1 /*
   2  * Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
   3  * Copyright (c) 2025, Oracle and/or its affiliates. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "gc/shenandoah/shenandoahAgeCensus.hpp"
  27 #include "gc/shenandoah/shenandoahClosures.inline.hpp"
  28 #include "gc/shenandoah/shenandoahCollectorPolicy.hpp"
  29 #include "gc/shenandoah/shenandoahFreeSet.hpp"
  30 #include "gc/shenandoah/shenandoahGeneration.hpp"
  31 #include "gc/shenandoah/shenandoahGenerationalControlThread.hpp"
  32 #include "gc/shenandoah/shenandoahGenerationalEvacuationTask.hpp"
  33 #include "gc/shenandoah/shenandoahGenerationalHeap.hpp"
  34 #include "gc/shenandoah/shenandoahHeap.inline.hpp"
  35 #include "gc/shenandoah/shenandoahHeapRegion.hpp"
  36 #include "gc/shenandoah/shenandoahHeapRegionClosures.hpp"
  37 #include "gc/shenandoah/shenandoahInitLogger.hpp"
  38 #include "gc/shenandoah/shenandoahMemoryPool.hpp"
  39 #include "gc/shenandoah/shenandoahMonitoringSupport.hpp"
  40 #include "gc/shenandoah/shenandoahOldGeneration.hpp"
  41 #include "gc/shenandoah/shenandoahPhaseTimings.hpp"
  42 #include "gc/shenandoah/shenandoahRegulatorThread.hpp"
  43 #include "gc/shenandoah/shenandoahScanRemembered.inline.hpp"
  44 #include "gc/shenandoah/shenandoahUtils.hpp"
  45 #include "gc/shenandoah/shenandoahWorkerPolicy.hpp"
  46 #include "gc/shenandoah/shenandoahYoungGeneration.hpp"
  47 #include "logging/log.hpp"
  48 #include "utilities/events.hpp"
  49 
  50 
  51 class ShenandoahGenerationalInitLogger : public ShenandoahInitLogger {
  52 public:
  53   static void print() {
  54     ShenandoahGenerationalInitLogger logger;
  55     logger.print_all();
  56   }
  57 protected:
  58   void print_gc_specific() override {
  59     ShenandoahInitLogger::print_gc_specific();
  60 
  61     ShenandoahGenerationalHeap* heap = ShenandoahGenerationalHeap::heap();
  62     log_info(gc, init)("Young Heuristics: %s", heap->young_generation()->heuristics()->name());
  63     log_info(gc, init)("Old Heuristics: %s", heap->old_generation()->heuristics()->name());
  64   }
  65 };
  66 
  67 size_t ShenandoahGenerationalHeap::calculate_min_plab() {
  68   return align_up(PLAB::min_size(), CardTable::card_size_in_words());
  69 }
  70 
  71 size_t ShenandoahGenerationalHeap::calculate_max_plab() {
  72   size_t MaxTLABSizeWords = ShenandoahHeapRegion::max_tlab_size_words();
  73   return align_down(MaxTLABSizeWords, CardTable::card_size_in_words());
  74 }
  75 
  76 // Returns size in bytes
  77 size_t ShenandoahGenerationalHeap::unsafe_max_tlab_alloc() const {
  78   return MIN2(ShenandoahHeapRegion::max_tlab_size_bytes(), young_generation()->available());
  79 }
  80 
  81 ShenandoahGenerationalHeap::ShenandoahGenerationalHeap(ShenandoahCollectorPolicy* policy) :
  82   ShenandoahHeap(policy),
  83   _age_census(nullptr),
  84   _min_plab_size(calculate_min_plab()),
  85   _max_plab_size(calculate_max_plab()),
  86   _regulator_thread(nullptr),
  87   _young_gen_memory_pool(nullptr),
  88   _old_gen_memory_pool(nullptr) {
  89   assert(is_aligned(_min_plab_size, CardTable::card_size_in_words()), "min_plab_size must be aligned");
  90   assert(is_aligned(_max_plab_size, CardTable::card_size_in_words()), "max_plab_size must be aligned");
  91 }
  92 
  93 void ShenandoahGenerationalHeap::post_initialize() {
  94   ShenandoahHeap::post_initialize();
  95   _age_census = new ShenandoahAgeCensus();
  96 }
  97 
  98 void ShenandoahGenerationalHeap::print_init_logger() const {
  99   ShenandoahGenerationalInitLogger logger;
 100   logger.print_all();
 101 }
 102 
 103 void ShenandoahGenerationalHeap::initialize_heuristics() {
 104   // Initialize global generation and heuristics even in generational mode.
 105   ShenandoahHeap::initialize_heuristics();
 106 
 107   // Max capacity is the maximum _allowed_ capacity. That is, the maximum allowed capacity
 108   // for old would be total heap - minimum capacity of young. This means the sum of the maximum
 109   // allowed for old and young could exceed the total heap size. It remains the case that the
 110   // _actual_ capacity of young + old = total.
 111   size_t region_count = num_regions();
 112   size_t max_young_regions = MAX2((region_count * ShenandoahMaxYoungPercentage) / 100, (size_t) 1U);
 113   size_t initial_capacity_young = max_young_regions * ShenandoahHeapRegion::region_size_bytes();
 114   size_t max_capacity_young = initial_capacity_young;
 115   size_t initial_capacity_old = max_capacity() - max_capacity_young;
 116   size_t max_capacity_old = max_capacity() - initial_capacity_young;
 117 
 118   _young_generation = new ShenandoahYoungGeneration(max_workers());
 119   _old_generation = new ShenandoahOldGeneration(max_workers());
 120   _young_generation->initialize_heuristics(mode());
 121   _old_generation->initialize_heuristics(mode());
 122 }
 123 
 124 void ShenandoahGenerationalHeap::post_initialize_heuristics() {
 125   ShenandoahHeap::post_initialize_heuristics();
 126   _young_generation->post_initialize(this);
 127   _old_generation->post_initialize(this);
 128 }
 129 
 130 void ShenandoahGenerationalHeap::initialize_serviceability() {
 131   assert(mode()->is_generational(), "Only for the generational mode");
 132   _young_gen_memory_pool = new ShenandoahYoungGenMemoryPool(this);
 133   _old_gen_memory_pool = new ShenandoahOldGenMemoryPool(this);
 134   cycle_memory_manager()->add_pool(_young_gen_memory_pool);
 135   cycle_memory_manager()->add_pool(_old_gen_memory_pool);
 136   stw_memory_manager()->add_pool(_young_gen_memory_pool);
 137   stw_memory_manager()->add_pool(_old_gen_memory_pool);
 138 }
 139 
 140 GrowableArray<MemoryPool*> ShenandoahGenerationalHeap::memory_pools() {
 141   assert(mode()->is_generational(), "Only for the generational mode");
 142   GrowableArray<MemoryPool*> memory_pools(2);
 143   memory_pools.append(_young_gen_memory_pool);
 144   memory_pools.append(_old_gen_memory_pool);
 145   return memory_pools;
 146 }
 147 
 148 void ShenandoahGenerationalHeap::initialize_controller() {
 149   auto control_thread = new ShenandoahGenerationalControlThread();
 150   _control_thread = control_thread;
 151   _regulator_thread = new ShenandoahRegulatorThread(control_thread);
 152 }
 153 
 154 void ShenandoahGenerationalHeap::gc_threads_do(ThreadClosure* tcl) const {
 155   if (!shenandoah_policy()->is_at_shutdown()) {
 156     ShenandoahHeap::gc_threads_do(tcl);
 157     tcl->do_thread(regulator_thread());
 158   }
 159 }
 160 
 161 void ShenandoahGenerationalHeap::stop() {
 162   ShenandoahHeap::stop();
 163   regulator_thread()->stop();
 164 }
 165 
 166 bool ShenandoahGenerationalHeap::requires_barriers(stackChunkOop obj) const {
 167   if (is_idle()) {
 168     return false;
 169   }
 170 
 171   if (is_concurrent_young_mark_in_progress() && is_in_young(obj) && !marking_context()->allocated_after_mark_start(obj)) {
 172     // We are marking young, this object is in young, and it is below the TAMS
 173     return true;
 174   }
 175 
 176   if (is_in_old(obj)) {
 177     // Card marking barriers are required for objects in the old generation
 178     return true;
 179   }
 180 
 181   if (has_forwarded_objects()) {
 182     // Object may have pointers that need to be updated
 183     return true;
 184   }
 185 
 186   return false;
 187 }
 188 
 189 void ShenandoahGenerationalHeap::evacuate_collection_set(ShenandoahGeneration* generation, bool concurrent) {
 190   ShenandoahRegionIterator regions;
 191   ShenandoahGenerationalEvacuationTask task(this, generation, &regions, concurrent, false /* only promote regions */);
 192   workers()->run_task(&task);
 193 }
 194 
 195 void ShenandoahGenerationalHeap::promote_regions_in_place(ShenandoahGeneration* generation, bool concurrent) {
 196   ShenandoahRegionIterator regions;
 197   ShenandoahGenerationalEvacuationTask task(this, generation, &regions, concurrent, true /* only promote regions */);
 198   workers()->run_task(&task);
 199 }
 200 
 201 oop ShenandoahGenerationalHeap::evacuate_object(oop p, Thread* thread) {
 202   assert(thread == Thread::current(), "Expected thread parameter to be current thread.");
 203   if (ShenandoahThreadLocalData::is_oom_during_evac(thread)) {
 204     // This thread went through the OOM during evac protocol and it is safe to return
 205     // the forward pointer. It must not attempt to evacuate anymore.
 206     return ShenandoahBarrierSet::resolve_forwarded(p);
 207   }
 208 
 209   assert(ShenandoahThreadLocalData::is_evac_allowed(thread), "must be enclosed in oom-evac scope");
 210 
 211   ShenandoahHeapRegion* r = heap_region_containing(p);
 212   assert(!r->is_humongous(), "never evacuate humongous objects");
 213 
 214   ShenandoahAffiliation target_gen = r->affiliation();
 215   // gc_generation() can change asynchronously and should not be used here.
 216   assert(active_generation() != nullptr, "Error");
 217   if (active_generation()->is_young() && target_gen == YOUNG_GENERATION) {
 218     markWord mark = p->mark();
 219     if (mark.is_marked()) {
 220       // Already forwarded.
 221       return ShenandoahBarrierSet::resolve_forwarded(p);
 222     }
 223 
 224     if (mark.has_displaced_mark_helper()) {
 225       // We don't want to deal with MT here just to ensure we read the right mark word.
 226       // Skip the potential promotion attempt for this one.
 227     } else if (age_census()->is_tenurable(r->age() + mark.age())) {
 228       oop result = try_evacuate_object(p, thread, r, OLD_GENERATION);
 229       if (result != nullptr) {
 230         return result;
 231       }
 232       // If we failed to promote this aged object, we'll fall through to code below and evacuate to young-gen.
 233     }
 234   }
 235   return try_evacuate_object(p, thread, r, target_gen);
 236 }
 237 
 238 // try_evacuate_object registers the object and dirties the associated remembered set information when evacuating
 239 // to OLD_GENERATION.
 240 oop ShenandoahGenerationalHeap::try_evacuate_object(oop p, Thread* thread, ShenandoahHeapRegion* from_region,
 241                                         ShenandoahAffiliation target_gen) {
 242   bool alloc_from_lab = true;
 243   bool has_plab = false;
 244   HeapWord* copy = nullptr;
 245   size_t size = ShenandoahForwarding::size(p);
 246   bool is_promotion = (target_gen == OLD_GENERATION) && from_region->is_young();
 247 
 248 #ifdef ASSERT
 249   if (ShenandoahOOMDuringEvacALot &&
 250       (os::random() & 1) == 0) { // Simulate OOM every ~2nd slow-path call
 251     copy = nullptr;
 252   } else {
 253 #endif
 254     if (UseTLAB) {
 255       switch (target_gen) {
 256         case YOUNG_GENERATION: {
 257           copy = allocate_from_gclab(thread, size);
 258           if ((copy == nullptr) && (size < ShenandoahThreadLocalData::gclab_size(thread))) {
 259             // GCLAB allocation failed because we are bumping up against the limit on young evacuation reserve.  Try resetting
 260             // the desired GCLAB size and retry GCLAB allocation to avoid cascading of shared memory allocations.
 261             ShenandoahThreadLocalData::set_gclab_size(thread, PLAB::min_size());
 262             copy = allocate_from_gclab(thread, size);
 263             // If we still get nullptr, we'll try a shared allocation below.
 264           }
 265           break;
 266         }
 267         case OLD_GENERATION: {
 268           PLAB* plab = ShenandoahThreadLocalData::plab(thread);
 269           if (plab != nullptr) {
 270             has_plab = true;
 271             copy = allocate_from_plab(thread, size, is_promotion);
 272             if ((copy == nullptr) && (size < ShenandoahThreadLocalData::plab_size(thread)) &&
 273                 ShenandoahThreadLocalData::plab_retries_enabled(thread)) {
 274               // PLAB allocation failed because we are bumping up against the limit on old evacuation reserve or because
 275               // the requested object does not fit within the current plab but the plab still has an "abundance" of memory,
 276               // where abundance is defined as >= ShenGenHeap::plab_min_size().  In the former case, we try shrinking the
 277               // desired PLAB size to the minimum and retry PLAB allocation to avoid cascading of shared memory allocations.
 278               // Shrinking the desired PLAB size may allow us to eke out a small PLAB while staying beneath evacuation reserve.
 279               if (plab->words_remaining() < plab_min_size()) {
 280                 ShenandoahThreadLocalData::set_plab_size(thread, plab_min_size());
 281                 copy = allocate_from_plab(thread, size, is_promotion);
 282                 // If we still get nullptr, we'll try a shared allocation below.
 283                 if (copy == nullptr) {
 284                   // If retry fails, don't continue to retry until we have success (probably in next GC pass)
 285                   ShenandoahThreadLocalData::disable_plab_retries(thread);
 286                 }
 287               }
 288               // else, copy still equals nullptr.  this causes shared allocation below, preserving this plab for future needs.
 289             }
 290           }
 291           break;
 292         }
 293         default: {
 294           ShouldNotReachHere();
 295           break;
 296         }
 297       }
 298     }
 299 
 300     if (copy == nullptr) {
 301       // If we failed to allocate in LAB, we'll try a shared allocation.
 302       if (!is_promotion || !has_plab || (size > PLAB::min_size())) {
 303         ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared_gc(size, target_gen, is_promotion);
 304         copy = allocate_memory(req);
 305         alloc_from_lab = false;
 306       }
 307       // else, we leave copy equal to nullptr, signaling a promotion failure below if appropriate.
 308       // We choose not to promote objects smaller than PLAB::min_size() by way of shared allocations, as this is too
 309       // costly.  Instead, we'll simply "evacuate" to young-gen memory (using a GCLAB) and will promote in a future
 310       // evacuation pass.  This condition is denoted by: is_promotion && has_plab && (size <= PLAB::min_size())
 311     }
 312 #ifdef ASSERT
 313   }
 314 #endif
 315 
 316   if (copy == nullptr) {
 317     if (target_gen == OLD_GENERATION) {
 318       if (from_region->is_young()) {
 319         // Signal that promotion failed. Will evacuate this old object somewhere in young gen.
 320         old_generation()->handle_failed_promotion(thread, size);
 321         return nullptr;
 322       } else {
 323         // Remember that evacuation to old gen failed. We'll want to trigger a full gc to recover from this
 324         // after the evacuation threads have finished.
 325         old_generation()->handle_failed_evacuation();
 326       }
 327     }
 328 
 329     control_thread()->handle_alloc_failure_evac(size);
 330 
 331     oom_evac_handler()->handle_out_of_memory_during_evacuation();
 332 
 333     return ShenandoahBarrierSet::resolve_forwarded(p);
 334   }
 335 
 336   if (ShenandoahEvacTracking) {
 337     evac_tracker()->begin_evacuation(thread, size * HeapWordSize, from_region->affiliation(), target_gen);
 338   }
 339 
 340   // Copy the object:
 341   Copy::aligned_disjoint_words(cast_from_oop<HeapWord*>(p), copy, size);
 342   oop copy_val = cast_to_oop(copy);
 343 
 344   // Update the age of the evacuated object
 345   if (target_gen == YOUNG_GENERATION && is_aging_cycle()) {
 346     ShenandoahHeap::increase_object_age(copy_val, from_region->age() + 1);
 347   }
 348 
 349   // Try to install the new forwarding pointer.
 350   oop result = ShenandoahForwarding::try_update_forwardee(p, copy_val);
 351   if (result == copy_val) {
 352     // Successfully evacuated. Our copy is now the public one!
 353 
 354     // This is necessary for virtual thread support. This uses the mark word without
 355     // considering that it may now be a forwarding pointer (and could therefore crash).
 356     // Secondarily, we do not want to spend cycles relativizing stack chunks for oops
 357     // that lost the evacuation race (and will therefore not become visible). It is
 358     // safe to do this on the public copy (this is also done during concurrent mark).
 359     ContinuationGCSupport::relativize_stack_chunk(copy_val);
 360 
 361     if (ShenandoahEvacTracking) {
 362       // Record that the evacuation succeeded
 363       evac_tracker()->end_evacuation(thread, size * HeapWordSize, from_region->affiliation(), target_gen);
 364     }
 365 
 366     if (target_gen == OLD_GENERATION) {
 367       old_generation()->handle_evacuation(copy, size, from_region->is_young());
 368     } else {
 369       // When copying to the old generation above, we don't care
 370       // about recording object age in the census stats.
 371       assert(target_gen == YOUNG_GENERATION, "Error");
 372     }
 373     shenandoah_assert_correct(nullptr, copy_val);
 374     return copy_val;
 375   }  else {
 376     // Failed to evacuate. We need to deal with the object that is left behind. Since this
 377     // new allocation is certainly after TAMS, it will be considered live in the next cycle.
 378     // But if it happens to contain references to evacuated regions, those references would
 379     // not get updated for this stale copy during this cycle, and we will crash while scanning
 380     // it the next cycle.
 381     if (alloc_from_lab) {
 382       // For LAB allocations, it is enough to rollback the allocation ptr. Either the next
 383       // object will overwrite this stale copy, or the filler object on LAB retirement will
 384       // do this.
 385       switch (target_gen) {
 386         case YOUNG_GENERATION: {
 387           ShenandoahThreadLocalData::gclab(thread)->undo_allocation(copy, size);
 388           break;
 389         }
 390         case OLD_GENERATION: {
 391           ShenandoahThreadLocalData::plab(thread)->undo_allocation(copy, size);
 392           if (is_promotion) {
 393             ShenandoahThreadLocalData::subtract_from_plab_promoted(thread, size * HeapWordSize);
 394           }
 395           break;
 396         }
 397         default: {
 398           ShouldNotReachHere();
 399           break;
 400         }
 401       }
 402     } else {
 403       // For non-LAB allocations, we have no way to retract the allocation, and
 404       // have to explicitly overwrite the copy with the filler object. With that overwrite,
 405       // we have to keep the fwdptr initialized and pointing to our (stale) copy.
 406       assert(size >= ShenandoahHeap::min_fill_size(), "previously allocated object known to be larger than min_size");
 407       fill_with_object(copy, size);
 408       shenandoah_assert_correct(nullptr, copy_val);
 409       // For non-LAB allocations, the object has already been registered
 410     }
 411     shenandoah_assert_correct(nullptr, result);
 412     return result;
 413   }
 414 }
 415 
 416 inline HeapWord* ShenandoahGenerationalHeap::allocate_from_plab(Thread* thread, size_t size, bool is_promotion) {
 417   assert(UseTLAB, "TLABs should be enabled");
 418 
 419   PLAB* plab = ShenandoahThreadLocalData::plab(thread);
 420   HeapWord* obj;
 421 
 422   if (plab == nullptr) {
 423     assert(!thread->is_Java_thread() && !thread->is_Worker_thread(), "Performance: thread should have PLAB: %s", thread->name());
 424     // No PLABs in this thread, fallback to shared allocation
 425     return nullptr;
 426   } else if (is_promotion && !ShenandoahThreadLocalData::allow_plab_promotions(thread)) {
 427     return nullptr;
 428   }
 429   // if plab->word_size() <= 0, thread's plab not yet initialized for this pass, so allow_plab_promotions() is not trustworthy
 430   obj = plab->allocate(size);
 431   if ((obj == nullptr) && (plab->words_remaining() < plab_min_size())) {
 432     // allocate_from_plab_slow will establish allow_plab_promotions(thread) for future invocations
 433     obj = allocate_from_plab_slow(thread, size, is_promotion);
 434   }
 435   // if plab->words_remaining() >= ShenGenHeap::heap()->plab_min_size(), just return nullptr so we can use a shared allocation
 436   if (obj == nullptr) {
 437     return nullptr;
 438   }
 439 
 440   if (is_promotion) {
 441     ShenandoahThreadLocalData::add_to_plab_promoted(thread, size * HeapWordSize);
 442   }
 443   return obj;
 444 }
 445 
 446 // Establish a new PLAB and allocate size HeapWords within it.
 447 HeapWord* ShenandoahGenerationalHeap::allocate_from_plab_slow(Thread* thread, size_t size, bool is_promotion) {
 448   assert(mode()->is_generational(), "PLABs only relevant to generational GC");
 449 
 450   const size_t plab_min_size = this->plab_min_size();
 451   // PLABs are aligned to card boundaries to avoid synchronization with concurrent
 452   // allocations in other PLABs.
 453   const size_t min_size = (size > plab_min_size)? align_up(size, CardTable::card_size_in_words()): plab_min_size;
 454 
 455   // Figure out size of new PLAB, using value determined at last refill.
 456   size_t cur_size = ShenandoahThreadLocalData::plab_size(thread);
 457   if (cur_size == 0) {
 458     cur_size = plab_min_size;
 459   }
 460 
 461   // Expand aggressively, doubling at each refill in this epoch, ceiling at plab_max_size()
 462   const size_t future_size = MIN2(cur_size * 2, plab_max_size());
 463   // Doubling, starting at a card-multiple, should give us a card-multiple. (Ceiling and floor
 464   // are card multiples.)
 465   assert(is_aligned(future_size, CardTable::card_size_in_words()), "Card multiple by construction, future_size: %zu"
 466           ", card_size: %u, cur_size: %zu, max: %zu",
 467          future_size, CardTable::card_size_in_words(), cur_size, plab_max_size());
 468 
 469   // Record new heuristic value even if we take any shortcut. This captures
 470   // the case when moderately-sized objects always take a shortcut. At some point,
 471   // heuristics should catch up with them.  Note that the requested cur_size may
 472   // not be honored, but we remember that this is the preferred size.
 473   log_debug(gc, plab)("Set next PLAB refill size: %zu bytes", future_size * HeapWordSize);
 474   ShenandoahThreadLocalData::set_plab_size(thread, future_size);
 475 
 476   if (cur_size < size) {
 477     // The PLAB to be allocated is still not large enough to hold the object. Fall back to shared allocation.
 478     // This avoids retiring perfectly good PLABs in order to represent a single large object allocation.
 479     log_debug(gc, plab)("Current PLAB size (%zu) is too small for %zu", cur_size * HeapWordSize, size * HeapWordSize);
 480     return nullptr;
 481   }
 482 
 483   // Retire current PLAB, and allocate a new one.
 484   PLAB* plab = ShenandoahThreadLocalData::plab(thread);
 485   if (plab->words_remaining() < plab_min_size) {
 486     // Retire current PLAB. This takes care of any PLAB book-keeping.
 487     // retire_plab() registers the remnant filler object with the remembered set scanner without a lock.
 488     // Since PLABs are card-aligned, concurrent registrations in other PLABs don't interfere.
 489     retire_plab(plab, thread);
 490 
 491     size_t actual_size = 0;
 492     HeapWord* plab_buf = allocate_new_plab(min_size, cur_size, &actual_size);
 493     if (plab_buf == nullptr) {
 494       if (min_size == plab_min_size) {
 495         // Disable PLAB promotions for this thread because we cannot even allocate a minimal PLAB. This allows us
 496         // to fail faster on subsequent promotion attempts.
 497         ShenandoahThreadLocalData::disable_plab_promotions(thread);
 498       }
 499       return nullptr;
 500     } else {
 501       ShenandoahThreadLocalData::enable_plab_retries(thread);
 502     }
 503     // Since the allocated PLAB may have been down-sized for alignment, plab->allocate(size) below may still fail.
 504     if (ZeroTLAB) {
 505       // ... and clear it.
 506       Copy::zero_to_words(plab_buf, actual_size);
 507     } else {
 508       // ...and zap just allocated object.
 509 #ifdef ASSERT
 510       // Skip mangling the space corresponding to the object header to
 511       // ensure that the returned space is not considered parsable by
 512       // any concurrent GC thread.
 513       size_t hdr_size = oopDesc::header_size();
 514       Copy::fill_to_words(plab_buf + hdr_size, actual_size - hdr_size, badHeapWordVal);
 515 #endif // ASSERT
 516     }
 517     assert(is_aligned(actual_size, CardTable::card_size_in_words()), "Align by design");
 518     plab->set_buf(plab_buf, actual_size);
 519     if (is_promotion && !ShenandoahThreadLocalData::allow_plab_promotions(thread)) {
 520       return nullptr;
 521     }
 522     return plab->allocate(size);
 523   } else {
 524     // If there's still at least min_size() words available within the current plab, don't retire it.  Let's nibble
 525     // away on this plab as long as we can.  Meanwhile, return nullptr to force this particular allocation request
 526     // to be satisfied with a shared allocation.  By packing more promotions into the previously allocated PLAB, we
 527     // reduce the likelihood of evacuation failures, and we reduce the need for downsizing our PLABs.
 528     return nullptr;
 529   }
 530 }
 531 
 532 HeapWord* ShenandoahGenerationalHeap::allocate_new_plab(size_t min_size, size_t word_size, size_t* actual_size) {
 533   // Align requested sizes to card-sized multiples.  Align down so that we don't violate max size of TLAB.
 534   assert(is_aligned(min_size, CardTable::card_size_in_words()), "Align by design");
 535   assert(word_size >= min_size, "Requested PLAB is too small");
 536 
 537   ShenandoahAllocRequest req = ShenandoahAllocRequest::for_plab(min_size, word_size);
 538   // Note that allocate_memory() sets a thread-local flag to prohibit further promotions by this thread
 539   // if we are at risk of infringing on the old-gen evacuation budget.
 540   HeapWord* res = allocate_memory(req);
 541   if (res != nullptr) {
 542     *actual_size = req.actual_size();
 543   } else {
 544     *actual_size = 0;
 545   }
 546   assert(is_aligned(res, CardTable::card_size_in_words()), "Align by design");
 547   return res;
 548 }
 549 
 550 void ShenandoahGenerationalHeap::retire_plab(PLAB* plab, Thread* thread) {
 551   // We don't enforce limits on plab evacuations.  We let it consume all available old-gen memory in order to reduce
 552   // probability of an evacuation failure.  We do enforce limits on promotion, to make sure that excessive promotion
 553   // does not result in an old-gen evacuation failure.  Note that a failed promotion is relatively harmless.  Any
 554   // object that fails to promote in the current cycle will be eligible for promotion in a subsequent cycle.
 555 
 556   // When the plab was instantiated, its entirety was treated as if the entire buffer was going to be dedicated to
 557   // promotions.  Now that we are retiring the buffer, we adjust for the reality that the plab is not entirely promotions.
 558   //  1. Some of the plab may have been dedicated to evacuations.
 559   //  2. Some of the plab may have been abandoned due to waste (at the end of the plab).
 560   size_t not_promoted =
 561           ShenandoahThreadLocalData::get_plab_actual_size(thread) - ShenandoahThreadLocalData::get_plab_promoted(thread);
 562   ShenandoahThreadLocalData::reset_plab_promoted(thread);
 563   ShenandoahThreadLocalData::set_plab_actual_size(thread, 0);
 564   if (not_promoted > 0) {
 565     log_debug(gc, plab)("Retire PLAB, unexpend unpromoted: %zu", not_promoted * HeapWordSize);
 566     old_generation()->unexpend_promoted(not_promoted);
 567   }
 568   const size_t original_waste = plab->waste();
 569   HeapWord* const top = plab->top();
 570 
 571   // plab->retire() overwrites unused memory between plab->top() and plab->hard_end() with a dummy object to make memory parsable.
 572   // It adds the size of this unused memory, in words, to plab->waste().
 573   plab->retire();
 574   if (top != nullptr && plab->waste() > original_waste && is_in_old(top)) {
 575     // If retiring the plab created a filler object, then we need to register it with our card scanner so it can
 576     // safely walk the region backing the plab.
 577     log_debug(gc, plab)("retire_plab() is registering remnant of size %zu at " PTR_FORMAT,
 578                         (plab->waste() - original_waste) * HeapWordSize, p2i(top));
 579     // No lock is necessary because the PLAB memory is aligned on card boundaries.
 580     old_generation()->card_scan()->register_object_without_lock(top);
 581   }
 582 }
 583 
 584 void ShenandoahGenerationalHeap::retire_plab(PLAB* plab) {
 585   Thread* thread = Thread::current();
 586   retire_plab(plab, thread);
 587 }
 588 
 589 // Make sure old-generation is large enough, but no larger than is necessary, to hold mixed evacuations
 590 // and promotions, if we anticipate either. Any deficit is provided by the young generation, subject to
 591 // xfer_limit, and any surplus is transferred to the young generation.
 592 //
 593 // xfer_limit is the maximum we're able to transfer from young to old based on either:
 594 //  1. an assumption that we will be able to replenish memory "borrowed" from young at the end of collection, or
 595 //  2. there is sufficient excess in the allocation runway during GC idle cycles
 596 void ShenandoahGenerationalHeap::compute_old_generation_balance(size_t old_xfer_limit, size_t old_cset_regions) {
 597 
 598   // We can limit the old reserve to the size of anticipated promotions:
 599   // max_old_reserve is an upper bound on memory evacuated from old and promoted to old,
 600   // clamped by the old generation space available.
 601   //
 602   // Here's the algebra.
 603   // Let SOEP = ShenandoahOldEvacRatioPercent,
 604   //     OE = old evac,
 605   //     YE = young evac, and
 606   //     TE = total evac = OE + YE
 607   // By definition:
 608   //            SOEP/100 = OE/TE
 609   //                     = OE/(OE+YE)
 610   //  => SOEP/(100-SOEP) = OE/((OE+YE)-OE)      // componendo-dividendo: If a/b = c/d, then a/(b-a) = c/(d-c)
 611   //                     = OE/YE
 612   //  =>              OE = YE*SOEP/(100-SOEP)
 613 
 614   // We have to be careful in the event that SOEP is set to 100 by the user.
 615   assert(ShenandoahOldEvacRatioPercent <= 100, "Error");
 616   const size_t old_available = old_generation()->available();
 617   // The free set will reserve this amount of memory to hold young evacuations
 618   const size_t young_reserve = (young_generation()->max_capacity() * ShenandoahEvacReserve) / 100;
 619 
 620   // In the case that ShenandoahOldEvacRatioPercent equals 100, max_old_reserve is limited only by xfer_limit.
 621 
 622   const double bound_on_old_reserve = old_available + old_xfer_limit + young_reserve;
 623   const double max_old_reserve = ((ShenandoahOldEvacRatioPercent == 100)? bound_on_old_reserve:
 624                                   MIN2(double(young_reserve * ShenandoahOldEvacRatioPercent)
 625                                        / double(100 - ShenandoahOldEvacRatioPercent), bound_on_old_reserve));
 626 
 627   const size_t region_size_bytes = ShenandoahHeapRegion::region_size_bytes();
 628 
 629   // Decide how much old space we should reserve for a mixed collection
 630   double reserve_for_mixed = 0;
 631   if (old_generation()->has_unprocessed_collection_candidates()) {
 632     // We want this much memory to be unfragmented in order to reliably evacuate old.  This is conservative because we
 633     // may not evacuate the entirety of unprocessed candidates in a single mixed evacuation.
 634     const double max_evac_need =
 635       (double(old_generation()->unprocessed_collection_candidates_live_memory()) * ShenandoahOldEvacWaste);
 636     assert(old_available >= old_generation()->free_unaffiliated_regions() * region_size_bytes,
 637            "Unaffiliated available must be less than total available");
 638     const double old_fragmented_available =
 639       double(old_available - old_generation()->free_unaffiliated_regions() * region_size_bytes);
 640     reserve_for_mixed = max_evac_need + old_fragmented_available;
 641     if (reserve_for_mixed > max_old_reserve) {
 642       reserve_for_mixed = max_old_reserve;
 643     }
 644   }
 645 
 646   // Decide how much space we should reserve for promotions from young
 647   size_t reserve_for_promo = 0;
 648   const size_t promo_load = old_generation()->get_promotion_potential();
 649   const bool doing_promotions = promo_load > 0;
 650   if (doing_promotions) {
 651     // We're promoting and have a bound on the maximum amount that can be promoted
 652     assert(max_old_reserve >= reserve_for_mixed, "Sanity");
 653     const size_t available_for_promotions = max_old_reserve - reserve_for_mixed;
 654     reserve_for_promo = MIN2((size_t)(promo_load * ShenandoahPromoEvacWaste), available_for_promotions);
 655   }
 656 
 657   // This is the total old we want to ideally reserve
 658   const size_t old_reserve = reserve_for_mixed + reserve_for_promo;
 659   assert(old_reserve <= max_old_reserve, "cannot reserve more than max for old evacuations");
 660 
 661   // We now check if the old generation is running a surplus or a deficit.
 662   const size_t max_old_available = old_generation()->available() + old_cset_regions * region_size_bytes;
 663   if (max_old_available >= old_reserve) {
 664     // We are running a surplus, so the old region surplus can go to young
 665     const size_t old_surplus = (max_old_available - old_reserve) / region_size_bytes;
 666     const size_t unaffiliated_old_regions = old_generation()->free_unaffiliated_regions() + old_cset_regions;
 667     const size_t old_region_surplus = MIN2(old_surplus, unaffiliated_old_regions);
 668     old_generation()->set_region_balance(checked_cast<ssize_t>(old_region_surplus));
 669   } else {
 670     // We are running a deficit which we'd like to fill from young.
 671     // Ignore that this will directly impact young_generation()->max_capacity(),
 672     // indirectly impacting young_reserve and old_reserve.  These computations are conservative.
 673     // Note that deficit is rounded up by one region.
 674     const size_t old_need = (old_reserve - max_old_available + region_size_bytes - 1) / region_size_bytes;
 675     const size_t max_old_region_xfer = old_xfer_limit / region_size_bytes;
 676 
 677     // Round down the regions we can transfer from young to old. If we're running short
 678     // on young-gen memory, we restrict the xfer. Old-gen collection activities will be
 679     // curtailed if the budget is restricted.
 680     const size_t old_region_deficit = MIN2(old_need, max_old_region_xfer);
 681     old_generation()->set_region_balance(0 - checked_cast<ssize_t>(old_region_deficit));
 682   }
 683 }
 684 
 685 void ShenandoahGenerationalHeap::reset_generation_reserves() {
 686   ShenandoahHeapLocker locker(lock());
 687   young_generation()->set_evacuation_reserve(0);
 688   old_generation()->set_evacuation_reserve(0);
 689   old_generation()->set_promoted_reserve(0);
 690 }
 691 
 692 void ShenandoahGenerationalHeap::TransferResult::print_on(const char* when, outputStream* ss) const {
 693   auto heap = ShenandoahGenerationalHeap::heap();
 694   ShenandoahYoungGeneration* const young_gen = heap->young_generation();
 695   ShenandoahOldGeneration* const old_gen = heap->old_generation();
 696   const size_t young_available = young_gen->available();
 697   const size_t old_available = old_gen->available();
 698   ss->print_cr("After %s, %s %zu regions to %s to prepare for next gc, old available: "
 699                      PROPERFMT ", young_available: " PROPERFMT,
 700                      when,
 701                      success? "successfully transferred": "failed to transfer", region_count, region_destination,
 702                      PROPERFMTARGS(old_available), PROPERFMTARGS(young_available));
 703 }
 704 
 705 void ShenandoahGenerationalHeap::coalesce_and_fill_old_regions(bool concurrent) {
 706   class ShenandoahGlobalCoalesceAndFill : public WorkerTask {
 707   private:
 708       ShenandoahPhaseTimings::Phase _phase;
 709       ShenandoahRegionIterator _regions;
 710   public:
 711     explicit ShenandoahGlobalCoalesceAndFill(ShenandoahPhaseTimings::Phase phase) :
 712       WorkerTask("Shenandoah Global Coalesce"),
 713       _phase(phase) {}
 714 
 715     void work(uint worker_id) override {
 716       ShenandoahWorkerTimingsTracker timer(_phase,
 717                                            ShenandoahPhaseTimings::ScanClusters,
 718                                            worker_id, true);
 719       ShenandoahHeapRegion* region;
 720       while ((region = _regions.next()) != nullptr) {
 721         // old region is not in the collection set and was not immediately trashed
 722         if (region->is_old() && region->is_active() && !region->is_humongous()) {
 723           // Reset the coalesce and fill boundary because this is a global collect
 724           // and cannot be preempted by young collects. We want to be sure the entire
 725           // region is coalesced here and does not resume from a previously interrupted
 726           // or completed coalescing.
 727           region->begin_preemptible_coalesce_and_fill();
 728           region->oop_coalesce_and_fill(false);
 729         }
 730       }
 731     }
 732   };
 733 
 734   ShenandoahPhaseTimings::Phase phase = concurrent ?
 735           ShenandoahPhaseTimings::conc_coalesce_and_fill :
 736           ShenandoahPhaseTimings::degen_gc_coalesce_and_fill;
 737 
 738   // This is not cancellable
 739   ShenandoahGlobalCoalesceAndFill coalesce(phase);
 740   workers()->run_task(&coalesce);
 741   old_generation()->set_parsable(true);
 742 }
 743 
 744 template<bool CONCURRENT>
 745 class ShenandoahGenerationalUpdateHeapRefsTask : public WorkerTask {
 746 private:
 747   // For update refs, _generation will be young or global. Mixed collections use the young generation.
 748   ShenandoahGeneration* _generation;
 749   ShenandoahGenerationalHeap* _heap;
 750   ShenandoahRegionIterator* _regions;
 751   ShenandoahRegionChunkIterator* _work_chunks;
 752 
 753 public:
 754   ShenandoahGenerationalUpdateHeapRefsTask(ShenandoahGeneration* generation,
 755                                            ShenandoahRegionIterator* regions,
 756                                            ShenandoahRegionChunkIterator* work_chunks) :
 757           WorkerTask("Shenandoah Update References"),
 758           _generation(generation),
 759           _heap(ShenandoahGenerationalHeap::heap()),
 760           _regions(regions),
 761           _work_chunks(work_chunks)
 762   {
 763     const bool old_bitmap_stable = _heap->old_generation()->is_mark_complete();
 764     log_debug(gc, remset)("Update refs, scan remembered set using bitmap: %s", BOOL_TO_STR(old_bitmap_stable));
 765   }
 766 
 767   void work(uint worker_id) override {
 768     if (CONCURRENT) {
 769       ShenandoahConcurrentWorkerSession worker_session(worker_id);
 770       ShenandoahSuspendibleThreadSetJoiner stsj;
 771       do_work<ShenandoahConcUpdateRefsClosure>(worker_id);
 772     } else {
 773       ShenandoahParallelWorkerSession worker_session(worker_id);
 774       do_work<ShenandoahNonConcUpdateRefsClosure>(worker_id);
 775     }
 776   }
 777 
 778 private:
 779   template<class T>
 780   void do_work(uint worker_id) {
 781     T cl;
 782 
 783     if (CONCURRENT && (worker_id == 0)) {
 784       // We ask the first worker to replenish the Mutator free set by moving regions previously reserved to hold the
 785       // results of evacuation.  These reserves are no longer necessary because evacuation has completed.
 786       size_t cset_regions = _heap->collection_set()->count();
 787 
 788       // Now that evacuation is done, we can reassign any regions that had been reserved to hold the results of evacuation
 789       // to the mutator free set.  At the end of GC, we will have cset_regions newly evacuated fully empty regions from
 790       // which we will be able to replenish the Collector free set and the OldCollector free set in preparation for the
 791       // next GC cycle.
 792       _heap->free_set()->move_regions_from_collector_to_mutator(cset_regions);
 793     }
 794     // If !CONCURRENT, there's no value in expanding Mutator free set
 795 
 796     ShenandoahHeapRegion* r = _regions->next();
 797     // We update references for global, mixed, and young collections.
 798     assert(_generation->is_mark_complete(), "Expected complete marking");
 799     ShenandoahMarkingContext* const ctx = _heap->marking_context();
 800     bool is_mixed = _heap->collection_set()->has_old_regions();
 801     while (r != nullptr) {
 802       HeapWord* update_watermark = r->get_update_watermark();
 803       assert(update_watermark >= r->bottom(), "sanity");
 804 
 805       log_debug(gc)("Update refs worker " UINT32_FORMAT ", looking at region %zu", worker_id, r->index());
 806       if (r->is_active() && !r->is_cset()) {
 807         if (r->is_young()) {
 808           _heap->marked_object_oop_iterate(r, &cl, update_watermark);
 809         } else if (r->is_old()) {
 810           if (_generation->is_global()) {
 811 
 812             _heap->marked_object_oop_iterate(r, &cl, update_watermark);
 813           }
 814           // Otherwise, this is an old region in a young or mixed cycle.  Process it during a second phase, below.
 815         } else {
 816           // Because updating of references runs concurrently, it is possible that a FREE inactive region transitions
 817           // to a non-free active region while this loop is executing.  Whenever this happens, the changing of a region's
 818           // active status may propagate at a different speed than the changing of the region's affiliation.
 819 
 820           // When we reach this control point, it is because a race has allowed a region's is_active() status to be seen
 821           // by this thread before the region's affiliation() is seen by this thread.
 822 
 823           // It's ok for this race to occur because the newly transformed region does not have any references to be
 824           // updated.
 825 
 826           assert(r->get_update_watermark() == r->bottom(),
 827                  "%s Region %zu is_active but not recognized as YOUNG or OLD so must be newly transitioned from FREE",
 828                  r->affiliation_name(), r->index());
 829         }
 830       }
 831 
 832       if (_heap->check_cancelled_gc_and_yield(CONCURRENT)) {
 833         return;
 834       }
 835 
 836       r = _regions->next();
 837     }
 838 
 839     if (_generation->is_young()) {
 840       // Since this is generational and not GLOBAL, we have to process the remembered set.  There's no remembered
 841       // set processing if not in generational mode or if GLOBAL mode.
 842 
 843       // After this thread has exhausted its traditional update-refs work, it continues with updating refs within
 844       // remembered set. The remembered set workload is better balanced between threads, so threads that are "behind"
 845       // can catch up with other threads during this phase, allowing all threads to work more effectively in parallel.
 846       update_references_in_remembered_set(worker_id, cl, ctx, is_mixed);
 847     }
 848   }
 849 
 850   template<class T>
 851   void update_references_in_remembered_set(uint worker_id, T &cl, const ShenandoahMarkingContext* ctx, bool is_mixed) {
 852 
 853     struct ShenandoahRegionChunk assignment;
 854     ShenandoahScanRemembered* scanner = _heap->old_generation()->card_scan();
 855 
 856     while (!_heap->check_cancelled_gc_and_yield(CONCURRENT) && _work_chunks->next(&assignment)) {
 857       // Keep grabbing next work chunk to process until finished, or asked to yield
 858       ShenandoahHeapRegion* r = assignment._r;
 859       if (r->is_active() && !r->is_cset() && r->is_old()) {
 860         HeapWord* start_of_range = r->bottom() + assignment._chunk_offset;
 861         HeapWord* end_of_range = r->get_update_watermark();
 862         if (end_of_range > start_of_range + assignment._chunk_size) {
 863           end_of_range = start_of_range + assignment._chunk_size;
 864         }
 865 
 866         if (start_of_range >= end_of_range) {
 867           continue;
 868         }
 869 
 870         // Old region in a young cycle or mixed cycle.
 871         if (is_mixed) {
 872           if (r->is_humongous()) {
 873             // Need to examine both dirty and clean cards during mixed evac.
 874             r->oop_iterate_humongous_slice_all(&cl,start_of_range, assignment._chunk_size);
 875           } else {
 876             // Since this is mixed evacuation, old regions that are candidates for collection have not been coalesced
 877             // and filled.  This will use mark bits to find objects that need to be updated.
 878             update_references_in_old_region(cl, ctx, scanner, r, start_of_range, end_of_range);
 879           }
 880         } else {
 881           // This is a young evacuation
 882           size_t cluster_size = CardTable::card_size_in_words() * ShenandoahCardCluster::CardsPerCluster;
 883           size_t clusters = assignment._chunk_size / cluster_size;
 884           assert(clusters * cluster_size == assignment._chunk_size, "Chunk assignment must align on cluster boundaries");
 885           scanner->process_region_slice(r, assignment._chunk_offset, clusters, end_of_range, &cl, true, worker_id);
 886         }
 887       }
 888     }
 889   }
 890 
 891   template<class T>
 892   void update_references_in_old_region(T &cl, const ShenandoahMarkingContext* ctx, ShenandoahScanRemembered* scanner,
 893                                     const ShenandoahHeapRegion* r, HeapWord* start_of_range,
 894                                     HeapWord* end_of_range) const {
 895     // In case last object in my range spans boundary of my chunk, I may need to scan all the way to top()
 896     ShenandoahObjectToOopBoundedClosure<T> objs(&cl, start_of_range, r->top());
 897 
 898     // Any object that begins in a previous range is part of a different scanning assignment.  Any object that
 899     // starts after end_of_range is also not my responsibility.  (Either allocated during evacuation, so does
 900     // not hold pointers to from-space, or is beyond the range of my assigned work chunk.)
 901 
 902     // Find the first object that begins in my range, if there is one. Note that `p` will be set to `end_of_range`
 903     // when no live object is found in the range.
 904     HeapWord* tams = ctx->top_at_mark_start(r);
 905     HeapWord* p = get_first_object_start_word(ctx, scanner, tams, start_of_range, end_of_range);
 906 
 907     while (p < end_of_range) {
 908       // p is known to point to the beginning of marked object obj
 909       oop obj = cast_to_oop(p);
 910       objs.do_object(obj);
 911       HeapWord* prev_p = p;
 912       p += obj->size();
 913       if (p < tams) {
 914         p = ctx->get_next_marked_addr(p, tams);
 915         // If there are no more marked objects before tams, this returns tams.  Note that tams is
 916         // either >= end_of_range, or tams is the start of an object that is marked.
 917       }
 918       assert(p != prev_p, "Lack of forward progress");
 919     }
 920   }
 921 
 922   HeapWord* get_first_object_start_word(const ShenandoahMarkingContext* ctx, ShenandoahScanRemembered* scanner, HeapWord* tams,
 923                                         HeapWord* start_of_range, HeapWord* end_of_range) const {
 924     HeapWord* p = start_of_range;
 925 
 926     if (p >= tams) {
 927       // We cannot use ctx->is_marked(obj) to test whether an object begins at this address.  Instead,
 928       // we need to use the remembered set crossing map to advance p to the first object that starts
 929       // within the enclosing card.
 930       size_t card_index = scanner->card_index_for_addr(start_of_range);
 931       while (true) {
 932         HeapWord* first_object = scanner->first_object_in_card(card_index);
 933         if (first_object != nullptr) {
 934           p = first_object;
 935           break;
 936         } else if (scanner->addr_for_card_index(card_index + 1) < end_of_range) {
 937           card_index++;
 938         } else {
 939           // Signal that no object was found in range
 940           p = end_of_range;
 941           break;
 942         }
 943       }
 944     } else if (!ctx->is_marked(cast_to_oop(p))) {
 945       p = ctx->get_next_marked_addr(p, tams);
 946       // If there are no more marked objects before tams, this returns tams.
 947       // Note that tams is either >= end_of_range, or tams is the start of an object that is marked.
 948     }
 949     return p;
 950   }
 951 };
 952 
 953 void ShenandoahGenerationalHeap::update_heap_references(ShenandoahGeneration* generation, bool concurrent) {
 954   assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC");
 955   const uint nworkers = workers()->active_workers();
 956   ShenandoahRegionChunkIterator work_list(nworkers);
 957   if (concurrent) {
 958     ShenandoahGenerationalUpdateHeapRefsTask<true> task(generation, &_update_refs_iterator, &work_list);
 959     workers()->run_task(&task);
 960   } else {
 961     ShenandoahGenerationalUpdateHeapRefsTask<false> task(generation, &_update_refs_iterator, &work_list);
 962     workers()->run_task(&task);
 963   }
 964 
 965   if (ShenandoahEnableCardStats) {
 966     // Only do this if we are collecting card stats
 967     ShenandoahScanRemembered* card_scan = old_generation()->card_scan();
 968     assert(card_scan != nullptr, "Card table must exist when card stats are enabled");
 969     card_scan->log_card_stats(nworkers, CARD_STAT_UPDATE_REFS);
 970   }
 971 }
 972 
 973 struct ShenandoahCompositeRegionClosure {
 974   template<typename C1, typename C2>
 975   class Closure : public ShenandoahHeapRegionClosure {
 976   private:
 977     C1 &_c1;
 978     C2 &_c2;
 979 
 980   public:
 981     Closure(C1 &c1, C2 &c2) : ShenandoahHeapRegionClosure(), _c1(c1), _c2(c2) {}
 982 
 983     void heap_region_do(ShenandoahHeapRegion* r) override {
 984       _c1.heap_region_do(r);
 985       _c2.heap_region_do(r);
 986     }
 987 
 988     bool is_thread_safe() override {
 989       return _c1.is_thread_safe() && _c2.is_thread_safe();
 990     }
 991   };
 992 
 993   template<typename C1, typename C2>
 994   static Closure<C1, C2> of(C1 &c1, C2 &c2) {
 995     return Closure<C1, C2>(c1, c2);
 996   }
 997 };
 998 
 999 class ShenandoahUpdateRegionAges : public ShenandoahHeapRegionClosure {
1000 private:
1001   ShenandoahMarkingContext* _ctx;
1002 
1003 public:
1004   explicit ShenandoahUpdateRegionAges(ShenandoahMarkingContext* ctx) : _ctx(ctx) { }
1005 
1006   void heap_region_do(ShenandoahHeapRegion* r) override {
1007     // Maintenance of region age must follow evacuation in order to account for
1008     // evacuation allocations within survivor regions.  We consult region age during
1009     // the subsequent evacuation to determine whether certain objects need to
1010     // be promoted.
1011     if (r->is_young() && r->is_active()) {
1012       HeapWord *tams = _ctx->top_at_mark_start(r);
1013       HeapWord *top = r->top();
1014 
1015       // Allocations move the watermark when top moves.  However, compacting
1016       // objects will sometimes lower top beneath the watermark, after which,
1017       // attempts to read the watermark will assert out (watermark should not be
1018       // higher than top).
1019       if (top > tams) {
1020         // There have been allocations in this region since the start of the cycle.
1021         // Any objects new to this region must not assimilate elevated age.
1022         r->reset_age();
1023       } else if (ShenandoahGenerationalHeap::heap()->is_aging_cycle()) {
1024         r->increment_age();
1025       }
1026     }
1027   }
1028 
1029   bool is_thread_safe() override {
1030     return true;
1031   }
1032 };
1033 
1034 void ShenandoahGenerationalHeap::final_update_refs_update_region_states() {
1035   ShenandoahSynchronizePinnedRegionStates pins;
1036   ShenandoahUpdateRegionAges ages(marking_context());
1037   auto cl = ShenandoahCompositeRegionClosure::of(pins, ages);
1038   parallel_heap_region_iterate(&cl);
1039 }
1040 
1041 void ShenandoahGenerationalHeap::complete_degenerated_cycle() {
1042   shenandoah_assert_heaplocked_or_safepoint();
1043   // In case degeneration interrupted concurrent evacuation or update references, we need to clean up
1044   // transient state. Otherwise, these actions have no effect.
1045   reset_generation_reserves();
1046 
1047   if (!old_generation()->is_parsable()) {
1048     ShenandoahGCPhase phase(ShenandoahPhaseTimings::degen_gc_coalesce_and_fill);
1049     coalesce_and_fill_old_regions(false);
1050   }
1051 }
1052 
1053 void ShenandoahGenerationalHeap::complete_concurrent_cycle() {
1054   if (!old_generation()->is_parsable()) {
1055     // Class unloading may render the card offsets unusable, so we must rebuild them before
1056     // the next remembered set scan. We _could_ let the control thread do this sometime after
1057     // the global cycle has completed and before the next young collection, but under memory
1058     // pressure the control thread may not have the time (that is, because it's running back
1059     // to back GCs). In that scenario, we would have to make the old regions parsable before
1060     // we could start a young collection. This could delay the start of the young cycle and
1061     // throw off the heuristics.
1062     entry_global_coalesce_and_fill();
1063   }
1064   reset_generation_reserves();
1065 }
1066 
1067 void ShenandoahGenerationalHeap::entry_global_coalesce_and_fill() {
1068   const char* msg = "Coalescing and filling old regions";
1069   ShenandoahConcurrentPhase gc_phase(msg, ShenandoahPhaseTimings::conc_coalesce_and_fill);
1070 
1071   TraceCollectorStats tcs(monitoring_support()->concurrent_collection_counters());
1072   EventMark em("%s", msg);
1073   ShenandoahWorkerScope scope(workers(),
1074                               ShenandoahWorkerPolicy::calc_workers_for_conc_marking(),
1075                               "concurrent coalesce and fill");
1076 
1077   coalesce_and_fill_old_regions(true);
1078 }
1079 
1080 void ShenandoahGenerationalHeap::update_region_ages(ShenandoahMarkingContext* ctx) {
1081   ShenandoahUpdateRegionAges cl(ctx);
1082   parallel_heap_region_iterate(&cl);
1083 }