1 /*
   2  * Copyright (c) 2005, 2021, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_Defs.hpp"
  28 #include "c1/c1_FrameMap.hpp"
  29 #include "c1/c1_Instruction.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_LIRGenerator.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "ci/ciObjArray.hpp"
  36 #include "ci/ciUtilities.hpp"
  37 #include "gc/shared/barrierSet.hpp"
  38 #include "gc/shared/c1/barrierSetC1.hpp"
  39 #include "oops/klass.inline.hpp"
  40 #include "runtime/sharedRuntime.hpp"
  41 #include "runtime/stubRoutines.hpp"
  42 #include "runtime/vm_version.hpp"
  43 #include "utilities/bitMap.inline.hpp"
  44 #include "utilities/macros.hpp"
  45 #include "utilities/powerOfTwo.hpp"
  46 
  47 #ifdef ASSERT
  48 #define __ gen()->lir(__FILE__, __LINE__)->
  49 #else
  50 #define __ gen()->lir()->
  51 #endif
  52 
  53 #ifndef PATCHED_ADDR
  54 #define PATCHED_ADDR  (max_jint)
  55 #endif
  56 
  57 void PhiResolverState::reset() {
  58   _virtual_operands.clear();
  59   _other_operands.clear();
  60   _vreg_table.clear();
  61 }
  62 
  63 
  64 //--------------------------------------------------------------
  65 // PhiResolver
  66 
  67 // Resolves cycles:
  68 //
  69 //  r1 := r2  becomes  temp := r1
  70 //  r2 := r1           r1 := r2
  71 //                     r2 := temp
  72 // and orders moves:
  73 //
  74 //  r2 := r3  becomes  r1 := r2
  75 //  r1 := r2           r2 := r3
  76 
  77 PhiResolver::PhiResolver(LIRGenerator* gen)
  78  : _gen(gen)
  79  , _state(gen->resolver_state())
  80  , _temp(LIR_OprFact::illegalOpr)
  81 {
  82   // reinitialize the shared state arrays
  83   _state.reset();
  84 }
  85 
  86 
  87 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
  88   assert(src->is_valid(), "");
  89   assert(dest->is_valid(), "");
  90   __ move(src, dest);
  91 }
  92 
  93 
  94 void PhiResolver::move_temp_to(LIR_Opr dest) {
  95   assert(_temp->is_valid(), "");
  96   emit_move(_temp, dest);
  97   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
  98 }
  99 
 100 
 101 void PhiResolver::move_to_temp(LIR_Opr src) {
 102   assert(_temp->is_illegal(), "");
 103   _temp = _gen->new_register(src->type());
 104   emit_move(src, _temp);
 105 }
 106 
 107 
 108 // Traverse assignment graph in depth first order and generate moves in post order
 109 // ie. two assignments: b := c, a := b start with node c:
 110 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
 111 // Generates moves in this order: move b to a and move c to b
 112 // ie. cycle a := b, b := a start with node a
 113 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
 114 // Generates moves in this order: move b to temp, move a to b, move temp to a
 115 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
 116   if (!dest->visited()) {
 117     dest->set_visited();
 118     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
 119       move(dest, dest->destination_at(i));
 120     }
 121   } else if (!dest->start_node()) {
 122     // cylce in graph detected
 123     assert(_loop == NULL, "only one loop valid!");
 124     _loop = dest;
 125     move_to_temp(src->operand());
 126     return;
 127   } // else dest is a start node
 128 
 129   if (!dest->assigned()) {
 130     if (_loop == dest) {
 131       move_temp_to(dest->operand());
 132       dest->set_assigned();
 133     } else if (src != NULL) {
 134       emit_move(src->operand(), dest->operand());
 135       dest->set_assigned();
 136     }
 137   }
 138 }
 139 
 140 
 141 PhiResolver::~PhiResolver() {
 142   int i;
 143   // resolve any cycles in moves from and to virtual registers
 144   for (i = virtual_operands().length() - 1; i >= 0; i --) {
 145     ResolveNode* node = virtual_operands().at(i);
 146     if (!node->visited()) {
 147       _loop = NULL;
 148       move(NULL, node);
 149       node->set_start_node();
 150       assert(_temp->is_illegal(), "move_temp_to() call missing");
 151     }
 152   }
 153 
 154   // generate move for move from non virtual register to abitrary destination
 155   for (i = other_operands().length() - 1; i >= 0; i --) {
 156     ResolveNode* node = other_operands().at(i);
 157     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
 158       emit_move(node->operand(), node->destination_at(j)->operand());
 159     }
 160   }
 161 }
 162 
 163 
 164 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
 165   ResolveNode* node;
 166   if (opr->is_virtual()) {
 167     int vreg_num = opr->vreg_number();
 168     node = vreg_table().at_grow(vreg_num, NULL);
 169     assert(node == NULL || node->operand() == opr, "");
 170     if (node == NULL) {
 171       node = new ResolveNode(opr);
 172       vreg_table().at_put(vreg_num, node);
 173     }
 174     // Make sure that all virtual operands show up in the list when
 175     // they are used as the source of a move.
 176     if (source && !virtual_operands().contains(node)) {
 177       virtual_operands().append(node);
 178     }
 179   } else {
 180     assert(source, "");
 181     node = new ResolveNode(opr);
 182     other_operands().append(node);
 183   }
 184   return node;
 185 }
 186 
 187 
 188 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
 189   assert(dest->is_virtual(), "");
 190   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
 191   assert(src->is_valid(), "");
 192   assert(dest->is_valid(), "");
 193   ResolveNode* source = source_node(src);
 194   source->append(destination_node(dest));
 195 }
 196 
 197 
 198 //--------------------------------------------------------------
 199 // LIRItem
 200 
 201 void LIRItem::set_result(LIR_Opr opr) {
 202   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 203   value()->set_operand(opr);
 204 
 205   if (opr->is_virtual()) {
 206     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
 207   }
 208 
 209   _result = opr;
 210 }
 211 
 212 void LIRItem::load_item() {
 213   if (result()->is_illegal()) {
 214     // update the items result
 215     _result = value()->operand();
 216   }
 217   if (!result()->is_register()) {
 218     LIR_Opr reg = _gen->new_register(value()->type());
 219     __ move(result(), reg);
 220     if (result()->is_constant()) {
 221       _result = reg;
 222     } else {
 223       set_result(reg);
 224     }
 225   }
 226 }
 227 
 228 
 229 void LIRItem::load_for_store(BasicType type) {
 230   if (_gen->can_store_as_constant(value(), type)) {
 231     _result = value()->operand();
 232     if (!_result->is_constant()) {
 233       _result = LIR_OprFact::value_type(value()->type());
 234     }
 235   } else if (type == T_BYTE || type == T_BOOLEAN) {
 236     load_byte_item();
 237   } else {
 238     load_item();
 239   }
 240 }
 241 
 242 void LIRItem::load_item_force(LIR_Opr reg) {
 243   LIR_Opr r = result();
 244   if (r != reg) {
 245 #if !defined(ARM) && !defined(E500V2)
 246     if (r->type() != reg->type()) {
 247       // moves between different types need an intervening spill slot
 248       r = _gen->force_to_spill(r, reg->type());
 249     }
 250 #endif
 251     __ move(r, reg);
 252     _result = reg;
 253   }
 254 }
 255 
 256 ciObject* LIRItem::get_jobject_constant() const {
 257   ObjectType* oc = type()->as_ObjectType();
 258   if (oc) {
 259     return oc->constant_value();
 260   }
 261   return NULL;
 262 }
 263 
 264 
 265 jint LIRItem::get_jint_constant() const {
 266   assert(is_constant() && value() != NULL, "");
 267   assert(type()->as_IntConstant() != NULL, "type check");
 268   return type()->as_IntConstant()->value();
 269 }
 270 
 271 
 272 jint LIRItem::get_address_constant() const {
 273   assert(is_constant() && value() != NULL, "");
 274   assert(type()->as_AddressConstant() != NULL, "type check");
 275   return type()->as_AddressConstant()->value();
 276 }
 277 
 278 
 279 jfloat LIRItem::get_jfloat_constant() const {
 280   assert(is_constant() && value() != NULL, "");
 281   assert(type()->as_FloatConstant() != NULL, "type check");
 282   return type()->as_FloatConstant()->value();
 283 }
 284 
 285 
 286 jdouble LIRItem::get_jdouble_constant() const {
 287   assert(is_constant() && value() != NULL, "");
 288   assert(type()->as_DoubleConstant() != NULL, "type check");
 289   return type()->as_DoubleConstant()->value();
 290 }
 291 
 292 
 293 jlong LIRItem::get_jlong_constant() const {
 294   assert(is_constant() && value() != NULL, "");
 295   assert(type()->as_LongConstant() != NULL, "type check");
 296   return type()->as_LongConstant()->value();
 297 }
 298 
 299 
 300 
 301 //--------------------------------------------------------------
 302 
 303 
 304 void LIRGenerator::block_do_prolog(BlockBegin* block) {
 305 #ifndef PRODUCT
 306   if (PrintIRWithLIR) {
 307     block->print();
 308   }
 309 #endif
 310 
 311   // set up the list of LIR instructions
 312   assert(block->lir() == NULL, "LIR list already computed for this block");
 313   _lir = new LIR_List(compilation(), block);
 314   block->set_lir(_lir);
 315 
 316   __ branch_destination(block->label());
 317 
 318   if (LIRTraceExecution &&
 319       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
 320       !block->is_set(BlockBegin::exception_entry_flag)) {
 321     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
 322     trace_block_entry(block);
 323   }
 324 }
 325 
 326 
 327 void LIRGenerator::block_do_epilog(BlockBegin* block) {
 328 #ifndef PRODUCT
 329   if (PrintIRWithLIR) {
 330     tty->cr();
 331   }
 332 #endif
 333 
 334   // LIR_Opr for unpinned constants shouldn't be referenced by other
 335   // blocks so clear them out after processing the block.
 336   for (int i = 0; i < _unpinned_constants.length(); i++) {
 337     _unpinned_constants.at(i)->clear_operand();
 338   }
 339   _unpinned_constants.trunc_to(0);
 340 
 341   // clear our any registers for other local constants
 342   _constants.trunc_to(0);
 343   _reg_for_constants.trunc_to(0);
 344 }
 345 
 346 
 347 void LIRGenerator::block_do(BlockBegin* block) {
 348   CHECK_BAILOUT();
 349 
 350   block_do_prolog(block);
 351   set_block(block);
 352 
 353   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
 354     if (instr->is_pinned()) do_root(instr);
 355   }
 356 
 357   set_block(NULL);
 358   block_do_epilog(block);
 359 }
 360 
 361 
 362 //-------------------------LIRGenerator-----------------------------
 363 
 364 // This is where the tree-walk starts; instr must be root;
 365 void LIRGenerator::do_root(Value instr) {
 366   CHECK_BAILOUT();
 367 
 368   InstructionMark im(compilation(), instr);
 369 
 370   assert(instr->is_pinned(), "use only with roots");
 371   assert(instr->subst() == instr, "shouldn't have missed substitution");
 372 
 373   instr->visit(this);
 374 
 375   assert(!instr->has_uses() || instr->operand()->is_valid() ||
 376          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
 377 }
 378 
 379 
 380 // This is called for each node in tree; the walk stops if a root is reached
 381 void LIRGenerator::walk(Value instr) {
 382   InstructionMark im(compilation(), instr);
 383   //stop walk when encounter a root
 384   if ((instr->is_pinned() && instr->as_Phi() == NULL) || instr->operand()->is_valid()) {
 385     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
 386   } else {
 387     assert(instr->subst() == instr, "shouldn't have missed substitution");
 388     instr->visit(this);
 389     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
 390   }
 391 }
 392 
 393 
 394 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
 395   assert(state != NULL, "state must be defined");
 396 
 397 #ifndef PRODUCT
 398   state->verify();
 399 #endif
 400 
 401   ValueStack* s = state;
 402   for_each_state(s) {
 403     if (s->kind() == ValueStack::EmptyExceptionState) {
 404       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
 405       continue;
 406     }
 407 
 408     int index;
 409     Value value;
 410     for_each_stack_value(s, index, value) {
 411       assert(value->subst() == value, "missed substitution");
 412       if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 413         walk(value);
 414         assert(value->operand()->is_valid(), "must be evaluated now");
 415       }
 416     }
 417 
 418     int bci = s->bci();
 419     IRScope* scope = s->scope();
 420     ciMethod* method = scope->method();
 421 
 422     MethodLivenessResult liveness = method->liveness_at_bci(bci);
 423     if (bci == SynchronizationEntryBCI) {
 424       if (x->as_ExceptionObject() || x->as_Throw()) {
 425         // all locals are dead on exit from the synthetic unlocker
 426         liveness.clear();
 427       } else {
 428         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
 429       }
 430     }
 431     if (!liveness.is_valid()) {
 432       // Degenerate or breakpointed method.
 433       bailout("Degenerate or breakpointed method");
 434     } else {
 435       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
 436       for_each_local_value(s, index, value) {
 437         assert(value->subst() == value, "missed substition");
 438         if (liveness.at(index) && !value->type()->is_illegal()) {
 439           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 440             walk(value);
 441             assert(value->operand()->is_valid(), "must be evaluated now");
 442           }
 443         } else {
 444           // NULL out this local so that linear scan can assume that all non-NULL values are live.
 445           s->invalidate_local(index);
 446         }
 447       }
 448     }
 449   }
 450 
 451   return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
 452 }
 453 
 454 
 455 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
 456   return state_for(x, x->exception_state());
 457 }
 458 
 459 
 460 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
 461   /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if tiered compilation
 462    * is active and the class hasn't yet been resolved we need to emit a patch that resolves
 463    * the class. */
 464   if ((!CompilerConfig::is_c1_only_no_jvmci() && need_resolve) || !obj->is_loaded() || PatchALot) {
 465     assert(info != NULL, "info must be set if class is not loaded");
 466     __ klass2reg_patch(NULL, r, info);
 467   } else {
 468     // no patching needed
 469     __ metadata2reg(obj->constant_encoding(), r);
 470   }
 471 }
 472 
 473 
 474 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
 475                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
 476   CodeStub* stub = new RangeCheckStub(range_check_info, index, array);
 477   if (index->is_constant()) {
 478     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
 479                 index->as_jint(), null_check_info);
 480     __ branch(lir_cond_belowEqual, stub); // forward branch
 481   } else {
 482     cmp_reg_mem(lir_cond_aboveEqual, index, array,
 483                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
 484     __ branch(lir_cond_aboveEqual, stub); // forward branch
 485   }
 486 }
 487 
 488 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp_op, CodeEmitInfo* info) {
 489   LIR_Opr result_op = result;
 490   LIR_Opr left_op   = left;
 491   LIR_Opr right_op  = right;
 492 
 493   if (TwoOperandLIRForm && left_op != result_op) {
 494     assert(right_op != result_op, "malformed");
 495     __ move(left_op, result_op);
 496     left_op = result_op;
 497   }
 498 
 499   switch(code) {
 500     case Bytecodes::_dadd:
 501     case Bytecodes::_fadd:
 502     case Bytecodes::_ladd:
 503     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
 504     case Bytecodes::_fmul:
 505     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
 506 
 507     case Bytecodes::_dmul:  __ mul(left_op, right_op, result_op, tmp_op); break;
 508 
 509     case Bytecodes::_imul:
 510       {
 511         bool did_strength_reduce = false;
 512 
 513         if (right->is_constant()) {
 514           jint c = right->as_jint();
 515           if (c > 0 && is_power_of_2(c)) {
 516             // do not need tmp here
 517             __ shift_left(left_op, exact_log2(c), result_op);
 518             did_strength_reduce = true;
 519           } else {
 520             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
 521           }
 522         }
 523         // we couldn't strength reduce so just emit the multiply
 524         if (!did_strength_reduce) {
 525           __ mul(left_op, right_op, result_op);
 526         }
 527       }
 528       break;
 529 
 530     case Bytecodes::_dsub:
 531     case Bytecodes::_fsub:
 532     case Bytecodes::_lsub:
 533     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
 534 
 535     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
 536     // ldiv and lrem are implemented with a direct runtime call
 537 
 538     case Bytecodes::_ddiv: __ div(left_op, right_op, result_op, tmp_op); break;
 539 
 540     case Bytecodes::_drem:
 541     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
 542 
 543     default: ShouldNotReachHere();
 544   }
 545 }
 546 
 547 
 548 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 549   arithmetic_op(code, result, left, right, tmp);
 550 }
 551 
 552 
 553 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
 554   arithmetic_op(code, result, left, right, LIR_OprFact::illegalOpr, info);
 555 }
 556 
 557 
 558 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 559   arithmetic_op(code, result, left, right, tmp);
 560 }
 561 
 562 
 563 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
 564 
 565   if (TwoOperandLIRForm && value != result_op
 566       // Only 32bit right shifts require two operand form on S390.
 567       S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) {
 568     assert(count != result_op, "malformed");
 569     __ move(value, result_op);
 570     value = result_op;
 571   }
 572 
 573   assert(count->is_constant() || count->is_register(), "must be");
 574   switch(code) {
 575   case Bytecodes::_ishl:
 576   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
 577   case Bytecodes::_ishr:
 578   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
 579   case Bytecodes::_iushr:
 580   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
 581   default: ShouldNotReachHere();
 582   }
 583 }
 584 
 585 
 586 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
 587   if (TwoOperandLIRForm && left_op != result_op) {
 588     assert(right_op != result_op, "malformed");
 589     __ move(left_op, result_op);
 590     left_op = result_op;
 591   }
 592 
 593   switch(code) {
 594     case Bytecodes::_iand:
 595     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 596 
 597     case Bytecodes::_ior:
 598     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 599 
 600     case Bytecodes::_ixor:
 601     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 602 
 603     default: ShouldNotReachHere();
 604   }
 605 }
 606 
 607 
 608 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
 609   if (!GenerateSynchronizationCode) return;
 610   // for slow path, use debug info for state after successful locking
 611   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
 612   __ load_stack_address_monitor(monitor_no, lock);
 613   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 614   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
 615 }
 616 
 617 
 618 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 619   if (!GenerateSynchronizationCode) return;
 620   // setup registers
 621   LIR_Opr hdr = lock;
 622   lock = new_hdr;
 623   CodeStub* slow_path = new MonitorExitStub(lock, !UseHeavyMonitors, monitor_no);
 624   __ load_stack_address_monitor(monitor_no, lock);
 625   __ unlock_object(hdr, object, lock, scratch, slow_path);
 626 }
 627 
 628 #ifndef PRODUCT
 629 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
 630   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
 631     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
 632   } else if (PrintNotLoaded && (!CompilerConfig::is_c1_only_no_jvmci() && new_instance->is_unresolved())) {
 633     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
 634   }
 635 }
 636 #endif
 637 
 638 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 639   klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
 640   // If klass is not loaded we do not know if the klass has finalizers:
 641   if (UseFastNewInstance && klass->is_loaded()
 642       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 643 
 644     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
 645 
 646     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 647 
 648     assert(klass->is_loaded(), "must be loaded");
 649     // allocate space for instance
 650     assert(klass->size_helper() > 0, "illegal instance size");
 651     const int instance_size = align_object_size(klass->size_helper());
 652     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 653                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 654   } else {
 655     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
 656     __ branch(lir_cond_always, slow_path);
 657     __ branch_destination(slow_path->continuation());
 658   }
 659 }
 660 
 661 
 662 static bool is_constant_zero(Instruction* inst) {
 663   IntConstant* c = inst->type()->as_IntConstant();
 664   if (c) {
 665     return (c->value() == 0);
 666   }
 667   return false;
 668 }
 669 
 670 
 671 static bool positive_constant(Instruction* inst) {
 672   IntConstant* c = inst->type()->as_IntConstant();
 673   if (c) {
 674     return (c->value() >= 0);
 675   }
 676   return false;
 677 }
 678 
 679 
 680 static ciArrayKlass* as_array_klass(ciType* type) {
 681   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
 682     return (ciArrayKlass*)type;
 683   } else {
 684     return NULL;
 685   }
 686 }
 687 
 688 static ciType* phi_declared_type(Phi* phi) {
 689   ciType* t = phi->operand_at(0)->declared_type();
 690   if (t == NULL) {
 691     return NULL;
 692   }
 693   for(int i = 1; i < phi->operand_count(); i++) {
 694     if (t != phi->operand_at(i)->declared_type()) {
 695       return NULL;
 696     }
 697   }
 698   return t;
 699 }
 700 
 701 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
 702   Instruction* src     = x->argument_at(0);
 703   Instruction* src_pos = x->argument_at(1);
 704   Instruction* dst     = x->argument_at(2);
 705   Instruction* dst_pos = x->argument_at(3);
 706   Instruction* length  = x->argument_at(4);
 707 
 708   // first try to identify the likely type of the arrays involved
 709   ciArrayKlass* expected_type = NULL;
 710   bool is_exact = false, src_objarray = false, dst_objarray = false;
 711   {
 712     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
 713     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
 714     Phi* phi;
 715     if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
 716       src_declared_type = as_array_klass(phi_declared_type(phi));
 717     }
 718     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
 719     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
 720     if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
 721       dst_declared_type = as_array_klass(phi_declared_type(phi));
 722     }
 723 
 724     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
 725       // the types exactly match so the type is fully known
 726       is_exact = true;
 727       expected_type = src_exact_type;
 728     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
 729       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 730       ciArrayKlass* src_type = NULL;
 731       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
 732         src_type = (ciArrayKlass*) src_exact_type;
 733       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
 734         src_type = (ciArrayKlass*) src_declared_type;
 735       }
 736       if (src_type != NULL) {
 737         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 738           is_exact = true;
 739           expected_type = dst_type;
 740         }
 741       }
 742     }
 743     // at least pass along a good guess
 744     if (expected_type == NULL) expected_type = dst_exact_type;
 745     if (expected_type == NULL) expected_type = src_declared_type;
 746     if (expected_type == NULL) expected_type = dst_declared_type;
 747 
 748     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 749     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 750   }
 751 
 752   // if a probable array type has been identified, figure out if any
 753   // of the required checks for a fast case can be elided.
 754   int flags = LIR_OpArrayCopy::all_flags;
 755 
 756   if (!src_objarray)
 757     flags &= ~LIR_OpArrayCopy::src_objarray;
 758   if (!dst_objarray)
 759     flags &= ~LIR_OpArrayCopy::dst_objarray;
 760 
 761   if (!x->arg_needs_null_check(0))
 762     flags &= ~LIR_OpArrayCopy::src_null_check;
 763   if (!x->arg_needs_null_check(2))
 764     flags &= ~LIR_OpArrayCopy::dst_null_check;
 765 
 766 
 767   if (expected_type != NULL) {
 768     Value length_limit = NULL;
 769 
 770     IfOp* ifop = length->as_IfOp();
 771     if (ifop != NULL) {
 772       // look for expressions like min(v, a.length) which ends up as
 773       //   x > y ? y : x  or  x >= y ? y : x
 774       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 775           ifop->x() == ifop->fval() &&
 776           ifop->y() == ifop->tval()) {
 777         length_limit = ifop->y();
 778       }
 779     }
 780 
 781     // try to skip null checks and range checks
 782     NewArray* src_array = src->as_NewArray();
 783     if (src_array != NULL) {
 784       flags &= ~LIR_OpArrayCopy::src_null_check;
 785       if (length_limit != NULL &&
 786           src_array->length() == length_limit &&
 787           is_constant_zero(src_pos)) {
 788         flags &= ~LIR_OpArrayCopy::src_range_check;
 789       }
 790     }
 791 
 792     NewArray* dst_array = dst->as_NewArray();
 793     if (dst_array != NULL) {
 794       flags &= ~LIR_OpArrayCopy::dst_null_check;
 795       if (length_limit != NULL &&
 796           dst_array->length() == length_limit &&
 797           is_constant_zero(dst_pos)) {
 798         flags &= ~LIR_OpArrayCopy::dst_range_check;
 799       }
 800     }
 801 
 802     // check from incoming constant values
 803     if (positive_constant(src_pos))
 804       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
 805     if (positive_constant(dst_pos))
 806       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
 807     if (positive_constant(length))
 808       flags &= ~LIR_OpArrayCopy::length_positive_check;
 809 
 810     // see if the range check can be elided, which might also imply
 811     // that src or dst is non-null.
 812     ArrayLength* al = length->as_ArrayLength();
 813     if (al != NULL) {
 814       if (al->array() == src) {
 815         // it's the length of the source array
 816         flags &= ~LIR_OpArrayCopy::length_positive_check;
 817         flags &= ~LIR_OpArrayCopy::src_null_check;
 818         if (is_constant_zero(src_pos))
 819           flags &= ~LIR_OpArrayCopy::src_range_check;
 820       }
 821       if (al->array() == dst) {
 822         // it's the length of the destination array
 823         flags &= ~LIR_OpArrayCopy::length_positive_check;
 824         flags &= ~LIR_OpArrayCopy::dst_null_check;
 825         if (is_constant_zero(dst_pos))
 826           flags &= ~LIR_OpArrayCopy::dst_range_check;
 827       }
 828     }
 829     if (is_exact) {
 830       flags &= ~LIR_OpArrayCopy::type_check;
 831     }
 832   }
 833 
 834   IntConstant* src_int = src_pos->type()->as_IntConstant();
 835   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
 836   if (src_int && dst_int) {
 837     int s_offs = src_int->value();
 838     int d_offs = dst_int->value();
 839     if (src_int->value() >= dst_int->value()) {
 840       flags &= ~LIR_OpArrayCopy::overlapping;
 841     }
 842     if (expected_type != NULL) {
 843       BasicType t = expected_type->element_type()->basic_type();
 844       int element_size = type2aelembytes(t);
 845       if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
 846           ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
 847         flags &= ~LIR_OpArrayCopy::unaligned;
 848       }
 849     }
 850   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
 851     // src and dest positions are the same, or dst is zero so assume
 852     // nonoverlapping copy.
 853     flags &= ~LIR_OpArrayCopy::overlapping;
 854   }
 855 
 856   if (src == dst) {
 857     // moving within a single array so no type checks are needed
 858     if (flags & LIR_OpArrayCopy::type_check) {
 859       flags &= ~LIR_OpArrayCopy::type_check;
 860     }
 861   }
 862   *flagsp = flags;
 863   *expected_typep = (ciArrayKlass*)expected_type;
 864 }
 865 
 866 
 867 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
 868   assert(opr->is_register(), "why spill if item is not register?");
 869 
 870   if (strict_fp_requires_explicit_rounding) {
 871 #ifdef IA32
 872     if (UseSSE < 1 && opr->is_single_fpu()) {
 873       LIR_Opr result = new_register(T_FLOAT);
 874       set_vreg_flag(result, must_start_in_memory);
 875       assert(opr->is_register(), "only a register can be spilled");
 876       assert(opr->value_type()->is_float(), "rounding only for floats available");
 877       __ roundfp(opr, LIR_OprFact::illegalOpr, result);
 878       return result;
 879     }
 880 #else
 881     Unimplemented();
 882 #endif // IA32
 883   }
 884   return opr;
 885 }
 886 
 887 
 888 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 889   assert(type2size[t] == type2size[value->type()],
 890          "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type()));
 891   if (!value->is_register()) {
 892     // force into a register
 893     LIR_Opr r = new_register(value->type());
 894     __ move(value, r);
 895     value = r;
 896   }
 897 
 898   // create a spill location
 899   LIR_Opr tmp = new_register(t);
 900   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 901 
 902   // move from register to spill
 903   __ move(value, tmp);
 904   return tmp;
 905 }
 906 
 907 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
 908   if (if_instr->should_profile()) {
 909     ciMethod* method = if_instr->profiled_method();
 910     assert(method != NULL, "method should be set if branch is profiled");
 911     ciMethodData* md = method->method_data_or_null();
 912     assert(md != NULL, "Sanity");
 913     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
 914     assert(data != NULL, "must have profiling data");
 915     assert(data->is_BranchData(), "need BranchData for two-way branches");
 916     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
 917     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
 918     if (if_instr->is_swapped()) {
 919       int t = taken_count_offset;
 920       taken_count_offset = not_taken_count_offset;
 921       not_taken_count_offset = t;
 922     }
 923 
 924     LIR_Opr md_reg = new_register(T_METADATA);
 925     __ metadata2reg(md->constant_encoding(), md_reg);
 926 
 927     LIR_Opr data_offset_reg = new_pointer_register();
 928     __ cmove(lir_cond(cond),
 929              LIR_OprFact::intptrConst(taken_count_offset),
 930              LIR_OprFact::intptrConst(not_taken_count_offset),
 931              data_offset_reg, as_BasicType(if_instr->x()->type()));
 932 
 933     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
 934     LIR_Opr data_reg = new_pointer_register();
 935     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
 936     __ move(data_addr, data_reg);
 937     // Use leal instead of add to avoid destroying condition codes on x86
 938     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
 939     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
 940     __ move(data_reg, data_addr);
 941   }
 942 }
 943 
 944 // Phi technique:
 945 // This is about passing live values from one basic block to the other.
 946 // In code generated with Java it is rather rare that more than one
 947 // value is on the stack from one basic block to the other.
 948 // We optimize our technique for efficient passing of one value
 949 // (of type long, int, double..) but it can be extended.
 950 // When entering or leaving a basic block, all registers and all spill
 951 // slots are release and empty. We use the released registers
 952 // and spill slots to pass the live values from one block
 953 // to the other. The topmost value, i.e., the value on TOS of expression
 954 // stack is passed in registers. All other values are stored in spilling
 955 // area. Every Phi has an index which designates its spill slot
 956 // At exit of a basic block, we fill the register(s) and spill slots.
 957 // At entry of a basic block, the block_prolog sets up the content of phi nodes
 958 // and locks necessary registers and spilling slots.
 959 
 960 
 961 // move current value to referenced phi function
 962 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
 963   Phi* phi = sux_val->as_Phi();
 964   // cur_val can be null without phi being null in conjunction with inlining
 965   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
 966     Phi* cur_phi = cur_val->as_Phi();
 967     if (cur_phi != NULL && cur_phi->is_illegal()) {
 968       // Phi and local would need to get invalidated
 969       // (which is unexpected for Linear Scan).
 970       // But this case is very rare so we simply bail out.
 971       bailout("propagation of illegal phi");
 972       return;
 973     }
 974     LIR_Opr operand = cur_val->operand();
 975     if (operand->is_illegal()) {
 976       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
 977              "these can be produced lazily");
 978       operand = operand_for_instruction(cur_val);
 979     }
 980     resolver->move(operand, operand_for_instruction(phi));
 981   }
 982 }
 983 
 984 
 985 // Moves all stack values into their PHI position
 986 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
 987   BlockBegin* bb = block();
 988   if (bb->number_of_sux() == 1) {
 989     BlockBegin* sux = bb->sux_at(0);
 990     assert(sux->number_of_preds() > 0, "invalid CFG");
 991 
 992     // a block with only one predecessor never has phi functions
 993     if (sux->number_of_preds() > 1) {
 994       PhiResolver resolver(this);
 995 
 996       ValueStack* sux_state = sux->state();
 997       Value sux_value;
 998       int index;
 999 
1000       assert(cur_state->scope() == sux_state->scope(), "not matching");
1001       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1002       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1003 
1004       for_each_stack_value(sux_state, index, sux_value) {
1005         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1006       }
1007 
1008       for_each_local_value(sux_state, index, sux_value) {
1009         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1010       }
1011 
1012       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1013     }
1014   }
1015 }
1016 
1017 
1018 LIR_Opr LIRGenerator::new_register(BasicType type) {
1019   int vreg_num = _virtual_register_number;
1020   // Add a little fudge factor for the bailout since the bailout is only checked periodically. This allows us to hand out
1021   // a few extra registers before we really run out which helps to avoid to trip over assertions.
1022   if (vreg_num + 20 >= LIR_Opr::vreg_max) {
1023     bailout("out of virtual registers in LIR generator");
1024     if (vreg_num + 2 >= LIR_Opr::vreg_max) {
1025       // Wrap it around and continue until bailout really happens to avoid hitting assertions.
1026       _virtual_register_number = LIR_Opr::vreg_base;
1027       vreg_num = LIR_Opr::vreg_base;
1028     }
1029   }
1030   _virtual_register_number += 1;
1031   LIR_Opr vreg = LIR_OprFact::virtual_register(vreg_num, type);
1032   assert(vreg != LIR_OprFact::illegal(), "ran out of virtual registers");
1033   return vreg;
1034 }
1035 
1036 
1037 // Try to lock using register in hint
1038 LIR_Opr LIRGenerator::rlock(Value instr) {
1039   return new_register(instr->type());
1040 }
1041 
1042 
1043 // does an rlock and sets result
1044 LIR_Opr LIRGenerator::rlock_result(Value x) {
1045   LIR_Opr reg = rlock(x);
1046   set_result(x, reg);
1047   return reg;
1048 }
1049 
1050 
1051 // does an rlock and sets result
1052 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1053   LIR_Opr reg;
1054   switch (type) {
1055   case T_BYTE:
1056   case T_BOOLEAN:
1057     reg = rlock_byte(type);
1058     break;
1059   default:
1060     reg = rlock(x);
1061     break;
1062   }
1063 
1064   set_result(x, reg);
1065   return reg;
1066 }
1067 
1068 
1069 //---------------------------------------------------------------------
1070 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1071   ObjectType* oc = value->type()->as_ObjectType();
1072   if (oc) {
1073     return oc->constant_value();
1074   }
1075   return NULL;
1076 }
1077 
1078 
1079 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1080   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1081   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1082 
1083   // no moves are created for phi functions at the begin of exception
1084   // handlers, so assign operands manually here
1085   for_each_phi_fun(block(), phi,
1086                    if (!phi->is_illegal()) { operand_for_instruction(phi); });
1087 
1088   LIR_Opr thread_reg = getThreadPointer();
1089   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1090                exceptionOopOpr());
1091   __ move_wide(LIR_OprFact::oopConst(NULL),
1092                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1093   __ move_wide(LIR_OprFact::oopConst(NULL),
1094                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1095 
1096   LIR_Opr result = new_register(T_OBJECT);
1097   __ move(exceptionOopOpr(), result);
1098   set_result(x, result);
1099 }
1100 
1101 
1102 //----------------------------------------------------------------------
1103 //----------------------------------------------------------------------
1104 //----------------------------------------------------------------------
1105 //----------------------------------------------------------------------
1106 //                        visitor functions
1107 //----------------------------------------------------------------------
1108 //----------------------------------------------------------------------
1109 //----------------------------------------------------------------------
1110 //----------------------------------------------------------------------
1111 
1112 void LIRGenerator::do_Phi(Phi* x) {
1113   // phi functions are never visited directly
1114   ShouldNotReachHere();
1115 }
1116 
1117 
1118 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1119 void LIRGenerator::do_Constant(Constant* x) {
1120   if (x->state_before() != NULL) {
1121     // Any constant with a ValueStack requires patching so emit the patch here
1122     LIR_Opr reg = rlock_result(x);
1123     CodeEmitInfo* info = state_for(x, x->state_before());
1124     __ oop2reg_patch(NULL, reg, info);
1125   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1126     if (!x->is_pinned()) {
1127       // unpinned constants are handled specially so that they can be
1128       // put into registers when they are used multiple times within a
1129       // block.  After the block completes their operand will be
1130       // cleared so that other blocks can't refer to that register.
1131       set_result(x, load_constant(x));
1132     } else {
1133       LIR_Opr res = x->operand();
1134       if (!res->is_valid()) {
1135         res = LIR_OprFact::value_type(x->type());
1136       }
1137       if (res->is_constant()) {
1138         LIR_Opr reg = rlock_result(x);
1139         __ move(res, reg);
1140       } else {
1141         set_result(x, res);
1142       }
1143     }
1144   } else {
1145     set_result(x, LIR_OprFact::value_type(x->type()));
1146   }
1147 }
1148 
1149 
1150 void LIRGenerator::do_Local(Local* x) {
1151   // operand_for_instruction has the side effect of setting the result
1152   // so there's no need to do it here.
1153   operand_for_instruction(x);
1154 }
1155 
1156 
1157 void LIRGenerator::do_Return(Return* x) {
1158   if (compilation()->env()->dtrace_method_probes()) {
1159     BasicTypeList signature;
1160     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1161     signature.append(T_METADATA); // Method*
1162     LIR_OprList* args = new LIR_OprList();
1163     args->append(getThreadPointer());
1164     LIR_Opr meth = new_register(T_METADATA);
1165     __ metadata2reg(method()->constant_encoding(), meth);
1166     args->append(meth);
1167     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1168   }
1169 
1170   if (x->type()->is_void()) {
1171     __ return_op(LIR_OprFact::illegalOpr);
1172   } else {
1173     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1174     LIRItem result(x->result(), this);
1175 
1176     result.load_item_force(reg);
1177     __ return_op(result.result());
1178   }
1179   set_no_result(x);
1180 }
1181 
1182 // Examble: ref.get()
1183 // Combination of LoadField and g1 pre-write barrier
1184 void LIRGenerator::do_Reference_get(Intrinsic* x) {
1185 
1186   const int referent_offset = java_lang_ref_Reference::referent_offset();
1187 
1188   assert(x->number_of_arguments() == 1, "wrong type");
1189 
1190   LIRItem reference(x->argument_at(0), this);
1191   reference.load_item();
1192 
1193   // need to perform the null check on the reference objecy
1194   CodeEmitInfo* info = NULL;
1195   if (x->needs_null_check()) {
1196     info = state_for(x);
1197   }
1198 
1199   LIR_Opr result = rlock_result(x, T_OBJECT);
1200   access_load_at(IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT,
1201                  reference, LIR_OprFact::intConst(referent_offset), result);
1202 }
1203 
1204 // Example: clazz.isInstance(object)
1205 void LIRGenerator::do_isInstance(Intrinsic* x) {
1206   assert(x->number_of_arguments() == 2, "wrong type");
1207 
1208   // TODO could try to substitute this node with an equivalent InstanceOf
1209   // if clazz is known to be a constant Class. This will pick up newly found
1210   // constants after HIR construction. I'll leave this to a future change.
1211 
1212   // as a first cut, make a simple leaf call to runtime to stay platform independent.
1213   // could follow the aastore example in a future change.
1214 
1215   LIRItem clazz(x->argument_at(0), this);
1216   LIRItem object(x->argument_at(1), this);
1217   clazz.load_item();
1218   object.load_item();
1219   LIR_Opr result = rlock_result(x);
1220 
1221   // need to perform null check on clazz
1222   if (x->needs_null_check()) {
1223     CodeEmitInfo* info = state_for(x);
1224     __ null_check(clazz.result(), info);
1225   }
1226 
1227   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1228                                      CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
1229                                      x->type(),
1230                                      NULL); // NULL CodeEmitInfo results in a leaf call
1231   __ move(call_result, result);
1232 }
1233 
1234 void LIRGenerator::load_klass(LIR_Opr obj, LIR_Opr klass, CodeEmitInfo* null_check_info) {
1235   __ load_klass(obj, klass, null_check_info);
1236 }
1237 
1238 // Example: object.getClass ()
1239 void LIRGenerator::do_getClass(Intrinsic* x) {
1240   assert(x->number_of_arguments() == 1, "wrong type");
1241 
1242   LIRItem rcvr(x->argument_at(0), this);
1243   rcvr.load_item();
1244   LIR_Opr temp = new_register(T_ADDRESS);
1245   LIR_Opr result = rlock_result(x);
1246 
1247   // need to perform the null check on the rcvr
1248   CodeEmitInfo* info = NULL;
1249   if (x->needs_null_check()) {
1250     info = state_for(x);
1251   }
1252 
1253   LIR_Opr klass = new_register(T_METADATA);
1254   load_klass(rcvr.result(), klass, info);
1255   __ move_wide(new LIR_Address(klass, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), temp);
1256   // mirror = ((OopHandle)mirror)->resolve();
1257   access_load(IN_NATIVE, T_OBJECT,
1258               LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), result);
1259 }
1260 
1261 // java.lang.Class::isPrimitive()
1262 void LIRGenerator::do_isPrimitive(Intrinsic* x) {
1263   assert(x->number_of_arguments() == 1, "wrong type");
1264 
1265   LIRItem rcvr(x->argument_at(0), this);
1266   rcvr.load_item();
1267   LIR_Opr temp = new_register(T_METADATA);
1268   LIR_Opr result = rlock_result(x);
1269 
1270   CodeEmitInfo* info = NULL;
1271   if (x->needs_null_check()) {
1272     info = state_for(x);
1273   }
1274 
1275   __ move(new LIR_Address(rcvr.result(), java_lang_Class::klass_offset(), T_ADDRESS), temp, info);
1276   __ cmp(lir_cond_notEqual, temp, LIR_OprFact::metadataConst(0));
1277   __ cmove(lir_cond_notEqual, LIR_OprFact::intConst(0), LIR_OprFact::intConst(1), result, T_BOOLEAN);
1278 }
1279 
1280 // Example: Foo.class.getModifiers()
1281 void LIRGenerator::do_getModifiers(Intrinsic* x) {
1282   assert(x->number_of_arguments() == 1, "wrong type");
1283 
1284   LIRItem receiver(x->argument_at(0), this);
1285   receiver.load_item();
1286   LIR_Opr result = rlock_result(x);
1287 
1288   CodeEmitInfo* info = NULL;
1289   if (x->needs_null_check()) {
1290     info = state_for(x);
1291   }
1292 
1293   LabelObj* L_not_prim = new LabelObj();
1294   LabelObj* L_done = new LabelObj();
1295 
1296   LIR_Opr klass = new_register(T_METADATA);
1297   // Checking if it's a java mirror of primitive type
1298   __ move(new LIR_Address(receiver.result(), java_lang_Class::klass_offset(), T_ADDRESS), klass, info);
1299   __ cmp(lir_cond_notEqual, klass, LIR_OprFact::metadataConst(0));
1300   __ branch(lir_cond_notEqual, L_not_prim->label());
1301   __ move(LIR_OprFact::intConst(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC), result);
1302   __ branch(lir_cond_always, L_done->label());
1303 
1304   __ branch_destination(L_not_prim->label());
1305   __ move(new LIR_Address(klass, in_bytes(Klass::modifier_flags_offset()), T_INT), result);
1306   __ branch_destination(L_done->label());
1307 }
1308 
1309 // Example: Thread.currentThread()
1310 void LIRGenerator::do_currentThread(Intrinsic* x) {
1311   assert(x->number_of_arguments() == 0, "wrong type");
1312   LIR_Opr temp = new_register(T_ADDRESS);
1313   LIR_Opr reg = rlock_result(x);
1314   __ move(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_ADDRESS), temp);
1315   // threadObj = ((OopHandle)_threadObj)->resolve();
1316   access_load(IN_NATIVE, T_OBJECT,
1317               LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), reg);
1318 }
1319 
1320 void LIRGenerator::do_getObjectSize(Intrinsic* x) {
1321   assert(x->number_of_arguments() == 3, "wrong type");
1322   LIR_Opr result_reg = rlock_result(x);
1323 
1324   LIRItem value(x->argument_at(2), this);
1325   value.load_item();
1326 
1327   LIR_Opr klass = new_register(T_METADATA);
1328   load_klass(value.result(), klass, NULL);
1329   LIR_Opr layout = new_register(T_INT);
1330   __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
1331 
1332   LabelObj* L_done = new LabelObj();
1333   LabelObj* L_array = new LabelObj();
1334 
1335   __ cmp(lir_cond_lessEqual, layout, 0);
1336   __ branch(lir_cond_lessEqual, L_array->label());
1337 
1338   // Instance case: the layout helper gives us instance size almost directly,
1339   // but we need to mask out the _lh_instance_slow_path_bit.
1340   __ convert(Bytecodes::_i2l, layout, result_reg);
1341 
1342   assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
1343   jlong mask = ~(jlong) right_n_bits(LogBytesPerLong);
1344   __ logical_and(result_reg, LIR_OprFact::longConst(mask), result_reg);
1345 
1346   __ branch(lir_cond_always, L_done->label());
1347 
1348   // Array case: size is round(header + element_size*arraylength).
1349   // Since arraylength is different for every array instance, we have to
1350   // compute the whole thing at runtime.
1351 
1352   __ branch_destination(L_array->label());
1353 
1354   int round_mask = MinObjAlignmentInBytes - 1;
1355 
1356   // Figure out header sizes first.
1357   LIR_Opr hss = LIR_OprFact::intConst(Klass::_lh_header_size_shift);
1358   LIR_Opr hsm = LIR_OprFact::intConst(Klass::_lh_header_size_mask);
1359 
1360   LIR_Opr header_size = new_register(T_INT);
1361   __ move(layout, header_size);
1362   LIR_Opr tmp = new_register(T_INT);
1363   __ unsigned_shift_right(header_size, hss, header_size, tmp);
1364   __ logical_and(header_size, hsm, header_size);
1365   __ add(header_size, LIR_OprFact::intConst(round_mask), header_size);
1366 
1367   // Figure out the array length in bytes
1368   assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
1369   LIR_Opr l2esm = LIR_OprFact::intConst(Klass::_lh_log2_element_size_mask);
1370   __ logical_and(layout, l2esm, layout);
1371 
1372   LIR_Opr length_int = new_register(T_INT);
1373   __ move(new LIR_Address(value.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), length_int);
1374 
1375 #ifdef _LP64
1376   LIR_Opr length = new_register(T_LONG);
1377   __ convert(Bytecodes::_i2l, length_int, length);
1378 #endif
1379 
1380   // Shift-left awkwardness. Normally it is just:
1381   //   __ shift_left(length, layout, length);
1382   // But C1 cannot perform shift_left with non-constant count, so we end up
1383   // doing the per-bit loop dance here. x86_32 also does not know how to shift
1384   // longs, so we have to act on ints.
1385   LabelObj* L_shift_loop = new LabelObj();
1386   LabelObj* L_shift_exit = new LabelObj();
1387 
1388   __ branch_destination(L_shift_loop->label());
1389   __ cmp(lir_cond_equal, layout, 0);
1390   __ branch(lir_cond_equal, L_shift_exit->label());
1391 
1392 #ifdef _LP64
1393   __ shift_left(length, 1, length);
1394 #else
1395   __ shift_left(length_int, 1, length_int);
1396 #endif
1397 
1398   __ sub(layout, LIR_OprFact::intConst(1), layout);
1399 
1400   __ branch(lir_cond_always, L_shift_loop->label());
1401   __ branch_destination(L_shift_exit->label());
1402 
1403   // Mix all up, round, and push to the result.
1404 #ifdef _LP64
1405   LIR_Opr header_size_long = new_register(T_LONG);
1406   __ convert(Bytecodes::_i2l, header_size, header_size_long);
1407   __ add(length, header_size_long, length);
1408   if (round_mask != 0) {
1409     __ logical_and(length, LIR_OprFact::longConst(~round_mask), length);
1410   }
1411   __ move(length, result_reg);
1412 #else
1413   __ add(length_int, header_size, length_int);
1414   if (round_mask != 0) {
1415     __ logical_and(length_int, LIR_OprFact::intConst(~round_mask), length_int);
1416   }
1417   __ convert(Bytecodes::_i2l, length_int, result_reg);
1418 #endif
1419 
1420   __ branch_destination(L_done->label());
1421 }
1422 
1423 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1424   assert(x->number_of_arguments() == 1, "wrong type");
1425   LIRItem receiver(x->argument_at(0), this);
1426 
1427   receiver.load_item();
1428   BasicTypeList signature;
1429   signature.append(T_OBJECT); // receiver
1430   LIR_OprList* args = new LIR_OprList();
1431   args->append(receiver.result());
1432   CodeEmitInfo* info = state_for(x, x->state());
1433   call_runtime(&signature, args,
1434                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1435                voidType, info);
1436 
1437   set_no_result(x);
1438 }
1439 
1440 
1441 //------------------------local access--------------------------------------
1442 
1443 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1444   if (x->operand()->is_illegal()) {
1445     Constant* c = x->as_Constant();
1446     if (c != NULL) {
1447       x->set_operand(LIR_OprFact::value_type(c->type()));
1448     } else {
1449       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1450       // allocate a virtual register for this local or phi
1451       x->set_operand(rlock(x));
1452       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1453     }
1454   }
1455   return x->operand();
1456 }
1457 
1458 
1459 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1460   if (opr->is_virtual()) {
1461     return instruction_for_vreg(opr->vreg_number());
1462   }
1463   return NULL;
1464 }
1465 
1466 
1467 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1468   if (reg_num < _instruction_for_operand.length()) {
1469     return _instruction_for_operand.at(reg_num);
1470   }
1471   return NULL;
1472 }
1473 
1474 
1475 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1476   if (_vreg_flags.size_in_bits() == 0) {
1477     BitMap2D temp(100, num_vreg_flags);
1478     _vreg_flags = temp;
1479   }
1480   _vreg_flags.at_put_grow(vreg_num, f, true);
1481 }
1482 
1483 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1484   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1485     return false;
1486   }
1487   return _vreg_flags.at(vreg_num, f);
1488 }
1489 
1490 
1491 // Block local constant handling.  This code is useful for keeping
1492 // unpinned constants and constants which aren't exposed in the IR in
1493 // registers.  Unpinned Constant instructions have their operands
1494 // cleared when the block is finished so that other blocks can't end
1495 // up referring to their registers.
1496 
1497 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1498   assert(!x->is_pinned(), "only for unpinned constants");
1499   _unpinned_constants.append(x);
1500   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1501 }
1502 
1503 
1504 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1505   BasicType t = c->type();
1506   for (int i = 0; i < _constants.length(); i++) {
1507     LIR_Const* other = _constants.at(i);
1508     if (t == other->type()) {
1509       switch (t) {
1510       case T_INT:
1511       case T_FLOAT:
1512         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1513         break;
1514       case T_LONG:
1515       case T_DOUBLE:
1516         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1517         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1518         break;
1519       case T_OBJECT:
1520         if (c->as_jobject() != other->as_jobject()) continue;
1521         break;
1522       default:
1523         break;
1524       }
1525       return _reg_for_constants.at(i);
1526     }
1527   }
1528 
1529   LIR_Opr result = new_register(t);
1530   __ move((LIR_Opr)c, result);
1531   _constants.append(c);
1532   _reg_for_constants.append(result);
1533   return result;
1534 }
1535 
1536 //------------------------field access--------------------------------------
1537 
1538 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
1539   assert(x->number_of_arguments() == 4, "wrong type");
1540   LIRItem obj   (x->argument_at(0), this);  // object
1541   LIRItem offset(x->argument_at(1), this);  // offset of field
1542   LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
1543   LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
1544   assert(obj.type()->tag() == objectTag, "invalid type");
1545   assert(cmp.type()->tag() == type->tag(), "invalid type");
1546   assert(val.type()->tag() == type->tag(), "invalid type");
1547 
1548   LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type),
1549                                             obj, offset, cmp, val);
1550   set_result(x, result);
1551 }
1552 
1553 // Comment copied form templateTable_i486.cpp
1554 // ----------------------------------------------------------------------------
1555 // Volatile variables demand their effects be made known to all CPU's in
1556 // order.  Store buffers on most chips allow reads & writes to reorder; the
1557 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1558 // memory barrier (i.e., it's not sufficient that the interpreter does not
1559 // reorder volatile references, the hardware also must not reorder them).
1560 //
1561 // According to the new Java Memory Model (JMM):
1562 // (1) All volatiles are serialized wrt to each other.
1563 // ALSO reads & writes act as aquire & release, so:
1564 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1565 // the read float up to before the read.  It's OK for non-volatile memory refs
1566 // that happen before the volatile read to float down below it.
1567 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1568 // that happen BEFORE the write float down to after the write.  It's OK for
1569 // non-volatile memory refs that happen after the volatile write to float up
1570 // before it.
1571 //
1572 // We only put in barriers around volatile refs (they are expensive), not
1573 // _between_ memory refs (that would require us to track the flavor of the
1574 // previous memory refs).  Requirements (2) and (3) require some barriers
1575 // before volatile stores and after volatile loads.  These nearly cover
1576 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1577 // case is placed after volatile-stores although it could just as well go
1578 // before volatile-loads.
1579 
1580 
1581 void LIRGenerator::do_StoreField(StoreField* x) {
1582   bool needs_patching = x->needs_patching();
1583   bool is_volatile = x->field()->is_volatile();
1584   BasicType field_type = x->field_type();
1585 
1586   CodeEmitInfo* info = NULL;
1587   if (needs_patching) {
1588     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1589     info = state_for(x, x->state_before());
1590   } else if (x->needs_null_check()) {
1591     NullCheck* nc = x->explicit_null_check();
1592     if (nc == NULL) {
1593       info = state_for(x);
1594     } else {
1595       info = state_for(nc);
1596     }
1597   }
1598 
1599   LIRItem object(x->obj(), this);
1600   LIRItem value(x->value(),  this);
1601 
1602   object.load_item();
1603 
1604   if (is_volatile || needs_patching) {
1605     // load item if field is volatile (fewer special cases for volatiles)
1606     // load item if field not initialized
1607     // load item if field not constant
1608     // because of code patching we cannot inline constants
1609     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1610       value.load_byte_item();
1611     } else  {
1612       value.load_item();
1613     }
1614   } else {
1615     value.load_for_store(field_type);
1616   }
1617 
1618   set_no_result(x);
1619 
1620 #ifndef PRODUCT
1621   if (PrintNotLoaded && needs_patching) {
1622     tty->print_cr("   ###class not loaded at store_%s bci %d",
1623                   x->is_static() ?  "static" : "field", x->printable_bci());
1624   }
1625 #endif
1626 
1627   if (x->needs_null_check() &&
1628       (needs_patching ||
1629        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1630     // Emit an explicit null check because the offset is too large.
1631     // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1632     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1633     __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1634   }
1635 
1636   DecoratorSet decorators = IN_HEAP;
1637   if (is_volatile) {
1638     decorators |= MO_SEQ_CST;
1639   }
1640   if (needs_patching) {
1641     decorators |= C1_NEEDS_PATCHING;
1642   }
1643 
1644   access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()),
1645                   value.result(), info != NULL ? new CodeEmitInfo(info) : NULL, info);
1646 }
1647 
1648 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
1649   assert(x->is_pinned(),"");
1650   bool needs_range_check = x->compute_needs_range_check();
1651   bool use_length = x->length() != NULL;
1652   bool obj_store = is_reference_type(x->elt_type());
1653   bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL ||
1654                                          !get_jobject_constant(x->value())->is_null_object() ||
1655                                          x->should_profile());
1656 
1657   LIRItem array(x->array(), this);
1658   LIRItem index(x->index(), this);
1659   LIRItem value(x->value(), this);
1660   LIRItem length(this);
1661 
1662   array.load_item();
1663   index.load_nonconstant();
1664 
1665   if (use_length && needs_range_check) {
1666     length.set_instruction(x->length());
1667     length.load_item();
1668 
1669   }
1670   if (needs_store_check || x->check_boolean()) {
1671     value.load_item();
1672   } else {
1673     value.load_for_store(x->elt_type());
1674   }
1675 
1676   set_no_result(x);
1677 
1678   // the CodeEmitInfo must be duplicated for each different
1679   // LIR-instruction because spilling can occur anywhere between two
1680   // instructions and so the debug information must be different
1681   CodeEmitInfo* range_check_info = state_for(x);
1682   CodeEmitInfo* null_check_info = NULL;
1683   if (x->needs_null_check()) {
1684     null_check_info = new CodeEmitInfo(range_check_info);
1685   }
1686 
1687   if (GenerateRangeChecks && needs_range_check) {
1688     if (use_length) {
1689       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1690       __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
1691     } else {
1692       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1693       // range_check also does the null check
1694       null_check_info = NULL;
1695     }
1696   }
1697 
1698   if (GenerateArrayStoreCheck && needs_store_check) {
1699     CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
1700     array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci());
1701   }
1702 
1703   DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1704   if (x->check_boolean()) {
1705     decorators |= C1_MASK_BOOLEAN;
1706   }
1707 
1708   access_store_at(decorators, x->elt_type(), array, index.result(), value.result(),
1709                   NULL, null_check_info);
1710 }
1711 
1712 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type,
1713                                   LIRItem& base, LIR_Opr offset, LIR_Opr result,
1714                                   CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) {
1715   decorators |= ACCESS_READ;
1716   LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info);
1717   if (access.is_raw()) {
1718     _barrier_set->BarrierSetC1::load_at(access, result);
1719   } else {
1720     _barrier_set->load_at(access, result);
1721   }
1722 }
1723 
1724 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type,
1725                                LIR_Opr addr, LIR_Opr result) {
1726   decorators |= ACCESS_READ;
1727   LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type);
1728   access.set_resolved_addr(addr);
1729   if (access.is_raw()) {
1730     _barrier_set->BarrierSetC1::load(access, result);
1731   } else {
1732     _barrier_set->load(access, result);
1733   }
1734 }
1735 
1736 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type,
1737                                    LIRItem& base, LIR_Opr offset, LIR_Opr value,
1738                                    CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) {
1739   decorators |= ACCESS_WRITE;
1740   LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info);
1741   if (access.is_raw()) {
1742     _barrier_set->BarrierSetC1::store_at(access, value);
1743   } else {
1744     _barrier_set->store_at(access, value);
1745   }
1746 }
1747 
1748 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type,
1749                                                LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) {
1750   decorators |= ACCESS_READ;
1751   decorators |= ACCESS_WRITE;
1752   // Atomic operations are SEQ_CST by default
1753   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1754   LIRAccess access(this, decorators, base, offset, type);
1755   if (access.is_raw()) {
1756     return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value);
1757   } else {
1758     return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value);
1759   }
1760 }
1761 
1762 LIR_Opr LIRGenerator::access_atomic_xchg_at(DecoratorSet decorators, BasicType type,
1763                                             LIRItem& base, LIRItem& offset, LIRItem& value) {
1764   decorators |= ACCESS_READ;
1765   decorators |= ACCESS_WRITE;
1766   // Atomic operations are SEQ_CST by default
1767   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1768   LIRAccess access(this, decorators, base, offset, type);
1769   if (access.is_raw()) {
1770     return _barrier_set->BarrierSetC1::atomic_xchg_at(access, value);
1771   } else {
1772     return _barrier_set->atomic_xchg_at(access, value);
1773   }
1774 }
1775 
1776 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type,
1777                                            LIRItem& base, LIRItem& offset, LIRItem& value) {
1778   decorators |= ACCESS_READ;
1779   decorators |= ACCESS_WRITE;
1780   // Atomic operations are SEQ_CST by default
1781   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1782   LIRAccess access(this, decorators, base, offset, type);
1783   if (access.is_raw()) {
1784     return _barrier_set->BarrierSetC1::atomic_add_at(access, value);
1785   } else {
1786     return _barrier_set->atomic_add_at(access, value);
1787   }
1788 }
1789 
1790 void LIRGenerator::do_LoadField(LoadField* x) {
1791   bool needs_patching = x->needs_patching();
1792   bool is_volatile = x->field()->is_volatile();
1793   BasicType field_type = x->field_type();
1794 
1795   CodeEmitInfo* info = NULL;
1796   if (needs_patching) {
1797     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1798     info = state_for(x, x->state_before());
1799   } else if (x->needs_null_check()) {
1800     NullCheck* nc = x->explicit_null_check();
1801     if (nc == NULL) {
1802       info = state_for(x);
1803     } else {
1804       info = state_for(nc);
1805     }
1806   }
1807 
1808   LIRItem object(x->obj(), this);
1809 
1810   object.load_item();
1811 
1812 #ifndef PRODUCT
1813   if (PrintNotLoaded && needs_patching) {
1814     tty->print_cr("   ###class not loaded at load_%s bci %d",
1815                   x->is_static() ?  "static" : "field", x->printable_bci());
1816   }
1817 #endif
1818 
1819   bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1820   if (x->needs_null_check() &&
1821       (needs_patching ||
1822        MacroAssembler::needs_explicit_null_check(x->offset()) ||
1823        stress_deopt)) {
1824     LIR_Opr obj = object.result();
1825     if (stress_deopt) {
1826       obj = new_register(T_OBJECT);
1827       __ move(LIR_OprFact::oopConst(NULL), obj);
1828     }
1829     // Emit an explicit null check because the offset is too large.
1830     // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1831     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1832     __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1833   }
1834 
1835   DecoratorSet decorators = IN_HEAP;
1836   if (is_volatile) {
1837     decorators |= MO_SEQ_CST;
1838   }
1839   if (needs_patching) {
1840     decorators |= C1_NEEDS_PATCHING;
1841   }
1842 
1843   LIR_Opr result = rlock_result(x, field_type);
1844   access_load_at(decorators, field_type,
1845                  object, LIR_OprFact::intConst(x->offset()), result,
1846                  info ? new CodeEmitInfo(info) : NULL, info);
1847 }
1848 
1849 // int/long jdk.internal.util.Preconditions.checkIndex
1850 void LIRGenerator::do_PreconditionsCheckIndex(Intrinsic* x, BasicType type) {
1851   assert(x->number_of_arguments() == 3, "wrong type");
1852   LIRItem index(x->argument_at(0), this);
1853   LIRItem length(x->argument_at(1), this);
1854   LIRItem oobef(x->argument_at(2), this);
1855 
1856   index.load_item();
1857   length.load_item();
1858   oobef.load_item();
1859 
1860   LIR_Opr result = rlock_result(x);
1861   // x->state() is created from copy_state_for_exception, it does not contains arguments
1862   // we should prepare them before entering into interpreter mode due to deoptimization.
1863   ValueStack* state = x->state();
1864   for (int i = 0; i < x->number_of_arguments(); i++) {
1865     Value arg = x->argument_at(i);
1866     state->push(arg->type(), arg);
1867   }
1868   CodeEmitInfo* info = state_for(x, state);
1869 
1870   LIR_Opr len = length.result();
1871   LIR_Opr zero;
1872   if (type == T_INT) {
1873     zero = LIR_OprFact::intConst(0);
1874     if (length.result()->is_constant()){
1875       len = LIR_OprFact::intConst(length.result()->as_jint());
1876     }
1877   } else {
1878     assert(type == T_LONG, "sanity check");
1879     zero = LIR_OprFact::longConst(0);
1880     if (length.result()->is_constant()){
1881       len = LIR_OprFact::longConst(length.result()->as_jlong());
1882     }
1883   }
1884   // C1 can not handle the case that comparing index with constant value while condition
1885   // is neither lir_cond_equal nor lir_cond_notEqual, see LIR_Assembler::comp_op.
1886   LIR_Opr zero_reg = new_register(type);
1887   __ move(zero, zero_reg);
1888 #if defined(X86) && !defined(_LP64)
1889   // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
1890   LIR_Opr index_copy = new_register(index.type());
1891   // index >= 0
1892   __ move(index.result(), index_copy);
1893   __ cmp(lir_cond_less, index_copy, zero_reg);
1894   __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1895                                                     Deoptimization::Action_make_not_entrant));
1896   // index < length
1897   __ move(index.result(), index_copy);
1898   __ cmp(lir_cond_greaterEqual, index_copy, len);
1899   __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1900                                                             Deoptimization::Action_make_not_entrant));
1901 #else
1902   // index >= 0
1903   __ cmp(lir_cond_less, index.result(), zero_reg);
1904   __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1905                                                     Deoptimization::Action_make_not_entrant));
1906   // index < length
1907   __ cmp(lir_cond_greaterEqual, index.result(), len);
1908   __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1909                                                             Deoptimization::Action_make_not_entrant));
1910 #endif
1911   __ move(index.result(), result);
1912 }
1913 
1914 //------------------------array access--------------------------------------
1915 
1916 
1917 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1918   LIRItem array(x->array(), this);
1919   array.load_item();
1920   LIR_Opr reg = rlock_result(x);
1921 
1922   CodeEmitInfo* info = NULL;
1923   if (x->needs_null_check()) {
1924     NullCheck* nc = x->explicit_null_check();
1925     if (nc == NULL) {
1926       info = state_for(x);
1927     } else {
1928       info = state_for(nc);
1929     }
1930     if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
1931       LIR_Opr obj = new_register(T_OBJECT);
1932       __ move(LIR_OprFact::oopConst(NULL), obj);
1933       __ null_check(obj, new CodeEmitInfo(info));
1934     }
1935   }
1936   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1937 }
1938 
1939 
1940 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1941   bool use_length = x->length() != NULL;
1942   LIRItem array(x->array(), this);
1943   LIRItem index(x->index(), this);
1944   LIRItem length(this);
1945   bool needs_range_check = x->compute_needs_range_check();
1946 
1947   if (use_length && needs_range_check) {
1948     length.set_instruction(x->length());
1949     length.load_item();
1950   }
1951 
1952   array.load_item();
1953   if (index.is_constant() && can_inline_as_constant(x->index())) {
1954     // let it be a constant
1955     index.dont_load_item();
1956   } else {
1957     index.load_item();
1958   }
1959 
1960   CodeEmitInfo* range_check_info = state_for(x);
1961   CodeEmitInfo* null_check_info = NULL;
1962   if (x->needs_null_check()) {
1963     NullCheck* nc = x->explicit_null_check();
1964     if (nc != NULL) {
1965       null_check_info = state_for(nc);
1966     } else {
1967       null_check_info = range_check_info;
1968     }
1969     if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
1970       LIR_Opr obj = new_register(T_OBJECT);
1971       __ move(LIR_OprFact::oopConst(NULL), obj);
1972       __ null_check(obj, new CodeEmitInfo(null_check_info));
1973     }
1974   }
1975 
1976   if (GenerateRangeChecks && needs_range_check) {
1977     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
1978       __ branch(lir_cond_always, new RangeCheckStub(range_check_info, index.result(), array.result()));
1979     } else if (use_length) {
1980       // TODO: use a (modified) version of array_range_check that does not require a
1981       //       constant length to be loaded to a register
1982       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1983       __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
1984     } else {
1985       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1986       // The range check performs the null check, so clear it out for the load
1987       null_check_info = NULL;
1988     }
1989   }
1990 
1991   DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1992 
1993   LIR_Opr result = rlock_result(x, x->elt_type());
1994   access_load_at(decorators, x->elt_type(),
1995                  array, index.result(), result,
1996                  NULL, null_check_info);
1997 }
1998 
1999 
2000 void LIRGenerator::do_NullCheck(NullCheck* x) {
2001   if (x->can_trap()) {
2002     LIRItem value(x->obj(), this);
2003     value.load_item();
2004     CodeEmitInfo* info = state_for(x);
2005     __ null_check(value.result(), info);
2006   }
2007 }
2008 
2009 
2010 void LIRGenerator::do_TypeCast(TypeCast* x) {
2011   LIRItem value(x->obj(), this);
2012   value.load_item();
2013   // the result is the same as from the node we are casting
2014   set_result(x, value.result());
2015 }
2016 
2017 
2018 void LIRGenerator::do_Throw(Throw* x) {
2019   LIRItem exception(x->exception(), this);
2020   exception.load_item();
2021   set_no_result(x);
2022   LIR_Opr exception_opr = exception.result();
2023   CodeEmitInfo* info = state_for(x, x->state());
2024 
2025 #ifndef PRODUCT
2026   if (PrintC1Statistics) {
2027     increment_counter(Runtime1::throw_count_address(), T_INT);
2028   }
2029 #endif
2030 
2031   // check if the instruction has an xhandler in any of the nested scopes
2032   bool unwind = false;
2033   if (info->exception_handlers()->length() == 0) {
2034     // this throw is not inside an xhandler
2035     unwind = true;
2036   } else {
2037     // get some idea of the throw type
2038     bool type_is_exact = true;
2039     ciType* throw_type = x->exception()->exact_type();
2040     if (throw_type == NULL) {
2041       type_is_exact = false;
2042       throw_type = x->exception()->declared_type();
2043     }
2044     if (throw_type != NULL && throw_type->is_instance_klass()) {
2045       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
2046       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
2047     }
2048   }
2049 
2050   // do null check before moving exception oop into fixed register
2051   // to avoid a fixed interval with an oop during the null check.
2052   // Use a copy of the CodeEmitInfo because debug information is
2053   // different for null_check and throw.
2054   if (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL) {
2055     // if the exception object wasn't created using new then it might be null.
2056     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
2057   }
2058 
2059   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
2060     // we need to go through the exception lookup path to get JVMTI
2061     // notification done
2062     unwind = false;
2063   }
2064 
2065   // move exception oop into fixed register
2066   __ move(exception_opr, exceptionOopOpr());
2067 
2068   if (unwind) {
2069     __ unwind_exception(exceptionOopOpr());
2070   } else {
2071     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2072   }
2073 }
2074 
2075 
2076 void LIRGenerator::do_RoundFP(RoundFP* x) {
2077   assert(strict_fp_requires_explicit_rounding, "not required");
2078 
2079   LIRItem input(x->input(), this);
2080   input.load_item();
2081   LIR_Opr input_opr = input.result();
2082   assert(input_opr->is_register(), "why round if value is not in a register?");
2083   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
2084   if (input_opr->is_single_fpu()) {
2085     set_result(x, round_item(input_opr)); // This code path not currently taken
2086   } else {
2087     LIR_Opr result = new_register(T_DOUBLE);
2088     set_vreg_flag(result, must_start_in_memory);
2089     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
2090     set_result(x, result);
2091   }
2092 }
2093 
2094 
2095 void LIRGenerator::do_UnsafeGet(UnsafeGet* x) {
2096   BasicType type = x->basic_type();
2097   LIRItem src(x->object(), this);
2098   LIRItem off(x->offset(), this);
2099 
2100   off.load_item();
2101   src.load_item();
2102 
2103   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS;
2104 
2105   if (x->is_volatile()) {
2106     decorators |= MO_SEQ_CST;
2107   }
2108   if (type == T_BOOLEAN) {
2109     decorators |= C1_MASK_BOOLEAN;
2110   }
2111   if (is_reference_type(type)) {
2112     decorators |= ON_UNKNOWN_OOP_REF;
2113   }
2114 
2115   LIR_Opr result = rlock_result(x, type);
2116   if (!x->is_raw()) {
2117     access_load_at(decorators, type, src, off.result(), result);
2118   } else {
2119     // Currently it is only used in GraphBuilder::setup_osr_entry_block.
2120     // It reads the value from [src + offset] directly.
2121 #ifdef _LP64
2122     LIR_Opr offset = new_register(T_LONG);
2123     __ convert(Bytecodes::_i2l, off.result(), offset);
2124 #else
2125     LIR_Opr offset = off.result();
2126 #endif
2127     LIR_Address* addr = new LIR_Address(src.result(), offset, type);
2128     if (is_reference_type(type)) {
2129       __ move_wide(addr, result);
2130     } else {
2131       __ move(addr, result);
2132     }
2133   }
2134 }
2135 
2136 
2137 void LIRGenerator::do_UnsafePut(UnsafePut* x) {
2138   BasicType type = x->basic_type();
2139   LIRItem src(x->object(), this);
2140   LIRItem off(x->offset(), this);
2141   LIRItem data(x->value(), this);
2142 
2143   src.load_item();
2144   if (type == T_BOOLEAN || type == T_BYTE) {
2145     data.load_byte_item();
2146   } else {
2147     data.load_item();
2148   }
2149   off.load_item();
2150 
2151   set_no_result(x);
2152 
2153   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS;
2154   if (is_reference_type(type)) {
2155     decorators |= ON_UNKNOWN_OOP_REF;
2156   }
2157   if (x->is_volatile()) {
2158     decorators |= MO_SEQ_CST;
2159   }
2160   access_store_at(decorators, type, src, off.result(), data.result());
2161 }
2162 
2163 void LIRGenerator::do_UnsafeGetAndSet(UnsafeGetAndSet* x) {
2164   BasicType type = x->basic_type();
2165   LIRItem src(x->object(), this);
2166   LIRItem off(x->offset(), this);
2167   LIRItem value(x->value(), this);
2168 
2169   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS | MO_SEQ_CST;
2170 
2171   if (is_reference_type(type)) {
2172     decorators |= ON_UNKNOWN_OOP_REF;
2173   }
2174 
2175   LIR_Opr result;
2176   if (x->is_add()) {
2177     result = access_atomic_add_at(decorators, type, src, off, value);
2178   } else {
2179     result = access_atomic_xchg_at(decorators, type, src, off, value);
2180   }
2181   set_result(x, result);
2182 }
2183 
2184 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2185   int lng = x->length();
2186 
2187   for (int i = 0; i < lng; i++) {
2188     C1SwitchRange* one_range = x->at(i);
2189     int low_key = one_range->low_key();
2190     int high_key = one_range->high_key();
2191     BlockBegin* dest = one_range->sux();
2192     if (low_key == high_key) {
2193       __ cmp(lir_cond_equal, value, low_key);
2194       __ branch(lir_cond_equal, dest);
2195     } else if (high_key - low_key == 1) {
2196       __ cmp(lir_cond_equal, value, low_key);
2197       __ branch(lir_cond_equal, dest);
2198       __ cmp(lir_cond_equal, value, high_key);
2199       __ branch(lir_cond_equal, dest);
2200     } else {
2201       LabelObj* L = new LabelObj();
2202       __ cmp(lir_cond_less, value, low_key);
2203       __ branch(lir_cond_less, L->label());
2204       __ cmp(lir_cond_lessEqual, value, high_key);
2205       __ branch(lir_cond_lessEqual, dest);
2206       __ branch_destination(L->label());
2207     }
2208   }
2209   __ jump(default_sux);
2210 }
2211 
2212 
2213 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2214   SwitchRangeList* res = new SwitchRangeList();
2215   int len = x->length();
2216   if (len > 0) {
2217     BlockBegin* sux = x->sux_at(0);
2218     int key = x->lo_key();
2219     BlockBegin* default_sux = x->default_sux();
2220     C1SwitchRange* range = new C1SwitchRange(key, sux);
2221     for (int i = 0; i < len; i++, key++) {
2222       BlockBegin* new_sux = x->sux_at(i);
2223       if (sux == new_sux) {
2224         // still in same range
2225         range->set_high_key(key);
2226       } else {
2227         // skip tests which explicitly dispatch to the default
2228         if (sux != default_sux) {
2229           res->append(range);
2230         }
2231         range = new C1SwitchRange(key, new_sux);
2232       }
2233       sux = new_sux;
2234     }
2235     if (res->length() == 0 || res->last() != range)  res->append(range);
2236   }
2237   return res;
2238 }
2239 
2240 
2241 // we expect the keys to be sorted by increasing value
2242 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2243   SwitchRangeList* res = new SwitchRangeList();
2244   int len = x->length();
2245   if (len > 0) {
2246     BlockBegin* default_sux = x->default_sux();
2247     int key = x->key_at(0);
2248     BlockBegin* sux = x->sux_at(0);
2249     C1SwitchRange* range = new C1SwitchRange(key, sux);
2250     for (int i = 1; i < len; i++) {
2251       int new_key = x->key_at(i);
2252       BlockBegin* new_sux = x->sux_at(i);
2253       if (key+1 == new_key && sux == new_sux) {
2254         // still in same range
2255         range->set_high_key(new_key);
2256       } else {
2257         // skip tests which explicitly dispatch to the default
2258         if (range->sux() != default_sux) {
2259           res->append(range);
2260         }
2261         range = new C1SwitchRange(new_key, new_sux);
2262       }
2263       key = new_key;
2264       sux = new_sux;
2265     }
2266     if (res->length() == 0 || res->last() != range)  res->append(range);
2267   }
2268   return res;
2269 }
2270 
2271 
2272 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2273   LIRItem tag(x->tag(), this);
2274   tag.load_item();
2275   set_no_result(x);
2276 
2277   if (x->is_safepoint()) {
2278     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2279   }
2280 
2281   // move values into phi locations
2282   move_to_phi(x->state());
2283 
2284   int lo_key = x->lo_key();
2285   int len = x->length();
2286   assert(lo_key <= (lo_key + (len - 1)), "integer overflow");
2287   LIR_Opr value = tag.result();
2288 
2289   if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2290     ciMethod* method = x->state()->scope()->method();
2291     ciMethodData* md = method->method_data_or_null();
2292     assert(md != NULL, "Sanity");
2293     ciProfileData* data = md->bci_to_data(x->state()->bci());
2294     assert(data != NULL, "must have profiling data");
2295     assert(data->is_MultiBranchData(), "bad profile data?");
2296     int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2297     LIR_Opr md_reg = new_register(T_METADATA);
2298     __ metadata2reg(md->constant_encoding(), md_reg);
2299     LIR_Opr data_offset_reg = new_pointer_register();
2300     LIR_Opr tmp_reg = new_pointer_register();
2301 
2302     __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2303     for (int i = 0; i < len; i++) {
2304       int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2305       __ cmp(lir_cond_equal, value, i + lo_key);
2306       __ move(data_offset_reg, tmp_reg);
2307       __ cmove(lir_cond_equal,
2308                LIR_OprFact::intptrConst(count_offset),
2309                tmp_reg,
2310                data_offset_reg, T_INT);
2311     }
2312 
2313     LIR_Opr data_reg = new_pointer_register();
2314     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2315     __ move(data_addr, data_reg);
2316     __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2317     __ move(data_reg, data_addr);
2318   }
2319 
2320   if (UseTableRanges) {
2321     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2322   } else {
2323     for (int i = 0; i < len; i++) {
2324       __ cmp(lir_cond_equal, value, i + lo_key);
2325       __ branch(lir_cond_equal, x->sux_at(i));
2326     }
2327     __ jump(x->default_sux());
2328   }
2329 }
2330 
2331 
2332 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2333   LIRItem tag(x->tag(), this);
2334   tag.load_item();
2335   set_no_result(x);
2336 
2337   if (x->is_safepoint()) {
2338     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2339   }
2340 
2341   // move values into phi locations
2342   move_to_phi(x->state());
2343 
2344   LIR_Opr value = tag.result();
2345   int len = x->length();
2346 
2347   if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2348     ciMethod* method = x->state()->scope()->method();
2349     ciMethodData* md = method->method_data_or_null();
2350     assert(md != NULL, "Sanity");
2351     ciProfileData* data = md->bci_to_data(x->state()->bci());
2352     assert(data != NULL, "must have profiling data");
2353     assert(data->is_MultiBranchData(), "bad profile data?");
2354     int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2355     LIR_Opr md_reg = new_register(T_METADATA);
2356     __ metadata2reg(md->constant_encoding(), md_reg);
2357     LIR_Opr data_offset_reg = new_pointer_register();
2358     LIR_Opr tmp_reg = new_pointer_register();
2359 
2360     __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2361     for (int i = 0; i < len; i++) {
2362       int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2363       __ cmp(lir_cond_equal, value, x->key_at(i));
2364       __ move(data_offset_reg, tmp_reg);
2365       __ cmove(lir_cond_equal,
2366                LIR_OprFact::intptrConst(count_offset),
2367                tmp_reg,
2368                data_offset_reg, T_INT);
2369     }
2370 
2371     LIR_Opr data_reg = new_pointer_register();
2372     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2373     __ move(data_addr, data_reg);
2374     __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2375     __ move(data_reg, data_addr);
2376   }
2377 
2378   if (UseTableRanges) {
2379     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2380   } else {
2381     int len = x->length();
2382     for (int i = 0; i < len; i++) {
2383       __ cmp(lir_cond_equal, value, x->key_at(i));
2384       __ branch(lir_cond_equal, x->sux_at(i));
2385     }
2386     __ jump(x->default_sux());
2387   }
2388 }
2389 
2390 
2391 void LIRGenerator::do_Goto(Goto* x) {
2392   set_no_result(x);
2393 
2394   if (block()->next()->as_OsrEntry()) {
2395     // need to free up storage used for OSR entry point
2396     LIR_Opr osrBuffer = block()->next()->operand();
2397     BasicTypeList signature;
2398     signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2399     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2400     __ move(osrBuffer, cc->args()->at(0));
2401     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2402                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2403   }
2404 
2405   if (x->is_safepoint()) {
2406     ValueStack* state = x->state_before() ? x->state_before() : x->state();
2407 
2408     // increment backedge counter if needed
2409     CodeEmitInfo* info = state_for(x, state);
2410     increment_backedge_counter(info, x->profiled_bci());
2411     CodeEmitInfo* safepoint_info = state_for(x, state);
2412     __ safepoint(safepoint_poll_register(), safepoint_info);
2413   }
2414 
2415   // Gotos can be folded Ifs, handle this case.
2416   if (x->should_profile()) {
2417     ciMethod* method = x->profiled_method();
2418     assert(method != NULL, "method should be set if branch is profiled");
2419     ciMethodData* md = method->method_data_or_null();
2420     assert(md != NULL, "Sanity");
2421     ciProfileData* data = md->bci_to_data(x->profiled_bci());
2422     assert(data != NULL, "must have profiling data");
2423     int offset;
2424     if (x->direction() == Goto::taken) {
2425       assert(data->is_BranchData(), "need BranchData for two-way branches");
2426       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2427     } else if (x->direction() == Goto::not_taken) {
2428       assert(data->is_BranchData(), "need BranchData for two-way branches");
2429       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2430     } else {
2431       assert(data->is_JumpData(), "need JumpData for branches");
2432       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2433     }
2434     LIR_Opr md_reg = new_register(T_METADATA);
2435     __ metadata2reg(md->constant_encoding(), md_reg);
2436 
2437     increment_counter(new LIR_Address(md_reg, offset,
2438                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2439   }
2440 
2441   // emit phi-instruction move after safepoint since this simplifies
2442   // describing the state as the safepoint.
2443   move_to_phi(x->state());
2444 
2445   __ jump(x->default_sux());
2446 }
2447 
2448 /**
2449  * Emit profiling code if needed for arguments, parameters, return value types
2450  *
2451  * @param md                    MDO the code will update at runtime
2452  * @param md_base_offset        common offset in the MDO for this profile and subsequent ones
2453  * @param md_offset             offset in the MDO (on top of md_base_offset) for this profile
2454  * @param profiled_k            current profile
2455  * @param obj                   IR node for the object to be profiled
2456  * @param mdp                   register to hold the pointer inside the MDO (md + md_base_offset).
2457  *                              Set once we find an update to make and use for next ones.
2458  * @param not_null              true if we know obj cannot be null
2459  * @param signature_at_call_k   signature at call for obj
2460  * @param callee_signature_k    signature of callee for obj
2461  *                              at call and callee signatures differ at method handle call
2462  * @return                      the only klass we know will ever be seen at this profile point
2463  */
2464 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2465                                     Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2466                                     ciKlass* callee_signature_k) {
2467   ciKlass* result = NULL;
2468   bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2469   bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2470   // known not to be null or null bit already set and already set to
2471   // unknown: nothing we can do to improve profiling
2472   if (!do_null && !do_update) {
2473     return result;
2474   }
2475 
2476   ciKlass* exact_klass = NULL;
2477   Compilation* comp = Compilation::current();
2478   if (do_update) {
2479     // try to find exact type, using CHA if possible, so that loading
2480     // the klass from the object can be avoided
2481     ciType* type = obj->exact_type();
2482     if (type == NULL) {
2483       type = obj->declared_type();
2484       type = comp->cha_exact_type(type);
2485     }
2486     assert(type == NULL || type->is_klass(), "type should be class");
2487     exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL;
2488 
2489     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2490   }
2491 
2492   if (!do_null && !do_update) {
2493     return result;
2494   }
2495 
2496   ciKlass* exact_signature_k = NULL;
2497   if (do_update) {
2498     // Is the type from the signature exact (the only one possible)?
2499     exact_signature_k = signature_at_call_k->exact_klass();
2500     if (exact_signature_k == NULL) {
2501       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2502     } else {
2503       result = exact_signature_k;
2504       // Known statically. No need to emit any code: prevent
2505       // LIR_Assembler::emit_profile_type() from emitting useless code
2506       profiled_k = ciTypeEntries::with_status(result, profiled_k);
2507     }
2508     // exact_klass and exact_signature_k can be both non NULL but
2509     // different if exact_klass is loaded after the ciObject for
2510     // exact_signature_k is created.
2511     if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) {
2512       // sometimes the type of the signature is better than the best type
2513       // the compiler has
2514       exact_klass = exact_signature_k;
2515     }
2516     if (callee_signature_k != NULL &&
2517         callee_signature_k != signature_at_call_k) {
2518       ciKlass* improved_klass = callee_signature_k->exact_klass();
2519       if (improved_klass == NULL) {
2520         improved_klass = comp->cha_exact_type(callee_signature_k);
2521       }
2522       if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) {
2523         exact_klass = exact_signature_k;
2524       }
2525     }
2526     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2527   }
2528 
2529   if (!do_null && !do_update) {
2530     return result;
2531   }
2532 
2533   if (mdp == LIR_OprFact::illegalOpr) {
2534     mdp = new_register(T_METADATA);
2535     __ metadata2reg(md->constant_encoding(), mdp);
2536     if (md_base_offset != 0) {
2537       LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2538       mdp = new_pointer_register();
2539       __ leal(LIR_OprFact::address(base_type_address), mdp);
2540     }
2541   }
2542   LIRItem value(obj, this);
2543   value.load_item();
2544   __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2545                   value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL);
2546   return result;
2547 }
2548 
2549 // profile parameters on entry to the root of the compilation
2550 void LIRGenerator::profile_parameters(Base* x) {
2551   if (compilation()->profile_parameters()) {
2552     CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2553     ciMethodData* md = scope()->method()->method_data_or_null();
2554     assert(md != NULL, "Sanity");
2555 
2556     if (md->parameters_type_data() != NULL) {
2557       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2558       ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
2559       LIR_Opr mdp = LIR_OprFact::illegalOpr;
2560       for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2561         LIR_Opr src = args->at(i);
2562         assert(!src->is_illegal(), "check");
2563         BasicType t = src->type();
2564         if (is_reference_type(t)) {
2565           intptr_t profiled_k = parameters->type(j);
2566           Local* local = x->state()->local_at(java_index)->as_Local();
2567           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2568                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2569                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL);
2570           // If the profile is known statically set it once for all and do not emit any code
2571           if (exact != NULL) {
2572             md->set_parameter_type(j, exact);
2573           }
2574           j++;
2575         }
2576         java_index += type2size[t];
2577       }
2578     }
2579   }
2580 }
2581 
2582 void LIRGenerator::do_Base(Base* x) {
2583   __ std_entry(LIR_OprFact::illegalOpr);
2584   // Emit moves from physical registers / stack slots to virtual registers
2585   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2586   IRScope* irScope = compilation()->hir()->top_scope();
2587   int java_index = 0;
2588   for (int i = 0; i < args->length(); i++) {
2589     LIR_Opr src = args->at(i);
2590     assert(!src->is_illegal(), "check");
2591     BasicType t = src->type();
2592 
2593     // Types which are smaller than int are passed as int, so
2594     // correct the type which passed.
2595     switch (t) {
2596     case T_BYTE:
2597     case T_BOOLEAN:
2598     case T_SHORT:
2599     case T_CHAR:
2600       t = T_INT;
2601       break;
2602     default:
2603       break;
2604     }
2605 
2606     LIR_Opr dest = new_register(t);
2607     __ move(src, dest);
2608 
2609     // Assign new location to Local instruction for this local
2610     Local* local = x->state()->local_at(java_index)->as_Local();
2611     assert(local != NULL, "Locals for incoming arguments must have been created");
2612 #ifndef __SOFTFP__
2613     // The java calling convention passes double as long and float as int.
2614     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2615 #endif // __SOFTFP__
2616     local->set_operand(dest);
2617     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2618     java_index += type2size[t];
2619   }
2620 
2621   if (compilation()->env()->dtrace_method_probes()) {
2622     BasicTypeList signature;
2623     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2624     signature.append(T_METADATA); // Method*
2625     LIR_OprList* args = new LIR_OprList();
2626     args->append(getThreadPointer());
2627     LIR_Opr meth = new_register(T_METADATA);
2628     __ metadata2reg(method()->constant_encoding(), meth);
2629     args->append(meth);
2630     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2631   }
2632 
2633   if (method()->is_synchronized()) {
2634     LIR_Opr obj;
2635     if (method()->is_static()) {
2636       obj = new_register(T_OBJECT);
2637       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2638     } else {
2639       Local* receiver = x->state()->local_at(0)->as_Local();
2640       assert(receiver != NULL, "must already exist");
2641       obj = receiver->operand();
2642     }
2643     assert(obj->is_valid(), "must be valid");
2644 
2645     if (method()->is_synchronized() && GenerateSynchronizationCode) {
2646       LIR_Opr lock = syncLockOpr();
2647       __ load_stack_address_monitor(0, lock);
2648 
2649       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException));
2650       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2651 
2652       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
2653       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
2654     }
2655   }
2656   if (compilation()->age_code()) {
2657     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), NULL, false);
2658     decrement_age(info);
2659   }
2660   // increment invocation counters if needed
2661   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2662     profile_parameters(x);
2663     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false);
2664     increment_invocation_counter(info);
2665   }
2666 
2667   // all blocks with a successor must end with an unconditional jump
2668   // to the successor even if they are consecutive
2669   __ jump(x->default_sux());
2670 }
2671 
2672 
2673 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2674   // construct our frame and model the production of incoming pointer
2675   // to the OSR buffer.
2676   __ osr_entry(LIR_Assembler::osrBufferPointer());
2677   LIR_Opr result = rlock_result(x);
2678   __ move(LIR_Assembler::osrBufferPointer(), result);
2679 }
2680 
2681 
2682 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2683   assert(args->length() == arg_list->length(),
2684          "args=%d, arg_list=%d", args->length(), arg_list->length());
2685   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2686     LIRItem* param = args->at(i);
2687     LIR_Opr loc = arg_list->at(i);
2688     if (loc->is_register()) {
2689       param->load_item_force(loc);
2690     } else {
2691       LIR_Address* addr = loc->as_address_ptr();
2692       param->load_for_store(addr->type());
2693       if (addr->type() == T_OBJECT) {
2694         __ move_wide(param->result(), addr);
2695       } else
2696         __ move(param->result(), addr);
2697     }
2698   }
2699 
2700   if (x->has_receiver()) {
2701     LIRItem* receiver = args->at(0);
2702     LIR_Opr loc = arg_list->at(0);
2703     if (loc->is_register()) {
2704       receiver->load_item_force(loc);
2705     } else {
2706       assert(loc->is_address(), "just checking");
2707       receiver->load_for_store(T_OBJECT);
2708       __ move_wide(receiver->result(), loc->as_address_ptr());
2709     }
2710   }
2711 }
2712 
2713 
2714 // Visits all arguments, returns appropriate items without loading them
2715 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2716   LIRItemList* argument_items = new LIRItemList();
2717   if (x->has_receiver()) {
2718     LIRItem* receiver = new LIRItem(x->receiver(), this);
2719     argument_items->append(receiver);
2720   }
2721   for (int i = 0; i < x->number_of_arguments(); i++) {
2722     LIRItem* param = new LIRItem(x->argument_at(i), this);
2723     argument_items->append(param);
2724   }
2725   return argument_items;
2726 }
2727 
2728 
2729 // The invoke with receiver has following phases:
2730 //   a) traverse and load/lock receiver;
2731 //   b) traverse all arguments -> item-array (invoke_visit_argument)
2732 //   c) push receiver on stack
2733 //   d) load each of the items and push on stack
2734 //   e) unlock receiver
2735 //   f) move receiver into receiver-register %o0
2736 //   g) lock result registers and emit call operation
2737 //
2738 // Before issuing a call, we must spill-save all values on stack
2739 // that are in caller-save register. "spill-save" moves those registers
2740 // either in a free callee-save register or spills them if no free
2741 // callee save register is available.
2742 //
2743 // The problem is where to invoke spill-save.
2744 // - if invoked between e) and f), we may lock callee save
2745 //   register in "spill-save" that destroys the receiver register
2746 //   before f) is executed
2747 // - if we rearrange f) to be earlier (by loading %o0) it
2748 //   may destroy a value on the stack that is currently in %o0
2749 //   and is waiting to be spilled
2750 // - if we keep the receiver locked while doing spill-save,
2751 //   we cannot spill it as it is spill-locked
2752 //
2753 void LIRGenerator::do_Invoke(Invoke* x) {
2754   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2755 
2756   LIR_OprList* arg_list = cc->args();
2757   LIRItemList* args = invoke_visit_arguments(x);
2758   LIR_Opr receiver = LIR_OprFact::illegalOpr;
2759 
2760   // setup result register
2761   LIR_Opr result_register = LIR_OprFact::illegalOpr;
2762   if (x->type() != voidType) {
2763     result_register = result_register_for(x->type());
2764   }
2765 
2766   CodeEmitInfo* info = state_for(x, x->state());
2767 
2768   invoke_load_arguments(x, args, arg_list);
2769 
2770   if (x->has_receiver()) {
2771     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2772     receiver = args->at(0)->result();
2773   }
2774 
2775   // emit invoke code
2776   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2777 
2778   // JSR 292
2779   // Preserve the SP over MethodHandle call sites, if needed.
2780   ciMethod* target = x->target();
2781   bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
2782                                   target->is_method_handle_intrinsic() ||
2783                                   target->is_compiled_lambda_form());
2784   if (is_method_handle_invoke) {
2785     info->set_is_method_handle_invoke(true);
2786     if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2787         __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
2788     }
2789   }
2790 
2791   switch (x->code()) {
2792     case Bytecodes::_invokestatic:
2793       __ call_static(target, result_register,
2794                      SharedRuntime::get_resolve_static_call_stub(),
2795                      arg_list, info);
2796       break;
2797     case Bytecodes::_invokespecial:
2798     case Bytecodes::_invokevirtual:
2799     case Bytecodes::_invokeinterface:
2800       // for loaded and final (method or class) target we still produce an inline cache,
2801       // in order to be able to call mixed mode
2802       if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) {
2803         __ call_opt_virtual(target, receiver, result_register,
2804                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
2805                             arg_list, info);
2806       } else {
2807         __ call_icvirtual(target, receiver, result_register,
2808                           SharedRuntime::get_resolve_virtual_call_stub(),
2809                           arg_list, info);
2810       }
2811       break;
2812     case Bytecodes::_invokedynamic: {
2813       __ call_dynamic(target, receiver, result_register,
2814                       SharedRuntime::get_resolve_static_call_stub(),
2815                       arg_list, info);
2816       break;
2817     }
2818     default:
2819       fatal("unexpected bytecode: %s", Bytecodes::name(x->code()));
2820       break;
2821   }
2822 
2823   // JSR 292
2824   // Restore the SP after MethodHandle call sites, if needed.
2825   if (is_method_handle_invoke
2826       && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2827     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
2828   }
2829 
2830   if (result_register->is_valid()) {
2831     LIR_Opr result = rlock_result(x);
2832     __ move(result_register, result);
2833   }
2834 }
2835 
2836 
2837 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
2838   assert(x->number_of_arguments() == 1, "wrong type");
2839   LIRItem value       (x->argument_at(0), this);
2840   LIR_Opr reg = rlock_result(x);
2841   value.load_item();
2842   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
2843   __ move(tmp, reg);
2844 }
2845 
2846 
2847 
2848 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
2849 void LIRGenerator::do_IfOp(IfOp* x) {
2850 #ifdef ASSERT
2851   {
2852     ValueTag xtag = x->x()->type()->tag();
2853     ValueTag ttag = x->tval()->type()->tag();
2854     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
2855     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
2856     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
2857   }
2858 #endif
2859 
2860   LIRItem left(x->x(), this);
2861   LIRItem right(x->y(), this);
2862   left.load_item();
2863   if (can_inline_as_constant(right.value())) {
2864     right.dont_load_item();
2865   } else {
2866     right.load_item();
2867   }
2868 
2869   LIRItem t_val(x->tval(), this);
2870   LIRItem f_val(x->fval(), this);
2871   t_val.dont_load_item();
2872   f_val.dont_load_item();
2873   LIR_Opr reg = rlock_result(x);
2874 
2875   __ cmp(lir_cond(x->cond()), left.result(), right.result());
2876   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
2877 }
2878 
2879 #ifdef JFR_HAVE_INTRINSICS
2880 
2881 void LIRGenerator::do_getEventWriter(Intrinsic* x) {
2882   LabelObj* L_end = new LabelObj();
2883 
2884   // FIXME T_ADDRESS should actually be T_METADATA but it can't because the
2885   // meaning of these two is mixed up (see JDK-8026837).
2886   LIR_Address* jobj_addr = new LIR_Address(getThreadPointer(),
2887                                            in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR),
2888                                            T_ADDRESS);
2889   LIR_Opr result = rlock_result(x);
2890   __ move(LIR_OprFact::oopConst(NULL), result);
2891   LIR_Opr jobj = new_register(T_METADATA);
2892   __ move_wide(jobj_addr, jobj);
2893   __ cmp(lir_cond_equal, jobj, LIR_OprFact::metadataConst(0));
2894   __ branch(lir_cond_equal, L_end->label());
2895 
2896   access_load(IN_NATIVE, T_OBJECT, LIR_OprFact::address(new LIR_Address(jobj, T_OBJECT)), result);
2897 
2898   __ branch_destination(L_end->label());
2899 }
2900 
2901 #endif
2902 
2903 
2904 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
2905   assert(x->number_of_arguments() == 0, "wrong type");
2906   // Enforce computation of _reserved_argument_area_size which is required on some platforms.
2907   BasicTypeList signature;
2908   CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2909   LIR_Opr reg = result_register_for(x->type());
2910   __ call_runtime_leaf(routine, getThreadTemp(),
2911                        reg, new LIR_OprList());
2912   LIR_Opr result = rlock_result(x);
2913   __ move(reg, result);
2914 }
2915 
2916 
2917 
2918 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
2919   switch (x->id()) {
2920   case vmIntrinsics::_intBitsToFloat      :
2921   case vmIntrinsics::_doubleToRawLongBits :
2922   case vmIntrinsics::_longBitsToDouble    :
2923   case vmIntrinsics::_floatToRawIntBits   : {
2924     do_FPIntrinsics(x);
2925     break;
2926   }
2927 
2928 #ifdef JFR_HAVE_INTRINSICS
2929   case vmIntrinsics::_getEventWriter:
2930     do_getEventWriter(x);
2931     break;
2932   case vmIntrinsics::_counterTime:
2933     do_RuntimeCall(CAST_FROM_FN_PTR(address, JFR_TIME_FUNCTION), x);
2934     break;
2935 #endif
2936 
2937   case vmIntrinsics::_currentTimeMillis:
2938     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x);
2939     break;
2940 
2941   case vmIntrinsics::_nanoTime:
2942     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x);
2943     break;
2944 
2945   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
2946   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
2947   case vmIntrinsics::_isPrimitive:    do_isPrimitive(x);   break;
2948   case vmIntrinsics::_getModifiers:   do_getModifiers(x);  break;
2949   case vmIntrinsics::_getClass:       do_getClass(x);      break;
2950   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
2951   case vmIntrinsics::_getObjectSize:  do_getObjectSize(x); break;
2952 
2953   case vmIntrinsics::_dlog:           // fall through
2954   case vmIntrinsics::_dlog10:         // fall through
2955   case vmIntrinsics::_dabs:           // fall through
2956   case vmIntrinsics::_dsqrt:          // fall through
2957   case vmIntrinsics::_dsqrt_strict:   // fall through
2958   case vmIntrinsics::_dtan:           // fall through
2959   case vmIntrinsics::_dsin :          // fall through
2960   case vmIntrinsics::_dcos :          // fall through
2961   case vmIntrinsics::_dexp :          // fall through
2962   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
2963   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
2964 
2965   case vmIntrinsics::_fmaD:           do_FmaIntrinsic(x); break;
2966   case vmIntrinsics::_fmaF:           do_FmaIntrinsic(x); break;
2967 
2968   case vmIntrinsics::_Preconditions_checkIndex:
2969     do_PreconditionsCheckIndex(x, T_INT);
2970     break;
2971   case vmIntrinsics::_Preconditions_checkLongIndex:
2972     do_PreconditionsCheckIndex(x, T_LONG);
2973     break;
2974 
2975   case vmIntrinsics::_compareAndSetReference:
2976     do_CompareAndSwap(x, objectType);
2977     break;
2978   case vmIntrinsics::_compareAndSetInt:
2979     do_CompareAndSwap(x, intType);
2980     break;
2981   case vmIntrinsics::_compareAndSetLong:
2982     do_CompareAndSwap(x, longType);
2983     break;
2984 
2985   case vmIntrinsics::_loadFence :
2986     __ membar_acquire();
2987     break;
2988   case vmIntrinsics::_storeFence:
2989     __ membar_release();
2990     break;
2991   case vmIntrinsics::_storeStoreFence:
2992     __ membar_storestore();
2993     break;
2994   case vmIntrinsics::_fullFence :
2995     __ membar();
2996     break;
2997   case vmIntrinsics::_onSpinWait:
2998     __ on_spin_wait();
2999     break;
3000   case vmIntrinsics::_Reference_get:
3001     do_Reference_get(x);
3002     break;
3003 
3004   case vmIntrinsics::_updateCRC32:
3005   case vmIntrinsics::_updateBytesCRC32:
3006   case vmIntrinsics::_updateByteBufferCRC32:
3007     do_update_CRC32(x);
3008     break;
3009 
3010   case vmIntrinsics::_updateBytesCRC32C:
3011   case vmIntrinsics::_updateDirectByteBufferCRC32C:
3012     do_update_CRC32C(x);
3013     break;
3014 
3015   case vmIntrinsics::_vectorizedMismatch:
3016     do_vectorizedMismatch(x);
3017     break;
3018 
3019   case vmIntrinsics::_blackhole:
3020     do_blackhole(x);
3021     break;
3022 
3023   default: ShouldNotReachHere(); break;
3024   }
3025 }
3026 
3027 void LIRGenerator::profile_arguments(ProfileCall* x) {
3028   if (compilation()->profile_arguments()) {
3029     int bci = x->bci_of_invoke();
3030     ciMethodData* md = x->method()->method_data_or_null();
3031     assert(md != NULL, "Sanity");
3032     ciProfileData* data = md->bci_to_data(bci);
3033     if (data != NULL) {
3034       if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
3035           (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
3036         ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
3037         int base_offset = md->byte_offset_of_slot(data, extra);
3038         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3039         ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
3040 
3041         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3042         int start = 0;
3043         int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
3044         if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
3045           // first argument is not profiled at call (method handle invoke)
3046           assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
3047           start = 1;
3048         }
3049         ciSignature* callee_signature = x->callee()->signature();
3050         // method handle call to virtual method
3051         bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
3052         ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL);
3053 
3054         bool ignored_will_link;
3055         ciSignature* signature_at_call = NULL;
3056         x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3057         ciSignatureStream signature_at_call_stream(signature_at_call);
3058 
3059         // if called through method handle invoke, some arguments may have been popped
3060         for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
3061           int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
3062           ciKlass* exact = profile_type(md, base_offset, off,
3063               args->type(i), x->profiled_arg_at(i+start), mdp,
3064               !x->arg_needs_null_check(i+start),
3065               signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
3066           if (exact != NULL) {
3067             md->set_argument_type(bci, i, exact);
3068           }
3069         }
3070       } else {
3071 #ifdef ASSERT
3072         Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
3073         int n = x->nb_profiled_args();
3074         assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
3075             (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
3076             "only at JSR292 bytecodes");
3077 #endif
3078       }
3079     }
3080   }
3081 }
3082 
3083 // profile parameters on entry to an inlined method
3084 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3085   if (compilation()->profile_parameters() && x->inlined()) {
3086     ciMethodData* md = x->callee()->method_data_or_null();
3087     if (md != NULL) {
3088       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3089       if (parameters_type_data != NULL) {
3090         ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
3091         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3092         bool has_receiver = !x->callee()->is_static();
3093         ciSignature* sig = x->callee()->signature();
3094         ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL);
3095         int i = 0; // to iterate on the Instructions
3096         Value arg = x->recv();
3097         bool not_null = false;
3098         int bci = x->bci_of_invoke();
3099         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3100         // The first parameter is the receiver so that's what we start
3101         // with if it exists. One exception is method handle call to
3102         // virtual method: the receiver is in the args list
3103         if (arg == NULL || !Bytecodes::has_receiver(bc)) {
3104           i = 1;
3105           arg = x->profiled_arg_at(0);
3106           not_null = !x->arg_needs_null_check(0);
3107         }
3108         int k = 0; // to iterate on the profile data
3109         for (;;) {
3110           intptr_t profiled_k = parameters->type(k);
3111           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3112                                         in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3113                                         profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL);
3114           // If the profile is known statically set it once for all and do not emit any code
3115           if (exact != NULL) {
3116             md->set_parameter_type(k, exact);
3117           }
3118           k++;
3119           if (k >= parameters_type_data->number_of_parameters()) {
3120 #ifdef ASSERT
3121             int extra = 0;
3122             if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3123                 x->nb_profiled_args() >= TypeProfileParmsLimit &&
3124                 x->recv() != NULL && Bytecodes::has_receiver(bc)) {
3125               extra += 1;
3126             }
3127             assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3128 #endif
3129             break;
3130           }
3131           arg = x->profiled_arg_at(i);
3132           not_null = !x->arg_needs_null_check(i);
3133           i++;
3134         }
3135       }
3136     }
3137   }
3138 }
3139 
3140 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3141   // Need recv in a temporary register so it interferes with the other temporaries
3142   LIR_Opr recv = LIR_OprFact::illegalOpr;
3143   LIR_Opr mdo = new_register(T_METADATA);
3144   // tmp is used to hold the counters on SPARC
3145   LIR_Opr tmp = new_pointer_register();
3146 
3147   if (x->nb_profiled_args() > 0) {
3148     profile_arguments(x);
3149   }
3150 
3151   // profile parameters on inlined method entry including receiver
3152   if (x->recv() != NULL || x->nb_profiled_args() > 0) {
3153     profile_parameters_at_call(x);
3154   }
3155 
3156   if (x->recv() != NULL) {
3157     LIRItem value(x->recv(), this);
3158     value.load_item();
3159     recv = new_register(T_OBJECT);
3160     __ move(value.result(), recv);
3161   }
3162   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3163 }
3164 
3165 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3166   int bci = x->bci_of_invoke();
3167   ciMethodData* md = x->method()->method_data_or_null();
3168   assert(md != NULL, "Sanity");
3169   ciProfileData* data = md->bci_to_data(bci);
3170   if (data != NULL) {
3171     assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3172     ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3173     LIR_Opr mdp = LIR_OprFact::illegalOpr;
3174 
3175     bool ignored_will_link;
3176     ciSignature* signature_at_call = NULL;
3177     x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3178 
3179     // The offset within the MDO of the entry to update may be too large
3180     // to be used in load/store instructions on some platforms. So have
3181     // profile_type() compute the address of the profile in a register.
3182     ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3183         ret->type(), x->ret(), mdp,
3184         !x->needs_null_check(),
3185         signature_at_call->return_type()->as_klass(),
3186         x->callee()->signature()->return_type()->as_klass());
3187     if (exact != NULL) {
3188       md->set_return_type(bci, exact);
3189     }
3190   }
3191 }
3192 
3193 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3194   // We can safely ignore accessors here, since c2 will inline them anyway,
3195   // accessors are also always mature.
3196   if (!x->inlinee()->is_accessor()) {
3197     CodeEmitInfo* info = state_for(x, x->state(), true);
3198     // Notify the runtime very infrequently only to take care of counter overflows
3199     int freq_log = Tier23InlineeNotifyFreqLog;
3200     double scale;
3201     if (_method->has_option_value(CompileCommand::CompileThresholdScaling, scale)) {
3202       freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3203     }
3204     increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true);
3205   }
3206 }
3207 
3208 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) {
3209   if (compilation()->is_profiling()) {
3210 #if defined(X86) && !defined(_LP64)
3211     // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
3212     LIR_Opr left_copy = new_register(left->type());
3213     __ move(left, left_copy);
3214     __ cmp(cond, left_copy, right);
3215 #else
3216     __ cmp(cond, left, right);
3217 #endif
3218     LIR_Opr step = new_register(T_INT);
3219     LIR_Opr plus_one = LIR_OprFact::intConst(InvocationCounter::count_increment);
3220     LIR_Opr zero = LIR_OprFact::intConst(0);
3221     __ cmove(cond,
3222         (left_bci < bci) ? plus_one : zero,
3223         (right_bci < bci) ? plus_one : zero,
3224         step, left->type());
3225     increment_backedge_counter(info, step, bci);
3226   }
3227 }
3228 
3229 
3230 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, LIR_Opr step, int bci, bool backedge) {
3231   int freq_log = 0;
3232   int level = compilation()->env()->comp_level();
3233   if (level == CompLevel_limited_profile) {
3234     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3235   } else if (level == CompLevel_full_profile) {
3236     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3237   } else {
3238     ShouldNotReachHere();
3239   }
3240   // Increment the appropriate invocation/backedge counter and notify the runtime.
3241   double scale;
3242   if (_method->has_option_value(CompileCommand::CompileThresholdScaling, scale)) {
3243     freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3244   }
3245   increment_event_counter_impl(info, info->scope()->method(), step, right_n_bits(freq_log), bci, backedge, true);
3246 }
3247 
3248 void LIRGenerator::decrement_age(CodeEmitInfo* info) {
3249   ciMethod* method = info->scope()->method();
3250   MethodCounters* mc_adr = method->ensure_method_counters();
3251   if (mc_adr != NULL) {
3252     LIR_Opr mc = new_pointer_register();
3253     __ move(LIR_OprFact::intptrConst(mc_adr), mc);
3254     int offset = in_bytes(MethodCounters::nmethod_age_offset());
3255     LIR_Address* counter = new LIR_Address(mc, offset, T_INT);
3256     LIR_Opr result = new_register(T_INT);
3257     __ load(counter, result);
3258     __ sub(result, LIR_OprFact::intConst(1), result);
3259     __ store(result, counter);
3260     // DeoptimizeStub will reexecute from the current state in code info.
3261     CodeStub* deopt = new DeoptimizeStub(info, Deoptimization::Reason_tenured,
3262                                          Deoptimization::Action_make_not_entrant);
3263     __ cmp(lir_cond_lessEqual, result, LIR_OprFact::intConst(0));
3264     __ branch(lir_cond_lessEqual, deopt);
3265   }
3266 }
3267 
3268 
3269 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3270                                                 ciMethod *method, LIR_Opr step, int frequency,
3271                                                 int bci, bool backedge, bool notify) {
3272   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3273   int level = _compilation->env()->comp_level();
3274   assert(level > CompLevel_simple, "Shouldn't be here");
3275 
3276   int offset = -1;
3277   LIR_Opr counter_holder;
3278   if (level == CompLevel_limited_profile) {
3279     MethodCounters* counters_adr = method->ensure_method_counters();
3280     if (counters_adr == NULL) {
3281       bailout("method counters allocation failed");
3282       return;
3283     }
3284     counter_holder = new_pointer_register();
3285     __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3286     offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3287                                  MethodCounters::invocation_counter_offset());
3288   } else if (level == CompLevel_full_profile) {
3289     counter_holder = new_register(T_METADATA);
3290     offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3291                                  MethodData::invocation_counter_offset());
3292     ciMethodData* md = method->method_data_or_null();
3293     assert(md != NULL, "Sanity");
3294     __ metadata2reg(md->constant_encoding(), counter_holder);
3295   } else {
3296     ShouldNotReachHere();
3297   }
3298   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3299   LIR_Opr result = new_register(T_INT);
3300   __ load(counter, result);
3301   __ add(result, step, result);
3302   __ store(result, counter);
3303   if (notify && (!backedge || UseOnStackReplacement)) {
3304     LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding());
3305     // The bci for info can point to cmp for if's we want the if bci
3306     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3307     int freq = frequency << InvocationCounter::count_shift;
3308     if (freq == 0) {
3309       if (!step->is_constant()) {
3310         __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3311         __ branch(lir_cond_notEqual, overflow);
3312       } else {
3313         __ branch(lir_cond_always, overflow);
3314       }
3315     } else {
3316       LIR_Opr mask = load_immediate(freq, T_INT);
3317       if (!step->is_constant()) {
3318         // If step is 0, make sure the overflow check below always fails
3319         __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3320         __ cmove(lir_cond_notEqual, result, LIR_OprFact::intConst(InvocationCounter::count_increment), result, T_INT);
3321       }
3322       __ logical_and(result, mask, result);
3323       __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3324       __ branch(lir_cond_equal, overflow);
3325     }
3326     __ branch_destination(overflow->continuation());
3327   }
3328 }
3329 
3330 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3331   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3332   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3333 
3334   if (x->pass_thread()) {
3335     signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
3336     args->append(getThreadPointer());
3337   }
3338 
3339   for (int i = 0; i < x->number_of_arguments(); i++) {
3340     Value a = x->argument_at(i);
3341     LIRItem* item = new LIRItem(a, this);
3342     item->load_item();
3343     args->append(item->result());
3344     signature->append(as_BasicType(a->type()));
3345   }
3346 
3347   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
3348   if (x->type() == voidType) {
3349     set_no_result(x);
3350   } else {
3351     __ move(result, rlock_result(x));
3352   }
3353 }
3354 
3355 #ifdef ASSERT
3356 void LIRGenerator::do_Assert(Assert *x) {
3357   ValueTag tag = x->x()->type()->tag();
3358   If::Condition cond = x->cond();
3359 
3360   LIRItem xitem(x->x(), this);
3361   LIRItem yitem(x->y(), this);
3362   LIRItem* xin = &xitem;
3363   LIRItem* yin = &yitem;
3364 
3365   assert(tag == intTag, "Only integer assertions are valid!");
3366 
3367   xin->load_item();
3368   yin->dont_load_item();
3369 
3370   set_no_result(x);
3371 
3372   LIR_Opr left = xin->result();
3373   LIR_Opr right = yin->result();
3374 
3375   __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3376 }
3377 #endif
3378 
3379 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3380 
3381 
3382   Instruction *a = x->x();
3383   Instruction *b = x->y();
3384   if (!a || StressRangeCheckElimination) {
3385     assert(!b || StressRangeCheckElimination, "B must also be null");
3386 
3387     CodeEmitInfo *info = state_for(x, x->state());
3388     CodeStub* stub = new PredicateFailedStub(info);
3389 
3390     __ jump(stub);
3391   } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3392     int a_int = a->type()->as_IntConstant()->value();
3393     int b_int = b->type()->as_IntConstant()->value();
3394 
3395     bool ok = false;
3396 
3397     switch(x->cond()) {
3398       case Instruction::eql: ok = (a_int == b_int); break;
3399       case Instruction::neq: ok = (a_int != b_int); break;
3400       case Instruction::lss: ok = (a_int < b_int); break;
3401       case Instruction::leq: ok = (a_int <= b_int); break;
3402       case Instruction::gtr: ok = (a_int > b_int); break;
3403       case Instruction::geq: ok = (a_int >= b_int); break;
3404       case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3405       case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3406       default: ShouldNotReachHere();
3407     }
3408 
3409     if (ok) {
3410 
3411       CodeEmitInfo *info = state_for(x, x->state());
3412       CodeStub* stub = new PredicateFailedStub(info);
3413 
3414       __ jump(stub);
3415     }
3416   } else {
3417 
3418     ValueTag tag = x->x()->type()->tag();
3419     If::Condition cond = x->cond();
3420     LIRItem xitem(x->x(), this);
3421     LIRItem yitem(x->y(), this);
3422     LIRItem* xin = &xitem;
3423     LIRItem* yin = &yitem;
3424 
3425     assert(tag == intTag, "Only integer deoptimizations are valid!");
3426 
3427     xin->load_item();
3428     yin->dont_load_item();
3429     set_no_result(x);
3430 
3431     LIR_Opr left = xin->result();
3432     LIR_Opr right = yin->result();
3433 
3434     CodeEmitInfo *info = state_for(x, x->state());
3435     CodeStub* stub = new PredicateFailedStub(info);
3436 
3437     __ cmp(lir_cond(cond), left, right);
3438     __ branch(lir_cond(cond), stub);
3439   }
3440 }
3441 
3442 void LIRGenerator::do_blackhole(Intrinsic *x) {
3443   assert(!x->has_receiver(), "Should have been checked before: only static methods here");
3444   for (int c = 0; c < x->number_of_arguments(); c++) {
3445     // Load the argument
3446     LIRItem vitem(x->argument_at(c), this);
3447     vitem.load_item();
3448     // ...and leave it unused.
3449   }
3450 }
3451 
3452 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3453   LIRItemList args(1);
3454   LIRItem value(arg1, this);
3455   args.append(&value);
3456   BasicTypeList signature;
3457   signature.append(as_BasicType(arg1->type()));
3458 
3459   return call_runtime(&signature, &args, entry, result_type, info);
3460 }
3461 
3462 
3463 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3464   LIRItemList args(2);
3465   LIRItem value1(arg1, this);
3466   LIRItem value2(arg2, this);
3467   args.append(&value1);
3468   args.append(&value2);
3469   BasicTypeList signature;
3470   signature.append(as_BasicType(arg1->type()));
3471   signature.append(as_BasicType(arg2->type()));
3472 
3473   return call_runtime(&signature, &args, entry, result_type, info);
3474 }
3475 
3476 
3477 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3478                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3479   // get a result register
3480   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3481   LIR_Opr result = LIR_OprFact::illegalOpr;
3482   if (result_type->tag() != voidTag) {
3483     result = new_register(result_type);
3484     phys_reg = result_register_for(result_type);
3485   }
3486 
3487   // move the arguments into the correct location
3488   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3489   assert(cc->length() == args->length(), "argument mismatch");
3490   for (int i = 0; i < args->length(); i++) {
3491     LIR_Opr arg = args->at(i);
3492     LIR_Opr loc = cc->at(i);
3493     if (loc->is_register()) {
3494       __ move(arg, loc);
3495     } else {
3496       LIR_Address* addr = loc->as_address_ptr();
3497 //           if (!can_store_as_constant(arg)) {
3498 //             LIR_Opr tmp = new_register(arg->type());
3499 //             __ move(arg, tmp);
3500 //             arg = tmp;
3501 //           }
3502       __ move(arg, addr);
3503     }
3504   }
3505 
3506   if (info) {
3507     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3508   } else {
3509     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3510   }
3511   if (result->is_valid()) {
3512     __ move(phys_reg, result);
3513   }
3514   return result;
3515 }
3516 
3517 
3518 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3519                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3520   // get a result register
3521   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3522   LIR_Opr result = LIR_OprFact::illegalOpr;
3523   if (result_type->tag() != voidTag) {
3524     result = new_register(result_type);
3525     phys_reg = result_register_for(result_type);
3526   }
3527 
3528   // move the arguments into the correct location
3529   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3530 
3531   assert(cc->length() == args->length(), "argument mismatch");
3532   for (int i = 0; i < args->length(); i++) {
3533     LIRItem* arg = args->at(i);
3534     LIR_Opr loc = cc->at(i);
3535     if (loc->is_register()) {
3536       arg->load_item_force(loc);
3537     } else {
3538       LIR_Address* addr = loc->as_address_ptr();
3539       arg->load_for_store(addr->type());
3540       __ move(arg->result(), addr);
3541     }
3542   }
3543 
3544   if (info) {
3545     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3546   } else {
3547     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3548   }
3549   if (result->is_valid()) {
3550     __ move(phys_reg, result);
3551   }
3552   return result;
3553 }
3554 
3555 void LIRGenerator::do_MemBar(MemBar* x) {
3556   LIR_Code code = x->code();
3557   switch(code) {
3558   case lir_membar_acquire   : __ membar_acquire(); break;
3559   case lir_membar_release   : __ membar_release(); break;
3560   case lir_membar           : __ membar(); break;
3561   case lir_membar_loadload  : __ membar_loadload(); break;
3562   case lir_membar_storestore: __ membar_storestore(); break;
3563   case lir_membar_loadstore : __ membar_loadstore(); break;
3564   case lir_membar_storeload : __ membar_storeload(); break;
3565   default                   : ShouldNotReachHere(); break;
3566   }
3567 }
3568 
3569 LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
3570   LIR_Opr value_fixed = rlock_byte(T_BYTE);
3571   if (TwoOperandLIRForm) {
3572     __ move(value, value_fixed);
3573     __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed);
3574   } else {
3575     __ logical_and(value, LIR_OprFact::intConst(1), value_fixed);
3576   }
3577   LIR_Opr klass = new_register(T_METADATA);
3578   load_klass(array, klass, null_check_info);
3579   null_check_info = NULL;
3580   LIR_Opr layout = new_register(T_INT);
3581   __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
3582   int diffbit = Klass::layout_helper_boolean_diffbit();
3583   __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout);
3584   __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0));
3585   __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE);
3586   value = value_fixed;
3587   return value;
3588 }