1 /*
   2  * Copyright (c) 2005, 2022, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_Defs.hpp"
  28 #include "c1/c1_FrameMap.hpp"
  29 #include "c1/c1_Instruction.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_LIRGenerator.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "ci/ciObjArray.hpp"
  36 #include "ci/ciUtilities.hpp"
  37 #include "compiler/compilerDefinitions.inline.hpp"
  38 #include "gc/shared/barrierSet.hpp"
  39 #include "gc/shared/c1/barrierSetC1.hpp"
  40 #include "oops/klass.inline.hpp"
  41 #include "runtime/sharedRuntime.hpp"
  42 #include "runtime/stubRoutines.hpp"
  43 #include "runtime/vm_version.hpp"
  44 #include "utilities/bitMap.inline.hpp"
  45 #include "utilities/macros.hpp"
  46 #include "utilities/powerOfTwo.hpp"
  47 
  48 #ifdef ASSERT
  49 #define __ gen()->lir(__FILE__, __LINE__)->
  50 #else
  51 #define __ gen()->lir()->
  52 #endif
  53 
  54 #ifndef PATCHED_ADDR
  55 #define PATCHED_ADDR  (max_jint)
  56 #endif
  57 
  58 void PhiResolverState::reset() {
  59   _virtual_operands.clear();
  60   _other_operands.clear();
  61   _vreg_table.clear();
  62 }
  63 
  64 
  65 //--------------------------------------------------------------
  66 // PhiResolver
  67 
  68 // Resolves cycles:
  69 //
  70 //  r1 := r2  becomes  temp := r1
  71 //  r2 := r1           r1 := r2
  72 //                     r2 := temp
  73 // and orders moves:
  74 //
  75 //  r2 := r3  becomes  r1 := r2
  76 //  r1 := r2           r2 := r3
  77 
  78 PhiResolver::PhiResolver(LIRGenerator* gen)
  79  : _gen(gen)
  80  , _state(gen->resolver_state())
  81  , _temp(LIR_OprFact::illegalOpr)
  82 {
  83   // reinitialize the shared state arrays
  84   _state.reset();
  85 }
  86 
  87 
  88 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
  89   assert(src->is_valid(), "");
  90   assert(dest->is_valid(), "");
  91   __ move(src, dest);
  92 }
  93 
  94 
  95 void PhiResolver::move_temp_to(LIR_Opr dest) {
  96   assert(_temp->is_valid(), "");
  97   emit_move(_temp, dest);
  98   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
  99 }
 100 
 101 
 102 void PhiResolver::move_to_temp(LIR_Opr src) {
 103   assert(_temp->is_illegal(), "");
 104   _temp = _gen->new_register(src->type());
 105   emit_move(src, _temp);
 106 }
 107 
 108 
 109 // Traverse assignment graph in depth first order and generate moves in post order
 110 // ie. two assignments: b := c, a := b start with node c:
 111 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
 112 // Generates moves in this order: move b to a and move c to b
 113 // ie. cycle a := b, b := a start with node a
 114 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
 115 // Generates moves in this order: move b to temp, move a to b, move temp to a
 116 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
 117   if (!dest->visited()) {
 118     dest->set_visited();
 119     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
 120       move(dest, dest->destination_at(i));
 121     }
 122   } else if (!dest->start_node()) {
 123     // cylce in graph detected
 124     assert(_loop == NULL, "only one loop valid!");
 125     _loop = dest;
 126     move_to_temp(src->operand());
 127     return;
 128   } // else dest is a start node
 129 
 130   if (!dest->assigned()) {
 131     if (_loop == dest) {
 132       move_temp_to(dest->operand());
 133       dest->set_assigned();
 134     } else if (src != NULL) {
 135       emit_move(src->operand(), dest->operand());
 136       dest->set_assigned();
 137     }
 138   }
 139 }
 140 
 141 
 142 PhiResolver::~PhiResolver() {
 143   int i;
 144   // resolve any cycles in moves from and to virtual registers
 145   for (i = virtual_operands().length() - 1; i >= 0; i --) {
 146     ResolveNode* node = virtual_operands().at(i);
 147     if (!node->visited()) {
 148       _loop = NULL;
 149       move(NULL, node);
 150       node->set_start_node();
 151       assert(_temp->is_illegal(), "move_temp_to() call missing");
 152     }
 153   }
 154 
 155   // generate move for move from non virtual register to abitrary destination
 156   for (i = other_operands().length() - 1; i >= 0; i --) {
 157     ResolveNode* node = other_operands().at(i);
 158     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
 159       emit_move(node->operand(), node->destination_at(j)->operand());
 160     }
 161   }
 162 }
 163 
 164 
 165 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
 166   ResolveNode* node;
 167   if (opr->is_virtual()) {
 168     int vreg_num = opr->vreg_number();
 169     node = vreg_table().at_grow(vreg_num, NULL);
 170     assert(node == NULL || node->operand() == opr, "");
 171     if (node == NULL) {
 172       node = new ResolveNode(opr);
 173       vreg_table().at_put(vreg_num, node);
 174     }
 175     // Make sure that all virtual operands show up in the list when
 176     // they are used as the source of a move.
 177     if (source && !virtual_operands().contains(node)) {
 178       virtual_operands().append(node);
 179     }
 180   } else {
 181     assert(source, "");
 182     node = new ResolveNode(opr);
 183     other_operands().append(node);
 184   }
 185   return node;
 186 }
 187 
 188 
 189 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
 190   assert(dest->is_virtual(), "");
 191   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
 192   assert(src->is_valid(), "");
 193   assert(dest->is_valid(), "");
 194   ResolveNode* source = source_node(src);
 195   source->append(destination_node(dest));
 196 }
 197 
 198 
 199 //--------------------------------------------------------------
 200 // LIRItem
 201 
 202 void LIRItem::set_result(LIR_Opr opr) {
 203   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 204   value()->set_operand(opr);
 205 
 206   if (opr->is_virtual()) {
 207     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
 208   }
 209 
 210   _result = opr;
 211 }
 212 
 213 void LIRItem::load_item() {
 214   if (result()->is_illegal()) {
 215     // update the items result
 216     _result = value()->operand();
 217   }
 218   if (!result()->is_register()) {
 219     LIR_Opr reg = _gen->new_register(value()->type());
 220     __ move(result(), reg);
 221     if (result()->is_constant()) {
 222       _result = reg;
 223     } else {
 224       set_result(reg);
 225     }
 226   }
 227 }
 228 
 229 
 230 void LIRItem::load_for_store(BasicType type) {
 231   if (_gen->can_store_as_constant(value(), type)) {
 232     _result = value()->operand();
 233     if (!_result->is_constant()) {
 234       _result = LIR_OprFact::value_type(value()->type());
 235     }
 236   } else if (type == T_BYTE || type == T_BOOLEAN) {
 237     load_byte_item();
 238   } else {
 239     load_item();
 240   }
 241 }
 242 
 243 void LIRItem::load_item_force(LIR_Opr reg) {
 244   LIR_Opr r = result();
 245   if (r != reg) {
 246 #if !defined(ARM) && !defined(E500V2)
 247     if (r->type() != reg->type()) {
 248       // moves between different types need an intervening spill slot
 249       r = _gen->force_to_spill(r, reg->type());
 250     }
 251 #endif
 252     __ move(r, reg);
 253     _result = reg;
 254   }
 255 }
 256 
 257 ciObject* LIRItem::get_jobject_constant() const {
 258   ObjectType* oc = type()->as_ObjectType();
 259   if (oc) {
 260     return oc->constant_value();
 261   }
 262   return NULL;
 263 }
 264 
 265 
 266 jint LIRItem::get_jint_constant() const {
 267   assert(is_constant() && value() != NULL, "");
 268   assert(type()->as_IntConstant() != NULL, "type check");
 269   return type()->as_IntConstant()->value();
 270 }
 271 
 272 
 273 jint LIRItem::get_address_constant() const {
 274   assert(is_constant() && value() != NULL, "");
 275   assert(type()->as_AddressConstant() != NULL, "type check");
 276   return type()->as_AddressConstant()->value();
 277 }
 278 
 279 
 280 jfloat LIRItem::get_jfloat_constant() const {
 281   assert(is_constant() && value() != NULL, "");
 282   assert(type()->as_FloatConstant() != NULL, "type check");
 283   return type()->as_FloatConstant()->value();
 284 }
 285 
 286 
 287 jdouble LIRItem::get_jdouble_constant() const {
 288   assert(is_constant() && value() != NULL, "");
 289   assert(type()->as_DoubleConstant() != NULL, "type check");
 290   return type()->as_DoubleConstant()->value();
 291 }
 292 
 293 
 294 jlong LIRItem::get_jlong_constant() const {
 295   assert(is_constant() && value() != NULL, "");
 296   assert(type()->as_LongConstant() != NULL, "type check");
 297   return type()->as_LongConstant()->value();
 298 }
 299 
 300 
 301 
 302 //--------------------------------------------------------------
 303 
 304 
 305 void LIRGenerator::block_do_prolog(BlockBegin* block) {
 306 #ifndef PRODUCT
 307   if (PrintIRWithLIR) {
 308     block->print();
 309   }
 310 #endif
 311 
 312   // set up the list of LIR instructions
 313   assert(block->lir() == NULL, "LIR list already computed for this block");
 314   _lir = new LIR_List(compilation(), block);
 315   block->set_lir(_lir);
 316 
 317   __ branch_destination(block->label());
 318 
 319   if (LIRTraceExecution &&
 320       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
 321       !block->is_set(BlockBegin::exception_entry_flag)) {
 322     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
 323     trace_block_entry(block);
 324   }
 325 }
 326 
 327 
 328 void LIRGenerator::block_do_epilog(BlockBegin* block) {
 329 #ifndef PRODUCT
 330   if (PrintIRWithLIR) {
 331     tty->cr();
 332   }
 333 #endif
 334 
 335   // LIR_Opr for unpinned constants shouldn't be referenced by other
 336   // blocks so clear them out after processing the block.
 337   for (int i = 0; i < _unpinned_constants.length(); i++) {
 338     _unpinned_constants.at(i)->clear_operand();
 339   }
 340   _unpinned_constants.trunc_to(0);
 341 
 342   // clear our any registers for other local constants
 343   _constants.trunc_to(0);
 344   _reg_for_constants.trunc_to(0);
 345 }
 346 
 347 
 348 void LIRGenerator::block_do(BlockBegin* block) {
 349   CHECK_BAILOUT();
 350 
 351   block_do_prolog(block);
 352   set_block(block);
 353 
 354   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
 355     if (instr->is_pinned()) do_root(instr);
 356   }
 357 
 358   set_block(NULL);
 359   block_do_epilog(block);
 360 }
 361 
 362 
 363 //-------------------------LIRGenerator-----------------------------
 364 
 365 // This is where the tree-walk starts; instr must be root;
 366 void LIRGenerator::do_root(Value instr) {
 367   CHECK_BAILOUT();
 368 
 369   InstructionMark im(compilation(), instr);
 370 
 371   assert(instr->is_pinned(), "use only with roots");
 372   assert(instr->subst() == instr, "shouldn't have missed substitution");
 373 
 374   instr->visit(this);
 375 
 376   assert(!instr->has_uses() || instr->operand()->is_valid() ||
 377          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
 378 }
 379 
 380 
 381 // This is called for each node in tree; the walk stops if a root is reached
 382 void LIRGenerator::walk(Value instr) {
 383   InstructionMark im(compilation(), instr);
 384   //stop walk when encounter a root
 385   if ((instr->is_pinned() && instr->as_Phi() == NULL) || instr->operand()->is_valid()) {
 386     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
 387   } else {
 388     assert(instr->subst() == instr, "shouldn't have missed substitution");
 389     instr->visit(this);
 390     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
 391   }
 392 }
 393 
 394 
 395 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
 396   assert(state != NULL, "state must be defined");
 397 
 398 #ifndef PRODUCT
 399   state->verify();
 400 #endif
 401 
 402   ValueStack* s = state;
 403   for_each_state(s) {
 404     if (s->kind() == ValueStack::EmptyExceptionState) {
 405       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
 406       continue;
 407     }
 408 
 409     int index;
 410     Value value;
 411     for_each_stack_value(s, index, value) {
 412       assert(value->subst() == value, "missed substitution");
 413       if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 414         walk(value);
 415         assert(value->operand()->is_valid(), "must be evaluated now");
 416       }
 417     }
 418 
 419     int bci = s->bci();
 420     IRScope* scope = s->scope();
 421     ciMethod* method = scope->method();
 422 
 423     MethodLivenessResult liveness = method->liveness_at_bci(bci);
 424     if (bci == SynchronizationEntryBCI) {
 425       if (x->as_ExceptionObject() || x->as_Throw()) {
 426         // all locals are dead on exit from the synthetic unlocker
 427         liveness.clear();
 428       } else {
 429         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
 430       }
 431     }
 432     if (!liveness.is_valid()) {
 433       // Degenerate or breakpointed method.
 434       bailout("Degenerate or breakpointed method");
 435     } else {
 436       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
 437       for_each_local_value(s, index, value) {
 438         assert(value->subst() == value, "missed substitution");
 439         if (liveness.at(index) && !value->type()->is_illegal()) {
 440           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 441             walk(value);
 442             assert(value->operand()->is_valid(), "must be evaluated now");
 443           }
 444         } else {
 445           // NULL out this local so that linear scan can assume that all non-NULL values are live.
 446           s->invalidate_local(index);
 447         }
 448       }
 449     }
 450   }
 451 
 452   return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
 453 }
 454 
 455 
 456 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
 457   return state_for(x, x->exception_state());
 458 }
 459 
 460 
 461 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
 462   /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if tiered compilation
 463    * is active and the class hasn't yet been resolved we need to emit a patch that resolves
 464    * the class. */
 465   if ((!CompilerConfig::is_c1_only_no_jvmci() && need_resolve) || !obj->is_loaded() || PatchALot) {
 466     assert(info != NULL, "info must be set if class is not loaded");
 467     __ klass2reg_patch(NULL, r, info);
 468   } else {
 469     // no patching needed
 470     __ metadata2reg(obj->constant_encoding(), r);
 471   }
 472 }
 473 
 474 
 475 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
 476                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
 477   CodeStub* stub = new RangeCheckStub(range_check_info, index, array);
 478   if (index->is_constant()) {
 479     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
 480                 index->as_jint(), null_check_info);
 481     __ branch(lir_cond_belowEqual, stub); // forward branch
 482   } else {
 483     cmp_reg_mem(lir_cond_aboveEqual, index, array,
 484                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
 485     __ branch(lir_cond_aboveEqual, stub); // forward branch
 486   }
 487 }
 488 
 489 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp_op, CodeEmitInfo* info) {
 490   LIR_Opr result_op = result;
 491   LIR_Opr left_op   = left;
 492   LIR_Opr right_op  = right;
 493 
 494   if (TwoOperandLIRForm && left_op != result_op) {
 495     assert(right_op != result_op, "malformed");
 496     __ move(left_op, result_op);
 497     left_op = result_op;
 498   }
 499 
 500   switch(code) {
 501     case Bytecodes::_dadd:
 502     case Bytecodes::_fadd:
 503     case Bytecodes::_ladd:
 504     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
 505     case Bytecodes::_fmul:
 506     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
 507 
 508     case Bytecodes::_dmul:  __ mul(left_op, right_op, result_op, tmp_op); break;
 509 
 510     case Bytecodes::_imul:
 511       {
 512         bool did_strength_reduce = false;
 513 
 514         if (right->is_constant()) {
 515           jint c = right->as_jint();
 516           if (c > 0 && is_power_of_2(c)) {
 517             // do not need tmp here
 518             __ shift_left(left_op, exact_log2(c), result_op);
 519             did_strength_reduce = true;
 520           } else {
 521             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
 522           }
 523         }
 524         // we couldn't strength reduce so just emit the multiply
 525         if (!did_strength_reduce) {
 526           __ mul(left_op, right_op, result_op);
 527         }
 528       }
 529       break;
 530 
 531     case Bytecodes::_dsub:
 532     case Bytecodes::_fsub:
 533     case Bytecodes::_lsub:
 534     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
 535 
 536     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
 537     // ldiv and lrem are implemented with a direct runtime call
 538 
 539     case Bytecodes::_ddiv: __ div(left_op, right_op, result_op, tmp_op); break;
 540 
 541     case Bytecodes::_drem:
 542     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
 543 
 544     default: ShouldNotReachHere();
 545   }
 546 }
 547 
 548 
 549 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 550   arithmetic_op(code, result, left, right, tmp);
 551 }
 552 
 553 
 554 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
 555   arithmetic_op(code, result, left, right, LIR_OprFact::illegalOpr, info);
 556 }
 557 
 558 
 559 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 560   arithmetic_op(code, result, left, right, tmp);
 561 }
 562 
 563 
 564 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
 565 
 566   if (TwoOperandLIRForm && value != result_op
 567       // Only 32bit right shifts require two operand form on S390.
 568       S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) {
 569     assert(count != result_op, "malformed");
 570     __ move(value, result_op);
 571     value = result_op;
 572   }
 573 
 574   assert(count->is_constant() || count->is_register(), "must be");
 575   switch(code) {
 576   case Bytecodes::_ishl:
 577   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
 578   case Bytecodes::_ishr:
 579   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
 580   case Bytecodes::_iushr:
 581   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
 582   default: ShouldNotReachHere();
 583   }
 584 }
 585 
 586 
 587 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
 588   if (TwoOperandLIRForm && left_op != result_op) {
 589     assert(right_op != result_op, "malformed");
 590     __ move(left_op, result_op);
 591     left_op = result_op;
 592   }
 593 
 594   switch(code) {
 595     case Bytecodes::_iand:
 596     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 597 
 598     case Bytecodes::_ior:
 599     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 600 
 601     case Bytecodes::_ixor:
 602     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 603 
 604     default: ShouldNotReachHere();
 605   }
 606 }
 607 
 608 
 609 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr tmp1, LIR_Opr tmp2, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
 610   if (!GenerateSynchronizationCode) return;
 611   // for slow path, use debug info for state after successful locking
 612   CodeStub* slow_path = new MonitorEnterStub(object, info);
 613   __ load_stack_address_monitor(monitor_no, lock);
 614   __ move(object, new LIR_Address(lock, BasicObjectLock::obj_offset_in_bytes(), T_ADDRESS));
 615   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 616   __ lock_object(hdr, object, tmp1, tmp2, slow_path, info_for_exception);
 617 }
 618 
 619 
 620 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 621   if (!GenerateSynchronizationCode) return;
 622   // setup registers
 623   CodeStub* slow_path = new MonitorExitStub(object);
 624   __ load_stack_address_monitor(monitor_no, lock);
 625   __ move(new LIR_Address(lock, BasicObjectLock::obj_offset_in_bytes(),T_ADDRESS), object);
 626   __ unlock_object(new_hdr, object, lock, scratch, slow_path);
 627 }
 628 
 629 #ifndef PRODUCT
 630 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
 631   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
 632     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
 633   } else if (PrintNotLoaded && (!CompilerConfig::is_c1_only_no_jvmci() && new_instance->is_unresolved())) {
 634     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
 635   }
 636 }
 637 #endif
 638 
 639 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 640   klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
 641   // If klass is not loaded we do not know if the klass has finalizers:
 642   if (UseFastNewInstance && klass->is_loaded()
 643       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 644 
 645     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
 646 
 647     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 648 
 649     assert(klass->is_loaded(), "must be loaded");
 650     // allocate space for instance
 651     assert(klass->size_helper() > 0, "illegal instance size");
 652     const int instance_size = align_object_size(klass->size_helper());
 653     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 654                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 655   } else {
 656     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
 657     __ branch(lir_cond_always, slow_path);
 658     __ branch_destination(slow_path->continuation());
 659   }
 660 }
 661 
 662 
 663 static bool is_constant_zero(Instruction* inst) {
 664   IntConstant* c = inst->type()->as_IntConstant();
 665   if (c) {
 666     return (c->value() == 0);
 667   }
 668   return false;
 669 }
 670 
 671 
 672 static bool positive_constant(Instruction* inst) {
 673   IntConstant* c = inst->type()->as_IntConstant();
 674   if (c) {
 675     return (c->value() >= 0);
 676   }
 677   return false;
 678 }
 679 
 680 
 681 static ciArrayKlass* as_array_klass(ciType* type) {
 682   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
 683     return (ciArrayKlass*)type;
 684   } else {
 685     return NULL;
 686   }
 687 }
 688 
 689 static ciType* phi_declared_type(Phi* phi) {
 690   ciType* t = phi->operand_at(0)->declared_type();
 691   if (t == NULL) {
 692     return NULL;
 693   }
 694   for(int i = 1; i < phi->operand_count(); i++) {
 695     if (t != phi->operand_at(i)->declared_type()) {
 696       return NULL;
 697     }
 698   }
 699   return t;
 700 }
 701 
 702 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
 703   Instruction* src     = x->argument_at(0);
 704   Instruction* src_pos = x->argument_at(1);
 705   Instruction* dst     = x->argument_at(2);
 706   Instruction* dst_pos = x->argument_at(3);
 707   Instruction* length  = x->argument_at(4);
 708 
 709   // first try to identify the likely type of the arrays involved
 710   ciArrayKlass* expected_type = NULL;
 711   bool is_exact = false, src_objarray = false, dst_objarray = false;
 712   {
 713     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
 714     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
 715     Phi* phi;
 716     if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
 717       src_declared_type = as_array_klass(phi_declared_type(phi));
 718     }
 719     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
 720     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
 721     if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
 722       dst_declared_type = as_array_klass(phi_declared_type(phi));
 723     }
 724 
 725     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
 726       // the types exactly match so the type is fully known
 727       is_exact = true;
 728       expected_type = src_exact_type;
 729     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
 730       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 731       ciArrayKlass* src_type = NULL;
 732       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
 733         src_type = (ciArrayKlass*) src_exact_type;
 734       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
 735         src_type = (ciArrayKlass*) src_declared_type;
 736       }
 737       if (src_type != NULL) {
 738         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 739           is_exact = true;
 740           expected_type = dst_type;
 741         }
 742       }
 743     }
 744     // at least pass along a good guess
 745     if (expected_type == NULL) expected_type = dst_exact_type;
 746     if (expected_type == NULL) expected_type = src_declared_type;
 747     if (expected_type == NULL) expected_type = dst_declared_type;
 748 
 749     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 750     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 751   }
 752 
 753   // if a probable array type has been identified, figure out if any
 754   // of the required checks for a fast case can be elided.
 755   int flags = LIR_OpArrayCopy::all_flags;
 756 
 757   if (!src_objarray)
 758     flags &= ~LIR_OpArrayCopy::src_objarray;
 759   if (!dst_objarray)
 760     flags &= ~LIR_OpArrayCopy::dst_objarray;
 761 
 762   if (!x->arg_needs_null_check(0))
 763     flags &= ~LIR_OpArrayCopy::src_null_check;
 764   if (!x->arg_needs_null_check(2))
 765     flags &= ~LIR_OpArrayCopy::dst_null_check;
 766 
 767 
 768   if (expected_type != NULL) {
 769     Value length_limit = NULL;
 770 
 771     IfOp* ifop = length->as_IfOp();
 772     if (ifop != NULL) {
 773       // look for expressions like min(v, a.length) which ends up as
 774       //   x > y ? y : x  or  x >= y ? y : x
 775       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 776           ifop->x() == ifop->fval() &&
 777           ifop->y() == ifop->tval()) {
 778         length_limit = ifop->y();
 779       }
 780     }
 781 
 782     // try to skip null checks and range checks
 783     NewArray* src_array = src->as_NewArray();
 784     if (src_array != NULL) {
 785       flags &= ~LIR_OpArrayCopy::src_null_check;
 786       if (length_limit != NULL &&
 787           src_array->length() == length_limit &&
 788           is_constant_zero(src_pos)) {
 789         flags &= ~LIR_OpArrayCopy::src_range_check;
 790       }
 791     }
 792 
 793     NewArray* dst_array = dst->as_NewArray();
 794     if (dst_array != NULL) {
 795       flags &= ~LIR_OpArrayCopy::dst_null_check;
 796       if (length_limit != NULL &&
 797           dst_array->length() == length_limit &&
 798           is_constant_zero(dst_pos)) {
 799         flags &= ~LIR_OpArrayCopy::dst_range_check;
 800       }
 801     }
 802 
 803     // check from incoming constant values
 804     if (positive_constant(src_pos))
 805       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
 806     if (positive_constant(dst_pos))
 807       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
 808     if (positive_constant(length))
 809       flags &= ~LIR_OpArrayCopy::length_positive_check;
 810 
 811     // see if the range check can be elided, which might also imply
 812     // that src or dst is non-null.
 813     ArrayLength* al = length->as_ArrayLength();
 814     if (al != NULL) {
 815       if (al->array() == src) {
 816         // it's the length of the source array
 817         flags &= ~LIR_OpArrayCopy::length_positive_check;
 818         flags &= ~LIR_OpArrayCopy::src_null_check;
 819         if (is_constant_zero(src_pos))
 820           flags &= ~LIR_OpArrayCopy::src_range_check;
 821       }
 822       if (al->array() == dst) {
 823         // it's the length of the destination array
 824         flags &= ~LIR_OpArrayCopy::length_positive_check;
 825         flags &= ~LIR_OpArrayCopy::dst_null_check;
 826         if (is_constant_zero(dst_pos))
 827           flags &= ~LIR_OpArrayCopy::dst_range_check;
 828       }
 829     }
 830     if (is_exact) {
 831       flags &= ~LIR_OpArrayCopy::type_check;
 832     }
 833   }
 834 
 835   IntConstant* src_int = src_pos->type()->as_IntConstant();
 836   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
 837   if (src_int && dst_int) {
 838     int s_offs = src_int->value();
 839     int d_offs = dst_int->value();
 840     if (src_int->value() >= dst_int->value()) {
 841       flags &= ~LIR_OpArrayCopy::overlapping;
 842     }
 843     if (expected_type != NULL) {
 844       BasicType t = expected_type->element_type()->basic_type();
 845       int element_size = type2aelembytes(t);
 846       if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
 847           ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
 848         flags &= ~LIR_OpArrayCopy::unaligned;
 849       }
 850     }
 851   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
 852     // src and dest positions are the same, or dst is zero so assume
 853     // nonoverlapping copy.
 854     flags &= ~LIR_OpArrayCopy::overlapping;
 855   }
 856 
 857   if (src == dst) {
 858     // moving within a single array so no type checks are needed
 859     if (flags & LIR_OpArrayCopy::type_check) {
 860       flags &= ~LIR_OpArrayCopy::type_check;
 861     }
 862   }
 863   *flagsp = flags;
 864   *expected_typep = (ciArrayKlass*)expected_type;
 865 }
 866 
 867 
 868 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
 869   assert(opr->is_register(), "why spill if item is not register?");
 870 
 871   if (strict_fp_requires_explicit_rounding) {
 872 #ifdef IA32
 873     if (UseSSE < 1 && opr->is_single_fpu()) {
 874       LIR_Opr result = new_register(T_FLOAT);
 875       set_vreg_flag(result, must_start_in_memory);
 876       assert(opr->is_register(), "only a register can be spilled");
 877       assert(opr->value_type()->is_float(), "rounding only for floats available");
 878       __ roundfp(opr, LIR_OprFact::illegalOpr, result);
 879       return result;
 880     }
 881 #else
 882     Unimplemented();
 883 #endif // IA32
 884   }
 885   return opr;
 886 }
 887 
 888 
 889 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 890   assert(type2size[t] == type2size[value->type()],
 891          "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type()));
 892   if (!value->is_register()) {
 893     // force into a register
 894     LIR_Opr r = new_register(value->type());
 895     __ move(value, r);
 896     value = r;
 897   }
 898 
 899   // create a spill location
 900   LIR_Opr tmp = new_register(t);
 901   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 902 
 903   // move from register to spill
 904   __ move(value, tmp);
 905   return tmp;
 906 }
 907 
 908 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
 909   if (if_instr->should_profile()) {
 910     ciMethod* method = if_instr->profiled_method();
 911     assert(method != NULL, "method should be set if branch is profiled");
 912     ciMethodData* md = method->method_data_or_null();
 913     assert(md != NULL, "Sanity");
 914     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
 915     assert(data != NULL, "must have profiling data");
 916     assert(data->is_BranchData(), "need BranchData for two-way branches");
 917     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
 918     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
 919     if (if_instr->is_swapped()) {
 920       int t = taken_count_offset;
 921       taken_count_offset = not_taken_count_offset;
 922       not_taken_count_offset = t;
 923     }
 924 
 925     LIR_Opr md_reg = new_register(T_METADATA);
 926     __ metadata2reg(md->constant_encoding(), md_reg);
 927 
 928     LIR_Opr data_offset_reg = new_pointer_register();
 929     __ cmove(lir_cond(cond),
 930              LIR_OprFact::intptrConst(taken_count_offset),
 931              LIR_OprFact::intptrConst(not_taken_count_offset),
 932              data_offset_reg, as_BasicType(if_instr->x()->type()));
 933 
 934     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
 935     LIR_Opr data_reg = new_pointer_register();
 936     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
 937     __ move(data_addr, data_reg);
 938     // Use leal instead of add to avoid destroying condition codes on x86
 939     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
 940     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
 941     __ move(data_reg, data_addr);
 942   }
 943 }
 944 
 945 // Phi technique:
 946 // This is about passing live values from one basic block to the other.
 947 // In code generated with Java it is rather rare that more than one
 948 // value is on the stack from one basic block to the other.
 949 // We optimize our technique for efficient passing of one value
 950 // (of type long, int, double..) but it can be extended.
 951 // When entering or leaving a basic block, all registers and all spill
 952 // slots are release and empty. We use the released registers
 953 // and spill slots to pass the live values from one block
 954 // to the other. The topmost value, i.e., the value on TOS of expression
 955 // stack is passed in registers. All other values are stored in spilling
 956 // area. Every Phi has an index which designates its spill slot
 957 // At exit of a basic block, we fill the register(s) and spill slots.
 958 // At entry of a basic block, the block_prolog sets up the content of phi nodes
 959 // and locks necessary registers and spilling slots.
 960 
 961 
 962 // move current value to referenced phi function
 963 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
 964   Phi* phi = sux_val->as_Phi();
 965   // cur_val can be null without phi being null in conjunction with inlining
 966   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
 967     if (phi->is_local()) {
 968       for (int i = 0; i < phi->operand_count(); i++) {
 969         Value op = phi->operand_at(i);
 970         if (op != NULL && op->type()->is_illegal()) {
 971           bailout("illegal phi operand");
 972         }
 973       }
 974     }
 975     Phi* cur_phi = cur_val->as_Phi();
 976     if (cur_phi != NULL && cur_phi->is_illegal()) {
 977       // Phi and local would need to get invalidated
 978       // (which is unexpected for Linear Scan).
 979       // But this case is very rare so we simply bail out.
 980       bailout("propagation of illegal phi");
 981       return;
 982     }
 983     LIR_Opr operand = cur_val->operand();
 984     if (operand->is_illegal()) {
 985       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
 986              "these can be produced lazily");
 987       operand = operand_for_instruction(cur_val);
 988     }
 989     resolver->move(operand, operand_for_instruction(phi));
 990   }
 991 }
 992 
 993 
 994 // Moves all stack values into their PHI position
 995 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
 996   BlockBegin* bb = block();
 997   if (bb->number_of_sux() == 1) {
 998     BlockBegin* sux = bb->sux_at(0);
 999     assert(sux->number_of_preds() > 0, "invalid CFG");
1000 
1001     // a block with only one predecessor never has phi functions
1002     if (sux->number_of_preds() > 1) {
1003       PhiResolver resolver(this);
1004 
1005       ValueStack* sux_state = sux->state();
1006       Value sux_value;
1007       int index;
1008 
1009       assert(cur_state->scope() == sux_state->scope(), "not matching");
1010       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1011       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1012 
1013       for_each_stack_value(sux_state, index, sux_value) {
1014         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1015       }
1016 
1017       for_each_local_value(sux_state, index, sux_value) {
1018         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1019       }
1020 
1021       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1022     }
1023   }
1024 }
1025 
1026 
1027 LIR_Opr LIRGenerator::new_register(BasicType type) {
1028   int vreg_num = _virtual_register_number;
1029   // Add a little fudge factor for the bailout since the bailout is only checked periodically. This allows us to hand out
1030   // a few extra registers before we really run out which helps to avoid to trip over assertions.
1031   if (vreg_num + 20 >= LIR_Opr::vreg_max) {
1032     bailout("out of virtual registers in LIR generator");
1033     if (vreg_num + 2 >= LIR_Opr::vreg_max) {
1034       // Wrap it around and continue until bailout really happens to avoid hitting assertions.
1035       _virtual_register_number = LIR_Opr::vreg_base;
1036       vreg_num = LIR_Opr::vreg_base;
1037     }
1038   }
1039   _virtual_register_number += 1;
1040   LIR_Opr vreg = LIR_OprFact::virtual_register(vreg_num, type);
1041   assert(vreg != LIR_OprFact::illegal(), "ran out of virtual registers");
1042   return vreg;
1043 }
1044 
1045 
1046 // Try to lock using register in hint
1047 LIR_Opr LIRGenerator::rlock(Value instr) {
1048   return new_register(instr->type());
1049 }
1050 
1051 
1052 // does an rlock and sets result
1053 LIR_Opr LIRGenerator::rlock_result(Value x) {
1054   LIR_Opr reg = rlock(x);
1055   set_result(x, reg);
1056   return reg;
1057 }
1058 
1059 
1060 // does an rlock and sets result
1061 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1062   LIR_Opr reg;
1063   switch (type) {
1064   case T_BYTE:
1065   case T_BOOLEAN:
1066     reg = rlock_byte(type);
1067     break;
1068   default:
1069     reg = rlock(x);
1070     break;
1071   }
1072 
1073   set_result(x, reg);
1074   return reg;
1075 }
1076 
1077 
1078 //---------------------------------------------------------------------
1079 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1080   ObjectType* oc = value->type()->as_ObjectType();
1081   if (oc) {
1082     return oc->constant_value();
1083   }
1084   return NULL;
1085 }
1086 
1087 
1088 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1089   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1090   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1091 
1092   // no moves are created for phi functions at the begin of exception
1093   // handlers, so assign operands manually here
1094   for_each_phi_fun(block(), phi,
1095                    if (!phi->is_illegal()) { operand_for_instruction(phi); });
1096 
1097   LIR_Opr thread_reg = getThreadPointer();
1098   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1099                exceptionOopOpr());
1100   __ move_wide(LIR_OprFact::oopConst(NULL),
1101                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1102   __ move_wide(LIR_OprFact::oopConst(NULL),
1103                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1104 
1105   LIR_Opr result = new_register(T_OBJECT);
1106   __ move(exceptionOopOpr(), result);
1107   set_result(x, result);
1108 }
1109 
1110 
1111 //----------------------------------------------------------------------
1112 //----------------------------------------------------------------------
1113 //----------------------------------------------------------------------
1114 //----------------------------------------------------------------------
1115 //                        visitor functions
1116 //----------------------------------------------------------------------
1117 //----------------------------------------------------------------------
1118 //----------------------------------------------------------------------
1119 //----------------------------------------------------------------------
1120 
1121 void LIRGenerator::do_Phi(Phi* x) {
1122   // phi functions are never visited directly
1123   ShouldNotReachHere();
1124 }
1125 
1126 
1127 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1128 void LIRGenerator::do_Constant(Constant* x) {
1129   if (x->state_before() != NULL) {
1130     // Any constant with a ValueStack requires patching so emit the patch here
1131     LIR_Opr reg = rlock_result(x);
1132     CodeEmitInfo* info = state_for(x, x->state_before());
1133     __ oop2reg_patch(NULL, reg, info);
1134   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1135     if (!x->is_pinned()) {
1136       // unpinned constants are handled specially so that they can be
1137       // put into registers when they are used multiple times within a
1138       // block.  After the block completes their operand will be
1139       // cleared so that other blocks can't refer to that register.
1140       set_result(x, load_constant(x));
1141     } else {
1142       LIR_Opr res = x->operand();
1143       if (!res->is_valid()) {
1144         res = LIR_OprFact::value_type(x->type());
1145       }
1146       if (res->is_constant()) {
1147         LIR_Opr reg = rlock_result(x);
1148         __ move(res, reg);
1149       } else {
1150         set_result(x, res);
1151       }
1152     }
1153   } else {
1154     set_result(x, LIR_OprFact::value_type(x->type()));
1155   }
1156 }
1157 
1158 
1159 void LIRGenerator::do_Local(Local* x) {
1160   // operand_for_instruction has the side effect of setting the result
1161   // so there's no need to do it here.
1162   operand_for_instruction(x);
1163 }
1164 
1165 
1166 void LIRGenerator::do_Return(Return* x) {
1167   if (compilation()->env()->dtrace_method_probes()) {
1168     BasicTypeList signature;
1169     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1170     signature.append(T_METADATA); // Method*
1171     LIR_OprList* args = new LIR_OprList();
1172     args->append(getThreadPointer());
1173     LIR_Opr meth = new_register(T_METADATA);
1174     __ metadata2reg(method()->constant_encoding(), meth);
1175     args->append(meth);
1176     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1177   }
1178 
1179   if (x->type()->is_void()) {
1180     __ return_op(LIR_OprFact::illegalOpr);
1181   } else {
1182     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1183     LIRItem result(x->result(), this);
1184 
1185     result.load_item_force(reg);
1186     __ return_op(result.result());
1187   }
1188   set_no_result(x);
1189 }
1190 
1191 // Example: ref.get()
1192 // Combination of LoadField and g1 pre-write barrier
1193 void LIRGenerator::do_Reference_get(Intrinsic* x) {
1194 
1195   const int referent_offset = java_lang_ref_Reference::referent_offset();
1196 
1197   assert(x->number_of_arguments() == 1, "wrong type");
1198 
1199   LIRItem reference(x->argument_at(0), this);
1200   reference.load_item();
1201 
1202   // need to perform the null check on the reference object
1203   CodeEmitInfo* info = NULL;
1204   if (x->needs_null_check()) {
1205     info = state_for(x);
1206   }
1207 
1208   LIR_Opr result = rlock_result(x, T_OBJECT);
1209   access_load_at(IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT,
1210                  reference, LIR_OprFact::intConst(referent_offset), result);
1211 }
1212 
1213 // Example: clazz.isInstance(object)
1214 void LIRGenerator::do_isInstance(Intrinsic* x) {
1215   assert(x->number_of_arguments() == 2, "wrong type");
1216 
1217   // TODO could try to substitute this node with an equivalent InstanceOf
1218   // if clazz is known to be a constant Class. This will pick up newly found
1219   // constants after HIR construction. I'll leave this to a future change.
1220 
1221   // as a first cut, make a simple leaf call to runtime to stay platform independent.
1222   // could follow the aastore example in a future change.
1223 
1224   LIRItem clazz(x->argument_at(0), this);
1225   LIRItem object(x->argument_at(1), this);
1226   clazz.load_item();
1227   object.load_item();
1228   LIR_Opr result = rlock_result(x);
1229 
1230   // need to perform null check on clazz
1231   if (x->needs_null_check()) {
1232     CodeEmitInfo* info = state_for(x);
1233     __ null_check(clazz.result(), info);
1234   }
1235 
1236   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1237                                      CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
1238                                      x->type(),
1239                                      NULL); // NULL CodeEmitInfo results in a leaf call
1240   __ move(call_result, result);
1241 }
1242 
1243 void LIRGenerator::load_klass(LIR_Opr obj, LIR_Opr klass, CodeEmitInfo* null_check_info) {
1244   CodeStub* slow_path = new LoadKlassStub(obj, klass);
1245   __ load_klass(obj, klass, null_check_info, slow_path);
1246 }
1247 
1248 // Example: object.getClass ()
1249 void LIRGenerator::do_getClass(Intrinsic* x) {
1250   assert(x->number_of_arguments() == 1, "wrong type");
1251 
1252   LIRItem rcvr(x->argument_at(0), this);
1253   rcvr.load_item();
1254   LIR_Opr temp = new_register(T_ADDRESS);
1255   LIR_Opr result = rlock_result(x);
1256 
1257   // need to perform the null check on the rcvr
1258   CodeEmitInfo* info = NULL;
1259   if (x->needs_null_check()) {
1260     info = state_for(x);
1261   }
1262 
1263   LIR_Opr klass = new_register(T_METADATA);
1264   load_klass(rcvr.result(), klass, info);
1265   __ move_wide(new LIR_Address(klass, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), temp);
1266   // mirror = ((OopHandle)mirror)->resolve();
1267   access_load(IN_NATIVE, T_OBJECT,
1268               LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), result);
1269 }
1270 
1271 // java.lang.Class::isPrimitive()
1272 void LIRGenerator::do_isPrimitive(Intrinsic* x) {
1273   assert(x->number_of_arguments() == 1, "wrong type");
1274 
1275   LIRItem rcvr(x->argument_at(0), this);
1276   rcvr.load_item();
1277   LIR_Opr temp = new_register(T_METADATA);
1278   LIR_Opr result = rlock_result(x);
1279 
1280   CodeEmitInfo* info = NULL;
1281   if (x->needs_null_check()) {
1282     info = state_for(x);
1283   }
1284 
1285   __ move(new LIR_Address(rcvr.result(), java_lang_Class::klass_offset(), T_ADDRESS), temp, info);
1286   __ cmp(lir_cond_notEqual, temp, LIR_OprFact::metadataConst(0));
1287   __ cmove(lir_cond_notEqual, LIR_OprFact::intConst(0), LIR_OprFact::intConst(1), result, T_BOOLEAN);
1288 }
1289 
1290 // Example: Foo.class.getModifiers()
1291 void LIRGenerator::do_getModifiers(Intrinsic* x) {
1292   assert(x->number_of_arguments() == 1, "wrong type");
1293 
1294   LIRItem receiver(x->argument_at(0), this);
1295   receiver.load_item();
1296   LIR_Opr result = rlock_result(x);
1297 
1298   CodeEmitInfo* info = NULL;
1299   if (x->needs_null_check()) {
1300     info = state_for(x);
1301   }
1302 
1303   // While reading off the universal constant mirror is less efficient than doing
1304   // another branch and returning the constant answer, this branchless code runs into
1305   // much less risk of confusion for C1 register allocator. The choice of the universe
1306   // object here is correct as long as it returns the same modifiers we would expect
1307   // from the primitive class itself. See spec for Class.getModifiers that provides
1308   // the typed array klasses with similar modifiers as their component types.
1309 
1310   Klass* univ_klass_obj = Universe::byteArrayKlassObj();
1311   assert(univ_klass_obj->modifier_flags() == (JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC), "Sanity");
1312   LIR_Opr prim_klass = LIR_OprFact::metadataConst(univ_klass_obj);
1313 
1314   LIR_Opr recv_klass = new_register(T_METADATA);
1315   __ move(new LIR_Address(receiver.result(), java_lang_Class::klass_offset(), T_ADDRESS), recv_klass, info);
1316 
1317   // Check if this is a Java mirror of primitive type, and select the appropriate klass.
1318   LIR_Opr klass = new_register(T_METADATA);
1319   __ cmp(lir_cond_equal, recv_klass, LIR_OprFact::metadataConst(0));
1320   __ cmove(lir_cond_equal, prim_klass, recv_klass, klass, T_ADDRESS);
1321 
1322   // Get the answer.
1323   __ move(new LIR_Address(klass, in_bytes(Klass::modifier_flags_offset()), T_INT), result);
1324 }
1325 
1326 void LIRGenerator::do_getObjectSize(Intrinsic* x) {
1327   assert(x->number_of_arguments() == 3, "wrong type");
1328   LIR_Opr result_reg = rlock_result(x);
1329 
1330   LIRItem value(x->argument_at(2), this);
1331   value.load_item();
1332 
1333   LIR_Opr klass = new_register(T_METADATA);
1334   load_klass(value.result(), klass, NULL);
1335   LIR_Opr layout = new_register(T_INT);
1336   __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
1337 
1338   LabelObj* L_done = new LabelObj();
1339   LabelObj* L_array = new LabelObj();
1340 
1341   __ cmp(lir_cond_lessEqual, layout, 0);
1342   __ branch(lir_cond_lessEqual, L_array->label());
1343 
1344   // Instance case: the layout helper gives us instance size almost directly,
1345   // but we need to mask out the _lh_instance_slow_path_bit.
1346 
1347   assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
1348 
1349   LIR_Opr mask = load_immediate(~(jint) right_n_bits(LogBytesPerLong), T_INT);
1350   __ logical_and(layout, mask, layout);
1351   __ convert(Bytecodes::_i2l, layout, result_reg);
1352 
1353   __ branch(lir_cond_always, L_done->label());
1354 
1355   // Array case: size is round(header + element_size*arraylength).
1356   // Since arraylength is different for every array instance, we have to
1357   // compute the whole thing at runtime.
1358 
1359   __ branch_destination(L_array->label());
1360 
1361   int round_mask = MinObjAlignmentInBytes - 1;
1362 
1363   // Figure out header sizes first.
1364   LIR_Opr hss = load_immediate(Klass::_lh_header_size_shift, T_INT);
1365   LIR_Opr hsm = load_immediate(Klass::_lh_header_size_mask, T_INT);
1366 
1367   LIR_Opr header_size = new_register(T_INT);
1368   __ move(layout, header_size);
1369   LIR_Opr tmp = new_register(T_INT);
1370   __ unsigned_shift_right(header_size, hss, header_size, tmp);
1371   __ logical_and(header_size, hsm, header_size);
1372   __ add(header_size, LIR_OprFact::intConst(round_mask), header_size);
1373 
1374   // Figure out the array length in bytes
1375   assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
1376   LIR_Opr l2esm = load_immediate(Klass::_lh_log2_element_size_mask, T_INT);
1377   __ logical_and(layout, l2esm, layout);
1378 
1379   LIR_Opr length_int = new_register(T_INT);
1380   __ move(new LIR_Address(value.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), length_int);
1381 
1382 #ifdef _LP64
1383   LIR_Opr length = new_register(T_LONG);
1384   __ convert(Bytecodes::_i2l, length_int, length);
1385 #endif
1386 
1387   // Shift-left awkwardness. Normally it is just:
1388   //   __ shift_left(length, layout, length);
1389   // But C1 cannot perform shift_left with non-constant count, so we end up
1390   // doing the per-bit loop dance here. x86_32 also does not know how to shift
1391   // longs, so we have to act on ints.
1392   LabelObj* L_shift_loop = new LabelObj();
1393   LabelObj* L_shift_exit = new LabelObj();
1394 
1395   __ branch_destination(L_shift_loop->label());
1396   __ cmp(lir_cond_equal, layout, 0);
1397   __ branch(lir_cond_equal, L_shift_exit->label());
1398 
1399 #ifdef _LP64
1400   __ shift_left(length, 1, length);
1401 #else
1402   __ shift_left(length_int, 1, length_int);
1403 #endif
1404 
1405   __ sub(layout, LIR_OprFact::intConst(1), layout);
1406 
1407   __ branch(lir_cond_always, L_shift_loop->label());
1408   __ branch_destination(L_shift_exit->label());
1409 
1410   // Mix all up, round, and push to the result.
1411 #ifdef _LP64
1412   LIR_Opr header_size_long = new_register(T_LONG);
1413   __ convert(Bytecodes::_i2l, header_size, header_size_long);
1414   __ add(length, header_size_long, length);
1415   if (round_mask != 0) {
1416     LIR_Opr round_mask_opr = load_immediate(~(jlong)round_mask, T_LONG);
1417     __ logical_and(length, round_mask_opr, length);
1418   }
1419   __ move(length, result_reg);
1420 #else
1421   __ add(length_int, header_size, length_int);
1422   if (round_mask != 0) {
1423     LIR_Opr round_mask_opr = load_immediate(~round_mask, T_INT);
1424     __ logical_and(length_int, round_mask_opr, length_int);
1425   }
1426   __ convert(Bytecodes::_i2l, length_int, result_reg);
1427 #endif
1428 
1429   __ branch_destination(L_done->label());
1430 }
1431 
1432 void LIRGenerator::do_extentLocalCache(Intrinsic* x) {
1433   do_JavaThreadField(x, JavaThread::extentLocalCache_offset());
1434 }
1435 
1436 // Example: Thread.currentCarrierThread()
1437 void LIRGenerator::do_currentCarrierThread(Intrinsic* x) {
1438   do_JavaThreadField(x, JavaThread::threadObj_offset());
1439 }
1440 
1441 void LIRGenerator::do_vthread(Intrinsic* x) {
1442   do_JavaThreadField(x, JavaThread::vthread_offset());
1443 }
1444 
1445 void LIRGenerator::do_JavaThreadField(Intrinsic* x, ByteSize offset) {
1446   assert(x->number_of_arguments() == 0, "wrong type");
1447   LIR_Opr temp = new_register(T_ADDRESS);
1448   LIR_Opr reg = rlock_result(x);
1449   __ move(new LIR_Address(getThreadPointer(), in_bytes(offset), T_ADDRESS), temp);
1450   access_load(IN_NATIVE, T_OBJECT,
1451               LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), reg);
1452 }
1453 
1454 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1455   assert(x->number_of_arguments() == 1, "wrong type");
1456   LIRItem receiver(x->argument_at(0), this);
1457 
1458   receiver.load_item();
1459   BasicTypeList signature;
1460   signature.append(T_OBJECT); // receiver
1461   LIR_OprList* args = new LIR_OprList();
1462   args->append(receiver.result());
1463   CodeEmitInfo* info = state_for(x, x->state());
1464   call_runtime(&signature, args,
1465                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1466                voidType, info);
1467 
1468   set_no_result(x);
1469 }
1470 
1471 
1472 //------------------------local access--------------------------------------
1473 
1474 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1475   if (x->operand()->is_illegal()) {
1476     Constant* c = x->as_Constant();
1477     if (c != NULL) {
1478       x->set_operand(LIR_OprFact::value_type(c->type()));
1479     } else {
1480       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1481       // allocate a virtual register for this local or phi
1482       x->set_operand(rlock(x));
1483       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1484     }
1485   }
1486   return x->operand();
1487 }
1488 
1489 
1490 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1491   if (opr->is_virtual()) {
1492     return instruction_for_vreg(opr->vreg_number());
1493   }
1494   return NULL;
1495 }
1496 
1497 
1498 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1499   if (reg_num < _instruction_for_operand.length()) {
1500     return _instruction_for_operand.at(reg_num);
1501   }
1502   return NULL;
1503 }
1504 
1505 
1506 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1507   if (_vreg_flags.size_in_bits() == 0) {
1508     BitMap2D temp(100, num_vreg_flags);
1509     _vreg_flags = temp;
1510   }
1511   _vreg_flags.at_put_grow(vreg_num, f, true);
1512 }
1513 
1514 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1515   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1516     return false;
1517   }
1518   return _vreg_flags.at(vreg_num, f);
1519 }
1520 
1521 
1522 // Block local constant handling.  This code is useful for keeping
1523 // unpinned constants and constants which aren't exposed in the IR in
1524 // registers.  Unpinned Constant instructions have their operands
1525 // cleared when the block is finished so that other blocks can't end
1526 // up referring to their registers.
1527 
1528 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1529   assert(!x->is_pinned(), "only for unpinned constants");
1530   _unpinned_constants.append(x);
1531   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1532 }
1533 
1534 
1535 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1536   BasicType t = c->type();
1537   for (int i = 0; i < _constants.length(); i++) {
1538     LIR_Const* other = _constants.at(i);
1539     if (t == other->type()) {
1540       switch (t) {
1541       case T_INT:
1542       case T_FLOAT:
1543         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1544         break;
1545       case T_LONG:
1546       case T_DOUBLE:
1547         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1548         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1549         break;
1550       case T_OBJECT:
1551         if (c->as_jobject() != other->as_jobject()) continue;
1552         break;
1553       default:
1554         break;
1555       }
1556       return _reg_for_constants.at(i);
1557     }
1558   }
1559 
1560   LIR_Opr result = new_register(t);
1561   __ move((LIR_Opr)c, result);
1562   _constants.append(c);
1563   _reg_for_constants.append(result);
1564   return result;
1565 }
1566 
1567 //------------------------field access--------------------------------------
1568 
1569 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
1570   assert(x->number_of_arguments() == 4, "wrong type");
1571   LIRItem obj   (x->argument_at(0), this);  // object
1572   LIRItem offset(x->argument_at(1), this);  // offset of field
1573   LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
1574   LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
1575   assert(obj.type()->tag() == objectTag, "invalid type");
1576   assert(cmp.type()->tag() == type->tag(), "invalid type");
1577   assert(val.type()->tag() == type->tag(), "invalid type");
1578 
1579   LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type),
1580                                             obj, offset, cmp, val);
1581   set_result(x, result);
1582 }
1583 
1584 // Comment copied form templateTable_i486.cpp
1585 // ----------------------------------------------------------------------------
1586 // Volatile variables demand their effects be made known to all CPU's in
1587 // order.  Store buffers on most chips allow reads & writes to reorder; the
1588 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1589 // memory barrier (i.e., it's not sufficient that the interpreter does not
1590 // reorder volatile references, the hardware also must not reorder them).
1591 //
1592 // According to the new Java Memory Model (JMM):
1593 // (1) All volatiles are serialized wrt to each other.
1594 // ALSO reads & writes act as acquire & release, so:
1595 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1596 // the read float up to before the read.  It's OK for non-volatile memory refs
1597 // that happen before the volatile read to float down below it.
1598 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1599 // that happen BEFORE the write float down to after the write.  It's OK for
1600 // non-volatile memory refs that happen after the volatile write to float up
1601 // before it.
1602 //
1603 // We only put in barriers around volatile refs (they are expensive), not
1604 // _between_ memory refs (that would require us to track the flavor of the
1605 // previous memory refs).  Requirements (2) and (3) require some barriers
1606 // before volatile stores and after volatile loads.  These nearly cover
1607 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1608 // case is placed after volatile-stores although it could just as well go
1609 // before volatile-loads.
1610 
1611 
1612 void LIRGenerator::do_StoreField(StoreField* x) {
1613   bool needs_patching = x->needs_patching();
1614   bool is_volatile = x->field()->is_volatile();
1615   BasicType field_type = x->field_type();
1616 
1617   CodeEmitInfo* info = NULL;
1618   if (needs_patching) {
1619     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1620     info = state_for(x, x->state_before());
1621   } else if (x->needs_null_check()) {
1622     NullCheck* nc = x->explicit_null_check();
1623     if (nc == NULL) {
1624       info = state_for(x);
1625     } else {
1626       info = state_for(nc);
1627     }
1628   }
1629 
1630   LIRItem object(x->obj(), this);
1631   LIRItem value(x->value(),  this);
1632 
1633   object.load_item();
1634 
1635   if (is_volatile || needs_patching) {
1636     // load item if field is volatile (fewer special cases for volatiles)
1637     // load item if field not initialized
1638     // load item if field not constant
1639     // because of code patching we cannot inline constants
1640     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1641       value.load_byte_item();
1642     } else  {
1643       value.load_item();
1644     }
1645   } else {
1646     value.load_for_store(field_type);
1647   }
1648 
1649   set_no_result(x);
1650 
1651 #ifndef PRODUCT
1652   if (PrintNotLoaded && needs_patching) {
1653     tty->print_cr("   ###class not loaded at store_%s bci %d",
1654                   x->is_static() ?  "static" : "field", x->printable_bci());
1655   }
1656 #endif
1657 
1658   if (x->needs_null_check() &&
1659       (needs_patching ||
1660        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1661     // Emit an explicit null check because the offset is too large.
1662     // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1663     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1664     __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1665   }
1666 
1667   DecoratorSet decorators = IN_HEAP;
1668   if (is_volatile) {
1669     decorators |= MO_SEQ_CST;
1670   }
1671   if (needs_patching) {
1672     decorators |= C1_NEEDS_PATCHING;
1673   }
1674 
1675   access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()),
1676                   value.result(), info != NULL ? new CodeEmitInfo(info) : NULL, info);
1677 }
1678 
1679 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
1680   assert(x->is_pinned(),"");
1681   bool needs_range_check = x->compute_needs_range_check();
1682   bool use_length = x->length() != NULL;
1683   bool obj_store = is_reference_type(x->elt_type());
1684   bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL ||
1685                                          !get_jobject_constant(x->value())->is_null_object() ||
1686                                          x->should_profile());
1687 
1688   LIRItem array(x->array(), this);
1689   LIRItem index(x->index(), this);
1690   LIRItem value(x->value(), this);
1691   LIRItem length(this);
1692 
1693   array.load_item();
1694   index.load_nonconstant();
1695 
1696   if (use_length && needs_range_check) {
1697     length.set_instruction(x->length());
1698     length.load_item();
1699 
1700   }
1701   if (needs_store_check || x->check_boolean()) {
1702     value.load_item();
1703   } else {
1704     value.load_for_store(x->elt_type());
1705   }
1706 
1707   set_no_result(x);
1708 
1709   // the CodeEmitInfo must be duplicated for each different
1710   // LIR-instruction because spilling can occur anywhere between two
1711   // instructions and so the debug information must be different
1712   CodeEmitInfo* range_check_info = state_for(x);
1713   CodeEmitInfo* null_check_info = NULL;
1714   if (x->needs_null_check()) {
1715     null_check_info = new CodeEmitInfo(range_check_info);
1716   }
1717 
1718   if (GenerateRangeChecks && needs_range_check) {
1719     if (use_length) {
1720       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1721       __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
1722     } else {
1723       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1724       // range_check also does the null check
1725       null_check_info = NULL;
1726     }
1727   }
1728 
1729   if (GenerateArrayStoreCheck && needs_store_check) {
1730     CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
1731     array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci());
1732   }
1733 
1734   DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1735   if (x->check_boolean()) {
1736     decorators |= C1_MASK_BOOLEAN;
1737   }
1738 
1739   access_store_at(decorators, x->elt_type(), array, index.result(), value.result(),
1740                   NULL, null_check_info);
1741 }
1742 
1743 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type,
1744                                   LIRItem& base, LIR_Opr offset, LIR_Opr result,
1745                                   CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) {
1746   decorators |= ACCESS_READ;
1747   LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info);
1748   if (access.is_raw()) {
1749     _barrier_set->BarrierSetC1::load_at(access, result);
1750   } else {
1751     _barrier_set->load_at(access, result);
1752   }
1753 }
1754 
1755 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type,
1756                                LIR_Opr addr, LIR_Opr result) {
1757   decorators |= ACCESS_READ;
1758   LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type);
1759   access.set_resolved_addr(addr);
1760   if (access.is_raw()) {
1761     _barrier_set->BarrierSetC1::load(access, result);
1762   } else {
1763     _barrier_set->load(access, result);
1764   }
1765 }
1766 
1767 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type,
1768                                    LIRItem& base, LIR_Opr offset, LIR_Opr value,
1769                                    CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) {
1770   decorators |= ACCESS_WRITE;
1771   LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info);
1772   if (access.is_raw()) {
1773     _barrier_set->BarrierSetC1::store_at(access, value);
1774   } else {
1775     _barrier_set->store_at(access, value);
1776   }
1777 }
1778 
1779 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type,
1780                                                LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) {
1781   decorators |= ACCESS_READ;
1782   decorators |= ACCESS_WRITE;
1783   // Atomic operations are SEQ_CST by default
1784   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1785   LIRAccess access(this, decorators, base, offset, type);
1786   if (access.is_raw()) {
1787     return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value);
1788   } else {
1789     return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value);
1790   }
1791 }
1792 
1793 LIR_Opr LIRGenerator::access_atomic_xchg_at(DecoratorSet decorators, BasicType type,
1794                                             LIRItem& base, LIRItem& offset, LIRItem& value) {
1795   decorators |= ACCESS_READ;
1796   decorators |= ACCESS_WRITE;
1797   // Atomic operations are SEQ_CST by default
1798   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1799   LIRAccess access(this, decorators, base, offset, type);
1800   if (access.is_raw()) {
1801     return _barrier_set->BarrierSetC1::atomic_xchg_at(access, value);
1802   } else {
1803     return _barrier_set->atomic_xchg_at(access, value);
1804   }
1805 }
1806 
1807 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type,
1808                                            LIRItem& base, LIRItem& offset, LIRItem& value) {
1809   decorators |= ACCESS_READ;
1810   decorators |= ACCESS_WRITE;
1811   // Atomic operations are SEQ_CST by default
1812   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1813   LIRAccess access(this, decorators, base, offset, type);
1814   if (access.is_raw()) {
1815     return _barrier_set->BarrierSetC1::atomic_add_at(access, value);
1816   } else {
1817     return _barrier_set->atomic_add_at(access, value);
1818   }
1819 }
1820 
1821 void LIRGenerator::do_LoadField(LoadField* x) {
1822   bool needs_patching = x->needs_patching();
1823   bool is_volatile = x->field()->is_volatile();
1824   BasicType field_type = x->field_type();
1825 
1826   CodeEmitInfo* info = NULL;
1827   if (needs_patching) {
1828     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1829     info = state_for(x, x->state_before());
1830   } else if (x->needs_null_check()) {
1831     NullCheck* nc = x->explicit_null_check();
1832     if (nc == NULL) {
1833       info = state_for(x);
1834     } else {
1835       info = state_for(nc);
1836     }
1837   }
1838 
1839   LIRItem object(x->obj(), this);
1840 
1841   object.load_item();
1842 
1843 #ifndef PRODUCT
1844   if (PrintNotLoaded && needs_patching) {
1845     tty->print_cr("   ###class not loaded at load_%s bci %d",
1846                   x->is_static() ?  "static" : "field", x->printable_bci());
1847   }
1848 #endif
1849 
1850   bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1851   if (x->needs_null_check() &&
1852       (needs_patching ||
1853        MacroAssembler::needs_explicit_null_check(x->offset()) ||
1854        stress_deopt)) {
1855     LIR_Opr obj = object.result();
1856     if (stress_deopt) {
1857       obj = new_register(T_OBJECT);
1858       __ move(LIR_OprFact::oopConst(NULL), obj);
1859     }
1860     // Emit an explicit null check because the offset is too large.
1861     // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1862     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1863     __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1864   }
1865 
1866   DecoratorSet decorators = IN_HEAP;
1867   if (is_volatile) {
1868     decorators |= MO_SEQ_CST;
1869   }
1870   if (needs_patching) {
1871     decorators |= C1_NEEDS_PATCHING;
1872   }
1873 
1874   LIR_Opr result = rlock_result(x, field_type);
1875   access_load_at(decorators, field_type,
1876                  object, LIR_OprFact::intConst(x->offset()), result,
1877                  info ? new CodeEmitInfo(info) : NULL, info);
1878 }
1879 
1880 // int/long jdk.internal.util.Preconditions.checkIndex
1881 void LIRGenerator::do_PreconditionsCheckIndex(Intrinsic* x, BasicType type) {
1882   assert(x->number_of_arguments() == 3, "wrong type");
1883   LIRItem index(x->argument_at(0), this);
1884   LIRItem length(x->argument_at(1), this);
1885   LIRItem oobef(x->argument_at(2), this);
1886 
1887   index.load_item();
1888   length.load_item();
1889   oobef.load_item();
1890 
1891   LIR_Opr result = rlock_result(x);
1892   // x->state() is created from copy_state_for_exception, it does not contains arguments
1893   // we should prepare them before entering into interpreter mode due to deoptimization.
1894   ValueStack* state = x->state();
1895   for (int i = 0; i < x->number_of_arguments(); i++) {
1896     Value arg = x->argument_at(i);
1897     state->push(arg->type(), arg);
1898   }
1899   CodeEmitInfo* info = state_for(x, state);
1900 
1901   LIR_Opr len = length.result();
1902   LIR_Opr zero;
1903   if (type == T_INT) {
1904     zero = LIR_OprFact::intConst(0);
1905     if (length.result()->is_constant()){
1906       len = LIR_OprFact::intConst(length.result()->as_jint());
1907     }
1908   } else {
1909     assert(type == T_LONG, "sanity check");
1910     zero = LIR_OprFact::longConst(0);
1911     if (length.result()->is_constant()){
1912       len = LIR_OprFact::longConst(length.result()->as_jlong());
1913     }
1914   }
1915   // C1 can not handle the case that comparing index with constant value while condition
1916   // is neither lir_cond_equal nor lir_cond_notEqual, see LIR_Assembler::comp_op.
1917   LIR_Opr zero_reg = new_register(type);
1918   __ move(zero, zero_reg);
1919 #if defined(X86) && !defined(_LP64)
1920   // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
1921   LIR_Opr index_copy = new_register(index.type());
1922   // index >= 0
1923   __ move(index.result(), index_copy);
1924   __ cmp(lir_cond_less, index_copy, zero_reg);
1925   __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1926                                                     Deoptimization::Action_make_not_entrant));
1927   // index < length
1928   __ move(index.result(), index_copy);
1929   __ cmp(lir_cond_greaterEqual, index_copy, len);
1930   __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1931                                                             Deoptimization::Action_make_not_entrant));
1932 #else
1933   // index >= 0
1934   __ cmp(lir_cond_less, index.result(), zero_reg);
1935   __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1936                                                     Deoptimization::Action_make_not_entrant));
1937   // index < length
1938   __ cmp(lir_cond_greaterEqual, index.result(), len);
1939   __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1940                                                             Deoptimization::Action_make_not_entrant));
1941 #endif
1942   __ move(index.result(), result);
1943 }
1944 
1945 //------------------------array access--------------------------------------
1946 
1947 
1948 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1949   LIRItem array(x->array(), this);
1950   array.load_item();
1951   LIR_Opr reg = rlock_result(x);
1952 
1953   CodeEmitInfo* info = NULL;
1954   if (x->needs_null_check()) {
1955     NullCheck* nc = x->explicit_null_check();
1956     if (nc == NULL) {
1957       info = state_for(x);
1958     } else {
1959       info = state_for(nc);
1960     }
1961     if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
1962       LIR_Opr obj = new_register(T_OBJECT);
1963       __ move(LIR_OprFact::oopConst(NULL), obj);
1964       __ null_check(obj, new CodeEmitInfo(info));
1965     }
1966   }
1967   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1968 }
1969 
1970 
1971 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1972   bool use_length = x->length() != NULL;
1973   LIRItem array(x->array(), this);
1974   LIRItem index(x->index(), this);
1975   LIRItem length(this);
1976   bool needs_range_check = x->compute_needs_range_check();
1977 
1978   if (use_length && needs_range_check) {
1979     length.set_instruction(x->length());
1980     length.load_item();
1981   }
1982 
1983   array.load_item();
1984   if (index.is_constant() && can_inline_as_constant(x->index())) {
1985     // let it be a constant
1986     index.dont_load_item();
1987   } else {
1988     index.load_item();
1989   }
1990 
1991   CodeEmitInfo* range_check_info = state_for(x);
1992   CodeEmitInfo* null_check_info = NULL;
1993   if (x->needs_null_check()) {
1994     NullCheck* nc = x->explicit_null_check();
1995     if (nc != NULL) {
1996       null_check_info = state_for(nc);
1997     } else {
1998       null_check_info = range_check_info;
1999     }
2000     if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
2001       LIR_Opr obj = new_register(T_OBJECT);
2002       __ move(LIR_OprFact::oopConst(NULL), obj);
2003       __ null_check(obj, new CodeEmitInfo(null_check_info));
2004     }
2005   }
2006 
2007   if (GenerateRangeChecks && needs_range_check) {
2008     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
2009       __ branch(lir_cond_always, new RangeCheckStub(range_check_info, index.result(), array.result()));
2010     } else if (use_length) {
2011       // TODO: use a (modified) version of array_range_check that does not require a
2012       //       constant length to be loaded to a register
2013       __ cmp(lir_cond_belowEqual, length.result(), index.result());
2014       __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
2015     } else {
2016       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
2017       // The range check performs the null check, so clear it out for the load
2018       null_check_info = NULL;
2019     }
2020   }
2021 
2022   DecoratorSet decorators = IN_HEAP | IS_ARRAY;
2023 
2024   LIR_Opr result = rlock_result(x, x->elt_type());
2025   access_load_at(decorators, x->elt_type(),
2026                  array, index.result(), result,
2027                  NULL, null_check_info);
2028 }
2029 
2030 
2031 void LIRGenerator::do_NullCheck(NullCheck* x) {
2032   if (x->can_trap()) {
2033     LIRItem value(x->obj(), this);
2034     value.load_item();
2035     CodeEmitInfo* info = state_for(x);
2036     __ null_check(value.result(), info);
2037   }
2038 }
2039 
2040 
2041 void LIRGenerator::do_TypeCast(TypeCast* x) {
2042   LIRItem value(x->obj(), this);
2043   value.load_item();
2044   // the result is the same as from the node we are casting
2045   set_result(x, value.result());
2046 }
2047 
2048 
2049 void LIRGenerator::do_Throw(Throw* x) {
2050   LIRItem exception(x->exception(), this);
2051   exception.load_item();
2052   set_no_result(x);
2053   LIR_Opr exception_opr = exception.result();
2054   CodeEmitInfo* info = state_for(x, x->state());
2055 
2056 #ifndef PRODUCT
2057   if (PrintC1Statistics) {
2058     increment_counter(Runtime1::throw_count_address(), T_INT);
2059   }
2060 #endif
2061 
2062   // check if the instruction has an xhandler in any of the nested scopes
2063   bool unwind = false;
2064   if (info->exception_handlers()->length() == 0) {
2065     // this throw is not inside an xhandler
2066     unwind = true;
2067   } else {
2068     // get some idea of the throw type
2069     bool type_is_exact = true;
2070     ciType* throw_type = x->exception()->exact_type();
2071     if (throw_type == NULL) {
2072       type_is_exact = false;
2073       throw_type = x->exception()->declared_type();
2074     }
2075     if (throw_type != NULL && throw_type->is_instance_klass()) {
2076       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
2077       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
2078     }
2079   }
2080 
2081   // do null check before moving exception oop into fixed register
2082   // to avoid a fixed interval with an oop during the null check.
2083   // Use a copy of the CodeEmitInfo because debug information is
2084   // different for null_check and throw.
2085   if (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL) {
2086     // if the exception object wasn't created using new then it might be null.
2087     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
2088   }
2089 
2090   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
2091     // we need to go through the exception lookup path to get JVMTI
2092     // notification done
2093     unwind = false;
2094   }
2095 
2096   // move exception oop into fixed register
2097   __ move(exception_opr, exceptionOopOpr());
2098 
2099   if (unwind) {
2100     __ unwind_exception(exceptionOopOpr());
2101   } else {
2102     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2103   }
2104 }
2105 
2106 
2107 void LIRGenerator::do_RoundFP(RoundFP* x) {
2108   assert(strict_fp_requires_explicit_rounding, "not required");
2109 
2110   LIRItem input(x->input(), this);
2111   input.load_item();
2112   LIR_Opr input_opr = input.result();
2113   assert(input_opr->is_register(), "why round if value is not in a register?");
2114   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
2115   if (input_opr->is_single_fpu()) {
2116     set_result(x, round_item(input_opr)); // This code path not currently taken
2117   } else {
2118     LIR_Opr result = new_register(T_DOUBLE);
2119     set_vreg_flag(result, must_start_in_memory);
2120     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
2121     set_result(x, result);
2122   }
2123 }
2124 
2125 
2126 void LIRGenerator::do_UnsafeGet(UnsafeGet* x) {
2127   BasicType type = x->basic_type();
2128   LIRItem src(x->object(), this);
2129   LIRItem off(x->offset(), this);
2130 
2131   off.load_item();
2132   src.load_item();
2133 
2134   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS;
2135 
2136   if (x->is_volatile()) {
2137     decorators |= MO_SEQ_CST;
2138   }
2139   if (type == T_BOOLEAN) {
2140     decorators |= C1_MASK_BOOLEAN;
2141   }
2142   if (is_reference_type(type)) {
2143     decorators |= ON_UNKNOWN_OOP_REF;
2144   }
2145 
2146   LIR_Opr result = rlock_result(x, type);
2147   if (!x->is_raw()) {
2148     access_load_at(decorators, type, src, off.result(), result);
2149   } else {
2150     // Currently it is only used in GraphBuilder::setup_osr_entry_block.
2151     // It reads the value from [src + offset] directly.
2152 #ifdef _LP64
2153     LIR_Opr offset = new_register(T_LONG);
2154     __ convert(Bytecodes::_i2l, off.result(), offset);
2155 #else
2156     LIR_Opr offset = off.result();
2157 #endif
2158     LIR_Address* addr = new LIR_Address(src.result(), offset, type);
2159     if (is_reference_type(type)) {
2160       __ move_wide(addr, result);
2161     } else {
2162       __ move(addr, result);
2163     }
2164   }
2165 }
2166 
2167 
2168 void LIRGenerator::do_UnsafePut(UnsafePut* x) {
2169   BasicType type = x->basic_type();
2170   LIRItem src(x->object(), this);
2171   LIRItem off(x->offset(), this);
2172   LIRItem data(x->value(), this);
2173 
2174   src.load_item();
2175   if (type == T_BOOLEAN || type == T_BYTE) {
2176     data.load_byte_item();
2177   } else {
2178     data.load_item();
2179   }
2180   off.load_item();
2181 
2182   set_no_result(x);
2183 
2184   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS;
2185   if (is_reference_type(type)) {
2186     decorators |= ON_UNKNOWN_OOP_REF;
2187   }
2188   if (x->is_volatile()) {
2189     decorators |= MO_SEQ_CST;
2190   }
2191   access_store_at(decorators, type, src, off.result(), data.result());
2192 }
2193 
2194 void LIRGenerator::do_UnsafeGetAndSet(UnsafeGetAndSet* x) {
2195   BasicType type = x->basic_type();
2196   LIRItem src(x->object(), this);
2197   LIRItem off(x->offset(), this);
2198   LIRItem value(x->value(), this);
2199 
2200   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS | MO_SEQ_CST;
2201 
2202   if (is_reference_type(type)) {
2203     decorators |= ON_UNKNOWN_OOP_REF;
2204   }
2205 
2206   LIR_Opr result;
2207   if (x->is_add()) {
2208     result = access_atomic_add_at(decorators, type, src, off, value);
2209   } else {
2210     result = access_atomic_xchg_at(decorators, type, src, off, value);
2211   }
2212   set_result(x, result);
2213 }
2214 
2215 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2216   int lng = x->length();
2217 
2218   for (int i = 0; i < lng; i++) {
2219     C1SwitchRange* one_range = x->at(i);
2220     int low_key = one_range->low_key();
2221     int high_key = one_range->high_key();
2222     BlockBegin* dest = one_range->sux();
2223     if (low_key == high_key) {
2224       __ cmp(lir_cond_equal, value, low_key);
2225       __ branch(lir_cond_equal, dest);
2226     } else if (high_key - low_key == 1) {
2227       __ cmp(lir_cond_equal, value, low_key);
2228       __ branch(lir_cond_equal, dest);
2229       __ cmp(lir_cond_equal, value, high_key);
2230       __ branch(lir_cond_equal, dest);
2231     } else {
2232       LabelObj* L = new LabelObj();
2233       __ cmp(lir_cond_less, value, low_key);
2234       __ branch(lir_cond_less, L->label());
2235       __ cmp(lir_cond_lessEqual, value, high_key);
2236       __ branch(lir_cond_lessEqual, dest);
2237       __ branch_destination(L->label());
2238     }
2239   }
2240   __ jump(default_sux);
2241 }
2242 
2243 
2244 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2245   SwitchRangeList* res = new SwitchRangeList();
2246   int len = x->length();
2247   if (len > 0) {
2248     BlockBegin* sux = x->sux_at(0);
2249     int key = x->lo_key();
2250     BlockBegin* default_sux = x->default_sux();
2251     C1SwitchRange* range = new C1SwitchRange(key, sux);
2252     for (int i = 0; i < len; i++, key++) {
2253       BlockBegin* new_sux = x->sux_at(i);
2254       if (sux == new_sux) {
2255         // still in same range
2256         range->set_high_key(key);
2257       } else {
2258         // skip tests which explicitly dispatch to the default
2259         if (sux != default_sux) {
2260           res->append(range);
2261         }
2262         range = new C1SwitchRange(key, new_sux);
2263       }
2264       sux = new_sux;
2265     }
2266     if (res->length() == 0 || res->last() != range)  res->append(range);
2267   }
2268   return res;
2269 }
2270 
2271 
2272 // we expect the keys to be sorted by increasing value
2273 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2274   SwitchRangeList* res = new SwitchRangeList();
2275   int len = x->length();
2276   if (len > 0) {
2277     BlockBegin* default_sux = x->default_sux();
2278     int key = x->key_at(0);
2279     BlockBegin* sux = x->sux_at(0);
2280     C1SwitchRange* range = new C1SwitchRange(key, sux);
2281     for (int i = 1; i < len; i++) {
2282       int new_key = x->key_at(i);
2283       BlockBegin* new_sux = x->sux_at(i);
2284       if (key+1 == new_key && sux == new_sux) {
2285         // still in same range
2286         range->set_high_key(new_key);
2287       } else {
2288         // skip tests which explicitly dispatch to the default
2289         if (range->sux() != default_sux) {
2290           res->append(range);
2291         }
2292         range = new C1SwitchRange(new_key, new_sux);
2293       }
2294       key = new_key;
2295       sux = new_sux;
2296     }
2297     if (res->length() == 0 || res->last() != range)  res->append(range);
2298   }
2299   return res;
2300 }
2301 
2302 
2303 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2304   LIRItem tag(x->tag(), this);
2305   tag.load_item();
2306   set_no_result(x);
2307 
2308   if (x->is_safepoint()) {
2309     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2310   }
2311 
2312   // move values into phi locations
2313   move_to_phi(x->state());
2314 
2315   int lo_key = x->lo_key();
2316   int len = x->length();
2317   assert(lo_key <= (lo_key + (len - 1)), "integer overflow");
2318   LIR_Opr value = tag.result();
2319 
2320   if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2321     ciMethod* method = x->state()->scope()->method();
2322     ciMethodData* md = method->method_data_or_null();
2323     assert(md != NULL, "Sanity");
2324     ciProfileData* data = md->bci_to_data(x->state()->bci());
2325     assert(data != NULL, "must have profiling data");
2326     assert(data->is_MultiBranchData(), "bad profile data?");
2327     int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2328     LIR_Opr md_reg = new_register(T_METADATA);
2329     __ metadata2reg(md->constant_encoding(), md_reg);
2330     LIR_Opr data_offset_reg = new_pointer_register();
2331     LIR_Opr tmp_reg = new_pointer_register();
2332 
2333     __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2334     for (int i = 0; i < len; i++) {
2335       int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2336       __ cmp(lir_cond_equal, value, i + lo_key);
2337       __ move(data_offset_reg, tmp_reg);
2338       __ cmove(lir_cond_equal,
2339                LIR_OprFact::intptrConst(count_offset),
2340                tmp_reg,
2341                data_offset_reg, T_INT);
2342     }
2343 
2344     LIR_Opr data_reg = new_pointer_register();
2345     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2346     __ move(data_addr, data_reg);
2347     __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2348     __ move(data_reg, data_addr);
2349   }
2350 
2351   if (UseTableRanges) {
2352     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2353   } else {
2354     for (int i = 0; i < len; i++) {
2355       __ cmp(lir_cond_equal, value, i + lo_key);
2356       __ branch(lir_cond_equal, x->sux_at(i));
2357     }
2358     __ jump(x->default_sux());
2359   }
2360 }
2361 
2362 
2363 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2364   LIRItem tag(x->tag(), this);
2365   tag.load_item();
2366   set_no_result(x);
2367 
2368   if (x->is_safepoint()) {
2369     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2370   }
2371 
2372   // move values into phi locations
2373   move_to_phi(x->state());
2374 
2375   LIR_Opr value = tag.result();
2376   int len = x->length();
2377 
2378   if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2379     ciMethod* method = x->state()->scope()->method();
2380     ciMethodData* md = method->method_data_or_null();
2381     assert(md != NULL, "Sanity");
2382     ciProfileData* data = md->bci_to_data(x->state()->bci());
2383     assert(data != NULL, "must have profiling data");
2384     assert(data->is_MultiBranchData(), "bad profile data?");
2385     int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2386     LIR_Opr md_reg = new_register(T_METADATA);
2387     __ metadata2reg(md->constant_encoding(), md_reg);
2388     LIR_Opr data_offset_reg = new_pointer_register();
2389     LIR_Opr tmp_reg = new_pointer_register();
2390 
2391     __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2392     for (int i = 0; i < len; i++) {
2393       int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2394       __ cmp(lir_cond_equal, value, x->key_at(i));
2395       __ move(data_offset_reg, tmp_reg);
2396       __ cmove(lir_cond_equal,
2397                LIR_OprFact::intptrConst(count_offset),
2398                tmp_reg,
2399                data_offset_reg, T_INT);
2400     }
2401 
2402     LIR_Opr data_reg = new_pointer_register();
2403     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2404     __ move(data_addr, data_reg);
2405     __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2406     __ move(data_reg, data_addr);
2407   }
2408 
2409   if (UseTableRanges) {
2410     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2411   } else {
2412     int len = x->length();
2413     for (int i = 0; i < len; i++) {
2414       __ cmp(lir_cond_equal, value, x->key_at(i));
2415       __ branch(lir_cond_equal, x->sux_at(i));
2416     }
2417     __ jump(x->default_sux());
2418   }
2419 }
2420 
2421 
2422 void LIRGenerator::do_Goto(Goto* x) {
2423   set_no_result(x);
2424 
2425   if (block()->next()->as_OsrEntry()) {
2426     // need to free up storage used for OSR entry point
2427     LIR_Opr osrBuffer = block()->next()->operand();
2428     BasicTypeList signature;
2429     signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2430     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2431     __ move(osrBuffer, cc->args()->at(0));
2432     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2433                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2434   }
2435 
2436   if (x->is_safepoint()) {
2437     ValueStack* state = x->state_before() ? x->state_before() : x->state();
2438 
2439     // increment backedge counter if needed
2440     CodeEmitInfo* info = state_for(x, state);
2441     increment_backedge_counter(info, x->profiled_bci());
2442     CodeEmitInfo* safepoint_info = state_for(x, state);
2443     __ safepoint(safepoint_poll_register(), safepoint_info);
2444   }
2445 
2446   // Gotos can be folded Ifs, handle this case.
2447   if (x->should_profile()) {
2448     ciMethod* method = x->profiled_method();
2449     assert(method != NULL, "method should be set if branch is profiled");
2450     ciMethodData* md = method->method_data_or_null();
2451     assert(md != NULL, "Sanity");
2452     ciProfileData* data = md->bci_to_data(x->profiled_bci());
2453     assert(data != NULL, "must have profiling data");
2454     int offset;
2455     if (x->direction() == Goto::taken) {
2456       assert(data->is_BranchData(), "need BranchData for two-way branches");
2457       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2458     } else if (x->direction() == Goto::not_taken) {
2459       assert(data->is_BranchData(), "need BranchData for two-way branches");
2460       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2461     } else {
2462       assert(data->is_JumpData(), "need JumpData for branches");
2463       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2464     }
2465     LIR_Opr md_reg = new_register(T_METADATA);
2466     __ metadata2reg(md->constant_encoding(), md_reg);
2467 
2468     increment_counter(new LIR_Address(md_reg, offset,
2469                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2470   }
2471 
2472   // emit phi-instruction move after safepoint since this simplifies
2473   // describing the state as the safepoint.
2474   move_to_phi(x->state());
2475 
2476   __ jump(x->default_sux());
2477 }
2478 
2479 /**
2480  * Emit profiling code if needed for arguments, parameters, return value types
2481  *
2482  * @param md                    MDO the code will update at runtime
2483  * @param md_base_offset        common offset in the MDO for this profile and subsequent ones
2484  * @param md_offset             offset in the MDO (on top of md_base_offset) for this profile
2485  * @param profiled_k            current profile
2486  * @param obj                   IR node for the object to be profiled
2487  * @param mdp                   register to hold the pointer inside the MDO (md + md_base_offset).
2488  *                              Set once we find an update to make and use for next ones.
2489  * @param not_null              true if we know obj cannot be null
2490  * @param signature_at_call_k   signature at call for obj
2491  * @param callee_signature_k    signature of callee for obj
2492  *                              at call and callee signatures differ at method handle call
2493  * @return                      the only klass we know will ever be seen at this profile point
2494  */
2495 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2496                                     Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2497                                     ciKlass* callee_signature_k) {
2498   ciKlass* result = NULL;
2499   bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2500   bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2501   // known not to be null or null bit already set and already set to
2502   // unknown: nothing we can do to improve profiling
2503   if (!do_null && !do_update) {
2504     return result;
2505   }
2506 
2507   ciKlass* exact_klass = NULL;
2508   Compilation* comp = Compilation::current();
2509   if (do_update) {
2510     // try to find exact type, using CHA if possible, so that loading
2511     // the klass from the object can be avoided
2512     ciType* type = obj->exact_type();
2513     if (type == NULL) {
2514       type = obj->declared_type();
2515       type = comp->cha_exact_type(type);
2516     }
2517     assert(type == NULL || type->is_klass(), "type should be class");
2518     exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL;
2519 
2520     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2521   }
2522 
2523   if (!do_null && !do_update) {
2524     return result;
2525   }
2526 
2527   ciKlass* exact_signature_k = NULL;
2528   if (do_update) {
2529     // Is the type from the signature exact (the only one possible)?
2530     exact_signature_k = signature_at_call_k->exact_klass();
2531     if (exact_signature_k == NULL) {
2532       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2533     } else {
2534       result = exact_signature_k;
2535       // Known statically. No need to emit any code: prevent
2536       // LIR_Assembler::emit_profile_type() from emitting useless code
2537       profiled_k = ciTypeEntries::with_status(result, profiled_k);
2538     }
2539     // exact_klass and exact_signature_k can be both non NULL but
2540     // different if exact_klass is loaded after the ciObject for
2541     // exact_signature_k is created.
2542     if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) {
2543       // sometimes the type of the signature is better than the best type
2544       // the compiler has
2545       exact_klass = exact_signature_k;
2546     }
2547     if (callee_signature_k != NULL &&
2548         callee_signature_k != signature_at_call_k) {
2549       ciKlass* improved_klass = callee_signature_k->exact_klass();
2550       if (improved_klass == NULL) {
2551         improved_klass = comp->cha_exact_type(callee_signature_k);
2552       }
2553       if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) {
2554         exact_klass = exact_signature_k;
2555       }
2556     }
2557     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2558   }
2559 
2560   if (!do_null && !do_update) {
2561     return result;
2562   }
2563 
2564   if (mdp == LIR_OprFact::illegalOpr) {
2565     mdp = new_register(T_METADATA);
2566     __ metadata2reg(md->constant_encoding(), mdp);
2567     if (md_base_offset != 0) {
2568       LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2569       mdp = new_pointer_register();
2570       __ leal(LIR_OprFact::address(base_type_address), mdp);
2571     }
2572   }
2573   LIRItem value(obj, this);
2574   value.load_item();
2575   __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2576                   value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL);
2577   return result;
2578 }
2579 
2580 // profile parameters on entry to the root of the compilation
2581 void LIRGenerator::profile_parameters(Base* x) {
2582   if (compilation()->profile_parameters()) {
2583     CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2584     ciMethodData* md = scope()->method()->method_data_or_null();
2585     assert(md != NULL, "Sanity");
2586 
2587     if (md->parameters_type_data() != NULL) {
2588       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2589       ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
2590       LIR_Opr mdp = LIR_OprFact::illegalOpr;
2591       for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2592         LIR_Opr src = args->at(i);
2593         assert(!src->is_illegal(), "check");
2594         BasicType t = src->type();
2595         if (is_reference_type(t)) {
2596           intptr_t profiled_k = parameters->type(j);
2597           Local* local = x->state()->local_at(java_index)->as_Local();
2598           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2599                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2600                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL);
2601           // If the profile is known statically set it once for all and do not emit any code
2602           if (exact != NULL) {
2603             md->set_parameter_type(j, exact);
2604           }
2605           j++;
2606         }
2607         java_index += type2size[t];
2608       }
2609     }
2610   }
2611 }
2612 
2613 void LIRGenerator::do_Base(Base* x) {
2614   __ std_entry(LIR_OprFact::illegalOpr);
2615   // Emit moves from physical registers / stack slots to virtual registers
2616   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2617   IRScope* irScope = compilation()->hir()->top_scope();
2618   int java_index = 0;
2619   for (int i = 0; i < args->length(); i++) {
2620     LIR_Opr src = args->at(i);
2621     assert(!src->is_illegal(), "check");
2622     BasicType t = src->type();
2623 
2624     // Types which are smaller than int are passed as int, so
2625     // correct the type which passed.
2626     switch (t) {
2627     case T_BYTE:
2628     case T_BOOLEAN:
2629     case T_SHORT:
2630     case T_CHAR:
2631       t = T_INT;
2632       break;
2633     default:
2634       break;
2635     }
2636 
2637     LIR_Opr dest = new_register(t);
2638     __ move(src, dest);
2639 
2640     // Assign new location to Local instruction for this local
2641     Local* local = x->state()->local_at(java_index)->as_Local();
2642     assert(local != NULL, "Locals for incoming arguments must have been created");
2643 #ifndef __SOFTFP__
2644     // The java calling convention passes double as long and float as int.
2645     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2646 #endif // __SOFTFP__
2647     local->set_operand(dest);
2648     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2649     java_index += type2size[t];
2650   }
2651 
2652   if (compilation()->env()->dtrace_method_probes()) {
2653     BasicTypeList signature;
2654     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2655     signature.append(T_METADATA); // Method*
2656     LIR_OprList* args = new LIR_OprList();
2657     args->append(getThreadPointer());
2658     LIR_Opr meth = new_register(T_METADATA);
2659     __ metadata2reg(method()->constant_encoding(), meth);
2660     args->append(meth);
2661     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2662   }
2663 
2664   if (method()->is_synchronized()) {
2665     LIR_Opr obj;
2666     if (method()->is_static()) {
2667       obj = new_register(T_OBJECT);
2668       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2669     } else {
2670       Local* receiver = x->state()->local_at(0)->as_Local();
2671       assert(receiver != NULL, "must already exist");
2672       obj = receiver->operand();
2673     }
2674     assert(obj->is_valid(), "must be valid");
2675 
2676     if (method()->is_synchronized() && GenerateSynchronizationCode) {
2677       LIR_Opr lock = new_register(T_ADDRESS);
2678       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException));
2679       monitor_enter(obj, lock, syncTempOpr(), new_register(T_INT), new_register(T_INT), 0, NULL, info);
2680     }
2681   }
2682   // increment invocation counters if needed
2683   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2684     profile_parameters(x);
2685     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false);
2686     increment_invocation_counter(info);
2687   }
2688 
2689   // all blocks with a successor must end with an unconditional jump
2690   // to the successor even if they are consecutive
2691   __ jump(x->default_sux());
2692 }
2693 
2694 
2695 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2696   // construct our frame and model the production of incoming pointer
2697   // to the OSR buffer.
2698   __ osr_entry(LIR_Assembler::osrBufferPointer());
2699   LIR_Opr result = rlock_result(x);
2700   __ move(LIR_Assembler::osrBufferPointer(), result);
2701 }
2702 
2703 
2704 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2705   assert(args->length() == arg_list->length(),
2706          "args=%d, arg_list=%d", args->length(), arg_list->length());
2707   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2708     LIRItem* param = args->at(i);
2709     LIR_Opr loc = arg_list->at(i);
2710     if (loc->is_register()) {
2711       param->load_item_force(loc);
2712     } else {
2713       LIR_Address* addr = loc->as_address_ptr();
2714       param->load_for_store(addr->type());
2715       if (addr->type() == T_OBJECT) {
2716         __ move_wide(param->result(), addr);
2717       } else
2718         __ move(param->result(), addr);
2719     }
2720   }
2721 
2722   if (x->has_receiver()) {
2723     LIRItem* receiver = args->at(0);
2724     LIR_Opr loc = arg_list->at(0);
2725     if (loc->is_register()) {
2726       receiver->load_item_force(loc);
2727     } else {
2728       assert(loc->is_address(), "just checking");
2729       receiver->load_for_store(T_OBJECT);
2730       __ move_wide(receiver->result(), loc->as_address_ptr());
2731     }
2732   }
2733 }
2734 
2735 
2736 // Visits all arguments, returns appropriate items without loading them
2737 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2738   LIRItemList* argument_items = new LIRItemList();
2739   if (x->has_receiver()) {
2740     LIRItem* receiver = new LIRItem(x->receiver(), this);
2741     argument_items->append(receiver);
2742   }
2743   for (int i = 0; i < x->number_of_arguments(); i++) {
2744     LIRItem* param = new LIRItem(x->argument_at(i), this);
2745     argument_items->append(param);
2746   }
2747   return argument_items;
2748 }
2749 
2750 
2751 // The invoke with receiver has following phases:
2752 //   a) traverse and load/lock receiver;
2753 //   b) traverse all arguments -> item-array (invoke_visit_argument)
2754 //   c) push receiver on stack
2755 //   d) load each of the items and push on stack
2756 //   e) unlock receiver
2757 //   f) move receiver into receiver-register %o0
2758 //   g) lock result registers and emit call operation
2759 //
2760 // Before issuing a call, we must spill-save all values on stack
2761 // that are in caller-save register. "spill-save" moves those registers
2762 // either in a free callee-save register or spills them if no free
2763 // callee save register is available.
2764 //
2765 // The problem is where to invoke spill-save.
2766 // - if invoked between e) and f), we may lock callee save
2767 //   register in "spill-save" that destroys the receiver register
2768 //   before f) is executed
2769 // - if we rearrange f) to be earlier (by loading %o0) it
2770 //   may destroy a value on the stack that is currently in %o0
2771 //   and is waiting to be spilled
2772 // - if we keep the receiver locked while doing spill-save,
2773 //   we cannot spill it as it is spill-locked
2774 //
2775 void LIRGenerator::do_Invoke(Invoke* x) {
2776   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2777 
2778   LIR_OprList* arg_list = cc->args();
2779   LIRItemList* args = invoke_visit_arguments(x);
2780   LIR_Opr receiver = LIR_OprFact::illegalOpr;
2781 
2782   // setup result register
2783   LIR_Opr result_register = LIR_OprFact::illegalOpr;
2784   if (x->type() != voidType) {
2785     result_register = result_register_for(x->type());
2786   }
2787 
2788   CodeEmitInfo* info = state_for(x, x->state());
2789 
2790   invoke_load_arguments(x, args, arg_list);
2791 
2792   if (x->has_receiver()) {
2793     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2794     receiver = args->at(0)->result();
2795   }
2796 
2797   // emit invoke code
2798   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2799 
2800   // JSR 292
2801   // Preserve the SP over MethodHandle call sites, if needed.
2802   ciMethod* target = x->target();
2803   bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
2804                                   target->is_method_handle_intrinsic() ||
2805                                   target->is_compiled_lambda_form());
2806   if (is_method_handle_invoke) {
2807     info->set_is_method_handle_invoke(true);
2808     if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2809         __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
2810     }
2811   }
2812 
2813   switch (x->code()) {
2814     case Bytecodes::_invokestatic:
2815       __ call_static(target, result_register,
2816                      SharedRuntime::get_resolve_static_call_stub(),
2817                      arg_list, info);
2818       break;
2819     case Bytecodes::_invokespecial:
2820     case Bytecodes::_invokevirtual:
2821     case Bytecodes::_invokeinterface:
2822       // for loaded and final (method or class) target we still produce an inline cache,
2823       // in order to be able to call mixed mode
2824       if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) {
2825         __ call_opt_virtual(target, receiver, result_register,
2826                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
2827                             arg_list, info);
2828       } else {
2829         __ call_icvirtual(target, receiver, result_register,
2830                           SharedRuntime::get_resolve_virtual_call_stub(),
2831                           arg_list, info);
2832       }
2833       break;
2834     case Bytecodes::_invokedynamic: {
2835       __ call_dynamic(target, receiver, result_register,
2836                       SharedRuntime::get_resolve_static_call_stub(),
2837                       arg_list, info);
2838       break;
2839     }
2840     default:
2841       fatal("unexpected bytecode: %s", Bytecodes::name(x->code()));
2842       break;
2843   }
2844 
2845   // JSR 292
2846   // Restore the SP after MethodHandle call sites, if needed.
2847   if (is_method_handle_invoke
2848       && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2849     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
2850   }
2851 
2852   if (result_register->is_valid()) {
2853     LIR_Opr result = rlock_result(x);
2854     __ move(result_register, result);
2855   }
2856 }
2857 
2858 
2859 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
2860   assert(x->number_of_arguments() == 1, "wrong type");
2861   LIRItem value       (x->argument_at(0), this);
2862   LIR_Opr reg = rlock_result(x);
2863   value.load_item();
2864   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
2865   __ move(tmp, reg);
2866 }
2867 
2868 
2869 
2870 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
2871 void LIRGenerator::do_IfOp(IfOp* x) {
2872 #ifdef ASSERT
2873   {
2874     ValueTag xtag = x->x()->type()->tag();
2875     ValueTag ttag = x->tval()->type()->tag();
2876     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
2877     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
2878     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
2879   }
2880 #endif
2881 
2882   LIRItem left(x->x(), this);
2883   LIRItem right(x->y(), this);
2884   left.load_item();
2885   if (can_inline_as_constant(right.value())) {
2886     right.dont_load_item();
2887   } else {
2888     right.load_item();
2889   }
2890 
2891   LIRItem t_val(x->tval(), this);
2892   LIRItem f_val(x->fval(), this);
2893   t_val.dont_load_item();
2894   f_val.dont_load_item();
2895   LIR_Opr reg = rlock_result(x);
2896 
2897   __ cmp(lir_cond(x->cond()), left.result(), right.result());
2898   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
2899 }
2900 
2901 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
2902   assert(x->number_of_arguments() == 0, "wrong type");
2903   // Enforce computation of _reserved_argument_area_size which is required on some platforms.
2904   BasicTypeList signature;
2905   CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2906   LIR_Opr reg = result_register_for(x->type());
2907   __ call_runtime_leaf(routine, getThreadTemp(),
2908                        reg, new LIR_OprList());
2909   LIR_Opr result = rlock_result(x);
2910   __ move(reg, result);
2911 }
2912 
2913 
2914 
2915 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
2916   switch (x->id()) {
2917   case vmIntrinsics::_intBitsToFloat      :
2918   case vmIntrinsics::_doubleToRawLongBits :
2919   case vmIntrinsics::_longBitsToDouble    :
2920   case vmIntrinsics::_floatToRawIntBits   : {
2921     do_FPIntrinsics(x);
2922     break;
2923   }
2924 
2925 #ifdef JFR_HAVE_INTRINSICS
2926   case vmIntrinsics::_counterTime:
2927     do_RuntimeCall(CAST_FROM_FN_PTR(address, JfrTime::time_function()), x);
2928     break;
2929 #endif
2930 
2931   case vmIntrinsics::_currentTimeMillis:
2932     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x);
2933     break;
2934 
2935   case vmIntrinsics::_nanoTime:
2936     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x);
2937     break;
2938 
2939   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
2940   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
2941   case vmIntrinsics::_isPrimitive:    do_isPrimitive(x);   break;
2942   case vmIntrinsics::_getModifiers:   do_getModifiers(x);  break;
2943   case vmIntrinsics::_getClass:       do_getClass(x);      break;
2944   case vmIntrinsics::_getObjectSize:  do_getObjectSize(x); break;
2945   case vmIntrinsics::_currentCarrierThread: do_currentCarrierThread(x); break;
2946   case vmIntrinsics::_currentThread:  do_vthread(x);       break;
2947   case vmIntrinsics::_extentLocalCache: do_extentLocalCache(x); break;
2948 
2949   case vmIntrinsics::_dlog:           // fall through
2950   case vmIntrinsics::_dlog10:         // fall through
2951   case vmIntrinsics::_dabs:           // fall through
2952   case vmIntrinsics::_dsqrt:          // fall through
2953   case vmIntrinsics::_dsqrt_strict:   // fall through
2954   case vmIntrinsics::_dtan:           // fall through
2955   case vmIntrinsics::_dsin :          // fall through
2956   case vmIntrinsics::_dcos :          // fall through
2957   case vmIntrinsics::_dexp :          // fall through
2958   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
2959   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
2960 
2961   case vmIntrinsics::_fmaD:           do_FmaIntrinsic(x); break;
2962   case vmIntrinsics::_fmaF:           do_FmaIntrinsic(x); break;
2963 
2964   case vmIntrinsics::_Preconditions_checkIndex:
2965     do_PreconditionsCheckIndex(x, T_INT);
2966     break;
2967   case vmIntrinsics::_Preconditions_checkLongIndex:
2968     do_PreconditionsCheckIndex(x, T_LONG);
2969     break;
2970 
2971   case vmIntrinsics::_compareAndSetReference:
2972     do_CompareAndSwap(x, objectType);
2973     break;
2974   case vmIntrinsics::_compareAndSetInt:
2975     do_CompareAndSwap(x, intType);
2976     break;
2977   case vmIntrinsics::_compareAndSetLong:
2978     do_CompareAndSwap(x, longType);
2979     break;
2980 
2981   case vmIntrinsics::_loadFence :
2982     __ membar_acquire();
2983     break;
2984   case vmIntrinsics::_storeFence:
2985     __ membar_release();
2986     break;
2987   case vmIntrinsics::_storeStoreFence:
2988     __ membar_storestore();
2989     break;
2990   case vmIntrinsics::_fullFence :
2991     __ membar();
2992     break;
2993   case vmIntrinsics::_onSpinWait:
2994     __ on_spin_wait();
2995     break;
2996   case vmIntrinsics::_Reference_get:
2997     do_Reference_get(x);
2998     break;
2999 
3000   case vmIntrinsics::_updateCRC32:
3001   case vmIntrinsics::_updateBytesCRC32:
3002   case vmIntrinsics::_updateByteBufferCRC32:
3003     do_update_CRC32(x);
3004     break;
3005 
3006   case vmIntrinsics::_updateBytesCRC32C:
3007   case vmIntrinsics::_updateDirectByteBufferCRC32C:
3008     do_update_CRC32C(x);
3009     break;
3010 
3011   case vmIntrinsics::_vectorizedMismatch:
3012     do_vectorizedMismatch(x);
3013     break;
3014 
3015   case vmIntrinsics::_blackhole:
3016     do_blackhole(x);
3017     break;
3018 
3019   default: ShouldNotReachHere(); break;
3020   }
3021 }
3022 
3023 void LIRGenerator::profile_arguments(ProfileCall* x) {
3024   if (compilation()->profile_arguments()) {
3025     int bci = x->bci_of_invoke();
3026     ciMethodData* md = x->method()->method_data_or_null();
3027     assert(md != NULL, "Sanity");
3028     ciProfileData* data = md->bci_to_data(bci);
3029     if (data != NULL) {
3030       if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
3031           (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
3032         ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
3033         int base_offset = md->byte_offset_of_slot(data, extra);
3034         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3035         ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
3036 
3037         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3038         int start = 0;
3039         int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
3040         if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
3041           // first argument is not profiled at call (method handle invoke)
3042           assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
3043           start = 1;
3044         }
3045         ciSignature* callee_signature = x->callee()->signature();
3046         // method handle call to virtual method
3047         bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
3048         ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL);
3049 
3050         bool ignored_will_link;
3051         ciSignature* signature_at_call = NULL;
3052         x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3053         ciSignatureStream signature_at_call_stream(signature_at_call);
3054 
3055         // if called through method handle invoke, some arguments may have been popped
3056         for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
3057           int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
3058           ciKlass* exact = profile_type(md, base_offset, off,
3059               args->type(i), x->profiled_arg_at(i+start), mdp,
3060               !x->arg_needs_null_check(i+start),
3061               signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
3062           if (exact != NULL) {
3063             md->set_argument_type(bci, i, exact);
3064           }
3065         }
3066       } else {
3067 #ifdef ASSERT
3068         Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
3069         int n = x->nb_profiled_args();
3070         assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
3071             (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
3072             "only at JSR292 bytecodes");
3073 #endif
3074       }
3075     }
3076   }
3077 }
3078 
3079 // profile parameters on entry to an inlined method
3080 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3081   if (compilation()->profile_parameters() && x->inlined()) {
3082     ciMethodData* md = x->callee()->method_data_or_null();
3083     if (md != NULL) {
3084       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3085       if (parameters_type_data != NULL) {
3086         ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
3087         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3088         bool has_receiver = !x->callee()->is_static();
3089         ciSignature* sig = x->callee()->signature();
3090         ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL);
3091         int i = 0; // to iterate on the Instructions
3092         Value arg = x->recv();
3093         bool not_null = false;
3094         int bci = x->bci_of_invoke();
3095         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3096         // The first parameter is the receiver so that's what we start
3097         // with if it exists. One exception is method handle call to
3098         // virtual method: the receiver is in the args list
3099         if (arg == NULL || !Bytecodes::has_receiver(bc)) {
3100           i = 1;
3101           arg = x->profiled_arg_at(0);
3102           not_null = !x->arg_needs_null_check(0);
3103         }
3104         int k = 0; // to iterate on the profile data
3105         for (;;) {
3106           intptr_t profiled_k = parameters->type(k);
3107           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3108                                         in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3109                                         profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL);
3110           // If the profile is known statically set it once for all and do not emit any code
3111           if (exact != NULL) {
3112             md->set_parameter_type(k, exact);
3113           }
3114           k++;
3115           if (k >= parameters_type_data->number_of_parameters()) {
3116 #ifdef ASSERT
3117             int extra = 0;
3118             if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3119                 x->nb_profiled_args() >= TypeProfileParmsLimit &&
3120                 x->recv() != NULL && Bytecodes::has_receiver(bc)) {
3121               extra += 1;
3122             }
3123             assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3124 #endif
3125             break;
3126           }
3127           arg = x->profiled_arg_at(i);
3128           not_null = !x->arg_needs_null_check(i);
3129           i++;
3130         }
3131       }
3132     }
3133   }
3134 }
3135 
3136 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3137   // Need recv in a temporary register so it interferes with the other temporaries
3138   LIR_Opr recv = LIR_OprFact::illegalOpr;
3139   LIR_Opr mdo = new_register(T_METADATA);
3140   // tmp is used to hold the counters on SPARC
3141   LIR_Opr tmp = new_pointer_register();
3142 
3143   if (x->nb_profiled_args() > 0) {
3144     profile_arguments(x);
3145   }
3146 
3147   // profile parameters on inlined method entry including receiver
3148   if (x->recv() != NULL || x->nb_profiled_args() > 0) {
3149     profile_parameters_at_call(x);
3150   }
3151 
3152   if (x->recv() != NULL) {
3153     LIRItem value(x->recv(), this);
3154     value.load_item();
3155     recv = new_register(T_OBJECT);
3156     __ move(value.result(), recv);
3157   }
3158   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3159 }
3160 
3161 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3162   int bci = x->bci_of_invoke();
3163   ciMethodData* md = x->method()->method_data_or_null();
3164   assert(md != NULL, "Sanity");
3165   ciProfileData* data = md->bci_to_data(bci);
3166   if (data != NULL) {
3167     assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3168     ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3169     LIR_Opr mdp = LIR_OprFact::illegalOpr;
3170 
3171     bool ignored_will_link;
3172     ciSignature* signature_at_call = NULL;
3173     x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3174 
3175     // The offset within the MDO of the entry to update may be too large
3176     // to be used in load/store instructions on some platforms. So have
3177     // profile_type() compute the address of the profile in a register.
3178     ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3179         ret->type(), x->ret(), mdp,
3180         !x->needs_null_check(),
3181         signature_at_call->return_type()->as_klass(),
3182         x->callee()->signature()->return_type()->as_klass());
3183     if (exact != NULL) {
3184       md->set_return_type(bci, exact);
3185     }
3186   }
3187 }
3188 
3189 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3190   // We can safely ignore accessors here, since c2 will inline them anyway,
3191   // accessors are also always mature.
3192   if (!x->inlinee()->is_accessor()) {
3193     CodeEmitInfo* info = state_for(x, x->state(), true);
3194     // Notify the runtime very infrequently only to take care of counter overflows
3195     int freq_log = Tier23InlineeNotifyFreqLog;
3196     double scale;
3197     if (_method->has_option_value(CompileCommand::CompileThresholdScaling, scale)) {
3198       freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3199     }
3200     increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true);
3201   }
3202 }
3203 
3204 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) {
3205   if (compilation()->is_profiling()) {
3206 #if defined(X86) && !defined(_LP64)
3207     // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
3208     LIR_Opr left_copy = new_register(left->type());
3209     __ move(left, left_copy);
3210     __ cmp(cond, left_copy, right);
3211 #else
3212     __ cmp(cond, left, right);
3213 #endif
3214     LIR_Opr step = new_register(T_INT);
3215     LIR_Opr plus_one = LIR_OprFact::intConst(InvocationCounter::count_increment);
3216     LIR_Opr zero = LIR_OprFact::intConst(0);
3217     __ cmove(cond,
3218         (left_bci < bci) ? plus_one : zero,
3219         (right_bci < bci) ? plus_one : zero,
3220         step, left->type());
3221     increment_backedge_counter(info, step, bci);
3222   }
3223 }
3224 
3225 
3226 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, LIR_Opr step, int bci, bool backedge) {
3227   int freq_log = 0;
3228   int level = compilation()->env()->comp_level();
3229   if (level == CompLevel_limited_profile) {
3230     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3231   } else if (level == CompLevel_full_profile) {
3232     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3233   } else {
3234     ShouldNotReachHere();
3235   }
3236   // Increment the appropriate invocation/backedge counter and notify the runtime.
3237   double scale;
3238   if (_method->has_option_value(CompileCommand::CompileThresholdScaling, scale)) {
3239     freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3240   }
3241   increment_event_counter_impl(info, info->scope()->method(), step, right_n_bits(freq_log), bci, backedge, true);
3242 }
3243 
3244 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3245                                                 ciMethod *method, LIR_Opr step, int frequency,
3246                                                 int bci, bool backedge, bool notify) {
3247   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3248   int level = _compilation->env()->comp_level();
3249   assert(level > CompLevel_simple, "Shouldn't be here");
3250 
3251   int offset = -1;
3252   LIR_Opr counter_holder;
3253   if (level == CompLevel_limited_profile) {
3254     MethodCounters* counters_adr = method->ensure_method_counters();
3255     if (counters_adr == NULL) {
3256       bailout("method counters allocation failed");
3257       return;
3258     }
3259     counter_holder = new_pointer_register();
3260     __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3261     offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3262                                  MethodCounters::invocation_counter_offset());
3263   } else if (level == CompLevel_full_profile) {
3264     counter_holder = new_register(T_METADATA);
3265     offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3266                                  MethodData::invocation_counter_offset());
3267     ciMethodData* md = method->method_data_or_null();
3268     assert(md != NULL, "Sanity");
3269     __ metadata2reg(md->constant_encoding(), counter_holder);
3270   } else {
3271     ShouldNotReachHere();
3272   }
3273   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3274   LIR_Opr result = new_register(T_INT);
3275   __ load(counter, result);
3276   __ add(result, step, result);
3277   __ store(result, counter);
3278   if (notify && (!backedge || UseOnStackReplacement)) {
3279     LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding());
3280     // The bci for info can point to cmp for if's we want the if bci
3281     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3282     int freq = frequency << InvocationCounter::count_shift;
3283     if (freq == 0) {
3284       if (!step->is_constant()) {
3285         __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3286         __ branch(lir_cond_notEqual, overflow);
3287       } else {
3288         __ branch(lir_cond_always, overflow);
3289       }
3290     } else {
3291       LIR_Opr mask = load_immediate(freq, T_INT);
3292       if (!step->is_constant()) {
3293         // If step is 0, make sure the overflow check below always fails
3294         __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3295         __ cmove(lir_cond_notEqual, result, LIR_OprFact::intConst(InvocationCounter::count_increment), result, T_INT);
3296       }
3297       __ logical_and(result, mask, result);
3298       __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3299       __ branch(lir_cond_equal, overflow);
3300     }
3301     __ branch_destination(overflow->continuation());
3302   }
3303 }
3304 
3305 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3306   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3307   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3308 
3309   if (x->pass_thread()) {
3310     signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
3311     args->append(getThreadPointer());
3312   }
3313 
3314   for (int i = 0; i < x->number_of_arguments(); i++) {
3315     Value a = x->argument_at(i);
3316     LIRItem* item = new LIRItem(a, this);
3317     item->load_item();
3318     args->append(item->result());
3319     signature->append(as_BasicType(a->type()));
3320   }
3321 
3322   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
3323   if (x->type() == voidType) {
3324     set_no_result(x);
3325   } else {
3326     __ move(result, rlock_result(x));
3327   }
3328 }
3329 
3330 #ifdef ASSERT
3331 void LIRGenerator::do_Assert(Assert *x) {
3332   ValueTag tag = x->x()->type()->tag();
3333   If::Condition cond = x->cond();
3334 
3335   LIRItem xitem(x->x(), this);
3336   LIRItem yitem(x->y(), this);
3337   LIRItem* xin = &xitem;
3338   LIRItem* yin = &yitem;
3339 
3340   assert(tag == intTag, "Only integer assertions are valid!");
3341 
3342   xin->load_item();
3343   yin->dont_load_item();
3344 
3345   set_no_result(x);
3346 
3347   LIR_Opr left = xin->result();
3348   LIR_Opr right = yin->result();
3349 
3350   __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3351 }
3352 #endif
3353 
3354 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3355 
3356 
3357   Instruction *a = x->x();
3358   Instruction *b = x->y();
3359   if (!a || StressRangeCheckElimination) {
3360     assert(!b || StressRangeCheckElimination, "B must also be null");
3361 
3362     CodeEmitInfo *info = state_for(x, x->state());
3363     CodeStub* stub = new PredicateFailedStub(info);
3364 
3365     __ jump(stub);
3366   } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3367     int a_int = a->type()->as_IntConstant()->value();
3368     int b_int = b->type()->as_IntConstant()->value();
3369 
3370     bool ok = false;
3371 
3372     switch(x->cond()) {
3373       case Instruction::eql: ok = (a_int == b_int); break;
3374       case Instruction::neq: ok = (a_int != b_int); break;
3375       case Instruction::lss: ok = (a_int < b_int); break;
3376       case Instruction::leq: ok = (a_int <= b_int); break;
3377       case Instruction::gtr: ok = (a_int > b_int); break;
3378       case Instruction::geq: ok = (a_int >= b_int); break;
3379       case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3380       case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3381       default: ShouldNotReachHere();
3382     }
3383 
3384     if (ok) {
3385 
3386       CodeEmitInfo *info = state_for(x, x->state());
3387       CodeStub* stub = new PredicateFailedStub(info);
3388 
3389       __ jump(stub);
3390     }
3391   } else {
3392 
3393     ValueTag tag = x->x()->type()->tag();
3394     If::Condition cond = x->cond();
3395     LIRItem xitem(x->x(), this);
3396     LIRItem yitem(x->y(), this);
3397     LIRItem* xin = &xitem;
3398     LIRItem* yin = &yitem;
3399 
3400     assert(tag == intTag, "Only integer deoptimizations are valid!");
3401 
3402     xin->load_item();
3403     yin->dont_load_item();
3404     set_no_result(x);
3405 
3406     LIR_Opr left = xin->result();
3407     LIR_Opr right = yin->result();
3408 
3409     CodeEmitInfo *info = state_for(x, x->state());
3410     CodeStub* stub = new PredicateFailedStub(info);
3411 
3412     __ cmp(lir_cond(cond), left, right);
3413     __ branch(lir_cond(cond), stub);
3414   }
3415 }
3416 
3417 void LIRGenerator::do_blackhole(Intrinsic *x) {
3418   assert(!x->has_receiver(), "Should have been checked before: only static methods here");
3419   for (int c = 0; c < x->number_of_arguments(); c++) {
3420     // Load the argument
3421     LIRItem vitem(x->argument_at(c), this);
3422     vitem.load_item();
3423     // ...and leave it unused.
3424   }
3425 }
3426 
3427 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3428   LIRItemList args(1);
3429   LIRItem value(arg1, this);
3430   args.append(&value);
3431   BasicTypeList signature;
3432   signature.append(as_BasicType(arg1->type()));
3433 
3434   return call_runtime(&signature, &args, entry, result_type, info);
3435 }
3436 
3437 
3438 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3439   LIRItemList args(2);
3440   LIRItem value1(arg1, this);
3441   LIRItem value2(arg2, this);
3442   args.append(&value1);
3443   args.append(&value2);
3444   BasicTypeList signature;
3445   signature.append(as_BasicType(arg1->type()));
3446   signature.append(as_BasicType(arg2->type()));
3447 
3448   return call_runtime(&signature, &args, entry, result_type, info);
3449 }
3450 
3451 
3452 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3453                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3454   // get a result register
3455   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3456   LIR_Opr result = LIR_OprFact::illegalOpr;
3457   if (result_type->tag() != voidTag) {
3458     result = new_register(result_type);
3459     phys_reg = result_register_for(result_type);
3460   }
3461 
3462   // move the arguments into the correct location
3463   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3464   assert(cc->length() == args->length(), "argument mismatch");
3465   for (int i = 0; i < args->length(); i++) {
3466     LIR_Opr arg = args->at(i);
3467     LIR_Opr loc = cc->at(i);
3468     if (loc->is_register()) {
3469       __ move(arg, loc);
3470     } else {
3471       LIR_Address* addr = loc->as_address_ptr();
3472 //           if (!can_store_as_constant(arg)) {
3473 //             LIR_Opr tmp = new_register(arg->type());
3474 //             __ move(arg, tmp);
3475 //             arg = tmp;
3476 //           }
3477       __ move(arg, addr);
3478     }
3479   }
3480 
3481   if (info) {
3482     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3483   } else {
3484     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3485   }
3486   if (result->is_valid()) {
3487     __ move(phys_reg, result);
3488   }
3489   return result;
3490 }
3491 
3492 
3493 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3494                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3495   // get a result register
3496   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3497   LIR_Opr result = LIR_OprFact::illegalOpr;
3498   if (result_type->tag() != voidTag) {
3499     result = new_register(result_type);
3500     phys_reg = result_register_for(result_type);
3501   }
3502 
3503   // move the arguments into the correct location
3504   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3505 
3506   assert(cc->length() == args->length(), "argument mismatch");
3507   for (int i = 0; i < args->length(); i++) {
3508     LIRItem* arg = args->at(i);
3509     LIR_Opr loc = cc->at(i);
3510     if (loc->is_register()) {
3511       arg->load_item_force(loc);
3512     } else {
3513       LIR_Address* addr = loc->as_address_ptr();
3514       arg->load_for_store(addr->type());
3515       __ move(arg->result(), addr);
3516     }
3517   }
3518 
3519   if (info) {
3520     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3521   } else {
3522     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3523   }
3524   if (result->is_valid()) {
3525     __ move(phys_reg, result);
3526   }
3527   return result;
3528 }
3529 
3530 void LIRGenerator::do_MemBar(MemBar* x) {
3531   LIR_Code code = x->code();
3532   switch(code) {
3533   case lir_membar_acquire   : __ membar_acquire(); break;
3534   case lir_membar_release   : __ membar_release(); break;
3535   case lir_membar           : __ membar(); break;
3536   case lir_membar_loadload  : __ membar_loadload(); break;
3537   case lir_membar_storestore: __ membar_storestore(); break;
3538   case lir_membar_loadstore : __ membar_loadstore(); break;
3539   case lir_membar_storeload : __ membar_storeload(); break;
3540   default                   : ShouldNotReachHere(); break;
3541   }
3542 }
3543 
3544 LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
3545   LIR_Opr value_fixed = rlock_byte(T_BYTE);
3546   if (TwoOperandLIRForm) {
3547     __ move(value, value_fixed);
3548     __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed);
3549   } else {
3550     __ logical_and(value, LIR_OprFact::intConst(1), value_fixed);
3551   }
3552   LIR_Opr klass = new_register(T_METADATA);
3553   load_klass(array, klass, null_check_info);
3554   null_check_info = NULL;
3555   LIR_Opr layout = new_register(T_INT);
3556   __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
3557   int diffbit = Klass::layout_helper_boolean_diffbit();
3558   __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout);
3559   __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0));
3560   __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE);
3561   value = value_fixed;
3562   return value;
3563 }