1 /*
   2  * Copyright (c) 2000, 2022, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_CodeStubs.hpp"
  27 #include "c1/c1_InstructionPrinter.hpp"
  28 #include "c1/c1_LIR.hpp"
  29 #include "c1/c1_LIRAssembler.hpp"
  30 #include "c1/c1_ValueStack.hpp"
  31 #include "ci/ciInstance.hpp"
  32 #include "runtime/safepointMechanism.inline.hpp"
  33 #include "runtime/sharedRuntime.hpp"
  34 #include "runtime/vm_version.hpp"
  35 
  36 Register LIR_Opr::as_register() const {
  37   return FrameMap::cpu_rnr2reg(cpu_regnr());
  38 }
  39 
  40 Register LIR_Opr::as_register_lo() const {
  41   return FrameMap::cpu_rnr2reg(cpu_regnrLo());
  42 }
  43 
  44 Register LIR_Opr::as_register_hi() const {
  45   return FrameMap::cpu_rnr2reg(cpu_regnrHi());
  46 }
  47 
  48 LIR_Opr LIR_OprFact::illegalOpr = LIR_OprFact::illegal();
  49 LIR_Opr LIR_OprFact::nullOpr = LIR_Opr();
  50 
  51 LIR_Opr LIR_OprFact::value_type(ValueType* type) {
  52   ValueTag tag = type->tag();
  53   switch (tag) {
  54   case metaDataTag : {
  55     ClassConstant* c = type->as_ClassConstant();
  56     if (c != NULL && !c->value()->is_loaded()) {
  57       return LIR_OprFact::metadataConst(NULL);
  58     } else if (c != NULL) {
  59       return LIR_OprFact::metadataConst(c->value()->constant_encoding());
  60     } else {
  61       MethodConstant* m = type->as_MethodConstant();
  62       assert (m != NULL, "not a class or a method?");
  63       return LIR_OprFact::metadataConst(m->value()->constant_encoding());
  64     }
  65   }
  66   case objectTag : {
  67       return LIR_OprFact::oopConst(type->as_ObjectType()->encoding());
  68     }
  69   case addressTag: return LIR_OprFact::addressConst(type->as_AddressConstant()->value());
  70   case intTag    : return LIR_OprFact::intConst(type->as_IntConstant()->value());
  71   case floatTag  : return LIR_OprFact::floatConst(type->as_FloatConstant()->value());
  72   case longTag   : return LIR_OprFact::longConst(type->as_LongConstant()->value());
  73   case doubleTag : return LIR_OprFact::doubleConst(type->as_DoubleConstant()->value());
  74   default: ShouldNotReachHere(); return LIR_OprFact::intConst(-1);
  75   }
  76 }
  77 
  78 
  79 //---------------------------------------------------
  80 
  81 
  82 LIR_Address::Scale LIR_Address::scale(BasicType type) {
  83   int elem_size = type2aelembytes(type);
  84   switch (elem_size) {
  85   case 1: return LIR_Address::times_1;
  86   case 2: return LIR_Address::times_2;
  87   case 4: return LIR_Address::times_4;
  88   case 8: return LIR_Address::times_8;
  89   }
  90   ShouldNotReachHere();
  91   return LIR_Address::times_1;
  92 }
  93 
  94 //---------------------------------------------------
  95 
  96 char LIR_Opr::type_char(BasicType t) {
  97   switch (t) {
  98     case T_ARRAY:
  99       t = T_OBJECT;
 100     case T_BOOLEAN:
 101     case T_CHAR:
 102     case T_FLOAT:
 103     case T_DOUBLE:
 104     case T_BYTE:
 105     case T_SHORT:
 106     case T_INT:
 107     case T_LONG:
 108     case T_OBJECT:
 109     case T_ADDRESS:
 110     case T_VOID:
 111       return ::type2char(t);
 112     case T_METADATA:
 113       return 'M';
 114     case T_ILLEGAL:
 115       return '?';
 116 
 117     default:
 118       ShouldNotReachHere();
 119       return '?';
 120   }
 121 }
 122 
 123 #ifndef PRODUCT
 124 void LIR_Opr::validate_type() const {
 125 
 126 #ifdef ASSERT
 127   if (!is_pointer() && !is_illegal()) {
 128     OprKind kindfield = kind_field(); // Factored out because of compiler bug, see 8002160
 129     switch (as_BasicType(type_field())) {
 130     case T_LONG:
 131       assert((kindfield == cpu_register || kindfield == stack_value) &&
 132              size_field() == double_size, "must match");
 133       break;
 134     case T_FLOAT:
 135       // FP return values can be also in CPU registers on ARM (softfp ABI)
 136       assert((kindfield == fpu_register || kindfield == stack_value
 137              ARM_ONLY(|| kindfield == cpu_register) ) &&
 138              size_field() == single_size, "must match");
 139       break;
 140     case T_DOUBLE:
 141       // FP return values can be also in CPU registers on ARM (softfp ABI)
 142       assert((kindfield == fpu_register || kindfield == stack_value
 143              ARM_ONLY(|| kindfield == cpu_register) ) &&
 144              size_field() == double_size, "must match");
 145       break;
 146     case T_BOOLEAN:
 147     case T_CHAR:
 148     case T_BYTE:
 149     case T_SHORT:
 150     case T_INT:
 151     case T_ADDRESS:
 152     case T_OBJECT:
 153     case T_METADATA:
 154     case T_ARRAY:
 155       assert((kindfield == cpu_register || kindfield == stack_value) &&
 156              size_field() == single_size, "must match");
 157       break;
 158 
 159     case T_ILLEGAL:
 160       // XXX TKR also means unknown right now
 161       // assert(is_illegal(), "must match");
 162       break;
 163 
 164     default:
 165       ShouldNotReachHere();
 166     }
 167   }
 168 #endif
 169 
 170 }
 171 #endif // PRODUCT
 172 
 173 
 174 bool LIR_Opr::is_oop() const {
 175   if (is_pointer()) {
 176     return pointer()->is_oop_pointer();
 177   } else {
 178     OprType t= type_field();
 179     assert(t != unknown_type, "not set");
 180     return t == object_type;
 181   }
 182 }
 183 
 184 
 185 
 186 void LIR_Op2::verify() const {
 187 #ifdef ASSERT
 188   switch (code()) {
 189     case lir_xchg:
 190       break;
 191 
 192     default:
 193       assert(!result_opr()->is_register() || !result_opr()->is_oop_register(),
 194              "can't produce oops from arith");
 195   }
 196 
 197   if (two_operand_lir_form) {
 198 
 199 #ifdef ASSERT
 200     bool threeOperandForm = false;
 201 #ifdef S390
 202     // There are 3 operand shifts on S390 (see LIR_Assembler::shift_op()).
 203     threeOperandForm =
 204       code() == lir_shl ||
 205       ((code() == lir_shr || code() == lir_ushr) && (result_opr()->is_double_cpu() || in_opr1()->type() == T_OBJECT));
 206 #endif
 207 #endif
 208 
 209     switch (code()) {
 210     case lir_add:
 211     case lir_sub:
 212     case lir_mul:
 213     case lir_div:
 214     case lir_rem:
 215     case lir_logic_and:
 216     case lir_logic_or:
 217     case lir_logic_xor:
 218     case lir_shl:
 219     case lir_shr:
 220       assert(in_opr1() == result_opr() || threeOperandForm, "opr1 and result must match");
 221       assert(in_opr1()->is_valid() && in_opr2()->is_valid(), "must be valid");
 222       break;
 223 
 224     // special handling for lir_ushr because of write barriers
 225     case lir_ushr:
 226       assert(in_opr1() == result_opr() || in_opr2()->is_constant() || threeOperandForm, "opr1 and result must match or shift count is constant");
 227       assert(in_opr1()->is_valid() && in_opr2()->is_valid(), "must be valid");
 228       break;
 229 
 230     default:
 231       break;
 232     }
 233   }
 234 #endif
 235 }
 236 
 237 
 238 LIR_OpBranch::LIR_OpBranch(LIR_Condition cond, BlockBegin* block)
 239   : LIR_Op2(lir_branch, cond, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, (CodeEmitInfo*)NULL)
 240   , _label(block->label())
 241   , _block(block)
 242   , _ublock(NULL)
 243   , _stub(NULL) {
 244 }
 245 
 246 LIR_OpBranch::LIR_OpBranch(LIR_Condition cond, CodeStub* stub) :
 247   LIR_Op2(lir_branch, cond, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, (CodeEmitInfo*)NULL)
 248   , _label(stub->entry())
 249   , _block(NULL)
 250   , _ublock(NULL)
 251   , _stub(stub) {
 252 }
 253 
 254 LIR_OpBranch::LIR_OpBranch(LIR_Condition cond, BlockBegin* block, BlockBegin* ublock)
 255   : LIR_Op2(lir_cond_float_branch, cond, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, (CodeEmitInfo*)NULL)
 256   , _label(block->label())
 257   , _block(block)
 258   , _ublock(ublock)
 259   , _stub(NULL)
 260 {
 261 }
 262 
 263 void LIR_OpBranch::change_block(BlockBegin* b) {
 264   assert(_block != NULL, "must have old block");
 265   assert(_block->label() == label(), "must be equal");
 266 
 267   _block = b;
 268   _label = b->label();
 269 }
 270 
 271 void LIR_OpBranch::change_ublock(BlockBegin* b) {
 272   assert(_ublock != NULL, "must have old block");
 273   _ublock = b;
 274 }
 275 
 276 void LIR_OpBranch::negate_cond() {
 277   switch (cond()) {
 278     case lir_cond_equal:        set_cond(lir_cond_notEqual);     break;
 279     case lir_cond_notEqual:     set_cond(lir_cond_equal);        break;
 280     case lir_cond_less:         set_cond(lir_cond_greaterEqual); break;
 281     case lir_cond_lessEqual:    set_cond(lir_cond_greater);      break;
 282     case lir_cond_greaterEqual: set_cond(lir_cond_less);         break;
 283     case lir_cond_greater:      set_cond(lir_cond_lessEqual);    break;
 284     default: ShouldNotReachHere();
 285   }
 286 }
 287 
 288 
 289 LIR_OpTypeCheck::LIR_OpTypeCheck(LIR_Code code, LIR_Opr result, LIR_Opr object, ciKlass* klass,
 290                                  LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3,
 291                                  bool fast_check, CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch,
 292                                  CodeStub* stub)
 293 
 294   : LIR_Op(code, result, NULL)
 295   , _object(object)
 296   , _array(LIR_OprFact::illegalOpr)
 297   , _klass(klass)
 298   , _tmp1(tmp1)
 299   , _tmp2(tmp2)
 300   , _tmp3(tmp3)
 301   , _fast_check(fast_check)
 302   , _info_for_patch(info_for_patch)
 303   , _info_for_exception(info_for_exception)
 304   , _stub(stub)
 305   , _profiled_method(NULL)
 306   , _profiled_bci(-1)
 307   , _should_profile(false)
 308 {
 309   if (code == lir_checkcast) {
 310     assert(info_for_exception != NULL, "checkcast throws exceptions");
 311   } else if (code == lir_instanceof) {
 312     assert(info_for_exception == NULL, "instanceof throws no exceptions");
 313   } else {
 314     ShouldNotReachHere();
 315   }
 316 }
 317 
 318 
 319 
 320 LIR_OpTypeCheck::LIR_OpTypeCheck(LIR_Code code, LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception)
 321   : LIR_Op(code, LIR_OprFact::illegalOpr, NULL)
 322   , _object(object)
 323   , _array(array)
 324   , _klass(NULL)
 325   , _tmp1(tmp1)
 326   , _tmp2(tmp2)
 327   , _tmp3(tmp3)
 328   , _fast_check(false)
 329   , _info_for_patch(NULL)
 330   , _info_for_exception(info_for_exception)
 331   , _stub(NULL)
 332   , _profiled_method(NULL)
 333   , _profiled_bci(-1)
 334   , _should_profile(false)
 335 {
 336   if (code == lir_store_check) {
 337     _stub = new ArrayStoreExceptionStub(object, info_for_exception);
 338     assert(info_for_exception != NULL, "store_check throws exceptions");
 339   } else {
 340     ShouldNotReachHere();
 341   }
 342 }
 343 
 344 
 345 LIR_OpArrayCopy::LIR_OpArrayCopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length,
 346                                  LIR_Opr tmp, ciArrayKlass* expected_type, int flags, CodeEmitInfo* info)
 347   : LIR_Op(lir_arraycopy, LIR_OprFact::illegalOpr, info)
 348   , _src(src)
 349   , _src_pos(src_pos)
 350   , _dst(dst)
 351   , _dst_pos(dst_pos)
 352   , _length(length)
 353   , _tmp(tmp)
 354   , _expected_type(expected_type)
 355   , _flags(flags) {
 356   _stub = new ArrayCopyStub(this);
 357 }
 358 
 359 LIR_OpUpdateCRC32::LIR_OpUpdateCRC32(LIR_Opr crc, LIR_Opr val, LIR_Opr res)
 360   : LIR_Op(lir_updatecrc32, res, NULL)
 361   , _crc(crc)
 362   , _val(val) {
 363 }
 364 
 365 //-------------------verify--------------------------
 366 
 367 void LIR_Op1::verify() const {
 368   switch(code()) {
 369   case lir_move:
 370     assert(in_opr()->is_valid() && result_opr()->is_valid(), "must be");
 371     break;
 372   case lir_null_check:
 373     assert(in_opr()->is_register(), "must be");
 374     break;
 375   case lir_return:
 376     assert(in_opr()->is_register() || in_opr()->is_illegal(), "must be");
 377     break;
 378   default:
 379     break;
 380   }
 381 }
 382 
 383 void LIR_OpRTCall::verify() const {
 384   assert(strcmp(Runtime1::name_for_address(addr()), "<unknown function>") != 0, "unknown function");
 385 }
 386 
 387 //-------------------visits--------------------------
 388 
 389 // complete rework of LIR instruction visitor.
 390 // The virtual call for each instruction type is replaced by a big
 391 // switch that adds the operands for each instruction
 392 
 393 void LIR_OpVisitState::visit(LIR_Op* op) {
 394   // copy information from the LIR_Op
 395   reset();
 396   set_op(op);
 397 
 398   switch (op->code()) {
 399 
 400 // LIR_Op0
 401     case lir_fpop_raw:                 // result and info always invalid
 402     case lir_breakpoint:               // result and info always invalid
 403     case lir_membar:                   // result and info always invalid
 404     case lir_membar_acquire:           // result and info always invalid
 405     case lir_membar_release:           // result and info always invalid
 406     case lir_membar_loadload:          // result and info always invalid
 407     case lir_membar_storestore:        // result and info always invalid
 408     case lir_membar_loadstore:         // result and info always invalid
 409     case lir_membar_storeload:         // result and info always invalid
 410     case lir_on_spin_wait:
 411     {
 412       assert(op->as_Op0() != NULL, "must be");
 413       assert(op->_info == NULL, "info not used by this instruction");
 414       assert(op->_result->is_illegal(), "not used");
 415       break;
 416     }
 417 
 418     case lir_nop:                      // may have info, result always invalid
 419     case lir_std_entry:                // may have result, info always invalid
 420     case lir_osr_entry:                // may have result, info always invalid
 421     case lir_get_thread:               // may have result, info always invalid
 422     {
 423       assert(op->as_Op0() != NULL, "must be");
 424       if (op->_info != NULL)           do_info(op->_info);
 425       if (op->_result->is_valid())     do_output(op->_result);
 426       break;
 427     }
 428 
 429 
 430 // LIR_OpLabel
 431     case lir_label:                    // result and info always invalid
 432     {
 433       assert(op->as_OpLabel() != NULL, "must be");
 434       assert(op->_info == NULL, "info not used by this instruction");
 435       assert(op->_result->is_illegal(), "not used");
 436       break;
 437     }
 438 
 439 
 440 // LIR_Op1
 441     case lir_fxch:           // input always valid, result and info always invalid
 442     case lir_fld:            // input always valid, result and info always invalid
 443     case lir_push:           // input always valid, result and info always invalid
 444     case lir_pop:            // input always valid, result and info always invalid
 445     case lir_leal:           // input and result always valid, info always invalid
 446     case lir_monaddr:        // input and result always valid, info always invalid
 447     case lir_null_check:     // input and info always valid, result always invalid
 448     case lir_move:           // input and result always valid, may have info
 449     {
 450       assert(op->as_Op1() != NULL, "must be");
 451       LIR_Op1* op1 = (LIR_Op1*)op;
 452 
 453       if (op1->_info)                  do_info(op1->_info);
 454       if (op1->_opr->is_valid())       do_input(op1->_opr);
 455       if (op1->_result->is_valid())    do_output(op1->_result);
 456 
 457       break;
 458     }
 459 
 460     case lir_return:
 461     {
 462       assert(op->as_OpReturn() != NULL, "must be");
 463       LIR_OpReturn* op_ret = (LIR_OpReturn*)op;
 464 
 465       if (op_ret->_info)               do_info(op_ret->_info);
 466       if (op_ret->_opr->is_valid())    do_input(op_ret->_opr);
 467       if (op_ret->_result->is_valid()) do_output(op_ret->_result);
 468       if (op_ret->stub() != NULL)      do_stub(op_ret->stub());
 469 
 470       break;
 471     }
 472 
 473     case lir_safepoint:
 474     {
 475       assert(op->as_Op1() != NULL, "must be");
 476       LIR_Op1* op1 = (LIR_Op1*)op;
 477 
 478       assert(op1->_info != NULL, "");  do_info(op1->_info);
 479       if (op1->_opr->is_valid())       do_temp(op1->_opr); // safepoints on SPARC need temporary register
 480       assert(op1->_result->is_illegal(), "safepoint does not produce value");
 481 
 482       break;
 483     }
 484 
 485 // LIR_OpConvert;
 486     case lir_convert:        // input and result always valid, info always invalid
 487     {
 488       assert(op->as_OpConvert() != NULL, "must be");
 489       LIR_OpConvert* opConvert = (LIR_OpConvert*)op;
 490 
 491       assert(opConvert->_info == NULL, "must be");
 492       if (opConvert->_opr->is_valid())       do_input(opConvert->_opr);
 493       if (opConvert->_result->is_valid())    do_output(opConvert->_result);
 494       do_stub(opConvert->_stub);
 495 
 496       break;
 497     }
 498 
 499 // LIR_OpBranch;
 500     case lir_branch:                   // may have info, input and result register always invalid
 501     case lir_cond_float_branch:        // may have info, input and result register always invalid
 502     {
 503       assert(op->as_OpBranch() != NULL, "must be");
 504       LIR_OpBranch* opBranch = (LIR_OpBranch*)op;
 505 
 506       assert(opBranch->_tmp1->is_illegal() && opBranch->_tmp2->is_illegal() &&
 507              opBranch->_tmp3->is_illegal() && opBranch->_tmp4->is_illegal() &&
 508              opBranch->_tmp5->is_illegal(), "not used");
 509 
 510       if (opBranch->_opr1->is_valid()) do_input(opBranch->_opr1);
 511       if (opBranch->_opr2->is_valid()) do_input(opBranch->_opr2);
 512 
 513       if (opBranch->_info != NULL)     do_info(opBranch->_info);
 514       assert(opBranch->_result->is_illegal(), "not used");
 515       if (opBranch->_stub != NULL)     opBranch->stub()->visit(this);
 516 
 517       break;
 518     }
 519 
 520 
 521 // LIR_OpAllocObj
 522     case lir_alloc_object:
 523     {
 524       assert(op->as_OpAllocObj() != NULL, "must be");
 525       LIR_OpAllocObj* opAllocObj = (LIR_OpAllocObj*)op;
 526 
 527       if (opAllocObj->_info)                     do_info(opAllocObj->_info);
 528       if (opAllocObj->_opr->is_valid()) {        do_input(opAllocObj->_opr);
 529                                                  do_temp(opAllocObj->_opr);
 530                                         }
 531       if (opAllocObj->_tmp1->is_valid())         do_temp(opAllocObj->_tmp1);
 532       if (opAllocObj->_tmp2->is_valid())         do_temp(opAllocObj->_tmp2);
 533       if (opAllocObj->_tmp3->is_valid())         do_temp(opAllocObj->_tmp3);
 534       if (opAllocObj->_tmp4->is_valid())         do_temp(opAllocObj->_tmp4);
 535       if (opAllocObj->_result->is_valid())       do_output(opAllocObj->_result);
 536       if (opAllocObj->_stub != nullptr)          do_stub(opAllocObj->_stub);
 537       break;
 538     }
 539 
 540 
 541 // LIR_OpRoundFP;
 542     case lir_roundfp: {
 543       assert(op->as_OpRoundFP() != NULL, "must be");
 544       LIR_OpRoundFP* opRoundFP = (LIR_OpRoundFP*)op;
 545 
 546       assert(op->_info == NULL, "info not used by this instruction");
 547       assert(opRoundFP->_tmp->is_illegal(), "not used");
 548       do_input(opRoundFP->_opr);
 549       do_output(opRoundFP->_result);
 550 
 551       break;
 552     }
 553 
 554 
 555 // LIR_Op2
 556     case lir_cmp:
 557     case lir_cmp_l2i:
 558     case lir_ucmp_fd2i:
 559     case lir_cmp_fd2i:
 560     case lir_add:
 561     case lir_sub:
 562     case lir_rem:
 563     case lir_sqrt:
 564     case lir_abs:
 565     case lir_neg:
 566     case lir_logic_and:
 567     case lir_logic_or:
 568     case lir_logic_xor:
 569     case lir_shl:
 570     case lir_shr:
 571     case lir_ushr:
 572     case lir_xadd:
 573     case lir_xchg:
 574     case lir_assert:
 575     {
 576       assert(op->as_Op2() != NULL, "must be");
 577       LIR_Op2* op2 = (LIR_Op2*)op;
 578       assert(op2->_tmp2->is_illegal() && op2->_tmp3->is_illegal() &&
 579              op2->_tmp4->is_illegal() && op2->_tmp5->is_illegal(), "not used");
 580 
 581       if (op2->_info)                     do_info(op2->_info);
 582       if (op2->_opr1->is_valid())         do_input(op2->_opr1);
 583       if (op2->_opr2->is_valid())         do_input(op2->_opr2);
 584       if (op2->_tmp1->is_valid())         do_temp(op2->_tmp1);
 585       if (op2->_result->is_valid())       do_output(op2->_result);
 586       if (op->code() == lir_xchg || op->code() == lir_xadd) {
 587         // on ARM and PPC, return value is loaded first so could
 588         // destroy inputs. On other platforms that implement those
 589         // (x86, sparc), the extra constrainsts are harmless.
 590         if (op2->_opr1->is_valid())       do_temp(op2->_opr1);
 591         if (op2->_opr2->is_valid())       do_temp(op2->_opr2);
 592       }
 593 
 594       break;
 595     }
 596 
 597     // special handling for cmove: right input operand must not be equal
 598     // to the result operand, otherwise the backend fails
 599     case lir_cmove:
 600     {
 601       assert(op->as_Op4() != NULL, "must be");
 602       LIR_Op4* op4 = (LIR_Op4*)op;
 603 
 604       assert(op4->_info == NULL && op4->_tmp1->is_illegal() && op4->_tmp2->is_illegal() &&
 605              op4->_tmp3->is_illegal() && op4->_tmp4->is_illegal() && op4->_tmp5->is_illegal(), "not used");
 606       assert(op4->_opr1->is_valid() && op4->_opr2->is_valid() && op4->_result->is_valid(), "used");
 607 
 608       do_input(op4->_opr1);
 609       do_input(op4->_opr2);
 610       if (op4->_opr3->is_valid()) do_input(op4->_opr3);
 611       if (op4->_opr4->is_valid()) do_input(op4->_opr4);
 612       do_temp(op4->_opr2);
 613       do_output(op4->_result);
 614 
 615       break;
 616     }
 617 
 618     // vspecial handling for strict operations: register input operands
 619     // as temp to guarantee that they do not overlap with other
 620     // registers
 621     case lir_mul:
 622     case lir_div:
 623     {
 624       assert(op->as_Op2() != NULL, "must be");
 625       LIR_Op2* op2 = (LIR_Op2*)op;
 626 
 627       assert(op2->_info == NULL, "not used");
 628       assert(op2->_opr1->is_valid(), "used");
 629       assert(op2->_opr2->is_valid(), "used");
 630       assert(op2->_result->is_valid(), "used");
 631       assert(op2->_tmp2->is_illegal() && op2->_tmp3->is_illegal() &&
 632              op2->_tmp4->is_illegal() && op2->_tmp5->is_illegal(), "not used");
 633 
 634       do_input(op2->_opr1); do_temp(op2->_opr1);
 635       do_input(op2->_opr2); do_temp(op2->_opr2);
 636       if (op2->_tmp1->is_valid()) do_temp(op2->_tmp1);
 637       do_output(op2->_result);
 638 
 639       break;
 640     }
 641 
 642     case lir_throw: {
 643       assert(op->as_Op2() != NULL, "must be");
 644       LIR_Op2* op2 = (LIR_Op2*)op;
 645 
 646       if (op2->_info)                     do_info(op2->_info);
 647       if (op2->_opr1->is_valid())         do_temp(op2->_opr1);
 648       if (op2->_opr2->is_valid())         do_input(op2->_opr2); // exception object is input parameter
 649       assert(op2->_result->is_illegal(), "no result");
 650       assert(op2->_tmp2->is_illegal() && op2->_tmp3->is_illegal() &&
 651              op2->_tmp4->is_illegal() && op2->_tmp5->is_illegal(), "not used");
 652 
 653       break;
 654     }
 655 
 656     case lir_unwind: {
 657       assert(op->as_Op1() != NULL, "must be");
 658       LIR_Op1* op1 = (LIR_Op1*)op;
 659 
 660       assert(op1->_info == NULL, "no info");
 661       assert(op1->_opr->is_valid(), "exception oop");         do_input(op1->_opr);
 662       assert(op1->_result->is_illegal(), "no result");
 663 
 664       break;
 665     }
 666 
 667 // LIR_Op3
 668     case lir_idiv:
 669     case lir_irem: {
 670       assert(op->as_Op3() != NULL, "must be");
 671       LIR_Op3* op3= (LIR_Op3*)op;
 672 
 673       if (op3->_info)                     do_info(op3->_info);
 674       if (op3->_opr1->is_valid())         do_input(op3->_opr1);
 675 
 676       // second operand is input and temp, so ensure that second operand
 677       // and third operand get not the same register
 678       if (op3->_opr2->is_valid())         do_input(op3->_opr2);
 679       if (op3->_opr2->is_valid())         do_temp(op3->_opr2);
 680       if (op3->_opr3->is_valid())         do_temp(op3->_opr3);
 681 
 682       if (op3->_result->is_valid())       do_output(op3->_result);
 683 
 684       break;
 685     }
 686 
 687     case lir_fmad:
 688     case lir_fmaf: {
 689       assert(op->as_Op3() != NULL, "must be");
 690       LIR_Op3* op3= (LIR_Op3*)op;
 691       assert(op3->_info == NULL, "no info");
 692       do_input(op3->_opr1);
 693       do_input(op3->_opr2);
 694       do_input(op3->_opr3);
 695       do_output(op3->_result);
 696       break;
 697     }
 698 
 699 // LIR_OpJavaCall
 700     case lir_static_call:
 701     case lir_optvirtual_call:
 702     case lir_icvirtual_call:
 703     case lir_dynamic_call: {
 704       LIR_OpJavaCall* opJavaCall = op->as_OpJavaCall();
 705       assert(opJavaCall != NULL, "must be");
 706 
 707       if (opJavaCall->_receiver->is_valid())     do_input(opJavaCall->_receiver);
 708 
 709       // only visit register parameters
 710       int n = opJavaCall->_arguments->length();
 711       for (int i = opJavaCall->_receiver->is_valid() ? 1 : 0; i < n; i++) {
 712         if (!opJavaCall->_arguments->at(i)->is_pointer()) {
 713           do_input(*opJavaCall->_arguments->adr_at(i));
 714         }
 715       }
 716 
 717       if (opJavaCall->_info)                     do_info(opJavaCall->_info);
 718       if (FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr &&
 719           opJavaCall->is_method_handle_invoke()) {
 720         opJavaCall->_method_handle_invoke_SP_save_opr = FrameMap::method_handle_invoke_SP_save_opr();
 721         do_temp(opJavaCall->_method_handle_invoke_SP_save_opr);
 722       }
 723       do_call();
 724       if (opJavaCall->_result->is_valid())       do_output(opJavaCall->_result);
 725 
 726       break;
 727     }
 728 
 729 
 730 // LIR_OpRTCall
 731     case lir_rtcall: {
 732       assert(op->as_OpRTCall() != NULL, "must be");
 733       LIR_OpRTCall* opRTCall = (LIR_OpRTCall*)op;
 734 
 735       // only visit register parameters
 736       int n = opRTCall->_arguments->length();
 737       for (int i = 0; i < n; i++) {
 738         if (!opRTCall->_arguments->at(i)->is_pointer()) {
 739           do_input(*opRTCall->_arguments->adr_at(i));
 740         }
 741       }
 742       if (opRTCall->_info)                     do_info(opRTCall->_info);
 743       if (opRTCall->_tmp->is_valid())          do_temp(opRTCall->_tmp);
 744       do_call();
 745       if (opRTCall->_result->is_valid())       do_output(opRTCall->_result);
 746 
 747       break;
 748     }
 749 
 750 
 751 // LIR_OpArrayCopy
 752     case lir_arraycopy: {
 753       assert(op->as_OpArrayCopy() != NULL, "must be");
 754       LIR_OpArrayCopy* opArrayCopy = (LIR_OpArrayCopy*)op;
 755 
 756       assert(opArrayCopy->_result->is_illegal(), "unused");
 757       assert(opArrayCopy->_src->is_valid(), "used");          do_input(opArrayCopy->_src);     do_temp(opArrayCopy->_src);
 758       assert(opArrayCopy->_src_pos->is_valid(), "used");      do_input(opArrayCopy->_src_pos); do_temp(opArrayCopy->_src_pos);
 759       assert(opArrayCopy->_dst->is_valid(), "used");          do_input(opArrayCopy->_dst);     do_temp(opArrayCopy->_dst);
 760       assert(opArrayCopy->_dst_pos->is_valid(), "used");      do_input(opArrayCopy->_dst_pos); do_temp(opArrayCopy->_dst_pos);
 761       assert(opArrayCopy->_length->is_valid(), "used");       do_input(opArrayCopy->_length);  do_temp(opArrayCopy->_length);
 762       assert(opArrayCopy->_tmp->is_valid(), "used");          do_temp(opArrayCopy->_tmp);
 763       if (opArrayCopy->_info)                     do_info(opArrayCopy->_info);
 764 
 765       // the implementation of arraycopy always has a call into the runtime
 766       do_call();
 767 
 768       break;
 769     }
 770 
 771 
 772 // LIR_OpUpdateCRC32
 773     case lir_updatecrc32: {
 774       assert(op->as_OpUpdateCRC32() != NULL, "must be");
 775       LIR_OpUpdateCRC32* opUp = (LIR_OpUpdateCRC32*)op;
 776 
 777       assert(opUp->_crc->is_valid(), "used");          do_input(opUp->_crc);     do_temp(opUp->_crc);
 778       assert(opUp->_val->is_valid(), "used");          do_input(opUp->_val);     do_temp(opUp->_val);
 779       assert(opUp->_result->is_valid(), "used");       do_output(opUp->_result);
 780       assert(opUp->_info == NULL, "no info for LIR_OpUpdateCRC32");
 781 
 782       break;
 783     }
 784 
 785 
 786 // LIR_OpLock
 787     case lir_lock:
 788     case lir_unlock: {
 789       assert(op->as_OpLock() != NULL, "must be");
 790       LIR_OpLock* opLock = (LIR_OpLock*)op;
 791 
 792       if (opLock->_info)                          do_info(opLock->_info);
 793 
 794       // TODO: check if these operands really have to be temp
 795       // (or if input is sufficient). This may have influence on the oop map!
 796       assert(opLock->_lock->is_valid(), "used");  do_temp(opLock->_lock);
 797       assert(opLock->_hdr->is_valid(),  "used");  do_temp(opLock->_hdr);
 798       assert(opLock->_obj->is_valid(),  "used");  do_temp(opLock->_obj);
 799 
 800       if (opLock->_scratch->is_valid())           do_temp(opLock->_scratch);
 801       assert(opLock->_result->is_illegal(), "unused");
 802 
 803       do_stub(opLock->_stub);
 804 
 805       break;
 806     }
 807 
 808 
 809 // LIR_OpDelay
 810     case lir_delay_slot: {
 811       assert(op->as_OpDelay() != NULL, "must be");
 812       LIR_OpDelay* opDelay = (LIR_OpDelay*)op;
 813 
 814       visit(opDelay->delay_op());
 815       break;
 816     }
 817 
 818 // LIR_OpTypeCheck
 819     case lir_instanceof:
 820     case lir_checkcast:
 821     case lir_store_check: {
 822       assert(op->as_OpTypeCheck() != NULL, "must be");
 823       LIR_OpTypeCheck* opTypeCheck = (LIR_OpTypeCheck*)op;
 824 
 825       if (opTypeCheck->_info_for_exception)       do_info(opTypeCheck->_info_for_exception);
 826       if (opTypeCheck->_info_for_patch)           do_info(opTypeCheck->_info_for_patch);
 827       if (opTypeCheck->_object->is_valid())       do_input(opTypeCheck->_object);
 828       if (op->code() == lir_store_check && opTypeCheck->_object->is_valid()) {
 829         do_temp(opTypeCheck->_object);
 830       }
 831       if (opTypeCheck->_array->is_valid())        do_input(opTypeCheck->_array);
 832       if (opTypeCheck->_tmp1->is_valid())         do_temp(opTypeCheck->_tmp1);
 833       if (opTypeCheck->_tmp2->is_valid())         do_temp(opTypeCheck->_tmp2);
 834       if (opTypeCheck->_tmp3->is_valid())         do_temp(opTypeCheck->_tmp3);
 835       if (opTypeCheck->_result->is_valid())       do_output(opTypeCheck->_result);
 836       if (opTypeCheck->_stub != nullptr)          do_stub(opTypeCheck->_stub);
 837       break;
 838     }
 839 
 840 // LIR_OpCompareAndSwap
 841     case lir_cas_long:
 842     case lir_cas_obj:
 843     case lir_cas_int: {
 844       assert(op->as_OpCompareAndSwap() != NULL, "must be");
 845       LIR_OpCompareAndSwap* opCmpAndSwap = (LIR_OpCompareAndSwap*)op;
 846 
 847       if (opCmpAndSwap->_info)                              do_info(opCmpAndSwap->_info);
 848       assert(opCmpAndSwap->_addr->is_valid(), "used");      do_input(opCmpAndSwap->_addr);
 849                                                             do_temp(opCmpAndSwap->_addr);
 850       assert(opCmpAndSwap->_cmp_value->is_valid(), "used"); do_input(opCmpAndSwap->_cmp_value);
 851                                                             do_temp(opCmpAndSwap->_cmp_value);
 852       assert(opCmpAndSwap->_new_value->is_valid(), "used"); do_input(opCmpAndSwap->_new_value);
 853                                                             do_temp(opCmpAndSwap->_new_value);
 854       if (opCmpAndSwap->_tmp1->is_valid())                  do_temp(opCmpAndSwap->_tmp1);
 855       if (opCmpAndSwap->_tmp2->is_valid())                  do_temp(opCmpAndSwap->_tmp2);
 856       if (opCmpAndSwap->_result->is_valid())                do_output(opCmpAndSwap->_result);
 857 
 858       break;
 859     }
 860 
 861 
 862 // LIR_OpAllocArray;
 863     case lir_alloc_array: {
 864       assert(op->as_OpAllocArray() != NULL, "must be");
 865       LIR_OpAllocArray* opAllocArray = (LIR_OpAllocArray*)op;
 866 
 867       if (opAllocArray->_info)                        do_info(opAllocArray->_info);
 868       if (opAllocArray->_klass->is_valid()) {         do_input(opAllocArray->_klass);
 869                                                       do_temp(opAllocArray->_klass);
 870                                             }
 871       if (opAllocArray->_len->is_valid())   {         do_input(opAllocArray->_len);
 872                                                       do_temp(opAllocArray->_len);
 873                                             }
 874       if (opAllocArray->_tmp1->is_valid())            do_temp(opAllocArray->_tmp1);
 875       if (opAllocArray->_tmp2->is_valid())            do_temp(opAllocArray->_tmp2);
 876       if (opAllocArray->_tmp3->is_valid())            do_temp(opAllocArray->_tmp3);
 877       if (opAllocArray->_tmp4->is_valid())            do_temp(opAllocArray->_tmp4);
 878       if (opAllocArray->_result->is_valid())          do_output(opAllocArray->_result);
 879       if (opAllocArray->_stub != nullptr)             do_stub(opAllocArray->_stub);
 880       break;
 881     }
 882 
 883 // LIR_OpLoadKlass
 884     case lir_load_klass:
 885     {
 886       LIR_OpLoadKlass* opLoadKlass = op->as_OpLoadKlass();
 887       assert(opLoadKlass != NULL, "must be");
 888 
 889       do_input(opLoadKlass->_obj);
 890       do_output(opLoadKlass->_result);
 891       if (opLoadKlass->_info) do_info(opLoadKlass->_info);
 892       break;
 893     }
 894 
 895 
 896 // LIR_OpProfileCall:
 897     case lir_profile_call: {
 898       assert(op->as_OpProfileCall() != NULL, "must be");
 899       LIR_OpProfileCall* opProfileCall = (LIR_OpProfileCall*)op;
 900 
 901       if (opProfileCall->_recv->is_valid())              do_temp(opProfileCall->_recv);
 902       assert(opProfileCall->_mdo->is_valid(), "used");   do_temp(opProfileCall->_mdo);
 903       assert(opProfileCall->_tmp1->is_valid(), "used");  do_temp(opProfileCall->_tmp1);
 904       break;
 905     }
 906 
 907 // LIR_OpProfileType:
 908     case lir_profile_type: {
 909       assert(op->as_OpProfileType() != NULL, "must be");
 910       LIR_OpProfileType* opProfileType = (LIR_OpProfileType*)op;
 911 
 912       do_input(opProfileType->_mdp); do_temp(opProfileType->_mdp);
 913       do_input(opProfileType->_obj);
 914       do_temp(opProfileType->_tmp);
 915       break;
 916     }
 917   default:
 918     op->visit(this);
 919   }
 920 }
 921 
 922 void LIR_Op::visit(LIR_OpVisitState* state) {
 923   ShouldNotReachHere();
 924 }
 925 
 926 void LIR_OpVisitState::do_stub(CodeStub* stub) {
 927   if (stub != NULL) {
 928     stub->visit(this);
 929   }
 930 }
 931 
 932 XHandlers* LIR_OpVisitState::all_xhandler() {
 933   XHandlers* result = NULL;
 934 
 935   int i;
 936   for (i = 0; i < info_count(); i++) {
 937     if (info_at(i)->exception_handlers() != NULL) {
 938       result = info_at(i)->exception_handlers();
 939       break;
 940     }
 941   }
 942 
 943 #ifdef ASSERT
 944   for (i = 0; i < info_count(); i++) {
 945     assert(info_at(i)->exception_handlers() == NULL ||
 946            info_at(i)->exception_handlers() == result,
 947            "only one xhandler list allowed per LIR-operation");
 948   }
 949 #endif
 950 
 951   if (result != NULL) {
 952     return result;
 953   } else {
 954     return new XHandlers();
 955   }
 956 
 957   return result;
 958 }
 959 
 960 
 961 #ifdef ASSERT
 962 bool LIR_OpVisitState::no_operands(LIR_Op* op) {
 963   visit(op);
 964 
 965   return opr_count(inputMode) == 0 &&
 966          opr_count(outputMode) == 0 &&
 967          opr_count(tempMode) == 0 &&
 968          info_count() == 0 &&
 969          !has_call() &&
 970          !has_slow_case();
 971 }
 972 #endif
 973 
 974 // LIR_OpReturn
 975 LIR_OpReturn::LIR_OpReturn(LIR_Opr opr) :
 976     LIR_Op1(lir_return, opr, (CodeEmitInfo*)NULL /* info */),
 977     _stub(NULL) {
 978   if (VM_Version::supports_stack_watermark_barrier()) {
 979     _stub = new C1SafepointPollStub();
 980   }
 981 }
 982 
 983 //---------------------------------------------------
 984 
 985 
 986 void LIR_OpJavaCall::emit_code(LIR_Assembler* masm) {
 987   masm->emit_call(this);
 988 }
 989 
 990 void LIR_OpRTCall::emit_code(LIR_Assembler* masm) {
 991   masm->emit_rtcall(this);
 992 }
 993 
 994 void LIR_OpLabel::emit_code(LIR_Assembler* masm) {
 995   masm->emit_opLabel(this);
 996 }
 997 
 998 void LIR_OpArrayCopy::emit_code(LIR_Assembler* masm) {
 999   masm->emit_arraycopy(this);
1000   masm->append_code_stub(stub());
1001 }
1002 
1003 void LIR_OpUpdateCRC32::emit_code(LIR_Assembler* masm) {
1004   masm->emit_updatecrc32(this);
1005 }
1006 
1007 void LIR_Op0::emit_code(LIR_Assembler* masm) {
1008   masm->emit_op0(this);
1009 }
1010 
1011 void LIR_Op1::emit_code(LIR_Assembler* masm) {
1012   masm->emit_op1(this);
1013 }
1014 
1015 void LIR_OpAllocObj::emit_code(LIR_Assembler* masm) {
1016   masm->emit_alloc_obj(this);
1017   masm->append_code_stub(stub());
1018 }
1019 
1020 void LIR_OpBranch::emit_code(LIR_Assembler* masm) {
1021   masm->emit_opBranch(this);
1022   if (stub()) {
1023     masm->append_code_stub(stub());
1024   }
1025 }
1026 
1027 void LIR_OpConvert::emit_code(LIR_Assembler* masm) {
1028   masm->emit_opConvert(this);
1029   if (stub() != NULL) {
1030     masm->append_code_stub(stub());
1031   }
1032 }
1033 
1034 void LIR_Op2::emit_code(LIR_Assembler* masm) {
1035   masm->emit_op2(this);
1036 }
1037 
1038 void LIR_OpAllocArray::emit_code(LIR_Assembler* masm) {
1039   masm->emit_alloc_array(this);
1040   masm->append_code_stub(stub());
1041 }
1042 
1043 void LIR_OpTypeCheck::emit_code(LIR_Assembler* masm) {
1044   masm->emit_opTypeCheck(this);
1045   if (stub()) {
1046     masm->append_code_stub(stub());
1047   }
1048 }
1049 
1050 void LIR_OpCompareAndSwap::emit_code(LIR_Assembler* masm) {
1051   masm->emit_compare_and_swap(this);
1052 }
1053 
1054 void LIR_Op3::emit_code(LIR_Assembler* masm) {
1055   masm->emit_op3(this);
1056 }
1057 
1058 void LIR_Op4::emit_code(LIR_Assembler* masm) {
1059   masm->emit_op4(this);
1060 }
1061 
1062 void LIR_OpLock::emit_code(LIR_Assembler* masm) {
1063   masm->emit_lock(this);
1064   if (stub()) {
1065     masm->append_code_stub(stub());
1066   }
1067 }
1068 
1069 void LIR_OpLoadKlass::emit_code(LIR_Assembler* masm) {
1070   masm->emit_load_klass(this);
1071 }
1072 
1073 #ifdef ASSERT
1074 void LIR_OpAssert::emit_code(LIR_Assembler* masm) {
1075   masm->emit_assert(this);
1076 }
1077 #endif
1078 
1079 void LIR_OpDelay::emit_code(LIR_Assembler* masm) {
1080   masm->emit_delay(this);
1081 }
1082 
1083 void LIR_OpProfileCall::emit_code(LIR_Assembler* masm) {
1084   masm->emit_profile_call(this);
1085 }
1086 
1087 void LIR_OpProfileType::emit_code(LIR_Assembler* masm) {
1088   masm->emit_profile_type(this);
1089 }
1090 
1091 // LIR_List
1092 LIR_List::LIR_List(Compilation* compilation, BlockBegin* block)
1093   : _operations(8)
1094   , _compilation(compilation)
1095 #ifndef PRODUCT
1096   , _block(block)
1097 #endif
1098 #ifdef ASSERT
1099   , _file(NULL)
1100   , _line(0)
1101 #endif
1102 #ifdef RISCV
1103   , _cmp_opr1(LIR_OprFact::illegalOpr)
1104   , _cmp_opr2(LIR_OprFact::illegalOpr)
1105 #endif
1106 { }
1107 
1108 
1109 #ifdef ASSERT
1110 void LIR_List::set_file_and_line(const char * file, int line) {
1111   const char * f = strrchr(file, '/');
1112   if (f == NULL) f = strrchr(file, '\\');
1113   if (f == NULL) {
1114     f = file;
1115   } else {
1116     f++;
1117   }
1118   _file = f;
1119   _line = line;
1120 }
1121 #endif
1122 
1123 #ifdef RISCV
1124 void LIR_List::set_cmp_oprs(LIR_Op* op) {
1125   switch (op->code()) {
1126     case lir_cmp:
1127       _cmp_opr1 = op->as_Op2()->in_opr1();
1128       _cmp_opr2 = op->as_Op2()->in_opr2();
1129       break;
1130     case lir_branch: // fall through
1131     case lir_cond_float_branch:
1132       assert(op->as_OpBranch()->cond() == lir_cond_always ||
1133             (_cmp_opr1 != LIR_OprFact::illegalOpr && _cmp_opr2 != LIR_OprFact::illegalOpr),
1134             "conditional branches must have legal operands");
1135       if (op->as_OpBranch()->cond() != lir_cond_always) {
1136         op->as_Op2()->set_in_opr1(_cmp_opr1);
1137         op->as_Op2()->set_in_opr2(_cmp_opr2);
1138       }
1139       break;
1140     case lir_cmove:
1141       op->as_Op4()->set_in_opr3(_cmp_opr1);
1142       op->as_Op4()->set_in_opr4(_cmp_opr2);
1143       break;
1144 #if INCLUDE_ZGC
1145     case lir_zloadbarrier_test:
1146       _cmp_opr1 = FrameMap::as_opr(t1);
1147       _cmp_opr2 = LIR_OprFact::intConst(0);
1148       break;
1149 #endif
1150     default:
1151       break;
1152   }
1153 }
1154 #endif
1155 
1156 void LIR_List::append(LIR_InsertionBuffer* buffer) {
1157   assert(this == buffer->lir_list(), "wrong lir list");
1158   const int n = _operations.length();
1159 
1160   if (buffer->number_of_ops() > 0) {
1161     // increase size of instructions list
1162     _operations.at_grow(n + buffer->number_of_ops() - 1, NULL);
1163     // insert ops from buffer into instructions list
1164     int op_index = buffer->number_of_ops() - 1;
1165     int ip_index = buffer->number_of_insertion_points() - 1;
1166     int from_index = n - 1;
1167     int to_index = _operations.length() - 1;
1168     for (; ip_index >= 0; ip_index --) {
1169       int index = buffer->index_at(ip_index);
1170       // make room after insertion point
1171       while (index < from_index) {
1172         _operations.at_put(to_index --, _operations.at(from_index --));
1173       }
1174       // insert ops from buffer
1175       for (int i = buffer->count_at(ip_index); i > 0; i --) {
1176         _operations.at_put(to_index --, buffer->op_at(op_index --));
1177       }
1178     }
1179   }
1180 
1181   buffer->finish();
1182 }
1183 
1184 
1185 void LIR_List::oop2reg_patch(jobject o, LIR_Opr reg, CodeEmitInfo* info) {
1186   assert(reg->type() == T_OBJECT, "bad reg");
1187   append(new LIR_Op1(lir_move, LIR_OprFact::oopConst(o),  reg, T_OBJECT, lir_patch_normal, info));
1188 }
1189 
1190 void LIR_List::klass2reg_patch(Metadata* o, LIR_Opr reg, CodeEmitInfo* info) {
1191   assert(reg->type() == T_METADATA, "bad reg");
1192   append(new LIR_Op1(lir_move, LIR_OprFact::metadataConst(o), reg, T_METADATA, lir_patch_normal, info));
1193 }
1194 
1195 void LIR_List::load(LIR_Address* addr, LIR_Opr src, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1196   append(new LIR_Op1(
1197             lir_move,
1198             LIR_OprFact::address(addr),
1199             src,
1200             addr->type(),
1201             patch_code,
1202             info));
1203 }
1204 
1205 
1206 void LIR_List::volatile_load_mem_reg(LIR_Address* address, LIR_Opr dst, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1207   append(new LIR_Op1(
1208             lir_move,
1209             LIR_OprFact::address(address),
1210             dst,
1211             address->type(),
1212             patch_code,
1213             info, lir_move_volatile));
1214 }
1215 
1216 void LIR_List::volatile_load_unsafe_reg(LIR_Opr base, LIR_Opr offset, LIR_Opr dst, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1217   append(new LIR_Op1(
1218             lir_move,
1219             LIR_OprFact::address(new LIR_Address(base, offset, type)),
1220             dst,
1221             type,
1222             patch_code,
1223             info, lir_move_volatile));
1224 }
1225 
1226 
1227 void LIR_List::store_mem_int(jint v, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1228   append(new LIR_Op1(
1229             lir_move,
1230             LIR_OprFact::intConst(v),
1231             LIR_OprFact::address(new LIR_Address(base, offset_in_bytes, type)),
1232             type,
1233             patch_code,
1234             info));
1235 }
1236 
1237 
1238 void LIR_List::store_mem_oop(jobject o, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1239   append(new LIR_Op1(
1240             lir_move,
1241             LIR_OprFact::oopConst(o),
1242             LIR_OprFact::address(new LIR_Address(base, offset_in_bytes, type)),
1243             type,
1244             patch_code,
1245             info));
1246 }
1247 
1248 
1249 void LIR_List::store(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1250   append(new LIR_Op1(
1251             lir_move,
1252             src,
1253             LIR_OprFact::address(addr),
1254             addr->type(),
1255             patch_code,
1256             info));
1257 }
1258 
1259 
1260 void LIR_List::volatile_store_mem_reg(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1261   append(new LIR_Op1(
1262             lir_move,
1263             src,
1264             LIR_OprFact::address(addr),
1265             addr->type(),
1266             patch_code,
1267             info,
1268             lir_move_volatile));
1269 }
1270 
1271 void LIR_List::volatile_store_unsafe_reg(LIR_Opr src, LIR_Opr base, LIR_Opr offset, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1272   append(new LIR_Op1(
1273             lir_move,
1274             src,
1275             LIR_OprFact::address(new LIR_Address(base, offset, type)),
1276             type,
1277             patch_code,
1278             info, lir_move_volatile));
1279 }
1280 
1281 
1282 void LIR_List::idiv(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) {
1283   append(new LIR_Op3(
1284                     lir_idiv,
1285                     left,
1286                     right,
1287                     tmp,
1288                     res,
1289                     info));
1290 }
1291 
1292 
1293 void LIR_List::idiv(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) {
1294   append(new LIR_Op3(
1295                     lir_idiv,
1296                     left,
1297                     LIR_OprFact::intConst(right),
1298                     tmp,
1299                     res,
1300                     info));
1301 }
1302 
1303 
1304 void LIR_List::irem(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) {
1305   append(new LIR_Op3(
1306                     lir_irem,
1307                     left,
1308                     right,
1309                     tmp,
1310                     res,
1311                     info));
1312 }
1313 
1314 
1315 void LIR_List::irem(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) {
1316   append(new LIR_Op3(
1317                     lir_irem,
1318                     left,
1319                     LIR_OprFact::intConst(right),
1320                     tmp,
1321                     res,
1322                     info));
1323 }
1324 
1325 
1326 void LIR_List::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
1327   append(new LIR_Op2(
1328                     lir_cmp,
1329                     condition,
1330                     LIR_OprFact::address(new LIR_Address(base, disp, T_INT)),
1331                     LIR_OprFact::intConst(c),
1332                     info));
1333 }
1334 
1335 
1336 void LIR_List::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Address* addr, CodeEmitInfo* info) {
1337   append(new LIR_Op2(
1338                     lir_cmp,
1339                     condition,
1340                     reg,
1341                     LIR_OprFact::address(addr),
1342                     info));
1343 }
1344 
1345 void LIR_List::allocate_object(LIR_Opr dst, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4,
1346                                int header_size, int object_size, LIR_Opr klass, bool init_check, CodeStub* stub) {
1347   append(new LIR_OpAllocObj(
1348                            klass,
1349                            dst,
1350                            t1,
1351                            t2,
1352                            t3,
1353                            t4,
1354                            header_size,
1355                            object_size,
1356                            init_check,
1357                            stub));
1358 }
1359 
1360 void LIR_List::allocate_array(LIR_Opr dst, LIR_Opr len, LIR_Opr t1,LIR_Opr t2, LIR_Opr t3,LIR_Opr t4, BasicType type, LIR_Opr klass, CodeStub* stub) {
1361   append(new LIR_OpAllocArray(
1362                            klass,
1363                            len,
1364                            dst,
1365                            t1,
1366                            t2,
1367                            t3,
1368                            t4,
1369                            type,
1370                            stub));
1371 }
1372 
1373 void LIR_List::shift_left(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp) {
1374  append(new LIR_Op2(
1375                     lir_shl,
1376                     value,
1377                     count,
1378                     dst,
1379                     tmp));
1380 }
1381 
1382 void LIR_List::shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp) {
1383  append(new LIR_Op2(
1384                     lir_shr,
1385                     value,
1386                     count,
1387                     dst,
1388                     tmp));
1389 }
1390 
1391 
1392 void LIR_List::unsigned_shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp) {
1393  append(new LIR_Op2(
1394                     lir_ushr,
1395                     value,
1396                     count,
1397                     dst,
1398                     tmp));
1399 }
1400 
1401 void LIR_List::fcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst, bool is_unordered_less) {
1402   append(new LIR_Op2(is_unordered_less ? lir_ucmp_fd2i : lir_cmp_fd2i,
1403                      left,
1404                      right,
1405                      dst));
1406 }
1407 
1408 void LIR_List::lock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info) {
1409   append(new LIR_OpLock(
1410                     lir_lock,
1411                     hdr,
1412                     obj,
1413                     lock,
1414                     scratch,
1415                     stub,
1416                     info));
1417 }
1418 
1419 void LIR_List::unlock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub) {
1420   append(new LIR_OpLock(
1421                     lir_unlock,
1422                     hdr,
1423                     obj,
1424                     lock,
1425                     scratch,
1426                     stub,
1427                     NULL));
1428 }
1429 
1430 
1431 void check_LIR() {
1432   // cannot do the proper checking as PRODUCT and other modes return different results
1433   // guarantee(sizeof(LIR_Opr) == wordSize, "may not have a v-table");
1434 }
1435 
1436 
1437 
1438 void LIR_List::checkcast (LIR_Opr result, LIR_Opr object, ciKlass* klass,
1439                           LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
1440                           CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub,
1441                           ciMethod* profiled_method, int profiled_bci) {
1442   LIR_OpTypeCheck* c = new LIR_OpTypeCheck(lir_checkcast, result, object, klass,
1443                                            tmp1, tmp2, tmp3, fast_check, info_for_exception, info_for_patch, stub);
1444   if (profiled_method != NULL) {
1445     c->set_profiled_method(profiled_method);
1446     c->set_profiled_bci(profiled_bci);
1447     c->set_should_profile(true);
1448   }
1449   append(c);
1450 }
1451 
1452 void LIR_List::instanceof(LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_patch, ciMethod* profiled_method, int profiled_bci) {
1453   LIR_OpTypeCheck* c = new LIR_OpTypeCheck(lir_instanceof, result, object, klass, tmp1, tmp2, tmp3, fast_check, NULL, info_for_patch, NULL);
1454   if (profiled_method != NULL) {
1455     c->set_profiled_method(profiled_method);
1456     c->set_profiled_bci(profiled_bci);
1457     c->set_should_profile(true);
1458   }
1459   append(c);
1460 }
1461 
1462 
1463 void LIR_List::store_check(LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3,
1464                            CodeEmitInfo* info_for_exception, ciMethod* profiled_method, int profiled_bci) {
1465   LIR_OpTypeCheck* c = new LIR_OpTypeCheck(lir_store_check, object, array, tmp1, tmp2, tmp3, info_for_exception);
1466   if (profiled_method != NULL) {
1467     c->set_profiled_method(profiled_method);
1468     c->set_profiled_bci(profiled_bci);
1469     c->set_should_profile(true);
1470   }
1471   append(c);
1472 }
1473 
1474 void LIR_List::null_check(LIR_Opr opr, CodeEmitInfo* info, bool deoptimize_on_null) {
1475   if (deoptimize_on_null) {
1476     // Emit an explicit null check and deoptimize if opr is null
1477     CodeStub* deopt = new DeoptimizeStub(info, Deoptimization::Reason_null_check, Deoptimization::Action_none);
1478     cmp(lir_cond_equal, opr, LIR_OprFact::oopConst(NULL));
1479     branch(lir_cond_equal, deopt);
1480   } else {
1481     // Emit an implicit null check
1482     append(new LIR_Op1(lir_null_check, opr, info));
1483   }
1484 }
1485 
1486 void LIR_List::cas_long(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1487                         LIR_Opr t1, LIR_Opr t2, LIR_Opr result) {
1488   append(new LIR_OpCompareAndSwap(lir_cas_long, addr, cmp_value, new_value, t1, t2, result));
1489 }
1490 
1491 void LIR_List::cas_obj(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1492                        LIR_Opr t1, LIR_Opr t2, LIR_Opr result) {
1493   append(new LIR_OpCompareAndSwap(lir_cas_obj, addr, cmp_value, new_value, t1, t2, result));
1494 }
1495 
1496 void LIR_List::cas_int(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1497                        LIR_Opr t1, LIR_Opr t2, LIR_Opr result) {
1498   append(new LIR_OpCompareAndSwap(lir_cas_int, addr, cmp_value, new_value, t1, t2, result));
1499 }
1500 
1501 
1502 #ifdef PRODUCT
1503 
1504 void print_LIR(BlockList* blocks) {
1505 }
1506 
1507 #else
1508 // LIR_Opr
1509 void LIR_Opr::print() const {
1510   print(tty);
1511 }
1512 
1513 void LIR_Opr::print(outputStream* out) const {
1514   if (is_illegal()) {
1515     return;
1516   }
1517 
1518   out->print("[");
1519   if (is_pointer()) {
1520     pointer()->print_value_on(out);
1521   } else if (is_single_stack()) {
1522     out->print("stack:%d", single_stack_ix());
1523   } else if (is_double_stack()) {
1524     out->print("dbl_stack:%d",double_stack_ix());
1525   } else if (is_virtual()) {
1526     out->print("R%d", vreg_number());
1527   } else if (is_single_cpu()) {
1528     out->print("%s", as_register()->name());
1529   } else if (is_double_cpu()) {
1530     out->print("%s", as_register_hi()->name());
1531     out->print("%s", as_register_lo()->name());
1532 #if defined(X86)
1533   } else if (is_single_xmm()) {
1534     out->print("%s", as_xmm_float_reg()->name());
1535   } else if (is_double_xmm()) {
1536     out->print("%s", as_xmm_double_reg()->name());
1537   } else if (is_single_fpu()) {
1538     out->print("fpu%d", fpu_regnr());
1539   } else if (is_double_fpu()) {
1540     out->print("fpu%d", fpu_regnrLo());
1541 #elif defined(AARCH64)
1542   } else if (is_single_fpu()) {
1543     out->print("fpu%d", fpu_regnr());
1544   } else if (is_double_fpu()) {
1545     out->print("fpu%d", fpu_regnrLo());
1546 #elif defined(ARM)
1547   } else if (is_single_fpu()) {
1548     out->print("s%d", fpu_regnr());
1549   } else if (is_double_fpu()) {
1550     out->print("d%d", fpu_regnrLo() >> 1);
1551 #else
1552   } else if (is_single_fpu()) {
1553     out->print("%s", as_float_reg()->name());
1554   } else if (is_double_fpu()) {
1555     out->print("%s", as_double_reg()->name());
1556 #endif
1557 
1558   } else if (is_illegal()) {
1559     out->print("-");
1560   } else {
1561     out->print("Unknown Operand");
1562   }
1563   if (!is_illegal()) {
1564     out->print("|%c", type_char());
1565   }
1566   if (is_register() && is_last_use()) {
1567     out->print("(last_use)");
1568   }
1569   out->print("]");
1570 }
1571 
1572 
1573 // LIR_Address
1574 void LIR_Const::print_value_on(outputStream* out) const {
1575   switch (type()) {
1576     case T_ADDRESS:out->print("address:%d",as_jint());          break;
1577     case T_INT:    out->print("int:%d",   as_jint());           break;
1578     case T_LONG:   out->print("lng:" JLONG_FORMAT, as_jlong()); break;
1579     case T_FLOAT:  out->print("flt:%f",   as_jfloat());         break;
1580     case T_DOUBLE: out->print("dbl:%f",   as_jdouble());        break;
1581     case T_OBJECT: out->print("obj:" INTPTR_FORMAT, p2i(as_jobject()));        break;
1582     case T_METADATA: out->print("metadata:" INTPTR_FORMAT, p2i(as_metadata()));break;
1583     default:       out->print("%3d:" UINT64_FORMAT_X, type(), (uint64_t)as_jlong()); break;
1584   }
1585 }
1586 
1587 // LIR_Address
1588 void LIR_Address::print_value_on(outputStream* out) const {
1589   out->print("Base:"); _base->print(out);
1590   if (!_index->is_illegal()) {
1591     out->print(" Index:"); _index->print(out);
1592     switch (scale()) {
1593     case times_1: break;
1594     case times_2: out->print(" * 2"); break;
1595     case times_4: out->print(" * 4"); break;
1596     case times_8: out->print(" * 8"); break;
1597     }
1598   }
1599   out->print(" Disp: " INTX_FORMAT, _disp);
1600 }
1601 
1602 // debug output of block header without InstructionPrinter
1603 //       (because phi functions are not necessary for LIR)
1604 static void print_block(BlockBegin* x) {
1605   // print block id
1606   BlockEnd* end = x->end();
1607   tty->print("B%d ", x->block_id());
1608 
1609   // print flags
1610   if (x->is_set(BlockBegin::std_entry_flag))               tty->print("std ");
1611   if (x->is_set(BlockBegin::osr_entry_flag))               tty->print("osr ");
1612   if (x->is_set(BlockBegin::exception_entry_flag))         tty->print("ex ");
1613   if (x->is_set(BlockBegin::subroutine_entry_flag))        tty->print("jsr ");
1614   if (x->is_set(BlockBegin::backward_branch_target_flag))  tty->print("bb ");
1615   if (x->is_set(BlockBegin::linear_scan_loop_header_flag)) tty->print("lh ");
1616   if (x->is_set(BlockBegin::linear_scan_loop_end_flag))    tty->print("le ");
1617 
1618   // print block bci range
1619   tty->print("[%d, %d] ", x->bci(), (end == NULL ? -1 : end->printable_bci()));
1620 
1621   // print predecessors and successors
1622   if (x->number_of_preds() > 0) {
1623     tty->print("preds: ");
1624     for (int i = 0; i < x->number_of_preds(); i ++) {
1625       tty->print("B%d ", x->pred_at(i)->block_id());
1626     }
1627   }
1628 
1629   if (end != NULL && x->number_of_sux() > 0) {
1630     tty->print("sux: ");
1631     for (int i = 0; i < x->number_of_sux(); i ++) {
1632       tty->print("B%d ", x->sux_at(i)->block_id());
1633     }
1634   }
1635 
1636   // print exception handlers
1637   if (x->number_of_exception_handlers() > 0) {
1638     tty->print("xhandler: ");
1639     for (int i = 0; i < x->number_of_exception_handlers();  i++) {
1640       tty->print("B%d ", x->exception_handler_at(i)->block_id());
1641     }
1642   }
1643 
1644   tty->cr();
1645 }
1646 
1647 void print_LIR(BlockList* blocks) {
1648   tty->print_cr("LIR:");
1649   int i;
1650   for (i = 0; i < blocks->length(); i++) {
1651     BlockBegin* bb = blocks->at(i);
1652     print_block(bb);
1653     tty->print("__id_Instruction___________________________________________"); tty->cr();
1654     bb->lir()->print_instructions();
1655   }
1656 }
1657 
1658 void LIR_List::print_instructions() {
1659   for (int i = 0; i < _operations.length(); i++) {
1660     _operations.at(i)->print(); tty->cr();
1661   }
1662   tty->cr();
1663 }
1664 
1665 // LIR_Ops printing routines
1666 // LIR_Op
1667 void LIR_Op::print_on(outputStream* out) const {
1668   if (id() != -1 || PrintCFGToFile) {
1669     out->print("%4d ", id());
1670   } else {
1671     out->print("     ");
1672   }
1673   out->print("%s ", name());
1674   print_instr(out);
1675   if (info() != NULL) out->print(" [bci:%d]", info()->stack()->bci());
1676 #ifdef ASSERT
1677   if (Verbose && _file != NULL) {
1678     out->print(" (%s:%d)", _file, _line);
1679   }
1680 #endif
1681 }
1682 
1683 const char * LIR_Op::name() const {
1684   const char* s = NULL;
1685   switch(code()) {
1686      // LIR_Op0
1687      case lir_membar:                s = "membar";        break;
1688      case lir_membar_acquire:        s = "membar_acquire"; break;
1689      case lir_membar_release:        s = "membar_release"; break;
1690      case lir_membar_loadload:       s = "membar_loadload";   break;
1691      case lir_membar_storestore:     s = "membar_storestore"; break;
1692      case lir_membar_loadstore:      s = "membar_loadstore";  break;
1693      case lir_membar_storeload:      s = "membar_storeload";  break;
1694      case lir_label:                 s = "label";         break;
1695      case lir_nop:                   s = "nop";           break;
1696      case lir_on_spin_wait:          s = "on_spin_wait";  break;
1697      case lir_std_entry:             s = "std_entry";     break;
1698      case lir_osr_entry:             s = "osr_entry";     break;
1699      case lir_fpop_raw:              s = "fpop_raw";      break;
1700      case lir_breakpoint:            s = "breakpoint";    break;
1701      case lir_get_thread:            s = "get_thread";    break;
1702      // LIR_Op1
1703      case lir_fxch:                  s = "fxch";          break;
1704      case lir_fld:                   s = "fld";           break;
1705      case lir_push:                  s = "push";          break;
1706      case lir_pop:                   s = "pop";           break;
1707      case lir_null_check:            s = "null_check";    break;
1708      case lir_return:                s = "return";        break;
1709      case lir_safepoint:             s = "safepoint";     break;
1710      case lir_leal:                  s = "leal";          break;
1711      case lir_branch:                s = "branch";        break;
1712      case lir_cond_float_branch:     s = "flt_cond_br";   break;
1713      case lir_move:                  s = "move";          break;
1714      case lir_roundfp:               s = "roundfp";       break;
1715      case lir_rtcall:                s = "rtcall";        break;
1716      case lir_throw:                 s = "throw";         break;
1717      case lir_unwind:                s = "unwind";        break;
1718      case lir_convert:               s = "convert";       break;
1719      case lir_alloc_object:          s = "alloc_obj";     break;
1720      case lir_monaddr:               s = "mon_addr";      break;
1721      // LIR_Op2
1722      case lir_cmp:                   s = "cmp";           break;
1723      case lir_cmp_l2i:               s = "cmp_l2i";       break;
1724      case lir_ucmp_fd2i:             s = "ucomp_fd2i";    break;
1725      case lir_cmp_fd2i:              s = "comp_fd2i";     break;
1726      case lir_add:                   s = "add";           break;
1727      case lir_sub:                   s = "sub";           break;
1728      case lir_mul:                   s = "mul";           break;
1729      case lir_div:                   s = "div";           break;
1730      case lir_rem:                   s = "rem";           break;
1731      case lir_abs:                   s = "abs";           break;
1732      case lir_neg:                   s = "neg";           break;
1733      case lir_sqrt:                  s = "sqrt";          break;
1734      case lir_logic_and:             s = "logic_and";     break;
1735      case lir_logic_or:              s = "logic_or";      break;
1736      case lir_logic_xor:             s = "logic_xor";     break;
1737      case lir_shl:                   s = "shift_left";    break;
1738      case lir_shr:                   s = "shift_right";   break;
1739      case lir_ushr:                  s = "ushift_right";  break;
1740      case lir_alloc_array:           s = "alloc_array";   break;
1741      case lir_xadd:                  s = "xadd";          break;
1742      case lir_xchg:                  s = "xchg";          break;
1743      // LIR_Op3
1744      case lir_idiv:                  s = "idiv";          break;
1745      case lir_irem:                  s = "irem";          break;
1746      case lir_fmad:                  s = "fmad";          break;
1747      case lir_fmaf:                  s = "fmaf";          break;
1748      // LIR_Op4
1749      case lir_cmove:                 s = "cmove";         break;
1750      // LIR_OpJavaCall
1751      case lir_static_call:           s = "static";        break;
1752      case lir_optvirtual_call:       s = "optvirtual";    break;
1753      case lir_icvirtual_call:        s = "icvirtual";     break;
1754      case lir_dynamic_call:          s = "dynamic";       break;
1755      // LIR_OpArrayCopy
1756      case lir_arraycopy:             s = "arraycopy";     break;
1757      // LIR_OpUpdateCRC32
1758      case lir_updatecrc32:           s = "updatecrc32";   break;
1759      // LIR_OpLock
1760      case lir_lock:                  s = "lock";          break;
1761      case lir_unlock:                s = "unlock";        break;
1762      // LIR_OpDelay
1763      case lir_delay_slot:            s = "delay";         break;
1764      // LIR_OpTypeCheck
1765      case lir_instanceof:            s = "instanceof";    break;
1766      case lir_checkcast:             s = "checkcast";     break;
1767      case lir_store_check:           s = "store_check";   break;
1768      // LIR_OpCompareAndSwap
1769      case lir_cas_long:              s = "cas_long";      break;
1770      case lir_cas_obj:               s = "cas_obj";      break;
1771      case lir_cas_int:               s = "cas_int";      break;
1772      // LIR_OpProfileCall
1773      case lir_profile_call:          s = "profile_call";  break;
1774      // LIR_OpProfileType
1775      case lir_profile_type:          s = "profile_type";  break;
1776      // LIR_OpAssert
1777 #ifdef ASSERT
1778      case lir_assert:                s = "assert";        break;
1779 #endif
1780      case lir_none:                  ShouldNotReachHere();break;
1781     default:                         s = "illegal_op";    break;
1782   }
1783   return s;
1784 }
1785 
1786 // LIR_OpJavaCall
1787 void LIR_OpJavaCall::print_instr(outputStream* out) const {
1788   out->print("call: ");
1789   out->print("[addr: " INTPTR_FORMAT "]", p2i(address()));
1790   if (receiver()->is_valid()) {
1791     out->print(" [recv: ");   receiver()->print(out);   out->print("]");
1792   }
1793   if (result_opr()->is_valid()) {
1794     out->print(" [result: "); result_opr()->print(out); out->print("]");
1795   }
1796 }
1797 
1798 // LIR_OpLabel
1799 void LIR_OpLabel::print_instr(outputStream* out) const {
1800   out->print("[label:" INTPTR_FORMAT "]", p2i(_label));
1801 }
1802 
1803 // LIR_OpArrayCopy
1804 void LIR_OpArrayCopy::print_instr(outputStream* out) const {
1805   src()->print(out);     out->print(" ");
1806   src_pos()->print(out); out->print(" ");
1807   dst()->print(out);     out->print(" ");
1808   dst_pos()->print(out); out->print(" ");
1809   length()->print(out);  out->print(" ");
1810   tmp()->print(out);     out->print(" ");
1811 }
1812 
1813 // LIR_OpUpdateCRC32
1814 void LIR_OpUpdateCRC32::print_instr(outputStream* out) const {
1815   crc()->print(out);     out->print(" ");
1816   val()->print(out);     out->print(" ");
1817   result_opr()->print(out); out->print(" ");
1818 }
1819 
1820 // LIR_OpCompareAndSwap
1821 void LIR_OpCompareAndSwap::print_instr(outputStream* out) const {
1822   addr()->print(out);      out->print(" ");
1823   cmp_value()->print(out); out->print(" ");
1824   new_value()->print(out); out->print(" ");
1825   tmp1()->print(out);      out->print(" ");
1826   tmp2()->print(out);      out->print(" ");
1827 
1828 }
1829 
1830 // LIR_Op0
1831 void LIR_Op0::print_instr(outputStream* out) const {
1832   result_opr()->print(out);
1833 }
1834 
1835 // LIR_Op1
1836 const char * LIR_Op1::name() const {
1837   if (code() == lir_move) {
1838     switch (move_kind()) {
1839     case lir_move_normal:
1840       return "move";
1841     case lir_move_volatile:
1842       return "volatile_move";
1843     case lir_move_wide:
1844       return "wide_move";
1845     default:
1846       ShouldNotReachHere();
1847     return "illegal_op";
1848     }
1849   } else {
1850     return LIR_Op::name();
1851   }
1852 }
1853 
1854 
1855 void LIR_Op1::print_instr(outputStream* out) const {
1856   _opr->print(out);         out->print(" ");
1857   result_opr()->print(out); out->print(" ");
1858   print_patch_code(out, patch_code());
1859 }
1860 
1861 
1862 // LIR_Op1
1863 void LIR_OpRTCall::print_instr(outputStream* out) const {
1864   intx a = (intx)addr();
1865   out->print("%s", Runtime1::name_for_address(addr()));
1866   out->print(" ");
1867   tmp()->print(out);
1868 }
1869 
1870 void LIR_Op1::print_patch_code(outputStream* out, LIR_PatchCode code) {
1871   switch(code) {
1872     case lir_patch_none:                                 break;
1873     case lir_patch_low:    out->print("[patch_low]");    break;
1874     case lir_patch_high:   out->print("[patch_high]");   break;
1875     case lir_patch_normal: out->print("[patch_normal]"); break;
1876     default: ShouldNotReachHere();
1877   }
1878 }
1879 
1880 // LIR_OpBranch
1881 void LIR_OpBranch::print_instr(outputStream* out) const {
1882   print_condition(out, cond());             out->print(" ");
1883   in_opr1()->print(out); out->print(" ");
1884   in_opr2()->print(out); out->print(" ");
1885   if (block() != NULL) {
1886     out->print("[B%d] ", block()->block_id());
1887   } else if (stub() != NULL) {
1888     out->print("[");
1889     stub()->print_name(out);
1890     out->print(": " INTPTR_FORMAT "]", p2i(stub()));
1891     if (stub()->info() != NULL) out->print(" [bci:%d]", stub()->info()->stack()->bci());
1892   } else {
1893     out->print("[label:" INTPTR_FORMAT "] ", p2i(label()));
1894   }
1895   if (ublock() != NULL) {
1896     out->print("unordered: [B%d] ", ublock()->block_id());
1897   }
1898 }
1899 
1900 void LIR_Op::print_condition(outputStream* out, LIR_Condition cond) {
1901   switch(cond) {
1902     case lir_cond_equal:           out->print("[EQ]");      break;
1903     case lir_cond_notEqual:        out->print("[NE]");      break;
1904     case lir_cond_less:            out->print("[LT]");      break;
1905     case lir_cond_lessEqual:       out->print("[LE]");      break;
1906     case lir_cond_greaterEqual:    out->print("[GE]");      break;
1907     case lir_cond_greater:         out->print("[GT]");      break;
1908     case lir_cond_belowEqual:      out->print("[BE]");      break;
1909     case lir_cond_aboveEqual:      out->print("[AE]");      break;
1910     case lir_cond_always:          out->print("[AL]");      break;
1911     default:                       out->print("[%d]",cond); break;
1912   }
1913 }
1914 
1915 // LIR_OpConvert
1916 void LIR_OpConvert::print_instr(outputStream* out) const {
1917   print_bytecode(out, bytecode());
1918   in_opr()->print(out);                  out->print(" ");
1919   result_opr()->print(out);              out->print(" ");
1920 }
1921 
1922 void LIR_OpConvert::print_bytecode(outputStream* out, Bytecodes::Code code) {
1923   switch(code) {
1924     case Bytecodes::_d2f: out->print("[d2f] "); break;
1925     case Bytecodes::_d2i: out->print("[d2i] "); break;
1926     case Bytecodes::_d2l: out->print("[d2l] "); break;
1927     case Bytecodes::_f2d: out->print("[f2d] "); break;
1928     case Bytecodes::_f2i: out->print("[f2i] "); break;
1929     case Bytecodes::_f2l: out->print("[f2l] "); break;
1930     case Bytecodes::_i2b: out->print("[i2b] "); break;
1931     case Bytecodes::_i2c: out->print("[i2c] "); break;
1932     case Bytecodes::_i2d: out->print("[i2d] "); break;
1933     case Bytecodes::_i2f: out->print("[i2f] "); break;
1934     case Bytecodes::_i2l: out->print("[i2l] "); break;
1935     case Bytecodes::_i2s: out->print("[i2s] "); break;
1936     case Bytecodes::_l2i: out->print("[l2i] "); break;
1937     case Bytecodes::_l2f: out->print("[l2f] "); break;
1938     case Bytecodes::_l2d: out->print("[l2d] "); break;
1939     default:
1940       out->print("[?%d]",code);
1941     break;
1942   }
1943 }
1944 
1945 void LIR_OpAllocObj::print_instr(outputStream* out) const {
1946   klass()->print(out);                      out->print(" ");
1947   obj()->print(out);                        out->print(" ");
1948   tmp1()->print(out);                       out->print(" ");
1949   tmp2()->print(out);                       out->print(" ");
1950   tmp3()->print(out);                       out->print(" ");
1951   tmp4()->print(out);                       out->print(" ");
1952   out->print("[hdr:%d]", header_size()); out->print(" ");
1953   out->print("[obj:%d]", object_size()); out->print(" ");
1954   out->print("[lbl:" INTPTR_FORMAT "]", p2i(stub()->entry()));
1955 }
1956 
1957 void LIR_OpRoundFP::print_instr(outputStream* out) const {
1958   _opr->print(out);         out->print(" ");
1959   tmp()->print(out);        out->print(" ");
1960   result_opr()->print(out); out->print(" ");
1961 }
1962 
1963 // LIR_Op2
1964 void LIR_Op2::print_instr(outputStream* out) const {
1965   if (code() == lir_cmp || code() == lir_branch || code() == lir_cond_float_branch) {
1966     print_condition(out, condition());         out->print(" ");
1967   }
1968   in_opr1()->print(out);    out->print(" ");
1969   in_opr2()->print(out);    out->print(" ");
1970   if (tmp1_opr()->is_valid()) { tmp1_opr()->print(out);    out->print(" "); }
1971   if (tmp2_opr()->is_valid()) { tmp2_opr()->print(out);    out->print(" "); }
1972   if (tmp3_opr()->is_valid()) { tmp3_opr()->print(out);    out->print(" "); }
1973   if (tmp4_opr()->is_valid()) { tmp4_opr()->print(out);    out->print(" "); }
1974   if (tmp5_opr()->is_valid()) { tmp5_opr()->print(out);    out->print(" "); }
1975   result_opr()->print(out);
1976 }
1977 
1978 void LIR_OpAllocArray::print_instr(outputStream* out) const {
1979   klass()->print(out);                   out->print(" ");
1980   len()->print(out);                     out->print(" ");
1981   obj()->print(out);                     out->print(" ");
1982   tmp1()->print(out);                    out->print(" ");
1983   tmp2()->print(out);                    out->print(" ");
1984   tmp3()->print(out);                    out->print(" ");
1985   tmp4()->print(out);                    out->print(" ");
1986   out->print("[type:0x%x]", type());     out->print(" ");
1987   out->print("[label:" INTPTR_FORMAT "]", p2i(stub()->entry()));
1988 }
1989 
1990 
1991 void LIR_OpTypeCheck::print_instr(outputStream* out) const {
1992   object()->print(out);                  out->print(" ");
1993   if (code() == lir_store_check) {
1994     array()->print(out);                 out->print(" ");
1995   }
1996   if (code() != lir_store_check) {
1997     klass()->print_name_on(out);         out->print(" ");
1998     if (fast_check())                 out->print("fast_check ");
1999   }
2000   tmp1()->print(out);                    out->print(" ");
2001   tmp2()->print(out);                    out->print(" ");
2002   tmp3()->print(out);                    out->print(" ");
2003   result_opr()->print(out);              out->print(" ");
2004   if (info_for_exception() != NULL) out->print(" [bci:%d]", info_for_exception()->stack()->bci());
2005 }
2006 
2007 
2008 // LIR_Op3
2009 void LIR_Op3::print_instr(outputStream* out) const {
2010   in_opr1()->print(out);    out->print(" ");
2011   in_opr2()->print(out);    out->print(" ");
2012   in_opr3()->print(out);    out->print(" ");
2013   result_opr()->print(out);
2014 }
2015 
2016 // LIR_Op4
2017 void LIR_Op4::print_instr(outputStream* out) const {
2018   print_condition(out, condition()); out->print(" ");
2019   in_opr1()->print(out);             out->print(" ");
2020   in_opr2()->print(out);             out->print(" ");
2021   in_opr3()->print(out);             out->print(" ");
2022   in_opr4()->print(out);             out->print(" ");
2023   result_opr()->print(out);
2024 }
2025 
2026 void LIR_OpLock::print_instr(outputStream* out) const {
2027   hdr_opr()->print(out);   out->print(" ");
2028   obj_opr()->print(out);   out->print(" ");
2029   lock_opr()->print(out);  out->print(" ");
2030   if (_scratch->is_valid()) {
2031     _scratch->print(out);  out->print(" ");
2032   }
2033   out->print("[lbl:" INTPTR_FORMAT "]", p2i(stub()->entry()));
2034 }
2035 
2036 void LIR_OpLoadKlass::print_instr(outputStream* out) const {
2037   obj()->print(out);        out->print(" ");
2038   result_opr()->print(out); out->print(" ");
2039 }
2040 
2041 #ifdef ASSERT
2042 void LIR_OpAssert::print_instr(outputStream* out) const {
2043   print_condition(out, condition()); out->print(" ");
2044   in_opr1()->print(out);             out->print(" ");
2045   in_opr2()->print(out);             out->print(", \"");
2046   out->print("%s", msg());          out->print("\"");
2047 }
2048 #endif
2049 
2050 
2051 void LIR_OpDelay::print_instr(outputStream* out) const {
2052   _op->print_on(out);
2053 }
2054 
2055 
2056 // LIR_OpProfileCall
2057 void LIR_OpProfileCall::print_instr(outputStream* out) const {
2058   profiled_method()->name()->print_symbol_on(out);
2059   out->print(".");
2060   profiled_method()->holder()->name()->print_symbol_on(out);
2061   out->print(" @ %d ", profiled_bci());
2062   mdo()->print(out);           out->print(" ");
2063   recv()->print(out);          out->print(" ");
2064   tmp1()->print(out);          out->print(" ");
2065 }
2066 
2067 // LIR_OpProfileType
2068 void LIR_OpProfileType::print_instr(outputStream* out) const {
2069   out->print("exact = ");
2070   if  (exact_klass() == NULL) {
2071     out->print("unknown");
2072   } else {
2073     exact_klass()->print_name_on(out);
2074   }
2075   out->print(" current = "); ciTypeEntries::print_ciklass(out, current_klass());
2076   out->print(" ");
2077   mdp()->print(out);          out->print(" ");
2078   obj()->print(out);          out->print(" ");
2079   tmp()->print(out);          out->print(" ");
2080 }
2081 
2082 #endif // PRODUCT
2083 
2084 // Implementation of LIR_InsertionBuffer
2085 
2086 void LIR_InsertionBuffer::append(int index, LIR_Op* op) {
2087   assert(_index_and_count.length() % 2 == 0, "must have a count for each index");
2088 
2089   int i = number_of_insertion_points() - 1;
2090   if (i < 0 || index_at(i) < index) {
2091     append_new(index, 1);
2092   } else {
2093     assert(index_at(i) == index, "can append LIR_Ops in ascending order only");
2094     assert(count_at(i) > 0, "check");
2095     set_count_at(i, count_at(i) + 1);
2096   }
2097   _ops.push(op);
2098 
2099   DEBUG_ONLY(verify());
2100 }
2101 
2102 #ifdef ASSERT
2103 void LIR_InsertionBuffer::verify() {
2104   int sum = 0;
2105   int prev_idx = -1;
2106 
2107   for (int i = 0; i < number_of_insertion_points(); i++) {
2108     assert(prev_idx < index_at(i), "index must be ordered ascending");
2109     sum += count_at(i);
2110   }
2111   assert(sum == number_of_ops(), "wrong total sum");
2112 }
2113 #endif