1 /*
   2  * Copyright (c) 2005, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderDataGraph.hpp"
  27 #include "classfile/javaClasses.inline.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "classfile/symbolTable.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "compiler/oopMap.hpp"
  33 #include "gc/parallel/objectStartArray.inline.hpp"
  34 #include "gc/parallel/parallelArguments.hpp"
  35 #include "gc/parallel/parallelScavengeHeap.inline.hpp"
  36 #include "gc/parallel/parMarkBitMap.inline.hpp"
  37 #include "gc/parallel/psAdaptiveSizePolicy.hpp"
  38 #include "gc/parallel/psCompactionManager.inline.hpp"
  39 #include "gc/parallel/psOldGen.hpp"
  40 #include "gc/parallel/psParallelCompact.inline.hpp"
  41 #include "gc/parallel/psPromotionManager.inline.hpp"
  42 #include "gc/parallel/psRootType.hpp"
  43 #include "gc/parallel/psScavenge.hpp"
  44 #include "gc/parallel/psStringDedup.hpp"
  45 #include "gc/parallel/psYoungGen.hpp"
  46 #include "gc/shared/classUnloadingContext.hpp"
  47 #include "gc/shared/gcCause.hpp"
  48 #include "gc/shared/gcHeapSummary.hpp"
  49 #include "gc/shared/gcId.hpp"
  50 #include "gc/shared/gcLocker.hpp"
  51 #include "gc/shared/gcTimer.hpp"
  52 #include "gc/shared/gcTrace.hpp"
  53 #include "gc/shared/gcTraceTime.inline.hpp"
  54 #include "gc/shared/isGCActiveMark.hpp"
  55 #include "gc/shared/oopStorage.inline.hpp"
  56 #include "gc/shared/oopStorageSet.inline.hpp"
  57 #include "gc/shared/oopStorageSetParState.inline.hpp"
  58 #include "gc/shared/preservedMarks.inline.hpp"
  59 #include "gc/shared/referencePolicy.hpp"
  60 #include "gc/shared/referenceProcessor.hpp"
  61 #include "gc/shared/referenceProcessorPhaseTimes.hpp"
  62 #include "gc/shared/strongRootsScope.hpp"
  63 #include "gc/shared/taskTerminator.hpp"
  64 #include "gc/shared/weakProcessor.inline.hpp"
  65 #include "gc/shared/workerPolicy.hpp"
  66 #include "gc/shared/workerThread.hpp"
  67 #include "gc/shared/workerUtils.hpp"
  68 #include "logging/log.hpp"
  69 #include "memory/iterator.inline.hpp"
  70 #include "memory/metaspaceUtils.hpp"
  71 #include "memory/resourceArea.hpp"
  72 #include "memory/universe.hpp"
  73 #include "nmt/memTracker.hpp"
  74 #include "oops/access.inline.hpp"
  75 #include "oops/instanceClassLoaderKlass.inline.hpp"
  76 #include "oops/instanceKlass.inline.hpp"
  77 #include "oops/instanceMirrorKlass.inline.hpp"
  78 #include "oops/methodData.hpp"
  79 #include "oops/objArrayKlass.inline.hpp"
  80 #include "oops/oop.inline.hpp"
  81 #include "runtime/atomic.hpp"
  82 #include "runtime/handles.inline.hpp"
  83 #include "runtime/java.hpp"
  84 #include "runtime/safepoint.hpp"
  85 #include "runtime/threads.hpp"
  86 #include "runtime/vmThread.hpp"
  87 #include "services/memoryService.hpp"
  88 #include "utilities/align.hpp"
  89 #include "utilities/debug.hpp"
  90 #include "utilities/events.hpp"
  91 #include "utilities/formatBuffer.hpp"
  92 #include "utilities/macros.hpp"
  93 #include "utilities/stack.inline.hpp"
  94 #if INCLUDE_JVMCI
  95 #include "jvmci/jvmci.hpp"
  96 #endif
  97 
  98 #include <math.h>
  99 
 100 // All sizes are in HeapWords.
 101 const size_t ParallelCompactData::Log2RegionSize  = 16; // 64K words
 102 const size_t ParallelCompactData::RegionSize      = (size_t)1 << Log2RegionSize;
 103 static_assert(ParallelCompactData::RegionSize >= BitsPerWord, "region-start bit word-aligned");
 104 const size_t ParallelCompactData::RegionSizeBytes =
 105   RegionSize << LogHeapWordSize;
 106 const size_t ParallelCompactData::RegionSizeOffsetMask = RegionSize - 1;
 107 const size_t ParallelCompactData::RegionAddrOffsetMask = RegionSizeBytes - 1;
 108 const size_t ParallelCompactData::RegionAddrMask       = ~RegionAddrOffsetMask;
 109 
 110 const ParallelCompactData::RegionData::region_sz_t
 111 ParallelCompactData::RegionData::dc_shift = 27;
 112 
 113 const ParallelCompactData::RegionData::region_sz_t
 114 ParallelCompactData::RegionData::dc_mask = ~0U << dc_shift;
 115 
 116 const ParallelCompactData::RegionData::region_sz_t
 117 ParallelCompactData::RegionData::dc_one = 0x1U << dc_shift;
 118 
 119 const ParallelCompactData::RegionData::region_sz_t
 120 ParallelCompactData::RegionData::los_mask = ~dc_mask;
 121 
 122 const ParallelCompactData::RegionData::region_sz_t
 123 ParallelCompactData::RegionData::dc_claimed = 0x8U << dc_shift;
 124 
 125 const ParallelCompactData::RegionData::region_sz_t
 126 ParallelCompactData::RegionData::dc_completed = 0xcU << dc_shift;
 127 
 128 SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id];
 129 
 130 SpanSubjectToDiscoveryClosure PSParallelCompact::_span_based_discoverer;
 131 ReferenceProcessor* PSParallelCompact::_ref_processor = nullptr;
 132 
 133 void SplitInfo::record(size_t src_region_idx, size_t partial_obj_size,
 134                        HeapWord* destination)
 135 {
 136   assert(src_region_idx != 0, "invalid src_region_idx");
 137   assert(partial_obj_size != 0, "invalid partial_obj_size argument");
 138   assert(destination != nullptr, "invalid destination argument");
 139 
 140   _src_region_idx = src_region_idx;
 141   _partial_obj_size = partial_obj_size;
 142   _destination = destination;
 143 
 144   // These fields may not be updated below, so make sure they're clear.
 145   assert(_dest_region_addr == nullptr, "should have been cleared");
 146   assert(_first_src_addr == nullptr, "should have been cleared");
 147 
 148   // Determine the number of destination regions for the partial object.
 149   HeapWord* const last_word = destination + partial_obj_size - 1;
 150   const ParallelCompactData& sd = PSParallelCompact::summary_data();
 151   HeapWord* const beg_region_addr = sd.region_align_down(destination);
 152   HeapWord* const end_region_addr = sd.region_align_down(last_word);
 153 
 154   if (beg_region_addr == end_region_addr) {
 155     // One destination region.
 156     _destination_count = 1;
 157     if (end_region_addr == destination) {
 158       // The destination falls on a region boundary, thus the first word of the
 159       // partial object will be the first word copied to the destination region.
 160       _dest_region_addr = end_region_addr;
 161       _first_src_addr = sd.region_to_addr(src_region_idx);
 162     }
 163   } else {
 164     // Two destination regions.  When copied, the partial object will cross a
 165     // destination region boundary, so a word somewhere within the partial
 166     // object will be the first word copied to the second destination region.
 167     _destination_count = 2;
 168     _dest_region_addr = end_region_addr;
 169     const size_t ofs = pointer_delta(end_region_addr, destination);
 170     assert(ofs < _partial_obj_size, "sanity");
 171     _first_src_addr = sd.region_to_addr(src_region_idx) + ofs;
 172   }
 173 }
 174 
 175 void SplitInfo::clear()
 176 {
 177   _src_region_idx = 0;
 178   _partial_obj_size = 0;
 179   _destination = nullptr;
 180   _destination_count = 0;
 181   _dest_region_addr = nullptr;
 182   _first_src_addr = nullptr;
 183   assert(!is_valid(), "sanity");
 184 }
 185 
 186 #ifdef  ASSERT
 187 void SplitInfo::verify_clear()
 188 {
 189   assert(_src_region_idx == 0, "not clear");
 190   assert(_partial_obj_size == 0, "not clear");
 191   assert(_destination == nullptr, "not clear");
 192   assert(_destination_count == 0, "not clear");
 193   assert(_dest_region_addr == nullptr, "not clear");
 194   assert(_first_src_addr == nullptr, "not clear");
 195 }
 196 #endif  // #ifdef ASSERT
 197 
 198 
 199 void PSParallelCompact::print_on_error(outputStream* st) {
 200   _mark_bitmap.print_on_error(st);
 201 }
 202 
 203 ParallelCompactData::ParallelCompactData() :
 204   _heap_start(nullptr),
 205   DEBUG_ONLY(_heap_end(nullptr) COMMA)
 206   _region_vspace(nullptr),
 207   _reserved_byte_size(0),
 208   _region_data(nullptr),
 209   _region_count(0) {}
 210 
 211 bool ParallelCompactData::initialize(MemRegion reserved_heap)
 212 {
 213   _heap_start = reserved_heap.start();
 214   const size_t heap_size = reserved_heap.word_size();
 215   DEBUG_ONLY(_heap_end = _heap_start + heap_size;)
 216 
 217   assert(region_align_down(_heap_start) == _heap_start,
 218          "region start not aligned");
 219 
 220   return initialize_region_data(heap_size);
 221 }
 222 
 223 PSVirtualSpace*
 224 ParallelCompactData::create_vspace(size_t count, size_t element_size)
 225 {
 226   const size_t raw_bytes = count * element_size;
 227   const size_t page_sz = os::page_size_for_region_aligned(raw_bytes, 10);
 228   const size_t granularity = os::vm_allocation_granularity();
 229   _reserved_byte_size = align_up(raw_bytes, MAX2(page_sz, granularity));
 230 
 231   const size_t rs_align = page_sz == os::vm_page_size() ? 0 :
 232     MAX2(page_sz, granularity);
 233   ReservedSpace rs(_reserved_byte_size, rs_align, page_sz);
 234   os::trace_page_sizes("Parallel Compact Data", raw_bytes, raw_bytes, rs.base(),
 235                        rs.size(), page_sz);
 236 
 237   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
 238 
 239   PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz);
 240   if (vspace != 0) {
 241     if (vspace->expand_by(_reserved_byte_size)) {
 242       return vspace;
 243     }
 244     delete vspace;
 245     // Release memory reserved in the space.
 246     rs.release();
 247   }
 248 
 249   return 0;
 250 }
 251 
 252 bool ParallelCompactData::initialize_region_data(size_t heap_size)
 253 {
 254   assert(is_aligned(heap_size, RegionSize), "precondition");
 255 
 256   const size_t count = heap_size >> Log2RegionSize;
 257   _region_vspace = create_vspace(count, sizeof(RegionData));
 258   if (_region_vspace != 0) {
 259     _region_data = (RegionData*)_region_vspace->reserved_low_addr();
 260     _region_count = count;
 261     return true;
 262   }
 263   return false;
 264 }
 265 
 266 void ParallelCompactData::clear_range(size_t beg_region, size_t end_region) {
 267   assert(beg_region <= _region_count, "beg_region out of range");
 268   assert(end_region <= _region_count, "end_region out of range");
 269 
 270   const size_t region_cnt = end_region - beg_region;
 271   memset(_region_data + beg_region, 0, region_cnt * sizeof(RegionData));
 272 }
 273 
 274 void
 275 ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end)
 276 {
 277   assert(is_region_aligned(beg), "not RegionSize aligned");
 278   assert(is_region_aligned(end), "not RegionSize aligned");
 279 
 280   size_t cur_region = addr_to_region_idx(beg);
 281   const size_t end_region = addr_to_region_idx(end);
 282   HeapWord* addr = beg;
 283   while (cur_region < end_region) {
 284     _region_data[cur_region].set_destination(addr);
 285     _region_data[cur_region].set_destination_count(0);
 286     _region_data[cur_region].set_source_region(cur_region);
 287 
 288     // Update live_obj_size so the region appears completely full.
 289     size_t live_size = RegionSize - _region_data[cur_region].partial_obj_size();
 290     _region_data[cur_region].set_live_obj_size(live_size);
 291 
 292     ++cur_region;
 293     addr += RegionSize;
 294   }
 295 }
 296 
 297 // Find the point at which a space can be split and, if necessary, record the
 298 // split point.
 299 //
 300 // If the current src region (which overflowed the destination space) doesn't
 301 // have a partial object, the split point is at the beginning of the current src
 302 // region (an "easy" split, no extra bookkeeping required).
 303 //
 304 // If the current src region has a partial object, the split point is in the
 305 // region where that partial object starts (call it the split_region).  If
 306 // split_region has a partial object, then the split point is just after that
 307 // partial object (a "hard" split where we have to record the split data and
 308 // zero the partial_obj_size field).  With a "hard" split, we know that the
 309 // partial_obj ends within split_region because the partial object that caused
 310 // the overflow starts in split_region.  If split_region doesn't have a partial
 311 // obj, then the split is at the beginning of split_region (another "easy"
 312 // split).
 313 HeapWord*
 314 ParallelCompactData::summarize_split_space(size_t src_region,
 315                                            SplitInfo& split_info,
 316                                            HeapWord* destination,
 317                                            HeapWord* target_end,
 318                                            HeapWord** target_next)
 319 {
 320   assert(destination <= target_end, "sanity");
 321   assert(destination + _region_data[src_region].data_size() > target_end,
 322     "region should not fit into target space");
 323   assert(is_region_aligned(target_end), "sanity");
 324 
 325   size_t split_region = src_region;
 326   HeapWord* split_destination = destination;
 327   size_t partial_obj_size = _region_data[src_region].partial_obj_size();
 328 
 329   if (destination + partial_obj_size > target_end) {
 330     // The split point is just after the partial object (if any) in the
 331     // src_region that contains the start of the object that overflowed the
 332     // destination space.
 333     //
 334     // Find the start of the "overflow" object and set split_region to the
 335     // region containing it.
 336     HeapWord* const overflow_obj = _region_data[src_region].partial_obj_addr();
 337     split_region = addr_to_region_idx(overflow_obj);
 338 
 339     // Clear the source_region field of all destination regions whose first word
 340     // came from data after the split point (a non-null source_region field
 341     // implies a region must be filled).
 342     //
 343     // An alternative to the simple loop below:  clear during post_compact(),
 344     // which uses memcpy instead of individual stores, and is easy to
 345     // parallelize.  (The downside is that it clears the entire RegionData
 346     // object as opposed to just one field.)
 347     //
 348     // post_compact() would have to clear the summary data up to the highest
 349     // address that was written during the summary phase, which would be
 350     //
 351     //         max(top, max(new_top, clear_top))
 352     //
 353     // where clear_top is a new field in SpaceInfo.  Would have to set clear_top
 354     // to target_end.
 355     const RegionData* const sr = region(split_region);
 356     const size_t beg_idx =
 357       addr_to_region_idx(region_align_up(sr->destination() +
 358                                          sr->partial_obj_size()));
 359     const size_t end_idx = addr_to_region_idx(target_end);
 360 
 361     log_develop_trace(gc, compaction)("split:  clearing source_region field in [" SIZE_FORMAT ", " SIZE_FORMAT ")", beg_idx, end_idx);
 362     for (size_t idx = beg_idx; idx < end_idx; ++idx) {
 363       _region_data[idx].set_source_region(0);
 364     }
 365 
 366     // Set split_destination and partial_obj_size to reflect the split region.
 367     split_destination = sr->destination();
 368     partial_obj_size = sr->partial_obj_size();
 369   }
 370 
 371   // The split is recorded only if a partial object extends onto the region.
 372   if (partial_obj_size != 0) {
 373     _region_data[split_region].set_partial_obj_size(0);
 374     split_info.record(split_region, partial_obj_size, split_destination);
 375   }
 376 
 377   // Setup the continuation addresses.
 378   *target_next = split_destination + partial_obj_size;
 379   HeapWord* const source_next = region_to_addr(split_region) + partial_obj_size;
 380 
 381   if (log_develop_is_enabled(Trace, gc, compaction)) {
 382     const char * split_type = partial_obj_size == 0 ? "easy" : "hard";
 383     log_develop_trace(gc, compaction)("%s split:  src=" PTR_FORMAT " src_c=" SIZE_FORMAT " pos=" SIZE_FORMAT,
 384                                       split_type, p2i(source_next), split_region, partial_obj_size);
 385     log_develop_trace(gc, compaction)("%s split:  dst=" PTR_FORMAT " dst_c=" SIZE_FORMAT " tn=" PTR_FORMAT,
 386                                       split_type, p2i(split_destination),
 387                                       addr_to_region_idx(split_destination),
 388                                       p2i(*target_next));
 389 
 390     if (partial_obj_size != 0) {
 391       HeapWord* const po_beg = split_info.destination();
 392       HeapWord* const po_end = po_beg + split_info.partial_obj_size();
 393       log_develop_trace(gc, compaction)("%s split:  po_beg=" PTR_FORMAT " " SIZE_FORMAT " po_end=" PTR_FORMAT " " SIZE_FORMAT,
 394                                         split_type,
 395                                         p2i(po_beg), addr_to_region_idx(po_beg),
 396                                         p2i(po_end), addr_to_region_idx(po_end));
 397     }
 398   }
 399 
 400   return source_next;
 401 }
 402 
 403 size_t ParallelCompactData::live_words_in_space(const MutableSpace* space,
 404                                                 HeapWord** full_region_prefix_end) {
 405   size_t cur_region = addr_to_region_idx(space->bottom());
 406   const size_t end_region = addr_to_region_idx(region_align_up(space->top()));
 407   size_t live_words = 0;
 408   if (full_region_prefix_end == nullptr) {
 409     for (/* empty */; cur_region < end_region; ++cur_region) {
 410       live_words += _region_data[cur_region].data_size();
 411     }
 412   } else {
 413     bool first_set = false;
 414     for (/* empty */; cur_region < end_region; ++cur_region) {
 415       size_t live_words_in_region = _region_data[cur_region].data_size();
 416       if (!first_set && live_words_in_region < RegionSize) {
 417         *full_region_prefix_end = region_to_addr(cur_region);
 418         first_set = true;
 419       }
 420       live_words += live_words_in_region;
 421     }
 422     if (!first_set) {
 423       // All regions are full of live objs.
 424       assert(is_region_aligned(space->top()), "inv");
 425       *full_region_prefix_end = space->top();
 426     }
 427     assert(*full_region_prefix_end != nullptr, "postcondition");
 428     assert(is_region_aligned(*full_region_prefix_end), "inv");
 429     assert(*full_region_prefix_end >= space->bottom(), "in-range");
 430     assert(*full_region_prefix_end <= space->top(), "in-range");
 431   }
 432   return live_words;
 433 }
 434 
 435 bool ParallelCompactData::summarize(SplitInfo& split_info,
 436                                     HeapWord* source_beg, HeapWord* source_end,
 437                                     HeapWord** source_next,
 438                                     HeapWord* target_beg, HeapWord* target_end,
 439                                     HeapWord** target_next)
 440 {
 441   HeapWord* const source_next_val = source_next == nullptr ? nullptr : *source_next;
 442   log_develop_trace(gc, compaction)(
 443       "sb=" PTR_FORMAT " se=" PTR_FORMAT " sn=" PTR_FORMAT
 444       "tb=" PTR_FORMAT " te=" PTR_FORMAT " tn=" PTR_FORMAT,
 445       p2i(source_beg), p2i(source_end), p2i(source_next_val),
 446       p2i(target_beg), p2i(target_end), p2i(*target_next));
 447 
 448   size_t cur_region = addr_to_region_idx(source_beg);
 449   const size_t end_region = addr_to_region_idx(region_align_up(source_end));
 450 
 451   HeapWord *dest_addr = target_beg;
 452   while (cur_region < end_region) {
 453     // The destination must be set even if the region has no data.
 454     _region_data[cur_region].set_destination(dest_addr);
 455 
 456     size_t words = _region_data[cur_region].data_size();
 457     if (words > 0) {
 458       // If cur_region does not fit entirely into the target space, find a point
 459       // at which the source space can be 'split' so that part is copied to the
 460       // target space and the rest is copied elsewhere.
 461       if (dest_addr + words > target_end) {
 462         assert(source_next != nullptr, "source_next is null when splitting");
 463         *source_next = summarize_split_space(cur_region, split_info, dest_addr,
 464                                              target_end, target_next);
 465         return false;
 466       }
 467 
 468       // Compute the destination_count for cur_region, and if necessary, update
 469       // source_region for a destination region.  The source_region field is
 470       // updated if cur_region is the first (left-most) region to be copied to a
 471       // destination region.
 472       //
 473       // The destination_count calculation is a bit subtle.  A region that has
 474       // data that compacts into itself does not count itself as a destination.
 475       // This maintains the invariant that a zero count means the region is
 476       // available and can be claimed and then filled.
 477       uint destination_count = 0;
 478       if (split_info.is_split(cur_region)) {
 479         // The current region has been split:  the partial object will be copied
 480         // to one destination space and the remaining data will be copied to
 481         // another destination space.  Adjust the initial destination_count and,
 482         // if necessary, set the source_region field if the partial object will
 483         // cross a destination region boundary.
 484         destination_count = split_info.destination_count();
 485         if (destination_count == 2) {
 486           size_t dest_idx = addr_to_region_idx(split_info.dest_region_addr());
 487           _region_data[dest_idx].set_source_region(cur_region);
 488         }
 489       }
 490 
 491       HeapWord* const last_addr = dest_addr + words - 1;
 492       const size_t dest_region_1 = addr_to_region_idx(dest_addr);
 493       const size_t dest_region_2 = addr_to_region_idx(last_addr);
 494 
 495       // Initially assume that the destination regions will be the same and
 496       // adjust the value below if necessary.  Under this assumption, if
 497       // cur_region == dest_region_2, then cur_region will be compacted
 498       // completely into itself.
 499       destination_count += cur_region == dest_region_2 ? 0 : 1;
 500       if (dest_region_1 != dest_region_2) {
 501         // Destination regions differ; adjust destination_count.
 502         destination_count += 1;
 503         // Data from cur_region will be copied to the start of dest_region_2.
 504         _region_data[dest_region_2].set_source_region(cur_region);
 505       } else if (is_region_aligned(dest_addr)) {
 506         // Data from cur_region will be copied to the start of the destination
 507         // region.
 508         _region_data[dest_region_1].set_source_region(cur_region);
 509       }
 510 
 511       _region_data[cur_region].set_destination_count(destination_count);
 512       dest_addr += words;
 513     }
 514 
 515     ++cur_region;
 516   }
 517 
 518   *target_next = dest_addr;
 519   return true;
 520 }
 521 
 522 #ifdef ASSERT
 523 void ParallelCompactData::verify_clear(const PSVirtualSpace* vspace)
 524 {
 525   const size_t* const beg = (const size_t*)vspace->committed_low_addr();
 526   const size_t* const end = (const size_t*)vspace->committed_high_addr();
 527   for (const size_t* p = beg; p < end; ++p) {
 528     assert(*p == 0, "not zero");
 529   }
 530 }
 531 
 532 void ParallelCompactData::verify_clear()
 533 {
 534   verify_clear(_region_vspace);
 535 }
 536 #endif  // #ifdef ASSERT
 537 
 538 STWGCTimer          PSParallelCompact::_gc_timer;
 539 ParallelOldTracer   PSParallelCompact::_gc_tracer;
 540 elapsedTimer        PSParallelCompact::_accumulated_time;
 541 unsigned int        PSParallelCompact::_maximum_compaction_gc_num = 0;
 542 CollectorCounters*  PSParallelCompact::_counters = nullptr;
 543 ParMarkBitMap       PSParallelCompact::_mark_bitmap;
 544 ParallelCompactData PSParallelCompact::_summary_data;
 545 
 546 PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure;
 547 
 548 class PCAdjustPointerClosure: public BasicOopIterateClosure {
 549   template <typename T>
 550   void do_oop_work(T* p) { PSParallelCompact::adjust_pointer(p); }
 551 
 552 public:
 553   virtual void do_oop(oop* p)                { do_oop_work(p); }
 554   virtual void do_oop(narrowOop* p)          { do_oop_work(p); }
 555 
 556   virtual ReferenceIterationMode reference_iteration_mode() { return DO_FIELDS; }
 557 };
 558 
 559 static PCAdjustPointerClosure pc_adjust_pointer_closure;
 560 
 561 bool PSParallelCompact::IsAliveClosure::do_object_b(oop p) { return mark_bitmap()->is_marked(p); }
 562 
 563 void PSParallelCompact::post_initialize() {
 564   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 565   _span_based_discoverer.set_span(heap->reserved_region());
 566   _ref_processor =
 567     new ReferenceProcessor(&_span_based_discoverer,
 568                            ParallelGCThreads,   // mt processing degree
 569                            ParallelGCThreads,   // mt discovery degree
 570                            false,               // concurrent_discovery
 571                            &_is_alive_closure); // non-header is alive closure
 572 
 573   _counters = new CollectorCounters("Parallel full collection pauses", 1);
 574 
 575   // Initialize static fields in ParCompactionManager.
 576   ParCompactionManager::initialize(mark_bitmap());
 577 }
 578 
 579 bool PSParallelCompact::initialize_aux_data() {
 580   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 581   MemRegion mr = heap->reserved_region();
 582   assert(mr.byte_size() != 0, "heap should be reserved");
 583 
 584   initialize_space_info();
 585 
 586   if (!_mark_bitmap.initialize(mr)) {
 587     vm_shutdown_during_initialization(
 588       err_msg("Unable to allocate " SIZE_FORMAT "KB bitmaps for parallel "
 589       "garbage collection for the requested " SIZE_FORMAT "KB heap.",
 590       _mark_bitmap.reserved_byte_size()/K, mr.byte_size()/K));
 591     return false;
 592   }
 593 
 594   if (!_summary_data.initialize(mr)) {
 595     vm_shutdown_during_initialization(
 596       err_msg("Unable to allocate " SIZE_FORMAT "KB card tables for parallel "
 597       "garbage collection for the requested " SIZE_FORMAT "KB heap.",
 598       _summary_data.reserved_byte_size()/K, mr.byte_size()/K));
 599     return false;
 600   }
 601 
 602   return true;
 603 }
 604 
 605 void PSParallelCompact::initialize_space_info()
 606 {
 607   memset(&_space_info, 0, sizeof(_space_info));
 608 
 609   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 610   PSYoungGen* young_gen = heap->young_gen();
 611 
 612   _space_info[old_space_id].set_space(heap->old_gen()->object_space());
 613   _space_info[eden_space_id].set_space(young_gen->eden_space());
 614   _space_info[from_space_id].set_space(young_gen->from_space());
 615   _space_info[to_space_id].set_space(young_gen->to_space());
 616 
 617   _space_info[old_space_id].set_start_array(heap->old_gen()->start_array());
 618 }
 619 
 620 void
 621 PSParallelCompact::clear_data_covering_space(SpaceId id)
 622 {
 623   // At this point, top is the value before GC, new_top() is the value that will
 624   // be set at the end of GC.  The marking bitmap is cleared to top; nothing
 625   // should be marked above top.  The summary data is cleared to the larger of
 626   // top & new_top.
 627   MutableSpace* const space = _space_info[id].space();
 628   HeapWord* const bot = space->bottom();
 629   HeapWord* const top = space->top();
 630   HeapWord* const max_top = MAX2(top, _space_info[id].new_top());
 631 
 632   _mark_bitmap.clear_range(bot, top);
 633 
 634   const size_t beg_region = _summary_data.addr_to_region_idx(bot);
 635   const size_t end_region =
 636     _summary_data.addr_to_region_idx(_summary_data.region_align_up(max_top));
 637   _summary_data.clear_range(beg_region, end_region);
 638 
 639   // Clear the data used to 'split' regions.
 640   SplitInfo& split_info = _space_info[id].split_info();
 641   if (split_info.is_valid()) {
 642     split_info.clear();
 643   }
 644   DEBUG_ONLY(split_info.verify_clear();)
 645 }
 646 
 647 void PSParallelCompact::pre_compact()
 648 {
 649   // Update the from & to space pointers in space_info, since they are swapped
 650   // at each young gen gc.  Do the update unconditionally (even though a
 651   // promotion failure does not swap spaces) because an unknown number of young
 652   // collections will have swapped the spaces an unknown number of times.
 653   GCTraceTime(Debug, gc, phases) tm("Pre Compact", &_gc_timer);
 654   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 655   _space_info[from_space_id].set_space(heap->young_gen()->from_space());
 656   _space_info[to_space_id].set_space(heap->young_gen()->to_space());
 657 
 658   // Increment the invocation count
 659   heap->increment_total_collections(true);
 660 
 661   CodeCache::on_gc_marking_cycle_start();
 662 
 663   heap->print_heap_before_gc();
 664   heap->trace_heap_before_gc(&_gc_tracer);
 665 
 666   // Fill in TLABs
 667   heap->ensure_parsability(true);  // retire TLABs
 668 
 669   if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
 670     Universe::verify("Before GC");
 671   }
 672 
 673   DEBUG_ONLY(mark_bitmap()->verify_clear();)
 674   DEBUG_ONLY(summary_data().verify_clear();)
 675 }
 676 
 677 void PSParallelCompact::post_compact()
 678 {
 679   GCTraceTime(Info, gc, phases) tm("Post Compact", &_gc_timer);
 680   ParCompactionManager::remove_all_shadow_regions();
 681 
 682   CodeCache::on_gc_marking_cycle_finish();
 683   CodeCache::arm_all_nmethods();
 684 
 685   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
 686     // Clear the marking bitmap, summary data and split info.
 687     clear_data_covering_space(SpaceId(id));
 688     {
 689       MutableSpace* space = _space_info[id].space();
 690       HeapWord* top = space->top();
 691       HeapWord* new_top = _space_info[id].new_top();
 692       if (ZapUnusedHeapArea && new_top < top) {
 693         space->mangle_region(MemRegion(new_top, top));
 694       }
 695       // Update top().  Must be done after clearing the bitmap and summary data.
 696       space->set_top(new_top);
 697     }
 698   }
 699 
 700   ParCompactionManager::flush_all_string_dedup_requests();
 701 
 702   MutableSpace* const eden_space = _space_info[eden_space_id].space();
 703   MutableSpace* const from_space = _space_info[from_space_id].space();
 704   MutableSpace* const to_space   = _space_info[to_space_id].space();
 705 
 706   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 707   bool eden_empty = eden_space->is_empty();
 708 
 709   // Update heap occupancy information which is used as input to the soft ref
 710   // clearing policy at the next gc.
 711   Universe::heap()->update_capacity_and_used_at_gc();
 712 
 713   bool young_gen_empty = eden_empty && from_space->is_empty() &&
 714     to_space->is_empty();
 715 
 716   PSCardTable* ct = heap->card_table();
 717   MemRegion old_mr = heap->old_gen()->committed();
 718   if (young_gen_empty) {
 719     ct->clear_MemRegion(old_mr);
 720   } else {
 721     ct->dirty_MemRegion(old_mr);
 722   }
 723 
 724   {
 725     // Delete metaspaces for unloaded class loaders and clean up loader_data graph
 726     GCTraceTime(Debug, gc, phases) t("Purge Class Loader Data", gc_timer());
 727     ClassLoaderDataGraph::purge(true /* at_safepoint */);
 728     DEBUG_ONLY(MetaspaceUtils::verify();)
 729   }
 730 
 731   // Need to clear claim bits for the next mark.
 732   ClassLoaderDataGraph::clear_claimed_marks();
 733 
 734   heap->prune_scavengable_nmethods();
 735 
 736 #if COMPILER2_OR_JVMCI
 737   DerivedPointerTable::update_pointers();
 738 #endif
 739 
 740   // Signal that we have completed a visit to all live objects.
 741   Universe::heap()->record_whole_heap_examined_timestamp();
 742 }
 743 
 744 HeapWord* PSParallelCompact::compute_dense_prefix_for_old_space(MutableSpace* old_space,
 745                                                                 HeapWord* full_region_prefix_end) {
 746   const size_t region_size = ParallelCompactData::RegionSize;
 747   const ParallelCompactData& sd = summary_data();
 748 
 749   // Iteration starts with the region *after* the full-region-prefix-end.
 750   const RegionData* const start_region = sd.addr_to_region_ptr(full_region_prefix_end);
 751   // If final region is not full, iteration stops before that region,
 752   // because fill_dense_prefix_end assumes that prefix_end <= top.
 753   const RegionData* const end_region = sd.addr_to_region_ptr(old_space->top());
 754   assert(start_region <= end_region, "inv");
 755 
 756   size_t max_waste = old_space->capacity_in_words() * (MarkSweepDeadRatio / 100.0);
 757   const RegionData* cur_region = start_region;
 758   for (/* empty */; cur_region < end_region; ++cur_region) {
 759     assert(region_size >= cur_region->data_size(), "inv");
 760     size_t dead_size = region_size - cur_region->data_size();
 761     if (max_waste < dead_size) {
 762       break;
 763     }
 764     max_waste -= dead_size;
 765   }
 766 
 767   HeapWord* const prefix_end = sd.region_to_addr(cur_region);
 768   assert(sd.is_region_aligned(prefix_end), "postcondition");
 769   assert(prefix_end >= full_region_prefix_end, "in-range");
 770   assert(prefix_end <= old_space->top(), "in-range");
 771   return prefix_end;
 772 }
 773 
 774 void PSParallelCompact::fill_dense_prefix_end(SpaceId id) {
 775   // Comparing two sizes to decide if filling is required:
 776   //
 777   // The size of the filler (min-obj-size) is 2 heap words with the default
 778   // MinObjAlignment, since both markword and klass take 1 heap word.
 779   //
 780   // The size of the gap (if any) right before dense-prefix-end is
 781   // MinObjAlignment.
 782   //
 783   // Need to fill in the gap only if it's smaller than min-obj-size, and the
 784   // filler obj will extend to next region.
 785 
 786   // Note: If min-fill-size decreases to 1, this whole method becomes redundant.
 787   assert(CollectedHeap::min_fill_size() >= 2, "inv");
 788 #ifndef _LP64
 789   // In 32-bit system, each heap word is 4 bytes, so MinObjAlignment == 2.
 790   // The gap is always equal to min-fill-size, so nothing to do.
 791   return;
 792 #endif
 793   if (MinObjAlignment > 1) {
 794     return;
 795   }
 796   assert(CollectedHeap::min_fill_size() == 2, "inv");
 797   HeapWord* const dense_prefix_end = dense_prefix(id);
 798   assert(_summary_data.is_region_aligned(dense_prefix_end), "precondition");
 799   assert(dense_prefix_end <= space(id)->top(), "precondition");
 800   if (dense_prefix_end == space(id)->top()) {
 801     // Must not have single-word gap right before prefix-end/top.
 802     return;
 803   }
 804   RegionData* const region_after_dense_prefix = _summary_data.addr_to_region_ptr(dense_prefix_end);
 805 
 806   if (region_after_dense_prefix->partial_obj_size() != 0 ||
 807       _mark_bitmap.is_marked(dense_prefix_end)) {
 808     // The region after the dense prefix starts with live bytes.
 809     return;
 810   }
 811 
 812   HeapWord* block_start = start_array(id)->block_start_reaching_into_card(dense_prefix_end);
 813   if (block_start == dense_prefix_end - 1) {
 814     assert(!_mark_bitmap.is_marked(block_start), "inv");
 815     // There is exactly one heap word gap right before the dense prefix end, so we need a filler object.
 816     // The filler object will extend into region_after_dense_prefix.
 817     const size_t obj_len = 2; // min-fill-size
 818     HeapWord* const obj_beg = dense_prefix_end - 1;
 819     CollectedHeap::fill_with_object(obj_beg, obj_len);
 820     _mark_bitmap.mark_obj(obj_beg);
 821     _summary_data.addr_to_region_ptr(obj_beg)->add_live_obj(1);
 822     region_after_dense_prefix->set_partial_obj_size(1);
 823     region_after_dense_prefix->set_partial_obj_addr(obj_beg);
 824     assert(start_array(id) != nullptr, "sanity");
 825     start_array(id)->update_for_block(obj_beg, obj_beg + obj_len);
 826   }
 827 }
 828 
 829 bool PSParallelCompact::reassess_maximum_compaction(bool maximum_compaction,
 830                                                     size_t total_live_words,
 831                                                     MutableSpace* const old_space,
 832                                                     HeapWord* full_region_prefix_end) {
 833   // Check if all live objs are larger than old-gen.
 834   const bool is_old_gen_overflowing = (total_live_words > old_space->capacity_in_words());
 835 
 836   // JVM flags
 837   const uint total_invocations = ParallelScavengeHeap::heap()->total_full_collections();
 838   assert(total_invocations >= _maximum_compaction_gc_num, "sanity");
 839   const size_t gcs_since_max = total_invocations - _maximum_compaction_gc_num;
 840   const bool is_interval_ended = gcs_since_max > HeapMaximumCompactionInterval;
 841 
 842   // If all regions in old-gen are full
 843   const bool is_region_full =
 844     full_region_prefix_end >= _summary_data.region_align_down(old_space->top());
 845 
 846   if (maximum_compaction || is_old_gen_overflowing || is_interval_ended || is_region_full) {
 847     _maximum_compaction_gc_num = total_invocations;
 848     return true;
 849   }
 850 
 851   return false;
 852 }
 853 
 854 void PSParallelCompact::summary_phase(bool maximum_compaction)
 855 {
 856   GCTraceTime(Info, gc, phases) tm("Summary Phase", &_gc_timer);
 857 
 858   MutableSpace* const old_space = _space_info[old_space_id].space();
 859   {
 860     size_t total_live_words = 0;
 861     HeapWord* full_region_prefix_end = nullptr;
 862     {
 863       // old-gen
 864       size_t live_words = _summary_data.live_words_in_space(old_space,
 865                                                             &full_region_prefix_end);
 866       total_live_words += live_words;
 867     }
 868     // young-gen
 869     for (uint i = eden_space_id; i < last_space_id; ++i) {
 870       const MutableSpace* space = _space_info[i].space();
 871       size_t live_words = _summary_data.live_words_in_space(space);
 872       total_live_words += live_words;
 873       _space_info[i].set_new_top(space->bottom() + live_words);
 874       _space_info[i].set_dense_prefix(space->bottom());
 875     }
 876 
 877     maximum_compaction = reassess_maximum_compaction(maximum_compaction,
 878                                                      total_live_words,
 879                                                      old_space,
 880                                                      full_region_prefix_end);
 881     HeapWord* dense_prefix_end =
 882       maximum_compaction ? full_region_prefix_end
 883                          : compute_dense_prefix_for_old_space(old_space,
 884                                                               full_region_prefix_end);
 885     SpaceId id = old_space_id;
 886     _space_info[id].set_dense_prefix(dense_prefix_end);
 887 
 888     if (dense_prefix_end != old_space->bottom()) {
 889       fill_dense_prefix_end(id);
 890       _summary_data.summarize_dense_prefix(old_space->bottom(), dense_prefix_end);
 891     }
 892     _summary_data.summarize(_space_info[id].split_info(),
 893                             dense_prefix_end, old_space->top(), nullptr,
 894                             dense_prefix_end, old_space->end(),
 895                             _space_info[id].new_top_addr());
 896   }
 897 
 898   // Summarize the remaining spaces in the young gen.  The initial target space
 899   // is the old gen.  If a space does not fit entirely into the target, then the
 900   // remainder is compacted into the space itself and that space becomes the new
 901   // target.
 902   SpaceId dst_space_id = old_space_id;
 903   HeapWord* dst_space_end = old_space->end();
 904   HeapWord** new_top_addr = _space_info[dst_space_id].new_top_addr();
 905   for (unsigned int id = eden_space_id; id < last_space_id; ++id) {
 906     const MutableSpace* space = _space_info[id].space();
 907     const size_t live = pointer_delta(_space_info[id].new_top(),
 908                                       space->bottom());
 909     const size_t available = pointer_delta(dst_space_end, *new_top_addr);
 910 
 911     if (live > 0 && live <= available) {
 912       // All the live data will fit.
 913       bool done = _summary_data.summarize(_space_info[id].split_info(),
 914                                           space->bottom(), space->top(),
 915                                           nullptr,
 916                                           *new_top_addr, dst_space_end,
 917                                           new_top_addr);
 918       assert(done, "space must fit into old gen");
 919 
 920       // Reset the new_top value for the space.
 921       _space_info[id].set_new_top(space->bottom());
 922     } else if (live > 0) {
 923       // Attempt to fit part of the source space into the target space.
 924       HeapWord* next_src_addr = nullptr;
 925       bool done = _summary_data.summarize(_space_info[id].split_info(),
 926                                           space->bottom(), space->top(),
 927                                           &next_src_addr,
 928                                           *new_top_addr, dst_space_end,
 929                                           new_top_addr);
 930       assert(!done, "space should not fit into old gen");
 931       assert(next_src_addr != nullptr, "sanity");
 932 
 933       // The source space becomes the new target, so the remainder is compacted
 934       // within the space itself.
 935       dst_space_id = SpaceId(id);
 936       dst_space_end = space->end();
 937       new_top_addr = _space_info[id].new_top_addr();
 938       done = _summary_data.summarize(_space_info[id].split_info(),
 939                                      next_src_addr, space->top(),
 940                                      nullptr,
 941                                      space->bottom(), dst_space_end,
 942                                      new_top_addr);
 943       assert(done, "space must fit when compacted into itself");
 944       assert(*new_top_addr <= space->top(), "usage should not grow");
 945     }
 946   }
 947 }
 948 
 949 // This method should contain all heap-specific policy for invoking a full
 950 // collection.  invoke_no_policy() will only attempt to compact the heap; it
 951 // will do nothing further.  If we need to bail out for policy reasons, scavenge
 952 // before full gc, or any other specialized behavior, it needs to be added here.
 953 //
 954 // Note that this method should only be called from the vm_thread while at a
 955 // safepoint.
 956 //
 957 // Note that the all_soft_refs_clear flag in the soft ref policy
 958 // may be true because this method can be called without intervening
 959 // activity.  For example when the heap space is tight and full measure
 960 // are being taken to free space.
 961 bool PSParallelCompact::invoke(bool maximum_heap_compaction) {
 962   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 963   assert(Thread::current() == (Thread*)VMThread::vm_thread(),
 964          "should be in vm thread");
 965 
 966   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 967   assert(!heap->is_stw_gc_active(), "not reentrant");
 968 
 969   IsSTWGCActiveMark mark;
 970 
 971   const bool clear_all_soft_refs =
 972     heap->soft_ref_policy()->should_clear_all_soft_refs();
 973 
 974   return PSParallelCompact::invoke_no_policy(clear_all_soft_refs ||
 975                                              maximum_heap_compaction);
 976 }
 977 
 978 // This method contains no policy. You should probably
 979 // be calling invoke() instead.
 980 bool PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
 981   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
 982   assert(ref_processor() != nullptr, "Sanity");
 983 
 984   if (GCLocker::check_active_before_gc()) {
 985     return false;
 986   }
 987 
 988   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 989 
 990   GCIdMark gc_id_mark;
 991   _gc_timer.register_gc_start();
 992   _gc_tracer.report_gc_start(heap->gc_cause(), _gc_timer.gc_start());
 993 
 994   GCCause::Cause gc_cause = heap->gc_cause();
 995   PSYoungGen* young_gen = heap->young_gen();
 996   PSOldGen* old_gen = heap->old_gen();
 997   PSAdaptiveSizePolicy* size_policy = heap->size_policy();
 998 
 999   // The scope of casr should end after code that can change
1000   // SoftRefPolicy::_should_clear_all_soft_refs.
1001   ClearedAllSoftRefs casr(maximum_heap_compaction,
1002                           heap->soft_ref_policy());
1003 
1004   // Make sure data structures are sane, make the heap parsable, and do other
1005   // miscellaneous bookkeeping.
1006   pre_compact();
1007 
1008   const PreGenGCValues pre_gc_values = heap->get_pre_gc_values();
1009 
1010   {
1011     const uint active_workers =
1012       WorkerPolicy::calc_active_workers(ParallelScavengeHeap::heap()->workers().max_workers(),
1013                                         ParallelScavengeHeap::heap()->workers().active_workers(),
1014                                         Threads::number_of_non_daemon_threads());
1015     ParallelScavengeHeap::heap()->workers().set_active_workers(active_workers);
1016 
1017     GCTraceCPUTime tcpu(&_gc_tracer);
1018     GCTraceTime(Info, gc) tm("Pause Full", nullptr, gc_cause, true);
1019 
1020     heap->pre_full_gc_dump(&_gc_timer);
1021 
1022     TraceCollectorStats tcs(counters());
1023     TraceMemoryManagerStats tms(heap->old_gc_manager(), gc_cause, "end of major GC");
1024 
1025     if (log_is_enabled(Debug, gc, heap, exit)) {
1026       accumulated_time()->start();
1027     }
1028 
1029     // Let the size policy know we're starting
1030     size_policy->major_collection_begin();
1031 
1032 #if COMPILER2_OR_JVMCI
1033     DerivedPointerTable::clear();
1034 #endif
1035 
1036     ref_processor()->start_discovery(maximum_heap_compaction);
1037 
1038     ClassUnloadingContext ctx(1 /* num_nmethod_unlink_workers */,
1039                               false /* unregister_nmethods_during_purge */,
1040                               false /* lock_nmethod_free_separately */);
1041 
1042     marking_phase(&_gc_tracer);
1043 
1044     bool max_on_system_gc = UseMaximumCompactionOnSystemGC
1045       && GCCause::is_user_requested_gc(gc_cause);
1046     summary_phase(maximum_heap_compaction || max_on_system_gc);
1047 
1048 #if COMPILER2_OR_JVMCI
1049     assert(DerivedPointerTable::is_active(), "Sanity");
1050     DerivedPointerTable::set_active(false);
1051 #endif
1052 
1053     forward_to_new_addr();
1054 
1055     adjust_pointers();
1056 
1057     compact();
1058 
1059     ParCompactionManager::_preserved_marks_set->restore(&ParallelScavengeHeap::heap()->workers());
1060 
1061     ParCompactionManager::verify_all_region_stack_empty();
1062 
1063     // Reset the mark bitmap, summary data, and do other bookkeeping.  Must be
1064     // done before resizing.
1065     post_compact();
1066 
1067     // Let the size policy know we're done
1068     size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
1069 
1070     if (UseAdaptiveSizePolicy) {
1071       log_debug(gc, ergo)("AdaptiveSizeStart: collection: %d ", heap->total_collections());
1072       log_trace(gc, ergo)("old_gen_capacity: " SIZE_FORMAT " young_gen_capacity: " SIZE_FORMAT,
1073                           old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes());
1074 
1075       // Don't check if the size_policy is ready here.  Let
1076       // the size_policy check that internally.
1077       if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
1078           AdaptiveSizePolicy::should_update_promo_stats(gc_cause)) {
1079         // Swap the survivor spaces if from_space is empty. The
1080         // resize_young_gen() called below is normally used after
1081         // a successful young GC and swapping of survivor spaces;
1082         // otherwise, it will fail to resize the young gen with
1083         // the current implementation.
1084         if (young_gen->from_space()->is_empty()) {
1085           young_gen->from_space()->clear(SpaceDecorator::Mangle);
1086           young_gen->swap_spaces();
1087         }
1088 
1089         // Calculate optimal free space amounts
1090         assert(young_gen->max_gen_size() >
1091           young_gen->from_space()->capacity_in_bytes() +
1092           young_gen->to_space()->capacity_in_bytes(),
1093           "Sizes of space in young gen are out-of-bounds");
1094 
1095         size_t young_live = young_gen->used_in_bytes();
1096         size_t eden_live = young_gen->eden_space()->used_in_bytes();
1097         size_t old_live = old_gen->used_in_bytes();
1098         size_t cur_eden = young_gen->eden_space()->capacity_in_bytes();
1099         size_t max_old_gen_size = old_gen->max_gen_size();
1100         size_t max_eden_size = young_gen->max_gen_size() -
1101           young_gen->from_space()->capacity_in_bytes() -
1102           young_gen->to_space()->capacity_in_bytes();
1103 
1104         // Used for diagnostics
1105         size_policy->clear_generation_free_space_flags();
1106 
1107         size_policy->compute_generations_free_space(young_live,
1108                                                     eden_live,
1109                                                     old_live,
1110                                                     cur_eden,
1111                                                     max_old_gen_size,
1112                                                     max_eden_size,
1113                                                     true /* full gc*/);
1114 
1115         size_policy->check_gc_overhead_limit(eden_live,
1116                                              max_old_gen_size,
1117                                              max_eden_size,
1118                                              true /* full gc*/,
1119                                              gc_cause,
1120                                              heap->soft_ref_policy());
1121 
1122         size_policy->decay_supplemental_growth(true /* full gc*/);
1123 
1124         heap->resize_old_gen(
1125           size_policy->calculated_old_free_size_in_bytes());
1126 
1127         heap->resize_young_gen(size_policy->calculated_eden_size_in_bytes(),
1128                                size_policy->calculated_survivor_size_in_bytes());
1129       }
1130 
1131       log_debug(gc, ergo)("AdaptiveSizeStop: collection: %d ", heap->total_collections());
1132     }
1133 
1134     if (UsePerfData) {
1135       PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters();
1136       counters->update_counters();
1137       counters->update_old_capacity(old_gen->capacity_in_bytes());
1138       counters->update_young_capacity(young_gen->capacity_in_bytes());
1139     }
1140 
1141     heap->resize_all_tlabs();
1142 
1143     // Resize the metaspace capacity after a collection
1144     MetaspaceGC::compute_new_size();
1145 
1146     if (log_is_enabled(Debug, gc, heap, exit)) {
1147       accumulated_time()->stop();
1148     }
1149 
1150     heap->print_heap_change(pre_gc_values);
1151 
1152     // Track memory usage and detect low memory
1153     MemoryService::track_memory_usage();
1154     heap->update_counters();
1155 
1156     heap->post_full_gc_dump(&_gc_timer);
1157   }
1158 
1159   if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
1160     Universe::verify("After GC");
1161   }
1162 
1163   heap->print_heap_after_gc();
1164   heap->trace_heap_after_gc(&_gc_tracer);
1165 
1166   AdaptiveSizePolicyOutput::print(size_policy, heap->total_collections());
1167 
1168   _gc_timer.register_gc_end();
1169 
1170   _gc_tracer.report_dense_prefix(dense_prefix(old_space_id));
1171   _gc_tracer.report_gc_end(_gc_timer.gc_end(), _gc_timer.time_partitions());
1172 
1173   return true;
1174 }
1175 
1176 class PCAddThreadRootsMarkingTaskClosure : public ThreadClosure {
1177 private:
1178   uint _worker_id;
1179 
1180 public:
1181   PCAddThreadRootsMarkingTaskClosure(uint worker_id) : _worker_id(worker_id) { }
1182   void do_thread(Thread* thread) {
1183     assert(ParallelScavengeHeap::heap()->is_stw_gc_active(), "called outside gc");
1184 
1185     ResourceMark rm;
1186 
1187     ParCompactionManager* cm = ParCompactionManager::gc_thread_compaction_manager(_worker_id);
1188 
1189     PCMarkAndPushClosure mark_and_push_closure(cm);
1190     MarkingNMethodClosure mark_and_push_in_blobs(&mark_and_push_closure, !NMethodToOopClosure::FixRelocations, true /* keepalive nmethods */);
1191 
1192     thread->oops_do(&mark_and_push_closure, &mark_and_push_in_blobs);
1193 
1194     // Do the real work
1195     cm->follow_marking_stacks();
1196   }
1197 };
1198 
1199 void steal_marking_work(TaskTerminator& terminator, uint worker_id) {
1200   assert(ParallelScavengeHeap::heap()->is_stw_gc_active(), "called outside gc");
1201 
1202   ParCompactionManager* cm =
1203     ParCompactionManager::gc_thread_compaction_manager(worker_id);
1204 
1205   do {
1206     oop obj = nullptr;
1207     ObjArrayTask task;
1208     if (ParCompactionManager::steal_objarray(worker_id,  task)) {
1209       cm->follow_array((objArrayOop)task.obj(), task.index());
1210     } else if (ParCompactionManager::steal(worker_id, obj)) {
1211       cm->follow_contents(obj);
1212     }
1213     cm->follow_marking_stacks();
1214   } while (!terminator.offer_termination());
1215 }
1216 
1217 class MarkFromRootsTask : public WorkerTask {
1218   StrongRootsScope _strong_roots_scope; // needed for Threads::possibly_parallel_threads_do
1219   OopStorageSetStrongParState<false /* concurrent */, false /* is_const */> _oop_storage_set_par_state;
1220   TaskTerminator _terminator;
1221   uint _active_workers;
1222 
1223 public:
1224   MarkFromRootsTask(uint active_workers) :
1225       WorkerTask("MarkFromRootsTask"),
1226       _strong_roots_scope(active_workers),
1227       _terminator(active_workers, ParCompactionManager::oop_task_queues()),
1228       _active_workers(active_workers) {}
1229 
1230   virtual void work(uint worker_id) {
1231     ParCompactionManager* cm = ParCompactionManager::gc_thread_compaction_manager(worker_id);
1232     cm->create_marking_stats_cache();
1233     PCMarkAndPushClosure mark_and_push_closure(cm);
1234 
1235     {
1236       CLDToOopClosure cld_closure(&mark_and_push_closure, ClassLoaderData::_claim_stw_fullgc_mark);
1237       ClassLoaderDataGraph::always_strong_cld_do(&cld_closure);
1238 
1239       // Do the real work
1240       cm->follow_marking_stacks();
1241     }
1242 
1243     PCAddThreadRootsMarkingTaskClosure closure(worker_id);
1244     Threads::possibly_parallel_threads_do(true /* is_par */, &closure);
1245 
1246     // Mark from OopStorages
1247     {
1248       _oop_storage_set_par_state.oops_do(&mark_and_push_closure);
1249       // Do the real work
1250       cm->follow_marking_stacks();
1251     }
1252 
1253     if (_active_workers > 1) {
1254       steal_marking_work(_terminator, worker_id);
1255     }
1256   }
1257 };
1258 
1259 class ParallelCompactRefProcProxyTask : public RefProcProxyTask {
1260   TaskTerminator _terminator;
1261 
1262 public:
1263   ParallelCompactRefProcProxyTask(uint max_workers)
1264     : RefProcProxyTask("ParallelCompactRefProcProxyTask", max_workers),
1265       _terminator(_max_workers, ParCompactionManager::oop_task_queues()) {}
1266 
1267   void work(uint worker_id) override {
1268     assert(worker_id < _max_workers, "sanity");
1269     ParCompactionManager* cm = (_tm == RefProcThreadModel::Single) ? ParCompactionManager::get_vmthread_cm() : ParCompactionManager::gc_thread_compaction_manager(worker_id);
1270     PCMarkAndPushClosure keep_alive(cm);
1271     BarrierEnqueueDiscoveredFieldClosure enqueue;
1272     ParCompactionManager::FollowStackClosure complete_gc(cm, (_tm == RefProcThreadModel::Single) ? nullptr : &_terminator, worker_id);
1273     _rp_task->rp_work(worker_id, PSParallelCompact::is_alive_closure(), &keep_alive, &enqueue, &complete_gc);
1274   }
1275 
1276   void prepare_run_task_hook() override {
1277     _terminator.reset_for_reuse(_queue_count);
1278   }
1279 };
1280 
1281 static void flush_marking_stats_cache(const uint num_workers) {
1282   for (uint i = 0; i < num_workers; ++i) {
1283     ParCompactionManager* cm = ParCompactionManager::gc_thread_compaction_manager(i);
1284     cm->flush_and_destroy_marking_stats_cache();
1285   }
1286 }
1287 
1288 void PSParallelCompact::marking_phase(ParallelOldTracer *gc_tracer) {
1289   // Recursively traverse all live objects and mark them
1290   GCTraceTime(Info, gc, phases) tm("Marking Phase", &_gc_timer);
1291 
1292   uint active_gc_threads = ParallelScavengeHeap::heap()->workers().active_workers();
1293 
1294   ClassLoaderDataGraph::verify_claimed_marks_cleared(ClassLoaderData::_claim_stw_fullgc_mark);
1295   {
1296     GCTraceTime(Debug, gc, phases) tm("Par Mark", &_gc_timer);
1297 
1298     MarkFromRootsTask task(active_gc_threads);
1299     ParallelScavengeHeap::heap()->workers().run_task(&task);
1300   }
1301 
1302   // Process reference objects found during marking
1303   {
1304     GCTraceTime(Debug, gc, phases) tm("Reference Processing", &_gc_timer);
1305 
1306     ReferenceProcessorStats stats;
1307     ReferenceProcessorPhaseTimes pt(&_gc_timer, ref_processor()->max_num_queues());
1308 
1309     ref_processor()->set_active_mt_degree(active_gc_threads);
1310     ParallelCompactRefProcProxyTask task(ref_processor()->max_num_queues());
1311     stats = ref_processor()->process_discovered_references(task, pt);
1312 
1313     gc_tracer->report_gc_reference_stats(stats);
1314     pt.print_all_references();
1315   }
1316 
1317   {
1318     GCTraceTime(Debug, gc, phases) tm("Flush Marking Stats", &_gc_timer);
1319 
1320     flush_marking_stats_cache(active_gc_threads);
1321   }
1322 
1323   // This is the point where the entire marking should have completed.
1324   ParCompactionManager::verify_all_marking_stack_empty();
1325 
1326   {
1327     GCTraceTime(Debug, gc, phases) tm("Weak Processing", &_gc_timer);
1328     WeakProcessor::weak_oops_do(&ParallelScavengeHeap::heap()->workers(),
1329                                 is_alive_closure(),
1330                                 &do_nothing_cl,
1331                                 1);
1332   }
1333 
1334   {
1335     GCTraceTime(Debug, gc, phases) tm_m("Class Unloading", &_gc_timer);
1336 
1337     ClassUnloadingContext* ctx = ClassUnloadingContext::context();
1338 
1339     bool unloading_occurred;
1340     {
1341       CodeCache::UnlinkingScope scope(is_alive_closure());
1342 
1343       // Follow system dictionary roots and unload classes.
1344       unloading_occurred = SystemDictionary::do_unloading(&_gc_timer);
1345 
1346       // Unload nmethods.
1347       CodeCache::do_unloading(unloading_occurred);
1348     }
1349 
1350     {
1351       GCTraceTime(Debug, gc, phases) t("Purge Unlinked NMethods", gc_timer());
1352       // Release unloaded nmethod's memory.
1353       ctx->purge_nmethods();
1354     }
1355     {
1356       GCTraceTime(Debug, gc, phases) ur("Unregister NMethods", &_gc_timer);
1357       ParallelScavengeHeap::heap()->prune_unlinked_nmethods();
1358     }
1359     {
1360       GCTraceTime(Debug, gc, phases) t("Free Code Blobs", gc_timer());
1361       ctx->free_nmethods();
1362     }
1363 
1364     // Prune dead klasses from subklass/sibling/implementor lists.
1365     Klass::clean_weak_klass_links(unloading_occurred);
1366 
1367     // Clean JVMCI metadata handles.
1368     JVMCI_ONLY(JVMCI::do_unloading(unloading_occurred));
1369   }
1370 
1371   {
1372     GCTraceTime(Debug, gc, phases) tm("Report Object Count", &_gc_timer);
1373     _gc_tracer.report_object_count_after_gc(is_alive_closure(), &ParallelScavengeHeap::heap()->workers());
1374   }
1375 #if TASKQUEUE_STATS
1376   ParCompactionManager::oop_task_queues()->print_and_reset_taskqueue_stats("Oop Queue");
1377   ParCompactionManager::_objarray_task_queues->print_and_reset_taskqueue_stats("ObjArrayOop Queue");
1378 #endif
1379 }
1380 
1381 template<typename Func>
1382 void PSParallelCompact::adjust_in_space_helper(SpaceId id, volatile uint* claim_counter, Func&& on_stripe) {
1383   MutableSpace* sp = PSParallelCompact::space(id);
1384   HeapWord* const bottom = sp->bottom();
1385   HeapWord* const top = sp->top();
1386   if (bottom == top) {
1387     return;
1388   }
1389 
1390   const uint num_regions_per_stripe = 2;
1391   const size_t region_size = ParallelCompactData::RegionSize;
1392   const size_t stripe_size = num_regions_per_stripe * region_size;
1393 
1394   while (true) {
1395     uint counter = Atomic::fetch_then_add(claim_counter, num_regions_per_stripe);
1396     HeapWord* cur_stripe = bottom + counter * region_size;
1397     if (cur_stripe >= top) {
1398       break;
1399     }
1400     HeapWord* stripe_end = MIN2(cur_stripe + stripe_size, top);
1401     on_stripe(cur_stripe, stripe_end);
1402   }
1403 }
1404 
1405 void PSParallelCompact::adjust_in_old_space(volatile uint* claim_counter) {
1406   // Regions in old-space shouldn't be split.
1407   assert(!_space_info[old_space_id].split_info().is_valid(), "inv");
1408 
1409   auto scan_obj_with_limit = [&] (HeapWord* obj_start, HeapWord* left, HeapWord* right) {
1410     assert(mark_bitmap()->is_marked(obj_start), "inv");
1411     oop obj = cast_to_oop(obj_start);
1412     return obj->oop_iterate_size(&pc_adjust_pointer_closure, MemRegion(left, right));
1413   };
1414 
1415   adjust_in_space_helper(old_space_id, claim_counter, [&] (HeapWord* stripe_start, HeapWord* stripe_end) {
1416     assert(_summary_data.is_region_aligned(stripe_start), "inv");
1417     RegionData* cur_region = _summary_data.addr_to_region_ptr(stripe_start);
1418     HeapWord* obj_start;
1419     if (cur_region->partial_obj_size() != 0) {
1420       obj_start = cur_region->partial_obj_addr();
1421       obj_start += scan_obj_with_limit(obj_start, stripe_start, stripe_end);
1422     } else {
1423       obj_start = stripe_start;
1424     }
1425 
1426     while (obj_start < stripe_end) {
1427       obj_start = mark_bitmap()->find_obj_beg(obj_start, stripe_end);
1428       if (obj_start >= stripe_end) {
1429         break;
1430       }
1431       obj_start += scan_obj_with_limit(obj_start, stripe_start, stripe_end);
1432     }
1433   });
1434 }
1435 
1436 void PSParallelCompact::adjust_in_young_space(SpaceId id, volatile uint* claim_counter) {
1437   adjust_in_space_helper(id, claim_counter, [](HeapWord* stripe_start, HeapWord* stripe_end) {
1438     HeapWord* obj_start = stripe_start;
1439     while (obj_start < stripe_end) {
1440       obj_start = mark_bitmap()->find_obj_beg(obj_start, stripe_end);
1441       if (obj_start >= stripe_end) {
1442         break;
1443       }
1444       oop obj = cast_to_oop(obj_start);
1445       obj_start += obj->oop_iterate_size(&pc_adjust_pointer_closure);
1446     }
1447   });
1448 }
1449 
1450 void PSParallelCompact::adjust_pointers_in_spaces(uint worker_id, volatile uint* claim_counters) {
1451   auto start_time = Ticks::now();
1452   adjust_in_old_space(&claim_counters[0]);
1453   for (uint id = eden_space_id; id < last_space_id; ++id) {
1454     adjust_in_young_space(SpaceId(id), &claim_counters[id]);
1455   }
1456   log_trace(gc, phases)("adjust_pointers_in_spaces worker %u: %.3f ms", worker_id, (Ticks::now() - start_time).seconds() * 1000);
1457 }
1458 
1459 class PSAdjustTask final : public WorkerTask {
1460   SubTasksDone                               _sub_tasks;
1461   WeakProcessor::Task                        _weak_proc_task;
1462   OopStorageSetStrongParState<false, false>  _oop_storage_iter;
1463   uint                                       _nworkers;
1464   volatile uint _claim_counters[PSParallelCompact::last_space_id] = {};
1465 
1466   enum PSAdjustSubTask {
1467     PSAdjustSubTask_code_cache,
1468 
1469     PSAdjustSubTask_num_elements
1470   };
1471 
1472 public:
1473   PSAdjustTask(uint nworkers) :
1474     WorkerTask("PSAdjust task"),
1475     _sub_tasks(PSAdjustSubTask_num_elements),
1476     _weak_proc_task(nworkers),
1477     _nworkers(nworkers) {
1478 
1479     ClassLoaderDataGraph::verify_claimed_marks_cleared(ClassLoaderData::_claim_stw_fullgc_adjust);
1480     if (nworkers > 1) {
1481       Threads::change_thread_claim_token();
1482     }
1483   }
1484 
1485   ~PSAdjustTask() {
1486     Threads::assert_all_threads_claimed();
1487   }
1488 
1489   void work(uint worker_id) {
1490     ParCompactionManager* cm = ParCompactionManager::gc_thread_compaction_manager(worker_id);
1491     cm->preserved_marks()->adjust_during_full_gc();
1492     {
1493       // adjust pointers in all spaces
1494       PSParallelCompact::adjust_pointers_in_spaces(worker_id, _claim_counters);
1495     }
1496     {
1497       ResourceMark rm;
1498       Threads::possibly_parallel_oops_do(_nworkers > 1, &pc_adjust_pointer_closure, nullptr);
1499     }
1500     _oop_storage_iter.oops_do(&pc_adjust_pointer_closure);
1501     {
1502       CLDToOopClosure cld_closure(&pc_adjust_pointer_closure, ClassLoaderData::_claim_stw_fullgc_adjust);
1503       ClassLoaderDataGraph::cld_do(&cld_closure);
1504     }
1505     {
1506       AlwaysTrueClosure always_alive;
1507       _weak_proc_task.work(worker_id, &always_alive, &pc_adjust_pointer_closure);
1508     }
1509     if (_sub_tasks.try_claim_task(PSAdjustSubTask_code_cache)) {
1510       NMethodToOopClosure adjust_code(&pc_adjust_pointer_closure, NMethodToOopClosure::FixRelocations);
1511       CodeCache::nmethods_do(&adjust_code);
1512     }
1513     _sub_tasks.all_tasks_claimed();
1514   }
1515 };
1516 
1517 void PSParallelCompact::adjust_pointers() {
1518   // Adjust the pointers to reflect the new locations
1519   GCTraceTime(Info, gc, phases) tm("Adjust Pointers", &_gc_timer);
1520   uint nworkers = ParallelScavengeHeap::heap()->workers().active_workers();
1521   PSAdjustTask task(nworkers);
1522   ParallelScavengeHeap::heap()->workers().run_task(&task);
1523 }
1524 
1525 // Split [start, end) evenly for a number of workers and return the
1526 // range for worker_id.
1527 static void split_regions_for_worker(size_t start, size_t end,
1528                                      uint worker_id, uint num_workers,
1529                                      size_t* worker_start, size_t* worker_end) {
1530   assert(start < end, "precondition");
1531   assert(num_workers > 0, "precondition");
1532   assert(worker_id < num_workers, "precondition");
1533 
1534   size_t num_regions = end - start;
1535   size_t num_regions_per_worker = num_regions / num_workers;
1536   size_t remainder = num_regions % num_workers;
1537   // The first few workers will get one extra.
1538   *worker_start = start + worker_id * num_regions_per_worker
1539                   + MIN2(checked_cast<size_t>(worker_id), remainder);
1540   *worker_end = *worker_start + num_regions_per_worker
1541                 + (worker_id < remainder ? 1 : 0);
1542 }
1543 
1544 void PSParallelCompact::forward_to_new_addr() {
1545   GCTraceTime(Info, gc, phases) tm("Forward", &_gc_timer);
1546   uint nworkers = ParallelScavengeHeap::heap()->workers().active_workers();
1547 
1548   struct ForwardTask final : public WorkerTask {
1549     uint _num_workers;
1550 
1551     explicit ForwardTask(uint num_workers) :
1552       WorkerTask("PSForward task"),
1553       _num_workers(num_workers) {}
1554 
1555     void work(uint worker_id) override {
1556       ParCompactionManager* cm = ParCompactionManager::gc_thread_compaction_manager(worker_id);
1557       for (uint id = old_space_id; id < last_space_id; ++id) {
1558         MutableSpace* sp = PSParallelCompact::space(SpaceId(id));
1559         HeapWord* dense_prefix_addr = dense_prefix(SpaceId(id));
1560         HeapWord* top = sp->top();
1561 
1562         if (dense_prefix_addr == top) {
1563           continue;
1564         }
1565 
1566         size_t dense_prefix_region = _summary_data.addr_to_region_idx(dense_prefix_addr);
1567         size_t top_region = _summary_data.addr_to_region_idx(_summary_data.region_align_up(top));
1568         size_t start_region;
1569         size_t end_region;
1570         split_regions_for_worker(dense_prefix_region, top_region,
1571                                  worker_id, _num_workers,
1572                                  &start_region, &end_region);
1573         for (size_t cur_region = start_region; cur_region < end_region; ++cur_region) {
1574           RegionData* region_ptr = _summary_data.region(cur_region);
1575           size_t live_words = region_ptr->partial_obj_size();
1576 
1577           if (live_words == ParallelCompactData::RegionSize) {
1578             // No obj-start
1579             continue;
1580           }
1581 
1582           HeapWord* region_start = _summary_data.region_to_addr(cur_region);
1583           HeapWord* region_end = region_start + ParallelCompactData::RegionSize;
1584 
1585           HeapWord* cur_addr = region_start + live_words;
1586 
1587           HeapWord* destination = region_ptr->destination();
1588           while (cur_addr < region_end) {
1589             cur_addr = mark_bitmap()->find_obj_beg(cur_addr, region_end);
1590             if (cur_addr >= region_end) {
1591               break;
1592             }
1593             assert(mark_bitmap()->is_marked(cur_addr), "inv");
1594             HeapWord* new_addr = destination + live_words;
1595             oop obj = cast_to_oop(cur_addr);
1596             if (new_addr != cur_addr) {
1597               cm->preserved_marks()->push_if_necessary(obj, obj->mark());
1598               obj->forward_to(cast_to_oop(new_addr));
1599             }
1600             size_t obj_size = obj->size();
1601             live_words += obj_size;
1602             cur_addr += obj_size;
1603           }
1604         }
1605       }
1606     }
1607   } task(nworkers);
1608 
1609   ParallelScavengeHeap::heap()->workers().run_task(&task);
1610   debug_only(verify_forward();)
1611 }
1612 
1613 #ifdef ASSERT
1614 void PSParallelCompact::verify_forward() {
1615   HeapWord* old_dense_prefix_addr = dense_prefix(SpaceId(old_space_id));
1616   RegionData* old_region = _summary_data.region(_summary_data.addr_to_region_idx(old_dense_prefix_addr));
1617   HeapWord* bump_ptr = old_region->partial_obj_size() != 0
1618                        ? old_dense_prefix_addr + old_region->partial_obj_size()
1619                        : old_dense_prefix_addr;
1620   SpaceId bump_ptr_space = old_space_id;
1621 
1622   for (uint id = old_space_id; id < last_space_id; ++id) {
1623     MutableSpace* sp = PSParallelCompact::space(SpaceId(id));
1624     HeapWord* dense_prefix_addr = dense_prefix(SpaceId(id));
1625     HeapWord* top = sp->top();
1626     HeapWord* cur_addr = dense_prefix_addr;
1627 
1628     while (cur_addr < top) {
1629       cur_addr = mark_bitmap()->find_obj_beg(cur_addr, top);
1630       if (cur_addr >= top) {
1631         break;
1632       }
1633       assert(mark_bitmap()->is_marked(cur_addr), "inv");
1634       // Move to the space containing cur_addr
1635       if (bump_ptr == _space_info[bump_ptr_space].new_top()) {
1636         bump_ptr = space(space_id(cur_addr))->bottom();
1637         bump_ptr_space = space_id(bump_ptr);
1638       }
1639       oop obj = cast_to_oop(cur_addr);
1640       if (cur_addr != bump_ptr) {
1641         assert(obj->forwardee() == cast_to_oop(bump_ptr), "inv");
1642       }
1643       bump_ptr += obj->size();
1644       cur_addr += obj->size();
1645     }
1646   }
1647 }
1648 #endif
1649 
1650 // Helper class to print 8 region numbers per line and then print the total at the end.
1651 class FillableRegionLogger : public StackObj {
1652 private:
1653   Log(gc, compaction) log;
1654   static const int LineLength = 8;
1655   size_t _regions[LineLength];
1656   int _next_index;
1657   bool _enabled;
1658   size_t _total_regions;
1659 public:
1660   FillableRegionLogger() : _next_index(0), _enabled(log_develop_is_enabled(Trace, gc, compaction)), _total_regions(0) { }
1661   ~FillableRegionLogger() {
1662     log.trace(SIZE_FORMAT " initially fillable regions", _total_regions);
1663   }
1664 
1665   void print_line() {
1666     if (!_enabled || _next_index == 0) {
1667       return;
1668     }
1669     FormatBuffer<> line("Fillable: ");
1670     for (int i = 0; i < _next_index; i++) {
1671       line.append(" " SIZE_FORMAT_W(7), _regions[i]);
1672     }
1673     log.trace("%s", line.buffer());
1674     _next_index = 0;
1675   }
1676 
1677   void handle(size_t region) {
1678     if (!_enabled) {
1679       return;
1680     }
1681     _regions[_next_index++] = region;
1682     if (_next_index == LineLength) {
1683       print_line();
1684     }
1685     _total_regions++;
1686   }
1687 };
1688 
1689 void PSParallelCompact::prepare_region_draining_tasks(uint parallel_gc_threads)
1690 {
1691   GCTraceTime(Trace, gc, phases) tm("Drain Task Setup", &_gc_timer);
1692 
1693   // Find the threads that are active
1694   uint worker_id = 0;
1695 
1696   // Find all regions that are available (can be filled immediately) and
1697   // distribute them to the thread stacks.  The iteration is done in reverse
1698   // order (high to low) so the regions will be removed in ascending order.
1699 
1700   const ParallelCompactData& sd = PSParallelCompact::summary_data();
1701 
1702   // id + 1 is used to test termination so unsigned  can
1703   // be used with an old_space_id == 0.
1704   FillableRegionLogger region_logger;
1705   for (unsigned int id = to_space_id; id + 1 > old_space_id; --id) {
1706     SpaceInfo* const space_info = _space_info + id;
1707     HeapWord* const new_top = space_info->new_top();
1708 
1709     const size_t beg_region = sd.addr_to_region_idx(space_info->dense_prefix());
1710     const size_t end_region =
1711       sd.addr_to_region_idx(sd.region_align_up(new_top));
1712 
1713     for (size_t cur = end_region - 1; cur + 1 > beg_region; --cur) {
1714       if (sd.region(cur)->claim_unsafe()) {
1715         ParCompactionManager* cm = ParCompactionManager::gc_thread_compaction_manager(worker_id);
1716         bool result = sd.region(cur)->mark_normal();
1717         assert(result, "Must succeed at this point.");
1718         cm->region_stack()->push(cur);
1719         region_logger.handle(cur);
1720         // Assign regions to tasks in round-robin fashion.
1721         if (++worker_id == parallel_gc_threads) {
1722           worker_id = 0;
1723         }
1724       }
1725     }
1726     region_logger.print_line();
1727   }
1728 }
1729 
1730 static void compaction_with_stealing_work(TaskTerminator* terminator, uint worker_id) {
1731   assert(ParallelScavengeHeap::heap()->is_stw_gc_active(), "called outside gc");
1732 
1733   ParCompactionManager* cm =
1734     ParCompactionManager::gc_thread_compaction_manager(worker_id);
1735 
1736   // Drain the stacks that have been preloaded with regions
1737   // that are ready to fill.
1738 
1739   cm->drain_region_stacks();
1740 
1741   guarantee(cm->region_stack()->is_empty(), "Not empty");
1742 
1743   size_t region_index = 0;
1744 
1745   while (true) {
1746     if (ParCompactionManager::steal(worker_id, region_index)) {
1747       PSParallelCompact::fill_and_update_region(cm, region_index);
1748       cm->drain_region_stacks();
1749     } else if (PSParallelCompact::steal_unavailable_region(cm, region_index)) {
1750       // Fill and update an unavailable region with the help of a shadow region
1751       PSParallelCompact::fill_and_update_shadow_region(cm, region_index);
1752       cm->drain_region_stacks();
1753     } else {
1754       if (terminator->offer_termination()) {
1755         break;
1756       }
1757       // Go around again.
1758     }
1759   }
1760 }
1761 
1762 class FillDensePrefixAndCompactionTask: public WorkerTask {
1763   uint _num_workers;
1764   TaskTerminator _terminator;
1765 
1766 public:
1767   FillDensePrefixAndCompactionTask(uint active_workers) :
1768       WorkerTask("FillDensePrefixAndCompactionTask"),
1769       _num_workers(active_workers),
1770       _terminator(active_workers, ParCompactionManager::region_task_queues()) {
1771   }
1772 
1773   virtual void work(uint worker_id) {
1774     {
1775       auto start = Ticks::now();
1776       PSParallelCompact::fill_dead_objs_in_dense_prefix(worker_id, _num_workers);
1777       log_trace(gc, phases)("Fill dense prefix by worker %u: %.3f ms", worker_id, (Ticks::now() - start).seconds() * 1000);
1778     }
1779     compaction_with_stealing_work(&_terminator, worker_id);
1780   }
1781 };
1782 
1783 void PSParallelCompact::fill_range_in_dense_prefix(HeapWord* start, HeapWord* end) {
1784 #ifdef ASSERT
1785   {
1786     assert(start < end, "precondition");
1787     assert(mark_bitmap()->find_obj_beg(start, end) == end, "precondition");
1788     HeapWord* bottom = _space_info[old_space_id].space()->bottom();
1789     if (start != bottom) {
1790       HeapWord* obj_start = mark_bitmap()->find_obj_beg_reverse(bottom, start);
1791       HeapWord* after_obj = obj_start + cast_to_oop(obj_start)->size();
1792       assert(after_obj == start, "precondition");
1793     }
1794   }
1795 #endif
1796 
1797   CollectedHeap::fill_with_objects(start, pointer_delta(end, start));
1798   HeapWord* addr = start;
1799   do {
1800     size_t size = cast_to_oop(addr)->size();
1801     start_array(old_space_id)->update_for_block(addr, addr + size);
1802     addr += size;
1803   } while (addr < end);
1804 }
1805 
1806 void PSParallelCompact::fill_dead_objs_in_dense_prefix(uint worker_id, uint num_workers) {
1807   ParMarkBitMap* bitmap = mark_bitmap();
1808 
1809   HeapWord* const bottom = _space_info[old_space_id].space()->bottom();
1810   HeapWord* const prefix_end = dense_prefix(old_space_id);
1811 
1812   if (bottom == prefix_end) {
1813     return;
1814   }
1815 
1816   size_t bottom_region = _summary_data.addr_to_region_idx(bottom);
1817   size_t prefix_end_region = _summary_data.addr_to_region_idx(prefix_end);
1818 
1819   size_t start_region;
1820   size_t end_region;
1821   split_regions_for_worker(bottom_region, prefix_end_region,
1822                            worker_id, num_workers,
1823                            &start_region, &end_region);
1824 
1825   if (start_region == end_region) {
1826     return;
1827   }
1828 
1829   HeapWord* const start_addr = _summary_data.region_to_addr(start_region);
1830   HeapWord* const end_addr = _summary_data.region_to_addr(end_region);
1831 
1832   // Skip live partial obj (if any) from previous region.
1833   HeapWord* cur_addr;
1834   RegionData* start_region_ptr = _summary_data.region(start_region);
1835   if (start_region_ptr->partial_obj_size() != 0) {
1836     HeapWord* partial_obj_start = start_region_ptr->partial_obj_addr();
1837     assert(bitmap->is_marked(partial_obj_start), "inv");
1838     cur_addr = partial_obj_start + cast_to_oop(partial_obj_start)->size();
1839   } else {
1840     cur_addr = start_addr;
1841   }
1842 
1843   // end_addr is inclusive to handle regions starting with dead space.
1844   while (cur_addr <= end_addr) {
1845     // Use prefix_end to handle trailing obj in each worker region-chunk.
1846     HeapWord* live_start = bitmap->find_obj_beg(cur_addr, prefix_end);
1847     if (cur_addr != live_start) {
1848       // Only worker 0 handles proceeding dead space.
1849       if (cur_addr != start_addr || worker_id == 0) {
1850         fill_range_in_dense_prefix(cur_addr, live_start);
1851       }
1852     }
1853     if (live_start >= end_addr) {
1854       break;
1855     }
1856     assert(bitmap->is_marked(live_start), "inv");
1857     cur_addr = live_start + cast_to_oop(live_start)->size();
1858   }
1859 }
1860 
1861 void PSParallelCompact::compact() {
1862   GCTraceTime(Info, gc, phases) tm("Compaction Phase", &_gc_timer);
1863 
1864   uint active_gc_threads = ParallelScavengeHeap::heap()->workers().active_workers();
1865 
1866   initialize_shadow_regions(active_gc_threads);
1867   prepare_region_draining_tasks(active_gc_threads);
1868 
1869   {
1870     GCTraceTime(Trace, gc, phases) tm("Par Compact", &_gc_timer);
1871 
1872     FillDensePrefixAndCompactionTask task(active_gc_threads);
1873     ParallelScavengeHeap::heap()->workers().run_task(&task);
1874 
1875 #ifdef  ASSERT
1876     verify_filler_in_dense_prefix();
1877 
1878     // Verify that all regions have been processed.
1879     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
1880       verify_complete(SpaceId(id));
1881     }
1882 #endif
1883   }
1884 }
1885 
1886 #ifdef  ASSERT
1887 void PSParallelCompact::verify_filler_in_dense_prefix() {
1888   HeapWord* bottom = _space_info[old_space_id].space()->bottom();
1889   HeapWord* dense_prefix_end = dense_prefix(old_space_id);
1890   HeapWord* cur_addr = bottom;
1891   while (cur_addr < dense_prefix_end) {
1892     oop obj = cast_to_oop(cur_addr);
1893     oopDesc::verify(obj);
1894     if (!mark_bitmap()->is_marked(cur_addr)) {
1895       Klass* k = cast_to_oop(cur_addr)->klass_without_asserts();
1896       assert(k == Universe::fillerArrayKlass() || k == vmClasses::FillerObject_klass(), "inv");
1897     }
1898     cur_addr += obj->size();
1899   }
1900 }
1901 
1902 void PSParallelCompact::verify_complete(SpaceId space_id) {
1903   // All Regions served as compaction targets, from dense_prefix() to
1904   // new_top(), should be marked as filled and all Regions between new_top()
1905   // and top() should be available (i.e., should have been emptied).
1906   ParallelCompactData& sd = summary_data();
1907   SpaceInfo si = _space_info[space_id];
1908   HeapWord* new_top_addr = sd.region_align_up(si.new_top());
1909   HeapWord* old_top_addr = sd.region_align_up(si.space()->top());
1910   const size_t beg_region = sd.addr_to_region_idx(si.dense_prefix());
1911   const size_t new_top_region = sd.addr_to_region_idx(new_top_addr);
1912   const size_t old_top_region = sd.addr_to_region_idx(old_top_addr);
1913 
1914   size_t cur_region;
1915   for (cur_region = beg_region; cur_region < new_top_region; ++cur_region) {
1916     const RegionData* const c = sd.region(cur_region);
1917     if (!c->completed()) {
1918       log_warning(gc)("region " SIZE_FORMAT " not filled: destination_count=%u",
1919                       cur_region, c->destination_count());
1920     }
1921   }
1922 
1923   for (cur_region = new_top_region; cur_region < old_top_region; ++cur_region) {
1924     const RegionData* const c = sd.region(cur_region);
1925     if (!c->available()) {
1926       log_warning(gc)("region " SIZE_FORMAT " not empty: destination_count=%u",
1927                       cur_region, c->destination_count());
1928     }
1929   }
1930 }
1931 #endif  // #ifdef ASSERT
1932 
1933 // Return the SpaceId for the space containing addr.  If addr is not in the
1934 // heap, last_space_id is returned.  In debug mode it expects the address to be
1935 // in the heap and asserts such.
1936 PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) {
1937   assert(ParallelScavengeHeap::heap()->is_in_reserved(addr), "addr not in the heap");
1938 
1939   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
1940     if (_space_info[id].space()->contains(addr)) {
1941       return SpaceId(id);
1942     }
1943   }
1944 
1945   assert(false, "no space contains the addr");
1946   return last_space_id;
1947 }
1948 
1949 // Skip over count live words starting from beg, and return the address of the
1950 // next live word.  Unless marked, the word corresponding to beg is assumed to
1951 // be dead.  Callers must either ensure beg does not correspond to the middle of
1952 // an object, or account for those live words in some other way.  Callers must
1953 // also ensure that there are enough live words in the range [beg, end) to skip.
1954 HeapWord*
1955 PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count)
1956 {
1957   assert(count > 0, "sanity");
1958 
1959   ParMarkBitMap* m = mark_bitmap();
1960   HeapWord* cur_addr = beg;
1961   while (true) {
1962     cur_addr = m->find_obj_beg(cur_addr, end);
1963     assert(cur_addr < end, "inv");
1964     size_t obj_size = cast_to_oop(cur_addr)->size();
1965     // Strictly greater-than
1966     if (obj_size > count) {
1967       return cur_addr + count;
1968     }
1969     count -= obj_size;
1970     cur_addr += obj_size;
1971   }
1972 }
1973 
1974 HeapWord* PSParallelCompact::first_src_addr(HeapWord* const dest_addr,
1975                                             SpaceId src_space_id,
1976                                             size_t src_region_idx)
1977 {
1978   assert(summary_data().is_region_aligned(dest_addr), "not aligned");
1979 
1980   const SplitInfo& split_info = _space_info[src_space_id].split_info();
1981   if (split_info.dest_region_addr() == dest_addr) {
1982     // The partial object ending at the split point contains the first word to
1983     // be copied to dest_addr.
1984     return split_info.first_src_addr();
1985   }
1986 
1987   const ParallelCompactData& sd = summary_data();
1988   ParMarkBitMap* const bitmap = mark_bitmap();
1989   const size_t RegionSize = ParallelCompactData::RegionSize;
1990 
1991   assert(sd.is_region_aligned(dest_addr), "not aligned");
1992   const RegionData* const src_region_ptr = sd.region(src_region_idx);
1993   const size_t partial_obj_size = src_region_ptr->partial_obj_size();
1994   HeapWord* const src_region_destination = src_region_ptr->destination();
1995 
1996   assert(dest_addr >= src_region_destination, "wrong src region");
1997   assert(src_region_ptr->data_size() > 0, "src region cannot be empty");
1998 
1999   HeapWord* const src_region_beg = sd.region_to_addr(src_region_idx);
2000   HeapWord* const src_region_end = src_region_beg + RegionSize;
2001 
2002   HeapWord* addr = src_region_beg;
2003   if (dest_addr == src_region_destination) {
2004     // Return the first live word in the source region.
2005     if (partial_obj_size == 0) {
2006       addr = bitmap->find_obj_beg(addr, src_region_end);
2007       assert(addr < src_region_end, "no objects start in src region");
2008     }
2009     return addr;
2010   }
2011 
2012   // Must skip some live data.
2013   size_t words_to_skip = dest_addr - src_region_destination;
2014   assert(src_region_ptr->data_size() > words_to_skip, "wrong src region");
2015 
2016   if (partial_obj_size >= words_to_skip) {
2017     // All the live words to skip are part of the partial object.
2018     addr += words_to_skip;
2019     if (partial_obj_size == words_to_skip) {
2020       // Find the first live word past the partial object.
2021       addr = bitmap->find_obj_beg(addr, src_region_end);
2022       assert(addr < src_region_end, "wrong src region");
2023     }
2024     return addr;
2025   }
2026 
2027   // Skip over the partial object (if any).
2028   if (partial_obj_size != 0) {
2029     words_to_skip -= partial_obj_size;
2030     addr += partial_obj_size;
2031   }
2032 
2033   // Skip over live words due to objects that start in the region.
2034   addr = skip_live_words(addr, src_region_end, words_to_skip);
2035   assert(addr < src_region_end, "wrong src region");
2036   return addr;
2037 }
2038 
2039 void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm,
2040                                                      SpaceId src_space_id,
2041                                                      size_t beg_region,
2042                                                      HeapWord* end_addr)
2043 {
2044   ParallelCompactData& sd = summary_data();
2045 
2046 #ifdef ASSERT
2047   MutableSpace* const src_space = _space_info[src_space_id].space();
2048   HeapWord* const beg_addr = sd.region_to_addr(beg_region);
2049   assert(src_space->contains(beg_addr) || beg_addr == src_space->end(),
2050          "src_space_id does not match beg_addr");
2051   assert(src_space->contains(end_addr) || end_addr == src_space->end(),
2052          "src_space_id does not match end_addr");
2053 #endif // #ifdef ASSERT
2054 
2055   RegionData* const beg = sd.region(beg_region);
2056   RegionData* const end = sd.addr_to_region_ptr(sd.region_align_up(end_addr));
2057 
2058   // Regions up to new_top() are enqueued if they become available.
2059   HeapWord* const new_top = _space_info[src_space_id].new_top();
2060   RegionData* const enqueue_end =
2061     sd.addr_to_region_ptr(sd.region_align_up(new_top));
2062 
2063   for (RegionData* cur = beg; cur < end; ++cur) {
2064     assert(cur->data_size() > 0, "region must have live data");
2065     cur->decrement_destination_count();
2066     if (cur < enqueue_end && cur->available() && cur->claim()) {
2067       if (cur->mark_normal()) {
2068         cm->push_region(sd.region(cur));
2069       } else if (cur->mark_copied()) {
2070         // Try to copy the content of the shadow region back to its corresponding
2071         // heap region if the shadow region is filled. Otherwise, the GC thread
2072         // fills the shadow region will copy the data back (see
2073         // MoveAndUpdateShadowClosure::complete_region).
2074         copy_back(sd.region_to_addr(cur->shadow_region()), sd.region_to_addr(cur));
2075         ParCompactionManager::push_shadow_region_mt_safe(cur->shadow_region());
2076         cur->set_completed();
2077       }
2078     }
2079   }
2080 }
2081 
2082 size_t PSParallelCompact::next_src_region(MoveAndUpdateClosure& closure,
2083                                           SpaceId& src_space_id,
2084                                           HeapWord*& src_space_top,
2085                                           HeapWord* end_addr)
2086 {
2087   typedef ParallelCompactData::RegionData RegionData;
2088 
2089   ParallelCompactData& sd = PSParallelCompact::summary_data();
2090   const size_t region_size = ParallelCompactData::RegionSize;
2091 
2092   size_t src_region_idx = 0;
2093 
2094   // Skip empty regions (if any) up to the top of the space.
2095   HeapWord* const src_aligned_up = sd.region_align_up(end_addr);
2096   RegionData* src_region_ptr = sd.addr_to_region_ptr(src_aligned_up);
2097   HeapWord* const top_aligned_up = sd.region_align_up(src_space_top);
2098   const RegionData* const top_region_ptr =
2099     sd.addr_to_region_ptr(top_aligned_up);
2100   while (src_region_ptr < top_region_ptr && src_region_ptr->data_size() == 0) {
2101     ++src_region_ptr;
2102   }
2103 
2104   if (src_region_ptr < top_region_ptr) {
2105     // The next source region is in the current space.  Update src_region_idx
2106     // and the source address to match src_region_ptr.
2107     src_region_idx = sd.region(src_region_ptr);
2108     HeapWord* const src_region_addr = sd.region_to_addr(src_region_idx);
2109     if (src_region_addr > closure.source()) {
2110       closure.set_source(src_region_addr);
2111     }
2112     return src_region_idx;
2113   }
2114 
2115   // Switch to a new source space and find the first non-empty region.
2116   unsigned int space_id = src_space_id + 1;
2117   assert(space_id < last_space_id, "not enough spaces");
2118 
2119   HeapWord* const destination = closure.destination();
2120 
2121   do {
2122     MutableSpace* space = _space_info[space_id].space();
2123     HeapWord* const bottom = space->bottom();
2124     const RegionData* const bottom_cp = sd.addr_to_region_ptr(bottom);
2125 
2126     // Iterate over the spaces that do not compact into themselves.
2127     if (bottom_cp->destination() != bottom) {
2128       HeapWord* const top_aligned_up = sd.region_align_up(space->top());
2129       const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
2130 
2131       for (const RegionData* src_cp = bottom_cp; src_cp < top_cp; ++src_cp) {
2132         if (src_cp->live_obj_size() > 0) {
2133           // Found it.
2134           assert(src_cp->destination() == destination,
2135                  "first live obj in the space must match the destination");
2136           assert(src_cp->partial_obj_size() == 0,
2137                  "a space cannot begin with a partial obj");
2138 
2139           src_space_id = SpaceId(space_id);
2140           src_space_top = space->top();
2141           const size_t src_region_idx = sd.region(src_cp);
2142           closure.set_source(sd.region_to_addr(src_region_idx));
2143           return src_region_idx;
2144         } else {
2145           assert(src_cp->data_size() == 0, "sanity");
2146         }
2147       }
2148     }
2149   } while (++space_id < last_space_id);
2150 
2151   assert(false, "no source region was found");
2152   return 0;
2153 }
2154 
2155 HeapWord* PSParallelCompact::partial_obj_end(HeapWord* region_start_addr) {
2156   ParallelCompactData& sd = summary_data();
2157   assert(sd.is_region_aligned(region_start_addr), "precondition");
2158 
2159   // Use per-region partial_obj_size to locate the end of the obj, that extends to region_start_addr.
2160   SplitInfo& split_info = _space_info[space_id(region_start_addr)].split_info();
2161   size_t start_region_idx = sd.addr_to_region_idx(region_start_addr);
2162   size_t end_region_idx = sd.region_count();
2163   size_t accumulated_size = 0;
2164   for (size_t region_idx = start_region_idx; region_idx < end_region_idx; ++region_idx) {
2165     if (split_info.is_split(region_idx)) {
2166       accumulated_size += split_info.partial_obj_size();
2167       break;
2168     }
2169     size_t cur_partial_obj_size = sd.region(region_idx)->partial_obj_size();
2170     accumulated_size += cur_partial_obj_size;
2171     if (cur_partial_obj_size != ParallelCompactData::RegionSize) {
2172       break;
2173     }
2174   }
2175   return region_start_addr + accumulated_size;
2176 }
2177 
2178 void PSParallelCompact::fill_region(ParCompactionManager* cm, MoveAndUpdateClosure& closure, size_t region_idx)
2179 {
2180   ParMarkBitMap* const bitmap = mark_bitmap();
2181   ParallelCompactData& sd = summary_data();
2182   RegionData* const region_ptr = sd.region(region_idx);
2183 
2184   // Get the source region and related info.
2185   size_t src_region_idx = region_ptr->source_region();
2186   SpaceId src_space_id = space_id(sd.region_to_addr(src_region_idx));
2187   HeapWord* src_space_top = _space_info[src_space_id].space()->top();
2188   HeapWord* dest_addr = sd.region_to_addr(region_idx);
2189 
2190   closure.set_source(first_src_addr(dest_addr, src_space_id, src_region_idx));
2191 
2192   // Adjust src_region_idx to prepare for decrementing destination counts (the
2193   // destination count is not decremented when a region is copied to itself).
2194   if (src_region_idx == region_idx) {
2195     src_region_idx += 1;
2196   }
2197 
2198   if (bitmap->is_unmarked(closure.source())) {
2199     // The first source word is in the middle of an object; copy the remainder
2200     // of the object or as much as will fit.  The fact that pointer updates were
2201     // deferred will be noted when the object header is processed.
2202     HeapWord* const old_src_addr = closure.source();
2203     {
2204       HeapWord* region_start = sd.region_align_down(closure.source());
2205       HeapWord* obj_start = bitmap->find_obj_beg_reverse(region_start, closure.source());
2206       HeapWord* obj_end;
2207       if (bitmap->is_marked(obj_start)) {
2208         HeapWord* next_region_start = region_start + ParallelCompactData::RegionSize;
2209         HeapWord* partial_obj_start = (next_region_start >= src_space_top)
2210                                       ? nullptr
2211                                       : sd.addr_to_region_ptr(next_region_start)->partial_obj_addr();
2212         if (partial_obj_start == obj_start) {
2213           // This obj extends to next region.
2214           obj_end = partial_obj_end(next_region_start);
2215         } else {
2216           // Completely contained in this region; safe to use size().
2217           obj_end = obj_start + cast_to_oop(obj_start)->size();
2218         }
2219       } else {
2220         // This obj extends to current region.
2221         obj_end = partial_obj_end(region_start);
2222       }
2223       size_t partial_obj_size = pointer_delta(obj_end, closure.source());
2224       closure.copy_partial_obj(partial_obj_size);
2225     }
2226 
2227     if (closure.is_full()) {
2228       decrement_destination_counts(cm, src_space_id, src_region_idx,
2229                                    closure.source());
2230       closure.complete_region(dest_addr, region_ptr);
2231       return;
2232     }
2233 
2234     HeapWord* const end_addr = sd.region_align_down(closure.source());
2235     if (sd.region_align_down(old_src_addr) != end_addr) {
2236       // The partial object was copied from more than one source region.
2237       decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
2238 
2239       // Move to the next source region, possibly switching spaces as well.  All
2240       // args except end_addr may be modified.
2241       src_region_idx = next_src_region(closure, src_space_id, src_space_top,
2242                                        end_addr);
2243     }
2244   }
2245 
2246   do {
2247     HeapWord* cur_addr = closure.source();
2248     HeapWord* const end_addr = MIN2(sd.region_align_up(cur_addr + 1),
2249                                     src_space_top);
2250     HeapWord* partial_obj_start = (end_addr == src_space_top)
2251                                 ? nullptr
2252                                 : sd.addr_to_region_ptr(end_addr)->partial_obj_addr();
2253     // apply closure on objs inside [cur_addr, end_addr)
2254     do {
2255       cur_addr = bitmap->find_obj_beg(cur_addr, end_addr);
2256       if (cur_addr == end_addr) {
2257         break;
2258       }
2259       size_t obj_size;
2260       if (partial_obj_start == cur_addr) {
2261         obj_size = pointer_delta(partial_obj_end(end_addr), cur_addr);
2262       } else {
2263         // This obj doesn't extend into next region; size() is safe to use.
2264         obj_size = cast_to_oop(cur_addr)->size();
2265       }
2266       closure.do_addr(cur_addr, obj_size);
2267       cur_addr += obj_size;
2268     } while (cur_addr < end_addr && !closure.is_full());
2269 
2270     if (closure.is_full()) {
2271       decrement_destination_counts(cm, src_space_id, src_region_idx,
2272                                    closure.source());
2273       closure.complete_region(dest_addr, region_ptr);
2274       return;
2275     }
2276 
2277     decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
2278 
2279     // Move to the next source region, possibly switching spaces as well.  All
2280     // args except end_addr may be modified.
2281     src_region_idx = next_src_region(closure, src_space_id, src_space_top,
2282                                      end_addr);
2283   } while (true);
2284 }
2285 
2286 void PSParallelCompact::fill_and_update_region(ParCompactionManager* cm, size_t region_idx)
2287 {
2288   MoveAndUpdateClosure cl(mark_bitmap(), region_idx);
2289   fill_region(cm, cl, region_idx);
2290 }
2291 
2292 void PSParallelCompact::fill_and_update_shadow_region(ParCompactionManager* cm, size_t region_idx)
2293 {
2294   // Get a shadow region first
2295   ParallelCompactData& sd = summary_data();
2296   RegionData* const region_ptr = sd.region(region_idx);
2297   size_t shadow_region = ParCompactionManager::pop_shadow_region_mt_safe(region_ptr);
2298   // The InvalidShadow return value indicates the corresponding heap region is available,
2299   // so use MoveAndUpdateClosure to fill the normal region. Otherwise, use
2300   // MoveAndUpdateShadowClosure to fill the acquired shadow region.
2301   if (shadow_region == ParCompactionManager::InvalidShadow) {
2302     MoveAndUpdateClosure cl(mark_bitmap(), region_idx);
2303     region_ptr->shadow_to_normal();
2304     return fill_region(cm, cl, region_idx);
2305   } else {
2306     MoveAndUpdateShadowClosure cl(mark_bitmap(), region_idx, shadow_region);
2307     return fill_region(cm, cl, region_idx);
2308   }
2309 }
2310 
2311 void PSParallelCompact::copy_back(HeapWord *shadow_addr, HeapWord *region_addr)
2312 {
2313   Copy::aligned_conjoint_words(shadow_addr, region_addr, _summary_data.RegionSize);
2314 }
2315 
2316 bool PSParallelCompact::steal_unavailable_region(ParCompactionManager* cm, size_t &region_idx)
2317 {
2318   size_t next = cm->next_shadow_region();
2319   ParallelCompactData& sd = summary_data();
2320   size_t old_new_top = sd.addr_to_region_idx(_space_info[old_space_id].new_top());
2321   uint active_gc_threads = ParallelScavengeHeap::heap()->workers().active_workers();
2322 
2323   while (next < old_new_top) {
2324     if (sd.region(next)->mark_shadow()) {
2325       region_idx = next;
2326       return true;
2327     }
2328     next = cm->move_next_shadow_region_by(active_gc_threads);
2329   }
2330 
2331   return false;
2332 }
2333 
2334 // The shadow region is an optimization to address region dependencies in full GC. The basic
2335 // idea is making more regions available by temporally storing their live objects in empty
2336 // shadow regions to resolve dependencies between them and the destination regions. Therefore,
2337 // GC threads need not wait destination regions to be available before processing sources.
2338 //
2339 // A typical workflow would be:
2340 // After draining its own stack and failing to steal from others, a GC worker would pick an
2341 // unavailable region (destination count > 0) and get a shadow region. Then the worker fills
2342 // the shadow region by copying live objects from source regions of the unavailable one. Once
2343 // the unavailable region becomes available, the data in the shadow region will be copied back.
2344 // Shadow regions are empty regions in the to-space and regions between top and end of other spaces.
2345 void PSParallelCompact::initialize_shadow_regions(uint parallel_gc_threads)
2346 {
2347   const ParallelCompactData& sd = PSParallelCompact::summary_data();
2348 
2349   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2350     SpaceInfo* const space_info = _space_info + id;
2351     MutableSpace* const space = space_info->space();
2352 
2353     const size_t beg_region =
2354       sd.addr_to_region_idx(sd.region_align_up(MAX2(space_info->new_top(), space->top())));
2355     const size_t end_region =
2356       sd.addr_to_region_idx(sd.region_align_down(space->end()));
2357 
2358     for (size_t cur = beg_region; cur < end_region; ++cur) {
2359       ParCompactionManager::push_shadow_region(cur);
2360     }
2361   }
2362 
2363   size_t beg_region = sd.addr_to_region_idx(_space_info[old_space_id].dense_prefix());
2364   for (uint i = 0; i < parallel_gc_threads; i++) {
2365     ParCompactionManager *cm = ParCompactionManager::gc_thread_compaction_manager(i);
2366     cm->set_next_shadow_region(beg_region + i);
2367   }
2368 }
2369 
2370 void MoveAndUpdateClosure::copy_partial_obj(size_t partial_obj_size)
2371 {
2372   size_t words = MIN2(partial_obj_size, words_remaining());
2373 
2374   // This test is necessary; if omitted, the pointer updates to a partial object
2375   // that crosses the dense prefix boundary could be overwritten.
2376   if (source() != copy_destination()) {
2377     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
2378     Copy::aligned_conjoint_words(source(), copy_destination(), words);
2379   }
2380   update_state(words);
2381 }
2382 
2383 void MoveAndUpdateClosure::complete_region(HeapWord* dest_addr, PSParallelCompact::RegionData* region_ptr) {
2384   assert(region_ptr->shadow_state() == ParallelCompactData::RegionData::NormalRegion, "Region should be finished");
2385   region_ptr->set_completed();
2386 }
2387 
2388 void MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) {
2389   assert(destination() != nullptr, "sanity");
2390   _source = addr;
2391 
2392   // The start_array must be updated even if the object is not moving.
2393   if (_start_array != nullptr) {
2394     _start_array->update_for_block(destination(), destination() + words);
2395   }
2396 
2397   // Avoid overflow
2398   words = MIN2(words, words_remaining());
2399   assert(words > 0, "inv");
2400 
2401   if (copy_destination() != source()) {
2402     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
2403     assert(source() != destination(), "inv");
2404     assert(cast_to_oop(source())->is_forwarded(), "inv");
2405     assert(cast_to_oop(source())->forwardee() == cast_to_oop(destination()), "inv");
2406     Copy::aligned_conjoint_words(source(), copy_destination(), words);
2407     cast_to_oop(copy_destination())->init_mark();
2408   }
2409 
2410   update_state(words);
2411 }
2412 
2413 void MoveAndUpdateShadowClosure::complete_region(HeapWord* dest_addr, PSParallelCompact::RegionData* region_ptr) {
2414   assert(region_ptr->shadow_state() == ParallelCompactData::RegionData::ShadowRegion, "Region should be shadow");
2415   // Record the shadow region index
2416   region_ptr->set_shadow_region(_shadow);
2417   // Mark the shadow region as filled to indicate the data is ready to be
2418   // copied back
2419   region_ptr->mark_filled();
2420   // Try to copy the content of the shadow region back to its corresponding
2421   // heap region if available; the GC thread that decreases the destination
2422   // count to zero will do the copying otherwise (see
2423   // PSParallelCompact::decrement_destination_counts).
2424   if (((region_ptr->available() && region_ptr->claim()) || region_ptr->claimed()) && region_ptr->mark_copied()) {
2425     region_ptr->set_completed();
2426     PSParallelCompact::copy_back(PSParallelCompact::summary_data().region_to_addr(_shadow), dest_addr);
2427     ParCompactionManager::push_shadow_region_mt_safe(_shadow);
2428   }
2429 }
2430