_klass()->dimension(); 1701 value = new StableArrayConstant(array, dimension); 1702 } 1703 1704 switch (field_type) { 1705 case T_ARRAY: 1706 case T_OBJECT: 1707 if (field_value.as_object()->should_be_constant()) { 1708 return new Constant(value); 1709 } 1710 return NULL; // Not a constant. 1711 default: 1712 return new Constant(value); 1713 } 1714 } 1715 1716 void GraphBuilder::access_field(Bytecodes::Code code) { 1717 bool will_link; 1718 ciField* field = stream()->get_field(will_link); 1719 ciInstanceKlass* holder = field->holder(); 1720 BasicType field_type = field->type()->basic_type(); 1721 ValueType* type = as_ValueType(field_type); 1722 // call will_link again to determine if the field is valid. 1723 const bool needs_patching = !holder->is_loaded() || 1724 !field->will_link(method(), code) || 1725 PatchALot; 1726 1727 ValueStack* state_before = NULL; 1728 if (!holder->is_initialized() || needs_patching) { 1729 // save state before instruction for debug info when 1730 // deoptimization happens during patching 1731 state_before = copy_state_before(); 1732 } 1733 1734 Value obj = NULL; 1735 if (code == Bytecodes::_getstatic || code == Bytecodes::_putstatic) { 1736 if (state_before != NULL) { 1737 // build a patching constant 1738 obj = new Constant(new InstanceConstant(holder->java_mirror()), state_before); 1739 } else { 1740 obj = new Constant(new InstanceConstant(holder->java_mirror())); 1741 } 1742 } 1743 1744 if (field->is_final() && (code == Bytecodes::_putfield)) { 1745 scope()->set_wrote_final(); 1746 } 1747 1748 if (code == Bytecodes::_putfield) { 1749 scope()->set_wrote_fields(); 1750 if (field->is_volatile()) { 1751 scope()->set_wrote_volatile(); 1752 } 1753 } 1754 1755 const int offset = !needs_patching ? field->offset() : -1; 1756 switch (code) { 1757 case Bytecodes::_getstatic: { 1758 // check for compile-time constants, i.e., initialized static final fields 1759 Value constant = NULL; 1760 if (field->is_static_constant() && !PatchALot) { 1761 ciConstant field_value = field->constant_value(); 1762 assert(!field->is_stable() || !field_value.is_null_or_zero(), 1763 "stable static w/ default value shouldn't be a constant"); 1764 constant = make_constant(field_value, field); 1765 } 1766 if (constant != NULL) { 1767 push(type, append(constant)); 1768 } else { 1769 if (state_before == NULL) { 1770 state_before = copy_state_for_exception(); 1771 } 1772 push(type, append(new LoadField(append(obj), offset, field, true, 1773 state_before, needs_patching))); 1774 } 1775 break; 1776 } 1777 case Bytecodes::_putstatic: { 1778 Value val = pop(type); 1779 if (state_before == NULL) { 1780 state_before = copy_state_for_exception(); 1781 } 1782 if (field->type()->basic_type() == T_BOOLEAN) { 1783 Value mask = append(new Constant(new IntConstant(1))); 1784 val = append(new LogicOp(Bytecodes::_iand, val, mask)); 1785 } 1786 append(new StoreField(append(obj), offset, field, val, true, state_before, needs_patching)); 1787 break; 1788 } 1789 case Bytecodes::_getfield: { 1790 // Check for compile-time constants, i.e., trusted final non-static fields. 1791 Value constant = NULL; 1792 obj = apop(); 1793 ObjectType* obj_type = obj->type()->as_ObjectType(); 1794 if (field->is_constant() && obj_type->is_constant() && !PatchALot) { 1795 ciObject* const_oop = obj_type->constant_value(); 1796 if (!const_oop->is_null_object() && const_oop->is_loaded()) { 1797 ciConstant field_value = field->constant_value_of(const_oop); 1798 if (field_value.is_valid()) { 1799 constant = make_constant(field_value, field); 1800 // For CallSite objects add a dependency for invalidation of the optimization. 1801 if (field->is_call_site_target()) { 1802 ciCallSite* call_site = const_oop->as_call_site(); 1803 if (!call_site->is_fully_initialized_constant_call_site()) { 1804 ciMethodHandle* target = field_value.as_object()->as_method_handle(); 1805 dependency_recorder()->assert_call_site_target_value(call_site, target); 1806 } 1807 } 1808 } 1809 } 1810 } 1811 if (constant != NULL) { 1812 push(type, append(constant)); 1813 } else { 1814 if (state_before == NULL) { 1815 state_before = copy_state_for_exception(); 1816 } 1817 LoadField* load = new LoadField(obj, offset, field, false, state_before, needs_patching); 1818 Value replacement = !needs_patching ? _memory->load(load) : load; 1819 if (replacement != load) { 1820 assert(replacement->is_linked() || !replacement->can_be_linked(), "should already by linked"); 1821 // Writing an (integer) value to a boolean, byte, char or short field includes an implicit narrowing 1822 // conversion. Emit an explicit conversion here to get the correct field value after the write. 1823 BasicType bt = field->type()->basic_type(); 1824 switch (bt) { 1825 case T_BOOLEAN: 1826 case T_BYTE: 1827 replacement = append(new Convert(Bytecodes::_i2b, replacement, as_ValueType(bt))); 1828 break; 1829 case T_CHAR: 1830 replacement = append(new Convert(Bytecodes::_i2c, replacement, as_ValueType(bt))); 1831 break; 1832 case T_SHORT: 1833 replacement = append(new Convert(Bytecodes::_i2s, replacement, as_ValueType(bt))); 1834 break; 1835 default: 1836 break; 1837 } 1838 push(type, replacement); 1839 } else { 1840 push(type, append(load)); 1841 } 1842 } 1843 break; 1844 } 1845 case Bytecodes::_putfield: { 1846 Value val = pop(type); 1847 obj = apop(); 1848 if (state_before == NULL) { 1849 state_before = copy_state_for_exception(); 1850 } 1851 if (field->type()->basic_type() == T_BOOLEAN) { 1852 Value mask = append(new Constant(new IntConstant(1))); 1853 val = append(new LogicOp(Bytecodes::_iand, val, mask)); 1854 } 1855 StoreField* store = new StoreField(obj, offset, field, val, false, state_before, needs_patching); 1856 if (!needs_patching) store = _memory->store(store); 1857 if (store != NULL) { 1858 append(store); 1859 } 1860 break; 1861 } 1862 default: 1863 ShouldNotReachHere(); 1864 break; 1865 } 1866 } 1867 1868 1869 Dependencies* GraphBuilder::dependency_recorder() const { 1870 assert(DeoptC1, "need debug information"); 1871 return compilation()->dependency_recorder(); 1872 } 1873 1874 // How many arguments do we want to profile? 1875 Values* GraphBuilder::args_list_for_profiling(ciMethod* target, int& start, bool may_have_receiver) { 1876 int n = 0; 1877 bool has_receiver = may_have_receiver && Bytecodes::has_receiver(method()->java_code_at_bci(bci())); 1878 start = has_receiver ? 1 : 0; 1879 if (profile_arguments()) { 1880 ciProfileData* data = method()->method_data()->bci_to_data(bci()); 1881 if (data != NULL && (data->is_CallTypeData() || data->is_VirtualCallTypeData())) { 1882 n = data->is_CallTypeData() ? data->as_CallTypeData()->number_of_arguments() : data->as_VirtualCallTypeData()->number_of_arguments(); 1883 } 1884 } 1885 // If we are inlining then we need to collect arguments to profile parameters for the target 1886 if (profile_parameters() && target != NULL) { 1887 if (target->method_data() != NULL && target->method_data()->parameters_type_data() != NULL) { 1888 // The receiver is profiled on method entry so it's included in 1889 // the number of parameters but here we're only interested in 1890 // actual arguments. 1891 n = MAX2(n, target->method_data()->parameters_type_data()->number_of_parameters() - start); 1892 } 1893 } 1894 if (n > 0) { 1895 return new Values(n); 1896 } 1897 return NULL; 1898 } 1899 1900 void GraphBuilder::check_args_for_profiling(Values* obj_args, int expected) { 1901 #ifdef ASSERT 1902 bool ignored_will_link; 1903 ciSignature* declared_signature = NULL; 1904 ciMethod* real_target = method()->get_method_at_bci(bci(), ignored_will_link, &declared_signature); 1905 assert(expected == obj_args->capacity() || real_target->is_method_handle_intrinsic(), "missed on arg?"); 1906 #endif 1907 } 1908 1909 // Collect arguments that we want to profile in a list 1910 Values* GraphBuilder::collect_args_for_profiling(Values* args, ciMethod* target, bool may_have_receiver) { 1911 int start = 0; 1912 Values* obj_args = args_list_for_profiling(target, start, may_have_receiver); 1913 if (obj_args == NULL) { 1914 return NULL; 1915 } 1916 int s = obj_args->capacity(); 1917 // if called through method handle invoke, some arguments may have been popped 1918 for (int i = start, j = 0; j < s && i < args->length(); i++) { 1919 if (args->at(i)->type()->is_object_kind()) { 1920 obj_args->push(args->at(i)); 1921 j++; 1922 } 1923 } 1924 check_args_for_profiling(obj_args, s); 1925 return obj_args; 1926 } 1927 1928 void GraphBuilder::invoke(Bytecodes::Code code) { 1929 bool will_link; 1930 ciSignature* declared_signature = NULL; 1931 ciMethod* target = stream()->get_method(will_link, &declared_signature); 1932 ciKlass* holder = stream()->get_declared_method_holder(); 1933 const Bytecodes::Code bc_raw = stream()->cur_bc_raw(); 1934 assert(declared_signature != NULL, "cannot be null"); 1935 assert(will_link == target->is_loaded(), ""); 1936 JFR_ONLY(Jfr::on_resolution(this, holder, target); CHECK_BAILOUT();) 1937 1938 ciInstanceKlass* klass = target->holder(); 1939 assert(!target->is_loaded() || klass->is_loaded(), "loaded target must imply loaded klass"); 1940 1941 // check if CHA possible: if so, change the code to invoke_special 1942 ciInstanceKlass* calling_klass = method()->holder(); 1943 ciInstanceKlass* callee_holder = ciEnv::get_instance_klass_for_declared_method_holder(holder); 1944 ciInstanceKlass* actual_recv = callee_holder; 1945 1946 CompileLog* log = compilation()->log(); 1947 if (log != NULL) 1948 log->elem("call method='%d' instr='%s'", 1949 log->identify(target), 1950 Bytecodes::name(code)); 1951 1952 // Some methods are obviously bindable without any type checks so 1953 // convert them directly to an invokespecial or invokestatic. 1954 if (target->is_loaded() && !target->is_abstract() && target->can_be_statically_bound()) { 1955 switch (bc_raw) { 1956 case Bytecodes::_invokeinterface: 1957 // convert to invokespecial if the target is the private interface method. 1958 if (target->is_private()) { 1959 assert(holder->is_interface(), "How did we get a non-interface method here!"); 1960 code = Bytecodes::_invokespecial; 1961 } 1962 break; 1963 case Bytecodes::_invokevirtual: 1964 code = Bytecodes::_invokespecial; 1965 break; 1966 case Bytecodes::_invokehandle: 1967 code = target->is_static() ? Bytecodes::_invokestatic : Bytecodes::_invokespecial; 1968 break; 1969 default: 1970 break; 1971 } 1972 } else { 1973 if (bc_raw == Bytecodes::_invokehandle) { 1974 assert(!will_link, "should come here only for unlinked call"); 1975 code = Bytecodes::_invokespecial; 1976 } 1977 } 1978 1979 if (code == Bytecodes::_invokespecial) { 1980 // Additional receiver subtype checks for interface calls via invokespecial or invokeinterface. 1981 ciKlass* receiver_constraint = nullptr; 1982 1983 if (bc_raw == Bytecodes::_invokeinterface) { 1984 receiver_constraint = holder; 1985 } else if (bc_raw == Bytecodes::_invokespecial && !target->is_object_initializer() && calling_klass->is_interface()) { 1986 receiver_constraint = calling_klass; 1987 } 1988 1989 if (receiver_constraint != nullptr) { 1990 int index = state()->stack_size() - (target->arg_size_no_receiver() + 1); 1991 Value receiver = state()->stack_at(index); 1992 CheckCast* c = new CheckCast(receiver_constraint, receiver, copy_state_before()); 1993 // go to uncommon_trap when checkcast fails 1994 c->set_invokespecial_receiver_check(); 1995 state()->stack_at_put(index, append_split(c)); 1996 } 1997 } 1998 1999 // Push appendix argument (MethodType, CallSite, etc.), if one. 2000 bool patch_for_appendix = false; 2001 int patching_appendix_arg = 0; 2002 if (Bytecodes::has_optional_appendix(bc_raw) && (!will_link || PatchALot)) { 2003 Value arg = append(new Constant(new ObjectConstant(compilation()->env()->unloaded_ciinstance()), copy_state_before())); 2004 apush(arg); 2005 patch_for_appendix = true; 2006 patching_appendix_arg = (will_link && stream()->has_appendix()) ? 0 : 1; 2007 } else if (stream()->has_appendix()) { 2008 ciObject* appendix = stream()->get_appendix(); 2009 Value arg = append(new Constant(new ObjectConstant(appendix))); 2010 apush(arg); 2011 } 2012 2013 ciMethod* cha_monomorphic_target = NULL; 2014 ciMethod* exact_target = NULL; 2015 Value better_receiver = NULL; 2016 if (UseCHA && DeoptC1 && target->is_loaded() && 2017 !(// %%% FIXME: Are both of these relevant? 2018 target->is_method_handle_intrinsic() || 2019 target->is_compiled_lambda_form()) && 2020 !patch_for_appendix) { 2021 Value receiver = NULL; 2022 ciInstanceKlass* receiver_klass = NULL; 2023 bool type_is_exact = false; 2024 // try to find a precise receiver type 2025 if (will_link && !target->is_static()) { 2026 int index = state()->stack_size() - (target->arg_size_no_receiver() + 1); 2027 receiver = state()->stack_at(index); 2028 ciType* type = receiver->exact_type(); 2029 if (type != NULL && type->is_loaded() && 2030 type->is_instance_klass() && !type->as_instance_klass()->is_interface()) { 2031 receiver_klass = (ciInstanceKlass*) type; 2032 type_is_exact = true; 2033 } 2034 if (type == NULL) { 2035 type = receiver->declared_type(); 2036 if (type != NULL && type->is_loaded() && 2037 type->is_instance_klass() && !type->as_instance_klass()->is_interface()) { 2038 receiver_klass = (ciInstanceKlass*) type; 2039 if (receiver_klass->is_leaf_type() && !receiver_klass->is_final()) { 2040 // Insert a dependency on this type since 2041 // find_monomorphic_target may assume it's already done. 2042 dependency_recorder()->assert_leaf_type(receiver_klass); 2043 type_is_exact = true; 2044 } 2045 } 2046 } 2047 } 2048 if (receiver_klass != NULL && type_is_exact && 2049 receiver_klass->is_loaded() && code != Bytecodes::_invokespecial) { 2050 // If we have the exact receiver type we can bind directly to 2051 // the method to call. 2052 exact_target = target->resolve_invoke(calling_klass, receiver_klass); 2053 if (exact_target != NULL) { 2054 target = exact_target; 2055 code = Bytecodes::_invokespecial; 2056 } 2057 } 2058 if (receiver_klass != NULL && 2059 receiver_klass->is_subtype_of(actual_recv) && 2060 actual_recv->is_initialized()) { 2061 actual_recv = receiver_klass; 2062 } 2063 2064 if ((code == Bytecodes::_invokevirtual && callee_holder->is_initialized()) || 2065 (code == Bytecodes::_invokeinterface && callee_holder->is_initialized() && !actual_recv->is_interface())) { 2066 // Use CHA on the receiver to select a more precise method. 2067 cha_monomorphic_target = target->find_monomorphic_target(calling_klass, callee_holder, actual_recv); 2068 } else if (code == Bytecodes::_invokeinterface && callee_holder->is_loaded() && receiver != NULL) { 2069 assert(callee_holder->is_interface(), "invokeinterface to non interface?"); 2070 // If there is only one implementor of this interface then we 2071 // may be able bind this invoke directly to the implementing 2072 // klass but we need both a dependence on the single interface 2073 // and on the method we bind to. Additionally since all we know 2074 // about the receiver type is the it's supposed to implement the 2075 // interface we have to insert a check that it's the class we 2076 // expect. Interface types are not checked by the verifier so 2077 // they are roughly equivalent to Object. 2078 // The number of implementors for declared_interface is less or 2079 // equal to the number of implementors for target->holder() so 2080 // if number of implementors of target->holder() == 1 then 2081 // number of implementors for decl_interface is 0 or 1. If 2082 // it's 0 then no class implements decl_interface and there's 2083 // no point in inlining. 2084 ciInstanceKlass* declared_interface = callee_holder; 2085 ciInstanceKlass* singleton = declared_interface->unique_implementor(); 2086 if (singleton != NULL) { 2087 assert(singleton != declared_interface, "not a unique implementor"); 2088 cha_monomorphic_target = target->find_monomorphic_target(calling_klass, declared_interface, singleton); 2089 if (cha_monomorphic_target != NULL) { 2090 if (cha_monomorphic_target->holder() != compilation()->env()->Object_klass()) { 2091 ciInstanceKlass* holder = cha_monomorphic_target->holder(); 2092 ciInstanceKlass* constraint = (holder->is_subtype_of(singleton) ? holder : singleton); // avoid upcasts 2093 actual_recv = declared_interface; 2094 2095 // insert a check it's really the expected class. 2096 CheckCast* c = new CheckCast(constraint, receiver, copy_state_for_exception()); 2097 c->set_incompatible_class_change_check(); 2098 c->set_direct_compare(constraint->is_final()); 2099 // pass the result of the checkcast so that the compiler has 2100 // more accurate type info in the inlinee 2101 better_receiver = append_split(c); 2102 2103 dependency_recorder()->assert_unique_implementor(declared_interface, singleton); 2104 } else { 2105 cha_monomorphic_target = NULL; // subtype check against Object is useless 2106 } 2107 } 2108 } 2109 } 2110 } 2111 2112 if (cha_monomorphic_target != NULL) { 2113 assert(!target->can_be_statically_bound() || target == cha_monomorphic_target, ""); 2114 assert(!cha_monomorphic_target->is_abstract(), ""); 2115 if (!cha_monomorphic_target->can_be_statically_bound(actual_recv)) { 2116 // If we inlined because CHA revealed only a single target method, 2117 // then we are dependent on that target method not getting overridden 2118 // by dynamic class loading. Be sure to test the "static" receiver 2119 // dest_method here, as opposed to the actual receiver, which may 2120 // falsely lead us to believe that the receiver is final or private. 2121 dependency_recorder()->assert_unique_concrete_method(actual_recv, cha_monomorphic_target, callee_holder, target); 2122 } 2123 code = Bytecodes::_invokespecial; 2124 } 2125 2126 // check if we could do inlining 2127 if (!PatchALot && Inline && target->is_loaded() && !patch_for_appendix && 2128 callee_holder->is_loaded()) { // the effect of symbolic reference resolution 2129 2130 // callee is known => check if we have static binding 2131 if ((code == Bytecodes::_invokestatic && klass->is_initialized()) || // invokestatic involves an initialization barrier on declaring class 2132 code == Bytecodes::_invokespecial || 2133 (code == Bytecodes::_invokevirtual && target->is_final_method()) || 2134 code == Bytecodes::_invokedynamic) { 2135 // static binding => check if callee is ok 2136 ciMethod* inline_target = (cha_monomorphic_target != NULL) ? cha_monomorphic_target : target; 2137 bool holder_known = (cha_monomorphic_target != NULL) || (exact_target != NULL); 2138 bool success = try_inline(inline_target, holder_known, false /* ignore_return */, code, better_receiver); 2139 2140 CHECK_BAILOUT(); 2141 clear_inline_bailout(); 2142 2143 if (success) { 2144 // Register dependence if JVMTI has either breakpoint 2145 // setting or hotswapping of methods capabilities since they may 2146 // cause deoptimization. 2147 if (compilation()->env()->jvmti_can_hotswap_or_post_breakpoint()) { 2148 dependency_recorder()->assert_evol_method(inline_target); 2149 } 2150 return; 2151 } 2152 } else { 2153 print_inlining(target, "no static binding", /*success*/ false); 2154 } 2155 } else { 2156 print_inlining(target, "not inlineable", /*success*/ false); 2157 } 2158 2159 // If we attempted an inline which did not succeed because of a 2160 // bailout during construction of the callee graph, the entire 2161 // compilation has to be aborted. This is fairly rare and currently 2162 // seems to only occur for jasm-generated classes which contain 2163 // jsr/ret pairs which are not associated with finally clauses and 2164 // do not have exception handlers in the containing method, and are 2165 // therefore not caught early enough to abort the inlining without 2166 // corrupting the graph. (We currently bail out with a non-empty 2167 // stack at a ret in these situations.) 2168 CHECK_BAILOUT(); 2169 2170 // inlining not successful => standard invoke 2171 ValueType* result_type = as_ValueType(declared_signature->return_type()); 2172 ValueStack* state_before = copy_state_exhandling(); 2173 2174 // The bytecode (code) might change in this method so we are checking this very late. 2175 const bool has_receiver = 2176 code == Bytecodes::_invokespecial || 2177 code == Bytecodes::_invokevirtual || 2178 code == Bytecodes::_invokeinterface; 2179 Values* args = state()->pop_arguments(target->arg_size_no_receiver() + patching_appendix_arg); 2180 Value recv = has_receiver ? apop() : NULL; 2181 2182 // A null check is required here (when there is a receiver) for any of the following cases 2183 // - invokespecial, always need a null check. 2184 // - invokevirtual, when the target is final and loaded. Calls to final targets will become optimized 2185 // and require null checking. If the target is loaded a null check is emitted here. 2186 // If the target isn't loaded the null check must happen after the call resolution. We achieve that 2187 // by using the target methods unverified entry point (see CompiledIC::compute_monomorphic_entry). 2188 // (The JVM specification requires that LinkageError must be thrown before a NPE. An unloaded target may 2189 // potentially fail, and can't have the null check before the resolution.) 2190 // - A call that will be profiled. (But we can't add a null check when the target is unloaded, by the same 2191 // reason as above, so calls with a receiver to unloaded targets can't be profiled.) 2192 // 2193 // Normal invokevirtual will perform the null check during lookup 2194 2195 bool need_null_check = (code == Bytecodes::_invokespecial) || 2196 (target->is_loaded() && (target->is_final_method() || (is_profiling() && profile_calls()))); 2197 2198 if (need_null_check) { 2199 if (recv != NULL) { 2200 null_check(recv); 2201 } 2202 2203 if (is_profiling()) { 2204 // Note that we'd collect profile data in this method if we wanted it. 2205 compilation()->set_would_profile(true); 2206 2207 if (profile_calls()) { 2208 assert(cha_monomorphic_target == NULL || exact_target == NULL, "both can not be set"); 2209 ciKlass* target_klass = NULL; 2210 if (cha_monomorphic_target != NULL) { 2211 target_klass = cha_monomorphic_target->holder(); 2212 } else if (exact_target != NULL) { 2213 target_klass = exact_target->holder(); 2214 } 2215 profile_call(target, recv, target_klass, collect_args_for_profiling(args, NULL, false), false); 2216 } 2217 } 2218 } 2219 2220 Invoke* result = new Invoke(code, result_type, recv, args, target, state_before); 2221 // push result 2222 append_split(result); 2223 2224 if (result_type != voidType) { 2225 push(result_type, round_fp(result)); 2226 } 2227 if (profile_return() && result_type->is_object_kind()) { 2228 profile_return_type(result, target); 2229 } 2230 } 2231 2232 2233 void GraphBuilder::new_instance(int klass_index) { 2234 ValueStack* state_before = copy_state_exhandling(); 2235 ciKlass* klass = stream()->get_klass(); 2236 assert(klass->is_instance_klass(), "must be an instance klass"); 2237 NewInstance* new_instance = new NewInstance(klass->as_instance_klass(), state_before, stream()->is_unresolved_klass()); 2238 _memory->new_instance(new_instance); 2239 apush(append_split(new_instance)); 2240 } 2241 2242 2243 void GraphBuilder::new_type_array() { 2244 ValueStack* state_before = copy_state_exhandling(); 2245 apush(append_split(new NewTypeArray(ipop(), (BasicType)stream()->get_index(), state_before))); 2246 } 2247 2248 2249 void GraphBuilder::new_object_array() { 2250 ciKlass* klass = stream()->get_klass(); 2251 ValueStack* state_before = !klass->is_loaded() || PatchALot ? copy_state_before() : copy_state_exhandling(); 2252 NewArray* n = new NewObjectArray(klass, ipop(), state_before); 2253 apush(append_split(n)); 2254 } 2255 2256 2257 bool GraphBuilder::direct_compare(ciKlass* k) { 2258 if (k->is_loaded() && k->is_instance_klass() && !UseSlowPath) { 2259 ciInstanceKlass* ik = k->as_instance_klass(); 2260 if (ik->is_final()) { 2261 return true; 2262 } else { 2263 if (DeoptC1 && UseCHA && !(ik->has_subklass() || ik->is_interface())) { 2264 // test class is leaf class 2265 dependency_recorder()->assert_leaf_type(ik); 2266 return true; 2267 } 2268 } 2269 } 2270 return false; 2271 } 2272 2273 2274 void GraphBuilder::check_cast(int klass_index) { 2275 ciKlass* klass = stream()->get_klass(); 2276 ValueStack* state_before = !klass->is_loaded() || PatchALot ? copy_state_before() : copy_state_for_exception(); 2277 CheckCast* c = new CheckCast(klass, apop(), state_before); 2278 apush(append_split(c)); 2279 c->set_direct_compare(direct_compare(klass)); 2280 2281 if (is_profiling()) { 2282 // Note that we'd collect profile data in this method if we wanted it. 2283 compilation()->set_would_profile(true); 2284 2285 if (profile_checkcasts()) { 2286 c->set_profiled_method(method()); 2287 c->set_profiled_bci(bci()); 2288 c->set_should_profile(true); 2289 } 2290 } 2291 } 2292 2293 2294 void GraphBuilder::instance_of(int klass_index) { 2295 ciKlass* klass = stream()->get_klass(); 2296 ValueStack* state_before = !klass->is_loaded() || PatchALot ? copy_state_before() : copy_state_exhandling(); 2297 InstanceOf* i = new InstanceOf(klass, apop(), state_before); 2298 ipush(append_split(i)); 2299 i->set_direct_compare(direct_compare(klass)); 2300 2301 if (is_profiling()) { 2302 // Note that we'd collect profile data in this method if we wanted it. 2303 compilation()->set_would_profile(true); 2304 2305 if (profile_checkcasts()) { 2306 i->set_profiled_method(method()); 2307 i->set_profiled_bci(bci()); 2308 i->set_should_profile(true); 2309 } 2310 } 2311 } 2312 2313 2314 void GraphBuilder::monitorenter(Value x, int bci) { 2315 // save state before locking in case of deoptimization after a NullPointerException 2316 ValueStack* state_before = copy_state_for_exception_with_bci(bci); 2317 compilation()->set_has_monitors(true); 2318 append_with_bci(new MonitorEnter(x, state()->lock(x), state_before), bci); 2319 kill_all(); 2320 } 2321 2322 2323 void GraphBuilder::monitorexit(Value x, int bci) { 2324 append_with_bci(new MonitorExit(x, state()->unlock()), bci); 2325 kill_all(); 2326 } 2327 2328 2329 void GraphBuilder::new_multi_array(int dimensions) { 2330 ciKlass* klass = stream()->get_klass(); 2331 ValueStack* state_before = !klass->is_loaded() || PatchALot ? copy_state_before() : copy_state_exhandling(); 2332 2333 Values* dims = new Values(dimensions, dimensions, NULL); 2334 // fill in all dimensions 2335 int i = dimensions; 2336 while (i-- > 0) dims->at_put(i, ipop()); 2337 // create array 2338 NewArray* n = new NewMultiArray(klass, dims, state_before); 2339 apush(append_split(n)); 2340 } 2341 2342 2343 void GraphBuilder::throw_op(int bci) { 2344 // We require that the debug info for a Throw be the "state before" 2345 // the Throw (i.e., exception oop is still on TOS) 2346 ValueStack* state_before = copy_state_before_with_bci(bci); 2347 Throw* t = new Throw(apop(), state_before); 2348 // operand stack not needed after a throw 2349 state()->truncate_stack(0); 2350 append_with_bci(t, bci); 2351 } 2352 2353 2354 Value GraphBuilder::round_fp(Value fp_value) { 2355 if (strict_fp_requires_explicit_rounding) { 2356 #ifdef IA32 2357 // no rounding needed if SSE2 is used 2358 if (UseSSE < 2) { 2359 // Must currently insert rounding node for doubleword values that 2360 // are results of expressions (i.e., not loads from memory or 2361 // constants) 2362 if (fp_value->type()->tag() == doubleTag && 2363 fp_value->as_Constant() == NULL && 2364 fp_value->as_Local() == NULL && // method parameters need no rounding 2365 fp_value->as_RoundFP() == NULL) { 2366 return append(new RoundFP(fp_value)); 2367 } 2368 } 2369 #else 2370 Unimplemented(); 2371 #endif // IA32 2372 } 2373 return fp_value; 2374 } 2375 2376 2377 Instruction* GraphBuilder::append_with_bci(Instruction* instr, int bci) { 2378 Canonicalizer canon(compilation(), instr, bci); 2379 Instruction* i1 = canon.canonical(); 2380 if (i1->is_linked() || !i1->can_be_linked()) { 2381 // Canonicalizer returned an instruction which was already 2382 // appended so simply return it. 2383 return i1; 2384 } 2385 2386 if (UseLocalValueNumbering) { 2387 // Lookup the instruction in the ValueMap and add it to the map if 2388 // it's not found. 2389 Instruction* i2 = vmap()->find_insert(i1); 2390 if (i2 != i1) { 2391 // found an entry in the value map, so just return it. 2392 assert(i2->is_linked(), "should already be linked"); 2393 return i2; 2394 } 2395 ValueNumberingEffects vne(vmap()); 2396 i1->visit(&vne); 2397 } 2398 2399 // i1 was not eliminated => append it 2400 assert(i1->next() == NULL, "shouldn't already be linked"); 2401 _last = _last->set_next(i1, canon.bci()); 2402 2403 if (++_instruction_count >= InstructionCountCutoff && !bailed_out()) { 2404 // set the bailout state but complete normal processing. We 2405 // might do a little more work before noticing the bailout so we 2406 // want processing to continue normally until it's noticed. 2407 bailout("Method and/or inlining is too large"); 2408 } 2409 2410 #ifndef PRODUCT 2411 if (PrintIRDuringConstruction) { 2412 InstructionPrinter ip; 2413 ip.print_line(i1); 2414 if (Verbose) { 2415 state()->print(); 2416 } 2417 } 2418 #endif 2419 2420 // save state after modification of operand stack for StateSplit instructions 2421 StateSplit* s = i1->as_StateSplit(); 2422 if (s != NULL) { 2423 if (EliminateFieldAccess) { 2424 Intrinsic* intrinsic = s->as_Intrinsic(); 2425 if (s->as_Invoke() != NULL || (intrinsic && !intrinsic->preserves_state())) { 2426 _memory->kill(); 2427 } 2428 } 2429 s->set_state(state()->copy(ValueStack::StateAfter, canon.bci())); 2430 } 2431 2432 // set up exception handlers for this instruction if necessary 2433 if (i1->can_trap()) { 2434 i1->set_exception_handlers(handle_exception(i1)); 2435 assert(i1->exception_state() != NULL || !i1->needs_exception_state() || bailed_out(), "handle_exception must set exception state"); 2436 } 2437 return i1; 2438 } 2439 2440 2441 Instruction* GraphBuilder::append(Instruction* instr) { 2442 assert(instr->as_StateSplit() == NULL || instr->as_BlockEnd() != NULL, "wrong append used"); 2443 return append_with_bci(instr, bci()); 2444 } 2445 2446 2447 Instruction* GraphBuilder::append_split(StateSplit* instr) { 2448 return append_with_bci(instr, bci()); 2449 } 2450 2451 2452 void GraphBuilder::null_check(Value value) { 2453 if (value->as_NewArray() != NULL || value->as_NewInstance() != NULL) { 2454 return; 2455 } else { 2456 Constant* con = value->as_Constant(); 2457 if (con) { 2458 ObjectType* c = con->type()->as_ObjectType(); 2459 if (c && c->is_loaded()) { 2460 ObjectConstant* oc = c->as_ObjectConstant(); 2461 if (!oc || !oc->value()->is_null_object()) { 2462 return; 2463 } 2464 } 2465 } 2466 } 2467 append(new NullCheck(value, copy_state_for_exception())); 2468 } 2469 2470 2471 2472 XHandlers* GraphBuilder::handle_exception(Instruction* instruction) { 2473 if (!has_handler() && (!instruction->needs_exception_state() || instruction->exception_state() != NULL)) { 2474 assert(instruction->exception_state() == NULL 2475 || instruction->exception_state()->kind() == ValueStack::EmptyExceptionState 2476 || (instruction->exception_state()->kind() == ValueStack::ExceptionState && _compilation->env()->should_retain_local_variables()), 2477 "exception_state should be of exception kind"); 2478 return new XHandlers(); 2479 } 2480 2481 XHandlers* exception_handlers = new XHandlers(); 2482 ScopeData* cur_scope_data = scope_data(); 2483 ValueStack* cur_state = instruction->state_before(); 2484 ValueStack* prev_state = NULL; 2485 int scope_count = 0; 2486 2487 assert(cur_state != NULL, "state_before must be set"); 2488 do { 2489 int cur_bci = cur_state->bci(); 2490 assert(cur_scope_data->scope() == cur_state->scope(), "scopes do not match"); 2491 assert(cur_bci == SynchronizationEntryBCI || cur_bci == cur_scope_data->stream()->cur_bci(), "invalid bci"); 2492 2493 // join with all potential exception handlers 2494 XHandlers* list = cur_scope_data->xhandlers(); 2495 const int n = list->length(); 2496 for (int i = 0; i < n; i++) { 2497 XHandler* h = list->handler_at(i); 2498 if (h->covers(cur_bci)) { 2499 // h is a potential exception handler => join it 2500 compilation()->set_has_exception_handlers(true); 2501 2502 BlockBegin* entry = h->entry_block(); 2503 if (entry == block()) { 2504 // It's acceptable for an exception handler to cover itself 2505 // but we don't handle that in the parser currently. It's 2506 // very rare so we bailout instead of trying to handle it. 2507 BAILOUT_("exception handler covers itself", exception_handlers); 2508 } 2509 assert(entry->bci() == h->handler_bci(), "must match"); 2510 assert(entry->bci() == -1 || entry == cur_scope_data->block_at(entry->bci()), "blocks must correspond"); 2511 2512 // previously this was a BAILOUT, but this is not necessary 2513 // now because asynchronous exceptions are not handled this way. 2514 assert(entry->state() == NULL || cur_state->total_locks_size() == entry->state()->total_locks_size(), "locks do not match"); 2515 2516 // xhandler start with an empty expression stack 2517 if (cur_state->stack_size() != 0) { 2518 cur_state = cur_state->copy(ValueStack::ExceptionState, cur_state->bci()); 2519 } 2520 if (instruction->exception_state() == NULL) { 2521 instruction->set_exception_state(cur_state); 2522 } 2523 2524 // Note: Usually this join must work. However, very 2525 // complicated jsr-ret structures where we don't ret from 2526 // the subroutine can cause the objects on the monitor 2527 // stacks to not match because blocks can be parsed twice. 2528 // The only test case we've seen so far which exhibits this 2529 // problem is caught by the infinite recursion test in 2530 // GraphBuilder::jsr() if the join doesn't work. 2531 if (!entry->try_merge(cur_state, compilation()->has_irreducible_loops())) { 2532 BAILOUT_("error while joining with exception handler, prob. due to complicated jsr/rets", exception_handlers); 2533 } 2534 2535 // add current state for correct handling of phi functions at begin of xhandler 2536 int phi_operand = entry->add_exception_state(cur_state); 2537 2538 // add entry to the list of xhandlers of this block 2539 _block->add_exception_handler(entry); 2540 2541 // add back-edge from xhandler entry to this block 2542 if (!entry->is_predecessor(_block)) { 2543 entry->add_predecessor(_block); 2544 } 2545 2546 // clone XHandler because phi_operand and scope_count can not be shared 2547 XHandler* new_xhandler = new XHandler(h); 2548 new_xhandler->set_phi_operand(phi_operand); 2549 new_xhandler->set_scope_count(scope_count); 2550 exception_handlers->append(new_xhandler); 2551 2552 // fill in exception handler subgraph lazily 2553 assert(!entry->is_set(BlockBegin::was_visited_flag), "entry must not be visited yet"); 2554 cur_scope_data->add_to_work_list(entry); 2555 2556 // stop when reaching catchall 2557 if (h->catch_type() == 0) { 2558 return exception_handlers; 2559 } 2560 } 2561 } 2562 2563 if (exception_handlers->length() == 0) { 2564 // This scope and all callees do not handle exceptions, so the local 2565 // variables of this scope are not needed. However, the scope itself is 2566 // required for a correct exception stack trace -> clear out the locals. 2567 if (_compilation->env()->should_retain_local_variables()) { 2568 cur_state = cur_state->copy(ValueStack::ExceptionState, cur_state->bci()); 2569 } else { 2570 cur_state = cur_state->copy(ValueStack::EmptyExceptionState, cur_state->bci()); 2571 } 2572 if (prev_state != NULL) { 2573 prev_state->set_caller_state(cur_state); 2574 } 2575 if (instruction->exception_state() == NULL) { 2576 instruction->set_exception_state(cur_state); 2577 } 2578 } 2579 2580 // Set up iteration for next time. 2581 // If parsing a jsr, do not grab exception handlers from the 2582 // parent scopes for this method (already got them, and they 2583 // needed to be cloned) 2584 2585 while (cur_scope_data->parsing_jsr()) { 2586 cur_scope_data = cur_scope_data->parent(); 2587 } 2588 2589 assert(cur_scope_data->scope() == cur_state->scope(), "scopes do not match"); 2590 assert(cur_state->locks_size() == 0 || cur_state->locks_size() == 1, "unlocking must be done in a catchall exception handler"); 2591 2592 prev_state = cur_state; 2593 cur_state = cur_state->caller_state(); 2594 cur_scope_data = cur_scope_data->parent(); 2595 scope_count++; 2596 } while (cur_scope_data != NULL); 2597 2598 return exception_handlers; 2599 } 2600 2601 2602 // Helper class for simplifying Phis. 2603 class PhiSimplifier : public BlockClosure { 2604 private: 2605 bool _has_substitutions; 2606 Value simplify(Value v); 2607 2608 public: 2609 PhiSimplifier(BlockBegin* start) : _has_substitutions(false) { 2610 start->iterate_preorder(this); 2611 if (_has_substitutions) { 2612 SubstitutionResolver sr(start); 2613 } 2614 } 2615 void block_do(BlockBegin* b); 2616 bool has_substitutions() const { return _has_substitutions; } 2617 }; 2618 2619 2620 Value PhiSimplifier::simplify(Value v) { 2621 Phi* phi = v->as_Phi(); 2622 2623 if (phi == NULL) { 2624 // no phi function 2625 return v; 2626 } else if (v->has_subst()) { 2627 // already substituted; subst can be phi itself -> simplify 2628 return simplify(v->subst()); 2629 } else if (phi->is_set(Phi::cannot_simplify)) { 2630 // already tried to simplify phi before 2631 return phi; 2632 } else if (phi->is_set(Phi::visited)) { 2633 // break cycles in phi functions 2634 return phi; 2635 } else if (phi->type()->is_illegal()) { 2636 // illegal phi functions are ignored anyway 2637 return phi; 2638 2639 } else { 2640 // mark phi function as processed to break cycles in phi functions 2641 phi->set(Phi::visited); 2642 2643 // simplify x = [y, x] and x = [y, y] to y 2644 Value subst = NULL; 2645 int opd_count = phi->operand_count(); 2646 for (int i = 0; i < opd_count; i++) { 2647 Value opd = phi->operand_at(i); 2648 assert(opd != NULL, "Operand must exist!"); 2649 2650 if (opd->type()->is_illegal()) { 2651 // if one operand is illegal, the entire phi function is illegal 2652 phi->make_illegal(); 2653 phi->clear(Phi::visited); 2654 return phi; 2655 } 2656 2657 Value new_opd = simplify(opd); 2658 assert(new_opd != NULL, "Simplified operand must exist!"); 2659 2660 if (new_opd != phi && new_opd != subst) { 2661 if (subst == NULL) { 2662 subst = new_opd; 2663 } else { 2664 // no simplification possible 2665 phi->set(Phi::cannot_simplify); 2666 phi->clear(Phi::visited); 2667 return phi; 2668 } 2669 } 2670 } 2671 2672 // successfully simplified phi function 2673 assert(subst != NULL, "illegal phi function"); 2674 _has_substitutions = true; 2675 phi->clear(Phi::visited); 2676 phi->set_subst(subst); 2677 2678 #ifndef PRODUCT 2679 if (PrintPhiFunctions) { 2680 tty->print_cr("simplified phi function %c%d to %c%d (Block B%d)", phi->type()->tchar(), phi->id(), subst->type()->tchar(), subst->id(), phi->block()->block_id()); 2681 } 2682 #endif 2683 2684 return subst; 2685 } 2686 } 2687 2688 2689 void PhiSimplifier::block_do(BlockBegin* b) { 2690 for_each_phi_fun(b, phi, 2691 simplify(phi); 2692 ); 2693 2694 #ifdef ASSERT 2695 for_each_phi_fun(b, phi, 2696 assert(phi->operand_count() != 1 || phi->subst() != phi || phi->is_illegal(), "missed trivial simplification"); 2697 ); 2698 2699 ValueStack* state = b->state()->caller_state(); 2700 for_each_state_value(state, value, 2701 Phi* phi = value->as_Phi(); 2702 assert(phi == NULL || phi->block() != b, "must not have phi function to simplify in caller state"); 2703 ); 2704 #endif 2705 } 2706 2707 // This method is called after all blocks are filled with HIR instructions 2708 // It eliminates all Phi functions of the form x = [y, y] and x = [y, x] 2709 void GraphBuilder::eliminate_redundant_phis(BlockBegin* start) { 2710 PhiSimplifier simplifier(start); 2711 } 2712 2713 2714 void GraphBuilder::connect_to_end(BlockBegin* beg) { 2715 // setup iteration 2716 kill_all(); 2717 _block = beg; 2718 _state = beg->state()->copy_for_parsing(); 2719 _last = beg; 2720 iterate_bytecodes_for_block(beg->bci()); 2721 } 2722 2723 2724 BlockEnd* GraphBuilder::iterate_bytecodes_for_block(int bci) { 2725 #ifndef PRODUCT 2726 if (PrintIRDuringConstruction) { 2727 tty->cr(); 2728 InstructionPrinter ip; 2729 ip.print_instr(_block); tty->cr(); 2730 ip.print_stack(_block->state()); tty->cr(); 2731 ip.print_inline_level(_block); 2732 ip.print_head(); 2733 tty->print_cr("locals size: %d stack size: %d", state()->locals_size(), state()->stack_size()); 2734 } 2735 #endif 2736 _skip_block = false; 2737 assert(state() != NULL, "ValueStack missing!"); 2738 CompileLog* log = compilation()->log(); 2739 ciBytecodeStream s(method()); 2740 s.reset_to_bci(bci); 2741 int prev_bci = bci; 2742 scope_data()->set_stream(&s); 2743 // iterate 2744 Bytecodes::Code code = Bytecodes::_illegal; 2745 bool push_exception = false; 2746 2747 if (block()->is_set(BlockBegin::exception_entry_flag) && block()->next() == NULL) { 2748 // first thing in the exception entry block should be the exception object. 2749 push_exception = true; 2750 } 2751 2752 bool ignore_return = scope_data()->ignore_return(); 2753 2754 while (!bailed_out() && last()->as_BlockEnd() == NULL && 2755 (code = stream()->next()) != ciBytecodeStream::EOBC() && 2756 (block_at(s.cur_bci()) == NULL || block_at(s.cur_bci()) == block())) { 2757 assert(state()->kind() == ValueStack::Parsing, "invalid state kind"); 2758 2759 if (log != NULL) 2760 log->set_context("bc code='%d' bci='%d'", (int)code, s.cur_bci()); 2761 2762 // Check for active jsr during OSR compilation 2763 if (compilation()->is_osr_compile() 2764 && scope()->is_top_scope() 2765 && parsing_jsr() 2766 && s.cur_bci() == compilation()->osr_bci()) { 2767 bailout("OSR not supported while a jsr is active"); 2768 } 2769 2770 if (push_exception) { 2771 apush(append(new ExceptionObject())); 2772 push_exception = false; 2773 } 2774 2775 // handle bytecode 2776 switch (code) { 2777 case Bytecodes::_nop : /* nothing to do */ break; 2778 case Bytecodes::_aconst_null : apush(append(new Constant(objectNull ))); break; 2779 case Bytecodes::_iconst_m1 : ipush(append(new Constant(new IntConstant (-1)))); break; 2780 case Bytecodes::_iconst_0 : ipush(append(new Constant(intZero ))); break; 2781 case Bytecodes::_iconst_1 : ipush(append(new Constant(intOne ))); break; 2782 case Bytecodes::_iconst_2 : ipush(append(new Constant(new IntConstant ( 2)))); break; 2783 case Bytecodes::_iconst_3 : ipush(append(new Constant(new IntConstant ( 3)))); break; 2784 case Bytecodes::_iconst_4 : ipush(append(new Constant(new IntConstant ( 4)))); break; 2785 case Bytecodes::_iconst_5 : ipush(append(new Constant(new IntConstant ( 5)))); break; 2786 case Bytecodes::_lconst_0 : lpush(append(new Constant(new LongConstant ( 0)))); break; 2787 case Bytecodes::_lconst_1 : lpush(append(new Constant(new LongConstant ( 1)))); break; 2788 case Bytecodes::_fconst_0 : fpush(append(new Constant(new FloatConstant ( 0)))); break; 2789 case Bytecodes::_fconst_1 : fpush(append(new Constant(new FloatConstant ( 1)))); break; 2790 case Bytecodes::_fconst_2 : fpush(append(new Constant(new FloatConstant ( 2)))); break; 2791 case Bytecodes::_dconst_0 : dpush(append(new Constant(new DoubleConstant( 0)))); break; 2792 case Bytecodes::_dconst_1 : dpush(append(new Constant(new DoubleConstant( 1)))); break; 2793 case Bytecodes::_bipush : ipush(append(new Constant(new IntConstant(((signed char*)s.cur_bcp())[1])))); break; 2794 case Bytecodes::_sipush : ipush(append(new Constant(new IntConstant((short)Bytes::get_Java_u2(s.cur_bcp()+1))))); break; 2795 case Bytecodes::_ldc : // fall through 2796 case Bytecodes::_ldc_w : // fall through 2797 case Bytecodes::_ldc2_w : load_constant(); break; 2798 case Bytecodes::_iload : load_local(intType , s.get_index()); break; 2799 case Bytecodes::_lload : load_local(longType , s.get_index()); break; 2800 case Bytecodes::_fload : load_local(floatType , s.get_index()); break; 2801 case Bytecodes::_dload : load_local(doubleType , s.get_index()); break; 2802 case Bytecodes::_aload : load_local(instanceType, s.get_index()); break; 2803 case Bytecodes::_iload_0 : load_local(intType , 0); break; 2804 case Bytecodes::_iload_1 : load_local(intType , 1); break; 2805 case Bytecodes::_iload_2 : load_local(intType , 2); break; 2806 case Bytecodes::_iload_3 : load_local(intType , 3); break; 2807 case Bytecodes::_lload_0 : load_local(longType , 0); break; 2808 case Bytecodes::_lload_1 : load_local(longType , 1); break; 2809 case Bytecodes::_lload_2 : load_local(longType , 2); break; 2810 case Bytecodes::_lload_3 : load_local(longType , 3); break; 2811 case Bytecodes::_fload_0 : load_local(floatType , 0); break; 2812 case Bytecodes::_fload_1 : load_local(floatType , 1); break; 2813 case Bytecodes::_fload_2 : load_local(floatType , 2); break; 2814 case Bytecodes::_fload_3 : load_local(floatType , 3); break; 2815 case Bytecodes::_dload_0 : load_local(doubleType, 0); break; 2816 case Bytecodes::_dload_1 : load_local(doubleType, 1); break; 2817 case Bytecodes::_dload_2 : load_local(doubleType, 2); break; 2818 case Bytecodes::_dload_3 : load_local(doubleType, 3); break; 2819 case Bytecodes::_aload_0 : load_local(objectType, 0); break; 2820 case Bytecodes::_aload_1 : load_local(objectType, 1); break; 2821 case Bytecodes::_aload_2 : load_local(objectType, 2); break; 2822 case Bytecodes::_aload_3 : load_local(objectType, 3); break; 2823 case Bytecodes::_iaload : load_indexed(T_INT ); break; 2824 case Bytecodes::_laload : load_indexed(T_LONG ); break; 2825 case Bytecodes::_faload : load_indexed(T_FLOAT ); break; 2826 case Bytecodes::_daload : load_indexed(T_DOUBLE); break; 2827 case Bytecodes::_aaload : load_indexed(T_OBJECT); break; 2828 case Bytecodes::_baload : load_indexed(T_BYTE ); break; 2829 case Bytecodes::_caload : load_indexed(T_CHAR ); break; 2830 case Bytecodes::_saload : load_indexed(T_SHORT ); break; 2831 case Bytecodes::_istore : store_local(intType , s.get_index()); break; 2832 case Bytecodes::_lstore : store_local(longType , s.get_index()); break; 2833 case Bytecodes::_fstore : store_local(floatType , s.get_index()); break; 2834 case Bytecodes::_dstore : store_local(doubleType, s.get_index()); break; 2835 case Bytecodes::_astore : store_local(objectType, s.get_index()); break; 2836 case Bytecodes::_istore_0 : store_local(intType , 0); break; 2837 case Bytecodes::_istore_1 : store_local(intType , 1); break; 2838 case Bytecodes::_istore_2 : store_local(intType , 2); break; 2839 case Bytecodes::_istore_3 : store_local(intType , 3); break; 2840 case Bytecodes::_lstore_0 : store_local(longType , 0); break; 2841 case Bytecodes::_lstore_1 : store_local(longType , 1); break; 2842 case Bytecodes::_lstore_2 : store_local(longType , 2); break; 2843 case Bytecodes::_lstore_3 : store_local(longType , 3); break; 2844 case Bytecodes::_fstore_0 : store_local(floatType , 0); break; 2845 case Bytecodes::_fstore_1 : store_local(floatType , 1); break; 2846 case Bytecodes::_fstore_2 : store_local(floatType , 2); break; 2847 case Bytecodes::_fstore_3 : store_local(floatType , 3); break; 2848 case Bytecodes::_dstore_0 : store_local(doubleType, 0); break; 2849 case Bytecodes::_dstore_1 : store_local(doubleType, 1); break; 2850 case Bytecodes::_dstore_2 : store_local(doubleType, 2); break; 2851 case Bytecodes::_dstore_3 : store_local(doubleType, 3); break; 2852 case Bytecodes::_astore_0 : store_local(objectType, 0); break; 2853 case Bytecodes::_astore_1 : store_local(objectType, 1); break; 2854 case Bytecodes::_astore_2 : store_local(objectType, 2); break; 2855 case Bytecodes::_astore_3 : store_local(objectType, 3); break; 2856 case Bytecodes::_iastore : store_indexed(T_INT ); break; 2857 case Bytecodes::_lastore : store_indexed(T_LONG ); break; 2858 case Bytecodes::_fastore : store_indexed(T_FLOAT ); break; 2859 case Bytecodes::_dastore : store_indexed(T_DOUBLE); break; 2860 case Bytecodes::_aastore : store_indexed(T_OBJECT); break; 2861 case Bytecodes::_bastore : store_indexed(T_BYTE ); break; 2862 case Bytecodes::_castore : store_indexed(T_CHAR ); break; 2863 case Bytecodes::_sastore : store_indexed(T_SHORT ); break; 2864 case Bytecodes::_pop : // fall through 2865 case Bytecodes::_pop2 : // fall through 2866 case Bytecodes::_dup : // fall through 2867 case Bytecodes::_dup_x1 : // fall through 2868 case Bytecodes::_dup_x2 : // fall through 2869 case Bytecodes::_dup2 : // fall through 2870 case Bytecodes::_dup2_x1 : // fall through 2871 case Bytecodes::_dup2_x2 : // fall through 2872 case Bytecodes::_swap : stack_op(code); break; 2873 case Bytecodes::_iadd : arithmetic_op(intType , code); break; 2874 case Bytecodes::_ladd : arithmetic_op(longType , code); break; 2875 case Bytecodes::_fadd : arithmetic_op(floatType , code); break; 2876 case Bytecodes::_dadd : arithmetic_op(doubleType, code); break; 2877 case Bytecodes::_isub : arithmetic_op(intType , code); break; 2878 case Bytecodes::_lsub : arithmetic_op(longType , code); break; 2879 case Bytecodes::_fsub : arithmetic_op(floatType , code); break; 2880 case Bytecodes::_dsub : arithmetic_op(doubleType, code); break; 2881 case Bytecodes::_imul : arithmetic_op(intType , code); break; 2882 case Bytecodes::_lmul : arithmetic_op(longType , code); break; 2883 case Bytecodes::_fmul : arithmetic_op(floatType , code); break; 2884 case Bytecodes::_dmul : arithmetic_op(doubleType, code); break; 2885 case Bytecodes::_idiv : arithmetic_op(intType , code, copy_state_for_exception()); break; 2886 case Bytecodes::_ldiv : arithmetic_op(longType , code, copy_state_for_exception()); break; 2887 case Bytecodes::_fdiv : arithmetic_op(floatType , code); break; 2888 case Bytecodes::_ddiv : arithmetic_op(doubleType, code); break; 2889 case Bytecodes::_irem : arithmetic_op(intType , code, copy_state_for_exception()); break; 2890 case Bytecodes::_lrem : arithmetic_op(longType , code, copy_state_for_exception()); break; 2891 case Bytecodes::_frem : arithmetic_op(floatType , code); break; 2892 case Bytecodes::_drem : arithmetic_op(doubleType, code); break; 2893 case Bytecodes::_ineg : negate_op(intType ); break; 2894 case Bytecodes::_lneg : negate_op(longType ); break; 2895 case Bytecodes::_fneg : negate_op(floatType ); break; 2896 case Bytecodes::_dneg : negate_op(doubleType); break; 2897 case Bytecodes::_ishl : shift_op(intType , code); break; 2898 case Bytecodes::_lshl : shift_op(longType, code); break; 2899 case Bytecodes::_ishr : shift_op(intType , code); break; 2900 case Bytecodes::_lshr : shift_op(longType, code); break; 2901 case Bytecodes::_iushr : shift_op(intType , code); break; 2902 case Bytecodes::_lushr : shift_op(longType, code); break; 2903 case Bytecodes::_iand : logic_op(intType , code); break; 2904 case Bytecodes::_land : logic_op(longType, code); break; 2905 case Bytecodes::_ior : logic_op(intType , code); break; 2906 case Bytecodes::_lor : logic_op(longType, code); break; 2907 case Bytecodes::_ixor : logic_op(intType , code); break; 2908 case Bytecodes::_lxor : logic_op(longType, code); break; 2909 case Bytecodes::_iinc : increment(); break; 2910 case Bytecodes::_i2l : convert(code, T_INT , T_LONG ); break; 2911 case Bytecodes::_i2f : convert(code, T_INT , T_FLOAT ); break; 2912 case Bytecodes::_i2d : convert(code, T_INT , T_DOUBLE); break; 2913 case Bytecodes::_l2i : convert(code, T_LONG , T_INT ); break; 2914 case Bytecodes::_l2f : convert(code, T_LONG , T_FLOAT ); break; 2915 case Bytecodes::_l2d : convert(code, T_LONG , T_DOUBLE); break; 2916 case Bytecodes::_f2i : convert(code, T_FLOAT , T_INT ); break; 2917 case Bytecodes::_f2l : convert(code, T_FLOAT , T_LONG ); break; 2918 case Bytecodes::_f2d : convert(code, T_FLOAT , T_DOUBLE); break; 2919 case Bytecodes::_d2i : convert(code, T_DOUBLE, T_INT ); break; 2920 case Bytecodes::_d2l : convert(code, T_DOUBLE, T_LONG ); break; 2921 case Bytecodes::_d2f : convert(code, T_DOUBLE, T_FLOAT ); break; 2922 case Bytecodes::_i2b : convert(code, T_INT , T_BYTE ); break; 2923 case Bytecodes::_i2c : convert(code, T_INT , T_CHAR ); break; 2924 case Bytecodes::_i2s : convert(code, T_INT , T_SHORT ); break; 2925 case Bytecodes::_lcmp : compare_op(longType , code); break; 2926 case Bytecodes::_fcmpl : compare_op(floatType , code); break; 2927 case Bytecodes::_fcmpg : compare_op(floatType , code); break; 2928 case Bytecodes::_dcmpl : compare_op(doubleType, code); break; 2929 case Bytecodes::_dcmpg : compare_op(doubleType, code); break; 2930 case Bytecodes::_ifeq : if_zero(intType , If::eql); break; 2931 case Bytecodes::_ifne : if_zero(intType , If::neq); break; 2932 case Bytecodes::_iflt : if_zero(intType , If::lss); break; 2933 case Bytecodes::_ifge : if_zero(intType , If::geq); break; 2934 case Bytecodes::_ifgt : if_zero(intType , If::gtr); break; 2935 case Bytecodes::_ifle : if_zero(intType , If::leq); break; 2936 case Bytecodes::_if_icmpeq : if_same(intType , If::eql); break; 2937 case Bytecodes::_if_icmpne : if_same(intType , If::neq); break; 2938 case Bytecodes::_if_icmplt : if_same(intType , If::lss); break; 2939 case Bytecodes::_if_icmpge : if_same(intType , If::geq); break; 2940 case Bytecodes::_if_icmpgt : if_same(intType , If::gtr); break; 2941 case Bytecodes::_if_icmple : if_same(intType , If::leq); break; 2942 case Bytecodes::_if_acmpeq : if_same(objectType, If::eql); break; 2943 case Bytecodes::_if_acmpne : if_same(objectType, If::neq); break; 2944 case Bytecodes::_goto : _goto(s.cur_bci(), s.get_dest()); break; 2945 case Bytecodes::_jsr : jsr(s.get_dest()); break; 2946 case Bytecodes::_ret : ret(s.get_index()); break; 2947 case Bytecodes::_tableswitch : table_switch(); break; 2948 case Bytecodes::_lookupswitch : lookup_switch(); break; 2949 case Bytecodes::_ireturn : method_return(ipop(), ignore_return); break; 2950 case Bytecodes::_lreturn : method_return(lpop(), ignore_return); break; 2951 case Bytecodes::_freturn : method_return(fpop(), ignore_return); break; 2952 case Bytecodes::_dreturn : method_return(dpop(), ignore_return); break; 2953 case Bytecodes::_areturn : method_return(apop(), ignore_return); break; 2954 case Bytecodes::_return : method_return(NULL , ignore_return); break; 2955 case Bytecodes::_getstatic : // fall through 2956 case Bytecodes::_putstatic : // fall through 2957 case Bytecodes::_getfield : // fall through 2958 case Bytecodes::_putfield : access_field(code); break; 2959 case Bytecodes::_invokevirtual : // fall through 2960 case Bytecodes::_invokespecial : // fall through 2961 case Bytecodes::_invokestatic : // fall through 2962 case Bytecodes::_invokedynamic : // fall through 2963 case Bytecodes::_invokeinterface: invoke(code); break; 2964 case Bytecodes::_new : new_instance(s.get_index_u2()); break; 2965 case Bytecodes::_newarray : new_type_array(); break; 2966 case Bytecodes::_anewarray : new_object_array(); break; 2967 case Bytecodes::_arraylength : { ValueStack* state_before = copy_state_for_exception(); ipush(append(new ArrayLength(apop(), state_before))); break; } 2968 case Bytecodes::_athrow : throw_op(s.cur_bci()); break; 2969 case Bytecodes::_checkcast : check_cast(s.get_index_u2()); break; 2970 case Bytecodes::_instanceof : instance_of(s.get_index_u2()); break; 2971 case Bytecodes::_monitorenter : monitorenter(apop(), s.cur_bci()); break; 2972 case Bytecodes::_monitorexit : monitorexit (apop(), s.cur_bci()); break; 2973 case Bytecodes::_wide : ShouldNotReachHere(); break; 2974 case Bytecodes::_multianewarray : new_multi_array(s.cur_bcp()[3]); break; 2975 case Bytecodes::_ifnull : if_null(objectType, If::eql); break; 2976 case Bytecodes::_ifnonnull : if_null(objectType, If::neq); break; 2977 case Bytecodes::_goto_w : _goto(s.cur_bci(), s.get_far_dest()); break; 2978 case Bytecodes::_jsr_w : jsr(s.get_far_dest()); break; 2979 case Bytecodes::_breakpoint : BAILOUT_("concurrent setting of breakpoint", NULL); 2980 default : ShouldNotReachHere(); break; 2981 } 2982 2983 if (log != NULL) 2984 log->clear_context(); // skip marker if nothing was printed 2985 2986 // save current bci to setup Goto at the end 2987 prev_bci = s.cur_bci(); 2988 2989 } 2990 CHECK_BAILOUT_(NULL); 2991 // stop processing of this block (see try_inline_full) 2992 if (_skip_block) { 2993 _skip_block = false; 2994 assert(_last && _last->as_BlockEnd(), ""); 2995 return _last->as_BlockEnd(); 2996 } 2997 // if there are any, check if last instruction is a BlockEnd instruction 2998 BlockEnd* end = last()->as_BlockEnd(); 2999 if (end == NULL) { 3000 // all blocks must end with a BlockEnd instruction => add a Goto 3001 end = new Goto(block_at(s.cur_bci()), false); 3002 append(end); 3003 } 3004 assert(end == last()->as_BlockEnd(), "inconsistency"); 3005 3006 assert(end->state() != NULL, "state must already be present"); 3007 assert(end->as_Return() == NULL || end->as_Throw() == NULL || end->state()->stack_size() == 0, "stack not needed for return and throw"); 3008 3009 // connect to begin & set state 3010 // NOTE that inlining may have changed the block we are parsing 3011 block()->set_end(end); 3012 // propagate state 3013 for (int i = end->number_of_sux() - 1; i >= 0; i--) { 3014 BlockBegin* sux = end->sux_at(i); 3015 assert(sux->is_predecessor(block()), "predecessor missing"); 3016 // be careful, bailout if bytecodes are strange 3017 if (!sux->try_merge(end->state(), compilation()->has_irreducible_loops())) BAILOUT_("block join failed", NULL); 3018 scope_data()->add_to_work_list(end->sux_at(i)); 3019 } 3020 3021 scope_data()->set_stream(NULL); 3022 3023 // done 3024 return end; 3025 } 3026 3027 3028 void GraphBuilder::iterate_all_blocks(bool start_in_current_block_for_inlining) { 3029 do { 3030 if (start_in_current_block_for_inlining && !bailed_out()) { 3031 iterate_bytecodes_for_block(0); 3032 start_in_current_block_for_inlining = false; 3033 } else { 3034 BlockBegin* b; 3035 while ((b = scope_data()->remove_from_work_list()) != NULL) { 3036 if (!b->is_set(BlockBegin::was_visited_flag)) { 3037 if (b->is_set(BlockBegin::osr_entry_flag)) { 3038 // we're about to parse the osr entry block, so make sure 3039 // we setup the OSR edge leading into this block so that 3040 // Phis get setup correctly. 3041 setup_osr_entry_block(); 3042 // this is no longer the osr entry block, so clear it. 3043 b->clear(BlockBegin::osr_entry_flag); 3044 } 3045 b->set(BlockBegin::was_visited_flag); 3046 connect_to_end(b); 3047 } 3048 } 3049 } 3050 } while (!bailed_out() && !scope_data()->is_work_list_empty()); 3051 } 3052 3053 3054 bool GraphBuilder::_can_trap [Bytecodes::number_of_java_codes]; 3055 3056 void GraphBuilder::initialize() { 3057 // the following bytecodes are assumed to potentially 3058 // throw exceptions in compiled code - note that e.g. 3059 // monitorexit & the return bytecodes do not throw 3060 // exceptions since monitor pairing proved that they 3061 // succeed (if monitor pairing succeeded) 3062 Bytecodes::Code can_trap_list[] = 3063 { Bytecodes::_ldc 3064 , Bytecodes::_ldc_w 3065 , Bytecodes::_ldc2_w 3066 , Bytecodes::_iaload 3067 , Bytecodes::_laload 3068 , Bytecodes::_faload 3069 , Bytecodes::_daload 3070 , Bytecodes::_aaload 3071 , Bytecodes::_baload 3072 , Bytecodes::_caload 3073 , Bytecodes::_saload 3074 , Bytecodes::_iastore 3075 , Bytecodes::_lastore 3076 , Bytecodes::_fastore 3077 , Bytecodes::_dastore 3078 , Bytecodes::_aastore 3079 , Bytecodes::_bastore 3080 , Bytecodes::_castore 3081 , Bytecodes::_sastore 3082 , Bytecodes::_idiv 3083 , Bytecodes::_ldiv 3084 , Bytecodes::_irem 3085 , Bytecodes::_lrem 3086 , Bytecodes::_getstatic 3087 , Bytecodes::_putstatic 3088 , Bytecodes::_getfield 3089 , Bytecodes::_putfield 3090 , Bytecodes::_invokevirtual 3091 , Bytecodes::_invokespecial 3092 , Bytecodes::_invokestatic 3093 , Bytecodes::_invokedynamic 3094 , Bytecodes::_invokeinterface 3095 , Bytecodes::_new 3096 , Bytecodes::_newarray 3097 , Bytecodes::_anewarray 3098 , Bytecodes::_arraylength 3099 , Bytecodes::_athrow 3100 , Bytecodes::_checkcast 3101 , Bytecodes::_instanceof 3102 , Bytecodes::_monitorenter 3103 , Bytecodes::_multianewarray 3104 }; 3105 3106 // inititialize trap tables 3107 for (int i = 0; i < Bytecodes::number_of_java_codes; i++) { 3108 _can_trap[i] = false; 3109 } 3110 // set standard trap info 3111 for (uint j = 0; j < ARRAY_SIZE(can_trap_list); j++) { 3112 _can_trap[can_trap_list[j]] = true; 3113 } 3114 } 3115 3116 3117 BlockBegin* GraphBuilder::header_block(BlockBegin* entry, BlockBegin::Flag f, ValueStack* state) { 3118 assert(entry->is_set(f), "entry/flag mismatch"); 3119 // create header block 3120 BlockBegin* h = new BlockBegin(entry->bci()); 3121 h->set_depth_first_number(0); 3122 3123 Value l = h; 3124 BlockEnd* g = new Goto(entry, false); 3125 l->set_next(g, entry->bci()); 3126 h->set_end(g); 3127 h->set(f); 3128 // setup header block end state 3129 ValueStack* s = state->copy(ValueStack::StateAfter, entry->bci()); // can use copy since stack is empty (=> no phis) 3130 assert(s->stack_is_empty(), "must have empty stack at entry point"); 3131 g->set_state(s); 3132 return h; 3133 } 3134 3135 3136 3137 BlockBegin* GraphBuilder::setup_start_block(int osr_bci, BlockBegin* std_entry, BlockBegin* osr_entry, ValueStack* state) { 3138 BlockBegin* start = new BlockBegin(0); 3139 3140 // This code eliminates the empty start block at the beginning of 3141 // each method. Previously, each method started with the 3142 // start-block created below, and this block was followed by the 3143 // header block that was always empty. This header block is only 3144 // necessary if std_entry is also a backward branch target because 3145 // then phi functions may be necessary in the header block. It's 3146 // also necessary when profiling so that there's a single block that 3147 // can increment the counters. 3148 // In addition, with range check elimination, we may need a valid block 3149 // that dominates all the rest to insert range predicates. 3150 BlockBegin* new_header_block; 3151 if (std_entry->number_of_preds() > 0 || is_profiling() || RangeCheckElimination) { 3152 new_header_block = header_block(std_entry, BlockBegin::std_entry_flag, state); 3153 } else { 3154 new_header_block = std_entry; 3155 } 3156 3157 // setup start block (root for the IR graph) 3158 Base* base = 3159 new Base( 3160 new_header_block, 3161 osr_entry 3162 ); 3163 start->set_next(base, 0); 3164 start->set_end(base); 3165 // create & setup state for start block 3166 start->set_state(state->copy(ValueStack::StateAfter, std_entry->bci())); 3167 base->set_state(state->copy(ValueStack::StateAfter, std_entry->bci())); 3168 3169 if (base->std_entry()->state() == NULL) { 3170 // setup states for header blocks 3171 base->std_entry()->merge(state, compilation()->has_irreducible_loops()); 3172 } 3173 3174 assert(base->std_entry()->state() != NULL, ""); 3175 return start; 3176 } 3177 3178 3179 void GraphBuilder::setup_osr_entry_block() { 3180 assert(compilation()->is_osr_compile(), "only for osrs"); 3181 3182 int osr_bci = compilation()->osr_bci(); 3183 ciBytecodeStream s(method()); 3184 s.reset_to_bci(osr_bci); 3185 s.next(); 3186 scope_data()->set_stream(&s); 3187 3188 // create a new block to be the osr setup code 3189 _osr_entry = new BlockBegin(osr_bci); 3190 _osr_entry->set(BlockBegin::osr_entry_flag); 3191 _osr_entry->set_depth_first_number(0); 3192 BlockBegin* target = bci2block()->at(osr_bci); 3193 assert(target != NULL && target->is_set(BlockBegin::osr_entry_flag), "must be there"); 3194 // the osr entry has no values for locals 3195 ValueStack* state = target->state()->copy(); 3196 _osr_entry->set_state(state); 3197 3198 kill_all(); 3199 _block = _osr_entry; 3200 _state = _osr_entry->state()->copy(); 3201 assert(_state->bci() == osr_bci, "mismatch"); 3202 _last = _osr_entry; 3203 Value e = append(new OsrEntry()); 3204 e->set_needs_null_check(false); 3205 3206 // OSR buffer is 3207 // 3208 // locals[nlocals-1..0] 3209 // monitors[number_of_locks-1..0] 3210 // 3211 // locals is a direct copy of the interpreter frame so in the osr buffer 3212 // so first slot in the local array is the last local from the interpreter 3213 // and last slot is local[0] (receiver) from the interpreter 3214 // 3215 // Similarly with locks. The first lock slot in the osr buffer is the nth lock 3216 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock 3217 // in the interpreter frame (the method lock if a sync method) 3218 3219 // Initialize monitors in the compiled activation. 3220 3221 int index; 3222 Value local; 3223 3224 // find all the locals that the interpreter thinks contain live oops 3225 const ResourceBitMap live_oops = method()->live_local_oops_at_bci(osr_bci); 3226 3227 // compute the offset into the locals so that we can treat the buffer 3228 // as if the locals were still in the interpreter frame 3229 int locals_offset = BytesPerWord * (method()->max_locals() - 1); 3230 for_each_local_value(state, index, local) { 3231 int offset = locals_offset - (index + local->type()->size() - 1) * BytesPerWord; 3232 Value get; 3233 if (local->type()->is_object_kind() && !live_oops.at(index)) { 3234 // The interpreter thinks this local is dead but the compiler 3235 // doesn't so pretend that the interpreter passed in null. 3236 get = append(new Constant(objectNull)); 3237 } else { 3238 Value off_val = append(new Constant(new IntConstant(offset))); 3239 get = append(new UnsafeGet(as_BasicType(local->type()), e, 3240 off_val, 3241 false/*is_volatile*/, 3242 true/*is_raw*/)); 3243 } 3244 _state->store_local(index, get); 3245 } 3246 3247 // the storage for the OSR buffer is freed manually in the LIRGenerator. 3248 3249 assert(state->caller_state() == NULL, "should be top scope"); 3250 state->clear_locals(); 3251 Goto* g = new Goto(target, false); 3252 append(g); 3253 _osr_entry->set_end(g); 3254 target->merge(_osr_entry->end()->state(), compilation()->has_irreducible_loops()); 3255 3256 scope_data()->set_stream(NULL); 3257 } 3258 3259 3260 ValueStack* GraphBuilder::state_at_entry() { 3261 ValueStack* state = new ValueStack(scope(), NULL); 3262 3263 // Set up locals for receiver 3264 int idx = 0; 3265 if (!method()->is_static()) { 3266 // we should always see the receiver 3267 state->store_local(idx, new Local(method()->holder(), objectType, idx, true)); 3268 idx = 1; 3269 } 3270 3271 // Set up locals for incoming arguments 3272 ciSignature* sig = method()->signature(); 3273 for (int i = 0; i < sig->count(); i++) { 3274 ciType* type = sig->type_at(i); 3275 BasicType basic_type = type->basic_type(); 3276 // don't allow T_ARRAY to propagate into locals types 3277 if (is_reference_type(basic_type)) basic_type = T_OBJECT; 3278 ValueType* vt = as_ValueType(basic_type); 3279 state->store_local(idx, new Local(type, vt, idx, false)); 3280 idx += type->size(); 3281 } 3282 3283 // lock synchronized method 3284 if (method()->is_synchronized()) { 3285 state->lock(NULL); 3286 } 3287 3288 return state; 3289 } 3290 3291 3292 GraphBuilder::GraphBuilder(Compilation* compilation, IRScope* scope) 3293 : _scope_data(NULL) 3294 , _compilation(compilation) 3295 , _memory(new MemoryBuffer()) 3296 , _inline_bailout_msg(NULL) 3297 , _instruction_count(0) 3298 , _osr_entry(NULL) 3299 { 3300 int osr_bci = compilation->osr_bci(); 3301 3302 // determine entry points and bci2block mapping 3303 BlockListBuilder blm(compilation, scope, osr_bci); 3304 CHECK_BAILOUT(); 3305 3306 BlockList* bci2block = blm.bci2block(); 3307 BlockBegin* start_block = bci2block->at(0); 3308 3309 push_root_scope(scope, bci2block, start_block); 3310 3311 // setup state for std entry 3312 _initial_state = state_at_entry(); 3313 start_block->merge(_initial_state, compilation->has_irreducible_loops()); 3314 3315 // End nulls still exist here 3316 3317 // complete graph 3318 _vmap = new ValueMap(); 3319 switch (scope->method()->intrinsic_id()) { 3320 case vmIntrinsics::_dabs : // fall through 3321 case vmIntrinsics::_dsqrt : // fall through 3322 case vmIntrinsics::_dsqrt_strict : // fall through 3323 case vmIntrinsics::_dsin : // fall through 3324 case vmIntrinsics::_dcos : // fall through 3325 case vmIntrinsics::_dtan : // fall through 3326 case vmIntrinsics::_dlog : // fall through 3327 case vmIntrinsics::_dlog10 : // fall through 3328 case vmIntrinsics::_dexp : // fall through 3329 case vmIntrinsics::_dpow : // fall through 3330 { 3331 // Compiles where the root method is an intrinsic need a special 3332 // compilation environment because the bytecodes for the method 3333 // shouldn't be parsed during the compilation, only the special 3334 // Intrinsic node should be emitted. If this isn't done the 3335 // code for the inlined version will be different than the root 3336 // compiled version which could lead to monotonicity problems on 3337 // intel. 3338 if (CheckIntrinsics && !scope->method()->intrinsic_candidate()) { 3339 BAILOUT("failed to inline intrinsic, method not annotated"); 3340 } 3341 3342 // Set up a stream so that appending instructions works properly. 3343 ciBytecodeStream s(scope->method()); 3344 s.reset_to_bci(0); 3345 scope_data()->set_stream(&s); 3346 s.next(); 3347 3348 // setup the initial block state 3349 _block = start_block; 3350 _state = start_block->state()->copy_for_parsing(); 3351 _last = start_block; 3352 load_local(doubleType, 0); 3353 if (scope->method()->intrinsic_id() == vmIntrinsics::_dpow) { 3354 load_local(doubleType, 2); 3355 } 3356 3357 // Emit the intrinsic node. 3358 bool result = try_inline_intrinsics(scope->method()); 3359 if (!result) BAILOUT("failed to inline intrinsic"); 3360 method_return(dpop()); 3361 3362 // connect the begin and end blocks and we're all done. 3363 BlockEnd* end = last()->as_BlockEnd(); 3364 block()->set_end(end); 3365 break; 3366 } 3367 3368 case vmIntrinsics::_Reference_get: 3369 { 3370 { 3371 // With java.lang.ref.reference.get() we must go through the 3372 // intrinsic - when G1 is enabled - even when get() is the root 3373 // method of the compile so that, if necessary, the value in 3374 // the referent field of the reference object gets recorded by 3375 // the pre-barrier code. 3376 // Specifically, if G1 is enabled, the value in the referent 3377 // field is recorded by the G1 SATB pre barrier. This will 3378 // result in the referent being marked live and the reference 3379 // object removed from the list of discovered references during 3380 // reference processing. 3381 if (CheckIntrinsics && !scope->method()->intrinsic_candidate()) { 3382 BAILOUT("failed to inline intrinsic, method not annotated"); 3383 } 3384 3385 // Also we need intrinsic to prevent commoning reads from this field 3386 // across safepoint since GC can change its value. 3387 3388 // Set up a stream so that appending instructions works properly. 3389 ciBytecodeStream s(scope->method()); 3390 s.reset_to_bci(0); 3391 scope_data()->set_stream(&s); 3392 s.next(); 3393 3394 // setup the initial block state 3395 _block = start_block; 3396 _state = start_block->state()->copy_for_parsing(); 3397 _last = start_block; 3398 load_local(objectType, 0); 3399 3400 // Emit the intrinsic node. 3401 bool result = try_inline_intrinsics(scope->method()); 3402 if (!result) BAILOUT("failed to inline intrinsic"); 3403 method_return(apop()); 3404 3405 // connect the begin and end blocks and we're all done. 3406 BlockEnd* end = last()->as_BlockEnd(); 3407 block()->set_end(end); 3408 break; 3409 } 3410 // Otherwise, fall thru 3411 } 3412 3413 default: 3414 scope_data()->add_to_work_list(start_block); 3415 iterate_all_blocks(); 3416 break; 3417 } 3418 CHECK_BAILOUT(); 3419 3420 # ifdef ASSERT 3421 //All blocks reachable from start_block have _end != NULL 3422 { 3423 BlockList processed; 3424 BlockList to_go; 3425 to_go.append(start_block); 3426 while(to_go.length() > 0) { 3427 BlockBegin* current = to_go.pop(); 3428 assert(current != NULL, "Should not happen."); 3429 assert(current->end() != NULL, "All blocks reachable from start_block should have end() != NULL."); 3430 processed.append(current); 3431 for(int i = 0; i < current->number_of_sux(); i++) { 3432 BlockBegin* s = current->sux_at(i); 3433 if (!processed.contains(s)) { 3434 to_go.append(s); 3435 } 3436 } 3437 } 3438 } 3439 #endif // ASSERT 3440 3441 _start = setup_start_block(osr_bci, start_block, _osr_entry, _initial_state); 3442 3443 eliminate_redundant_phis(_start); 3444 3445 NOT_PRODUCT(if (PrintValueNumbering && Verbose) print_stats()); 3446 // for osr compile, bailout if some requirements are not fulfilled 3447 if (osr_bci != -1) { 3448 BlockBegin* osr_block = blm.bci2block()->at(osr_bci); 3449 if (!osr_block->is_set(BlockBegin::was_visited_flag)) { 3450 BAILOUT("osr entry must have been visited for osr compile"); 3451 } 3452 3453 // check if osr entry point has empty stack - we cannot handle non-empty stacks at osr entry points 3454 if (!osr_block->state()->stack_is_empty()) { 3455 BAILOUT("stack not empty at OSR entry point"); 3456 } 3457 } 3458 #ifndef PRODUCT 3459 if (PrintCompilation && Verbose) tty->print_cr("Created %d Instructions", _instruction_count); 3460 #endif 3461 } 3462 3463 3464 ValueStack* GraphBuilder::copy_state_before() { 3465 return copy_state_before_with_bci(bci()); 3466 } 3467 3468 ValueStack* GraphBuilder::copy_state_exhandling() { 3469 return copy_state_exhandling_with_bci(bci()); 3470 } 3471 3472 ValueStack* GraphBuilder::copy_state_for_exception() { 3473 return copy_state_for_exception_with_bci(bci()); 3474 } 3475 3476 ValueStack* GraphBuilder::copy_state_before_with_bci(int bci) { 3477 return state()->copy(ValueStack::StateBefore, bci); 3478 } 3479 3480 ValueStack* GraphBuilder::copy_state_exhandling_with_bci(int bci) { 3481 if (!has_handler()) return NULL; 3482 return state()->copy(ValueStack::StateBefore, bci); 3483 } 3484 3485 ValueStack* GraphBuilder::copy_state_for_exception_with_bci(int bci) { 3486 ValueStack* s = copy_state_exhandling_with_bci(bci); 3487 if (s == NULL) { 3488 if (_compilation->env()->should_retain_local_variables()) { 3489 s = state()->copy(ValueStack::ExceptionState, bci); 3490 } else { 3491 s = state()->copy(ValueStack::EmptyExceptionState, bci); 3492 } 3493 } 3494 return s; 3495 } 3496 3497 int GraphBuilder::recursive_inline_level(ciMethod* cur_callee) const { 3498 int recur_level = 0; 3499 for (IRScope* s = scope(); s != NULL; s = s->caller()) { 3500 if (s->method() == cur_callee) { 3501 ++recur_level; 3502 } 3503 } 3504 return recur_level; 3505 } 3506 3507 3508 bool GraphBuilder::try_inline(ciMethod* callee, bool holder_known, bool ignore_return, Bytecodes::Code bc, Value receiver) { 3509 const char* msg = NULL; 3510 3511 // clear out any existing inline bailout condition 3512 clear_inline_bailout(); 3513 3514 // exclude methods we don't want to inline 3515 msg = should_not_inline(callee); 3516 if (msg != NULL) { 3517 print_inlining(callee, msg, /*success*/ false); 3518 return false; 3519 } 3520 3521 // method handle invokes 3522 if (callee->is_method_handle_intrinsic()) { 3523 if (try_method_handle_inline(callee, ignore_return)) { 3524 if (callee->has_reserved_stack_access()) { 3525 compilation()->set_has_reserved_stack_access(true); 3526 } 3527 return true; 3528 } 3529 return false; 3530 } 3531 3532 // handle intrinsics 3533 if (callee->intrinsic_id() != vmIntrinsics::_none && 3534 callee->check_intrinsic_candidate()) { 3535 if (try_inline_intrinsics(callee, ignore_return)) { 3536 print_inlining(callee, "intrinsic"); 3537 if (callee->has_reserved_stack_access()) { 3538 compilation()->set_has_reserved_stack_access(true); 3539 } 3540 return true; 3541 } 3542 // try normal inlining 3543 } 3544 3545 // certain methods cannot be parsed at all 3546 msg = check_can_parse(callee); 3547 if (msg != NULL) { 3548 print_inlining(callee, msg, /*success*/ false); 3549 return false; 3550 } 3551 3552 // If bytecode not set use the current one. 3553 if (bc == Bytecodes::_illegal) { 3554 bc = code(); 3555 } 3556 if (try_inline_full(callee, holder_known, ignore_return, bc, receiver)) { 3557 if (callee->has_reserved_stack_access()) { 3558 compilation()->set_has_reserved_stack_access(true); 3559 } 3560 return true; 3561 } 3562 3563 // Entire compilation could fail during try_inline_full call. 3564 // In that case printing inlining decision info is useless. 3565 if (!bailed_out()) 3566 print_inlining(callee, _inline_bailout_msg, /*success*/ false); 3567 3568 return false; 3569 } 3570 3571 3572 const char* GraphBuilder::check_can_parse(ciMethod* callee) const { 3573 // Certain methods cannot be parsed at all: 3574 if ( callee->is_native()) return "native method"; 3575 if ( callee->is_abstract()) return "abstract method"; 3576 if (!callee->can_be_parsed()) return "cannot be parsed"; 3577 return NULL; 3578 } 3579 3580 // negative filter: should callee NOT be inlined? returns NULL, ok to inline, or rejection msg 3581 const char* GraphBuilder::should_not_inline(ciMethod* callee) const { 3582 if ( compilation()->directive()->should_not_inline(callee)) return "disallowed by CompileCommand"; 3583 if ( callee->dont_inline()) return "don't inline by annotation"; 3584 return NULL; 3585 } 3586 3587 void GraphBuilder::build_graph_for_intrinsic(ciMethod* callee, bool ignore_return) { 3588 vmIntrinsics::ID id = callee->intrinsic_id(); 3589 assert(id != vmIntrinsics::_none, "must be a VM intrinsic"); 3590 3591 // Some intrinsics need special IR nodes. 3592 switch(id) { 3593 case vmIntrinsics::_getReference : append_unsafe_get(callee, T_OBJECT, false); return; 3594 case vmIntrinsics::_getBoolean : append_unsafe_get(callee, T_BOOLEAN, false); return; 3595 case vmIntrinsics::_getByte : append_unsafe_get(callee, T_BYTE, false); return; 3596 case vmIntrinsics::_getShort : append_unsafe_get(callee, T_SHORT, false); return; 3597 case vmIntrinsics::_getChar : append_unsafe_get(callee, T_CHAR, false); return; 3598 case vmIntrinsics::_getInt : append_unsafe_get(callee, T_INT, false); return; 3599 case vmIntrinsics::_getLong : append_unsafe_get(callee, T_LONG, false); return; 3600 case vmIntrinsics::_getFloat : append_unsafe_get(callee, T_FLOAT, false); return; 3601 case vmIntrinsics::_getDouble : append_unsafe_get(callee, T_DOUBLE, false); return; 3602 case vmIntrinsics::_putReference : append_unsafe_put(callee, T_OBJECT, false); return; 3603 case vmIntrinsics::_putBoolean : append_unsafe_put(callee, T_BOOLEAN, false); return; 3604 case vmIntrinsics::_putByte : append_unsafe_put(callee, T_BYTE, false); return; 3605 case vmIntrinsics::_putShort : append_unsafe_put(callee, T_SHORT, false); return; 3606 case vmIntrinsics::_putChar : append_unsafe_put(callee, T_CHAR, false); return; 3607 case vmIntrinsics::_putInt : append_unsafe_put(callee, T_INT, false); return; 3608 case vmIntrinsics::_putLong : append_unsafe_put(callee, T_LONG, false); return; 3609 case vmIntrinsics::_putFloat : append_unsafe_put(callee, T_FLOAT, false); return; 3610 case vmIntrinsics::_putDouble : append_unsafe_put(callee, T_DOUBLE, false); return; 3611 case vmIntrinsics::_getShortUnaligned : append_unsafe_get(callee, T_SHORT, false); return; 3612 case vmIntrinsics::_getCharUnaligned : append_unsafe_get(callee, T_CHAR, false); return; 3613 case vmIntrinsics::_getIntUnaligned : append_unsafe_get(callee, T_INT, false); return; 3614 case vmIntrinsics::_getLongUnaligned : append_unsafe_get(callee, T_LONG, false); return; 3615 case vmIntrinsics::_putShortUnaligned : append_unsafe_put(callee, T_SHORT, false); return; 3616 case vmIntrinsics::_putCharUnaligned : append_unsafe_put(callee, T_CHAR, false); return; 3617 case vmIntrinsics::_putIntUnaligned : append_unsafe_put(callee, T_INT, false); return; 3618 case vmIntrinsics::_putLongUnaligned : append_unsafe_put(callee, T_LONG, false); return; 3619 case vmIntrinsics::_getReferenceVolatile : append_unsafe_get(callee, T_OBJECT, true); return; 3620 case vmIntrinsics::_getBooleanVolatile : append_unsafe_get(callee, T_BOOLEAN, true); return; 3621 case vmIntrinsics::_getByteVolatile : append_unsafe_get(callee, T_BYTE, true); return; 3622 case vmIntrinsics::_getShortVolatile : append_unsafe_get(callee, T_SHORT, true); return; 3623 case vmIntrinsics::_getCharVolatile : append_unsafe_get(callee, T_CHAR, true); return; 3624 case vmIntrinsics::_getIntVolatile : append_unsafe_get(callee, T_INT, true); return; 3625 case vmIntrinsics::_getLongVolatile : append_unsafe_get(callee, T_LONG, true); return; 3626 case vmIntrinsics::_getFloatVolatile : append_unsafe_get(callee, T_FLOAT, true); return; 3627 case vmIntrinsics::_getDoubleVolatile : append_unsafe_get(callee, T_DOUBLE, true); return; 3628 case vmIntrinsics::_putReferenceVolatile : append_unsafe_put(callee, T_OBJECT, true); return; 3629 case vmIntrinsics::_putBooleanVolatile : append_unsafe_put(callee, T_BOOLEAN, true); return; 3630 case vmIntrinsics::_putByteVolatile : append_unsafe_put(callee, T_BYTE, true); return; 3631 case vmIntrinsics::_putShortVolatile : append_unsafe_put(callee, T_SHORT, true); return; 3632 case vmIntrinsics::_putCharVolatile : append_unsafe_put(callee, T_CHAR, true); return; 3633 case vmIntrinsics::_putIntVolatile : append_unsafe_put(callee, T_INT, true); return; 3634 case vmIntrinsics::_putLongVolatile : append_unsafe_put(callee, T_LONG, true); return; 3635 case vmIntrinsics::_putFloatVolatile : append_unsafe_put(callee, T_FLOAT, true); return; 3636 case vmIntrinsics::_putDoubleVolatile : append_unsafe_put(callee, T_DOUBLE, true); return; 3637 case vmIntrinsics::_compareAndSetLong: 3638 case vmIntrinsics::_compareAndSetInt: 3639 case vmIntrinsics::_compareAndSetReference : append_unsafe_CAS(callee); return; 3640 case vmIntrinsics::_getAndAddInt: 3641 case vmIntrinsics::_getAndAddLong : append_unsafe_get_and_set(callee, true); return; 3642 case vmIntrinsics::_getAndSetInt : 3643 case vmIntrinsics::_getAndSetLong : 3644 case vmIntrinsics::_getAndSetReference : append_unsafe_get_and_set(callee, false); return; 3645 case vmIntrinsics::_getCharStringU : append_char_access(callee, false); return; 3646 case vmIntrinsics::_putCharStringU : append_char_access(callee, true); return; 3647 default: 3648 break; 3649 } 3650 3651 // create intrinsic node 3652 const bool has_receiver = !callee->is_static(); 3653 ValueType* result_type = as_ValueType(callee->return_type()); 3654 ValueStack* state_before = copy_state_for_exception(); 3655 3656 Values* args = state()->pop_arguments(callee->arg_size()); 3657 3658 if (is_profiling()) { 3659 // Don't profile in the special case where the root method 3660 // is the intrinsic 3661 if (callee != method()) { 3662 // Note that we'd collect profile data in this method if we wanted it. 3663 compilation()->set_would_profile(true); 3664 if (profile_calls()) { 3665 Value recv = NULL; 3666 if (has_receiver) { 3667 recv = args->at(0); 3668 null_check(recv); 3669 } 3670 profile_call(callee, recv, NULL, collect_args_for_profiling(args, callee, true), true); 3671 } 3672 } 3673 } 3674 3675 Intrinsic* result = new Intrinsic(result_type, callee->intrinsic_id(), 3676 args, has_receiver, state_before, 3677 vmIntrinsics::preserves_state(id), 3678 vmIntrinsics::can_trap(id)); 3679 // append instruction & push result 3680 Value value = append_split(result); 3681 if (result_type != voidType && !ignore_return) { 3682 push(result_type, value); 3683 } 3684 3685 if (callee != method() && profile_return() && result_type->is_object_kind()) { 3686 profile_return_type(result, callee); 3687 } 3688 } 3689 3690 bool GraphBuilder::try_inline_intrinsics(ciMethod* callee, bool ignore_return) { 3691 // For calling is_intrinsic_available we need to transition to 3692 // the '_thread_in_vm' state because is_intrinsic_available() 3693 // accesses critical VM-internal data. 3694 bool is_available = false; 3695 { 3696 VM_ENTRY_MARK; 3697 methodHandle mh(THREAD, callee->get_Method()); 3698 is_available = _compilation->compiler()->is_intrinsic_available(mh, _compilation->directive()); 3699 } 3700 3701 if (!is_available) { 3702 if (!InlineNatives) { 3703 // Return false and also set message that the inlining of 3704 // intrinsics has been disabled in general. 3705 INLINE_BAILOUT("intrinsic method inlining disabled"); 3706 } else { 3707 return false; 3708 } 3709 } 3710 build_graph_for_intrinsic(callee, ignore_return); 3711 return true; 3712 } 3713 3714 3715 bool GraphBuilder::try_inline_jsr(int jsr_dest_bci) { 3716 // Introduce a new callee continuation point - all Ret instructions 3717 // will be replaced with Gotos to this point. 3718 BlockBegin* cont = block_at(next_bci()); 3719 assert(cont != NULL, "continuation must exist (BlockListBuilder starts a new block after a jsr"); 3720 3721 // Note: can not assign state to continuation yet, as we have to 3722 // pick up the state from the Ret instructions. 3723 3724 // Push callee scope 3725 push_scope_for_jsr(cont, jsr_dest_bci); 3726 3727 // Temporarily set up bytecode stream so we can append instructions 3728 // (only using the bci of this stream) 3729 scope_data()->set_stream(scope_data()->parent()->stream()); 3730 3731 BlockBegin* jsr_start_block = block_at(jsr_dest_bci); 3732 assert(jsr_start_block != NULL, "jsr start block must exist"); 3733 assert(!jsr_start_block->is_set(BlockBegin::was_visited_flag), "should not have visited jsr yet"); 3734 Goto* goto_sub = new Goto(jsr_start_block, false); 3735 // Must copy state to avoid wrong sharing when parsing bytecodes 3736 assert(jsr_start_block->state() == NULL, "should have fresh jsr starting block"); 3737 jsr_start_block->set_state(copy_state_before_with_bci(jsr_dest_bci)); 3738 append(goto_sub); 3739 _block->set_end(goto_sub); 3740 _last = _block = jsr_start_block; 3741 3742 // Clear out bytecode stream 3743 scope_data()->set_stream(NULL); 3744 3745 scope_data()->add_to_work_list(jsr_start_block); 3746 3747 // Ready to resume parsing in subroutine 3748 iterate_all_blocks(); 3749 3750 // If we bailed out during parsing, return immediately (this is bad news) 3751 CHECK_BAILOUT_(false); 3752 3753 // Detect whether the continuation can actually be reached. If not, 3754 // it has not had state set by the join() operations in 3755 // iterate_bytecodes_for_block()/ret() and we should not touch the 3756 // iteration state. The calling activation of 3757 // iterate_bytecodes_for_block will then complete normally. 3758 if (cont->state() != NULL) { 3759 if (!cont->is_set(BlockBegin::was_visited_flag)) { 3760 // add continuation to work list instead of parsing it immediately 3761 scope_data()->parent()->add_to_work_list(cont); 3762 } 3763 } 3764 3765 assert(jsr_continuation() == cont, "continuation must not have changed"); 3766 assert(!jsr_continuation()->is_set(BlockBegin::was_visited_flag) || 3767 jsr_continuation()->is_set(BlockBegin::parser_loop_header_flag), 3768 "continuation can only be visited in case of backward branches"); 3769 assert(_last && _last->as_BlockEnd(), "block must have end"); 3770 3771 // continuation is in work list, so end iteration of current block 3772 _skip_block = true; 3773 pop_scope_for_jsr(); 3774 3775 return true; 3776 } 3777 3778 3779 // Inline the entry of a synchronized method as a monitor enter and 3780 // register the exception handler which releases the monitor if an 3781 // exception is thrown within the callee. Note that the monitor enter 3782 // cannot throw an exception itself, because the receiver is 3783 // guaranteed to be non-null by the explicit null check at the 3784 // beginning of inlining. 3785 void GraphBuilder::inline_sync_entry(Value lock, BlockBegin* sync_handler) { 3786 assert(lock != NULL && sync_handler != NULL, "lock or handler missing"); 3787 3788 monitorenter(lock, SynchronizationEntryBCI); 3789 assert(_last->as_MonitorEnter() != NULL, "monitor enter expected"); 3790 _last->set_needs_null_check(false); 3791 3792 sync_handler->set(BlockBegin::exception_entry_flag); 3793 sync_handler->set(BlockBegin::is_on_work_list_flag); 3794 3795 ciExceptionHandler* desc = new ciExceptionHandler(method()->holder(), 0, method()->code_size(), -1, 0); 3796 XHandler* h = new XHandler(desc); 3797 h->set_entry_block(sync_handler); 3798 scope_data()->xhandlers()->append(h); 3799 scope_data()->set_has_handler(); 3800 } 3801 3802 3803 // If an exception is thrown and not handled within an inlined 3804 // synchronized method, the monitor must be released before the 3805 // exception is rethrown in the outer scope. Generate the appropriate 3806 // instructions here. 3807 void GraphBuilder::fill_sync_handler(Value lock, BlockBegin* sync_handler, bool default_handler) { 3808 BlockBegin* orig_block = _block; 3809 ValueStack* orig_state = _state; 3810 Instruction* orig_last = _last; 3811 _last = _block = sync_handler; 3812 _state = sync_handler->state()->copy(); 3813 3814 assert(sync_handler != NULL, "handler missing"); 3815 assert(!sync_handler->is_set(BlockBegin::was_visited_flag), "is visited here"); 3816 3817 assert(lock != NULL || default_handler, "lock or handler missing"); 3818 3819 XHandler* h = scope_data()->xhandlers()->remove_last(); 3820 assert(h->entry_block() == sync_handler, "corrupt list of handlers"); 3821 3822 block()->set(BlockBegin::was_visited_flag); 3823 Value exception = append_with_bci(new ExceptionObject(), SynchronizationEntryBCI); 3824 assert(exception->is_pinned(), "must be"); 3825 3826 int bci = SynchronizationEntryBCI; 3827 if (compilation()->env()->dtrace_method_probes()) { 3828 // Report exit from inline methods. We don't have a stream here 3829 // so pass an explicit bci of SynchronizationEntryBCI. 3830 Values* args = new Values(1); 3831 args->push(append_with_bci(new Constant(new MethodConstant(method())), bci)); 3832 append_with_bci(new RuntimeCall(voidType, "dtrace_method_exit", CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), args), bci); 3833 } 3834 3835 if (lock) { 3836 assert(state()->locks_size() > 0 && state()->lock_at(state()->locks_size() - 1) == lock, "lock is missing"); 3837 if (!lock->is_linked()) { 3838 lock = append_with_bci(lock, bci); 3839 } 3840 3841 // exit the monitor in the context of the synchronized method 3842 monitorexit(lock, bci); 3843 3844 // exit the context of the synchronized method 3845 if (!default_handler) { 3846 pop_scope(); 3847 bci = _state->caller_state()->bci(); 3848 _state = _state->caller_state()->copy_for_parsing(); 3849 } 3850 } 3851 3852 // perform the throw as if at the call site 3853 apush(exception); 3854 throw_op(bci); 3855 3856 BlockEnd* end = last()->as_BlockEnd(); 3857 block()->set_end(end); 3858 3859 _block = orig_block; 3860 _state = orig_state; 3861 _last = orig_last; 3862 } 3863 3864 3865 bool GraphBuilder::try_inline_full(ciMethod* callee, bool holder_known, bool ignore_return, Bytecodes::Code bc, Value receiver) { 3866 assert(!callee->is_native(), "callee must not be native"); 3867 if (CompilationPolicy::should_not_inline(compilation()->env(), callee)) { 3868 INLINE_BAILOUT("inlining prohibited by policy"); 3869 } 3870 // first perform tests of things it's not possible to inline 3871 if (callee->has_exception_handlers() && 3872 !InlineMethodsWithExceptionHandlers) INLINE_BAILOUT("callee has exception handlers"); 3873 if (callee->is_synchronized() && 3874 !InlineSynchronizedMethods ) INLINE_BAILOUT("callee is synchronized"); 3875 if (!callee->holder()->is_linked()) INLINE_BAILOUT("callee's klass not linked yet"); 3876 if (bc == Bytecodes::_invokestatic && 3877 !callee->holder()->is_initialized()) INLINE_BAILOUT("callee's klass not initialized yet"); 3878 if (!callee->has_balanced_monitors()) INLINE_BAILOUT("callee's monitors do not match"); 3879 3880 // Proper inlining of methods with jsrs requires a little more work. 3881 if (callee->has_jsrs() ) INLINE_BAILOUT("jsrs not handled properly by inliner yet"); 3882 3883 if (is_profiling() && !callee->ensure_method_data()) { 3884 INLINE_BAILOUT("mdo allocation failed"); 3885 } 3886 3887 const bool is_invokedynamic = (bc == Bytecodes::_invokedynamic); 3888 const bool has_receiver = (bc != Bytecodes::_invokestatic && !is_invokedynamic); 3889 3890 const int args_base = state()->stack_size() - callee->arg_size(); 3891 assert(args_base >= 0, "stack underflow during inlining"); 3892 3893 Value recv = NULL; 3894 if (has_receiver) { 3895 assert(!callee->is_static(), "callee must not be static"); 3896 assert(callee->arg_size() > 0, "must have at least a receiver"); 3897 3898 recv = state()->stack_at(args_base); 3899 if (recv->is_null_obj()) { 3900 INLINE_BAILOUT("receiver is always null"); 3901 } 3902 } 3903 3904 // now perform tests that are based on flag settings 3905 bool inlinee_by_directive = compilation()->directive()->should_inline(callee); 3906 if (callee->force_inline() || inlinee_by_directive) { 3907 if (inline_level() > MaxForceInlineLevel ) INLINE_BAILOUT("MaxForceInlineLevel"); 3908 if (recursive_inline_level(callee) > C1MaxRecursiveInlineLevel) INLINE_BAILOUT("recursive inlining too deep"); 3909 3910 const char* msg = ""; 3911 if (callee->force_inline()) msg = "force inline by annotation"; 3912 if (inlinee_by_directive) msg = "force inline by CompileCommand"; 3913 print_inlining(callee, msg); 3914 } else { 3915 // use heuristic controls on inlining 3916 if (inline_level() > C1MaxInlineLevel ) INLINE_BAILOUT("inlining too deep"); 3917 int callee_recursive_level = recursive_inline_level(callee); 3918 if (callee_recursive_level > C1MaxRecursiveInlineLevel ) INLINE_BAILOUT("recursive inlining too deep"); 3919 if (callee->code_size_for_inlining() > max_inline_size() ) INLINE_BAILOUT("callee is too large"); 3920 // Additional condition to limit stack usage for non-recursive calls. 3921 if ((callee_recursive_level == 0) && 3922 (callee->max_stack() + callee->max_locals() - callee->size_of_parameters() > C1InlineStackLimit)) { 3923 INLINE_BAILOUT("callee uses too much stack"); 3924 } 3925 3926 // don't inline throwable methods unless the inlining tree is rooted in a throwable class 3927 if (callee->name() == ciSymbols::object_initializer_name() && 3928 callee->holder()->is_subclass_of(ciEnv::current()->Throwable_klass())) { 3929 // Throwable constructor call 3930 IRScope* top = scope(); 3931 while (top->caller() != NULL) { 3932 top = top->caller(); 3933 } 3934 if (!top->method()->holder()->is_subclass_of(ciEnv::current()->Throwable_klass())) { 3935 INLINE_BAILOUT("don't inline Throwable constructors"); 3936 } 3937 } 3938 3939 if (compilation()->env()->num_inlined_bytecodes() > DesiredMethodLimit) { 3940 INLINE_BAILOUT("total inlining greater than DesiredMethodLimit"); 3941 } 3942 // printing 3943 print_inlining(callee, "inline", /*success*/ true); 3944 } 3945 3946 assert(bc != Bytecodes::_invokestatic || callee->holder()->is_initialized(), "required"); 3947 3948 // NOTE: Bailouts from this point on, which occur at the 3949 // GraphBuilder level, do not cause bailout just of the inlining but 3950 // in fact of the entire compilation. 3951 3952 BlockBegin* orig_block = block(); 3953 3954 // Insert null check if necessary 3955 if (has_receiver) { 3956 // note: null check must happen even if first instruction of callee does 3957 // an implicit null check since the callee is in a different scope 3958 // and we must make sure exception handling does the right thing 3959 null_check(recv); 3960 } 3961 3962 if (is_profiling()) { 3963 // Note that we'd collect profile data in this method if we wanted it. 3964 // this may be redundant here... 3965 compilation()->set_would_profile(true); 3966 3967 if (profile_calls()) { 3968 int start = 0; 3969 Values* obj_args = args_list_for_profiling(callee, start, has_receiver); 3970 if (obj_args != NULL) { 3971 int s = obj_args->capacity(); 3972 // if called through method handle invoke, some arguments may have been popped 3973 for (int i = args_base+start, j = 0; j < obj_args->capacity() && i < state()->stack_size(); ) { 3974 Value v = state()->stack_at_inc(i); 3975 if (v->type()->is_object_kind()) { 3976 obj_args->push(v); 3977 j++; 3978 } 3979 } 3980 check_args_for_profiling(obj_args, s); 3981 } 3982 profile_call(callee, recv, holder_known ? callee->holder() : NULL, obj_args, true); 3983 } 3984 } 3985 3986 // Introduce a new callee continuation point - if the callee has 3987 // more than one return instruction or the return does not allow 3988 // fall-through of control flow, all return instructions of the 3989 // callee will need to be replaced by Goto's pointing to this 3990 // continuation point. 3991 BlockBegin* cont = block_at(next_bci()); 3992 bool continuation_existed = true; 3993 if (cont == NULL) { 3994 cont = new BlockBegin(next_bci()); 3995 // low number so that continuation gets parsed as early as possible 3996 cont->set_depth_first_number(0); 3997 if (PrintInitialBlockList) { 3998 tty->print_cr("CFG: created block %d (bci %d) as continuation for inline at bci %d", 3999 cont->block_id(), cont->bci(), bci()); 4000 } 4001 continuation_existed = false; 4002 } 4003 // Record number of predecessors of continuation block before 4004 // inlining, to detect if inlined method has edges to its 4005 // continuation after inlining. 4006 int continuation_preds = cont->number_of_preds(); 4007 4008 // Push callee scope 4009 push_scope(callee, cont); 4010 4011 // the BlockListBuilder for the callee could have bailed out 4012 if (bailed_out()) 4013 return false; 4014 4015 // Temporarily set up bytecode stream so we can append instructions 4016 // (only using the bci of this stream) 4017 scope_data()->set_stream(scope_data()->parent()->stream()); 4018 4019 // Pass parameters into callee state: add assignments 4020 // note: this will also ensure that all arguments are computed before being passed 4021 ValueStack* callee_state = state(); 4022 ValueStack* caller_state = state()->caller_state(); 4023 for (int i = args_base; i < caller_state->stack_size(); ) { 4024 const int arg_no = i - args_base; 4025 Value arg = caller_state->stack_at_inc(i); 4026 store_local(callee_state, arg, arg_no); 4027 } 4028 4029 // Remove args from stack. 4030 // Note that we preserve locals state in case we can use it later 4031 // (see use of pop_scope() below) 4032 caller_state->truncate_stack(args_base); 4033 assert(callee_state->stack_size() == 0, "callee stack must be empty"); 4034 4035 Value lock = NULL; 4036 BlockBegin* sync_handler = NULL; 4037 4038 // Inline the locking of the receiver if the callee is synchronized 4039 if (callee->is_synchronized()) { 4040 lock = callee->is_static() ? append(new Constant(new InstanceConstant(callee->holder()->java_mirror()))) 4041 : state()->local_at(0); 4042 sync_handler = new BlockBegin(SynchronizationEntryBCI); 4043 inline_sync_entry(lock, sync_handler); 4044 } 4045 4046 if (compilation()->env()->dtrace_method_probes()) { 4047 Values* args = new Values(1); 4048 args->push(append(new Constant(new MethodConstant(method())))); 4049 append(new RuntimeCall(voidType, "dtrace_method_entry", CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), args)); 4050 } 4051 4052 if (profile_inlined_calls()) { 4053 profile_invocation(callee, copy_state_before_with_bci(SynchronizationEntryBCI)); 4054 } 4055 4056 BlockBegin* callee_start_block = block_at(0); 4057 if (callee_start_block != NULL) { 4058 assert(callee_start_block->is_set(BlockBegin::parser_loop_header_flag), "must be loop header"); 4059 Goto* goto_callee = new Goto(callee_start_block, false); 4060 // The state for this goto is in the scope of the callee, so use 4061 // the entry bci for the callee instead of the call site bci. 4062 append_with_bci(goto_callee, 0); 4063 _block->set_end(goto_callee); 4064 callee_start_block->merge(callee_state, compilation()->has_irreducible_loops()); 4065 4066 _last = _block = callee_start_block; 4067 4068 scope_data()->add_to_work_list(callee_start_block); 4069 } 4070 4071 // Clear out bytecode stream 4072 scope_data()->set_stream(NULL); 4073 scope_data()->set_ignore_return(ignore_return); 4074 4075 CompileLog* log = compilation()->log(); 4076 if (log != NULL) log->head("parse method='%d'", log->identify(callee)); 4077 4078 // Ready to resume parsing in callee (either in the same block we 4079 // were in before or in the callee's start block) 4080 iterate_all_blocks(callee_start_block == NULL); 4081 4082 if (log != NULL) log->done("parse"); 4083 4084 // If we bailed out during parsing, return immediately (this is bad news) 4085 if (bailed_out()) 4086 return false; 4087 4088 // iterate_all_blocks theoretically traverses in random order; in 4089 // practice, we have only traversed the continuation if we are 4090 // inlining into a subroutine 4091 assert(continuation_existed || 4092 !continuation()->is_set(BlockBegin::was_visited_flag), 4093 "continuation should not have been parsed yet if we created it"); 4094 4095 // At this point we are almost ready to return and resume parsing of 4096 // the caller back in the GraphBuilder. The only thing we want to do 4097 // first is an optimization: during parsing of the callee we 4098 // generated at least one Goto to the continuation block. If we 4099 // generated exactly one, and if the inlined method spanned exactly 4100 // one block (and we didn't have to Goto its entry), then we snip 4101 // off the Goto to the continuation, allowing control to fall 4102 // through back into the caller block and effectively performing 4103 // block merging. This allows load elimination and CSE to take place 4104 // across multiple callee scopes if they are relatively simple, and 4105 // is currently essential to making inlining profitable. 4106 if (num_returns() == 1 4107 && block() == orig_block 4108 && block() == inline_cleanup_block()) { 4109 _last = inline_cleanup_return_prev(); 4110 _state = inline_cleanup_state(); 4111 } else if (continuation_preds == cont->number_of_preds()) { 4112 // Inlining caused that the instructions after the invoke in the 4113 // caller are not reachable any more. So skip filling this block 4114 // with instructions! 4115 assert(cont == continuation(), ""); 4116 assert(_last && _last->as_BlockEnd(), ""); 4117 _skip_block = true; 4118 } else { 4119 // Resume parsing in continuation block unless it was already parsed. 4120 // Note that if we don't change _last here, iteration in 4121 // iterate_bytecodes_for_block will stop when we return. 4122 if (!continuation()->is_set(BlockBegin::was_visited_flag)) { 4123 // add continuation to work list instead of parsing it immediately 4124 assert(_last && _last->as_BlockEnd(), ""); 4125 scope_data()->parent()->add_to_work_list(continuation()); 4126 _skip_block = true; 4127 } 4128 } 4129 4130 // Fill the exception handler for synchronized methods with instructions 4131 if (callee->is_synchronized() && sync_handler->state() != NULL) { 4132 fill_sync_handler(lock, sync_handler); 4133 } else { 4134 pop_scope(); 4135 } 4136 4137 compilation()->notice_inlined_method(callee); 4138 4139 return true; 4140 } 4141 4142 4143 bool GraphBuilder::try_method_handle_inline(ciMethod* callee, bool ignore_return) { 4144 ValueStack* state_before = copy_state_before(); 4145 vmIntrinsics::ID iid = callee->intrinsic_id(); 4146 switch (iid) { 4147 case vmIntrinsics::_invokeBasic: 4148 { 4149 // get MethodHandle receiver 4150 const int args_base = state()->stack_size() - callee->arg_size(); 4151 ValueType* type = state()->stack_at(args_base)->type(); 4152 if (type->is_constant()) { 4153 ciObject* mh = type->as_ObjectType()->constant_value(); 4154 if (mh->is_method_handle()) { 4155 ciMethod* target = mh->as_method_handle()->get_vmtarget(); 4156 4157 // We don't do CHA here so only inline static and statically bindable methods. 4158 if (target->is_static() || target->can_be_statically_bound()) { 4159 if (ciMethod::is_consistent_info(callee, target)) { 4160 Bytecodes::Code bc = target->is_static() ? Bytecodes::_invokestatic : Bytecodes::_invokevirtual; 4161 ignore_return = ignore_return || (callee->return_type()->is_void() && !target->return_type()->is_void()); 4162 if (try_inline(target, /*holder_known*/ !callee->is_static(), ignore_return, bc)) { 4163 return true; 4164 } 4165 } else { 4166 print_inlining(target, "signatures mismatch", /*success*/ false); 4167 } 4168 } else { 4169 assert(false, "no inlining through MH::invokeBasic"); // missing optimization opportunity due to suboptimal LF shape 4170 print_inlining(target, "not static or statically bindable", /*success*/ false); 4171 } 4172 } else { 4173 assert(mh->is_null_object(), "not a null"); 4174 print_inlining(callee, "receiver is always null", /*success*/ false); 4175 } 4176 } else { 4177 print_inlining(callee, "receiver not constant", /*success*/ false); 4178 } 4179 } 4180 break; 4181 4182 case vmIntrinsics::_linkToVirtual: 4183 case vmIntrinsics::_linkToStatic: 4184 case vmIntrinsics::_linkToSpecial: 4185 case vmIntrinsics::_linkToInterface: 4186 { 4187 // pop MemberName argument 4188 const int args_base = state()->stack_size() - callee->arg_size(); 4189 ValueType* type = apop()->type(); 4190 if (type->is_constant()) { 4191 ciMethod* target = type->as_ObjectType()->constant_value()->as_member_name()->get_vmtarget(); 4192 ignore_return = ignore_return || (callee->return_type()->is_void() && !target->return_type()->is_void()); 4193 // If the target is another method handle invoke, try to recursively get 4194 // a better target. 4195 if (target->is_method_handle_intrinsic()) { 4196 if (try_method_handle_inline(target, ignore_return)) { 4197 return true; 4198 } 4199 } else if (!ciMethod::is_consistent_info(callee, target)) { 4200 print_inlining(target, "signatures mismatch", /*success*/ false); 4201 } else { 4202 ciSignature* signature = target->signature(); 4203 const int receiver_skip = target->is_static() ? 0 : 1; 4204 // Cast receiver to its type. 4205 if (!target->is_static()) { 4206 ciKlass* tk = signature->accessing_klass(); 4207 Value obj = state()->stack_at(args_base); 4208 if (obj->exact_type() == NULL && 4209 obj->declared_type() != tk && tk != compilation()->env()->Object_klass()) { 4210 TypeCast* c = new TypeCast(tk, obj, state_before); 4211 append(c); 4212 state()->stack_at_put(args_base, c); 4213 } 4214 } 4215 // Cast reference arguments to its type. 4216 for (int i = 0, j = 0; i < signature->count(); i++) { 4217 ciType* t = signature->type_at(i); 4218 if (t->is_klass()) { 4219 ciKlass* tk = t->as_klass(); 4220 Value obj = state()->stack_at(args_base + receiver_skip + j); 4221 if (obj->exact_type() == NULL && 4222 obj->declared_type() != tk && tk != compilation()->env()->Object_klass()) { 4223 TypeCast* c = new TypeCast(t, obj, state_before); 4224 append(c); 4225 state()->stack_at_put(args_base + receiver_skip + j, c); 4226 } 4227 } 4228 j += t->size(); // long and double take two slots 4229 } 4230 // We don't do CHA here so only inline static and statically bindable methods. 4231 if (target->is_static() || target->can_be_statically_bound()) { 4232 Bytecodes::Code bc = target->is_static() ? Bytecodes::_invokestatic : Bytecodes::_invokevirtual; 4233 if (try_inline(target, /*holder_known*/ !callee->is_static(), ignore_return, bc)) { 4234 return true; 4235 } 4236 } else { 4237 print_inlining(target, "not static or statically bindable", /*success*/ false); 4238 } 4239 } 4240 } else { 4241 print_inlining(callee, "MemberName not constant", /*success*/ false); 4242 } 4243 } 4244 break; 4245 4246 case vmIntrinsics::_linkToNative: 4247 print_inlining(callee, "native call", /*success*/ false); 4248 break; 4249 4250 default: 4251 fatal("unexpected intrinsic %d: %s", vmIntrinsics::as_int(iid), vmIntrinsics::name_at(iid)); 4252 break; 4253 } 4254 set_state(state_before->copy_for_parsing()); 4255 return false; 4256 } 4257 4258 4259 void GraphBuilder::inline_bailout(const char* msg) { 4260 assert(msg != NULL, "inline bailout msg must exist"); 4261 _inline_bailout_msg = msg; 4262 } 4263 4264 4265 void GraphBuilder::clear_inline_bailout() { 4266 _inline_bailout_msg = NULL; 4267 } 4268 4269 4270 void GraphBuilder::push_root_scope(IRScope* scope, BlockList* bci2block, BlockBegin* start) { 4271 ScopeData* data = new ScopeData(NULL); 4272 data->set_scope(scope); 4273 data->set_bci2block(bci2block); 4274 _scope_data = data; 4275 _block = start; 4276 } 4277 4278 4279 void GraphBuilder::push_scope(ciMethod* callee, BlockBegin* continuation) { 4280 IRScope* callee_scope = new IRScope(compilation(), scope(), bci(), callee, -1, false); 4281 scope()->add_callee(callee_scope); 4282 4283 BlockListBuilder blb(compilation(), callee_scope, -1); 4284 CHECK_BAILOUT(); 4285 4286 if (!blb.bci2block()->at(0)->is_set(BlockBegin::parser_loop_header_flag)) { 4287 // this scope can be inlined directly into the caller so remove 4288 // the block at bci 0. 4289 blb.bci2block()->at_put(0, NULL); 4290 } 4291 4292 set_state(new ValueStack(callee_scope, state()->copy(ValueStack::CallerState, bci()))); 4293 4294 ScopeData* data = new ScopeData(scope_data()); 4295 data->set_scope(callee_scope); 4296 data->set_bci2block(blb.bci2block()); 4297 data->set_continuation(continuation); 4298 _scope_data = data; 4299 } 4300 4301 4302 void GraphBuilder::push_scope_for_jsr(BlockBegin* jsr_continuation, int jsr_dest_bci) { 4303 ScopeData* data = new ScopeData(scope_data()); 4304 data->set_parsing_jsr(); 4305 data->set_jsr_entry_bci(jsr_dest_bci); 4306 data->set_jsr_return_address_local(-1); 4307 // Must clone bci2block list as we will be mutating it in order to 4308 // properly clone all blocks in jsr region as well as exception 4309 // handlers containing rets 4310 BlockList* new_bci2block = new BlockList(bci2block()->length()); 4311 new_bci2block->appendAll(bci2block()); 4312 data->set_bci2block(new_bci2block); 4313 data->set_scope(scope()); 4314 data->setup_jsr_xhandlers(); 4315 data->set_continuation(continuation()); 4316 data->set_jsr_continuation(jsr_continuation); 4317 _scope_data = data; 4318 } 4319 4320 4321 void GraphBuilder::pop_scope() { 4322 int number_of_locks = scope()->number_of_locks(); 4323 _scope_data = scope_data()->parent(); 4324 // accumulate minimum number of monitor slots to be reserved 4325 scope()->set_min_number_of_locks(number_of_locks); 4326 } 4327 4328 4329 void GraphBuilder::pop_scope_for_jsr() { 4330 _scope_data = scope_data()->parent(); 4331 } 4332 4333 void GraphBuilder::append_unsafe_get(ciMethod* callee, BasicType t, bool is_volatile) { 4334 Values* args = state()->pop_arguments(callee->arg_size()); 4335 null_check(args->at(0)); 4336 Instruction* offset = args->at(2); 4337 #ifndef _LP64 4338 offset = append(new Convert(Bytecodes::_l2i, offset, as_ValueType(T_INT))); 4339 #endif 4340 Instruction* op = append(new UnsafeGet(t, args->at(1), offset, is_volatile)); 4341 push(op->type(), op); 4342 compilation()->set_has_unsafe_access(true); 4343 } 4344 4345 4346 void GraphBuilder::append_unsafe_put(ciMethod* callee, BasicType t, bool is_volatile) { 4347 Values* args = state()->pop_arguments(callee->arg_size()); 4348 null_check(args->at(0)); 4349 Instruction* offset = args->at(2); 4350 #ifndef _LP64 4351 offset = append(new Convert(Bytecodes::_l2i, offset, as_ValueType(T_INT))); 4352 #endif 4353 Value val = args->at(3); 4354 if (t == T_BOOLEAN) { 4355 Value mask = append(new Constant(new IntConstant(1))); 4356 val = append(new LogicOp(Bytecodes::_iand, val, mask)); 4357 } 4358 Instruction* op = append(new UnsafePut(t, args->at(1), offset, val, is_volatile)); 4359 compilation()->set_has_unsafe_access(true); 4360 kill_all(); 4361 } 4362 4363 void GraphBuilder::append_unsafe_CAS(ciMethod* callee) { 4364 ValueStack* state_before = copy_state_for_exception(); 4365 ValueType* result_type = as_ValueType(callee->return_type()); 4366 assert(result_type->is_int(), "int result"); 4367 Values* args = state()->pop_arguments(callee->arg_size()); 4368 4369 // Pop off some args to specially handle, then push back 4370 Value newval = args->pop(); 4371 Value cmpval = args->pop(); 4372 Value offset = args->pop(); 4373 Value src = args->pop(); 4374 Value unsafe_obj = args->pop(); 4375 4376 // Separately handle the unsafe arg. It is not needed for code 4377 // generation, but must be null checked 4378 null_check(unsafe_obj); 4379 4380 #ifndef _LP64 4381 offset = append(new Convert(Bytecodes::_l2i, offset, as_ValueType(T_INT))); 4382 #endif 4383 4384 args->push(src); 4385 args->push(offset); 4386 args->push(cmpval); 4387 args->push(newval); 4388 4389 // An unsafe CAS can alias with other field accesses, but we don't 4390 // know which ones so mark the state as no preserved. This will 4391 // cause CSE to invalidate memory across it. 4392 bool preserves_state = false; 4393 Intrinsic* result = new Intrinsic(result_type, callee->intrinsic_id(), args, false, state_before, preserves_state); 4394 append_split(result); 4395 push(result_type, result); 4396 compilation()->set_has_unsafe_access(true); 4397 } 4398 4399 void GraphBuilder::append_char_access(ciMethod* callee, bool is_store) { 4400 // This intrinsic accesses byte[] array as char[] array. Computing the offsets 4401 // correctly requires matched array shapes. 4402 assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE), 4403 "sanity: byte[] and char[] bases agree"); 4404 assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2, 4405 "sanity: byte[] and char[] scales agree"); 4406 4407 ValueStack* state_before = copy_state_indexed_access(); 4408 compilation()->set_has_access_indexed(true); 4409 Values* args = state()->pop_arguments(callee->arg_size()); 4410 Value array = args->at(0); 4411 Value index = args->at(1); 4412 if (is_store) { 4413 Value value = args->at(2); 4414 Instruction* store = append(new StoreIndexed(array, index, NULL, T_CHAR, value, state_before, false, true)); 4415 store->set_flag(Instruction::NeedsRangeCheckFlag, false); 4416 _memory->store_value(value); 4417 } else { 4418 Instruction* load = append(new LoadIndexed(array, index, NULL, T_CHAR, state_before, true)); 4419 load->set_flag(Instruction::NeedsRangeCheckFlag, false); 4420 push(load->type(), load); 4421 } 4422 } 4423 4424 void GraphBuilder::print_inlining(ciMethod* callee, const char* msg, bool success) { 4425 CompileLog* log = compilation()->log(); 4426 if (log != NULL) { 4427 assert(msg != NULL, "inlining msg should not be null!"); 4428 if (success) { 4429 log->inline_success(msg); 4430 } else { 4431 log->inline_fail(msg); 4432 } 4433 } 4434 EventCompilerInlining event; 4435 if (event.should_commit()) { 4436 CompilerEvent::InlineEvent::post(event, compilation()->env()->task()->compile_id(), method()->get_Method(), callee, success, msg, bci()); 4437 } 4438 4439 CompileTask::print_inlining_ul(callee, scope()->level(), bci(), msg); 4440 4441 if (!compilation()->directive()->PrintInliningOption) { 4442 return; 4443 } 4444 CompileTask::print_inlining_tty(callee, scope()->level(), bci(), msg); 4445 if (success && CIPrintMethodCodes) { 4446 callee->print_codes(); 4447 } 4448 } 4449 4450 void GraphBuilder::append_unsafe_get_and_set(ciMethod* callee, bool is_add) { 4451 Values* args = state()->pop_arguments(callee->arg_size()); 4452 BasicType t = callee->return_type()->basic_type(); 4453 null_check(args->at(0)); 4454 Instruction* offset = args->at(2); 4455 #ifndef _LP64 4456 offset = append(new Convert(Bytecodes::_l2i, offset, as_ValueType(T_INT))); 4457 #endif 4458 Instruction* op = append(new UnsafeGetAndSet(t, args->at(1), offset, args->at(3), is_add)); 4459 compilation()->set_has_unsafe_access(true); 4460 kill_all(); 4461 push(op->type(), op); 4462 } 4463 4464 #ifndef PRODUCT 4465 void GraphBuilder::print_stats() { 4466 vmap()->print(); 4467 } 4468 #endif // PRODUCT 4469 4470 void GraphBuilder::profile_call(ciMethod* callee, Value recv, ciKlass* known_holder, Values* obj_args, bool inlined) { 4471 assert(known_holder == NULL || (known_holder->is_instance_klass() && 4472 (!known_holder->is_interface() || 4473 ((ciInstanceKlass*)known_holder)->has_nonstatic_concrete_methods())), "should be non-static concrete method"); 4474 if (known_holder != NULL) { 4475 if (known_holder->exact_klass() == NULL) { 4476 known_holder = compilation()->cha_exact_type(known_holder); 4477 } 4478 } 4479 4480 append(new ProfileCall(method(), bci(), callee, recv, known_holder, obj_args, inlined)); 4481 } 4482 4483 void GraphBuilder::profile_return_type(Value ret, ciMethod* callee, ciMethod* m, int invoke_bci) { 4484 assert((m == NULL) == (invoke_bci < 0), "invalid method and invalid bci together"); 4485 if (m == NULL) { 4486 m = method(); 4487 } 4488 if (invoke_bci < 0) { 4489 invoke_bci = bci(); 4490 } 4491 ciMethodData* md = m->method_data_or_null(); 4492 ciProfileData* data = md->bci_to_data(invoke_bci); 4493 if (data != NULL && (data->is_CallTypeData() || data->is_VirtualCallTypeData())) { 4494 bool has_return = data->is_CallTypeData() ? ((ciCallTypeData*)data)->has_return() : ((ciVirtualCallTypeData*)data)->has_return(); 4495 if (has_return) { 4496 append(new ProfileReturnType(m , invoke_bci, callee, ret)); 4497 } 4498 } 4499 } 4500 4501 void GraphBuilder::profile_invocation(ciMethod* callee, ValueStack* state) { 4502 append(new ProfileInvoke(callee, state)); 4503 } --- EOF ---