1 /*
   2  * Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 
  27 #include "gc/shenandoah/shenandoahAgeCensus.hpp"
  28 #include "gc/shenandoah/shenandoahClosures.inline.hpp"
  29 #include "gc/shenandoah/shenandoahCollectorPolicy.hpp"
  30 #include "gc/shenandoah/shenandoahFreeSet.hpp"
  31 #include "gc/shenandoah/shenandoahGenerationalControlThread.hpp"
  32 #include "gc/shenandoah/shenandoahGenerationalEvacuationTask.hpp"
  33 #include "gc/shenandoah/shenandoahGenerationalHeap.hpp"
  34 #include "gc/shenandoah/shenandoahHeap.inline.hpp"
  35 #include "gc/shenandoah/shenandoahHeapRegion.hpp"
  36 #include "gc/shenandoah/shenandoahHeapRegionClosures.hpp"
  37 #include "gc/shenandoah/shenandoahInitLogger.hpp"
  38 #include "gc/shenandoah/shenandoahMemoryPool.hpp"
  39 #include "gc/shenandoah/shenandoahMonitoringSupport.hpp"
  40 #include "gc/shenandoah/shenandoahOldGeneration.hpp"
  41 #include "gc/shenandoah/shenandoahPhaseTimings.hpp"
  42 #include "gc/shenandoah/shenandoahRegulatorThread.hpp"
  43 #include "gc/shenandoah/shenandoahScanRemembered.inline.hpp"
  44 #include "gc/shenandoah/shenandoahWorkerPolicy.hpp"
  45 #include "gc/shenandoah/shenandoahYoungGeneration.hpp"
  46 #include "gc/shenandoah/shenandoahUtils.hpp"
  47 #include "logging/log.hpp"
  48 #include "utilities/events.hpp"
  49 
  50 
  51 class ShenandoahGenerationalInitLogger : public ShenandoahInitLogger {
  52 public:
  53   static void print() {
  54     ShenandoahGenerationalInitLogger logger;
  55     logger.print_all();
  56   }
  57 
  58   void print_heap() override {
  59     ShenandoahInitLogger::print_heap();
  60 
  61     ShenandoahGenerationalHeap* heap = ShenandoahGenerationalHeap::heap();
  62 
  63     ShenandoahYoungGeneration* young = heap->young_generation();
  64     log_info(gc, init)("Young Generation Soft Size: " EXACTFMT, EXACTFMTARGS(young->soft_max_capacity()));
  65     log_info(gc, init)("Young Generation Max: " EXACTFMT, EXACTFMTARGS(young->max_capacity()));
  66 
  67     ShenandoahOldGeneration* old = heap->old_generation();
  68     log_info(gc, init)("Old Generation Soft Size: " EXACTFMT, EXACTFMTARGS(old->soft_max_capacity()));
  69     log_info(gc, init)("Old Generation Max: " EXACTFMT, EXACTFMTARGS(old->max_capacity()));
  70   }
  71 
  72 protected:
  73   void print_gc_specific() override {
  74     ShenandoahInitLogger::print_gc_specific();
  75 
  76     ShenandoahGenerationalHeap* heap = ShenandoahGenerationalHeap::heap();
  77     log_info(gc, init)("Young Heuristics: %s", heap->young_generation()->heuristics()->name());
  78     log_info(gc, init)("Old Heuristics: %s", heap->old_generation()->heuristics()->name());
  79   }
  80 };
  81 
  82 size_t ShenandoahGenerationalHeap::calculate_min_plab() {
  83   return align_up(PLAB::min_size(), CardTable::card_size_in_words());
  84 }
  85 
  86 size_t ShenandoahGenerationalHeap::calculate_max_plab() {
  87   size_t MaxTLABSizeWords = ShenandoahHeapRegion::max_tlab_size_words();
  88   return align_down(MaxTLABSizeWords, CardTable::card_size_in_words());
  89 }
  90 
  91 // Returns size in bytes
  92 size_t ShenandoahGenerationalHeap::unsafe_max_tlab_alloc(Thread *thread) const {
  93   return MIN2(ShenandoahHeapRegion::max_tlab_size_bytes(), young_generation()->available());
  94 }
  95 
  96 ShenandoahGenerationalHeap::ShenandoahGenerationalHeap(ShenandoahCollectorPolicy* policy) :
  97   ShenandoahHeap(policy),
  98   _age_census(nullptr),
  99   _evac_tracker(new ShenandoahEvacuationTracker()),
 100   _min_plab_size(calculate_min_plab()),
 101   _max_plab_size(calculate_max_plab()),
 102   _regulator_thread(nullptr),
 103   _young_gen_memory_pool(nullptr),
 104   _old_gen_memory_pool(nullptr) {
 105   assert(is_aligned(_min_plab_size, CardTable::card_size_in_words()), "min_plab_size must be aligned");
 106   assert(is_aligned(_max_plab_size, CardTable::card_size_in_words()), "max_plab_size must be aligned");
 107 }
 108 
 109 void ShenandoahGenerationalHeap::post_initialize() {
 110   ShenandoahHeap::post_initialize();
 111   _age_census = new ShenandoahAgeCensus();
 112 }
 113 
 114 void ShenandoahGenerationalHeap::print_init_logger() const {
 115   ShenandoahGenerationalInitLogger logger;
 116   logger.print_all();
 117 }
 118 
 119 void ShenandoahGenerationalHeap::print_tracing_info() const {
 120   ShenandoahHeap::print_tracing_info();
 121 
 122   LogTarget(Info, gc, stats) lt;
 123   if (lt.is_enabled()) {
 124     LogStream ls(lt);
 125     ls.cr();
 126     ls.cr();
 127     evac_tracker()->print_global_on(&ls);
 128   }
 129 }
 130 
 131 void ShenandoahGenerationalHeap::initialize_heuristics() {
 132   // Initialize global generation and heuristics even in generational mode.
 133   ShenandoahHeap::initialize_heuristics();
 134 
 135   // Max capacity is the maximum _allowed_ capacity. That is, the maximum allowed capacity
 136   // for old would be total heap - minimum capacity of young. This means the sum of the maximum
 137   // allowed for old and young could exceed the total heap size. It remains the case that the
 138   // _actual_ capacity of young + old = total.
 139   _generation_sizer.heap_size_changed(max_capacity());
 140   size_t initial_capacity_young = _generation_sizer.max_young_size();
 141   size_t max_capacity_young = _generation_sizer.max_young_size();
 142   size_t initial_capacity_old = max_capacity() - max_capacity_young;
 143   size_t max_capacity_old = max_capacity() - initial_capacity_young;
 144 
 145   _young_generation = new ShenandoahYoungGeneration(max_workers(), max_capacity_young, initial_capacity_young);
 146   _old_generation = new ShenandoahOldGeneration(max_workers(), max_capacity_old, initial_capacity_old);
 147   _young_generation->initialize_heuristics(mode());
 148   _old_generation->initialize_heuristics(mode());
 149 }
 150 
 151 void ShenandoahGenerationalHeap::initialize_serviceability() {
 152   assert(mode()->is_generational(), "Only for the generational mode");
 153   _young_gen_memory_pool = new ShenandoahYoungGenMemoryPool(this);
 154   _old_gen_memory_pool = new ShenandoahOldGenMemoryPool(this);
 155   cycle_memory_manager()->add_pool(_young_gen_memory_pool);
 156   cycle_memory_manager()->add_pool(_old_gen_memory_pool);
 157   stw_memory_manager()->add_pool(_young_gen_memory_pool);
 158   stw_memory_manager()->add_pool(_old_gen_memory_pool);
 159 }
 160 
 161 GrowableArray<MemoryPool*> ShenandoahGenerationalHeap::memory_pools() {
 162   assert(mode()->is_generational(), "Only for the generational mode");
 163   GrowableArray<MemoryPool*> memory_pools(2);
 164   memory_pools.append(_young_gen_memory_pool);
 165   memory_pools.append(_old_gen_memory_pool);
 166   return memory_pools;
 167 }
 168 
 169 void ShenandoahGenerationalHeap::initialize_controller() {
 170   auto control_thread = new ShenandoahGenerationalControlThread();
 171   _control_thread = control_thread;
 172   _regulator_thread = new ShenandoahRegulatorThread(control_thread);
 173 }
 174 
 175 void ShenandoahGenerationalHeap::gc_threads_do(ThreadClosure* tcl) const {
 176   if (!shenandoah_policy()->is_at_shutdown()) {
 177     ShenandoahHeap::gc_threads_do(tcl);
 178     tcl->do_thread(regulator_thread());
 179   }
 180 }
 181 
 182 void ShenandoahGenerationalHeap::stop() {
 183   regulator_thread()->stop();
 184   ShenandoahHeap::stop();
 185 }
 186 
 187 void ShenandoahGenerationalHeap::evacuate_collection_set(bool concurrent) {
 188   ShenandoahRegionIterator regions;
 189   ShenandoahGenerationalEvacuationTask task(this, &regions, concurrent, false /* only promote regions */);
 190   workers()->run_task(&task);
 191 }
 192 
 193 void ShenandoahGenerationalHeap::promote_regions_in_place(bool concurrent) {
 194   ShenandoahRegionIterator regions;
 195   ShenandoahGenerationalEvacuationTask task(this, &regions, concurrent, true /* only promote regions */);
 196   workers()->run_task(&task);
 197 }
 198 
 199 oop ShenandoahGenerationalHeap::evacuate_object(oop p, Thread* thread) {
 200   assert(thread == Thread::current(), "Expected thread parameter to be current thread.");
 201   if (ShenandoahThreadLocalData::is_oom_during_evac(thread)) {
 202     // This thread went through the OOM during evac protocol and it is safe to return
 203     // the forward pointer. It must not attempt to evacuate anymore.
 204     return ShenandoahBarrierSet::resolve_forwarded(p);
 205   }
 206 
 207   assert(ShenandoahThreadLocalData::is_evac_allowed(thread), "must be enclosed in oom-evac scope");
 208 
 209   ShenandoahHeapRegion* r = heap_region_containing(p);
 210   assert(!r->is_humongous(), "never evacuate humongous objects");
 211 
 212   ShenandoahAffiliation target_gen = r->affiliation();
 213   // gc_generation() can change asynchronously and should not be used here.
 214   assert(active_generation() != nullptr, "Error");
 215   if (active_generation()->is_young() && target_gen == YOUNG_GENERATION) {
 216     markWord mark = p->mark();
 217     if (mark.is_marked()) {
 218       // Already forwarded.
 219       return ShenandoahBarrierSet::resolve_forwarded(p);
 220     }
 221 
 222     if (mark.has_displaced_mark_helper()) {
 223       // We don't want to deal with MT here just to ensure we read the right mark word.
 224       // Skip the potential promotion attempt for this one.
 225     } else if (r->age() + mark.age() >= age_census()->tenuring_threshold()) {
 226       oop result = try_evacuate_object(p, thread, r, OLD_GENERATION);
 227       if (result != nullptr) {
 228         return result;
 229       }
 230       // If we failed to promote this aged object, we'll fall through to code below and evacuate to young-gen.
 231     }
 232   }
 233   return try_evacuate_object(p, thread, r, target_gen);
 234 }
 235 
 236 // try_evacuate_object registers the object and dirties the associated remembered set information when evacuating
 237 // to OLD_GENERATION.
 238 oop ShenandoahGenerationalHeap::try_evacuate_object(oop p, Thread* thread, ShenandoahHeapRegion* from_region,
 239                                         ShenandoahAffiliation target_gen) {
 240   bool alloc_from_lab = true;
 241   bool has_plab = false;
 242   HeapWord* copy = nullptr;
 243 
 244   markWord mark = p->mark();
 245   if (ShenandoahForwarding::is_forwarded(mark)) {
 246     return ShenandoahForwarding::get_forwardee(p);
 247   }
 248   size_t old_size = ShenandoahForwarding::size(p);
 249   size_t size = p->copy_size(old_size, mark);
 250 
 251   bool is_promotion = (target_gen == OLD_GENERATION) && from_region->is_young();
 252 
 253 #ifdef ASSERT
 254   if (ShenandoahOOMDuringEvacALot &&
 255       (os::random() & 1) == 0) { // Simulate OOM every ~2nd slow-path call
 256     copy = nullptr;
 257   } else {
 258 #endif
 259     if (UseTLAB) {
 260       switch (target_gen) {
 261         case YOUNG_GENERATION: {
 262           copy = allocate_from_gclab(thread, size);
 263           if ((copy == nullptr) && (size < ShenandoahThreadLocalData::gclab_size(thread))) {
 264             // GCLAB allocation failed because we are bumping up against the limit on young evacuation reserve.  Try resetting
 265             // the desired GCLAB size and retry GCLAB allocation to avoid cascading of shared memory allocations.
 266             ShenandoahThreadLocalData::set_gclab_size(thread, PLAB::min_size());
 267             copy = allocate_from_gclab(thread, size);
 268             // If we still get nullptr, we'll try a shared allocation below.
 269           }
 270           break;
 271         }
 272         case OLD_GENERATION: {
 273           PLAB* plab = ShenandoahThreadLocalData::plab(thread);
 274           if (plab != nullptr) {
 275             has_plab = true;
 276             copy = allocate_from_plab(thread, size, is_promotion);
 277             if ((copy == nullptr) && (size < ShenandoahThreadLocalData::plab_size(thread)) &&
 278                 ShenandoahThreadLocalData::plab_retries_enabled(thread)) {
 279               // PLAB allocation failed because we are bumping up against the limit on old evacuation reserve or because
 280               // the requested object does not fit within the current plab but the plab still has an "abundance" of memory,
 281               // where abundance is defined as >= ShenGenHeap::plab_min_size().  In the former case, we try shrinking the
 282               // desired PLAB size to the minimum and retry PLAB allocation to avoid cascading of shared memory allocations.
 283               if (plab->words_remaining() < plab_min_size()) {
 284                 ShenandoahThreadLocalData::set_plab_size(thread, plab_min_size());
 285                 copy = allocate_from_plab(thread, size, is_promotion);
 286                 // If we still get nullptr, we'll try a shared allocation below.
 287                 if (copy == nullptr) {
 288                   // If retry fails, don't continue to retry until we have success (probably in next GC pass)
 289                   ShenandoahThreadLocalData::disable_plab_retries(thread);
 290                 }
 291               }
 292               // else, copy still equals nullptr.  this causes shared allocation below, preserving this plab for future needs.
 293             }
 294           }
 295           break;
 296         }
 297         default: {
 298           ShouldNotReachHere();
 299           break;
 300         }
 301       }
 302     }
 303 
 304     if (copy == nullptr) {
 305       // If we failed to allocate in LAB, we'll try a shared allocation.
 306       if (!is_promotion || !has_plab || (size > PLAB::min_size())) {
 307         ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared_gc(size, target_gen, is_promotion);
 308         copy = allocate_memory(req);
 309         alloc_from_lab = false;
 310       }
 311       // else, we leave copy equal to nullptr, signaling a promotion failure below if appropriate.
 312       // We choose not to promote objects smaller than PLAB::min_size() by way of shared allocations, as this is too
 313       // costly.  Instead, we'll simply "evacuate" to young-gen memory (using a GCLAB) and will promote in a future
 314       // evacuation pass.  This condition is denoted by: is_promotion && has_plab && (size <= PLAB::min_size())
 315     }
 316 #ifdef ASSERT
 317   }
 318 #endif
 319 
 320   if (copy == nullptr) {
 321     if (target_gen == OLD_GENERATION) {
 322       if (from_region->is_young()) {
 323         // Signal that promotion failed. Will evacuate this old object somewhere in young gen.
 324         old_generation()->handle_failed_promotion(thread, size);
 325         return nullptr;
 326       } else {
 327         // Remember that evacuation to old gen failed. We'll want to trigger a full gc to recover from this
 328         // after the evacuation threads have finished.
 329         old_generation()->handle_failed_evacuation();
 330       }
 331     }
 332 
 333     control_thread()->handle_alloc_failure_evac(size);
 334 
 335     oom_evac_handler()->handle_out_of_memory_during_evacuation();
 336 
 337     return ShenandoahBarrierSet::resolve_forwarded(p);
 338   }
 339 
 340   // Copy the object:
 341   NOT_PRODUCT(evac_tracker()->begin_evacuation(thread, size * HeapWordSize));
 342   Copy::aligned_disjoint_words(cast_from_oop<HeapWord*>(p), copy, old_size);
 343   oop copy_val = cast_to_oop(copy);
 344 
 345   // Update the age of the evacuated object
 346   if (target_gen == YOUNG_GENERATION && is_aging_cycle()) {
 347     ShenandoahHeap::increase_object_age(copy_val, from_region->age() + 1);
 348   }
 349 
 350   // Try to install the new forwarding pointer.
 351   oop result = ShenandoahForwarding::try_update_forwardee(p, copy_val);
 352   if (result == copy_val) {
 353     // Successfully evacuated. Our copy is now the public one!
 354 
 355     // This is necessary for virtual thread support. This uses the mark word without
 356     // considering that it may now be a forwarding pointer (and could therefore crash).
 357     // Secondarily, we do not want to spend cycles relativizing stack chunks for oops
 358     // that lost the evacuation race (and will therefore not become visible). It is
 359     // safe to do this on the public copy (this is also done during concurrent mark).
 360     copy_val->initialize_hash_if_necessary(p);
 361     ContinuationGCSupport::relativize_stack_chunk(copy_val);
 362 
 363     // Record that the evacuation succeeded
 364     NOT_PRODUCT(evac_tracker()->end_evacuation(thread, size * HeapWordSize));
 365 
 366     if (target_gen == OLD_GENERATION) {
 367       old_generation()->handle_evacuation(copy, size, from_region->is_young());
 368     } else {
 369       // When copying to the old generation above, we don't care
 370       // about recording object age in the census stats.
 371       assert(target_gen == YOUNG_GENERATION, "Error");
 372       // We record this census only when simulating pre-adaptive tenuring behavior, or
 373       // when we have been asked to record the census at evacuation rather than at mark
 374       if (ShenandoahGenerationalCensusAtEvac || !ShenandoahGenerationalAdaptiveTenuring) {
 375         evac_tracker()->record_age(thread, size * HeapWordSize, ShenandoahHeap::get_object_age(copy_val));
 376       }
 377     }
 378     shenandoah_assert_correct(nullptr, copy_val);
 379     return copy_val;
 380   }  else {
 381     // Failed to evacuate. We need to deal with the object that is left behind. Since this
 382     // new allocation is certainly after TAMS, it will be considered live in the next cycle.
 383     // But if it happens to contain references to evacuated regions, those references would
 384     // not get updated for this stale copy during this cycle, and we will crash while scanning
 385     // it the next cycle.
 386     if (alloc_from_lab) {
 387       // For LAB allocations, it is enough to rollback the allocation ptr. Either the next
 388       // object will overwrite this stale copy, or the filler object on LAB retirement will
 389       // do this.
 390       switch (target_gen) {
 391         case YOUNG_GENERATION: {
 392           ShenandoahThreadLocalData::gclab(thread)->undo_allocation(copy, size);
 393           break;
 394         }
 395         case OLD_GENERATION: {
 396           ShenandoahThreadLocalData::plab(thread)->undo_allocation(copy, size);
 397           if (is_promotion) {
 398             ShenandoahThreadLocalData::subtract_from_plab_promoted(thread, size * HeapWordSize);
 399           }
 400           break;
 401         }
 402         default: {
 403           ShouldNotReachHere();
 404           break;
 405         }
 406       }
 407     } else {
 408       // For non-LAB allocations, we have no way to retract the allocation, and
 409       // have to explicitly overwrite the copy with the filler object. With that overwrite,
 410       // we have to keep the fwdptr initialized and pointing to our (stale) copy.
 411       assert(size >= ShenandoahHeap::min_fill_size(), "previously allocated object known to be larger than min_size");
 412       fill_with_object(copy, size);
 413       shenandoah_assert_correct(nullptr, copy_val);
 414       // For non-LAB allocations, the object has already been registered
 415     }
 416     shenandoah_assert_correct(nullptr, result);
 417     return result;
 418   }
 419 }
 420 
 421 inline HeapWord* ShenandoahGenerationalHeap::allocate_from_plab(Thread* thread, size_t size, bool is_promotion) {
 422   assert(UseTLAB, "TLABs should be enabled");
 423 
 424   PLAB* plab = ShenandoahThreadLocalData::plab(thread);
 425   HeapWord* obj;
 426 
 427   if (plab == nullptr) {
 428     assert(!thread->is_Java_thread() && !thread->is_Worker_thread(), "Performance: thread should have PLAB: %s", thread->name());
 429     // No PLABs in this thread, fallback to shared allocation
 430     return nullptr;
 431   } else if (is_promotion && !ShenandoahThreadLocalData::allow_plab_promotions(thread)) {
 432     return nullptr;
 433   }
 434   // if plab->word_size() <= 0, thread's plab not yet initialized for this pass, so allow_plab_promotions() is not trustworthy
 435   obj = plab->allocate(size);
 436   if ((obj == nullptr) && (plab->words_remaining() < plab_min_size())) {
 437     // allocate_from_plab_slow will establish allow_plab_promotions(thread) for future invocations
 438     obj = allocate_from_plab_slow(thread, size, is_promotion);
 439   }
 440   // if plab->words_remaining() >= ShenGenHeap::heap()->plab_min_size(), just return nullptr so we can use a shared allocation
 441   if (obj == nullptr) {
 442     return nullptr;
 443   }
 444 
 445   if (is_promotion) {
 446     ShenandoahThreadLocalData::add_to_plab_promoted(thread, size * HeapWordSize);
 447   }
 448   return obj;
 449 }
 450 
 451 // Establish a new PLAB and allocate size HeapWords within it.
 452 HeapWord* ShenandoahGenerationalHeap::allocate_from_plab_slow(Thread* thread, size_t size, bool is_promotion) {
 453   // New object should fit the PLAB size
 454 
 455   assert(mode()->is_generational(), "PLABs only relevant to generational GC");
 456   const size_t plab_min_size = this->plab_min_size();
 457   // PLABs are aligned to card boundaries to avoid synchronization with concurrent
 458   // allocations in other PLABs.
 459   const size_t min_size = (size > plab_min_size)? align_up(size, CardTable::card_size_in_words()): plab_min_size;
 460 
 461   // Figure out size of new PLAB, using value determined at last refill.
 462   size_t cur_size = ShenandoahThreadLocalData::plab_size(thread);
 463   if (cur_size == 0) {
 464     cur_size = plab_min_size;
 465   }
 466 
 467   // Expand aggressively, doubling at each refill in this epoch, ceiling at plab_max_size()
 468   size_t future_size = MIN2(cur_size * 2, plab_max_size());
 469   // Doubling, starting at a card-multiple, should give us a card-multiple. (Ceiling and floor
 470   // are card multiples.)
 471   assert(is_aligned(future_size, CardTable::card_size_in_words()), "Card multiple by construction, future_size: " SIZE_FORMAT
 472           ", card_size: " SIZE_FORMAT ", cur_size: " SIZE_FORMAT ", max: " SIZE_FORMAT,
 473          future_size, (size_t) CardTable::card_size_in_words(), cur_size, plab_max_size());
 474 
 475   // Record new heuristic value even if we take any shortcut. This captures
 476   // the case when moderately-sized objects always take a shortcut. At some point,
 477   // heuristics should catch up with them.  Note that the requested cur_size may
 478   // not be honored, but we remember that this is the preferred size.
 479   log_debug(gc, free)("Set new PLAB size: " SIZE_FORMAT, future_size);
 480   ShenandoahThreadLocalData::set_plab_size(thread, future_size);
 481   if (cur_size < size) {
 482     // The PLAB to be allocated is still not large enough to hold the object. Fall back to shared allocation.
 483     // This avoids retiring perfectly good PLABs in order to represent a single large object allocation.
 484     log_debug(gc, free)("Current PLAB size (" SIZE_FORMAT ") is too small for " SIZE_FORMAT, cur_size, size);
 485     return nullptr;
 486   }
 487 
 488   // Retire current PLAB, and allocate a new one.
 489   PLAB* plab = ShenandoahThreadLocalData::plab(thread);
 490   if (plab->words_remaining() < plab_min_size) {
 491     // Retire current PLAB. This takes care of any PLAB book-keeping.
 492     // retire_plab() registers the remnant filler object with the remembered set scanner without a lock.
 493     // Since PLABs are card-aligned, concurrent registrations in other PLABs don't interfere.
 494     retire_plab(plab, thread);
 495 
 496     size_t actual_size = 0;
 497     HeapWord* plab_buf = allocate_new_plab(min_size, cur_size, &actual_size);
 498     if (plab_buf == nullptr) {
 499       if (min_size == plab_min_size) {
 500         // Disable PLAB promotions for this thread because we cannot even allocate a minimal PLAB. This allows us
 501         // to fail faster on subsequent promotion attempts.
 502         ShenandoahThreadLocalData::disable_plab_promotions(thread);
 503       }
 504       return nullptr;
 505     } else {
 506       ShenandoahThreadLocalData::enable_plab_retries(thread);
 507     }
 508     // Since the allocated PLAB may have been down-sized for alignment, plab->allocate(size) below may still fail.
 509     if (ZeroTLAB) {
 510       // ... and clear it.
 511       Copy::zero_to_words(plab_buf, actual_size);
 512     } else {
 513       // ...and zap just allocated object.
 514 #ifdef ASSERT
 515       // Skip mangling the space corresponding to the object header to
 516       // ensure that the returned space is not considered parsable by
 517       // any concurrent GC thread.
 518       size_t hdr_size = oopDesc::header_size();
 519       Copy::fill_to_words(plab_buf + hdr_size, actual_size - hdr_size, badHeapWordVal);
 520 #endif // ASSERT
 521     }
 522     assert(is_aligned(actual_size, CardTable::card_size_in_words()), "Align by design");
 523     plab->set_buf(plab_buf, actual_size);
 524     if (is_promotion && !ShenandoahThreadLocalData::allow_plab_promotions(thread)) {
 525       return nullptr;
 526     }
 527     return plab->allocate(size);
 528   } else {
 529     // If there's still at least min_size() words available within the current plab, don't retire it.  Let's nibble
 530     // away on this plab as long as we can.  Meanwhile, return nullptr to force this particular allocation request
 531     // to be satisfied with a shared allocation.  By packing more promotions into the previously allocated PLAB, we
 532     // reduce the likelihood of evacuation failures, and we reduce the need for downsizing our PLABs.
 533     return nullptr;
 534   }
 535 }
 536 
 537 HeapWord* ShenandoahGenerationalHeap::allocate_new_plab(size_t min_size, size_t word_size, size_t* actual_size) {
 538   // Align requested sizes to card-sized multiples.  Align down so that we don't violate max size of TLAB.
 539   assert(is_aligned(min_size, CardTable::card_size_in_words()), "Align by design");
 540   assert(word_size >= min_size, "Requested PLAB is too small");
 541 
 542   ShenandoahAllocRequest req = ShenandoahAllocRequest::for_plab(min_size, word_size);
 543   // Note that allocate_memory() sets a thread-local flag to prohibit further promotions by this thread
 544   // if we are at risk of infringing on the old-gen evacuation budget.
 545   HeapWord* res = allocate_memory(req);
 546   if (res != nullptr) {
 547     *actual_size = req.actual_size();
 548   } else {
 549     *actual_size = 0;
 550   }
 551   assert(is_aligned(res, CardTable::card_size_in_words()), "Align by design");
 552   return res;
 553 }
 554 
 555 void ShenandoahGenerationalHeap::retire_plab(PLAB* plab, Thread* thread) {
 556   // We don't enforce limits on plab evacuations.  We let it consume all available old-gen memory in order to reduce
 557   // probability of an evacuation failure.  We do enforce limits on promotion, to make sure that excessive promotion
 558   // does not result in an old-gen evacuation failure.  Note that a failed promotion is relatively harmless.  Any
 559   // object that fails to promote in the current cycle will be eligible for promotion in a subsequent cycle.
 560 
 561   // When the plab was instantiated, its entirety was treated as if the entire buffer was going to be dedicated to
 562   // promotions.  Now that we are retiring the buffer, we adjust for the reality that the plab is not entirely promotions.
 563   //  1. Some of the plab may have been dedicated to evacuations.
 564   //  2. Some of the plab may have been abandoned due to waste (at the end of the plab).
 565   size_t not_promoted =
 566           ShenandoahThreadLocalData::get_plab_actual_size(thread) - ShenandoahThreadLocalData::get_plab_promoted(thread);
 567   ShenandoahThreadLocalData::reset_plab_promoted(thread);
 568   ShenandoahThreadLocalData::set_plab_actual_size(thread, 0);
 569   if (not_promoted > 0) {
 570     old_generation()->unexpend_promoted(not_promoted);
 571   }
 572   const size_t original_waste = plab->waste();
 573   HeapWord* const top = plab->top();
 574 
 575   // plab->retire() overwrites unused memory between plab->top() and plab->hard_end() with a dummy object to make memory parsable.
 576   // It adds the size of this unused memory, in words, to plab->waste().
 577   plab->retire();
 578   if (top != nullptr && plab->waste() > original_waste && is_in_old(top)) {
 579     // If retiring the plab created a filler object, then we need to register it with our card scanner so it can
 580     // safely walk the region backing the plab.
 581     log_debug(gc)("retire_plab() is registering remnant of size " SIZE_FORMAT " at " PTR_FORMAT,
 582                   plab->waste() - original_waste, p2i(top));
 583     // No lock is necessary because the PLAB memory is aligned on card boundaries.
 584     old_generation()->card_scan()->register_object_without_lock(top);
 585   }
 586 }
 587 
 588 void ShenandoahGenerationalHeap::retire_plab(PLAB* plab) {
 589   Thread* thread = Thread::current();
 590   retire_plab(plab, thread);
 591 }
 592 
 593 ShenandoahGenerationalHeap::TransferResult ShenandoahGenerationalHeap::balance_generations() {
 594   shenandoah_assert_heaplocked_or_safepoint();
 595 
 596   ShenandoahOldGeneration* old_gen = old_generation();
 597   const ssize_t old_region_balance = old_gen->get_region_balance();
 598   old_gen->set_region_balance(0);
 599 
 600   if (old_region_balance > 0) {
 601     const auto old_region_surplus = checked_cast<size_t>(old_region_balance);
 602     const bool success = generation_sizer()->transfer_to_young(old_region_surplus);
 603     return TransferResult {
 604       success, old_region_surplus, "young"
 605     };
 606   }
 607 
 608   if (old_region_balance < 0) {
 609     const auto old_region_deficit = checked_cast<size_t>(-old_region_balance);
 610     const bool success = generation_sizer()->transfer_to_old(old_region_deficit);
 611     if (!success) {
 612       old_gen->handle_failed_transfer();
 613     }
 614     return TransferResult {
 615       success, old_region_deficit, "old"
 616     };
 617   }
 618 
 619   return TransferResult {true, 0, "none"};
 620 }
 621 
 622 // Make sure old-generation is large enough, but no larger than is necessary, to hold mixed evacuations
 623 // and promotions, if we anticipate either. Any deficit is provided by the young generation, subject to
 624 // xfer_limit, and any surplus is transferred to the young generation.
 625 // xfer_limit is the maximum we're able to transfer from young to old.
 626 void ShenandoahGenerationalHeap::compute_old_generation_balance(size_t old_xfer_limit, size_t old_cset_regions) {
 627 
 628   // We can limit the old reserve to the size of anticipated promotions:
 629   // max_old_reserve is an upper bound on memory evacuated from old and promoted to old,
 630   // clamped by the old generation space available.
 631   //
 632   // Here's the algebra.
 633   // Let SOEP = ShenandoahOldEvacRatioPercent,
 634   //     OE = old evac,
 635   //     YE = young evac, and
 636   //     TE = total evac = OE + YE
 637   // By definition:
 638   //            SOEP/100 = OE/TE
 639   //                     = OE/(OE+YE)
 640   //  => SOEP/(100-SOEP) = OE/((OE+YE)-OE)      // componendo-dividendo: If a/b = c/d, then a/(b-a) = c/(d-c)
 641   //                     = OE/YE
 642   //  =>              OE = YE*SOEP/(100-SOEP)
 643 
 644   // We have to be careful in the event that SOEP is set to 100 by the user.
 645   assert(ShenandoahOldEvacRatioPercent <= 100, "Error");
 646   const size_t old_available = old_generation()->available();
 647   // The free set will reserve this amount of memory to hold young evacuations
 648   const size_t young_reserve = (young_generation()->max_capacity() * ShenandoahEvacReserve) / 100;
 649 
 650   // In the case that ShenandoahOldEvacRatioPercent equals 100, max_old_reserve is limited only by xfer_limit.
 651 
 652   const double bound_on_old_reserve = old_available + old_xfer_limit + young_reserve;
 653   const double max_old_reserve = (ShenandoahOldEvacRatioPercent == 100)?
 654                                  bound_on_old_reserve: MIN2(double(young_reserve * ShenandoahOldEvacRatioPercent) / double(100 - ShenandoahOldEvacRatioPercent),
 655                                                             bound_on_old_reserve);
 656 
 657   const size_t region_size_bytes = ShenandoahHeapRegion::region_size_bytes();
 658 
 659   // Decide how much old space we should reserve for a mixed collection
 660   double reserve_for_mixed = 0;
 661   if (old_generation()->has_unprocessed_collection_candidates()) {
 662     // We want this much memory to be unfragmented in order to reliably evacuate old.  This is conservative because we
 663     // may not evacuate the entirety of unprocessed candidates in a single mixed evacuation.
 664     const double max_evac_need = (double(old_generation()->unprocessed_collection_candidates_live_memory()) * ShenandoahOldEvacWaste);
 665     assert(old_available >= old_generation()->free_unaffiliated_regions() * region_size_bytes,
 666            "Unaffiliated available must be less than total available");
 667     const double old_fragmented_available = double(old_available - old_generation()->free_unaffiliated_regions() * region_size_bytes);
 668     reserve_for_mixed = max_evac_need + old_fragmented_available;
 669     if (reserve_for_mixed > max_old_reserve) {
 670       reserve_for_mixed = max_old_reserve;
 671     }
 672   }
 673 
 674   // Decide how much space we should reserve for promotions from young
 675   size_t reserve_for_promo = 0;
 676   const size_t promo_load = old_generation()->get_promotion_potential();
 677   const bool doing_promotions = promo_load > 0;
 678   if (doing_promotions) {
 679     // We're promoting and have a bound on the maximum amount that can be promoted
 680     assert(max_old_reserve >= reserve_for_mixed, "Sanity");
 681     const size_t available_for_promotions = max_old_reserve - reserve_for_mixed;
 682     reserve_for_promo = MIN2((size_t)(promo_load * ShenandoahPromoEvacWaste), available_for_promotions);
 683   }
 684 
 685   // This is the total old we want to ideally reserve
 686   const size_t old_reserve = reserve_for_mixed + reserve_for_promo;
 687   assert(old_reserve <= max_old_reserve, "cannot reserve more than max for old evacuations");
 688 
 689   // We now check if the old generation is running a surplus or a deficit.
 690   const size_t max_old_available = old_generation()->available() + old_cset_regions * region_size_bytes;
 691   if (max_old_available >= old_reserve) {
 692     // We are running a surplus, so the old region surplus can go to young
 693     const size_t old_surplus = (max_old_available - old_reserve) / region_size_bytes;
 694     const size_t unaffiliated_old_regions = old_generation()->free_unaffiliated_regions() + old_cset_regions;
 695     const size_t old_region_surplus = MIN2(old_surplus, unaffiliated_old_regions);
 696     old_generation()->set_region_balance(checked_cast<ssize_t>(old_region_surplus));
 697   } else {
 698     // We are running a deficit which we'd like to fill from young.
 699     // Ignore that this will directly impact young_generation()->max_capacity(),
 700     // indirectly impacting young_reserve and old_reserve.  These computations are conservative.
 701     // Note that deficit is rounded up by one region.
 702     const size_t old_need = (old_reserve - max_old_available + region_size_bytes - 1) / region_size_bytes;
 703     const size_t max_old_region_xfer = old_xfer_limit / region_size_bytes;
 704 
 705     // Round down the regions we can transfer from young to old. If we're running short
 706     // on young-gen memory, we restrict the xfer. Old-gen collection activities will be
 707     // curtailed if the budget is restricted.
 708     const size_t old_region_deficit = MIN2(old_need, max_old_region_xfer);
 709     old_generation()->set_region_balance(0 - checked_cast<ssize_t>(old_region_deficit));
 710   }
 711 }
 712 
 713 void ShenandoahGenerationalHeap::reset_generation_reserves() {
 714   young_generation()->set_evacuation_reserve(0);
 715   old_generation()->set_evacuation_reserve(0);
 716   old_generation()->set_promoted_reserve(0);
 717 }
 718 
 719 void ShenandoahGenerationalHeap::TransferResult::print_on(const char* when, outputStream* ss) const {
 720   auto heap = ShenandoahGenerationalHeap::heap();
 721   ShenandoahYoungGeneration* const young_gen = heap->young_generation();
 722   ShenandoahOldGeneration* const old_gen = heap->old_generation();
 723   const size_t young_available = young_gen->available();
 724   const size_t old_available = old_gen->available();
 725   ss->print_cr("After %s, %s " SIZE_FORMAT " regions to %s to prepare for next gc, old available: "
 726                      PROPERFMT ", young_available: " PROPERFMT,
 727                      when,
 728                      success? "successfully transferred": "failed to transfer", region_count, region_destination,
 729                      PROPERFMTARGS(old_available), PROPERFMTARGS(young_available));
 730 }
 731 
 732 void ShenandoahGenerationalHeap::coalesce_and_fill_old_regions(bool concurrent) {
 733   class ShenandoahGlobalCoalesceAndFill : public WorkerTask {
 734   private:
 735       ShenandoahPhaseTimings::Phase _phase;
 736       ShenandoahRegionIterator _regions;
 737   public:
 738     explicit ShenandoahGlobalCoalesceAndFill(ShenandoahPhaseTimings::Phase phase) :
 739       WorkerTask("Shenandoah Global Coalesce"),
 740       _phase(phase) {}
 741 
 742     void work(uint worker_id) override {
 743       ShenandoahWorkerTimingsTracker timer(_phase,
 744                                            ShenandoahPhaseTimings::ScanClusters,
 745                                            worker_id, true);
 746       ShenandoahHeapRegion* region;
 747       while ((region = _regions.next()) != nullptr) {
 748         // old region is not in the collection set and was not immediately trashed
 749         if (region->is_old() && region->is_active() && !region->is_humongous()) {
 750           // Reset the coalesce and fill boundary because this is a global collect
 751           // and cannot be preempted by young collects. We want to be sure the entire
 752           // region is coalesced here and does not resume from a previously interrupted
 753           // or completed coalescing.
 754           region->begin_preemptible_coalesce_and_fill();
 755           region->oop_coalesce_and_fill(false);
 756         }
 757       }
 758     }
 759   };
 760 
 761   ShenandoahPhaseTimings::Phase phase = concurrent ?
 762           ShenandoahPhaseTimings::conc_coalesce_and_fill :
 763           ShenandoahPhaseTimings::degen_gc_coalesce_and_fill;
 764 
 765   // This is not cancellable
 766   ShenandoahGlobalCoalesceAndFill coalesce(phase);
 767   workers()->run_task(&coalesce);
 768   old_generation()->set_parsable(true);
 769 }
 770 
 771 template<bool CONCURRENT>
 772 class ShenandoahGenerationalUpdateHeapRefsTask : public WorkerTask {
 773 private:
 774   ShenandoahGenerationalHeap* _heap;
 775   ShenandoahRegionIterator* _regions;
 776   ShenandoahRegionChunkIterator* _work_chunks;
 777 
 778 public:
 779   explicit ShenandoahGenerationalUpdateHeapRefsTask(ShenandoahRegionIterator* regions,
 780                                                     ShenandoahRegionChunkIterator* work_chunks) :
 781           WorkerTask("Shenandoah Update References"),
 782           _heap(ShenandoahGenerationalHeap::heap()),
 783           _regions(regions),
 784           _work_chunks(work_chunks)
 785   {
 786     bool old_bitmap_stable = _heap->old_generation()->is_mark_complete();
 787     log_debug(gc, remset)("Update refs, scan remembered set using bitmap: %s", BOOL_TO_STR(old_bitmap_stable));
 788   }
 789 
 790   void work(uint worker_id) {
 791     if (CONCURRENT) {
 792       ShenandoahConcurrentWorkerSession worker_session(worker_id);
 793       ShenandoahSuspendibleThreadSetJoiner stsj;
 794       do_work<ShenandoahConcUpdateRefsClosure>(worker_id);
 795     } else {
 796       ShenandoahParallelWorkerSession worker_session(worker_id);
 797       do_work<ShenandoahNonConcUpdateRefsClosure>(worker_id);
 798     }
 799   }
 800 
 801 private:
 802   template<class T>
 803   void do_work(uint worker_id) {
 804     T cl;
 805 
 806     if (CONCURRENT && (worker_id == 0)) {
 807       // We ask the first worker to replenish the Mutator free set by moving regions previously reserved to hold the
 808       // results of evacuation.  These reserves are no longer necessary because evacuation has completed.
 809       size_t cset_regions = _heap->collection_set()->count();
 810 
 811       // Now that evacuation is done, we can reassign any regions that had been reserved to hold the results of evacuation
 812       // to the mutator free set.  At the end of GC, we will have cset_regions newly evacuated fully empty regions from
 813       // which we will be able to replenish the Collector free set and the OldCollector free set in preparation for the
 814       // next GC cycle.
 815       _heap->free_set()->move_regions_from_collector_to_mutator(cset_regions);
 816     }
 817     // If !CONCURRENT, there's no value in expanding Mutator free set
 818 
 819     ShenandoahHeapRegion* r = _regions->next();
 820     // We update references for global, old, and young collections.
 821     ShenandoahGeneration* const gc_generation = _heap->gc_generation();
 822     shenandoah_assert_generations_reconciled();
 823     assert(gc_generation->is_mark_complete(), "Expected complete marking");
 824     ShenandoahMarkingContext* const ctx = _heap->marking_context();
 825     bool is_mixed = _heap->collection_set()->has_old_regions();
 826     while (r != nullptr) {
 827       HeapWord* update_watermark = r->get_update_watermark();
 828       assert(update_watermark >= r->bottom(), "sanity");
 829 
 830       log_debug(gc)("Update refs worker " UINT32_FORMAT ", looking at region " SIZE_FORMAT, worker_id, r->index());
 831       bool region_progress = false;
 832       if (r->is_active() && !r->is_cset()) {
 833         if (r->is_young()) {
 834           _heap->marked_object_oop_iterate(r, &cl, update_watermark);
 835           region_progress = true;
 836         } else if (r->is_old()) {
 837           if (gc_generation->is_global()) {
 838 
 839             _heap->marked_object_oop_iterate(r, &cl, update_watermark);
 840             region_progress = true;
 841           }
 842           // Otherwise, this is an old region in a young or mixed cycle.  Process it during a second phase, below.
 843           // Don't bother to report pacing progress in this case.
 844         } else {
 845           // Because updating of references runs concurrently, it is possible that a FREE inactive region transitions
 846           // to a non-free active region while this loop is executing.  Whenever this happens, the changing of a region's
 847           // active status may propagate at a different speed than the changing of the region's affiliation.
 848 
 849           // When we reach this control point, it is because a race has allowed a region's is_active() status to be seen
 850           // by this thread before the region's affiliation() is seen by this thread.
 851 
 852           // It's ok for this race to occur because the newly transformed region does not have any references to be
 853           // updated.
 854 
 855           assert(r->get_update_watermark() == r->bottom(),
 856                  "%s Region " SIZE_FORMAT " is_active but not recognized as YOUNG or OLD so must be newly transitioned from FREE",
 857                  r->affiliation_name(), r->index());
 858         }
 859       }
 860 
 861       if (region_progress && ShenandoahPacing) {
 862         _heap->pacer()->report_updaterefs(pointer_delta(update_watermark, r->bottom()));
 863       }
 864 
 865       if (_heap->check_cancelled_gc_and_yield(CONCURRENT)) {
 866         return;
 867       }
 868 
 869       r = _regions->next();
 870     }
 871 
 872     if (!gc_generation->is_global()) {
 873       // Since this is generational and not GLOBAL, we have to process the remembered set.  There's no remembered
 874       // set processing if not in generational mode or if GLOBAL mode.
 875 
 876       // After this thread has exhausted its traditional update-refs work, it continues with updating refs within
 877       // remembered set. The remembered set workload is better balanced between threads, so threads that are "behind"
 878       // can catch up with other threads during this phase, allowing all threads to work more effectively in parallel.
 879       update_references_in_remembered_set(worker_id, cl, ctx, is_mixed);
 880     }
 881   }
 882 
 883   template<class T>
 884   void update_references_in_remembered_set(uint worker_id, T &cl, const ShenandoahMarkingContext* ctx, bool is_mixed) {
 885 
 886     struct ShenandoahRegionChunk assignment;
 887     ShenandoahScanRemembered* scanner = _heap->old_generation()->card_scan();
 888 
 889     while (!_heap->check_cancelled_gc_and_yield(CONCURRENT) && _work_chunks->next(&assignment)) {
 890       // Keep grabbing next work chunk to process until finished, or asked to yield
 891       ShenandoahHeapRegion* r = assignment._r;
 892       if (r->is_active() && !r->is_cset() && r->is_old()) {
 893         HeapWord* start_of_range = r->bottom() + assignment._chunk_offset;
 894         HeapWord* end_of_range = r->get_update_watermark();
 895         if (end_of_range > start_of_range + assignment._chunk_size) {
 896           end_of_range = start_of_range + assignment._chunk_size;
 897         }
 898 
 899         if (start_of_range >= end_of_range) {
 900           continue;
 901         }
 902 
 903         // Old region in a young cycle or mixed cycle.
 904         if (is_mixed) {
 905           if (r->is_humongous()) {
 906             // Need to examine both dirty and clean cards during mixed evac.
 907             r->oop_iterate_humongous_slice_all(&cl,start_of_range, assignment._chunk_size);
 908           } else {
 909             // Since this is mixed evacuation, old regions that are candidates for collection have not been coalesced
 910             // and filled.  This will use mark bits to find objects that need to be updated.
 911             update_references_in_old_region(cl, ctx, scanner, r, start_of_range, end_of_range);
 912           }
 913         } else {
 914           // This is a young evacuation
 915           size_t cluster_size = CardTable::card_size_in_words() * ShenandoahCardCluster::CardsPerCluster;
 916           size_t clusters = assignment._chunk_size / cluster_size;
 917           assert(clusters * cluster_size == assignment._chunk_size, "Chunk assignment must align on cluster boundaries");
 918           scanner->process_region_slice(r, assignment._chunk_offset, clusters, end_of_range, &cl, true, worker_id);
 919         }
 920 
 921         if (ShenandoahPacing) {
 922           _heap->pacer()->report_updaterefs(pointer_delta(end_of_range, start_of_range));
 923         }
 924       }
 925     }
 926   }
 927 
 928   template<class T>
 929   void update_references_in_old_region(T &cl, const ShenandoahMarkingContext* ctx, ShenandoahScanRemembered* scanner,
 930                                     const ShenandoahHeapRegion* r, HeapWord* start_of_range,
 931                                     HeapWord* end_of_range) const {
 932     // In case last object in my range spans boundary of my chunk, I may need to scan all the way to top()
 933     ShenandoahObjectToOopBoundedClosure<T> objs(&cl, start_of_range, r->top());
 934 
 935     // Any object that begins in a previous range is part of a different scanning assignment.  Any object that
 936     // starts after end_of_range is also not my responsibility.  (Either allocated during evacuation, so does
 937     // not hold pointers to from-space, or is beyond the range of my assigned work chunk.)
 938 
 939     // Find the first object that begins in my range, if there is one. Note that `p` will be set to `end_of_range`
 940     // when no live object is found in the range.
 941     HeapWord* tams = ctx->top_at_mark_start(r);
 942     HeapWord* p = get_first_object_start_word(ctx, scanner, tams, start_of_range, end_of_range);
 943 
 944     while (p < end_of_range) {
 945       // p is known to point to the beginning of marked object obj
 946       oop obj = cast_to_oop(p);
 947       objs.do_object(obj);
 948       HeapWord* prev_p = p;
 949       p += obj->size();
 950       if (p < tams) {
 951         p = ctx->get_next_marked_addr(p, tams);
 952         // If there are no more marked objects before tams, this returns tams.  Note that tams is
 953         // either >= end_of_range, or tams is the start of an object that is marked.
 954       }
 955       assert(p != prev_p, "Lack of forward progress");
 956     }
 957   }
 958 
 959   HeapWord* get_first_object_start_word(const ShenandoahMarkingContext* ctx, ShenandoahScanRemembered* scanner, HeapWord* tams,
 960                                         HeapWord* start_of_range, HeapWord* end_of_range) const {
 961     HeapWord* p = start_of_range;
 962 
 963     if (p >= tams) {
 964       // We cannot use ctx->is_marked(obj) to test whether an object begins at this address.  Instead,
 965       // we need to use the remembered set crossing map to advance p to the first object that starts
 966       // within the enclosing card.
 967       size_t card_index = scanner->card_index_for_addr(start_of_range);
 968       while (true) {
 969         HeapWord* first_object = scanner->first_object_in_card(card_index);
 970         if (first_object != nullptr) {
 971           p = first_object;
 972           break;
 973         } else if (scanner->addr_for_card_index(card_index + 1) < end_of_range) {
 974           card_index++;
 975         } else {
 976           // Signal that no object was found in range
 977           p = end_of_range;
 978           break;
 979         }
 980       }
 981     } else if (!ctx->is_marked(cast_to_oop(p))) {
 982       p = ctx->get_next_marked_addr(p, tams);
 983       // If there are no more marked objects before tams, this returns tams.
 984       // Note that tams is either >= end_of_range, or tams is the start of an object that is marked.
 985     }
 986     return p;
 987   }
 988 };
 989 
 990 void ShenandoahGenerationalHeap::update_heap_references(bool concurrent) {
 991   assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC");
 992   const uint nworkers = workers()->active_workers();
 993   ShenandoahRegionChunkIterator work_list(nworkers);
 994   if (concurrent) {
 995     ShenandoahGenerationalUpdateHeapRefsTask<true> task(&_update_refs_iterator, &work_list);
 996     workers()->run_task(&task);
 997   } else {
 998     ShenandoahGenerationalUpdateHeapRefsTask<false> task(&_update_refs_iterator, &work_list);
 999     workers()->run_task(&task);
1000   }
1001 
1002   if (ShenandoahEnableCardStats) {
1003     // Only do this if we are collecting card stats
1004     ShenandoahScanRemembered* card_scan = old_generation()->card_scan();
1005     assert(card_scan != nullptr, "Card table must exist when card stats are enabled");
1006     card_scan->log_card_stats(nworkers, CARD_STAT_UPDATE_REFS);
1007   }
1008 }
1009 
1010 struct ShenandoahCompositeRegionClosure {
1011   template<typename C1, typename C2>
1012   class Closure : public ShenandoahHeapRegionClosure {
1013   private:
1014     C1 &_c1;
1015     C2 &_c2;
1016 
1017   public:
1018     Closure(C1 &c1, C2 &c2) : ShenandoahHeapRegionClosure(), _c1(c1), _c2(c2) {}
1019 
1020     void heap_region_do(ShenandoahHeapRegion* r) override {
1021       _c1.heap_region_do(r);
1022       _c2.heap_region_do(r);
1023     }
1024 
1025     bool is_thread_safe() override {
1026       return _c1.is_thread_safe() && _c2.is_thread_safe();
1027     }
1028   };
1029 
1030   template<typename C1, typename C2>
1031   static Closure<C1, C2> of(C1 &c1, C2 &c2) {
1032     return Closure<C1, C2>(c1, c2);
1033   }
1034 };
1035 
1036 class ShenandoahUpdateRegionAges : public ShenandoahHeapRegionClosure {
1037 private:
1038   ShenandoahMarkingContext* _ctx;
1039 
1040 public:
1041   explicit ShenandoahUpdateRegionAges(ShenandoahMarkingContext* ctx) : _ctx(ctx) { }
1042 
1043   void heap_region_do(ShenandoahHeapRegion* r) override {
1044     // Maintenance of region age must follow evacuation in order to account for
1045     // evacuation allocations within survivor regions.  We consult region age during
1046     // the subsequent evacuation to determine whether certain objects need to
1047     // be promoted.
1048     if (r->is_young() && r->is_active()) {
1049       HeapWord *tams = _ctx->top_at_mark_start(r);
1050       HeapWord *top = r->top();
1051 
1052       // Allocations move the watermark when top moves.  However, compacting
1053       // objects will sometimes lower top beneath the watermark, after which,
1054       // attempts to read the watermark will assert out (watermark should not be
1055       // higher than top).
1056       if (top > tams) {
1057         // There have been allocations in this region since the start of the cycle.
1058         // Any objects new to this region must not assimilate elevated age.
1059         r->reset_age();
1060       } else if (ShenandoahGenerationalHeap::heap()->is_aging_cycle()) {
1061         r->increment_age();
1062       }
1063     }
1064   }
1065 
1066   bool is_thread_safe() override {
1067     return true;
1068   }
1069 };
1070 
1071 void ShenandoahGenerationalHeap::final_update_refs_update_region_states() {
1072   ShenandoahSynchronizePinnedRegionStates pins;
1073   ShenandoahUpdateRegionAges ages(active_generation()->complete_marking_context());
1074   auto cl = ShenandoahCompositeRegionClosure::of(pins, ages);
1075   parallel_heap_region_iterate(&cl);
1076 }
1077 
1078 void ShenandoahGenerationalHeap::complete_degenerated_cycle() {
1079   shenandoah_assert_heaplocked_or_safepoint();
1080   if (is_concurrent_old_mark_in_progress()) {
1081     // This is still necessary for degenerated cycles because the degeneration point may occur
1082     // after final mark of the young generation. See ShenandoahConcurrentGC::op_final_updaterefs for
1083     // a more detailed explanation.
1084     old_generation()->transfer_pointers_from_satb();
1085   }
1086 
1087   // We defer generation resizing actions until after cset regions have been recycled.
1088   TransferResult result = balance_generations();
1089   LogTarget(Info, gc, ergo) lt;
1090   if (lt.is_enabled()) {
1091     LogStream ls(lt);
1092     result.print_on("Degenerated GC", &ls);
1093   }
1094 
1095   // In case degeneration interrupted concurrent evacuation or update references, we need to clean up
1096   // transient state. Otherwise, these actions have no effect.
1097   reset_generation_reserves();
1098 
1099   if (!old_generation()->is_parsable()) {
1100     ShenandoahGCPhase phase(ShenandoahPhaseTimings::degen_gc_coalesce_and_fill);
1101     coalesce_and_fill_old_regions(false);
1102   }
1103 }
1104 
1105 void ShenandoahGenerationalHeap::complete_concurrent_cycle() {
1106   if (!old_generation()->is_parsable()) {
1107     // Class unloading may render the card offsets unusable, so we must rebuild them before
1108     // the next remembered set scan. We _could_ let the control thread do this sometime after
1109     // the global cycle has completed and before the next young collection, but under memory
1110     // pressure the control thread may not have the time (that is, because it's running back
1111     // to back GCs). In that scenario, we would have to make the old regions parsable before
1112     // we could start a young collection. This could delay the start of the young cycle and
1113     // throw off the heuristics.
1114     entry_global_coalesce_and_fill();
1115   }
1116 
1117   TransferResult result;
1118   {
1119     ShenandoahHeapLocker locker(lock());
1120 
1121     result = balance_generations();
1122     reset_generation_reserves();
1123   }
1124 
1125   LogTarget(Info, gc, ergo) lt;
1126   if (lt.is_enabled()) {
1127     LogStream ls(lt);
1128     result.print_on("Concurrent GC", &ls);
1129   }
1130 }
1131 
1132 void ShenandoahGenerationalHeap::entry_global_coalesce_and_fill() {
1133   const char* msg = "Coalescing and filling old regions";
1134   ShenandoahConcurrentPhase gc_phase(msg, ShenandoahPhaseTimings::conc_coalesce_and_fill);
1135 
1136   TraceCollectorStats tcs(monitoring_support()->concurrent_collection_counters());
1137   EventMark em("%s", msg);
1138   ShenandoahWorkerScope scope(workers(),
1139                               ShenandoahWorkerPolicy::calc_workers_for_conc_marking(),
1140                               "concurrent coalesce and fill");
1141 
1142   coalesce_and_fill_old_regions(true);
1143 }
1144 
1145 void ShenandoahGenerationalHeap::update_region_ages(ShenandoahMarkingContext* ctx) {
1146   ShenandoahUpdateRegionAges cl(ctx);
1147   parallel_heap_region_iterate(&cl);
1148 }