1 /*
  2  * Copyright (c) 2014, 2023, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "precompiled.hpp"
 26 #include "gc/g1/g1Allocator.inline.hpp"
 27 #include "gc/g1/g1CollectedHeap.inline.hpp"
 28 #include "gc/g1/g1CollectionSet.hpp"
 29 #include "gc/g1/g1EvacFailureRegions.inline.hpp"
 30 #include "gc/g1/g1OopClosures.inline.hpp"
 31 #include "gc/g1/g1ParScanThreadState.inline.hpp"
 32 #include "gc/g1/g1RootClosures.hpp"
 33 #include "gc/g1/g1StringDedup.hpp"
 34 #include "gc/g1/g1Trace.hpp"
 35 #include "gc/g1/g1YoungGCAllocationFailureInjector.inline.hpp"
 36 #include "gc/shared/continuationGCSupport.inline.hpp"
 37 #include "gc/shared/partialArrayTaskStepper.inline.hpp"
 38 #include "gc/shared/stringdedup/stringDedup.hpp"
 39 #include "gc/shared/taskqueue.inline.hpp"
 40 #include "memory/allocation.inline.hpp"
 41 #include "oops/access.inline.hpp"
 42 #include "oops/oop.inline.hpp"
 43 #include "runtime/atomic.hpp"
 44 #include "runtime/prefetch.inline.hpp"
 45 #include "utilities/globalDefinitions.hpp"
 46 #include "utilities/macros.hpp"
 47 
 48 // In fastdebug builds the code size can get out of hand, potentially
 49 // tripping over compiler limits (which may be bugs, but nevertheless
 50 // need to be taken into consideration).  A side benefit of limiting
 51 // inlining is that we get more call frames that might aid debugging.
 52 // And the fastdebug compile time for this file is much reduced.
 53 // Explicit NOINLINE to block ATTRIBUTE_FLATTENing.
 54 #define MAYBE_INLINE_EVACUATION NOT_DEBUG(inline) DEBUG_ONLY(NOINLINE)
 55 
 56 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h,
 57                                            G1RedirtyCardsQueueSet* rdcqs,
 58                                            uint worker_id,
 59                                            uint num_workers,
 60                                            G1CollectionSet* collection_set,
 61                                            G1EvacFailureRegions* evac_failure_regions)
 62   : _g1h(g1h),
 63     _task_queue(g1h->task_queue(worker_id)),
 64     _rdc_local_qset(rdcqs),
 65     _ct(g1h->card_table()),
 66     _closures(nullptr),
 67     _plab_allocator(nullptr),
 68     _age_table(false),
 69     _tenuring_threshold(g1h->policy()->tenuring_threshold()),
 70     _scanner(g1h, this),
 71     _worker_id(worker_id),
 72     _last_enqueued_card(SIZE_MAX),
 73     _stack_trim_upper_threshold(GCDrainStackTargetSize * 2 + 1),
 74     _stack_trim_lower_threshold(GCDrainStackTargetSize),
 75     _trim_ticks(),
 76     _surviving_young_words_base(nullptr),
 77     _surviving_young_words(nullptr),
 78     _surviving_words_length(collection_set->young_region_length() + 1),
 79     _old_gen_is_full(false),
 80     _partial_objarray_chunk_size(ParGCArrayScanChunk),
 81     _partial_array_stepper(num_workers),
 82     _string_dedup_requests(),
 83     _max_num_optional_regions(collection_set->optional_region_length()),
 84     _numa(g1h->numa()),
 85     _obj_alloc_stat(nullptr),
 86     ALLOCATION_FAILURE_INJECTOR_ONLY(_allocation_failure_inject_counter(0) COMMA)
 87     _evacuation_failed_info(),
 88     _evac_failure_regions(evac_failure_regions),
 89     _evac_failure_enqueued_cards(0)
 90 {
 91   // We allocate number of young gen regions in the collection set plus one
 92   // entries, since entry 0 keeps track of surviving bytes for non-young regions.
 93   // We also add a few elements at the beginning and at the end in
 94   // an attempt to eliminate cache contention
 95   const size_t padding_elem_num = (DEFAULT_PADDING_SIZE / sizeof(size_t));
 96   size_t array_length = padding_elem_num + _surviving_words_length + padding_elem_num;
 97 
 98   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
 99   _surviving_young_words = _surviving_young_words_base + padding_elem_num;
100   memset(_surviving_young_words, 0, _surviving_words_length * sizeof(size_t));
101 
102   _plab_allocator = new G1PLABAllocator(_g1h->allocator());
103 
104   _closures = G1EvacuationRootClosures::create_root_closures(_g1h,
105                                                              this,
106                                                              collection_set->only_contains_young_regions());
107 
108   _oops_into_optional_regions = new G1OopStarChunkedList[_max_num_optional_regions];
109 
110   initialize_numa_stats();
111 }
112 
113 size_t G1ParScanThreadState::flush_stats(size_t* surviving_young_words, uint num_workers, BufferNodeList* rdc_buffers) {
114   *rdc_buffers = _rdc_local_qset.flush();
115   flush_numa_stats();
116   // Update allocation statistics.
117   _plab_allocator->flush_and_retire_stats(num_workers);
118   _g1h->policy()->record_age_table(&_age_table);
119 
120   if (_evacuation_failed_info.has_failed()) {
121     _g1h->gc_tracer_stw()->report_evacuation_failed(_evacuation_failed_info);
122   }
123 
124   size_t sum = 0;
125   for (uint i = 0; i < _surviving_words_length; i++) {
126     surviving_young_words[i] += _surviving_young_words[i];
127     sum += _surviving_young_words[i];
128   }
129   return sum;
130 }
131 
132 G1ParScanThreadState::~G1ParScanThreadState() {
133   delete _plab_allocator;
134   delete _closures;
135   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
136   delete[] _oops_into_optional_regions;
137   FREE_C_HEAP_ARRAY(size_t, _obj_alloc_stat);
138 }
139 
140 size_t G1ParScanThreadState::lab_waste_words() const {
141   return _plab_allocator->waste();
142 }
143 
144 size_t G1ParScanThreadState::lab_undo_waste_words() const {
145   return _plab_allocator->undo_waste();
146 }
147 
148 size_t G1ParScanThreadState::evac_failure_enqueued_cards() const {
149   return _evac_failure_enqueued_cards;
150 }
151 
152 #ifdef ASSERT
153 void G1ParScanThreadState::verify_task(narrowOop* task) const {
154   assert(task != nullptr, "invariant");
155   assert(UseCompressedOops, "sanity");
156   oop p = RawAccess<>::oop_load(task);
157   assert(_g1h->is_in_reserved(p),
158          "task=" PTR_FORMAT " p=" PTR_FORMAT, p2i(task), p2i(p));
159 }
160 
161 void G1ParScanThreadState::verify_task(oop* task) const {
162   assert(task != nullptr, "invariant");
163   oop p = RawAccess<>::oop_load(task);
164   assert(_g1h->is_in_reserved(p),
165          "task=" PTR_FORMAT " p=" PTR_FORMAT, p2i(task), p2i(p));
166 }
167 
168 void G1ParScanThreadState::verify_task(PartialArrayScanTask task) const {
169   // Must be in the collection set--it's already been copied.
170   oop p = task.to_source_array();
171   assert(_g1h->is_in_cset(p), "p=" PTR_FORMAT, p2i(p));
172 }
173 
174 void G1ParScanThreadState::verify_task(ScannerTask task) const {
175   if (task.is_narrow_oop_ptr()) {
176     verify_task(task.to_narrow_oop_ptr());
177   } else if (task.is_oop_ptr()) {
178     verify_task(task.to_oop_ptr());
179   } else if (task.is_partial_array_task()) {
180     verify_task(task.to_partial_array_task());
181   } else {
182     ShouldNotReachHere();
183   }
184 }
185 #endif // ASSERT
186 
187 template <class T>
188 MAYBE_INLINE_EVACUATION
189 void G1ParScanThreadState::do_oop_evac(T* p) {
190   // Reference should not be null here as such are never pushed to the task queue.
191   oop obj = RawAccess<IS_NOT_NULL>::oop_load(p);
192 
193   // Although we never intentionally push references outside of the collection
194   // set, due to (benign) races in the claim mechanism during RSet scanning more
195   // than one thread might claim the same card. So the same card may be
196   // processed multiple times, and so we might get references into old gen here.
197   // So we need to redo this check.
198   const G1HeapRegionAttr region_attr = _g1h->region_attr(obj);
199   // References pushed onto the work stack should never point to a humongous region
200   // as they are not added to the collection set due to above precondition.
201   assert(!region_attr.is_humongous_candidate(),
202          "Obj " PTR_FORMAT " should not refer to humongous region %u from " PTR_FORMAT,
203          p2i(obj), _g1h->addr_to_region(obj), p2i(p));
204 
205   if (!region_attr.is_in_cset()) {
206     // In this case somebody else already did all the work.
207     return;
208   }
209 
210   markWord m = obj->mark();
211   if (m.is_forwarded()) {
212     obj = obj->forwardee(m);
213   } else {
214     obj = do_copy_to_survivor_space(region_attr, obj, m);
215   }
216   RawAccess<IS_NOT_NULL>::oop_store(p, obj);
217 
218   write_ref_field_post(p, obj);
219 }
220 
221 MAYBE_INLINE_EVACUATION
222 void G1ParScanThreadState::do_partial_array(PartialArrayScanTask task) {
223   oop from_obj = task.to_source_array();
224 
225   assert(_g1h->is_in_reserved(from_obj), "must be in heap.");
226   assert(from_obj->forward_safe_klass()->is_objArray_klass(), "must be obj array");
227   assert(from_obj->is_forwarded(), "must be forwarded");
228 
229   oop to_obj = from_obj->forwardee();
230   assert(from_obj != to_obj, "should not be chunking self-forwarded objects");
231   assert(to_obj->is_objArray(), "must be obj array");
232   objArrayOop to_array = objArrayOop(to_obj);
233 
234   PartialArrayTaskStepper::Step step
235     = _partial_array_stepper.next(objArrayOop(from_obj),
236                                   to_array,
237                                   _partial_objarray_chunk_size);
238   for (uint i = 0; i < step._ncreate; ++i) {
239     push_on_queue(ScannerTask(PartialArrayScanTask(from_obj)));
240   }
241 
242   G1HeapRegionAttr dest_attr = _g1h->region_attr(to_array);
243   G1SkipCardEnqueueSetter x(&_scanner, dest_attr.is_new_survivor());
244   // Process claimed task.  The length of to_array is not correct, but
245   // fortunately the iteration ignores the length field and just relies
246   // on start/end.
247   to_array->oop_iterate_range(&_scanner,
248                               step._index,
249                               step._index + _partial_objarray_chunk_size);
250 }
251 
252 MAYBE_INLINE_EVACUATION
253 void G1ParScanThreadState::start_partial_objarray(G1HeapRegionAttr dest_attr,
254                                                   oop from_obj,
255                                                   oop to_obj) {
256   assert(from_obj->forward_safe_klass()->is_objArray_klass(), "precondition");
257   assert(from_obj->is_forwarded(), "precondition");
258   assert(from_obj->forwardee() == to_obj, "precondition");
259   assert(from_obj != to_obj, "should not be scanning self-forwarded objects");
260   assert(to_obj->is_objArray(), "precondition");
261 
262   objArrayOop to_array = objArrayOop(to_obj);
263 
264   PartialArrayTaskStepper::Step step
265     = _partial_array_stepper.start(objArrayOop(from_obj),
266                                    to_array,
267                                    _partial_objarray_chunk_size);
268 
269   // Push any needed partial scan tasks.  Pushed before processing the
270   // initial chunk to allow other workers to steal while we're processing.
271   for (uint i = 0; i < step._ncreate; ++i) {
272     push_on_queue(ScannerTask(PartialArrayScanTask(from_obj)));
273   }
274 
275   // Skip the card enqueue iff the object (to_array) is in survivor region.
276   // However, HeapRegion::is_survivor() is too expensive here.
277   // Instead, we use dest_attr.is_young() because the two values are always
278   // equal: successfully allocated young regions must be survivor regions.
279   assert(dest_attr.is_young() == _g1h->heap_region_containing(to_array)->is_survivor(), "must be");
280   G1SkipCardEnqueueSetter x(&_scanner, dest_attr.is_young());
281   // Process the initial chunk.  No need to process the type in the
282   // klass, as it will already be handled by processing the built-in
283   // module. The length of to_array is not correct, but fortunately
284   // the iteration ignores that length field and relies on start/end.
285   to_array->oop_iterate_range(&_scanner, 0, step._index);
286 }
287 
288 MAYBE_INLINE_EVACUATION
289 void G1ParScanThreadState::dispatch_task(ScannerTask task) {
290   verify_task(task);
291   if (task.is_narrow_oop_ptr()) {
292     do_oop_evac(task.to_narrow_oop_ptr());
293   } else if (task.is_oop_ptr()) {
294     do_oop_evac(task.to_oop_ptr());
295   } else {
296     do_partial_array(task.to_partial_array_task());
297   }
298 }
299 
300 // Process tasks until overflow queue is empty and local queue
301 // contains no more than threshold entries.  NOINLINE to prevent
302 // inlining into steal_and_trim_queue.
303 ATTRIBUTE_FLATTEN NOINLINE
304 void G1ParScanThreadState::trim_queue_to_threshold(uint threshold) {
305   ScannerTask task;
306   do {
307     while (_task_queue->pop_overflow(task)) {
308       if (!_task_queue->try_push_to_taskqueue(task)) {
309         dispatch_task(task);
310       }
311     }
312     while (_task_queue->pop_local(task, threshold)) {
313       dispatch_task(task);
314     }
315   } while (!_task_queue->overflow_empty());
316 }
317 
318 ATTRIBUTE_FLATTEN
319 void G1ParScanThreadState::steal_and_trim_queue(G1ScannerTasksQueueSet* task_queues) {
320   ScannerTask stolen_task;
321   while (task_queues->steal(_worker_id, stolen_task)) {
322     dispatch_task(stolen_task);
323     // Processing stolen task may have added tasks to our queue.
324     trim_queue();
325   }
326 }
327 
328 HeapWord* G1ParScanThreadState::allocate_in_next_plab(G1HeapRegionAttr* dest,
329                                                       size_t word_sz,
330                                                       bool previous_plab_refill_failed,
331                                                       uint node_index) {
332 
333   assert(dest->is_in_cset_or_humongous_candidate(), "Unexpected dest: %s region attr", dest->get_type_str());
334 
335   // Right now we only have two types of regions (young / old) so
336   // let's keep the logic here simple. We can generalize it when necessary.
337   if (dest->is_young()) {
338     bool plab_refill_in_old_failed = false;
339     HeapWord* const obj_ptr = _plab_allocator->allocate(G1HeapRegionAttr::Old,
340                                                         word_sz,
341                                                         &plab_refill_in_old_failed,
342                                                         node_index);
343     // Make sure that we won't attempt to copy any other objects out
344     // of a survivor region (given that apparently we cannot allocate
345     // any new ones) to avoid coming into this slow path again and again.
346     // Only consider failed PLAB refill here: failed inline allocations are
347     // typically large, so not indicative of remaining space.
348     if (previous_plab_refill_failed) {
349       _tenuring_threshold = 0;
350     }
351 
352     if (obj_ptr != nullptr) {
353       dest->set_old();
354     } else {
355       // We just failed to allocate in old gen. The same idea as explained above
356       // for making survivor gen unavailable for allocation applies for old gen.
357       _old_gen_is_full = plab_refill_in_old_failed;
358     }
359     return obj_ptr;
360   } else {
361     _old_gen_is_full = previous_plab_refill_failed;
362     assert(dest->is_old(), "Unexpected dest region attr: %s", dest->get_type_str());
363     // no other space to try.
364     return nullptr;
365   }
366 }
367 
368 G1HeapRegionAttr G1ParScanThreadState::next_region_attr(G1HeapRegionAttr const region_attr, markWord const m, uint& age) {
369   assert(region_attr.is_young() || region_attr.is_old(), "must be either Young or Old");
370 
371   if (region_attr.is_young()) {
372     age = !m.has_displaced_mark_helper() ? m.age()
373                                          : m.displaced_mark_helper().age();
374     if (age < _tenuring_threshold) {
375       return region_attr;
376     }
377   }
378   // young-to-old (promotion) or old-to-old; destination is old in both cases.
379   return G1HeapRegionAttr::Old;
380 }
381 
382 void G1ParScanThreadState::report_promotion_event(G1HeapRegionAttr const dest_attr,
383                                                   Klass* klass, size_t word_sz, uint age,
384                                                   HeapWord * const obj_ptr, uint node_index) const {
385   PLAB* alloc_buf = _plab_allocator->alloc_buffer(dest_attr, node_index);
386   if (alloc_buf->contains(obj_ptr)) {
387     _g1h->gc_tracer_stw()->report_promotion_in_new_plab_event(klass, word_sz * HeapWordSize, age,
388                                                               dest_attr.type() == G1HeapRegionAttr::Old,
389                                                               alloc_buf->word_sz() * HeapWordSize);
390   } else {
391     _g1h->gc_tracer_stw()->report_promotion_outside_plab_event(klass, word_sz * HeapWordSize, age,
392                                                                dest_attr.type() == G1HeapRegionAttr::Old);
393   }
394 }
395 
396 NOINLINE
397 HeapWord* G1ParScanThreadState::allocate_copy_slow(G1HeapRegionAttr* dest_attr,
398                                                    Klass* klass,
399                                                    size_t word_sz,
400                                                    uint age,
401                                                    uint node_index) {
402   HeapWord* obj_ptr = nullptr;
403   // Try slow-path allocation unless we're allocating old and old is already full.
404   if (!(dest_attr->is_old() && _old_gen_is_full)) {
405     bool plab_refill_failed = false;
406     obj_ptr = _plab_allocator->allocate_direct_or_new_plab(*dest_attr,
407                                                            word_sz,
408                                                            &plab_refill_failed,
409                                                            node_index);
410     if (obj_ptr == nullptr) {
411       obj_ptr = allocate_in_next_plab(dest_attr,
412                                       word_sz,
413                                       plab_refill_failed,
414                                       node_index);
415     }
416   }
417   if (obj_ptr != nullptr) {
418     update_numa_stats(node_index);
419     if (_g1h->gc_tracer_stw()->should_report_promotion_events()) {
420       // The events are checked individually as part of the actual commit
421       report_promotion_event(*dest_attr, klass, word_sz, age, obj_ptr, node_index);
422     }
423   }
424   return obj_ptr;
425 }
426 
427 #if ALLOCATION_FAILURE_INJECTOR
428 bool G1ParScanThreadState::inject_allocation_failure(uint region_idx) {
429   return _g1h->allocation_failure_injector()->allocation_should_fail(_allocation_failure_inject_counter, region_idx);
430 }
431 #endif
432 
433 NOINLINE
434 void G1ParScanThreadState::undo_allocation(G1HeapRegionAttr dest_attr,
435                                            HeapWord* obj_ptr,
436                                            size_t word_sz,
437                                            uint node_index) {
438   _plab_allocator->undo_allocation(dest_attr, obj_ptr, word_sz, node_index);
439 }
440 
441 void G1ParScanThreadState::update_bot_after_copying(oop obj, size_t word_sz) {
442   HeapWord* obj_start = cast_from_oop<HeapWord*>(obj);
443   HeapRegion* region = _g1h->heap_region_containing(obj_start);
444   region->update_bot_for_obj(obj_start, word_sz);
445 }
446 
447 // Private inline function, for direct internal use and providing the
448 // implementation of the public not-inline function.
449 MAYBE_INLINE_EVACUATION
450 oop G1ParScanThreadState::do_copy_to_survivor_space(G1HeapRegionAttr const region_attr,
451                                                     oop const old,
452                                                     markWord const old_mark) {
453   assert(region_attr.is_in_cset(),
454          "Unexpected region attr type: %s", region_attr.get_type_str());
455 
456   // Get the klass once.  We'll need it again later, and this avoids
457   // re-decoding when it's compressed.
458   // NOTE: With compact headers, it is not safe to load the Klass* from o, because
459   // that would access the mark-word, and the mark-word might change at any time by
460   // concurrent promotion. The promoted mark-word would point to the forwardee, which
461   // may not yet have completed copying. Therefore we must load the Klass* from
462   // the mark-word that we have already loaded. This is safe, because we have checked
463   // that this is not yet forwarded in the caller.
464   Klass* klass = old->forward_safe_klass(old_mark);
465   const size_t word_sz = old->size_given_klass(klass);
466 
467   // JNI only allows pinning of typeArrays, so we only need to keep those in place.
468   if (region_attr.is_pinned() && klass->is_typeArray_klass()) {
469     return handle_evacuation_failure_par(old, old_mark, word_sz, true /* cause_pinned */);
470   }
471 
472   uint age = 0;
473   G1HeapRegionAttr dest_attr = next_region_attr(region_attr, old_mark, age);
474   HeapRegion* const from_region = _g1h->heap_region_containing(old);
475   uint node_index = from_region->node_index();
476 
477   HeapWord* obj_ptr = _plab_allocator->plab_allocate(dest_attr, word_sz, node_index);
478 
479   // PLAB allocations should succeed most of the time, so we'll
480   // normally check against null once and that's it.
481   if (obj_ptr == nullptr) {
482     obj_ptr = allocate_copy_slow(&dest_attr, klass, word_sz, age, node_index);
483     if (obj_ptr == nullptr) {
484       // This will either forward-to-self, or detect that someone else has
485       // installed a forwarding pointer.
486       return handle_evacuation_failure_par(old, old_mark, word_sz, false /* cause_pinned */);
487     }
488   }
489 
490   assert(obj_ptr != nullptr, "when we get here, allocation should have succeeded");
491   assert(_g1h->is_in_reserved(obj_ptr), "Allocated memory should be in the heap");
492 
493   // Should this evacuation fail?
494   if (inject_allocation_failure(from_region->hrm_index())) {
495     // Doing this after all the allocation attempts also tests the
496     // undo_allocation() method too.
497     undo_allocation(dest_attr, obj_ptr, word_sz, node_index);
498     return handle_evacuation_failure_par(old, old_mark, word_sz, false /* cause_pinned */);
499   }
500 
501   // We're going to allocate linearly, so might as well prefetch ahead.
502   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
503   Copy::aligned_disjoint_words(cast_from_oop<HeapWord*>(old), obj_ptr, word_sz);
504 
505   const oop obj = cast_to_oop(obj_ptr);
506   // Because the forwarding is done with memory_order_relaxed there is no
507   // ordering with the above copy.  Clients that get the forwardee must not
508   // examine its contents without other synchronization, since the contents
509   // may not be up to date for them.
510   const oop forward_ptr = old->forward_to_atomic(obj, old_mark, memory_order_relaxed);
511   if (forward_ptr == nullptr) {
512 
513     {
514       const uint young_index = from_region->young_index_in_cset();
515       assert((from_region->is_young() && young_index >  0) ||
516              (!from_region->is_young() && young_index == 0), "invariant" );
517       _surviving_young_words[young_index] += word_sz;
518     }
519 
520     if (dest_attr.is_young()) {
521       if (age < markWord::max_age) {
522         age++;
523         obj->incr_age();
524       }
525       _age_table.add(age, word_sz);
526     } else {
527       update_bot_after_copying(obj, word_sz);
528     }
529 
530     // Most objects are not arrays, so do one array check rather than
531     // checking for each array category for each object.
532     if (klass->is_array_klass()) {
533       if (klass->is_objArray_klass()) {
534         start_partial_objarray(dest_attr, old, obj);
535       } else {
536         // Nothing needs to be done for typeArrays.  Body doesn't contain
537         // any oops to scan, and the type in the klass will already be handled
538         // by processing the built-in module.
539         assert(klass->is_typeArray_klass(), "invariant");
540       }
541       return obj;
542     }
543 
544     ContinuationGCSupport::transform_stack_chunk(obj);
545 
546     // Check for deduplicating young Strings.
547     if (G1StringDedup::is_candidate_from_evacuation(klass,
548                                                     region_attr,
549                                                     dest_attr,
550                                                     age)) {
551       // Record old; request adds a new weak reference, which reference
552       // processing expects to refer to a from-space object.
553       _string_dedup_requests.add(old);
554     }
555 
556     // Skip the card enqueue iff the object (obj) is in survivor region.
557     // However, HeapRegion::is_survivor() is too expensive here.
558     // Instead, we use dest_attr.is_young() because the two values are always
559     // equal: successfully allocated young regions must be survivor regions.
560     assert(dest_attr.is_young() == _g1h->heap_region_containing(obj)->is_survivor(), "must be");
561     G1SkipCardEnqueueSetter x(&_scanner, dest_attr.is_young());
562     obj->oop_iterate_backwards(&_scanner, klass);
563     return obj;
564   } else {
565     _plab_allocator->undo_allocation(dest_attr, obj_ptr, word_sz, node_index);
566     return forward_ptr;
567   }
568 }
569 
570 // Public not-inline entry point.
571 ATTRIBUTE_FLATTEN
572 oop G1ParScanThreadState::copy_to_survivor_space(G1HeapRegionAttr region_attr,
573                                                  oop old,
574                                                  markWord old_mark) {
575   return do_copy_to_survivor_space(region_attr, old, old_mark);
576 }
577 
578 G1ParScanThreadState* G1ParScanThreadStateSet::state_for_worker(uint worker_id) {
579   assert(worker_id < _num_workers, "out of bounds access");
580   if (_states[worker_id] == nullptr) {
581     _states[worker_id] =
582       new G1ParScanThreadState(_g1h, rdcqs(),
583                                worker_id,
584                                _num_workers,
585                                _collection_set,
586                                _evac_failure_regions);
587   }
588   return _states[worker_id];
589 }
590 
591 const size_t* G1ParScanThreadStateSet::surviving_young_words() const {
592   assert(_flushed, "thread local state from the per thread states should have been flushed");
593   return _surviving_young_words_total;
594 }
595 
596 void G1ParScanThreadStateSet::flush_stats() {
597   assert(!_flushed, "thread local state from the per thread states should be flushed once");
598   for (uint worker_id = 0; worker_id < _num_workers; ++worker_id) {
599     G1ParScanThreadState* pss = _states[worker_id];
600     assert(pss != nullptr, "must be initialized");
601 
602     G1GCPhaseTimes* p = _g1h->phase_times();
603 
604     // Need to get the following two before the call to G1ParThreadScanState::flush()
605     // because it resets the PLAB allocator where we get this info from.
606     size_t lab_waste_bytes = pss->lab_waste_words() * HeapWordSize;
607     size_t lab_undo_waste_bytes = pss->lab_undo_waste_words() * HeapWordSize;
608     size_t copied_bytes = pss->flush_stats(_surviving_young_words_total, _num_workers, &_rdc_buffers[worker_id]) * HeapWordSize;
609     size_t evac_fail_enqueued_cards = pss->evac_failure_enqueued_cards();
610 
611     p->record_or_add_thread_work_item(G1GCPhaseTimes::MergePSS, worker_id, copied_bytes, G1GCPhaseTimes::MergePSSCopiedBytes);
612     p->record_or_add_thread_work_item(G1GCPhaseTimes::MergePSS, worker_id, lab_waste_bytes, G1GCPhaseTimes::MergePSSLABWasteBytes);
613     p->record_or_add_thread_work_item(G1GCPhaseTimes::MergePSS, worker_id, lab_undo_waste_bytes, G1GCPhaseTimes::MergePSSLABUndoWasteBytes);
614     p->record_or_add_thread_work_item(G1GCPhaseTimes::MergePSS, worker_id, evac_fail_enqueued_cards, G1GCPhaseTimes::MergePSSEvacFailExtra);
615 
616     delete pss;
617     _states[worker_id] = nullptr;
618   }
619 
620   G1DirtyCardQueueSet& dcq = G1BarrierSet::dirty_card_queue_set();
621   dcq.merge_bufferlists(rdcqs());
622   rdcqs()->verify_empty();
623 
624   _flushed = true;
625 }
626 
627 void G1ParScanThreadStateSet::record_unused_optional_region(HeapRegion* hr) {
628   for (uint worker_index = 0; worker_index < _num_workers; ++worker_index) {
629     G1ParScanThreadState* pss = _states[worker_index];
630     assert(pss != nullptr, "must be initialized");
631 
632     size_t used_memory = pss->oops_into_optional_region(hr)->used_memory();
633     _g1h->phase_times()->record_or_add_thread_work_item(G1GCPhaseTimes::OptScanHR, worker_index, used_memory, G1GCPhaseTimes::ScanHRUsedMemory);
634   }
635 }
636 
637 NOINLINE
638 oop G1ParScanThreadState::handle_evacuation_failure_par(oop old, markWord m, size_t word_sz, bool cause_pinned) {
639   assert(_g1h->is_in_cset(old), "Object " PTR_FORMAT " should be in the CSet", p2i(old));
640 
641   oop forward_ptr = old->forward_to_self_atomic(m, memory_order_relaxed);
642   if (forward_ptr == nullptr) {
643     // Forward-to-self succeeded. We are the "owner" of the object.
644     HeapRegion* r = _g1h->heap_region_containing(old);
645 
646     if (_evac_failure_regions->record(_worker_id, r->hrm_index(), cause_pinned)) {
647       _g1h->hr_printer()->evac_failure(r);
648     }
649 
650     // Mark the failing object in the marking bitmap and later use the bitmap to handle
651     // evacuation failure recovery.
652     _g1h->mark_evac_failure_object(_worker_id, old, word_sz);
653 
654     ContinuationGCSupport::transform_stack_chunk(old);
655 
656     _evacuation_failed_info.register_copy_failure(word_sz);
657 
658     // For iterating objects that failed evacuation currently we can reuse the
659     // existing closure to scan evacuated objects; since we are iterating from a
660     // collection set region (i.e. never a Survivor region), we always need to
661     // gather cards for this case.
662     G1SkipCardEnqueueSetter x(&_scanner, false /* skip_card_enqueue */);
663     old->oop_iterate_backwards(&_scanner);
664 
665     return old;
666   } else {
667     // Forward-to-self failed. Either someone else managed to allocate
668     // space for this object (old != forward_ptr) or they beat us in
669     // self-forwarding it (old == forward_ptr).
670     assert(old == forward_ptr || !_g1h->is_in_cset(forward_ptr),
671            "Object " PTR_FORMAT " forwarded to: " PTR_FORMAT " "
672            "should not be in the CSet",
673            p2i(old), p2i(forward_ptr));
674     return forward_ptr;
675   }
676 }
677 
678 void G1ParScanThreadState::initialize_numa_stats() {
679   if (_numa->is_enabled()) {
680     LogTarget(Info, gc, heap, numa) lt;
681 
682     if (lt.is_enabled()) {
683       uint num_nodes = _numa->num_active_nodes();
684       // Record only if there are multiple active nodes.
685       _obj_alloc_stat = NEW_C_HEAP_ARRAY(size_t, num_nodes, mtGC);
686       memset(_obj_alloc_stat, 0, sizeof(size_t) * num_nodes);
687     }
688   }
689 }
690 
691 void G1ParScanThreadState::flush_numa_stats() {
692   if (_obj_alloc_stat != nullptr) {
693     uint node_index = _numa->index_of_current_thread();
694     _numa->copy_statistics(G1NUMAStats::LocalObjProcessAtCopyToSurv, node_index, _obj_alloc_stat);
695   }
696 }
697 
698 void G1ParScanThreadState::update_numa_stats(uint node_index) {
699   if (_obj_alloc_stat != nullptr) {
700     _obj_alloc_stat[node_index]++;
701   }
702 }
703 
704 G1ParScanThreadStateSet::G1ParScanThreadStateSet(G1CollectedHeap* g1h,
705                                                  uint num_workers,
706                                                  G1CollectionSet* collection_set,
707                                                  G1EvacFailureRegions* evac_failure_regions) :
708     _g1h(g1h),
709     _collection_set(collection_set),
710     _rdcqs(G1BarrierSet::dirty_card_queue_set().allocator()),
711     _states(NEW_C_HEAP_ARRAY(G1ParScanThreadState*, num_workers, mtGC)),
712     _rdc_buffers(NEW_C_HEAP_ARRAY(BufferNodeList, num_workers, mtGC)),
713     _surviving_young_words_total(NEW_C_HEAP_ARRAY(size_t, collection_set->young_region_length() + 1, mtGC)),
714     _num_workers(num_workers),
715     _flushed(false),
716     _evac_failure_regions(evac_failure_regions) {
717   for (uint i = 0; i < num_workers; ++i) {
718     _states[i] = nullptr;
719     _rdc_buffers[i] = BufferNodeList();
720   }
721   memset(_surviving_young_words_total, 0, (collection_set->young_region_length() + 1) * sizeof(size_t));
722 }
723 
724 G1ParScanThreadStateSet::~G1ParScanThreadStateSet() {
725   assert(_flushed, "thread local state from the per thread states should have been flushed");
726   FREE_C_HEAP_ARRAY(G1ParScanThreadState*, _states);
727   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_total);
728   FREE_C_HEAP_ARRAY(BufferNodeList, _rdc_buffers);
729 }