1 /*
  2  * Copyright (c) 2017, 2024, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "precompiled.hpp"
 26 #include "classfile/classLoaderDataGraph.hpp"
 27 #include "gc/g1/g1CollectedHeap.hpp"
 28 #include "gc/g1/g1FullCollector.inline.hpp"
 29 #include "gc/g1/g1FullGCAdjustTask.hpp"
 30 #include "gc/g1/g1FullGCCompactTask.hpp"
 31 #include "gc/g1/g1FullGCMarker.inline.hpp"
 32 #include "gc/g1/g1FullGCMarkTask.hpp"
 33 #include "gc/g1/g1FullGCPrepareTask.inline.hpp"
 34 #include "gc/g1/g1FullGCResetMetadataTask.hpp"
 35 #include "gc/g1/g1FullGCScope.hpp"
 36 #include "gc/g1/g1OopClosures.hpp"
 37 #include "gc/g1/g1Policy.hpp"
 38 #include "gc/g1/g1RegionMarkStatsCache.inline.hpp"
 39 #include "gc/shared/gcTraceTime.inline.hpp"
 40 #include "gc/shared/preservedMarks.inline.hpp"
 41 #include "gc/shared/classUnloadingContext.hpp"
 42 #include "gc/shared/referenceProcessor.hpp"
 43 #include "gc/shared/verifyOption.hpp"
 44 #include "gc/shared/weakProcessor.inline.hpp"
 45 #include "gc/shared/workerPolicy.hpp"
 46 #include "logging/log.hpp"
 47 #include "runtime/handles.inline.hpp"
 48 #include "utilities/debug.hpp"
 49 
 50 static void clear_and_activate_derived_pointers() {
 51 #if COMPILER2_OR_JVMCI
 52   DerivedPointerTable::clear();
 53 #endif
 54 }
 55 
 56 static void deactivate_derived_pointers() {
 57 #if COMPILER2_OR_JVMCI
 58   DerivedPointerTable::set_active(false);
 59 #endif
 60 }
 61 
 62 static void update_derived_pointers() {
 63 #if COMPILER2_OR_JVMCI
 64   DerivedPointerTable::update_pointers();
 65 #endif
 66 }
 67 
 68 G1CMBitMap* G1FullCollector::mark_bitmap() {
 69   return _heap->concurrent_mark()->mark_bitmap();
 70 }
 71 
 72 ReferenceProcessor* G1FullCollector::reference_processor() {
 73   return _heap->ref_processor_stw();
 74 }
 75 
 76 uint G1FullCollector::calc_active_workers() {
 77   G1CollectedHeap* heap = G1CollectedHeap::heap();
 78   uint max_worker_count = heap->workers()->max_workers();
 79   // Only calculate number of workers if UseDynamicNumberOfGCThreads
 80   // is enabled, otherwise use max.
 81   if (!UseDynamicNumberOfGCThreads) {
 82     return max_worker_count;
 83   }
 84 
 85   // Consider G1HeapWastePercent to decide max number of workers. Each worker
 86   // will in average cause half a region waste.
 87   uint max_wasted_regions_allowed = ((heap->num_regions() * G1HeapWastePercent) / 100);
 88   uint waste_worker_count = MAX2((max_wasted_regions_allowed * 2) , 1u);
 89   uint heap_waste_worker_limit = MIN2(waste_worker_count, max_worker_count);
 90 
 91   // Also consider HeapSizePerGCThread by calling WorkerPolicy to calculate
 92   // the number of workers.
 93   uint current_active_workers = heap->workers()->active_workers();
 94   uint active_worker_limit = WorkerPolicy::calc_active_workers(max_worker_count, current_active_workers, 0);
 95 
 96   // Finally consider the amount of used regions.
 97   uint used_worker_limit = heap->num_used_regions();
 98   assert(used_worker_limit > 0, "Should never have zero used regions.");
 99 
100   // Update active workers to the lower of the limits.
101   uint worker_count = MIN3(heap_waste_worker_limit, active_worker_limit, used_worker_limit);
102   log_debug(gc, task)("Requesting %u active workers for full compaction (waste limited workers: %u, "
103                       "adaptive workers: %u, used limited workers: %u)",
104                       worker_count, heap_waste_worker_limit, active_worker_limit, used_worker_limit);
105   worker_count = heap->workers()->set_active_workers(worker_count);
106   log_info(gc, task)("Using %u workers of %u for full compaction", worker_count, max_worker_count);
107 
108   return worker_count;
109 }
110 
111 G1FullCollector::G1FullCollector(G1CollectedHeap* heap,
112                                  bool clear_soft_refs,
113                                  bool do_maximal_compaction,
114                                  G1FullGCTracer* tracer) :
115     _heap(heap),
116     _scope(heap->monitoring_support(), clear_soft_refs, do_maximal_compaction, tracer),
117     _num_workers(calc_active_workers()),
118     _has_compaction_targets(false),
119     _has_humongous(false),
120     _oop_queue_set(_num_workers),
121     _array_queue_set(_num_workers),
122     _preserved_marks_set(true),
123     _serial_compaction_point(this, nullptr),
124     _humongous_compaction_point(this, nullptr),
125     _is_alive(this, heap->concurrent_mark()->mark_bitmap()),
126     _is_alive_mutator(heap->ref_processor_stw(), &_is_alive),
127     _humongous_compaction_regions(8),
128     _always_subject_to_discovery(),
129     _is_subject_mutator(heap->ref_processor_stw(), &_always_subject_to_discovery),
130     _region_attr_table() {
131   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
132 
133   _preserved_marks_set.init(_num_workers);
134   _markers = NEW_C_HEAP_ARRAY(G1FullGCMarker*, _num_workers, mtGC);
135   _compaction_points = NEW_C_HEAP_ARRAY(G1FullGCCompactionPoint*, _num_workers, mtGC);
136 
137   _live_stats = NEW_C_HEAP_ARRAY(G1RegionMarkStats, _heap->max_regions(), mtGC);
138   _compaction_tops = NEW_C_HEAP_ARRAY(HeapWord*, _heap->max_regions(), mtGC);
139   for (uint j = 0; j < heap->max_regions(); j++) {
140     _live_stats[j].clear();
141     _compaction_tops[j] = nullptr;
142   }
143 
144   for (uint i = 0; i < _num_workers; i++) {
145     _markers[i] = new G1FullGCMarker(this, i, _live_stats);
146     _compaction_points[i] = new G1FullGCCompactionPoint(this, _preserved_marks_set.get(i));
147     _oop_queue_set.register_queue(i, marker(i)->oop_stack());
148     _array_queue_set.register_queue(i, marker(i)->objarray_stack());
149   }
150   _serial_compaction_point.set_preserved_stack(_preserved_marks_set.get(0));
151   _humongous_compaction_point.set_preserved_stack(_preserved_marks_set.get(0));
152   _region_attr_table.initialize(heap->reserved(), HeapRegion::GrainBytes);
153 }
154 
155 G1FullCollector::~G1FullCollector() {
156   for (uint i = 0; i < _num_workers; i++) {
157     delete _markers[i];
158     delete _compaction_points[i];
159   }
160 
161   FREE_C_HEAP_ARRAY(G1FullGCMarker*, _markers);
162   FREE_C_HEAP_ARRAY(G1FullGCCompactionPoint*, _compaction_points);
163   FREE_C_HEAP_ARRAY(HeapWord*, _compaction_tops);
164   FREE_C_HEAP_ARRAY(G1RegionMarkStats, _live_stats);
165 }
166 
167 class PrepareRegionsClosure : public HeapRegionClosure {
168   G1FullCollector* _collector;
169 
170 public:
171   PrepareRegionsClosure(G1FullCollector* collector) : _collector(collector) { }
172 
173   bool do_heap_region(HeapRegion* hr) {
174     hr->prepare_for_full_gc();
175     G1CollectedHeap::heap()->prepare_region_for_full_compaction(hr);
176     _collector->before_marking_update_attribute_table(hr);
177     return false;
178   }
179 };
180 
181 void G1FullCollector::prepare_collection() {
182   _heap->policy()->record_full_collection_start();
183 
184   // Verification needs the bitmap, so we should clear the bitmap only later.
185   bool in_concurrent_cycle = _heap->abort_concurrent_cycle();
186   _heap->verify_before_full_collection();
187   if (in_concurrent_cycle) {
188     GCTraceTime(Debug, gc) debug("Clear Bitmap");
189     _heap->concurrent_mark()->clear_bitmap(_heap->workers());
190   }
191 
192   _heap->gc_prologue(true);
193   _heap->retire_tlabs();
194   _heap->flush_region_pin_cache();
195   _heap->prepare_heap_for_full_collection();
196 
197   PrepareRegionsClosure cl(this);
198   _heap->heap_region_iterate(&cl);
199 
200   reference_processor()->start_discovery(scope()->should_clear_soft_refs());
201 
202   // Clear and activate derived pointer collection.
203   clear_and_activate_derived_pointers();
204 }
205 
206 void G1FullCollector::collect() {
207   G1CollectedHeap::start_codecache_marking_cycle_if_inactive(false /* concurrent_mark_start */);
208 
209   phase1_mark_live_objects();
210   verify_after_marking();
211 
212   // Don't add any more derived pointers during later phases
213   deactivate_derived_pointers();
214 
215   phase2_prepare_compaction();
216 
217   if (has_compaction_targets()) {
218     phase3_adjust_pointers();
219 
220     phase4_do_compaction();
221   } else {
222     // All regions have a high live ratio thus will not be compacted.
223     // The live ratio is only considered if do_maximal_compaction is false.
224     log_info(gc, phases) ("No Regions selected for compaction. Skipping Phase 3: Adjust pointers and Phase 4: Compact heap");
225   }
226 
227   phase5_reset_metadata();
228 
229   G1CollectedHeap::finish_codecache_marking_cycle();
230 }
231 
232 void G1FullCollector::complete_collection() {
233   // Restore all marks.
234   restore_marks();
235 
236   // When the pointers have been adjusted and moved, we can
237   // update the derived pointer table.
238   update_derived_pointers();
239 
240   // Need completely cleared claim bits for the next concurrent marking or full gc.
241   ClassLoaderDataGraph::clear_claimed_marks();
242 
243   // Prepare the bitmap for the next (potentially concurrent) marking.
244   _heap->concurrent_mark()->clear_bitmap(_heap->workers());
245 
246   _heap->prepare_for_mutator_after_full_collection();
247 
248   _heap->resize_all_tlabs();
249 
250   _heap->policy()->record_full_collection_end();
251   _heap->gc_epilogue(true);
252 
253   _heap->verify_after_full_collection();
254 
255   _heap->print_heap_after_full_collection();
256 }
257 
258 void G1FullCollector::before_marking_update_attribute_table(HeapRegion* hr) {
259   if (hr->is_free()) {
260     _region_attr_table.set_free(hr->hrm_index());
261   } else if (hr->is_humongous() || hr->has_pinned_objects()) {
262     // Humongous objects or pinned regions will never be moved in the "main"
263     // compaction phase, but non-pinned regions might afterwards in a special phase.
264     _region_attr_table.set_skip_compacting(hr->hrm_index());
265   } else {
266     // Everything else should be compacted.
267     _region_attr_table.set_compacting(hr->hrm_index());
268   }
269 }
270 
271 class G1FullGCRefProcProxyTask : public RefProcProxyTask {
272   G1FullCollector& _collector;
273 
274 public:
275   G1FullGCRefProcProxyTask(G1FullCollector &collector, uint max_workers)
276     : RefProcProxyTask("G1FullGCRefProcProxyTask", max_workers),
277       _collector(collector) {}
278 
279   void work(uint worker_id) override {
280     assert(worker_id < _max_workers, "sanity");
281     G1IsAliveClosure is_alive(&_collector);
282     uint index = (_tm == RefProcThreadModel::Single) ? 0 : worker_id;
283     G1FullKeepAliveClosure keep_alive(_collector.marker(index));
284     BarrierEnqueueDiscoveredFieldClosure enqueue;
285     G1FollowStackClosure* complete_gc = _collector.marker(index)->stack_closure();
286     _rp_task->rp_work(worker_id, &is_alive, &keep_alive, &enqueue, complete_gc);
287   }
288 };
289 
290 void G1FullCollector::phase1_mark_live_objects() {
291   // Recursively traverse all live objects and mark them.
292   GCTraceTime(Info, gc, phases) info("Phase 1: Mark live objects", scope()->timer());
293 
294   {
295     // Do the actual marking.
296     G1FullGCMarkTask marking_task(this);
297     run_task(&marking_task);
298   }
299 
300   {
301     uint old_active_mt_degree = reference_processor()->num_queues();
302     reference_processor()->set_active_mt_degree(workers());
303     GCTraceTime(Debug, gc, phases) debug("Phase 1: Reference Processing", scope()->timer());
304     // Process reference objects found during marking.
305     ReferenceProcessorPhaseTimes pt(scope()->timer(), reference_processor()->max_num_queues());
306     G1FullGCRefProcProxyTask task(*this, reference_processor()->max_num_queues());
307     const ReferenceProcessorStats& stats = reference_processor()->process_discovered_references(task, pt);
308     scope()->tracer()->report_gc_reference_stats(stats);
309     pt.print_all_references();
310     assert(marker(0)->oop_stack()->is_empty(), "Should be no oops on the stack");
311 
312     reference_processor()->set_active_mt_degree(old_active_mt_degree);
313   }
314 
315   {
316     GCTraceTime(Debug, gc, phases) debug("Phase 1: Flush Mark Stats Cache", scope()->timer());
317     for (uint i = 0; i < workers(); i++) {
318       marker(i)->flush_mark_stats_cache();
319     }
320   }
321 
322   // Weak oops cleanup.
323   {
324     GCTraceTime(Debug, gc, phases) debug("Phase 1: Weak Processing", scope()->timer());
325     WeakProcessor::weak_oops_do(_heap->workers(), &_is_alive, &do_nothing_cl, 1);
326   }
327 
328   // Class unloading and cleanup.
329   if (ClassUnloading) {
330     _heap->unload_classes_and_code("Phase 1: Class Unloading and Cleanup", &_is_alive, scope()->timer());
331   }
332 
333   {
334     GCTraceTime(Debug, gc, phases) debug("Report Object Count", scope()->timer());
335     scope()->tracer()->report_object_count_after_gc(&_is_alive, _heap->workers());
336   }
337 #if TASKQUEUE_STATS
338   oop_queue_set()->print_and_reset_taskqueue_stats("Oop Queue");
339   array_queue_set()->print_and_reset_taskqueue_stats("ObjArrayOop Queue");
340 #endif
341 }
342 
343 void G1FullCollector::phase2_prepare_compaction() {
344   GCTraceTime(Info, gc, phases) info("Phase 2: Prepare compaction", scope()->timer());
345 
346   phase2a_determine_worklists();
347 
348   if (!has_compaction_targets()) {
349     return;
350   }
351 
352   bool has_free_compaction_targets = phase2b_forward_oops();
353 
354   // Try to avoid OOM immediately after Full GC in case there are no free regions
355   // left after determining the result locations (i.e. this phase). Prepare to
356   // maximally compact the tail regions of the compaction queues serially.
357   if (scope()->do_maximal_compaction() || !has_free_compaction_targets) {
358     phase2c_prepare_serial_compaction();
359 
360     if (scope()->do_maximal_compaction() &&
361         has_humongous() &&
362         serial_compaction_point()->has_regions()) {
363       phase2d_prepare_humongous_compaction();
364     }
365   }
366 }
367 
368 void G1FullCollector::phase2a_determine_worklists() {
369   GCTraceTime(Debug, gc, phases) debug("Phase 2: Determine work lists", scope()->timer());
370 
371   G1DetermineCompactionQueueClosure cl(this);
372   _heap->heap_region_iterate(&cl);
373 }
374 
375 bool G1FullCollector::phase2b_forward_oops() {
376   GCTraceTime(Debug, gc, phases) debug("Phase 2: Prepare parallel compaction", scope()->timer());
377 
378   G1FullGCPrepareTask task(this);
379   run_task(&task);
380 
381   return task.has_free_compaction_targets();
382 }
383 
384 uint G1FullCollector::truncate_parallel_cps() {
385   uint lowest_current = UINT_MAX;
386   for (uint i = 0; i < workers(); i++) {
387     G1FullGCCompactionPoint* cp = compaction_point(i);
388     if (cp->has_regions()) {
389       lowest_current = MIN2(lowest_current, cp->current_region()->hrm_index());
390     }
391   }
392 
393   for (uint i = 0; i < workers(); i++) {
394     G1FullGCCompactionPoint* cp = compaction_point(i);
395     if (cp->has_regions()) {
396       cp->remove_at_or_above(lowest_current);
397     }
398   }
399   return lowest_current;
400 }
401 
402 void G1FullCollector::phase2c_prepare_serial_compaction() {
403   GCTraceTime(Debug, gc, phases) debug("Phase 2: Prepare serial compaction", scope()->timer());
404   // At this point, we know that after parallel compaction there will be regions that
405   // are partially compacted into. Thus, the last compaction region of all
406   // compaction queues still have space in them. We try to re-compact these regions
407   // in serial to avoid a premature OOM when the mutator wants to allocate the first
408   // eden region after gc.
409 
410   // For maximum compaction, we need to re-prepare all objects above the lowest
411   // region among the current regions for all thread compaction points. It may
412   // happen that due to the uneven distribution of objects to parallel threads, holes
413   // have been created as threads compact to different target regions between the
414   // lowest and the highest region in the tails of the compaction points.
415 
416   uint start_serial = truncate_parallel_cps();
417   assert(start_serial < _heap->max_reserved_regions(), "Called on empty parallel compaction queues");
418 
419   G1FullGCCompactionPoint* serial_cp = serial_compaction_point();
420   assert(!serial_cp->is_initialized(), "sanity!");
421 
422   HeapRegion* start_hr = _heap->region_at(start_serial);
423   serial_cp->add(start_hr);
424   serial_cp->initialize(start_hr);
425 
426   HeapWord* dense_prefix_top = compaction_top(start_hr);
427   G1SerialRePrepareClosure re_prepare(serial_cp, dense_prefix_top);
428 
429   for (uint i = start_serial + 1; i < _heap->max_reserved_regions(); i++) {
430     if (is_compaction_target(i)) {
431       HeapRegion* current = _heap->region_at(i);
432       set_compaction_top(current, current->bottom());
433       serial_cp->add(current);
434       current->apply_to_marked_objects(mark_bitmap(), &re_prepare);
435     }
436   }
437   serial_cp->update();
438 }
439 
440 void G1FullCollector::phase2d_prepare_humongous_compaction() {
441   GCTraceTime(Debug, gc, phases) debug("Phase 2: Prepare humongous compaction", scope()->timer());
442   G1FullGCCompactionPoint* serial_cp = serial_compaction_point();
443   assert(serial_cp->has_regions(), "Sanity!" );
444 
445   uint last_serial_target = serial_cp->current_region()->hrm_index();
446   uint region_index = last_serial_target + 1;
447   uint max_reserved_regions = _heap->max_reserved_regions();
448 
449   G1FullGCCompactionPoint* humongous_cp = humongous_compaction_point();
450 
451   while (region_index < max_reserved_regions) {
452     HeapRegion* hr = _heap->region_at_or_null(region_index);
453 
454     if (hr == nullptr) {
455       region_index++;
456       continue;
457     } else if (hr->is_starts_humongous()) {
458       size_t obj_size = cast_to_oop(hr->bottom())->size();
459       uint num_regions = (uint)G1CollectedHeap::humongous_obj_size_in_regions(obj_size);
460       // Even during last-ditch compaction we should not move pinned humongous objects.
461       if (!hr->has_pinned_objects()) {
462         humongous_cp->forward_humongous(hr);
463       }
464       region_index += num_regions; // Advance over all humongous regions.
465       continue;
466     } else if (is_compaction_target(region_index)) {
467       assert(!hr->has_pinned_objects(), "pinned regions should not be compaction targets");
468       // Add the region to the humongous compaction point.
469       humongous_cp->add(hr);
470     }
471     region_index++;
472   }
473 }
474 
475 void G1FullCollector::phase3_adjust_pointers() {
476   // Adjust the pointers to reflect the new locations
477   GCTraceTime(Info, gc, phases) info("Phase 3: Adjust pointers", scope()->timer());
478 
479   G1FullGCAdjustTask task(this);
480   run_task(&task);
481 }
482 
483 void G1FullCollector::phase4_do_compaction() {
484   // Compact the heap using the compaction queues created in phase 2.
485   GCTraceTime(Info, gc, phases) info("Phase 4: Compact heap", scope()->timer());
486   G1FullGCCompactTask task(this);
487   run_task(&task);
488 
489   // Serial compact to avoid OOM when very few free regions.
490   if (serial_compaction_point()->has_regions()) {
491     task.serial_compaction();
492   }
493 
494   if (!_humongous_compaction_regions.is_empty()) {
495     assert(scope()->do_maximal_compaction(), "Only compact humongous during maximal compaction");
496     task.humongous_compaction();
497   }
498 }
499 
500 void G1FullCollector::phase5_reset_metadata() {
501   // Clear region metadata that is invalid after GC for all regions.
502   GCTraceTime(Info, gc, phases) info("Phase 5: Reset Metadata", scope()->timer());
503   G1FullGCResetMetadataTask task(this);
504   run_task(&task);
505 }
506 
507 void G1FullCollector::restore_marks() {
508   _preserved_marks_set.restore(_heap->workers());
509   _preserved_marks_set.reclaim();
510 }
511 
512 void G1FullCollector::run_task(WorkerTask* task) {
513   _heap->workers()->run_task(task, _num_workers);
514 }
515 
516 void G1FullCollector::verify_after_marking() {
517   if (!VerifyDuringGC || !_heap->verifier()->should_verify(G1HeapVerifier::G1VerifyFull)) {
518     // Only do verification if VerifyDuringGC and G1VerifyFull is set.
519     return;
520   }
521 
522 #if COMPILER2_OR_JVMCI
523   DerivedPointerTableDeactivate dpt_deact;
524 #endif
525   _heap->prepare_for_verify();
526   // Note: we can verify only the heap here. When an object is
527   // marked, the previous value of the mark word (including
528   // identity hash values, ages, etc) is preserved, and the mark
529   // word is set to markWord::marked_value - effectively removing
530   // any hash values from the mark word. These hash values are
531   // used when verifying the dictionaries and so removing them
532   // from the mark word can make verification of the dictionaries
533   // fail. At the end of the GC, the original mark word values
534   // (including hash values) are restored to the appropriate
535   // objects.
536   GCTraceTime(Info, gc, verify) tm("Verifying During GC (full)");
537   _heap->verify(VerifyOption::G1UseFullMarking);
538 }