1 /* 2 * Copyright (c) 2005, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/classLoaderDataGraph.hpp" 27 #include "classfile/javaClasses.inline.hpp" 28 #include "classfile/stringTable.hpp" 29 #include "classfile/symbolTable.hpp" 30 #include "classfile/systemDictionary.hpp" 31 #include "code/codeCache.hpp" 32 #include "compiler/oopMap.hpp" 33 #include "gc/parallel/objectStartArray.inline.hpp" 34 #include "gc/parallel/parallelArguments.hpp" 35 #include "gc/parallel/parallelScavengeHeap.inline.hpp" 36 #include "gc/parallel/parMarkBitMap.inline.hpp" 37 #include "gc/parallel/psAdaptiveSizePolicy.hpp" 38 #include "gc/parallel/psCompactionManager.inline.hpp" 39 #include "gc/parallel/psOldGen.hpp" 40 #include "gc/parallel/psParallelCompact.inline.hpp" 41 #include "gc/parallel/psPromotionManager.inline.hpp" 42 #include "gc/parallel/psRootType.hpp" 43 #include "gc/parallel/psScavenge.hpp" 44 #include "gc/parallel/psStringDedup.hpp" 45 #include "gc/parallel/psYoungGen.hpp" 46 #include "gc/shared/classUnloadingContext.hpp" 47 #include "gc/shared/gcCause.hpp" 48 #include "gc/shared/gcHeapSummary.hpp" 49 #include "gc/shared/gcId.hpp" 50 #include "gc/shared/gcLocker.hpp" 51 #include "gc/shared/gcTimer.hpp" 52 #include "gc/shared/gcTrace.hpp" 53 #include "gc/shared/gcTraceTime.inline.hpp" 54 #include "gc/shared/isGCActiveMark.hpp" 55 #include "gc/shared/oopStorage.inline.hpp" 56 #include "gc/shared/oopStorageSet.inline.hpp" 57 #include "gc/shared/oopStorageSetParState.inline.hpp" 58 #include "gc/shared/preservedMarks.inline.hpp" 59 #include "gc/shared/referencePolicy.hpp" 60 #include "gc/shared/referenceProcessor.hpp" 61 #include "gc/shared/referenceProcessorPhaseTimes.hpp" 62 #include "gc/shared/slidingForwarding.inline.hpp" 63 #include "gc/shared/strongRootsScope.hpp" 64 #include "gc/shared/taskTerminator.hpp" 65 #include "gc/shared/weakProcessor.inline.hpp" 66 #include "gc/shared/workerPolicy.hpp" 67 #include "gc/shared/workerThread.hpp" 68 #include "gc/shared/workerUtils.hpp" 69 #include "logging/log.hpp" 70 #include "memory/iterator.inline.hpp" 71 #include "memory/metaspaceUtils.hpp" 72 #include "memory/resourceArea.hpp" 73 #include "memory/universe.hpp" 74 #include "nmt/memTracker.hpp" 75 #include "oops/access.inline.hpp" 76 #include "oops/instanceClassLoaderKlass.inline.hpp" 77 #include "oops/instanceKlass.inline.hpp" 78 #include "oops/instanceMirrorKlass.inline.hpp" 79 #include "oops/methodData.hpp" 80 #include "oops/objArrayKlass.inline.hpp" 81 #include "oops/oop.inline.hpp" 82 #include "runtime/atomic.hpp" 83 #include "runtime/handles.inline.hpp" 84 #include "runtime/java.hpp" 85 #include "runtime/safepoint.hpp" 86 #include "runtime/threads.hpp" 87 #include "runtime/vmThread.hpp" 88 #include "services/memoryService.hpp" 89 #include "utilities/align.hpp" 90 #include "utilities/debug.hpp" 91 #include "utilities/events.hpp" 92 #include "utilities/formatBuffer.hpp" 93 #include "utilities/macros.hpp" 94 #include "utilities/stack.inline.hpp" 95 #if INCLUDE_JVMCI 96 #include "jvmci/jvmci.hpp" 97 #endif 98 99 #include <math.h> 100 101 // All sizes are in HeapWords. 102 const size_t ParallelCompactData::Log2RegionSize = 16; // 64K words 103 const size_t ParallelCompactData::RegionSize = (size_t)1 << Log2RegionSize; 104 static_assert(ParallelCompactData::RegionSize >= BitsPerWord, "region-start bit word-aligned"); 105 const size_t ParallelCompactData::RegionSizeBytes = 106 RegionSize << LogHeapWordSize; 107 const size_t ParallelCompactData::RegionSizeOffsetMask = RegionSize - 1; 108 const size_t ParallelCompactData::RegionAddrOffsetMask = RegionSizeBytes - 1; 109 const size_t ParallelCompactData::RegionAddrMask = ~RegionAddrOffsetMask; 110 111 const ParallelCompactData::RegionData::region_sz_t 112 ParallelCompactData::RegionData::dc_shift = 27; 113 114 const ParallelCompactData::RegionData::region_sz_t 115 ParallelCompactData::RegionData::dc_mask = ~0U << dc_shift; 116 117 const ParallelCompactData::RegionData::region_sz_t 118 ParallelCompactData::RegionData::dc_one = 0x1U << dc_shift; 119 120 const ParallelCompactData::RegionData::region_sz_t 121 ParallelCompactData::RegionData::los_mask = ~dc_mask; 122 123 const ParallelCompactData::RegionData::region_sz_t 124 ParallelCompactData::RegionData::dc_claimed = 0x8U << dc_shift; 125 126 const ParallelCompactData::RegionData::region_sz_t 127 ParallelCompactData::RegionData::dc_completed = 0xcU << dc_shift; 128 129 SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id]; 130 131 SpanSubjectToDiscoveryClosure PSParallelCompact::_span_based_discoverer; 132 ReferenceProcessor* PSParallelCompact::_ref_processor = nullptr; 133 134 void SplitInfo::record(size_t src_region_idx, size_t partial_obj_size, 135 HeapWord* destination) 136 { 137 assert(src_region_idx != 0, "invalid src_region_idx"); 138 assert(partial_obj_size != 0, "invalid partial_obj_size argument"); 139 assert(destination != nullptr, "invalid destination argument"); 140 141 _src_region_idx = src_region_idx; 142 _partial_obj_size = partial_obj_size; 143 _destination = destination; 144 145 // These fields may not be updated below, so make sure they're clear. 146 assert(_dest_region_addr == nullptr, "should have been cleared"); 147 assert(_first_src_addr == nullptr, "should have been cleared"); 148 149 // Determine the number of destination regions for the partial object. 150 HeapWord* const last_word = destination + partial_obj_size - 1; 151 const ParallelCompactData& sd = PSParallelCompact::summary_data(); 152 HeapWord* const beg_region_addr = sd.region_align_down(destination); 153 HeapWord* const end_region_addr = sd.region_align_down(last_word); 154 155 if (beg_region_addr == end_region_addr) { 156 // One destination region. 157 _destination_count = 1; 158 if (end_region_addr == destination) { 159 // The destination falls on a region boundary, thus the first word of the 160 // partial object will be the first word copied to the destination region. 161 _dest_region_addr = end_region_addr; 162 _first_src_addr = sd.region_to_addr(src_region_idx); 163 } 164 } else { 165 // Two destination regions. When copied, the partial object will cross a 166 // destination region boundary, so a word somewhere within the partial 167 // object will be the first word copied to the second destination region. 168 _destination_count = 2; 169 _dest_region_addr = end_region_addr; 170 const size_t ofs = pointer_delta(end_region_addr, destination); 171 assert(ofs < _partial_obj_size, "sanity"); 172 _first_src_addr = sd.region_to_addr(src_region_idx) + ofs; 173 } 174 } 175 176 void SplitInfo::clear() 177 { 178 _src_region_idx = 0; 179 _partial_obj_size = 0; 180 _destination = nullptr; 181 _destination_count = 0; 182 _dest_region_addr = nullptr; 183 _first_src_addr = nullptr; 184 assert(!is_valid(), "sanity"); 185 } 186 187 #ifdef ASSERT 188 void SplitInfo::verify_clear() 189 { 190 assert(_src_region_idx == 0, "not clear"); 191 assert(_partial_obj_size == 0, "not clear"); 192 assert(_destination == nullptr, "not clear"); 193 assert(_destination_count == 0, "not clear"); 194 assert(_dest_region_addr == nullptr, "not clear"); 195 assert(_first_src_addr == nullptr, "not clear"); 196 } 197 #endif // #ifdef ASSERT 198 199 200 void PSParallelCompact::print_on_error(outputStream* st) { 201 _mark_bitmap.print_on_error(st); 202 } 203 204 ParallelCompactData::ParallelCompactData() : 205 _heap_start(nullptr), 206 DEBUG_ONLY(_heap_end(nullptr) COMMA) 207 _region_vspace(nullptr), 208 _reserved_byte_size(0), 209 _region_data(nullptr), 210 _region_count(0) {} 211 212 bool ParallelCompactData::initialize(MemRegion reserved_heap) 213 { 214 _heap_start = reserved_heap.start(); 215 const size_t heap_size = reserved_heap.word_size(); 216 DEBUG_ONLY(_heap_end = _heap_start + heap_size;) 217 218 assert(region_align_down(_heap_start) == _heap_start, 219 "region start not aligned"); 220 221 return initialize_region_data(heap_size); 222 } 223 224 PSVirtualSpace* 225 ParallelCompactData::create_vspace(size_t count, size_t element_size) 226 { 227 const size_t raw_bytes = count * element_size; 228 const size_t page_sz = os::page_size_for_region_aligned(raw_bytes, 10); 229 const size_t granularity = os::vm_allocation_granularity(); 230 _reserved_byte_size = align_up(raw_bytes, MAX2(page_sz, granularity)); 231 232 const size_t rs_align = page_sz == os::vm_page_size() ? 0 : 233 MAX2(page_sz, granularity); 234 ReservedSpace rs(_reserved_byte_size, rs_align, page_sz); 235 os::trace_page_sizes("Parallel Compact Data", raw_bytes, raw_bytes, rs.base(), 236 rs.size(), page_sz); 237 238 MemTracker::record_virtual_memory_type((address)rs.base(), mtGC); 239 240 PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz); 241 if (vspace != 0) { 242 if (vspace->expand_by(_reserved_byte_size)) { 243 return vspace; 244 } 245 delete vspace; 246 // Release memory reserved in the space. 247 rs.release(); 248 } 249 250 return 0; 251 } 252 253 bool ParallelCompactData::initialize_region_data(size_t heap_size) 254 { 255 assert(is_aligned(heap_size, RegionSize), "precondition"); 256 257 const size_t count = heap_size >> Log2RegionSize; 258 _region_vspace = create_vspace(count, sizeof(RegionData)); 259 if (_region_vspace != 0) { 260 _region_data = (RegionData*)_region_vspace->reserved_low_addr(); 261 _region_count = count; 262 return true; 263 } 264 return false; 265 } 266 267 void ParallelCompactData::clear_range(size_t beg_region, size_t end_region) { 268 assert(beg_region <= _region_count, "beg_region out of range"); 269 assert(end_region <= _region_count, "end_region out of range"); 270 271 const size_t region_cnt = end_region - beg_region; 272 memset(_region_data + beg_region, 0, region_cnt * sizeof(RegionData)); 273 } 274 275 void 276 ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end) 277 { 278 assert(is_region_aligned(beg), "not RegionSize aligned"); 279 assert(is_region_aligned(end), "not RegionSize aligned"); 280 281 size_t cur_region = addr_to_region_idx(beg); 282 const size_t end_region = addr_to_region_idx(end); 283 HeapWord* addr = beg; 284 while (cur_region < end_region) { 285 _region_data[cur_region].set_destination(addr); 286 _region_data[cur_region].set_destination_count(0); 287 _region_data[cur_region].set_source_region(cur_region); 288 289 // Update live_obj_size so the region appears completely full. 290 size_t live_size = RegionSize - _region_data[cur_region].partial_obj_size(); 291 _region_data[cur_region].set_live_obj_size(live_size); 292 293 ++cur_region; 294 addr += RegionSize; 295 } 296 } 297 298 // Find the point at which a space can be split and, if necessary, record the 299 // split point. 300 // 301 // If the current src region (which overflowed the destination space) doesn't 302 // have a partial object, the split point is at the beginning of the current src 303 // region (an "easy" split, no extra bookkeeping required). 304 // 305 // If the current src region has a partial object, the split point is in the 306 // region where that partial object starts (call it the split_region). If 307 // split_region has a partial object, then the split point is just after that 308 // partial object (a "hard" split where we have to record the split data and 309 // zero the partial_obj_size field). With a "hard" split, we know that the 310 // partial_obj ends within split_region because the partial object that caused 311 // the overflow starts in split_region. If split_region doesn't have a partial 312 // obj, then the split is at the beginning of split_region (another "easy" 313 // split). 314 HeapWord* 315 ParallelCompactData::summarize_split_space(size_t src_region, 316 SplitInfo& split_info, 317 HeapWord* destination, 318 HeapWord* target_end, 319 HeapWord** target_next) 320 { 321 assert(destination <= target_end, "sanity"); 322 assert(destination + _region_data[src_region].data_size() > target_end, 323 "region should not fit into target space"); 324 assert(is_region_aligned(target_end), "sanity"); 325 326 size_t split_region = src_region; 327 HeapWord* split_destination = destination; 328 size_t partial_obj_size = _region_data[src_region].partial_obj_size(); 329 330 if (destination + partial_obj_size > target_end) { 331 // The split point is just after the partial object (if any) in the 332 // src_region that contains the start of the object that overflowed the 333 // destination space. 334 // 335 // Find the start of the "overflow" object and set split_region to the 336 // region containing it. 337 HeapWord* const overflow_obj = _region_data[src_region].partial_obj_addr(); 338 split_region = addr_to_region_idx(overflow_obj); 339 340 // Clear the source_region field of all destination regions whose first word 341 // came from data after the split point (a non-null source_region field 342 // implies a region must be filled). 343 // 344 // An alternative to the simple loop below: clear during post_compact(), 345 // which uses memcpy instead of individual stores, and is easy to 346 // parallelize. (The downside is that it clears the entire RegionData 347 // object as opposed to just one field.) 348 // 349 // post_compact() would have to clear the summary data up to the highest 350 // address that was written during the summary phase, which would be 351 // 352 // max(top, max(new_top, clear_top)) 353 // 354 // where clear_top is a new field in SpaceInfo. Would have to set clear_top 355 // to target_end. 356 const RegionData* const sr = region(split_region); 357 const size_t beg_idx = 358 addr_to_region_idx(region_align_up(sr->destination() + 359 sr->partial_obj_size())); 360 const size_t end_idx = addr_to_region_idx(target_end); 361 362 log_develop_trace(gc, compaction)("split: clearing source_region field in [" SIZE_FORMAT ", " SIZE_FORMAT ")", beg_idx, end_idx); 363 for (size_t idx = beg_idx; idx < end_idx; ++idx) { 364 _region_data[idx].set_source_region(0); 365 } 366 367 // Set split_destination and partial_obj_size to reflect the split region. 368 split_destination = sr->destination(); 369 partial_obj_size = sr->partial_obj_size(); 370 } 371 372 // The split is recorded only if a partial object extends onto the region. 373 if (partial_obj_size != 0) { 374 _region_data[split_region].set_partial_obj_size(0); 375 split_info.record(split_region, partial_obj_size, split_destination); 376 } 377 378 // Setup the continuation addresses. 379 *target_next = split_destination + partial_obj_size; 380 HeapWord* const source_next = region_to_addr(split_region) + partial_obj_size; 381 382 if (log_develop_is_enabled(Trace, gc, compaction)) { 383 const char * split_type = partial_obj_size == 0 ? "easy" : "hard"; 384 log_develop_trace(gc, compaction)("%s split: src=" PTR_FORMAT " src_c=" SIZE_FORMAT " pos=" SIZE_FORMAT, 385 split_type, p2i(source_next), split_region, partial_obj_size); 386 log_develop_trace(gc, compaction)("%s split: dst=" PTR_FORMAT " dst_c=" SIZE_FORMAT " tn=" PTR_FORMAT, 387 split_type, p2i(split_destination), 388 addr_to_region_idx(split_destination), 389 p2i(*target_next)); 390 391 if (partial_obj_size != 0) { 392 HeapWord* const po_beg = split_info.destination(); 393 HeapWord* const po_end = po_beg + split_info.partial_obj_size(); 394 log_develop_trace(gc, compaction)("%s split: po_beg=" PTR_FORMAT " " SIZE_FORMAT " po_end=" PTR_FORMAT " " SIZE_FORMAT, 395 split_type, 396 p2i(po_beg), addr_to_region_idx(po_beg), 397 p2i(po_end), addr_to_region_idx(po_end)); 398 } 399 } 400 401 return source_next; 402 } 403 404 size_t ParallelCompactData::live_words_in_space(const MutableSpace* space, 405 HeapWord** full_region_prefix_end) { 406 size_t cur_region = addr_to_region_idx(space->bottom()); 407 const size_t end_region = addr_to_region_idx(region_align_up(space->top())); 408 size_t live_words = 0; 409 if (full_region_prefix_end == nullptr) { 410 for (/* empty */; cur_region < end_region; ++cur_region) { 411 live_words += _region_data[cur_region].data_size(); 412 } 413 } else { 414 bool first_set = false; 415 for (/* empty */; cur_region < end_region; ++cur_region) { 416 size_t live_words_in_region = _region_data[cur_region].data_size(); 417 if (!first_set && live_words_in_region < RegionSize) { 418 *full_region_prefix_end = region_to_addr(cur_region); 419 first_set = true; 420 } 421 live_words += live_words_in_region; 422 } 423 if (!first_set) { 424 // All regions are full of live objs. 425 assert(is_region_aligned(space->top()), "inv"); 426 *full_region_prefix_end = space->top(); 427 } 428 assert(*full_region_prefix_end != nullptr, "postcondition"); 429 assert(is_region_aligned(*full_region_prefix_end), "inv"); 430 assert(*full_region_prefix_end >= space->bottom(), "in-range"); 431 assert(*full_region_prefix_end <= space->top(), "in-range"); 432 } 433 return live_words; 434 } 435 436 bool ParallelCompactData::summarize(SplitInfo& split_info, 437 HeapWord* source_beg, HeapWord* source_end, 438 HeapWord** source_next, 439 HeapWord* target_beg, HeapWord* target_end, 440 HeapWord** target_next) 441 { 442 HeapWord* const source_next_val = source_next == nullptr ? nullptr : *source_next; 443 log_develop_trace(gc, compaction)( 444 "sb=" PTR_FORMAT " se=" PTR_FORMAT " sn=" PTR_FORMAT 445 "tb=" PTR_FORMAT " te=" PTR_FORMAT " tn=" PTR_FORMAT, 446 p2i(source_beg), p2i(source_end), p2i(source_next_val), 447 p2i(target_beg), p2i(target_end), p2i(*target_next)); 448 449 size_t cur_region = addr_to_region_idx(source_beg); 450 const size_t end_region = addr_to_region_idx(region_align_up(source_end)); 451 452 HeapWord *dest_addr = target_beg; 453 while (cur_region < end_region) { 454 // The destination must be set even if the region has no data. 455 _region_data[cur_region].set_destination(dest_addr); 456 457 size_t words = _region_data[cur_region].data_size(); 458 if (words > 0) { 459 // If cur_region does not fit entirely into the target space, find a point 460 // at which the source space can be 'split' so that part is copied to the 461 // target space and the rest is copied elsewhere. 462 if (dest_addr + words > target_end) { 463 assert(source_next != nullptr, "source_next is null when splitting"); 464 *source_next = summarize_split_space(cur_region, split_info, dest_addr, 465 target_end, target_next); 466 return false; 467 } 468 469 // Compute the destination_count for cur_region, and if necessary, update 470 // source_region for a destination region. The source_region field is 471 // updated if cur_region is the first (left-most) region to be copied to a 472 // destination region. 473 // 474 // The destination_count calculation is a bit subtle. A region that has 475 // data that compacts into itself does not count itself as a destination. 476 // This maintains the invariant that a zero count means the region is 477 // available and can be claimed and then filled. 478 uint destination_count = 0; 479 if (split_info.is_split(cur_region)) { 480 // The current region has been split: the partial object will be copied 481 // to one destination space and the remaining data will be copied to 482 // another destination space. Adjust the initial destination_count and, 483 // if necessary, set the source_region field if the partial object will 484 // cross a destination region boundary. 485 destination_count = split_info.destination_count(); 486 if (destination_count == 2) { 487 size_t dest_idx = addr_to_region_idx(split_info.dest_region_addr()); 488 _region_data[dest_idx].set_source_region(cur_region); 489 } 490 } 491 492 HeapWord* const last_addr = dest_addr + words - 1; 493 const size_t dest_region_1 = addr_to_region_idx(dest_addr); 494 const size_t dest_region_2 = addr_to_region_idx(last_addr); 495 496 // Initially assume that the destination regions will be the same and 497 // adjust the value below if necessary. Under this assumption, if 498 // cur_region == dest_region_2, then cur_region will be compacted 499 // completely into itself. 500 destination_count += cur_region == dest_region_2 ? 0 : 1; 501 if (dest_region_1 != dest_region_2) { 502 // Destination regions differ; adjust destination_count. 503 destination_count += 1; 504 // Data from cur_region will be copied to the start of dest_region_2. 505 _region_data[dest_region_2].set_source_region(cur_region); 506 } else if (is_region_aligned(dest_addr)) { 507 // Data from cur_region will be copied to the start of the destination 508 // region. 509 _region_data[dest_region_1].set_source_region(cur_region); 510 } 511 512 _region_data[cur_region].set_destination_count(destination_count); 513 dest_addr += words; 514 } 515 516 ++cur_region; 517 } 518 519 *target_next = dest_addr; 520 return true; 521 } 522 523 #ifdef ASSERT 524 void ParallelCompactData::verify_clear(const PSVirtualSpace* vspace) 525 { 526 const size_t* const beg = (const size_t*)vspace->committed_low_addr(); 527 const size_t* const end = (const size_t*)vspace->committed_high_addr(); 528 for (const size_t* p = beg; p < end; ++p) { 529 assert(*p == 0, "not zero"); 530 } 531 } 532 533 void ParallelCompactData::verify_clear() 534 { 535 verify_clear(_region_vspace); 536 } 537 #endif // #ifdef ASSERT 538 539 STWGCTimer PSParallelCompact::_gc_timer; 540 ParallelOldTracer PSParallelCompact::_gc_tracer; 541 elapsedTimer PSParallelCompact::_accumulated_time; 542 unsigned int PSParallelCompact::_maximum_compaction_gc_num = 0; 543 CollectorCounters* PSParallelCompact::_counters = nullptr; 544 ParMarkBitMap PSParallelCompact::_mark_bitmap; 545 ParallelCompactData PSParallelCompact::_summary_data; 546 547 PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure; 548 549 class PCAdjustPointerClosure: public BasicOopIterateClosure { 550 template <typename T> 551 void do_oop_work(T* p) { PSParallelCompact::adjust_pointer(p); } 552 553 public: 554 virtual void do_oop(oop* p) { do_oop_work(p); } 555 virtual void do_oop(narrowOop* p) { do_oop_work(p); } 556 557 virtual ReferenceIterationMode reference_iteration_mode() { return DO_FIELDS; } 558 }; 559 560 static PCAdjustPointerClosure pc_adjust_pointer_closure; 561 562 bool PSParallelCompact::IsAliveClosure::do_object_b(oop p) { return mark_bitmap()->is_marked(p); } 563 564 void PSParallelCompact::post_initialize() { 565 ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); 566 _span_based_discoverer.set_span(heap->reserved_region()); 567 _ref_processor = 568 new ReferenceProcessor(&_span_based_discoverer, 569 ParallelGCThreads, // mt processing degree 570 ParallelGCThreads, // mt discovery degree 571 false, // concurrent_discovery 572 &_is_alive_closure); // non-header is alive closure 573 574 _counters = new CollectorCounters("Parallel full collection pauses", 1); 575 576 // Initialize static fields in ParCompactionManager. 577 ParCompactionManager::initialize(mark_bitmap()); 578 } 579 580 bool PSParallelCompact::initialize_aux_data() { 581 ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); 582 MemRegion mr = heap->reserved_region(); 583 assert(mr.byte_size() != 0, "heap should be reserved"); 584 585 initialize_space_info(); 586 587 if (!_mark_bitmap.initialize(mr)) { 588 vm_shutdown_during_initialization( 589 err_msg("Unable to allocate " SIZE_FORMAT "KB bitmaps for parallel " 590 "garbage collection for the requested " SIZE_FORMAT "KB heap.", 591 _mark_bitmap.reserved_byte_size()/K, mr.byte_size()/K)); 592 return false; 593 } 594 595 if (!_summary_data.initialize(mr)) { 596 vm_shutdown_during_initialization( 597 err_msg("Unable to allocate " SIZE_FORMAT "KB card tables for parallel " 598 "garbage collection for the requested " SIZE_FORMAT "KB heap.", 599 _summary_data.reserved_byte_size()/K, mr.byte_size()/K)); 600 return false; 601 } 602 603 return true; 604 } 605 606 void PSParallelCompact::initialize_space_info() 607 { 608 memset(&_space_info, 0, sizeof(_space_info)); 609 610 ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); 611 PSYoungGen* young_gen = heap->young_gen(); 612 613 _space_info[old_space_id].set_space(heap->old_gen()->object_space()); 614 _space_info[eden_space_id].set_space(young_gen->eden_space()); 615 _space_info[from_space_id].set_space(young_gen->from_space()); 616 _space_info[to_space_id].set_space(young_gen->to_space()); 617 618 _space_info[old_space_id].set_start_array(heap->old_gen()->start_array()); 619 } 620 621 void 622 PSParallelCompact::clear_data_covering_space(SpaceId id) 623 { 624 // At this point, top is the value before GC, new_top() is the value that will 625 // be set at the end of GC. The marking bitmap is cleared to top; nothing 626 // should be marked above top. The summary data is cleared to the larger of 627 // top & new_top. 628 MutableSpace* const space = _space_info[id].space(); 629 HeapWord* const bot = space->bottom(); 630 HeapWord* const top = space->top(); 631 HeapWord* const max_top = MAX2(top, _space_info[id].new_top()); 632 633 _mark_bitmap.clear_range(bot, top); 634 635 const size_t beg_region = _summary_data.addr_to_region_idx(bot); 636 const size_t end_region = 637 _summary_data.addr_to_region_idx(_summary_data.region_align_up(max_top)); 638 _summary_data.clear_range(beg_region, end_region); 639 640 // Clear the data used to 'split' regions. 641 SplitInfo& split_info = _space_info[id].split_info(); 642 if (split_info.is_valid()) { 643 split_info.clear(); 644 } 645 DEBUG_ONLY(split_info.verify_clear();) 646 } 647 648 void PSParallelCompact::pre_compact() 649 { 650 // Update the from & to space pointers in space_info, since they are swapped 651 // at each young gen gc. Do the update unconditionally (even though a 652 // promotion failure does not swap spaces) because an unknown number of young 653 // collections will have swapped the spaces an unknown number of times. 654 GCTraceTime(Debug, gc, phases) tm("Pre Compact", &_gc_timer); 655 ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); 656 _space_info[from_space_id].set_space(heap->young_gen()->from_space()); 657 _space_info[to_space_id].set_space(heap->young_gen()->to_space()); 658 659 // Increment the invocation count 660 heap->increment_total_collections(true); 661 662 CodeCache::on_gc_marking_cycle_start(); 663 664 heap->print_heap_before_gc(); 665 heap->trace_heap_before_gc(&_gc_tracer); 666 667 // Fill in TLABs 668 heap->ensure_parsability(true); // retire TLABs 669 670 if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) { 671 Universe::verify("Before GC"); 672 } 673 674 DEBUG_ONLY(mark_bitmap()->verify_clear();) 675 DEBUG_ONLY(summary_data().verify_clear();) 676 } 677 678 void PSParallelCompact::post_compact() 679 { 680 GCTraceTime(Info, gc, phases) tm("Post Compact", &_gc_timer); 681 ParCompactionManager::remove_all_shadow_regions(); 682 683 CodeCache::on_gc_marking_cycle_finish(); 684 CodeCache::arm_all_nmethods(); 685 686 for (unsigned int id = old_space_id; id < last_space_id; ++id) { 687 // Clear the marking bitmap, summary data and split info. 688 clear_data_covering_space(SpaceId(id)); 689 { 690 MutableSpace* space = _space_info[id].space(); 691 HeapWord* top = space->top(); 692 HeapWord* new_top = _space_info[id].new_top(); 693 if (ZapUnusedHeapArea && new_top < top) { 694 space->mangle_region(MemRegion(new_top, top)); 695 } 696 // Update top(). Must be done after clearing the bitmap and summary data. 697 space->set_top(new_top); 698 } 699 } 700 701 ParCompactionManager::flush_all_string_dedup_requests(); 702 703 MutableSpace* const eden_space = _space_info[eden_space_id].space(); 704 MutableSpace* const from_space = _space_info[from_space_id].space(); 705 MutableSpace* const to_space = _space_info[to_space_id].space(); 706 707 ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); 708 bool eden_empty = eden_space->is_empty(); 709 710 // Update heap occupancy information which is used as input to the soft ref 711 // clearing policy at the next gc. 712 Universe::heap()->update_capacity_and_used_at_gc(); 713 714 bool young_gen_empty = eden_empty && from_space->is_empty() && 715 to_space->is_empty(); 716 717 PSCardTable* ct = heap->card_table(); 718 MemRegion old_mr = heap->old_gen()->committed(); 719 if (young_gen_empty) { 720 ct->clear_MemRegion(old_mr); 721 } else { 722 ct->dirty_MemRegion(old_mr); 723 } 724 725 { 726 // Delete metaspaces for unloaded class loaders and clean up loader_data graph 727 GCTraceTime(Debug, gc, phases) t("Purge Class Loader Data", gc_timer()); 728 ClassLoaderDataGraph::purge(true /* at_safepoint */); 729 DEBUG_ONLY(MetaspaceUtils::verify();) 730 } 731 732 // Need to clear claim bits for the next mark. 733 ClassLoaderDataGraph::clear_claimed_marks(); 734 735 heap->prune_scavengable_nmethods(); 736 737 #if COMPILER2_OR_JVMCI 738 DerivedPointerTable::update_pointers(); 739 #endif 740 741 // Signal that we have completed a visit to all live objects. 742 Universe::heap()->record_whole_heap_examined_timestamp(); 743 } 744 745 HeapWord* PSParallelCompact::compute_dense_prefix_for_old_space(MutableSpace* old_space, 746 HeapWord* full_region_prefix_end) { 747 const size_t region_size = ParallelCompactData::RegionSize; 748 const ParallelCompactData& sd = summary_data(); 749 750 // Iteration starts with the region *after* the full-region-prefix-end. 751 const RegionData* const start_region = sd.addr_to_region_ptr(full_region_prefix_end); 752 // If final region is not full, iteration stops before that region, 753 // because fill_dense_prefix_end assumes that prefix_end <= top. 754 const RegionData* const end_region = sd.addr_to_region_ptr(old_space->top()); 755 assert(start_region <= end_region, "inv"); 756 757 size_t max_waste = old_space->capacity_in_words() * (MarkSweepDeadRatio / 100.0); 758 const RegionData* cur_region = start_region; 759 for (/* empty */; cur_region < end_region; ++cur_region) { 760 assert(region_size >= cur_region->data_size(), "inv"); 761 size_t dead_size = region_size - cur_region->data_size(); 762 if (max_waste < dead_size) { 763 break; 764 } 765 max_waste -= dead_size; 766 } 767 768 HeapWord* const prefix_end = sd.region_to_addr(cur_region); 769 assert(sd.is_region_aligned(prefix_end), "postcondition"); 770 assert(prefix_end >= full_region_prefix_end, "in-range"); 771 assert(prefix_end <= old_space->top(), "in-range"); 772 return prefix_end; 773 } 774 775 void PSParallelCompact::fill_dense_prefix_end(SpaceId id) { 776 // Comparing two sizes to decide if filling is required: 777 // 778 // The size of the filler (min-obj-size) is 2 heap words with the default 779 // MinObjAlignment, since both markword and klass take 1 heap word. 780 // 781 // The size of the gap (if any) right before dense-prefix-end is 782 // MinObjAlignment. 783 // 784 // Need to fill in the gap only if it's smaller than min-obj-size, and the 785 // filler obj will extend to next region. 786 787 // Note: If min-fill-size decreases to 1, this whole method becomes redundant. 788 if (UseCompactObjectHeaders) { 789 // The gap is always equal to min-fill-size, so nothing to do. 790 return; 791 } 792 assert(CollectedHeap::min_fill_size() >= 2, "inv"); 793 #ifndef _LP64 794 // In 32-bit system, each heap word is 4 bytes, so MinObjAlignment == 2. 795 // The gap is always equal to min-fill-size, so nothing to do. 796 return; 797 #endif 798 if (MinObjAlignment > 1) { 799 return; 800 } 801 assert(CollectedHeap::min_fill_size() == 2, "inv"); 802 HeapWord* const dense_prefix_end = dense_prefix(id); 803 assert(_summary_data.is_region_aligned(dense_prefix_end), "precondition"); 804 assert(dense_prefix_end <= space(id)->top(), "precondition"); 805 if (dense_prefix_end == space(id)->top()) { 806 // Must not have single-word gap right before prefix-end/top. 807 return; 808 } 809 RegionData* const region_after_dense_prefix = _summary_data.addr_to_region_ptr(dense_prefix_end); 810 811 if (region_after_dense_prefix->partial_obj_size() != 0 || 812 _mark_bitmap.is_marked(dense_prefix_end)) { 813 // The region after the dense prefix starts with live bytes. 814 return; 815 } 816 817 HeapWord* block_start = start_array(id)->block_start_reaching_into_card(dense_prefix_end); 818 if (block_start == dense_prefix_end - 1) { 819 assert(!_mark_bitmap.is_marked(block_start), "inv"); 820 // There is exactly one heap word gap right before the dense prefix end, so we need a filler object. 821 // The filler object will extend into region_after_dense_prefix. 822 const size_t obj_len = 2; // min-fill-size 823 HeapWord* const obj_beg = dense_prefix_end - 1; 824 CollectedHeap::fill_with_object(obj_beg, obj_len); 825 _mark_bitmap.mark_obj(obj_beg); 826 _summary_data.addr_to_region_ptr(obj_beg)->add_live_obj(1); 827 region_after_dense_prefix->set_partial_obj_size(1); 828 region_after_dense_prefix->set_partial_obj_addr(obj_beg); 829 assert(start_array(id) != nullptr, "sanity"); 830 start_array(id)->update_for_block(obj_beg, obj_beg + obj_len); 831 } 832 } 833 834 bool PSParallelCompact::reassess_maximum_compaction(bool maximum_compaction, 835 size_t total_live_words, 836 MutableSpace* const old_space, 837 HeapWord* full_region_prefix_end) { 838 // Check if all live objs are larger than old-gen. 839 const bool is_old_gen_overflowing = (total_live_words > old_space->capacity_in_words()); 840 841 // JVM flags 842 const uint total_invocations = ParallelScavengeHeap::heap()->total_full_collections(); 843 assert(total_invocations >= _maximum_compaction_gc_num, "sanity"); 844 const size_t gcs_since_max = total_invocations - _maximum_compaction_gc_num; 845 const bool is_interval_ended = gcs_since_max > HeapMaximumCompactionInterval; 846 847 // If all regions in old-gen are full 848 const bool is_region_full = 849 full_region_prefix_end >= _summary_data.region_align_down(old_space->top()); 850 851 if (maximum_compaction || is_old_gen_overflowing || is_interval_ended || is_region_full) { 852 _maximum_compaction_gc_num = total_invocations; 853 return true; 854 } 855 856 return false; 857 } 858 859 void PSParallelCompact::summary_phase(bool maximum_compaction) 860 { 861 GCTraceTime(Info, gc, phases) tm("Summary Phase", &_gc_timer); 862 863 MutableSpace* const old_space = _space_info[old_space_id].space(); 864 { 865 size_t total_live_words = 0; 866 HeapWord* full_region_prefix_end = nullptr; 867 { 868 // old-gen 869 size_t live_words = _summary_data.live_words_in_space(old_space, 870 &full_region_prefix_end); 871 total_live_words += live_words; 872 } 873 // young-gen 874 for (uint i = eden_space_id; i < last_space_id; ++i) { 875 const MutableSpace* space = _space_info[i].space(); 876 size_t live_words = _summary_data.live_words_in_space(space); 877 total_live_words += live_words; 878 _space_info[i].set_new_top(space->bottom() + live_words); 879 _space_info[i].set_dense_prefix(space->bottom()); 880 } 881 882 maximum_compaction = reassess_maximum_compaction(maximum_compaction, 883 total_live_words, 884 old_space, 885 full_region_prefix_end); 886 HeapWord* dense_prefix_end = 887 maximum_compaction ? full_region_prefix_end 888 : compute_dense_prefix_for_old_space(old_space, 889 full_region_prefix_end); 890 SpaceId id = old_space_id; 891 _space_info[id].set_dense_prefix(dense_prefix_end); 892 893 if (dense_prefix_end != old_space->bottom()) { 894 fill_dense_prefix_end(id); 895 _summary_data.summarize_dense_prefix(old_space->bottom(), dense_prefix_end); 896 } 897 _summary_data.summarize(_space_info[id].split_info(), 898 dense_prefix_end, old_space->top(), nullptr, 899 dense_prefix_end, old_space->end(), 900 _space_info[id].new_top_addr()); 901 } 902 903 // Summarize the remaining spaces in the young gen. The initial target space 904 // is the old gen. If a space does not fit entirely into the target, then the 905 // remainder is compacted into the space itself and that space becomes the new 906 // target. 907 SpaceId dst_space_id = old_space_id; 908 HeapWord* dst_space_end = old_space->end(); 909 HeapWord** new_top_addr = _space_info[dst_space_id].new_top_addr(); 910 for (unsigned int id = eden_space_id; id < last_space_id; ++id) { 911 const MutableSpace* space = _space_info[id].space(); 912 const size_t live = pointer_delta(_space_info[id].new_top(), 913 space->bottom()); 914 const size_t available = pointer_delta(dst_space_end, *new_top_addr); 915 916 if (live > 0 && live <= available) { 917 // All the live data will fit. 918 bool done = _summary_data.summarize(_space_info[id].split_info(), 919 space->bottom(), space->top(), 920 nullptr, 921 *new_top_addr, dst_space_end, 922 new_top_addr); 923 assert(done, "space must fit into old gen"); 924 925 // Reset the new_top value for the space. 926 _space_info[id].set_new_top(space->bottom()); 927 } else if (live > 0) { 928 // Attempt to fit part of the source space into the target space. 929 HeapWord* next_src_addr = nullptr; 930 bool done = _summary_data.summarize(_space_info[id].split_info(), 931 space->bottom(), space->top(), 932 &next_src_addr, 933 *new_top_addr, dst_space_end, 934 new_top_addr); 935 assert(!done, "space should not fit into old gen"); 936 assert(next_src_addr != nullptr, "sanity"); 937 938 // The source space becomes the new target, so the remainder is compacted 939 // within the space itself. 940 dst_space_id = SpaceId(id); 941 dst_space_end = space->end(); 942 new_top_addr = _space_info[id].new_top_addr(); 943 done = _summary_data.summarize(_space_info[id].split_info(), 944 next_src_addr, space->top(), 945 nullptr, 946 space->bottom(), dst_space_end, 947 new_top_addr); 948 assert(done, "space must fit when compacted into itself"); 949 assert(*new_top_addr <= space->top(), "usage should not grow"); 950 } 951 } 952 } 953 954 // This method should contain all heap-specific policy for invoking a full 955 // collection. invoke_no_policy() will only attempt to compact the heap; it 956 // will do nothing further. If we need to bail out for policy reasons, scavenge 957 // before full gc, or any other specialized behavior, it needs to be added here. 958 // 959 // Note that this method should only be called from the vm_thread while at a 960 // safepoint. 961 // 962 // Note that the all_soft_refs_clear flag in the soft ref policy 963 // may be true because this method can be called without intervening 964 // activity. For example when the heap space is tight and full measure 965 // are being taken to free space. 966 bool PSParallelCompact::invoke(bool maximum_heap_compaction) { 967 assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint"); 968 assert(Thread::current() == (Thread*)VMThread::vm_thread(), 969 "should be in vm thread"); 970 971 ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); 972 assert(!heap->is_stw_gc_active(), "not reentrant"); 973 974 IsSTWGCActiveMark mark; 975 976 const bool clear_all_soft_refs = 977 heap->soft_ref_policy()->should_clear_all_soft_refs(); 978 979 return PSParallelCompact::invoke_no_policy(clear_all_soft_refs || 980 maximum_heap_compaction); 981 } 982 983 // This method contains no policy. You should probably 984 // be calling invoke() instead. 985 bool PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) { 986 assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint"); 987 assert(ref_processor() != nullptr, "Sanity"); 988 989 if (GCLocker::check_active_before_gc()) { 990 return false; 991 } 992 993 ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); 994 995 GCIdMark gc_id_mark; 996 _gc_timer.register_gc_start(); 997 _gc_tracer.report_gc_start(heap->gc_cause(), _gc_timer.gc_start()); 998 999 GCCause::Cause gc_cause = heap->gc_cause(); 1000 PSYoungGen* young_gen = heap->young_gen(); 1001 PSOldGen* old_gen = heap->old_gen(); 1002 PSAdaptiveSizePolicy* size_policy = heap->size_policy(); 1003 1004 // The scope of casr should end after code that can change 1005 // SoftRefPolicy::_should_clear_all_soft_refs. 1006 ClearedAllSoftRefs casr(maximum_heap_compaction, 1007 heap->soft_ref_policy()); 1008 1009 // Make sure data structures are sane, make the heap parsable, and do other 1010 // miscellaneous bookkeeping. 1011 pre_compact(); 1012 1013 const PreGenGCValues pre_gc_values = heap->get_pre_gc_values(); 1014 1015 { 1016 const uint active_workers = 1017 WorkerPolicy::calc_active_workers(ParallelScavengeHeap::heap()->workers().max_workers(), 1018 ParallelScavengeHeap::heap()->workers().active_workers(), 1019 Threads::number_of_non_daemon_threads()); 1020 ParallelScavengeHeap::heap()->workers().set_active_workers(active_workers); 1021 1022 GCTraceCPUTime tcpu(&_gc_tracer); 1023 GCTraceTime(Info, gc) tm("Pause Full", nullptr, gc_cause, true); 1024 1025 heap->pre_full_gc_dump(&_gc_timer); 1026 1027 TraceCollectorStats tcs(counters()); 1028 TraceMemoryManagerStats tms(heap->old_gc_manager(), gc_cause, "end of major GC"); 1029 1030 if (log_is_enabled(Debug, gc, heap, exit)) { 1031 accumulated_time()->start(); 1032 } 1033 1034 // Let the size policy know we're starting 1035 size_policy->major_collection_begin(); 1036 1037 #if COMPILER2_OR_JVMCI 1038 DerivedPointerTable::clear(); 1039 #endif 1040 1041 ref_processor()->start_discovery(maximum_heap_compaction); 1042 1043 ClassUnloadingContext ctx(1 /* num_nmethod_unlink_workers */, 1044 false /* unregister_nmethods_during_purge */, 1045 false /* lock_nmethod_free_separately */); 1046 1047 marking_phase(&_gc_tracer); 1048 1049 bool max_on_system_gc = UseMaximumCompactionOnSystemGC 1050 && GCCause::is_user_requested_gc(gc_cause); 1051 summary_phase(maximum_heap_compaction || max_on_system_gc); 1052 1053 #if COMPILER2_OR_JVMCI 1054 assert(DerivedPointerTable::is_active(), "Sanity"); 1055 DerivedPointerTable::set_active(false); 1056 #endif 1057 1058 SlidingForwarding::begin(); 1059 1060 forward_to_new_addr(); 1061 1062 adjust_pointers(); 1063 1064 compact(); 1065 1066 SlidingForwarding::end(); 1067 1068 ParCompactionManager::_preserved_marks_set->restore(&ParallelScavengeHeap::heap()->workers()); 1069 1070 ParCompactionManager::verify_all_region_stack_empty(); 1071 1072 // Reset the mark bitmap, summary data, and do other bookkeeping. Must be 1073 // done before resizing. 1074 post_compact(); 1075 1076 // Let the size policy know we're done 1077 size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause); 1078 1079 if (UseAdaptiveSizePolicy) { 1080 log_debug(gc, ergo)("AdaptiveSizeStart: collection: %d ", heap->total_collections()); 1081 log_trace(gc, ergo)("old_gen_capacity: " SIZE_FORMAT " young_gen_capacity: " SIZE_FORMAT, 1082 old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes()); 1083 1084 // Don't check if the size_policy is ready here. Let 1085 // the size_policy check that internally. 1086 if (UseAdaptiveGenerationSizePolicyAtMajorCollection && 1087 AdaptiveSizePolicy::should_update_promo_stats(gc_cause)) { 1088 // Swap the survivor spaces if from_space is empty. The 1089 // resize_young_gen() called below is normally used after 1090 // a successful young GC and swapping of survivor spaces; 1091 // otherwise, it will fail to resize the young gen with 1092 // the current implementation. 1093 if (young_gen->from_space()->is_empty()) { 1094 young_gen->from_space()->clear(SpaceDecorator::Mangle); 1095 young_gen->swap_spaces(); 1096 } 1097 1098 // Calculate optimal free space amounts 1099 assert(young_gen->max_gen_size() > 1100 young_gen->from_space()->capacity_in_bytes() + 1101 young_gen->to_space()->capacity_in_bytes(), 1102 "Sizes of space in young gen are out-of-bounds"); 1103 1104 size_t young_live = young_gen->used_in_bytes(); 1105 size_t eden_live = young_gen->eden_space()->used_in_bytes(); 1106 size_t old_live = old_gen->used_in_bytes(); 1107 size_t cur_eden = young_gen->eden_space()->capacity_in_bytes(); 1108 size_t max_old_gen_size = old_gen->max_gen_size(); 1109 size_t max_eden_size = young_gen->max_gen_size() - 1110 young_gen->from_space()->capacity_in_bytes() - 1111 young_gen->to_space()->capacity_in_bytes(); 1112 1113 // Used for diagnostics 1114 size_policy->clear_generation_free_space_flags(); 1115 1116 size_policy->compute_generations_free_space(young_live, 1117 eden_live, 1118 old_live, 1119 cur_eden, 1120 max_old_gen_size, 1121 max_eden_size, 1122 true /* full gc*/); 1123 1124 size_policy->check_gc_overhead_limit(eden_live, 1125 max_old_gen_size, 1126 max_eden_size, 1127 true /* full gc*/, 1128 gc_cause, 1129 heap->soft_ref_policy()); 1130 1131 size_policy->decay_supplemental_growth(true /* full gc*/); 1132 1133 heap->resize_old_gen( 1134 size_policy->calculated_old_free_size_in_bytes()); 1135 1136 heap->resize_young_gen(size_policy->calculated_eden_size_in_bytes(), 1137 size_policy->calculated_survivor_size_in_bytes()); 1138 } 1139 1140 log_debug(gc, ergo)("AdaptiveSizeStop: collection: %d ", heap->total_collections()); 1141 } 1142 1143 if (UsePerfData) { 1144 PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters(); 1145 counters->update_counters(); 1146 counters->update_old_capacity(old_gen->capacity_in_bytes()); 1147 counters->update_young_capacity(young_gen->capacity_in_bytes()); 1148 } 1149 1150 heap->resize_all_tlabs(); 1151 1152 // Resize the metaspace capacity after a collection 1153 MetaspaceGC::compute_new_size(); 1154 1155 if (log_is_enabled(Debug, gc, heap, exit)) { 1156 accumulated_time()->stop(); 1157 } 1158 1159 heap->print_heap_change(pre_gc_values); 1160 1161 // Track memory usage and detect low memory 1162 MemoryService::track_memory_usage(); 1163 heap->update_counters(); 1164 1165 heap->post_full_gc_dump(&_gc_timer); 1166 } 1167 1168 if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) { 1169 Universe::verify("After GC"); 1170 } 1171 1172 heap->print_heap_after_gc(); 1173 heap->trace_heap_after_gc(&_gc_tracer); 1174 1175 AdaptiveSizePolicyOutput::print(size_policy, heap->total_collections()); 1176 1177 _gc_timer.register_gc_end(); 1178 1179 _gc_tracer.report_dense_prefix(dense_prefix(old_space_id)); 1180 _gc_tracer.report_gc_end(_gc_timer.gc_end(), _gc_timer.time_partitions()); 1181 1182 return true; 1183 } 1184 1185 class PCAddThreadRootsMarkingTaskClosure : public ThreadClosure { 1186 private: 1187 uint _worker_id; 1188 1189 public: 1190 PCAddThreadRootsMarkingTaskClosure(uint worker_id) : _worker_id(worker_id) { } 1191 void do_thread(Thread* thread) { 1192 assert(ParallelScavengeHeap::heap()->is_stw_gc_active(), "called outside gc"); 1193 1194 ResourceMark rm; 1195 1196 ParCompactionManager* cm = ParCompactionManager::gc_thread_compaction_manager(_worker_id); 1197 1198 PCMarkAndPushClosure mark_and_push_closure(cm); 1199 MarkingNMethodClosure mark_and_push_in_blobs(&mark_and_push_closure, !NMethodToOopClosure::FixRelocations, true /* keepalive nmethods */); 1200 1201 thread->oops_do(&mark_and_push_closure, &mark_and_push_in_blobs); 1202 1203 // Do the real work 1204 cm->follow_marking_stacks(); 1205 } 1206 }; 1207 1208 void steal_marking_work(TaskTerminator& terminator, uint worker_id) { 1209 assert(ParallelScavengeHeap::heap()->is_stw_gc_active(), "called outside gc"); 1210 1211 ParCompactionManager* cm = 1212 ParCompactionManager::gc_thread_compaction_manager(worker_id); 1213 1214 do { 1215 oop obj = nullptr; 1216 ObjArrayTask task; 1217 if (ParCompactionManager::steal_objarray(worker_id, task)) { 1218 cm->follow_array((objArrayOop)task.obj(), task.index()); 1219 } else if (ParCompactionManager::steal(worker_id, obj)) { 1220 cm->follow_contents(obj); 1221 } 1222 cm->follow_marking_stacks(); 1223 } while (!terminator.offer_termination()); 1224 } 1225 1226 class MarkFromRootsTask : public WorkerTask { 1227 StrongRootsScope _strong_roots_scope; // needed for Threads::possibly_parallel_threads_do 1228 OopStorageSetStrongParState<false /* concurrent */, false /* is_const */> _oop_storage_set_par_state; 1229 TaskTerminator _terminator; 1230 uint _active_workers; 1231 1232 public: 1233 MarkFromRootsTask(uint active_workers) : 1234 WorkerTask("MarkFromRootsTask"), 1235 _strong_roots_scope(active_workers), 1236 _terminator(active_workers, ParCompactionManager::oop_task_queues()), 1237 _active_workers(active_workers) {} 1238 1239 virtual void work(uint worker_id) { 1240 ParCompactionManager* cm = ParCompactionManager::gc_thread_compaction_manager(worker_id); 1241 cm->create_marking_stats_cache(); 1242 PCMarkAndPushClosure mark_and_push_closure(cm); 1243 1244 { 1245 CLDToOopClosure cld_closure(&mark_and_push_closure, ClassLoaderData::_claim_stw_fullgc_mark); 1246 ClassLoaderDataGraph::always_strong_cld_do(&cld_closure); 1247 1248 // Do the real work 1249 cm->follow_marking_stacks(); 1250 } 1251 1252 PCAddThreadRootsMarkingTaskClosure closure(worker_id); 1253 Threads::possibly_parallel_threads_do(true /* is_par */, &closure); 1254 1255 // Mark from OopStorages 1256 { 1257 _oop_storage_set_par_state.oops_do(&mark_and_push_closure); 1258 // Do the real work 1259 cm->follow_marking_stacks(); 1260 } 1261 1262 if (_active_workers > 1) { 1263 steal_marking_work(_terminator, worker_id); 1264 } 1265 } 1266 }; 1267 1268 class ParallelCompactRefProcProxyTask : public RefProcProxyTask { 1269 TaskTerminator _terminator; 1270 1271 public: 1272 ParallelCompactRefProcProxyTask(uint max_workers) 1273 : RefProcProxyTask("ParallelCompactRefProcProxyTask", max_workers), 1274 _terminator(_max_workers, ParCompactionManager::oop_task_queues()) {} 1275 1276 void work(uint worker_id) override { 1277 assert(worker_id < _max_workers, "sanity"); 1278 ParCompactionManager* cm = (_tm == RefProcThreadModel::Single) ? ParCompactionManager::get_vmthread_cm() : ParCompactionManager::gc_thread_compaction_manager(worker_id); 1279 PCMarkAndPushClosure keep_alive(cm); 1280 BarrierEnqueueDiscoveredFieldClosure enqueue; 1281 ParCompactionManager::FollowStackClosure complete_gc(cm, (_tm == RefProcThreadModel::Single) ? nullptr : &_terminator, worker_id); 1282 _rp_task->rp_work(worker_id, PSParallelCompact::is_alive_closure(), &keep_alive, &enqueue, &complete_gc); 1283 } 1284 1285 void prepare_run_task_hook() override { 1286 _terminator.reset_for_reuse(_queue_count); 1287 } 1288 }; 1289 1290 static void flush_marking_stats_cache(const uint num_workers) { 1291 for (uint i = 0; i < num_workers; ++i) { 1292 ParCompactionManager* cm = ParCompactionManager::gc_thread_compaction_manager(i); 1293 cm->flush_and_destroy_marking_stats_cache(); 1294 } 1295 } 1296 1297 void PSParallelCompact::marking_phase(ParallelOldTracer *gc_tracer) { 1298 // Recursively traverse all live objects and mark them 1299 GCTraceTime(Info, gc, phases) tm("Marking Phase", &_gc_timer); 1300 1301 uint active_gc_threads = ParallelScavengeHeap::heap()->workers().active_workers(); 1302 1303 ClassLoaderDataGraph::verify_claimed_marks_cleared(ClassLoaderData::_claim_stw_fullgc_mark); 1304 { 1305 GCTraceTime(Debug, gc, phases) tm("Par Mark", &_gc_timer); 1306 1307 MarkFromRootsTask task(active_gc_threads); 1308 ParallelScavengeHeap::heap()->workers().run_task(&task); 1309 } 1310 1311 // Process reference objects found during marking 1312 { 1313 GCTraceTime(Debug, gc, phases) tm("Reference Processing", &_gc_timer); 1314 1315 ReferenceProcessorStats stats; 1316 ReferenceProcessorPhaseTimes pt(&_gc_timer, ref_processor()->max_num_queues()); 1317 1318 ref_processor()->set_active_mt_degree(active_gc_threads); 1319 ParallelCompactRefProcProxyTask task(ref_processor()->max_num_queues()); 1320 stats = ref_processor()->process_discovered_references(task, pt); 1321 1322 gc_tracer->report_gc_reference_stats(stats); 1323 pt.print_all_references(); 1324 } 1325 1326 { 1327 GCTraceTime(Debug, gc, phases) tm("Flush Marking Stats", &_gc_timer); 1328 1329 flush_marking_stats_cache(active_gc_threads); 1330 } 1331 1332 // This is the point where the entire marking should have completed. 1333 ParCompactionManager::verify_all_marking_stack_empty(); 1334 1335 { 1336 GCTraceTime(Debug, gc, phases) tm("Weak Processing", &_gc_timer); 1337 WeakProcessor::weak_oops_do(&ParallelScavengeHeap::heap()->workers(), 1338 is_alive_closure(), 1339 &do_nothing_cl, 1340 1); 1341 } 1342 1343 { 1344 GCTraceTime(Debug, gc, phases) tm_m("Class Unloading", &_gc_timer); 1345 1346 ClassUnloadingContext* ctx = ClassUnloadingContext::context(); 1347 1348 bool unloading_occurred; 1349 { 1350 CodeCache::UnlinkingScope scope(is_alive_closure()); 1351 1352 // Follow system dictionary roots and unload classes. 1353 unloading_occurred = SystemDictionary::do_unloading(&_gc_timer); 1354 1355 // Unload nmethods. 1356 CodeCache::do_unloading(unloading_occurred); 1357 } 1358 1359 { 1360 GCTraceTime(Debug, gc, phases) t("Purge Unlinked NMethods", gc_timer()); 1361 // Release unloaded nmethod's memory. 1362 ctx->purge_nmethods(); 1363 } 1364 { 1365 GCTraceTime(Debug, gc, phases) ur("Unregister NMethods", &_gc_timer); 1366 ParallelScavengeHeap::heap()->prune_unlinked_nmethods(); 1367 } 1368 { 1369 GCTraceTime(Debug, gc, phases) t("Free Code Blobs", gc_timer()); 1370 ctx->free_nmethods(); 1371 } 1372 1373 // Prune dead klasses from subklass/sibling/implementor lists. 1374 Klass::clean_weak_klass_links(unloading_occurred); 1375 1376 // Clean JVMCI metadata handles. 1377 JVMCI_ONLY(JVMCI::do_unloading(unloading_occurred)); 1378 } 1379 1380 { 1381 GCTraceTime(Debug, gc, phases) tm("Report Object Count", &_gc_timer); 1382 _gc_tracer.report_object_count_after_gc(is_alive_closure(), &ParallelScavengeHeap::heap()->workers()); 1383 } 1384 #if TASKQUEUE_STATS 1385 ParCompactionManager::oop_task_queues()->print_and_reset_taskqueue_stats("Oop Queue"); 1386 ParCompactionManager::_objarray_task_queues->print_and_reset_taskqueue_stats("ObjArrayOop Queue"); 1387 #endif 1388 } 1389 1390 template<typename Func> 1391 void PSParallelCompact::adjust_in_space_helper(SpaceId id, volatile uint* claim_counter, Func&& on_stripe) { 1392 MutableSpace* sp = PSParallelCompact::space(id); 1393 HeapWord* const bottom = sp->bottom(); 1394 HeapWord* const top = sp->top(); 1395 if (bottom == top) { 1396 return; 1397 } 1398 1399 const uint num_regions_per_stripe = 2; 1400 const size_t region_size = ParallelCompactData::RegionSize; 1401 const size_t stripe_size = num_regions_per_stripe * region_size; 1402 1403 while (true) { 1404 uint counter = Atomic::fetch_then_add(claim_counter, num_regions_per_stripe); 1405 HeapWord* cur_stripe = bottom + counter * region_size; 1406 if (cur_stripe >= top) { 1407 break; 1408 } 1409 HeapWord* stripe_end = MIN2(cur_stripe + stripe_size, top); 1410 on_stripe(cur_stripe, stripe_end); 1411 } 1412 } 1413 1414 void PSParallelCompact::adjust_in_old_space(volatile uint* claim_counter) { 1415 // Regions in old-space shouldn't be split. 1416 assert(!_space_info[old_space_id].split_info().is_valid(), "inv"); 1417 1418 auto scan_obj_with_limit = [&] (HeapWord* obj_start, HeapWord* left, HeapWord* right) { 1419 assert(mark_bitmap()->is_marked(obj_start), "inv"); 1420 oop obj = cast_to_oop(obj_start); 1421 return obj->oop_iterate_size(&pc_adjust_pointer_closure, MemRegion(left, right)); 1422 }; 1423 1424 adjust_in_space_helper(old_space_id, claim_counter, [&] (HeapWord* stripe_start, HeapWord* stripe_end) { 1425 assert(_summary_data.is_region_aligned(stripe_start), "inv"); 1426 RegionData* cur_region = _summary_data.addr_to_region_ptr(stripe_start); 1427 HeapWord* obj_start; 1428 if (cur_region->partial_obj_size() != 0) { 1429 obj_start = cur_region->partial_obj_addr(); 1430 obj_start += scan_obj_with_limit(obj_start, stripe_start, stripe_end); 1431 } else { 1432 obj_start = stripe_start; 1433 } 1434 1435 while (obj_start < stripe_end) { 1436 obj_start = mark_bitmap()->find_obj_beg(obj_start, stripe_end); 1437 if (obj_start >= stripe_end) { 1438 break; 1439 } 1440 obj_start += scan_obj_with_limit(obj_start, stripe_start, stripe_end); 1441 } 1442 }); 1443 } 1444 1445 void PSParallelCompact::adjust_in_young_space(SpaceId id, volatile uint* claim_counter) { 1446 adjust_in_space_helper(id, claim_counter, [](HeapWord* stripe_start, HeapWord* stripe_end) { 1447 HeapWord* obj_start = stripe_start; 1448 while (obj_start < stripe_end) { 1449 obj_start = mark_bitmap()->find_obj_beg(obj_start, stripe_end); 1450 if (obj_start >= stripe_end) { 1451 break; 1452 } 1453 oop obj = cast_to_oop(obj_start); 1454 obj_start += obj->oop_iterate_size(&pc_adjust_pointer_closure); 1455 } 1456 }); 1457 } 1458 1459 void PSParallelCompact::adjust_pointers_in_spaces(uint worker_id, volatile uint* claim_counters) { 1460 auto start_time = Ticks::now(); 1461 adjust_in_old_space(&claim_counters[0]); 1462 for (uint id = eden_space_id; id < last_space_id; ++id) { 1463 adjust_in_young_space(SpaceId(id), &claim_counters[id]); 1464 } 1465 log_trace(gc, phases)("adjust_pointers_in_spaces worker %u: %.3f ms", worker_id, (Ticks::now() - start_time).seconds() * 1000); 1466 } 1467 1468 class PSAdjustTask final : public WorkerTask { 1469 SubTasksDone _sub_tasks; 1470 WeakProcessor::Task _weak_proc_task; 1471 OopStorageSetStrongParState<false, false> _oop_storage_iter; 1472 uint _nworkers; 1473 volatile uint _claim_counters[PSParallelCompact::last_space_id] = {}; 1474 1475 enum PSAdjustSubTask { 1476 PSAdjustSubTask_code_cache, 1477 1478 PSAdjustSubTask_num_elements 1479 }; 1480 1481 public: 1482 PSAdjustTask(uint nworkers) : 1483 WorkerTask("PSAdjust task"), 1484 _sub_tasks(PSAdjustSubTask_num_elements), 1485 _weak_proc_task(nworkers), 1486 _nworkers(nworkers) { 1487 1488 ClassLoaderDataGraph::verify_claimed_marks_cleared(ClassLoaderData::_claim_stw_fullgc_adjust); 1489 if (nworkers > 1) { 1490 Threads::change_thread_claim_token(); 1491 } 1492 } 1493 1494 ~PSAdjustTask() { 1495 Threads::assert_all_threads_claimed(); 1496 } 1497 1498 void work(uint worker_id) { 1499 ParCompactionManager* cm = ParCompactionManager::gc_thread_compaction_manager(worker_id); 1500 cm->preserved_marks()->adjust_during_full_gc(); 1501 { 1502 // adjust pointers in all spaces 1503 PSParallelCompact::adjust_pointers_in_spaces(worker_id, _claim_counters); 1504 } 1505 { 1506 ResourceMark rm; 1507 Threads::possibly_parallel_oops_do(_nworkers > 1, &pc_adjust_pointer_closure, nullptr); 1508 } 1509 _oop_storage_iter.oops_do(&pc_adjust_pointer_closure); 1510 { 1511 CLDToOopClosure cld_closure(&pc_adjust_pointer_closure, ClassLoaderData::_claim_stw_fullgc_adjust); 1512 ClassLoaderDataGraph::cld_do(&cld_closure); 1513 } 1514 { 1515 AlwaysTrueClosure always_alive; 1516 _weak_proc_task.work(worker_id, &always_alive, &pc_adjust_pointer_closure); 1517 } 1518 if (_sub_tasks.try_claim_task(PSAdjustSubTask_code_cache)) { 1519 NMethodToOopClosure adjust_code(&pc_adjust_pointer_closure, NMethodToOopClosure::FixRelocations); 1520 CodeCache::nmethods_do(&adjust_code); 1521 } 1522 _sub_tasks.all_tasks_claimed(); 1523 } 1524 }; 1525 1526 void PSParallelCompact::adjust_pointers() { 1527 // Adjust the pointers to reflect the new locations 1528 GCTraceTime(Info, gc, phases) tm("Adjust Pointers", &_gc_timer); 1529 uint nworkers = ParallelScavengeHeap::heap()->workers().active_workers(); 1530 PSAdjustTask task(nworkers); 1531 ParallelScavengeHeap::heap()->workers().run_task(&task); 1532 } 1533 1534 // Split [start, end) evenly for a number of workers and return the 1535 // range for worker_id. 1536 static void split_regions_for_worker(size_t start, size_t end, 1537 uint worker_id, uint num_workers, 1538 size_t* worker_start, size_t* worker_end) { 1539 assert(start < end, "precondition"); 1540 assert(num_workers > 0, "precondition"); 1541 assert(worker_id < num_workers, "precondition"); 1542 1543 size_t num_regions = end - start; 1544 size_t num_regions_per_worker = num_regions / num_workers; 1545 size_t remainder = num_regions % num_workers; 1546 // The first few workers will get one extra. 1547 *worker_start = start + worker_id * num_regions_per_worker 1548 + MIN2(checked_cast<size_t>(worker_id), remainder); 1549 *worker_end = *worker_start + num_regions_per_worker 1550 + (worker_id < remainder ? 1 : 0); 1551 } 1552 1553 void PSParallelCompact::forward_to_new_addr() { 1554 GCTraceTime(Info, gc, phases) tm("Forward", &_gc_timer); 1555 uint nworkers = ParallelScavengeHeap::heap()->workers().active_workers(); 1556 1557 struct ForwardTask final : public WorkerTask { 1558 uint _num_workers; 1559 1560 explicit ForwardTask(uint num_workers) : 1561 WorkerTask("PSForward task"), 1562 _num_workers(num_workers) {} 1563 1564 void work(uint worker_id) override { 1565 ParCompactionManager* cm = ParCompactionManager::gc_thread_compaction_manager(worker_id); 1566 for (uint id = old_space_id; id < last_space_id; ++id) { 1567 MutableSpace* sp = PSParallelCompact::space(SpaceId(id)); 1568 HeapWord* dense_prefix_addr = dense_prefix(SpaceId(id)); 1569 HeapWord* top = sp->top(); 1570 1571 if (dense_prefix_addr == top) { 1572 continue; 1573 } 1574 1575 size_t dense_prefix_region = _summary_data.addr_to_region_idx(dense_prefix_addr); 1576 size_t top_region = _summary_data.addr_to_region_idx(_summary_data.region_align_up(top)); 1577 size_t start_region; 1578 size_t end_region; 1579 split_regions_for_worker(dense_prefix_region, top_region, 1580 worker_id, _num_workers, 1581 &start_region, &end_region); 1582 for (size_t cur_region = start_region; cur_region < end_region; ++cur_region) { 1583 RegionData* region_ptr = _summary_data.region(cur_region); 1584 size_t live_words = region_ptr->partial_obj_size(); 1585 1586 if (live_words == ParallelCompactData::RegionSize) { 1587 // No obj-start 1588 continue; 1589 } 1590 1591 HeapWord* region_start = _summary_data.region_to_addr(cur_region); 1592 HeapWord* region_end = region_start + ParallelCompactData::RegionSize; 1593 1594 HeapWord* cur_addr = region_start + live_words; 1595 1596 HeapWord* destination = region_ptr->destination(); 1597 while (cur_addr < region_end) { 1598 cur_addr = mark_bitmap()->find_obj_beg(cur_addr, region_end); 1599 if (cur_addr >= region_end) { 1600 break; 1601 } 1602 assert(mark_bitmap()->is_marked(cur_addr), "inv"); 1603 HeapWord* new_addr = destination + live_words; 1604 oop obj = cast_to_oop(cur_addr); 1605 if (new_addr != cur_addr) { 1606 cm->preserved_marks()->push_if_necessary(obj, obj->mark()); 1607 SlidingForwarding::forward_to(obj, cast_to_oop(new_addr)); 1608 } 1609 size_t obj_size = obj->size(); 1610 live_words += obj_size; 1611 cur_addr += obj_size; 1612 } 1613 } 1614 } 1615 } 1616 } task(nworkers); 1617 1618 ParallelScavengeHeap::heap()->workers().run_task(&task); 1619 debug_only(verify_forward();) 1620 } 1621 1622 #ifdef ASSERT 1623 void PSParallelCompact::verify_forward() { 1624 HeapWord* old_dense_prefix_addr = dense_prefix(SpaceId(old_space_id)); 1625 RegionData* old_region = _summary_data.region(_summary_data.addr_to_region_idx(old_dense_prefix_addr)); 1626 HeapWord* bump_ptr = old_region->partial_obj_size() != 0 1627 ? old_dense_prefix_addr + old_region->partial_obj_size() 1628 : old_dense_prefix_addr; 1629 SpaceId bump_ptr_space = old_space_id; 1630 1631 for (uint id = old_space_id; id < last_space_id; ++id) { 1632 MutableSpace* sp = PSParallelCompact::space(SpaceId(id)); 1633 HeapWord* dense_prefix_addr = dense_prefix(SpaceId(id)); 1634 HeapWord* top = sp->top(); 1635 HeapWord* cur_addr = dense_prefix_addr; 1636 1637 while (cur_addr < top) { 1638 cur_addr = mark_bitmap()->find_obj_beg(cur_addr, top); 1639 if (cur_addr >= top) { 1640 break; 1641 } 1642 assert(mark_bitmap()->is_marked(cur_addr), "inv"); 1643 // Move to the space containing cur_addr 1644 if (bump_ptr == _space_info[bump_ptr_space].new_top()) { 1645 bump_ptr = space(space_id(cur_addr))->bottom(); 1646 bump_ptr_space = space_id(bump_ptr); 1647 } 1648 oop obj = cast_to_oop(cur_addr); 1649 if (cur_addr != bump_ptr) { 1650 assert(SlidingForwarding::forwardee(obj) == cast_to_oop(bump_ptr), "inv"); 1651 } 1652 bump_ptr += obj->size(); 1653 cur_addr += obj->size(); 1654 } 1655 } 1656 } 1657 #endif 1658 1659 // Helper class to print 8 region numbers per line and then print the total at the end. 1660 class FillableRegionLogger : public StackObj { 1661 private: 1662 Log(gc, compaction) log; 1663 static const int LineLength = 8; 1664 size_t _regions[LineLength]; 1665 int _next_index; 1666 bool _enabled; 1667 size_t _total_regions; 1668 public: 1669 FillableRegionLogger() : _next_index(0), _enabled(log_develop_is_enabled(Trace, gc, compaction)), _total_regions(0) { } 1670 ~FillableRegionLogger() { 1671 log.trace(SIZE_FORMAT " initially fillable regions", _total_regions); 1672 } 1673 1674 void print_line() { 1675 if (!_enabled || _next_index == 0) { 1676 return; 1677 } 1678 FormatBuffer<> line("Fillable: "); 1679 for (int i = 0; i < _next_index; i++) { 1680 line.append(" " SIZE_FORMAT_W(7), _regions[i]); 1681 } 1682 log.trace("%s", line.buffer()); 1683 _next_index = 0; 1684 } 1685 1686 void handle(size_t region) { 1687 if (!_enabled) { 1688 return; 1689 } 1690 _regions[_next_index++] = region; 1691 if (_next_index == LineLength) { 1692 print_line(); 1693 } 1694 _total_regions++; 1695 } 1696 }; 1697 1698 void PSParallelCompact::prepare_region_draining_tasks(uint parallel_gc_threads) 1699 { 1700 GCTraceTime(Trace, gc, phases) tm("Drain Task Setup", &_gc_timer); 1701 1702 // Find the threads that are active 1703 uint worker_id = 0; 1704 1705 // Find all regions that are available (can be filled immediately) and 1706 // distribute them to the thread stacks. The iteration is done in reverse 1707 // order (high to low) so the regions will be removed in ascending order. 1708 1709 const ParallelCompactData& sd = PSParallelCompact::summary_data(); 1710 1711 // id + 1 is used to test termination so unsigned can 1712 // be used with an old_space_id == 0. 1713 FillableRegionLogger region_logger; 1714 for (unsigned int id = to_space_id; id + 1 > old_space_id; --id) { 1715 SpaceInfo* const space_info = _space_info + id; 1716 HeapWord* const new_top = space_info->new_top(); 1717 1718 const size_t beg_region = sd.addr_to_region_idx(space_info->dense_prefix()); 1719 const size_t end_region = 1720 sd.addr_to_region_idx(sd.region_align_up(new_top)); 1721 1722 for (size_t cur = end_region - 1; cur + 1 > beg_region; --cur) { 1723 if (sd.region(cur)->claim_unsafe()) { 1724 ParCompactionManager* cm = ParCompactionManager::gc_thread_compaction_manager(worker_id); 1725 bool result = sd.region(cur)->mark_normal(); 1726 assert(result, "Must succeed at this point."); 1727 cm->region_stack()->push(cur); 1728 region_logger.handle(cur); 1729 // Assign regions to tasks in round-robin fashion. 1730 if (++worker_id == parallel_gc_threads) { 1731 worker_id = 0; 1732 } 1733 } 1734 } 1735 region_logger.print_line(); 1736 } 1737 } 1738 1739 static void compaction_with_stealing_work(TaskTerminator* terminator, uint worker_id) { 1740 assert(ParallelScavengeHeap::heap()->is_stw_gc_active(), "called outside gc"); 1741 1742 ParCompactionManager* cm = 1743 ParCompactionManager::gc_thread_compaction_manager(worker_id); 1744 1745 // Drain the stacks that have been preloaded with regions 1746 // that are ready to fill. 1747 1748 cm->drain_region_stacks(); 1749 1750 guarantee(cm->region_stack()->is_empty(), "Not empty"); 1751 1752 size_t region_index = 0; 1753 1754 while (true) { 1755 if (ParCompactionManager::steal(worker_id, region_index)) { 1756 PSParallelCompact::fill_and_update_region(cm, region_index); 1757 cm->drain_region_stacks(); 1758 } else if (PSParallelCompact::steal_unavailable_region(cm, region_index)) { 1759 // Fill and update an unavailable region with the help of a shadow region 1760 PSParallelCompact::fill_and_update_shadow_region(cm, region_index); 1761 cm->drain_region_stacks(); 1762 } else { 1763 if (terminator->offer_termination()) { 1764 break; 1765 } 1766 // Go around again. 1767 } 1768 } 1769 } 1770 1771 class FillDensePrefixAndCompactionTask: public WorkerTask { 1772 uint _num_workers; 1773 TaskTerminator _terminator; 1774 1775 public: 1776 FillDensePrefixAndCompactionTask(uint active_workers) : 1777 WorkerTask("FillDensePrefixAndCompactionTask"), 1778 _num_workers(active_workers), 1779 _terminator(active_workers, ParCompactionManager::region_task_queues()) { 1780 } 1781 1782 virtual void work(uint worker_id) { 1783 { 1784 auto start = Ticks::now(); 1785 PSParallelCompact::fill_dead_objs_in_dense_prefix(worker_id, _num_workers); 1786 log_trace(gc, phases)("Fill dense prefix by worker %u: %.3f ms", worker_id, (Ticks::now() - start).seconds() * 1000); 1787 } 1788 compaction_with_stealing_work(&_terminator, worker_id); 1789 } 1790 }; 1791 1792 void PSParallelCompact::fill_range_in_dense_prefix(HeapWord* start, HeapWord* end) { 1793 #ifdef ASSERT 1794 { 1795 assert(start < end, "precondition"); 1796 assert(mark_bitmap()->find_obj_beg(start, end) == end, "precondition"); 1797 HeapWord* bottom = _space_info[old_space_id].space()->bottom(); 1798 if (start != bottom) { 1799 HeapWord* obj_start = mark_bitmap()->find_obj_beg_reverse(bottom, start); 1800 HeapWord* after_obj = obj_start + cast_to_oop(obj_start)->size(); 1801 assert(after_obj == start, "precondition"); 1802 } 1803 } 1804 #endif 1805 1806 CollectedHeap::fill_with_objects(start, pointer_delta(end, start)); 1807 HeapWord* addr = start; 1808 do { 1809 size_t size = cast_to_oop(addr)->size(); 1810 start_array(old_space_id)->update_for_block(addr, addr + size); 1811 addr += size; 1812 } while (addr < end); 1813 } 1814 1815 void PSParallelCompact::fill_dead_objs_in_dense_prefix(uint worker_id, uint num_workers) { 1816 ParMarkBitMap* bitmap = mark_bitmap(); 1817 1818 HeapWord* const bottom = _space_info[old_space_id].space()->bottom(); 1819 HeapWord* const prefix_end = dense_prefix(old_space_id); 1820 1821 if (bottom == prefix_end) { 1822 return; 1823 } 1824 1825 size_t bottom_region = _summary_data.addr_to_region_idx(bottom); 1826 size_t prefix_end_region = _summary_data.addr_to_region_idx(prefix_end); 1827 1828 size_t start_region; 1829 size_t end_region; 1830 split_regions_for_worker(bottom_region, prefix_end_region, 1831 worker_id, num_workers, 1832 &start_region, &end_region); 1833 1834 if (start_region == end_region) { 1835 return; 1836 } 1837 1838 HeapWord* const start_addr = _summary_data.region_to_addr(start_region); 1839 HeapWord* const end_addr = _summary_data.region_to_addr(end_region); 1840 1841 // Skip live partial obj (if any) from previous region. 1842 HeapWord* cur_addr; 1843 RegionData* start_region_ptr = _summary_data.region(start_region); 1844 if (start_region_ptr->partial_obj_size() != 0) { 1845 HeapWord* partial_obj_start = start_region_ptr->partial_obj_addr(); 1846 assert(bitmap->is_marked(partial_obj_start), "inv"); 1847 cur_addr = partial_obj_start + cast_to_oop(partial_obj_start)->size(); 1848 } else { 1849 cur_addr = start_addr; 1850 } 1851 1852 // end_addr is inclusive to handle regions starting with dead space. 1853 while (cur_addr <= end_addr) { 1854 // Use prefix_end to handle trailing obj in each worker region-chunk. 1855 HeapWord* live_start = bitmap->find_obj_beg(cur_addr, prefix_end); 1856 if (cur_addr != live_start) { 1857 // Only worker 0 handles proceeding dead space. 1858 if (cur_addr != start_addr || worker_id == 0) { 1859 fill_range_in_dense_prefix(cur_addr, live_start); 1860 } 1861 } 1862 if (live_start >= end_addr) { 1863 break; 1864 } 1865 assert(bitmap->is_marked(live_start), "inv"); 1866 cur_addr = live_start + cast_to_oop(live_start)->size(); 1867 } 1868 } 1869 1870 void PSParallelCompact::compact() { 1871 GCTraceTime(Info, gc, phases) tm("Compaction Phase", &_gc_timer); 1872 1873 uint active_gc_threads = ParallelScavengeHeap::heap()->workers().active_workers(); 1874 1875 initialize_shadow_regions(active_gc_threads); 1876 prepare_region_draining_tasks(active_gc_threads); 1877 1878 { 1879 GCTraceTime(Trace, gc, phases) tm("Par Compact", &_gc_timer); 1880 1881 FillDensePrefixAndCompactionTask task(active_gc_threads); 1882 ParallelScavengeHeap::heap()->workers().run_task(&task); 1883 1884 #ifdef ASSERT 1885 verify_filler_in_dense_prefix(); 1886 1887 // Verify that all regions have been processed. 1888 for (unsigned int id = old_space_id; id < last_space_id; ++id) { 1889 verify_complete(SpaceId(id)); 1890 } 1891 #endif 1892 } 1893 } 1894 1895 #ifdef ASSERT 1896 void PSParallelCompact::verify_filler_in_dense_prefix() { 1897 HeapWord* bottom = _space_info[old_space_id].space()->bottom(); 1898 HeapWord* dense_prefix_end = dense_prefix(old_space_id); 1899 HeapWord* cur_addr = bottom; 1900 while (cur_addr < dense_prefix_end) { 1901 oop obj = cast_to_oop(cur_addr); 1902 oopDesc::verify(obj); 1903 if (!mark_bitmap()->is_marked(cur_addr)) { 1904 Klass* k = cast_to_oop(cur_addr)->klass_without_asserts(); 1905 assert(k == Universe::fillerArrayKlass() || k == vmClasses::FillerObject_klass(), "inv"); 1906 } 1907 cur_addr += obj->size(); 1908 } 1909 } 1910 1911 void PSParallelCompact::verify_complete(SpaceId space_id) { 1912 // All Regions served as compaction targets, from dense_prefix() to 1913 // new_top(), should be marked as filled and all Regions between new_top() 1914 // and top() should be available (i.e., should have been emptied). 1915 ParallelCompactData& sd = summary_data(); 1916 SpaceInfo si = _space_info[space_id]; 1917 HeapWord* new_top_addr = sd.region_align_up(si.new_top()); 1918 HeapWord* old_top_addr = sd.region_align_up(si.space()->top()); 1919 const size_t beg_region = sd.addr_to_region_idx(si.dense_prefix()); 1920 const size_t new_top_region = sd.addr_to_region_idx(new_top_addr); 1921 const size_t old_top_region = sd.addr_to_region_idx(old_top_addr); 1922 1923 size_t cur_region; 1924 for (cur_region = beg_region; cur_region < new_top_region; ++cur_region) { 1925 const RegionData* const c = sd.region(cur_region); 1926 if (!c->completed()) { 1927 log_warning(gc)("region " SIZE_FORMAT " not filled: destination_count=%u", 1928 cur_region, c->destination_count()); 1929 } 1930 } 1931 1932 for (cur_region = new_top_region; cur_region < old_top_region; ++cur_region) { 1933 const RegionData* const c = sd.region(cur_region); 1934 if (!c->available()) { 1935 log_warning(gc)("region " SIZE_FORMAT " not empty: destination_count=%u", 1936 cur_region, c->destination_count()); 1937 } 1938 } 1939 } 1940 #endif // #ifdef ASSERT 1941 1942 // Return the SpaceId for the space containing addr. If addr is not in the 1943 // heap, last_space_id is returned. In debug mode it expects the address to be 1944 // in the heap and asserts such. 1945 PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) { 1946 assert(ParallelScavengeHeap::heap()->is_in_reserved(addr), "addr not in the heap"); 1947 1948 for (unsigned int id = old_space_id; id < last_space_id; ++id) { 1949 if (_space_info[id].space()->contains(addr)) { 1950 return SpaceId(id); 1951 } 1952 } 1953 1954 assert(false, "no space contains the addr"); 1955 return last_space_id; 1956 } 1957 1958 // Skip over count live words starting from beg, and return the address of the 1959 // next live word. Unless marked, the word corresponding to beg is assumed to 1960 // be dead. Callers must either ensure beg does not correspond to the middle of 1961 // an object, or account for those live words in some other way. Callers must 1962 // also ensure that there are enough live words in the range [beg, end) to skip. 1963 HeapWord* 1964 PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count) 1965 { 1966 assert(count > 0, "sanity"); 1967 1968 ParMarkBitMap* m = mark_bitmap(); 1969 HeapWord* cur_addr = beg; 1970 while (true) { 1971 cur_addr = m->find_obj_beg(cur_addr, end); 1972 assert(cur_addr < end, "inv"); 1973 size_t obj_size = cast_to_oop(cur_addr)->size(); 1974 // Strictly greater-than 1975 if (obj_size > count) { 1976 return cur_addr + count; 1977 } 1978 count -= obj_size; 1979 cur_addr += obj_size; 1980 } 1981 } 1982 1983 HeapWord* PSParallelCompact::first_src_addr(HeapWord* const dest_addr, 1984 SpaceId src_space_id, 1985 size_t src_region_idx) 1986 { 1987 assert(summary_data().is_region_aligned(dest_addr), "not aligned"); 1988 1989 const SplitInfo& split_info = _space_info[src_space_id].split_info(); 1990 if (split_info.dest_region_addr() == dest_addr) { 1991 // The partial object ending at the split point contains the first word to 1992 // be copied to dest_addr. 1993 return split_info.first_src_addr(); 1994 } 1995 1996 const ParallelCompactData& sd = summary_data(); 1997 ParMarkBitMap* const bitmap = mark_bitmap(); 1998 const size_t RegionSize = ParallelCompactData::RegionSize; 1999 2000 assert(sd.is_region_aligned(dest_addr), "not aligned"); 2001 const RegionData* const src_region_ptr = sd.region(src_region_idx); 2002 const size_t partial_obj_size = src_region_ptr->partial_obj_size(); 2003 HeapWord* const src_region_destination = src_region_ptr->destination(); 2004 2005 assert(dest_addr >= src_region_destination, "wrong src region"); 2006 assert(src_region_ptr->data_size() > 0, "src region cannot be empty"); 2007 2008 HeapWord* const src_region_beg = sd.region_to_addr(src_region_idx); 2009 HeapWord* const src_region_end = src_region_beg + RegionSize; 2010 2011 HeapWord* addr = src_region_beg; 2012 if (dest_addr == src_region_destination) { 2013 // Return the first live word in the source region. 2014 if (partial_obj_size == 0) { 2015 addr = bitmap->find_obj_beg(addr, src_region_end); 2016 assert(addr < src_region_end, "no objects start in src region"); 2017 } 2018 return addr; 2019 } 2020 2021 // Must skip some live data. 2022 size_t words_to_skip = dest_addr - src_region_destination; 2023 assert(src_region_ptr->data_size() > words_to_skip, "wrong src region"); 2024 2025 if (partial_obj_size >= words_to_skip) { 2026 // All the live words to skip are part of the partial object. 2027 addr += words_to_skip; 2028 if (partial_obj_size == words_to_skip) { 2029 // Find the first live word past the partial object. 2030 addr = bitmap->find_obj_beg(addr, src_region_end); 2031 assert(addr < src_region_end, "wrong src region"); 2032 } 2033 return addr; 2034 } 2035 2036 // Skip over the partial object (if any). 2037 if (partial_obj_size != 0) { 2038 words_to_skip -= partial_obj_size; 2039 addr += partial_obj_size; 2040 } 2041 2042 // Skip over live words due to objects that start in the region. 2043 addr = skip_live_words(addr, src_region_end, words_to_skip); 2044 assert(addr < src_region_end, "wrong src region"); 2045 return addr; 2046 } 2047 2048 void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm, 2049 SpaceId src_space_id, 2050 size_t beg_region, 2051 HeapWord* end_addr) 2052 { 2053 ParallelCompactData& sd = summary_data(); 2054 2055 #ifdef ASSERT 2056 MutableSpace* const src_space = _space_info[src_space_id].space(); 2057 HeapWord* const beg_addr = sd.region_to_addr(beg_region); 2058 assert(src_space->contains(beg_addr) || beg_addr == src_space->end(), 2059 "src_space_id does not match beg_addr"); 2060 assert(src_space->contains(end_addr) || end_addr == src_space->end(), 2061 "src_space_id does not match end_addr"); 2062 #endif // #ifdef ASSERT 2063 2064 RegionData* const beg = sd.region(beg_region); 2065 RegionData* const end = sd.addr_to_region_ptr(sd.region_align_up(end_addr)); 2066 2067 // Regions up to new_top() are enqueued if they become available. 2068 HeapWord* const new_top = _space_info[src_space_id].new_top(); 2069 RegionData* const enqueue_end = 2070 sd.addr_to_region_ptr(sd.region_align_up(new_top)); 2071 2072 for (RegionData* cur = beg; cur < end; ++cur) { 2073 assert(cur->data_size() > 0, "region must have live data"); 2074 cur->decrement_destination_count(); 2075 if (cur < enqueue_end && cur->available() && cur->claim()) { 2076 if (cur->mark_normal()) { 2077 cm->push_region(sd.region(cur)); 2078 } else if (cur->mark_copied()) { 2079 // Try to copy the content of the shadow region back to its corresponding 2080 // heap region if the shadow region is filled. Otherwise, the GC thread 2081 // fills the shadow region will copy the data back (see 2082 // MoveAndUpdateShadowClosure::complete_region). 2083 copy_back(sd.region_to_addr(cur->shadow_region()), sd.region_to_addr(cur)); 2084 ParCompactionManager::push_shadow_region_mt_safe(cur->shadow_region()); 2085 cur->set_completed(); 2086 } 2087 } 2088 } 2089 } 2090 2091 size_t PSParallelCompact::next_src_region(MoveAndUpdateClosure& closure, 2092 SpaceId& src_space_id, 2093 HeapWord*& src_space_top, 2094 HeapWord* end_addr) 2095 { 2096 typedef ParallelCompactData::RegionData RegionData; 2097 2098 ParallelCompactData& sd = PSParallelCompact::summary_data(); 2099 const size_t region_size = ParallelCompactData::RegionSize; 2100 2101 size_t src_region_idx = 0; 2102 2103 // Skip empty regions (if any) up to the top of the space. 2104 HeapWord* const src_aligned_up = sd.region_align_up(end_addr); 2105 RegionData* src_region_ptr = sd.addr_to_region_ptr(src_aligned_up); 2106 HeapWord* const top_aligned_up = sd.region_align_up(src_space_top); 2107 const RegionData* const top_region_ptr = 2108 sd.addr_to_region_ptr(top_aligned_up); 2109 while (src_region_ptr < top_region_ptr && src_region_ptr->data_size() == 0) { 2110 ++src_region_ptr; 2111 } 2112 2113 if (src_region_ptr < top_region_ptr) { 2114 // The next source region is in the current space. Update src_region_idx 2115 // and the source address to match src_region_ptr. 2116 src_region_idx = sd.region(src_region_ptr); 2117 HeapWord* const src_region_addr = sd.region_to_addr(src_region_idx); 2118 if (src_region_addr > closure.source()) { 2119 closure.set_source(src_region_addr); 2120 } 2121 return src_region_idx; 2122 } 2123 2124 // Switch to a new source space and find the first non-empty region. 2125 unsigned int space_id = src_space_id + 1; 2126 assert(space_id < last_space_id, "not enough spaces"); 2127 2128 HeapWord* const destination = closure.destination(); 2129 2130 do { 2131 MutableSpace* space = _space_info[space_id].space(); 2132 HeapWord* const bottom = space->bottom(); 2133 const RegionData* const bottom_cp = sd.addr_to_region_ptr(bottom); 2134 2135 // Iterate over the spaces that do not compact into themselves. 2136 if (bottom_cp->destination() != bottom) { 2137 HeapWord* const top_aligned_up = sd.region_align_up(space->top()); 2138 const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up); 2139 2140 for (const RegionData* src_cp = bottom_cp; src_cp < top_cp; ++src_cp) { 2141 if (src_cp->live_obj_size() > 0) { 2142 // Found it. 2143 assert(src_cp->destination() == destination, 2144 "first live obj in the space must match the destination"); 2145 assert(src_cp->partial_obj_size() == 0, 2146 "a space cannot begin with a partial obj"); 2147 2148 src_space_id = SpaceId(space_id); 2149 src_space_top = space->top(); 2150 const size_t src_region_idx = sd.region(src_cp); 2151 closure.set_source(sd.region_to_addr(src_region_idx)); 2152 return src_region_idx; 2153 } else { 2154 assert(src_cp->data_size() == 0, "sanity"); 2155 } 2156 } 2157 } 2158 } while (++space_id < last_space_id); 2159 2160 assert(false, "no source region was found"); 2161 return 0; 2162 } 2163 2164 HeapWord* PSParallelCompact::partial_obj_end(HeapWord* region_start_addr) { 2165 ParallelCompactData& sd = summary_data(); 2166 assert(sd.is_region_aligned(region_start_addr), "precondition"); 2167 2168 // Use per-region partial_obj_size to locate the end of the obj, that extends to region_start_addr. 2169 SplitInfo& split_info = _space_info[space_id(region_start_addr)].split_info(); 2170 size_t start_region_idx = sd.addr_to_region_idx(region_start_addr); 2171 size_t end_region_idx = sd.region_count(); 2172 size_t accumulated_size = 0; 2173 for (size_t region_idx = start_region_idx; region_idx < end_region_idx; ++region_idx) { 2174 if (split_info.is_split(region_idx)) { 2175 accumulated_size += split_info.partial_obj_size(); 2176 break; 2177 } 2178 size_t cur_partial_obj_size = sd.region(region_idx)->partial_obj_size(); 2179 accumulated_size += cur_partial_obj_size; 2180 if (cur_partial_obj_size != ParallelCompactData::RegionSize) { 2181 break; 2182 } 2183 } 2184 return region_start_addr + accumulated_size; 2185 } 2186 2187 void PSParallelCompact::fill_region(ParCompactionManager* cm, MoveAndUpdateClosure& closure, size_t region_idx) 2188 { 2189 ParMarkBitMap* const bitmap = mark_bitmap(); 2190 ParallelCompactData& sd = summary_data(); 2191 RegionData* const region_ptr = sd.region(region_idx); 2192 2193 // Get the source region and related info. 2194 size_t src_region_idx = region_ptr->source_region(); 2195 SpaceId src_space_id = space_id(sd.region_to_addr(src_region_idx)); 2196 HeapWord* src_space_top = _space_info[src_space_id].space()->top(); 2197 HeapWord* dest_addr = sd.region_to_addr(region_idx); 2198 2199 closure.set_source(first_src_addr(dest_addr, src_space_id, src_region_idx)); 2200 2201 // Adjust src_region_idx to prepare for decrementing destination counts (the 2202 // destination count is not decremented when a region is copied to itself). 2203 if (src_region_idx == region_idx) { 2204 src_region_idx += 1; 2205 } 2206 2207 if (bitmap->is_unmarked(closure.source())) { 2208 // The first source word is in the middle of an object; copy the remainder 2209 // of the object or as much as will fit. The fact that pointer updates were 2210 // deferred will be noted when the object header is processed. 2211 HeapWord* const old_src_addr = closure.source(); 2212 { 2213 HeapWord* region_start = sd.region_align_down(closure.source()); 2214 HeapWord* obj_start = bitmap->find_obj_beg_reverse(region_start, closure.source()); 2215 HeapWord* obj_end; 2216 if (bitmap->is_marked(obj_start)) { 2217 HeapWord* next_region_start = region_start + ParallelCompactData::RegionSize; 2218 HeapWord* partial_obj_start = (next_region_start >= src_space_top) 2219 ? nullptr 2220 : sd.addr_to_region_ptr(next_region_start)->partial_obj_addr(); 2221 if (partial_obj_start == obj_start) { 2222 // This obj extends to next region. 2223 obj_end = partial_obj_end(next_region_start); 2224 } else { 2225 // Completely contained in this region; safe to use size(). 2226 obj_end = obj_start + cast_to_oop(obj_start)->size(); 2227 } 2228 } else { 2229 // This obj extends to current region. 2230 obj_end = partial_obj_end(region_start); 2231 } 2232 size_t partial_obj_size = pointer_delta(obj_end, closure.source()); 2233 closure.copy_partial_obj(partial_obj_size); 2234 } 2235 2236 if (closure.is_full()) { 2237 decrement_destination_counts(cm, src_space_id, src_region_idx, 2238 closure.source()); 2239 closure.complete_region(dest_addr, region_ptr); 2240 return; 2241 } 2242 2243 HeapWord* const end_addr = sd.region_align_down(closure.source()); 2244 if (sd.region_align_down(old_src_addr) != end_addr) { 2245 // The partial object was copied from more than one source region. 2246 decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr); 2247 2248 // Move to the next source region, possibly switching spaces as well. All 2249 // args except end_addr may be modified. 2250 src_region_idx = next_src_region(closure, src_space_id, src_space_top, 2251 end_addr); 2252 } 2253 } 2254 2255 do { 2256 HeapWord* cur_addr = closure.source(); 2257 HeapWord* const end_addr = MIN2(sd.region_align_up(cur_addr + 1), 2258 src_space_top); 2259 HeapWord* partial_obj_start = (end_addr == src_space_top) 2260 ? nullptr 2261 : sd.addr_to_region_ptr(end_addr)->partial_obj_addr(); 2262 // apply closure on objs inside [cur_addr, end_addr) 2263 do { 2264 cur_addr = bitmap->find_obj_beg(cur_addr, end_addr); 2265 if (cur_addr == end_addr) { 2266 break; 2267 } 2268 size_t obj_size; 2269 if (partial_obj_start == cur_addr) { 2270 obj_size = pointer_delta(partial_obj_end(end_addr), cur_addr); 2271 } else { 2272 // This obj doesn't extend into next region; size() is safe to use. 2273 obj_size = cast_to_oop(cur_addr)->size(); 2274 } 2275 closure.do_addr(cur_addr, obj_size); 2276 cur_addr += obj_size; 2277 } while (cur_addr < end_addr && !closure.is_full()); 2278 2279 if (closure.is_full()) { 2280 decrement_destination_counts(cm, src_space_id, src_region_idx, 2281 closure.source()); 2282 closure.complete_region(dest_addr, region_ptr); 2283 return; 2284 } 2285 2286 decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr); 2287 2288 // Move to the next source region, possibly switching spaces as well. All 2289 // args except end_addr may be modified. 2290 src_region_idx = next_src_region(closure, src_space_id, src_space_top, 2291 end_addr); 2292 } while (true); 2293 } 2294 2295 void PSParallelCompact::fill_and_update_region(ParCompactionManager* cm, size_t region_idx) 2296 { 2297 MoveAndUpdateClosure cl(mark_bitmap(), region_idx); 2298 fill_region(cm, cl, region_idx); 2299 } 2300 2301 void PSParallelCompact::fill_and_update_shadow_region(ParCompactionManager* cm, size_t region_idx) 2302 { 2303 // Get a shadow region first 2304 ParallelCompactData& sd = summary_data(); 2305 RegionData* const region_ptr = sd.region(region_idx); 2306 size_t shadow_region = ParCompactionManager::pop_shadow_region_mt_safe(region_ptr); 2307 // The InvalidShadow return value indicates the corresponding heap region is available, 2308 // so use MoveAndUpdateClosure to fill the normal region. Otherwise, use 2309 // MoveAndUpdateShadowClosure to fill the acquired shadow region. 2310 if (shadow_region == ParCompactionManager::InvalidShadow) { 2311 MoveAndUpdateClosure cl(mark_bitmap(), region_idx); 2312 region_ptr->shadow_to_normal(); 2313 return fill_region(cm, cl, region_idx); 2314 } else { 2315 MoveAndUpdateShadowClosure cl(mark_bitmap(), region_idx, shadow_region); 2316 return fill_region(cm, cl, region_idx); 2317 } 2318 } 2319 2320 void PSParallelCompact::copy_back(HeapWord *shadow_addr, HeapWord *region_addr) 2321 { 2322 Copy::aligned_conjoint_words(shadow_addr, region_addr, _summary_data.RegionSize); 2323 } 2324 2325 bool PSParallelCompact::steal_unavailable_region(ParCompactionManager* cm, size_t ®ion_idx) 2326 { 2327 size_t next = cm->next_shadow_region(); 2328 ParallelCompactData& sd = summary_data(); 2329 size_t old_new_top = sd.addr_to_region_idx(_space_info[old_space_id].new_top()); 2330 uint active_gc_threads = ParallelScavengeHeap::heap()->workers().active_workers(); 2331 2332 while (next < old_new_top) { 2333 if (sd.region(next)->mark_shadow()) { 2334 region_idx = next; 2335 return true; 2336 } 2337 next = cm->move_next_shadow_region_by(active_gc_threads); 2338 } 2339 2340 return false; 2341 } 2342 2343 // The shadow region is an optimization to address region dependencies in full GC. The basic 2344 // idea is making more regions available by temporally storing their live objects in empty 2345 // shadow regions to resolve dependencies between them and the destination regions. Therefore, 2346 // GC threads need not wait destination regions to be available before processing sources. 2347 // 2348 // A typical workflow would be: 2349 // After draining its own stack and failing to steal from others, a GC worker would pick an 2350 // unavailable region (destination count > 0) and get a shadow region. Then the worker fills 2351 // the shadow region by copying live objects from source regions of the unavailable one. Once 2352 // the unavailable region becomes available, the data in the shadow region will be copied back. 2353 // Shadow regions are empty regions in the to-space and regions between top and end of other spaces. 2354 void PSParallelCompact::initialize_shadow_regions(uint parallel_gc_threads) 2355 { 2356 const ParallelCompactData& sd = PSParallelCompact::summary_data(); 2357 2358 for (unsigned int id = old_space_id; id < last_space_id; ++id) { 2359 SpaceInfo* const space_info = _space_info + id; 2360 MutableSpace* const space = space_info->space(); 2361 2362 const size_t beg_region = 2363 sd.addr_to_region_idx(sd.region_align_up(MAX2(space_info->new_top(), space->top()))); 2364 const size_t end_region = 2365 sd.addr_to_region_idx(sd.region_align_down(space->end())); 2366 2367 for (size_t cur = beg_region; cur < end_region; ++cur) { 2368 ParCompactionManager::push_shadow_region(cur); 2369 } 2370 } 2371 2372 size_t beg_region = sd.addr_to_region_idx(_space_info[old_space_id].dense_prefix()); 2373 for (uint i = 0; i < parallel_gc_threads; i++) { 2374 ParCompactionManager *cm = ParCompactionManager::gc_thread_compaction_manager(i); 2375 cm->set_next_shadow_region(beg_region + i); 2376 } 2377 } 2378 2379 void MoveAndUpdateClosure::copy_partial_obj(size_t partial_obj_size) 2380 { 2381 size_t words = MIN2(partial_obj_size, words_remaining()); 2382 2383 // This test is necessary; if omitted, the pointer updates to a partial object 2384 // that crosses the dense prefix boundary could be overwritten. 2385 if (source() != copy_destination()) { 2386 DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());) 2387 Copy::aligned_conjoint_words(source(), copy_destination(), words); 2388 } 2389 update_state(words); 2390 } 2391 2392 void MoveAndUpdateClosure::complete_region(HeapWord* dest_addr, PSParallelCompact::RegionData* region_ptr) { 2393 assert(region_ptr->shadow_state() == ParallelCompactData::RegionData::NormalRegion, "Region should be finished"); 2394 region_ptr->set_completed(); 2395 } 2396 2397 void MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) { 2398 assert(destination() != nullptr, "sanity"); 2399 _source = addr; 2400 2401 // The start_array must be updated even if the object is not moving. 2402 if (_start_array != nullptr) { 2403 _start_array->update_for_block(destination(), destination() + words); 2404 } 2405 2406 // Avoid overflow 2407 words = MIN2(words, words_remaining()); 2408 assert(words > 0, "inv"); 2409 2410 if (copy_destination() != source()) { 2411 DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());) 2412 assert(source() != destination(), "inv"); 2413 assert(cast_to_oop(source())->is_forwarded(), "inv"); 2414 assert(SlidingForwarding::forwardee(cast_to_oop(source())) == cast_to_oop(destination()), "inv"); 2415 Copy::aligned_conjoint_words(source(), copy_destination(), words); 2416 cast_to_oop(copy_destination())->init_mark(); 2417 } 2418 2419 update_state(words); 2420 } 2421 2422 void MoveAndUpdateShadowClosure::complete_region(HeapWord* dest_addr, PSParallelCompact::RegionData* region_ptr) { 2423 assert(region_ptr->shadow_state() == ParallelCompactData::RegionData::ShadowRegion, "Region should be shadow"); 2424 // Record the shadow region index 2425 region_ptr->set_shadow_region(_shadow); 2426 // Mark the shadow region as filled to indicate the data is ready to be 2427 // copied back 2428 region_ptr->mark_filled(); 2429 // Try to copy the content of the shadow region back to its corresponding 2430 // heap region if available; the GC thread that decreases the destination 2431 // count to zero will do the copying otherwise (see 2432 // PSParallelCompact::decrement_destination_counts). 2433 if (((region_ptr->available() && region_ptr->claim()) || region_ptr->claimed()) && region_ptr->mark_copied()) { 2434 region_ptr->set_completed(); 2435 PSParallelCompact::copy_back(PSParallelCompact::summary_data().region_to_addr(_shadow), dest_addr); 2436 ParCompactionManager::push_shadow_region_mt_safe(_shadow); 2437 } 2438 } 2439