1 /*
   2  * Copyright (c) 2000, 2022, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_C1_C1_LIR_HPP
  26 #define SHARE_C1_C1_LIR_HPP
  27 
  28 #include "c1/c1_Defs.hpp"
  29 #include "c1/c1_ValueType.hpp"
  30 #include "oops/method.hpp"
  31 #include "utilities/globalDefinitions.hpp"
  32 
  33 class BlockBegin;
  34 class BlockList;
  35 class LIR_Assembler;
  36 class CodeEmitInfo;
  37 class CodeStub;
  38 class CodeStubList;
  39 class C1SafepointPollStub;
  40 class ArrayCopyStub;
  41 class LIR_Op;
  42 class ciType;
  43 class ValueType;
  44 class LIR_OpVisitState;
  45 class FpuStackSim;
  46 
  47 //---------------------------------------------------------------------
  48 //                 LIR Operands
  49 //    LIR_OprPtr
  50 //      LIR_Const
  51 //      LIR_Address
  52 //---------------------------------------------------------------------
  53 class LIR_OprPtr;
  54 class LIR_Const;
  55 class LIR_Address;
  56 class LIR_OprVisitor;
  57 class LIR_Opr;
  58 
  59 typedef int          RegNr;
  60 
  61 typedef GrowableArray<LIR_Opr> LIR_OprList;
  62 typedef GrowableArray<LIR_Op*> LIR_OpArray;
  63 typedef GrowableArray<LIR_Op*> LIR_OpList;
  64 
  65 // define LIR_OprPtr early so LIR_Opr can refer to it
  66 class LIR_OprPtr: public CompilationResourceObj {
  67  public:
  68   bool is_oop_pointer() const                    { return (type() == T_OBJECT); }
  69   bool is_float_kind() const                     { BasicType t = type(); return (t == T_FLOAT) || (t == T_DOUBLE); }
  70 
  71   virtual LIR_Const*  as_constant()              { return NULL; }
  72   virtual LIR_Address* as_address()              { return NULL; }
  73   virtual BasicType type() const                 = 0;
  74   virtual void print_value_on(outputStream* out) const = 0;
  75 };
  76 
  77 
  78 
  79 // LIR constants
  80 class LIR_Const: public LIR_OprPtr {
  81  private:
  82   JavaValue _value;
  83 
  84   void type_check(BasicType t) const   { assert(type() == t, "type check"); }
  85   void type_check(BasicType t1, BasicType t2) const   { assert(type() == t1 || type() == t2, "type check"); }
  86   void type_check(BasicType t1, BasicType t2, BasicType t3) const   { assert(type() == t1 || type() == t2 || type() == t3, "type check"); }
  87 
  88  public:
  89   LIR_Const(jint i, bool is_address=false)       { _value.set_type(is_address?T_ADDRESS:T_INT); _value.set_jint(i); }
  90   LIR_Const(jlong l)                             { _value.set_type(T_LONG);    _value.set_jlong(l); }
  91   LIR_Const(jfloat f)                            { _value.set_type(T_FLOAT);   _value.set_jfloat(f); }
  92   LIR_Const(jdouble d)                           { _value.set_type(T_DOUBLE);  _value.set_jdouble(d); }
  93   LIR_Const(jobject o)                           { _value.set_type(T_OBJECT);  _value.set_jobject(o); }
  94   LIR_Const(void* p) {
  95 #ifdef _LP64
  96     assert(sizeof(jlong) >= sizeof(p), "too small");;
  97     _value.set_type(T_LONG);    _value.set_jlong((jlong)p);
  98 #else
  99     assert(sizeof(jint) >= sizeof(p), "too small");;
 100     _value.set_type(T_INT);     _value.set_jint((jint)p);
 101 #endif
 102   }
 103   LIR_Const(Metadata* m) {
 104     _value.set_type(T_METADATA);
 105 #ifdef _LP64
 106     _value.set_jlong((jlong)m);
 107 #else
 108     _value.set_jint((jint)m);
 109 #endif // _LP64
 110   }
 111 
 112   virtual BasicType type()       const { return _value.get_type(); }
 113   virtual LIR_Const* as_constant()     { return this; }
 114 
 115   jint      as_jint()    const         { type_check(T_INT, T_ADDRESS); return _value.get_jint(); }
 116   jlong     as_jlong()   const         { type_check(T_LONG  ); return _value.get_jlong(); }
 117   jfloat    as_jfloat()  const         { type_check(T_FLOAT ); return _value.get_jfloat(); }
 118   jdouble   as_jdouble() const         { type_check(T_DOUBLE); return _value.get_jdouble(); }
 119   jobject   as_jobject() const         { type_check(T_OBJECT); return _value.get_jobject(); }
 120   jint      as_jint_lo() const         { type_check(T_LONG  ); return low(_value.get_jlong()); }
 121   jint      as_jint_hi() const         { type_check(T_LONG  ); return high(_value.get_jlong()); }
 122 
 123 #ifdef _LP64
 124   address   as_pointer() const         { type_check(T_LONG  ); return (address)_value.get_jlong(); }
 125   Metadata* as_metadata() const        { type_check(T_METADATA); return (Metadata*)_value.get_jlong(); }
 126 #else
 127   address   as_pointer() const         { type_check(T_INT   ); return (address)_value.get_jint(); }
 128   Metadata* as_metadata() const        { type_check(T_METADATA); return (Metadata*)_value.get_jint(); }
 129 #endif
 130 
 131 
 132   jint      as_jint_bits() const       { type_check(T_FLOAT, T_INT, T_ADDRESS); return _value.get_jint(); }
 133   jint      as_jint_lo_bits() const    {
 134     if (type() == T_DOUBLE) {
 135       return low(jlong_cast(_value.get_jdouble()));
 136     } else {
 137       return as_jint_lo();
 138     }
 139   }
 140   jint      as_jint_hi_bits() const    {
 141     if (type() == T_DOUBLE) {
 142       return high(jlong_cast(_value.get_jdouble()));
 143     } else {
 144       return as_jint_hi();
 145     }
 146   }
 147   jlong      as_jlong_bits() const    {
 148     if (type() == T_DOUBLE) {
 149       return jlong_cast(_value.get_jdouble());
 150     } else {
 151       return as_jlong();
 152     }
 153   }
 154 
 155   virtual void print_value_on(outputStream* out) const PRODUCT_RETURN;
 156 
 157 
 158   bool is_zero_float() {
 159     jfloat f = as_jfloat();
 160     jfloat ok = 0.0f;
 161     return jint_cast(f) == jint_cast(ok);
 162   }
 163 
 164   bool is_one_float() {
 165     jfloat f = as_jfloat();
 166     return !g_isnan(f) && g_isfinite(f) && f == 1.0;
 167   }
 168 
 169   bool is_zero_double() {
 170     jdouble d = as_jdouble();
 171     jdouble ok = 0.0;
 172     return jlong_cast(d) == jlong_cast(ok);
 173   }
 174 
 175   bool is_one_double() {
 176     jdouble d = as_jdouble();
 177     return !g_isnan(d) && g_isfinite(d) && d == 1.0;
 178   }
 179 };
 180 
 181 
 182 //---------------------LIR Operand descriptor------------------------------------
 183 //
 184 // The class LIR_Opr represents a LIR instruction operand;
 185 // it can be a register (ALU/FPU), stack location or a constant;
 186 // Constants and addresses are represented as resource area allocated
 187 // structures (see above), and pointers are stored in the _value field (cast to
 188 // an intptr_t).
 189 // Registers and stack locations are represented inline as integers.
 190 // (see value function).
 191 
 192 // Previously, this class was derived from CompilationResourceObj.
 193 // However, deriving from any of the "Obj" types in allocation.hpp seems
 194 // detrimental, since in some build modes it would add a vtable to this class,
 195 // which make it no longer be a 1-word trivially-copyable wrapper object,
 196 // which is the entire point of it.
 197 
 198 class LIR_Opr {
 199  public:
 200   // value structure:
 201   //          data        other-non-data opr-type opr-kind
 202   // +-------------------+--------------+-------+-----+
 203   // [max...............................|6 5 4 3|2 1 0]
 204   //                                                 ^
 205   //                                           is_pointer bit
 206   //
 207   // lowest bit cleared, means it is a structure pointer
 208   // we need 4 bits to represent types
 209 
 210  private:
 211   friend class LIR_OprFact;
 212 
 213   intptr_t _value;
 214   // Conversion
 215   intptr_t value() const                         { return _value; }
 216 
 217   bool check_value_mask(intptr_t mask, intptr_t masked_value) const {
 218     return (value() & mask) == masked_value;
 219   }
 220 
 221   enum OprKind {
 222       pointer_value      = 0
 223     , stack_value        = 1
 224     , cpu_register       = 3
 225     , fpu_register       = 5
 226     , illegal_value      = 7
 227   };
 228 
 229   enum OprBits {
 230       pointer_bits   = 1
 231     , kind_bits      = 3
 232     , type_bits      = 4
 233     , size_bits      = 2
 234     , destroys_bits  = 1
 235     , virtual_bits   = 1
 236     , is_xmm_bits    = 1
 237     , last_use_bits  = 1
 238     , is_fpu_stack_offset_bits = 1        // used in assertion checking on x86 for FPU stack slot allocation
 239     , non_data_bits  = kind_bits + type_bits + size_bits + destroys_bits + virtual_bits
 240                        + is_xmm_bits + last_use_bits + is_fpu_stack_offset_bits
 241     , data_bits      = BitsPerInt - non_data_bits
 242     , reg_bits       = data_bits / 2      // for two registers in one value encoding
 243   };
 244 
 245   enum OprShift : uintptr_t {
 246       kind_shift     = 0
 247     , type_shift     = kind_shift     + kind_bits
 248     , size_shift     = type_shift     + type_bits
 249     , destroys_shift = size_shift     + size_bits
 250     , last_use_shift = destroys_shift + destroys_bits
 251     , is_fpu_stack_offset_shift = last_use_shift + last_use_bits
 252     , virtual_shift  = is_fpu_stack_offset_shift + is_fpu_stack_offset_bits
 253     , is_xmm_shift   = virtual_shift + virtual_bits
 254     , data_shift     = is_xmm_shift + is_xmm_bits
 255     , reg1_shift = data_shift
 256     , reg2_shift = data_shift + reg_bits
 257 
 258   };
 259 
 260   enum OprSize {
 261       single_size = 0 << size_shift
 262     , double_size = 1 << size_shift
 263   };
 264 
 265   enum OprMask {
 266       kind_mask      = right_n_bits(kind_bits)
 267     , type_mask      = right_n_bits(type_bits) << type_shift
 268     , size_mask      = right_n_bits(size_bits) << size_shift
 269     , last_use_mask  = right_n_bits(last_use_bits) << last_use_shift
 270     , is_fpu_stack_offset_mask = right_n_bits(is_fpu_stack_offset_bits) << is_fpu_stack_offset_shift
 271     , virtual_mask   = right_n_bits(virtual_bits) << virtual_shift
 272     , is_xmm_mask    = right_n_bits(is_xmm_bits) << is_xmm_shift
 273     , pointer_mask   = right_n_bits(pointer_bits)
 274     , lower_reg_mask = right_n_bits(reg_bits)
 275     , no_type_mask   = (int)(~(type_mask | last_use_mask | is_fpu_stack_offset_mask))
 276   };
 277 
 278   uint32_t data() const                          { return (uint32_t)value() >> data_shift; }
 279   int lo_reg_half() const                        { return data() & lower_reg_mask; }
 280   int hi_reg_half() const                        { return (data() >> reg_bits) & lower_reg_mask; }
 281   OprKind kind_field() const                     { return (OprKind)(value() & kind_mask); }
 282   OprSize size_field() const                     { return (OprSize)(value() & size_mask); }
 283 
 284   static char type_char(BasicType t);
 285 
 286  public:
 287   LIR_Opr() : _value(0) {}
 288   LIR_Opr(intptr_t val) : _value(val) {}
 289   LIR_Opr(LIR_OprPtr *val) : _value(reinterpret_cast<intptr_t>(val)) {}
 290   bool operator==(const LIR_Opr &other) const { return _value == other._value; }
 291   bool operator!=(const LIR_Opr &other) const { return _value != other._value; }
 292   explicit operator bool() const { return _value != 0; }
 293 
 294   // UGLY HACK: make this value object look like a pointer (to itself). This
 295   // operator overload should be removed, and all callers updated from
 296   // `opr->fn()` to `opr.fn()`.
 297   const LIR_Opr* operator->() const { return this; }
 298   LIR_Opr* operator->() { return this; }
 299 
 300   enum {
 301     vreg_base = ConcreteRegisterImpl::number_of_registers,
 302     data_max = (1 << data_bits) - 1,      // max unsigned value for data bit field
 303     vreg_limit =  10000,                  // choose a reasonable limit,
 304     vreg_max = MIN2(vreg_limit, data_max) // and make sure if fits in the bit field
 305   };
 306 
 307   static inline LIR_Opr illegalOpr();
 308   static inline LIR_Opr nullOpr();
 309 
 310   enum OprType {
 311       unknown_type  = 0 << type_shift    // means: not set (catch uninitialized types)
 312     , int_type      = 1 << type_shift
 313     , long_type     = 2 << type_shift
 314     , object_type   = 3 << type_shift
 315     , address_type  = 4 << type_shift
 316     , float_type    = 5 << type_shift
 317     , double_type   = 6 << type_shift
 318     , metadata_type = 7 << type_shift
 319   };
 320   friend OprType as_OprType(BasicType t);
 321   friend BasicType as_BasicType(OprType t);
 322 
 323   OprType type_field_valid() const               { assert(is_register() || is_stack(), "should not be called otherwise"); return (OprType)(value() & type_mask); }
 324   OprType type_field() const                     { return is_illegal() ? unknown_type : (OprType)(value() & type_mask); }
 325 
 326   static OprSize size_for(BasicType t) {
 327     switch (t) {
 328       case T_LONG:
 329       case T_DOUBLE:
 330         return double_size;
 331         break;
 332 
 333       case T_FLOAT:
 334       case T_BOOLEAN:
 335       case T_CHAR:
 336       case T_BYTE:
 337       case T_SHORT:
 338       case T_INT:
 339       case T_ADDRESS:
 340       case T_OBJECT:
 341       case T_ARRAY:
 342       case T_METADATA:
 343         return single_size;
 344         break;
 345 
 346       default:
 347         ShouldNotReachHere();
 348         return single_size;
 349       }
 350   }
 351 
 352 
 353   void validate_type() const PRODUCT_RETURN;
 354 
 355   BasicType type() const {
 356     if (is_pointer()) {
 357       return pointer()->type();
 358     }
 359     return as_BasicType(type_field());
 360   }
 361 
 362 
 363   ValueType* value_type() const                  { return as_ValueType(type()); }
 364 
 365   char type_char() const                         { return type_char((is_pointer()) ? pointer()->type() : type()); }
 366 
 367   bool is_equal(LIR_Opr opr) const         { return *this == opr; }
 368   // checks whether types are same
 369   bool is_same_type(LIR_Opr opr) const     {
 370     assert(type_field() != unknown_type &&
 371            opr->type_field() != unknown_type, "shouldn't see unknown_type");
 372     return type_field() == opr->type_field();
 373   }
 374   bool is_same_register(LIR_Opr opr) {
 375     return (is_register() && opr->is_register() &&
 376             kind_field() == opr->kind_field() &&
 377             (value() & no_type_mask) == (opr->value() & no_type_mask));
 378   }
 379 
 380   bool is_pointer() const      { return check_value_mask(pointer_mask, pointer_value); }
 381   bool is_illegal() const      { return kind_field() == illegal_value; }
 382   bool is_valid() const        { return kind_field() != illegal_value; }
 383 
 384   bool is_register() const     { return is_cpu_register() || is_fpu_register(); }
 385   bool is_virtual() const      { return is_virtual_cpu()  || is_virtual_fpu();  }
 386 
 387   bool is_constant() const     { return is_pointer() && pointer()->as_constant() != NULL; }
 388   bool is_address() const      { return is_pointer() && pointer()->as_address() != NULL; }
 389 
 390   bool is_float_kind() const   { return is_pointer() ? pointer()->is_float_kind() : (kind_field() == fpu_register); }
 391   bool is_oop() const;
 392 
 393   // semantic for fpu- and xmm-registers:
 394   // * is_float and is_double return true for xmm_registers
 395   //   (so is_single_fpu and is_single_xmm are true)
 396   // * So you must always check for is_???_xmm prior to is_???_fpu to
 397   //   distinguish between fpu- and xmm-registers
 398 
 399   bool is_stack() const        { validate_type(); return check_value_mask(kind_mask,                stack_value);                 }
 400   bool is_single_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask,    stack_value  | single_size);  }
 401   bool is_double_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask,    stack_value  | double_size);  }
 402 
 403   bool is_cpu_register() const { validate_type(); return check_value_mask(kind_mask,                cpu_register);                }
 404   bool is_virtual_cpu() const  { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register | virtual_mask); }
 405   bool is_fixed_cpu() const    { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register);                }
 406   bool is_single_cpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    cpu_register | single_size);  }
 407   bool is_double_cpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    cpu_register | double_size);  }
 408 
 409   bool is_fpu_register() const { validate_type(); return check_value_mask(kind_mask,                fpu_register);                }
 410   bool is_virtual_fpu() const  { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register | virtual_mask); }
 411   bool is_fixed_fpu() const    { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register);                }
 412   bool is_single_fpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    fpu_register | single_size);  }
 413   bool is_double_fpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    fpu_register | double_size);  }
 414 
 415   bool is_xmm_register() const { validate_type(); return check_value_mask(kind_mask | is_xmm_mask,             fpu_register | is_xmm_mask); }
 416   bool is_single_xmm() const   { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | single_size | is_xmm_mask); }
 417   bool is_double_xmm() const   { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | double_size | is_xmm_mask); }
 418 
 419   // fast accessor functions for special bits that do not work for pointers
 420   // (in this functions, the check for is_pointer() is omitted)
 421   bool is_single_word() const      { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, single_size); }
 422   bool is_double_word() const      { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, double_size); }
 423   bool is_virtual_register() const { assert(is_register(),               "type check"); return check_value_mask(virtual_mask, virtual_mask); }
 424   bool is_oop_register() const     { assert(is_register() || is_stack(), "type check"); return type_field_valid() == object_type; }
 425   BasicType type_register() const  { assert(is_register() || is_stack(), "type check"); return as_BasicType(type_field_valid());  }
 426 
 427   bool is_last_use() const         { assert(is_register(), "only works for registers"); return (value() & last_use_mask) != 0; }
 428   bool is_fpu_stack_offset() const { assert(is_register(), "only works for registers"); return (value() & is_fpu_stack_offset_mask) != 0; }
 429   LIR_Opr make_last_use()          { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | last_use_mask); }
 430   LIR_Opr make_fpu_stack_offset()  { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | is_fpu_stack_offset_mask); }
 431 
 432 
 433   int single_stack_ix() const  { assert(is_single_stack() && !is_virtual(), "type check"); return (int)data(); }
 434   int double_stack_ix() const  { assert(is_double_stack() && !is_virtual(), "type check"); return (int)data(); }
 435   RegNr cpu_regnr() const      { assert(is_single_cpu()   && !is_virtual(), "type check"); return (RegNr)data(); }
 436   RegNr cpu_regnrLo() const    { assert(is_double_cpu()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
 437   RegNr cpu_regnrHi() const    { assert(is_double_cpu()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
 438   RegNr fpu_regnr() const      { assert(is_single_fpu()   && !is_virtual(), "type check"); return (RegNr)data(); }
 439   RegNr fpu_regnrLo() const    { assert(is_double_fpu()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
 440   RegNr fpu_regnrHi() const    { assert(is_double_fpu()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
 441   RegNr xmm_regnr() const      { assert(is_single_xmm()   && !is_virtual(), "type check"); return (RegNr)data(); }
 442   RegNr xmm_regnrLo() const    { assert(is_double_xmm()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
 443   RegNr xmm_regnrHi() const    { assert(is_double_xmm()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
 444   int   vreg_number() const    { assert(is_virtual(),                       "type check"); return (RegNr)data(); }
 445 
 446   LIR_OprPtr* pointer() const { assert(_value != 0 && is_pointer(), "nullness and type check"); return (LIR_OprPtr*)_value; }
 447   LIR_Const* as_constant_ptr() const             { return pointer()->as_constant(); }
 448   LIR_Address* as_address_ptr() const            { return pointer()->as_address(); }
 449 
 450   Register as_register()    const;
 451   Register as_register_lo() const;
 452   Register as_register_hi() const;
 453 
 454   Register as_pointer_register() {
 455 #ifdef _LP64
 456     if (is_double_cpu()) {
 457       assert(as_register_lo() == as_register_hi(), "should be a single register");
 458       return as_register_lo();
 459     }
 460 #endif
 461     return as_register();
 462   }
 463 
 464   FloatRegister as_float_reg   () const;
 465   FloatRegister as_double_reg  () const;
 466 #ifdef X86
 467   XMMRegister as_xmm_float_reg () const;
 468   XMMRegister as_xmm_double_reg() const;
 469   // for compatibility with RInfo
 470   int fpu() const { return lo_reg_half(); }
 471 #endif
 472 
 473   jint      as_jint()    const { return as_constant_ptr()->as_jint(); }
 474   jlong     as_jlong()   const { return as_constant_ptr()->as_jlong(); }
 475   jfloat    as_jfloat()  const { return as_constant_ptr()->as_jfloat(); }
 476   jdouble   as_jdouble() const { return as_constant_ptr()->as_jdouble(); }
 477   jobject   as_jobject() const { return as_constant_ptr()->as_jobject(); }
 478 
 479   void print() const PRODUCT_RETURN;
 480   void print(outputStream* out) const PRODUCT_RETURN;
 481 };
 482 
 483 inline LIR_Opr::OprType as_OprType(BasicType type) {
 484   switch (type) {
 485   case T_INT:      return LIR_Opr::int_type;
 486   case T_LONG:     return LIR_Opr::long_type;
 487   case T_FLOAT:    return LIR_Opr::float_type;
 488   case T_DOUBLE:   return LIR_Opr::double_type;
 489   case T_OBJECT:
 490   case T_ARRAY:    return LIR_Opr::object_type;
 491   case T_ADDRESS:  return LIR_Opr::address_type;
 492   case T_METADATA: return LIR_Opr::metadata_type;
 493   case T_ILLEGAL:  // fall through
 494   default: ShouldNotReachHere(); return LIR_Opr::unknown_type;
 495   }
 496 }
 497 
 498 inline BasicType as_BasicType(LIR_Opr::OprType t) {
 499   switch (t) {
 500   case LIR_Opr::int_type:     return T_INT;
 501   case LIR_Opr::long_type:    return T_LONG;
 502   case LIR_Opr::float_type:   return T_FLOAT;
 503   case LIR_Opr::double_type:  return T_DOUBLE;
 504   case LIR_Opr::object_type:  return T_OBJECT;
 505   case LIR_Opr::address_type: return T_ADDRESS;
 506   case LIR_Opr::metadata_type:return T_METADATA;
 507   case LIR_Opr::unknown_type: // fall through
 508   default: ShouldNotReachHere();  return T_ILLEGAL;
 509   }
 510 }
 511 
 512 
 513 // LIR_Address
 514 class LIR_Address: public LIR_OprPtr {
 515  friend class LIR_OpVisitState;
 516 
 517  public:
 518   // NOTE: currently these must be the log2 of the scale factor (and
 519   // must also be equivalent to the ScaleFactor enum in
 520   // assembler_i486.hpp)
 521   enum Scale {
 522     times_1  =  0,
 523     times_2  =  1,
 524     times_4  =  2,
 525     times_8  =  3
 526   };
 527 
 528  private:
 529   LIR_Opr   _base;
 530   LIR_Opr   _index;
 531   Scale     _scale;
 532   intx      _disp;
 533   BasicType _type;
 534 
 535  public:
 536   LIR_Address(LIR_Opr base, LIR_Opr index, BasicType type):
 537        _base(base)
 538      , _index(index)
 539      , _scale(times_1)
 540      , _disp(0)
 541      , _type(type) { verify(); }
 542 
 543   LIR_Address(LIR_Opr base, intx disp, BasicType type):
 544        _base(base)
 545      , _index(LIR_Opr::illegalOpr())
 546      , _scale(times_1)
 547      , _disp(disp)
 548      , _type(type) { verify(); }
 549 
 550   LIR_Address(LIR_Opr base, BasicType type):
 551        _base(base)
 552      , _index(LIR_Opr::illegalOpr())
 553      , _scale(times_1)
 554      , _disp(0)
 555      , _type(type) { verify(); }
 556 
 557   LIR_Address(LIR_Opr base, LIR_Opr index, intx disp, BasicType type):
 558        _base(base)
 559      , _index(index)
 560      , _scale(times_1)
 561      , _disp(disp)
 562      , _type(type) { verify(); }
 563 
 564   LIR_Address(LIR_Opr base, LIR_Opr index, Scale scale, intx disp, BasicType type):
 565        _base(base)
 566      , _index(index)
 567      , _scale(scale)
 568      , _disp(disp)
 569      , _type(type) { verify(); }
 570 
 571   LIR_Opr base()  const                          { return _base;  }
 572   LIR_Opr index() const                          { return _index; }
 573   Scale   scale() const                          { return _scale; }
 574   intx    disp()  const                          { return _disp;  }
 575 
 576   bool equals(LIR_Address* other) const          { return base() == other->base() && index() == other->index() && disp() == other->disp() && scale() == other->scale(); }
 577 
 578   virtual LIR_Address* as_address()              { return this;   }
 579   virtual BasicType type() const                 { return _type; }
 580   virtual void print_value_on(outputStream* out) const PRODUCT_RETURN;
 581 
 582   void verify() const PRODUCT_RETURN;
 583 
 584   static Scale scale(BasicType type);
 585 };
 586 
 587 
 588 // operand factory
 589 class LIR_OprFact: public AllStatic {
 590  public:
 591 
 592   static LIR_Opr illegalOpr;
 593   static LIR_Opr nullOpr;
 594 
 595   static LIR_Opr single_cpu(int reg) {
 596     return (LIR_Opr)(intptr_t)((reg  << LIR_Opr::reg1_shift) |
 597                                LIR_Opr::int_type             |
 598                                LIR_Opr::cpu_register         |
 599                                LIR_Opr::single_size);
 600   }
 601   static LIR_Opr single_cpu_oop(int reg) {
 602     return (LIR_Opr)(intptr_t)((reg  << LIR_Opr::reg1_shift) |
 603                                LIR_Opr::object_type          |
 604                                LIR_Opr::cpu_register         |
 605                                LIR_Opr::single_size);
 606   }
 607   static LIR_Opr single_cpu_address(int reg) {
 608     return (LIR_Opr)(intptr_t)((reg  << LIR_Opr::reg1_shift) |
 609                                LIR_Opr::address_type         |
 610                                LIR_Opr::cpu_register         |
 611                                LIR_Opr::single_size);
 612   }
 613   static LIR_Opr single_cpu_metadata(int reg) {
 614     return (LIR_Opr)(intptr_t)((reg  << LIR_Opr::reg1_shift) |
 615                                LIR_Opr::metadata_type        |
 616                                LIR_Opr::cpu_register         |
 617                                LIR_Opr::single_size);
 618   }
 619   static LIR_Opr double_cpu(int reg1, int reg2) {
 620     LP64_ONLY(assert(reg1 == reg2, "must be identical"));
 621     return (LIR_Opr)(intptr_t)((reg1 << LIR_Opr::reg1_shift) |
 622                                (reg2 << LIR_Opr::reg2_shift) |
 623                                LIR_Opr::long_type            |
 624                                LIR_Opr::cpu_register         |
 625                                LIR_Opr::double_size);
 626   }
 627 
 628   static LIR_Opr single_fpu(int reg) {
 629     return (LIR_Opr)(intptr_t)((reg  << LIR_Opr::reg1_shift) |
 630                                LIR_Opr::float_type           |
 631                                LIR_Opr::fpu_register         |
 632                                LIR_Opr::single_size);
 633   }
 634 
 635   // Platform dependent.
 636   static LIR_Opr double_fpu(int reg1, int reg2 = -1 /*fnoreg*/);
 637 
 638 #ifdef ARM32
 639   static LIR_Opr single_softfp(int reg) {
 640     return (LIR_Opr)(intptr_t)((reg  << LIR_Opr::reg1_shift) |
 641                                LIR_Opr::float_type           |
 642                                LIR_Opr::cpu_register         |
 643                                LIR_Opr::single_size);
 644   }
 645   static LIR_Opr double_softfp(int reg1, int reg2) {
 646     return (LIR_Opr)(intptr_t)((reg1 << LIR_Opr::reg1_shift) |
 647                                (reg2 << LIR_Opr::reg2_shift) |
 648                                LIR_Opr::double_type          |
 649                                LIR_Opr::cpu_register         |
 650                                LIR_Opr::double_size);
 651   }
 652 #endif // ARM32
 653 
 654 #if defined(X86)
 655   static LIR_Opr single_xmm(int reg) {
 656     return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) |
 657                                LIR_Opr::float_type          |
 658                                LIR_Opr::fpu_register        |
 659                                LIR_Opr::single_size         |
 660                                LIR_Opr::is_xmm_mask);
 661   }
 662   static LIR_Opr double_xmm(int reg) {
 663     return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) |
 664                                (reg << LIR_Opr::reg2_shift) |
 665                                LIR_Opr::double_type         |
 666                                LIR_Opr::fpu_register        |
 667                                LIR_Opr::double_size         |
 668                                LIR_Opr::is_xmm_mask);
 669   }
 670 #endif // X86
 671 
 672   static LIR_Opr virtual_register(int index, BasicType type) {
 673     if (index > LIR_Opr::vreg_max) {
 674       // Running out of virtual registers. Caller should bailout.
 675       return illegalOpr;
 676     }
 677 
 678     LIR_Opr res;
 679     switch (type) {
 680       case T_OBJECT: // fall through
 681       case T_ARRAY:
 682         res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift)  |
 683                                             LIR_Opr::object_type  |
 684                                             LIR_Opr::cpu_register |
 685                                             LIR_Opr::single_size  |
 686                                             LIR_Opr::virtual_mask);
 687         break;
 688 
 689       case T_METADATA:
 690         res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift)  |
 691                                             LIR_Opr::metadata_type|
 692                                             LIR_Opr::cpu_register |
 693                                             LIR_Opr::single_size  |
 694                                             LIR_Opr::virtual_mask);
 695         break;
 696 
 697       case T_INT:
 698         res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) |
 699                                   LIR_Opr::int_type              |
 700                                   LIR_Opr::cpu_register          |
 701                                   LIR_Opr::single_size           |
 702                                   LIR_Opr::virtual_mask);
 703         break;
 704 
 705       case T_ADDRESS:
 706         res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) |
 707                                   LIR_Opr::address_type          |
 708                                   LIR_Opr::cpu_register          |
 709                                   LIR_Opr::single_size           |
 710                                   LIR_Opr::virtual_mask);
 711         break;
 712 
 713       case T_LONG:
 714         res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) |
 715                                   LIR_Opr::long_type             |
 716                                   LIR_Opr::cpu_register          |
 717                                   LIR_Opr::double_size           |
 718                                   LIR_Opr::virtual_mask);
 719         break;
 720 
 721 #ifdef __SOFTFP__
 722       case T_FLOAT:
 723         res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) |
 724                                   LIR_Opr::float_type  |
 725                                   LIR_Opr::cpu_register |
 726                                   LIR_Opr::single_size |
 727                                   LIR_Opr::virtual_mask);
 728         break;
 729       case T_DOUBLE:
 730         res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) |
 731                                   LIR_Opr::double_type |
 732                                   LIR_Opr::cpu_register |
 733                                   LIR_Opr::double_size |
 734                                   LIR_Opr::virtual_mask);
 735         break;
 736 #else // __SOFTFP__
 737       case T_FLOAT:
 738         res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) |
 739                                   LIR_Opr::float_type           |
 740                                   LIR_Opr::fpu_register         |
 741                                   LIR_Opr::single_size          |
 742                                   LIR_Opr::virtual_mask);
 743         break;
 744 
 745       case
 746         T_DOUBLE: res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) |
 747                                             LIR_Opr::double_type           |
 748                                             LIR_Opr::fpu_register          |
 749                                             LIR_Opr::double_size           |
 750                                             LIR_Opr::virtual_mask);
 751         break;
 752 #endif // __SOFTFP__
 753       default:       ShouldNotReachHere(); res = illegalOpr;
 754     }
 755 
 756 #ifdef ASSERT
 757     res->validate_type();
 758     assert(res->vreg_number() == index, "conversion check");
 759     assert(index >= LIR_Opr::vreg_base, "must start at vreg_base");
 760 
 761     // old-style calculation; check if old and new method are equal
 762     LIR_Opr::OprType t = as_OprType(type);
 763 #ifdef __SOFTFP__
 764     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) |
 765                                t |
 766                                LIR_Opr::cpu_register |
 767                                LIR_Opr::size_for(type) | LIR_Opr::virtual_mask);
 768 #else // __SOFTFP__
 769     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | t |
 770                                           ((type == T_FLOAT || type == T_DOUBLE) ?  LIR_Opr::fpu_register : LIR_Opr::cpu_register) |
 771                                LIR_Opr::size_for(type) | LIR_Opr::virtual_mask);
 772     assert(res == old_res, "old and new method not equal");
 773 #endif // __SOFTFP__
 774 #endif // ASSERT
 775 
 776     return res;
 777   }
 778 
 779   // 'index' is computed by FrameMap::local_stack_pos(index); do not use other parameters as
 780   // the index is platform independent; a double stack using indices 2 and 3 has always
 781   // index 2.
 782   static LIR_Opr stack(int index, BasicType type) {
 783     LIR_Opr res;
 784     switch (type) {
 785       case T_OBJECT: // fall through
 786       case T_ARRAY:
 787         res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) |
 788                                   LIR_Opr::object_type           |
 789                                   LIR_Opr::stack_value           |
 790                                   LIR_Opr::single_size);
 791         break;
 792 
 793       case T_METADATA:
 794         res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) |
 795                                   LIR_Opr::metadata_type         |
 796                                   LIR_Opr::stack_value           |
 797                                   LIR_Opr::single_size);
 798         break;
 799       case T_INT:
 800         res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) |
 801                                   LIR_Opr::int_type              |
 802                                   LIR_Opr::stack_value           |
 803                                   LIR_Opr::single_size);
 804         break;
 805 
 806       case T_ADDRESS:
 807         res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) |
 808                                   LIR_Opr::address_type          |
 809                                   LIR_Opr::stack_value           |
 810                                   LIR_Opr::single_size);
 811         break;
 812 
 813       case T_LONG:
 814         res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) |
 815                                   LIR_Opr::long_type             |
 816                                   LIR_Opr::stack_value           |
 817                                   LIR_Opr::double_size);
 818         break;
 819 
 820       case T_FLOAT:
 821         res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) |
 822                                   LIR_Opr::float_type            |
 823                                   LIR_Opr::stack_value           |
 824                                   LIR_Opr::single_size);
 825         break;
 826       case T_DOUBLE:
 827         res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) |
 828                                   LIR_Opr::double_type           |
 829                                   LIR_Opr::stack_value           |
 830                                   LIR_Opr::double_size);
 831         break;
 832 
 833       default:       ShouldNotReachHere(); res = illegalOpr;
 834     }
 835 
 836 #ifdef ASSERT
 837     assert(index >= 0, "index must be positive");
 838     assert(index == (int)res->data(), "conversion check");
 839 
 840     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) |
 841                                           LIR_Opr::stack_value           |
 842                                           as_OprType(type)                   |
 843                                           LIR_Opr::size_for(type));
 844     assert(res == old_res, "old and new method not equal");
 845 #endif
 846 
 847     return res;
 848   }
 849 
 850   static LIR_Opr intConst(jint i)                { return (LIR_Opr)(new LIR_Const(i)); }
 851   static LIR_Opr longConst(jlong l)              { return (LIR_Opr)(new LIR_Const(l)); }
 852   static LIR_Opr floatConst(jfloat f)            { return (LIR_Opr)(new LIR_Const(f)); }
 853   static LIR_Opr doubleConst(jdouble d)          { return (LIR_Opr)(new LIR_Const(d)); }
 854   static LIR_Opr oopConst(jobject o)             { return (LIR_Opr)(new LIR_Const(o)); }
 855   static LIR_Opr address(LIR_Address* a)         { return (LIR_Opr)a; }
 856   static LIR_Opr intptrConst(void* p)            { return (LIR_Opr)(new LIR_Const(p)); }
 857   static LIR_Opr intptrConst(intptr_t v)         { return (LIR_Opr)(new LIR_Const((void*)v)); }
 858   static LIR_Opr illegal()                       { return (LIR_Opr)-1; }
 859   static LIR_Opr addressConst(jint i)            { return (LIR_Opr)(new LIR_Const(i, true)); }
 860   static LIR_Opr metadataConst(Metadata* m)      { return (LIR_Opr)(new LIR_Const(m)); }
 861 
 862   static LIR_Opr value_type(ValueType* type);
 863 };
 864 
 865 
 866 //-------------------------------------------------------------------------------
 867 //                   LIR Instructions
 868 //-------------------------------------------------------------------------------
 869 //
 870 // Note:
 871 //  - every instruction has a result operand
 872 //  - every instruction has an CodeEmitInfo operand (can be revisited later)
 873 //  - every instruction has a LIR_OpCode operand
 874 //  - LIR_OpN, means an instruction that has N input operands
 875 //
 876 // class hierarchy:
 877 //
 878 class  LIR_Op;
 879 class    LIR_Op0;
 880 class      LIR_OpLabel;
 881 class    LIR_Op1;
 882 class      LIR_OpBranch;
 883 class      LIR_OpConvert;
 884 class      LIR_OpAllocObj;
 885 class      LIR_OpReturn;
 886 class      LIR_OpRoundFP;
 887 class    LIR_Op2;
 888 class    LIR_OpDelay;
 889 class    LIR_Op3;
 890 class      LIR_OpAllocArray;
 891 class    LIR_Op4;
 892 class    LIR_OpCall;
 893 class      LIR_OpJavaCall;
 894 class      LIR_OpRTCall;
 895 class    LIR_OpArrayCopy;
 896 class    LIR_OpUpdateCRC32;
 897 class    LIR_OpLock;
 898 class    LIR_OpTypeCheck;
 899 class    LIR_OpCompareAndSwap;
 900 class    LIR_OpLoadKlass;
 901 class    LIR_OpProfileCall;
 902 class    LIR_OpProfileType;
 903 #ifdef ASSERT
 904 class    LIR_OpAssert;
 905 #endif
 906 
 907 // LIR operation codes
 908 enum LIR_Code {
 909     lir_none
 910   , begin_op0
 911       , lir_label
 912       , lir_nop
 913       , lir_std_entry
 914       , lir_osr_entry
 915       , lir_fpop_raw
 916       , lir_breakpoint
 917       , lir_rtcall
 918       , lir_membar
 919       , lir_membar_acquire
 920       , lir_membar_release
 921       , lir_membar_loadload
 922       , lir_membar_storestore
 923       , lir_membar_loadstore
 924       , lir_membar_storeload
 925       , lir_get_thread
 926       , lir_on_spin_wait
 927   , end_op0
 928   , begin_op1
 929       , lir_fxch
 930       , lir_fld
 931       , lir_push
 932       , lir_pop
 933       , lir_null_check
 934       , lir_return
 935       , lir_leal
 936       , lir_move
 937       , lir_convert
 938       , lir_alloc_object
 939       , lir_monaddr
 940       , lir_roundfp
 941       , lir_safepoint
 942       , lir_unwind
 943       , lir_load_klass
 944   , end_op1
 945   , begin_op2
 946       , lir_branch
 947       , lir_cond_float_branch
 948       , lir_cmp
 949       , lir_cmp_l2i
 950       , lir_ucmp_fd2i
 951       , lir_cmp_fd2i
 952       , lir_add
 953       , lir_sub
 954       , lir_mul
 955       , lir_div
 956       , lir_rem
 957       , lir_sqrt
 958       , lir_abs
 959       , lir_neg
 960       , lir_tan
 961       , lir_log10
 962       , lir_logic_and
 963       , lir_logic_or
 964       , lir_logic_xor
 965       , lir_shl
 966       , lir_shr
 967       , lir_ushr
 968       , lir_alloc_array
 969       , lir_throw
 970       , lir_xadd
 971       , lir_xchg
 972   , end_op2
 973   , begin_op3
 974       , lir_idiv
 975       , lir_irem
 976       , lir_fmad
 977       , lir_fmaf
 978   , end_op3
 979   , begin_op4
 980       , lir_cmove
 981   , end_op4
 982   , begin_opJavaCall
 983       , lir_static_call
 984       , lir_optvirtual_call
 985       , lir_icvirtual_call
 986       , lir_dynamic_call
 987   , end_opJavaCall
 988   , begin_opArrayCopy
 989       , lir_arraycopy
 990   , end_opArrayCopy
 991   , begin_opUpdateCRC32
 992       , lir_updatecrc32
 993   , end_opUpdateCRC32
 994   , begin_opLock
 995     , lir_lock
 996     , lir_unlock
 997   , end_opLock
 998   , begin_delay_slot
 999     , lir_delay_slot
1000   , end_delay_slot
1001   , begin_opTypeCheck
1002     , lir_instanceof
1003     , lir_checkcast
1004     , lir_store_check
1005   , end_opTypeCheck
1006   , begin_opCompareAndSwap
1007     , lir_cas_long
1008     , lir_cas_obj
1009     , lir_cas_int
1010   , end_opCompareAndSwap
1011   , begin_opMDOProfile
1012     , lir_profile_call
1013     , lir_profile_type
1014   , end_opMDOProfile
1015   , begin_opAssert
1016     , lir_assert
1017   , end_opAssert
1018 #ifdef INCLUDE_ZGC
1019   , begin_opZLoadBarrierTest
1020     , lir_zloadbarrier_test
1021   , end_opZLoadBarrierTest
1022 #endif
1023 };
1024 
1025 
1026 enum LIR_Condition {
1027     lir_cond_equal
1028   , lir_cond_notEqual
1029   , lir_cond_less
1030   , lir_cond_lessEqual
1031   , lir_cond_greaterEqual
1032   , lir_cond_greater
1033   , lir_cond_belowEqual
1034   , lir_cond_aboveEqual
1035   , lir_cond_always
1036   , lir_cond_unknown = -1
1037 };
1038 
1039 
1040 enum LIR_PatchCode {
1041   lir_patch_none,
1042   lir_patch_low,
1043   lir_patch_high,
1044   lir_patch_normal
1045 };
1046 
1047 
1048 enum LIR_MoveKind {
1049   lir_move_normal,
1050   lir_move_volatile,
1051   lir_move_wide,
1052   lir_move_max_flag
1053 };
1054 
1055 
1056 // --------------------------------------------------
1057 // LIR_Op
1058 // --------------------------------------------------
1059 class LIR_Op: public CompilationResourceObj {
1060  friend class LIR_OpVisitState;
1061 
1062 #ifdef ASSERT
1063  private:
1064   const char *  _file;
1065   int           _line;
1066 #endif
1067 
1068  protected:
1069   LIR_Opr       _result;
1070   unsigned short _code;
1071   unsigned short _flags;
1072   CodeEmitInfo* _info;
1073   int           _id;     // value id for register allocation
1074   int           _fpu_pop_count;
1075   Instruction*  _source; // for debugging
1076 
1077   static void print_condition(outputStream* out, LIR_Condition cond) PRODUCT_RETURN;
1078 
1079  protected:
1080   static bool is_in_range(LIR_Code test, LIR_Code start, LIR_Code end)  { return start < test && test < end; }
1081 
1082  public:
1083   LIR_Op()
1084     :
1085 #ifdef ASSERT
1086       _file(NULL)
1087     , _line(0),
1088 #endif
1089       _result(LIR_OprFact::illegalOpr)
1090     , _code(lir_none)
1091     , _flags(0)
1092     , _info(NULL)
1093     , _id(-1)
1094     , _fpu_pop_count(0)
1095     , _source(NULL) {}
1096 
1097   LIR_Op(LIR_Code code, LIR_Opr result, CodeEmitInfo* info)
1098     :
1099 #ifdef ASSERT
1100       _file(NULL)
1101     , _line(0),
1102 #endif
1103       _result(result)
1104     , _code(code)
1105     , _flags(0)
1106     , _info(info)
1107     , _id(-1)
1108     , _fpu_pop_count(0)
1109     , _source(NULL) {}
1110 
1111   CodeEmitInfo* info() const                  { return _info;   }
1112   LIR_Code code()      const                  { return (LIR_Code)_code;   }
1113   LIR_Opr result_opr() const                  { return _result; }
1114   void    set_result_opr(LIR_Opr opr)         { _result = opr;  }
1115 
1116 #ifdef ASSERT
1117   void set_file_and_line(const char * file, int line) {
1118     _file = file;
1119     _line = line;
1120   }
1121 #endif
1122 
1123   virtual const char * name() const PRODUCT_RETURN0;
1124   virtual void visit(LIR_OpVisitState* state);
1125 
1126   int id()             const                  { return _id;     }
1127   void set_id(int id)                         { _id = id; }
1128 
1129   // FPU stack simulation helpers -- only used on Intel
1130   void set_fpu_pop_count(int count)           { assert(count >= 0 && count <= 1, "currently only 0 and 1 are valid"); _fpu_pop_count = count; }
1131   int  fpu_pop_count() const                  { return _fpu_pop_count; }
1132   bool pop_fpu_stack()                        { return _fpu_pop_count > 0; }
1133 
1134   Instruction* source() const                 { return _source; }
1135   void set_source(Instruction* ins)           { _source = ins; }
1136 
1137   virtual void emit_code(LIR_Assembler* masm) = 0;
1138   virtual void print_instr(outputStream* out) const   = 0;
1139   virtual void print_on(outputStream* st) const PRODUCT_RETURN;
1140 
1141   virtual bool is_patching() { return false; }
1142   virtual LIR_OpCall* as_OpCall() { return NULL; }
1143   virtual LIR_OpJavaCall* as_OpJavaCall() { return NULL; }
1144   virtual LIR_OpLabel* as_OpLabel() { return NULL; }
1145   virtual LIR_OpDelay* as_OpDelay() { return NULL; }
1146   virtual LIR_OpLock* as_OpLock() { return NULL; }
1147   virtual LIR_OpAllocArray* as_OpAllocArray() { return NULL; }
1148   virtual LIR_OpAllocObj* as_OpAllocObj() { return NULL; }
1149   virtual LIR_OpRoundFP* as_OpRoundFP() { return NULL; }
1150   virtual LIR_OpBranch* as_OpBranch() { return NULL; }
1151   virtual LIR_OpReturn* as_OpReturn() { return NULL; }
1152   virtual LIR_OpRTCall* as_OpRTCall() { return NULL; }
1153   virtual LIR_OpConvert* as_OpConvert() { return NULL; }
1154   virtual LIR_Op0* as_Op0() { return NULL; }
1155   virtual LIR_Op1* as_Op1() { return NULL; }
1156   virtual LIR_Op2* as_Op2() { return NULL; }
1157   virtual LIR_Op3* as_Op3() { return NULL; }
1158   virtual LIR_Op4* as_Op4() { return NULL; }
1159   virtual LIR_OpArrayCopy* as_OpArrayCopy() { return NULL; }
1160   virtual LIR_OpUpdateCRC32* as_OpUpdateCRC32() { return NULL; }
1161   virtual LIR_OpTypeCheck* as_OpTypeCheck() { return NULL; }
1162   virtual LIR_OpCompareAndSwap* as_OpCompareAndSwap() { return NULL; }
1163   virtual LIR_OpLoadKlass* as_OpLoadKlass() { return NULL; }
1164   virtual LIR_OpProfileCall* as_OpProfileCall() { return NULL; }
1165   virtual LIR_OpProfileType* as_OpProfileType() { return NULL; }
1166 #ifdef ASSERT
1167   virtual LIR_OpAssert* as_OpAssert() { return NULL; }
1168 #endif
1169 
1170   virtual void verify() const {}
1171 };
1172 
1173 // for calls
1174 class LIR_OpCall: public LIR_Op {
1175  friend class LIR_OpVisitState;
1176 
1177  protected:
1178   address      _addr;
1179   LIR_OprList* _arguments;
1180  protected:
1181   LIR_OpCall(LIR_Code code, address addr, LIR_Opr result,
1182              LIR_OprList* arguments, CodeEmitInfo* info = NULL)
1183     : LIR_Op(code, result, info)
1184     , _addr(addr)
1185     , _arguments(arguments) {}
1186 
1187  public:
1188   address addr() const                           { return _addr; }
1189   const LIR_OprList* arguments() const           { return _arguments; }
1190   virtual LIR_OpCall* as_OpCall()                { return this; }
1191 };
1192 
1193 
1194 // --------------------------------------------------
1195 // LIR_OpJavaCall
1196 // --------------------------------------------------
1197 class LIR_OpJavaCall: public LIR_OpCall {
1198  friend class LIR_OpVisitState;
1199 
1200  private:
1201   ciMethod* _method;
1202   LIR_Opr   _receiver;
1203   LIR_Opr   _method_handle_invoke_SP_save_opr;  // Used in LIR_OpVisitState::visit to store the reference to FrameMap::method_handle_invoke_SP_save_opr.
1204 
1205  public:
1206   LIR_OpJavaCall(LIR_Code code, ciMethod* method,
1207                  LIR_Opr receiver, LIR_Opr result,
1208                  address addr, LIR_OprList* arguments,
1209                  CodeEmitInfo* info)
1210   : LIR_OpCall(code, addr, result, arguments, info)
1211   , _method(method)
1212   , _receiver(receiver)
1213   , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr)
1214   { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); }
1215 
1216   LIR_OpJavaCall(LIR_Code code, ciMethod* method,
1217                  LIR_Opr receiver, LIR_Opr result, intptr_t vtable_offset,
1218                  LIR_OprList* arguments, CodeEmitInfo* info)
1219   : LIR_OpCall(code, (address)vtable_offset, result, arguments, info)
1220   , _method(method)
1221   , _receiver(receiver)
1222   , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr)
1223   { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); }
1224 
1225   LIR_Opr receiver() const                       { return _receiver; }
1226   ciMethod* method() const                       { return _method;   }
1227 
1228   // JSR 292 support.
1229   bool is_invokedynamic() const                  { return code() == lir_dynamic_call; }
1230   bool is_method_handle_invoke() const {
1231     return method()->is_compiled_lambda_form() ||   // Java-generated lambda form
1232            method()->is_method_handle_intrinsic();  // JVM-generated MH intrinsic
1233   }
1234 
1235   virtual void emit_code(LIR_Assembler* masm);
1236   virtual LIR_OpJavaCall* as_OpJavaCall() { return this; }
1237   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1238 };
1239 
1240 // --------------------------------------------------
1241 // LIR_OpLabel
1242 // --------------------------------------------------
1243 // Location where a branch can continue
1244 class LIR_OpLabel: public LIR_Op {
1245  friend class LIR_OpVisitState;
1246 
1247  private:
1248   Label* _label;
1249  public:
1250   LIR_OpLabel(Label* lbl)
1251    : LIR_Op(lir_label, LIR_OprFact::illegalOpr, NULL)
1252    , _label(lbl)                                 {}
1253   Label* label() const                           { return _label; }
1254 
1255   virtual void emit_code(LIR_Assembler* masm);
1256   virtual LIR_OpLabel* as_OpLabel() { return this; }
1257   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1258 };
1259 
1260 // LIR_OpArrayCopy
1261 class LIR_OpArrayCopy: public LIR_Op {
1262  friend class LIR_OpVisitState;
1263 
1264  private:
1265   ArrayCopyStub*  _stub;
1266   LIR_Opr   _src;
1267   LIR_Opr   _src_pos;
1268   LIR_Opr   _dst;
1269   LIR_Opr   _dst_pos;
1270   LIR_Opr   _length;
1271   LIR_Opr   _tmp;
1272   ciArrayKlass* _expected_type;
1273   int       _flags;
1274 
1275 public:
1276   enum Flags {
1277     src_null_check         = 1 << 0,
1278     dst_null_check         = 1 << 1,
1279     src_pos_positive_check = 1 << 2,
1280     dst_pos_positive_check = 1 << 3,
1281     length_positive_check  = 1 << 4,
1282     src_range_check        = 1 << 5,
1283     dst_range_check        = 1 << 6,
1284     type_check             = 1 << 7,
1285     overlapping            = 1 << 8,
1286     unaligned              = 1 << 9,
1287     src_objarray           = 1 << 10,
1288     dst_objarray           = 1 << 11,
1289     all_flags              = (1 << 12) - 1
1290   };
1291 
1292   LIR_OpArrayCopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp,
1293                   ciArrayKlass* expected_type, int flags, CodeEmitInfo* info);
1294 
1295   LIR_Opr src() const                            { return _src; }
1296   LIR_Opr src_pos() const                        { return _src_pos; }
1297   LIR_Opr dst() const                            { return _dst; }
1298   LIR_Opr dst_pos() const                        { return _dst_pos; }
1299   LIR_Opr length() const                         { return _length; }
1300   LIR_Opr tmp() const                            { return _tmp; }
1301   int flags() const                              { return _flags; }
1302   ciArrayKlass* expected_type() const            { return _expected_type; }
1303   ArrayCopyStub* stub() const                    { return _stub; }
1304 
1305   virtual void emit_code(LIR_Assembler* masm);
1306   virtual LIR_OpArrayCopy* as_OpArrayCopy() { return this; }
1307   void print_instr(outputStream* out) const PRODUCT_RETURN;
1308 };
1309 
1310 // LIR_OpUpdateCRC32
1311 class LIR_OpUpdateCRC32: public LIR_Op {
1312   friend class LIR_OpVisitState;
1313 
1314 private:
1315   LIR_Opr   _crc;
1316   LIR_Opr   _val;
1317 
1318 public:
1319 
1320   LIR_OpUpdateCRC32(LIR_Opr crc, LIR_Opr val, LIR_Opr res);
1321 
1322   LIR_Opr crc() const                            { return _crc; }
1323   LIR_Opr val() const                            { return _val; }
1324 
1325   virtual void emit_code(LIR_Assembler* masm);
1326   virtual LIR_OpUpdateCRC32* as_OpUpdateCRC32()  { return this; }
1327   void print_instr(outputStream* out) const PRODUCT_RETURN;
1328 };
1329 
1330 // --------------------------------------------------
1331 // LIR_Op0
1332 // --------------------------------------------------
1333 class LIR_Op0: public LIR_Op {
1334  friend class LIR_OpVisitState;
1335 
1336  public:
1337   LIR_Op0(LIR_Code code)
1338    : LIR_Op(code, LIR_OprFact::illegalOpr, NULL)  { assert(is_in_range(code, begin_op0, end_op0), "code check"); }
1339   LIR_Op0(LIR_Code code, LIR_Opr result, CodeEmitInfo* info = NULL)
1340    : LIR_Op(code, result, info)  { assert(is_in_range(code, begin_op0, end_op0), "code check"); }
1341 
1342   virtual void emit_code(LIR_Assembler* masm);
1343   virtual LIR_Op0* as_Op0() { return this; }
1344   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1345 };
1346 
1347 
1348 // --------------------------------------------------
1349 // LIR_Op1
1350 // --------------------------------------------------
1351 
1352 class LIR_Op1: public LIR_Op {
1353  friend class LIR_OpVisitState;
1354 
1355  protected:
1356   LIR_Opr         _opr;   // input operand
1357   BasicType       _type;  // Operand types
1358   LIR_PatchCode   _patch; // only required with patchin (NEEDS_CLEANUP: do we want a special instruction for patching?)
1359 
1360   static void print_patch_code(outputStream* out, LIR_PatchCode code);
1361 
1362   void set_kind(LIR_MoveKind kind) {
1363     assert(code() == lir_move, "must be");
1364     _flags = kind;
1365   }
1366 
1367  public:
1368   LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result = LIR_OprFact::illegalOpr, BasicType type = T_ILLEGAL, LIR_PatchCode patch = lir_patch_none, CodeEmitInfo* info = NULL)
1369     : LIR_Op(code, result, info)
1370     , _opr(opr)
1371     , _type(type)
1372     , _patch(patch)                    { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
1373 
1374   LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result, BasicType type, LIR_PatchCode patch, CodeEmitInfo* info, LIR_MoveKind kind)
1375     : LIR_Op(code, result, info)
1376     , _opr(opr)
1377     , _type(type)
1378     , _patch(patch)                    {
1379     assert(code == lir_move, "must be");
1380     set_kind(kind);
1381   }
1382 
1383   LIR_Op1(LIR_Code code, LIR_Opr opr, CodeEmitInfo* info)
1384     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1385     , _opr(opr)
1386     , _type(T_ILLEGAL)
1387     , _patch(lir_patch_none)           { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
1388 
1389   LIR_Opr in_opr()           const               { return _opr;   }
1390   LIR_PatchCode patch_code() const               { return _patch; }
1391   BasicType type()           const               { return _type;  }
1392 
1393   LIR_MoveKind move_kind() const {
1394     assert(code() == lir_move, "must be");
1395     return (LIR_MoveKind)_flags;
1396   }
1397 
1398   virtual bool is_patching() { return _patch != lir_patch_none; }
1399   virtual void emit_code(LIR_Assembler* masm);
1400   virtual LIR_Op1* as_Op1() { return this; }
1401   virtual const char * name() const PRODUCT_RETURN0;
1402 
1403   void set_in_opr(LIR_Opr opr) { _opr = opr; }
1404 
1405   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1406   virtual void verify() const;
1407 };
1408 
1409 
1410 // for runtime calls
1411 class LIR_OpRTCall: public LIR_OpCall {
1412  friend class LIR_OpVisitState;
1413 
1414  private:
1415   LIR_Opr _tmp;
1416  public:
1417   LIR_OpRTCall(address addr, LIR_Opr tmp,
1418                LIR_Opr result, LIR_OprList* arguments, CodeEmitInfo* info = NULL)
1419     : LIR_OpCall(lir_rtcall, addr, result, arguments, info)
1420     , _tmp(tmp) {}
1421 
1422   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1423   virtual void emit_code(LIR_Assembler* masm);
1424   virtual LIR_OpRTCall* as_OpRTCall() { return this; }
1425 
1426   LIR_Opr tmp() const                            { return _tmp; }
1427 
1428   virtual void verify() const;
1429 };
1430 
1431 
1432 
1433 class LIR_OpReturn: public LIR_Op1 {
1434  friend class LIR_OpVisitState;
1435 
1436  private:
1437   C1SafepointPollStub* _stub;
1438 
1439  public:
1440   LIR_OpReturn(LIR_Opr opr);
1441 
1442   C1SafepointPollStub* stub() const { return _stub; }
1443   virtual LIR_OpReturn* as_OpReturn() { return this; }
1444 };
1445 
1446 class ConversionStub;
1447 
1448 class LIR_OpConvert: public LIR_Op1 {
1449  friend class LIR_OpVisitState;
1450 
1451  private:
1452    Bytecodes::Code _bytecode;
1453    ConversionStub* _stub;
1454 
1455  public:
1456    LIR_OpConvert(Bytecodes::Code code, LIR_Opr opr, LIR_Opr result, ConversionStub* stub)
1457      : LIR_Op1(lir_convert, opr, result)
1458      , _bytecode(code)
1459      , _stub(stub)                               {}
1460 
1461   Bytecodes::Code bytecode() const               { return _bytecode; }
1462   ConversionStub* stub() const                   { return _stub; }
1463 
1464   virtual void emit_code(LIR_Assembler* masm);
1465   virtual LIR_OpConvert* as_OpConvert() { return this; }
1466   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1467 
1468   static void print_bytecode(outputStream* out, Bytecodes::Code code) PRODUCT_RETURN;
1469 };
1470 
1471 
1472 // LIR_OpAllocObj
1473 class LIR_OpAllocObj : public LIR_Op1 {
1474  friend class LIR_OpVisitState;
1475 
1476  private:
1477   LIR_Opr _tmp1;
1478   LIR_Opr _tmp2;
1479   LIR_Opr _tmp3;
1480   LIR_Opr _tmp4;
1481   int     _hdr_size;
1482   int     _obj_size;
1483   CodeStub* _stub;
1484   bool    _init_check;
1485 
1486  public:
1487   LIR_OpAllocObj(LIR_Opr klass, LIR_Opr result,
1488                  LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4,
1489                  int hdr_size, int obj_size, bool init_check, CodeStub* stub)
1490     : LIR_Op1(lir_alloc_object, klass, result)
1491     , _tmp1(t1)
1492     , _tmp2(t2)
1493     , _tmp3(t3)
1494     , _tmp4(t4)
1495     , _hdr_size(hdr_size)
1496     , _obj_size(obj_size)
1497     , _stub(stub)
1498     , _init_check(init_check)                    { }
1499 
1500   LIR_Opr klass()        const                   { return in_opr();     }
1501   LIR_Opr obj()          const                   { return result_opr(); }
1502   LIR_Opr tmp1()         const                   { return _tmp1;        }
1503   LIR_Opr tmp2()         const                   { return _tmp2;        }
1504   LIR_Opr tmp3()         const                   { return _tmp3;        }
1505   LIR_Opr tmp4()         const                   { return _tmp4;        }
1506   int     header_size()  const                   { return _hdr_size;    }
1507   int     object_size()  const                   { return _obj_size;    }
1508   bool    init_check()   const                   { return _init_check;  }
1509   CodeStub* stub()       const                   { return _stub;        }
1510 
1511   virtual void emit_code(LIR_Assembler* masm);
1512   virtual LIR_OpAllocObj * as_OpAllocObj () { return this; }
1513   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1514 };
1515 
1516 
1517 // LIR_OpRoundFP
1518 class LIR_OpRoundFP : public LIR_Op1 {
1519  friend class LIR_OpVisitState;
1520 
1521  private:
1522   LIR_Opr _tmp;
1523 
1524  public:
1525   LIR_OpRoundFP(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result)
1526     : LIR_Op1(lir_roundfp, reg, result)
1527     , _tmp(stack_loc_temp) {}
1528 
1529   LIR_Opr tmp() const                            { return _tmp; }
1530   virtual LIR_OpRoundFP* as_OpRoundFP()          { return this; }
1531   void print_instr(outputStream* out) const PRODUCT_RETURN;
1532 };
1533 
1534 // LIR_OpTypeCheck
1535 class LIR_OpTypeCheck: public LIR_Op {
1536  friend class LIR_OpVisitState;
1537 
1538  private:
1539   LIR_Opr       _object;
1540   LIR_Opr       _array;
1541   ciKlass*      _klass;
1542   LIR_Opr       _tmp1;
1543   LIR_Opr       _tmp2;
1544   LIR_Opr       _tmp3;
1545   bool          _fast_check;
1546   CodeEmitInfo* _info_for_patch;
1547   CodeEmitInfo* _info_for_exception;
1548   CodeStub*     _stub;
1549   ciMethod*     _profiled_method;
1550   int           _profiled_bci;
1551   bool          _should_profile;
1552 
1553 public:
1554   LIR_OpTypeCheck(LIR_Code code, LIR_Opr result, LIR_Opr object, ciKlass* klass,
1555                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
1556                   CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub);
1557   LIR_OpTypeCheck(LIR_Code code, LIR_Opr object, LIR_Opr array,
1558                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception);
1559 
1560   LIR_Opr object() const                         { return _object;         }
1561   LIR_Opr array() const                          { assert(code() == lir_store_check, "not valid"); return _array;         }
1562   LIR_Opr tmp1() const                           { return _tmp1;           }
1563   LIR_Opr tmp2() const                           { return _tmp2;           }
1564   LIR_Opr tmp3() const                           { return _tmp3;           }
1565   ciKlass* klass() const                         { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _klass;          }
1566   bool fast_check() const                        { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _fast_check;     }
1567   CodeEmitInfo* info_for_patch() const           { return _info_for_patch;  }
1568   CodeEmitInfo* info_for_exception() const       { return _info_for_exception; }
1569   CodeStub* stub() const                         { return _stub;           }
1570 
1571   // MethodData* profiling
1572   void set_profiled_method(ciMethod *method)     { _profiled_method = method; }
1573   void set_profiled_bci(int bci)                 { _profiled_bci = bci;       }
1574   void set_should_profile(bool b)                { _should_profile = b;       }
1575   ciMethod* profiled_method() const              { return _profiled_method;   }
1576   int       profiled_bci() const                 { return _profiled_bci;      }
1577   bool      should_profile() const               { return _should_profile;    }
1578 
1579   virtual bool is_patching() { return _info_for_patch != NULL; }
1580   virtual void emit_code(LIR_Assembler* masm);
1581   virtual LIR_OpTypeCheck* as_OpTypeCheck() { return this; }
1582   void print_instr(outputStream* out) const PRODUCT_RETURN;
1583 };
1584 
1585 // LIR_Op2
1586 class LIR_Op2: public LIR_Op {
1587  friend class LIR_OpVisitState;
1588 
1589   int  _fpu_stack_size; // for sin/cos implementation on Intel
1590 
1591  protected:
1592   LIR_Opr   _opr1;
1593   LIR_Opr   _opr2;
1594   BasicType _type;
1595   LIR_Opr   _tmp1;
1596   LIR_Opr   _tmp2;
1597   LIR_Opr   _tmp3;
1598   LIR_Opr   _tmp4;
1599   LIR_Opr   _tmp5;
1600   LIR_Condition _condition;
1601 
1602   void verify() const;
1603 
1604  public:
1605   LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, CodeEmitInfo* info = NULL, BasicType type = T_ILLEGAL)
1606     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1607     , _fpu_stack_size(0)
1608     , _opr1(opr1)
1609     , _opr2(opr2)
1610     , _type(type)
1611     , _tmp1(LIR_OprFact::illegalOpr)
1612     , _tmp2(LIR_OprFact::illegalOpr)
1613     , _tmp3(LIR_OprFact::illegalOpr)
1614     , _tmp4(LIR_OprFact::illegalOpr)
1615     , _tmp5(LIR_OprFact::illegalOpr)
1616     , _condition(condition) {
1617     assert(code == lir_cmp || code == lir_branch || code == lir_cond_float_branch || code == lir_assert, "code check");
1618   }
1619 
1620   LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type)
1621     : LIR_Op(code, result, NULL)
1622     , _fpu_stack_size(0)
1623     , _opr1(opr1)
1624     , _opr2(opr2)
1625     , _type(type)
1626     , _tmp1(LIR_OprFact::illegalOpr)
1627     , _tmp2(LIR_OprFact::illegalOpr)
1628     , _tmp3(LIR_OprFact::illegalOpr)
1629     , _tmp4(LIR_OprFact::illegalOpr)
1630     , _tmp5(LIR_OprFact::illegalOpr)
1631     , _condition(condition) {
1632     assert(code == lir_cmove, "code check");
1633     assert(type != T_ILLEGAL, "cmove should have type");
1634   }
1635 
1636   LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result = LIR_OprFact::illegalOpr,
1637           CodeEmitInfo* info = NULL, BasicType type = T_ILLEGAL)
1638     : LIR_Op(code, result, info)
1639     , _fpu_stack_size(0)
1640     , _opr1(opr1)
1641     , _opr2(opr2)
1642     , _type(type)
1643     , _tmp1(LIR_OprFact::illegalOpr)
1644     , _tmp2(LIR_OprFact::illegalOpr)
1645     , _tmp3(LIR_OprFact::illegalOpr)
1646     , _tmp4(LIR_OprFact::illegalOpr)
1647     , _tmp5(LIR_OprFact::illegalOpr)
1648     , _condition(lir_cond_unknown) {
1649     assert(code != lir_cmp && code != lir_branch && code != lir_cond_float_branch && is_in_range(code, begin_op2, end_op2), "code check");
1650   }
1651 
1652   LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, LIR_Opr tmp1, LIR_Opr tmp2 = LIR_OprFact::illegalOpr,
1653           LIR_Opr tmp3 = LIR_OprFact::illegalOpr, LIR_Opr tmp4 = LIR_OprFact::illegalOpr, LIR_Opr tmp5 = LIR_OprFact::illegalOpr)
1654     : LIR_Op(code, result, NULL)
1655     , _fpu_stack_size(0)
1656     , _opr1(opr1)
1657     , _opr2(opr2)
1658     , _type(T_ILLEGAL)
1659     , _tmp1(tmp1)
1660     , _tmp2(tmp2)
1661     , _tmp3(tmp3)
1662     , _tmp4(tmp4)
1663     , _tmp5(tmp5)
1664     , _condition(lir_cond_unknown) {
1665     assert(code != lir_cmp && code != lir_branch && code != lir_cond_float_branch && is_in_range(code, begin_op2, end_op2), "code check");
1666   }
1667 
1668   LIR_Opr in_opr1() const                        { return _opr1; }
1669   LIR_Opr in_opr2() const                        { return _opr2; }
1670   BasicType type()  const                        { return _type; }
1671   LIR_Opr tmp1_opr() const                       { return _tmp1; }
1672   LIR_Opr tmp2_opr() const                       { return _tmp2; }
1673   LIR_Opr tmp3_opr() const                       { return _tmp3; }
1674   LIR_Opr tmp4_opr() const                       { return _tmp4; }
1675   LIR_Opr tmp5_opr() const                       { return _tmp5; }
1676   LIR_Condition condition() const  {
1677     assert(code() == lir_cmp || code() == lir_branch || code() == lir_cond_float_branch || code() == lir_assert, "only valid for branch and assert"); return _condition;
1678   }
1679   void set_condition(LIR_Condition condition) {
1680     assert(code() == lir_cmp || code() == lir_branch || code() == lir_cond_float_branch, "only valid for branch"); _condition = condition;
1681   }
1682 
1683   void set_fpu_stack_size(int size)              { _fpu_stack_size = size; }
1684   int  fpu_stack_size() const                    { return _fpu_stack_size; }
1685 
1686   void set_in_opr1(LIR_Opr opr)                  { _opr1 = opr; }
1687   void set_in_opr2(LIR_Opr opr)                  { _opr2 = opr; }
1688 
1689   virtual void emit_code(LIR_Assembler* masm);
1690   virtual LIR_Op2* as_Op2() { return this; }
1691   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1692 };
1693 
1694 class LIR_OpBranch: public LIR_Op2 {
1695  friend class LIR_OpVisitState;
1696 
1697  private:
1698   Label*        _label;
1699   BlockBegin*   _block;  // if this is a branch to a block, this is the block
1700   BlockBegin*   _ublock; // if this is a float-branch, this is the unordered block
1701   CodeStub*     _stub;   // if this is a branch to a stub, this is the stub
1702 
1703  public:
1704   LIR_OpBranch(LIR_Condition cond, Label* lbl)
1705     : LIR_Op2(lir_branch, cond, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, (CodeEmitInfo*) NULL)
1706     , _label(lbl)
1707     , _block(NULL)
1708     , _ublock(NULL)
1709     , _stub(NULL) { }
1710 
1711   LIR_OpBranch(LIR_Condition cond, BlockBegin* block);
1712   LIR_OpBranch(LIR_Condition cond, CodeStub* stub);
1713 
1714   // for unordered comparisons
1715   LIR_OpBranch(LIR_Condition cond, BlockBegin* block, BlockBegin* ublock);
1716 
1717   LIR_Condition cond() const {
1718     return condition();
1719   }
1720 
1721   void set_cond(LIR_Condition cond) {
1722     set_condition(cond);
1723   }
1724 
1725   Label*        label()       const              { return _label;       }
1726   BlockBegin*   block()       const              { return _block;       }
1727   BlockBegin*   ublock()      const              { return _ublock;      }
1728   CodeStub*     stub()        const              { return _stub;        }
1729 
1730   void          change_block(BlockBegin* b);
1731   void          change_ublock(BlockBegin* b);
1732   void          negate_cond();
1733 
1734   virtual void emit_code(LIR_Assembler* masm);
1735   virtual LIR_OpBranch* as_OpBranch() { return this; }
1736   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1737 };
1738 
1739 class LIR_OpAllocArray : public LIR_Op {
1740  friend class LIR_OpVisitState;
1741 
1742  private:
1743   LIR_Opr   _klass;
1744   LIR_Opr   _len;
1745   LIR_Opr   _tmp1;
1746   LIR_Opr   _tmp2;
1747   LIR_Opr   _tmp3;
1748   LIR_Opr   _tmp4;
1749   BasicType _type;
1750   CodeStub* _stub;
1751 
1752  public:
1753   LIR_OpAllocArray(LIR_Opr klass, LIR_Opr len, LIR_Opr result, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, BasicType type, CodeStub* stub)
1754     : LIR_Op(lir_alloc_array, result, NULL)
1755     , _klass(klass)
1756     , _len(len)
1757     , _tmp1(t1)
1758     , _tmp2(t2)
1759     , _tmp3(t3)
1760     , _tmp4(t4)
1761     , _type(type)
1762     , _stub(stub) {}
1763 
1764   LIR_Opr   klass()   const                      { return _klass;       }
1765   LIR_Opr   len()     const                      { return _len;         }
1766   LIR_Opr   obj()     const                      { return result_opr(); }
1767   LIR_Opr   tmp1()    const                      { return _tmp1;        }
1768   LIR_Opr   tmp2()    const                      { return _tmp2;        }
1769   LIR_Opr   tmp3()    const                      { return _tmp3;        }
1770   LIR_Opr   tmp4()    const                      { return _tmp4;        }
1771   BasicType type()    const                      { return _type;        }
1772   CodeStub* stub()    const                      { return _stub;        }
1773 
1774   virtual void emit_code(LIR_Assembler* masm);
1775   virtual LIR_OpAllocArray * as_OpAllocArray () { return this; }
1776   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1777 };
1778 
1779 
1780 class LIR_Op3: public LIR_Op {
1781  friend class LIR_OpVisitState;
1782 
1783  private:
1784   LIR_Opr _opr1;
1785   LIR_Opr _opr2;
1786   LIR_Opr _opr3;
1787  public:
1788   LIR_Op3(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr opr3, LIR_Opr result, CodeEmitInfo* info = NULL)
1789     : LIR_Op(code, result, info)
1790     , _opr1(opr1)
1791     , _opr2(opr2)
1792     , _opr3(opr3)                                { assert(is_in_range(code, begin_op3, end_op3), "code check"); }
1793   LIR_Opr in_opr1() const                        { return _opr1; }
1794   LIR_Opr in_opr2() const                        { return _opr2; }
1795   LIR_Opr in_opr3() const                        { return _opr3; }
1796 
1797   virtual void emit_code(LIR_Assembler* masm);
1798   virtual LIR_Op3* as_Op3() { return this; }
1799   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1800 };
1801 
1802 class LIR_Op4: public LIR_Op {
1803   friend class LIR_OpVisitState;
1804  protected:
1805   LIR_Opr   _opr1;
1806   LIR_Opr   _opr2;
1807   LIR_Opr   _opr3;
1808   LIR_Opr   _opr4;
1809   BasicType _type;
1810   LIR_Opr   _tmp1;
1811   LIR_Opr   _tmp2;
1812   LIR_Opr   _tmp3;
1813   LIR_Opr   _tmp4;
1814   LIR_Opr   _tmp5;
1815   LIR_Condition _condition;
1816 
1817  public:
1818   LIR_Op4(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr opr3, LIR_Opr opr4,
1819           LIR_Opr result, BasicType type)
1820     : LIR_Op(code, result, NULL)
1821     , _opr1(opr1)
1822     , _opr2(opr2)
1823     , _opr3(opr3)
1824     , _opr4(opr4)
1825     , _type(type)
1826     , _tmp1(LIR_OprFact::illegalOpr)
1827     , _tmp2(LIR_OprFact::illegalOpr)
1828     , _tmp3(LIR_OprFact::illegalOpr)
1829     , _tmp4(LIR_OprFact::illegalOpr)
1830     , _tmp5(LIR_OprFact::illegalOpr)
1831     , _condition(condition) {
1832     assert(code == lir_cmove, "code check");
1833     assert(type != T_ILLEGAL, "cmove should have type");
1834   }
1835 
1836   LIR_Opr in_opr1() const                        { return _opr1; }
1837   LIR_Opr in_opr2() const                        { return _opr2; }
1838   LIR_Opr in_opr3() const                        { return _opr3; }
1839   LIR_Opr in_opr4() const                        { return _opr4; }
1840   BasicType type()  const                        { return _type; }
1841   LIR_Opr tmp1_opr() const                       { return _tmp1; }
1842   LIR_Opr tmp2_opr() const                       { return _tmp2; }
1843   LIR_Opr tmp3_opr() const                       { return _tmp3; }
1844   LIR_Opr tmp4_opr() const                       { return _tmp4; }
1845   LIR_Opr tmp5_opr() const                       { return _tmp5; }
1846 
1847   LIR_Condition condition() const                { return _condition; }
1848   void set_condition(LIR_Condition condition)    { _condition = condition; }
1849 
1850   void set_in_opr1(LIR_Opr opr)                  { _opr1 = opr; }
1851   void set_in_opr2(LIR_Opr opr)                  { _opr2 = opr; }
1852   void set_in_opr3(LIR_Opr opr)                  { _opr3 = opr; }
1853   void set_in_opr4(LIR_Opr opr)                  { _opr4 = opr; }
1854   virtual void emit_code(LIR_Assembler* masm);
1855   virtual LIR_Op4* as_Op4() { return this; }
1856 
1857   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1858 };
1859 
1860 //--------------------------------
1861 class LabelObj: public CompilationResourceObj {
1862  private:
1863   Label _label;
1864  public:
1865   LabelObj()                                     {}
1866   Label* label()                                 { return &_label; }
1867 };
1868 
1869 
1870 class LIR_OpLock: public LIR_Op {
1871  friend class LIR_OpVisitState;
1872 
1873  private:
1874   LIR_Opr _hdr;
1875   LIR_Opr _obj;
1876   LIR_Opr _lock;
1877   LIR_Opr _scratch;
1878   CodeStub* _stub;
1879  public:
1880   LIR_OpLock(LIR_Code code, LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info)
1881     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1882     , _hdr(hdr)
1883     , _obj(obj)
1884     , _lock(lock)
1885     , _scratch(scratch)
1886     , _stub(stub)                      {}
1887 
1888   LIR_Opr hdr_opr() const                        { return _hdr; }
1889   LIR_Opr obj_opr() const                        { return _obj; }
1890   LIR_Opr lock_opr() const                       { return _lock; }
1891   LIR_Opr scratch_opr() const                    { return _scratch; }
1892   CodeStub* stub() const                         { return _stub; }
1893 
1894   virtual void emit_code(LIR_Assembler* masm);
1895   virtual LIR_OpLock* as_OpLock() { return this; }
1896   void print_instr(outputStream* out) const PRODUCT_RETURN;
1897 };
1898 
1899 class LIR_OpLoadKlass: public LIR_Op {
1900   friend class LIR_OpVisitState;
1901 
1902  private:
1903   LIR_Opr _obj;
1904   CodeStub* _stub;
1905  public:
1906   LIR_OpLoadKlass(LIR_Opr obj, LIR_Opr result, CodeEmitInfo* info, CodeStub* stub)
1907     : LIR_Op(lir_load_klass, result, info)
1908     , _obj(obj)
1909     , _stub(stub) {}
1910 
1911   LIR_Opr obj()        const { return _obj;  }
1912   CodeStub* stub()     const { return _stub; }
1913 
1914   virtual LIR_OpLoadKlass* as_OpLoadKlass() { return this; }
1915   virtual void emit_code(LIR_Assembler* masm);
1916   void print_instr(outputStream* out) const PRODUCT_RETURN;
1917 };
1918 
1919 class LIR_OpDelay: public LIR_Op {
1920  friend class LIR_OpVisitState;
1921 
1922  private:
1923   LIR_Op* _op;
1924 
1925  public:
1926   LIR_OpDelay(LIR_Op* op, CodeEmitInfo* info):
1927     LIR_Op(lir_delay_slot, LIR_OprFact::illegalOpr, info),
1928     _op(op) {
1929     assert(op->code() == lir_nop, "should be filling with nops");
1930   }
1931   virtual void emit_code(LIR_Assembler* masm);
1932   virtual LIR_OpDelay* as_OpDelay() { return this; }
1933   void print_instr(outputStream* out) const PRODUCT_RETURN;
1934   LIR_Op* delay_op() const { return _op; }
1935   CodeEmitInfo* call_info() const { return info(); }
1936 };
1937 
1938 #ifdef ASSERT
1939 // LIR_OpAssert
1940 class LIR_OpAssert : public LIR_Op2 {
1941  friend class LIR_OpVisitState;
1942 
1943  private:
1944   const char* _msg;
1945   bool        _halt;
1946 
1947  public:
1948   LIR_OpAssert(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, const char* msg, bool halt)
1949     : LIR_Op2(lir_assert, condition, opr1, opr2)
1950     , _msg(msg)
1951     , _halt(halt) {
1952   }
1953 
1954   const char* msg() const                        { return _msg; }
1955   bool        halt() const                       { return _halt; }
1956 
1957   virtual void emit_code(LIR_Assembler* masm);
1958   virtual LIR_OpAssert* as_OpAssert()            { return this; }
1959   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1960 };
1961 #endif
1962 
1963 // LIR_OpCompareAndSwap
1964 class LIR_OpCompareAndSwap : public LIR_Op {
1965  friend class LIR_OpVisitState;
1966 
1967  private:
1968   LIR_Opr _addr;
1969   LIR_Opr _cmp_value;
1970   LIR_Opr _new_value;
1971   LIR_Opr _tmp1;
1972   LIR_Opr _tmp2;
1973 
1974  public:
1975   LIR_OpCompareAndSwap(LIR_Code code, LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1976                        LIR_Opr t1, LIR_Opr t2, LIR_Opr result)
1977     : LIR_Op(code, result, NULL)  // no result, no info
1978     , _addr(addr)
1979     , _cmp_value(cmp_value)
1980     , _new_value(new_value)
1981     , _tmp1(t1)
1982     , _tmp2(t2)                                  { }
1983 
1984   LIR_Opr addr()        const                    { return _addr;  }
1985   LIR_Opr cmp_value()   const                    { return _cmp_value; }
1986   LIR_Opr new_value()   const                    { return _new_value; }
1987   LIR_Opr tmp1()        const                    { return _tmp1;      }
1988   LIR_Opr tmp2()        const                    { return _tmp2;      }
1989 
1990   virtual void emit_code(LIR_Assembler* masm);
1991   virtual LIR_OpCompareAndSwap * as_OpCompareAndSwap () { return this; }
1992   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1993 };
1994 
1995 // LIR_OpProfileCall
1996 class LIR_OpProfileCall : public LIR_Op {
1997  friend class LIR_OpVisitState;
1998 
1999  private:
2000   ciMethod* _profiled_method;
2001   int       _profiled_bci;
2002   ciMethod* _profiled_callee;
2003   LIR_Opr   _mdo;
2004   LIR_Opr   _recv;
2005   LIR_Opr   _tmp1;
2006   ciKlass*  _known_holder;
2007 
2008  public:
2009   // Destroys recv
2010   LIR_OpProfileCall(ciMethod* profiled_method, int profiled_bci, ciMethod* profiled_callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* known_holder)
2011     : LIR_Op(lir_profile_call, LIR_OprFact::illegalOpr, NULL)  // no result, no info
2012     , _profiled_method(profiled_method)
2013     , _profiled_bci(profiled_bci)
2014     , _profiled_callee(profiled_callee)
2015     , _mdo(mdo)
2016     , _recv(recv)
2017     , _tmp1(t1)
2018     , _known_holder(known_holder)                { }
2019 
2020   ciMethod* profiled_method() const              { return _profiled_method;  }
2021   int       profiled_bci()    const              { return _profiled_bci;     }
2022   ciMethod* profiled_callee() const              { return _profiled_callee;  }
2023   LIR_Opr   mdo()             const              { return _mdo;              }
2024   LIR_Opr   recv()            const              { return _recv;             }
2025   LIR_Opr   tmp1()            const              { return _tmp1;             }
2026   ciKlass*  known_holder()    const              { return _known_holder;     }
2027 
2028   virtual void emit_code(LIR_Assembler* masm);
2029   virtual LIR_OpProfileCall* as_OpProfileCall() { return this; }
2030   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
2031   bool should_profile_receiver_type() const {
2032     bool callee_is_static = _profiled_callee->is_loaded() && _profiled_callee->is_static();
2033     Bytecodes::Code bc = _profiled_method->java_code_at_bci(_profiled_bci);
2034     bool call_is_virtual = (bc == Bytecodes::_invokevirtual && !_profiled_callee->can_be_statically_bound()) || bc == Bytecodes::_invokeinterface;
2035     return C1ProfileVirtualCalls && call_is_virtual && !callee_is_static;
2036   }
2037 };
2038 
2039 // LIR_OpProfileType
2040 class LIR_OpProfileType : public LIR_Op {
2041  friend class LIR_OpVisitState;
2042 
2043  private:
2044   LIR_Opr      _mdp;
2045   LIR_Opr      _obj;
2046   LIR_Opr      _tmp;
2047   ciKlass*     _exact_klass;   // non NULL if we know the klass statically (no need to load it from _obj)
2048   intptr_t     _current_klass; // what the profiling currently reports
2049   bool         _not_null;      // true if we know statically that _obj cannot be null
2050   bool         _no_conflict;   // true if we're profling parameters, _exact_klass is not NULL and we know
2051                                // _exact_klass it the only possible type for this parameter in any context.
2052 
2053  public:
2054   // Destroys recv
2055   LIR_OpProfileType(LIR_Opr mdp, LIR_Opr obj, ciKlass* exact_klass, intptr_t current_klass, LIR_Opr tmp, bool not_null, bool no_conflict)
2056     : LIR_Op(lir_profile_type, LIR_OprFact::illegalOpr, NULL)  // no result, no info
2057     , _mdp(mdp)
2058     , _obj(obj)
2059     , _tmp(tmp)
2060     , _exact_klass(exact_klass)
2061     , _current_klass(current_klass)
2062     , _not_null(not_null)
2063     , _no_conflict(no_conflict) { }
2064 
2065   LIR_Opr      mdp()              const             { return _mdp;              }
2066   LIR_Opr      obj()              const             { return _obj;              }
2067   LIR_Opr      tmp()              const             { return _tmp;              }
2068   ciKlass*     exact_klass()      const             { return _exact_klass;      }
2069   intptr_t     current_klass()    const             { return _current_klass;    }
2070   bool         not_null()         const             { return _not_null;         }
2071   bool         no_conflict()      const             { return _no_conflict;      }
2072 
2073   virtual void emit_code(LIR_Assembler* masm);
2074   virtual LIR_OpProfileType* as_OpProfileType() { return this; }
2075   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
2076 };
2077 
2078 class LIR_InsertionBuffer;
2079 
2080 //--------------------------------LIR_List---------------------------------------------------
2081 // Maintains a list of LIR instructions (one instance of LIR_List per basic block)
2082 // The LIR instructions are appended by the LIR_List class itself;
2083 //
2084 // Notes:
2085 // - all offsets are(should be) in bytes
2086 // - local positions are specified with an offset, with offset 0 being local 0
2087 
2088 class LIR_List: public CompilationResourceObj {
2089  private:
2090   LIR_OpList  _operations;
2091 
2092   Compilation*  _compilation;
2093 #ifndef PRODUCT
2094   BlockBegin*   _block;
2095 #endif
2096 #ifdef ASSERT
2097   const char *  _file;
2098   int           _line;
2099 #endif
2100 #ifdef RISCV
2101   LIR_Opr       _cmp_opr1;
2102   LIR_Opr       _cmp_opr2;
2103 #endif
2104 
2105  public:
2106   void append(LIR_Op* op) {
2107     if (op->source() == NULL)
2108       op->set_source(_compilation->current_instruction());
2109 #ifndef PRODUCT
2110     if (PrintIRWithLIR) {
2111       _compilation->maybe_print_current_instruction();
2112       op->print(); tty->cr();
2113     }
2114 #endif // PRODUCT
2115 
2116 #ifdef RISCV
2117     set_cmp_oprs(op);
2118     // lir_cmp set cmp oprs only on riscv
2119     if (op->code() == lir_cmp) return;
2120 #endif
2121 
2122     _operations.append(op);
2123 
2124 #ifdef ASSERT
2125     op->verify();
2126     op->set_file_and_line(_file, _line);
2127     _file = NULL;
2128     _line = 0;
2129 #endif
2130   }
2131 
2132   LIR_List(Compilation* compilation, BlockBegin* block = NULL);
2133 
2134 #ifdef ASSERT
2135   void set_file_and_line(const char * file, int line);
2136 #endif
2137 
2138 #ifdef RISCV
2139   void set_cmp_oprs(LIR_Op* op);
2140 #endif
2141 
2142   //---------- accessors ---------------
2143   LIR_OpList* instructions_list()                { return &_operations; }
2144   int         length() const                     { return _operations.length(); }
2145   LIR_Op*     at(int i) const                    { return _operations.at(i); }
2146 
2147   NOT_PRODUCT(BlockBegin* block() const          { return _block; });
2148 
2149   // insert LIR_Ops in buffer to right places in LIR_List
2150   void append(LIR_InsertionBuffer* buffer);
2151 
2152   //---------- mutators ---------------
2153   void insert_before(int i, LIR_List* op_list)   { _operations.insert_before(i, op_list->instructions_list()); }
2154   void insert_before(int i, LIR_Op* op)          { _operations.insert_before(i, op); }
2155   void remove_at(int i)                          { _operations.remove_at(i); }
2156 
2157   //---------- printing -------------
2158   void print_instructions() PRODUCT_RETURN;
2159 
2160 
2161   //---------- instructions -------------
2162   void call_opt_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2163                         address dest, LIR_OprList* arguments,
2164                         CodeEmitInfo* info) {
2165     append(new LIR_OpJavaCall(lir_optvirtual_call, method, receiver, result, dest, arguments, info));
2166   }
2167   void call_static(ciMethod* method, LIR_Opr result,
2168                    address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
2169     append(new LIR_OpJavaCall(lir_static_call, method, LIR_OprFact::illegalOpr, result, dest, arguments, info));
2170   }
2171   void call_icvirtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2172                       address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
2173     append(new LIR_OpJavaCall(lir_icvirtual_call, method, receiver, result, dest, arguments, info));
2174   }
2175   void call_dynamic(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2176                     address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
2177     append(new LIR_OpJavaCall(lir_dynamic_call, method, receiver, result, dest, arguments, info));
2178   }
2179 
2180   void get_thread(LIR_Opr result)                { append(new LIR_Op0(lir_get_thread, result)); }
2181   void membar()                                  { append(new LIR_Op0(lir_membar)); }
2182   void membar_acquire()                          { append(new LIR_Op0(lir_membar_acquire)); }
2183   void membar_release()                          { append(new LIR_Op0(lir_membar_release)); }
2184   void membar_loadload()                         { append(new LIR_Op0(lir_membar_loadload)); }
2185   void membar_storestore()                       { append(new LIR_Op0(lir_membar_storestore)); }
2186   void membar_loadstore()                        { append(new LIR_Op0(lir_membar_loadstore)); }
2187   void membar_storeload()                        { append(new LIR_Op0(lir_membar_storeload)); }
2188 
2189   void nop()                                     { append(new LIR_Op0(lir_nop)); }
2190 
2191   void std_entry(LIR_Opr receiver)               { append(new LIR_Op0(lir_std_entry, receiver)); }
2192   void osr_entry(LIR_Opr osrPointer)             { append(new LIR_Op0(lir_osr_entry, osrPointer)); }
2193 
2194   void on_spin_wait()                            { append(new LIR_Op0(lir_on_spin_wait)); }
2195 
2196   void branch_destination(Label* lbl)            { append(new LIR_OpLabel(lbl)); }
2197 
2198   void leal(LIR_Opr from, LIR_Opr result_reg, LIR_PatchCode patch_code = lir_patch_none, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_leal, from, result_reg, T_ILLEGAL, patch_code, info)); }
2199 
2200   // result is a stack location for old backend and vreg for UseLinearScan
2201   // stack_loc_temp is an illegal register for old backend
2202   void roundfp(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result) { append(new LIR_OpRoundFP(reg, stack_loc_temp, result)); }
2203   void move(LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); }
2204   void move(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info)); }
2205   void move(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info)); }
2206   void move_wide(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = NULL) {
2207     if (UseCompressedOops) {
2208       append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info, lir_move_wide));
2209     } else {
2210       move(src, dst, info);
2211     }
2212   }
2213   void move_wide(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = NULL) {
2214     if (UseCompressedOops) {
2215       append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info, lir_move_wide));
2216     } else {
2217       move(src, dst, info);
2218     }
2219   }
2220   void volatile_move(LIR_Opr src, LIR_Opr dst, BasicType type, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none) { append(new LIR_Op1(lir_move, src, dst, type, patch_code, info, lir_move_volatile)); }
2221 
2222   void oop2reg  (jobject o, LIR_Opr reg)         { assert(reg->type() == T_OBJECT, "bad reg"); append(new LIR_Op1(lir_move, LIR_OprFact::oopConst(o),    reg));   }
2223   void oop2reg_patch(jobject o, LIR_Opr reg, CodeEmitInfo* info);
2224 
2225   void metadata2reg  (Metadata* o, LIR_Opr reg)  { assert(reg->type() == T_METADATA, "bad reg"); append(new LIR_Op1(lir_move, LIR_OprFact::metadataConst(o), reg));   }
2226   void klass2reg_patch(Metadata* o, LIR_Opr reg, CodeEmitInfo* info);
2227 
2228   void safepoint(LIR_Opr tmp, CodeEmitInfo* info)  { append(new LIR_Op1(lir_safepoint, tmp, info)); }
2229   void return_op(LIR_Opr result)                   { append(new LIR_OpReturn(result)); }
2230 
2231   void convert(Bytecodes::Code code, LIR_Opr left, LIR_Opr dst, ConversionStub* stub = NULL/*, bool is_32bit = false*/) { append(new LIR_OpConvert(code, left, dst, stub)); }
2232 
2233   void logical_and (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_and,  left, right, dst)); }
2234   void logical_or  (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_or,   left, right, dst)); }
2235   void logical_xor (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_xor,  left, right, dst)); }
2236 
2237   void null_check(LIR_Opr opr, CodeEmitInfo* info, bool deoptimize_on_null = false);
2238   void throw_exception(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2239     append(new LIR_Op2(lir_throw, exceptionPC, exceptionOop, LIR_OprFact::illegalOpr, info));
2240   }
2241   void unwind_exception(LIR_Opr exceptionOop) {
2242     append(new LIR_Op1(lir_unwind, exceptionOop));
2243   }
2244 
2245   void push(LIR_Opr opr)                                   { append(new LIR_Op1(lir_push, opr)); }
2246   void pop(LIR_Opr reg)                                    { append(new LIR_Op1(lir_pop,  reg)); }
2247 
2248   void cmp(LIR_Condition condition, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info = NULL) {
2249     append(new LIR_Op2(lir_cmp, condition, left, right, info));
2250   }
2251   void cmp(LIR_Condition condition, LIR_Opr left, int right, CodeEmitInfo* info = NULL) {
2252     cmp(condition, left, LIR_OprFact::intConst(right), info);
2253   }
2254 
2255   void cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info);
2256   void cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Address* addr, CodeEmitInfo* info);
2257 
2258   void cmove(LIR_Condition condition, LIR_Opr src1, LIR_Opr src2, LIR_Opr dst, BasicType type,
2259              LIR_Opr cmp_opr1 = LIR_OprFact::illegalOpr, LIR_Opr cmp_opr2 = LIR_OprFact::illegalOpr) {
2260     append(new LIR_Op4(lir_cmove, condition, src1, src2, cmp_opr1, cmp_opr2, dst, type));
2261   }
2262 
2263   void cas_long(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
2264                 LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
2265   void cas_obj(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
2266                LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
2267   void cas_int(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
2268                LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
2269 
2270   void abs (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_abs , from, tmp, to)); }
2271   void negate(LIR_Opr from, LIR_Opr to, LIR_Opr tmp = LIR_OprFact::illegalOpr)              { append(new LIR_Op2(lir_neg, from, tmp, to)); }
2272   void sqrt(LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_sqrt, from, tmp, to)); }
2273   void fmad(LIR_Opr from, LIR_Opr from1, LIR_Opr from2, LIR_Opr to) { append(new LIR_Op3(lir_fmad, from, from1, from2, to)); }
2274   void fmaf(LIR_Opr from, LIR_Opr from1, LIR_Opr from2, LIR_Opr to) { append(new LIR_Op3(lir_fmaf, from, from1, from2, to)); }
2275   void log10 (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)              { append(new LIR_Op2(lir_log10, from, LIR_OprFact::illegalOpr, to, tmp)); }
2276   void tan (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_tan , from, tmp1, to, tmp2)); }
2277 
2278   void add (LIR_Opr left, LIR_Opr right, LIR_Opr res)      { append(new LIR_Op2(lir_add, left, right, res)); }
2279   void sub (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL) { append(new LIR_Op2(lir_sub, left, right, res, info)); }
2280   void mul (LIR_Opr left, LIR_Opr right, LIR_Opr res) { append(new LIR_Op2(lir_mul, left, right, res)); }
2281   void mul (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_mul, left, right, res, tmp)); }
2282   void div (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL)      { append(new LIR_Op2(lir_div, left, right, res, info)); }
2283   void div (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_div, left, right, res, tmp)); }
2284   void rem (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL)      { append(new LIR_Op2(lir_rem, left, right, res, info)); }
2285 
2286   void volatile_load_mem_reg(LIR_Address* address, LIR_Opr dst, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2287   void volatile_load_unsafe_reg(LIR_Opr base, LIR_Opr offset, LIR_Opr dst, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code);
2288 
2289   void load(LIR_Address* addr, LIR_Opr src, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none);
2290 
2291   void store_mem_int(jint v,    LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2292   void store_mem_oop(jobject o, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2293   void store(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none);
2294   void volatile_store_mem_reg(LIR_Opr src, LIR_Address* address, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2295   void volatile_store_unsafe_reg(LIR_Opr src, LIR_Opr base, LIR_Opr offset, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code);
2296 
2297   void idiv(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2298   void idiv(LIR_Opr left, int   right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2299   void irem(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2300   void irem(LIR_Opr left, int   right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2301 
2302   void allocate_object(LIR_Opr dst, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, int header_size, int object_size, LIR_Opr klass, bool init_check, CodeStub* stub);
2303   void allocate_array(LIR_Opr dst, LIR_Opr len, LIR_Opr t1,LIR_Opr t2, LIR_Opr t3,LIR_Opr t4, BasicType type, LIR_Opr klass, CodeStub* stub);
2304 
2305   // jump is an unconditional branch
2306   void jump(BlockBegin* block) {
2307     append(new LIR_OpBranch(lir_cond_always, block));
2308   }
2309   void jump(CodeStub* stub) {
2310     append(new LIR_OpBranch(lir_cond_always, stub));
2311   }
2312   void branch(LIR_Condition cond, Label* lbl) {
2313     append(new LIR_OpBranch(cond, lbl));
2314   }
2315   // Should not be used for fp comparisons
2316   void branch(LIR_Condition cond, BlockBegin* block) {
2317     append(new LIR_OpBranch(cond, block));
2318   }
2319   // Should not be used for fp comparisons
2320   void branch(LIR_Condition cond, CodeStub* stub) {
2321     append(new LIR_OpBranch(cond, stub));
2322   }
2323   // Should only be used for fp comparisons
2324   void branch(LIR_Condition cond, BlockBegin* block, BlockBegin* unordered) {
2325     append(new LIR_OpBranch(cond, block, unordered));
2326   }
2327 
2328   void shift_left(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
2329   void shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
2330   void unsigned_shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
2331 
2332   void shift_left(LIR_Opr value, int count, LIR_Opr dst)       { shift_left(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
2333   void shift_right(LIR_Opr value, int count, LIR_Opr dst)      { shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
2334   void unsigned_shift_right(LIR_Opr value, int count, LIR_Opr dst) { unsigned_shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
2335 
2336   void lcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst)        { append(new LIR_Op2(lir_cmp_l2i,  left, right, dst)); }
2337   void fcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst, bool is_unordered_less);
2338 
2339   void call_runtime_leaf(address routine, LIR_Opr tmp, LIR_Opr result, LIR_OprList* arguments) {
2340     append(new LIR_OpRTCall(routine, tmp, result, arguments));
2341   }
2342 
2343   void call_runtime(address routine, LIR_Opr tmp, LIR_Opr result,
2344                     LIR_OprList* arguments, CodeEmitInfo* info) {
2345     append(new LIR_OpRTCall(routine, tmp, result, arguments, info));
2346   }
2347 
2348   void load_stack_address_monitor(int monitor_ix, LIR_Opr dst)  { append(new LIR_Op1(lir_monaddr, LIR_OprFact::intConst(monitor_ix), dst)); }
2349   void unlock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub);
2350   void lock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info);
2351 
2352   void breakpoint()                                                  { append(new LIR_Op0(lir_breakpoint)); }
2353 
2354   void arraycopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp, ciArrayKlass* expected_type, int flags, CodeEmitInfo* info) { append(new LIR_OpArrayCopy(src, src_pos, dst, dst_pos, length, tmp, expected_type, flags, info)); }
2355 
2356   void update_crc32(LIR_Opr crc, LIR_Opr val, LIR_Opr res)  { append(new LIR_OpUpdateCRC32(crc, val, res)); }
2357 
2358   void instanceof(LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_patch, ciMethod* profiled_method, int profiled_bci);
2359   void store_check(LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception, ciMethod* profiled_method, int profiled_bci);
2360 
2361   void checkcast (LIR_Opr result, LIR_Opr object, ciKlass* klass,
2362                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
2363                   CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub,
2364                   ciMethod* profiled_method, int profiled_bci);
2365   // MethodData* profiling
2366   void profile_call(ciMethod* method, int bci, ciMethod* callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* cha_klass) {
2367     append(new LIR_OpProfileCall(method, bci, callee, mdo, recv, t1, cha_klass));
2368   }
2369   void profile_type(LIR_Address* mdp, LIR_Opr obj, ciKlass* exact_klass, intptr_t current_klass, LIR_Opr tmp, bool not_null, bool no_conflict) {
2370     append(new LIR_OpProfileType(LIR_OprFact::address(mdp), obj, exact_klass, current_klass, tmp, not_null, no_conflict));
2371   }
2372 
2373   void xadd(LIR_Opr src, LIR_Opr add, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xadd, src, add, res, tmp)); }
2374   void xchg(LIR_Opr src, LIR_Opr set, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xchg, src, set, res, tmp)); }
2375 
2376   void load_klass(LIR_Opr obj, LIR_Opr result, CodeEmitInfo* info, CodeStub* stub) { append(new LIR_OpLoadKlass(obj, result, info, stub)); }
2377 
2378 #ifdef ASSERT
2379   void lir_assert(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, const char* msg, bool halt) { append(new LIR_OpAssert(condition, opr1, opr2, msg, halt)); }
2380 #endif
2381 };
2382 
2383 void print_LIR(BlockList* blocks);
2384 
2385 class LIR_InsertionBuffer : public CompilationResourceObj {
2386  private:
2387   LIR_List*   _lir;   // the lir list where ops of this buffer should be inserted later (NULL when uninitialized)
2388 
2389   // list of insertion points. index and count are stored alternately:
2390   // _index_and_count[i * 2]:     the index into lir list where "count" ops should be inserted
2391   // _index_and_count[i * 2 + 1]: the number of ops to be inserted at index
2392   intStack    _index_and_count;
2393 
2394   // the LIR_Ops to be inserted
2395   LIR_OpList  _ops;
2396 
2397   void append_new(int index, int count)  { _index_and_count.append(index); _index_and_count.append(count); }
2398   void set_index_at(int i, int value)    { _index_and_count.at_put((i << 1),     value); }
2399   void set_count_at(int i, int value)    { _index_and_count.at_put((i << 1) + 1, value); }
2400 
2401 #ifdef ASSERT
2402   void verify();
2403 #endif
2404  public:
2405   LIR_InsertionBuffer() : _lir(NULL), _index_and_count(8), _ops(8) { }
2406 
2407   // must be called before using the insertion buffer
2408   void init(LIR_List* lir)  { assert(!initialized(), "already initialized"); _lir = lir; _index_and_count.clear(); _ops.clear(); }
2409   bool initialized() const  { return _lir != NULL; }
2410   // called automatically when the buffer is appended to the LIR_List
2411   void finish()             { _lir = NULL; }
2412 
2413   // accessors
2414   LIR_List*  lir_list() const             { return _lir; }
2415   int number_of_insertion_points() const  { return _index_and_count.length() >> 1; }
2416   int index_at(int i) const               { return _index_and_count.at((i << 1));     }
2417   int count_at(int i) const               { return _index_and_count.at((i << 1) + 1); }
2418 
2419   int number_of_ops() const               { return _ops.length(); }
2420   LIR_Op* op_at(int i) const              { return _ops.at(i); }
2421 
2422   // append an instruction to the buffer
2423   void append(int index, LIR_Op* op);
2424 
2425   // instruction
2426   void move(int index, LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(index, new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); }
2427 };
2428 
2429 
2430 //
2431 // LIR_OpVisitState is used for manipulating LIR_Ops in an abstract way.
2432 // Calling a LIR_Op's visit function with a LIR_OpVisitState causes
2433 // information about the input, output and temporaries used by the
2434 // op to be recorded.  It also records whether the op has call semantics
2435 // and also records all the CodeEmitInfos used by this op.
2436 //
2437 
2438 
2439 class LIR_OpVisitState: public StackObj {
2440  public:
2441   typedef enum { inputMode, firstMode = inputMode, tempMode, outputMode, numModes, invalidMode = -1 } OprMode;
2442 
2443   enum {
2444     maxNumberOfOperands = 21,
2445     maxNumberOfInfos = 4
2446   };
2447 
2448  private:
2449   LIR_Op*          _op;
2450 
2451   // optimization: the operands and infos are not stored in a variable-length
2452   //               list, but in a fixed-size array to save time of size checks and resizing
2453   int              _oprs_len[numModes];
2454   LIR_Opr*         _oprs_new[numModes][maxNumberOfOperands];
2455   int _info_len;
2456   CodeEmitInfo*    _info_new[maxNumberOfInfos];
2457 
2458   bool             _has_call;
2459   bool             _has_slow_case;
2460 
2461 
2462   // only include register operands
2463   // addresses are decomposed to the base and index registers
2464   // constants and stack operands are ignored
2465   void append(LIR_Opr& opr, OprMode mode) {
2466     assert(opr->is_valid(), "should not call this otherwise");
2467     assert(mode >= 0 && mode < numModes, "bad mode");
2468 
2469     if (opr->is_register()) {
2470        assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
2471       _oprs_new[mode][_oprs_len[mode]++] = &opr;
2472 
2473     } else if (opr->is_pointer()) {
2474       LIR_Address* address = opr->as_address_ptr();
2475       if (address != NULL) {
2476         // special handling for addresses: add base and index register of the address
2477         // both are always input operands or temp if we want to extend
2478         // their liveness!
2479         if (mode == outputMode) {
2480           mode = inputMode;
2481         }
2482         assert (mode == inputMode || mode == tempMode, "input or temp only for addresses");
2483         if (address->_base->is_valid()) {
2484           assert(address->_base->is_register(), "must be");
2485           assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
2486           _oprs_new[mode][_oprs_len[mode]++] = &address->_base;
2487         }
2488         if (address->_index->is_valid()) {
2489           assert(address->_index->is_register(), "must be");
2490           assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
2491           _oprs_new[mode][_oprs_len[mode]++] = &address->_index;
2492         }
2493 
2494       } else {
2495         assert(opr->is_constant(), "constant operands are not processed");
2496       }
2497     } else {
2498       assert(opr->is_stack(), "stack operands are not processed");
2499     }
2500   }
2501 
2502   void append(CodeEmitInfo* info) {
2503     assert(info != NULL, "should not call this otherwise");
2504     assert(_info_len < maxNumberOfInfos, "array overflow");
2505     _info_new[_info_len++] = info;
2506   }
2507 
2508  public:
2509   LIR_OpVisitState()         { reset(); }
2510 
2511   LIR_Op* op() const         { return _op; }
2512   void set_op(LIR_Op* op)    { reset(); _op = op; }
2513 
2514   bool has_call() const      { return _has_call; }
2515   bool has_slow_case() const { return _has_slow_case; }
2516 
2517   void reset() {
2518     _op = NULL;
2519     _has_call = false;
2520     _has_slow_case = false;
2521 
2522     _oprs_len[inputMode] = 0;
2523     _oprs_len[tempMode] = 0;
2524     _oprs_len[outputMode] = 0;
2525     _info_len = 0;
2526   }
2527 
2528 
2529   int opr_count(OprMode mode) const {
2530     assert(mode >= 0 && mode < numModes, "bad mode");
2531     return _oprs_len[mode];
2532   }
2533 
2534   LIR_Opr opr_at(OprMode mode, int index) const {
2535     assert(mode >= 0 && mode < numModes, "bad mode");
2536     assert(index >= 0 && index < _oprs_len[mode], "index out of bound");
2537     return *_oprs_new[mode][index];
2538   }
2539 
2540   void set_opr_at(OprMode mode, int index, LIR_Opr opr) const {
2541     assert(mode >= 0 && mode < numModes, "bad mode");
2542     assert(index >= 0 && index < _oprs_len[mode], "index out of bound");
2543     *_oprs_new[mode][index] = opr;
2544   }
2545 
2546   int info_count() const {
2547     return _info_len;
2548   }
2549 
2550   CodeEmitInfo* info_at(int index) const {
2551     assert(index < _info_len, "index out of bounds");
2552     return _info_new[index];
2553   }
2554 
2555   XHandlers* all_xhandler();
2556 
2557   // collects all register operands of the instruction
2558   void visit(LIR_Op* op);
2559 
2560 #ifdef ASSERT
2561   // check that an operation has no operands
2562   bool no_operands(LIR_Op* op);
2563 #endif
2564 
2565   // LIR_Op visitor functions use these to fill in the state
2566   void do_input(LIR_Opr& opr)             { append(opr, LIR_OpVisitState::inputMode); }
2567   void do_output(LIR_Opr& opr)            { append(opr, LIR_OpVisitState::outputMode); }
2568   void do_temp(LIR_Opr& opr)              { append(opr, LIR_OpVisitState::tempMode); }
2569   void do_info(CodeEmitInfo* info)        { append(info); }
2570 
2571   void do_stub(CodeStub* stub);
2572   void do_call()                          { _has_call = true; }
2573   void do_slow_case()                     { _has_slow_case = true; }
2574   void do_slow_case(CodeEmitInfo* info) {
2575     _has_slow_case = true;
2576     append(info);
2577   }
2578 };
2579 
2580 
2581 inline LIR_Opr LIR_Opr::illegalOpr()   { return LIR_OprFact::illegalOpr; };
2582 
2583 inline LIR_Opr LIR_Opr::nullOpr()   { return LIR_OprFact::nullOpr; };
2584 
2585 #endif // SHARE_C1_C1_LIR_HPP