1 /*
   2  * Copyright (c) 2000, 2023, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderDataGraph.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/icBuffer.hpp"
  32 #include "compiler/oopMap.hpp"
  33 #include "gc/serial/cardTableRS.hpp"
  34 #include "gc/serial/defNewGeneration.hpp"
  35 #include "gc/serial/genMarkSweep.hpp"
  36 #include "gc/serial/markSweep.hpp"
  37 #include "gc/shared/adaptiveSizePolicy.hpp"
  38 #include "gc/shared/cardTableBarrierSet.hpp"
  39 #include "gc/shared/collectedHeap.inline.hpp"
  40 #include "gc/shared/collectorCounters.hpp"
  41 #include "gc/shared/continuationGCSupport.inline.hpp"
  42 #include "gc/shared/gcId.hpp"
  43 #include "gc/shared/gcInitLogger.hpp"
  44 #include "gc/shared/gcLocker.hpp"
  45 #include "gc/shared/gcPolicyCounters.hpp"
  46 #include "gc/shared/gcTrace.hpp"
  47 #include "gc/shared/gcTraceTime.inline.hpp"
  48 #include "gc/shared/gcVMOperations.hpp"
  49 #include "gc/shared/genArguments.hpp"
  50 #include "gc/shared/genCollectedHeap.hpp"
  51 #include "gc/shared/generationSpec.hpp"
  52 #include "gc/shared/locationPrinter.inline.hpp"
  53 #include "gc/shared/oopStorage.inline.hpp"
  54 #include "gc/shared/oopStorageParState.inline.hpp"
  55 #include "gc/shared/oopStorageSet.inline.hpp"
  56 #include "gc/shared/scavengableNMethods.hpp"
  57 #include "gc/shared/space.hpp"
  58 #include "gc/shared/strongRootsScope.hpp"
  59 #include "gc/shared/weakProcessor.hpp"
  60 #include "gc/shared/workerThread.hpp"
  61 #include "memory/iterator.hpp"
  62 #include "memory/metaspaceCounters.hpp"
  63 #include "memory/metaspaceUtils.hpp"
  64 #include "memory/resourceArea.hpp"
  65 #include "memory/universe.hpp"
  66 #include "oops/oop.inline.hpp"
  67 #include "runtime/handles.hpp"
  68 #include "runtime/handles.inline.hpp"
  69 #include "runtime/java.hpp"
  70 #include "runtime/threads.hpp"
  71 #include "runtime/vmThread.hpp"
  72 #include "services/memoryService.hpp"
  73 #include "utilities/autoRestore.hpp"
  74 #include "utilities/debug.hpp"
  75 #include "utilities/formatBuffer.hpp"
  76 #include "utilities/macros.hpp"
  77 #include "utilities/stack.inline.hpp"
  78 #include "utilities/vmError.hpp"
  79 #if INCLUDE_JVMCI
  80 #include "jvmci/jvmci.hpp"
  81 #endif
  82 
  83 GenCollectedHeap::GenCollectedHeap(Generation::Name young,
  84                                    Generation::Name old,
  85                                    const char* policy_counters_name) :
  86   CollectedHeap(),
  87   _young_gen(nullptr),
  88   _old_gen(nullptr),
  89   _young_gen_spec(new GenerationSpec(young,
  90                                      NewSize,
  91                                      MaxNewSize,
  92                                      GenAlignment)),
  93   _old_gen_spec(new GenerationSpec(old,
  94                                    OldSize,
  95                                    MaxOldSize,
  96                                    GenAlignment)),
  97   _rem_set(nullptr),
  98   _soft_ref_gen_policy(),
  99   _size_policy(nullptr),
 100   _gc_policy_counters(new GCPolicyCounters(policy_counters_name, 2, 2)),
 101   _incremental_collection_failed(false),
 102   _full_collections_completed(0),
 103   _young_manager(nullptr),
 104   _old_manager(nullptr) {
 105 }
 106 
 107 jint GenCollectedHeap::initialize() {
 108   // Allocate space for the heap.
 109 
 110   ReservedHeapSpace heap_rs = allocate(HeapAlignment);
 111 
 112   if (!heap_rs.is_reserved()) {
 113     vm_shutdown_during_initialization(
 114       "Could not reserve enough space for object heap");
 115     return JNI_ENOMEM;
 116   }
 117 
 118   initialize_reserved_region(heap_rs);
 119 
 120   _rem_set = create_rem_set(heap_rs.region());
 121   _rem_set->initialize();
 122   CardTableBarrierSet *bs = new CardTableBarrierSet(_rem_set);
 123   bs->initialize();
 124   BarrierSet::set_barrier_set(bs);
 125 
 126   ReservedSpace young_rs = heap_rs.first_part(_young_gen_spec->max_size());
 127   _young_gen = _young_gen_spec->init(young_rs, rem_set());
 128   ReservedSpace old_rs = heap_rs.last_part(_young_gen_spec->max_size());
 129 
 130   old_rs = old_rs.first_part(_old_gen_spec->max_size());
 131   _old_gen = _old_gen_spec->init(old_rs, rem_set());
 132 
 133   GCInitLogger::print();
 134 
 135   return JNI_OK;
 136 }
 137 
 138 CardTableRS* GenCollectedHeap::create_rem_set(const MemRegion& reserved_region) {
 139   return new CardTableRS(reserved_region);
 140 }
 141 
 142 void GenCollectedHeap::initialize_size_policy(size_t init_eden_size,
 143                                               size_t init_promo_size,
 144                                               size_t init_survivor_size) {
 145   const double max_gc_pause_sec = ((double) MaxGCPauseMillis) / 1000.0;
 146   _size_policy = new AdaptiveSizePolicy(init_eden_size,
 147                                         init_promo_size,
 148                                         init_survivor_size,
 149                                         max_gc_pause_sec,
 150                                         GCTimeRatio);
 151 }
 152 
 153 ReservedHeapSpace GenCollectedHeap::allocate(size_t alignment) {
 154   // Now figure out the total size.
 155   const size_t pageSize = UseLargePages ? os::large_page_size() : os::vm_page_size();
 156   assert(alignment % pageSize == 0, "Must be");
 157 
 158   // Check for overflow.
 159   size_t total_reserved = _young_gen_spec->max_size() + _old_gen_spec->max_size();
 160   if (total_reserved < _young_gen_spec->max_size()) {
 161     vm_exit_during_initialization("The size of the object heap + VM data exceeds "
 162                                   "the maximum representable size");
 163   }
 164   assert(total_reserved % alignment == 0,
 165          "Gen size; total_reserved=" SIZE_FORMAT ", alignment="
 166          SIZE_FORMAT, total_reserved, alignment);
 167 
 168   ReservedHeapSpace heap_rs = Universe::reserve_heap(total_reserved, alignment);
 169   size_t used_page_size = heap_rs.page_size();
 170 
 171   os::trace_page_sizes("Heap",
 172                        MinHeapSize,
 173                        total_reserved,
 174                        used_page_size,
 175                        heap_rs.base(),
 176                        heap_rs.size());
 177 
 178   return heap_rs;
 179 }
 180 
 181 class GenIsScavengable : public BoolObjectClosure {
 182 public:
 183   bool do_object_b(oop obj) {
 184     return GenCollectedHeap::heap()->is_in_young(obj);
 185   }
 186 };
 187 
 188 static GenIsScavengable _is_scavengable;
 189 
 190 void GenCollectedHeap::post_initialize() {
 191   CollectedHeap::post_initialize();
 192   ref_processing_init();
 193 
 194   DefNewGeneration* def_new_gen = (DefNewGeneration*)_young_gen;
 195 
 196   initialize_size_policy(def_new_gen->eden()->capacity(),
 197                          _old_gen->capacity(),
 198                          def_new_gen->from()->capacity());
 199 
 200   MarkSweep::initialize();
 201 
 202   ScavengableNMethods::initialize(&_is_scavengable);
 203 }
 204 
 205 void GenCollectedHeap::ref_processing_init() {
 206   _young_gen->ref_processor_init();
 207   _old_gen->ref_processor_init();
 208 }
 209 
 210 PreGenGCValues GenCollectedHeap::get_pre_gc_values() const {
 211   const DefNewGeneration* const def_new_gen = (DefNewGeneration*) young_gen();
 212 
 213   return PreGenGCValues(def_new_gen->used(),
 214                         def_new_gen->capacity(),
 215                         def_new_gen->eden()->used(),
 216                         def_new_gen->eden()->capacity(),
 217                         def_new_gen->from()->used(),
 218                         def_new_gen->from()->capacity(),
 219                         old_gen()->used(),
 220                         old_gen()->capacity());
 221 }
 222 
 223 GenerationSpec* GenCollectedHeap::young_gen_spec() const {
 224   return _young_gen_spec;
 225 }
 226 
 227 GenerationSpec* GenCollectedHeap::old_gen_spec() const {
 228   return _old_gen_spec;
 229 }
 230 
 231 size_t GenCollectedHeap::capacity() const {
 232   return _young_gen->capacity() + _old_gen->capacity();
 233 }
 234 
 235 size_t GenCollectedHeap::used() const {
 236   return _young_gen->used() + _old_gen->used();
 237 }
 238 
 239 void GenCollectedHeap::save_used_regions() {
 240   _old_gen->save_used_region();
 241   _young_gen->save_used_region();
 242 }
 243 
 244 size_t GenCollectedHeap::max_capacity() const {
 245   return _young_gen->max_capacity() + _old_gen->max_capacity();
 246 }
 247 
 248 // Update the _full_collections_completed counter
 249 // at the end of a stop-world full GC.
 250 unsigned int GenCollectedHeap::update_full_collections_completed() {
 251   assert(_full_collections_completed <= _total_full_collections,
 252          "Can't complete more collections than were started");
 253   _full_collections_completed = _total_full_collections;
 254   return _full_collections_completed;
 255 }
 256 
 257 // Return true if any of the following is true:
 258 // . the allocation won't fit into the current young gen heap
 259 // . gc locker is occupied (jni critical section)
 260 // . heap memory is tight -- the most recent previous collection
 261 //   was a full collection because a partial collection (would
 262 //   have) failed and is likely to fail again
 263 bool GenCollectedHeap::should_try_older_generation_allocation(size_t word_size) const {
 264   size_t young_capacity = _young_gen->capacity_before_gc();
 265   return    (word_size > heap_word_size(young_capacity))
 266          || GCLocker::is_active_and_needs_gc()
 267          || incremental_collection_failed();
 268 }
 269 
 270 HeapWord* GenCollectedHeap::expand_heap_and_allocate(size_t size, bool   is_tlab) {
 271   HeapWord* result = nullptr;
 272   if (_old_gen->should_allocate(size, is_tlab)) {
 273     result = _old_gen->expand_and_allocate(size, is_tlab);
 274   }
 275   if (result == nullptr) {
 276     if (_young_gen->should_allocate(size, is_tlab)) {
 277       result = _young_gen->expand_and_allocate(size, is_tlab);
 278     }
 279   }
 280   assert(result == nullptr || is_in_reserved(result), "result not in heap");
 281   return result;
 282 }
 283 
 284 HeapWord* GenCollectedHeap::mem_allocate_work(size_t size,
 285                                               bool is_tlab,
 286                                               bool* gc_overhead_limit_was_exceeded) {
 287   // In general gc_overhead_limit_was_exceeded should be false so
 288   // set it so here and reset it to true only if the gc time
 289   // limit is being exceeded as checked below.
 290   *gc_overhead_limit_was_exceeded = false;
 291 
 292   HeapWord* result = nullptr;
 293 
 294   // Loop until the allocation is satisfied, or unsatisfied after GC.
 295   for (uint try_count = 1, gclocker_stalled_count = 0; /* return or throw */; try_count += 1) {
 296 
 297     // First allocation attempt is lock-free.
 298     Generation *young = _young_gen;
 299     if (young->should_allocate(size, is_tlab)) {
 300       result = young->par_allocate(size, is_tlab);
 301       if (result != nullptr) {
 302         assert(is_in_reserved(result), "result not in heap");
 303         return result;
 304       }
 305     }
 306     uint gc_count_before;  // Read inside the Heap_lock locked region.
 307     {
 308       MutexLocker ml(Heap_lock);
 309       log_trace(gc, alloc)("GenCollectedHeap::mem_allocate_work: attempting locked slow path allocation");
 310       // Note that only large objects get a shot at being
 311       // allocated in later generations.
 312       bool first_only = !should_try_older_generation_allocation(size);
 313 
 314       result = attempt_allocation(size, is_tlab, first_only);
 315       if (result != nullptr) {
 316         assert(is_in_reserved(result), "result not in heap");
 317         return result;
 318       }
 319 
 320       if (GCLocker::is_active_and_needs_gc()) {
 321         if (is_tlab) {
 322           return nullptr;  // Caller will retry allocating individual object.
 323         }
 324         if (!is_maximal_no_gc()) {
 325           // Try and expand heap to satisfy request.
 326           result = expand_heap_and_allocate(size, is_tlab);
 327           // Result could be null if we are out of space.
 328           if (result != nullptr) {
 329             return result;
 330           }
 331         }
 332 
 333         if (gclocker_stalled_count > GCLockerRetryAllocationCount) {
 334           return nullptr; // We didn't get to do a GC and we didn't get any memory.
 335         }
 336 
 337         // If this thread is not in a jni critical section, we stall
 338         // the requestor until the critical section has cleared and
 339         // GC allowed. When the critical section clears, a GC is
 340         // initiated by the last thread exiting the critical section; so
 341         // we retry the allocation sequence from the beginning of the loop,
 342         // rather than causing more, now probably unnecessary, GC attempts.
 343         JavaThread* jthr = JavaThread::current();
 344         if (!jthr->in_critical()) {
 345           MutexUnlocker mul(Heap_lock);
 346           // Wait for JNI critical section to be exited
 347           GCLocker::stall_until_clear();
 348           gclocker_stalled_count += 1;
 349           continue;
 350         } else {
 351           if (CheckJNICalls) {
 352             fatal("Possible deadlock due to allocating while"
 353                   " in jni critical section");
 354           }
 355           return nullptr;
 356         }
 357       }
 358 
 359       // Read the gc count while the heap lock is held.
 360       gc_count_before = total_collections();
 361     }
 362 
 363     VM_GenCollectForAllocation op(size, is_tlab, gc_count_before);
 364     VMThread::execute(&op);
 365     if (op.prologue_succeeded()) {
 366       result = op.result();
 367       if (op.gc_locked()) {
 368          assert(result == nullptr, "must be null if gc_locked() is true");
 369          continue;  // Retry and/or stall as necessary.
 370       }
 371 
 372       // Allocation has failed and a collection
 373       // has been done.  If the gc time limit was exceeded the
 374       // this time, return null so that an out-of-memory
 375       // will be thrown.  Clear gc_overhead_limit_exceeded
 376       // so that the overhead exceeded does not persist.
 377 
 378       const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
 379       const bool softrefs_clear = soft_ref_policy()->all_soft_refs_clear();
 380 
 381       if (limit_exceeded && softrefs_clear) {
 382         *gc_overhead_limit_was_exceeded = true;
 383         size_policy()->set_gc_overhead_limit_exceeded(false);
 384         if (op.result() != nullptr) {
 385           CollectedHeap::fill_with_object(op.result(), size);
 386         }
 387         return nullptr;
 388       }
 389       assert(result == nullptr || is_in_reserved(result),
 390              "result not in heap");
 391       return result;
 392     }
 393 
 394     // Give a warning if we seem to be looping forever.
 395     if ((QueuedAllocationWarningCount > 0) &&
 396         (try_count % QueuedAllocationWarningCount == 0)) {
 397           log_warning(gc, ergo)("GenCollectedHeap::mem_allocate_work retries %d times,"
 398                                 " size=" SIZE_FORMAT " %s", try_count, size, is_tlab ? "(TLAB)" : "");
 399     }
 400   }
 401 }
 402 
 403 HeapWord* GenCollectedHeap::attempt_allocation(size_t size,
 404                                                bool is_tlab,
 405                                                bool first_only) {
 406   HeapWord* res = nullptr;
 407 
 408   if (_young_gen->should_allocate(size, is_tlab)) {
 409     res = _young_gen->allocate(size, is_tlab);
 410     if (res != nullptr || first_only) {
 411       return res;
 412     }
 413   }
 414 
 415   if (_old_gen->should_allocate(size, is_tlab)) {
 416     res = _old_gen->allocate(size, is_tlab);
 417   }
 418 
 419   return res;
 420 }
 421 
 422 HeapWord* GenCollectedHeap::mem_allocate(size_t size,
 423                                          bool* gc_overhead_limit_was_exceeded) {
 424   return mem_allocate_work(size,
 425                            false /* is_tlab */,
 426                            gc_overhead_limit_was_exceeded);
 427 }
 428 
 429 bool GenCollectedHeap::must_clear_all_soft_refs() {
 430   return _gc_cause == GCCause::_metadata_GC_clear_soft_refs ||
 431          _gc_cause == GCCause::_wb_full_gc;
 432 }
 433 
 434 void GenCollectedHeap::collect_generation(Generation* gen, bool full, size_t size,
 435                                           bool is_tlab, bool run_verification, bool clear_soft_refs) {
 436   FormatBuffer<> title("Collect gen: %s", gen->short_name());
 437   GCTraceTime(Trace, gc, phases) t1(title);
 438   TraceCollectorStats tcs(gen->counters());
 439   TraceMemoryManagerStats tmms(gen->gc_manager(), gc_cause());
 440 
 441   gen->stat_record()->invocations++;
 442   gen->stat_record()->accumulated_time.start();
 443 
 444   // Must be done anew before each collection because
 445   // a previous collection will do mangling and will
 446   // change top of some spaces.
 447   record_gen_tops_before_GC();
 448 
 449   log_trace(gc)("%s invoke=%d size=" SIZE_FORMAT, heap()->is_young_gen(gen) ? "Young" : "Old", gen->stat_record()->invocations, size * HeapWordSize);
 450 
 451   if (run_verification && VerifyBeforeGC) {
 452     Universe::verify("Before GC");
 453   }
 454   COMPILER2_OR_JVMCI_PRESENT(DerivedPointerTable::clear());
 455 
 456   // Do collection work
 457   {
 458     // Note on ref discovery: For what appear to be historical reasons,
 459     // GCH enables and disabled (by enqueuing) refs discovery.
 460     // In the future this should be moved into the generation's
 461     // collect method so that ref discovery and enqueueing concerns
 462     // are local to a generation. The collect method could return
 463     // an appropriate indication in the case that notification on
 464     // the ref lock was needed. This will make the treatment of
 465     // weak refs more uniform (and indeed remove such concerns
 466     // from GCH). XXX
 467 
 468     save_marks();   // save marks for all gens
 469     // We want to discover references, but not process them yet.
 470     // This mode is disabled in process_discovered_references if the
 471     // generation does some collection work, or in
 472     // enqueue_discovered_references if the generation returns
 473     // without doing any work.
 474     ReferenceProcessor* rp = gen->ref_processor();
 475     rp->start_discovery(clear_soft_refs);
 476 
 477     gen->collect(full, clear_soft_refs, size, is_tlab);
 478 
 479     rp->disable_discovery();
 480     rp->verify_no_references_recorded();
 481   }
 482 
 483   COMPILER2_OR_JVMCI_PRESENT(DerivedPointerTable::update_pointers());
 484 
 485   gen->stat_record()->accumulated_time.stop();
 486 
 487   update_gc_stats(gen, full);
 488 
 489   if (run_verification && VerifyAfterGC) {
 490     Universe::verify("After GC");
 491   }
 492 }
 493 
 494 void GenCollectedHeap::do_collection(bool           full,
 495                                      bool           clear_all_soft_refs,
 496                                      size_t         size,
 497                                      bool           is_tlab,
 498                                      GenerationType max_generation) {
 499   ResourceMark rm;
 500   DEBUG_ONLY(Thread* my_thread = Thread::current();)
 501 
 502   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 503   assert(my_thread->is_VM_thread(), "only VM thread");
 504   assert(Heap_lock->is_locked(),
 505          "the requesting thread should have the Heap_lock");
 506   guarantee(!is_gc_active(), "collection is not reentrant");
 507 
 508   if (GCLocker::check_active_before_gc()) {
 509     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
 510   }
 511 
 512   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
 513                           soft_ref_policy()->should_clear_all_soft_refs();
 514 
 515   ClearedAllSoftRefs casr(do_clear_all_soft_refs, soft_ref_policy());
 516 
 517   AutoModifyRestore<bool> temporarily(_is_gc_active, true);
 518 
 519   bool complete = full && (max_generation == OldGen);
 520   bool old_collects_young = complete && !ScavengeBeforeFullGC;
 521   bool do_young_collection = !old_collects_young && _young_gen->should_collect(full, size, is_tlab);
 522 
 523   const PreGenGCValues pre_gc_values = get_pre_gc_values();
 524 
 525   bool run_verification = total_collections() >= VerifyGCStartAt;
 526   bool prepared_for_verification = false;
 527   bool do_full_collection = false;
 528 
 529   if (do_young_collection) {
 530     GCIdMark gc_id_mark;
 531     GCTraceCPUTime tcpu(((DefNewGeneration*)_young_gen)->gc_tracer());
 532     GCTraceTime(Info, gc) t("Pause Young", nullptr, gc_cause(), true);
 533 
 534     print_heap_before_gc();
 535 
 536     if (run_verification && VerifyGCLevel <= 0 && VerifyBeforeGC) {
 537       prepare_for_verify();
 538       prepared_for_verification = true;
 539     }
 540 
 541     gc_prologue(complete);
 542     increment_total_collections(complete);
 543 
 544     collect_generation(_young_gen,
 545                        full,
 546                        size,
 547                        is_tlab,
 548                        run_verification && VerifyGCLevel <= 0,
 549                        do_clear_all_soft_refs);
 550 
 551     if (size > 0 && (!is_tlab || _young_gen->supports_tlab_allocation()) &&
 552         size * HeapWordSize <= _young_gen->unsafe_max_alloc_nogc()) {
 553       // Allocation request was met by young GC.
 554       size = 0;
 555     }
 556 
 557     // Ask if young collection is enough. If so, do the final steps for young collection,
 558     // and fallthrough to the end.
 559     do_full_collection = should_do_full_collection(size, full, is_tlab, max_generation);
 560     if (!do_full_collection) {
 561       // Adjust generation sizes.
 562       _young_gen->compute_new_size();
 563 
 564       print_heap_change(pre_gc_values);
 565 
 566       // Track memory usage and detect low memory after GC finishes
 567       MemoryService::track_memory_usage();
 568 
 569       gc_epilogue(complete);
 570     }
 571 
 572     print_heap_after_gc();
 573 
 574   } else {
 575     // No young collection, ask if we need to perform Full collection.
 576     do_full_collection = should_do_full_collection(size, full, is_tlab, max_generation);
 577   }
 578 
 579   if (do_full_collection) {
 580     GCIdMark gc_id_mark;
 581     GCTraceCPUTime tcpu(GenMarkSweep::gc_tracer());
 582     GCTraceTime(Info, gc) t("Pause Full", nullptr, gc_cause(), true);
 583 
 584     print_heap_before_gc();
 585 
 586     if (!prepared_for_verification && run_verification &&
 587         VerifyGCLevel <= 1 && VerifyBeforeGC) {
 588       prepare_for_verify();
 589     }
 590 
 591     if (!do_young_collection) {
 592       gc_prologue(complete);
 593       increment_total_collections(complete);
 594     }
 595 
 596     // Accounting quirk: total full collections would be incremented when "complete"
 597     // is set, by calling increment_total_collections above. However, we also need to
 598     // account Full collections that had "complete" unset.
 599     if (!complete) {
 600       increment_total_full_collections();
 601     }
 602 
 603     CodeCache::on_gc_marking_cycle_start();
 604 
 605     collect_generation(_old_gen,
 606                        full,
 607                        size,
 608                        is_tlab,
 609                        run_verification && VerifyGCLevel <= 1,
 610                        do_clear_all_soft_refs);
 611 
 612     CodeCache::on_gc_marking_cycle_finish();
 613     CodeCache::arm_all_nmethods();
 614 
 615     // Adjust generation sizes.
 616     _old_gen->compute_new_size();
 617     _young_gen->compute_new_size();
 618 
 619     // Delete metaspaces for unloaded class loaders and clean up loader_data graph
 620     ClassLoaderDataGraph::purge(/*at_safepoint*/true);
 621     DEBUG_ONLY(MetaspaceUtils::verify();)
 622 
 623     // Need to clear claim bits for the next mark.
 624     ClassLoaderDataGraph::clear_claimed_marks();
 625 
 626     // Resize the metaspace capacity after full collections
 627     MetaspaceGC::compute_new_size();
 628     update_full_collections_completed();
 629 
 630     print_heap_change(pre_gc_values);
 631 
 632     // Track memory usage and detect low memory after GC finishes
 633     MemoryService::track_memory_usage();
 634 
 635     // Need to tell the epilogue code we are done with Full GC, regardless what was
 636     // the initial value for "complete" flag.
 637     gc_epilogue(true);
 638 
 639     print_heap_after_gc();
 640   }
 641 }
 642 
 643 bool GenCollectedHeap::should_do_full_collection(size_t size, bool full, bool is_tlab,
 644                                                  GenCollectedHeap::GenerationType max_gen) const {
 645   return max_gen == OldGen && _old_gen->should_collect(full, size, is_tlab);
 646 }
 647 
 648 void GenCollectedHeap::register_nmethod(nmethod* nm) {
 649   ScavengableNMethods::register_nmethod(nm);
 650 }
 651 
 652 void GenCollectedHeap::unregister_nmethod(nmethod* nm) {
 653   ScavengableNMethods::unregister_nmethod(nm);
 654 }
 655 
 656 void GenCollectedHeap::verify_nmethod(nmethod* nm) {
 657   ScavengableNMethods::verify_nmethod(nm);
 658 }
 659 
 660 void GenCollectedHeap::prune_scavengable_nmethods() {
 661   ScavengableNMethods::prune_nmethods();
 662 }
 663 
 664 HeapWord* GenCollectedHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
 665   GCCauseSetter x(this, GCCause::_allocation_failure);
 666   HeapWord* result = nullptr;
 667 
 668   assert(size != 0, "Precondition violated");
 669   if (GCLocker::is_active_and_needs_gc()) {
 670     // GC locker is active; instead of a collection we will attempt
 671     // to expand the heap, if there's room for expansion.
 672     if (!is_maximal_no_gc()) {
 673       result = expand_heap_and_allocate(size, is_tlab);
 674     }
 675     return result;   // Could be null if we are out of space.
 676   } else if (!incremental_collection_will_fail(false /* don't consult_young */)) {
 677     // Do an incremental collection.
 678     do_collection(false,                     // full
 679                   false,                     // clear_all_soft_refs
 680                   size,                      // size
 681                   is_tlab,                   // is_tlab
 682                   GenCollectedHeap::OldGen); // max_generation
 683   } else {
 684     log_trace(gc)(" :: Trying full because partial may fail :: ");
 685     // Try a full collection; see delta for bug id 6266275
 686     // for the original code and why this has been simplified
 687     // with from-space allocation criteria modified and
 688     // such allocation moved out of the safepoint path.
 689     do_collection(true,                      // full
 690                   false,                     // clear_all_soft_refs
 691                   size,                      // size
 692                   is_tlab,                   // is_tlab
 693                   GenCollectedHeap::OldGen); // max_generation
 694   }
 695 
 696   result = attempt_allocation(size, is_tlab, false /*first_only*/);
 697 
 698   if (result != nullptr) {
 699     assert(is_in_reserved(result), "result not in heap");
 700     return result;
 701   }
 702 
 703   // OK, collection failed, try expansion.
 704   result = expand_heap_and_allocate(size, is_tlab);
 705   if (result != nullptr) {
 706     return result;
 707   }
 708 
 709   // If we reach this point, we're really out of memory. Try every trick
 710   // we can to reclaim memory. Force collection of soft references. Force
 711   // a complete compaction of the heap. Any additional methods for finding
 712   // free memory should be here, especially if they are expensive. If this
 713   // attempt fails, an OOM exception will be thrown.
 714   {
 715     UIntFlagSetting flag_change(MarkSweepAlwaysCompactCount, 1); // Make sure the heap is fully compacted
 716 
 717     do_collection(true,                      // full
 718                   true,                      // clear_all_soft_refs
 719                   size,                      // size
 720                   is_tlab,                   // is_tlab
 721                   GenCollectedHeap::OldGen); // max_generation
 722   }
 723 
 724   result = attempt_allocation(size, is_tlab, false /* first_only */);
 725   if (result != nullptr) {
 726     assert(is_in_reserved(result), "result not in heap");
 727     return result;
 728   }
 729 
 730   assert(!soft_ref_policy()->should_clear_all_soft_refs(),
 731     "Flag should have been handled and cleared prior to this point");
 732 
 733   // What else?  We might try synchronous finalization later.  If the total
 734   // space available is large enough for the allocation, then a more
 735   // complete compaction phase than we've tried so far might be
 736   // appropriate.
 737   return nullptr;
 738 }
 739 
 740 #ifdef ASSERT
 741 class AssertNonScavengableClosure: public OopClosure {
 742 public:
 743   virtual void do_oop(oop* p) {
 744     assert(!GenCollectedHeap::heap()->is_in_partial_collection(*p),
 745       "Referent should not be scavengable.");  }
 746   virtual void do_oop(narrowOop* p) { ShouldNotReachHere(); }
 747 };
 748 static AssertNonScavengableClosure assert_is_non_scavengable_closure;
 749 #endif
 750 
 751 void GenCollectedHeap::process_roots(ScanningOption so,
 752                                      OopClosure* strong_roots,
 753                                      CLDClosure* strong_cld_closure,
 754                                      CLDClosure* weak_cld_closure,
 755                                      CodeBlobToOopClosure* code_roots) {
 756   // General roots.
 757   assert(code_roots != nullptr, "code root closure should always be set");
 758 
 759   ClassLoaderDataGraph::roots_cld_do(strong_cld_closure, weak_cld_closure);
 760 
 761   // Only process code roots from thread stacks if we aren't visiting the entire CodeCache anyway
 762   CodeBlobToOopClosure* roots_from_code_p = (so & SO_AllCodeCache) ? nullptr : code_roots;
 763 
 764   Threads::oops_do(strong_roots, roots_from_code_p);
 765 
 766   OopStorageSet::strong_oops_do(strong_roots);
 767 
 768   if (so & SO_ScavengeCodeCache) {
 769     assert(code_roots != nullptr, "must supply closure for code cache");
 770 
 771     // We only visit parts of the CodeCache when scavenging.
 772     ScavengableNMethods::nmethods_do(code_roots);
 773   }
 774   if (so & SO_AllCodeCache) {
 775     assert(code_roots != nullptr, "must supply closure for code cache");
 776 
 777     // CMSCollector uses this to do intermediate-strength collections.
 778     // We scan the entire code cache, since CodeCache::do_unloading is not called.
 779     CodeCache::blobs_do(code_roots);
 780   }
 781   // Verify that the code cache contents are not subject to
 782   // movement by a scavenging collection.
 783   DEBUG_ONLY(CodeBlobToOopClosure assert_code_is_non_scavengable(&assert_is_non_scavengable_closure, !CodeBlobToOopClosure::FixRelocations));
 784   DEBUG_ONLY(ScavengableNMethods::asserted_non_scavengable_nmethods_do(&assert_code_is_non_scavengable));
 785 }
 786 
 787 void GenCollectedHeap::gen_process_weak_roots(OopClosure* root_closure) {
 788   WeakProcessor::oops_do(root_closure);
 789 }
 790 
 791 bool GenCollectedHeap::no_allocs_since_save_marks() {
 792   return _young_gen->no_allocs_since_save_marks() &&
 793          _old_gen->no_allocs_since_save_marks();
 794 }
 795 
 796 // public collection interfaces
 797 void GenCollectedHeap::collect(GCCause::Cause cause) {
 798   // The caller doesn't have the Heap_lock
 799   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 800 
 801   unsigned int gc_count_before;
 802   unsigned int full_gc_count_before;
 803 
 804   {
 805     MutexLocker ml(Heap_lock);
 806     // Read the GC count while holding the Heap_lock
 807     gc_count_before      = total_collections();
 808     full_gc_count_before = total_full_collections();
 809   }
 810 
 811   if (GCLocker::should_discard(cause, gc_count_before)) {
 812     return;
 813   }
 814 
 815   bool should_run_young_gc =  (cause == GCCause::_wb_young_gc)
 816                            || (cause == GCCause::_gc_locker)
 817                 DEBUG_ONLY(|| (cause == GCCause::_scavenge_alot));
 818 
 819   const GenerationType max_generation = should_run_young_gc
 820                                       ? YoungGen
 821                                       : OldGen;
 822 
 823   VM_GenCollectFull op(gc_count_before, full_gc_count_before,
 824                        cause, max_generation);
 825   VMThread::execute(&op);
 826 }
 827 
 828 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs) {
 829    do_full_collection(clear_all_soft_refs, OldGen);
 830 }
 831 
 832 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs,
 833                                           GenerationType last_generation) {
 834   do_collection(true,                   // full
 835                 clear_all_soft_refs,    // clear_all_soft_refs
 836                 0,                      // size
 837                 false,                  // is_tlab
 838                 last_generation);       // last_generation
 839   // Hack XXX FIX ME !!!
 840   // A scavenge may not have been attempted, or may have
 841   // been attempted and failed, because the old gen was too full
 842   if (gc_cause() == GCCause::_gc_locker && incremental_collection_failed()) {
 843     log_debug(gc, jni)("GC locker: Trying a full collection because scavenge failed");
 844     // This time allow the old gen to be collected as well
 845     do_collection(true,                // full
 846                   clear_all_soft_refs, // clear_all_soft_refs
 847                   0,                   // size
 848                   false,               // is_tlab
 849                   OldGen);             // last_generation
 850   }
 851 }
 852 
 853 bool GenCollectedHeap::is_in_young(const void* p) const {
 854   bool result = p < _old_gen->reserved().start();
 855   assert(result == _young_gen->is_in_reserved(p),
 856          "incorrect test - result=%d, p=" PTR_FORMAT, result, p2i(p));
 857   return result;
 858 }
 859 
 860 bool GenCollectedHeap::requires_barriers(stackChunkOop obj) const {
 861   return !is_in_young(obj);
 862 }
 863 
 864 // Returns "TRUE" iff "p" points into the committed areas of the heap.
 865 bool GenCollectedHeap::is_in(const void* p) const {
 866   return _young_gen->is_in(p) || _old_gen->is_in(p);
 867 }
 868 
 869 #ifdef ASSERT
 870 // Don't implement this by using is_in_young().  This method is used
 871 // in some cases to check that is_in_young() is correct.
 872 bool GenCollectedHeap::is_in_partial_collection(const void* p) {
 873   assert(is_in_reserved(p) || p == nullptr,
 874     "Does not work if address is non-null and outside of the heap");
 875   return p < _young_gen->reserved().end() && p != nullptr;
 876 }
 877 #endif
 878 
 879 void GenCollectedHeap::oop_iterate(OopIterateClosure* cl) {
 880   _young_gen->oop_iterate(cl);
 881   _old_gen->oop_iterate(cl);
 882 }
 883 
 884 void GenCollectedHeap::object_iterate(ObjectClosure* cl) {
 885   _young_gen->object_iterate(cl);
 886   _old_gen->object_iterate(cl);
 887 }
 888 
 889 Space* GenCollectedHeap::space_containing(const void* addr) const {
 890   Space* res = _young_gen->space_containing(addr);
 891   if (res != nullptr) {
 892     return res;
 893   }
 894   res = _old_gen->space_containing(addr);
 895   assert(res != nullptr, "Could not find containing space");
 896   return res;
 897 }
 898 
 899 HeapWord* GenCollectedHeap::block_start(const void* addr) const {
 900   assert(is_in_reserved(addr), "block_start of address outside of heap");
 901   if (_young_gen->is_in_reserved(addr)) {
 902     assert(_young_gen->is_in(addr), "addr should be in allocated part of generation");
 903     return _young_gen->block_start(addr);
 904   }
 905 
 906   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
 907   assert(_old_gen->is_in(addr), "addr should be in allocated part of generation");
 908   return _old_gen->block_start(addr);
 909 }
 910 
 911 bool GenCollectedHeap::block_is_obj(const HeapWord* addr) const {
 912   assert(is_in_reserved(addr), "block_is_obj of address outside of heap");
 913   assert(block_start(addr) == addr, "addr must be a block start");
 914   if (_young_gen->is_in_reserved(addr)) {
 915     return _young_gen->block_is_obj(addr);
 916   }
 917 
 918   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
 919   return _old_gen->block_is_obj(addr);
 920 }
 921 
 922 size_t GenCollectedHeap::tlab_capacity(Thread* thr) const {
 923   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 924   assert(_young_gen->supports_tlab_allocation(), "Young gen doesn't support TLAB allocation?!");
 925   return _young_gen->tlab_capacity();
 926 }
 927 
 928 size_t GenCollectedHeap::tlab_used(Thread* thr) const {
 929   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 930   assert(_young_gen->supports_tlab_allocation(), "Young gen doesn't support TLAB allocation?!");
 931   return _young_gen->tlab_used();
 932 }
 933 
 934 size_t GenCollectedHeap::unsafe_max_tlab_alloc(Thread* thr) const {
 935   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 936   assert(_young_gen->supports_tlab_allocation(), "Young gen doesn't support TLAB allocation?!");
 937   return _young_gen->unsafe_max_tlab_alloc();
 938 }
 939 
 940 HeapWord* GenCollectedHeap::allocate_new_tlab(size_t min_size,
 941                                               size_t requested_size,
 942                                               size_t* actual_size) {
 943   bool gc_overhead_limit_was_exceeded;
 944   HeapWord* result = mem_allocate_work(requested_size /* size */,
 945                                        true /* is_tlab */,
 946                                        &gc_overhead_limit_was_exceeded);
 947   if (result != nullptr) {
 948     *actual_size = requested_size;
 949   }
 950 
 951   return result;
 952 }
 953 
 954 // Requires "*prev_ptr" to be non-null.  Deletes and a block of minimal size
 955 // from the list headed by "*prev_ptr".
 956 static ScratchBlock *removeSmallestScratch(ScratchBlock **prev_ptr) {
 957   bool first = true;
 958   size_t min_size = 0;   // "first" makes this conceptually infinite.
 959   ScratchBlock **smallest_ptr, *smallest;
 960   ScratchBlock  *cur = *prev_ptr;
 961   while (cur) {
 962     assert(*prev_ptr == cur, "just checking");
 963     if (first || cur->num_words < min_size) {
 964       smallest_ptr = prev_ptr;
 965       smallest     = cur;
 966       min_size     = smallest->num_words;
 967       first        = false;
 968     }
 969     prev_ptr = &cur->next;
 970     cur     =  cur->next;
 971   }
 972   smallest      = *smallest_ptr;
 973   *smallest_ptr = smallest->next;
 974   return smallest;
 975 }
 976 
 977 // Sort the scratch block list headed by res into decreasing size order,
 978 // and set "res" to the result.
 979 static void sort_scratch_list(ScratchBlock*& list) {
 980   ScratchBlock* sorted = nullptr;
 981   ScratchBlock* unsorted = list;
 982   while (unsorted) {
 983     ScratchBlock *smallest = removeSmallestScratch(&unsorted);
 984     smallest->next  = sorted;
 985     sorted          = smallest;
 986   }
 987   list = sorted;
 988 }
 989 
 990 ScratchBlock* GenCollectedHeap::gather_scratch(Generation* requestor,
 991                                                size_t max_alloc_words) {
 992   ScratchBlock* res = nullptr;
 993   _young_gen->contribute_scratch(res, requestor, max_alloc_words);
 994   _old_gen->contribute_scratch(res, requestor, max_alloc_words);
 995   sort_scratch_list(res);
 996   return res;
 997 }
 998 
 999 void GenCollectedHeap::release_scratch() {
1000   _young_gen->reset_scratch();
1001   _old_gen->reset_scratch();
1002 }
1003 
1004 void GenCollectedHeap::prepare_for_verify() {
1005   ensure_parsability(false);        // no need to retire TLABs
1006 }
1007 
1008 void GenCollectedHeap::generation_iterate(GenClosure* cl,
1009                                           bool old_to_young) {
1010   if (old_to_young) {
1011     cl->do_generation(_old_gen);
1012     cl->do_generation(_young_gen);
1013   } else {
1014     cl->do_generation(_young_gen);
1015     cl->do_generation(_old_gen);
1016   }
1017 }
1018 
1019 bool GenCollectedHeap::is_maximal_no_gc() const {
1020   return _young_gen->is_maximal_no_gc() && _old_gen->is_maximal_no_gc();
1021 }
1022 
1023 void GenCollectedHeap::save_marks() {
1024   _young_gen->save_marks();
1025   _old_gen->save_marks();
1026 }
1027 
1028 GenCollectedHeap* GenCollectedHeap::heap() {
1029   // SerialHeap is the only subtype of GenCollectedHeap.
1030   return named_heap<GenCollectedHeap>(CollectedHeap::Serial);
1031 }
1032 
1033 #if INCLUDE_SERIALGC
1034 void GenCollectedHeap::prepare_for_compaction() {
1035   // Start by compacting into same gen.
1036   CompactPoint cp(_old_gen);
1037   _old_gen->prepare_for_compaction(&cp);
1038   _young_gen->prepare_for_compaction(&cp);
1039 }
1040 #endif // INCLUDE_SERIALGC
1041 
1042 void GenCollectedHeap::verify(VerifyOption option /* ignored */) {
1043   log_debug(gc, verify)("%s", _old_gen->name());
1044   _old_gen->verify();
1045 
1046   log_debug(gc, verify)("%s", _young_gen->name());
1047   _young_gen->verify();
1048 
1049   log_debug(gc, verify)("RemSet");
1050   rem_set()->verify();
1051 }
1052 
1053 void GenCollectedHeap::print_on(outputStream* st) const {
1054   if (_young_gen != nullptr) {
1055     _young_gen->print_on(st);
1056   }
1057   if (_old_gen != nullptr) {
1058     _old_gen->print_on(st);
1059   }
1060   MetaspaceUtils::print_on(st);
1061 }
1062 
1063 void GenCollectedHeap::gc_threads_do(ThreadClosure* tc) const {
1064 }
1065 
1066 bool GenCollectedHeap::print_location(outputStream* st, void* addr) const {
1067   return BlockLocationPrinter<GenCollectedHeap>::print_location(st, addr);
1068 }
1069 
1070 void GenCollectedHeap::print_tracing_info() const {
1071   if (log_is_enabled(Debug, gc, heap, exit)) {
1072     LogStreamHandle(Debug, gc, heap, exit) lsh;
1073     _young_gen->print_summary_info_on(&lsh);
1074     _old_gen->print_summary_info_on(&lsh);
1075   }
1076 }
1077 
1078 void GenCollectedHeap::print_heap_change(const PreGenGCValues& pre_gc_values) const {
1079   const DefNewGeneration* const def_new_gen = (DefNewGeneration*) young_gen();
1080 
1081   log_info(gc, heap)(HEAP_CHANGE_FORMAT" "
1082                      HEAP_CHANGE_FORMAT" "
1083                      HEAP_CHANGE_FORMAT,
1084                      HEAP_CHANGE_FORMAT_ARGS(def_new_gen->short_name(),
1085                                              pre_gc_values.young_gen_used(),
1086                                              pre_gc_values.young_gen_capacity(),
1087                                              def_new_gen->used(),
1088                                              def_new_gen->capacity()),
1089                      HEAP_CHANGE_FORMAT_ARGS("Eden",
1090                                              pre_gc_values.eden_used(),
1091                                              pre_gc_values.eden_capacity(),
1092                                              def_new_gen->eden()->used(),
1093                                              def_new_gen->eden()->capacity()),
1094                      HEAP_CHANGE_FORMAT_ARGS("From",
1095                                              pre_gc_values.from_used(),
1096                                              pre_gc_values.from_capacity(),
1097                                              def_new_gen->from()->used(),
1098                                              def_new_gen->from()->capacity()));
1099   log_info(gc, heap)(HEAP_CHANGE_FORMAT,
1100                      HEAP_CHANGE_FORMAT_ARGS(old_gen()->short_name(),
1101                                              pre_gc_values.old_gen_used(),
1102                                              pre_gc_values.old_gen_capacity(),
1103                                              old_gen()->used(),
1104                                              old_gen()->capacity()));
1105   MetaspaceUtils::print_metaspace_change(pre_gc_values.metaspace_sizes());
1106 }
1107 
1108 class GenGCPrologueClosure: public GenCollectedHeap::GenClosure {
1109  private:
1110   bool _full;
1111  public:
1112   void do_generation(Generation* gen) {
1113     gen->gc_prologue(_full);
1114   }
1115   GenGCPrologueClosure(bool full) : _full(full) {};
1116 };
1117 
1118 void GenCollectedHeap::gc_prologue(bool full) {
1119   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
1120 
1121   // Fill TLAB's and such
1122   ensure_parsability(true);   // retire TLABs
1123 
1124   // Walk generations
1125   GenGCPrologueClosure blk(full);
1126   generation_iterate(&blk, false);  // not old-to-young.
1127 };
1128 
1129 class GenGCEpilogueClosure: public GenCollectedHeap::GenClosure {
1130  private:
1131   bool _full;
1132  public:
1133   void do_generation(Generation* gen) {
1134     gen->gc_epilogue(_full);
1135   }
1136   GenGCEpilogueClosure(bool full) : _full(full) {};
1137 };
1138 
1139 void GenCollectedHeap::gc_epilogue(bool full) {
1140 #if COMPILER2_OR_JVMCI
1141   assert(DerivedPointerTable::is_empty(), "derived pointer present");
1142 #endif // COMPILER2_OR_JVMCI
1143 
1144   resize_all_tlabs();
1145 
1146   GenGCEpilogueClosure blk(full);
1147   generation_iterate(&blk, false);  // not old-to-young.
1148 
1149   MetaspaceCounters::update_performance_counters();
1150 };
1151 
1152 #ifndef PRODUCT
1153 class GenGCSaveTopsBeforeGCClosure: public GenCollectedHeap::GenClosure {
1154  private:
1155  public:
1156   void do_generation(Generation* gen) {
1157     gen->record_spaces_top();
1158   }
1159 };
1160 
1161 void GenCollectedHeap::record_gen_tops_before_GC() {
1162   if (ZapUnusedHeapArea) {
1163     GenGCSaveTopsBeforeGCClosure blk;
1164     generation_iterate(&blk, false);  // not old-to-young.
1165   }
1166 }
1167 #endif  // not PRODUCT
1168 
1169 class GenEnsureParsabilityClosure: public GenCollectedHeap::GenClosure {
1170  public:
1171   void do_generation(Generation* gen) {
1172     gen->ensure_parsability();
1173   }
1174 };
1175 
1176 void GenCollectedHeap::ensure_parsability(bool retire_tlabs) {
1177   CollectedHeap::ensure_parsability(retire_tlabs);
1178   GenEnsureParsabilityClosure ep_cl;
1179   generation_iterate(&ep_cl, false);
1180 }