1 /* 2 * Copyright (c) 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "cds/archiveHeapWriter.hpp" 27 #include "cds/cdsConfig.hpp" 28 #include "cds/filemap.hpp" 29 #include "cds/heapShared.hpp" 30 #include "classfile/systemDictionary.hpp" 31 #include "gc/shared/collectedHeap.hpp" 32 #include "memory/iterator.inline.hpp" 33 #include "memory/oopFactory.hpp" 34 #include "memory/universe.hpp" 35 #include "oops/compressedOops.hpp" 36 #include "oops/oop.inline.hpp" 37 #include "oops/objArrayOop.inline.hpp" 38 #include "oops/oopHandle.inline.hpp" 39 #include "oops/typeArrayKlass.hpp" 40 #include "oops/typeArrayOop.hpp" 41 #include "runtime/java.hpp" 42 #include "runtime/mutexLocker.hpp" 43 #include "utilities/bitMap.inline.hpp" 44 45 #if INCLUDE_G1GC 46 #include "gc/g1/g1CollectedHeap.hpp" 47 #include "gc/g1/heapRegion.hpp" 48 #endif 49 50 #if INCLUDE_CDS_JAVA_HEAP 51 52 GrowableArrayCHeap<u1, mtClassShared>* ArchiveHeapWriter::_buffer = nullptr; 53 54 // The following are offsets from buffer_bottom() 55 size_t ArchiveHeapWriter::_buffer_used; 56 size_t ArchiveHeapWriter::_heap_roots_offset; 57 58 size_t ArchiveHeapWriter::_heap_roots_word_size; 59 60 address ArchiveHeapWriter::_requested_bottom; 61 address ArchiveHeapWriter::_requested_top; 62 63 GrowableArrayCHeap<ArchiveHeapWriter::NativePointerInfo, mtClassShared>* ArchiveHeapWriter::_native_pointers; 64 GrowableArrayCHeap<oop, mtClassShared>* ArchiveHeapWriter::_source_objs; 65 66 ArchiveHeapWriter::BufferOffsetToSourceObjectTable* 67 ArchiveHeapWriter::_buffer_offset_to_source_obj_table = nullptr; 68 69 70 typedef ResourceHashtable<address, size_t, 71 127, // prime number 72 AnyObj::C_HEAP, 73 mtClassShared> FillersTable; 74 static FillersTable* _fillers; 75 76 void ArchiveHeapWriter::init() { 77 if (HeapShared::can_write()) { 78 Universe::heap()->collect(GCCause::_java_lang_system_gc); 79 80 _buffer_offset_to_source_obj_table = new BufferOffsetToSourceObjectTable(); 81 _fillers = new FillersTable(); 82 _requested_bottom = nullptr; 83 _requested_top = nullptr; 84 85 _native_pointers = new GrowableArrayCHeap<NativePointerInfo, mtClassShared>(2048); 86 _source_objs = new GrowableArrayCHeap<oop, mtClassShared>(10000); 87 88 guarantee(UseG1GC, "implementation limitation"); 89 guarantee(MIN_GC_REGION_ALIGNMENT <= /*G1*/HeapRegion::min_region_size_in_words() * HeapWordSize, "must be"); 90 } 91 } 92 93 void ArchiveHeapWriter::add_source_obj(oop src_obj) { 94 _source_objs->append(src_obj); 95 } 96 97 void ArchiveHeapWriter::write(GrowableArrayCHeap<oop, mtClassShared>* roots, 98 ArchiveHeapInfo* heap_info) { 99 assert(HeapShared::can_write(), "sanity"); 100 allocate_buffer(); 101 copy_source_objs_to_buffer(roots); 102 set_requested_address(heap_info); 103 relocate_embedded_oops(roots, heap_info); 104 } 105 106 bool ArchiveHeapWriter::is_too_large_to_archive(oop o) { 107 return is_too_large_to_archive(o->size()); 108 } 109 110 bool ArchiveHeapWriter::is_string_too_large_to_archive(oop string) { 111 typeArrayOop value = java_lang_String::value_no_keepalive(string); 112 return is_too_large_to_archive(value); 113 } 114 115 bool ArchiveHeapWriter::is_too_large_to_archive(size_t size) { 116 assert(size > 0, "no zero-size object"); 117 assert(size * HeapWordSize > size, "no overflow"); 118 static_assert(MIN_GC_REGION_ALIGNMENT > 0, "must be positive"); 119 120 size_t byte_size = size * HeapWordSize; 121 if (byte_size > size_t(MIN_GC_REGION_ALIGNMENT)) { 122 return true; 123 } else { 124 return false; 125 } 126 } 127 128 // Various lookup functions between source_obj, buffered_obj and requested_obj 129 bool ArchiveHeapWriter::is_in_requested_range(oop o) { 130 assert(_requested_bottom != nullptr, "do not call before _requested_bottom is initialized"); 131 address a = cast_from_oop<address>(o); 132 return (_requested_bottom <= a && a < _requested_top); 133 } 134 135 oop ArchiveHeapWriter::requested_obj_from_buffer_offset(size_t offset) { 136 oop req_obj = cast_to_oop(_requested_bottom + offset); 137 assert(is_in_requested_range(req_obj), "must be"); 138 return req_obj; 139 } 140 141 oop ArchiveHeapWriter::source_obj_to_requested_obj(oop src_obj) { 142 assert(CDSConfig::is_dumping_heap(), "dump-time only"); 143 HeapShared::CachedOopInfo* p = HeapShared::archived_object_cache()->get(src_obj); 144 if (p != nullptr) { 145 return requested_obj_from_buffer_offset(p->buffer_offset()); 146 } else { 147 return nullptr; 148 } 149 } 150 151 oop ArchiveHeapWriter::buffered_addr_to_source_obj(address buffered_addr) { 152 oop* p = _buffer_offset_to_source_obj_table->get(buffered_address_to_offset(buffered_addr)); 153 if (p != nullptr) { 154 return *p; 155 } else { 156 return nullptr; 157 } 158 } 159 160 address ArchiveHeapWriter::buffered_addr_to_requested_addr(address buffered_addr) { 161 return _requested_bottom + buffered_address_to_offset(buffered_addr); 162 } 163 164 oop ArchiveHeapWriter::heap_roots_requested_address() { 165 return cast_to_oop(_requested_bottom + _heap_roots_offset); 166 } 167 168 address ArchiveHeapWriter::requested_address() { 169 assert(_buffer != nullptr, "must be initialized"); 170 return _requested_bottom; 171 } 172 173 void ArchiveHeapWriter::allocate_buffer() { 174 int initial_buffer_size = 100000; 175 _buffer = new GrowableArrayCHeap<u1, mtClassShared>(initial_buffer_size); 176 _buffer_used = 0; 177 ensure_buffer_space(1); // so that buffer_bottom() works 178 } 179 180 void ArchiveHeapWriter::ensure_buffer_space(size_t min_bytes) { 181 // We usually have very small heaps. If we get a huge one it's probably caused by a bug. 182 guarantee(min_bytes <= max_jint, "we dont support archiving more than 2G of objects"); 183 _buffer->at_grow(to_array_index(min_bytes)); 184 } 185 186 void ArchiveHeapWriter::copy_roots_to_buffer(GrowableArrayCHeap<oop, mtClassShared>* roots) { 187 Klass* k = Universe::objectArrayKlassObj(); // already relocated to point to archived klass 188 int length = roots->length(); 189 _heap_roots_word_size = objArrayOopDesc::object_size(length); 190 size_t byte_size = _heap_roots_word_size * HeapWordSize; 191 if (byte_size >= MIN_GC_REGION_ALIGNMENT) { 192 log_error(cds, heap)("roots array is too large. Please reduce the number of classes"); 193 vm_exit(1); 194 } 195 196 maybe_fill_gc_region_gap(byte_size); 197 198 size_t new_used = _buffer_used + byte_size; 199 ensure_buffer_space(new_used); 200 201 HeapWord* mem = offset_to_buffered_address<HeapWord*>(_buffer_used); 202 memset(mem, 0, byte_size); 203 { 204 // This is copied from MemAllocator::finish 205 oopDesc::set_mark(mem, markWord::prototype()); 206 oopDesc::release_set_klass(mem, k); 207 } 208 { 209 // This is copied from ObjArrayAllocator::initialize 210 arrayOopDesc::set_length(mem, length); 211 } 212 213 objArrayOop arrayOop = objArrayOop(cast_to_oop(mem)); 214 for (int i = 0; i < length; i++) { 215 // Do not use arrayOop->obj_at_put(i, o) as arrayOop is outside of the real heap! 216 oop o = roots->at(i); 217 if (UseCompressedOops) { 218 * arrayOop->obj_at_addr<narrowOop>(i) = CompressedOops::encode(o); 219 } else { 220 * arrayOop->obj_at_addr<oop>(i) = o; 221 } 222 } 223 log_info(cds, heap)("archived obj roots[%d] = " SIZE_FORMAT " bytes, klass = %p, obj = %p", length, byte_size, k, mem); 224 225 _heap_roots_offset = _buffer_used; 226 _buffer_used = new_used; 227 } 228 229 void ArchiveHeapWriter::copy_source_objs_to_buffer(GrowableArrayCHeap<oop, mtClassShared>* roots) { 230 for (int i = 0; i < _source_objs->length(); i++) { 231 oop src_obj = _source_objs->at(i); 232 HeapShared::CachedOopInfo* info = HeapShared::archived_object_cache()->get(src_obj); 233 assert(info != nullptr, "must be"); 234 size_t buffer_offset = copy_one_source_obj_to_buffer(src_obj); 235 info->set_buffer_offset(buffer_offset); 236 237 _buffer_offset_to_source_obj_table->put(buffer_offset, src_obj); 238 } 239 240 copy_roots_to_buffer(roots); 241 242 log_info(cds)("Size of heap region = " SIZE_FORMAT " bytes, %d objects, %d roots", 243 _buffer_used, _source_objs->length() + 1, roots->length()); 244 } 245 246 size_t ArchiveHeapWriter::filler_array_byte_size(int length) { 247 size_t byte_size = objArrayOopDesc::object_size(length) * HeapWordSize; 248 return byte_size; 249 } 250 251 int ArchiveHeapWriter::filler_array_length(size_t fill_bytes) { 252 assert(is_object_aligned(fill_bytes), "must be"); 253 size_t elemSize = (UseCompressedOops ? sizeof(narrowOop) : sizeof(oop)); 254 255 int initial_length = to_array_length(fill_bytes / elemSize); 256 for (int length = initial_length; length >= 0; length --) { 257 size_t array_byte_size = filler_array_byte_size(length); 258 if (array_byte_size == fill_bytes) { 259 return length; 260 } 261 } 262 263 ShouldNotReachHere(); 264 return -1; 265 } 266 267 HeapWord* ArchiveHeapWriter::init_filler_array_at_buffer_top(int array_length, size_t fill_bytes) { 268 assert(UseCompressedClassPointers, "Archived heap only supported for compressed klasses"); 269 Klass* oak = Universe::objectArrayKlassObj(); // already relocated to point to archived klass 270 HeapWord* mem = offset_to_buffered_address<HeapWord*>(_buffer_used); 271 memset(mem, 0, fill_bytes); 272 oopDesc::set_mark(mem, markWord::prototype()); 273 narrowKlass nk = ArchiveBuilder::current()->get_requested_narrow_klass(oak); 274 cast_to_oop(mem)->set_narrow_klass(nk); 275 arrayOopDesc::set_length(mem, array_length); 276 return mem; 277 } 278 279 void ArchiveHeapWriter::maybe_fill_gc_region_gap(size_t required_byte_size) { 280 // We fill only with arrays (so we don't need to use a single HeapWord filler if the 281 // leftover space is smaller than a zero-sized array object). Therefore, we need to 282 // make sure there's enough space of min_filler_byte_size in the current region after 283 // required_byte_size has been allocated. If not, fill the remainder of the current 284 // region. 285 size_t min_filler_byte_size = filler_array_byte_size(0); 286 size_t new_used = _buffer_used + required_byte_size + min_filler_byte_size; 287 288 const size_t cur_min_region_bottom = align_down(_buffer_used, MIN_GC_REGION_ALIGNMENT); 289 const size_t next_min_region_bottom = align_down(new_used, MIN_GC_REGION_ALIGNMENT); 290 291 if (cur_min_region_bottom != next_min_region_bottom) { 292 // Make sure that no objects span across MIN_GC_REGION_ALIGNMENT. This way 293 // we can map the region in any region-based collector. 294 assert(next_min_region_bottom > cur_min_region_bottom, "must be"); 295 assert(next_min_region_bottom - cur_min_region_bottom == MIN_GC_REGION_ALIGNMENT, 296 "no buffered object can be larger than %d bytes", MIN_GC_REGION_ALIGNMENT); 297 298 const size_t filler_end = next_min_region_bottom; 299 const size_t fill_bytes = filler_end - _buffer_used; 300 assert(fill_bytes > 0, "must be"); 301 ensure_buffer_space(filler_end); 302 303 int array_length = filler_array_length(fill_bytes); 304 log_info(cds, heap)("Inserting filler obj array of %d elements (" SIZE_FORMAT " bytes total) @ buffer offset " SIZE_FORMAT, 305 array_length, fill_bytes, _buffer_used); 306 HeapWord* filler = init_filler_array_at_buffer_top(array_length, fill_bytes); 307 _buffer_used = filler_end; 308 _fillers->put((address)filler, fill_bytes); 309 } 310 } 311 312 size_t ArchiveHeapWriter::get_filler_size_at(address buffered_addr) { 313 size_t* p = _fillers->get(buffered_addr); 314 if (p != nullptr) { 315 assert(*p > 0, "filler must be larger than zero bytes"); 316 return *p; 317 } else { 318 return 0; // buffered_addr is not a filler 319 } 320 } 321 322 template <typename T> 323 void update_buffered_object_field(address buffered_obj, int field_offset, T value) { 324 T* field_addr = cast_to_oop(buffered_obj)->field_addr<T>(field_offset); 325 *field_addr = value; 326 } 327 328 size_t ArchiveHeapWriter::copy_one_source_obj_to_buffer(oop src_obj) { 329 assert(!is_too_large_to_archive(src_obj), "already checked"); 330 size_t byte_size = src_obj->size() * HeapWordSize; 331 assert(byte_size > 0, "no zero-size objects"); 332 333 // For region-based collectors such as G1, the archive heap may be mapped into 334 // multiple regions. We need to make sure that we don't have an object that can possible 335 // span across two regions. 336 maybe_fill_gc_region_gap(byte_size); 337 338 size_t new_used = _buffer_used + byte_size; 339 assert(new_used > _buffer_used, "no wrap around"); 340 341 size_t cur_min_region_bottom = align_down(_buffer_used, MIN_GC_REGION_ALIGNMENT); 342 size_t next_min_region_bottom = align_down(new_used, MIN_GC_REGION_ALIGNMENT); 343 assert(cur_min_region_bottom == next_min_region_bottom, "no object should cross minimal GC region boundaries"); 344 345 ensure_buffer_space(new_used); 346 347 address from = cast_from_oop<address>(src_obj); 348 address to = offset_to_buffered_address<address>(_buffer_used); 349 assert(is_object_aligned(_buffer_used), "sanity"); 350 assert(is_object_aligned(byte_size), "sanity"); 351 memcpy(to, from, byte_size); 352 353 // These native pointers will be restored explicitly at run time. 354 if (java_lang_Module::is_instance(src_obj)) { 355 update_buffered_object_field<ModuleEntry*>(to, java_lang_Module::module_entry_offset(), nullptr); 356 } else if (java_lang_ClassLoader::is_instance(src_obj)) { 357 #ifdef ASSERT 358 // We only archive these loaders 359 if (src_obj != SystemDictionary::java_platform_loader() && 360 src_obj != SystemDictionary::java_system_loader()) { 361 assert(src_obj->klass()->name()->equals("jdk/internal/loader/ClassLoaders$BootClassLoader"), "must be"); 362 } 363 #endif 364 update_buffered_object_field<ClassLoaderData*>(to, java_lang_ClassLoader::loader_data_offset(), nullptr); 365 } 366 367 size_t buffered_obj_offset = _buffer_used; 368 _buffer_used = new_used; 369 370 return buffered_obj_offset; 371 } 372 373 void ArchiveHeapWriter::set_requested_address(ArchiveHeapInfo* info) { 374 assert(!info->is_used(), "only set once"); 375 assert(UseG1GC, "must be"); 376 address heap_end = (address)G1CollectedHeap::heap()->reserved().end(); 377 log_info(cds, heap)("Heap end = %p", heap_end); 378 379 size_t heap_region_byte_size = _buffer_used; 380 assert(heap_region_byte_size > 0, "must archived at least one object!"); 381 382 383 if (UseCompressedOops) { 384 _requested_bottom = align_down(heap_end - heap_region_byte_size, HeapRegion::GrainBytes); 385 } else { 386 // We always write the objects as if the heap started at this address. This 387 // makes the contents of the archive heap deterministic. 388 // 389 // Note that at runtime, the heap address is selected by the OS, so the archive 390 // heap will not be mapped at 0x10000000, and the contents need to be patched. 391 _requested_bottom = (address)NOCOOPS_REQUESTED_BASE; 392 } 393 394 assert(is_aligned(_requested_bottom, HeapRegion::GrainBytes), "sanity"); 395 396 _requested_top = _requested_bottom + _buffer_used; 397 398 info->set_buffer_region(MemRegion(offset_to_buffered_address<HeapWord*>(0), 399 offset_to_buffered_address<HeapWord*>(_buffer_used))); 400 info->set_heap_roots_offset(_heap_roots_offset); 401 } 402 403 // Oop relocation 404 405 template <typename T> T* ArchiveHeapWriter::requested_addr_to_buffered_addr(T* p) { 406 assert(is_in_requested_range(cast_to_oop(p)), "must be"); 407 408 address addr = address(p); 409 assert(addr >= _requested_bottom, "must be"); 410 size_t offset = addr - _requested_bottom; 411 return offset_to_buffered_address<T*>(offset); 412 } 413 414 template <typename T> oop ArchiveHeapWriter::load_source_oop_from_buffer(T* buffered_addr) { 415 oop o = load_oop_from_buffer(buffered_addr); 416 assert(!in_buffer(cast_from_oop<address>(o)), "must point to source oop"); 417 return o; 418 } 419 420 template <typename T> void ArchiveHeapWriter::store_requested_oop_in_buffer(T* buffered_addr, 421 oop request_oop) { 422 assert(is_in_requested_range(request_oop), "must be"); 423 store_oop_in_buffer(buffered_addr, request_oop); 424 } 425 426 inline void ArchiveHeapWriter::store_oop_in_buffer(oop* buffered_addr, oop requested_obj) { 427 *buffered_addr = requested_obj; 428 } 429 430 inline void ArchiveHeapWriter::store_oop_in_buffer(narrowOop* buffered_addr, oop requested_obj) { 431 narrowOop val = CompressedOops::encode_not_null(requested_obj); 432 *buffered_addr = val; 433 } 434 435 oop ArchiveHeapWriter::load_oop_from_buffer(oop* buffered_addr) { 436 return *buffered_addr; 437 } 438 439 oop ArchiveHeapWriter::load_oop_from_buffer(narrowOop* buffered_addr) { 440 return CompressedOops::decode(*buffered_addr); 441 } 442 443 template <typename T> void ArchiveHeapWriter::relocate_field_in_buffer(T* field_addr_in_buffer, CHeapBitMap* oopmap) { 444 oop source_referent = load_source_oop_from_buffer<T>(field_addr_in_buffer); 445 if (!CompressedOops::is_null(source_referent)) { 446 oop request_referent = source_obj_to_requested_obj(source_referent); 447 store_requested_oop_in_buffer<T>(field_addr_in_buffer, request_referent); 448 mark_oop_pointer<T>(field_addr_in_buffer, oopmap); 449 } 450 } 451 452 template <typename T> void ArchiveHeapWriter::mark_oop_pointer(T* buffered_addr, CHeapBitMap* oopmap) { 453 T* request_p = (T*)(buffered_addr_to_requested_addr((address)buffered_addr)); 454 address requested_region_bottom; 455 456 assert(request_p >= (T*)_requested_bottom, "sanity"); 457 assert(request_p < (T*)_requested_top, "sanity"); 458 requested_region_bottom = _requested_bottom; 459 460 // Mark the pointer in the oopmap 461 T* region_bottom = (T*)requested_region_bottom; 462 assert(request_p >= region_bottom, "must be"); 463 BitMap::idx_t idx = request_p - region_bottom; 464 assert(idx < oopmap->size(), "overflow"); 465 oopmap->set_bit(idx); 466 } 467 468 void ArchiveHeapWriter::update_header_for_requested_obj(oop requested_obj, oop src_obj, Klass* src_klass) { 469 assert(UseCompressedClassPointers, "Archived heap only supported for compressed klasses"); 470 narrowKlass nk = ArchiveBuilder::current()->get_requested_narrow_klass(src_klass); 471 address buffered_addr = requested_addr_to_buffered_addr(cast_from_oop<address>(requested_obj)); 472 473 oop fake_oop = cast_to_oop(buffered_addr); 474 fake_oop->set_narrow_klass(nk); 475 476 // We need to retain the identity_hash, because it may have been used by some hashtables 477 // in the shared heap. This also has the side effect of pre-initializing the 478 // identity_hash for all shared objects, so they are less likely to be written 479 // into during run time, increasing the potential of memory sharing. 480 if (src_obj != nullptr) { 481 intptr_t src_hash = src_obj->identity_hash(); 482 fake_oop->set_mark(markWord::prototype().copy_set_hash(src_hash)); 483 assert(fake_oop->mark().is_unlocked(), "sanity"); 484 485 DEBUG_ONLY(intptr_t archived_hash = fake_oop->identity_hash()); 486 assert(src_hash == archived_hash, "Different hash codes: original " INTPTR_FORMAT ", archived " INTPTR_FORMAT, src_hash, archived_hash); 487 } 488 } 489 490 // Relocate an element in the buffered copy of HeapShared::roots() 491 template <typename T> void ArchiveHeapWriter::relocate_root_at(oop requested_roots, int index, CHeapBitMap* oopmap) { 492 size_t offset = (size_t)((objArrayOop)requested_roots)->obj_at_offset<T>(index); 493 relocate_field_in_buffer<T>((T*)(buffered_heap_roots_addr() + offset), oopmap); 494 } 495 496 class ArchiveHeapWriter::EmbeddedOopRelocator: public BasicOopIterateClosure { 497 oop _src_obj; 498 address _buffered_obj; 499 CHeapBitMap* _oopmap; 500 501 public: 502 EmbeddedOopRelocator(oop src_obj, address buffered_obj, CHeapBitMap* oopmap) : 503 _src_obj(src_obj), _buffered_obj(buffered_obj), _oopmap(oopmap) {} 504 505 void do_oop(narrowOop *p) { EmbeddedOopRelocator::do_oop_work(p); } 506 void do_oop( oop *p) { EmbeddedOopRelocator::do_oop_work(p); } 507 508 private: 509 template <class T> void do_oop_work(T *p) { 510 size_t field_offset = pointer_delta(p, _src_obj, sizeof(char)); 511 ArchiveHeapWriter::relocate_field_in_buffer<T>((T*)(_buffered_obj + field_offset), _oopmap); 512 } 513 }; 514 515 // Update all oop fields embedded in the buffered objects 516 void ArchiveHeapWriter::relocate_embedded_oops(GrowableArrayCHeap<oop, mtClassShared>* roots, 517 ArchiveHeapInfo* heap_info) { 518 size_t oopmap_unit = (UseCompressedOops ? sizeof(narrowOop) : sizeof(oop)); 519 size_t heap_region_byte_size = _buffer_used; 520 heap_info->oopmap()->resize(heap_region_byte_size / oopmap_unit); 521 522 auto iterator = [&] (oop src_obj, HeapShared::CachedOopInfo& info) { 523 oop requested_obj = requested_obj_from_buffer_offset(info.buffer_offset()); 524 update_header_for_requested_obj(requested_obj, src_obj, src_obj->klass()); 525 address buffered_obj = offset_to_buffered_address<address>(info.buffer_offset()); 526 EmbeddedOopRelocator relocator(src_obj, buffered_obj, heap_info->oopmap()); 527 src_obj->oop_iterate(&relocator); 528 }; 529 HeapShared::archived_object_cache()->iterate_all(iterator); 530 531 // Relocate HeapShared::roots(), which is created in copy_roots_to_buffer() and 532 // doesn't have a corresponding src_obj, so we can't use EmbeddedOopRelocator on it. 533 oop requested_roots = requested_obj_from_buffer_offset(_heap_roots_offset); 534 update_header_for_requested_obj(requested_roots, nullptr, Universe::objectArrayKlassObj()); 535 int length = roots != nullptr ? roots->length() : 0; 536 for (int i = 0; i < length; i++) { 537 if (UseCompressedOops) { 538 relocate_root_at<narrowOop>(requested_roots, i, heap_info->oopmap()); 539 } else { 540 relocate_root_at<oop>(requested_roots, i, heap_info->oopmap()); 541 } 542 } 543 544 compute_ptrmap(heap_info); 545 } 546 547 void ArchiveHeapWriter::mark_native_pointer(oop src_obj, int field_offset) { 548 Metadata* ptr = src_obj->metadata_field_acquire(field_offset); 549 if (ptr != nullptr) { 550 NativePointerInfo info; 551 info._src_obj = src_obj; 552 info._field_offset = field_offset; 553 _native_pointers->append(info); 554 } 555 } 556 557 // Do we have a jlong/jint field that's actually a pointer to a MetaspaceObj? 558 bool ArchiveHeapWriter::is_marked_as_native_pointer(ArchiveHeapInfo* heap_info, oop src_obj, int field_offset) { 559 HeapShared::CachedOopInfo* p = HeapShared::archived_object_cache()->get(src_obj); 560 assert(p != nullptr, "must be"); 561 562 // requested_field_addr = the address of this field in the requested space 563 oop requested_obj = requested_obj_from_buffer_offset(p->buffer_offset()); 564 Metadata** requested_field_addr = (Metadata**)(cast_from_oop<address>(requested_obj) + field_offset); 565 assert((Metadata**)_requested_bottom <= requested_field_addr && requested_field_addr < (Metadata**) _requested_top, "range check"); 566 567 BitMap::idx_t idx = requested_field_addr - (Metadata**) _requested_bottom; 568 return (idx < heap_info->ptrmap()->size()) && (heap_info->ptrmap()->at(idx) == true); 569 } 570 571 void ArchiveHeapWriter::compute_ptrmap(ArchiveHeapInfo* heap_info) { 572 int num_non_null_ptrs = 0; 573 Metadata** bottom = (Metadata**) _requested_bottom; 574 Metadata** top = (Metadata**) _requested_top; // exclusive 575 heap_info->ptrmap()->resize(top - bottom); 576 577 BitMap::idx_t max_idx = 32; // paranoid - don't make it too small 578 for (int i = 0; i < _native_pointers->length(); i++) { 579 NativePointerInfo info = _native_pointers->at(i); 580 oop src_obj = info._src_obj; 581 int field_offset = info._field_offset; 582 HeapShared::CachedOopInfo* p = HeapShared::archived_object_cache()->get(src_obj); 583 // requested_field_addr = the address of this field in the requested space 584 oop requested_obj = requested_obj_from_buffer_offset(p->buffer_offset()); 585 Metadata** requested_field_addr = (Metadata**)(cast_from_oop<address>(requested_obj) + field_offset); 586 assert(bottom <= requested_field_addr && requested_field_addr < top, "range check"); 587 588 // Mark this field in the bitmap 589 BitMap::idx_t idx = requested_field_addr - bottom; 590 heap_info->ptrmap()->set_bit(idx); 591 num_non_null_ptrs ++; 592 max_idx = MAX2(max_idx, idx); 593 594 // Set the native pointer to the requested address of the metadata (at runtime, the metadata will have 595 // this address if the RO/RW regions are mapped at the default location). 596 597 Metadata** buffered_field_addr = requested_addr_to_buffered_addr(requested_field_addr); 598 Metadata* native_ptr = *buffered_field_addr; 599 assert(native_ptr != nullptr, "sanity"); 600 601 address buffered_native_ptr = ArchiveBuilder::current()->get_buffered_addr((address)native_ptr); 602 address requested_native_ptr = ArchiveBuilder::current()->to_requested(buffered_native_ptr); 603 *buffered_field_addr = (Metadata*)requested_native_ptr; 604 } 605 606 heap_info->ptrmap()->resize(max_idx + 1); 607 log_info(cds, heap)("calculate_ptrmap: marked %d non-null native pointers for heap region (" SIZE_FORMAT " bits)", 608 num_non_null_ptrs, size_t(heap_info->ptrmap()->size())); 609 } 610 611 #endif // INCLUDE_CDS_JAVA_HEAP --- EOF ---