1 /* 2 * Copyright (c) 2023, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "cds/archiveHeapWriter.hpp" 27 #include "cds/cdsConfig.hpp" 28 #include "cds/filemap.hpp" 29 #include "cds/heapShared.hpp" 30 #include "classfile/javaClasses.hpp" 31 #include "classfile/systemDictionary.hpp" 32 #include "gc/shared/collectedHeap.hpp" 33 #include "memory/iterator.inline.hpp" 34 #include "memory/oopFactory.hpp" 35 #include "memory/universe.hpp" 36 #include "oops/compressedOops.hpp" 37 #include "oops/objArrayOop.inline.hpp" 38 #include "oops/oop.inline.hpp" 39 #include "oops/oopHandle.inline.hpp" 40 #include "oops/typeArrayKlass.hpp" 41 #include "oops/typeArrayOop.hpp" 42 #include "runtime/java.hpp" 43 #include "runtime/mutexLocker.hpp" 44 #include "utilities/bitMap.inline.hpp" 45 #if INCLUDE_G1GC 46 #include "gc/g1/g1CollectedHeap.hpp" 47 #include "gc/g1/g1HeapRegion.hpp" 48 #endif 49 50 #if INCLUDE_CDS_JAVA_HEAP 51 52 GrowableArrayCHeap<u1, mtClassShared>* ArchiveHeapWriter::_buffer = nullptr; 53 54 // The following are offsets from buffer_bottom() 55 size_t ArchiveHeapWriter::_buffer_used; 56 57 // Heap root segments 58 HeapRootSegments ArchiveHeapWriter::_heap_root_segments; 59 60 address ArchiveHeapWriter::_requested_bottom; 61 address ArchiveHeapWriter::_requested_top; 62 63 GrowableArrayCHeap<ArchiveHeapWriter::NativePointerInfo, mtClassShared>* ArchiveHeapWriter::_native_pointers; 64 GrowableArrayCHeap<oop, mtClassShared>* ArchiveHeapWriter::_source_objs; 65 GrowableArrayCHeap<ArchiveHeapWriter::HeapObjOrder, mtClassShared>* ArchiveHeapWriter::_source_objs_order; 66 67 ArchiveHeapWriter::BufferOffsetToSourceObjectTable* 68 ArchiveHeapWriter::_buffer_offset_to_source_obj_table = nullptr; 69 70 71 typedef ResourceHashtable< 72 size_t, // offset of a filler from ArchiveHeapWriter::buffer_bottom() 73 size_t, // size of this filler (in bytes) 74 127, // prime number 75 AnyObj::C_HEAP, 76 mtClassShared> FillersTable; 77 static FillersTable* _fillers; 78 static int _num_native_ptrs = 0; 79 80 void ArchiveHeapWriter::init() { 81 if (HeapShared::can_write()) { 82 Universe::heap()->collect(GCCause::_java_lang_system_gc); 83 84 _buffer_offset_to_source_obj_table = new BufferOffsetToSourceObjectTable(/*size (prime)*/36137, /*max size*/1 * M); 85 _fillers = new FillersTable(); 86 _requested_bottom = nullptr; 87 _requested_top = nullptr; 88 89 _native_pointers = new GrowableArrayCHeap<NativePointerInfo, mtClassShared>(2048); 90 _source_objs = new GrowableArrayCHeap<oop, mtClassShared>(10000); 91 92 guarantee(MIN_GC_REGION_ALIGNMENT <= G1HeapRegion::min_region_size_in_words() * HeapWordSize, "must be"); 93 } 94 } 95 96 void ArchiveHeapWriter::add_source_obj(oop src_obj) { 97 _source_objs->append(src_obj); 98 } 99 100 void ArchiveHeapWriter::write(GrowableArrayCHeap<oop, mtClassShared>* roots, 101 ArchiveHeapInfo* heap_info) { 102 assert(HeapShared::can_write(), "sanity"); 103 allocate_buffer(); 104 copy_source_objs_to_buffer(roots); 105 set_requested_address(heap_info); 106 relocate_embedded_oops(roots, heap_info); 107 } 108 109 bool ArchiveHeapWriter::is_too_large_to_archive(oop o) { 110 return is_too_large_to_archive(o->size()); 111 } 112 113 bool ArchiveHeapWriter::is_string_too_large_to_archive(oop string) { 114 typeArrayOop value = java_lang_String::value_no_keepalive(string); 115 return is_too_large_to_archive(value); 116 } 117 118 bool ArchiveHeapWriter::is_too_large_to_archive(size_t size) { 119 assert(size > 0, "no zero-size object"); 120 assert(size * HeapWordSize > size, "no overflow"); 121 static_assert(MIN_GC_REGION_ALIGNMENT > 0, "must be positive"); 122 123 size_t byte_size = size * HeapWordSize; 124 if (byte_size > size_t(MIN_GC_REGION_ALIGNMENT)) { 125 return true; 126 } else { 127 return false; 128 } 129 } 130 131 // Various lookup functions between source_obj, buffered_obj and requested_obj 132 bool ArchiveHeapWriter::is_in_requested_range(oop o) { 133 assert(_requested_bottom != nullptr, "do not call before _requested_bottom is initialized"); 134 address a = cast_from_oop<address>(o); 135 return (_requested_bottom <= a && a < _requested_top); 136 } 137 138 oop ArchiveHeapWriter::requested_obj_from_buffer_offset(size_t offset) { 139 oop req_obj = cast_to_oop(_requested_bottom + offset); 140 assert(is_in_requested_range(req_obj), "must be"); 141 return req_obj; 142 } 143 144 oop ArchiveHeapWriter::source_obj_to_requested_obj(oop src_obj) { 145 assert(CDSConfig::is_dumping_heap(), "dump-time only"); 146 HeapShared::CachedOopInfo* p = HeapShared::archived_object_cache()->get(src_obj); 147 if (p != nullptr) { 148 return requested_obj_from_buffer_offset(p->buffer_offset()); 149 } else { 150 return nullptr; 151 } 152 } 153 154 oop ArchiveHeapWriter::buffered_addr_to_source_obj(address buffered_addr) { 155 oop* p = _buffer_offset_to_source_obj_table->get(buffered_address_to_offset(buffered_addr)); 156 if (p != nullptr) { 157 return *p; 158 } else { 159 return nullptr; 160 } 161 } 162 163 address ArchiveHeapWriter::buffered_addr_to_requested_addr(address buffered_addr) { 164 return _requested_bottom + buffered_address_to_offset(buffered_addr); 165 } 166 167 address ArchiveHeapWriter::requested_address() { 168 assert(_buffer != nullptr, "must be initialized"); 169 return _requested_bottom; 170 } 171 172 void ArchiveHeapWriter::allocate_buffer() { 173 int initial_buffer_size = 100000; 174 _buffer = new GrowableArrayCHeap<u1, mtClassShared>(initial_buffer_size); 175 _buffer_used = 0; 176 ensure_buffer_space(1); // so that buffer_bottom() works 177 } 178 179 void ArchiveHeapWriter::ensure_buffer_space(size_t min_bytes) { 180 // We usually have very small heaps. If we get a huge one it's probably caused by a bug. 181 guarantee(min_bytes <= max_jint, "we dont support archiving more than 2G of objects"); 182 _buffer->at_grow(to_array_index(min_bytes)); 183 } 184 185 objArrayOop ArchiveHeapWriter::allocate_root_segment(size_t offset, int element_count) { 186 HeapWord* mem = offset_to_buffered_address<HeapWord *>(offset); 187 memset(mem, 0, objArrayOopDesc::object_size(element_count)); 188 189 // The initialization code is copied from MemAllocator::finish and ObjArrayAllocator::initialize. 190 if (UseCompactObjectHeaders) { 191 oopDesc::release_set_mark(mem, Universe::objectArrayKlass()->prototype_header()); 192 } else { 193 oopDesc::set_mark(mem, markWord::prototype()); 194 oopDesc::release_set_klass(mem, Universe::objectArrayKlass()); 195 } 196 arrayOopDesc::set_length(mem, element_count); 197 return objArrayOop(cast_to_oop(mem)); 198 } 199 200 void ArchiveHeapWriter::root_segment_at_put(objArrayOop segment, int index, oop root) { 201 // Do not use arrayOop->obj_at_put(i, o) as arrayOop is outside the real heap! 202 if (UseCompressedOops) { 203 *segment->obj_at_addr<narrowOop>(index) = CompressedOops::encode(root); 204 } else { 205 *segment->obj_at_addr<oop>(index) = root; 206 } 207 } 208 209 void ArchiveHeapWriter::copy_roots_to_buffer(GrowableArrayCHeap<oop, mtClassShared>* roots) { 210 // Depending on the number of classes we are archiving, a single roots array may be 211 // larger than MIN_GC_REGION_ALIGNMENT. Roots are allocated first in the buffer, which 212 // allows us to chop the large array into a series of "segments". Current layout 213 // starts with zero or more segments exactly fitting MIN_GC_REGION_ALIGNMENT, and end 214 // with a single segment that may be smaller than MIN_GC_REGION_ALIGNMENT. 215 // This is simple and efficient. We do not need filler objects anywhere between the segments, 216 // or immediately after the last segment. This allows starting the object dump immediately 217 // after the roots. 218 219 assert((_buffer_used % MIN_GC_REGION_ALIGNMENT) == 0, 220 "Pre-condition: Roots start at aligned boundary: " SIZE_FORMAT, _buffer_used); 221 222 int max_elem_count = ((MIN_GC_REGION_ALIGNMENT - arrayOopDesc::header_size_in_bytes()) / heapOopSize); 223 assert(objArrayOopDesc::object_size(max_elem_count)*HeapWordSize == MIN_GC_REGION_ALIGNMENT, 224 "Should match exactly"); 225 226 HeapRootSegments segments(_buffer_used, 227 roots->length(), 228 MIN_GC_REGION_ALIGNMENT, 229 max_elem_count); 230 231 int root_index = 0; 232 for (size_t seg_idx = 0; seg_idx < segments.count(); seg_idx++) { 233 int size_elems = segments.size_in_elems(seg_idx); 234 size_t size_bytes = segments.size_in_bytes(seg_idx); 235 236 size_t oop_offset = _buffer_used; 237 _buffer_used = oop_offset + size_bytes; 238 ensure_buffer_space(_buffer_used); 239 240 assert((oop_offset % MIN_GC_REGION_ALIGNMENT) == 0, 241 "Roots segment " SIZE_FORMAT " start is not aligned: " SIZE_FORMAT, 242 segments.count(), oop_offset); 243 244 objArrayOop seg_oop = allocate_root_segment(oop_offset, size_elems); 245 for (int i = 0; i < size_elems; i++) { 246 root_segment_at_put(seg_oop, i, roots->at(root_index++)); 247 } 248 249 log_info(cds, heap)("archived obj root segment [%d] = " SIZE_FORMAT " bytes, obj = " PTR_FORMAT, 250 size_elems, size_bytes, p2i(seg_oop)); 251 } 252 253 assert(root_index == roots->length(), "Post-condition: All roots are handled"); 254 255 _heap_root_segments = segments; 256 } 257 258 // The goal is to sort the objects in increasing order of: 259 // - objects that have only oop pointers 260 // - objects that have both native and oop pointers 261 // - objects that have only native pointers 262 // - objects that have no pointers 263 static int oop_sorting_rank(oop o) { 264 bool has_oop_ptr, has_native_ptr; 265 HeapShared::get_pointer_info(o, has_oop_ptr, has_native_ptr); 266 267 if (has_oop_ptr) { 268 if (!has_native_ptr) { 269 return 0; 270 } else { 271 return 1; 272 } 273 } else { 274 if (has_native_ptr) { 275 return 2; 276 } else { 277 return 3; 278 } 279 } 280 } 281 282 int ArchiveHeapWriter::compare_objs_by_oop_fields(HeapObjOrder* a, HeapObjOrder* b) { 283 int rank_a = a->_rank; 284 int rank_b = b->_rank; 285 286 if (rank_a != rank_b) { 287 return rank_a - rank_b; 288 } else { 289 // If they are the same rank, sort them by their position in the _source_objs array 290 return a->_index - b->_index; 291 } 292 } 293 294 void ArchiveHeapWriter::sort_source_objs() { 295 log_info(cds)("sorting heap objects"); 296 int len = _source_objs->length(); 297 _source_objs_order = new GrowableArrayCHeap<HeapObjOrder, mtClassShared>(len); 298 299 for (int i = 0; i < len; i++) { 300 oop o = _source_objs->at(i); 301 int rank = oop_sorting_rank(o); 302 HeapObjOrder os = {i, rank}; 303 _source_objs_order->append(os); 304 } 305 log_info(cds)("computed ranks"); 306 _source_objs_order->sort(compare_objs_by_oop_fields); 307 log_info(cds)("sorting heap objects done"); 308 } 309 310 void ArchiveHeapWriter::copy_source_objs_to_buffer(GrowableArrayCHeap<oop, mtClassShared>* roots) { 311 // There could be multiple root segments, which we want to be aligned by region. 312 // Putting them ahead of objects makes sure we waste no space. 313 copy_roots_to_buffer(roots); 314 315 sort_source_objs(); 316 for (int i = 0; i < _source_objs_order->length(); i++) { 317 int src_obj_index = _source_objs_order->at(i)._index; 318 oop src_obj = _source_objs->at(src_obj_index); 319 HeapShared::CachedOopInfo* info = HeapShared::archived_object_cache()->get(src_obj); 320 assert(info != nullptr, "must be"); 321 size_t buffer_offset = copy_one_source_obj_to_buffer(src_obj); 322 info->set_buffer_offset(buffer_offset); 323 324 _buffer_offset_to_source_obj_table->put_when_absent(buffer_offset, src_obj); 325 _buffer_offset_to_source_obj_table->maybe_grow(); 326 } 327 328 log_info(cds)("Size of heap region = " SIZE_FORMAT " bytes, %d objects, %d roots, %d native ptrs", 329 _buffer_used, _source_objs->length() + 1, roots->length(), _num_native_ptrs); 330 } 331 332 size_t ArchiveHeapWriter::filler_array_byte_size(int length) { 333 size_t byte_size = objArrayOopDesc::object_size(length) * HeapWordSize; 334 return byte_size; 335 } 336 337 int ArchiveHeapWriter::filler_array_length(size_t fill_bytes) { 338 assert(is_object_aligned(fill_bytes), "must be"); 339 size_t elemSize = (UseCompressedOops ? sizeof(narrowOop) : sizeof(oop)); 340 341 int initial_length = to_array_length(fill_bytes / elemSize); 342 for (int length = initial_length; length >= 0; length --) { 343 size_t array_byte_size = filler_array_byte_size(length); 344 if (array_byte_size == fill_bytes) { 345 return length; 346 } 347 } 348 349 ShouldNotReachHere(); 350 return -1; 351 } 352 353 HeapWord* ArchiveHeapWriter::init_filler_array_at_buffer_top(int array_length, size_t fill_bytes) { 354 assert(UseCompressedClassPointers, "Archived heap only supported for compressed klasses"); 355 Klass* oak = Universe::objectArrayKlass(); // already relocated to point to archived klass 356 HeapWord* mem = offset_to_buffered_address<HeapWord*>(_buffer_used); 357 memset(mem, 0, fill_bytes); 358 narrowKlass nk = ArchiveBuilder::current()->get_requested_narrow_klass(oak); 359 if (UseCompactObjectHeaders) { 360 oopDesc::release_set_mark(mem, markWord::prototype().set_narrow_klass(nk)); 361 } else { 362 oopDesc::set_mark(mem, markWord::prototype()); 363 cast_to_oop(mem)->set_narrow_klass(nk); 364 } 365 arrayOopDesc::set_length(mem, array_length); 366 return mem; 367 } 368 369 void ArchiveHeapWriter::maybe_fill_gc_region_gap(size_t required_byte_size) { 370 // We fill only with arrays (so we don't need to use a single HeapWord filler if the 371 // leftover space is smaller than a zero-sized array object). Therefore, we need to 372 // make sure there's enough space of min_filler_byte_size in the current region after 373 // required_byte_size has been allocated. If not, fill the remainder of the current 374 // region. 375 size_t min_filler_byte_size = filler_array_byte_size(0); 376 size_t new_used = _buffer_used + required_byte_size + min_filler_byte_size; 377 378 const size_t cur_min_region_bottom = align_down(_buffer_used, MIN_GC_REGION_ALIGNMENT); 379 const size_t next_min_region_bottom = align_down(new_used, MIN_GC_REGION_ALIGNMENT); 380 381 if (cur_min_region_bottom != next_min_region_bottom) { 382 // Make sure that no objects span across MIN_GC_REGION_ALIGNMENT. This way 383 // we can map the region in any region-based collector. 384 assert(next_min_region_bottom > cur_min_region_bottom, "must be"); 385 assert(next_min_region_bottom - cur_min_region_bottom == MIN_GC_REGION_ALIGNMENT, 386 "no buffered object can be larger than %d bytes", MIN_GC_REGION_ALIGNMENT); 387 388 const size_t filler_end = next_min_region_bottom; 389 const size_t fill_bytes = filler_end - _buffer_used; 390 assert(fill_bytes > 0, "must be"); 391 ensure_buffer_space(filler_end); 392 393 int array_length = filler_array_length(fill_bytes); 394 log_info(cds, heap)("Inserting filler obj array of %d elements (" SIZE_FORMAT " bytes total) @ buffer offset " SIZE_FORMAT, 395 array_length, fill_bytes, _buffer_used); 396 HeapWord* filler = init_filler_array_at_buffer_top(array_length, fill_bytes); 397 _buffer_used = filler_end; 398 _fillers->put(buffered_address_to_offset((address)filler), fill_bytes); 399 } 400 } 401 402 size_t ArchiveHeapWriter::get_filler_size_at(address buffered_addr) { 403 size_t* p = _fillers->get(buffered_address_to_offset(buffered_addr)); 404 if (p != nullptr) { 405 assert(*p > 0, "filler must be larger than zero bytes"); 406 return *p; 407 } else { 408 return 0; // buffered_addr is not a filler 409 } 410 } 411 412 template <typename T> 413 void update_buffered_object_field(address buffered_obj, int field_offset, T value) { 414 T* field_addr = cast_to_oop(buffered_obj)->field_addr<T>(field_offset); 415 *field_addr = value; 416 } 417 418 size_t ArchiveHeapWriter::copy_one_source_obj_to_buffer(oop src_obj) { 419 assert(!is_too_large_to_archive(src_obj), "already checked"); 420 size_t old_size = src_obj->size(); 421 size_t new_size = src_obj->copy_size_cds(old_size, src_obj->mark()); 422 size_t byte_size = new_size * HeapWordSize; 423 assert(byte_size > 0, "no zero-size objects"); 424 425 // For region-based collectors such as G1, the archive heap may be mapped into 426 // multiple regions. We need to make sure that we don't have an object that can possible 427 // span across two regions. 428 maybe_fill_gc_region_gap(byte_size); 429 430 size_t new_used = _buffer_used + byte_size; 431 assert(new_used > _buffer_used, "no wrap around"); 432 433 size_t cur_min_region_bottom = align_down(_buffer_used, MIN_GC_REGION_ALIGNMENT); 434 size_t next_min_region_bottom = align_down(new_used, MIN_GC_REGION_ALIGNMENT); 435 assert(cur_min_region_bottom == next_min_region_bottom, "no object should cross minimal GC region boundaries"); 436 437 ensure_buffer_space(new_used); 438 439 address from = cast_from_oop<address>(src_obj); 440 address to = offset_to_buffered_address<address>(_buffer_used); 441 assert(is_object_aligned(_buffer_used), "sanity"); 442 assert(is_object_aligned(byte_size), "sanity"); 443 memcpy(to, from, old_size * HeapWordSize); 444 445 // These native pointers will be restored explicitly at run time. 446 if (java_lang_Module::is_instance(src_obj)) { 447 update_buffered_object_field<ModuleEntry*>(to, java_lang_Module::module_entry_offset(), nullptr); 448 } else if (java_lang_ClassLoader::is_instance(src_obj)) { 449 #ifdef ASSERT 450 // We only archive these loaders 451 if (src_obj != SystemDictionary::java_platform_loader() && 452 src_obj != SystemDictionary::java_system_loader()) { 453 assert(src_obj->klass()->name()->equals("jdk/internal/loader/ClassLoaders$BootClassLoader"), "must be"); 454 } 455 #endif 456 update_buffered_object_field<ClassLoaderData*>(to, java_lang_ClassLoader::loader_data_offset(), nullptr); 457 } 458 459 size_t buffered_obj_offset = _buffer_used; 460 _buffer_used = new_used; 461 462 return buffered_obj_offset; 463 } 464 465 void ArchiveHeapWriter::set_requested_address(ArchiveHeapInfo* info) { 466 assert(!info->is_used(), "only set once"); 467 468 size_t heap_region_byte_size = _buffer_used; 469 assert(heap_region_byte_size > 0, "must archived at least one object!"); 470 471 if (UseCompressedOops) { 472 if (UseG1GC) { 473 address heap_end = (address)G1CollectedHeap::heap()->reserved().end(); 474 log_info(cds, heap)("Heap end = %p", heap_end); 475 _requested_bottom = align_down(heap_end - heap_region_byte_size, G1HeapRegion::GrainBytes); 476 _requested_bottom = align_down(_requested_bottom, MIN_GC_REGION_ALIGNMENT); 477 assert(is_aligned(_requested_bottom, G1HeapRegion::GrainBytes), "sanity"); 478 } else { 479 _requested_bottom = align_up(CompressedOops::begin(), MIN_GC_REGION_ALIGNMENT); 480 } 481 } else { 482 // We always write the objects as if the heap started at this address. This 483 // makes the contents of the archive heap deterministic. 484 // 485 // Note that at runtime, the heap address is selected by the OS, so the archive 486 // heap will not be mapped at 0x10000000, and the contents need to be patched. 487 _requested_bottom = align_up((address)NOCOOPS_REQUESTED_BASE, MIN_GC_REGION_ALIGNMENT); 488 } 489 490 assert(is_aligned(_requested_bottom, MIN_GC_REGION_ALIGNMENT), "sanity"); 491 492 _requested_top = _requested_bottom + _buffer_used; 493 494 info->set_buffer_region(MemRegion(offset_to_buffered_address<HeapWord*>(0), 495 offset_to_buffered_address<HeapWord*>(_buffer_used))); 496 info->set_heap_root_segments(_heap_root_segments); 497 } 498 499 // Oop relocation 500 501 template <typename T> T* ArchiveHeapWriter::requested_addr_to_buffered_addr(T* p) { 502 assert(is_in_requested_range(cast_to_oop(p)), "must be"); 503 504 address addr = address(p); 505 assert(addr >= _requested_bottom, "must be"); 506 size_t offset = addr - _requested_bottom; 507 return offset_to_buffered_address<T*>(offset); 508 } 509 510 template <typename T> oop ArchiveHeapWriter::load_source_oop_from_buffer(T* buffered_addr) { 511 oop o = load_oop_from_buffer(buffered_addr); 512 assert(!in_buffer(cast_from_oop<address>(o)), "must point to source oop"); 513 return o; 514 } 515 516 template <typename T> void ArchiveHeapWriter::store_requested_oop_in_buffer(T* buffered_addr, 517 oop request_oop) { 518 assert(is_in_requested_range(request_oop), "must be"); 519 store_oop_in_buffer(buffered_addr, request_oop); 520 } 521 522 inline void ArchiveHeapWriter::store_oop_in_buffer(oop* buffered_addr, oop requested_obj) { 523 *buffered_addr = requested_obj; 524 } 525 526 inline void ArchiveHeapWriter::store_oop_in_buffer(narrowOop* buffered_addr, oop requested_obj) { 527 narrowOop val = CompressedOops::encode_not_null(requested_obj); 528 *buffered_addr = val; 529 } 530 531 oop ArchiveHeapWriter::load_oop_from_buffer(oop* buffered_addr) { 532 return *buffered_addr; 533 } 534 535 oop ArchiveHeapWriter::load_oop_from_buffer(narrowOop* buffered_addr) { 536 return CompressedOops::decode(*buffered_addr); 537 } 538 539 template <typename T> void ArchiveHeapWriter::relocate_field_in_buffer(T* field_addr_in_buffer, CHeapBitMap* oopmap) { 540 oop source_referent = load_source_oop_from_buffer<T>(field_addr_in_buffer); 541 if (source_referent != nullptr) { 542 if (java_lang_Class::is_instance(source_referent)) { 543 // When the source object points to a "real" mirror, the buffered object should point 544 // to the "scratch" mirror, which has all unarchivable fields scrubbed (to be reinstated 545 // at run time). 546 source_referent = HeapShared::scratch_java_mirror(source_referent); 547 assert(source_referent != nullptr, "must be"); 548 } 549 oop request_referent = source_obj_to_requested_obj(source_referent); 550 store_requested_oop_in_buffer<T>(field_addr_in_buffer, request_referent); 551 mark_oop_pointer<T>(field_addr_in_buffer, oopmap); 552 } 553 } 554 555 template <typename T> void ArchiveHeapWriter::mark_oop_pointer(T* buffered_addr, CHeapBitMap* oopmap) { 556 T* request_p = (T*)(buffered_addr_to_requested_addr((address)buffered_addr)); 557 address requested_region_bottom; 558 559 assert(request_p >= (T*)_requested_bottom, "sanity"); 560 assert(request_p < (T*)_requested_top, "sanity"); 561 requested_region_bottom = _requested_bottom; 562 563 // Mark the pointer in the oopmap 564 T* region_bottom = (T*)requested_region_bottom; 565 assert(request_p >= region_bottom, "must be"); 566 BitMap::idx_t idx = request_p - region_bottom; 567 assert(idx < oopmap->size(), "overflow"); 568 oopmap->set_bit(idx); 569 } 570 571 void ArchiveHeapWriter::update_header_for_requested_obj(oop requested_obj, oop src_obj, Klass* src_klass) { 572 assert(UseCompressedClassPointers, "Archived heap only supported for compressed klasses"); 573 narrowKlass nk = ArchiveBuilder::current()->get_requested_narrow_klass(src_klass); 574 address buffered_addr = requested_addr_to_buffered_addr(cast_from_oop<address>(requested_obj)); 575 576 oop fake_oop = cast_to_oop(buffered_addr); 577 if (UseCompactObjectHeaders) { 578 fake_oop->set_mark(markWord::prototype().set_narrow_klass(nk)); 579 assert(fake_oop->mark().narrow_klass() != 0, "must not be null"); 580 } else { 581 fake_oop->set_narrow_klass(nk); 582 } 583 584 if (src_obj == nullptr) { 585 return; 586 } 587 // We need to retain the identity_hash, because it may have been used by some hashtables 588 // in the shared heap. 589 if (!src_obj->fast_no_hash_check()) { 590 intptr_t src_hash = src_obj->identity_hash(); 591 if (UseCompactObjectHeaders) { 592 markWord m = markWord::prototype().set_narrow_klass(nk); 593 m = m.copy_hashctrl_from(src_obj->mark()); 594 fake_oop->set_mark(m); 595 if (m.is_hashed_not_expanded()) { 596 fake_oop->initialize_hash_if_necessary(src_obj, src_klass, m); 597 } 598 assert(!fake_oop->mark().is_not_hashed_expanded() && !fake_oop->mark().is_hashed_not_expanded(), "must not be not-hashed-moved and not be hashed-not-moved"); 599 } else { 600 fake_oop->set_mark(markWord::prototype().copy_set_hash(src_hash)); 601 DEBUG_ONLY(intptr_t archived_hash = fake_oop->identity_hash()); 602 assert(src_hash == archived_hash, "Different hash codes: original " INTPTR_FORMAT ", archived " INTPTR_FORMAT, src_hash, archived_hash); 603 } 604 assert(fake_oop->mark().is_unlocked(), "sanity"); 605 } 606 // Strip age bits. 607 fake_oop->set_mark(fake_oop->mark().set_age(0)); 608 } 609 610 class ArchiveHeapWriter::EmbeddedOopRelocator: public BasicOopIterateClosure { 611 oop _src_obj; 612 address _buffered_obj; 613 CHeapBitMap* _oopmap; 614 615 public: 616 EmbeddedOopRelocator(oop src_obj, address buffered_obj, CHeapBitMap* oopmap) : 617 _src_obj(src_obj), _buffered_obj(buffered_obj), _oopmap(oopmap) {} 618 619 void do_oop(narrowOop *p) { EmbeddedOopRelocator::do_oop_work(p); } 620 void do_oop( oop *p) { EmbeddedOopRelocator::do_oop_work(p); } 621 622 private: 623 template <class T> void do_oop_work(T *p) { 624 size_t field_offset = pointer_delta(p, _src_obj, sizeof(char)); 625 ArchiveHeapWriter::relocate_field_in_buffer<T>((T*)(_buffered_obj + field_offset), _oopmap); 626 } 627 }; 628 629 static void log_bitmap_usage(const char* which, BitMap* bitmap, size_t total_bits) { 630 // The whole heap is covered by total_bits, but there are only non-zero bits within [start ... end). 631 size_t start = bitmap->find_first_set_bit(0); 632 size_t end = bitmap->size(); 633 log_info(cds)("%s = " SIZE_FORMAT_W(7) " ... " SIZE_FORMAT_W(7) " (%3zu%% ... %3zu%% = %3zu%%)", which, 634 start, end, 635 start * 100 / total_bits, 636 end * 100 / total_bits, 637 (end - start) * 100 / total_bits); 638 } 639 640 // Update all oop fields embedded in the buffered objects 641 void ArchiveHeapWriter::relocate_embedded_oops(GrowableArrayCHeap<oop, mtClassShared>* roots, 642 ArchiveHeapInfo* heap_info) { 643 size_t oopmap_unit = (UseCompressedOops ? sizeof(narrowOop) : sizeof(oop)); 644 size_t heap_region_byte_size = _buffer_used; 645 heap_info->oopmap()->resize(heap_region_byte_size / oopmap_unit); 646 647 for (int i = 0; i < _source_objs_order->length(); i++) { 648 int src_obj_index = _source_objs_order->at(i)._index; 649 oop src_obj = _source_objs->at(src_obj_index); 650 HeapShared::CachedOopInfo* info = HeapShared::archived_object_cache()->get(src_obj); 651 assert(info != nullptr, "must be"); 652 oop requested_obj = requested_obj_from_buffer_offset(info->buffer_offset()); 653 update_header_for_requested_obj(requested_obj, src_obj, src_obj->klass()); 654 address buffered_obj = offset_to_buffered_address<address>(info->buffer_offset()); 655 EmbeddedOopRelocator relocator(src_obj, buffered_obj, heap_info->oopmap()); 656 src_obj->oop_iterate(&relocator); 657 }; 658 659 // Relocate HeapShared::roots(), which is created in copy_roots_to_buffer() and 660 // doesn't have a corresponding src_obj, so we can't use EmbeddedOopRelocator on it. 661 for (size_t seg_idx = 0; seg_idx < _heap_root_segments.count(); seg_idx++) { 662 size_t seg_offset = _heap_root_segments.segment_offset(seg_idx); 663 664 objArrayOop requested_obj = (objArrayOop)requested_obj_from_buffer_offset(seg_offset); 665 update_header_for_requested_obj(requested_obj, nullptr, Universe::objectArrayKlass()); 666 address buffered_obj = offset_to_buffered_address<address>(seg_offset); 667 int length = _heap_root_segments.size_in_elems(seg_idx); 668 669 if (UseCompressedOops) { 670 for (int i = 0; i < length; i++) { 671 narrowOop* addr = (narrowOop*)(buffered_obj + objArrayOopDesc::obj_at_offset<narrowOop>(i)); 672 relocate_field_in_buffer<narrowOop>(addr, heap_info->oopmap()); 673 } 674 } else { 675 for (int i = 0; i < length; i++) { 676 oop* addr = (oop*)(buffered_obj + objArrayOopDesc::obj_at_offset<oop>(i)); 677 relocate_field_in_buffer<oop>(addr, heap_info->oopmap()); 678 } 679 } 680 } 681 682 compute_ptrmap(heap_info); 683 684 size_t total_bytes = (size_t)_buffer->length(); 685 log_bitmap_usage("oopmap", heap_info->oopmap(), total_bytes / (UseCompressedOops ? sizeof(narrowOop) : sizeof(oop))); 686 log_bitmap_usage("ptrmap", heap_info->ptrmap(), total_bytes / sizeof(address)); 687 } 688 689 void ArchiveHeapWriter::mark_native_pointer(oop src_obj, int field_offset) { 690 Metadata* ptr = src_obj->metadata_field_acquire(field_offset); 691 if (ptr != nullptr) { 692 NativePointerInfo info; 693 info._src_obj = src_obj; 694 info._field_offset = field_offset; 695 _native_pointers->append(info); 696 HeapShared::set_has_native_pointers(src_obj); 697 _num_native_ptrs ++; 698 } 699 } 700 701 // Do we have a jlong/jint field that's actually a pointer to a MetaspaceObj? 702 bool ArchiveHeapWriter::is_marked_as_native_pointer(ArchiveHeapInfo* heap_info, oop src_obj, int field_offset) { 703 HeapShared::CachedOopInfo* p = HeapShared::archived_object_cache()->get(src_obj); 704 assert(p != nullptr, "must be"); 705 706 // requested_field_addr = the address of this field in the requested space 707 oop requested_obj = requested_obj_from_buffer_offset(p->buffer_offset()); 708 Metadata** requested_field_addr = (Metadata**)(cast_from_oop<address>(requested_obj) + field_offset); 709 assert((Metadata**)_requested_bottom <= requested_field_addr && requested_field_addr < (Metadata**) _requested_top, "range check"); 710 711 BitMap::idx_t idx = requested_field_addr - (Metadata**) _requested_bottom; 712 // Leading zeros have been removed so some addresses may not be in the ptrmap 713 size_t start_pos = FileMapInfo::current_info()->heap_ptrmap_start_pos(); 714 if (idx < start_pos) { 715 return false; 716 } else { 717 idx -= start_pos; 718 } 719 return (idx < heap_info->ptrmap()->size()) && (heap_info->ptrmap()->at(idx) == true); 720 } 721 722 void ArchiveHeapWriter::compute_ptrmap(ArchiveHeapInfo* heap_info) { 723 int num_non_null_ptrs = 0; 724 Metadata** bottom = (Metadata**) _requested_bottom; 725 Metadata** top = (Metadata**) _requested_top; // exclusive 726 heap_info->ptrmap()->resize(top - bottom); 727 728 BitMap::idx_t max_idx = 32; // paranoid - don't make it too small 729 for (int i = 0; i < _native_pointers->length(); i++) { 730 NativePointerInfo info = _native_pointers->at(i); 731 oop src_obj = info._src_obj; 732 int field_offset = info._field_offset; 733 HeapShared::CachedOopInfo* p = HeapShared::archived_object_cache()->get(src_obj); 734 // requested_field_addr = the address of this field in the requested space 735 oop requested_obj = requested_obj_from_buffer_offset(p->buffer_offset()); 736 Metadata** requested_field_addr = (Metadata**)(cast_from_oop<address>(requested_obj) + field_offset); 737 assert(bottom <= requested_field_addr && requested_field_addr < top, "range check"); 738 739 // Mark this field in the bitmap 740 BitMap::idx_t idx = requested_field_addr - bottom; 741 heap_info->ptrmap()->set_bit(idx); 742 num_non_null_ptrs ++; 743 max_idx = MAX2(max_idx, idx); 744 745 // Set the native pointer to the requested address of the metadata (at runtime, the metadata will have 746 // this address if the RO/RW regions are mapped at the default location). 747 748 Metadata** buffered_field_addr = requested_addr_to_buffered_addr(requested_field_addr); 749 Metadata* native_ptr = *buffered_field_addr; 750 guarantee(native_ptr != nullptr, "sanity"); 751 guarantee(ArchiveBuilder::current()->has_been_buffered((address)native_ptr), 752 "Metadata %p should have been archived", native_ptr); 753 754 address buffered_native_ptr = ArchiveBuilder::current()->get_buffered_addr((address)native_ptr); 755 address requested_native_ptr = ArchiveBuilder::current()->to_requested(buffered_native_ptr); 756 *buffered_field_addr = (Metadata*)requested_native_ptr; 757 } 758 759 heap_info->ptrmap()->resize(max_idx + 1); 760 log_info(cds, heap)("calculate_ptrmap: marked %d non-null native pointers for heap region (" SIZE_FORMAT " bits)", 761 num_non_null_ptrs, size_t(heap_info->ptrmap()->size())); 762 } 763 764 #endif // INCLUDE_CDS_JAVA_HEAP