1 /*
   2  * Copyright (c) 1999, 2022, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/codeBuffer.hpp"
  27 #include "c1/c1_CodeStubs.hpp"
  28 #include "c1/c1_Defs.hpp"
  29 #include "c1/c1_FrameMap.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_MacroAssembler.hpp"
  32 #include "c1/c1_Runtime1.hpp"
  33 #include "classfile/javaClasses.inline.hpp"
  34 #include "classfile/vmClasses.hpp"
  35 #include "classfile/vmSymbols.hpp"
  36 #include "code/codeBlob.hpp"
  37 #include "code/compiledIC.hpp"
  38 #include "code/pcDesc.hpp"
  39 #include "code/scopeDesc.hpp"
  40 #include "code/vtableStubs.hpp"
  41 #include "compiler/compilationPolicy.hpp"
  42 #include "compiler/disassembler.hpp"
  43 #include "compiler/oopMap.hpp"
  44 #include "gc/shared/barrierSet.hpp"
  45 #include "gc/shared/c1/barrierSetC1.hpp"
  46 #include "gc/shared/collectedHeap.hpp"
  47 #include "interpreter/bytecode.hpp"
  48 #include "interpreter/interpreter.hpp"
  49 #include "jfr/support/jfrIntrinsics.hpp"
  50 #include "logging/log.hpp"
  51 #include "memory/allocation.inline.hpp"
  52 #include "memory/oopFactory.hpp"
  53 #include "memory/resourceArea.hpp"
  54 #include "memory/universe.hpp"
  55 #include "oops/access.inline.hpp"
  56 #include "oops/klass.inline.hpp"
  57 #include "oops/objArrayOop.inline.hpp"
  58 #include "oops/objArrayKlass.hpp"
  59 #include "oops/oop.inline.hpp"
  60 #include "prims/jvmtiExport.hpp"
  61 #include "runtime/atomic.hpp"
  62 #include "runtime/fieldDescriptor.inline.hpp"
  63 #include "runtime/frame.inline.hpp"
  64 #include "runtime/handles.inline.hpp"
  65 #include "runtime/interfaceSupport.inline.hpp"
  66 #include "runtime/javaCalls.hpp"
  67 #include "runtime/sharedRuntime.hpp"
  68 #include "runtime/stackWatermarkSet.hpp"
  69 #include "runtime/stubRoutines.hpp"
  70 #include "runtime/threadCritical.hpp"
  71 #include "runtime/vframe.inline.hpp"
  72 #include "runtime/vframeArray.hpp"
  73 #include "runtime/vm_version.hpp"
  74 #include "utilities/copy.hpp"
  75 #include "utilities/events.hpp"
  76 
  77 
  78 // Implementation of StubAssembler
  79 
  80 StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
  81   _name = name;
  82   _must_gc_arguments = false;
  83   _frame_size = no_frame_size;
  84   _num_rt_args = 0;
  85   _stub_id = stub_id;
  86 }
  87 
  88 
  89 void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
  90   _name = name;
  91   _must_gc_arguments = must_gc_arguments;
  92 }
  93 
  94 
  95 void StubAssembler::set_frame_size(int size) {
  96   if (_frame_size == no_frame_size) {
  97     _frame_size = size;
  98   }
  99   assert(_frame_size == size, "can't change the frame size");
 100 }
 101 
 102 
 103 void StubAssembler::set_num_rt_args(int args) {
 104   if (_num_rt_args == 0) {
 105     _num_rt_args = args;
 106   }
 107   assert(_num_rt_args == args, "can't change the number of args");
 108 }
 109 
 110 // Implementation of Runtime1
 111 
 112 CodeBlob* Runtime1::_blobs[Runtime1::number_of_ids];
 113 const char *Runtime1::_blob_names[] = {
 114   RUNTIME1_STUBS(STUB_NAME, LAST_STUB_NAME)
 115 };
 116 
 117 #ifndef PRODUCT
 118 // statistics
 119 int Runtime1::_generic_arraycopystub_cnt = 0;
 120 int Runtime1::_arraycopy_slowcase_cnt = 0;
 121 int Runtime1::_arraycopy_checkcast_cnt = 0;
 122 int Runtime1::_arraycopy_checkcast_attempt_cnt = 0;
 123 int Runtime1::_new_type_array_slowcase_cnt = 0;
 124 int Runtime1::_new_object_array_slowcase_cnt = 0;
 125 int Runtime1::_new_instance_slowcase_cnt = 0;
 126 int Runtime1::_new_multi_array_slowcase_cnt = 0;
 127 int Runtime1::_monitorenter_slowcase_cnt = 0;
 128 int Runtime1::_monitorexit_slowcase_cnt = 0;
 129 int Runtime1::_patch_code_slowcase_cnt = 0;
 130 int Runtime1::_throw_range_check_exception_count = 0;
 131 int Runtime1::_throw_index_exception_count = 0;
 132 int Runtime1::_throw_div0_exception_count = 0;
 133 int Runtime1::_throw_null_pointer_exception_count = 0;
 134 int Runtime1::_throw_class_cast_exception_count = 0;
 135 int Runtime1::_throw_incompatible_class_change_error_count = 0;
 136 int Runtime1::_throw_count = 0;
 137 
 138 static int _byte_arraycopy_stub_cnt = 0;
 139 static int _short_arraycopy_stub_cnt = 0;
 140 static int _int_arraycopy_stub_cnt = 0;
 141 static int _long_arraycopy_stub_cnt = 0;
 142 static int _oop_arraycopy_stub_cnt = 0;
 143 
 144 address Runtime1::arraycopy_count_address(BasicType type) {
 145   switch (type) {
 146   case T_BOOLEAN:
 147   case T_BYTE:   return (address)&_byte_arraycopy_stub_cnt;
 148   case T_CHAR:
 149   case T_SHORT:  return (address)&_short_arraycopy_stub_cnt;
 150   case T_FLOAT:
 151   case T_INT:    return (address)&_int_arraycopy_stub_cnt;
 152   case T_DOUBLE:
 153   case T_LONG:   return (address)&_long_arraycopy_stub_cnt;
 154   case T_ARRAY:
 155   case T_OBJECT: return (address)&_oop_arraycopy_stub_cnt;
 156   default:
 157     ShouldNotReachHere();
 158     return NULL;
 159   }
 160 }
 161 
 162 
 163 #endif
 164 
 165 // Simple helper to see if the caller of a runtime stub which
 166 // entered the VM has been deoptimized
 167 
 168 static bool caller_is_deopted(JavaThread* current) {
 169   RegisterMap reg_map(current,
 170                       RegisterMap::UpdateMap::skip,
 171                       RegisterMap::ProcessFrames::include,
 172                       RegisterMap::WalkContinuation::skip);
 173   frame runtime_frame = current->last_frame();
 174   frame caller_frame = runtime_frame.sender(&reg_map);
 175   assert(caller_frame.is_compiled_frame(), "must be compiled");
 176   return caller_frame.is_deoptimized_frame();
 177 }
 178 
 179 // Stress deoptimization
 180 static void deopt_caller(JavaThread* current) {
 181   if (!caller_is_deopted(current)) {
 182     RegisterMap reg_map(current,
 183                         RegisterMap::UpdateMap::skip,
 184                         RegisterMap::ProcessFrames::include,
 185                         RegisterMap::WalkContinuation::skip);
 186     frame runtime_frame = current->last_frame();
 187     frame caller_frame = runtime_frame.sender(&reg_map);
 188     Deoptimization::deoptimize_frame(current, caller_frame.id());
 189     assert(caller_is_deopted(current), "Must be deoptimized");
 190   }
 191 }
 192 
 193 class StubIDStubAssemblerCodeGenClosure: public StubAssemblerCodeGenClosure {
 194  private:
 195   Runtime1::StubID _id;
 196  public:
 197   StubIDStubAssemblerCodeGenClosure(Runtime1::StubID id) : _id(id) {}
 198   virtual OopMapSet* generate_code(StubAssembler* sasm) {
 199     return Runtime1::generate_code_for(_id, sasm);
 200   }
 201 };
 202 
 203 CodeBlob* Runtime1::generate_blob(BufferBlob* buffer_blob, int stub_id, const char* name, bool expect_oop_map, StubAssemblerCodeGenClosure* cl) {
 204   ResourceMark rm;
 205   // create code buffer for code storage
 206   CodeBuffer code(buffer_blob);
 207 
 208   OopMapSet* oop_maps;
 209   int frame_size;
 210   bool must_gc_arguments;
 211 
 212   Compilation::setup_code_buffer(&code, 0);
 213 
 214   // create assembler for code generation
 215   StubAssembler* sasm = new StubAssembler(&code, name, stub_id);
 216   // generate code for runtime stub
 217   oop_maps = cl->generate_code(sasm);
 218   assert(oop_maps == NULL || sasm->frame_size() != no_frame_size,
 219          "if stub has an oop map it must have a valid frame size");
 220   assert(!expect_oop_map || oop_maps != NULL, "must have an oopmap");
 221 
 222   // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned)
 223   sasm->align(BytesPerWord);
 224   // make sure all code is in code buffer
 225   sasm->flush();
 226 
 227   frame_size = sasm->frame_size();
 228   must_gc_arguments = sasm->must_gc_arguments();
 229   // create blob - distinguish a few special cases
 230   CodeBlob* blob = RuntimeStub::new_runtime_stub(name,
 231                                                  &code,
 232                                                  CodeOffsets::frame_never_safe,
 233                                                  frame_size,
 234                                                  oop_maps,
 235                                                  must_gc_arguments);
 236   assert(blob != NULL, "blob must exist");
 237   return blob;
 238 }
 239 
 240 void Runtime1::generate_blob_for(BufferBlob* buffer_blob, StubID id) {
 241   assert(0 <= id && id < number_of_ids, "illegal stub id");
 242   bool expect_oop_map = true;
 243 #ifdef ASSERT
 244   // Make sure that stubs that need oopmaps have them
 245   switch (id) {
 246     // These stubs don't need to have an oopmap

 247   case dtrace_object_alloc_id:
 248   case slow_subtype_check_id:
 249   case fpu2long_stub_id:
 250   case unwind_exception_id:
 251   case counter_overflow_id:
 252     expect_oop_map = false;
 253     break;
 254   default:
 255     break;
 256   }
 257 #endif
 258   StubIDStubAssemblerCodeGenClosure cl(id);
 259   CodeBlob* blob = generate_blob(buffer_blob, id, name_for(id), expect_oop_map, &cl);
 260   // install blob
 261   _blobs[id] = blob;
 262 }
 263 
 264 void Runtime1::initialize(BufferBlob* blob) {
 265   // platform-dependent initialization
 266   initialize_pd();
 267   // generate stubs
 268   for (int id = 0; id < number_of_ids; id++) generate_blob_for(blob, (StubID)id);
 269   // printing
 270 #ifndef PRODUCT
 271   if (PrintSimpleStubs) {
 272     ResourceMark rm;
 273     for (int id = 0; id < number_of_ids; id++) {
 274       _blobs[id]->print();
 275       if (_blobs[id]->oop_maps() != NULL) {
 276         _blobs[id]->oop_maps()->print();
 277       }
 278     }
 279   }
 280 #endif
 281   BarrierSetC1* bs = BarrierSet::barrier_set()->barrier_set_c1();
 282   bs->generate_c1_runtime_stubs(blob);
 283 }
 284 
 285 CodeBlob* Runtime1::blob_for(StubID id) {
 286   assert(0 <= id && id < number_of_ids, "illegal stub id");
 287   return _blobs[id];
 288 }
 289 
 290 
 291 const char* Runtime1::name_for(StubID id) {
 292   assert(0 <= id && id < number_of_ids, "illegal stub id");
 293   return _blob_names[id];
 294 }
 295 
 296 const char* Runtime1::name_for_address(address entry) {
 297   for (int id = 0; id < number_of_ids; id++) {
 298     if (entry == entry_for((StubID)id)) return name_for((StubID)id);
 299   }
 300 
 301 #define FUNCTION_CASE(a, f) \
 302   if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f))  return #f
 303 
 304   FUNCTION_CASE(entry, os::javaTimeMillis);
 305   FUNCTION_CASE(entry, os::javaTimeNanos);
 306   FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end);
 307   FUNCTION_CASE(entry, SharedRuntime::d2f);
 308   FUNCTION_CASE(entry, SharedRuntime::d2i);
 309   FUNCTION_CASE(entry, SharedRuntime::d2l);
 310   FUNCTION_CASE(entry, SharedRuntime::dcos);
 311   FUNCTION_CASE(entry, SharedRuntime::dexp);
 312   FUNCTION_CASE(entry, SharedRuntime::dlog);
 313   FUNCTION_CASE(entry, SharedRuntime::dlog10);
 314   FUNCTION_CASE(entry, SharedRuntime::dpow);
 315   FUNCTION_CASE(entry, SharedRuntime::drem);
 316   FUNCTION_CASE(entry, SharedRuntime::dsin);
 317   FUNCTION_CASE(entry, SharedRuntime::dtan);
 318   FUNCTION_CASE(entry, SharedRuntime::f2i);
 319   FUNCTION_CASE(entry, SharedRuntime::f2l);
 320   FUNCTION_CASE(entry, SharedRuntime::frem);
 321   FUNCTION_CASE(entry, SharedRuntime::l2d);
 322   FUNCTION_CASE(entry, SharedRuntime::l2f);
 323   FUNCTION_CASE(entry, SharedRuntime::ldiv);
 324   FUNCTION_CASE(entry, SharedRuntime::lmul);
 325   FUNCTION_CASE(entry, SharedRuntime::lrem);
 326   FUNCTION_CASE(entry, SharedRuntime::lrem);
 327   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry);
 328   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
 329   FUNCTION_CASE(entry, is_instance_of);
 330   FUNCTION_CASE(entry, trace_block_entry);
 331 #ifdef JFR_HAVE_INTRINSICS
 332   FUNCTION_CASE(entry, JfrTime::time_function());
 333 #endif
 334   FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32());
 335   FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32C());
 336   FUNCTION_CASE(entry, StubRoutines::vectorizedMismatch());
 337   FUNCTION_CASE(entry, StubRoutines::dexp());
 338   FUNCTION_CASE(entry, StubRoutines::dlog());
 339   FUNCTION_CASE(entry, StubRoutines::dlog10());
 340   FUNCTION_CASE(entry, StubRoutines::dpow());
 341   FUNCTION_CASE(entry, StubRoutines::dsin());
 342   FUNCTION_CASE(entry, StubRoutines::dcos());
 343   FUNCTION_CASE(entry, StubRoutines::dtan());
 344   FUNCTION_CASE(entry, StubRoutines::cont_doYield());
 345 
 346 #undef FUNCTION_CASE
 347 
 348   // Soft float adds more runtime names.
 349   return pd_name_for_address(entry);
 350 }
 351 
 352 
 353 JRT_ENTRY(void, Runtime1::new_instance(JavaThread* current, Klass* klass))
 354 #ifndef PRODUCT
 355   if (PrintC1Statistics) {
 356     _new_instance_slowcase_cnt++;
 357   }
 358 #endif
 359   assert(klass->is_klass(), "not a class");
 360   Handle holder(current, klass->klass_holder()); // keep the klass alive
 361   InstanceKlass* h = InstanceKlass::cast(klass);
 362   h->check_valid_for_instantiation(true, CHECK);
 363   // make sure klass is initialized
 364   h->initialize(CHECK);
 365   // allocate instance and return via TLS
 366   oop obj = h->allocate_instance(CHECK);
 367   current->set_vm_result(obj);
 368 JRT_END
 369 
 370 
 371 JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* current, Klass* klass, jint length))
 372 #ifndef PRODUCT
 373   if (PrintC1Statistics) {
 374     _new_type_array_slowcase_cnt++;
 375   }
 376 #endif
 377   // Note: no handle for klass needed since they are not used
 378   //       anymore after new_typeArray() and no GC can happen before.
 379   //       (This may have to change if this code changes!)
 380   assert(klass->is_klass(), "not a class");
 381   BasicType elt_type = TypeArrayKlass::cast(klass)->element_type();
 382   oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
 383   current->set_vm_result(obj);
 384   // This is pretty rare but this runtime patch is stressful to deoptimization
 385   // if we deoptimize here so force a deopt to stress the path.
 386   if (DeoptimizeALot) {
 387     deopt_caller(current);
 388   }
 389 
 390 JRT_END
 391 
 392 
 393 JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* current, Klass* array_klass, jint length))
 394 #ifndef PRODUCT
 395   if (PrintC1Statistics) {
 396     _new_object_array_slowcase_cnt++;
 397   }
 398 #endif
 399   // Note: no handle for klass needed since they are not used
 400   //       anymore after new_objArray() and no GC can happen before.
 401   //       (This may have to change if this code changes!)
 402   assert(array_klass->is_klass(), "not a class");
 403   Handle holder(current, array_klass->klass_holder()); // keep the klass alive
 404   Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass();
 405   objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
 406   current->set_vm_result(obj);
 407   // This is pretty rare but this runtime patch is stressful to deoptimization
 408   // if we deoptimize here so force a deopt to stress the path.
 409   if (DeoptimizeALot) {
 410     deopt_caller(current);
 411   }
 412 JRT_END
 413 
 414 
 415 JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* current, Klass* klass, int rank, jint* dims))
 416 #ifndef PRODUCT
 417   if (PrintC1Statistics) {
 418     _new_multi_array_slowcase_cnt++;
 419   }
 420 #endif
 421   assert(klass->is_klass(), "not a class");
 422   assert(rank >= 1, "rank must be nonzero");
 423   Handle holder(current, klass->klass_holder()); // keep the klass alive
 424   oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
 425   current->set_vm_result(obj);
 426 JRT_END
 427 
 428 
 429 JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* current, StubID id))
 430   tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", id);
 431 JRT_END
 432 
 433 
 434 JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* current, oopDesc* obj))
 435   ResourceMark rm(current);
 436   const char* klass_name = obj->klass()->external_name();
 437   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArrayStoreException(), klass_name);
 438 JRT_END
 439 
 440 
 441 // counter_overflow() is called from within C1-compiled methods. The enclosing method is the method
 442 // associated with the top activation record. The inlinee (that is possibly included in the enclosing
 443 // method) method is passed as an argument. In order to do that it is embedded in the code as
 444 // a constant.
 445 static nmethod* counter_overflow_helper(JavaThread* current, int branch_bci, Method* m) {
 446   nmethod* osr_nm = NULL;
 447   methodHandle method(current, m);
 448 
 449   RegisterMap map(current,
 450                   RegisterMap::UpdateMap::skip,
 451                   RegisterMap::ProcessFrames::include,
 452                   RegisterMap::WalkContinuation::skip);
 453   frame fr =  current->last_frame().sender(&map);
 454   nmethod* nm = (nmethod*) fr.cb();
 455   assert(nm!= NULL && nm->is_nmethod(), "Sanity check");
 456   methodHandle enclosing_method(current, nm->method());
 457 
 458   CompLevel level = (CompLevel)nm->comp_level();
 459   int bci = InvocationEntryBci;
 460   if (branch_bci != InvocationEntryBci) {
 461     // Compute destination bci
 462     address pc = method()->code_base() + branch_bci;
 463     Bytecodes::Code branch = Bytecodes::code_at(method(), pc);
 464     int offset = 0;
 465     switch (branch) {
 466       case Bytecodes::_if_icmplt: case Bytecodes::_iflt:
 467       case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt:
 468       case Bytecodes::_if_icmple: case Bytecodes::_ifle:
 469       case Bytecodes::_if_icmpge: case Bytecodes::_ifge:
 470       case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq:
 471       case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne:
 472       case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto:
 473         offset = (int16_t)Bytes::get_Java_u2(pc + 1);
 474         break;
 475       case Bytecodes::_goto_w:
 476         offset = Bytes::get_Java_u4(pc + 1);
 477         break;
 478       default: ;
 479     }
 480     bci = branch_bci + offset;
 481   }
 482   osr_nm = CompilationPolicy::event(enclosing_method, method, branch_bci, bci, level, nm, current);
 483   return osr_nm;
 484 }
 485 
 486 JRT_BLOCK_ENTRY(address, Runtime1::counter_overflow(JavaThread* current, int bci, Method* method))
 487   nmethod* osr_nm;
 488   JRT_BLOCK
 489     osr_nm = counter_overflow_helper(current, bci, method);
 490     if (osr_nm != NULL) {
 491       RegisterMap map(current,
 492                       RegisterMap::UpdateMap::skip,
 493                       RegisterMap::ProcessFrames::include,
 494                       RegisterMap::WalkContinuation::skip);
 495       frame fr =  current->last_frame().sender(&map);
 496       Deoptimization::deoptimize_frame(current, fr.id());
 497     }
 498   JRT_BLOCK_END
 499   return NULL;
 500 JRT_END
 501 
 502 extern void vm_exit(int code);
 503 
 504 // Enter this method from compiled code handler below. This is where we transition
 505 // to VM mode. This is done as a helper routine so that the method called directly
 506 // from compiled code does not have to transition to VM. This allows the entry
 507 // method to see if the nmethod that we have just looked up a handler for has
 508 // been deoptimized while we were in the vm. This simplifies the assembly code
 509 // cpu directories.
 510 //
 511 // We are entering here from exception stub (via the entry method below)
 512 // If there is a compiled exception handler in this method, we will continue there;
 513 // otherwise we will unwind the stack and continue at the caller of top frame method
 514 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
 515 // control the area where we can allow a safepoint. After we exit the safepoint area we can
 516 // check to see if the handler we are going to return is now in a nmethod that has
 517 // been deoptimized. If that is the case we return the deopt blob
 518 // unpack_with_exception entry instead. This makes life for the exception blob easier
 519 // because making that same check and diverting is painful from assembly language.
 520 JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* current, oopDesc* ex, address pc, nmethod*& nm))
 521   // Reset method handle flag.
 522   current->set_is_method_handle_return(false);
 523 
 524   Handle exception(current, ex);
 525 
 526   // This function is called when we are about to throw an exception. Therefore,
 527   // we have to poll the stack watermark barrier to make sure that not yet safe
 528   // stack frames are made safe before returning into them.
 529   if (current->last_frame().cb() == Runtime1::blob_for(Runtime1::handle_exception_from_callee_id)) {
 530     // The Runtime1::handle_exception_from_callee_id handler is invoked after the
 531     // frame has been unwound. It instead builds its own stub frame, to call the
 532     // runtime. But the throwing frame has already been unwound here.
 533     StackWatermarkSet::after_unwind(current);
 534   }
 535 
 536   nm = CodeCache::find_nmethod(pc);
 537   assert(nm != NULL, "this is not an nmethod");
 538   // Adjust the pc as needed/
 539   if (nm->is_deopt_pc(pc)) {
 540     RegisterMap map(current,
 541                     RegisterMap::UpdateMap::skip,
 542                     RegisterMap::ProcessFrames::include,
 543                     RegisterMap::WalkContinuation::skip);
 544     frame exception_frame = current->last_frame().sender(&map);
 545     // if the frame isn't deopted then pc must not correspond to the caller of last_frame
 546     assert(exception_frame.is_deoptimized_frame(), "must be deopted");
 547     pc = exception_frame.pc();
 548   }
 549   assert(exception.not_null(), "NULL exceptions should be handled by throw_exception");
 550   // Check that exception is a subclass of Throwable
 551   assert(exception->is_a(vmClasses::Throwable_klass()),
 552          "Exception not subclass of Throwable");
 553 
 554   // debugging support
 555   // tracing
 556   if (log_is_enabled(Info, exceptions)) {
 557     ResourceMark rm;
 558     stringStream tempst;
 559     assert(nm->method() != NULL, "Unexpected NULL method()");
 560     tempst.print("C1 compiled method <%s>\n"
 561                  " at PC" INTPTR_FORMAT " for thread " INTPTR_FORMAT,
 562                  nm->method()->print_value_string(), p2i(pc), p2i(current));
 563     Exceptions::log_exception(exception, tempst.as_string());
 564   }
 565   // for AbortVMOnException flag
 566   Exceptions::debug_check_abort(exception);
 567 
 568   // Check the stack guard pages and re-enable them if necessary and there is
 569   // enough space on the stack to do so.  Use fast exceptions only if the guard
 570   // pages are enabled.
 571   bool guard_pages_enabled = current->stack_overflow_state()->reguard_stack_if_needed();
 572 
 573   if (JvmtiExport::can_post_on_exceptions()) {
 574     // To ensure correct notification of exception catches and throws
 575     // we have to deoptimize here.  If we attempted to notify the
 576     // catches and throws during this exception lookup it's possible
 577     // we could deoptimize on the way out of the VM and end back in
 578     // the interpreter at the throw site.  This would result in double
 579     // notifications since the interpreter would also notify about
 580     // these same catches and throws as it unwound the frame.
 581 
 582     RegisterMap reg_map(current,
 583                         RegisterMap::UpdateMap::include,
 584                         RegisterMap::ProcessFrames::include,
 585                         RegisterMap::WalkContinuation::skip);
 586     frame stub_frame = current->last_frame();
 587     frame caller_frame = stub_frame.sender(&reg_map);
 588 
 589     // We don't really want to deoptimize the nmethod itself since we
 590     // can actually continue in the exception handler ourselves but I
 591     // don't see an easy way to have the desired effect.
 592     Deoptimization::deoptimize_frame(current, caller_frame.id());
 593     assert(caller_is_deopted(current), "Must be deoptimized");
 594 
 595     return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 596   }
 597 
 598   // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions
 599   if (guard_pages_enabled) {
 600     address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
 601     if (fast_continuation != NULL) {
 602       // Set flag if return address is a method handle call site.
 603       current->set_is_method_handle_return(nm->is_method_handle_return(pc));
 604       return fast_continuation;
 605     }
 606   }
 607 
 608   // If the stack guard pages are enabled, check whether there is a handler in
 609   // the current method.  Otherwise (guard pages disabled), force an unwind and
 610   // skip the exception cache update (i.e., just leave continuation==NULL).
 611   address continuation = NULL;
 612   if (guard_pages_enabled) {
 613 
 614     // New exception handling mechanism can support inlined methods
 615     // with exception handlers since the mappings are from PC to PC
 616 
 617     // Clear out the exception oop and pc since looking up an
 618     // exception handler can cause class loading, which might throw an
 619     // exception and those fields are expected to be clear during
 620     // normal bytecode execution.
 621     current->clear_exception_oop_and_pc();
 622 
 623     bool recursive_exception = false;
 624     continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false, recursive_exception);
 625     // If an exception was thrown during exception dispatch, the exception oop may have changed
 626     current->set_exception_oop(exception());
 627     current->set_exception_pc(pc);
 628 
 629     // the exception cache is used only by non-implicit exceptions
 630     // Update the exception cache only when there didn't happen
 631     // another exception during the computation of the compiled
 632     // exception handler. Checking for exception oop equality is not
 633     // sufficient because some exceptions are pre-allocated and reused.
 634     if (continuation != NULL && !recursive_exception) {
 635       nm->add_handler_for_exception_and_pc(exception, pc, continuation);
 636     }
 637   }
 638 
 639   current->set_vm_result(exception());
 640   // Set flag if return address is a method handle call site.
 641   current->set_is_method_handle_return(nm->is_method_handle_return(pc));
 642 
 643   if (log_is_enabled(Info, exceptions)) {
 644     ResourceMark rm;
 645     log_info(exceptions)("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT
 646                          " for exception thrown at PC " PTR_FORMAT,
 647                          p2i(current), p2i(continuation), p2i(pc));
 648   }
 649 
 650   return continuation;
 651 JRT_END
 652 
 653 // Enter this method from compiled code only if there is a Java exception handler
 654 // in the method handling the exception.
 655 // We are entering here from exception stub. We don't do a normal VM transition here.
 656 // We do it in a helper. This is so we can check to see if the nmethod we have just
 657 // searched for an exception handler has been deoptimized in the meantime.
 658 address Runtime1::exception_handler_for_pc(JavaThread* current) {
 659   oop exception = current->exception_oop();
 660   address pc = current->exception_pc();
 661   // Still in Java mode
 662   DEBUG_ONLY(NoHandleMark nhm);
 663   nmethod* nm = NULL;
 664   address continuation = NULL;
 665   {
 666     // Enter VM mode by calling the helper
 667     ResetNoHandleMark rnhm;
 668     continuation = exception_handler_for_pc_helper(current, exception, pc, nm);
 669   }
 670   // Back in JAVA, use no oops DON'T safepoint
 671 
 672   // Now check to see if the nmethod we were called from is now deoptimized.
 673   // If so we must return to the deopt blob and deoptimize the nmethod
 674   if (nm != NULL && caller_is_deopted(current)) {
 675     continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 676   }
 677 
 678   assert(continuation != NULL, "no handler found");
 679   return continuation;
 680 }
 681 
 682 
 683 JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* current, int index, arrayOopDesc* a))
 684 #ifndef PRODUCT
 685   if (PrintC1Statistics) {
 686     _throw_range_check_exception_count++;
 687   }
 688 #endif
 689   const int len = 35;
 690   assert(len < strlen("Index %d out of bounds for length %d"), "Must allocate more space for message.");
 691   char message[2 * jintAsStringSize + len];
 692   sprintf(message, "Index %d out of bounds for length %d", index, a->length());
 693   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
 694 JRT_END
 695 
 696 
 697 JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* current, int index))
 698 #ifndef PRODUCT
 699   if (PrintC1Statistics) {
 700     _throw_index_exception_count++;
 701   }
 702 #endif
 703   char message[16];
 704   sprintf(message, "%d", index);
 705   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IndexOutOfBoundsException(), message);
 706 JRT_END
 707 
 708 
 709 JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* current))
 710 #ifndef PRODUCT
 711   if (PrintC1Statistics) {
 712     _throw_div0_exception_count++;
 713   }
 714 #endif
 715   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 716 JRT_END
 717 
 718 
 719 JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* current))
 720 #ifndef PRODUCT
 721   if (PrintC1Statistics) {
 722     _throw_null_pointer_exception_count++;
 723   }
 724 #endif
 725   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException());
 726 JRT_END
 727 
 728 
 729 JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* current, oopDesc* object))
 730 #ifndef PRODUCT
 731   if (PrintC1Statistics) {
 732     _throw_class_cast_exception_count++;
 733   }
 734 #endif
 735   ResourceMark rm(current);
 736   char* message = SharedRuntime::generate_class_cast_message(current, object->klass());
 737   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ClassCastException(), message);
 738 JRT_END
 739 
 740 
 741 JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* current))
 742 #ifndef PRODUCT
 743   if (PrintC1Statistics) {
 744     _throw_incompatible_class_change_error_count++;
 745   }
 746 #endif
 747   ResourceMark rm(current);
 748   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError());
 749 JRT_END
 750 
 751 
 752 JRT_BLOCK_ENTRY(void, Runtime1::monitorenter(JavaThread* current, oopDesc* obj, BasicObjectLock* lock))
 753 #ifndef PRODUCT
 754   if (PrintC1Statistics) {
 755     _monitorenter_slowcase_cnt++;
 756   }
 757 #endif
 758   if (UseHeavyMonitors) {
 759     lock->set_obj(obj);
 760   }
 761   assert(obj == lock->obj(), "must match");
 762   SharedRuntime::monitor_enter_helper(obj, lock->lock(), current);
 763 JRT_END
 764 
 765 
 766 JRT_LEAF(void, Runtime1::monitorexit(JavaThread* current, BasicObjectLock* lock))
 767 #ifndef PRODUCT
 768   if (PrintC1Statistics) {
 769     _monitorexit_slowcase_cnt++;
 770   }
 771 #endif
 772   assert(current->last_Java_sp(), "last_Java_sp must be set");
 773   oop obj = lock->obj();
 774   assert(oopDesc::is_oop(obj), "must be NULL or an object");
 775   SharedRuntime::monitor_exit_helper(obj, lock->lock(), current);
 776 JRT_END
 777 
 778 // Cf. OptoRuntime::deoptimize_caller_frame
 779 JRT_ENTRY(void, Runtime1::deoptimize(JavaThread* current, jint trap_request))
 780   // Called from within the owner thread, so no need for safepoint
 781   RegisterMap reg_map(current,
 782                       RegisterMap::UpdateMap::skip,
 783                       RegisterMap::ProcessFrames::include,
 784                       RegisterMap::WalkContinuation::skip);
 785   frame stub_frame = current->last_frame();
 786   assert(stub_frame.is_runtime_frame(), "Sanity check");
 787   frame caller_frame = stub_frame.sender(&reg_map);
 788   nmethod* nm = caller_frame.cb()->as_nmethod_or_null();
 789   assert(nm != NULL, "Sanity check");
 790   methodHandle method(current, nm->method());
 791   assert(nm == CodeCache::find_nmethod(caller_frame.pc()), "Should be the same");
 792   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
 793   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
 794 
 795   if (action == Deoptimization::Action_make_not_entrant) {
 796     if (nm->make_not_entrant()) {
 797       if (reason == Deoptimization::Reason_tenured) {
 798         MethodData* trap_mdo = Deoptimization::get_method_data(current, method, true /*create_if_missing*/);
 799         if (trap_mdo != NULL) {
 800           trap_mdo->inc_tenure_traps();
 801         }
 802       }
 803     }
 804   }
 805 
 806   // Deoptimize the caller frame.
 807   Deoptimization::deoptimize_frame(current, caller_frame.id());
 808   // Return to the now deoptimized frame.
 809 JRT_END
 810 
 811 
 812 #ifndef DEOPTIMIZE_WHEN_PATCHING
 813 
 814 static Klass* resolve_field_return_klass(const methodHandle& caller, int bci, TRAPS) {
 815   Bytecode_field field_access(caller, bci);
 816   // This can be static or non-static field access
 817   Bytecodes::Code code       = field_access.code();
 818 
 819   // We must load class, initialize class and resolve the field
 820   fieldDescriptor result; // initialize class if needed
 821   constantPoolHandle constants(THREAD, caller->constants());
 822   LinkResolver::resolve_field_access(result, constants, field_access.index(), caller, Bytecodes::java_code(code), CHECK_NULL);
 823   return result.field_holder();
 824 }
 825 
 826 
 827 //
 828 // This routine patches sites where a class wasn't loaded or
 829 // initialized at the time the code was generated.  It handles
 830 // references to classes, fields and forcing of initialization.  Most
 831 // of the cases are straightforward and involving simply forcing
 832 // resolution of a class, rewriting the instruction stream with the
 833 // needed constant and replacing the call in this function with the
 834 // patched code.  The case for static field is more complicated since
 835 // the thread which is in the process of initializing a class can
 836 // access it's static fields but other threads can't so the code
 837 // either has to deoptimize when this case is detected or execute a
 838 // check that the current thread is the initializing thread.  The
 839 // current
 840 //
 841 // Patches basically look like this:
 842 //
 843 //
 844 // patch_site: jmp patch stub     ;; will be patched
 845 // continue:   ...
 846 //             ...
 847 //             ...
 848 //             ...
 849 //
 850 // They have a stub which looks like this:
 851 //
 852 //             ;; patch body
 853 //             movl <const>, reg           (for class constants)
 854 //        <or> movl [reg1 + <const>], reg  (for field offsets)
 855 //        <or> movl reg, [reg1 + <const>]  (for field offsets)
 856 //             <being_init offset> <bytes to copy> <bytes to skip>
 857 // patch_stub: call Runtime1::patch_code (through a runtime stub)
 858 //             jmp patch_site
 859 //
 860 //
 861 // A normal patch is done by rewriting the patch body, usually a move,
 862 // and then copying it into place over top of the jmp instruction
 863 // being careful to flush caches and doing it in an MP-safe way.  The
 864 // constants following the patch body are used to find various pieces
 865 // of the patch relative to the call site for Runtime1::patch_code.
 866 // The case for getstatic and putstatic is more complicated because
 867 // getstatic and putstatic have special semantics when executing while
 868 // the class is being initialized.  getstatic/putstatic on a class
 869 // which is being_initialized may be executed by the initializing
 870 // thread but other threads have to block when they execute it.  This
 871 // is accomplished in compiled code by executing a test of the current
 872 // thread against the initializing thread of the class.  It's emitted
 873 // as boilerplate in their stub which allows the patched code to be
 874 // executed before it's copied back into the main body of the nmethod.
 875 //
 876 // being_init: get_thread(<tmp reg>
 877 //             cmpl [reg1 + <init_thread_offset>], <tmp reg>
 878 //             jne patch_stub
 879 //             movl [reg1 + <const>], reg  (for field offsets)  <or>
 880 //             movl reg, [reg1 + <const>]  (for field offsets)
 881 //             jmp continue
 882 //             <being_init offset> <bytes to copy> <bytes to skip>
 883 // patch_stub: jmp Runtim1::patch_code (through a runtime stub)
 884 //             jmp patch_site
 885 //
 886 // If the class is being initialized the patch body is rewritten and
 887 // the patch site is rewritten to jump to being_init, instead of
 888 // patch_stub.  Whenever this code is executed it checks the current
 889 // thread against the initializing thread so other threads will enter
 890 // the runtime and end up blocked waiting the class to finish
 891 // initializing inside the calls to resolve_field below.  The
 892 // initializing class will continue on it's way.  Once the class is
 893 // fully_initialized, the intializing_thread of the class becomes
 894 // NULL, so the next thread to execute this code will fail the test,
 895 // call into patch_code and complete the patching process by copying
 896 // the patch body back into the main part of the nmethod and resume
 897 // executing.
 898 
 899 // NB:
 900 //
 901 // Patchable instruction sequences inherently exhibit race conditions,
 902 // where thread A is patching an instruction at the same time thread B
 903 // is executing it.  The algorithms we use ensure that any observation
 904 // that B can make on any intermediate states during A's patching will
 905 // always end up with a correct outcome.  This is easiest if there are
 906 // few or no intermediate states.  (Some inline caches have two
 907 // related instructions that must be patched in tandem.  For those,
 908 // intermediate states seem to be unavoidable, but we will get the
 909 // right answer from all possible observation orders.)
 910 //
 911 // When patching the entry instruction at the head of a method, or a
 912 // linkable call instruction inside of a method, we try very hard to
 913 // use a patch sequence which executes as a single memory transaction.
 914 // This means, in practice, that when thread A patches an instruction,
 915 // it should patch a 32-bit or 64-bit word that somehow overlaps the
 916 // instruction or is contained in it.  We believe that memory hardware
 917 // will never break up such a word write, if it is naturally aligned
 918 // for the word being written.  We also know that some CPUs work very
 919 // hard to create atomic updates even of naturally unaligned words,
 920 // but we don't want to bet the farm on this always working.
 921 //
 922 // Therefore, if there is any chance of a race condition, we try to
 923 // patch only naturally aligned words, as single, full-word writes.
 924 
 925 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* current, Runtime1::StubID stub_id ))
 926 #ifndef PRODUCT
 927   if (PrintC1Statistics) {
 928     _patch_code_slowcase_cnt++;
 929   }
 930 #endif
 931 
 932   ResourceMark rm(current);
 933   RegisterMap reg_map(current,
 934                       RegisterMap::UpdateMap::skip,
 935                       RegisterMap::ProcessFrames::include,
 936                       RegisterMap::WalkContinuation::skip);
 937   frame runtime_frame = current->last_frame();
 938   frame caller_frame = runtime_frame.sender(&reg_map);
 939 
 940   // last java frame on stack
 941   vframeStream vfst(current, true);
 942   assert(!vfst.at_end(), "Java frame must exist");
 943 
 944   methodHandle caller_method(current, vfst.method());
 945   // Note that caller_method->code() may not be same as caller_code because of OSR's
 946   // Note also that in the presence of inlining it is not guaranteed
 947   // that caller_method() == caller_code->method()
 948 
 949   int bci = vfst.bci();
 950   Bytecodes::Code code = caller_method()->java_code_at(bci);
 951 
 952   // this is used by assertions in the access_field_patching_id
 953   BasicType patch_field_type = T_ILLEGAL;
 954   bool deoptimize_for_volatile = false;
 955   bool deoptimize_for_atomic = false;
 956   int patch_field_offset = -1;
 957   Klass* init_klass = NULL; // klass needed by load_klass_patching code
 958   Klass* load_klass = NULL; // klass needed by load_klass_patching code
 959   Handle mirror(current, NULL);                    // oop needed by load_mirror_patching code
 960   Handle appendix(current, NULL);                  // oop needed by appendix_patching code
 961   bool load_klass_or_mirror_patch_id =
 962     (stub_id == Runtime1::load_klass_patching_id || stub_id == Runtime1::load_mirror_patching_id);
 963 
 964   if (stub_id == Runtime1::access_field_patching_id) {
 965 
 966     Bytecode_field field_access(caller_method, bci);
 967     fieldDescriptor result; // initialize class if needed
 968     Bytecodes::Code code = field_access.code();
 969     constantPoolHandle constants(current, caller_method->constants());
 970     LinkResolver::resolve_field_access(result, constants, field_access.index(), caller_method, Bytecodes::java_code(code), CHECK);
 971     patch_field_offset = result.offset();
 972 
 973     // If we're patching a field which is volatile then at compile it
 974     // must not have been know to be volatile, so the generated code
 975     // isn't correct for a volatile reference.  The nmethod has to be
 976     // deoptimized so that the code can be regenerated correctly.
 977     // This check is only needed for access_field_patching since this
 978     // is the path for patching field offsets.  load_klass is only
 979     // used for patching references to oops which don't need special
 980     // handling in the volatile case.
 981 
 982     deoptimize_for_volatile = result.access_flags().is_volatile();
 983 
 984     // If we are patching a field which should be atomic, then
 985     // the generated code is not correct either, force deoptimizing.
 986     // We need to only cover T_LONG and T_DOUBLE fields, as we can
 987     // break access atomicity only for them.
 988 
 989     // Strictly speaking, the deoptimization on 64-bit platforms
 990     // is unnecessary, and T_LONG stores on 32-bit platforms need
 991     // to be handled by special patching code when AlwaysAtomicAccesses
 992     // becomes product feature. At this point, we are still going
 993     // for the deoptimization for consistency against volatile
 994     // accesses.
 995 
 996     patch_field_type = result.field_type();
 997     deoptimize_for_atomic = (AlwaysAtomicAccesses && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG));
 998 
 999   } else if (load_klass_or_mirror_patch_id) {
1000     Klass* k = NULL;
1001     switch (code) {
1002       case Bytecodes::_putstatic:
1003       case Bytecodes::_getstatic:
1004         { Klass* klass = resolve_field_return_klass(caller_method, bci, CHECK);
1005           init_klass = klass;
1006           mirror = Handle(current, klass->java_mirror());
1007         }
1008         break;
1009       case Bytecodes::_new:
1010         { Bytecode_new bnew(caller_method(), caller_method->bcp_from(bci));
1011           k = caller_method->constants()->klass_at(bnew.index(), CHECK);
1012         }
1013         break;
1014       case Bytecodes::_multianewarray:
1015         { Bytecode_multianewarray mna(caller_method(), caller_method->bcp_from(bci));
1016           k = caller_method->constants()->klass_at(mna.index(), CHECK);
1017         }
1018         break;
1019       case Bytecodes::_instanceof:
1020         { Bytecode_instanceof io(caller_method(), caller_method->bcp_from(bci));
1021           k = caller_method->constants()->klass_at(io.index(), CHECK);
1022         }
1023         break;
1024       case Bytecodes::_checkcast:
1025         { Bytecode_checkcast cc(caller_method(), caller_method->bcp_from(bci));
1026           k = caller_method->constants()->klass_at(cc.index(), CHECK);
1027         }
1028         break;
1029       case Bytecodes::_anewarray:
1030         { Bytecode_anewarray anew(caller_method(), caller_method->bcp_from(bci));
1031           Klass* ek = caller_method->constants()->klass_at(anew.index(), CHECK);
1032           k = ek->array_klass(CHECK);
1033         }
1034         break;
1035       case Bytecodes::_ldc:
1036       case Bytecodes::_ldc_w:
1037       case Bytecodes::_ldc2_w:
1038         {
1039           Bytecode_loadconstant cc(caller_method, bci);
1040           oop m = cc.resolve_constant(CHECK);
1041           mirror = Handle(current, m);
1042         }
1043         break;
1044       default: fatal("unexpected bytecode for load_klass_or_mirror_patch_id");
1045     }
1046     load_klass = k;
1047   } else if (stub_id == load_appendix_patching_id) {
1048     Bytecode_invoke bytecode(caller_method, bci);
1049     Bytecodes::Code bc = bytecode.invoke_code();
1050 
1051     CallInfo info;
1052     constantPoolHandle pool(current, caller_method->constants());
1053     int index = bytecode.index();
1054     LinkResolver::resolve_invoke(info, Handle(), pool, index, bc, CHECK);
1055     switch (bc) {
1056       case Bytecodes::_invokehandle: {
1057         int cache_index = ConstantPool::decode_cpcache_index(index, true);
1058         assert(cache_index >= 0 && cache_index < pool->cache()->length(), "unexpected cache index");
1059         ConstantPoolCacheEntry* cpce = pool->cache()->entry_at(cache_index);
1060         cpce->set_method_handle(pool, info);
1061         appendix = Handle(current, cpce->appendix_if_resolved(pool)); // just in case somebody already resolved the entry
1062         break;
1063       }
1064       case Bytecodes::_invokedynamic: {
1065         ConstantPoolCacheEntry* cpce = pool->invokedynamic_cp_cache_entry_at(index);
1066         cpce->set_dynamic_call(pool, info);
1067         appendix = Handle(current, cpce->appendix_if_resolved(pool)); // just in case somebody already resolved the entry
1068         break;
1069       }
1070       default: fatal("unexpected bytecode for load_appendix_patching_id");
1071     }
1072   } else {
1073     ShouldNotReachHere();
1074   }
1075 
1076   if (deoptimize_for_volatile || deoptimize_for_atomic) {
1077     // At compile time we assumed the field wasn't volatile/atomic but after
1078     // loading it turns out it was volatile/atomic so we have to throw the
1079     // compiled code out and let it be regenerated.
1080     if (TracePatching) {
1081       if (deoptimize_for_volatile) {
1082         tty->print_cr("Deoptimizing for patching volatile field reference");
1083       }
1084       if (deoptimize_for_atomic) {
1085         tty->print_cr("Deoptimizing for patching atomic field reference");
1086       }
1087     }
1088 
1089     // It's possible the nmethod was invalidated in the last
1090     // safepoint, but if it's still alive then make it not_entrant.
1091     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1092     if (nm != NULL) {
1093       nm->make_not_entrant();
1094     }
1095 
1096     Deoptimization::deoptimize_frame(current, caller_frame.id());
1097 
1098     // Return to the now deoptimized frame.
1099   }
1100 
1101   // Now copy code back
1102 
1103   {
1104     MutexLocker ml_patch (current, Patching_lock, Mutex::_no_safepoint_check_flag);
1105     //
1106     // Deoptimization may have happened while we waited for the lock.
1107     // In that case we don't bother to do any patching we just return
1108     // and let the deopt happen
1109     if (!caller_is_deopted(current)) {
1110       NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc());
1111       address instr_pc = jump->jump_destination();
1112       NativeInstruction* ni = nativeInstruction_at(instr_pc);
1113       if (ni->is_jump() ) {
1114         // the jump has not been patched yet
1115         // The jump destination is slow case and therefore not part of the stubs
1116         // (stubs are only for StaticCalls)
1117 
1118         // format of buffer
1119         //    ....
1120         //    instr byte 0     <-- copy_buff
1121         //    instr byte 1
1122         //    ..
1123         //    instr byte n-1
1124         //      n
1125         //    ....             <-- call destination
1126 
1127         address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset();
1128         unsigned char* byte_count = (unsigned char*) (stub_location - 1);
1129         unsigned char* byte_skip = (unsigned char*) (stub_location - 2);
1130         unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3);
1131         address copy_buff = stub_location - *byte_skip - *byte_count;
1132         address being_initialized_entry = stub_location - *being_initialized_entry_offset;
1133         if (TracePatching) {
1134           ttyLocker ttyl;
1135           tty->print_cr(" Patching %s at bci %d at address " INTPTR_FORMAT "  (%s)", Bytecodes::name(code), bci,
1136                         p2i(instr_pc), (stub_id == Runtime1::access_field_patching_id) ? "field" : "klass");
1137           nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc());
1138           assert(caller_code != NULL, "nmethod not found");
1139 
1140           // NOTE we use pc() not original_pc() because we already know they are
1141           // identical otherwise we'd have never entered this block of code
1142 
1143           const ImmutableOopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc());
1144           assert(map != NULL, "null check");
1145           map->print();
1146           tty->cr();
1147 
1148           Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1149         }
1150         // depending on the code below, do_patch says whether to copy the patch body back into the nmethod
1151         bool do_patch = true;
1152         if (stub_id == Runtime1::access_field_patching_id) {
1153           // The offset may not be correct if the class was not loaded at code generation time.
1154           // Set it now.
1155           NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff);
1156           assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type");
1157           assert(patch_field_offset >= 0, "illegal offset");
1158           n_move->add_offset_in_bytes(patch_field_offset);
1159         } else if (load_klass_or_mirror_patch_id) {
1160           // If a getstatic or putstatic is referencing a klass which
1161           // isn't fully initialized, the patch body isn't copied into
1162           // place until initialization is complete.  In this case the
1163           // patch site is setup so that any threads besides the
1164           // initializing thread are forced to come into the VM and
1165           // block.
1166           do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) ||
1167                      InstanceKlass::cast(init_klass)->is_initialized();
1168           NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc);
1169           if (jump->jump_destination() == being_initialized_entry) {
1170             assert(do_patch == true, "initialization must be complete at this point");
1171           } else {
1172             // patch the instruction <move reg, klass>
1173             NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1174 
1175             assert(n_copy->data() == 0 ||
1176                    n_copy->data() == (intptr_t)Universe::non_oop_word(),
1177                    "illegal init value");
1178             if (stub_id == Runtime1::load_klass_patching_id) {
1179               assert(load_klass != NULL, "klass not set");
1180               n_copy->set_data((intx) (load_klass));
1181             } else {
1182               // Don't need a G1 pre-barrier here since we assert above that data isn't an oop.
1183               n_copy->set_data(cast_from_oop<intx>(mirror()));
1184             }
1185 
1186             if (TracePatching) {
1187               Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1188             }
1189           }
1190         } else if (stub_id == Runtime1::load_appendix_patching_id) {
1191           NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1192           assert(n_copy->data() == 0 ||
1193                  n_copy->data() == (intptr_t)Universe::non_oop_word(),
1194                  "illegal init value");
1195           n_copy->set_data(cast_from_oop<intx>(appendix()));
1196 
1197           if (TracePatching) {
1198             Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1199           }
1200         } else {
1201           ShouldNotReachHere();
1202         }
1203 
1204         if (do_patch) {
1205           // replace instructions
1206           // first replace the tail, then the call
1207 #ifdef ARM
1208           if((load_klass_or_mirror_patch_id ||
1209               stub_id == Runtime1::load_appendix_patching_id) &&
1210               nativeMovConstReg_at(copy_buff)->is_pc_relative()) {
1211             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1212             address addr = NULL;
1213             assert(nm != NULL, "invalid nmethod_pc");
1214             RelocIterator mds(nm, copy_buff, copy_buff + 1);
1215             while (mds.next()) {
1216               if (mds.type() == relocInfo::oop_type) {
1217                 assert(stub_id == Runtime1::load_mirror_patching_id ||
1218                        stub_id == Runtime1::load_appendix_patching_id, "wrong stub id");
1219                 oop_Relocation* r = mds.oop_reloc();
1220                 addr = (address)r->oop_addr();
1221                 break;
1222               } else if (mds.type() == relocInfo::metadata_type) {
1223                 assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
1224                 metadata_Relocation* r = mds.metadata_reloc();
1225                 addr = (address)r->metadata_addr();
1226                 break;
1227               }
1228             }
1229             assert(addr != NULL, "metadata relocation must exist");
1230             copy_buff -= *byte_count;
1231             NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff);
1232             n_copy2->set_pc_relative_offset(addr, instr_pc);
1233           }
1234 #endif
1235 
1236           for (int i = NativeGeneralJump::instruction_size; i < *byte_count; i++) {
1237             address ptr = copy_buff + i;
1238             int a_byte = (*ptr) & 0xFF;
1239             address dst = instr_pc + i;
1240             *(unsigned char*)dst = (unsigned char) a_byte;
1241           }
1242           ICache::invalidate_range(instr_pc, *byte_count);
1243           NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff);
1244 
1245           if (load_klass_or_mirror_patch_id ||
1246               stub_id == Runtime1::load_appendix_patching_id) {
1247             relocInfo::relocType rtype =
1248               (stub_id == Runtime1::load_klass_patching_id) ?
1249                                    relocInfo::metadata_type :
1250                                    relocInfo::oop_type;
1251             // update relocInfo to metadata
1252             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1253             assert(nm != NULL, "invalid nmethod_pc");
1254 
1255             // The old patch site is now a move instruction so update
1256             // the reloc info so that it will get updated during
1257             // future GCs.
1258             RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1));
1259             relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc,
1260                                                      relocInfo::none, rtype);
1261           }
1262 
1263         } else {
1264           ICache::invalidate_range(copy_buff, *byte_count);
1265           NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry);
1266         }
1267       }
1268     }
1269   }
1270 
1271   // If we are patching in a non-perm oop, make sure the nmethod
1272   // is on the right list.
1273   {
1274     MutexLocker ml_code (current, CodeCache_lock, Mutex::_no_safepoint_check_flag);
1275     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1276     guarantee(nm != NULL, "only nmethods can contain non-perm oops");
1277 
1278     // Since we've patched some oops in the nmethod,
1279     // (re)register it with the heap.
1280     Universe::heap()->register_nmethod(nm);
1281   }
1282 JRT_END
1283 
1284 #else // DEOPTIMIZE_WHEN_PATCHING
1285 
1286 void Runtime1::patch_code(JavaThread* current, Runtime1::StubID stub_id) {
1287 #ifndef PRODUCT
1288   if (PrintC1Statistics) {
1289     _patch_code_slowcase_cnt++;
1290   }
1291 #endif
1292 
1293   // Enable WXWrite: the function is called by c1 stub as a runtime function
1294   // (see another implementation above).
1295   MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, current));
1296 
1297   if (TracePatching) {
1298     tty->print_cr("Deoptimizing because patch is needed");
1299   }
1300 
1301   RegisterMap reg_map(current,
1302                       RegisterMap::UpdateMap::skip,
1303                       RegisterMap::ProcessFrames::include,
1304                       RegisterMap::WalkContinuation::skip);
1305 
1306   frame runtime_frame = current->last_frame();
1307   frame caller_frame = runtime_frame.sender(&reg_map);
1308   assert(caller_frame.is_compiled_frame(), "Wrong frame type");
1309 
1310   // Make sure the nmethod is invalidated, i.e. made not entrant.
1311   nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1312   if (nm != NULL) {
1313     nm->make_not_entrant();
1314   }
1315 
1316   Deoptimization::deoptimize_frame(current, caller_frame.id());
1317   // Return to the now deoptimized frame.
1318   postcond(caller_is_deopted(current));
1319 }
1320 
1321 #endif // DEOPTIMIZE_WHEN_PATCHING
1322 
1323 // Entry point for compiled code. We want to patch a nmethod.
1324 // We don't do a normal VM transition here because we want to
1325 // know after the patching is complete and any safepoint(s) are taken
1326 // if the calling nmethod was deoptimized. We do this by calling a
1327 // helper method which does the normal VM transition and when it
1328 // completes we can check for deoptimization. This simplifies the
1329 // assembly code in the cpu directories.
1330 //
1331 int Runtime1::move_klass_patching(JavaThread* current) {
1332 //
1333 // NOTE: we are still in Java
1334 //
1335   debug_only(NoHandleMark nhm;)
1336   {
1337     // Enter VM mode
1338     ResetNoHandleMark rnhm;
1339     patch_code(current, load_klass_patching_id);
1340   }
1341   // Back in JAVA, use no oops DON'T safepoint
1342 
1343   // Return true if calling code is deoptimized
1344 
1345   return caller_is_deopted(current);
1346 }
1347 
1348 int Runtime1::move_mirror_patching(JavaThread* current) {
1349 //
1350 // NOTE: we are still in Java
1351 //
1352   debug_only(NoHandleMark nhm;)
1353   {
1354     // Enter VM mode
1355     ResetNoHandleMark rnhm;
1356     patch_code(current, load_mirror_patching_id);
1357   }
1358   // Back in JAVA, use no oops DON'T safepoint
1359 
1360   // Return true if calling code is deoptimized
1361 
1362   return caller_is_deopted(current);
1363 }
1364 
1365 int Runtime1::move_appendix_patching(JavaThread* current) {
1366 //
1367 // NOTE: we are still in Java
1368 //
1369   debug_only(NoHandleMark nhm;)
1370   {
1371     // Enter VM mode
1372     ResetNoHandleMark rnhm;
1373     patch_code(current, load_appendix_patching_id);
1374   }
1375   // Back in JAVA, use no oops DON'T safepoint
1376 
1377   // Return true if calling code is deoptimized
1378 
1379   return caller_is_deopted(current);
1380 }
1381 
1382 // Entry point for compiled code. We want to patch a nmethod.
1383 // We don't do a normal VM transition here because we want to
1384 // know after the patching is complete and any safepoint(s) are taken
1385 // if the calling nmethod was deoptimized. We do this by calling a
1386 // helper method which does the normal VM transition and when it
1387 // completes we can check for deoptimization. This simplifies the
1388 // assembly code in the cpu directories.
1389 //
1390 int Runtime1::access_field_patching(JavaThread* current) {
1391   //
1392   // NOTE: we are still in Java
1393   //
1394   // Handles created in this function will be deleted by the
1395   // HandleMarkCleaner in the transition to the VM.
1396   NoHandleMark nhm;
1397   {
1398     // Enter VM mode
1399     ResetNoHandleMark rnhm;
1400     patch_code(current, access_field_patching_id);
1401   }
1402   // Back in JAVA, use no oops DON'T safepoint
1403 
1404   // Return true if calling code is deoptimized
1405 
1406   return caller_is_deopted(current);
1407 }
1408 
1409 
1410 JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id))
1411   // for now we just print out the block id
1412   tty->print("%d ", block_id);
1413 JRT_END
1414 
1415 
1416 JRT_LEAF(int, Runtime1::is_instance_of(oopDesc* mirror, oopDesc* obj))
1417   // had to return int instead of bool, otherwise there may be a mismatch
1418   // between the C calling convention and the Java one.
1419   // e.g., on x86, GCC may clear only %al when returning a bool false, but
1420   // JVM takes the whole %eax as the return value, which may misinterpret
1421   // the return value as a boolean true.
1422 
1423   assert(mirror != NULL, "should null-check on mirror before calling");
1424   Klass* k = java_lang_Class::as_Klass(mirror);
1425   return (k != NULL && obj != NULL && obj->is_a(k)) ? 1 : 0;
1426 JRT_END
1427 
1428 JRT_ENTRY(void, Runtime1::predicate_failed_trap(JavaThread* current))
1429   ResourceMark rm;
1430 
1431   RegisterMap reg_map(current,
1432                       RegisterMap::UpdateMap::skip,
1433                       RegisterMap::ProcessFrames::include,
1434                       RegisterMap::WalkContinuation::skip);
1435   frame runtime_frame = current->last_frame();
1436   frame caller_frame = runtime_frame.sender(&reg_map);
1437 
1438   nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1439   assert (nm != NULL, "no more nmethod?");
1440   nm->make_not_entrant();
1441 
1442   methodHandle m(current, nm->method());
1443   MethodData* mdo = m->method_data();
1444 
1445   if (mdo == NULL && !HAS_PENDING_EXCEPTION) {
1446     // Build an MDO.  Ignore errors like OutOfMemory;
1447     // that simply means we won't have an MDO to update.
1448     Method::build_profiling_method_data(m, THREAD);
1449     if (HAS_PENDING_EXCEPTION) {
1450       // Only metaspace OOM is expected. No Java code executed.
1451       assert((PENDING_EXCEPTION->is_a(vmClasses::OutOfMemoryError_klass())), "we expect only an OOM error here");
1452       CLEAR_PENDING_EXCEPTION;
1453     }
1454     mdo = m->method_data();
1455   }
1456 
1457   if (mdo != NULL) {
1458     mdo->inc_trap_count(Deoptimization::Reason_none);
1459   }
1460 
1461   if (TracePredicateFailedTraps) {
1462     stringStream ss1, ss2;
1463     vframeStream vfst(current);
1464     Method* inlinee = vfst.method();
1465     inlinee->print_short_name(&ss1);
1466     m->print_short_name(&ss2);
1467     tty->print_cr("Predicate failed trap in method %s at bci %d inlined in %s at pc " INTPTR_FORMAT, ss1.as_string(), vfst.bci(), ss2.as_string(), p2i(caller_frame.pc()));
1468   }
1469 
1470 
1471   Deoptimization::deoptimize_frame(current, caller_frame.id());
1472 
1473 JRT_END
1474 
1475 #ifndef PRODUCT
1476 void Runtime1::print_statistics() {
1477   tty->print_cr("C1 Runtime statistics:");
1478   tty->print_cr(" _resolve_invoke_virtual_cnt:     %d", SharedRuntime::_resolve_virtual_ctr);
1479   tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %d", SharedRuntime::_resolve_opt_virtual_ctr);
1480   tty->print_cr(" _resolve_invoke_static_cnt:      %d", SharedRuntime::_resolve_static_ctr);
1481   tty->print_cr(" _handle_wrong_method_cnt:        %d", SharedRuntime::_wrong_method_ctr);
1482   tty->print_cr(" _ic_miss_cnt:                    %d", SharedRuntime::_ic_miss_ctr);
1483   tty->print_cr(" _generic_arraycopystub_cnt:      %d", _generic_arraycopystub_cnt);
1484   tty->print_cr(" _byte_arraycopy_cnt:             %d", _byte_arraycopy_stub_cnt);
1485   tty->print_cr(" _short_arraycopy_cnt:            %d", _short_arraycopy_stub_cnt);
1486   tty->print_cr(" _int_arraycopy_cnt:              %d", _int_arraycopy_stub_cnt);
1487   tty->print_cr(" _long_arraycopy_cnt:             %d", _long_arraycopy_stub_cnt);
1488   tty->print_cr(" _oop_arraycopy_cnt:              %d", _oop_arraycopy_stub_cnt);
1489   tty->print_cr(" _arraycopy_slowcase_cnt:         %d", _arraycopy_slowcase_cnt);
1490   tty->print_cr(" _arraycopy_checkcast_cnt:        %d", _arraycopy_checkcast_cnt);
1491   tty->print_cr(" _arraycopy_checkcast_attempt_cnt:%d", _arraycopy_checkcast_attempt_cnt);
1492 
1493   tty->print_cr(" _new_type_array_slowcase_cnt:    %d", _new_type_array_slowcase_cnt);
1494   tty->print_cr(" _new_object_array_slowcase_cnt:  %d", _new_object_array_slowcase_cnt);
1495   tty->print_cr(" _new_instance_slowcase_cnt:      %d", _new_instance_slowcase_cnt);
1496   tty->print_cr(" _new_multi_array_slowcase_cnt:   %d", _new_multi_array_slowcase_cnt);
1497   tty->print_cr(" _monitorenter_slowcase_cnt:      %d", _monitorenter_slowcase_cnt);
1498   tty->print_cr(" _monitorexit_slowcase_cnt:       %d", _monitorexit_slowcase_cnt);
1499   tty->print_cr(" _patch_code_slowcase_cnt:        %d", _patch_code_slowcase_cnt);
1500 
1501   tty->print_cr(" _throw_range_check_exception_count:            %d:", _throw_range_check_exception_count);
1502   tty->print_cr(" _throw_index_exception_count:                  %d:", _throw_index_exception_count);
1503   tty->print_cr(" _throw_div0_exception_count:                   %d:", _throw_div0_exception_count);
1504   tty->print_cr(" _throw_null_pointer_exception_count:           %d:", _throw_null_pointer_exception_count);
1505   tty->print_cr(" _throw_class_cast_exception_count:             %d:", _throw_class_cast_exception_count);
1506   tty->print_cr(" _throw_incompatible_class_change_error_count:  %d:", _throw_incompatible_class_change_error_count);
1507   tty->print_cr(" _throw_count:                                  %d:", _throw_count);
1508 
1509   SharedRuntime::print_ic_miss_histogram();
1510   tty->cr();
1511 }
1512 #endif // PRODUCT
--- EOF ---