1 /* 2 * Copyright (c) 2001, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/classLoaderDataGraph.hpp" 27 #include "classfile/metadataOnStackMark.hpp" 28 #include "classfile/systemDictionary.hpp" 29 #include "code/codeCache.hpp" 30 #include "compiler/oopMap.hpp" 31 #include "gc/g1/g1Allocator.inline.hpp" 32 #include "gc/g1/g1Arguments.hpp" 33 #include "gc/g1/g1BarrierSet.hpp" 34 #include "gc/g1/g1BatchedTask.hpp" 35 #include "gc/g1/g1CollectedHeap.inline.hpp" 36 #include "gc/g1/g1CollectionSet.hpp" 37 #include "gc/g1/g1CollectionSetCandidates.hpp" 38 #include "gc/g1/g1CollectorState.hpp" 39 #include "gc/g1/g1ConcurrentRefine.hpp" 40 #include "gc/g1/g1ConcurrentRefineThread.hpp" 41 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp" 42 #include "gc/g1/g1DirtyCardQueue.hpp" 43 #include "gc/g1/g1EvacStats.inline.hpp" 44 #include "gc/g1/g1FullCollector.hpp" 45 #include "gc/g1/g1GCCounters.hpp" 46 #include "gc/g1/g1GCParPhaseTimesTracker.hpp" 47 #include "gc/g1/g1GCPhaseTimes.hpp" 48 #include "gc/g1/g1GCPauseType.hpp" 49 #include "gc/g1/g1HeapRegion.inline.hpp" 50 #include "gc/g1/g1HeapRegionPrinter.hpp" 51 #include "gc/g1/g1HeapRegionRemSet.inline.hpp" 52 #include "gc/g1/g1HeapRegionSet.inline.hpp" 53 #include "gc/g1/g1HeapSizingPolicy.hpp" 54 #include "gc/g1/g1HeapTransition.hpp" 55 #include "gc/g1/g1HeapVerifier.hpp" 56 #include "gc/g1/g1InitLogger.hpp" 57 #include "gc/g1/g1MemoryPool.hpp" 58 #include "gc/g1/g1MonotonicArenaFreeMemoryTask.hpp" 59 #include "gc/g1/g1OopClosures.inline.hpp" 60 #include "gc/g1/g1ParallelCleaning.hpp" 61 #include "gc/g1/g1ParScanThreadState.inline.hpp" 62 #include "gc/g1/g1PeriodicGCTask.hpp" 63 #include "gc/g1/g1Policy.hpp" 64 #include "gc/g1/g1RedirtyCardsQueue.hpp" 65 #include "gc/g1/g1RegionPinCache.inline.hpp" 66 #include "gc/g1/g1RegionToSpaceMapper.hpp" 67 #include "gc/g1/g1RemSet.hpp" 68 #include "gc/g1/g1RootClosures.hpp" 69 #include "gc/g1/g1RootProcessor.hpp" 70 #include "gc/g1/g1SATBMarkQueueSet.hpp" 71 #include "gc/g1/g1ServiceThread.hpp" 72 #include "gc/g1/g1ThreadLocalData.hpp" 73 #include "gc/g1/g1Trace.hpp" 74 #include "gc/g1/g1UncommitRegionTask.hpp" 75 #include "gc/g1/g1VMOperations.hpp" 76 #include "gc/g1/g1YoungCollector.hpp" 77 #include "gc/g1/g1YoungGCAllocationFailureInjector.hpp" 78 #include "gc/shared/classUnloadingContext.hpp" 79 #include "gc/shared/concurrentGCBreakpoints.hpp" 80 #include "gc/shared/gcBehaviours.hpp" 81 #include "gc/shared/gcHeapSummary.hpp" 82 #include "gc/shared/gcId.hpp" 83 #include "gc/shared/gcTimer.hpp" 84 #include "gc/shared/gcTraceTime.inline.hpp" 85 #include "gc/shared/isGCActiveMark.hpp" 86 #include "gc/shared/locationPrinter.inline.hpp" 87 #include "gc/shared/oopStorageParState.hpp" 88 #include "gc/shared/referenceProcessor.inline.hpp" 89 #include "gc/shared/slidingForwarding.hpp" 90 #include "gc/shared/suspendibleThreadSet.hpp" 91 #include "gc/shared/taskqueue.inline.hpp" 92 #include "gc/shared/taskTerminator.hpp" 93 #include "gc/shared/tlab_globals.hpp" 94 #include "gc/shared/workerPolicy.hpp" 95 #include "gc/shared/weakProcessor.inline.hpp" 96 #include "logging/log.hpp" 97 #include "memory/allocation.hpp" 98 #include "memory/heapInspection.hpp" 99 #include "memory/iterator.hpp" 100 #include "memory/metaspaceUtils.hpp" 101 #include "memory/resourceArea.hpp" 102 #include "memory/universe.hpp" 103 #include "oops/access.inline.hpp" 104 #include "oops/compressedOops.inline.hpp" 105 #include "oops/oop.inline.hpp" 106 #include "runtime/atomic.hpp" 107 #include "runtime/cpuTimeCounters.hpp" 108 #include "runtime/handles.inline.hpp" 109 #include "runtime/init.hpp" 110 #include "runtime/java.hpp" 111 #include "runtime/orderAccess.hpp" 112 #include "runtime/threadSMR.hpp" 113 #include "runtime/vmThread.hpp" 114 #include "utilities/align.hpp" 115 #include "utilities/autoRestore.hpp" 116 #include "utilities/bitMap.inline.hpp" 117 #include "utilities/globalDefinitions.hpp" 118 #include "utilities/stack.inline.hpp" 119 120 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0; 121 122 // INVARIANTS/NOTES 123 // 124 // All allocation activity covered by the G1CollectedHeap interface is 125 // serialized by acquiring the HeapLock. This happens in mem_allocate 126 // and allocate_new_tlab, which are the "entry" points to the 127 // allocation code from the rest of the JVM. (Note that this does not 128 // apply to TLAB allocation, which is not part of this interface: it 129 // is done by clients of this interface.) 130 131 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) { 132 HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions); 133 } 134 135 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) { 136 // The from card cache is not the memory that is actually committed. So we cannot 137 // take advantage of the zero_filled parameter. 138 reset_from_card_cache(start_idx, num_regions); 139 } 140 141 void G1CollectedHeap::run_batch_task(G1BatchedTask* cl) { 142 uint num_workers = MAX2(1u, MIN2(cl->num_workers_estimate(), workers()->active_workers())); 143 cl->set_max_workers(num_workers); 144 workers()->run_task(cl, num_workers); 145 } 146 147 uint G1CollectedHeap::get_chunks_per_region() { 148 uint log_region_size = G1HeapRegion::LogOfHRGrainBytes; 149 // Limit the expected input values to current known possible values of the 150 // (log) region size. Adjust as necessary after testing if changing the permissible 151 // values for region size. 152 assert(log_region_size >= 20 && log_region_size <= 29, 153 "expected value in [20,29], but got %u", log_region_size); 154 return 1u << (log_region_size / 2 - 4); 155 } 156 157 G1HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index, 158 MemRegion mr) { 159 return new G1HeapRegion(hrs_index, bot(), mr, &_card_set_config); 160 } 161 162 // Private methods. 163 164 G1HeapRegion* G1CollectedHeap::new_region(size_t word_size, 165 HeapRegionType type, 166 bool do_expand, 167 uint node_index) { 168 assert(!is_humongous(word_size) || word_size <= G1HeapRegion::GrainWords, 169 "the only time we use this to allocate a humongous region is " 170 "when we are allocating a single humongous region"); 171 172 G1HeapRegion* res = _hrm.allocate_free_region(type, node_index); 173 174 if (res == nullptr && do_expand) { 175 // Currently, only attempts to allocate GC alloc regions set 176 // do_expand to true. So, we should only reach here during a 177 // safepoint. 178 assert(SafepointSynchronize::is_at_safepoint(), "invariant"); 179 180 log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B", 181 word_size * HeapWordSize); 182 183 assert(word_size * HeapWordSize < G1HeapRegion::GrainBytes, 184 "This kind of expansion should never be more than one region. Size: " SIZE_FORMAT, 185 word_size * HeapWordSize); 186 if (expand_single_region(node_index)) { 187 // Given that expand_single_region() succeeded in expanding the heap, and we 188 // always expand the heap by an amount aligned to the heap 189 // region size, the free list should in theory not be empty. 190 // In either case allocate_free_region() will check for null. 191 res = _hrm.allocate_free_region(type, node_index); 192 } 193 } 194 return res; 195 } 196 197 void G1CollectedHeap::set_humongous_metadata(G1HeapRegion* first_hr, 198 uint num_regions, 199 size_t word_size, 200 bool update_remsets) { 201 // Calculate the new top of the humongous object. 202 HeapWord* obj_top = first_hr->bottom() + word_size; 203 // The word size sum of all the regions used 204 size_t word_size_sum = num_regions * G1HeapRegion::GrainWords; 205 assert(word_size <= word_size_sum, "sanity"); 206 207 // How many words memory we "waste" which cannot hold a filler object. 208 size_t words_not_fillable = 0; 209 210 // Pad out the unused tail of the last region with filler 211 // objects, for improved usage accounting. 212 213 // How many words can we use for filler objects. 214 size_t words_fillable = word_size_sum - word_size; 215 216 if (words_fillable >= G1CollectedHeap::min_fill_size()) { 217 G1CollectedHeap::fill_with_objects(obj_top, words_fillable); 218 } else { 219 // We have space to fill, but we cannot fit an object there. 220 words_not_fillable = words_fillable; 221 words_fillable = 0; 222 } 223 224 // We will set up the first region as "starts humongous". This 225 // will also update the BOT covering all the regions to reflect 226 // that there is a single object that starts at the bottom of the 227 // first region. 228 first_hr->hr_clear(false /* clear_space */); 229 first_hr->set_starts_humongous(obj_top, words_fillable); 230 231 if (update_remsets) { 232 _policy->remset_tracker()->update_at_allocate(first_hr); 233 } 234 235 // Indices of first and last regions in the series. 236 uint first = first_hr->hrm_index(); 237 uint last = first + num_regions - 1; 238 239 G1HeapRegion* hr = nullptr; 240 for (uint i = first + 1; i <= last; ++i) { 241 hr = region_at(i); 242 hr->hr_clear(false /* clear_space */); 243 hr->set_continues_humongous(first_hr); 244 if (update_remsets) { 245 _policy->remset_tracker()->update_at_allocate(hr); 246 } 247 } 248 249 // Up to this point no concurrent thread would have been able to 250 // do any scanning on any region in this series. All the top 251 // fields still point to bottom, so the intersection between 252 // [bottom,top] and [card_start,card_end] will be empty. Before we 253 // update the top fields, we'll do a storestore to make sure that 254 // no thread sees the update to top before the zeroing of the 255 // object header and the BOT initialization. 256 OrderAccess::storestore(); 257 258 // Now, we will update the top fields of the "continues humongous" 259 // regions except the last one. 260 for (uint i = first; i < last; ++i) { 261 hr = region_at(i); 262 hr->set_top(hr->end()); 263 } 264 265 hr = region_at(last); 266 // If we cannot fit a filler object, we must set top to the end 267 // of the humongous object, otherwise we cannot iterate the heap 268 // and the BOT will not be complete. 269 hr->set_top(hr->end() - words_not_fillable); 270 271 assert(hr->bottom() < obj_top && obj_top <= hr->end(), 272 "obj_top should be in last region"); 273 274 assert(words_not_fillable == 0 || 275 first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(), 276 "Miscalculation in humongous allocation"); 277 } 278 279 HeapWord* 280 G1CollectedHeap::humongous_obj_allocate_initialize_regions(G1HeapRegion* first_hr, 281 uint num_regions, 282 size_t word_size) { 283 assert(first_hr != nullptr, "pre-condition"); 284 assert(is_humongous(word_size), "word_size should be humongous"); 285 assert(num_regions * G1HeapRegion::GrainWords >= word_size, "pre-condition"); 286 287 // Index of last region in the series. 288 uint first = first_hr->hrm_index(); 289 uint last = first + num_regions - 1; 290 291 // We need to initialize the region(s) we just discovered. This is 292 // a bit tricky given that it can happen concurrently with 293 // refinement threads refining cards on these regions and 294 // potentially wanting to refine the BOT as they are scanning 295 // those cards (this can happen shortly after a cleanup; see CR 296 // 6991377). So we have to set up the region(s) carefully and in 297 // a specific order. 298 299 // The passed in hr will be the "starts humongous" region. The header 300 // of the new object will be placed at the bottom of this region. 301 HeapWord* new_obj = first_hr->bottom(); 302 303 // First, we need to zero the header of the space that we will be 304 // allocating. When we update top further down, some refinement 305 // threads might try to scan the region. By zeroing the header we 306 // ensure that any thread that will try to scan the region will 307 // come across the zero klass word and bail out. 308 // 309 // NOTE: It would not have been correct to have used 310 // CollectedHeap::fill_with_object() and make the space look like 311 // an int array. The thread that is doing the allocation will 312 // later update the object header to a potentially different array 313 // type and, for a very short period of time, the klass and length 314 // fields will be inconsistent. This could cause a refinement 315 // thread to calculate the object size incorrectly. 316 Copy::fill_to_words(new_obj, oopDesc::header_size(), 0); 317 318 // Next, update the metadata for the regions. 319 set_humongous_metadata(first_hr, num_regions, word_size, true); 320 321 G1HeapRegion* last_hr = region_at(last); 322 size_t used = byte_size(first_hr->bottom(), last_hr->top()); 323 324 increase_used(used); 325 326 for (uint i = first; i <= last; ++i) { 327 G1HeapRegion *hr = region_at(i); 328 _humongous_set.add(hr); 329 G1HeapRegionPrinter::alloc(hr); 330 } 331 332 return new_obj; 333 } 334 335 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) { 336 assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size); 337 return align_up(word_size, G1HeapRegion::GrainWords) / G1HeapRegion::GrainWords; 338 } 339 340 // If could fit into free regions w/o expansion, try. 341 // Otherwise, if can expand, do so. 342 // Otherwise, if using ex regions might help, try with ex given back. 343 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) { 344 assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */); 345 346 _verifier->verify_region_sets_optional(); 347 348 uint obj_regions = (uint) humongous_obj_size_in_regions(word_size); 349 350 // Policy: First try to allocate a humongous object in the free list. 351 G1HeapRegion* humongous_start = _hrm.allocate_humongous(obj_regions); 352 if (humongous_start == nullptr) { 353 // Policy: We could not find enough regions for the humongous object in the 354 // free list. Look through the heap to find a mix of free and uncommitted regions. 355 // If so, expand the heap and allocate the humongous object. 356 humongous_start = _hrm.expand_and_allocate_humongous(obj_regions); 357 if (humongous_start != nullptr) { 358 // We managed to find a region by expanding the heap. 359 log_debug(gc, ergo, heap)("Heap expansion (humongous allocation request). Allocation request: " SIZE_FORMAT "B", 360 word_size * HeapWordSize); 361 policy()->record_new_heap_size(num_regions()); 362 } else { 363 // Policy: Potentially trigger a defragmentation GC. 364 } 365 } 366 367 HeapWord* result = nullptr; 368 if (humongous_start != nullptr) { 369 result = humongous_obj_allocate_initialize_regions(humongous_start, obj_regions, word_size); 370 assert(result != nullptr, "it should always return a valid result"); 371 372 // A successful humongous object allocation changes the used space 373 // information of the old generation so we need to recalculate the 374 // sizes and update the jstat counters here. 375 monitoring_support()->update_sizes(); 376 } 377 378 _verifier->verify_region_sets_optional(); 379 380 return result; 381 } 382 383 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t min_size, 384 size_t requested_size, 385 size_t* actual_size) { 386 assert_heap_not_locked_and_not_at_safepoint(); 387 assert(!is_humongous(requested_size), "we do not allow humongous TLABs"); 388 389 return attempt_allocation(min_size, requested_size, actual_size); 390 } 391 392 HeapWord* 393 G1CollectedHeap::mem_allocate(size_t word_size, 394 bool* gc_overhead_limit_was_exceeded) { 395 assert_heap_not_locked_and_not_at_safepoint(); 396 397 if (is_humongous(word_size)) { 398 return attempt_allocation_humongous(word_size); 399 } 400 size_t dummy = 0; 401 return attempt_allocation(word_size, word_size, &dummy); 402 } 403 404 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size) { 405 ResourceMark rm; // For retrieving the thread names in log messages. 406 407 // Make sure you read the note in attempt_allocation_humongous(). 408 409 assert_heap_not_locked_and_not_at_safepoint(); 410 assert(!is_humongous(word_size), "attempt_allocation_slow() should not " 411 "be called for humongous allocation requests"); 412 413 // We should only get here after the first-level allocation attempt 414 // (attempt_allocation()) failed to allocate. 415 416 // We will loop until a) we manage to successfully perform the allocation or b) 417 // successfully schedule a collection which fails to perform the allocation. 418 // Case b) is the only case when we'll return null. 419 HeapWord* result = nullptr; 420 for (uint try_count = 1; /* we'll return */; try_count++) { 421 uint gc_count_before; 422 423 { 424 MutexLocker x(Heap_lock); 425 426 // Now that we have the lock, we first retry the allocation in case another 427 // thread changed the region while we were waiting to acquire the lock. 428 result = _allocator->attempt_allocation_locked(word_size); 429 if (result != nullptr) { 430 return result; 431 } 432 433 // Read the GC count while still holding the Heap_lock. 434 gc_count_before = total_collections(); 435 } 436 437 bool succeeded; 438 result = do_collection_pause(word_size, gc_count_before, &succeeded, GCCause::_g1_inc_collection_pause); 439 if (succeeded) { 440 log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT, 441 Thread::current()->name(), p2i(result)); 442 return result; 443 } 444 445 log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT " words", 446 Thread::current()->name(), word_size); 447 448 // We can reach here if we were unsuccessful in scheduling a collection (because 449 // another thread beat us to it). In this case immeditealy retry the allocation 450 // attempt because another thread successfully performed a collection and possibly 451 // reclaimed enough space. The first attempt (without holding the Heap_lock) is 452 // here and the follow-on attempt will be at the start of the next loop 453 // iteration (after taking the Heap_lock). 454 size_t dummy = 0; 455 result = _allocator->attempt_allocation(word_size, word_size, &dummy); 456 if (result != nullptr) { 457 return result; 458 } 459 460 // Give a warning if we seem to be looping forever. 461 if ((QueuedAllocationWarningCount > 0) && 462 (try_count % QueuedAllocationWarningCount == 0)) { 463 log_warning(gc, alloc)("%s: Retried allocation %u times for " SIZE_FORMAT " words", 464 Thread::current()->name(), try_count, word_size); 465 } 466 } 467 468 ShouldNotReachHere(); 469 return nullptr; 470 } 471 472 template <typename Func> 473 void G1CollectedHeap::iterate_regions_in_range(MemRegion range, const Func& func) { 474 // Mark each G1 region touched by the range as old, add it to 475 // the old set, and set top. 476 G1HeapRegion* curr_region = _hrm.addr_to_region(range.start()); 477 G1HeapRegion* end_region = _hrm.addr_to_region(range.last()); 478 479 while (curr_region != nullptr) { 480 bool is_last = curr_region == end_region; 481 G1HeapRegion* next_region = is_last ? nullptr : _hrm.next_region_in_heap(curr_region); 482 483 func(curr_region, is_last); 484 485 curr_region = next_region; 486 } 487 } 488 489 HeapWord* G1CollectedHeap::alloc_archive_region(size_t word_size, HeapWord* preferred_addr) { 490 assert(!is_init_completed(), "Expect to be called at JVM init time"); 491 MutexLocker x(Heap_lock); 492 493 MemRegion reserved = _hrm.reserved(); 494 495 if (reserved.word_size() <= word_size) { 496 log_info(gc, heap)("Unable to allocate regions as archive heap is too large; size requested = " SIZE_FORMAT 497 " bytes, heap = " SIZE_FORMAT " bytes", word_size, reserved.word_size()); 498 return nullptr; 499 } 500 501 // Temporarily disable pretouching of heap pages. This interface is used 502 // when mmap'ing archived heap data in, so pre-touching is wasted. 503 FlagSetting fs(AlwaysPreTouch, false); 504 505 size_t commits = 0; 506 // Attempt to allocate towards the end of the heap. 507 HeapWord* start_addr = reserved.end() - align_up(word_size, G1HeapRegion::GrainWords); 508 MemRegion range = MemRegion(start_addr, word_size); 509 HeapWord* last_address = range.last(); 510 if (!_hrm.allocate_containing_regions(range, &commits, workers())) { 511 return nullptr; 512 } 513 increase_used(word_size * HeapWordSize); 514 if (commits != 0) { 515 log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B", 516 G1HeapRegion::GrainWords * HeapWordSize * commits); 517 } 518 519 // Mark each G1 region touched by the range as old, add it to 520 // the old set, and set top. 521 auto set_region_to_old = [&] (G1HeapRegion* r, bool is_last) { 522 assert(r->is_empty(), "Region already in use (%u)", r->hrm_index()); 523 524 HeapWord* top = is_last ? last_address + 1 : r->end(); 525 r->set_top(top); 526 527 r->set_old(); 528 G1HeapRegionPrinter::alloc(r); 529 _old_set.add(r); 530 }; 531 532 iterate_regions_in_range(range, set_region_to_old); 533 return start_addr; 534 } 535 536 void G1CollectedHeap::populate_archive_regions_bot(MemRegion range) { 537 assert(!is_init_completed(), "Expect to be called at JVM init time"); 538 539 iterate_regions_in_range(range, 540 [&] (G1HeapRegion* r, bool is_last) { 541 r->update_bot(); 542 }); 543 } 544 545 void G1CollectedHeap::dealloc_archive_regions(MemRegion range) { 546 assert(!is_init_completed(), "Expect to be called at JVM init time"); 547 MemRegion reserved = _hrm.reserved(); 548 size_t size_used = 0; 549 uint shrink_count = 0; 550 551 // Free the G1 regions that are within the specified range. 552 MutexLocker x(Heap_lock); 553 HeapWord* start_address = range.start(); 554 HeapWord* last_address = range.last(); 555 556 assert(reserved.contains(start_address) && reserved.contains(last_address), 557 "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]", 558 p2i(start_address), p2i(last_address)); 559 size_used += range.byte_size(); 560 561 // Free, empty and uncommit regions with CDS archive content. 562 auto dealloc_archive_region = [&] (G1HeapRegion* r, bool is_last) { 563 guarantee(r->is_old(), "Expected old region at index %u", r->hrm_index()); 564 _old_set.remove(r); 565 r->set_free(); 566 r->set_top(r->bottom()); 567 _hrm.shrink_at(r->hrm_index(), 1); 568 shrink_count++; 569 }; 570 571 iterate_regions_in_range(range, dealloc_archive_region); 572 573 if (shrink_count != 0) { 574 log_debug(gc, ergo, heap)("Attempt heap shrinking (CDS archive regions). Total size: " SIZE_FORMAT "B", 575 G1HeapRegion::GrainWords * HeapWordSize * shrink_count); 576 // Explicit uncommit. 577 uncommit_regions(shrink_count); 578 } 579 decrease_used(size_used); 580 } 581 582 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t min_word_size, 583 size_t desired_word_size, 584 size_t* actual_word_size) { 585 assert_heap_not_locked_and_not_at_safepoint(); 586 assert(!is_humongous(desired_word_size), "attempt_allocation() should not " 587 "be called for humongous allocation requests"); 588 589 HeapWord* result = _allocator->attempt_allocation(min_word_size, desired_word_size, actual_word_size); 590 591 if (result == nullptr) { 592 *actual_word_size = desired_word_size; 593 result = attempt_allocation_slow(desired_word_size); 594 } 595 596 assert_heap_not_locked(); 597 if (result != nullptr) { 598 assert(*actual_word_size != 0, "Actual size must have been set here"); 599 dirty_young_block(result, *actual_word_size); 600 } else { 601 *actual_word_size = 0; 602 } 603 604 return result; 605 } 606 607 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size) { 608 ResourceMark rm; // For retrieving the thread names in log messages. 609 610 // The structure of this method has a lot of similarities to 611 // attempt_allocation_slow(). The reason these two were not merged 612 // into a single one is that such a method would require several "if 613 // allocation is not humongous do this, otherwise do that" 614 // conditional paths which would obscure its flow. In fact, an early 615 // version of this code did use a unified method which was harder to 616 // follow and, as a result, it had subtle bugs that were hard to 617 // track down. So keeping these two methods separate allows each to 618 // be more readable. It will be good to keep these two in sync as 619 // much as possible. 620 621 assert_heap_not_locked_and_not_at_safepoint(); 622 assert(is_humongous(word_size), "attempt_allocation_humongous() " 623 "should only be called for humongous allocations"); 624 625 // Humongous objects can exhaust the heap quickly, so we should check if we 626 // need to start a marking cycle at each humongous object allocation. We do 627 // the check before we do the actual allocation. The reason for doing it 628 // before the allocation is that we avoid having to keep track of the newly 629 // allocated memory while we do a GC. 630 if (policy()->need_to_start_conc_mark("concurrent humongous allocation", 631 word_size)) { 632 collect(GCCause::_g1_humongous_allocation); 633 } 634 635 // We will loop until a) we manage to successfully perform the allocation or b) 636 // successfully schedule a collection which fails to perform the allocation. 637 // Case b) is the only case when we'll return null. 638 HeapWord* result = nullptr; 639 for (uint try_count = 1; /* we'll return */; try_count++) { 640 uint gc_count_before; 641 642 643 { 644 MutexLocker x(Heap_lock); 645 646 size_t size_in_regions = humongous_obj_size_in_regions(word_size); 647 // Given that humongous objects are not allocated in young 648 // regions, we'll first try to do the allocation without doing a 649 // collection hoping that there's enough space in the heap. 650 result = humongous_obj_allocate(word_size); 651 if (result != nullptr) { 652 policy()->old_gen_alloc_tracker()-> 653 add_allocated_humongous_bytes_since_last_gc(size_in_regions * G1HeapRegion::GrainBytes); 654 return result; 655 } 656 657 // Read the GC count while still holding the Heap_lock. 658 gc_count_before = total_collections(); 659 } 660 661 bool succeeded; 662 result = do_collection_pause(word_size, gc_count_before, &succeeded, GCCause::_g1_humongous_allocation); 663 if (succeeded) { 664 log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT, 665 Thread::current()->name(), p2i(result)); 666 if (result != nullptr) { 667 size_t size_in_regions = humongous_obj_size_in_regions(word_size); 668 policy()->old_gen_alloc_tracker()-> 669 record_collection_pause_humongous_allocation(size_in_regions * G1HeapRegion::GrainBytes); 670 } 671 return result; 672 } 673 674 log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT "", 675 Thread::current()->name(), word_size); 676 677 // We can reach here if we were unsuccessful in scheduling a collection (because 678 // another thread beat us to it). 679 // Humongous object allocation always needs a lock, so we wait for the retry 680 // in the next iteration of the loop, unlike for the regular iteration case. 681 // Give a warning if we seem to be looping forever. 682 683 if ((QueuedAllocationWarningCount > 0) && 684 (try_count % QueuedAllocationWarningCount == 0)) { 685 log_warning(gc, alloc)("%s: Retried allocation %u times for %zu words", 686 Thread::current()->name(), try_count, word_size); 687 } 688 } 689 690 ShouldNotReachHere(); 691 return nullptr; 692 } 693 694 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size, 695 bool expect_null_mutator_alloc_region) { 696 assert_at_safepoint_on_vm_thread(); 697 assert(!_allocator->has_mutator_alloc_region() || !expect_null_mutator_alloc_region, 698 "the current alloc region was unexpectedly found to be non-null"); 699 700 if (!is_humongous(word_size)) { 701 return _allocator->attempt_allocation_locked(word_size); 702 } else { 703 HeapWord* result = humongous_obj_allocate(word_size); 704 if (result != nullptr && policy()->need_to_start_conc_mark("STW humongous allocation")) { 705 collector_state()->set_initiate_conc_mark_if_possible(true); 706 } 707 return result; 708 } 709 710 ShouldNotReachHere(); 711 } 712 713 class PostCompactionPrinterClosure: public HeapRegionClosure { 714 public: 715 bool do_heap_region(G1HeapRegion* hr) { 716 assert(!hr->is_young(), "not expecting to find young regions"); 717 G1HeapRegionPrinter::post_compaction(hr); 718 return false; 719 } 720 }; 721 722 void G1CollectedHeap::print_heap_after_full_collection() { 723 // Post collection region logging. 724 // We should do this after we potentially resize the heap so 725 // that all the COMMIT / UNCOMMIT events are generated before 726 // the compaction events. 727 if (G1HeapRegionPrinter::is_active()) { 728 PostCompactionPrinterClosure cl; 729 heap_region_iterate(&cl); 730 } 731 } 732 733 bool G1CollectedHeap::abort_concurrent_cycle() { 734 // Disable discovery and empty the discovered lists 735 // for the CM ref processor. 736 _ref_processor_cm->disable_discovery(); 737 _ref_processor_cm->abandon_partial_discovery(); 738 _ref_processor_cm->verify_no_references_recorded(); 739 740 // Abandon current iterations of concurrent marking and concurrent 741 // refinement, if any are in progress. 742 return concurrent_mark()->concurrent_cycle_abort(); 743 } 744 745 void G1CollectedHeap::prepare_heap_for_full_collection() { 746 // Make sure we'll choose a new allocation region afterwards. 747 _allocator->release_mutator_alloc_regions(); 748 _allocator->abandon_gc_alloc_regions(); 749 750 // We may have added regions to the current incremental collection 751 // set between the last GC or pause and now. We need to clear the 752 // incremental collection set and then start rebuilding it afresh 753 // after this full GC. 754 abandon_collection_set(collection_set()); 755 756 _hrm.remove_all_free_regions(); 757 } 758 759 void G1CollectedHeap::verify_before_full_collection() { 760 assert_used_and_recalculate_used_equal(this); 761 if (!VerifyBeforeGC) { 762 return; 763 } 764 if (!G1HeapVerifier::should_verify(G1HeapVerifier::G1VerifyFull)) { 765 return; 766 } 767 _verifier->verify_region_sets_optional(); 768 _verifier->verify_before_gc(); 769 _verifier->verify_bitmap_clear(true /* above_tams_only */); 770 } 771 772 void G1CollectedHeap::prepare_for_mutator_after_full_collection() { 773 // Prepare heap for normal collections. 774 assert(num_free_regions() == 0, "we should not have added any free regions"); 775 rebuild_region_sets(false /* free_list_only */); 776 abort_refinement(); 777 resize_heap_if_necessary(); 778 uncommit_regions_if_necessary(); 779 780 // Rebuild the code root lists for each region 781 rebuild_code_roots(); 782 783 start_new_collection_set(); 784 _allocator->init_mutator_alloc_regions(); 785 786 // Post collection state updates. 787 MetaspaceGC::compute_new_size(); 788 } 789 790 void G1CollectedHeap::abort_refinement() { 791 // Discard all remembered set updates and reset refinement statistics. 792 G1BarrierSet::dirty_card_queue_set().abandon_logs_and_stats(); 793 assert(G1BarrierSet::dirty_card_queue_set().num_cards() == 0, 794 "DCQS should be empty"); 795 concurrent_refine()->get_and_reset_refinement_stats(); 796 } 797 798 void G1CollectedHeap::verify_after_full_collection() { 799 if (!VerifyAfterGC) { 800 return; 801 } 802 if (!G1HeapVerifier::should_verify(G1HeapVerifier::G1VerifyFull)) { 803 return; 804 } 805 _hrm.verify_optional(); 806 _verifier->verify_region_sets_optional(); 807 _verifier->verify_after_gc(); 808 _verifier->verify_bitmap_clear(false /* above_tams_only */); 809 810 // At this point there should be no regions in the 811 // entire heap tagged as young. 812 assert(check_young_list_empty(), "young list should be empty at this point"); 813 814 // Note: since we've just done a full GC, concurrent 815 // marking is no longer active. Therefore we need not 816 // re-enable reference discovery for the CM ref processor. 817 // That will be done at the start of the next marking cycle. 818 // We also know that the STW processor should no longer 819 // discover any new references. 820 assert(!_ref_processor_stw->discovery_enabled(), "Postcondition"); 821 assert(!_ref_processor_cm->discovery_enabled(), "Postcondition"); 822 _ref_processor_stw->verify_no_references_recorded(); 823 _ref_processor_cm->verify_no_references_recorded(); 824 } 825 826 bool G1CollectedHeap::do_full_collection(bool clear_all_soft_refs, 827 bool do_maximal_compaction) { 828 assert_at_safepoint_on_vm_thread(); 829 830 const bool do_clear_all_soft_refs = clear_all_soft_refs || 831 soft_ref_policy()->should_clear_all_soft_refs(); 832 833 G1FullGCMark gc_mark; 834 GCTraceTime(Info, gc) tm("Pause Full", nullptr, gc_cause(), true); 835 G1FullCollector collector(this, do_clear_all_soft_refs, do_maximal_compaction, gc_mark.tracer()); 836 837 collector.prepare_collection(); 838 collector.collect(); 839 collector.complete_collection(); 840 841 // Full collection was successfully completed. 842 return true; 843 } 844 845 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) { 846 // Currently, there is no facility in the do_full_collection(bool) API to notify 847 // the caller that the collection did not succeed (e.g., because it was locked 848 // out by the GC locker). So, right now, we'll ignore the return value. 849 850 do_full_collection(clear_all_soft_refs, 851 false /* do_maximal_compaction */); 852 } 853 854 bool G1CollectedHeap::upgrade_to_full_collection() { 855 GCCauseSetter compaction(this, GCCause::_g1_compaction_pause); 856 log_info(gc, ergo)("Attempting full compaction clearing soft references"); 857 bool success = do_full_collection(true /* clear_all_soft_refs */, 858 false /* do_maximal_compaction */); 859 // do_full_collection only fails if blocked by GC locker and that can't 860 // be the case here since we only call this when already completed one gc. 861 assert(success, "invariant"); 862 return success; 863 } 864 865 void G1CollectedHeap::resize_heap_if_necessary() { 866 assert_at_safepoint_on_vm_thread(); 867 868 bool should_expand; 869 size_t resize_amount = _heap_sizing_policy->full_collection_resize_amount(should_expand); 870 871 if (resize_amount == 0) { 872 return; 873 } else if (should_expand) { 874 expand(resize_amount, _workers); 875 } else { 876 shrink(resize_amount); 877 } 878 } 879 880 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size, 881 bool do_gc, 882 bool maximal_compaction, 883 bool expect_null_mutator_alloc_region, 884 bool* gc_succeeded) { 885 *gc_succeeded = true; 886 // Let's attempt the allocation first. 887 HeapWord* result = 888 attempt_allocation_at_safepoint(word_size, 889 expect_null_mutator_alloc_region); 890 if (result != nullptr) { 891 return result; 892 } 893 894 // In a G1 heap, we're supposed to keep allocation from failing by 895 // incremental pauses. Therefore, at least for now, we'll favor 896 // expansion over collection. (This might change in the future if we can 897 // do something smarter than full collection to satisfy a failed alloc.) 898 result = expand_and_allocate(word_size); 899 if (result != nullptr) { 900 return result; 901 } 902 903 if (do_gc) { 904 GCCauseSetter compaction(this, GCCause::_g1_compaction_pause); 905 // Expansion didn't work, we'll try to do a Full GC. 906 // If maximal_compaction is set we clear all soft references and don't 907 // allow any dead wood to be left on the heap. 908 if (maximal_compaction) { 909 log_info(gc, ergo)("Attempting maximal full compaction clearing soft references"); 910 } else { 911 log_info(gc, ergo)("Attempting full compaction"); 912 } 913 *gc_succeeded = do_full_collection(maximal_compaction /* clear_all_soft_refs */ , 914 maximal_compaction /* do_maximal_compaction */); 915 } 916 917 return nullptr; 918 } 919 920 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size, 921 bool* succeeded) { 922 assert_at_safepoint_on_vm_thread(); 923 924 // Attempts to allocate followed by Full GC. 925 HeapWord* result = 926 satisfy_failed_allocation_helper(word_size, 927 true, /* do_gc */ 928 false, /* maximum_collection */ 929 false, /* expect_null_mutator_alloc_region */ 930 succeeded); 931 932 if (result != nullptr || !*succeeded) { 933 return result; 934 } 935 936 // Attempts to allocate followed by Full GC that will collect all soft references. 937 result = satisfy_failed_allocation_helper(word_size, 938 true, /* do_gc */ 939 true, /* maximum_collection */ 940 true, /* expect_null_mutator_alloc_region */ 941 succeeded); 942 943 if (result != nullptr || !*succeeded) { 944 return result; 945 } 946 947 // Attempts to allocate, no GC 948 result = satisfy_failed_allocation_helper(word_size, 949 false, /* do_gc */ 950 false, /* maximum_collection */ 951 true, /* expect_null_mutator_alloc_region */ 952 succeeded); 953 954 if (result != nullptr) { 955 return result; 956 } 957 958 assert(!soft_ref_policy()->should_clear_all_soft_refs(), 959 "Flag should have been handled and cleared prior to this point"); 960 961 // What else? We might try synchronous finalization later. If the total 962 // space available is large enough for the allocation, then a more 963 // complete compaction phase than we've tried so far might be 964 // appropriate. 965 return nullptr; 966 } 967 968 // Attempting to expand the heap sufficiently 969 // to support an allocation of the given "word_size". If 970 // successful, perform the allocation and return the address of the 971 // allocated block, or else null. 972 973 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) { 974 assert_at_safepoint_on_vm_thread(); 975 976 _verifier->verify_region_sets_optional(); 977 978 size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes); 979 log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B", 980 word_size * HeapWordSize); 981 982 983 if (expand(expand_bytes, _workers)) { 984 _hrm.verify_optional(); 985 _verifier->verify_region_sets_optional(); 986 return attempt_allocation_at_safepoint(word_size, 987 false /* expect_null_mutator_alloc_region */); 988 } 989 return nullptr; 990 } 991 992 bool G1CollectedHeap::expand(size_t expand_bytes, WorkerThreads* pretouch_workers, double* expand_time_ms) { 993 size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes); 994 aligned_expand_bytes = align_up(aligned_expand_bytes, G1HeapRegion::GrainBytes); 995 996 log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B", 997 expand_bytes, aligned_expand_bytes); 998 999 if (is_maximal_no_gc()) { 1000 log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)"); 1001 return false; 1002 } 1003 1004 double expand_heap_start_time_sec = os::elapsedTime(); 1005 uint regions_to_expand = (uint)(aligned_expand_bytes / G1HeapRegion::GrainBytes); 1006 assert(regions_to_expand > 0, "Must expand by at least one region"); 1007 1008 uint expanded_by = _hrm.expand_by(regions_to_expand, pretouch_workers); 1009 if (expand_time_ms != nullptr) { 1010 *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS; 1011 } 1012 1013 assert(expanded_by > 0, "must have failed during commit."); 1014 1015 size_t actual_expand_bytes = expanded_by * G1HeapRegion::GrainBytes; 1016 assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition"); 1017 policy()->record_new_heap_size(num_regions()); 1018 1019 return true; 1020 } 1021 1022 bool G1CollectedHeap::expand_single_region(uint node_index) { 1023 uint expanded_by = _hrm.expand_on_preferred_node(node_index); 1024 1025 if (expanded_by == 0) { 1026 assert(is_maximal_no_gc(), "Should be no regions left, available: %u", _hrm.available()); 1027 log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)"); 1028 return false; 1029 } 1030 1031 policy()->record_new_heap_size(num_regions()); 1032 return true; 1033 } 1034 1035 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) { 1036 size_t aligned_shrink_bytes = 1037 ReservedSpace::page_align_size_down(shrink_bytes); 1038 aligned_shrink_bytes = align_down(aligned_shrink_bytes, G1HeapRegion::GrainBytes); 1039 uint num_regions_to_remove = (uint)(shrink_bytes / G1HeapRegion::GrainBytes); 1040 1041 uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove); 1042 size_t shrunk_bytes = num_regions_removed * G1HeapRegion::GrainBytes; 1043 1044 log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B actual amount shrunk: " SIZE_FORMAT "B", 1045 shrink_bytes, aligned_shrink_bytes, shrunk_bytes); 1046 if (num_regions_removed > 0) { 1047 log_debug(gc, heap)("Uncommittable regions after shrink: %u", num_regions_removed); 1048 policy()->record_new_heap_size(num_regions()); 1049 } else { 1050 log_debug(gc, ergo, heap)("Did not shrink the heap (heap shrinking operation failed)"); 1051 } 1052 } 1053 1054 void G1CollectedHeap::shrink(size_t shrink_bytes) { 1055 _verifier->verify_region_sets_optional(); 1056 1057 // We should only reach here at the end of a Full GC or during Remark which 1058 // means we should not not be holding to any GC alloc regions. The method 1059 // below will make sure of that and do any remaining clean up. 1060 _allocator->abandon_gc_alloc_regions(); 1061 1062 // Instead of tearing down / rebuilding the free lists here, we 1063 // could instead use the remove_all_pending() method on free_list to 1064 // remove only the ones that we need to remove. 1065 _hrm.remove_all_free_regions(); 1066 shrink_helper(shrink_bytes); 1067 rebuild_region_sets(true /* free_list_only */); 1068 1069 _hrm.verify_optional(); 1070 _verifier->verify_region_sets_optional(); 1071 } 1072 1073 class OldRegionSetChecker : public HeapRegionSetChecker { 1074 public: 1075 void check_mt_safety() { 1076 // Master Old Set MT safety protocol: 1077 // (a) If we're at a safepoint, operations on the master old set 1078 // should be invoked: 1079 // - by the VM thread (which will serialize them), or 1080 // - by the GC workers while holding the FreeList_lock, if we're 1081 // at a safepoint for an evacuation pause (this lock is taken 1082 // anyway when an GC alloc region is retired so that a new one 1083 // is allocated from the free list), or 1084 // - by the GC workers while holding the OldSets_lock, if we're at a 1085 // safepoint for a cleanup pause. 1086 // (b) If we're not at a safepoint, operations on the master old set 1087 // should be invoked while holding the Heap_lock. 1088 1089 if (SafepointSynchronize::is_at_safepoint()) { 1090 guarantee(Thread::current()->is_VM_thread() || 1091 FreeList_lock->owned_by_self() || OldSets_lock->owned_by_self(), 1092 "master old set MT safety protocol at a safepoint"); 1093 } else { 1094 guarantee(Heap_lock->owned_by_self(), "master old set MT safety protocol outside a safepoint"); 1095 } 1096 } 1097 bool is_correct_type(G1HeapRegion* hr) { return hr->is_old(); } 1098 const char* get_description() { return "Old Regions"; } 1099 }; 1100 1101 class HumongousRegionSetChecker : public HeapRegionSetChecker { 1102 public: 1103 void check_mt_safety() { 1104 // Humongous Set MT safety protocol: 1105 // (a) If we're at a safepoint, operations on the master humongous 1106 // set should be invoked by either the VM thread (which will 1107 // serialize them) or by the GC workers while holding the 1108 // OldSets_lock. 1109 // (b) If we're not at a safepoint, operations on the master 1110 // humongous set should be invoked while holding the Heap_lock. 1111 1112 if (SafepointSynchronize::is_at_safepoint()) { 1113 guarantee(Thread::current()->is_VM_thread() || 1114 OldSets_lock->owned_by_self(), 1115 "master humongous set MT safety protocol at a safepoint"); 1116 } else { 1117 guarantee(Heap_lock->owned_by_self(), 1118 "master humongous set MT safety protocol outside a safepoint"); 1119 } 1120 } 1121 bool is_correct_type(G1HeapRegion* hr) { return hr->is_humongous(); } 1122 const char* get_description() { return "Humongous Regions"; } 1123 }; 1124 1125 G1CollectedHeap::G1CollectedHeap() : 1126 CollectedHeap(), 1127 _service_thread(nullptr), 1128 _periodic_gc_task(nullptr), 1129 _free_arena_memory_task(nullptr), 1130 _workers(nullptr), 1131 _card_table(nullptr), 1132 _collection_pause_end(Ticks::now()), 1133 _old_set("Old Region Set", new OldRegionSetChecker()), 1134 _humongous_set("Humongous Region Set", new HumongousRegionSetChecker()), 1135 _bot(nullptr), 1136 _listener(), 1137 _numa(G1NUMA::create()), 1138 _hrm(), 1139 _allocator(nullptr), 1140 _allocation_failure_injector(), 1141 _verifier(nullptr), 1142 _summary_bytes_used(0), 1143 _bytes_used_during_gc(0), 1144 _survivor_evac_stats("Young", YoungPLABSize, PLABWeight), 1145 _old_evac_stats("Old", OldPLABSize, PLABWeight), 1146 _monitoring_support(nullptr), 1147 _num_humongous_objects(0), 1148 _num_humongous_reclaim_candidates(0), 1149 _collector_state(), 1150 _old_marking_cycles_started(0), 1151 _old_marking_cycles_completed(0), 1152 _eden(), 1153 _survivor(), 1154 _gc_timer_stw(new STWGCTimer()), 1155 _gc_tracer_stw(new G1NewTracer()), 1156 _policy(new G1Policy(_gc_timer_stw)), 1157 _heap_sizing_policy(nullptr), 1158 _collection_set(this, _policy), 1159 _rem_set(nullptr), 1160 _card_set_config(), 1161 _card_set_freelist_pool(G1CardSetConfiguration::num_mem_object_types()), 1162 _cm(nullptr), 1163 _cm_thread(nullptr), 1164 _cr(nullptr), 1165 _task_queues(nullptr), 1166 _ref_processor_stw(nullptr), 1167 _is_alive_closure_stw(this), 1168 _is_subject_to_discovery_stw(this), 1169 _ref_processor_cm(nullptr), 1170 _is_alive_closure_cm(), 1171 _is_subject_to_discovery_cm(this), 1172 _region_attr() { 1173 1174 _verifier = new G1HeapVerifier(this); 1175 1176 _allocator = new G1Allocator(this); 1177 1178 _heap_sizing_policy = G1HeapSizingPolicy::create(this, _policy->analytics()); 1179 1180 _humongous_object_threshold_in_words = humongous_threshold_for(G1HeapRegion::GrainWords); 1181 1182 // Since filler arrays are never referenced, we can make them region sized. 1183 // This simplifies filling up the region in case we have some potentially 1184 // unreferenced (by Java code, but still in use by native code) pinned objects 1185 // in there. 1186 _filler_array_max_size = G1HeapRegion::GrainWords; 1187 1188 // Override the default _stack_chunk_max_size so that no humongous stack chunks are created 1189 _stack_chunk_max_size = _humongous_object_threshold_in_words; 1190 1191 uint n_queues = ParallelGCThreads; 1192 _task_queues = new G1ScannerTasksQueueSet(n_queues); 1193 1194 for (uint i = 0; i < n_queues; i++) { 1195 G1ScannerTasksQueue* q = new G1ScannerTasksQueue(); 1196 _task_queues->register_queue(i, q); 1197 } 1198 1199 _gc_tracer_stw->initialize(); 1200 1201 guarantee(_task_queues != nullptr, "task_queues allocation failure."); 1202 } 1203 1204 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description, 1205 size_t size, 1206 size_t translation_factor) { 1207 size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1); 1208 // Allocate a new reserved space, preferring to use large pages. 1209 ReservedSpace rs(size, preferred_page_size); 1210 size_t page_size = rs.page_size(); 1211 G1RegionToSpaceMapper* result = 1212 G1RegionToSpaceMapper::create_mapper(rs, 1213 size, 1214 page_size, 1215 G1HeapRegion::GrainBytes, 1216 translation_factor, 1217 mtGC); 1218 1219 os::trace_page_sizes_for_requested_size(description, 1220 size, 1221 preferred_page_size, 1222 rs.base(), 1223 rs.size(), 1224 page_size); 1225 1226 return result; 1227 } 1228 1229 jint G1CollectedHeap::initialize_concurrent_refinement() { 1230 jint ecode = JNI_OK; 1231 _cr = G1ConcurrentRefine::create(policy(), &ecode); 1232 return ecode; 1233 } 1234 1235 jint G1CollectedHeap::initialize_service_thread() { 1236 _service_thread = new G1ServiceThread(); 1237 if (_service_thread->osthread() == nullptr) { 1238 vm_shutdown_during_initialization("Could not create G1ServiceThread"); 1239 return JNI_ENOMEM; 1240 } 1241 return JNI_OK; 1242 } 1243 1244 jint G1CollectedHeap::initialize() { 1245 1246 // Necessary to satisfy locking discipline assertions. 1247 1248 MutexLocker x(Heap_lock); 1249 1250 // While there are no constraints in the GC code that HeapWordSize 1251 // be any particular value, there are multiple other areas in the 1252 // system which believe this to be true (e.g. oop->object_size in some 1253 // cases incorrectly returns the size in wordSize units rather than 1254 // HeapWordSize). 1255 guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize"); 1256 1257 size_t init_byte_size = InitialHeapSize; 1258 size_t reserved_byte_size = G1Arguments::heap_reserved_size_bytes(); 1259 1260 // Ensure that the sizes are properly aligned. 1261 Universe::check_alignment(init_byte_size, G1HeapRegion::GrainBytes, "g1 heap"); 1262 Universe::check_alignment(reserved_byte_size, G1HeapRegion::GrainBytes, "g1 heap"); 1263 Universe::check_alignment(reserved_byte_size, HeapAlignment, "g1 heap"); 1264 1265 // Reserve the maximum. 1266 1267 // When compressed oops are enabled, the preferred heap base 1268 // is calculated by subtracting the requested size from the 1269 // 32Gb boundary and using the result as the base address for 1270 // heap reservation. If the requested size is not aligned to 1271 // G1HeapRegion::GrainBytes (i.e. the alignment that is passed 1272 // into the ReservedHeapSpace constructor) then the actual 1273 // base of the reserved heap may end up differing from the 1274 // address that was requested (i.e. the preferred heap base). 1275 // If this happens then we could end up using a non-optimal 1276 // compressed oops mode. 1277 1278 ReservedHeapSpace heap_rs = Universe::reserve_heap(reserved_byte_size, 1279 HeapAlignment); 1280 1281 initialize_reserved_region(heap_rs); 1282 1283 // Create the barrier set for the entire reserved region. 1284 G1CardTable* ct = new G1CardTable(heap_rs.region()); 1285 G1BarrierSet* bs = new G1BarrierSet(ct); 1286 bs->initialize(); 1287 assert(bs->is_a(BarrierSet::G1BarrierSet), "sanity"); 1288 BarrierSet::set_barrier_set(bs); 1289 _card_table = ct; 1290 1291 { 1292 G1SATBMarkQueueSet& satbqs = bs->satb_mark_queue_set(); 1293 satbqs.set_process_completed_buffers_threshold(G1SATBProcessCompletedThreshold); 1294 satbqs.set_buffer_enqueue_threshold_percentage(G1SATBBufferEnqueueingThresholdPercent); 1295 } 1296 1297 // Create space mappers. 1298 size_t page_size = heap_rs.page_size(); 1299 G1RegionToSpaceMapper* heap_storage = 1300 G1RegionToSpaceMapper::create_mapper(heap_rs, 1301 heap_rs.size(), 1302 page_size, 1303 G1HeapRegion::GrainBytes, 1304 1, 1305 mtJavaHeap); 1306 if(heap_storage == nullptr) { 1307 vm_shutdown_during_initialization("Could not initialize G1 heap"); 1308 return JNI_ERR; 1309 } 1310 1311 os::trace_page_sizes("Heap", 1312 MinHeapSize, 1313 reserved_byte_size, 1314 heap_rs.base(), 1315 heap_rs.size(), 1316 page_size); 1317 heap_storage->set_mapping_changed_listener(&_listener); 1318 1319 // Create storage for the BOT, card table and the bitmap. 1320 G1RegionToSpaceMapper* bot_storage = 1321 create_aux_memory_mapper("Block Offset Table", 1322 G1BlockOffsetTable::compute_size(heap_rs.size() / HeapWordSize), 1323 G1BlockOffsetTable::heap_map_factor()); 1324 1325 G1RegionToSpaceMapper* cardtable_storage = 1326 create_aux_memory_mapper("Card Table", 1327 G1CardTable::compute_size(heap_rs.size() / HeapWordSize), 1328 G1CardTable::heap_map_factor()); 1329 1330 size_t bitmap_size = G1CMBitMap::compute_size(heap_rs.size()); 1331 G1RegionToSpaceMapper* bitmap_storage = 1332 create_aux_memory_mapper("Mark Bitmap", bitmap_size, G1CMBitMap::heap_map_factor()); 1333 1334 _hrm.initialize(heap_storage, bitmap_storage, bot_storage, cardtable_storage); 1335 _card_table->initialize(cardtable_storage); 1336 1337 // 6843694 - ensure that the maximum region index can fit 1338 // in the remembered set structures. 1339 const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1; 1340 guarantee((max_reserved_regions() - 1) <= max_region_idx, "too many regions"); 1341 1342 // The G1FromCardCache reserves card with value 0 as "invalid", so the heap must not 1343 // start within the first card. 1344 guarantee((uintptr_t)(heap_rs.base()) >= G1CardTable::card_size(), "Java heap must not start within the first card."); 1345 G1FromCardCache::initialize(max_reserved_regions()); 1346 // Also create a G1 rem set. 1347 _rem_set = new G1RemSet(this, _card_table); 1348 _rem_set->initialize(max_reserved_regions()); 1349 1350 size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1; 1351 guarantee(G1HeapRegion::CardsPerRegion > 0, "make sure it's initialized"); 1352 guarantee(G1HeapRegion::CardsPerRegion < max_cards_per_region, 1353 "too many cards per region"); 1354 1355 HeapRegionRemSet::initialize(_reserved); 1356 1357 FreeRegionList::set_unrealistically_long_length(max_regions() + 1); 1358 1359 _bot = new G1BlockOffsetTable(reserved(), bot_storage); 1360 1361 { 1362 size_t granularity = G1HeapRegion::GrainBytes; 1363 1364 _region_attr.initialize(reserved(), granularity); 1365 } 1366 1367 _workers = new WorkerThreads("GC Thread", ParallelGCThreads); 1368 if (_workers == nullptr) { 1369 return JNI_ENOMEM; 1370 } 1371 _workers->initialize_workers(); 1372 1373 _numa->set_region_info(G1HeapRegion::GrainBytes, page_size); 1374 1375 // Create the G1ConcurrentMark data structure and thread. 1376 // (Must do this late, so that "max_[reserved_]regions" is defined.) 1377 _cm = new G1ConcurrentMark(this, bitmap_storage); 1378 _cm_thread = _cm->cm_thread(); 1379 1380 // Now expand into the initial heap size. 1381 if (!expand(init_byte_size, _workers)) { 1382 vm_shutdown_during_initialization("Failed to allocate initial heap."); 1383 return JNI_ENOMEM; 1384 } 1385 1386 // Perform any initialization actions delegated to the policy. 1387 policy()->init(this, &_collection_set); 1388 1389 jint ecode = initialize_concurrent_refinement(); 1390 if (ecode != JNI_OK) { 1391 return ecode; 1392 } 1393 1394 ecode = initialize_service_thread(); 1395 if (ecode != JNI_OK) { 1396 return ecode; 1397 } 1398 1399 // Create and schedule the periodic gc task on the service thread. 1400 _periodic_gc_task = new G1PeriodicGCTask("Periodic GC Task"); 1401 _service_thread->register_task(_periodic_gc_task); 1402 1403 _free_arena_memory_task = new G1MonotonicArenaFreeMemoryTask("Card Set Free Memory Task"); 1404 _service_thread->register_task(_free_arena_memory_task); 1405 1406 // Here we allocate the dummy G1HeapRegion that is required by the 1407 // G1AllocRegion class. 1408 G1HeapRegion* dummy_region = _hrm.get_dummy_region(); 1409 1410 // We'll re-use the same region whether the alloc region will 1411 // require BOT updates or not and, if it doesn't, then a non-young 1412 // region will complain that it cannot support allocations without 1413 // BOT updates. So we'll tag the dummy region as eden to avoid that. 1414 dummy_region->set_eden(); 1415 // Make sure it's full. 1416 dummy_region->set_top(dummy_region->end()); 1417 G1AllocRegion::setup(this, dummy_region); 1418 1419 _allocator->init_mutator_alloc_regions(); 1420 1421 // Do create of the monitoring and management support so that 1422 // values in the heap have been properly initialized. 1423 _monitoring_support = new G1MonitoringSupport(this); 1424 1425 _collection_set.initialize(max_reserved_regions()); 1426 1427 allocation_failure_injector()->reset(); 1428 1429 CPUTimeCounters::create_counter(CPUTimeGroups::CPUTimeType::gc_parallel_workers); 1430 CPUTimeCounters::create_counter(CPUTimeGroups::CPUTimeType::gc_conc_mark); 1431 CPUTimeCounters::create_counter(CPUTimeGroups::CPUTimeType::gc_conc_refine); 1432 CPUTimeCounters::create_counter(CPUTimeGroups::CPUTimeType::gc_service); 1433 1434 G1InitLogger::print(); 1435 1436 SlidingForwarding::initialize(heap_rs.region(), G1HeapRegion::GrainWords); 1437 1438 return JNI_OK; 1439 } 1440 1441 bool G1CollectedHeap::concurrent_mark_is_terminating() const { 1442 return _cm_thread->should_terminate(); 1443 } 1444 1445 void G1CollectedHeap::stop() { 1446 // Stop all concurrent threads. We do this to make sure these threads 1447 // do not continue to execute and access resources (e.g. logging) 1448 // that are destroyed during shutdown. 1449 _cr->stop(); 1450 _service_thread->stop(); 1451 _cm_thread->stop(); 1452 } 1453 1454 void G1CollectedHeap::safepoint_synchronize_begin() { 1455 SuspendibleThreadSet::synchronize(); 1456 } 1457 1458 void G1CollectedHeap::safepoint_synchronize_end() { 1459 SuspendibleThreadSet::desynchronize(); 1460 } 1461 1462 void G1CollectedHeap::post_initialize() { 1463 CollectedHeap::post_initialize(); 1464 ref_processing_init(); 1465 } 1466 1467 void G1CollectedHeap::ref_processing_init() { 1468 // Reference processing in G1 currently works as follows: 1469 // 1470 // * There are two reference processor instances. One is 1471 // used to record and process discovered references 1472 // during concurrent marking; the other is used to 1473 // record and process references during STW pauses 1474 // (both full and incremental). 1475 // * Both ref processors need to 'span' the entire heap as 1476 // the regions in the collection set may be dotted around. 1477 // 1478 // * For the concurrent marking ref processor: 1479 // * Reference discovery is enabled at concurrent start. 1480 // * Reference discovery is disabled and the discovered 1481 // references processed etc during remarking. 1482 // * Reference discovery is MT (see below). 1483 // * Reference discovery requires a barrier (see below). 1484 // * Reference processing may or may not be MT 1485 // (depending on the value of ParallelRefProcEnabled 1486 // and ParallelGCThreads). 1487 // * A full GC disables reference discovery by the CM 1488 // ref processor and abandons any entries on it's 1489 // discovered lists. 1490 // 1491 // * For the STW processor: 1492 // * Non MT discovery is enabled at the start of a full GC. 1493 // * Processing and enqueueing during a full GC is non-MT. 1494 // * During a full GC, references are processed after marking. 1495 // 1496 // * Discovery (may or may not be MT) is enabled at the start 1497 // of an incremental evacuation pause. 1498 // * References are processed near the end of a STW evacuation pause. 1499 // * For both types of GC: 1500 // * Discovery is atomic - i.e. not concurrent. 1501 // * Reference discovery will not need a barrier. 1502 1503 _is_alive_closure_cm.initialize(concurrent_mark()); 1504 // Concurrent Mark ref processor 1505 _ref_processor_cm = 1506 new ReferenceProcessor(&_is_subject_to_discovery_cm, 1507 ParallelGCThreads, // degree of mt processing 1508 // We discover with the gc worker threads during Remark, so both 1509 // thread counts must be considered for discovery. 1510 MAX2(ParallelGCThreads, ConcGCThreads), // degree of mt discovery 1511 true, // Reference discovery is concurrent 1512 &_is_alive_closure_cm); // is alive closure 1513 1514 // STW ref processor 1515 _ref_processor_stw = 1516 new ReferenceProcessor(&_is_subject_to_discovery_stw, 1517 ParallelGCThreads, // degree of mt processing 1518 ParallelGCThreads, // degree of mt discovery 1519 false, // Reference discovery is not concurrent 1520 &_is_alive_closure_stw); // is alive closure 1521 } 1522 1523 size_t G1CollectedHeap::capacity() const { 1524 return _hrm.length() * G1HeapRegion::GrainBytes; 1525 } 1526 1527 size_t G1CollectedHeap::unused_committed_regions_in_bytes() const { 1528 return _hrm.total_free_bytes(); 1529 } 1530 1531 // Computes the sum of the storage used by the various regions. 1532 size_t G1CollectedHeap::used() const { 1533 size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions(); 1534 return result; 1535 } 1536 1537 size_t G1CollectedHeap::used_unlocked() const { 1538 return _summary_bytes_used; 1539 } 1540 1541 class SumUsedClosure: public HeapRegionClosure { 1542 size_t _used; 1543 public: 1544 SumUsedClosure() : _used(0) {} 1545 bool do_heap_region(G1HeapRegion* r) { 1546 _used += r->used(); 1547 return false; 1548 } 1549 size_t result() { return _used; } 1550 }; 1551 1552 size_t G1CollectedHeap::recalculate_used() const { 1553 SumUsedClosure blk; 1554 heap_region_iterate(&blk); 1555 return blk.result(); 1556 } 1557 1558 bool G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) { 1559 return GCCause::is_user_requested_gc(cause) && ExplicitGCInvokesConcurrent; 1560 } 1561 1562 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) { 1563 switch (cause) { 1564 case GCCause::_g1_humongous_allocation: return true; 1565 case GCCause::_g1_periodic_collection: return G1PeriodicGCInvokesConcurrent; 1566 case GCCause::_wb_breakpoint: return true; 1567 case GCCause::_codecache_GC_aggressive: return true; 1568 case GCCause::_codecache_GC_threshold: return true; 1569 default: return is_user_requested_concurrent_full_gc(cause); 1570 } 1571 } 1572 1573 void G1CollectedHeap::increment_old_marking_cycles_started() { 1574 assert(_old_marking_cycles_started == _old_marking_cycles_completed || 1575 _old_marking_cycles_started == _old_marking_cycles_completed + 1, 1576 "Wrong marking cycle count (started: %d, completed: %d)", 1577 _old_marking_cycles_started, _old_marking_cycles_completed); 1578 1579 _old_marking_cycles_started++; 1580 } 1581 1582 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent, 1583 bool whole_heap_examined) { 1584 MonitorLocker ml(G1OldGCCount_lock, Mutex::_no_safepoint_check_flag); 1585 1586 // We assume that if concurrent == true, then the caller is a 1587 // concurrent thread that was joined the Suspendible Thread 1588 // Set. If there's ever a cheap way to check this, we should add an 1589 // assert here. 1590 1591 // Given that this method is called at the end of a Full GC or of a 1592 // concurrent cycle, and those can be nested (i.e., a Full GC can 1593 // interrupt a concurrent cycle), the number of full collections 1594 // completed should be either one (in the case where there was no 1595 // nesting) or two (when a Full GC interrupted a concurrent cycle) 1596 // behind the number of full collections started. 1597 1598 // This is the case for the inner caller, i.e. a Full GC. 1599 assert(concurrent || 1600 (_old_marking_cycles_started == _old_marking_cycles_completed + 1) || 1601 (_old_marking_cycles_started == _old_marking_cycles_completed + 2), 1602 "for inner caller (Full GC): _old_marking_cycles_started = %u " 1603 "is inconsistent with _old_marking_cycles_completed = %u", 1604 _old_marking_cycles_started, _old_marking_cycles_completed); 1605 1606 // This is the case for the outer caller, i.e. the concurrent cycle. 1607 assert(!concurrent || 1608 (_old_marking_cycles_started == _old_marking_cycles_completed + 1), 1609 "for outer caller (concurrent cycle): " 1610 "_old_marking_cycles_started = %u " 1611 "is inconsistent with _old_marking_cycles_completed = %u", 1612 _old_marking_cycles_started, _old_marking_cycles_completed); 1613 1614 _old_marking_cycles_completed += 1; 1615 if (whole_heap_examined) { 1616 // Signal that we have completed a visit to all live objects. 1617 record_whole_heap_examined_timestamp(); 1618 } 1619 1620 // We need to clear the "in_progress" flag in the CM thread before 1621 // we wake up any waiters (especially when ExplicitInvokesConcurrent 1622 // is set) so that if a waiter requests another System.gc() it doesn't 1623 // incorrectly see that a marking cycle is still in progress. 1624 if (concurrent) { 1625 _cm_thread->set_idle(); 1626 } 1627 1628 // Notify threads waiting in System.gc() (with ExplicitGCInvokesConcurrent) 1629 // for a full GC to finish that their wait is over. 1630 ml.notify_all(); 1631 } 1632 1633 // Helper for collect(). 1634 static G1GCCounters collection_counters(G1CollectedHeap* g1h) { 1635 MutexLocker ml(Heap_lock); 1636 return G1GCCounters(g1h); 1637 } 1638 1639 void G1CollectedHeap::collect(GCCause::Cause cause) { 1640 try_collect(cause, collection_counters(this)); 1641 } 1642 1643 // Return true if (x < y) with allowance for wraparound. 1644 static bool gc_counter_less_than(uint x, uint y) { 1645 return (x - y) > (UINT_MAX/2); 1646 } 1647 1648 // LOG_COLLECT_CONCURRENTLY(cause, msg, args...) 1649 // Macro so msg printing is format-checked. 1650 #define LOG_COLLECT_CONCURRENTLY(cause, ...) \ 1651 do { \ 1652 LogTarget(Trace, gc) LOG_COLLECT_CONCURRENTLY_lt; \ 1653 if (LOG_COLLECT_CONCURRENTLY_lt.is_enabled()) { \ 1654 ResourceMark rm; /* For thread name. */ \ 1655 LogStream LOG_COLLECT_CONCURRENTLY_s(&LOG_COLLECT_CONCURRENTLY_lt); \ 1656 LOG_COLLECT_CONCURRENTLY_s.print("%s: Try Collect Concurrently (%s): ", \ 1657 Thread::current()->name(), \ 1658 GCCause::to_string(cause)); \ 1659 LOG_COLLECT_CONCURRENTLY_s.print(__VA_ARGS__); \ 1660 } \ 1661 } while (0) 1662 1663 #define LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, result) \ 1664 LOG_COLLECT_CONCURRENTLY(cause, "complete %s", BOOL_TO_STR(result)) 1665 1666 bool G1CollectedHeap::try_collect_concurrently(GCCause::Cause cause, 1667 uint gc_counter, 1668 uint old_marking_started_before) { 1669 assert_heap_not_locked(); 1670 assert(should_do_concurrent_full_gc(cause), 1671 "Non-concurrent cause %s", GCCause::to_string(cause)); 1672 1673 for (uint i = 1; true; ++i) { 1674 // Try to schedule concurrent start evacuation pause that will 1675 // start a concurrent cycle. 1676 LOG_COLLECT_CONCURRENTLY(cause, "attempt %u", i); 1677 VM_G1TryInitiateConcMark op(gc_counter, cause); 1678 VMThread::execute(&op); 1679 1680 // Request is trivially finished. 1681 if (cause == GCCause::_g1_periodic_collection) { 1682 LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, op.gc_succeeded()); 1683 return op.gc_succeeded(); 1684 } 1685 1686 // If VMOp skipped initiating concurrent marking cycle because 1687 // we're terminating, then we're done. 1688 if (op.terminating()) { 1689 LOG_COLLECT_CONCURRENTLY(cause, "skipped: terminating"); 1690 return false; 1691 } 1692 1693 // Lock to get consistent set of values. 1694 uint old_marking_started_after; 1695 uint old_marking_completed_after; 1696 { 1697 MutexLocker ml(Heap_lock); 1698 // Update gc_counter for retrying VMOp if needed. Captured here to be 1699 // consistent with the values we use below for termination tests. If 1700 // a retry is needed after a possible wait, and another collection 1701 // occurs in the meantime, it will cause our retry to be skipped and 1702 // we'll recheck for termination with updated conditions from that 1703 // more recent collection. That's what we want, rather than having 1704 // our retry possibly perform an unnecessary collection. 1705 gc_counter = total_collections(); 1706 old_marking_started_after = _old_marking_cycles_started; 1707 old_marking_completed_after = _old_marking_cycles_completed; 1708 } 1709 1710 if (cause == GCCause::_wb_breakpoint) { 1711 if (op.gc_succeeded()) { 1712 LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true); 1713 return true; 1714 } 1715 // When _wb_breakpoint there can't be another cycle or deferred. 1716 assert(!op.cycle_already_in_progress(), "invariant"); 1717 assert(!op.whitebox_attached(), "invariant"); 1718 // Concurrent cycle attempt might have been cancelled by some other 1719 // collection, so retry. Unlike other cases below, we want to retry 1720 // even if cancelled by a STW full collection, because we really want 1721 // to start a concurrent cycle. 1722 if (old_marking_started_before != old_marking_started_after) { 1723 LOG_COLLECT_CONCURRENTLY(cause, "ignoring STW full GC"); 1724 old_marking_started_before = old_marking_started_after; 1725 } 1726 } else if (!GCCause::is_user_requested_gc(cause)) { 1727 // For an "automatic" (not user-requested) collection, we just need to 1728 // ensure that progress is made. 1729 // 1730 // Request is finished if any of 1731 // (1) the VMOp successfully performed a GC, 1732 // (2) a concurrent cycle was already in progress, 1733 // (3) whitebox is controlling concurrent cycles, 1734 // (4) a new cycle was started (by this thread or some other), or 1735 // (5) a Full GC was performed. 1736 // Cases (4) and (5) are detected together by a change to 1737 // _old_marking_cycles_started. 1738 // 1739 // Note that (1) does not imply (4). If we're still in the mixed 1740 // phase of an earlier concurrent collection, the request to make the 1741 // collection a concurrent start won't be honored. If we don't check for 1742 // both conditions we'll spin doing back-to-back collections. 1743 if (op.gc_succeeded() || 1744 op.cycle_already_in_progress() || 1745 op.whitebox_attached() || 1746 (old_marking_started_before != old_marking_started_after)) { 1747 LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true); 1748 return true; 1749 } 1750 } else { // User-requested GC. 1751 // For a user-requested collection, we want to ensure that a complete 1752 // full collection has been performed before returning, but without 1753 // waiting for more than needed. 1754 1755 // For user-requested GCs (unlike non-UR), a successful VMOp implies a 1756 // new cycle was started. That's good, because it's not clear what we 1757 // should do otherwise. Trying again just does back to back GCs. 1758 // Can't wait for someone else to start a cycle. And returning fails 1759 // to meet the goal of ensuring a full collection was performed. 1760 assert(!op.gc_succeeded() || 1761 (old_marking_started_before != old_marking_started_after), 1762 "invariant: succeeded %s, started before %u, started after %u", 1763 BOOL_TO_STR(op.gc_succeeded()), 1764 old_marking_started_before, old_marking_started_after); 1765 1766 // Request is finished if a full collection (concurrent or stw) 1767 // was started after this request and has completed, e.g. 1768 // started_before < completed_after. 1769 if (gc_counter_less_than(old_marking_started_before, 1770 old_marking_completed_after)) { 1771 LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true); 1772 return true; 1773 } 1774 1775 if (old_marking_started_after != old_marking_completed_after) { 1776 // If there is an in-progress cycle (possibly started by us), then 1777 // wait for that cycle to complete, e.g. 1778 // while completed_now < started_after. 1779 LOG_COLLECT_CONCURRENTLY(cause, "wait"); 1780 MonitorLocker ml(G1OldGCCount_lock); 1781 while (gc_counter_less_than(_old_marking_cycles_completed, 1782 old_marking_started_after)) { 1783 ml.wait(); 1784 } 1785 // Request is finished if the collection we just waited for was 1786 // started after this request. 1787 if (old_marking_started_before != old_marking_started_after) { 1788 LOG_COLLECT_CONCURRENTLY(cause, "complete after wait"); 1789 return true; 1790 } 1791 } 1792 1793 // If VMOp was successful then it started a new cycle that the above 1794 // wait &etc should have recognized as finishing this request. This 1795 // differs from a non-user-request, where gc_succeeded does not imply 1796 // a new cycle was started. 1797 assert(!op.gc_succeeded(), "invariant"); 1798 1799 if (op.cycle_already_in_progress()) { 1800 // If VMOp failed because a cycle was already in progress, it 1801 // is now complete. But it didn't finish this user-requested 1802 // GC, so try again. 1803 LOG_COLLECT_CONCURRENTLY(cause, "retry after in-progress"); 1804 continue; 1805 } else if (op.whitebox_attached()) { 1806 // If WhiteBox wants control, wait for notification of a state 1807 // change in the controller, then try again. Don't wait for 1808 // release of control, since collections may complete while in 1809 // control. Note: This won't recognize a STW full collection 1810 // while waiting; we can't wait on multiple monitors. 1811 LOG_COLLECT_CONCURRENTLY(cause, "whitebox control stall"); 1812 MonitorLocker ml(ConcurrentGCBreakpoints::monitor()); 1813 if (ConcurrentGCBreakpoints::is_controlled()) { 1814 ml.wait(); 1815 } 1816 continue; 1817 } 1818 } 1819 1820 // Collection failed and should be retried. 1821 assert(op.transient_failure(), "invariant"); 1822 1823 LOG_COLLECT_CONCURRENTLY(cause, "retry"); 1824 } 1825 } 1826 1827 bool G1CollectedHeap::try_collect_fullgc(GCCause::Cause cause, 1828 const G1GCCounters& counters_before) { 1829 assert_heap_not_locked(); 1830 1831 while(true) { 1832 VM_G1CollectFull op(counters_before.total_collections(), 1833 counters_before.total_full_collections(), 1834 cause); 1835 VMThread::execute(&op); 1836 1837 // Request is trivially finished. 1838 if (!GCCause::is_explicit_full_gc(cause) || op.gc_succeeded()) { 1839 return op.gc_succeeded(); 1840 } 1841 1842 { 1843 MutexLocker ml(Heap_lock); 1844 if (counters_before.total_full_collections() != total_full_collections()) { 1845 return true; 1846 } 1847 } 1848 } 1849 } 1850 1851 bool G1CollectedHeap::try_collect(GCCause::Cause cause, 1852 const G1GCCounters& counters_before) { 1853 if (should_do_concurrent_full_gc(cause)) { 1854 return try_collect_concurrently(cause, 1855 counters_before.total_collections(), 1856 counters_before.old_marking_cycles_started()); 1857 } else if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc 1858 DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) { 1859 1860 // Schedule a standard evacuation pause. We're setting word_size 1861 // to 0 which means that we are not requesting a post-GC allocation. 1862 VM_G1CollectForAllocation op(0, /* word_size */ 1863 counters_before.total_collections(), 1864 cause); 1865 VMThread::execute(&op); 1866 return op.gc_succeeded(); 1867 } else { 1868 // Schedule a Full GC. 1869 return try_collect_fullgc(cause, counters_before); 1870 } 1871 } 1872 1873 void G1CollectedHeap::start_concurrent_gc_for_metadata_allocation(GCCause::Cause gc_cause) { 1874 GCCauseSetter x(this, gc_cause); 1875 1876 // At this point we are supposed to start a concurrent cycle. We 1877 // will do so if one is not already in progress. 1878 bool should_start = policy()->force_concurrent_start_if_outside_cycle(gc_cause); 1879 if (should_start) { 1880 do_collection_pause_at_safepoint(); 1881 } 1882 } 1883 1884 bool G1CollectedHeap::is_in(const void* p) const { 1885 return is_in_reserved(p) && _hrm.is_available(addr_to_region(p)); 1886 } 1887 1888 // Iteration functions. 1889 1890 // Iterates an ObjectClosure over all objects within a G1HeapRegion. 1891 1892 class IterateObjectClosureRegionClosure: public HeapRegionClosure { 1893 ObjectClosure* _cl; 1894 public: 1895 IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {} 1896 bool do_heap_region(G1HeapRegion* r) { 1897 if (!r->is_continues_humongous()) { 1898 r->object_iterate(_cl); 1899 } 1900 return false; 1901 } 1902 }; 1903 1904 void G1CollectedHeap::object_iterate(ObjectClosure* cl) { 1905 IterateObjectClosureRegionClosure blk(cl); 1906 heap_region_iterate(&blk); 1907 } 1908 1909 class G1ParallelObjectIterator : public ParallelObjectIteratorImpl { 1910 private: 1911 G1CollectedHeap* _heap; 1912 HeapRegionClaimer _claimer; 1913 1914 public: 1915 G1ParallelObjectIterator(uint thread_num) : 1916 _heap(G1CollectedHeap::heap()), 1917 _claimer(thread_num == 0 ? G1CollectedHeap::heap()->workers()->active_workers() : thread_num) {} 1918 1919 virtual void object_iterate(ObjectClosure* cl, uint worker_id) { 1920 _heap->object_iterate_parallel(cl, worker_id, &_claimer); 1921 } 1922 }; 1923 1924 ParallelObjectIteratorImpl* G1CollectedHeap::parallel_object_iterator(uint thread_num) { 1925 return new G1ParallelObjectIterator(thread_num); 1926 } 1927 1928 void G1CollectedHeap::object_iterate_parallel(ObjectClosure* cl, uint worker_id, HeapRegionClaimer* claimer) { 1929 IterateObjectClosureRegionClosure blk(cl); 1930 heap_region_par_iterate_from_worker_offset(&blk, claimer, worker_id); 1931 } 1932 1933 void G1CollectedHeap::keep_alive(oop obj) { 1934 G1BarrierSet::enqueue_preloaded(obj); 1935 } 1936 1937 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const { 1938 _hrm.iterate(cl); 1939 } 1940 1941 void G1CollectedHeap::heap_region_iterate(HeapRegionIndexClosure* cl) const { 1942 _hrm.iterate(cl); 1943 } 1944 1945 void G1CollectedHeap::heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl, 1946 HeapRegionClaimer *hrclaimer, 1947 uint worker_id) const { 1948 _hrm.par_iterate(cl, hrclaimer, hrclaimer->offset_for_worker(worker_id)); 1949 } 1950 1951 void G1CollectedHeap::heap_region_par_iterate_from_start(HeapRegionClosure* cl, 1952 HeapRegionClaimer *hrclaimer) const { 1953 _hrm.par_iterate(cl, hrclaimer, 0); 1954 } 1955 1956 void G1CollectedHeap::collection_set_iterate_all(HeapRegionClosure* cl) { 1957 _collection_set.iterate(cl); 1958 } 1959 1960 void G1CollectedHeap::collection_set_par_iterate_all(HeapRegionClosure* cl, 1961 HeapRegionClaimer* hr_claimer, 1962 uint worker_id) { 1963 _collection_set.par_iterate(cl, hr_claimer, worker_id); 1964 } 1965 1966 void G1CollectedHeap::collection_set_iterate_increment_from(HeapRegionClosure *cl, 1967 HeapRegionClaimer* hr_claimer, 1968 uint worker_id) { 1969 _collection_set.iterate_incremental_part_from(cl, hr_claimer, worker_id); 1970 } 1971 1972 void G1CollectedHeap::par_iterate_regions_array(HeapRegionClosure* cl, 1973 HeapRegionClaimer* hr_claimer, 1974 const uint regions[], 1975 size_t length, 1976 uint worker_id) const { 1977 assert_at_safepoint(); 1978 if (length == 0) { 1979 return; 1980 } 1981 uint total_workers = workers()->active_workers(); 1982 1983 size_t start_pos = (worker_id * length) / total_workers; 1984 size_t cur_pos = start_pos; 1985 1986 do { 1987 uint region_idx = regions[cur_pos]; 1988 if (hr_claimer == nullptr || hr_claimer->claim_region(region_idx)) { 1989 G1HeapRegion* r = region_at(region_idx); 1990 bool result = cl->do_heap_region(r); 1991 guarantee(!result, "Must not cancel iteration"); 1992 } 1993 1994 cur_pos++; 1995 if (cur_pos == length) { 1996 cur_pos = 0; 1997 } 1998 } while (cur_pos != start_pos); 1999 } 2000 2001 HeapWord* G1CollectedHeap::block_start(const void* addr) const { 2002 G1HeapRegion* hr = heap_region_containing(addr); 2003 // The CollectedHeap API requires us to not fail for any given address within 2004 // the heap. G1HeapRegion::block_start() has been optimized to not accept addresses 2005 // outside of the allocated area. 2006 if (addr >= hr->top()) { 2007 return nullptr; 2008 } 2009 return hr->block_start(addr); 2010 } 2011 2012 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const { 2013 G1HeapRegion* hr = heap_region_containing(addr); 2014 return hr->block_is_obj(addr, hr->parsable_bottom_acquire()); 2015 } 2016 2017 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const { 2018 return (_policy->young_list_target_length() - _survivor.length()) * G1HeapRegion::GrainBytes; 2019 } 2020 2021 size_t G1CollectedHeap::tlab_used(Thread* ignored) const { 2022 return _eden.length() * G1HeapRegion::GrainBytes; 2023 } 2024 2025 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size 2026 // must be equal to the humongous object limit. 2027 size_t G1CollectedHeap::max_tlab_size() const { 2028 return align_down(_humongous_object_threshold_in_words, MinObjAlignment); 2029 } 2030 2031 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const { 2032 return _allocator->unsafe_max_tlab_alloc(); 2033 } 2034 2035 size_t G1CollectedHeap::max_capacity() const { 2036 return max_regions() * G1HeapRegion::GrainBytes; 2037 } 2038 2039 void G1CollectedHeap::prepare_for_verify() { 2040 _verifier->prepare_for_verify(); 2041 } 2042 2043 void G1CollectedHeap::verify(VerifyOption vo) { 2044 _verifier->verify(vo); 2045 } 2046 2047 bool G1CollectedHeap::supports_concurrent_gc_breakpoints() const { 2048 return true; 2049 } 2050 2051 class PrintRegionClosure: public HeapRegionClosure { 2052 outputStream* _st; 2053 public: 2054 PrintRegionClosure(outputStream* st) : _st(st) {} 2055 bool do_heap_region(G1HeapRegion* r) { 2056 r->print_on(_st); 2057 return false; 2058 } 2059 }; 2060 2061 bool G1CollectedHeap::is_obj_dead_cond(const oop obj, 2062 const G1HeapRegion* hr, 2063 const VerifyOption vo) const { 2064 switch (vo) { 2065 case VerifyOption::G1UseConcMarking: return is_obj_dead(obj, hr); 2066 case VerifyOption::G1UseFullMarking: return is_obj_dead_full(obj, hr); 2067 default: ShouldNotReachHere(); 2068 } 2069 return false; // keep some compilers happy 2070 } 2071 2072 bool G1CollectedHeap::is_obj_dead_cond(const oop obj, 2073 const VerifyOption vo) const { 2074 switch (vo) { 2075 case VerifyOption::G1UseConcMarking: return is_obj_dead(obj); 2076 case VerifyOption::G1UseFullMarking: return is_obj_dead_full(obj); 2077 default: ShouldNotReachHere(); 2078 } 2079 return false; // keep some compilers happy 2080 } 2081 2082 void G1CollectedHeap::print_heap_regions() const { 2083 LogTarget(Trace, gc, heap, region) lt; 2084 if (lt.is_enabled()) { 2085 LogStream ls(lt); 2086 print_regions_on(&ls); 2087 } 2088 } 2089 2090 void G1CollectedHeap::print_on(outputStream* st) const { 2091 size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked(); 2092 st->print(" %-20s", "garbage-first heap"); 2093 st->print(" total reserved %zuK, committed %zuK, used %zuK", 2094 _hrm.reserved().byte_size()/K, capacity()/K, heap_used/K); 2095 st->print(" [" PTR_FORMAT ", " PTR_FORMAT ")", 2096 p2i(_hrm.reserved().start()), 2097 p2i(_hrm.reserved().end())); 2098 st->cr(); 2099 st->print(" region size " SIZE_FORMAT "K, ", G1HeapRegion::GrainBytes / K); 2100 uint young_regions = young_regions_count(); 2101 st->print("%u young (" SIZE_FORMAT "K), ", young_regions, 2102 (size_t) young_regions * G1HeapRegion::GrainBytes / K); 2103 uint survivor_regions = survivor_regions_count(); 2104 st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions, 2105 (size_t) survivor_regions * G1HeapRegion::GrainBytes / K); 2106 st->cr(); 2107 if (_numa->is_enabled()) { 2108 uint num_nodes = _numa->num_active_nodes(); 2109 st->print(" remaining free region(s) on each NUMA node: "); 2110 const uint* node_ids = _numa->node_ids(); 2111 for (uint node_index = 0; node_index < num_nodes; node_index++) { 2112 uint num_free_regions = _hrm.num_free_regions(node_index); 2113 st->print("%u=%u ", node_ids[node_index], num_free_regions); 2114 } 2115 st->cr(); 2116 } 2117 MetaspaceUtils::print_on(st); 2118 } 2119 2120 void G1CollectedHeap::print_regions_on(outputStream* st) const { 2121 st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, " 2122 "HS=humongous(starts), HC=humongous(continues), " 2123 "CS=collection set, F=free, " 2124 "TAMS=top-at-mark-start, " 2125 "PB=parsable bottom"); 2126 PrintRegionClosure blk(st); 2127 heap_region_iterate(&blk); 2128 } 2129 2130 void G1CollectedHeap::print_extended_on(outputStream* st) const { 2131 print_on(st); 2132 2133 // Print the per-region information. 2134 st->cr(); 2135 print_regions_on(st); 2136 } 2137 2138 void G1CollectedHeap::print_on_error(outputStream* st) const { 2139 this->CollectedHeap::print_on_error(st); 2140 2141 if (_cm != nullptr) { 2142 st->cr(); 2143 _cm->print_on_error(st); 2144 } 2145 } 2146 2147 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const { 2148 workers()->threads_do(tc); 2149 tc->do_thread(_cm_thread); 2150 _cm->threads_do(tc); 2151 _cr->threads_do(tc); 2152 tc->do_thread(_service_thread); 2153 } 2154 2155 void G1CollectedHeap::print_tracing_info() const { 2156 rem_set()->print_summary_info(); 2157 concurrent_mark()->print_summary_info(); 2158 } 2159 2160 bool G1CollectedHeap::print_location(outputStream* st, void* addr) const { 2161 return BlockLocationPrinter<G1CollectedHeap>::print_location(st, addr); 2162 } 2163 2164 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() { 2165 2166 size_t eden_used_bytes = _monitoring_support->eden_space_used(); 2167 size_t survivor_used_bytes = _monitoring_support->survivor_space_used(); 2168 size_t old_gen_used_bytes = _monitoring_support->old_gen_used(); 2169 size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked(); 2170 2171 size_t eden_capacity_bytes = 2172 (policy()->young_list_target_length() * G1HeapRegion::GrainBytes) - survivor_used_bytes; 2173 2174 VirtualSpaceSummary heap_summary = create_heap_space_summary(); 2175 return G1HeapSummary(heap_summary, heap_used, eden_used_bytes, eden_capacity_bytes, 2176 survivor_used_bytes, old_gen_used_bytes, num_regions()); 2177 } 2178 2179 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) { 2180 return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(), 2181 stats->unused(), stats->used(), stats->region_end_waste(), 2182 stats->regions_filled(), stats->num_plab_filled(), 2183 stats->direct_allocated(), stats->num_direct_allocated(), 2184 stats->failure_used(), stats->failure_waste()); 2185 } 2186 2187 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) { 2188 const G1HeapSummary& heap_summary = create_g1_heap_summary(); 2189 gc_tracer->report_gc_heap_summary(when, heap_summary); 2190 2191 const MetaspaceSummary& metaspace_summary = create_metaspace_summary(); 2192 gc_tracer->report_metaspace_summary(when, metaspace_summary); 2193 } 2194 2195 void G1CollectedHeap::gc_prologue(bool full) { 2196 // Update common counters. 2197 increment_total_collections(full /* full gc */); 2198 if (full || collector_state()->in_concurrent_start_gc()) { 2199 increment_old_marking_cycles_started(); 2200 } 2201 } 2202 2203 void G1CollectedHeap::gc_epilogue(bool full) { 2204 // Update common counters. 2205 if (full) { 2206 // Update the number of full collections that have been completed. 2207 increment_old_marking_cycles_completed(false /* concurrent */, true /* liveness_completed */); 2208 } 2209 2210 #if COMPILER2_OR_JVMCI 2211 assert(DerivedPointerTable::is_empty(), "derived pointer present"); 2212 #endif 2213 2214 // We have just completed a GC. Update the soft reference 2215 // policy with the new heap occupancy 2216 Universe::heap()->update_capacity_and_used_at_gc(); 2217 2218 _collection_pause_end = Ticks::now(); 2219 2220 _free_arena_memory_task->notify_new_stats(&_young_gen_card_set_stats, 2221 &_collection_set_candidates_card_set_stats); 2222 2223 update_parallel_gc_threads_cpu_time(); 2224 } 2225 2226 uint G1CollectedHeap::uncommit_regions(uint region_limit) { 2227 return _hrm.uncommit_inactive_regions(region_limit); 2228 } 2229 2230 bool G1CollectedHeap::has_uncommittable_regions() { 2231 return _hrm.has_inactive_regions(); 2232 } 2233 2234 void G1CollectedHeap::uncommit_regions_if_necessary() { 2235 if (has_uncommittable_regions()) { 2236 G1UncommitRegionTask::enqueue(); 2237 } 2238 } 2239 2240 void G1CollectedHeap::verify_numa_regions(const char* desc) { 2241 LogTarget(Trace, gc, heap, verify) lt; 2242 2243 if (lt.is_enabled()) { 2244 LogStream ls(lt); 2245 // Iterate all heap regions to print matching between preferred numa id and actual numa id. 2246 G1NodeIndexCheckClosure cl(desc, _numa, &ls); 2247 heap_region_iterate(&cl); 2248 } 2249 } 2250 2251 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size, 2252 uint gc_count_before, 2253 bool* succeeded, 2254 GCCause::Cause gc_cause) { 2255 assert_heap_not_locked_and_not_at_safepoint(); 2256 VM_G1CollectForAllocation op(word_size, gc_count_before, gc_cause); 2257 VMThread::execute(&op); 2258 2259 HeapWord* result = op.result(); 2260 bool ret_succeeded = op.prologue_succeeded() && op.gc_succeeded(); 2261 assert(result == nullptr || ret_succeeded, 2262 "the result should be null if the VM did not succeed"); 2263 *succeeded = ret_succeeded; 2264 2265 assert_heap_not_locked(); 2266 return result; 2267 } 2268 2269 void G1CollectedHeap::start_concurrent_cycle(bool concurrent_operation_is_full_mark) { 2270 assert(!_cm_thread->in_progress(), "Can not start concurrent operation while in progress"); 2271 2272 MutexLocker x(CGC_lock, Mutex::_no_safepoint_check_flag); 2273 if (concurrent_operation_is_full_mark) { 2274 _cm->post_concurrent_mark_start(); 2275 _cm_thread->start_full_mark(); 2276 } else { 2277 _cm->post_concurrent_undo_start(); 2278 _cm_thread->start_undo_mark(); 2279 } 2280 CGC_lock->notify(); 2281 } 2282 2283 bool G1CollectedHeap::is_potential_eager_reclaim_candidate(G1HeapRegion* r) const { 2284 // We don't nominate objects with many remembered set entries, on 2285 // the assumption that such objects are likely still live. 2286 HeapRegionRemSet* rem_set = r->rem_set(); 2287 2288 return rem_set->occupancy_less_or_equal_than(G1EagerReclaimRemSetThreshold); 2289 } 2290 2291 #ifndef PRODUCT 2292 void G1CollectedHeap::verify_region_attr_remset_is_tracked() { 2293 class VerifyRegionAttrRemSet : public HeapRegionClosure { 2294 public: 2295 virtual bool do_heap_region(G1HeapRegion* r) { 2296 G1CollectedHeap* g1h = G1CollectedHeap::heap(); 2297 bool const remset_is_tracked = g1h->region_attr(r->bottom()).remset_is_tracked(); 2298 assert(r->rem_set()->is_tracked() == remset_is_tracked, 2299 "Region %u remset tracking status (%s) different to region attribute (%s)", 2300 r->hrm_index(), BOOL_TO_STR(r->rem_set()->is_tracked()), BOOL_TO_STR(remset_is_tracked)); 2301 return false; 2302 } 2303 } cl; 2304 heap_region_iterate(&cl); 2305 } 2306 #endif 2307 2308 void G1CollectedHeap::update_parallel_gc_threads_cpu_time() { 2309 assert(Thread::current()->is_VM_thread(), 2310 "Must be called from VM thread to avoid races"); 2311 if (!UsePerfData || !os::is_thread_cpu_time_supported()) { 2312 return; 2313 } 2314 2315 // Ensure ThreadTotalCPUTimeClosure destructor is called before publishing gc 2316 // time. 2317 { 2318 ThreadTotalCPUTimeClosure tttc(CPUTimeGroups::CPUTimeType::gc_parallel_workers); 2319 // Currently parallel worker threads never terminate (JDK-8081682), so it is 2320 // safe for VMThread to read their CPU times. However, if JDK-8087340 is 2321 // resolved so they terminate, we should rethink if it is still safe. 2322 workers()->threads_do(&tttc); 2323 } 2324 2325 CPUTimeCounters::publish_gc_total_cpu_time(); 2326 } 2327 2328 void G1CollectedHeap::start_new_collection_set() { 2329 collection_set()->start_incremental_building(); 2330 2331 clear_region_attr(); 2332 2333 guarantee(_eden.length() == 0, "eden should have been cleared"); 2334 policy()->transfer_survivors_to_cset(survivor()); 2335 2336 // We redo the verification but now wrt to the new CSet which 2337 // has just got initialized after the previous CSet was freed. 2338 _cm->verify_no_collection_set_oops(); 2339 } 2340 2341 G1HeapVerifier::G1VerifyType G1CollectedHeap::young_collection_verify_type() const { 2342 if (collector_state()->in_concurrent_start_gc()) { 2343 return G1HeapVerifier::G1VerifyConcurrentStart; 2344 } else if (collector_state()->in_young_only_phase()) { 2345 return G1HeapVerifier::G1VerifyYoungNormal; 2346 } else { 2347 return G1HeapVerifier::G1VerifyMixed; 2348 } 2349 } 2350 2351 void G1CollectedHeap::verify_before_young_collection(G1HeapVerifier::G1VerifyType type) { 2352 if (!VerifyBeforeGC) { 2353 return; 2354 } 2355 if (!G1HeapVerifier::should_verify(type)) { 2356 return; 2357 } 2358 Ticks start = Ticks::now(); 2359 _verifier->prepare_for_verify(); 2360 _verifier->verify_region_sets_optional(); 2361 _verifier->verify_dirty_young_regions(); 2362 _verifier->verify_before_gc(); 2363 verify_numa_regions("GC Start"); 2364 phase_times()->record_verify_before_time_ms((Ticks::now() - start).seconds() * MILLIUNITS); 2365 } 2366 2367 void G1CollectedHeap::verify_after_young_collection(G1HeapVerifier::G1VerifyType type) { 2368 if (!VerifyAfterGC) { 2369 return; 2370 } 2371 if (!G1HeapVerifier::should_verify(type)) { 2372 return; 2373 } 2374 Ticks start = Ticks::now(); 2375 _verifier->verify_after_gc(); 2376 verify_numa_regions("GC End"); 2377 _verifier->verify_region_sets_optional(); 2378 2379 if (collector_state()->in_concurrent_start_gc()) { 2380 log_debug(gc, verify)("Marking state"); 2381 _verifier->verify_marking_state(); 2382 } 2383 2384 phase_times()->record_verify_after_time_ms((Ticks::now() - start).seconds() * MILLIUNITS); 2385 } 2386 2387 void G1CollectedHeap::expand_heap_after_young_collection(){ 2388 size_t expand_bytes = _heap_sizing_policy->young_collection_expansion_amount(); 2389 if (expand_bytes > 0) { 2390 // No need for an ergo logging here, 2391 // expansion_amount() does this when it returns a value > 0. 2392 double expand_ms = 0.0; 2393 if (!expand(expand_bytes, _workers, &expand_ms)) { 2394 // We failed to expand the heap. Cannot do anything about it. 2395 } 2396 phase_times()->record_expand_heap_time(expand_ms); 2397 } 2398 } 2399 2400 bool G1CollectedHeap::do_collection_pause_at_safepoint() { 2401 assert_at_safepoint_on_vm_thread(); 2402 guarantee(!is_stw_gc_active(), "collection is not reentrant"); 2403 2404 do_collection_pause_at_safepoint_helper(); 2405 return true; 2406 } 2407 2408 G1HeapPrinterMark::G1HeapPrinterMark(G1CollectedHeap* g1h) : _g1h(g1h), _heap_transition(g1h) { 2409 // This summary needs to be printed before incrementing total collections. 2410 _g1h->rem_set()->print_periodic_summary_info("Before GC RS summary", 2411 _g1h->total_collections(), 2412 true /* show_thread_times */); 2413 _g1h->print_heap_before_gc(); 2414 _g1h->print_heap_regions(); 2415 } 2416 2417 G1HeapPrinterMark::~G1HeapPrinterMark() { 2418 _g1h->policy()->print_age_table(); 2419 _g1h->rem_set()->print_coarsen_stats(); 2420 // We are at the end of the GC. Total collections has already been increased. 2421 _g1h->rem_set()->print_periodic_summary_info("After GC RS summary", 2422 _g1h->total_collections() - 1, 2423 false /* show_thread_times */); 2424 2425 _heap_transition.print(); 2426 _g1h->print_heap_regions(); 2427 _g1h->print_heap_after_gc(); 2428 // Print NUMA statistics. 2429 _g1h->numa()->print_statistics(); 2430 } 2431 2432 G1JFRTracerMark::G1JFRTracerMark(STWGCTimer* timer, GCTracer* tracer) : 2433 _timer(timer), _tracer(tracer) { 2434 2435 _timer->register_gc_start(); 2436 _tracer->report_gc_start(G1CollectedHeap::heap()->gc_cause(), _timer->gc_start()); 2437 G1CollectedHeap::heap()->trace_heap_before_gc(_tracer); 2438 } 2439 2440 G1JFRTracerMark::~G1JFRTracerMark() { 2441 G1CollectedHeap::heap()->trace_heap_after_gc(_tracer); 2442 _timer->register_gc_end(); 2443 _tracer->report_gc_end(_timer->gc_end(), _timer->time_partitions()); 2444 } 2445 2446 void G1CollectedHeap::prepare_for_mutator_after_young_collection() { 2447 Ticks start = Ticks::now(); 2448 2449 _survivor_evac_stats.adjust_desired_plab_size(); 2450 _old_evac_stats.adjust_desired_plab_size(); 2451 2452 // Start a new incremental collection set for the mutator phase. 2453 start_new_collection_set(); 2454 _allocator->init_mutator_alloc_regions(); 2455 2456 phase_times()->record_prepare_for_mutator_time_ms((Ticks::now() - start).seconds() * 1000.0); 2457 } 2458 2459 void G1CollectedHeap::retire_tlabs() { 2460 ensure_parsability(true); 2461 } 2462 2463 void G1CollectedHeap::flush_region_pin_cache() { 2464 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *thread = jtiwh.next(); ) { 2465 G1ThreadLocalData::pin_count_cache(thread).flush(); 2466 } 2467 } 2468 2469 void G1CollectedHeap::do_collection_pause_at_safepoint_helper() { 2470 ResourceMark rm; 2471 2472 IsSTWGCActiveMark active_gc_mark; 2473 GCIdMark gc_id_mark; 2474 SvcGCMarker sgcm(SvcGCMarker::MINOR); 2475 2476 GCTraceCPUTime tcpu(_gc_tracer_stw); 2477 2478 _bytes_used_during_gc = 0; 2479 2480 policy()->decide_on_concurrent_start_pause(); 2481 // Record whether this pause may need to trigger a concurrent operation. Later, 2482 // when we signal the G1ConcurrentMarkThread, the collector state has already 2483 // been reset for the next pause. 2484 bool should_start_concurrent_mark_operation = collector_state()->in_concurrent_start_gc(); 2485 2486 // Perform the collection. 2487 G1YoungCollector collector(gc_cause()); 2488 collector.collect(); 2489 2490 // It should now be safe to tell the concurrent mark thread to start 2491 // without its logging output interfering with the logging output 2492 // that came from the pause. 2493 if (should_start_concurrent_mark_operation) { 2494 verifier()->verify_bitmap_clear(true /* above_tams_only */); 2495 // CAUTION: after the start_concurrent_cycle() call below, the concurrent marking 2496 // thread(s) could be running concurrently with us. Make sure that anything 2497 // after this point does not assume that we are the only GC thread running. 2498 // Note: of course, the actual marking work will not start until the safepoint 2499 // itself is released in SuspendibleThreadSet::desynchronize(). 2500 start_concurrent_cycle(collector.concurrent_operation_is_full_mark()); 2501 ConcurrentGCBreakpoints::notify_idle_to_active(); 2502 } 2503 } 2504 2505 void G1CollectedHeap::complete_cleaning(bool class_unloading_occurred) { 2506 uint num_workers = workers()->active_workers(); 2507 G1ParallelCleaningTask unlink_task(num_workers, class_unloading_occurred); 2508 workers()->run_task(&unlink_task); 2509 } 2510 2511 void G1CollectedHeap::unload_classes_and_code(const char* description, BoolObjectClosure* is_alive, GCTimer* timer) { 2512 GCTraceTime(Debug, gc, phases) debug(description, timer); 2513 2514 ClassUnloadingContext ctx(workers()->active_workers(), 2515 false /* unregister_nmethods_during_purge */, 2516 false /* lock_nmethod_free_separately */); 2517 { 2518 CodeCache::UnlinkingScope scope(is_alive); 2519 bool unloading_occurred = SystemDictionary::do_unloading(timer); 2520 GCTraceTime(Debug, gc, phases) t("G1 Complete Cleaning", timer); 2521 complete_cleaning(unloading_occurred); 2522 } 2523 { 2524 GCTraceTime(Debug, gc, phases) t("Purge Unlinked NMethods", timer); 2525 ctx.purge_nmethods(); 2526 } 2527 { 2528 GCTraceTime(Debug, gc, phases) ur("Unregister NMethods", timer); 2529 G1CollectedHeap::heap()->bulk_unregister_nmethods(); 2530 } 2531 { 2532 GCTraceTime(Debug, gc, phases) t("Free Code Blobs", timer); 2533 ctx.free_nmethods(); 2534 } 2535 { 2536 GCTraceTime(Debug, gc, phases) t("Purge Class Loader Data", timer); 2537 ClassLoaderDataGraph::purge(true /* at_safepoint */); 2538 DEBUG_ONLY(MetaspaceUtils::verify();) 2539 } 2540 } 2541 2542 class G1BulkUnregisterNMethodTask : public WorkerTask { 2543 HeapRegionClaimer _hrclaimer; 2544 2545 class UnregisterNMethodsHeapRegionClosure : public HeapRegionClosure { 2546 public: 2547 2548 bool do_heap_region(G1HeapRegion* hr) { 2549 hr->rem_set()->bulk_remove_code_roots(); 2550 return false; 2551 } 2552 } _cl; 2553 2554 public: 2555 G1BulkUnregisterNMethodTask(uint num_workers) 2556 : WorkerTask("G1 Remove Unlinked NMethods From Code Root Set Task"), 2557 _hrclaimer(num_workers) { } 2558 2559 void work(uint worker_id) { 2560 G1CollectedHeap::heap()->heap_region_par_iterate_from_worker_offset(&_cl, &_hrclaimer, worker_id); 2561 } 2562 }; 2563 2564 void G1CollectedHeap::bulk_unregister_nmethods() { 2565 uint num_workers = workers()->active_workers(); 2566 G1BulkUnregisterNMethodTask t(num_workers); 2567 workers()->run_task(&t); 2568 } 2569 2570 bool G1STWSubjectToDiscoveryClosure::do_object_b(oop obj) { 2571 assert(obj != nullptr, "must not be null"); 2572 assert(_g1h->is_in_reserved(obj), "Trying to discover obj " PTR_FORMAT " not in heap", p2i(obj)); 2573 // The areas the CM and STW ref processor manage must be disjoint. The is_in_cset() below 2574 // may falsely indicate that this is not the case here: however the collection set only 2575 // contains old regions when concurrent mark is not running. 2576 return _g1h->is_in_cset(obj) || _g1h->heap_region_containing(obj)->is_survivor(); 2577 } 2578 2579 void G1CollectedHeap::make_pending_list_reachable() { 2580 if (collector_state()->in_concurrent_start_gc()) { 2581 oop pll_head = Universe::reference_pending_list(); 2582 if (pll_head != nullptr) { 2583 // Any valid worker id is fine here as we are in the VM thread and single-threaded. 2584 _cm->mark_in_bitmap(0 /* worker_id */, pll_head); 2585 } 2586 } 2587 } 2588 2589 void G1CollectedHeap::set_humongous_stats(uint num_humongous_total, uint num_humongous_candidates) { 2590 _num_humongous_objects = num_humongous_total; 2591 _num_humongous_reclaim_candidates = num_humongous_candidates; 2592 } 2593 2594 bool G1CollectedHeap::should_sample_collection_set_candidates() const { 2595 const G1CollectionSetCandidates* candidates = collection_set()->candidates(); 2596 return !candidates->is_empty(); 2597 } 2598 2599 void G1CollectedHeap::set_collection_set_candidates_stats(G1MonotonicArenaMemoryStats& stats) { 2600 _collection_set_candidates_card_set_stats = stats; 2601 } 2602 2603 void G1CollectedHeap::set_young_gen_card_set_stats(const G1MonotonicArenaMemoryStats& stats) { 2604 _young_gen_card_set_stats = stats; 2605 } 2606 2607 void G1CollectedHeap::record_obj_copy_mem_stats() { 2608 policy()->old_gen_alloc_tracker()-> 2609 add_allocated_bytes_since_last_gc(_old_evac_stats.allocated() * HeapWordSize); 2610 2611 _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats), 2612 create_g1_evac_summary(&_old_evac_stats)); 2613 } 2614 2615 void G1CollectedHeap::clear_bitmap_for_region(G1HeapRegion* hr) { 2616 concurrent_mark()->clear_bitmap_for_region(hr); 2617 } 2618 2619 void G1CollectedHeap::free_region(G1HeapRegion* hr, FreeRegionList* free_list) { 2620 assert(!hr->is_free(), "the region should not be free"); 2621 assert(!hr->is_empty(), "the region should not be empty"); 2622 assert(_hrm.is_available(hr->hrm_index()), "region should be committed"); 2623 assert(!hr->has_pinned_objects(), 2624 "must not free a region which contains pinned objects"); 2625 2626 // Reset region metadata to allow reuse. 2627 hr->hr_clear(true /* clear_space */); 2628 _policy->remset_tracker()->update_at_free(hr); 2629 2630 if (free_list != nullptr) { 2631 free_list->add_ordered(hr); 2632 } 2633 } 2634 2635 void G1CollectedHeap::retain_region(G1HeapRegion* hr) { 2636 MutexLocker x(G1RareEvent_lock, Mutex::_no_safepoint_check_flag); 2637 collection_set()->candidates()->add_retained_region_unsorted(hr); 2638 } 2639 2640 void G1CollectedHeap::free_humongous_region(G1HeapRegion* hr, 2641 FreeRegionList* free_list) { 2642 assert(hr->is_humongous(), "this is only for humongous regions"); 2643 hr->clear_humongous(); 2644 free_region(hr, free_list); 2645 } 2646 2647 void G1CollectedHeap::remove_from_old_gen_sets(const uint old_regions_removed, 2648 const uint humongous_regions_removed) { 2649 if (old_regions_removed > 0 || humongous_regions_removed > 0) { 2650 MutexLocker x(OldSets_lock, Mutex::_no_safepoint_check_flag); 2651 _old_set.bulk_remove(old_regions_removed); 2652 _humongous_set.bulk_remove(humongous_regions_removed); 2653 } 2654 2655 } 2656 2657 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) { 2658 assert(list != nullptr, "list can't be null"); 2659 if (!list->is_empty()) { 2660 MutexLocker x(FreeList_lock, Mutex::_no_safepoint_check_flag); 2661 _hrm.insert_list_into_free_list(list); 2662 } 2663 } 2664 2665 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) { 2666 decrease_used(bytes); 2667 } 2668 2669 void G1CollectedHeap::clear_eden() { 2670 _eden.clear(); 2671 } 2672 2673 void G1CollectedHeap::clear_collection_set() { 2674 collection_set()->clear(); 2675 } 2676 2677 void G1CollectedHeap::rebuild_free_region_list() { 2678 Ticks start = Ticks::now(); 2679 _hrm.rebuild_free_list(workers()); 2680 phase_times()->record_total_rebuild_freelist_time_ms((Ticks::now() - start).seconds() * 1000.0); 2681 } 2682 2683 class G1AbandonCollectionSetClosure : public HeapRegionClosure { 2684 public: 2685 virtual bool do_heap_region(G1HeapRegion* r) { 2686 assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index()); 2687 G1CollectedHeap::heap()->clear_region_attr(r); 2688 r->clear_young_index_in_cset(); 2689 return false; 2690 } 2691 }; 2692 2693 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) { 2694 G1AbandonCollectionSetClosure cl; 2695 collection_set_iterate_all(&cl); 2696 2697 collection_set->clear(); 2698 collection_set->stop_incremental_building(); 2699 } 2700 2701 bool G1CollectedHeap::is_old_gc_alloc_region(G1HeapRegion* hr) { 2702 return _allocator->is_retained_old_region(hr); 2703 } 2704 2705 void G1CollectedHeap::set_region_short_lived_locked(G1HeapRegion* hr) { 2706 _eden.add(hr); 2707 _policy->set_region_eden(hr); 2708 } 2709 2710 #ifdef ASSERT 2711 2712 class NoYoungRegionsClosure: public HeapRegionClosure { 2713 private: 2714 bool _success; 2715 public: 2716 NoYoungRegionsClosure() : _success(true) { } 2717 bool do_heap_region(G1HeapRegion* r) { 2718 if (r->is_young()) { 2719 log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young", 2720 p2i(r->bottom()), p2i(r->end())); 2721 _success = false; 2722 } 2723 return false; 2724 } 2725 bool success() { return _success; } 2726 }; 2727 2728 bool G1CollectedHeap::check_young_list_empty() { 2729 bool ret = (young_regions_count() == 0); 2730 2731 NoYoungRegionsClosure closure; 2732 heap_region_iterate(&closure); 2733 ret = ret && closure.success(); 2734 2735 return ret; 2736 } 2737 2738 #endif // ASSERT 2739 2740 // Remove the given G1HeapRegion from the appropriate region set. 2741 void G1CollectedHeap::prepare_region_for_full_compaction(G1HeapRegion* hr) { 2742 if (hr->is_humongous()) { 2743 _humongous_set.remove(hr); 2744 } else if (hr->is_old()) { 2745 _old_set.remove(hr); 2746 } else if (hr->is_young()) { 2747 // Note that emptying the eden and survivor lists is postponed and instead 2748 // done as the first step when rebuilding the regions sets again. The reason 2749 // for this is that during a full GC string deduplication needs to know if 2750 // a collected region was young or old when the full GC was initiated. 2751 hr->uninstall_surv_rate_group(); 2752 } else { 2753 // We ignore free regions, we'll empty the free list afterwards. 2754 assert(hr->is_free(), "it cannot be another type"); 2755 } 2756 } 2757 2758 void G1CollectedHeap::increase_used(size_t bytes) { 2759 _summary_bytes_used += bytes; 2760 } 2761 2762 void G1CollectedHeap::decrease_used(size_t bytes) { 2763 assert(_summary_bytes_used >= bytes, 2764 "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT, 2765 _summary_bytes_used, bytes); 2766 _summary_bytes_used -= bytes; 2767 } 2768 2769 void G1CollectedHeap::set_used(size_t bytes) { 2770 _summary_bytes_used = bytes; 2771 } 2772 2773 class RebuildRegionSetsClosure : public HeapRegionClosure { 2774 private: 2775 bool _free_list_only; 2776 2777 HeapRegionSet* _old_set; 2778 HeapRegionSet* _humongous_set; 2779 2780 HeapRegionManager* _hrm; 2781 2782 size_t _total_used; 2783 2784 public: 2785 RebuildRegionSetsClosure(bool free_list_only, 2786 HeapRegionSet* old_set, 2787 HeapRegionSet* humongous_set, 2788 HeapRegionManager* hrm) : 2789 _free_list_only(free_list_only), _old_set(old_set), 2790 _humongous_set(humongous_set), _hrm(hrm), _total_used(0) { 2791 assert(_hrm->num_free_regions() == 0, "pre-condition"); 2792 if (!free_list_only) { 2793 assert(_old_set->is_empty(), "pre-condition"); 2794 assert(_humongous_set->is_empty(), "pre-condition"); 2795 } 2796 } 2797 2798 bool do_heap_region(G1HeapRegion* r) { 2799 if (r->is_empty()) { 2800 assert(r->rem_set()->is_empty(), "Empty regions should have empty remembered sets."); 2801 // Add free regions to the free list 2802 r->set_free(); 2803 _hrm->insert_into_free_list(r); 2804 } else if (!_free_list_only) { 2805 assert(r->rem_set()->is_empty(), "At this point remembered sets must have been cleared."); 2806 2807 if (r->is_humongous()) { 2808 _humongous_set->add(r); 2809 } else { 2810 assert(r->is_young() || r->is_free() || r->is_old(), "invariant"); 2811 // We now move all (non-humongous, non-old) regions to old gen, 2812 // and register them as such. 2813 r->move_to_old(); 2814 _old_set->add(r); 2815 } 2816 _total_used += r->used(); 2817 } 2818 2819 return false; 2820 } 2821 2822 size_t total_used() { 2823 return _total_used; 2824 } 2825 }; 2826 2827 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) { 2828 assert_at_safepoint_on_vm_thread(); 2829 2830 if (!free_list_only) { 2831 _eden.clear(); 2832 _survivor.clear(); 2833 } 2834 2835 RebuildRegionSetsClosure cl(free_list_only, 2836 &_old_set, &_humongous_set, 2837 &_hrm); 2838 heap_region_iterate(&cl); 2839 2840 if (!free_list_only) { 2841 set_used(cl.total_used()); 2842 } 2843 assert_used_and_recalculate_used_equal(this); 2844 } 2845 2846 // Methods for the mutator alloc region 2847 2848 G1HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size, 2849 uint node_index) { 2850 assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */); 2851 bool should_allocate = policy()->should_allocate_mutator_region(); 2852 if (should_allocate) { 2853 G1HeapRegion* new_alloc_region = new_region(word_size, 2854 HeapRegionType::Eden, 2855 false /* do_expand */, 2856 node_index); 2857 if (new_alloc_region != nullptr) { 2858 set_region_short_lived_locked(new_alloc_region); 2859 G1HeapRegionPrinter::alloc(new_alloc_region); 2860 _policy->remset_tracker()->update_at_allocate(new_alloc_region); 2861 return new_alloc_region; 2862 } 2863 } 2864 return nullptr; 2865 } 2866 2867 void G1CollectedHeap::retire_mutator_alloc_region(G1HeapRegion* alloc_region, 2868 size_t allocated_bytes) { 2869 assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */); 2870 assert(alloc_region->is_eden(), "all mutator alloc regions should be eden"); 2871 2872 collection_set()->add_eden_region(alloc_region); 2873 increase_used(allocated_bytes); 2874 _eden.add_used_bytes(allocated_bytes); 2875 G1HeapRegionPrinter::retire(alloc_region); 2876 2877 // We update the eden sizes here, when the region is retired, 2878 // instead of when it's allocated, since this is the point that its 2879 // used space has been recorded in _summary_bytes_used. 2880 monitoring_support()->update_eden_size(); 2881 } 2882 2883 // Methods for the GC alloc regions 2884 2885 bool G1CollectedHeap::has_more_regions(G1HeapRegionAttr dest) { 2886 if (dest.is_old()) { 2887 return true; 2888 } else { 2889 return survivor_regions_count() < policy()->max_survivor_regions(); 2890 } 2891 } 2892 2893 G1HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, G1HeapRegionAttr dest, uint node_index) { 2894 assert(FreeList_lock->owned_by_self(), "pre-condition"); 2895 2896 if (!has_more_regions(dest)) { 2897 return nullptr; 2898 } 2899 2900 HeapRegionType type; 2901 if (dest.is_young()) { 2902 type = HeapRegionType::Survivor; 2903 } else { 2904 type = HeapRegionType::Old; 2905 } 2906 2907 G1HeapRegion* new_alloc_region = new_region(word_size, 2908 type, 2909 true /* do_expand */, 2910 node_index); 2911 2912 if (new_alloc_region != nullptr) { 2913 if (type.is_survivor()) { 2914 new_alloc_region->set_survivor(); 2915 _survivor.add(new_alloc_region); 2916 register_new_survivor_region_with_region_attr(new_alloc_region); 2917 } else { 2918 new_alloc_region->set_old(); 2919 } 2920 _policy->remset_tracker()->update_at_allocate(new_alloc_region); 2921 register_region_with_region_attr(new_alloc_region); 2922 G1HeapRegionPrinter::alloc(new_alloc_region); 2923 return new_alloc_region; 2924 } 2925 return nullptr; 2926 } 2927 2928 void G1CollectedHeap::retire_gc_alloc_region(G1HeapRegion* alloc_region, 2929 size_t allocated_bytes, 2930 G1HeapRegionAttr dest) { 2931 _bytes_used_during_gc += allocated_bytes; 2932 if (dest.is_old()) { 2933 old_set_add(alloc_region); 2934 } else { 2935 assert(dest.is_young(), "Retiring alloc region should be young (%d)", dest.type()); 2936 _survivor.add_used_bytes(allocated_bytes); 2937 } 2938 2939 bool const during_im = collector_state()->in_concurrent_start_gc(); 2940 if (during_im && allocated_bytes > 0) { 2941 _cm->add_root_region(alloc_region); 2942 } 2943 G1HeapRegionPrinter::retire(alloc_region); 2944 } 2945 2946 G1HeapRegion* G1CollectedHeap::alloc_highest_free_region() { 2947 bool expanded = false; 2948 uint index = _hrm.find_highest_free(&expanded); 2949 2950 if (index != G1_NO_HRM_INDEX) { 2951 if (expanded) { 2952 log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B", 2953 G1HeapRegion::GrainWords * HeapWordSize); 2954 } 2955 return _hrm.allocate_free_regions_starting_at(index, 1); 2956 } 2957 return nullptr; 2958 } 2959 2960 void G1CollectedHeap::mark_evac_failure_object(uint worker_id, const oop obj, size_t obj_size) const { 2961 assert(!_cm->is_marked_in_bitmap(obj), "must be"); 2962 2963 _cm->raw_mark_in_bitmap(obj); 2964 } 2965 2966 // Optimized nmethod scanning 2967 class RegisterNMethodOopClosure: public OopClosure { 2968 G1CollectedHeap* _g1h; 2969 nmethod* _nm; 2970 2971 public: 2972 RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) : 2973 _g1h(g1h), _nm(nm) {} 2974 2975 void do_oop(oop* p) { 2976 oop heap_oop = RawAccess<>::oop_load(p); 2977 if (!CompressedOops::is_null(heap_oop)) { 2978 oop obj = CompressedOops::decode_not_null(heap_oop); 2979 G1HeapRegion* hr = _g1h->heap_region_containing(obj); 2980 assert(!hr->is_continues_humongous(), 2981 "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT 2982 " starting at " HR_FORMAT, 2983 p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())); 2984 2985 hr->add_code_root(_nm); 2986 } 2987 } 2988 2989 void do_oop(narrowOop* p) { ShouldNotReachHere(); } 2990 }; 2991 2992 void G1CollectedHeap::register_nmethod(nmethod* nm) { 2993 guarantee(nm != nullptr, "sanity"); 2994 RegisterNMethodOopClosure reg_cl(this, nm); 2995 nm->oops_do(®_cl); 2996 } 2997 2998 void G1CollectedHeap::unregister_nmethod(nmethod* nm) { 2999 // We always unregister nmethods in bulk during code unloading only. 3000 ShouldNotReachHere(); 3001 } 3002 3003 void G1CollectedHeap::update_used_after_gc(bool evacuation_failed) { 3004 if (evacuation_failed) { 3005 set_used(recalculate_used()); 3006 } else { 3007 // The "used" of the collection set have already been subtracted 3008 // when they were freed. Add in the bytes used. 3009 increase_used(_bytes_used_during_gc); 3010 } 3011 } 3012 3013 class RebuildCodeRootClosure: public NMethodClosure { 3014 G1CollectedHeap* _g1h; 3015 3016 public: 3017 RebuildCodeRootClosure(G1CollectedHeap* g1h) : 3018 _g1h(g1h) {} 3019 3020 void do_nmethod(nmethod* nm) { 3021 assert(nm != nullptr, "Sanity"); 3022 _g1h->register_nmethod(nm); 3023 } 3024 }; 3025 3026 void G1CollectedHeap::rebuild_code_roots() { 3027 RebuildCodeRootClosure nmethod_cl(this); 3028 CodeCache::nmethods_do(&nmethod_cl); 3029 } 3030 3031 void G1CollectedHeap::initialize_serviceability() { 3032 _monitoring_support->initialize_serviceability(); 3033 } 3034 3035 MemoryUsage G1CollectedHeap::memory_usage() { 3036 return _monitoring_support->memory_usage(); 3037 } 3038 3039 GrowableArray<GCMemoryManager*> G1CollectedHeap::memory_managers() { 3040 return _monitoring_support->memory_managers(); 3041 } 3042 3043 GrowableArray<MemoryPool*> G1CollectedHeap::memory_pools() { 3044 return _monitoring_support->memory_pools(); 3045 } 3046 3047 void G1CollectedHeap::fill_with_dummy_object(HeapWord* start, HeapWord* end, bool zap) { 3048 G1HeapRegion* region = heap_region_containing(start); 3049 region->fill_with_dummy_object(start, pointer_delta(end, start), zap); 3050 } 3051 3052 void G1CollectedHeap::start_codecache_marking_cycle_if_inactive(bool concurrent_mark_start) { 3053 // We can reach here with an active code cache marking cycle either because the 3054 // previous G1 concurrent marking cycle was undone (if heap occupancy after the 3055 // concurrent start young collection was below the threshold) or aborted. See 3056 // CodeCache::on_gc_marking_cycle_finish() why this is. We must not start a new code 3057 // cache cycle then. If we are about to start a new g1 concurrent marking cycle we 3058 // still have to arm all nmethod entry barriers. They are needed for adding oop 3059 // constants to the SATB snapshot. Full GC does not need nmethods to be armed. 3060 if (!CodeCache::is_gc_marking_cycle_active()) { 3061 CodeCache::on_gc_marking_cycle_start(); 3062 } 3063 if (concurrent_mark_start) { 3064 CodeCache::arm_all_nmethods(); 3065 } 3066 } 3067 3068 void G1CollectedHeap::finish_codecache_marking_cycle() { 3069 CodeCache::on_gc_marking_cycle_finish(); 3070 CodeCache::arm_all_nmethods(); 3071 }