1 /*
  2  * Copyright (c) 2017, 2025, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "classfile/classLoaderDataGraph.hpp"
 26 #include "classfile/stringTable.hpp"
 27 #include "classfile/symbolTable.hpp"
 28 #include "classfile/vmSymbols.hpp"
 29 #include "code/codeCache.hpp"
 30 #include "compiler/oopMap.hpp"
 31 #include "gc/serial/cardTableRS.hpp"
 32 #include "gc/serial/serialFullGC.hpp"
 33 #include "gc/serial/serialHeap.inline.hpp"
 34 #include "gc/serial/serialMemoryPools.hpp"
 35 #include "gc/serial/serialVMOperations.hpp"
 36 #include "gc/serial/tenuredGeneration.inline.hpp"
 37 #include "gc/shared/cardTableBarrierSet.hpp"
 38 #include "gc/shared/classUnloadingContext.hpp"
 39 #include "gc/shared/collectedHeap.inline.hpp"
 40 #include "gc/shared/collectorCounters.hpp"
 41 #include "gc/shared/continuationGCSupport.inline.hpp"
 42 #include "gc/shared/fullGCForwarding.inline.hpp"
 43 #include "gc/shared/gcId.hpp"
 44 #include "gc/shared/gcInitLogger.hpp"
 45 #include "gc/shared/gcLocker.inline.hpp"
 46 #include "gc/shared/gcPolicyCounters.hpp"
 47 #include "gc/shared/gcTrace.hpp"
 48 #include "gc/shared/gcTraceTime.inline.hpp"
 49 #include "gc/shared/gcVMOperations.hpp"
 50 #include "gc/shared/genArguments.hpp"
 51 #include "gc/shared/isGCActiveMark.hpp"
 52 #include "gc/shared/locationPrinter.inline.hpp"
 53 #include "gc/shared/oopStorage.inline.hpp"
 54 #include "gc/shared/oopStorageParState.inline.hpp"
 55 #include "gc/shared/oopStorageSet.inline.hpp"
 56 #include "gc/shared/scavengableNMethods.hpp"
 57 #include "gc/shared/space.hpp"
 58 #include "gc/shared/strongRootsScope.hpp"
 59 #include "gc/shared/suspendibleThreadSet.hpp"
 60 #include "gc/shared/weakProcessor.hpp"
 61 #include "gc/shared/workerThread.hpp"
 62 #include "memory/iterator.hpp"
 63 #include "memory/metaspaceCounters.hpp"
 64 #include "memory/metaspaceUtils.hpp"
 65 #include "memory/reservedSpace.hpp"
 66 #include "memory/resourceArea.hpp"
 67 #include "memory/universe.hpp"
 68 #include "oops/oop.inline.hpp"
 69 #include "runtime/handles.hpp"
 70 #include "runtime/handles.inline.hpp"
 71 #include "runtime/java.hpp"
 72 #include "runtime/mutexLocker.hpp"
 73 #include "runtime/threads.hpp"
 74 #include "runtime/vmThread.hpp"
 75 #include "services/memoryManager.hpp"
 76 #include "services/memoryService.hpp"
 77 #include "utilities/debug.hpp"
 78 #include "utilities/formatBuffer.hpp"
 79 #include "utilities/macros.hpp"
 80 #include "utilities/stack.inline.hpp"
 81 #include "utilities/vmError.hpp"
 82 #if INCLUDE_JVMCI
 83 #include "jvmci/jvmci.hpp"
 84 #endif
 85 
 86 SerialHeap* SerialHeap::heap() {
 87   return named_heap<SerialHeap>(CollectedHeap::Serial);
 88 }
 89 
 90 SerialHeap::SerialHeap() :
 91     CollectedHeap(),
 92     _young_gen(nullptr),
 93     _old_gen(nullptr),
 94     _rem_set(nullptr),
 95     _gc_policy_counters(new GCPolicyCounters("Copy:MSC", 2, 2)),
 96     _young_manager(nullptr),
 97     _old_manager(nullptr),
 98     _is_heap_almost_full(false),
 99     _eden_pool(nullptr),
100     _survivor_pool(nullptr),
101     _old_pool(nullptr) {
102   _young_manager = new GCMemoryManager("Copy");
103   _old_manager = new GCMemoryManager("MarkSweepCompact");
104   GCLocker::initialize();
105 }
106 
107 void SerialHeap::initialize_serviceability() {
108   DefNewGeneration* young = young_gen();
109 
110   // Add a memory pool for each space and young gen doesn't
111   // support low memory detection as it is expected to get filled up.
112   _eden_pool = new ContiguousSpacePool(young->eden(),
113                                        "Eden Space",
114                                        young->max_eden_size(),
115                                        false /* support_usage_threshold */);
116   _survivor_pool = new SurvivorContiguousSpacePool(young,
117                                                    "Survivor Space",
118                                                    young->max_survivor_size(),
119                                                    false /* support_usage_threshold */);
120   TenuredGeneration* old = old_gen();
121   _old_pool = new TenuredGenerationPool(old, "Tenured Gen", true);
122 
123   _young_manager->add_pool(_eden_pool);
124   _young_manager->add_pool(_survivor_pool);
125   young->set_gc_manager(_young_manager);
126 
127   _old_manager->add_pool(_eden_pool);
128   _old_manager->add_pool(_survivor_pool);
129   _old_manager->add_pool(_old_pool);
130   old->set_gc_manager(_old_manager);
131 }
132 
133 GrowableArray<GCMemoryManager*> SerialHeap::memory_managers() {
134   GrowableArray<GCMemoryManager*> memory_managers(2);
135   memory_managers.append(_young_manager);
136   memory_managers.append(_old_manager);
137   return memory_managers;
138 }
139 
140 GrowableArray<MemoryPool*> SerialHeap::memory_pools() {
141   GrowableArray<MemoryPool*> memory_pools(3);
142   memory_pools.append(_eden_pool);
143   memory_pools.append(_survivor_pool);
144   memory_pools.append(_old_pool);
145   return memory_pools;
146 }
147 
148 void SerialHeap::safepoint_synchronize_begin() {
149   if (UseStringDeduplication) {
150     SuspendibleThreadSet::synchronize();
151   }
152 }
153 
154 void SerialHeap::safepoint_synchronize_end() {
155   if (UseStringDeduplication) {
156     SuspendibleThreadSet::desynchronize();
157   }
158 }
159 
160 HeapWord* SerialHeap::allocate_loaded_archive_space(size_t word_size) {
161   MutexLocker ml(Heap_lock);
162   return old_gen()->allocate(word_size);
163 }
164 
165 void SerialHeap::complete_loaded_archive_space(MemRegion archive_space) {
166   assert(old_gen()->used_region().contains(archive_space), "Archive space not contained in old gen");
167   old_gen()->complete_loaded_archive_space(archive_space);
168 }
169 
170 void SerialHeap::pin_object(JavaThread* thread, oop obj) {
171   GCLocker::enter(thread);
172 }
173 
174 void SerialHeap::unpin_object(JavaThread* thread, oop obj) {
175   GCLocker::exit(thread);
176 }
177 
178 jint SerialHeap::initialize() {
179   // Allocate space for the heap.
180 
181   ReservedHeapSpace heap_rs = allocate(HeapAlignment);
182 
183   if (!heap_rs.is_reserved()) {
184     vm_shutdown_during_initialization(
185       "Could not reserve enough space for object heap");
186     return JNI_ENOMEM;
187   }
188 
189   initialize_reserved_region(heap_rs);
190 
191   ReservedSpace young_rs = heap_rs.first_part(MaxNewSize, SpaceAlignment);
192   ReservedSpace old_rs = heap_rs.last_part(MaxNewSize, SpaceAlignment);
193 
194   _rem_set = new CardTableRS(_reserved);
195   _rem_set->initialize(young_rs.base(), old_rs.base());
196 
197   CardTableBarrierSet *bs = new CardTableBarrierSet(_rem_set);
198   bs->initialize();
199   BarrierSet::set_barrier_set(bs);
200 
201   _young_gen = new DefNewGeneration(young_rs, NewSize, MinNewSize, MaxNewSize);
202   _old_gen = new TenuredGeneration(old_rs, OldSize, MinOldSize, MaxOldSize, rem_set());
203 
204   GCInitLogger::print();
205 
206   FullGCForwarding::initialize(_reserved);
207 
208   return JNI_OK;
209 }
210 
211 ReservedHeapSpace SerialHeap::allocate(size_t alignment) {
212   // Now figure out the total size.
213   const size_t pageSize = UseLargePages ? os::large_page_size() : os::vm_page_size();
214   assert(alignment % pageSize == 0, "Must be");
215 
216   // Check for overflow.
217   size_t total_reserved = MaxNewSize + MaxOldSize;
218   if (total_reserved < MaxNewSize) {
219     vm_exit_during_initialization("The size of the object heap + VM data exceeds "
220                                   "the maximum representable size");
221   }
222   assert(total_reserved % alignment == 0,
223          "Gen size; total_reserved=%zu, alignment=%zu", total_reserved, alignment);
224 
225   ReservedHeapSpace heap_rs = Universe::reserve_heap(total_reserved, alignment);
226   size_t used_page_size = heap_rs.page_size();
227 
228   os::trace_page_sizes("Heap",
229                        MinHeapSize,
230                        total_reserved,
231                        heap_rs.base(),
232                        heap_rs.size(),
233                        used_page_size);
234 
235   return heap_rs;
236 }
237 
238 class GenIsScavengable : public BoolObjectClosure {
239 public:
240   bool do_object_b(oop obj) {
241     return SerialHeap::heap()->is_in_young(obj);
242   }
243 };
244 
245 static GenIsScavengable _is_scavengable;
246 
247 void SerialHeap::post_initialize() {
248   CollectedHeap::post_initialize();
249 
250   DefNewGeneration* def_new_gen = (DefNewGeneration*)_young_gen;
251 
252   def_new_gen->ref_processor_init();
253 
254   SerialFullGC::initialize();
255 
256   ScavengableNMethods::initialize(&_is_scavengable);
257 }
258 
259 PreGenGCValues SerialHeap::get_pre_gc_values() const {
260   const DefNewGeneration* const def_new_gen = (DefNewGeneration*) young_gen();
261 
262   return PreGenGCValues(def_new_gen->used(),
263                         def_new_gen->capacity(),
264                         def_new_gen->eden()->used(),
265                         def_new_gen->eden()->capacity(),
266                         def_new_gen->from()->used(),
267                         def_new_gen->from()->capacity(),
268                         old_gen()->used(),
269                         old_gen()->capacity());
270 }
271 
272 size_t SerialHeap::capacity() const {
273   return _young_gen->capacity() + _old_gen->capacity();
274 }
275 
276 size_t SerialHeap::used() const {
277   return _young_gen->used() + _old_gen->used();
278 }
279 
280 size_t SerialHeap::max_capacity() const {
281   return _young_gen->max_capacity() + _old_gen->max_capacity();
282 }
283 
284 // Return true if any of the following is true:
285 // . the allocation won't fit into the current young gen heap
286 // . heap memory is tight
287 bool SerialHeap::should_try_older_generation_allocation(size_t word_size) const {
288   size_t young_capacity = _young_gen->capacity_before_gc();
289   return    (word_size > heap_word_size(young_capacity))
290          || _is_heap_almost_full;
291 }
292 
293 HeapWord* SerialHeap::expand_heap_and_allocate(size_t size, bool is_tlab) {
294   HeapWord* result = nullptr;
295   if (_old_gen->should_allocate(size, is_tlab)) {
296     result = _old_gen->expand_and_allocate(size);
297   }
298   if (result == nullptr) {
299     if (_young_gen->should_allocate(size, is_tlab)) {
300       // Young-gen is not expanded.
301       result = _young_gen->allocate(size);
302     }
303   }
304   assert(result == nullptr || is_in_reserved(result), "result not in heap");
305   return result;
306 }
307 
308 HeapWord* SerialHeap::mem_allocate_work(size_t size, bool is_tlab) {
309   HeapWord* result = nullptr;
310 
311   // Loop until the allocation is satisfied, or unsatisfied after GC.
312   for (uint try_count = 1; /* return or throw */; try_count += 1) {
313     // First allocation attempt is lock-free.
314     DefNewGeneration *young = _young_gen;
315     if (young->should_allocate(size, is_tlab)) {
316       result = young->par_allocate(size);
317       if (result != nullptr) {
318         assert(is_in_reserved(result), "result not in heap");
319         return result;
320       }
321     }
322     uint gc_count_before;  // Read inside the Heap_lock locked region.
323     {
324       MutexLocker ml(Heap_lock);
325       log_trace(gc, alloc)("SerialHeap::mem_allocate_work: attempting locked slow path allocation");
326       // Note that only large objects get a shot at being
327       // allocated in later generations.
328       bool first_only = !should_try_older_generation_allocation(size);
329 
330       result = attempt_allocation(size, is_tlab, first_only);
331       if (result != nullptr) {
332         assert(is_in_reserved(result), "result not in heap");
333         return result;
334       }
335 
336       // Read the gc count while the heap lock is held.
337       gc_count_before = total_collections();
338     }
339 
340     VM_SerialCollectForAllocation op(size, is_tlab, gc_count_before);
341     VMThread::execute(&op);
342     if (op.gc_succeeded()) {
343       result = op.result();
344 
345       assert(result == nullptr || is_in_reserved(result),
346              "result not in heap");
347       return result;
348     }
349 
350     // Give a warning if we seem to be looping forever.
351     if ((QueuedAllocationWarningCount > 0) &&
352         (try_count % QueuedAllocationWarningCount == 0)) {
353       log_warning(gc, ergo)("SerialHeap::mem_allocate_work retries %d times,"
354                             " size=%zu %s", try_count, size, is_tlab ? "(TLAB)" : "");
355     }
356   }
357 }
358 
359 HeapWord* SerialHeap::attempt_allocation(size_t size,
360                                          bool is_tlab,
361                                          bool first_only) {
362   HeapWord* res = nullptr;
363 
364   if (_young_gen->should_allocate(size, is_tlab)) {
365     res = _young_gen->allocate(size);
366     if (res != nullptr || first_only) {
367       return res;
368     }
369   }
370 
371   if (_old_gen->should_allocate(size, is_tlab)) {
372     res = _old_gen->allocate(size);
373   }
374 
375   return res;
376 }
377 
378 HeapWord* SerialHeap::mem_allocate(size_t size,
379                                    bool* gc_overhead_limit_was_exceeded) {
380   return mem_allocate_work(size,
381                            false /* is_tlab */);
382 }
383 
384 bool SerialHeap::must_clear_all_soft_refs() {
385   return _gc_cause == GCCause::_metadata_GC_clear_soft_refs ||
386          _gc_cause == GCCause::_wb_full_gc;
387 }
388 
389 bool SerialHeap::is_young_gc_safe() const {
390   if (!_young_gen->to()->is_empty()) {
391     return false;
392   }
393   return _old_gen->promotion_attempt_is_safe(_young_gen->used());
394 }
395 
396 bool SerialHeap::do_young_collection(bool clear_soft_refs) {
397   if (!is_young_gc_safe()) {
398     return false;
399   }
400   IsSTWGCActiveMark gc_active_mark;
401   SvcGCMarker sgcm(SvcGCMarker::MINOR);
402   GCIdMark gc_id_mark;
403   GCTraceCPUTime tcpu(_young_gen->gc_tracer());
404   GCTraceTime(Info, gc) t("Pause Young", nullptr, gc_cause(), true);
405   TraceCollectorStats tcs(_young_gen->counters());
406   TraceMemoryManagerStats tmms(_young_gen->gc_manager(), gc_cause(), "end of minor GC");
407   print_before_gc();
408   const PreGenGCValues pre_gc_values = get_pre_gc_values();
409 
410   increment_total_collections(false);
411   const bool should_verify = total_collections() >= VerifyGCStartAt;
412   if (should_verify && VerifyBeforeGC) {
413     prepare_for_verify();
414     Universe::verify("Before GC");
415   }
416   gc_prologue();
417   COMPILER2_OR_JVMCI_PRESENT(DerivedPointerTable::clear());
418 
419   save_marks();
420 
421   bool result = _young_gen->collect(clear_soft_refs);
422 
423   COMPILER2_OR_JVMCI_PRESENT(DerivedPointerTable::update_pointers());
424 
425   // Only update stats for successful young-gc
426   if (result) {
427     _old_gen->update_promote_stats();
428   }
429 
430   if (should_verify && VerifyAfterGC) {
431     Universe::verify("After GC");
432   }
433 
434   _young_gen->compute_new_size();
435 
436   print_heap_change(pre_gc_values);
437 
438   // Track memory usage and detect low memory after GC finishes
439   MemoryService::track_memory_usage();
440 
441   gc_epilogue(false);
442 
443   print_after_gc();
444 
445   return result;
446 }
447 
448 void SerialHeap::register_nmethod(nmethod* nm) {
449   ScavengableNMethods::register_nmethod(nm);
450 }
451 
452 void SerialHeap::unregister_nmethod(nmethod* nm) {
453   ScavengableNMethods::unregister_nmethod(nm);
454 }
455 
456 void SerialHeap::verify_nmethod(nmethod* nm) {
457   ScavengableNMethods::verify_nmethod(nm);
458 }
459 
460 void SerialHeap::prune_scavengable_nmethods() {
461   ScavengableNMethods::prune_nmethods_not_into_young();
462 }
463 
464 void SerialHeap::prune_unlinked_nmethods() {
465   ScavengableNMethods::prune_unlinked_nmethods();
466 }
467 
468 HeapWord* SerialHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
469   assert(size != 0, "precondition");
470 
471   HeapWord* result = nullptr;
472 
473   // If young-gen can handle this allocation, attempt young-gc firstly.
474   bool should_run_young_gc = _young_gen->should_allocate(size, is_tlab);
475   collect_at_safepoint(!should_run_young_gc);
476 
477   result = attempt_allocation(size, is_tlab, false /*first_only*/);
478   if (result != nullptr) {
479     return result;
480   }
481 
482   // OK, collection failed, try expansion.
483   result = expand_heap_and_allocate(size, is_tlab);
484   if (result != nullptr) {
485     return result;
486   }
487 
488   // If we reach this point, we're really out of memory. Try every trick
489   // we can to reclaim memory. Force collection of soft references. Force
490   // a complete compaction of the heap. Any additional methods for finding
491   // free memory should be here, especially if they are expensive. If this
492   // attempt fails, an OOM exception will be thrown.
493   {
494     UIntFlagSetting flag_change(MarkSweepAlwaysCompactCount, 1); // Make sure the heap is fully compacted
495     const bool clear_all_soft_refs = true;
496     do_full_collection(clear_all_soft_refs);
497   }
498 
499   result = attempt_allocation(size, is_tlab, false /* first_only */);
500   if (result != nullptr) {
501     return result;
502   }
503   // The previous full-gc can shrink the heap, so re-expand it.
504   result = expand_heap_and_allocate(size, is_tlab);
505   if (result != nullptr) {
506     return result;
507   }
508 
509   // What else?  We might try synchronous finalization later.  If the total
510   // space available is large enough for the allocation, then a more
511   // complete compaction phase than we've tried so far might be
512   // appropriate.
513   return nullptr;
514 }
515 
516 void SerialHeap::process_roots(ScanningOption so,
517                                OopClosure* strong_roots,
518                                CLDClosure* strong_cld_closure,
519                                CLDClosure* weak_cld_closure,
520                                NMethodToOopClosure* code_roots) {
521   // General roots.
522   assert(code_roots != nullptr, "code root closure should always be set");
523 
524   ClassLoaderDataGraph::roots_cld_do(strong_cld_closure, weak_cld_closure);
525 
526   // Only process code roots from thread stacks if we aren't visiting the entire CodeCache anyway
527   NMethodToOopClosure* roots_from_code_p = (so & SO_AllCodeCache) ? nullptr : code_roots;
528 
529   Threads::oops_do(strong_roots, roots_from_code_p);
530 
531   OopStorageSet::strong_oops_do(strong_roots);
532 
533   if (so & SO_ScavengeCodeCache) {
534     assert(code_roots != nullptr, "must supply closure for code cache");
535 
536     // We only visit parts of the CodeCache when scavenging.
537     ScavengableNMethods::nmethods_do(code_roots);
538   }
539   if (so & SO_AllCodeCache) {
540     assert(code_roots != nullptr, "must supply closure for code cache");
541 
542     // CMSCollector uses this to do intermediate-strength collections.
543     // We scan the entire code cache, since CodeCache::do_unloading is not called.
544     CodeCache::nmethods_do(code_roots);
545   }
546 }
547 
548 template <typename OopClosureType>
549 static void oop_iterate_from(OopClosureType* blk, ContiguousSpace* space, HeapWord** from) {
550   assert(*from != nullptr, "precondition");
551   HeapWord* t;
552   HeapWord* p = *from;
553 
554   const intx interval = PrefetchScanIntervalInBytes;
555   do {
556     t = space->top();
557     while (p < t) {
558       Prefetch::write(p, interval);
559       p += cast_to_oop(p)->oop_iterate_size(blk);
560     }
561   } while (t < space->top());
562 
563   *from = space->top();
564 }
565 
566 void SerialHeap::scan_evacuated_objs(YoungGenScanClosure* young_cl,
567                                      OldGenScanClosure* old_cl) {
568   ContiguousSpace* to_space = young_gen()->to();
569   do {
570     oop_iterate_from(young_cl, to_space, &_young_gen_saved_top);
571     oop_iterate_from(old_cl, old_gen()->space(), &_old_gen_saved_top);
572     // Recheck to-space only, because postcondition of oop_iterate_from is no
573     // unscanned objs
574   } while (_young_gen_saved_top != to_space->top());
575   guarantee(young_gen()->promo_failure_scan_is_complete(), "Failed to finish scan");
576 }
577 
578 void SerialHeap::collect_at_safepoint(bool full) {
579   assert(!GCLocker::is_active(), "precondition");
580   bool clear_soft_refs = must_clear_all_soft_refs();
581 
582   if (!full) {
583     bool success = do_young_collection(clear_soft_refs);
584     if (success) {
585       return;
586     }
587     // Upgrade to Full-GC if young-gc fails
588   }
589   do_full_collection(clear_soft_refs);
590 }
591 
592 // public collection interfaces
593 void SerialHeap::collect(GCCause::Cause cause) {
594   // The caller doesn't have the Heap_lock
595   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
596 
597   unsigned int gc_count_before;
598   unsigned int full_gc_count_before;
599 
600   {
601     MutexLocker ml(Heap_lock);
602     // Read the GC count while holding the Heap_lock
603     gc_count_before      = total_collections();
604     full_gc_count_before = total_full_collections();
605   }
606 
607   bool should_run_young_gc =  (cause == GCCause::_wb_young_gc)
608                 DEBUG_ONLY(|| (cause == GCCause::_scavenge_alot));
609 
610   VM_SerialGCCollect op(!should_run_young_gc,
611                         gc_count_before,
612                         full_gc_count_before,
613                         cause);
614   VMThread::execute(&op);
615 }
616 
617 void SerialHeap::do_full_collection(bool clear_all_soft_refs) {
618   IsSTWGCActiveMark gc_active_mark;
619   SvcGCMarker sgcm(SvcGCMarker::FULL);
620   GCIdMark gc_id_mark;
621   GCTraceCPUTime tcpu(SerialFullGC::gc_tracer());
622   GCTraceTime(Info, gc) t("Pause Full", nullptr, gc_cause(), true);
623   TraceCollectorStats tcs(_old_gen->counters());
624   TraceMemoryManagerStats tmms(_old_gen->gc_manager(), gc_cause(), "end of major GC");
625   const PreGenGCValues pre_gc_values = get_pre_gc_values();
626   print_before_gc();
627 
628   increment_total_collections(true);
629   const bool should_verify = total_collections() >= VerifyGCStartAt;
630   if (should_verify && VerifyBeforeGC) {
631     prepare_for_verify();
632     Universe::verify("Before GC");
633   }
634 
635   gc_prologue();
636   COMPILER2_OR_JVMCI_PRESENT(DerivedPointerTable::clear());
637   CodeCache::on_gc_marking_cycle_start();
638   ClassUnloadingContext ctx(1 /* num_nmethod_unlink_workers */,
639                             false /* unregister_nmethods_during_purge */,
640                             false /* lock_nmethod_free_separately */);
641 
642   STWGCTimer* gc_timer = SerialFullGC::gc_timer();
643   gc_timer->register_gc_start();
644 
645   SerialOldTracer* gc_tracer = SerialFullGC::gc_tracer();
646   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
647 
648   pre_full_gc_dump(gc_timer);
649 
650   SerialFullGC::invoke_at_safepoint(clear_all_soft_refs);
651 
652   post_full_gc_dump(gc_timer);
653 
654   gc_timer->register_gc_end();
655 
656   gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
657   CodeCache::on_gc_marking_cycle_finish();
658   CodeCache::arm_all_nmethods();
659   COMPILER2_OR_JVMCI_PRESENT(DerivedPointerTable::update_pointers());
660 
661   // Adjust generation sizes.
662   _old_gen->compute_new_size();
663   _young_gen->compute_new_size();
664 
665   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
666   ClassLoaderDataGraph::purge(/*at_safepoint*/true);
667   DEBUG_ONLY(MetaspaceUtils::verify();)
668 
669   // Need to clear claim bits for the next mark.
670   ClassLoaderDataGraph::clear_claimed_marks();
671 
672   _old_gen->update_promote_stats();
673 
674   // Resize the metaspace capacity after full collections
675   MetaspaceGC::compute_new_size();
676 
677   print_heap_change(pre_gc_values);
678 
679   // Track memory usage and detect low memory after GC finishes
680   MemoryService::track_memory_usage();
681 
682   // Need to tell the epilogue code we are done with Full GC, regardless what was
683   // the initial value for "complete" flag.
684   gc_epilogue(true);
685 
686   print_after_gc();
687 
688   if (should_verify && VerifyAfterGC) {
689     Universe::verify("After GC");
690   }
691 }
692 
693 bool SerialHeap::is_in_young(const void* p) const {
694   bool result = p < _old_gen->reserved().start();
695   assert(result == _young_gen->is_in_reserved(p),
696          "incorrect test - result=%d, p=" PTR_FORMAT, result, p2i(p));
697   return result;
698 }
699 
700 bool SerialHeap::requires_barriers(stackChunkOop obj) const {
701   return !is_in_young(obj);
702 }
703 
704 // Returns "TRUE" iff "p" points into the committed areas of the heap.
705 bool SerialHeap::is_in(const void* p) const {
706   return _young_gen->is_in(p) || _old_gen->is_in(p);
707 }
708 
709 void SerialHeap::object_iterate(ObjectClosure* cl) {
710   _young_gen->object_iterate(cl);
711   _old_gen->object_iterate(cl);
712 }
713 
714 HeapWord* SerialHeap::block_start(const void* addr) const {
715   assert(is_in_reserved(addr), "block_start of address outside of heap");
716   if (_young_gen->is_in_reserved(addr)) {
717     assert(_young_gen->is_in(addr), "addr should be in allocated part of generation");
718     return _young_gen->block_start(addr);
719   }
720 
721   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
722   assert(_old_gen->is_in(addr), "addr should be in allocated part of generation");
723   return _old_gen->block_start(addr);
724 }
725 
726 bool SerialHeap::block_is_obj(const HeapWord* addr) const {
727   assert(is_in_reserved(addr), "block_is_obj of address outside of heap");
728   assert(block_start(addr) == addr, "addr must be a block start");
729 
730   if (_young_gen->is_in_reserved(addr)) {
731     return _young_gen->eden()->is_in(addr)
732         || _young_gen->from()->is_in(addr)
733         || _young_gen->to()  ->is_in(addr);
734   }
735 
736   assert(_old_gen->is_in_reserved(addr), "must be in old-gen");
737   return addr < _old_gen->space()->top();
738 }
739 
740 size_t SerialHeap::tlab_capacity(Thread* thr) const {
741   // Only young-gen supports tlab allocation.
742   return _young_gen->tlab_capacity();
743 }
744 
745 size_t SerialHeap::tlab_used(Thread* thr) const {
746   return _young_gen->tlab_used();
747 }
748 
749 size_t SerialHeap::unsafe_max_tlab_alloc(Thread* thr) const {
750   return _young_gen->unsafe_max_tlab_alloc();
751 }
752 
753 HeapWord* SerialHeap::allocate_new_tlab(size_t min_size,
754                                         size_t requested_size,
755                                         size_t* actual_size) {
756   HeapWord* result = mem_allocate_work(requested_size /* size */,
757                                        true /* is_tlab */);
758   if (result != nullptr) {
759     *actual_size = requested_size;
760   }
761 
762   return result;
763 }
764 
765 void SerialHeap::prepare_for_verify() {
766   ensure_parsability(false);        // no need to retire TLABs
767 }
768 
769 void SerialHeap::save_marks() {
770   _young_gen_saved_top = _young_gen->to()->top();
771   _old_gen_saved_top = _old_gen->space()->top();
772 }
773 
774 void SerialHeap::verify(VerifyOption option /* ignored */) {
775   log_debug(gc, verify)("%s", _old_gen->name());
776   _old_gen->verify();
777 
778   log_debug(gc, verify)("%s", _young_gen->name());
779   _young_gen->verify();
780 
781   log_debug(gc, verify)("RemSet");
782   rem_set()->verify();
783 }
784 
785 void SerialHeap::print_heap_on(outputStream* st) const {
786   assert(_young_gen != nullptr, "precondition");
787   assert(_old_gen   != nullptr, "precondition");
788 
789   _young_gen->print_on(st);
790   _old_gen->print_on(st);
791 }
792 
793 void SerialHeap::print_gc_on(outputStream* st) const {
794   BarrierSet* bs = BarrierSet::barrier_set();
795   if (bs != nullptr) {
796     bs->print_on(st);
797   }
798 }
799 
800 void SerialHeap::gc_threads_do(ThreadClosure* tc) const {
801 }
802 
803 bool SerialHeap::print_location(outputStream* st, void* addr) const {
804   return BlockLocationPrinter<SerialHeap>::print_location(st, addr);
805 }
806 
807 void SerialHeap::print_tracing_info() const {
808  // Does nothing
809 }
810 
811 void SerialHeap::print_heap_change(const PreGenGCValues& pre_gc_values) const {
812   const DefNewGeneration* const def_new_gen = (DefNewGeneration*) young_gen();
813 
814   log_info(gc, heap)(HEAP_CHANGE_FORMAT" "
815                      HEAP_CHANGE_FORMAT" "
816                      HEAP_CHANGE_FORMAT,
817                      HEAP_CHANGE_FORMAT_ARGS(def_new_gen->name(),
818                                              pre_gc_values.young_gen_used(),
819                                              pre_gc_values.young_gen_capacity(),
820                                              def_new_gen->used(),
821                                              def_new_gen->capacity()),
822                      HEAP_CHANGE_FORMAT_ARGS("Eden",
823                                              pre_gc_values.eden_used(),
824                                              pre_gc_values.eden_capacity(),
825                                              def_new_gen->eden()->used(),
826                                              def_new_gen->eden()->capacity()),
827                      HEAP_CHANGE_FORMAT_ARGS("From",
828                                              pre_gc_values.from_used(),
829                                              pre_gc_values.from_capacity(),
830                                              def_new_gen->from()->used(),
831                                              def_new_gen->from()->capacity()));
832   log_info(gc, heap)(HEAP_CHANGE_FORMAT,
833                      HEAP_CHANGE_FORMAT_ARGS(old_gen()->name(),
834                                              pre_gc_values.old_gen_used(),
835                                              pre_gc_values.old_gen_capacity(),
836                                              old_gen()->used(),
837                                              old_gen()->capacity()));
838   MetaspaceUtils::print_metaspace_change(pre_gc_values.metaspace_sizes());
839 }
840 
841 void SerialHeap::gc_prologue() {
842   // Fill TLAB's and such
843   ensure_parsability(true);   // retire TLABs
844 
845   _old_gen->gc_prologue();
846 };
847 
848 void SerialHeap::gc_epilogue(bool full) {
849 #if COMPILER2_OR_JVMCI
850   assert(DerivedPointerTable::is_empty(), "derived pointer present");
851 #endif // COMPILER2_OR_JVMCI
852 
853   resize_all_tlabs();
854 
855   _young_gen->gc_epilogue(full);
856   _old_gen->gc_epilogue();
857 
858   if (_is_heap_almost_full) {
859     // Reset the emergency state if eden is empty after a young/full gc
860     if (_young_gen->eden()->is_empty()) {
861       _is_heap_almost_full = false;
862     }
863   } else {
864     if (full && !_young_gen->eden()->is_empty()) {
865       // Usually eden should be empty after a full GC, so heap is probably too
866       // full now; entering emergency state.
867       _is_heap_almost_full = true;
868     }
869   }
870 
871   MetaspaceCounters::update_performance_counters();
872 };