1 /* 2 * Copyright (c) 2002, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_GC_PARALLEL_PSPROMOTIONMANAGER_INLINE_HPP 26 #define SHARE_GC_PARALLEL_PSPROMOTIONMANAGER_INLINE_HPP 27 28 #include "gc/parallel/psPromotionManager.hpp" 29 30 #include "gc/parallel/parallelScavengeHeap.hpp" 31 #include "gc/parallel/parMarkBitMap.inline.hpp" 32 #include "gc/parallel/psOldGen.hpp" 33 #include "gc/parallel/psPromotionLAB.inline.hpp" 34 #include "gc/parallel/psScavenge.inline.hpp" 35 #include "gc/parallel/psStringDedup.hpp" 36 #include "gc/shared/continuationGCSupport.inline.hpp" 37 #include "gc/shared/taskqueue.inline.hpp" 38 #include "gc/shared/tlab_globals.hpp" 39 #include "logging/log.hpp" 40 #include "memory/iterator.inline.hpp" 41 #include "oops/access.inline.hpp" 42 #include "oops/oop.inline.hpp" 43 #include "runtime/orderAccess.hpp" 44 #include "runtime/prefetch.inline.hpp" 45 #include "utilities/copy.hpp" 46 47 inline PSPromotionManager* PSPromotionManager::manager_array(uint index) { 48 assert(_manager_array != nullptr, "access of null manager_array"); 49 assert(index < ParallelGCThreads, "out of range manager_array access"); 50 return &_manager_array[index]; 51 } 52 53 inline void PSPromotionManager::push_depth(ScannerTask task) { 54 claimed_stack_depth()->push(task); 55 } 56 57 template <class T> 58 inline void PSPromotionManager::claim_or_forward_depth(T* p) { 59 assert(ParallelScavengeHeap::heap()->is_in(p), "pointer outside heap"); 60 T heap_oop = RawAccess<>::oop_load(p); 61 if (PSScavenge::is_obj_in_young(heap_oop)) { 62 oop obj = CompressedOops::decode_not_null(heap_oop); 63 assert(!PSScavenge::is_obj_in_to_space(obj), "revisiting object?"); 64 Prefetch::write(obj->mark_addr(), 0); 65 push_depth(ScannerTask(p)); 66 } 67 } 68 69 inline void PSPromotionManager::promotion_trace_event(oop new_obj, oop old_obj, 70 size_t obj_size, 71 uint age, bool tenured, 72 const PSPromotionLAB* lab) { 73 // Skip if memory allocation failed 74 if (new_obj != nullptr) { 75 const ParallelScavengeTracer* gc_tracer = PSScavenge::gc_tracer(); 76 77 if (lab != nullptr) { 78 // Promotion of object through newly allocated PLAB 79 if (gc_tracer->should_report_promotion_in_new_plab_event()) { 80 size_t obj_bytes = obj_size * HeapWordSize; 81 size_t lab_size = lab->capacity(); 82 gc_tracer->report_promotion_in_new_plab_event(old_obj->klass(), obj_bytes, 83 age, tenured, lab_size); 84 } 85 } else { 86 // Promotion of object directly to heap 87 if (gc_tracer->should_report_promotion_outside_plab_event()) { 88 size_t obj_bytes = obj_size * HeapWordSize; 89 gc_tracer->report_promotion_outside_plab_event(old_obj->klass(), obj_bytes, 90 age, tenured); 91 } 92 } 93 } 94 } 95 96 class PSPushContentsClosure: public BasicOopIterateClosure { 97 PSPromotionManager* _pm; 98 public: 99 PSPushContentsClosure(PSPromotionManager* pm) : BasicOopIterateClosure(PSScavenge::reference_processor()), _pm(pm) {} 100 101 template <typename T> void do_oop_work(T* p) { 102 _pm->claim_or_forward_depth(p); 103 } 104 105 virtual void do_oop(oop* p) { do_oop_work(p); } 106 virtual void do_oop(narrowOop* p) { do_oop_work(p); } 107 }; 108 109 // 110 // This closure specialization will override the one that is defined in 111 // instanceRefKlass.inline.cpp. It swaps the order of oop_oop_iterate and 112 // oop_oop_iterate_ref_processing. Unfortunately G1 and Parallel behaves 113 // significantly better (especially in the Derby benchmark) using opposite 114 // order of these function calls. 115 // 116 template <> 117 inline void InstanceRefKlass::oop_oop_iterate_reverse<oop, PSPushContentsClosure>(oop obj, PSPushContentsClosure* closure) { 118 oop_oop_iterate_ref_processing<oop>(obj, closure); 119 InstanceKlass::oop_oop_iterate_reverse<oop>(obj, closure); 120 } 121 122 template <> 123 inline void InstanceRefKlass::oop_oop_iterate_reverse<narrowOop, PSPushContentsClosure>(oop obj, PSPushContentsClosure* closure) { 124 oop_oop_iterate_ref_processing<narrowOop>(obj, closure); 125 InstanceKlass::oop_oop_iterate_reverse<narrowOop>(obj, closure); 126 } 127 128 inline void PSPromotionManager::push_contents(oop obj) { 129 if (!obj->klass()->is_typeArray_klass()) { 130 PSPushContentsClosure pcc(this); 131 obj->oop_iterate_backwards(&pcc); 132 } 133 } 134 135 inline void PSPromotionManager::push_contents_bounded(oop obj, HeapWord* left, HeapWord* right) { 136 PSPushContentsClosure pcc(this); 137 obj->oop_iterate(&pcc, MemRegion(left, right)); 138 } 139 140 template<bool promote_immediately> 141 inline oop PSPromotionManager::copy_to_survivor_space(oop o) { 142 assert(should_scavenge(&o), "Sanity"); 143 144 // NOTE! We must be very careful with any methods that access the mark 145 // in o. There may be multiple threads racing on it, and it may be forwarded 146 // at any time. 147 markWord m = o->mark(); 148 if (!m.is_forwarded()) { 149 return copy_unmarked_to_survivor_space<promote_immediately>(o, m); 150 } else { 151 // Ensure any loads from the forwardee follow all changes that precede 152 // the release-cmpxchg that performed the forwarding, possibly in some 153 // other thread. 154 OrderAccess::acquire(); 155 // Return the already installed forwardee. 156 return m.forwardee(); 157 } 158 } 159 160 // 161 // This method is pretty bulky. It would be nice to split it up 162 // into smaller submethods, but we need to be careful not to hurt 163 // performance. 164 // 165 template<bool promote_immediately> 166 inline oop PSPromotionManager::copy_unmarked_to_survivor_space(oop o, 167 markWord test_mark) { 168 assert(should_scavenge(&o), "Sanity"); 169 170 oop new_obj = nullptr; 171 bool new_obj_is_tenured = false; 172 size_t new_obj_size = o->size(); 173 174 // Find the objects age, MT safe. 175 uint age = (test_mark.has_displaced_mark_helper() /* o->has_displaced_mark() */) ? 176 test_mark.displaced_mark_helper().age() : test_mark.age(); 177 178 if (!promote_immediately) { 179 // Try allocating obj in to-space (unless too old) 180 if (age < PSScavenge::tenuring_threshold()) { 181 new_obj = cast_to_oop(_young_lab.allocate(new_obj_size)); 182 if (new_obj == nullptr && !_young_gen_is_full) { 183 // Do we allocate directly, or flush and refill? 184 if (new_obj_size > (YoungPLABSize / 2)) { 185 // Allocate this object directly 186 new_obj = cast_to_oop(young_space()->cas_allocate(new_obj_size)); 187 promotion_trace_event(new_obj, o, new_obj_size, age, false, nullptr); 188 } else { 189 // Flush and fill 190 _young_lab.flush(); 191 192 HeapWord* lab_base = young_space()->cas_allocate(YoungPLABSize); 193 if (lab_base != nullptr) { 194 _young_lab.initialize(MemRegion(lab_base, YoungPLABSize)); 195 // Try the young lab allocation again. 196 new_obj = cast_to_oop(_young_lab.allocate(new_obj_size)); 197 promotion_trace_event(new_obj, o, new_obj_size, age, false, &_young_lab); 198 } else { 199 _young_gen_is_full = true; 200 } 201 } 202 } 203 } 204 } 205 206 // Otherwise try allocating obj tenured 207 if (new_obj == nullptr) { 208 #ifndef PRODUCT 209 if (ParallelScavengeHeap::heap()->promotion_should_fail()) { 210 return oop_promotion_failed(o, test_mark); 211 } 212 #endif // #ifndef PRODUCT 213 214 new_obj = cast_to_oop(_old_lab.allocate(new_obj_size)); 215 new_obj_is_tenured = true; 216 217 if (new_obj == nullptr) { 218 if (!_old_gen_is_full) { 219 // Do we allocate directly, or flush and refill? 220 if (new_obj_size > (OldPLABSize / 2)) { 221 // Allocate this object directly 222 new_obj = cast_to_oop(old_gen()->allocate(new_obj_size)); 223 promotion_trace_event(new_obj, o, new_obj_size, age, true, nullptr); 224 } else { 225 // Flush and fill 226 _old_lab.flush(); 227 228 HeapWord* lab_base = old_gen()->allocate(OldPLABSize); 229 if(lab_base != nullptr) { 230 _old_lab.initialize(MemRegion(lab_base, OldPLABSize)); 231 // Try the old lab allocation again. 232 new_obj = cast_to_oop(_old_lab.allocate(new_obj_size)); 233 promotion_trace_event(new_obj, o, new_obj_size, age, true, &_old_lab); 234 } 235 } 236 } 237 238 // This is the promotion failed test, and code handling. 239 // The code belongs here for two reasons. It is slightly 240 // different than the code below, and cannot share the 241 // CAS testing code. Keeping the code here also minimizes 242 // the impact on the common case fast path code. 243 244 if (new_obj == nullptr) { 245 _old_gen_is_full = true; 246 return oop_promotion_failed(o, test_mark); 247 } 248 } 249 } 250 251 assert(new_obj != nullptr, "allocation should have succeeded"); 252 253 // Copy obj 254 Copy::aligned_disjoint_words(cast_from_oop<HeapWord*>(o), cast_from_oop<HeapWord*>(new_obj), new_obj_size); 255 256 // Parallel GC claims with a release - so other threads might access this object 257 // after claiming and they should see the "completed" object. 258 ContinuationGCSupport::transform_stack_chunk(new_obj); 259 260 // Now we have to CAS in the header. 261 // Make copy visible to threads reading the forwardee. 262 oop forwardee = o->forward_to_atomic(new_obj, test_mark, memory_order_release); 263 if (forwardee == nullptr) { // forwardee is null when forwarding is successful 264 // We won any races, we "own" this object. 265 assert(new_obj == o->forwardee(), "Sanity"); 266 267 // Increment age if obj still in new generation. Now that 268 // we're dealing with a markWord that cannot change, it is 269 // okay to use the non mt safe oop methods. 270 if (!new_obj_is_tenured) { 271 new_obj->incr_age(); 272 assert(young_space()->contains(new_obj), "Attempt to push non-promoted obj"); 273 } 274 275 // Do the size comparison first with new_obj_size, which we 276 // already have. Hopefully, only a few objects are larger than 277 // _min_array_size_for_chunking, and most of them will be arrays. 278 // So, the is->objArray() test would be very infrequent. 279 if (new_obj_size > _min_array_size_for_chunking && 280 new_obj->is_objArray() && 281 PSChunkLargeArrays) { 282 // we'll chunk it 283 push_depth(ScannerTask(PartialArrayScanTask(o))); 284 TASKQUEUE_STATS_ONLY(++_arrays_chunked; ++_array_chunk_pushes); 285 } else { 286 // we'll just push its contents 287 push_contents(new_obj); 288 289 if (StringDedup::is_enabled() && 290 java_lang_String::is_instance(new_obj) && 291 psStringDedup::is_candidate_from_evacuation(new_obj, new_obj_is_tenured)) { 292 _string_dedup_requests.add(o); 293 } 294 } 295 return new_obj; 296 } else { 297 // We lost, someone else "owns" this object. 298 // Ensure loads from the forwardee follow all changes that preceded the 299 // release-cmpxchg that performed the forwarding in another thread. 300 OrderAccess::acquire(); 301 302 assert(o->is_forwarded(), "Object must be forwarded if the cas failed."); 303 assert(o->forwardee() == forwardee, "invariant"); 304 305 if (new_obj_is_tenured) { 306 _old_lab.unallocate_object(cast_from_oop<HeapWord*>(new_obj), new_obj_size); 307 } else { 308 _young_lab.unallocate_object(cast_from_oop<HeapWord*>(new_obj), new_obj_size); 309 } 310 return forwardee; 311 } 312 } 313 314 // Attempt to "claim" oop at p via CAS, push the new obj if successful 315 template <bool promote_immediately, class T> 316 inline void PSPromotionManager::copy_and_push_safe_barrier(T* p) { 317 assert(ParallelScavengeHeap::heap()->is_in_reserved(p), "precondition"); 318 assert(should_scavenge(p, true), "revisiting object?"); 319 320 oop o = RawAccess<IS_NOT_NULL>::oop_load(p); 321 oop new_obj = copy_to_survivor_space<promote_immediately>(o); 322 RawAccess<IS_NOT_NULL>::oop_store(p, new_obj); 323 324 if (!PSScavenge::is_obj_in_young((HeapWord*)p) && 325 PSScavenge::is_obj_in_young(new_obj)) { 326 PSScavenge::card_table()->inline_write_ref_field_gc(p); 327 } 328 } 329 330 inline void PSPromotionManager::process_popped_location_depth(ScannerTask task) { 331 if (task.is_partial_array_task()) { 332 assert(PSChunkLargeArrays, "invariant"); 333 process_array_chunk(task.to_partial_array_task()); 334 } else { 335 if (task.is_narrow_oop_ptr()) { 336 assert(UseCompressedOops, "Error"); 337 copy_and_push_safe_barrier</*promote_immediately=*/false>(task.to_narrow_oop_ptr()); 338 } else { 339 copy_and_push_safe_barrier</*promote_immediately=*/false>(task.to_oop_ptr()); 340 } 341 } 342 } 343 344 inline bool PSPromotionManager::steal_depth(int queue_num, ScannerTask& t) { 345 return stack_array_depth()->steal(queue_num, t); 346 } 347 348 #if TASKQUEUE_STATS 349 void PSPromotionManager::record_steal(ScannerTask task) { 350 if (task.is_partial_array_task()) { 351 ++_array_chunk_steals; 352 } 353 } 354 #endif // TASKQUEUE_STATS 355 356 #endif // SHARE_GC_PARALLEL_PSPROMOTIONMANAGER_INLINE_HPP