1 /*
   2  * Copyright (c) 2023, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "cds/aotMappedHeapLoader.hpp"
  26 #include "cds/aotMappedHeapWriter.hpp"
  27 #include "cds/aotReferenceObjSupport.hpp"
  28 #include "cds/cdsConfig.hpp"
  29 #include "cds/filemap.hpp"
  30 #include "cds/heapShared.inline.hpp"
  31 #include "cds/regeneratedClasses.hpp"
  32 #include "classfile/javaClasses.hpp"
  33 #include "classfile/modules.hpp"
  34 #include "classfile/systemDictionary.hpp"
  35 #include "gc/shared/collectedHeap.hpp"
  36 #include "memory/allocation.inline.hpp"
  37 #include "memory/iterator.inline.hpp"
  38 #include "memory/oopFactory.hpp"
  39 #include "memory/universe.hpp"
  40 #include "oops/compressedOops.hpp"
  41 #include "oops/objArrayOop.inline.hpp"
  42 #include "oops/oop.inline.hpp"
  43 #include "oops/oopHandle.inline.hpp"
  44 #include "oops/typeArrayKlass.hpp"
  45 #include "oops/typeArrayOop.hpp"
  46 #include "runtime/java.hpp"
  47 #include "runtime/mutexLocker.hpp"
  48 #include "utilities/bitMap.inline.hpp"
  49 #if INCLUDE_G1GC
  50 #include "gc/g1/g1CollectedHeap.hpp"
  51 #include "gc/g1/g1HeapRegion.hpp"
  52 #endif
  53 
  54 #if INCLUDE_CDS_JAVA_HEAP
  55 
  56 GrowableArrayCHeap<u1, mtClassShared>* AOTMappedHeapWriter::_buffer = nullptr;
  57 
  58 bool AOTMappedHeapWriter::_is_writing_deterministic_heap = false;
  59 size_t AOTMappedHeapWriter::_buffer_used;
  60 
  61 // Heap root segments
  62 HeapRootSegments AOTMappedHeapWriter::_heap_root_segments;
  63 
  64 address AOTMappedHeapWriter::_requested_bottom;
  65 address AOTMappedHeapWriter::_requested_top;
  66 
  67 GrowableArrayCHeap<AOTMappedHeapWriter::NativePointerInfo, mtClassShared>* AOTMappedHeapWriter::_native_pointers;
  68 GrowableArrayCHeap<oop, mtClassShared>* AOTMappedHeapWriter::_source_objs;
  69 GrowableArrayCHeap<AOTMappedHeapWriter::HeapObjOrder, mtClassShared>* AOTMappedHeapWriter::_source_objs_order;
  70 
  71 AOTMappedHeapWriter::BufferOffsetToSourceObjectTable*
  72 AOTMappedHeapWriter::_buffer_offset_to_source_obj_table = nullptr;
  73 
  74 DumpedInternedStrings *AOTMappedHeapWriter::_dumped_interned_strings = nullptr;
  75 
  76 typedef HashTable<
  77       size_t,    // offset of a filler from AOTMappedHeapWriter::buffer_bottom()
  78       size_t,    // size of this filler (in bytes)
  79       127,       // prime number
  80       AnyObj::C_HEAP,
  81       mtClassShared> FillersTable;
  82 static FillersTable* _fillers;
  83 static int _num_native_ptrs = 0;
  84 
  85 void AOTMappedHeapWriter::init() {
  86   if (CDSConfig::is_dumping_heap()) {
  87     Universe::heap()->collect(GCCause::_java_lang_system_gc);
  88 
  89     _buffer_offset_to_source_obj_table = new BufferOffsetToSourceObjectTable(/*size (prime)*/36137, /*max size*/1 * M);
  90     _dumped_interned_strings = new (mtClass)DumpedInternedStrings(INITIAL_TABLE_SIZE, MAX_TABLE_SIZE);
  91     _fillers = new FillersTable();
  92     _requested_bottom = nullptr;
  93     _requested_top = nullptr;
  94 
  95     _native_pointers = new GrowableArrayCHeap<NativePointerInfo, mtClassShared>(2048);
  96     _source_objs = new GrowableArrayCHeap<oop, mtClassShared>(10000);
  97 
  98     guarantee(MIN_GC_REGION_ALIGNMENT <= G1HeapRegion::min_region_size_in_words() * HeapWordSize, "must be");
  99 
 100     if (CDSConfig::old_cds_flags_used()) {
 101       // With the old CDS workflow, we can guatantee determninistic output: given
 102       // the same classlist file, we can generate the same static CDS archive.
 103       // To ensure determinism, we always use the same compressed oop encoding
 104       // (zero-based, no shift). See set_requested_address_range().
 105       _is_writing_deterministic_heap = true;
 106     } else {
 107       // Determninistic output is not supported by the new AOT workflow, so
 108       // we don't force the (zero-based, no shift) encoding. This way, it is more
 109       // likely that we can avoid oop relocation in the production run.
 110       _is_writing_deterministic_heap = false;
 111     }
 112   }
 113 }
 114 
 115 // For AOTMappedHeapWriter::narrow_oop_{mode, base, shift}(), see comments
 116 // in AOTMappedHeapWriter::set_requested_address_range(),
 117 CompressedOops::Mode AOTMappedHeapWriter::narrow_oop_mode() {
 118   if (is_writing_deterministic_heap()) {
 119     return CompressedOops::UnscaledNarrowOop;
 120   } else {
 121     return CompressedOops::mode();
 122   }
 123 }
 124 
 125 address AOTMappedHeapWriter::narrow_oop_base() {
 126   if (is_writing_deterministic_heap()) {
 127     return (address)0;
 128   } else {
 129     return CompressedOops::base();
 130   }
 131 }
 132 
 133 int AOTMappedHeapWriter::narrow_oop_shift() {
 134   if (is_writing_deterministic_heap()) {
 135     return 0;
 136   } else {
 137     return CompressedOops::shift();
 138   }
 139 }
 140 
 141 void AOTMappedHeapWriter::delete_tables_with_raw_oops() {
 142   delete _source_objs;
 143   _source_objs = nullptr;
 144 
 145   delete _dumped_interned_strings;
 146   _dumped_interned_strings = nullptr;
 147 }
 148 
 149 void AOTMappedHeapWriter::add_source_obj(oop src_obj) {
 150   _source_objs->append(src_obj);
 151 }
 152 
 153 void AOTMappedHeapWriter::write(GrowableArrayCHeap<oop, mtClassShared>* roots,
 154                                 ArchiveMappedHeapInfo* heap_info) {
 155   assert(CDSConfig::is_dumping_heap(), "sanity");
 156   allocate_buffer();
 157   copy_source_objs_to_buffer(roots);
 158   set_requested_address_range(heap_info);
 159   relocate_embedded_oops(roots, heap_info);
 160 }
 161 
 162 bool AOTMappedHeapWriter::is_too_large_to_archive(oop o) {
 163   size_t size = o->size();
 164   size = o->copy_size_cds(size, o->mark());
 165   return is_too_large_to_archive(size);
 166 }
 167 
 168 bool AOTMappedHeapWriter::is_string_too_large_to_archive(oop string) {
 169   typeArrayOop value = java_lang_String::value_no_keepalive(string);
 170   return is_too_large_to_archive(value);
 171 }
 172 
 173 bool AOTMappedHeapWriter::is_too_large_to_archive(size_t size) {
 174   assert(size > 0, "no zero-size object");
 175   assert(size * HeapWordSize > size, "no overflow");
 176   static_assert(MIN_GC_REGION_ALIGNMENT > 0, "must be positive");
 177 
 178   size_t byte_size = size * HeapWordSize;
 179   if (byte_size > size_t(MIN_GC_REGION_ALIGNMENT)) {
 180     return true;
 181   } else {
 182     return false;
 183   }
 184 }
 185 
 186 // Keep track of the contents of the archived interned string table. This table
 187 // is used only by CDSHeapVerifier.
 188 void AOTMappedHeapWriter::add_to_dumped_interned_strings(oop string) {
 189   assert_at_safepoint(); // DumpedInternedStrings uses raw oops
 190   assert(!is_string_too_large_to_archive(string), "must be");
 191   bool created;
 192   _dumped_interned_strings->put_if_absent(string, true, &created);
 193   if (created) {
 194     // Prevent string deduplication from changing the value field to
 195     // something not in the archive.
 196     java_lang_String::set_deduplication_forbidden(string);
 197     _dumped_interned_strings->maybe_grow();
 198   }
 199 }
 200 
 201 bool AOTMappedHeapWriter::is_dumped_interned_string(oop o) {
 202   return _dumped_interned_strings->get(o) != nullptr;
 203 }
 204 
 205 // Various lookup functions between source_obj, buffered_obj and requested_obj
 206 bool AOTMappedHeapWriter::is_in_requested_range(oop o) {
 207   assert(_requested_bottom != nullptr, "do not call before _requested_bottom is initialized");
 208   address a = cast_from_oop<address>(o);
 209   return (_requested_bottom <= a && a < _requested_top);
 210 }
 211 
 212 oop AOTMappedHeapWriter::requested_obj_from_buffer_offset(size_t offset) {
 213   oop req_obj = cast_to_oop(_requested_bottom + offset);
 214   assert(is_in_requested_range(req_obj), "must be");
 215   return req_obj;
 216 }
 217 
 218 oop AOTMappedHeapWriter::source_obj_to_requested_obj(oop src_obj) {
 219   assert(CDSConfig::is_dumping_heap(), "dump-time only");
 220   HeapShared::CachedOopInfo* p = HeapShared::get_cached_oop_info(src_obj);
 221   if (p != nullptr) {
 222     return requested_obj_from_buffer_offset(p->buffer_offset());
 223   } else {
 224     return nullptr;
 225   }
 226 }
 227 
 228 oop AOTMappedHeapWriter::buffered_addr_to_source_obj(address buffered_addr) {
 229   OopHandle* oh = _buffer_offset_to_source_obj_table->get(buffered_address_to_offset(buffered_addr));
 230   if (oh != nullptr) {
 231     return oh->resolve();
 232   } else {
 233     return nullptr;
 234   }
 235 }
 236 
 237 Klass* AOTMappedHeapWriter::real_klass_of_buffered_oop(address buffered_addr) {
 238   oop p = buffered_addr_to_source_obj(buffered_addr);
 239   if (p != nullptr) {
 240     return p->klass();
 241   } else if (get_filler_size_at(buffered_addr) > 0) {
 242     return Universe::fillerArrayKlass();
 243   } else {
 244     // This is one of the root segments
 245     return Universe::objectArrayKlass();
 246   }
 247 }
 248 
 249 size_t AOTMappedHeapWriter::size_of_buffered_oop(address buffered_addr) {
 250   oop p = buffered_addr_to_source_obj(buffered_addr);
 251   if (p != nullptr) {
 252     size_t size = p->size();
 253     return p->copy_size_cds(size, p->mark());
 254   }
 255 
 256   size_t nbytes = get_filler_size_at(buffered_addr);
 257   if (nbytes > 0) {
 258     assert((nbytes % BytesPerWord) == 0, "should be aligned");
 259     return nbytes / BytesPerWord;
 260   }
 261 
 262   address hrs = buffer_bottom();
 263   for (size_t seg_idx = 0; seg_idx < _heap_root_segments.count(); seg_idx++) {
 264     nbytes = _heap_root_segments.size_in_bytes(seg_idx);
 265     if (hrs == buffered_addr) {
 266       assert((nbytes % BytesPerWord) == 0, "should be aligned");
 267       return nbytes / BytesPerWord;
 268     }
 269     hrs += nbytes;
 270   }
 271 
 272   ShouldNotReachHere();
 273   return 0;
 274 }
 275 
 276 address AOTMappedHeapWriter::buffered_addr_to_requested_addr(address buffered_addr) {
 277   return _requested_bottom + buffered_address_to_offset(buffered_addr);
 278 }
 279 
 280 address AOTMappedHeapWriter::requested_address() {
 281   assert(_buffer != nullptr, "must be initialized");
 282   return _requested_bottom;
 283 }
 284 
 285 void AOTMappedHeapWriter::allocate_buffer() {
 286   int initial_buffer_size = 100000;
 287   _buffer = new GrowableArrayCHeap<u1, mtClassShared>(initial_buffer_size);
 288   _buffer_used = 0;
 289   ensure_buffer_space(1); // so that buffer_bottom() works
 290 }
 291 
 292 void AOTMappedHeapWriter::ensure_buffer_space(size_t min_bytes) {
 293   // We usually have very small heaps. If we get a huge one it's probably caused by a bug.
 294   guarantee(min_bytes <= max_jint, "we dont support archiving more than 2G of objects");
 295   _buffer->at_grow(to_array_index(min_bytes));
 296 }
 297 
 298 objArrayOop AOTMappedHeapWriter::allocate_root_segment(size_t offset, int element_count) {
 299   HeapWord* mem = offset_to_buffered_address<HeapWord *>(offset);
 300   memset(mem, 0, objArrayOopDesc::object_size(element_count));
 301 
 302   // The initialization code is copied from MemAllocator::finish and ObjArrayAllocator::initialize.
 303   if (UseCompactObjectHeaders) {
 304     oopDesc::release_set_mark(mem, Universe::objectArrayKlass()->prototype_header());
 305   } else {
 306     oopDesc::set_mark(mem, markWord::prototype());
 307     oopDesc::release_set_klass(mem, Universe::objectArrayKlass());
 308   }
 309   arrayOopDesc::set_length(mem, element_count);
 310   return objArrayOop(cast_to_oop(mem));
 311 }
 312 
 313 void AOTMappedHeapWriter::root_segment_at_put(objArrayOop segment, int index, oop root) {
 314   // Do not use arrayOop->obj_at_put(i, o) as arrayOop is outside the real heap!
 315   if (UseCompressedOops) {
 316     *segment->obj_at_addr<narrowOop>(index) = CompressedOops::encode(root);
 317   } else {
 318     *segment->obj_at_addr<oop>(index) = root;
 319   }
 320 }
 321 
 322 void AOTMappedHeapWriter::copy_roots_to_buffer(GrowableArrayCHeap<oop, mtClassShared>* roots) {
 323   // Depending on the number of classes we are archiving, a single roots array may be
 324   // larger than MIN_GC_REGION_ALIGNMENT. Roots are allocated first in the buffer, which
 325   // allows us to chop the large array into a series of "segments". Current layout
 326   // starts with zero or more segments exactly fitting MIN_GC_REGION_ALIGNMENT, and end
 327   // with a single segment that may be smaller than MIN_GC_REGION_ALIGNMENT.
 328   // This is simple and efficient. We do not need filler objects anywhere between the segments,
 329   // or immediately after the last segment. This allows starting the object dump immediately
 330   // after the roots.
 331 
 332   assert((_buffer_used % MIN_GC_REGION_ALIGNMENT) == 0,
 333          "Pre-condition: Roots start at aligned boundary: %zu", _buffer_used);
 334 
 335   int max_elem_count = ((MIN_GC_REGION_ALIGNMENT - arrayOopDesc::header_size_in_bytes()) / heapOopSize);
 336   assert(objArrayOopDesc::object_size(max_elem_count)*HeapWordSize == MIN_GC_REGION_ALIGNMENT,
 337          "Should match exactly");
 338 
 339   HeapRootSegments segments(_buffer_used,
 340                             roots->length(),
 341                             MIN_GC_REGION_ALIGNMENT,
 342                             max_elem_count);
 343 
 344   int root_index = 0;
 345   for (size_t seg_idx = 0; seg_idx < segments.count(); seg_idx++) {
 346     int size_elems = segments.size_in_elems(seg_idx);
 347     size_t size_bytes = segments.size_in_bytes(seg_idx);
 348 
 349     size_t oop_offset = _buffer_used;
 350     _buffer_used = oop_offset + size_bytes;
 351     ensure_buffer_space(_buffer_used);
 352 
 353     assert((oop_offset % MIN_GC_REGION_ALIGNMENT) == 0,
 354            "Roots segment %zu start is not aligned: %zu",
 355            segments.count(), oop_offset);
 356 
 357     objArrayOop seg_oop = allocate_root_segment(oop_offset, size_elems);
 358     for (int i = 0; i < size_elems; i++) {
 359       root_segment_at_put(seg_oop, i, roots->at(root_index++));
 360     }
 361 
 362     log_info(aot, heap)("archived obj root segment [%d] = %zu bytes, obj = " PTR_FORMAT,
 363                         size_elems, size_bytes, p2i(seg_oop));
 364   }
 365 
 366   assert(root_index == roots->length(), "Post-condition: All roots are handled");
 367 
 368   _heap_root_segments = segments;
 369 }
 370 
 371 // The goal is to sort the objects in increasing order of:
 372 // - objects that have only oop pointers
 373 // - objects that have both native and oop pointers
 374 // - objects that have only native pointers
 375 // - objects that have no pointers
 376 static int oop_sorting_rank(oop o) {
 377   bool has_oop_ptr, has_native_ptr;
 378   HeapShared::get_pointer_info(o, has_oop_ptr, has_native_ptr);
 379 
 380   if (has_oop_ptr) {
 381     if (!has_native_ptr) {
 382       return 0;
 383     } else {
 384       return 1;
 385     }
 386   } else {
 387     if (has_native_ptr) {
 388       return 2;
 389     } else {
 390       return 3;
 391     }
 392   }
 393 }
 394 
 395 int AOTMappedHeapWriter::compare_objs_by_oop_fields(HeapObjOrder* a, HeapObjOrder* b) {
 396   int rank_a = a->_rank;
 397   int rank_b = b->_rank;
 398 
 399   if (rank_a != rank_b) {
 400     return rank_a - rank_b;
 401   } else {
 402     // If they are the same rank, sort them by their position in the _source_objs array
 403     return a->_index - b->_index;
 404   }
 405 }
 406 
 407 void AOTMappedHeapWriter::sort_source_objs() {
 408   log_info(aot)("sorting heap objects");
 409   int len = _source_objs->length();
 410   _source_objs_order = new GrowableArrayCHeap<HeapObjOrder, mtClassShared>(len);
 411 
 412   for (int i = 0; i < len; i++) {
 413     oop o = _source_objs->at(i);
 414     int rank = oop_sorting_rank(o);
 415     HeapObjOrder os = {i, rank};
 416     _source_objs_order->append(os);
 417   }
 418   log_info(aot)("computed ranks");
 419   _source_objs_order->sort(compare_objs_by_oop_fields);
 420   log_info(aot)("sorting heap objects done");
 421 }
 422 
 423 void AOTMappedHeapWriter::copy_source_objs_to_buffer(GrowableArrayCHeap<oop, mtClassShared>* roots) {
 424   // There could be multiple root segments, which we want to be aligned by region.
 425   // Putting them ahead of objects makes sure we waste no space.
 426   copy_roots_to_buffer(roots);
 427 
 428   sort_source_objs();
 429   for (int i = 0; i < _source_objs_order->length(); i++) {
 430     int src_obj_index = _source_objs_order->at(i)._index;
 431     oop src_obj = _source_objs->at(src_obj_index);
 432     HeapShared::CachedOopInfo* info = HeapShared::get_cached_oop_info(src_obj);
 433     assert(info != nullptr, "must be");
 434     size_t buffer_offset = copy_one_source_obj_to_buffer(src_obj);
 435     info->set_buffer_offset(buffer_offset);
 436 
 437     OopHandle handle(Universe::vm_global(), src_obj);
 438     _buffer_offset_to_source_obj_table->put_when_absent(buffer_offset, handle);
 439     _buffer_offset_to_source_obj_table->maybe_grow();
 440 
 441     if (java_lang_Module::is_instance(src_obj)) {
 442       Modules::check_archived_module_oop(src_obj);
 443     }
 444   }
 445 
 446   log_info(aot)("Size of heap region = %zu bytes, %d objects, %d roots, %d native ptrs",
 447                 _buffer_used, _source_objs->length() + 1, roots->length(), _num_native_ptrs);
 448 }
 449 
 450 size_t AOTMappedHeapWriter::filler_array_byte_size(int length) {
 451   size_t byte_size = objArrayOopDesc::object_size(length) * HeapWordSize;
 452   return byte_size;
 453 }
 454 
 455 int AOTMappedHeapWriter::filler_array_length(size_t fill_bytes) {
 456   assert(is_object_aligned(fill_bytes), "must be");
 457   size_t elemSize = (UseCompressedOops ? sizeof(narrowOop) : sizeof(oop));
 458 
 459   int initial_length = to_array_length(fill_bytes / elemSize);
 460   for (int length = initial_length; length >= 0; length --) {
 461     size_t array_byte_size = filler_array_byte_size(length);
 462     if (array_byte_size == fill_bytes) {
 463       return length;
 464     }
 465   }
 466 
 467   ShouldNotReachHere();
 468   return -1;
 469 }
 470 
 471 HeapWord* AOTMappedHeapWriter::init_filler_array_at_buffer_top(int array_length, size_t fill_bytes) {
 472   assert(UseCompressedClassPointers, "Archived heap only supported for compressed klasses");
 473   Klass* oak = Universe::objectArrayKlass(); // already relocated to point to archived klass
 474   HeapWord* mem = offset_to_buffered_address<HeapWord*>(_buffer_used);
 475   memset(mem, 0, fill_bytes);
 476   narrowKlass nk = ArchiveBuilder::current()->get_requested_narrow_klass(oak);
 477   if (UseCompactObjectHeaders) {
 478     oopDesc::release_set_mark(mem, markWord::prototype().set_narrow_klass(nk));
 479   } else {
 480     oopDesc::set_mark(mem, markWord::prototype());
 481     cast_to_oop(mem)->set_narrow_klass(nk);
 482   }
 483   arrayOopDesc::set_length(mem, array_length);
 484   return mem;
 485 }
 486 
 487 void AOTMappedHeapWriter::maybe_fill_gc_region_gap(size_t required_byte_size) {
 488   // We fill only with arrays (so we don't need to use a single HeapWord filler if the
 489   // leftover space is smaller than a zero-sized array object). Therefore, we need to
 490   // make sure there's enough space of min_filler_byte_size in the current region after
 491   // required_byte_size has been allocated. If not, fill the remainder of the current
 492   // region.
 493   size_t min_filler_byte_size = filler_array_byte_size(0);
 494   size_t new_used = _buffer_used + required_byte_size + min_filler_byte_size;
 495 
 496   const size_t cur_min_region_bottom = align_down(_buffer_used, MIN_GC_REGION_ALIGNMENT);
 497   const size_t next_min_region_bottom = align_down(new_used, MIN_GC_REGION_ALIGNMENT);
 498 
 499   if (cur_min_region_bottom != next_min_region_bottom) {
 500     // Make sure that no objects span across MIN_GC_REGION_ALIGNMENT. This way
 501     // we can map the region in any region-based collector.
 502     assert(next_min_region_bottom > cur_min_region_bottom, "must be");
 503     assert(next_min_region_bottom - cur_min_region_bottom == MIN_GC_REGION_ALIGNMENT,
 504            "no buffered object can be larger than %d bytes",  MIN_GC_REGION_ALIGNMENT);
 505 
 506     const size_t filler_end = next_min_region_bottom;
 507     const size_t fill_bytes = filler_end - _buffer_used;
 508     assert(fill_bytes > 0, "must be");
 509     ensure_buffer_space(filler_end);
 510 
 511     int array_length = filler_array_length(fill_bytes);
 512     log_info(aot, heap)("Inserting filler obj array of %d elements (%zu bytes total) @ buffer offset %zu",
 513                         array_length, fill_bytes, _buffer_used);
 514     HeapWord* filler = init_filler_array_at_buffer_top(array_length, fill_bytes);
 515     _buffer_used = filler_end;
 516     _fillers->put(buffered_address_to_offset((address)filler), fill_bytes);
 517   }
 518 }
 519 
 520 size_t AOTMappedHeapWriter::get_filler_size_at(address buffered_addr) {
 521   size_t* p = _fillers->get(buffered_address_to_offset(buffered_addr));
 522   if (p != nullptr) {
 523     assert(*p > 0, "filler must be larger than zero bytes");
 524     return *p;
 525   } else {
 526     return 0; // buffered_addr is not a filler
 527   }
 528 }
 529 
 530 template <typename T>
 531 void update_buffered_object_field(address buffered_obj, int field_offset, T value) {
 532   T* field_addr = cast_to_oop(buffered_obj)->field_addr<T>(field_offset);
 533   *field_addr = value;
 534 }
 535 
 536 size_t AOTMappedHeapWriter::copy_one_source_obj_to_buffer(oop src_obj) {
 537   assert(!is_too_large_to_archive(src_obj), "already checked");
 538   size_t old_size = src_obj->size();
 539   size_t new_size = src_obj->copy_size_cds(old_size, src_obj->mark());
 540   size_t byte_size = new_size * HeapWordSize;
 541   assert(byte_size > 0, "no zero-size objects");
 542 
 543   // For region-based collectors such as G1, the archive heap may be mapped into
 544   // multiple regions. We need to make sure that we don't have an object that can possible
 545   // span across two regions.
 546   maybe_fill_gc_region_gap(byte_size);
 547 
 548   size_t new_used = _buffer_used + byte_size;
 549   assert(new_used > _buffer_used, "no wrap around");
 550 
 551   size_t cur_min_region_bottom = align_down(_buffer_used, MIN_GC_REGION_ALIGNMENT);
 552   size_t next_min_region_bottom = align_down(new_used, MIN_GC_REGION_ALIGNMENT);
 553   assert(cur_min_region_bottom == next_min_region_bottom, "no object should cross minimal GC region boundaries");
 554 
 555   ensure_buffer_space(new_used);
 556 
 557   address from = cast_from_oop<address>(src_obj);
 558   address to = offset_to_buffered_address<address>(_buffer_used);
 559   assert(is_object_aligned(_buffer_used), "sanity");
 560   assert(is_object_aligned(byte_size), "sanity");
 561   memcpy(to, from, MIN2(new_size, old_size) * HeapWordSize);
 562 
 563   // These native pointers will be restored explicitly at run time.
 564   if (java_lang_Module::is_instance(src_obj)) {
 565     update_buffered_object_field<ModuleEntry*>(to, java_lang_Module::module_entry_offset(), nullptr);
 566   } else if (java_lang_ClassLoader::is_instance(src_obj)) {
 567 #ifdef ASSERT
 568     // We only archive these loaders
 569     if (src_obj != SystemDictionary::java_platform_loader() &&
 570         src_obj != SystemDictionary::java_system_loader()) {
 571       assert(src_obj->klass()->name()->equals("jdk/internal/loader/ClassLoaders$BootClassLoader"), "must be");
 572     }
 573 #endif
 574     update_buffered_object_field<ClassLoaderData*>(to, java_lang_ClassLoader::loader_data_offset(), nullptr);
 575   }
 576 
 577   size_t buffered_obj_offset = _buffer_used;
 578   _buffer_used = new_used;
 579 
 580   return buffered_obj_offset;
 581 }
 582 
 583 // Set the range [_requested_bottom, _requested_top), the requested address range of all
 584 // the archived heap objects in the production run.
 585 //
 586 // (1) UseCompressedOops == true && !is_writing_deterministic_heap()
 587 //
 588 //     The archived objects are stored using the COOPS encoding of the assembly phase.
 589 //     We pick a range within the heap used by the assembly phase.
 590 //
 591 //     In the production run, if different COOPS encodings are used:
 592 //         - The heap contents needs to be relocated.
 593 //
 594 // (2) UseCompressedOops == true && is_writing_deterministic_heap()
 595 //
 596 //     We always use zero-based, zero-shift encoding. _requested_top is aligned to 0x10000000.
 597 //
 598 // (3) UseCompressedOops == false:
 599 //
 600 //     In the production run, the heap range is usually picked (randomly) by the OS, so we
 601 //     will almost always need to perform relocation, regardless of how we pick the requested
 602 //     address range.
 603 //
 604 //     So we just hard code it to NOCOOPS_REQUESTED_BASE.
 605 //
 606 void AOTMappedHeapWriter::set_requested_address_range(ArchiveMappedHeapInfo* info) {
 607   assert(!info->is_used(), "only set once");
 608 
 609   size_t heap_region_byte_size = _buffer_used;
 610   assert(heap_region_byte_size > 0, "must archived at least one object!");
 611 
 612   if (UseCompressedOops) {
 613     if (is_writing_deterministic_heap()) {
 614       // Pick a heap range so that requested addresses can be encoded with zero-base/no shift.
 615       // We align the requested bottom to at least 1 MB: if the production run uses G1 with a small
 616       // heap (e.g., -Xmx256m), it's likely that we can map the archived objects at the
 617       // requested location to avoid relocation.
 618       //
 619       // For other collectors or larger heaps, relocation is unavoidable, but is usually
 620       // quite cheap. If you really want to avoid relocation, use the AOT workflow instead.
 621       address heap_end = (address)0x100000000;
 622       size_t alignment = MAX2(MIN_GC_REGION_ALIGNMENT, 1024 * 1024);
 623       if (align_up(heap_region_byte_size, alignment) >= (size_t)heap_end) {
 624         log_error(aot, heap)("cached heap space is too large: %zu bytes", heap_region_byte_size);
 625         AOTMetaspace::unrecoverable_writing_error();
 626       }
 627       _requested_bottom = align_down(heap_end - heap_region_byte_size, alignment);
 628     } else if (UseG1GC) {
 629       // For G1, pick the range at the top of the current heap. If the exact same heap sizes
 630       // are used in the production run, it's likely that we can map the archived objects
 631       // at the requested location to avoid relocation.
 632       address heap_end = (address)G1CollectedHeap::heap()->reserved().end();
 633       log_info(aot, heap)("Heap end = %p", heap_end);
 634       _requested_bottom = align_down(heap_end - heap_region_byte_size, G1HeapRegion::GrainBytes);
 635       _requested_bottom = align_down(_requested_bottom, MIN_GC_REGION_ALIGNMENT);
 636       assert(is_aligned(_requested_bottom, G1HeapRegion::GrainBytes), "sanity");
 637     } else {
 638       _requested_bottom = align_up(CompressedOops::begin(), MIN_GC_REGION_ALIGNMENT);
 639     }
 640   } else {
 641     // We always write the objects as if the heap started at this address. This
 642     // makes the contents of the archive heap deterministic.
 643     //
 644     // Note that at runtime, the heap address is selected by the OS, so the archive
 645     // heap will not be mapped at 0x10000000, and the contents need to be patched.
 646     _requested_bottom = align_up((address)NOCOOPS_REQUESTED_BASE, MIN_GC_REGION_ALIGNMENT);
 647   }
 648 
 649   assert(is_aligned(_requested_bottom, MIN_GC_REGION_ALIGNMENT), "sanity");
 650 
 651   _requested_top = _requested_bottom + _buffer_used;
 652 
 653   info->set_buffer_region(MemRegion(offset_to_buffered_address<HeapWord*>(0),
 654                                     offset_to_buffered_address<HeapWord*>(_buffer_used)));
 655   info->set_root_segments(_heap_root_segments);
 656 }
 657 
 658 // Oop relocation
 659 
 660 template <typename T> T* AOTMappedHeapWriter::requested_addr_to_buffered_addr(T* p) {
 661   assert(is_in_requested_range(cast_to_oop(p)), "must be");
 662 
 663   address addr = address(p);
 664   assert(addr >= _requested_bottom, "must be");
 665   size_t offset = addr - _requested_bottom;
 666   return offset_to_buffered_address<T*>(offset);
 667 }
 668 
 669 template <typename T> oop AOTMappedHeapWriter::load_source_oop_from_buffer(T* buffered_addr) {
 670   oop o = load_oop_from_buffer(buffered_addr);
 671   assert(!in_buffer(cast_from_oop<address>(o)), "must point to source oop");
 672   return o;
 673 }
 674 
 675 template <typename T> void AOTMappedHeapWriter::store_requested_oop_in_buffer(T* buffered_addr,
 676                                                                                    oop request_oop) {
 677   assert(request_oop == nullptr || is_in_requested_range(request_oop), "must be");
 678   store_oop_in_buffer(buffered_addr, request_oop);
 679 }
 680 
 681 inline void AOTMappedHeapWriter::store_oop_in_buffer(oop* buffered_addr, oop requested_obj) {
 682   *buffered_addr = requested_obj;
 683 }
 684 
 685 inline void AOTMappedHeapWriter::store_oop_in_buffer(narrowOop* buffered_addr, oop requested_obj) {
 686   narrowOop val = CompressedOops::encode(requested_obj);
 687   *buffered_addr = val;
 688 }
 689 
 690 oop AOTMappedHeapWriter::load_oop_from_buffer(oop* buffered_addr) {
 691   return *buffered_addr;
 692 }
 693 
 694 oop AOTMappedHeapWriter::load_oop_from_buffer(narrowOop* buffered_addr) {
 695   return CompressedOops::decode(*buffered_addr);
 696 }
 697 
 698 template <typename T> void AOTMappedHeapWriter::relocate_field_in_buffer(T* field_addr_in_buffer, oop source_referent, CHeapBitMap* oopmap) {
 699   oop request_referent = source_obj_to_requested_obj(source_referent);
 700   if (UseCompressedOops && is_writing_deterministic_heap()) {
 701     // We use zero-based, 0-shift encoding, so the narrowOop is just the lower
 702     // 32 bits of request_referent
 703     intptr_t addr = cast_from_oop<intptr_t>(request_referent);
 704     *((narrowOop*)field_addr_in_buffer) = checked_cast<narrowOop>(addr);
 705   } else {
 706     store_requested_oop_in_buffer<T>(field_addr_in_buffer, request_referent);
 707   }
 708   if (request_referent != nullptr) {
 709     mark_oop_pointer<T>(field_addr_in_buffer, oopmap);
 710   }
 711 }
 712 
 713 template <typename T> void AOTMappedHeapWriter::mark_oop_pointer(T* buffered_addr, CHeapBitMap* oopmap) {
 714   T* request_p = (T*)(buffered_addr_to_requested_addr((address)buffered_addr));
 715   address requested_region_bottom;
 716 
 717   assert(request_p >= (T*)_requested_bottom, "sanity");
 718   assert(request_p <  (T*)_requested_top, "sanity");
 719   requested_region_bottom = _requested_bottom;
 720 
 721   // Mark the pointer in the oopmap
 722   T* region_bottom = (T*)requested_region_bottom;
 723   assert(request_p >= region_bottom, "must be");
 724   BitMap::idx_t idx = request_p - region_bottom;
 725   assert(idx < oopmap->size(), "overflow");
 726   oopmap->set_bit(idx);
 727 }
 728 
 729 void AOTMappedHeapWriter::update_header_for_requested_obj(oop requested_obj, oop src_obj,  Klass* src_klass) {
 730   assert(UseCompressedClassPointers, "Archived heap only supported for compressed klasses");
 731   narrowKlass nk = ArchiveBuilder::current()->get_requested_narrow_klass(src_klass);
 732   address buffered_addr = requested_addr_to_buffered_addr(cast_from_oop<address>(requested_obj));
 733 
 734   oop fake_oop = cast_to_oop(buffered_addr);
 735   if (UseCompactObjectHeaders) {
 736     fake_oop->set_mark(markWord::prototype().set_narrow_klass(nk));
 737     assert(fake_oop->mark().narrow_klass() != 0, "must not be null");
 738   } else {
 739     fake_oop->set_narrow_klass(nk);
 740   }
 741 
 742   if (src_obj == nullptr) {
 743     return;
 744   }
 745   // We need to retain the identity_hash, because it may have been used by some hashtables
 746   // in the shared heap.
 747   if (!src_obj->fast_no_hash_check()) {
 748     intptr_t src_hash = src_obj->identity_hash();
 749     if (UseCompactObjectHeaders) {
 750       markWord m = markWord::prototype().set_narrow_klass(nk);
 751       m = m.copy_hashctrl_from(src_obj->mark());
 752       fake_oop->set_mark(m);
 753       if (m.is_hashed_not_expanded()) {
 754         fake_oop->set_mark(fake_oop->initialize_hash_if_necessary(src_obj, src_klass, m));
 755       } else if (m.is_not_hashed_expanded()) {
 756         fake_oop->set_mark(m.set_not_hashed_not_expanded());
 757       }
 758       assert(!fake_oop->mark().is_not_hashed_expanded() && !fake_oop->mark().is_hashed_not_expanded(), "must not be not-hashed-moved and not be hashed-not-moved");
 759     } else {
 760       fake_oop->set_mark(markWord::prototype().copy_set_hash(src_hash));
 761       DEBUG_ONLY(intptr_t archived_hash = fake_oop->identity_hash());
 762       assert(src_hash == archived_hash, "Different hash codes: original " INTPTR_FORMAT ", archived " INTPTR_FORMAT, src_hash, archived_hash);
 763     }
 764     assert(fake_oop->mark().is_unlocked(), "sanity");
 765   }
 766   // Strip age bits.
 767   fake_oop->set_mark(fake_oop->mark().set_age(0));
 768 }
 769 
 770 class AOTMappedHeapWriter::EmbeddedOopRelocator: public BasicOopIterateClosure {
 771   oop _src_obj;
 772   address _buffered_obj;
 773   CHeapBitMap* _oopmap;
 774   bool _is_java_lang_ref;
 775 public:
 776   EmbeddedOopRelocator(oop src_obj, address buffered_obj, CHeapBitMap* oopmap) :
 777     _src_obj(src_obj), _buffered_obj(buffered_obj), _oopmap(oopmap)
 778   {
 779     _is_java_lang_ref = AOTReferenceObjSupport::check_if_ref_obj(src_obj);
 780   }
 781 
 782   void do_oop(narrowOop *p) { EmbeddedOopRelocator::do_oop_work(p); }
 783   void do_oop(      oop *p) { EmbeddedOopRelocator::do_oop_work(p); }
 784 
 785 private:
 786   template <class T> void do_oop_work(T *p) {
 787     int field_offset = pointer_delta_as_int((char*)p, cast_from_oop<char*>(_src_obj));
 788     T* field_addr = (T*)(_buffered_obj + field_offset);
 789     oop referent = load_source_oop_from_buffer<T>(field_addr);
 790     referent = HeapShared::maybe_remap_referent(_is_java_lang_ref, field_offset, referent);
 791     AOTMappedHeapWriter::relocate_field_in_buffer<T>(field_addr, referent, _oopmap);
 792   }
 793 };
 794 
 795 static void log_bitmap_usage(const char* which, BitMap* bitmap, size_t total_bits) {
 796   // The whole heap is covered by total_bits, but there are only non-zero bits within [start ... end).
 797   size_t start = bitmap->find_first_set_bit(0);
 798   size_t end = bitmap->size();
 799   log_info(aot)("%s = %7zu ... %7zu (%3zu%% ... %3zu%% = %3zu%%)", which,
 800                 start, end,
 801                 start * 100 / total_bits,
 802                 end * 100 / total_bits,
 803                 (end - start) * 100 / total_bits);
 804 }
 805 
 806 // Update all oop fields embedded in the buffered objects
 807 void AOTMappedHeapWriter::relocate_embedded_oops(GrowableArrayCHeap<oop, mtClassShared>* roots,
 808                                                       ArchiveMappedHeapInfo* heap_info) {
 809   size_t oopmap_unit = (UseCompressedOops ? sizeof(narrowOop) : sizeof(oop));
 810   size_t heap_region_byte_size = _buffer_used;
 811   heap_info->oopmap()->resize(heap_region_byte_size   / oopmap_unit);
 812 
 813   for (int i = 0; i < _source_objs_order->length(); i++) {
 814     int src_obj_index = _source_objs_order->at(i)._index;
 815     oop src_obj = _source_objs->at(src_obj_index);
 816     HeapShared::CachedOopInfo* info = HeapShared::get_cached_oop_info(src_obj);
 817     assert(info != nullptr, "must be");
 818     oop requested_obj = requested_obj_from_buffer_offset(info->buffer_offset());
 819     update_header_for_requested_obj(requested_obj, src_obj, src_obj->klass());
 820     address buffered_obj = offset_to_buffered_address<address>(info->buffer_offset());
 821     EmbeddedOopRelocator relocator(src_obj, buffered_obj, heap_info->oopmap());
 822     src_obj->oop_iterate(&relocator);
 823     mark_native_pointers(src_obj);
 824   };
 825 
 826   // Relocate HeapShared::roots(), which is created in copy_roots_to_buffer() and
 827   // doesn't have a corresponding src_obj, so we can't use EmbeddedOopRelocator on it.
 828   for (size_t seg_idx = 0; seg_idx < _heap_root_segments.count(); seg_idx++) {
 829     size_t seg_offset = _heap_root_segments.segment_offset(seg_idx);
 830 
 831     objArrayOop requested_obj = (objArrayOop)requested_obj_from_buffer_offset(seg_offset);
 832     update_header_for_requested_obj(requested_obj, nullptr, Universe::objectArrayKlass());
 833     address buffered_obj = offset_to_buffered_address<address>(seg_offset);
 834     int length = _heap_root_segments.size_in_elems(seg_idx);
 835 
 836     size_t elem_size = UseCompressedOops ? sizeof(narrowOop) : sizeof(oop);
 837 
 838     for (int i = 0; i < length; i++) {
 839       // There is no source object; these are native oops - load, translate and
 840       // write back
 841       size_t elem_offset = objArrayOopDesc::base_offset_in_bytes() + elem_size * i;
 842       HeapWord* elem_addr = (HeapWord*)(buffered_obj + elem_offset);
 843       oop obj = NativeAccess<>::oop_load(elem_addr);
 844       obj = HeapShared::maybe_remap_referent(false /* is_reference_field */, elem_offset, obj);
 845       if (UseCompressedOops) {
 846         relocate_field_in_buffer<narrowOop>((narrowOop*)elem_addr, obj, heap_info->oopmap());
 847       } else {
 848         relocate_field_in_buffer<oop>((oop*)elem_addr, obj, heap_info->oopmap());
 849       }
 850     }
 851   }
 852 
 853   compute_ptrmap(heap_info);
 854 
 855   size_t total_bytes = (size_t)_buffer->length();
 856   log_bitmap_usage("oopmap", heap_info->oopmap(), total_bytes / (UseCompressedOops ? sizeof(narrowOop) : sizeof(oop)));
 857   log_bitmap_usage("ptrmap", heap_info->ptrmap(), total_bytes / sizeof(address));
 858 }
 859 
 860 void AOTMappedHeapWriter::mark_native_pointer(oop src_obj, int field_offset) {
 861   Metadata* ptr = src_obj->metadata_field_acquire(field_offset);
 862   if (ptr != nullptr) {
 863     NativePointerInfo info;
 864     info._src_obj = src_obj;
 865     info._field_offset = field_offset;
 866     _native_pointers->append(info);
 867     HeapShared::set_has_native_pointers(src_obj);
 868     _num_native_ptrs ++;
 869   }
 870 }
 871 
 872 void AOTMappedHeapWriter::mark_native_pointers(oop orig_obj) {
 873   HeapShared::do_metadata_offsets(orig_obj, [&](int offset) {
 874     mark_native_pointer(orig_obj, offset);
 875   });
 876 }
 877 
 878 void AOTMappedHeapWriter::compute_ptrmap(ArchiveMappedHeapInfo* heap_info) {
 879   int num_non_null_ptrs = 0;
 880   Metadata** bottom = (Metadata**) _requested_bottom;
 881   Metadata** top = (Metadata**) _requested_top; // exclusive
 882   heap_info->ptrmap()->resize(top - bottom);
 883 
 884   BitMap::idx_t max_idx = 32; // paranoid - don't make it too small
 885   for (int i = 0; i < _native_pointers->length(); i++) {
 886     NativePointerInfo info = _native_pointers->at(i);
 887     oop src_obj = info._src_obj;
 888     int field_offset = info._field_offset;
 889     HeapShared::CachedOopInfo* p = HeapShared::get_cached_oop_info(src_obj);
 890     // requested_field_addr = the address of this field in the requested space
 891     oop requested_obj = requested_obj_from_buffer_offset(p->buffer_offset());
 892     Metadata** requested_field_addr = (Metadata**)(cast_from_oop<address>(requested_obj) + field_offset);
 893     assert(bottom <= requested_field_addr && requested_field_addr < top, "range check");
 894 
 895     // Mark this field in the bitmap
 896     BitMap::idx_t idx = requested_field_addr - bottom;
 897     heap_info->ptrmap()->set_bit(idx);
 898     num_non_null_ptrs ++;
 899     max_idx = MAX2(max_idx, idx);
 900 
 901     // Set the native pointer to the requested address of the metadata (at runtime, the metadata will have
 902     // this address if the RO/RW regions are mapped at the default location).
 903 
 904     Metadata** buffered_field_addr = requested_addr_to_buffered_addr(requested_field_addr);
 905     Metadata* native_ptr = *buffered_field_addr;
 906     guarantee(native_ptr != nullptr, "sanity");
 907 
 908     if (RegeneratedClasses::has_been_regenerated(native_ptr)) {
 909       native_ptr = RegeneratedClasses::get_regenerated_object(native_ptr);
 910     }
 911 
 912     guarantee(ArchiveBuilder::current()->has_been_archived((address)native_ptr),
 913               "Metadata %p should have been archived", native_ptr);
 914 
 915     address buffered_native_ptr = ArchiveBuilder::current()->get_buffered_addr((address)native_ptr);
 916     address requested_native_ptr = ArchiveBuilder::current()->to_requested(buffered_native_ptr);
 917     *buffered_field_addr = (Metadata*)requested_native_ptr;
 918   }
 919 
 920   heap_info->ptrmap()->resize(max_idx + 1);
 921   log_info(aot, heap)("calculate_ptrmap: marked %d non-null native pointers for heap region (%zu bits)",
 922                       num_non_null_ptrs, size_t(heap_info->ptrmap()->size()));
 923 }
 924 
 925 AOTMapLogger::OopDataIterator* AOTMappedHeapWriter::oop_iterator(ArchiveMappedHeapInfo* heap_info) {
 926   class MappedWriterOopIterator : public AOTMapLogger::OopDataIterator {
 927   private:
 928     address _current;
 929     address _next;
 930 
 931     address _buffer_start;
 932     address _buffer_end;
 933     uint64_t _buffer_start_narrow_oop;
 934     intptr_t _buffer_to_requested_delta;
 935     int _requested_shift;
 936 
 937     size_t _num_root_segments;
 938     size_t _num_obj_arrays_logged;
 939 
 940   public:
 941     MappedWriterOopIterator(address buffer_start,
 942                             address buffer_end,
 943                             uint64_t buffer_start_narrow_oop,
 944                             intptr_t buffer_to_requested_delta,
 945                             int requested_shift,
 946                             size_t num_root_segments)
 947       : _current(nullptr),
 948         _next(buffer_start),
 949         _buffer_start(buffer_start),
 950         _buffer_end(buffer_end),
 951         _buffer_start_narrow_oop(buffer_start_narrow_oop),
 952         _buffer_to_requested_delta(buffer_to_requested_delta),
 953         _requested_shift(requested_shift),
 954         _num_root_segments(num_root_segments),
 955         _num_obj_arrays_logged(0) {
 956     }
 957 
 958     AOTMapLogger::OopData capture(address buffered_addr) {
 959       oopDesc* raw_oop = (oopDesc*)buffered_addr;
 960       size_t size = size_of_buffered_oop(buffered_addr);
 961       address requested_addr = buffered_addr_to_requested_addr(buffered_addr);
 962       intptr_t target_location = (intptr_t)requested_addr;
 963       uint64_t pd = (uint64_t)(pointer_delta(buffered_addr, _buffer_start, 1));
 964       uint32_t narrow_location = checked_cast<uint32_t>(_buffer_start_narrow_oop + (pd >> _requested_shift));
 965       Klass* klass = real_klass_of_buffered_oop(buffered_addr);
 966 
 967       return { buffered_addr,
 968                requested_addr,
 969                target_location,
 970                narrow_location,
 971                raw_oop,
 972                klass,
 973                size,
 974                false };
 975     }
 976 
 977     bool has_next() override {
 978       return _next < _buffer_end;
 979     }
 980 
 981     AOTMapLogger::OopData next() override {
 982       _current = _next;
 983       AOTMapLogger::OopData result = capture(_current);
 984       if (result._klass->is_objArray_klass()) {
 985         result._is_root_segment = _num_obj_arrays_logged++ < _num_root_segments;
 986       }
 987       _next = _current + result._size * BytesPerWord;
 988       return result;
 989     }
 990 
 991     AOTMapLogger::OopData obj_at(narrowOop* addr) override {
 992       uint64_t n = (uint64_t)(*addr);
 993       if (n == 0) {
 994         return null_data();
 995       } else {
 996         precond(n >= _buffer_start_narrow_oop);
 997         address buffer_addr = _buffer_start + ((n - _buffer_start_narrow_oop) << _requested_shift);
 998         return capture(buffer_addr);
 999       }
1000     }
1001 
1002     AOTMapLogger::OopData obj_at(oop* addr) override {
1003       address requested_value = cast_from_oop<address>(*addr);
1004       if (requested_value == nullptr) {
1005         return null_data();
1006       } else {
1007         address buffer_addr = requested_value - _buffer_to_requested_delta;
1008         return capture(buffer_addr);
1009       }
1010     }
1011 
1012     GrowableArrayCHeap<AOTMapLogger::OopData, mtClass>* roots() override {
1013       return new GrowableArrayCHeap<AOTMapLogger::OopData, mtClass>();
1014     }
1015   };
1016 
1017   MemRegion r = heap_info->buffer_region();
1018   address buffer_start = address(r.start());
1019   address buffer_end = address(r.end());
1020 
1021   address requested_base = UseCompressedOops ? AOTMappedHeapWriter::narrow_oop_base() : (address)AOTMappedHeapWriter::NOCOOPS_REQUESTED_BASE;
1022   address requested_start = UseCompressedOops ? AOTMappedHeapWriter::buffered_addr_to_requested_addr(buffer_start) : requested_base;
1023   int requested_shift = AOTMappedHeapWriter::narrow_oop_shift();
1024   intptr_t buffer_to_requested_delta = requested_start - buffer_start;
1025   uint64_t buffer_start_narrow_oop = 0xdeadbeed;
1026   if (UseCompressedOops) {
1027     buffer_start_narrow_oop = (uint64_t)(pointer_delta(requested_start, requested_base, 1)) >> requested_shift;
1028     assert(buffer_start_narrow_oop < 0xffffffff, "sanity");
1029   }
1030 
1031   return new MappedWriterOopIterator(buffer_start,
1032                                      buffer_end,
1033                                      buffer_start_narrow_oop,
1034                                      buffer_to_requested_delta,
1035                                      requested_shift,
1036                                      heap_info->root_segments().count());
1037 }
1038 
1039 #endif // INCLUDE_CDS_JAVA_HEAP