1 /*
  2  * Copyright (c) 2014, 2024, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "precompiled.hpp"
 26 #include "gc/g1/g1Allocator.inline.hpp"
 27 #include "gc/g1/g1CollectedHeap.inline.hpp"
 28 #include "gc/g1/g1CollectionSet.hpp"
 29 #include "gc/g1/g1EvacFailureRegions.inline.hpp"
 30 #include "gc/g1/g1HeapRegionPrinter.hpp"
 31 #include "gc/g1/g1OopClosures.inline.hpp"
 32 #include "gc/g1/g1ParScanThreadState.inline.hpp"
 33 #include "gc/g1/g1RootClosures.hpp"
 34 #include "gc/g1/g1StringDedup.hpp"
 35 #include "gc/g1/g1Trace.hpp"
 36 #include "gc/g1/g1YoungGCAllocationFailureInjector.inline.hpp"
 37 #include "gc/shared/continuationGCSupport.inline.hpp"
 38 #include "gc/shared/partialArrayTaskStepper.inline.hpp"
 39 #include "gc/shared/preservedMarks.inline.hpp"
 40 #include "gc/shared/stringdedup/stringDedup.hpp"
 41 #include "gc/shared/taskqueue.inline.hpp"
 42 #include "memory/allocation.inline.hpp"
 43 #include "oops/access.inline.hpp"
 44 #include "oops/oop.inline.hpp"
 45 #include "runtime/atomic.hpp"
 46 #include "runtime/prefetch.inline.hpp"
 47 #include "utilities/globalDefinitions.hpp"
 48 #include "utilities/macros.hpp"
 49 
 50 // In fastdebug builds the code size can get out of hand, potentially
 51 // tripping over compiler limits (which may be bugs, but nevertheless
 52 // need to be taken into consideration).  A side benefit of limiting
 53 // inlining is that we get more call frames that might aid debugging.
 54 // And the fastdebug compile time for this file is much reduced.
 55 // Explicit NOINLINE to block ATTRIBUTE_FLATTENing.
 56 #define MAYBE_INLINE_EVACUATION NOT_DEBUG(inline) DEBUG_ONLY(NOINLINE)
 57 
 58 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h,
 59                                            G1RedirtyCardsQueueSet* rdcqs,
 60                                            PreservedMarks* preserved_marks,
 61                                            uint worker_id,
 62                                            uint num_workers,
 63                                            G1CollectionSet* collection_set,
 64                                            G1EvacFailureRegions* evac_failure_regions)
 65   : _g1h(g1h),
 66     _task_queue(g1h->task_queue(worker_id)),
 67     _rdc_local_qset(rdcqs),
 68     _ct(g1h->card_table()),
 69     _closures(nullptr),
 70     _plab_allocator(nullptr),
 71     _age_table(false),
 72     _tenuring_threshold(g1h->policy()->tenuring_threshold()),
 73     _scanner(g1h, this),
 74     _worker_id(worker_id),
 75     _last_enqueued_card(SIZE_MAX),
 76     _stack_trim_upper_threshold(GCDrainStackTargetSize * 2 + 1),
 77     _stack_trim_lower_threshold(GCDrainStackTargetSize),
 78     _trim_ticks(),
 79     _surviving_young_words_base(nullptr),
 80     _surviving_young_words(nullptr),
 81     _surviving_words_length(collection_set->young_region_length() + 1),
 82     _old_gen_is_full(false),
 83     _partial_objarray_chunk_size(ParGCArrayScanChunk),
 84     _partial_array_stepper(num_workers),
 85     _string_dedup_requests(),
 86     _max_num_optional_regions(collection_set->optional_region_length()),
 87     _numa(g1h->numa()),
 88     _obj_alloc_stat(nullptr),
 89     ALLOCATION_FAILURE_INJECTOR_ONLY(_allocation_failure_inject_counter(0) COMMA)
 90     _preserved_marks(preserved_marks),
 91     _evacuation_failed_info(),
 92     _evac_failure_regions(evac_failure_regions),
 93     _evac_failure_enqueued_cards(0)
 94 {
 95   // We allocate number of young gen regions in the collection set plus one
 96   // entries, since entry 0 keeps track of surviving bytes for non-young regions.
 97   // We also add a few elements at the beginning and at the end in
 98   // an attempt to eliminate cache contention
 99   const size_t padding_elem_num = (DEFAULT_PADDING_SIZE / sizeof(size_t));
100   size_t array_length = padding_elem_num + _surviving_words_length + padding_elem_num;
101 
102   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
103   _surviving_young_words = _surviving_young_words_base + padding_elem_num;
104   memset(_surviving_young_words, 0, _surviving_words_length * sizeof(size_t));
105 
106   _plab_allocator = new G1PLABAllocator(_g1h->allocator());
107 
108   _closures = G1EvacuationRootClosures::create_root_closures(_g1h,
109                                                              this,
110                                                              collection_set->only_contains_young_regions());
111 
112   _oops_into_optional_regions = new G1OopStarChunkedList[_max_num_optional_regions];
113 
114   initialize_numa_stats();
115 }
116 
117 size_t G1ParScanThreadState::flush_stats(size_t* surviving_young_words, uint num_workers, BufferNodeList* rdc_buffers) {
118   *rdc_buffers = _rdc_local_qset.flush();
119   flush_numa_stats();
120   // Update allocation statistics.
121   _plab_allocator->flush_and_retire_stats(num_workers);
122   _g1h->policy()->record_age_table(&_age_table);
123 
124   if (_evacuation_failed_info.has_failed()) {
125     _g1h->gc_tracer_stw()->report_evacuation_failed(_evacuation_failed_info);
126   }
127 
128   size_t sum = 0;
129   for (uint i = 0; i < _surviving_words_length; i++) {
130     surviving_young_words[i] += _surviving_young_words[i];
131     sum += _surviving_young_words[i];
132   }
133   return sum;
134 }
135 
136 G1ParScanThreadState::~G1ParScanThreadState() {
137   delete _plab_allocator;
138   delete _closures;
139   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
140   delete[] _oops_into_optional_regions;
141   FREE_C_HEAP_ARRAY(size_t, _obj_alloc_stat);
142 }
143 
144 size_t G1ParScanThreadState::lab_waste_words() const {
145   return _plab_allocator->waste();
146 }
147 
148 size_t G1ParScanThreadState::lab_undo_waste_words() const {
149   return _plab_allocator->undo_waste();
150 }
151 
152 size_t G1ParScanThreadState::evac_failure_enqueued_cards() const {
153   return _evac_failure_enqueued_cards;
154 }
155 
156 #ifdef ASSERT
157 void G1ParScanThreadState::verify_task(narrowOop* task) const {
158   assert(task != nullptr, "invariant");
159   assert(UseCompressedOops, "sanity");
160   oop p = RawAccess<>::oop_load(task);
161   assert(_g1h->is_in_reserved(p),
162          "task=" PTR_FORMAT " p=" PTR_FORMAT, p2i(task), p2i(p));
163 }
164 
165 void G1ParScanThreadState::verify_task(oop* task) const {
166   assert(task != nullptr, "invariant");
167   oop p = RawAccess<>::oop_load(task);
168   assert(_g1h->is_in_reserved(p),
169          "task=" PTR_FORMAT " p=" PTR_FORMAT, p2i(task), p2i(p));
170 }
171 
172 void G1ParScanThreadState::verify_task(PartialArrayScanTask task) const {
173   // Must be in the collection set--it's already been copied.
174   oop p = task.to_source_array();
175   assert(_g1h->is_in_cset(p), "p=" PTR_FORMAT, p2i(p));
176 }
177 
178 void G1ParScanThreadState::verify_task(ScannerTask task) const {
179   if (task.is_narrow_oop_ptr()) {
180     verify_task(task.to_narrow_oop_ptr());
181   } else if (task.is_oop_ptr()) {
182     verify_task(task.to_oop_ptr());
183   } else if (task.is_partial_array_task()) {
184     verify_task(task.to_partial_array_task());
185   } else {
186     ShouldNotReachHere();
187   }
188 }
189 #endif // ASSERT
190 
191 template <class T>
192 MAYBE_INLINE_EVACUATION
193 void G1ParScanThreadState::do_oop_evac(T* p) {
194   // Reference should not be null here as such are never pushed to the task queue.
195   oop obj = RawAccess<IS_NOT_NULL>::oop_load(p);
196 
197   // Although we never intentionally push references outside of the collection
198   // set, due to (benign) races in the claim mechanism during RSet scanning more
199   // than one thread might claim the same card. So the same card may be
200   // processed multiple times, and so we might get references into old gen here.
201   // So we need to redo this check.
202   const G1HeapRegionAttr region_attr = _g1h->region_attr(obj);
203   // References pushed onto the work stack should never point to a humongous region
204   // as they are not added to the collection set due to above precondition.
205   assert(!region_attr.is_humongous_candidate(),
206          "Obj " PTR_FORMAT " should not refer to humongous region %u from " PTR_FORMAT,
207          p2i(obj), _g1h->addr_to_region(obj), p2i(p));
208 
209   if (!region_attr.is_in_cset()) {
210     // In this case somebody else already did all the work.
211     return;
212   }
213 
214   markWord m = obj->mark();
215   if (m.is_forwarded()) {
216     obj = m.forwardee();
217   } else {
218     obj = do_copy_to_survivor_space(region_attr, obj, m);
219   }
220   RawAccess<IS_NOT_NULL>::oop_store(p, obj);
221 
222   write_ref_field_post(p, obj);
223 }
224 
225 MAYBE_INLINE_EVACUATION
226 void G1ParScanThreadState::do_partial_array(PartialArrayScanTask task) {
227   oop from_obj = task.to_source_array();
228 
229   assert(_g1h->is_in_reserved(from_obj), "must be in heap.");
230   assert(from_obj->is_objArray(), "must be obj array");
231   assert(from_obj->is_forwarded(), "must be forwarded");
232 
233   oop to_obj = from_obj->forwardee();
234   assert(from_obj != to_obj, "should not be chunking self-forwarded objects");
235   assert(to_obj->is_objArray(), "must be obj array");
236   objArrayOop to_array = objArrayOop(to_obj);
237 
238   PartialArrayTaskStepper::Step step
239     = _partial_array_stepper.next(objArrayOop(from_obj),
240                                   to_array,
241                                   _partial_objarray_chunk_size);
242   for (uint i = 0; i < step._ncreate; ++i) {
243     push_on_queue(ScannerTask(PartialArrayScanTask(from_obj)));
244   }
245 
246   G1HeapRegionAttr dest_attr = _g1h->region_attr(to_array);
247   G1SkipCardEnqueueSetter x(&_scanner, dest_attr.is_new_survivor());
248   // Process claimed task.  The length of to_array is not correct, but
249   // fortunately the iteration ignores the length field and just relies
250   // on start/end.
251   to_array->oop_iterate_range(&_scanner,
252                               step._index,
253                               step._index + _partial_objarray_chunk_size);
254 }
255 
256 MAYBE_INLINE_EVACUATION
257 void G1ParScanThreadState::start_partial_objarray(G1HeapRegionAttr dest_attr,
258                                                   oop from_obj,
259                                                   oop to_obj) {
260   assert(from_obj->is_objArray(), "precondition");
261   assert(from_obj->is_forwarded(), "precondition");
262   assert(from_obj->forwardee() == to_obj, "precondition");
263   assert(from_obj != to_obj, "should not be scanning self-forwarded objects");
264   assert(to_obj->is_objArray(), "precondition");
265 
266   objArrayOop to_array = objArrayOop(to_obj);
267 
268   PartialArrayTaskStepper::Step step
269     = _partial_array_stepper.start(objArrayOop(from_obj),
270                                    to_array,
271                                    _partial_objarray_chunk_size);
272 
273   // Push any needed partial scan tasks.  Pushed before processing the
274   // initial chunk to allow other workers to steal while we're processing.
275   for (uint i = 0; i < step._ncreate; ++i) {
276     push_on_queue(ScannerTask(PartialArrayScanTask(from_obj)));
277   }
278 
279   // Skip the card enqueue iff the object (to_array) is in survivor region.
280   // However, G1HeapRegion::is_survivor() is too expensive here.
281   // Instead, we use dest_attr.is_young() because the two values are always
282   // equal: successfully allocated young regions must be survivor regions.
283   assert(dest_attr.is_young() == _g1h->heap_region_containing(to_array)->is_survivor(), "must be");
284   G1SkipCardEnqueueSetter x(&_scanner, dest_attr.is_young());
285   // Process the initial chunk.  No need to process the type in the
286   // klass, as it will already be handled by processing the built-in
287   // module. The length of to_array is not correct, but fortunately
288   // the iteration ignores that length field and relies on start/end.
289   to_array->oop_iterate_range(&_scanner, 0, step._index);
290 }
291 
292 MAYBE_INLINE_EVACUATION
293 void G1ParScanThreadState::dispatch_task(ScannerTask task) {
294   verify_task(task);
295   if (task.is_narrow_oop_ptr()) {
296     do_oop_evac(task.to_narrow_oop_ptr());
297   } else if (task.is_oop_ptr()) {
298     do_oop_evac(task.to_oop_ptr());
299   } else {
300     do_partial_array(task.to_partial_array_task());
301   }
302 }
303 
304 // Process tasks until overflow queue is empty and local queue
305 // contains no more than threshold entries.  NOINLINE to prevent
306 // inlining into steal_and_trim_queue.
307 ATTRIBUTE_FLATTEN NOINLINE
308 void G1ParScanThreadState::trim_queue_to_threshold(uint threshold) {
309   ScannerTask task;
310   do {
311     while (_task_queue->pop_overflow(task)) {
312       if (!_task_queue->try_push_to_taskqueue(task)) {
313         dispatch_task(task);
314       }
315     }
316     while (_task_queue->pop_local(task, threshold)) {
317       dispatch_task(task);
318     }
319   } while (!_task_queue->overflow_empty());
320 }
321 
322 ATTRIBUTE_FLATTEN
323 void G1ParScanThreadState::steal_and_trim_queue(G1ScannerTasksQueueSet* task_queues) {
324   ScannerTask stolen_task;
325   while (task_queues->steal(_worker_id, stolen_task)) {
326     dispatch_task(stolen_task);
327     // Processing stolen task may have added tasks to our queue.
328     trim_queue();
329   }
330 }
331 
332 HeapWord* G1ParScanThreadState::allocate_in_next_plab(G1HeapRegionAttr* dest,
333                                                       size_t word_sz,
334                                                       bool previous_plab_refill_failed,
335                                                       uint node_index) {
336 
337   assert(dest->is_in_cset_or_humongous_candidate(), "Unexpected dest: %s region attr", dest->get_type_str());
338 
339   // Right now we only have two types of regions (young / old) so
340   // let's keep the logic here simple. We can generalize it when necessary.
341   if (dest->is_young()) {
342     bool plab_refill_in_old_failed = false;
343     HeapWord* const obj_ptr = _plab_allocator->allocate(G1HeapRegionAttr::Old,
344                                                         word_sz,
345                                                         &plab_refill_in_old_failed,
346                                                         node_index);
347     // Make sure that we won't attempt to copy any other objects out
348     // of a survivor region (given that apparently we cannot allocate
349     // any new ones) to avoid coming into this slow path again and again.
350     // Only consider failed PLAB refill here: failed inline allocations are
351     // typically large, so not indicative of remaining space.
352     if (previous_plab_refill_failed) {
353       _tenuring_threshold = 0;
354     }
355 
356     if (obj_ptr != nullptr) {
357       dest->set_old();
358     } else {
359       // We just failed to allocate in old gen. The same idea as explained above
360       // for making survivor gen unavailable for allocation applies for old gen.
361       _old_gen_is_full = plab_refill_in_old_failed;
362     }
363     return obj_ptr;
364   } else {
365     _old_gen_is_full = previous_plab_refill_failed;
366     assert(dest->is_old(), "Unexpected dest region attr: %s", dest->get_type_str());
367     // no other space to try.
368     return nullptr;
369   }
370 }
371 
372 G1HeapRegionAttr G1ParScanThreadState::next_region_attr(G1HeapRegionAttr const region_attr, markWord const m, uint& age) {
373   assert(region_attr.is_young() || region_attr.is_old(), "must be either Young or Old");
374 
375   if (region_attr.is_young()) {
376     age = !m.has_displaced_mark_helper() ? m.age()
377                                          : m.displaced_mark_helper().age();
378     if (age < _tenuring_threshold) {
379       return region_attr;
380     }
381   }
382   // young-to-old (promotion) or old-to-old; destination is old in both cases.
383   return G1HeapRegionAttr::Old;
384 }
385 
386 void G1ParScanThreadState::report_promotion_event(G1HeapRegionAttr const dest_attr,
387                                                   oop const old, size_t word_sz, uint age,
388                                                   HeapWord * const obj_ptr, uint node_index) const {
389   PLAB* alloc_buf = _plab_allocator->alloc_buffer(dest_attr, node_index);
390   if (alloc_buf->contains(obj_ptr)) {
391     _g1h->gc_tracer_stw()->report_promotion_in_new_plab_event(old->klass(), word_sz * HeapWordSize, age,
392                                                               dest_attr.type() == G1HeapRegionAttr::Old,
393                                                               alloc_buf->word_sz() * HeapWordSize);
394   } else {
395     _g1h->gc_tracer_stw()->report_promotion_outside_plab_event(old->klass(), word_sz * HeapWordSize, age,
396                                                                dest_attr.type() == G1HeapRegionAttr::Old);
397   }
398 }
399 
400 NOINLINE
401 HeapWord* G1ParScanThreadState::allocate_copy_slow(G1HeapRegionAttr* dest_attr,
402                                                    oop old,
403                                                    size_t word_sz,
404                                                    uint age,
405                                                    uint node_index) {
406   HeapWord* obj_ptr = nullptr;
407   // Try slow-path allocation unless we're allocating old and old is already full.
408   if (!(dest_attr->is_old() && _old_gen_is_full)) {
409     bool plab_refill_failed = false;
410     obj_ptr = _plab_allocator->allocate_direct_or_new_plab(*dest_attr,
411                                                            word_sz,
412                                                            &plab_refill_failed,
413                                                            node_index);
414     if (obj_ptr == nullptr) {
415       obj_ptr = allocate_in_next_plab(dest_attr,
416                                       word_sz,
417                                       plab_refill_failed,
418                                       node_index);
419     }
420   }
421   if (obj_ptr != nullptr) {
422     update_numa_stats(node_index);
423     if (_g1h->gc_tracer_stw()->should_report_promotion_events()) {
424       // The events are checked individually as part of the actual commit
425       report_promotion_event(*dest_attr, old, word_sz, age, obj_ptr, node_index);
426     }
427   }
428   return obj_ptr;
429 }
430 
431 #if ALLOCATION_FAILURE_INJECTOR
432 bool G1ParScanThreadState::inject_allocation_failure(uint region_idx) {
433   return _g1h->allocation_failure_injector()->allocation_should_fail(_allocation_failure_inject_counter, region_idx);
434 }
435 #endif
436 
437 NOINLINE
438 void G1ParScanThreadState::undo_allocation(G1HeapRegionAttr dest_attr,
439                                            HeapWord* obj_ptr,
440                                            size_t word_sz,
441                                            uint node_index) {
442   _plab_allocator->undo_allocation(dest_attr, obj_ptr, word_sz, node_index);
443 }
444 
445 void G1ParScanThreadState::update_bot_after_copying(oop obj, size_t word_sz) {
446   HeapWord* obj_start = cast_from_oop<HeapWord*>(obj);
447   G1HeapRegion* region = _g1h->heap_region_containing(obj_start);
448   region->update_bot_for_block(obj_start, obj_start + word_sz);
449 }
450 
451 // Private inline function, for direct internal use and providing the
452 // implementation of the public not-inline function.
453 MAYBE_INLINE_EVACUATION
454 oop G1ParScanThreadState::do_copy_to_survivor_space(G1HeapRegionAttr const region_attr,
455                                                     oop const old,
456                                                     markWord const old_mark) {
457   assert(region_attr.is_in_cset(),
458          "Unexpected region attr type: %s", region_attr.get_type_str());
459 
460   // Get the klass once.  We'll need it again later, and this avoids
461   // re-decoding when it's compressed.
462   Klass* klass = old->klass();
463   const size_t word_sz = old->size_given_klass(klass);
464 
465   // JNI only allows pinning of typeArrays, so we only need to keep those in place.
466   if (region_attr.is_pinned() && klass->is_typeArray_klass()) {
467     return handle_evacuation_failure_par(old, old_mark, word_sz, true /* cause_pinned */);
468   }
469 
470   uint age = 0;
471   G1HeapRegionAttr dest_attr = next_region_attr(region_attr, old_mark, age);
472   G1HeapRegion* const from_region = _g1h->heap_region_containing(old);
473   uint node_index = from_region->node_index();
474 
475   HeapWord* obj_ptr = _plab_allocator->plab_allocate(dest_attr, word_sz, node_index);
476 
477   // PLAB allocations should succeed most of the time, so we'll
478   // normally check against null once and that's it.
479   if (obj_ptr == nullptr) {
480     obj_ptr = allocate_copy_slow(&dest_attr, old, word_sz, age, node_index);
481     if (obj_ptr == nullptr) {
482       // This will either forward-to-self, or detect that someone else has
483       // installed a forwarding pointer.
484       return handle_evacuation_failure_par(old, old_mark, word_sz, false /* cause_pinned */);
485     }
486   }
487 
488   assert(obj_ptr != nullptr, "when we get here, allocation should have succeeded");
489   assert(_g1h->is_in_reserved(obj_ptr), "Allocated memory should be in the heap");
490 
491   // Should this evacuation fail?
492   if (inject_allocation_failure(from_region->hrm_index())) {
493     // Doing this after all the allocation attempts also tests the
494     // undo_allocation() method too.
495     undo_allocation(dest_attr, obj_ptr, word_sz, node_index);
496     return handle_evacuation_failure_par(old, old_mark, word_sz, false /* cause_pinned */);
497   }
498 
499   // We're going to allocate linearly, so might as well prefetch ahead.
500   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
501   Copy::aligned_disjoint_words(cast_from_oop<HeapWord*>(old), obj_ptr, word_sz);
502 
503   const oop obj = cast_to_oop(obj_ptr);
504   // Because the forwarding is done with memory_order_relaxed there is no
505   // ordering with the above copy.  Clients that get the forwardee must not
506   // examine its contents without other synchronization, since the contents
507   // may not be up to date for them.
508   const oop forward_ptr = old->forward_to_atomic(obj, old_mark, memory_order_relaxed);
509   if (forward_ptr == nullptr) {
510 
511     {
512       const uint young_index = from_region->young_index_in_cset();
513       assert((from_region->is_young() && young_index >  0) ||
514              (!from_region->is_young() && young_index == 0), "invariant" );
515       _surviving_young_words[young_index] += word_sz;
516     }
517 
518     if (dest_attr.is_young()) {
519       if (age < markWord::max_age) {
520         age++;
521         obj->incr_age();
522       }
523       _age_table.add(age, word_sz);
524     } else {
525       update_bot_after_copying(obj, word_sz);
526     }
527 
528     // Most objects are not arrays, so do one array check rather than
529     // checking for each array category for each object.
530     if (klass->is_array_klass()) {
531       if (klass->is_objArray_klass()) {
532         start_partial_objarray(dest_attr, old, obj);
533       } else {
534         // Nothing needs to be done for typeArrays.  Body doesn't contain
535         // any oops to scan, and the type in the klass will already be handled
536         // by processing the built-in module.
537         assert(klass->is_typeArray_klass(), "invariant");
538       }
539       return obj;
540     }
541 
542     ContinuationGCSupport::transform_stack_chunk(obj);
543 
544     // Check for deduplicating young Strings.
545     if (G1StringDedup::is_candidate_from_evacuation(klass,
546                                                     region_attr,
547                                                     dest_attr,
548                                                     age)) {
549       // Record old; request adds a new weak reference, which reference
550       // processing expects to refer to a from-space object.
551       _string_dedup_requests.add(old);
552     }
553 
554     // Skip the card enqueue iff the object (obj) is in survivor region.
555     // However, G1HeapRegion::is_survivor() is too expensive here.
556     // Instead, we use dest_attr.is_young() because the two values are always
557     // equal: successfully allocated young regions must be survivor regions.
558     assert(dest_attr.is_young() == _g1h->heap_region_containing(obj)->is_survivor(), "must be");
559     G1SkipCardEnqueueSetter x(&_scanner, dest_attr.is_young());
560     obj->oop_iterate_backwards(&_scanner, klass);
561     return obj;
562   } else {
563     _plab_allocator->undo_allocation(dest_attr, obj_ptr, word_sz, node_index);
564     return forward_ptr;
565   }
566 }
567 
568 // Public not-inline entry point.
569 ATTRIBUTE_FLATTEN
570 oop G1ParScanThreadState::copy_to_survivor_space(G1HeapRegionAttr region_attr,
571                                                  oop old,
572                                                  markWord old_mark) {
573   return do_copy_to_survivor_space(region_attr, old, old_mark);
574 }
575 
576 G1ParScanThreadState* G1ParScanThreadStateSet::state_for_worker(uint worker_id) {
577   assert(worker_id < _num_workers, "out of bounds access");
578   if (_states[worker_id] == nullptr) {
579     _states[worker_id] =
580       new G1ParScanThreadState(_g1h, rdcqs(),
581                                _preserved_marks_set.get(worker_id),
582                                worker_id,
583                                _num_workers,
584                                _collection_set,
585                                _evac_failure_regions);
586   }
587   return _states[worker_id];
588 }
589 
590 const size_t* G1ParScanThreadStateSet::surviving_young_words() const {
591   assert(_flushed, "thread local state from the per thread states should have been flushed");
592   return _surviving_young_words_total;
593 }
594 
595 void G1ParScanThreadStateSet::flush_stats() {
596   assert(!_flushed, "thread local state from the per thread states should be flushed once");
597   for (uint worker_id = 0; worker_id < _num_workers; ++worker_id) {
598     G1ParScanThreadState* pss = _states[worker_id];
599     assert(pss != nullptr, "must be initialized");
600 
601     G1GCPhaseTimes* p = _g1h->phase_times();
602 
603     // Need to get the following two before the call to G1ParThreadScanState::flush()
604     // because it resets the PLAB allocator where we get this info from.
605     size_t lab_waste_bytes = pss->lab_waste_words() * HeapWordSize;
606     size_t lab_undo_waste_bytes = pss->lab_undo_waste_words() * HeapWordSize;
607     size_t copied_bytes = pss->flush_stats(_surviving_young_words_total, _num_workers, &_rdc_buffers[worker_id]) * HeapWordSize;
608     size_t evac_fail_enqueued_cards = pss->evac_failure_enqueued_cards();
609 
610     p->record_or_add_thread_work_item(G1GCPhaseTimes::MergePSS, worker_id, copied_bytes, G1GCPhaseTimes::MergePSSCopiedBytes);
611     p->record_or_add_thread_work_item(G1GCPhaseTimes::MergePSS, worker_id, lab_waste_bytes, G1GCPhaseTimes::MergePSSLABWasteBytes);
612     p->record_or_add_thread_work_item(G1GCPhaseTimes::MergePSS, worker_id, lab_undo_waste_bytes, G1GCPhaseTimes::MergePSSLABUndoWasteBytes);
613     p->record_or_add_thread_work_item(G1GCPhaseTimes::MergePSS, worker_id, evac_fail_enqueued_cards, G1GCPhaseTimes::MergePSSEvacFailExtra);
614 
615     delete pss;
616     _states[worker_id] = nullptr;
617   }
618 
619   G1DirtyCardQueueSet& dcq = G1BarrierSet::dirty_card_queue_set();
620   dcq.merge_bufferlists(rdcqs());
621   rdcqs()->verify_empty();
622 
623   _flushed = true;
624 }
625 
626 void G1ParScanThreadStateSet::record_unused_optional_region(G1HeapRegion* hr) {
627   for (uint worker_index = 0; worker_index < _num_workers; ++worker_index) {
628     G1ParScanThreadState* pss = _states[worker_index];
629     assert(pss != nullptr, "must be initialized");
630 
631     size_t used_memory = pss->oops_into_optional_region(hr)->used_memory();
632     _g1h->phase_times()->record_or_add_thread_work_item(G1GCPhaseTimes::OptScanHR, worker_index, used_memory, G1GCPhaseTimes::ScanHRUsedMemory);
633   }
634 }
635 
636 NOINLINE
637 oop G1ParScanThreadState::handle_evacuation_failure_par(oop old, markWord m, size_t word_sz, bool cause_pinned) {
638   assert(_g1h->is_in_cset(old), "Object " PTR_FORMAT " should be in the CSet", p2i(old));
639 
640   oop forward_ptr = old->forward_to_atomic(old, m, memory_order_relaxed);
641   if (forward_ptr == nullptr) {
642     // Forward-to-self succeeded. We are the "owner" of the object.
643     G1HeapRegion* r = _g1h->heap_region_containing(old);
644 
645     if (_evac_failure_regions->record(_worker_id, r->hrm_index(), cause_pinned)) {
646       G1HeapRegionPrinter::evac_failure(r);
647     }
648 
649     // Mark the failing object in the marking bitmap and later use the bitmap to handle
650     // evacuation failure recovery.
651     _g1h->mark_evac_failure_object(_worker_id, old, word_sz);
652 
653     _preserved_marks->push_if_necessary(old, m);
654 
655     ContinuationGCSupport::transform_stack_chunk(old);
656 
657     _evacuation_failed_info.register_copy_failure(word_sz);
658 
659     // For iterating objects that failed evacuation currently we can reuse the
660     // existing closure to scan evacuated objects; since we are iterating from a
661     // collection set region (i.e. never a Survivor region), we always need to
662     // gather cards for this case.
663     G1SkipCardEnqueueSetter x(&_scanner, false /* skip_card_enqueue */);
664     old->oop_iterate_backwards(&_scanner);
665 
666     return old;
667   } else {
668     // Forward-to-self failed. Either someone else managed to allocate
669     // space for this object (old != forward_ptr) or they beat us in
670     // self-forwarding it (old == forward_ptr).
671     assert(old == forward_ptr || !_g1h->is_in_cset(forward_ptr),
672            "Object " PTR_FORMAT " forwarded to: " PTR_FORMAT " "
673            "should not be in the CSet",
674            p2i(old), p2i(forward_ptr));
675     return forward_ptr;
676   }
677 }
678 
679 void G1ParScanThreadState::initialize_numa_stats() {
680   if (_numa->is_enabled()) {
681     LogTarget(Info, gc, heap, numa) lt;
682 
683     if (lt.is_enabled()) {
684       uint num_nodes = _numa->num_active_nodes();
685       // Record only if there are multiple active nodes.
686       _obj_alloc_stat = NEW_C_HEAP_ARRAY(size_t, num_nodes, mtGC);
687       memset(_obj_alloc_stat, 0, sizeof(size_t) * num_nodes);
688     }
689   }
690 }
691 
692 void G1ParScanThreadState::flush_numa_stats() {
693   if (_obj_alloc_stat != nullptr) {
694     uint node_index = _numa->index_of_current_thread();
695     _numa->copy_statistics(G1NUMAStats::LocalObjProcessAtCopyToSurv, node_index, _obj_alloc_stat);
696   }
697 }
698 
699 void G1ParScanThreadState::update_numa_stats(uint node_index) {
700   if (_obj_alloc_stat != nullptr) {
701     _obj_alloc_stat[node_index]++;
702   }
703 }
704 
705 G1ParScanThreadStateSet::G1ParScanThreadStateSet(G1CollectedHeap* g1h,
706                                                  uint num_workers,
707                                                  G1CollectionSet* collection_set,
708                                                  G1EvacFailureRegions* evac_failure_regions) :
709     _g1h(g1h),
710     _collection_set(collection_set),
711     _rdcqs(G1BarrierSet::dirty_card_queue_set().allocator()),
712     _preserved_marks_set(true /* in_c_heap */),
713     _states(NEW_C_HEAP_ARRAY(G1ParScanThreadState*, num_workers, mtGC)),
714     _rdc_buffers(NEW_C_HEAP_ARRAY(BufferNodeList, num_workers, mtGC)),
715     _surviving_young_words_total(NEW_C_HEAP_ARRAY(size_t, collection_set->young_region_length() + 1, mtGC)),
716     _num_workers(num_workers),
717     _flushed(false),
718     _evac_failure_regions(evac_failure_regions) {
719   _preserved_marks_set.init(num_workers);
720   for (uint i = 0; i < num_workers; ++i) {
721     _states[i] = nullptr;
722     _rdc_buffers[i] = BufferNodeList();
723   }
724   memset(_surviving_young_words_total, 0, (collection_set->young_region_length() + 1) * sizeof(size_t));
725 }
726 
727 G1ParScanThreadStateSet::~G1ParScanThreadStateSet() {
728   assert(_flushed, "thread local state from the per thread states should have been flushed");
729   FREE_C_HEAP_ARRAY(G1ParScanThreadState*, _states);
730   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_total);
731   FREE_C_HEAP_ARRAY(BufferNodeList, _rdc_buffers);
732   _preserved_marks_set.reclaim();
733 }