1 /*
   2  * Copyright (c) 2001, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderDataGraph.hpp"
  27 #include "classfile/metadataOnStackMark.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "compiler/oopMap.hpp"
  31 #include "gc/g1/g1Allocator.inline.hpp"
  32 #include "gc/g1/g1Arguments.hpp"
  33 #include "gc/g1/g1BarrierSet.hpp"
  34 #include "gc/g1/g1BatchedTask.hpp"
  35 #include "gc/g1/g1CollectedHeap.inline.hpp"
  36 #include "gc/g1/g1CollectionSet.hpp"
  37 #include "gc/g1/g1CollectionSetCandidates.hpp"
  38 #include "gc/g1/g1CollectorState.hpp"
  39 #include "gc/g1/g1ConcurrentRefine.hpp"
  40 #include "gc/g1/g1ConcurrentRefineThread.hpp"
  41 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
  42 #include "gc/g1/g1DirtyCardQueue.hpp"
  43 #include "gc/g1/g1EvacStats.inline.hpp"
  44 #include "gc/g1/g1FullCollector.hpp"
  45 #include "gc/g1/g1GCCounters.hpp"
  46 #include "gc/g1/g1GCParPhaseTimesTracker.hpp"
  47 #include "gc/g1/g1GCPhaseTimes.hpp"
  48 #include "gc/g1/g1GCPauseType.hpp"
  49 #include "gc/g1/g1HeapRegion.inline.hpp"
  50 #include "gc/g1/g1HeapRegionRemSet.inline.hpp"
  51 #include "gc/g1/g1HeapRegionSet.inline.hpp"
  52 #include "gc/g1/g1HeapSizingPolicy.hpp"
  53 #include "gc/g1/g1HeapTransition.hpp"
  54 #include "gc/g1/g1HeapVerifier.hpp"
  55 #include "gc/g1/g1InitLogger.hpp"
  56 #include "gc/g1/g1MemoryPool.hpp"
  57 #include "gc/g1/g1MonotonicArenaFreeMemoryTask.hpp"
  58 #include "gc/g1/g1OopClosures.inline.hpp"
  59 #include "gc/g1/g1ParallelCleaning.hpp"
  60 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  61 #include "gc/g1/g1PeriodicGCTask.hpp"
  62 #include "gc/g1/g1Policy.hpp"
  63 #include "gc/g1/g1RedirtyCardsQueue.hpp"
  64 #include "gc/g1/g1RegionPinCache.inline.hpp"
  65 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  66 #include "gc/g1/g1RemSet.hpp"
  67 #include "gc/g1/g1RootClosures.hpp"
  68 #include "gc/g1/g1RootProcessor.hpp"
  69 #include "gc/g1/g1SATBMarkQueueSet.hpp"
  70 #include "gc/g1/g1ServiceThread.hpp"
  71 #include "gc/g1/g1ThreadLocalData.hpp"
  72 #include "gc/g1/g1Trace.hpp"
  73 #include "gc/g1/g1UncommitRegionTask.hpp"
  74 #include "gc/g1/g1VMOperations.hpp"
  75 #include "gc/g1/g1YoungCollector.hpp"
  76 #include "gc/g1/g1YoungGCAllocationFailureInjector.hpp"
  77 #include "gc/shared/classUnloadingContext.hpp"
  78 #include "gc/shared/concurrentGCBreakpoints.hpp"
  79 #include "gc/shared/gcBehaviours.hpp"
  80 #include "gc/shared/gcHeapSummary.hpp"
  81 #include "gc/shared/gcId.hpp"
  82 #include "gc/shared/gcTimer.hpp"
  83 #include "gc/shared/gcTraceTime.inline.hpp"
  84 #include "gc/shared/isGCActiveMark.hpp"
  85 #include "gc/shared/locationPrinter.inline.hpp"
  86 #include "gc/shared/oopStorageParState.hpp"
  87 #include "gc/shared/preservedMarks.inline.hpp"
  88 #include "gc/shared/referenceProcessor.inline.hpp"
  89 #include "gc/shared/suspendibleThreadSet.hpp"
  90 #include "gc/shared/taskqueue.inline.hpp"
  91 #include "gc/shared/taskTerminator.hpp"
  92 #include "gc/shared/tlab_globals.hpp"
  93 #include "gc/shared/workerPolicy.hpp"
  94 #include "gc/shared/weakProcessor.inline.hpp"
  95 #include "logging/log.hpp"
  96 #include "memory/allocation.hpp"
  97 #include "memory/heapInspection.hpp"
  98 #include "memory/iterator.hpp"
  99 #include "memory/metaspaceUtils.hpp"
 100 #include "memory/resourceArea.hpp"
 101 #include "memory/universe.hpp"
 102 #include "oops/access.inline.hpp"
 103 #include "oops/compressedOops.inline.hpp"
 104 #include "oops/oop.inline.hpp"
 105 #include "runtime/atomic.hpp"
 106 #include "runtime/cpuTimeCounters.hpp"
 107 #include "runtime/handles.inline.hpp"
 108 #include "runtime/init.hpp"
 109 #include "runtime/java.hpp"
 110 #include "runtime/orderAccess.hpp"
 111 #include "runtime/threadSMR.hpp"
 112 #include "runtime/vmThread.hpp"
 113 #include "utilities/align.hpp"
 114 #include "utilities/autoRestore.hpp"
 115 #include "utilities/bitMap.inline.hpp"
 116 #include "utilities/globalDefinitions.hpp"
 117 #include "utilities/stack.inline.hpp"
 118 
 119 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
 120 
 121 // INVARIANTS/NOTES
 122 //
 123 // All allocation activity covered by the G1CollectedHeap interface is
 124 // serialized by acquiring the HeapLock.  This happens in mem_allocate
 125 // and allocate_new_tlab, which are the "entry" points to the
 126 // allocation code from the rest of the JVM.  (Note that this does not
 127 // apply to TLAB allocation, which is not part of this interface: it
 128 // is done by clients of this interface.)
 129 
 130 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 131   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 132 }
 133 
 134 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 135   // The from card cache is not the memory that is actually committed. So we cannot
 136   // take advantage of the zero_filled parameter.
 137   reset_from_card_cache(start_idx, num_regions);
 138 }
 139 
 140 void G1CollectedHeap::run_batch_task(G1BatchedTask* cl) {
 141   uint num_workers = MAX2(1u, MIN2(cl->num_workers_estimate(), workers()->active_workers()));
 142   cl->set_max_workers(num_workers);
 143   workers()->run_task(cl, num_workers);
 144 }
 145 
 146 uint G1CollectedHeap::get_chunks_per_region() {
 147   uint log_region_size = HeapRegion::LogOfHRGrainBytes;
 148   // Limit the expected input values to current known possible values of the
 149   // (log) region size. Adjust as necessary after testing if changing the permissible
 150   // values for region size.
 151   assert(log_region_size >= 20 && log_region_size <= 29,
 152          "expected value in [20,29], but got %u", log_region_size);
 153   return 1u << (log_region_size / 2 - 4);
 154 }
 155 
 156 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
 157                                              MemRegion mr) {
 158   return new HeapRegion(hrs_index, bot(), mr, &_card_set_config);
 159 }
 160 
 161 // Private methods.
 162 
 163 HeapRegion* G1CollectedHeap::new_region(size_t word_size,
 164                                         HeapRegionType type,
 165                                         bool do_expand,
 166                                         uint node_index) {
 167   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 168          "the only time we use this to allocate a humongous region is "
 169          "when we are allocating a single humongous region");
 170 
 171   HeapRegion* res = _hrm.allocate_free_region(type, node_index);
 172 
 173   if (res == nullptr && do_expand) {
 174     // Currently, only attempts to allocate GC alloc regions set
 175     // do_expand to true. So, we should only reach here during a
 176     // safepoint.
 177     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 178 
 179     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 180                               word_size * HeapWordSize);
 181 
 182     assert(word_size * HeapWordSize < HeapRegion::GrainBytes,
 183            "This kind of expansion should never be more than one region. Size: " SIZE_FORMAT,
 184            word_size * HeapWordSize);
 185     if (expand_single_region(node_index)) {
 186       // Given that expand_single_region() succeeded in expanding the heap, and we
 187       // always expand the heap by an amount aligned to the heap
 188       // region size, the free list should in theory not be empty.
 189       // In either case allocate_free_region() will check for null.
 190       res = _hrm.allocate_free_region(type, node_index);
 191     }
 192   }
 193   return res;
 194 }
 195 
 196 void G1CollectedHeap::set_humongous_metadata(HeapRegion* first_hr,
 197                                              uint num_regions,
 198                                              size_t word_size,
 199                                              bool update_remsets) {
 200   // Calculate the new top of the humongous object.
 201   HeapWord* obj_top = first_hr->bottom() + word_size;
 202   // The word size sum of all the regions used
 203   size_t word_size_sum = num_regions * HeapRegion::GrainWords;
 204   assert(word_size <= word_size_sum, "sanity");
 205 
 206   // How many words memory we "waste" which cannot hold a filler object.
 207   size_t words_not_fillable = 0;
 208 
 209   // Pad out the unused tail of the last region with filler
 210   // objects, for improved usage accounting.
 211 
 212   // How many words can we use for filler objects.
 213   size_t words_fillable = word_size_sum - word_size;
 214 
 215   if (words_fillable >= G1CollectedHeap::min_fill_size()) {
 216     G1CollectedHeap::fill_with_objects(obj_top, words_fillable);
 217   } else {
 218     // We have space to fill, but we cannot fit an object there.
 219     words_not_fillable = words_fillable;
 220     words_fillable = 0;
 221   }
 222 
 223   // We will set up the first region as "starts humongous". This
 224   // will also update the BOT covering all the regions to reflect
 225   // that there is a single object that starts at the bottom of the
 226   // first region.
 227   first_hr->hr_clear(false /* clear_space */);
 228   first_hr->set_starts_humongous(obj_top, words_fillable);
 229 
 230   if (update_remsets) {
 231     _policy->remset_tracker()->update_at_allocate(first_hr);
 232   }
 233 
 234   // Indices of first and last regions in the series.
 235   uint first = first_hr->hrm_index();
 236   uint last = first + num_regions - 1;
 237 
 238   HeapRegion* hr = nullptr;
 239   for (uint i = first + 1; i <= last; ++i) {
 240     hr = region_at(i);
 241     hr->hr_clear(false /* clear_space */);
 242     hr->set_continues_humongous(first_hr);
 243     if (update_remsets) {
 244       _policy->remset_tracker()->update_at_allocate(hr);
 245     }
 246   }
 247 
 248   // Up to this point no concurrent thread would have been able to
 249   // do any scanning on any region in this series. All the top
 250   // fields still point to bottom, so the intersection between
 251   // [bottom,top] and [card_start,card_end] will be empty. Before we
 252   // update the top fields, we'll do a storestore to make sure that
 253   // no thread sees the update to top before the zeroing of the
 254   // object header and the BOT initialization.
 255   OrderAccess::storestore();
 256 
 257   // Now, we will update the top fields of the "continues humongous"
 258   // regions except the last one.
 259   for (uint i = first; i < last; ++i) {
 260     hr = region_at(i);
 261     hr->set_top(hr->end());
 262   }
 263 
 264   hr = region_at(last);
 265   // If we cannot fit a filler object, we must set top to the end
 266   // of the humongous object, otherwise we cannot iterate the heap
 267   // and the BOT will not be complete.
 268   hr->set_top(hr->end() - words_not_fillable);
 269 
 270   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 271          "obj_top should be in last region");
 272 
 273   assert(words_not_fillable == 0 ||
 274          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 275          "Miscalculation in humongous allocation");
 276 }
 277 
 278 HeapWord*
 279 G1CollectedHeap::humongous_obj_allocate_initialize_regions(HeapRegion* first_hr,
 280                                                            uint num_regions,
 281                                                            size_t word_size) {
 282   assert(first_hr != nullptr, "pre-condition");
 283   assert(is_humongous(word_size), "word_size should be humongous");
 284   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 285 
 286   // Index of last region in the series.
 287   uint first = first_hr->hrm_index();
 288   uint last = first + num_regions - 1;
 289 
 290   // We need to initialize the region(s) we just discovered. This is
 291   // a bit tricky given that it can happen concurrently with
 292   // refinement threads refining cards on these regions and
 293   // potentially wanting to refine the BOT as they are scanning
 294   // those cards (this can happen shortly after a cleanup; see CR
 295   // 6991377). So we have to set up the region(s) carefully and in
 296   // a specific order.
 297 
 298   // The passed in hr will be the "starts humongous" region. The header
 299   // of the new object will be placed at the bottom of this region.
 300   HeapWord* new_obj = first_hr->bottom();
 301 
 302   // First, we need to zero the header of the space that we will be
 303   // allocating. When we update top further down, some refinement
 304   // threads might try to scan the region. By zeroing the header we
 305   // ensure that any thread that will try to scan the region will
 306   // come across the zero klass word and bail out.
 307   //
 308   // NOTE: It would not have been correct to have used
 309   // CollectedHeap::fill_with_object() and make the space look like
 310   // an int array. The thread that is doing the allocation will
 311   // later update the object header to a potentially different array
 312   // type and, for a very short period of time, the klass and length
 313   // fields will be inconsistent. This could cause a refinement
 314   // thread to calculate the object size incorrectly.
 315   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 316 
 317   // Next, update the metadata for the regions.
 318   set_humongous_metadata(first_hr, num_regions, word_size, true);
 319 
 320   HeapRegion* last_hr = region_at(last);
 321   size_t used = byte_size(first_hr->bottom(), last_hr->top());
 322 
 323   increase_used(used);
 324 
 325   for (uint i = first; i <= last; ++i) {
 326     HeapRegion *hr = region_at(i);
 327     _humongous_set.add(hr);
 328     _hr_printer.alloc(hr);
 329   }
 330 
 331   return new_obj;
 332 }
 333 
 334 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 335   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 336   return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 337 }
 338 
 339 // If could fit into free regions w/o expansion, try.
 340 // Otherwise, if can expand, do so.
 341 // Otherwise, if using ex regions might help, try with ex given back.
 342 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 343   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 344 
 345   _verifier->verify_region_sets_optional();
 346 
 347   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 348 
 349   // Policy: First try to allocate a humongous object in the free list.
 350   HeapRegion* humongous_start = _hrm.allocate_humongous(obj_regions);
 351   if (humongous_start == nullptr) {
 352     // Policy: We could not find enough regions for the humongous object in the
 353     // free list. Look through the heap to find a mix of free and uncommitted regions.
 354     // If so, expand the heap and allocate the humongous object.
 355     humongous_start = _hrm.expand_and_allocate_humongous(obj_regions);
 356     if (humongous_start != nullptr) {
 357       // We managed to find a region by expanding the heap.
 358       log_debug(gc, ergo, heap)("Heap expansion (humongous allocation request). Allocation request: " SIZE_FORMAT "B",
 359                                 word_size * HeapWordSize);
 360       policy()->record_new_heap_size(num_regions());
 361     } else {
 362       // Policy: Potentially trigger a defragmentation GC.
 363     }
 364   }
 365 
 366   HeapWord* result = nullptr;
 367   if (humongous_start != nullptr) {
 368     result = humongous_obj_allocate_initialize_regions(humongous_start, obj_regions, word_size);
 369     assert(result != nullptr, "it should always return a valid result");
 370 
 371     // A successful humongous object allocation changes the used space
 372     // information of the old generation so we need to recalculate the
 373     // sizes and update the jstat counters here.
 374     monitoring_support()->update_sizes();
 375   }
 376 
 377   _verifier->verify_region_sets_optional();
 378 
 379   return result;
 380 }
 381 
 382 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t min_size,
 383                                              size_t requested_size,
 384                                              size_t* actual_size) {
 385   assert_heap_not_locked_and_not_at_safepoint();
 386   assert(!is_humongous(requested_size), "we do not allow humongous TLABs");
 387 
 388   return attempt_allocation(min_size, requested_size, actual_size);
 389 }
 390 
 391 HeapWord*
 392 G1CollectedHeap::mem_allocate(size_t word_size,
 393                               bool*  gc_overhead_limit_was_exceeded) {
 394   assert_heap_not_locked_and_not_at_safepoint();
 395 
 396   if (is_humongous(word_size)) {
 397     return attempt_allocation_humongous(word_size);
 398   }
 399   size_t dummy = 0;
 400   return attempt_allocation(word_size, word_size, &dummy);
 401 }
 402 
 403 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size) {
 404   ResourceMark rm; // For retrieving the thread names in log messages.
 405 
 406   // Make sure you read the note in attempt_allocation_humongous().
 407 
 408   assert_heap_not_locked_and_not_at_safepoint();
 409   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 410          "be called for humongous allocation requests");
 411 
 412   // We should only get here after the first-level allocation attempt
 413   // (attempt_allocation()) failed to allocate.
 414 
 415   // We will loop until a) we manage to successfully perform the allocation or b)
 416   // successfully schedule a collection which fails to perform the allocation.
 417   // Case b) is the only case when we'll return null.
 418   HeapWord* result = nullptr;
 419   for (uint try_count = 1; /* we'll return */; try_count++) {
 420     uint gc_count_before;
 421 
 422     {
 423       MutexLocker x(Heap_lock);
 424 
 425       // Now that we have the lock, we first retry the allocation in case another
 426       // thread changed the region while we were waiting to acquire the lock.
 427       result = _allocator->attempt_allocation_locked(word_size);
 428       if (result != nullptr) {
 429         return result;
 430       }
 431 
 432       // Read the GC count while still holding the Heap_lock.
 433       gc_count_before = total_collections();
 434     }
 435 
 436     bool succeeded;
 437     result = do_collection_pause(word_size, gc_count_before, &succeeded, GCCause::_g1_inc_collection_pause);
 438     if (succeeded) {
 439       log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 440                            Thread::current()->name(), p2i(result));
 441       return result;
 442     }
 443 
 444     log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT " words",
 445                          Thread::current()->name(), word_size);
 446 
 447     // We can reach here if we were unsuccessful in scheduling a collection (because
 448     // another thread beat us to it). In this case immeditealy retry the allocation
 449     // attempt because another thread successfully performed a collection and possibly
 450     // reclaimed enough space. The first attempt (without holding the Heap_lock) is
 451     // here and the follow-on attempt will be at the start of the next loop
 452     // iteration (after taking the Heap_lock).
 453     size_t dummy = 0;
 454     result = _allocator->attempt_allocation(word_size, word_size, &dummy);
 455     if (result != nullptr) {
 456       return result;
 457     }
 458 
 459     // Give a warning if we seem to be looping forever.
 460     if ((QueuedAllocationWarningCount > 0) &&
 461         (try_count % QueuedAllocationWarningCount == 0)) {
 462       log_warning(gc, alloc)("%s:  Retried allocation %u times for " SIZE_FORMAT " words",
 463                              Thread::current()->name(), try_count, word_size);
 464     }
 465   }
 466 
 467   ShouldNotReachHere();
 468   return nullptr;
 469 }
 470 
 471 template <typename Func>
 472 void G1CollectedHeap::iterate_regions_in_range(MemRegion range, const Func& func) {
 473   // Mark each G1 region touched by the range as old, add it to
 474   // the old set, and set top.
 475   HeapRegion* curr_region = _hrm.addr_to_region(range.start());
 476   HeapRegion* end_region = _hrm.addr_to_region(range.last());
 477 
 478   while (curr_region != nullptr) {
 479     bool is_last = curr_region == end_region;
 480     HeapRegion* next_region = is_last ? nullptr : _hrm.next_region_in_heap(curr_region);
 481 
 482     func(curr_region, is_last);
 483 
 484     curr_region = next_region;
 485   }
 486 }
 487 
 488 HeapWord* G1CollectedHeap::alloc_archive_region(size_t word_size, HeapWord* preferred_addr) {
 489   assert(!is_init_completed(), "Expect to be called at JVM init time");
 490   MutexLocker x(Heap_lock);
 491 
 492   MemRegion reserved = _hrm.reserved();
 493 
 494   if (reserved.word_size() <= word_size) {
 495     log_info(gc, heap)("Unable to allocate regions as archive heap is too large; size requested = " SIZE_FORMAT
 496                        " bytes, heap = " SIZE_FORMAT " bytes", word_size, reserved.word_size());
 497     return nullptr;
 498   }
 499 
 500   // Temporarily disable pretouching of heap pages. This interface is used
 501   // when mmap'ing archived heap data in, so pre-touching is wasted.
 502   FlagSetting fs(AlwaysPreTouch, false);
 503 
 504   size_t commits = 0;
 505   // Attempt to allocate towards the end of the heap.
 506   HeapWord* start_addr = reserved.end() - align_up(word_size, HeapRegion::GrainWords);
 507   MemRegion range = MemRegion(start_addr, word_size);
 508   HeapWord* last_address = range.last();
 509   if (!_hrm.allocate_containing_regions(range, &commits, workers())) {
 510     return nullptr;
 511   }
 512   increase_used(word_size * HeapWordSize);
 513   if (commits != 0) {
 514     log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 515                               HeapRegion::GrainWords * HeapWordSize * commits);
 516   }
 517 
 518   // Mark each G1 region touched by the range as old, add it to
 519   // the old set, and set top.
 520   auto set_region_to_old = [&] (HeapRegion* r, bool is_last) {
 521     assert(r->is_empty(), "Region already in use (%u)", r->hrm_index());
 522 
 523     HeapWord* top = is_last ? last_address + 1 : r->end();
 524     r->set_top(top);
 525 
 526     r->set_old();
 527     _hr_printer.alloc(r);
 528     _old_set.add(r);
 529   };
 530 
 531   iterate_regions_in_range(range, set_region_to_old);
 532   return start_addr;
 533 }
 534 
 535 void G1CollectedHeap::populate_archive_regions_bot(MemRegion range) {
 536   assert(!is_init_completed(), "Expect to be called at JVM init time");
 537 
 538   iterate_regions_in_range(range,
 539                            [&] (HeapRegion* r, bool is_last) {
 540                              r->update_bot();
 541                            });
 542 }
 543 
 544 void G1CollectedHeap::dealloc_archive_regions(MemRegion range) {
 545   assert(!is_init_completed(), "Expect to be called at JVM init time");
 546   MemRegion reserved = _hrm.reserved();
 547   size_t size_used = 0;
 548   uint shrink_count = 0;
 549 
 550   // Free the G1 regions that are within the specified range.
 551   MutexLocker x(Heap_lock);
 552   HeapWord* start_address = range.start();
 553   HeapWord* last_address = range.last();
 554 
 555   assert(reserved.contains(start_address) && reserved.contains(last_address),
 556          "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 557          p2i(start_address), p2i(last_address));
 558   size_used += range.byte_size();
 559 
 560   // Free, empty and uncommit regions with CDS archive content.
 561   auto dealloc_archive_region = [&] (HeapRegion* r, bool is_last) {
 562     guarantee(r->is_old(), "Expected old region at index %u", r->hrm_index());
 563     _old_set.remove(r);
 564     r->set_free();
 565     r->set_top(r->bottom());
 566     _hrm.shrink_at(r->hrm_index(), 1);
 567     shrink_count++;
 568   };
 569 
 570   iterate_regions_in_range(range, dealloc_archive_region);
 571 
 572   if (shrink_count != 0) {
 573     log_debug(gc, ergo, heap)("Attempt heap shrinking (CDS archive regions). Total size: " SIZE_FORMAT "B",
 574                               HeapRegion::GrainWords * HeapWordSize * shrink_count);
 575     // Explicit uncommit.
 576     uncommit_regions(shrink_count);
 577   }
 578   decrease_used(size_used);
 579 }
 580 
 581 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t min_word_size,
 582                                                      size_t desired_word_size,
 583                                                      size_t* actual_word_size) {
 584   assert_heap_not_locked_and_not_at_safepoint();
 585   assert(!is_humongous(desired_word_size), "attempt_allocation() should not "
 586          "be called for humongous allocation requests");
 587 
 588   HeapWord* result = _allocator->attempt_allocation(min_word_size, desired_word_size, actual_word_size);
 589 
 590   if (result == nullptr) {
 591     *actual_word_size = desired_word_size;
 592     result = attempt_allocation_slow(desired_word_size);
 593   }
 594 
 595   assert_heap_not_locked();
 596   if (result != nullptr) {
 597     assert(*actual_word_size != 0, "Actual size must have been set here");
 598     dirty_young_block(result, *actual_word_size);
 599   } else {
 600     *actual_word_size = 0;
 601   }
 602 
 603   return result;
 604 }
 605 
 606 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size) {
 607   ResourceMark rm; // For retrieving the thread names in log messages.
 608 
 609   // The structure of this method has a lot of similarities to
 610   // attempt_allocation_slow(). The reason these two were not merged
 611   // into a single one is that such a method would require several "if
 612   // allocation is not humongous do this, otherwise do that"
 613   // conditional paths which would obscure its flow. In fact, an early
 614   // version of this code did use a unified method which was harder to
 615   // follow and, as a result, it had subtle bugs that were hard to
 616   // track down. So keeping these two methods separate allows each to
 617   // be more readable. It will be good to keep these two in sync as
 618   // much as possible.
 619 
 620   assert_heap_not_locked_and_not_at_safepoint();
 621   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 622          "should only be called for humongous allocations");
 623 
 624   // Humongous objects can exhaust the heap quickly, so we should check if we
 625   // need to start a marking cycle at each humongous object allocation. We do
 626   // the check before we do the actual allocation. The reason for doing it
 627   // before the allocation is that we avoid having to keep track of the newly
 628   // allocated memory while we do a GC.
 629   if (policy()->need_to_start_conc_mark("concurrent humongous allocation",
 630                                         word_size)) {
 631     collect(GCCause::_g1_humongous_allocation);
 632   }
 633 
 634   // We will loop until a) we manage to successfully perform the allocation or b)
 635   // successfully schedule a collection which fails to perform the allocation.
 636   // Case b) is the only case when we'll return null.
 637   HeapWord* result = nullptr;
 638   for (uint try_count = 1; /* we'll return */; try_count++) {
 639     uint gc_count_before;
 640 
 641 
 642     {
 643       MutexLocker x(Heap_lock);
 644 
 645       size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 646       // Given that humongous objects are not allocated in young
 647       // regions, we'll first try to do the allocation without doing a
 648       // collection hoping that there's enough space in the heap.
 649       result = humongous_obj_allocate(word_size);
 650       if (result != nullptr) {
 651         policy()->old_gen_alloc_tracker()->
 652           add_allocated_humongous_bytes_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 653         return result;
 654       }
 655 
 656       // Read the GC count while still holding the Heap_lock.
 657       gc_count_before = total_collections();
 658     }
 659 
 660     bool succeeded;
 661     result = do_collection_pause(word_size, gc_count_before, &succeeded, GCCause::_g1_humongous_allocation);
 662     if (succeeded) {
 663       log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 664                            Thread::current()->name(), p2i(result));
 665       if (result != nullptr) {
 666         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 667         policy()->old_gen_alloc_tracker()->
 668           record_collection_pause_humongous_allocation(size_in_regions * HeapRegion::GrainBytes);
 669       }
 670       return result;
 671     }
 672 
 673     log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT "",
 674                          Thread::current()->name(), word_size);
 675 
 676     // We can reach here if we were unsuccessful in scheduling a collection (because
 677     // another thread beat us to it).
 678     // Humongous object allocation always needs a lock, so we wait for the retry
 679     // in the next iteration of the loop, unlike for the regular iteration case.
 680     // Give a warning if we seem to be looping forever.
 681 
 682     if ((QueuedAllocationWarningCount > 0) &&
 683         (try_count % QueuedAllocationWarningCount == 0)) {
 684       log_warning(gc, alloc)("%s: Retried allocation %u times for %zu words",
 685                              Thread::current()->name(), try_count, word_size);
 686     }
 687   }
 688 
 689   ShouldNotReachHere();
 690   return nullptr;
 691 }
 692 
 693 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
 694                                                            bool expect_null_mutator_alloc_region) {
 695   assert_at_safepoint_on_vm_thread();
 696   assert(!_allocator->has_mutator_alloc_region() || !expect_null_mutator_alloc_region,
 697          "the current alloc region was unexpectedly found to be non-null");
 698 
 699   if (!is_humongous(word_size)) {
 700     return _allocator->attempt_allocation_locked(word_size);
 701   } else {
 702     HeapWord* result = humongous_obj_allocate(word_size);
 703     if (result != nullptr && policy()->need_to_start_conc_mark("STW humongous allocation")) {
 704       collector_state()->set_initiate_conc_mark_if_possible(true);
 705     }
 706     return result;
 707   }
 708 
 709   ShouldNotReachHere();
 710 }
 711 
 712 class PostCompactionPrinterClosure: public HeapRegionClosure {
 713 private:
 714   G1HRPrinter* _hr_printer;
 715 public:
 716   bool do_heap_region(HeapRegion* hr) {
 717     assert(!hr->is_young(), "not expecting to find young regions");
 718     _hr_printer->post_compaction(hr);
 719     return false;
 720   }
 721 
 722   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
 723     : _hr_printer(hr_printer) { }
 724 };
 725 
 726 void G1CollectedHeap::print_heap_after_full_collection() {
 727   // Post collection region logging.
 728   // We should do this after we potentially resize the heap so
 729   // that all the COMMIT / UNCOMMIT events are generated before
 730   // the compaction events.
 731   if (_hr_printer.is_active()) {
 732     PostCompactionPrinterClosure cl(hr_printer());
 733     heap_region_iterate(&cl);
 734   }
 735 }
 736 
 737 bool G1CollectedHeap::abort_concurrent_cycle() {
 738   // Disable discovery and empty the discovered lists
 739   // for the CM ref processor.
 740   _ref_processor_cm->disable_discovery();
 741   _ref_processor_cm->abandon_partial_discovery();
 742   _ref_processor_cm->verify_no_references_recorded();
 743 
 744   // Abandon current iterations of concurrent marking and concurrent
 745   // refinement, if any are in progress.
 746   return concurrent_mark()->concurrent_cycle_abort();
 747 }
 748 
 749 void G1CollectedHeap::prepare_heap_for_full_collection() {
 750   // Make sure we'll choose a new allocation region afterwards.
 751   _allocator->release_mutator_alloc_regions();
 752   _allocator->abandon_gc_alloc_regions();
 753 
 754   // We may have added regions to the current incremental collection
 755   // set between the last GC or pause and now. We need to clear the
 756   // incremental collection set and then start rebuilding it afresh
 757   // after this full GC.
 758   abandon_collection_set(collection_set());
 759 
 760   _hrm.remove_all_free_regions();
 761 }
 762 
 763 void G1CollectedHeap::verify_before_full_collection() {
 764   assert_used_and_recalculate_used_equal(this);
 765   if (!VerifyBeforeGC) {
 766     return;
 767   }
 768   if (!G1HeapVerifier::should_verify(G1HeapVerifier::G1VerifyFull)) {
 769     return;
 770   }
 771   _verifier->verify_region_sets_optional();
 772   _verifier->verify_before_gc();
 773   _verifier->verify_bitmap_clear(true /* above_tams_only */);
 774 }
 775 
 776 void G1CollectedHeap::prepare_for_mutator_after_full_collection() {
 777   // Prepare heap for normal collections.
 778   assert(num_free_regions() == 0, "we should not have added any free regions");
 779   rebuild_region_sets(false /* free_list_only */);
 780   abort_refinement();
 781   resize_heap_if_necessary();
 782   uncommit_regions_if_necessary();
 783 
 784   // Rebuild the code root lists for each region
 785   rebuild_code_roots();
 786 
 787   start_new_collection_set();
 788   _allocator->init_mutator_alloc_regions();
 789 
 790   // Post collection state updates.
 791   MetaspaceGC::compute_new_size();
 792 }
 793 
 794 void G1CollectedHeap::abort_refinement() {
 795   // Discard all remembered set updates and reset refinement statistics.
 796   G1BarrierSet::dirty_card_queue_set().abandon_logs_and_stats();
 797   assert(G1BarrierSet::dirty_card_queue_set().num_cards() == 0,
 798          "DCQS should be empty");
 799   concurrent_refine()->get_and_reset_refinement_stats();
 800 }
 801 
 802 void G1CollectedHeap::verify_after_full_collection() {
 803   if (!VerifyAfterGC) {
 804     return;
 805   }
 806   if (!G1HeapVerifier::should_verify(G1HeapVerifier::G1VerifyFull)) {
 807     return;
 808   }
 809   _hrm.verify_optional();
 810   _verifier->verify_region_sets_optional();
 811   _verifier->verify_after_gc();
 812   _verifier->verify_bitmap_clear(false /* above_tams_only */);
 813 
 814   // At this point there should be no regions in the
 815   // entire heap tagged as young.
 816   assert(check_young_list_empty(), "young list should be empty at this point");
 817 
 818   // Note: since we've just done a full GC, concurrent
 819   // marking is no longer active. Therefore we need not
 820   // re-enable reference discovery for the CM ref processor.
 821   // That will be done at the start of the next marking cycle.
 822   // We also know that the STW processor should no longer
 823   // discover any new references.
 824   assert(!_ref_processor_stw->discovery_enabled(), "Postcondition");
 825   assert(!_ref_processor_cm->discovery_enabled(), "Postcondition");
 826   _ref_processor_stw->verify_no_references_recorded();
 827   _ref_processor_cm->verify_no_references_recorded();
 828 }
 829 
 830 bool G1CollectedHeap::do_full_collection(bool clear_all_soft_refs,
 831                                          bool do_maximal_compaction) {
 832   assert_at_safepoint_on_vm_thread();
 833 
 834   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
 835       soft_ref_policy()->should_clear_all_soft_refs();
 836 
 837   G1FullGCMark gc_mark;
 838   GCTraceTime(Info, gc) tm("Pause Full", nullptr, gc_cause(), true);
 839   G1FullCollector collector(this, do_clear_all_soft_refs, do_maximal_compaction, gc_mark.tracer());
 840 
 841   collector.prepare_collection();
 842   collector.collect();
 843   collector.complete_collection();
 844 
 845   // Full collection was successfully completed.
 846   return true;
 847 }
 848 
 849 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
 850   // Currently, there is no facility in the do_full_collection(bool) API to notify
 851   // the caller that the collection did not succeed (e.g., because it was locked
 852   // out by the GC locker). So, right now, we'll ignore the return value.
 853 
 854   do_full_collection(clear_all_soft_refs,
 855                      false /* do_maximal_compaction */);
 856 }
 857 
 858 bool G1CollectedHeap::upgrade_to_full_collection() {
 859   GCCauseSetter compaction(this, GCCause::_g1_compaction_pause);
 860   log_info(gc, ergo)("Attempting full compaction clearing soft references");
 861   bool success = do_full_collection(true  /* clear_all_soft_refs */,
 862                                     false /* do_maximal_compaction */);
 863   // do_full_collection only fails if blocked by GC locker and that can't
 864   // be the case here since we only call this when already completed one gc.
 865   assert(success, "invariant");
 866   return success;
 867 }
 868 
 869 void G1CollectedHeap::resize_heap_if_necessary() {
 870   assert_at_safepoint_on_vm_thread();
 871 
 872   bool should_expand;
 873   size_t resize_amount = _heap_sizing_policy->full_collection_resize_amount(should_expand);
 874 
 875   if (resize_amount == 0) {
 876     return;
 877   } else if (should_expand) {
 878     expand(resize_amount, _workers);
 879   } else {
 880     shrink(resize_amount);
 881   }
 882 }
 883 
 884 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
 885                                                             bool do_gc,
 886                                                             bool maximal_compaction,
 887                                                             bool expect_null_mutator_alloc_region,
 888                                                             bool* gc_succeeded) {
 889   *gc_succeeded = true;
 890   // Let's attempt the allocation first.
 891   HeapWord* result =
 892     attempt_allocation_at_safepoint(word_size,
 893                                     expect_null_mutator_alloc_region);
 894   if (result != nullptr) {
 895     return result;
 896   }
 897 
 898   // In a G1 heap, we're supposed to keep allocation from failing by
 899   // incremental pauses.  Therefore, at least for now, we'll favor
 900   // expansion over collection.  (This might change in the future if we can
 901   // do something smarter than full collection to satisfy a failed alloc.)
 902   result = expand_and_allocate(word_size);
 903   if (result != nullptr) {
 904     return result;
 905   }
 906 
 907   if (do_gc) {
 908     GCCauseSetter compaction(this, GCCause::_g1_compaction_pause);
 909     // Expansion didn't work, we'll try to do a Full GC.
 910     // If maximal_compaction is set we clear all soft references and don't
 911     // allow any dead wood to be left on the heap.
 912     if (maximal_compaction) {
 913       log_info(gc, ergo)("Attempting maximal full compaction clearing soft references");
 914     } else {
 915       log_info(gc, ergo)("Attempting full compaction");
 916     }
 917     *gc_succeeded = do_full_collection(maximal_compaction /* clear_all_soft_refs */ ,
 918                                        maximal_compaction /* do_maximal_compaction */);
 919   }
 920 
 921   return nullptr;
 922 }
 923 
 924 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
 925                                                      bool* succeeded) {
 926   assert_at_safepoint_on_vm_thread();
 927 
 928   // Attempts to allocate followed by Full GC.
 929   HeapWord* result =
 930     satisfy_failed_allocation_helper(word_size,
 931                                      true,  /* do_gc */
 932                                      false, /* maximum_collection */
 933                                      false, /* expect_null_mutator_alloc_region */
 934                                      succeeded);
 935 
 936   if (result != nullptr || !*succeeded) {
 937     return result;
 938   }
 939 
 940   // Attempts to allocate followed by Full GC that will collect all soft references.
 941   result = satisfy_failed_allocation_helper(word_size,
 942                                             true, /* do_gc */
 943                                             true, /* maximum_collection */
 944                                             true, /* expect_null_mutator_alloc_region */
 945                                             succeeded);
 946 
 947   if (result != nullptr || !*succeeded) {
 948     return result;
 949   }
 950 
 951   // Attempts to allocate, no GC
 952   result = satisfy_failed_allocation_helper(word_size,
 953                                             false, /* do_gc */
 954                                             false, /* maximum_collection */
 955                                             true,  /* expect_null_mutator_alloc_region */
 956                                             succeeded);
 957 
 958   if (result != nullptr) {
 959     return result;
 960   }
 961 
 962   assert(!soft_ref_policy()->should_clear_all_soft_refs(),
 963          "Flag should have been handled and cleared prior to this point");
 964 
 965   // What else?  We might try synchronous finalization later.  If the total
 966   // space available is large enough for the allocation, then a more
 967   // complete compaction phase than we've tried so far might be
 968   // appropriate.
 969   return nullptr;
 970 }
 971 
 972 // Attempting to expand the heap sufficiently
 973 // to support an allocation of the given "word_size".  If
 974 // successful, perform the allocation and return the address of the
 975 // allocated block, or else null.
 976 
 977 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
 978   assert_at_safepoint_on_vm_thread();
 979 
 980   _verifier->verify_region_sets_optional();
 981 
 982   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
 983   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
 984                             word_size * HeapWordSize);
 985 
 986 
 987   if (expand(expand_bytes, _workers)) {
 988     _hrm.verify_optional();
 989     _verifier->verify_region_sets_optional();
 990     return attempt_allocation_at_safepoint(word_size,
 991                                            false /* expect_null_mutator_alloc_region */);
 992   }
 993   return nullptr;
 994 }
 995 
 996 bool G1CollectedHeap::expand(size_t expand_bytes, WorkerThreads* pretouch_workers, double* expand_time_ms) {
 997   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
 998   aligned_expand_bytes = align_up(aligned_expand_bytes,
 999                                        HeapRegion::GrainBytes);
1000 
1001   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1002                             expand_bytes, aligned_expand_bytes);
1003 
1004   if (is_maximal_no_gc()) {
1005     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1006     return false;
1007   }
1008 
1009   double expand_heap_start_time_sec = os::elapsedTime();
1010   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1011   assert(regions_to_expand > 0, "Must expand by at least one region");
1012 
1013   uint expanded_by = _hrm.expand_by(regions_to_expand, pretouch_workers);
1014   if (expand_time_ms != nullptr) {
1015     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1016   }
1017 
1018   assert(expanded_by > 0, "must have failed during commit.");
1019 
1020   size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1021   assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1022   policy()->record_new_heap_size(num_regions());
1023 
1024   return true;
1025 }
1026 
1027 bool G1CollectedHeap::expand_single_region(uint node_index) {
1028   uint expanded_by = _hrm.expand_on_preferred_node(node_index);
1029 
1030   if (expanded_by == 0) {
1031     assert(is_maximal_no_gc(), "Should be no regions left, available: %u", _hrm.available());
1032     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1033     return false;
1034   }
1035 
1036   policy()->record_new_heap_size(num_regions());
1037   return true;
1038 }
1039 
1040 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1041   size_t aligned_shrink_bytes =
1042     ReservedSpace::page_align_size_down(shrink_bytes);
1043   aligned_shrink_bytes = align_down(aligned_shrink_bytes,
1044                                          HeapRegion::GrainBytes);
1045   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1046 
1047   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1048   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1049 
1050   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B actual amount shrunk: " SIZE_FORMAT "B",
1051                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1052   if (num_regions_removed > 0) {
1053     log_debug(gc, heap)("Uncommittable regions after shrink: %u", num_regions_removed);
1054     policy()->record_new_heap_size(num_regions());
1055   } else {
1056     log_debug(gc, ergo, heap)("Did not shrink the heap (heap shrinking operation failed)");
1057   }
1058 }
1059 
1060 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1061   _verifier->verify_region_sets_optional();
1062 
1063   // We should only reach here at the end of a Full GC or during Remark which
1064   // means we should not not be holding to any GC alloc regions. The method
1065   // below will make sure of that and do any remaining clean up.
1066   _allocator->abandon_gc_alloc_regions();
1067 
1068   // Instead of tearing down / rebuilding the free lists here, we
1069   // could instead use the remove_all_pending() method on free_list to
1070   // remove only the ones that we need to remove.
1071   _hrm.remove_all_free_regions();
1072   shrink_helper(shrink_bytes);
1073   rebuild_region_sets(true /* free_list_only */);
1074 
1075   _hrm.verify_optional();
1076   _verifier->verify_region_sets_optional();
1077 }
1078 
1079 class OldRegionSetChecker : public HeapRegionSetChecker {
1080 public:
1081   void check_mt_safety() {
1082     // Master Old Set MT safety protocol:
1083     // (a) If we're at a safepoint, operations on the master old set
1084     // should be invoked:
1085     // - by the VM thread (which will serialize them), or
1086     // - by the GC workers while holding the FreeList_lock, if we're
1087     //   at a safepoint for an evacuation pause (this lock is taken
1088     //   anyway when an GC alloc region is retired so that a new one
1089     //   is allocated from the free list), or
1090     // - by the GC workers while holding the OldSets_lock, if we're at a
1091     //   safepoint for a cleanup pause.
1092     // (b) If we're not at a safepoint, operations on the master old set
1093     // should be invoked while holding the Heap_lock.
1094 
1095     if (SafepointSynchronize::is_at_safepoint()) {
1096       guarantee(Thread::current()->is_VM_thread() ||
1097                 FreeList_lock->owned_by_self() || OldSets_lock->owned_by_self(),
1098                 "master old set MT safety protocol at a safepoint");
1099     } else {
1100       guarantee(Heap_lock->owned_by_self(), "master old set MT safety protocol outside a safepoint");
1101     }
1102   }
1103   bool is_correct_type(HeapRegion* hr) { return hr->is_old(); }
1104   const char* get_description() { return "Old Regions"; }
1105 };
1106 
1107 class HumongousRegionSetChecker : public HeapRegionSetChecker {
1108 public:
1109   void check_mt_safety() {
1110     // Humongous Set MT safety protocol:
1111     // (a) If we're at a safepoint, operations on the master humongous
1112     // set should be invoked by either the VM thread (which will
1113     // serialize them) or by the GC workers while holding the
1114     // OldSets_lock.
1115     // (b) If we're not at a safepoint, operations on the master
1116     // humongous set should be invoked while holding the Heap_lock.
1117 
1118     if (SafepointSynchronize::is_at_safepoint()) {
1119       guarantee(Thread::current()->is_VM_thread() ||
1120                 OldSets_lock->owned_by_self(),
1121                 "master humongous set MT safety protocol at a safepoint");
1122     } else {
1123       guarantee(Heap_lock->owned_by_self(),
1124                 "master humongous set MT safety protocol outside a safepoint");
1125     }
1126   }
1127   bool is_correct_type(HeapRegion* hr) { return hr->is_humongous(); }
1128   const char* get_description() { return "Humongous Regions"; }
1129 };
1130 
1131 G1CollectedHeap::G1CollectedHeap() :
1132   CollectedHeap(),
1133   _service_thread(nullptr),
1134   _periodic_gc_task(nullptr),
1135   _free_arena_memory_task(nullptr),
1136   _workers(nullptr),
1137   _card_table(nullptr),
1138   _collection_pause_end(Ticks::now()),
1139   _old_set("Old Region Set", new OldRegionSetChecker()),
1140   _humongous_set("Humongous Region Set", new HumongousRegionSetChecker()),
1141   _bot(nullptr),
1142   _listener(),
1143   _numa(G1NUMA::create()),
1144   _hrm(),
1145   _allocator(nullptr),
1146   _allocation_failure_injector(),
1147   _verifier(nullptr),
1148   _summary_bytes_used(0),
1149   _bytes_used_during_gc(0),
1150   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1151   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1152   _monitoring_support(nullptr),
1153   _num_humongous_objects(0),
1154   _num_humongous_reclaim_candidates(0),
1155   _hr_printer(),
1156   _collector_state(),
1157   _old_marking_cycles_started(0),
1158   _old_marking_cycles_completed(0),
1159   _eden(),
1160   _survivor(),
1161   _gc_timer_stw(new STWGCTimer()),
1162   _gc_tracer_stw(new G1NewTracer()),
1163   _policy(new G1Policy(_gc_timer_stw)),
1164   _heap_sizing_policy(nullptr),
1165   _collection_set(this, _policy),
1166   _rem_set(nullptr),
1167   _card_set_config(),
1168   _card_set_freelist_pool(G1CardSetConfiguration::num_mem_object_types()),
1169   _cm(nullptr),
1170   _cm_thread(nullptr),
1171   _cr(nullptr),
1172   _task_queues(nullptr),
1173   _ref_processor_stw(nullptr),
1174   _is_alive_closure_stw(this),
1175   _is_subject_to_discovery_stw(this),
1176   _ref_processor_cm(nullptr),
1177   _is_alive_closure_cm(),
1178   _is_subject_to_discovery_cm(this),
1179   _region_attr() {
1180 
1181   _verifier = new G1HeapVerifier(this);
1182 
1183   _allocator = new G1Allocator(this);
1184 
1185   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _policy->analytics());
1186 
1187   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1188 
1189   // Since filler arrays are never referenced, we can make them region sized.
1190   // This simplifies filling up the region in case we have some potentially
1191   // unreferenced (by Java code, but still in use by native code) pinned objects
1192   // in there.
1193   _filler_array_max_size = HeapRegion::GrainWords;
1194 
1195   // Override the default _stack_chunk_max_size so that no humongous stack chunks are created
1196   _stack_chunk_max_size = _humongous_object_threshold_in_words;
1197 
1198   uint n_queues = ParallelGCThreads;
1199   _task_queues = new G1ScannerTasksQueueSet(n_queues);
1200 
1201   for (uint i = 0; i < n_queues; i++) {
1202     G1ScannerTasksQueue* q = new G1ScannerTasksQueue();
1203     _task_queues->register_queue(i, q);
1204   }
1205 
1206   _gc_tracer_stw->initialize();
1207 
1208   guarantee(_task_queues != nullptr, "task_queues allocation failure.");
1209 }
1210 
1211 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1212                                                                  size_t size,
1213                                                                  size_t translation_factor) {
1214   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1215   // Allocate a new reserved space, preferring to use large pages.
1216   ReservedSpace rs(size, preferred_page_size);
1217   size_t page_size = rs.page_size();
1218   G1RegionToSpaceMapper* result  =
1219     G1RegionToSpaceMapper::create_mapper(rs,
1220                                          size,
1221                                          page_size,
1222                                          HeapRegion::GrainBytes,
1223                                          translation_factor,
1224                                          mtGC);
1225 
1226   os::trace_page_sizes_for_requested_size(description,
1227                                           size,
1228                                           preferred_page_size,
1229                                           rs.base(),
1230                                           rs.size(),
1231                                           page_size);
1232 
1233   return result;
1234 }
1235 
1236 jint G1CollectedHeap::initialize_concurrent_refinement() {
1237   jint ecode = JNI_OK;
1238   _cr = G1ConcurrentRefine::create(policy(), &ecode);
1239   return ecode;
1240 }
1241 
1242 jint G1CollectedHeap::initialize_service_thread() {
1243   _service_thread = new G1ServiceThread();
1244   if (_service_thread->osthread() == nullptr) {
1245     vm_shutdown_during_initialization("Could not create G1ServiceThread");
1246     return JNI_ENOMEM;
1247   }
1248   return JNI_OK;
1249 }
1250 
1251 jint G1CollectedHeap::initialize() {
1252 
1253   // Necessary to satisfy locking discipline assertions.
1254 
1255   MutexLocker x(Heap_lock);
1256 
1257   // While there are no constraints in the GC code that HeapWordSize
1258   // be any particular value, there are multiple other areas in the
1259   // system which believe this to be true (e.g. oop->object_size in some
1260   // cases incorrectly returns the size in wordSize units rather than
1261   // HeapWordSize).
1262   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1263 
1264   size_t init_byte_size = InitialHeapSize;
1265   size_t reserved_byte_size = G1Arguments::heap_reserved_size_bytes();
1266 
1267   // Ensure that the sizes are properly aligned.
1268   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1269   Universe::check_alignment(reserved_byte_size, HeapRegion::GrainBytes, "g1 heap");
1270   Universe::check_alignment(reserved_byte_size, HeapAlignment, "g1 heap");
1271 
1272   // Reserve the maximum.
1273 
1274   // When compressed oops are enabled, the preferred heap base
1275   // is calculated by subtracting the requested size from the
1276   // 32Gb boundary and using the result as the base address for
1277   // heap reservation. If the requested size is not aligned to
1278   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1279   // into the ReservedHeapSpace constructor) then the actual
1280   // base of the reserved heap may end up differing from the
1281   // address that was requested (i.e. the preferred heap base).
1282   // If this happens then we could end up using a non-optimal
1283   // compressed oops mode.
1284 
1285   ReservedHeapSpace heap_rs = Universe::reserve_heap(reserved_byte_size,
1286                                                      HeapAlignment);
1287 
1288   initialize_reserved_region(heap_rs);
1289 
1290   // Create the barrier set for the entire reserved region.
1291   G1CardTable* ct = new G1CardTable(heap_rs.region());
1292   G1BarrierSet* bs = new G1BarrierSet(ct);
1293   bs->initialize();
1294   assert(bs->is_a(BarrierSet::G1BarrierSet), "sanity");
1295   BarrierSet::set_barrier_set(bs);
1296   _card_table = ct;
1297 
1298   {
1299     G1SATBMarkQueueSet& satbqs = bs->satb_mark_queue_set();
1300     satbqs.set_process_completed_buffers_threshold(G1SATBProcessCompletedThreshold);
1301     satbqs.set_buffer_enqueue_threshold_percentage(G1SATBBufferEnqueueingThresholdPercent);
1302   }
1303 
1304   // Create space mappers.
1305   size_t page_size = heap_rs.page_size();
1306   G1RegionToSpaceMapper* heap_storage =
1307     G1RegionToSpaceMapper::create_mapper(heap_rs,
1308                                          heap_rs.size(),
1309                                          page_size,
1310                                          HeapRegion::GrainBytes,
1311                                          1,
1312                                          mtJavaHeap);
1313   if(heap_storage == nullptr) {
1314     vm_shutdown_during_initialization("Could not initialize G1 heap");
1315     return JNI_ERR;
1316   }
1317 
1318   os::trace_page_sizes("Heap",
1319                        MinHeapSize,
1320                        reserved_byte_size,
1321                        heap_rs.base(),
1322                        heap_rs.size(),
1323                        page_size);
1324   heap_storage->set_mapping_changed_listener(&_listener);
1325 
1326   // Create storage for the BOT, card table and the bitmap.
1327   G1RegionToSpaceMapper* bot_storage =
1328     create_aux_memory_mapper("Block Offset Table",
1329                              G1BlockOffsetTable::compute_size(heap_rs.size() / HeapWordSize),
1330                              G1BlockOffsetTable::heap_map_factor());
1331 
1332   G1RegionToSpaceMapper* cardtable_storage =
1333     create_aux_memory_mapper("Card Table",
1334                              G1CardTable::compute_size(heap_rs.size() / HeapWordSize),
1335                              G1CardTable::heap_map_factor());
1336 
1337   size_t bitmap_size = G1CMBitMap::compute_size(heap_rs.size());
1338   G1RegionToSpaceMapper* bitmap_storage =
1339     create_aux_memory_mapper("Mark Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1340 
1341   _hrm.initialize(heap_storage, bitmap_storage, bot_storage, cardtable_storage);
1342   _card_table->initialize(cardtable_storage);
1343 
1344   // 6843694 - ensure that the maximum region index can fit
1345   // in the remembered set structures.
1346   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1347   guarantee((max_reserved_regions() - 1) <= max_region_idx, "too many regions");
1348 
1349   // The G1FromCardCache reserves card with value 0 as "invalid", so the heap must not
1350   // start within the first card.
1351   guarantee((uintptr_t)(heap_rs.base()) >= G1CardTable::card_size(), "Java heap must not start within the first card.");
1352   G1FromCardCache::initialize(max_reserved_regions());
1353   // Also create a G1 rem set.
1354   _rem_set = new G1RemSet(this, _card_table);
1355   _rem_set->initialize(max_reserved_regions());
1356 
1357   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1358   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1359   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1360             "too many cards per region");
1361 
1362   HeapRegionRemSet::initialize(_reserved);
1363 
1364   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1365 
1366   _bot = new G1BlockOffsetTable(reserved(), bot_storage);
1367 
1368   {
1369     size_t granularity = HeapRegion::GrainBytes;
1370 
1371     _region_attr.initialize(reserved(), granularity);
1372   }
1373 
1374   _workers = new WorkerThreads("GC Thread", ParallelGCThreads);
1375   if (_workers == nullptr) {
1376     return JNI_ENOMEM;
1377   }
1378   _workers->initialize_workers();
1379 
1380   _numa->set_region_info(HeapRegion::GrainBytes, page_size);
1381 
1382   // Create the G1ConcurrentMark data structure and thread.
1383   // (Must do this late, so that "max_[reserved_]regions" is defined.)
1384   _cm = new G1ConcurrentMark(this, bitmap_storage);
1385   _cm_thread = _cm->cm_thread();
1386 
1387   // Now expand into the initial heap size.
1388   if (!expand(init_byte_size, _workers)) {
1389     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1390     return JNI_ENOMEM;
1391   }
1392 
1393   // Perform any initialization actions delegated to the policy.
1394   policy()->init(this, &_collection_set);
1395 
1396   jint ecode = initialize_concurrent_refinement();
1397   if (ecode != JNI_OK) {
1398     return ecode;
1399   }
1400 
1401   ecode = initialize_service_thread();
1402   if (ecode != JNI_OK) {
1403     return ecode;
1404   }
1405 
1406   // Create and schedule the periodic gc task on the service thread.
1407   _periodic_gc_task = new G1PeriodicGCTask("Periodic GC Task");
1408   _service_thread->register_task(_periodic_gc_task);
1409 
1410   _free_arena_memory_task = new G1MonotonicArenaFreeMemoryTask("Card Set Free Memory Task");
1411   _service_thread->register_task(_free_arena_memory_task);
1412 
1413   // Here we allocate the dummy HeapRegion that is required by the
1414   // G1AllocRegion class.
1415   HeapRegion* dummy_region = _hrm.get_dummy_region();
1416 
1417   // We'll re-use the same region whether the alloc region will
1418   // require BOT updates or not and, if it doesn't, then a non-young
1419   // region will complain that it cannot support allocations without
1420   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1421   dummy_region->set_eden();
1422   // Make sure it's full.
1423   dummy_region->set_top(dummy_region->end());
1424   G1AllocRegion::setup(this, dummy_region);
1425 
1426   _allocator->init_mutator_alloc_regions();
1427 
1428   // Do create of the monitoring and management support so that
1429   // values in the heap have been properly initialized.
1430   _monitoring_support = new G1MonitoringSupport(this);
1431 
1432   _collection_set.initialize(max_reserved_regions());
1433 
1434   allocation_failure_injector()->reset();
1435 
1436   CPUTimeCounters::create_counter(CPUTimeGroups::CPUTimeType::gc_parallel_workers);
1437   CPUTimeCounters::create_counter(CPUTimeGroups::CPUTimeType::gc_conc_mark);
1438   CPUTimeCounters::create_counter(CPUTimeGroups::CPUTimeType::gc_conc_refine);
1439   CPUTimeCounters::create_counter(CPUTimeGroups::CPUTimeType::gc_service);
1440 
1441   G1InitLogger::print();
1442 
1443   return JNI_OK;
1444 }
1445 
1446 bool G1CollectedHeap::concurrent_mark_is_terminating() const {
1447   return _cm_thread->should_terminate();
1448 }
1449 
1450 void G1CollectedHeap::stop() {
1451   // Stop all concurrent threads. We do this to make sure these threads
1452   // do not continue to execute and access resources (e.g. logging)
1453   // that are destroyed during shutdown.
1454   _cr->stop();
1455   _service_thread->stop();
1456   _cm_thread->stop();
1457 }
1458 
1459 void G1CollectedHeap::safepoint_synchronize_begin() {
1460   SuspendibleThreadSet::synchronize();
1461 }
1462 
1463 void G1CollectedHeap::safepoint_synchronize_end() {
1464   SuspendibleThreadSet::desynchronize();
1465 }
1466 
1467 void G1CollectedHeap::post_initialize() {
1468   CollectedHeap::post_initialize();
1469   ref_processing_init();
1470 }
1471 
1472 void G1CollectedHeap::ref_processing_init() {
1473   // Reference processing in G1 currently works as follows:
1474   //
1475   // * There are two reference processor instances. One is
1476   //   used to record and process discovered references
1477   //   during concurrent marking; the other is used to
1478   //   record and process references during STW pauses
1479   //   (both full and incremental).
1480   // * Both ref processors need to 'span' the entire heap as
1481   //   the regions in the collection set may be dotted around.
1482   //
1483   // * For the concurrent marking ref processor:
1484   //   * Reference discovery is enabled at concurrent start.
1485   //   * Reference discovery is disabled and the discovered
1486   //     references processed etc during remarking.
1487   //   * Reference discovery is MT (see below).
1488   //   * Reference discovery requires a barrier (see below).
1489   //   * Reference processing may or may not be MT
1490   //     (depending on the value of ParallelRefProcEnabled
1491   //     and ParallelGCThreads).
1492   //   * A full GC disables reference discovery by the CM
1493   //     ref processor and abandons any entries on it's
1494   //     discovered lists.
1495   //
1496   // * For the STW processor:
1497   //   * Non MT discovery is enabled at the start of a full GC.
1498   //   * Processing and enqueueing during a full GC is non-MT.
1499   //   * During a full GC, references are processed after marking.
1500   //
1501   //   * Discovery (may or may not be MT) is enabled at the start
1502   //     of an incremental evacuation pause.
1503   //   * References are processed near the end of a STW evacuation pause.
1504   //   * For both types of GC:
1505   //     * Discovery is atomic - i.e. not concurrent.
1506   //     * Reference discovery will not need a barrier.
1507 
1508   _is_alive_closure_cm.initialize(concurrent_mark());
1509   // Concurrent Mark ref processor
1510   _ref_processor_cm =
1511     new ReferenceProcessor(&_is_subject_to_discovery_cm,
1512                            ParallelGCThreads,                              // degree of mt processing
1513                            // We discover with the gc worker threads during Remark, so both
1514                            // thread counts must be considered for discovery.
1515                            MAX2(ParallelGCThreads, ConcGCThreads),         // degree of mt discovery
1516                            true,                                           // Reference discovery is concurrent
1517                            &_is_alive_closure_cm);                         // is alive closure
1518 
1519   // STW ref processor
1520   _ref_processor_stw =
1521     new ReferenceProcessor(&_is_subject_to_discovery_stw,
1522                            ParallelGCThreads,                    // degree of mt processing
1523                            ParallelGCThreads,                    // degree of mt discovery
1524                            false,                                // Reference discovery is not concurrent
1525                            &_is_alive_closure_stw);              // is alive closure
1526 }
1527 
1528 size_t G1CollectedHeap::capacity() const {
1529   return _hrm.length() * HeapRegion::GrainBytes;
1530 }
1531 
1532 size_t G1CollectedHeap::unused_committed_regions_in_bytes() const {
1533   return _hrm.total_free_bytes();
1534 }
1535 
1536 // Computes the sum of the storage used by the various regions.
1537 size_t G1CollectedHeap::used() const {
1538   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
1539   return result;
1540 }
1541 
1542 size_t G1CollectedHeap::used_unlocked() const {
1543   return _summary_bytes_used;
1544 }
1545 
1546 class SumUsedClosure: public HeapRegionClosure {
1547   size_t _used;
1548 public:
1549   SumUsedClosure() : _used(0) {}
1550   bool do_heap_region(HeapRegion* r) {
1551     _used += r->used();
1552     return false;
1553   }
1554   size_t result() { return _used; }
1555 };
1556 
1557 size_t G1CollectedHeap::recalculate_used() const {
1558   SumUsedClosure blk;
1559   heap_region_iterate(&blk);
1560   return blk.result();
1561 }
1562 
1563 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
1564   return GCCause::is_user_requested_gc(cause) && ExplicitGCInvokesConcurrent;
1565 }
1566 
1567 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
1568   switch (cause) {
1569     case GCCause::_g1_humongous_allocation: return true;
1570     case GCCause::_g1_periodic_collection:  return G1PeriodicGCInvokesConcurrent;
1571     case GCCause::_wb_breakpoint:           return true;
1572     case GCCause::_codecache_GC_aggressive: return true;
1573     case GCCause::_codecache_GC_threshold:  return true;
1574     default:                                return is_user_requested_concurrent_full_gc(cause);
1575   }
1576 }
1577 
1578 void G1CollectedHeap::increment_old_marking_cycles_started() {
1579   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
1580          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
1581          "Wrong marking cycle count (started: %d, completed: %d)",
1582          _old_marking_cycles_started, _old_marking_cycles_completed);
1583 
1584   _old_marking_cycles_started++;
1585 }
1586 
1587 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent,
1588                                                              bool whole_heap_examined) {
1589   MonitorLocker ml(G1OldGCCount_lock, Mutex::_no_safepoint_check_flag);
1590 
1591   // We assume that if concurrent == true, then the caller is a
1592   // concurrent thread that was joined the Suspendible Thread
1593   // Set. If there's ever a cheap way to check this, we should add an
1594   // assert here.
1595 
1596   // Given that this method is called at the end of a Full GC or of a
1597   // concurrent cycle, and those can be nested (i.e., a Full GC can
1598   // interrupt a concurrent cycle), the number of full collections
1599   // completed should be either one (in the case where there was no
1600   // nesting) or two (when a Full GC interrupted a concurrent cycle)
1601   // behind the number of full collections started.
1602 
1603   // This is the case for the inner caller, i.e. a Full GC.
1604   assert(concurrent ||
1605          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
1606          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
1607          "for inner caller (Full GC): _old_marking_cycles_started = %u "
1608          "is inconsistent with _old_marking_cycles_completed = %u",
1609          _old_marking_cycles_started, _old_marking_cycles_completed);
1610 
1611   // This is the case for the outer caller, i.e. the concurrent cycle.
1612   assert(!concurrent ||
1613          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
1614          "for outer caller (concurrent cycle): "
1615          "_old_marking_cycles_started = %u "
1616          "is inconsistent with _old_marking_cycles_completed = %u",
1617          _old_marking_cycles_started, _old_marking_cycles_completed);
1618 
1619   _old_marking_cycles_completed += 1;
1620   if (whole_heap_examined) {
1621     // Signal that we have completed a visit to all live objects.
1622     record_whole_heap_examined_timestamp();
1623   }
1624 
1625   // We need to clear the "in_progress" flag in the CM thread before
1626   // we wake up any waiters (especially when ExplicitInvokesConcurrent
1627   // is set) so that if a waiter requests another System.gc() it doesn't
1628   // incorrectly see that a marking cycle is still in progress.
1629   if (concurrent) {
1630     _cm_thread->set_idle();
1631   }
1632 
1633   // Notify threads waiting in System.gc() (with ExplicitGCInvokesConcurrent)
1634   // for a full GC to finish that their wait is over.
1635   ml.notify_all();
1636 }
1637 
1638 // Helper for collect().
1639 static G1GCCounters collection_counters(G1CollectedHeap* g1h) {
1640   MutexLocker ml(Heap_lock);
1641   return G1GCCounters(g1h);
1642 }
1643 
1644 void G1CollectedHeap::collect(GCCause::Cause cause) {
1645   try_collect(cause, collection_counters(this));
1646 }
1647 
1648 // Return true if (x < y) with allowance for wraparound.
1649 static bool gc_counter_less_than(uint x, uint y) {
1650   return (x - y) > (UINT_MAX/2);
1651 }
1652 
1653 // LOG_COLLECT_CONCURRENTLY(cause, msg, args...)
1654 // Macro so msg printing is format-checked.
1655 #define LOG_COLLECT_CONCURRENTLY(cause, ...)                            \
1656   do {                                                                  \
1657     LogTarget(Trace, gc) LOG_COLLECT_CONCURRENTLY_lt;                   \
1658     if (LOG_COLLECT_CONCURRENTLY_lt.is_enabled()) {                     \
1659       ResourceMark rm; /* For thread name. */                           \
1660       LogStream LOG_COLLECT_CONCURRENTLY_s(&LOG_COLLECT_CONCURRENTLY_lt); \
1661       LOG_COLLECT_CONCURRENTLY_s.print("%s: Try Collect Concurrently (%s): ", \
1662                                        Thread::current()->name(),       \
1663                                        GCCause::to_string(cause));      \
1664       LOG_COLLECT_CONCURRENTLY_s.print(__VA_ARGS__);                    \
1665     }                                                                   \
1666   } while (0)
1667 
1668 #define LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, result) \
1669   LOG_COLLECT_CONCURRENTLY(cause, "complete %s", BOOL_TO_STR(result))
1670 
1671 bool G1CollectedHeap::try_collect_concurrently(GCCause::Cause cause,
1672                                                uint gc_counter,
1673                                                uint old_marking_started_before) {
1674   assert_heap_not_locked();
1675   assert(should_do_concurrent_full_gc(cause),
1676          "Non-concurrent cause %s", GCCause::to_string(cause));
1677 
1678   for (uint i = 1; true; ++i) {
1679     // Try to schedule concurrent start evacuation pause that will
1680     // start a concurrent cycle.
1681     LOG_COLLECT_CONCURRENTLY(cause, "attempt %u", i);
1682     VM_G1TryInitiateConcMark op(gc_counter, cause);
1683     VMThread::execute(&op);
1684 
1685     // Request is trivially finished.
1686     if (cause == GCCause::_g1_periodic_collection) {
1687       LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, op.gc_succeeded());
1688       return op.gc_succeeded();
1689     }
1690 
1691     // If VMOp skipped initiating concurrent marking cycle because
1692     // we're terminating, then we're done.
1693     if (op.terminating()) {
1694       LOG_COLLECT_CONCURRENTLY(cause, "skipped: terminating");
1695       return false;
1696     }
1697 
1698     // Lock to get consistent set of values.
1699     uint old_marking_started_after;
1700     uint old_marking_completed_after;
1701     {
1702       MutexLocker ml(Heap_lock);
1703       // Update gc_counter for retrying VMOp if needed. Captured here to be
1704       // consistent with the values we use below for termination tests.  If
1705       // a retry is needed after a possible wait, and another collection
1706       // occurs in the meantime, it will cause our retry to be skipped and
1707       // we'll recheck for termination with updated conditions from that
1708       // more recent collection.  That's what we want, rather than having
1709       // our retry possibly perform an unnecessary collection.
1710       gc_counter = total_collections();
1711       old_marking_started_after = _old_marking_cycles_started;
1712       old_marking_completed_after = _old_marking_cycles_completed;
1713     }
1714 
1715     if (cause == GCCause::_wb_breakpoint) {
1716       if (op.gc_succeeded()) {
1717         LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true);
1718         return true;
1719       }
1720       // When _wb_breakpoint there can't be another cycle or deferred.
1721       assert(!op.cycle_already_in_progress(), "invariant");
1722       assert(!op.whitebox_attached(), "invariant");
1723       // Concurrent cycle attempt might have been cancelled by some other
1724       // collection, so retry.  Unlike other cases below, we want to retry
1725       // even if cancelled by a STW full collection, because we really want
1726       // to start a concurrent cycle.
1727       if (old_marking_started_before != old_marking_started_after) {
1728         LOG_COLLECT_CONCURRENTLY(cause, "ignoring STW full GC");
1729         old_marking_started_before = old_marking_started_after;
1730       }
1731     } else if (!GCCause::is_user_requested_gc(cause)) {
1732       // For an "automatic" (not user-requested) collection, we just need to
1733       // ensure that progress is made.
1734       //
1735       // Request is finished if any of
1736       // (1) the VMOp successfully performed a GC,
1737       // (2) a concurrent cycle was already in progress,
1738       // (3) whitebox is controlling concurrent cycles,
1739       // (4) a new cycle was started (by this thread or some other), or
1740       // (5) a Full GC was performed.
1741       // Cases (4) and (5) are detected together by a change to
1742       // _old_marking_cycles_started.
1743       //
1744       // Note that (1) does not imply (4).  If we're still in the mixed
1745       // phase of an earlier concurrent collection, the request to make the
1746       // collection a concurrent start won't be honored.  If we don't check for
1747       // both conditions we'll spin doing back-to-back collections.
1748       if (op.gc_succeeded() ||
1749           op.cycle_already_in_progress() ||
1750           op.whitebox_attached() ||
1751           (old_marking_started_before != old_marking_started_after)) {
1752         LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true);
1753         return true;
1754       }
1755     } else {                    // User-requested GC.
1756       // For a user-requested collection, we want to ensure that a complete
1757       // full collection has been performed before returning, but without
1758       // waiting for more than needed.
1759 
1760       // For user-requested GCs (unlike non-UR), a successful VMOp implies a
1761       // new cycle was started.  That's good, because it's not clear what we
1762       // should do otherwise.  Trying again just does back to back GCs.
1763       // Can't wait for someone else to start a cycle.  And returning fails
1764       // to meet the goal of ensuring a full collection was performed.
1765       assert(!op.gc_succeeded() ||
1766              (old_marking_started_before != old_marking_started_after),
1767              "invariant: succeeded %s, started before %u, started after %u",
1768              BOOL_TO_STR(op.gc_succeeded()),
1769              old_marking_started_before, old_marking_started_after);
1770 
1771       // Request is finished if a full collection (concurrent or stw)
1772       // was started after this request and has completed, e.g.
1773       // started_before < completed_after.
1774       if (gc_counter_less_than(old_marking_started_before,
1775                                old_marking_completed_after)) {
1776         LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true);
1777         return true;
1778       }
1779 
1780       if (old_marking_started_after != old_marking_completed_after) {
1781         // If there is an in-progress cycle (possibly started by us), then
1782         // wait for that cycle to complete, e.g.
1783         // while completed_now < started_after.
1784         LOG_COLLECT_CONCURRENTLY(cause, "wait");
1785         MonitorLocker ml(G1OldGCCount_lock);
1786         while (gc_counter_less_than(_old_marking_cycles_completed,
1787                                     old_marking_started_after)) {
1788           ml.wait();
1789         }
1790         // Request is finished if the collection we just waited for was
1791         // started after this request.
1792         if (old_marking_started_before != old_marking_started_after) {
1793           LOG_COLLECT_CONCURRENTLY(cause, "complete after wait");
1794           return true;
1795         }
1796       }
1797 
1798       // If VMOp was successful then it started a new cycle that the above
1799       // wait &etc should have recognized as finishing this request.  This
1800       // differs from a non-user-request, where gc_succeeded does not imply
1801       // a new cycle was started.
1802       assert(!op.gc_succeeded(), "invariant");
1803 
1804       if (op.cycle_already_in_progress()) {
1805         // If VMOp failed because a cycle was already in progress, it
1806         // is now complete.  But it didn't finish this user-requested
1807         // GC, so try again.
1808         LOG_COLLECT_CONCURRENTLY(cause, "retry after in-progress");
1809         continue;
1810       } else if (op.whitebox_attached()) {
1811         // If WhiteBox wants control, wait for notification of a state
1812         // change in the controller, then try again.  Don't wait for
1813         // release of control, since collections may complete while in
1814         // control.  Note: This won't recognize a STW full collection
1815         // while waiting; we can't wait on multiple monitors.
1816         LOG_COLLECT_CONCURRENTLY(cause, "whitebox control stall");
1817         MonitorLocker ml(ConcurrentGCBreakpoints::monitor());
1818         if (ConcurrentGCBreakpoints::is_controlled()) {
1819           ml.wait();
1820         }
1821         continue;
1822       }
1823     }
1824 
1825     // Collection failed and should be retried.
1826     assert(op.transient_failure(), "invariant");
1827 
1828     LOG_COLLECT_CONCURRENTLY(cause, "retry");
1829   }
1830 }
1831 
1832 bool G1CollectedHeap::try_collect_fullgc(GCCause::Cause cause,
1833                                          const G1GCCounters& counters_before) {
1834   assert_heap_not_locked();
1835 
1836   while(true) {
1837     VM_G1CollectFull op(counters_before.total_collections(),
1838                         counters_before.total_full_collections(),
1839                         cause);
1840     VMThread::execute(&op);
1841 
1842     // Request is trivially finished.
1843     if (!GCCause::is_explicit_full_gc(cause) || op.gc_succeeded()) {
1844       return op.gc_succeeded();
1845     }
1846 
1847     {
1848       MutexLocker ml(Heap_lock);
1849       if (counters_before.total_full_collections() != total_full_collections()) {
1850         return true;
1851       }
1852     }
1853   }
1854 }
1855 
1856 bool G1CollectedHeap::try_collect(GCCause::Cause cause,
1857                                   const G1GCCounters& counters_before) {
1858   if (should_do_concurrent_full_gc(cause)) {
1859     return try_collect_concurrently(cause,
1860                                     counters_before.total_collections(),
1861                                     counters_before.old_marking_cycles_started());
1862   } else if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
1863              DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
1864 
1865     // Schedule a standard evacuation pause. We're setting word_size
1866     // to 0 which means that we are not requesting a post-GC allocation.
1867     VM_G1CollectForAllocation op(0,     /* word_size */
1868                                  counters_before.total_collections(),
1869                                  cause);
1870     VMThread::execute(&op);
1871     return op.gc_succeeded();
1872   } else {
1873     // Schedule a Full GC.
1874     return try_collect_fullgc(cause, counters_before);
1875   }
1876 }
1877 
1878 void G1CollectedHeap::start_concurrent_gc_for_metadata_allocation(GCCause::Cause gc_cause) {
1879   GCCauseSetter x(this, gc_cause);
1880 
1881   // At this point we are supposed to start a concurrent cycle. We
1882   // will do so if one is not already in progress.
1883   bool should_start = policy()->force_concurrent_start_if_outside_cycle(gc_cause);
1884   if (should_start) {
1885     do_collection_pause_at_safepoint();
1886   }
1887 }
1888 
1889 bool G1CollectedHeap::is_in(const void* p) const {
1890   return is_in_reserved(p) && _hrm.is_available(addr_to_region(p));
1891 }
1892 
1893 // Iteration functions.
1894 
1895 // Iterates an ObjectClosure over all objects within a HeapRegion.
1896 
1897 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
1898   ObjectClosure* _cl;
1899 public:
1900   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
1901   bool do_heap_region(HeapRegion* r) {
1902     if (!r->is_continues_humongous()) {
1903       r->object_iterate(_cl);
1904     }
1905     return false;
1906   }
1907 };
1908 
1909 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
1910   IterateObjectClosureRegionClosure blk(cl);
1911   heap_region_iterate(&blk);
1912 }
1913 
1914 class G1ParallelObjectIterator : public ParallelObjectIteratorImpl {
1915 private:
1916   G1CollectedHeap*  _heap;
1917   HeapRegionClaimer _claimer;
1918 
1919 public:
1920   G1ParallelObjectIterator(uint thread_num) :
1921       _heap(G1CollectedHeap::heap()),
1922       _claimer(thread_num == 0 ? G1CollectedHeap::heap()->workers()->active_workers() : thread_num) {}
1923 
1924   virtual void object_iterate(ObjectClosure* cl, uint worker_id) {
1925     _heap->object_iterate_parallel(cl, worker_id, &_claimer);
1926   }
1927 };
1928 
1929 ParallelObjectIteratorImpl* G1CollectedHeap::parallel_object_iterator(uint thread_num) {
1930   return new G1ParallelObjectIterator(thread_num);
1931 }
1932 
1933 void G1CollectedHeap::object_iterate_parallel(ObjectClosure* cl, uint worker_id, HeapRegionClaimer* claimer) {
1934   IterateObjectClosureRegionClosure blk(cl);
1935   heap_region_par_iterate_from_worker_offset(&blk, claimer, worker_id);
1936 }
1937 
1938 void G1CollectedHeap::keep_alive(oop obj) {
1939   G1BarrierSet::enqueue_preloaded(obj);
1940 }
1941 
1942 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
1943   _hrm.iterate(cl);
1944 }
1945 
1946 void G1CollectedHeap::heap_region_iterate(HeapRegionIndexClosure* cl) const {
1947   _hrm.iterate(cl);
1948 }
1949 
1950 void G1CollectedHeap::heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
1951                                                                  HeapRegionClaimer *hrclaimer,
1952                                                                  uint worker_id) const {
1953   _hrm.par_iterate(cl, hrclaimer, hrclaimer->offset_for_worker(worker_id));
1954 }
1955 
1956 void G1CollectedHeap::heap_region_par_iterate_from_start(HeapRegionClosure* cl,
1957                                                          HeapRegionClaimer *hrclaimer) const {
1958   _hrm.par_iterate(cl, hrclaimer, 0);
1959 }
1960 
1961 void G1CollectedHeap::collection_set_iterate_all(HeapRegionClosure* cl) {
1962   _collection_set.iterate(cl);
1963 }
1964 
1965 void G1CollectedHeap::collection_set_par_iterate_all(HeapRegionClosure* cl,
1966                                                      HeapRegionClaimer* hr_claimer,
1967                                                      uint worker_id) {
1968   _collection_set.par_iterate(cl, hr_claimer, worker_id);
1969 }
1970 
1971 void G1CollectedHeap::collection_set_iterate_increment_from(HeapRegionClosure *cl,
1972                                                             HeapRegionClaimer* hr_claimer,
1973                                                             uint worker_id) {
1974   _collection_set.iterate_incremental_part_from(cl, hr_claimer, worker_id);
1975 }
1976 
1977 void G1CollectedHeap::par_iterate_regions_array(HeapRegionClosure* cl,
1978                                                 HeapRegionClaimer* hr_claimer,
1979                                                 const uint regions[],
1980                                                 size_t length,
1981                                                 uint worker_id) const {
1982   assert_at_safepoint();
1983   if (length == 0) {
1984     return;
1985   }
1986   uint total_workers = workers()->active_workers();
1987 
1988   size_t start_pos = (worker_id * length) / total_workers;
1989   size_t cur_pos = start_pos;
1990 
1991   do {
1992     uint region_idx = regions[cur_pos];
1993     if (hr_claimer == nullptr || hr_claimer->claim_region(region_idx)) {
1994       HeapRegion* r = region_at(region_idx);
1995       bool result = cl->do_heap_region(r);
1996       guarantee(!result, "Must not cancel iteration");
1997     }
1998 
1999     cur_pos++;
2000     if (cur_pos == length) {
2001       cur_pos = 0;
2002     }
2003   } while (cur_pos != start_pos);
2004 }
2005 
2006 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2007   HeapRegion* hr = heap_region_containing(addr);
2008   // The CollectedHeap API requires us to not fail for any given address within
2009   // the heap. HeapRegion::block_start() has been optimized to not accept addresses
2010   // outside of the allocated area.
2011   if (addr >= hr->top()) {
2012     return nullptr;
2013   }
2014   return hr->block_start(addr);
2015 }
2016 
2017 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2018   HeapRegion* hr = heap_region_containing(addr);
2019   return hr->block_is_obj(addr, hr->parsable_bottom_acquire());
2020 }
2021 
2022 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2023   return (_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2024 }
2025 
2026 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2027   return _eden.length() * HeapRegion::GrainBytes;
2028 }
2029 
2030 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2031 // must be equal to the humongous object limit.
2032 size_t G1CollectedHeap::max_tlab_size() const {
2033   return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
2034 }
2035 
2036 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2037   return _allocator->unsafe_max_tlab_alloc();
2038 }
2039 
2040 size_t G1CollectedHeap::max_capacity() const {
2041   return max_regions() * HeapRegion::GrainBytes;
2042 }
2043 
2044 void G1CollectedHeap::prepare_for_verify() {
2045   _verifier->prepare_for_verify();
2046 }
2047 
2048 void G1CollectedHeap::verify(VerifyOption vo) {
2049   _verifier->verify(vo);
2050 }
2051 
2052 bool G1CollectedHeap::supports_concurrent_gc_breakpoints() const {
2053   return true;
2054 }
2055 
2056 class PrintRegionClosure: public HeapRegionClosure {
2057   outputStream* _st;
2058 public:
2059   PrintRegionClosure(outputStream* st) : _st(st) {}
2060   bool do_heap_region(HeapRegion* r) {
2061     r->print_on(_st);
2062     return false;
2063   }
2064 };
2065 
2066 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2067                                        const HeapRegion* hr,
2068                                        const VerifyOption vo) const {
2069   switch (vo) {
2070     case VerifyOption::G1UseConcMarking: return is_obj_dead(obj, hr);
2071     case VerifyOption::G1UseFullMarking: return is_obj_dead_full(obj, hr);
2072     default:                             ShouldNotReachHere();
2073   }
2074   return false; // keep some compilers happy
2075 }
2076 
2077 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2078                                        const VerifyOption vo) const {
2079   switch (vo) {
2080     case VerifyOption::G1UseConcMarking: return is_obj_dead(obj);
2081     case VerifyOption::G1UseFullMarking: return is_obj_dead_full(obj);
2082     default:                             ShouldNotReachHere();
2083   }
2084   return false; // keep some compilers happy
2085 }
2086 
2087 void G1CollectedHeap::print_heap_regions() const {
2088   LogTarget(Trace, gc, heap, region) lt;
2089   if (lt.is_enabled()) {
2090     LogStream ls(lt);
2091     print_regions_on(&ls);
2092   }
2093 }
2094 
2095 void G1CollectedHeap::print_on(outputStream* st) const {
2096   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2097   st->print(" %-20s", "garbage-first heap");
2098   st->print(" total reserved %zuK, committed %zuK, used %zuK",
2099             _hrm.reserved().byte_size()/K, capacity()/K, heap_used/K);
2100   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ")",
2101             p2i(_hrm.reserved().start()),
2102             p2i(_hrm.reserved().end()));
2103   st->cr();
2104   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2105   uint young_regions = young_regions_count();
2106   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2107             (size_t) young_regions * HeapRegion::GrainBytes / K);
2108   uint survivor_regions = survivor_regions_count();
2109   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2110             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2111   st->cr();
2112   if (_numa->is_enabled()) {
2113     uint num_nodes = _numa->num_active_nodes();
2114     st->print("  remaining free region(s) on each NUMA node: ");
2115     const uint* node_ids = _numa->node_ids();
2116     for (uint node_index = 0; node_index < num_nodes; node_index++) {
2117       uint num_free_regions = _hrm.num_free_regions(node_index);
2118       st->print("%u=%u ", node_ids[node_index], num_free_regions);
2119     }
2120     st->cr();
2121   }
2122   MetaspaceUtils::print_on(st);
2123 }
2124 
2125 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2126   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2127                "HS=humongous(starts), HC=humongous(continues), "
2128                "CS=collection set, F=free, "
2129                "TAMS=top-at-mark-start, "
2130                "PB=parsable bottom");
2131   PrintRegionClosure blk(st);
2132   heap_region_iterate(&blk);
2133 }
2134 
2135 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2136   print_on(st);
2137 
2138   // Print the per-region information.
2139   st->cr();
2140   print_regions_on(st);
2141 }
2142 
2143 void G1CollectedHeap::print_on_error(outputStream* st) const {
2144   this->CollectedHeap::print_on_error(st);
2145 
2146   if (_cm != nullptr) {
2147     st->cr();
2148     _cm->print_on_error(st);
2149   }
2150 }
2151 
2152 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2153   workers()->threads_do(tc);
2154   tc->do_thread(_cm_thread);
2155   _cm->threads_do(tc);
2156   _cr->threads_do(tc);
2157   tc->do_thread(_service_thread);
2158 }
2159 
2160 void G1CollectedHeap::print_tracing_info() const {
2161   rem_set()->print_summary_info();
2162   concurrent_mark()->print_summary_info();
2163 }
2164 
2165 bool G1CollectedHeap::print_location(outputStream* st, void* addr) const {
2166   return BlockLocationPrinter<G1CollectedHeap>::print_location(st, addr);
2167 }
2168 
2169 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2170 
2171   size_t eden_used_bytes = _monitoring_support->eden_space_used();
2172   size_t survivor_used_bytes = _monitoring_support->survivor_space_used();
2173   size_t old_gen_used_bytes = _monitoring_support->old_gen_used();
2174   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2175 
2176   size_t eden_capacity_bytes =
2177     (policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2178 
2179   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2180   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes, eden_capacity_bytes,
2181                        survivor_used_bytes, old_gen_used_bytes, num_regions());
2182 }
2183 
2184 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2185   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2186                        stats->unused(), stats->used(), stats->region_end_waste(),
2187                        stats->regions_filled(), stats->num_plab_filled(),
2188                        stats->direct_allocated(), stats->num_direct_allocated(),
2189                        stats->failure_used(), stats->failure_waste());
2190 }
2191 
2192 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2193   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2194   gc_tracer->report_gc_heap_summary(when, heap_summary);
2195 
2196   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2197   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2198 }
2199 
2200 void G1CollectedHeap::gc_prologue(bool full) {
2201   // Update common counters.
2202   increment_total_collections(full /* full gc */);
2203   if (full || collector_state()->in_concurrent_start_gc()) {
2204     increment_old_marking_cycles_started();
2205   }
2206 }
2207 
2208 void G1CollectedHeap::gc_epilogue(bool full) {
2209   // Update common counters.
2210   if (full) {
2211     // Update the number of full collections that have been completed.
2212     increment_old_marking_cycles_completed(false /* concurrent */, true /* liveness_completed */);
2213   }
2214 
2215 #if COMPILER2_OR_JVMCI
2216   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2217 #endif
2218 
2219   // We have just completed a GC. Update the soft reference
2220   // policy with the new heap occupancy
2221   Universe::heap()->update_capacity_and_used_at_gc();
2222 
2223   _collection_pause_end = Ticks::now();
2224 
2225   _free_arena_memory_task->notify_new_stats(&_young_gen_card_set_stats,
2226                                             &_collection_set_candidates_card_set_stats);
2227 
2228   update_parallel_gc_threads_cpu_time();
2229 }
2230 
2231 uint G1CollectedHeap::uncommit_regions(uint region_limit) {
2232   return _hrm.uncommit_inactive_regions(region_limit);
2233 }
2234 
2235 bool G1CollectedHeap::has_uncommittable_regions() {
2236   return _hrm.has_inactive_regions();
2237 }
2238 
2239 void G1CollectedHeap::uncommit_regions_if_necessary() {
2240   if (has_uncommittable_regions()) {
2241     G1UncommitRegionTask::enqueue();
2242   }
2243 }
2244 
2245 void G1CollectedHeap::verify_numa_regions(const char* desc) {
2246   LogTarget(Trace, gc, heap, verify) lt;
2247 
2248   if (lt.is_enabled()) {
2249     LogStream ls(lt);
2250     // Iterate all heap regions to print matching between preferred numa id and actual numa id.
2251     G1NodeIndexCheckClosure cl(desc, _numa, &ls);
2252     heap_region_iterate(&cl);
2253   }
2254 }
2255 
2256 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2257                                                uint gc_count_before,
2258                                                bool* succeeded,
2259                                                GCCause::Cause gc_cause) {
2260   assert_heap_not_locked_and_not_at_safepoint();
2261   VM_G1CollectForAllocation op(word_size, gc_count_before, gc_cause);
2262   VMThread::execute(&op);
2263 
2264   HeapWord* result = op.result();
2265   bool ret_succeeded = op.prologue_succeeded() && op.gc_succeeded();
2266   assert(result == nullptr || ret_succeeded,
2267          "the result should be null if the VM did not succeed");
2268   *succeeded = ret_succeeded;
2269 
2270   assert_heap_not_locked();
2271   return result;
2272 }
2273 
2274 void G1CollectedHeap::start_concurrent_cycle(bool concurrent_operation_is_full_mark) {
2275   assert(!_cm_thread->in_progress(), "Can not start concurrent operation while in progress");
2276 
2277   MutexLocker x(CGC_lock, Mutex::_no_safepoint_check_flag);
2278   if (concurrent_operation_is_full_mark) {
2279     _cm->post_concurrent_mark_start();
2280     _cm_thread->start_full_mark();
2281   } else {
2282     _cm->post_concurrent_undo_start();
2283     _cm_thread->start_undo_mark();
2284   }
2285   CGC_lock->notify();
2286 }
2287 
2288 bool G1CollectedHeap::is_potential_eager_reclaim_candidate(HeapRegion* r) const {
2289   // We don't nominate objects with many remembered set entries, on
2290   // the assumption that such objects are likely still live.
2291   HeapRegionRemSet* rem_set = r->rem_set();
2292 
2293   return rem_set->occupancy_less_or_equal_than(G1EagerReclaimRemSetThreshold);
2294 }
2295 
2296 #ifndef PRODUCT
2297 void G1CollectedHeap::verify_region_attr_remset_is_tracked() {
2298   class VerifyRegionAttrRemSet : public HeapRegionClosure {
2299   public:
2300     virtual bool do_heap_region(HeapRegion* r) {
2301       G1CollectedHeap* g1h = G1CollectedHeap::heap();
2302       bool const remset_is_tracked = g1h->region_attr(r->bottom()).remset_is_tracked();
2303       assert(r->rem_set()->is_tracked() == remset_is_tracked,
2304              "Region %u remset tracking status (%s) different to region attribute (%s)",
2305              r->hrm_index(), BOOL_TO_STR(r->rem_set()->is_tracked()), BOOL_TO_STR(remset_is_tracked));
2306       return false;
2307     }
2308   } cl;
2309   heap_region_iterate(&cl);
2310 }
2311 #endif
2312 
2313 void G1CollectedHeap::update_parallel_gc_threads_cpu_time() {
2314   assert(Thread::current()->is_VM_thread(),
2315          "Must be called from VM thread to avoid races");
2316   if (!UsePerfData || !os::is_thread_cpu_time_supported()) {
2317     return;
2318   }
2319 
2320   // Ensure ThreadTotalCPUTimeClosure destructor is called before publishing gc
2321   // time.
2322   {
2323     ThreadTotalCPUTimeClosure tttc(CPUTimeGroups::CPUTimeType::gc_parallel_workers);
2324     // Currently parallel worker threads never terminate (JDK-8081682), so it is
2325     // safe for VMThread to read their CPU times. However, if JDK-8087340 is
2326     // resolved so they terminate, we should rethink if it is still safe.
2327     workers()->threads_do(&tttc);
2328   }
2329 
2330   CPUTimeCounters::publish_gc_total_cpu_time();
2331 }
2332 
2333 void G1CollectedHeap::start_new_collection_set() {
2334   collection_set()->start_incremental_building();
2335 
2336   clear_region_attr();
2337 
2338   guarantee(_eden.length() == 0, "eden should have been cleared");
2339   policy()->transfer_survivors_to_cset(survivor());
2340 
2341   // We redo the verification but now wrt to the new CSet which
2342   // has just got initialized after the previous CSet was freed.
2343   _cm->verify_no_collection_set_oops();
2344 }
2345 
2346 G1HeapVerifier::G1VerifyType G1CollectedHeap::young_collection_verify_type() const {
2347   if (collector_state()->in_concurrent_start_gc()) {
2348     return G1HeapVerifier::G1VerifyConcurrentStart;
2349   } else if (collector_state()->in_young_only_phase()) {
2350     return G1HeapVerifier::G1VerifyYoungNormal;
2351   } else {
2352     return G1HeapVerifier::G1VerifyMixed;
2353   }
2354 }
2355 
2356 void G1CollectedHeap::verify_before_young_collection(G1HeapVerifier::G1VerifyType type) {
2357   if (!VerifyBeforeGC) {
2358     return;
2359   }
2360   if (!G1HeapVerifier::should_verify(type)) {
2361     return;
2362   }
2363   Ticks start = Ticks::now();
2364   _verifier->prepare_for_verify();
2365   _verifier->verify_region_sets_optional();
2366   _verifier->verify_dirty_young_regions();
2367   _verifier->verify_before_gc();
2368   verify_numa_regions("GC Start");
2369   phase_times()->record_verify_before_time_ms((Ticks::now() - start).seconds() * MILLIUNITS);
2370 }
2371 
2372 void G1CollectedHeap::verify_after_young_collection(G1HeapVerifier::G1VerifyType type) {
2373   if (!VerifyAfterGC) {
2374     return;
2375   }
2376   if (!G1HeapVerifier::should_verify(type)) {
2377     return;
2378   }
2379   Ticks start = Ticks::now();
2380   _verifier->verify_after_gc();
2381   verify_numa_regions("GC End");
2382   _verifier->verify_region_sets_optional();
2383 
2384   if (collector_state()->in_concurrent_start_gc()) {
2385     log_debug(gc, verify)("Marking state");
2386     _verifier->verify_marking_state();
2387   }
2388 
2389   phase_times()->record_verify_after_time_ms((Ticks::now() - start).seconds() * MILLIUNITS);
2390 }
2391 
2392 void G1CollectedHeap::expand_heap_after_young_collection(){
2393   size_t expand_bytes = _heap_sizing_policy->young_collection_expansion_amount();
2394   if (expand_bytes > 0) {
2395     // No need for an ergo logging here,
2396     // expansion_amount() does this when it returns a value > 0.
2397     double expand_ms = 0.0;
2398     if (!expand(expand_bytes, _workers, &expand_ms)) {
2399       // We failed to expand the heap. Cannot do anything about it.
2400     }
2401     phase_times()->record_expand_heap_time(expand_ms);
2402   }
2403 }
2404 
2405 bool G1CollectedHeap::do_collection_pause_at_safepoint() {
2406   assert_at_safepoint_on_vm_thread();
2407   guarantee(!is_gc_active(), "collection is not reentrant");
2408 
2409   do_collection_pause_at_safepoint_helper();
2410   return true;
2411 }
2412 
2413 G1HeapPrinterMark::G1HeapPrinterMark(G1CollectedHeap* g1h) : _g1h(g1h), _heap_transition(g1h) {
2414   // This summary needs to be printed before incrementing total collections.
2415   _g1h->rem_set()->print_periodic_summary_info("Before GC RS summary",
2416                                                _g1h->total_collections(),
2417                                                true /* show_thread_times */);
2418   _g1h->print_heap_before_gc();
2419   _g1h->print_heap_regions();
2420 }
2421 
2422 G1HeapPrinterMark::~G1HeapPrinterMark() {
2423   _g1h->policy()->print_age_table();
2424   _g1h->rem_set()->print_coarsen_stats();
2425   // We are at the end of the GC. Total collections has already been increased.
2426   _g1h->rem_set()->print_periodic_summary_info("After GC RS summary",
2427                                                _g1h->total_collections() - 1,
2428                                                false /* show_thread_times */);
2429 
2430   _heap_transition.print();
2431   _g1h->print_heap_regions();
2432   _g1h->print_heap_after_gc();
2433   // Print NUMA statistics.
2434   _g1h->numa()->print_statistics();
2435 }
2436 
2437 G1JFRTracerMark::G1JFRTracerMark(STWGCTimer* timer, GCTracer* tracer) :
2438   _timer(timer), _tracer(tracer) {
2439 
2440   _timer->register_gc_start();
2441   _tracer->report_gc_start(G1CollectedHeap::heap()->gc_cause(), _timer->gc_start());
2442   G1CollectedHeap::heap()->trace_heap_before_gc(_tracer);
2443 }
2444 
2445 G1JFRTracerMark::~G1JFRTracerMark() {
2446   G1CollectedHeap::heap()->trace_heap_after_gc(_tracer);
2447   _timer->register_gc_end();
2448   _tracer->report_gc_end(_timer->gc_end(), _timer->time_partitions());
2449 }
2450 
2451 void G1CollectedHeap::prepare_for_mutator_after_young_collection() {
2452   Ticks start = Ticks::now();
2453 
2454   _survivor_evac_stats.adjust_desired_plab_size();
2455   _old_evac_stats.adjust_desired_plab_size();
2456 
2457   // Start a new incremental collection set for the mutator phase.
2458   start_new_collection_set();
2459   _allocator->init_mutator_alloc_regions();
2460 
2461   phase_times()->record_prepare_for_mutator_time_ms((Ticks::now() - start).seconds() * 1000.0);
2462 }
2463 
2464 void G1CollectedHeap::retire_tlabs() {
2465   ensure_parsability(true);
2466 }
2467 
2468 void G1CollectedHeap::flush_region_pin_cache() {
2469   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *thread = jtiwh.next(); ) {
2470     G1ThreadLocalData::pin_count_cache(thread).flush();
2471   }
2472 }
2473 
2474 void G1CollectedHeap::do_collection_pause_at_safepoint_helper() {
2475   ResourceMark rm;
2476 
2477   IsGCActiveMark active_gc_mark;
2478   GCIdMark gc_id_mark;
2479   SvcGCMarker sgcm(SvcGCMarker::MINOR);
2480 
2481   GCTraceCPUTime tcpu(_gc_tracer_stw);
2482 
2483   _bytes_used_during_gc = 0;
2484 
2485   policy()->decide_on_concurrent_start_pause();
2486   // Record whether this pause may need to trigger a concurrent operation. Later,
2487   // when we signal the G1ConcurrentMarkThread, the collector state has already
2488   // been reset for the next pause.
2489   bool should_start_concurrent_mark_operation = collector_state()->in_concurrent_start_gc();
2490 
2491   // Perform the collection.
2492   G1YoungCollector collector(gc_cause());
2493   collector.collect();
2494 
2495   // It should now be safe to tell the concurrent mark thread to start
2496   // without its logging output interfering with the logging output
2497   // that came from the pause.
2498   if (should_start_concurrent_mark_operation) {
2499     verifier()->verify_bitmap_clear(true /* above_tams_only */);
2500     // CAUTION: after the start_concurrent_cycle() call below, the concurrent marking
2501     // thread(s) could be running concurrently with us. Make sure that anything
2502     // after this point does not assume that we are the only GC thread running.
2503     // Note: of course, the actual marking work will not start until the safepoint
2504     // itself is released in SuspendibleThreadSet::desynchronize().
2505     start_concurrent_cycle(collector.concurrent_operation_is_full_mark());
2506     ConcurrentGCBreakpoints::notify_idle_to_active();
2507   }
2508 }
2509 
2510 void G1CollectedHeap::complete_cleaning(bool class_unloading_occurred) {
2511   uint num_workers = workers()->active_workers();
2512   G1ParallelCleaningTask unlink_task(num_workers, class_unloading_occurred);
2513   workers()->run_task(&unlink_task);
2514 }
2515 
2516 void G1CollectedHeap::unload_classes_and_code(const char* description, BoolObjectClosure* is_alive, GCTimer* timer) {
2517   GCTraceTime(Debug, gc, phases) debug(description, timer);
2518 
2519   ClassUnloadingContext ctx(workers()->active_workers(),
2520                             false /* unregister_nmethods_during_purge */,
2521                             false /* lock_nmethod_free_separately */);
2522   {
2523     CodeCache::UnlinkingScope scope(is_alive);
2524     bool unloading_occurred = SystemDictionary::do_unloading(timer);
2525     GCTraceTime(Debug, gc, phases) t("G1 Complete Cleaning", timer);
2526     complete_cleaning(unloading_occurred);
2527   }
2528   {
2529     GCTraceTime(Debug, gc, phases) t("Purge Unlinked NMethods", timer);
2530     ctx.purge_nmethods();
2531   }
2532   {
2533     GCTraceTime(Debug, gc, phases) ur("Unregister NMethods", timer);
2534     G1CollectedHeap::heap()->bulk_unregister_nmethods();
2535   }
2536   {
2537     GCTraceTime(Debug, gc, phases) t("Free Code Blobs", timer);
2538     ctx.free_nmethods();
2539   }
2540   {
2541     GCTraceTime(Debug, gc, phases) t("Purge Class Loader Data", timer);
2542     ClassLoaderDataGraph::purge(true /* at_safepoint */);
2543     DEBUG_ONLY(MetaspaceUtils::verify();)
2544   }
2545 }
2546 
2547 class G1BulkUnregisterNMethodTask : public WorkerTask {
2548   HeapRegionClaimer _hrclaimer;
2549 
2550   class UnregisterNMethodsHeapRegionClosure : public HeapRegionClosure {
2551   public:
2552 
2553     bool do_heap_region(HeapRegion* hr) {
2554       hr->rem_set()->bulk_remove_code_roots();
2555       return false;
2556     }
2557   } _cl;
2558 
2559 public:
2560   G1BulkUnregisterNMethodTask(uint num_workers)
2561   : WorkerTask("G1 Remove Unlinked NMethods From Code Root Set Task"),
2562     _hrclaimer(num_workers) { }
2563 
2564   void work(uint worker_id) {
2565     G1CollectedHeap::heap()->heap_region_par_iterate_from_worker_offset(&_cl, &_hrclaimer, worker_id);
2566   }
2567 };
2568 
2569 void G1CollectedHeap::bulk_unregister_nmethods() {
2570   uint num_workers = workers()->active_workers();
2571   G1BulkUnregisterNMethodTask t(num_workers);
2572   workers()->run_task(&t);
2573 }
2574 
2575 bool G1STWSubjectToDiscoveryClosure::do_object_b(oop obj) {
2576   assert(obj != nullptr, "must not be null");
2577   assert(_g1h->is_in_reserved(obj), "Trying to discover obj " PTR_FORMAT " not in heap", p2i(obj));
2578   // The areas the CM and STW ref processor manage must be disjoint. The is_in_cset() below
2579   // may falsely indicate that this is not the case here: however the collection set only
2580   // contains old regions when concurrent mark is not running.
2581   return _g1h->is_in_cset(obj) || _g1h->heap_region_containing(obj)->is_survivor();
2582 }
2583 
2584 void G1CollectedHeap::make_pending_list_reachable() {
2585   if (collector_state()->in_concurrent_start_gc()) {
2586     oop pll_head = Universe::reference_pending_list();
2587     if (pll_head != nullptr) {
2588       // Any valid worker id is fine here as we are in the VM thread and single-threaded.
2589       _cm->mark_in_bitmap(0 /* worker_id */, pll_head);
2590     }
2591   }
2592 }
2593 
2594 void G1CollectedHeap::set_humongous_stats(uint num_humongous_total, uint num_humongous_candidates) {
2595   _num_humongous_objects = num_humongous_total;
2596   _num_humongous_reclaim_candidates = num_humongous_candidates;
2597 }
2598 
2599 bool G1CollectedHeap::should_sample_collection_set_candidates() const {
2600   const G1CollectionSetCandidates* candidates = collection_set()->candidates();
2601   return !candidates->is_empty();
2602 }
2603 
2604 void G1CollectedHeap::set_collection_set_candidates_stats(G1MonotonicArenaMemoryStats& stats) {
2605   _collection_set_candidates_card_set_stats = stats;
2606 }
2607 
2608 void G1CollectedHeap::set_young_gen_card_set_stats(const G1MonotonicArenaMemoryStats& stats) {
2609   _young_gen_card_set_stats = stats;
2610 }
2611 
2612 void G1CollectedHeap::record_obj_copy_mem_stats() {
2613   policy()->old_gen_alloc_tracker()->
2614     add_allocated_bytes_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
2615 
2616   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
2617                                                create_g1_evac_summary(&_old_evac_stats));
2618 }
2619 
2620 void G1CollectedHeap::clear_bitmap_for_region(HeapRegion* hr) {
2621   concurrent_mark()->clear_bitmap_for_region(hr);
2622 }
2623 
2624 void G1CollectedHeap::free_region(HeapRegion* hr, FreeRegionList* free_list) {
2625   assert(!hr->is_free(), "the region should not be free");
2626   assert(!hr->is_empty(), "the region should not be empty");
2627   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
2628   assert(!hr->has_pinned_objects(),
2629          "must not free a region which contains pinned objects");
2630 
2631   // Reset region metadata to allow reuse.
2632   hr->hr_clear(true /* clear_space */);
2633   _policy->remset_tracker()->update_at_free(hr);
2634 
2635   if (free_list != nullptr) {
2636     free_list->add_ordered(hr);
2637   }
2638 }
2639 
2640 void G1CollectedHeap::retain_region(HeapRegion* hr) {
2641   MutexLocker x(G1RareEvent_lock, Mutex::_no_safepoint_check_flag);
2642   collection_set()->candidates()->add_retained_region_unsorted(hr);
2643 }
2644 
2645 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
2646                                             FreeRegionList* free_list) {
2647   assert(hr->is_humongous(), "this is only for humongous regions");
2648   hr->clear_humongous();
2649   free_region(hr, free_list);
2650 }
2651 
2652 void G1CollectedHeap::remove_from_old_gen_sets(const uint old_regions_removed,
2653                                                const uint humongous_regions_removed) {
2654   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
2655     MutexLocker x(OldSets_lock, Mutex::_no_safepoint_check_flag);
2656     _old_set.bulk_remove(old_regions_removed);
2657     _humongous_set.bulk_remove(humongous_regions_removed);
2658   }
2659 
2660 }
2661 
2662 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
2663   assert(list != nullptr, "list can't be null");
2664   if (!list->is_empty()) {
2665     MutexLocker x(FreeList_lock, Mutex::_no_safepoint_check_flag);
2666     _hrm.insert_list_into_free_list(list);
2667   }
2668 }
2669 
2670 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
2671   decrease_used(bytes);
2672 }
2673 
2674 void G1CollectedHeap::clear_eden() {
2675   _eden.clear();
2676 }
2677 
2678 void G1CollectedHeap::clear_collection_set() {
2679   collection_set()->clear();
2680 }
2681 
2682 void G1CollectedHeap::rebuild_free_region_list() {
2683   Ticks start = Ticks::now();
2684   _hrm.rebuild_free_list(workers());
2685   phase_times()->record_total_rebuild_freelist_time_ms((Ticks::now() - start).seconds() * 1000.0);
2686 }
2687 
2688 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
2689 public:
2690   virtual bool do_heap_region(HeapRegion* r) {
2691     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
2692     G1CollectedHeap::heap()->clear_region_attr(r);
2693     r->clear_young_index_in_cset();
2694     return false;
2695   }
2696 };
2697 
2698 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
2699   G1AbandonCollectionSetClosure cl;
2700   collection_set_iterate_all(&cl);
2701 
2702   collection_set->clear();
2703   collection_set->stop_incremental_building();
2704 }
2705 
2706 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
2707   return _allocator->is_retained_old_region(hr);
2708 }
2709 
2710 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
2711   _eden.add(hr);
2712   _policy->set_region_eden(hr);
2713 }
2714 
2715 #ifdef ASSERT
2716 
2717 class NoYoungRegionsClosure: public HeapRegionClosure {
2718 private:
2719   bool _success;
2720 public:
2721   NoYoungRegionsClosure() : _success(true) { }
2722   bool do_heap_region(HeapRegion* r) {
2723     if (r->is_young()) {
2724       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
2725                             p2i(r->bottom()), p2i(r->end()));
2726       _success = false;
2727     }
2728     return false;
2729   }
2730   bool success() { return _success; }
2731 };
2732 
2733 bool G1CollectedHeap::check_young_list_empty() {
2734   bool ret = (young_regions_count() == 0);
2735 
2736   NoYoungRegionsClosure closure;
2737   heap_region_iterate(&closure);
2738   ret = ret && closure.success();
2739 
2740   return ret;
2741 }
2742 
2743 #endif // ASSERT
2744 
2745 // Remove the given HeapRegion from the appropriate region set.
2746 void G1CollectedHeap::prepare_region_for_full_compaction(HeapRegion* hr) {
2747   if (hr->is_humongous()) {
2748     _humongous_set.remove(hr);
2749   } else if (hr->is_old()) {
2750     _old_set.remove(hr);
2751   } else if (hr->is_young()) {
2752     // Note that emptying the eden and survivor lists is postponed and instead
2753     // done as the first step when rebuilding the regions sets again. The reason
2754     // for this is that during a full GC string deduplication needs to know if
2755     // a collected region was young or old when the full GC was initiated.
2756     hr->uninstall_surv_rate_group();
2757   } else {
2758     // We ignore free regions, we'll empty the free list afterwards.
2759     assert(hr->is_free(), "it cannot be another type");
2760   }
2761 }
2762 
2763 void G1CollectedHeap::increase_used(size_t bytes) {
2764   _summary_bytes_used += bytes;
2765 }
2766 
2767 void G1CollectedHeap::decrease_used(size_t bytes) {
2768   assert(_summary_bytes_used >= bytes,
2769          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
2770          _summary_bytes_used, bytes);
2771   _summary_bytes_used -= bytes;
2772 }
2773 
2774 void G1CollectedHeap::set_used(size_t bytes) {
2775   _summary_bytes_used = bytes;
2776 }
2777 
2778 class RebuildRegionSetsClosure : public HeapRegionClosure {
2779 private:
2780   bool _free_list_only;
2781 
2782   HeapRegionSet* _old_set;
2783   HeapRegionSet* _humongous_set;
2784 
2785   HeapRegionManager* _hrm;
2786 
2787   size_t _total_used;
2788 
2789 public:
2790   RebuildRegionSetsClosure(bool free_list_only,
2791                            HeapRegionSet* old_set,
2792                            HeapRegionSet* humongous_set,
2793                            HeapRegionManager* hrm) :
2794     _free_list_only(free_list_only), _old_set(old_set),
2795     _humongous_set(humongous_set), _hrm(hrm), _total_used(0) {
2796     assert(_hrm->num_free_regions() == 0, "pre-condition");
2797     if (!free_list_only) {
2798       assert(_old_set->is_empty(), "pre-condition");
2799       assert(_humongous_set->is_empty(), "pre-condition");
2800     }
2801   }
2802 
2803   bool do_heap_region(HeapRegion* r) {
2804     if (r->is_empty()) {
2805       assert(r->rem_set()->is_empty(), "Empty regions should have empty remembered sets.");
2806       // Add free regions to the free list
2807       r->set_free();
2808       _hrm->insert_into_free_list(r);
2809     } else if (!_free_list_only) {
2810       assert(r->rem_set()->is_empty(), "At this point remembered sets must have been cleared.");
2811 
2812       if (r->is_humongous()) {
2813         _humongous_set->add(r);
2814       } else {
2815         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
2816         // We now move all (non-humongous, non-old) regions to old gen,
2817         // and register them as such.
2818         r->move_to_old();
2819         _old_set->add(r);
2820       }
2821       _total_used += r->used();
2822     }
2823 
2824     return false;
2825   }
2826 
2827   size_t total_used() {
2828     return _total_used;
2829   }
2830 };
2831 
2832 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
2833   assert_at_safepoint_on_vm_thread();
2834 
2835   if (!free_list_only) {
2836     _eden.clear();
2837     _survivor.clear();
2838   }
2839 
2840   RebuildRegionSetsClosure cl(free_list_only,
2841                               &_old_set, &_humongous_set,
2842                               &_hrm);
2843   heap_region_iterate(&cl);
2844 
2845   if (!free_list_only) {
2846     set_used(cl.total_used());
2847   }
2848   assert_used_and_recalculate_used_equal(this);
2849 }
2850 
2851 // Methods for the mutator alloc region
2852 
2853 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
2854                                                       bool force,
2855                                                       uint node_index) {
2856   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
2857   bool should_allocate = policy()->should_allocate_mutator_region();
2858   if (force || should_allocate) {
2859     HeapRegion* new_alloc_region = new_region(word_size,
2860                                               HeapRegionType::Eden,
2861                                               false /* do_expand */,
2862                                               node_index);
2863     if (new_alloc_region != nullptr) {
2864       set_region_short_lived_locked(new_alloc_region);
2865       _hr_printer.alloc(new_alloc_region, !should_allocate);
2866       _policy->remset_tracker()->update_at_allocate(new_alloc_region);
2867       return new_alloc_region;
2868     }
2869   }
2870   return nullptr;
2871 }
2872 
2873 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
2874                                                   size_t allocated_bytes) {
2875   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
2876   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
2877 
2878   collection_set()->add_eden_region(alloc_region);
2879   increase_used(allocated_bytes);
2880   _eden.add_used_bytes(allocated_bytes);
2881   _hr_printer.retire(alloc_region);
2882 
2883   // We update the eden sizes here, when the region is retired,
2884   // instead of when it's allocated, since this is the point that its
2885   // used space has been recorded in _summary_bytes_used.
2886   monitoring_support()->update_eden_size();
2887 }
2888 
2889 // Methods for the GC alloc regions
2890 
2891 bool G1CollectedHeap::has_more_regions(G1HeapRegionAttr dest) {
2892   if (dest.is_old()) {
2893     return true;
2894   } else {
2895     return survivor_regions_count() < policy()->max_survivor_regions();
2896   }
2897 }
2898 
2899 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, G1HeapRegionAttr dest, uint node_index) {
2900   assert(FreeList_lock->owned_by_self(), "pre-condition");
2901 
2902   if (!has_more_regions(dest)) {
2903     return nullptr;
2904   }
2905 
2906   HeapRegionType type;
2907   if (dest.is_young()) {
2908     type = HeapRegionType::Survivor;
2909   } else {
2910     type = HeapRegionType::Old;
2911   }
2912 
2913   HeapRegion* new_alloc_region = new_region(word_size,
2914                                             type,
2915                                             true /* do_expand */,
2916                                             node_index);
2917 
2918   if (new_alloc_region != nullptr) {
2919     if (type.is_survivor()) {
2920       new_alloc_region->set_survivor();
2921       _survivor.add(new_alloc_region);
2922       register_new_survivor_region_with_region_attr(new_alloc_region);
2923     } else {
2924       new_alloc_region->set_old();
2925     }
2926     _policy->remset_tracker()->update_at_allocate(new_alloc_region);
2927     register_region_with_region_attr(new_alloc_region);
2928     _hr_printer.alloc(new_alloc_region);
2929     return new_alloc_region;
2930   }
2931   return nullptr;
2932 }
2933 
2934 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
2935                                              size_t allocated_bytes,
2936                                              G1HeapRegionAttr dest) {
2937   _bytes_used_during_gc += allocated_bytes;
2938   if (dest.is_old()) {
2939     old_set_add(alloc_region);
2940   } else {
2941     assert(dest.is_young(), "Retiring alloc region should be young (%d)", dest.type());
2942     _survivor.add_used_bytes(allocated_bytes);
2943   }
2944 
2945   bool const during_im = collector_state()->in_concurrent_start_gc();
2946   if (during_im && allocated_bytes > 0) {
2947     _cm->add_root_region(alloc_region);
2948   }
2949   _hr_printer.retire(alloc_region);
2950 }
2951 
2952 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
2953   bool expanded = false;
2954   uint index = _hrm.find_highest_free(&expanded);
2955 
2956   if (index != G1_NO_HRM_INDEX) {
2957     if (expanded) {
2958       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
2959                                 HeapRegion::GrainWords * HeapWordSize);
2960     }
2961     return _hrm.allocate_free_regions_starting_at(index, 1);
2962   }
2963   return nullptr;
2964 }
2965 
2966 void G1CollectedHeap::mark_evac_failure_object(uint worker_id, const oop obj, size_t obj_size) const {
2967   assert(!_cm->is_marked_in_bitmap(obj), "must be");
2968 
2969   _cm->raw_mark_in_bitmap(obj);
2970 }
2971 
2972 // Optimized nmethod scanning
2973 class RegisterNMethodOopClosure: public OopClosure {
2974   G1CollectedHeap* _g1h;
2975   nmethod* _nm;
2976 
2977 public:
2978   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
2979     _g1h(g1h), _nm(nm) {}
2980 
2981   void do_oop(oop* p) {
2982     oop heap_oop = RawAccess<>::oop_load(p);
2983     if (!CompressedOops::is_null(heap_oop)) {
2984       oop obj = CompressedOops::decode_not_null(heap_oop);
2985       HeapRegion* hr = _g1h->heap_region_containing(obj);
2986       assert(!hr->is_continues_humongous(),
2987              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
2988              " starting at " HR_FORMAT,
2989              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
2990 
2991       hr->add_code_root(_nm);
2992     }
2993   }
2994 
2995   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2996 };
2997 
2998 void G1CollectedHeap::register_nmethod(nmethod* nm) {
2999   guarantee(nm != nullptr, "sanity");
3000   RegisterNMethodOopClosure reg_cl(this, nm);
3001   nm->oops_do(&reg_cl);
3002 }
3003 
3004 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
3005   // We always unregister nmethods in bulk during code unloading only.
3006   ShouldNotReachHere();
3007 }
3008 
3009 void G1CollectedHeap::update_used_after_gc(bool evacuation_failed) {
3010   if (evacuation_failed) {
3011     set_used(recalculate_used());
3012   } else {
3013     // The "used" of the collection set have already been subtracted
3014     // when they were freed.  Add in the bytes used.
3015     increase_used(_bytes_used_during_gc);
3016   }
3017 }
3018 
3019 class RebuildCodeRootClosure: public NMethodClosure {
3020   G1CollectedHeap* _g1h;
3021 
3022 public:
3023   RebuildCodeRootClosure(G1CollectedHeap* g1h) :
3024     _g1h(g1h) {}
3025 
3026   void do_nmethod(nmethod* nm) {
3027     assert(nm != nullptr, "Sanity");
3028     _g1h->register_nmethod(nm);
3029   }
3030 };
3031 
3032 void G1CollectedHeap::rebuild_code_roots() {
3033   RebuildCodeRootClosure nmethod_cl(this);
3034   CodeCache::nmethods_do(&nmethod_cl);
3035 }
3036 
3037 void G1CollectedHeap::initialize_serviceability() {
3038   _monitoring_support->initialize_serviceability();
3039 }
3040 
3041 MemoryUsage G1CollectedHeap::memory_usage() {
3042   return _monitoring_support->memory_usage();
3043 }
3044 
3045 GrowableArray<GCMemoryManager*> G1CollectedHeap::memory_managers() {
3046   return _monitoring_support->memory_managers();
3047 }
3048 
3049 GrowableArray<MemoryPool*> G1CollectedHeap::memory_pools() {
3050   return _monitoring_support->memory_pools();
3051 }
3052 
3053 void G1CollectedHeap::fill_with_dummy_object(HeapWord* start, HeapWord* end, bool zap) {
3054   HeapRegion* region = heap_region_containing(start);
3055   region->fill_with_dummy_object(start, pointer_delta(end, start), zap);
3056 }
3057 
3058 void G1CollectedHeap::start_codecache_marking_cycle_if_inactive(bool concurrent_mark_start) {
3059   // We can reach here with an active code cache marking cycle either because the
3060   // previous G1 concurrent marking cycle was undone (if heap occupancy after the
3061   // concurrent start young collection was below the threshold) or aborted. See
3062   // CodeCache::on_gc_marking_cycle_finish() why this is.  We must not start a new code
3063   // cache cycle then. If we are about to start a new g1 concurrent marking cycle we
3064   // still have to arm all nmethod entry barriers. They are needed for adding oop
3065   // constants to the SATB snapshot. Full GC does not need nmethods to be armed.
3066   if (!CodeCache::is_gc_marking_cycle_active()) {
3067     CodeCache::on_gc_marking_cycle_start();
3068   }
3069   if (concurrent_mark_start) {
3070     CodeCache::arm_all_nmethods();
3071   }
3072 }
3073 
3074 void G1CollectedHeap::finish_codecache_marking_cycle() {
3075   CodeCache::on_gc_marking_cycle_finish();
3076   CodeCache::arm_all_nmethods();
3077 }