1 /* 2 * Copyright (c) 2014, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "gc/g1/g1Allocator.inline.hpp" 27 #include "gc/g1/g1CollectedHeap.inline.hpp" 28 #include "gc/g1/g1CollectionSet.hpp" 29 #include "gc/g1/g1EvacFailureRegions.inline.hpp" 30 #include "gc/g1/g1HeapRegionPrinter.hpp" 31 #include "gc/g1/g1OopClosures.inline.hpp" 32 #include "gc/g1/g1ParScanThreadState.inline.hpp" 33 #include "gc/g1/g1RootClosures.hpp" 34 #include "gc/g1/g1StringDedup.hpp" 35 #include "gc/g1/g1Trace.hpp" 36 #include "gc/g1/g1YoungGCAllocationFailureInjector.inline.hpp" 37 #include "gc/shared/continuationGCSupport.inline.hpp" 38 #include "gc/shared/partialArrayTaskStepper.inline.hpp" 39 #include "gc/shared/preservedMarks.inline.hpp" 40 #include "gc/shared/stringdedup/stringDedup.hpp" 41 #include "gc/shared/taskqueue.inline.hpp" 42 #include "memory/allocation.inline.hpp" 43 #include "oops/access.inline.hpp" 44 #include "oops/oop.inline.hpp" 45 #include "runtime/atomic.hpp" 46 #include "runtime/prefetch.inline.hpp" 47 #include "utilities/globalDefinitions.hpp" 48 #include "utilities/macros.hpp" 49 50 // In fastdebug builds the code size can get out of hand, potentially 51 // tripping over compiler limits (which may be bugs, but nevertheless 52 // need to be taken into consideration). A side benefit of limiting 53 // inlining is that we get more call frames that might aid debugging. 54 // And the fastdebug compile time for this file is much reduced. 55 // Explicit NOINLINE to block ATTRIBUTE_FLATTENing. 56 #define MAYBE_INLINE_EVACUATION NOT_DEBUG(inline) DEBUG_ONLY(NOINLINE) 57 58 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, 59 G1RedirtyCardsQueueSet* rdcqs, 60 PreservedMarks* preserved_marks, 61 uint worker_id, 62 uint num_workers, 63 G1CollectionSet* collection_set, 64 G1EvacFailureRegions* evac_failure_regions) 65 : _g1h(g1h), 66 _task_queue(g1h->task_queue(worker_id)), 67 _rdc_local_qset(rdcqs), 68 _ct(g1h->card_table()), 69 _closures(nullptr), 70 _plab_allocator(nullptr), 71 _age_table(false), 72 _tenuring_threshold(g1h->policy()->tenuring_threshold()), 73 _scanner(g1h, this), 74 _worker_id(worker_id), 75 _last_enqueued_card(SIZE_MAX), 76 _stack_trim_upper_threshold(GCDrainStackTargetSize * 2 + 1), 77 _stack_trim_lower_threshold(GCDrainStackTargetSize), 78 _trim_ticks(), 79 _surviving_young_words_base(nullptr), 80 _surviving_young_words(nullptr), 81 _surviving_words_length(collection_set->young_region_length() + 1), 82 _old_gen_is_full(false), 83 _partial_objarray_chunk_size(ParGCArrayScanChunk), 84 _partial_array_stepper(num_workers), 85 _string_dedup_requests(), 86 _max_num_optional_regions(collection_set->optional_region_length()), 87 _numa(g1h->numa()), 88 _obj_alloc_stat(nullptr), 89 ALLOCATION_FAILURE_INJECTOR_ONLY(_allocation_failure_inject_counter(0) COMMA) 90 _preserved_marks(preserved_marks), 91 _evacuation_failed_info(), 92 _evac_failure_regions(evac_failure_regions), 93 _evac_failure_enqueued_cards(0) 94 { 95 // We allocate number of young gen regions in the collection set plus one 96 // entries, since entry 0 keeps track of surviving bytes for non-young regions. 97 // We also add a few elements at the beginning and at the end in 98 // an attempt to eliminate cache contention 99 const size_t padding_elem_num = (DEFAULT_PADDING_SIZE / sizeof(size_t)); 100 size_t array_length = padding_elem_num + _surviving_words_length + padding_elem_num; 101 102 _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC); 103 _surviving_young_words = _surviving_young_words_base + padding_elem_num; 104 memset(_surviving_young_words, 0, _surviving_words_length * sizeof(size_t)); 105 106 _plab_allocator = new G1PLABAllocator(_g1h->allocator()); 107 108 _closures = G1EvacuationRootClosures::create_root_closures(_g1h, 109 this, 110 collection_set->only_contains_young_regions()); 111 112 _oops_into_optional_regions = new G1OopStarChunkedList[_max_num_optional_regions]; 113 114 initialize_numa_stats(); 115 } 116 117 size_t G1ParScanThreadState::flush_stats(size_t* surviving_young_words, uint num_workers, BufferNodeList* rdc_buffers) { 118 *rdc_buffers = _rdc_local_qset.flush(); 119 flush_numa_stats(); 120 // Update allocation statistics. 121 _plab_allocator->flush_and_retire_stats(num_workers); 122 _g1h->policy()->record_age_table(&_age_table); 123 124 if (_evacuation_failed_info.has_failed()) { 125 _g1h->gc_tracer_stw()->report_evacuation_failed(_evacuation_failed_info); 126 } 127 128 size_t sum = 0; 129 for (uint i = 0; i < _surviving_words_length; i++) { 130 surviving_young_words[i] += _surviving_young_words[i]; 131 sum += _surviving_young_words[i]; 132 } 133 return sum; 134 } 135 136 G1ParScanThreadState::~G1ParScanThreadState() { 137 delete _plab_allocator; 138 delete _closures; 139 FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base); 140 delete[] _oops_into_optional_regions; 141 FREE_C_HEAP_ARRAY(size_t, _obj_alloc_stat); 142 } 143 144 size_t G1ParScanThreadState::lab_waste_words() const { 145 return _plab_allocator->waste(); 146 } 147 148 size_t G1ParScanThreadState::lab_undo_waste_words() const { 149 return _plab_allocator->undo_waste(); 150 } 151 152 size_t G1ParScanThreadState::evac_failure_enqueued_cards() const { 153 return _evac_failure_enqueued_cards; 154 } 155 156 #ifdef ASSERT 157 void G1ParScanThreadState::verify_task(narrowOop* task) const { 158 assert(task != nullptr, "invariant"); 159 assert(UseCompressedOops, "sanity"); 160 oop p = RawAccess<>::oop_load(task); 161 assert(_g1h->is_in_reserved(p), 162 "task=" PTR_FORMAT " p=" PTR_FORMAT, p2i(task), p2i(p)); 163 } 164 165 void G1ParScanThreadState::verify_task(oop* task) const { 166 assert(task != nullptr, "invariant"); 167 oop p = RawAccess<>::oop_load(task); 168 assert(_g1h->is_in_reserved(p), 169 "task=" PTR_FORMAT " p=" PTR_FORMAT, p2i(task), p2i(p)); 170 } 171 172 void G1ParScanThreadState::verify_task(PartialArrayScanTask task) const { 173 // Must be in the collection set--it's already been copied. 174 oop p = task.to_source_array(); 175 assert(_g1h->is_in_cset(p), "p=" PTR_FORMAT, p2i(p)); 176 } 177 178 void G1ParScanThreadState::verify_task(ScannerTask task) const { 179 if (task.is_narrow_oop_ptr()) { 180 verify_task(task.to_narrow_oop_ptr()); 181 } else if (task.is_oop_ptr()) { 182 verify_task(task.to_oop_ptr()); 183 } else if (task.is_partial_array_task()) { 184 verify_task(task.to_partial_array_task()); 185 } else { 186 ShouldNotReachHere(); 187 } 188 } 189 #endif // ASSERT 190 191 template <class T> 192 MAYBE_INLINE_EVACUATION 193 void G1ParScanThreadState::do_oop_evac(T* p) { 194 // Reference should not be null here as such are never pushed to the task queue. 195 oop obj = RawAccess<IS_NOT_NULL>::oop_load(p); 196 197 // Although we never intentionally push references outside of the collection 198 // set, due to (benign) races in the claim mechanism during RSet scanning more 199 // than one thread might claim the same card. So the same card may be 200 // processed multiple times, and so we might get references into old gen here. 201 // So we need to redo this check. 202 const G1HeapRegionAttr region_attr = _g1h->region_attr(obj); 203 // References pushed onto the work stack should never point to a humongous region 204 // as they are not added to the collection set due to above precondition. 205 assert(!region_attr.is_humongous_candidate(), 206 "Obj " PTR_FORMAT " should not refer to humongous region %u from " PTR_FORMAT, 207 p2i(obj), _g1h->addr_to_region(obj), p2i(p)); 208 209 if (!region_attr.is_in_cset()) { 210 // In this case somebody else already did all the work. 211 return; 212 } 213 214 markWord m = obj->mark(); 215 if (m.is_forwarded()) { 216 obj = m.forwardee(); 217 } else { 218 obj = do_copy_to_survivor_space(region_attr, obj, m); 219 } 220 RawAccess<IS_NOT_NULL>::oop_store(p, obj); 221 222 write_ref_field_post(p, obj); 223 } 224 225 MAYBE_INLINE_EVACUATION 226 void G1ParScanThreadState::do_partial_array(PartialArrayScanTask task) { 227 oop from_obj = task.to_source_array(); 228 229 assert(_g1h->is_in_reserved(from_obj), "must be in heap."); 230 assert(from_obj->is_objArray(), "must be obj array"); 231 assert(from_obj->is_forwarded(), "must be forwarded"); 232 233 oop to_obj = from_obj->forwardee(); 234 assert(from_obj != to_obj, "should not be chunking self-forwarded objects"); 235 assert(to_obj->is_objArray(), "must be obj array"); 236 objArrayOop to_array = objArrayOop(to_obj); 237 238 PartialArrayTaskStepper::Step step 239 = _partial_array_stepper.next(objArrayOop(from_obj), 240 to_array, 241 _partial_objarray_chunk_size); 242 for (uint i = 0; i < step._ncreate; ++i) { 243 push_on_queue(ScannerTask(PartialArrayScanTask(from_obj))); 244 } 245 246 G1HeapRegionAttr dest_attr = _g1h->region_attr(to_array); 247 G1SkipCardEnqueueSetter x(&_scanner, dest_attr.is_new_survivor()); 248 // Process claimed task. The length of to_array is not correct, but 249 // fortunately the iteration ignores the length field and just relies 250 // on start/end. 251 to_array->oop_iterate_range(&_scanner, 252 step._index, 253 step._index + _partial_objarray_chunk_size); 254 } 255 256 MAYBE_INLINE_EVACUATION 257 void G1ParScanThreadState::start_partial_objarray(G1HeapRegionAttr dest_attr, 258 oop from_obj, 259 oop to_obj) { 260 assert(from_obj->is_objArray(), "precondition"); 261 assert(from_obj->is_forwarded(), "precondition"); 262 assert(from_obj->forwardee() == to_obj, "precondition"); 263 assert(from_obj != to_obj, "should not be scanning self-forwarded objects"); 264 assert(to_obj->is_objArray(), "precondition"); 265 266 objArrayOop to_array = objArrayOop(to_obj); 267 268 PartialArrayTaskStepper::Step step 269 = _partial_array_stepper.start(objArrayOop(from_obj), 270 to_array, 271 _partial_objarray_chunk_size); 272 273 // Push any needed partial scan tasks. Pushed before processing the 274 // initial chunk to allow other workers to steal while we're processing. 275 for (uint i = 0; i < step._ncreate; ++i) { 276 push_on_queue(ScannerTask(PartialArrayScanTask(from_obj))); 277 } 278 279 // Skip the card enqueue iff the object (to_array) is in survivor region. 280 // However, G1HeapRegion::is_survivor() is too expensive here. 281 // Instead, we use dest_attr.is_young() because the two values are always 282 // equal: successfully allocated young regions must be survivor regions. 283 assert(dest_attr.is_young() == _g1h->heap_region_containing(to_array)->is_survivor(), "must be"); 284 G1SkipCardEnqueueSetter x(&_scanner, dest_attr.is_young()); 285 // Process the initial chunk. No need to process the type in the 286 // klass, as it will already be handled by processing the built-in 287 // module. The length of to_array is not correct, but fortunately 288 // the iteration ignores that length field and relies on start/end. 289 to_array->oop_iterate_range(&_scanner, 0, step._index); 290 } 291 292 MAYBE_INLINE_EVACUATION 293 void G1ParScanThreadState::dispatch_task(ScannerTask task) { 294 verify_task(task); 295 if (task.is_narrow_oop_ptr()) { 296 do_oop_evac(task.to_narrow_oop_ptr()); 297 } else if (task.is_oop_ptr()) { 298 do_oop_evac(task.to_oop_ptr()); 299 } else { 300 do_partial_array(task.to_partial_array_task()); 301 } 302 } 303 304 // Process tasks until overflow queue is empty and local queue 305 // contains no more than threshold entries. NOINLINE to prevent 306 // inlining into steal_and_trim_queue. 307 ATTRIBUTE_FLATTEN NOINLINE 308 void G1ParScanThreadState::trim_queue_to_threshold(uint threshold) { 309 ScannerTask task; 310 do { 311 while (_task_queue->pop_overflow(task)) { 312 if (!_task_queue->try_push_to_taskqueue(task)) { 313 dispatch_task(task); 314 } 315 } 316 while (_task_queue->pop_local(task, threshold)) { 317 dispatch_task(task); 318 } 319 } while (!_task_queue->overflow_empty()); 320 } 321 322 ATTRIBUTE_FLATTEN 323 void G1ParScanThreadState::steal_and_trim_queue(G1ScannerTasksQueueSet* task_queues) { 324 ScannerTask stolen_task; 325 while (task_queues->steal(_worker_id, stolen_task)) { 326 dispatch_task(stolen_task); 327 // Processing stolen task may have added tasks to our queue. 328 trim_queue(); 329 } 330 } 331 332 HeapWord* G1ParScanThreadState::allocate_in_next_plab(G1HeapRegionAttr* dest, 333 size_t word_sz, 334 bool previous_plab_refill_failed, 335 uint node_index) { 336 337 assert(dest->is_in_cset_or_humongous_candidate(), "Unexpected dest: %s region attr", dest->get_type_str()); 338 339 // Right now we only have two types of regions (young / old) so 340 // let's keep the logic here simple. We can generalize it when necessary. 341 if (dest->is_young()) { 342 bool plab_refill_in_old_failed = false; 343 HeapWord* const obj_ptr = _plab_allocator->allocate(G1HeapRegionAttr::Old, 344 word_sz, 345 &plab_refill_in_old_failed, 346 node_index); 347 // Make sure that we won't attempt to copy any other objects out 348 // of a survivor region (given that apparently we cannot allocate 349 // any new ones) to avoid coming into this slow path again and again. 350 // Only consider failed PLAB refill here: failed inline allocations are 351 // typically large, so not indicative of remaining space. 352 if (previous_plab_refill_failed) { 353 _tenuring_threshold = 0; 354 } 355 356 if (obj_ptr != nullptr) { 357 dest->set_old(); 358 } else { 359 // We just failed to allocate in old gen. The same idea as explained above 360 // for making survivor gen unavailable for allocation applies for old gen. 361 _old_gen_is_full = plab_refill_in_old_failed; 362 } 363 return obj_ptr; 364 } else { 365 _old_gen_is_full = previous_plab_refill_failed; 366 assert(dest->is_old(), "Unexpected dest region attr: %s", dest->get_type_str()); 367 // no other space to try. 368 return nullptr; 369 } 370 } 371 372 G1HeapRegionAttr G1ParScanThreadState::next_region_attr(G1HeapRegionAttr const region_attr, markWord const m, uint& age) { 373 assert(region_attr.is_young() || region_attr.is_old(), "must be either Young or Old"); 374 375 if (region_attr.is_young()) { 376 age = !m.has_displaced_mark_helper() ? m.age() 377 : m.displaced_mark_helper().age(); 378 if (age < _tenuring_threshold) { 379 return region_attr; 380 } 381 } 382 // young-to-old (promotion) or old-to-old; destination is old in both cases. 383 return G1HeapRegionAttr::Old; 384 } 385 386 void G1ParScanThreadState::report_promotion_event(G1HeapRegionAttr const dest_attr, 387 oop const old, size_t word_sz, uint age, 388 HeapWord * const obj_ptr, uint node_index) const { 389 PLAB* alloc_buf = _plab_allocator->alloc_buffer(dest_attr, node_index); 390 if (alloc_buf->contains(obj_ptr)) { 391 _g1h->gc_tracer_stw()->report_promotion_in_new_plab_event(old->klass(), word_sz * HeapWordSize, age, 392 dest_attr.type() == G1HeapRegionAttr::Old, 393 alloc_buf->word_sz() * HeapWordSize); 394 } else { 395 _g1h->gc_tracer_stw()->report_promotion_outside_plab_event(old->klass(), word_sz * HeapWordSize, age, 396 dest_attr.type() == G1HeapRegionAttr::Old); 397 } 398 } 399 400 NOINLINE 401 HeapWord* G1ParScanThreadState::allocate_copy_slow(G1HeapRegionAttr* dest_attr, 402 oop old, 403 size_t word_sz, 404 uint age, 405 uint node_index) { 406 HeapWord* obj_ptr = nullptr; 407 // Try slow-path allocation unless we're allocating old and old is already full. 408 if (!(dest_attr->is_old() && _old_gen_is_full)) { 409 bool plab_refill_failed = false; 410 obj_ptr = _plab_allocator->allocate_direct_or_new_plab(*dest_attr, 411 word_sz, 412 &plab_refill_failed, 413 node_index); 414 if (obj_ptr == nullptr) { 415 obj_ptr = allocate_in_next_plab(dest_attr, 416 word_sz, 417 plab_refill_failed, 418 node_index); 419 } 420 } 421 if (obj_ptr != nullptr) { 422 update_numa_stats(node_index); 423 if (_g1h->gc_tracer_stw()->should_report_promotion_events()) { 424 // The events are checked individually as part of the actual commit 425 report_promotion_event(*dest_attr, old, word_sz, age, obj_ptr, node_index); 426 } 427 } 428 return obj_ptr; 429 } 430 431 #if ALLOCATION_FAILURE_INJECTOR 432 bool G1ParScanThreadState::inject_allocation_failure(uint region_idx) { 433 return _g1h->allocation_failure_injector()->allocation_should_fail(_allocation_failure_inject_counter, region_idx); 434 } 435 #endif 436 437 NOINLINE 438 void G1ParScanThreadState::undo_allocation(G1HeapRegionAttr dest_attr, 439 HeapWord* obj_ptr, 440 size_t word_sz, 441 uint node_index) { 442 _plab_allocator->undo_allocation(dest_attr, obj_ptr, word_sz, node_index); 443 } 444 445 void G1ParScanThreadState::update_bot_after_copying(oop obj, size_t word_sz) { 446 HeapWord* obj_start = cast_from_oop<HeapWord*>(obj); 447 G1HeapRegion* region = _g1h->heap_region_containing(obj_start); 448 region->update_bot_for_block(obj_start, obj_start + word_sz); 449 } 450 451 // Private inline function, for direct internal use and providing the 452 // implementation of the public not-inline function. 453 MAYBE_INLINE_EVACUATION 454 oop G1ParScanThreadState::do_copy_to_survivor_space(G1HeapRegionAttr const region_attr, 455 oop const old, 456 markWord const old_mark) { 457 assert(region_attr.is_in_cset(), 458 "Unexpected region attr type: %s", region_attr.get_type_str()); 459 460 // Get the klass once. We'll need it again later, and this avoids 461 // re-decoding when it's compressed. 462 Klass* klass = old->klass(); 463 const size_t word_sz = old->size_given_klass(klass); 464 465 // JNI only allows pinning of typeArrays, so we only need to keep those in place. 466 if (region_attr.is_pinned() && klass->is_typeArray_klass()) { 467 return handle_evacuation_failure_par(old, old_mark, word_sz, true /* cause_pinned */); 468 } 469 470 uint age = 0; 471 G1HeapRegionAttr dest_attr = next_region_attr(region_attr, old_mark, age); 472 G1HeapRegion* const from_region = _g1h->heap_region_containing(old); 473 uint node_index = from_region->node_index(); 474 475 HeapWord* obj_ptr = _plab_allocator->plab_allocate(dest_attr, word_sz, node_index); 476 477 // PLAB allocations should succeed most of the time, so we'll 478 // normally check against null once and that's it. 479 if (obj_ptr == nullptr) { 480 obj_ptr = allocate_copy_slow(&dest_attr, old, word_sz, age, node_index); 481 if (obj_ptr == nullptr) { 482 // This will either forward-to-self, or detect that someone else has 483 // installed a forwarding pointer. 484 return handle_evacuation_failure_par(old, old_mark, word_sz, false /* cause_pinned */); 485 } 486 } 487 488 assert(obj_ptr != nullptr, "when we get here, allocation should have succeeded"); 489 assert(_g1h->is_in_reserved(obj_ptr), "Allocated memory should be in the heap"); 490 491 // Should this evacuation fail? 492 if (inject_allocation_failure(from_region->hrm_index())) { 493 // Doing this after all the allocation attempts also tests the 494 // undo_allocation() method too. 495 undo_allocation(dest_attr, obj_ptr, word_sz, node_index); 496 return handle_evacuation_failure_par(old, old_mark, word_sz, false /* cause_pinned */); 497 } 498 499 // We're going to allocate linearly, so might as well prefetch ahead. 500 Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes); 501 Copy::aligned_disjoint_words(cast_from_oop<HeapWord*>(old), obj_ptr, word_sz); 502 503 const oop obj = cast_to_oop(obj_ptr); 504 // Because the forwarding is done with memory_order_relaxed there is no 505 // ordering with the above copy. Clients that get the forwardee must not 506 // examine its contents without other synchronization, since the contents 507 // may not be up to date for them. 508 const oop forward_ptr = old->forward_to_atomic(obj, old_mark, memory_order_relaxed); 509 if (forward_ptr == nullptr) { 510 511 { 512 const uint young_index = from_region->young_index_in_cset(); 513 assert((from_region->is_young() && young_index > 0) || 514 (!from_region->is_young() && young_index == 0), "invariant" ); 515 _surviving_young_words[young_index] += word_sz; 516 } 517 518 if (dest_attr.is_young()) { 519 if (age < markWord::max_age) { 520 age++; 521 obj->incr_age(); 522 } 523 _age_table.add(age, word_sz); 524 } else { 525 update_bot_after_copying(obj, word_sz); 526 } 527 528 // Most objects are not arrays, so do one array check rather than 529 // checking for each array category for each object. 530 if (klass->is_array_klass()) { 531 if (klass->is_objArray_klass()) { 532 start_partial_objarray(dest_attr, old, obj); 533 } else { 534 // Nothing needs to be done for typeArrays. Body doesn't contain 535 // any oops to scan, and the type in the klass will already be handled 536 // by processing the built-in module. 537 assert(klass->is_typeArray_klass(), "invariant"); 538 } 539 return obj; 540 } 541 542 ContinuationGCSupport::transform_stack_chunk(obj); 543 544 // Check for deduplicating young Strings. 545 if (G1StringDedup::is_candidate_from_evacuation(klass, 546 region_attr, 547 dest_attr, 548 age)) { 549 // Record old; request adds a new weak reference, which reference 550 // processing expects to refer to a from-space object. 551 _string_dedup_requests.add(old); 552 } 553 554 // Skip the card enqueue iff the object (obj) is in survivor region. 555 // However, G1HeapRegion::is_survivor() is too expensive here. 556 // Instead, we use dest_attr.is_young() because the two values are always 557 // equal: successfully allocated young regions must be survivor regions. 558 assert(dest_attr.is_young() == _g1h->heap_region_containing(obj)->is_survivor(), "must be"); 559 G1SkipCardEnqueueSetter x(&_scanner, dest_attr.is_young()); 560 obj->oop_iterate_backwards(&_scanner, klass); 561 return obj; 562 } else { 563 _plab_allocator->undo_allocation(dest_attr, obj_ptr, word_sz, node_index); 564 return forward_ptr; 565 } 566 } 567 568 // Public not-inline entry point. 569 ATTRIBUTE_FLATTEN 570 oop G1ParScanThreadState::copy_to_survivor_space(G1HeapRegionAttr region_attr, 571 oop old, 572 markWord old_mark) { 573 return do_copy_to_survivor_space(region_attr, old, old_mark); 574 } 575 576 G1ParScanThreadState* G1ParScanThreadStateSet::state_for_worker(uint worker_id) { 577 assert(worker_id < _num_workers, "out of bounds access"); 578 if (_states[worker_id] == nullptr) { 579 _states[worker_id] = 580 new G1ParScanThreadState(_g1h, rdcqs(), 581 _preserved_marks_set.get(worker_id), 582 worker_id, 583 _num_workers, 584 _collection_set, 585 _evac_failure_regions); 586 } 587 return _states[worker_id]; 588 } 589 590 const size_t* G1ParScanThreadStateSet::surviving_young_words() const { 591 assert(_flushed, "thread local state from the per thread states should have been flushed"); 592 return _surviving_young_words_total; 593 } 594 595 void G1ParScanThreadStateSet::flush_stats() { 596 assert(!_flushed, "thread local state from the per thread states should be flushed once"); 597 for (uint worker_id = 0; worker_id < _num_workers; ++worker_id) { 598 G1ParScanThreadState* pss = _states[worker_id]; 599 assert(pss != nullptr, "must be initialized"); 600 601 G1GCPhaseTimes* p = _g1h->phase_times(); 602 603 // Need to get the following two before the call to G1ParThreadScanState::flush() 604 // because it resets the PLAB allocator where we get this info from. 605 size_t lab_waste_bytes = pss->lab_waste_words() * HeapWordSize; 606 size_t lab_undo_waste_bytes = pss->lab_undo_waste_words() * HeapWordSize; 607 size_t copied_bytes = pss->flush_stats(_surviving_young_words_total, _num_workers, &_rdc_buffers[worker_id]) * HeapWordSize; 608 size_t evac_fail_enqueued_cards = pss->evac_failure_enqueued_cards(); 609 610 p->record_or_add_thread_work_item(G1GCPhaseTimes::MergePSS, worker_id, copied_bytes, G1GCPhaseTimes::MergePSSCopiedBytes); 611 p->record_or_add_thread_work_item(G1GCPhaseTimes::MergePSS, worker_id, lab_waste_bytes, G1GCPhaseTimes::MergePSSLABWasteBytes); 612 p->record_or_add_thread_work_item(G1GCPhaseTimes::MergePSS, worker_id, lab_undo_waste_bytes, G1GCPhaseTimes::MergePSSLABUndoWasteBytes); 613 p->record_or_add_thread_work_item(G1GCPhaseTimes::MergePSS, worker_id, evac_fail_enqueued_cards, G1GCPhaseTimes::MergePSSEvacFailExtra); 614 615 delete pss; 616 _states[worker_id] = nullptr; 617 } 618 619 G1DirtyCardQueueSet& dcq = G1BarrierSet::dirty_card_queue_set(); 620 dcq.merge_bufferlists(rdcqs()); 621 rdcqs()->verify_empty(); 622 623 _flushed = true; 624 } 625 626 void G1ParScanThreadStateSet::record_unused_optional_region(G1HeapRegion* hr) { 627 for (uint worker_index = 0; worker_index < _num_workers; ++worker_index) { 628 G1ParScanThreadState* pss = _states[worker_index]; 629 assert(pss != nullptr, "must be initialized"); 630 631 size_t used_memory = pss->oops_into_optional_region(hr)->used_memory(); 632 _g1h->phase_times()->record_or_add_thread_work_item(G1GCPhaseTimes::OptScanHR, worker_index, used_memory, G1GCPhaseTimes::ScanHRUsedMemory); 633 } 634 } 635 636 NOINLINE 637 oop G1ParScanThreadState::handle_evacuation_failure_par(oop old, markWord m, size_t word_sz, bool cause_pinned) { 638 assert(_g1h->is_in_cset(old), "Object " PTR_FORMAT " should be in the CSet", p2i(old)); 639 640 oop forward_ptr = old->forward_to_atomic(old, m, memory_order_relaxed); 641 if (forward_ptr == nullptr) { 642 // Forward-to-self succeeded. We are the "owner" of the object. 643 G1HeapRegion* r = _g1h->heap_region_containing(old); 644 645 if (_evac_failure_regions->record(_worker_id, r->hrm_index(), cause_pinned)) { 646 G1HeapRegionPrinter::evac_failure(r); 647 } 648 649 // Mark the failing object in the marking bitmap and later use the bitmap to handle 650 // evacuation failure recovery. 651 _g1h->mark_evac_failure_object(_worker_id, old, word_sz); 652 653 _preserved_marks->push_if_necessary(old, m); 654 655 ContinuationGCSupport::transform_stack_chunk(old); 656 657 _evacuation_failed_info.register_copy_failure(word_sz); 658 659 // For iterating objects that failed evacuation currently we can reuse the 660 // existing closure to scan evacuated objects; since we are iterating from a 661 // collection set region (i.e. never a Survivor region), we always need to 662 // gather cards for this case. 663 G1SkipCardEnqueueSetter x(&_scanner, false /* skip_card_enqueue */); 664 old->oop_iterate_backwards(&_scanner); 665 666 return old; 667 } else { 668 // Forward-to-self failed. Either someone else managed to allocate 669 // space for this object (old != forward_ptr) or they beat us in 670 // self-forwarding it (old == forward_ptr). 671 assert(old == forward_ptr || !_g1h->is_in_cset(forward_ptr), 672 "Object " PTR_FORMAT " forwarded to: " PTR_FORMAT " " 673 "should not be in the CSet", 674 p2i(old), p2i(forward_ptr)); 675 return forward_ptr; 676 } 677 } 678 679 void G1ParScanThreadState::initialize_numa_stats() { 680 if (_numa->is_enabled()) { 681 LogTarget(Info, gc, heap, numa) lt; 682 683 if (lt.is_enabled()) { 684 uint num_nodes = _numa->num_active_nodes(); 685 // Record only if there are multiple active nodes. 686 _obj_alloc_stat = NEW_C_HEAP_ARRAY(size_t, num_nodes, mtGC); 687 memset(_obj_alloc_stat, 0, sizeof(size_t) * num_nodes); 688 } 689 } 690 } 691 692 void G1ParScanThreadState::flush_numa_stats() { 693 if (_obj_alloc_stat != nullptr) { 694 uint node_index = _numa->index_of_current_thread(); 695 _numa->copy_statistics(G1NUMAStats::LocalObjProcessAtCopyToSurv, node_index, _obj_alloc_stat); 696 } 697 } 698 699 void G1ParScanThreadState::update_numa_stats(uint node_index) { 700 if (_obj_alloc_stat != nullptr) { 701 _obj_alloc_stat[node_index]++; 702 } 703 } 704 705 G1ParScanThreadStateSet::G1ParScanThreadStateSet(G1CollectedHeap* g1h, 706 uint num_workers, 707 G1CollectionSet* collection_set, 708 G1EvacFailureRegions* evac_failure_regions) : 709 _g1h(g1h), 710 _collection_set(collection_set), 711 _rdcqs(G1BarrierSet::dirty_card_queue_set().allocator()), 712 _preserved_marks_set(true /* in_c_heap */), 713 _states(NEW_C_HEAP_ARRAY(G1ParScanThreadState*, num_workers, mtGC)), 714 _rdc_buffers(NEW_C_HEAP_ARRAY(BufferNodeList, num_workers, mtGC)), 715 _surviving_young_words_total(NEW_C_HEAP_ARRAY(size_t, collection_set->young_region_length() + 1, mtGC)), 716 _num_workers(num_workers), 717 _flushed(false), 718 _evac_failure_regions(evac_failure_regions) { 719 _preserved_marks_set.init(num_workers); 720 for (uint i = 0; i < num_workers; ++i) { 721 _states[i] = nullptr; 722 _rdc_buffers[i] = BufferNodeList(); 723 } 724 memset(_surviving_young_words_total, 0, (collection_set->young_region_length() + 1) * sizeof(size_t)); 725 } 726 727 G1ParScanThreadStateSet::~G1ParScanThreadStateSet() { 728 assert(_flushed, "thread local state from the per thread states should have been flushed"); 729 FREE_C_HEAP_ARRAY(G1ParScanThreadState*, _states); 730 FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_total); 731 FREE_C_HEAP_ARRAY(BufferNodeList, _rdc_buffers); 732 _preserved_marks_set.reclaim(); 733 }