1 /*
   2  * Copyright (c) 2001, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "classfile/classLoaderDataGraph.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "compiler/oopMap.hpp"
  30 #include "gc/g1/g1Allocator.inline.hpp"
  31 #include "gc/g1/g1Arguments.hpp"
  32 #include "gc/g1/g1BarrierSet.hpp"
  33 #include "gc/g1/g1BatchedTask.hpp"
  34 #include "gc/g1/g1CollectedHeap.inline.hpp"
  35 #include "gc/g1/g1CollectionSet.hpp"
  36 #include "gc/g1/g1CollectionSetCandidates.hpp"
  37 #include "gc/g1/g1CollectorState.hpp"
  38 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
  39 #include "gc/g1/g1ConcurrentRefine.hpp"
  40 #include "gc/g1/g1ConcurrentRefineThread.hpp"
  41 #include "gc/g1/g1DirtyCardQueue.hpp"
  42 #include "gc/g1/g1EvacStats.inline.hpp"
  43 #include "gc/g1/g1FullCollector.hpp"
  44 #include "gc/g1/g1GCCounters.hpp"
  45 #include "gc/g1/g1GCParPhaseTimesTracker.hpp"
  46 #include "gc/g1/g1GCPauseType.hpp"
  47 #include "gc/g1/g1GCPhaseTimes.hpp"
  48 #include "gc/g1/g1HeapRegion.inline.hpp"
  49 #include "gc/g1/g1HeapRegionPrinter.hpp"
  50 #include "gc/g1/g1HeapRegionRemSet.inline.hpp"
  51 #include "gc/g1/g1HeapRegionSet.inline.hpp"
  52 #include "gc/g1/g1HeapSizingPolicy.hpp"
  53 #include "gc/g1/g1HeapTransition.hpp"
  54 #include "gc/g1/g1HeapVerifier.hpp"
  55 #include "gc/g1/g1InitLogger.hpp"
  56 #include "gc/g1/g1MemoryPool.hpp"
  57 #include "gc/g1/g1MonotonicArenaFreeMemoryTask.hpp"
  58 #include "gc/g1/g1OopClosures.inline.hpp"
  59 #include "gc/g1/g1ParallelCleaning.hpp"
  60 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  61 #include "gc/g1/g1PeriodicGCTask.hpp"
  62 #include "gc/g1/g1Policy.hpp"
  63 #include "gc/g1/g1RedirtyCardsQueue.hpp"
  64 #include "gc/g1/g1RegionPinCache.inline.hpp"
  65 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  66 #include "gc/g1/g1RemSet.hpp"
  67 #include "gc/g1/g1RootClosures.hpp"
  68 #include "gc/g1/g1RootProcessor.hpp"
  69 #include "gc/g1/g1SATBMarkQueueSet.hpp"
  70 #include "gc/g1/g1ServiceThread.hpp"
  71 #include "gc/g1/g1ThreadLocalData.hpp"
  72 #include "gc/g1/g1Trace.hpp"
  73 #include "gc/g1/g1UncommitRegionTask.hpp"
  74 #include "gc/g1/g1VMOperations.hpp"
  75 #include "gc/g1/g1YoungCollector.hpp"
  76 #include "gc/g1/g1YoungGCAllocationFailureInjector.hpp"
  77 #include "gc/shared/classUnloadingContext.hpp"
  78 #include "gc/shared/concurrentGCBreakpoints.hpp"
  79 #include "gc/shared/fullGCForwarding.inline.hpp"
  80 #include "gc/shared/gcBehaviours.hpp"
  81 #include "gc/shared/gcHeapSummary.hpp"
  82 #include "gc/shared/gcId.hpp"
  83 #include "gc/shared/gcTimer.hpp"
  84 #include "gc/shared/gcTraceTime.inline.hpp"
  85 #include "gc/shared/isGCActiveMark.hpp"
  86 #include "gc/shared/locationPrinter.inline.hpp"
  87 #include "gc/shared/oopStorageParState.hpp"
  88 #include "gc/shared/partialArrayState.hpp"
  89 #include "gc/shared/referenceProcessor.inline.hpp"
  90 #include "gc/shared/suspendibleThreadSet.hpp"
  91 #include "gc/shared/taskqueue.inline.hpp"
  92 #include "gc/shared/taskTerminator.hpp"
  93 #include "gc/shared/tlab_globals.hpp"
  94 #include "gc/shared/weakProcessor.inline.hpp"
  95 #include "gc/shared/workerPolicy.hpp"
  96 #include "logging/log.hpp"
  97 #include "memory/allocation.hpp"
  98 #include "memory/heapInspection.hpp"
  99 #include "memory/iterator.hpp"
 100 #include "memory/memoryReserver.hpp"
 101 #include "memory/metaspaceUtils.hpp"
 102 #include "memory/resourceArea.hpp"
 103 #include "memory/universe.hpp"
 104 #include "oops/access.inline.hpp"
 105 #include "oops/compressedOops.inline.hpp"
 106 #include "oops/oop.inline.hpp"
 107 #include "runtime/atomic.hpp"
 108 #include "runtime/cpuTimeCounters.hpp"
 109 #include "runtime/handles.inline.hpp"
 110 #include "runtime/init.hpp"
 111 #include "runtime/java.hpp"
 112 #include "runtime/orderAccess.hpp"
 113 #include "runtime/threadSMR.hpp"
 114 #include "runtime/vmThread.hpp"
 115 #include "utilities/align.hpp"
 116 #include "utilities/autoRestore.hpp"
 117 #include "utilities/bitMap.inline.hpp"
 118 #include "utilities/globalDefinitions.hpp"
 119 #include "utilities/stack.inline.hpp"
 120 
 121 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
 122 
 123 // INVARIANTS/NOTES
 124 //
 125 // All allocation activity covered by the G1CollectedHeap interface is
 126 // serialized by acquiring the HeapLock.  This happens in mem_allocate
 127 // and allocate_new_tlab, which are the "entry" points to the
 128 // allocation code from the rest of the JVM.  (Note that this does not
 129 // apply to TLAB allocation, which is not part of this interface: it
 130 // is done by clients of this interface.)
 131 
 132 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 133   G1HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 134 }
 135 
 136 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 137   // The from card cache is not the memory that is actually committed. So we cannot
 138   // take advantage of the zero_filled parameter.
 139   reset_from_card_cache(start_idx, num_regions);
 140 }
 141 
 142 void G1CollectedHeap::run_batch_task(G1BatchedTask* cl) {
 143   uint num_workers = MAX2(1u, MIN2(cl->num_workers_estimate(), workers()->active_workers()));
 144   cl->set_max_workers(num_workers);
 145   workers()->run_task(cl, num_workers);
 146 }
 147 
 148 uint G1CollectedHeap::get_chunks_per_region() {
 149   uint log_region_size = G1HeapRegion::LogOfHRGrainBytes;
 150   // Limit the expected input values to current known possible values of the
 151   // (log) region size. Adjust as necessary after testing if changing the permissible
 152   // values for region size.
 153   assert(log_region_size >= 20 && log_region_size <= 29,
 154          "expected value in [20,29], but got %u", log_region_size);
 155   return 1u << (log_region_size / 2 - 4);
 156 }
 157 
 158 G1HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
 159                                                MemRegion mr) {
 160   return new G1HeapRegion(hrs_index, bot(), mr, &_card_set_config);
 161 }
 162 
 163 // Private methods.
 164 
 165 G1HeapRegion* G1CollectedHeap::new_region(size_t word_size,
 166                                           G1HeapRegionType type,
 167                                           bool do_expand,
 168                                           uint node_index) {
 169   assert(!is_humongous(word_size) || word_size <= G1HeapRegion::GrainWords,
 170          "the only time we use this to allocate a humongous region is "
 171          "when we are allocating a single humongous region");
 172 
 173   G1HeapRegion* res = _hrm.allocate_free_region(type, node_index);
 174 
 175   if (res == nullptr && do_expand) {
 176     // Currently, only attempts to allocate GC alloc regions set
 177     // do_expand to true. So, we should only reach here during a
 178     // safepoint.
 179     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 180 
 181     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: %zuB",
 182                               word_size * HeapWordSize);
 183 
 184     assert(word_size * HeapWordSize < G1HeapRegion::GrainBytes,
 185            "This kind of expansion should never be more than one region. Size: %zu",
 186            word_size * HeapWordSize);
 187     if (expand_single_region(node_index)) {
 188       // Given that expand_single_region() succeeded in expanding the heap, and we
 189       // always expand the heap by an amount aligned to the heap
 190       // region size, the free list should in theory not be empty.
 191       // In either case allocate_free_region() will check for null.
 192       res = _hrm.allocate_free_region(type, node_index);
 193     }
 194   }
 195   return res;
 196 }
 197 
 198 void G1CollectedHeap::set_humongous_metadata(G1HeapRegion* first_hr,
 199                                              uint num_regions,
 200                                              size_t word_size,
 201                                              bool update_remsets) {
 202   // Calculate the new top of the humongous object.
 203   HeapWord* obj_top = first_hr->bottom() + word_size;
 204   // The word size sum of all the regions used
 205   size_t word_size_sum = num_regions * G1HeapRegion::GrainWords;
 206   assert(word_size <= word_size_sum, "sanity");
 207 
 208   // How many words memory we "waste" which cannot hold a filler object.
 209   size_t words_not_fillable = 0;
 210 
 211   // Pad out the unused tail of the last region with filler
 212   // objects, for improved usage accounting.
 213 
 214   // How many words can we use for filler objects.
 215   size_t words_fillable = word_size_sum - word_size;
 216 
 217   if (words_fillable >= G1CollectedHeap::min_fill_size()) {
 218     G1CollectedHeap::fill_with_objects(obj_top, words_fillable);
 219   } else {
 220     // We have space to fill, but we cannot fit an object there.
 221     words_not_fillable = words_fillable;
 222     words_fillable = 0;
 223   }
 224 
 225   // We will set up the first region as "starts humongous". This
 226   // will also update the BOT covering all the regions to reflect
 227   // that there is a single object that starts at the bottom of the
 228   // first region.
 229   first_hr->hr_clear(false /* clear_space */);
 230   first_hr->set_starts_humongous(obj_top, words_fillable);
 231 
 232   if (update_remsets) {
 233     _policy->remset_tracker()->update_at_allocate(first_hr);
 234   }
 235 
 236   // Indices of first and last regions in the series.
 237   uint first = first_hr->hrm_index();
 238   uint last = first + num_regions - 1;
 239 
 240   G1HeapRegion* hr = nullptr;
 241   for (uint i = first + 1; i <= last; ++i) {
 242     hr = region_at(i);
 243     hr->hr_clear(false /* clear_space */);
 244     hr->set_continues_humongous(first_hr);
 245     if (update_remsets) {
 246       _policy->remset_tracker()->update_at_allocate(hr);
 247     }
 248   }
 249 
 250   // Up to this point no concurrent thread would have been able to
 251   // do any scanning on any region in this series. All the top
 252   // fields still point to bottom, so the intersection between
 253   // [bottom,top] and [card_start,card_end] will be empty. Before we
 254   // update the top fields, we'll do a storestore to make sure that
 255   // no thread sees the update to top before the zeroing of the
 256   // object header and the BOT initialization.
 257   OrderAccess::storestore();
 258 
 259   // Now, we will update the top fields of the "continues humongous"
 260   // regions except the last one.
 261   for (uint i = first; i < last; ++i) {
 262     hr = region_at(i);
 263     hr->set_top(hr->end());
 264   }
 265 
 266   hr = region_at(last);
 267   // If we cannot fit a filler object, we must set top to the end
 268   // of the humongous object, otherwise we cannot iterate the heap
 269   // and the BOT will not be complete.
 270   hr->set_top(hr->end() - words_not_fillable);
 271 
 272   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 273          "obj_top should be in last region");
 274 
 275   assert(words_not_fillable == 0 ||
 276          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 277          "Miscalculation in humongous allocation");
 278 }
 279 
 280 HeapWord*
 281 G1CollectedHeap::humongous_obj_allocate_initialize_regions(G1HeapRegion* first_hr,
 282                                                            uint num_regions,
 283                                                            size_t word_size) {
 284   assert(first_hr != nullptr, "pre-condition");
 285   assert(is_humongous(word_size), "word_size should be humongous");
 286   assert(num_regions * G1HeapRegion::GrainWords >= word_size, "pre-condition");
 287 
 288   // Index of last region in the series.
 289   uint first = first_hr->hrm_index();
 290   uint last = first + num_regions - 1;
 291 
 292   // We need to initialize the region(s) we just discovered. This is
 293   // a bit tricky given that it can happen concurrently with
 294   // refinement threads refining cards on these regions and
 295   // potentially wanting to refine the BOT as they are scanning
 296   // those cards (this can happen shortly after a cleanup; see CR
 297   // 6991377). So we have to set up the region(s) carefully and in
 298   // a specific order.
 299 
 300   // The passed in hr will be the "starts humongous" region. The header
 301   // of the new object will be placed at the bottom of this region.
 302   HeapWord* new_obj = first_hr->bottom();
 303 
 304   // First, we need to zero the header of the space that we will be
 305   // allocating. When we update top further down, some refinement
 306   // threads might try to scan the region. By zeroing the header we
 307   // ensure that any thread that will try to scan the region will
 308   // come across the zero klass word and bail out.
 309   //
 310   // NOTE: It would not have been correct to have used
 311   // CollectedHeap::fill_with_object() and make the space look like
 312   // an int array. The thread that is doing the allocation will
 313   // later update the object header to a potentially different array
 314   // type and, for a very short period of time, the klass and length
 315   // fields will be inconsistent. This could cause a refinement
 316   // thread to calculate the object size incorrectly.
 317   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 318 
 319   // Next, update the metadata for the regions.
 320   set_humongous_metadata(first_hr, num_regions, word_size, true);
 321 
 322   G1HeapRegion* last_hr = region_at(last);
 323   size_t used = byte_size(first_hr->bottom(), last_hr->top());
 324 
 325   increase_used(used);
 326 
 327   for (uint i = first; i <= last; ++i) {
 328     G1HeapRegion *hr = region_at(i);
 329     _humongous_set.add(hr);
 330     G1HeapRegionPrinter::alloc(hr);
 331   }
 332 
 333   return new_obj;
 334 }
 335 
 336 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 337   assert(is_humongous(word_size), "Object of size %zu must be humongous here", word_size);
 338   return align_up(word_size, G1HeapRegion::GrainWords) / G1HeapRegion::GrainWords;
 339 }
 340 
 341 // If could fit into free regions w/o expansion, try.
 342 // Otherwise, if can expand, do so.
 343 // Otherwise, if using ex regions might help, try with ex given back.
 344 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 345   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 346 
 347   _verifier->verify_region_sets_optional();
 348 
 349   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 350   if (obj_regions > num_available_regions()) {
 351     // Can't satisfy this allocation; early-return.
 352     return nullptr;
 353   }
 354 
 355   // Policy: First try to allocate a humongous object in the free list.
 356   G1HeapRegion* humongous_start = _hrm.allocate_humongous(obj_regions);
 357   if (humongous_start == nullptr) {
 358     // Policy: We could not find enough regions for the humongous object in the
 359     // free list. Look through the heap to find a mix of free and uncommitted regions.
 360     // If so, expand the heap and allocate the humongous object.
 361     humongous_start = _hrm.expand_and_allocate_humongous(obj_regions);
 362     if (humongous_start != nullptr) {
 363       // We managed to find a region by expanding the heap.
 364       log_debug(gc, ergo, heap)("Heap expansion (humongous allocation request). Allocation request: %zuB",
 365                                 word_size * HeapWordSize);
 366       policy()->record_new_heap_size(num_committed_regions());
 367     } else {
 368       // Policy: Potentially trigger a defragmentation GC.
 369     }
 370   }
 371 
 372   HeapWord* result = nullptr;
 373   if (humongous_start != nullptr) {
 374     result = humongous_obj_allocate_initialize_regions(humongous_start, obj_regions, word_size);
 375     assert(result != nullptr, "it should always return a valid result");
 376 
 377     // A successful humongous object allocation changes the used space
 378     // information of the old generation so we need to recalculate the
 379     // sizes and update the jstat counters here.
 380     monitoring_support()->update_sizes();
 381   }
 382 
 383   _verifier->verify_region_sets_optional();
 384 
 385   return result;
 386 }
 387 
 388 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t min_size,
 389                                              size_t requested_size,
 390                                              size_t* actual_size) {
 391   assert_heap_not_locked_and_not_at_safepoint();
 392   assert(!is_humongous(requested_size), "we do not allow humongous TLABs");
 393 
 394   return attempt_allocation(min_size, requested_size, actual_size);
 395 }
 396 
 397 HeapWord*
 398 G1CollectedHeap::mem_allocate(size_t word_size,
 399                               bool*  gc_overhead_limit_was_exceeded) {
 400   assert_heap_not_locked_and_not_at_safepoint();
 401 
 402   if (is_humongous(word_size)) {
 403     return attempt_allocation_humongous(word_size);
 404   }
 405   size_t dummy = 0;
 406   return attempt_allocation(word_size, word_size, &dummy);
 407 }
 408 
 409 HeapWord* G1CollectedHeap::attempt_allocation_slow(uint node_index, size_t word_size) {
 410   ResourceMark rm; // For retrieving the thread names in log messages.
 411 
 412   // Make sure you read the note in attempt_allocation_humongous().
 413 
 414   assert_heap_not_locked_and_not_at_safepoint();
 415   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 416          "be called for humongous allocation requests");
 417 
 418   // We should only get here after the first-level allocation attempt
 419   // (attempt_allocation()) failed to allocate.
 420 
 421   // We will loop until a) we manage to successfully perform the allocation or b)
 422   // successfully schedule a collection which fails to perform the allocation.
 423   // Case b) is the only case when we'll return null.
 424   HeapWord* result = nullptr;
 425   for (uint try_count = 1; /* we'll return */; try_count++) {
 426     uint gc_count_before;
 427 
 428     {
 429       MutexLocker x(Heap_lock);
 430 
 431       // Now that we have the lock, we first retry the allocation in case another
 432       // thread changed the region while we were waiting to acquire the lock.
 433       result = _allocator->attempt_allocation_locked(node_index, word_size);
 434       if (result != nullptr) {
 435         return result;
 436       }
 437 
 438       // Read the GC count while still holding the Heap_lock.
 439       gc_count_before = total_collections();
 440     }
 441 
 442     bool succeeded;
 443     result = do_collection_pause(word_size, gc_count_before, &succeeded, GCCause::_g1_inc_collection_pause);
 444     if (succeeded) {
 445       log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 446                            Thread::current()->name(), p2i(result));
 447       return result;
 448     }
 449 
 450     log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating %zu words",
 451                          Thread::current()->name(), word_size);
 452 
 453     // We can reach here if we were unsuccessful in scheduling a collection (because
 454     // another thread beat us to it). In this case immeditealy retry the allocation
 455     // attempt because another thread successfully performed a collection and possibly
 456     // reclaimed enough space. The first attempt (without holding the Heap_lock) is
 457     // here and the follow-on attempt will be at the start of the next loop
 458     // iteration (after taking the Heap_lock).
 459     size_t dummy = 0;
 460     result = _allocator->attempt_allocation(node_index, word_size, word_size, &dummy);
 461     if (result != nullptr) {
 462       return result;
 463     }
 464 
 465     // Give a warning if we seem to be looping forever.
 466     if ((QueuedAllocationWarningCount > 0) &&
 467         (try_count % QueuedAllocationWarningCount == 0)) {
 468       log_warning(gc, alloc)("%s:  Retried allocation %u times for %zu words",
 469                              Thread::current()->name(), try_count, word_size);
 470     }
 471   }
 472 
 473   ShouldNotReachHere();
 474   return nullptr;
 475 }
 476 
 477 template <typename Func>
 478 void G1CollectedHeap::iterate_regions_in_range(MemRegion range, const Func& func) {
 479   // Mark each G1 region touched by the range as old, add it to
 480   // the old set, and set top.
 481   G1HeapRegion* curr_region = _hrm.addr_to_region(range.start());
 482   G1HeapRegion* end_region = _hrm.addr_to_region(range.last());
 483 
 484   while (curr_region != nullptr) {
 485     bool is_last = curr_region == end_region;
 486     G1HeapRegion* next_region = is_last ? nullptr : _hrm.next_region_in_heap(curr_region);
 487 
 488     func(curr_region, is_last);
 489 
 490     curr_region = next_region;
 491   }
 492 }
 493 
 494 HeapWord* G1CollectedHeap::alloc_archive_region(size_t word_size, HeapWord* preferred_addr) {
 495   assert(!is_init_completed(), "Expect to be called at JVM init time");
 496   MutexLocker x(Heap_lock);
 497 
 498   MemRegion reserved = _hrm.reserved();
 499 
 500   if (reserved.word_size() <= word_size) {
 501     log_info(gc, heap)("Unable to allocate regions as archive heap is too large; size requested = %zu"
 502                        " bytes, heap = %zu bytes", word_size * HeapWordSize, reserved.byte_size());
 503     return nullptr;
 504   }
 505 
 506   // Temporarily disable pretouching of heap pages. This interface is used
 507   // when mmap'ing archived heap data in, so pre-touching is wasted.
 508   FlagSetting fs(AlwaysPreTouch, false);
 509 
 510   size_t commits = 0;
 511   // Attempt to allocate towards the end of the heap.
 512   HeapWord* start_addr = reserved.end() - align_up(word_size, G1HeapRegion::GrainWords);
 513   MemRegion range = MemRegion(start_addr, word_size);
 514   HeapWord* last_address = range.last();
 515   if (!_hrm.allocate_containing_regions(range, &commits, workers())) {
 516     return nullptr;
 517   }
 518   increase_used(word_size * HeapWordSize);
 519   if (commits != 0) {
 520     log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: %zuB",
 521                               G1HeapRegion::GrainWords * HeapWordSize * commits);
 522   }
 523 
 524   // Mark each G1 region touched by the range as old, add it to
 525   // the old set, and set top.
 526   auto set_region_to_old = [&] (G1HeapRegion* r, bool is_last) {
 527     assert(r->is_empty(), "Region already in use (%u)", r->hrm_index());
 528 
 529     HeapWord* top = is_last ? last_address + 1 : r->end();
 530     r->set_top(top);
 531 
 532     r->set_old();
 533     G1HeapRegionPrinter::alloc(r);
 534     _old_set.add(r);
 535   };
 536 
 537   iterate_regions_in_range(range, set_region_to_old);
 538   return start_addr;
 539 }
 540 
 541 void G1CollectedHeap::populate_archive_regions_bot(MemRegion range) {
 542   assert(!is_init_completed(), "Expect to be called at JVM init time");
 543 
 544   iterate_regions_in_range(range,
 545                            [&] (G1HeapRegion* r, bool is_last) {
 546                              r->update_bot();
 547                            });
 548 }
 549 
 550 void G1CollectedHeap::dealloc_archive_regions(MemRegion range) {
 551   assert(!is_init_completed(), "Expect to be called at JVM init time");
 552   MemRegion reserved = _hrm.reserved();
 553   size_t size_used = 0;
 554 
 555   // Free the G1 regions that are within the specified range.
 556   MutexLocker x(Heap_lock);
 557   HeapWord* start_address = range.start();
 558   HeapWord* last_address = range.last();
 559 
 560   assert(reserved.contains(start_address) && reserved.contains(last_address),
 561          "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 562          p2i(start_address), p2i(last_address));
 563   size_used += range.byte_size();
 564 
 565   uint max_shrink_count = 0;
 566   if (capacity() > MinHeapSize) {
 567     size_t max_shrink_bytes = capacity() - MinHeapSize;
 568     max_shrink_count = (uint)(max_shrink_bytes / G1HeapRegion::GrainBytes);
 569   }
 570 
 571   uint shrink_count = 0;
 572   // Free, empty and uncommit regions with CDS archive content.
 573   auto dealloc_archive_region = [&] (G1HeapRegion* r, bool is_last) {
 574     guarantee(r->is_old(), "Expected old region at index %u", r->hrm_index());
 575     _old_set.remove(r);
 576     r->set_free();
 577     r->set_top(r->bottom());
 578     if (shrink_count < max_shrink_count) {
 579       _hrm.shrink_at(r->hrm_index(), 1);
 580       shrink_count++;
 581     } else {
 582       _hrm.insert_into_free_list(r);
 583     }
 584   };
 585 
 586   iterate_regions_in_range(range, dealloc_archive_region);
 587 
 588   if (shrink_count != 0) {
 589     log_debug(gc, ergo, heap)("Attempt heap shrinking (CDS archive regions). Total size: %zuB (%u Regions)",
 590                               G1HeapRegion::GrainWords * HeapWordSize * shrink_count, shrink_count);
 591     // Explicit uncommit.
 592     uncommit_regions(shrink_count);
 593   }
 594   decrease_used(size_used);
 595 }
 596 
 597 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t min_word_size,
 598                                                      size_t desired_word_size,
 599                                                      size_t* actual_word_size) {
 600   assert_heap_not_locked_and_not_at_safepoint();
 601   assert(!is_humongous(desired_word_size), "attempt_allocation() should not "
 602          "be called for humongous allocation requests");
 603 
 604   // Fix NUMA node association for the duration of this allocation
 605   const uint node_index = _allocator->current_node_index();
 606 
 607   HeapWord* result = _allocator->attempt_allocation(node_index, min_word_size, desired_word_size, actual_word_size);
 608 
 609   if (result == nullptr) {
 610     *actual_word_size = desired_word_size;
 611     result = attempt_allocation_slow(node_index, desired_word_size);
 612   }
 613 
 614   assert_heap_not_locked();
 615   if (result != nullptr) {
 616     assert(*actual_word_size != 0, "Actual size must have been set here");
 617     dirty_young_block(result, *actual_word_size);
 618   } else {
 619     *actual_word_size = 0;
 620   }
 621 
 622   return result;
 623 }
 624 
 625 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size) {
 626   ResourceMark rm; // For retrieving the thread names in log messages.
 627 
 628   // The structure of this method has a lot of similarities to
 629   // attempt_allocation_slow(). The reason these two were not merged
 630   // into a single one is that such a method would require several "if
 631   // allocation is not humongous do this, otherwise do that"
 632   // conditional paths which would obscure its flow. In fact, an early
 633   // version of this code did use a unified method which was harder to
 634   // follow and, as a result, it had subtle bugs that were hard to
 635   // track down. So keeping these two methods separate allows each to
 636   // be more readable. It will be good to keep these two in sync as
 637   // much as possible.
 638 
 639   assert_heap_not_locked_and_not_at_safepoint();
 640   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 641          "should only be called for humongous allocations");
 642 
 643   // Humongous objects can exhaust the heap quickly, so we should check if we
 644   // need to start a marking cycle at each humongous object allocation. We do
 645   // the check before we do the actual allocation. The reason for doing it
 646   // before the allocation is that we avoid having to keep track of the newly
 647   // allocated memory while we do a GC.
 648   if (policy()->need_to_start_conc_mark("concurrent humongous allocation",
 649                                         word_size)) {
 650     collect(GCCause::_g1_humongous_allocation);
 651   }
 652 
 653   // We will loop until a) we manage to successfully perform the allocation or b)
 654   // successfully schedule a collection which fails to perform the allocation.
 655   // Case b) is the only case when we'll return null.
 656   HeapWord* result = nullptr;
 657   for (uint try_count = 1; /* we'll return */; try_count++) {
 658     uint gc_count_before;
 659 
 660 
 661     {
 662       MutexLocker x(Heap_lock);
 663 
 664       size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 665       // Given that humongous objects are not allocated in young
 666       // regions, we'll first try to do the allocation without doing a
 667       // collection hoping that there's enough space in the heap.
 668       result = humongous_obj_allocate(word_size);
 669       if (result != nullptr) {
 670         policy()->old_gen_alloc_tracker()->
 671           add_allocated_humongous_bytes_since_last_gc(size_in_regions * G1HeapRegion::GrainBytes);
 672         return result;
 673       }
 674 
 675       // Read the GC count while still holding the Heap_lock.
 676       gc_count_before = total_collections();
 677     }
 678 
 679     bool succeeded;
 680     result = do_collection_pause(word_size, gc_count_before, &succeeded, GCCause::_g1_humongous_allocation);
 681     if (succeeded) {
 682       log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 683                            Thread::current()->name(), p2i(result));
 684       if (result != nullptr) {
 685         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 686         policy()->old_gen_alloc_tracker()->
 687           record_collection_pause_humongous_allocation(size_in_regions * G1HeapRegion::GrainBytes);
 688       }
 689       return result;
 690     }
 691 
 692     log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating %zu",
 693                          Thread::current()->name(), word_size);
 694 
 695     // We can reach here if we were unsuccessful in scheduling a collection (because
 696     // another thread beat us to it).
 697     // Humongous object allocation always needs a lock, so we wait for the retry
 698     // in the next iteration of the loop, unlike for the regular iteration case.
 699     // Give a warning if we seem to be looping forever.
 700 
 701     if ((QueuedAllocationWarningCount > 0) &&
 702         (try_count % QueuedAllocationWarningCount == 0)) {
 703       log_warning(gc, alloc)("%s: Retried allocation %u times for %zu words",
 704                              Thread::current()->name(), try_count, word_size);
 705     }
 706   }
 707 
 708   ShouldNotReachHere();
 709   return nullptr;
 710 }
 711 
 712 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
 713                                                            bool expect_null_mutator_alloc_region) {
 714   assert_at_safepoint_on_vm_thread();
 715   assert(!_allocator->has_mutator_alloc_region() || !expect_null_mutator_alloc_region,
 716          "the current alloc region was unexpectedly found to be non-null");
 717 
 718   // Fix NUMA node association for the duration of this allocation
 719   const uint node_index = _allocator->current_node_index();
 720 
 721   if (!is_humongous(word_size)) {
 722     return _allocator->attempt_allocation_locked(node_index, word_size);
 723   } else {
 724     HeapWord* result = humongous_obj_allocate(word_size);
 725     if (result != nullptr && policy()->need_to_start_conc_mark("STW humongous allocation")) {
 726       collector_state()->set_initiate_conc_mark_if_possible(true);
 727     }
 728     return result;
 729   }
 730 
 731   ShouldNotReachHere();
 732 }
 733 
 734 class PostCompactionPrinterClosure: public G1HeapRegionClosure {
 735 public:
 736   bool do_heap_region(G1HeapRegion* hr) {
 737     assert(!hr->is_young(), "not expecting to find young regions");
 738     G1HeapRegionPrinter::post_compaction(hr);
 739     return false;
 740   }
 741 };
 742 
 743 void G1CollectedHeap::print_heap_after_full_collection() {
 744   // Post collection region logging.
 745   // We should do this after we potentially resize the heap so
 746   // that all the COMMIT / UNCOMMIT events are generated before
 747   // the compaction events.
 748   if (G1HeapRegionPrinter::is_active()) {
 749     PostCompactionPrinterClosure cl;
 750     heap_region_iterate(&cl);
 751   }
 752 }
 753 
 754 bool G1CollectedHeap::abort_concurrent_cycle() {
 755   // Disable discovery and empty the discovered lists
 756   // for the CM ref processor.
 757   _ref_processor_cm->disable_discovery();
 758   _ref_processor_cm->abandon_partial_discovery();
 759   _ref_processor_cm->verify_no_references_recorded();
 760 
 761   // Abandon current iterations of concurrent marking and concurrent
 762   // refinement, if any are in progress.
 763   return concurrent_mark()->concurrent_cycle_abort();
 764 }
 765 
 766 void G1CollectedHeap::prepare_heap_for_full_collection() {
 767   // Make sure we'll choose a new allocation region afterwards.
 768   _allocator->release_mutator_alloc_regions();
 769   _allocator->abandon_gc_alloc_regions();
 770 
 771   // We may have added regions to the current incremental collection
 772   // set between the last GC or pause and now. We need to clear the
 773   // incremental collection set and then start rebuilding it afresh
 774   // after this full GC.
 775   abandon_collection_set(collection_set());
 776 
 777   _hrm.remove_all_free_regions();
 778 }
 779 
 780 void G1CollectedHeap::verify_before_full_collection() {
 781   assert_used_and_recalculate_used_equal(this);
 782   if (!VerifyBeforeGC) {
 783     return;
 784   }
 785   if (!G1HeapVerifier::should_verify(G1HeapVerifier::G1VerifyFull)) {
 786     return;
 787   }
 788   _verifier->verify_region_sets_optional();
 789   _verifier->verify_before_gc();
 790   _verifier->verify_bitmap_clear(true /* above_tams_only */);
 791 }
 792 
 793 void G1CollectedHeap::prepare_for_mutator_after_full_collection(size_t allocation_word_size) {
 794   // Prepare heap for normal collections.
 795   assert(num_free_regions() == 0, "we should not have added any free regions");
 796   rebuild_region_sets(false /* free_list_only */);
 797   abort_refinement();
 798   resize_heap_after_full_collection(allocation_word_size);
 799 
 800   // Rebuild the code root lists for each region
 801   rebuild_code_roots();
 802 
 803   start_new_collection_set();
 804   _allocator->init_mutator_alloc_regions();
 805 
 806   // Post collection state updates.
 807   MetaspaceGC::compute_new_size();
 808 }
 809 
 810 void G1CollectedHeap::abort_refinement() {
 811   // Discard all remembered set updates and reset refinement statistics.
 812   G1BarrierSet::dirty_card_queue_set().abandon_logs_and_stats();
 813   assert(G1BarrierSet::dirty_card_queue_set().num_cards() == 0,
 814          "DCQS should be empty");
 815   concurrent_refine()->get_and_reset_refinement_stats();
 816 }
 817 
 818 void G1CollectedHeap::verify_after_full_collection() {
 819   if (!VerifyAfterGC) {
 820     return;
 821   }
 822   if (!G1HeapVerifier::should_verify(G1HeapVerifier::G1VerifyFull)) {
 823     return;
 824   }
 825   _hrm.verify_optional();
 826   _verifier->verify_region_sets_optional();
 827   _verifier->verify_after_gc();
 828   _verifier->verify_bitmap_clear(false /* above_tams_only */);
 829 
 830   // At this point there should be no regions in the
 831   // entire heap tagged as young.
 832   assert(check_young_list_empty(), "young list should be empty at this point");
 833 
 834   // Note: since we've just done a full GC, concurrent
 835   // marking is no longer active. Therefore we need not
 836   // re-enable reference discovery for the CM ref processor.
 837   // That will be done at the start of the next marking cycle.
 838   // We also know that the STW processor should no longer
 839   // discover any new references.
 840   assert(!_ref_processor_stw->discovery_enabled(), "Postcondition");
 841   assert(!_ref_processor_cm->discovery_enabled(), "Postcondition");
 842   _ref_processor_stw->verify_no_references_recorded();
 843   _ref_processor_cm->verify_no_references_recorded();
 844 }
 845 
 846 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs,
 847                                          bool do_maximal_compaction,
 848                                          size_t allocation_word_size) {
 849   assert_at_safepoint_on_vm_thread();
 850 
 851   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
 852       soft_ref_policy()->should_clear_all_soft_refs();
 853 
 854   G1FullGCMark gc_mark;
 855   GCTraceTime(Info, gc) tm("Pause Full", nullptr, gc_cause(), true);
 856   G1FullCollector collector(this, do_clear_all_soft_refs, do_maximal_compaction, gc_mark.tracer());
 857 
 858   collector.prepare_collection();
 859   collector.collect();
 860   collector.complete_collection(allocation_word_size);
 861 }
 862 
 863 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
 864   // Currently, there is no facility in the do_full_collection(bool) API to notify
 865   // the caller that the collection did not succeed (e.g., because it was locked
 866   // out by the GC locker). So, right now, we'll ignore the return value.
 867 
 868   do_full_collection(clear_all_soft_refs,
 869                      false /* do_maximal_compaction */,
 870                      size_t(0) /* allocation_word_size */);
 871 }
 872 
 873 void G1CollectedHeap::upgrade_to_full_collection() {
 874   GCCauseSetter compaction(this, GCCause::_g1_compaction_pause);
 875   log_info(gc, ergo)("Attempting full compaction clearing soft references");
 876   do_full_collection(true  /* clear_all_soft_refs */,
 877                      false /* do_maximal_compaction */,
 878                      size_t(0) /* allocation_word_size */);
 879 }
 880 
 881 
 882 void G1CollectedHeap::resize_heap(size_t resize_bytes, bool should_expand) {
 883   if (should_expand) {
 884     expand(resize_bytes, _workers);
 885   } else {
 886     shrink(resize_bytes);
 887     uncommit_regions_if_necessary();
 888   }
 889 }
 890 
 891 void G1CollectedHeap::resize_heap_after_full_collection(size_t allocation_word_size) {
 892   assert_at_safepoint_on_vm_thread();
 893 
 894   bool should_expand;
 895   size_t resize_bytes = _heap_sizing_policy->full_collection_resize_amount(should_expand, allocation_word_size);
 896 
 897   if (resize_bytes != 0) {
 898     resize_heap(resize_bytes, should_expand);
 899   }
 900 }
 901 
 902 void G1CollectedHeap::resize_heap_after_young_collection(size_t allocation_word_size) {
 903   Ticks start = Ticks::now();
 904 
 905   bool should_expand;
 906 
 907   size_t resize_bytes = _heap_sizing_policy->young_collection_resize_amount(should_expand, allocation_word_size);
 908 
 909   if (resize_bytes != 0) {
 910     resize_heap(resize_bytes, should_expand);
 911   }
 912 
 913   phase_times()->record_resize_heap_time((Ticks::now() - start).seconds() * 1000.0);
 914 }
 915 
 916 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
 917                                                             bool do_gc,
 918                                                             bool maximal_compaction,
 919                                                             bool expect_null_mutator_alloc_region) {
 920   // Let's attempt the allocation first.
 921   HeapWord* result =
 922     attempt_allocation_at_safepoint(word_size,
 923                                     expect_null_mutator_alloc_region);
 924   if (result != nullptr) {
 925     return result;
 926   }
 927 
 928   // In a G1 heap, we're supposed to keep allocation from failing by
 929   // incremental pauses.  Therefore, at least for now, we'll favor
 930   // expansion over collection.  (This might change in the future if we can
 931   // do something smarter than full collection to satisfy a failed alloc.)
 932   result = expand_and_allocate(word_size);
 933   if (result != nullptr) {
 934     return result;
 935   }
 936 
 937   if (do_gc) {
 938     GCCauseSetter compaction(this, GCCause::_g1_compaction_pause);
 939     // Expansion didn't work, we'll try to do a Full GC.
 940     // If maximal_compaction is set we clear all soft references and don't
 941     // allow any dead wood to be left on the heap.
 942     if (maximal_compaction) {
 943       log_info(gc, ergo)("Attempting maximal full compaction clearing soft references");
 944     } else {
 945       log_info(gc, ergo)("Attempting full compaction");
 946     }
 947     do_full_collection(maximal_compaction /* clear_all_soft_refs */,
 948                        maximal_compaction /* do_maximal_compaction */,
 949                        word_size /* allocation_word_size */);
 950   }
 951 
 952   return nullptr;
 953 }
 954 
 955 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size) {
 956   assert_at_safepoint_on_vm_thread();
 957 
 958   // Attempts to allocate followed by Full GC.
 959   HeapWord* result =
 960     satisfy_failed_allocation_helper(word_size,
 961                                      true,  /* do_gc */
 962                                      false, /* maximum_collection */
 963                                      false /* expect_null_mutator_alloc_region */);
 964 
 965   if (result != nullptr) {
 966     return result;
 967   }
 968 
 969   // Attempts to allocate followed by Full GC that will collect all soft references.
 970   result = satisfy_failed_allocation_helper(word_size,
 971                                             true, /* do_gc */
 972                                             true, /* maximum_collection */
 973                                             true /* expect_null_mutator_alloc_region */);
 974 
 975   if (result != nullptr) {
 976     return result;
 977   }
 978 
 979   // Attempts to allocate, no GC
 980   result = satisfy_failed_allocation_helper(word_size,
 981                                             false, /* do_gc */
 982                                             false, /* maximum_collection */
 983                                             true  /* expect_null_mutator_alloc_region */);
 984 
 985   if (result != nullptr) {
 986     return result;
 987   }
 988 
 989   assert(!soft_ref_policy()->should_clear_all_soft_refs(),
 990          "Flag should have been handled and cleared prior to this point");
 991 
 992   // What else?  We might try synchronous finalization later.  If the total
 993   // space available is large enough for the allocation, then a more
 994   // complete compaction phase than we've tried so far might be
 995   // appropriate.
 996   return nullptr;
 997 }
 998 
 999 // Attempting to expand the heap sufficiently
1000 // to support an allocation of the given "word_size".  If
1001 // successful, perform the allocation and return the address of the
1002 // allocated block, or else null.
1003 
1004 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1005   assert_at_safepoint_on_vm_thread();
1006 
1007   _verifier->verify_region_sets_optional();
1008 
1009   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1010   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: %zuB",
1011                             word_size * HeapWordSize);
1012 
1013 
1014   if (expand(expand_bytes, _workers)) {
1015     _hrm.verify_optional();
1016     _verifier->verify_region_sets_optional();
1017     return attempt_allocation_at_safepoint(word_size,
1018                                            false /* expect_null_mutator_alloc_region */);
1019   }
1020   return nullptr;
1021 }
1022 
1023 bool G1CollectedHeap::expand(size_t expand_bytes, WorkerThreads* pretouch_workers) {
1024   assert(expand_bytes > 0, "precondition");
1025 
1026   size_t aligned_expand_bytes = os::align_up_vm_page_size(expand_bytes);
1027   aligned_expand_bytes = align_up(aligned_expand_bytes, G1HeapRegion::GrainBytes);
1028 
1029   uint num_regions_to_expand = (uint)(aligned_expand_bytes / G1HeapRegion::GrainBytes);
1030 
1031   log_debug(gc, ergo, heap)("Heap resize. Requested expansion amount: %zuB aligned expansion amount: %zuB (%u regions)",
1032                             expand_bytes, aligned_expand_bytes, num_regions_to_expand);
1033 
1034   if (num_inactive_regions() == 0) {
1035     log_debug(gc, ergo, heap)("Heap resize. Did not expand the heap (heap already fully expanded)");
1036     return false;
1037   }
1038 
1039   uint expanded_by = _hrm.expand_by(num_regions_to_expand, pretouch_workers);
1040 
1041   size_t actual_expand_bytes = expanded_by * G1HeapRegion::GrainBytes;
1042   assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1043   policy()->record_new_heap_size(num_committed_regions());
1044 
1045   return true;
1046 }
1047 
1048 bool G1CollectedHeap::expand_single_region(uint node_index) {
1049   uint expanded_by = _hrm.expand_on_preferred_node(node_index);
1050 
1051   if (expanded_by == 0) {
1052     assert(num_inactive_regions() == 0, "Should be no regions left, available: %u", num_inactive_regions());
1053     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1054     return false;
1055   }
1056 
1057   policy()->record_new_heap_size(num_committed_regions());
1058   return true;
1059 }
1060 
1061 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1062   assert(shrink_bytes > 0, "must be");
1063   assert(is_aligned(shrink_bytes, G1HeapRegion::GrainBytes),
1064          "Shrink request for %zuB not aligned to heap region size %zuB",
1065          shrink_bytes, G1HeapRegion::GrainBytes);
1066 
1067   uint num_regions_to_remove = (uint)(shrink_bytes / G1HeapRegion::GrainBytes);
1068 
1069   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1070   size_t shrunk_bytes = num_regions_removed * G1HeapRegion::GrainBytes;
1071 
1072   log_debug(gc, ergo, heap)("Heap resize. Requested shrinking amount: %zuB actual shrinking amount: %zuB (%u regions)",
1073                             shrink_bytes, shrunk_bytes, num_regions_removed);
1074   if (num_regions_removed > 0) {
1075     policy()->record_new_heap_size(num_committed_regions());
1076   } else {
1077     log_debug(gc, ergo, heap)("Heap resize. Did not shrink the heap (heap shrinking operation failed)");
1078   }
1079 }
1080 
1081 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1082   if (capacity() == min_capacity()) {
1083     log_debug(gc, ergo, heap)("Heap resize. Did not shrink the heap (heap already at minimum)");
1084     return;
1085   }
1086 
1087   size_t aligned_shrink_bytes = os::align_down_vm_page_size(shrink_bytes);
1088   aligned_shrink_bytes = align_down(aligned_shrink_bytes, G1HeapRegion::GrainBytes);
1089 
1090   aligned_shrink_bytes = capacity() - MAX2(capacity() - aligned_shrink_bytes, min_capacity());
1091   assert(is_aligned(aligned_shrink_bytes, G1HeapRegion::GrainBytes), "Bytes to shrink %zuB not aligned", aligned_shrink_bytes);
1092 
1093   log_debug(gc, ergo, heap)("Heap resize. Requested shrink amount: %zuB aligned shrink amount: %zuB",
1094                             shrink_bytes, aligned_shrink_bytes);
1095 
1096   if (aligned_shrink_bytes == 0) {
1097     log_debug(gc, ergo, heap)("Heap resize. Did not shrink the heap (shrink request too small)");
1098     return;
1099   }
1100 
1101   _verifier->verify_region_sets_optional();
1102 
1103   // We should only reach here at the end of a Full GC or during Remark which
1104   // means we should not not be holding to any GC alloc regions. The method
1105   // below will make sure of that and do any remaining clean up.
1106   _allocator->abandon_gc_alloc_regions();
1107 
1108   // Instead of tearing down / rebuilding the free lists here, we
1109   // could instead use the remove_all_pending() method on free_list to
1110   // remove only the ones that we need to remove.
1111   _hrm.remove_all_free_regions();
1112   shrink_helper(aligned_shrink_bytes);
1113   rebuild_region_sets(true /* free_list_only */);
1114 
1115   _hrm.verify_optional();
1116   _verifier->verify_region_sets_optional();
1117 }
1118 
1119 class OldRegionSetChecker : public G1HeapRegionSetChecker {
1120 public:
1121   void check_mt_safety() {
1122     // Master Old Set MT safety protocol:
1123     // (a) If we're at a safepoint, operations on the master old set
1124     // should be invoked:
1125     // - by the VM thread (which will serialize them), or
1126     // - by the GC workers while holding the FreeList_lock, if we're
1127     //   at a safepoint for an evacuation pause (this lock is taken
1128     //   anyway when an GC alloc region is retired so that a new one
1129     //   is allocated from the free list), or
1130     // - by the GC workers while holding the OldSets_lock, if we're at a
1131     //   safepoint for a cleanup pause.
1132     // (b) If we're not at a safepoint, operations on the master old set
1133     // should be invoked while holding the Heap_lock.
1134 
1135     if (SafepointSynchronize::is_at_safepoint()) {
1136       guarantee(Thread::current()->is_VM_thread() ||
1137                 FreeList_lock->owned_by_self() || OldSets_lock->owned_by_self(),
1138                 "master old set MT safety protocol at a safepoint");
1139     } else {
1140       guarantee(Heap_lock->owned_by_self(), "master old set MT safety protocol outside a safepoint");
1141     }
1142   }
1143   bool is_correct_type(G1HeapRegion* hr) { return hr->is_old(); }
1144   const char* get_description() { return "Old Regions"; }
1145 };
1146 
1147 class HumongousRegionSetChecker : public G1HeapRegionSetChecker {
1148 public:
1149   void check_mt_safety() {
1150     // Humongous Set MT safety protocol:
1151     // (a) If we're at a safepoint, operations on the master humongous
1152     // set should be invoked by either the VM thread (which will
1153     // serialize them) or by the GC workers while holding the
1154     // OldSets_lock.
1155     // (b) If we're not at a safepoint, operations on the master
1156     // humongous set should be invoked while holding the Heap_lock.
1157 
1158     if (SafepointSynchronize::is_at_safepoint()) {
1159       guarantee(Thread::current()->is_VM_thread() ||
1160                 OldSets_lock->owned_by_self(),
1161                 "master humongous set MT safety protocol at a safepoint");
1162     } else {
1163       guarantee(Heap_lock->owned_by_self(),
1164                 "master humongous set MT safety protocol outside a safepoint");
1165     }
1166   }
1167   bool is_correct_type(G1HeapRegion* hr) { return hr->is_humongous(); }
1168   const char* get_description() { return "Humongous Regions"; }
1169 };
1170 
1171 G1CollectedHeap::G1CollectedHeap() :
1172   CollectedHeap(),
1173   _service_thread(nullptr),
1174   _periodic_gc_task(nullptr),
1175   _free_arena_memory_task(nullptr),
1176   _workers(nullptr),
1177   _card_table(nullptr),
1178   _collection_pause_end(Ticks::now()),
1179   _old_set("Old Region Set", new OldRegionSetChecker()),
1180   _humongous_set("Humongous Region Set", new HumongousRegionSetChecker()),
1181   _bot(nullptr),
1182   _listener(),
1183   _numa(G1NUMA::create()),
1184   _hrm(),
1185   _allocator(nullptr),
1186   _allocation_failure_injector(),
1187   _verifier(nullptr),
1188   _summary_bytes_used(0),
1189   _bytes_used_during_gc(0),
1190   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1191   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1192   _monitoring_support(nullptr),
1193   _num_humongous_objects(0),
1194   _num_humongous_reclaim_candidates(0),
1195   _collector_state(),
1196   _old_marking_cycles_started(0),
1197   _old_marking_cycles_completed(0),
1198   _eden(),
1199   _survivor(),
1200   _gc_timer_stw(new STWGCTimer()),
1201   _gc_tracer_stw(new G1NewTracer()),
1202   _policy(new G1Policy(_gc_timer_stw)),
1203   _heap_sizing_policy(nullptr),
1204   _collection_set(this, _policy),
1205   _rem_set(nullptr),
1206   _card_set_config(),
1207   _card_set_freelist_pool(G1CardSetConfiguration::num_mem_object_types()),
1208   _young_regions_cset_group(card_set_config(), &_card_set_freelist_pool, 1u /* group_id */),
1209   _cm(nullptr),
1210   _cm_thread(nullptr),
1211   _cr(nullptr),
1212   _task_queues(nullptr),
1213   _partial_array_state_manager(nullptr),
1214   _ref_processor_stw(nullptr),
1215   _is_alive_closure_stw(this),
1216   _is_subject_to_discovery_stw(this),
1217   _ref_processor_cm(nullptr),
1218   _is_alive_closure_cm(),
1219   _is_subject_to_discovery_cm(this),
1220   _region_attr() {
1221 
1222   _verifier = new G1HeapVerifier(this);
1223 
1224   _allocator = new G1Allocator(this);
1225 
1226   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _policy->analytics());
1227 
1228   _humongous_object_threshold_in_words = humongous_threshold_for(G1HeapRegion::GrainWords);
1229 
1230   // Since filler arrays are never referenced, we can make them region sized.
1231   // This simplifies filling up the region in case we have some potentially
1232   // unreferenced (by Java code, but still in use by native code) pinned objects
1233   // in there.
1234   _filler_array_max_size = G1HeapRegion::GrainWords;
1235 
1236   // Override the default _stack_chunk_max_size so that no humongous stack chunks are created
1237   _stack_chunk_max_size = _humongous_object_threshold_in_words;
1238 
1239   uint n_queues = ParallelGCThreads;
1240   _task_queues = new G1ScannerTasksQueueSet(n_queues);
1241 
1242   for (uint i = 0; i < n_queues; i++) {
1243     G1ScannerTasksQueue* q = new G1ScannerTasksQueue();
1244     _task_queues->register_queue(i, q);
1245   }
1246 
1247   _partial_array_state_manager = new PartialArrayStateManager(n_queues);
1248 
1249   _gc_tracer_stw->initialize();
1250 }
1251 
1252 PartialArrayStateManager* G1CollectedHeap::partial_array_state_manager() const {
1253   return _partial_array_state_manager;
1254 }
1255 
1256 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1257                                                                  size_t size,
1258                                                                  size_t translation_factor) {
1259   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1260 
1261   // When a page size is given we don't want to mix large
1262   // and normal pages. If the size is not a multiple of the
1263   // page size it will be aligned up to achieve this.
1264   size_t alignment = os::vm_allocation_granularity();
1265   if (preferred_page_size != os::vm_page_size()) {
1266     alignment = MAX2(preferred_page_size, alignment);
1267     size = align_up(size, alignment);
1268   }
1269 
1270   // Allocate a new reserved space, preferring to use large pages.
1271   ReservedSpace rs = MemoryReserver::reserve(size,
1272                                              alignment,
1273                                              preferred_page_size,
1274                                              mtGC);
1275 
1276   size_t page_size = rs.page_size();
1277   G1RegionToSpaceMapper* result  =
1278     G1RegionToSpaceMapper::create_mapper(rs,
1279                                          size,
1280                                          page_size,
1281                                          G1HeapRegion::GrainBytes,
1282                                          translation_factor,
1283                                          mtGC);
1284 
1285   os::trace_page_sizes_for_requested_size(description,
1286                                           size,
1287                                           preferred_page_size,
1288                                           rs.base(),
1289                                           rs.size(),
1290                                           page_size);
1291 
1292   return result;
1293 }
1294 
1295 jint G1CollectedHeap::initialize_concurrent_refinement() {
1296   jint ecode = JNI_OK;
1297   _cr = G1ConcurrentRefine::create(policy(), &ecode);
1298   return ecode;
1299 }
1300 
1301 jint G1CollectedHeap::initialize_service_thread() {
1302   _service_thread = new G1ServiceThread();
1303   if (_service_thread->osthread() == nullptr) {
1304     vm_shutdown_during_initialization("Could not create G1ServiceThread");
1305     return JNI_ENOMEM;
1306   }
1307   return JNI_OK;
1308 }
1309 
1310 jint G1CollectedHeap::initialize() {
1311 
1312   if (!os::is_thread_cpu_time_supported()) {
1313     vm_exit_during_initialization("G1 requires cpu time gathering support");
1314   }
1315   // Necessary to satisfy locking discipline assertions.
1316 
1317   MutexLocker x(Heap_lock);
1318 
1319   // While there are no constraints in the GC code that HeapWordSize
1320   // be any particular value, there are multiple other areas in the
1321   // system which believe this to be true (e.g. oop->object_size in some
1322   // cases incorrectly returns the size in wordSize units rather than
1323   // HeapWordSize).
1324   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1325 
1326   size_t init_byte_size = InitialHeapSize;
1327   size_t reserved_byte_size = G1Arguments::heap_reserved_size_bytes();
1328 
1329   // Ensure that the sizes are properly aligned.
1330   Universe::check_alignment(init_byte_size, G1HeapRegion::GrainBytes, "g1 heap");
1331   Universe::check_alignment(reserved_byte_size, G1HeapRegion::GrainBytes, "g1 heap");
1332   Universe::check_alignment(reserved_byte_size, HeapAlignment, "g1 heap");
1333 
1334   // Reserve the maximum.
1335 
1336   // When compressed oops are enabled, the preferred heap base
1337   // is calculated by subtracting the requested size from the
1338   // 32Gb boundary and using the result as the base address for
1339   // heap reservation. If the requested size is not aligned to
1340   // G1HeapRegion::GrainBytes (i.e. the alignment that is passed
1341   // into the ReservedHeapSpace constructor) then the actual
1342   // base of the reserved heap may end up differing from the
1343   // address that was requested (i.e. the preferred heap base).
1344   // If this happens then we could end up using a non-optimal
1345   // compressed oops mode.
1346 
1347   ReservedHeapSpace heap_rs = Universe::reserve_heap(reserved_byte_size,
1348                                                      HeapAlignment);
1349 
1350   initialize_reserved_region(heap_rs);
1351 
1352   // Create the barrier set for the entire reserved region.
1353   G1CardTable* ct = new G1CardTable(_reserved);
1354   G1BarrierSet* bs = new G1BarrierSet(ct);
1355   bs->initialize();
1356   assert(bs->is_a(BarrierSet::G1BarrierSet), "sanity");
1357   BarrierSet::set_barrier_set(bs);
1358   _card_table = ct;
1359 
1360   {
1361     G1SATBMarkQueueSet& satbqs = bs->satb_mark_queue_set();
1362     satbqs.set_process_completed_buffers_threshold(G1SATBProcessCompletedThreshold);
1363     satbqs.set_buffer_enqueue_threshold_percentage(G1SATBBufferEnqueueingThresholdPercent);
1364   }
1365 
1366   // Create space mappers.
1367   size_t page_size = heap_rs.page_size();
1368   G1RegionToSpaceMapper* heap_storage =
1369     G1RegionToSpaceMapper::create_mapper(heap_rs,
1370                                          heap_rs.size(),
1371                                          page_size,
1372                                          G1HeapRegion::GrainBytes,
1373                                          1,
1374                                          mtJavaHeap);
1375   if(heap_storage == nullptr) {
1376     vm_shutdown_during_initialization("Could not initialize G1 heap");
1377     return JNI_ERR;
1378   }
1379 
1380   os::trace_page_sizes("Heap",
1381                        min_capacity(),
1382                        reserved_byte_size,
1383                        heap_rs.base(),
1384                        heap_rs.size(),
1385                        page_size);
1386   heap_storage->set_mapping_changed_listener(&_listener);
1387 
1388   // Create storage for the BOT, card table and the bitmap.
1389   G1RegionToSpaceMapper* bot_storage =
1390     create_aux_memory_mapper("Block Offset Table",
1391                              G1BlockOffsetTable::compute_size(heap_rs.size() / HeapWordSize),
1392                              G1BlockOffsetTable::heap_map_factor());
1393 
1394   G1RegionToSpaceMapper* cardtable_storage =
1395     create_aux_memory_mapper("Card Table",
1396                              G1CardTable::compute_size(heap_rs.size() / HeapWordSize),
1397                              G1CardTable::heap_map_factor());
1398 
1399   size_t bitmap_size = G1CMBitMap::compute_size(heap_rs.size());
1400   G1RegionToSpaceMapper* bitmap_storage =
1401     create_aux_memory_mapper("Mark Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1402 
1403   _hrm.initialize(heap_storage, bitmap_storage, bot_storage, cardtable_storage);
1404   _card_table->initialize(cardtable_storage);
1405 
1406   // 6843694 - ensure that the maximum region index can fit
1407   // in the remembered set structures.
1408   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1409   guarantee((max_num_regions() - 1) <= max_region_idx, "too many regions");
1410 
1411   // The G1FromCardCache reserves card with value 0 as "invalid", so the heap must not
1412   // start within the first card.
1413   guarantee((uintptr_t)(heap_rs.base()) >= G1CardTable::card_size(), "Java heap must not start within the first card.");
1414   G1FromCardCache::initialize(max_num_regions());
1415   // Also create a G1 rem set.
1416   _rem_set = new G1RemSet(this, _card_table);
1417   _rem_set->initialize(max_num_regions());
1418 
1419   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1420   guarantee(G1HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1421   guarantee(G1HeapRegion::CardsPerRegion < max_cards_per_region,
1422             "too many cards per region");
1423 
1424   G1HeapRegionRemSet::initialize(_reserved);
1425 
1426   G1FreeRegionList::set_unrealistically_long_length(max_num_regions() + 1);
1427 
1428   _bot = new G1BlockOffsetTable(reserved(), bot_storage);
1429 
1430   {
1431     size_t granularity = G1HeapRegion::GrainBytes;
1432 
1433     _region_attr.initialize(reserved(), granularity);
1434   }
1435 
1436   _workers = new WorkerThreads("GC Thread", ParallelGCThreads);
1437   if (_workers == nullptr) {
1438     return JNI_ENOMEM;
1439   }
1440   _workers->initialize_workers();
1441 
1442   _numa->set_region_info(G1HeapRegion::GrainBytes, page_size);
1443 
1444   // Create the G1ConcurrentMark data structure and thread.
1445   // (Must do this late, so that "max_[reserved_]regions" is defined.)
1446   _cm = new G1ConcurrentMark(this, bitmap_storage);
1447   _cm_thread = _cm->cm_thread();
1448 
1449   // Now expand into the initial heap size.
1450   if (!expand(init_byte_size, _workers)) {
1451     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1452     return JNI_ENOMEM;
1453   }
1454 
1455   // Perform any initialization actions delegated to the policy.
1456   policy()->init(this, &_collection_set);
1457 
1458   jint ecode = initialize_concurrent_refinement();
1459   if (ecode != JNI_OK) {
1460     return ecode;
1461   }
1462 
1463   ecode = initialize_service_thread();
1464   if (ecode != JNI_OK) {
1465     return ecode;
1466   }
1467 
1468   // Create and schedule the periodic gc task on the service thread.
1469   _periodic_gc_task = new G1PeriodicGCTask("Periodic GC Task");
1470   _service_thread->register_task(_periodic_gc_task);
1471 
1472   _free_arena_memory_task = new G1MonotonicArenaFreeMemoryTask("Card Set Free Memory Task");
1473   _service_thread->register_task(_free_arena_memory_task);
1474 
1475   // Here we allocate the dummy G1HeapRegion that is required by the
1476   // G1AllocRegion class.
1477   G1HeapRegion* dummy_region = _hrm.get_dummy_region();
1478 
1479   // We'll re-use the same region whether the alloc region will
1480   // require BOT updates or not and, if it doesn't, then a non-young
1481   // region will complain that it cannot support allocations without
1482   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1483   dummy_region->set_eden();
1484   // Make sure it's full.
1485   dummy_region->set_top(dummy_region->end());
1486   G1AllocRegion::setup(this, dummy_region);
1487 
1488   _allocator->init_mutator_alloc_regions();
1489 
1490   // Do create of the monitoring and management support so that
1491   // values in the heap have been properly initialized.
1492   _monitoring_support = new G1MonitoringSupport(this);
1493 
1494   _collection_set.initialize(max_num_regions());
1495 
1496   allocation_failure_injector()->reset();
1497 
1498   CPUTimeCounters::create_counter(CPUTimeGroups::CPUTimeType::gc_parallel_workers);
1499   CPUTimeCounters::create_counter(CPUTimeGroups::CPUTimeType::gc_conc_mark);
1500   CPUTimeCounters::create_counter(CPUTimeGroups::CPUTimeType::gc_conc_refine);
1501   CPUTimeCounters::create_counter(CPUTimeGroups::CPUTimeType::gc_service);
1502 
1503   G1InitLogger::print();
1504 
1505   FullGCForwarding::initialize(_reserved);
1506 
1507   return JNI_OK;
1508 }
1509 
1510 bool G1CollectedHeap::concurrent_mark_is_terminating() const {
1511   return _cm_thread->should_terminate();
1512 }
1513 
1514 void G1CollectedHeap::stop() {
1515   // Stop all concurrent threads. We do this to make sure these threads
1516   // do not continue to execute and access resources (e.g. logging)
1517   // that are destroyed during shutdown.
1518   _cr->stop();
1519   _service_thread->stop();
1520   _cm_thread->stop();
1521 }
1522 
1523 void G1CollectedHeap::safepoint_synchronize_begin() {
1524   SuspendibleThreadSet::synchronize();
1525 }
1526 
1527 void G1CollectedHeap::safepoint_synchronize_end() {
1528   SuspendibleThreadSet::desynchronize();
1529 }
1530 
1531 void G1CollectedHeap::post_initialize() {
1532   CollectedHeap::post_initialize();
1533   ref_processing_init();
1534 }
1535 
1536 void G1CollectedHeap::ref_processing_init() {
1537   // Reference processing in G1 currently works as follows:
1538   //
1539   // * There are two reference processor instances. One is
1540   //   used to record and process discovered references
1541   //   during concurrent marking; the other is used to
1542   //   record and process references during STW pauses
1543   //   (both full and incremental).
1544   // * Both ref processors need to 'span' the entire heap as
1545   //   the regions in the collection set may be dotted around.
1546   //
1547   // * For the concurrent marking ref processor:
1548   //   * Reference discovery is enabled at concurrent start.
1549   //   * Reference discovery is disabled and the discovered
1550   //     references processed etc during remarking.
1551   //   * Reference discovery is MT (see below).
1552   //   * Reference discovery requires a barrier (see below).
1553   //   * Reference processing may or may not be MT
1554   //     (depending on the value of ParallelRefProcEnabled
1555   //     and ParallelGCThreads).
1556   //   * A full GC disables reference discovery by the CM
1557   //     ref processor and abandons any entries on it's
1558   //     discovered lists.
1559   //
1560   // * For the STW processor:
1561   //   * Non MT discovery is enabled at the start of a full GC.
1562   //   * Processing and enqueueing during a full GC is non-MT.
1563   //   * During a full GC, references are processed after marking.
1564   //
1565   //   * Discovery (may or may not be MT) is enabled at the start
1566   //     of an incremental evacuation pause.
1567   //   * References are processed near the end of a STW evacuation pause.
1568   //   * For both types of GC:
1569   //     * Discovery is atomic - i.e. not concurrent.
1570   //     * Reference discovery will not need a barrier.
1571 
1572   _is_alive_closure_cm.initialize(concurrent_mark());
1573   // Concurrent Mark ref processor
1574   _ref_processor_cm =
1575     new ReferenceProcessor(&_is_subject_to_discovery_cm,
1576                            ParallelGCThreads,                              // degree of mt processing
1577                            // We discover with the gc worker threads during Remark, so both
1578                            // thread counts must be considered for discovery.
1579                            MAX2(ParallelGCThreads, ConcGCThreads),         // degree of mt discovery
1580                            true,                                           // Reference discovery is concurrent
1581                            &_is_alive_closure_cm);                         // is alive closure
1582 
1583   // STW ref processor
1584   _ref_processor_stw =
1585     new ReferenceProcessor(&_is_subject_to_discovery_stw,
1586                            ParallelGCThreads,                    // degree of mt processing
1587                            ParallelGCThreads,                    // degree of mt discovery
1588                            false,                                // Reference discovery is not concurrent
1589                            &_is_alive_closure_stw);              // is alive closure
1590 }
1591 
1592 size_t G1CollectedHeap::capacity() const {
1593   return _hrm.num_committed_regions() * G1HeapRegion::GrainBytes;
1594 }
1595 
1596 size_t G1CollectedHeap::unused_committed_regions_in_bytes() const {
1597   return _hrm.total_free_bytes();
1598 }
1599 
1600 // Computes the sum of the storage used by the various regions.
1601 size_t G1CollectedHeap::used() const {
1602   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
1603   return result;
1604 }
1605 
1606 size_t G1CollectedHeap::used_unlocked() const {
1607   return _summary_bytes_used;
1608 }
1609 
1610 class SumUsedClosure: public G1HeapRegionClosure {
1611   size_t _used;
1612 public:
1613   SumUsedClosure() : _used(0) {}
1614   bool do_heap_region(G1HeapRegion* r) {
1615     _used += r->used();
1616     return false;
1617   }
1618   size_t result() { return _used; }
1619 };
1620 
1621 size_t G1CollectedHeap::recalculate_used() const {
1622   SumUsedClosure blk;
1623   heap_region_iterate(&blk);
1624   return blk.result();
1625 }
1626 
1627 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
1628   return GCCause::is_user_requested_gc(cause) && ExplicitGCInvokesConcurrent;
1629 }
1630 
1631 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
1632   switch (cause) {
1633     case GCCause::_g1_humongous_allocation: return true;
1634     case GCCause::_g1_periodic_collection:  return G1PeriodicGCInvokesConcurrent;
1635     case GCCause::_wb_breakpoint:           return true;
1636     case GCCause::_codecache_GC_aggressive: return true;
1637     case GCCause::_codecache_GC_threshold:  return true;
1638     default:                                return is_user_requested_concurrent_full_gc(cause);
1639   }
1640 }
1641 
1642 void G1CollectedHeap::increment_old_marking_cycles_started() {
1643   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
1644          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
1645          "Wrong marking cycle count (started: %d, completed: %d)",
1646          _old_marking_cycles_started, _old_marking_cycles_completed);
1647 
1648   _old_marking_cycles_started++;
1649 }
1650 
1651 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent,
1652                                                              bool whole_heap_examined) {
1653   MonitorLocker ml(G1OldGCCount_lock, Mutex::_no_safepoint_check_flag);
1654 
1655   // We assume that if concurrent == true, then the caller is a
1656   // concurrent thread that was joined the Suspendible Thread
1657   // Set. If there's ever a cheap way to check this, we should add an
1658   // assert here.
1659 
1660   // Given that this method is called at the end of a Full GC or of a
1661   // concurrent cycle, and those can be nested (i.e., a Full GC can
1662   // interrupt a concurrent cycle), the number of full collections
1663   // completed should be either one (in the case where there was no
1664   // nesting) or two (when a Full GC interrupted a concurrent cycle)
1665   // behind the number of full collections started.
1666 
1667   // This is the case for the inner caller, i.e. a Full GC.
1668   assert(concurrent ||
1669          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
1670          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
1671          "for inner caller (Full GC): _old_marking_cycles_started = %u "
1672          "is inconsistent with _old_marking_cycles_completed = %u",
1673          _old_marking_cycles_started, _old_marking_cycles_completed);
1674 
1675   // This is the case for the outer caller, i.e. the concurrent cycle.
1676   assert(!concurrent ||
1677          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
1678          "for outer caller (concurrent cycle): "
1679          "_old_marking_cycles_started = %u "
1680          "is inconsistent with _old_marking_cycles_completed = %u",
1681          _old_marking_cycles_started, _old_marking_cycles_completed);
1682 
1683   _old_marking_cycles_completed += 1;
1684   if (whole_heap_examined) {
1685     // Signal that we have completed a visit to all live objects.
1686     record_whole_heap_examined_timestamp();
1687   }
1688 
1689   // We need to clear the "in_progress" flag in the CM thread before
1690   // we wake up any waiters (especially when ExplicitInvokesConcurrent
1691   // is set) so that if a waiter requests another System.gc() it doesn't
1692   // incorrectly see that a marking cycle is still in progress.
1693   if (concurrent) {
1694     _cm_thread->set_idle();
1695   }
1696 
1697   // Notify threads waiting in System.gc() (with ExplicitGCInvokesConcurrent)
1698   // for a full GC to finish that their wait is over.
1699   ml.notify_all();
1700 }
1701 
1702 // Helper for collect().
1703 static G1GCCounters collection_counters(G1CollectedHeap* g1h) {
1704   MutexLocker ml(Heap_lock);
1705   return G1GCCounters(g1h);
1706 }
1707 
1708 void G1CollectedHeap::collect(GCCause::Cause cause) {
1709   try_collect(cause, collection_counters(this));
1710 }
1711 
1712 // Return true if (x < y) with allowance for wraparound.
1713 static bool gc_counter_less_than(uint x, uint y) {
1714   return (x - y) > (UINT_MAX/2);
1715 }
1716 
1717 // LOG_COLLECT_CONCURRENTLY(cause, msg, args...)
1718 // Macro so msg printing is format-checked.
1719 #define LOG_COLLECT_CONCURRENTLY(cause, ...)                            \
1720   do {                                                                  \
1721     LogTarget(Trace, gc) LOG_COLLECT_CONCURRENTLY_lt;                   \
1722     if (LOG_COLLECT_CONCURRENTLY_lt.is_enabled()) {                     \
1723       ResourceMark rm; /* For thread name. */                           \
1724       LogStream LOG_COLLECT_CONCURRENTLY_s(&LOG_COLLECT_CONCURRENTLY_lt); \
1725       LOG_COLLECT_CONCURRENTLY_s.print("%s: Try Collect Concurrently (%s): ", \
1726                                        Thread::current()->name(),       \
1727                                        GCCause::to_string(cause));      \
1728       LOG_COLLECT_CONCURRENTLY_s.print(__VA_ARGS__);                    \
1729     }                                                                   \
1730   } while (0)
1731 
1732 #define LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, result) \
1733   LOG_COLLECT_CONCURRENTLY(cause, "complete %s", BOOL_TO_STR(result))
1734 
1735 bool G1CollectedHeap::try_collect_concurrently(GCCause::Cause cause,
1736                                                uint gc_counter,
1737                                                uint old_marking_started_before) {
1738   assert_heap_not_locked();
1739   assert(should_do_concurrent_full_gc(cause),
1740          "Non-concurrent cause %s", GCCause::to_string(cause));
1741 
1742   for (uint i = 1; true; ++i) {
1743     // Try to schedule concurrent start evacuation pause that will
1744     // start a concurrent cycle.
1745     LOG_COLLECT_CONCURRENTLY(cause, "attempt %u", i);
1746     VM_G1TryInitiateConcMark op(gc_counter, cause);
1747     VMThread::execute(&op);
1748 
1749     // Request is trivially finished.
1750     if (cause == GCCause::_g1_periodic_collection) {
1751       LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, op.gc_succeeded());
1752       return op.gc_succeeded();
1753     }
1754 
1755     // If VMOp skipped initiating concurrent marking cycle because
1756     // we're terminating, then we're done.
1757     if (op.terminating()) {
1758       LOG_COLLECT_CONCURRENTLY(cause, "skipped: terminating");
1759       return false;
1760     }
1761 
1762     // Lock to get consistent set of values.
1763     uint old_marking_started_after;
1764     uint old_marking_completed_after;
1765     {
1766       MutexLocker ml(Heap_lock);
1767       // Update gc_counter for retrying VMOp if needed. Captured here to be
1768       // consistent with the values we use below for termination tests.  If
1769       // a retry is needed after a possible wait, and another collection
1770       // occurs in the meantime, it will cause our retry to be skipped and
1771       // we'll recheck for termination with updated conditions from that
1772       // more recent collection.  That's what we want, rather than having
1773       // our retry possibly perform an unnecessary collection.
1774       gc_counter = total_collections();
1775       old_marking_started_after = _old_marking_cycles_started;
1776       old_marking_completed_after = _old_marking_cycles_completed;
1777     }
1778 
1779     if (cause == GCCause::_wb_breakpoint) {
1780       if (op.gc_succeeded()) {
1781         LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true);
1782         return true;
1783       }
1784       // When _wb_breakpoint there can't be another cycle or deferred.
1785       assert(!op.cycle_already_in_progress(), "invariant");
1786       assert(!op.whitebox_attached(), "invariant");
1787       // Concurrent cycle attempt might have been cancelled by some other
1788       // collection, so retry.  Unlike other cases below, we want to retry
1789       // even if cancelled by a STW full collection, because we really want
1790       // to start a concurrent cycle.
1791       if (old_marking_started_before != old_marking_started_after) {
1792         LOG_COLLECT_CONCURRENTLY(cause, "ignoring STW full GC");
1793         old_marking_started_before = old_marking_started_after;
1794       }
1795     } else if (!GCCause::is_user_requested_gc(cause)) {
1796       // For an "automatic" (not user-requested) collection, we just need to
1797       // ensure that progress is made.
1798       //
1799       // Request is finished if any of
1800       // (1) the VMOp successfully performed a GC,
1801       // (2) a concurrent cycle was already in progress,
1802       // (3) whitebox is controlling concurrent cycles,
1803       // (4) a new cycle was started (by this thread or some other), or
1804       // (5) a Full GC was performed.
1805       // Cases (4) and (5) are detected together by a change to
1806       // _old_marking_cycles_started.
1807       //
1808       // Note that (1) does not imply (4).  If we're still in the mixed
1809       // phase of an earlier concurrent collection, the request to make the
1810       // collection a concurrent start won't be honored.  If we don't check for
1811       // both conditions we'll spin doing back-to-back collections.
1812       if (op.gc_succeeded() ||
1813           op.cycle_already_in_progress() ||
1814           op.whitebox_attached() ||
1815           (old_marking_started_before != old_marking_started_after)) {
1816         LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true);
1817         return true;
1818       }
1819     } else {                    // User-requested GC.
1820       // For a user-requested collection, we want to ensure that a complete
1821       // full collection has been performed before returning, but without
1822       // waiting for more than needed.
1823 
1824       // For user-requested GCs (unlike non-UR), a successful VMOp implies a
1825       // new cycle was started.  That's good, because it's not clear what we
1826       // should do otherwise.  Trying again just does back to back GCs.
1827       // Can't wait for someone else to start a cycle.  And returning fails
1828       // to meet the goal of ensuring a full collection was performed.
1829       assert(!op.gc_succeeded() ||
1830              (old_marking_started_before != old_marking_started_after),
1831              "invariant: succeeded %s, started before %u, started after %u",
1832              BOOL_TO_STR(op.gc_succeeded()),
1833              old_marking_started_before, old_marking_started_after);
1834 
1835       // Request is finished if a full collection (concurrent or stw)
1836       // was started after this request and has completed, e.g.
1837       // started_before < completed_after.
1838       if (gc_counter_less_than(old_marking_started_before,
1839                                old_marking_completed_after)) {
1840         LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true);
1841         return true;
1842       }
1843 
1844       if (old_marking_started_after != old_marking_completed_after) {
1845         // If there is an in-progress cycle (possibly started by us), then
1846         // wait for that cycle to complete, e.g.
1847         // while completed_now < started_after.
1848         LOG_COLLECT_CONCURRENTLY(cause, "wait");
1849         MonitorLocker ml(G1OldGCCount_lock);
1850         while (gc_counter_less_than(_old_marking_cycles_completed,
1851                                     old_marking_started_after)) {
1852           ml.wait();
1853         }
1854         // Request is finished if the collection we just waited for was
1855         // started after this request.
1856         if (old_marking_started_before != old_marking_started_after) {
1857           LOG_COLLECT_CONCURRENTLY(cause, "complete after wait");
1858           return true;
1859         }
1860       }
1861 
1862       // If VMOp was successful then it started a new cycle that the above
1863       // wait &etc should have recognized as finishing this request.  This
1864       // differs from a non-user-request, where gc_succeeded does not imply
1865       // a new cycle was started.
1866       assert(!op.gc_succeeded(), "invariant");
1867 
1868       if (op.cycle_already_in_progress()) {
1869         // If VMOp failed because a cycle was already in progress, it
1870         // is now complete.  But it didn't finish this user-requested
1871         // GC, so try again.
1872         LOG_COLLECT_CONCURRENTLY(cause, "retry after in-progress");
1873         continue;
1874       } else if (op.whitebox_attached()) {
1875         // If WhiteBox wants control, wait for notification of a state
1876         // change in the controller, then try again.  Don't wait for
1877         // release of control, since collections may complete while in
1878         // control.  Note: This won't recognize a STW full collection
1879         // while waiting; we can't wait on multiple monitors.
1880         LOG_COLLECT_CONCURRENTLY(cause, "whitebox control stall");
1881         MonitorLocker ml(ConcurrentGCBreakpoints::monitor());
1882         if (ConcurrentGCBreakpoints::is_controlled()) {
1883           ml.wait();
1884         }
1885         continue;
1886       }
1887     }
1888 
1889     // Collection failed and should be retried.
1890     assert(op.transient_failure(), "invariant");
1891 
1892     LOG_COLLECT_CONCURRENTLY(cause, "retry");
1893   }
1894 }
1895 
1896 bool G1CollectedHeap::try_collect(GCCause::Cause cause,
1897                                   const G1GCCounters& counters_before) {
1898   if (should_do_concurrent_full_gc(cause)) {
1899     return try_collect_concurrently(cause,
1900                                     counters_before.total_collections(),
1901                                     counters_before.old_marking_cycles_started());
1902   } else if (cause == GCCause::_wb_young_gc
1903              DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
1904 
1905     // Schedule a standard evacuation pause. We're setting word_size
1906     // to 0 which means that we are not requesting a post-GC allocation.
1907     VM_G1CollectForAllocation op(0,     /* word_size */
1908                                  counters_before.total_collections(),
1909                                  cause);
1910     VMThread::execute(&op);
1911     return op.gc_succeeded();
1912   } else {
1913     // Schedule a Full GC.
1914     VM_G1CollectFull op(counters_before.total_collections(),
1915                         counters_before.total_full_collections(),
1916                         cause);
1917     VMThread::execute(&op);
1918     return op.gc_succeeded();
1919   }
1920 }
1921 
1922 void G1CollectedHeap::start_concurrent_gc_for_metadata_allocation(GCCause::Cause gc_cause) {
1923   GCCauseSetter x(this, gc_cause);
1924 
1925   // At this point we are supposed to start a concurrent cycle. We
1926   // will do so if one is not already in progress.
1927   bool should_start = policy()->force_concurrent_start_if_outside_cycle(gc_cause);
1928   if (should_start) {
1929     do_collection_pause_at_safepoint();
1930   }
1931 }
1932 
1933 bool G1CollectedHeap::is_in(const void* p) const {
1934   return is_in_reserved(p) && _hrm.is_available(addr_to_region(p));
1935 }
1936 
1937 // Iteration functions.
1938 
1939 // Iterates an ObjectClosure over all objects within a G1HeapRegion.
1940 
1941 class IterateObjectClosureRegionClosure: public G1HeapRegionClosure {
1942   ObjectClosure* _cl;
1943 public:
1944   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
1945   bool do_heap_region(G1HeapRegion* r) {
1946     if (!r->is_continues_humongous()) {
1947       r->object_iterate(_cl);
1948     }
1949     return false;
1950   }
1951 };
1952 
1953 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
1954   IterateObjectClosureRegionClosure blk(cl);
1955   heap_region_iterate(&blk);
1956 }
1957 
1958 class G1ParallelObjectIterator : public ParallelObjectIteratorImpl {
1959 private:
1960   G1CollectedHeap*  _heap;
1961   G1HeapRegionClaimer _claimer;
1962 
1963 public:
1964   G1ParallelObjectIterator(uint thread_num) :
1965       _heap(G1CollectedHeap::heap()),
1966       _claimer(thread_num == 0 ? G1CollectedHeap::heap()->workers()->active_workers() : thread_num) {}
1967 
1968   virtual void object_iterate(ObjectClosure* cl, uint worker_id) {
1969     _heap->object_iterate_parallel(cl, worker_id, &_claimer);
1970   }
1971 };
1972 
1973 ParallelObjectIteratorImpl* G1CollectedHeap::parallel_object_iterator(uint thread_num) {
1974   return new G1ParallelObjectIterator(thread_num);
1975 }
1976 
1977 void G1CollectedHeap::object_iterate_parallel(ObjectClosure* cl, uint worker_id, G1HeapRegionClaimer* claimer) {
1978   IterateObjectClosureRegionClosure blk(cl);
1979   heap_region_par_iterate_from_worker_offset(&blk, claimer, worker_id);
1980 }
1981 
1982 void G1CollectedHeap::keep_alive(oop obj) {
1983   G1BarrierSet::enqueue_preloaded(obj);
1984 }
1985 
1986 void G1CollectedHeap::heap_region_iterate(G1HeapRegionClosure* cl) const {
1987   _hrm.iterate(cl);
1988 }
1989 
1990 void G1CollectedHeap::heap_region_iterate(G1HeapRegionIndexClosure* cl) const {
1991   _hrm.iterate(cl);
1992 }
1993 
1994 void G1CollectedHeap::heap_region_par_iterate_from_worker_offset(G1HeapRegionClosure* cl,
1995                                                                  G1HeapRegionClaimer *hrclaimer,
1996                                                                  uint worker_id) const {
1997   _hrm.par_iterate(cl, hrclaimer, hrclaimer->offset_for_worker(worker_id));
1998 }
1999 
2000 void G1CollectedHeap::heap_region_par_iterate_from_start(G1HeapRegionClosure* cl,
2001                                                          G1HeapRegionClaimer *hrclaimer) const {
2002   _hrm.par_iterate(cl, hrclaimer, 0);
2003 }
2004 
2005 void G1CollectedHeap::collection_set_iterate_all(G1HeapRegionClosure* cl) {
2006   _collection_set.iterate(cl);
2007 }
2008 
2009 void G1CollectedHeap::collection_set_par_iterate_all(G1HeapRegionClosure* cl,
2010                                                      G1HeapRegionClaimer* hr_claimer,
2011                                                      uint worker_id) {
2012   _collection_set.par_iterate(cl, hr_claimer, worker_id);
2013 }
2014 
2015 void G1CollectedHeap::collection_set_iterate_increment_from(G1HeapRegionClosure *cl,
2016                                                             G1HeapRegionClaimer* hr_claimer,
2017                                                             uint worker_id) {
2018   _collection_set.iterate_incremental_part_from(cl, hr_claimer, worker_id);
2019 }
2020 
2021 void G1CollectedHeap::par_iterate_regions_array(G1HeapRegionClosure* cl,
2022                                                 G1HeapRegionClaimer* hr_claimer,
2023                                                 const uint regions[],
2024                                                 size_t length,
2025                                                 uint worker_id) const {
2026   assert_at_safepoint();
2027   if (length == 0) {
2028     return;
2029   }
2030   uint total_workers = workers()->active_workers();
2031 
2032   size_t start_pos = (worker_id * length) / total_workers;
2033   size_t cur_pos = start_pos;
2034 
2035   do {
2036     uint region_idx = regions[cur_pos];
2037     if (hr_claimer == nullptr || hr_claimer->claim_region(region_idx)) {
2038       G1HeapRegion* r = region_at(region_idx);
2039       bool result = cl->do_heap_region(r);
2040       guarantee(!result, "Must not cancel iteration");
2041     }
2042 
2043     cur_pos++;
2044     if (cur_pos == length) {
2045       cur_pos = 0;
2046     }
2047   } while (cur_pos != start_pos);
2048 }
2049 
2050 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2051   G1HeapRegion* hr = heap_region_containing(addr);
2052   // The CollectedHeap API requires us to not fail for any given address within
2053   // the heap. G1HeapRegion::block_start() has been optimized to not accept addresses
2054   // outside of the allocated area.
2055   if (addr >= hr->top()) {
2056     return nullptr;
2057   }
2058   return hr->block_start(addr);
2059 }
2060 
2061 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2062   G1HeapRegion* hr = heap_region_containing(addr);
2063   return hr->block_is_obj(addr, hr->parsable_bottom_acquire());
2064 }
2065 
2066 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2067   return eden_target_length() * G1HeapRegion::GrainBytes;
2068 }
2069 
2070 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2071   return _eden.length() * G1HeapRegion::GrainBytes;
2072 }
2073 
2074 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2075 // must be equal to the humongous object limit.
2076 size_t G1CollectedHeap::max_tlab_size() const {
2077   return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
2078 }
2079 
2080 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2081   return _allocator->unsafe_max_tlab_alloc();
2082 }
2083 
2084 size_t G1CollectedHeap::max_capacity() const {
2085   return max_num_regions() * G1HeapRegion::GrainBytes;
2086 }
2087 
2088 size_t G1CollectedHeap::min_capacity() const {
2089   return MinHeapSize;
2090 }
2091 
2092 void G1CollectedHeap::prepare_for_verify() {
2093   _verifier->prepare_for_verify();
2094 }
2095 
2096 void G1CollectedHeap::verify(VerifyOption vo) {
2097   _verifier->verify(vo);
2098 }
2099 
2100 bool G1CollectedHeap::supports_concurrent_gc_breakpoints() const {
2101   return true;
2102 }
2103 
2104 class G1PrintRegionClosure: public G1HeapRegionClosure {
2105   outputStream* _st;
2106 public:
2107   G1PrintRegionClosure(outputStream* st) : _st(st) {}
2108   bool do_heap_region(G1HeapRegion* r) {
2109     r->print_on(_st);
2110     return false;
2111   }
2112 };
2113 
2114 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2115                                        const G1HeapRegion* hr,
2116                                        const VerifyOption vo) const {
2117   switch (vo) {
2118     case VerifyOption::G1UseConcMarking: return is_obj_dead(obj, hr);
2119     case VerifyOption::G1UseFullMarking: return is_obj_dead_full(obj, hr);
2120     default:                             ShouldNotReachHere();
2121   }
2122   return false; // keep some compilers happy
2123 }
2124 
2125 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2126                                        const VerifyOption vo) const {
2127   switch (vo) {
2128     case VerifyOption::G1UseConcMarking: return is_obj_dead(obj);
2129     case VerifyOption::G1UseFullMarking: return is_obj_dead_full(obj);
2130     default:                             ShouldNotReachHere();
2131   }
2132   return false; // keep some compilers happy
2133 }
2134 
2135 void G1CollectedHeap::print_heap_regions() const {
2136   LogTarget(Trace, gc, heap, region) lt;
2137   if (lt.is_enabled()) {
2138     LogStream ls(lt);
2139     print_regions_on(&ls);
2140   }
2141 }
2142 
2143 void G1CollectedHeap::print_heap_on(outputStream* st) const {
2144   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2145   st->print("%-20s", "garbage-first heap");
2146   st->print(" total reserved %zuK, committed %zuK, used %zuK",
2147             _hrm.reserved().byte_size()/K, capacity()/K, heap_used/K);
2148   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ")",
2149             p2i(_hrm.reserved().start()),
2150             p2i(_hrm.reserved().end()));
2151   st->cr();
2152 
2153   StreamIndentor si(st, 1);
2154   st->print("region size %zuK, ", G1HeapRegion::GrainBytes / K);
2155   uint young_regions = young_regions_count();
2156   st->print("%u young (%zuK), ", young_regions,
2157             (size_t) young_regions * G1HeapRegion::GrainBytes / K);
2158   uint survivor_regions = survivor_regions_count();
2159   st->print("%u survivors (%zuK)", survivor_regions,
2160             (size_t) survivor_regions * G1HeapRegion::GrainBytes / K);
2161   st->cr();
2162   if (_numa->is_enabled()) {
2163     uint num_nodes = _numa->num_active_nodes();
2164     st->print("remaining free region(s) on each NUMA node: ");
2165     const uint* node_ids = _numa->node_ids();
2166     for (uint node_index = 0; node_index < num_nodes; node_index++) {
2167       uint num_free_regions = _hrm.num_free_regions(node_index);
2168       st->print("%u=%u ", node_ids[node_index], num_free_regions);
2169     }
2170     st->cr();
2171   }
2172 }
2173 
2174 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2175   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2176                "HS=humongous(starts), HC=humongous(continues), "
2177                "CS=collection set, F=free, "
2178                "TAMS=top-at-mark-start, "
2179                "PB=parsable bottom");
2180   G1PrintRegionClosure blk(st);
2181   heap_region_iterate(&blk);
2182 }
2183 
2184 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2185   print_heap_on(st);
2186 
2187   // Print the per-region information.
2188   st->cr();
2189   print_regions_on(st);
2190 }
2191 
2192 void G1CollectedHeap::print_gc_on(outputStream* st) const {
2193   // Print the per-region information.
2194   print_regions_on(st);
2195   st->cr();
2196 
2197   BarrierSet* bs = BarrierSet::barrier_set();
2198   if (bs != nullptr) {
2199     bs->print_on(st);
2200   }
2201 
2202   if (_cm != nullptr) {
2203     st->cr();
2204     _cm->print_on(st);
2205   }
2206 }
2207 
2208 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2209   workers()->threads_do(tc);
2210   tc->do_thread(_cm_thread);
2211   _cm->threads_do(tc);
2212   _cr->threads_do(tc);
2213   tc->do_thread(_service_thread);
2214 }
2215 
2216 void G1CollectedHeap::print_tracing_info() const {
2217   rem_set()->print_summary_info();
2218   concurrent_mark()->print_summary_info();
2219 }
2220 
2221 bool G1CollectedHeap::print_location(outputStream* st, void* addr) const {
2222   return BlockLocationPrinter<G1CollectedHeap>::print_location(st, addr);
2223 }
2224 
2225 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2226 
2227   size_t eden_used_bytes = _monitoring_support->eden_space_used();
2228   size_t survivor_used_bytes = _monitoring_support->survivor_space_used();
2229   size_t old_gen_used_bytes = _monitoring_support->old_gen_used();
2230   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2231 
2232   size_t eden_capacity_bytes =
2233     (policy()->young_list_target_length() * G1HeapRegion::GrainBytes) - survivor_used_bytes;
2234 
2235   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2236   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes, eden_capacity_bytes,
2237                        survivor_used_bytes, old_gen_used_bytes, num_committed_regions());
2238 }
2239 
2240 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2241   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2242                        stats->unused(), stats->used(), stats->region_end_waste(),
2243                        stats->regions_filled(), stats->num_plab_filled(),
2244                        stats->direct_allocated(), stats->num_direct_allocated(),
2245                        stats->failure_used(), stats->failure_waste());
2246 }
2247 
2248 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2249   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2250   gc_tracer->report_gc_heap_summary(when, heap_summary);
2251 
2252   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2253   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2254 }
2255 
2256 void G1CollectedHeap::gc_prologue(bool full) {
2257   // Update common counters.
2258   increment_total_collections(full /* full gc */);
2259   if (full || collector_state()->in_concurrent_start_gc()) {
2260     increment_old_marking_cycles_started();
2261   }
2262 }
2263 
2264 void G1CollectedHeap::gc_epilogue(bool full) {
2265   // Update common counters.
2266   if (full) {
2267     // Update the number of full collections that have been completed.
2268     increment_old_marking_cycles_completed(false /* concurrent */, true /* liveness_completed */);
2269   }
2270 
2271 #if COMPILER2_OR_JVMCI
2272   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2273 #endif
2274 
2275   // We have just completed a GC. Update the soft reference
2276   // policy with the new heap occupancy
2277   Universe::heap()->update_capacity_and_used_at_gc();
2278 
2279   _collection_pause_end = Ticks::now();
2280 
2281   _free_arena_memory_task->notify_new_stats(&_young_gen_card_set_stats,
2282                                             &_collection_set_candidates_card_set_stats);
2283 
2284   update_perf_counter_cpu_time();
2285 }
2286 
2287 uint G1CollectedHeap::uncommit_regions(uint region_limit) {
2288   return _hrm.uncommit_inactive_regions(region_limit);
2289 }
2290 
2291 bool G1CollectedHeap::has_uncommittable_regions() {
2292   return _hrm.has_inactive_regions();
2293 }
2294 
2295 void G1CollectedHeap::uncommit_regions_if_necessary() {
2296   if (has_uncommittable_regions()) {
2297     G1UncommitRegionTask::enqueue();
2298   }
2299 }
2300 
2301 void G1CollectedHeap::verify_numa_regions(const char* desc) {
2302   LogTarget(Trace, gc, heap, verify) lt;
2303 
2304   if (lt.is_enabled()) {
2305     LogStream ls(lt);
2306     // Iterate all heap regions to print matching between preferred numa id and actual numa id.
2307     G1NodeIndexCheckClosure cl(desc, _numa, &ls);
2308     heap_region_iterate(&cl);
2309   }
2310 }
2311 
2312 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2313                                                uint gc_count_before,
2314                                                bool* succeeded,
2315                                                GCCause::Cause gc_cause) {
2316   assert_heap_not_locked_and_not_at_safepoint();
2317   VM_G1CollectForAllocation op(word_size, gc_count_before, gc_cause);
2318   VMThread::execute(&op);
2319 
2320   HeapWord* result = op.result();
2321   *succeeded = op.gc_succeeded();
2322   assert(result == nullptr || *succeeded,
2323          "the result should be null if the VM did not succeed");
2324 
2325   assert_heap_not_locked();
2326   return result;
2327 }
2328 
2329 void G1CollectedHeap::start_concurrent_cycle(bool concurrent_operation_is_full_mark) {
2330   assert(!_cm_thread->in_progress(), "Can not start concurrent operation while in progress");
2331 
2332   MutexLocker x(CGC_lock, Mutex::_no_safepoint_check_flag);
2333   if (concurrent_operation_is_full_mark) {
2334     _cm->post_concurrent_mark_start();
2335     _cm_thread->start_full_mark();
2336   } else {
2337     _cm->post_concurrent_undo_start();
2338     _cm_thread->start_undo_mark();
2339   }
2340   CGC_lock->notify();
2341 }
2342 
2343 bool G1CollectedHeap::is_potential_eager_reclaim_candidate(G1HeapRegion* r) const {
2344   // We don't nominate objects with many remembered set entries, on
2345   // the assumption that such objects are likely still live.
2346   G1HeapRegionRemSet* rem_set = r->rem_set();
2347 
2348   return rem_set->occupancy_less_or_equal_than(G1EagerReclaimRemSetThreshold);
2349 }
2350 
2351 #ifndef PRODUCT
2352 void G1CollectedHeap::verify_region_attr_remset_is_tracked() {
2353   class VerifyRegionAttrRemSet : public G1HeapRegionClosure {
2354   public:
2355     virtual bool do_heap_region(G1HeapRegion* r) {
2356       G1CollectedHeap* g1h = G1CollectedHeap::heap();
2357       bool const remset_is_tracked = g1h->region_attr(r->bottom()).remset_is_tracked();
2358       assert(r->rem_set()->is_tracked() == remset_is_tracked,
2359              "Region %u remset tracking status (%s) different to region attribute (%s)",
2360              r->hrm_index(), BOOL_TO_STR(r->rem_set()->is_tracked()), BOOL_TO_STR(remset_is_tracked));
2361       return false;
2362     }
2363   } cl;
2364   heap_region_iterate(&cl);
2365 }
2366 #endif
2367 
2368 void G1CollectedHeap::update_perf_counter_cpu_time() {
2369   assert(Thread::current()->is_VM_thread(),
2370          "Must be called from VM thread to avoid races");
2371   if (!UsePerfData) {
2372     return;
2373   }
2374 
2375   // Ensure ThreadTotalCPUTimeClosure destructor is called before publishing gc
2376   // time.
2377   {
2378     ThreadTotalCPUTimeClosure tttc(CPUTimeGroups::CPUTimeType::gc_parallel_workers);
2379     // Currently parallel worker threads never terminate (JDK-8081682), so it is
2380     // safe for VMThread to read their CPU times. However, if JDK-8087340 is
2381     // resolved so they terminate, we should rethink if it is still safe.
2382     workers()->threads_do(&tttc);
2383   }
2384 
2385   CPUTimeCounters::publish_gc_total_cpu_time();
2386 }
2387 
2388 void G1CollectedHeap::start_new_collection_set() {
2389   collection_set()->start_incremental_building();
2390 
2391   clear_region_attr();
2392 
2393   guarantee(_eden.length() == 0, "eden should have been cleared");
2394   policy()->transfer_survivors_to_cset(survivor());
2395 
2396   // We redo the verification but now wrt to the new CSet which
2397   // has just got initialized after the previous CSet was freed.
2398   _cm->verify_no_collection_set_oops();
2399 }
2400 
2401 void G1CollectedHeap::verify_before_young_collection(G1HeapVerifier::G1VerifyType type) {
2402   if (!VerifyBeforeGC) {
2403     return;
2404   }
2405   if (!G1HeapVerifier::should_verify(type)) {
2406     return;
2407   }
2408   Ticks start = Ticks::now();
2409   _verifier->prepare_for_verify();
2410   _verifier->verify_region_sets_optional();
2411   _verifier->verify_dirty_young_regions();
2412   _verifier->verify_before_gc();
2413   verify_numa_regions("GC Start");
2414   phase_times()->record_verify_before_time_ms((Ticks::now() - start).seconds() * MILLIUNITS);
2415 }
2416 
2417 void G1CollectedHeap::verify_after_young_collection(G1HeapVerifier::G1VerifyType type) {
2418   if (!VerifyAfterGC) {
2419     return;
2420   }
2421   if (!G1HeapVerifier::should_verify(type)) {
2422     return;
2423   }
2424   Ticks start = Ticks::now();
2425   _verifier->verify_after_gc();
2426   verify_numa_regions("GC End");
2427   _verifier->verify_region_sets_optional();
2428 
2429   if (collector_state()->in_concurrent_start_gc()) {
2430     log_debug(gc, verify)("Marking state");
2431     _verifier->verify_marking_state();
2432   }
2433 
2434   phase_times()->record_verify_after_time_ms((Ticks::now() - start).seconds() * MILLIUNITS);
2435 }
2436 
2437 void G1CollectedHeap::do_collection_pause_at_safepoint(size_t allocation_word_size) {
2438   assert_at_safepoint_on_vm_thread();
2439   guarantee(!is_stw_gc_active(), "collection is not reentrant");
2440 
2441   do_collection_pause_at_safepoint_helper(allocation_word_size);
2442 }
2443 
2444 G1HeapPrinterMark::G1HeapPrinterMark(G1CollectedHeap* g1h) : _g1h(g1h), _heap_transition(g1h) {
2445   // This summary needs to be printed before incrementing total collections.
2446   _g1h->rem_set()->print_periodic_summary_info("Before GC RS summary",
2447                                                _g1h->total_collections(),
2448                                                true /* show_thread_times */);
2449   _g1h->print_before_gc();
2450   _g1h->print_heap_regions();
2451 }
2452 
2453 G1HeapPrinterMark::~G1HeapPrinterMark() {
2454   _g1h->policy()->print_age_table();
2455   _g1h->rem_set()->print_coarsen_stats();
2456   // We are at the end of the GC. Total collections has already been increased.
2457   _g1h->rem_set()->print_periodic_summary_info("After GC RS summary",
2458                                                _g1h->total_collections() - 1,
2459                                                false /* show_thread_times */);
2460 
2461   _heap_transition.print();
2462   _g1h->print_heap_regions();
2463   _g1h->print_after_gc();
2464   // Print NUMA statistics.
2465   _g1h->numa()->print_statistics();
2466 }
2467 
2468 G1JFRTracerMark::G1JFRTracerMark(STWGCTimer* timer, GCTracer* tracer) :
2469   _timer(timer), _tracer(tracer) {
2470 
2471   _timer->register_gc_start();
2472   _tracer->report_gc_start(G1CollectedHeap::heap()->gc_cause(), _timer->gc_start());
2473   G1CollectedHeap::heap()->trace_heap_before_gc(_tracer);
2474 }
2475 
2476 G1JFRTracerMark::~G1JFRTracerMark() {
2477   G1CollectedHeap::heap()->trace_heap_after_gc(_tracer);
2478   _timer->register_gc_end();
2479   _tracer->report_gc_end(_timer->gc_end(), _timer->time_partitions());
2480 }
2481 
2482 void G1CollectedHeap::prepare_for_mutator_after_young_collection() {
2483   Ticks start = Ticks::now();
2484 
2485   _survivor_evac_stats.adjust_desired_plab_size();
2486   _old_evac_stats.adjust_desired_plab_size();
2487 
2488   // Start a new incremental collection set for the mutator phase.
2489   start_new_collection_set();
2490   _allocator->init_mutator_alloc_regions();
2491 
2492   phase_times()->record_prepare_for_mutator_time_ms((Ticks::now() - start).seconds() * 1000.0);
2493 }
2494 
2495 void G1CollectedHeap::retire_tlabs() {
2496   ensure_parsability(true);
2497 }
2498 
2499 void G1CollectedHeap::flush_region_pin_cache() {
2500   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *thread = jtiwh.next(); ) {
2501     G1ThreadLocalData::pin_count_cache(thread).flush();
2502   }
2503 }
2504 
2505 void G1CollectedHeap::do_collection_pause_at_safepoint_helper(size_t allocation_word_size) {
2506   ResourceMark rm;
2507 
2508   IsSTWGCActiveMark active_gc_mark;
2509   GCIdMark gc_id_mark;
2510   SvcGCMarker sgcm(SvcGCMarker::MINOR);
2511 
2512   GCTraceCPUTime tcpu(_gc_tracer_stw);
2513 
2514   _bytes_used_during_gc = 0;
2515 
2516   policy()->decide_on_concurrent_start_pause();
2517   // Record whether this pause may need to trigger a concurrent operation. Later,
2518   // when we signal the G1ConcurrentMarkThread, the collector state has already
2519   // been reset for the next pause.
2520   bool should_start_concurrent_mark_operation = collector_state()->in_concurrent_start_gc();
2521 
2522   // Perform the collection.
2523   G1YoungCollector collector(gc_cause(), allocation_word_size);
2524   collector.collect();
2525 
2526   // It should now be safe to tell the concurrent mark thread to start
2527   // without its logging output interfering with the logging output
2528   // that came from the pause.
2529   if (should_start_concurrent_mark_operation) {
2530     verifier()->verify_bitmap_clear(true /* above_tams_only */);
2531     // CAUTION: after the start_concurrent_cycle() call below, the concurrent marking
2532     // thread(s) could be running concurrently with us. Make sure that anything
2533     // after this point does not assume that we are the only GC thread running.
2534     // Note: of course, the actual marking work will not start until the safepoint
2535     // itself is released in SuspendibleThreadSet::desynchronize().
2536     start_concurrent_cycle(collector.concurrent_operation_is_full_mark());
2537     ConcurrentGCBreakpoints::notify_idle_to_active();
2538   }
2539 }
2540 
2541 void G1CollectedHeap::complete_cleaning(bool class_unloading_occurred) {
2542   uint num_workers = workers()->active_workers();
2543   G1ParallelCleaningTask unlink_task(num_workers, class_unloading_occurred);
2544   workers()->run_task(&unlink_task);
2545 }
2546 
2547 void G1CollectedHeap::unload_classes_and_code(const char* description, BoolObjectClosure* is_alive, GCTimer* timer) {
2548   GCTraceTime(Debug, gc, phases) debug(description, timer);
2549 
2550   ClassUnloadingContext ctx(workers()->active_workers(),
2551                             false /* unregister_nmethods_during_purge */,
2552                             false /* lock_nmethod_free_separately */);
2553   {
2554     CodeCache::UnlinkingScope scope(is_alive);
2555     bool unloading_occurred = SystemDictionary::do_unloading(timer);
2556     GCTraceTime(Debug, gc, phases) t("G1 Complete Cleaning", timer);
2557     complete_cleaning(unloading_occurred);
2558   }
2559   {
2560     GCTraceTime(Debug, gc, phases) t("Purge Unlinked NMethods", timer);
2561     ctx.purge_nmethods();
2562   }
2563   {
2564     GCTraceTime(Debug, gc, phases) ur("Unregister NMethods", timer);
2565     G1CollectedHeap::heap()->bulk_unregister_nmethods();
2566   }
2567   {
2568     GCTraceTime(Debug, gc, phases) t("Free Code Blobs", timer);
2569     ctx.free_nmethods();
2570   }
2571   {
2572     GCTraceTime(Debug, gc, phases) t("Purge Class Loader Data", timer);
2573     ClassLoaderDataGraph::purge(true /* at_safepoint */);
2574     DEBUG_ONLY(MetaspaceUtils::verify();)
2575   }
2576 }
2577 
2578 class G1BulkUnregisterNMethodTask : public WorkerTask {
2579   G1HeapRegionClaimer _hrclaimer;
2580 
2581   class UnregisterNMethodsHeapRegionClosure : public G1HeapRegionClosure {
2582   public:
2583 
2584     bool do_heap_region(G1HeapRegion* hr) {
2585       hr->rem_set()->bulk_remove_code_roots();
2586       return false;
2587     }
2588   } _cl;
2589 
2590 public:
2591   G1BulkUnregisterNMethodTask(uint num_workers)
2592   : WorkerTask("G1 Remove Unlinked NMethods From Code Root Set Task"),
2593     _hrclaimer(num_workers) { }
2594 
2595   void work(uint worker_id) {
2596     G1CollectedHeap::heap()->heap_region_par_iterate_from_worker_offset(&_cl, &_hrclaimer, worker_id);
2597   }
2598 };
2599 
2600 void G1CollectedHeap::bulk_unregister_nmethods() {
2601   uint num_workers = workers()->active_workers();
2602   G1BulkUnregisterNMethodTask t(num_workers);
2603   workers()->run_task(&t);
2604 }
2605 
2606 bool G1STWSubjectToDiscoveryClosure::do_object_b(oop obj) {
2607   assert(obj != nullptr, "must not be null");
2608   assert(_g1h->is_in_reserved(obj), "Trying to discover obj " PTR_FORMAT " not in heap", p2i(obj));
2609   // The areas the CM and STW ref processor manage must be disjoint. The is_in_cset() below
2610   // may falsely indicate that this is not the case here: however the collection set only
2611   // contains old regions when concurrent mark is not running.
2612   return _g1h->is_in_cset(obj) || _g1h->heap_region_containing(obj)->is_survivor();
2613 }
2614 
2615 void G1CollectedHeap::make_pending_list_reachable() {
2616   if (collector_state()->in_concurrent_start_gc()) {
2617     oop pll_head = Universe::reference_pending_list();
2618     if (pll_head != nullptr) {
2619       // Any valid worker id is fine here as we are in the VM thread and single-threaded.
2620       _cm->mark_in_bitmap(0 /* worker_id */, pll_head);
2621     }
2622   }
2623 }
2624 
2625 void G1CollectedHeap::set_humongous_stats(uint num_humongous_total, uint num_humongous_candidates) {
2626   _num_humongous_objects = num_humongous_total;
2627   _num_humongous_reclaim_candidates = num_humongous_candidates;
2628 }
2629 
2630 bool G1CollectedHeap::should_sample_collection_set_candidates() const {
2631   const G1CollectionSetCandidates* candidates = collection_set()->candidates();
2632   return !candidates->is_empty();
2633 }
2634 
2635 void G1CollectedHeap::set_collection_set_candidates_stats(G1MonotonicArenaMemoryStats& stats) {
2636   _collection_set_candidates_card_set_stats = stats;
2637 }
2638 
2639 void G1CollectedHeap::set_young_gen_card_set_stats(const G1MonotonicArenaMemoryStats& stats) {
2640   _young_gen_card_set_stats = stats;
2641 }
2642 
2643 void G1CollectedHeap::record_obj_copy_mem_stats() {
2644   size_t total_old_allocated = _old_evac_stats.allocated() + _old_evac_stats.direct_allocated();
2645   uint total_allocated = _survivor_evac_stats.regions_filled() + _old_evac_stats.regions_filled();
2646 
2647   log_debug(gc)("Allocated %u survivor %u old percent total %1.2f%% (%u%%)",
2648                 _survivor_evac_stats.regions_filled(), _old_evac_stats.regions_filled(),
2649                 percent_of(total_allocated, num_committed_regions() - total_allocated),
2650                 G1ReservePercent);
2651 
2652   policy()->old_gen_alloc_tracker()->
2653     add_allocated_bytes_since_last_gc(total_old_allocated * HeapWordSize);
2654 
2655   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
2656                                                create_g1_evac_summary(&_old_evac_stats));
2657 }
2658 
2659 void G1CollectedHeap::clear_bitmap_for_region(G1HeapRegion* hr) {
2660   concurrent_mark()->clear_bitmap_for_region(hr);
2661 }
2662 
2663 void G1CollectedHeap::free_region(G1HeapRegion* hr, G1FreeRegionList* free_list) {
2664   assert(!hr->is_free(), "the region should not be free");
2665   assert(!hr->is_empty(), "the region should not be empty");
2666   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
2667   assert(!hr->has_pinned_objects(),
2668          "must not free a region which contains pinned objects");
2669 
2670   // Reset region metadata to allow reuse.
2671   hr->hr_clear(true /* clear_space */);
2672   _policy->remset_tracker()->update_at_free(hr);
2673 
2674   if (free_list != nullptr) {
2675     free_list->add_ordered(hr);
2676   }
2677 }
2678 
2679 void G1CollectedHeap::retain_region(G1HeapRegion* hr) {
2680   MutexLocker x(G1RareEvent_lock, Mutex::_no_safepoint_check_flag);
2681   collection_set()->candidates()->add_retained_region_unsorted(hr);
2682 }
2683 
2684 void G1CollectedHeap::free_humongous_region(G1HeapRegion* hr,
2685                                             G1FreeRegionList* free_list) {
2686   assert(hr->is_humongous(), "this is only for humongous regions");
2687   hr->clear_humongous();
2688   free_region(hr, free_list);
2689 }
2690 
2691 void G1CollectedHeap::remove_from_old_gen_sets(const uint old_regions_removed,
2692                                                const uint humongous_regions_removed) {
2693   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
2694     MutexLocker x(OldSets_lock, Mutex::_no_safepoint_check_flag);
2695     _old_set.bulk_remove(old_regions_removed);
2696     _humongous_set.bulk_remove(humongous_regions_removed);
2697   }
2698 
2699 }
2700 
2701 void G1CollectedHeap::prepend_to_freelist(G1FreeRegionList* list) {
2702   assert(list != nullptr, "list can't be null");
2703   if (!list->is_empty()) {
2704     MutexLocker x(FreeList_lock, Mutex::_no_safepoint_check_flag);
2705     _hrm.insert_list_into_free_list(list);
2706   }
2707 }
2708 
2709 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
2710   decrease_used(bytes);
2711 }
2712 
2713 void G1CollectedHeap::clear_eden() {
2714   _eden.clear();
2715 }
2716 
2717 void G1CollectedHeap::clear_collection_set() {
2718   collection_set()->clear();
2719 }
2720 
2721 void G1CollectedHeap::rebuild_free_region_list() {
2722   Ticks start = Ticks::now();
2723   _hrm.rebuild_free_list(workers());
2724   phase_times()->record_total_rebuild_freelist_time_ms((Ticks::now() - start).seconds() * 1000.0);
2725 }
2726 
2727 class G1AbandonCollectionSetClosure : public G1HeapRegionClosure {
2728 public:
2729   virtual bool do_heap_region(G1HeapRegion* r) {
2730     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
2731     G1CollectedHeap::heap()->clear_region_attr(r);
2732     r->clear_young_index_in_cset();
2733     return false;
2734   }
2735 };
2736 
2737 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
2738   G1AbandonCollectionSetClosure cl;
2739   collection_set_iterate_all(&cl);
2740 
2741   collection_set->clear();
2742   collection_set->stop_incremental_building();
2743 }
2744 
2745 bool G1CollectedHeap::is_old_gc_alloc_region(G1HeapRegion* hr) {
2746   return _allocator->is_retained_old_region(hr);
2747 }
2748 
2749 void G1CollectedHeap::set_region_short_lived_locked(G1HeapRegion* hr) {
2750   _eden.add(hr);
2751   _policy->set_region_eden(hr);
2752   young_regions_cset_group()->add(hr);
2753 }
2754 
2755 #ifdef ASSERT
2756 
2757 class NoYoungRegionsClosure: public G1HeapRegionClosure {
2758 private:
2759   bool _success;
2760 public:
2761   NoYoungRegionsClosure() : _success(true) { }
2762   bool do_heap_region(G1HeapRegion* r) {
2763     if (r->is_young()) {
2764       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
2765                             p2i(r->bottom()), p2i(r->end()));
2766       _success = false;
2767     }
2768     return false;
2769   }
2770   bool success() { return _success; }
2771 };
2772 
2773 bool G1CollectedHeap::check_young_list_empty() {
2774   bool ret = (young_regions_count() == 0);
2775 
2776   NoYoungRegionsClosure closure;
2777   heap_region_iterate(&closure);
2778   ret = ret && closure.success();
2779 
2780   return ret;
2781 }
2782 
2783 #endif // ASSERT
2784 
2785 // Remove the given G1HeapRegion from the appropriate region set.
2786 void G1CollectedHeap::prepare_region_for_full_compaction(G1HeapRegion* hr) {
2787   if (hr->is_humongous()) {
2788     _humongous_set.remove(hr);
2789   } else if (hr->is_old()) {
2790     _old_set.remove(hr);
2791   } else if (hr->is_young()) {
2792     // Note that emptying the eden and survivor lists is postponed and instead
2793     // done as the first step when rebuilding the regions sets again. The reason
2794     // for this is that during a full GC string deduplication needs to know if
2795     // a collected region was young or old when the full GC was initiated.
2796     hr->uninstall_surv_rate_group();
2797   } else {
2798     // We ignore free regions, we'll empty the free list afterwards.
2799     assert(hr->is_free(), "it cannot be another type");
2800   }
2801 }
2802 
2803 void G1CollectedHeap::increase_used(size_t bytes) {
2804   _summary_bytes_used += bytes;
2805 }
2806 
2807 void G1CollectedHeap::decrease_used(size_t bytes) {
2808   assert(_summary_bytes_used >= bytes,
2809          "invariant: _summary_bytes_used: %zu should be >= bytes: %zu",
2810          _summary_bytes_used, bytes);
2811   _summary_bytes_used -= bytes;
2812 }
2813 
2814 void G1CollectedHeap::set_used(size_t bytes) {
2815   _summary_bytes_used = bytes;
2816 }
2817 
2818 class RebuildRegionSetsClosure : public G1HeapRegionClosure {
2819 private:
2820   bool _free_list_only;
2821 
2822   G1HeapRegionSet* _old_set;
2823   G1HeapRegionSet* _humongous_set;
2824 
2825   G1HeapRegionManager* _hrm;
2826 
2827   size_t _total_used;
2828 
2829 public:
2830   RebuildRegionSetsClosure(bool free_list_only,
2831                            G1HeapRegionSet* old_set,
2832                            G1HeapRegionSet* humongous_set,
2833                            G1HeapRegionManager* hrm) :
2834     _free_list_only(free_list_only), _old_set(old_set),
2835     _humongous_set(humongous_set), _hrm(hrm), _total_used(0) {
2836     assert(_hrm->num_free_regions() == 0, "pre-condition");
2837     if (!free_list_only) {
2838       assert(_old_set->is_empty(), "pre-condition");
2839       assert(_humongous_set->is_empty(), "pre-condition");
2840     }
2841   }
2842 
2843   bool do_heap_region(G1HeapRegion* r) {
2844     if (r->is_empty()) {
2845       assert(r->rem_set()->is_empty(), "Empty regions should have empty remembered sets.");
2846       // Add free regions to the free list
2847       r->set_free();
2848       _hrm->insert_into_free_list(r);
2849     } else if (!_free_list_only) {
2850       assert(r->rem_set()->is_empty(), "At this point remembered sets must have been cleared.");
2851 
2852       if (r->is_humongous()) {
2853         _humongous_set->add(r);
2854       } else {
2855         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
2856         // We now move all (non-humongous, non-old) regions to old gen,
2857         // and register them as such.
2858         r->move_to_old();
2859         _old_set->add(r);
2860       }
2861       _total_used += r->used();
2862     }
2863 
2864     return false;
2865   }
2866 
2867   size_t total_used() {
2868     return _total_used;
2869   }
2870 };
2871 
2872 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
2873   assert_at_safepoint_on_vm_thread();
2874 
2875   if (!free_list_only) {
2876     _eden.clear();
2877     _survivor.clear();
2878   }
2879 
2880   RebuildRegionSetsClosure cl(free_list_only,
2881                               &_old_set, &_humongous_set,
2882                               &_hrm);
2883   heap_region_iterate(&cl);
2884 
2885   if (!free_list_only) {
2886     set_used(cl.total_used());
2887   }
2888   assert_used_and_recalculate_used_equal(this);
2889 }
2890 
2891 // Methods for the mutator alloc region
2892 
2893 G1HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
2894                                                       uint node_index) {
2895   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
2896   bool should_allocate = policy()->should_allocate_mutator_region();
2897   if (should_allocate) {
2898     G1HeapRegion* new_alloc_region = new_region(word_size,
2899                                                 G1HeapRegionType::Eden,
2900                                                 false /* do_expand */,
2901                                                 node_index);
2902     if (new_alloc_region != nullptr) {
2903       set_region_short_lived_locked(new_alloc_region);
2904       G1HeapRegionPrinter::alloc(new_alloc_region);
2905       _policy->remset_tracker()->update_at_allocate(new_alloc_region);
2906       return new_alloc_region;
2907     }
2908   }
2909   return nullptr;
2910 }
2911 
2912 void G1CollectedHeap::retire_mutator_alloc_region(G1HeapRegion* alloc_region,
2913                                                   size_t allocated_bytes) {
2914   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
2915   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
2916 
2917   collection_set()->add_eden_region(alloc_region);
2918   increase_used(allocated_bytes);
2919   _eden.add_used_bytes(allocated_bytes);
2920   G1HeapRegionPrinter::retire(alloc_region);
2921 
2922   // We update the eden sizes here, when the region is retired,
2923   // instead of when it's allocated, since this is the point that its
2924   // used space has been recorded in _summary_bytes_used.
2925   monitoring_support()->update_eden_size();
2926 }
2927 
2928 // Methods for the GC alloc regions
2929 
2930 bool G1CollectedHeap::has_more_regions(G1HeapRegionAttr dest) {
2931   if (dest.is_old()) {
2932     return true;
2933   } else {
2934     return survivor_regions_count() < policy()->max_survivor_regions();
2935   }
2936 }
2937 
2938 G1HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, G1HeapRegionAttr dest, uint node_index) {
2939   assert(FreeList_lock->owned_by_self(), "pre-condition");
2940 
2941   if (!has_more_regions(dest)) {
2942     return nullptr;
2943   }
2944 
2945   G1HeapRegionType type;
2946   if (dest.is_young()) {
2947     type = G1HeapRegionType::Survivor;
2948   } else {
2949     type = G1HeapRegionType::Old;
2950   }
2951 
2952   G1HeapRegion* new_alloc_region = new_region(word_size,
2953                                               type,
2954                                               true /* do_expand */,
2955                                               node_index);
2956 
2957   if (new_alloc_region != nullptr) {
2958     if (type.is_survivor()) {
2959       new_alloc_region->set_survivor();
2960       _survivor.add(new_alloc_region);
2961       register_new_survivor_region_with_region_attr(new_alloc_region);
2962       // Install the group cardset.
2963       young_regions_cset_group()->add(new_alloc_region);
2964     } else {
2965       new_alloc_region->set_old();
2966     }
2967     _policy->remset_tracker()->update_at_allocate(new_alloc_region);
2968     register_region_with_region_attr(new_alloc_region);
2969     G1HeapRegionPrinter::alloc(new_alloc_region);
2970     return new_alloc_region;
2971   }
2972   return nullptr;
2973 }
2974 
2975 void G1CollectedHeap::retire_gc_alloc_region(G1HeapRegion* alloc_region,
2976                                              size_t allocated_bytes,
2977                                              G1HeapRegionAttr dest) {
2978   _bytes_used_during_gc += allocated_bytes;
2979   if (dest.is_old()) {
2980     old_set_add(alloc_region);
2981   } else {
2982     assert(dest.is_young(), "Retiring alloc region should be young (%d)", dest.type());
2983     _survivor.add_used_bytes(allocated_bytes);
2984   }
2985 
2986   bool const during_im = collector_state()->in_concurrent_start_gc();
2987   if (during_im && allocated_bytes > 0) {
2988     _cm->add_root_region(alloc_region);
2989   }
2990   G1HeapRegionPrinter::retire(alloc_region);
2991 }
2992 
2993 void G1CollectedHeap::mark_evac_failure_object(uint worker_id, const oop obj, size_t obj_size) const {
2994   assert(!_cm->is_marked_in_bitmap(obj), "must be");
2995 
2996   _cm->raw_mark_in_bitmap(obj);
2997 }
2998 
2999 // Optimized nmethod scanning
3000 class RegisterNMethodOopClosure: public OopClosure {
3001   G1CollectedHeap* _g1h;
3002   nmethod* _nm;
3003 
3004 public:
3005   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
3006     _g1h(g1h), _nm(nm) {}
3007 
3008   void do_oop(oop* p) {
3009     oop heap_oop = RawAccess<>::oop_load(p);
3010     if (!CompressedOops::is_null(heap_oop)) {
3011       oop obj = CompressedOops::decode_not_null(heap_oop);
3012       G1HeapRegion* hr = _g1h->heap_region_containing(obj);
3013       assert(!hr->is_continues_humongous(),
3014              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
3015              " starting at " HR_FORMAT,
3016              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
3017 
3018       hr->add_code_root(_nm);
3019     }
3020   }
3021 
3022   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
3023 };
3024 
3025 void G1CollectedHeap::register_nmethod(nmethod* nm) {
3026   guarantee(nm != nullptr, "sanity");
3027   RegisterNMethodOopClosure reg_cl(this, nm);
3028   nm->oops_do(&reg_cl);
3029 }
3030 
3031 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
3032   // We always unregister nmethods in bulk during code unloading only.
3033   ShouldNotReachHere();
3034 }
3035 
3036 void G1CollectedHeap::update_used_after_gc(bool evacuation_failed) {
3037   if (evacuation_failed) {
3038     set_used(recalculate_used());
3039   } else {
3040     // The "used" of the collection set have already been subtracted
3041     // when they were freed.  Add in the bytes used.
3042     increase_used(_bytes_used_during_gc);
3043   }
3044 }
3045 
3046 class RebuildCodeRootClosure: public NMethodClosure {
3047   G1CollectedHeap* _g1h;
3048 
3049 public:
3050   RebuildCodeRootClosure(G1CollectedHeap* g1h) :
3051     _g1h(g1h) {}
3052 
3053   void do_nmethod(nmethod* nm) {
3054     assert(nm != nullptr, "Sanity");
3055     _g1h->register_nmethod(nm);
3056   }
3057 };
3058 
3059 void G1CollectedHeap::rebuild_code_roots() {
3060   RebuildCodeRootClosure nmethod_cl(this);
3061   CodeCache::nmethods_do(&nmethod_cl);
3062 }
3063 
3064 void G1CollectedHeap::initialize_serviceability() {
3065   _monitoring_support->initialize_serviceability();
3066 }
3067 
3068 MemoryUsage G1CollectedHeap::memory_usage() {
3069   return _monitoring_support->memory_usage();
3070 }
3071 
3072 GrowableArray<GCMemoryManager*> G1CollectedHeap::memory_managers() {
3073   return _monitoring_support->memory_managers();
3074 }
3075 
3076 GrowableArray<MemoryPool*> G1CollectedHeap::memory_pools() {
3077   return _monitoring_support->memory_pools();
3078 }
3079 
3080 void G1CollectedHeap::fill_with_dummy_object(HeapWord* start, HeapWord* end, bool zap) {
3081   G1HeapRegion* region = heap_region_containing(start);
3082   region->fill_with_dummy_object(start, pointer_delta(end, start), zap);
3083 }
3084 
3085 void G1CollectedHeap::start_codecache_marking_cycle_if_inactive(bool concurrent_mark_start) {
3086   // We can reach here with an active code cache marking cycle either because the
3087   // previous G1 concurrent marking cycle was undone (if heap occupancy after the
3088   // concurrent start young collection was below the threshold) or aborted. See
3089   // CodeCache::on_gc_marking_cycle_finish() why this is.  We must not start a new code
3090   // cache cycle then. If we are about to start a new g1 concurrent marking cycle we
3091   // still have to arm all nmethod entry barriers. They are needed for adding oop
3092   // constants to the SATB snapshot. Full GC does not need nmethods to be armed.
3093   if (!CodeCache::is_gc_marking_cycle_active()) {
3094     CodeCache::on_gc_marking_cycle_start();
3095   }
3096   if (concurrent_mark_start) {
3097     CodeCache::arm_all_nmethods();
3098   }
3099 }
3100 
3101 void G1CollectedHeap::finish_codecache_marking_cycle() {
3102   CodeCache::on_gc_marking_cycle_finish();
3103   CodeCache::arm_all_nmethods();
3104 }
3105 
3106 void G1CollectedHeap::prepare_group_cardsets_for_scan() {
3107   young_regions_cardset()->reset_table_scanner_for_groups();
3108 
3109   collection_set()->prepare_groups_for_scan();
3110 }