1 /* 2 * Copyright (c) 2014, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "gc/g1/g1Allocator.inline.hpp" 27 #include "gc/g1/g1CollectedHeap.inline.hpp" 28 #include "gc/g1/g1CollectionSet.hpp" 29 #include "gc/g1/g1EvacFailureRegions.inline.hpp" 30 #include "gc/g1/g1HeapRegionPrinter.hpp" 31 #include "gc/g1/g1OopClosures.inline.hpp" 32 #include "gc/g1/g1ParScanThreadState.inline.hpp" 33 #include "gc/g1/g1RootClosures.hpp" 34 #include "gc/g1/g1StringDedup.hpp" 35 #include "gc/g1/g1Trace.hpp" 36 #include "gc/g1/g1YoungGCAllocationFailureInjector.inline.hpp" 37 #include "gc/shared/continuationGCSupport.inline.hpp" 38 #include "gc/shared/partialArrayTaskStepper.inline.hpp" 39 #include "gc/shared/stringdedup/stringDedup.hpp" 40 #include "gc/shared/taskqueue.inline.hpp" 41 #include "memory/allocation.inline.hpp" 42 #include "oops/access.inline.hpp" 43 #include "oops/oop.inline.hpp" 44 #include "runtime/atomic.hpp" 45 #include "runtime/prefetch.inline.hpp" 46 #include "utilities/globalDefinitions.hpp" 47 #include "utilities/macros.hpp" 48 49 // In fastdebug builds the code size can get out of hand, potentially 50 // tripping over compiler limits (which may be bugs, but nevertheless 51 // need to be taken into consideration). A side benefit of limiting 52 // inlining is that we get more call frames that might aid debugging. 53 // And the fastdebug compile time for this file is much reduced. 54 // Explicit NOINLINE to block ATTRIBUTE_FLATTENing. 55 #define MAYBE_INLINE_EVACUATION NOT_DEBUG(inline) DEBUG_ONLY(NOINLINE) 56 57 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, 58 G1RedirtyCardsQueueSet* rdcqs, 59 uint worker_id, 60 uint num_workers, 61 G1CollectionSet* collection_set, 62 G1EvacFailureRegions* evac_failure_regions) 63 : _g1h(g1h), 64 _task_queue(g1h->task_queue(worker_id)), 65 _rdc_local_qset(rdcqs), 66 _ct(g1h->card_table()), 67 _closures(nullptr), 68 _plab_allocator(nullptr), 69 _age_table(false), 70 _tenuring_threshold(g1h->policy()->tenuring_threshold()), 71 _scanner(g1h, this), 72 _worker_id(worker_id), 73 _last_enqueued_card(SIZE_MAX), 74 _stack_trim_upper_threshold(GCDrainStackTargetSize * 2 + 1), 75 _stack_trim_lower_threshold(GCDrainStackTargetSize), 76 _trim_ticks(), 77 _surviving_young_words_base(nullptr), 78 _surviving_young_words(nullptr), 79 _surviving_words_length(collection_set->young_region_length() + 1), 80 _old_gen_is_full(false), 81 _partial_objarray_chunk_size(ParGCArrayScanChunk), 82 _partial_array_stepper(num_workers), 83 _string_dedup_requests(), 84 _max_num_optional_regions(collection_set->optional_region_length()), 85 _numa(g1h->numa()), 86 _obj_alloc_stat(nullptr), 87 ALLOCATION_FAILURE_INJECTOR_ONLY(_allocation_failure_inject_counter(0) COMMA) 88 _evacuation_failed_info(), 89 _evac_failure_regions(evac_failure_regions), 90 _evac_failure_enqueued_cards(0) 91 { 92 // We allocate number of young gen regions in the collection set plus one 93 // entries, since entry 0 keeps track of surviving bytes for non-young regions. 94 // We also add a few elements at the beginning and at the end in 95 // an attempt to eliminate cache contention 96 const size_t padding_elem_num = (DEFAULT_PADDING_SIZE / sizeof(size_t)); 97 size_t array_length = padding_elem_num + _surviving_words_length + padding_elem_num; 98 99 _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC); 100 _surviving_young_words = _surviving_young_words_base + padding_elem_num; 101 memset(_surviving_young_words, 0, _surviving_words_length * sizeof(size_t)); 102 103 _plab_allocator = new G1PLABAllocator(_g1h->allocator()); 104 105 _closures = G1EvacuationRootClosures::create_root_closures(_g1h, 106 this, 107 collection_set->only_contains_young_regions()); 108 109 _oops_into_optional_regions = new G1OopStarChunkedList[_max_num_optional_regions]; 110 111 initialize_numa_stats(); 112 } 113 114 size_t G1ParScanThreadState::flush_stats(size_t* surviving_young_words, uint num_workers, BufferNodeList* rdc_buffers) { 115 *rdc_buffers = _rdc_local_qset.flush(); 116 flush_numa_stats(); 117 // Update allocation statistics. 118 _plab_allocator->flush_and_retire_stats(num_workers); 119 _g1h->policy()->record_age_table(&_age_table); 120 121 if (_evacuation_failed_info.has_failed()) { 122 _g1h->gc_tracer_stw()->report_evacuation_failed(_evacuation_failed_info); 123 } 124 125 size_t sum = 0; 126 for (uint i = 0; i < _surviving_words_length; i++) { 127 surviving_young_words[i] += _surviving_young_words[i]; 128 sum += _surviving_young_words[i]; 129 } 130 return sum; 131 } 132 133 G1ParScanThreadState::~G1ParScanThreadState() { 134 delete _plab_allocator; 135 delete _closures; 136 FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base); 137 delete[] _oops_into_optional_regions; 138 FREE_C_HEAP_ARRAY(size_t, _obj_alloc_stat); 139 } 140 141 size_t G1ParScanThreadState::lab_waste_words() const { 142 return _plab_allocator->waste(); 143 } 144 145 size_t G1ParScanThreadState::lab_undo_waste_words() const { 146 return _plab_allocator->undo_waste(); 147 } 148 149 size_t G1ParScanThreadState::evac_failure_enqueued_cards() const { 150 return _evac_failure_enqueued_cards; 151 } 152 153 #ifdef ASSERT 154 void G1ParScanThreadState::verify_task(narrowOop* task) const { 155 assert(task != nullptr, "invariant"); 156 assert(UseCompressedOops, "sanity"); 157 oop p = RawAccess<>::oop_load(task); 158 assert(_g1h->is_in_reserved(p), 159 "task=" PTR_FORMAT " p=" PTR_FORMAT, p2i(task), p2i(p)); 160 } 161 162 void G1ParScanThreadState::verify_task(oop* task) const { 163 assert(task != nullptr, "invariant"); 164 oop p = RawAccess<>::oop_load(task); 165 assert(_g1h->is_in_reserved(p), 166 "task=" PTR_FORMAT " p=" PTR_FORMAT, p2i(task), p2i(p)); 167 } 168 169 void G1ParScanThreadState::verify_task(PartialArrayScanTask task) const { 170 // Must be in the collection set--it's already been copied. 171 oop p = task.to_source_array(); 172 assert(_g1h->is_in_cset(p), "p=" PTR_FORMAT, p2i(p)); 173 } 174 175 void G1ParScanThreadState::verify_task(ScannerTask task) const { 176 if (task.is_narrow_oop_ptr()) { 177 verify_task(task.to_narrow_oop_ptr()); 178 } else if (task.is_oop_ptr()) { 179 verify_task(task.to_oop_ptr()); 180 } else if (task.is_partial_array_task()) { 181 verify_task(task.to_partial_array_task()); 182 } else { 183 ShouldNotReachHere(); 184 } 185 } 186 #endif // ASSERT 187 188 template <class T> 189 MAYBE_INLINE_EVACUATION 190 void G1ParScanThreadState::do_oop_evac(T* p) { 191 // Reference should not be null here as such are never pushed to the task queue. 192 oop obj = RawAccess<IS_NOT_NULL>::oop_load(p); 193 194 // Although we never intentionally push references outside of the collection 195 // set, due to (benign) races in the claim mechanism during RSet scanning more 196 // than one thread might claim the same card. So the same card may be 197 // processed multiple times, and so we might get references into old gen here. 198 // So we need to redo this check. 199 const G1HeapRegionAttr region_attr = _g1h->region_attr(obj); 200 // References pushed onto the work stack should never point to a humongous region 201 // as they are not added to the collection set due to above precondition. 202 assert(!region_attr.is_humongous_candidate(), 203 "Obj " PTR_FORMAT " should not refer to humongous region %u from " PTR_FORMAT, 204 p2i(obj), _g1h->addr_to_region(obj), p2i(p)); 205 206 if (!region_attr.is_in_cset()) { 207 // In this case somebody else already did all the work. 208 return; 209 } 210 211 markWord m = obj->mark(); 212 if (m.is_forwarded()) { 213 obj = obj->forwardee(m); 214 } else { 215 obj = do_copy_to_survivor_space(region_attr, obj, m); 216 } 217 RawAccess<IS_NOT_NULL>::oop_store(p, obj); 218 219 write_ref_field_post(p, obj); 220 } 221 222 MAYBE_INLINE_EVACUATION 223 void G1ParScanThreadState::do_partial_array(PartialArrayScanTask task) { 224 oop from_obj = task.to_source_array(); 225 226 assert(_g1h->is_in_reserved(from_obj), "must be in heap."); 227 assert(from_obj->forward_safe_klass()->is_objArray_klass(), "must be obj array"); 228 assert(from_obj->is_forwarded(), "must be forwarded"); 229 230 oop to_obj = from_obj->forwardee(); 231 assert(from_obj != to_obj, "should not be chunking self-forwarded objects"); 232 assert(to_obj->is_objArray(), "must be obj array"); 233 objArrayOop to_array = objArrayOop(to_obj); 234 235 PartialArrayTaskStepper::Step step 236 = _partial_array_stepper.next(objArrayOop(from_obj), 237 to_array, 238 _partial_objarray_chunk_size); 239 for (uint i = 0; i < step._ncreate; ++i) { 240 push_on_queue(ScannerTask(PartialArrayScanTask(from_obj))); 241 } 242 243 G1HeapRegionAttr dest_attr = _g1h->region_attr(to_array); 244 G1SkipCardEnqueueSetter x(&_scanner, dest_attr.is_new_survivor()); 245 // Process claimed task. The length of to_array is not correct, but 246 // fortunately the iteration ignores the length field and just relies 247 // on start/end. 248 to_array->oop_iterate_range(&_scanner, 249 step._index, 250 step._index + _partial_objarray_chunk_size); 251 } 252 253 MAYBE_INLINE_EVACUATION 254 void G1ParScanThreadState::start_partial_objarray(G1HeapRegionAttr dest_attr, 255 oop from_obj, 256 oop to_obj) { 257 assert(from_obj->forward_safe_klass()->is_objArray_klass(), "precondition"); 258 assert(from_obj->is_forwarded(), "precondition"); 259 assert(from_obj->forwardee() == to_obj, "precondition"); 260 assert(from_obj != to_obj, "should not be scanning self-forwarded objects"); 261 assert(to_obj->is_objArray(), "precondition"); 262 263 objArrayOop to_array = objArrayOop(to_obj); 264 265 PartialArrayTaskStepper::Step step 266 = _partial_array_stepper.start(objArrayOop(from_obj), 267 to_array, 268 _partial_objarray_chunk_size); 269 270 // Push any needed partial scan tasks. Pushed before processing the 271 // initial chunk to allow other workers to steal while we're processing. 272 for (uint i = 0; i < step._ncreate; ++i) { 273 push_on_queue(ScannerTask(PartialArrayScanTask(from_obj))); 274 } 275 276 // Skip the card enqueue iff the object (to_array) is in survivor region. 277 // However, G1HeapRegion::is_survivor() is too expensive here. 278 // Instead, we use dest_attr.is_young() because the two values are always 279 // equal: successfully allocated young regions must be survivor regions. 280 assert(dest_attr.is_young() == _g1h->heap_region_containing(to_array)->is_survivor(), "must be"); 281 G1SkipCardEnqueueSetter x(&_scanner, dest_attr.is_young()); 282 // Process the initial chunk. No need to process the type in the 283 // klass, as it will already be handled by processing the built-in 284 // module. The length of to_array is not correct, but fortunately 285 // the iteration ignores that length field and relies on start/end. 286 to_array->oop_iterate_range(&_scanner, 0, step._index); 287 } 288 289 MAYBE_INLINE_EVACUATION 290 void G1ParScanThreadState::dispatch_task(ScannerTask task) { 291 verify_task(task); 292 if (task.is_narrow_oop_ptr()) { 293 do_oop_evac(task.to_narrow_oop_ptr()); 294 } else if (task.is_oop_ptr()) { 295 do_oop_evac(task.to_oop_ptr()); 296 } else { 297 do_partial_array(task.to_partial_array_task()); 298 } 299 } 300 301 // Process tasks until overflow queue is empty and local queue 302 // contains no more than threshold entries. NOINLINE to prevent 303 // inlining into steal_and_trim_queue. 304 ATTRIBUTE_FLATTEN NOINLINE 305 void G1ParScanThreadState::trim_queue_to_threshold(uint threshold) { 306 ScannerTask task; 307 do { 308 while (_task_queue->pop_overflow(task)) { 309 if (!_task_queue->try_push_to_taskqueue(task)) { 310 dispatch_task(task); 311 } 312 } 313 while (_task_queue->pop_local(task, threshold)) { 314 dispatch_task(task); 315 } 316 } while (!_task_queue->overflow_empty()); 317 } 318 319 ATTRIBUTE_FLATTEN 320 void G1ParScanThreadState::steal_and_trim_queue(G1ScannerTasksQueueSet* task_queues) { 321 ScannerTask stolen_task; 322 while (task_queues->steal(_worker_id, stolen_task)) { 323 dispatch_task(stolen_task); 324 // Processing stolen task may have added tasks to our queue. 325 trim_queue(); 326 } 327 } 328 329 HeapWord* G1ParScanThreadState::allocate_in_next_plab(G1HeapRegionAttr* dest, 330 size_t word_sz, 331 bool previous_plab_refill_failed, 332 uint node_index) { 333 334 assert(dest->is_in_cset_or_humongous_candidate(), "Unexpected dest: %s region attr", dest->get_type_str()); 335 336 // Right now we only have two types of regions (young / old) so 337 // let's keep the logic here simple. We can generalize it when necessary. 338 if (dest->is_young()) { 339 bool plab_refill_in_old_failed = false; 340 HeapWord* const obj_ptr = _plab_allocator->allocate(G1HeapRegionAttr::Old, 341 word_sz, 342 &plab_refill_in_old_failed, 343 node_index); 344 // Make sure that we won't attempt to copy any other objects out 345 // of a survivor region (given that apparently we cannot allocate 346 // any new ones) to avoid coming into this slow path again and again. 347 // Only consider failed PLAB refill here: failed inline allocations are 348 // typically large, so not indicative of remaining space. 349 if (previous_plab_refill_failed) { 350 _tenuring_threshold = 0; 351 } 352 353 if (obj_ptr != nullptr) { 354 dest->set_old(); 355 } else { 356 // We just failed to allocate in old gen. The same idea as explained above 357 // for making survivor gen unavailable for allocation applies for old gen. 358 _old_gen_is_full = plab_refill_in_old_failed; 359 } 360 return obj_ptr; 361 } else { 362 _old_gen_is_full = previous_plab_refill_failed; 363 assert(dest->is_old(), "Unexpected dest region attr: %s", dest->get_type_str()); 364 // no other space to try. 365 return nullptr; 366 } 367 } 368 369 G1HeapRegionAttr G1ParScanThreadState::next_region_attr(G1HeapRegionAttr const region_attr, markWord const m, uint& age) { 370 assert(region_attr.is_young() || region_attr.is_old(), "must be either Young or Old"); 371 372 if (region_attr.is_young()) { 373 age = !m.has_displaced_mark_helper() ? m.age() 374 : m.displaced_mark_helper().age(); 375 if (age < _tenuring_threshold) { 376 return region_attr; 377 } 378 } 379 // young-to-old (promotion) or old-to-old; destination is old in both cases. 380 return G1HeapRegionAttr::Old; 381 } 382 383 void G1ParScanThreadState::report_promotion_event(G1HeapRegionAttr const dest_attr, 384 Klass* klass, size_t word_sz, uint age, 385 HeapWord * const obj_ptr, uint node_index) const { 386 PLAB* alloc_buf = _plab_allocator->alloc_buffer(dest_attr, node_index); 387 if (alloc_buf->contains(obj_ptr)) { 388 _g1h->gc_tracer_stw()->report_promotion_in_new_plab_event(klass, word_sz * HeapWordSize, age, 389 dest_attr.type() == G1HeapRegionAttr::Old, 390 alloc_buf->word_sz() * HeapWordSize); 391 } else { 392 _g1h->gc_tracer_stw()->report_promotion_outside_plab_event(klass, word_sz * HeapWordSize, age, 393 dest_attr.type() == G1HeapRegionAttr::Old); 394 } 395 } 396 397 NOINLINE 398 HeapWord* G1ParScanThreadState::allocate_copy_slow(G1HeapRegionAttr* dest_attr, 399 Klass* klass, 400 size_t word_sz, 401 uint age, 402 uint node_index) { 403 HeapWord* obj_ptr = nullptr; 404 // Try slow-path allocation unless we're allocating old and old is already full. 405 if (!(dest_attr->is_old() && _old_gen_is_full)) { 406 bool plab_refill_failed = false; 407 obj_ptr = _plab_allocator->allocate_direct_or_new_plab(*dest_attr, 408 word_sz, 409 &plab_refill_failed, 410 node_index); 411 if (obj_ptr == nullptr) { 412 obj_ptr = allocate_in_next_plab(dest_attr, 413 word_sz, 414 plab_refill_failed, 415 node_index); 416 } 417 } 418 if (obj_ptr != nullptr) { 419 update_numa_stats(node_index); 420 if (_g1h->gc_tracer_stw()->should_report_promotion_events()) { 421 // The events are checked individually as part of the actual commit 422 report_promotion_event(*dest_attr, klass, word_sz, age, obj_ptr, node_index); 423 } 424 } 425 return obj_ptr; 426 } 427 428 #if ALLOCATION_FAILURE_INJECTOR 429 bool G1ParScanThreadState::inject_allocation_failure(uint region_idx) { 430 return _g1h->allocation_failure_injector()->allocation_should_fail(_allocation_failure_inject_counter, region_idx); 431 } 432 #endif 433 434 NOINLINE 435 void G1ParScanThreadState::undo_allocation(G1HeapRegionAttr dest_attr, 436 HeapWord* obj_ptr, 437 size_t word_sz, 438 uint node_index) { 439 _plab_allocator->undo_allocation(dest_attr, obj_ptr, word_sz, node_index); 440 } 441 442 void G1ParScanThreadState::update_bot_after_copying(oop obj, size_t word_sz) { 443 HeapWord* obj_start = cast_from_oop<HeapWord*>(obj); 444 G1HeapRegion* region = _g1h->heap_region_containing(obj_start); 445 region->update_bot_for_block(obj_start, obj_start + word_sz); 446 } 447 448 // Private inline function, for direct internal use and providing the 449 // implementation of the public not-inline function. 450 MAYBE_INLINE_EVACUATION 451 oop G1ParScanThreadState::do_copy_to_survivor_space(G1HeapRegionAttr const region_attr, 452 oop const old, 453 markWord const old_mark) { 454 assert(region_attr.is_in_cset(), 455 "Unexpected region attr type: %s", region_attr.get_type_str()); 456 457 // Get the klass once. We'll need it again later, and this avoids 458 // re-decoding when it's compressed. 459 // NOTE: With compact headers, it is not safe to load the Klass* from o, because 460 // that would access the mark-word, and the mark-word might change at any time by 461 // concurrent promotion. The promoted mark-word would point to the forwardee, which 462 // may not yet have completed copying. Therefore we must load the Klass* from 463 // the mark-word that we have already loaded. This is safe, because we have checked 464 // that this is not yet forwarded in the caller. 465 Klass* klass = old->forward_safe_klass(old_mark); 466 const size_t word_sz = old->size_given_klass(klass); 467 468 // JNI only allows pinning of typeArrays, so we only need to keep those in place. 469 if (region_attr.is_pinned() && klass->is_typeArray_klass()) { 470 return handle_evacuation_failure_par(old, old_mark, word_sz, true /* cause_pinned */); 471 } 472 473 uint age = 0; 474 G1HeapRegionAttr dest_attr = next_region_attr(region_attr, old_mark, age); 475 G1HeapRegion* const from_region = _g1h->heap_region_containing(old); 476 uint node_index = from_region->node_index(); 477 478 HeapWord* obj_ptr = _plab_allocator->plab_allocate(dest_attr, word_sz, node_index); 479 480 // PLAB allocations should succeed most of the time, so we'll 481 // normally check against null once and that's it. 482 if (obj_ptr == nullptr) { 483 obj_ptr = allocate_copy_slow(&dest_attr, klass, word_sz, age, node_index); 484 if (obj_ptr == nullptr) { 485 // This will either forward-to-self, or detect that someone else has 486 // installed a forwarding pointer. 487 return handle_evacuation_failure_par(old, old_mark, word_sz, false /* cause_pinned */); 488 } 489 } 490 491 assert(obj_ptr != nullptr, "when we get here, allocation should have succeeded"); 492 assert(_g1h->is_in_reserved(obj_ptr), "Allocated memory should be in the heap"); 493 494 // Should this evacuation fail? 495 if (inject_allocation_failure(from_region->hrm_index())) { 496 // Doing this after all the allocation attempts also tests the 497 // undo_allocation() method too. 498 undo_allocation(dest_attr, obj_ptr, word_sz, node_index); 499 return handle_evacuation_failure_par(old, old_mark, word_sz, false /* cause_pinned */); 500 } 501 502 // We're going to allocate linearly, so might as well prefetch ahead. 503 Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes); 504 Copy::aligned_disjoint_words(cast_from_oop<HeapWord*>(old), obj_ptr, word_sz); 505 506 const oop obj = cast_to_oop(obj_ptr); 507 // Because the forwarding is done with memory_order_relaxed there is no 508 // ordering with the above copy. Clients that get the forwardee must not 509 // examine its contents without other synchronization, since the contents 510 // may not be up to date for them. 511 const oop forward_ptr = old->forward_to_atomic(obj, old_mark, memory_order_relaxed); 512 if (forward_ptr == nullptr) { 513 514 { 515 const uint young_index = from_region->young_index_in_cset(); 516 assert((from_region->is_young() && young_index > 0) || 517 (!from_region->is_young() && young_index == 0), "invariant" ); 518 _surviving_young_words[young_index] += word_sz; 519 } 520 521 if (dest_attr.is_young()) { 522 if (age < markWord::max_age) { 523 age++; 524 obj->incr_age(); 525 } 526 _age_table.add(age, word_sz); 527 } else { 528 update_bot_after_copying(obj, word_sz); 529 } 530 531 // Most objects are not arrays, so do one array check rather than 532 // checking for each array category for each object. 533 if (klass->is_array_klass()) { 534 if (klass->is_objArray_klass()) { 535 start_partial_objarray(dest_attr, old, obj); 536 } else { 537 // Nothing needs to be done for typeArrays. Body doesn't contain 538 // any oops to scan, and the type in the klass will already be handled 539 // by processing the built-in module. 540 assert(klass->is_typeArray_klass(), "invariant"); 541 } 542 return obj; 543 } 544 545 ContinuationGCSupport::transform_stack_chunk(obj); 546 547 // Check for deduplicating young Strings. 548 if (G1StringDedup::is_candidate_from_evacuation(klass, 549 region_attr, 550 dest_attr, 551 age)) { 552 // Record old; request adds a new weak reference, which reference 553 // processing expects to refer to a from-space object. 554 _string_dedup_requests.add(old); 555 } 556 557 // Skip the card enqueue iff the object (obj) is in survivor region. 558 // However, G1HeapRegion::is_survivor() is too expensive here. 559 // Instead, we use dest_attr.is_young() because the two values are always 560 // equal: successfully allocated young regions must be survivor regions. 561 assert(dest_attr.is_young() == _g1h->heap_region_containing(obj)->is_survivor(), "must be"); 562 G1SkipCardEnqueueSetter x(&_scanner, dest_attr.is_young()); 563 obj->oop_iterate_backwards(&_scanner, klass); 564 return obj; 565 } else { 566 _plab_allocator->undo_allocation(dest_attr, obj_ptr, word_sz, node_index); 567 return forward_ptr; 568 } 569 } 570 571 // Public not-inline entry point. 572 ATTRIBUTE_FLATTEN 573 oop G1ParScanThreadState::copy_to_survivor_space(G1HeapRegionAttr region_attr, 574 oop old, 575 markWord old_mark) { 576 return do_copy_to_survivor_space(region_attr, old, old_mark); 577 } 578 579 G1ParScanThreadState* G1ParScanThreadStateSet::state_for_worker(uint worker_id) { 580 assert(worker_id < _num_workers, "out of bounds access"); 581 if (_states[worker_id] == nullptr) { 582 _states[worker_id] = 583 new G1ParScanThreadState(_g1h, rdcqs(), 584 worker_id, 585 _num_workers, 586 _collection_set, 587 _evac_failure_regions); 588 } 589 return _states[worker_id]; 590 } 591 592 const size_t* G1ParScanThreadStateSet::surviving_young_words() const { 593 assert(_flushed, "thread local state from the per thread states should have been flushed"); 594 return _surviving_young_words_total; 595 } 596 597 void G1ParScanThreadStateSet::flush_stats() { 598 assert(!_flushed, "thread local state from the per thread states should be flushed once"); 599 for (uint worker_id = 0; worker_id < _num_workers; ++worker_id) { 600 G1ParScanThreadState* pss = _states[worker_id]; 601 assert(pss != nullptr, "must be initialized"); 602 603 G1GCPhaseTimes* p = _g1h->phase_times(); 604 605 // Need to get the following two before the call to G1ParThreadScanState::flush() 606 // because it resets the PLAB allocator where we get this info from. 607 size_t lab_waste_bytes = pss->lab_waste_words() * HeapWordSize; 608 size_t lab_undo_waste_bytes = pss->lab_undo_waste_words() * HeapWordSize; 609 size_t copied_bytes = pss->flush_stats(_surviving_young_words_total, _num_workers, &_rdc_buffers[worker_id]) * HeapWordSize; 610 size_t evac_fail_enqueued_cards = pss->evac_failure_enqueued_cards(); 611 612 p->record_or_add_thread_work_item(G1GCPhaseTimes::MergePSS, worker_id, copied_bytes, G1GCPhaseTimes::MergePSSCopiedBytes); 613 p->record_or_add_thread_work_item(G1GCPhaseTimes::MergePSS, worker_id, lab_waste_bytes, G1GCPhaseTimes::MergePSSLABWasteBytes); 614 p->record_or_add_thread_work_item(G1GCPhaseTimes::MergePSS, worker_id, lab_undo_waste_bytes, G1GCPhaseTimes::MergePSSLABUndoWasteBytes); 615 p->record_or_add_thread_work_item(G1GCPhaseTimes::MergePSS, worker_id, evac_fail_enqueued_cards, G1GCPhaseTimes::MergePSSEvacFailExtra); 616 617 delete pss; 618 _states[worker_id] = nullptr; 619 } 620 621 G1DirtyCardQueueSet& dcq = G1BarrierSet::dirty_card_queue_set(); 622 dcq.merge_bufferlists(rdcqs()); 623 rdcqs()->verify_empty(); 624 625 _flushed = true; 626 } 627 628 void G1ParScanThreadStateSet::record_unused_optional_region(G1HeapRegion* hr) { 629 for (uint worker_index = 0; worker_index < _num_workers; ++worker_index) { 630 G1ParScanThreadState* pss = _states[worker_index]; 631 assert(pss != nullptr, "must be initialized"); 632 633 size_t used_memory = pss->oops_into_optional_region(hr)->used_memory(); 634 _g1h->phase_times()->record_or_add_thread_work_item(G1GCPhaseTimes::OptScanHR, worker_index, used_memory, G1GCPhaseTimes::ScanHRUsedMemory); 635 } 636 } 637 638 NOINLINE 639 oop G1ParScanThreadState::handle_evacuation_failure_par(oop old, markWord m, size_t word_sz, bool cause_pinned) { 640 assert(_g1h->is_in_cset(old), "Object " PTR_FORMAT " should be in the CSet", p2i(old)); 641 642 oop forward_ptr = old->forward_to_self_atomic(m, memory_order_relaxed); 643 if (forward_ptr == nullptr) { 644 // Forward-to-self succeeded. We are the "owner" of the object. 645 G1HeapRegion* r = _g1h->heap_region_containing(old); 646 647 if (_evac_failure_regions->record(_worker_id, r->hrm_index(), cause_pinned)) { 648 G1HeapRegionPrinter::evac_failure(r); 649 } 650 651 // Mark the failing object in the marking bitmap and later use the bitmap to handle 652 // evacuation failure recovery. 653 _g1h->mark_evac_failure_object(_worker_id, old, word_sz); 654 655 ContinuationGCSupport::transform_stack_chunk(old); 656 657 _evacuation_failed_info.register_copy_failure(word_sz); 658 659 // For iterating objects that failed evacuation currently we can reuse the 660 // existing closure to scan evacuated objects; since we are iterating from a 661 // collection set region (i.e. never a Survivor region), we always need to 662 // gather cards for this case. 663 G1SkipCardEnqueueSetter x(&_scanner, false /* skip_card_enqueue */); 664 old->oop_iterate_backwards(&_scanner); 665 666 return old; 667 } else { 668 // Forward-to-self failed. Either someone else managed to allocate 669 // space for this object (old != forward_ptr) or they beat us in 670 // self-forwarding it (old == forward_ptr). 671 assert(old == forward_ptr || !_g1h->is_in_cset(forward_ptr), 672 "Object " PTR_FORMAT " forwarded to: " PTR_FORMAT " " 673 "should not be in the CSet", 674 p2i(old), p2i(forward_ptr)); 675 return forward_ptr; 676 } 677 } 678 679 void G1ParScanThreadState::initialize_numa_stats() { 680 if (_numa->is_enabled()) { 681 LogTarget(Info, gc, heap, numa) lt; 682 683 if (lt.is_enabled()) { 684 uint num_nodes = _numa->num_active_nodes(); 685 // Record only if there are multiple active nodes. 686 _obj_alloc_stat = NEW_C_HEAP_ARRAY(size_t, num_nodes, mtGC); 687 memset(_obj_alloc_stat, 0, sizeof(size_t) * num_nodes); 688 } 689 } 690 } 691 692 void G1ParScanThreadState::flush_numa_stats() { 693 if (_obj_alloc_stat != nullptr) { 694 uint node_index = _numa->index_of_current_thread(); 695 _numa->copy_statistics(G1NUMAStats::LocalObjProcessAtCopyToSurv, node_index, _obj_alloc_stat); 696 } 697 } 698 699 void G1ParScanThreadState::update_numa_stats(uint node_index) { 700 if (_obj_alloc_stat != nullptr) { 701 _obj_alloc_stat[node_index]++; 702 } 703 } 704 705 G1ParScanThreadStateSet::G1ParScanThreadStateSet(G1CollectedHeap* g1h, 706 uint num_workers, 707 G1CollectionSet* collection_set, 708 G1EvacFailureRegions* evac_failure_regions) : 709 _g1h(g1h), 710 _collection_set(collection_set), 711 _rdcqs(G1BarrierSet::dirty_card_queue_set().allocator()), 712 _states(NEW_C_HEAP_ARRAY(G1ParScanThreadState*, num_workers, mtGC)), 713 _rdc_buffers(NEW_C_HEAP_ARRAY(BufferNodeList, num_workers, mtGC)), 714 _surviving_young_words_total(NEW_C_HEAP_ARRAY(size_t, collection_set->young_region_length() + 1, mtGC)), 715 _num_workers(num_workers), 716 _flushed(false), 717 _evac_failure_regions(evac_failure_regions) { 718 for (uint i = 0; i < num_workers; ++i) { 719 _states[i] = nullptr; 720 _rdc_buffers[i] = BufferNodeList(); 721 } 722 memset(_surviving_young_words_total, 0, (collection_set->young_region_length() + 1) * sizeof(size_t)); 723 } 724 725 G1ParScanThreadStateSet::~G1ParScanThreadStateSet() { 726 assert(_flushed, "thread local state from the per thread states should have been flushed"); 727 FREE_C_HEAP_ARRAY(G1ParScanThreadState*, _states); 728 FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_total); 729 FREE_C_HEAP_ARRAY(BufferNodeList, _rdc_buffers); 730 }