1 /* 2 * Copyright (c) 2014, 2021, Red Hat, Inc. All rights reserved. 3 * Copyright Amazon.com Inc. or its affiliates. All Rights Reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 28 #include "compiler/oopMap.hpp" 29 #include "gc/shared/continuationGCSupport.hpp" 30 #include "gc/shared/fullGCForwarding.inline.hpp" 31 #include "gc/shared/gcTraceTime.inline.hpp" 32 #include "gc/shared/preservedMarks.inline.hpp" 33 #include "gc/shared/tlab_globals.hpp" 34 #include "gc/shared/workerThread.hpp" 35 #include "gc/shenandoah/heuristics/shenandoahHeuristics.hpp" 36 #include "gc/shenandoah/shenandoahClosures.inline.hpp" 37 #include "gc/shenandoah/shenandoahCollectorPolicy.hpp" 38 #include "gc/shenandoah/shenandoahConcurrentGC.hpp" 39 #include "gc/shenandoah/shenandoahCollectionSet.hpp" 40 #include "gc/shenandoah/shenandoahCollectorPolicy.hpp" 41 #include "gc/shenandoah/shenandoahFreeSet.hpp" 42 #include "gc/shenandoah/shenandoahFullGC.hpp" 43 #include "gc/shenandoah/shenandoahGenerationalFullGC.hpp" 44 #include "gc/shenandoah/shenandoahGlobalGeneration.hpp" 45 #include "gc/shenandoah/shenandoahPhaseTimings.hpp" 46 #include "gc/shenandoah/shenandoahMark.inline.hpp" 47 #include "gc/shenandoah/shenandoahMonitoringSupport.hpp" 48 #include "gc/shenandoah/shenandoahHeapRegionClosures.hpp" 49 #include "gc/shenandoah/shenandoahHeapRegionSet.hpp" 50 #include "gc/shenandoah/shenandoahHeap.inline.hpp" 51 #include "gc/shenandoah/shenandoahHeapRegion.inline.hpp" 52 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp" 53 #include "gc/shenandoah/shenandoahMetrics.hpp" 54 #include "gc/shenandoah/shenandoahReferenceProcessor.hpp" 55 #include "gc/shenandoah/shenandoahRootProcessor.inline.hpp" 56 #include "gc/shenandoah/shenandoahSTWMark.hpp" 57 #include "gc/shenandoah/shenandoahUtils.hpp" 58 #include "gc/shenandoah/shenandoahVerifier.hpp" 59 #include "gc/shenandoah/shenandoahVMOperations.hpp" 60 #include "gc/shenandoah/shenandoahWorkerPolicy.hpp" 61 #include "memory/metaspaceUtils.hpp" 62 #include "memory/universe.hpp" 63 #include "oops/compressedOops.inline.hpp" 64 #include "oops/oop.inline.hpp" 65 #include "runtime/orderAccess.hpp" 66 #include "runtime/vmThread.hpp" 67 #include "utilities/copy.hpp" 68 #include "utilities/events.hpp" 69 #include "utilities/growableArray.hpp" 70 71 ShenandoahFullGC::ShenandoahFullGC() : 72 _gc_timer(ShenandoahHeap::heap()->gc_timer()), 73 _preserved_marks(new PreservedMarksSet(true)) {} 74 75 ShenandoahFullGC::~ShenandoahFullGC() { 76 delete _preserved_marks; 77 } 78 79 bool ShenandoahFullGC::collect(GCCause::Cause cause) { 80 vmop_entry_full(cause); 81 // Always success 82 return true; 83 } 84 85 void ShenandoahFullGC::vmop_entry_full(GCCause::Cause cause) { 86 ShenandoahHeap* const heap = ShenandoahHeap::heap(); 87 TraceCollectorStats tcs(heap->monitoring_support()->full_stw_collection_counters()); 88 ShenandoahTimingsTracker timing(ShenandoahPhaseTimings::full_gc_gross); 89 90 heap->try_inject_alloc_failure(); 91 VM_ShenandoahFullGC op(cause, this); 92 VMThread::execute(&op); 93 } 94 95 void ShenandoahFullGC::entry_full(GCCause::Cause cause) { 96 static const char* msg = "Pause Full"; 97 ShenandoahPausePhase gc_phase(msg, ShenandoahPhaseTimings::full_gc, true /* log_heap_usage */); 98 EventMark em("%s", msg); 99 100 ShenandoahWorkerScope scope(ShenandoahHeap::heap()->workers(), 101 ShenandoahWorkerPolicy::calc_workers_for_fullgc(), 102 "full gc"); 103 104 op_full(cause); 105 } 106 107 void ShenandoahFullGC::op_full(GCCause::Cause cause) { 108 ShenandoahMetricsSnapshot metrics; 109 metrics.snap_before(); 110 111 // Perform full GC 112 do_it(cause); 113 114 ShenandoahHeap* const heap = ShenandoahHeap::heap(); 115 116 if (heap->mode()->is_generational()) { 117 ShenandoahGenerationalFullGC::handle_completion(heap); 118 } 119 120 metrics.snap_after(); 121 122 if (metrics.is_good_progress()) { 123 heap->notify_gc_progress(); 124 } else { 125 // Nothing to do. Tell the allocation path that we have failed to make 126 // progress, and it can finally fail. 127 heap->notify_gc_no_progress(); 128 } 129 130 // Regardless if progress was made, we record that we completed a "successful" full GC. 131 heap->global_generation()->heuristics()->record_success_full(); 132 heap->shenandoah_policy()->record_success_full(); 133 } 134 135 void ShenandoahFullGC::do_it(GCCause::Cause gc_cause) { 136 ShenandoahHeap* heap = ShenandoahHeap::heap(); 137 138 if (heap->mode()->is_generational()) { 139 ShenandoahGenerationalFullGC::prepare(); 140 } 141 142 if (ShenandoahVerify) { 143 heap->verifier()->verify_before_fullgc(); 144 } 145 146 if (VerifyBeforeGC) { 147 Universe::verify(); 148 } 149 150 // Degenerated GC may carry concurrent root flags when upgrading to 151 // full GC. We need to reset it before mutators resume. 152 heap->set_concurrent_strong_root_in_progress(false); 153 heap->set_concurrent_weak_root_in_progress(false); 154 155 heap->set_full_gc_in_progress(true); 156 157 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "must be at a safepoint"); 158 assert(Thread::current()->is_VM_thread(), "Do full GC only while world is stopped"); 159 160 { 161 ShenandoahGCPhase phase(ShenandoahPhaseTimings::full_gc_heapdump_pre); 162 heap->pre_full_gc_dump(_gc_timer); 163 } 164 165 { 166 ShenandoahGCPhase prepare_phase(ShenandoahPhaseTimings::full_gc_prepare); 167 // Full GC is supposed to recover from any GC state: 168 169 // a0. Remember if we have forwarded objects 170 bool has_forwarded_objects = heap->has_forwarded_objects(); 171 172 // a1. Cancel evacuation, if in progress 173 if (heap->is_evacuation_in_progress()) { 174 heap->set_evacuation_in_progress(false); 175 } 176 assert(!heap->is_evacuation_in_progress(), "sanity"); 177 178 // a2. Cancel update-refs, if in progress 179 if (heap->is_update_refs_in_progress()) { 180 heap->set_update_refs_in_progress(false); 181 } 182 assert(!heap->is_update_refs_in_progress(), "sanity"); 183 184 // b. Cancel all concurrent marks, if in progress 185 if (heap->is_concurrent_mark_in_progress()) { 186 heap->cancel_concurrent_mark(); 187 } 188 assert(!heap->is_concurrent_mark_in_progress(), "sanity"); 189 190 // c. Update roots if this full GC is due to evac-oom, which may carry from-space pointers in roots. 191 if (has_forwarded_objects) { 192 update_roots(true /*full_gc*/); 193 } 194 195 // d. Reset the bitmaps for new marking 196 heap->global_generation()->reset_mark_bitmap(); 197 assert(heap->marking_context()->is_bitmap_clear(), "sanity"); 198 assert(!heap->global_generation()->is_mark_complete(), "sanity"); 199 200 // e. Abandon reference discovery and clear all discovered references. 201 ShenandoahReferenceProcessor* rp = heap->global_generation()->ref_processor(); 202 rp->abandon_partial_discovery(); 203 204 // f. Sync pinned region status from the CP marks 205 heap->sync_pinned_region_status(); 206 207 if (heap->mode()->is_generational()) { 208 ShenandoahGenerationalFullGC::restore_top_before_promote(heap); 209 } 210 211 // The rest of prologue: 212 _preserved_marks->init(heap->workers()->active_workers()); 213 214 assert(heap->has_forwarded_objects() == has_forwarded_objects, "This should not change"); 215 } 216 217 if (UseTLAB) { 218 // Note: PLABs are also retired with GCLABs in generational mode. 219 heap->gclabs_retire(ResizeTLAB); 220 heap->tlabs_retire(ResizeTLAB); 221 } 222 223 OrderAccess::fence(); 224 225 phase1_mark_heap(); 226 227 // Once marking is done, which may have fixed up forwarded objects, we can drop it. 228 // Coming out of Full GC, we would not have any forwarded objects. 229 // This also prevents resolves with fwdptr from kicking in while adjusting pointers in phase3. 230 heap->set_has_forwarded_objects(false); 231 232 heap->set_full_gc_move_in_progress(true); 233 234 // Setup workers for the rest 235 OrderAccess::fence(); 236 237 // Initialize worker slices 238 ShenandoahHeapRegionSet** worker_slices = NEW_C_HEAP_ARRAY(ShenandoahHeapRegionSet*, heap->max_workers(), mtGC); 239 for (uint i = 0; i < heap->max_workers(); i++) { 240 worker_slices[i] = new ShenandoahHeapRegionSet(); 241 } 242 243 { 244 // The rest of code performs region moves, where region status is undefined 245 // until all phases run together. 246 ShenandoahHeapLocker lock(heap->lock()); 247 248 FullGCForwarding::begin(); 249 250 phase2_calculate_target_addresses(worker_slices); 251 252 OrderAccess::fence(); 253 254 phase3_update_references(); 255 256 phase4_compact_objects(worker_slices); 257 258 phase5_epilog(); 259 260 FullGCForwarding::end(); 261 } 262 263 // Resize metaspace 264 MetaspaceGC::compute_new_size(); 265 266 // Free worker slices 267 for (uint i = 0; i < heap->max_workers(); i++) { 268 delete worker_slices[i]; 269 } 270 FREE_C_HEAP_ARRAY(ShenandoahHeapRegionSet*, worker_slices); 271 272 heap->set_full_gc_move_in_progress(false); 273 heap->set_full_gc_in_progress(false); 274 275 if (ShenandoahVerify) { 276 heap->verifier()->verify_after_fullgc(); 277 } 278 279 if (VerifyAfterGC) { 280 Universe::verify(); 281 } 282 283 { 284 ShenandoahGCPhase phase(ShenandoahPhaseTimings::full_gc_heapdump_post); 285 heap->post_full_gc_dump(_gc_timer); 286 } 287 } 288 289 class ShenandoahPrepareForMarkClosure: public ShenandoahHeapRegionClosure { 290 private: 291 ShenandoahMarkingContext* const _ctx; 292 293 public: 294 ShenandoahPrepareForMarkClosure() : _ctx(ShenandoahHeap::heap()->marking_context()) {} 295 296 void heap_region_do(ShenandoahHeapRegion *r) override { 297 _ctx->capture_top_at_mark_start(r); 298 r->clear_live_data(); 299 } 300 301 bool is_thread_safe() override { return true; } 302 }; 303 304 void ShenandoahFullGC::phase1_mark_heap() { 305 GCTraceTime(Info, gc, phases) time("Phase 1: Mark live objects", _gc_timer); 306 ShenandoahGCPhase mark_phase(ShenandoahPhaseTimings::full_gc_mark); 307 308 ShenandoahHeap* heap = ShenandoahHeap::heap(); 309 310 ShenandoahPrepareForMarkClosure prepare_for_mark; 311 ShenandoahExcludeRegionClosure<FREE> cl(&prepare_for_mark); 312 heap->parallel_heap_region_iterate(&cl); 313 314 heap->set_unload_classes(heap->global_generation()->heuristics()->can_unload_classes()); 315 316 ShenandoahReferenceProcessor* rp = heap->global_generation()->ref_processor(); 317 // enable ("weak") refs discovery 318 rp->set_soft_reference_policy(true); // forcefully purge all soft references 319 320 ShenandoahSTWMark mark(heap->global_generation(), true /*full_gc*/); 321 mark.mark(); 322 heap->parallel_cleaning(true /* full_gc */); 323 324 if (ShenandoahHeap::heap()->mode()->is_generational()) { 325 ShenandoahGenerationalFullGC::log_live_in_old(heap); 326 } 327 } 328 329 class ShenandoahPrepareForCompactionObjectClosure : public ObjectClosure { 330 private: 331 PreservedMarks* const _preserved_marks; 332 ShenandoahHeap* const _heap; 333 GrowableArray<ShenandoahHeapRegion*>& _empty_regions; 334 int _empty_regions_pos; 335 ShenandoahHeapRegion* _to_region; 336 ShenandoahHeapRegion* _from_region; 337 HeapWord* _compact_point; 338 339 public: 340 ShenandoahPrepareForCompactionObjectClosure(PreservedMarks* preserved_marks, 341 GrowableArray<ShenandoahHeapRegion*>& empty_regions, 342 ShenandoahHeapRegion* to_region) : 343 _preserved_marks(preserved_marks), 344 _heap(ShenandoahHeap::heap()), 345 _empty_regions(empty_regions), 346 _empty_regions_pos(0), 347 _to_region(to_region), 348 _from_region(nullptr), 349 _compact_point(to_region->bottom()) {} 350 351 void set_from_region(ShenandoahHeapRegion* from_region) { 352 _from_region = from_region; 353 } 354 355 void finish() { 356 assert(_to_region != nullptr, "should not happen"); 357 _to_region->set_new_top(_compact_point); 358 } 359 360 bool is_compact_same_region() { 361 return _from_region == _to_region; 362 } 363 364 int empty_regions_pos() { 365 return _empty_regions_pos; 366 } 367 368 void do_object(oop p) { 369 assert(_from_region != nullptr, "must set before work"); 370 assert(_heap->complete_marking_context()->is_marked(p), "must be marked"); 371 assert(!_heap->complete_marking_context()->allocated_after_mark_start(p), "must be truly marked"); 372 373 size_t old_size = p->size(); 374 size_t new_size = p->copy_size(old_size, p->mark()); 375 size_t obj_size = _compact_point == cast_from_oop<HeapWord*>(p) ? old_size : new_size; 376 if (_compact_point + obj_size > _to_region->end()) { 377 finish(); 378 379 // Object doesn't fit. Pick next empty region and start compacting there. 380 ShenandoahHeapRegion* new_to_region; 381 if (_empty_regions_pos < _empty_regions.length()) { 382 new_to_region = _empty_regions.at(_empty_regions_pos); 383 _empty_regions_pos++; 384 } else { 385 // Out of empty region? Compact within the same region. 386 new_to_region = _from_region; 387 } 388 389 assert(new_to_region != _to_region, "must not reuse same to-region"); 390 assert(new_to_region != nullptr, "must not be null"); 391 _to_region = new_to_region; 392 _compact_point = _to_region->bottom(); 393 obj_size = _compact_point == cast_from_oop<HeapWord*>(p) ? old_size : new_size; 394 } 395 396 // Object fits into current region, record new location, if object does not move: 397 assert(_compact_point + obj_size <= _to_region->end(), "must fit"); 398 shenandoah_assert_not_forwarded(nullptr, p); 399 if (_compact_point != cast_from_oop<HeapWord*>(p)) { 400 _preserved_marks->push_if_necessary(p, p->mark()); 401 FullGCForwarding::forward_to(p, cast_to_oop(_compact_point)); 402 } 403 _compact_point += obj_size; 404 } 405 }; 406 407 class ShenandoahPrepareForCompactionTask : public WorkerTask { 408 private: 409 PreservedMarksSet* const _preserved_marks; 410 ShenandoahHeap* const _heap; 411 ShenandoahHeapRegionSet** const _worker_slices; 412 413 public: 414 ShenandoahPrepareForCompactionTask(PreservedMarksSet *preserved_marks, ShenandoahHeapRegionSet **worker_slices) : 415 WorkerTask("Shenandoah Prepare For Compaction"), 416 _preserved_marks(preserved_marks), 417 _heap(ShenandoahHeap::heap()), _worker_slices(worker_slices) { 418 } 419 420 static bool is_candidate_region(ShenandoahHeapRegion* r) { 421 // Empty region: get it into the slice to defragment the slice itself. 422 // We could have skipped this without violating correctness, but we really 423 // want to compact all live regions to the start of the heap, which sometimes 424 // means moving them into the fully empty regions. 425 if (r->is_empty()) return true; 426 427 // Can move the region, and this is not the humongous region. Humongous 428 // moves are special cased here, because their moves are handled separately. 429 return r->is_stw_move_allowed() && !r->is_humongous(); 430 } 431 432 void work(uint worker_id) override; 433 private: 434 template<typename ClosureType> 435 void prepare_for_compaction(ClosureType& cl, 436 GrowableArray<ShenandoahHeapRegion*>& empty_regions, 437 ShenandoahHeapRegionSetIterator& it, 438 ShenandoahHeapRegion* from_region); 439 }; 440 441 void ShenandoahPrepareForCompactionTask::work(uint worker_id) { 442 ShenandoahParallelWorkerSession worker_session(worker_id); 443 ShenandoahHeapRegionSet* slice = _worker_slices[worker_id]; 444 ShenandoahHeapRegionSetIterator it(slice); 445 ShenandoahHeapRegion* from_region = it.next(); 446 // No work? 447 if (from_region == nullptr) { 448 return; 449 } 450 451 // Sliding compaction. Walk all regions in the slice, and compact them. 452 // Remember empty regions and reuse them as needed. 453 ResourceMark rm; 454 455 GrowableArray<ShenandoahHeapRegion*> empty_regions((int)_heap->num_regions()); 456 457 if (_heap->mode()->is_generational()) { 458 ShenandoahPrepareForGenerationalCompactionObjectClosure cl(_preserved_marks->get(worker_id), 459 empty_regions, from_region, worker_id); 460 prepare_for_compaction(cl, empty_regions, it, from_region); 461 } else { 462 ShenandoahPrepareForCompactionObjectClosure cl(_preserved_marks->get(worker_id), empty_regions, from_region); 463 prepare_for_compaction(cl, empty_regions, it, from_region); 464 } 465 } 466 467 template<typename ClosureType> 468 void ShenandoahPrepareForCompactionTask::prepare_for_compaction(ClosureType& cl, 469 GrowableArray<ShenandoahHeapRegion*>& empty_regions, 470 ShenandoahHeapRegionSetIterator& it, 471 ShenandoahHeapRegion* from_region) { 472 while (from_region != nullptr) { 473 assert(is_candidate_region(from_region), "Sanity"); 474 cl.set_from_region(from_region); 475 if (from_region->has_live()) { 476 _heap->marked_object_iterate(from_region, &cl); 477 } 478 479 // Compacted the region to somewhere else? From-region is empty then. 480 if (!cl.is_compact_same_region()) { 481 empty_regions.append(from_region); 482 } 483 from_region = it.next(); 484 } 485 cl.finish(); 486 487 // Mark all remaining regions as empty 488 for (int pos = cl.empty_regions_pos(); pos < empty_regions.length(); ++pos) { 489 ShenandoahHeapRegion* r = empty_regions.at(pos); 490 r->set_new_top(r->bottom()); 491 } 492 } 493 494 void ShenandoahFullGC::calculate_target_humongous_objects() { 495 ShenandoahHeap* heap = ShenandoahHeap::heap(); 496 497 // Compute the new addresses for humongous objects. We need to do this after addresses 498 // for regular objects are calculated, and we know what regions in heap suffix are 499 // available for humongous moves. 500 // 501 // Scan the heap backwards, because we are compacting humongous regions towards the end. 502 // Maintain the contiguous compaction window in [to_begin; to_end), so that we can slide 503 // humongous start there. 504 // 505 // The complication is potential non-movable regions during the scan. If such region is 506 // detected, then sliding restarts towards that non-movable region. 507 508 size_t to_begin = heap->num_regions(); 509 size_t to_end = heap->num_regions(); 510 511 log_debug(gc)("Full GC calculating target humongous objects from end " SIZE_FORMAT, to_end); 512 for (size_t c = heap->num_regions(); c > 0; c--) { 513 ShenandoahHeapRegion *r = heap->get_region(c - 1); 514 if (r->is_humongous_continuation() || (r->new_top() == r->bottom())) { 515 // To-region candidate: record this, and continue scan 516 to_begin = r->index(); 517 continue; 518 } 519 520 if (r->is_humongous_start() && r->is_stw_move_allowed()) { 521 // From-region candidate: movable humongous region 522 oop old_obj = cast_to_oop(r->bottom()); 523 size_t words_size = old_obj->size(); 524 size_t num_regions = ShenandoahHeapRegion::required_regions(words_size * HeapWordSize); 525 526 size_t start = to_end - num_regions; 527 528 if (start >= to_begin && start != r->index()) { 529 // Fits into current window, and the move is non-trivial. Record the move then, and continue scan. 530 _preserved_marks->get(0)->push_if_necessary(old_obj, old_obj->mark()); 531 FullGCForwarding::forward_to(old_obj, cast_to_oop(heap->get_region(start)->bottom())); 532 to_end = start; 533 continue; 534 } 535 } 536 537 // Failed to fit. Scan starting from current region. 538 to_begin = r->index(); 539 to_end = r->index(); 540 } 541 } 542 543 class ShenandoahEnsureHeapActiveClosure: public ShenandoahHeapRegionClosure { 544 private: 545 ShenandoahHeap* const _heap; 546 547 public: 548 ShenandoahEnsureHeapActiveClosure() : _heap(ShenandoahHeap::heap()) {} 549 void heap_region_do(ShenandoahHeapRegion* r) { 550 if (r->is_trash()) { 551 r->recycle(); 552 } 553 if (r->is_cset()) { 554 // Leave affiliation unchanged 555 r->make_regular_bypass(); 556 } 557 if (r->is_empty_uncommitted()) { 558 r->make_committed_bypass(); 559 } 560 assert (r->is_committed(), "only committed regions in heap now, see region " SIZE_FORMAT, r->index()); 561 562 // Record current region occupancy: this communicates empty regions are free 563 // to the rest of Full GC code. 564 r->set_new_top(r->top()); 565 } 566 }; 567 568 class ShenandoahTrashImmediateGarbageClosure: public ShenandoahHeapRegionClosure { 569 private: 570 ShenandoahHeap* const _heap; 571 ShenandoahMarkingContext* const _ctx; 572 573 public: 574 ShenandoahTrashImmediateGarbageClosure() : 575 _heap(ShenandoahHeap::heap()), 576 _ctx(ShenandoahHeap::heap()->complete_marking_context()) {} 577 578 void heap_region_do(ShenandoahHeapRegion* r) override { 579 if (r->is_humongous_start()) { 580 oop humongous_obj = cast_to_oop(r->bottom()); 581 if (!_ctx->is_marked(humongous_obj)) { 582 assert(!r->has_live(), "Region " SIZE_FORMAT " is not marked, should not have live", r->index()); 583 _heap->trash_humongous_region_at(r); 584 } else { 585 assert(r->has_live(), "Region " SIZE_FORMAT " should have live", r->index()); 586 } 587 } else if (r->is_humongous_continuation()) { 588 // If we hit continuation, the non-live humongous starts should have been trashed already 589 assert(r->humongous_start_region()->has_live(), "Region " SIZE_FORMAT " should have live", r->index()); 590 } else if (r->is_regular()) { 591 if (!r->has_live()) { 592 r->make_trash_immediate(); 593 } 594 } 595 } 596 }; 597 598 void ShenandoahFullGC::distribute_slices(ShenandoahHeapRegionSet** worker_slices) { 599 ShenandoahHeap* heap = ShenandoahHeap::heap(); 600 601 uint n_workers = heap->workers()->active_workers(); 602 size_t n_regions = heap->num_regions(); 603 604 // What we want to accomplish: have the dense prefix of data, while still balancing 605 // out the parallel work. 606 // 607 // Assuming the amount of work is driven by the live data that needs moving, we can slice 608 // the entire heap into equal-live-sized prefix slices, and compact into them. So, each 609 // thread takes all regions in its prefix subset, and then it takes some regions from 610 // the tail. 611 // 612 // Tail region selection becomes interesting. 613 // 614 // First, we want to distribute the regions fairly between the workers, and those regions 615 // might have different amount of live data. So, until we sure no workers need live data, 616 // we need to only take what the worker needs. 617 // 618 // Second, since we slide everything to the left in each slice, the most busy regions 619 // would be the ones on the left. Which means we want to have all workers have their after-tail 620 // regions as close to the left as possible. 621 // 622 // The easiest way to do this is to distribute after-tail regions in round-robin between 623 // workers that still need live data. 624 // 625 // Consider parallel workers A, B, C, then the target slice layout would be: 626 // 627 // AAAAAAAABBBBBBBBCCCCCCCC|ABCABCABCABCABCABCABCABABABABABABABABABABAAAAA 628 // 629 // (.....dense-prefix.....) (.....................tail...................) 630 // [all regions fully live] [left-most regions are fuller that right-most] 631 // 632 633 // Compute how much live data is there. This would approximate the size of dense prefix 634 // we target to create. 635 size_t total_live = 0; 636 for (size_t idx = 0; idx < n_regions; idx++) { 637 ShenandoahHeapRegion *r = heap->get_region(idx); 638 if (ShenandoahPrepareForCompactionTask::is_candidate_region(r)) { 639 total_live += r->get_live_data_words(); 640 } 641 } 642 643 // Estimate the size for the dense prefix. Note that we specifically count only the 644 // "full" regions, so there would be some non-full regions in the slice tail. 645 size_t live_per_worker = total_live / n_workers; 646 size_t prefix_regions_per_worker = live_per_worker / ShenandoahHeapRegion::region_size_words(); 647 size_t prefix_regions_total = prefix_regions_per_worker * n_workers; 648 prefix_regions_total = MIN2(prefix_regions_total, n_regions); 649 assert(prefix_regions_total <= n_regions, "Sanity"); 650 651 // There might be non-candidate regions in the prefix. To compute where the tail actually 652 // ends up being, we need to account those as well. 653 size_t prefix_end = prefix_regions_total; 654 for (size_t idx = 0; idx < prefix_regions_total; idx++) { 655 ShenandoahHeapRegion *r = heap->get_region(idx); 656 if (!ShenandoahPrepareForCompactionTask::is_candidate_region(r)) { 657 prefix_end++; 658 } 659 } 660 prefix_end = MIN2(prefix_end, n_regions); 661 assert(prefix_end <= n_regions, "Sanity"); 662 663 // Distribute prefix regions per worker: each thread definitely gets its own same-sized 664 // subset of dense prefix. 665 size_t prefix_idx = 0; 666 667 size_t* live = NEW_C_HEAP_ARRAY(size_t, n_workers, mtGC); 668 669 for (size_t wid = 0; wid < n_workers; wid++) { 670 ShenandoahHeapRegionSet* slice = worker_slices[wid]; 671 672 live[wid] = 0; 673 size_t regs = 0; 674 675 // Add all prefix regions for this worker 676 while (prefix_idx < prefix_end && regs < prefix_regions_per_worker) { 677 ShenandoahHeapRegion *r = heap->get_region(prefix_idx); 678 if (ShenandoahPrepareForCompactionTask::is_candidate_region(r)) { 679 slice->add_region(r); 680 live[wid] += r->get_live_data_words(); 681 regs++; 682 } 683 prefix_idx++; 684 } 685 } 686 687 // Distribute the tail among workers in round-robin fashion. 688 size_t wid = n_workers - 1; 689 690 for (size_t tail_idx = prefix_end; tail_idx < n_regions; tail_idx++) { 691 ShenandoahHeapRegion *r = heap->get_region(tail_idx); 692 if (ShenandoahPrepareForCompactionTask::is_candidate_region(r)) { 693 assert(wid < n_workers, "Sanity"); 694 695 size_t live_region = r->get_live_data_words(); 696 697 // Select next worker that still needs live data. 698 size_t old_wid = wid; 699 do { 700 wid++; 701 if (wid == n_workers) wid = 0; 702 } while (live[wid] + live_region >= live_per_worker && old_wid != wid); 703 704 if (old_wid == wid) { 705 // Circled back to the same worker? This means liveness data was 706 // miscalculated. Bump the live_per_worker limit so that 707 // everyone gets a piece of the leftover work. 708 live_per_worker += ShenandoahHeapRegion::region_size_words(); 709 } 710 711 worker_slices[wid]->add_region(r); 712 live[wid] += live_region; 713 } 714 } 715 716 FREE_C_HEAP_ARRAY(size_t, live); 717 718 #ifdef ASSERT 719 ResourceBitMap map(n_regions); 720 for (size_t wid = 0; wid < n_workers; wid++) { 721 ShenandoahHeapRegionSetIterator it(worker_slices[wid]); 722 ShenandoahHeapRegion* r = it.next(); 723 while (r != nullptr) { 724 size_t idx = r->index(); 725 assert(ShenandoahPrepareForCompactionTask::is_candidate_region(r), "Sanity: " SIZE_FORMAT, idx); 726 assert(!map.at(idx), "No region distributed twice: " SIZE_FORMAT, idx); 727 map.at_put(idx, true); 728 r = it.next(); 729 } 730 } 731 732 for (size_t rid = 0; rid < n_regions; rid++) { 733 bool is_candidate = ShenandoahPrepareForCompactionTask::is_candidate_region(heap->get_region(rid)); 734 bool is_distributed = map.at(rid); 735 assert(is_distributed || !is_candidate, "All candidates are distributed: " SIZE_FORMAT, rid); 736 } 737 #endif 738 } 739 740 void ShenandoahFullGC::phase2_calculate_target_addresses(ShenandoahHeapRegionSet** worker_slices) { 741 GCTraceTime(Info, gc, phases) time("Phase 2: Compute new object addresses", _gc_timer); 742 ShenandoahGCPhase calculate_address_phase(ShenandoahPhaseTimings::full_gc_calculate_addresses); 743 744 ShenandoahHeap* heap = ShenandoahHeap::heap(); 745 746 // About to figure out which regions can be compacted, make sure pinning status 747 // had been updated in GC prologue. 748 heap->assert_pinned_region_status(); 749 750 { 751 // Trash the immediately collectible regions before computing addresses 752 ShenandoahTrashImmediateGarbageClosure trash_immediate_garbage; 753 ShenandoahExcludeRegionClosure<FREE> cl(&trash_immediate_garbage); 754 heap->heap_region_iterate(&cl); 755 756 // Make sure regions are in good state: committed, active, clean. 757 // This is needed because we are potentially sliding the data through them. 758 ShenandoahEnsureHeapActiveClosure ecl; 759 heap->heap_region_iterate(&ecl); 760 } 761 762 // Compute the new addresses for regular objects 763 { 764 ShenandoahGCPhase phase(ShenandoahPhaseTimings::full_gc_calculate_addresses_regular); 765 766 distribute_slices(worker_slices); 767 768 ShenandoahPrepareForCompactionTask task(_preserved_marks, worker_slices); 769 heap->workers()->run_task(&task); 770 } 771 772 // Compute the new addresses for humongous objects 773 { 774 ShenandoahGCPhase phase(ShenandoahPhaseTimings::full_gc_calculate_addresses_humong); 775 calculate_target_humongous_objects(); 776 } 777 } 778 779 class ShenandoahAdjustPointersClosure : public MetadataVisitingOopIterateClosure { 780 private: 781 ShenandoahHeap* const _heap; 782 ShenandoahMarkingContext* const _ctx; 783 784 template <class T> 785 inline void do_oop_work(T* p) { 786 T o = RawAccess<>::oop_load(p); 787 if (!CompressedOops::is_null(o)) { 788 oop obj = CompressedOops::decode_not_null(o); 789 assert(_ctx->is_marked(obj), "must be marked"); 790 if (FullGCForwarding::is_forwarded(obj)) { 791 oop forw = FullGCForwarding::forwardee(obj); 792 RawAccess<IS_NOT_NULL>::oop_store(p, forw); 793 } 794 } 795 } 796 797 public: 798 ShenandoahAdjustPointersClosure() : 799 _heap(ShenandoahHeap::heap()), 800 _ctx(ShenandoahHeap::heap()->complete_marking_context()) {} 801 802 void do_oop(oop* p) { do_oop_work(p); } 803 void do_oop(narrowOop* p) { do_oop_work(p); } 804 void do_method(Method* m) {} 805 void do_nmethod(nmethod* nm) {} 806 }; 807 808 class ShenandoahAdjustPointersObjectClosure : public ObjectClosure { 809 private: 810 ShenandoahHeap* const _heap; 811 ShenandoahAdjustPointersClosure _cl; 812 813 public: 814 ShenandoahAdjustPointersObjectClosure() : 815 _heap(ShenandoahHeap::heap()) { 816 } 817 void do_object(oop p) { 818 assert(_heap->complete_marking_context()->is_marked(p), "must be marked"); 819 p->oop_iterate(&_cl); 820 } 821 }; 822 823 class ShenandoahAdjustPointersTask : public WorkerTask { 824 private: 825 ShenandoahHeap* const _heap; 826 ShenandoahRegionIterator _regions; 827 828 public: 829 ShenandoahAdjustPointersTask() : 830 WorkerTask("Shenandoah Adjust Pointers"), 831 _heap(ShenandoahHeap::heap()) { 832 } 833 834 void work(uint worker_id) { 835 ShenandoahParallelWorkerSession worker_session(worker_id); 836 ShenandoahAdjustPointersObjectClosure obj_cl; 837 ShenandoahHeapRegion* r = _regions.next(); 838 while (r != nullptr) { 839 if (!r->is_humongous_continuation() && r->has_live()) { 840 _heap->marked_object_iterate(r, &obj_cl); 841 } 842 if (_heap->mode()->is_generational()) { 843 ShenandoahGenerationalFullGC::maybe_coalesce_and_fill_region(r); 844 } 845 r = _regions.next(); 846 } 847 } 848 }; 849 850 class ShenandoahAdjustRootPointersTask : public WorkerTask { 851 private: 852 ShenandoahRootAdjuster* _rp; 853 PreservedMarksSet* _preserved_marks; 854 public: 855 ShenandoahAdjustRootPointersTask(ShenandoahRootAdjuster* rp, PreservedMarksSet* preserved_marks) : 856 WorkerTask("Shenandoah Adjust Root Pointers"), 857 _rp(rp), 858 _preserved_marks(preserved_marks) {} 859 860 void work(uint worker_id) { 861 ShenandoahParallelWorkerSession worker_session(worker_id); 862 ShenandoahAdjustPointersClosure cl; 863 _rp->roots_do(worker_id, &cl); 864 _preserved_marks->get(worker_id)->adjust_during_full_gc(); 865 } 866 }; 867 868 void ShenandoahFullGC::phase3_update_references() { 869 GCTraceTime(Info, gc, phases) time("Phase 3: Adjust pointers", _gc_timer); 870 ShenandoahGCPhase adjust_pointer_phase(ShenandoahPhaseTimings::full_gc_adjust_pointers); 871 872 ShenandoahHeap* heap = ShenandoahHeap::heap(); 873 874 WorkerThreads* workers = heap->workers(); 875 uint nworkers = workers->active_workers(); 876 { 877 #if COMPILER2_OR_JVMCI 878 DerivedPointerTable::clear(); 879 #endif 880 ShenandoahRootAdjuster rp(nworkers, ShenandoahPhaseTimings::full_gc_adjust_roots); 881 ShenandoahAdjustRootPointersTask task(&rp, _preserved_marks); 882 workers->run_task(&task); 883 #if COMPILER2_OR_JVMCI 884 DerivedPointerTable::update_pointers(); 885 #endif 886 } 887 888 ShenandoahAdjustPointersTask adjust_pointers_task; 889 workers->run_task(&adjust_pointers_task); 890 } 891 892 class ShenandoahCompactObjectsClosure : public ObjectClosure { 893 private: 894 ShenandoahHeap* const _heap; 895 uint const _worker_id; 896 897 public: 898 ShenandoahCompactObjectsClosure(uint worker_id) : 899 _heap(ShenandoahHeap::heap()), _worker_id(worker_id) {} 900 901 void do_object(oop p) { 902 assert(_heap->complete_marking_context()->is_marked(p), "must be marked"); 903 size_t size = p->size(); 904 if (FullGCForwarding::is_forwarded(p)) { 905 HeapWord* compact_from = cast_from_oop<HeapWord*>(p); 906 HeapWord* compact_to = cast_from_oop<HeapWord*>(FullGCForwarding::forwardee(p)); 907 assert(compact_from != compact_to, "Forwarded object should move"); 908 Copy::aligned_conjoint_words(compact_from, compact_to, size); 909 oop new_obj = cast_to_oop(compact_to); 910 911 ContinuationGCSupport::relativize_stack_chunk(new_obj); 912 new_obj->init_mark(); 913 new_obj->initialize_hash_if_necessary(p); 914 } 915 } 916 }; 917 918 class ShenandoahCompactObjectsTask : public WorkerTask { 919 private: 920 ShenandoahHeap* const _heap; 921 ShenandoahHeapRegionSet** const _worker_slices; 922 923 public: 924 ShenandoahCompactObjectsTask(ShenandoahHeapRegionSet** worker_slices) : 925 WorkerTask("Shenandoah Compact Objects"), 926 _heap(ShenandoahHeap::heap()), 927 _worker_slices(worker_slices) { 928 } 929 930 void work(uint worker_id) { 931 ShenandoahParallelWorkerSession worker_session(worker_id); 932 ShenandoahHeapRegionSetIterator slice(_worker_slices[worker_id]); 933 934 ShenandoahCompactObjectsClosure cl(worker_id); 935 ShenandoahHeapRegion* r = slice.next(); 936 while (r != nullptr) { 937 assert(!r->is_humongous(), "must not get humongous regions here"); 938 if (r->has_live()) { 939 _heap->marked_object_iterate(r, &cl); 940 } 941 r->set_top(r->new_top()); 942 r = slice.next(); 943 } 944 } 945 }; 946 947 class ShenandoahPostCompactClosure : public ShenandoahHeapRegionClosure { 948 private: 949 ShenandoahHeap* const _heap; 950 bool _is_generational; 951 size_t _young_regions, _young_usage, _young_humongous_waste; 952 size_t _old_regions, _old_usage, _old_humongous_waste; 953 954 public: 955 ShenandoahPostCompactClosure() : _heap(ShenandoahHeap::heap()), 956 _is_generational(_heap->mode()->is_generational()), 957 _young_regions(0), 958 _young_usage(0), 959 _young_humongous_waste(0), 960 _old_regions(0), 961 _old_usage(0), 962 _old_humongous_waste(0) 963 { 964 _heap->free_set()->clear(); 965 } 966 967 void heap_region_do(ShenandoahHeapRegion* r) { 968 assert (!r->is_cset(), "cset regions should have been demoted already"); 969 970 // Need to reset the complete-top-at-mark-start pointer here because 971 // the complete marking bitmap is no longer valid. This ensures 972 // size-based iteration in marked_object_iterate(). 973 // NOTE: See blurb at ShenandoahMCResetCompleteBitmapTask on why we need to skip 974 // pinned regions. 975 if (!r->is_pinned()) { 976 _heap->complete_marking_context()->reset_top_at_mark_start(r); 977 } 978 979 size_t live = r->used(); 980 981 // Make empty regions that have been allocated into regular 982 if (r->is_empty() && live > 0) { 983 if (!_is_generational) { 984 r->make_affiliated_maybe(); 985 } 986 // else, generational mode compaction has already established affiliation. 987 r->make_regular_bypass(); 988 if (ZapUnusedHeapArea) { 989 SpaceMangler::mangle_region(MemRegion(r->top(), r->end())); 990 } 991 } 992 993 // Reclaim regular regions that became empty 994 if (r->is_regular() && live == 0) { 995 r->make_trash(); 996 } 997 998 // Recycle all trash regions 999 if (r->is_trash()) { 1000 live = 0; 1001 r->recycle(); 1002 } else { 1003 if (r->is_old()) { 1004 ShenandoahGenerationalFullGC::account_for_region(r, _old_regions, _old_usage, _old_humongous_waste); 1005 } else if (r->is_young()) { 1006 ShenandoahGenerationalFullGC::account_for_region(r, _young_regions, _young_usage, _young_humongous_waste); 1007 } 1008 } 1009 r->set_live_data(live); 1010 r->reset_alloc_metadata(); 1011 } 1012 1013 void update_generation_usage() { 1014 if (_is_generational) { 1015 _heap->old_generation()->establish_usage(_old_regions, _old_usage, _old_humongous_waste); 1016 _heap->young_generation()->establish_usage(_young_regions, _young_usage, _young_humongous_waste); 1017 } else { 1018 assert(_old_regions == 0, "Old regions only expected in generational mode"); 1019 assert(_old_usage == 0, "Old usage only expected in generational mode"); 1020 assert(_old_humongous_waste == 0, "Old humongous waste only expected in generational mode"); 1021 } 1022 1023 // In generational mode, global usage should be the sum of young and old. This is also true 1024 // for non-generational modes except that there are no old regions. 1025 _heap->global_generation()->establish_usage(_old_regions + _young_regions, 1026 _old_usage + _young_usage, 1027 _old_humongous_waste + _young_humongous_waste); 1028 } 1029 }; 1030 1031 void ShenandoahFullGC::compact_humongous_objects() { 1032 // Compact humongous regions, based on their fwdptr objects. 1033 // 1034 // This code is serial, because doing the in-slice parallel sliding is tricky. In most cases, 1035 // humongous regions are already compacted, and do not require further moves, which alleviates 1036 // sliding costs. We may consider doing this in parallel in the future. 1037 1038 ShenandoahHeap* heap = ShenandoahHeap::heap(); 1039 1040 for (size_t c = heap->num_regions(); c > 0; c--) { 1041 ShenandoahHeapRegion* r = heap->get_region(c - 1); 1042 if (r->is_humongous_start()) { 1043 oop old_obj = cast_to_oop(r->bottom()); 1044 if (!FullGCForwarding::is_forwarded(old_obj)) { 1045 // No need to move the object, it stays at the same slot 1046 continue; 1047 } 1048 size_t words_size = old_obj->size(); 1049 size_t num_regions = ShenandoahHeapRegion::required_regions(words_size * HeapWordSize); 1050 1051 size_t old_start = r->index(); 1052 size_t old_end = old_start + num_regions - 1; 1053 size_t new_start = heap->heap_region_index_containing(FullGCForwarding::forwardee(old_obj)); 1054 size_t new_end = new_start + num_regions - 1; 1055 assert(old_start != new_start, "must be real move"); 1056 assert(r->is_stw_move_allowed(), "Region " SIZE_FORMAT " should be movable", r->index()); 1057 1058 log_debug(gc)("Full GC compaction moves humongous object from region " SIZE_FORMAT " to region " SIZE_FORMAT, old_start, new_start); 1059 Copy::aligned_conjoint_words(r->bottom(), heap->get_region(new_start)->bottom(), words_size); 1060 ContinuationGCSupport::relativize_stack_chunk(cast_to_oop<HeapWord*>(r->bottom())); 1061 1062 oop new_obj = cast_to_oop(heap->get_region(new_start)->bottom()); 1063 new_obj->init_mark(); 1064 1065 { 1066 ShenandoahAffiliation original_affiliation = r->affiliation(); 1067 for (size_t c = old_start; c <= old_end; c++) { 1068 ShenandoahHeapRegion* r = heap->get_region(c); 1069 // Leave humongous region affiliation unchanged. 1070 r->make_regular_bypass(); 1071 r->set_top(r->bottom()); 1072 } 1073 1074 for (size_t c = new_start; c <= new_end; c++) { 1075 ShenandoahHeapRegion* r = heap->get_region(c); 1076 if (c == new_start) { 1077 r->make_humongous_start_bypass(original_affiliation); 1078 } else { 1079 r->make_humongous_cont_bypass(original_affiliation); 1080 } 1081 1082 // Trailing region may be non-full, record the remainder there 1083 size_t remainder = words_size & ShenandoahHeapRegion::region_size_words_mask(); 1084 if ((c == new_end) && (remainder != 0)) { 1085 r->set_top(r->bottom() + remainder); 1086 } else { 1087 r->set_top(r->end()); 1088 } 1089 1090 r->reset_alloc_metadata(); 1091 } 1092 } 1093 } 1094 } 1095 } 1096 1097 // This is slightly different to ShHeap::reset_next_mark_bitmap: 1098 // we need to remain able to walk pinned regions. 1099 // Since pinned region do not move and don't get compacted, we will get holes with 1100 // unreachable objects in them (which may have pointers to unloaded Klasses and thus 1101 // cannot be iterated over using oop->size(). The only way to safely iterate over those is using 1102 // a valid marking bitmap and valid TAMS pointer. This class only resets marking 1103 // bitmaps for un-pinned regions, and later we only reset TAMS for unpinned regions. 1104 class ShenandoahMCResetCompleteBitmapTask : public WorkerTask { 1105 private: 1106 ShenandoahRegionIterator _regions; 1107 1108 public: 1109 ShenandoahMCResetCompleteBitmapTask() : 1110 WorkerTask("Shenandoah Reset Bitmap") { 1111 } 1112 1113 void work(uint worker_id) { 1114 ShenandoahParallelWorkerSession worker_session(worker_id); 1115 ShenandoahHeapRegion* region = _regions.next(); 1116 ShenandoahHeap* heap = ShenandoahHeap::heap(); 1117 ShenandoahMarkingContext* const ctx = heap->complete_marking_context(); 1118 while (region != nullptr) { 1119 if (heap->is_bitmap_slice_committed(region) && !region->is_pinned() && region->has_live()) { 1120 ctx->clear_bitmap(region); 1121 } 1122 region = _regions.next(); 1123 } 1124 } 1125 }; 1126 1127 void ShenandoahFullGC::phase4_compact_objects(ShenandoahHeapRegionSet** worker_slices) { 1128 GCTraceTime(Info, gc, phases) time("Phase 4: Move objects", _gc_timer); 1129 ShenandoahGCPhase compaction_phase(ShenandoahPhaseTimings::full_gc_copy_objects); 1130 1131 ShenandoahHeap* heap = ShenandoahHeap::heap(); 1132 1133 // Compact regular objects first 1134 { 1135 ShenandoahGCPhase phase(ShenandoahPhaseTimings::full_gc_copy_objects_regular); 1136 ShenandoahCompactObjectsTask compact_task(worker_slices); 1137 heap->workers()->run_task(&compact_task); 1138 } 1139 1140 // Compact humongous objects after regular object moves 1141 { 1142 ShenandoahGCPhase phase(ShenandoahPhaseTimings::full_gc_copy_objects_humong); 1143 compact_humongous_objects(); 1144 } 1145 } 1146 1147 void ShenandoahFullGC::phase5_epilog() { 1148 GCTraceTime(Info, gc, phases) time("Phase 5: Full GC epilog", _gc_timer); 1149 ShenandoahHeap* heap = ShenandoahHeap::heap(); 1150 1151 // Reset complete bitmap. We're about to reset the complete-top-at-mark-start pointer 1152 // and must ensure the bitmap is in sync. 1153 { 1154 ShenandoahGCPhase phase(ShenandoahPhaseTimings::full_gc_copy_objects_reset_complete); 1155 ShenandoahMCResetCompleteBitmapTask task; 1156 heap->workers()->run_task(&task); 1157 } 1158 1159 // Bring regions in proper states after the collection, and set heap properties. 1160 { 1161 ShenandoahGCPhase phase(ShenandoahPhaseTimings::full_gc_copy_objects_rebuild); 1162 ShenandoahPostCompactClosure post_compact; 1163 heap->heap_region_iterate(&post_compact); 1164 post_compact.update_generation_usage(); 1165 1166 if (heap->mode()->is_generational()) { 1167 ShenandoahGenerationalFullGC::balance_generations_after_gc(heap); 1168 } 1169 1170 heap->collection_set()->clear(); 1171 size_t young_cset_regions, old_cset_regions; 1172 size_t first_old, last_old, num_old; 1173 heap->free_set()->prepare_to_rebuild(young_cset_regions, old_cset_regions, first_old, last_old, num_old); 1174 1175 // We also do not expand old generation size following Full GC because we have scrambled age populations and 1176 // no longer have objects separated by age into distinct regions. 1177 if (heap->mode()->is_generational()) { 1178 ShenandoahGenerationalFullGC::compute_balances(); 1179 } 1180 1181 heap->free_set()->finish_rebuild(young_cset_regions, old_cset_regions, num_old); 1182 1183 heap->clear_cancelled_gc(true /* clear oom handler */); 1184 } 1185 1186 _preserved_marks->restore(heap->workers()); 1187 _preserved_marks->reclaim(); 1188 1189 // We defer generation resizing actions until after cset regions have been recycled. We do this even following an 1190 // abbreviated cycle. 1191 if (heap->mode()->is_generational()) { 1192 ShenandoahGenerationalFullGC::balance_generations_after_rebuilding_free_set(); 1193 ShenandoahGenerationalFullGC::rebuild_remembered_set(heap); 1194 } 1195 }