< prev index next >

src/hotspot/share/gc/parallel/psPromotionManager.inline.hpp

Print this page

 49   assert(index < ParallelGCThreads, "out of range manager_array access");
 50   return &_manager_array[index];
 51 }
 52 
 53 inline void PSPromotionManager::push_depth(ScannerTask task) {
 54   claimed_stack_depth()->push(task);
 55 }
 56 
 57 template <class T>
 58 inline void PSPromotionManager::claim_or_forward_depth(T* p) {
 59   assert(ParallelScavengeHeap::heap()->is_in(p), "pointer outside heap");
 60   T heap_oop = RawAccess<>::oop_load(p);
 61   if (PSScavenge::is_obj_in_young(heap_oop)) {
 62     oop obj = CompressedOops::decode_not_null(heap_oop);
 63     assert(!PSScavenge::is_obj_in_to_space(obj), "revisiting object?");
 64     Prefetch::write(obj->mark_addr(), 0);
 65     push_depth(ScannerTask(p));
 66   }
 67 }
 68 
 69 inline void PSPromotionManager::promotion_trace_event(oop new_obj, oop old_obj,
 70                                                       size_t obj_size,
 71                                                       uint age, bool tenured,
 72                                                       const PSPromotionLAB* lab) {
 73   // Skip if memory allocation failed
 74   if (new_obj != nullptr) {
 75     const ParallelScavengeTracer* gc_tracer = PSScavenge::gc_tracer();
 76 
 77     if (lab != nullptr) {
 78       // Promotion of object through newly allocated PLAB
 79       if (gc_tracer->should_report_promotion_in_new_plab_event()) {
 80         size_t obj_bytes = obj_size * HeapWordSize;
 81         size_t lab_size = lab->capacity();
 82         gc_tracer->report_promotion_in_new_plab_event(old_obj->klass(), obj_bytes,
 83                                                       age, tenured, lab_size);
 84       }
 85     } else {
 86       // Promotion of object directly to heap
 87       if (gc_tracer->should_report_promotion_outside_plab_event()) {
 88         size_t obj_bytes = obj_size * HeapWordSize;
 89         gc_tracer->report_promotion_outside_plab_event(old_obj->klass(), obj_bytes,
 90                                                        age, tenured);
 91       }
 92     }
 93   }
 94 }
 95 
 96 class PSPushContentsClosure: public BasicOopIterateClosure {
 97   PSPromotionManager* _pm;
 98  public:
 99   PSPushContentsClosure(PSPromotionManager* pm) : BasicOopIterateClosure(PSScavenge::reference_processor()), _pm(pm) {}
100 
101   template <typename T> void do_oop_work(T* p) {
102     _pm->claim_or_forward_depth(p);
103   }
104 
105   virtual void do_oop(oop* p)       { do_oop_work(p); }
106   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
107 };
108 
109 //

136   PSPushContentsClosure pcc(this);
137   obj->oop_iterate(&pcc, MemRegion(left, right));
138 }
139 
140 template<bool promote_immediately>
141 inline oop PSPromotionManager::copy_to_survivor_space(oop o) {
142   assert(should_scavenge(&o), "Sanity");
143 
144   // NOTE! We must be very careful with any methods that access the mark
145   // in o. There may be multiple threads racing on it, and it may be forwarded
146   // at any time.
147   markWord m = o->mark();
148   if (!m.is_marked()) {
149     return copy_unmarked_to_survivor_space<promote_immediately>(o, m);
150   } else {
151     // Ensure any loads from the forwardee follow all changes that precede
152     // the release-cmpxchg that performed the forwarding, possibly in some
153     // other thread.
154     OrderAccess::acquire();
155     // Return the already installed forwardee.
156     return cast_to_oop(m.decode_pointer());
157   }
158 }
159 
160 //
161 // This method is pretty bulky. It would be nice to split it up
162 // into smaller submethods, but we need to be careful not to hurt
163 // performance.
164 //
165 template<bool promote_immediately>
166 inline oop PSPromotionManager::copy_unmarked_to_survivor_space(oop o,
167                                                                markWord test_mark) {
168   assert(should_scavenge(&o), "Sanity");
169 
170   oop new_obj = nullptr;
171   bool new_obj_is_tenured = false;
172   size_t new_obj_size = o->size();







173 
174   // Find the objects age, MT safe.
175   uint age = (test_mark.has_displaced_mark_helper() /* o->has_displaced_mark() */) ?
176       test_mark.displaced_mark_helper().age() : test_mark.age();
177 
178   if (!promote_immediately) {
179     // Try allocating obj in to-space (unless too old)
180     if (age < PSScavenge::tenuring_threshold()) {
181       new_obj = cast_to_oop(_young_lab.allocate(new_obj_size));
182       if (new_obj == nullptr && !_young_gen_is_full) {
183         // Do we allocate directly, or flush and refill?
184         if (new_obj_size > (YoungPLABSize / 2)) {
185           // Allocate this object directly
186           new_obj = cast_to_oop(young_space()->cas_allocate(new_obj_size));
187           promotion_trace_event(new_obj, o, new_obj_size, age, false, nullptr);
188         } else {
189           // Flush and fill
190           _young_lab.flush();
191 
192           HeapWord* lab_base = young_space()->cas_allocate(YoungPLABSize);
193           if (lab_base != nullptr) {
194             _young_lab.initialize(MemRegion(lab_base, YoungPLABSize));
195             // Try the young lab allocation again.
196             new_obj = cast_to_oop(_young_lab.allocate(new_obj_size));
197             promotion_trace_event(new_obj, o, new_obj_size, age, false, &_young_lab);
198           } else {
199             _young_gen_is_full = true;
200           }
201         }
202       }
203     }
204   }
205 
206   // Otherwise try allocating obj tenured
207   if (new_obj == nullptr) {
208 #ifndef PRODUCT
209     if (ParallelScavengeHeap::heap()->promotion_should_fail()) {
210       return oop_promotion_failed(o, test_mark);
211     }
212 #endif  // #ifndef PRODUCT
213 
214     new_obj = cast_to_oop(_old_lab.allocate(new_obj_size));
215     new_obj_is_tenured = true;
216 
217     if (new_obj == nullptr) {
218       if (!_old_gen_is_full) {
219         // Do we allocate directly, or flush and refill?
220         if (new_obj_size > (OldPLABSize / 2)) {
221           // Allocate this object directly
222           new_obj = cast_to_oop(old_gen()->allocate(new_obj_size));
223           promotion_trace_event(new_obj, o, new_obj_size, age, true, nullptr);
224         } else {
225           // Flush and fill
226           _old_lab.flush();
227 
228           HeapWord* lab_base = old_gen()->allocate(OldPLABSize);
229           if(lab_base != nullptr) {
230             _old_lab.initialize(MemRegion(lab_base, OldPLABSize));
231             // Try the old lab allocation again.
232             new_obj = cast_to_oop(_old_lab.allocate(new_obj_size));
233             promotion_trace_event(new_obj, o, new_obj_size, age, true, &_old_lab);
234           }
235         }
236       }
237 
238       // This is the promotion failed test, and code handling.
239       // The code belongs here for two reasons. It is slightly
240       // different than the code below, and cannot share the
241       // CAS testing code. Keeping the code here also minimizes
242       // the impact on the common case fast path code.
243 
244       if (new_obj == nullptr) {
245         _old_gen_is_full = true;
246         return oop_promotion_failed(o, test_mark);
247       }
248     }
249   }
250 
251   assert(new_obj != nullptr, "allocation should have succeeded");
252 
253   // Copy obj
254   Copy::aligned_disjoint_words(cast_from_oop<HeapWord*>(o), cast_from_oop<HeapWord*>(new_obj), new_obj_size);
255 
256   // Parallel GC claims with a release - so other threads might access this object
257   // after claiming and they should see the "completed" object.
258   ContinuationGCSupport::transform_stack_chunk(new_obj);












259 
260   // Now we have to CAS in the header.
261   // Make copy visible to threads reading the forwardee.
262   oop forwardee = o->forward_to_atomic(new_obj, test_mark, memory_order_release);
263   if (forwardee == nullptr) {  // forwardee is null when forwarding is successful
264     // We won any races, we "own" this object.
265     assert(new_obj == o->forwardee(), "Sanity");
266 
267     // Increment age if obj still in new generation. Now that
268     // we're dealing with a markWord that cannot change, it is
269     // okay to use the non mt safe oop methods.
270     if (!new_obj_is_tenured) {
271       new_obj->incr_age();
272       assert(young_space()->contains(new_obj), "Attempt to push non-promoted obj");
273     }
274 
275     // Do the size comparison first with new_obj_size, which we
276     // already have. Hopefully, only a few objects are larger than
277     // _min_array_size_for_chunking, and most of them will be arrays.
278     // So, the is->objArray() test would be very infrequent.

 49   assert(index < ParallelGCThreads, "out of range manager_array access");
 50   return &_manager_array[index];
 51 }
 52 
 53 inline void PSPromotionManager::push_depth(ScannerTask task) {
 54   claimed_stack_depth()->push(task);
 55 }
 56 
 57 template <class T>
 58 inline void PSPromotionManager::claim_or_forward_depth(T* p) {
 59   assert(ParallelScavengeHeap::heap()->is_in(p), "pointer outside heap");
 60   T heap_oop = RawAccess<>::oop_load(p);
 61   if (PSScavenge::is_obj_in_young(heap_oop)) {
 62     oop obj = CompressedOops::decode_not_null(heap_oop);
 63     assert(!PSScavenge::is_obj_in_to_space(obj), "revisiting object?");
 64     Prefetch::write(obj->mark_addr(), 0);
 65     push_depth(ScannerTask(p));
 66   }
 67 }
 68 
 69 inline void PSPromotionManager::promotion_trace_event(oop new_obj, Klass* klass,
 70                                                       size_t obj_size,
 71                                                       uint age, bool tenured,
 72                                                       const PSPromotionLAB* lab) {
 73   // Skip if memory allocation failed
 74   if (new_obj != nullptr) {
 75     const ParallelScavengeTracer* gc_tracer = PSScavenge::gc_tracer();
 76 
 77     if (lab != nullptr) {
 78       // Promotion of object through newly allocated PLAB
 79       if (gc_tracer->should_report_promotion_in_new_plab_event()) {
 80         size_t obj_bytes = obj_size * HeapWordSize;
 81         size_t lab_size = lab->capacity();
 82         gc_tracer->report_promotion_in_new_plab_event(klass, obj_bytes,
 83                                                       age, tenured, lab_size);
 84       }
 85     } else {
 86       // Promotion of object directly to heap
 87       if (gc_tracer->should_report_promotion_outside_plab_event()) {
 88         size_t obj_bytes = obj_size * HeapWordSize;
 89         gc_tracer->report_promotion_outside_plab_event(klass, obj_bytes,
 90                                                        age, tenured);
 91       }
 92     }
 93   }
 94 }
 95 
 96 class PSPushContentsClosure: public BasicOopIterateClosure {
 97   PSPromotionManager* _pm;
 98  public:
 99   PSPushContentsClosure(PSPromotionManager* pm) : BasicOopIterateClosure(PSScavenge::reference_processor()), _pm(pm) {}
100 
101   template <typename T> void do_oop_work(T* p) {
102     _pm->claim_or_forward_depth(p);
103   }
104 
105   virtual void do_oop(oop* p)       { do_oop_work(p); }
106   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
107 };
108 
109 //

136   PSPushContentsClosure pcc(this);
137   obj->oop_iterate(&pcc, MemRegion(left, right));
138 }
139 
140 template<bool promote_immediately>
141 inline oop PSPromotionManager::copy_to_survivor_space(oop o) {
142   assert(should_scavenge(&o), "Sanity");
143 
144   // NOTE! We must be very careful with any methods that access the mark
145   // in o. There may be multiple threads racing on it, and it may be forwarded
146   // at any time.
147   markWord m = o->mark();
148   if (!m.is_marked()) {
149     return copy_unmarked_to_survivor_space<promote_immediately>(o, m);
150   } else {
151     // Ensure any loads from the forwardee follow all changes that precede
152     // the release-cmpxchg that performed the forwarding, possibly in some
153     // other thread.
154     OrderAccess::acquire();
155     // Return the already installed forwardee.
156     return o->forwardee(m);
157   }
158 }
159 
160 //
161 // This method is pretty bulky. It would be nice to split it up
162 // into smaller submethods, but we need to be careful not to hurt
163 // performance.
164 //
165 template<bool promote_immediately>
166 inline oop PSPromotionManager::copy_unmarked_to_survivor_space(oop o,
167                                                                markWord test_mark) {
168   assert(should_scavenge(&o), "Sanity");
169 
170   oop new_obj = nullptr;
171   bool new_obj_is_tenured = false;
172   // NOTE: With compact headers, it is not safe to load the Klass* from o, because
173   // that would access the mark-word, and the mark-word might change at any time by
174   // concurrent promotion. The promoted mark-word would point to the forwardee, which
175   // may not yet have completed copying. Therefore we must load the Klass* from
176   // the mark-word that we have already loaded. This is safe, because we have checked
177   // that this is not yet forwarded in the caller.
178   Klass* klass = o->forward_safe_klass(test_mark);
179   size_t new_obj_size = o->size_given_klass(klass);
180 
181   // Find the objects age, MT safe.
182   uint age = (test_mark.has_displaced_mark_helper() /* o->has_displaced_mark() */) ?
183       test_mark.displaced_mark_helper().age() : test_mark.age();
184 
185   if (!promote_immediately) {
186     // Try allocating obj in to-space (unless too old)
187     if (age < PSScavenge::tenuring_threshold()) {
188       new_obj = cast_to_oop(_young_lab.allocate(new_obj_size));
189       if (new_obj == nullptr && !_young_gen_is_full) {
190         // Do we allocate directly, or flush and refill?
191         if (new_obj_size > (YoungPLABSize / 2)) {
192           // Allocate this object directly
193           new_obj = cast_to_oop(young_space()->cas_allocate(new_obj_size));
194           promotion_trace_event(new_obj, klass, new_obj_size, age, false, nullptr);
195         } else {
196           // Flush and fill
197           _young_lab.flush();
198 
199           HeapWord* lab_base = young_space()->cas_allocate(YoungPLABSize);
200           if (lab_base != nullptr) {
201             _young_lab.initialize(MemRegion(lab_base, YoungPLABSize));
202             // Try the young lab allocation again.
203             new_obj = cast_to_oop(_young_lab.allocate(new_obj_size));
204             promotion_trace_event(new_obj, klass, new_obj_size, age, false, &_young_lab);
205           } else {
206             _young_gen_is_full = true;
207           }
208         }
209       }
210     }
211   }
212 
213   // Otherwise try allocating obj tenured
214   if (new_obj == nullptr) {
215 #ifndef PRODUCT
216     if (ParallelScavengeHeap::heap()->promotion_should_fail()) {
217       return oop_promotion_failed(o, test_mark);
218     }
219 #endif  // #ifndef PRODUCT
220 
221     new_obj = cast_to_oop(_old_lab.allocate(new_obj_size));
222     new_obj_is_tenured = true;
223 
224     if (new_obj == nullptr) {
225       if (!_old_gen_is_full) {
226         // Do we allocate directly, or flush and refill?
227         if (new_obj_size > (OldPLABSize / 2)) {
228           // Allocate this object directly
229           new_obj = cast_to_oop(old_gen()->allocate(new_obj_size));
230           promotion_trace_event(new_obj, klass, new_obj_size, age, true, nullptr);
231         } else {
232           // Flush and fill
233           _old_lab.flush();
234 
235           HeapWord* lab_base = old_gen()->allocate(OldPLABSize);
236           if(lab_base != nullptr) {
237             _old_lab.initialize(MemRegion(lab_base, OldPLABSize));
238             // Try the old lab allocation again.
239             new_obj = cast_to_oop(_old_lab.allocate(new_obj_size));
240             promotion_trace_event(new_obj, klass, new_obj_size, age, true, &_old_lab);
241           }
242         }
243       }
244 
245       // This is the promotion failed test, and code handling.
246       // The code belongs here for two reasons. It is slightly
247       // different than the code below, and cannot share the
248       // CAS testing code. Keeping the code here also minimizes
249       // the impact on the common case fast path code.
250 
251       if (new_obj == nullptr) {
252         _old_gen_is_full = true;
253         return oop_promotion_failed(o, test_mark);
254       }
255     }
256   }
257 
258   assert(new_obj != nullptr, "allocation should have succeeded");
259 
260   // Copy obj
261   Copy::aligned_disjoint_words(cast_from_oop<HeapWord*>(o), cast_from_oop<HeapWord*>(new_obj), new_obj_size);
262 
263   if (UseCompactObjectHeaders) {
264     // The copy above is not atomic. Make sure we have seen the proper mark
265     // and re-install it into the copy, so that Klass* is guaranteed to be correct.
266     markWord mark = o->mark();
267     if (!mark.is_marked()) {
268       new_obj->set_mark(mark);
269       ContinuationGCSupport::transform_stack_chunk(new_obj);
270     } else {
271       // If we copied a mark-word that indicates 'forwarded' state, the object
272       // installation would not succeed. We cannot access Klass* anymore either.
273       // Skip the transformation.
274     }
275   } else {
276     ContinuationGCSupport::transform_stack_chunk(new_obj);
277   }
278 
279   // Now we have to CAS in the header.
280   // Make copy visible to threads reading the forwardee.
281   oop forwardee = o->forward_to_atomic(new_obj, test_mark, memory_order_release);
282   if (forwardee == nullptr) {  // forwardee is null when forwarding is successful
283     // We won any races, we "own" this object.
284     assert(new_obj == o->forwardee(), "Sanity");
285 
286     // Increment age if obj still in new generation. Now that
287     // we're dealing with a markWord that cannot change, it is
288     // okay to use the non mt safe oop methods.
289     if (!new_obj_is_tenured) {
290       new_obj->incr_age();
291       assert(young_space()->contains(new_obj), "Attempt to push non-promoted obj");
292     }
293 
294     // Do the size comparison first with new_obj_size, which we
295     // already have. Hopefully, only a few objects are larger than
296     // _min_array_size_for_chunking, and most of them will be arrays.
297     // So, the is->objArray() test would be very infrequent.
< prev index next >