1 /* 2 * Copyright (c) 1999, 2022, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/codeBuffer.hpp" 27 #include "c1/c1_CodeStubs.hpp" 28 #include "c1/c1_Defs.hpp" 29 #include "c1/c1_FrameMap.hpp" 30 #include "c1/c1_LIRAssembler.hpp" 31 #include "c1/c1_MacroAssembler.hpp" 32 #include "c1/c1_Runtime1.hpp" 33 #include "classfile/javaClasses.inline.hpp" 34 #include "classfile/vmClasses.hpp" 35 #include "classfile/vmSymbols.hpp" 36 #include "code/codeBlob.hpp" 37 #include "code/compiledIC.hpp" 38 #include "code/pcDesc.hpp" 39 #include "code/scopeDesc.hpp" 40 #include "code/vtableStubs.hpp" 41 #include "compiler/compilationPolicy.hpp" 42 #include "compiler/disassembler.hpp" 43 #include "compiler/oopMap.hpp" 44 #include "gc/shared/barrierSet.hpp" 45 #include "gc/shared/c1/barrierSetC1.hpp" 46 #include "gc/shared/collectedHeap.hpp" 47 #include "interpreter/bytecode.hpp" 48 #include "interpreter/interpreter.hpp" 49 #include "jfr/support/jfrIntrinsics.hpp" 50 #include "logging/log.hpp" 51 #include "memory/allocation.inline.hpp" 52 #include "memory/oopFactory.hpp" 53 #include "memory/resourceArea.hpp" 54 #include "memory/universe.hpp" 55 #include "oops/access.inline.hpp" 56 #include "oops/klass.inline.hpp" 57 #include "oops/objArrayOop.inline.hpp" 58 #include "oops/objArrayKlass.hpp" 59 #include "oops/oop.inline.hpp" 60 #include "prims/jvmtiExport.hpp" 61 #include "runtime/atomic.hpp" 62 #include "runtime/fieldDescriptor.inline.hpp" 63 #include "runtime/frame.inline.hpp" 64 #include "runtime/handles.inline.hpp" 65 #include "runtime/interfaceSupport.inline.hpp" 66 #include "runtime/javaCalls.hpp" 67 #include "runtime/sharedRuntime.hpp" 68 #include "runtime/stackWatermarkSet.hpp" 69 #include "runtime/stubRoutines.hpp" 70 #include "runtime/threadCritical.hpp" 71 #include "runtime/vframe.inline.hpp" 72 #include "runtime/vframeArray.hpp" 73 #include "runtime/vm_version.hpp" 74 #include "utilities/copy.hpp" 75 #include "utilities/events.hpp" 76 77 78 // Implementation of StubAssembler 79 80 StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) { 81 _name = name; 82 _must_gc_arguments = false; 83 _frame_size = no_frame_size; 84 _num_rt_args = 0; 85 _stub_id = stub_id; 86 } 87 88 89 void StubAssembler::set_info(const char* name, bool must_gc_arguments) { 90 _name = name; 91 _must_gc_arguments = must_gc_arguments; 92 } 93 94 95 void StubAssembler::set_frame_size(int size) { 96 if (_frame_size == no_frame_size) { 97 _frame_size = size; 98 } 99 assert(_frame_size == size, "can't change the frame size"); 100 } 101 102 103 void StubAssembler::set_num_rt_args(int args) { 104 if (_num_rt_args == 0) { 105 _num_rt_args = args; 106 } 107 assert(_num_rt_args == args, "can't change the number of args"); 108 } 109 110 // Implementation of Runtime1 111 112 CodeBlob* Runtime1::_blobs[Runtime1::number_of_ids]; 113 const char *Runtime1::_blob_names[] = { 114 RUNTIME1_STUBS(STUB_NAME, LAST_STUB_NAME) 115 }; 116 117 #ifndef PRODUCT 118 // statistics 119 int Runtime1::_generic_arraycopystub_cnt = 0; 120 int Runtime1::_arraycopy_slowcase_cnt = 0; 121 int Runtime1::_arraycopy_checkcast_cnt = 0; 122 int Runtime1::_arraycopy_checkcast_attempt_cnt = 0; 123 int Runtime1::_new_type_array_slowcase_cnt = 0; 124 int Runtime1::_new_object_array_slowcase_cnt = 0; 125 int Runtime1::_new_instance_slowcase_cnt = 0; 126 int Runtime1::_new_multi_array_slowcase_cnt = 0; 127 int Runtime1::_monitorenter_slowcase_cnt = 0; 128 int Runtime1::_monitorexit_slowcase_cnt = 0; 129 int Runtime1::_patch_code_slowcase_cnt = 0; 130 int Runtime1::_throw_range_check_exception_count = 0; 131 int Runtime1::_throw_index_exception_count = 0; 132 int Runtime1::_throw_div0_exception_count = 0; 133 int Runtime1::_throw_null_pointer_exception_count = 0; 134 int Runtime1::_throw_class_cast_exception_count = 0; 135 int Runtime1::_throw_incompatible_class_change_error_count = 0; 136 int Runtime1::_throw_count = 0; 137 138 static int _byte_arraycopy_stub_cnt = 0; 139 static int _short_arraycopy_stub_cnt = 0; 140 static int _int_arraycopy_stub_cnt = 0; 141 static int _long_arraycopy_stub_cnt = 0; 142 static int _oop_arraycopy_stub_cnt = 0; 143 144 address Runtime1::arraycopy_count_address(BasicType type) { 145 switch (type) { 146 case T_BOOLEAN: 147 case T_BYTE: return (address)&_byte_arraycopy_stub_cnt; 148 case T_CHAR: 149 case T_SHORT: return (address)&_short_arraycopy_stub_cnt; 150 case T_FLOAT: 151 case T_INT: return (address)&_int_arraycopy_stub_cnt; 152 case T_DOUBLE: 153 case T_LONG: return (address)&_long_arraycopy_stub_cnt; 154 case T_ARRAY: 155 case T_OBJECT: return (address)&_oop_arraycopy_stub_cnt; 156 default: 157 ShouldNotReachHere(); 158 return NULL; 159 } 160 } 161 162 163 #endif 164 165 // Simple helper to see if the caller of a runtime stub which 166 // entered the VM has been deoptimized 167 168 static bool caller_is_deopted(JavaThread* current) { 169 RegisterMap reg_map(current, 170 RegisterMap::UpdateMap::skip, 171 RegisterMap::ProcessFrames::include, 172 RegisterMap::WalkContinuation::skip); 173 frame runtime_frame = current->last_frame(); 174 frame caller_frame = runtime_frame.sender(®_map); 175 assert(caller_frame.is_compiled_frame(), "must be compiled"); 176 return caller_frame.is_deoptimized_frame(); 177 } 178 179 // Stress deoptimization 180 static void deopt_caller(JavaThread* current) { 181 if (!caller_is_deopted(current)) { 182 RegisterMap reg_map(current, 183 RegisterMap::UpdateMap::skip, 184 RegisterMap::ProcessFrames::include, 185 RegisterMap::WalkContinuation::skip); 186 frame runtime_frame = current->last_frame(); 187 frame caller_frame = runtime_frame.sender(®_map); 188 Deoptimization::deoptimize_frame(current, caller_frame.id()); 189 assert(caller_is_deopted(current), "Must be deoptimized"); 190 } 191 } 192 193 class StubIDStubAssemblerCodeGenClosure: public StubAssemblerCodeGenClosure { 194 private: 195 Runtime1::StubID _id; 196 public: 197 StubIDStubAssemblerCodeGenClosure(Runtime1::StubID id) : _id(id) {} 198 virtual OopMapSet* generate_code(StubAssembler* sasm) { 199 return Runtime1::generate_code_for(_id, sasm); 200 } 201 }; 202 203 CodeBlob* Runtime1::generate_blob(BufferBlob* buffer_blob, int stub_id, const char* name, bool expect_oop_map, StubAssemblerCodeGenClosure* cl) { 204 ResourceMark rm; 205 // create code buffer for code storage 206 CodeBuffer code(buffer_blob); 207 208 OopMapSet* oop_maps; 209 int frame_size; 210 bool must_gc_arguments; 211 212 Compilation::setup_code_buffer(&code, 0); 213 214 // create assembler for code generation 215 StubAssembler* sasm = new StubAssembler(&code, name, stub_id); 216 // generate code for runtime stub 217 oop_maps = cl->generate_code(sasm); 218 assert(oop_maps == NULL || sasm->frame_size() != no_frame_size, 219 "if stub has an oop map it must have a valid frame size"); 220 assert(!expect_oop_map || oop_maps != NULL, "must have an oopmap"); 221 222 // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned) 223 sasm->align(BytesPerWord); 224 // make sure all code is in code buffer 225 sasm->flush(); 226 227 frame_size = sasm->frame_size(); 228 must_gc_arguments = sasm->must_gc_arguments(); 229 // create blob - distinguish a few special cases 230 CodeBlob* blob = RuntimeStub::new_runtime_stub(name, 231 &code, 232 CodeOffsets::frame_never_safe, 233 frame_size, 234 oop_maps, 235 must_gc_arguments); 236 assert(blob != NULL, "blob must exist"); 237 return blob; 238 } 239 240 void Runtime1::generate_blob_for(BufferBlob* buffer_blob, StubID id) { 241 assert(0 <= id && id < number_of_ids, "illegal stub id"); 242 bool expect_oop_map = true; 243 #ifdef ASSERT 244 // Make sure that stubs that need oopmaps have them 245 switch (id) { 246 // These stubs don't need to have an oopmap 247 case dtrace_object_alloc_id: 248 case slow_subtype_check_id: 249 case fpu2long_stub_id: 250 case unwind_exception_id: 251 case counter_overflow_id: 252 expect_oop_map = false; 253 break; 254 default: 255 break; 256 } 257 #endif 258 StubIDStubAssemblerCodeGenClosure cl(id); 259 CodeBlob* blob = generate_blob(buffer_blob, id, name_for(id), expect_oop_map, &cl); 260 // install blob 261 _blobs[id] = blob; 262 } 263 264 void Runtime1::initialize(BufferBlob* blob) { 265 // platform-dependent initialization 266 initialize_pd(); 267 // generate stubs 268 for (int id = 0; id < number_of_ids; id++) generate_blob_for(blob, (StubID)id); 269 // printing 270 #ifndef PRODUCT 271 if (PrintSimpleStubs) { 272 ResourceMark rm; 273 for (int id = 0; id < number_of_ids; id++) { 274 _blobs[id]->print(); 275 if (_blobs[id]->oop_maps() != NULL) { 276 _blobs[id]->oop_maps()->print(); 277 } 278 } 279 } 280 #endif 281 BarrierSetC1* bs = BarrierSet::barrier_set()->barrier_set_c1(); 282 bs->generate_c1_runtime_stubs(blob); 283 } 284 285 CodeBlob* Runtime1::blob_for(StubID id) { 286 assert(0 <= id && id < number_of_ids, "illegal stub id"); 287 return _blobs[id]; 288 } 289 290 291 const char* Runtime1::name_for(StubID id) { 292 assert(0 <= id && id < number_of_ids, "illegal stub id"); 293 return _blob_names[id]; 294 } 295 296 const char* Runtime1::name_for_address(address entry) { 297 for (int id = 0; id < number_of_ids; id++) { 298 if (entry == entry_for((StubID)id)) return name_for((StubID)id); 299 } 300 301 #define FUNCTION_CASE(a, f) \ 302 if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f)) return #f 303 304 FUNCTION_CASE(entry, os::javaTimeMillis); 305 FUNCTION_CASE(entry, os::javaTimeNanos); 306 FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end); 307 FUNCTION_CASE(entry, SharedRuntime::d2f); 308 FUNCTION_CASE(entry, SharedRuntime::d2i); 309 FUNCTION_CASE(entry, SharedRuntime::d2l); 310 FUNCTION_CASE(entry, SharedRuntime::dcos); 311 FUNCTION_CASE(entry, SharedRuntime::dexp); 312 FUNCTION_CASE(entry, SharedRuntime::dlog); 313 FUNCTION_CASE(entry, SharedRuntime::dlog10); 314 FUNCTION_CASE(entry, SharedRuntime::dpow); 315 FUNCTION_CASE(entry, SharedRuntime::drem); 316 FUNCTION_CASE(entry, SharedRuntime::dsin); 317 FUNCTION_CASE(entry, SharedRuntime::dtan); 318 FUNCTION_CASE(entry, SharedRuntime::f2i); 319 FUNCTION_CASE(entry, SharedRuntime::f2l); 320 FUNCTION_CASE(entry, SharedRuntime::frem); 321 FUNCTION_CASE(entry, SharedRuntime::l2d); 322 FUNCTION_CASE(entry, SharedRuntime::l2f); 323 FUNCTION_CASE(entry, SharedRuntime::ldiv); 324 FUNCTION_CASE(entry, SharedRuntime::lmul); 325 FUNCTION_CASE(entry, SharedRuntime::lrem); 326 FUNCTION_CASE(entry, SharedRuntime::lrem); 327 FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry); 328 FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit); 329 FUNCTION_CASE(entry, is_instance_of); 330 FUNCTION_CASE(entry, trace_block_entry); 331 #ifdef JFR_HAVE_INTRINSICS 332 FUNCTION_CASE(entry, JfrTime::time_function()); 333 #endif 334 FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32()); 335 FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32C()); 336 FUNCTION_CASE(entry, StubRoutines::vectorizedMismatch()); 337 FUNCTION_CASE(entry, StubRoutines::dexp()); 338 FUNCTION_CASE(entry, StubRoutines::dlog()); 339 FUNCTION_CASE(entry, StubRoutines::dlog10()); 340 FUNCTION_CASE(entry, StubRoutines::dpow()); 341 FUNCTION_CASE(entry, StubRoutines::dsin()); 342 FUNCTION_CASE(entry, StubRoutines::dcos()); 343 FUNCTION_CASE(entry, StubRoutines::dtan()); 344 FUNCTION_CASE(entry, StubRoutines::cont_doYield()); 345 346 #undef FUNCTION_CASE 347 348 // Soft float adds more runtime names. 349 return pd_name_for_address(entry); 350 } 351 352 353 JRT_ENTRY(void, Runtime1::new_instance(JavaThread* current, Klass* klass)) 354 #ifndef PRODUCT 355 if (PrintC1Statistics) { 356 _new_instance_slowcase_cnt++; 357 } 358 #endif 359 assert(klass->is_klass(), "not a class"); 360 Handle holder(current, klass->klass_holder()); // keep the klass alive 361 InstanceKlass* h = InstanceKlass::cast(klass); 362 h->check_valid_for_instantiation(true, CHECK); 363 // make sure klass is initialized 364 h->initialize(CHECK); 365 // allocate instance and return via TLS 366 oop obj = h->allocate_instance(CHECK); 367 current->set_vm_result(obj); 368 JRT_END 369 370 371 JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* current, Klass* klass, jint length)) 372 #ifndef PRODUCT 373 if (PrintC1Statistics) { 374 _new_type_array_slowcase_cnt++; 375 } 376 #endif 377 // Note: no handle for klass needed since they are not used 378 // anymore after new_typeArray() and no GC can happen before. 379 // (This may have to change if this code changes!) 380 assert(klass->is_klass(), "not a class"); 381 BasicType elt_type = TypeArrayKlass::cast(klass)->element_type(); 382 oop obj = oopFactory::new_typeArray(elt_type, length, CHECK); 383 current->set_vm_result(obj); 384 // This is pretty rare but this runtime patch is stressful to deoptimization 385 // if we deoptimize here so force a deopt to stress the path. 386 if (DeoptimizeALot) { 387 deopt_caller(current); 388 } 389 390 JRT_END 391 392 393 JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* current, Klass* array_klass, jint length)) 394 #ifndef PRODUCT 395 if (PrintC1Statistics) { 396 _new_object_array_slowcase_cnt++; 397 } 398 #endif 399 // Note: no handle for klass needed since they are not used 400 // anymore after new_objArray() and no GC can happen before. 401 // (This may have to change if this code changes!) 402 assert(array_klass->is_klass(), "not a class"); 403 Handle holder(current, array_klass->klass_holder()); // keep the klass alive 404 Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass(); 405 objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK); 406 current->set_vm_result(obj); 407 // This is pretty rare but this runtime patch is stressful to deoptimization 408 // if we deoptimize here so force a deopt to stress the path. 409 if (DeoptimizeALot) { 410 deopt_caller(current); 411 } 412 JRT_END 413 414 415 JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* current, Klass* klass, int rank, jint* dims)) 416 #ifndef PRODUCT 417 if (PrintC1Statistics) { 418 _new_multi_array_slowcase_cnt++; 419 } 420 #endif 421 assert(klass->is_klass(), "not a class"); 422 assert(rank >= 1, "rank must be nonzero"); 423 Handle holder(current, klass->klass_holder()); // keep the klass alive 424 oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK); 425 current->set_vm_result(obj); 426 JRT_END 427 428 429 JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* current, StubID id)) 430 tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", id); 431 JRT_END 432 433 434 JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* current, oopDesc* obj)) 435 ResourceMark rm(current); 436 const char* klass_name = obj->klass()->external_name(); 437 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArrayStoreException(), klass_name); 438 JRT_END 439 440 441 // counter_overflow() is called from within C1-compiled methods. The enclosing method is the method 442 // associated with the top activation record. The inlinee (that is possibly included in the enclosing 443 // method) method is passed as an argument. In order to do that it is embedded in the code as 444 // a constant. 445 static nmethod* counter_overflow_helper(JavaThread* current, int branch_bci, Method* m) { 446 nmethod* osr_nm = NULL; 447 methodHandle method(current, m); 448 449 RegisterMap map(current, 450 RegisterMap::UpdateMap::skip, 451 RegisterMap::ProcessFrames::include, 452 RegisterMap::WalkContinuation::skip); 453 frame fr = current->last_frame().sender(&map); 454 nmethod* nm = (nmethod*) fr.cb(); 455 assert(nm!= NULL && nm->is_nmethod(), "Sanity check"); 456 methodHandle enclosing_method(current, nm->method()); 457 458 CompLevel level = (CompLevel)nm->comp_level(); 459 int bci = InvocationEntryBci; 460 if (branch_bci != InvocationEntryBci) { 461 // Compute destination bci 462 address pc = method()->code_base() + branch_bci; 463 Bytecodes::Code branch = Bytecodes::code_at(method(), pc); 464 int offset = 0; 465 switch (branch) { 466 case Bytecodes::_if_icmplt: case Bytecodes::_iflt: 467 case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt: 468 case Bytecodes::_if_icmple: case Bytecodes::_ifle: 469 case Bytecodes::_if_icmpge: case Bytecodes::_ifge: 470 case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq: 471 case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne: 472 case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto: 473 offset = (int16_t)Bytes::get_Java_u2(pc + 1); 474 break; 475 case Bytecodes::_goto_w: 476 offset = Bytes::get_Java_u4(pc + 1); 477 break; 478 default: ; 479 } 480 bci = branch_bci + offset; 481 } 482 osr_nm = CompilationPolicy::event(enclosing_method, method, branch_bci, bci, level, nm, current); 483 return osr_nm; 484 } 485 486 JRT_BLOCK_ENTRY(address, Runtime1::counter_overflow(JavaThread* current, int bci, Method* method)) 487 nmethod* osr_nm; 488 JRT_BLOCK 489 osr_nm = counter_overflow_helper(current, bci, method); 490 if (osr_nm != NULL) { 491 RegisterMap map(current, 492 RegisterMap::UpdateMap::skip, 493 RegisterMap::ProcessFrames::include, 494 RegisterMap::WalkContinuation::skip); 495 frame fr = current->last_frame().sender(&map); 496 Deoptimization::deoptimize_frame(current, fr.id()); 497 } 498 JRT_BLOCK_END 499 return NULL; 500 JRT_END 501 502 extern void vm_exit(int code); 503 504 // Enter this method from compiled code handler below. This is where we transition 505 // to VM mode. This is done as a helper routine so that the method called directly 506 // from compiled code does not have to transition to VM. This allows the entry 507 // method to see if the nmethod that we have just looked up a handler for has 508 // been deoptimized while we were in the vm. This simplifies the assembly code 509 // cpu directories. 510 // 511 // We are entering here from exception stub (via the entry method below) 512 // If there is a compiled exception handler in this method, we will continue there; 513 // otherwise we will unwind the stack and continue at the caller of top frame method 514 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to 515 // control the area where we can allow a safepoint. After we exit the safepoint area we can 516 // check to see if the handler we are going to return is now in a nmethod that has 517 // been deoptimized. If that is the case we return the deopt blob 518 // unpack_with_exception entry instead. This makes life for the exception blob easier 519 // because making that same check and diverting is painful from assembly language. 520 JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* current, oopDesc* ex, address pc, nmethod*& nm)) 521 // Reset method handle flag. 522 current->set_is_method_handle_return(false); 523 524 Handle exception(current, ex); 525 526 // This function is called when we are about to throw an exception. Therefore, 527 // we have to poll the stack watermark barrier to make sure that not yet safe 528 // stack frames are made safe before returning into them. 529 if (current->last_frame().cb() == Runtime1::blob_for(Runtime1::handle_exception_from_callee_id)) { 530 // The Runtime1::handle_exception_from_callee_id handler is invoked after the 531 // frame has been unwound. It instead builds its own stub frame, to call the 532 // runtime. But the throwing frame has already been unwound here. 533 StackWatermarkSet::after_unwind(current); 534 } 535 536 nm = CodeCache::find_nmethod(pc); 537 assert(nm != NULL, "this is not an nmethod"); 538 // Adjust the pc as needed/ 539 if (nm->is_deopt_pc(pc)) { 540 RegisterMap map(current, 541 RegisterMap::UpdateMap::skip, 542 RegisterMap::ProcessFrames::include, 543 RegisterMap::WalkContinuation::skip); 544 frame exception_frame = current->last_frame().sender(&map); 545 // if the frame isn't deopted then pc must not correspond to the caller of last_frame 546 assert(exception_frame.is_deoptimized_frame(), "must be deopted"); 547 pc = exception_frame.pc(); 548 } 549 assert(exception.not_null(), "NULL exceptions should be handled by throw_exception"); 550 // Check that exception is a subclass of Throwable 551 assert(exception->is_a(vmClasses::Throwable_klass()), 552 "Exception not subclass of Throwable"); 553 554 // debugging support 555 // tracing 556 if (log_is_enabled(Info, exceptions)) { 557 ResourceMark rm; 558 stringStream tempst; 559 assert(nm->method() != NULL, "Unexpected NULL method()"); 560 tempst.print("C1 compiled method <%s>\n" 561 " at PC" INTPTR_FORMAT " for thread " INTPTR_FORMAT, 562 nm->method()->print_value_string(), p2i(pc), p2i(current)); 563 Exceptions::log_exception(exception, tempst.as_string()); 564 } 565 // for AbortVMOnException flag 566 Exceptions::debug_check_abort(exception); 567 568 // Check the stack guard pages and re-enable them if necessary and there is 569 // enough space on the stack to do so. Use fast exceptions only if the guard 570 // pages are enabled. 571 bool guard_pages_enabled = current->stack_overflow_state()->reguard_stack_if_needed(); 572 573 if (JvmtiExport::can_post_on_exceptions()) { 574 // To ensure correct notification of exception catches and throws 575 // we have to deoptimize here. If we attempted to notify the 576 // catches and throws during this exception lookup it's possible 577 // we could deoptimize on the way out of the VM and end back in 578 // the interpreter at the throw site. This would result in double 579 // notifications since the interpreter would also notify about 580 // these same catches and throws as it unwound the frame. 581 582 RegisterMap reg_map(current, 583 RegisterMap::UpdateMap::include, 584 RegisterMap::ProcessFrames::include, 585 RegisterMap::WalkContinuation::skip); 586 frame stub_frame = current->last_frame(); 587 frame caller_frame = stub_frame.sender(®_map); 588 589 // We don't really want to deoptimize the nmethod itself since we 590 // can actually continue in the exception handler ourselves but I 591 // don't see an easy way to have the desired effect. 592 Deoptimization::deoptimize_frame(current, caller_frame.id()); 593 assert(caller_is_deopted(current), "Must be deoptimized"); 594 595 return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls(); 596 } 597 598 // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions 599 if (guard_pages_enabled) { 600 address fast_continuation = nm->handler_for_exception_and_pc(exception, pc); 601 if (fast_continuation != NULL) { 602 // Set flag if return address is a method handle call site. 603 current->set_is_method_handle_return(nm->is_method_handle_return(pc)); 604 return fast_continuation; 605 } 606 } 607 608 // If the stack guard pages are enabled, check whether there is a handler in 609 // the current method. Otherwise (guard pages disabled), force an unwind and 610 // skip the exception cache update (i.e., just leave continuation==NULL). 611 address continuation = NULL; 612 if (guard_pages_enabled) { 613 614 // New exception handling mechanism can support inlined methods 615 // with exception handlers since the mappings are from PC to PC 616 617 // Clear out the exception oop and pc since looking up an 618 // exception handler can cause class loading, which might throw an 619 // exception and those fields are expected to be clear during 620 // normal bytecode execution. 621 current->clear_exception_oop_and_pc(); 622 623 bool recursive_exception = false; 624 continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false, recursive_exception); 625 // If an exception was thrown during exception dispatch, the exception oop may have changed 626 current->set_exception_oop(exception()); 627 current->set_exception_pc(pc); 628 629 // the exception cache is used only by non-implicit exceptions 630 // Update the exception cache only when there didn't happen 631 // another exception during the computation of the compiled 632 // exception handler. Checking for exception oop equality is not 633 // sufficient because some exceptions are pre-allocated and reused. 634 if (continuation != NULL && !recursive_exception) { 635 nm->add_handler_for_exception_and_pc(exception, pc, continuation); 636 } 637 } 638 639 current->set_vm_result(exception()); 640 // Set flag if return address is a method handle call site. 641 current->set_is_method_handle_return(nm->is_method_handle_return(pc)); 642 643 if (log_is_enabled(Info, exceptions)) { 644 ResourceMark rm; 645 log_info(exceptions)("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT 646 " for exception thrown at PC " PTR_FORMAT, 647 p2i(current), p2i(continuation), p2i(pc)); 648 } 649 650 return continuation; 651 JRT_END 652 653 // Enter this method from compiled code only if there is a Java exception handler 654 // in the method handling the exception. 655 // We are entering here from exception stub. We don't do a normal VM transition here. 656 // We do it in a helper. This is so we can check to see if the nmethod we have just 657 // searched for an exception handler has been deoptimized in the meantime. 658 address Runtime1::exception_handler_for_pc(JavaThread* current) { 659 oop exception = current->exception_oop(); 660 address pc = current->exception_pc(); 661 // Still in Java mode 662 DEBUG_ONLY(NoHandleMark nhm); 663 nmethod* nm = NULL; 664 address continuation = NULL; 665 { 666 // Enter VM mode by calling the helper 667 ResetNoHandleMark rnhm; 668 continuation = exception_handler_for_pc_helper(current, exception, pc, nm); 669 } 670 // Back in JAVA, use no oops DON'T safepoint 671 672 // Now check to see if the nmethod we were called from is now deoptimized. 673 // If so we must return to the deopt blob and deoptimize the nmethod 674 if (nm != NULL && caller_is_deopted(current)) { 675 continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls(); 676 } 677 678 assert(continuation != NULL, "no handler found"); 679 return continuation; 680 } 681 682 683 JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* current, int index, arrayOopDesc* a)) 684 #ifndef PRODUCT 685 if (PrintC1Statistics) { 686 _throw_range_check_exception_count++; 687 } 688 #endif 689 const int len = 35; 690 assert(len < strlen("Index %d out of bounds for length %d"), "Must allocate more space for message."); 691 char message[2 * jintAsStringSize + len]; 692 sprintf(message, "Index %d out of bounds for length %d", index, a->length()); 693 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message); 694 JRT_END 695 696 697 JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* current, int index)) 698 #ifndef PRODUCT 699 if (PrintC1Statistics) { 700 _throw_index_exception_count++; 701 } 702 #endif 703 char message[16]; 704 sprintf(message, "%d", index); 705 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IndexOutOfBoundsException(), message); 706 JRT_END 707 708 709 JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* current)) 710 #ifndef PRODUCT 711 if (PrintC1Statistics) { 712 _throw_div0_exception_count++; 713 } 714 #endif 715 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero"); 716 JRT_END 717 718 719 JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* current)) 720 #ifndef PRODUCT 721 if (PrintC1Statistics) { 722 _throw_null_pointer_exception_count++; 723 } 724 #endif 725 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException()); 726 JRT_END 727 728 729 JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* current, oopDesc* object)) 730 #ifndef PRODUCT 731 if (PrintC1Statistics) { 732 _throw_class_cast_exception_count++; 733 } 734 #endif 735 ResourceMark rm(current); 736 char* message = SharedRuntime::generate_class_cast_message(current, object->klass()); 737 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ClassCastException(), message); 738 JRT_END 739 740 741 JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* current)) 742 #ifndef PRODUCT 743 if (PrintC1Statistics) { 744 _throw_incompatible_class_change_error_count++; 745 } 746 #endif 747 ResourceMark rm(current); 748 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError()); 749 JRT_END 750 751 752 JRT_BLOCK_ENTRY(void, Runtime1::monitorenter(JavaThread* current, oopDesc* obj, BasicObjectLock* lock)) 753 #ifndef PRODUCT 754 if (PrintC1Statistics) { 755 _monitorenter_slowcase_cnt++; 756 } 757 #endif 758 if (UseHeavyMonitors) { 759 lock->set_obj(obj); 760 } 761 assert(obj == lock->obj(), "must match"); 762 SharedRuntime::monitor_enter_helper(obj, lock->lock(), current); 763 JRT_END 764 765 766 JRT_LEAF(void, Runtime1::monitorexit(JavaThread* current, BasicObjectLock* lock)) 767 #ifndef PRODUCT 768 if (PrintC1Statistics) { 769 _monitorexit_slowcase_cnt++; 770 } 771 #endif 772 assert(current->last_Java_sp(), "last_Java_sp must be set"); 773 oop obj = lock->obj(); 774 assert(oopDesc::is_oop(obj), "must be NULL or an object"); 775 SharedRuntime::monitor_exit_helper(obj, lock->lock(), current); 776 JRT_END 777 778 // Cf. OptoRuntime::deoptimize_caller_frame 779 JRT_ENTRY(void, Runtime1::deoptimize(JavaThread* current, jint trap_request)) 780 // Called from within the owner thread, so no need for safepoint 781 RegisterMap reg_map(current, 782 RegisterMap::UpdateMap::skip, 783 RegisterMap::ProcessFrames::include, 784 RegisterMap::WalkContinuation::skip); 785 frame stub_frame = current->last_frame(); 786 assert(stub_frame.is_runtime_frame(), "Sanity check"); 787 frame caller_frame = stub_frame.sender(®_map); 788 nmethod* nm = caller_frame.cb()->as_nmethod_or_null(); 789 assert(nm != NULL, "Sanity check"); 790 methodHandle method(current, nm->method()); 791 assert(nm == CodeCache::find_nmethod(caller_frame.pc()), "Should be the same"); 792 Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request); 793 Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request); 794 795 if (action == Deoptimization::Action_make_not_entrant) { 796 if (nm->make_not_entrant()) { 797 if (reason == Deoptimization::Reason_tenured) { 798 MethodData* trap_mdo = Deoptimization::get_method_data(current, method, true /*create_if_missing*/); 799 if (trap_mdo != NULL) { 800 trap_mdo->inc_tenure_traps(); 801 } 802 } 803 } 804 } 805 806 // Deoptimize the caller frame. 807 Deoptimization::deoptimize_frame(current, caller_frame.id()); 808 // Return to the now deoptimized frame. 809 JRT_END 810 811 812 #ifndef DEOPTIMIZE_WHEN_PATCHING 813 814 static Klass* resolve_field_return_klass(const methodHandle& caller, int bci, TRAPS) { 815 Bytecode_field field_access(caller, bci); 816 // This can be static or non-static field access 817 Bytecodes::Code code = field_access.code(); 818 819 // We must load class, initialize class and resolve the field 820 fieldDescriptor result; // initialize class if needed 821 constantPoolHandle constants(THREAD, caller->constants()); 822 LinkResolver::resolve_field_access(result, constants, field_access.index(), caller, Bytecodes::java_code(code), CHECK_NULL); 823 return result.field_holder(); 824 } 825 826 827 // 828 // This routine patches sites where a class wasn't loaded or 829 // initialized at the time the code was generated. It handles 830 // references to classes, fields and forcing of initialization. Most 831 // of the cases are straightforward and involving simply forcing 832 // resolution of a class, rewriting the instruction stream with the 833 // needed constant and replacing the call in this function with the 834 // patched code. The case for static field is more complicated since 835 // the thread which is in the process of initializing a class can 836 // access it's static fields but other threads can't so the code 837 // either has to deoptimize when this case is detected or execute a 838 // check that the current thread is the initializing thread. The 839 // current 840 // 841 // Patches basically look like this: 842 // 843 // 844 // patch_site: jmp patch stub ;; will be patched 845 // continue: ... 846 // ... 847 // ... 848 // ... 849 // 850 // They have a stub which looks like this: 851 // 852 // ;; patch body 853 // movl <const>, reg (for class constants) 854 // <or> movl [reg1 + <const>], reg (for field offsets) 855 // <or> movl reg, [reg1 + <const>] (for field offsets) 856 // <being_init offset> <bytes to copy> <bytes to skip> 857 // patch_stub: call Runtime1::patch_code (through a runtime stub) 858 // jmp patch_site 859 // 860 // 861 // A normal patch is done by rewriting the patch body, usually a move, 862 // and then copying it into place over top of the jmp instruction 863 // being careful to flush caches and doing it in an MP-safe way. The 864 // constants following the patch body are used to find various pieces 865 // of the patch relative to the call site for Runtime1::patch_code. 866 // The case for getstatic and putstatic is more complicated because 867 // getstatic and putstatic have special semantics when executing while 868 // the class is being initialized. getstatic/putstatic on a class 869 // which is being_initialized may be executed by the initializing 870 // thread but other threads have to block when they execute it. This 871 // is accomplished in compiled code by executing a test of the current 872 // thread against the initializing thread of the class. It's emitted 873 // as boilerplate in their stub which allows the patched code to be 874 // executed before it's copied back into the main body of the nmethod. 875 // 876 // being_init: get_thread(<tmp reg> 877 // cmpl [reg1 + <init_thread_offset>], <tmp reg> 878 // jne patch_stub 879 // movl [reg1 + <const>], reg (for field offsets) <or> 880 // movl reg, [reg1 + <const>] (for field offsets) 881 // jmp continue 882 // <being_init offset> <bytes to copy> <bytes to skip> 883 // patch_stub: jmp Runtim1::patch_code (through a runtime stub) 884 // jmp patch_site 885 // 886 // If the class is being initialized the patch body is rewritten and 887 // the patch site is rewritten to jump to being_init, instead of 888 // patch_stub. Whenever this code is executed it checks the current 889 // thread against the initializing thread so other threads will enter 890 // the runtime and end up blocked waiting the class to finish 891 // initializing inside the calls to resolve_field below. The 892 // initializing class will continue on it's way. Once the class is 893 // fully_initialized, the intializing_thread of the class becomes 894 // NULL, so the next thread to execute this code will fail the test, 895 // call into patch_code and complete the patching process by copying 896 // the patch body back into the main part of the nmethod and resume 897 // executing. 898 899 // NB: 900 // 901 // Patchable instruction sequences inherently exhibit race conditions, 902 // where thread A is patching an instruction at the same time thread B 903 // is executing it. The algorithms we use ensure that any observation 904 // that B can make on any intermediate states during A's patching will 905 // always end up with a correct outcome. This is easiest if there are 906 // few or no intermediate states. (Some inline caches have two 907 // related instructions that must be patched in tandem. For those, 908 // intermediate states seem to be unavoidable, but we will get the 909 // right answer from all possible observation orders.) 910 // 911 // When patching the entry instruction at the head of a method, or a 912 // linkable call instruction inside of a method, we try very hard to 913 // use a patch sequence which executes as a single memory transaction. 914 // This means, in practice, that when thread A patches an instruction, 915 // it should patch a 32-bit or 64-bit word that somehow overlaps the 916 // instruction or is contained in it. We believe that memory hardware 917 // will never break up such a word write, if it is naturally aligned 918 // for the word being written. We also know that some CPUs work very 919 // hard to create atomic updates even of naturally unaligned words, 920 // but we don't want to bet the farm on this always working. 921 // 922 // Therefore, if there is any chance of a race condition, we try to 923 // patch only naturally aligned words, as single, full-word writes. 924 925 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* current, Runtime1::StubID stub_id )) 926 #ifndef PRODUCT 927 if (PrintC1Statistics) { 928 _patch_code_slowcase_cnt++; 929 } 930 #endif 931 932 ResourceMark rm(current); 933 RegisterMap reg_map(current, 934 RegisterMap::UpdateMap::skip, 935 RegisterMap::ProcessFrames::include, 936 RegisterMap::WalkContinuation::skip); 937 frame runtime_frame = current->last_frame(); 938 frame caller_frame = runtime_frame.sender(®_map); 939 940 // last java frame on stack 941 vframeStream vfst(current, true); 942 assert(!vfst.at_end(), "Java frame must exist"); 943 944 methodHandle caller_method(current, vfst.method()); 945 // Note that caller_method->code() may not be same as caller_code because of OSR's 946 // Note also that in the presence of inlining it is not guaranteed 947 // that caller_method() == caller_code->method() 948 949 int bci = vfst.bci(); 950 Bytecodes::Code code = caller_method()->java_code_at(bci); 951 952 // this is used by assertions in the access_field_patching_id 953 BasicType patch_field_type = T_ILLEGAL; 954 bool deoptimize_for_volatile = false; 955 bool deoptimize_for_atomic = false; 956 int patch_field_offset = -1; 957 Klass* init_klass = NULL; // klass needed by load_klass_patching code 958 Klass* load_klass = NULL; // klass needed by load_klass_patching code 959 Handle mirror(current, NULL); // oop needed by load_mirror_patching code 960 Handle appendix(current, NULL); // oop needed by appendix_patching code 961 bool load_klass_or_mirror_patch_id = 962 (stub_id == Runtime1::load_klass_patching_id || stub_id == Runtime1::load_mirror_patching_id); 963 964 if (stub_id == Runtime1::access_field_patching_id) { 965 966 Bytecode_field field_access(caller_method, bci); 967 fieldDescriptor result; // initialize class if needed 968 Bytecodes::Code code = field_access.code(); 969 constantPoolHandle constants(current, caller_method->constants()); 970 LinkResolver::resolve_field_access(result, constants, field_access.index(), caller_method, Bytecodes::java_code(code), CHECK); 971 patch_field_offset = result.offset(); 972 973 // If we're patching a field which is volatile then at compile it 974 // must not have been know to be volatile, so the generated code 975 // isn't correct for a volatile reference. The nmethod has to be 976 // deoptimized so that the code can be regenerated correctly. 977 // This check is only needed for access_field_patching since this 978 // is the path for patching field offsets. load_klass is only 979 // used for patching references to oops which don't need special 980 // handling in the volatile case. 981 982 deoptimize_for_volatile = result.access_flags().is_volatile(); 983 984 // If we are patching a field which should be atomic, then 985 // the generated code is not correct either, force deoptimizing. 986 // We need to only cover T_LONG and T_DOUBLE fields, as we can 987 // break access atomicity only for them. 988 989 // Strictly speaking, the deoptimization on 64-bit platforms 990 // is unnecessary, and T_LONG stores on 32-bit platforms need 991 // to be handled by special patching code when AlwaysAtomicAccesses 992 // becomes product feature. At this point, we are still going 993 // for the deoptimization for consistency against volatile 994 // accesses. 995 996 patch_field_type = result.field_type(); 997 deoptimize_for_atomic = (AlwaysAtomicAccesses && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)); 998 999 } else if (load_klass_or_mirror_patch_id) { 1000 Klass* k = NULL; 1001 switch (code) { 1002 case Bytecodes::_putstatic: 1003 case Bytecodes::_getstatic: 1004 { Klass* klass = resolve_field_return_klass(caller_method, bci, CHECK); 1005 init_klass = klass; 1006 mirror = Handle(current, klass->java_mirror()); 1007 } 1008 break; 1009 case Bytecodes::_new: 1010 { Bytecode_new bnew(caller_method(), caller_method->bcp_from(bci)); 1011 k = caller_method->constants()->klass_at(bnew.index(), CHECK); 1012 } 1013 break; 1014 case Bytecodes::_multianewarray: 1015 { Bytecode_multianewarray mna(caller_method(), caller_method->bcp_from(bci)); 1016 k = caller_method->constants()->klass_at(mna.index(), CHECK); 1017 } 1018 break; 1019 case Bytecodes::_instanceof: 1020 { Bytecode_instanceof io(caller_method(), caller_method->bcp_from(bci)); 1021 k = caller_method->constants()->klass_at(io.index(), CHECK); 1022 } 1023 break; 1024 case Bytecodes::_checkcast: 1025 { Bytecode_checkcast cc(caller_method(), caller_method->bcp_from(bci)); 1026 k = caller_method->constants()->klass_at(cc.index(), CHECK); 1027 } 1028 break; 1029 case Bytecodes::_anewarray: 1030 { Bytecode_anewarray anew(caller_method(), caller_method->bcp_from(bci)); 1031 Klass* ek = caller_method->constants()->klass_at(anew.index(), CHECK); 1032 k = ek->array_klass(CHECK); 1033 } 1034 break; 1035 case Bytecodes::_ldc: 1036 case Bytecodes::_ldc_w: 1037 case Bytecodes::_ldc2_w: 1038 { 1039 Bytecode_loadconstant cc(caller_method, bci); 1040 oop m = cc.resolve_constant(CHECK); 1041 mirror = Handle(current, m); 1042 } 1043 break; 1044 default: fatal("unexpected bytecode for load_klass_or_mirror_patch_id"); 1045 } 1046 load_klass = k; 1047 } else if (stub_id == load_appendix_patching_id) { 1048 Bytecode_invoke bytecode(caller_method, bci); 1049 Bytecodes::Code bc = bytecode.invoke_code(); 1050 1051 CallInfo info; 1052 constantPoolHandle pool(current, caller_method->constants()); 1053 int index = bytecode.index(); 1054 LinkResolver::resolve_invoke(info, Handle(), pool, index, bc, CHECK); 1055 switch (bc) { 1056 case Bytecodes::_invokehandle: { 1057 int cache_index = ConstantPool::decode_cpcache_index(index, true); 1058 assert(cache_index >= 0 && cache_index < pool->cache()->length(), "unexpected cache index"); 1059 ConstantPoolCacheEntry* cpce = pool->cache()->entry_at(cache_index); 1060 cpce->set_method_handle(pool, info); 1061 appendix = Handle(current, cpce->appendix_if_resolved(pool)); // just in case somebody already resolved the entry 1062 break; 1063 } 1064 case Bytecodes::_invokedynamic: { 1065 ConstantPoolCacheEntry* cpce = pool->invokedynamic_cp_cache_entry_at(index); 1066 cpce->set_dynamic_call(pool, info); 1067 appendix = Handle(current, cpce->appendix_if_resolved(pool)); // just in case somebody already resolved the entry 1068 break; 1069 } 1070 default: fatal("unexpected bytecode for load_appendix_patching_id"); 1071 } 1072 } else { 1073 ShouldNotReachHere(); 1074 } 1075 1076 if (deoptimize_for_volatile || deoptimize_for_atomic) { 1077 // At compile time we assumed the field wasn't volatile/atomic but after 1078 // loading it turns out it was volatile/atomic so we have to throw the 1079 // compiled code out and let it be regenerated. 1080 if (TracePatching) { 1081 if (deoptimize_for_volatile) { 1082 tty->print_cr("Deoptimizing for patching volatile field reference"); 1083 } 1084 if (deoptimize_for_atomic) { 1085 tty->print_cr("Deoptimizing for patching atomic field reference"); 1086 } 1087 } 1088 1089 // It's possible the nmethod was invalidated in the last 1090 // safepoint, but if it's still alive then make it not_entrant. 1091 nmethod* nm = CodeCache::find_nmethod(caller_frame.pc()); 1092 if (nm != NULL) { 1093 nm->make_not_entrant(); 1094 } 1095 1096 Deoptimization::deoptimize_frame(current, caller_frame.id()); 1097 1098 // Return to the now deoptimized frame. 1099 } 1100 1101 // Now copy code back 1102 1103 { 1104 MutexLocker ml_patch (current, Patching_lock, Mutex::_no_safepoint_check_flag); 1105 // 1106 // Deoptimization may have happened while we waited for the lock. 1107 // In that case we don't bother to do any patching we just return 1108 // and let the deopt happen 1109 if (!caller_is_deopted(current)) { 1110 NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc()); 1111 address instr_pc = jump->jump_destination(); 1112 NativeInstruction* ni = nativeInstruction_at(instr_pc); 1113 if (ni->is_jump() ) { 1114 // the jump has not been patched yet 1115 // The jump destination is slow case and therefore not part of the stubs 1116 // (stubs are only for StaticCalls) 1117 1118 // format of buffer 1119 // .... 1120 // instr byte 0 <-- copy_buff 1121 // instr byte 1 1122 // .. 1123 // instr byte n-1 1124 // n 1125 // .... <-- call destination 1126 1127 address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset(); 1128 unsigned char* byte_count = (unsigned char*) (stub_location - 1); 1129 unsigned char* byte_skip = (unsigned char*) (stub_location - 2); 1130 unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3); 1131 address copy_buff = stub_location - *byte_skip - *byte_count; 1132 address being_initialized_entry = stub_location - *being_initialized_entry_offset; 1133 if (TracePatching) { 1134 ttyLocker ttyl; 1135 tty->print_cr(" Patching %s at bci %d at address " INTPTR_FORMAT " (%s)", Bytecodes::name(code), bci, 1136 p2i(instr_pc), (stub_id == Runtime1::access_field_patching_id) ? "field" : "klass"); 1137 nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc()); 1138 assert(caller_code != NULL, "nmethod not found"); 1139 1140 // NOTE we use pc() not original_pc() because we already know they are 1141 // identical otherwise we'd have never entered this block of code 1142 1143 const ImmutableOopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc()); 1144 assert(map != NULL, "null check"); 1145 map->print(); 1146 tty->cr(); 1147 1148 Disassembler::decode(copy_buff, copy_buff + *byte_count, tty); 1149 } 1150 // depending on the code below, do_patch says whether to copy the patch body back into the nmethod 1151 bool do_patch = true; 1152 if (stub_id == Runtime1::access_field_patching_id) { 1153 // The offset may not be correct if the class was not loaded at code generation time. 1154 // Set it now. 1155 NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff); 1156 assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type"); 1157 assert(patch_field_offset >= 0, "illegal offset"); 1158 n_move->add_offset_in_bytes(patch_field_offset); 1159 } else if (load_klass_or_mirror_patch_id) { 1160 // If a getstatic or putstatic is referencing a klass which 1161 // isn't fully initialized, the patch body isn't copied into 1162 // place until initialization is complete. In this case the 1163 // patch site is setup so that any threads besides the 1164 // initializing thread are forced to come into the VM and 1165 // block. 1166 do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) || 1167 InstanceKlass::cast(init_klass)->is_initialized(); 1168 NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc); 1169 if (jump->jump_destination() == being_initialized_entry) { 1170 assert(do_patch == true, "initialization must be complete at this point"); 1171 } else { 1172 // patch the instruction <move reg, klass> 1173 NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff); 1174 1175 assert(n_copy->data() == 0 || 1176 n_copy->data() == (intptr_t)Universe::non_oop_word(), 1177 "illegal init value"); 1178 if (stub_id == Runtime1::load_klass_patching_id) { 1179 assert(load_klass != NULL, "klass not set"); 1180 n_copy->set_data((intx) (load_klass)); 1181 } else { 1182 // Don't need a G1 pre-barrier here since we assert above that data isn't an oop. 1183 n_copy->set_data(cast_from_oop<intx>(mirror())); 1184 } 1185 1186 if (TracePatching) { 1187 Disassembler::decode(copy_buff, copy_buff + *byte_count, tty); 1188 } 1189 } 1190 } else if (stub_id == Runtime1::load_appendix_patching_id) { 1191 NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff); 1192 assert(n_copy->data() == 0 || 1193 n_copy->data() == (intptr_t)Universe::non_oop_word(), 1194 "illegal init value"); 1195 n_copy->set_data(cast_from_oop<intx>(appendix())); 1196 1197 if (TracePatching) { 1198 Disassembler::decode(copy_buff, copy_buff + *byte_count, tty); 1199 } 1200 } else { 1201 ShouldNotReachHere(); 1202 } 1203 1204 if (do_patch) { 1205 // replace instructions 1206 // first replace the tail, then the call 1207 #ifdef ARM 1208 if((load_klass_or_mirror_patch_id || 1209 stub_id == Runtime1::load_appendix_patching_id) && 1210 nativeMovConstReg_at(copy_buff)->is_pc_relative()) { 1211 nmethod* nm = CodeCache::find_nmethod(instr_pc); 1212 address addr = NULL; 1213 assert(nm != NULL, "invalid nmethod_pc"); 1214 RelocIterator mds(nm, copy_buff, copy_buff + 1); 1215 while (mds.next()) { 1216 if (mds.type() == relocInfo::oop_type) { 1217 assert(stub_id == Runtime1::load_mirror_patching_id || 1218 stub_id == Runtime1::load_appendix_patching_id, "wrong stub id"); 1219 oop_Relocation* r = mds.oop_reloc(); 1220 addr = (address)r->oop_addr(); 1221 break; 1222 } else if (mds.type() == relocInfo::metadata_type) { 1223 assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id"); 1224 metadata_Relocation* r = mds.metadata_reloc(); 1225 addr = (address)r->metadata_addr(); 1226 break; 1227 } 1228 } 1229 assert(addr != NULL, "metadata relocation must exist"); 1230 copy_buff -= *byte_count; 1231 NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff); 1232 n_copy2->set_pc_relative_offset(addr, instr_pc); 1233 } 1234 #endif 1235 1236 for (int i = NativeGeneralJump::instruction_size; i < *byte_count; i++) { 1237 address ptr = copy_buff + i; 1238 int a_byte = (*ptr) & 0xFF; 1239 address dst = instr_pc + i; 1240 *(unsigned char*)dst = (unsigned char) a_byte; 1241 } 1242 ICache::invalidate_range(instr_pc, *byte_count); 1243 NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff); 1244 1245 if (load_klass_or_mirror_patch_id || 1246 stub_id == Runtime1::load_appendix_patching_id) { 1247 relocInfo::relocType rtype = 1248 (stub_id == Runtime1::load_klass_patching_id) ? 1249 relocInfo::metadata_type : 1250 relocInfo::oop_type; 1251 // update relocInfo to metadata 1252 nmethod* nm = CodeCache::find_nmethod(instr_pc); 1253 assert(nm != NULL, "invalid nmethod_pc"); 1254 1255 // The old patch site is now a move instruction so update 1256 // the reloc info so that it will get updated during 1257 // future GCs. 1258 RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1)); 1259 relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc, 1260 relocInfo::none, rtype); 1261 } 1262 1263 } else { 1264 ICache::invalidate_range(copy_buff, *byte_count); 1265 NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry); 1266 } 1267 } 1268 } 1269 } 1270 1271 // If we are patching in a non-perm oop, make sure the nmethod 1272 // is on the right list. 1273 { 1274 MutexLocker ml_code (current, CodeCache_lock, Mutex::_no_safepoint_check_flag); 1275 nmethod* nm = CodeCache::find_nmethod(caller_frame.pc()); 1276 guarantee(nm != NULL, "only nmethods can contain non-perm oops"); 1277 1278 // Since we've patched some oops in the nmethod, 1279 // (re)register it with the heap. 1280 Universe::heap()->register_nmethod(nm); 1281 } 1282 JRT_END 1283 1284 #else // DEOPTIMIZE_WHEN_PATCHING 1285 1286 void Runtime1::patch_code(JavaThread* current, Runtime1::StubID stub_id) { 1287 #ifndef PRODUCT 1288 if (PrintC1Statistics) { 1289 _patch_code_slowcase_cnt++; 1290 } 1291 #endif 1292 1293 // Enable WXWrite: the function is called by c1 stub as a runtime function 1294 // (see another implementation above). 1295 MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, current)); 1296 1297 if (TracePatching) { 1298 tty->print_cr("Deoptimizing because patch is needed"); 1299 } 1300 1301 RegisterMap reg_map(current, 1302 RegisterMap::UpdateMap::skip, 1303 RegisterMap::ProcessFrames::include, 1304 RegisterMap::WalkContinuation::skip); 1305 1306 frame runtime_frame = current->last_frame(); 1307 frame caller_frame = runtime_frame.sender(®_map); 1308 assert(caller_frame.is_compiled_frame(), "Wrong frame type"); 1309 1310 // Make sure the nmethod is invalidated, i.e. made not entrant. 1311 nmethod* nm = CodeCache::find_nmethod(caller_frame.pc()); 1312 if (nm != NULL) { 1313 nm->make_not_entrant(); 1314 } 1315 1316 Deoptimization::deoptimize_frame(current, caller_frame.id()); 1317 // Return to the now deoptimized frame. 1318 postcond(caller_is_deopted(current)); 1319 } 1320 1321 #endif // DEOPTIMIZE_WHEN_PATCHING 1322 1323 // Entry point for compiled code. We want to patch a nmethod. 1324 // We don't do a normal VM transition here because we want to 1325 // know after the patching is complete and any safepoint(s) are taken 1326 // if the calling nmethod was deoptimized. We do this by calling a 1327 // helper method which does the normal VM transition and when it 1328 // completes we can check for deoptimization. This simplifies the 1329 // assembly code in the cpu directories. 1330 // 1331 int Runtime1::move_klass_patching(JavaThread* current) { 1332 // 1333 // NOTE: we are still in Java 1334 // 1335 debug_only(NoHandleMark nhm;) 1336 { 1337 // Enter VM mode 1338 ResetNoHandleMark rnhm; 1339 patch_code(current, load_klass_patching_id); 1340 } 1341 // Back in JAVA, use no oops DON'T safepoint 1342 1343 // Return true if calling code is deoptimized 1344 1345 return caller_is_deopted(current); 1346 } 1347 1348 int Runtime1::move_mirror_patching(JavaThread* current) { 1349 // 1350 // NOTE: we are still in Java 1351 // 1352 debug_only(NoHandleMark nhm;) 1353 { 1354 // Enter VM mode 1355 ResetNoHandleMark rnhm; 1356 patch_code(current, load_mirror_patching_id); 1357 } 1358 // Back in JAVA, use no oops DON'T safepoint 1359 1360 // Return true if calling code is deoptimized 1361 1362 return caller_is_deopted(current); 1363 } 1364 1365 int Runtime1::move_appendix_patching(JavaThread* current) { 1366 // 1367 // NOTE: we are still in Java 1368 // 1369 debug_only(NoHandleMark nhm;) 1370 { 1371 // Enter VM mode 1372 ResetNoHandleMark rnhm; 1373 patch_code(current, load_appendix_patching_id); 1374 } 1375 // Back in JAVA, use no oops DON'T safepoint 1376 1377 // Return true if calling code is deoptimized 1378 1379 return caller_is_deopted(current); 1380 } 1381 1382 // Entry point for compiled code. We want to patch a nmethod. 1383 // We don't do a normal VM transition here because we want to 1384 // know after the patching is complete and any safepoint(s) are taken 1385 // if the calling nmethod was deoptimized. We do this by calling a 1386 // helper method which does the normal VM transition and when it 1387 // completes we can check for deoptimization. This simplifies the 1388 // assembly code in the cpu directories. 1389 // 1390 int Runtime1::access_field_patching(JavaThread* current) { 1391 // 1392 // NOTE: we are still in Java 1393 // 1394 // Handles created in this function will be deleted by the 1395 // HandleMarkCleaner in the transition to the VM. 1396 NoHandleMark nhm; 1397 { 1398 // Enter VM mode 1399 ResetNoHandleMark rnhm; 1400 patch_code(current, access_field_patching_id); 1401 } 1402 // Back in JAVA, use no oops DON'T safepoint 1403 1404 // Return true if calling code is deoptimized 1405 1406 return caller_is_deopted(current); 1407 } 1408 1409 1410 JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id)) 1411 // for now we just print out the block id 1412 tty->print("%d ", block_id); 1413 JRT_END 1414 1415 1416 JRT_LEAF(int, Runtime1::is_instance_of(oopDesc* mirror, oopDesc* obj)) 1417 // had to return int instead of bool, otherwise there may be a mismatch 1418 // between the C calling convention and the Java one. 1419 // e.g., on x86, GCC may clear only %al when returning a bool false, but 1420 // JVM takes the whole %eax as the return value, which may misinterpret 1421 // the return value as a boolean true. 1422 1423 assert(mirror != NULL, "should null-check on mirror before calling"); 1424 Klass* k = java_lang_Class::as_Klass(mirror); 1425 return (k != NULL && obj != NULL && obj->is_a(k)) ? 1 : 0; 1426 JRT_END 1427 1428 JRT_ENTRY(void, Runtime1::predicate_failed_trap(JavaThread* current)) 1429 ResourceMark rm; 1430 1431 RegisterMap reg_map(current, 1432 RegisterMap::UpdateMap::skip, 1433 RegisterMap::ProcessFrames::include, 1434 RegisterMap::WalkContinuation::skip); 1435 frame runtime_frame = current->last_frame(); 1436 frame caller_frame = runtime_frame.sender(®_map); 1437 1438 nmethod* nm = CodeCache::find_nmethod(caller_frame.pc()); 1439 assert (nm != NULL, "no more nmethod?"); 1440 nm->make_not_entrant(); 1441 1442 methodHandle m(current, nm->method()); 1443 MethodData* mdo = m->method_data(); 1444 1445 if (mdo == NULL && !HAS_PENDING_EXCEPTION) { 1446 // Build an MDO. Ignore errors like OutOfMemory; 1447 // that simply means we won't have an MDO to update. 1448 Method::build_profiling_method_data(m, THREAD); 1449 if (HAS_PENDING_EXCEPTION) { 1450 // Only metaspace OOM is expected. No Java code executed. 1451 assert((PENDING_EXCEPTION->is_a(vmClasses::OutOfMemoryError_klass())), "we expect only an OOM error here"); 1452 CLEAR_PENDING_EXCEPTION; 1453 } 1454 mdo = m->method_data(); 1455 } 1456 1457 if (mdo != NULL) { 1458 mdo->inc_trap_count(Deoptimization::Reason_none); 1459 } 1460 1461 if (TracePredicateFailedTraps) { 1462 stringStream ss1, ss2; 1463 vframeStream vfst(current); 1464 Method* inlinee = vfst.method(); 1465 inlinee->print_short_name(&ss1); 1466 m->print_short_name(&ss2); 1467 tty->print_cr("Predicate failed trap in method %s at bci %d inlined in %s at pc " INTPTR_FORMAT, ss1.as_string(), vfst.bci(), ss2.as_string(), p2i(caller_frame.pc())); 1468 } 1469 1470 1471 Deoptimization::deoptimize_frame(current, caller_frame.id()); 1472 1473 JRT_END 1474 1475 #ifndef PRODUCT 1476 void Runtime1::print_statistics() { 1477 tty->print_cr("C1 Runtime statistics:"); 1478 tty->print_cr(" _resolve_invoke_virtual_cnt: %d", SharedRuntime::_resolve_virtual_ctr); 1479 tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %d", SharedRuntime::_resolve_opt_virtual_ctr); 1480 tty->print_cr(" _resolve_invoke_static_cnt: %d", SharedRuntime::_resolve_static_ctr); 1481 tty->print_cr(" _handle_wrong_method_cnt: %d", SharedRuntime::_wrong_method_ctr); 1482 tty->print_cr(" _ic_miss_cnt: %d", SharedRuntime::_ic_miss_ctr); 1483 tty->print_cr(" _generic_arraycopystub_cnt: %d", _generic_arraycopystub_cnt); 1484 tty->print_cr(" _byte_arraycopy_cnt: %d", _byte_arraycopy_stub_cnt); 1485 tty->print_cr(" _short_arraycopy_cnt: %d", _short_arraycopy_stub_cnt); 1486 tty->print_cr(" _int_arraycopy_cnt: %d", _int_arraycopy_stub_cnt); 1487 tty->print_cr(" _long_arraycopy_cnt: %d", _long_arraycopy_stub_cnt); 1488 tty->print_cr(" _oop_arraycopy_cnt: %d", _oop_arraycopy_stub_cnt); 1489 tty->print_cr(" _arraycopy_slowcase_cnt: %d", _arraycopy_slowcase_cnt); 1490 tty->print_cr(" _arraycopy_checkcast_cnt: %d", _arraycopy_checkcast_cnt); 1491 tty->print_cr(" _arraycopy_checkcast_attempt_cnt:%d", _arraycopy_checkcast_attempt_cnt); 1492 1493 tty->print_cr(" _new_type_array_slowcase_cnt: %d", _new_type_array_slowcase_cnt); 1494 tty->print_cr(" _new_object_array_slowcase_cnt: %d", _new_object_array_slowcase_cnt); 1495 tty->print_cr(" _new_instance_slowcase_cnt: %d", _new_instance_slowcase_cnt); 1496 tty->print_cr(" _new_multi_array_slowcase_cnt: %d", _new_multi_array_slowcase_cnt); 1497 tty->print_cr(" _monitorenter_slowcase_cnt: %d", _monitorenter_slowcase_cnt); 1498 tty->print_cr(" _monitorexit_slowcase_cnt: %d", _monitorexit_slowcase_cnt); 1499 tty->print_cr(" _patch_code_slowcase_cnt: %d", _patch_code_slowcase_cnt); 1500 1501 tty->print_cr(" _throw_range_check_exception_count: %d:", _throw_range_check_exception_count); 1502 tty->print_cr(" _throw_index_exception_count: %d:", _throw_index_exception_count); 1503 tty->print_cr(" _throw_div0_exception_count: %d:", _throw_div0_exception_count); 1504 tty->print_cr(" _throw_null_pointer_exception_count: %d:", _throw_null_pointer_exception_count); 1505 tty->print_cr(" _throw_class_cast_exception_count: %d:", _throw_class_cast_exception_count); 1506 tty->print_cr(" _throw_incompatible_class_change_error_count: %d:", _throw_incompatible_class_change_error_count); 1507 tty->print_cr(" _throw_count: %d:", _throw_count); 1508 1509 SharedRuntime::print_ic_miss_histogram(); 1510 tty->cr(); 1511 } 1512 #endif // PRODUCT --- EOF ---