1 /* 2 * Copyright (c) 2014, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "gc/g1/g1Allocator.inline.hpp" 27 #include "gc/g1/g1CollectedHeap.inline.hpp" 28 #include "gc/g1/g1CollectionSet.hpp" 29 #include "gc/g1/g1EvacFailureRegions.inline.hpp" 30 #include "gc/g1/g1OopClosures.inline.hpp" 31 #include "gc/g1/g1ParScanThreadState.inline.hpp" 32 #include "gc/g1/g1RootClosures.hpp" 33 #include "gc/g1/g1StringDedup.hpp" 34 #include "gc/g1/g1Trace.hpp" 35 #include "gc/g1/g1YoungGCEvacFailureInjector.inline.hpp" 36 #include "gc/shared/continuationGCSupport.inline.hpp" 37 #include "gc/shared/partialArrayTaskStepper.inline.hpp" 38 #include "gc/shared/preservedMarks.inline.hpp" 39 #include "gc/shared/stringdedup/stringDedup.hpp" 40 #include "gc/shared/taskqueue.inline.hpp" 41 #include "memory/allocation.inline.hpp" 42 #include "oops/access.inline.hpp" 43 #include "oops/oop.inline.hpp" 44 #include "runtime/atomic.hpp" 45 #include "runtime/prefetch.inline.hpp" 46 #include "utilities/globalDefinitions.hpp" 47 #include "utilities/macros.hpp" 48 49 // In fastdebug builds the code size can get out of hand, potentially 50 // tripping over compiler limits (which may be bugs, but nevertheless 51 // need to be taken into consideration). A side benefit of limiting 52 // inlining is that we get more call frames that might aid debugging. 53 // And the fastdebug compile time for this file is much reduced. 54 // Explicit NOINLINE to block ATTRIBUTE_FLATTENing. 55 #define MAYBE_INLINE_EVACUATION NOT_DEBUG(inline) DEBUG_ONLY(NOINLINE) 56 57 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, 58 G1RedirtyCardsQueueSet* rdcqs, 59 PreservedMarks* preserved_marks, 60 uint worker_id, 61 uint num_workers, 62 G1CollectionSet* collection_set, 63 G1EvacFailureRegions* evac_failure_regions) 64 : _g1h(g1h), 65 _task_queue(g1h->task_queue(worker_id)), 66 _rdc_local_qset(rdcqs), 67 _ct(g1h->card_table()), 68 _closures(nullptr), 69 _plab_allocator(nullptr), 70 _age_table(false), 71 _tenuring_threshold(g1h->policy()->tenuring_threshold()), 72 _scanner(g1h, this), 73 _worker_id(worker_id), 74 _last_enqueued_card(SIZE_MAX), 75 _stack_trim_upper_threshold(GCDrainStackTargetSize * 2 + 1), 76 _stack_trim_lower_threshold(GCDrainStackTargetSize), 77 _trim_ticks(), 78 _surviving_young_words_base(nullptr), 79 _surviving_young_words(nullptr), 80 _surviving_words_length(collection_set->young_region_length() + 1), 81 _old_gen_is_full(false), 82 _partial_objarray_chunk_size(ParGCArrayScanChunk), 83 _partial_array_stepper(num_workers), 84 _string_dedup_requests(), 85 _max_num_optional_regions(collection_set->optional_region_length()), 86 _numa(g1h->numa()), 87 _obj_alloc_stat(nullptr), 88 EVAC_FAILURE_INJECTOR_ONLY(_evac_failure_inject_counter(0) COMMA) 89 _preserved_marks(preserved_marks), 90 _evacuation_failed_info(), 91 _evac_failure_regions(evac_failure_regions), 92 _evac_failure_enqueued_cards(0) 93 { 94 // We allocate number of young gen regions in the collection set plus one 95 // entries, since entry 0 keeps track of surviving bytes for non-young regions. 96 // We also add a few elements at the beginning and at the end in 97 // an attempt to eliminate cache contention 98 const size_t padding_elem_num = (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t)); 99 size_t array_length = padding_elem_num + _surviving_words_length + padding_elem_num; 100 101 _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC); 102 _surviving_young_words = _surviving_young_words_base + padding_elem_num; 103 memset(_surviving_young_words, 0, _surviving_words_length * sizeof(size_t)); 104 105 _plab_allocator = new G1PLABAllocator(_g1h->allocator()); 106 107 _closures = G1EvacuationRootClosures::create_root_closures(_g1h, 108 this, 109 collection_set->only_contains_young_regions()); 110 111 _oops_into_optional_regions = new G1OopStarChunkedList[_max_num_optional_regions]; 112 113 initialize_numa_stats(); 114 } 115 116 size_t G1ParScanThreadState::flush_stats(size_t* surviving_young_words, uint num_workers) { 117 _rdc_local_qset.flush(); 118 flush_numa_stats(); 119 // Update allocation statistics. 120 _plab_allocator->flush_and_retire_stats(num_workers); 121 _g1h->policy()->record_age_table(&_age_table); 122 123 if (_evacuation_failed_info.has_failed()) { 124 _g1h->gc_tracer_stw()->report_evacuation_failed(_evacuation_failed_info); 125 } 126 127 size_t sum = 0; 128 for (uint i = 0; i < _surviving_words_length; i++) { 129 surviving_young_words[i] += _surviving_young_words[i]; 130 sum += _surviving_young_words[i]; 131 } 132 return sum; 133 } 134 135 G1ParScanThreadState::~G1ParScanThreadState() { 136 delete _plab_allocator; 137 delete _closures; 138 FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base); 139 delete[] _oops_into_optional_regions; 140 FREE_C_HEAP_ARRAY(size_t, _obj_alloc_stat); 141 } 142 143 size_t G1ParScanThreadState::lab_waste_words() const { 144 return _plab_allocator->waste(); 145 } 146 147 size_t G1ParScanThreadState::lab_undo_waste_words() const { 148 return _plab_allocator->undo_waste(); 149 } 150 151 size_t G1ParScanThreadState::evac_failure_enqueued_cards() const { 152 return _evac_failure_enqueued_cards; 153 } 154 155 #ifdef ASSERT 156 void G1ParScanThreadState::verify_task(narrowOop* task) const { 157 assert(task != nullptr, "invariant"); 158 assert(UseCompressedOops, "sanity"); 159 oop p = RawAccess<>::oop_load(task); 160 assert(_g1h->is_in_reserved(p), 161 "task=" PTR_FORMAT " p=" PTR_FORMAT, p2i(task), p2i(p)); 162 } 163 164 void G1ParScanThreadState::verify_task(oop* task) const { 165 assert(task != nullptr, "invariant"); 166 oop p = RawAccess<>::oop_load(task); 167 assert(_g1h->is_in_reserved(p), 168 "task=" PTR_FORMAT " p=" PTR_FORMAT, p2i(task), p2i(p)); 169 } 170 171 void G1ParScanThreadState::verify_task(PartialArrayScanTask task) const { 172 // Must be in the collection set--it's already been copied. 173 oop p = task.to_source_array(); 174 assert(_g1h->is_in_cset(p), "p=" PTR_FORMAT, p2i(p)); 175 } 176 177 void G1ParScanThreadState::verify_task(ScannerTask task) const { 178 if (task.is_narrow_oop_ptr()) { 179 verify_task(task.to_narrow_oop_ptr()); 180 } else if (task.is_oop_ptr()) { 181 verify_task(task.to_oop_ptr()); 182 } else if (task.is_partial_array_task()) { 183 verify_task(task.to_partial_array_task()); 184 } else { 185 ShouldNotReachHere(); 186 } 187 } 188 #endif // ASSERT 189 190 template <class T> 191 MAYBE_INLINE_EVACUATION 192 void G1ParScanThreadState::do_oop_evac(T* p) { 193 // Reference should not be null here as such are never pushed to the task queue. 194 oop obj = RawAccess<IS_NOT_NULL>::oop_load(p); 195 196 // Although we never intentionally push references outside of the collection 197 // set, due to (benign) races in the claim mechanism during RSet scanning more 198 // than one thread might claim the same card. So the same card may be 199 // processed multiple times, and so we might get references into old gen here. 200 // So we need to redo this check. 201 const G1HeapRegionAttr region_attr = _g1h->region_attr(obj); 202 // References pushed onto the work stack should never point to a humongous region 203 // as they are not added to the collection set due to above precondition. 204 assert(!region_attr.is_humongous_candidate(), 205 "Obj " PTR_FORMAT " should not refer to humongous region %u from " PTR_FORMAT, 206 p2i(obj), _g1h->addr_to_region(obj), p2i(p)); 207 208 if (!region_attr.is_in_cset()) { 209 // In this case somebody else already did all the work. 210 return; 211 } 212 213 markWord m = obj->mark(); 214 if (m.is_marked()) { 215 obj = obj->forwardee(m); 216 } else { 217 obj = do_copy_to_survivor_space(region_attr, obj, m); 218 } 219 RawAccess<IS_NOT_NULL>::oop_store(p, obj); 220 221 write_ref_field_post(p, obj); 222 } 223 224 MAYBE_INLINE_EVACUATION 225 void G1ParScanThreadState::do_partial_array(PartialArrayScanTask task) { 226 oop from_obj = task.to_source_array(); 227 228 assert(_g1h->is_in_reserved(from_obj), "must be in heap."); 229 assert(from_obj->is_forwarded(), "must be forwarded"); 230 231 oop to_obj = from_obj->forwardee(); 232 assert(from_obj != to_obj, "should not be chunking self-forwarded objects"); 233 assert(to_obj->is_objArray(), "must be obj array"); 234 objArrayOop to_array = objArrayOop(to_obj); 235 236 PartialArrayTaskStepper::Step step 237 = _partial_array_stepper.next(objArrayOop(from_obj), 238 to_array, 239 _partial_objarray_chunk_size); 240 for (uint i = 0; i < step._ncreate; ++i) { 241 push_on_queue(ScannerTask(PartialArrayScanTask(from_obj))); 242 } 243 244 G1HeapRegionAttr dest_attr = _g1h->region_attr(to_array); 245 G1SkipCardEnqueueSetter x(&_scanner, dest_attr.is_new_survivor()); 246 // Process claimed task. The length of to_array is not correct, but 247 // fortunately the iteration ignores the length field and just relies 248 // on start/end. 249 to_array->oop_iterate_range(&_scanner, 250 step._index, 251 step._index + _partial_objarray_chunk_size); 252 } 253 254 MAYBE_INLINE_EVACUATION 255 void G1ParScanThreadState::start_partial_objarray(G1HeapRegionAttr dest_attr, 256 oop from_obj, 257 oop to_obj) { 258 assert(from_obj->is_forwarded(), "precondition"); 259 assert(from_obj->forwardee() == to_obj, "precondition"); 260 assert(from_obj != to_obj, "should not be scanning self-forwarded objects"); 261 assert(to_obj->is_objArray(), "precondition"); 262 263 objArrayOop to_array = objArrayOop(to_obj); 264 265 PartialArrayTaskStepper::Step step 266 = _partial_array_stepper.start(objArrayOop(from_obj), 267 to_array, 268 _partial_objarray_chunk_size); 269 270 // Push any needed partial scan tasks. Pushed before processing the 271 // initial chunk to allow other workers to steal while we're processing. 272 for (uint i = 0; i < step._ncreate; ++i) { 273 push_on_queue(ScannerTask(PartialArrayScanTask(from_obj))); 274 } 275 276 // Skip the card enqueue iff the object (to_array) is in survivor region. 277 // However, HeapRegion::is_survivor() is too expensive here. 278 // Instead, we use dest_attr.is_young() because the two values are always 279 // equal: successfully allocated young regions must be survivor regions. 280 assert(dest_attr.is_young() == _g1h->heap_region_containing(to_array)->is_survivor(), "must be"); 281 G1SkipCardEnqueueSetter x(&_scanner, dest_attr.is_young()); 282 // Process the initial chunk. No need to process the type in the 283 // klass, as it will already be handled by processing the built-in 284 // module. The length of to_array is not correct, but fortunately 285 // the iteration ignores that length field and relies on start/end. 286 to_array->oop_iterate_range(&_scanner, 0, step._index); 287 } 288 289 MAYBE_INLINE_EVACUATION 290 void G1ParScanThreadState::dispatch_task(ScannerTask task) { 291 verify_task(task); 292 if (task.is_narrow_oop_ptr()) { 293 do_oop_evac(task.to_narrow_oop_ptr()); 294 } else if (task.is_oop_ptr()) { 295 do_oop_evac(task.to_oop_ptr()); 296 } else { 297 do_partial_array(task.to_partial_array_task()); 298 } 299 } 300 301 // Process tasks until overflow queue is empty and local queue 302 // contains no more than threshold entries. NOINLINE to prevent 303 // inlining into steal_and_trim_queue. 304 ATTRIBUTE_FLATTEN NOINLINE 305 void G1ParScanThreadState::trim_queue_to_threshold(uint threshold) { 306 ScannerTask task; 307 do { 308 while (_task_queue->pop_overflow(task)) { 309 if (!_task_queue->try_push_to_taskqueue(task)) { 310 dispatch_task(task); 311 } 312 } 313 while (_task_queue->pop_local(task, threshold)) { 314 dispatch_task(task); 315 } 316 } while (!_task_queue->overflow_empty()); 317 } 318 319 ATTRIBUTE_FLATTEN 320 void G1ParScanThreadState::steal_and_trim_queue(G1ScannerTasksQueueSet* task_queues) { 321 ScannerTask stolen_task; 322 while (task_queues->steal(_worker_id, stolen_task)) { 323 dispatch_task(stolen_task); 324 // Processing stolen task may have added tasks to our queue. 325 trim_queue(); 326 } 327 } 328 329 HeapWord* G1ParScanThreadState::allocate_in_next_plab(G1HeapRegionAttr* dest, 330 size_t word_sz, 331 bool previous_plab_refill_failed, 332 uint node_index) { 333 334 assert(dest->is_in_cset_or_humongous_candidate(), "Unexpected dest: %s region attr", dest->get_type_str()); 335 336 // Right now we only have two types of regions (young / old) so 337 // let's keep the logic here simple. We can generalize it when necessary. 338 if (dest->is_young()) { 339 bool plab_refill_in_old_failed = false; 340 HeapWord* const obj_ptr = _plab_allocator->allocate(G1HeapRegionAttr::Old, 341 word_sz, 342 &plab_refill_in_old_failed, 343 node_index); 344 // Make sure that we won't attempt to copy any other objects out 345 // of a survivor region (given that apparently we cannot allocate 346 // any new ones) to avoid coming into this slow path again and again. 347 // Only consider failed PLAB refill here: failed inline allocations are 348 // typically large, so not indicative of remaining space. 349 if (previous_plab_refill_failed) { 350 _tenuring_threshold = 0; 351 } 352 353 if (obj_ptr != nullptr) { 354 dest->set_old(); 355 } else { 356 // We just failed to allocate in old gen. The same idea as explained above 357 // for making survivor gen unavailable for allocation applies for old gen. 358 _old_gen_is_full = plab_refill_in_old_failed; 359 } 360 return obj_ptr; 361 } else { 362 _old_gen_is_full = previous_plab_refill_failed; 363 assert(dest->is_old(), "Unexpected dest region attr: %s", dest->get_type_str()); 364 // no other space to try. 365 return nullptr; 366 } 367 } 368 369 G1HeapRegionAttr G1ParScanThreadState::next_region_attr(G1HeapRegionAttr const region_attr, markWord const m, uint& age) { 370 assert(region_attr.is_young() || region_attr.is_old(), "must be either Young or Old"); 371 372 if (region_attr.is_young()) { 373 age = !m.has_displaced_mark_helper() ? m.age() 374 : m.displaced_mark_helper().age(); 375 if (age < _tenuring_threshold) { 376 return region_attr; 377 } 378 } 379 // young-to-old (promotion) or old-to-old; destination is old in both cases. 380 return G1HeapRegionAttr::Old; 381 } 382 383 void G1ParScanThreadState::report_promotion_event(G1HeapRegionAttr const dest_attr, 384 oop const old, Klass* klass, size_t word_sz, uint age, 385 HeapWord * const obj_ptr, uint node_index) const { 386 PLAB* alloc_buf = _plab_allocator->alloc_buffer(dest_attr, node_index); 387 if (alloc_buf->contains(obj_ptr)) { 388 _g1h->gc_tracer_stw()->report_promotion_in_new_plab_event(klass, word_sz * HeapWordSize, age, 389 dest_attr.type() == G1HeapRegionAttr::Old, 390 alloc_buf->word_sz() * HeapWordSize); 391 } else { 392 _g1h->gc_tracer_stw()->report_promotion_outside_plab_event(klass, word_sz * HeapWordSize, age, 393 dest_attr.type() == G1HeapRegionAttr::Old); 394 } 395 } 396 397 NOINLINE 398 HeapWord* G1ParScanThreadState::allocate_copy_slow(G1HeapRegionAttr* dest_attr, 399 oop old, 400 Klass* klass, 401 size_t word_sz, 402 uint age, 403 uint node_index) { 404 HeapWord* obj_ptr = nullptr; 405 // Try slow-path allocation unless we're allocating old and old is already full. 406 if (!(dest_attr->is_old() && _old_gen_is_full)) { 407 bool plab_refill_failed = false; 408 obj_ptr = _plab_allocator->allocate_direct_or_new_plab(*dest_attr, 409 word_sz, 410 &plab_refill_failed, 411 node_index); 412 if (obj_ptr == nullptr) { 413 obj_ptr = allocate_in_next_plab(dest_attr, 414 word_sz, 415 plab_refill_failed, 416 node_index); 417 } 418 } 419 if (obj_ptr != nullptr) { 420 update_numa_stats(node_index); 421 if (_g1h->gc_tracer_stw()->should_report_promotion_events()) { 422 // The events are checked individually as part of the actual commit 423 report_promotion_event(*dest_attr, old, klass, word_sz, age, obj_ptr, node_index); 424 } 425 } 426 return obj_ptr; 427 } 428 429 #if EVAC_FAILURE_INJECTOR 430 bool G1ParScanThreadState::inject_evacuation_failure(uint region_idx) { 431 return _g1h->evac_failure_injector()->evacuation_should_fail(_evac_failure_inject_counter, region_idx); 432 } 433 #endif 434 435 NOINLINE 436 void G1ParScanThreadState::undo_allocation(G1HeapRegionAttr dest_attr, 437 HeapWord* obj_ptr, 438 size_t word_sz, 439 uint node_index) { 440 _plab_allocator->undo_allocation(dest_attr, obj_ptr, word_sz, node_index); 441 } 442 443 void G1ParScanThreadState::update_bot_after_copying(oop obj, size_t word_sz) { 444 HeapWord* obj_start = cast_from_oop<HeapWord*>(obj); 445 HeapRegion* region = _g1h->heap_region_containing(obj_start); 446 region->update_bot_for_obj(obj_start, word_sz); 447 } 448 449 // Private inline function, for direct internal use and providing the 450 // implementation of the public not-inline function. 451 MAYBE_INLINE_EVACUATION 452 oop G1ParScanThreadState::do_copy_to_survivor_space(G1HeapRegionAttr const region_attr, 453 oop const old, 454 markWord const old_mark) { 455 assert(region_attr.is_in_cset(), 456 "Unexpected region attr type: %s", region_attr.get_type_str()); 457 458 if (old_mark.is_marked()) { 459 // Already forwarded by somebody else, return forwardee. 460 return old->forwardee(old_mark); 461 } 462 // Get the klass once. We'll need it again later, and this avoids 463 // re-decoding when it's compressed. 464 Klass* klass; 465 #ifdef _LP64 466 if (UseCompactObjectHeaders) { 467 klass = old_mark.safe_klass(); 468 } else 469 #endif 470 { 471 klass = old->klass(); 472 } 473 const size_t word_sz = old->size_given_klass(klass); 474 475 uint age = 0; 476 G1HeapRegionAttr dest_attr = next_region_attr(region_attr, old_mark, age); 477 HeapRegion* const from_region = _g1h->heap_region_containing(old); 478 uint node_index = from_region->node_index(); 479 480 HeapWord* obj_ptr = _plab_allocator->plab_allocate(dest_attr, word_sz, node_index); 481 482 // PLAB allocations should succeed most of the time, so we'll 483 // normally check against null once and that's it. 484 if (obj_ptr == nullptr) { 485 obj_ptr = allocate_copy_slow(&dest_attr, old, klass, word_sz, age, node_index); 486 if (obj_ptr == nullptr) { 487 // This will either forward-to-self, or detect that someone else has 488 // installed a forwarding pointer. 489 return handle_evacuation_failure_par(old, old_mark, word_sz); 490 } 491 } 492 493 assert(obj_ptr != nullptr, "when we get here, allocation should have succeeded"); 494 assert(_g1h->is_in_reserved(obj_ptr), "Allocated memory should be in the heap"); 495 496 // Should this evacuation fail? 497 if (inject_evacuation_failure(from_region->hrm_index())) { 498 // Doing this after all the allocation attempts also tests the 499 // undo_allocation() method too. 500 undo_allocation(dest_attr, obj_ptr, word_sz, node_index); 501 return handle_evacuation_failure_par(old, old_mark, word_sz); 502 } 503 504 // We're going to allocate linearly, so might as well prefetch ahead. 505 Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes); 506 Copy::aligned_disjoint_words(cast_from_oop<HeapWord*>(old), obj_ptr, word_sz); 507 508 const oop obj = cast_to_oop(obj_ptr); 509 // Because the forwarding is done with memory_order_relaxed there is no 510 // ordering with the above copy. Clients that get the forwardee must not 511 // examine its contents without other synchronization, since the contents 512 // may not be up to date for them. 513 const oop forward_ptr = old->forward_to_atomic(obj, old_mark, memory_order_relaxed); 514 if (forward_ptr == nullptr) { 515 516 { 517 const uint young_index = from_region->young_index_in_cset(); 518 assert((from_region->is_young() && young_index > 0) || 519 (!from_region->is_young() && young_index == 0), "invariant" ); 520 _surviving_young_words[young_index] += word_sz; 521 } 522 523 if (dest_attr.is_young()) { 524 if (age < markWord::max_age) { 525 age++; 526 obj->incr_age(); 527 } 528 _age_table.add(age, word_sz); 529 } else { 530 update_bot_after_copying(obj, word_sz); 531 } 532 533 // Most objects are not arrays, so do one array check rather than 534 // checking for each array category for each object. 535 if (klass->is_array_klass()) { 536 if (klass->is_objArray_klass()) { 537 start_partial_objarray(dest_attr, old, obj); 538 } else { 539 // Nothing needs to be done for typeArrays. Body doesn't contain 540 // any oops to scan, and the type in the klass will already be handled 541 // by processing the built-in module. 542 assert(klass->is_typeArray_klass(), "invariant"); 543 } 544 return obj; 545 } 546 547 ContinuationGCSupport::transform_stack_chunk(obj); 548 549 // Check for deduplicating young Strings. 550 if (G1StringDedup::is_candidate_from_evacuation(klass, 551 region_attr, 552 dest_attr, 553 age)) { 554 // Record old; request adds a new weak reference, which reference 555 // processing expects to refer to a from-space object. 556 _string_dedup_requests.add(old); 557 } 558 559 // Skip the card enqueue iff the object (obj) is in survivor region. 560 // However, HeapRegion::is_survivor() is too expensive here. 561 // Instead, we use dest_attr.is_young() because the two values are always 562 // equal: successfully allocated young regions must be survivor regions. 563 assert(dest_attr.is_young() == _g1h->heap_region_containing(obj)->is_survivor(), "must be"); 564 G1SkipCardEnqueueSetter x(&_scanner, dest_attr.is_young()); 565 obj->oop_iterate_backwards(&_scanner, klass); 566 return obj; 567 } else { 568 _plab_allocator->undo_allocation(dest_attr, obj_ptr, word_sz, node_index); 569 return forward_ptr; 570 } 571 } 572 573 // Public not-inline entry point. 574 ATTRIBUTE_FLATTEN 575 oop G1ParScanThreadState::copy_to_survivor_space(G1HeapRegionAttr region_attr, 576 oop old, 577 markWord old_mark) { 578 return do_copy_to_survivor_space(region_attr, old, old_mark); 579 } 580 581 G1ParScanThreadState* G1ParScanThreadStateSet::state_for_worker(uint worker_id) { 582 assert(worker_id < _num_workers, "out of bounds access"); 583 if (_states[worker_id] == nullptr) { 584 _states[worker_id] = 585 new G1ParScanThreadState(_g1h, rdcqs(), 586 _preserved_marks_set.get(worker_id), 587 worker_id, 588 _num_workers, 589 _collection_set, 590 _evac_failure_regions); 591 } 592 return _states[worker_id]; 593 } 594 595 const size_t* G1ParScanThreadStateSet::surviving_young_words() const { 596 assert(_flushed, "thread local state from the per thread states should have been flushed"); 597 return _surviving_young_words_total; 598 } 599 600 void G1ParScanThreadStateSet::flush_stats() { 601 assert(!_flushed, "thread local state from the per thread states should be flushed once"); 602 603 for (uint worker_id = 0; worker_id < _num_workers; ++worker_id) { 604 G1ParScanThreadState* pss = _states[worker_id]; 605 assert(pss != nullptr, "must be initialized"); 606 607 G1GCPhaseTimes* p = _g1h->phase_times(); 608 609 // Need to get the following two before the call to G1ParThreadScanState::flush() 610 // because it resets the PLAB allocator where we get this info from. 611 size_t lab_waste_bytes = pss->lab_waste_words() * HeapWordSize; 612 size_t lab_undo_waste_bytes = pss->lab_undo_waste_words() * HeapWordSize; 613 size_t copied_bytes = pss->flush_stats(_surviving_young_words_total, _num_workers) * HeapWordSize; 614 size_t evac_fail_enqueued_cards = pss->evac_failure_enqueued_cards(); 615 616 p->record_or_add_thread_work_item(G1GCPhaseTimes::MergePSS, worker_id, copied_bytes, G1GCPhaseTimes::MergePSSCopiedBytes); 617 p->record_or_add_thread_work_item(G1GCPhaseTimes::MergePSS, worker_id, lab_waste_bytes, G1GCPhaseTimes::MergePSSLABWasteBytes); 618 p->record_or_add_thread_work_item(G1GCPhaseTimes::MergePSS, worker_id, lab_undo_waste_bytes, G1GCPhaseTimes::MergePSSLABUndoWasteBytes); 619 p->record_or_add_thread_work_item(G1GCPhaseTimes::MergePSS, worker_id, evac_fail_enqueued_cards, G1GCPhaseTimes::MergePSSEvacFailExtra); 620 621 delete pss; 622 _states[worker_id] = nullptr; 623 } 624 _flushed = true; 625 } 626 627 void G1ParScanThreadStateSet::record_unused_optional_region(HeapRegion* hr) { 628 for (uint worker_index = 0; worker_index < _num_workers; ++worker_index) { 629 G1ParScanThreadState* pss = _states[worker_index]; 630 assert(pss != nullptr, "must be initialized"); 631 632 size_t used_memory = pss->oops_into_optional_region(hr)->used_memory(); 633 _g1h->phase_times()->record_or_add_thread_work_item(G1GCPhaseTimes::OptScanHR, worker_index, used_memory, G1GCPhaseTimes::ScanHRUsedMemory); 634 } 635 } 636 637 NOINLINE 638 oop G1ParScanThreadState::handle_evacuation_failure_par(oop old, markWord m, size_t word_sz) { 639 assert(_g1h->is_in_cset(old), "Object " PTR_FORMAT " should be in the CSet", p2i(old)); 640 641 oop forward_ptr = old->forward_to_self_atomic(m, memory_order_relaxed); 642 if (forward_ptr == nullptr) { 643 // Forward-to-self succeeded. We are the "owner" of the object. 644 HeapRegion* r = _g1h->heap_region_containing(old); 645 646 if (_evac_failure_regions->record(r->hrm_index())) { 647 _g1h->hr_printer()->evac_failure(r); 648 } 649 650 // Mark the failing object in the marking bitmap and later use the bitmap to handle 651 // evacuation failure recovery. 652 _g1h->mark_evac_failure_object(_worker_id, old, word_sz); 653 654 _preserved_marks->push_if_necessary(old, m); 655 656 ContinuationGCSupport::transform_stack_chunk(old); 657 658 _evacuation_failed_info.register_copy_failure(word_sz); 659 660 // For iterating objects that failed evacuation currently we can reuse the 661 // existing closure to scan evacuated objects; since we are iterating from a 662 // collection set region (i.e. never a Survivor region), we always need to 663 // gather cards for this case. 664 G1SkipCardEnqueueSetter x(&_scanner, false /* skip_card_enqueue */); 665 old->oop_iterate_backwards(&_scanner); 666 667 return old; 668 } else { 669 // Forward-to-self failed. Either someone else managed to allocate 670 // space for this object (old != forward_ptr) or they beat us in 671 // self-forwarding it (old == forward_ptr). 672 assert(old == forward_ptr || !_g1h->is_in_cset(forward_ptr), 673 "Object " PTR_FORMAT " forwarded to: " PTR_FORMAT " " 674 "should not be in the CSet", 675 p2i(old), p2i(forward_ptr)); 676 return forward_ptr; 677 } 678 } 679 680 void G1ParScanThreadState::initialize_numa_stats() { 681 if (_numa->is_enabled()) { 682 LogTarget(Info, gc, heap, numa) lt; 683 684 if (lt.is_enabled()) { 685 uint num_nodes = _numa->num_active_nodes(); 686 // Record only if there are multiple active nodes. 687 _obj_alloc_stat = NEW_C_HEAP_ARRAY(size_t, num_nodes, mtGC); 688 memset(_obj_alloc_stat, 0, sizeof(size_t) * num_nodes); 689 } 690 } 691 } 692 693 void G1ParScanThreadState::flush_numa_stats() { 694 if (_obj_alloc_stat != nullptr) { 695 uint node_index = _numa->index_of_current_thread(); 696 _numa->copy_statistics(G1NUMAStats::LocalObjProcessAtCopyToSurv, node_index, _obj_alloc_stat); 697 } 698 } 699 700 void G1ParScanThreadState::update_numa_stats(uint node_index) { 701 if (_obj_alloc_stat != nullptr) { 702 _obj_alloc_stat[node_index]++; 703 } 704 } 705 706 G1ParScanThreadStateSet::G1ParScanThreadStateSet(G1CollectedHeap* g1h, 707 uint num_workers, 708 G1CollectionSet* collection_set, 709 G1EvacFailureRegions* evac_failure_regions) : 710 _g1h(g1h), 711 _collection_set(collection_set), 712 _rdcqs(G1BarrierSet::dirty_card_queue_set().allocator()), 713 _preserved_marks_set(true /* in_c_heap */), 714 _states(NEW_C_HEAP_ARRAY(G1ParScanThreadState*, num_workers, mtGC)), 715 _surviving_young_words_total(NEW_C_HEAP_ARRAY(size_t, collection_set->young_region_length() + 1, mtGC)), 716 _num_workers(num_workers), 717 _flushed(false), 718 _evac_failure_regions(evac_failure_regions) { 719 _preserved_marks_set.init(num_workers); 720 for (uint i = 0; i < num_workers; ++i) { 721 _states[i] = nullptr; 722 } 723 memset(_surviving_young_words_total, 0, (collection_set->young_region_length() + 1) * sizeof(size_t)); 724 } 725 726 G1ParScanThreadStateSet::~G1ParScanThreadStateSet() { 727 assert(_flushed, "thread local state from the per thread states should have been flushed"); 728 FREE_C_HEAP_ARRAY(G1ParScanThreadState*, _states); 729 FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_total); 730 _preserved_marks_set.reclaim(); 731 }