1 /* 2 * Copyright (c) 2001, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "gc/serial/cardTableRS.hpp" 27 #include "gc/serial/serialGcRefProcProxyTask.hpp" 28 #include "gc/serial/serialHeap.inline.hpp" 29 #include "gc/serial/serialStringDedup.inline.hpp" 30 #include "gc/serial/tenuredGeneration.hpp" 31 #include "gc/shared/adaptiveSizePolicy.hpp" 32 #include "gc/shared/ageTable.inline.hpp" 33 #include "gc/shared/collectorCounters.hpp" 34 #include "gc/shared/continuationGCSupport.inline.hpp" 35 #include "gc/shared/gcArguments.hpp" 36 #include "gc/shared/gcHeapSummary.hpp" 37 #include "gc/shared/gcLocker.hpp" 38 #include "gc/shared/gcPolicyCounters.hpp" 39 #include "gc/shared/gcTimer.hpp" 40 #include "gc/shared/gcTrace.hpp" 41 #include "gc/shared/gcTraceTime.inline.hpp" 42 #include "gc/shared/referencePolicy.hpp" 43 #include "gc/shared/referenceProcessorPhaseTimes.hpp" 44 #include "gc/shared/space.hpp" 45 #include "gc/shared/spaceDecorator.hpp" 46 #include "gc/shared/strongRootsScope.hpp" 47 #include "gc/shared/weakProcessor.hpp" 48 #include "logging/log.hpp" 49 #include "memory/iterator.inline.hpp" 50 #include "memory/resourceArea.hpp" 51 #include "oops/instanceRefKlass.hpp" 52 #include "oops/oop.inline.hpp" 53 #include "runtime/java.hpp" 54 #include "runtime/javaThread.hpp" 55 #include "runtime/prefetch.inline.hpp" 56 #include "runtime/threads.hpp" 57 #include "utilities/align.hpp" 58 #include "utilities/copy.hpp" 59 #include "utilities/globalDefinitions.hpp" 60 #include "utilities/stack.inline.hpp" 61 62 class PromoteFailureClosure : public InHeapScanClosure { 63 template <typename T> 64 void do_oop_work(T* p) { 65 assert(is_in_young_gen(p), "promote-fail objs must be in young-gen"); 66 assert(!SerialHeap::heap()->young_gen()->to()->is_in_reserved(p), "must not be in to-space"); 67 68 try_scavenge(p, [] (auto) {}); 69 } 70 public: 71 PromoteFailureClosure(DefNewGeneration* g) : InHeapScanClosure(g) {} 72 73 void do_oop(oop* p) { do_oop_work(p); } 74 void do_oop(narrowOop* p) { do_oop_work(p); } 75 }; 76 77 class RootScanClosure : public OffHeapScanClosure { 78 template <typename T> 79 void do_oop_work(T* p) { 80 assert(!SerialHeap::heap()->is_in_reserved(p), "outside the heap"); 81 82 try_scavenge(p, [] (auto) {}); 83 } 84 public: 85 RootScanClosure(DefNewGeneration* g) : OffHeapScanClosure(g) {} 86 87 void do_oop(oop* p) { do_oop_work(p); } 88 void do_oop(narrowOop* p) { do_oop_work(p); } 89 }; 90 91 class CLDScanClosure: public CLDClosure { 92 93 class CLDOopClosure : public OffHeapScanClosure { 94 ClassLoaderData* _scanned_cld; 95 96 template <typename T> 97 void do_oop_work(T* p) { 98 assert(!SerialHeap::heap()->is_in_reserved(p), "outside the heap"); 99 100 try_scavenge(p, [&] (oop new_obj) { 101 assert(_scanned_cld != nullptr, "inv"); 102 if (is_in_young_gen(new_obj) && !_scanned_cld->has_modified_oops()) { 103 _scanned_cld->record_modified_oops(); 104 } 105 }); 106 } 107 108 public: 109 CLDOopClosure(DefNewGeneration* g) : OffHeapScanClosure(g), 110 _scanned_cld(nullptr) {} 111 112 void set_scanned_cld(ClassLoaderData* cld) { 113 assert(cld == nullptr || _scanned_cld == nullptr, "Must be"); 114 _scanned_cld = cld; 115 } 116 117 void do_oop(oop* p) { do_oop_work(p); } 118 void do_oop(narrowOop* p) { ShouldNotReachHere(); } 119 }; 120 121 CLDOopClosure _oop_closure; 122 public: 123 CLDScanClosure(DefNewGeneration* g) : _oop_closure(g) {} 124 125 void do_cld(ClassLoaderData* cld) { 126 // If the cld has not been dirtied we know that there's 127 // no references into the young gen and we can skip it. 128 if (cld->has_modified_oops()) { 129 130 // Tell the closure which CLD is being scanned so that it can be dirtied 131 // if oops are left pointing into the young gen. 132 _oop_closure.set_scanned_cld(cld); 133 134 // Clean the cld since we're going to scavenge all the metadata. 135 cld->oops_do(&_oop_closure, ClassLoaderData::_claim_none, /*clear_modified_oops*/true); 136 137 _oop_closure.set_scanned_cld(nullptr); 138 } 139 } 140 }; 141 142 class IsAliveClosure: public BoolObjectClosure { 143 HeapWord* _young_gen_end; 144 public: 145 IsAliveClosure(DefNewGeneration* g): _young_gen_end(g->reserved().end()) {} 146 147 bool do_object_b(oop p) { 148 return cast_from_oop<HeapWord*>(p) >= _young_gen_end || p->is_forwarded(); 149 } 150 }; 151 152 class AdjustWeakRootClosure: public OffHeapScanClosure { 153 template <class T> 154 void do_oop_work(T* p) { 155 DEBUG_ONLY(SerialHeap* heap = SerialHeap::heap();) 156 assert(!heap->is_in_reserved(p), "outside the heap"); 157 158 oop obj = RawAccess<IS_NOT_NULL>::oop_load(p); 159 if (is_in_young_gen(obj)) { 160 assert(!heap->young_gen()->to()->is_in_reserved(obj), "inv"); 161 assert(obj->is_forwarded(), "forwarded before weak-root-processing"); 162 oop new_obj = obj->forwardee(); 163 RawAccess<IS_NOT_NULL>::oop_store(p, new_obj); 164 } 165 } 166 public: 167 AdjustWeakRootClosure(DefNewGeneration* g): OffHeapScanClosure(g) {} 168 169 void do_oop(oop* p) { do_oop_work(p); } 170 void do_oop(narrowOop* p) { ShouldNotReachHere(); } 171 }; 172 173 class KeepAliveClosure: public OopClosure { 174 DefNewGeneration* _young_gen; 175 HeapWord* _young_gen_end; 176 CardTableRS* _rs; 177 178 bool is_in_young_gen(void* p) const { 179 return p < _young_gen_end; 180 } 181 182 template <class T> 183 void do_oop_work(T* p) { 184 oop obj = RawAccess<IS_NOT_NULL>::oop_load(p); 185 186 if (is_in_young_gen(obj)) { 187 oop new_obj = obj->is_forwarded() ? obj->forwardee() 188 : _young_gen->copy_to_survivor_space(obj); 189 RawAccess<IS_NOT_NULL>::oop_store(p, new_obj); 190 191 if (is_in_young_gen(new_obj) && !is_in_young_gen(p)) { 192 _rs->inline_write_ref_field_gc(p); 193 } 194 } 195 } 196 public: 197 KeepAliveClosure(DefNewGeneration* g) : 198 _young_gen(g), 199 _young_gen_end(g->reserved().end()), 200 _rs(SerialHeap::heap()->rem_set()) {} 201 202 void do_oop(oop* p) { do_oop_work(p); } 203 void do_oop(narrowOop* p) { do_oop_work(p); } 204 }; 205 206 class FastEvacuateFollowersClosure: public VoidClosure { 207 SerialHeap* _heap; 208 YoungGenScanClosure* _young_cl; 209 OldGenScanClosure* _old_cl; 210 public: 211 FastEvacuateFollowersClosure(SerialHeap* heap, 212 YoungGenScanClosure* young_cl, 213 OldGenScanClosure* old_cl) : 214 _heap(heap), _young_cl(young_cl), _old_cl(old_cl) 215 {} 216 217 void do_void() { 218 _heap->scan_evacuated_objs(_young_cl, _old_cl); 219 } 220 }; 221 222 DefNewGeneration::DefNewGeneration(ReservedSpace rs, 223 size_t initial_size, 224 size_t min_size, 225 size_t max_size, 226 const char* policy) 227 : Generation(rs, initial_size), 228 _promotion_failed(false), 229 _promo_failure_drain_in_progress(false), 230 _string_dedup_requests() 231 { 232 MemRegion cmr((HeapWord*)_virtual_space.low(), 233 (HeapWord*)_virtual_space.high()); 234 SerialHeap* gch = SerialHeap::heap(); 235 236 gch->rem_set()->resize_covered_region(cmr); 237 238 _eden_space = new ContiguousSpace(); 239 _from_space = new ContiguousSpace(); 240 _to_space = new ContiguousSpace(); 241 242 // Compute the maximum eden and survivor space sizes. These sizes 243 // are computed assuming the entire reserved space is committed. 244 // These values are exported as performance counters. 245 uintx size = _virtual_space.reserved_size(); 246 _max_survivor_size = compute_survivor_size(size, SpaceAlignment); 247 _max_eden_size = size - (2*_max_survivor_size); 248 249 // allocate the performance counters 250 251 // Generation counters -- generation 0, 3 subspaces 252 _gen_counters = new GenerationCounters("new", 0, 3, 253 min_size, max_size, &_virtual_space); 254 _gc_counters = new CollectorCounters(policy, 0); 255 256 _eden_counters = new CSpaceCounters("eden", 0, _max_eden_size, _eden_space, 257 _gen_counters); 258 _from_counters = new CSpaceCounters("s0", 1, _max_survivor_size, _from_space, 259 _gen_counters); 260 _to_counters = new CSpaceCounters("s1", 2, _max_survivor_size, _to_space, 261 _gen_counters); 262 263 compute_space_boundaries(0, SpaceDecorator::Clear, SpaceDecorator::Mangle); 264 update_counters(); 265 _old_gen = nullptr; 266 _tenuring_threshold = MaxTenuringThreshold; 267 _pretenure_size_threshold_words = PretenureSizeThreshold >> LogHeapWordSize; 268 269 _ref_processor = nullptr; 270 271 _gc_timer = new STWGCTimer(); 272 273 _gc_tracer = new DefNewTracer(); 274 } 275 276 void DefNewGeneration::compute_space_boundaries(uintx minimum_eden_size, 277 bool clear_space, 278 bool mangle_space) { 279 // If the spaces are being cleared (only done at heap initialization 280 // currently), the survivor spaces need not be empty. 281 // Otherwise, no care is taken for used areas in the survivor spaces 282 // so check. 283 assert(clear_space || (to()->is_empty() && from()->is_empty()), 284 "Initialization of the survivor spaces assumes these are empty"); 285 286 // Compute sizes 287 uintx size = _virtual_space.committed_size(); 288 uintx survivor_size = compute_survivor_size(size, SpaceAlignment); 289 uintx eden_size = size - (2*survivor_size); 290 if (eden_size > max_eden_size()) { 291 // Need to reduce eden_size to satisfy the max constraint. The delta needs 292 // to be 2*SpaceAlignment aligned so that both survivors are properly 293 // aligned. 294 uintx eden_delta = align_up(eden_size - max_eden_size(), 2*SpaceAlignment); 295 eden_size -= eden_delta; 296 survivor_size += eden_delta/2; 297 } 298 assert(eden_size > 0 && survivor_size <= eden_size, "just checking"); 299 300 if (eden_size < minimum_eden_size) { 301 // May happen due to 64Kb rounding, if so adjust eden size back up 302 minimum_eden_size = align_up(minimum_eden_size, SpaceAlignment); 303 uintx maximum_survivor_size = (size - minimum_eden_size) / 2; 304 uintx unaligned_survivor_size = 305 align_down(maximum_survivor_size, SpaceAlignment); 306 survivor_size = MAX2(unaligned_survivor_size, SpaceAlignment); 307 eden_size = size - (2*survivor_size); 308 assert(eden_size > 0 && survivor_size <= eden_size, "just checking"); 309 assert(eden_size >= minimum_eden_size, "just checking"); 310 } 311 312 char *eden_start = _virtual_space.low(); 313 char *from_start = eden_start + eden_size; 314 char *to_start = from_start + survivor_size; 315 char *to_end = to_start + survivor_size; 316 317 assert(to_end == _virtual_space.high(), "just checking"); 318 assert(is_aligned(eden_start, SpaceAlignment), "checking alignment"); 319 assert(is_aligned(from_start, SpaceAlignment), "checking alignment"); 320 assert(is_aligned(to_start, SpaceAlignment), "checking alignment"); 321 322 MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)from_start); 323 MemRegion fromMR((HeapWord*)from_start, (HeapWord*)to_start); 324 MemRegion toMR ((HeapWord*)to_start, (HeapWord*)to_end); 325 326 // A minimum eden size implies that there is a part of eden that 327 // is being used and that affects the initialization of any 328 // newly formed eden. 329 bool live_in_eden = minimum_eden_size > 0; 330 331 // Reset the spaces for their new regions. 332 eden()->initialize(edenMR, 333 clear_space && !live_in_eden, 334 SpaceDecorator::Mangle); 335 // If clear_space and live_in_eden, we will not have cleared any 336 // portion of eden above its top. This can cause newly 337 // expanded space not to be mangled if using ZapUnusedHeapArea. 338 // We explicitly do such mangling here. 339 if (ZapUnusedHeapArea && clear_space && live_in_eden && mangle_space) { 340 eden()->mangle_unused_area(); 341 } 342 from()->initialize(fromMR, clear_space, mangle_space); 343 to()->initialize(toMR, clear_space, mangle_space); 344 } 345 346 void DefNewGeneration::swap_spaces() { 347 ContiguousSpace* s = from(); 348 _from_space = to(); 349 _to_space = s; 350 351 if (UsePerfData) { 352 CSpaceCounters* c = _from_counters; 353 _from_counters = _to_counters; 354 _to_counters = c; 355 } 356 } 357 358 bool DefNewGeneration::expand(size_t bytes) { 359 HeapWord* prev_high = (HeapWord*) _virtual_space.high(); 360 bool success = _virtual_space.expand_by(bytes); 361 if (success && ZapUnusedHeapArea) { 362 // Mangle newly committed space immediately because it 363 // can be done here more simply that after the new 364 // spaces have been computed. 365 HeapWord* new_high = (HeapWord*) _virtual_space.high(); 366 MemRegion mangle_region(prev_high, new_high); 367 SpaceMangler::mangle_region(mangle_region); 368 } 369 370 // Do not attempt an expand-to-the reserve size. The 371 // request should properly observe the maximum size of 372 // the generation so an expand-to-reserve should be 373 // unnecessary. Also a second call to expand-to-reserve 374 // value potentially can cause an undue expansion. 375 // For example if the first expand fail for unknown reasons, 376 // but the second succeeds and expands the heap to its maximum 377 // value. 378 if (GCLocker::is_active()) { 379 log_debug(gc)("Garbage collection disabled, expanded heap instead"); 380 } 381 382 return success; 383 } 384 385 size_t DefNewGeneration::calculate_thread_increase_size(int threads_count) const { 386 size_t thread_increase_size = 0; 387 // Check an overflow at 'threads_count * NewSizeThreadIncrease'. 388 if (threads_count > 0 && NewSizeThreadIncrease <= max_uintx / threads_count) { 389 thread_increase_size = threads_count * NewSizeThreadIncrease; 390 } 391 return thread_increase_size; 392 } 393 394 size_t DefNewGeneration::adjust_for_thread_increase(size_t new_size_candidate, 395 size_t new_size_before, 396 size_t alignment, 397 size_t thread_increase_size) const { 398 size_t desired_new_size = new_size_before; 399 400 if (NewSizeThreadIncrease > 0 && thread_increase_size > 0) { 401 402 // 1. Check an overflow at 'new_size_candidate + thread_increase_size'. 403 if (new_size_candidate <= max_uintx - thread_increase_size) { 404 new_size_candidate += thread_increase_size; 405 406 // 2. Check an overflow at 'align_up'. 407 size_t aligned_max = ((max_uintx - alignment) & ~(alignment-1)); 408 if (new_size_candidate <= aligned_max) { 409 desired_new_size = align_up(new_size_candidate, alignment); 410 } 411 } 412 } 413 414 return desired_new_size; 415 } 416 417 void DefNewGeneration::compute_new_size() { 418 // This is called after a GC that includes the old generation, so from-space 419 // will normally be empty. 420 // Note that we check both spaces, since if scavenge failed they revert roles. 421 // If not we bail out (otherwise we would have to relocate the objects). 422 if (!from()->is_empty() || !to()->is_empty()) { 423 return; 424 } 425 426 SerialHeap* gch = SerialHeap::heap(); 427 428 size_t old_size = gch->old_gen()->capacity(); 429 size_t new_size_before = _virtual_space.committed_size(); 430 size_t min_new_size = NewSize; 431 size_t max_new_size = reserved().byte_size(); 432 assert(min_new_size <= new_size_before && 433 new_size_before <= max_new_size, 434 "just checking"); 435 // All space sizes must be multiples of Generation::GenGrain. 436 size_t alignment = Generation::GenGrain; 437 438 int threads_count = Threads::number_of_non_daemon_threads(); 439 size_t thread_increase_size = calculate_thread_increase_size(threads_count); 440 441 size_t new_size_candidate = old_size / NewRatio; 442 // Compute desired new generation size based on NewRatio and NewSizeThreadIncrease 443 // and reverts to previous value if any overflow happens 444 size_t desired_new_size = adjust_for_thread_increase(new_size_candidate, new_size_before, 445 alignment, thread_increase_size); 446 447 // Adjust new generation size 448 desired_new_size = clamp(desired_new_size, min_new_size, max_new_size); 449 assert(desired_new_size <= max_new_size, "just checking"); 450 451 bool changed = false; 452 if (desired_new_size > new_size_before) { 453 size_t change = desired_new_size - new_size_before; 454 assert(change % alignment == 0, "just checking"); 455 if (expand(change)) { 456 changed = true; 457 } 458 // If the heap failed to expand to the desired size, 459 // "changed" will be false. If the expansion failed 460 // (and at this point it was expected to succeed), 461 // ignore the failure (leaving "changed" as false). 462 } 463 if (desired_new_size < new_size_before && eden()->is_empty()) { 464 // bail out of shrinking if objects in eden 465 size_t change = new_size_before - desired_new_size; 466 assert(change % alignment == 0, "just checking"); 467 _virtual_space.shrink_by(change); 468 changed = true; 469 } 470 if (changed) { 471 // The spaces have already been mangled at this point but 472 // may not have been cleared (set top = bottom) and should be. 473 // Mangling was done when the heap was being expanded. 474 compute_space_boundaries(eden()->used(), 475 SpaceDecorator::Clear, 476 SpaceDecorator::DontMangle); 477 MemRegion cmr((HeapWord*)_virtual_space.low(), 478 (HeapWord*)_virtual_space.high()); 479 gch->rem_set()->resize_covered_region(cmr); 480 481 log_debug(gc, ergo, heap)( 482 "New generation size " SIZE_FORMAT "K->" SIZE_FORMAT "K [eden=" SIZE_FORMAT "K,survivor=" SIZE_FORMAT "K]", 483 new_size_before/K, _virtual_space.committed_size()/K, 484 eden()->capacity()/K, from()->capacity()/K); 485 log_trace(gc, ergo, heap)( 486 " [allowed " SIZE_FORMAT "K extra for %d threads]", 487 thread_increase_size/K, threads_count); 488 } 489 } 490 491 void DefNewGeneration::ref_processor_init() { 492 assert(_ref_processor == nullptr, "a reference processor already exists"); 493 assert(!_reserved.is_empty(), "empty generation?"); 494 _span_based_discoverer.set_span(_reserved); 495 _ref_processor = new ReferenceProcessor(&_span_based_discoverer); // a vanilla reference processor 496 } 497 498 size_t DefNewGeneration::capacity() const { 499 return eden()->capacity() 500 + from()->capacity(); // to() is only used during scavenge 501 } 502 503 504 size_t DefNewGeneration::used() const { 505 return eden()->used() 506 + from()->used(); // to() is only used during scavenge 507 } 508 509 510 size_t DefNewGeneration::free() const { 511 return eden()->free() 512 + from()->free(); // to() is only used during scavenge 513 } 514 515 size_t DefNewGeneration::max_capacity() const { 516 const size_t reserved_bytes = reserved().byte_size(); 517 return reserved_bytes - compute_survivor_size(reserved_bytes, SpaceAlignment); 518 } 519 520 bool DefNewGeneration::is_in(const void* p) const { 521 return eden()->is_in(p) 522 || from()->is_in(p) 523 || to() ->is_in(p); 524 } 525 526 size_t DefNewGeneration::unsafe_max_alloc_nogc() const { 527 return eden()->free(); 528 } 529 530 size_t DefNewGeneration::capacity_before_gc() const { 531 return eden()->capacity(); 532 } 533 534 void DefNewGeneration::object_iterate(ObjectClosure* blk) { 535 eden()->object_iterate(blk); 536 from()->object_iterate(blk); 537 } 538 539 // If "p" is in the space, returns the address of the start of the 540 // "block" that contains "p". We say "block" instead of "object" since 541 // some heaps may not pack objects densely; a chunk may either be an 542 // object or a non-object. If "p" is not in the space, return null. 543 // Very general, slow implementation. 544 static HeapWord* block_start_const(const ContiguousSpace* cs, const void* p) { 545 assert(MemRegion(cs->bottom(), cs->end()).contains(p), 546 "p (" PTR_FORMAT ") not in space [" PTR_FORMAT ", " PTR_FORMAT ")", 547 p2i(p), p2i(cs->bottom()), p2i(cs->end())); 548 if (p >= cs->top()) { 549 return cs->top(); 550 } else { 551 HeapWord* last = cs->bottom(); 552 HeapWord* cur = last; 553 while (cur <= p) { 554 last = cur; 555 cur += cast_to_oop(cur)->size(); 556 } 557 assert(oopDesc::is_oop(cast_to_oop(last)), PTR_FORMAT " should be an object start", p2i(last)); 558 return last; 559 } 560 } 561 562 HeapWord* DefNewGeneration::block_start(const void* p) const { 563 if (eden()->is_in_reserved(p)) { 564 return block_start_const(eden(), p); 565 } 566 if (from()->is_in_reserved(p)) { 567 return block_start_const(from(), p); 568 } 569 assert(to()->is_in_reserved(p), "inv"); 570 return block_start_const(to(), p); 571 } 572 573 void DefNewGeneration::adjust_desired_tenuring_threshold() { 574 // Set the desired survivor size to half the real survivor space 575 size_t const survivor_capacity = to()->capacity() / HeapWordSize; 576 size_t const desired_survivor_size = (size_t)((((double)survivor_capacity) * TargetSurvivorRatio) / 100); 577 578 _tenuring_threshold = age_table()->compute_tenuring_threshold(desired_survivor_size); 579 580 if (UsePerfData) { 581 GCPolicyCounters* gc_counters = SerialHeap::heap()->counters(); 582 gc_counters->tenuring_threshold()->set_value(_tenuring_threshold); 583 gc_counters->desired_survivor_size()->set_value(desired_survivor_size * oopSize); 584 } 585 586 age_table()->print_age_table(); 587 } 588 589 bool DefNewGeneration::collect(bool clear_all_soft_refs) { 590 SerialHeap* heap = SerialHeap::heap(); 591 592 assert(to()->is_empty(), "Else not collection_attempt_is_safe"); 593 _gc_timer->register_gc_start(); 594 _gc_tracer->report_gc_start(heap->gc_cause(), _gc_timer->gc_start()); 595 _ref_processor->start_discovery(clear_all_soft_refs); 596 597 _old_gen = heap->old_gen(); 598 599 init_assuming_no_promotion_failure(); 600 601 GCTraceTime(Trace, gc, phases) tm("DefNew", nullptr, heap->gc_cause()); 602 603 heap->trace_heap_before_gc(_gc_tracer); 604 605 // These can be shared for all code paths 606 IsAliveClosure is_alive(this); 607 608 age_table()->clear(); 609 to()->clear(SpaceDecorator::Mangle); 610 611 YoungGenScanClosure young_gen_cl(this); 612 OldGenScanClosure old_gen_cl(this); 613 614 FastEvacuateFollowersClosure evacuate_followers(heap, 615 &young_gen_cl, 616 &old_gen_cl); 617 618 { 619 StrongRootsScope srs(0); 620 RootScanClosure root_cl{this}; 621 CLDScanClosure cld_cl{this}; 622 623 MarkingNMethodClosure code_cl(&root_cl, 624 NMethodToOopClosure::FixRelocations, 625 false /* keepalive_nmethods */); 626 627 HeapWord* saved_top_in_old_gen = _old_gen->space()->top(); 628 heap->process_roots(SerialHeap::SO_ScavengeCodeCache, 629 &root_cl, 630 &cld_cl, 631 &cld_cl, 632 &code_cl); 633 634 _old_gen->scan_old_to_young_refs(saved_top_in_old_gen); 635 } 636 637 // "evacuate followers". 638 evacuate_followers.do_void(); 639 640 { 641 // Reference processing 642 KeepAliveClosure keep_alive(this); 643 ReferenceProcessor* rp = ref_processor(); 644 ReferenceProcessorPhaseTimes pt(_gc_timer, rp->max_num_queues()); 645 SerialGCRefProcProxyTask task(is_alive, keep_alive, evacuate_followers); 646 const ReferenceProcessorStats& stats = rp->process_discovered_references(task, pt); 647 _gc_tracer->report_gc_reference_stats(stats); 648 _gc_tracer->report_tenuring_threshold(tenuring_threshold()); 649 pt.print_all_references(); 650 } 651 652 { 653 AdjustWeakRootClosure cl{this}; 654 WeakProcessor::weak_oops_do(&is_alive, &cl); 655 } 656 657 _string_dedup_requests.flush(); 658 659 if (!_promotion_failed) { 660 // Swap the survivor spaces. 661 eden()->clear(SpaceDecorator::Mangle); 662 from()->clear(SpaceDecorator::Mangle); 663 swap_spaces(); 664 665 assert(to()->is_empty(), "to space should be empty now"); 666 667 adjust_desired_tenuring_threshold(); 668 } else { 669 assert(_promo_failure_scan_stack.is_empty(), "post condition"); 670 _promo_failure_scan_stack.clear(true); // Clear cached segments. 671 672 remove_forwarding_pointers(); 673 log_info(gc, promotion)("Promotion failed"); 674 675 _gc_tracer->report_promotion_failed(_promotion_failed_info); 676 677 // Reset the PromotionFailureALot counters. 678 NOT_PRODUCT(heap->reset_promotion_should_fail();) 679 } 680 681 heap->trace_heap_after_gc(_gc_tracer); 682 683 _gc_timer->register_gc_end(); 684 685 _gc_tracer->report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions()); 686 687 return !_promotion_failed; 688 } 689 690 void DefNewGeneration::init_assuming_no_promotion_failure() { 691 _promotion_failed = false; 692 _promotion_failed_info.reset(); 693 } 694 695 void DefNewGeneration::remove_forwarding_pointers() { 696 assert(_promotion_failed, "precondition"); 697 698 // Will enter Full GC soon due to failed promotion. Must reset the mark word 699 // of objs in young-gen so that no objs are marked (forwarded) when Full GC 700 // starts. (The mark word is overloaded: `is_marked()` == `is_forwarded()`.) 701 struct ResetForwardedMarkWord : ObjectClosure { 702 void do_object(oop obj) override { 703 if (obj->is_self_forwarded()) { 704 obj->unset_self_forwarded(); 705 } else if (obj->is_forwarded()) { 706 // To restore the klass-bits in the header. 707 // Needed for object iteration to work properly. 708 obj->set_mark(obj->forwardee()->prototype_mark()); 709 } 710 } 711 } cl; 712 eden()->object_iterate(&cl); 713 from()->object_iterate(&cl); 714 } 715 716 void DefNewGeneration::handle_promotion_failure(oop old) { 717 log_debug(gc, promotion)("Promotion failure size = " SIZE_FORMAT ") ", old->size()); 718 719 _promotion_failed = true; 720 _promotion_failed_info.register_copy_failure(old->size()); 721 722 ContinuationGCSupport::transform_stack_chunk(old); 723 724 // forward to self 725 old->forward_to_self(); 726 727 _promo_failure_scan_stack.push(old); 728 729 if (!_promo_failure_drain_in_progress) { 730 // prevent recursion in copy_to_survivor_space() 731 _promo_failure_drain_in_progress = true; 732 drain_promo_failure_scan_stack(); 733 _promo_failure_drain_in_progress = false; 734 } 735 } 736 737 oop DefNewGeneration::copy_to_survivor_space(oop old) { 738 assert(is_in_reserved(old) && !old->is_forwarded(), 739 "shouldn't be scavenging this oop"); 740 size_t old_size = old->size(); 741 size_t s = old->copy_size(old_size, old->mark()); 742 743 oop obj = nullptr; 744 745 // Try allocating obj in to-space (unless too old) 746 if (old->age() < tenuring_threshold()) { 747 obj = cast_to_oop(to()->allocate(s)); 748 } 749 750 bool new_obj_is_tenured = false; 751 // Otherwise try allocating obj tenured 752 if (obj == nullptr) { 753 obj = _old_gen->allocate_for_promotion(old, s); 754 if (obj == nullptr) { 755 handle_promotion_failure(old); 756 return old; 757 } 758 759 new_obj_is_tenured = true; 760 } 761 762 // Prefetch beyond obj 763 const intx interval = PrefetchCopyIntervalInBytes; 764 Prefetch::write(obj, interval); 765 766 // Copy obj 767 Copy::aligned_disjoint_words(cast_from_oop<HeapWord*>(old), cast_from_oop<HeapWord*>(obj), old_size); 768 769 ContinuationGCSupport::transform_stack_chunk(obj); 770 771 if (!new_obj_is_tenured) { 772 // Increment age if obj still in new generation 773 obj->incr_age(); 774 age_table()->add(obj, s); 775 } 776 777 obj->initialize_hash_if_necessary(old); 778 779 // Done, insert forward pointer to obj in this header 780 old->forward_to(obj); 781 782 if (SerialStringDedup::is_candidate_from_evacuation(obj, new_obj_is_tenured)) { 783 // Record old; request adds a new weak reference, which reference 784 // processing expects to refer to a from-space object. 785 _string_dedup_requests.add(old); 786 } 787 return obj; 788 } 789 790 void DefNewGeneration::drain_promo_failure_scan_stack() { 791 PromoteFailureClosure cl{this}; 792 while (!_promo_failure_scan_stack.is_empty()) { 793 oop obj = _promo_failure_scan_stack.pop(); 794 obj->oop_iterate(&cl); 795 } 796 } 797 798 void DefNewGeneration::contribute_scratch(void*& scratch, size_t& num_words) { 799 if (_promotion_failed) { 800 return; 801 } 802 803 const size_t MinFreeScratchWords = 100; 804 805 ContiguousSpace* to_space = to(); 806 const size_t free_words = pointer_delta(to_space->end(), to_space->top()); 807 if (free_words >= MinFreeScratchWords) { 808 scratch = to_space->top(); 809 num_words = free_words; 810 } 811 } 812 813 void DefNewGeneration::reset_scratch() { 814 // If contributing scratch in to_space, mangle all of 815 // to_space if ZapUnusedHeapArea. This is needed because 816 // top is not maintained while using to-space as scratch. 817 if (ZapUnusedHeapArea) { 818 to()->mangle_unused_area(); 819 } 820 } 821 822 void DefNewGeneration::gc_epilogue(bool full) { 823 assert(!GCLocker::is_active(), "We should not be executing here"); 824 // update the generation and space performance counters 825 update_counters(); 826 } 827 828 void DefNewGeneration::update_counters() { 829 if (UsePerfData) { 830 _eden_counters->update_all(); 831 _from_counters->update_all(); 832 _to_counters->update_all(); 833 _gen_counters->update_all(); 834 } 835 } 836 837 void DefNewGeneration::verify() { 838 eden()->verify(); 839 from()->verify(); 840 to()->verify(); 841 } 842 843 void DefNewGeneration::print_on(outputStream* st) const { 844 st->print(" %-10s", name()); 845 846 st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K", 847 capacity()/K, used()/K); 848 st->print_cr(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")", 849 p2i(_virtual_space.low_boundary()), 850 p2i(_virtual_space.high()), 851 p2i(_virtual_space.high_boundary())); 852 853 st->print(" eden"); 854 eden()->print_on(st); 855 st->print(" from"); 856 from()->print_on(st); 857 st->print(" to "); 858 to()->print_on(st); 859 } 860 861 HeapWord* DefNewGeneration::allocate(size_t word_size) { 862 // This is the slow-path allocation for the DefNewGeneration. 863 // Most allocations are fast-path in compiled code. 864 // We try to allocate from the eden. If that works, we are happy. 865 // Note that since DefNewGeneration supports lock-free allocation, we 866 // have to use it here, as well. 867 HeapWord* result = eden()->par_allocate(word_size); 868 return result; 869 } 870 871 HeapWord* DefNewGeneration::par_allocate(size_t word_size) { 872 return eden()->par_allocate(word_size); 873 } 874 875 size_t DefNewGeneration::tlab_capacity() const { 876 return eden()->capacity(); 877 } 878 879 size_t DefNewGeneration::tlab_used() const { 880 return eden()->used(); 881 } 882 883 size_t DefNewGeneration::unsafe_max_tlab_alloc() const { 884 return unsafe_max_alloc_nogc(); 885 }