1 /* 2 * Copyright (c) 2014, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "gc/g1/g1Allocator.inline.hpp" 27 #include "gc/g1/g1CollectedHeap.inline.hpp" 28 #include "gc/g1/g1CollectionSet.hpp" 29 #include "gc/g1/g1EvacFailureRegions.inline.hpp" 30 #include "gc/g1/g1HeapRegionPrinter.hpp" 31 #include "gc/g1/g1OopClosures.inline.hpp" 32 #include "gc/g1/g1ParScanThreadState.inline.hpp" 33 #include "gc/g1/g1RootClosures.hpp" 34 #include "gc/g1/g1StringDedup.hpp" 35 #include "gc/g1/g1Trace.hpp" 36 #include "gc/g1/g1YoungGCAllocationFailureInjector.inline.hpp" 37 #include "gc/shared/continuationGCSupport.inline.hpp" 38 #include "gc/shared/partialArrayState.hpp" 39 #include "gc/shared/partialArrayTaskStepper.inline.hpp" 40 #include "gc/shared/stringdedup/stringDedup.hpp" 41 #include "gc/shared/taskqueue.inline.hpp" 42 #include "memory/allocation.inline.hpp" 43 #include "oops/access.inline.hpp" 44 #include "oops/oop.inline.hpp" 45 #include "runtime/atomic.hpp" 46 #include "runtime/mutexLocker.hpp" 47 #include "runtime/prefetch.inline.hpp" 48 #include "utilities/globalDefinitions.hpp" 49 #include "utilities/macros.hpp" 50 51 // In fastdebug builds the code size can get out of hand, potentially 52 // tripping over compiler limits (which may be bugs, but nevertheless 53 // need to be taken into consideration). A side benefit of limiting 54 // inlining is that we get more call frames that might aid debugging. 55 // And the fastdebug compile time for this file is much reduced. 56 // Explicit NOINLINE to block ATTRIBUTE_FLATTENing. 57 #define MAYBE_INLINE_EVACUATION NOT_DEBUG(inline) DEBUG_ONLY(NOINLINE) 58 59 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, 60 G1RedirtyCardsQueueSet* rdcqs, 61 uint worker_id, 62 uint num_workers, 63 G1CollectionSet* collection_set, 64 G1EvacFailureRegions* evac_failure_regions) 65 : _g1h(g1h), 66 _task_queue(g1h->task_queue(worker_id)), 67 _rdc_local_qset(rdcqs), 68 _ct(g1h->card_table()), 69 _closures(nullptr), 70 _plab_allocator(nullptr), 71 _age_table(false), 72 _tenuring_threshold(g1h->policy()->tenuring_threshold()), 73 _scanner(g1h, this), 74 _worker_id(worker_id), 75 _last_enqueued_card(SIZE_MAX), 76 _stack_trim_upper_threshold(GCDrainStackTargetSize * 2 + 1), 77 _stack_trim_lower_threshold(GCDrainStackTargetSize), 78 _trim_ticks(), 79 _surviving_young_words_base(nullptr), 80 _surviving_young_words(nullptr), 81 _surviving_words_length(collection_set->young_region_length() + 1), 82 _old_gen_is_full(false), 83 _partial_array_state_allocator(g1h->partial_array_state_manager()), 84 _partial_array_stepper(num_workers, ParGCArrayScanChunk), 85 _string_dedup_requests(), 86 _max_num_optional_regions(collection_set->optional_region_length()), 87 _numa(g1h->numa()), 88 _obj_alloc_stat(nullptr), 89 ALLOCATION_FAILURE_INJECTOR_ONLY(_allocation_failure_inject_counter(0) COMMA) 90 _evacuation_failed_info(), 91 _evac_failure_regions(evac_failure_regions), 92 _evac_failure_enqueued_cards(0) 93 { 94 // We allocate number of young gen regions in the collection set plus one 95 // entries, since entry 0 keeps track of surviving bytes for non-young regions. 96 // We also add a few elements at the beginning and at the end in 97 // an attempt to eliminate cache contention 98 const size_t padding_elem_num = (DEFAULT_PADDING_SIZE / sizeof(size_t)); 99 size_t array_length = padding_elem_num + _surviving_words_length + padding_elem_num; 100 101 _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC); 102 _surviving_young_words = _surviving_young_words_base + padding_elem_num; 103 memset(_surviving_young_words, 0, _surviving_words_length * sizeof(size_t)); 104 105 _plab_allocator = new G1PLABAllocator(_g1h->allocator()); 106 107 _closures = G1EvacuationRootClosures::create_root_closures(_g1h, 108 this, 109 collection_set->only_contains_young_regions()); 110 111 _oops_into_optional_regions = new G1OopStarChunkedList[_max_num_optional_regions]; 112 113 initialize_numa_stats(); 114 } 115 116 size_t G1ParScanThreadState::flush_stats(size_t* surviving_young_words, uint num_workers, BufferNodeList* rdc_buffers) { 117 *rdc_buffers = _rdc_local_qset.flush(); 118 flush_numa_stats(); 119 // Update allocation statistics. 120 _plab_allocator->flush_and_retire_stats(num_workers); 121 _g1h->policy()->record_age_table(&_age_table); 122 123 if (_evacuation_failed_info.has_failed()) { 124 _g1h->gc_tracer_stw()->report_evacuation_failed(_evacuation_failed_info); 125 } 126 127 size_t sum = 0; 128 for (uint i = 0; i < _surviving_words_length; i++) { 129 surviving_young_words[i] += _surviving_young_words[i]; 130 sum += _surviving_young_words[i]; 131 } 132 return sum; 133 } 134 135 G1ParScanThreadState::~G1ParScanThreadState() { 136 delete _plab_allocator; 137 delete _closures; 138 FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base); 139 delete[] _oops_into_optional_regions; 140 FREE_C_HEAP_ARRAY(size_t, _obj_alloc_stat); 141 } 142 143 size_t G1ParScanThreadState::lab_waste_words() const { 144 return _plab_allocator->waste(); 145 } 146 147 size_t G1ParScanThreadState::lab_undo_waste_words() const { 148 return _plab_allocator->undo_waste(); 149 } 150 151 size_t G1ParScanThreadState::evac_failure_enqueued_cards() const { 152 return _evac_failure_enqueued_cards; 153 } 154 155 #ifdef ASSERT 156 void G1ParScanThreadState::verify_task(narrowOop* task) const { 157 assert(task != nullptr, "invariant"); 158 assert(UseCompressedOops, "sanity"); 159 oop p = RawAccess<>::oop_load(task); 160 assert(_g1h->is_in_reserved(p), 161 "task=" PTR_FORMAT " p=" PTR_FORMAT, p2i(task), p2i(p)); 162 } 163 164 void G1ParScanThreadState::verify_task(oop* task) const { 165 assert(task != nullptr, "invariant"); 166 oop p = RawAccess<>::oop_load(task); 167 assert(_g1h->is_in_reserved(p), 168 "task=" PTR_FORMAT " p=" PTR_FORMAT, p2i(task), p2i(p)); 169 } 170 171 void G1ParScanThreadState::verify_task(PartialArrayState* task) const { 172 // Must be in the collection set--it's already been copied. 173 oop p = task->source(); 174 assert(_g1h->is_in_cset(p), "p=" PTR_FORMAT, p2i(p)); 175 } 176 177 void G1ParScanThreadState::verify_task(ScannerTask task) const { 178 if (task.is_narrow_oop_ptr()) { 179 verify_task(task.to_narrow_oop_ptr()); 180 } else if (task.is_oop_ptr()) { 181 verify_task(task.to_oop_ptr()); 182 } else if (task.is_partial_array_state()) { 183 verify_task(task.to_partial_array_state()); 184 } else { 185 ShouldNotReachHere(); 186 } 187 } 188 #endif // ASSERT 189 190 template <class T> 191 MAYBE_INLINE_EVACUATION 192 void G1ParScanThreadState::do_oop_evac(T* p) { 193 // Reference should not be null here as such are never pushed to the task queue. 194 oop obj = RawAccess<IS_NOT_NULL>::oop_load(p); 195 196 // Although we never intentionally push references outside of the collection 197 // set, due to (benign) races in the claim mechanism during RSet scanning more 198 // than one thread might claim the same card. So the same card may be 199 // processed multiple times, and so we might get references into old gen here. 200 // So we need to redo this check. 201 const G1HeapRegionAttr region_attr = _g1h->region_attr(obj); 202 // References pushed onto the work stack should never point to a humongous region 203 // as they are not added to the collection set due to above precondition. 204 assert(!region_attr.is_humongous_candidate(), 205 "Obj " PTR_FORMAT " should not refer to humongous region %u from " PTR_FORMAT, 206 p2i(obj), _g1h->addr_to_region(obj), p2i(p)); 207 208 if (!region_attr.is_in_cset()) { 209 // In this case somebody else already did all the work. 210 return; 211 } 212 213 markWord m = obj->mark(); 214 if (m.is_forwarded()) { 215 obj = obj->forwardee(m); 216 } else { 217 obj = do_copy_to_survivor_space(region_attr, obj, m); 218 } 219 RawAccess<IS_NOT_NULL>::oop_store(p, obj); 220 221 write_ref_field_post(p, obj); 222 } 223 224 MAYBE_INLINE_EVACUATION 225 void G1ParScanThreadState::do_partial_array(PartialArrayState* state) { 226 oop to_obj = state->destination(); 227 228 #ifdef ASSERT 229 oop from_obj = state->source(); 230 assert(_g1h->is_in_reserved(from_obj), "must be in heap."); 231 assert(from_obj->is_forwarded(), "must be forwarded"); 232 assert(from_obj != to_obj, "should not be chunking self-forwarded objects"); 233 assert(to_obj->is_objArray(), "must be obj array"); 234 #endif // ASSERT 235 236 objArrayOop to_array = objArrayOop(to_obj); 237 238 // Claim a chunk and get number of additional tasks to enqueue. 239 PartialArrayTaskStepper::Step step = _partial_array_stepper.next(state); 240 // Push any additional partial scan tasks needed. Pushed before processing 241 // the claimed chunk to allow other workers to steal while we're processing. 242 if (step._ncreate > 0) { 243 state->add_references(step._ncreate); 244 for (uint i = 0; i < step._ncreate; ++i) { 245 push_on_queue(ScannerTask(state)); 246 } 247 } 248 249 G1HeapRegionAttr dest_attr = _g1h->region_attr(to_array); 250 G1SkipCardEnqueueSetter x(&_scanner, dest_attr.is_new_survivor()); 251 // Process claimed task. 252 to_array->oop_iterate_range(&_scanner, 253 checked_cast<int>(step._index), 254 checked_cast<int>(step._index + _partial_array_stepper.chunk_size())); 255 // Release reference to the state, now that we're done with it. 256 _partial_array_state_allocator.release(state); 257 } 258 259 MAYBE_INLINE_EVACUATION 260 void G1ParScanThreadState::start_partial_objarray(G1HeapRegionAttr dest_attr, 261 oop from_obj, 262 oop to_obj) { 263 assert(from_obj->is_forwarded(), "precondition"); 264 assert(from_obj->forwardee() == to_obj, "precondition"); 265 assert(to_obj->is_objArray(), "precondition"); 266 267 objArrayOop to_array = objArrayOop(to_obj); 268 269 size_t array_length = to_array->length(); 270 PartialArrayTaskStepper::Step step = _partial_array_stepper.start(array_length); 271 272 // Push any needed partial scan tasks. Pushed before processing the 273 // initial chunk to allow other workers to steal while we're processing. 274 if (step._ncreate > 0) { 275 assert(step._index < array_length, "invariant"); 276 assert(((array_length - step._index) % _partial_array_stepper.chunk_size()) == 0, 277 "invariant"); 278 PartialArrayState* state = 279 _partial_array_state_allocator.allocate(from_obj, to_obj, 280 step._index, 281 array_length, 282 step._ncreate); 283 for (uint i = 0; i < step._ncreate; ++i) { 284 push_on_queue(ScannerTask(state)); 285 } 286 } else { 287 assert(step._index == array_length, "invariant"); 288 } 289 290 // Skip the card enqueue iff the object (to_array) is in survivor region. 291 // However, G1HeapRegion::is_survivor() is too expensive here. 292 // Instead, we use dest_attr.is_young() because the two values are always 293 // equal: successfully allocated young regions must be survivor regions. 294 assert(dest_attr.is_young() == _g1h->heap_region_containing(to_array)->is_survivor(), "must be"); 295 G1SkipCardEnqueueSetter x(&_scanner, dest_attr.is_young()); 296 // Process the initial chunk. No need to process the type in the 297 // klass, as it will already be handled by processing the built-in 298 // module. 299 to_array->oop_iterate_range(&_scanner, 0, checked_cast<int>(step._index)); 300 } 301 302 MAYBE_INLINE_EVACUATION 303 void G1ParScanThreadState::dispatch_task(ScannerTask task) { 304 verify_task(task); 305 if (task.is_narrow_oop_ptr()) { 306 do_oop_evac(task.to_narrow_oop_ptr()); 307 } else if (task.is_oop_ptr()) { 308 do_oop_evac(task.to_oop_ptr()); 309 } else { 310 do_partial_array(task.to_partial_array_state()); 311 } 312 } 313 314 // Process tasks until overflow queue is empty and local queue 315 // contains no more than threshold entries. NOINLINE to prevent 316 // inlining into steal_and_trim_queue. 317 ATTRIBUTE_FLATTEN NOINLINE 318 void G1ParScanThreadState::trim_queue_to_threshold(uint threshold) { 319 ScannerTask task; 320 do { 321 while (_task_queue->pop_overflow(task)) { 322 if (!_task_queue->try_push_to_taskqueue(task)) { 323 dispatch_task(task); 324 } 325 } 326 while (_task_queue->pop_local(task, threshold)) { 327 dispatch_task(task); 328 } 329 } while (!_task_queue->overflow_empty()); 330 } 331 332 ATTRIBUTE_FLATTEN 333 void G1ParScanThreadState::steal_and_trim_queue(G1ScannerTasksQueueSet* task_queues) { 334 ScannerTask stolen_task; 335 while (task_queues->steal(_worker_id, stolen_task)) { 336 dispatch_task(stolen_task); 337 // Processing stolen task may have added tasks to our queue. 338 trim_queue(); 339 } 340 } 341 342 HeapWord* G1ParScanThreadState::allocate_in_next_plab(G1HeapRegionAttr* dest, 343 size_t word_sz, 344 bool previous_plab_refill_failed, 345 uint node_index) { 346 347 assert(dest->is_in_cset_or_humongous_candidate(), "Unexpected dest: %s region attr", dest->get_type_str()); 348 349 // Right now we only have two types of regions (young / old) so 350 // let's keep the logic here simple. We can generalize it when necessary. 351 if (dest->is_young()) { 352 bool plab_refill_in_old_failed = false; 353 HeapWord* const obj_ptr = _plab_allocator->allocate(G1HeapRegionAttr::Old, 354 word_sz, 355 &plab_refill_in_old_failed, 356 node_index); 357 // Make sure that we won't attempt to copy any other objects out 358 // of a survivor region (given that apparently we cannot allocate 359 // any new ones) to avoid coming into this slow path again and again. 360 // Only consider failed PLAB refill here: failed inline allocations are 361 // typically large, so not indicative of remaining space. 362 if (previous_plab_refill_failed) { 363 _tenuring_threshold = 0; 364 } 365 366 if (obj_ptr != nullptr) { 367 dest->set_old(); 368 } else { 369 // We just failed to allocate in old gen. The same idea as explained above 370 // for making survivor gen unavailable for allocation applies for old gen. 371 _old_gen_is_full = plab_refill_in_old_failed; 372 } 373 return obj_ptr; 374 } else { 375 _old_gen_is_full = previous_plab_refill_failed; 376 assert(dest->is_old(), "Unexpected dest region attr: %s", dest->get_type_str()); 377 // no other space to try. 378 return nullptr; 379 } 380 } 381 382 G1HeapRegionAttr G1ParScanThreadState::next_region_attr(G1HeapRegionAttr const region_attr, markWord const m, uint& age) { 383 assert(region_attr.is_young() || region_attr.is_old(), "must be either Young or Old"); 384 385 if (region_attr.is_young()) { 386 age = !m.has_displaced_mark_helper() ? m.age() 387 : m.displaced_mark_helper().age(); 388 if (age < _tenuring_threshold) { 389 return region_attr; 390 } 391 } 392 // young-to-old (promotion) or old-to-old; destination is old in both cases. 393 return G1HeapRegionAttr::Old; 394 } 395 396 void G1ParScanThreadState::report_promotion_event(G1HeapRegionAttr const dest_attr, 397 Klass* klass, size_t word_sz, uint age, 398 HeapWord * const obj_ptr, uint node_index) const { 399 PLAB* alloc_buf = _plab_allocator->alloc_buffer(dest_attr, node_index); 400 if (alloc_buf->contains(obj_ptr)) { 401 _g1h->gc_tracer_stw()->report_promotion_in_new_plab_event(klass, word_sz * HeapWordSize, age, 402 dest_attr.type() == G1HeapRegionAttr::Old, 403 alloc_buf->word_sz() * HeapWordSize); 404 } else { 405 _g1h->gc_tracer_stw()->report_promotion_outside_plab_event(klass, word_sz * HeapWordSize, age, 406 dest_attr.type() == G1HeapRegionAttr::Old); 407 } 408 } 409 410 NOINLINE 411 HeapWord* G1ParScanThreadState::allocate_copy_slow(G1HeapRegionAttr* dest_attr, 412 Klass* klass, 413 size_t word_sz, 414 uint age, 415 uint node_index) { 416 HeapWord* obj_ptr = nullptr; 417 // Try slow-path allocation unless we're allocating old and old is already full. 418 if (!(dest_attr->is_old() && _old_gen_is_full)) { 419 bool plab_refill_failed = false; 420 obj_ptr = _plab_allocator->allocate_direct_or_new_plab(*dest_attr, 421 word_sz, 422 &plab_refill_failed, 423 node_index); 424 if (obj_ptr == nullptr) { 425 obj_ptr = allocate_in_next_plab(dest_attr, 426 word_sz, 427 plab_refill_failed, 428 node_index); 429 } 430 } 431 if (obj_ptr != nullptr) { 432 update_numa_stats(node_index); 433 if (_g1h->gc_tracer_stw()->should_report_promotion_events()) { 434 // The events are checked individually as part of the actual commit 435 report_promotion_event(*dest_attr, klass, word_sz, age, obj_ptr, node_index); 436 } 437 } 438 return obj_ptr; 439 } 440 441 #if ALLOCATION_FAILURE_INJECTOR 442 bool G1ParScanThreadState::inject_allocation_failure(uint region_idx) { 443 return _g1h->allocation_failure_injector()->allocation_should_fail(_allocation_failure_inject_counter, region_idx); 444 } 445 #endif 446 447 NOINLINE 448 void G1ParScanThreadState::undo_allocation(G1HeapRegionAttr dest_attr, 449 HeapWord* obj_ptr, 450 size_t word_sz, 451 uint node_index) { 452 _plab_allocator->undo_allocation(dest_attr, obj_ptr, word_sz, node_index); 453 } 454 455 void G1ParScanThreadState::update_bot_after_copying(oop obj, size_t word_sz) { 456 HeapWord* obj_start = cast_from_oop<HeapWord*>(obj); 457 G1HeapRegion* region = _g1h->heap_region_containing(obj_start); 458 region->update_bot_for_block(obj_start, obj_start + word_sz); 459 } 460 461 // Private inline function, for direct internal use and providing the 462 // implementation of the public not-inline function. 463 MAYBE_INLINE_EVACUATION 464 oop G1ParScanThreadState::do_copy_to_survivor_space(G1HeapRegionAttr const region_attr, 465 oop const old, 466 markWord const old_mark) { 467 assert(region_attr.is_in_cset(), 468 "Unexpected region attr type: %s", region_attr.get_type_str()); 469 470 // NOTE: With compact headers, it is not safe to load the Klass* from old, because 471 // that would access the mark-word, that might change at any time by concurrent 472 // workers. 473 // This mark word would refer to a forwardee, which may not yet have completed 474 // copying. Therefore we must load the Klass* from the mark-word that we already 475 // loaded. This is safe, because we only enter here if not yet forwarded. 476 assert(!old_mark.is_forwarded(), "precondition"); 477 Klass* klass = UseCompactObjectHeaders 478 ? old_mark.klass() 479 : old->klass(); 480 481 const size_t word_sz = old->size_given_klass(klass); 482 483 // JNI only allows pinning of typeArrays, so we only need to keep those in place. 484 if (region_attr.is_pinned() && klass->is_typeArray_klass()) { 485 return handle_evacuation_failure_par(old, old_mark, word_sz, true /* cause_pinned */); 486 } 487 488 uint age = 0; 489 G1HeapRegionAttr dest_attr = next_region_attr(region_attr, old_mark, age); 490 G1HeapRegion* const from_region = _g1h->heap_region_containing(old); 491 uint node_index = from_region->node_index(); 492 493 HeapWord* obj_ptr = _plab_allocator->plab_allocate(dest_attr, word_sz, node_index); 494 495 // PLAB allocations should succeed most of the time, so we'll 496 // normally check against null once and that's it. 497 if (obj_ptr == nullptr) { 498 obj_ptr = allocate_copy_slow(&dest_attr, klass, word_sz, age, node_index); 499 if (obj_ptr == nullptr) { 500 // This will either forward-to-self, or detect that someone else has 501 // installed a forwarding pointer. 502 return handle_evacuation_failure_par(old, old_mark, word_sz, false /* cause_pinned */); 503 } 504 } 505 506 assert(obj_ptr != nullptr, "when we get here, allocation should have succeeded"); 507 assert(_g1h->is_in_reserved(obj_ptr), "Allocated memory should be in the heap"); 508 509 // Should this evacuation fail? 510 if (inject_allocation_failure(from_region->hrm_index())) { 511 // Doing this after all the allocation attempts also tests the 512 // undo_allocation() method too. 513 undo_allocation(dest_attr, obj_ptr, word_sz, node_index); 514 return handle_evacuation_failure_par(old, old_mark, word_sz, false /* cause_pinned */); 515 } 516 517 // We're going to allocate linearly, so might as well prefetch ahead. 518 Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes); 519 Copy::aligned_disjoint_words(cast_from_oop<HeapWord*>(old), obj_ptr, word_sz); 520 521 const oop obj = cast_to_oop(obj_ptr); 522 // Because the forwarding is done with memory_order_relaxed there is no 523 // ordering with the above copy. Clients that get the forwardee must not 524 // examine its contents without other synchronization, since the contents 525 // may not be up to date for them. 526 const oop forward_ptr = old->forward_to_atomic(obj, old_mark, memory_order_relaxed); 527 if (forward_ptr == nullptr) { 528 529 { 530 const uint young_index = from_region->young_index_in_cset(); 531 assert((from_region->is_young() && young_index > 0) || 532 (!from_region->is_young() && young_index == 0), "invariant" ); 533 _surviving_young_words[young_index] += word_sz; 534 } 535 536 if (dest_attr.is_young()) { 537 if (age < markWord::max_age) { 538 age++; 539 obj->incr_age(); 540 } 541 _age_table.add(age, word_sz); 542 } else { 543 update_bot_after_copying(obj, word_sz); 544 } 545 546 // Most objects are not arrays, so do one array check rather than 547 // checking for each array category for each object. 548 if (klass->is_array_klass()) { 549 if (klass->is_objArray_klass()) { 550 start_partial_objarray(dest_attr, old, obj); 551 } else { 552 // Nothing needs to be done for typeArrays. Body doesn't contain 553 // any oops to scan, and the type in the klass will already be handled 554 // by processing the built-in module. 555 assert(klass->is_typeArray_klass(), "invariant"); 556 } 557 return obj; 558 } 559 560 ContinuationGCSupport::transform_stack_chunk(obj); 561 562 // Check for deduplicating young Strings. 563 if (G1StringDedup::is_candidate_from_evacuation(klass, 564 region_attr, 565 dest_attr, 566 age)) { 567 // Record old; request adds a new weak reference, which reference 568 // processing expects to refer to a from-space object. 569 _string_dedup_requests.add(old); 570 } 571 572 // Skip the card enqueue iff the object (obj) is in survivor region. 573 // However, G1HeapRegion::is_survivor() is too expensive here. 574 // Instead, we use dest_attr.is_young() because the two values are always 575 // equal: successfully allocated young regions must be survivor regions. 576 assert(dest_attr.is_young() == _g1h->heap_region_containing(obj)->is_survivor(), "must be"); 577 G1SkipCardEnqueueSetter x(&_scanner, dest_attr.is_young()); 578 obj->oop_iterate_backwards(&_scanner, klass); 579 return obj; 580 } else { 581 _plab_allocator->undo_allocation(dest_attr, obj_ptr, word_sz, node_index); 582 return forward_ptr; 583 } 584 } 585 586 // Public not-inline entry point. 587 ATTRIBUTE_FLATTEN 588 oop G1ParScanThreadState::copy_to_survivor_space(G1HeapRegionAttr region_attr, 589 oop old, 590 markWord old_mark) { 591 return do_copy_to_survivor_space(region_attr, old, old_mark); 592 } 593 594 G1ParScanThreadState* G1ParScanThreadStateSet::state_for_worker(uint worker_id) { 595 assert(worker_id < _num_workers, "out of bounds access"); 596 if (_states[worker_id] == nullptr) { 597 _states[worker_id] = 598 new G1ParScanThreadState(_g1h, rdcqs(), 599 worker_id, 600 _num_workers, 601 _collection_set, 602 _evac_failure_regions); 603 } 604 return _states[worker_id]; 605 } 606 607 const size_t* G1ParScanThreadStateSet::surviving_young_words() const { 608 assert(_flushed, "thread local state from the per thread states should have been flushed"); 609 return _surviving_young_words_total; 610 } 611 612 void G1ParScanThreadStateSet::flush_stats() { 613 assert(!_flushed, "thread local state from the per thread states should be flushed once"); 614 for (uint worker_id = 0; worker_id < _num_workers; ++worker_id) { 615 G1ParScanThreadState* pss = _states[worker_id]; 616 assert(pss != nullptr, "must be initialized"); 617 618 G1GCPhaseTimes* p = _g1h->phase_times(); 619 620 // Need to get the following two before the call to G1ParThreadScanState::flush() 621 // because it resets the PLAB allocator where we get this info from. 622 size_t lab_waste_bytes = pss->lab_waste_words() * HeapWordSize; 623 size_t lab_undo_waste_bytes = pss->lab_undo_waste_words() * HeapWordSize; 624 size_t copied_bytes = pss->flush_stats(_surviving_young_words_total, _num_workers, &_rdc_buffers[worker_id]) * HeapWordSize; 625 size_t evac_fail_enqueued_cards = pss->evac_failure_enqueued_cards(); 626 627 p->record_or_add_thread_work_item(G1GCPhaseTimes::MergePSS, worker_id, copied_bytes, G1GCPhaseTimes::MergePSSCopiedBytes); 628 p->record_or_add_thread_work_item(G1GCPhaseTimes::MergePSS, worker_id, lab_waste_bytes, G1GCPhaseTimes::MergePSSLABWasteBytes); 629 p->record_or_add_thread_work_item(G1GCPhaseTimes::MergePSS, worker_id, lab_undo_waste_bytes, G1GCPhaseTimes::MergePSSLABUndoWasteBytes); 630 p->record_or_add_thread_work_item(G1GCPhaseTimes::MergePSS, worker_id, evac_fail_enqueued_cards, G1GCPhaseTimes::MergePSSEvacFailExtra); 631 632 delete pss; 633 _states[worker_id] = nullptr; 634 } 635 636 G1DirtyCardQueueSet& dcq = G1BarrierSet::dirty_card_queue_set(); 637 dcq.merge_bufferlists(rdcqs()); 638 rdcqs()->verify_empty(); 639 640 _flushed = true; 641 } 642 643 void G1ParScanThreadStateSet::record_unused_optional_region(G1HeapRegion* hr) { 644 for (uint worker_index = 0; worker_index < _num_workers; ++worker_index) { 645 G1ParScanThreadState* pss = _states[worker_index]; 646 assert(pss != nullptr, "must be initialized"); 647 648 size_t used_memory = pss->oops_into_optional_region(hr)->used_memory(); 649 _g1h->phase_times()->record_or_add_thread_work_item(G1GCPhaseTimes::OptScanHR, worker_index, used_memory, G1GCPhaseTimes::ScanHRUsedMemory); 650 } 651 } 652 653 NOINLINE 654 oop G1ParScanThreadState::handle_evacuation_failure_par(oop old, markWord m, size_t word_sz, bool cause_pinned) { 655 assert(_g1h->is_in_cset(old), "Object " PTR_FORMAT " should be in the CSet", p2i(old)); 656 657 oop forward_ptr = old->forward_to_self_atomic(m, memory_order_relaxed); 658 if (forward_ptr == nullptr) { 659 // Forward-to-self succeeded. We are the "owner" of the object. 660 G1HeapRegion* r = _g1h->heap_region_containing(old); 661 662 if (_evac_failure_regions->record(_worker_id, r->hrm_index(), cause_pinned)) { 663 G1HeapRegionPrinter::evac_failure(r); 664 } 665 666 // Mark the failing object in the marking bitmap and later use the bitmap to handle 667 // evacuation failure recovery. 668 _g1h->mark_evac_failure_object(_worker_id, old, word_sz); 669 670 ContinuationGCSupport::transform_stack_chunk(old); 671 672 _evacuation_failed_info.register_copy_failure(word_sz); 673 674 // For iterating objects that failed evacuation currently we can reuse the 675 // existing closure to scan evacuated objects; since we are iterating from a 676 // collection set region (i.e. never a Survivor region), we always need to 677 // gather cards for this case. 678 G1SkipCardEnqueueSetter x(&_scanner, false /* skip_card_enqueue */); 679 old->oop_iterate_backwards(&_scanner); 680 681 return old; 682 } else { 683 // Forward-to-self failed. Either someone else managed to allocate 684 // space for this object (old != forward_ptr) or they beat us in 685 // self-forwarding it (old == forward_ptr). 686 assert(old == forward_ptr || !_g1h->is_in_cset(forward_ptr), 687 "Object " PTR_FORMAT " forwarded to: " PTR_FORMAT " " 688 "should not be in the CSet", 689 p2i(old), p2i(forward_ptr)); 690 return forward_ptr; 691 } 692 } 693 694 void G1ParScanThreadState::initialize_numa_stats() { 695 if (_numa->is_enabled()) { 696 LogTarget(Info, gc, heap, numa) lt; 697 698 if (lt.is_enabled()) { 699 uint num_nodes = _numa->num_active_nodes(); 700 // Record only if there are multiple active nodes. 701 _obj_alloc_stat = NEW_C_HEAP_ARRAY(size_t, num_nodes, mtGC); 702 memset(_obj_alloc_stat, 0, sizeof(size_t) * num_nodes); 703 } 704 } 705 } 706 707 void G1ParScanThreadState::flush_numa_stats() { 708 if (_obj_alloc_stat != nullptr) { 709 uint node_index = _numa->index_of_current_thread(); 710 _numa->copy_statistics(G1NUMAStats::LocalObjProcessAtCopyToSurv, node_index, _obj_alloc_stat); 711 } 712 } 713 714 void G1ParScanThreadState::update_numa_stats(uint node_index) { 715 if (_obj_alloc_stat != nullptr) { 716 _obj_alloc_stat[node_index]++; 717 } 718 } 719 720 G1ParScanThreadStateSet::G1ParScanThreadStateSet(G1CollectedHeap* g1h, 721 uint num_workers, 722 G1CollectionSet* collection_set, 723 G1EvacFailureRegions* evac_failure_regions) : 724 _g1h(g1h), 725 _collection_set(collection_set), 726 _rdcqs(G1BarrierSet::dirty_card_queue_set().allocator()), 727 _states(NEW_C_HEAP_ARRAY(G1ParScanThreadState*, num_workers, mtGC)), 728 _rdc_buffers(NEW_C_HEAP_ARRAY(BufferNodeList, num_workers, mtGC)), 729 _surviving_young_words_total(NEW_C_HEAP_ARRAY(size_t, collection_set->young_region_length() + 1, mtGC)), 730 _num_workers(num_workers), 731 _flushed(false), 732 _evac_failure_regions(evac_failure_regions) 733 { 734 for (uint i = 0; i < num_workers; ++i) { 735 _states[i] = nullptr; 736 _rdc_buffers[i] = BufferNodeList(); 737 } 738 memset(_surviving_young_words_total, 0, (collection_set->young_region_length() + 1) * sizeof(size_t)); 739 } 740 741 G1ParScanThreadStateSet::~G1ParScanThreadStateSet() { 742 assert(_flushed, "thread local state from the per thread states should have been flushed"); 743 FREE_C_HEAP_ARRAY(G1ParScanThreadState*, _states); 744 FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_total); 745 FREE_C_HEAP_ARRAY(BufferNodeList, _rdc_buffers); 746 }