1 /*
  2  * Copyright (c) 2014, 2024, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "precompiled.hpp"
 26 #include "gc/g1/g1Allocator.inline.hpp"
 27 #include "gc/g1/g1CollectedHeap.inline.hpp"
 28 #include "gc/g1/g1CollectionSet.hpp"
 29 #include "gc/g1/g1EvacFailureRegions.inline.hpp"
 30 #include "gc/g1/g1HeapRegionPrinter.hpp"
 31 #include "gc/g1/g1OopClosures.inline.hpp"
 32 #include "gc/g1/g1ParScanThreadState.inline.hpp"
 33 #include "gc/g1/g1RootClosures.hpp"
 34 #include "gc/g1/g1StringDedup.hpp"
 35 #include "gc/g1/g1Trace.hpp"
 36 #include "gc/g1/g1YoungGCAllocationFailureInjector.inline.hpp"
 37 #include "gc/shared/continuationGCSupport.inline.hpp"
 38 #include "gc/shared/partialArrayTaskStepper.inline.hpp"
 39 #include "gc/shared/stringdedup/stringDedup.hpp"
 40 #include "gc/shared/taskqueue.inline.hpp"
 41 #include "memory/allocation.inline.hpp"
 42 #include "oops/access.inline.hpp"
 43 #include "oops/oop.inline.hpp"
 44 #include "runtime/atomic.hpp"
 45 #include "runtime/prefetch.inline.hpp"
 46 #include "utilities/globalDefinitions.hpp"
 47 #include "utilities/macros.hpp"
 48 
 49 // In fastdebug builds the code size can get out of hand, potentially
 50 // tripping over compiler limits (which may be bugs, but nevertheless
 51 // need to be taken into consideration).  A side benefit of limiting
 52 // inlining is that we get more call frames that might aid debugging.
 53 // And the fastdebug compile time for this file is much reduced.
 54 // Explicit NOINLINE to block ATTRIBUTE_FLATTENing.
 55 #define MAYBE_INLINE_EVACUATION NOT_DEBUG(inline) DEBUG_ONLY(NOINLINE)
 56 
 57 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h,
 58                                            G1RedirtyCardsQueueSet* rdcqs,
 59                                            uint worker_id,
 60                                            uint num_workers,
 61                                            G1CollectionSet* collection_set,
 62                                            G1EvacFailureRegions* evac_failure_regions)
 63   : _g1h(g1h),
 64     _task_queue(g1h->task_queue(worker_id)),
 65     _rdc_local_qset(rdcqs),
 66     _ct(g1h->card_table()),
 67     _closures(nullptr),
 68     _plab_allocator(nullptr),
 69     _age_table(false),
 70     _tenuring_threshold(g1h->policy()->tenuring_threshold()),
 71     _scanner(g1h, this),
 72     _worker_id(worker_id),
 73     _last_enqueued_card(SIZE_MAX),
 74     _stack_trim_upper_threshold(GCDrainStackTargetSize * 2 + 1),
 75     _stack_trim_lower_threshold(GCDrainStackTargetSize),
 76     _trim_ticks(),
 77     _surviving_young_words_base(nullptr),
 78     _surviving_young_words(nullptr),
 79     _surviving_words_length(collection_set->young_region_length() + 1),
 80     _old_gen_is_full(false),
 81     _partial_objarray_chunk_size(ParGCArrayScanChunk),
 82     _partial_array_stepper(num_workers),
 83     _string_dedup_requests(),
 84     _max_num_optional_regions(collection_set->optional_region_length()),
 85     _numa(g1h->numa()),
 86     _obj_alloc_stat(nullptr),
 87     ALLOCATION_FAILURE_INJECTOR_ONLY(_allocation_failure_inject_counter(0) COMMA)
 88     _evacuation_failed_info(),
 89     _evac_failure_regions(evac_failure_regions),
 90     _evac_failure_enqueued_cards(0)
 91 {
 92   // We allocate number of young gen regions in the collection set plus one
 93   // entries, since entry 0 keeps track of surviving bytes for non-young regions.
 94   // We also add a few elements at the beginning and at the end in
 95   // an attempt to eliminate cache contention
 96   const size_t padding_elem_num = (DEFAULT_PADDING_SIZE / sizeof(size_t));
 97   size_t array_length = padding_elem_num + _surviving_words_length + padding_elem_num;
 98 
 99   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
100   _surviving_young_words = _surviving_young_words_base + padding_elem_num;
101   memset(_surviving_young_words, 0, _surviving_words_length * sizeof(size_t));
102 
103   _plab_allocator = new G1PLABAllocator(_g1h->allocator());
104 
105   _closures = G1EvacuationRootClosures::create_root_closures(_g1h,
106                                                              this,
107                                                              collection_set->only_contains_young_regions());
108 
109   _oops_into_optional_regions = new G1OopStarChunkedList[_max_num_optional_regions];
110 
111   initialize_numa_stats();
112 }
113 
114 size_t G1ParScanThreadState::flush_stats(size_t* surviving_young_words, uint num_workers, BufferNodeList* rdc_buffers) {
115   *rdc_buffers = _rdc_local_qset.flush();
116   flush_numa_stats();
117   // Update allocation statistics.
118   _plab_allocator->flush_and_retire_stats(num_workers);
119   _g1h->policy()->record_age_table(&_age_table);
120 
121   if (_evacuation_failed_info.has_failed()) {
122     _g1h->gc_tracer_stw()->report_evacuation_failed(_evacuation_failed_info);
123   }
124 
125   size_t sum = 0;
126   for (uint i = 0; i < _surviving_words_length; i++) {
127     surviving_young_words[i] += _surviving_young_words[i];
128     sum += _surviving_young_words[i];
129   }
130   return sum;
131 }
132 
133 G1ParScanThreadState::~G1ParScanThreadState() {
134   delete _plab_allocator;
135   delete _closures;
136   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
137   delete[] _oops_into_optional_regions;
138   FREE_C_HEAP_ARRAY(size_t, _obj_alloc_stat);
139 }
140 
141 size_t G1ParScanThreadState::lab_waste_words() const {
142   return _plab_allocator->waste();
143 }
144 
145 size_t G1ParScanThreadState::lab_undo_waste_words() const {
146   return _plab_allocator->undo_waste();
147 }
148 
149 size_t G1ParScanThreadState::evac_failure_enqueued_cards() const {
150   return _evac_failure_enqueued_cards;
151 }
152 
153 #ifdef ASSERT
154 void G1ParScanThreadState::verify_task(narrowOop* task) const {
155   assert(task != nullptr, "invariant");
156   assert(UseCompressedOops, "sanity");
157   oop p = RawAccess<>::oop_load(task);
158   assert(_g1h->is_in_reserved(p),
159          "task=" PTR_FORMAT " p=" PTR_FORMAT, p2i(task), p2i(p));
160 }
161 
162 void G1ParScanThreadState::verify_task(oop* task) const {
163   assert(task != nullptr, "invariant");
164   oop p = RawAccess<>::oop_load(task);
165   assert(_g1h->is_in_reserved(p),
166          "task=" PTR_FORMAT " p=" PTR_FORMAT, p2i(task), p2i(p));
167 }
168 
169 void G1ParScanThreadState::verify_task(PartialArrayScanTask task) const {
170   // Must be in the collection set--it's already been copied.
171   oop p = task.to_source_array();
172   assert(_g1h->is_in_cset(p), "p=" PTR_FORMAT, p2i(p));
173 }
174 
175 void G1ParScanThreadState::verify_task(ScannerTask task) const {
176   if (task.is_narrow_oop_ptr()) {
177     verify_task(task.to_narrow_oop_ptr());
178   } else if (task.is_oop_ptr()) {
179     verify_task(task.to_oop_ptr());
180   } else if (task.is_partial_array_task()) {
181     verify_task(task.to_partial_array_task());
182   } else {
183     ShouldNotReachHere();
184   }
185 }
186 #endif // ASSERT
187 
188 template <class T>
189 MAYBE_INLINE_EVACUATION
190 void G1ParScanThreadState::do_oop_evac(T* p) {
191   // Reference should not be null here as such are never pushed to the task queue.
192   oop obj = RawAccess<IS_NOT_NULL>::oop_load(p);
193 
194   // Although we never intentionally push references outside of the collection
195   // set, due to (benign) races in the claim mechanism during RSet scanning more
196   // than one thread might claim the same card. So the same card may be
197   // processed multiple times, and so we might get references into old gen here.
198   // So we need to redo this check.
199   const G1HeapRegionAttr region_attr = _g1h->region_attr(obj);
200   // References pushed onto the work stack should never point to a humongous region
201   // as they are not added to the collection set due to above precondition.
202   assert(!region_attr.is_humongous_candidate(),
203          "Obj " PTR_FORMAT " should not refer to humongous region %u from " PTR_FORMAT,
204          p2i(obj), _g1h->addr_to_region(obj), p2i(p));
205 
206   if (!region_attr.is_in_cset()) {
207     // In this case somebody else already did all the work.
208     return;
209   }
210 
211   markWord m = obj->mark();
212   if (m.is_forwarded()) {
213     obj = obj->forwardee(m);
214   } else {
215     obj = do_copy_to_survivor_space(region_attr, obj, m);
216   }
217   RawAccess<IS_NOT_NULL>::oop_store(p, obj);
218 
219   write_ref_field_post(p, obj);
220 }
221 
222 MAYBE_INLINE_EVACUATION
223 void G1ParScanThreadState::do_partial_array(PartialArrayScanTask task) {
224   oop from_obj = task.to_source_array();
225 
226   assert(_g1h->is_in_reserved(from_obj), "must be in heap.");
227   assert(from_obj->forward_safe_klass()->is_objArray_klass(), "must be obj array");
228   assert(from_obj->is_forwarded(), "must be forwarded");
229 
230   oop to_obj = from_obj->forwardee();
231   assert(from_obj != to_obj, "should not be chunking self-forwarded objects");
232   assert(to_obj->is_objArray(), "must be obj array");
233   objArrayOop to_array = objArrayOop(to_obj);
234 
235   PartialArrayTaskStepper::Step step
236     = _partial_array_stepper.next(objArrayOop(from_obj),
237                                   to_array,
238                                   _partial_objarray_chunk_size);
239   for (uint i = 0; i < step._ncreate; ++i) {
240     push_on_queue(ScannerTask(PartialArrayScanTask(from_obj)));
241   }
242 
243   G1HeapRegionAttr dest_attr = _g1h->region_attr(to_array);
244   G1SkipCardEnqueueSetter x(&_scanner, dest_attr.is_new_survivor());
245   // Process claimed task.  The length of to_array is not correct, but
246   // fortunately the iteration ignores the length field and just relies
247   // on start/end.
248   to_array->oop_iterate_range(&_scanner,
249                               step._index,
250                               step._index + _partial_objarray_chunk_size);
251 }
252 
253 MAYBE_INLINE_EVACUATION
254 void G1ParScanThreadState::start_partial_objarray(G1HeapRegionAttr dest_attr,
255                                                   oop from_obj,
256                                                   oop to_obj) {
257   assert(from_obj->forward_safe_klass()->is_objArray_klass(), "precondition");
258   assert(from_obj->is_forwarded(), "precondition");
259   assert(from_obj->forwardee() == to_obj, "precondition");
260   assert(from_obj != to_obj, "should not be scanning self-forwarded objects");
261   assert(to_obj->is_objArray(), "precondition");
262 
263   objArrayOop to_array = objArrayOop(to_obj);
264 
265   PartialArrayTaskStepper::Step step
266     = _partial_array_stepper.start(objArrayOop(from_obj),
267                                    to_array,
268                                    _partial_objarray_chunk_size);
269 
270   // Push any needed partial scan tasks.  Pushed before processing the
271   // initial chunk to allow other workers to steal while we're processing.
272   for (uint i = 0; i < step._ncreate; ++i) {
273     push_on_queue(ScannerTask(PartialArrayScanTask(from_obj)));
274   }
275 
276   // Skip the card enqueue iff the object (to_array) is in survivor region.
277   // However, G1HeapRegion::is_survivor() is too expensive here.
278   // Instead, we use dest_attr.is_young() because the two values are always
279   // equal: successfully allocated young regions must be survivor regions.
280   assert(dest_attr.is_young() == _g1h->heap_region_containing(to_array)->is_survivor(), "must be");
281   G1SkipCardEnqueueSetter x(&_scanner, dest_attr.is_young());
282   // Process the initial chunk.  No need to process the type in the
283   // klass, as it will already be handled by processing the built-in
284   // module. The length of to_array is not correct, but fortunately
285   // the iteration ignores that length field and relies on start/end.
286   to_array->oop_iterate_range(&_scanner, 0, step._index);
287 }
288 
289 MAYBE_INLINE_EVACUATION
290 void G1ParScanThreadState::dispatch_task(ScannerTask task) {
291   verify_task(task);
292   if (task.is_narrow_oop_ptr()) {
293     do_oop_evac(task.to_narrow_oop_ptr());
294   } else if (task.is_oop_ptr()) {
295     do_oop_evac(task.to_oop_ptr());
296   } else {
297     do_partial_array(task.to_partial_array_task());
298   }
299 }
300 
301 // Process tasks until overflow queue is empty and local queue
302 // contains no more than threshold entries.  NOINLINE to prevent
303 // inlining into steal_and_trim_queue.
304 ATTRIBUTE_FLATTEN NOINLINE
305 void G1ParScanThreadState::trim_queue_to_threshold(uint threshold) {
306   ScannerTask task;
307   do {
308     while (_task_queue->pop_overflow(task)) {
309       if (!_task_queue->try_push_to_taskqueue(task)) {
310         dispatch_task(task);
311       }
312     }
313     while (_task_queue->pop_local(task, threshold)) {
314       dispatch_task(task);
315     }
316   } while (!_task_queue->overflow_empty());
317 }
318 
319 ATTRIBUTE_FLATTEN
320 void G1ParScanThreadState::steal_and_trim_queue(G1ScannerTasksQueueSet* task_queues) {
321   ScannerTask stolen_task;
322   while (task_queues->steal(_worker_id, stolen_task)) {
323     dispatch_task(stolen_task);
324     // Processing stolen task may have added tasks to our queue.
325     trim_queue();
326   }
327 }
328 
329 HeapWord* G1ParScanThreadState::allocate_in_next_plab(G1HeapRegionAttr* dest,
330                                                       size_t word_sz,
331                                                       bool previous_plab_refill_failed,
332                                                       uint node_index) {
333 
334   assert(dest->is_in_cset_or_humongous_candidate(), "Unexpected dest: %s region attr", dest->get_type_str());
335 
336   // Right now we only have two types of regions (young / old) so
337   // let's keep the logic here simple. We can generalize it when necessary.
338   if (dest->is_young()) {
339     bool plab_refill_in_old_failed = false;
340     HeapWord* const obj_ptr = _plab_allocator->allocate(G1HeapRegionAttr::Old,
341                                                         word_sz,
342                                                         &plab_refill_in_old_failed,
343                                                         node_index);
344     // Make sure that we won't attempt to copy any other objects out
345     // of a survivor region (given that apparently we cannot allocate
346     // any new ones) to avoid coming into this slow path again and again.
347     // Only consider failed PLAB refill here: failed inline allocations are
348     // typically large, so not indicative of remaining space.
349     if (previous_plab_refill_failed) {
350       _tenuring_threshold = 0;
351     }
352 
353     if (obj_ptr != nullptr) {
354       dest->set_old();
355     } else {
356       // We just failed to allocate in old gen. The same idea as explained above
357       // for making survivor gen unavailable for allocation applies for old gen.
358       _old_gen_is_full = plab_refill_in_old_failed;
359     }
360     return obj_ptr;
361   } else {
362     _old_gen_is_full = previous_plab_refill_failed;
363     assert(dest->is_old(), "Unexpected dest region attr: %s", dest->get_type_str());
364     // no other space to try.
365     return nullptr;
366   }
367 }
368 
369 G1HeapRegionAttr G1ParScanThreadState::next_region_attr(G1HeapRegionAttr const region_attr, markWord const m, uint& age) {
370   assert(region_attr.is_young() || region_attr.is_old(), "must be either Young or Old");
371 
372   if (region_attr.is_young()) {
373     age = !m.has_displaced_mark_helper() ? m.age()
374                                          : m.displaced_mark_helper().age();
375     if (age < _tenuring_threshold) {
376       return region_attr;
377     }
378   }
379   // young-to-old (promotion) or old-to-old; destination is old in both cases.
380   return G1HeapRegionAttr::Old;
381 }
382 
383 void G1ParScanThreadState::report_promotion_event(G1HeapRegionAttr const dest_attr,
384                                                   Klass* klass, size_t word_sz, uint age,
385                                                   HeapWord * const obj_ptr, uint node_index) const {
386   PLAB* alloc_buf = _plab_allocator->alloc_buffer(dest_attr, node_index);
387   if (alloc_buf->contains(obj_ptr)) {
388     _g1h->gc_tracer_stw()->report_promotion_in_new_plab_event(klass, word_sz * HeapWordSize, age,
389                                                               dest_attr.type() == G1HeapRegionAttr::Old,
390                                                               alloc_buf->word_sz() * HeapWordSize);
391   } else {
392     _g1h->gc_tracer_stw()->report_promotion_outside_plab_event(klass, word_sz * HeapWordSize, age,
393                                                                dest_attr.type() == G1HeapRegionAttr::Old);
394   }
395 }
396 
397 NOINLINE
398 HeapWord* G1ParScanThreadState::allocate_copy_slow(G1HeapRegionAttr* dest_attr,
399                                                    Klass* klass,
400                                                    size_t word_sz,
401                                                    uint age,
402                                                    uint node_index) {
403   HeapWord* obj_ptr = nullptr;
404   // Try slow-path allocation unless we're allocating old and old is already full.
405   if (!(dest_attr->is_old() && _old_gen_is_full)) {
406     bool plab_refill_failed = false;
407     obj_ptr = _plab_allocator->allocate_direct_or_new_plab(*dest_attr,
408                                                            word_sz,
409                                                            &plab_refill_failed,
410                                                            node_index);
411     if (obj_ptr == nullptr) {
412       obj_ptr = allocate_in_next_plab(dest_attr,
413                                       word_sz,
414                                       plab_refill_failed,
415                                       node_index);
416     }
417   }
418   if (obj_ptr != nullptr) {
419     update_numa_stats(node_index);
420     if (_g1h->gc_tracer_stw()->should_report_promotion_events()) {
421       // The events are checked individually as part of the actual commit
422       report_promotion_event(*dest_attr, klass, word_sz, age, obj_ptr, node_index);
423     }
424   }
425   return obj_ptr;
426 }
427 
428 #if ALLOCATION_FAILURE_INJECTOR
429 bool G1ParScanThreadState::inject_allocation_failure(uint region_idx) {
430   return _g1h->allocation_failure_injector()->allocation_should_fail(_allocation_failure_inject_counter, region_idx);
431 }
432 #endif
433 
434 NOINLINE
435 void G1ParScanThreadState::undo_allocation(G1HeapRegionAttr dest_attr,
436                                            HeapWord* obj_ptr,
437                                            size_t word_sz,
438                                            uint node_index) {
439   _plab_allocator->undo_allocation(dest_attr, obj_ptr, word_sz, node_index);
440 }
441 
442 void G1ParScanThreadState::update_bot_after_copying(oop obj, size_t word_sz) {
443   HeapWord* obj_start = cast_from_oop<HeapWord*>(obj);
444   G1HeapRegion* region = _g1h->heap_region_containing(obj_start);
445   region->update_bot_for_block(obj_start, obj_start + word_sz);
446 }
447 
448 // Private inline function, for direct internal use and providing the
449 // implementation of the public not-inline function.
450 MAYBE_INLINE_EVACUATION
451 oop G1ParScanThreadState::do_copy_to_survivor_space(G1HeapRegionAttr const region_attr,
452                                                     oop const old,
453                                                     markWord const old_mark) {
454   assert(region_attr.is_in_cset(),
455          "Unexpected region attr type: %s", region_attr.get_type_str());
456 
457   // Get the klass once.  We'll need it again later, and this avoids
458   // re-decoding when it's compressed.
459   // NOTE: With compact headers, it is not safe to load the Klass* from o, because
460   // that would access the mark-word, and the mark-word might change at any time by
461   // concurrent promotion. The promoted mark-word would point to the forwardee, which
462   // may not yet have completed copying. Therefore we must load the Klass* from
463   // the mark-word that we have already loaded. This is safe, because we have checked
464   // that this is not yet forwarded in the caller.
465   Klass* klass = old->forward_safe_klass(old_mark);
466   const size_t word_sz = old->size_given_klass(klass);
467 
468   // JNI only allows pinning of typeArrays, so we only need to keep those in place.
469   if (region_attr.is_pinned() && klass->is_typeArray_klass()) {
470     return handle_evacuation_failure_par(old, old_mark, word_sz, true /* cause_pinned */);
471   }
472 
473   uint age = 0;
474   G1HeapRegionAttr dest_attr = next_region_attr(region_attr, old_mark, age);
475   G1HeapRegion* const from_region = _g1h->heap_region_containing(old);
476   uint node_index = from_region->node_index();
477 
478   HeapWord* obj_ptr = _plab_allocator->plab_allocate(dest_attr, word_sz, node_index);
479 
480   // PLAB allocations should succeed most of the time, so we'll
481   // normally check against null once and that's it.
482   if (obj_ptr == nullptr) {
483     obj_ptr = allocate_copy_slow(&dest_attr, klass, word_sz, age, node_index);
484     if (obj_ptr == nullptr) {
485       // This will either forward-to-self, or detect that someone else has
486       // installed a forwarding pointer.
487       return handle_evacuation_failure_par(old, old_mark, word_sz, false /* cause_pinned */);
488     }
489   }
490 
491   assert(obj_ptr != nullptr, "when we get here, allocation should have succeeded");
492   assert(_g1h->is_in_reserved(obj_ptr), "Allocated memory should be in the heap");
493 
494   // Should this evacuation fail?
495   if (inject_allocation_failure(from_region->hrm_index())) {
496     // Doing this after all the allocation attempts also tests the
497     // undo_allocation() method too.
498     undo_allocation(dest_attr, obj_ptr, word_sz, node_index);
499     return handle_evacuation_failure_par(old, old_mark, word_sz, false /* cause_pinned */);
500   }
501 
502   // We're going to allocate linearly, so might as well prefetch ahead.
503   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
504   Copy::aligned_disjoint_words(cast_from_oop<HeapWord*>(old), obj_ptr, word_sz);
505 
506   const oop obj = cast_to_oop(obj_ptr);
507   // Because the forwarding is done with memory_order_relaxed there is no
508   // ordering with the above copy.  Clients that get the forwardee must not
509   // examine its contents without other synchronization, since the contents
510   // may not be up to date for them.
511   const oop forward_ptr = old->forward_to_atomic(obj, old_mark, memory_order_relaxed);
512   if (forward_ptr == nullptr) {
513 
514     {
515       const uint young_index = from_region->young_index_in_cset();
516       assert((from_region->is_young() && young_index >  0) ||
517              (!from_region->is_young() && young_index == 0), "invariant" );
518       _surviving_young_words[young_index] += word_sz;
519     }
520 
521     if (dest_attr.is_young()) {
522       if (age < markWord::max_age) {
523         age++;
524         obj->incr_age();
525       }
526       _age_table.add(age, word_sz);
527     } else {
528       update_bot_after_copying(obj, word_sz);
529     }
530 
531     // Most objects are not arrays, so do one array check rather than
532     // checking for each array category for each object.
533     if (klass->is_array_klass()) {
534       if (klass->is_objArray_klass()) {
535         start_partial_objarray(dest_attr, old, obj);
536       } else {
537         // Nothing needs to be done for typeArrays.  Body doesn't contain
538         // any oops to scan, and the type in the klass will already be handled
539         // by processing the built-in module.
540         assert(klass->is_typeArray_klass(), "invariant");
541       }
542       return obj;
543     }
544 
545     ContinuationGCSupport::transform_stack_chunk(obj);
546 
547     // Check for deduplicating young Strings.
548     if (G1StringDedup::is_candidate_from_evacuation(klass,
549                                                     region_attr,
550                                                     dest_attr,
551                                                     age)) {
552       // Record old; request adds a new weak reference, which reference
553       // processing expects to refer to a from-space object.
554       _string_dedup_requests.add(old);
555     }
556 
557     // Skip the card enqueue iff the object (obj) is in survivor region.
558     // However, G1HeapRegion::is_survivor() is too expensive here.
559     // Instead, we use dest_attr.is_young() because the two values are always
560     // equal: successfully allocated young regions must be survivor regions.
561     assert(dest_attr.is_young() == _g1h->heap_region_containing(obj)->is_survivor(), "must be");
562     G1SkipCardEnqueueSetter x(&_scanner, dest_attr.is_young());
563     obj->oop_iterate_backwards(&_scanner, klass);
564     return obj;
565   } else {
566     _plab_allocator->undo_allocation(dest_attr, obj_ptr, word_sz, node_index);
567     return forward_ptr;
568   }
569 }
570 
571 // Public not-inline entry point.
572 ATTRIBUTE_FLATTEN
573 oop G1ParScanThreadState::copy_to_survivor_space(G1HeapRegionAttr region_attr,
574                                                  oop old,
575                                                  markWord old_mark) {
576   return do_copy_to_survivor_space(region_attr, old, old_mark);
577 }
578 
579 G1ParScanThreadState* G1ParScanThreadStateSet::state_for_worker(uint worker_id) {
580   assert(worker_id < _num_workers, "out of bounds access");
581   if (_states[worker_id] == nullptr) {
582     _states[worker_id] =
583       new G1ParScanThreadState(_g1h, rdcqs(),
584                                worker_id,
585                                _num_workers,
586                                _collection_set,
587                                _evac_failure_regions);
588   }
589   return _states[worker_id];
590 }
591 
592 const size_t* G1ParScanThreadStateSet::surviving_young_words() const {
593   assert(_flushed, "thread local state from the per thread states should have been flushed");
594   return _surviving_young_words_total;
595 }
596 
597 void G1ParScanThreadStateSet::flush_stats() {
598   assert(!_flushed, "thread local state from the per thread states should be flushed once");
599   for (uint worker_id = 0; worker_id < _num_workers; ++worker_id) {
600     G1ParScanThreadState* pss = _states[worker_id];
601     assert(pss != nullptr, "must be initialized");
602 
603     G1GCPhaseTimes* p = _g1h->phase_times();
604 
605     // Need to get the following two before the call to G1ParThreadScanState::flush()
606     // because it resets the PLAB allocator where we get this info from.
607     size_t lab_waste_bytes = pss->lab_waste_words() * HeapWordSize;
608     size_t lab_undo_waste_bytes = pss->lab_undo_waste_words() * HeapWordSize;
609     size_t copied_bytes = pss->flush_stats(_surviving_young_words_total, _num_workers, &_rdc_buffers[worker_id]) * HeapWordSize;
610     size_t evac_fail_enqueued_cards = pss->evac_failure_enqueued_cards();
611 
612     p->record_or_add_thread_work_item(G1GCPhaseTimes::MergePSS, worker_id, copied_bytes, G1GCPhaseTimes::MergePSSCopiedBytes);
613     p->record_or_add_thread_work_item(G1GCPhaseTimes::MergePSS, worker_id, lab_waste_bytes, G1GCPhaseTimes::MergePSSLABWasteBytes);
614     p->record_or_add_thread_work_item(G1GCPhaseTimes::MergePSS, worker_id, lab_undo_waste_bytes, G1GCPhaseTimes::MergePSSLABUndoWasteBytes);
615     p->record_or_add_thread_work_item(G1GCPhaseTimes::MergePSS, worker_id, evac_fail_enqueued_cards, G1GCPhaseTimes::MergePSSEvacFailExtra);
616 
617     delete pss;
618     _states[worker_id] = nullptr;
619   }
620 
621   G1DirtyCardQueueSet& dcq = G1BarrierSet::dirty_card_queue_set();
622   dcq.merge_bufferlists(rdcqs());
623   rdcqs()->verify_empty();
624 
625   _flushed = true;
626 }
627 
628 void G1ParScanThreadStateSet::record_unused_optional_region(G1HeapRegion* hr) {
629   for (uint worker_index = 0; worker_index < _num_workers; ++worker_index) {
630     G1ParScanThreadState* pss = _states[worker_index];
631     assert(pss != nullptr, "must be initialized");
632 
633     size_t used_memory = pss->oops_into_optional_region(hr)->used_memory();
634     _g1h->phase_times()->record_or_add_thread_work_item(G1GCPhaseTimes::OptScanHR, worker_index, used_memory, G1GCPhaseTimes::ScanHRUsedMemory);
635   }
636 }
637 
638 NOINLINE
639 oop G1ParScanThreadState::handle_evacuation_failure_par(oop old, markWord m, size_t word_sz, bool cause_pinned) {
640   assert(_g1h->is_in_cset(old), "Object " PTR_FORMAT " should be in the CSet", p2i(old));
641 
642   oop forward_ptr = old->forward_to_self_atomic(m, memory_order_relaxed);
643   if (forward_ptr == nullptr) {
644     // Forward-to-self succeeded. We are the "owner" of the object.
645     G1HeapRegion* r = _g1h->heap_region_containing(old);
646 
647     if (_evac_failure_regions->record(_worker_id, r->hrm_index(), cause_pinned)) {
648       G1HeapRegionPrinter::evac_failure(r);
649     }
650 
651     // Mark the failing object in the marking bitmap and later use the bitmap to handle
652     // evacuation failure recovery.
653     _g1h->mark_evac_failure_object(_worker_id, old, word_sz);
654 
655     ContinuationGCSupport::transform_stack_chunk(old);
656 
657     _evacuation_failed_info.register_copy_failure(word_sz);
658 
659     // For iterating objects that failed evacuation currently we can reuse the
660     // existing closure to scan evacuated objects; since we are iterating from a
661     // collection set region (i.e. never a Survivor region), we always need to
662     // gather cards for this case.
663     G1SkipCardEnqueueSetter x(&_scanner, false /* skip_card_enqueue */);
664     old->oop_iterate_backwards(&_scanner);
665 
666     return old;
667   } else {
668     // Forward-to-self failed. Either someone else managed to allocate
669     // space for this object (old != forward_ptr) or they beat us in
670     // self-forwarding it (old == forward_ptr).
671     assert(old == forward_ptr || !_g1h->is_in_cset(forward_ptr),
672            "Object " PTR_FORMAT " forwarded to: " PTR_FORMAT " "
673            "should not be in the CSet",
674            p2i(old), p2i(forward_ptr));
675     return forward_ptr;
676   }
677 }
678 
679 void G1ParScanThreadState::initialize_numa_stats() {
680   if (_numa->is_enabled()) {
681     LogTarget(Info, gc, heap, numa) lt;
682 
683     if (lt.is_enabled()) {
684       uint num_nodes = _numa->num_active_nodes();
685       // Record only if there are multiple active nodes.
686       _obj_alloc_stat = NEW_C_HEAP_ARRAY(size_t, num_nodes, mtGC);
687       memset(_obj_alloc_stat, 0, sizeof(size_t) * num_nodes);
688     }
689   }
690 }
691 
692 void G1ParScanThreadState::flush_numa_stats() {
693   if (_obj_alloc_stat != nullptr) {
694     uint node_index = _numa->index_of_current_thread();
695     _numa->copy_statistics(G1NUMAStats::LocalObjProcessAtCopyToSurv, node_index, _obj_alloc_stat);
696   }
697 }
698 
699 void G1ParScanThreadState::update_numa_stats(uint node_index) {
700   if (_obj_alloc_stat != nullptr) {
701     _obj_alloc_stat[node_index]++;
702   }
703 }
704 
705 G1ParScanThreadStateSet::G1ParScanThreadStateSet(G1CollectedHeap* g1h,
706                                                  uint num_workers,
707                                                  G1CollectionSet* collection_set,
708                                                  G1EvacFailureRegions* evac_failure_regions) :
709     _g1h(g1h),
710     _collection_set(collection_set),
711     _rdcqs(G1BarrierSet::dirty_card_queue_set().allocator()),
712     _states(NEW_C_HEAP_ARRAY(G1ParScanThreadState*, num_workers, mtGC)),
713     _rdc_buffers(NEW_C_HEAP_ARRAY(BufferNodeList, num_workers, mtGC)),
714     _surviving_young_words_total(NEW_C_HEAP_ARRAY(size_t, collection_set->young_region_length() + 1, mtGC)),
715     _num_workers(num_workers),
716     _flushed(false),
717     _evac_failure_regions(evac_failure_regions) {
718   for (uint i = 0; i < num_workers; ++i) {
719     _states[i] = nullptr;
720     _rdc_buffers[i] = BufferNodeList();
721   }
722   memset(_surviving_young_words_total, 0, (collection_set->young_region_length() + 1) * sizeof(size_t));
723 }
724 
725 G1ParScanThreadStateSet::~G1ParScanThreadStateSet() {
726   assert(_flushed, "thread local state from the per thread states should have been flushed");
727   FREE_C_HEAP_ARRAY(G1ParScanThreadState*, _states);
728   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_total);
729   FREE_C_HEAP_ARRAY(BufferNodeList, _rdc_buffers);
730 }