1 /* 2 * Copyright (c) 2001, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "gc/serial/cardTableRS.hpp" 27 #include "gc/serial/serialGcRefProcProxyTask.hpp" 28 #include "gc/serial/serialHeap.inline.hpp" 29 #include "gc/serial/serialStringDedup.inline.hpp" 30 #include "gc/serial/tenuredGeneration.hpp" 31 #include "gc/shared/adaptiveSizePolicy.hpp" 32 #include "gc/shared/ageTable.inline.hpp" 33 #include "gc/shared/collectorCounters.hpp" 34 #include "gc/shared/continuationGCSupport.inline.hpp" 35 #include "gc/shared/gcArguments.hpp" 36 #include "gc/shared/gcHeapSummary.hpp" 37 #include "gc/shared/gcLocker.hpp" 38 #include "gc/shared/gcPolicyCounters.hpp" 39 #include "gc/shared/gcTimer.hpp" 40 #include "gc/shared/gcTrace.hpp" 41 #include "gc/shared/gcTraceTime.inline.hpp" 42 #include "gc/shared/preservedMarks.inline.hpp" 43 #include "gc/shared/referencePolicy.hpp" 44 #include "gc/shared/referenceProcessorPhaseTimes.hpp" 45 #include "gc/shared/space.hpp" 46 #include "gc/shared/spaceDecorator.hpp" 47 #include "gc/shared/strongRootsScope.hpp" 48 #include "gc/shared/weakProcessor.hpp" 49 #include "logging/log.hpp" 50 #include "memory/iterator.inline.hpp" 51 #include "memory/resourceArea.hpp" 52 #include "oops/instanceRefKlass.hpp" 53 #include "oops/oop.inline.hpp" 54 #include "runtime/java.hpp" 55 #include "runtime/javaThread.hpp" 56 #include "runtime/prefetch.inline.hpp" 57 #include "runtime/threads.hpp" 58 #include "utilities/align.hpp" 59 #include "utilities/copy.hpp" 60 #include "utilities/globalDefinitions.hpp" 61 #include "utilities/stack.inline.hpp" 62 63 class PromoteFailureClosure : public InHeapScanClosure { 64 template <typename T> 65 void do_oop_work(T* p) { 66 assert(is_in_young_gen(p), "promote-fail objs must be in young-gen"); 67 assert(!SerialHeap::heap()->young_gen()->to()->is_in_reserved(p), "must not be in to-space"); 68 69 try_scavenge(p, [] (auto) {}); 70 } 71 public: 72 PromoteFailureClosure(DefNewGeneration* g) : InHeapScanClosure(g) {} 73 74 void do_oop(oop* p) { do_oop_work(p); } 75 void do_oop(narrowOop* p) { do_oop_work(p); } 76 }; 77 78 class RootScanClosure : public OffHeapScanClosure { 79 template <typename T> 80 void do_oop_work(T* p) { 81 assert(!SerialHeap::heap()->is_in_reserved(p), "outside the heap"); 82 83 try_scavenge(p, [] (auto) {}); 84 } 85 public: 86 RootScanClosure(DefNewGeneration* g) : OffHeapScanClosure(g) {} 87 88 void do_oop(oop* p) { do_oop_work(p); } 89 void do_oop(narrowOop* p) { do_oop_work(p); } 90 }; 91 92 class CLDScanClosure: public CLDClosure { 93 94 class CLDOopClosure : public OffHeapScanClosure { 95 ClassLoaderData* _scanned_cld; 96 97 template <typename T> 98 void do_oop_work(T* p) { 99 assert(!SerialHeap::heap()->is_in_reserved(p), "outside the heap"); 100 101 try_scavenge(p, [&] (oop new_obj) { 102 assert(_scanned_cld != nullptr, "inv"); 103 if (is_in_young_gen(new_obj) && !_scanned_cld->has_modified_oops()) { 104 _scanned_cld->record_modified_oops(); 105 } 106 }); 107 } 108 109 public: 110 CLDOopClosure(DefNewGeneration* g) : OffHeapScanClosure(g), 111 _scanned_cld(nullptr) {} 112 113 void set_scanned_cld(ClassLoaderData* cld) { 114 assert(cld == nullptr || _scanned_cld == nullptr, "Must be"); 115 _scanned_cld = cld; 116 } 117 118 void do_oop(oop* p) { do_oop_work(p); } 119 void do_oop(narrowOop* p) { ShouldNotReachHere(); } 120 }; 121 122 CLDOopClosure _oop_closure; 123 public: 124 CLDScanClosure(DefNewGeneration* g) : _oop_closure(g) {} 125 126 void do_cld(ClassLoaderData* cld) { 127 // If the cld has not been dirtied we know that there's 128 // no references into the young gen and we can skip it. 129 if (cld->has_modified_oops()) { 130 131 // Tell the closure which CLD is being scanned so that it can be dirtied 132 // if oops are left pointing into the young gen. 133 _oop_closure.set_scanned_cld(cld); 134 135 // Clean the cld since we're going to scavenge all the metadata. 136 cld->oops_do(&_oop_closure, ClassLoaderData::_claim_none, /*clear_modified_oops*/true); 137 138 _oop_closure.set_scanned_cld(nullptr); 139 } 140 } 141 }; 142 143 class IsAliveClosure: public BoolObjectClosure { 144 HeapWord* _young_gen_end; 145 public: 146 IsAliveClosure(DefNewGeneration* g): _young_gen_end(g->reserved().end()) {} 147 148 bool do_object_b(oop p) { 149 return cast_from_oop<HeapWord*>(p) >= _young_gen_end || p->is_forwarded(); 150 } 151 }; 152 153 class AdjustWeakRootClosure: public OffHeapScanClosure { 154 template <class T> 155 void do_oop_work(T* p) { 156 DEBUG_ONLY(SerialHeap* heap = SerialHeap::heap();) 157 assert(!heap->is_in_reserved(p), "outside the heap"); 158 159 oop obj = RawAccess<IS_NOT_NULL>::oop_load(p); 160 if (is_in_young_gen(obj)) { 161 assert(!heap->young_gen()->to()->is_in_reserved(obj), "inv"); 162 assert(obj->is_forwarded(), "forwarded before weak-root-processing"); 163 oop new_obj = obj->forwardee(); 164 RawAccess<IS_NOT_NULL>::oop_store(p, new_obj); 165 } 166 } 167 public: 168 AdjustWeakRootClosure(DefNewGeneration* g): OffHeapScanClosure(g) {} 169 170 void do_oop(oop* p) { do_oop_work(p); } 171 void do_oop(narrowOop* p) { ShouldNotReachHere(); } 172 }; 173 174 class KeepAliveClosure: public OopClosure { 175 DefNewGeneration* _young_gen; 176 HeapWord* _young_gen_end; 177 CardTableRS* _rs; 178 179 bool is_in_young_gen(void* p) const { 180 return p < _young_gen_end; 181 } 182 183 template <class T> 184 void do_oop_work(T* p) { 185 oop obj = RawAccess<IS_NOT_NULL>::oop_load(p); 186 187 if (is_in_young_gen(obj)) { 188 oop new_obj = obj->is_forwarded() ? obj->forwardee() 189 : _young_gen->copy_to_survivor_space(obj); 190 RawAccess<IS_NOT_NULL>::oop_store(p, new_obj); 191 192 if (is_in_young_gen(new_obj) && !is_in_young_gen(p)) { 193 _rs->inline_write_ref_field_gc(p); 194 } 195 } 196 } 197 public: 198 KeepAliveClosure(DefNewGeneration* g) : 199 _young_gen(g), 200 _young_gen_end(g->reserved().end()), 201 _rs(SerialHeap::heap()->rem_set()) {} 202 203 void do_oop(oop* p) { do_oop_work(p); } 204 void do_oop(narrowOop* p) { do_oop_work(p); } 205 }; 206 207 class FastEvacuateFollowersClosure: public VoidClosure { 208 SerialHeap* _heap; 209 YoungGenScanClosure* _young_cl; 210 OldGenScanClosure* _old_cl; 211 public: 212 FastEvacuateFollowersClosure(SerialHeap* heap, 213 YoungGenScanClosure* young_cl, 214 OldGenScanClosure* old_cl) : 215 _heap(heap), _young_cl(young_cl), _old_cl(old_cl) 216 {} 217 218 void do_void() { 219 _heap->scan_evacuated_objs(_young_cl, _old_cl); 220 } 221 }; 222 223 DefNewGeneration::DefNewGeneration(ReservedSpace rs, 224 size_t initial_size, 225 size_t min_size, 226 size_t max_size, 227 const char* policy) 228 : Generation(rs, initial_size), 229 _promotion_failed(false), 230 _preserved_marks_set(false /* in_c_heap */), 231 _promo_failure_drain_in_progress(false), 232 _should_allocate_from_space(false), 233 _string_dedup_requests() 234 { 235 MemRegion cmr((HeapWord*)_virtual_space.low(), 236 (HeapWord*)_virtual_space.high()); 237 SerialHeap* gch = SerialHeap::heap(); 238 239 gch->rem_set()->resize_covered_region(cmr); 240 241 _eden_space = new ContiguousSpace(); 242 _from_space = new ContiguousSpace(); 243 _to_space = new ContiguousSpace(); 244 245 // Compute the maximum eden and survivor space sizes. These sizes 246 // are computed assuming the entire reserved space is committed. 247 // These values are exported as performance counters. 248 uintx size = _virtual_space.reserved_size(); 249 _max_survivor_size = compute_survivor_size(size, SpaceAlignment); 250 _max_eden_size = size - (2*_max_survivor_size); 251 252 // allocate the performance counters 253 254 // Generation counters -- generation 0, 3 subspaces 255 _gen_counters = new GenerationCounters("new", 0, 3, 256 min_size, max_size, &_virtual_space); 257 _gc_counters = new CollectorCounters(policy, 0); 258 259 _eden_counters = new CSpaceCounters("eden", 0, _max_eden_size, _eden_space, 260 _gen_counters); 261 _from_counters = new CSpaceCounters("s0", 1, _max_survivor_size, _from_space, 262 _gen_counters); 263 _to_counters = new CSpaceCounters("s1", 2, _max_survivor_size, _to_space, 264 _gen_counters); 265 266 compute_space_boundaries(0, SpaceDecorator::Clear, SpaceDecorator::Mangle); 267 update_counters(); 268 _old_gen = nullptr; 269 _tenuring_threshold = MaxTenuringThreshold; 270 _pretenure_size_threshold_words = PretenureSizeThreshold >> LogHeapWordSize; 271 272 _ref_processor = nullptr; 273 274 _gc_timer = new STWGCTimer(); 275 276 _gc_tracer = new DefNewTracer(); 277 } 278 279 void DefNewGeneration::compute_space_boundaries(uintx minimum_eden_size, 280 bool clear_space, 281 bool mangle_space) { 282 // If the spaces are being cleared (only done at heap initialization 283 // currently), the survivor spaces need not be empty. 284 // Otherwise, no care is taken for used areas in the survivor spaces 285 // so check. 286 assert(clear_space || (to()->is_empty() && from()->is_empty()), 287 "Initialization of the survivor spaces assumes these are empty"); 288 289 // Compute sizes 290 uintx size = _virtual_space.committed_size(); 291 uintx survivor_size = compute_survivor_size(size, SpaceAlignment); 292 uintx eden_size = size - (2*survivor_size); 293 if (eden_size > max_eden_size()) { 294 // Need to reduce eden_size to satisfy the max constraint. The delta needs 295 // to be 2*SpaceAlignment aligned so that both survivors are properly 296 // aligned. 297 uintx eden_delta = align_up(eden_size - max_eden_size(), 2*SpaceAlignment); 298 eden_size -= eden_delta; 299 survivor_size += eden_delta/2; 300 } 301 assert(eden_size > 0 && survivor_size <= eden_size, "just checking"); 302 303 if (eden_size < minimum_eden_size) { 304 // May happen due to 64Kb rounding, if so adjust eden size back up 305 minimum_eden_size = align_up(minimum_eden_size, SpaceAlignment); 306 uintx maximum_survivor_size = (size - minimum_eden_size) / 2; 307 uintx unaligned_survivor_size = 308 align_down(maximum_survivor_size, SpaceAlignment); 309 survivor_size = MAX2(unaligned_survivor_size, SpaceAlignment); 310 eden_size = size - (2*survivor_size); 311 assert(eden_size > 0 && survivor_size <= eden_size, "just checking"); 312 assert(eden_size >= minimum_eden_size, "just checking"); 313 } 314 315 char *eden_start = _virtual_space.low(); 316 char *from_start = eden_start + eden_size; 317 char *to_start = from_start + survivor_size; 318 char *to_end = to_start + survivor_size; 319 320 assert(to_end == _virtual_space.high(), "just checking"); 321 assert(is_aligned(eden_start, SpaceAlignment), "checking alignment"); 322 assert(is_aligned(from_start, SpaceAlignment), "checking alignment"); 323 assert(is_aligned(to_start, SpaceAlignment), "checking alignment"); 324 325 MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)from_start); 326 MemRegion fromMR((HeapWord*)from_start, (HeapWord*)to_start); 327 MemRegion toMR ((HeapWord*)to_start, (HeapWord*)to_end); 328 329 // A minimum eden size implies that there is a part of eden that 330 // is being used and that affects the initialization of any 331 // newly formed eden. 332 bool live_in_eden = minimum_eden_size > 0; 333 334 // Reset the spaces for their new regions. 335 eden()->initialize(edenMR, 336 clear_space && !live_in_eden, 337 SpaceDecorator::Mangle); 338 // If clear_space and live_in_eden, we will not have cleared any 339 // portion of eden above its top. This can cause newly 340 // expanded space not to be mangled if using ZapUnusedHeapArea. 341 // We explicitly do such mangling here. 342 if (ZapUnusedHeapArea && clear_space && live_in_eden && mangle_space) { 343 eden()->mangle_unused_area(); 344 } 345 from()->initialize(fromMR, clear_space, mangle_space); 346 to()->initialize(toMR, clear_space, mangle_space); 347 } 348 349 void DefNewGeneration::swap_spaces() { 350 ContiguousSpace* s = from(); 351 _from_space = to(); 352 _to_space = s; 353 354 if (UsePerfData) { 355 CSpaceCounters* c = _from_counters; 356 _from_counters = _to_counters; 357 _to_counters = c; 358 } 359 } 360 361 bool DefNewGeneration::expand(size_t bytes) { 362 HeapWord* prev_high = (HeapWord*) _virtual_space.high(); 363 bool success = _virtual_space.expand_by(bytes); 364 if (success && ZapUnusedHeapArea) { 365 // Mangle newly committed space immediately because it 366 // can be done here more simply that after the new 367 // spaces have been computed. 368 HeapWord* new_high = (HeapWord*) _virtual_space.high(); 369 MemRegion mangle_region(prev_high, new_high); 370 SpaceMangler::mangle_region(mangle_region); 371 } 372 373 // Do not attempt an expand-to-the reserve size. The 374 // request should properly observe the maximum size of 375 // the generation so an expand-to-reserve should be 376 // unnecessary. Also a second call to expand-to-reserve 377 // value potentially can cause an undue expansion. 378 // For example if the first expand fail for unknown reasons, 379 // but the second succeeds and expands the heap to its maximum 380 // value. 381 if (GCLocker::is_active()) { 382 log_debug(gc)("Garbage collection disabled, expanded heap instead"); 383 } 384 385 return success; 386 } 387 388 size_t DefNewGeneration::calculate_thread_increase_size(int threads_count) const { 389 size_t thread_increase_size = 0; 390 // Check an overflow at 'threads_count * NewSizeThreadIncrease'. 391 if (threads_count > 0 && NewSizeThreadIncrease <= max_uintx / threads_count) { 392 thread_increase_size = threads_count * NewSizeThreadIncrease; 393 } 394 return thread_increase_size; 395 } 396 397 size_t DefNewGeneration::adjust_for_thread_increase(size_t new_size_candidate, 398 size_t new_size_before, 399 size_t alignment, 400 size_t thread_increase_size) const { 401 size_t desired_new_size = new_size_before; 402 403 if (NewSizeThreadIncrease > 0 && thread_increase_size > 0) { 404 405 // 1. Check an overflow at 'new_size_candidate + thread_increase_size'. 406 if (new_size_candidate <= max_uintx - thread_increase_size) { 407 new_size_candidate += thread_increase_size; 408 409 // 2. Check an overflow at 'align_up'. 410 size_t aligned_max = ((max_uintx - alignment) & ~(alignment-1)); 411 if (new_size_candidate <= aligned_max) { 412 desired_new_size = align_up(new_size_candidate, alignment); 413 } 414 } 415 } 416 417 return desired_new_size; 418 } 419 420 void DefNewGeneration::compute_new_size() { 421 // This is called after a GC that includes the old generation, so from-space 422 // will normally be empty. 423 // Note that we check both spaces, since if scavenge failed they revert roles. 424 // If not we bail out (otherwise we would have to relocate the objects). 425 if (!from()->is_empty() || !to()->is_empty()) { 426 return; 427 } 428 429 SerialHeap* gch = SerialHeap::heap(); 430 431 size_t old_size = gch->old_gen()->capacity(); 432 size_t new_size_before = _virtual_space.committed_size(); 433 size_t min_new_size = NewSize; 434 size_t max_new_size = reserved().byte_size(); 435 assert(min_new_size <= new_size_before && 436 new_size_before <= max_new_size, 437 "just checking"); 438 // All space sizes must be multiples of Generation::GenGrain. 439 size_t alignment = Generation::GenGrain; 440 441 int threads_count = Threads::number_of_non_daemon_threads(); 442 size_t thread_increase_size = calculate_thread_increase_size(threads_count); 443 444 size_t new_size_candidate = old_size / NewRatio; 445 // Compute desired new generation size based on NewRatio and NewSizeThreadIncrease 446 // and reverts to previous value if any overflow happens 447 size_t desired_new_size = adjust_for_thread_increase(new_size_candidate, new_size_before, 448 alignment, thread_increase_size); 449 450 // Adjust new generation size 451 desired_new_size = clamp(desired_new_size, min_new_size, max_new_size); 452 assert(desired_new_size <= max_new_size, "just checking"); 453 454 bool changed = false; 455 if (desired_new_size > new_size_before) { 456 size_t change = desired_new_size - new_size_before; 457 assert(change % alignment == 0, "just checking"); 458 if (expand(change)) { 459 changed = true; 460 } 461 // If the heap failed to expand to the desired size, 462 // "changed" will be false. If the expansion failed 463 // (and at this point it was expected to succeed), 464 // ignore the failure (leaving "changed" as false). 465 } 466 if (desired_new_size < new_size_before && eden()->is_empty()) { 467 // bail out of shrinking if objects in eden 468 size_t change = new_size_before - desired_new_size; 469 assert(change % alignment == 0, "just checking"); 470 _virtual_space.shrink_by(change); 471 changed = true; 472 } 473 if (changed) { 474 // The spaces have already been mangled at this point but 475 // may not have been cleared (set top = bottom) and should be. 476 // Mangling was done when the heap was being expanded. 477 compute_space_boundaries(eden()->used(), 478 SpaceDecorator::Clear, 479 SpaceDecorator::DontMangle); 480 MemRegion cmr((HeapWord*)_virtual_space.low(), 481 (HeapWord*)_virtual_space.high()); 482 gch->rem_set()->resize_covered_region(cmr); 483 484 log_debug(gc, ergo, heap)( 485 "New generation size " SIZE_FORMAT "K->" SIZE_FORMAT "K [eden=" SIZE_FORMAT "K,survivor=" SIZE_FORMAT "K]", 486 new_size_before/K, _virtual_space.committed_size()/K, 487 eden()->capacity()/K, from()->capacity()/K); 488 log_trace(gc, ergo, heap)( 489 " [allowed " SIZE_FORMAT "K extra for %d threads]", 490 thread_increase_size/K, threads_count); 491 } 492 } 493 494 void DefNewGeneration::ref_processor_init() { 495 assert(_ref_processor == nullptr, "a reference processor already exists"); 496 assert(!_reserved.is_empty(), "empty generation?"); 497 _span_based_discoverer.set_span(_reserved); 498 _ref_processor = new ReferenceProcessor(&_span_based_discoverer); // a vanilla reference processor 499 } 500 501 size_t DefNewGeneration::capacity() const { 502 return eden()->capacity() 503 + from()->capacity(); // to() is only used during scavenge 504 } 505 506 507 size_t DefNewGeneration::used() const { 508 return eden()->used() 509 + from()->used(); // to() is only used during scavenge 510 } 511 512 513 size_t DefNewGeneration::free() const { 514 return eden()->free() 515 + from()->free(); // to() is only used during scavenge 516 } 517 518 size_t DefNewGeneration::max_capacity() const { 519 const size_t reserved_bytes = reserved().byte_size(); 520 return reserved_bytes - compute_survivor_size(reserved_bytes, SpaceAlignment); 521 } 522 523 bool DefNewGeneration::is_in(const void* p) const { 524 return eden()->is_in(p) 525 || from()->is_in(p) 526 || to() ->is_in(p); 527 } 528 529 size_t DefNewGeneration::unsafe_max_alloc_nogc() const { 530 return eden()->free(); 531 } 532 533 size_t DefNewGeneration::capacity_before_gc() const { 534 return eden()->capacity(); 535 } 536 537 size_t DefNewGeneration::contiguous_available() const { 538 return eden()->free(); 539 } 540 541 542 void DefNewGeneration::object_iterate(ObjectClosure* blk) { 543 eden()->object_iterate(blk); 544 from()->object_iterate(blk); 545 } 546 547 // If "p" is in the space, returns the address of the start of the 548 // "block" that contains "p". We say "block" instead of "object" since 549 // some heaps may not pack objects densely; a chunk may either be an 550 // object or a non-object. If "p" is not in the space, return null. 551 // Very general, slow implementation. 552 static HeapWord* block_start_const(const ContiguousSpace* cs, const void* p) { 553 assert(MemRegion(cs->bottom(), cs->end()).contains(p), 554 "p (" PTR_FORMAT ") not in space [" PTR_FORMAT ", " PTR_FORMAT ")", 555 p2i(p), p2i(cs->bottom()), p2i(cs->end())); 556 if (p >= cs->top()) { 557 return cs->top(); 558 } else { 559 HeapWord* last = cs->bottom(); 560 HeapWord* cur = last; 561 while (cur <= p) { 562 last = cur; 563 cur += cast_to_oop(cur)->size(); 564 } 565 assert(oopDesc::is_oop(cast_to_oop(last)), PTR_FORMAT " should be an object start", p2i(last)); 566 return last; 567 } 568 } 569 570 HeapWord* DefNewGeneration::block_start(const void* p) const { 571 if (eden()->is_in_reserved(p)) { 572 return block_start_const(eden(), p); 573 } 574 if (from()->is_in_reserved(p)) { 575 return block_start_const(from(), p); 576 } 577 assert(to()->is_in_reserved(p), "inv"); 578 return block_start_const(to(), p); 579 } 580 581 // The last collection bailed out, we are running out of heap space, 582 // so we try to allocate the from-space, too. 583 HeapWord* DefNewGeneration::allocate_from_space(size_t size) { 584 bool should_try_alloc = should_allocate_from_space() || GCLocker::is_active_and_needs_gc(); 585 586 // If the Heap_lock is not locked by this thread, this will be called 587 // again later with the Heap_lock held. 588 bool do_alloc = should_try_alloc && (Heap_lock->owned_by_self() || (SafepointSynchronize::is_at_safepoint() && Thread::current()->is_VM_thread())); 589 590 HeapWord* result = nullptr; 591 if (do_alloc) { 592 result = from()->allocate(size); 593 } 594 595 log_trace(gc, alloc)("DefNewGeneration::allocate_from_space(" SIZE_FORMAT "): will_fail: %s heap_lock: %s free: " SIZE_FORMAT "%s%s returns %s", 596 size, 597 SerialHeap::heap()->incremental_collection_will_fail(false /* don't consult_young */) ? 598 "true" : "false", 599 Heap_lock->is_locked() ? "locked" : "unlocked", 600 from()->free(), 601 should_try_alloc ? "" : " should_allocate_from_space: NOT", 602 do_alloc ? " Heap_lock is not owned by self" : "", 603 result == nullptr ? "null" : "object"); 604 605 return result; 606 } 607 608 HeapWord* DefNewGeneration::expand_and_allocate(size_t size, bool is_tlab) { 609 // We don't attempt to expand the young generation (but perhaps we should.) 610 return allocate(size, is_tlab); 611 } 612 613 void DefNewGeneration::adjust_desired_tenuring_threshold() { 614 // Set the desired survivor size to half the real survivor space 615 size_t const survivor_capacity = to()->capacity() / HeapWordSize; 616 size_t const desired_survivor_size = (size_t)((((double)survivor_capacity) * TargetSurvivorRatio) / 100); 617 618 _tenuring_threshold = age_table()->compute_tenuring_threshold(desired_survivor_size); 619 620 if (UsePerfData) { 621 GCPolicyCounters* gc_counters = SerialHeap::heap()->counters(); 622 gc_counters->tenuring_threshold()->set_value(_tenuring_threshold); 623 gc_counters->desired_survivor_size()->set_value(desired_survivor_size * oopSize); 624 } 625 626 age_table()->print_age_table(); 627 } 628 629 bool DefNewGeneration::collect(bool clear_all_soft_refs) { 630 SerialHeap* heap = SerialHeap::heap(); 631 632 assert(to()->is_empty(), "Else not collection_attempt_is_safe"); 633 _gc_timer->register_gc_start(); 634 _gc_tracer->report_gc_start(heap->gc_cause(), _gc_timer->gc_start()); 635 _ref_processor->start_discovery(clear_all_soft_refs); 636 637 _old_gen = heap->old_gen(); 638 639 init_assuming_no_promotion_failure(); 640 641 GCTraceTime(Trace, gc, phases) tm("DefNew", nullptr, heap->gc_cause()); 642 643 heap->trace_heap_before_gc(_gc_tracer); 644 645 // These can be shared for all code paths 646 IsAliveClosure is_alive(this); 647 648 age_table()->clear(); 649 to()->clear(SpaceDecorator::Mangle); 650 // The preserved marks should be empty at the start of the GC. 651 _preserved_marks_set.init(1); 652 653 YoungGenScanClosure young_gen_cl(this); 654 OldGenScanClosure old_gen_cl(this); 655 656 FastEvacuateFollowersClosure evacuate_followers(heap, 657 &young_gen_cl, 658 &old_gen_cl); 659 660 { 661 StrongRootsScope srs(0); 662 RootScanClosure root_cl{this}; 663 CLDScanClosure cld_cl{this}; 664 665 MarkingNMethodClosure code_cl(&root_cl, 666 NMethodToOopClosure::FixRelocations, 667 false /* keepalive_nmethods */); 668 669 HeapWord* saved_top_in_old_gen = _old_gen->space()->top(); 670 heap->process_roots(SerialHeap::SO_ScavengeCodeCache, 671 &root_cl, 672 &cld_cl, 673 &cld_cl, 674 &code_cl); 675 676 _old_gen->scan_old_to_young_refs(saved_top_in_old_gen); 677 } 678 679 // "evacuate followers". 680 evacuate_followers.do_void(); 681 682 { 683 // Reference processing 684 KeepAliveClosure keep_alive(this); 685 ReferenceProcessor* rp = ref_processor(); 686 ReferenceProcessorPhaseTimes pt(_gc_timer, rp->max_num_queues()); 687 SerialGCRefProcProxyTask task(is_alive, keep_alive, evacuate_followers); 688 const ReferenceProcessorStats& stats = rp->process_discovered_references(task, pt); 689 _gc_tracer->report_gc_reference_stats(stats); 690 _gc_tracer->report_tenuring_threshold(tenuring_threshold()); 691 pt.print_all_references(); 692 } 693 694 { 695 AdjustWeakRootClosure cl{this}; 696 WeakProcessor::weak_oops_do(&is_alive, &cl); 697 } 698 699 _string_dedup_requests.flush(); 700 701 if (!_promotion_failed) { 702 // Swap the survivor spaces. 703 eden()->clear(SpaceDecorator::Mangle); 704 from()->clear(SpaceDecorator::Mangle); 705 swap_spaces(); 706 707 assert(to()->is_empty(), "to space should be empty now"); 708 709 adjust_desired_tenuring_threshold(); 710 711 assert(!heap->incremental_collection_failed(), "Should be clear"); 712 } else { 713 assert(_promo_failure_scan_stack.is_empty(), "post condition"); 714 _promo_failure_scan_stack.clear(true); // Clear cached segments. 715 716 remove_forwarding_pointers(); 717 log_info(gc, promotion)("Promotion failed"); 718 // Add to-space to the list of space to compact 719 // when a promotion failure has occurred. In that 720 // case there can be live objects in to-space 721 // as a result of a partial evacuation of eden 722 // and from-space. 723 swap_spaces(); // For uniformity wrt ParNewGeneration. 724 heap->set_incremental_collection_failed(); 725 726 _gc_tracer->report_promotion_failed(_promotion_failed_info); 727 728 // Reset the PromotionFailureALot counters. 729 NOT_PRODUCT(heap->reset_promotion_should_fail();) 730 } 731 // We should have processed and cleared all the preserved marks. 732 _preserved_marks_set.reclaim(); 733 734 heap->trace_heap_after_gc(_gc_tracer); 735 736 _gc_timer->register_gc_end(); 737 738 _gc_tracer->report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions()); 739 740 return !_promotion_failed; 741 } 742 743 void DefNewGeneration::init_assuming_no_promotion_failure() { 744 _promotion_failed = false; 745 _promotion_failed_info.reset(); 746 } 747 748 void DefNewGeneration::remove_forwarding_pointers() { 749 assert(_promotion_failed, "precondition"); 750 751 // Will enter Full GC soon due to failed promotion. Must reset the mark word 752 // of objs in young-gen so that no objs are marked (forwarded) when Full GC 753 // starts. (The mark word is overloaded: `is_marked()` == `is_forwarded()`.) 754 struct ResetForwardedMarkWord : ObjectClosure { 755 void do_object(oop obj) override { 756 if (obj->is_forwarded()) { 757 obj->init_mark(); 758 } 759 } 760 } cl; 761 eden()->object_iterate(&cl); 762 from()->object_iterate(&cl); 763 764 restore_preserved_marks(); 765 } 766 767 void DefNewGeneration::restore_preserved_marks() { 768 _preserved_marks_set.restore(nullptr); 769 } 770 771 void DefNewGeneration::handle_promotion_failure(oop old) { 772 log_debug(gc, promotion)("Promotion failure size = " SIZE_FORMAT ") ", old->size()); 773 774 _promotion_failed = true; 775 _promotion_failed_info.register_copy_failure(old->size()); 776 _preserved_marks_set.get()->push_if_necessary(old, old->mark()); 777 778 ContinuationGCSupport::transform_stack_chunk(old); 779 780 // forward to self 781 old->forward_to(old); 782 783 _promo_failure_scan_stack.push(old); 784 785 if (!_promo_failure_drain_in_progress) { 786 // prevent recursion in copy_to_survivor_space() 787 _promo_failure_drain_in_progress = true; 788 drain_promo_failure_scan_stack(); 789 _promo_failure_drain_in_progress = false; 790 } 791 } 792 793 oop DefNewGeneration::copy_to_survivor_space(oop old) { 794 assert(is_in_reserved(old) && !old->is_forwarded(), 795 "shouldn't be scavenging this oop"); 796 size_t s = old->size(); 797 oop obj = nullptr; 798 799 // Try allocating obj in to-space (unless too old) 800 if (old->age() < tenuring_threshold()) { 801 obj = cast_to_oop(to()->allocate(s)); 802 } 803 804 bool new_obj_is_tenured = false; 805 // Otherwise try allocating obj tenured 806 if (obj == nullptr) { 807 obj = _old_gen->promote(old, s); 808 if (obj == nullptr) { 809 handle_promotion_failure(old); 810 return old; 811 } 812 813 ContinuationGCSupport::transform_stack_chunk(obj); 814 815 new_obj_is_tenured = true; 816 } else { 817 // Prefetch beyond obj 818 const intx interval = PrefetchCopyIntervalInBytes; 819 Prefetch::write(obj, interval); 820 821 // Copy obj 822 Copy::aligned_disjoint_words(cast_from_oop<HeapWord*>(old), cast_from_oop<HeapWord*>(obj), s); 823 824 ContinuationGCSupport::transform_stack_chunk(obj); 825 826 // Increment age if obj still in new generation 827 obj->incr_age(); 828 age_table()->add(obj, s); 829 } 830 831 // Done, insert forward pointer to obj in this header 832 old->forward_to(obj); 833 834 if (SerialStringDedup::is_candidate_from_evacuation(obj, new_obj_is_tenured)) { 835 // Record old; request adds a new weak reference, which reference 836 // processing expects to refer to a from-space object. 837 _string_dedup_requests.add(old); 838 } 839 return obj; 840 } 841 842 void DefNewGeneration::drain_promo_failure_scan_stack() { 843 PromoteFailureClosure cl{this}; 844 while (!_promo_failure_scan_stack.is_empty()) { 845 oop obj = _promo_failure_scan_stack.pop(); 846 obj->oop_iterate(&cl); 847 } 848 } 849 850 void DefNewGeneration::contribute_scratch(void*& scratch, size_t& num_words) { 851 if (_promotion_failed) { 852 return; 853 } 854 855 const size_t MinFreeScratchWords = 100; 856 857 ContiguousSpace* to_space = to(); 858 const size_t free_words = pointer_delta(to_space->end(), to_space->top()); 859 if (free_words >= MinFreeScratchWords) { 860 scratch = to_space->top(); 861 num_words = free_words; 862 } 863 } 864 865 void DefNewGeneration::reset_scratch() { 866 // If contributing scratch in to_space, mangle all of 867 // to_space if ZapUnusedHeapArea. This is needed because 868 // top is not maintained while using to-space as scratch. 869 if (ZapUnusedHeapArea) { 870 to()->mangle_unused_area(); 871 } 872 } 873 874 bool DefNewGeneration::collection_attempt_is_safe() { 875 if (!to()->is_empty()) { 876 log_trace(gc)(":: to is not empty ::"); 877 return false; 878 } 879 if (_old_gen == nullptr) { 880 _old_gen = SerialHeap::heap()->old_gen(); 881 } 882 return _old_gen->promotion_attempt_is_safe(used()); 883 } 884 885 void DefNewGeneration::gc_epilogue(bool full) { 886 DEBUG_ONLY(static bool seen_incremental_collection_failed = false;) 887 888 assert(!GCLocker::is_active(), "We should not be executing here"); 889 // Check if the heap is approaching full after a collection has 890 // been done. Generally the young generation is empty at 891 // a minimum at the end of a collection. If it is not, then 892 // the heap is approaching full. 893 SerialHeap* gch = SerialHeap::heap(); 894 if (full) { 895 DEBUG_ONLY(seen_incremental_collection_failed = false;) 896 if (!collection_attempt_is_safe() && !_eden_space->is_empty()) { 897 log_trace(gc)("DefNewEpilogue: cause(%s), full, not safe, set_failed, set_alloc_from, clear_seen", 898 GCCause::to_string(gch->gc_cause())); 899 gch->set_incremental_collection_failed(); // Slight lie: a full gc left us in that state 900 set_should_allocate_from_space(); // we seem to be running out of space 901 } else { 902 log_trace(gc)("DefNewEpilogue: cause(%s), full, safe, clear_failed, clear_alloc_from, clear_seen", 903 GCCause::to_string(gch->gc_cause())); 904 gch->clear_incremental_collection_failed(); // We just did a full collection 905 clear_should_allocate_from_space(); // if set 906 } 907 } else { 908 #ifdef ASSERT 909 // It is possible that incremental_collection_failed() == true 910 // here, because an attempted scavenge did not succeed. The policy 911 // is normally expected to cause a full collection which should 912 // clear that condition, so we should not be here twice in a row 913 // with incremental_collection_failed() == true without having done 914 // a full collection in between. 915 if (!seen_incremental_collection_failed && 916 gch->incremental_collection_failed()) { 917 log_trace(gc)("DefNewEpilogue: cause(%s), not full, not_seen_failed, failed, set_seen_failed", 918 GCCause::to_string(gch->gc_cause())); 919 seen_incremental_collection_failed = true; 920 } else if (seen_incremental_collection_failed) { 921 log_trace(gc)("DefNewEpilogue: cause(%s), not full, seen_failed, will_clear_seen_failed", 922 GCCause::to_string(gch->gc_cause())); 923 seen_incremental_collection_failed = false; 924 } 925 #endif // ASSERT 926 } 927 928 // update the generation and space performance counters 929 update_counters(); 930 gch->counters()->update_counters(); 931 } 932 933 void DefNewGeneration::update_counters() { 934 if (UsePerfData) { 935 _eden_counters->update_all(); 936 _from_counters->update_all(); 937 _to_counters->update_all(); 938 _gen_counters->update_all(); 939 } 940 } 941 942 void DefNewGeneration::verify() { 943 eden()->verify(); 944 from()->verify(); 945 to()->verify(); 946 } 947 948 void DefNewGeneration::print_on(outputStream* st) const { 949 Generation::print_on(st); 950 st->print(" eden"); 951 eden()->print_on(st); 952 st->print(" from"); 953 from()->print_on(st); 954 st->print(" to "); 955 to()->print_on(st); 956 } 957 958 959 const char* DefNewGeneration::name() const { 960 return "def new generation"; 961 } 962 963 HeapWord* DefNewGeneration::allocate(size_t word_size, bool is_tlab) { 964 // This is the slow-path allocation for the DefNewGeneration. 965 // Most allocations are fast-path in compiled code. 966 // We try to allocate from the eden. If that works, we are happy. 967 // Note that since DefNewGeneration supports lock-free allocation, we 968 // have to use it here, as well. 969 HeapWord* result = eden()->par_allocate(word_size); 970 if (result == nullptr) { 971 // If the eden is full and the last collection bailed out, we are running 972 // out of heap space, and we try to allocate the from-space, too. 973 // allocate_from_space can't be inlined because that would introduce a 974 // circular dependency at compile time. 975 result = allocate_from_space(word_size); 976 } 977 return result; 978 } 979 980 HeapWord* DefNewGeneration::par_allocate(size_t word_size, 981 bool is_tlab) { 982 return eden()->par_allocate(word_size); 983 } 984 985 size_t DefNewGeneration::tlab_capacity() const { 986 return eden()->capacity(); 987 } 988 989 size_t DefNewGeneration::tlab_used() const { 990 return eden()->used(); 991 } 992 993 size_t DefNewGeneration::unsafe_max_tlab_alloc() const { 994 return unsafe_max_alloc_nogc(); 995 }