1 /*
  2  * Copyright (c) 2001, 2023, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #ifndef SHARE_GC_SHARED_COLLECTEDHEAP_HPP
 26 #define SHARE_GC_SHARED_COLLECTEDHEAP_HPP
 27 
 28 #include "gc/shared/gcCause.hpp"
 29 #include "gc/shared/gcWhen.hpp"
 30 #include "gc/shared/verifyOption.hpp"
 31 #include "memory/allocation.hpp"
 32 #include "memory/metaspace.hpp"
 33 #include "memory/universe.hpp"
 34 #include "oops/stackChunkOop.hpp"
 35 #include "runtime/handles.hpp"
 36 #include "runtime/perfDataTypes.hpp"
 37 #include "runtime/safepoint.hpp"
 38 #include "services/memoryUsage.hpp"
 39 #include "utilities/debug.hpp"
 40 #include "utilities/formatBuffer.hpp"
 41 #include "utilities/growableArray.hpp"
 42 
 43 // A "CollectedHeap" is an implementation of a java heap for HotSpot.  This
 44 // is an abstract class: there may be many different kinds of heaps.  This
 45 // class defines the functions that a heap must implement, and contains
 46 // infrastructure common to all heaps.
 47 
 48 class WorkerTask;
 49 class AdaptiveSizePolicy;
 50 class BarrierSet;
 51 class GCHeapLog;
 52 class GCHeapSummary;
 53 class GCTimer;
 54 class GCTracer;
 55 class GCMemoryManager;
 56 class MemoryPool;
 57 class MetaspaceSummary;
 58 class ReservedHeapSpace;
 59 class SoftRefPolicy;
 60 class Thread;
 61 class ThreadClosure;
 62 class VirtualSpaceSummary;
 63 class WorkerThreads;
 64 class nmethod;
 65 
 66 class ParallelObjectIteratorImpl : public CHeapObj<mtGC> {
 67 public:
 68   virtual ~ParallelObjectIteratorImpl() {}
 69   virtual void object_iterate(ObjectClosure* cl, uint worker_id) = 0;
 70 };
 71 
 72 // User facing parallel object iterator. This is a StackObj, which ensures that
 73 // the _impl is allocated and deleted in the scope of this object. This ensures
 74 // the life cycle of the implementation is as required by ThreadsListHandle,
 75 // which is sometimes used by the root iterators.
 76 class ParallelObjectIterator : public StackObj {
 77   ParallelObjectIteratorImpl* _impl;
 78 
 79 public:
 80   ParallelObjectIterator(uint thread_num);
 81   ~ParallelObjectIterator();
 82   void object_iterate(ObjectClosure* cl, uint worker_id);
 83 };
 84 
 85 //
 86 // CollectedHeap
 87 //   GenCollectedHeap
 88 //     SerialHeap
 89 //   G1CollectedHeap
 90 //   ParallelScavengeHeap
 91 //   ShenandoahHeap
 92 //   ZCollectedHeap
 93 //
 94 class CollectedHeap : public CHeapObj<mtGC> {
 95   friend class VMStructs;
 96   friend class JVMCIVMStructs;
 97   friend class IsGCActiveMark; // Block structured external access to _is_gc_active
 98   friend class MemAllocator;
 99   friend class ParallelObjectIterator;
100 
101  private:
102   GCHeapLog* _gc_heap_log;
103 
104   // Historic gc information
105   size_t _capacity_at_last_gc;
106   size_t _used_at_last_gc;
107 
108   // First, set it to java_lang_Object.
109   // Then, set it to FillerObject after the FillerObject_klass loading is complete.
110   static Klass* _filler_object_klass;
111 
112  protected:
113   // Not used by all GCs
114   MemRegion _reserved;
115 
116   bool _is_gc_active;
117 
118   // (Minimum) Alignment reserve for TLABs and PLABs.
119   static size_t _lab_alignment_reserve;
120   // Used for filler objects (static, but initialized in ctor).
121   static size_t _filler_array_max_size;
122 
123   static size_t _stack_chunk_max_size; // 0 for no limit
124 
125   // Last time the whole heap has been examined in support of RMI
126   // MaxObjectInspectionAge.
127   // This timestamp must be monotonically non-decreasing to avoid
128   // time-warp warnings.
129   jlong _last_whole_heap_examined_time_ns;
130 
131   unsigned int _total_collections;          // ... started
132   unsigned int _total_full_collections;     // ... started
133   NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;)
134   NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;)
135 
136   // Reason for current garbage collection.  Should be set to
137   // a value reflecting no collection between collections.
138   GCCause::Cause _gc_cause;
139   GCCause::Cause _gc_lastcause;
140   PerfStringVariable* _perf_gc_cause;
141   PerfStringVariable* _perf_gc_lastcause;
142 
143   // Constructor
144   CollectedHeap();
145 
146   // Create a new tlab. All TLAB allocations must go through this.
147   // To allow more flexible TLAB allocations min_size specifies
148   // the minimum size needed, while requested_size is the requested
149   // size based on ergonomics. The actually allocated size will be
150   // returned in actual_size.
151   virtual HeapWord* allocate_new_tlab(size_t min_size,
152                                       size_t requested_size,
153                                       size_t* actual_size);
154 
155   // Reinitialize tlabs before resuming mutators.
156   virtual void resize_all_tlabs();
157 
158   // Raw memory allocation facilities
159   // The obj and array allocate methods are covers for these methods.
160   // mem_allocate() should never be
161   // called to allocate TLABs, only individual objects.
162   virtual HeapWord* mem_allocate(size_t size,
163                                  bool* gc_overhead_limit_was_exceeded) = 0;
164 
165   // Filler object utilities.
166   static inline size_t filler_array_hdr_size();
167   static inline size_t filler_array_min_size();
168 
169   static inline void zap_filler_array_with(HeapWord* start, size_t words, juint value);
170   DEBUG_ONLY(static void fill_args_check(HeapWord* start, size_t words);)
171   DEBUG_ONLY(static void zap_filler_array(HeapWord* start, size_t words, bool zap = true);)
172 
173   // Fill with a single array; caller must ensure filler_array_min_size() <=
174   // words <= filler_array_max_size().
175   static inline void fill_with_array(HeapWord* start, size_t words, bool zap = true);
176 
177   // Fill with a single object (either an int array or a java.lang.Object).
178   static inline void fill_with_object_impl(HeapWord* start, size_t words, bool zap = true);
179 
180   virtual void trace_heap(GCWhen::Type when, const GCTracer* tracer);
181 
182   // Verification functions
183   virtual void check_for_non_bad_heap_word_value(HeapWord* addr, size_t size)
184     PRODUCT_RETURN;
185   debug_only(static void check_for_valid_allocation_state();)
186 
187  public:
188   enum Name {
189     None,
190     Serial,
191     Parallel,
192     G1,
193     Epsilon,
194     Z,
195     Shenandoah
196   };
197 
198  protected:
199   // Get a pointer to the derived heap object.  Used to implement
200   // derived class heap() functions rather than being called directly.
201   template<typename T>
202   static T* named_heap(Name kind) {
203     CollectedHeap* heap = Universe::heap();
204     assert(heap != nullptr, "Uninitialized heap");
205     assert(kind == heap->kind(), "Heap kind %u should be %u",
206            static_cast<uint>(heap->kind()), static_cast<uint>(kind));
207     return static_cast<T*>(heap);
208   }
209 
210  public:
211 
212   static inline size_t filler_array_max_size() {
213     return _filler_array_max_size;
214   }
215 
216   static inline size_t stack_chunk_max_size() {
217     return _stack_chunk_max_size;
218   }
219 
220   static inline Klass* filler_object_klass() {
221     return _filler_object_klass;
222   }
223 
224   static inline void set_filler_object_klass(Klass* k) {
225     _filler_object_klass = k;
226   }
227 
228   virtual Name kind() const = 0;
229 
230   virtual const char* name() const = 0;
231 
232   /**
233    * Returns JNI error code JNI_ENOMEM if memory could not be allocated,
234    * and JNI_OK on success.
235    */
236   virtual jint initialize() = 0;
237 
238   // In many heaps, there will be a need to perform some initialization activities
239   // after the Universe is fully formed, but before general heap allocation is allowed.
240   // This is the correct place to place such initialization methods.
241   virtual void post_initialize();
242 
243   // Stop any onging concurrent work and prepare for exit.
244   virtual void stop() {}
245 
246   // Stop and resume concurrent GC threads interfering with safepoint operations
247   virtual void safepoint_synchronize_begin() {}
248   virtual void safepoint_synchronize_end() {}
249 
250   void initialize_reserved_region(const ReservedHeapSpace& rs);
251 
252   virtual size_t capacity() const = 0;
253   virtual size_t used() const = 0;
254 
255   // Returns unused capacity.
256   virtual size_t unused() const;
257 
258   // Historic gc information
259   size_t free_at_last_gc() const { return _capacity_at_last_gc - _used_at_last_gc; }
260   size_t used_at_last_gc() const { return _used_at_last_gc; }
261   void update_capacity_and_used_at_gc();
262 
263   // Return "true" if the part of the heap that allocates Java
264   // objects has reached the maximal committed limit that it can
265   // reach, without a garbage collection.
266   virtual bool is_maximal_no_gc() const = 0;
267 
268   // Support for java.lang.Runtime.maxMemory():  return the maximum amount of
269   // memory that the vm could make available for storing 'normal' java objects.
270   // This is based on the reserved address space, but should not include space
271   // that the vm uses internally for bookkeeping or temporary storage
272   // (e.g., in the case of the young gen, one of the survivor
273   // spaces).
274   virtual size_t max_capacity() const = 0;
275 
276   // Returns "TRUE" iff "p" points into the committed areas of the heap.
277   // This method can be expensive so avoid using it in performance critical
278   // code.
279   virtual bool is_in(const void* p) const = 0;
280 
281   DEBUG_ONLY(bool is_in_or_null(const void* p) const { return p == nullptr || is_in(p); })
282 
283   void set_gc_cause(GCCause::Cause v);
284   GCCause::Cause gc_cause() { return _gc_cause; }
285 
286   oop obj_allocate(Klass* klass, size_t size, TRAPS);
287   virtual oop array_allocate(Klass* klass, size_t size, int length, bool do_zero, TRAPS);
288   oop class_allocate(Klass* klass, size_t size, TRAPS);
289 
290   // Utilities for turning raw memory into filler objects.
291   //
292   // min_fill_size() is the smallest region that can be filled.
293   // fill_with_objects() can fill arbitrary-sized regions of the heap using
294   // multiple objects.  fill_with_object() is for regions known to be smaller
295   // than the largest array of integers; it uses a single object to fill the
296   // region and has slightly less overhead.
297   static size_t min_fill_size() {
298     return size_t(align_object_size(oopDesc::header_size()));
299   }
300 
301   static void fill_with_objects(HeapWord* start, size_t words, bool zap = true);
302 
303   static void fill_with_object(HeapWord* start, size_t words, bool zap = true);
304   static void fill_with_object(MemRegion region, bool zap = true) {
305     fill_with_object(region.start(), region.word_size(), zap);
306   }
307   static void fill_with_object(HeapWord* start, HeapWord* end, bool zap = true) {
308     fill_with_object(start, pointer_delta(end, start), zap);
309   }
310 
311   virtual void fill_with_dummy_object(HeapWord* start, HeapWord* end, bool zap);
312   static constexpr size_t min_dummy_object_size() {
313     return oopDesc::header_size();
314   }
315 
316   static size_t lab_alignment_reserve() {
317     assert(_lab_alignment_reserve != ~(size_t)0, "uninitialized");
318     return _lab_alignment_reserve;
319   }
320 
321   // Some heaps may be in an unparseable state at certain times between
322   // collections. This may be necessary for efficient implementation of
323   // certain allocation-related activities. Calling this function before
324   // attempting to parse a heap ensures that the heap is in a parsable
325   // state (provided other concurrent activity does not introduce
326   // unparsability). It is normally expected, therefore, that this
327   // method is invoked with the world stopped.
328   // NOTE: if you override this method, make sure you call
329   // super::ensure_parsability so that the non-generational
330   // part of the work gets done. See implementation of
331   // CollectedHeap::ensure_parsability and, for instance,
332   // that of GenCollectedHeap::ensure_parsability().
333   // The argument "retire_tlabs" controls whether existing TLABs
334   // are merely filled or also retired, thus preventing further
335   // allocation from them and necessitating allocation of new TLABs.
336   virtual void ensure_parsability(bool retire_tlabs);
337 
338   // The amount of space available for thread-local allocation buffers.
339   virtual size_t tlab_capacity(Thread *thr) const = 0;
340 
341   // The amount of used space for thread-local allocation buffers for the given thread.
342   virtual size_t tlab_used(Thread *thr) const = 0;
343 
344   virtual size_t max_tlab_size() const;
345 
346   // An estimate of the maximum allocation that could be performed
347   // for thread-local allocation buffers without triggering any
348   // collection or expansion activity.
349   virtual size_t unsafe_max_tlab_alloc(Thread *thr) const {
350     guarantee(false, "thread-local allocation buffers not supported");
351     return 0;
352   }
353 
354   // If a GC uses a stack watermark barrier, the stack processing is lazy, concurrent,
355   // incremental and cooperative. In order for that to work well, mechanisms that stop
356   // another thread might want to ensure its roots are in a sane state.
357   virtual bool uses_stack_watermark_barrier() const { return false; }
358 
359   // Perform a collection of the heap; intended for use in implementing
360   // "System.gc".  This probably implies as full a collection as the
361   // "CollectedHeap" supports.
362   virtual void collect(GCCause::Cause cause) = 0;
363 
364   // Perform a full collection
365   virtual void do_full_collection(bool clear_all_soft_refs) = 0;
366 
367   // This interface assumes that it's being called by the
368   // vm thread. It collects the heap assuming that the
369   // heap lock is already held and that we are executing in
370   // the context of the vm thread.
371   virtual void collect_as_vm_thread(GCCause::Cause cause);
372 
373   virtual MetaWord* satisfy_failed_metadata_allocation(ClassLoaderData* loader_data,
374                                                        size_t size,
375                                                        Metaspace::MetadataType mdtype);
376 
377   // Return true, if accesses to the object would require barriers.
378   // This is used by continuations to copy chunks of a thread stack into StackChunk object or out of a StackChunk
379   // object back into the thread stack. These chunks may contain references to objects. It is crucial that
380   // the GC does not attempt to traverse the object while we modify it, because its structure (oopmap) is changed
381   // when stack chunks are stored into it.
382   // StackChunk objects may be reused, the GC must not assume that a StackChunk object is always a freshly
383   // allocated object.
384   virtual bool requires_barriers(stackChunkOop obj) const = 0;
385 
386   // Returns "true" iff there is a stop-world GC in progress.  (I assume
387   // that it should answer "false" for the concurrent part of a concurrent
388   // collector -- dld).
389   bool is_gc_active() const { return _is_gc_active; }
390 
391   // Total number of GC collections (started)
392   unsigned int total_collections() const { return _total_collections; }
393   unsigned int total_full_collections() const { return _total_full_collections;}
394 
395   // Increment total number of GC collections (started)
396   void increment_total_collections(bool full = false) {
397     _total_collections++;
398     if (full) {
399       increment_total_full_collections();
400     }
401   }
402 
403   void increment_total_full_collections() { _total_full_collections++; }
404 
405   // Return the SoftRefPolicy for the heap;
406   virtual SoftRefPolicy* soft_ref_policy() = 0;
407 
408   virtual MemoryUsage memory_usage();
409   virtual GrowableArray<GCMemoryManager*> memory_managers() = 0;
410   virtual GrowableArray<MemoryPool*> memory_pools() = 0;
411 
412   // Iterate over all objects, calling "cl.do_object" on each.
413   virtual void object_iterate(ObjectClosure* cl) = 0;
414 
415  protected:
416   virtual ParallelObjectIteratorImpl* parallel_object_iterator(uint thread_num) {
417     return nullptr;
418   }
419 
420  public:
421   // Keep alive an object that was loaded with AS_NO_KEEPALIVE.
422   virtual void keep_alive(oop obj) {}
423 
424   // Perform any cleanup actions necessary before allowing a verification.
425   virtual void prepare_for_verify() = 0;
426 
427   // Returns the longest time (in ms) that has elapsed since the last
428   // time that the whole heap has been examined by a garbage collection.
429   jlong millis_since_last_whole_heap_examined();
430   // GC should call this when the next whole heap analysis has completed to
431   // satisfy above requirement.
432   void record_whole_heap_examined_timestamp();
433 
434  private:
435   // Generate any dumps preceding or following a full gc
436   void full_gc_dump(GCTimer* timer, bool before);
437 
438   virtual void initialize_serviceability() = 0;
439 
440  public:
441   void pre_full_gc_dump(GCTimer* timer);
442   void post_full_gc_dump(GCTimer* timer);
443 
444   virtual VirtualSpaceSummary create_heap_space_summary();
445   GCHeapSummary create_heap_summary();
446 
447   MetaspaceSummary create_metaspace_summary();
448 
449   // Print heap information on the given outputStream.
450   virtual void print_on(outputStream* st) const = 0;
451   // The default behavior is to call print_on() on tty.
452   virtual void print() const;
453 
454   // Print more detailed heap information on the given
455   // outputStream. The default behavior is to call print_on(). It is
456   // up to each subclass to override it and add any additional output
457   // it needs.
458   virtual void print_extended_on(outputStream* st) const {
459     print_on(st);
460   }
461 
462   virtual void print_on_error(outputStream* st) const;
463 
464   // Used to print information about locations in the hs_err file.
465   virtual bool print_location(outputStream* st, void* addr) const = 0;
466 
467   // Iterator for all GC threads (other than VM thread)
468   virtual void gc_threads_do(ThreadClosure* tc) const = 0;
469 
470   // Print any relevant tracing info that flags imply.
471   // Default implementation does nothing.
472   virtual void print_tracing_info() const = 0;
473 
474   void print_heap_before_gc();
475   void print_heap_after_gc();
476 
477   // Registering and unregistering an nmethod (compiled code) with the heap.
478   virtual void register_nmethod(nmethod* nm) = 0;
479   virtual void unregister_nmethod(nmethod* nm) = 0;
480   virtual void verify_nmethod(nmethod* nm) = 0;
481 
482   void trace_heap_before_gc(const GCTracer* gc_tracer);
483   void trace_heap_after_gc(const GCTracer* gc_tracer);
484 
485   // Heap verification
486   virtual void verify(VerifyOption option) = 0;
487 
488   // Return true if concurrent gc control via WhiteBox is supported by
489   // this collector.  The default implementation returns false.
490   virtual bool supports_concurrent_gc_breakpoints() const;
491 
492   // Workers used in non-GC safepoints for parallel safepoint cleanup. If this
493   // method returns null, cleanup tasks are done serially in the VMThread. See
494   // `SafepointSynchronize::do_cleanup_tasks` for details.
495   // GCs using a GC worker thread pool inside GC safepoints may opt to share
496   // that pool with non-GC safepoints, avoiding creating extraneous threads.
497   // Such sharing is safe, because GC safepoints and non-GC safepoints never
498   // overlap. For example, `G1CollectedHeap::workers()` (for GC safepoints) and
499   // `G1CollectedHeap::safepoint_workers()` (for non-GC safepoints) return the
500   // same thread-pool.
501   virtual WorkerThreads* safepoint_workers() { return nullptr; }
502 
503   // Support for object pinning. This is used by JNI Get*Critical()
504   // and Release*Critical() family of functions. The GC must guarantee
505   // that pinned objects never move and don't get reclaimed as garbage.
506   // These functions are potentially safepointing.
507   virtual void pin_object(JavaThread* thread, oop obj) = 0;
508   virtual void unpin_object(JavaThread* thread, oop obj) = 0;
509 
510   // Is the given object inside a CDS archive area?
511   virtual bool is_archived_object(oop object) const;
512 
513   // Support for loading objects from CDS archive into the heap
514   // (usually as a snapshot of the old generation).
515   virtual bool can_load_archived_objects() const { return false; }
516   virtual HeapWord* allocate_loaded_archive_space(size_t size) { return nullptr; }
517   virtual void complete_loaded_archive_space(MemRegion archive_space) { }
518 
519   virtual bool is_oop(oop object) const;
520   // Non product verification and debugging.
521 #ifndef PRODUCT
522   // Support for PromotionFailureALot.  Return true if it's time to cause a
523   // promotion failure.  The no-argument version uses
524   // this->_promotion_failure_alot_count as the counter.
525   bool promotion_should_fail(volatile size_t* count);
526   bool promotion_should_fail();
527 
528   // Reset the PromotionFailureALot counters.  Should be called at the end of a
529   // GC in which promotion failure occurred.
530   void reset_promotion_should_fail(volatile size_t* count);
531   void reset_promotion_should_fail();
532 #endif  // #ifndef PRODUCT
533 };
534 
535 // Class to set and reset the GC cause for a CollectedHeap.
536 
537 class GCCauseSetter : StackObj {
538   CollectedHeap* _heap;
539   GCCause::Cause _previous_cause;
540  public:
541   GCCauseSetter(CollectedHeap* heap, GCCause::Cause cause) {
542     _heap = heap;
543     _previous_cause = _heap->gc_cause();
544     _heap->set_gc_cause(cause);
545   }
546 
547   ~GCCauseSetter() {
548     _heap->set_gc_cause(_previous_cause);
549   }
550 };
551 
552 #endif // SHARE_GC_SHARED_COLLECTEDHEAP_HPP