1 /* 2 * Copyright (c) 2002, 2022, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_GC_PARALLEL_PSPROMOTIONMANAGER_INLINE_HPP 26 #define SHARE_GC_PARALLEL_PSPROMOTIONMANAGER_INLINE_HPP 27 28 #include "gc/parallel/psPromotionManager.hpp" 29 30 #include "gc/parallel/parallelScavengeHeap.hpp" 31 #include "gc/parallel/parMarkBitMap.inline.hpp" 32 #include "gc/parallel/psOldGen.hpp" 33 #include "gc/parallel/psPromotionLAB.inline.hpp" 34 #include "gc/parallel/psScavenge.inline.hpp" 35 #include "gc/parallel/psStringDedup.hpp" 36 #include "gc/shared/taskqueue.inline.hpp" 37 #include "gc/shared/tlab_globals.hpp" 38 #include "logging/log.hpp" 39 #include "memory/iterator.inline.hpp" 40 #include "oops/access.inline.hpp" 41 #include "oops/oop.inline.hpp" 42 #include "runtime/orderAccess.hpp" 43 #include "runtime/prefetch.inline.hpp" 44 45 inline PSPromotionManager* PSPromotionManager::manager_array(uint index) { 46 assert(_manager_array != NULL, "access of NULL manager_array"); 47 assert(index < ParallelGCThreads, "out of range manager_array access"); 48 return &_manager_array[index]; 49 } 50 51 inline void PSPromotionManager::push_depth(ScannerTask task) { 52 claimed_stack_depth()->push(task); 53 } 54 55 template <class T> 56 inline void PSPromotionManager::claim_or_forward_depth(T* p) { 57 assert(should_scavenge(p, true), "revisiting object?"); 58 assert(ParallelScavengeHeap::heap()->is_in(p), "pointer outside heap"); 59 oop obj = RawAccess<IS_NOT_NULL>::oop_load(p); 60 Prefetch::write(obj->mark_addr(), 0); 61 push_depth(ScannerTask(p)); 62 } 63 64 inline void PSPromotionManager::promotion_trace_event(oop new_obj, oop old_obj, 65 size_t obj_size, 66 uint age, bool tenured, 67 const PSPromotionLAB* lab) { 68 // Skip if memory allocation failed 69 if (new_obj != NULL) { 70 const ParallelScavengeTracer* gc_tracer = PSScavenge::gc_tracer(); 71 72 if (lab != NULL) { 73 // Promotion of object through newly allocated PLAB 74 if (gc_tracer->should_report_promotion_in_new_plab_event()) { 75 size_t obj_bytes = obj_size * HeapWordSize; 76 size_t lab_size = lab->capacity(); 77 gc_tracer->report_promotion_in_new_plab_event(old_obj->klass(), obj_bytes, 78 age, tenured, lab_size); 79 } 80 } else { 81 // Promotion of object directly to heap 82 if (gc_tracer->should_report_promotion_outside_plab_event()) { 83 size_t obj_bytes = obj_size * HeapWordSize; 84 gc_tracer->report_promotion_outside_plab_event(old_obj->klass(), obj_bytes, 85 age, tenured); 86 } 87 } 88 } 89 } 90 91 class PSPushContentsClosure: public BasicOopIterateClosure { 92 PSPromotionManager* _pm; 93 public: 94 PSPushContentsClosure(PSPromotionManager* pm) : BasicOopIterateClosure(PSScavenge::reference_processor()), _pm(pm) {} 95 96 template <typename T> void do_oop_nv(T* p) { 97 if (PSScavenge::should_scavenge(p)) { 98 _pm->claim_or_forward_depth(p); 99 } 100 } 101 102 virtual void do_oop(oop* p) { do_oop_nv(p); } 103 virtual void do_oop(narrowOop* p) { do_oop_nv(p); } 104 }; 105 106 // 107 // This closure specialization will override the one that is defined in 108 // instanceRefKlass.inline.cpp. It swaps the order of oop_oop_iterate and 109 // oop_oop_iterate_ref_processing. Unfortunately G1 and Parallel behaves 110 // significantly better (especially in the Derby benchmark) using opposite 111 // order of these function calls. 112 // 113 template <> 114 inline void InstanceRefKlass::oop_oop_iterate_reverse<oop, PSPushContentsClosure>(oop obj, PSPushContentsClosure* closure) { 115 oop_oop_iterate_ref_processing<oop>(obj, closure); 116 InstanceKlass::oop_oop_iterate_reverse<oop>(obj, closure); 117 } 118 119 template <> 120 inline void InstanceRefKlass::oop_oop_iterate_reverse<narrowOop, PSPushContentsClosure>(oop obj, PSPushContentsClosure* closure) { 121 oop_oop_iterate_ref_processing<narrowOop>(obj, closure); 122 InstanceKlass::oop_oop_iterate_reverse<narrowOop>(obj, closure); 123 } 124 125 inline void PSPromotionManager::push_contents(oop obj) { 126 if (!obj->klass()->is_typeArray_klass()) { 127 PSPushContentsClosure pcc(this); 128 obj->oop_iterate_backwards(&pcc); 129 } 130 } 131 132 template<bool promote_immediately> 133 inline oop PSPromotionManager::copy_to_survivor_space(oop o) { 134 assert(should_scavenge(&o), "Sanity"); 135 136 // NOTE! We must be very careful with any methods that access the mark 137 // in o. There may be multiple threads racing on it, and it may be forwarded 138 // at any time. 139 markWord m = o->mark(); 140 if (!m.is_marked()) { 141 return copy_unmarked_to_survivor_space<promote_immediately>(o, m); 142 } else { 143 // Ensure any loads from the forwardee follow all changes that precede 144 // the release-cmpxchg that performed the forwarding, possibly in some 145 // other thread. 146 OrderAccess::acquire(); 147 // Return the already installed forwardee. 148 return cast_to_oop(m.decode_pointer()); 149 } 150 } 151 152 // 153 // This method is pretty bulky. It would be nice to split it up 154 // into smaller submethods, but we need to be careful not to hurt 155 // performance. 156 // 157 template<bool promote_immediately> 158 inline oop PSPromotionManager::copy_unmarked_to_survivor_space(oop o, 159 markWord test_mark) { 160 assert(should_scavenge(&o), "Sanity"); 161 162 oop new_obj = NULL; 163 bool new_obj_is_tenured = false; 164 size_t new_obj_size = o->size(); 165 166 // Find the objects age, MT safe. 167 uint age = (test_mark.has_displaced_mark_helper() /* o->has_displaced_mark() */) ? 168 test_mark.displaced_mark_helper().age() : test_mark.age(); 169 170 if (!promote_immediately) { 171 // Try allocating obj in to-space (unless too old) 172 if (age < PSScavenge::tenuring_threshold()) { 173 new_obj = cast_to_oop(_young_lab.allocate(new_obj_size)); 174 if (new_obj == NULL && !_young_gen_is_full) { 175 // Do we allocate directly, or flush and refill? 176 if (new_obj_size > (YoungPLABSize / 2)) { 177 // Allocate this object directly 178 new_obj = cast_to_oop(young_space()->cas_allocate(new_obj_size)); 179 promotion_trace_event(new_obj, o, new_obj_size, age, false, NULL); 180 } else { 181 // Flush and fill 182 _young_lab.flush(); 183 184 HeapWord* lab_base = young_space()->cas_allocate(YoungPLABSize); 185 if (lab_base != NULL) { 186 _young_lab.initialize(MemRegion(lab_base, YoungPLABSize)); 187 // Try the young lab allocation again. 188 new_obj = cast_to_oop(_young_lab.allocate(new_obj_size)); 189 promotion_trace_event(new_obj, o, new_obj_size, age, false, &_young_lab); 190 } else { 191 _young_gen_is_full = true; 192 } 193 } 194 } 195 } 196 } 197 198 // Otherwise try allocating obj tenured 199 if (new_obj == NULL) { 200 #ifndef PRODUCT 201 if (ParallelScavengeHeap::heap()->promotion_should_fail()) { 202 return oop_promotion_failed(o, test_mark); 203 } 204 #endif // #ifndef PRODUCT 205 206 new_obj = cast_to_oop(_old_lab.allocate(new_obj_size)); 207 new_obj_is_tenured = true; 208 209 if (new_obj == NULL) { 210 if (!_old_gen_is_full) { 211 // Do we allocate directly, or flush and refill? 212 if (new_obj_size > (OldPLABSize / 2)) { 213 // Allocate this object directly 214 new_obj = cast_to_oop(old_gen()->allocate(new_obj_size)); 215 promotion_trace_event(new_obj, o, new_obj_size, age, true, NULL); 216 } else { 217 // Flush and fill 218 _old_lab.flush(); 219 220 HeapWord* lab_base = old_gen()->allocate(OldPLABSize); 221 if(lab_base != NULL) { 222 _old_lab.initialize(MemRegion(lab_base, OldPLABSize)); 223 // Try the old lab allocation again. 224 new_obj = cast_to_oop(_old_lab.allocate(new_obj_size)); 225 promotion_trace_event(new_obj, o, new_obj_size, age, true, &_old_lab); 226 } 227 } 228 } 229 230 // This is the promotion failed test, and code handling. 231 // The code belongs here for two reasons. It is slightly 232 // different than the code below, and cannot share the 233 // CAS testing code. Keeping the code here also minimizes 234 // the impact on the common case fast path code. 235 236 if (new_obj == NULL) { 237 _old_gen_is_full = true; 238 return oop_promotion_failed(o, test_mark); 239 } 240 } 241 } 242 243 assert(new_obj != NULL, "allocation should have succeeded"); 244 245 // Copy obj 246 Copy::aligned_disjoint_words(cast_from_oop<HeapWord*>(o), cast_from_oop<HeapWord*>(new_obj), new_obj_size); 247 248 // Now we have to CAS in the header. 249 // Make copy visible to threads reading the forwardee. 250 oop forwardee = o->forward_to_atomic(new_obj, test_mark, memory_order_release); 251 if (forwardee == NULL) { // forwardee is NULL when forwarding is successful 252 // We won any races, we "own" this object. 253 assert(new_obj == o->forwardee(), "Sanity"); 254 255 // Increment age if obj still in new generation. Now that 256 // we're dealing with a markWord that cannot change, it is 257 // okay to use the non mt safe oop methods. 258 if (!new_obj_is_tenured) { 259 new_obj->incr_age(); 260 assert(young_space()->contains(new_obj), "Attempt to push non-promoted obj"); 261 } 262 263 // Do the size comparison first with new_obj_size, which we 264 // already have. Hopefully, only a few objects are larger than 265 // _min_array_size_for_chunking, and most of them will be arrays. 266 // So, the is->objArray() test would be very infrequent. 267 if (new_obj_size > _min_array_size_for_chunking && 268 new_obj->is_objArray() && 269 PSChunkLargeArrays) { 270 // we'll chunk it 271 push_depth(ScannerTask(PartialArrayScanTask(o))); 272 TASKQUEUE_STATS_ONLY(++_arrays_chunked; ++_array_chunk_pushes); 273 } else { 274 // we'll just push its contents 275 push_contents(new_obj); 276 277 if (StringDedup::is_enabled() && 278 java_lang_String::is_instance(new_obj) && 279 psStringDedup::is_candidate_from_evacuation(new_obj, new_obj_is_tenured)) { 280 _string_dedup_requests.add(o); 281 } 282 } 283 return new_obj; 284 } else { 285 // We lost, someone else "owns" this object. 286 // Ensure loads from the forwardee follow all changes that preceded the 287 // release-cmpxchg that performed the forwarding in another thread. 288 OrderAccess::acquire(); 289 290 assert(o->is_forwarded(), "Object must be forwarded if the cas failed."); 291 assert(o->forwardee() == forwardee, "invariant"); 292 293 if (new_obj_is_tenured) { 294 _old_lab.unallocate_object(cast_from_oop<HeapWord*>(new_obj), new_obj_size); 295 } else { 296 _young_lab.unallocate_object(cast_from_oop<HeapWord*>(new_obj), new_obj_size); 297 } 298 return forwardee; 299 } 300 } 301 302 // Attempt to "claim" oop at p via CAS, push the new obj if successful 303 template <bool promote_immediately, class T> 304 inline void PSPromotionManager::copy_and_push_safe_barrier(T* p) { 305 assert(ParallelScavengeHeap::heap()->is_in_reserved(p), "precondition"); 306 assert(should_scavenge(p, true), "revisiting object?"); 307 308 oop o = RawAccess<IS_NOT_NULL>::oop_load(p); 309 oop new_obj = copy_to_survivor_space<promote_immediately>(o); 310 RawAccess<IS_NOT_NULL>::oop_store(p, new_obj); 311 312 if (!PSScavenge::is_obj_in_young((HeapWord*)p) && 313 PSScavenge::is_obj_in_young(new_obj)) { 314 PSScavenge::card_table()->inline_write_ref_field_gc(p, new_obj); 315 } 316 } 317 318 inline void PSPromotionManager::process_popped_location_depth(ScannerTask task) { 319 if (task.is_partial_array_task()) { 320 assert(PSChunkLargeArrays, "invariant"); 321 process_array_chunk(task.to_partial_array_task()); 322 } else { 323 if (task.is_narrow_oop_ptr()) { 324 assert(UseCompressedOops, "Error"); 325 copy_and_push_safe_barrier</*promote_immediately=*/false>(task.to_narrow_oop_ptr()); 326 } else { 327 copy_and_push_safe_barrier</*promote_immediately=*/false>(task.to_oop_ptr()); 328 } 329 } 330 } 331 332 inline bool PSPromotionManager::steal_depth(int queue_num, ScannerTask& t) { 333 return stack_array_depth()->steal(queue_num, t); 334 } 335 336 #if TASKQUEUE_STATS 337 void PSPromotionManager::record_steal(ScannerTask task) { 338 if (task.is_partial_array_task()) { 339 ++_array_chunk_steals; 340 } 341 } 342 #endif // TASKQUEUE_STATS 343 344 #endif // SHARE_GC_PARALLEL_PSPROMOTIONMANAGER_INLINE_HPP --- EOF ---