1 /*
  2  * Copyright (c) 2001, 2024, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #ifndef SHARE_GC_SHARED_COLLECTEDHEAP_HPP
 26 #define SHARE_GC_SHARED_COLLECTEDHEAP_HPP
 27 
 28 #include "gc/shared/gcCause.hpp"
 29 #include "gc/shared/gcWhen.hpp"
 30 #include "gc/shared/softRefPolicy.hpp"
 31 #include "gc/shared/verifyOption.hpp"
 32 #include "memory/allocation.hpp"
 33 #include "memory/metaspace.hpp"
 34 #include "memory/universe.hpp"
 35 #include "oops/stackChunkOop.hpp"
 36 #include "runtime/handles.hpp"
 37 #include "runtime/perfDataTypes.hpp"
 38 #include "runtime/safepoint.hpp"
 39 #include "services/memoryUsage.hpp"
 40 #include "utilities/debug.hpp"
 41 #include "utilities/formatBuffer.hpp"
 42 #include "utilities/growableArray.hpp"
 43 
 44 // A "CollectedHeap" is an implementation of a java heap for HotSpot.  This
 45 // is an abstract class: there may be many different kinds of heaps.  This
 46 // class defines the functions that a heap must implement, and contains
 47 // infrastructure common to all heaps.
 48 
 49 class WorkerTask;
 50 class AdaptiveSizePolicy;
 51 class BarrierSet;
 52 class GCHeapLog;
 53 class GCHeapSummary;
 54 class GCTimer;
 55 class GCTracer;
 56 class GCMemoryManager;
 57 class MemoryPool;
 58 class MetaspaceSummary;
 59 class ReservedHeapSpace;
 60 class Thread;
 61 class ThreadClosure;
 62 class VirtualSpaceSummary;
 63 class WorkerThreads;
 64 class nmethod;
 65 
 66 class ParallelObjectIteratorImpl : public CHeapObj<mtGC> {
 67 public:
 68   virtual ~ParallelObjectIteratorImpl() {}
 69   virtual void object_iterate(ObjectClosure* cl, uint worker_id) = 0;
 70 };
 71 
 72 // User facing parallel object iterator. This is a StackObj, which ensures that
 73 // the _impl is allocated and deleted in the scope of this object. This ensures
 74 // the life cycle of the implementation is as required by ThreadsListHandle,
 75 // which is sometimes used by the root iterators.
 76 class ParallelObjectIterator : public StackObj {
 77   ParallelObjectIteratorImpl* _impl;
 78 
 79 public:
 80   ParallelObjectIterator(uint thread_num);
 81   ~ParallelObjectIterator();
 82   void object_iterate(ObjectClosure* cl, uint worker_id);
 83 };
 84 
 85 //
 86 // CollectedHeap
 87 //   SerialHeap
 88 //   G1CollectedHeap
 89 //   ParallelScavengeHeap
 90 //   ShenandoahHeap
 91 //   ZCollectedHeap
 92 //
 93 class CollectedHeap : public CHeapObj<mtGC> {
 94   friend class VMStructs;
 95   friend class JVMCIVMStructs;
 96   friend class IsGCActiveMark; // Block structured external access to _is_gc_active
 97   friend class DisableIsGCActiveMark; // Disable current IsGCActiveMark
 98   friend class MemAllocator;
 99   friend class ParallelObjectIterator;
100 
101  private:
102   GCHeapLog* _gc_heap_log;
103 
104   // Historic gc information
105   size_t _capacity_at_last_gc;
106   size_t _used_at_last_gc;
107 
108   SoftRefPolicy _soft_ref_policy;
109 
110   // First, set it to java_lang_Object.
111   // Then, set it to FillerObject after the FillerObject_klass loading is complete.
112   static Klass* _filler_object_klass;
113 
114  protected:
115   // Not used by all GCs
116   MemRegion _reserved;
117 
118   bool _is_gc_active;
119 
120   // (Minimum) Alignment reserve for TLABs and PLABs.
121   static size_t _lab_alignment_reserve;
122   // Used for filler objects (static, but initialized in ctor).
123   static size_t _filler_array_max_size;
124 
125   static size_t _stack_chunk_max_size; // 0 for no limit
126 
127   // Last time the whole heap has been examined in support of RMI
128   // MaxObjectInspectionAge.
129   // This timestamp must be monotonically non-decreasing to avoid
130   // time-warp warnings.
131   jlong _last_whole_heap_examined_time_ns;
132 
133   unsigned int _total_collections;          // ... started
134   unsigned int _total_full_collections;     // ... started
135   NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;)
136   NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;)
137 
138   // Reason for current garbage collection.  Should be set to
139   // a value reflecting no collection between collections.
140   GCCause::Cause _gc_cause;
141   GCCause::Cause _gc_lastcause;
142   PerfStringVariable* _perf_gc_cause;
143   PerfStringVariable* _perf_gc_lastcause;
144 
145   // Constructor
146   CollectedHeap();
147 
148   // Create a new tlab. All TLAB allocations must go through this.
149   // To allow more flexible TLAB allocations min_size specifies
150   // the minimum size needed, while requested_size is the requested
151   // size based on ergonomics. The actually allocated size will be
152   // returned in actual_size.
153   virtual HeapWord* allocate_new_tlab(size_t min_size,
154                                       size_t requested_size,
155                                       size_t* actual_size);
156 
157   // Reinitialize tlabs before resuming mutators.
158   virtual void resize_all_tlabs();
159 
160   // Raw memory allocation facilities
161   // The obj and array allocate methods are covers for these methods.
162   // mem_allocate() should never be
163   // called to allocate TLABs, only individual objects.
164   virtual HeapWord* mem_allocate(size_t size,
165                                  bool* gc_overhead_limit_was_exceeded) = 0;
166 
167   // Filler object utilities.
168   static inline size_t filler_array_hdr_size();
169 
170   static size_t filler_array_min_size();
171 
172 protected:
173   static inline void zap_filler_array_with(HeapWord* start, size_t words, juint value);
174   DEBUG_ONLY(static void fill_args_check(HeapWord* start, size_t words);)
175   DEBUG_ONLY(static void zap_filler_array(HeapWord* start, size_t words, bool zap = true);)
176 
177   // Fill with a single array; caller must ensure filler_array_min_size() <=
178   // words <= filler_array_max_size().
179   static inline void fill_with_array(HeapWord* start, size_t words, bool zap = true);
180 
181   // Fill with a single object (either an int array or a java.lang.Object).
182   static inline void fill_with_object_impl(HeapWord* start, size_t words, bool zap = true);
183 
184   virtual void trace_heap(GCWhen::Type when, const GCTracer* tracer);
185 
186   // Verification functions
187   debug_only(static void check_for_valid_allocation_state();)
188 
189  public:
190   enum Name {
191     None,
192     Serial,
193     Parallel,
194     G1,
195     Epsilon,
196     Z,
197     Shenandoah
198   };
199 
200  protected:
201   // Get a pointer to the derived heap object.  Used to implement
202   // derived class heap() functions rather than being called directly.
203   template<typename T>
204   static T* named_heap(Name kind) {
205     CollectedHeap* heap = Universe::heap();
206     assert(heap != nullptr, "Uninitialized heap");
207     assert(kind == heap->kind(), "Heap kind %u should be %u",
208            static_cast<uint>(heap->kind()), static_cast<uint>(kind));
209     return static_cast<T*>(heap);
210   }
211 
212  public:
213 
214   static inline size_t filler_array_max_size() {
215     return _filler_array_max_size;
216   }
217 
218   static inline size_t stack_chunk_max_size() {
219     return _stack_chunk_max_size;
220   }
221 
222   static inline Klass* filler_object_klass() {
223     return _filler_object_klass;
224   }
225 
226   static inline void set_filler_object_klass(Klass* k) {
227     _filler_object_klass = k;
228   }
229 
230   virtual Name kind() const = 0;
231 
232   virtual const char* name() const = 0;
233 
234   /**
235    * Returns JNI error code JNI_ENOMEM if memory could not be allocated,
236    * and JNI_OK on success.
237    */
238   virtual jint initialize() = 0;
239 
240   // In many heaps, there will be a need to perform some initialization activities
241   // after the Universe is fully formed, but before general heap allocation is allowed.
242   // This is the correct place to place such initialization methods.
243   virtual void post_initialize();
244 
245   // Stop any onging concurrent work and prepare for exit.
246   virtual void stop() {}
247 
248   // Stop and resume concurrent GC threads interfering with safepoint operations
249   virtual void safepoint_synchronize_begin() {}
250   virtual void safepoint_synchronize_end() {}
251 
252   void initialize_reserved_region(const ReservedHeapSpace& rs);
253 
254   virtual size_t capacity() const = 0;
255   virtual size_t used() const = 0;
256 
257   // Returns unused capacity.
258   virtual size_t unused() const;
259 
260   // Historic gc information
261   size_t free_at_last_gc() const { return _capacity_at_last_gc - _used_at_last_gc; }
262   size_t used_at_last_gc() const { return _used_at_last_gc; }
263   void update_capacity_and_used_at_gc();
264 
265   // Return "true" if the part of the heap that allocates Java
266   // objects has reached the maximal committed limit that it can
267   // reach, without a garbage collection.
268   virtual bool is_maximal_no_gc() const = 0;
269 
270   // Support for java.lang.Runtime.maxMemory():  return the maximum amount of
271   // memory that the vm could make available for storing 'normal' java objects.
272   // This is based on the reserved address space, but should not include space
273   // that the vm uses internally for bookkeeping or temporary storage
274   // (e.g., in the case of the young gen, one of the survivor
275   // spaces).
276   virtual size_t max_capacity() const = 0;
277 
278   // Returns "TRUE" iff "p" points into the committed areas of the heap.
279   // This method can be expensive so avoid using it in performance critical
280   // code.
281   virtual bool is_in(const void* p) const = 0;
282 
283   DEBUG_ONLY(bool is_in_or_null(const void* p) const { return p == nullptr || is_in(p); })
284 
285   void set_gc_cause(GCCause::Cause v);
286   GCCause::Cause gc_cause() { return _gc_cause; }
287 
288   oop obj_allocate(Klass* klass, size_t size, TRAPS);
289   virtual oop array_allocate(Klass* klass, size_t size, int length, bool do_zero, TRAPS);
290   oop class_allocate(Klass* klass, size_t size, TRAPS);
291 
292   // Utilities for turning raw memory into filler objects.
293   //
294   // min_fill_size() is the smallest region that can be filled.
295   // fill_with_objects() can fill arbitrary-sized regions of the heap using
296   // multiple objects.  fill_with_object() is for regions known to be smaller
297   // than the largest array of integers; it uses a single object to fill the
298   // region and has slightly less overhead.
299   static size_t min_fill_size() {
300     return size_t(align_object_size(oopDesc::header_size()));
301   }
302 
303   static void fill_with_objects(HeapWord* start, size_t words, bool zap = true);
304 
305   static void fill_with_object(HeapWord* start, size_t words, bool zap = true);
306   static void fill_with_object(MemRegion region, bool zap = true) {
307     fill_with_object(region.start(), region.word_size(), zap);
308   }
309   static void fill_with_object(HeapWord* start, HeapWord* end, bool zap = true) {
310     fill_with_object(start, pointer_delta(end, start), zap);
311   }
312 
313   virtual void fill_with_dummy_object(HeapWord* start, HeapWord* end, bool zap);
314   static constexpr size_t min_dummy_object_size() {
315     return oopDesc::header_size();
316   }
317 
318   static size_t lab_alignment_reserve() {
319     assert(_lab_alignment_reserve != SIZE_MAX, "uninitialized");
320     return _lab_alignment_reserve;
321   }
322 
323   // Some heaps may be in an unparseable state at certain times between
324   // collections. This may be necessary for efficient implementation of
325   // certain allocation-related activities. Calling this function before
326   // attempting to parse a heap ensures that the heap is in a parsable
327   // state (provided other concurrent activity does not introduce
328   // unparsability). It is normally expected, therefore, that this
329   // method is invoked with the world stopped.
330   // NOTE: if you override this method, make sure you call
331   // super::ensure_parsability so that the non-generational
332   // part of the work gets done. See implementation of
333   // CollectedHeap::ensure_parsability and, for instance,
334   // that of ParallelScavengeHeap::ensure_parsability().
335   // The argument "retire_tlabs" controls whether existing TLABs
336   // are merely filled or also retired, thus preventing further
337   // allocation from them and necessitating allocation of new TLABs.
338   virtual void ensure_parsability(bool retire_tlabs);
339 
340   // The amount of space available for thread-local allocation buffers.
341   virtual size_t tlab_capacity(Thread *thr) const = 0;
342 
343   // The amount of used space for thread-local allocation buffers for the given thread.
344   virtual size_t tlab_used(Thread *thr) const = 0;
345 
346   virtual size_t max_tlab_size() const;
347 
348   // An estimate of the maximum allocation that could be performed
349   // for thread-local allocation buffers without triggering any
350   // collection or expansion activity.
351   virtual size_t unsafe_max_tlab_alloc(Thread *thr) const {
352     guarantee(false, "thread-local allocation buffers not supported");
353     return 0;
354   }
355 
356   // If a GC uses a stack watermark barrier, the stack processing is lazy, concurrent,
357   // incremental and cooperative. In order for that to work well, mechanisms that stop
358   // another thread might want to ensure its roots are in a sane state.
359   virtual bool uses_stack_watermark_barrier() const { return false; }
360 
361   // Perform a collection of the heap; intended for use in implementing
362   // "System.gc".  This probably implies as full a collection as the
363   // "CollectedHeap" supports.
364   virtual void collect(GCCause::Cause cause) = 0;
365 
366   // Perform a full collection
367   virtual void do_full_collection(bool clear_all_soft_refs) = 0;
368 
369   // This interface assumes that it's being called by the
370   // vm thread. It collects the heap assuming that the
371   // heap lock is already held and that we are executing in
372   // the context of the vm thread.
373   virtual void collect_as_vm_thread(GCCause::Cause cause);
374 
375   virtual MetaWord* satisfy_failed_metadata_allocation(ClassLoaderData* loader_data,
376                                                        size_t size,
377                                                        Metaspace::MetadataType mdtype);
378 
379   // Return true, if accesses to the object would require barriers.
380   // This is used by continuations to copy chunks of a thread stack into StackChunk object or out of a StackChunk
381   // object back into the thread stack. These chunks may contain references to objects. It is crucial that
382   // the GC does not attempt to traverse the object while we modify it, because its structure (oopmap) is changed
383   // when stack chunks are stored into it.
384   // StackChunk objects may be reused, the GC must not assume that a StackChunk object is always a freshly
385   // allocated object.
386   virtual bool requires_barriers(stackChunkOop obj) const = 0;
387 
388   // Returns "true" iff there is a stop-world GC in progress.  (I assume
389   // that it should answer "false" for the concurrent part of a concurrent
390   // collector -- dld).
391   bool is_gc_active() const { return _is_gc_active; }
392 
393   // Total number of GC collections (started)
394   unsigned int total_collections() const { return _total_collections; }
395   unsigned int total_full_collections() const { return _total_full_collections;}
396 
397   // Increment total number of GC collections (started)
398   void increment_total_collections(bool full = false) {
399     _total_collections++;
400     if (full) {
401       increment_total_full_collections();
402     }
403   }
404 
405   void increment_total_full_collections() { _total_full_collections++; }
406 
407   // Return the SoftRefPolicy for the heap;
408   SoftRefPolicy* soft_ref_policy() { return &_soft_ref_policy; }
409 
410   virtual MemoryUsage memory_usage();
411   virtual GrowableArray<GCMemoryManager*> memory_managers() = 0;
412   virtual GrowableArray<MemoryPool*> memory_pools() = 0;
413 
414   // Iterate over all objects, calling "cl.do_object" on each.
415   virtual void object_iterate(ObjectClosure* cl) = 0;
416 
417  protected:
418   virtual ParallelObjectIteratorImpl* parallel_object_iterator(uint thread_num) {
419     return nullptr;
420   }
421 
422  public:
423   // Keep alive an object that was loaded with AS_NO_KEEPALIVE.
424   virtual void keep_alive(oop obj) {}
425 
426   // Perform any cleanup actions necessary before allowing a verification.
427   virtual void prepare_for_verify() = 0;
428 
429   // Returns the longest time (in ms) that has elapsed since the last
430   // time that the whole heap has been examined by a garbage collection.
431   jlong millis_since_last_whole_heap_examined();
432   // GC should call this when the next whole heap analysis has completed to
433   // satisfy above requirement.
434   void record_whole_heap_examined_timestamp();
435 
436  private:
437   // Generate any dumps preceding or following a full gc
438   void full_gc_dump(GCTimer* timer, bool before);
439 
440   virtual void initialize_serviceability() = 0;
441 
442  public:
443   void pre_full_gc_dump(GCTimer* timer);
444   void post_full_gc_dump(GCTimer* timer);
445 
446   virtual VirtualSpaceSummary create_heap_space_summary();
447   GCHeapSummary create_heap_summary();
448 
449   MetaspaceSummary create_metaspace_summary();
450 
451   // GCs are free to represent the bit representation for null differently in memory,
452   // which is typically not observable when using the Access API. However, if for
453   // some reason a context doesn't allow using the Access API, then this function
454   // explicitly checks if the given memory location contains a null value.
455   virtual bool contains_null(const oop* p) const;
456 
457   // Print heap information on the given outputStream.
458   virtual void print_on(outputStream* st) const = 0;
459   // The default behavior is to call print_on() on tty.
460   virtual void print() const;
461 
462   // Print more detailed heap information on the given
463   // outputStream. The default behavior is to call print_on(). It is
464   // up to each subclass to override it and add any additional output
465   // it needs.
466   virtual void print_extended_on(outputStream* st) const {
467     print_on(st);
468   }
469 
470   virtual void print_on_error(outputStream* st) const;
471 
472   // Used to print information about locations in the hs_err file.
473   virtual bool print_location(outputStream* st, void* addr) const = 0;
474 
475   // Iterator for all GC threads (other than VM thread)
476   virtual void gc_threads_do(ThreadClosure* tc) const = 0;
477 
478   // Print any relevant tracing info that flags imply.
479   // Default implementation does nothing.
480   virtual void print_tracing_info() const = 0;
481 
482   void print_heap_before_gc();
483   void print_heap_after_gc();
484 
485   // Registering and unregistering an nmethod (compiled code) with the heap.
486   virtual void register_nmethod(nmethod* nm) = 0;
487   virtual void unregister_nmethod(nmethod* nm) = 0;
488   virtual void verify_nmethod(nmethod* nm) = 0;
489 
490   void trace_heap_before_gc(const GCTracer* gc_tracer);
491   void trace_heap_after_gc(const GCTracer* gc_tracer);
492 
493   // Heap verification
494   virtual void verify(VerifyOption option) = 0;
495 
496   // Return true if concurrent gc control via WhiteBox is supported by
497   // this collector.  The default implementation returns false.
498   virtual bool supports_concurrent_gc_breakpoints() const;
499 
500   // Workers used in non-GC safepoints for parallel safepoint cleanup. If this
501   // method returns null, cleanup tasks are done serially in the VMThread. See
502   // `SafepointSynchronize::do_cleanup_tasks` for details.
503   // GCs using a GC worker thread pool inside GC safepoints may opt to share
504   // that pool with non-GC safepoints, avoiding creating extraneous threads.
505   // Such sharing is safe, because GC safepoints and non-GC safepoints never
506   // overlap. For example, `G1CollectedHeap::workers()` (for GC safepoints) and
507   // `G1CollectedHeap::safepoint_workers()` (for non-GC safepoints) return the
508   // same thread-pool.
509   virtual WorkerThreads* safepoint_workers() { return nullptr; }
510 
511   // Support for object pinning. This is used by JNI Get*Critical()
512   // and Release*Critical() family of functions. The GC must guarantee
513   // that pinned objects never move and don't get reclaimed as garbage.
514   // These functions are potentially safepointing.
515   virtual void pin_object(JavaThread* thread, oop obj) = 0;
516   virtual void unpin_object(JavaThread* thread, oop obj) = 0;
517 
518   // Support for loading objects from CDS archive into the heap
519   // (usually as a snapshot of the old generation).
520   virtual bool can_load_archived_objects() const { return false; }
521   virtual HeapWord* allocate_loaded_archive_space(size_t size) { return nullptr; }
522   virtual void complete_loaded_archive_space(MemRegion archive_space) { }
523 
524   virtual bool is_oop(oop object) const;
525   // Non product verification and debugging.
526 #ifndef PRODUCT
527   // Support for PromotionFailureALot.  Return true if it's time to cause a
528   // promotion failure.  The no-argument version uses
529   // this->_promotion_failure_alot_count as the counter.
530   bool promotion_should_fail(volatile size_t* count);
531   bool promotion_should_fail();
532 
533   // Reset the PromotionFailureALot counters.  Should be called at the end of a
534   // GC in which promotion failure occurred.
535   void reset_promotion_should_fail(volatile size_t* count);
536   void reset_promotion_should_fail();
537 #endif  // #ifndef PRODUCT
538 };
539 
540 // Class to set and reset the GC cause for a CollectedHeap.
541 
542 class GCCauseSetter : StackObj {
543   CollectedHeap* _heap;
544   GCCause::Cause _previous_cause;
545  public:
546   GCCauseSetter(CollectedHeap* heap, GCCause::Cause cause) {
547     _heap = heap;
548     _previous_cause = _heap->gc_cause();
549     _heap->set_gc_cause(cause);
550   }
551 
552   ~GCCauseSetter() {
553     _heap->set_gc_cause(_previous_cause);
554   }
555 };
556 
557 #endif // SHARE_GC_SHARED_COLLECTEDHEAP_HPP