1 /* 2 * Copyright (c) 2005, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "c1/c1_Compilation.hpp" 27 #include "c1/c1_Defs.hpp" 28 #include "c1/c1_FrameMap.hpp" 29 #include "c1/c1_Instruction.hpp" 30 #include "c1/c1_LIRAssembler.hpp" 31 #include "c1/c1_LIRGenerator.hpp" 32 #include "c1/c1_ValueStack.hpp" 33 #include "ci/ciArrayKlass.hpp" 34 #include "ci/ciInstance.hpp" 35 #include "ci/ciObjArray.hpp" 36 #include "ci/ciUtilities.hpp" 37 #include "compiler/compilerDefinitions.inline.hpp" 38 #include "gc/shared/barrierSet.hpp" 39 #include "gc/shared/c1/barrierSetC1.hpp" 40 #include "oops/klass.inline.hpp" 41 #include "runtime/sharedRuntime.hpp" 42 #include "runtime/stubRoutines.hpp" 43 #include "runtime/vm_version.hpp" 44 #include "utilities/bitMap.inline.hpp" 45 #include "utilities/macros.hpp" 46 #include "utilities/powerOfTwo.hpp" 47 48 #ifdef ASSERT 49 #define __ gen()->lir(__FILE__, __LINE__)-> 50 #else 51 #define __ gen()->lir()-> 52 #endif 53 54 #ifndef PATCHED_ADDR 55 #define PATCHED_ADDR (max_jint) 56 #endif 57 58 void PhiResolverState::reset() { 59 _virtual_operands.clear(); 60 _other_operands.clear(); 61 _vreg_table.clear(); 62 } 63 64 65 //-------------------------------------------------------------- 66 // PhiResolver 67 68 // Resolves cycles: 69 // 70 // r1 := r2 becomes temp := r1 71 // r2 := r1 r1 := r2 72 // r2 := temp 73 // and orders moves: 74 // 75 // r2 := r3 becomes r1 := r2 76 // r1 := r2 r2 := r3 77 78 PhiResolver::PhiResolver(LIRGenerator* gen) 79 : _gen(gen) 80 , _state(gen->resolver_state()) 81 , _temp(LIR_OprFact::illegalOpr) 82 { 83 // reinitialize the shared state arrays 84 _state.reset(); 85 } 86 87 88 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) { 89 assert(src->is_valid(), ""); 90 assert(dest->is_valid(), ""); 91 __ move(src, dest); 92 } 93 94 95 void PhiResolver::move_temp_to(LIR_Opr dest) { 96 assert(_temp->is_valid(), ""); 97 emit_move(_temp, dest); 98 NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr); 99 } 100 101 102 void PhiResolver::move_to_temp(LIR_Opr src) { 103 assert(_temp->is_illegal(), ""); 104 _temp = _gen->new_register(src->type()); 105 emit_move(src, _temp); 106 } 107 108 109 // Traverse assignment graph in depth first order and generate moves in post order 110 // ie. two assignments: b := c, a := b start with node c: 111 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a) 112 // Generates moves in this order: move b to a and move c to b 113 // ie. cycle a := b, b := a start with node a 114 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a) 115 // Generates moves in this order: move b to temp, move a to b, move temp to a 116 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) { 117 if (!dest->visited()) { 118 dest->set_visited(); 119 for (int i = dest->no_of_destinations()-1; i >= 0; i --) { 120 move(dest, dest->destination_at(i)); 121 } 122 } else if (!dest->start_node()) { 123 // cylce in graph detected 124 assert(_loop == NULL, "only one loop valid!"); 125 _loop = dest; 126 move_to_temp(src->operand()); 127 return; 128 } // else dest is a start node 129 130 if (!dest->assigned()) { 131 if (_loop == dest) { 132 move_temp_to(dest->operand()); 133 dest->set_assigned(); 134 } else if (src != NULL) { 135 emit_move(src->operand(), dest->operand()); 136 dest->set_assigned(); 137 } 138 } 139 } 140 141 142 PhiResolver::~PhiResolver() { 143 int i; 144 // resolve any cycles in moves from and to virtual registers 145 for (i = virtual_operands().length() - 1; i >= 0; i --) { 146 ResolveNode* node = virtual_operands().at(i); 147 if (!node->visited()) { 148 _loop = NULL; 149 move(NULL, node); 150 node->set_start_node(); 151 assert(_temp->is_illegal(), "move_temp_to() call missing"); 152 } 153 } 154 155 // generate move for move from non virtual register to abitrary destination 156 for (i = other_operands().length() - 1; i >= 0; i --) { 157 ResolveNode* node = other_operands().at(i); 158 for (int j = node->no_of_destinations() - 1; j >= 0; j --) { 159 emit_move(node->operand(), node->destination_at(j)->operand()); 160 } 161 } 162 } 163 164 165 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) { 166 ResolveNode* node; 167 if (opr->is_virtual()) { 168 int vreg_num = opr->vreg_number(); 169 node = vreg_table().at_grow(vreg_num, NULL); 170 assert(node == NULL || node->operand() == opr, ""); 171 if (node == NULL) { 172 node = new ResolveNode(opr); 173 vreg_table().at_put(vreg_num, node); 174 } 175 // Make sure that all virtual operands show up in the list when 176 // they are used as the source of a move. 177 if (source && !virtual_operands().contains(node)) { 178 virtual_operands().append(node); 179 } 180 } else { 181 assert(source, ""); 182 node = new ResolveNode(opr); 183 other_operands().append(node); 184 } 185 return node; 186 } 187 188 189 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) { 190 assert(dest->is_virtual(), ""); 191 // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr(); 192 assert(src->is_valid(), ""); 193 assert(dest->is_valid(), ""); 194 ResolveNode* source = source_node(src); 195 source->append(destination_node(dest)); 196 } 197 198 199 //-------------------------------------------------------------- 200 // LIRItem 201 202 void LIRItem::set_result(LIR_Opr opr) { 203 assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change"); 204 value()->set_operand(opr); 205 206 if (opr->is_virtual()) { 207 _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL); 208 } 209 210 _result = opr; 211 } 212 213 void LIRItem::load_item() { 214 if (result()->is_illegal()) { 215 // update the items result 216 _result = value()->operand(); 217 } 218 if (!result()->is_register()) { 219 LIR_Opr reg = _gen->new_register(value()->type()); 220 __ move(result(), reg); 221 if (result()->is_constant()) { 222 _result = reg; 223 } else { 224 set_result(reg); 225 } 226 } 227 } 228 229 230 void LIRItem::load_for_store(BasicType type) { 231 if (_gen->can_store_as_constant(value(), type)) { 232 _result = value()->operand(); 233 if (!_result->is_constant()) { 234 _result = LIR_OprFact::value_type(value()->type()); 235 } 236 } else if (type == T_BYTE || type == T_BOOLEAN) { 237 load_byte_item(); 238 } else { 239 load_item(); 240 } 241 } 242 243 void LIRItem::load_item_force(LIR_Opr reg) { 244 LIR_Opr r = result(); 245 if (r != reg) { 246 #if !defined(ARM) && !defined(E500V2) 247 if (r->type() != reg->type()) { 248 // moves between different types need an intervening spill slot 249 r = _gen->force_to_spill(r, reg->type()); 250 } 251 #endif 252 __ move(r, reg); 253 _result = reg; 254 } 255 } 256 257 ciObject* LIRItem::get_jobject_constant() const { 258 ObjectType* oc = type()->as_ObjectType(); 259 if (oc) { 260 return oc->constant_value(); 261 } 262 return NULL; 263 } 264 265 266 jint LIRItem::get_jint_constant() const { 267 assert(is_constant() && value() != NULL, ""); 268 assert(type()->as_IntConstant() != NULL, "type check"); 269 return type()->as_IntConstant()->value(); 270 } 271 272 273 jint LIRItem::get_address_constant() const { 274 assert(is_constant() && value() != NULL, ""); 275 assert(type()->as_AddressConstant() != NULL, "type check"); 276 return type()->as_AddressConstant()->value(); 277 } 278 279 280 jfloat LIRItem::get_jfloat_constant() const { 281 assert(is_constant() && value() != NULL, ""); 282 assert(type()->as_FloatConstant() != NULL, "type check"); 283 return type()->as_FloatConstant()->value(); 284 } 285 286 287 jdouble LIRItem::get_jdouble_constant() const { 288 assert(is_constant() && value() != NULL, ""); 289 assert(type()->as_DoubleConstant() != NULL, "type check"); 290 return type()->as_DoubleConstant()->value(); 291 } 292 293 294 jlong LIRItem::get_jlong_constant() const { 295 assert(is_constant() && value() != NULL, ""); 296 assert(type()->as_LongConstant() != NULL, "type check"); 297 return type()->as_LongConstant()->value(); 298 } 299 300 301 302 //-------------------------------------------------------------- 303 304 305 void LIRGenerator::block_do_prolog(BlockBegin* block) { 306 #ifndef PRODUCT 307 if (PrintIRWithLIR) { 308 block->print(); 309 } 310 #endif 311 312 // set up the list of LIR instructions 313 assert(block->lir() == NULL, "LIR list already computed for this block"); 314 _lir = new LIR_List(compilation(), block); 315 block->set_lir(_lir); 316 317 __ branch_destination(block->label()); 318 319 if (LIRTraceExecution && 320 Compilation::current()->hir()->start()->block_id() != block->block_id() && 321 !block->is_set(BlockBegin::exception_entry_flag)) { 322 assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst"); 323 trace_block_entry(block); 324 } 325 } 326 327 328 void LIRGenerator::block_do_epilog(BlockBegin* block) { 329 #ifndef PRODUCT 330 if (PrintIRWithLIR) { 331 tty->cr(); 332 } 333 #endif 334 335 // LIR_Opr for unpinned constants shouldn't be referenced by other 336 // blocks so clear them out after processing the block. 337 for (int i = 0; i < _unpinned_constants.length(); i++) { 338 _unpinned_constants.at(i)->clear_operand(); 339 } 340 _unpinned_constants.trunc_to(0); 341 342 // clear our any registers for other local constants 343 _constants.trunc_to(0); 344 _reg_for_constants.trunc_to(0); 345 } 346 347 348 void LIRGenerator::block_do(BlockBegin* block) { 349 CHECK_BAILOUT(); 350 351 block_do_prolog(block); 352 set_block(block); 353 354 for (Instruction* instr = block; instr != NULL; instr = instr->next()) { 355 if (instr->is_pinned()) do_root(instr); 356 } 357 358 set_block(NULL); 359 block_do_epilog(block); 360 } 361 362 363 //-------------------------LIRGenerator----------------------------- 364 365 // This is where the tree-walk starts; instr must be root; 366 void LIRGenerator::do_root(Value instr) { 367 CHECK_BAILOUT(); 368 369 InstructionMark im(compilation(), instr); 370 371 assert(instr->is_pinned(), "use only with roots"); 372 assert(instr->subst() == instr, "shouldn't have missed substitution"); 373 374 instr->visit(this); 375 376 assert(!instr->has_uses() || instr->operand()->is_valid() || 377 instr->as_Constant() != NULL || bailed_out(), "invalid item set"); 378 } 379 380 381 // This is called for each node in tree; the walk stops if a root is reached 382 void LIRGenerator::walk(Value instr) { 383 InstructionMark im(compilation(), instr); 384 //stop walk when encounter a root 385 if ((instr->is_pinned() && instr->as_Phi() == NULL) || instr->operand()->is_valid()) { 386 assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited"); 387 } else { 388 assert(instr->subst() == instr, "shouldn't have missed substitution"); 389 instr->visit(this); 390 // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use"); 391 } 392 } 393 394 395 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) { 396 assert(state != NULL, "state must be defined"); 397 398 #ifndef PRODUCT 399 state->verify(); 400 #endif 401 402 ValueStack* s = state; 403 for_each_state(s) { 404 if (s->kind() == ValueStack::EmptyExceptionState) { 405 assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty"); 406 continue; 407 } 408 409 int index; 410 Value value; 411 for_each_stack_value(s, index, value) { 412 assert(value->subst() == value, "missed substitution"); 413 if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) { 414 walk(value); 415 assert(value->operand()->is_valid(), "must be evaluated now"); 416 } 417 } 418 419 int bci = s->bci(); 420 IRScope* scope = s->scope(); 421 ciMethod* method = scope->method(); 422 423 MethodLivenessResult liveness = method->liveness_at_bci(bci); 424 if (bci == SynchronizationEntryBCI) { 425 if (x->as_ExceptionObject() || x->as_Throw()) { 426 // all locals are dead on exit from the synthetic unlocker 427 liveness.clear(); 428 } else { 429 assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke"); 430 } 431 } 432 if (!liveness.is_valid()) { 433 // Degenerate or breakpointed method. 434 bailout("Degenerate or breakpointed method"); 435 } else { 436 assert((int)liveness.size() == s->locals_size(), "error in use of liveness"); 437 for_each_local_value(s, index, value) { 438 assert(value->subst() == value, "missed substitution"); 439 if (liveness.at(index) && !value->type()->is_illegal()) { 440 if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) { 441 walk(value); 442 assert(value->operand()->is_valid(), "must be evaluated now"); 443 } 444 } else { 445 // NULL out this local so that linear scan can assume that all non-NULL values are live. 446 s->invalidate_local(index); 447 } 448 } 449 } 450 } 451 452 return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException)); 453 } 454 455 456 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) { 457 return state_for(x, x->exception_state()); 458 } 459 460 461 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) { 462 /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if tiered compilation 463 * is active and the class hasn't yet been resolved we need to emit a patch that resolves 464 * the class. */ 465 if ((!CompilerConfig::is_c1_only_no_jvmci() && need_resolve) || !obj->is_loaded() || PatchALot) { 466 assert(info != NULL, "info must be set if class is not loaded"); 467 __ klass2reg_patch(NULL, r, info); 468 } else { 469 // no patching needed 470 __ metadata2reg(obj->constant_encoding(), r); 471 } 472 } 473 474 475 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index, 476 CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) { 477 CodeStub* stub = new RangeCheckStub(range_check_info, index, array); 478 if (index->is_constant()) { 479 cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(), 480 index->as_jint(), null_check_info); 481 __ branch(lir_cond_belowEqual, stub); // forward branch 482 } else { 483 cmp_reg_mem(lir_cond_aboveEqual, index, array, 484 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info); 485 __ branch(lir_cond_aboveEqual, stub); // forward branch 486 } 487 } 488 489 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp_op, CodeEmitInfo* info) { 490 LIR_Opr result_op = result; 491 LIR_Opr left_op = left; 492 LIR_Opr right_op = right; 493 494 if (two_operand_lir_form && left_op != result_op) { 495 assert(right_op != result_op, "malformed"); 496 __ move(left_op, result_op); 497 left_op = result_op; 498 } 499 500 switch(code) { 501 case Bytecodes::_dadd: 502 case Bytecodes::_fadd: 503 case Bytecodes::_ladd: 504 case Bytecodes::_iadd: __ add(left_op, right_op, result_op); break; 505 case Bytecodes::_fmul: 506 case Bytecodes::_lmul: __ mul(left_op, right_op, result_op); break; 507 508 case Bytecodes::_dmul: __ mul(left_op, right_op, result_op, tmp_op); break; 509 510 case Bytecodes::_imul: 511 { 512 bool did_strength_reduce = false; 513 514 if (right->is_constant()) { 515 jint c = right->as_jint(); 516 if (c > 0 && is_power_of_2(c)) { 517 // do not need tmp here 518 __ shift_left(left_op, exact_log2(c), result_op); 519 did_strength_reduce = true; 520 } else { 521 did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op); 522 } 523 } 524 // we couldn't strength reduce so just emit the multiply 525 if (!did_strength_reduce) { 526 __ mul(left_op, right_op, result_op); 527 } 528 } 529 break; 530 531 case Bytecodes::_dsub: 532 case Bytecodes::_fsub: 533 case Bytecodes::_lsub: 534 case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break; 535 536 case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break; 537 // ldiv and lrem are implemented with a direct runtime call 538 539 case Bytecodes::_ddiv: __ div(left_op, right_op, result_op, tmp_op); break; 540 541 case Bytecodes::_drem: 542 case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break; 543 544 default: ShouldNotReachHere(); 545 } 546 } 547 548 549 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) { 550 arithmetic_op(code, result, left, right, tmp); 551 } 552 553 554 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) { 555 arithmetic_op(code, result, left, right, LIR_OprFact::illegalOpr, info); 556 } 557 558 559 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) { 560 arithmetic_op(code, result, left, right, tmp); 561 } 562 563 564 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) { 565 566 if (two_operand_lir_form && value != result_op 567 // Only 32bit right shifts require two operand form on S390. 568 S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) { 569 assert(count != result_op, "malformed"); 570 __ move(value, result_op); 571 value = result_op; 572 } 573 574 assert(count->is_constant() || count->is_register(), "must be"); 575 switch(code) { 576 case Bytecodes::_ishl: 577 case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break; 578 case Bytecodes::_ishr: 579 case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break; 580 case Bytecodes::_iushr: 581 case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break; 582 default: ShouldNotReachHere(); 583 } 584 } 585 586 587 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) { 588 if (two_operand_lir_form && left_op != result_op) { 589 assert(right_op != result_op, "malformed"); 590 __ move(left_op, result_op); 591 left_op = result_op; 592 } 593 594 switch(code) { 595 case Bytecodes::_iand: 596 case Bytecodes::_land: __ logical_and(left_op, right_op, result_op); break; 597 598 case Bytecodes::_ior: 599 case Bytecodes::_lor: __ logical_or(left_op, right_op, result_op); break; 600 601 case Bytecodes::_ixor: 602 case Bytecodes::_lxor: __ logical_xor(left_op, right_op, result_op); break; 603 604 default: ShouldNotReachHere(); 605 } 606 } 607 608 609 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) { 610 if (!GenerateSynchronizationCode) return; 611 // for slow path, use debug info for state after successful locking 612 CodeStub* slow_path = new MonitorEnterStub(object, lock, info); 613 __ load_stack_address_monitor(monitor_no, lock); 614 // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter 615 __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception); 616 } 617 618 619 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) { 620 if (!GenerateSynchronizationCode) return; 621 // setup registers 622 LIR_Opr hdr = lock; 623 lock = new_hdr; 624 CodeStub* slow_path = new MonitorExitStub(lock, !UseHeavyMonitors, monitor_no); 625 __ load_stack_address_monitor(monitor_no, lock); 626 __ unlock_object(hdr, object, lock, scratch, slow_path); 627 } 628 629 #ifndef PRODUCT 630 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) { 631 if (PrintNotLoaded && !new_instance->klass()->is_loaded()) { 632 tty->print_cr(" ###class not loaded at new bci %d", new_instance->printable_bci()); 633 } else if (PrintNotLoaded && (!CompilerConfig::is_c1_only_no_jvmci() && new_instance->is_unresolved())) { 634 tty->print_cr(" ###class not resolved at new bci %d", new_instance->printable_bci()); 635 } 636 } 637 #endif 638 639 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) { 640 klass2reg_with_patching(klass_reg, klass, info, is_unresolved); 641 // If klass is not loaded we do not know if the klass has finalizers: 642 if (UseFastNewInstance && klass->is_loaded() 643 && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) { 644 645 Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id; 646 647 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id); 648 649 assert(klass->is_loaded(), "must be loaded"); 650 // allocate space for instance 651 assert(klass->size_helper() > 0, "illegal instance size"); 652 const int instance_size = align_object_size(klass->size_helper()); 653 __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4, 654 oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path); 655 } else { 656 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id); 657 __ branch(lir_cond_always, slow_path); 658 __ branch_destination(slow_path->continuation()); 659 } 660 } 661 662 663 static bool is_constant_zero(Instruction* inst) { 664 IntConstant* c = inst->type()->as_IntConstant(); 665 if (c) { 666 return (c->value() == 0); 667 } 668 return false; 669 } 670 671 672 static bool positive_constant(Instruction* inst) { 673 IntConstant* c = inst->type()->as_IntConstant(); 674 if (c) { 675 return (c->value() >= 0); 676 } 677 return false; 678 } 679 680 681 static ciArrayKlass* as_array_klass(ciType* type) { 682 if (type != NULL && type->is_array_klass() && type->is_loaded()) { 683 return (ciArrayKlass*)type; 684 } else { 685 return NULL; 686 } 687 } 688 689 static ciType* phi_declared_type(Phi* phi) { 690 ciType* t = phi->operand_at(0)->declared_type(); 691 if (t == NULL) { 692 return NULL; 693 } 694 for(int i = 1; i < phi->operand_count(); i++) { 695 if (t != phi->operand_at(i)->declared_type()) { 696 return NULL; 697 } 698 } 699 return t; 700 } 701 702 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) { 703 Instruction* src = x->argument_at(0); 704 Instruction* src_pos = x->argument_at(1); 705 Instruction* dst = x->argument_at(2); 706 Instruction* dst_pos = x->argument_at(3); 707 Instruction* length = x->argument_at(4); 708 709 // first try to identify the likely type of the arrays involved 710 ciArrayKlass* expected_type = NULL; 711 bool is_exact = false, src_objarray = false, dst_objarray = false; 712 { 713 ciArrayKlass* src_exact_type = as_array_klass(src->exact_type()); 714 ciArrayKlass* src_declared_type = as_array_klass(src->declared_type()); 715 Phi* phi; 716 if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) { 717 src_declared_type = as_array_klass(phi_declared_type(phi)); 718 } 719 ciArrayKlass* dst_exact_type = as_array_klass(dst->exact_type()); 720 ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type()); 721 if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) { 722 dst_declared_type = as_array_klass(phi_declared_type(phi)); 723 } 724 725 if (src_exact_type != NULL && src_exact_type == dst_exact_type) { 726 // the types exactly match so the type is fully known 727 is_exact = true; 728 expected_type = src_exact_type; 729 } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) { 730 ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type; 731 ciArrayKlass* src_type = NULL; 732 if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) { 733 src_type = (ciArrayKlass*) src_exact_type; 734 } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) { 735 src_type = (ciArrayKlass*) src_declared_type; 736 } 737 if (src_type != NULL) { 738 if (src_type->element_type()->is_subtype_of(dst_type->element_type())) { 739 is_exact = true; 740 expected_type = dst_type; 741 } 742 } 743 } 744 // at least pass along a good guess 745 if (expected_type == NULL) expected_type = dst_exact_type; 746 if (expected_type == NULL) expected_type = src_declared_type; 747 if (expected_type == NULL) expected_type = dst_declared_type; 748 749 src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass()); 750 dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass()); 751 } 752 753 // if a probable array type has been identified, figure out if any 754 // of the required checks for a fast case can be elided. 755 int flags = LIR_OpArrayCopy::all_flags; 756 757 if (!src_objarray) 758 flags &= ~LIR_OpArrayCopy::src_objarray; 759 if (!dst_objarray) 760 flags &= ~LIR_OpArrayCopy::dst_objarray; 761 762 if (!x->arg_needs_null_check(0)) 763 flags &= ~LIR_OpArrayCopy::src_null_check; 764 if (!x->arg_needs_null_check(2)) 765 flags &= ~LIR_OpArrayCopy::dst_null_check; 766 767 768 if (expected_type != NULL) { 769 Value length_limit = NULL; 770 771 IfOp* ifop = length->as_IfOp(); 772 if (ifop != NULL) { 773 // look for expressions like min(v, a.length) which ends up as 774 // x > y ? y : x or x >= y ? y : x 775 if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) && 776 ifop->x() == ifop->fval() && 777 ifop->y() == ifop->tval()) { 778 length_limit = ifop->y(); 779 } 780 } 781 782 // try to skip null checks and range checks 783 NewArray* src_array = src->as_NewArray(); 784 if (src_array != NULL) { 785 flags &= ~LIR_OpArrayCopy::src_null_check; 786 if (length_limit != NULL && 787 src_array->length() == length_limit && 788 is_constant_zero(src_pos)) { 789 flags &= ~LIR_OpArrayCopy::src_range_check; 790 } 791 } 792 793 NewArray* dst_array = dst->as_NewArray(); 794 if (dst_array != NULL) { 795 flags &= ~LIR_OpArrayCopy::dst_null_check; 796 if (length_limit != NULL && 797 dst_array->length() == length_limit && 798 is_constant_zero(dst_pos)) { 799 flags &= ~LIR_OpArrayCopy::dst_range_check; 800 } 801 } 802 803 // check from incoming constant values 804 if (positive_constant(src_pos)) 805 flags &= ~LIR_OpArrayCopy::src_pos_positive_check; 806 if (positive_constant(dst_pos)) 807 flags &= ~LIR_OpArrayCopy::dst_pos_positive_check; 808 if (positive_constant(length)) 809 flags &= ~LIR_OpArrayCopy::length_positive_check; 810 811 // see if the range check can be elided, which might also imply 812 // that src or dst is non-null. 813 ArrayLength* al = length->as_ArrayLength(); 814 if (al != NULL) { 815 if (al->array() == src) { 816 // it's the length of the source array 817 flags &= ~LIR_OpArrayCopy::length_positive_check; 818 flags &= ~LIR_OpArrayCopy::src_null_check; 819 if (is_constant_zero(src_pos)) 820 flags &= ~LIR_OpArrayCopy::src_range_check; 821 } 822 if (al->array() == dst) { 823 // it's the length of the destination array 824 flags &= ~LIR_OpArrayCopy::length_positive_check; 825 flags &= ~LIR_OpArrayCopy::dst_null_check; 826 if (is_constant_zero(dst_pos)) 827 flags &= ~LIR_OpArrayCopy::dst_range_check; 828 } 829 } 830 if (is_exact) { 831 flags &= ~LIR_OpArrayCopy::type_check; 832 } 833 } 834 835 IntConstant* src_int = src_pos->type()->as_IntConstant(); 836 IntConstant* dst_int = dst_pos->type()->as_IntConstant(); 837 if (src_int && dst_int) { 838 int s_offs = src_int->value(); 839 int d_offs = dst_int->value(); 840 if (src_int->value() >= dst_int->value()) { 841 flags &= ~LIR_OpArrayCopy::overlapping; 842 } 843 if (expected_type != NULL) { 844 BasicType t = expected_type->element_type()->basic_type(); 845 int element_size = type2aelembytes(t); 846 if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) && 847 ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) { 848 flags &= ~LIR_OpArrayCopy::unaligned; 849 } 850 } 851 } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) { 852 // src and dest positions are the same, or dst is zero so assume 853 // nonoverlapping copy. 854 flags &= ~LIR_OpArrayCopy::overlapping; 855 } 856 857 if (src == dst) { 858 // moving within a single array so no type checks are needed 859 if (flags & LIR_OpArrayCopy::type_check) { 860 flags &= ~LIR_OpArrayCopy::type_check; 861 } 862 } 863 *flagsp = flags; 864 *expected_typep = (ciArrayKlass*)expected_type; 865 } 866 867 868 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) { 869 assert(opr->is_register(), "why spill if item is not register?"); 870 871 if (strict_fp_requires_explicit_rounding) { 872 #ifdef IA32 873 if (UseSSE < 1 && opr->is_single_fpu()) { 874 LIR_Opr result = new_register(T_FLOAT); 875 set_vreg_flag(result, must_start_in_memory); 876 assert(opr->is_register(), "only a register can be spilled"); 877 assert(opr->value_type()->is_float(), "rounding only for floats available"); 878 __ roundfp(opr, LIR_OprFact::illegalOpr, result); 879 return result; 880 } 881 #else 882 Unimplemented(); 883 #endif // IA32 884 } 885 return opr; 886 } 887 888 889 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) { 890 assert(type2size[t] == type2size[value->type()], 891 "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type())); 892 if (!value->is_register()) { 893 // force into a register 894 LIR_Opr r = new_register(value->type()); 895 __ move(value, r); 896 value = r; 897 } 898 899 // create a spill location 900 LIR_Opr tmp = new_register(t); 901 set_vreg_flag(tmp, LIRGenerator::must_start_in_memory); 902 903 // move from register to spill 904 __ move(value, tmp); 905 return tmp; 906 } 907 908 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) { 909 if (if_instr->should_profile()) { 910 ciMethod* method = if_instr->profiled_method(); 911 assert(method != NULL, "method should be set if branch is profiled"); 912 ciMethodData* md = method->method_data_or_null(); 913 assert(md != NULL, "Sanity"); 914 ciProfileData* data = md->bci_to_data(if_instr->profiled_bci()); 915 assert(data != NULL, "must have profiling data"); 916 assert(data->is_BranchData(), "need BranchData for two-way branches"); 917 int taken_count_offset = md->byte_offset_of_slot(data, BranchData::taken_offset()); 918 int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset()); 919 if (if_instr->is_swapped()) { 920 int t = taken_count_offset; 921 taken_count_offset = not_taken_count_offset; 922 not_taken_count_offset = t; 923 } 924 925 LIR_Opr md_reg = new_register(T_METADATA); 926 __ metadata2reg(md->constant_encoding(), md_reg); 927 928 LIR_Opr data_offset_reg = new_pointer_register(); 929 __ cmove(lir_cond(cond), 930 LIR_OprFact::intptrConst(taken_count_offset), 931 LIR_OprFact::intptrConst(not_taken_count_offset), 932 data_offset_reg, as_BasicType(if_instr->x()->type())); 933 934 // MDO cells are intptr_t, so the data_reg width is arch-dependent. 935 LIR_Opr data_reg = new_pointer_register(); 936 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 937 __ move(data_addr, data_reg); 938 // Use leal instead of add to avoid destroying condition codes on x86 939 LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT); 940 __ leal(LIR_OprFact::address(fake_incr_value), data_reg); 941 __ move(data_reg, data_addr); 942 } 943 } 944 945 // Phi technique: 946 // This is about passing live values from one basic block to the other. 947 // In code generated with Java it is rather rare that more than one 948 // value is on the stack from one basic block to the other. 949 // We optimize our technique for efficient passing of one value 950 // (of type long, int, double..) but it can be extended. 951 // When entering or leaving a basic block, all registers and all spill 952 // slots are release and empty. We use the released registers 953 // and spill slots to pass the live values from one block 954 // to the other. The topmost value, i.e., the value on TOS of expression 955 // stack is passed in registers. All other values are stored in spilling 956 // area. Every Phi has an index which designates its spill slot 957 // At exit of a basic block, we fill the register(s) and spill slots. 958 // At entry of a basic block, the block_prolog sets up the content of phi nodes 959 // and locks necessary registers and spilling slots. 960 961 962 // move current value to referenced phi function 963 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) { 964 Phi* phi = sux_val->as_Phi(); 965 // cur_val can be null without phi being null in conjunction with inlining 966 if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) { 967 if (phi->is_local()) { 968 for (int i = 0; i < phi->operand_count(); i++) { 969 Value op = phi->operand_at(i); 970 if (op != NULL && op->type()->is_illegal()) { 971 bailout("illegal phi operand"); 972 } 973 } 974 } 975 Phi* cur_phi = cur_val->as_Phi(); 976 if (cur_phi != NULL && cur_phi->is_illegal()) { 977 // Phi and local would need to get invalidated 978 // (which is unexpected for Linear Scan). 979 // But this case is very rare so we simply bail out. 980 bailout("propagation of illegal phi"); 981 return; 982 } 983 LIR_Opr operand = cur_val->operand(); 984 if (operand->is_illegal()) { 985 assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL, 986 "these can be produced lazily"); 987 operand = operand_for_instruction(cur_val); 988 } 989 resolver->move(operand, operand_for_instruction(phi)); 990 } 991 } 992 993 994 // Moves all stack values into their PHI position 995 void LIRGenerator::move_to_phi(ValueStack* cur_state) { 996 BlockBegin* bb = block(); 997 if (bb->number_of_sux() == 1) { 998 BlockBegin* sux = bb->sux_at(0); 999 assert(sux->number_of_preds() > 0, "invalid CFG"); 1000 1001 // a block with only one predecessor never has phi functions 1002 if (sux->number_of_preds() > 1) { 1003 PhiResolver resolver(this); 1004 1005 ValueStack* sux_state = sux->state(); 1006 Value sux_value; 1007 int index; 1008 1009 assert(cur_state->scope() == sux_state->scope(), "not matching"); 1010 assert(cur_state->locals_size() == sux_state->locals_size(), "not matching"); 1011 assert(cur_state->stack_size() == sux_state->stack_size(), "not matching"); 1012 1013 for_each_stack_value(sux_state, index, sux_value) { 1014 move_to_phi(&resolver, cur_state->stack_at(index), sux_value); 1015 } 1016 1017 for_each_local_value(sux_state, index, sux_value) { 1018 move_to_phi(&resolver, cur_state->local_at(index), sux_value); 1019 } 1020 1021 assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal"); 1022 } 1023 } 1024 } 1025 1026 1027 LIR_Opr LIRGenerator::new_register(BasicType type) { 1028 int vreg_num = _virtual_register_number; 1029 // Add a little fudge factor for the bailout since the bailout is only checked periodically. This allows us to hand out 1030 // a few extra registers before we really run out which helps to avoid to trip over assertions. 1031 if (vreg_num + 20 >= LIR_Opr::vreg_max) { 1032 bailout("out of virtual registers in LIR generator"); 1033 if (vreg_num + 2 >= LIR_Opr::vreg_max) { 1034 // Wrap it around and continue until bailout really happens to avoid hitting assertions. 1035 _virtual_register_number = LIR_Opr::vreg_base; 1036 vreg_num = LIR_Opr::vreg_base; 1037 } 1038 } 1039 _virtual_register_number += 1; 1040 LIR_Opr vreg = LIR_OprFact::virtual_register(vreg_num, type); 1041 assert(vreg != LIR_OprFact::illegal(), "ran out of virtual registers"); 1042 return vreg; 1043 } 1044 1045 1046 // Try to lock using register in hint 1047 LIR_Opr LIRGenerator::rlock(Value instr) { 1048 return new_register(instr->type()); 1049 } 1050 1051 1052 // does an rlock and sets result 1053 LIR_Opr LIRGenerator::rlock_result(Value x) { 1054 LIR_Opr reg = rlock(x); 1055 set_result(x, reg); 1056 return reg; 1057 } 1058 1059 1060 // does an rlock and sets result 1061 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) { 1062 LIR_Opr reg; 1063 switch (type) { 1064 case T_BYTE: 1065 case T_BOOLEAN: 1066 reg = rlock_byte(type); 1067 break; 1068 default: 1069 reg = rlock(x); 1070 break; 1071 } 1072 1073 set_result(x, reg); 1074 return reg; 1075 } 1076 1077 1078 //--------------------------------------------------------------------- 1079 ciObject* LIRGenerator::get_jobject_constant(Value value) { 1080 ObjectType* oc = value->type()->as_ObjectType(); 1081 if (oc) { 1082 return oc->constant_value(); 1083 } 1084 return NULL; 1085 } 1086 1087 1088 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) { 1089 assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block"); 1090 assert(block()->next() == x, "ExceptionObject must be first instruction of block"); 1091 1092 // no moves are created for phi functions at the begin of exception 1093 // handlers, so assign operands manually here 1094 for_each_phi_fun(block(), phi, 1095 if (!phi->is_illegal()) { operand_for_instruction(phi); }); 1096 1097 LIR_Opr thread_reg = getThreadPointer(); 1098 __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT), 1099 exceptionOopOpr()); 1100 __ move_wide(LIR_OprFact::oopConst(NULL), 1101 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT)); 1102 __ move_wide(LIR_OprFact::oopConst(NULL), 1103 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT)); 1104 1105 LIR_Opr result = new_register(T_OBJECT); 1106 __ move(exceptionOopOpr(), result); 1107 set_result(x, result); 1108 } 1109 1110 1111 //---------------------------------------------------------------------- 1112 //---------------------------------------------------------------------- 1113 //---------------------------------------------------------------------- 1114 //---------------------------------------------------------------------- 1115 // visitor functions 1116 //---------------------------------------------------------------------- 1117 //---------------------------------------------------------------------- 1118 //---------------------------------------------------------------------- 1119 //---------------------------------------------------------------------- 1120 1121 void LIRGenerator::do_Phi(Phi* x) { 1122 // phi functions are never visited directly 1123 ShouldNotReachHere(); 1124 } 1125 1126 1127 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined. 1128 void LIRGenerator::do_Constant(Constant* x) { 1129 if (x->state_before() != NULL) { 1130 // Any constant with a ValueStack requires patching so emit the patch here 1131 LIR_Opr reg = rlock_result(x); 1132 CodeEmitInfo* info = state_for(x, x->state_before()); 1133 __ oop2reg_patch(NULL, reg, info); 1134 } else if (x->use_count() > 1 && !can_inline_as_constant(x)) { 1135 if (!x->is_pinned()) { 1136 // unpinned constants are handled specially so that they can be 1137 // put into registers when they are used multiple times within a 1138 // block. After the block completes their operand will be 1139 // cleared so that other blocks can't refer to that register. 1140 set_result(x, load_constant(x)); 1141 } else { 1142 LIR_Opr res = x->operand(); 1143 if (!res->is_valid()) { 1144 res = LIR_OprFact::value_type(x->type()); 1145 } 1146 if (res->is_constant()) { 1147 LIR_Opr reg = rlock_result(x); 1148 __ move(res, reg); 1149 } else { 1150 set_result(x, res); 1151 } 1152 } 1153 } else { 1154 set_result(x, LIR_OprFact::value_type(x->type())); 1155 } 1156 } 1157 1158 1159 void LIRGenerator::do_Local(Local* x) { 1160 // operand_for_instruction has the side effect of setting the result 1161 // so there's no need to do it here. 1162 operand_for_instruction(x); 1163 } 1164 1165 1166 void LIRGenerator::do_Return(Return* x) { 1167 if (compilation()->env()->dtrace_method_probes()) { 1168 BasicTypeList signature; 1169 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 1170 signature.append(T_METADATA); // Method* 1171 LIR_OprList* args = new LIR_OprList(); 1172 args->append(getThreadPointer()); 1173 LIR_Opr meth = new_register(T_METADATA); 1174 __ metadata2reg(method()->constant_encoding(), meth); 1175 args->append(meth); 1176 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL); 1177 } 1178 1179 if (x->type()->is_void()) { 1180 __ return_op(LIR_OprFact::illegalOpr); 1181 } else { 1182 LIR_Opr reg = result_register_for(x->type(), /*callee=*/true); 1183 LIRItem result(x->result(), this); 1184 1185 result.load_item_force(reg); 1186 __ return_op(result.result()); 1187 } 1188 set_no_result(x); 1189 } 1190 1191 // Example: ref.get() 1192 // Combination of LoadField and g1 pre-write barrier 1193 void LIRGenerator::do_Reference_get(Intrinsic* x) { 1194 1195 const int referent_offset = java_lang_ref_Reference::referent_offset(); 1196 1197 assert(x->number_of_arguments() == 1, "wrong type"); 1198 1199 LIRItem reference(x->argument_at(0), this); 1200 reference.load_item(); 1201 1202 // need to perform the null check on the reference object 1203 CodeEmitInfo* info = NULL; 1204 if (x->needs_null_check()) { 1205 info = state_for(x); 1206 } 1207 1208 LIR_Opr result = rlock_result(x, T_OBJECT); 1209 access_load_at(IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT, 1210 reference, LIR_OprFact::intConst(referent_offset), result); 1211 } 1212 1213 // Example: clazz.isInstance(object) 1214 void LIRGenerator::do_isInstance(Intrinsic* x) { 1215 assert(x->number_of_arguments() == 2, "wrong type"); 1216 1217 // TODO could try to substitute this node with an equivalent InstanceOf 1218 // if clazz is known to be a constant Class. This will pick up newly found 1219 // constants after HIR construction. I'll leave this to a future change. 1220 1221 // as a first cut, make a simple leaf call to runtime to stay platform independent. 1222 // could follow the aastore example in a future change. 1223 1224 LIRItem clazz(x->argument_at(0), this); 1225 LIRItem object(x->argument_at(1), this); 1226 clazz.load_item(); 1227 object.load_item(); 1228 LIR_Opr result = rlock_result(x); 1229 1230 // need to perform null check on clazz 1231 if (x->needs_null_check()) { 1232 CodeEmitInfo* info = state_for(x); 1233 __ null_check(clazz.result(), info); 1234 } 1235 1236 LIR_Opr call_result = call_runtime(clazz.value(), object.value(), 1237 CAST_FROM_FN_PTR(address, Runtime1::is_instance_of), 1238 x->type(), 1239 NULL); // NULL CodeEmitInfo results in a leaf call 1240 __ move(call_result, result); 1241 } 1242 1243 void LIRGenerator::load_klass(LIR_Opr obj, LIR_Opr klass, CodeEmitInfo* null_check_info) { 1244 CodeStub* slow_path = UseCompactObjectHeaders ? new LoadKlassStub(klass) : nullptr; 1245 __ load_klass(obj, klass, null_check_info, slow_path); 1246 } 1247 1248 // Example: object.getClass () 1249 void LIRGenerator::do_getClass(Intrinsic* x) { 1250 assert(x->number_of_arguments() == 1, "wrong type"); 1251 1252 LIRItem rcvr(x->argument_at(0), this); 1253 rcvr.load_item(); 1254 LIR_Opr temp = new_register(T_ADDRESS); 1255 LIR_Opr result = rlock_result(x); 1256 1257 // need to perform the null check on the rcvr 1258 CodeEmitInfo* info = NULL; 1259 if (x->needs_null_check()) { 1260 info = state_for(x); 1261 } 1262 1263 LIR_Opr klass = new_register(T_METADATA); 1264 load_klass(rcvr.result(), klass, info); 1265 __ move_wide(new LIR_Address(klass, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), temp); 1266 // mirror = ((OopHandle)mirror)->resolve(); 1267 access_load(IN_NATIVE, T_OBJECT, 1268 LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), result); 1269 } 1270 1271 // java.lang.Class::isPrimitive() 1272 void LIRGenerator::do_isPrimitive(Intrinsic* x) { 1273 assert(x->number_of_arguments() == 1, "wrong type"); 1274 1275 LIRItem rcvr(x->argument_at(0), this); 1276 rcvr.load_item(); 1277 LIR_Opr temp = new_register(T_METADATA); 1278 LIR_Opr result = rlock_result(x); 1279 1280 CodeEmitInfo* info = NULL; 1281 if (x->needs_null_check()) { 1282 info = state_for(x); 1283 } 1284 1285 __ move(new LIR_Address(rcvr.result(), java_lang_Class::klass_offset(), T_ADDRESS), temp, info); 1286 __ cmp(lir_cond_notEqual, temp, LIR_OprFact::metadataConst(0)); 1287 __ cmove(lir_cond_notEqual, LIR_OprFact::intConst(0), LIR_OprFact::intConst(1), result, T_BOOLEAN); 1288 } 1289 1290 // Example: Foo.class.getModifiers() 1291 void LIRGenerator::do_getModifiers(Intrinsic* x) { 1292 assert(x->number_of_arguments() == 1, "wrong type"); 1293 1294 LIRItem receiver(x->argument_at(0), this); 1295 receiver.load_item(); 1296 LIR_Opr result = rlock_result(x); 1297 1298 CodeEmitInfo* info = NULL; 1299 if (x->needs_null_check()) { 1300 info = state_for(x); 1301 } 1302 1303 // While reading off the universal constant mirror is less efficient than doing 1304 // another branch and returning the constant answer, this branchless code runs into 1305 // much less risk of confusion for C1 register allocator. The choice of the universe 1306 // object here is correct as long as it returns the same modifiers we would expect 1307 // from the primitive class itself. See spec for Class.getModifiers that provides 1308 // the typed array klasses with similar modifiers as their component types. 1309 1310 Klass* univ_klass_obj = Universe::byteArrayKlassObj(); 1311 assert(univ_klass_obj->modifier_flags() == (JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC), "Sanity"); 1312 LIR_Opr prim_klass = LIR_OprFact::metadataConst(univ_klass_obj); 1313 1314 LIR_Opr recv_klass = new_register(T_METADATA); 1315 __ move(new LIR_Address(receiver.result(), java_lang_Class::klass_offset(), T_ADDRESS), recv_klass, info); 1316 1317 // Check if this is a Java mirror of primitive type, and select the appropriate klass. 1318 LIR_Opr klass = new_register(T_METADATA); 1319 __ cmp(lir_cond_equal, recv_klass, LIR_OprFact::metadataConst(0)); 1320 __ cmove(lir_cond_equal, prim_klass, recv_klass, klass, T_ADDRESS); 1321 1322 // Get the answer. 1323 __ move(new LIR_Address(klass, in_bytes(Klass::modifier_flags_offset()), T_INT), result); 1324 } 1325 1326 void LIRGenerator::do_getObjectSize(Intrinsic* x) { 1327 assert(x->number_of_arguments() == 3, "wrong type"); 1328 LIR_Opr result_reg = rlock_result(x); 1329 1330 LIRItem value(x->argument_at(2), this); 1331 value.load_item(); 1332 1333 LIR_Opr klass = new_register(T_METADATA); 1334 load_klass(value.result(), klass, NULL); 1335 LIR_Opr layout = new_register(T_INT); 1336 __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout); 1337 1338 LabelObj* L_done = new LabelObj(); 1339 LabelObj* L_array = new LabelObj(); 1340 1341 __ cmp(lir_cond_lessEqual, layout, 0); 1342 __ branch(lir_cond_lessEqual, L_array->label()); 1343 1344 // Instance case: the layout helper gives us instance size almost directly, 1345 // but we need to mask out the _lh_instance_slow_path_bit. 1346 1347 assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit"); 1348 1349 LIR_Opr mask = load_immediate(~(jint) right_n_bits(LogBytesPerLong), T_INT); 1350 __ logical_and(layout, mask, layout); 1351 __ convert(Bytecodes::_i2l, layout, result_reg); 1352 1353 __ branch(lir_cond_always, L_done->label()); 1354 1355 // Array case: size is round(header + element_size*arraylength). 1356 // Since arraylength is different for every array instance, we have to 1357 // compute the whole thing at runtime. 1358 1359 __ branch_destination(L_array->label()); 1360 1361 int round_mask = MinObjAlignmentInBytes - 1; 1362 1363 // Figure out header sizes first. 1364 LIR_Opr hss = load_immediate(Klass::_lh_header_size_shift, T_INT); 1365 LIR_Opr hsm = load_immediate(Klass::_lh_header_size_mask, T_INT); 1366 1367 LIR_Opr header_size = new_register(T_INT); 1368 __ move(layout, header_size); 1369 LIR_Opr tmp = new_register(T_INT); 1370 __ unsigned_shift_right(header_size, hss, header_size, tmp); 1371 __ logical_and(header_size, hsm, header_size); 1372 __ add(header_size, LIR_OprFact::intConst(round_mask), header_size); 1373 1374 // Figure out the array length in bytes 1375 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place"); 1376 LIR_Opr l2esm = load_immediate(Klass::_lh_log2_element_size_mask, T_INT); 1377 __ logical_and(layout, l2esm, layout); 1378 1379 LIR_Opr length_int = new_register(T_INT); 1380 __ move(new LIR_Address(value.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), length_int); 1381 1382 #ifdef _LP64 1383 LIR_Opr length = new_register(T_LONG); 1384 __ convert(Bytecodes::_i2l, length_int, length); 1385 #endif 1386 1387 // Shift-left awkwardness. Normally it is just: 1388 // __ shift_left(length, layout, length); 1389 // But C1 cannot perform shift_left with non-constant count, so we end up 1390 // doing the per-bit loop dance here. x86_32 also does not know how to shift 1391 // longs, so we have to act on ints. 1392 LabelObj* L_shift_loop = new LabelObj(); 1393 LabelObj* L_shift_exit = new LabelObj(); 1394 1395 __ branch_destination(L_shift_loop->label()); 1396 __ cmp(lir_cond_equal, layout, 0); 1397 __ branch(lir_cond_equal, L_shift_exit->label()); 1398 1399 #ifdef _LP64 1400 __ shift_left(length, 1, length); 1401 #else 1402 __ shift_left(length_int, 1, length_int); 1403 #endif 1404 1405 __ sub(layout, LIR_OprFact::intConst(1), layout); 1406 1407 __ branch(lir_cond_always, L_shift_loop->label()); 1408 __ branch_destination(L_shift_exit->label()); 1409 1410 // Mix all up, round, and push to the result. 1411 #ifdef _LP64 1412 LIR_Opr header_size_long = new_register(T_LONG); 1413 __ convert(Bytecodes::_i2l, header_size, header_size_long); 1414 __ add(length, header_size_long, length); 1415 if (round_mask != 0) { 1416 LIR_Opr round_mask_opr = load_immediate(~(jlong)round_mask, T_LONG); 1417 __ logical_and(length, round_mask_opr, length); 1418 } 1419 __ move(length, result_reg); 1420 #else 1421 __ add(length_int, header_size, length_int); 1422 if (round_mask != 0) { 1423 LIR_Opr round_mask_opr = load_immediate(~round_mask, T_INT); 1424 __ logical_and(length_int, round_mask_opr, length_int); 1425 } 1426 __ convert(Bytecodes::_i2l, length_int, result_reg); 1427 #endif 1428 1429 __ branch_destination(L_done->label()); 1430 } 1431 1432 void LIRGenerator::do_scopedValueCache(Intrinsic* x) { 1433 do_JavaThreadField(x, JavaThread::scopedValueCache_offset()); 1434 } 1435 1436 // Example: Thread.currentCarrierThread() 1437 void LIRGenerator::do_currentCarrierThread(Intrinsic* x) { 1438 do_JavaThreadField(x, JavaThread::threadObj_offset()); 1439 } 1440 1441 void LIRGenerator::do_vthread(Intrinsic* x) { 1442 do_JavaThreadField(x, JavaThread::vthread_offset()); 1443 } 1444 1445 void LIRGenerator::do_JavaThreadField(Intrinsic* x, ByteSize offset) { 1446 assert(x->number_of_arguments() == 0, "wrong type"); 1447 LIR_Opr temp = new_register(T_ADDRESS); 1448 LIR_Opr reg = rlock_result(x); 1449 __ move(new LIR_Address(getThreadPointer(), in_bytes(offset), T_ADDRESS), temp); 1450 access_load(IN_NATIVE, T_OBJECT, 1451 LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), reg); 1452 } 1453 1454 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) { 1455 assert(x->number_of_arguments() == 1, "wrong type"); 1456 LIRItem receiver(x->argument_at(0), this); 1457 1458 receiver.load_item(); 1459 BasicTypeList signature; 1460 signature.append(T_OBJECT); // receiver 1461 LIR_OprList* args = new LIR_OprList(); 1462 args->append(receiver.result()); 1463 CodeEmitInfo* info = state_for(x, x->state()); 1464 call_runtime(&signature, args, 1465 CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)), 1466 voidType, info); 1467 1468 set_no_result(x); 1469 } 1470 1471 1472 //------------------------local access-------------------------------------- 1473 1474 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) { 1475 if (x->operand()->is_illegal()) { 1476 Constant* c = x->as_Constant(); 1477 if (c != NULL) { 1478 x->set_operand(LIR_OprFact::value_type(c->type())); 1479 } else { 1480 assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local"); 1481 // allocate a virtual register for this local or phi 1482 x->set_operand(rlock(x)); 1483 _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL); 1484 } 1485 } 1486 return x->operand(); 1487 } 1488 1489 1490 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) { 1491 if (opr->is_virtual()) { 1492 return instruction_for_vreg(opr->vreg_number()); 1493 } 1494 return NULL; 1495 } 1496 1497 1498 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) { 1499 if (reg_num < _instruction_for_operand.length()) { 1500 return _instruction_for_operand.at(reg_num); 1501 } 1502 return NULL; 1503 } 1504 1505 1506 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) { 1507 if (_vreg_flags.size_in_bits() == 0) { 1508 BitMap2D temp(100, num_vreg_flags); 1509 _vreg_flags = temp; 1510 } 1511 _vreg_flags.at_put_grow(vreg_num, f, true); 1512 } 1513 1514 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) { 1515 if (!_vreg_flags.is_valid_index(vreg_num, f)) { 1516 return false; 1517 } 1518 return _vreg_flags.at(vreg_num, f); 1519 } 1520 1521 1522 // Block local constant handling. This code is useful for keeping 1523 // unpinned constants and constants which aren't exposed in the IR in 1524 // registers. Unpinned Constant instructions have their operands 1525 // cleared when the block is finished so that other blocks can't end 1526 // up referring to their registers. 1527 1528 LIR_Opr LIRGenerator::load_constant(Constant* x) { 1529 assert(!x->is_pinned(), "only for unpinned constants"); 1530 _unpinned_constants.append(x); 1531 return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr()); 1532 } 1533 1534 1535 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) { 1536 BasicType t = c->type(); 1537 for (int i = 0; i < _constants.length(); i++) { 1538 LIR_Const* other = _constants.at(i); 1539 if (t == other->type()) { 1540 switch (t) { 1541 case T_INT: 1542 case T_FLOAT: 1543 if (c->as_jint_bits() != other->as_jint_bits()) continue; 1544 break; 1545 case T_LONG: 1546 case T_DOUBLE: 1547 if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue; 1548 if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue; 1549 break; 1550 case T_OBJECT: 1551 if (c->as_jobject() != other->as_jobject()) continue; 1552 break; 1553 default: 1554 break; 1555 } 1556 return _reg_for_constants.at(i); 1557 } 1558 } 1559 1560 LIR_Opr result = new_register(t); 1561 __ move((LIR_Opr)c, result); 1562 _constants.append(c); 1563 _reg_for_constants.append(result); 1564 return result; 1565 } 1566 1567 //------------------------field access-------------------------------------- 1568 1569 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) { 1570 assert(x->number_of_arguments() == 4, "wrong type"); 1571 LIRItem obj (x->argument_at(0), this); // object 1572 LIRItem offset(x->argument_at(1), this); // offset of field 1573 LIRItem cmp (x->argument_at(2), this); // value to compare with field 1574 LIRItem val (x->argument_at(3), this); // replace field with val if matches cmp 1575 assert(obj.type()->tag() == objectTag, "invalid type"); 1576 assert(cmp.type()->tag() == type->tag(), "invalid type"); 1577 assert(val.type()->tag() == type->tag(), "invalid type"); 1578 1579 LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type), 1580 obj, offset, cmp, val); 1581 set_result(x, result); 1582 } 1583 1584 // Comment copied form templateTable_i486.cpp 1585 // ---------------------------------------------------------------------------- 1586 // Volatile variables demand their effects be made known to all CPU's in 1587 // order. Store buffers on most chips allow reads & writes to reorder; the 1588 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of 1589 // memory barrier (i.e., it's not sufficient that the interpreter does not 1590 // reorder volatile references, the hardware also must not reorder them). 1591 // 1592 // According to the new Java Memory Model (JMM): 1593 // (1) All volatiles are serialized wrt to each other. 1594 // ALSO reads & writes act as acquire & release, so: 1595 // (2) A read cannot let unrelated NON-volatile memory refs that happen after 1596 // the read float up to before the read. It's OK for non-volatile memory refs 1597 // that happen before the volatile read to float down below it. 1598 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs 1599 // that happen BEFORE the write float down to after the write. It's OK for 1600 // non-volatile memory refs that happen after the volatile write to float up 1601 // before it. 1602 // 1603 // We only put in barriers around volatile refs (they are expensive), not 1604 // _between_ memory refs (that would require us to track the flavor of the 1605 // previous memory refs). Requirements (2) and (3) require some barriers 1606 // before volatile stores and after volatile loads. These nearly cover 1607 // requirement (1) but miss the volatile-store-volatile-load case. This final 1608 // case is placed after volatile-stores although it could just as well go 1609 // before volatile-loads. 1610 1611 1612 void LIRGenerator::do_StoreField(StoreField* x) { 1613 bool needs_patching = x->needs_patching(); 1614 bool is_volatile = x->field()->is_volatile(); 1615 BasicType field_type = x->field_type(); 1616 1617 CodeEmitInfo* info = NULL; 1618 if (needs_patching) { 1619 assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access"); 1620 info = state_for(x, x->state_before()); 1621 } else if (x->needs_null_check()) { 1622 NullCheck* nc = x->explicit_null_check(); 1623 if (nc == NULL) { 1624 info = state_for(x); 1625 } else { 1626 info = state_for(nc); 1627 } 1628 } 1629 1630 LIRItem object(x->obj(), this); 1631 LIRItem value(x->value(), this); 1632 1633 object.load_item(); 1634 1635 if (is_volatile || needs_patching) { 1636 // load item if field is volatile (fewer special cases for volatiles) 1637 // load item if field not initialized 1638 // load item if field not constant 1639 // because of code patching we cannot inline constants 1640 if (field_type == T_BYTE || field_type == T_BOOLEAN) { 1641 value.load_byte_item(); 1642 } else { 1643 value.load_item(); 1644 } 1645 } else { 1646 value.load_for_store(field_type); 1647 } 1648 1649 set_no_result(x); 1650 1651 #ifndef PRODUCT 1652 if (PrintNotLoaded && needs_patching) { 1653 tty->print_cr(" ###class not loaded at store_%s bci %d", 1654 x->is_static() ? "static" : "field", x->printable_bci()); 1655 } 1656 #endif 1657 1658 if (x->needs_null_check() && 1659 (needs_patching || 1660 MacroAssembler::needs_explicit_null_check(x->offset()))) { 1661 // Emit an explicit null check because the offset is too large. 1662 // If the class is not loaded and the object is NULL, we need to deoptimize to throw a 1663 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code. 1664 __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching); 1665 } 1666 1667 DecoratorSet decorators = IN_HEAP; 1668 if (is_volatile) { 1669 decorators |= MO_SEQ_CST; 1670 } 1671 if (needs_patching) { 1672 decorators |= C1_NEEDS_PATCHING; 1673 } 1674 1675 access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()), 1676 value.result(), info != NULL ? new CodeEmitInfo(info) : NULL, info); 1677 } 1678 1679 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) { 1680 assert(x->is_pinned(),""); 1681 bool needs_range_check = x->compute_needs_range_check(); 1682 bool use_length = x->length() != NULL; 1683 bool obj_store = is_reference_type(x->elt_type()); 1684 bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL || 1685 !get_jobject_constant(x->value())->is_null_object() || 1686 x->should_profile()); 1687 1688 LIRItem array(x->array(), this); 1689 LIRItem index(x->index(), this); 1690 LIRItem value(x->value(), this); 1691 LIRItem length(this); 1692 1693 array.load_item(); 1694 index.load_nonconstant(); 1695 1696 if (use_length && needs_range_check) { 1697 length.set_instruction(x->length()); 1698 length.load_item(); 1699 1700 } 1701 if (needs_store_check || x->check_boolean()) { 1702 value.load_item(); 1703 } else { 1704 value.load_for_store(x->elt_type()); 1705 } 1706 1707 set_no_result(x); 1708 1709 // the CodeEmitInfo must be duplicated for each different 1710 // LIR-instruction because spilling can occur anywhere between two 1711 // instructions and so the debug information must be different 1712 CodeEmitInfo* range_check_info = state_for(x); 1713 CodeEmitInfo* null_check_info = NULL; 1714 if (x->needs_null_check()) { 1715 null_check_info = new CodeEmitInfo(range_check_info); 1716 } 1717 1718 if (needs_range_check) { 1719 if (use_length) { 1720 __ cmp(lir_cond_belowEqual, length.result(), index.result()); 1721 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result())); 1722 } else { 1723 array_range_check(array.result(), index.result(), null_check_info, range_check_info); 1724 // range_check also does the null check 1725 null_check_info = NULL; 1726 } 1727 } 1728 1729 if (GenerateArrayStoreCheck && needs_store_check) { 1730 CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info); 1731 array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci()); 1732 } 1733 1734 DecoratorSet decorators = IN_HEAP | IS_ARRAY; 1735 if (x->check_boolean()) { 1736 decorators |= C1_MASK_BOOLEAN; 1737 } 1738 1739 access_store_at(decorators, x->elt_type(), array, index.result(), value.result(), 1740 NULL, null_check_info); 1741 } 1742 1743 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type, 1744 LIRItem& base, LIR_Opr offset, LIR_Opr result, 1745 CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) { 1746 decorators |= ACCESS_READ; 1747 LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info); 1748 if (access.is_raw()) { 1749 _barrier_set->BarrierSetC1::load_at(access, result); 1750 } else { 1751 _barrier_set->load_at(access, result); 1752 } 1753 } 1754 1755 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type, 1756 LIR_Opr addr, LIR_Opr result) { 1757 decorators |= ACCESS_READ; 1758 LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type); 1759 access.set_resolved_addr(addr); 1760 if (access.is_raw()) { 1761 _barrier_set->BarrierSetC1::load(access, result); 1762 } else { 1763 _barrier_set->load(access, result); 1764 } 1765 } 1766 1767 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type, 1768 LIRItem& base, LIR_Opr offset, LIR_Opr value, 1769 CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) { 1770 decorators |= ACCESS_WRITE; 1771 LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info); 1772 if (access.is_raw()) { 1773 _barrier_set->BarrierSetC1::store_at(access, value); 1774 } else { 1775 _barrier_set->store_at(access, value); 1776 } 1777 } 1778 1779 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type, 1780 LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) { 1781 decorators |= ACCESS_READ; 1782 decorators |= ACCESS_WRITE; 1783 // Atomic operations are SEQ_CST by default 1784 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 1785 LIRAccess access(this, decorators, base, offset, type); 1786 if (access.is_raw()) { 1787 return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value); 1788 } else { 1789 return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value); 1790 } 1791 } 1792 1793 LIR_Opr LIRGenerator::access_atomic_xchg_at(DecoratorSet decorators, BasicType type, 1794 LIRItem& base, LIRItem& offset, LIRItem& value) { 1795 decorators |= ACCESS_READ; 1796 decorators |= ACCESS_WRITE; 1797 // Atomic operations are SEQ_CST by default 1798 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 1799 LIRAccess access(this, decorators, base, offset, type); 1800 if (access.is_raw()) { 1801 return _barrier_set->BarrierSetC1::atomic_xchg_at(access, value); 1802 } else { 1803 return _barrier_set->atomic_xchg_at(access, value); 1804 } 1805 } 1806 1807 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type, 1808 LIRItem& base, LIRItem& offset, LIRItem& value) { 1809 decorators |= ACCESS_READ; 1810 decorators |= ACCESS_WRITE; 1811 // Atomic operations are SEQ_CST by default 1812 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 1813 LIRAccess access(this, decorators, base, offset, type); 1814 if (access.is_raw()) { 1815 return _barrier_set->BarrierSetC1::atomic_add_at(access, value); 1816 } else { 1817 return _barrier_set->atomic_add_at(access, value); 1818 } 1819 } 1820 1821 void LIRGenerator::do_LoadField(LoadField* x) { 1822 bool needs_patching = x->needs_patching(); 1823 bool is_volatile = x->field()->is_volatile(); 1824 BasicType field_type = x->field_type(); 1825 1826 CodeEmitInfo* info = NULL; 1827 if (needs_patching) { 1828 assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access"); 1829 info = state_for(x, x->state_before()); 1830 } else if (x->needs_null_check()) { 1831 NullCheck* nc = x->explicit_null_check(); 1832 if (nc == NULL) { 1833 info = state_for(x); 1834 } else { 1835 info = state_for(nc); 1836 } 1837 } 1838 1839 LIRItem object(x->obj(), this); 1840 1841 object.load_item(); 1842 1843 #ifndef PRODUCT 1844 if (PrintNotLoaded && needs_patching) { 1845 tty->print_cr(" ###class not loaded at load_%s bci %d", 1846 x->is_static() ? "static" : "field", x->printable_bci()); 1847 } 1848 #endif 1849 1850 bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception(); 1851 if (x->needs_null_check() && 1852 (needs_patching || 1853 MacroAssembler::needs_explicit_null_check(x->offset()) || 1854 stress_deopt)) { 1855 LIR_Opr obj = object.result(); 1856 if (stress_deopt) { 1857 obj = new_register(T_OBJECT); 1858 __ move(LIR_OprFact::oopConst(NULL), obj); 1859 } 1860 // Emit an explicit null check because the offset is too large. 1861 // If the class is not loaded and the object is NULL, we need to deoptimize to throw a 1862 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code. 1863 __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching); 1864 } 1865 1866 DecoratorSet decorators = IN_HEAP; 1867 if (is_volatile) { 1868 decorators |= MO_SEQ_CST; 1869 } 1870 if (needs_patching) { 1871 decorators |= C1_NEEDS_PATCHING; 1872 } 1873 1874 LIR_Opr result = rlock_result(x, field_type); 1875 access_load_at(decorators, field_type, 1876 object, LIR_OprFact::intConst(x->offset()), result, 1877 info ? new CodeEmitInfo(info) : NULL, info); 1878 } 1879 1880 // int/long jdk.internal.util.Preconditions.checkIndex 1881 void LIRGenerator::do_PreconditionsCheckIndex(Intrinsic* x, BasicType type) { 1882 assert(x->number_of_arguments() == 3, "wrong type"); 1883 LIRItem index(x->argument_at(0), this); 1884 LIRItem length(x->argument_at(1), this); 1885 LIRItem oobef(x->argument_at(2), this); 1886 1887 index.load_item(); 1888 length.load_item(); 1889 oobef.load_item(); 1890 1891 LIR_Opr result = rlock_result(x); 1892 // x->state() is created from copy_state_for_exception, it does not contains arguments 1893 // we should prepare them before entering into interpreter mode due to deoptimization. 1894 ValueStack* state = x->state(); 1895 for (int i = 0; i < x->number_of_arguments(); i++) { 1896 Value arg = x->argument_at(i); 1897 state->push(arg->type(), arg); 1898 } 1899 CodeEmitInfo* info = state_for(x, state); 1900 1901 LIR_Opr len = length.result(); 1902 LIR_Opr zero; 1903 if (type == T_INT) { 1904 zero = LIR_OprFact::intConst(0); 1905 if (length.result()->is_constant()){ 1906 len = LIR_OprFact::intConst(length.result()->as_jint()); 1907 } 1908 } else { 1909 assert(type == T_LONG, "sanity check"); 1910 zero = LIR_OprFact::longConst(0); 1911 if (length.result()->is_constant()){ 1912 len = LIR_OprFact::longConst(length.result()->as_jlong()); 1913 } 1914 } 1915 // C1 can not handle the case that comparing index with constant value while condition 1916 // is neither lir_cond_equal nor lir_cond_notEqual, see LIR_Assembler::comp_op. 1917 LIR_Opr zero_reg = new_register(type); 1918 __ move(zero, zero_reg); 1919 #if defined(X86) && !defined(_LP64) 1920 // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy. 1921 LIR_Opr index_copy = new_register(index.type()); 1922 // index >= 0 1923 __ move(index.result(), index_copy); 1924 __ cmp(lir_cond_less, index_copy, zero_reg); 1925 __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 1926 Deoptimization::Action_make_not_entrant)); 1927 // index < length 1928 __ move(index.result(), index_copy); 1929 __ cmp(lir_cond_greaterEqual, index_copy, len); 1930 __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 1931 Deoptimization::Action_make_not_entrant)); 1932 #else 1933 // index >= 0 1934 __ cmp(lir_cond_less, index.result(), zero_reg); 1935 __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 1936 Deoptimization::Action_make_not_entrant)); 1937 // index < length 1938 __ cmp(lir_cond_greaterEqual, index.result(), len); 1939 __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 1940 Deoptimization::Action_make_not_entrant)); 1941 #endif 1942 __ move(index.result(), result); 1943 } 1944 1945 //------------------------array access-------------------------------------- 1946 1947 1948 void LIRGenerator::do_ArrayLength(ArrayLength* x) { 1949 LIRItem array(x->array(), this); 1950 array.load_item(); 1951 LIR_Opr reg = rlock_result(x); 1952 1953 CodeEmitInfo* info = NULL; 1954 if (x->needs_null_check()) { 1955 NullCheck* nc = x->explicit_null_check(); 1956 if (nc == NULL) { 1957 info = state_for(x); 1958 } else { 1959 info = state_for(nc); 1960 } 1961 if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) { 1962 LIR_Opr obj = new_register(T_OBJECT); 1963 __ move(LIR_OprFact::oopConst(NULL), obj); 1964 __ null_check(obj, new CodeEmitInfo(info)); 1965 } 1966 } 1967 __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none); 1968 } 1969 1970 1971 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) { 1972 bool use_length = x->length() != NULL; 1973 LIRItem array(x->array(), this); 1974 LIRItem index(x->index(), this); 1975 LIRItem length(this); 1976 bool needs_range_check = x->compute_needs_range_check(); 1977 1978 if (use_length && needs_range_check) { 1979 length.set_instruction(x->length()); 1980 length.load_item(); 1981 } 1982 1983 array.load_item(); 1984 if (index.is_constant() && can_inline_as_constant(x->index())) { 1985 // let it be a constant 1986 index.dont_load_item(); 1987 } else { 1988 index.load_item(); 1989 } 1990 1991 CodeEmitInfo* range_check_info = state_for(x); 1992 CodeEmitInfo* null_check_info = NULL; 1993 if (x->needs_null_check()) { 1994 NullCheck* nc = x->explicit_null_check(); 1995 if (nc != NULL) { 1996 null_check_info = state_for(nc); 1997 } else { 1998 null_check_info = range_check_info; 1999 } 2000 if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) { 2001 LIR_Opr obj = new_register(T_OBJECT); 2002 __ move(LIR_OprFact::oopConst(NULL), obj); 2003 __ null_check(obj, new CodeEmitInfo(null_check_info)); 2004 } 2005 } 2006 2007 if (needs_range_check) { 2008 if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) { 2009 __ branch(lir_cond_always, new RangeCheckStub(range_check_info, index.result(), array.result())); 2010 } else if (use_length) { 2011 // TODO: use a (modified) version of array_range_check that does not require a 2012 // constant length to be loaded to a register 2013 __ cmp(lir_cond_belowEqual, length.result(), index.result()); 2014 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result())); 2015 } else { 2016 array_range_check(array.result(), index.result(), null_check_info, range_check_info); 2017 // The range check performs the null check, so clear it out for the load 2018 null_check_info = NULL; 2019 } 2020 } 2021 2022 DecoratorSet decorators = IN_HEAP | IS_ARRAY; 2023 2024 LIR_Opr result = rlock_result(x, x->elt_type()); 2025 access_load_at(decorators, x->elt_type(), 2026 array, index.result(), result, 2027 NULL, null_check_info); 2028 } 2029 2030 2031 void LIRGenerator::do_NullCheck(NullCheck* x) { 2032 if (x->can_trap()) { 2033 LIRItem value(x->obj(), this); 2034 value.load_item(); 2035 CodeEmitInfo* info = state_for(x); 2036 __ null_check(value.result(), info); 2037 } 2038 } 2039 2040 2041 void LIRGenerator::do_TypeCast(TypeCast* x) { 2042 LIRItem value(x->obj(), this); 2043 value.load_item(); 2044 // the result is the same as from the node we are casting 2045 set_result(x, value.result()); 2046 } 2047 2048 2049 void LIRGenerator::do_Throw(Throw* x) { 2050 LIRItem exception(x->exception(), this); 2051 exception.load_item(); 2052 set_no_result(x); 2053 LIR_Opr exception_opr = exception.result(); 2054 CodeEmitInfo* info = state_for(x, x->state()); 2055 2056 #ifndef PRODUCT 2057 if (PrintC1Statistics) { 2058 increment_counter(Runtime1::throw_count_address(), T_INT); 2059 } 2060 #endif 2061 2062 // check if the instruction has an xhandler in any of the nested scopes 2063 bool unwind = false; 2064 if (info->exception_handlers()->length() == 0) { 2065 // this throw is not inside an xhandler 2066 unwind = true; 2067 } else { 2068 // get some idea of the throw type 2069 bool type_is_exact = true; 2070 ciType* throw_type = x->exception()->exact_type(); 2071 if (throw_type == NULL) { 2072 type_is_exact = false; 2073 throw_type = x->exception()->declared_type(); 2074 } 2075 if (throw_type != NULL && throw_type->is_instance_klass()) { 2076 ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type; 2077 unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact); 2078 } 2079 } 2080 2081 // do null check before moving exception oop into fixed register 2082 // to avoid a fixed interval with an oop during the null check. 2083 // Use a copy of the CodeEmitInfo because debug information is 2084 // different for null_check and throw. 2085 if (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL) { 2086 // if the exception object wasn't created using new then it might be null. 2087 __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci()))); 2088 } 2089 2090 if (compilation()->env()->jvmti_can_post_on_exceptions()) { 2091 // we need to go through the exception lookup path to get JVMTI 2092 // notification done 2093 unwind = false; 2094 } 2095 2096 // move exception oop into fixed register 2097 __ move(exception_opr, exceptionOopOpr()); 2098 2099 if (unwind) { 2100 __ unwind_exception(exceptionOopOpr()); 2101 } else { 2102 __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info); 2103 } 2104 } 2105 2106 2107 void LIRGenerator::do_RoundFP(RoundFP* x) { 2108 assert(strict_fp_requires_explicit_rounding, "not required"); 2109 2110 LIRItem input(x->input(), this); 2111 input.load_item(); 2112 LIR_Opr input_opr = input.result(); 2113 assert(input_opr->is_register(), "why round if value is not in a register?"); 2114 assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value"); 2115 if (input_opr->is_single_fpu()) { 2116 set_result(x, round_item(input_opr)); // This code path not currently taken 2117 } else { 2118 LIR_Opr result = new_register(T_DOUBLE); 2119 set_vreg_flag(result, must_start_in_memory); 2120 __ roundfp(input_opr, LIR_OprFact::illegalOpr, result); 2121 set_result(x, result); 2122 } 2123 } 2124 2125 2126 void LIRGenerator::do_UnsafeGet(UnsafeGet* x) { 2127 BasicType type = x->basic_type(); 2128 LIRItem src(x->object(), this); 2129 LIRItem off(x->offset(), this); 2130 2131 off.load_item(); 2132 src.load_item(); 2133 2134 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS; 2135 2136 if (x->is_volatile()) { 2137 decorators |= MO_SEQ_CST; 2138 } 2139 if (type == T_BOOLEAN) { 2140 decorators |= C1_MASK_BOOLEAN; 2141 } 2142 if (is_reference_type(type)) { 2143 decorators |= ON_UNKNOWN_OOP_REF; 2144 } 2145 2146 LIR_Opr result = rlock_result(x, type); 2147 if (!x->is_raw()) { 2148 access_load_at(decorators, type, src, off.result(), result); 2149 } else { 2150 // Currently it is only used in GraphBuilder::setup_osr_entry_block. 2151 // It reads the value from [src + offset] directly. 2152 #ifdef _LP64 2153 LIR_Opr offset = new_register(T_LONG); 2154 __ convert(Bytecodes::_i2l, off.result(), offset); 2155 #else 2156 LIR_Opr offset = off.result(); 2157 #endif 2158 LIR_Address* addr = new LIR_Address(src.result(), offset, type); 2159 if (is_reference_type(type)) { 2160 __ move_wide(addr, result); 2161 } else { 2162 __ move(addr, result); 2163 } 2164 } 2165 } 2166 2167 2168 void LIRGenerator::do_UnsafePut(UnsafePut* x) { 2169 BasicType type = x->basic_type(); 2170 LIRItem src(x->object(), this); 2171 LIRItem off(x->offset(), this); 2172 LIRItem data(x->value(), this); 2173 2174 src.load_item(); 2175 if (type == T_BOOLEAN || type == T_BYTE) { 2176 data.load_byte_item(); 2177 } else { 2178 data.load_item(); 2179 } 2180 off.load_item(); 2181 2182 set_no_result(x); 2183 2184 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS; 2185 if (is_reference_type(type)) { 2186 decorators |= ON_UNKNOWN_OOP_REF; 2187 } 2188 if (x->is_volatile()) { 2189 decorators |= MO_SEQ_CST; 2190 } 2191 access_store_at(decorators, type, src, off.result(), data.result()); 2192 } 2193 2194 void LIRGenerator::do_UnsafeGetAndSet(UnsafeGetAndSet* x) { 2195 BasicType type = x->basic_type(); 2196 LIRItem src(x->object(), this); 2197 LIRItem off(x->offset(), this); 2198 LIRItem value(x->value(), this); 2199 2200 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS | MO_SEQ_CST; 2201 2202 if (is_reference_type(type)) { 2203 decorators |= ON_UNKNOWN_OOP_REF; 2204 } 2205 2206 LIR_Opr result; 2207 if (x->is_add()) { 2208 result = access_atomic_add_at(decorators, type, src, off, value); 2209 } else { 2210 result = access_atomic_xchg_at(decorators, type, src, off, value); 2211 } 2212 set_result(x, result); 2213 } 2214 2215 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) { 2216 int lng = x->length(); 2217 2218 for (int i = 0; i < lng; i++) { 2219 C1SwitchRange* one_range = x->at(i); 2220 int low_key = one_range->low_key(); 2221 int high_key = one_range->high_key(); 2222 BlockBegin* dest = one_range->sux(); 2223 if (low_key == high_key) { 2224 __ cmp(lir_cond_equal, value, low_key); 2225 __ branch(lir_cond_equal, dest); 2226 } else if (high_key - low_key == 1) { 2227 __ cmp(lir_cond_equal, value, low_key); 2228 __ branch(lir_cond_equal, dest); 2229 __ cmp(lir_cond_equal, value, high_key); 2230 __ branch(lir_cond_equal, dest); 2231 } else { 2232 LabelObj* L = new LabelObj(); 2233 __ cmp(lir_cond_less, value, low_key); 2234 __ branch(lir_cond_less, L->label()); 2235 __ cmp(lir_cond_lessEqual, value, high_key); 2236 __ branch(lir_cond_lessEqual, dest); 2237 __ branch_destination(L->label()); 2238 } 2239 } 2240 __ jump(default_sux); 2241 } 2242 2243 2244 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) { 2245 SwitchRangeList* res = new SwitchRangeList(); 2246 int len = x->length(); 2247 if (len > 0) { 2248 BlockBegin* sux = x->sux_at(0); 2249 int key = x->lo_key(); 2250 BlockBegin* default_sux = x->default_sux(); 2251 C1SwitchRange* range = new C1SwitchRange(key, sux); 2252 for (int i = 0; i < len; i++, key++) { 2253 BlockBegin* new_sux = x->sux_at(i); 2254 if (sux == new_sux) { 2255 // still in same range 2256 range->set_high_key(key); 2257 } else { 2258 // skip tests which explicitly dispatch to the default 2259 if (sux != default_sux) { 2260 res->append(range); 2261 } 2262 range = new C1SwitchRange(key, new_sux); 2263 } 2264 sux = new_sux; 2265 } 2266 if (res->length() == 0 || res->last() != range) res->append(range); 2267 } 2268 return res; 2269 } 2270 2271 2272 // we expect the keys to be sorted by increasing value 2273 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) { 2274 SwitchRangeList* res = new SwitchRangeList(); 2275 int len = x->length(); 2276 if (len > 0) { 2277 BlockBegin* default_sux = x->default_sux(); 2278 int key = x->key_at(0); 2279 BlockBegin* sux = x->sux_at(0); 2280 C1SwitchRange* range = new C1SwitchRange(key, sux); 2281 for (int i = 1; i < len; i++) { 2282 int new_key = x->key_at(i); 2283 BlockBegin* new_sux = x->sux_at(i); 2284 if (key+1 == new_key && sux == new_sux) { 2285 // still in same range 2286 range->set_high_key(new_key); 2287 } else { 2288 // skip tests which explicitly dispatch to the default 2289 if (range->sux() != default_sux) { 2290 res->append(range); 2291 } 2292 range = new C1SwitchRange(new_key, new_sux); 2293 } 2294 key = new_key; 2295 sux = new_sux; 2296 } 2297 if (res->length() == 0 || res->last() != range) res->append(range); 2298 } 2299 return res; 2300 } 2301 2302 2303 void LIRGenerator::do_TableSwitch(TableSwitch* x) { 2304 LIRItem tag(x->tag(), this); 2305 tag.load_item(); 2306 set_no_result(x); 2307 2308 if (x->is_safepoint()) { 2309 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before())); 2310 } 2311 2312 // move values into phi locations 2313 move_to_phi(x->state()); 2314 2315 int lo_key = x->lo_key(); 2316 int len = x->length(); 2317 assert(lo_key <= (lo_key + (len - 1)), "integer overflow"); 2318 LIR_Opr value = tag.result(); 2319 2320 if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) { 2321 ciMethod* method = x->state()->scope()->method(); 2322 ciMethodData* md = method->method_data_or_null(); 2323 assert(md != NULL, "Sanity"); 2324 ciProfileData* data = md->bci_to_data(x->state()->bci()); 2325 assert(data != NULL, "must have profiling data"); 2326 assert(data->is_MultiBranchData(), "bad profile data?"); 2327 int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset()); 2328 LIR_Opr md_reg = new_register(T_METADATA); 2329 __ metadata2reg(md->constant_encoding(), md_reg); 2330 LIR_Opr data_offset_reg = new_pointer_register(); 2331 LIR_Opr tmp_reg = new_pointer_register(); 2332 2333 __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg); 2334 for (int i = 0; i < len; i++) { 2335 int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i)); 2336 __ cmp(lir_cond_equal, value, i + lo_key); 2337 __ move(data_offset_reg, tmp_reg); 2338 __ cmove(lir_cond_equal, 2339 LIR_OprFact::intptrConst(count_offset), 2340 tmp_reg, 2341 data_offset_reg, T_INT); 2342 } 2343 2344 LIR_Opr data_reg = new_pointer_register(); 2345 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 2346 __ move(data_addr, data_reg); 2347 __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg); 2348 __ move(data_reg, data_addr); 2349 } 2350 2351 if (UseTableRanges) { 2352 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux()); 2353 } else { 2354 for (int i = 0; i < len; i++) { 2355 __ cmp(lir_cond_equal, value, i + lo_key); 2356 __ branch(lir_cond_equal, x->sux_at(i)); 2357 } 2358 __ jump(x->default_sux()); 2359 } 2360 } 2361 2362 2363 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) { 2364 LIRItem tag(x->tag(), this); 2365 tag.load_item(); 2366 set_no_result(x); 2367 2368 if (x->is_safepoint()) { 2369 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before())); 2370 } 2371 2372 // move values into phi locations 2373 move_to_phi(x->state()); 2374 2375 LIR_Opr value = tag.result(); 2376 int len = x->length(); 2377 2378 if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) { 2379 ciMethod* method = x->state()->scope()->method(); 2380 ciMethodData* md = method->method_data_or_null(); 2381 assert(md != NULL, "Sanity"); 2382 ciProfileData* data = md->bci_to_data(x->state()->bci()); 2383 assert(data != NULL, "must have profiling data"); 2384 assert(data->is_MultiBranchData(), "bad profile data?"); 2385 int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset()); 2386 LIR_Opr md_reg = new_register(T_METADATA); 2387 __ metadata2reg(md->constant_encoding(), md_reg); 2388 LIR_Opr data_offset_reg = new_pointer_register(); 2389 LIR_Opr tmp_reg = new_pointer_register(); 2390 2391 __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg); 2392 for (int i = 0; i < len; i++) { 2393 int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i)); 2394 __ cmp(lir_cond_equal, value, x->key_at(i)); 2395 __ move(data_offset_reg, tmp_reg); 2396 __ cmove(lir_cond_equal, 2397 LIR_OprFact::intptrConst(count_offset), 2398 tmp_reg, 2399 data_offset_reg, T_INT); 2400 } 2401 2402 LIR_Opr data_reg = new_pointer_register(); 2403 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 2404 __ move(data_addr, data_reg); 2405 __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg); 2406 __ move(data_reg, data_addr); 2407 } 2408 2409 if (UseTableRanges) { 2410 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux()); 2411 } else { 2412 int len = x->length(); 2413 for (int i = 0; i < len; i++) { 2414 __ cmp(lir_cond_equal, value, x->key_at(i)); 2415 __ branch(lir_cond_equal, x->sux_at(i)); 2416 } 2417 __ jump(x->default_sux()); 2418 } 2419 } 2420 2421 2422 void LIRGenerator::do_Goto(Goto* x) { 2423 set_no_result(x); 2424 2425 if (block()->next()->as_OsrEntry()) { 2426 // need to free up storage used for OSR entry point 2427 LIR_Opr osrBuffer = block()->next()->operand(); 2428 BasicTypeList signature; 2429 signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer 2430 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 2431 __ move(osrBuffer, cc->args()->at(0)); 2432 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end), 2433 getThreadTemp(), LIR_OprFact::illegalOpr, cc->args()); 2434 } 2435 2436 if (x->is_safepoint()) { 2437 ValueStack* state = x->state_before() ? x->state_before() : x->state(); 2438 2439 // increment backedge counter if needed 2440 CodeEmitInfo* info = state_for(x, state); 2441 increment_backedge_counter(info, x->profiled_bci()); 2442 CodeEmitInfo* safepoint_info = state_for(x, state); 2443 __ safepoint(safepoint_poll_register(), safepoint_info); 2444 } 2445 2446 // Gotos can be folded Ifs, handle this case. 2447 if (x->should_profile()) { 2448 ciMethod* method = x->profiled_method(); 2449 assert(method != NULL, "method should be set if branch is profiled"); 2450 ciMethodData* md = method->method_data_or_null(); 2451 assert(md != NULL, "Sanity"); 2452 ciProfileData* data = md->bci_to_data(x->profiled_bci()); 2453 assert(data != NULL, "must have profiling data"); 2454 int offset; 2455 if (x->direction() == Goto::taken) { 2456 assert(data->is_BranchData(), "need BranchData for two-way branches"); 2457 offset = md->byte_offset_of_slot(data, BranchData::taken_offset()); 2458 } else if (x->direction() == Goto::not_taken) { 2459 assert(data->is_BranchData(), "need BranchData for two-way branches"); 2460 offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset()); 2461 } else { 2462 assert(data->is_JumpData(), "need JumpData for branches"); 2463 offset = md->byte_offset_of_slot(data, JumpData::taken_offset()); 2464 } 2465 LIR_Opr md_reg = new_register(T_METADATA); 2466 __ metadata2reg(md->constant_encoding(), md_reg); 2467 2468 increment_counter(new LIR_Address(md_reg, offset, 2469 NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment); 2470 } 2471 2472 // emit phi-instruction move after safepoint since this simplifies 2473 // describing the state as the safepoint. 2474 move_to_phi(x->state()); 2475 2476 __ jump(x->default_sux()); 2477 } 2478 2479 /** 2480 * Emit profiling code if needed for arguments, parameters, return value types 2481 * 2482 * @param md MDO the code will update at runtime 2483 * @param md_base_offset common offset in the MDO for this profile and subsequent ones 2484 * @param md_offset offset in the MDO (on top of md_base_offset) for this profile 2485 * @param profiled_k current profile 2486 * @param obj IR node for the object to be profiled 2487 * @param mdp register to hold the pointer inside the MDO (md + md_base_offset). 2488 * Set once we find an update to make and use for next ones. 2489 * @param not_null true if we know obj cannot be null 2490 * @param signature_at_call_k signature at call for obj 2491 * @param callee_signature_k signature of callee for obj 2492 * at call and callee signatures differ at method handle call 2493 * @return the only klass we know will ever be seen at this profile point 2494 */ 2495 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k, 2496 Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k, 2497 ciKlass* callee_signature_k) { 2498 ciKlass* result = NULL; 2499 bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k); 2500 bool do_update = !TypeEntries::is_type_unknown(profiled_k); 2501 // known not to be null or null bit already set and already set to 2502 // unknown: nothing we can do to improve profiling 2503 if (!do_null && !do_update) { 2504 return result; 2505 } 2506 2507 ciKlass* exact_klass = NULL; 2508 Compilation* comp = Compilation::current(); 2509 if (do_update) { 2510 // try to find exact type, using CHA if possible, so that loading 2511 // the klass from the object can be avoided 2512 ciType* type = obj->exact_type(); 2513 if (type == NULL) { 2514 type = obj->declared_type(); 2515 type = comp->cha_exact_type(type); 2516 } 2517 assert(type == NULL || type->is_klass(), "type should be class"); 2518 exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL; 2519 2520 do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass; 2521 } 2522 2523 if (!do_null && !do_update) { 2524 return result; 2525 } 2526 2527 ciKlass* exact_signature_k = NULL; 2528 if (do_update) { 2529 // Is the type from the signature exact (the only one possible)? 2530 exact_signature_k = signature_at_call_k->exact_klass(); 2531 if (exact_signature_k == NULL) { 2532 exact_signature_k = comp->cha_exact_type(signature_at_call_k); 2533 } else { 2534 result = exact_signature_k; 2535 // Known statically. No need to emit any code: prevent 2536 // LIR_Assembler::emit_profile_type() from emitting useless code 2537 profiled_k = ciTypeEntries::with_status(result, profiled_k); 2538 } 2539 // exact_klass and exact_signature_k can be both non NULL but 2540 // different if exact_klass is loaded after the ciObject for 2541 // exact_signature_k is created. 2542 if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) { 2543 // sometimes the type of the signature is better than the best type 2544 // the compiler has 2545 exact_klass = exact_signature_k; 2546 } 2547 if (callee_signature_k != NULL && 2548 callee_signature_k != signature_at_call_k) { 2549 ciKlass* improved_klass = callee_signature_k->exact_klass(); 2550 if (improved_klass == NULL) { 2551 improved_klass = comp->cha_exact_type(callee_signature_k); 2552 } 2553 if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) { 2554 exact_klass = exact_signature_k; 2555 } 2556 } 2557 do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass; 2558 } 2559 2560 if (!do_null && !do_update) { 2561 return result; 2562 } 2563 2564 if (mdp == LIR_OprFact::illegalOpr) { 2565 mdp = new_register(T_METADATA); 2566 __ metadata2reg(md->constant_encoding(), mdp); 2567 if (md_base_offset != 0) { 2568 LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS); 2569 mdp = new_pointer_register(); 2570 __ leal(LIR_OprFact::address(base_type_address), mdp); 2571 } 2572 } 2573 LIRItem value(obj, this); 2574 value.load_item(); 2575 __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA), 2576 value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL); 2577 return result; 2578 } 2579 2580 // profile parameters on entry to the root of the compilation 2581 void LIRGenerator::profile_parameters(Base* x) { 2582 if (compilation()->profile_parameters()) { 2583 CallingConvention* args = compilation()->frame_map()->incoming_arguments(); 2584 ciMethodData* md = scope()->method()->method_data_or_null(); 2585 assert(md != NULL, "Sanity"); 2586 2587 if (md->parameters_type_data() != NULL) { 2588 ciParametersTypeData* parameters_type_data = md->parameters_type_data(); 2589 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters(); 2590 LIR_Opr mdp = LIR_OprFact::illegalOpr; 2591 for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) { 2592 LIR_Opr src = args->at(i); 2593 assert(!src->is_illegal(), "check"); 2594 BasicType t = src->type(); 2595 if (is_reference_type(t)) { 2596 intptr_t profiled_k = parameters->type(j); 2597 Local* local = x->state()->local_at(java_index)->as_Local(); 2598 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)), 2599 in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)), 2600 profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL); 2601 // If the profile is known statically set it once for all and do not emit any code 2602 if (exact != NULL) { 2603 md->set_parameter_type(j, exact); 2604 } 2605 j++; 2606 } 2607 java_index += type2size[t]; 2608 } 2609 } 2610 } 2611 } 2612 2613 void LIRGenerator::do_Base(Base* x) { 2614 __ std_entry(LIR_OprFact::illegalOpr); 2615 // Emit moves from physical registers / stack slots to virtual registers 2616 CallingConvention* args = compilation()->frame_map()->incoming_arguments(); 2617 IRScope* irScope = compilation()->hir()->top_scope(); 2618 int java_index = 0; 2619 for (int i = 0; i < args->length(); i++) { 2620 LIR_Opr src = args->at(i); 2621 assert(!src->is_illegal(), "check"); 2622 BasicType t = src->type(); 2623 2624 // Types which are smaller than int are passed as int, so 2625 // correct the type which passed. 2626 switch (t) { 2627 case T_BYTE: 2628 case T_BOOLEAN: 2629 case T_SHORT: 2630 case T_CHAR: 2631 t = T_INT; 2632 break; 2633 default: 2634 break; 2635 } 2636 2637 LIR_Opr dest = new_register(t); 2638 __ move(src, dest); 2639 2640 // Assign new location to Local instruction for this local 2641 Local* local = x->state()->local_at(java_index)->as_Local(); 2642 assert(local != NULL, "Locals for incoming arguments must have been created"); 2643 #ifndef __SOFTFP__ 2644 // The java calling convention passes double as long and float as int. 2645 assert(as_ValueType(t)->tag() == local->type()->tag(), "check"); 2646 #endif // __SOFTFP__ 2647 local->set_operand(dest); 2648 _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL); 2649 java_index += type2size[t]; 2650 } 2651 2652 if (compilation()->env()->dtrace_method_probes()) { 2653 BasicTypeList signature; 2654 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 2655 signature.append(T_METADATA); // Method* 2656 LIR_OprList* args = new LIR_OprList(); 2657 args->append(getThreadPointer()); 2658 LIR_Opr meth = new_register(T_METADATA); 2659 __ metadata2reg(method()->constant_encoding(), meth); 2660 args->append(meth); 2661 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL); 2662 } 2663 2664 if (method()->is_synchronized()) { 2665 LIR_Opr obj; 2666 if (method()->is_static()) { 2667 obj = new_register(T_OBJECT); 2668 __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj); 2669 } else { 2670 Local* receiver = x->state()->local_at(0)->as_Local(); 2671 assert(receiver != NULL, "must already exist"); 2672 obj = receiver->operand(); 2673 } 2674 assert(obj->is_valid(), "must be valid"); 2675 2676 if (method()->is_synchronized() && GenerateSynchronizationCode) { 2677 LIR_Opr lock = syncLockOpr(); 2678 __ load_stack_address_monitor(0, lock); 2679 2680 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException)); 2681 CodeStub* slow_path = new MonitorEnterStub(obj, lock, info); 2682 2683 // receiver is guaranteed non-NULL so don't need CodeEmitInfo 2684 __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL); 2685 } 2686 } 2687 // increment invocation counters if needed 2688 if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting. 2689 profile_parameters(x); 2690 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false); 2691 increment_invocation_counter(info); 2692 } 2693 2694 // all blocks with a successor must end with an unconditional jump 2695 // to the successor even if they are consecutive 2696 __ jump(x->default_sux()); 2697 } 2698 2699 2700 void LIRGenerator::do_OsrEntry(OsrEntry* x) { 2701 // construct our frame and model the production of incoming pointer 2702 // to the OSR buffer. 2703 __ osr_entry(LIR_Assembler::osrBufferPointer()); 2704 LIR_Opr result = rlock_result(x); 2705 __ move(LIR_Assembler::osrBufferPointer(), result); 2706 } 2707 2708 2709 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) { 2710 assert(args->length() == arg_list->length(), 2711 "args=%d, arg_list=%d", args->length(), arg_list->length()); 2712 for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) { 2713 LIRItem* param = args->at(i); 2714 LIR_Opr loc = arg_list->at(i); 2715 if (loc->is_register()) { 2716 param->load_item_force(loc); 2717 } else { 2718 LIR_Address* addr = loc->as_address_ptr(); 2719 param->load_for_store(addr->type()); 2720 if (addr->type() == T_OBJECT) { 2721 __ move_wide(param->result(), addr); 2722 } else 2723 __ move(param->result(), addr); 2724 } 2725 } 2726 2727 if (x->has_receiver()) { 2728 LIRItem* receiver = args->at(0); 2729 LIR_Opr loc = arg_list->at(0); 2730 if (loc->is_register()) { 2731 receiver->load_item_force(loc); 2732 } else { 2733 assert(loc->is_address(), "just checking"); 2734 receiver->load_for_store(T_OBJECT); 2735 __ move_wide(receiver->result(), loc->as_address_ptr()); 2736 } 2737 } 2738 } 2739 2740 2741 // Visits all arguments, returns appropriate items without loading them 2742 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) { 2743 LIRItemList* argument_items = new LIRItemList(); 2744 if (x->has_receiver()) { 2745 LIRItem* receiver = new LIRItem(x->receiver(), this); 2746 argument_items->append(receiver); 2747 } 2748 for (int i = 0; i < x->number_of_arguments(); i++) { 2749 LIRItem* param = new LIRItem(x->argument_at(i), this); 2750 argument_items->append(param); 2751 } 2752 return argument_items; 2753 } 2754 2755 2756 // The invoke with receiver has following phases: 2757 // a) traverse and load/lock receiver; 2758 // b) traverse all arguments -> item-array (invoke_visit_argument) 2759 // c) push receiver on stack 2760 // d) load each of the items and push on stack 2761 // e) unlock receiver 2762 // f) move receiver into receiver-register %o0 2763 // g) lock result registers and emit call operation 2764 // 2765 // Before issuing a call, we must spill-save all values on stack 2766 // that are in caller-save register. "spill-save" moves those registers 2767 // either in a free callee-save register or spills them if no free 2768 // callee save register is available. 2769 // 2770 // The problem is where to invoke spill-save. 2771 // - if invoked between e) and f), we may lock callee save 2772 // register in "spill-save" that destroys the receiver register 2773 // before f) is executed 2774 // - if we rearrange f) to be earlier (by loading %o0) it 2775 // may destroy a value on the stack that is currently in %o0 2776 // and is waiting to be spilled 2777 // - if we keep the receiver locked while doing spill-save, 2778 // we cannot spill it as it is spill-locked 2779 // 2780 void LIRGenerator::do_Invoke(Invoke* x) { 2781 CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true); 2782 2783 LIR_OprList* arg_list = cc->args(); 2784 LIRItemList* args = invoke_visit_arguments(x); 2785 LIR_Opr receiver = LIR_OprFact::illegalOpr; 2786 2787 // setup result register 2788 LIR_Opr result_register = LIR_OprFact::illegalOpr; 2789 if (x->type() != voidType) { 2790 result_register = result_register_for(x->type()); 2791 } 2792 2793 CodeEmitInfo* info = state_for(x, x->state()); 2794 2795 invoke_load_arguments(x, args, arg_list); 2796 2797 if (x->has_receiver()) { 2798 args->at(0)->load_item_force(LIR_Assembler::receiverOpr()); 2799 receiver = args->at(0)->result(); 2800 } 2801 2802 // emit invoke code 2803 assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match"); 2804 2805 // JSR 292 2806 // Preserve the SP over MethodHandle call sites, if needed. 2807 ciMethod* target = x->target(); 2808 bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant? 2809 target->is_method_handle_intrinsic() || 2810 target->is_compiled_lambda_form()); 2811 if (is_method_handle_invoke) { 2812 info->set_is_method_handle_invoke(true); 2813 if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) { 2814 __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr()); 2815 } 2816 } 2817 2818 switch (x->code()) { 2819 case Bytecodes::_invokestatic: 2820 __ call_static(target, result_register, 2821 SharedRuntime::get_resolve_static_call_stub(), 2822 arg_list, info); 2823 break; 2824 case Bytecodes::_invokespecial: 2825 case Bytecodes::_invokevirtual: 2826 case Bytecodes::_invokeinterface: 2827 // for loaded and final (method or class) target we still produce an inline cache, 2828 // in order to be able to call mixed mode 2829 if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) { 2830 __ call_opt_virtual(target, receiver, result_register, 2831 SharedRuntime::get_resolve_opt_virtual_call_stub(), 2832 arg_list, info); 2833 } else { 2834 __ call_icvirtual(target, receiver, result_register, 2835 SharedRuntime::get_resolve_virtual_call_stub(), 2836 arg_list, info); 2837 } 2838 break; 2839 case Bytecodes::_invokedynamic: { 2840 __ call_dynamic(target, receiver, result_register, 2841 SharedRuntime::get_resolve_static_call_stub(), 2842 arg_list, info); 2843 break; 2844 } 2845 default: 2846 fatal("unexpected bytecode: %s", Bytecodes::name(x->code())); 2847 break; 2848 } 2849 2850 // JSR 292 2851 // Restore the SP after MethodHandle call sites, if needed. 2852 if (is_method_handle_invoke 2853 && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) { 2854 __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer()); 2855 } 2856 2857 if (result_register->is_valid()) { 2858 LIR_Opr result = rlock_result(x); 2859 __ move(result_register, result); 2860 } 2861 } 2862 2863 2864 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) { 2865 assert(x->number_of_arguments() == 1, "wrong type"); 2866 LIRItem value (x->argument_at(0), this); 2867 LIR_Opr reg = rlock_result(x); 2868 value.load_item(); 2869 LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type())); 2870 __ move(tmp, reg); 2871 } 2872 2873 2874 2875 // Code for : x->x() {x->cond()} x->y() ? x->tval() : x->fval() 2876 void LIRGenerator::do_IfOp(IfOp* x) { 2877 #ifdef ASSERT 2878 { 2879 ValueTag xtag = x->x()->type()->tag(); 2880 ValueTag ttag = x->tval()->type()->tag(); 2881 assert(xtag == intTag || xtag == objectTag, "cannot handle others"); 2882 assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others"); 2883 assert(ttag == x->fval()->type()->tag(), "cannot handle others"); 2884 } 2885 #endif 2886 2887 LIRItem left(x->x(), this); 2888 LIRItem right(x->y(), this); 2889 left.load_item(); 2890 if (can_inline_as_constant(right.value())) { 2891 right.dont_load_item(); 2892 } else { 2893 right.load_item(); 2894 } 2895 2896 LIRItem t_val(x->tval(), this); 2897 LIRItem f_val(x->fval(), this); 2898 t_val.dont_load_item(); 2899 f_val.dont_load_item(); 2900 LIR_Opr reg = rlock_result(x); 2901 2902 __ cmp(lir_cond(x->cond()), left.result(), right.result()); 2903 __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type())); 2904 } 2905 2906 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) { 2907 assert(x->number_of_arguments() == 0, "wrong type"); 2908 // Enforce computation of _reserved_argument_area_size which is required on some platforms. 2909 BasicTypeList signature; 2910 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 2911 LIR_Opr reg = result_register_for(x->type()); 2912 __ call_runtime_leaf(routine, getThreadTemp(), 2913 reg, new LIR_OprList()); 2914 LIR_Opr result = rlock_result(x); 2915 __ move(reg, result); 2916 } 2917 2918 2919 2920 void LIRGenerator::do_Intrinsic(Intrinsic* x) { 2921 switch (x->id()) { 2922 case vmIntrinsics::_intBitsToFloat : 2923 case vmIntrinsics::_doubleToRawLongBits : 2924 case vmIntrinsics::_longBitsToDouble : 2925 case vmIntrinsics::_floatToRawIntBits : { 2926 do_FPIntrinsics(x); 2927 break; 2928 } 2929 2930 #ifdef JFR_HAVE_INTRINSICS 2931 case vmIntrinsics::_counterTime: 2932 do_RuntimeCall(CAST_FROM_FN_PTR(address, JfrTime::time_function()), x); 2933 break; 2934 #endif 2935 2936 case vmIntrinsics::_currentTimeMillis: 2937 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x); 2938 break; 2939 2940 case vmIntrinsics::_nanoTime: 2941 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x); 2942 break; 2943 2944 case vmIntrinsics::_Object_init: do_RegisterFinalizer(x); break; 2945 case vmIntrinsics::_isInstance: do_isInstance(x); break; 2946 case vmIntrinsics::_isPrimitive: do_isPrimitive(x); break; 2947 case vmIntrinsics::_getModifiers: do_getModifiers(x); break; 2948 case vmIntrinsics::_getClass: do_getClass(x); break; 2949 case vmIntrinsics::_getObjectSize: do_getObjectSize(x); break; 2950 case vmIntrinsics::_currentCarrierThread: do_currentCarrierThread(x); break; 2951 case vmIntrinsics::_currentThread: do_vthread(x); break; 2952 case vmIntrinsics::_scopedValueCache: do_scopedValueCache(x); break; 2953 2954 case vmIntrinsics::_dlog: // fall through 2955 case vmIntrinsics::_dlog10: // fall through 2956 case vmIntrinsics::_dabs: // fall through 2957 case vmIntrinsics::_dsqrt: // fall through 2958 case vmIntrinsics::_dsqrt_strict: // fall through 2959 case vmIntrinsics::_dtan: // fall through 2960 case vmIntrinsics::_dsin : // fall through 2961 case vmIntrinsics::_dcos : // fall through 2962 case vmIntrinsics::_dexp : // fall through 2963 case vmIntrinsics::_dpow : do_MathIntrinsic(x); break; 2964 case vmIntrinsics::_arraycopy: do_ArrayCopy(x); break; 2965 2966 case vmIntrinsics::_fmaD: do_FmaIntrinsic(x); break; 2967 case vmIntrinsics::_fmaF: do_FmaIntrinsic(x); break; 2968 2969 case vmIntrinsics::_Preconditions_checkIndex: 2970 do_PreconditionsCheckIndex(x, T_INT); 2971 break; 2972 case vmIntrinsics::_Preconditions_checkLongIndex: 2973 do_PreconditionsCheckIndex(x, T_LONG); 2974 break; 2975 2976 case vmIntrinsics::_compareAndSetReference: 2977 do_CompareAndSwap(x, objectType); 2978 break; 2979 case vmIntrinsics::_compareAndSetInt: 2980 do_CompareAndSwap(x, intType); 2981 break; 2982 case vmIntrinsics::_compareAndSetLong: 2983 do_CompareAndSwap(x, longType); 2984 break; 2985 2986 case vmIntrinsics::_loadFence : 2987 __ membar_acquire(); 2988 break; 2989 case vmIntrinsics::_storeFence: 2990 __ membar_release(); 2991 break; 2992 case vmIntrinsics::_storeStoreFence: 2993 __ membar_storestore(); 2994 break; 2995 case vmIntrinsics::_fullFence : 2996 __ membar(); 2997 break; 2998 case vmIntrinsics::_onSpinWait: 2999 __ on_spin_wait(); 3000 break; 3001 case vmIntrinsics::_Reference_get: 3002 do_Reference_get(x); 3003 break; 3004 3005 case vmIntrinsics::_updateCRC32: 3006 case vmIntrinsics::_updateBytesCRC32: 3007 case vmIntrinsics::_updateByteBufferCRC32: 3008 do_update_CRC32(x); 3009 break; 3010 3011 case vmIntrinsics::_updateBytesCRC32C: 3012 case vmIntrinsics::_updateDirectByteBufferCRC32C: 3013 do_update_CRC32C(x); 3014 break; 3015 3016 case vmIntrinsics::_vectorizedMismatch: 3017 do_vectorizedMismatch(x); 3018 break; 3019 3020 case vmIntrinsics::_blackhole: 3021 do_blackhole(x); 3022 break; 3023 3024 default: ShouldNotReachHere(); break; 3025 } 3026 } 3027 3028 void LIRGenerator::profile_arguments(ProfileCall* x) { 3029 if (compilation()->profile_arguments()) { 3030 int bci = x->bci_of_invoke(); 3031 ciMethodData* md = x->method()->method_data_or_null(); 3032 assert(md != NULL, "Sanity"); 3033 ciProfileData* data = md->bci_to_data(bci); 3034 if (data != NULL) { 3035 if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) || 3036 (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) { 3037 ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset(); 3038 int base_offset = md->byte_offset_of_slot(data, extra); 3039 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3040 ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args(); 3041 3042 Bytecodes::Code bc = x->method()->java_code_at_bci(bci); 3043 int start = 0; 3044 int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments(); 3045 if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) { 3046 // first argument is not profiled at call (method handle invoke) 3047 assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected"); 3048 start = 1; 3049 } 3050 ciSignature* callee_signature = x->callee()->signature(); 3051 // method handle call to virtual method 3052 bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc); 3053 ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL); 3054 3055 bool ignored_will_link; 3056 ciSignature* signature_at_call = NULL; 3057 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call); 3058 ciSignatureStream signature_at_call_stream(signature_at_call); 3059 3060 // if called through method handle invoke, some arguments may have been popped 3061 for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) { 3062 int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset()); 3063 ciKlass* exact = profile_type(md, base_offset, off, 3064 args->type(i), x->profiled_arg_at(i+start), mdp, 3065 !x->arg_needs_null_check(i+start), 3066 signature_at_call_stream.next_klass(), callee_signature_stream.next_klass()); 3067 if (exact != NULL) { 3068 md->set_argument_type(bci, i, exact); 3069 } 3070 } 3071 } else { 3072 #ifdef ASSERT 3073 Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke()); 3074 int n = x->nb_profiled_args(); 3075 assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() || 3076 (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))), 3077 "only at JSR292 bytecodes"); 3078 #endif 3079 } 3080 } 3081 } 3082 } 3083 3084 // profile parameters on entry to an inlined method 3085 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) { 3086 if (compilation()->profile_parameters() && x->inlined()) { 3087 ciMethodData* md = x->callee()->method_data_or_null(); 3088 if (md != NULL) { 3089 ciParametersTypeData* parameters_type_data = md->parameters_type_data(); 3090 if (parameters_type_data != NULL) { 3091 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters(); 3092 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3093 bool has_receiver = !x->callee()->is_static(); 3094 ciSignature* sig = x->callee()->signature(); 3095 ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL); 3096 int i = 0; // to iterate on the Instructions 3097 Value arg = x->recv(); 3098 bool not_null = false; 3099 int bci = x->bci_of_invoke(); 3100 Bytecodes::Code bc = x->method()->java_code_at_bci(bci); 3101 // The first parameter is the receiver so that's what we start 3102 // with if it exists. One exception is method handle call to 3103 // virtual method: the receiver is in the args list 3104 if (arg == NULL || !Bytecodes::has_receiver(bc)) { 3105 i = 1; 3106 arg = x->profiled_arg_at(0); 3107 not_null = !x->arg_needs_null_check(0); 3108 } 3109 int k = 0; // to iterate on the profile data 3110 for (;;) { 3111 intptr_t profiled_k = parameters->type(k); 3112 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)), 3113 in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)), 3114 profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL); 3115 // If the profile is known statically set it once for all and do not emit any code 3116 if (exact != NULL) { 3117 md->set_parameter_type(k, exact); 3118 } 3119 k++; 3120 if (k >= parameters_type_data->number_of_parameters()) { 3121 #ifdef ASSERT 3122 int extra = 0; 3123 if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 && 3124 x->nb_profiled_args() >= TypeProfileParmsLimit && 3125 x->recv() != NULL && Bytecodes::has_receiver(bc)) { 3126 extra += 1; 3127 } 3128 assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?"); 3129 #endif 3130 break; 3131 } 3132 arg = x->profiled_arg_at(i); 3133 not_null = !x->arg_needs_null_check(i); 3134 i++; 3135 } 3136 } 3137 } 3138 } 3139 } 3140 3141 void LIRGenerator::do_ProfileCall(ProfileCall* x) { 3142 // Need recv in a temporary register so it interferes with the other temporaries 3143 LIR_Opr recv = LIR_OprFact::illegalOpr; 3144 LIR_Opr mdo = new_register(T_METADATA); 3145 // tmp is used to hold the counters on SPARC 3146 LIR_Opr tmp = new_pointer_register(); 3147 3148 if (x->nb_profiled_args() > 0) { 3149 profile_arguments(x); 3150 } 3151 3152 // profile parameters on inlined method entry including receiver 3153 if (x->recv() != NULL || x->nb_profiled_args() > 0) { 3154 profile_parameters_at_call(x); 3155 } 3156 3157 if (x->recv() != NULL) { 3158 LIRItem value(x->recv(), this); 3159 value.load_item(); 3160 recv = new_register(T_OBJECT); 3161 __ move(value.result(), recv); 3162 } 3163 __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder()); 3164 } 3165 3166 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) { 3167 int bci = x->bci_of_invoke(); 3168 ciMethodData* md = x->method()->method_data_or_null(); 3169 assert(md != NULL, "Sanity"); 3170 ciProfileData* data = md->bci_to_data(bci); 3171 if (data != NULL) { 3172 assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type"); 3173 ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret(); 3174 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3175 3176 bool ignored_will_link; 3177 ciSignature* signature_at_call = NULL; 3178 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call); 3179 3180 // The offset within the MDO of the entry to update may be too large 3181 // to be used in load/store instructions on some platforms. So have 3182 // profile_type() compute the address of the profile in a register. 3183 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0, 3184 ret->type(), x->ret(), mdp, 3185 !x->needs_null_check(), 3186 signature_at_call->return_type()->as_klass(), 3187 x->callee()->signature()->return_type()->as_klass()); 3188 if (exact != NULL) { 3189 md->set_return_type(bci, exact); 3190 } 3191 } 3192 } 3193 3194 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) { 3195 // We can safely ignore accessors here, since c2 will inline them anyway, 3196 // accessors are also always mature. 3197 if (!x->inlinee()->is_accessor()) { 3198 CodeEmitInfo* info = state_for(x, x->state(), true); 3199 // Notify the runtime very infrequently only to take care of counter overflows 3200 int freq_log = Tier23InlineeNotifyFreqLog; 3201 double scale; 3202 if (_method->has_option_value(CompileCommand::CompileThresholdScaling, scale)) { 3203 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale); 3204 } 3205 increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true); 3206 } 3207 } 3208 3209 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) { 3210 if (compilation()->is_profiling()) { 3211 #if defined(X86) && !defined(_LP64) 3212 // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy. 3213 LIR_Opr left_copy = new_register(left->type()); 3214 __ move(left, left_copy); 3215 __ cmp(cond, left_copy, right); 3216 #else 3217 __ cmp(cond, left, right); 3218 #endif 3219 LIR_Opr step = new_register(T_INT); 3220 LIR_Opr plus_one = LIR_OprFact::intConst(InvocationCounter::count_increment); 3221 LIR_Opr zero = LIR_OprFact::intConst(0); 3222 __ cmove(cond, 3223 (left_bci < bci) ? plus_one : zero, 3224 (right_bci < bci) ? plus_one : zero, 3225 step, left->type()); 3226 increment_backedge_counter(info, step, bci); 3227 } 3228 } 3229 3230 3231 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, LIR_Opr step, int bci, bool backedge) { 3232 int freq_log = 0; 3233 int level = compilation()->env()->comp_level(); 3234 if (level == CompLevel_limited_profile) { 3235 freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog); 3236 } else if (level == CompLevel_full_profile) { 3237 freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog); 3238 } else { 3239 ShouldNotReachHere(); 3240 } 3241 // Increment the appropriate invocation/backedge counter and notify the runtime. 3242 double scale; 3243 if (_method->has_option_value(CompileCommand::CompileThresholdScaling, scale)) { 3244 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale); 3245 } 3246 increment_event_counter_impl(info, info->scope()->method(), step, right_n_bits(freq_log), bci, backedge, true); 3247 } 3248 3249 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info, 3250 ciMethod *method, LIR_Opr step, int frequency, 3251 int bci, bool backedge, bool notify) { 3252 assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0"); 3253 int level = _compilation->env()->comp_level(); 3254 assert(level > CompLevel_simple, "Shouldn't be here"); 3255 3256 int offset = -1; 3257 LIR_Opr counter_holder; 3258 if (level == CompLevel_limited_profile) { 3259 MethodCounters* counters_adr = method->ensure_method_counters(); 3260 if (counters_adr == NULL) { 3261 bailout("method counters allocation failed"); 3262 return; 3263 } 3264 counter_holder = new_pointer_register(); 3265 __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder); 3266 offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() : 3267 MethodCounters::invocation_counter_offset()); 3268 } else if (level == CompLevel_full_profile) { 3269 counter_holder = new_register(T_METADATA); 3270 offset = in_bytes(backedge ? MethodData::backedge_counter_offset() : 3271 MethodData::invocation_counter_offset()); 3272 ciMethodData* md = method->method_data_or_null(); 3273 assert(md != NULL, "Sanity"); 3274 __ metadata2reg(md->constant_encoding(), counter_holder); 3275 } else { 3276 ShouldNotReachHere(); 3277 } 3278 LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT); 3279 LIR_Opr result = new_register(T_INT); 3280 __ load(counter, result); 3281 __ add(result, step, result); 3282 __ store(result, counter); 3283 if (notify && (!backedge || UseOnStackReplacement)) { 3284 LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding()); 3285 // The bci for info can point to cmp for if's we want the if bci 3286 CodeStub* overflow = new CounterOverflowStub(info, bci, meth); 3287 int freq = frequency << InvocationCounter::count_shift; 3288 if (freq == 0) { 3289 if (!step->is_constant()) { 3290 __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0)); 3291 __ branch(lir_cond_notEqual, overflow); 3292 } else { 3293 __ branch(lir_cond_always, overflow); 3294 } 3295 } else { 3296 LIR_Opr mask = load_immediate(freq, T_INT); 3297 if (!step->is_constant()) { 3298 // If step is 0, make sure the overflow check below always fails 3299 __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0)); 3300 __ cmove(lir_cond_notEqual, result, LIR_OprFact::intConst(InvocationCounter::count_increment), result, T_INT); 3301 } 3302 __ logical_and(result, mask, result); 3303 __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0)); 3304 __ branch(lir_cond_equal, overflow); 3305 } 3306 __ branch_destination(overflow->continuation()); 3307 } 3308 } 3309 3310 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) { 3311 LIR_OprList* args = new LIR_OprList(x->number_of_arguments()); 3312 BasicTypeList* signature = new BasicTypeList(x->number_of_arguments()); 3313 3314 if (x->pass_thread()) { 3315 signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 3316 args->append(getThreadPointer()); 3317 } 3318 3319 for (int i = 0; i < x->number_of_arguments(); i++) { 3320 Value a = x->argument_at(i); 3321 LIRItem* item = new LIRItem(a, this); 3322 item->load_item(); 3323 args->append(item->result()); 3324 signature->append(as_BasicType(a->type())); 3325 } 3326 3327 LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL); 3328 if (x->type() == voidType) { 3329 set_no_result(x); 3330 } else { 3331 __ move(result, rlock_result(x)); 3332 } 3333 } 3334 3335 #ifdef ASSERT 3336 void LIRGenerator::do_Assert(Assert *x) { 3337 ValueTag tag = x->x()->type()->tag(); 3338 If::Condition cond = x->cond(); 3339 3340 LIRItem xitem(x->x(), this); 3341 LIRItem yitem(x->y(), this); 3342 LIRItem* xin = &xitem; 3343 LIRItem* yin = &yitem; 3344 3345 assert(tag == intTag, "Only integer assertions are valid!"); 3346 3347 xin->load_item(); 3348 yin->dont_load_item(); 3349 3350 set_no_result(x); 3351 3352 LIR_Opr left = xin->result(); 3353 LIR_Opr right = yin->result(); 3354 3355 __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true); 3356 } 3357 #endif 3358 3359 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) { 3360 3361 3362 Instruction *a = x->x(); 3363 Instruction *b = x->y(); 3364 if (!a || StressRangeCheckElimination) { 3365 assert(!b || StressRangeCheckElimination, "B must also be null"); 3366 3367 CodeEmitInfo *info = state_for(x, x->state()); 3368 CodeStub* stub = new PredicateFailedStub(info); 3369 3370 __ jump(stub); 3371 } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) { 3372 int a_int = a->type()->as_IntConstant()->value(); 3373 int b_int = b->type()->as_IntConstant()->value(); 3374 3375 bool ok = false; 3376 3377 switch(x->cond()) { 3378 case Instruction::eql: ok = (a_int == b_int); break; 3379 case Instruction::neq: ok = (a_int != b_int); break; 3380 case Instruction::lss: ok = (a_int < b_int); break; 3381 case Instruction::leq: ok = (a_int <= b_int); break; 3382 case Instruction::gtr: ok = (a_int > b_int); break; 3383 case Instruction::geq: ok = (a_int >= b_int); break; 3384 case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break; 3385 case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break; 3386 default: ShouldNotReachHere(); 3387 } 3388 3389 if (ok) { 3390 3391 CodeEmitInfo *info = state_for(x, x->state()); 3392 CodeStub* stub = new PredicateFailedStub(info); 3393 3394 __ jump(stub); 3395 } 3396 } else { 3397 3398 ValueTag tag = x->x()->type()->tag(); 3399 If::Condition cond = x->cond(); 3400 LIRItem xitem(x->x(), this); 3401 LIRItem yitem(x->y(), this); 3402 LIRItem* xin = &xitem; 3403 LIRItem* yin = &yitem; 3404 3405 assert(tag == intTag, "Only integer deoptimizations are valid!"); 3406 3407 xin->load_item(); 3408 yin->dont_load_item(); 3409 set_no_result(x); 3410 3411 LIR_Opr left = xin->result(); 3412 LIR_Opr right = yin->result(); 3413 3414 CodeEmitInfo *info = state_for(x, x->state()); 3415 CodeStub* stub = new PredicateFailedStub(info); 3416 3417 __ cmp(lir_cond(cond), left, right); 3418 __ branch(lir_cond(cond), stub); 3419 } 3420 } 3421 3422 void LIRGenerator::do_blackhole(Intrinsic *x) { 3423 assert(!x->has_receiver(), "Should have been checked before: only static methods here"); 3424 for (int c = 0; c < x->number_of_arguments(); c++) { 3425 // Load the argument 3426 LIRItem vitem(x->argument_at(c), this); 3427 vitem.load_item(); 3428 // ...and leave it unused. 3429 } 3430 } 3431 3432 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) { 3433 LIRItemList args(1); 3434 LIRItem value(arg1, this); 3435 args.append(&value); 3436 BasicTypeList signature; 3437 signature.append(as_BasicType(arg1->type())); 3438 3439 return call_runtime(&signature, &args, entry, result_type, info); 3440 } 3441 3442 3443 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) { 3444 LIRItemList args(2); 3445 LIRItem value1(arg1, this); 3446 LIRItem value2(arg2, this); 3447 args.append(&value1); 3448 args.append(&value2); 3449 BasicTypeList signature; 3450 signature.append(as_BasicType(arg1->type())); 3451 signature.append(as_BasicType(arg2->type())); 3452 3453 return call_runtime(&signature, &args, entry, result_type, info); 3454 } 3455 3456 3457 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args, 3458 address entry, ValueType* result_type, CodeEmitInfo* info) { 3459 // get a result register 3460 LIR_Opr phys_reg = LIR_OprFact::illegalOpr; 3461 LIR_Opr result = LIR_OprFact::illegalOpr; 3462 if (result_type->tag() != voidTag) { 3463 result = new_register(result_type); 3464 phys_reg = result_register_for(result_type); 3465 } 3466 3467 // move the arguments into the correct location 3468 CallingConvention* cc = frame_map()->c_calling_convention(signature); 3469 assert(cc->length() == args->length(), "argument mismatch"); 3470 for (int i = 0; i < args->length(); i++) { 3471 LIR_Opr arg = args->at(i); 3472 LIR_Opr loc = cc->at(i); 3473 if (loc->is_register()) { 3474 __ move(arg, loc); 3475 } else { 3476 LIR_Address* addr = loc->as_address_ptr(); 3477 // if (!can_store_as_constant(arg)) { 3478 // LIR_Opr tmp = new_register(arg->type()); 3479 // __ move(arg, tmp); 3480 // arg = tmp; 3481 // } 3482 __ move(arg, addr); 3483 } 3484 } 3485 3486 if (info) { 3487 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info); 3488 } else { 3489 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args()); 3490 } 3491 if (result->is_valid()) { 3492 __ move(phys_reg, result); 3493 } 3494 return result; 3495 } 3496 3497 3498 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args, 3499 address entry, ValueType* result_type, CodeEmitInfo* info) { 3500 // get a result register 3501 LIR_Opr phys_reg = LIR_OprFact::illegalOpr; 3502 LIR_Opr result = LIR_OprFact::illegalOpr; 3503 if (result_type->tag() != voidTag) { 3504 result = new_register(result_type); 3505 phys_reg = result_register_for(result_type); 3506 } 3507 3508 // move the arguments into the correct location 3509 CallingConvention* cc = frame_map()->c_calling_convention(signature); 3510 3511 assert(cc->length() == args->length(), "argument mismatch"); 3512 for (int i = 0; i < args->length(); i++) { 3513 LIRItem* arg = args->at(i); 3514 LIR_Opr loc = cc->at(i); 3515 if (loc->is_register()) { 3516 arg->load_item_force(loc); 3517 } else { 3518 LIR_Address* addr = loc->as_address_ptr(); 3519 arg->load_for_store(addr->type()); 3520 __ move(arg->result(), addr); 3521 } 3522 } 3523 3524 if (info) { 3525 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info); 3526 } else { 3527 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args()); 3528 } 3529 if (result->is_valid()) { 3530 __ move(phys_reg, result); 3531 } 3532 return result; 3533 } 3534 3535 void LIRGenerator::do_MemBar(MemBar* x) { 3536 LIR_Code code = x->code(); 3537 switch(code) { 3538 case lir_membar_acquire : __ membar_acquire(); break; 3539 case lir_membar_release : __ membar_release(); break; 3540 case lir_membar : __ membar(); break; 3541 case lir_membar_loadload : __ membar_loadload(); break; 3542 case lir_membar_storestore: __ membar_storestore(); break; 3543 case lir_membar_loadstore : __ membar_loadstore(); break; 3544 case lir_membar_storeload : __ membar_storeload(); break; 3545 default : ShouldNotReachHere(); break; 3546 } 3547 } 3548 3549 LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) { 3550 LIR_Opr value_fixed = rlock_byte(T_BYTE); 3551 if (two_operand_lir_form) { 3552 __ move(value, value_fixed); 3553 __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed); 3554 } else { 3555 __ logical_and(value, LIR_OprFact::intConst(1), value_fixed); 3556 } 3557 LIR_Opr klass = new_register(T_METADATA); 3558 load_klass(array, klass, null_check_info); 3559 null_check_info = NULL; 3560 LIR_Opr layout = new_register(T_INT); 3561 __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout); 3562 int diffbit = Klass::layout_helper_boolean_diffbit(); 3563 __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout); 3564 __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0)); 3565 __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE); 3566 value = value_fixed; 3567 return value; 3568 }