1 /*
   2  * Copyright (c) 2001, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "classfile/classLoaderDataGraph.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "compiler/oopMap.hpp"
  30 #include "gc/g1/g1Allocator.inline.hpp"
  31 #include "gc/g1/g1Arguments.hpp"
  32 #include "gc/g1/g1BarrierSet.hpp"
  33 #include "gc/g1/g1BatchedTask.hpp"
  34 #include "gc/g1/g1CollectedHeap.inline.hpp"
  35 #include "gc/g1/g1CollectionSet.hpp"
  36 #include "gc/g1/g1CollectionSetCandidates.hpp"
  37 #include "gc/g1/g1CollectorState.hpp"
  38 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
  39 #include "gc/g1/g1ConcurrentRefine.hpp"
  40 #include "gc/g1/g1ConcurrentRefineThread.hpp"
  41 #include "gc/g1/g1EvacStats.inline.hpp"
  42 #include "gc/g1/g1FullCollector.hpp"
  43 #include "gc/g1/g1GCCounters.hpp"
  44 #include "gc/g1/g1GCParPhaseTimesTracker.hpp"
  45 #include "gc/g1/g1GCPauseType.hpp"
  46 #include "gc/g1/g1GCPhaseTimes.hpp"
  47 #include "gc/g1/g1HeapRegion.inline.hpp"
  48 #include "gc/g1/g1HeapRegionPrinter.hpp"
  49 #include "gc/g1/g1HeapRegionRemSet.inline.hpp"
  50 #include "gc/g1/g1HeapRegionSet.inline.hpp"
  51 #include "gc/g1/g1HeapSizingPolicy.hpp"
  52 #include "gc/g1/g1HeapTransition.hpp"
  53 #include "gc/g1/g1HeapVerifier.hpp"
  54 #include "gc/g1/g1InitLogger.hpp"
  55 #include "gc/g1/g1MemoryPool.hpp"
  56 #include "gc/g1/g1MonotonicArenaFreeMemoryTask.hpp"
  57 #include "gc/g1/g1OopClosures.inline.hpp"
  58 #include "gc/g1/g1ParallelCleaning.hpp"
  59 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  60 #include "gc/g1/g1PeriodicGCTask.hpp"
  61 #include "gc/g1/g1Policy.hpp"
  62 #include "gc/g1/g1RegionPinCache.inline.hpp"
  63 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  64 #include "gc/g1/g1RemSet.hpp"
  65 #include "gc/g1/g1ReviseYoungLengthTask.hpp"
  66 #include "gc/g1/g1RootClosures.hpp"
  67 #include "gc/g1/g1SATBMarkQueueSet.hpp"
  68 #include "gc/g1/g1ServiceThread.hpp"
  69 #include "gc/g1/g1ThreadLocalData.hpp"
  70 #include "gc/g1/g1Trace.hpp"
  71 #include "gc/g1/g1UncommitRegionTask.hpp"
  72 #include "gc/g1/g1VMOperations.hpp"
  73 #include "gc/g1/g1YoungCollector.hpp"
  74 #include "gc/g1/g1YoungGCAllocationFailureInjector.hpp"
  75 #include "gc/shared/barrierSetNMethod.hpp"
  76 #include "gc/shared/classUnloadingContext.hpp"
  77 #include "gc/shared/concurrentGCBreakpoints.hpp"
  78 #include "gc/shared/fullGCForwarding.inline.hpp"
  79 #include "gc/shared/gcBehaviours.hpp"
  80 #include "gc/shared/gcHeapSummary.hpp"
  81 #include "gc/shared/gcId.hpp"
  82 #include "gc/shared/gcTimer.hpp"
  83 #include "gc/shared/gcTraceTime.inline.hpp"
  84 #include "gc/shared/isGCActiveMark.hpp"
  85 #include "gc/shared/locationPrinter.inline.hpp"
  86 #include "gc/shared/oopStorageParState.hpp"
  87 #include "gc/shared/partialArrayState.hpp"
  88 #include "gc/shared/referenceProcessor.inline.hpp"
  89 #include "gc/shared/suspendibleThreadSet.hpp"
  90 #include "gc/shared/taskqueue.inline.hpp"
  91 #include "gc/shared/taskTerminator.hpp"
  92 #include "gc/shared/tlab_globals.hpp"
  93 #include "gc/shared/weakProcessor.inline.hpp"
  94 #include "gc/shared/workerPolicy.hpp"
  95 #include "logging/log.hpp"
  96 #include "memory/allocation.hpp"
  97 #include "memory/heapInspection.hpp"
  98 #include "memory/iterator.hpp"
  99 #include "memory/memoryReserver.hpp"
 100 #include "memory/metaspaceUtils.hpp"
 101 #include "memory/resourceArea.hpp"
 102 #include "memory/universe.hpp"
 103 #include "oops/access.inline.hpp"
 104 #include "oops/compressedOops.inline.hpp"
 105 #include "oops/oop.inline.hpp"
 106 #include "runtime/atomicAccess.hpp"
 107 #include "runtime/cpuTimeCounters.hpp"
 108 #include "runtime/handles.inline.hpp"
 109 #include "runtime/init.hpp"
 110 #include "runtime/java.hpp"
 111 #include "runtime/orderAccess.hpp"
 112 #include "runtime/threads.hpp"
 113 #include "runtime/threadSMR.hpp"
 114 #include "runtime/vmThread.hpp"
 115 #include "utilities/align.hpp"
 116 #include "utilities/autoRestore.hpp"
 117 #include "utilities/bitMap.inline.hpp"
 118 #include "utilities/globalDefinitions.hpp"
 119 #include "utilities/stack.inline.hpp"
 120 
 121 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
 122 
 123 // INVARIANTS/NOTES
 124 //
 125 // All allocation activity covered by the G1CollectedHeap interface is
 126 // serialized by acquiring the HeapLock.  This happens in mem_allocate
 127 // and allocate_new_tlab, which are the "entry" points to the
 128 // allocation code from the rest of the JVM.  (Note that this does not
 129 // apply to TLAB allocation, which is not part of this interface: it
 130 // is done by clients of this interface.)
 131 
 132 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 133   G1HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 134 }
 135 
 136 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 137   // The from card cache is not the memory that is actually committed. So we cannot
 138   // take advantage of the zero_filled parameter.
 139   reset_from_card_cache(start_idx, num_regions);
 140 }
 141 
 142 void G1CollectedHeap::run_batch_task(G1BatchedTask* cl) {
 143   uint num_workers = MAX2(1u, MIN2(cl->num_workers_estimate(), workers()->active_workers()));
 144   cl->set_max_workers(num_workers);
 145   workers()->run_task(cl, num_workers);
 146 }
 147 
 148 uint G1CollectedHeap::get_chunks_per_region_for_scan() {
 149   uint log_region_size = G1HeapRegion::LogOfHRGrainBytes;
 150   // Limit the expected input values to current known possible values of the
 151   // (log) region size. Adjust as necessary after testing if changing the permissible
 152   // values for region size.
 153   assert(log_region_size >= 20 && log_region_size <= 29,
 154          "expected value in [20,29], but got %u", log_region_size);
 155   return 1u << (log_region_size / 2 - 4);
 156 }
 157 
 158 uint G1CollectedHeap::get_chunks_per_region_for_merge() {
 159   uint log_region_size = G1HeapRegion::LogOfHRGrainBytes;
 160   // Limit the expected input values to current known possible values of the
 161   // (log) region size. Adjust as necessary after testing if changing the permissible
 162   // values for region size.
 163   assert(log_region_size >= 20 && log_region_size <= 29,
 164          "expected value in [20,29], but got %u", log_region_size);
 165 
 166   uint half_log_region_size = (log_region_size + 1) / 2;
 167   return 1 << (half_log_region_size - 9);
 168 }
 169 
 170 G1HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
 171                                                MemRegion mr) {
 172   return new G1HeapRegion(hrs_index, bot(), mr, &_card_set_config);
 173 }
 174 
 175 // Private methods.
 176 
 177 G1HeapRegion* G1CollectedHeap::new_region(size_t word_size,
 178                                           G1HeapRegionType type,
 179                                           bool do_expand,
 180                                           uint node_index) {
 181   assert(!is_humongous(word_size) || word_size <= G1HeapRegion::GrainWords,
 182          "the only time we use this to allocate a humongous region is "
 183          "when we are allocating a single humongous region");
 184 
 185   G1HeapRegion* res = _hrm.allocate_free_region(type, node_index);
 186 
 187   if (res == nullptr && do_expand) {
 188     // There are two situations where do_expand is set to true:
 189     //  - for mutator regions during initialization
 190     //  - for GC alloc regions during a safepoint
 191     // Make sure we only reach here before initialization is complete
 192     // or during a safepoint.
 193     assert(!is_init_completed() ||
 194            SafepointSynchronize::is_at_safepoint() , "invariant");
 195 
 196     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: %zuB",
 197                               word_size * HeapWordSize);
 198 
 199     assert(word_size * HeapWordSize < G1HeapRegion::GrainBytes,
 200            "This kind of expansion should never be more than one region. Size: %zu",
 201            word_size * HeapWordSize);
 202     if (expand_single_region(node_index)) {
 203       // Given that expand_single_region() succeeded in expanding the heap, and we
 204       // always expand the heap by an amount aligned to the heap
 205       // region size, the free list should in theory not be empty.
 206       // In either case allocate_free_region() will check for null.
 207       res = _hrm.allocate_free_region(type, node_index);
 208     }
 209   }
 210   return res;
 211 }
 212 
 213 void G1CollectedHeap::set_humongous_metadata(G1HeapRegion* first_hr,
 214                                              uint num_regions,
 215                                              size_t word_size,
 216                                              bool update_remsets) {
 217   // Calculate the new top of the humongous object.
 218   HeapWord* obj_top = first_hr->bottom() + word_size;
 219   // The word size sum of all the regions used
 220   size_t word_size_sum = num_regions * G1HeapRegion::GrainWords;
 221   assert(word_size <= word_size_sum, "sanity");
 222 
 223   // How many words memory we "waste" which cannot hold a filler object.
 224   size_t words_not_fillable = 0;
 225 
 226   // Pad out the unused tail of the last region with filler
 227   // objects, for improved usage accounting.
 228 
 229   // How many words can we use for filler objects.
 230   size_t words_fillable = word_size_sum - word_size;
 231 
 232   if (words_fillable >= G1CollectedHeap::min_fill_size()) {
 233     G1CollectedHeap::fill_with_objects(obj_top, words_fillable);
 234   } else {
 235     // We have space to fill, but we cannot fit an object there.
 236     words_not_fillable = words_fillable;
 237     words_fillable = 0;
 238   }
 239 
 240   // We will set up the first region as "starts humongous". This
 241   // will also update the BOT covering all the regions to reflect
 242   // that there is a single object that starts at the bottom of the
 243   // first region.
 244   first_hr->hr_clear(false /* clear_space */);
 245   first_hr->set_starts_humongous(obj_top, words_fillable);
 246 
 247   if (update_remsets) {
 248     _policy->remset_tracker()->update_at_allocate(first_hr);
 249   }
 250 
 251   // Indices of first and last regions in the series.
 252   uint first = first_hr->hrm_index();
 253   uint last = first + num_regions - 1;
 254 
 255   G1HeapRegion* hr = nullptr;
 256   for (uint i = first + 1; i <= last; ++i) {
 257     hr = region_at(i);
 258     hr->hr_clear(false /* clear_space */);
 259     hr->set_continues_humongous(first_hr);
 260     if (update_remsets) {
 261       _policy->remset_tracker()->update_at_allocate(hr);
 262     }
 263   }
 264 
 265   // Up to this point no concurrent thread would have been able to
 266   // do any scanning on any region in this series. All the top
 267   // fields still point to bottom, so the intersection between
 268   // [bottom,top] and [card_start,card_end] will be empty. Before we
 269   // update the top fields, we'll do a storestore to make sure that
 270   // no thread sees the update to top before the zeroing of the
 271   // object header and the BOT initialization.
 272   OrderAccess::storestore();
 273 
 274   // Now, we will update the top fields of the "continues humongous"
 275   // regions except the last one.
 276   for (uint i = first; i < last; ++i) {
 277     hr = region_at(i);
 278     hr->set_top(hr->end());
 279   }
 280 
 281   hr = region_at(last);
 282   // If we cannot fit a filler object, we must set top to the end
 283   // of the humongous object, otherwise we cannot iterate the heap
 284   // and the BOT will not be complete.
 285   hr->set_top(hr->end() - words_not_fillable);
 286 
 287   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 288          "obj_top should be in last region");
 289 
 290   assert(words_not_fillable == 0 ||
 291          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 292          "Miscalculation in humongous allocation");
 293 }
 294 
 295 HeapWord*
 296 G1CollectedHeap::humongous_obj_allocate_initialize_regions(G1HeapRegion* first_hr,
 297                                                            uint num_regions,
 298                                                            size_t word_size) {
 299   assert(first_hr != nullptr, "pre-condition");
 300   assert(is_humongous(word_size), "word_size should be humongous");
 301   assert(num_regions * G1HeapRegion::GrainWords >= word_size, "pre-condition");
 302 
 303   // Index of last region in the series.
 304   uint first = first_hr->hrm_index();
 305   uint last = first + num_regions - 1;
 306 
 307   // We need to initialize the region(s) we just discovered. This is
 308   // a bit tricky given that it can happen concurrently with
 309   // refinement threads refining cards on these regions and
 310   // potentially wanting to refine the BOT as they are scanning
 311   // those cards (this can happen shortly after a cleanup; see CR
 312   // 6991377). So we have to set up the region(s) carefully and in
 313   // a specific order.
 314 
 315   // The passed in hr will be the "starts humongous" region. The header
 316   // of the new object will be placed at the bottom of this region.
 317   HeapWord* new_obj = first_hr->bottom();
 318 
 319   // First, we need to zero the header of the space that we will be
 320   // allocating. When we update top further down, some refinement
 321   // threads might try to scan the region. By zeroing the header we
 322   // ensure that any thread that will try to scan the region will
 323   // come across the zero klass word and bail out.
 324   //
 325   // NOTE: It would not have been correct to have used
 326   // CollectedHeap::fill_with_object() and make the space look like
 327   // an int array. The thread that is doing the allocation will
 328   // later update the object header to a potentially different array
 329   // type and, for a very short period of time, the klass and length
 330   // fields will be inconsistent. This could cause a refinement
 331   // thread to calculate the object size incorrectly.
 332   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 333 
 334   // Next, update the metadata for the regions.
 335   set_humongous_metadata(first_hr, num_regions, word_size, true);
 336 
 337   G1HeapRegion* last_hr = region_at(last);
 338   size_t used = byte_size(first_hr->bottom(), last_hr->top());
 339 
 340   increase_used(used);
 341 
 342   for (uint i = first; i <= last; ++i) {
 343     G1HeapRegion *hr = region_at(i);
 344     _humongous_set.add(hr);
 345     G1HeapRegionPrinter::alloc(hr);
 346   }
 347 
 348   return new_obj;
 349 }
 350 
 351 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 352   assert(is_humongous(word_size), "Object of size %zu must be humongous here", word_size);
 353   return align_up(word_size, G1HeapRegion::GrainWords) / G1HeapRegion::GrainWords;
 354 }
 355 
 356 size_t G1CollectedHeap::allocation_used_bytes(size_t allocation_word_size) {
 357   if (is_humongous(allocation_word_size)) {
 358     return humongous_obj_size_in_regions(allocation_word_size) * G1HeapRegion::GrainBytes;
 359   } else {
 360     return allocation_word_size * HeapWordSize;
 361   }
 362 }
 363 
 364 // If could fit into free regions w/o expansion, try.
 365 // Otherwise, if can expand, do so.
 366 // Otherwise, if using ex regions might help, try with ex given back.
 367 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 368   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 369 
 370   _verifier->verify_region_sets_optional();
 371 
 372   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 373   if (obj_regions > num_available_regions()) {
 374     // Can't satisfy this allocation; early-return.
 375     return nullptr;
 376   }
 377 
 378   // Policy: First try to allocate a humongous object in the free list.
 379   G1HeapRegion* humongous_start = _hrm.allocate_humongous(obj_regions);
 380   if (humongous_start == nullptr) {
 381     // Policy: We could not find enough regions for the humongous object in the
 382     // free list. Look through the heap to find a mix of free and uncommitted regions.
 383     // If so, expand the heap and allocate the humongous object.
 384     humongous_start = _hrm.expand_and_allocate_humongous(obj_regions);
 385     if (humongous_start != nullptr) {
 386       // We managed to find a region by expanding the heap.
 387       log_debug(gc, ergo, heap)("Heap expansion (humongous allocation request). Allocation request: %zuB",
 388                                 word_size * HeapWordSize);
 389       policy()->record_new_heap_size(num_committed_regions());
 390     } else {
 391       // Policy: Potentially trigger a defragmentation GC.
 392     }
 393   }
 394 
 395   HeapWord* result = nullptr;
 396   if (humongous_start != nullptr) {
 397     result = humongous_obj_allocate_initialize_regions(humongous_start, obj_regions, word_size);
 398     assert(result != nullptr, "it should always return a valid result");
 399 
 400     // A successful humongous object allocation changes the used space
 401     // information of the old generation so we need to recalculate the
 402     // sizes and update the jstat counters here.
 403     monitoring_support()->update_sizes();
 404   }
 405 
 406   _verifier->verify_region_sets_optional();
 407 
 408   return result;
 409 }
 410 
 411 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t min_size,
 412                                              size_t requested_size,
 413                                              size_t* actual_size) {
 414   assert_heap_not_locked_and_not_at_safepoint();
 415   assert(!is_humongous(requested_size), "we do not allow humongous TLABs");
 416 
 417   // Do not allow a GC because we are allocating a new TLAB to avoid an issue
 418   // with UseGCOverheadLimit: although this GC would return null if the overhead
 419   // limit would be exceeded, but it would likely free at least some space.
 420   // So the subsequent outside-TLAB allocation could be successful anyway and
 421   // the indication that the overhead limit had been exceeded swallowed.
 422   return attempt_allocation(min_size, requested_size, actual_size, false /* allow_gc */);
 423 }
 424 
 425 HeapWord* G1CollectedHeap::mem_allocate(size_t word_size) {
 426   assert_heap_not_locked_and_not_at_safepoint();
 427 
 428   if (is_humongous(word_size)) {
 429     return attempt_allocation_humongous(word_size);
 430   }
 431   size_t dummy = 0;
 432   return attempt_allocation(word_size, word_size, &dummy, true /* allow_gc */);
 433 }
 434 
 435 HeapWord* G1CollectedHeap::attempt_allocation_slow(uint node_index, size_t word_size, bool allow_gc) {
 436   ResourceMark rm; // For retrieving the thread names in log messages.
 437 
 438   // Make sure you read the note in attempt_allocation_humongous().
 439 
 440   assert_heap_not_locked_and_not_at_safepoint();
 441   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 442          "be called for humongous allocation requests");
 443 
 444   // We should only get here after the first-level allocation attempt
 445   // (attempt_allocation()) failed to allocate.
 446 
 447   // We will loop until a) we manage to successfully perform the allocation or b)
 448   // successfully schedule a collection which fails to perform the allocation.
 449   // Case b) is the only case when we'll return null.
 450   HeapWord* result = nullptr;
 451   for (uint try_count = 1; /* we'll return */; try_count++) {
 452     uint gc_count_before;
 453 
 454     {
 455       MutexLocker x(Heap_lock);
 456 
 457       // Now that we have the lock, we first retry the allocation in case another
 458       // thread changed the region while we were waiting to acquire the lock.
 459       result = _allocator->attempt_allocation_locked(node_index, word_size);
 460       if (result != nullptr) {
 461         return result;
 462       } else if (!allow_gc) {
 463         return nullptr;
 464       }
 465 
 466       // Read the GC count while still holding the Heap_lock.
 467       gc_count_before = total_collections();
 468     }
 469 
 470     bool succeeded;
 471     result = do_collection_pause(word_size, gc_count_before, &succeeded, GCCause::_g1_inc_collection_pause);
 472     if (succeeded) {
 473       log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 474                            Thread::current()->name(), p2i(result));
 475       return result;
 476     }
 477 
 478     log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating %zu words",
 479                          Thread::current()->name(), word_size);
 480 
 481     // Has the gc overhead limit been reached in the meantime? If so, this mutator
 482     // should receive null even when unsuccessfully scheduling a collection as well
 483     // for global consistency.
 484     if (gc_overhead_limit_exceeded()) {
 485       return nullptr;
 486     }
 487 
 488     // We can reach here if we were unsuccessful in scheduling a collection (because
 489     // another thread beat us to it). In this case immediately retry the allocation
 490     // attempt because another thread successfully performed a collection and possibly
 491     // reclaimed enough space. The first attempt (without holding the Heap_lock) is
 492     // here and the follow-on attempt will be at the start of the next loop
 493     // iteration (after taking the Heap_lock).
 494     size_t dummy = 0;
 495     result = _allocator->attempt_allocation(node_index, word_size, word_size, &dummy);
 496     if (result != nullptr) {
 497       return result;
 498     }
 499 
 500     // Give a warning if we seem to be looping forever.
 501     if ((QueuedAllocationWarningCount > 0) &&
 502         (try_count % QueuedAllocationWarningCount == 0)) {
 503       log_warning(gc, alloc)("%s:  Retried allocation %u times for %zu words",
 504                              Thread::current()->name(), try_count, word_size);
 505     }
 506   }
 507 
 508   ShouldNotReachHere();
 509   return nullptr;
 510 }
 511 
 512 template <typename Func>
 513 void G1CollectedHeap::iterate_regions_in_range(MemRegion range, const Func& func) {
 514   // Mark each G1 region touched by the range as old, add it to
 515   // the old set, and set top.
 516   G1HeapRegion* curr_region = _hrm.addr_to_region(range.start());
 517   G1HeapRegion* end_region = _hrm.addr_to_region(range.last());
 518 
 519   while (curr_region != nullptr) {
 520     bool is_last = curr_region == end_region;
 521     G1HeapRegion* next_region = is_last ? nullptr : _hrm.next_region_in_heap(curr_region);
 522 
 523     func(curr_region, is_last);
 524 
 525     curr_region = next_region;
 526   }
 527 }
 528 
 529 HeapWord* G1CollectedHeap::alloc_archive_region(size_t word_size, HeapWord* preferred_addr) {
 530   assert(!is_init_completed(), "Expect to be called at JVM init time");
 531   MutexLocker x(Heap_lock);
 532 
 533   MemRegion reserved = _hrm.reserved();
 534 
 535   if (reserved.word_size() <= word_size) {
 536     log_info(gc, heap)("Unable to allocate regions as archive heap is too large; size requested = %zu"
 537                        " bytes, heap = %zu bytes", word_size * HeapWordSize, reserved.byte_size());
 538     return nullptr;
 539   }
 540 
 541   // Temporarily disable pretouching of heap pages. This interface is used
 542   // when mmap'ing archived heap data in, so pre-touching is wasted.
 543   FlagSetting fs(AlwaysPreTouch, false);
 544 
 545   size_t commits = 0;
 546   // Attempt to allocate towards the end of the heap.
 547   HeapWord* start_addr = reserved.end() - align_up(word_size, G1HeapRegion::GrainWords);
 548   MemRegion range = MemRegion(start_addr, word_size);
 549   HeapWord* last_address = range.last();
 550   if (!_hrm.allocate_containing_regions(range, &commits, workers())) {
 551     return nullptr;
 552   }
 553   increase_used(word_size * HeapWordSize);
 554   if (commits != 0) {
 555     log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: %zuB",
 556                               G1HeapRegion::GrainWords * HeapWordSize * commits);
 557   }
 558 
 559   // Mark each G1 region touched by the range as old, add it to
 560   // the old set, and set top.
 561   auto set_region_to_old = [&] (G1HeapRegion* r, bool is_last) {
 562     assert(r->is_empty(), "Region already in use (%u)", r->hrm_index());
 563 
 564     HeapWord* top = is_last ? last_address + 1 : r->end();
 565     r->set_top(top);
 566 
 567     r->set_old();
 568     G1HeapRegionPrinter::alloc(r);
 569     _old_set.add(r);
 570   };
 571 
 572   iterate_regions_in_range(range, set_region_to_old);
 573   return start_addr;
 574 }
 575 
 576 void G1CollectedHeap::populate_archive_regions_bot(MemRegion range) {
 577   assert(!is_init_completed(), "Expect to be called at JVM init time");
 578 
 579   iterate_regions_in_range(range,
 580                            [&] (G1HeapRegion* r, bool is_last) {
 581                              r->update_bot();
 582                            });
 583 }
 584 
 585 void G1CollectedHeap::dealloc_archive_regions(MemRegion range) {
 586   assert(!is_init_completed(), "Expect to be called at JVM init time");
 587   MemRegion reserved = _hrm.reserved();
 588   size_t size_used = 0;
 589 
 590   // Free the G1 regions that are within the specified range.
 591   MutexLocker x(Heap_lock);
 592   HeapWord* start_address = range.start();
 593   HeapWord* last_address = range.last();
 594 
 595   assert(reserved.contains(start_address) && reserved.contains(last_address),
 596          "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 597          p2i(start_address), p2i(last_address));
 598   size_used += range.byte_size();
 599 
 600   uint max_shrink_count = 0;
 601   if (capacity() > MinHeapSize) {
 602     size_t max_shrink_bytes = capacity() - MinHeapSize;
 603     max_shrink_count = (uint)(max_shrink_bytes / G1HeapRegion::GrainBytes);
 604   }
 605 
 606   uint shrink_count = 0;
 607   // Free, empty and uncommit regions with CDS archive content.
 608   auto dealloc_archive_region = [&] (G1HeapRegion* r, bool is_last) {
 609     guarantee(r->is_old(), "Expected old region at index %u", r->hrm_index());
 610     _old_set.remove(r);
 611     r->set_free();
 612     r->set_top(r->bottom());
 613     if (shrink_count < max_shrink_count) {
 614       _hrm.shrink_at(r->hrm_index(), 1);
 615       shrink_count++;
 616     } else {
 617       _hrm.insert_into_free_list(r);
 618     }
 619   };
 620 
 621   iterate_regions_in_range(range, dealloc_archive_region);
 622 
 623   if (shrink_count != 0) {
 624     log_debug(gc, ergo, heap)("Attempt heap shrinking (CDS archive regions). Total size: %zuB (%u Regions)",
 625                               G1HeapRegion::GrainWords * HeapWordSize * shrink_count, shrink_count);
 626     // Explicit uncommit.
 627     uncommit_regions(shrink_count);
 628   }
 629   decrease_used(size_used);
 630 }
 631 
 632 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t min_word_size,
 633                                                      size_t desired_word_size,
 634                                                      size_t* actual_word_size,
 635                                                      bool allow_gc) {
 636   assert_heap_not_locked_and_not_at_safepoint();
 637   assert(!is_humongous(desired_word_size), "attempt_allocation() should not "
 638          "be called for humongous allocation requests");
 639 
 640   // Fix NUMA node association for the duration of this allocation
 641   const uint node_index = _allocator->current_node_index();
 642 
 643   HeapWord* result = _allocator->attempt_allocation(node_index, min_word_size, desired_word_size, actual_word_size);
 644 
 645   if (result == nullptr) {
 646     *actual_word_size = desired_word_size;
 647     result = attempt_allocation_slow(node_index, desired_word_size, allow_gc);
 648   }
 649 
 650   assert_heap_not_locked();
 651   if (result != nullptr) {
 652     assert(*actual_word_size != 0, "Actual size must have been set here");
 653   } else {
 654     *actual_word_size = 0;
 655   }
 656 
 657   return result;
 658 }
 659 
 660 // Helper for [try_]collect().
 661 static G1GCCounters collection_counters(G1CollectedHeap* g1h) {
 662   MutexLocker ml(Heap_lock);
 663   return G1GCCounters(g1h);
 664 }
 665 
 666 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size) {
 667   ResourceMark rm; // For retrieving the thread names in log messages.
 668 
 669   // The structure of this method has a lot of similarities to
 670   // attempt_allocation_slow(). The reason these two were not merged
 671   // into a single one is that such a method would require several "if
 672   // allocation is not humongous do this, otherwise do that"
 673   // conditional paths which would obscure its flow. In fact, an early
 674   // version of this code did use a unified method which was harder to
 675   // follow and, as a result, it had subtle bugs that were hard to
 676   // track down. So keeping these two methods separate allows each to
 677   // be more readable. It will be good to keep these two in sync as
 678   // much as possible.
 679 
 680   assert_heap_not_locked_and_not_at_safepoint();
 681   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 682          "should only be called for humongous allocations");
 683 
 684   // Humongous objects can exhaust the heap quickly, so we should check if we
 685   // need to start a marking cycle at each humongous object allocation. We do
 686   // the check before we do the actual allocation. The reason for doing it
 687   // before the allocation is that we avoid having to keep track of the newly
 688   // allocated memory while we do a GC.
 689   if (policy()->need_to_start_conc_mark("concurrent humongous allocation",
 690                                         word_size)) {
 691     try_collect(word_size, GCCause::_g1_humongous_allocation, collection_counters(this));
 692   }
 693 
 694   // We will loop until a) we manage to successfully perform the allocation or b)
 695   // successfully schedule a collection which fails to perform the allocation.
 696   // Case b) is the only case when we'll return null.
 697   HeapWord* result = nullptr;
 698   for (uint try_count = 1; /* we'll return */; try_count++) {
 699     uint gc_count_before;
 700 
 701     // The amount of bytes the humongous object will actually take.
 702     size_t humongous_byte_size = G1HeapRegion::align_up_to_region_byte_size(word_size * HeapWordSize);
 703 
 704     {
 705       MutexLocker x(Heap_lock);
 706 
 707       // Given that humongous objects are not allocated in young
 708       // regions, we'll first try to do the allocation without doing a
 709       // collection hoping that there's enough space in the heap.
 710       result = humongous_obj_allocate(word_size);
 711       if (result != nullptr) {
 712         policy()->old_gen_alloc_tracker()->
 713           add_allocated_humongous_bytes_since_last_gc(humongous_byte_size);
 714         return result;
 715       }
 716 
 717       // Read the GC count while still holding the Heap_lock.
 718       gc_count_before = total_collections();
 719     }
 720 
 721     bool succeeded;
 722     result = do_collection_pause(word_size, gc_count_before, &succeeded, GCCause::_g1_humongous_allocation);
 723     if (succeeded) {
 724       log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 725                            Thread::current()->name(), p2i(result));
 726       if (result != nullptr) {
 727         policy()->old_gen_alloc_tracker()->
 728           record_collection_pause_humongous_allocation(humongous_byte_size);
 729       }
 730       return result;
 731     }
 732 
 733     log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating %zu",
 734                          Thread::current()->name(), word_size);
 735 
 736     // Has the gc overhead limit been reached in the meantime? If so, this mutator
 737     // should receive null even when unsuccessfully scheduling a collection as well
 738     // for global consistency.
 739     if (gc_overhead_limit_exceeded()) {
 740       return nullptr;
 741     }
 742 
 743     // We can reach here if we were unsuccessful in scheduling a collection (because
 744     // another thread beat us to it).
 745     // Humongous object allocation always needs a lock, so we wait for the retry
 746     // in the next iteration of the loop, unlike for the regular iteration case.
 747     // Give a warning if we seem to be looping forever.
 748 
 749     if ((QueuedAllocationWarningCount > 0) &&
 750         (try_count % QueuedAllocationWarningCount == 0)) {
 751       log_warning(gc, alloc)("%s: Retried allocation %u times for %zu words",
 752                              Thread::current()->name(), try_count, word_size);
 753     }
 754   }
 755 
 756   ShouldNotReachHere();
 757   return nullptr;
 758 }
 759 
 760 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
 761                                                            bool expect_null_mutator_alloc_region) {
 762   assert_at_safepoint_on_vm_thread();
 763   assert(!_allocator->has_mutator_alloc_region() || !expect_null_mutator_alloc_region,
 764          "the current alloc region was unexpectedly found to be non-null");
 765 
 766   // Fix NUMA node association for the duration of this allocation
 767   const uint node_index = _allocator->current_node_index();
 768 
 769   if (!is_humongous(word_size)) {
 770     return _allocator->attempt_allocation_locked(node_index, word_size);
 771   } else {
 772     HeapWord* result = humongous_obj_allocate(word_size);
 773     if (result != nullptr &&
 774         // We just allocated the humongous object, so the given allocation size is 0.
 775         policy()->need_to_start_conc_mark("STW humongous allocation", 0 /* allocation_word_size */)) {
 776       collector_state()->set_initiate_conc_mark_if_possible(true);
 777     }
 778     return result;
 779   }
 780 
 781   ShouldNotReachHere();
 782 }
 783 
 784 class PostCompactionPrinterClosure: public G1HeapRegionClosure {
 785 public:
 786   bool do_heap_region(G1HeapRegion* hr) {
 787     assert(!hr->is_young(), "not expecting to find young regions");
 788     G1HeapRegionPrinter::post_compaction(hr);
 789     return false;
 790   }
 791 };
 792 
 793 void G1CollectedHeap::print_heap_after_full_collection() {
 794   // Post collection region logging.
 795   // We should do this after we potentially resize the heap so
 796   // that all the COMMIT / UNCOMMIT events are generated before
 797   // the compaction events.
 798   if (G1HeapRegionPrinter::is_active()) {
 799     PostCompactionPrinterClosure cl;
 800     heap_region_iterate(&cl);
 801   }
 802 }
 803 
 804 bool G1CollectedHeap::abort_concurrent_cycle() {
 805   // Disable discovery and empty the discovered lists
 806   // for the CM ref processor.
 807   _ref_processor_cm->disable_discovery();
 808   _ref_processor_cm->abandon_partial_discovery();
 809   _ref_processor_cm->verify_no_references_recorded();
 810 
 811   // Abandon current iterations of concurrent marking and concurrent
 812   // refinement, if any are in progress.
 813   return concurrent_mark()->concurrent_cycle_abort();
 814 }
 815 
 816 void G1CollectedHeap::prepare_heap_for_full_collection() {
 817   // Make sure we'll choose a new allocation region afterwards.
 818   _allocator->release_mutator_alloc_regions();
 819   _allocator->abandon_gc_alloc_regions();
 820 
 821   // We may have added regions to the current incremental collection
 822   // set between the last GC or pause and now. We need to clear the
 823   // incremental collection set and then start rebuilding it afresh
 824   // after this full GC.
 825   abandon_collection_set();
 826 
 827   _hrm.remove_all_free_regions();
 828 }
 829 
 830 void G1CollectedHeap::verify_before_full_collection() {
 831   assert_used_and_recalculate_used_equal(this);
 832   if (!VerifyBeforeGC) {
 833     return;
 834   }
 835   if (!G1HeapVerifier::should_verify(G1HeapVerifier::G1VerifyFull)) {
 836     return;
 837   }
 838   _verifier->verify_region_sets_optional();
 839   _verifier->verify_before_gc();
 840   _verifier->verify_bitmap_clear(true /* above_tams_only */);
 841 }
 842 
 843 void G1CollectedHeap::prepare_for_mutator_after_full_collection(size_t allocation_word_size) {
 844   // Prepare heap for normal collections.
 845   assert(num_free_regions() == 0, "we should not have added any free regions");
 846   rebuild_region_sets(false /* free_list_only */);
 847   abort_refinement();
 848   resize_heap_after_full_collection(allocation_word_size);
 849 
 850   // Rebuild the code root lists for each region
 851   rebuild_code_roots();
 852   finish_codecache_marking_cycle();
 853 
 854   start_new_collection_set();
 855   _allocator->init_mutator_alloc_regions();
 856 
 857   // Post collection state updates.
 858   MetaspaceGC::compute_new_size();
 859 }
 860 
 861 void G1CollectedHeap::abort_refinement() {
 862   G1ConcurrentRefineSweepState& sweep_state = concurrent_refine()->sweep_state();
 863   if (sweep_state.is_in_progress()) {
 864 
 865     if (!sweep_state.are_java_threads_synched()) {
 866       // Synchronize Java threads with global card table that has already been swapped.
 867       class SwapThreadCardTableClosure : public ThreadClosure {
 868       public:
 869 
 870         virtual void do_thread(Thread* t) {
 871           G1BarrierSet* bs = G1BarrierSet::g1_barrier_set();
 872           bs->update_card_table_base(t);
 873         }
 874       } cl;
 875       Threads::java_threads_do(&cl);
 876     }
 877 
 878     // Record any available refinement statistics.
 879     policy()->record_refinement_stats(sweep_state.stats());
 880     sweep_state.complete_work(false /* concurrent */, false /* print_log */);
 881   }
 882   sweep_state.reset_stats();
 883 }
 884 
 885 void G1CollectedHeap::verify_after_full_collection() {
 886   if (!VerifyAfterGC) {
 887     return;
 888   }
 889   if (!G1HeapVerifier::should_verify(G1HeapVerifier::G1VerifyFull)) {
 890     return;
 891   }
 892   _hrm.verify_optional();
 893   _verifier->verify_region_sets_optional();
 894   _verifier->verify_card_tables_clean(true /* both_card_tables */);
 895   _verifier->verify_after_gc();
 896   _verifier->verify_bitmap_clear(false /* above_tams_only */);
 897 
 898   // At this point there should be no regions in the
 899   // entire heap tagged as young.
 900   assert(check_young_list_empty(), "young list should be empty at this point");
 901 
 902   // Note: since we've just done a full GC, concurrent
 903   // marking is no longer active. Therefore we need not
 904   // re-enable reference discovery for the CM ref processor.
 905   // That will be done at the start of the next marking cycle.
 906   // We also know that the STW processor should no longer
 907   // discover any new references.
 908   assert(!_ref_processor_stw->discovery_enabled(), "Postcondition");
 909   assert(!_ref_processor_cm->discovery_enabled(), "Postcondition");
 910   _ref_processor_stw->verify_no_references_recorded();
 911   _ref_processor_cm->verify_no_references_recorded();
 912 }
 913 
 914 void G1CollectedHeap::do_full_collection(size_t allocation_word_size,
 915                                          bool clear_all_soft_refs,
 916                                          bool do_maximal_compaction) {
 917   assert_at_safepoint_on_vm_thread();
 918 
 919   G1FullGCMark gc_mark;
 920   GCTraceTime(Info, gc) tm("Pause Full", nullptr, gc_cause(), true);
 921   G1FullCollector collector(this, clear_all_soft_refs, do_maximal_compaction, gc_mark.tracer());
 922 
 923   collector.prepare_collection();
 924   collector.collect();
 925   collector.complete_collection(allocation_word_size);
 926 }
 927 
 928 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
 929   // Currently, there is no facility in the do_full_collection(bool) API to notify
 930   // the caller that the collection did not succeed (e.g., because it was locked
 931   // out by the GC locker). So, right now, we'll ignore the return value.
 932 
 933   do_full_collection(size_t(0) /* allocation_word_size */,
 934                      clear_all_soft_refs,
 935                      false /* do_maximal_compaction */);
 936 }
 937 
 938 void G1CollectedHeap::upgrade_to_full_collection() {
 939   GCCauseSetter compaction(this, GCCause::_g1_compaction_pause);
 940   log_info(gc, ergo)("Attempting full compaction clearing soft references");
 941   do_full_collection(size_t(0) /* allocation_word_size */,
 942                      true  /* clear_all_soft_refs */,
 943                      false /* do_maximal_compaction */);
 944 }
 945 
 946 
 947 void G1CollectedHeap::resize_heap(size_t resize_bytes, bool should_expand) {
 948   if (should_expand) {
 949     expand(resize_bytes, _workers);
 950   } else {
 951     shrink(resize_bytes);
 952     uncommit_regions_if_necessary();
 953   }
 954 }
 955 
 956 void G1CollectedHeap::resize_heap_after_full_collection(size_t allocation_word_size) {
 957   assert_at_safepoint_on_vm_thread();
 958 
 959   bool should_expand;
 960   size_t resize_bytes = _heap_sizing_policy->full_collection_resize_amount(should_expand, allocation_word_size);
 961 
 962   if (resize_bytes != 0) {
 963     resize_heap(resize_bytes, should_expand);
 964   }
 965 }
 966 
 967 void G1CollectedHeap::resize_heap_after_young_collection(size_t allocation_word_size) {
 968   Ticks start = Ticks::now();
 969 
 970   bool should_expand;
 971 
 972   size_t resize_bytes = _heap_sizing_policy->young_collection_resize_amount(should_expand, allocation_word_size);
 973 
 974   if (resize_bytes != 0) {
 975     resize_heap(resize_bytes, should_expand);
 976   }
 977 
 978   phase_times()->record_resize_heap_time((Ticks::now() - start).seconds() * 1000.0);
 979 }
 980 
 981 void G1CollectedHeap::update_gc_overhead_counter() {
 982   assert(SafepointSynchronize::is_at_safepoint(), "precondition");
 983 
 984   if (!UseGCOverheadLimit) {
 985     return;
 986   }
 987 
 988   bool gc_time_over_limit = (_policy->analytics()->long_term_gc_time_ratio() * 100) >= GCTimeLimit;
 989   double free_space_percent = percent_of(num_available_regions() * G1HeapRegion::GrainBytes, max_capacity());
 990   bool free_space_below_limit = free_space_percent < GCHeapFreeLimit;
 991 
 992   log_debug(gc)("GC Overhead Limit: GC Time %f Free Space %f Counter %zu",
 993                 (_policy->analytics()->long_term_gc_time_ratio() * 100),
 994                 free_space_percent,
 995                 _gc_overhead_counter);
 996 
 997   if (gc_time_over_limit && free_space_below_limit) {
 998     _gc_overhead_counter++;
 999   } else {
1000     _gc_overhead_counter = 0;
1001   }
1002 }
1003 
1004 bool G1CollectedHeap::gc_overhead_limit_exceeded() {
1005   return _gc_overhead_counter >= GCOverheadLimitThreshold;
1006 }
1007 
1008 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1009                                                             bool do_gc,
1010                                                             bool maximal_compaction,
1011                                                             bool expect_null_mutator_alloc_region) {
1012   // Skip allocation if GC overhead limit has been exceeded to let the mutator run
1013   // into an OOME. It can either exit "gracefully" or try to free up memory asap.
1014   // For the latter situation, keep running GCs. If the mutator frees up enough
1015   // memory quickly enough, the overhead(s) will go below the threshold(s) again
1016   // and the VM may continue running.
1017   // If we did not continue garbage collections, the (gc overhead) limit may decrease
1018   // enough by itself to not count as exceeding the limit any more, in the worst
1019   // case bouncing back-and-forth all the time.
1020   if (!gc_overhead_limit_exceeded()) {
1021     // Let's attempt the allocation first.
1022     HeapWord* result =
1023       attempt_allocation_at_safepoint(word_size,
1024                                       expect_null_mutator_alloc_region);
1025     if (result != nullptr) {
1026       return result;
1027     }
1028 
1029     // In a G1 heap, we're supposed to keep allocation from failing by
1030     // incremental pauses.  Therefore, at least for now, we'll favor
1031     // expansion over collection.  (This might change in the future if we can
1032     // do something smarter than full collection to satisfy a failed alloc.)
1033     result = expand_and_allocate(word_size);
1034     if (result != nullptr) {
1035       return result;
1036     }
1037   }
1038 
1039   if (do_gc) {
1040     GCCauseSetter compaction(this, GCCause::_g1_compaction_pause);
1041     // Expansion didn't work, we'll try to do a Full GC.
1042     // If maximal_compaction is set we clear all soft references and don't
1043     // allow any dead wood to be left on the heap.
1044     if (maximal_compaction) {
1045       log_info(gc, ergo)("Attempting maximal full compaction clearing soft references");
1046     } else {
1047       log_info(gc, ergo)("Attempting full compaction");
1048     }
1049     do_full_collection(word_size /* allocation_word_size */,
1050                        maximal_compaction /* clear_all_soft_refs */,
1051                        maximal_compaction /* do_maximal_compaction */);
1052   }
1053 
1054   return nullptr;
1055 }
1056 
1057 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size) {
1058   assert_at_safepoint_on_vm_thread();
1059 
1060   // Update GC overhead limits after the initial garbage collection leading to this
1061   // allocation attempt.
1062   update_gc_overhead_counter();
1063 
1064   // Attempts to allocate followed by Full GC.
1065   HeapWord* result =
1066     satisfy_failed_allocation_helper(word_size,
1067                                      true,  /* do_gc */
1068                                      false, /* maximal_compaction */
1069                                      false /* expect_null_mutator_alloc_region */);
1070 
1071   if (result != nullptr) {
1072     return result;
1073   }
1074 
1075   // Attempts to allocate followed by Full GC that will collect all soft references.
1076   result = satisfy_failed_allocation_helper(word_size,
1077                                             true, /* do_gc */
1078                                             true, /* maximal_compaction */
1079                                             true /* expect_null_mutator_alloc_region */);
1080 
1081   if (result != nullptr) {
1082     return result;
1083   }
1084 
1085   // Attempts to allocate, no GC
1086   result = satisfy_failed_allocation_helper(word_size,
1087                                             false, /* do_gc */
1088                                             false, /* maximal_compaction */
1089                                             true  /* expect_null_mutator_alloc_region */);
1090 
1091   if (result != nullptr) {
1092     return result;
1093   }
1094 
1095   if (gc_overhead_limit_exceeded()) {
1096     log_info(gc)("GC Overhead Limit exceeded too often (%zu).", GCOverheadLimitThreshold);
1097   }
1098 
1099   // What else?  We might try synchronous finalization later.  If the total
1100   // space available is large enough for the allocation, then a more
1101   // complete compaction phase than we've tried so far might be
1102   // appropriate.
1103   return nullptr;
1104 }
1105 
1106 // Attempting to expand the heap sufficiently
1107 // to support an allocation of the given "word_size".  If
1108 // successful, perform the allocation and return the address of the
1109 // allocated block, or else null.
1110 
1111 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1112   assert_at_safepoint_on_vm_thread();
1113 
1114   _verifier->verify_region_sets_optional();
1115 
1116   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1117   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: %zuB",
1118                             word_size * HeapWordSize);
1119 
1120 
1121   if (expand(expand_bytes, _workers)) {
1122     _hrm.verify_optional();
1123     _verifier->verify_region_sets_optional();
1124     return attempt_allocation_at_safepoint(word_size,
1125                                            false /* expect_null_mutator_alloc_region */);
1126   }
1127   return nullptr;
1128 }
1129 
1130 bool G1CollectedHeap::expand(size_t expand_bytes, WorkerThreads* pretouch_workers) {
1131   assert(expand_bytes > 0, "precondition");
1132 
1133   size_t aligned_expand_bytes = os::align_up_vm_page_size(expand_bytes);
1134   aligned_expand_bytes = align_up(aligned_expand_bytes, G1HeapRegion::GrainBytes);
1135 
1136   uint num_regions_to_expand = (uint)(aligned_expand_bytes / G1HeapRegion::GrainBytes);
1137 
1138   log_debug(gc, ergo, heap)("Heap resize. Requested expansion amount: %zuB aligned expansion amount: %zuB (%u regions)",
1139                             expand_bytes, aligned_expand_bytes, num_regions_to_expand);
1140 
1141   if (num_inactive_regions() == 0) {
1142     log_debug(gc, ergo, heap)("Heap resize. Did not expand the heap (heap already fully expanded)");
1143     return false;
1144   }
1145 
1146   uint expanded_by = _hrm.expand_by(num_regions_to_expand, pretouch_workers);
1147 
1148   size_t actual_expand_bytes = expanded_by * G1HeapRegion::GrainBytes;
1149   assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1150   policy()->record_new_heap_size(num_committed_regions());
1151 
1152   return true;
1153 }
1154 
1155 bool G1CollectedHeap::expand_single_region(uint node_index) {
1156   uint expanded_by = _hrm.expand_on_preferred_node(node_index);
1157 
1158   if (expanded_by == 0) {
1159     assert(num_inactive_regions() == 0, "Should be no regions left, available: %u", num_inactive_regions());
1160     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1161     return false;
1162   }
1163 
1164   policy()->record_new_heap_size(num_committed_regions());
1165   return true;
1166 }
1167 
1168 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1169   assert(shrink_bytes > 0, "must be");
1170   assert(is_aligned(shrink_bytes, G1HeapRegion::GrainBytes),
1171          "Shrink request for %zuB not aligned to heap region size %zuB",
1172          shrink_bytes, G1HeapRegion::GrainBytes);
1173 
1174   uint num_regions_to_remove = (uint)(shrink_bytes / G1HeapRegion::GrainBytes);
1175 
1176   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1177   size_t shrunk_bytes = num_regions_removed * G1HeapRegion::GrainBytes;
1178 
1179   log_debug(gc, ergo, heap)("Heap resize. Requested shrinking amount: %zuB actual shrinking amount: %zuB (%u regions)",
1180                             shrink_bytes, shrunk_bytes, num_regions_removed);
1181   if (num_regions_removed > 0) {
1182     policy()->record_new_heap_size(num_committed_regions());
1183   } else {
1184     log_debug(gc, ergo, heap)("Heap resize. Did not shrink the heap (heap shrinking operation failed)");
1185   }
1186 }
1187 
1188 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1189   if (capacity() == min_capacity()) {
1190     log_debug(gc, ergo, heap)("Heap resize. Did not shrink the heap (heap already at minimum)");
1191     return;
1192   }
1193 
1194   size_t aligned_shrink_bytes = os::align_down_vm_page_size(shrink_bytes);
1195   aligned_shrink_bytes = align_down(aligned_shrink_bytes, G1HeapRegion::GrainBytes);
1196 
1197   aligned_shrink_bytes = capacity() - MAX2(capacity() - aligned_shrink_bytes, min_capacity());
1198   assert(is_aligned(aligned_shrink_bytes, G1HeapRegion::GrainBytes), "Bytes to shrink %zuB not aligned", aligned_shrink_bytes);
1199 
1200   log_debug(gc, ergo, heap)("Heap resize. Requested shrink amount: %zuB aligned shrink amount: %zuB",
1201                             shrink_bytes, aligned_shrink_bytes);
1202 
1203   if (aligned_shrink_bytes == 0) {
1204     log_debug(gc, ergo, heap)("Heap resize. Did not shrink the heap (shrink request too small)");
1205     return;
1206   }
1207 
1208   _verifier->verify_region_sets_optional();
1209 
1210   // We should only reach here at the end of a Full GC or during Remark which
1211   // means we should not not be holding to any GC alloc regions. The method
1212   // below will make sure of that and do any remaining clean up.
1213   _allocator->abandon_gc_alloc_regions();
1214 
1215   // Instead of tearing down / rebuilding the free lists here, we
1216   // could instead use the remove_all_pending() method on free_list to
1217   // remove only the ones that we need to remove.
1218   _hrm.remove_all_free_regions();
1219   shrink_helper(aligned_shrink_bytes);
1220   rebuild_region_sets(true /* free_list_only */);
1221 
1222   _hrm.verify_optional();
1223   _verifier->verify_region_sets_optional();
1224 }
1225 
1226 class OldRegionSetChecker : public G1HeapRegionSetChecker {
1227 public:
1228   void check_mt_safety() {
1229     // Master Old Set MT safety protocol:
1230     // (a) If we're at a safepoint, operations on the master old set
1231     // should be invoked:
1232     // - by the VM thread (which will serialize them), or
1233     // - by the GC workers while holding the FreeList_lock, if we're
1234     //   at a safepoint for an evacuation pause (this lock is taken
1235     //   anyway when an GC alloc region is retired so that a new one
1236     //   is allocated from the free list), or
1237     // - by the GC workers while holding the OldSets_lock, if we're at a
1238     //   safepoint for a cleanup pause.
1239     // (b) If we're not at a safepoint, operations on the master old set
1240     // should be invoked while holding the Heap_lock.
1241 
1242     if (SafepointSynchronize::is_at_safepoint()) {
1243       guarantee(Thread::current()->is_VM_thread() ||
1244                 G1FreeList_lock->owned_by_self() || G1OldSets_lock->owned_by_self(),
1245                 "master old set MT safety protocol at a safepoint");
1246     } else {
1247       guarantee(Heap_lock->owned_by_self(), "master old set MT safety protocol outside a safepoint");
1248     }
1249   }
1250   bool is_correct_type(G1HeapRegion* hr) { return hr->is_old(); }
1251   const char* get_description() { return "Old Regions"; }
1252 };
1253 
1254 class HumongousRegionSetChecker : public G1HeapRegionSetChecker {
1255 public:
1256   void check_mt_safety() {
1257     // Humongous Set MT safety protocol:
1258     // (a) If we're at a safepoint, operations on the master humongous
1259     // set should be invoked by either the VM thread (which will
1260     // serialize them) or by the GC workers while holding the
1261     // OldSets_lock.
1262     // (b) If we're not at a safepoint, operations on the master
1263     // humongous set should be invoked while holding the Heap_lock.
1264 
1265     if (SafepointSynchronize::is_at_safepoint()) {
1266       guarantee(Thread::current()->is_VM_thread() ||
1267                 G1OldSets_lock->owned_by_self(),
1268                 "master humongous set MT safety protocol at a safepoint");
1269     } else {
1270       guarantee(Heap_lock->owned_by_self(),
1271                 "master humongous set MT safety protocol outside a safepoint");
1272     }
1273   }
1274   bool is_correct_type(G1HeapRegion* hr) { return hr->is_humongous(); }
1275   const char* get_description() { return "Humongous Regions"; }
1276 };
1277 
1278 G1CollectedHeap::G1CollectedHeap() :
1279   CollectedHeap(),
1280   _gc_overhead_counter(0),
1281   _service_thread(nullptr),
1282   _periodic_gc_task(nullptr),
1283   _free_arena_memory_task(nullptr),
1284   _revise_young_length_task(nullptr),
1285   _workers(nullptr),
1286   _refinement_epoch(0),
1287   _last_synchronized_start(0),
1288   _last_refinement_epoch_start(0),
1289   _yield_duration_in_refinement_epoch(0),
1290   _last_safepoint_refinement_epoch(0),
1291   _collection_pause_end(Ticks::now()),
1292   _old_set("Old Region Set", new OldRegionSetChecker()),
1293   _humongous_set("Humongous Region Set", new HumongousRegionSetChecker()),
1294   _bot(nullptr),
1295   _listener(),
1296   _numa(G1NUMA::create()),
1297   _hrm(),
1298   _allocator(nullptr),
1299   _allocation_failure_injector(),
1300   _verifier(nullptr),
1301   _summary_bytes_used(0),
1302   _bytes_used_during_gc(0),
1303   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1304   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1305   _monitoring_support(nullptr),
1306   _num_humongous_objects(0),
1307   _num_humongous_reclaim_candidates(0),
1308   _collector_state(),
1309   _old_marking_cycles_started(0),
1310   _old_marking_cycles_completed(0),
1311   _eden(),
1312   _survivor(),
1313   _gc_timer_stw(new STWGCTimer()),
1314   _gc_tracer_stw(new G1NewTracer()),
1315   _policy(new G1Policy(_gc_timer_stw)),
1316   _heap_sizing_policy(nullptr),
1317   _collection_set(this, _policy),
1318   _rem_set(nullptr),
1319   _card_set_config(),
1320   _card_set_freelist_pool(G1CardSetConfiguration::num_mem_object_types()),
1321   _young_regions_cset_group(card_set_config(), &_card_set_freelist_pool, G1CSetCandidateGroup::YoungRegionId),
1322   _cm(nullptr),
1323   _cm_thread(nullptr),
1324   _cr(nullptr),
1325   _task_queues(nullptr),
1326   _partial_array_state_manager(nullptr),
1327   _ref_processor_stw(nullptr),
1328   _is_alive_closure_stw(this),
1329   _is_subject_to_discovery_stw(this),
1330   _ref_processor_cm(nullptr),
1331   _is_alive_closure_cm(),
1332   _is_subject_to_discovery_cm(this),
1333   _region_attr() {
1334 
1335   _verifier = new G1HeapVerifier(this);
1336 
1337   _allocator = new G1Allocator(this);
1338 
1339   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _policy->analytics());
1340 
1341   _humongous_object_threshold_in_words = humongous_threshold_for(G1HeapRegion::GrainWords);
1342 
1343   // Since filler arrays are never referenced, we can make them region sized.
1344   // This simplifies filling up the region in case we have some potentially
1345   // unreferenced (by Java code, but still in use by native code) pinned objects
1346   // in there.
1347   _filler_array_max_size = G1HeapRegion::GrainWords;
1348 
1349   // Override the default _stack_chunk_max_size so that no humongous stack chunks are created
1350   _stack_chunk_max_size = _humongous_object_threshold_in_words;
1351 
1352   uint n_queues = ParallelGCThreads;
1353   _task_queues = new G1ScannerTasksQueueSet(n_queues);
1354 
1355   for (uint i = 0; i < n_queues; i++) {
1356     G1ScannerTasksQueue* q = new G1ScannerTasksQueue();
1357     _task_queues->register_queue(i, q);
1358   }
1359 
1360   _partial_array_state_manager = new PartialArrayStateManager(n_queues);
1361 
1362   _gc_tracer_stw->initialize();
1363 }
1364 
1365 PartialArrayStateManager* G1CollectedHeap::partial_array_state_manager() const {
1366   return _partial_array_state_manager;
1367 }
1368 
1369 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1370                                                                  size_t size,
1371                                                                  size_t translation_factor) {
1372   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1373 
1374   // When a page size is given we don't want to mix large
1375   // and normal pages. If the size is not a multiple of the
1376   // page size it will be aligned up to achieve this.
1377   size_t alignment = os::vm_allocation_granularity();
1378   if (preferred_page_size != os::vm_page_size()) {
1379     alignment = MAX2(preferred_page_size, alignment);
1380     size = align_up(size, alignment);
1381   }
1382 
1383   // Allocate a new reserved space, preferring to use large pages.
1384   ReservedSpace rs = MemoryReserver::reserve(size,
1385                                              alignment,
1386                                              preferred_page_size,
1387                                              mtGC);
1388 
1389   size_t page_size = rs.page_size();
1390   G1RegionToSpaceMapper* result  =
1391     G1RegionToSpaceMapper::create_mapper(rs,
1392                                          size,
1393                                          page_size,
1394                                          G1HeapRegion::GrainBytes,
1395                                          translation_factor,
1396                                          mtGC);
1397 
1398   os::trace_page_sizes_for_requested_size(description,
1399                                           size,
1400                                           preferred_page_size,
1401                                           rs.base(),
1402                                           rs.size(),
1403                                           page_size);
1404 
1405   return result;
1406 }
1407 
1408 jint G1CollectedHeap::initialize_concurrent_refinement() {
1409   jint ecode = JNI_OK;
1410   _cr = G1ConcurrentRefine::create(this, &ecode);
1411   return ecode;
1412 }
1413 
1414 jint G1CollectedHeap::initialize_service_thread() {
1415   _service_thread = new G1ServiceThread();
1416   if (_service_thread->osthread() == nullptr) {
1417     vm_shutdown_during_initialization("Could not create G1ServiceThread");
1418     return JNI_ENOMEM;
1419   }
1420   return JNI_OK;
1421 }
1422 
1423 jint G1CollectedHeap::initialize() {
1424 
1425   if (!os::is_thread_cpu_time_supported()) {
1426     vm_exit_during_initialization("G1 requires cpu time gathering support");
1427   }
1428   // Necessary to satisfy locking discipline assertions.
1429 
1430   MutexLocker x(Heap_lock);
1431 
1432   // While there are no constraints in the GC code that HeapWordSize
1433   // be any particular value, there are multiple other areas in the
1434   // system which believe this to be true (e.g. oop->object_size in some
1435   // cases incorrectly returns the size in wordSize units rather than
1436   // HeapWordSize).
1437   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1438 
1439   size_t init_byte_size = InitialHeapSize;
1440   size_t reserved_byte_size = G1Arguments::heap_reserved_size_bytes();
1441 
1442   // Ensure that the sizes are properly aligned.
1443   Universe::check_alignment(init_byte_size, G1HeapRegion::GrainBytes, "g1 heap");
1444   Universe::check_alignment(reserved_byte_size, G1HeapRegion::GrainBytes, "g1 heap");
1445   Universe::check_alignment(reserved_byte_size, HeapAlignment, "g1 heap");
1446 
1447   // Reserve the maximum.
1448 
1449   // When compressed oops are enabled, the preferred heap base
1450   // is calculated by subtracting the requested size from the
1451   // 32Gb boundary and using the result as the base address for
1452   // heap reservation. If the requested size is not aligned to
1453   // G1HeapRegion::GrainBytes (i.e. the alignment that is passed
1454   // into the ReservedHeapSpace constructor) then the actual
1455   // base of the reserved heap may end up differing from the
1456   // address that was requested (i.e. the preferred heap base).
1457   // If this happens then we could end up using a non-optimal
1458   // compressed oops mode.
1459 
1460   ReservedHeapSpace heap_rs = Universe::reserve_heap(reserved_byte_size,
1461                                                      HeapAlignment);
1462 
1463   initialize_reserved_region(heap_rs);
1464 
1465   // Create the barrier set for the entire reserved region.
1466   G1CardTable* card_table = new G1CardTable(_reserved);
1467   G1CardTable* refinement_table = new G1CardTable(_reserved);
1468 
1469   G1BarrierSet* bs = new G1BarrierSet(card_table, refinement_table);
1470   assert(bs->is_a(BarrierSet::G1BarrierSet), "sanity");
1471 
1472   // Create space mappers.
1473   size_t page_size = heap_rs.page_size();
1474   G1RegionToSpaceMapper* heap_storage =
1475     G1RegionToSpaceMapper::create_mapper(heap_rs,
1476                                          heap_rs.size(),
1477                                          page_size,
1478                                          G1HeapRegion::GrainBytes,
1479                                          1,
1480                                          mtJavaHeap);
1481   if(heap_storage == nullptr) {
1482     vm_shutdown_during_initialization("Could not initialize G1 heap");
1483     return JNI_ERR;
1484   }
1485 
1486   os::trace_page_sizes("Heap",
1487                        min_capacity(),
1488                        reserved_byte_size,
1489                        heap_rs.base(),
1490                        heap_rs.size(),
1491                        page_size);
1492   heap_storage->set_mapping_changed_listener(&_listener);
1493 
1494   // Create storage for the BOT, card table and the bitmap.
1495   G1RegionToSpaceMapper* bot_storage =
1496     create_aux_memory_mapper("Block Offset Table",
1497                              G1BlockOffsetTable::compute_size(heap_rs.size() / HeapWordSize),
1498                              G1BlockOffsetTable::heap_map_factor());
1499 
1500   G1RegionToSpaceMapper* cardtable_storage =
1501     create_aux_memory_mapper("Card Table",
1502                              G1CardTable::compute_size(heap_rs.size() / HeapWordSize),
1503                              G1CardTable::heap_map_factor());
1504 
1505   G1RegionToSpaceMapper* refinement_cards_storage =
1506     create_aux_memory_mapper("Refinement Card Table",
1507                              G1CardTable::compute_size(heap_rs.size() / HeapWordSize),
1508                              G1CardTable::heap_map_factor());
1509 
1510   size_t bitmap_size = G1CMBitMap::compute_size(heap_rs.size());
1511   G1RegionToSpaceMapper* bitmap_storage =
1512     create_aux_memory_mapper("Mark Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1513 
1514   _hrm.initialize(heap_storage, bitmap_storage, bot_storage, cardtable_storage, refinement_cards_storage);
1515   card_table->initialize(cardtable_storage);
1516   refinement_table->initialize(refinement_cards_storage);
1517 
1518   BarrierSet::set_barrier_set(bs);
1519 
1520   {
1521     G1SATBMarkQueueSet& satbqs = bs->satb_mark_queue_set();
1522     satbqs.set_process_completed_buffers_threshold(G1SATBProcessCompletedThreshold);
1523     satbqs.set_buffer_enqueue_threshold_percentage(G1SATBBufferEnqueueingThresholdPercent);
1524   }
1525 
1526   // 6843694 - ensure that the maximum region index can fit
1527   // in the remembered set structures.
1528   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1529   guarantee((max_num_regions() - 1) <= max_region_idx, "too many regions");
1530 
1531   // The G1FromCardCache reserves card with value 0 as "invalid", so the heap must not
1532   // start within the first card.
1533   guarantee((uintptr_t)(heap_rs.base()) >= G1CardTable::card_size(), "Java heap must not start within the first card.");
1534   G1FromCardCache::initialize(max_num_regions());
1535   // Also create a G1 rem set.
1536   _rem_set = new G1RemSet(this);
1537   _rem_set->initialize(max_num_regions());
1538 
1539   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1540   guarantee(G1HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1541   guarantee(G1HeapRegion::CardsPerRegion < max_cards_per_region,
1542             "too many cards per region");
1543 
1544   G1HeapRegionRemSet::initialize(_reserved);
1545 
1546   G1FreeRegionList::set_unrealistically_long_length(max_num_regions() + 1);
1547 
1548   _bot = new G1BlockOffsetTable(reserved(), bot_storage);
1549 
1550   {
1551     size_t granularity = G1HeapRegion::GrainBytes;
1552 
1553     _region_attr.initialize(reserved(), granularity);
1554   }
1555 
1556   _workers = new WorkerThreads("GC Thread", ParallelGCThreads);
1557   if (_workers == nullptr) {
1558     return JNI_ENOMEM;
1559   }
1560   _workers->initialize_workers();
1561 
1562   _numa->set_region_info(G1HeapRegion::GrainBytes, page_size);
1563 
1564   // Create the G1ConcurrentMark data structure and thread.
1565   // (Must do this late, so that "max_[reserved_]regions" is defined.)
1566   _cm = new G1ConcurrentMark(this, bitmap_storage);
1567   _cm_thread = _cm->cm_thread();
1568 
1569   // Now expand into the initial heap size.
1570   if (!expand(init_byte_size, _workers)) {
1571     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1572     return JNI_ENOMEM;
1573   }
1574 
1575   // Perform any initialization actions delegated to the policy.
1576   policy()->init(this, &_collection_set);
1577 
1578   jint ecode = initialize_concurrent_refinement();
1579   if (ecode != JNI_OK) {
1580     return ecode;
1581   }
1582 
1583   ecode = initialize_service_thread();
1584   if (ecode != JNI_OK) {
1585     return ecode;
1586   }
1587 
1588   // Create and schedule the periodic gc task on the service thread.
1589   _periodic_gc_task = new G1PeriodicGCTask("Periodic GC Task");
1590   _service_thread->register_task(_periodic_gc_task);
1591 
1592   _free_arena_memory_task = new G1MonotonicArenaFreeMemoryTask("Card Set Free Memory Task");
1593   _service_thread->register_task(_free_arena_memory_task);
1594 
1595   if (policy()->use_adaptive_young_list_length()) {
1596     _revise_young_length_task = new G1ReviseYoungLengthTask("Revise Young Length List Task");
1597     _service_thread->register_task(_revise_young_length_task);
1598   }
1599 
1600   // Here we allocate the dummy G1HeapRegion that is required by the
1601   // G1AllocRegion class.
1602   G1HeapRegion* dummy_region = _hrm.get_dummy_region();
1603 
1604   // We'll re-use the same region whether the alloc region will
1605   // require BOT updates or not and, if it doesn't, then a non-young
1606   // region will complain that it cannot support allocations without
1607   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1608   dummy_region->set_eden();
1609   // Make sure it's full.
1610   dummy_region->set_top(dummy_region->end());
1611   G1AllocRegion::setup(this, dummy_region);
1612 
1613   _allocator->init_mutator_alloc_regions();
1614 
1615   // Do create of the monitoring and management support so that
1616   // values in the heap have been properly initialized.
1617   _monitoring_support = new G1MonitoringSupport(this);
1618 
1619   _collection_set.initialize(max_num_regions());
1620 
1621   start_new_collection_set();
1622 
1623   allocation_failure_injector()->reset();
1624 
1625   CPUTimeCounters::create_counter(CPUTimeGroups::CPUTimeType::gc_parallel_workers);
1626   CPUTimeCounters::create_counter(CPUTimeGroups::CPUTimeType::gc_conc_mark);
1627   CPUTimeCounters::create_counter(CPUTimeGroups::CPUTimeType::gc_conc_refine);
1628   CPUTimeCounters::create_counter(CPUTimeGroups::CPUTimeType::gc_conc_refine_control);
1629   CPUTimeCounters::create_counter(CPUTimeGroups::CPUTimeType::gc_service);
1630 
1631   G1InitLogger::print();
1632 
1633   FullGCForwarding::initialize(_reserved);
1634 
1635   return JNI_OK;
1636 }
1637 
1638 bool G1CollectedHeap::concurrent_mark_is_terminating() const {
1639   return _cm_thread->should_terminate();
1640 }
1641 
1642 void G1CollectedHeap::stop() {
1643   // Stop all concurrent threads. We do this to make sure these threads
1644   // do not continue to execute and access resources (e.g. logging)
1645   // that are destroyed during shutdown.
1646   _cr->stop();
1647   _service_thread->stop();
1648   _cm_thread->stop();
1649 }
1650 
1651 void G1CollectedHeap::safepoint_synchronize_begin() {
1652   SuspendibleThreadSet::synchronize();
1653 
1654   _last_synchronized_start = os::elapsed_counter();
1655 }
1656 
1657 void G1CollectedHeap::safepoint_synchronize_end() {
1658   jlong now = os::elapsed_counter();
1659   jlong synchronize_duration = now - _last_synchronized_start;
1660 
1661   if (_last_safepoint_refinement_epoch == _refinement_epoch) {
1662     _yield_duration_in_refinement_epoch += synchronize_duration;
1663   } else {
1664     _last_refinement_epoch_start = now;
1665     _last_safepoint_refinement_epoch = _refinement_epoch;
1666     _yield_duration_in_refinement_epoch = 0;
1667   }
1668 
1669   SuspendibleThreadSet::desynchronize();
1670 }
1671 
1672 void G1CollectedHeap::set_last_refinement_epoch_start(jlong epoch_start, jlong last_yield_duration) {
1673   _last_refinement_epoch_start = epoch_start;
1674   guarantee(_yield_duration_in_refinement_epoch >= last_yield_duration, "should be");
1675   _yield_duration_in_refinement_epoch -= last_yield_duration;
1676 }
1677 
1678 jlong G1CollectedHeap::yield_duration_in_refinement_epoch() {
1679   return _yield_duration_in_refinement_epoch;
1680 }
1681 
1682 void G1CollectedHeap::post_initialize() {
1683   CollectedHeap::post_initialize();
1684   ref_processing_init();
1685 }
1686 
1687 void G1CollectedHeap::ref_processing_init() {
1688   // Reference processing in G1 currently works as follows:
1689   //
1690   // * There are two reference processor instances. One is
1691   //   used to record and process discovered references
1692   //   during concurrent marking; the other is used to
1693   //   record and process references during STW pauses
1694   //   (both full and incremental).
1695   // * Both ref processors need to 'span' the entire heap as
1696   //   the regions in the collection set may be dotted around.
1697   //
1698   // * For the concurrent marking ref processor:
1699   //   * Reference discovery is enabled at concurrent start.
1700   //   * Reference discovery is disabled and the discovered
1701   //     references processed etc during remarking.
1702   //   * Reference discovery is MT (see below).
1703   //   * Reference discovery requires a barrier (see below).
1704   //   * Reference processing may or may not be MT
1705   //     (depending on the value of ParallelRefProcEnabled
1706   //     and ParallelGCThreads).
1707   //   * A full GC disables reference discovery by the CM
1708   //     ref processor and abandons any entries on it's
1709   //     discovered lists.
1710   //
1711   // * For the STW processor:
1712   //   * Non MT discovery is enabled at the start of a full GC.
1713   //   * Processing and enqueueing during a full GC is non-MT.
1714   //   * During a full GC, references are processed after marking.
1715   //
1716   //   * Discovery (may or may not be MT) is enabled at the start
1717   //     of an incremental evacuation pause.
1718   //   * References are processed near the end of a STW evacuation pause.
1719   //   * For both types of GC:
1720   //     * Discovery is atomic - i.e. not concurrent.
1721   //     * Reference discovery will not need a barrier.
1722 
1723   _is_alive_closure_cm.initialize(concurrent_mark());
1724   // Concurrent Mark ref processor
1725   _ref_processor_cm =
1726     new ReferenceProcessor(&_is_subject_to_discovery_cm,
1727                            ParallelGCThreads,                              // degree of mt processing
1728                            // We discover with the gc worker threads during Remark, so both
1729                            // thread counts must be considered for discovery.
1730                            MAX2(ParallelGCThreads, ConcGCThreads),         // degree of mt discovery
1731                            true,                                           // Reference discovery is concurrent
1732                            &_is_alive_closure_cm);                         // is alive closure
1733 
1734   // STW ref processor
1735   _ref_processor_stw =
1736     new ReferenceProcessor(&_is_subject_to_discovery_stw,
1737                            ParallelGCThreads,                    // degree of mt processing
1738                            ParallelGCThreads,                    // degree of mt discovery
1739                            false,                                // Reference discovery is not concurrent
1740                            &_is_alive_closure_stw);              // is alive closure
1741 }
1742 
1743 size_t G1CollectedHeap::capacity() const {
1744   return _hrm.num_committed_regions() * G1HeapRegion::GrainBytes;
1745 }
1746 
1747 size_t G1CollectedHeap::unused_committed_regions_in_bytes() const {
1748   return _hrm.total_free_bytes();
1749 }
1750 
1751 // Computes the sum of the storage used by the various regions.
1752 size_t G1CollectedHeap::used() const {
1753   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
1754   return result;
1755 }
1756 
1757 size_t G1CollectedHeap::used_unlocked() const {
1758   return _summary_bytes_used;
1759 }
1760 
1761 class SumUsedClosure: public G1HeapRegionClosure {
1762   size_t _used;
1763 public:
1764   SumUsedClosure() : _used(0) {}
1765   bool do_heap_region(G1HeapRegion* r) {
1766     _used += r->used();
1767     return false;
1768   }
1769   size_t result() { return _used; }
1770 };
1771 
1772 size_t G1CollectedHeap::recalculate_used() const {
1773   SumUsedClosure blk;
1774   heap_region_iterate(&blk);
1775   return blk.result();
1776 }
1777 
1778 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
1779   return GCCause::is_user_requested_gc(cause) && ExplicitGCInvokesConcurrent;
1780 }
1781 
1782 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
1783   switch (cause) {
1784     case GCCause::_g1_humongous_allocation: return true;
1785     case GCCause::_g1_periodic_collection:  return G1PeriodicGCInvokesConcurrent;
1786     case GCCause::_wb_breakpoint:           return true;
1787     case GCCause::_codecache_GC_aggressive: return true;
1788     case GCCause::_codecache_GC_threshold:  return true;
1789     default:                                return is_user_requested_concurrent_full_gc(cause);
1790   }
1791 }
1792 
1793 void G1CollectedHeap::increment_old_marking_cycles_started() {
1794   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
1795          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
1796          "Wrong marking cycle count (started: %d, completed: %d)",
1797          _old_marking_cycles_started, _old_marking_cycles_completed);
1798 
1799   _old_marking_cycles_started++;
1800 }
1801 
1802 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent,
1803                                                              bool whole_heap_examined) {
1804   MonitorLocker ml(G1OldGCCount_lock, Mutex::_no_safepoint_check_flag);
1805 
1806   // We assume that if concurrent == true, then the caller is a
1807   // concurrent thread that was joined the Suspendible Thread
1808   // Set. If there's ever a cheap way to check this, we should add an
1809   // assert here.
1810 
1811   // Given that this method is called at the end of a Full GC or of a
1812   // concurrent cycle, and those can be nested (i.e., a Full GC can
1813   // interrupt a concurrent cycle), the number of full collections
1814   // completed should be either one (in the case where there was no
1815   // nesting) or two (when a Full GC interrupted a concurrent cycle)
1816   // behind the number of full collections started.
1817 
1818   // This is the case for the inner caller, i.e. a Full GC.
1819   assert(concurrent ||
1820          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
1821          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
1822          "for inner caller (Full GC): _old_marking_cycles_started = %u "
1823          "is inconsistent with _old_marking_cycles_completed = %u",
1824          _old_marking_cycles_started, _old_marking_cycles_completed);
1825 
1826   // This is the case for the outer caller, i.e. the concurrent cycle.
1827   assert(!concurrent ||
1828          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
1829          "for outer caller (concurrent cycle): "
1830          "_old_marking_cycles_started = %u "
1831          "is inconsistent with _old_marking_cycles_completed = %u",
1832          _old_marking_cycles_started, _old_marking_cycles_completed);
1833 
1834   _old_marking_cycles_completed += 1;
1835   if (whole_heap_examined) {
1836     // Signal that we have completed a visit to all live objects.
1837     record_whole_heap_examined_timestamp();
1838   }
1839 
1840   // We need to clear the "in_progress" flag in the CM thread before
1841   // we wake up any waiters (especially when ExplicitInvokesConcurrent
1842   // is set) so that if a waiter requests another System.gc() it doesn't
1843   // incorrectly see that a marking cycle is still in progress.
1844   if (concurrent) {
1845     _cm_thread->set_idle();
1846   }
1847 
1848   // Notify threads waiting in System.gc() (with ExplicitGCInvokesConcurrent)
1849   // for a full GC to finish that their wait is over.
1850   ml.notify_all();
1851 }
1852 
1853 void G1CollectedHeap::collect(GCCause::Cause cause) {
1854   try_collect(0 /* allocation_word_size */, cause, collection_counters(this));
1855 }
1856 
1857 // Return true if (x < y) with allowance for wraparound.
1858 static bool gc_counter_less_than(uint x, uint y) {
1859   return (x - y) > (UINT_MAX/2);
1860 }
1861 
1862 // LOG_COLLECT_CONCURRENTLY(cause, msg, args...)
1863 // Macro so msg printing is format-checked.
1864 #define LOG_COLLECT_CONCURRENTLY(cause, ...)                            \
1865   do {                                                                  \
1866     LogTarget(Trace, gc) LOG_COLLECT_CONCURRENTLY_lt;                   \
1867     if (LOG_COLLECT_CONCURRENTLY_lt.is_enabled()) {                     \
1868       ResourceMark rm; /* For thread name. */                           \
1869       LogStream LOG_COLLECT_CONCURRENTLY_s(&LOG_COLLECT_CONCURRENTLY_lt); \
1870       LOG_COLLECT_CONCURRENTLY_s.print("%s: Try Collect Concurrently (%s): ", \
1871                                        Thread::current()->name(),       \
1872                                        GCCause::to_string(cause));      \
1873       LOG_COLLECT_CONCURRENTLY_s.print(__VA_ARGS__);                    \
1874     }                                                                   \
1875   } while (0)
1876 
1877 #define LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, result) \
1878   LOG_COLLECT_CONCURRENTLY(cause, "complete %s", BOOL_TO_STR(result))
1879 
1880 bool G1CollectedHeap::wait_full_mark_finished(GCCause::Cause cause,
1881                                               uint old_marking_started_before,
1882                                               uint old_marking_started_after,
1883                                               uint old_marking_completed_after) {
1884   // Request is finished if a full collection (concurrent or stw)
1885   // was started after this request and has completed, e.g.
1886   // started_before < completed_after.
1887   if (gc_counter_less_than(old_marking_started_before,
1888                            old_marking_completed_after)) {
1889     LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true);
1890     return true;
1891   }
1892 
1893   if (old_marking_started_after != old_marking_completed_after) {
1894     // If there is an in-progress cycle (possibly started by us), then
1895     // wait for that cycle to complete, e.g.
1896     // while completed_now < started_after.
1897     LOG_COLLECT_CONCURRENTLY(cause, "wait");
1898     MonitorLocker ml(G1OldGCCount_lock);
1899     while (gc_counter_less_than(_old_marking_cycles_completed,
1900                                 old_marking_started_after)) {
1901       ml.wait();
1902     }
1903     // Request is finished if the collection we just waited for was
1904     // started after this request.
1905     if (old_marking_started_before != old_marking_started_after) {
1906       LOG_COLLECT_CONCURRENTLY(cause, "complete after wait");
1907       return true;
1908     }
1909   }
1910   return false;
1911 }
1912 
1913 // After calling wait_full_mark_finished(), this method determines whether we
1914 // previously failed for ordinary reasons (concurrent cycle in progress, whitebox
1915 // has control). Returns if this has been such an ordinary reason.
1916 static bool should_retry_vm_op(GCCause::Cause cause,
1917                                VM_G1TryInitiateConcMark* op) {
1918   if (op->cycle_already_in_progress()) {
1919     // If VMOp failed because a cycle was already in progress, it
1920     // is now complete.  But it didn't finish this user-requested
1921     // GC, so try again.
1922     LOG_COLLECT_CONCURRENTLY(cause, "retry after in-progress");
1923     return true;
1924   } else if (op->whitebox_attached()) {
1925     // If WhiteBox wants control, wait for notification of a state
1926     // change in the controller, then try again.  Don't wait for
1927     // release of control, since collections may complete while in
1928     // control.  Note: This won't recognize a STW full collection
1929     // while waiting; we can't wait on multiple monitors.
1930     LOG_COLLECT_CONCURRENTLY(cause, "whitebox control stall");
1931     MonitorLocker ml(ConcurrentGCBreakpoints::monitor());
1932     if (ConcurrentGCBreakpoints::is_controlled()) {
1933       ml.wait();
1934     }
1935     return true;
1936   }
1937   return false;
1938 }
1939 
1940 bool G1CollectedHeap::try_collect_concurrently(size_t allocation_word_size,
1941                                                GCCause::Cause cause,
1942                                                uint gc_counter,
1943                                                uint old_marking_started_before) {
1944   assert_heap_not_locked();
1945   assert(should_do_concurrent_full_gc(cause),
1946          "Non-concurrent cause %s", GCCause::to_string(cause));
1947 
1948   for (uint i = 1; true; ++i) {
1949     // Try to schedule concurrent start evacuation pause that will
1950     // start a concurrent cycle.
1951     LOG_COLLECT_CONCURRENTLY(cause, "attempt %u", i);
1952     VM_G1TryInitiateConcMark op(allocation_word_size, gc_counter, cause);
1953     VMThread::execute(&op);
1954 
1955     // Request is trivially finished.
1956     if (cause == GCCause::_g1_periodic_collection) {
1957       LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, op.gc_succeeded());
1958       return op.gc_succeeded();
1959     }
1960 
1961     // If VMOp skipped initiating concurrent marking cycle because
1962     // we're shutting down, then we're done.
1963     if (op.is_shutting_down()) {
1964       LOG_COLLECT_CONCURRENTLY(cause, "skipped: terminating");
1965       return false;
1966     }
1967 
1968     // Lock to get consistent set of values.
1969     uint old_marking_started_after;
1970     uint old_marking_completed_after;
1971     {
1972       MutexLocker ml(Heap_lock);
1973       // Update gc_counter for retrying VMOp if needed. Captured here to be
1974       // consistent with the values we use below for termination tests.  If
1975       // a retry is needed after a possible wait, and another collection
1976       // occurs in the meantime, it will cause our retry to be skipped and
1977       // we'll recheck for termination with updated conditions from that
1978       // more recent collection.  That's what we want, rather than having
1979       // our retry possibly perform an unnecessary collection.
1980       gc_counter = total_collections();
1981       old_marking_started_after = _old_marking_cycles_started;
1982       old_marking_completed_after = _old_marking_cycles_completed;
1983     }
1984 
1985     if (cause == GCCause::_wb_breakpoint) {
1986       if (op.gc_succeeded()) {
1987         LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true);
1988         return true;
1989       }
1990       // When _wb_breakpoint there can't be another cycle or deferred.
1991       assert(!op.cycle_already_in_progress(), "invariant");
1992       assert(!op.whitebox_attached(), "invariant");
1993       // Concurrent cycle attempt might have been cancelled by some other
1994       // collection, so retry.  Unlike other cases below, we want to retry
1995       // even if cancelled by a STW full collection, because we really want
1996       // to start a concurrent cycle.
1997       if (old_marking_started_before != old_marking_started_after) {
1998         LOG_COLLECT_CONCURRENTLY(cause, "ignoring STW full GC");
1999         old_marking_started_before = old_marking_started_after;
2000       }
2001     } else if (GCCause::is_codecache_requested_gc(cause)) {
2002       assert(allocation_word_size == 0, "must be");
2003       // For a CodeCache requested GC, before marking, progress is ensured as the
2004       // following Remark pause unloads code (and signals the requester such).
2005       // Otherwise we must ensure that it is restarted.
2006       //
2007       // For a CodeCache requested GC, a successful GC operation means that
2008       // (1) marking is in progress. I.e. the VMOp started the marking or a
2009       //     Remark pause is pending from a different VM op; we will potentially
2010       //     abort a mixed phase if needed.
2011       // (2) a new cycle was started (by this thread or some other), or
2012       // (3) a Full GC was performed.
2013       //
2014       // Cases (2) and (3) are detected together by a change to
2015       // _old_marking_cycles_started.
2016       //
2017       // Compared to other "automatic" GCs (see below), we do not consider being
2018       // in whitebox as sufficient too because we might be anywhere within that
2019       // cycle and we need to make progress.
2020       if (op.mark_in_progress() ||
2021           (old_marking_started_before != old_marking_started_after)) {
2022         LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true);
2023         return true;
2024       }
2025 
2026       if (wait_full_mark_finished(cause,
2027                                   old_marking_started_before,
2028                                   old_marking_started_after,
2029                                   old_marking_completed_after)) {
2030         return true;
2031       }
2032 
2033       if (should_retry_vm_op(cause, &op)) {
2034         continue;
2035       }
2036     } else if (!GCCause::is_user_requested_gc(cause)) {
2037       assert(cause == GCCause::_g1_humongous_allocation ||
2038              cause == GCCause::_g1_periodic_collection,
2039              "Unsupported cause %s", GCCause::to_string(cause));
2040 
2041       // For an "automatic" (not user-requested) collection, we just need to
2042       // ensure that progress is made.
2043       //
2044       // Request is finished if any of
2045       // (1) the VMOp successfully performed a GC,
2046       // (2) a concurrent cycle was already in progress,
2047       // (3) whitebox is controlling concurrent cycles,
2048       // (4) a new cycle was started (by this thread or some other), or
2049       // (5) a Full GC was performed.
2050       // Cases (4) and (5) are detected together by a change to
2051       // _old_marking_cycles_started.
2052       if (op.gc_succeeded() ||
2053           op.cycle_already_in_progress() ||
2054           op.whitebox_attached() ||
2055           (old_marking_started_before != old_marking_started_after)) {
2056         LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true);
2057         return true;
2058       }
2059     } else {                    // User-requested GC.
2060       // For a user-requested collection, we want to ensure that a complete
2061       // full collection has been performed before returning, but without
2062       // waiting for more than needed.
2063 
2064       // For user-requested GCs (unlike non-UR), a successful VMOp implies a
2065       // new cycle was started.  That's good, because it's not clear what we
2066       // should do otherwise.  Trying again just does back to back GCs.
2067       // Can't wait for someone else to start a cycle.  And returning fails
2068       // to meet the goal of ensuring a full collection was performed.
2069       assert(!op.gc_succeeded() ||
2070              (old_marking_started_before != old_marking_started_after),
2071              "invariant: succeeded %s, started before %u, started after %u",
2072              BOOL_TO_STR(op.gc_succeeded()),
2073              old_marking_started_before, old_marking_started_after);
2074 
2075       if (wait_full_mark_finished(cause,
2076                                   old_marking_started_before,
2077                                   old_marking_started_after,
2078                                   old_marking_completed_after)) {
2079         return true;
2080       }
2081 
2082       // If VMOp was successful then it started a new cycle that the above
2083       // wait &etc should have recognized as finishing this request.  This
2084       // differs from a non-user-request, where gc_succeeded does not imply
2085       // a new cycle was started.
2086       assert(!op.gc_succeeded(), "invariant");
2087 
2088       if (should_retry_vm_op(cause, &op)) {
2089         continue;
2090       }
2091     }
2092 
2093     // Collection failed and should be retried.
2094     assert(op.transient_failure(), "invariant");
2095 
2096     LOG_COLLECT_CONCURRENTLY(cause, "retry");
2097   }
2098 }
2099 
2100 bool G1CollectedHeap::try_collect(size_t allocation_word_size,
2101                                   GCCause::Cause cause,
2102                                   const G1GCCounters& counters_before) {
2103   if (should_do_concurrent_full_gc(cause)) {
2104     return try_collect_concurrently(allocation_word_size,
2105                                     cause,
2106                                     counters_before.total_collections(),
2107                                     counters_before.old_marking_cycles_started());
2108   } else if (cause == GCCause::_wb_young_gc
2109              DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2110 
2111     assert(allocation_word_size == 0, "must be");
2112     // Schedule a standard evacuation pause. We're setting word_size
2113     // to 0 which means that we are not requesting a post-GC allocation.
2114     VM_G1CollectForAllocation op(0,     /* word_size */
2115                                  counters_before.total_collections(),
2116                                  cause);
2117     VMThread::execute(&op);
2118     return op.gc_succeeded();
2119   } else {
2120     // The only path to get here is because of a periodic collection using a Full GC
2121     // or WhiteBox full gc.
2122     assert(allocation_word_size == 0, "must be");
2123     // Schedule a Full GC.
2124     VM_G1CollectFull op(counters_before.total_collections(),
2125                         counters_before.total_full_collections(),
2126                         cause);
2127     VMThread::execute(&op);
2128     return op.gc_succeeded();
2129   }
2130 }
2131 
2132 void G1CollectedHeap::start_concurrent_gc_for_metadata_allocation(GCCause::Cause gc_cause) {
2133   GCCauseSetter x(this, gc_cause);
2134 
2135   // At this point we are supposed to start a concurrent cycle. We
2136   // will do so if one is not already in progress.
2137   bool should_start = policy()->force_concurrent_start_if_outside_cycle(gc_cause);
2138   if (should_start) {
2139     do_collection_pause_at_safepoint(0 /* allocation_word_size */);
2140   }
2141 }
2142 
2143 bool G1CollectedHeap::is_in(const void* p) const {
2144   return is_in_reserved(p) && _hrm.is_available(addr_to_region(p));
2145 }
2146 
2147 // Iteration functions.
2148 
2149 // Iterates an ObjectClosure over all objects within a G1HeapRegion.
2150 
2151 class IterateObjectClosureRegionClosure: public G1HeapRegionClosure {
2152   ObjectClosure* _cl;
2153 public:
2154   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2155   bool do_heap_region(G1HeapRegion* r) {
2156     if (!r->is_continues_humongous()) {
2157       r->object_iterate(_cl);
2158     }
2159     return false;
2160   }
2161 };
2162 
2163 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2164   IterateObjectClosureRegionClosure blk(cl);
2165   heap_region_iterate(&blk);
2166 }
2167 
2168 class G1ParallelObjectIterator : public ParallelObjectIteratorImpl {
2169 private:
2170   G1CollectedHeap*  _heap;
2171   G1HeapRegionClaimer _claimer;
2172 
2173 public:
2174   G1ParallelObjectIterator(uint thread_num) :
2175       _heap(G1CollectedHeap::heap()),
2176       _claimer(thread_num == 0 ? G1CollectedHeap::heap()->workers()->active_workers() : thread_num) {}
2177 
2178   virtual void object_iterate(ObjectClosure* cl, uint worker_id) {
2179     _heap->object_iterate_parallel(cl, worker_id, &_claimer);
2180   }
2181 };
2182 
2183 ParallelObjectIteratorImpl* G1CollectedHeap::parallel_object_iterator(uint thread_num) {
2184   return new G1ParallelObjectIterator(thread_num);
2185 }
2186 
2187 void G1CollectedHeap::object_iterate_parallel(ObjectClosure* cl, uint worker_id, G1HeapRegionClaimer* claimer) {
2188   IterateObjectClosureRegionClosure blk(cl);
2189   heap_region_par_iterate_from_worker_offset(&blk, claimer, worker_id);
2190 }
2191 
2192 void G1CollectedHeap::keep_alive(oop obj) {
2193   G1BarrierSet::enqueue_preloaded(obj);
2194 }
2195 
2196 void G1CollectedHeap::heap_region_iterate(G1HeapRegionClosure* cl) const {
2197   _hrm.iterate(cl);
2198 }
2199 
2200 void G1CollectedHeap::heap_region_iterate(G1HeapRegionIndexClosure* cl) const {
2201   _hrm.iterate(cl);
2202 }
2203 
2204 void G1CollectedHeap::heap_region_par_iterate_from_worker_offset(G1HeapRegionClosure* cl,
2205                                                                  G1HeapRegionClaimer *hrclaimer,
2206                                                                  uint worker_id) const {
2207   _hrm.par_iterate(cl, hrclaimer, hrclaimer->offset_for_worker(worker_id));
2208 }
2209 
2210 void G1CollectedHeap::heap_region_par_iterate_from_start(G1HeapRegionClosure* cl,
2211                                                          G1HeapRegionClaimer *hrclaimer) const {
2212   _hrm.par_iterate(cl, hrclaimer, 0);
2213 }
2214 
2215 void G1CollectedHeap::collection_set_iterate_all(G1HeapRegionClosure* cl) {
2216   _collection_set.iterate(cl);
2217 }
2218 
2219 void G1CollectedHeap::collection_set_par_iterate_all(G1HeapRegionClosure* cl,
2220                                                      G1HeapRegionClaimer* hr_claimer,
2221                                                      uint worker_id) {
2222   _collection_set.par_iterate(cl, hr_claimer, worker_id);
2223 }
2224 
2225 void G1CollectedHeap::collection_set_iterate_increment_from(G1HeapRegionClosure *cl,
2226                                                             G1HeapRegionClaimer* hr_claimer,
2227                                                             uint worker_id) {
2228   _collection_set.iterate_incremental_part_from(cl, hr_claimer, worker_id);
2229 }
2230 
2231 void G1CollectedHeap::par_iterate_regions_array(G1HeapRegionClosure* cl,
2232                                                 G1HeapRegionClaimer* hr_claimer,
2233                                                 const uint regions[],
2234                                                 size_t length,
2235                                                 uint worker_id) const {
2236   assert_at_safepoint();
2237   if (length == 0) {
2238     return;
2239   }
2240   uint total_workers = workers()->active_workers();
2241 
2242   size_t start_pos = (worker_id * length) / total_workers;
2243   size_t cur_pos = start_pos;
2244 
2245   do {
2246     uint region_idx = regions[cur_pos];
2247     if (hr_claimer == nullptr || hr_claimer->claim_region(region_idx)) {
2248       G1HeapRegion* r = region_at(region_idx);
2249       bool result = cl->do_heap_region(r);
2250       guarantee(!result, "Must not cancel iteration");
2251     }
2252 
2253     cur_pos++;
2254     if (cur_pos == length) {
2255       cur_pos = 0;
2256     }
2257   } while (cur_pos != start_pos);
2258 }
2259 
2260 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2261   G1HeapRegion* hr = heap_region_containing(addr);
2262   // The CollectedHeap API requires us to not fail for any given address within
2263   // the heap. G1HeapRegion::block_start() has been optimized to not accept addresses
2264   // outside of the allocated area.
2265   if (addr >= hr->top()) {
2266     return nullptr;
2267   }
2268   return hr->block_start(addr);
2269 }
2270 
2271 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2272   G1HeapRegion* hr = heap_region_containing(addr);
2273   return hr->block_is_obj(addr, hr->parsable_bottom_acquire());
2274 }
2275 
2276 size_t G1CollectedHeap::tlab_capacity() const {
2277   return eden_target_length() * G1HeapRegion::GrainBytes;
2278 }
2279 
2280 size_t G1CollectedHeap::tlab_used() const {
2281   return _eden.length() * G1HeapRegion::GrainBytes;
2282 }
2283 
2284 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2285 // must be equal to the humongous object limit.
2286 size_t G1CollectedHeap::max_tlab_size() const {
2287   return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
2288 }
2289 
2290 size_t G1CollectedHeap::unsafe_max_tlab_alloc() const {
2291   return _allocator->unsafe_max_tlab_alloc();
2292 }
2293 
2294 size_t G1CollectedHeap::max_capacity() const {
2295   return max_num_regions() * G1HeapRegion::GrainBytes;
2296 }
2297 
2298 size_t G1CollectedHeap::min_capacity() const {
2299   return MinHeapSize;
2300 }
2301 
2302 void G1CollectedHeap::prepare_for_verify() {
2303   _verifier->prepare_for_verify();
2304 }
2305 
2306 void G1CollectedHeap::verify(VerifyOption vo) {
2307   _verifier->verify(vo);
2308 }
2309 
2310 bool G1CollectedHeap::supports_concurrent_gc_breakpoints() const {
2311   return true;
2312 }
2313 
2314 class G1PrintRegionClosure: public G1HeapRegionClosure {
2315   outputStream* _st;
2316 public:
2317   G1PrintRegionClosure(outputStream* st) : _st(st) {}
2318   bool do_heap_region(G1HeapRegion* r) {
2319     r->print_on(_st);
2320     return false;
2321   }
2322 };
2323 
2324 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2325                                        const G1HeapRegion* hr,
2326                                        const VerifyOption vo) const {
2327   switch (vo) {
2328     case VerifyOption::G1UseConcMarking: return is_obj_dead(obj, hr);
2329     case VerifyOption::G1UseFullMarking: return is_obj_dead_full(obj, hr);
2330     default:                             ShouldNotReachHere();
2331   }
2332   return false; // keep some compilers happy
2333 }
2334 
2335 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2336                                        const VerifyOption vo) const {
2337   switch (vo) {
2338     case VerifyOption::G1UseConcMarking: return is_obj_dead(obj);
2339     case VerifyOption::G1UseFullMarking: return is_obj_dead_full(obj);
2340     default:                             ShouldNotReachHere();
2341   }
2342   return false; // keep some compilers happy
2343 }
2344 
2345 void G1CollectedHeap::print_heap_regions() const {
2346   LogTarget(Trace, gc, heap, region) lt;
2347   if (lt.is_enabled()) {
2348     LogStream ls(lt);
2349     print_regions_on(&ls);
2350   }
2351 }
2352 
2353 static void print_region_type(outputStream* st, const char* type, uint count, bool last = false) {
2354   st->print("%u %s (%zuM)%s", count, type, count * G1HeapRegion::GrainBytes / M, last ? "\n" : ", ");
2355 }
2356 
2357 void G1CollectedHeap::print_heap_on(outputStream* st) const {
2358   size_t heap_used = (Thread::current_or_null_safe() != nullptr &&
2359                       Heap_lock->owned_by_self()) ? used() : used_unlocked();
2360   st->print("%-20s", "garbage-first heap");
2361   st->print(" total reserved %zuK, committed %zuK, used %zuK",
2362             _hrm.reserved().byte_size()/K, capacity()/K, heap_used/K);
2363   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ")",
2364             p2i(_hrm.reserved().start()),
2365             p2i(_hrm.reserved().end()));
2366   st->cr();
2367 
2368   StreamIndentor si(st, 1);
2369   st->print("region size %zuM, ", G1HeapRegion::GrainBytes / M);
2370   print_region_type(st, "eden", eden_regions_count());
2371   print_region_type(st, "survivor", survivor_regions_count());
2372   print_region_type(st, "old", old_regions_count());
2373   print_region_type(st, "humongous", humongous_regions_count());
2374   print_region_type(st, "free", num_free_regions(), true /* last */);
2375 
2376   if (_numa->is_enabled()) {
2377     uint num_nodes = _numa->num_active_nodes();
2378     st->print("remaining free region(s) on each NUMA node: ");
2379     const uint* node_ids = _numa->node_ids();
2380     for (uint node_index = 0; node_index < num_nodes; node_index++) {
2381       uint num_free_regions = _hrm.num_free_regions(node_index);
2382       st->print("%u=%u ", node_ids[node_index], num_free_regions);
2383     }
2384     st->cr();
2385   }
2386 }
2387 
2388 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2389   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2390                "HS=humongous(starts), HC=humongous(continues), "
2391                "CS=collection set, F=free, "
2392                "TAMS=top-at-mark-start, "
2393                "PB=parsable bottom");
2394   G1PrintRegionClosure blk(st);
2395   heap_region_iterate(&blk);
2396 }
2397 
2398 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2399   print_heap_on(st);
2400 
2401   // Print the per-region information.
2402   st->cr();
2403   print_regions_on(st);
2404 }
2405 
2406 void G1CollectedHeap::print_gc_on(outputStream* st) const {
2407   // Print the per-region information.
2408   print_regions_on(st);
2409   st->cr();
2410 
2411   BarrierSet* bs = BarrierSet::barrier_set();
2412   if (bs != nullptr) {
2413     bs->print_on(st);
2414   }
2415 
2416   if (_cm != nullptr) {
2417     st->cr();
2418     _cm->print_on(st);
2419   }
2420 }
2421 
2422 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2423   workers()->threads_do(tc);
2424   tc->do_thread(_cm_thread);
2425   _cm->threads_do(tc);
2426   _cr->threads_do(tc);
2427   tc->do_thread(_service_thread);
2428 }
2429 
2430 void G1CollectedHeap::print_tracing_info() const {
2431   rem_set()->print_summary_info();
2432   concurrent_mark()->print_summary_info();
2433 }
2434 
2435 bool G1CollectedHeap::print_location(outputStream* st, void* addr) const {
2436   return BlockLocationPrinter<G1CollectedHeap>::print_location(st, addr);
2437 }
2438 
2439 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2440 
2441   size_t eden_used_bytes = _monitoring_support->eden_space_used();
2442   size_t survivor_used_bytes = _monitoring_support->survivor_space_used();
2443   size_t old_gen_used_bytes = _monitoring_support->old_gen_used();
2444   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2445 
2446   size_t eden_capacity_bytes =
2447     (policy()->young_list_target_length() * G1HeapRegion::GrainBytes) - survivor_used_bytes;
2448 
2449   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2450   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes, eden_capacity_bytes,
2451                        survivor_used_bytes, old_gen_used_bytes, num_committed_regions());
2452 }
2453 
2454 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2455   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2456                        stats->unused(), stats->used(), stats->region_end_waste(),
2457                        stats->regions_filled(), stats->num_plab_filled(),
2458                        stats->direct_allocated(), stats->num_direct_allocated(),
2459                        stats->failure_used(), stats->failure_waste());
2460 }
2461 
2462 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2463   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2464   gc_tracer->report_gc_heap_summary(when, heap_summary);
2465 
2466   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2467   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2468 }
2469 
2470 void G1CollectedHeap::gc_prologue(bool full) {
2471   // Update common counters.
2472   increment_total_collections(full /* full gc */);
2473   if (full || collector_state()->in_concurrent_start_gc()) {
2474     increment_old_marking_cycles_started();
2475   }
2476 }
2477 
2478 void G1CollectedHeap::gc_epilogue(bool full) {
2479   // Update common counters.
2480   if (full) {
2481     // Update the number of full collections that have been completed.
2482     increment_old_marking_cycles_completed(false /* concurrent */, true /* liveness_completed */);
2483   }
2484 
2485 #if COMPILER2_OR_JVMCI
2486   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2487 #endif
2488 
2489   // We have just completed a GC. Update the soft reference
2490   // policy with the new heap occupancy
2491   Universe::heap()->update_capacity_and_used_at_gc();
2492 
2493   _collection_pause_end = Ticks::now();
2494 
2495   _free_arena_memory_task->notify_new_stats(&_young_gen_card_set_stats,
2496                                             &_collection_set_candidates_card_set_stats);
2497 
2498   update_perf_counter_cpu_time();
2499   _refinement_epoch++;
2500 }
2501 
2502 uint G1CollectedHeap::uncommit_regions(uint region_limit) {
2503   return _hrm.uncommit_inactive_regions(region_limit);
2504 }
2505 
2506 bool G1CollectedHeap::has_uncommittable_regions() {
2507   return _hrm.has_inactive_regions();
2508 }
2509 
2510 void G1CollectedHeap::uncommit_regions_if_necessary() {
2511   if (has_uncommittable_regions()) {
2512     G1UncommitRegionTask::enqueue();
2513   }
2514 }
2515 
2516 void G1CollectedHeap::verify_numa_regions(const char* desc) {
2517   LogTarget(Trace, gc, heap, verify) lt;
2518 
2519   if (lt.is_enabled()) {
2520     LogStream ls(lt);
2521     // Iterate all heap regions to print matching between preferred numa id and actual numa id.
2522     G1NodeIndexCheckClosure cl(desc, _numa, &ls);
2523     heap_region_iterate(&cl);
2524   }
2525 }
2526 
2527 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2528                                                uint gc_count_before,
2529                                                bool* succeeded,
2530                                                GCCause::Cause gc_cause) {
2531   assert_heap_not_locked_and_not_at_safepoint();
2532   VM_G1CollectForAllocation op(word_size, gc_count_before, gc_cause);
2533   VMThread::execute(&op);
2534 
2535   HeapWord* result = op.result();
2536   *succeeded = op.gc_succeeded();
2537   assert(result == nullptr || *succeeded,
2538          "the result should be null if the VM did not succeed");
2539 
2540   assert_heap_not_locked();
2541   return result;
2542 }
2543 
2544 void G1CollectedHeap::start_concurrent_cycle(bool concurrent_operation_is_full_mark) {
2545   assert(!_cm_thread->in_progress(), "Can not start concurrent operation while in progress");
2546 
2547   MutexLocker x(G1CGC_lock, Mutex::_no_safepoint_check_flag);
2548   if (concurrent_operation_is_full_mark) {
2549     _cm->post_concurrent_mark_start();
2550     _cm_thread->start_full_mark();
2551   } else {
2552     _cm->post_concurrent_undo_start();
2553     _cm_thread->start_undo_mark();
2554   }
2555   G1CGC_lock->notify();
2556 }
2557 
2558 bool G1CollectedHeap::is_potential_eager_reclaim_candidate(G1HeapRegion* r) const {
2559   // We don't nominate objects with many remembered set entries, on
2560   // the assumption that such objects are likely still live.
2561   G1HeapRegionRemSet* rem_set = r->rem_set();
2562 
2563   return rem_set->occupancy_less_or_equal_than(G1EagerReclaimRemSetThreshold);
2564 }
2565 
2566 #ifndef PRODUCT
2567 void G1CollectedHeap::verify_region_attr_is_remset_tracked() {
2568   class VerifyRegionAttrRemSet : public G1HeapRegionClosure {
2569   public:
2570     virtual bool do_heap_region(G1HeapRegion* r) {
2571       G1CollectedHeap* g1h = G1CollectedHeap::heap();
2572       G1HeapRegionAttr attr = g1h->region_attr(r->bottom());
2573       bool const is_remset_tracked = attr.is_remset_tracked();
2574       assert((r->rem_set()->is_tracked() == is_remset_tracked) ||
2575              (attr.is_new_survivor() && is_remset_tracked),
2576              "Region %u (%s) remset tracking status (%s) different to region attribute (%s)",
2577              r->hrm_index(), r->get_type_str(), BOOL_TO_STR(r->rem_set()->is_tracked()), BOOL_TO_STR(is_remset_tracked));
2578       return false;
2579     }
2580   } cl;
2581   heap_region_iterate(&cl);
2582 }
2583 #endif
2584 
2585 void G1CollectedHeap::update_perf_counter_cpu_time() {
2586   assert(Thread::current()->is_VM_thread(),
2587          "Must be called from VM thread to avoid races");
2588   if (!UsePerfData) {
2589     return;
2590   }
2591 
2592   // Ensure ThreadTotalCPUTimeClosure destructor is called before publishing gc
2593   // time.
2594   {
2595     ThreadTotalCPUTimeClosure tttc(CPUTimeGroups::CPUTimeType::gc_parallel_workers);
2596     // Currently parallel worker threads never terminate (JDK-8081682), so it is
2597     // safe for VMThread to read their CPU times. However, if JDK-8087340 is
2598     // resolved so they terminate, we should rethink if it is still safe.
2599     workers()->threads_do(&tttc);
2600   }
2601 
2602   CPUTimeCounters::publish_gc_total_cpu_time();
2603 }
2604 
2605 void G1CollectedHeap::start_new_collection_set() {
2606   collection_set()->start();
2607 
2608   clear_region_attr();
2609 
2610   guarantee(_eden.length() == 0, "eden should have been cleared");
2611   policy()->transfer_survivors_to_cset(survivor());
2612 
2613   // We redo the verification but now wrt to the new CSet which
2614   // has just got initialized after the previous CSet was freed.
2615   _cm->verify_no_collection_set_oops();
2616 }
2617 
2618 void G1CollectedHeap::verify_before_young_collection(G1HeapVerifier::G1VerifyType type) {
2619   if (!VerifyBeforeGC) {
2620     return;
2621   }
2622   if (!G1HeapVerifier::should_verify(type)) {
2623     return;
2624   }
2625   Ticks start = Ticks::now();
2626   _verifier->prepare_for_verify();
2627   _verifier->verify_region_sets_optional();
2628   _verifier->verify_before_gc();
2629   verify_numa_regions("GC Start");
2630   phase_times()->record_verify_before_time_ms((Ticks::now() - start).seconds() * MILLIUNITS);
2631 }
2632 
2633 void G1CollectedHeap::verify_after_young_collection(G1HeapVerifier::G1VerifyType type) {
2634   if (!VerifyAfterGC) {
2635     return;
2636   }
2637   if (!G1HeapVerifier::should_verify(type)) {
2638     return;
2639   }
2640   Ticks start = Ticks::now();
2641   _verifier->verify_after_gc();
2642   verify_numa_regions("GC End");
2643   _verifier->verify_region_sets_optional();
2644 
2645   if (collector_state()->in_concurrent_start_gc()) {
2646     log_debug(gc, verify)("Marking state");
2647     _verifier->verify_marking_state();
2648   }
2649   _verifier->verify_free_regions_card_tables_clean();
2650 
2651   phase_times()->record_verify_after_time_ms((Ticks::now() - start).seconds() * MILLIUNITS);
2652 }
2653 
2654 G1HeapPrinterMark::G1HeapPrinterMark(G1CollectedHeap* g1h) : _g1h(g1h), _heap_transition(g1h) {
2655   // This summary needs to be printed before incrementing total collections.
2656   _g1h->rem_set()->print_periodic_summary_info("Before GC RS summary",
2657                                                _g1h->total_collections(),
2658                                                true /* show_thread_times */);
2659   _g1h->print_before_gc();
2660   _g1h->print_heap_regions();
2661 }
2662 
2663 G1HeapPrinterMark::~G1HeapPrinterMark() {
2664   _g1h->policy()->print_age_table();
2665   _g1h->rem_set()->print_coarsen_stats();
2666   // We are at the end of the GC. Total collections has already been increased.
2667   _g1h->rem_set()->print_periodic_summary_info("After GC RS summary",
2668                                                _g1h->total_collections() - 1,
2669                                                false /* show_thread_times */);
2670 
2671   _heap_transition.print();
2672   _g1h->print_heap_regions();
2673   _g1h->print_after_gc();
2674   // Print NUMA statistics.
2675   _g1h->numa()->print_statistics();
2676 }
2677 
2678 G1JFRTracerMark::G1JFRTracerMark(STWGCTimer* timer, GCTracer* tracer) :
2679   _timer(timer), _tracer(tracer) {
2680 
2681   _timer->register_gc_start();
2682   _tracer->report_gc_start(G1CollectedHeap::heap()->gc_cause(), _timer->gc_start());
2683   G1CollectedHeap::heap()->trace_heap_before_gc(_tracer);
2684 }
2685 
2686 G1JFRTracerMark::~G1JFRTracerMark() {
2687   G1CollectedHeap::heap()->trace_heap_after_gc(_tracer);
2688   _timer->register_gc_end();
2689   _tracer->report_gc_end(_timer->gc_end(), _timer->time_partitions());
2690 }
2691 
2692 void G1CollectedHeap::prepare_for_mutator_after_young_collection() {
2693   Ticks start = Ticks::now();
2694 
2695   _survivor_evac_stats.adjust_desired_plab_size();
2696   _old_evac_stats.adjust_desired_plab_size();
2697 
2698   // Start a new incremental collection set for the mutator phase.
2699   start_new_collection_set();
2700   _allocator->init_mutator_alloc_regions();
2701 
2702   phase_times()->record_prepare_for_mutator_time_ms((Ticks::now() - start).seconds() * 1000.0);
2703 }
2704 
2705 void G1CollectedHeap::retire_tlabs() {
2706   ensure_parsability(true);
2707 }
2708 
2709 void G1CollectedHeap::flush_region_pin_cache() {
2710   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *thread = jtiwh.next(); ) {
2711     G1ThreadLocalData::pin_count_cache(thread).flush();
2712   }
2713 }
2714 
2715 void G1CollectedHeap::do_collection_pause_at_safepoint(size_t allocation_word_size) {
2716   assert_at_safepoint_on_vm_thread();
2717   assert(!is_stw_gc_active(), "collection is not reentrant");
2718 
2719   ResourceMark rm;
2720 
2721   IsSTWGCActiveMark active_gc_mark;
2722   GCIdMark gc_id_mark;
2723   SvcGCMarker sgcm(SvcGCMarker::MINOR);
2724 
2725   GCTraceCPUTime tcpu(_gc_tracer_stw);
2726 
2727   _bytes_used_during_gc = 0;
2728 
2729   policy()->decide_on_concurrent_start_pause();
2730   // Record whether this pause may need to trigger a concurrent operation. Later,
2731   // when we signal the G1ConcurrentMarkThread, the collector state has already
2732   // been reset for the next pause.
2733   bool should_start_concurrent_mark_operation = collector_state()->in_concurrent_start_gc();
2734 
2735   // Perform the collection.
2736   G1YoungCollector collector(gc_cause(), allocation_word_size);
2737   collector.collect();
2738 
2739   // It should now be safe to tell the concurrent mark thread to start
2740   // without its logging output interfering with the logging output
2741   // that came from the pause.
2742   if (should_start_concurrent_mark_operation) {
2743     verifier()->verify_bitmap_clear(true /* above_tams_only */);
2744     // CAUTION: after the start_concurrent_cycle() call below, the concurrent marking
2745     // thread(s) could be running concurrently with us. Make sure that anything
2746     // after this point does not assume that we are the only GC thread running.
2747     // Note: of course, the actual marking work will not start until the safepoint
2748     // itself is released in SuspendibleThreadSet::desynchronize().
2749     start_concurrent_cycle(collector.concurrent_operation_is_full_mark());
2750     ConcurrentGCBreakpoints::notify_idle_to_active();
2751   }
2752 }
2753 
2754 void G1CollectedHeap::complete_cleaning(bool class_unloading_occurred) {
2755   G1ParallelCleaningTask unlink_task(class_unloading_occurred);
2756   workers()->run_task(&unlink_task);
2757 }
2758 
2759 void G1CollectedHeap::unload_classes_and_code(const char* description, BoolObjectClosure* is_alive, GCTimer* timer) {
2760   GCTraceTime(Debug, gc, phases) debug(description, timer);
2761 
2762   ClassUnloadingContext ctx(workers()->active_workers(),
2763                             false /* unregister_nmethods_during_purge */,
2764                             false /* lock_nmethod_free_separately */);
2765   {
2766     CodeCache::UnlinkingScope scope(is_alive);
2767     bool unloading_occurred = SystemDictionary::do_unloading(timer);
2768     GCTraceTime(Debug, gc, phases) t("G1 Complete Cleaning", timer);
2769     complete_cleaning(unloading_occurred);
2770   }
2771   {
2772     GCTraceTime(Debug, gc, phases) t("Purge Unlinked NMethods", timer);
2773     ctx.purge_nmethods();
2774   }
2775   {
2776     GCTraceTime(Debug, gc, phases) ur("Unregister NMethods", timer);
2777     G1CollectedHeap::heap()->bulk_unregister_nmethods();
2778   }
2779   {
2780     GCTraceTime(Debug, gc, phases) t("Free Code Blobs", timer);
2781     ctx.free_nmethods();
2782   }
2783   {
2784     GCTraceTime(Debug, gc, phases) t("Purge Class Loader Data", timer);
2785     ClassLoaderDataGraph::purge(true /* at_safepoint */);
2786     DEBUG_ONLY(MetaspaceUtils::verify();)
2787   }
2788 }
2789 
2790 class G1BulkUnregisterNMethodTask : public WorkerTask {
2791   G1HeapRegionClaimer _hrclaimer;
2792 
2793   class UnregisterNMethodsHeapRegionClosure : public G1HeapRegionClosure {
2794   public:
2795 
2796     bool do_heap_region(G1HeapRegion* hr) {
2797       hr->rem_set()->bulk_remove_code_roots();
2798       return false;
2799     }
2800   } _cl;
2801 
2802 public:
2803   G1BulkUnregisterNMethodTask(uint num_workers)
2804   : WorkerTask("G1 Remove Unlinked NMethods From Code Root Set Task"),
2805     _hrclaimer(num_workers) { }
2806 
2807   void work(uint worker_id) {
2808     G1CollectedHeap::heap()->heap_region_par_iterate_from_worker_offset(&_cl, &_hrclaimer, worker_id);
2809   }
2810 };
2811 
2812 void G1CollectedHeap::bulk_unregister_nmethods() {
2813   uint num_workers = workers()->active_workers();
2814   G1BulkUnregisterNMethodTask t(num_workers);
2815   workers()->run_task(&t);
2816 }
2817 
2818 bool G1STWSubjectToDiscoveryClosure::do_object_b(oop obj) {
2819   assert(obj != nullptr, "must not be null");
2820   assert(_g1h->is_in_reserved(obj), "Trying to discover obj " PTR_FORMAT " not in heap", p2i(obj));
2821   // The areas the CM and STW ref processor manage must be disjoint. The is_in_cset() below
2822   // may falsely indicate that this is not the case here: however the collection set only
2823   // contains old regions when concurrent mark is not running.
2824   return _g1h->is_in_cset(obj) || _g1h->heap_region_containing(obj)->is_survivor();
2825 }
2826 
2827 void G1CollectedHeap::make_pending_list_reachable() {
2828   if (collector_state()->in_concurrent_start_gc()) {
2829     oop pll_head = Universe::reference_pending_list();
2830     if (pll_head != nullptr) {
2831       // Any valid worker id is fine here as we are in the VM thread and single-threaded.
2832       _cm->mark_in_bitmap(0 /* worker_id */, pll_head);
2833     }
2834   }
2835 }
2836 
2837 void G1CollectedHeap::set_humongous_stats(uint num_humongous_total, uint num_humongous_candidates) {
2838   _num_humongous_objects = num_humongous_total;
2839   _num_humongous_reclaim_candidates = num_humongous_candidates;
2840 }
2841 
2842 bool G1CollectedHeap::should_sample_collection_set_candidates() const {
2843   const G1CollectionSetCandidates* candidates = collection_set()->candidates();
2844   return !candidates->is_empty();
2845 }
2846 
2847 void G1CollectedHeap::set_collection_set_candidates_stats(G1MonotonicArenaMemoryStats& stats) {
2848   _collection_set_candidates_card_set_stats = stats;
2849 }
2850 
2851 void G1CollectedHeap::set_young_gen_card_set_stats(const G1MonotonicArenaMemoryStats& stats) {
2852   _young_gen_card_set_stats = stats;
2853 }
2854 
2855 void G1CollectedHeap::record_obj_copy_mem_stats() {
2856   size_t total_old_allocated = _old_evac_stats.allocated() + _old_evac_stats.direct_allocated();
2857   uint total_allocated = _survivor_evac_stats.regions_filled() + _old_evac_stats.regions_filled();
2858 
2859   log_debug(gc)("Allocated %u survivor %u old percent total %1.2f%% (%u%%)",
2860                 _survivor_evac_stats.regions_filled(), _old_evac_stats.regions_filled(),
2861                 percent_of(total_allocated, num_committed_regions() - total_allocated),
2862                 G1ReservePercent);
2863 
2864   policy()->old_gen_alloc_tracker()->
2865     add_allocated_bytes_since_last_gc(total_old_allocated * HeapWordSize);
2866 
2867   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
2868                                                create_g1_evac_summary(&_old_evac_stats));
2869 }
2870 
2871 void G1CollectedHeap::clear_bitmap_for_region(G1HeapRegion* hr) {
2872   concurrent_mark()->clear_bitmap_for_region(hr);
2873 }
2874 
2875 void G1CollectedHeap::free_region(G1HeapRegion* hr, G1FreeRegionList* free_list) {
2876   assert(!hr->is_free(), "the region should not be free");
2877   assert(!hr->is_empty(), "the region should not be empty");
2878   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
2879   assert(!hr->has_pinned_objects(),
2880          "must not free a region which contains pinned objects");
2881 
2882   // Reset region metadata to allow reuse.
2883   hr->hr_clear(true /* clear_space */);
2884   _policy->remset_tracker()->update_at_free(hr);
2885 
2886   if (free_list != nullptr) {
2887     free_list->add_ordered(hr);
2888   }
2889   if (VerifyDuringGC) {
2890     // Card and refinement table must be clear for freed regions.
2891     card_table()->verify_region(MemRegion(hr->bottom(), hr->end()), G1CardTable::clean_card_val(), true);
2892     refinement_table()->verify_region(MemRegion(hr->bottom(), hr->end()), G1CardTable::clean_card_val(), true);
2893   }
2894 }
2895 
2896 void G1CollectedHeap::retain_region(G1HeapRegion* hr) {
2897   MutexLocker x(G1RareEvent_lock, Mutex::_no_safepoint_check_flag);
2898   collection_set()->candidates()->add_retained_region_unsorted(hr);
2899 }
2900 
2901 void G1CollectedHeap::free_humongous_region(G1HeapRegion* hr,
2902                                             G1FreeRegionList* free_list) {
2903   assert(hr->is_humongous(), "this is only for humongous regions");
2904   hr->clear_humongous();
2905   free_region(hr, free_list);
2906 }
2907 
2908 void G1CollectedHeap::remove_from_old_gen_sets(const uint old_regions_removed,
2909                                                const uint humongous_regions_removed) {
2910   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
2911     MutexLocker x(G1OldSets_lock, Mutex::_no_safepoint_check_flag);
2912     _old_set.bulk_remove(old_regions_removed);
2913     _humongous_set.bulk_remove(humongous_regions_removed);
2914   }
2915 
2916 }
2917 
2918 void G1CollectedHeap::prepend_to_freelist(G1FreeRegionList* list) {
2919   assert(list != nullptr, "list can't be null");
2920   if (!list->is_empty()) {
2921     MutexLocker x(G1FreeList_lock, Mutex::_no_safepoint_check_flag);
2922     _hrm.insert_list_into_free_list(list);
2923   }
2924 }
2925 
2926 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
2927   decrease_used(bytes);
2928 }
2929 
2930 void G1CollectedHeap::clear_eden() {
2931   _eden.clear();
2932 }
2933 
2934 void G1CollectedHeap::clear_collection_set() {
2935   collection_set()->clear();
2936 }
2937 
2938 void G1CollectedHeap::rebuild_free_region_list() {
2939   Ticks start = Ticks::now();
2940   _hrm.rebuild_free_list(workers());
2941   phase_times()->record_total_rebuild_freelist_time_ms((Ticks::now() - start).seconds() * 1000.0);
2942 }
2943 
2944 class G1AbandonCollectionSetClosure : public G1HeapRegionClosure {
2945 public:
2946   virtual bool do_heap_region(G1HeapRegion* r) {
2947     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
2948     G1CollectedHeap::heap()->clear_region_attr(r);
2949     r->clear_young_index_in_cset();
2950     return false;
2951   }
2952 };
2953 
2954 void G1CollectedHeap::abandon_collection_set() {
2955   G1AbandonCollectionSetClosure cl;
2956   collection_set_iterate_all(&cl);
2957 
2958   collection_set()->abandon();
2959 }
2960 
2961 size_t G1CollectedHeap::non_young_occupancy_after_allocation(size_t allocation_word_size) {
2962   const size_t cur_occupancy = (old_regions_count() + humongous_regions_count()) * G1HeapRegion::GrainBytes -
2963                                _allocator->free_bytes_in_retained_old_region();
2964   // Humongous allocations will always be assigned to non-young heap, so consider
2965   // that allocation in the result as well. Otherwise the allocation will always
2966   // be in young gen, so there is no need to account it here.
2967   return cur_occupancy + (is_humongous(allocation_word_size) ? allocation_used_bytes(allocation_word_size) : 0);
2968 }
2969 
2970 bool G1CollectedHeap::is_old_gc_alloc_region(G1HeapRegion* hr) {
2971   return _allocator->is_retained_old_region(hr);
2972 }
2973 
2974 #ifdef ASSERT
2975 
2976 class NoYoungRegionsClosure: public G1HeapRegionClosure {
2977 private:
2978   bool _success;
2979 public:
2980   NoYoungRegionsClosure() : _success(true) { }
2981   bool do_heap_region(G1HeapRegion* r) {
2982     if (r->is_young()) {
2983       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
2984                             p2i(r->bottom()), p2i(r->end()));
2985       _success = false;
2986     }
2987     return false;
2988   }
2989   bool success() { return _success; }
2990 };
2991 
2992 bool G1CollectedHeap::check_young_list_empty() {
2993   bool ret = (young_regions_count() == 0);
2994 
2995   NoYoungRegionsClosure closure;
2996   heap_region_iterate(&closure);
2997   ret = ret && closure.success();
2998 
2999   return ret;
3000 }
3001 
3002 #endif // ASSERT
3003 
3004 // Remove the given G1HeapRegion from the appropriate region set.
3005 void G1CollectedHeap::prepare_region_for_full_compaction(G1HeapRegion* hr) {
3006   if (hr->is_humongous()) {
3007     _humongous_set.remove(hr);
3008   } else if (hr->is_old()) {
3009     _old_set.remove(hr);
3010   } else if (hr->is_young()) {
3011     // Note that emptying the eden and survivor lists is postponed and instead
3012     // done as the first step when rebuilding the regions sets again. The reason
3013     // for this is that during a full GC string deduplication needs to know if
3014     // a collected region was young or old when the full GC was initiated.
3015     hr->uninstall_surv_rate_group();
3016   } else {
3017     // We ignore free regions, we'll empty the free list afterwards.
3018     assert(hr->is_free(), "it cannot be another type");
3019   }
3020 }
3021 
3022 void G1CollectedHeap::increase_used(size_t bytes) {
3023   _summary_bytes_used += bytes;
3024 }
3025 
3026 void G1CollectedHeap::decrease_used(size_t bytes) {
3027   assert(_summary_bytes_used >= bytes,
3028          "invariant: _summary_bytes_used: %zu should be >= bytes: %zu",
3029          _summary_bytes_used, bytes);
3030   _summary_bytes_used -= bytes;
3031 }
3032 
3033 void G1CollectedHeap::set_used(size_t bytes) {
3034   _summary_bytes_used = bytes;
3035 }
3036 
3037 class RebuildRegionSetsClosure : public G1HeapRegionClosure {
3038 private:
3039   bool _free_list_only;
3040 
3041   G1HeapRegionSet* _old_set;
3042   G1HeapRegionSet* _humongous_set;
3043 
3044   G1HeapRegionManager* _hrm;
3045 
3046   size_t _total_used;
3047 
3048 public:
3049   RebuildRegionSetsClosure(bool free_list_only,
3050                            G1HeapRegionSet* old_set,
3051                            G1HeapRegionSet* humongous_set,
3052                            G1HeapRegionManager* hrm) :
3053     _free_list_only(free_list_only), _old_set(old_set),
3054     _humongous_set(humongous_set), _hrm(hrm), _total_used(0) {
3055     assert(_hrm->num_free_regions() == 0, "pre-condition");
3056     if (!free_list_only) {
3057       assert(_old_set->is_empty(), "pre-condition");
3058       assert(_humongous_set->is_empty(), "pre-condition");
3059     }
3060   }
3061 
3062   bool do_heap_region(G1HeapRegion* r) {
3063     if (r->is_empty()) {
3064       assert(r->rem_set()->is_empty(), "Empty regions should have empty remembered sets.");
3065       // Add free regions to the free list
3066       r->set_free();
3067       _hrm->insert_into_free_list(r);
3068     } else if (!_free_list_only) {
3069       assert(r->rem_set()->is_empty(), "At this point remembered sets must have been cleared.");
3070 
3071       if (r->is_humongous()) {
3072         _humongous_set->add(r);
3073       } else {
3074         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
3075         // We now move all (non-humongous, non-old) regions to old gen,
3076         // and register them as such.
3077         r->move_to_old();
3078         _old_set->add(r);
3079       }
3080       _total_used += r->used();
3081     }
3082 
3083     return false;
3084   }
3085 
3086   size_t total_used() {
3087     return _total_used;
3088   }
3089 };
3090 
3091 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
3092   assert_at_safepoint_on_vm_thread();
3093 
3094   if (!free_list_only) {
3095     _eden.clear();
3096     _survivor.clear();
3097   }
3098 
3099   RebuildRegionSetsClosure cl(free_list_only,
3100                               &_old_set, &_humongous_set,
3101                               &_hrm);
3102   heap_region_iterate(&cl);
3103 
3104   if (!free_list_only) {
3105     set_used(cl.total_used());
3106   }
3107   assert_used_and_recalculate_used_equal(this);
3108 }
3109 
3110 // Methods for the mutator alloc region
3111 
3112 G1HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
3113                                                       uint node_index) {
3114   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
3115   bool should_allocate = policy()->should_allocate_mutator_region();
3116   if (should_allocate) {
3117     G1HeapRegion* new_alloc_region = new_region(word_size,
3118                                                 G1HeapRegionType::Eden,
3119                                                 policy()->should_expand_on_mutator_allocation() /* do_expand */,
3120                                                 node_index);
3121     if (new_alloc_region != nullptr) {
3122       new_alloc_region->set_eden();
3123       _eden.add(new_alloc_region);
3124       _policy->set_region_eden(new_alloc_region);
3125 
3126       collection_set()->add_eden_region(new_alloc_region);
3127       G1HeapRegionPrinter::alloc(new_alloc_region);
3128       return new_alloc_region;
3129     }
3130   }
3131   return nullptr;
3132 }
3133 
3134 void G1CollectedHeap::retire_mutator_alloc_region(G1HeapRegion* alloc_region,
3135                                                   size_t allocated_bytes) {
3136   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
3137   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
3138 
3139   increase_used(allocated_bytes);
3140   _eden.add_used_bytes(allocated_bytes);
3141   G1HeapRegionPrinter::retire(alloc_region);
3142 
3143   // We update the eden sizes here, when the region is retired,
3144   // instead of when it's allocated, since this is the point that its
3145   // used space has been recorded in _summary_bytes_used.
3146   monitoring_support()->update_eden_size();
3147 }
3148 
3149 // Methods for the GC alloc regions
3150 
3151 bool G1CollectedHeap::has_more_regions(G1HeapRegionAttr dest) {
3152   if (dest.is_old()) {
3153     return true;
3154   } else {
3155     return survivor_regions_count() < policy()->max_survivor_regions();
3156   }
3157 }
3158 
3159 G1HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, G1HeapRegionAttr dest, uint node_index) {
3160   assert(G1FreeList_lock->owned_by_self(), "pre-condition");
3161 
3162   if (!has_more_regions(dest)) {
3163     return nullptr;
3164   }
3165 
3166   G1HeapRegionType type;
3167   if (dest.is_young()) {
3168     type = G1HeapRegionType::Survivor;
3169   } else {
3170     type = G1HeapRegionType::Old;
3171   }
3172 
3173   G1HeapRegion* new_alloc_region = new_region(word_size,
3174                                               type,
3175                                               true /* do_expand */,
3176                                               node_index);
3177 
3178   if (new_alloc_region != nullptr) {
3179     if (type.is_survivor()) {
3180       new_alloc_region->set_survivor();
3181       _survivor.add(new_alloc_region);
3182       // The remembered set/group cardset for this region will be installed at the
3183       // end of GC. Cannot do that right now because we still need the current young
3184       // gen cardset group.
3185       // However, register with the attribute table to collect remembered set entries
3186       // immediately as it is the only source for determining the need for remembered
3187       // set tracking during GC.
3188       register_new_survivor_region_with_region_attr(new_alloc_region);
3189     } else {
3190       new_alloc_region->set_old();
3191       // Update remembered set/cardset.
3192       _policy->remset_tracker()->update_at_allocate(new_alloc_region);
3193       // Synchronize with region attribute table.
3194       update_region_attr(new_alloc_region);
3195     }
3196     G1HeapRegionPrinter::alloc(new_alloc_region);
3197     return new_alloc_region;
3198   }
3199   return nullptr;
3200 }
3201 
3202 void G1CollectedHeap::retire_gc_alloc_region(G1HeapRegion* alloc_region,
3203                                              size_t allocated_bytes,
3204                                              G1HeapRegionAttr dest) {
3205   _bytes_used_during_gc += allocated_bytes;
3206   if (dest.is_old()) {
3207     old_set_add(alloc_region);
3208   } else {
3209     assert(dest.is_young(), "Retiring alloc region should be young (%d)", dest.type());
3210     _survivor.add_used_bytes(allocated_bytes);
3211   }
3212 
3213   bool const during_im = collector_state()->in_concurrent_start_gc();
3214   if (during_im && allocated_bytes > 0) {
3215     _cm->add_root_region(alloc_region);
3216   }
3217   G1HeapRegionPrinter::retire(alloc_region);
3218 }
3219 
3220 void G1CollectedHeap::mark_evac_failure_object(uint worker_id, const oop obj, size_t obj_size) const {
3221   assert(!_cm->is_marked_in_bitmap(obj), "must be");
3222 
3223   _cm->raw_mark_in_bitmap(obj);
3224 }
3225 
3226 // Optimized nmethod scanning
3227 class RegisterNMethodOopClosure: public OopClosure {
3228   G1CollectedHeap* _g1h;
3229   nmethod* _nm;
3230 
3231 public:
3232   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
3233     _g1h(g1h), _nm(nm) {}
3234 
3235   void do_oop(oop* p) {
3236     oop heap_oop = RawAccess<>::oop_load(p);
3237     if (!CompressedOops::is_null(heap_oop)) {
3238       oop obj = CompressedOops::decode_not_null(heap_oop);
3239       G1HeapRegion* hr = _g1h->heap_region_containing(obj);
3240       assert(!hr->is_continues_humongous(),
3241              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
3242              " starting at " HR_FORMAT,
3243              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
3244 
3245       hr->add_code_root(_nm);
3246     }
3247   }
3248 
3249   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
3250 };
3251 
3252 void G1CollectedHeap::register_nmethod(nmethod* nm) {
3253   guarantee(nm != nullptr, "sanity");
3254   RegisterNMethodOopClosure reg_cl(this, nm);
3255   nm->oops_do(&reg_cl);
3256   BarrierSetNMethod* bs_nm = BarrierSet::barrier_set()->barrier_set_nmethod();
3257   bs_nm->disarm(nm);
3258 }
3259 
3260 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
3261   // We always unregister nmethods in bulk during code unloading only.
3262   ShouldNotReachHere();
3263 }
3264 
3265 void G1CollectedHeap::update_used_after_gc(bool evacuation_failed) {
3266   if (evacuation_failed) {
3267     set_used(recalculate_used());
3268   } else {
3269     // The "used" of the collection set have already been subtracted
3270     // when they were freed.  Add in the bytes used.
3271     increase_used(_bytes_used_during_gc);
3272   }
3273 }
3274 
3275 class RebuildCodeRootClosure: public NMethodClosure {
3276   G1CollectedHeap* _g1h;
3277 
3278 public:
3279   RebuildCodeRootClosure(G1CollectedHeap* g1h) :
3280     _g1h(g1h) {}
3281 
3282   void do_nmethod(nmethod* nm) {
3283     assert(nm != nullptr, "Sanity");
3284     _g1h->register_nmethod(nm);
3285   }
3286 };
3287 
3288 void G1CollectedHeap::rebuild_code_roots() {
3289   RebuildCodeRootClosure nmethod_cl(this);
3290   CodeCache::nmethods_do(&nmethod_cl);
3291 }
3292 
3293 void G1CollectedHeap::initialize_serviceability() {
3294   _monitoring_support->initialize_serviceability();
3295 }
3296 
3297 MemoryUsage G1CollectedHeap::memory_usage() {
3298   return _monitoring_support->memory_usage();
3299 }
3300 
3301 GrowableArray<GCMemoryManager*> G1CollectedHeap::memory_managers() {
3302   return _monitoring_support->memory_managers();
3303 }
3304 
3305 GrowableArray<MemoryPool*> G1CollectedHeap::memory_pools() {
3306   return _monitoring_support->memory_pools();
3307 }
3308 
3309 void G1CollectedHeap::fill_with_dummy_object(HeapWord* start, HeapWord* end, bool zap) {
3310   G1HeapRegion* region = heap_region_containing(start);
3311   region->fill_with_dummy_object(start, pointer_delta(end, start), zap);
3312 }
3313 
3314 void G1CollectedHeap::start_codecache_marking_cycle_if_inactive(bool concurrent_mark_start) {
3315   // We can reach here with an active code cache marking cycle either because the
3316   // previous G1 concurrent marking cycle was undone (if heap occupancy after the
3317   // concurrent start young collection was below the threshold) or aborted. See
3318   // CodeCache::on_gc_marking_cycle_finish() why this is.  We must not start a new code
3319   // cache cycle then. If we are about to start a new g1 concurrent marking cycle we
3320   // still have to arm all nmethod entry barriers. They are needed for adding oop
3321   // constants to the SATB snapshot. Full GC does not need nmethods to be armed.
3322   if (!CodeCache::is_gc_marking_cycle_active()) {
3323     CodeCache::on_gc_marking_cycle_start();
3324   }
3325   if (concurrent_mark_start) {
3326     CodeCache::arm_all_nmethods();
3327   }
3328 }
3329 
3330 void G1CollectedHeap::finish_codecache_marking_cycle() {
3331   CodeCache::on_gc_marking_cycle_finish();
3332   CodeCache::arm_all_nmethods();
3333 }