1 /* 2 * Copyright (c) 2001, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "gc/serial/cardTableRS.hpp" 27 #include "gc/serial/serialGcRefProcProxyTask.hpp" 28 #include "gc/serial/serialHeap.inline.hpp" 29 #include "gc/serial/serialStringDedup.inline.hpp" 30 #include "gc/serial/tenuredGeneration.hpp" 31 #include "gc/shared/adaptiveSizePolicy.hpp" 32 #include "gc/shared/ageTable.inline.hpp" 33 #include "gc/shared/collectorCounters.hpp" 34 #include "gc/shared/continuationGCSupport.inline.hpp" 35 #include "gc/shared/gcArguments.hpp" 36 #include "gc/shared/gcHeapSummary.hpp" 37 #include "gc/shared/gcLocker.hpp" 38 #include "gc/shared/gcPolicyCounters.hpp" 39 #include "gc/shared/gcTimer.hpp" 40 #include "gc/shared/gcTrace.hpp" 41 #include "gc/shared/gcTraceTime.inline.hpp" 42 #include "gc/shared/referencePolicy.hpp" 43 #include "gc/shared/referenceProcessorPhaseTimes.hpp" 44 #include "gc/shared/space.hpp" 45 #include "gc/shared/spaceDecorator.hpp" 46 #include "gc/shared/strongRootsScope.hpp" 47 #include "gc/shared/weakProcessor.hpp" 48 #include "logging/log.hpp" 49 #include "memory/iterator.inline.hpp" 50 #include "memory/resourceArea.hpp" 51 #include "oops/instanceRefKlass.hpp" 52 #include "oops/oop.inline.hpp" 53 #include "runtime/java.hpp" 54 #include "runtime/javaThread.hpp" 55 #include "runtime/prefetch.inline.hpp" 56 #include "runtime/threads.hpp" 57 #include "utilities/align.hpp" 58 #include "utilities/copy.hpp" 59 #include "utilities/globalDefinitions.hpp" 60 #include "utilities/stack.inline.hpp" 61 62 class PromoteFailureClosure : public InHeapScanClosure { 63 template <typename T> 64 void do_oop_work(T* p) { 65 assert(is_in_young_gen(p), "promote-fail objs must be in young-gen"); 66 assert(!SerialHeap::heap()->young_gen()->to()->is_in_reserved(p), "must not be in to-space"); 67 68 try_scavenge(p, [] (auto) {}); 69 } 70 public: 71 PromoteFailureClosure(DefNewGeneration* g) : InHeapScanClosure(g) {} 72 73 void do_oop(oop* p) { do_oop_work(p); } 74 void do_oop(narrowOop* p) { do_oop_work(p); } 75 }; 76 77 class RootScanClosure : public OffHeapScanClosure { 78 template <typename T> 79 void do_oop_work(T* p) { 80 assert(!SerialHeap::heap()->is_in_reserved(p), "outside the heap"); 81 82 try_scavenge(p, [] (auto) {}); 83 } 84 public: 85 RootScanClosure(DefNewGeneration* g) : OffHeapScanClosure(g) {} 86 87 void do_oop(oop* p) { do_oop_work(p); } 88 void do_oop(narrowOop* p) { do_oop_work(p); } 89 }; 90 91 class CLDScanClosure: public CLDClosure { 92 93 class CLDOopClosure : public OffHeapScanClosure { 94 ClassLoaderData* _scanned_cld; 95 96 template <typename T> 97 void do_oop_work(T* p) { 98 assert(!SerialHeap::heap()->is_in_reserved(p), "outside the heap"); 99 100 try_scavenge(p, [&] (oop new_obj) { 101 assert(_scanned_cld != nullptr, "inv"); 102 if (is_in_young_gen(new_obj) && !_scanned_cld->has_modified_oops()) { 103 _scanned_cld->record_modified_oops(); 104 } 105 }); 106 } 107 108 public: 109 CLDOopClosure(DefNewGeneration* g) : OffHeapScanClosure(g), 110 _scanned_cld(nullptr) {} 111 112 void set_scanned_cld(ClassLoaderData* cld) { 113 assert(cld == nullptr || _scanned_cld == nullptr, "Must be"); 114 _scanned_cld = cld; 115 } 116 117 void do_oop(oop* p) { do_oop_work(p); } 118 void do_oop(narrowOop* p) { ShouldNotReachHere(); } 119 }; 120 121 CLDOopClosure _oop_closure; 122 public: 123 CLDScanClosure(DefNewGeneration* g) : _oop_closure(g) {} 124 125 void do_cld(ClassLoaderData* cld) { 126 // If the cld has not been dirtied we know that there's 127 // no references into the young gen and we can skip it. 128 if (cld->has_modified_oops()) { 129 130 // Tell the closure which CLD is being scanned so that it can be dirtied 131 // if oops are left pointing into the young gen. 132 _oop_closure.set_scanned_cld(cld); 133 134 // Clean the cld since we're going to scavenge all the metadata. 135 cld->oops_do(&_oop_closure, ClassLoaderData::_claim_none, /*clear_modified_oops*/true); 136 137 _oop_closure.set_scanned_cld(nullptr); 138 } 139 } 140 }; 141 142 class IsAliveClosure: public BoolObjectClosure { 143 HeapWord* _young_gen_end; 144 public: 145 IsAliveClosure(DefNewGeneration* g): _young_gen_end(g->reserved().end()) {} 146 147 bool do_object_b(oop p) { 148 return cast_from_oop<HeapWord*>(p) >= _young_gen_end || p->is_forwarded(); 149 } 150 }; 151 152 class AdjustWeakRootClosure: public OffHeapScanClosure { 153 template <class T> 154 void do_oop_work(T* p) { 155 DEBUG_ONLY(SerialHeap* heap = SerialHeap::heap();) 156 assert(!heap->is_in_reserved(p), "outside the heap"); 157 158 oop obj = RawAccess<IS_NOT_NULL>::oop_load(p); 159 if (is_in_young_gen(obj)) { 160 assert(!heap->young_gen()->to()->is_in_reserved(obj), "inv"); 161 assert(obj->is_forwarded(), "forwarded before weak-root-processing"); 162 oop new_obj = obj->forwardee(); 163 RawAccess<IS_NOT_NULL>::oop_store(p, new_obj); 164 } 165 } 166 public: 167 AdjustWeakRootClosure(DefNewGeneration* g): OffHeapScanClosure(g) {} 168 169 void do_oop(oop* p) { do_oop_work(p); } 170 void do_oop(narrowOop* p) { ShouldNotReachHere(); } 171 }; 172 173 class KeepAliveClosure: public OopClosure { 174 DefNewGeneration* _young_gen; 175 HeapWord* _young_gen_end; 176 CardTableRS* _rs; 177 178 bool is_in_young_gen(void* p) const { 179 return p < _young_gen_end; 180 } 181 182 template <class T> 183 void do_oop_work(T* p) { 184 oop obj = RawAccess<IS_NOT_NULL>::oop_load(p); 185 186 if (is_in_young_gen(obj)) { 187 oop new_obj = obj->is_forwarded() ? obj->forwardee() 188 : _young_gen->copy_to_survivor_space(obj); 189 RawAccess<IS_NOT_NULL>::oop_store(p, new_obj); 190 191 if (is_in_young_gen(new_obj) && !is_in_young_gen(p)) { 192 _rs->inline_write_ref_field_gc(p); 193 } 194 } 195 } 196 public: 197 KeepAliveClosure(DefNewGeneration* g) : 198 _young_gen(g), 199 _young_gen_end(g->reserved().end()), 200 _rs(SerialHeap::heap()->rem_set()) {} 201 202 void do_oop(oop* p) { do_oop_work(p); } 203 void do_oop(narrowOop* p) { do_oop_work(p); } 204 }; 205 206 class FastEvacuateFollowersClosure: public VoidClosure { 207 SerialHeap* _heap; 208 YoungGenScanClosure* _young_cl; 209 OldGenScanClosure* _old_cl; 210 public: 211 FastEvacuateFollowersClosure(SerialHeap* heap, 212 YoungGenScanClosure* young_cl, 213 OldGenScanClosure* old_cl) : 214 _heap(heap), _young_cl(young_cl), _old_cl(old_cl) 215 {} 216 217 void do_void() { 218 _heap->scan_evacuated_objs(_young_cl, _old_cl); 219 } 220 }; 221 222 DefNewGeneration::DefNewGeneration(ReservedSpace rs, 223 size_t initial_size, 224 size_t min_size, 225 size_t max_size, 226 const char* policy) 227 : Generation(rs, initial_size), 228 _promotion_failed(false), 229 _promo_failure_drain_in_progress(false), 230 _should_allocate_from_space(false), 231 _string_dedup_requests() 232 { 233 MemRegion cmr((HeapWord*)_virtual_space.low(), 234 (HeapWord*)_virtual_space.high()); 235 SerialHeap* gch = SerialHeap::heap(); 236 237 gch->rem_set()->resize_covered_region(cmr); 238 239 _eden_space = new ContiguousSpace(); 240 _from_space = new ContiguousSpace(); 241 _to_space = new ContiguousSpace(); 242 243 // Compute the maximum eden and survivor space sizes. These sizes 244 // are computed assuming the entire reserved space is committed. 245 // These values are exported as performance counters. 246 uintx size = _virtual_space.reserved_size(); 247 _max_survivor_size = compute_survivor_size(size, SpaceAlignment); 248 _max_eden_size = size - (2*_max_survivor_size); 249 250 // allocate the performance counters 251 252 // Generation counters -- generation 0, 3 subspaces 253 _gen_counters = new GenerationCounters("new", 0, 3, 254 min_size, max_size, &_virtual_space); 255 _gc_counters = new CollectorCounters(policy, 0); 256 257 _eden_counters = new CSpaceCounters("eden", 0, _max_eden_size, _eden_space, 258 _gen_counters); 259 _from_counters = new CSpaceCounters("s0", 1, _max_survivor_size, _from_space, 260 _gen_counters); 261 _to_counters = new CSpaceCounters("s1", 2, _max_survivor_size, _to_space, 262 _gen_counters); 263 264 compute_space_boundaries(0, SpaceDecorator::Clear, SpaceDecorator::Mangle); 265 update_counters(); 266 _old_gen = nullptr; 267 _tenuring_threshold = MaxTenuringThreshold; 268 _pretenure_size_threshold_words = PretenureSizeThreshold >> LogHeapWordSize; 269 270 _ref_processor = nullptr; 271 272 _gc_timer = new STWGCTimer(); 273 274 _gc_tracer = new DefNewTracer(); 275 } 276 277 void DefNewGeneration::compute_space_boundaries(uintx minimum_eden_size, 278 bool clear_space, 279 bool mangle_space) { 280 // If the spaces are being cleared (only done at heap initialization 281 // currently), the survivor spaces need not be empty. 282 // Otherwise, no care is taken for used areas in the survivor spaces 283 // so check. 284 assert(clear_space || (to()->is_empty() && from()->is_empty()), 285 "Initialization of the survivor spaces assumes these are empty"); 286 287 // Compute sizes 288 uintx size = _virtual_space.committed_size(); 289 uintx survivor_size = compute_survivor_size(size, SpaceAlignment); 290 uintx eden_size = size - (2*survivor_size); 291 if (eden_size > max_eden_size()) { 292 // Need to reduce eden_size to satisfy the max constraint. The delta needs 293 // to be 2*SpaceAlignment aligned so that both survivors are properly 294 // aligned. 295 uintx eden_delta = align_up(eden_size - max_eden_size(), 2*SpaceAlignment); 296 eden_size -= eden_delta; 297 survivor_size += eden_delta/2; 298 } 299 assert(eden_size > 0 && survivor_size <= eden_size, "just checking"); 300 301 if (eden_size < minimum_eden_size) { 302 // May happen due to 64Kb rounding, if so adjust eden size back up 303 minimum_eden_size = align_up(minimum_eden_size, SpaceAlignment); 304 uintx maximum_survivor_size = (size - minimum_eden_size) / 2; 305 uintx unaligned_survivor_size = 306 align_down(maximum_survivor_size, SpaceAlignment); 307 survivor_size = MAX2(unaligned_survivor_size, SpaceAlignment); 308 eden_size = size - (2*survivor_size); 309 assert(eden_size > 0 && survivor_size <= eden_size, "just checking"); 310 assert(eden_size >= minimum_eden_size, "just checking"); 311 } 312 313 char *eden_start = _virtual_space.low(); 314 char *from_start = eden_start + eden_size; 315 char *to_start = from_start + survivor_size; 316 char *to_end = to_start + survivor_size; 317 318 assert(to_end == _virtual_space.high(), "just checking"); 319 assert(is_aligned(eden_start, SpaceAlignment), "checking alignment"); 320 assert(is_aligned(from_start, SpaceAlignment), "checking alignment"); 321 assert(is_aligned(to_start, SpaceAlignment), "checking alignment"); 322 323 MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)from_start); 324 MemRegion fromMR((HeapWord*)from_start, (HeapWord*)to_start); 325 MemRegion toMR ((HeapWord*)to_start, (HeapWord*)to_end); 326 327 // A minimum eden size implies that there is a part of eden that 328 // is being used and that affects the initialization of any 329 // newly formed eden. 330 bool live_in_eden = minimum_eden_size > 0; 331 332 // Reset the spaces for their new regions. 333 eden()->initialize(edenMR, 334 clear_space && !live_in_eden, 335 SpaceDecorator::Mangle); 336 // If clear_space and live_in_eden, we will not have cleared any 337 // portion of eden above its top. This can cause newly 338 // expanded space not to be mangled if using ZapUnusedHeapArea. 339 // We explicitly do such mangling here. 340 if (ZapUnusedHeapArea && clear_space && live_in_eden && mangle_space) { 341 eden()->mangle_unused_area(); 342 } 343 from()->initialize(fromMR, clear_space, mangle_space); 344 to()->initialize(toMR, clear_space, mangle_space); 345 } 346 347 void DefNewGeneration::swap_spaces() { 348 ContiguousSpace* s = from(); 349 _from_space = to(); 350 _to_space = s; 351 352 if (UsePerfData) { 353 CSpaceCounters* c = _from_counters; 354 _from_counters = _to_counters; 355 _to_counters = c; 356 } 357 } 358 359 bool DefNewGeneration::expand(size_t bytes) { 360 HeapWord* prev_high = (HeapWord*) _virtual_space.high(); 361 bool success = _virtual_space.expand_by(bytes); 362 if (success && ZapUnusedHeapArea) { 363 // Mangle newly committed space immediately because it 364 // can be done here more simply that after the new 365 // spaces have been computed. 366 HeapWord* new_high = (HeapWord*) _virtual_space.high(); 367 MemRegion mangle_region(prev_high, new_high); 368 SpaceMangler::mangle_region(mangle_region); 369 } 370 371 // Do not attempt an expand-to-the reserve size. The 372 // request should properly observe the maximum size of 373 // the generation so an expand-to-reserve should be 374 // unnecessary. Also a second call to expand-to-reserve 375 // value potentially can cause an undue expansion. 376 // For example if the first expand fail for unknown reasons, 377 // but the second succeeds and expands the heap to its maximum 378 // value. 379 if (GCLocker::is_active()) { 380 log_debug(gc)("Garbage collection disabled, expanded heap instead"); 381 } 382 383 return success; 384 } 385 386 size_t DefNewGeneration::calculate_thread_increase_size(int threads_count) const { 387 size_t thread_increase_size = 0; 388 // Check an overflow at 'threads_count * NewSizeThreadIncrease'. 389 if (threads_count > 0 && NewSizeThreadIncrease <= max_uintx / threads_count) { 390 thread_increase_size = threads_count * NewSizeThreadIncrease; 391 } 392 return thread_increase_size; 393 } 394 395 size_t DefNewGeneration::adjust_for_thread_increase(size_t new_size_candidate, 396 size_t new_size_before, 397 size_t alignment, 398 size_t thread_increase_size) const { 399 size_t desired_new_size = new_size_before; 400 401 if (NewSizeThreadIncrease > 0 && thread_increase_size > 0) { 402 403 // 1. Check an overflow at 'new_size_candidate + thread_increase_size'. 404 if (new_size_candidate <= max_uintx - thread_increase_size) { 405 new_size_candidate += thread_increase_size; 406 407 // 2. Check an overflow at 'align_up'. 408 size_t aligned_max = ((max_uintx - alignment) & ~(alignment-1)); 409 if (new_size_candidate <= aligned_max) { 410 desired_new_size = align_up(new_size_candidate, alignment); 411 } 412 } 413 } 414 415 return desired_new_size; 416 } 417 418 void DefNewGeneration::compute_new_size() { 419 // This is called after a GC that includes the old generation, so from-space 420 // will normally be empty. 421 // Note that we check both spaces, since if scavenge failed they revert roles. 422 // If not we bail out (otherwise we would have to relocate the objects). 423 if (!from()->is_empty() || !to()->is_empty()) { 424 return; 425 } 426 427 SerialHeap* gch = SerialHeap::heap(); 428 429 size_t old_size = gch->old_gen()->capacity(); 430 size_t new_size_before = _virtual_space.committed_size(); 431 size_t min_new_size = NewSize; 432 size_t max_new_size = reserved().byte_size(); 433 assert(min_new_size <= new_size_before && 434 new_size_before <= max_new_size, 435 "just checking"); 436 // All space sizes must be multiples of Generation::GenGrain. 437 size_t alignment = Generation::GenGrain; 438 439 int threads_count = Threads::number_of_non_daemon_threads(); 440 size_t thread_increase_size = calculate_thread_increase_size(threads_count); 441 442 size_t new_size_candidate = old_size / NewRatio; 443 // Compute desired new generation size based on NewRatio and NewSizeThreadIncrease 444 // and reverts to previous value if any overflow happens 445 size_t desired_new_size = adjust_for_thread_increase(new_size_candidate, new_size_before, 446 alignment, thread_increase_size); 447 448 // Adjust new generation size 449 desired_new_size = clamp(desired_new_size, min_new_size, max_new_size); 450 assert(desired_new_size <= max_new_size, "just checking"); 451 452 bool changed = false; 453 if (desired_new_size > new_size_before) { 454 size_t change = desired_new_size - new_size_before; 455 assert(change % alignment == 0, "just checking"); 456 if (expand(change)) { 457 changed = true; 458 } 459 // If the heap failed to expand to the desired size, 460 // "changed" will be false. If the expansion failed 461 // (and at this point it was expected to succeed), 462 // ignore the failure (leaving "changed" as false). 463 } 464 if (desired_new_size < new_size_before && eden()->is_empty()) { 465 // bail out of shrinking if objects in eden 466 size_t change = new_size_before - desired_new_size; 467 assert(change % alignment == 0, "just checking"); 468 _virtual_space.shrink_by(change); 469 changed = true; 470 } 471 if (changed) { 472 // The spaces have already been mangled at this point but 473 // may not have been cleared (set top = bottom) and should be. 474 // Mangling was done when the heap was being expanded. 475 compute_space_boundaries(eden()->used(), 476 SpaceDecorator::Clear, 477 SpaceDecorator::DontMangle); 478 MemRegion cmr((HeapWord*)_virtual_space.low(), 479 (HeapWord*)_virtual_space.high()); 480 gch->rem_set()->resize_covered_region(cmr); 481 482 log_debug(gc, ergo, heap)( 483 "New generation size " SIZE_FORMAT "K->" SIZE_FORMAT "K [eden=" SIZE_FORMAT "K,survivor=" SIZE_FORMAT "K]", 484 new_size_before/K, _virtual_space.committed_size()/K, 485 eden()->capacity()/K, from()->capacity()/K); 486 log_trace(gc, ergo, heap)( 487 " [allowed " SIZE_FORMAT "K extra for %d threads]", 488 thread_increase_size/K, threads_count); 489 } 490 } 491 492 void DefNewGeneration::ref_processor_init() { 493 assert(_ref_processor == nullptr, "a reference processor already exists"); 494 assert(!_reserved.is_empty(), "empty generation?"); 495 _span_based_discoverer.set_span(_reserved); 496 _ref_processor = new ReferenceProcessor(&_span_based_discoverer); // a vanilla reference processor 497 } 498 499 size_t DefNewGeneration::capacity() const { 500 return eden()->capacity() 501 + from()->capacity(); // to() is only used during scavenge 502 } 503 504 505 size_t DefNewGeneration::used() const { 506 return eden()->used() 507 + from()->used(); // to() is only used during scavenge 508 } 509 510 511 size_t DefNewGeneration::free() const { 512 return eden()->free() 513 + from()->free(); // to() is only used during scavenge 514 } 515 516 size_t DefNewGeneration::max_capacity() const { 517 const size_t reserved_bytes = reserved().byte_size(); 518 return reserved_bytes - compute_survivor_size(reserved_bytes, SpaceAlignment); 519 } 520 521 bool DefNewGeneration::is_in(const void* p) const { 522 return eden()->is_in(p) 523 || from()->is_in(p) 524 || to() ->is_in(p); 525 } 526 527 size_t DefNewGeneration::unsafe_max_alloc_nogc() const { 528 return eden()->free(); 529 } 530 531 size_t DefNewGeneration::capacity_before_gc() const { 532 return eden()->capacity(); 533 } 534 535 size_t DefNewGeneration::contiguous_available() const { 536 return eden()->free(); 537 } 538 539 540 void DefNewGeneration::object_iterate(ObjectClosure* blk) { 541 eden()->object_iterate(blk); 542 from()->object_iterate(blk); 543 } 544 545 // If "p" is in the space, returns the address of the start of the 546 // "block" that contains "p". We say "block" instead of "object" since 547 // some heaps may not pack objects densely; a chunk may either be an 548 // object or a non-object. If "p" is not in the space, return null. 549 // Very general, slow implementation. 550 static HeapWord* block_start_const(const ContiguousSpace* cs, const void* p) { 551 assert(MemRegion(cs->bottom(), cs->end()).contains(p), 552 "p (" PTR_FORMAT ") not in space [" PTR_FORMAT ", " PTR_FORMAT ")", 553 p2i(p), p2i(cs->bottom()), p2i(cs->end())); 554 if (p >= cs->top()) { 555 return cs->top(); 556 } else { 557 HeapWord* last = cs->bottom(); 558 HeapWord* cur = last; 559 while (cur <= p) { 560 last = cur; 561 cur += cast_to_oop(cur)->size(); 562 } 563 assert(oopDesc::is_oop(cast_to_oop(last)), PTR_FORMAT " should be an object start", p2i(last)); 564 return last; 565 } 566 } 567 568 HeapWord* DefNewGeneration::block_start(const void* p) const { 569 if (eden()->is_in_reserved(p)) { 570 return block_start_const(eden(), p); 571 } 572 if (from()->is_in_reserved(p)) { 573 return block_start_const(from(), p); 574 } 575 assert(to()->is_in_reserved(p), "inv"); 576 return block_start_const(to(), p); 577 } 578 579 // The last collection bailed out, we are running out of heap space, 580 // so we try to allocate the from-space, too. 581 HeapWord* DefNewGeneration::allocate_from_space(size_t size) { 582 bool should_try_alloc = should_allocate_from_space() || GCLocker::is_active_and_needs_gc(); 583 584 // If the Heap_lock is not locked by this thread, this will be called 585 // again later with the Heap_lock held. 586 bool do_alloc = should_try_alloc && (Heap_lock->owned_by_self() || (SafepointSynchronize::is_at_safepoint() && Thread::current()->is_VM_thread())); 587 588 HeapWord* result = nullptr; 589 if (do_alloc) { 590 result = from()->allocate(size); 591 } 592 593 log_trace(gc, alloc)("DefNewGeneration::allocate_from_space(" SIZE_FORMAT "): will_fail: %s heap_lock: %s free: " SIZE_FORMAT "%s%s returns %s", 594 size, 595 SerialHeap::heap()->incremental_collection_will_fail(false /* don't consult_young */) ? 596 "true" : "false", 597 Heap_lock->is_locked() ? "locked" : "unlocked", 598 from()->free(), 599 should_try_alloc ? "" : " should_allocate_from_space: NOT", 600 do_alloc ? " Heap_lock is not owned by self" : "", 601 result == nullptr ? "null" : "object"); 602 603 return result; 604 } 605 606 HeapWord* DefNewGeneration::expand_and_allocate(size_t size, bool is_tlab) { 607 // We don't attempt to expand the young generation (but perhaps we should.) 608 return allocate(size, is_tlab); 609 } 610 611 void DefNewGeneration::adjust_desired_tenuring_threshold() { 612 // Set the desired survivor size to half the real survivor space 613 size_t const survivor_capacity = to()->capacity() / HeapWordSize; 614 size_t const desired_survivor_size = (size_t)((((double)survivor_capacity) * TargetSurvivorRatio) / 100); 615 616 _tenuring_threshold = age_table()->compute_tenuring_threshold(desired_survivor_size); 617 618 if (UsePerfData) { 619 GCPolicyCounters* gc_counters = SerialHeap::heap()->counters(); 620 gc_counters->tenuring_threshold()->set_value(_tenuring_threshold); 621 gc_counters->desired_survivor_size()->set_value(desired_survivor_size * oopSize); 622 } 623 624 age_table()->print_age_table(); 625 } 626 627 bool DefNewGeneration::collect(bool clear_all_soft_refs) { 628 SerialHeap* heap = SerialHeap::heap(); 629 630 assert(to()->is_empty(), "Else not collection_attempt_is_safe"); 631 _gc_timer->register_gc_start(); 632 _gc_tracer->report_gc_start(heap->gc_cause(), _gc_timer->gc_start()); 633 _ref_processor->start_discovery(clear_all_soft_refs); 634 635 _old_gen = heap->old_gen(); 636 637 init_assuming_no_promotion_failure(); 638 639 GCTraceTime(Trace, gc, phases) tm("DefNew", nullptr, heap->gc_cause()); 640 641 heap->trace_heap_before_gc(_gc_tracer); 642 643 // These can be shared for all code paths 644 IsAliveClosure is_alive(this); 645 646 age_table()->clear(); 647 to()->clear(SpaceDecorator::Mangle); 648 649 YoungGenScanClosure young_gen_cl(this); 650 OldGenScanClosure old_gen_cl(this); 651 652 FastEvacuateFollowersClosure evacuate_followers(heap, 653 &young_gen_cl, 654 &old_gen_cl); 655 656 { 657 StrongRootsScope srs(0); 658 RootScanClosure root_cl{this}; 659 CLDScanClosure cld_cl{this}; 660 661 MarkingNMethodClosure code_cl(&root_cl, 662 NMethodToOopClosure::FixRelocations, 663 false /* keepalive_nmethods */); 664 665 HeapWord* saved_top_in_old_gen = _old_gen->space()->top(); 666 heap->process_roots(SerialHeap::SO_ScavengeCodeCache, 667 &root_cl, 668 &cld_cl, 669 &cld_cl, 670 &code_cl); 671 672 _old_gen->scan_old_to_young_refs(saved_top_in_old_gen); 673 } 674 675 // "evacuate followers". 676 evacuate_followers.do_void(); 677 678 { 679 // Reference processing 680 KeepAliveClosure keep_alive(this); 681 ReferenceProcessor* rp = ref_processor(); 682 ReferenceProcessorPhaseTimes pt(_gc_timer, rp->max_num_queues()); 683 SerialGCRefProcProxyTask task(is_alive, keep_alive, evacuate_followers); 684 const ReferenceProcessorStats& stats = rp->process_discovered_references(task, pt); 685 _gc_tracer->report_gc_reference_stats(stats); 686 _gc_tracer->report_tenuring_threshold(tenuring_threshold()); 687 pt.print_all_references(); 688 } 689 690 { 691 AdjustWeakRootClosure cl{this}; 692 WeakProcessor::weak_oops_do(&is_alive, &cl); 693 } 694 695 _string_dedup_requests.flush(); 696 697 if (!_promotion_failed) { 698 // Swap the survivor spaces. 699 eden()->clear(SpaceDecorator::Mangle); 700 from()->clear(SpaceDecorator::Mangle); 701 swap_spaces(); 702 703 assert(to()->is_empty(), "to space should be empty now"); 704 705 adjust_desired_tenuring_threshold(); 706 707 assert(!heap->incremental_collection_failed(), "Should be clear"); 708 } else { 709 assert(_promo_failure_scan_stack.is_empty(), "post condition"); 710 _promo_failure_scan_stack.clear(true); // Clear cached segments. 711 712 remove_forwarding_pointers(); 713 log_info(gc, promotion)("Promotion failed"); 714 // Add to-space to the list of space to compact 715 // when a promotion failure has occurred. In that 716 // case there can be live objects in to-space 717 // as a result of a partial evacuation of eden 718 // and from-space. 719 swap_spaces(); // For uniformity wrt ParNewGeneration. 720 heap->set_incremental_collection_failed(); 721 722 _gc_tracer->report_promotion_failed(_promotion_failed_info); 723 724 // Reset the PromotionFailureALot counters. 725 NOT_PRODUCT(heap->reset_promotion_should_fail();) 726 } 727 728 heap->trace_heap_after_gc(_gc_tracer); 729 730 _gc_timer->register_gc_end(); 731 732 _gc_tracer->report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions()); 733 734 return !_promotion_failed; 735 } 736 737 void DefNewGeneration::init_assuming_no_promotion_failure() { 738 _promotion_failed = false; 739 _promotion_failed_info.reset(); 740 } 741 742 void DefNewGeneration::remove_forwarding_pointers() { 743 assert(_promotion_failed, "precondition"); 744 745 // Will enter Full GC soon due to failed promotion. Must reset the mark word 746 // of objs in young-gen so that no objs are marked (forwarded) when Full GC 747 // starts. (The mark word is overloaded: `is_marked()` == `is_forwarded()`.) 748 struct ResetForwardedMarkWord : ObjectClosure { 749 void do_object(oop obj) override { 750 if (obj->is_self_forwarded()) { 751 obj->unset_self_forwarded(); 752 } else if (obj->is_forwarded()) { 753 obj->forward_safe_init_mark(); 754 } 755 } 756 } cl; 757 eden()->object_iterate(&cl); 758 from()->object_iterate(&cl); 759 } 760 761 void DefNewGeneration::handle_promotion_failure(oop old) { 762 log_debug(gc, promotion)("Promotion failure size = " SIZE_FORMAT ") ", old->size()); 763 764 _promotion_failed = true; 765 _promotion_failed_info.register_copy_failure(old->size()); 766 767 ContinuationGCSupport::transform_stack_chunk(old); 768 769 // forward to self 770 old->forward_to_self(); 771 772 _promo_failure_scan_stack.push(old); 773 774 if (!_promo_failure_drain_in_progress) { 775 // prevent recursion in copy_to_survivor_space() 776 _promo_failure_drain_in_progress = true; 777 drain_promo_failure_scan_stack(); 778 _promo_failure_drain_in_progress = false; 779 } 780 } 781 782 oop DefNewGeneration::copy_to_survivor_space(oop old) { 783 assert(is_in_reserved(old) && !old->is_forwarded(), 784 "shouldn't be scavenging this oop"); 785 size_t s = old->size(); 786 oop obj = nullptr; 787 788 // Try allocating obj in to-space (unless too old) 789 if (old->age() < tenuring_threshold()) { 790 obj = cast_to_oop(to()->allocate(s)); 791 } 792 793 bool new_obj_is_tenured = false; 794 // Otherwise try allocating obj tenured 795 if (obj == nullptr) { 796 obj = _old_gen->promote(old, s); 797 if (obj == nullptr) { 798 handle_promotion_failure(old); 799 return old; 800 } 801 802 ContinuationGCSupport::transform_stack_chunk(obj); 803 804 new_obj_is_tenured = true; 805 } else { 806 // Prefetch beyond obj 807 const intx interval = PrefetchCopyIntervalInBytes; 808 Prefetch::write(obj, interval); 809 810 // Copy obj 811 Copy::aligned_disjoint_words(cast_from_oop<HeapWord*>(old), cast_from_oop<HeapWord*>(obj), s); 812 813 ContinuationGCSupport::transform_stack_chunk(obj); 814 815 // Increment age if obj still in new generation 816 obj->incr_age(); 817 age_table()->add(obj, s); 818 } 819 820 // Done, insert forward pointer to obj in this header 821 old->forward_to(obj); 822 823 if (SerialStringDedup::is_candidate_from_evacuation(obj, new_obj_is_tenured)) { 824 // Record old; request adds a new weak reference, which reference 825 // processing expects to refer to a from-space object. 826 _string_dedup_requests.add(old); 827 } 828 return obj; 829 } 830 831 void DefNewGeneration::drain_promo_failure_scan_stack() { 832 PromoteFailureClosure cl{this}; 833 while (!_promo_failure_scan_stack.is_empty()) { 834 oop obj = _promo_failure_scan_stack.pop(); 835 obj->oop_iterate(&cl); 836 } 837 } 838 839 void DefNewGeneration::contribute_scratch(void*& scratch, size_t& num_words) { 840 if (_promotion_failed) { 841 return; 842 } 843 844 const size_t MinFreeScratchWords = 100; 845 846 ContiguousSpace* to_space = to(); 847 const size_t free_words = pointer_delta(to_space->end(), to_space->top()); 848 if (free_words >= MinFreeScratchWords) { 849 scratch = to_space->top(); 850 num_words = free_words; 851 } 852 } 853 854 void DefNewGeneration::reset_scratch() { 855 // If contributing scratch in to_space, mangle all of 856 // to_space if ZapUnusedHeapArea. This is needed because 857 // top is not maintained while using to-space as scratch. 858 if (ZapUnusedHeapArea) { 859 to()->mangle_unused_area(); 860 } 861 } 862 863 bool DefNewGeneration::collection_attempt_is_safe() { 864 if (!to()->is_empty()) { 865 log_trace(gc)(":: to is not empty ::"); 866 return false; 867 } 868 if (_old_gen == nullptr) { 869 _old_gen = SerialHeap::heap()->old_gen(); 870 } 871 return _old_gen->promotion_attempt_is_safe(used()); 872 } 873 874 void DefNewGeneration::gc_epilogue(bool full) { 875 DEBUG_ONLY(static bool seen_incremental_collection_failed = false;) 876 877 assert(!GCLocker::is_active(), "We should not be executing here"); 878 // Check if the heap is approaching full after a collection has 879 // been done. Generally the young generation is empty at 880 // a minimum at the end of a collection. If it is not, then 881 // the heap is approaching full. 882 SerialHeap* gch = SerialHeap::heap(); 883 if (full) { 884 DEBUG_ONLY(seen_incremental_collection_failed = false;) 885 if (!collection_attempt_is_safe() && !_eden_space->is_empty()) { 886 log_trace(gc)("DefNewEpilogue: cause(%s), full, not safe, set_failed, set_alloc_from, clear_seen", 887 GCCause::to_string(gch->gc_cause())); 888 gch->set_incremental_collection_failed(); // Slight lie: a full gc left us in that state 889 set_should_allocate_from_space(); // we seem to be running out of space 890 } else { 891 log_trace(gc)("DefNewEpilogue: cause(%s), full, safe, clear_failed, clear_alloc_from, clear_seen", 892 GCCause::to_string(gch->gc_cause())); 893 gch->clear_incremental_collection_failed(); // We just did a full collection 894 clear_should_allocate_from_space(); // if set 895 } 896 } else { 897 #ifdef ASSERT 898 // It is possible that incremental_collection_failed() == true 899 // here, because an attempted scavenge did not succeed. The policy 900 // is normally expected to cause a full collection which should 901 // clear that condition, so we should not be here twice in a row 902 // with incremental_collection_failed() == true without having done 903 // a full collection in between. 904 if (!seen_incremental_collection_failed && 905 gch->incremental_collection_failed()) { 906 log_trace(gc)("DefNewEpilogue: cause(%s), not full, not_seen_failed, failed, set_seen_failed", 907 GCCause::to_string(gch->gc_cause())); 908 seen_incremental_collection_failed = true; 909 } else if (seen_incremental_collection_failed) { 910 log_trace(gc)("DefNewEpilogue: cause(%s), not full, seen_failed, will_clear_seen_failed", 911 GCCause::to_string(gch->gc_cause())); 912 seen_incremental_collection_failed = false; 913 } 914 #endif // ASSERT 915 } 916 917 // update the generation and space performance counters 918 update_counters(); 919 gch->counters()->update_counters(); 920 } 921 922 void DefNewGeneration::update_counters() { 923 if (UsePerfData) { 924 _eden_counters->update_all(); 925 _from_counters->update_all(); 926 _to_counters->update_all(); 927 _gen_counters->update_all(); 928 } 929 } 930 931 void DefNewGeneration::verify() { 932 eden()->verify(); 933 from()->verify(); 934 to()->verify(); 935 } 936 937 void DefNewGeneration::print_on(outputStream* st) const { 938 Generation::print_on(st); 939 st->print(" eden"); 940 eden()->print_on(st); 941 st->print(" from"); 942 from()->print_on(st); 943 st->print(" to "); 944 to()->print_on(st); 945 } 946 947 948 const char* DefNewGeneration::name() const { 949 return "def new generation"; 950 } 951 952 HeapWord* DefNewGeneration::allocate(size_t word_size, bool is_tlab) { 953 // This is the slow-path allocation for the DefNewGeneration. 954 // Most allocations are fast-path in compiled code. 955 // We try to allocate from the eden. If that works, we are happy. 956 // Note that since DefNewGeneration supports lock-free allocation, we 957 // have to use it here, as well. 958 HeapWord* result = eden()->par_allocate(word_size); 959 if (result == nullptr) { 960 // If the eden is full and the last collection bailed out, we are running 961 // out of heap space, and we try to allocate the from-space, too. 962 // allocate_from_space can't be inlined because that would introduce a 963 // circular dependency at compile time. 964 result = allocate_from_space(word_size); 965 } 966 return result; 967 } 968 969 HeapWord* DefNewGeneration::par_allocate(size_t word_size, 970 bool is_tlab) { 971 return eden()->par_allocate(word_size); 972 } 973 974 size_t DefNewGeneration::tlab_capacity() const { 975 return eden()->capacity(); 976 } 977 978 size_t DefNewGeneration::tlab_used() const { 979 return eden()->used(); 980 } 981 982 size_t DefNewGeneration::unsafe_max_tlab_alloc() const { 983 return unsafe_max_alloc_nogc(); 984 }