1 /*
  2  * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "precompiled.hpp"
 26 #include "classfile/classLoaderDataGraph.hpp"
 27 #include "classfile/classLoaderData.inline.hpp"
 28 #include "classfile/javaClasses.inline.hpp"
 29 #include "classfile/stringTable.hpp"
 30 #include "classfile/symbolTable.hpp"
 31 #include "classfile/systemDictionary.hpp"
 32 #include "classfile/vmSymbols.hpp"
 33 #include "code/codeCache.hpp"
 34 #include "compiler/compileBroker.hpp"
 35 #include "compiler/oopMap.hpp"
 36 #include "gc/serial/cardTableRS.hpp"
 37 #include "gc/serial/defNewGeneration.hpp"
 38 #include "gc/serial/serialFullGC.hpp"
 39 #include "gc/serial/serialGcRefProcProxyTask.hpp"
 40 #include "gc/serial/serialHeap.hpp"
 41 #include "gc/serial/serialStringDedup.hpp"
 42 #include "gc/shared/classUnloadingContext.hpp"
 43 #include "gc/shared/collectedHeap.inline.hpp"
 44 #include "gc/shared/continuationGCSupport.inline.hpp"
 45 #include "gc/shared/gcHeapSummary.hpp"
 46 #include "gc/shared/gcTimer.hpp"
 47 #include "gc/shared/gcTrace.hpp"
 48 #include "gc/shared/gcTraceTime.inline.hpp"
 49 #include "gc/shared/gc_globals.hpp"
 50 #include "gc/shared/modRefBarrierSet.hpp"
 51 #include "gc/shared/preservedMarks.inline.hpp"
 52 #include "gc/shared/referencePolicy.hpp"
 53 #include "gc/shared/referenceProcessorPhaseTimes.hpp"
 54 #include "gc/shared/slidingForwarding.inline.hpp"
 55 #include "gc/shared/space.inline.hpp"
 56 #include "gc/shared/strongRootsScope.hpp"
 57 #include "gc/shared/weakProcessor.hpp"
 58 #include "memory/iterator.inline.hpp"
 59 #include "memory/universe.hpp"
 60 #include "oops/access.inline.hpp"
 61 #include "oops/compressedOops.inline.hpp"
 62 #include "oops/instanceRefKlass.hpp"
 63 #include "oops/markWord.hpp"
 64 #include "oops/methodData.hpp"
 65 #include "oops/objArrayKlass.inline.hpp"
 66 #include "oops/oop.inline.hpp"
 67 #include "oops/typeArrayOop.inline.hpp"
 68 #include "runtime/prefetch.inline.hpp"
 69 #include "utilities/align.hpp"
 70 #include "utilities/copy.hpp"
 71 #include "utilities/events.hpp"
 72 #include "utilities/stack.inline.hpp"
 73 #if INCLUDE_JVMCI
 74 #include "jvmci/jvmci.hpp"
 75 #endif
 76 
 77 uint                    SerialFullGC::_total_invocations = 0;
 78 
 79 Stack<oop, mtGC>              SerialFullGC::_marking_stack;
 80 Stack<ObjArrayTask, mtGC>     SerialFullGC::_objarray_stack;
 81 
 82 PreservedMarksSet       SerialFullGC::_preserved_overflow_stack_set(false /* in_c_heap */);
 83 size_t                  SerialFullGC::_preserved_count = 0;
 84 size_t                  SerialFullGC::_preserved_count_max = 0;
 85 PreservedMark*          SerialFullGC::_preserved_marks = nullptr;
 86 STWGCTimer*             SerialFullGC::_gc_timer        = nullptr;
 87 SerialOldTracer*        SerialFullGC::_gc_tracer       = nullptr;
 88 
 89 AlwaysTrueClosure   SerialFullGC::_always_true_closure;
 90 ReferenceProcessor* SerialFullGC::_ref_processor;
 91 
 92 StringDedup::Requests*  SerialFullGC::_string_dedup_requests = nullptr;
 93 
 94 SerialFullGC::FollowRootClosure  SerialFullGC::follow_root_closure;
 95 
 96 MarkAndPushClosure SerialFullGC::mark_and_push_closure(ClassLoaderData::_claim_stw_fullgc_mark);
 97 CLDToOopClosure    SerialFullGC::follow_cld_closure(&mark_and_push_closure, ClassLoaderData::_claim_stw_fullgc_mark);
 98 CLDToOopClosure    SerialFullGC::adjust_cld_closure(&adjust_pointer_closure, ClassLoaderData::_claim_stw_fullgc_adjust);
 99 
100 class DeadSpacer : StackObj {
101   size_t _allowed_deadspace_words;
102   bool _active;
103   ContiguousSpace* _space;
104 
105 public:
106   DeadSpacer(ContiguousSpace* space) : _allowed_deadspace_words(0), _space(space) {
107     size_t ratio = (_space == SerialHeap::heap()->old_gen()->space())
108                    ? MarkSweepDeadRatio : 0;
109     _active = ratio > 0;
110 
111     if (_active) {
112       // We allow some amount of garbage towards the bottom of the space, so
113       // we don't start compacting before there is a significant gain to be made.
114       // Occasionally, we want to ensure a full compaction, which is determined
115       // by the MarkSweepAlwaysCompactCount parameter.
116       if ((SerialFullGC::total_invocations() % MarkSweepAlwaysCompactCount) != 0) {
117         _allowed_deadspace_words = (space->capacity() * ratio / 100) / HeapWordSize;
118       } else {
119         _active = false;
120       }
121     }
122   }
123 
124   bool insert_deadspace(HeapWord* dead_start, HeapWord* dead_end) {
125     if (!_active) {
126       return false;
127     }
128 
129     size_t dead_length = pointer_delta(dead_end, dead_start);
130     if (_allowed_deadspace_words >= dead_length) {
131       _allowed_deadspace_words -= dead_length;
132       CollectedHeap::fill_with_object(dead_start, dead_length);
133       oop obj = cast_to_oop(dead_start);
134       // obj->set_mark(obj->mark().set_marked());
135 
136       assert(dead_length == obj->size(), "bad filler object size");
137       log_develop_trace(gc, compaction)("Inserting object to dead space: " PTR_FORMAT ", " PTR_FORMAT ", " SIZE_FORMAT "b",
138                                         p2i(dead_start), p2i(dead_end), dead_length * HeapWordSize);
139 
140       return true;
141     } else {
142       _active = false;
143       return false;
144     }
145   }
146 };
147 
148 // Implement the "compaction" part of the mark-compact GC algorithm.
149 class Compacter {
150   // There are four spaces in total, but only the first three can be used after
151   // compact. IOW, old and eden/from must be enough for all live objs
152   static constexpr uint max_num_spaces = 4;
153 
154   struct CompactionSpace {
155     ContiguousSpace* _space;
156     // Will be the new top after compaction is complete.
157     HeapWord* _compaction_top;
158     // The first dead word in this contiguous space. It's an optimization to
159     // skip large chunk of live objects at the beginning.
160     HeapWord* _first_dead;
161 
162     void init(ContiguousSpace* space) {
163       _space = space;
164       _compaction_top = space->bottom();
165       _first_dead = nullptr;
166     }
167   };
168 
169   CompactionSpace _spaces[max_num_spaces];
170   // The num of spaces to be compacted, i.e. containing live objs.
171   uint _num_spaces;
172 
173   uint _index;
174 
175   HeapWord* get_compaction_top(uint index) const {
176     return _spaces[index]._compaction_top;
177   }
178 
179   HeapWord* get_first_dead(uint index) const {
180     return _spaces[index]._first_dead;
181   }
182 
183   ContiguousSpace* get_space(uint index) const {
184     return _spaces[index]._space;
185   }
186 
187   void record_first_dead(uint index, HeapWord* first_dead) {
188     assert(_spaces[index]._first_dead == nullptr, "should write only once");
189     _spaces[index]._first_dead = first_dead;
190   }
191 
192   HeapWord* alloc(size_t words) {
193     while (true) {
194       if (words <= pointer_delta(_spaces[_index]._space->end(),
195                                  _spaces[_index]._compaction_top)) {
196         HeapWord* result = _spaces[_index]._compaction_top;
197         _spaces[_index]._compaction_top += words;
198         if (_index == 0) {
199           // old-gen requires BOT update
200           static_cast<TenuredSpace*>(_spaces[0]._space)->update_for_block(result, result + words);
201         }
202         return result;
203       }
204 
205       // out-of-memory in this space
206       _index++;
207       assert(_index < max_num_spaces - 1, "the last space should not be used");
208     }
209   }
210 
211   static void prefetch_read_scan(void* p) {
212     if (PrefetchScanIntervalInBytes >= 0) {
213       Prefetch::read(p, PrefetchScanIntervalInBytes);
214     }
215   }
216 
217   static void prefetch_write_scan(void* p) {
218     if (PrefetchScanIntervalInBytes >= 0) {
219       Prefetch::write(p, PrefetchScanIntervalInBytes);
220     }
221   }
222 
223   static void prefetch_write_copy(void* p) {
224     if (PrefetchCopyIntervalInBytes >= 0) {
225       Prefetch::write(p, PrefetchCopyIntervalInBytes);
226     }
227   }
228 
229   static void forward_obj(oop obj, HeapWord* new_addr) {
230     prefetch_write_scan(obj);
231     if (cast_from_oop<HeapWord*>(obj) != new_addr) {
232       SlidingForwarding::forward_to(obj, cast_to_oop(new_addr));
233     } else {
234       assert(obj->is_gc_marked(), "inv");
235       // This obj will stay in-place. Fix the markword.
236       obj->init_mark();
237     }
238   }
239 
240   static HeapWord* find_next_live_addr(HeapWord* start, HeapWord* end) {
241     for (HeapWord* i_addr = start; i_addr < end; /* empty */) {
242       prefetch_read_scan(i_addr);
243       oop obj = cast_to_oop(i_addr);
244       if (obj->is_gc_marked()) {
245         return i_addr;
246       }
247       i_addr += obj->size();
248     }
249     return end;
250   };
251 
252   static size_t relocate(HeapWord* addr) {
253     // Prefetch source and destination
254     prefetch_read_scan(addr);
255 
256     oop obj = cast_to_oop(addr);
257     oop new_obj = SlidingForwarding::forwardee(obj);
258     HeapWord* new_addr = cast_from_oop<HeapWord*>(new_obj);
259     assert(addr != new_addr, "inv");
260     prefetch_write_copy(new_addr);
261 
262     size_t obj_size = obj->size();
263     Copy::aligned_conjoint_words(addr, new_addr, obj_size);
264     new_obj->init_mark();
265 
266     return obj_size;
267   }
268 
269 public:
270   explicit Compacter(SerialHeap* heap) {
271     // In this order so that heap is compacted towards old-gen.
272     _spaces[0].init(heap->old_gen()->space());
273     _spaces[1].init(heap->young_gen()->eden());
274     _spaces[2].init(heap->young_gen()->from());
275 
276     bool is_promotion_failed = !heap->young_gen()->to()->is_empty();
277     if (is_promotion_failed) {
278       _spaces[3].init(heap->young_gen()->to());
279       _num_spaces = 4;
280     } else {
281       _num_spaces = 3;
282     }
283     _index = 0;
284   }
285 
286   void phase2_calculate_new_addr() {
287     for (uint i = 0; i < _num_spaces; ++i) {
288       ContiguousSpace* space = get_space(i);
289       HeapWord* cur_addr = space->bottom();
290       HeapWord* top = space->top();
291 
292       bool record_first_dead_done = false;
293 
294       DeadSpacer dead_spacer(space);
295 
296       while (cur_addr < top) {
297         oop obj = cast_to_oop(cur_addr);
298         size_t obj_size = obj->size();
299         if (obj->is_gc_marked()) {
300           HeapWord* new_addr = alloc(obj_size);
301           forward_obj(obj, new_addr);
302           cur_addr += obj_size;
303         } else {
304           // Skipping the current known-unmarked obj
305           HeapWord* next_live_addr = find_next_live_addr(cur_addr + obj_size, top);
306           if (dead_spacer.insert_deadspace(cur_addr, next_live_addr)) {
307             // Register space for the filler obj
308             alloc(pointer_delta(next_live_addr, cur_addr));
309           } else {
310             if (!record_first_dead_done) {
311               record_first_dead(i, cur_addr);
312               record_first_dead_done = true;
313             }
314             *(HeapWord**)cur_addr = next_live_addr;
315           }
316           cur_addr = next_live_addr;
317         }
318       }
319 
320       if (!record_first_dead_done) {
321         record_first_dead(i, top);
322       }
323     }
324   }
325 
326   void phase3_adjust_pointers() {
327     for (uint i = 0; i < _num_spaces; ++i) {
328       ContiguousSpace* space = get_space(i);
329       HeapWord* cur_addr = space->bottom();
330       HeapWord* const top = space->top();
331       HeapWord* const first_dead = get_first_dead(i);
332 
333       while (cur_addr < top) {
334         prefetch_write_scan(cur_addr);
335         if (cur_addr < first_dead || cast_to_oop(cur_addr)->is_gc_marked()) {
336           size_t size = cast_to_oop(cur_addr)->oop_iterate_size(&SerialFullGC::adjust_pointer_closure);
337           cur_addr += size;
338         } else {
339           assert(*(HeapWord**)cur_addr > cur_addr, "forward progress");
340           cur_addr = *(HeapWord**)cur_addr;
341         }
342       }
343     }
344   }
345 
346   void phase4_compact() {
347     for (uint i = 0; i < _num_spaces; ++i) {
348       ContiguousSpace* space = get_space(i);
349       HeapWord* cur_addr = space->bottom();
350       HeapWord* top = space->top();
351 
352       // Check if the first obj inside this space is forwarded.
353       if (SlidingForwarding::is_not_forwarded(cast_to_oop(cur_addr))) {
354         // Jump over consecutive (in-place) live-objs-chunk
355         cur_addr = get_first_dead(i);
356       }
357 
358       while (cur_addr < top) {
359         if (SlidingForwarding::is_not_forwarded(cast_to_oop(cur_addr))) {
360           cur_addr = *(HeapWord**) cur_addr;
361           continue;
362         }
363         cur_addr += relocate(cur_addr);
364       }
365 
366       // Reset top and unused memory
367       space->set_top(get_compaction_top(i));
368       if (ZapUnusedHeapArea) {
369         space->mangle_unused_area();
370       }
371     }
372   }
373 };
374 
375 template <class T> void SerialFullGC::KeepAliveClosure::do_oop_work(T* p) {
376   mark_and_push(p);
377 }
378 
379 void SerialFullGC::push_objarray(oop obj, size_t index) {
380   ObjArrayTask task(obj, index);
381   assert(task.is_valid(), "bad ObjArrayTask");
382   _objarray_stack.push(task);
383 }
384 
385 void SerialFullGC::follow_array(objArrayOop array) {
386   mark_and_push_closure.do_klass(array->klass());
387   // Don't push empty arrays to avoid unnecessary work.
388   if (array->length() > 0) {
389     SerialFullGC::push_objarray(array, 0);
390   }
391 }
392 
393 void SerialFullGC::follow_object(oop obj) {
394   assert(obj->is_gc_marked(), "should be marked");
395   if (obj->is_objArray()) {
396     // Handle object arrays explicitly to allow them to
397     // be split into chunks if needed.
398     SerialFullGC::follow_array((objArrayOop)obj);
399   } else {
400     obj->oop_iterate(&mark_and_push_closure);
401   }
402 }
403 
404 void SerialFullGC::follow_array_chunk(objArrayOop array, int index) {
405   const int len = array->length();
406   const int beg_index = index;
407   assert(beg_index < len || len == 0, "index too large");
408 
409   const int stride = MIN2(len - beg_index, (int) ObjArrayMarkingStride);
410   const int end_index = beg_index + stride;
411 
412   array->oop_iterate_range(&mark_and_push_closure, beg_index, end_index);
413 
414   if (end_index < len) {
415     SerialFullGC::push_objarray(array, end_index); // Push the continuation.
416   }
417 }
418 
419 void SerialFullGC::follow_stack() {
420   do {
421     while (!_marking_stack.is_empty()) {
422       oop obj = _marking_stack.pop();
423       assert (obj->is_gc_marked(), "p must be marked");
424       follow_object(obj);
425     }
426     // Process ObjArrays one at a time to avoid marking stack bloat.
427     if (!_objarray_stack.is_empty()) {
428       ObjArrayTask task = _objarray_stack.pop();
429       follow_array_chunk(objArrayOop(task.obj()), task.index());
430     }
431   } while (!_marking_stack.is_empty() || !_objarray_stack.is_empty());
432 }
433 
434 SerialFullGC::FollowStackClosure SerialFullGC::follow_stack_closure;
435 
436 void SerialFullGC::FollowStackClosure::do_void() { follow_stack(); }
437 
438 template <class T> void SerialFullGC::follow_root(T* p) {
439   assert(!Universe::heap()->is_in(p),
440          "roots shouldn't be things within the heap");
441   T heap_oop = RawAccess<>::oop_load(p);
442   if (!CompressedOops::is_null(heap_oop)) {
443     oop obj = CompressedOops::decode_not_null(heap_oop);
444     if (!obj->mark().is_marked()) {
445       mark_object(obj);
446       follow_object(obj);
447     }
448   }
449   follow_stack();
450 }
451 
452 void SerialFullGC::FollowRootClosure::do_oop(oop* p)       { follow_root(p); }
453 void SerialFullGC::FollowRootClosure::do_oop(narrowOop* p) { follow_root(p); }
454 
455 // We preserve the mark which should be replaced at the end and the location
456 // that it will go.  Note that the object that this markWord belongs to isn't
457 // currently at that address but it will be after phase4
458 void SerialFullGC::preserve_mark(oop obj, markWord mark) {
459   // We try to store preserved marks in the to space of the new generation since
460   // this is storage which should be available.  Most of the time this should be
461   // sufficient space for the marks we need to preserve but if it isn't we fall
462   // back to using Stacks to keep track of the overflow.
463   if (_preserved_count < _preserved_count_max) {
464     _preserved_marks[_preserved_count++] = PreservedMark(obj, mark);
465   } else {
466     _preserved_overflow_stack_set.get()->push_always(obj, mark);
467   }
468 }
469 
470 void SerialFullGC::phase1_mark(bool clear_all_softrefs) {
471   // Recursively traverse all live objects and mark them
472   GCTraceTime(Info, gc, phases) tm("Phase 1: Mark live objects", _gc_timer);
473 
474   SerialHeap* gch = SerialHeap::heap();
475 
476   ClassLoaderDataGraph::verify_claimed_marks_cleared(ClassLoaderData::_claim_stw_fullgc_mark);
477 
478   ref_processor()->start_discovery(clear_all_softrefs);
479 
480   {
481     StrongRootsScope srs(0);
482 
483     CLDClosure* weak_cld_closure = ClassUnloading ? nullptr : &follow_cld_closure;
484     MarkingNMethodClosure mark_code_closure(&follow_root_closure, !NMethodToOopClosure::FixRelocations, true);
485     gch->process_roots(SerialHeap::SO_None,
486                        &follow_root_closure,
487                        &follow_cld_closure,
488                        weak_cld_closure,
489                        &mark_code_closure);
490   }
491 
492   // Process reference objects found during marking
493   {
494     GCTraceTime(Debug, gc, phases) tm_m("Reference Processing", gc_timer());
495 
496     ReferenceProcessorPhaseTimes pt(_gc_timer, ref_processor()->max_num_queues());
497     SerialGCRefProcProxyTask task(is_alive, keep_alive, follow_stack_closure);
498     const ReferenceProcessorStats& stats = ref_processor()->process_discovered_references(task, pt);
499     pt.print_all_references();
500     gc_tracer()->report_gc_reference_stats(stats);
501   }
502 
503   // This is the point where the entire marking should have completed.
504   assert(_marking_stack.is_empty(), "Marking should have completed");
505 
506   {
507     GCTraceTime(Debug, gc, phases) tm_m("Weak Processing", gc_timer());
508     WeakProcessor::weak_oops_do(&is_alive, &do_nothing_cl);
509   }
510 
511   {
512     GCTraceTime(Debug, gc, phases) tm_m("Class Unloading", gc_timer());
513 
514     ClassUnloadingContext* ctx = ClassUnloadingContext::context();
515 
516     bool unloading_occurred;
517     {
518       CodeCache::UnlinkingScope scope(&is_alive);
519 
520       // Unload classes and purge the SystemDictionary.
521       unloading_occurred = SystemDictionary::do_unloading(gc_timer());
522 
523       // Unload nmethods.
524       CodeCache::do_unloading(unloading_occurred);
525     }
526 
527     {
528       GCTraceTime(Debug, gc, phases) t("Purge Unlinked NMethods", gc_timer());
529       // Release unloaded nmethod's memory.
530       ctx->purge_nmethods();
531     }
532     {
533       GCTraceTime(Debug, gc, phases) ur("Unregister NMethods", gc_timer());
534       gch->prune_unlinked_nmethods();
535     }
536     {
537       GCTraceTime(Debug, gc, phases) t("Free Code Blobs", gc_timer());
538       ctx->free_nmethods();
539     }
540 
541     // Prune dead klasses from subklass/sibling/implementor lists.
542     Klass::clean_weak_klass_links(unloading_occurred);
543 
544     // Clean JVMCI metadata handles.
545     JVMCI_ONLY(JVMCI::do_unloading(unloading_occurred));
546   }
547 
548   {
549     GCTraceTime(Debug, gc, phases) tm_m("Report Object Count", gc_timer());
550     gc_tracer()->report_object_count_after_gc(&is_alive, nullptr);
551   }
552 }
553 
554 void SerialFullGC::allocate_stacks() {
555   void* scratch = nullptr;
556   size_t num_words;
557   DefNewGeneration* young_gen = (DefNewGeneration*)SerialHeap::heap()->young_gen();
558   young_gen->contribute_scratch(scratch, num_words);
559 
560   if (scratch != nullptr) {
561     _preserved_count_max = num_words * HeapWordSize / sizeof(PreservedMark);
562   } else {
563     _preserved_count_max = 0;
564   }
565 
566   _preserved_marks = (PreservedMark*)scratch;
567   _preserved_count = 0;
568 
569   _preserved_overflow_stack_set.init(1);
570 }
571 
572 void SerialFullGC::deallocate_stacks() {
573   if (_preserved_count_max != 0) {
574     DefNewGeneration* young_gen = (DefNewGeneration*)SerialHeap::heap()->young_gen();
575     young_gen->reset_scratch();
576   }
577 
578   _preserved_overflow_stack_set.reclaim();
579   _marking_stack.clear();
580   _objarray_stack.clear(true);
581 }
582 
583 void SerialFullGC::mark_object(oop obj) {
584   if (StringDedup::is_enabled() &&
585       java_lang_String::is_instance(obj) &&
586       SerialStringDedup::is_candidate_from_mark(obj)) {
587     _string_dedup_requests->add(obj);
588   }
589 
590   // Do the transform while we still have the header intact,
591   // which might include important class information.
592   ContinuationGCSupport::transform_stack_chunk(obj);
593 
594   // some marks may contain information we need to preserve so we store them away
595   // and overwrite the mark.  We'll restore it at the end of serial full GC.
596   markWord mark = obj->mark();
597   obj->set_mark(obj->prototype_mark().set_marked());
598 
599   if (obj->mark_must_be_preserved(mark)) {
600     preserve_mark(obj, mark);
601   }
602 }
603 
604 template <class T> void SerialFullGC::mark_and_push(T* p) {
605   T heap_oop = RawAccess<>::oop_load(p);
606   if (!CompressedOops::is_null(heap_oop)) {
607     oop obj = CompressedOops::decode_not_null(heap_oop);
608     if (!obj->mark().is_marked()) {
609       mark_object(obj);
610       _marking_stack.push(obj);
611     }
612   }
613 }
614 
615 template <typename T>
616 void MarkAndPushClosure::do_oop_work(T* p)            { SerialFullGC::mark_and_push(p); }
617 void MarkAndPushClosure::do_oop(      oop* p)         { do_oop_work(p); }
618 void MarkAndPushClosure::do_oop(narrowOop* p)         { do_oop_work(p); }
619 
620 template <class T> void SerialFullGC::adjust_pointer(T* p) {
621   T heap_oop = RawAccess<>::oop_load(p);
622   if (!CompressedOops::is_null(heap_oop)) {
623     oop obj = CompressedOops::decode_not_null(heap_oop);
624     assert(Universe::heap()->is_in(obj), "should be in heap");
625 
626     if (SlidingForwarding::is_forwarded(obj)) {
627       oop new_obj = SlidingForwarding::forwardee(obj);
628       assert(is_object_aligned(new_obj), "oop must be aligned");
629       RawAccess<IS_NOT_NULL>::oop_store(p, new_obj);
630     }
631   }
632 }
633 
634 template <typename T>
635 void AdjustPointerClosure::do_oop_work(T* p)           { SerialFullGC::adjust_pointer(p); }
636 inline void AdjustPointerClosure::do_oop(oop* p)       { do_oop_work(p); }
637 inline void AdjustPointerClosure::do_oop(narrowOop* p) { do_oop_work(p); }
638 
639 AdjustPointerClosure SerialFullGC::adjust_pointer_closure;
640 
641 void SerialFullGC::adjust_marks() {
642   // adjust the oops we saved earlier
643   for (size_t i = 0; i < _preserved_count; i++) {
644     PreservedMarks::adjust_preserved_mark(_preserved_marks + i);
645   }
646 
647   // deal with the overflow stack
648   _preserved_overflow_stack_set.get()->adjust_during_full_gc();
649 }
650 
651 void SerialFullGC::restore_marks() {
652   log_trace(gc)("Restoring " SIZE_FORMAT " marks", _preserved_count + _preserved_overflow_stack_set.get()->size());
653 
654   // restore the marks we saved earlier
655   for (size_t i = 0; i < _preserved_count; i++) {
656     _preserved_marks[i].set_mark();
657   }
658 
659   // deal with the overflow
660   _preserved_overflow_stack_set.restore(nullptr);
661 }
662 
663 SerialFullGC::IsAliveClosure   SerialFullGC::is_alive;
664 
665 bool SerialFullGC::IsAliveClosure::do_object_b(oop p) { return p->is_gc_marked(); }
666 
667 SerialFullGC::KeepAliveClosure SerialFullGC::keep_alive;
668 
669 void SerialFullGC::KeepAliveClosure::do_oop(oop* p)       { SerialFullGC::KeepAliveClosure::do_oop_work(p); }
670 void SerialFullGC::KeepAliveClosure::do_oop(narrowOop* p) { SerialFullGC::KeepAliveClosure::do_oop_work(p); }
671 
672 void SerialFullGC::initialize() {
673   SerialFullGC::_gc_timer = new STWGCTimer();
674   SerialFullGC::_gc_tracer = new SerialOldTracer();
675   SerialFullGC::_string_dedup_requests = new StringDedup::Requests();
676 
677   // The Full GC operates on the entire heap so all objects should be subject
678   // to discovery, hence the _always_true_closure.
679   SerialFullGC::_ref_processor = new ReferenceProcessor(&_always_true_closure);
680   mark_and_push_closure.set_ref_discoverer(_ref_processor);
681 }
682 
683 void SerialFullGC::invoke_at_safepoint(bool clear_all_softrefs) {
684   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
685 
686   SerialHeap* gch = SerialHeap::heap();
687 #ifdef ASSERT
688   if (gch->soft_ref_policy()->should_clear_all_soft_refs()) {
689     assert(clear_all_softrefs, "Policy should have been checked earlier");
690   }
691 #endif
692 
693   gch->trace_heap_before_gc(_gc_tracer);
694 
695   // Increment the invocation count
696   _total_invocations++;
697 
698   // Capture used regions for old-gen to reestablish old-to-young invariant
699   // after full-gc.
700   gch->old_gen()->save_used_region();
701 
702   allocate_stacks();
703 
704   phase1_mark(clear_all_softrefs);
705 
706   SlidingForwarding::begin();
707 
708   Compacter compacter{gch};
709 
710   {
711     // Now all live objects are marked, compute the new object addresses.
712     GCTraceTime(Info, gc, phases) tm("Phase 2: Compute new object addresses", _gc_timer);
713 
714     compacter.phase2_calculate_new_addr();
715   }
716 
717   // Don't add any more derived pointers during phase3
718 #if COMPILER2_OR_JVMCI
719   assert(DerivedPointerTable::is_active(), "Sanity");
720   DerivedPointerTable::set_active(false);
721 #endif
722 
723   {
724     // Adjust the pointers to reflect the new locations
725     GCTraceTime(Info, gc, phases) tm("Phase 3: Adjust pointers", gc_timer());
726 
727     ClassLoaderDataGraph::verify_claimed_marks_cleared(ClassLoaderData::_claim_stw_fullgc_adjust);
728 
729     NMethodToOopClosure code_closure(&adjust_pointer_closure, NMethodToOopClosure::FixRelocations);
730     gch->process_roots(SerialHeap::SO_AllCodeCache,
731                        &adjust_pointer_closure,
732                        &adjust_cld_closure,
733                        &adjust_cld_closure,
734                        &code_closure);
735 
736     WeakProcessor::oops_do(&adjust_pointer_closure);
737 
738     adjust_marks();
739     compacter.phase3_adjust_pointers();
740   }
741 
742   {
743     // All pointers are now adjusted, move objects accordingly
744     GCTraceTime(Info, gc, phases) tm("Phase 4: Move objects", _gc_timer);
745 
746     compacter.phase4_compact();
747   }
748 
749   restore_marks();
750 
751   // Set saved marks for allocation profiler (and other things? -- dld)
752   // (Should this be in general part?)
753   gch->save_marks();
754 
755   SlidingForwarding::end();
756 
757   deallocate_stacks();
758 
759   SerialFullGC::_string_dedup_requests->flush();
760 
761   bool is_young_gen_empty = (gch->young_gen()->used() == 0);
762   gch->rem_set()->maintain_old_to_young_invariant(gch->old_gen(), is_young_gen_empty);
763 
764   gch->prune_scavengable_nmethods();
765 
766   // Update heap occupancy information which is used as
767   // input to soft ref clearing policy at the next gc.
768   Universe::heap()->update_capacity_and_used_at_gc();
769 
770   // Signal that we have completed a visit to all live objects.
771   Universe::heap()->record_whole_heap_examined_timestamp();
772 
773   gch->trace_heap_after_gc(_gc_tracer);
774 }