1 /* 2 * Copyright (c) 2017, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/classLoaderDataGraph.hpp" 27 #include "gc/g1/g1CollectedHeap.hpp" 28 #include "gc/g1/g1FullCollector.inline.hpp" 29 #include "gc/g1/g1FullGCAdjustTask.hpp" 30 #include "gc/g1/g1FullGCCompactTask.hpp" 31 #include "gc/g1/g1FullGCMarker.inline.hpp" 32 #include "gc/g1/g1FullGCMarkTask.hpp" 33 #include "gc/g1/g1FullGCPrepareTask.inline.hpp" 34 #include "gc/g1/g1FullGCResetMetadataTask.hpp" 35 #include "gc/g1/g1FullGCScope.hpp" 36 #include "gc/g1/g1OopClosures.hpp" 37 #include "gc/g1/g1Policy.hpp" 38 #include "gc/g1/g1RegionMarkStatsCache.inline.hpp" 39 #include "gc/shared/gcTraceTime.inline.hpp" 40 #include "gc/shared/preservedMarks.inline.hpp" 41 #include "gc/shared/classUnloadingContext.hpp" 42 #include "gc/shared/referenceProcessor.hpp" 43 #include "gc/shared/slidingForwarding.hpp" 44 #include "gc/shared/verifyOption.hpp" 45 #include "gc/shared/weakProcessor.inline.hpp" 46 #include "gc/shared/workerPolicy.hpp" 47 #include "logging/log.hpp" 48 #include "runtime/handles.inline.hpp" 49 #include "utilities/debug.hpp" 50 51 static void clear_and_activate_derived_pointers() { 52 #if COMPILER2_OR_JVMCI 53 DerivedPointerTable::clear(); 54 #endif 55 } 56 57 static void deactivate_derived_pointers() { 58 #if COMPILER2_OR_JVMCI 59 DerivedPointerTable::set_active(false); 60 #endif 61 } 62 63 static void update_derived_pointers() { 64 #if COMPILER2_OR_JVMCI 65 DerivedPointerTable::update_pointers(); 66 #endif 67 } 68 69 G1CMBitMap* G1FullCollector::mark_bitmap() { 70 return _heap->concurrent_mark()->mark_bitmap(); 71 } 72 73 ReferenceProcessor* G1FullCollector::reference_processor() { 74 return _heap->ref_processor_stw(); 75 } 76 77 uint G1FullCollector::calc_active_workers() { 78 G1CollectedHeap* heap = G1CollectedHeap::heap(); 79 uint max_worker_count = heap->workers()->max_workers(); 80 // Only calculate number of workers if UseDynamicNumberOfGCThreads 81 // is enabled, otherwise use max. 82 if (!UseDynamicNumberOfGCThreads) { 83 return max_worker_count; 84 } 85 86 // Consider G1HeapWastePercent to decide max number of workers. Each worker 87 // will in average cause half a region waste. 88 uint max_wasted_regions_allowed = ((heap->num_regions() * G1HeapWastePercent) / 100); 89 uint waste_worker_count = MAX2((max_wasted_regions_allowed * 2) , 1u); 90 uint heap_waste_worker_limit = MIN2(waste_worker_count, max_worker_count); 91 92 // Also consider HeapSizePerGCThread by calling WorkerPolicy to calculate 93 // the number of workers. 94 uint current_active_workers = heap->workers()->active_workers(); 95 uint active_worker_limit = WorkerPolicy::calc_active_workers(max_worker_count, current_active_workers, 0); 96 97 // Finally consider the amount of used regions. 98 uint used_worker_limit = heap->num_used_regions(); 99 assert(used_worker_limit > 0, "Should never have zero used regions."); 100 101 // Update active workers to the lower of the limits. 102 uint worker_count = MIN3(heap_waste_worker_limit, active_worker_limit, used_worker_limit); 103 log_debug(gc, task)("Requesting %u active workers for full compaction (waste limited workers: %u, " 104 "adaptive workers: %u, used limited workers: %u)", 105 worker_count, heap_waste_worker_limit, active_worker_limit, used_worker_limit); 106 worker_count = heap->workers()->set_active_workers(worker_count); 107 log_info(gc, task)("Using %u workers of %u for full compaction", worker_count, max_worker_count); 108 109 return worker_count; 110 } 111 112 G1FullCollector::G1FullCollector(G1CollectedHeap* heap, 113 bool clear_soft_refs, 114 bool do_maximal_compaction, 115 G1FullGCTracer* tracer) : 116 _heap(heap), 117 _scope(heap->monitoring_support(), clear_soft_refs, do_maximal_compaction, tracer), 118 _num_workers(calc_active_workers()), 119 _has_compaction_targets(false), 120 _has_humongous(false), 121 _oop_queue_set(_num_workers), 122 _array_queue_set(_num_workers), 123 _preserved_marks_set(true), 124 _serial_compaction_point(this, nullptr), 125 _humongous_compaction_point(this, nullptr), 126 _is_alive(this, heap->concurrent_mark()->mark_bitmap()), 127 _is_alive_mutator(heap->ref_processor_stw(), &_is_alive), 128 _humongous_compaction_regions(8), 129 _always_subject_to_discovery(), 130 _is_subject_mutator(heap->ref_processor_stw(), &_always_subject_to_discovery), 131 _region_attr_table() { 132 assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint"); 133 134 _preserved_marks_set.init(_num_workers); 135 _markers = NEW_C_HEAP_ARRAY(G1FullGCMarker*, _num_workers, mtGC); 136 _compaction_points = NEW_C_HEAP_ARRAY(G1FullGCCompactionPoint*, _num_workers, mtGC); 137 138 _live_stats = NEW_C_HEAP_ARRAY(G1RegionMarkStats, _heap->max_regions(), mtGC); 139 _compaction_tops = NEW_C_HEAP_ARRAY(HeapWord*, _heap->max_regions(), mtGC); 140 for (uint j = 0; j < heap->max_regions(); j++) { 141 _live_stats[j].clear(); 142 _compaction_tops[j] = nullptr; 143 } 144 145 for (uint i = 0; i < _num_workers; i++) { 146 _markers[i] = new G1FullGCMarker(this, i, _live_stats); 147 _compaction_points[i] = new G1FullGCCompactionPoint(this, _preserved_marks_set.get(i)); 148 _oop_queue_set.register_queue(i, marker(i)->oop_stack()); 149 _array_queue_set.register_queue(i, marker(i)->objarray_stack()); 150 } 151 _serial_compaction_point.set_preserved_stack(_preserved_marks_set.get(0)); 152 _humongous_compaction_point.set_preserved_stack(_preserved_marks_set.get(0)); 153 _region_attr_table.initialize(heap->reserved(), G1HeapRegion::GrainBytes); 154 } 155 156 G1FullCollector::~G1FullCollector() { 157 for (uint i = 0; i < _num_workers; i++) { 158 delete _markers[i]; 159 delete _compaction_points[i]; 160 } 161 162 FREE_C_HEAP_ARRAY(G1FullGCMarker*, _markers); 163 FREE_C_HEAP_ARRAY(G1FullGCCompactionPoint*, _compaction_points); 164 FREE_C_HEAP_ARRAY(HeapWord*, _compaction_tops); 165 FREE_C_HEAP_ARRAY(G1RegionMarkStats, _live_stats); 166 } 167 168 class PrepareRegionsClosure : public HeapRegionClosure { 169 G1FullCollector* _collector; 170 171 public: 172 PrepareRegionsClosure(G1FullCollector* collector) : _collector(collector) { } 173 174 bool do_heap_region(G1HeapRegion* hr) { 175 hr->prepare_for_full_gc(); 176 G1CollectedHeap::heap()->prepare_region_for_full_compaction(hr); 177 _collector->before_marking_update_attribute_table(hr); 178 return false; 179 } 180 }; 181 182 void G1FullCollector::prepare_collection() { 183 _heap->policy()->record_full_collection_start(); 184 185 // Verification needs the bitmap, so we should clear the bitmap only later. 186 bool in_concurrent_cycle = _heap->abort_concurrent_cycle(); 187 _heap->verify_before_full_collection(); 188 if (in_concurrent_cycle) { 189 GCTraceTime(Debug, gc) debug("Clear Bitmap"); 190 _heap->concurrent_mark()->clear_bitmap(_heap->workers()); 191 } 192 193 _heap->gc_prologue(true); 194 _heap->retire_tlabs(); 195 _heap->flush_region_pin_cache(); 196 _heap->prepare_heap_for_full_collection(); 197 198 PrepareRegionsClosure cl(this); 199 _heap->heap_region_iterate(&cl); 200 201 reference_processor()->start_discovery(scope()->should_clear_soft_refs()); 202 203 // Clear and activate derived pointer collection. 204 clear_and_activate_derived_pointers(); 205 } 206 207 void G1FullCollector::collect() { 208 G1CollectedHeap::start_codecache_marking_cycle_if_inactive(false /* concurrent_mark_start */); 209 210 phase1_mark_live_objects(); 211 verify_after_marking(); 212 213 // Don't add any more derived pointers during later phases 214 deactivate_derived_pointers(); 215 216 SlidingForwarding::begin(); 217 218 phase2_prepare_compaction(); 219 220 if (has_compaction_targets()) { 221 phase3_adjust_pointers(); 222 223 phase4_do_compaction(); 224 } else { 225 // All regions have a high live ratio thus will not be compacted. 226 // The live ratio is only considered if do_maximal_compaction is false. 227 log_info(gc, phases) ("No Regions selected for compaction. Skipping Phase 3: Adjust pointers and Phase 4: Compact heap"); 228 } 229 230 SlidingForwarding::end(); 231 232 phase5_reset_metadata(); 233 234 G1CollectedHeap::finish_codecache_marking_cycle(); 235 } 236 237 void G1FullCollector::complete_collection() { 238 // Restore all marks. 239 restore_marks(); 240 241 // When the pointers have been adjusted and moved, we can 242 // update the derived pointer table. 243 update_derived_pointers(); 244 245 // Need completely cleared claim bits for the next concurrent marking or full gc. 246 ClassLoaderDataGraph::clear_claimed_marks(); 247 248 // Prepare the bitmap for the next (potentially concurrent) marking. 249 _heap->concurrent_mark()->clear_bitmap(_heap->workers()); 250 251 _heap->prepare_for_mutator_after_full_collection(); 252 253 _heap->resize_all_tlabs(); 254 255 _heap->policy()->record_full_collection_end(); 256 _heap->gc_epilogue(true); 257 258 _heap->verify_after_full_collection(); 259 260 _heap->print_heap_after_full_collection(); 261 } 262 263 void G1FullCollector::before_marking_update_attribute_table(G1HeapRegion* hr) { 264 if (hr->is_free()) { 265 _region_attr_table.set_free(hr->hrm_index()); 266 } else if (hr->is_humongous() || hr->has_pinned_objects()) { 267 // Humongous objects or pinned regions will never be moved in the "main" 268 // compaction phase, but non-pinned regions might afterwards in a special phase. 269 _region_attr_table.set_skip_compacting(hr->hrm_index()); 270 } else { 271 // Everything else should be compacted. 272 _region_attr_table.set_compacting(hr->hrm_index()); 273 } 274 } 275 276 class G1FullGCRefProcProxyTask : public RefProcProxyTask { 277 G1FullCollector& _collector; 278 279 public: 280 G1FullGCRefProcProxyTask(G1FullCollector &collector, uint max_workers) 281 : RefProcProxyTask("G1FullGCRefProcProxyTask", max_workers), 282 _collector(collector) {} 283 284 void work(uint worker_id) override { 285 assert(worker_id < _max_workers, "sanity"); 286 G1IsAliveClosure is_alive(&_collector); 287 uint index = (_tm == RefProcThreadModel::Single) ? 0 : worker_id; 288 G1FullKeepAliveClosure keep_alive(_collector.marker(index)); 289 BarrierEnqueueDiscoveredFieldClosure enqueue; 290 G1FollowStackClosure* complete_gc = _collector.marker(index)->stack_closure(); 291 _rp_task->rp_work(worker_id, &is_alive, &keep_alive, &enqueue, complete_gc); 292 } 293 }; 294 295 void G1FullCollector::phase1_mark_live_objects() { 296 // Recursively traverse all live objects and mark them. 297 GCTraceTime(Info, gc, phases) info("Phase 1: Mark live objects", scope()->timer()); 298 299 { 300 // Do the actual marking. 301 G1FullGCMarkTask marking_task(this); 302 run_task(&marking_task); 303 } 304 305 { 306 uint old_active_mt_degree = reference_processor()->num_queues(); 307 reference_processor()->set_active_mt_degree(workers()); 308 GCTraceTime(Debug, gc, phases) debug("Phase 1: Reference Processing", scope()->timer()); 309 // Process reference objects found during marking. 310 ReferenceProcessorPhaseTimes pt(scope()->timer(), reference_processor()->max_num_queues()); 311 G1FullGCRefProcProxyTask task(*this, reference_processor()->max_num_queues()); 312 const ReferenceProcessorStats& stats = reference_processor()->process_discovered_references(task, pt); 313 scope()->tracer()->report_gc_reference_stats(stats); 314 pt.print_all_references(); 315 assert(marker(0)->oop_stack()->is_empty(), "Should be no oops on the stack"); 316 317 reference_processor()->set_active_mt_degree(old_active_mt_degree); 318 } 319 320 { 321 GCTraceTime(Debug, gc, phases) debug("Phase 1: Flush Mark Stats Cache", scope()->timer()); 322 for (uint i = 0; i < workers(); i++) { 323 marker(i)->flush_mark_stats_cache(); 324 } 325 } 326 327 // Weak oops cleanup. 328 { 329 GCTraceTime(Debug, gc, phases) debug("Phase 1: Weak Processing", scope()->timer()); 330 WeakProcessor::weak_oops_do(_heap->workers(), &_is_alive, &do_nothing_cl, 1); 331 } 332 333 // Class unloading and cleanup. 334 if (ClassUnloading) { 335 _heap->unload_classes_and_code("Phase 1: Class Unloading and Cleanup", &_is_alive, scope()->timer()); 336 } 337 338 { 339 GCTraceTime(Debug, gc, phases) debug("Report Object Count", scope()->timer()); 340 scope()->tracer()->report_object_count_after_gc(&_is_alive, _heap->workers()); 341 } 342 #if TASKQUEUE_STATS 343 oop_queue_set()->print_and_reset_taskqueue_stats("Oop Queue"); 344 array_queue_set()->print_and_reset_taskqueue_stats("ObjArrayOop Queue"); 345 #endif 346 } 347 348 void G1FullCollector::phase2_prepare_compaction() { 349 GCTraceTime(Info, gc, phases) info("Phase 2: Prepare compaction", scope()->timer()); 350 351 phase2a_determine_worklists(); 352 353 if (!has_compaction_targets()) { 354 return; 355 } 356 357 bool has_free_compaction_targets = phase2b_forward_oops(); 358 359 // Try to avoid OOM immediately after Full GC in case there are no free regions 360 // left after determining the result locations (i.e. this phase). Prepare to 361 // maximally compact the tail regions of the compaction queues serially. 362 if (scope()->do_maximal_compaction() || !has_free_compaction_targets) { 363 phase2c_prepare_serial_compaction(); 364 365 if (scope()->do_maximal_compaction() && 366 has_humongous() && 367 serial_compaction_point()->has_regions()) { 368 phase2d_prepare_humongous_compaction(); 369 } 370 } 371 } 372 373 void G1FullCollector::phase2a_determine_worklists() { 374 GCTraceTime(Debug, gc, phases) debug("Phase 2: Determine work lists", scope()->timer()); 375 376 G1DetermineCompactionQueueClosure cl(this); 377 _heap->heap_region_iterate(&cl); 378 } 379 380 bool G1FullCollector::phase2b_forward_oops() { 381 GCTraceTime(Debug, gc, phases) debug("Phase 2: Prepare parallel compaction", scope()->timer()); 382 383 G1FullGCPrepareTask task(this); 384 run_task(&task); 385 386 return task.has_free_compaction_targets(); 387 } 388 389 uint G1FullCollector::truncate_parallel_cps() { 390 uint lowest_current = UINT_MAX; 391 for (uint i = 0; i < workers(); i++) { 392 G1FullGCCompactionPoint* cp = compaction_point(i); 393 if (cp->has_regions()) { 394 lowest_current = MIN2(lowest_current, cp->current_region()->hrm_index()); 395 } 396 } 397 398 for (uint i = 0; i < workers(); i++) { 399 G1FullGCCompactionPoint* cp = compaction_point(i); 400 if (cp->has_regions()) { 401 cp->remove_at_or_above(lowest_current); 402 } 403 } 404 return lowest_current; 405 } 406 407 void G1FullCollector::phase2c_prepare_serial_compaction() { 408 GCTraceTime(Debug, gc, phases) debug("Phase 2: Prepare serial compaction", scope()->timer()); 409 // At this point, we know that after parallel compaction there will be regions that 410 // are partially compacted into. Thus, the last compaction region of all 411 // compaction queues still have space in them. We try to re-compact these regions 412 // in serial to avoid a premature OOM when the mutator wants to allocate the first 413 // eden region after gc. 414 415 // For maximum compaction, we need to re-prepare all objects above the lowest 416 // region among the current regions for all thread compaction points. It may 417 // happen that due to the uneven distribution of objects to parallel threads, holes 418 // have been created as threads compact to different target regions between the 419 // lowest and the highest region in the tails of the compaction points. 420 421 uint start_serial = truncate_parallel_cps(); 422 assert(start_serial < _heap->max_reserved_regions(), "Called on empty parallel compaction queues"); 423 424 G1FullGCCompactionPoint* serial_cp = serial_compaction_point(); 425 assert(!serial_cp->is_initialized(), "sanity!"); 426 427 G1HeapRegion* start_hr = _heap->region_at(start_serial); 428 serial_cp->add(start_hr); 429 serial_cp->initialize(start_hr); 430 431 HeapWord* dense_prefix_top = compaction_top(start_hr); 432 G1SerialRePrepareClosure re_prepare(serial_cp, dense_prefix_top); 433 434 for (uint i = start_serial + 1; i < _heap->max_reserved_regions(); i++) { 435 if (is_compaction_target(i)) { 436 G1HeapRegion* current = _heap->region_at(i); 437 set_compaction_top(current, current->bottom()); 438 serial_cp->add(current); 439 current->apply_to_marked_objects(mark_bitmap(), &re_prepare); 440 } 441 } 442 serial_cp->update(); 443 } 444 445 void G1FullCollector::phase2d_prepare_humongous_compaction() { 446 GCTraceTime(Debug, gc, phases) debug("Phase 2: Prepare humongous compaction", scope()->timer()); 447 G1FullGCCompactionPoint* serial_cp = serial_compaction_point(); 448 assert(serial_cp->has_regions(), "Sanity!" ); 449 450 uint last_serial_target = serial_cp->current_region()->hrm_index(); 451 uint region_index = last_serial_target + 1; 452 uint max_reserved_regions = _heap->max_reserved_regions(); 453 454 G1FullGCCompactionPoint* humongous_cp = humongous_compaction_point(); 455 456 while (region_index < max_reserved_regions) { 457 G1HeapRegion* hr = _heap->region_at_or_null(region_index); 458 459 if (hr == nullptr) { 460 region_index++; 461 continue; 462 } else if (hr->is_starts_humongous()) { 463 size_t obj_size = cast_to_oop(hr->bottom())->size(); 464 uint num_regions = (uint)G1CollectedHeap::humongous_obj_size_in_regions(obj_size); 465 // Even during last-ditch compaction we should not move pinned humongous objects. 466 if (!hr->has_pinned_objects()) { 467 humongous_cp->forward_humongous(hr); 468 } 469 region_index += num_regions; // Advance over all humongous regions. 470 continue; 471 } else if (is_compaction_target(region_index)) { 472 assert(!hr->has_pinned_objects(), "pinned regions should not be compaction targets"); 473 // Add the region to the humongous compaction point. 474 humongous_cp->add(hr); 475 } 476 region_index++; 477 } 478 } 479 480 void G1FullCollector::phase3_adjust_pointers() { 481 // Adjust the pointers to reflect the new locations 482 GCTraceTime(Info, gc, phases) info("Phase 3: Adjust pointers", scope()->timer()); 483 484 G1FullGCAdjustTask task(this); 485 run_task(&task); 486 } 487 488 void G1FullCollector::phase4_do_compaction() { 489 // Compact the heap using the compaction queues created in phase 2. 490 GCTraceTime(Info, gc, phases) info("Phase 4: Compact heap", scope()->timer()); 491 G1FullGCCompactTask task(this); 492 run_task(&task); 493 494 // Serial compact to avoid OOM when very few free regions. 495 if (serial_compaction_point()->has_regions()) { 496 task.serial_compaction(); 497 } 498 499 if (!_humongous_compaction_regions.is_empty()) { 500 assert(scope()->do_maximal_compaction(), "Only compact humongous during maximal compaction"); 501 task.humongous_compaction(); 502 } 503 } 504 505 void G1FullCollector::phase5_reset_metadata() { 506 // Clear region metadata that is invalid after GC for all regions. 507 GCTraceTime(Info, gc, phases) info("Phase 5: Reset Metadata", scope()->timer()); 508 G1FullGCResetMetadataTask task(this); 509 run_task(&task); 510 } 511 512 void G1FullCollector::restore_marks() { 513 _preserved_marks_set.restore(_heap->workers()); 514 _preserved_marks_set.reclaim(); 515 } 516 517 void G1FullCollector::run_task(WorkerTask* task) { 518 _heap->workers()->run_task(task, _num_workers); 519 } 520 521 void G1FullCollector::verify_after_marking() { 522 if (!VerifyDuringGC || !_heap->verifier()->should_verify(G1HeapVerifier::G1VerifyFull)) { 523 // Only do verification if VerifyDuringGC and G1VerifyFull is set. 524 return; 525 } 526 527 #if COMPILER2_OR_JVMCI 528 DerivedPointerTableDeactivate dpt_deact; 529 #endif 530 _heap->prepare_for_verify(); 531 // Note: we can verify only the heap here. When an object is 532 // marked, the previous value of the mark word (including 533 // identity hash values, ages, etc) is preserved, and the mark 534 // word is set to markWord::marked_value - effectively removing 535 // any hash values from the mark word. These hash values are 536 // used when verifying the dictionaries and so removing them 537 // from the mark word can make verification of the dictionaries 538 // fail. At the end of the GC, the original mark word values 539 // (including hash values) are restored to the appropriate 540 // objects. 541 GCTraceTime(Info, gc, verify) tm("Verifying During GC (full)"); 542 _heap->verify(VerifyOption::G1UseFullMarking); 543 }