1 /* 2 * Copyright (c) 2005, 2022, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "c1/c1_Compilation.hpp" 27 #include "c1/c1_Defs.hpp" 28 #include "c1/c1_FrameMap.hpp" 29 #include "c1/c1_Instruction.hpp" 30 #include "c1/c1_LIRAssembler.hpp" 31 #include "c1/c1_LIRGenerator.hpp" 32 #include "c1/c1_ValueStack.hpp" 33 #include "ci/ciArrayKlass.hpp" 34 #include "ci/ciInstance.hpp" 35 #include "ci/ciObjArray.hpp" 36 #include "ci/ciUtilities.hpp" 37 #include "gc/shared/barrierSet.hpp" 38 #include "gc/shared/c1/barrierSetC1.hpp" 39 #include "oops/klass.inline.hpp" 40 #include "runtime/sharedRuntime.hpp" 41 #include "runtime/stubRoutines.hpp" 42 #include "runtime/vm_version.hpp" 43 #include "utilities/bitMap.inline.hpp" 44 #include "utilities/macros.hpp" 45 #include "utilities/powerOfTwo.hpp" 46 47 #ifdef ASSERT 48 #define __ gen()->lir(__FILE__, __LINE__)-> 49 #else 50 #define __ gen()->lir()-> 51 #endif 52 53 #ifndef PATCHED_ADDR 54 #define PATCHED_ADDR (max_jint) 55 #endif 56 57 void PhiResolverState::reset() { 58 _virtual_operands.clear(); 59 _other_operands.clear(); 60 _vreg_table.clear(); 61 } 62 63 64 //-------------------------------------------------------------- 65 // PhiResolver 66 67 // Resolves cycles: 68 // 69 // r1 := r2 becomes temp := r1 70 // r2 := r1 r1 := r2 71 // r2 := temp 72 // and orders moves: 73 // 74 // r2 := r3 becomes r1 := r2 75 // r1 := r2 r2 := r3 76 77 PhiResolver::PhiResolver(LIRGenerator* gen) 78 : _gen(gen) 79 , _state(gen->resolver_state()) 80 , _temp(LIR_OprFact::illegalOpr) 81 { 82 // reinitialize the shared state arrays 83 _state.reset(); 84 } 85 86 87 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) { 88 assert(src->is_valid(), ""); 89 assert(dest->is_valid(), ""); 90 __ move(src, dest); 91 } 92 93 94 void PhiResolver::move_temp_to(LIR_Opr dest) { 95 assert(_temp->is_valid(), ""); 96 emit_move(_temp, dest); 97 NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr); 98 } 99 100 101 void PhiResolver::move_to_temp(LIR_Opr src) { 102 assert(_temp->is_illegal(), ""); 103 _temp = _gen->new_register(src->type()); 104 emit_move(src, _temp); 105 } 106 107 108 // Traverse assignment graph in depth first order and generate moves in post order 109 // ie. two assignments: b := c, a := b start with node c: 110 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a) 111 // Generates moves in this order: move b to a and move c to b 112 // ie. cycle a := b, b := a start with node a 113 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a) 114 // Generates moves in this order: move b to temp, move a to b, move temp to a 115 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) { 116 if (!dest->visited()) { 117 dest->set_visited(); 118 for (int i = dest->no_of_destinations()-1; i >= 0; i --) { 119 move(dest, dest->destination_at(i)); 120 } 121 } else if (!dest->start_node()) { 122 // cylce in graph detected 123 assert(_loop == NULL, "only one loop valid!"); 124 _loop = dest; 125 move_to_temp(src->operand()); 126 return; 127 } // else dest is a start node 128 129 if (!dest->assigned()) { 130 if (_loop == dest) { 131 move_temp_to(dest->operand()); 132 dest->set_assigned(); 133 } else if (src != NULL) { 134 emit_move(src->operand(), dest->operand()); 135 dest->set_assigned(); 136 } 137 } 138 } 139 140 141 PhiResolver::~PhiResolver() { 142 int i; 143 // resolve any cycles in moves from and to virtual registers 144 for (i = virtual_operands().length() - 1; i >= 0; i --) { 145 ResolveNode* node = virtual_operands().at(i); 146 if (!node->visited()) { 147 _loop = NULL; 148 move(NULL, node); 149 node->set_start_node(); 150 assert(_temp->is_illegal(), "move_temp_to() call missing"); 151 } 152 } 153 154 // generate move for move from non virtual register to abitrary destination 155 for (i = other_operands().length() - 1; i >= 0; i --) { 156 ResolveNode* node = other_operands().at(i); 157 for (int j = node->no_of_destinations() - 1; j >= 0; j --) { 158 emit_move(node->operand(), node->destination_at(j)->operand()); 159 } 160 } 161 } 162 163 164 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) { 165 ResolveNode* node; 166 if (opr->is_virtual()) { 167 int vreg_num = opr->vreg_number(); 168 node = vreg_table().at_grow(vreg_num, NULL); 169 assert(node == NULL || node->operand() == opr, ""); 170 if (node == NULL) { 171 node = new ResolveNode(opr); 172 vreg_table().at_put(vreg_num, node); 173 } 174 // Make sure that all virtual operands show up in the list when 175 // they are used as the source of a move. 176 if (source && !virtual_operands().contains(node)) { 177 virtual_operands().append(node); 178 } 179 } else { 180 assert(source, ""); 181 node = new ResolveNode(opr); 182 other_operands().append(node); 183 } 184 return node; 185 } 186 187 188 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) { 189 assert(dest->is_virtual(), ""); 190 // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr(); 191 assert(src->is_valid(), ""); 192 assert(dest->is_valid(), ""); 193 ResolveNode* source = source_node(src); 194 source->append(destination_node(dest)); 195 } 196 197 198 //-------------------------------------------------------------- 199 // LIRItem 200 201 void LIRItem::set_result(LIR_Opr opr) { 202 assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change"); 203 value()->set_operand(opr); 204 205 if (opr->is_virtual()) { 206 _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL); 207 } 208 209 _result = opr; 210 } 211 212 void LIRItem::load_item() { 213 if (result()->is_illegal()) { 214 // update the items result 215 _result = value()->operand(); 216 } 217 if (!result()->is_register()) { 218 LIR_Opr reg = _gen->new_register(value()->type()); 219 __ move(result(), reg); 220 if (result()->is_constant()) { 221 _result = reg; 222 } else { 223 set_result(reg); 224 } 225 } 226 } 227 228 229 void LIRItem::load_for_store(BasicType type) { 230 if (_gen->can_store_as_constant(value(), type)) { 231 _result = value()->operand(); 232 if (!_result->is_constant()) { 233 _result = LIR_OprFact::value_type(value()->type()); 234 } 235 } else if (type == T_BYTE || type == T_BOOLEAN) { 236 load_byte_item(); 237 } else { 238 load_item(); 239 } 240 } 241 242 void LIRItem::load_item_force(LIR_Opr reg) { 243 LIR_Opr r = result(); 244 if (r != reg) { 245 #if !defined(ARM) && !defined(E500V2) 246 if (r->type() != reg->type()) { 247 // moves between different types need an intervening spill slot 248 r = _gen->force_to_spill(r, reg->type()); 249 } 250 #endif 251 __ move(r, reg); 252 _result = reg; 253 } 254 } 255 256 ciObject* LIRItem::get_jobject_constant() const { 257 ObjectType* oc = type()->as_ObjectType(); 258 if (oc) { 259 return oc->constant_value(); 260 } 261 return NULL; 262 } 263 264 265 jint LIRItem::get_jint_constant() const { 266 assert(is_constant() && value() != NULL, ""); 267 assert(type()->as_IntConstant() != NULL, "type check"); 268 return type()->as_IntConstant()->value(); 269 } 270 271 272 jint LIRItem::get_address_constant() const { 273 assert(is_constant() && value() != NULL, ""); 274 assert(type()->as_AddressConstant() != NULL, "type check"); 275 return type()->as_AddressConstant()->value(); 276 } 277 278 279 jfloat LIRItem::get_jfloat_constant() const { 280 assert(is_constant() && value() != NULL, ""); 281 assert(type()->as_FloatConstant() != NULL, "type check"); 282 return type()->as_FloatConstant()->value(); 283 } 284 285 286 jdouble LIRItem::get_jdouble_constant() const { 287 assert(is_constant() && value() != NULL, ""); 288 assert(type()->as_DoubleConstant() != NULL, "type check"); 289 return type()->as_DoubleConstant()->value(); 290 } 291 292 293 jlong LIRItem::get_jlong_constant() const { 294 assert(is_constant() && value() != NULL, ""); 295 assert(type()->as_LongConstant() != NULL, "type check"); 296 return type()->as_LongConstant()->value(); 297 } 298 299 300 301 //-------------------------------------------------------------- 302 303 304 void LIRGenerator::block_do_prolog(BlockBegin* block) { 305 #ifndef PRODUCT 306 if (PrintIRWithLIR) { 307 block->print(); 308 } 309 #endif 310 311 // set up the list of LIR instructions 312 assert(block->lir() == NULL, "LIR list already computed for this block"); 313 _lir = new LIR_List(compilation(), block); 314 block->set_lir(_lir); 315 316 __ branch_destination(block->label()); 317 318 if (LIRTraceExecution && 319 Compilation::current()->hir()->start()->block_id() != block->block_id() && 320 !block->is_set(BlockBegin::exception_entry_flag)) { 321 assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst"); 322 trace_block_entry(block); 323 } 324 } 325 326 327 void LIRGenerator::block_do_epilog(BlockBegin* block) { 328 #ifndef PRODUCT 329 if (PrintIRWithLIR) { 330 tty->cr(); 331 } 332 #endif 333 334 // LIR_Opr for unpinned constants shouldn't be referenced by other 335 // blocks so clear them out after processing the block. 336 for (int i = 0; i < _unpinned_constants.length(); i++) { 337 _unpinned_constants.at(i)->clear_operand(); 338 } 339 _unpinned_constants.trunc_to(0); 340 341 // clear our any registers for other local constants 342 _constants.trunc_to(0); 343 _reg_for_constants.trunc_to(0); 344 } 345 346 347 void LIRGenerator::block_do(BlockBegin* block) { 348 CHECK_BAILOUT(); 349 350 block_do_prolog(block); 351 set_block(block); 352 353 for (Instruction* instr = block; instr != NULL; instr = instr->next()) { 354 if (instr->is_pinned()) do_root(instr); 355 } 356 357 set_block(NULL); 358 block_do_epilog(block); 359 } 360 361 362 //-------------------------LIRGenerator----------------------------- 363 364 // This is where the tree-walk starts; instr must be root; 365 void LIRGenerator::do_root(Value instr) { 366 CHECK_BAILOUT(); 367 368 InstructionMark im(compilation(), instr); 369 370 assert(instr->is_pinned(), "use only with roots"); 371 assert(instr->subst() == instr, "shouldn't have missed substitution"); 372 373 instr->visit(this); 374 375 assert(!instr->has_uses() || instr->operand()->is_valid() || 376 instr->as_Constant() != NULL || bailed_out(), "invalid item set"); 377 } 378 379 380 // This is called for each node in tree; the walk stops if a root is reached 381 void LIRGenerator::walk(Value instr) { 382 InstructionMark im(compilation(), instr); 383 //stop walk when encounter a root 384 if ((instr->is_pinned() && instr->as_Phi() == NULL) || instr->operand()->is_valid()) { 385 assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited"); 386 } else { 387 assert(instr->subst() == instr, "shouldn't have missed substitution"); 388 instr->visit(this); 389 // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use"); 390 } 391 } 392 393 394 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) { 395 assert(state != NULL, "state must be defined"); 396 397 #ifndef PRODUCT 398 state->verify(); 399 #endif 400 401 ValueStack* s = state; 402 for_each_state(s) { 403 if (s->kind() == ValueStack::EmptyExceptionState) { 404 assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty"); 405 continue; 406 } 407 408 int index; 409 Value value; 410 for_each_stack_value(s, index, value) { 411 assert(value->subst() == value, "missed substitution"); 412 if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) { 413 walk(value); 414 assert(value->operand()->is_valid(), "must be evaluated now"); 415 } 416 } 417 418 int bci = s->bci(); 419 IRScope* scope = s->scope(); 420 ciMethod* method = scope->method(); 421 422 MethodLivenessResult liveness = method->liveness_at_bci(bci); 423 if (bci == SynchronizationEntryBCI) { 424 if (x->as_ExceptionObject() || x->as_Throw()) { 425 // all locals are dead on exit from the synthetic unlocker 426 liveness.clear(); 427 } else { 428 assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke"); 429 } 430 } 431 if (!liveness.is_valid()) { 432 // Degenerate or breakpointed method. 433 bailout("Degenerate or breakpointed method"); 434 } else { 435 assert((int)liveness.size() == s->locals_size(), "error in use of liveness"); 436 for_each_local_value(s, index, value) { 437 assert(value->subst() == value, "missed substitution"); 438 if (liveness.at(index) && !value->type()->is_illegal()) { 439 if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) { 440 walk(value); 441 assert(value->operand()->is_valid(), "must be evaluated now"); 442 } 443 } else { 444 // NULL out this local so that linear scan can assume that all non-NULL values are live. 445 s->invalidate_local(index); 446 } 447 } 448 } 449 } 450 451 return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException)); 452 } 453 454 455 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) { 456 return state_for(x, x->exception_state()); 457 } 458 459 460 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) { 461 /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if tiered compilation 462 * is active and the class hasn't yet been resolved we need to emit a patch that resolves 463 * the class. */ 464 if ((!CompilerConfig::is_c1_only_no_jvmci() && need_resolve) || !obj->is_loaded() || PatchALot) { 465 assert(info != NULL, "info must be set if class is not loaded"); 466 __ klass2reg_patch(NULL, r, info); 467 } else { 468 // no patching needed 469 __ metadata2reg(obj->constant_encoding(), r); 470 } 471 } 472 473 474 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index, 475 CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) { 476 CodeStub* stub = new RangeCheckStub(range_check_info, index, array); 477 if (index->is_constant()) { 478 cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(), 479 index->as_jint(), null_check_info); 480 __ branch(lir_cond_belowEqual, stub); // forward branch 481 } else { 482 cmp_reg_mem(lir_cond_aboveEqual, index, array, 483 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info); 484 __ branch(lir_cond_aboveEqual, stub); // forward branch 485 } 486 } 487 488 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp_op, CodeEmitInfo* info) { 489 LIR_Opr result_op = result; 490 LIR_Opr left_op = left; 491 LIR_Opr right_op = right; 492 493 if (TwoOperandLIRForm && left_op != result_op) { 494 assert(right_op != result_op, "malformed"); 495 __ move(left_op, result_op); 496 left_op = result_op; 497 } 498 499 switch(code) { 500 case Bytecodes::_dadd: 501 case Bytecodes::_fadd: 502 case Bytecodes::_ladd: 503 case Bytecodes::_iadd: __ add(left_op, right_op, result_op); break; 504 case Bytecodes::_fmul: 505 case Bytecodes::_lmul: __ mul(left_op, right_op, result_op); break; 506 507 case Bytecodes::_dmul: __ mul(left_op, right_op, result_op, tmp_op); break; 508 509 case Bytecodes::_imul: 510 { 511 bool did_strength_reduce = false; 512 513 if (right->is_constant()) { 514 jint c = right->as_jint(); 515 if (c > 0 && is_power_of_2(c)) { 516 // do not need tmp here 517 __ shift_left(left_op, exact_log2(c), result_op); 518 did_strength_reduce = true; 519 } else { 520 did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op); 521 } 522 } 523 // we couldn't strength reduce so just emit the multiply 524 if (!did_strength_reduce) { 525 __ mul(left_op, right_op, result_op); 526 } 527 } 528 break; 529 530 case Bytecodes::_dsub: 531 case Bytecodes::_fsub: 532 case Bytecodes::_lsub: 533 case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break; 534 535 case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break; 536 // ldiv and lrem are implemented with a direct runtime call 537 538 case Bytecodes::_ddiv: __ div(left_op, right_op, result_op, tmp_op); break; 539 540 case Bytecodes::_drem: 541 case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break; 542 543 default: ShouldNotReachHere(); 544 } 545 } 546 547 548 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) { 549 arithmetic_op(code, result, left, right, tmp); 550 } 551 552 553 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) { 554 arithmetic_op(code, result, left, right, LIR_OprFact::illegalOpr, info); 555 } 556 557 558 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) { 559 arithmetic_op(code, result, left, right, tmp); 560 } 561 562 563 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) { 564 565 if (TwoOperandLIRForm && value != result_op 566 // Only 32bit right shifts require two operand form on S390. 567 S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) { 568 assert(count != result_op, "malformed"); 569 __ move(value, result_op); 570 value = result_op; 571 } 572 573 assert(count->is_constant() || count->is_register(), "must be"); 574 switch(code) { 575 case Bytecodes::_ishl: 576 case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break; 577 case Bytecodes::_ishr: 578 case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break; 579 case Bytecodes::_iushr: 580 case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break; 581 default: ShouldNotReachHere(); 582 } 583 } 584 585 586 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) { 587 if (TwoOperandLIRForm && left_op != result_op) { 588 assert(right_op != result_op, "malformed"); 589 __ move(left_op, result_op); 590 left_op = result_op; 591 } 592 593 switch(code) { 594 case Bytecodes::_iand: 595 case Bytecodes::_land: __ logical_and(left_op, right_op, result_op); break; 596 597 case Bytecodes::_ior: 598 case Bytecodes::_lor: __ logical_or(left_op, right_op, result_op); break; 599 600 case Bytecodes::_ixor: 601 case Bytecodes::_lxor: __ logical_xor(left_op, right_op, result_op); break; 602 603 default: ShouldNotReachHere(); 604 } 605 } 606 607 608 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) { 609 if (!GenerateSynchronizationCode) return; 610 // for slow path, use debug info for state after successful locking 611 CodeStub* slow_path = new MonitorEnterStub(object, lock, info); 612 __ load_stack_address_monitor(monitor_no, lock); 613 // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter 614 __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception); 615 } 616 617 618 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) { 619 if (!GenerateSynchronizationCode) return; 620 // setup registers 621 LIR_Opr hdr = lock; 622 lock = new_hdr; 623 CodeStub* slow_path = new MonitorExitStub(lock, !UseHeavyMonitors, monitor_no); 624 __ load_stack_address_monitor(monitor_no, lock); 625 __ unlock_object(hdr, object, lock, scratch, slow_path); 626 } 627 628 #ifndef PRODUCT 629 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) { 630 if (PrintNotLoaded && !new_instance->klass()->is_loaded()) { 631 tty->print_cr(" ###class not loaded at new bci %d", new_instance->printable_bci()); 632 } else if (PrintNotLoaded && (!CompilerConfig::is_c1_only_no_jvmci() && new_instance->is_unresolved())) { 633 tty->print_cr(" ###class not resolved at new bci %d", new_instance->printable_bci()); 634 } 635 } 636 #endif 637 638 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) { 639 klass2reg_with_patching(klass_reg, klass, info, is_unresolved); 640 // If klass is not loaded we do not know if the klass has finalizers: 641 if (UseFastNewInstance && klass->is_loaded() 642 && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) { 643 644 Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id; 645 646 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id); 647 648 assert(klass->is_loaded(), "must be loaded"); 649 // allocate space for instance 650 assert(klass->size_helper() > 0, "illegal instance size"); 651 const int instance_size = align_object_size(klass->size_helper()); 652 __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4, 653 oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path); 654 } else { 655 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id); 656 __ branch(lir_cond_always, slow_path); 657 __ branch_destination(slow_path->continuation()); 658 } 659 } 660 661 662 static bool is_constant_zero(Instruction* inst) { 663 IntConstant* c = inst->type()->as_IntConstant(); 664 if (c) { 665 return (c->value() == 0); 666 } 667 return false; 668 } 669 670 671 static bool positive_constant(Instruction* inst) { 672 IntConstant* c = inst->type()->as_IntConstant(); 673 if (c) { 674 return (c->value() >= 0); 675 } 676 return false; 677 } 678 679 680 static ciArrayKlass* as_array_klass(ciType* type) { 681 if (type != NULL && type->is_array_klass() && type->is_loaded()) { 682 return (ciArrayKlass*)type; 683 } else { 684 return NULL; 685 } 686 } 687 688 static ciType* phi_declared_type(Phi* phi) { 689 ciType* t = phi->operand_at(0)->declared_type(); 690 if (t == NULL) { 691 return NULL; 692 } 693 for(int i = 1; i < phi->operand_count(); i++) { 694 if (t != phi->operand_at(i)->declared_type()) { 695 return NULL; 696 } 697 } 698 return t; 699 } 700 701 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) { 702 Instruction* src = x->argument_at(0); 703 Instruction* src_pos = x->argument_at(1); 704 Instruction* dst = x->argument_at(2); 705 Instruction* dst_pos = x->argument_at(3); 706 Instruction* length = x->argument_at(4); 707 708 // first try to identify the likely type of the arrays involved 709 ciArrayKlass* expected_type = NULL; 710 bool is_exact = false, src_objarray = false, dst_objarray = false; 711 { 712 ciArrayKlass* src_exact_type = as_array_klass(src->exact_type()); 713 ciArrayKlass* src_declared_type = as_array_klass(src->declared_type()); 714 Phi* phi; 715 if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) { 716 src_declared_type = as_array_klass(phi_declared_type(phi)); 717 } 718 ciArrayKlass* dst_exact_type = as_array_klass(dst->exact_type()); 719 ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type()); 720 if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) { 721 dst_declared_type = as_array_klass(phi_declared_type(phi)); 722 } 723 724 if (src_exact_type != NULL && src_exact_type == dst_exact_type) { 725 // the types exactly match so the type is fully known 726 is_exact = true; 727 expected_type = src_exact_type; 728 } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) { 729 ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type; 730 ciArrayKlass* src_type = NULL; 731 if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) { 732 src_type = (ciArrayKlass*) src_exact_type; 733 } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) { 734 src_type = (ciArrayKlass*) src_declared_type; 735 } 736 if (src_type != NULL) { 737 if (src_type->element_type()->is_subtype_of(dst_type->element_type())) { 738 is_exact = true; 739 expected_type = dst_type; 740 } 741 } 742 } 743 // at least pass along a good guess 744 if (expected_type == NULL) expected_type = dst_exact_type; 745 if (expected_type == NULL) expected_type = src_declared_type; 746 if (expected_type == NULL) expected_type = dst_declared_type; 747 748 src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass()); 749 dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass()); 750 } 751 752 // if a probable array type has been identified, figure out if any 753 // of the required checks for a fast case can be elided. 754 int flags = LIR_OpArrayCopy::all_flags; 755 756 if (!src_objarray) 757 flags &= ~LIR_OpArrayCopy::src_objarray; 758 if (!dst_objarray) 759 flags &= ~LIR_OpArrayCopy::dst_objarray; 760 761 if (!x->arg_needs_null_check(0)) 762 flags &= ~LIR_OpArrayCopy::src_null_check; 763 if (!x->arg_needs_null_check(2)) 764 flags &= ~LIR_OpArrayCopy::dst_null_check; 765 766 767 if (expected_type != NULL) { 768 Value length_limit = NULL; 769 770 IfOp* ifop = length->as_IfOp(); 771 if (ifop != NULL) { 772 // look for expressions like min(v, a.length) which ends up as 773 // x > y ? y : x or x >= y ? y : x 774 if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) && 775 ifop->x() == ifop->fval() && 776 ifop->y() == ifop->tval()) { 777 length_limit = ifop->y(); 778 } 779 } 780 781 // try to skip null checks and range checks 782 NewArray* src_array = src->as_NewArray(); 783 if (src_array != NULL) { 784 flags &= ~LIR_OpArrayCopy::src_null_check; 785 if (length_limit != NULL && 786 src_array->length() == length_limit && 787 is_constant_zero(src_pos)) { 788 flags &= ~LIR_OpArrayCopy::src_range_check; 789 } 790 } 791 792 NewArray* dst_array = dst->as_NewArray(); 793 if (dst_array != NULL) { 794 flags &= ~LIR_OpArrayCopy::dst_null_check; 795 if (length_limit != NULL && 796 dst_array->length() == length_limit && 797 is_constant_zero(dst_pos)) { 798 flags &= ~LIR_OpArrayCopy::dst_range_check; 799 } 800 } 801 802 // check from incoming constant values 803 if (positive_constant(src_pos)) 804 flags &= ~LIR_OpArrayCopy::src_pos_positive_check; 805 if (positive_constant(dst_pos)) 806 flags &= ~LIR_OpArrayCopy::dst_pos_positive_check; 807 if (positive_constant(length)) 808 flags &= ~LIR_OpArrayCopy::length_positive_check; 809 810 // see if the range check can be elided, which might also imply 811 // that src or dst is non-null. 812 ArrayLength* al = length->as_ArrayLength(); 813 if (al != NULL) { 814 if (al->array() == src) { 815 // it's the length of the source array 816 flags &= ~LIR_OpArrayCopy::length_positive_check; 817 flags &= ~LIR_OpArrayCopy::src_null_check; 818 if (is_constant_zero(src_pos)) 819 flags &= ~LIR_OpArrayCopy::src_range_check; 820 } 821 if (al->array() == dst) { 822 // it's the length of the destination array 823 flags &= ~LIR_OpArrayCopy::length_positive_check; 824 flags &= ~LIR_OpArrayCopy::dst_null_check; 825 if (is_constant_zero(dst_pos)) 826 flags &= ~LIR_OpArrayCopy::dst_range_check; 827 } 828 } 829 if (is_exact) { 830 flags &= ~LIR_OpArrayCopy::type_check; 831 } 832 } 833 834 IntConstant* src_int = src_pos->type()->as_IntConstant(); 835 IntConstant* dst_int = dst_pos->type()->as_IntConstant(); 836 if (src_int && dst_int) { 837 int s_offs = src_int->value(); 838 int d_offs = dst_int->value(); 839 if (src_int->value() >= dst_int->value()) { 840 flags &= ~LIR_OpArrayCopy::overlapping; 841 } 842 if (expected_type != NULL) { 843 BasicType t = expected_type->element_type()->basic_type(); 844 int element_size = type2aelembytes(t); 845 if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) && 846 ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) { 847 flags &= ~LIR_OpArrayCopy::unaligned; 848 } 849 } 850 } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) { 851 // src and dest positions are the same, or dst is zero so assume 852 // nonoverlapping copy. 853 flags &= ~LIR_OpArrayCopy::overlapping; 854 } 855 856 if (src == dst) { 857 // moving within a single array so no type checks are needed 858 if (flags & LIR_OpArrayCopy::type_check) { 859 flags &= ~LIR_OpArrayCopy::type_check; 860 } 861 } 862 *flagsp = flags; 863 *expected_typep = (ciArrayKlass*)expected_type; 864 } 865 866 867 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) { 868 assert(opr->is_register(), "why spill if item is not register?"); 869 870 if (strict_fp_requires_explicit_rounding) { 871 #ifdef IA32 872 if (UseSSE < 1 && opr->is_single_fpu()) { 873 LIR_Opr result = new_register(T_FLOAT); 874 set_vreg_flag(result, must_start_in_memory); 875 assert(opr->is_register(), "only a register can be spilled"); 876 assert(opr->value_type()->is_float(), "rounding only for floats available"); 877 __ roundfp(opr, LIR_OprFact::illegalOpr, result); 878 return result; 879 } 880 #else 881 Unimplemented(); 882 #endif // IA32 883 } 884 return opr; 885 } 886 887 888 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) { 889 assert(type2size[t] == type2size[value->type()], 890 "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type())); 891 if (!value->is_register()) { 892 // force into a register 893 LIR_Opr r = new_register(value->type()); 894 __ move(value, r); 895 value = r; 896 } 897 898 // create a spill location 899 LIR_Opr tmp = new_register(t); 900 set_vreg_flag(tmp, LIRGenerator::must_start_in_memory); 901 902 // move from register to spill 903 __ move(value, tmp); 904 return tmp; 905 } 906 907 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) { 908 if (if_instr->should_profile()) { 909 ciMethod* method = if_instr->profiled_method(); 910 assert(method != NULL, "method should be set if branch is profiled"); 911 ciMethodData* md = method->method_data_or_null(); 912 assert(md != NULL, "Sanity"); 913 ciProfileData* data = md->bci_to_data(if_instr->profiled_bci()); 914 assert(data != NULL, "must have profiling data"); 915 assert(data->is_BranchData(), "need BranchData for two-way branches"); 916 int taken_count_offset = md->byte_offset_of_slot(data, BranchData::taken_offset()); 917 int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset()); 918 if (if_instr->is_swapped()) { 919 int t = taken_count_offset; 920 taken_count_offset = not_taken_count_offset; 921 not_taken_count_offset = t; 922 } 923 924 LIR_Opr md_reg = new_register(T_METADATA); 925 __ metadata2reg(md->constant_encoding(), md_reg); 926 927 LIR_Opr data_offset_reg = new_pointer_register(); 928 __ cmove(lir_cond(cond), 929 LIR_OprFact::intptrConst(taken_count_offset), 930 LIR_OprFact::intptrConst(not_taken_count_offset), 931 data_offset_reg, as_BasicType(if_instr->x()->type())); 932 933 // MDO cells are intptr_t, so the data_reg width is arch-dependent. 934 LIR_Opr data_reg = new_pointer_register(); 935 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 936 __ move(data_addr, data_reg); 937 // Use leal instead of add to avoid destroying condition codes on x86 938 LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT); 939 __ leal(LIR_OprFact::address(fake_incr_value), data_reg); 940 __ move(data_reg, data_addr); 941 } 942 } 943 944 // Phi technique: 945 // This is about passing live values from one basic block to the other. 946 // In code generated with Java it is rather rare that more than one 947 // value is on the stack from one basic block to the other. 948 // We optimize our technique for efficient passing of one value 949 // (of type long, int, double..) but it can be extended. 950 // When entering or leaving a basic block, all registers and all spill 951 // slots are release and empty. We use the released registers 952 // and spill slots to pass the live values from one block 953 // to the other. The topmost value, i.e., the value on TOS of expression 954 // stack is passed in registers. All other values are stored in spilling 955 // area. Every Phi has an index which designates its spill slot 956 // At exit of a basic block, we fill the register(s) and spill slots. 957 // At entry of a basic block, the block_prolog sets up the content of phi nodes 958 // and locks necessary registers and spilling slots. 959 960 961 // move current value to referenced phi function 962 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) { 963 Phi* phi = sux_val->as_Phi(); 964 // cur_val can be null without phi being null in conjunction with inlining 965 if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) { 966 if (phi->is_local()) { 967 for (int i = 0; i < phi->operand_count(); i++) { 968 Value op = phi->operand_at(i); 969 if (op != NULL && op->type()->is_illegal()) { 970 bailout("illegal phi operand"); 971 } 972 } 973 } 974 Phi* cur_phi = cur_val->as_Phi(); 975 if (cur_phi != NULL && cur_phi->is_illegal()) { 976 // Phi and local would need to get invalidated 977 // (which is unexpected for Linear Scan). 978 // But this case is very rare so we simply bail out. 979 bailout("propagation of illegal phi"); 980 return; 981 } 982 LIR_Opr operand = cur_val->operand(); 983 if (operand->is_illegal()) { 984 assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL, 985 "these can be produced lazily"); 986 operand = operand_for_instruction(cur_val); 987 } 988 resolver->move(operand, operand_for_instruction(phi)); 989 } 990 } 991 992 993 // Moves all stack values into their PHI position 994 void LIRGenerator::move_to_phi(ValueStack* cur_state) { 995 BlockBegin* bb = block(); 996 if (bb->number_of_sux() == 1) { 997 BlockBegin* sux = bb->sux_at(0); 998 assert(sux->number_of_preds() > 0, "invalid CFG"); 999 1000 // a block with only one predecessor never has phi functions 1001 if (sux->number_of_preds() > 1) { 1002 PhiResolver resolver(this); 1003 1004 ValueStack* sux_state = sux->state(); 1005 Value sux_value; 1006 int index; 1007 1008 assert(cur_state->scope() == sux_state->scope(), "not matching"); 1009 assert(cur_state->locals_size() == sux_state->locals_size(), "not matching"); 1010 assert(cur_state->stack_size() == sux_state->stack_size(), "not matching"); 1011 1012 for_each_stack_value(sux_state, index, sux_value) { 1013 move_to_phi(&resolver, cur_state->stack_at(index), sux_value); 1014 } 1015 1016 for_each_local_value(sux_state, index, sux_value) { 1017 move_to_phi(&resolver, cur_state->local_at(index), sux_value); 1018 } 1019 1020 assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal"); 1021 } 1022 } 1023 } 1024 1025 1026 LIR_Opr LIRGenerator::new_register(BasicType type) { 1027 int vreg_num = _virtual_register_number; 1028 // Add a little fudge factor for the bailout since the bailout is only checked periodically. This allows us to hand out 1029 // a few extra registers before we really run out which helps to avoid to trip over assertions. 1030 if (vreg_num + 20 >= LIR_Opr::vreg_max) { 1031 bailout("out of virtual registers in LIR generator"); 1032 if (vreg_num + 2 >= LIR_Opr::vreg_max) { 1033 // Wrap it around and continue until bailout really happens to avoid hitting assertions. 1034 _virtual_register_number = LIR_Opr::vreg_base; 1035 vreg_num = LIR_Opr::vreg_base; 1036 } 1037 } 1038 _virtual_register_number += 1; 1039 LIR_Opr vreg = LIR_OprFact::virtual_register(vreg_num, type); 1040 assert(vreg != LIR_OprFact::illegal(), "ran out of virtual registers"); 1041 return vreg; 1042 } 1043 1044 1045 // Try to lock using register in hint 1046 LIR_Opr LIRGenerator::rlock(Value instr) { 1047 return new_register(instr->type()); 1048 } 1049 1050 1051 // does an rlock and sets result 1052 LIR_Opr LIRGenerator::rlock_result(Value x) { 1053 LIR_Opr reg = rlock(x); 1054 set_result(x, reg); 1055 return reg; 1056 } 1057 1058 1059 // does an rlock and sets result 1060 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) { 1061 LIR_Opr reg; 1062 switch (type) { 1063 case T_BYTE: 1064 case T_BOOLEAN: 1065 reg = rlock_byte(type); 1066 break; 1067 default: 1068 reg = rlock(x); 1069 break; 1070 } 1071 1072 set_result(x, reg); 1073 return reg; 1074 } 1075 1076 1077 //--------------------------------------------------------------------- 1078 ciObject* LIRGenerator::get_jobject_constant(Value value) { 1079 ObjectType* oc = value->type()->as_ObjectType(); 1080 if (oc) { 1081 return oc->constant_value(); 1082 } 1083 return NULL; 1084 } 1085 1086 1087 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) { 1088 assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block"); 1089 assert(block()->next() == x, "ExceptionObject must be first instruction of block"); 1090 1091 // no moves are created for phi functions at the begin of exception 1092 // handlers, so assign operands manually here 1093 for_each_phi_fun(block(), phi, 1094 if (!phi->is_illegal()) { operand_for_instruction(phi); }); 1095 1096 LIR_Opr thread_reg = getThreadPointer(); 1097 __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT), 1098 exceptionOopOpr()); 1099 __ move_wide(LIR_OprFact::oopConst(NULL), 1100 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT)); 1101 __ move_wide(LIR_OprFact::oopConst(NULL), 1102 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT)); 1103 1104 LIR_Opr result = new_register(T_OBJECT); 1105 __ move(exceptionOopOpr(), result); 1106 set_result(x, result); 1107 } 1108 1109 1110 //---------------------------------------------------------------------- 1111 //---------------------------------------------------------------------- 1112 //---------------------------------------------------------------------- 1113 //---------------------------------------------------------------------- 1114 // visitor functions 1115 //---------------------------------------------------------------------- 1116 //---------------------------------------------------------------------- 1117 //---------------------------------------------------------------------- 1118 //---------------------------------------------------------------------- 1119 1120 void LIRGenerator::do_Phi(Phi* x) { 1121 // phi functions are never visited directly 1122 ShouldNotReachHere(); 1123 } 1124 1125 1126 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined. 1127 void LIRGenerator::do_Constant(Constant* x) { 1128 if (x->state_before() != NULL) { 1129 // Any constant with a ValueStack requires patching so emit the patch here 1130 LIR_Opr reg = rlock_result(x); 1131 CodeEmitInfo* info = state_for(x, x->state_before()); 1132 __ oop2reg_patch(NULL, reg, info); 1133 } else if (x->use_count() > 1 && !can_inline_as_constant(x)) { 1134 if (!x->is_pinned()) { 1135 // unpinned constants are handled specially so that they can be 1136 // put into registers when they are used multiple times within a 1137 // block. After the block completes their operand will be 1138 // cleared so that other blocks can't refer to that register. 1139 set_result(x, load_constant(x)); 1140 } else { 1141 LIR_Opr res = x->operand(); 1142 if (!res->is_valid()) { 1143 res = LIR_OprFact::value_type(x->type()); 1144 } 1145 if (res->is_constant()) { 1146 LIR_Opr reg = rlock_result(x); 1147 __ move(res, reg); 1148 } else { 1149 set_result(x, res); 1150 } 1151 } 1152 } else { 1153 set_result(x, LIR_OprFact::value_type(x->type())); 1154 } 1155 } 1156 1157 1158 void LIRGenerator::do_Local(Local* x) { 1159 // operand_for_instruction has the side effect of setting the result 1160 // so there's no need to do it here. 1161 operand_for_instruction(x); 1162 } 1163 1164 1165 void LIRGenerator::do_Return(Return* x) { 1166 if (compilation()->env()->dtrace_method_probes()) { 1167 BasicTypeList signature; 1168 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 1169 signature.append(T_METADATA); // Method* 1170 LIR_OprList* args = new LIR_OprList(); 1171 args->append(getThreadPointer()); 1172 LIR_Opr meth = new_register(T_METADATA); 1173 __ metadata2reg(method()->constant_encoding(), meth); 1174 args->append(meth); 1175 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL); 1176 } 1177 1178 if (x->type()->is_void()) { 1179 __ return_op(LIR_OprFact::illegalOpr); 1180 } else { 1181 LIR_Opr reg = result_register_for(x->type(), /*callee=*/true); 1182 LIRItem result(x->result(), this); 1183 1184 result.load_item_force(reg); 1185 __ return_op(result.result()); 1186 } 1187 set_no_result(x); 1188 } 1189 1190 // Examble: ref.get() 1191 // Combination of LoadField and g1 pre-write barrier 1192 void LIRGenerator::do_Reference_get(Intrinsic* x) { 1193 1194 const int referent_offset = java_lang_ref_Reference::referent_offset(); 1195 1196 assert(x->number_of_arguments() == 1, "wrong type"); 1197 1198 LIRItem reference(x->argument_at(0), this); 1199 reference.load_item(); 1200 1201 // need to perform the null check on the reference objecy 1202 CodeEmitInfo* info = NULL; 1203 if (x->needs_null_check()) { 1204 info = state_for(x); 1205 } 1206 1207 LIR_Opr result = rlock_result(x, T_OBJECT); 1208 access_load_at(IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT, 1209 reference, LIR_OprFact::intConst(referent_offset), result); 1210 } 1211 1212 // Example: clazz.isInstance(object) 1213 void LIRGenerator::do_isInstance(Intrinsic* x) { 1214 assert(x->number_of_arguments() == 2, "wrong type"); 1215 1216 // TODO could try to substitute this node with an equivalent InstanceOf 1217 // if clazz is known to be a constant Class. This will pick up newly found 1218 // constants after HIR construction. I'll leave this to a future change. 1219 1220 // as a first cut, make a simple leaf call to runtime to stay platform independent. 1221 // could follow the aastore example in a future change. 1222 1223 LIRItem clazz(x->argument_at(0), this); 1224 LIRItem object(x->argument_at(1), this); 1225 clazz.load_item(); 1226 object.load_item(); 1227 LIR_Opr result = rlock_result(x); 1228 1229 // need to perform null check on clazz 1230 if (x->needs_null_check()) { 1231 CodeEmitInfo* info = state_for(x); 1232 __ null_check(clazz.result(), info); 1233 } 1234 1235 LIR_Opr call_result = call_runtime(clazz.value(), object.value(), 1236 CAST_FROM_FN_PTR(address, Runtime1::is_instance_of), 1237 x->type(), 1238 NULL); // NULL CodeEmitInfo results in a leaf call 1239 __ move(call_result, result); 1240 } 1241 1242 void LIRGenerator::load_klass(LIR_Opr obj, LIR_Opr klass, CodeEmitInfo* null_check_info) { 1243 __ load_klass(obj, klass, null_check_info); 1244 } 1245 1246 // Example: object.getClass () 1247 void LIRGenerator::do_getClass(Intrinsic* x) { 1248 assert(x->number_of_arguments() == 1, "wrong type"); 1249 1250 LIRItem rcvr(x->argument_at(0), this); 1251 rcvr.load_item(); 1252 LIR_Opr temp = new_register(T_ADDRESS); 1253 LIR_Opr result = rlock_result(x); 1254 1255 // need to perform the null check on the rcvr 1256 CodeEmitInfo* info = NULL; 1257 if (x->needs_null_check()) { 1258 info = state_for(x); 1259 } 1260 1261 LIR_Opr klass = new_register(T_METADATA); 1262 load_klass(rcvr.result(), klass, info); 1263 __ move_wide(new LIR_Address(klass, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), temp); 1264 // mirror = ((OopHandle)mirror)->resolve(); 1265 access_load(IN_NATIVE, T_OBJECT, 1266 LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), result); 1267 } 1268 1269 // java.lang.Class::isPrimitive() 1270 void LIRGenerator::do_isPrimitive(Intrinsic* x) { 1271 assert(x->number_of_arguments() == 1, "wrong type"); 1272 1273 LIRItem rcvr(x->argument_at(0), this); 1274 rcvr.load_item(); 1275 LIR_Opr temp = new_register(T_METADATA); 1276 LIR_Opr result = rlock_result(x); 1277 1278 CodeEmitInfo* info = NULL; 1279 if (x->needs_null_check()) { 1280 info = state_for(x); 1281 } 1282 1283 __ move(new LIR_Address(rcvr.result(), java_lang_Class::klass_offset(), T_ADDRESS), temp, info); 1284 __ cmp(lir_cond_notEqual, temp, LIR_OprFact::metadataConst(0)); 1285 __ cmove(lir_cond_notEqual, LIR_OprFact::intConst(0), LIR_OprFact::intConst(1), result, T_BOOLEAN); 1286 } 1287 1288 // Example: Foo.class.getModifiers() 1289 void LIRGenerator::do_getModifiers(Intrinsic* x) { 1290 assert(x->number_of_arguments() == 1, "wrong type"); 1291 1292 LIRItem receiver(x->argument_at(0), this); 1293 receiver.load_item(); 1294 LIR_Opr result = rlock_result(x); 1295 1296 CodeEmitInfo* info = NULL; 1297 if (x->needs_null_check()) { 1298 info = state_for(x); 1299 } 1300 1301 LabelObj* L_not_prim = new LabelObj(); 1302 LabelObj* L_done = new LabelObj(); 1303 1304 LIR_Opr klass = new_register(T_METADATA); 1305 // Checking if it's a java mirror of primitive type 1306 __ move(new LIR_Address(receiver.result(), java_lang_Class::klass_offset(), T_ADDRESS), klass, info); 1307 __ cmp(lir_cond_notEqual, klass, LIR_OprFact::metadataConst(0)); 1308 __ branch(lir_cond_notEqual, L_not_prim->label()); 1309 __ move(LIR_OprFact::intConst(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC), result); 1310 __ branch(lir_cond_always, L_done->label()); 1311 1312 __ branch_destination(L_not_prim->label()); 1313 __ move(new LIR_Address(klass, in_bytes(Klass::modifier_flags_offset()), T_INT), result); 1314 __ branch_destination(L_done->label()); 1315 } 1316 1317 // Example: Thread.currentThread() 1318 void LIRGenerator::do_currentThread(Intrinsic* x) { 1319 assert(x->number_of_arguments() == 0, "wrong type"); 1320 LIR_Opr temp = new_register(T_ADDRESS); 1321 LIR_Opr reg = rlock_result(x); 1322 __ move(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_ADDRESS), temp); 1323 // threadObj = ((OopHandle)_threadObj)->resolve(); 1324 access_load(IN_NATIVE, T_OBJECT, 1325 LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), reg); 1326 } 1327 1328 void LIRGenerator::do_getObjectSize(Intrinsic* x) { 1329 assert(x->number_of_arguments() == 3, "wrong type"); 1330 LIR_Opr result_reg = rlock_result(x); 1331 1332 LIRItem value(x->argument_at(2), this); 1333 value.load_item(); 1334 1335 LIR_Opr klass = new_register(T_METADATA); 1336 load_klass(value.result(), klass, NULL); 1337 LIR_Opr layout = new_register(T_INT); 1338 __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout); 1339 1340 LabelObj* L_done = new LabelObj(); 1341 LabelObj* L_array = new LabelObj(); 1342 1343 __ cmp(lir_cond_lessEqual, layout, 0); 1344 __ branch(lir_cond_lessEqual, L_array->label()); 1345 1346 // Instance case: the layout helper gives us instance size almost directly, 1347 // but we need to mask out the _lh_instance_slow_path_bit. 1348 __ convert(Bytecodes::_i2l, layout, result_reg); 1349 1350 assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit"); 1351 jlong mask = ~(jlong) right_n_bits(LogBytesPerLong); 1352 __ logical_and(result_reg, LIR_OprFact::longConst(mask), result_reg); 1353 1354 __ branch(lir_cond_always, L_done->label()); 1355 1356 // Array case: size is round(header + element_size*arraylength). 1357 // Since arraylength is different for every array instance, we have to 1358 // compute the whole thing at runtime. 1359 1360 __ branch_destination(L_array->label()); 1361 1362 int round_mask = MinObjAlignmentInBytes - 1; 1363 1364 // Figure out header sizes first. 1365 LIR_Opr hss = LIR_OprFact::intConst(Klass::_lh_header_size_shift); 1366 LIR_Opr hsm = LIR_OprFact::intConst(Klass::_lh_header_size_mask); 1367 1368 LIR_Opr header_size = new_register(T_INT); 1369 __ move(layout, header_size); 1370 LIR_Opr tmp = new_register(T_INT); 1371 __ unsigned_shift_right(header_size, hss, header_size, tmp); 1372 __ logical_and(header_size, hsm, header_size); 1373 __ add(header_size, LIR_OprFact::intConst(round_mask), header_size); 1374 1375 // Figure out the array length in bytes 1376 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place"); 1377 LIR_Opr l2esm = LIR_OprFact::intConst(Klass::_lh_log2_element_size_mask); 1378 __ logical_and(layout, l2esm, layout); 1379 1380 LIR_Opr length_int = new_register(T_INT); 1381 __ move(new LIR_Address(value.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), length_int); 1382 1383 #ifdef _LP64 1384 LIR_Opr length = new_register(T_LONG); 1385 __ convert(Bytecodes::_i2l, length_int, length); 1386 #endif 1387 1388 // Shift-left awkwardness. Normally it is just: 1389 // __ shift_left(length, layout, length); 1390 // But C1 cannot perform shift_left with non-constant count, so we end up 1391 // doing the per-bit loop dance here. x86_32 also does not know how to shift 1392 // longs, so we have to act on ints. 1393 LabelObj* L_shift_loop = new LabelObj(); 1394 LabelObj* L_shift_exit = new LabelObj(); 1395 1396 __ branch_destination(L_shift_loop->label()); 1397 __ cmp(lir_cond_equal, layout, 0); 1398 __ branch(lir_cond_equal, L_shift_exit->label()); 1399 1400 #ifdef _LP64 1401 __ shift_left(length, 1, length); 1402 #else 1403 __ shift_left(length_int, 1, length_int); 1404 #endif 1405 1406 __ sub(layout, LIR_OprFact::intConst(1), layout); 1407 1408 __ branch(lir_cond_always, L_shift_loop->label()); 1409 __ branch_destination(L_shift_exit->label()); 1410 1411 // Mix all up, round, and push to the result. 1412 #ifdef _LP64 1413 LIR_Opr header_size_long = new_register(T_LONG); 1414 __ convert(Bytecodes::_i2l, header_size, header_size_long); 1415 __ add(length, header_size_long, length); 1416 if (round_mask != 0) { 1417 __ logical_and(length, LIR_OprFact::longConst(~round_mask), length); 1418 } 1419 __ move(length, result_reg); 1420 #else 1421 __ add(length_int, header_size, length_int); 1422 if (round_mask != 0) { 1423 __ logical_and(length_int, LIR_OprFact::intConst(~round_mask), length_int); 1424 } 1425 __ convert(Bytecodes::_i2l, length_int, result_reg); 1426 #endif 1427 1428 __ branch_destination(L_done->label()); 1429 } 1430 1431 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) { 1432 assert(x->number_of_arguments() == 1, "wrong type"); 1433 LIRItem receiver(x->argument_at(0), this); 1434 1435 receiver.load_item(); 1436 BasicTypeList signature; 1437 signature.append(T_OBJECT); // receiver 1438 LIR_OprList* args = new LIR_OprList(); 1439 args->append(receiver.result()); 1440 CodeEmitInfo* info = state_for(x, x->state()); 1441 call_runtime(&signature, args, 1442 CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)), 1443 voidType, info); 1444 1445 set_no_result(x); 1446 } 1447 1448 1449 //------------------------local access-------------------------------------- 1450 1451 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) { 1452 if (x->operand()->is_illegal()) { 1453 Constant* c = x->as_Constant(); 1454 if (c != NULL) { 1455 x->set_operand(LIR_OprFact::value_type(c->type())); 1456 } else { 1457 assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local"); 1458 // allocate a virtual register for this local or phi 1459 x->set_operand(rlock(x)); 1460 _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL); 1461 } 1462 } 1463 return x->operand(); 1464 } 1465 1466 1467 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) { 1468 if (opr->is_virtual()) { 1469 return instruction_for_vreg(opr->vreg_number()); 1470 } 1471 return NULL; 1472 } 1473 1474 1475 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) { 1476 if (reg_num < _instruction_for_operand.length()) { 1477 return _instruction_for_operand.at(reg_num); 1478 } 1479 return NULL; 1480 } 1481 1482 1483 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) { 1484 if (_vreg_flags.size_in_bits() == 0) { 1485 BitMap2D temp(100, num_vreg_flags); 1486 _vreg_flags = temp; 1487 } 1488 _vreg_flags.at_put_grow(vreg_num, f, true); 1489 } 1490 1491 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) { 1492 if (!_vreg_flags.is_valid_index(vreg_num, f)) { 1493 return false; 1494 } 1495 return _vreg_flags.at(vreg_num, f); 1496 } 1497 1498 1499 // Block local constant handling. This code is useful for keeping 1500 // unpinned constants and constants which aren't exposed in the IR in 1501 // registers. Unpinned Constant instructions have their operands 1502 // cleared when the block is finished so that other blocks can't end 1503 // up referring to their registers. 1504 1505 LIR_Opr LIRGenerator::load_constant(Constant* x) { 1506 assert(!x->is_pinned(), "only for unpinned constants"); 1507 _unpinned_constants.append(x); 1508 return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr()); 1509 } 1510 1511 1512 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) { 1513 BasicType t = c->type(); 1514 for (int i = 0; i < _constants.length(); i++) { 1515 LIR_Const* other = _constants.at(i); 1516 if (t == other->type()) { 1517 switch (t) { 1518 case T_INT: 1519 case T_FLOAT: 1520 if (c->as_jint_bits() != other->as_jint_bits()) continue; 1521 break; 1522 case T_LONG: 1523 case T_DOUBLE: 1524 if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue; 1525 if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue; 1526 break; 1527 case T_OBJECT: 1528 if (c->as_jobject() != other->as_jobject()) continue; 1529 break; 1530 default: 1531 break; 1532 } 1533 return _reg_for_constants.at(i); 1534 } 1535 } 1536 1537 LIR_Opr result = new_register(t); 1538 __ move((LIR_Opr)c, result); 1539 _constants.append(c); 1540 _reg_for_constants.append(result); 1541 return result; 1542 } 1543 1544 //------------------------field access-------------------------------------- 1545 1546 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) { 1547 assert(x->number_of_arguments() == 4, "wrong type"); 1548 LIRItem obj (x->argument_at(0), this); // object 1549 LIRItem offset(x->argument_at(1), this); // offset of field 1550 LIRItem cmp (x->argument_at(2), this); // value to compare with field 1551 LIRItem val (x->argument_at(3), this); // replace field with val if matches cmp 1552 assert(obj.type()->tag() == objectTag, "invalid type"); 1553 assert(cmp.type()->tag() == type->tag(), "invalid type"); 1554 assert(val.type()->tag() == type->tag(), "invalid type"); 1555 1556 LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type), 1557 obj, offset, cmp, val); 1558 set_result(x, result); 1559 } 1560 1561 // Comment copied form templateTable_i486.cpp 1562 // ---------------------------------------------------------------------------- 1563 // Volatile variables demand their effects be made known to all CPU's in 1564 // order. Store buffers on most chips allow reads & writes to reorder; the 1565 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of 1566 // memory barrier (i.e., it's not sufficient that the interpreter does not 1567 // reorder volatile references, the hardware also must not reorder them). 1568 // 1569 // According to the new Java Memory Model (JMM): 1570 // (1) All volatiles are serialized wrt to each other. 1571 // ALSO reads & writes act as acquire & release, so: 1572 // (2) A read cannot let unrelated NON-volatile memory refs that happen after 1573 // the read float up to before the read. It's OK for non-volatile memory refs 1574 // that happen before the volatile read to float down below it. 1575 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs 1576 // that happen BEFORE the write float down to after the write. It's OK for 1577 // non-volatile memory refs that happen after the volatile write to float up 1578 // before it. 1579 // 1580 // We only put in barriers around volatile refs (they are expensive), not 1581 // _between_ memory refs (that would require us to track the flavor of the 1582 // previous memory refs). Requirements (2) and (3) require some barriers 1583 // before volatile stores and after volatile loads. These nearly cover 1584 // requirement (1) but miss the volatile-store-volatile-load case. This final 1585 // case is placed after volatile-stores although it could just as well go 1586 // before volatile-loads. 1587 1588 1589 void LIRGenerator::do_StoreField(StoreField* x) { 1590 bool needs_patching = x->needs_patching(); 1591 bool is_volatile = x->field()->is_volatile(); 1592 BasicType field_type = x->field_type(); 1593 1594 CodeEmitInfo* info = NULL; 1595 if (needs_patching) { 1596 assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access"); 1597 info = state_for(x, x->state_before()); 1598 } else if (x->needs_null_check()) { 1599 NullCheck* nc = x->explicit_null_check(); 1600 if (nc == NULL) { 1601 info = state_for(x); 1602 } else { 1603 info = state_for(nc); 1604 } 1605 } 1606 1607 LIRItem object(x->obj(), this); 1608 LIRItem value(x->value(), this); 1609 1610 object.load_item(); 1611 1612 if (is_volatile || needs_patching) { 1613 // load item if field is volatile (fewer special cases for volatiles) 1614 // load item if field not initialized 1615 // load item if field not constant 1616 // because of code patching we cannot inline constants 1617 if (field_type == T_BYTE || field_type == T_BOOLEAN) { 1618 value.load_byte_item(); 1619 } else { 1620 value.load_item(); 1621 } 1622 } else { 1623 value.load_for_store(field_type); 1624 } 1625 1626 set_no_result(x); 1627 1628 #ifndef PRODUCT 1629 if (PrintNotLoaded && needs_patching) { 1630 tty->print_cr(" ###class not loaded at store_%s bci %d", 1631 x->is_static() ? "static" : "field", x->printable_bci()); 1632 } 1633 #endif 1634 1635 if (x->needs_null_check() && 1636 (needs_patching || 1637 MacroAssembler::needs_explicit_null_check(x->offset()))) { 1638 // Emit an explicit null check because the offset is too large. 1639 // If the class is not loaded and the object is NULL, we need to deoptimize to throw a 1640 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code. 1641 __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching); 1642 } 1643 1644 DecoratorSet decorators = IN_HEAP; 1645 if (is_volatile) { 1646 decorators |= MO_SEQ_CST; 1647 } 1648 if (needs_patching) { 1649 decorators |= C1_NEEDS_PATCHING; 1650 } 1651 1652 access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()), 1653 value.result(), info != NULL ? new CodeEmitInfo(info) : NULL, info); 1654 } 1655 1656 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) { 1657 assert(x->is_pinned(),""); 1658 bool needs_range_check = x->compute_needs_range_check(); 1659 bool use_length = x->length() != NULL; 1660 bool obj_store = is_reference_type(x->elt_type()); 1661 bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL || 1662 !get_jobject_constant(x->value())->is_null_object() || 1663 x->should_profile()); 1664 1665 LIRItem array(x->array(), this); 1666 LIRItem index(x->index(), this); 1667 LIRItem value(x->value(), this); 1668 LIRItem length(this); 1669 1670 array.load_item(); 1671 index.load_nonconstant(); 1672 1673 if (use_length && needs_range_check) { 1674 length.set_instruction(x->length()); 1675 length.load_item(); 1676 1677 } 1678 if (needs_store_check || x->check_boolean()) { 1679 value.load_item(); 1680 } else { 1681 value.load_for_store(x->elt_type()); 1682 } 1683 1684 set_no_result(x); 1685 1686 // the CodeEmitInfo must be duplicated for each different 1687 // LIR-instruction because spilling can occur anywhere between two 1688 // instructions and so the debug information must be different 1689 CodeEmitInfo* range_check_info = state_for(x); 1690 CodeEmitInfo* null_check_info = NULL; 1691 if (x->needs_null_check()) { 1692 null_check_info = new CodeEmitInfo(range_check_info); 1693 } 1694 1695 if (GenerateRangeChecks && needs_range_check) { 1696 if (use_length) { 1697 __ cmp(lir_cond_belowEqual, length.result(), index.result()); 1698 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result())); 1699 } else { 1700 array_range_check(array.result(), index.result(), null_check_info, range_check_info); 1701 // range_check also does the null check 1702 null_check_info = NULL; 1703 } 1704 } 1705 1706 if (GenerateArrayStoreCheck && needs_store_check) { 1707 CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info); 1708 array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci()); 1709 } 1710 1711 DecoratorSet decorators = IN_HEAP | IS_ARRAY; 1712 if (x->check_boolean()) { 1713 decorators |= C1_MASK_BOOLEAN; 1714 } 1715 1716 access_store_at(decorators, x->elt_type(), array, index.result(), value.result(), 1717 NULL, null_check_info); 1718 } 1719 1720 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type, 1721 LIRItem& base, LIR_Opr offset, LIR_Opr result, 1722 CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) { 1723 decorators |= ACCESS_READ; 1724 LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info); 1725 if (access.is_raw()) { 1726 _barrier_set->BarrierSetC1::load_at(access, result); 1727 } else { 1728 _barrier_set->load_at(access, result); 1729 } 1730 } 1731 1732 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type, 1733 LIR_Opr addr, LIR_Opr result) { 1734 decorators |= ACCESS_READ; 1735 LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type); 1736 access.set_resolved_addr(addr); 1737 if (access.is_raw()) { 1738 _barrier_set->BarrierSetC1::load(access, result); 1739 } else { 1740 _barrier_set->load(access, result); 1741 } 1742 } 1743 1744 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type, 1745 LIRItem& base, LIR_Opr offset, LIR_Opr value, 1746 CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) { 1747 decorators |= ACCESS_WRITE; 1748 LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info); 1749 if (access.is_raw()) { 1750 _barrier_set->BarrierSetC1::store_at(access, value); 1751 } else { 1752 _barrier_set->store_at(access, value); 1753 } 1754 } 1755 1756 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type, 1757 LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) { 1758 decorators |= ACCESS_READ; 1759 decorators |= ACCESS_WRITE; 1760 // Atomic operations are SEQ_CST by default 1761 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 1762 LIRAccess access(this, decorators, base, offset, type); 1763 if (access.is_raw()) { 1764 return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value); 1765 } else { 1766 return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value); 1767 } 1768 } 1769 1770 LIR_Opr LIRGenerator::access_atomic_xchg_at(DecoratorSet decorators, BasicType type, 1771 LIRItem& base, LIRItem& offset, LIRItem& value) { 1772 decorators |= ACCESS_READ; 1773 decorators |= ACCESS_WRITE; 1774 // Atomic operations are SEQ_CST by default 1775 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 1776 LIRAccess access(this, decorators, base, offset, type); 1777 if (access.is_raw()) { 1778 return _barrier_set->BarrierSetC1::atomic_xchg_at(access, value); 1779 } else { 1780 return _barrier_set->atomic_xchg_at(access, value); 1781 } 1782 } 1783 1784 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type, 1785 LIRItem& base, LIRItem& offset, LIRItem& value) { 1786 decorators |= ACCESS_READ; 1787 decorators |= ACCESS_WRITE; 1788 // Atomic operations are SEQ_CST by default 1789 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 1790 LIRAccess access(this, decorators, base, offset, type); 1791 if (access.is_raw()) { 1792 return _barrier_set->BarrierSetC1::atomic_add_at(access, value); 1793 } else { 1794 return _barrier_set->atomic_add_at(access, value); 1795 } 1796 } 1797 1798 void LIRGenerator::do_LoadField(LoadField* x) { 1799 bool needs_patching = x->needs_patching(); 1800 bool is_volatile = x->field()->is_volatile(); 1801 BasicType field_type = x->field_type(); 1802 1803 CodeEmitInfo* info = NULL; 1804 if (needs_patching) { 1805 assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access"); 1806 info = state_for(x, x->state_before()); 1807 } else if (x->needs_null_check()) { 1808 NullCheck* nc = x->explicit_null_check(); 1809 if (nc == NULL) { 1810 info = state_for(x); 1811 } else { 1812 info = state_for(nc); 1813 } 1814 } 1815 1816 LIRItem object(x->obj(), this); 1817 1818 object.load_item(); 1819 1820 #ifndef PRODUCT 1821 if (PrintNotLoaded && needs_patching) { 1822 tty->print_cr(" ###class not loaded at load_%s bci %d", 1823 x->is_static() ? "static" : "field", x->printable_bci()); 1824 } 1825 #endif 1826 1827 bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception(); 1828 if (x->needs_null_check() && 1829 (needs_patching || 1830 MacroAssembler::needs_explicit_null_check(x->offset()) || 1831 stress_deopt)) { 1832 LIR_Opr obj = object.result(); 1833 if (stress_deopt) { 1834 obj = new_register(T_OBJECT); 1835 __ move(LIR_OprFact::oopConst(NULL), obj); 1836 } 1837 // Emit an explicit null check because the offset is too large. 1838 // If the class is not loaded and the object is NULL, we need to deoptimize to throw a 1839 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code. 1840 __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching); 1841 } 1842 1843 DecoratorSet decorators = IN_HEAP; 1844 if (is_volatile) { 1845 decorators |= MO_SEQ_CST; 1846 } 1847 if (needs_patching) { 1848 decorators |= C1_NEEDS_PATCHING; 1849 } 1850 1851 LIR_Opr result = rlock_result(x, field_type); 1852 access_load_at(decorators, field_type, 1853 object, LIR_OprFact::intConst(x->offset()), result, 1854 info ? new CodeEmitInfo(info) : NULL, info); 1855 } 1856 1857 // int/long jdk.internal.util.Preconditions.checkIndex 1858 void LIRGenerator::do_PreconditionsCheckIndex(Intrinsic* x, BasicType type) { 1859 assert(x->number_of_arguments() == 3, "wrong type"); 1860 LIRItem index(x->argument_at(0), this); 1861 LIRItem length(x->argument_at(1), this); 1862 LIRItem oobef(x->argument_at(2), this); 1863 1864 index.load_item(); 1865 length.load_item(); 1866 oobef.load_item(); 1867 1868 LIR_Opr result = rlock_result(x); 1869 // x->state() is created from copy_state_for_exception, it does not contains arguments 1870 // we should prepare them before entering into interpreter mode due to deoptimization. 1871 ValueStack* state = x->state(); 1872 for (int i = 0; i < x->number_of_arguments(); i++) { 1873 Value arg = x->argument_at(i); 1874 state->push(arg->type(), arg); 1875 } 1876 CodeEmitInfo* info = state_for(x, state); 1877 1878 LIR_Opr len = length.result(); 1879 LIR_Opr zero; 1880 if (type == T_INT) { 1881 zero = LIR_OprFact::intConst(0); 1882 if (length.result()->is_constant()){ 1883 len = LIR_OprFact::intConst(length.result()->as_jint()); 1884 } 1885 } else { 1886 assert(type == T_LONG, "sanity check"); 1887 zero = LIR_OprFact::longConst(0); 1888 if (length.result()->is_constant()){ 1889 len = LIR_OprFact::longConst(length.result()->as_jlong()); 1890 } 1891 } 1892 // C1 can not handle the case that comparing index with constant value while condition 1893 // is neither lir_cond_equal nor lir_cond_notEqual, see LIR_Assembler::comp_op. 1894 LIR_Opr zero_reg = new_register(type); 1895 __ move(zero, zero_reg); 1896 #if defined(X86) && !defined(_LP64) 1897 // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy. 1898 LIR_Opr index_copy = new_register(index.type()); 1899 // index >= 0 1900 __ move(index.result(), index_copy); 1901 __ cmp(lir_cond_less, index_copy, zero_reg); 1902 __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 1903 Deoptimization::Action_make_not_entrant)); 1904 // index < length 1905 __ move(index.result(), index_copy); 1906 __ cmp(lir_cond_greaterEqual, index_copy, len); 1907 __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 1908 Deoptimization::Action_make_not_entrant)); 1909 #else 1910 // index >= 0 1911 __ cmp(lir_cond_less, index.result(), zero_reg); 1912 __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 1913 Deoptimization::Action_make_not_entrant)); 1914 // index < length 1915 __ cmp(lir_cond_greaterEqual, index.result(), len); 1916 __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 1917 Deoptimization::Action_make_not_entrant)); 1918 #endif 1919 __ move(index.result(), result); 1920 } 1921 1922 //------------------------array access-------------------------------------- 1923 1924 1925 void LIRGenerator::do_ArrayLength(ArrayLength* x) { 1926 LIRItem array(x->array(), this); 1927 array.load_item(); 1928 LIR_Opr reg = rlock_result(x); 1929 1930 CodeEmitInfo* info = NULL; 1931 if (x->needs_null_check()) { 1932 NullCheck* nc = x->explicit_null_check(); 1933 if (nc == NULL) { 1934 info = state_for(x); 1935 } else { 1936 info = state_for(nc); 1937 } 1938 if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) { 1939 LIR_Opr obj = new_register(T_OBJECT); 1940 __ move(LIR_OprFact::oopConst(NULL), obj); 1941 __ null_check(obj, new CodeEmitInfo(info)); 1942 } 1943 } 1944 __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none); 1945 } 1946 1947 1948 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) { 1949 bool use_length = x->length() != NULL; 1950 LIRItem array(x->array(), this); 1951 LIRItem index(x->index(), this); 1952 LIRItem length(this); 1953 bool needs_range_check = x->compute_needs_range_check(); 1954 1955 if (use_length && needs_range_check) { 1956 length.set_instruction(x->length()); 1957 length.load_item(); 1958 } 1959 1960 array.load_item(); 1961 if (index.is_constant() && can_inline_as_constant(x->index())) { 1962 // let it be a constant 1963 index.dont_load_item(); 1964 } else { 1965 index.load_item(); 1966 } 1967 1968 CodeEmitInfo* range_check_info = state_for(x); 1969 CodeEmitInfo* null_check_info = NULL; 1970 if (x->needs_null_check()) { 1971 NullCheck* nc = x->explicit_null_check(); 1972 if (nc != NULL) { 1973 null_check_info = state_for(nc); 1974 } else { 1975 null_check_info = range_check_info; 1976 } 1977 if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) { 1978 LIR_Opr obj = new_register(T_OBJECT); 1979 __ move(LIR_OprFact::oopConst(NULL), obj); 1980 __ null_check(obj, new CodeEmitInfo(null_check_info)); 1981 } 1982 } 1983 1984 if (GenerateRangeChecks && needs_range_check) { 1985 if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) { 1986 __ branch(lir_cond_always, new RangeCheckStub(range_check_info, index.result(), array.result())); 1987 } else if (use_length) { 1988 // TODO: use a (modified) version of array_range_check that does not require a 1989 // constant length to be loaded to a register 1990 __ cmp(lir_cond_belowEqual, length.result(), index.result()); 1991 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result())); 1992 } else { 1993 array_range_check(array.result(), index.result(), null_check_info, range_check_info); 1994 // The range check performs the null check, so clear it out for the load 1995 null_check_info = NULL; 1996 } 1997 } 1998 1999 DecoratorSet decorators = IN_HEAP | IS_ARRAY; 2000 2001 LIR_Opr result = rlock_result(x, x->elt_type()); 2002 access_load_at(decorators, x->elt_type(), 2003 array, index.result(), result, 2004 NULL, null_check_info); 2005 } 2006 2007 2008 void LIRGenerator::do_NullCheck(NullCheck* x) { 2009 if (x->can_trap()) { 2010 LIRItem value(x->obj(), this); 2011 value.load_item(); 2012 CodeEmitInfo* info = state_for(x); 2013 __ null_check(value.result(), info); 2014 } 2015 } 2016 2017 2018 void LIRGenerator::do_TypeCast(TypeCast* x) { 2019 LIRItem value(x->obj(), this); 2020 value.load_item(); 2021 // the result is the same as from the node we are casting 2022 set_result(x, value.result()); 2023 } 2024 2025 2026 void LIRGenerator::do_Throw(Throw* x) { 2027 LIRItem exception(x->exception(), this); 2028 exception.load_item(); 2029 set_no_result(x); 2030 LIR_Opr exception_opr = exception.result(); 2031 CodeEmitInfo* info = state_for(x, x->state()); 2032 2033 #ifndef PRODUCT 2034 if (PrintC1Statistics) { 2035 increment_counter(Runtime1::throw_count_address(), T_INT); 2036 } 2037 #endif 2038 2039 // check if the instruction has an xhandler in any of the nested scopes 2040 bool unwind = false; 2041 if (info->exception_handlers()->length() == 0) { 2042 // this throw is not inside an xhandler 2043 unwind = true; 2044 } else { 2045 // get some idea of the throw type 2046 bool type_is_exact = true; 2047 ciType* throw_type = x->exception()->exact_type(); 2048 if (throw_type == NULL) { 2049 type_is_exact = false; 2050 throw_type = x->exception()->declared_type(); 2051 } 2052 if (throw_type != NULL && throw_type->is_instance_klass()) { 2053 ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type; 2054 unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact); 2055 } 2056 } 2057 2058 // do null check before moving exception oop into fixed register 2059 // to avoid a fixed interval with an oop during the null check. 2060 // Use a copy of the CodeEmitInfo because debug information is 2061 // different for null_check and throw. 2062 if (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL) { 2063 // if the exception object wasn't created using new then it might be null. 2064 __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci()))); 2065 } 2066 2067 if (compilation()->env()->jvmti_can_post_on_exceptions()) { 2068 // we need to go through the exception lookup path to get JVMTI 2069 // notification done 2070 unwind = false; 2071 } 2072 2073 // move exception oop into fixed register 2074 __ move(exception_opr, exceptionOopOpr()); 2075 2076 if (unwind) { 2077 __ unwind_exception(exceptionOopOpr()); 2078 } else { 2079 __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info); 2080 } 2081 } 2082 2083 2084 void LIRGenerator::do_RoundFP(RoundFP* x) { 2085 assert(strict_fp_requires_explicit_rounding, "not required"); 2086 2087 LIRItem input(x->input(), this); 2088 input.load_item(); 2089 LIR_Opr input_opr = input.result(); 2090 assert(input_opr->is_register(), "why round if value is not in a register?"); 2091 assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value"); 2092 if (input_opr->is_single_fpu()) { 2093 set_result(x, round_item(input_opr)); // This code path not currently taken 2094 } else { 2095 LIR_Opr result = new_register(T_DOUBLE); 2096 set_vreg_flag(result, must_start_in_memory); 2097 __ roundfp(input_opr, LIR_OprFact::illegalOpr, result); 2098 set_result(x, result); 2099 } 2100 } 2101 2102 2103 void LIRGenerator::do_UnsafeGet(UnsafeGet* x) { 2104 BasicType type = x->basic_type(); 2105 LIRItem src(x->object(), this); 2106 LIRItem off(x->offset(), this); 2107 2108 off.load_item(); 2109 src.load_item(); 2110 2111 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS; 2112 2113 if (x->is_volatile()) { 2114 decorators |= MO_SEQ_CST; 2115 } 2116 if (type == T_BOOLEAN) { 2117 decorators |= C1_MASK_BOOLEAN; 2118 } 2119 if (is_reference_type(type)) { 2120 decorators |= ON_UNKNOWN_OOP_REF; 2121 } 2122 2123 LIR_Opr result = rlock_result(x, type); 2124 if (!x->is_raw()) { 2125 access_load_at(decorators, type, src, off.result(), result); 2126 } else { 2127 // Currently it is only used in GraphBuilder::setup_osr_entry_block. 2128 // It reads the value from [src + offset] directly. 2129 #ifdef _LP64 2130 LIR_Opr offset = new_register(T_LONG); 2131 __ convert(Bytecodes::_i2l, off.result(), offset); 2132 #else 2133 LIR_Opr offset = off.result(); 2134 #endif 2135 LIR_Address* addr = new LIR_Address(src.result(), offset, type); 2136 if (is_reference_type(type)) { 2137 __ move_wide(addr, result); 2138 } else { 2139 __ move(addr, result); 2140 } 2141 } 2142 } 2143 2144 2145 void LIRGenerator::do_UnsafePut(UnsafePut* x) { 2146 BasicType type = x->basic_type(); 2147 LIRItem src(x->object(), this); 2148 LIRItem off(x->offset(), this); 2149 LIRItem data(x->value(), this); 2150 2151 src.load_item(); 2152 if (type == T_BOOLEAN || type == T_BYTE) { 2153 data.load_byte_item(); 2154 } else { 2155 data.load_item(); 2156 } 2157 off.load_item(); 2158 2159 set_no_result(x); 2160 2161 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS; 2162 if (is_reference_type(type)) { 2163 decorators |= ON_UNKNOWN_OOP_REF; 2164 } 2165 if (x->is_volatile()) { 2166 decorators |= MO_SEQ_CST; 2167 } 2168 access_store_at(decorators, type, src, off.result(), data.result()); 2169 } 2170 2171 void LIRGenerator::do_UnsafeGetAndSet(UnsafeGetAndSet* x) { 2172 BasicType type = x->basic_type(); 2173 LIRItem src(x->object(), this); 2174 LIRItem off(x->offset(), this); 2175 LIRItem value(x->value(), this); 2176 2177 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS | MO_SEQ_CST; 2178 2179 if (is_reference_type(type)) { 2180 decorators |= ON_UNKNOWN_OOP_REF; 2181 } 2182 2183 LIR_Opr result; 2184 if (x->is_add()) { 2185 result = access_atomic_add_at(decorators, type, src, off, value); 2186 } else { 2187 result = access_atomic_xchg_at(decorators, type, src, off, value); 2188 } 2189 set_result(x, result); 2190 } 2191 2192 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) { 2193 int lng = x->length(); 2194 2195 for (int i = 0; i < lng; i++) { 2196 C1SwitchRange* one_range = x->at(i); 2197 int low_key = one_range->low_key(); 2198 int high_key = one_range->high_key(); 2199 BlockBegin* dest = one_range->sux(); 2200 if (low_key == high_key) { 2201 __ cmp(lir_cond_equal, value, low_key); 2202 __ branch(lir_cond_equal, dest); 2203 } else if (high_key - low_key == 1) { 2204 __ cmp(lir_cond_equal, value, low_key); 2205 __ branch(lir_cond_equal, dest); 2206 __ cmp(lir_cond_equal, value, high_key); 2207 __ branch(lir_cond_equal, dest); 2208 } else { 2209 LabelObj* L = new LabelObj(); 2210 __ cmp(lir_cond_less, value, low_key); 2211 __ branch(lir_cond_less, L->label()); 2212 __ cmp(lir_cond_lessEqual, value, high_key); 2213 __ branch(lir_cond_lessEqual, dest); 2214 __ branch_destination(L->label()); 2215 } 2216 } 2217 __ jump(default_sux); 2218 } 2219 2220 2221 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) { 2222 SwitchRangeList* res = new SwitchRangeList(); 2223 int len = x->length(); 2224 if (len > 0) { 2225 BlockBegin* sux = x->sux_at(0); 2226 int key = x->lo_key(); 2227 BlockBegin* default_sux = x->default_sux(); 2228 C1SwitchRange* range = new C1SwitchRange(key, sux); 2229 for (int i = 0; i < len; i++, key++) { 2230 BlockBegin* new_sux = x->sux_at(i); 2231 if (sux == new_sux) { 2232 // still in same range 2233 range->set_high_key(key); 2234 } else { 2235 // skip tests which explicitly dispatch to the default 2236 if (sux != default_sux) { 2237 res->append(range); 2238 } 2239 range = new C1SwitchRange(key, new_sux); 2240 } 2241 sux = new_sux; 2242 } 2243 if (res->length() == 0 || res->last() != range) res->append(range); 2244 } 2245 return res; 2246 } 2247 2248 2249 // we expect the keys to be sorted by increasing value 2250 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) { 2251 SwitchRangeList* res = new SwitchRangeList(); 2252 int len = x->length(); 2253 if (len > 0) { 2254 BlockBegin* default_sux = x->default_sux(); 2255 int key = x->key_at(0); 2256 BlockBegin* sux = x->sux_at(0); 2257 C1SwitchRange* range = new C1SwitchRange(key, sux); 2258 for (int i = 1; i < len; i++) { 2259 int new_key = x->key_at(i); 2260 BlockBegin* new_sux = x->sux_at(i); 2261 if (key+1 == new_key && sux == new_sux) { 2262 // still in same range 2263 range->set_high_key(new_key); 2264 } else { 2265 // skip tests which explicitly dispatch to the default 2266 if (range->sux() != default_sux) { 2267 res->append(range); 2268 } 2269 range = new C1SwitchRange(new_key, new_sux); 2270 } 2271 key = new_key; 2272 sux = new_sux; 2273 } 2274 if (res->length() == 0 || res->last() != range) res->append(range); 2275 } 2276 return res; 2277 } 2278 2279 2280 void LIRGenerator::do_TableSwitch(TableSwitch* x) { 2281 LIRItem tag(x->tag(), this); 2282 tag.load_item(); 2283 set_no_result(x); 2284 2285 if (x->is_safepoint()) { 2286 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before())); 2287 } 2288 2289 // move values into phi locations 2290 move_to_phi(x->state()); 2291 2292 int lo_key = x->lo_key(); 2293 int len = x->length(); 2294 assert(lo_key <= (lo_key + (len - 1)), "integer overflow"); 2295 LIR_Opr value = tag.result(); 2296 2297 if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) { 2298 ciMethod* method = x->state()->scope()->method(); 2299 ciMethodData* md = method->method_data_or_null(); 2300 assert(md != NULL, "Sanity"); 2301 ciProfileData* data = md->bci_to_data(x->state()->bci()); 2302 assert(data != NULL, "must have profiling data"); 2303 assert(data->is_MultiBranchData(), "bad profile data?"); 2304 int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset()); 2305 LIR_Opr md_reg = new_register(T_METADATA); 2306 __ metadata2reg(md->constant_encoding(), md_reg); 2307 LIR_Opr data_offset_reg = new_pointer_register(); 2308 LIR_Opr tmp_reg = new_pointer_register(); 2309 2310 __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg); 2311 for (int i = 0; i < len; i++) { 2312 int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i)); 2313 __ cmp(lir_cond_equal, value, i + lo_key); 2314 __ move(data_offset_reg, tmp_reg); 2315 __ cmove(lir_cond_equal, 2316 LIR_OprFact::intptrConst(count_offset), 2317 tmp_reg, 2318 data_offset_reg, T_INT); 2319 } 2320 2321 LIR_Opr data_reg = new_pointer_register(); 2322 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 2323 __ move(data_addr, data_reg); 2324 __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg); 2325 __ move(data_reg, data_addr); 2326 } 2327 2328 if (UseTableRanges) { 2329 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux()); 2330 } else { 2331 for (int i = 0; i < len; i++) { 2332 __ cmp(lir_cond_equal, value, i + lo_key); 2333 __ branch(lir_cond_equal, x->sux_at(i)); 2334 } 2335 __ jump(x->default_sux()); 2336 } 2337 } 2338 2339 2340 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) { 2341 LIRItem tag(x->tag(), this); 2342 tag.load_item(); 2343 set_no_result(x); 2344 2345 if (x->is_safepoint()) { 2346 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before())); 2347 } 2348 2349 // move values into phi locations 2350 move_to_phi(x->state()); 2351 2352 LIR_Opr value = tag.result(); 2353 int len = x->length(); 2354 2355 if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) { 2356 ciMethod* method = x->state()->scope()->method(); 2357 ciMethodData* md = method->method_data_or_null(); 2358 assert(md != NULL, "Sanity"); 2359 ciProfileData* data = md->bci_to_data(x->state()->bci()); 2360 assert(data != NULL, "must have profiling data"); 2361 assert(data->is_MultiBranchData(), "bad profile data?"); 2362 int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset()); 2363 LIR_Opr md_reg = new_register(T_METADATA); 2364 __ metadata2reg(md->constant_encoding(), md_reg); 2365 LIR_Opr data_offset_reg = new_pointer_register(); 2366 LIR_Opr tmp_reg = new_pointer_register(); 2367 2368 __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg); 2369 for (int i = 0; i < len; i++) { 2370 int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i)); 2371 __ cmp(lir_cond_equal, value, x->key_at(i)); 2372 __ move(data_offset_reg, tmp_reg); 2373 __ cmove(lir_cond_equal, 2374 LIR_OprFact::intptrConst(count_offset), 2375 tmp_reg, 2376 data_offset_reg, T_INT); 2377 } 2378 2379 LIR_Opr data_reg = new_pointer_register(); 2380 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 2381 __ move(data_addr, data_reg); 2382 __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg); 2383 __ move(data_reg, data_addr); 2384 } 2385 2386 if (UseTableRanges) { 2387 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux()); 2388 } else { 2389 int len = x->length(); 2390 for (int i = 0; i < len; i++) { 2391 __ cmp(lir_cond_equal, value, x->key_at(i)); 2392 __ branch(lir_cond_equal, x->sux_at(i)); 2393 } 2394 __ jump(x->default_sux()); 2395 } 2396 } 2397 2398 2399 void LIRGenerator::do_Goto(Goto* x) { 2400 set_no_result(x); 2401 2402 if (block()->next()->as_OsrEntry()) { 2403 // need to free up storage used for OSR entry point 2404 LIR_Opr osrBuffer = block()->next()->operand(); 2405 BasicTypeList signature; 2406 signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer 2407 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 2408 __ move(osrBuffer, cc->args()->at(0)); 2409 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end), 2410 getThreadTemp(), LIR_OprFact::illegalOpr, cc->args()); 2411 } 2412 2413 if (x->is_safepoint()) { 2414 ValueStack* state = x->state_before() ? x->state_before() : x->state(); 2415 2416 // increment backedge counter if needed 2417 CodeEmitInfo* info = state_for(x, state); 2418 increment_backedge_counter(info, x->profiled_bci()); 2419 CodeEmitInfo* safepoint_info = state_for(x, state); 2420 __ safepoint(safepoint_poll_register(), safepoint_info); 2421 } 2422 2423 // Gotos can be folded Ifs, handle this case. 2424 if (x->should_profile()) { 2425 ciMethod* method = x->profiled_method(); 2426 assert(method != NULL, "method should be set if branch is profiled"); 2427 ciMethodData* md = method->method_data_or_null(); 2428 assert(md != NULL, "Sanity"); 2429 ciProfileData* data = md->bci_to_data(x->profiled_bci()); 2430 assert(data != NULL, "must have profiling data"); 2431 int offset; 2432 if (x->direction() == Goto::taken) { 2433 assert(data->is_BranchData(), "need BranchData for two-way branches"); 2434 offset = md->byte_offset_of_slot(data, BranchData::taken_offset()); 2435 } else if (x->direction() == Goto::not_taken) { 2436 assert(data->is_BranchData(), "need BranchData for two-way branches"); 2437 offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset()); 2438 } else { 2439 assert(data->is_JumpData(), "need JumpData for branches"); 2440 offset = md->byte_offset_of_slot(data, JumpData::taken_offset()); 2441 } 2442 LIR_Opr md_reg = new_register(T_METADATA); 2443 __ metadata2reg(md->constant_encoding(), md_reg); 2444 2445 increment_counter(new LIR_Address(md_reg, offset, 2446 NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment); 2447 } 2448 2449 // emit phi-instruction move after safepoint since this simplifies 2450 // describing the state as the safepoint. 2451 move_to_phi(x->state()); 2452 2453 __ jump(x->default_sux()); 2454 } 2455 2456 /** 2457 * Emit profiling code if needed for arguments, parameters, return value types 2458 * 2459 * @param md MDO the code will update at runtime 2460 * @param md_base_offset common offset in the MDO for this profile and subsequent ones 2461 * @param md_offset offset in the MDO (on top of md_base_offset) for this profile 2462 * @param profiled_k current profile 2463 * @param obj IR node for the object to be profiled 2464 * @param mdp register to hold the pointer inside the MDO (md + md_base_offset). 2465 * Set once we find an update to make and use for next ones. 2466 * @param not_null true if we know obj cannot be null 2467 * @param signature_at_call_k signature at call for obj 2468 * @param callee_signature_k signature of callee for obj 2469 * at call and callee signatures differ at method handle call 2470 * @return the only klass we know will ever be seen at this profile point 2471 */ 2472 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k, 2473 Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k, 2474 ciKlass* callee_signature_k) { 2475 ciKlass* result = NULL; 2476 bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k); 2477 bool do_update = !TypeEntries::is_type_unknown(profiled_k); 2478 // known not to be null or null bit already set and already set to 2479 // unknown: nothing we can do to improve profiling 2480 if (!do_null && !do_update) { 2481 return result; 2482 } 2483 2484 ciKlass* exact_klass = NULL; 2485 Compilation* comp = Compilation::current(); 2486 if (do_update) { 2487 // try to find exact type, using CHA if possible, so that loading 2488 // the klass from the object can be avoided 2489 ciType* type = obj->exact_type(); 2490 if (type == NULL) { 2491 type = obj->declared_type(); 2492 type = comp->cha_exact_type(type); 2493 } 2494 assert(type == NULL || type->is_klass(), "type should be class"); 2495 exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL; 2496 2497 do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass; 2498 } 2499 2500 if (!do_null && !do_update) { 2501 return result; 2502 } 2503 2504 ciKlass* exact_signature_k = NULL; 2505 if (do_update) { 2506 // Is the type from the signature exact (the only one possible)? 2507 exact_signature_k = signature_at_call_k->exact_klass(); 2508 if (exact_signature_k == NULL) { 2509 exact_signature_k = comp->cha_exact_type(signature_at_call_k); 2510 } else { 2511 result = exact_signature_k; 2512 // Known statically. No need to emit any code: prevent 2513 // LIR_Assembler::emit_profile_type() from emitting useless code 2514 profiled_k = ciTypeEntries::with_status(result, profiled_k); 2515 } 2516 // exact_klass and exact_signature_k can be both non NULL but 2517 // different if exact_klass is loaded after the ciObject for 2518 // exact_signature_k is created. 2519 if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) { 2520 // sometimes the type of the signature is better than the best type 2521 // the compiler has 2522 exact_klass = exact_signature_k; 2523 } 2524 if (callee_signature_k != NULL && 2525 callee_signature_k != signature_at_call_k) { 2526 ciKlass* improved_klass = callee_signature_k->exact_klass(); 2527 if (improved_klass == NULL) { 2528 improved_klass = comp->cha_exact_type(callee_signature_k); 2529 } 2530 if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) { 2531 exact_klass = exact_signature_k; 2532 } 2533 } 2534 do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass; 2535 } 2536 2537 if (!do_null && !do_update) { 2538 return result; 2539 } 2540 2541 if (mdp == LIR_OprFact::illegalOpr) { 2542 mdp = new_register(T_METADATA); 2543 __ metadata2reg(md->constant_encoding(), mdp); 2544 if (md_base_offset != 0) { 2545 LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS); 2546 mdp = new_pointer_register(); 2547 __ leal(LIR_OprFact::address(base_type_address), mdp); 2548 } 2549 } 2550 LIRItem value(obj, this); 2551 value.load_item(); 2552 __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA), 2553 value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL); 2554 return result; 2555 } 2556 2557 // profile parameters on entry to the root of the compilation 2558 void LIRGenerator::profile_parameters(Base* x) { 2559 if (compilation()->profile_parameters()) { 2560 CallingConvention* args = compilation()->frame_map()->incoming_arguments(); 2561 ciMethodData* md = scope()->method()->method_data_or_null(); 2562 assert(md != NULL, "Sanity"); 2563 2564 if (md->parameters_type_data() != NULL) { 2565 ciParametersTypeData* parameters_type_data = md->parameters_type_data(); 2566 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters(); 2567 LIR_Opr mdp = LIR_OprFact::illegalOpr; 2568 for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) { 2569 LIR_Opr src = args->at(i); 2570 assert(!src->is_illegal(), "check"); 2571 BasicType t = src->type(); 2572 if (is_reference_type(t)) { 2573 intptr_t profiled_k = parameters->type(j); 2574 Local* local = x->state()->local_at(java_index)->as_Local(); 2575 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)), 2576 in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)), 2577 profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL); 2578 // If the profile is known statically set it once for all and do not emit any code 2579 if (exact != NULL) { 2580 md->set_parameter_type(j, exact); 2581 } 2582 j++; 2583 } 2584 java_index += type2size[t]; 2585 } 2586 } 2587 } 2588 } 2589 2590 void LIRGenerator::do_Base(Base* x) { 2591 __ std_entry(LIR_OprFact::illegalOpr); 2592 // Emit moves from physical registers / stack slots to virtual registers 2593 CallingConvention* args = compilation()->frame_map()->incoming_arguments(); 2594 IRScope* irScope = compilation()->hir()->top_scope(); 2595 int java_index = 0; 2596 for (int i = 0; i < args->length(); i++) { 2597 LIR_Opr src = args->at(i); 2598 assert(!src->is_illegal(), "check"); 2599 BasicType t = src->type(); 2600 2601 // Types which are smaller than int are passed as int, so 2602 // correct the type which passed. 2603 switch (t) { 2604 case T_BYTE: 2605 case T_BOOLEAN: 2606 case T_SHORT: 2607 case T_CHAR: 2608 t = T_INT; 2609 break; 2610 default: 2611 break; 2612 } 2613 2614 LIR_Opr dest = new_register(t); 2615 __ move(src, dest); 2616 2617 // Assign new location to Local instruction for this local 2618 Local* local = x->state()->local_at(java_index)->as_Local(); 2619 assert(local != NULL, "Locals for incoming arguments must have been created"); 2620 #ifndef __SOFTFP__ 2621 // The java calling convention passes double as long and float as int. 2622 assert(as_ValueType(t)->tag() == local->type()->tag(), "check"); 2623 #endif // __SOFTFP__ 2624 local->set_operand(dest); 2625 _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL); 2626 java_index += type2size[t]; 2627 } 2628 2629 if (compilation()->env()->dtrace_method_probes()) { 2630 BasicTypeList signature; 2631 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 2632 signature.append(T_METADATA); // Method* 2633 LIR_OprList* args = new LIR_OprList(); 2634 args->append(getThreadPointer()); 2635 LIR_Opr meth = new_register(T_METADATA); 2636 __ metadata2reg(method()->constant_encoding(), meth); 2637 args->append(meth); 2638 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL); 2639 } 2640 2641 if (method()->is_synchronized()) { 2642 LIR_Opr obj; 2643 if (method()->is_static()) { 2644 obj = new_register(T_OBJECT); 2645 __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj); 2646 } else { 2647 Local* receiver = x->state()->local_at(0)->as_Local(); 2648 assert(receiver != NULL, "must already exist"); 2649 obj = receiver->operand(); 2650 } 2651 assert(obj->is_valid(), "must be valid"); 2652 2653 if (method()->is_synchronized() && GenerateSynchronizationCode) { 2654 LIR_Opr lock = syncLockOpr(); 2655 __ load_stack_address_monitor(0, lock); 2656 2657 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException)); 2658 CodeStub* slow_path = new MonitorEnterStub(obj, lock, info); 2659 2660 // receiver is guaranteed non-NULL so don't need CodeEmitInfo 2661 __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL); 2662 } 2663 } 2664 if (compilation()->age_code()) { 2665 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), NULL, false); 2666 decrement_age(info); 2667 } 2668 // increment invocation counters if needed 2669 if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting. 2670 profile_parameters(x); 2671 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false); 2672 increment_invocation_counter(info); 2673 } 2674 2675 // all blocks with a successor must end with an unconditional jump 2676 // to the successor even if they are consecutive 2677 __ jump(x->default_sux()); 2678 } 2679 2680 2681 void LIRGenerator::do_OsrEntry(OsrEntry* x) { 2682 // construct our frame and model the production of incoming pointer 2683 // to the OSR buffer. 2684 __ osr_entry(LIR_Assembler::osrBufferPointer()); 2685 LIR_Opr result = rlock_result(x); 2686 __ move(LIR_Assembler::osrBufferPointer(), result); 2687 } 2688 2689 2690 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) { 2691 assert(args->length() == arg_list->length(), 2692 "args=%d, arg_list=%d", args->length(), arg_list->length()); 2693 for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) { 2694 LIRItem* param = args->at(i); 2695 LIR_Opr loc = arg_list->at(i); 2696 if (loc->is_register()) { 2697 param->load_item_force(loc); 2698 } else { 2699 LIR_Address* addr = loc->as_address_ptr(); 2700 param->load_for_store(addr->type()); 2701 if (addr->type() == T_OBJECT) { 2702 __ move_wide(param->result(), addr); 2703 } else 2704 __ move(param->result(), addr); 2705 } 2706 } 2707 2708 if (x->has_receiver()) { 2709 LIRItem* receiver = args->at(0); 2710 LIR_Opr loc = arg_list->at(0); 2711 if (loc->is_register()) { 2712 receiver->load_item_force(loc); 2713 } else { 2714 assert(loc->is_address(), "just checking"); 2715 receiver->load_for_store(T_OBJECT); 2716 __ move_wide(receiver->result(), loc->as_address_ptr()); 2717 } 2718 } 2719 } 2720 2721 2722 // Visits all arguments, returns appropriate items without loading them 2723 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) { 2724 LIRItemList* argument_items = new LIRItemList(); 2725 if (x->has_receiver()) { 2726 LIRItem* receiver = new LIRItem(x->receiver(), this); 2727 argument_items->append(receiver); 2728 } 2729 for (int i = 0; i < x->number_of_arguments(); i++) { 2730 LIRItem* param = new LIRItem(x->argument_at(i), this); 2731 argument_items->append(param); 2732 } 2733 return argument_items; 2734 } 2735 2736 2737 // The invoke with receiver has following phases: 2738 // a) traverse and load/lock receiver; 2739 // b) traverse all arguments -> item-array (invoke_visit_argument) 2740 // c) push receiver on stack 2741 // d) load each of the items and push on stack 2742 // e) unlock receiver 2743 // f) move receiver into receiver-register %o0 2744 // g) lock result registers and emit call operation 2745 // 2746 // Before issuing a call, we must spill-save all values on stack 2747 // that are in caller-save register. "spill-save" moves those registers 2748 // either in a free callee-save register or spills them if no free 2749 // callee save register is available. 2750 // 2751 // The problem is where to invoke spill-save. 2752 // - if invoked between e) and f), we may lock callee save 2753 // register in "spill-save" that destroys the receiver register 2754 // before f) is executed 2755 // - if we rearrange f) to be earlier (by loading %o0) it 2756 // may destroy a value on the stack that is currently in %o0 2757 // and is waiting to be spilled 2758 // - if we keep the receiver locked while doing spill-save, 2759 // we cannot spill it as it is spill-locked 2760 // 2761 void LIRGenerator::do_Invoke(Invoke* x) { 2762 CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true); 2763 2764 LIR_OprList* arg_list = cc->args(); 2765 LIRItemList* args = invoke_visit_arguments(x); 2766 LIR_Opr receiver = LIR_OprFact::illegalOpr; 2767 2768 // setup result register 2769 LIR_Opr result_register = LIR_OprFact::illegalOpr; 2770 if (x->type() != voidType) { 2771 result_register = result_register_for(x->type()); 2772 } 2773 2774 CodeEmitInfo* info = state_for(x, x->state()); 2775 2776 invoke_load_arguments(x, args, arg_list); 2777 2778 if (x->has_receiver()) { 2779 args->at(0)->load_item_force(LIR_Assembler::receiverOpr()); 2780 receiver = args->at(0)->result(); 2781 } 2782 2783 // emit invoke code 2784 assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match"); 2785 2786 // JSR 292 2787 // Preserve the SP over MethodHandle call sites, if needed. 2788 ciMethod* target = x->target(); 2789 bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant? 2790 target->is_method_handle_intrinsic() || 2791 target->is_compiled_lambda_form()); 2792 if (is_method_handle_invoke) { 2793 info->set_is_method_handle_invoke(true); 2794 if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) { 2795 __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr()); 2796 } 2797 } 2798 2799 switch (x->code()) { 2800 case Bytecodes::_invokestatic: 2801 __ call_static(target, result_register, 2802 SharedRuntime::get_resolve_static_call_stub(), 2803 arg_list, info); 2804 break; 2805 case Bytecodes::_invokespecial: 2806 case Bytecodes::_invokevirtual: 2807 case Bytecodes::_invokeinterface: 2808 // for loaded and final (method or class) target we still produce an inline cache, 2809 // in order to be able to call mixed mode 2810 if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) { 2811 __ call_opt_virtual(target, receiver, result_register, 2812 SharedRuntime::get_resolve_opt_virtual_call_stub(), 2813 arg_list, info); 2814 } else { 2815 __ call_icvirtual(target, receiver, result_register, 2816 SharedRuntime::get_resolve_virtual_call_stub(), 2817 arg_list, info); 2818 } 2819 break; 2820 case Bytecodes::_invokedynamic: { 2821 __ call_dynamic(target, receiver, result_register, 2822 SharedRuntime::get_resolve_static_call_stub(), 2823 arg_list, info); 2824 break; 2825 } 2826 default: 2827 fatal("unexpected bytecode: %s", Bytecodes::name(x->code())); 2828 break; 2829 } 2830 2831 // JSR 292 2832 // Restore the SP after MethodHandle call sites, if needed. 2833 if (is_method_handle_invoke 2834 && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) { 2835 __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer()); 2836 } 2837 2838 if (result_register->is_valid()) { 2839 LIR_Opr result = rlock_result(x); 2840 __ move(result_register, result); 2841 } 2842 } 2843 2844 2845 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) { 2846 assert(x->number_of_arguments() == 1, "wrong type"); 2847 LIRItem value (x->argument_at(0), this); 2848 LIR_Opr reg = rlock_result(x); 2849 value.load_item(); 2850 LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type())); 2851 __ move(tmp, reg); 2852 } 2853 2854 2855 2856 // Code for : x->x() {x->cond()} x->y() ? x->tval() : x->fval() 2857 void LIRGenerator::do_IfOp(IfOp* x) { 2858 #ifdef ASSERT 2859 { 2860 ValueTag xtag = x->x()->type()->tag(); 2861 ValueTag ttag = x->tval()->type()->tag(); 2862 assert(xtag == intTag || xtag == objectTag, "cannot handle others"); 2863 assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others"); 2864 assert(ttag == x->fval()->type()->tag(), "cannot handle others"); 2865 } 2866 #endif 2867 2868 LIRItem left(x->x(), this); 2869 LIRItem right(x->y(), this); 2870 left.load_item(); 2871 if (can_inline_as_constant(right.value())) { 2872 right.dont_load_item(); 2873 } else { 2874 right.load_item(); 2875 } 2876 2877 LIRItem t_val(x->tval(), this); 2878 LIRItem f_val(x->fval(), this); 2879 t_val.dont_load_item(); 2880 f_val.dont_load_item(); 2881 LIR_Opr reg = rlock_result(x); 2882 2883 __ cmp(lir_cond(x->cond()), left.result(), right.result()); 2884 __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type())); 2885 } 2886 2887 #ifdef JFR_HAVE_INTRINSICS 2888 2889 void LIRGenerator::do_getEventWriter(Intrinsic* x) { 2890 LabelObj* L_end = new LabelObj(); 2891 2892 // FIXME T_ADDRESS should actually be T_METADATA but it can't because the 2893 // meaning of these two is mixed up (see JDK-8026837). 2894 LIR_Address* jobj_addr = new LIR_Address(getThreadPointer(), 2895 in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR), 2896 T_ADDRESS); 2897 LIR_Opr result = rlock_result(x); 2898 __ move(LIR_OprFact::oopConst(NULL), result); 2899 LIR_Opr jobj = new_register(T_METADATA); 2900 __ move_wide(jobj_addr, jobj); 2901 __ cmp(lir_cond_equal, jobj, LIR_OprFact::metadataConst(0)); 2902 __ branch(lir_cond_equal, L_end->label()); 2903 2904 access_load(IN_NATIVE, T_OBJECT, LIR_OprFact::address(new LIR_Address(jobj, T_OBJECT)), result); 2905 2906 __ branch_destination(L_end->label()); 2907 } 2908 2909 #endif 2910 2911 2912 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) { 2913 assert(x->number_of_arguments() == 0, "wrong type"); 2914 // Enforce computation of _reserved_argument_area_size which is required on some platforms. 2915 BasicTypeList signature; 2916 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 2917 LIR_Opr reg = result_register_for(x->type()); 2918 __ call_runtime_leaf(routine, getThreadTemp(), 2919 reg, new LIR_OprList()); 2920 LIR_Opr result = rlock_result(x); 2921 __ move(reg, result); 2922 } 2923 2924 2925 2926 void LIRGenerator::do_Intrinsic(Intrinsic* x) { 2927 switch (x->id()) { 2928 case vmIntrinsics::_intBitsToFloat : 2929 case vmIntrinsics::_doubleToRawLongBits : 2930 case vmIntrinsics::_longBitsToDouble : 2931 case vmIntrinsics::_floatToRawIntBits : { 2932 do_FPIntrinsics(x); 2933 break; 2934 } 2935 2936 #ifdef JFR_HAVE_INTRINSICS 2937 case vmIntrinsics::_getEventWriter: 2938 do_getEventWriter(x); 2939 break; 2940 case vmIntrinsics::_counterTime: 2941 do_RuntimeCall(CAST_FROM_FN_PTR(address, JFR_TIME_FUNCTION), x); 2942 break; 2943 #endif 2944 2945 case vmIntrinsics::_currentTimeMillis: 2946 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x); 2947 break; 2948 2949 case vmIntrinsics::_nanoTime: 2950 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x); 2951 break; 2952 2953 case vmIntrinsics::_Object_init: do_RegisterFinalizer(x); break; 2954 case vmIntrinsics::_isInstance: do_isInstance(x); break; 2955 case vmIntrinsics::_isPrimitive: do_isPrimitive(x); break; 2956 case vmIntrinsics::_getModifiers: do_getModifiers(x); break; 2957 case vmIntrinsics::_getClass: do_getClass(x); break; 2958 case vmIntrinsics::_currentThread: do_currentThread(x); break; 2959 case vmIntrinsics::_getObjectSize: do_getObjectSize(x); break; 2960 2961 case vmIntrinsics::_dlog: // fall through 2962 case vmIntrinsics::_dlog10: // fall through 2963 case vmIntrinsics::_dabs: // fall through 2964 case vmIntrinsics::_dsqrt: // fall through 2965 case vmIntrinsics::_dsqrt_strict: // fall through 2966 case vmIntrinsics::_dtan: // fall through 2967 case vmIntrinsics::_dsin : // fall through 2968 case vmIntrinsics::_dcos : // fall through 2969 case vmIntrinsics::_dexp : // fall through 2970 case vmIntrinsics::_dpow : do_MathIntrinsic(x); break; 2971 case vmIntrinsics::_arraycopy: do_ArrayCopy(x); break; 2972 2973 case vmIntrinsics::_fmaD: do_FmaIntrinsic(x); break; 2974 case vmIntrinsics::_fmaF: do_FmaIntrinsic(x); break; 2975 2976 case vmIntrinsics::_Preconditions_checkIndex: 2977 do_PreconditionsCheckIndex(x, T_INT); 2978 break; 2979 case vmIntrinsics::_Preconditions_checkLongIndex: 2980 do_PreconditionsCheckIndex(x, T_LONG); 2981 break; 2982 2983 case vmIntrinsics::_compareAndSetReference: 2984 do_CompareAndSwap(x, objectType); 2985 break; 2986 case vmIntrinsics::_compareAndSetInt: 2987 do_CompareAndSwap(x, intType); 2988 break; 2989 case vmIntrinsics::_compareAndSetLong: 2990 do_CompareAndSwap(x, longType); 2991 break; 2992 2993 case vmIntrinsics::_loadFence : 2994 __ membar_acquire(); 2995 break; 2996 case vmIntrinsics::_storeFence: 2997 __ membar_release(); 2998 break; 2999 case vmIntrinsics::_storeStoreFence: 3000 __ membar_storestore(); 3001 break; 3002 case vmIntrinsics::_fullFence : 3003 __ membar(); 3004 break; 3005 case vmIntrinsics::_onSpinWait: 3006 __ on_spin_wait(); 3007 break; 3008 case vmIntrinsics::_Reference_get: 3009 do_Reference_get(x); 3010 break; 3011 3012 case vmIntrinsics::_updateCRC32: 3013 case vmIntrinsics::_updateBytesCRC32: 3014 case vmIntrinsics::_updateByteBufferCRC32: 3015 do_update_CRC32(x); 3016 break; 3017 3018 case vmIntrinsics::_updateBytesCRC32C: 3019 case vmIntrinsics::_updateDirectByteBufferCRC32C: 3020 do_update_CRC32C(x); 3021 break; 3022 3023 case vmIntrinsics::_vectorizedMismatch: 3024 do_vectorizedMismatch(x); 3025 break; 3026 3027 case vmIntrinsics::_blackhole: 3028 do_blackhole(x); 3029 break; 3030 3031 default: ShouldNotReachHere(); break; 3032 } 3033 } 3034 3035 void LIRGenerator::profile_arguments(ProfileCall* x) { 3036 if (compilation()->profile_arguments()) { 3037 int bci = x->bci_of_invoke(); 3038 ciMethodData* md = x->method()->method_data_or_null(); 3039 assert(md != NULL, "Sanity"); 3040 ciProfileData* data = md->bci_to_data(bci); 3041 if (data != NULL) { 3042 if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) || 3043 (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) { 3044 ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset(); 3045 int base_offset = md->byte_offset_of_slot(data, extra); 3046 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3047 ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args(); 3048 3049 Bytecodes::Code bc = x->method()->java_code_at_bci(bci); 3050 int start = 0; 3051 int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments(); 3052 if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) { 3053 // first argument is not profiled at call (method handle invoke) 3054 assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected"); 3055 start = 1; 3056 } 3057 ciSignature* callee_signature = x->callee()->signature(); 3058 // method handle call to virtual method 3059 bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc); 3060 ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL); 3061 3062 bool ignored_will_link; 3063 ciSignature* signature_at_call = NULL; 3064 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call); 3065 ciSignatureStream signature_at_call_stream(signature_at_call); 3066 3067 // if called through method handle invoke, some arguments may have been popped 3068 for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) { 3069 int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset()); 3070 ciKlass* exact = profile_type(md, base_offset, off, 3071 args->type(i), x->profiled_arg_at(i+start), mdp, 3072 !x->arg_needs_null_check(i+start), 3073 signature_at_call_stream.next_klass(), callee_signature_stream.next_klass()); 3074 if (exact != NULL) { 3075 md->set_argument_type(bci, i, exact); 3076 } 3077 } 3078 } else { 3079 #ifdef ASSERT 3080 Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke()); 3081 int n = x->nb_profiled_args(); 3082 assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() || 3083 (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))), 3084 "only at JSR292 bytecodes"); 3085 #endif 3086 } 3087 } 3088 } 3089 } 3090 3091 // profile parameters on entry to an inlined method 3092 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) { 3093 if (compilation()->profile_parameters() && x->inlined()) { 3094 ciMethodData* md = x->callee()->method_data_or_null(); 3095 if (md != NULL) { 3096 ciParametersTypeData* parameters_type_data = md->parameters_type_data(); 3097 if (parameters_type_data != NULL) { 3098 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters(); 3099 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3100 bool has_receiver = !x->callee()->is_static(); 3101 ciSignature* sig = x->callee()->signature(); 3102 ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL); 3103 int i = 0; // to iterate on the Instructions 3104 Value arg = x->recv(); 3105 bool not_null = false; 3106 int bci = x->bci_of_invoke(); 3107 Bytecodes::Code bc = x->method()->java_code_at_bci(bci); 3108 // The first parameter is the receiver so that's what we start 3109 // with if it exists. One exception is method handle call to 3110 // virtual method: the receiver is in the args list 3111 if (arg == NULL || !Bytecodes::has_receiver(bc)) { 3112 i = 1; 3113 arg = x->profiled_arg_at(0); 3114 not_null = !x->arg_needs_null_check(0); 3115 } 3116 int k = 0; // to iterate on the profile data 3117 for (;;) { 3118 intptr_t profiled_k = parameters->type(k); 3119 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)), 3120 in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)), 3121 profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL); 3122 // If the profile is known statically set it once for all and do not emit any code 3123 if (exact != NULL) { 3124 md->set_parameter_type(k, exact); 3125 } 3126 k++; 3127 if (k >= parameters_type_data->number_of_parameters()) { 3128 #ifdef ASSERT 3129 int extra = 0; 3130 if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 && 3131 x->nb_profiled_args() >= TypeProfileParmsLimit && 3132 x->recv() != NULL && Bytecodes::has_receiver(bc)) { 3133 extra += 1; 3134 } 3135 assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?"); 3136 #endif 3137 break; 3138 } 3139 arg = x->profiled_arg_at(i); 3140 not_null = !x->arg_needs_null_check(i); 3141 i++; 3142 } 3143 } 3144 } 3145 } 3146 } 3147 3148 void LIRGenerator::do_ProfileCall(ProfileCall* x) { 3149 // Need recv in a temporary register so it interferes with the other temporaries 3150 LIR_Opr recv = LIR_OprFact::illegalOpr; 3151 LIR_Opr mdo = new_register(T_METADATA); 3152 // tmp is used to hold the counters on SPARC 3153 LIR_Opr tmp = new_pointer_register(); 3154 3155 if (x->nb_profiled_args() > 0) { 3156 profile_arguments(x); 3157 } 3158 3159 // profile parameters on inlined method entry including receiver 3160 if (x->recv() != NULL || x->nb_profiled_args() > 0) { 3161 profile_parameters_at_call(x); 3162 } 3163 3164 if (x->recv() != NULL) { 3165 LIRItem value(x->recv(), this); 3166 value.load_item(); 3167 recv = new_register(T_OBJECT); 3168 __ move(value.result(), recv); 3169 } 3170 __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder()); 3171 } 3172 3173 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) { 3174 int bci = x->bci_of_invoke(); 3175 ciMethodData* md = x->method()->method_data_or_null(); 3176 assert(md != NULL, "Sanity"); 3177 ciProfileData* data = md->bci_to_data(bci); 3178 if (data != NULL) { 3179 assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type"); 3180 ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret(); 3181 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3182 3183 bool ignored_will_link; 3184 ciSignature* signature_at_call = NULL; 3185 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call); 3186 3187 // The offset within the MDO of the entry to update may be too large 3188 // to be used in load/store instructions on some platforms. So have 3189 // profile_type() compute the address of the profile in a register. 3190 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0, 3191 ret->type(), x->ret(), mdp, 3192 !x->needs_null_check(), 3193 signature_at_call->return_type()->as_klass(), 3194 x->callee()->signature()->return_type()->as_klass()); 3195 if (exact != NULL) { 3196 md->set_return_type(bci, exact); 3197 } 3198 } 3199 } 3200 3201 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) { 3202 // We can safely ignore accessors here, since c2 will inline them anyway, 3203 // accessors are also always mature. 3204 if (!x->inlinee()->is_accessor()) { 3205 CodeEmitInfo* info = state_for(x, x->state(), true); 3206 // Notify the runtime very infrequently only to take care of counter overflows 3207 int freq_log = Tier23InlineeNotifyFreqLog; 3208 double scale; 3209 if (_method->has_option_value(CompileCommand::CompileThresholdScaling, scale)) { 3210 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale); 3211 } 3212 increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true); 3213 } 3214 } 3215 3216 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) { 3217 if (compilation()->is_profiling()) { 3218 #if defined(X86) && !defined(_LP64) 3219 // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy. 3220 LIR_Opr left_copy = new_register(left->type()); 3221 __ move(left, left_copy); 3222 __ cmp(cond, left_copy, right); 3223 #else 3224 __ cmp(cond, left, right); 3225 #endif 3226 LIR_Opr step = new_register(T_INT); 3227 LIR_Opr plus_one = LIR_OprFact::intConst(InvocationCounter::count_increment); 3228 LIR_Opr zero = LIR_OprFact::intConst(0); 3229 __ cmove(cond, 3230 (left_bci < bci) ? plus_one : zero, 3231 (right_bci < bci) ? plus_one : zero, 3232 step, left->type()); 3233 increment_backedge_counter(info, step, bci); 3234 } 3235 } 3236 3237 3238 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, LIR_Opr step, int bci, bool backedge) { 3239 int freq_log = 0; 3240 int level = compilation()->env()->comp_level(); 3241 if (level == CompLevel_limited_profile) { 3242 freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog); 3243 } else if (level == CompLevel_full_profile) { 3244 freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog); 3245 } else { 3246 ShouldNotReachHere(); 3247 } 3248 // Increment the appropriate invocation/backedge counter and notify the runtime. 3249 double scale; 3250 if (_method->has_option_value(CompileCommand::CompileThresholdScaling, scale)) { 3251 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale); 3252 } 3253 increment_event_counter_impl(info, info->scope()->method(), step, right_n_bits(freq_log), bci, backedge, true); 3254 } 3255 3256 void LIRGenerator::decrement_age(CodeEmitInfo* info) { 3257 ciMethod* method = info->scope()->method(); 3258 MethodCounters* mc_adr = method->ensure_method_counters(); 3259 if (mc_adr != NULL) { 3260 LIR_Opr mc = new_pointer_register(); 3261 __ move(LIR_OprFact::intptrConst(mc_adr), mc); 3262 int offset = in_bytes(MethodCounters::nmethod_age_offset()); 3263 LIR_Address* counter = new LIR_Address(mc, offset, T_INT); 3264 LIR_Opr result = new_register(T_INT); 3265 __ load(counter, result); 3266 __ sub(result, LIR_OprFact::intConst(1), result); 3267 __ store(result, counter); 3268 // DeoptimizeStub will reexecute from the current state in code info. 3269 CodeStub* deopt = new DeoptimizeStub(info, Deoptimization::Reason_tenured, 3270 Deoptimization::Action_make_not_entrant); 3271 __ cmp(lir_cond_lessEqual, result, LIR_OprFact::intConst(0)); 3272 __ branch(lir_cond_lessEqual, deopt); 3273 } 3274 } 3275 3276 3277 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info, 3278 ciMethod *method, LIR_Opr step, int frequency, 3279 int bci, bool backedge, bool notify) { 3280 assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0"); 3281 int level = _compilation->env()->comp_level(); 3282 assert(level > CompLevel_simple, "Shouldn't be here"); 3283 3284 int offset = -1; 3285 LIR_Opr counter_holder; 3286 if (level == CompLevel_limited_profile) { 3287 MethodCounters* counters_adr = method->ensure_method_counters(); 3288 if (counters_adr == NULL) { 3289 bailout("method counters allocation failed"); 3290 return; 3291 } 3292 counter_holder = new_pointer_register(); 3293 __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder); 3294 offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() : 3295 MethodCounters::invocation_counter_offset()); 3296 } else if (level == CompLevel_full_profile) { 3297 counter_holder = new_register(T_METADATA); 3298 offset = in_bytes(backedge ? MethodData::backedge_counter_offset() : 3299 MethodData::invocation_counter_offset()); 3300 ciMethodData* md = method->method_data_or_null(); 3301 assert(md != NULL, "Sanity"); 3302 __ metadata2reg(md->constant_encoding(), counter_holder); 3303 } else { 3304 ShouldNotReachHere(); 3305 } 3306 LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT); 3307 LIR_Opr result = new_register(T_INT); 3308 __ load(counter, result); 3309 __ add(result, step, result); 3310 __ store(result, counter); 3311 if (notify && (!backedge || UseOnStackReplacement)) { 3312 LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding()); 3313 // The bci for info can point to cmp for if's we want the if bci 3314 CodeStub* overflow = new CounterOverflowStub(info, bci, meth); 3315 int freq = frequency << InvocationCounter::count_shift; 3316 if (freq == 0) { 3317 if (!step->is_constant()) { 3318 __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0)); 3319 __ branch(lir_cond_notEqual, overflow); 3320 } else { 3321 __ branch(lir_cond_always, overflow); 3322 } 3323 } else { 3324 LIR_Opr mask = load_immediate(freq, T_INT); 3325 if (!step->is_constant()) { 3326 // If step is 0, make sure the overflow check below always fails 3327 __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0)); 3328 __ cmove(lir_cond_notEqual, result, LIR_OprFact::intConst(InvocationCounter::count_increment), result, T_INT); 3329 } 3330 __ logical_and(result, mask, result); 3331 __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0)); 3332 __ branch(lir_cond_equal, overflow); 3333 } 3334 __ branch_destination(overflow->continuation()); 3335 } 3336 } 3337 3338 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) { 3339 LIR_OprList* args = new LIR_OprList(x->number_of_arguments()); 3340 BasicTypeList* signature = new BasicTypeList(x->number_of_arguments()); 3341 3342 if (x->pass_thread()) { 3343 signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 3344 args->append(getThreadPointer()); 3345 } 3346 3347 for (int i = 0; i < x->number_of_arguments(); i++) { 3348 Value a = x->argument_at(i); 3349 LIRItem* item = new LIRItem(a, this); 3350 item->load_item(); 3351 args->append(item->result()); 3352 signature->append(as_BasicType(a->type())); 3353 } 3354 3355 LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL); 3356 if (x->type() == voidType) { 3357 set_no_result(x); 3358 } else { 3359 __ move(result, rlock_result(x)); 3360 } 3361 } 3362 3363 #ifdef ASSERT 3364 void LIRGenerator::do_Assert(Assert *x) { 3365 ValueTag tag = x->x()->type()->tag(); 3366 If::Condition cond = x->cond(); 3367 3368 LIRItem xitem(x->x(), this); 3369 LIRItem yitem(x->y(), this); 3370 LIRItem* xin = &xitem; 3371 LIRItem* yin = &yitem; 3372 3373 assert(tag == intTag, "Only integer assertions are valid!"); 3374 3375 xin->load_item(); 3376 yin->dont_load_item(); 3377 3378 set_no_result(x); 3379 3380 LIR_Opr left = xin->result(); 3381 LIR_Opr right = yin->result(); 3382 3383 __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true); 3384 } 3385 #endif 3386 3387 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) { 3388 3389 3390 Instruction *a = x->x(); 3391 Instruction *b = x->y(); 3392 if (!a || StressRangeCheckElimination) { 3393 assert(!b || StressRangeCheckElimination, "B must also be null"); 3394 3395 CodeEmitInfo *info = state_for(x, x->state()); 3396 CodeStub* stub = new PredicateFailedStub(info); 3397 3398 __ jump(stub); 3399 } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) { 3400 int a_int = a->type()->as_IntConstant()->value(); 3401 int b_int = b->type()->as_IntConstant()->value(); 3402 3403 bool ok = false; 3404 3405 switch(x->cond()) { 3406 case Instruction::eql: ok = (a_int == b_int); break; 3407 case Instruction::neq: ok = (a_int != b_int); break; 3408 case Instruction::lss: ok = (a_int < b_int); break; 3409 case Instruction::leq: ok = (a_int <= b_int); break; 3410 case Instruction::gtr: ok = (a_int > b_int); break; 3411 case Instruction::geq: ok = (a_int >= b_int); break; 3412 case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break; 3413 case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break; 3414 default: ShouldNotReachHere(); 3415 } 3416 3417 if (ok) { 3418 3419 CodeEmitInfo *info = state_for(x, x->state()); 3420 CodeStub* stub = new PredicateFailedStub(info); 3421 3422 __ jump(stub); 3423 } 3424 } else { 3425 3426 ValueTag tag = x->x()->type()->tag(); 3427 If::Condition cond = x->cond(); 3428 LIRItem xitem(x->x(), this); 3429 LIRItem yitem(x->y(), this); 3430 LIRItem* xin = &xitem; 3431 LIRItem* yin = &yitem; 3432 3433 assert(tag == intTag, "Only integer deoptimizations are valid!"); 3434 3435 xin->load_item(); 3436 yin->dont_load_item(); 3437 set_no_result(x); 3438 3439 LIR_Opr left = xin->result(); 3440 LIR_Opr right = yin->result(); 3441 3442 CodeEmitInfo *info = state_for(x, x->state()); 3443 CodeStub* stub = new PredicateFailedStub(info); 3444 3445 __ cmp(lir_cond(cond), left, right); 3446 __ branch(lir_cond(cond), stub); 3447 } 3448 } 3449 3450 void LIRGenerator::do_blackhole(Intrinsic *x) { 3451 assert(!x->has_receiver(), "Should have been checked before: only static methods here"); 3452 for (int c = 0; c < x->number_of_arguments(); c++) { 3453 // Load the argument 3454 LIRItem vitem(x->argument_at(c), this); 3455 vitem.load_item(); 3456 // ...and leave it unused. 3457 } 3458 } 3459 3460 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) { 3461 LIRItemList args(1); 3462 LIRItem value(arg1, this); 3463 args.append(&value); 3464 BasicTypeList signature; 3465 signature.append(as_BasicType(arg1->type())); 3466 3467 return call_runtime(&signature, &args, entry, result_type, info); 3468 } 3469 3470 3471 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) { 3472 LIRItemList args(2); 3473 LIRItem value1(arg1, this); 3474 LIRItem value2(arg2, this); 3475 args.append(&value1); 3476 args.append(&value2); 3477 BasicTypeList signature; 3478 signature.append(as_BasicType(arg1->type())); 3479 signature.append(as_BasicType(arg2->type())); 3480 3481 return call_runtime(&signature, &args, entry, result_type, info); 3482 } 3483 3484 3485 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args, 3486 address entry, ValueType* result_type, CodeEmitInfo* info) { 3487 // get a result register 3488 LIR_Opr phys_reg = LIR_OprFact::illegalOpr; 3489 LIR_Opr result = LIR_OprFact::illegalOpr; 3490 if (result_type->tag() != voidTag) { 3491 result = new_register(result_type); 3492 phys_reg = result_register_for(result_type); 3493 } 3494 3495 // move the arguments into the correct location 3496 CallingConvention* cc = frame_map()->c_calling_convention(signature); 3497 assert(cc->length() == args->length(), "argument mismatch"); 3498 for (int i = 0; i < args->length(); i++) { 3499 LIR_Opr arg = args->at(i); 3500 LIR_Opr loc = cc->at(i); 3501 if (loc->is_register()) { 3502 __ move(arg, loc); 3503 } else { 3504 LIR_Address* addr = loc->as_address_ptr(); 3505 // if (!can_store_as_constant(arg)) { 3506 // LIR_Opr tmp = new_register(arg->type()); 3507 // __ move(arg, tmp); 3508 // arg = tmp; 3509 // } 3510 __ move(arg, addr); 3511 } 3512 } 3513 3514 if (info) { 3515 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info); 3516 } else { 3517 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args()); 3518 } 3519 if (result->is_valid()) { 3520 __ move(phys_reg, result); 3521 } 3522 return result; 3523 } 3524 3525 3526 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args, 3527 address entry, ValueType* result_type, CodeEmitInfo* info) { 3528 // get a result register 3529 LIR_Opr phys_reg = LIR_OprFact::illegalOpr; 3530 LIR_Opr result = LIR_OprFact::illegalOpr; 3531 if (result_type->tag() != voidTag) { 3532 result = new_register(result_type); 3533 phys_reg = result_register_for(result_type); 3534 } 3535 3536 // move the arguments into the correct location 3537 CallingConvention* cc = frame_map()->c_calling_convention(signature); 3538 3539 assert(cc->length() == args->length(), "argument mismatch"); 3540 for (int i = 0; i < args->length(); i++) { 3541 LIRItem* arg = args->at(i); 3542 LIR_Opr loc = cc->at(i); 3543 if (loc->is_register()) { 3544 arg->load_item_force(loc); 3545 } else { 3546 LIR_Address* addr = loc->as_address_ptr(); 3547 arg->load_for_store(addr->type()); 3548 __ move(arg->result(), addr); 3549 } 3550 } 3551 3552 if (info) { 3553 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info); 3554 } else { 3555 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args()); 3556 } 3557 if (result->is_valid()) { 3558 __ move(phys_reg, result); 3559 } 3560 return result; 3561 } 3562 3563 void LIRGenerator::do_MemBar(MemBar* x) { 3564 LIR_Code code = x->code(); 3565 switch(code) { 3566 case lir_membar_acquire : __ membar_acquire(); break; 3567 case lir_membar_release : __ membar_release(); break; 3568 case lir_membar : __ membar(); break; 3569 case lir_membar_loadload : __ membar_loadload(); break; 3570 case lir_membar_storestore: __ membar_storestore(); break; 3571 case lir_membar_loadstore : __ membar_loadstore(); break; 3572 case lir_membar_storeload : __ membar_storeload(); break; 3573 default : ShouldNotReachHere(); break; 3574 } 3575 } 3576 3577 LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) { 3578 LIR_Opr value_fixed = rlock_byte(T_BYTE); 3579 if (TwoOperandLIRForm) { 3580 __ move(value, value_fixed); 3581 __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed); 3582 } else { 3583 __ logical_and(value, LIR_OprFact::intConst(1), value_fixed); 3584 } 3585 LIR_Opr klass = new_register(T_METADATA); 3586 load_klass(array, klass, null_check_info); 3587 null_check_info = NULL; 3588 LIR_Opr layout = new_register(T_INT); 3589 __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout); 3590 int diffbit = Klass::layout_helper_boolean_diffbit(); 3591 __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout); 3592 __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0)); 3593 __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE); 3594 value = value_fixed; 3595 return value; 3596 }