1 /* 2 * Copyright (c) 2000, 2022, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_C1_C1_LIR_HPP 26 #define SHARE_C1_C1_LIR_HPP 27 28 #include "c1/c1_Defs.hpp" 29 #include "c1/c1_ValueType.hpp" 30 #include "oops/method.hpp" 31 #include "utilities/globalDefinitions.hpp" 32 33 class BlockBegin; 34 class BlockList; 35 class LIR_Assembler; 36 class CodeEmitInfo; 37 class CodeStub; 38 class CodeStubList; 39 class C1SafepointPollStub; 40 class ArrayCopyStub; 41 class LIR_Op; 42 class ciType; 43 class ValueType; 44 class LIR_OpVisitState; 45 class FpuStackSim; 46 47 //--------------------------------------------------------------------- 48 // LIR Operands 49 // LIR_OprPtr 50 // LIR_Const 51 // LIR_Address 52 //--------------------------------------------------------------------- 53 class LIR_OprPtr; 54 class LIR_Const; 55 class LIR_Address; 56 class LIR_OprVisitor; 57 class LIR_Opr; 58 59 typedef int RegNr; 60 61 typedef GrowableArray<LIR_Opr> LIR_OprList; 62 typedef GrowableArray<LIR_Op*> LIR_OpArray; 63 typedef GrowableArray<LIR_Op*> LIR_OpList; 64 65 // define LIR_OprPtr early so LIR_Opr can refer to it 66 class LIR_OprPtr: public CompilationResourceObj { 67 public: 68 bool is_oop_pointer() const { return (type() == T_OBJECT); } 69 bool is_float_kind() const { BasicType t = type(); return (t == T_FLOAT) || (t == T_DOUBLE); } 70 71 virtual LIR_Const* as_constant() { return NULL; } 72 virtual LIR_Address* as_address() { return NULL; } 73 virtual BasicType type() const = 0; 74 virtual void print_value_on(outputStream* out) const = 0; 75 }; 76 77 78 79 // LIR constants 80 class LIR_Const: public LIR_OprPtr { 81 private: 82 JavaValue _value; 83 84 void type_check(BasicType t) const { assert(type() == t, "type check"); } 85 void type_check(BasicType t1, BasicType t2) const { assert(type() == t1 || type() == t2, "type check"); } 86 void type_check(BasicType t1, BasicType t2, BasicType t3) const { assert(type() == t1 || type() == t2 || type() == t3, "type check"); } 87 88 public: 89 LIR_Const(jint i, bool is_address=false) { _value.set_type(is_address?T_ADDRESS:T_INT); _value.set_jint(i); } 90 LIR_Const(jlong l) { _value.set_type(T_LONG); _value.set_jlong(l); } 91 LIR_Const(jfloat f) { _value.set_type(T_FLOAT); _value.set_jfloat(f); } 92 LIR_Const(jdouble d) { _value.set_type(T_DOUBLE); _value.set_jdouble(d); } 93 LIR_Const(jobject o) { _value.set_type(T_OBJECT); _value.set_jobject(o); } 94 LIR_Const(void* p) { 95 #ifdef _LP64 96 assert(sizeof(jlong) >= sizeof(p), "too small");; 97 _value.set_type(T_LONG); _value.set_jlong((jlong)p); 98 #else 99 assert(sizeof(jint) >= sizeof(p), "too small");; 100 _value.set_type(T_INT); _value.set_jint((jint)p); 101 #endif 102 } 103 LIR_Const(Metadata* m) { 104 _value.set_type(T_METADATA); 105 #ifdef _LP64 106 _value.set_jlong((jlong)m); 107 #else 108 _value.set_jint((jint)m); 109 #endif // _LP64 110 } 111 112 virtual BasicType type() const { return _value.get_type(); } 113 virtual LIR_Const* as_constant() { return this; } 114 115 jint as_jint() const { type_check(T_INT, T_ADDRESS); return _value.get_jint(); } 116 jlong as_jlong() const { type_check(T_LONG ); return _value.get_jlong(); } 117 jfloat as_jfloat() const { type_check(T_FLOAT ); return _value.get_jfloat(); } 118 jdouble as_jdouble() const { type_check(T_DOUBLE); return _value.get_jdouble(); } 119 jobject as_jobject() const { type_check(T_OBJECT); return _value.get_jobject(); } 120 jint as_jint_lo() const { type_check(T_LONG ); return low(_value.get_jlong()); } 121 jint as_jint_hi() const { type_check(T_LONG ); return high(_value.get_jlong()); } 122 123 #ifdef _LP64 124 address as_pointer() const { type_check(T_LONG ); return (address)_value.get_jlong(); } 125 Metadata* as_metadata() const { type_check(T_METADATA); return (Metadata*)_value.get_jlong(); } 126 #else 127 address as_pointer() const { type_check(T_INT ); return (address)_value.get_jint(); } 128 Metadata* as_metadata() const { type_check(T_METADATA); return (Metadata*)_value.get_jint(); } 129 #endif 130 131 132 jint as_jint_bits() const { type_check(T_FLOAT, T_INT, T_ADDRESS); return _value.get_jint(); } 133 jint as_jint_lo_bits() const { 134 if (type() == T_DOUBLE) { 135 return low(jlong_cast(_value.get_jdouble())); 136 } else { 137 return as_jint_lo(); 138 } 139 } 140 jint as_jint_hi_bits() const { 141 if (type() == T_DOUBLE) { 142 return high(jlong_cast(_value.get_jdouble())); 143 } else { 144 return as_jint_hi(); 145 } 146 } 147 jlong as_jlong_bits() const { 148 if (type() == T_DOUBLE) { 149 return jlong_cast(_value.get_jdouble()); 150 } else { 151 return as_jlong(); 152 } 153 } 154 155 virtual void print_value_on(outputStream* out) const PRODUCT_RETURN; 156 157 158 bool is_zero_float() { 159 jfloat f = as_jfloat(); 160 jfloat ok = 0.0f; 161 return jint_cast(f) == jint_cast(ok); 162 } 163 164 bool is_one_float() { 165 jfloat f = as_jfloat(); 166 return !g_isnan(f) && g_isfinite(f) && f == 1.0; 167 } 168 169 bool is_zero_double() { 170 jdouble d = as_jdouble(); 171 jdouble ok = 0.0; 172 return jlong_cast(d) == jlong_cast(ok); 173 } 174 175 bool is_one_double() { 176 jdouble d = as_jdouble(); 177 return !g_isnan(d) && g_isfinite(d) && d == 1.0; 178 } 179 }; 180 181 182 //---------------------LIR Operand descriptor------------------------------------ 183 // 184 // The class LIR_Opr represents a LIR instruction operand; 185 // it can be a register (ALU/FPU), stack location or a constant; 186 // Constants and addresses are represented as resource area allocated 187 // structures (see above), and pointers are stored in the _value field (cast to 188 // an intptr_t). 189 // Registers and stack locations are represented inline as integers. 190 // (see value function). 191 192 // Previously, this class was derived from CompilationResourceObj. 193 // However, deriving from any of the "Obj" types in allocation.hpp seems 194 // detrimental, since in some build modes it would add a vtable to this class, 195 // which make it no longer be a 1-word trivially-copyable wrapper object, 196 // which is the entire point of it. 197 198 class LIR_Opr { 199 public: 200 // value structure: 201 // data other-non-data opr-type opr-kind 202 // +-------------------+--------------+-------+-----+ 203 // [max...............................|6 5 4 3|2 1 0] 204 // ^ 205 // is_pointer bit 206 // 207 // lowest bit cleared, means it is a structure pointer 208 // we need 4 bits to represent types 209 210 private: 211 friend class LIR_OprFact; 212 213 intptr_t _value; 214 // Conversion 215 intptr_t value() const { return _value; } 216 217 bool check_value_mask(intptr_t mask, intptr_t masked_value) const { 218 return (value() & mask) == masked_value; 219 } 220 221 enum OprKind { 222 pointer_value = 0 223 , stack_value = 1 224 , cpu_register = 3 225 , fpu_register = 5 226 , illegal_value = 7 227 }; 228 229 enum OprBits { 230 pointer_bits = 1 231 , kind_bits = 3 232 , type_bits = 4 233 , size_bits = 2 234 , destroys_bits = 1 235 , virtual_bits = 1 236 , is_xmm_bits = 1 237 , last_use_bits = 1 238 , is_fpu_stack_offset_bits = 1 // used in assertion checking on x86 for FPU stack slot allocation 239 , non_data_bits = kind_bits + type_bits + size_bits + destroys_bits + virtual_bits 240 + is_xmm_bits + last_use_bits + is_fpu_stack_offset_bits 241 , data_bits = BitsPerInt - non_data_bits 242 , reg_bits = data_bits / 2 // for two registers in one value encoding 243 }; 244 245 enum OprShift : uintptr_t { 246 kind_shift = 0 247 , type_shift = kind_shift + kind_bits 248 , size_shift = type_shift + type_bits 249 , destroys_shift = size_shift + size_bits 250 , last_use_shift = destroys_shift + destroys_bits 251 , is_fpu_stack_offset_shift = last_use_shift + last_use_bits 252 , virtual_shift = is_fpu_stack_offset_shift + is_fpu_stack_offset_bits 253 , is_xmm_shift = virtual_shift + virtual_bits 254 , data_shift = is_xmm_shift + is_xmm_bits 255 , reg1_shift = data_shift 256 , reg2_shift = data_shift + reg_bits 257 258 }; 259 260 enum OprSize { 261 single_size = 0 << size_shift 262 , double_size = 1 << size_shift 263 }; 264 265 enum OprMask { 266 kind_mask = right_n_bits(kind_bits) 267 , type_mask = right_n_bits(type_bits) << type_shift 268 , size_mask = right_n_bits(size_bits) << size_shift 269 , last_use_mask = right_n_bits(last_use_bits) << last_use_shift 270 , is_fpu_stack_offset_mask = right_n_bits(is_fpu_stack_offset_bits) << is_fpu_stack_offset_shift 271 , virtual_mask = right_n_bits(virtual_bits) << virtual_shift 272 , is_xmm_mask = right_n_bits(is_xmm_bits) << is_xmm_shift 273 , pointer_mask = right_n_bits(pointer_bits) 274 , lower_reg_mask = right_n_bits(reg_bits) 275 , no_type_mask = (int)(~(type_mask | last_use_mask | is_fpu_stack_offset_mask)) 276 }; 277 278 uint32_t data() const { return (uint32_t)value() >> data_shift; } 279 int lo_reg_half() const { return data() & lower_reg_mask; } 280 int hi_reg_half() const { return (data() >> reg_bits) & lower_reg_mask; } 281 OprKind kind_field() const { return (OprKind)(value() & kind_mask); } 282 OprSize size_field() const { return (OprSize)(value() & size_mask); } 283 284 static char type_char(BasicType t); 285 286 public: 287 LIR_Opr() : _value(0) {} 288 LIR_Opr(intptr_t val) : _value(val) {} 289 LIR_Opr(LIR_OprPtr *val) : _value(reinterpret_cast<intptr_t>(val)) {} 290 bool operator==(const LIR_Opr &other) const { return _value == other._value; } 291 bool operator!=(const LIR_Opr &other) const { return _value != other._value; } 292 explicit operator bool() const { return _value != 0; } 293 294 // UGLY HACK: make this value object look like a pointer (to itself). This 295 // operator overload should be removed, and all callers updated from 296 // `opr->fn()` to `opr.fn()`. 297 const LIR_Opr* operator->() const { return this; } 298 LIR_Opr* operator->() { return this; } 299 300 enum { 301 vreg_base = ConcreteRegisterImpl::number_of_registers, 302 data_max = (1 << data_bits) - 1, // max unsigned value for data bit field 303 vreg_limit = 10000, // choose a reasonable limit, 304 vreg_max = MIN2(vreg_limit, data_max) // and make sure if fits in the bit field 305 }; 306 307 static inline LIR_Opr illegalOpr(); 308 static inline LIR_Opr nullOpr(); 309 310 enum OprType { 311 unknown_type = 0 << type_shift // means: not set (catch uninitialized types) 312 , int_type = 1 << type_shift 313 , long_type = 2 << type_shift 314 , object_type = 3 << type_shift 315 , address_type = 4 << type_shift 316 , float_type = 5 << type_shift 317 , double_type = 6 << type_shift 318 , metadata_type = 7 << type_shift 319 }; 320 friend OprType as_OprType(BasicType t); 321 friend BasicType as_BasicType(OprType t); 322 323 OprType type_field_valid() const { assert(is_register() || is_stack(), "should not be called otherwise"); return (OprType)(value() & type_mask); } 324 OprType type_field() const { return is_illegal() ? unknown_type : (OprType)(value() & type_mask); } 325 326 static OprSize size_for(BasicType t) { 327 switch (t) { 328 case T_LONG: 329 case T_DOUBLE: 330 return double_size; 331 break; 332 333 case T_FLOAT: 334 case T_BOOLEAN: 335 case T_CHAR: 336 case T_BYTE: 337 case T_SHORT: 338 case T_INT: 339 case T_ADDRESS: 340 case T_OBJECT: 341 case T_ARRAY: 342 case T_METADATA: 343 return single_size; 344 break; 345 346 default: 347 ShouldNotReachHere(); 348 return single_size; 349 } 350 } 351 352 353 void validate_type() const PRODUCT_RETURN; 354 355 BasicType type() const { 356 if (is_pointer()) { 357 return pointer()->type(); 358 } 359 return as_BasicType(type_field()); 360 } 361 362 363 ValueType* value_type() const { return as_ValueType(type()); } 364 365 char type_char() const { return type_char((is_pointer()) ? pointer()->type() : type()); } 366 367 bool is_equal(LIR_Opr opr) const { return *this == opr; } 368 // checks whether types are same 369 bool is_same_type(LIR_Opr opr) const { 370 assert(type_field() != unknown_type && 371 opr->type_field() != unknown_type, "shouldn't see unknown_type"); 372 return type_field() == opr->type_field(); 373 } 374 bool is_same_register(LIR_Opr opr) { 375 return (is_register() && opr->is_register() && 376 kind_field() == opr->kind_field() && 377 (value() & no_type_mask) == (opr->value() & no_type_mask)); 378 } 379 380 bool is_pointer() const { return check_value_mask(pointer_mask, pointer_value); } 381 bool is_illegal() const { return kind_field() == illegal_value; } 382 bool is_valid() const { return kind_field() != illegal_value; } 383 384 bool is_register() const { return is_cpu_register() || is_fpu_register(); } 385 bool is_virtual() const { return is_virtual_cpu() || is_virtual_fpu(); } 386 387 bool is_constant() const { return is_pointer() && pointer()->as_constant() != NULL; } 388 bool is_address() const { return is_pointer() && pointer()->as_address() != NULL; } 389 390 bool is_float_kind() const { return is_pointer() ? pointer()->is_float_kind() : (kind_field() == fpu_register); } 391 bool is_oop() const; 392 393 // semantic for fpu- and xmm-registers: 394 // * is_float and is_double return true for xmm_registers 395 // (so is_single_fpu and is_single_xmm are true) 396 // * So you must always check for is_???_xmm prior to is_???_fpu to 397 // distinguish between fpu- and xmm-registers 398 399 bool is_stack() const { validate_type(); return check_value_mask(kind_mask, stack_value); } 400 bool is_single_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask, stack_value | single_size); } 401 bool is_double_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask, stack_value | double_size); } 402 403 bool is_cpu_register() const { validate_type(); return check_value_mask(kind_mask, cpu_register); } 404 bool is_virtual_cpu() const { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register | virtual_mask); } 405 bool is_fixed_cpu() const { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register); } 406 bool is_single_cpu() const { validate_type(); return check_value_mask(kind_mask | size_mask, cpu_register | single_size); } 407 bool is_double_cpu() const { validate_type(); return check_value_mask(kind_mask | size_mask, cpu_register | double_size); } 408 409 bool is_fpu_register() const { validate_type(); return check_value_mask(kind_mask, fpu_register); } 410 bool is_virtual_fpu() const { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register | virtual_mask); } 411 bool is_fixed_fpu() const { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register); } 412 bool is_single_fpu() const { validate_type(); return check_value_mask(kind_mask | size_mask, fpu_register | single_size); } 413 bool is_double_fpu() const { validate_type(); return check_value_mask(kind_mask | size_mask, fpu_register | double_size); } 414 415 bool is_xmm_register() const { validate_type(); return check_value_mask(kind_mask | is_xmm_mask, fpu_register | is_xmm_mask); } 416 bool is_single_xmm() const { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | single_size | is_xmm_mask); } 417 bool is_double_xmm() const { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | double_size | is_xmm_mask); } 418 419 // fast accessor functions for special bits that do not work for pointers 420 // (in this functions, the check for is_pointer() is omitted) 421 bool is_single_word() const { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, single_size); } 422 bool is_double_word() const { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, double_size); } 423 bool is_virtual_register() const { assert(is_register(), "type check"); return check_value_mask(virtual_mask, virtual_mask); } 424 bool is_oop_register() const { assert(is_register() || is_stack(), "type check"); return type_field_valid() == object_type; } 425 BasicType type_register() const { assert(is_register() || is_stack(), "type check"); return as_BasicType(type_field_valid()); } 426 427 bool is_last_use() const { assert(is_register(), "only works for registers"); return (value() & last_use_mask) != 0; } 428 bool is_fpu_stack_offset() const { assert(is_register(), "only works for registers"); return (value() & is_fpu_stack_offset_mask) != 0; } 429 LIR_Opr make_last_use() { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | last_use_mask); } 430 LIR_Opr make_fpu_stack_offset() { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | is_fpu_stack_offset_mask); } 431 432 433 int single_stack_ix() const { assert(is_single_stack() && !is_virtual(), "type check"); return (int)data(); } 434 int double_stack_ix() const { assert(is_double_stack() && !is_virtual(), "type check"); return (int)data(); } 435 RegNr cpu_regnr() const { assert(is_single_cpu() && !is_virtual(), "type check"); return (RegNr)data(); } 436 RegNr cpu_regnrLo() const { assert(is_double_cpu() && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); } 437 RegNr cpu_regnrHi() const { assert(is_double_cpu() && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); } 438 RegNr fpu_regnr() const { assert(is_single_fpu() && !is_virtual(), "type check"); return (RegNr)data(); } 439 RegNr fpu_regnrLo() const { assert(is_double_fpu() && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); } 440 RegNr fpu_regnrHi() const { assert(is_double_fpu() && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); } 441 RegNr xmm_regnr() const { assert(is_single_xmm() && !is_virtual(), "type check"); return (RegNr)data(); } 442 RegNr xmm_regnrLo() const { assert(is_double_xmm() && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); } 443 RegNr xmm_regnrHi() const { assert(is_double_xmm() && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); } 444 int vreg_number() const { assert(is_virtual(), "type check"); return (RegNr)data(); } 445 446 LIR_OprPtr* pointer() const { assert(_value != 0 && is_pointer(), "nullness and type check"); return (LIR_OprPtr*)_value; } 447 LIR_Const* as_constant_ptr() const { return pointer()->as_constant(); } 448 LIR_Address* as_address_ptr() const { return pointer()->as_address(); } 449 450 Register as_register() const; 451 Register as_register_lo() const; 452 Register as_register_hi() const; 453 454 Register as_pointer_register() { 455 #ifdef _LP64 456 if (is_double_cpu()) { 457 assert(as_register_lo() == as_register_hi(), "should be a single register"); 458 return as_register_lo(); 459 } 460 #endif 461 return as_register(); 462 } 463 464 FloatRegister as_float_reg () const; 465 FloatRegister as_double_reg () const; 466 #ifdef X86 467 XMMRegister as_xmm_float_reg () const; 468 XMMRegister as_xmm_double_reg() const; 469 // for compatibility with RInfo 470 int fpu() const { return lo_reg_half(); } 471 #endif 472 473 jint as_jint() const { return as_constant_ptr()->as_jint(); } 474 jlong as_jlong() const { return as_constant_ptr()->as_jlong(); } 475 jfloat as_jfloat() const { return as_constant_ptr()->as_jfloat(); } 476 jdouble as_jdouble() const { return as_constant_ptr()->as_jdouble(); } 477 jobject as_jobject() const { return as_constant_ptr()->as_jobject(); } 478 479 void print() const PRODUCT_RETURN; 480 void print(outputStream* out) const PRODUCT_RETURN; 481 }; 482 483 inline LIR_Opr::OprType as_OprType(BasicType type) { 484 switch (type) { 485 case T_INT: return LIR_Opr::int_type; 486 case T_LONG: return LIR_Opr::long_type; 487 case T_FLOAT: return LIR_Opr::float_type; 488 case T_DOUBLE: return LIR_Opr::double_type; 489 case T_OBJECT: 490 case T_ARRAY: return LIR_Opr::object_type; 491 case T_ADDRESS: return LIR_Opr::address_type; 492 case T_METADATA: return LIR_Opr::metadata_type; 493 case T_ILLEGAL: // fall through 494 default: ShouldNotReachHere(); return LIR_Opr::unknown_type; 495 } 496 } 497 498 inline BasicType as_BasicType(LIR_Opr::OprType t) { 499 switch (t) { 500 case LIR_Opr::int_type: return T_INT; 501 case LIR_Opr::long_type: return T_LONG; 502 case LIR_Opr::float_type: return T_FLOAT; 503 case LIR_Opr::double_type: return T_DOUBLE; 504 case LIR_Opr::object_type: return T_OBJECT; 505 case LIR_Opr::address_type: return T_ADDRESS; 506 case LIR_Opr::metadata_type:return T_METADATA; 507 case LIR_Opr::unknown_type: // fall through 508 default: ShouldNotReachHere(); return T_ILLEGAL; 509 } 510 } 511 512 513 // LIR_Address 514 class LIR_Address: public LIR_OprPtr { 515 friend class LIR_OpVisitState; 516 517 public: 518 // NOTE: currently these must be the log2 of the scale factor (and 519 // must also be equivalent to the ScaleFactor enum in 520 // assembler_i486.hpp) 521 enum Scale { 522 times_1 = 0, 523 times_2 = 1, 524 times_4 = 2, 525 times_8 = 3 526 }; 527 528 private: 529 LIR_Opr _base; 530 LIR_Opr _index; 531 Scale _scale; 532 intx _disp; 533 BasicType _type; 534 535 public: 536 LIR_Address(LIR_Opr base, LIR_Opr index, BasicType type): 537 _base(base) 538 , _index(index) 539 , _scale(times_1) 540 , _disp(0) 541 , _type(type) { verify(); } 542 543 LIR_Address(LIR_Opr base, intx disp, BasicType type): 544 _base(base) 545 , _index(LIR_Opr::illegalOpr()) 546 , _scale(times_1) 547 , _disp(disp) 548 , _type(type) { verify(); } 549 550 LIR_Address(LIR_Opr base, BasicType type): 551 _base(base) 552 , _index(LIR_Opr::illegalOpr()) 553 , _scale(times_1) 554 , _disp(0) 555 , _type(type) { verify(); } 556 557 LIR_Address(LIR_Opr base, LIR_Opr index, intx disp, BasicType type): 558 _base(base) 559 , _index(index) 560 , _scale(times_1) 561 , _disp(disp) 562 , _type(type) { verify(); } 563 564 LIR_Address(LIR_Opr base, LIR_Opr index, Scale scale, intx disp, BasicType type): 565 _base(base) 566 , _index(index) 567 , _scale(scale) 568 , _disp(disp) 569 , _type(type) { verify(); } 570 571 LIR_Opr base() const { return _base; } 572 LIR_Opr index() const { return _index; } 573 Scale scale() const { return _scale; } 574 intx disp() const { return _disp; } 575 576 bool equals(LIR_Address* other) const { return base() == other->base() && index() == other->index() && disp() == other->disp() && scale() == other->scale(); } 577 578 virtual LIR_Address* as_address() { return this; } 579 virtual BasicType type() const { return _type; } 580 virtual void print_value_on(outputStream* out) const PRODUCT_RETURN; 581 582 void verify() const PRODUCT_RETURN; 583 584 static Scale scale(BasicType type); 585 }; 586 587 588 // operand factory 589 class LIR_OprFact: public AllStatic { 590 public: 591 592 static LIR_Opr illegalOpr; 593 static LIR_Opr nullOpr; 594 595 static LIR_Opr single_cpu(int reg) { 596 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) | 597 LIR_Opr::int_type | 598 LIR_Opr::cpu_register | 599 LIR_Opr::single_size); 600 } 601 static LIR_Opr single_cpu_oop(int reg) { 602 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) | 603 LIR_Opr::object_type | 604 LIR_Opr::cpu_register | 605 LIR_Opr::single_size); 606 } 607 static LIR_Opr single_cpu_address(int reg) { 608 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) | 609 LIR_Opr::address_type | 610 LIR_Opr::cpu_register | 611 LIR_Opr::single_size); 612 } 613 static LIR_Opr single_cpu_metadata(int reg) { 614 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) | 615 LIR_Opr::metadata_type | 616 LIR_Opr::cpu_register | 617 LIR_Opr::single_size); 618 } 619 static LIR_Opr double_cpu(int reg1, int reg2) { 620 LP64_ONLY(assert(reg1 == reg2, "must be identical")); 621 return (LIR_Opr)(intptr_t)((reg1 << LIR_Opr::reg1_shift) | 622 (reg2 << LIR_Opr::reg2_shift) | 623 LIR_Opr::long_type | 624 LIR_Opr::cpu_register | 625 LIR_Opr::double_size); 626 } 627 628 static LIR_Opr single_fpu(int reg) { 629 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) | 630 LIR_Opr::float_type | 631 LIR_Opr::fpu_register | 632 LIR_Opr::single_size); 633 } 634 635 // Platform dependent. 636 static LIR_Opr double_fpu(int reg1, int reg2 = -1 /*fnoreg*/); 637 638 #ifdef ARM32 639 static LIR_Opr single_softfp(int reg) { 640 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) | 641 LIR_Opr::float_type | 642 LIR_Opr::cpu_register | 643 LIR_Opr::single_size); 644 } 645 static LIR_Opr double_softfp(int reg1, int reg2) { 646 return (LIR_Opr)(intptr_t)((reg1 << LIR_Opr::reg1_shift) | 647 (reg2 << LIR_Opr::reg2_shift) | 648 LIR_Opr::double_type | 649 LIR_Opr::cpu_register | 650 LIR_Opr::double_size); 651 } 652 #endif // ARM32 653 654 #if defined(X86) 655 static LIR_Opr single_xmm(int reg) { 656 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) | 657 LIR_Opr::float_type | 658 LIR_Opr::fpu_register | 659 LIR_Opr::single_size | 660 LIR_Opr::is_xmm_mask); 661 } 662 static LIR_Opr double_xmm(int reg) { 663 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) | 664 (reg << LIR_Opr::reg2_shift) | 665 LIR_Opr::double_type | 666 LIR_Opr::fpu_register | 667 LIR_Opr::double_size | 668 LIR_Opr::is_xmm_mask); 669 } 670 #endif // X86 671 672 static LIR_Opr virtual_register(int index, BasicType type) { 673 if (index > LIR_Opr::vreg_max) { 674 // Running out of virtual registers. Caller should bailout. 675 return illegalOpr; 676 } 677 678 LIR_Opr res; 679 switch (type) { 680 case T_OBJECT: // fall through 681 case T_ARRAY: 682 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 683 LIR_Opr::object_type | 684 LIR_Opr::cpu_register | 685 LIR_Opr::single_size | 686 LIR_Opr::virtual_mask); 687 break; 688 689 case T_METADATA: 690 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 691 LIR_Opr::metadata_type| 692 LIR_Opr::cpu_register | 693 LIR_Opr::single_size | 694 LIR_Opr::virtual_mask); 695 break; 696 697 case T_INT: 698 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 699 LIR_Opr::int_type | 700 LIR_Opr::cpu_register | 701 LIR_Opr::single_size | 702 LIR_Opr::virtual_mask); 703 break; 704 705 case T_ADDRESS: 706 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 707 LIR_Opr::address_type | 708 LIR_Opr::cpu_register | 709 LIR_Opr::single_size | 710 LIR_Opr::virtual_mask); 711 break; 712 713 case T_LONG: 714 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 715 LIR_Opr::long_type | 716 LIR_Opr::cpu_register | 717 LIR_Opr::double_size | 718 LIR_Opr::virtual_mask); 719 break; 720 721 #ifdef __SOFTFP__ 722 case T_FLOAT: 723 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 724 LIR_Opr::float_type | 725 LIR_Opr::cpu_register | 726 LIR_Opr::single_size | 727 LIR_Opr::virtual_mask); 728 break; 729 case T_DOUBLE: 730 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 731 LIR_Opr::double_type | 732 LIR_Opr::cpu_register | 733 LIR_Opr::double_size | 734 LIR_Opr::virtual_mask); 735 break; 736 #else // __SOFTFP__ 737 case T_FLOAT: 738 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 739 LIR_Opr::float_type | 740 LIR_Opr::fpu_register | 741 LIR_Opr::single_size | 742 LIR_Opr::virtual_mask); 743 break; 744 745 case 746 T_DOUBLE: res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 747 LIR_Opr::double_type | 748 LIR_Opr::fpu_register | 749 LIR_Opr::double_size | 750 LIR_Opr::virtual_mask); 751 break; 752 #endif // __SOFTFP__ 753 default: ShouldNotReachHere(); res = illegalOpr; 754 } 755 756 #ifdef ASSERT 757 res->validate_type(); 758 assert(res->vreg_number() == index, "conversion check"); 759 assert(index >= LIR_Opr::vreg_base, "must start at vreg_base"); 760 761 // old-style calculation; check if old and new method are equal 762 LIR_Opr::OprType t = as_OprType(type); 763 #ifdef __SOFTFP__ 764 LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 765 t | 766 LIR_Opr::cpu_register | 767 LIR_Opr::size_for(type) | LIR_Opr::virtual_mask); 768 #else // __SOFTFP__ 769 LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | t | 770 ((type == T_FLOAT || type == T_DOUBLE) ? LIR_Opr::fpu_register : LIR_Opr::cpu_register) | 771 LIR_Opr::size_for(type) | LIR_Opr::virtual_mask); 772 assert(res == old_res, "old and new method not equal"); 773 #endif // __SOFTFP__ 774 #endif // ASSERT 775 776 return res; 777 } 778 779 // 'index' is computed by FrameMap::local_stack_pos(index); do not use other parameters as 780 // the index is platform independent; a double stack using indices 2 and 3 has always 781 // index 2. 782 static LIR_Opr stack(int index, BasicType type) { 783 LIR_Opr res; 784 switch (type) { 785 case T_OBJECT: // fall through 786 case T_ARRAY: 787 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 788 LIR_Opr::object_type | 789 LIR_Opr::stack_value | 790 LIR_Opr::single_size); 791 break; 792 793 case T_METADATA: 794 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 795 LIR_Opr::metadata_type | 796 LIR_Opr::stack_value | 797 LIR_Opr::single_size); 798 break; 799 case T_INT: 800 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 801 LIR_Opr::int_type | 802 LIR_Opr::stack_value | 803 LIR_Opr::single_size); 804 break; 805 806 case T_ADDRESS: 807 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 808 LIR_Opr::address_type | 809 LIR_Opr::stack_value | 810 LIR_Opr::single_size); 811 break; 812 813 case T_LONG: 814 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 815 LIR_Opr::long_type | 816 LIR_Opr::stack_value | 817 LIR_Opr::double_size); 818 break; 819 820 case T_FLOAT: 821 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 822 LIR_Opr::float_type | 823 LIR_Opr::stack_value | 824 LIR_Opr::single_size); 825 break; 826 case T_DOUBLE: 827 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 828 LIR_Opr::double_type | 829 LIR_Opr::stack_value | 830 LIR_Opr::double_size); 831 break; 832 833 default: ShouldNotReachHere(); res = illegalOpr; 834 } 835 836 #ifdef ASSERT 837 assert(index >= 0, "index must be positive"); 838 assert(index == (int)res->data(), "conversion check"); 839 840 LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 841 LIR_Opr::stack_value | 842 as_OprType(type) | 843 LIR_Opr::size_for(type)); 844 assert(res == old_res, "old and new method not equal"); 845 #endif 846 847 return res; 848 } 849 850 static LIR_Opr intConst(jint i) { return (LIR_Opr)(new LIR_Const(i)); } 851 static LIR_Opr longConst(jlong l) { return (LIR_Opr)(new LIR_Const(l)); } 852 static LIR_Opr floatConst(jfloat f) { return (LIR_Opr)(new LIR_Const(f)); } 853 static LIR_Opr doubleConst(jdouble d) { return (LIR_Opr)(new LIR_Const(d)); } 854 static LIR_Opr oopConst(jobject o) { return (LIR_Opr)(new LIR_Const(o)); } 855 static LIR_Opr address(LIR_Address* a) { return (LIR_Opr)a; } 856 static LIR_Opr intptrConst(void* p) { return (LIR_Opr)(new LIR_Const(p)); } 857 static LIR_Opr intptrConst(intptr_t v) { return (LIR_Opr)(new LIR_Const((void*)v)); } 858 static LIR_Opr illegal() { return (LIR_Opr)-1; } 859 static LIR_Opr addressConst(jint i) { return (LIR_Opr)(new LIR_Const(i, true)); } 860 static LIR_Opr metadataConst(Metadata* m) { return (LIR_Opr)(new LIR_Const(m)); } 861 862 static LIR_Opr value_type(ValueType* type); 863 }; 864 865 866 //------------------------------------------------------------------------------- 867 // LIR Instructions 868 //------------------------------------------------------------------------------- 869 // 870 // Note: 871 // - every instruction has a result operand 872 // - every instruction has an CodeEmitInfo operand (can be revisited later) 873 // - every instruction has a LIR_OpCode operand 874 // - LIR_OpN, means an instruction that has N input operands 875 // 876 // class hierarchy: 877 // 878 class LIR_Op; 879 class LIR_Op0; 880 class LIR_OpLabel; 881 class LIR_Op1; 882 class LIR_OpBranch; 883 class LIR_OpConvert; 884 class LIR_OpAllocObj; 885 class LIR_OpReturn; 886 class LIR_OpRoundFP; 887 class LIR_Op2; 888 class LIR_OpDelay; 889 class LIR_Op3; 890 class LIR_OpAllocArray; 891 class LIR_Op4; 892 class LIR_OpCall; 893 class LIR_OpJavaCall; 894 class LIR_OpRTCall; 895 class LIR_OpArrayCopy; 896 class LIR_OpUpdateCRC32; 897 class LIR_OpLock; 898 class LIR_OpTypeCheck; 899 class LIR_OpCompareAndSwap; 900 class LIR_OpLoadKlass; 901 class LIR_OpProfileCall; 902 class LIR_OpProfileType; 903 #ifdef ASSERT 904 class LIR_OpAssert; 905 #endif 906 907 // LIR operation codes 908 enum LIR_Code { 909 lir_none 910 , begin_op0 911 , lir_label 912 , lir_nop 913 , lir_std_entry 914 , lir_osr_entry 915 , lir_fpop_raw 916 , lir_breakpoint 917 , lir_rtcall 918 , lir_membar 919 , lir_membar_acquire 920 , lir_membar_release 921 , lir_membar_loadload 922 , lir_membar_storestore 923 , lir_membar_loadstore 924 , lir_membar_storeload 925 , lir_get_thread 926 , lir_on_spin_wait 927 , end_op0 928 , begin_op1 929 , lir_fxch 930 , lir_fld 931 , lir_push 932 , lir_pop 933 , lir_null_check 934 , lir_return 935 , lir_leal 936 , lir_move 937 , lir_convert 938 , lir_alloc_object 939 , lir_monaddr 940 , lir_roundfp 941 , lir_safepoint 942 , lir_unwind 943 , lir_load_klass 944 , end_op1 945 , begin_op2 946 , lir_branch 947 , lir_cond_float_branch 948 , lir_cmp 949 , lir_cmp_l2i 950 , lir_ucmp_fd2i 951 , lir_cmp_fd2i 952 , lir_add 953 , lir_sub 954 , lir_mul 955 , lir_div 956 , lir_rem 957 , lir_sqrt 958 , lir_abs 959 , lir_neg 960 , lir_tan 961 , lir_log10 962 , lir_logic_and 963 , lir_logic_or 964 , lir_logic_xor 965 , lir_shl 966 , lir_shr 967 , lir_ushr 968 , lir_alloc_array 969 , lir_throw 970 , lir_xadd 971 , lir_xchg 972 , end_op2 973 , begin_op3 974 , lir_idiv 975 , lir_irem 976 , lir_fmad 977 , lir_fmaf 978 , end_op3 979 , begin_op4 980 , lir_cmove 981 , end_op4 982 , begin_opJavaCall 983 , lir_static_call 984 , lir_optvirtual_call 985 , lir_icvirtual_call 986 , lir_dynamic_call 987 , end_opJavaCall 988 , begin_opArrayCopy 989 , lir_arraycopy 990 , end_opArrayCopy 991 , begin_opUpdateCRC32 992 , lir_updatecrc32 993 , end_opUpdateCRC32 994 , begin_opLock 995 , lir_lock 996 , lir_unlock 997 , end_opLock 998 , begin_delay_slot 999 , lir_delay_slot 1000 , end_delay_slot 1001 , begin_opTypeCheck 1002 , lir_instanceof 1003 , lir_checkcast 1004 , lir_store_check 1005 , end_opTypeCheck 1006 , begin_opCompareAndSwap 1007 , lir_cas_long 1008 , lir_cas_obj 1009 , lir_cas_int 1010 , end_opCompareAndSwap 1011 , begin_opMDOProfile 1012 , lir_profile_call 1013 , lir_profile_type 1014 , end_opMDOProfile 1015 , begin_opAssert 1016 , lir_assert 1017 , end_opAssert 1018 #ifdef INCLUDE_ZGC 1019 , begin_opZLoadBarrierTest 1020 , lir_zloadbarrier_test 1021 , end_opZLoadBarrierTest 1022 #endif 1023 }; 1024 1025 1026 enum LIR_Condition { 1027 lir_cond_equal 1028 , lir_cond_notEqual 1029 , lir_cond_less 1030 , lir_cond_lessEqual 1031 , lir_cond_greaterEqual 1032 , lir_cond_greater 1033 , lir_cond_belowEqual 1034 , lir_cond_aboveEqual 1035 , lir_cond_always 1036 , lir_cond_unknown = -1 1037 }; 1038 1039 1040 enum LIR_PatchCode { 1041 lir_patch_none, 1042 lir_patch_low, 1043 lir_patch_high, 1044 lir_patch_normal 1045 }; 1046 1047 1048 enum LIR_MoveKind { 1049 lir_move_normal, 1050 lir_move_volatile, 1051 lir_move_wide, 1052 lir_move_max_flag 1053 }; 1054 1055 1056 // -------------------------------------------------- 1057 // LIR_Op 1058 // -------------------------------------------------- 1059 class LIR_Op: public CompilationResourceObj { 1060 friend class LIR_OpVisitState; 1061 1062 #ifdef ASSERT 1063 private: 1064 const char * _file; 1065 int _line; 1066 #endif 1067 1068 protected: 1069 LIR_Opr _result; 1070 unsigned short _code; 1071 unsigned short _flags; 1072 CodeEmitInfo* _info; 1073 int _id; // value id for register allocation 1074 int _fpu_pop_count; 1075 Instruction* _source; // for debugging 1076 1077 static void print_condition(outputStream* out, LIR_Condition cond) PRODUCT_RETURN; 1078 1079 protected: 1080 static bool is_in_range(LIR_Code test, LIR_Code start, LIR_Code end) { return start < test && test < end; } 1081 1082 public: 1083 LIR_Op() 1084 : 1085 #ifdef ASSERT 1086 _file(NULL) 1087 , _line(0), 1088 #endif 1089 _result(LIR_OprFact::illegalOpr) 1090 , _code(lir_none) 1091 , _flags(0) 1092 , _info(NULL) 1093 , _id(-1) 1094 , _fpu_pop_count(0) 1095 , _source(NULL) {} 1096 1097 LIR_Op(LIR_Code code, LIR_Opr result, CodeEmitInfo* info) 1098 : 1099 #ifdef ASSERT 1100 _file(NULL) 1101 , _line(0), 1102 #endif 1103 _result(result) 1104 , _code(code) 1105 , _flags(0) 1106 , _info(info) 1107 , _id(-1) 1108 , _fpu_pop_count(0) 1109 , _source(NULL) {} 1110 1111 CodeEmitInfo* info() const { return _info; } 1112 LIR_Code code() const { return (LIR_Code)_code; } 1113 LIR_Opr result_opr() const { return _result; } 1114 void set_result_opr(LIR_Opr opr) { _result = opr; } 1115 1116 #ifdef ASSERT 1117 void set_file_and_line(const char * file, int line) { 1118 _file = file; 1119 _line = line; 1120 } 1121 #endif 1122 1123 virtual const char * name() const PRODUCT_RETURN0; 1124 virtual void visit(LIR_OpVisitState* state); 1125 1126 int id() const { return _id; } 1127 void set_id(int id) { _id = id; } 1128 1129 // FPU stack simulation helpers -- only used on Intel 1130 void set_fpu_pop_count(int count) { assert(count >= 0 && count <= 1, "currently only 0 and 1 are valid"); _fpu_pop_count = count; } 1131 int fpu_pop_count() const { return _fpu_pop_count; } 1132 bool pop_fpu_stack() { return _fpu_pop_count > 0; } 1133 1134 Instruction* source() const { return _source; } 1135 void set_source(Instruction* ins) { _source = ins; } 1136 1137 virtual void emit_code(LIR_Assembler* masm) = 0; 1138 virtual void print_instr(outputStream* out) const = 0; 1139 virtual void print_on(outputStream* st) const PRODUCT_RETURN; 1140 1141 virtual bool is_patching() { return false; } 1142 virtual LIR_OpCall* as_OpCall() { return NULL; } 1143 virtual LIR_OpJavaCall* as_OpJavaCall() { return NULL; } 1144 virtual LIR_OpLabel* as_OpLabel() { return NULL; } 1145 virtual LIR_OpDelay* as_OpDelay() { return NULL; } 1146 virtual LIR_OpLock* as_OpLock() { return NULL; } 1147 virtual LIR_OpAllocArray* as_OpAllocArray() { return NULL; } 1148 virtual LIR_OpAllocObj* as_OpAllocObj() { return NULL; } 1149 virtual LIR_OpRoundFP* as_OpRoundFP() { return NULL; } 1150 virtual LIR_OpBranch* as_OpBranch() { return NULL; } 1151 virtual LIR_OpReturn* as_OpReturn() { return NULL; } 1152 virtual LIR_OpRTCall* as_OpRTCall() { return NULL; } 1153 virtual LIR_OpConvert* as_OpConvert() { return NULL; } 1154 virtual LIR_Op0* as_Op0() { return NULL; } 1155 virtual LIR_Op1* as_Op1() { return NULL; } 1156 virtual LIR_Op2* as_Op2() { return NULL; } 1157 virtual LIR_Op3* as_Op3() { return NULL; } 1158 virtual LIR_Op4* as_Op4() { return NULL; } 1159 virtual LIR_OpArrayCopy* as_OpArrayCopy() { return NULL; } 1160 virtual LIR_OpUpdateCRC32* as_OpUpdateCRC32() { return NULL; } 1161 virtual LIR_OpTypeCheck* as_OpTypeCheck() { return NULL; } 1162 virtual LIR_OpCompareAndSwap* as_OpCompareAndSwap() { return NULL; } 1163 virtual LIR_OpLoadKlass* as_OpLoadKlass() { return NULL; } 1164 virtual LIR_OpProfileCall* as_OpProfileCall() { return NULL; } 1165 virtual LIR_OpProfileType* as_OpProfileType() { return NULL; } 1166 #ifdef ASSERT 1167 virtual LIR_OpAssert* as_OpAssert() { return NULL; } 1168 #endif 1169 1170 virtual void verify() const {} 1171 }; 1172 1173 // for calls 1174 class LIR_OpCall: public LIR_Op { 1175 friend class LIR_OpVisitState; 1176 1177 protected: 1178 address _addr; 1179 LIR_OprList* _arguments; 1180 protected: 1181 LIR_OpCall(LIR_Code code, address addr, LIR_Opr result, 1182 LIR_OprList* arguments, CodeEmitInfo* info = NULL) 1183 : LIR_Op(code, result, info) 1184 , _addr(addr) 1185 , _arguments(arguments) {} 1186 1187 public: 1188 address addr() const { return _addr; } 1189 const LIR_OprList* arguments() const { return _arguments; } 1190 virtual LIR_OpCall* as_OpCall() { return this; } 1191 }; 1192 1193 1194 // -------------------------------------------------- 1195 // LIR_OpJavaCall 1196 // -------------------------------------------------- 1197 class LIR_OpJavaCall: public LIR_OpCall { 1198 friend class LIR_OpVisitState; 1199 1200 private: 1201 ciMethod* _method; 1202 LIR_Opr _receiver; 1203 LIR_Opr _method_handle_invoke_SP_save_opr; // Used in LIR_OpVisitState::visit to store the reference to FrameMap::method_handle_invoke_SP_save_opr. 1204 1205 public: 1206 LIR_OpJavaCall(LIR_Code code, ciMethod* method, 1207 LIR_Opr receiver, LIR_Opr result, 1208 address addr, LIR_OprList* arguments, 1209 CodeEmitInfo* info) 1210 : LIR_OpCall(code, addr, result, arguments, info) 1211 , _method(method) 1212 , _receiver(receiver) 1213 , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr) 1214 { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); } 1215 1216 LIR_OpJavaCall(LIR_Code code, ciMethod* method, 1217 LIR_Opr receiver, LIR_Opr result, intptr_t vtable_offset, 1218 LIR_OprList* arguments, CodeEmitInfo* info) 1219 : LIR_OpCall(code, (address)vtable_offset, result, arguments, info) 1220 , _method(method) 1221 , _receiver(receiver) 1222 , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr) 1223 { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); } 1224 1225 LIR_Opr receiver() const { return _receiver; } 1226 ciMethod* method() const { return _method; } 1227 1228 // JSR 292 support. 1229 bool is_invokedynamic() const { return code() == lir_dynamic_call; } 1230 bool is_method_handle_invoke() const { 1231 return method()->is_compiled_lambda_form() || // Java-generated lambda form 1232 method()->is_method_handle_intrinsic(); // JVM-generated MH intrinsic 1233 } 1234 1235 virtual void emit_code(LIR_Assembler* masm); 1236 virtual LIR_OpJavaCall* as_OpJavaCall() { return this; } 1237 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1238 }; 1239 1240 // -------------------------------------------------- 1241 // LIR_OpLabel 1242 // -------------------------------------------------- 1243 // Location where a branch can continue 1244 class LIR_OpLabel: public LIR_Op { 1245 friend class LIR_OpVisitState; 1246 1247 private: 1248 Label* _label; 1249 public: 1250 LIR_OpLabel(Label* lbl) 1251 : LIR_Op(lir_label, LIR_OprFact::illegalOpr, NULL) 1252 , _label(lbl) {} 1253 Label* label() const { return _label; } 1254 1255 virtual void emit_code(LIR_Assembler* masm); 1256 virtual LIR_OpLabel* as_OpLabel() { return this; } 1257 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1258 }; 1259 1260 // LIR_OpArrayCopy 1261 class LIR_OpArrayCopy: public LIR_Op { 1262 friend class LIR_OpVisitState; 1263 1264 private: 1265 ArrayCopyStub* _stub; 1266 LIR_Opr _src; 1267 LIR_Opr _src_pos; 1268 LIR_Opr _dst; 1269 LIR_Opr _dst_pos; 1270 LIR_Opr _length; 1271 LIR_Opr _tmp; 1272 ciArrayKlass* _expected_type; 1273 int _flags; 1274 1275 public: 1276 enum Flags { 1277 src_null_check = 1 << 0, 1278 dst_null_check = 1 << 1, 1279 src_pos_positive_check = 1 << 2, 1280 dst_pos_positive_check = 1 << 3, 1281 length_positive_check = 1 << 4, 1282 src_range_check = 1 << 5, 1283 dst_range_check = 1 << 6, 1284 type_check = 1 << 7, 1285 overlapping = 1 << 8, 1286 unaligned = 1 << 9, 1287 src_objarray = 1 << 10, 1288 dst_objarray = 1 << 11, 1289 all_flags = (1 << 12) - 1 1290 }; 1291 1292 LIR_OpArrayCopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp, 1293 ciArrayKlass* expected_type, int flags, CodeEmitInfo* info); 1294 1295 LIR_Opr src() const { return _src; } 1296 LIR_Opr src_pos() const { return _src_pos; } 1297 LIR_Opr dst() const { return _dst; } 1298 LIR_Opr dst_pos() const { return _dst_pos; } 1299 LIR_Opr length() const { return _length; } 1300 LIR_Opr tmp() const { return _tmp; } 1301 int flags() const { return _flags; } 1302 ciArrayKlass* expected_type() const { return _expected_type; } 1303 ArrayCopyStub* stub() const { return _stub; } 1304 1305 virtual void emit_code(LIR_Assembler* masm); 1306 virtual LIR_OpArrayCopy* as_OpArrayCopy() { return this; } 1307 void print_instr(outputStream* out) const PRODUCT_RETURN; 1308 }; 1309 1310 // LIR_OpUpdateCRC32 1311 class LIR_OpUpdateCRC32: public LIR_Op { 1312 friend class LIR_OpVisitState; 1313 1314 private: 1315 LIR_Opr _crc; 1316 LIR_Opr _val; 1317 1318 public: 1319 1320 LIR_OpUpdateCRC32(LIR_Opr crc, LIR_Opr val, LIR_Opr res); 1321 1322 LIR_Opr crc() const { return _crc; } 1323 LIR_Opr val() const { return _val; } 1324 1325 virtual void emit_code(LIR_Assembler* masm); 1326 virtual LIR_OpUpdateCRC32* as_OpUpdateCRC32() { return this; } 1327 void print_instr(outputStream* out) const PRODUCT_RETURN; 1328 }; 1329 1330 // -------------------------------------------------- 1331 // LIR_Op0 1332 // -------------------------------------------------- 1333 class LIR_Op0: public LIR_Op { 1334 friend class LIR_OpVisitState; 1335 1336 public: 1337 LIR_Op0(LIR_Code code) 1338 : LIR_Op(code, LIR_OprFact::illegalOpr, NULL) { assert(is_in_range(code, begin_op0, end_op0), "code check"); } 1339 LIR_Op0(LIR_Code code, LIR_Opr result, CodeEmitInfo* info = NULL) 1340 : LIR_Op(code, result, info) { assert(is_in_range(code, begin_op0, end_op0), "code check"); } 1341 1342 virtual void emit_code(LIR_Assembler* masm); 1343 virtual LIR_Op0* as_Op0() { return this; } 1344 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1345 }; 1346 1347 1348 // -------------------------------------------------- 1349 // LIR_Op1 1350 // -------------------------------------------------- 1351 1352 class LIR_Op1: public LIR_Op { 1353 friend class LIR_OpVisitState; 1354 1355 protected: 1356 LIR_Opr _opr; // input operand 1357 BasicType _type; // Operand types 1358 LIR_PatchCode _patch; // only required with patchin (NEEDS_CLEANUP: do we want a special instruction for patching?) 1359 1360 static void print_patch_code(outputStream* out, LIR_PatchCode code); 1361 1362 void set_kind(LIR_MoveKind kind) { 1363 assert(code() == lir_move, "must be"); 1364 _flags = kind; 1365 } 1366 1367 public: 1368 LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result = LIR_OprFact::illegalOpr, BasicType type = T_ILLEGAL, LIR_PatchCode patch = lir_patch_none, CodeEmitInfo* info = NULL) 1369 : LIR_Op(code, result, info) 1370 , _opr(opr) 1371 , _type(type) 1372 , _patch(patch) { assert(is_in_range(code, begin_op1, end_op1), "code check"); } 1373 1374 LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result, BasicType type, LIR_PatchCode patch, CodeEmitInfo* info, LIR_MoveKind kind) 1375 : LIR_Op(code, result, info) 1376 , _opr(opr) 1377 , _type(type) 1378 , _patch(patch) { 1379 assert(code == lir_move, "must be"); 1380 set_kind(kind); 1381 } 1382 1383 LIR_Op1(LIR_Code code, LIR_Opr opr, CodeEmitInfo* info) 1384 : LIR_Op(code, LIR_OprFact::illegalOpr, info) 1385 , _opr(opr) 1386 , _type(T_ILLEGAL) 1387 , _patch(lir_patch_none) { assert(is_in_range(code, begin_op1, end_op1), "code check"); } 1388 1389 LIR_Opr in_opr() const { return _opr; } 1390 LIR_PatchCode patch_code() const { return _patch; } 1391 BasicType type() const { return _type; } 1392 1393 LIR_MoveKind move_kind() const { 1394 assert(code() == lir_move, "must be"); 1395 return (LIR_MoveKind)_flags; 1396 } 1397 1398 virtual bool is_patching() { return _patch != lir_patch_none; } 1399 virtual void emit_code(LIR_Assembler* masm); 1400 virtual LIR_Op1* as_Op1() { return this; } 1401 virtual const char * name() const PRODUCT_RETURN0; 1402 1403 void set_in_opr(LIR_Opr opr) { _opr = opr; } 1404 1405 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1406 virtual void verify() const; 1407 }; 1408 1409 1410 // for runtime calls 1411 class LIR_OpRTCall: public LIR_OpCall { 1412 friend class LIR_OpVisitState; 1413 1414 private: 1415 LIR_Opr _tmp; 1416 public: 1417 LIR_OpRTCall(address addr, LIR_Opr tmp, 1418 LIR_Opr result, LIR_OprList* arguments, CodeEmitInfo* info = NULL) 1419 : LIR_OpCall(lir_rtcall, addr, result, arguments, info) 1420 , _tmp(tmp) {} 1421 1422 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1423 virtual void emit_code(LIR_Assembler* masm); 1424 virtual LIR_OpRTCall* as_OpRTCall() { return this; } 1425 1426 LIR_Opr tmp() const { return _tmp; } 1427 1428 virtual void verify() const; 1429 }; 1430 1431 1432 1433 class LIR_OpReturn: public LIR_Op1 { 1434 friend class LIR_OpVisitState; 1435 1436 private: 1437 C1SafepointPollStub* _stub; 1438 1439 public: 1440 LIR_OpReturn(LIR_Opr opr); 1441 1442 C1SafepointPollStub* stub() const { return _stub; } 1443 virtual LIR_OpReturn* as_OpReturn() { return this; } 1444 }; 1445 1446 class ConversionStub; 1447 1448 class LIR_OpConvert: public LIR_Op1 { 1449 friend class LIR_OpVisitState; 1450 1451 private: 1452 Bytecodes::Code _bytecode; 1453 ConversionStub* _stub; 1454 1455 public: 1456 LIR_OpConvert(Bytecodes::Code code, LIR_Opr opr, LIR_Opr result, ConversionStub* stub) 1457 : LIR_Op1(lir_convert, opr, result) 1458 , _bytecode(code) 1459 , _stub(stub) {} 1460 1461 Bytecodes::Code bytecode() const { return _bytecode; } 1462 ConversionStub* stub() const { return _stub; } 1463 1464 virtual void emit_code(LIR_Assembler* masm); 1465 virtual LIR_OpConvert* as_OpConvert() { return this; } 1466 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1467 1468 static void print_bytecode(outputStream* out, Bytecodes::Code code) PRODUCT_RETURN; 1469 }; 1470 1471 1472 // LIR_OpAllocObj 1473 class LIR_OpAllocObj : public LIR_Op1 { 1474 friend class LIR_OpVisitState; 1475 1476 private: 1477 LIR_Opr _tmp1; 1478 LIR_Opr _tmp2; 1479 LIR_Opr _tmp3; 1480 LIR_Opr _tmp4; 1481 int _hdr_size; 1482 int _obj_size; 1483 CodeStub* _stub; 1484 bool _init_check; 1485 1486 public: 1487 LIR_OpAllocObj(LIR_Opr klass, LIR_Opr result, 1488 LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, 1489 int hdr_size, int obj_size, bool init_check, CodeStub* stub) 1490 : LIR_Op1(lir_alloc_object, klass, result) 1491 , _tmp1(t1) 1492 , _tmp2(t2) 1493 , _tmp3(t3) 1494 , _tmp4(t4) 1495 , _hdr_size(hdr_size) 1496 , _obj_size(obj_size) 1497 , _stub(stub) 1498 , _init_check(init_check) { } 1499 1500 LIR_Opr klass() const { return in_opr(); } 1501 LIR_Opr obj() const { return result_opr(); } 1502 LIR_Opr tmp1() const { return _tmp1; } 1503 LIR_Opr tmp2() const { return _tmp2; } 1504 LIR_Opr tmp3() const { return _tmp3; } 1505 LIR_Opr tmp4() const { return _tmp4; } 1506 int header_size() const { return _hdr_size; } 1507 int object_size() const { return _obj_size; } 1508 bool init_check() const { return _init_check; } 1509 CodeStub* stub() const { return _stub; } 1510 1511 virtual void emit_code(LIR_Assembler* masm); 1512 virtual LIR_OpAllocObj * as_OpAllocObj () { return this; } 1513 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1514 }; 1515 1516 1517 // LIR_OpRoundFP 1518 class LIR_OpRoundFP : public LIR_Op1 { 1519 friend class LIR_OpVisitState; 1520 1521 private: 1522 LIR_Opr _tmp; 1523 1524 public: 1525 LIR_OpRoundFP(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result) 1526 : LIR_Op1(lir_roundfp, reg, result) 1527 , _tmp(stack_loc_temp) {} 1528 1529 LIR_Opr tmp() const { return _tmp; } 1530 virtual LIR_OpRoundFP* as_OpRoundFP() { return this; } 1531 void print_instr(outputStream* out) const PRODUCT_RETURN; 1532 }; 1533 1534 // LIR_OpTypeCheck 1535 class LIR_OpTypeCheck: public LIR_Op { 1536 friend class LIR_OpVisitState; 1537 1538 private: 1539 LIR_Opr _object; 1540 LIR_Opr _array; 1541 ciKlass* _klass; 1542 LIR_Opr _tmp1; 1543 LIR_Opr _tmp2; 1544 LIR_Opr _tmp3; 1545 bool _fast_check; 1546 CodeEmitInfo* _info_for_patch; 1547 CodeEmitInfo* _info_for_exception; 1548 CodeStub* _stub; 1549 ciMethod* _profiled_method; 1550 int _profiled_bci; 1551 bool _should_profile; 1552 1553 public: 1554 LIR_OpTypeCheck(LIR_Code code, LIR_Opr result, LIR_Opr object, ciKlass* klass, 1555 LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, 1556 CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub); 1557 LIR_OpTypeCheck(LIR_Code code, LIR_Opr object, LIR_Opr array, 1558 LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception); 1559 1560 LIR_Opr object() const { return _object; } 1561 LIR_Opr array() const { assert(code() == lir_store_check, "not valid"); return _array; } 1562 LIR_Opr tmp1() const { return _tmp1; } 1563 LIR_Opr tmp2() const { return _tmp2; } 1564 LIR_Opr tmp3() const { return _tmp3; } 1565 ciKlass* klass() const { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _klass; } 1566 bool fast_check() const { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _fast_check; } 1567 CodeEmitInfo* info_for_patch() const { return _info_for_patch; } 1568 CodeEmitInfo* info_for_exception() const { return _info_for_exception; } 1569 CodeStub* stub() const { return _stub; } 1570 1571 // MethodData* profiling 1572 void set_profiled_method(ciMethod *method) { _profiled_method = method; } 1573 void set_profiled_bci(int bci) { _profiled_bci = bci; } 1574 void set_should_profile(bool b) { _should_profile = b; } 1575 ciMethod* profiled_method() const { return _profiled_method; } 1576 int profiled_bci() const { return _profiled_bci; } 1577 bool should_profile() const { return _should_profile; } 1578 1579 virtual bool is_patching() { return _info_for_patch != NULL; } 1580 virtual void emit_code(LIR_Assembler* masm); 1581 virtual LIR_OpTypeCheck* as_OpTypeCheck() { return this; } 1582 void print_instr(outputStream* out) const PRODUCT_RETURN; 1583 }; 1584 1585 // LIR_Op2 1586 class LIR_Op2: public LIR_Op { 1587 friend class LIR_OpVisitState; 1588 1589 int _fpu_stack_size; // for sin/cos implementation on Intel 1590 1591 protected: 1592 LIR_Opr _opr1; 1593 LIR_Opr _opr2; 1594 BasicType _type; 1595 LIR_Opr _tmp1; 1596 LIR_Opr _tmp2; 1597 LIR_Opr _tmp3; 1598 LIR_Opr _tmp4; 1599 LIR_Opr _tmp5; 1600 LIR_Condition _condition; 1601 1602 void verify() const; 1603 1604 public: 1605 LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, CodeEmitInfo* info = NULL, BasicType type = T_ILLEGAL) 1606 : LIR_Op(code, LIR_OprFact::illegalOpr, info) 1607 , _fpu_stack_size(0) 1608 , _opr1(opr1) 1609 , _opr2(opr2) 1610 , _type(type) 1611 , _tmp1(LIR_OprFact::illegalOpr) 1612 , _tmp2(LIR_OprFact::illegalOpr) 1613 , _tmp3(LIR_OprFact::illegalOpr) 1614 , _tmp4(LIR_OprFact::illegalOpr) 1615 , _tmp5(LIR_OprFact::illegalOpr) 1616 , _condition(condition) { 1617 assert(code == lir_cmp || code == lir_branch || code == lir_cond_float_branch || code == lir_assert, "code check"); 1618 } 1619 1620 LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) 1621 : LIR_Op(code, result, NULL) 1622 , _fpu_stack_size(0) 1623 , _opr1(opr1) 1624 , _opr2(opr2) 1625 , _type(type) 1626 , _tmp1(LIR_OprFact::illegalOpr) 1627 , _tmp2(LIR_OprFact::illegalOpr) 1628 , _tmp3(LIR_OprFact::illegalOpr) 1629 , _tmp4(LIR_OprFact::illegalOpr) 1630 , _tmp5(LIR_OprFact::illegalOpr) 1631 , _condition(condition) { 1632 assert(code == lir_cmove, "code check"); 1633 assert(type != T_ILLEGAL, "cmove should have type"); 1634 } 1635 1636 LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result = LIR_OprFact::illegalOpr, 1637 CodeEmitInfo* info = NULL, BasicType type = T_ILLEGAL) 1638 : LIR_Op(code, result, info) 1639 , _fpu_stack_size(0) 1640 , _opr1(opr1) 1641 , _opr2(opr2) 1642 , _type(type) 1643 , _tmp1(LIR_OprFact::illegalOpr) 1644 , _tmp2(LIR_OprFact::illegalOpr) 1645 , _tmp3(LIR_OprFact::illegalOpr) 1646 , _tmp4(LIR_OprFact::illegalOpr) 1647 , _tmp5(LIR_OprFact::illegalOpr) 1648 , _condition(lir_cond_unknown) { 1649 assert(code != lir_cmp && code != lir_branch && code != lir_cond_float_branch && is_in_range(code, begin_op2, end_op2), "code check"); 1650 } 1651 1652 LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, LIR_Opr tmp1, LIR_Opr tmp2 = LIR_OprFact::illegalOpr, 1653 LIR_Opr tmp3 = LIR_OprFact::illegalOpr, LIR_Opr tmp4 = LIR_OprFact::illegalOpr, LIR_Opr tmp5 = LIR_OprFact::illegalOpr) 1654 : LIR_Op(code, result, NULL) 1655 , _fpu_stack_size(0) 1656 , _opr1(opr1) 1657 , _opr2(opr2) 1658 , _type(T_ILLEGAL) 1659 , _tmp1(tmp1) 1660 , _tmp2(tmp2) 1661 , _tmp3(tmp3) 1662 , _tmp4(tmp4) 1663 , _tmp5(tmp5) 1664 , _condition(lir_cond_unknown) { 1665 assert(code != lir_cmp && code != lir_branch && code != lir_cond_float_branch && is_in_range(code, begin_op2, end_op2), "code check"); 1666 } 1667 1668 LIR_Opr in_opr1() const { return _opr1; } 1669 LIR_Opr in_opr2() const { return _opr2; } 1670 BasicType type() const { return _type; } 1671 LIR_Opr tmp1_opr() const { return _tmp1; } 1672 LIR_Opr tmp2_opr() const { return _tmp2; } 1673 LIR_Opr tmp3_opr() const { return _tmp3; } 1674 LIR_Opr tmp4_opr() const { return _tmp4; } 1675 LIR_Opr tmp5_opr() const { return _tmp5; } 1676 LIR_Condition condition() const { 1677 assert(code() == lir_cmp || code() == lir_branch || code() == lir_cond_float_branch || code() == lir_assert, "only valid for branch and assert"); return _condition; 1678 } 1679 void set_condition(LIR_Condition condition) { 1680 assert(code() == lir_cmp || code() == lir_branch || code() == lir_cond_float_branch, "only valid for branch"); _condition = condition; 1681 } 1682 1683 void set_fpu_stack_size(int size) { _fpu_stack_size = size; } 1684 int fpu_stack_size() const { return _fpu_stack_size; } 1685 1686 void set_in_opr1(LIR_Opr opr) { _opr1 = opr; } 1687 void set_in_opr2(LIR_Opr opr) { _opr2 = opr; } 1688 1689 virtual void emit_code(LIR_Assembler* masm); 1690 virtual LIR_Op2* as_Op2() { return this; } 1691 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1692 }; 1693 1694 class LIR_OpBranch: public LIR_Op2 { 1695 friend class LIR_OpVisitState; 1696 1697 private: 1698 Label* _label; 1699 BlockBegin* _block; // if this is a branch to a block, this is the block 1700 BlockBegin* _ublock; // if this is a float-branch, this is the unordered block 1701 CodeStub* _stub; // if this is a branch to a stub, this is the stub 1702 1703 public: 1704 LIR_OpBranch(LIR_Condition cond, Label* lbl) 1705 : LIR_Op2(lir_branch, cond, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, (CodeEmitInfo*) NULL) 1706 , _label(lbl) 1707 , _block(NULL) 1708 , _ublock(NULL) 1709 , _stub(NULL) { } 1710 1711 LIR_OpBranch(LIR_Condition cond, BlockBegin* block); 1712 LIR_OpBranch(LIR_Condition cond, CodeStub* stub); 1713 1714 // for unordered comparisons 1715 LIR_OpBranch(LIR_Condition cond, BlockBegin* block, BlockBegin* ublock); 1716 1717 LIR_Condition cond() const { 1718 return condition(); 1719 } 1720 1721 void set_cond(LIR_Condition cond) { 1722 set_condition(cond); 1723 } 1724 1725 Label* label() const { return _label; } 1726 BlockBegin* block() const { return _block; } 1727 BlockBegin* ublock() const { return _ublock; } 1728 CodeStub* stub() const { return _stub; } 1729 1730 void change_block(BlockBegin* b); 1731 void change_ublock(BlockBegin* b); 1732 void negate_cond(); 1733 1734 virtual void emit_code(LIR_Assembler* masm); 1735 virtual LIR_OpBranch* as_OpBranch() { return this; } 1736 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1737 }; 1738 1739 class LIR_OpAllocArray : public LIR_Op { 1740 friend class LIR_OpVisitState; 1741 1742 private: 1743 LIR_Opr _klass; 1744 LIR_Opr _len; 1745 LIR_Opr _tmp1; 1746 LIR_Opr _tmp2; 1747 LIR_Opr _tmp3; 1748 LIR_Opr _tmp4; 1749 BasicType _type; 1750 CodeStub* _stub; 1751 1752 public: 1753 LIR_OpAllocArray(LIR_Opr klass, LIR_Opr len, LIR_Opr result, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, BasicType type, CodeStub* stub) 1754 : LIR_Op(lir_alloc_array, result, NULL) 1755 , _klass(klass) 1756 , _len(len) 1757 , _tmp1(t1) 1758 , _tmp2(t2) 1759 , _tmp3(t3) 1760 , _tmp4(t4) 1761 , _type(type) 1762 , _stub(stub) {} 1763 1764 LIR_Opr klass() const { return _klass; } 1765 LIR_Opr len() const { return _len; } 1766 LIR_Opr obj() const { return result_opr(); } 1767 LIR_Opr tmp1() const { return _tmp1; } 1768 LIR_Opr tmp2() const { return _tmp2; } 1769 LIR_Opr tmp3() const { return _tmp3; } 1770 LIR_Opr tmp4() const { return _tmp4; } 1771 BasicType type() const { return _type; } 1772 CodeStub* stub() const { return _stub; } 1773 1774 virtual void emit_code(LIR_Assembler* masm); 1775 virtual LIR_OpAllocArray * as_OpAllocArray () { return this; } 1776 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1777 }; 1778 1779 1780 class LIR_Op3: public LIR_Op { 1781 friend class LIR_OpVisitState; 1782 1783 private: 1784 LIR_Opr _opr1; 1785 LIR_Opr _opr2; 1786 LIR_Opr _opr3; 1787 public: 1788 LIR_Op3(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr opr3, LIR_Opr result, CodeEmitInfo* info = NULL) 1789 : LIR_Op(code, result, info) 1790 , _opr1(opr1) 1791 , _opr2(opr2) 1792 , _opr3(opr3) { assert(is_in_range(code, begin_op3, end_op3), "code check"); } 1793 LIR_Opr in_opr1() const { return _opr1; } 1794 LIR_Opr in_opr2() const { return _opr2; } 1795 LIR_Opr in_opr3() const { return _opr3; } 1796 1797 virtual void emit_code(LIR_Assembler* masm); 1798 virtual LIR_Op3* as_Op3() { return this; } 1799 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1800 }; 1801 1802 class LIR_Op4: public LIR_Op { 1803 friend class LIR_OpVisitState; 1804 protected: 1805 LIR_Opr _opr1; 1806 LIR_Opr _opr2; 1807 LIR_Opr _opr3; 1808 LIR_Opr _opr4; 1809 BasicType _type; 1810 LIR_Opr _tmp1; 1811 LIR_Opr _tmp2; 1812 LIR_Opr _tmp3; 1813 LIR_Opr _tmp4; 1814 LIR_Opr _tmp5; 1815 LIR_Condition _condition; 1816 1817 public: 1818 LIR_Op4(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr opr3, LIR_Opr opr4, 1819 LIR_Opr result, BasicType type) 1820 : LIR_Op(code, result, NULL) 1821 , _opr1(opr1) 1822 , _opr2(opr2) 1823 , _opr3(opr3) 1824 , _opr4(opr4) 1825 , _type(type) 1826 , _tmp1(LIR_OprFact::illegalOpr) 1827 , _tmp2(LIR_OprFact::illegalOpr) 1828 , _tmp3(LIR_OprFact::illegalOpr) 1829 , _tmp4(LIR_OprFact::illegalOpr) 1830 , _tmp5(LIR_OprFact::illegalOpr) 1831 , _condition(condition) { 1832 assert(code == lir_cmove, "code check"); 1833 assert(type != T_ILLEGAL, "cmove should have type"); 1834 } 1835 1836 LIR_Opr in_opr1() const { return _opr1; } 1837 LIR_Opr in_opr2() const { return _opr2; } 1838 LIR_Opr in_opr3() const { return _opr3; } 1839 LIR_Opr in_opr4() const { return _opr4; } 1840 BasicType type() const { return _type; } 1841 LIR_Opr tmp1_opr() const { return _tmp1; } 1842 LIR_Opr tmp2_opr() const { return _tmp2; } 1843 LIR_Opr tmp3_opr() const { return _tmp3; } 1844 LIR_Opr tmp4_opr() const { return _tmp4; } 1845 LIR_Opr tmp5_opr() const { return _tmp5; } 1846 1847 LIR_Condition condition() const { return _condition; } 1848 void set_condition(LIR_Condition condition) { _condition = condition; } 1849 1850 void set_in_opr1(LIR_Opr opr) { _opr1 = opr; } 1851 void set_in_opr2(LIR_Opr opr) { _opr2 = opr; } 1852 void set_in_opr3(LIR_Opr opr) { _opr3 = opr; } 1853 void set_in_opr4(LIR_Opr opr) { _opr4 = opr; } 1854 virtual void emit_code(LIR_Assembler* masm); 1855 virtual LIR_Op4* as_Op4() { return this; } 1856 1857 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1858 }; 1859 1860 //-------------------------------- 1861 class LabelObj: public CompilationResourceObj { 1862 private: 1863 Label _label; 1864 public: 1865 LabelObj() {} 1866 Label* label() { return &_label; } 1867 }; 1868 1869 1870 class LIR_OpLock: public LIR_Op { 1871 friend class LIR_OpVisitState; 1872 1873 private: 1874 LIR_Opr _hdr; 1875 LIR_Opr _obj; 1876 LIR_Opr _lock; 1877 LIR_Opr _scratch; 1878 CodeStub* _stub; 1879 public: 1880 LIR_OpLock(LIR_Code code, LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info) 1881 : LIR_Op(code, LIR_OprFact::illegalOpr, info) 1882 , _hdr(hdr) 1883 , _obj(obj) 1884 , _lock(lock) 1885 , _scratch(scratch) 1886 , _stub(stub) {} 1887 1888 LIR_Opr hdr_opr() const { return _hdr; } 1889 LIR_Opr obj_opr() const { return _obj; } 1890 LIR_Opr lock_opr() const { return _lock; } 1891 LIR_Opr scratch_opr() const { return _scratch; } 1892 CodeStub* stub() const { return _stub; } 1893 1894 virtual void emit_code(LIR_Assembler* masm); 1895 virtual LIR_OpLock* as_OpLock() { return this; } 1896 void print_instr(outputStream* out) const PRODUCT_RETURN; 1897 }; 1898 1899 class LIR_OpLoadKlass: public LIR_Op { 1900 friend class LIR_OpVisitState; 1901 1902 private: 1903 LIR_Opr _obj; 1904 CodeStub* _stub; 1905 public: 1906 LIR_OpLoadKlass(LIR_Opr obj, LIR_Opr result, CodeEmitInfo* info, CodeStub* stub) 1907 : LIR_Op(lir_load_klass, result, info) 1908 , _obj(obj) 1909 , _stub(stub) {} 1910 1911 LIR_Opr obj() const { return _obj; } 1912 CodeStub* stub() const { return _stub; } 1913 1914 virtual LIR_OpLoadKlass* as_OpLoadKlass() { return this; } 1915 virtual void emit_code(LIR_Assembler* masm); 1916 void print_instr(outputStream* out) const PRODUCT_RETURN; 1917 }; 1918 1919 class LIR_OpDelay: public LIR_Op { 1920 friend class LIR_OpVisitState; 1921 1922 private: 1923 LIR_Op* _op; 1924 1925 public: 1926 LIR_OpDelay(LIR_Op* op, CodeEmitInfo* info): 1927 LIR_Op(lir_delay_slot, LIR_OprFact::illegalOpr, info), 1928 _op(op) { 1929 assert(op->code() == lir_nop, "should be filling with nops"); 1930 } 1931 virtual void emit_code(LIR_Assembler* masm); 1932 virtual LIR_OpDelay* as_OpDelay() { return this; } 1933 void print_instr(outputStream* out) const PRODUCT_RETURN; 1934 LIR_Op* delay_op() const { return _op; } 1935 CodeEmitInfo* call_info() const { return info(); } 1936 }; 1937 1938 #ifdef ASSERT 1939 // LIR_OpAssert 1940 class LIR_OpAssert : public LIR_Op2 { 1941 friend class LIR_OpVisitState; 1942 1943 private: 1944 const char* _msg; 1945 bool _halt; 1946 1947 public: 1948 LIR_OpAssert(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, const char* msg, bool halt) 1949 : LIR_Op2(lir_assert, condition, opr1, opr2) 1950 , _msg(msg) 1951 , _halt(halt) { 1952 } 1953 1954 const char* msg() const { return _msg; } 1955 bool halt() const { return _halt; } 1956 1957 virtual void emit_code(LIR_Assembler* masm); 1958 virtual LIR_OpAssert* as_OpAssert() { return this; } 1959 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1960 }; 1961 #endif 1962 1963 // LIR_OpCompareAndSwap 1964 class LIR_OpCompareAndSwap : public LIR_Op { 1965 friend class LIR_OpVisitState; 1966 1967 private: 1968 LIR_Opr _addr; 1969 LIR_Opr _cmp_value; 1970 LIR_Opr _new_value; 1971 LIR_Opr _tmp1; 1972 LIR_Opr _tmp2; 1973 1974 public: 1975 LIR_OpCompareAndSwap(LIR_Code code, LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, 1976 LIR_Opr t1, LIR_Opr t2, LIR_Opr result) 1977 : LIR_Op(code, result, NULL) // no result, no info 1978 , _addr(addr) 1979 , _cmp_value(cmp_value) 1980 , _new_value(new_value) 1981 , _tmp1(t1) 1982 , _tmp2(t2) { } 1983 1984 LIR_Opr addr() const { return _addr; } 1985 LIR_Opr cmp_value() const { return _cmp_value; } 1986 LIR_Opr new_value() const { return _new_value; } 1987 LIR_Opr tmp1() const { return _tmp1; } 1988 LIR_Opr tmp2() const { return _tmp2; } 1989 1990 virtual void emit_code(LIR_Assembler* masm); 1991 virtual LIR_OpCompareAndSwap * as_OpCompareAndSwap () { return this; } 1992 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1993 }; 1994 1995 // LIR_OpProfileCall 1996 class LIR_OpProfileCall : public LIR_Op { 1997 friend class LIR_OpVisitState; 1998 1999 private: 2000 ciMethod* _profiled_method; 2001 int _profiled_bci; 2002 ciMethod* _profiled_callee; 2003 LIR_Opr _mdo; 2004 LIR_Opr _recv; 2005 LIR_Opr _tmp1; 2006 ciKlass* _known_holder; 2007 2008 public: 2009 // Destroys recv 2010 LIR_OpProfileCall(ciMethod* profiled_method, int profiled_bci, ciMethod* profiled_callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* known_holder) 2011 : LIR_Op(lir_profile_call, LIR_OprFact::illegalOpr, NULL) // no result, no info 2012 , _profiled_method(profiled_method) 2013 , _profiled_bci(profiled_bci) 2014 , _profiled_callee(profiled_callee) 2015 , _mdo(mdo) 2016 , _recv(recv) 2017 , _tmp1(t1) 2018 , _known_holder(known_holder) { } 2019 2020 ciMethod* profiled_method() const { return _profiled_method; } 2021 int profiled_bci() const { return _profiled_bci; } 2022 ciMethod* profiled_callee() const { return _profiled_callee; } 2023 LIR_Opr mdo() const { return _mdo; } 2024 LIR_Opr recv() const { return _recv; } 2025 LIR_Opr tmp1() const { return _tmp1; } 2026 ciKlass* known_holder() const { return _known_holder; } 2027 2028 virtual void emit_code(LIR_Assembler* masm); 2029 virtual LIR_OpProfileCall* as_OpProfileCall() { return this; } 2030 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 2031 bool should_profile_receiver_type() const { 2032 bool callee_is_static = _profiled_callee->is_loaded() && _profiled_callee->is_static(); 2033 Bytecodes::Code bc = _profiled_method->java_code_at_bci(_profiled_bci); 2034 bool call_is_virtual = (bc == Bytecodes::_invokevirtual && !_profiled_callee->can_be_statically_bound()) || bc == Bytecodes::_invokeinterface; 2035 return C1ProfileVirtualCalls && call_is_virtual && !callee_is_static; 2036 } 2037 }; 2038 2039 // LIR_OpProfileType 2040 class LIR_OpProfileType : public LIR_Op { 2041 friend class LIR_OpVisitState; 2042 2043 private: 2044 LIR_Opr _mdp; 2045 LIR_Opr _obj; 2046 LIR_Opr _tmp; 2047 ciKlass* _exact_klass; // non NULL if we know the klass statically (no need to load it from _obj) 2048 intptr_t _current_klass; // what the profiling currently reports 2049 bool _not_null; // true if we know statically that _obj cannot be null 2050 bool _no_conflict; // true if we're profling parameters, _exact_klass is not NULL and we know 2051 // _exact_klass it the only possible type for this parameter in any context. 2052 2053 public: 2054 // Destroys recv 2055 LIR_OpProfileType(LIR_Opr mdp, LIR_Opr obj, ciKlass* exact_klass, intptr_t current_klass, LIR_Opr tmp, bool not_null, bool no_conflict) 2056 : LIR_Op(lir_profile_type, LIR_OprFact::illegalOpr, NULL) // no result, no info 2057 , _mdp(mdp) 2058 , _obj(obj) 2059 , _tmp(tmp) 2060 , _exact_klass(exact_klass) 2061 , _current_klass(current_klass) 2062 , _not_null(not_null) 2063 , _no_conflict(no_conflict) { } 2064 2065 LIR_Opr mdp() const { return _mdp; } 2066 LIR_Opr obj() const { return _obj; } 2067 LIR_Opr tmp() const { return _tmp; } 2068 ciKlass* exact_klass() const { return _exact_klass; } 2069 intptr_t current_klass() const { return _current_klass; } 2070 bool not_null() const { return _not_null; } 2071 bool no_conflict() const { return _no_conflict; } 2072 2073 virtual void emit_code(LIR_Assembler* masm); 2074 virtual LIR_OpProfileType* as_OpProfileType() { return this; } 2075 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 2076 }; 2077 2078 class LIR_InsertionBuffer; 2079 2080 //--------------------------------LIR_List--------------------------------------------------- 2081 // Maintains a list of LIR instructions (one instance of LIR_List per basic block) 2082 // The LIR instructions are appended by the LIR_List class itself; 2083 // 2084 // Notes: 2085 // - all offsets are(should be) in bytes 2086 // - local positions are specified with an offset, with offset 0 being local 0 2087 2088 class LIR_List: public CompilationResourceObj { 2089 private: 2090 LIR_OpList _operations; 2091 2092 Compilation* _compilation; 2093 #ifndef PRODUCT 2094 BlockBegin* _block; 2095 #endif 2096 #ifdef ASSERT 2097 const char * _file; 2098 int _line; 2099 #endif 2100 #ifdef RISCV 2101 LIR_Opr _cmp_opr1; 2102 LIR_Opr _cmp_opr2; 2103 #endif 2104 2105 public: 2106 void append(LIR_Op* op) { 2107 if (op->source() == NULL) 2108 op->set_source(_compilation->current_instruction()); 2109 #ifndef PRODUCT 2110 if (PrintIRWithLIR) { 2111 _compilation->maybe_print_current_instruction(); 2112 op->print(); tty->cr(); 2113 } 2114 #endif // PRODUCT 2115 2116 #ifdef RISCV 2117 set_cmp_oprs(op); 2118 // lir_cmp set cmp oprs only on riscv 2119 if (op->code() == lir_cmp) return; 2120 #endif 2121 2122 _operations.append(op); 2123 2124 #ifdef ASSERT 2125 op->verify(); 2126 op->set_file_and_line(_file, _line); 2127 _file = NULL; 2128 _line = 0; 2129 #endif 2130 } 2131 2132 LIR_List(Compilation* compilation, BlockBegin* block = NULL); 2133 2134 #ifdef ASSERT 2135 void set_file_and_line(const char * file, int line); 2136 #endif 2137 2138 #ifdef RISCV 2139 void set_cmp_oprs(LIR_Op* op); 2140 #endif 2141 2142 //---------- accessors --------------- 2143 LIR_OpList* instructions_list() { return &_operations; } 2144 int length() const { return _operations.length(); } 2145 LIR_Op* at(int i) const { return _operations.at(i); } 2146 2147 NOT_PRODUCT(BlockBegin* block() const { return _block; }); 2148 2149 // insert LIR_Ops in buffer to right places in LIR_List 2150 void append(LIR_InsertionBuffer* buffer); 2151 2152 //---------- mutators --------------- 2153 void insert_before(int i, LIR_List* op_list) { _operations.insert_before(i, op_list->instructions_list()); } 2154 void insert_before(int i, LIR_Op* op) { _operations.insert_before(i, op); } 2155 void remove_at(int i) { _operations.remove_at(i); } 2156 2157 //---------- printing ------------- 2158 void print_instructions() PRODUCT_RETURN; 2159 2160 2161 //---------- instructions ------------- 2162 void call_opt_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result, 2163 address dest, LIR_OprList* arguments, 2164 CodeEmitInfo* info) { 2165 append(new LIR_OpJavaCall(lir_optvirtual_call, method, receiver, result, dest, arguments, info)); 2166 } 2167 void call_static(ciMethod* method, LIR_Opr result, 2168 address dest, LIR_OprList* arguments, CodeEmitInfo* info) { 2169 append(new LIR_OpJavaCall(lir_static_call, method, LIR_OprFact::illegalOpr, result, dest, arguments, info)); 2170 } 2171 void call_icvirtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result, 2172 address dest, LIR_OprList* arguments, CodeEmitInfo* info) { 2173 append(new LIR_OpJavaCall(lir_icvirtual_call, method, receiver, result, dest, arguments, info)); 2174 } 2175 void call_dynamic(ciMethod* method, LIR_Opr receiver, LIR_Opr result, 2176 address dest, LIR_OprList* arguments, CodeEmitInfo* info) { 2177 append(new LIR_OpJavaCall(lir_dynamic_call, method, receiver, result, dest, arguments, info)); 2178 } 2179 2180 void get_thread(LIR_Opr result) { append(new LIR_Op0(lir_get_thread, result)); } 2181 void membar() { append(new LIR_Op0(lir_membar)); } 2182 void membar_acquire() { append(new LIR_Op0(lir_membar_acquire)); } 2183 void membar_release() { append(new LIR_Op0(lir_membar_release)); } 2184 void membar_loadload() { append(new LIR_Op0(lir_membar_loadload)); } 2185 void membar_storestore() { append(new LIR_Op0(lir_membar_storestore)); } 2186 void membar_loadstore() { append(new LIR_Op0(lir_membar_loadstore)); } 2187 void membar_storeload() { append(new LIR_Op0(lir_membar_storeload)); } 2188 2189 void nop() { append(new LIR_Op0(lir_nop)); } 2190 2191 void std_entry(LIR_Opr receiver) { append(new LIR_Op0(lir_std_entry, receiver)); } 2192 void osr_entry(LIR_Opr osrPointer) { append(new LIR_Op0(lir_osr_entry, osrPointer)); } 2193 2194 void on_spin_wait() { append(new LIR_Op0(lir_on_spin_wait)); } 2195 2196 void branch_destination(Label* lbl) { append(new LIR_OpLabel(lbl)); } 2197 2198 void leal(LIR_Opr from, LIR_Opr result_reg, LIR_PatchCode patch_code = lir_patch_none, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_leal, from, result_reg, T_ILLEGAL, patch_code, info)); } 2199 2200 // result is a stack location for old backend and vreg for UseLinearScan 2201 // stack_loc_temp is an illegal register for old backend 2202 void roundfp(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result) { append(new LIR_OpRoundFP(reg, stack_loc_temp, result)); } 2203 void move(LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); } 2204 void move(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info)); } 2205 void move(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info)); } 2206 void move_wide(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = NULL) { 2207 if (UseCompressedOops) { 2208 append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info, lir_move_wide)); 2209 } else { 2210 move(src, dst, info); 2211 } 2212 } 2213 void move_wide(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = NULL) { 2214 if (UseCompressedOops) { 2215 append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info, lir_move_wide)); 2216 } else { 2217 move(src, dst, info); 2218 } 2219 } 2220 void volatile_move(LIR_Opr src, LIR_Opr dst, BasicType type, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none) { append(new LIR_Op1(lir_move, src, dst, type, patch_code, info, lir_move_volatile)); } 2221 2222 void oop2reg (jobject o, LIR_Opr reg) { assert(reg->type() == T_OBJECT, "bad reg"); append(new LIR_Op1(lir_move, LIR_OprFact::oopConst(o), reg)); } 2223 void oop2reg_patch(jobject o, LIR_Opr reg, CodeEmitInfo* info); 2224 2225 void metadata2reg (Metadata* o, LIR_Opr reg) { assert(reg->type() == T_METADATA, "bad reg"); append(new LIR_Op1(lir_move, LIR_OprFact::metadataConst(o), reg)); } 2226 void klass2reg_patch(Metadata* o, LIR_Opr reg, CodeEmitInfo* info); 2227 2228 void safepoint(LIR_Opr tmp, CodeEmitInfo* info) { append(new LIR_Op1(lir_safepoint, tmp, info)); } 2229 void return_op(LIR_Opr result) { append(new LIR_OpReturn(result)); } 2230 2231 void convert(Bytecodes::Code code, LIR_Opr left, LIR_Opr dst, ConversionStub* stub = NULL/*, bool is_32bit = false*/) { append(new LIR_OpConvert(code, left, dst, stub)); } 2232 2233 void logical_and (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_and, left, right, dst)); } 2234 void logical_or (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_or, left, right, dst)); } 2235 void logical_xor (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_xor, left, right, dst)); } 2236 2237 void null_check(LIR_Opr opr, CodeEmitInfo* info, bool deoptimize_on_null = false); 2238 void throw_exception(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) { 2239 append(new LIR_Op2(lir_throw, exceptionPC, exceptionOop, LIR_OprFact::illegalOpr, info)); 2240 } 2241 void unwind_exception(LIR_Opr exceptionOop) { 2242 append(new LIR_Op1(lir_unwind, exceptionOop)); 2243 } 2244 2245 void push(LIR_Opr opr) { append(new LIR_Op1(lir_push, opr)); } 2246 void pop(LIR_Opr reg) { append(new LIR_Op1(lir_pop, reg)); } 2247 2248 void cmp(LIR_Condition condition, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info = NULL) { 2249 append(new LIR_Op2(lir_cmp, condition, left, right, info)); 2250 } 2251 void cmp(LIR_Condition condition, LIR_Opr left, int right, CodeEmitInfo* info = NULL) { 2252 cmp(condition, left, LIR_OprFact::intConst(right), info); 2253 } 2254 2255 void cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info); 2256 void cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Address* addr, CodeEmitInfo* info); 2257 2258 void cmove(LIR_Condition condition, LIR_Opr src1, LIR_Opr src2, LIR_Opr dst, BasicType type, 2259 LIR_Opr cmp_opr1 = LIR_OprFact::illegalOpr, LIR_Opr cmp_opr2 = LIR_OprFact::illegalOpr) { 2260 append(new LIR_Op4(lir_cmove, condition, src1, src2, cmp_opr1, cmp_opr2, dst, type)); 2261 } 2262 2263 void cas_long(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, 2264 LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr); 2265 void cas_obj(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, 2266 LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr); 2267 void cas_int(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, 2268 LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr); 2269 2270 void abs (LIR_Opr from, LIR_Opr to, LIR_Opr tmp) { append(new LIR_Op2(lir_abs , from, tmp, to)); } 2271 void negate(LIR_Opr from, LIR_Opr to, LIR_Opr tmp = LIR_OprFact::illegalOpr) { append(new LIR_Op2(lir_neg, from, tmp, to)); } 2272 void sqrt(LIR_Opr from, LIR_Opr to, LIR_Opr tmp) { append(new LIR_Op2(lir_sqrt, from, tmp, to)); } 2273 void fmad(LIR_Opr from, LIR_Opr from1, LIR_Opr from2, LIR_Opr to) { append(new LIR_Op3(lir_fmad, from, from1, from2, to)); } 2274 void fmaf(LIR_Opr from, LIR_Opr from1, LIR_Opr from2, LIR_Opr to) { append(new LIR_Op3(lir_fmaf, from, from1, from2, to)); } 2275 void log10 (LIR_Opr from, LIR_Opr to, LIR_Opr tmp) { append(new LIR_Op2(lir_log10, from, LIR_OprFact::illegalOpr, to, tmp)); } 2276 void tan (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_tan , from, tmp1, to, tmp2)); } 2277 2278 void add (LIR_Opr left, LIR_Opr right, LIR_Opr res) { append(new LIR_Op2(lir_add, left, right, res)); } 2279 void sub (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL) { append(new LIR_Op2(lir_sub, left, right, res, info)); } 2280 void mul (LIR_Opr left, LIR_Opr right, LIR_Opr res) { append(new LIR_Op2(lir_mul, left, right, res)); } 2281 void mul (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_mul, left, right, res, tmp)); } 2282 void div (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL) { append(new LIR_Op2(lir_div, left, right, res, info)); } 2283 void div (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_div, left, right, res, tmp)); } 2284 void rem (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL) { append(new LIR_Op2(lir_rem, left, right, res, info)); } 2285 2286 void volatile_load_mem_reg(LIR_Address* address, LIR_Opr dst, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none); 2287 void volatile_load_unsafe_reg(LIR_Opr base, LIR_Opr offset, LIR_Opr dst, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code); 2288 2289 void load(LIR_Address* addr, LIR_Opr src, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none); 2290 2291 void store_mem_int(jint v, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none); 2292 void store_mem_oop(jobject o, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none); 2293 void store(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none); 2294 void volatile_store_mem_reg(LIR_Opr src, LIR_Address* address, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none); 2295 void volatile_store_unsafe_reg(LIR_Opr src, LIR_Opr base, LIR_Opr offset, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code); 2296 2297 void idiv(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info); 2298 void idiv(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info); 2299 void irem(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info); 2300 void irem(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info); 2301 2302 void allocate_object(LIR_Opr dst, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, int header_size, int object_size, LIR_Opr klass, bool init_check, CodeStub* stub); 2303 void allocate_array(LIR_Opr dst, LIR_Opr len, LIR_Opr t1,LIR_Opr t2, LIR_Opr t3,LIR_Opr t4, BasicType type, LIR_Opr klass, CodeStub* stub); 2304 2305 // jump is an unconditional branch 2306 void jump(BlockBegin* block) { 2307 append(new LIR_OpBranch(lir_cond_always, block)); 2308 } 2309 void jump(CodeStub* stub) { 2310 append(new LIR_OpBranch(lir_cond_always, stub)); 2311 } 2312 void branch(LIR_Condition cond, Label* lbl) { 2313 append(new LIR_OpBranch(cond, lbl)); 2314 } 2315 // Should not be used for fp comparisons 2316 void branch(LIR_Condition cond, BlockBegin* block) { 2317 append(new LIR_OpBranch(cond, block)); 2318 } 2319 // Should not be used for fp comparisons 2320 void branch(LIR_Condition cond, CodeStub* stub) { 2321 append(new LIR_OpBranch(cond, stub)); 2322 } 2323 // Should only be used for fp comparisons 2324 void branch(LIR_Condition cond, BlockBegin* block, BlockBegin* unordered) { 2325 append(new LIR_OpBranch(cond, block, unordered)); 2326 } 2327 2328 void shift_left(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp); 2329 void shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp); 2330 void unsigned_shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp); 2331 2332 void shift_left(LIR_Opr value, int count, LIR_Opr dst) { shift_left(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); } 2333 void shift_right(LIR_Opr value, int count, LIR_Opr dst) { shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); } 2334 void unsigned_shift_right(LIR_Opr value, int count, LIR_Opr dst) { unsigned_shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); } 2335 2336 void lcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_cmp_l2i, left, right, dst)); } 2337 void fcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst, bool is_unordered_less); 2338 2339 void call_runtime_leaf(address routine, LIR_Opr tmp, LIR_Opr result, LIR_OprList* arguments) { 2340 append(new LIR_OpRTCall(routine, tmp, result, arguments)); 2341 } 2342 2343 void call_runtime(address routine, LIR_Opr tmp, LIR_Opr result, 2344 LIR_OprList* arguments, CodeEmitInfo* info) { 2345 append(new LIR_OpRTCall(routine, tmp, result, arguments, info)); 2346 } 2347 2348 void load_stack_address_monitor(int monitor_ix, LIR_Opr dst) { append(new LIR_Op1(lir_monaddr, LIR_OprFact::intConst(monitor_ix), dst)); } 2349 void unlock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub); 2350 void lock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info); 2351 2352 void breakpoint() { append(new LIR_Op0(lir_breakpoint)); } 2353 2354 void arraycopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp, ciArrayKlass* expected_type, int flags, CodeEmitInfo* info) { append(new LIR_OpArrayCopy(src, src_pos, dst, dst_pos, length, tmp, expected_type, flags, info)); } 2355 2356 void update_crc32(LIR_Opr crc, LIR_Opr val, LIR_Opr res) { append(new LIR_OpUpdateCRC32(crc, val, res)); } 2357 2358 void instanceof(LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_patch, ciMethod* profiled_method, int profiled_bci); 2359 void store_check(LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception, ciMethod* profiled_method, int profiled_bci); 2360 2361 void checkcast (LIR_Opr result, LIR_Opr object, ciKlass* klass, 2362 LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, 2363 CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub, 2364 ciMethod* profiled_method, int profiled_bci); 2365 // MethodData* profiling 2366 void profile_call(ciMethod* method, int bci, ciMethod* callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* cha_klass) { 2367 append(new LIR_OpProfileCall(method, bci, callee, mdo, recv, t1, cha_klass)); 2368 } 2369 void profile_type(LIR_Address* mdp, LIR_Opr obj, ciKlass* exact_klass, intptr_t current_klass, LIR_Opr tmp, bool not_null, bool no_conflict) { 2370 append(new LIR_OpProfileType(LIR_OprFact::address(mdp), obj, exact_klass, current_klass, tmp, not_null, no_conflict)); 2371 } 2372 2373 void xadd(LIR_Opr src, LIR_Opr add, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xadd, src, add, res, tmp)); } 2374 void xchg(LIR_Opr src, LIR_Opr set, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xchg, src, set, res, tmp)); } 2375 2376 void load_klass(LIR_Opr obj, LIR_Opr result, CodeEmitInfo* info, CodeStub* stub) { append(new LIR_OpLoadKlass(obj, result, info, stub)); } 2377 2378 #ifdef ASSERT 2379 void lir_assert(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, const char* msg, bool halt) { append(new LIR_OpAssert(condition, opr1, opr2, msg, halt)); } 2380 #endif 2381 }; 2382 2383 void print_LIR(BlockList* blocks); 2384 2385 class LIR_InsertionBuffer : public CompilationResourceObj { 2386 private: 2387 LIR_List* _lir; // the lir list where ops of this buffer should be inserted later (NULL when uninitialized) 2388 2389 // list of insertion points. index and count are stored alternately: 2390 // _index_and_count[i * 2]: the index into lir list where "count" ops should be inserted 2391 // _index_and_count[i * 2 + 1]: the number of ops to be inserted at index 2392 intStack _index_and_count; 2393 2394 // the LIR_Ops to be inserted 2395 LIR_OpList _ops; 2396 2397 void append_new(int index, int count) { _index_and_count.append(index); _index_and_count.append(count); } 2398 void set_index_at(int i, int value) { _index_and_count.at_put((i << 1), value); } 2399 void set_count_at(int i, int value) { _index_and_count.at_put((i << 1) + 1, value); } 2400 2401 #ifdef ASSERT 2402 void verify(); 2403 #endif 2404 public: 2405 LIR_InsertionBuffer() : _lir(NULL), _index_and_count(8), _ops(8) { } 2406 2407 // must be called before using the insertion buffer 2408 void init(LIR_List* lir) { assert(!initialized(), "already initialized"); _lir = lir; _index_and_count.clear(); _ops.clear(); } 2409 bool initialized() const { return _lir != NULL; } 2410 // called automatically when the buffer is appended to the LIR_List 2411 void finish() { _lir = NULL; } 2412 2413 // accessors 2414 LIR_List* lir_list() const { return _lir; } 2415 int number_of_insertion_points() const { return _index_and_count.length() >> 1; } 2416 int index_at(int i) const { return _index_and_count.at((i << 1)); } 2417 int count_at(int i) const { return _index_and_count.at((i << 1) + 1); } 2418 2419 int number_of_ops() const { return _ops.length(); } 2420 LIR_Op* op_at(int i) const { return _ops.at(i); } 2421 2422 // append an instruction to the buffer 2423 void append(int index, LIR_Op* op); 2424 2425 // instruction 2426 void move(int index, LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(index, new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); } 2427 }; 2428 2429 2430 // 2431 // LIR_OpVisitState is used for manipulating LIR_Ops in an abstract way. 2432 // Calling a LIR_Op's visit function with a LIR_OpVisitState causes 2433 // information about the input, output and temporaries used by the 2434 // op to be recorded. It also records whether the op has call semantics 2435 // and also records all the CodeEmitInfos used by this op. 2436 // 2437 2438 2439 class LIR_OpVisitState: public StackObj { 2440 public: 2441 typedef enum { inputMode, firstMode = inputMode, tempMode, outputMode, numModes, invalidMode = -1 } OprMode; 2442 2443 enum { 2444 maxNumberOfOperands = 21, 2445 maxNumberOfInfos = 4 2446 }; 2447 2448 private: 2449 LIR_Op* _op; 2450 2451 // optimization: the operands and infos are not stored in a variable-length 2452 // list, but in a fixed-size array to save time of size checks and resizing 2453 int _oprs_len[numModes]; 2454 LIR_Opr* _oprs_new[numModes][maxNumberOfOperands]; 2455 int _info_len; 2456 CodeEmitInfo* _info_new[maxNumberOfInfos]; 2457 2458 bool _has_call; 2459 bool _has_slow_case; 2460 2461 2462 // only include register operands 2463 // addresses are decomposed to the base and index registers 2464 // constants and stack operands are ignored 2465 void append(LIR_Opr& opr, OprMode mode) { 2466 assert(opr->is_valid(), "should not call this otherwise"); 2467 assert(mode >= 0 && mode < numModes, "bad mode"); 2468 2469 if (opr->is_register()) { 2470 assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow"); 2471 _oprs_new[mode][_oprs_len[mode]++] = &opr; 2472 2473 } else if (opr->is_pointer()) { 2474 LIR_Address* address = opr->as_address_ptr(); 2475 if (address != NULL) { 2476 // special handling for addresses: add base and index register of the address 2477 // both are always input operands or temp if we want to extend 2478 // their liveness! 2479 if (mode == outputMode) { 2480 mode = inputMode; 2481 } 2482 assert (mode == inputMode || mode == tempMode, "input or temp only for addresses"); 2483 if (address->_base->is_valid()) { 2484 assert(address->_base->is_register(), "must be"); 2485 assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow"); 2486 _oprs_new[mode][_oprs_len[mode]++] = &address->_base; 2487 } 2488 if (address->_index->is_valid()) { 2489 assert(address->_index->is_register(), "must be"); 2490 assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow"); 2491 _oprs_new[mode][_oprs_len[mode]++] = &address->_index; 2492 } 2493 2494 } else { 2495 assert(opr->is_constant(), "constant operands are not processed"); 2496 } 2497 } else { 2498 assert(opr->is_stack(), "stack operands are not processed"); 2499 } 2500 } 2501 2502 void append(CodeEmitInfo* info) { 2503 assert(info != NULL, "should not call this otherwise"); 2504 assert(_info_len < maxNumberOfInfos, "array overflow"); 2505 _info_new[_info_len++] = info; 2506 } 2507 2508 public: 2509 LIR_OpVisitState() { reset(); } 2510 2511 LIR_Op* op() const { return _op; } 2512 void set_op(LIR_Op* op) { reset(); _op = op; } 2513 2514 bool has_call() const { return _has_call; } 2515 bool has_slow_case() const { return _has_slow_case; } 2516 2517 void reset() { 2518 _op = NULL; 2519 _has_call = false; 2520 _has_slow_case = false; 2521 2522 _oprs_len[inputMode] = 0; 2523 _oprs_len[tempMode] = 0; 2524 _oprs_len[outputMode] = 0; 2525 _info_len = 0; 2526 } 2527 2528 2529 int opr_count(OprMode mode) const { 2530 assert(mode >= 0 && mode < numModes, "bad mode"); 2531 return _oprs_len[mode]; 2532 } 2533 2534 LIR_Opr opr_at(OprMode mode, int index) const { 2535 assert(mode >= 0 && mode < numModes, "bad mode"); 2536 assert(index >= 0 && index < _oprs_len[mode], "index out of bound"); 2537 return *_oprs_new[mode][index]; 2538 } 2539 2540 void set_opr_at(OprMode mode, int index, LIR_Opr opr) const { 2541 assert(mode >= 0 && mode < numModes, "bad mode"); 2542 assert(index >= 0 && index < _oprs_len[mode], "index out of bound"); 2543 *_oprs_new[mode][index] = opr; 2544 } 2545 2546 int info_count() const { 2547 return _info_len; 2548 } 2549 2550 CodeEmitInfo* info_at(int index) const { 2551 assert(index < _info_len, "index out of bounds"); 2552 return _info_new[index]; 2553 } 2554 2555 XHandlers* all_xhandler(); 2556 2557 // collects all register operands of the instruction 2558 void visit(LIR_Op* op); 2559 2560 #ifdef ASSERT 2561 // check that an operation has no operands 2562 bool no_operands(LIR_Op* op); 2563 #endif 2564 2565 // LIR_Op visitor functions use these to fill in the state 2566 void do_input(LIR_Opr& opr) { append(opr, LIR_OpVisitState::inputMode); } 2567 void do_output(LIR_Opr& opr) { append(opr, LIR_OpVisitState::outputMode); } 2568 void do_temp(LIR_Opr& opr) { append(opr, LIR_OpVisitState::tempMode); } 2569 void do_info(CodeEmitInfo* info) { append(info); } 2570 2571 void do_stub(CodeStub* stub); 2572 void do_call() { _has_call = true; } 2573 void do_slow_case() { _has_slow_case = true; } 2574 void do_slow_case(CodeEmitInfo* info) { 2575 _has_slow_case = true; 2576 append(info); 2577 } 2578 }; 2579 2580 2581 inline LIR_Opr LIR_Opr::illegalOpr() { return LIR_OprFact::illegalOpr; }; 2582 2583 inline LIR_Opr LIR_Opr::nullOpr() { return LIR_OprFact::nullOpr; }; 2584 2585 #endif // SHARE_C1_C1_LIR_HPP