1 /* 2 * Copyright (c) 1999, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/codeBuffer.hpp" 27 #include "c1/c1_CodeStubs.hpp" 28 #include "c1/c1_Defs.hpp" 29 #include "c1/c1_FrameMap.hpp" 30 #include "c1/c1_LIRAssembler.hpp" 31 #include "c1/c1_MacroAssembler.hpp" 32 #include "c1/c1_Runtime1.hpp" 33 #include "classfile/javaClasses.inline.hpp" 34 #include "classfile/vmClasses.hpp" 35 #include "classfile/vmSymbols.hpp" 36 #include "code/codeBlob.hpp" 37 #include "code/compiledIC.hpp" 38 #include "code/pcDesc.hpp" 39 #include "code/scopeDesc.hpp" 40 #include "code/vtableStubs.hpp" 41 #include "compiler/compilationPolicy.hpp" 42 #include "compiler/disassembler.hpp" 43 #include "compiler/oopMap.hpp" 44 #include "gc/shared/barrierSet.hpp" 45 #include "gc/shared/c1/barrierSetC1.hpp" 46 #include "gc/shared/collectedHeap.hpp" 47 #include "interpreter/bytecode.hpp" 48 #include "interpreter/interpreter.hpp" 49 #include "jfr/support/jfrIntrinsics.hpp" 50 #include "logging/log.hpp" 51 #include "memory/allocation.inline.hpp" 52 #include "memory/oopFactory.hpp" 53 #include "memory/resourceArea.hpp" 54 #include "memory/universe.hpp" 55 #include "oops/access.inline.hpp" 56 #include "oops/klass.inline.hpp" 57 #include "oops/objArrayOop.inline.hpp" 58 #include "oops/objArrayKlass.hpp" 59 #include "oops/oop.inline.hpp" 60 #include "prims/jvmtiExport.hpp" 61 #include "runtime/atomic.hpp" 62 #include "runtime/fieldDescriptor.inline.hpp" 63 #include "runtime/frame.inline.hpp" 64 #include "runtime/handles.inline.hpp" 65 #include "runtime/interfaceSupport.inline.hpp" 66 #include "runtime/javaCalls.hpp" 67 #include "runtime/sharedRuntime.hpp" 68 #include "runtime/stackWatermarkSet.hpp" 69 #include "runtime/stubRoutines.hpp" 70 #include "runtime/threadCritical.hpp" 71 #include "runtime/vframe.inline.hpp" 72 #include "runtime/vframeArray.hpp" 73 #include "runtime/vm_version.hpp" 74 #include "utilities/copy.hpp" 75 #include "utilities/events.hpp" 76 77 78 // Implementation of StubAssembler 79 80 StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) { 81 _name = name; 82 _must_gc_arguments = false; 83 _frame_size = no_frame_size; 84 _num_rt_args = 0; 85 _stub_id = stub_id; 86 } 87 88 89 void StubAssembler::set_info(const char* name, bool must_gc_arguments) { 90 _name = name; 91 _must_gc_arguments = must_gc_arguments; 92 } 93 94 95 void StubAssembler::set_frame_size(int size) { 96 if (_frame_size == no_frame_size) { 97 _frame_size = size; 98 } 99 assert(_frame_size == size, "can't change the frame size"); 100 } 101 102 103 void StubAssembler::set_num_rt_args(int args) { 104 if (_num_rt_args == 0) { 105 _num_rt_args = args; 106 } 107 assert(_num_rt_args == args, "can't change the number of args"); 108 } 109 110 // Implementation of Runtime1 111 112 CodeBlob* Runtime1::_blobs[Runtime1::number_of_ids]; 113 const char *Runtime1::_blob_names[] = { 114 RUNTIME1_STUBS(STUB_NAME, LAST_STUB_NAME) 115 }; 116 117 #ifndef PRODUCT 118 // statistics 119 uint Runtime1::_generic_arraycopystub_cnt = 0; 120 uint Runtime1::_arraycopy_slowcase_cnt = 0; 121 uint Runtime1::_arraycopy_checkcast_cnt = 0; 122 uint Runtime1::_arraycopy_checkcast_attempt_cnt = 0; 123 uint Runtime1::_new_type_array_slowcase_cnt = 0; 124 uint Runtime1::_new_object_array_slowcase_cnt = 0; 125 uint Runtime1::_new_instance_slowcase_cnt = 0; 126 uint Runtime1::_new_multi_array_slowcase_cnt = 0; 127 uint Runtime1::_monitorenter_slowcase_cnt = 0; 128 uint Runtime1::_monitorexit_slowcase_cnt = 0; 129 uint Runtime1::_patch_code_slowcase_cnt = 0; 130 uint Runtime1::_throw_range_check_exception_count = 0; 131 uint Runtime1::_throw_index_exception_count = 0; 132 uint Runtime1::_throw_div0_exception_count = 0; 133 uint Runtime1::_throw_null_pointer_exception_count = 0; 134 uint Runtime1::_throw_class_cast_exception_count = 0; 135 uint Runtime1::_throw_incompatible_class_change_error_count = 0; 136 uint Runtime1::_throw_count = 0; 137 138 static uint _byte_arraycopy_stub_cnt = 0; 139 static uint _short_arraycopy_stub_cnt = 0; 140 static uint _int_arraycopy_stub_cnt = 0; 141 static uint _long_arraycopy_stub_cnt = 0; 142 static uint _oop_arraycopy_stub_cnt = 0; 143 144 address Runtime1::arraycopy_count_address(BasicType type) { 145 switch (type) { 146 case T_BOOLEAN: 147 case T_BYTE: return (address)&_byte_arraycopy_stub_cnt; 148 case T_CHAR: 149 case T_SHORT: return (address)&_short_arraycopy_stub_cnt; 150 case T_FLOAT: 151 case T_INT: return (address)&_int_arraycopy_stub_cnt; 152 case T_DOUBLE: 153 case T_LONG: return (address)&_long_arraycopy_stub_cnt; 154 case T_ARRAY: 155 case T_OBJECT: return (address)&_oop_arraycopy_stub_cnt; 156 default: 157 ShouldNotReachHere(); 158 return nullptr; 159 } 160 } 161 162 163 #endif 164 165 // Simple helper to see if the caller of a runtime stub which 166 // entered the VM has been deoptimized 167 168 static bool caller_is_deopted(JavaThread* current) { 169 RegisterMap reg_map(current, 170 RegisterMap::UpdateMap::skip, 171 RegisterMap::ProcessFrames::include, 172 RegisterMap::WalkContinuation::skip); 173 frame runtime_frame = current->last_frame(); 174 frame caller_frame = runtime_frame.sender(®_map); 175 assert(caller_frame.is_compiled_frame(), "must be compiled"); 176 return caller_frame.is_deoptimized_frame(); 177 } 178 179 // Stress deoptimization 180 static void deopt_caller(JavaThread* current) { 181 if (!caller_is_deopted(current)) { 182 RegisterMap reg_map(current, 183 RegisterMap::UpdateMap::skip, 184 RegisterMap::ProcessFrames::include, 185 RegisterMap::WalkContinuation::skip); 186 frame runtime_frame = current->last_frame(); 187 frame caller_frame = runtime_frame.sender(®_map); 188 Deoptimization::deoptimize_frame(current, caller_frame.id()); 189 assert(caller_is_deopted(current), "Must be deoptimized"); 190 } 191 } 192 193 class StubIDStubAssemblerCodeGenClosure: public StubAssemblerCodeGenClosure { 194 private: 195 Runtime1::StubID _id; 196 public: 197 StubIDStubAssemblerCodeGenClosure(Runtime1::StubID id) : _id(id) {} 198 virtual OopMapSet* generate_code(StubAssembler* sasm) { 199 return Runtime1::generate_code_for(_id, sasm); 200 } 201 }; 202 203 CodeBlob* Runtime1::generate_blob(BufferBlob* buffer_blob, int stub_id, const char* name, bool expect_oop_map, StubAssemblerCodeGenClosure* cl) { 204 ResourceMark rm; 205 // create code buffer for code storage 206 CodeBuffer code(buffer_blob); 207 208 OopMapSet* oop_maps; 209 int frame_size; 210 bool must_gc_arguments; 211 212 Compilation::setup_code_buffer(&code, 0); 213 214 // create assembler for code generation 215 StubAssembler* sasm = new StubAssembler(&code, name, stub_id); 216 // generate code for runtime stub 217 oop_maps = cl->generate_code(sasm); 218 assert(oop_maps == nullptr || sasm->frame_size() != no_frame_size, 219 "if stub has an oop map it must have a valid frame size"); 220 assert(!expect_oop_map || oop_maps != nullptr, "must have an oopmap"); 221 222 // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned) 223 sasm->align(BytesPerWord); 224 // make sure all code is in code buffer 225 sasm->flush(); 226 227 frame_size = sasm->frame_size(); 228 must_gc_arguments = sasm->must_gc_arguments(); 229 // create blob - distinguish a few special cases 230 CodeBlob* blob = RuntimeStub::new_runtime_stub(name, 231 &code, 232 CodeOffsets::frame_never_safe, 233 frame_size, 234 oop_maps, 235 must_gc_arguments); 236 assert(blob != nullptr, "blob must exist"); 237 return blob; 238 } 239 240 void Runtime1::generate_blob_for(BufferBlob* buffer_blob, StubID id) { 241 assert(0 <= id && id < number_of_ids, "illegal stub id"); 242 bool expect_oop_map = true; 243 #ifdef ASSERT 244 // Make sure that stubs that need oopmaps have them 245 switch (id) { 246 // These stubs don't need to have an oopmap 247 case dtrace_object_alloc_id: 248 case slow_subtype_check_id: 249 case fpu2long_stub_id: 250 case unwind_exception_id: 251 case counter_overflow_id: 252 expect_oop_map = false; 253 break; 254 default: 255 break; 256 } 257 #endif 258 StubIDStubAssemblerCodeGenClosure cl(id); 259 CodeBlob* blob = generate_blob(buffer_blob, id, name_for(id), expect_oop_map, &cl); 260 // install blob 261 _blobs[id] = blob; 262 } 263 264 void Runtime1::initialize(BufferBlob* blob) { 265 // platform-dependent initialization 266 initialize_pd(); 267 // generate stubs 268 for (int id = 0; id < number_of_ids; id++) generate_blob_for(blob, (StubID)id); 269 // printing 270 #ifndef PRODUCT 271 if (PrintSimpleStubs) { 272 ResourceMark rm; 273 for (int id = 0; id < number_of_ids; id++) { 274 _blobs[id]->print(); 275 if (_blobs[id]->oop_maps() != nullptr) { 276 _blobs[id]->oop_maps()->print(); 277 } 278 } 279 } 280 #endif 281 BarrierSetC1* bs = BarrierSet::barrier_set()->barrier_set_c1(); 282 bs->generate_c1_runtime_stubs(blob); 283 } 284 285 CodeBlob* Runtime1::blob_for(StubID id) { 286 assert(0 <= id && id < number_of_ids, "illegal stub id"); 287 return _blobs[id]; 288 } 289 290 291 const char* Runtime1::name_for(StubID id) { 292 assert(0 <= id && id < number_of_ids, "illegal stub id"); 293 return _blob_names[id]; 294 } 295 296 const char* Runtime1::name_for_address(address entry) { 297 for (int id = 0; id < number_of_ids; id++) { 298 if (entry == entry_for((StubID)id)) return name_for((StubID)id); 299 } 300 301 #define FUNCTION_CASE(a, f) \ 302 if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f)) return #f 303 304 FUNCTION_CASE(entry, os::javaTimeMillis); 305 FUNCTION_CASE(entry, os::javaTimeNanos); 306 FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end); 307 FUNCTION_CASE(entry, SharedRuntime::d2f); 308 FUNCTION_CASE(entry, SharedRuntime::d2i); 309 FUNCTION_CASE(entry, SharedRuntime::d2l); 310 FUNCTION_CASE(entry, SharedRuntime::dcos); 311 FUNCTION_CASE(entry, SharedRuntime::dexp); 312 FUNCTION_CASE(entry, SharedRuntime::dlog); 313 FUNCTION_CASE(entry, SharedRuntime::dlog10); 314 FUNCTION_CASE(entry, SharedRuntime::dpow); 315 FUNCTION_CASE(entry, SharedRuntime::drem); 316 FUNCTION_CASE(entry, SharedRuntime::dsin); 317 FUNCTION_CASE(entry, SharedRuntime::dtan); 318 FUNCTION_CASE(entry, SharedRuntime::f2i); 319 FUNCTION_CASE(entry, SharedRuntime::f2l); 320 FUNCTION_CASE(entry, SharedRuntime::frem); 321 FUNCTION_CASE(entry, SharedRuntime::l2d); 322 FUNCTION_CASE(entry, SharedRuntime::l2f); 323 FUNCTION_CASE(entry, SharedRuntime::ldiv); 324 FUNCTION_CASE(entry, SharedRuntime::lmul); 325 FUNCTION_CASE(entry, SharedRuntime::lrem); 326 FUNCTION_CASE(entry, SharedRuntime::lrem); 327 FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry); 328 FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit); 329 FUNCTION_CASE(entry, is_instance_of); 330 FUNCTION_CASE(entry, trace_block_entry); 331 #ifdef JFR_HAVE_INTRINSICS 332 FUNCTION_CASE(entry, JfrTime::time_function()); 333 #endif 334 FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32()); 335 FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32C()); 336 FUNCTION_CASE(entry, StubRoutines::vectorizedMismatch()); 337 FUNCTION_CASE(entry, StubRoutines::dexp()); 338 FUNCTION_CASE(entry, StubRoutines::dlog()); 339 FUNCTION_CASE(entry, StubRoutines::dlog10()); 340 FUNCTION_CASE(entry, StubRoutines::dpow()); 341 FUNCTION_CASE(entry, StubRoutines::dsin()); 342 FUNCTION_CASE(entry, StubRoutines::dcos()); 343 FUNCTION_CASE(entry, StubRoutines::dtan()); 344 345 #undef FUNCTION_CASE 346 347 // Soft float adds more runtime names. 348 return pd_name_for_address(entry); 349 } 350 351 352 JRT_ENTRY(void, Runtime1::new_instance(JavaThread* current, Klass* klass)) 353 #ifndef PRODUCT 354 if (PrintC1Statistics) { 355 _new_instance_slowcase_cnt++; 356 } 357 #endif 358 assert(klass->is_klass(), "not a class"); 359 Handle holder(current, klass->klass_holder()); // keep the klass alive 360 InstanceKlass* h = InstanceKlass::cast(klass); 361 h->check_valid_for_instantiation(true, CHECK); 362 // make sure klass is initialized 363 h->initialize(CHECK); 364 // allocate instance and return via TLS 365 oop obj = h->allocate_instance(CHECK); 366 current->set_vm_result(obj); 367 JRT_END 368 369 370 JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* current, Klass* klass, jint length)) 371 #ifndef PRODUCT 372 if (PrintC1Statistics) { 373 _new_type_array_slowcase_cnt++; 374 } 375 #endif 376 // Note: no handle for klass needed since they are not used 377 // anymore after new_typeArray() and no GC can happen before. 378 // (This may have to change if this code changes!) 379 assert(klass->is_klass(), "not a class"); 380 BasicType elt_type = TypeArrayKlass::cast(klass)->element_type(); 381 oop obj = oopFactory::new_typeArray(elt_type, length, CHECK); 382 current->set_vm_result(obj); 383 // This is pretty rare but this runtime patch is stressful to deoptimization 384 // if we deoptimize here so force a deopt to stress the path. 385 if (DeoptimizeALot) { 386 deopt_caller(current); 387 } 388 389 JRT_END 390 391 392 JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* current, Klass* array_klass, jint length)) 393 #ifndef PRODUCT 394 if (PrintC1Statistics) { 395 _new_object_array_slowcase_cnt++; 396 } 397 #endif 398 // Note: no handle for klass needed since they are not used 399 // anymore after new_objArray() and no GC can happen before. 400 // (This may have to change if this code changes!) 401 assert(array_klass->is_klass(), "not a class"); 402 Handle holder(current, array_klass->klass_holder()); // keep the klass alive 403 Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass(); 404 objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK); 405 current->set_vm_result(obj); 406 // This is pretty rare but this runtime patch is stressful to deoptimization 407 // if we deoptimize here so force a deopt to stress the path. 408 if (DeoptimizeALot) { 409 deopt_caller(current); 410 } 411 JRT_END 412 413 414 JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* current, Klass* klass, int rank, jint* dims)) 415 #ifndef PRODUCT 416 if (PrintC1Statistics) { 417 _new_multi_array_slowcase_cnt++; 418 } 419 #endif 420 assert(klass->is_klass(), "not a class"); 421 assert(rank >= 1, "rank must be nonzero"); 422 Handle holder(current, klass->klass_holder()); // keep the klass alive 423 oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK); 424 current->set_vm_result(obj); 425 JRT_END 426 427 428 JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* current, StubID id)) 429 tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", id); 430 JRT_END 431 432 433 JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* current, oopDesc* obj)) 434 ResourceMark rm(current); 435 const char* klass_name = obj->klass()->external_name(); 436 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArrayStoreException(), klass_name); 437 JRT_END 438 439 440 // counter_overflow() is called from within C1-compiled methods. The enclosing method is the method 441 // associated with the top activation record. The inlinee (that is possibly included in the enclosing 442 // method) method is passed as an argument. In order to do that it is embedded in the code as 443 // a constant. 444 static nmethod* counter_overflow_helper(JavaThread* current, int branch_bci, Method* m) { 445 nmethod* osr_nm = nullptr; 446 methodHandle method(current, m); 447 448 RegisterMap map(current, 449 RegisterMap::UpdateMap::skip, 450 RegisterMap::ProcessFrames::include, 451 RegisterMap::WalkContinuation::skip); 452 frame fr = current->last_frame().sender(&map); 453 nmethod* nm = (nmethod*) fr.cb(); 454 assert(nm!= nullptr && nm->is_nmethod(), "Sanity check"); 455 methodHandle enclosing_method(current, nm->method()); 456 457 CompLevel level = (CompLevel)nm->comp_level(); 458 int bci = InvocationEntryBci; 459 if (branch_bci != InvocationEntryBci) { 460 // Compute destination bci 461 address pc = method()->code_base() + branch_bci; 462 Bytecodes::Code branch = Bytecodes::code_at(method(), pc); 463 int offset = 0; 464 switch (branch) { 465 case Bytecodes::_if_icmplt: case Bytecodes::_iflt: 466 case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt: 467 case Bytecodes::_if_icmple: case Bytecodes::_ifle: 468 case Bytecodes::_if_icmpge: case Bytecodes::_ifge: 469 case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq: 470 case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne: 471 case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto: 472 offset = (int16_t)Bytes::get_Java_u2(pc + 1); 473 break; 474 case Bytecodes::_goto_w: 475 offset = Bytes::get_Java_u4(pc + 1); 476 break; 477 default: ; 478 } 479 bci = branch_bci + offset; 480 } 481 osr_nm = CompilationPolicy::event(enclosing_method, method, branch_bci, bci, level, nm, current); 482 return osr_nm; 483 } 484 485 JRT_BLOCK_ENTRY(address, Runtime1::counter_overflow(JavaThread* current, int bci, Method* method)) 486 nmethod* osr_nm; 487 JRT_BLOCK 488 osr_nm = counter_overflow_helper(current, bci, method); 489 if (osr_nm != nullptr) { 490 RegisterMap map(current, 491 RegisterMap::UpdateMap::skip, 492 RegisterMap::ProcessFrames::include, 493 RegisterMap::WalkContinuation::skip); 494 frame fr = current->last_frame().sender(&map); 495 Deoptimization::deoptimize_frame(current, fr.id()); 496 } 497 JRT_BLOCK_END 498 return nullptr; 499 JRT_END 500 501 extern void vm_exit(int code); 502 503 // Enter this method from compiled code handler below. This is where we transition 504 // to VM mode. This is done as a helper routine so that the method called directly 505 // from compiled code does not have to transition to VM. This allows the entry 506 // method to see if the nmethod that we have just looked up a handler for has 507 // been deoptimized while we were in the vm. This simplifies the assembly code 508 // cpu directories. 509 // 510 // We are entering here from exception stub (via the entry method below) 511 // If there is a compiled exception handler in this method, we will continue there; 512 // otherwise we will unwind the stack and continue at the caller of top frame method 513 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to 514 // control the area where we can allow a safepoint. After we exit the safepoint area we can 515 // check to see if the handler we are going to return is now in a nmethod that has 516 // been deoptimized. If that is the case we return the deopt blob 517 // unpack_with_exception entry instead. This makes life for the exception blob easier 518 // because making that same check and diverting is painful from assembly language. 519 JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* current, oopDesc* ex, address pc, nmethod*& nm)) 520 // Reset method handle flag. 521 current->set_is_method_handle_return(false); 522 523 Handle exception(current, ex); 524 525 // This function is called when we are about to throw an exception. Therefore, 526 // we have to poll the stack watermark barrier to make sure that not yet safe 527 // stack frames are made safe before returning into them. 528 if (current->last_frame().cb() == Runtime1::blob_for(Runtime1::handle_exception_from_callee_id)) { 529 // The Runtime1::handle_exception_from_callee_id handler is invoked after the 530 // frame has been unwound. It instead builds its own stub frame, to call the 531 // runtime. But the throwing frame has already been unwound here. 532 StackWatermarkSet::after_unwind(current); 533 } 534 535 nm = CodeCache::find_nmethod(pc); 536 assert(nm != nullptr, "this is not an nmethod"); 537 // Adjust the pc as needed/ 538 if (nm->is_deopt_pc(pc)) { 539 RegisterMap map(current, 540 RegisterMap::UpdateMap::skip, 541 RegisterMap::ProcessFrames::include, 542 RegisterMap::WalkContinuation::skip); 543 frame exception_frame = current->last_frame().sender(&map); 544 // if the frame isn't deopted then pc must not correspond to the caller of last_frame 545 assert(exception_frame.is_deoptimized_frame(), "must be deopted"); 546 pc = exception_frame.pc(); 547 } 548 assert(exception.not_null(), "null exceptions should be handled by throw_exception"); 549 // Check that exception is a subclass of Throwable 550 assert(exception->is_a(vmClasses::Throwable_klass()), 551 "Exception not subclass of Throwable"); 552 553 // debugging support 554 // tracing 555 if (log_is_enabled(Info, exceptions)) { 556 ResourceMark rm; // print_value_string 557 stringStream tempst; 558 assert(nm->method() != nullptr, "Unexpected null method()"); 559 tempst.print("C1 compiled method <%s>\n" 560 " at PC" INTPTR_FORMAT " for thread " INTPTR_FORMAT, 561 nm->method()->print_value_string(), p2i(pc), p2i(current)); 562 Exceptions::log_exception(exception, tempst.freeze()); 563 } 564 // for AbortVMOnException flag 565 Exceptions::debug_check_abort(exception); 566 567 // Check the stack guard pages and re-enable them if necessary and there is 568 // enough space on the stack to do so. Use fast exceptions only if the guard 569 // pages are enabled. 570 bool guard_pages_enabled = current->stack_overflow_state()->reguard_stack_if_needed(); 571 572 if (JvmtiExport::can_post_on_exceptions()) { 573 // To ensure correct notification of exception catches and throws 574 // we have to deoptimize here. If we attempted to notify the 575 // catches and throws during this exception lookup it's possible 576 // we could deoptimize on the way out of the VM and end back in 577 // the interpreter at the throw site. This would result in double 578 // notifications since the interpreter would also notify about 579 // these same catches and throws as it unwound the frame. 580 581 RegisterMap reg_map(current, 582 RegisterMap::UpdateMap::include, 583 RegisterMap::ProcessFrames::include, 584 RegisterMap::WalkContinuation::skip); 585 frame stub_frame = current->last_frame(); 586 frame caller_frame = stub_frame.sender(®_map); 587 588 // We don't really want to deoptimize the nmethod itself since we 589 // can actually continue in the exception handler ourselves but I 590 // don't see an easy way to have the desired effect. 591 Deoptimization::deoptimize_frame(current, caller_frame.id()); 592 assert(caller_is_deopted(current), "Must be deoptimized"); 593 594 return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls(); 595 } 596 597 // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions 598 if (guard_pages_enabled) { 599 address fast_continuation = nm->handler_for_exception_and_pc(exception, pc); 600 if (fast_continuation != nullptr) { 601 // Set flag if return address is a method handle call site. 602 current->set_is_method_handle_return(nm->is_method_handle_return(pc)); 603 return fast_continuation; 604 } 605 } 606 607 // If the stack guard pages are enabled, check whether there is a handler in 608 // the current method. Otherwise (guard pages disabled), force an unwind and 609 // skip the exception cache update (i.e., just leave continuation as null). 610 address continuation = nullptr; 611 if (guard_pages_enabled) { 612 613 // New exception handling mechanism can support inlined methods 614 // with exception handlers since the mappings are from PC to PC 615 616 // Clear out the exception oop and pc since looking up an 617 // exception handler can cause class loading, which might throw an 618 // exception and those fields are expected to be clear during 619 // normal bytecode execution. 620 current->clear_exception_oop_and_pc(); 621 622 bool recursive_exception = false; 623 continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false, recursive_exception); 624 // If an exception was thrown during exception dispatch, the exception oop may have changed 625 current->set_exception_oop(exception()); 626 current->set_exception_pc(pc); 627 628 // the exception cache is used only by non-implicit exceptions 629 // Update the exception cache only when there didn't happen 630 // another exception during the computation of the compiled 631 // exception handler. Checking for exception oop equality is not 632 // sufficient because some exceptions are pre-allocated and reused. 633 if (continuation != nullptr && !recursive_exception) { 634 nm->add_handler_for_exception_and_pc(exception, pc, continuation); 635 } 636 } 637 638 current->set_vm_result(exception()); 639 // Set flag if return address is a method handle call site. 640 current->set_is_method_handle_return(nm->is_method_handle_return(pc)); 641 642 if (log_is_enabled(Info, exceptions)) { 643 ResourceMark rm; 644 log_info(exceptions)("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT 645 " for exception thrown at PC " PTR_FORMAT, 646 p2i(current), p2i(continuation), p2i(pc)); 647 } 648 649 return continuation; 650 JRT_END 651 652 // Enter this method from compiled code only if there is a Java exception handler 653 // in the method handling the exception. 654 // We are entering here from exception stub. We don't do a normal VM transition here. 655 // We do it in a helper. This is so we can check to see if the nmethod we have just 656 // searched for an exception handler has been deoptimized in the meantime. 657 address Runtime1::exception_handler_for_pc(JavaThread* current) { 658 oop exception = current->exception_oop(); 659 address pc = current->exception_pc(); 660 // Still in Java mode 661 DEBUG_ONLY(NoHandleMark nhm); 662 nmethod* nm = nullptr; 663 address continuation = nullptr; 664 { 665 // Enter VM mode by calling the helper 666 ResetNoHandleMark rnhm; 667 continuation = exception_handler_for_pc_helper(current, exception, pc, nm); 668 } 669 // Back in JAVA, use no oops DON'T safepoint 670 671 // Now check to see if the nmethod we were called from is now deoptimized. 672 // If so we must return to the deopt blob and deoptimize the nmethod 673 if (nm != nullptr && caller_is_deopted(current)) { 674 continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls(); 675 } 676 677 assert(continuation != nullptr, "no handler found"); 678 return continuation; 679 } 680 681 682 JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* current, int index, arrayOopDesc* a)) 683 #ifndef PRODUCT 684 if (PrintC1Statistics) { 685 _throw_range_check_exception_count++; 686 } 687 #endif 688 const int len = 35; 689 assert(len < strlen("Index %d out of bounds for length %d"), "Must allocate more space for message."); 690 char message[2 * jintAsStringSize + len]; 691 os::snprintf_checked(message, sizeof(message), "Index %d out of bounds for length %d", index, a->length()); 692 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message); 693 JRT_END 694 695 696 JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* current, int index)) 697 #ifndef PRODUCT 698 if (PrintC1Statistics) { 699 _throw_index_exception_count++; 700 } 701 #endif 702 char message[16]; 703 os::snprintf_checked(message, sizeof(message), "%d", index); 704 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IndexOutOfBoundsException(), message); 705 JRT_END 706 707 708 JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* current)) 709 #ifndef PRODUCT 710 if (PrintC1Statistics) { 711 _throw_div0_exception_count++; 712 } 713 #endif 714 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero"); 715 JRT_END 716 717 718 JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* current)) 719 #ifndef PRODUCT 720 if (PrintC1Statistics) { 721 _throw_null_pointer_exception_count++; 722 } 723 #endif 724 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException()); 725 JRT_END 726 727 728 JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* current, oopDesc* object)) 729 #ifndef PRODUCT 730 if (PrintC1Statistics) { 731 _throw_class_cast_exception_count++; 732 } 733 #endif 734 ResourceMark rm(current); 735 char* message = SharedRuntime::generate_class_cast_message(current, object->klass()); 736 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ClassCastException(), message); 737 JRT_END 738 739 740 JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* current)) 741 #ifndef PRODUCT 742 if (PrintC1Statistics) { 743 _throw_incompatible_class_change_error_count++; 744 } 745 #endif 746 ResourceMark rm(current); 747 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError()); 748 JRT_END 749 750 751 JRT_BLOCK_ENTRY(void, Runtime1::monitorenter(JavaThread* current, oopDesc* obj, BasicObjectLock* lock)) 752 #ifndef PRODUCT 753 if (PrintC1Statistics) { 754 _monitorenter_slowcase_cnt++; 755 } 756 #endif 757 if (LockingMode == LM_MONITOR) { 758 lock->set_obj(obj); 759 } 760 assert(LockingMode == LM_LIGHTWEIGHT || obj == lock->obj(), "must match"); 761 SharedRuntime::monitor_enter_helper(obj, LockingMode == LM_LIGHTWEIGHT ? nullptr : lock->lock(), current); 762 JRT_END 763 764 765 JRT_LEAF(void, Runtime1::monitorexit(JavaThread* current, BasicObjectLock* lock)) 766 assert(current == JavaThread::current(), "pre-condition"); 767 #ifndef PRODUCT 768 if (PrintC1Statistics) { 769 _monitorexit_slowcase_cnt++; 770 } 771 #endif 772 assert(current->last_Java_sp(), "last_Java_sp must be set"); 773 oop obj = lock->obj(); 774 assert(oopDesc::is_oop(obj), "must be null or an object"); 775 SharedRuntime::monitor_exit_helper(obj, lock->lock(), current); 776 JRT_END 777 778 // Cf. OptoRuntime::deoptimize_caller_frame 779 JRT_ENTRY(void, Runtime1::deoptimize(JavaThread* current, jint trap_request)) 780 // Called from within the owner thread, so no need for safepoint 781 RegisterMap reg_map(current, 782 RegisterMap::UpdateMap::skip, 783 RegisterMap::ProcessFrames::include, 784 RegisterMap::WalkContinuation::skip); 785 frame stub_frame = current->last_frame(); 786 assert(stub_frame.is_runtime_frame(), "Sanity check"); 787 frame caller_frame = stub_frame.sender(®_map); 788 nmethod* nm = caller_frame.cb()->as_nmethod_or_null(); 789 assert(nm != nullptr, "Sanity check"); 790 methodHandle method(current, nm->method()); 791 assert(nm == CodeCache::find_nmethod(caller_frame.pc()), "Should be the same"); 792 Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request); 793 Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request); 794 795 if (action == Deoptimization::Action_make_not_entrant) { 796 if (nm->make_not_entrant()) { 797 if (reason == Deoptimization::Reason_tenured) { 798 MethodData* trap_mdo = Deoptimization::get_method_data(current, method, true /*create_if_missing*/); 799 if (trap_mdo != nullptr) { 800 trap_mdo->inc_tenure_traps(); 801 } 802 } 803 } 804 } 805 806 // Deoptimize the caller frame. 807 Deoptimization::deoptimize_frame(current, caller_frame.id()); 808 // Return to the now deoptimized frame. 809 JRT_END 810 811 812 #ifndef DEOPTIMIZE_WHEN_PATCHING 813 814 static Klass* resolve_field_return_klass(const methodHandle& caller, int bci, TRAPS) { 815 Bytecode_field field_access(caller, bci); 816 // This can be static or non-static field access 817 Bytecodes::Code code = field_access.code(); 818 819 // We must load class, initialize class and resolve the field 820 fieldDescriptor result; // initialize class if needed 821 constantPoolHandle constants(THREAD, caller->constants()); 822 LinkResolver::resolve_field_access(result, constants, field_access.index(), caller, Bytecodes::java_code(code), CHECK_NULL); 823 return result.field_holder(); 824 } 825 826 827 // 828 // This routine patches sites where a class wasn't loaded or 829 // initialized at the time the code was generated. It handles 830 // references to classes, fields and forcing of initialization. Most 831 // of the cases are straightforward and involving simply forcing 832 // resolution of a class, rewriting the instruction stream with the 833 // needed constant and replacing the call in this function with the 834 // patched code. The case for static field is more complicated since 835 // the thread which is in the process of initializing a class can 836 // access it's static fields but other threads can't so the code 837 // either has to deoptimize when this case is detected or execute a 838 // check that the current thread is the initializing thread. The 839 // current 840 // 841 // Patches basically look like this: 842 // 843 // 844 // patch_site: jmp patch stub ;; will be patched 845 // continue: ... 846 // ... 847 // ... 848 // ... 849 // 850 // They have a stub which looks like this: 851 // 852 // ;; patch body 853 // movl <const>, reg (for class constants) 854 // <or> movl [reg1 + <const>], reg (for field offsets) 855 // <or> movl reg, [reg1 + <const>] (for field offsets) 856 // <being_init offset> <bytes to copy> <bytes to skip> 857 // patch_stub: call Runtime1::patch_code (through a runtime stub) 858 // jmp patch_site 859 // 860 // 861 // A normal patch is done by rewriting the patch body, usually a move, 862 // and then copying it into place over top of the jmp instruction 863 // being careful to flush caches and doing it in an MP-safe way. The 864 // constants following the patch body are used to find various pieces 865 // of the patch relative to the call site for Runtime1::patch_code. 866 // The case for getstatic and putstatic is more complicated because 867 // getstatic and putstatic have special semantics when executing while 868 // the class is being initialized. getstatic/putstatic on a class 869 // which is being_initialized may be executed by the initializing 870 // thread but other threads have to block when they execute it. This 871 // is accomplished in compiled code by executing a test of the current 872 // thread against the initializing thread of the class. It's emitted 873 // as boilerplate in their stub which allows the patched code to be 874 // executed before it's copied back into the main body of the nmethod. 875 // 876 // being_init: get_thread(<tmp reg> 877 // cmpl [reg1 + <init_thread_offset>], <tmp reg> 878 // jne patch_stub 879 // movl [reg1 + <const>], reg (for field offsets) <or> 880 // movl reg, [reg1 + <const>] (for field offsets) 881 // jmp continue 882 // <being_init offset> <bytes to copy> <bytes to skip> 883 // patch_stub: jmp Runtim1::patch_code (through a runtime stub) 884 // jmp patch_site 885 // 886 // If the class is being initialized the patch body is rewritten and 887 // the patch site is rewritten to jump to being_init, instead of 888 // patch_stub. Whenever this code is executed it checks the current 889 // thread against the initializing thread so other threads will enter 890 // the runtime and end up blocked waiting the class to finish 891 // initializing inside the calls to resolve_field below. The 892 // initializing class will continue on it's way. Once the class is 893 // fully_initialized, the intializing_thread of the class becomes 894 // null, so the next thread to execute this code will fail the test, 895 // call into patch_code and complete the patching process by copying 896 // the patch body back into the main part of the nmethod and resume 897 // executing. 898 899 // NB: 900 // 901 // Patchable instruction sequences inherently exhibit race conditions, 902 // where thread A is patching an instruction at the same time thread B 903 // is executing it. The algorithms we use ensure that any observation 904 // that B can make on any intermediate states during A's patching will 905 // always end up with a correct outcome. This is easiest if there are 906 // few or no intermediate states. (Some inline caches have two 907 // related instructions that must be patched in tandem. For those, 908 // intermediate states seem to be unavoidable, but we will get the 909 // right answer from all possible observation orders.) 910 // 911 // When patching the entry instruction at the head of a method, or a 912 // linkable call instruction inside of a method, we try very hard to 913 // use a patch sequence which executes as a single memory transaction. 914 // This means, in practice, that when thread A patches an instruction, 915 // it should patch a 32-bit or 64-bit word that somehow overlaps the 916 // instruction or is contained in it. We believe that memory hardware 917 // will never break up such a word write, if it is naturally aligned 918 // for the word being written. We also know that some CPUs work very 919 // hard to create atomic updates even of naturally unaligned words, 920 // but we don't want to bet the farm on this always working. 921 // 922 // Therefore, if there is any chance of a race condition, we try to 923 // patch only naturally aligned words, as single, full-word writes. 924 925 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* current, Runtime1::StubID stub_id )) 926 #ifndef PRODUCT 927 if (PrintC1Statistics) { 928 _patch_code_slowcase_cnt++; 929 } 930 #endif 931 932 ResourceMark rm(current); 933 RegisterMap reg_map(current, 934 RegisterMap::UpdateMap::skip, 935 RegisterMap::ProcessFrames::include, 936 RegisterMap::WalkContinuation::skip); 937 frame runtime_frame = current->last_frame(); 938 frame caller_frame = runtime_frame.sender(®_map); 939 940 // last java frame on stack 941 vframeStream vfst(current, true); 942 assert(!vfst.at_end(), "Java frame must exist"); 943 944 methodHandle caller_method(current, vfst.method()); 945 // Note that caller_method->code() may not be same as caller_code because of OSR's 946 // Note also that in the presence of inlining it is not guaranteed 947 // that caller_method() == caller_code->method() 948 949 int bci = vfst.bci(); 950 Bytecodes::Code code = caller_method()->java_code_at(bci); 951 952 // this is used by assertions in the access_field_patching_id 953 BasicType patch_field_type = T_ILLEGAL; 954 bool deoptimize_for_volatile = false; 955 bool deoptimize_for_atomic = false; 956 int patch_field_offset = -1; 957 Klass* init_klass = nullptr; // klass needed by load_klass_patching code 958 Klass* load_klass = nullptr; // klass needed by load_klass_patching code 959 Handle mirror(current, nullptr); // oop needed by load_mirror_patching code 960 Handle appendix(current, nullptr); // oop needed by appendix_patching code 961 bool load_klass_or_mirror_patch_id = 962 (stub_id == Runtime1::load_klass_patching_id || stub_id == Runtime1::load_mirror_patching_id); 963 964 if (stub_id == Runtime1::access_field_patching_id) { 965 966 Bytecode_field field_access(caller_method, bci); 967 fieldDescriptor result; // initialize class if needed 968 Bytecodes::Code code = field_access.code(); 969 constantPoolHandle constants(current, caller_method->constants()); 970 LinkResolver::resolve_field_access(result, constants, field_access.index(), caller_method, Bytecodes::java_code(code), CHECK); 971 patch_field_offset = result.offset(); 972 973 // If we're patching a field which is volatile then at compile it 974 // must not have been know to be volatile, so the generated code 975 // isn't correct for a volatile reference. The nmethod has to be 976 // deoptimized so that the code can be regenerated correctly. 977 // This check is only needed for access_field_patching since this 978 // is the path for patching field offsets. load_klass is only 979 // used for patching references to oops which don't need special 980 // handling in the volatile case. 981 982 deoptimize_for_volatile = result.access_flags().is_volatile(); 983 984 // If we are patching a field which should be atomic, then 985 // the generated code is not correct either, force deoptimizing. 986 // We need to only cover T_LONG and T_DOUBLE fields, as we can 987 // break access atomicity only for them. 988 989 // Strictly speaking, the deoptimization on 64-bit platforms 990 // is unnecessary, and T_LONG stores on 32-bit platforms need 991 // to be handled by special patching code when AlwaysAtomicAccesses 992 // becomes product feature. At this point, we are still going 993 // for the deoptimization for consistency against volatile 994 // accesses. 995 996 patch_field_type = result.field_type(); 997 deoptimize_for_atomic = (AlwaysAtomicAccesses && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)); 998 999 } else if (load_klass_or_mirror_patch_id) { 1000 Klass* k = nullptr; 1001 switch (code) { 1002 case Bytecodes::_putstatic: 1003 case Bytecodes::_getstatic: 1004 { Klass* klass = resolve_field_return_klass(caller_method, bci, CHECK); 1005 init_klass = klass; 1006 mirror = Handle(current, klass->java_mirror()); 1007 } 1008 break; 1009 case Bytecodes::_new: 1010 { Bytecode_new bnew(caller_method(), caller_method->bcp_from(bci)); 1011 k = caller_method->constants()->klass_at(bnew.index(), CHECK); 1012 } 1013 break; 1014 case Bytecodes::_multianewarray: 1015 { Bytecode_multianewarray mna(caller_method(), caller_method->bcp_from(bci)); 1016 k = caller_method->constants()->klass_at(mna.index(), CHECK); 1017 } 1018 break; 1019 case Bytecodes::_instanceof: 1020 { Bytecode_instanceof io(caller_method(), caller_method->bcp_from(bci)); 1021 k = caller_method->constants()->klass_at(io.index(), CHECK); 1022 } 1023 break; 1024 case Bytecodes::_checkcast: 1025 { Bytecode_checkcast cc(caller_method(), caller_method->bcp_from(bci)); 1026 k = caller_method->constants()->klass_at(cc.index(), CHECK); 1027 } 1028 break; 1029 case Bytecodes::_anewarray: 1030 { Bytecode_anewarray anew(caller_method(), caller_method->bcp_from(bci)); 1031 Klass* ek = caller_method->constants()->klass_at(anew.index(), CHECK); 1032 k = ek->array_klass(CHECK); 1033 } 1034 break; 1035 case Bytecodes::_ldc: 1036 case Bytecodes::_ldc_w: 1037 case Bytecodes::_ldc2_w: 1038 { 1039 Bytecode_loadconstant cc(caller_method, bci); 1040 oop m = cc.resolve_constant(CHECK); 1041 mirror = Handle(current, m); 1042 } 1043 break; 1044 default: fatal("unexpected bytecode for load_klass_or_mirror_patch_id"); 1045 } 1046 load_klass = k; 1047 } else if (stub_id == load_appendix_patching_id) { 1048 Bytecode_invoke bytecode(caller_method, bci); 1049 Bytecodes::Code bc = bytecode.invoke_code(); 1050 1051 CallInfo info; 1052 constantPoolHandle pool(current, caller_method->constants()); 1053 int index = bytecode.index(); 1054 LinkResolver::resolve_invoke(info, Handle(), pool, index, bc, CHECK); 1055 switch (bc) { 1056 case Bytecodes::_invokehandle: { 1057 ResolvedMethodEntry* entry = pool->cache()->set_method_handle(index, info); 1058 appendix = Handle(current, pool->cache()->appendix_if_resolved(entry)); 1059 break; 1060 } 1061 case Bytecodes::_invokedynamic: { 1062 appendix = Handle(current, pool->cache()->set_dynamic_call(info, index)); 1063 break; 1064 } 1065 default: fatal("unexpected bytecode for load_appendix_patching_id"); 1066 } 1067 } else { 1068 ShouldNotReachHere(); 1069 } 1070 1071 if (deoptimize_for_volatile || deoptimize_for_atomic) { 1072 // At compile time we assumed the field wasn't volatile/atomic but after 1073 // loading it turns out it was volatile/atomic so we have to throw the 1074 // compiled code out and let it be regenerated. 1075 if (TracePatching) { 1076 if (deoptimize_for_volatile) { 1077 tty->print_cr("Deoptimizing for patching volatile field reference"); 1078 } 1079 if (deoptimize_for_atomic) { 1080 tty->print_cr("Deoptimizing for patching atomic field reference"); 1081 } 1082 } 1083 1084 // It's possible the nmethod was invalidated in the last 1085 // safepoint, but if it's still alive then make it not_entrant. 1086 nmethod* nm = CodeCache::find_nmethod(caller_frame.pc()); 1087 if (nm != nullptr) { 1088 nm->make_not_entrant(); 1089 } 1090 1091 Deoptimization::deoptimize_frame(current, caller_frame.id()); 1092 1093 // Return to the now deoptimized frame. 1094 } 1095 1096 // Now copy code back 1097 1098 { 1099 MutexLocker ml_patch (current, Patching_lock, Mutex::_no_safepoint_check_flag); 1100 // 1101 // Deoptimization may have happened while we waited for the lock. 1102 // In that case we don't bother to do any patching we just return 1103 // and let the deopt happen 1104 if (!caller_is_deopted(current)) { 1105 NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc()); 1106 address instr_pc = jump->jump_destination(); 1107 NativeInstruction* ni = nativeInstruction_at(instr_pc); 1108 if (ni->is_jump() ) { 1109 // the jump has not been patched yet 1110 // The jump destination is slow case and therefore not part of the stubs 1111 // (stubs are only for StaticCalls) 1112 1113 // format of buffer 1114 // .... 1115 // instr byte 0 <-- copy_buff 1116 // instr byte 1 1117 // .. 1118 // instr byte n-1 1119 // n 1120 // .... <-- call destination 1121 1122 address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset(); 1123 unsigned char* byte_count = (unsigned char*) (stub_location - 1); 1124 unsigned char* byte_skip = (unsigned char*) (stub_location - 2); 1125 unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3); 1126 address copy_buff = stub_location - *byte_skip - *byte_count; 1127 address being_initialized_entry = stub_location - *being_initialized_entry_offset; 1128 if (TracePatching) { 1129 ttyLocker ttyl; 1130 tty->print_cr(" Patching %s at bci %d at address " INTPTR_FORMAT " (%s)", Bytecodes::name(code), bci, 1131 p2i(instr_pc), (stub_id == Runtime1::access_field_patching_id) ? "field" : "klass"); 1132 nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc()); 1133 assert(caller_code != nullptr, "nmethod not found"); 1134 1135 // NOTE we use pc() not original_pc() because we already know they are 1136 // identical otherwise we'd have never entered this block of code 1137 1138 const ImmutableOopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc()); 1139 assert(map != nullptr, "null check"); 1140 map->print(); 1141 tty->cr(); 1142 1143 Disassembler::decode(copy_buff, copy_buff + *byte_count, tty); 1144 } 1145 // depending on the code below, do_patch says whether to copy the patch body back into the nmethod 1146 bool do_patch = true; 1147 if (stub_id == Runtime1::access_field_patching_id) { 1148 // The offset may not be correct if the class was not loaded at code generation time. 1149 // Set it now. 1150 NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff); 1151 assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type"); 1152 assert(patch_field_offset >= 0, "illegal offset"); 1153 n_move->add_offset_in_bytes(patch_field_offset); 1154 } else if (load_klass_or_mirror_patch_id) { 1155 // If a getstatic or putstatic is referencing a klass which 1156 // isn't fully initialized, the patch body isn't copied into 1157 // place until initialization is complete. In this case the 1158 // patch site is setup so that any threads besides the 1159 // initializing thread are forced to come into the VM and 1160 // block. 1161 do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) || 1162 InstanceKlass::cast(init_klass)->is_initialized(); 1163 NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc); 1164 if (jump->jump_destination() == being_initialized_entry) { 1165 assert(do_patch == true, "initialization must be complete at this point"); 1166 } else { 1167 // patch the instruction <move reg, klass> 1168 NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff); 1169 1170 assert(n_copy->data() == 0 || 1171 n_copy->data() == (intptr_t)Universe::non_oop_word(), 1172 "illegal init value"); 1173 if (stub_id == Runtime1::load_klass_patching_id) { 1174 assert(load_klass != nullptr, "klass not set"); 1175 n_copy->set_data((intx) (load_klass)); 1176 } else { 1177 // Don't need a G1 pre-barrier here since we assert above that data isn't an oop. 1178 n_copy->set_data(cast_from_oop<intx>(mirror())); 1179 } 1180 1181 if (TracePatching) { 1182 Disassembler::decode(copy_buff, copy_buff + *byte_count, tty); 1183 } 1184 } 1185 } else if (stub_id == Runtime1::load_appendix_patching_id) { 1186 NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff); 1187 assert(n_copy->data() == 0 || 1188 n_copy->data() == (intptr_t)Universe::non_oop_word(), 1189 "illegal init value"); 1190 n_copy->set_data(cast_from_oop<intx>(appendix())); 1191 1192 if (TracePatching) { 1193 Disassembler::decode(copy_buff, copy_buff + *byte_count, tty); 1194 } 1195 } else { 1196 ShouldNotReachHere(); 1197 } 1198 1199 if (do_patch) { 1200 // replace instructions 1201 // first replace the tail, then the call 1202 #ifdef ARM 1203 if((load_klass_or_mirror_patch_id || 1204 stub_id == Runtime1::load_appendix_patching_id) && 1205 nativeMovConstReg_at(copy_buff)->is_pc_relative()) { 1206 nmethod* nm = CodeCache::find_nmethod(instr_pc); 1207 address addr = nullptr; 1208 assert(nm != nullptr, "invalid nmethod_pc"); 1209 RelocIterator mds(nm, copy_buff, copy_buff + 1); 1210 while (mds.next()) { 1211 if (mds.type() == relocInfo::oop_type) { 1212 assert(stub_id == Runtime1::load_mirror_patching_id || 1213 stub_id == Runtime1::load_appendix_patching_id, "wrong stub id"); 1214 oop_Relocation* r = mds.oop_reloc(); 1215 addr = (address)r->oop_addr(); 1216 break; 1217 } else if (mds.type() == relocInfo::metadata_type) { 1218 assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id"); 1219 metadata_Relocation* r = mds.metadata_reloc(); 1220 addr = (address)r->metadata_addr(); 1221 break; 1222 } 1223 } 1224 assert(addr != nullptr, "metadata relocation must exist"); 1225 copy_buff -= *byte_count; 1226 NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff); 1227 n_copy2->set_pc_relative_offset(addr, instr_pc); 1228 } 1229 #endif 1230 1231 for (int i = NativeGeneralJump::instruction_size; i < *byte_count; i++) { 1232 address ptr = copy_buff + i; 1233 int a_byte = (*ptr) & 0xFF; 1234 address dst = instr_pc + i; 1235 *(unsigned char*)dst = (unsigned char) a_byte; 1236 } 1237 ICache::invalidate_range(instr_pc, *byte_count); 1238 NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff); 1239 1240 if (load_klass_or_mirror_patch_id || 1241 stub_id == Runtime1::load_appendix_patching_id) { 1242 relocInfo::relocType rtype = 1243 (stub_id == Runtime1::load_klass_patching_id) ? 1244 relocInfo::metadata_type : 1245 relocInfo::oop_type; 1246 // update relocInfo to metadata 1247 nmethod* nm = CodeCache::find_nmethod(instr_pc); 1248 assert(nm != nullptr, "invalid nmethod_pc"); 1249 1250 // The old patch site is now a move instruction so update 1251 // the reloc info so that it will get updated during 1252 // future GCs. 1253 RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1)); 1254 relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc, 1255 relocInfo::none, rtype); 1256 } 1257 1258 } else { 1259 ICache::invalidate_range(copy_buff, *byte_count); 1260 NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry); 1261 } 1262 } 1263 } 1264 } 1265 1266 // If we are patching in a non-perm oop, make sure the nmethod 1267 // is on the right list. 1268 { 1269 MutexLocker ml_code (current, CodeCache_lock, Mutex::_no_safepoint_check_flag); 1270 nmethod* nm = CodeCache::find_nmethod(caller_frame.pc()); 1271 guarantee(nm != nullptr, "only nmethods can contain non-perm oops"); 1272 1273 // Since we've patched some oops in the nmethod, 1274 // (re)register it with the heap. 1275 Universe::heap()->register_nmethod(nm); 1276 } 1277 JRT_END 1278 1279 #else // DEOPTIMIZE_WHEN_PATCHING 1280 1281 static bool is_patching_needed(JavaThread* current, Runtime1::StubID stub_id) { 1282 if (stub_id == Runtime1::load_klass_patching_id || 1283 stub_id == Runtime1::load_mirror_patching_id) { 1284 // last java frame on stack 1285 vframeStream vfst(current, true); 1286 assert(!vfst.at_end(), "Java frame must exist"); 1287 1288 methodHandle caller_method(current, vfst.method()); 1289 int bci = vfst.bci(); 1290 Bytecodes::Code code = caller_method()->java_code_at(bci); 1291 1292 switch (code) { 1293 case Bytecodes::_new: 1294 case Bytecodes::_anewarray: 1295 case Bytecodes::_multianewarray: 1296 case Bytecodes::_instanceof: 1297 case Bytecodes::_checkcast: { 1298 Bytecode bc(caller_method(), caller_method->bcp_from(bci)); 1299 constantTag tag = caller_method->constants()->tag_at(bc.get_index_u2(code)); 1300 if (tag.is_unresolved_klass_in_error()) { 1301 return false; // throws resolution error 1302 } 1303 break; 1304 } 1305 1306 default: break; 1307 } 1308 } 1309 return true; 1310 } 1311 1312 void Runtime1::patch_code(JavaThread* current, Runtime1::StubID stub_id) { 1313 #ifndef PRODUCT 1314 if (PrintC1Statistics) { 1315 _patch_code_slowcase_cnt++; 1316 } 1317 #endif 1318 1319 // Enable WXWrite: the function is called by c1 stub as a runtime function 1320 // (see another implementation above). 1321 MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, current)); 1322 1323 if (TracePatching) { 1324 tty->print_cr("Deoptimizing because patch is needed"); 1325 } 1326 1327 RegisterMap reg_map(current, 1328 RegisterMap::UpdateMap::skip, 1329 RegisterMap::ProcessFrames::include, 1330 RegisterMap::WalkContinuation::skip); 1331 1332 frame runtime_frame = current->last_frame(); 1333 frame caller_frame = runtime_frame.sender(®_map); 1334 assert(caller_frame.is_compiled_frame(), "Wrong frame type"); 1335 1336 if (is_patching_needed(current, stub_id)) { 1337 // Make sure the nmethod is invalidated, i.e. made not entrant. 1338 nmethod* nm = CodeCache::find_nmethod(caller_frame.pc()); 1339 if (nm != nullptr) { 1340 nm->make_not_entrant(); 1341 } 1342 } 1343 1344 Deoptimization::deoptimize_frame(current, caller_frame.id()); 1345 // Return to the now deoptimized frame. 1346 postcond(caller_is_deopted(current)); 1347 } 1348 1349 #endif // DEOPTIMIZE_WHEN_PATCHING 1350 1351 // Entry point for compiled code. We want to patch a nmethod. 1352 // We don't do a normal VM transition here because we want to 1353 // know after the patching is complete and any safepoint(s) are taken 1354 // if the calling nmethod was deoptimized. We do this by calling a 1355 // helper method which does the normal VM transition and when it 1356 // completes we can check for deoptimization. This simplifies the 1357 // assembly code in the cpu directories. 1358 // 1359 int Runtime1::move_klass_patching(JavaThread* current) { 1360 // 1361 // NOTE: we are still in Java 1362 // 1363 debug_only(NoHandleMark nhm;) 1364 { 1365 // Enter VM mode 1366 ResetNoHandleMark rnhm; 1367 patch_code(current, load_klass_patching_id); 1368 } 1369 // Back in JAVA, use no oops DON'T safepoint 1370 1371 // Return true if calling code is deoptimized 1372 1373 return caller_is_deopted(current); 1374 } 1375 1376 int Runtime1::move_mirror_patching(JavaThread* current) { 1377 // 1378 // NOTE: we are still in Java 1379 // 1380 debug_only(NoHandleMark nhm;) 1381 { 1382 // Enter VM mode 1383 ResetNoHandleMark rnhm; 1384 patch_code(current, load_mirror_patching_id); 1385 } 1386 // Back in JAVA, use no oops DON'T safepoint 1387 1388 // Return true if calling code is deoptimized 1389 1390 return caller_is_deopted(current); 1391 } 1392 1393 int Runtime1::move_appendix_patching(JavaThread* current) { 1394 // 1395 // NOTE: we are still in Java 1396 // 1397 debug_only(NoHandleMark nhm;) 1398 { 1399 // Enter VM mode 1400 ResetNoHandleMark rnhm; 1401 patch_code(current, load_appendix_patching_id); 1402 } 1403 // Back in JAVA, use no oops DON'T safepoint 1404 1405 // Return true if calling code is deoptimized 1406 1407 return caller_is_deopted(current); 1408 } 1409 1410 // Entry point for compiled code. We want to patch a nmethod. 1411 // We don't do a normal VM transition here because we want to 1412 // know after the patching is complete and any safepoint(s) are taken 1413 // if the calling nmethod was deoptimized. We do this by calling a 1414 // helper method which does the normal VM transition and when it 1415 // completes we can check for deoptimization. This simplifies the 1416 // assembly code in the cpu directories. 1417 // 1418 int Runtime1::access_field_patching(JavaThread* current) { 1419 // 1420 // NOTE: we are still in Java 1421 // 1422 // Handles created in this function will be deleted by the 1423 // HandleMarkCleaner in the transition to the VM. 1424 NoHandleMark nhm; 1425 { 1426 // Enter VM mode 1427 ResetNoHandleMark rnhm; 1428 patch_code(current, access_field_patching_id); 1429 } 1430 // Back in JAVA, use no oops DON'T safepoint 1431 1432 // Return true if calling code is deoptimized 1433 1434 return caller_is_deopted(current); 1435 } 1436 1437 1438 JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id)) 1439 // for now we just print out the block id 1440 tty->print("%d ", block_id); 1441 JRT_END 1442 1443 1444 JRT_LEAF(int, Runtime1::is_instance_of(oopDesc* mirror, oopDesc* obj)) 1445 // had to return int instead of bool, otherwise there may be a mismatch 1446 // between the C calling convention and the Java one. 1447 // e.g., on x86, GCC may clear only %al when returning a bool false, but 1448 // JVM takes the whole %eax as the return value, which may misinterpret 1449 // the return value as a boolean true. 1450 1451 assert(mirror != nullptr, "should null-check on mirror before calling"); 1452 Klass* k = java_lang_Class::as_Klass(mirror); 1453 return (k != nullptr && obj != nullptr && obj->is_a(k)) ? 1 : 0; 1454 JRT_END 1455 1456 JRT_ENTRY(void, Runtime1::predicate_failed_trap(JavaThread* current)) 1457 ResourceMark rm; 1458 1459 RegisterMap reg_map(current, 1460 RegisterMap::UpdateMap::skip, 1461 RegisterMap::ProcessFrames::include, 1462 RegisterMap::WalkContinuation::skip); 1463 frame runtime_frame = current->last_frame(); 1464 frame caller_frame = runtime_frame.sender(®_map); 1465 1466 nmethod* nm = CodeCache::find_nmethod(caller_frame.pc()); 1467 assert (nm != nullptr, "no more nmethod?"); 1468 nm->make_not_entrant(); 1469 1470 methodHandle m(current, nm->method()); 1471 MethodData* mdo = m->method_data(); 1472 1473 if (mdo == nullptr && !HAS_PENDING_EXCEPTION) { 1474 // Build an MDO. Ignore errors like OutOfMemory; 1475 // that simply means we won't have an MDO to update. 1476 Method::build_profiling_method_data(m, THREAD); 1477 if (HAS_PENDING_EXCEPTION) { 1478 // Only metaspace OOM is expected. No Java code executed. 1479 assert((PENDING_EXCEPTION->is_a(vmClasses::OutOfMemoryError_klass())), "we expect only an OOM error here"); 1480 CLEAR_PENDING_EXCEPTION; 1481 } 1482 mdo = m->method_data(); 1483 } 1484 1485 if (mdo != nullptr) { 1486 mdo->inc_trap_count(Deoptimization::Reason_none); 1487 } 1488 1489 if (TracePredicateFailedTraps) { 1490 stringStream ss1, ss2; 1491 vframeStream vfst(current); 1492 Method* inlinee = vfst.method(); 1493 inlinee->print_short_name(&ss1); 1494 m->print_short_name(&ss2); 1495 tty->print_cr("Predicate failed trap in method %s at bci %d inlined in %s at pc " INTPTR_FORMAT, ss1.freeze(), vfst.bci(), ss2.freeze(), p2i(caller_frame.pc())); 1496 } 1497 1498 1499 Deoptimization::deoptimize_frame(current, caller_frame.id()); 1500 1501 JRT_END 1502 1503 // Check exception if AbortVMOnException flag set 1504 JRT_LEAF(void, Runtime1::check_abort_on_vm_exception(oopDesc* ex)) 1505 ResourceMark rm; 1506 const char* message = nullptr; 1507 if (ex->is_a(vmClasses::Throwable_klass())) { 1508 oop msg = java_lang_Throwable::message(ex); 1509 if (msg != nullptr) { 1510 message = java_lang_String::as_utf8_string(msg); 1511 } 1512 } 1513 Exceptions::debug_check_abort(ex->klass()->external_name(), message); 1514 JRT_END 1515 1516 #ifndef PRODUCT 1517 void Runtime1::print_statistics() { 1518 tty->print_cr("C1 Runtime statistics:"); 1519 tty->print_cr(" _resolve_invoke_virtual_cnt: %u", SharedRuntime::_resolve_virtual_ctr); 1520 tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %u", SharedRuntime::_resolve_opt_virtual_ctr); 1521 tty->print_cr(" _resolve_invoke_static_cnt: %u", SharedRuntime::_resolve_static_ctr); 1522 tty->print_cr(" _handle_wrong_method_cnt: %u", SharedRuntime::_wrong_method_ctr); 1523 tty->print_cr(" _ic_miss_cnt: %u", SharedRuntime::_ic_miss_ctr); 1524 tty->print_cr(" _generic_arraycopystub_cnt: %u", _generic_arraycopystub_cnt); 1525 tty->print_cr(" _byte_arraycopy_cnt: %u", _byte_arraycopy_stub_cnt); 1526 tty->print_cr(" _short_arraycopy_cnt: %u", _short_arraycopy_stub_cnt); 1527 tty->print_cr(" _int_arraycopy_cnt: %u", _int_arraycopy_stub_cnt); 1528 tty->print_cr(" _long_arraycopy_cnt: %u", _long_arraycopy_stub_cnt); 1529 tty->print_cr(" _oop_arraycopy_cnt: %u", _oop_arraycopy_stub_cnt); 1530 tty->print_cr(" _arraycopy_slowcase_cnt: %u", _arraycopy_slowcase_cnt); 1531 tty->print_cr(" _arraycopy_checkcast_cnt: %u", _arraycopy_checkcast_cnt); 1532 tty->print_cr(" _arraycopy_checkcast_attempt_cnt:%u", _arraycopy_checkcast_attempt_cnt); 1533 1534 tty->print_cr(" _new_type_array_slowcase_cnt: %u", _new_type_array_slowcase_cnt); 1535 tty->print_cr(" _new_object_array_slowcase_cnt: %u", _new_object_array_slowcase_cnt); 1536 tty->print_cr(" _new_instance_slowcase_cnt: %u", _new_instance_slowcase_cnt); 1537 tty->print_cr(" _new_multi_array_slowcase_cnt: %u", _new_multi_array_slowcase_cnt); 1538 tty->print_cr(" _monitorenter_slowcase_cnt: %u", _monitorenter_slowcase_cnt); 1539 tty->print_cr(" _monitorexit_slowcase_cnt: %u", _monitorexit_slowcase_cnt); 1540 tty->print_cr(" _patch_code_slowcase_cnt: %u", _patch_code_slowcase_cnt); 1541 1542 tty->print_cr(" _throw_range_check_exception_count: %u:", _throw_range_check_exception_count); 1543 tty->print_cr(" _throw_index_exception_count: %u:", _throw_index_exception_count); 1544 tty->print_cr(" _throw_div0_exception_count: %u:", _throw_div0_exception_count); 1545 tty->print_cr(" _throw_null_pointer_exception_count: %u:", _throw_null_pointer_exception_count); 1546 tty->print_cr(" _throw_class_cast_exception_count: %u:", _throw_class_cast_exception_count); 1547 tty->print_cr(" _throw_incompatible_class_change_error_count: %u:", _throw_incompatible_class_change_error_count); 1548 tty->print_cr(" _throw_count: %u:", _throw_count); 1549 1550 SharedRuntime::print_ic_miss_histogram(); 1551 tty->cr(); 1552 } 1553 #endif // PRODUCT --- EOF ---