1 /*
   2  * Copyright (c) 2023, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2013, 2022, Red Hat, Inc. All rights reserved.
   4  * Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
   5  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   6  *
   7  * This code is free software; you can redistribute it and/or modify it
   8  * under the terms of the GNU General Public License version 2 only, as
   9  * published by the Free Software Foundation.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  *
  25  */
  26 
  27 
  28 #include "cds/archiveHeapWriter.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "gc/shared/classUnloadingContext.hpp"
  31 #include "gc/shared/fullGCForwarding.hpp"
  32 #include "gc/shared/gcArguments.hpp"
  33 #include "gc/shared/gcTimer.hpp"
  34 #include "gc/shared/gcTraceTime.inline.hpp"
  35 #include "gc/shared/locationPrinter.inline.hpp"
  36 #include "gc/shared/memAllocator.hpp"
  37 #include "gc/shared/plab.hpp"
  38 #include "gc/shared/tlab_globals.hpp"
  39 #include "gc/shenandoah/heuristics/shenandoahOldHeuristics.hpp"
  40 #include "gc/shenandoah/heuristics/shenandoahYoungHeuristics.hpp"
  41 #include "gc/shenandoah/mode/shenandoahGenerationalMode.hpp"
  42 #include "gc/shenandoah/mode/shenandoahPassiveMode.hpp"
  43 #include "gc/shenandoah/mode/shenandoahSATBMode.hpp"
  44 #include "gc/shenandoah/shenandoahAllocRequest.hpp"
  45 #include "gc/shenandoah/shenandoahBarrierSet.hpp"
  46 #include "gc/shenandoah/shenandoahClosures.inline.hpp"
  47 #include "gc/shenandoah/shenandoahCodeRoots.hpp"
  48 #include "gc/shenandoah/shenandoahCollectionSet.hpp"
  49 #include "gc/shenandoah/shenandoahCollectorPolicy.hpp"
  50 #include "gc/shenandoah/shenandoahConcurrentMark.hpp"
  51 #include "gc/shenandoah/shenandoahControlThread.hpp"
  52 #include "gc/shenandoah/shenandoahFreeSet.hpp"
  53 #include "gc/shenandoah/shenandoahGenerationalEvacuationTask.hpp"
  54 #include "gc/shenandoah/shenandoahGenerationalHeap.hpp"
  55 #include "gc/shenandoah/shenandoahGlobalGeneration.hpp"
  56 #include "gc/shenandoah/shenandoahHeap.inline.hpp"
  57 #include "gc/shenandoah/shenandoahHeapRegion.inline.hpp"
  58 #include "gc/shenandoah/shenandoahHeapRegionClosures.hpp"
  59 #include "gc/shenandoah/shenandoahHeapRegionSet.hpp"
  60 #include "gc/shenandoah/shenandoahInitLogger.hpp"
  61 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp"
  62 #include "gc/shenandoah/shenandoahMemoryPool.hpp"
  63 #include "gc/shenandoah/shenandoahMonitoringSupport.hpp"
  64 #include "gc/shenandoah/shenandoahOldGeneration.hpp"
  65 #include "gc/shenandoah/shenandoahPacer.inline.hpp"
  66 #include "gc/shenandoah/shenandoahPadding.hpp"
  67 #include "gc/shenandoah/shenandoahParallelCleaning.inline.hpp"
  68 #include "gc/shenandoah/shenandoahPhaseTimings.hpp"
  69 #include "gc/shenandoah/shenandoahReferenceProcessor.hpp"
  70 #include "gc/shenandoah/shenandoahRootProcessor.inline.hpp"
  71 #include "gc/shenandoah/shenandoahScanRemembered.inline.hpp"
  72 #include "gc/shenandoah/shenandoahSTWMark.hpp"
  73 #include "gc/shenandoah/shenandoahUncommitThread.hpp"
  74 #include "gc/shenandoah/shenandoahUtils.hpp"
  75 #include "gc/shenandoah/shenandoahVerifier.hpp"
  76 #include "gc/shenandoah/shenandoahVMOperations.hpp"
  77 #include "gc/shenandoah/shenandoahWorkerPolicy.hpp"
  78 #include "gc/shenandoah/shenandoahWorkGroup.hpp"
  79 #include "gc/shenandoah/shenandoahYoungGeneration.hpp"
  80 #include "memory/allocation.hpp"
  81 #include "memory/classLoaderMetaspace.hpp"
  82 #include "memory/memoryReserver.hpp"
  83 #include "memory/metaspaceUtils.hpp"
  84 #include "memory/universe.hpp"
  85 #include "nmt/mallocTracker.hpp"
  86 #include "nmt/memTracker.hpp"
  87 #include "oops/compressedOops.inline.hpp"
  88 #include "prims/jvmtiTagMap.hpp"
  89 #include "runtime/atomic.hpp"
  90 #include "runtime/globals.hpp"
  91 #include "runtime/interfaceSupport.inline.hpp"
  92 #include "runtime/java.hpp"
  93 #include "runtime/orderAccess.hpp"
  94 #include "runtime/safepointMechanism.hpp"
  95 #include "runtime/stackWatermarkSet.hpp"
  96 #include "runtime/threads.hpp"
  97 #include "runtime/vmThread.hpp"
  98 #include "utilities/events.hpp"
  99 #include "utilities/globalDefinitions.hpp"
 100 #include "utilities/powerOfTwo.hpp"
 101 #if INCLUDE_JFR
 102 #include "gc/shenandoah/shenandoahJfrSupport.hpp"
 103 #endif
 104 
 105 class ShenandoahPretouchHeapTask : public WorkerTask {
 106 private:
 107   ShenandoahRegionIterator _regions;
 108   const size_t _page_size;
 109 public:
 110   ShenandoahPretouchHeapTask(size_t page_size) :
 111     WorkerTask("Shenandoah Pretouch Heap"),
 112     _page_size(page_size) {}
 113 
 114   virtual void work(uint worker_id) {
 115     ShenandoahHeapRegion* r = _regions.next();
 116     while (r != nullptr) {
 117       if (r->is_committed()) {
 118         os::pretouch_memory(r->bottom(), r->end(), _page_size);
 119       }
 120       r = _regions.next();
 121     }
 122   }
 123 };
 124 
 125 class ShenandoahPretouchBitmapTask : public WorkerTask {
 126 private:
 127   ShenandoahRegionIterator _regions;
 128   char* _bitmap_base;
 129   const size_t _bitmap_size;
 130   const size_t _page_size;
 131 public:
 132   ShenandoahPretouchBitmapTask(char* bitmap_base, size_t bitmap_size, size_t page_size) :
 133     WorkerTask("Shenandoah Pretouch Bitmap"),
 134     _bitmap_base(bitmap_base),
 135     _bitmap_size(bitmap_size),
 136     _page_size(page_size) {}
 137 
 138   virtual void work(uint worker_id) {
 139     ShenandoahHeapRegion* r = _regions.next();
 140     while (r != nullptr) {
 141       size_t start = r->index()       * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor();
 142       size_t end   = (r->index() + 1) * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor();
 143       assert (end <= _bitmap_size, "end is sane: %zu < %zu", end, _bitmap_size);
 144 
 145       if (r->is_committed()) {
 146         os::pretouch_memory(_bitmap_base + start, _bitmap_base + end, _page_size);
 147       }
 148 
 149       r = _regions.next();
 150     }
 151   }
 152 };
 153 
 154 static ReservedSpace reserve(size_t size, size_t preferred_page_size) {
 155   // When a page size is given we don't want to mix large
 156   // and normal pages. If the size is not a multiple of the
 157   // page size it will be aligned up to achieve this.
 158   size_t alignment = os::vm_allocation_granularity();
 159   if (preferred_page_size != os::vm_page_size()) {
 160     alignment = MAX2(preferred_page_size, alignment);
 161     size = align_up(size, alignment);
 162   }
 163 
 164   const ReservedSpace reserved = MemoryReserver::reserve(size, alignment, preferred_page_size, mtGC);
 165   if (!reserved.is_reserved()) {
 166     vm_exit_during_initialization("Could not reserve space");
 167   }
 168   return reserved;
 169 }
 170 
 171 jint ShenandoahHeap::initialize() {
 172   //
 173   // Figure out heap sizing
 174   //
 175 
 176   size_t init_byte_size = InitialHeapSize;
 177   size_t min_byte_size  = MinHeapSize;
 178   size_t max_byte_size  = MaxHeapSize;
 179   size_t heap_alignment = HeapAlignment;
 180 
 181   size_t reg_size_bytes = ShenandoahHeapRegion::region_size_bytes();
 182 
 183   Universe::check_alignment(max_byte_size,  reg_size_bytes, "Shenandoah heap");
 184   Universe::check_alignment(init_byte_size, reg_size_bytes, "Shenandoah heap");
 185 
 186   _num_regions = ShenandoahHeapRegion::region_count();
 187   assert(_num_regions == (max_byte_size / reg_size_bytes),
 188          "Regions should cover entire heap exactly: %zu != %zu/%zu",
 189          _num_regions, max_byte_size, reg_size_bytes);
 190 
 191   size_t num_committed_regions = init_byte_size / reg_size_bytes;
 192   num_committed_regions = MIN2(num_committed_regions, _num_regions);
 193   assert(num_committed_regions <= _num_regions, "sanity");
 194   _initial_size = num_committed_regions * reg_size_bytes;
 195 
 196   size_t num_min_regions = min_byte_size / reg_size_bytes;
 197   num_min_regions = MIN2(num_min_regions, _num_regions);
 198   assert(num_min_regions <= _num_regions, "sanity");
 199   _minimum_size = num_min_regions * reg_size_bytes;
 200 
 201   // Default to max heap size.
 202   _soft_max_size = _num_regions * reg_size_bytes;
 203 
 204   _committed = _initial_size;
 205 
 206   size_t heap_page_size   = UseLargePages ? os::large_page_size() : os::vm_page_size();
 207   size_t bitmap_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
 208   size_t region_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
 209 
 210   //
 211   // Reserve and commit memory for heap
 212   //
 213 
 214   ReservedHeapSpace heap_rs = Universe::reserve_heap(max_byte_size, heap_alignment);
 215   initialize_reserved_region(heap_rs);
 216   _heap_region = MemRegion((HeapWord*)heap_rs.base(), heap_rs.size() / HeapWordSize);
 217   _heap_region_special = heap_rs.special();
 218 
 219   assert((((size_t) base()) & ShenandoahHeapRegion::region_size_bytes_mask()) == 0,
 220          "Misaligned heap: " PTR_FORMAT, p2i(base()));
 221   os::trace_page_sizes_for_requested_size("Heap",
 222                                           max_byte_size, heap_alignment,
 223                                           heap_rs.base(),
 224                                           heap_rs.size(), heap_rs.page_size());
 225 
 226 #if SHENANDOAH_OPTIMIZED_MARKTASK
 227   // The optimized ShenandoahMarkTask takes some bits away from the full object bits.
 228   // Fail if we ever attempt to address more than we can.
 229   if ((uintptr_t)heap_rs.end() >= ShenandoahMarkTask::max_addressable()) {
 230     FormatBuffer<512> buf("Shenandoah reserved [" PTR_FORMAT ", " PTR_FORMAT") for the heap, \n"
 231                           "but max object address is " PTR_FORMAT ". Try to reduce heap size, or try other \n"
 232                           "VM options that allocate heap at lower addresses (HeapBaseMinAddress, AllocateHeapAt, etc).",
 233                 p2i(heap_rs.base()), p2i(heap_rs.end()), ShenandoahMarkTask::max_addressable());
 234     vm_exit_during_initialization("Fatal Error", buf);
 235   }
 236 #endif
 237 
 238   ReservedSpace sh_rs = heap_rs.first_part(max_byte_size);
 239   if (!_heap_region_special) {
 240     os::commit_memory_or_exit(sh_rs.base(), _initial_size, heap_alignment, false,
 241                               "Cannot commit heap memory");
 242   }
 243 
 244   BarrierSet::set_barrier_set(new ShenandoahBarrierSet(this, _heap_region));
 245 
 246   // Now we know the number of regions and heap sizes, initialize the heuristics.
 247   initialize_heuristics();
 248 
 249   assert(_heap_region.byte_size() == heap_rs.size(), "Need to know reserved size for card table");
 250 
 251   //
 252   // Worker threads must be initialized after the barrier is configured
 253   //
 254   _workers = new ShenandoahWorkerThreads("Shenandoah GC Threads", _max_workers);
 255   if (_workers == nullptr) {
 256     vm_exit_during_initialization("Failed necessary allocation.");
 257   } else {
 258     _workers->initialize_workers();
 259   }
 260 
 261   if (ParallelGCThreads > 1) {
 262     _safepoint_workers = new ShenandoahWorkerThreads("Safepoint Cleanup Thread", ParallelGCThreads);
 263     _safepoint_workers->initialize_workers();
 264   }
 265 
 266   //
 267   // Reserve and commit memory for bitmap(s)
 268   //
 269 
 270   size_t bitmap_size_orig = ShenandoahMarkBitMap::compute_size(heap_rs.size());
 271   _bitmap_size = align_up(bitmap_size_orig, bitmap_page_size);
 272 
 273   size_t bitmap_bytes_per_region = reg_size_bytes / ShenandoahMarkBitMap::heap_map_factor();
 274 
 275   guarantee(bitmap_bytes_per_region != 0,
 276             "Bitmap bytes per region should not be zero");
 277   guarantee(is_power_of_2(bitmap_bytes_per_region),
 278             "Bitmap bytes per region should be power of two: %zu", bitmap_bytes_per_region);
 279 
 280   if (bitmap_page_size > bitmap_bytes_per_region) {
 281     _bitmap_regions_per_slice = bitmap_page_size / bitmap_bytes_per_region;
 282     _bitmap_bytes_per_slice = bitmap_page_size;
 283   } else {
 284     _bitmap_regions_per_slice = 1;
 285     _bitmap_bytes_per_slice = bitmap_bytes_per_region;
 286   }
 287 
 288   guarantee(_bitmap_regions_per_slice >= 1,
 289             "Should have at least one region per slice: %zu",
 290             _bitmap_regions_per_slice);
 291 
 292   guarantee(((_bitmap_bytes_per_slice) % bitmap_page_size) == 0,
 293             "Bitmap slices should be page-granular: bps = %zu, page size = %zu",
 294             _bitmap_bytes_per_slice, bitmap_page_size);
 295 
 296   ReservedSpace bitmap = reserve(_bitmap_size, bitmap_page_size);
 297   os::trace_page_sizes_for_requested_size("Mark Bitmap",
 298                                           bitmap_size_orig, bitmap_page_size,
 299                                           bitmap.base(),
 300                                           bitmap.size(), bitmap.page_size());
 301   MemTracker::record_virtual_memory_tag(bitmap, mtGC);
 302   _bitmap_region = MemRegion((HeapWord*) bitmap.base(), bitmap.size() / HeapWordSize);
 303   _bitmap_region_special = bitmap.special();
 304 
 305   size_t bitmap_init_commit = _bitmap_bytes_per_slice *
 306     align_up(num_committed_regions, _bitmap_regions_per_slice) / _bitmap_regions_per_slice;
 307   bitmap_init_commit = MIN2(_bitmap_size, bitmap_init_commit);
 308   if (!_bitmap_region_special) {
 309     os::commit_memory_or_exit((char *) _bitmap_region.start(), bitmap_init_commit, bitmap_page_size, false,
 310                               "Cannot commit bitmap memory");
 311   }
 312 
 313   _marking_context = new ShenandoahMarkingContext(_heap_region, _bitmap_region, _num_regions);
 314 
 315   if (ShenandoahVerify) {
 316     ReservedSpace verify_bitmap = reserve(_bitmap_size, bitmap_page_size);
 317     os::trace_page_sizes_for_requested_size("Verify Bitmap",
 318                                             bitmap_size_orig, bitmap_page_size,
 319                                             verify_bitmap.base(),
 320                                             verify_bitmap.size(), verify_bitmap.page_size());
 321     if (!verify_bitmap.special()) {
 322       os::commit_memory_or_exit(verify_bitmap.base(), verify_bitmap.size(), bitmap_page_size, false,
 323                                 "Cannot commit verification bitmap memory");
 324     }
 325     MemTracker::record_virtual_memory_tag(verify_bitmap, mtGC);
 326     MemRegion verify_bitmap_region = MemRegion((HeapWord *) verify_bitmap.base(), verify_bitmap.size() / HeapWordSize);
 327     _verification_bit_map.initialize(_heap_region, verify_bitmap_region);
 328     _verifier = new ShenandoahVerifier(this, &_verification_bit_map);
 329   }
 330 
 331   // Reserve aux bitmap for use in object_iterate(). We don't commit it here.
 332   size_t aux_bitmap_page_size = bitmap_page_size;
 333 
 334   ReservedSpace aux_bitmap = reserve(_bitmap_size, aux_bitmap_page_size);
 335   os::trace_page_sizes_for_requested_size("Aux Bitmap",
 336                                           bitmap_size_orig, aux_bitmap_page_size,
 337                                           aux_bitmap.base(),
 338                                           aux_bitmap.size(), aux_bitmap.page_size());
 339   MemTracker::record_virtual_memory_tag(aux_bitmap, mtGC);
 340   _aux_bitmap_region = MemRegion((HeapWord*) aux_bitmap.base(), aux_bitmap.size() / HeapWordSize);
 341   _aux_bitmap_region_special = aux_bitmap.special();
 342   _aux_bit_map.initialize(_heap_region, _aux_bitmap_region);
 343 
 344   //
 345   // Create regions and region sets
 346   //
 347   size_t region_align = align_up(sizeof(ShenandoahHeapRegion), SHENANDOAH_CACHE_LINE_SIZE);
 348   size_t region_storage_size_orig = region_align * _num_regions;
 349   size_t region_storage_size = align_up(region_storage_size_orig,
 350                                         MAX2(region_page_size, os::vm_allocation_granularity()));
 351 
 352   ReservedSpace region_storage = reserve(region_storage_size, region_page_size);
 353   os::trace_page_sizes_for_requested_size("Region Storage",
 354                                           region_storage_size_orig, region_page_size,
 355                                           region_storage.base(),
 356                                           region_storage.size(), region_storage.page_size());
 357   MemTracker::record_virtual_memory_tag(region_storage, mtGC);
 358   if (!region_storage.special()) {
 359     os::commit_memory_or_exit(region_storage.base(), region_storage_size, region_page_size, false,
 360                               "Cannot commit region memory");
 361   }
 362 
 363   // Try to fit the collection set bitmap at lower addresses. This optimizes code generation for cset checks.
 364   // Go up until a sensible limit (subject to encoding constraints) and try to reserve the space there.
 365   // If not successful, bite a bullet and allocate at whatever address.
 366   {
 367     const size_t cset_align = MAX2<size_t>(os::vm_page_size(), os::vm_allocation_granularity());
 368     const size_t cset_size = align_up(((size_t) sh_rs.base() + sh_rs.size()) >> ShenandoahHeapRegion::region_size_bytes_shift(), cset_align);
 369     const size_t cset_page_size = os::vm_page_size();
 370 
 371     uintptr_t min = round_up_power_of_2(cset_align);
 372     uintptr_t max = (1u << 30u);
 373     ReservedSpace cset_rs;
 374 
 375     for (uintptr_t addr = min; addr <= max; addr <<= 1u) {
 376       char* req_addr = (char*)addr;
 377       assert(is_aligned(req_addr, cset_align), "Should be aligned");
 378       cset_rs = MemoryReserver::reserve(req_addr, cset_size, cset_align, cset_page_size, mtGC);
 379       if (cset_rs.is_reserved()) {
 380         assert(cset_rs.base() == req_addr, "Allocated where requested: " PTR_FORMAT ", " PTR_FORMAT, p2i(cset_rs.base()), addr);
 381         _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base());
 382         break;
 383       }
 384     }
 385 
 386     if (_collection_set == nullptr) {
 387       cset_rs = MemoryReserver::reserve(cset_size, cset_align, os::vm_page_size(), mtGC);
 388       if (!cset_rs.is_reserved()) {
 389         vm_exit_during_initialization("Cannot reserve memory for collection set");
 390       }
 391 
 392       _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base());
 393     }
 394     os::trace_page_sizes_for_requested_size("Collection Set",
 395                                             cset_size, cset_page_size,
 396                                             cset_rs.base(),
 397                                             cset_rs.size(), cset_rs.page_size());
 398   }
 399 
 400   _regions = NEW_C_HEAP_ARRAY(ShenandoahHeapRegion*, _num_regions, mtGC);
 401   _affiliations = NEW_C_HEAP_ARRAY(uint8_t, _num_regions, mtGC);
 402   _free_set = new ShenandoahFreeSet(this, _num_regions);
 403 
 404   {
 405     ShenandoahHeapLocker locker(lock());
 406 
 407     for (size_t i = 0; i < _num_regions; i++) {
 408       HeapWord* start = (HeapWord*)sh_rs.base() + ShenandoahHeapRegion::region_size_words() * i;
 409       bool is_committed = i < num_committed_regions;
 410       void* loc = region_storage.base() + i * region_align;
 411 
 412       ShenandoahHeapRegion* r = new (loc) ShenandoahHeapRegion(start, i, is_committed);
 413       assert(is_aligned(r, SHENANDOAH_CACHE_LINE_SIZE), "Sanity");
 414 
 415       _marking_context->initialize_top_at_mark_start(r);
 416       _regions[i] = r;
 417       assert(!collection_set()->is_in(i), "New region should not be in collection set");
 418 
 419       _affiliations[i] = ShenandoahAffiliation::FREE;
 420     }
 421 
 422     size_t young_cset_regions, old_cset_regions;
 423 
 424     // We are initializing free set.  We ignore cset region tallies.
 425     size_t first_old, last_old, num_old;
 426     _free_set->prepare_to_rebuild(young_cset_regions, old_cset_regions, first_old, last_old, num_old);
 427     _free_set->finish_rebuild(young_cset_regions, old_cset_regions, num_old);
 428   }
 429 
 430   if (AlwaysPreTouch) {
 431     // For NUMA, it is important to pre-touch the storage under bitmaps with worker threads,
 432     // before initialize() below zeroes it with initializing thread. For any given region,
 433     // we touch the region and the corresponding bitmaps from the same thread.
 434     ShenandoahPushWorkerScope scope(workers(), _max_workers, false);
 435 
 436     _pretouch_heap_page_size = heap_page_size;
 437     _pretouch_bitmap_page_size = bitmap_page_size;
 438 
 439     // OS memory managers may want to coalesce back-to-back pages. Make their jobs
 440     // simpler by pre-touching continuous spaces (heap and bitmap) separately.
 441 
 442     ShenandoahPretouchBitmapTask bcl(bitmap.base(), _bitmap_size, _pretouch_bitmap_page_size);
 443     _workers->run_task(&bcl);
 444 
 445     ShenandoahPretouchHeapTask hcl(_pretouch_heap_page_size);
 446     _workers->run_task(&hcl);
 447   }
 448 
 449   //
 450   // Initialize the rest of GC subsystems
 451   //
 452 
 453   _liveness_cache = NEW_C_HEAP_ARRAY(ShenandoahLiveData*, _max_workers, mtGC);
 454   for (uint worker = 0; worker < _max_workers; worker++) {
 455     _liveness_cache[worker] = NEW_C_HEAP_ARRAY(ShenandoahLiveData, _num_regions, mtGC);
 456     Copy::fill_to_bytes(_liveness_cache[worker], _num_regions * sizeof(ShenandoahLiveData));
 457   }
 458 
 459   // There should probably be Shenandoah-specific options for these,
 460   // just as there are G1-specific options.
 461   {
 462     ShenandoahSATBMarkQueueSet& satbqs = ShenandoahBarrierSet::satb_mark_queue_set();
 463     satbqs.set_process_completed_buffers_threshold(20); // G1SATBProcessCompletedThreshold
 464     satbqs.set_buffer_enqueue_threshold_percentage(60); // G1SATBBufferEnqueueingThresholdPercent
 465   }
 466 
 467   _monitoring_support = new ShenandoahMonitoringSupport(this);
 468   _phase_timings = new ShenandoahPhaseTimings(max_workers());
 469   ShenandoahCodeRoots::initialize();
 470 
 471   if (ShenandoahPacing) {
 472     _pacer = new ShenandoahPacer(this);
 473     _pacer->setup_for_idle();
 474   }
 475 
 476   initialize_controller();
 477 
 478   if (ShenandoahUncommit) {
 479     _uncommit_thread = new ShenandoahUncommitThread(this);
 480   }
 481 
 482   print_init_logger();
 483 
 484   FullGCForwarding::initialize(_heap_region);
 485 
 486   return JNI_OK;
 487 }
 488 
 489 void ShenandoahHeap::initialize_controller() {
 490   _control_thread = new ShenandoahControlThread();
 491 }
 492 
 493 void ShenandoahHeap::print_init_logger() const {
 494   ShenandoahInitLogger::print();
 495 }
 496 
 497 void ShenandoahHeap::initialize_mode() {
 498   if (ShenandoahGCMode != nullptr) {
 499     if (strcmp(ShenandoahGCMode, "satb") == 0) {
 500       _gc_mode = new ShenandoahSATBMode();
 501     } else if (strcmp(ShenandoahGCMode, "passive") == 0) {
 502       _gc_mode = new ShenandoahPassiveMode();
 503     } else if (strcmp(ShenandoahGCMode, "generational") == 0) {
 504       _gc_mode = new ShenandoahGenerationalMode();
 505     } else {
 506       vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option");
 507     }
 508   } else {
 509     vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option (null)");
 510   }
 511   _gc_mode->initialize_flags();
 512   if (_gc_mode->is_diagnostic() && !UnlockDiagnosticVMOptions) {
 513     vm_exit_during_initialization(
 514             err_msg("GC mode \"%s\" is diagnostic, and must be enabled via -XX:+UnlockDiagnosticVMOptions.",
 515                     _gc_mode->name()));
 516   }
 517   if (_gc_mode->is_experimental() && !UnlockExperimentalVMOptions) {
 518     vm_exit_during_initialization(
 519             err_msg("GC mode \"%s\" is experimental, and must be enabled via -XX:+UnlockExperimentalVMOptions.",
 520                     _gc_mode->name()));
 521   }
 522 }
 523 
 524 void ShenandoahHeap::initialize_heuristics() {
 525   _global_generation = new ShenandoahGlobalGeneration(mode()->is_generational(), max_workers(), max_capacity(), max_capacity());
 526   _global_generation->initialize_heuristics(mode());
 527 }
 528 
 529 #ifdef _MSC_VER
 530 #pragma warning( push )
 531 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 532 #endif
 533 
 534 ShenandoahHeap::ShenandoahHeap(ShenandoahCollectorPolicy* policy) :
 535   CollectedHeap(),
 536   _gc_generation(nullptr),
 537   _active_generation(nullptr),
 538   _initial_size(0),
 539   _committed(0),
 540   _max_workers(MAX3(ConcGCThreads, ParallelGCThreads, 1U)),
 541   _workers(nullptr),
 542   _safepoint_workers(nullptr),
 543   _heap_region_special(false),
 544   _num_regions(0),
 545   _regions(nullptr),
 546   _affiliations(nullptr),
 547   _gc_state_changed(false),
 548   _gc_no_progress_count(0),
 549   _cancel_requested_time(0),
 550   _update_refs_iterator(this),
 551   _global_generation(nullptr),
 552   _control_thread(nullptr),
 553   _uncommit_thread(nullptr),
 554   _young_generation(nullptr),
 555   _old_generation(nullptr),
 556   _shenandoah_policy(policy),
 557   _gc_mode(nullptr),
 558   _free_set(nullptr),
 559   _pacer(nullptr),
 560   _verifier(nullptr),
 561   _phase_timings(nullptr),
 562   _monitoring_support(nullptr),
 563   _memory_pool(nullptr),
 564   _stw_memory_manager("Shenandoah Pauses"),
 565   _cycle_memory_manager("Shenandoah Cycles"),
 566   _gc_timer(new ConcurrentGCTimer()),
 567   _log_min_obj_alignment_in_bytes(LogMinObjAlignmentInBytes),
 568   _marking_context(nullptr),
 569   _bitmap_size(0),
 570   _bitmap_regions_per_slice(0),
 571   _bitmap_bytes_per_slice(0),
 572   _bitmap_region_special(false),
 573   _aux_bitmap_region_special(false),
 574   _liveness_cache(nullptr),
 575   _collection_set(nullptr)
 576 {
 577   // Initialize GC mode early, many subsequent initialization procedures depend on it
 578   initialize_mode();
 579   _cancelled_gc.set(GCCause::_no_gc);
 580 }
 581 
 582 #ifdef _MSC_VER
 583 #pragma warning( pop )
 584 #endif
 585 
 586 void ShenandoahHeap::print_heap_on(outputStream* st) const {
 587   st->print_cr("Shenandoah Heap");
 588   st->print_cr(" %zu%s max, %zu%s soft max, %zu%s committed, %zu%s used",
 589                byte_size_in_proper_unit(max_capacity()), proper_unit_for_byte_size(max_capacity()),
 590                byte_size_in_proper_unit(soft_max_capacity()), proper_unit_for_byte_size(soft_max_capacity()),
 591                byte_size_in_proper_unit(committed()),    proper_unit_for_byte_size(committed()),
 592                byte_size_in_proper_unit(used()),         proper_unit_for_byte_size(used()));
 593   st->print_cr(" %zu x %zu %s regions",
 594                num_regions(),
 595                byte_size_in_proper_unit(ShenandoahHeapRegion::region_size_bytes()),
 596                proper_unit_for_byte_size(ShenandoahHeapRegion::region_size_bytes()));
 597 
 598   st->print("Status: ");
 599   if (has_forwarded_objects())                 st->print("has forwarded objects, ");
 600   if (!mode()->is_generational()) {
 601     if (is_concurrent_mark_in_progress())      st->print("marking,");
 602   } else {
 603     if (is_concurrent_old_mark_in_progress())    st->print("old marking, ");
 604     if (is_concurrent_young_mark_in_progress())  st->print("young marking, ");
 605   }
 606   if (is_evacuation_in_progress())             st->print("evacuating, ");
 607   if (is_update_refs_in_progress())            st->print("updating refs, ");
 608   if (is_degenerated_gc_in_progress())         st->print("degenerated gc, ");
 609   if (is_full_gc_in_progress())                st->print("full gc, ");
 610   if (is_full_gc_move_in_progress())           st->print("full gc move, ");
 611   if (is_concurrent_weak_root_in_progress())   st->print("concurrent weak roots, ");
 612   if (is_concurrent_strong_root_in_progress() &&
 613       !is_concurrent_weak_root_in_progress())  st->print("concurrent strong roots, ");
 614 
 615   if (cancelled_gc()) {
 616     st->print("cancelled");
 617   } else {
 618     st->print("not cancelled");
 619   }
 620   st->cr();
 621 
 622   st->print_cr("Reserved region:");
 623   st->print_cr(" - [" PTR_FORMAT ", " PTR_FORMAT ") ",
 624                p2i(reserved_region().start()),
 625                p2i(reserved_region().end()));
 626 
 627   ShenandoahCollectionSet* cset = collection_set();
 628   st->print_cr("Collection set:");
 629   if (cset != nullptr) {
 630     st->print_cr(" - map (vanilla): " PTR_FORMAT, p2i(cset->map_address()));
 631     st->print_cr(" - map (biased):  " PTR_FORMAT, p2i(cset->biased_map_address()));
 632   } else {
 633     st->print_cr(" (null)");
 634   }
 635 
 636   st->cr();
 637 
 638   if (Verbose) {
 639     st->cr();
 640     print_heap_regions_on(st);
 641   }
 642 }
 643 
 644 void ShenandoahHeap::print_gc_on(outputStream* st) const {
 645   print_heap_regions_on(st);
 646 }
 647 
 648 class ShenandoahInitWorkerGCLABClosure : public ThreadClosure {
 649 public:
 650   void do_thread(Thread* thread) {
 651     assert(thread != nullptr, "Sanity");
 652     ShenandoahThreadLocalData::initialize_gclab(thread);
 653   }
 654 };
 655 
 656 void ShenandoahHeap::post_initialize() {
 657   CollectedHeap::post_initialize();
 658 
 659   // Schedule periodic task to report on gc thread CPU utilization
 660   _mmu_tracker.initialize();
 661 
 662   MutexLocker ml(Threads_lock);
 663 
 664   ShenandoahInitWorkerGCLABClosure init_gclabs;
 665   _workers->threads_do(&init_gclabs);
 666 
 667   // gclab can not be initialized early during VM startup, as it can not determinate its max_size.
 668   // Now, we will let WorkerThreads to initialize gclab when new worker is created.
 669   _workers->set_initialize_gclab();
 670 
 671   // Note that the safepoint workers may require gclabs if the threads are used to create a heap dump
 672   // during a concurrent evacuation phase.
 673   if (_safepoint_workers != nullptr) {
 674     _safepoint_workers->threads_do(&init_gclabs);
 675     _safepoint_workers->set_initialize_gclab();
 676   }
 677 
 678   JFR_ONLY(ShenandoahJFRSupport::register_jfr_type_serializers();)
 679 }
 680 
 681 ShenandoahHeuristics* ShenandoahHeap::heuristics() {
 682   return _global_generation->heuristics();
 683 }
 684 
 685 size_t ShenandoahHeap::used() const {
 686   return global_generation()->used();
 687 }
 688 
 689 size_t ShenandoahHeap::committed() const {
 690   return Atomic::load(&_committed);
 691 }
 692 
 693 void ShenandoahHeap::increase_committed(size_t bytes) {
 694   shenandoah_assert_heaplocked_or_safepoint();
 695   _committed += bytes;
 696 }
 697 
 698 void ShenandoahHeap::decrease_committed(size_t bytes) {
 699   shenandoah_assert_heaplocked_or_safepoint();
 700   _committed -= bytes;
 701 }
 702 
 703 // For tracking usage based on allocations, it should be the case that:
 704 // * The sum of regions::used == heap::used
 705 // * The sum of a generation's regions::used == generation::used
 706 // * The sum of a generation's humongous regions::free == generation::humongous_waste
 707 // These invariants are checked by the verifier on GC safepoints.
 708 //
 709 // Additional notes:
 710 // * When a mutator's allocation request causes a region to be retired, the
 711 //   free memory left in that region is considered waste. It does not contribute
 712 //   to the usage, but it _does_ contribute to allocation rate.
 713 // * The bottom of a PLAB must be aligned on card size. In some cases this will
 714 //   require padding in front of the PLAB (a filler object). Because this padding
 715 //   is included in the region's used memory we include the padding in the usage
 716 //   accounting as waste.
 717 // * Mutator allocations are used to compute an allocation rate. They are also
 718 //   sent to the Pacer for those purposes.
 719 // * There are three sources of waste:
 720 //  1. The padding used to align a PLAB on card size
 721 //  2. Region's free is less than minimum TLAB size and is retired
 722 //  3. The unused portion of memory in the last region of a humongous object
 723 void ShenandoahHeap::increase_used(const ShenandoahAllocRequest& req) {
 724   size_t actual_bytes = req.actual_size() * HeapWordSize;
 725   size_t wasted_bytes = req.waste() * HeapWordSize;
 726   ShenandoahGeneration* generation = generation_for(req.affiliation());
 727 
 728   if (req.is_gc_alloc()) {
 729     assert(wasted_bytes == 0 || req.type() == ShenandoahAllocRequest::_alloc_plab, "Only PLABs have waste");
 730     increase_used(generation, actual_bytes + wasted_bytes);
 731   } else {
 732     assert(req.is_mutator_alloc(), "Expected mutator alloc here");
 733     // padding and actual size both count towards allocation counter
 734     generation->increase_allocated(actual_bytes + wasted_bytes);
 735 
 736     // only actual size counts toward usage for mutator allocations
 737     increase_used(generation, actual_bytes);
 738 
 739     // notify pacer of both actual size and waste
 740     notify_mutator_alloc_words(req.actual_size(), req.waste());
 741 
 742     if (wasted_bytes > 0 && ShenandoahHeapRegion::requires_humongous(req.actual_size())) {
 743       increase_humongous_waste(generation,wasted_bytes);
 744     }
 745   }
 746 }
 747 
 748 void ShenandoahHeap::increase_humongous_waste(ShenandoahGeneration* generation, size_t bytes) {
 749   generation->increase_humongous_waste(bytes);
 750   if (!generation->is_global()) {
 751     global_generation()->increase_humongous_waste(bytes);
 752   }
 753 }
 754 
 755 void ShenandoahHeap::decrease_humongous_waste(ShenandoahGeneration* generation, size_t bytes) {
 756   generation->decrease_humongous_waste(bytes);
 757   if (!generation->is_global()) {
 758     global_generation()->decrease_humongous_waste(bytes);
 759   }
 760 }
 761 
 762 void ShenandoahHeap::increase_used(ShenandoahGeneration* generation, size_t bytes) {
 763   generation->increase_used(bytes);
 764   if (!generation->is_global()) {
 765     global_generation()->increase_used(bytes);
 766   }
 767 }
 768 
 769 void ShenandoahHeap::decrease_used(ShenandoahGeneration* generation, size_t bytes) {
 770   generation->decrease_used(bytes);
 771   if (!generation->is_global()) {
 772     global_generation()->decrease_used(bytes);
 773   }
 774 }
 775 
 776 void ShenandoahHeap::notify_mutator_alloc_words(size_t words, size_t waste) {
 777   if (ShenandoahPacing) {
 778     control_thread()->pacing_notify_alloc(words);
 779     if (waste > 0) {
 780       pacer()->claim_for_alloc<true>(waste);
 781     }
 782   }
 783 }
 784 
 785 size_t ShenandoahHeap::capacity() const {
 786   return committed();
 787 }
 788 
 789 size_t ShenandoahHeap::max_capacity() const {
 790   return _num_regions * ShenandoahHeapRegion::region_size_bytes();
 791 }
 792 
 793 size_t ShenandoahHeap::soft_max_capacity() const {
 794   size_t v = Atomic::load(&_soft_max_size);
 795   assert(min_capacity() <= v && v <= max_capacity(),
 796          "Should be in bounds: %zu <= %zu <= %zu",
 797          min_capacity(), v, max_capacity());
 798   return v;
 799 }
 800 
 801 void ShenandoahHeap::set_soft_max_capacity(size_t v) {
 802   assert(min_capacity() <= v && v <= max_capacity(),
 803          "Should be in bounds: %zu <= %zu <= %zu",
 804          min_capacity(), v, max_capacity());
 805   Atomic::store(&_soft_max_size, v);
 806 }
 807 
 808 size_t ShenandoahHeap::min_capacity() const {
 809   return _minimum_size;
 810 }
 811 
 812 size_t ShenandoahHeap::initial_capacity() const {
 813   return _initial_size;
 814 }
 815 
 816 bool ShenandoahHeap::is_in(const void* p) const {
 817   if (!is_in_reserved(p)) {
 818     return false;
 819   }
 820 
 821   if (is_full_gc_move_in_progress()) {
 822     // Full GC move is running, we do not have a consistent region
 823     // information yet. But we know the pointer is in heap.
 824     return true;
 825   }
 826 
 827   // Now check if we point to a live section in active region.
 828   const ShenandoahHeapRegion* r = heap_region_containing(p);
 829   if (p >= r->top()) {
 830     return false;
 831   }
 832 
 833   if (r->is_active()) {
 834     return true;
 835   }
 836 
 837   // The region is trash, but won't be recycled until after concurrent weak
 838   // roots. We also don't allow mutators to allocate from trash regions
 839   // during weak roots. Concurrent class unloading may access unmarked oops
 840   // in trash regions.
 841   return r->is_trash() && is_concurrent_weak_root_in_progress();
 842 }
 843 
 844 void ShenandoahHeap::notify_soft_max_changed() {
 845   if (_uncommit_thread != nullptr) {
 846     _uncommit_thread->notify_soft_max_changed();
 847   }
 848 }
 849 
 850 void ShenandoahHeap::notify_explicit_gc_requested() {
 851   if (_uncommit_thread != nullptr) {
 852     _uncommit_thread->notify_explicit_gc_requested();
 853   }
 854 }
 855 
 856 bool ShenandoahHeap::check_soft_max_changed() {
 857   size_t new_soft_max = Atomic::load(&SoftMaxHeapSize);
 858   size_t old_soft_max = soft_max_capacity();
 859   if (new_soft_max != old_soft_max) {
 860     new_soft_max = MAX2(min_capacity(), new_soft_max);
 861     new_soft_max = MIN2(max_capacity(), new_soft_max);
 862     if (new_soft_max != old_soft_max) {
 863       log_info(gc)("Soft Max Heap Size: %zu%s -> %zu%s",
 864                    byte_size_in_proper_unit(old_soft_max), proper_unit_for_byte_size(old_soft_max),
 865                    byte_size_in_proper_unit(new_soft_max), proper_unit_for_byte_size(new_soft_max)
 866       );
 867       set_soft_max_capacity(new_soft_max);
 868       return true;
 869     }
 870   }
 871   return false;
 872 }
 873 
 874 void ShenandoahHeap::notify_heap_changed() {
 875   // Update monitoring counters when we took a new region. This amortizes the
 876   // update costs on slow path.
 877   monitoring_support()->notify_heap_changed();
 878   _heap_changed.try_set();
 879 }
 880 
 881 void ShenandoahHeap::set_forced_counters_update(bool value) {
 882   monitoring_support()->set_forced_counters_update(value);
 883 }
 884 
 885 void ShenandoahHeap::handle_force_counters_update() {
 886   monitoring_support()->handle_force_counters_update();
 887 }
 888 
 889 HeapWord* ShenandoahHeap::allocate_from_gclab_slow(Thread* thread, size_t size) {
 890   // New object should fit the GCLAB size
 891   size_t min_size = MAX2(size, PLAB::min_size());
 892 
 893   // Figure out size of new GCLAB, looking back at heuristics. Expand aggressively.
 894   size_t new_size = ShenandoahThreadLocalData::gclab_size(thread) * 2;
 895 
 896   new_size = MIN2(new_size, PLAB::max_size());
 897   new_size = MAX2(new_size, PLAB::min_size());
 898 
 899   // Record new heuristic value even if we take any shortcut. This captures
 900   // the case when moderately-sized objects always take a shortcut. At some point,
 901   // heuristics should catch up with them.
 902   log_debug(gc, free)("Set new GCLAB size: %zu", new_size);
 903   ShenandoahThreadLocalData::set_gclab_size(thread, new_size);
 904 
 905   if (new_size < size) {
 906     // New size still does not fit the object. Fall back to shared allocation.
 907     // This avoids retiring perfectly good GCLABs, when we encounter a large object.
 908     log_debug(gc, free)("New gclab size (%zu) is too small for %zu", new_size, size);
 909     return nullptr;
 910   }
 911 
 912   // Retire current GCLAB, and allocate a new one.
 913   PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
 914   gclab->retire();
 915 
 916   size_t actual_size = 0;
 917   HeapWord* gclab_buf = allocate_new_gclab(min_size, new_size, &actual_size);
 918   if (gclab_buf == nullptr) {
 919     return nullptr;
 920   }
 921 
 922   assert (size <= actual_size, "allocation should fit");
 923 
 924   // ...and clear or zap just allocated TLAB, if needed.
 925   if (ZeroTLAB) {
 926     Copy::zero_to_words(gclab_buf, actual_size);
 927   } else if (ZapTLAB) {
 928     // Skip mangling the space corresponding to the object header to
 929     // ensure that the returned space is not considered parsable by
 930     // any concurrent GC thread.
 931     size_t hdr_size = oopDesc::header_size();
 932     Copy::fill_to_words(gclab_buf + hdr_size, actual_size - hdr_size, badHeapWordVal);
 933   }
 934   gclab->set_buf(gclab_buf, actual_size);
 935   return gclab->allocate(size);
 936 }
 937 
 938 // Called from stubs in JIT code or interpreter
 939 HeapWord* ShenandoahHeap::allocate_new_tlab(size_t min_size,
 940                                             size_t requested_size,
 941                                             size_t* actual_size) {
 942   ShenandoahAllocRequest req = ShenandoahAllocRequest::for_tlab(min_size, requested_size);
 943   HeapWord* res = allocate_memory(req);
 944   if (res != nullptr) {
 945     *actual_size = req.actual_size();
 946   } else {
 947     *actual_size = 0;
 948   }
 949   return res;
 950 }
 951 
 952 HeapWord* ShenandoahHeap::allocate_new_gclab(size_t min_size,
 953                                              size_t word_size,
 954                                              size_t* actual_size) {
 955   ShenandoahAllocRequest req = ShenandoahAllocRequest::for_gclab(min_size, word_size);
 956   HeapWord* res = allocate_memory(req);
 957   if (res != nullptr) {
 958     *actual_size = req.actual_size();
 959   } else {
 960     *actual_size = 0;
 961   }
 962   return res;
 963 }
 964 
 965 HeapWord* ShenandoahHeap::allocate_memory(ShenandoahAllocRequest& req) {
 966   intptr_t pacer_epoch = 0;
 967   bool in_new_region = false;
 968   HeapWord* result = nullptr;
 969 
 970   if (req.is_mutator_alloc()) {
 971     if (ShenandoahPacing) {
 972       pacer()->pace_for_alloc(req.size());
 973       pacer_epoch = pacer()->epoch();
 974     }
 975 
 976     if (!ShenandoahAllocFailureALot || !should_inject_alloc_failure()) {
 977       result = allocate_memory_under_lock(req, in_new_region);
 978     }
 979 
 980     // Check that gc overhead is not exceeded.
 981     //
 982     // Shenandoah will grind along for quite a while allocating one
 983     // object at a time using shared (non-tlab) allocations. This check
 984     // is testing that the GC overhead limit has not been exceeded.
 985     // This will notify the collector to start a cycle, but will raise
 986     // an OOME to the mutator if the last Full GCs have not made progress.
 987     // gc_no_progress_count is incremented following each degen or full GC that fails to achieve is_good_progress().
 988     if (result == nullptr && !req.is_lab_alloc() && get_gc_no_progress_count() > ShenandoahNoProgressThreshold) {
 989       control_thread()->handle_alloc_failure(req, false);
 990       req.set_actual_size(0);
 991       return nullptr;
 992     }
 993 
 994     if (result == nullptr) {
 995       // Block until control thread reacted, then retry allocation.
 996       //
 997       // It might happen that one of the threads requesting allocation would unblock
 998       // way later after GC happened, only to fail the second allocation, because
 999       // other threads have already depleted the free storage. In this case, a better
1000       // strategy is to try again, until at least one full GC has completed.
1001       //
1002       // Stop retrying and return nullptr to cause OOMError exception if our allocation failed even after:
1003       //   a) We experienced a GC that had good progress, or
1004       //   b) We experienced at least one Full GC (whether or not it had good progress)
1005 
1006       const size_t original_count = shenandoah_policy()->full_gc_count();
1007       while (result == nullptr && should_retry_allocation(original_count)) {
1008         control_thread()->handle_alloc_failure(req, true);
1009         result = allocate_memory_under_lock(req, in_new_region);
1010       }
1011       if (result != nullptr) {
1012         // If our allocation request has been satisfied after it initially failed, we count this as good gc progress
1013         notify_gc_progress();
1014       }
1015       if (log_develop_is_enabled(Debug, gc, alloc)) {
1016         ResourceMark rm;
1017         log_debug(gc, alloc)("Thread: %s, Result: " PTR_FORMAT ", Request: %s, Size: %zu"
1018                              ", Original: %zu, Latest: %zu",
1019                              Thread::current()->name(), p2i(result), req.type_string(), req.size(),
1020                              original_count, get_gc_no_progress_count());
1021       }
1022     }
1023   } else {
1024     assert(req.is_gc_alloc(), "Can only accept GC allocs here");
1025     result = allocate_memory_under_lock(req, in_new_region);
1026     // Do not call handle_alloc_failure() here, because we cannot block.
1027     // The allocation failure would be handled by the LRB slowpath with handle_alloc_failure_evac().
1028   }
1029 
1030   if (in_new_region) {
1031     notify_heap_changed();
1032   }
1033 
1034   if (result == nullptr) {
1035     req.set_actual_size(0);
1036   }
1037 
1038   // This is called regardless of the outcome of the allocation to account
1039   // for any waste created by retiring regions with this request.
1040   increase_used(req);
1041 
1042   if (result != nullptr) {
1043     size_t requested = req.size();
1044     size_t actual = req.actual_size();
1045 
1046     assert (req.is_lab_alloc() || (requested == actual),
1047             "Only LAB allocations are elastic: %s, requested = %zu, actual = %zu",
1048             ShenandoahAllocRequest::alloc_type_to_string(req.type()), requested, actual);
1049 
1050     if (req.is_mutator_alloc()) {
1051       // If we requested more than we were granted, give the rest back to pacer.
1052       // This only matters if we are in the same pacing epoch: do not try to unpace
1053       // over the budget for the other phase.
1054       if (ShenandoahPacing && (pacer_epoch > 0) && (requested > actual)) {
1055         pacer()->unpace_for_alloc(pacer_epoch, requested - actual);
1056       }
1057     }
1058   }
1059 
1060   return result;
1061 }
1062 
1063 inline bool ShenandoahHeap::should_retry_allocation(size_t original_full_gc_count) const {
1064   return shenandoah_policy()->full_gc_count() == original_full_gc_count
1065       && !shenandoah_policy()->is_at_shutdown();
1066 }
1067 
1068 HeapWord* ShenandoahHeap::allocate_memory_under_lock(ShenandoahAllocRequest& req, bool& in_new_region) {
1069   // If we are dealing with mutator allocation, then we may need to block for safepoint.
1070   // We cannot block for safepoint for GC allocations, because there is a high chance
1071   // we are already running at safepoint or from stack watermark machinery, and we cannot
1072   // block again.
1073   ShenandoahHeapLocker locker(lock(), req.is_mutator_alloc());
1074 
1075   // Make sure the old generation has room for either evacuations or promotions before trying to allocate.
1076   if (req.is_old() && !old_generation()->can_allocate(req)) {
1077     return nullptr;
1078   }
1079 
1080   // If TLAB request size is greater than available, allocate() will attempt to downsize request to fit within available
1081   // memory.
1082   HeapWord* result = _free_set->allocate(req, in_new_region);
1083 
1084   // Record the plab configuration for this result and register the object.
1085   if (result != nullptr && req.is_old()) {
1086     old_generation()->configure_plab_for_current_thread(req);
1087     if (req.type() == ShenandoahAllocRequest::_alloc_shared_gc) {
1088       // Register the newly allocated object while we're holding the global lock since there's no synchronization
1089       // built in to the implementation of register_object().  There are potential races when multiple independent
1090       // threads are allocating objects, some of which might span the same card region.  For example, consider
1091       // a card table's memory region within which three objects are being allocated by three different threads:
1092       //
1093       // objects being "concurrently" allocated:
1094       //    [-----a------][-----b-----][--------------c------------------]
1095       //            [---- card table memory range --------------]
1096       //
1097       // Before any objects are allocated, this card's memory range holds no objects.  Note that allocation of object a
1098       // wants to set the starts-object, first-start, and last-start attributes of the preceding card region.
1099       // Allocation of object b wants to set the starts-object, first-start, and last-start attributes of this card region.
1100       // Allocation of object c also wants to set the starts-object, first-start, and last-start attributes of this
1101       // card region.
1102       //
1103       // The thread allocating b and the thread allocating c can "race" in various ways, resulting in confusion, such as
1104       // last-start representing object b while first-start represents object c.  This is why we need to require all
1105       // register_object() invocations to be "mutually exclusive" with respect to each card's memory range.
1106       old_generation()->card_scan()->register_object(result);
1107     }
1108   }
1109 
1110   return result;
1111 }
1112 
1113 HeapWord* ShenandoahHeap::mem_allocate(size_t size,
1114                                         bool*  gc_overhead_limit_was_exceeded) {
1115   ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared(size);
1116   return allocate_memory(req);
1117 }
1118 
1119 MetaWord* ShenandoahHeap::satisfy_failed_metadata_allocation(ClassLoaderData* loader_data,
1120                                                              size_t size,
1121                                                              Metaspace::MetadataType mdtype) {
1122   MetaWord* result;
1123 
1124   // Inform metaspace OOM to GC heuristics if class unloading is possible.
1125   ShenandoahHeuristics* h = global_generation()->heuristics();
1126   if (h->can_unload_classes()) {
1127     h->record_metaspace_oom();
1128   }
1129 
1130   // Expand and retry allocation
1131   result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype);
1132   if (result != nullptr) {
1133     return result;
1134   }
1135 
1136   // Start full GC
1137   collect(GCCause::_metadata_GC_clear_soft_refs);
1138 
1139   // Retry allocation
1140   result = loader_data->metaspace_non_null()->allocate(size, mdtype);
1141   if (result != nullptr) {
1142     return result;
1143   }
1144 
1145   // Expand and retry allocation
1146   result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype);
1147   if (result != nullptr) {
1148     return result;
1149   }
1150 
1151   // Out of memory
1152   return nullptr;
1153 }
1154 
1155 class ShenandoahConcurrentEvacuateRegionObjectClosure : public ObjectClosure {
1156 private:
1157   ShenandoahHeap* const _heap;
1158   Thread* const _thread;
1159 public:
1160   ShenandoahConcurrentEvacuateRegionObjectClosure(ShenandoahHeap* heap) :
1161     _heap(heap), _thread(Thread::current()) {}
1162 
1163   void do_object(oop p) {
1164     shenandoah_assert_marked(nullptr, p);
1165     if (!p->is_forwarded()) {
1166       _heap->evacuate_object(p, _thread);
1167     }
1168   }
1169 };
1170 
1171 class ShenandoahEvacuationTask : public WorkerTask {
1172 private:
1173   ShenandoahHeap* const _sh;
1174   ShenandoahCollectionSet* const _cs;
1175   bool _concurrent;
1176 public:
1177   ShenandoahEvacuationTask(ShenandoahHeap* sh,
1178                            ShenandoahCollectionSet* cs,
1179                            bool concurrent) :
1180     WorkerTask("Shenandoah Evacuation"),
1181     _sh(sh),
1182     _cs(cs),
1183     _concurrent(concurrent)
1184   {}
1185 
1186   void work(uint worker_id) {
1187     if (_concurrent) {
1188       ShenandoahConcurrentWorkerSession worker_session(worker_id);
1189       ShenandoahSuspendibleThreadSetJoiner stsj;
1190       ShenandoahEvacOOMScope oom_evac_scope;
1191       do_work();
1192     } else {
1193       ShenandoahParallelWorkerSession worker_session(worker_id);
1194       ShenandoahEvacOOMScope oom_evac_scope;
1195       do_work();
1196     }
1197   }
1198 
1199 private:
1200   void do_work() {
1201     ShenandoahConcurrentEvacuateRegionObjectClosure cl(_sh);
1202     ShenandoahHeapRegion* r;
1203     while ((r =_cs->claim_next()) != nullptr) {
1204       assert(r->has_live(), "Region %zu should have been reclaimed early", r->index());
1205       _sh->marked_object_iterate(r, &cl);
1206 
1207       if (ShenandoahPacing) {
1208         _sh->pacer()->report_evac(r->used() >> LogHeapWordSize);
1209       }
1210 
1211       if (_sh->check_cancelled_gc_and_yield(_concurrent)) {
1212         break;
1213       }
1214     }
1215   }
1216 };
1217 
1218 class ShenandoahRetireGCLABClosure : public ThreadClosure {
1219 private:
1220   bool const _resize;
1221 public:
1222   explicit ShenandoahRetireGCLABClosure(bool resize) : _resize(resize) {}
1223   void do_thread(Thread* thread) override {
1224     PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
1225     assert(gclab != nullptr, "GCLAB should be initialized for %s", thread->name());
1226     gclab->retire();
1227     if (_resize && ShenandoahThreadLocalData::gclab_size(thread) > 0) {
1228       ShenandoahThreadLocalData::set_gclab_size(thread, 0);
1229     }
1230 
1231     if (ShenandoahHeap::heap()->mode()->is_generational()) {
1232       PLAB* plab = ShenandoahThreadLocalData::plab(thread);
1233       assert(plab != nullptr, "PLAB should be initialized for %s", thread->name());
1234 
1235       // There are two reasons to retire all plabs between old-gen evacuation passes.
1236       //  1. We need to make the plab memory parsable by remembered-set scanning.
1237       //  2. We need to establish a trustworthy UpdateWaterMark value within each old-gen heap region
1238       ShenandoahGenerationalHeap::heap()->retire_plab(plab, thread);
1239       if (_resize && ShenandoahThreadLocalData::plab_size(thread) > 0) {
1240         ShenandoahThreadLocalData::set_plab_size(thread, 0);
1241       }
1242     }
1243   }
1244 };
1245 
1246 class ShenandoahGCStatePropagator : public HandshakeClosure {
1247 public:
1248   explicit ShenandoahGCStatePropagator(char gc_state) :
1249     HandshakeClosure("Shenandoah GC State Change"),
1250     _gc_state(gc_state) {}
1251 
1252   void do_thread(Thread* thread) override {
1253     ShenandoahThreadLocalData::set_gc_state(thread, _gc_state);
1254   }
1255 private:
1256   char _gc_state;
1257 };
1258 
1259 class ShenandoahPrepareForUpdateRefs : public HandshakeClosure {
1260 public:
1261   explicit ShenandoahPrepareForUpdateRefs(char gc_state) :
1262     HandshakeClosure("Shenandoah Prepare for Update Refs"),
1263     _retire(ResizeTLAB), _propagator(gc_state) {}
1264 
1265   void do_thread(Thread* thread) override {
1266     _propagator.do_thread(thread);
1267     if (ShenandoahThreadLocalData::gclab(thread) != nullptr) {
1268       _retire.do_thread(thread);
1269     }
1270   }
1271 private:
1272   ShenandoahRetireGCLABClosure _retire;
1273   ShenandoahGCStatePropagator _propagator;
1274 };
1275 
1276 void ShenandoahHeap::evacuate_collection_set(bool concurrent) {
1277   ShenandoahEvacuationTask task(this, _collection_set, concurrent);
1278   workers()->run_task(&task);
1279 }
1280 
1281 void ShenandoahHeap::concurrent_prepare_for_update_refs() {
1282   {
1283     // Java threads take this lock while they are being attached and added to the list of thread.
1284     // If another thread holds this lock before we update the gc state, it will receive a stale
1285     // gc state, but they will have been added to the list of java threads and so will be corrected
1286     // by the following handshake.
1287     MutexLocker lock(Threads_lock);
1288 
1289     // A cancellation at this point means the degenerated cycle must resume from update-refs.
1290     set_gc_state_concurrent(EVACUATION, false);
1291     set_gc_state_concurrent(WEAK_ROOTS, false);
1292     set_gc_state_concurrent(UPDATE_REFS, true);
1293   }
1294 
1295   // This will propagate the gc state and retire gclabs and plabs for threads that require it.
1296   ShenandoahPrepareForUpdateRefs prepare_for_update_refs(_gc_state.raw_value());
1297 
1298   // The handshake won't touch worker threads (or control thread, or VM thread), so do those separately.
1299   Threads::non_java_threads_do(&prepare_for_update_refs);
1300 
1301   // Now retire gclabs and plabs and propagate gc_state for mutator threads
1302   Handshake::execute(&prepare_for_update_refs);
1303 
1304   _update_refs_iterator.reset();
1305 }
1306 
1307 class ShenandoahCompositeHandshakeClosure : public HandshakeClosure {
1308   HandshakeClosure* _handshake_1;
1309   HandshakeClosure* _handshake_2;
1310   public:
1311     ShenandoahCompositeHandshakeClosure(HandshakeClosure* handshake_1, HandshakeClosure* handshake_2) :
1312       HandshakeClosure(handshake_2->name()),
1313       _handshake_1(handshake_1), _handshake_2(handshake_2) {}
1314 
1315   void do_thread(Thread* thread) override {
1316       _handshake_1->do_thread(thread);
1317       _handshake_2->do_thread(thread);
1318     }
1319 };
1320 
1321 void ShenandoahHeap::concurrent_final_roots(HandshakeClosure* handshake_closure) {
1322   {
1323     assert(!is_evacuation_in_progress(), "Should not evacuate for abbreviated or old cycles");
1324     MutexLocker lock(Threads_lock);
1325     set_gc_state_concurrent(WEAK_ROOTS, false);
1326   }
1327 
1328   ShenandoahGCStatePropagator propagator(_gc_state.raw_value());
1329   Threads::non_java_threads_do(&propagator);
1330   if (handshake_closure == nullptr) {
1331     Handshake::execute(&propagator);
1332   } else {
1333     ShenandoahCompositeHandshakeClosure composite(&propagator, handshake_closure);
1334     Handshake::execute(&composite);
1335   }
1336 }
1337 
1338 oop ShenandoahHeap::evacuate_object(oop p, Thread* thread) {
1339   assert(thread == Thread::current(), "Expected thread parameter to be current thread.");
1340   if (ShenandoahThreadLocalData::is_oom_during_evac(thread)) {
1341     // This thread went through the OOM during evac protocol. It is safe to return
1342     // the forward pointer. It must not attempt to evacuate any other objects.
1343     return ShenandoahBarrierSet::resolve_forwarded(p);
1344   }
1345 
1346   assert(ShenandoahThreadLocalData::is_evac_allowed(thread), "must be enclosed in oom-evac scope");
1347 
1348   ShenandoahHeapRegion* r = heap_region_containing(p);
1349   assert(!r->is_humongous(), "never evacuate humongous objects");
1350 
1351   ShenandoahAffiliation target_gen = r->affiliation();
1352   return try_evacuate_object(p, thread, r, target_gen);
1353 }
1354 
1355 oop ShenandoahHeap::try_evacuate_object(oop p, Thread* thread, ShenandoahHeapRegion* from_region,
1356                                                ShenandoahAffiliation target_gen) {
1357   assert(target_gen == YOUNG_GENERATION, "Only expect evacuations to young in this mode");
1358   assert(from_region->is_young(), "Only expect evacuations from young in this mode");
1359   bool alloc_from_lab = true;
1360   HeapWord* copy = nullptr;
1361   size_t size = ShenandoahForwarding::size(p);
1362 
1363 #ifdef ASSERT
1364   if (ShenandoahOOMDuringEvacALot &&
1365       (os::random() & 1) == 0) { // Simulate OOM every ~2nd slow-path call
1366     copy = nullptr;
1367   } else {
1368 #endif
1369     if (UseTLAB) {
1370       copy = allocate_from_gclab(thread, size);
1371     }
1372     if (copy == nullptr) {
1373       // If we failed to allocate in LAB, we'll try a shared allocation.
1374       ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared_gc(size, target_gen);
1375       copy = allocate_memory(req);
1376       alloc_from_lab = false;
1377     }
1378 #ifdef ASSERT
1379   }
1380 #endif
1381 
1382   if (copy == nullptr) {
1383     control_thread()->handle_alloc_failure_evac(size);
1384 
1385     _oom_evac_handler.handle_out_of_memory_during_evacuation();
1386 
1387     return ShenandoahBarrierSet::resolve_forwarded(p);
1388   }
1389 
1390   // Copy the object:
1391   Copy::aligned_disjoint_words(cast_from_oop<HeapWord*>(p), copy, size);
1392 
1393   // Try to install the new forwarding pointer.
1394   oop copy_val = cast_to_oop(copy);
1395   oop result = ShenandoahForwarding::try_update_forwardee(p, copy_val);
1396   if (result == copy_val) {
1397     // Successfully evacuated. Our copy is now the public one!
1398     ContinuationGCSupport::relativize_stack_chunk(copy_val);
1399     shenandoah_assert_correct(nullptr, copy_val);
1400     return copy_val;
1401   }  else {
1402     // Failed to evacuate. We need to deal with the object that is left behind. Since this
1403     // new allocation is certainly after TAMS, it will be considered live in the next cycle.
1404     // But if it happens to contain references to evacuated regions, those references would
1405     // not get updated for this stale copy during this cycle, and we will crash while scanning
1406     // it the next cycle.
1407     if (alloc_from_lab) {
1408       // For LAB allocations, it is enough to rollback the allocation ptr. Either the next
1409       // object will overwrite this stale copy, or the filler object on LAB retirement will
1410       // do this.
1411       ShenandoahThreadLocalData::gclab(thread)->undo_allocation(copy, size);
1412     } else {
1413       // For non-LAB allocations, we have no way to retract the allocation, and
1414       // have to explicitly overwrite the copy with the filler object. With that overwrite,
1415       // we have to keep the fwdptr initialized and pointing to our (stale) copy.
1416       assert(size >= ShenandoahHeap::min_fill_size(), "previously allocated object known to be larger than min_size");
1417       fill_with_object(copy, size);
1418       shenandoah_assert_correct(nullptr, copy_val);
1419       // For non-LAB allocations, the object has already been registered
1420     }
1421     shenandoah_assert_correct(nullptr, result);
1422     return result;
1423   }
1424 }
1425 
1426 void ShenandoahHeap::trash_cset_regions() {
1427   ShenandoahHeapLocker locker(lock());
1428 
1429   ShenandoahCollectionSet* set = collection_set();
1430   ShenandoahHeapRegion* r;
1431   set->clear_current_index();
1432   while ((r = set->next()) != nullptr) {
1433     r->make_trash();
1434   }
1435   collection_set()->clear();
1436 }
1437 
1438 void ShenandoahHeap::print_heap_regions_on(outputStream* st) const {
1439   st->print_cr("Heap Regions:");
1440   st->print_cr("Region state: EU=empty-uncommitted, EC=empty-committed, R=regular, H=humongous start, HP=pinned humongous start");
1441   st->print_cr("              HC=humongous continuation, CS=collection set, TR=trash, P=pinned, CSP=pinned collection set");
1442   st->print_cr("BTE=bottom/top/end, TAMS=top-at-mark-start");
1443   st->print_cr("UWM=update watermark, U=used");
1444   st->print_cr("T=TLAB allocs, G=GCLAB allocs");
1445   st->print_cr("S=shared allocs, L=live data");
1446   st->print_cr("CP=critical pins");
1447 
1448   for (size_t i = 0; i < num_regions(); i++) {
1449     get_region(i)->print_on(st);
1450   }
1451 }
1452 
1453 size_t ShenandoahHeap::trash_humongous_region_at(ShenandoahHeapRegion* start) {
1454   assert(start->is_humongous_start(), "reclaim regions starting with the first one");
1455 
1456   oop humongous_obj = cast_to_oop(start->bottom());
1457   size_t size = humongous_obj->size();
1458   size_t required_regions = ShenandoahHeapRegion::required_regions(size * HeapWordSize);
1459   size_t index = start->index() + required_regions - 1;
1460 
1461   assert(!start->has_live(), "liveness must be zero");
1462 
1463   for(size_t i = 0; i < required_regions; i++) {
1464     // Reclaim from tail. Otherwise, assertion fails when printing region to trace log,
1465     // as it expects that every region belongs to a humongous region starting with a humongous start region.
1466     ShenandoahHeapRegion* region = get_region(index --);
1467 
1468     assert(region->is_humongous(), "expect correct humongous start or continuation");
1469     assert(!region->is_cset(), "Humongous region should not be in collection set");
1470 
1471     region->make_trash_immediate();
1472   }
1473   return required_regions;
1474 }
1475 
1476 class ShenandoahCheckCleanGCLABClosure : public ThreadClosure {
1477 public:
1478   ShenandoahCheckCleanGCLABClosure() {}
1479   void do_thread(Thread* thread) {
1480     PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
1481     assert(gclab != nullptr, "GCLAB should be initialized for %s", thread->name());
1482     assert(gclab->words_remaining() == 0, "GCLAB should not need retirement");
1483 
1484     if (ShenandoahHeap::heap()->mode()->is_generational()) {
1485       PLAB* plab = ShenandoahThreadLocalData::plab(thread);
1486       assert(plab != nullptr, "PLAB should be initialized for %s", thread->name());
1487       assert(plab->words_remaining() == 0, "PLAB should not need retirement");
1488     }
1489   }
1490 };
1491 
1492 void ShenandoahHeap::labs_make_parsable() {
1493   assert(UseTLAB, "Only call with UseTLAB");
1494 
1495   ShenandoahRetireGCLABClosure cl(false);
1496 
1497   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1498     ThreadLocalAllocBuffer& tlab = t->tlab();
1499     tlab.make_parsable();
1500     cl.do_thread(t);
1501   }
1502 
1503   workers()->threads_do(&cl);
1504 
1505   if (safepoint_workers() != nullptr) {
1506     safepoint_workers()->threads_do(&cl);
1507   }
1508 }
1509 
1510 void ShenandoahHeap::tlabs_retire(bool resize) {
1511   assert(UseTLAB, "Only call with UseTLAB");
1512   assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled");
1513 
1514   ThreadLocalAllocStats stats;
1515 
1516   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1517     ThreadLocalAllocBuffer& tlab = t->tlab();
1518     tlab.retire(&stats);
1519     if (resize) {
1520       tlab.resize();
1521     }
1522   }
1523 
1524   stats.publish();
1525 
1526 #ifdef ASSERT
1527   ShenandoahCheckCleanGCLABClosure cl;
1528   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1529     cl.do_thread(t);
1530   }
1531   workers()->threads_do(&cl);
1532 #endif
1533 }
1534 
1535 void ShenandoahHeap::gclabs_retire(bool resize) {
1536   assert(UseTLAB, "Only call with UseTLAB");
1537   assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled");
1538 
1539   ShenandoahRetireGCLABClosure cl(resize);
1540   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1541     cl.do_thread(t);
1542   }
1543 
1544   workers()->threads_do(&cl);
1545 
1546   if (safepoint_workers() != nullptr) {
1547     safepoint_workers()->threads_do(&cl);
1548   }
1549 }
1550 
1551 // Returns size in bytes
1552 size_t ShenandoahHeap::unsafe_max_tlab_alloc(Thread *thread) const {
1553   // Return the max allowed size, and let the allocation path
1554   // figure out the safe size for current allocation.
1555   return ShenandoahHeapRegion::max_tlab_size_bytes();
1556 }
1557 
1558 size_t ShenandoahHeap::max_tlab_size() const {
1559   // Returns size in words
1560   return ShenandoahHeapRegion::max_tlab_size_words();
1561 }
1562 
1563 void ShenandoahHeap::collect_as_vm_thread(GCCause::Cause cause) {
1564   // These requests are ignored because we can't easily have Shenandoah jump into
1565   // a synchronous (degenerated or full) cycle while it is in the middle of a concurrent
1566   // cycle. We _could_ cancel the concurrent cycle and then try to run a cycle directly
1567   // on the VM thread, but this would confuse the control thread mightily and doesn't
1568   // seem worth the trouble. Instead, we will have the caller thread run (and wait for) a
1569   // concurrent cycle in the prologue of the heap inspect/dump operation. This is how
1570   // other concurrent collectors in the JVM handle this scenario as well.
1571   assert(Thread::current()->is_VM_thread(), "Should be the VM thread");
1572   guarantee(cause == GCCause::_heap_dump || cause == GCCause::_heap_inspection, "Invalid cause");
1573 }
1574 
1575 void ShenandoahHeap::collect(GCCause::Cause cause) {
1576   control_thread()->request_gc(cause);
1577 }
1578 
1579 void ShenandoahHeap::do_full_collection(bool clear_all_soft_refs) {
1580   //assert(false, "Shouldn't need to do full collections");
1581 }
1582 
1583 HeapWord* ShenandoahHeap::block_start(const void* addr) const {
1584   ShenandoahHeapRegion* r = heap_region_containing(addr);
1585   if (r != nullptr) {
1586     return r->block_start(addr);
1587   }
1588   return nullptr;
1589 }
1590 
1591 bool ShenandoahHeap::block_is_obj(const HeapWord* addr) const {
1592   ShenandoahHeapRegion* r = heap_region_containing(addr);
1593   return r->block_is_obj(addr);
1594 }
1595 
1596 bool ShenandoahHeap::print_location(outputStream* st, void* addr) const {
1597   return BlockLocationPrinter<ShenandoahHeap>::print_location(st, addr);
1598 }
1599 
1600 void ShenandoahHeap::prepare_for_verify() {
1601   if (SafepointSynchronize::is_at_safepoint() && UseTLAB) {
1602     labs_make_parsable();
1603   }
1604 }
1605 
1606 void ShenandoahHeap::gc_threads_do(ThreadClosure* tcl) const {
1607   if (_shenandoah_policy->is_at_shutdown()) {
1608     return;
1609   }
1610 
1611   if (_control_thread != nullptr) {
1612     tcl->do_thread(_control_thread);
1613   }
1614 
1615   if (_uncommit_thread != nullptr) {
1616     tcl->do_thread(_uncommit_thread);
1617   }
1618 
1619   workers()->threads_do(tcl);
1620   if (_safepoint_workers != nullptr) {
1621     _safepoint_workers->threads_do(tcl);
1622   }
1623 }
1624 
1625 void ShenandoahHeap::print_tracing_info() const {
1626   LogTarget(Info, gc, stats) lt;
1627   if (lt.is_enabled()) {
1628     ResourceMark rm;
1629     LogStream ls(lt);
1630 
1631     phase_timings()->print_global_on(&ls);
1632 
1633     ls.cr();
1634     ls.cr();
1635 
1636     shenandoah_policy()->print_gc_stats(&ls);
1637 
1638     ls.cr();
1639     ls.cr();
1640   }
1641 }
1642 
1643 void ShenandoahHeap::set_gc_generation(ShenandoahGeneration* generation) {
1644   shenandoah_assert_control_or_vm_thread_at_safepoint();
1645   _gc_generation = generation;
1646 }
1647 
1648 // Active generation may only be set by the VM thread at a safepoint.
1649 void ShenandoahHeap::set_active_generation() {
1650   assert(Thread::current()->is_VM_thread(), "Only the VM Thread");
1651   assert(SafepointSynchronize::is_at_safepoint(), "Only at a safepoint!");
1652   assert(_gc_generation != nullptr, "Will set _active_generation to nullptr");
1653   _active_generation = _gc_generation;
1654 }
1655 
1656 void ShenandoahHeap::on_cycle_start(GCCause::Cause cause, ShenandoahGeneration* generation) {
1657   shenandoah_policy()->record_collection_cause(cause);
1658 
1659   const GCCause::Cause current = gc_cause();
1660   assert(current == GCCause::_no_gc, "Over-writing cause: %s, with: %s",
1661          GCCause::to_string(current), GCCause::to_string(cause));
1662   assert(_gc_generation == nullptr, "Over-writing _gc_generation");
1663 
1664   set_gc_cause(cause);
1665   set_gc_generation(generation);
1666 
1667   generation->heuristics()->record_cycle_start();
1668 }
1669 
1670 void ShenandoahHeap::on_cycle_end(ShenandoahGeneration* generation) {
1671   assert(gc_cause() != GCCause::_no_gc, "cause wasn't set");
1672   assert(_gc_generation != nullptr, "_gc_generation wasn't set");
1673 
1674   generation->heuristics()->record_cycle_end();
1675   if (mode()->is_generational() && generation->is_global()) {
1676     // If we just completed a GLOBAL GC, claim credit for completion of young-gen and old-gen GC as well
1677     young_generation()->heuristics()->record_cycle_end();
1678     old_generation()->heuristics()->record_cycle_end();
1679   }
1680 
1681   set_gc_generation(nullptr);
1682   set_gc_cause(GCCause::_no_gc);
1683 }
1684 
1685 void ShenandoahHeap::verify(VerifyOption vo) {
1686   if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) {
1687     if (ShenandoahVerify) {
1688       verifier()->verify_generic(vo);
1689     } else {
1690       // TODO: Consider allocating verification bitmaps on demand,
1691       // and turn this on unconditionally.
1692     }
1693   }
1694 }
1695 size_t ShenandoahHeap::tlab_capacity(Thread *thr) const {
1696   return _free_set->capacity();
1697 }
1698 
1699 class ObjectIterateScanRootClosure : public BasicOopIterateClosure {
1700 private:
1701   MarkBitMap* _bitmap;
1702   ShenandoahScanObjectStack* _oop_stack;
1703   ShenandoahHeap* const _heap;
1704   ShenandoahMarkingContext* const _marking_context;
1705 
1706   template <class T>
1707   void do_oop_work(T* p) {
1708     T o = RawAccess<>::oop_load(p);
1709     if (!CompressedOops::is_null(o)) {
1710       oop obj = CompressedOops::decode_not_null(o);
1711       if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) {
1712         // There may be dead oops in weak roots in concurrent root phase, do not touch them.
1713         return;
1714       }
1715       obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj);
1716 
1717       assert(oopDesc::is_oop(obj), "must be a valid oop");
1718       if (!_bitmap->is_marked(obj)) {
1719         _bitmap->mark(obj);
1720         _oop_stack->push(obj);
1721       }
1722     }
1723   }
1724 public:
1725   ObjectIterateScanRootClosure(MarkBitMap* bitmap, ShenandoahScanObjectStack* oop_stack) :
1726     _bitmap(bitmap), _oop_stack(oop_stack), _heap(ShenandoahHeap::heap()),
1727     _marking_context(_heap->marking_context()) {}
1728   void do_oop(oop* p)       { do_oop_work(p); }
1729   void do_oop(narrowOop* p) { do_oop_work(p); }
1730 };
1731 
1732 /*
1733  * This is public API, used in preparation of object_iterate().
1734  * Since we don't do linear scan of heap in object_iterate() (see comment below), we don't
1735  * need to make the heap parsable. For Shenandoah-internal linear heap scans that we can
1736  * control, we call SH::tlabs_retire, SH::gclabs_retire.
1737  */
1738 void ShenandoahHeap::ensure_parsability(bool retire_tlabs) {
1739   // No-op.
1740 }
1741 
1742 /*
1743  * Iterates objects in the heap. This is public API, used for, e.g., heap dumping.
1744  *
1745  * We cannot safely iterate objects by doing a linear scan at random points in time. Linear
1746  * scanning needs to deal with dead objects, which may have dead Klass* pointers (e.g.
1747  * calling oopDesc::size() would crash) or dangling reference fields (crashes) etc. Linear
1748  * scanning therefore depends on having a valid marking bitmap to support it. However, we only
1749  * have a valid marking bitmap after successful marking. In particular, we *don't* have a valid
1750  * marking bitmap during marking, after aborted marking or during/after cleanup (when we just
1751  * wiped the bitmap in preparation for next marking).
1752  *
1753  * For all those reasons, we implement object iteration as a single marking traversal, reporting
1754  * objects as we mark+traverse through the heap, starting from GC roots. JVMTI IterateThroughHeap
1755  * is allowed to report dead objects, but is not required to do so.
1756  */
1757 void ShenandoahHeap::object_iterate(ObjectClosure* cl) {
1758   // Reset bitmap
1759   if (!prepare_aux_bitmap_for_iteration())
1760     return;
1761 
1762   ShenandoahScanObjectStack oop_stack;
1763   ObjectIterateScanRootClosure oops(&_aux_bit_map, &oop_stack);
1764   // Seed the stack with root scan
1765   scan_roots_for_iteration(&oop_stack, &oops);
1766 
1767   // Work through the oop stack to traverse heap
1768   while (! oop_stack.is_empty()) {
1769     oop obj = oop_stack.pop();
1770     assert(oopDesc::is_oop(obj), "must be a valid oop");
1771     cl->do_object(obj);
1772     obj->oop_iterate(&oops);
1773   }
1774 
1775   assert(oop_stack.is_empty(), "should be empty");
1776   // Reclaim bitmap
1777   reclaim_aux_bitmap_for_iteration();
1778 }
1779 
1780 bool ShenandoahHeap::prepare_aux_bitmap_for_iteration() {
1781   assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints");
1782 
1783   if (!_aux_bitmap_region_special && !os::commit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size(), false)) {
1784     log_warning(gc)("Could not commit native memory for auxiliary marking bitmap for heap iteration");
1785     return false;
1786   }
1787   // Reset bitmap
1788   _aux_bit_map.clear();
1789   return true;
1790 }
1791 
1792 void ShenandoahHeap::scan_roots_for_iteration(ShenandoahScanObjectStack* oop_stack, ObjectIterateScanRootClosure* oops) {
1793   // Process GC roots according to current GC cycle
1794   // This populates the work stack with initial objects
1795   // It is important to relinquish the associated locks before diving
1796   // into heap dumper
1797   uint n_workers = safepoint_workers() != nullptr ? safepoint_workers()->active_workers() : 1;
1798   ShenandoahHeapIterationRootScanner rp(n_workers);
1799   rp.roots_do(oops);
1800 }
1801 
1802 void ShenandoahHeap::reclaim_aux_bitmap_for_iteration() {
1803   if (!_aux_bitmap_region_special && !os::uncommit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size())) {
1804     log_warning(gc)("Could not uncommit native memory for auxiliary marking bitmap for heap iteration");
1805   }
1806 }
1807 
1808 // Closure for parallelly iterate objects
1809 class ShenandoahObjectIterateParScanClosure : public BasicOopIterateClosure {
1810 private:
1811   MarkBitMap* _bitmap;
1812   ShenandoahObjToScanQueue* _queue;
1813   ShenandoahHeap* const _heap;
1814   ShenandoahMarkingContext* const _marking_context;
1815 
1816   template <class T>
1817   void do_oop_work(T* p) {
1818     T o = RawAccess<>::oop_load(p);
1819     if (!CompressedOops::is_null(o)) {
1820       oop obj = CompressedOops::decode_not_null(o);
1821       if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) {
1822         // There may be dead oops in weak roots in concurrent root phase, do not touch them.
1823         return;
1824       }
1825       obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj);
1826 
1827       assert(oopDesc::is_oop(obj), "Must be a valid oop");
1828       if (_bitmap->par_mark(obj)) {
1829         _queue->push(ShenandoahMarkTask(obj));
1830       }
1831     }
1832   }
1833 public:
1834   ShenandoahObjectIterateParScanClosure(MarkBitMap* bitmap, ShenandoahObjToScanQueue* q) :
1835     _bitmap(bitmap), _queue(q), _heap(ShenandoahHeap::heap()),
1836     _marking_context(_heap->marking_context()) {}
1837   void do_oop(oop* p)       { do_oop_work(p); }
1838   void do_oop(narrowOop* p) { do_oop_work(p); }
1839 };
1840 
1841 // Object iterator for parallel heap iteraion.
1842 // The root scanning phase happenes in construction as a preparation of
1843 // parallel marking queues.
1844 // Every worker processes it's own marking queue. work-stealing is used
1845 // to balance workload.
1846 class ShenandoahParallelObjectIterator : public ParallelObjectIteratorImpl {
1847 private:
1848   uint                         _num_workers;
1849   bool                         _init_ready;
1850   MarkBitMap*                  _aux_bit_map;
1851   ShenandoahHeap*              _heap;
1852   ShenandoahScanObjectStack    _roots_stack; // global roots stack
1853   ShenandoahObjToScanQueueSet* _task_queues;
1854 public:
1855   ShenandoahParallelObjectIterator(uint num_workers, MarkBitMap* bitmap) :
1856         _num_workers(num_workers),
1857         _init_ready(false),
1858         _aux_bit_map(bitmap),
1859         _heap(ShenandoahHeap::heap()) {
1860     // Initialize bitmap
1861     _init_ready = _heap->prepare_aux_bitmap_for_iteration();
1862     if (!_init_ready) {
1863       return;
1864     }
1865 
1866     ObjectIterateScanRootClosure oops(_aux_bit_map, &_roots_stack);
1867     _heap->scan_roots_for_iteration(&_roots_stack, &oops);
1868 
1869     _init_ready = prepare_worker_queues();
1870   }
1871 
1872   ~ShenandoahParallelObjectIterator() {
1873     // Reclaim bitmap
1874     _heap->reclaim_aux_bitmap_for_iteration();
1875     // Reclaim queue for workers
1876     if (_task_queues!= nullptr) {
1877       for (uint i = 0; i < _num_workers; ++i) {
1878         ShenandoahObjToScanQueue* q = _task_queues->queue(i);
1879         if (q != nullptr) {
1880           delete q;
1881           _task_queues->register_queue(i, nullptr);
1882         }
1883       }
1884       delete _task_queues;
1885       _task_queues = nullptr;
1886     }
1887   }
1888 
1889   virtual void object_iterate(ObjectClosure* cl, uint worker_id) {
1890     if (_init_ready) {
1891       object_iterate_parallel(cl, worker_id, _task_queues);
1892     }
1893   }
1894 
1895 private:
1896   // Divide global root_stack into worker queues
1897   bool prepare_worker_queues() {
1898     _task_queues = new ShenandoahObjToScanQueueSet((int) _num_workers);
1899     // Initialize queues for every workers
1900     for (uint i = 0; i < _num_workers; ++i) {
1901       ShenandoahObjToScanQueue* task_queue = new ShenandoahObjToScanQueue();
1902       _task_queues->register_queue(i, task_queue);
1903     }
1904     // Divide roots among the workers. Assume that object referencing distribution
1905     // is related with root kind, use round-robin to make every worker have same chance
1906     // to process every kind of roots
1907     size_t roots_num = _roots_stack.size();
1908     if (roots_num == 0) {
1909       // No work to do
1910       return false;
1911     }
1912 
1913     for (uint j = 0; j < roots_num; j++) {
1914       uint stack_id = j % _num_workers;
1915       oop obj = _roots_stack.pop();
1916       _task_queues->queue(stack_id)->push(ShenandoahMarkTask(obj));
1917     }
1918     return true;
1919   }
1920 
1921   void object_iterate_parallel(ObjectClosure* cl,
1922                                uint worker_id,
1923                                ShenandoahObjToScanQueueSet* queue_set) {
1924     assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints");
1925     assert(queue_set != nullptr, "task queue must not be null");
1926 
1927     ShenandoahObjToScanQueue* q = queue_set->queue(worker_id);
1928     assert(q != nullptr, "object iterate queue must not be null");
1929 
1930     ShenandoahMarkTask t;
1931     ShenandoahObjectIterateParScanClosure oops(_aux_bit_map, q);
1932 
1933     // Work through the queue to traverse heap.
1934     // Steal when there is no task in queue.
1935     while (q->pop(t) || queue_set->steal(worker_id, t)) {
1936       oop obj = t.obj();
1937       assert(oopDesc::is_oop(obj), "must be a valid oop");
1938       cl->do_object(obj);
1939       obj->oop_iterate(&oops);
1940     }
1941     assert(q->is_empty(), "should be empty");
1942   }
1943 };
1944 
1945 ParallelObjectIteratorImpl* ShenandoahHeap::parallel_object_iterator(uint workers) {
1946   return new ShenandoahParallelObjectIterator(workers, &_aux_bit_map);
1947 }
1948 
1949 // Keep alive an object that was loaded with AS_NO_KEEPALIVE.
1950 void ShenandoahHeap::keep_alive(oop obj) {
1951   if (is_concurrent_mark_in_progress() && (obj != nullptr)) {
1952     ShenandoahBarrierSet::barrier_set()->enqueue(obj);
1953   }
1954 }
1955 
1956 void ShenandoahHeap::heap_region_iterate(ShenandoahHeapRegionClosure* blk) const {
1957   for (size_t i = 0; i < num_regions(); i++) {
1958     ShenandoahHeapRegion* current = get_region(i);
1959     blk->heap_region_do(current);
1960   }
1961 }
1962 
1963 class ShenandoahParallelHeapRegionTask : public WorkerTask {
1964 private:
1965   ShenandoahHeap* const _heap;
1966   ShenandoahHeapRegionClosure* const _blk;
1967   size_t const _stride;
1968 
1969   shenandoah_padding(0);
1970   volatile size_t _index;
1971   shenandoah_padding(1);
1972 
1973 public:
1974   ShenandoahParallelHeapRegionTask(ShenandoahHeapRegionClosure* blk, size_t stride) :
1975           WorkerTask("Shenandoah Parallel Region Operation"),
1976           _heap(ShenandoahHeap::heap()), _blk(blk), _stride(stride), _index(0) {}
1977 
1978   void work(uint worker_id) {
1979     ShenandoahParallelWorkerSession worker_session(worker_id);
1980     size_t stride = _stride;
1981 
1982     size_t max = _heap->num_regions();
1983     while (Atomic::load(&_index) < max) {
1984       size_t cur = Atomic::fetch_then_add(&_index, stride, memory_order_relaxed);
1985       size_t start = cur;
1986       size_t end = MIN2(cur + stride, max);
1987       if (start >= max) break;
1988 
1989       for (size_t i = cur; i < end; i++) {
1990         ShenandoahHeapRegion* current = _heap->get_region(i);
1991         _blk->heap_region_do(current);
1992       }
1993     }
1994   }
1995 };
1996 
1997 void ShenandoahHeap::parallel_heap_region_iterate(ShenandoahHeapRegionClosure* blk) const {
1998   assert(blk->is_thread_safe(), "Only thread-safe closures here");
1999   const uint active_workers = workers()->active_workers();
2000   const size_t n_regions = num_regions();
2001   size_t stride = ShenandoahParallelRegionStride;
2002   if (stride == 0 && active_workers > 1) {
2003     // Automatically derive the stride to balance the work between threads
2004     // evenly. Do not try to split work if below the reasonable threshold.
2005     constexpr size_t threshold = 4096;
2006     stride = n_regions <= threshold ?
2007             threshold :
2008             (n_regions + active_workers - 1) / active_workers;
2009   }
2010 
2011   if (n_regions > stride && active_workers > 1) {
2012     ShenandoahParallelHeapRegionTask task(blk, stride);
2013     workers()->run_task(&task);
2014   } else {
2015     heap_region_iterate(blk);
2016   }
2017 }
2018 
2019 class ShenandoahRendezvousClosure : public HandshakeClosure {
2020 public:
2021   inline ShenandoahRendezvousClosure(const char* name) : HandshakeClosure(name) {}
2022   inline void do_thread(Thread* thread) {}
2023 };
2024 
2025 void ShenandoahHeap::rendezvous_threads(const char* name) {
2026   ShenandoahRendezvousClosure cl(name);
2027   Handshake::execute(&cl);
2028 }
2029 
2030 void ShenandoahHeap::recycle_trash() {
2031   free_set()->recycle_trash();
2032 }
2033 
2034 void ShenandoahHeap::do_class_unloading() {
2035   _unloader.unload();
2036   if (mode()->is_generational()) {
2037     old_generation()->set_parsable(false);
2038   }
2039 }
2040 
2041 void ShenandoahHeap::stw_weak_refs(bool full_gc) {
2042   // Weak refs processing
2043   ShenandoahPhaseTimings::Phase phase = full_gc ? ShenandoahPhaseTimings::full_gc_weakrefs
2044                                                 : ShenandoahPhaseTimings::degen_gc_weakrefs;
2045   ShenandoahTimingsTracker t(phase);
2046   ShenandoahGCWorkerPhase worker_phase(phase);
2047   shenandoah_assert_generations_reconciled();
2048   gc_generation()->ref_processor()->process_references(phase, workers(), false /* concurrent */);
2049 }
2050 
2051 void ShenandoahHeap::prepare_update_heap_references() {
2052   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "must be at safepoint");
2053 
2054   // Evacuation is over, no GCLABs are needed anymore. GCLABs are under URWM, so we need to
2055   // make them parsable for update code to work correctly. Plus, we can compute new sizes
2056   // for future GCLABs here.
2057   if (UseTLAB) {
2058     ShenandoahGCPhase phase(ShenandoahPhaseTimings::degen_gc_init_update_refs_manage_gclabs);
2059     gclabs_retire(ResizeTLAB);
2060   }
2061 
2062   _update_refs_iterator.reset();
2063 }
2064 
2065 void ShenandoahHeap::propagate_gc_state_to_all_threads() {
2066   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Must be at Shenandoah safepoint");
2067   if (_gc_state_changed) {
2068     ShenandoahGCStatePropagator propagator(_gc_state.raw_value());
2069     Threads::threads_do(&propagator);
2070     _gc_state_changed = false;
2071   }
2072 }
2073 
2074 void ShenandoahHeap::set_gc_state_at_safepoint(uint mask, bool value) {
2075   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Must be at Shenandoah safepoint");
2076   _gc_state.set_cond(mask, value);
2077   _gc_state_changed = true;
2078 }
2079 
2080 void ShenandoahHeap::set_gc_state_concurrent(uint mask, bool value) {
2081   // Holding the thread lock here assures that any thread created after we change the gc
2082   // state will have the correct state. It also prevents attaching threads from seeing
2083   // an inconsistent state. See ShenandoahBarrierSet::on_thread_attach for reference. Established
2084   // threads will use their thread local copy of the gc state (changed by a handshake, or on a
2085   // safepoint).
2086   assert(Threads_lock->is_locked(), "Must hold thread lock for concurrent gc state change");
2087   _gc_state.set_cond(mask, value);
2088 }
2089 
2090 void ShenandoahHeap::set_concurrent_young_mark_in_progress(bool in_progress) {
2091   uint mask;
2092   assert(!has_forwarded_objects(), "Young marking is not concurrent with evacuation");
2093   if (!in_progress && is_concurrent_old_mark_in_progress()) {
2094     assert(mode()->is_generational(), "Only generational GC has old marking");
2095     assert(_gc_state.is_set(MARKING), "concurrent_old_marking_in_progress implies MARKING");
2096     // If old-marking is in progress when we turn off YOUNG_MARKING, leave MARKING (and OLD_MARKING) on
2097     mask = YOUNG_MARKING;
2098   } else {
2099     mask = MARKING | YOUNG_MARKING;
2100   }
2101   set_gc_state_at_safepoint(mask, in_progress);
2102   manage_satb_barrier(in_progress);
2103 }
2104 
2105 void ShenandoahHeap::set_concurrent_old_mark_in_progress(bool in_progress) {
2106 #ifdef ASSERT
2107   // has_forwarded_objects() iff UPDATE_REFS or EVACUATION
2108   bool has_forwarded = has_forwarded_objects();
2109   bool updating_or_evacuating = _gc_state.is_set(UPDATE_REFS | EVACUATION);
2110   bool evacuating = _gc_state.is_set(EVACUATION);
2111   assert ((has_forwarded == updating_or_evacuating) || (evacuating && !has_forwarded && collection_set()->is_empty()),
2112           "Updating or evacuating iff has forwarded objects, or if evacuation phase is promoting in place without forwarding");
2113 #endif
2114   if (!in_progress && is_concurrent_young_mark_in_progress()) {
2115     // If young-marking is in progress when we turn off OLD_MARKING, leave MARKING (and YOUNG_MARKING) on
2116     assert(_gc_state.is_set(MARKING), "concurrent_young_marking_in_progress implies MARKING");
2117     set_gc_state_at_safepoint(OLD_MARKING, in_progress);
2118   } else {
2119     set_gc_state_at_safepoint(MARKING | OLD_MARKING, in_progress);
2120   }
2121   manage_satb_barrier(in_progress);
2122 }
2123 
2124 bool ShenandoahHeap::is_prepare_for_old_mark_in_progress() const {
2125   return old_generation()->is_preparing_for_mark();
2126 }
2127 
2128 void ShenandoahHeap::manage_satb_barrier(bool active) {
2129   if (is_concurrent_mark_in_progress()) {
2130     // Ignore request to deactivate barrier while concurrent mark is in progress.
2131     // Do not attempt to re-activate the barrier if it is already active.
2132     if (active && !ShenandoahBarrierSet::satb_mark_queue_set().is_active()) {
2133       ShenandoahBarrierSet::satb_mark_queue_set().set_active_all_threads(active, !active);
2134     }
2135   } else {
2136     // No concurrent marking is in progress so honor request to deactivate,
2137     // but only if the barrier is already active.
2138     if (!active && ShenandoahBarrierSet::satb_mark_queue_set().is_active()) {
2139       ShenandoahBarrierSet::satb_mark_queue_set().set_active_all_threads(active, !active);
2140     }
2141   }
2142 }
2143 
2144 void ShenandoahHeap::set_evacuation_in_progress(bool in_progress) {
2145   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Only call this at safepoint");
2146   set_gc_state_at_safepoint(EVACUATION, in_progress);
2147 }
2148 
2149 void ShenandoahHeap::set_concurrent_strong_root_in_progress(bool in_progress) {
2150   if (in_progress) {
2151     _concurrent_strong_root_in_progress.set();
2152   } else {
2153     _concurrent_strong_root_in_progress.unset();
2154   }
2155 }
2156 
2157 void ShenandoahHeap::set_concurrent_weak_root_in_progress(bool cond) {
2158   set_gc_state_at_safepoint(WEAK_ROOTS, cond);
2159 }
2160 
2161 GCTracer* ShenandoahHeap::tracer() {
2162   return shenandoah_policy()->tracer();
2163 }
2164 
2165 size_t ShenandoahHeap::tlab_used(Thread* thread) const {
2166   return _free_set->used();
2167 }
2168 
2169 bool ShenandoahHeap::try_cancel_gc(GCCause::Cause cause) {
2170   const GCCause::Cause prev = _cancelled_gc.xchg(cause);
2171   return prev == GCCause::_no_gc || prev == GCCause::_shenandoah_concurrent_gc;
2172 }
2173 
2174 void ShenandoahHeap::cancel_concurrent_mark() {
2175   if (mode()->is_generational()) {
2176     young_generation()->cancel_marking();
2177     old_generation()->cancel_marking();
2178   }
2179 
2180   global_generation()->cancel_marking();
2181 
2182   ShenandoahBarrierSet::satb_mark_queue_set().abandon_partial_marking();
2183 }
2184 
2185 bool ShenandoahHeap::cancel_gc(GCCause::Cause cause) {
2186   if (try_cancel_gc(cause)) {
2187     FormatBuffer<> msg("Cancelling GC: %s", GCCause::to_string(cause));
2188     log_info(gc,thread)("%s", msg.buffer());
2189     Events::log(Thread::current(), "%s", msg.buffer());
2190     _cancel_requested_time = os::elapsedTime();
2191     return true;
2192   }
2193   return false;
2194 }
2195 
2196 uint ShenandoahHeap::max_workers() {
2197   return _max_workers;
2198 }
2199 
2200 void ShenandoahHeap::stop() {
2201   // The shutdown sequence should be able to terminate when GC is running.
2202 
2203   // Step 0. Notify policy to disable event recording and prevent visiting gc threads during shutdown
2204   _shenandoah_policy->record_shutdown();
2205 
2206   // Step 1. Stop reporting on gc thread cpu utilization
2207   mmu_tracker()->stop();
2208 
2209   // Step 2. Wait until GC worker exits normally (this will cancel any ongoing GC).
2210   control_thread()->stop();
2211 
2212   // Stop 4. Shutdown uncommit thread.
2213   if (_uncommit_thread != nullptr) {
2214     _uncommit_thread->stop();
2215   }
2216 }
2217 
2218 void ShenandoahHeap::stw_unload_classes(bool full_gc) {
2219   if (!unload_classes()) return;
2220   ClassUnloadingContext ctx(_workers->active_workers(),
2221                             true /* unregister_nmethods_during_purge */,
2222                             false /* lock_nmethod_free_separately */);
2223 
2224   // Unload classes and purge SystemDictionary.
2225   {
2226     ShenandoahPhaseTimings::Phase phase = full_gc ?
2227                                           ShenandoahPhaseTimings::full_gc_purge_class_unload :
2228                                           ShenandoahPhaseTimings::degen_gc_purge_class_unload;
2229     ShenandoahIsAliveSelector is_alive;
2230     {
2231       CodeCache::UnlinkingScope scope(is_alive.is_alive_closure());
2232       ShenandoahGCPhase gc_phase(phase);
2233       ShenandoahGCWorkerPhase worker_phase(phase);
2234       bool unloading_occurred = SystemDictionary::do_unloading(gc_timer());
2235 
2236       uint num_workers = _workers->active_workers();
2237       ShenandoahClassUnloadingTask unlink_task(phase, num_workers, unloading_occurred);
2238       _workers->run_task(&unlink_task);
2239     }
2240     // Release unloaded nmethods's memory.
2241     ClassUnloadingContext::context()->purge_and_free_nmethods();
2242   }
2243 
2244   {
2245     ShenandoahGCPhase phase(full_gc ?
2246                             ShenandoahPhaseTimings::full_gc_purge_cldg :
2247                             ShenandoahPhaseTimings::degen_gc_purge_cldg);
2248     ClassLoaderDataGraph::purge(true /* at_safepoint */);
2249   }
2250   // Resize and verify metaspace
2251   MetaspaceGC::compute_new_size();
2252   DEBUG_ONLY(MetaspaceUtils::verify();)
2253 }
2254 
2255 // Weak roots are either pre-evacuated (final mark) or updated (final update refs),
2256 // so they should not have forwarded oops.
2257 // However, we do need to "null" dead oops in the roots, if can not be done
2258 // in concurrent cycles.
2259 void ShenandoahHeap::stw_process_weak_roots(bool full_gc) {
2260   uint num_workers = _workers->active_workers();
2261   ShenandoahPhaseTimings::Phase timing_phase = full_gc ?
2262                                                ShenandoahPhaseTimings::full_gc_purge_weak_par :
2263                                                ShenandoahPhaseTimings::degen_gc_purge_weak_par;
2264   ShenandoahGCPhase phase(timing_phase);
2265   ShenandoahGCWorkerPhase worker_phase(timing_phase);
2266   // Cleanup weak roots
2267   if (has_forwarded_objects()) {
2268     ShenandoahForwardedIsAliveClosure is_alive;
2269     ShenandoahNonConcUpdateRefsClosure keep_alive;
2270     ShenandoahParallelWeakRootsCleaningTask<ShenandoahForwardedIsAliveClosure, ShenandoahNonConcUpdateRefsClosure>
2271       cleaning_task(timing_phase, &is_alive, &keep_alive, num_workers);
2272     _workers->run_task(&cleaning_task);
2273   } else {
2274     ShenandoahIsAliveClosure is_alive;
2275 #ifdef ASSERT
2276     ShenandoahAssertNotForwardedClosure verify_cl;
2277     ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, ShenandoahAssertNotForwardedClosure>
2278       cleaning_task(timing_phase, &is_alive, &verify_cl, num_workers);
2279 #else
2280     ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, DoNothingClosure>
2281       cleaning_task(timing_phase, &is_alive, &do_nothing_cl, num_workers);
2282 #endif
2283     _workers->run_task(&cleaning_task);
2284   }
2285 }
2286 
2287 void ShenandoahHeap::parallel_cleaning(bool full_gc) {
2288   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
2289   assert(is_stw_gc_in_progress(), "Only for Degenerated and Full GC");
2290   ShenandoahGCPhase phase(full_gc ?
2291                           ShenandoahPhaseTimings::full_gc_purge :
2292                           ShenandoahPhaseTimings::degen_gc_purge);
2293   stw_weak_refs(full_gc);
2294   stw_process_weak_roots(full_gc);
2295   stw_unload_classes(full_gc);
2296 }
2297 
2298 void ShenandoahHeap::set_has_forwarded_objects(bool cond) {
2299   set_gc_state_at_safepoint(HAS_FORWARDED, cond);
2300 }
2301 
2302 void ShenandoahHeap::set_unload_classes(bool uc) {
2303   _unload_classes.set_cond(uc);
2304 }
2305 
2306 bool ShenandoahHeap::unload_classes() const {
2307   return _unload_classes.is_set();
2308 }
2309 
2310 address ShenandoahHeap::in_cset_fast_test_addr() {
2311   ShenandoahHeap* heap = ShenandoahHeap::heap();
2312   assert(heap->collection_set() != nullptr, "Sanity");
2313   return (address) heap->collection_set()->biased_map_address();
2314 }
2315 
2316 void ShenandoahHeap::reset_bytes_allocated_since_gc_start() {
2317   if (mode()->is_generational()) {
2318     young_generation()->reset_bytes_allocated_since_gc_start();
2319     old_generation()->reset_bytes_allocated_since_gc_start();
2320   }
2321 
2322   global_generation()->reset_bytes_allocated_since_gc_start();
2323 }
2324 
2325 void ShenandoahHeap::set_degenerated_gc_in_progress(bool in_progress) {
2326   _degenerated_gc_in_progress.set_cond(in_progress);
2327 }
2328 
2329 void ShenandoahHeap::set_full_gc_in_progress(bool in_progress) {
2330   _full_gc_in_progress.set_cond(in_progress);
2331 }
2332 
2333 void ShenandoahHeap::set_full_gc_move_in_progress(bool in_progress) {
2334   assert (is_full_gc_in_progress(), "should be");
2335   _full_gc_move_in_progress.set_cond(in_progress);
2336 }
2337 
2338 void ShenandoahHeap::set_update_refs_in_progress(bool in_progress) {
2339   set_gc_state_at_safepoint(UPDATE_REFS, in_progress);
2340 }
2341 
2342 void ShenandoahHeap::register_nmethod(nmethod* nm) {
2343   ShenandoahCodeRoots::register_nmethod(nm);
2344 }
2345 
2346 void ShenandoahHeap::unregister_nmethod(nmethod* nm) {
2347   ShenandoahCodeRoots::unregister_nmethod(nm);
2348 }
2349 
2350 void ShenandoahHeap::pin_object(JavaThread* thr, oop o) {
2351   heap_region_containing(o)->record_pin();
2352 }
2353 
2354 void ShenandoahHeap::unpin_object(JavaThread* thr, oop o) {
2355   ShenandoahHeapRegion* r = heap_region_containing(o);
2356   assert(r != nullptr, "Sanity");
2357   assert(r->pin_count() > 0, "Region %zu should have non-zero pins", r->index());
2358   r->record_unpin();
2359 }
2360 
2361 void ShenandoahHeap::sync_pinned_region_status() {
2362   ShenandoahHeapLocker locker(lock());
2363 
2364   for (size_t i = 0; i < num_regions(); i++) {
2365     ShenandoahHeapRegion *r = get_region(i);
2366     if (r->is_active()) {
2367       if (r->is_pinned()) {
2368         if (r->pin_count() == 0) {
2369           r->make_unpinned();
2370         }
2371       } else {
2372         if (r->pin_count() > 0) {
2373           r->make_pinned();
2374         }
2375       }
2376     }
2377   }
2378 
2379   assert_pinned_region_status();
2380 }
2381 
2382 #ifdef ASSERT
2383 void ShenandoahHeap::assert_pinned_region_status() {
2384   for (size_t i = 0; i < num_regions(); i++) {
2385     ShenandoahHeapRegion* r = get_region(i);
2386     shenandoah_assert_generations_reconciled();
2387     if (gc_generation()->contains(r)) {
2388       assert((r->is_pinned() && r->pin_count() > 0) || (!r->is_pinned() && r->pin_count() == 0),
2389              "Region %zu pinning status is inconsistent", i);
2390     }
2391   }
2392 }
2393 #endif
2394 
2395 ConcurrentGCTimer* ShenandoahHeap::gc_timer() const {
2396   return _gc_timer;
2397 }
2398 
2399 void ShenandoahHeap::prepare_concurrent_roots() {
2400   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
2401   assert(!is_stw_gc_in_progress(), "Only concurrent GC");
2402   set_concurrent_strong_root_in_progress(!collection_set()->is_empty());
2403   set_concurrent_weak_root_in_progress(true);
2404   if (unload_classes()) {
2405     _unloader.prepare();
2406   }
2407 }
2408 
2409 void ShenandoahHeap::finish_concurrent_roots() {
2410   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
2411   assert(!is_stw_gc_in_progress(), "Only concurrent GC");
2412   if (unload_classes()) {
2413     _unloader.finish();
2414   }
2415 }
2416 
2417 #ifdef ASSERT
2418 void ShenandoahHeap::assert_gc_workers(uint nworkers) {
2419   assert(nworkers > 0 && nworkers <= max_workers(), "Sanity");
2420 
2421   if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) {
2422     // Use ParallelGCThreads inside safepoints
2423     assert(nworkers == ParallelGCThreads, "Use ParallelGCThreads (%u) within safepoint, not %u",
2424            ParallelGCThreads, nworkers);
2425   } else {
2426     // Use ConcGCThreads outside safepoints
2427     assert(nworkers == ConcGCThreads, "Use ConcGCThreads (%u) outside safepoints, %u",
2428            ConcGCThreads, nworkers);
2429   }
2430 }
2431 #endif
2432 
2433 ShenandoahVerifier* ShenandoahHeap::verifier() {
2434   guarantee(ShenandoahVerify, "Should be enabled");
2435   assert (_verifier != nullptr, "sanity");
2436   return _verifier;
2437 }
2438 
2439 template<bool CONCURRENT>
2440 class ShenandoahUpdateHeapRefsTask : public WorkerTask {
2441 private:
2442   ShenandoahHeap* _heap;
2443   ShenandoahRegionIterator* _regions;
2444 public:
2445   explicit ShenandoahUpdateHeapRefsTask(ShenandoahRegionIterator* regions) :
2446     WorkerTask("Shenandoah Update References"),
2447     _heap(ShenandoahHeap::heap()),
2448     _regions(regions) {
2449   }
2450 
2451   void work(uint worker_id) {
2452     if (CONCURRENT) {
2453       ShenandoahConcurrentWorkerSession worker_session(worker_id);
2454       ShenandoahSuspendibleThreadSetJoiner stsj;
2455       do_work<ShenandoahConcUpdateRefsClosure>(worker_id);
2456     } else {
2457       ShenandoahParallelWorkerSession worker_session(worker_id);
2458       do_work<ShenandoahNonConcUpdateRefsClosure>(worker_id);
2459     }
2460   }
2461 
2462 private:
2463   template<class T>
2464   void do_work(uint worker_id) {
2465     if (CONCURRENT && (worker_id == 0)) {
2466       // We ask the first worker to replenish the Mutator free set by moving regions previously reserved to hold the
2467       // results of evacuation.  These reserves are no longer necessary because evacuation has completed.
2468       size_t cset_regions = _heap->collection_set()->count();
2469 
2470       // Now that evacuation is done, we can reassign any regions that had been reserved to hold the results of evacuation
2471       // to the mutator free set.  At the end of GC, we will have cset_regions newly evacuated fully empty regions from
2472       // which we will be able to replenish the Collector free set and the OldCollector free set in preparation for the
2473       // next GC cycle.
2474       _heap->free_set()->move_regions_from_collector_to_mutator(cset_regions);
2475     }
2476     // If !CONCURRENT, there's no value in expanding Mutator free set
2477     T cl;
2478     ShenandoahHeapRegion* r = _regions->next();
2479     while (r != nullptr) {
2480       HeapWord* update_watermark = r->get_update_watermark();
2481       assert (update_watermark >= r->bottom(), "sanity");
2482       if (r->is_active() && !r->is_cset()) {
2483         _heap->marked_object_oop_iterate(r, &cl, update_watermark);
2484         if (ShenandoahPacing) {
2485           _heap->pacer()->report_update_refs(pointer_delta(update_watermark, r->bottom()));
2486         }
2487       }
2488       if (_heap->check_cancelled_gc_and_yield(CONCURRENT)) {
2489         return;
2490       }
2491       r = _regions->next();
2492     }
2493   }
2494 };
2495 
2496 void ShenandoahHeap::update_heap_references(bool concurrent) {
2497   assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC");
2498 
2499   if (concurrent) {
2500     ShenandoahUpdateHeapRefsTask<true> task(&_update_refs_iterator);
2501     workers()->run_task(&task);
2502   } else {
2503     ShenandoahUpdateHeapRefsTask<false> task(&_update_refs_iterator);
2504     workers()->run_task(&task);
2505   }
2506 }
2507 
2508 void ShenandoahHeap::update_heap_region_states(bool concurrent) {
2509   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
2510   assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC");
2511 
2512   {
2513     ShenandoahGCPhase phase(concurrent ?
2514                             ShenandoahPhaseTimings::final_update_refs_update_region_states :
2515                             ShenandoahPhaseTimings::degen_gc_final_update_refs_update_region_states);
2516 
2517     final_update_refs_update_region_states();
2518 
2519     assert_pinned_region_status();
2520   }
2521 
2522   {
2523     ShenandoahGCPhase phase(concurrent ?
2524                             ShenandoahPhaseTimings::final_update_refs_trash_cset :
2525                             ShenandoahPhaseTimings::degen_gc_final_update_refs_trash_cset);
2526     trash_cset_regions();
2527   }
2528 }
2529 
2530 void ShenandoahHeap::final_update_refs_update_region_states() {
2531   ShenandoahSynchronizePinnedRegionStates cl;
2532   parallel_heap_region_iterate(&cl);
2533 }
2534 
2535 void ShenandoahHeap::rebuild_free_set(bool concurrent) {
2536   ShenandoahGCPhase phase(concurrent ?
2537                           ShenandoahPhaseTimings::final_update_refs_rebuild_freeset :
2538                           ShenandoahPhaseTimings::degen_gc_final_update_refs_rebuild_freeset);
2539   ShenandoahHeapLocker locker(lock());
2540   size_t young_cset_regions, old_cset_regions;
2541   size_t first_old_region, last_old_region, old_region_count;
2542   _free_set->prepare_to_rebuild(young_cset_regions, old_cset_regions, first_old_region, last_old_region, old_region_count);
2543   // If there are no old regions, first_old_region will be greater than last_old_region
2544   assert((first_old_region > last_old_region) ||
2545          ((last_old_region + 1 - first_old_region >= old_region_count) &&
2546           get_region(first_old_region)->is_old() && get_region(last_old_region)->is_old()),
2547          "sanity: old_region_count: %zu, first_old_region: %zu, last_old_region: %zu",
2548          old_region_count, first_old_region, last_old_region);
2549 
2550   if (mode()->is_generational()) {
2551 #ifdef ASSERT
2552     if (ShenandoahVerify) {
2553       verifier()->verify_before_rebuilding_free_set();
2554     }
2555 #endif
2556 
2557     // The computation of bytes_of_allocation_runway_before_gc_trigger is quite conservative so consider all of this
2558     // available for transfer to old. Note that transfer of humongous regions does not impact available.
2559     ShenandoahGenerationalHeap* gen_heap = ShenandoahGenerationalHeap::heap();
2560     size_t allocation_runway = gen_heap->young_generation()->heuristics()->bytes_of_allocation_runway_before_gc_trigger(young_cset_regions);
2561     gen_heap->compute_old_generation_balance(allocation_runway, old_cset_regions);
2562 
2563     // Total old_available may have been expanded to hold anticipated promotions.  We trigger if the fragmented available
2564     // memory represents more than 16 regions worth of data.  Note that fragmentation may increase when we promote regular
2565     // regions in place when many of these regular regions have an abundant amount of available memory within them.  Fragmentation
2566     // will decrease as promote-by-copy consumes the available memory within these partially consumed regions.
2567     //
2568     // We consider old-gen to have excessive fragmentation if more than 12.5% of old-gen is free memory that resides
2569     // within partially consumed regions of memory.
2570   }
2571   // Rebuild free set based on adjusted generation sizes.
2572   _free_set->finish_rebuild(young_cset_regions, old_cset_regions, old_region_count);
2573 
2574   if (mode()->is_generational()) {
2575     ShenandoahGenerationalHeap* gen_heap = ShenandoahGenerationalHeap::heap();
2576     ShenandoahOldGeneration* old_gen = gen_heap->old_generation();
2577     old_gen->heuristics()->evaluate_triggers(first_old_region, last_old_region, old_region_count, num_regions());
2578   }
2579 }
2580 
2581 bool ShenandoahHeap::is_bitmap_slice_committed(ShenandoahHeapRegion* r, bool skip_self) {
2582   size_t slice = r->index() / _bitmap_regions_per_slice;
2583 
2584   size_t regions_from = _bitmap_regions_per_slice * slice;
2585   size_t regions_to   = MIN2(num_regions(), _bitmap_regions_per_slice * (slice + 1));
2586   for (size_t g = regions_from; g < regions_to; g++) {
2587     assert (g / _bitmap_regions_per_slice == slice, "same slice");
2588     if (skip_self && g == r->index()) continue;
2589     if (get_region(g)->is_committed()) {
2590       return true;
2591     }
2592   }
2593   return false;
2594 }
2595 
2596 bool ShenandoahHeap::commit_bitmap_slice(ShenandoahHeapRegion* r) {
2597   shenandoah_assert_heaplocked();
2598 
2599   // Bitmaps in special regions do not need commits
2600   if (_bitmap_region_special) {
2601     return true;
2602   }
2603 
2604   if (is_bitmap_slice_committed(r, true)) {
2605     // Some other region from the group is already committed, meaning the bitmap
2606     // slice is already committed, we exit right away.
2607     return true;
2608   }
2609 
2610   // Commit the bitmap slice:
2611   size_t slice = r->index() / _bitmap_regions_per_slice;
2612   size_t off = _bitmap_bytes_per_slice * slice;
2613   size_t len = _bitmap_bytes_per_slice;
2614   char* start = (char*) _bitmap_region.start() + off;
2615 
2616   if (!os::commit_memory(start, len, false)) {
2617     return false;
2618   }
2619 
2620   if (AlwaysPreTouch) {
2621     os::pretouch_memory(start, start + len, _pretouch_bitmap_page_size);
2622   }
2623 
2624   return true;
2625 }
2626 
2627 bool ShenandoahHeap::uncommit_bitmap_slice(ShenandoahHeapRegion *r) {
2628   shenandoah_assert_heaplocked();
2629 
2630   // Bitmaps in special regions do not need uncommits
2631   if (_bitmap_region_special) {
2632     return true;
2633   }
2634 
2635   if (is_bitmap_slice_committed(r, true)) {
2636     // Some other region from the group is still committed, meaning the bitmap
2637     // slice should stay committed, exit right away.
2638     return true;
2639   }
2640 
2641   // Uncommit the bitmap slice:
2642   size_t slice = r->index() / _bitmap_regions_per_slice;
2643   size_t off = _bitmap_bytes_per_slice * slice;
2644   size_t len = _bitmap_bytes_per_slice;
2645   if (!os::uncommit_memory((char*)_bitmap_region.start() + off, len)) {
2646     return false;
2647   }
2648   return true;
2649 }
2650 
2651 void ShenandoahHeap::forbid_uncommit() {
2652   if (_uncommit_thread != nullptr) {
2653     _uncommit_thread->forbid_uncommit();
2654   }
2655 }
2656 
2657 void ShenandoahHeap::allow_uncommit() {
2658   if (_uncommit_thread != nullptr) {
2659     _uncommit_thread->allow_uncommit();
2660   }
2661 }
2662 
2663 #ifdef ASSERT
2664 bool ShenandoahHeap::is_uncommit_in_progress() {
2665   if (_uncommit_thread != nullptr) {
2666     return _uncommit_thread->is_uncommit_in_progress();
2667   }
2668   return false;
2669 }
2670 #endif
2671 
2672 void ShenandoahHeap::safepoint_synchronize_begin() {
2673   StackWatermarkSet::safepoint_synchronize_begin();
2674   SuspendibleThreadSet::synchronize();
2675 }
2676 
2677 void ShenandoahHeap::safepoint_synchronize_end() {
2678   SuspendibleThreadSet::desynchronize();
2679 }
2680 
2681 void ShenandoahHeap::try_inject_alloc_failure() {
2682   if (ShenandoahAllocFailureALot && !cancelled_gc() && ((os::random() % 1000) > 950)) {
2683     _inject_alloc_failure.set();
2684     os::naked_short_sleep(1);
2685     if (cancelled_gc()) {
2686       log_info(gc)("Allocation failure was successfully injected");
2687     }
2688   }
2689 }
2690 
2691 bool ShenandoahHeap::should_inject_alloc_failure() {
2692   return _inject_alloc_failure.is_set() && _inject_alloc_failure.try_unset();
2693 }
2694 
2695 void ShenandoahHeap::initialize_serviceability() {
2696   _memory_pool = new ShenandoahMemoryPool(this);
2697   _cycle_memory_manager.add_pool(_memory_pool);
2698   _stw_memory_manager.add_pool(_memory_pool);
2699 }
2700 
2701 GrowableArray<GCMemoryManager*> ShenandoahHeap::memory_managers() {
2702   GrowableArray<GCMemoryManager*> memory_managers(2);
2703   memory_managers.append(&_cycle_memory_manager);
2704   memory_managers.append(&_stw_memory_manager);
2705   return memory_managers;
2706 }
2707 
2708 GrowableArray<MemoryPool*> ShenandoahHeap::memory_pools() {
2709   GrowableArray<MemoryPool*> memory_pools(1);
2710   memory_pools.append(_memory_pool);
2711   return memory_pools;
2712 }
2713 
2714 MemoryUsage ShenandoahHeap::memory_usage() {
2715   return MemoryUsage(_initial_size, used(), committed(), max_capacity());
2716 }
2717 
2718 ShenandoahRegionIterator::ShenandoahRegionIterator() :
2719   _heap(ShenandoahHeap::heap()),
2720   _index(0) {}
2721 
2722 ShenandoahRegionIterator::ShenandoahRegionIterator(ShenandoahHeap* heap) :
2723   _heap(heap),
2724   _index(0) {}
2725 
2726 void ShenandoahRegionIterator::reset() {
2727   _index = 0;
2728 }
2729 
2730 bool ShenandoahRegionIterator::has_next() const {
2731   return _index < _heap->num_regions();
2732 }
2733 
2734 char ShenandoahHeap::gc_state() const {
2735   return _gc_state.raw_value();
2736 }
2737 
2738 bool ShenandoahHeap::is_gc_state(GCState state) const {
2739   // If the global gc state has been changed, but hasn't yet been propagated to all threads, then
2740   // the global gc state is the correct value. Once the gc state has been synchronized with all threads,
2741   // _gc_state_changed will be toggled to false and we need to use the thread local state.
2742   return _gc_state_changed ? _gc_state.is_set(state) : ShenandoahThreadLocalData::is_gc_state(state);
2743 }
2744 
2745 
2746 ShenandoahLiveData* ShenandoahHeap::get_liveness_cache(uint worker_id) {
2747 #ifdef ASSERT
2748   assert(_liveness_cache != nullptr, "sanity");
2749   assert(worker_id < _max_workers, "sanity");
2750   for (uint i = 0; i < num_regions(); i++) {
2751     assert(_liveness_cache[worker_id][i] == 0, "liveness cache should be empty");
2752   }
2753 #endif
2754   return _liveness_cache[worker_id];
2755 }
2756 
2757 void ShenandoahHeap::flush_liveness_cache(uint worker_id) {
2758   assert(worker_id < _max_workers, "sanity");
2759   assert(_liveness_cache != nullptr, "sanity");
2760   ShenandoahLiveData* ld = _liveness_cache[worker_id];
2761   for (uint i = 0; i < num_regions(); i++) {
2762     ShenandoahLiveData live = ld[i];
2763     if (live > 0) {
2764       ShenandoahHeapRegion* r = get_region(i);
2765       r->increase_live_data_gc_words(live);
2766       ld[i] = 0;
2767     }
2768   }
2769 }
2770 
2771 bool ShenandoahHeap::requires_barriers(stackChunkOop obj) const {
2772   if (is_idle()) return false;
2773 
2774   // Objects allocated after marking start are implicitly alive, don't need any barriers during
2775   // marking phase.
2776   if (is_concurrent_mark_in_progress() &&
2777      !marking_context()->allocated_after_mark_start(obj)) {
2778     return true;
2779   }
2780 
2781   // Can not guarantee obj is deeply good.
2782   if (has_forwarded_objects()) {
2783     return true;
2784   }
2785 
2786   return false;
2787 }
2788 
2789 HeapWord* ShenandoahHeap::allocate_loaded_archive_space(size_t size) {
2790 #if INCLUDE_CDS_JAVA_HEAP
2791   // CDS wants a continuous memory range to load a bunch of objects.
2792   // This effectively bypasses normal allocation paths, and requires
2793   // a bit of massaging to unbreak GC invariants.
2794 
2795   ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared(size);
2796 
2797   // Easy case: a single regular region, no further adjustments needed.
2798   if (!ShenandoahHeapRegion::requires_humongous(size)) {
2799     return allocate_memory(req);
2800   }
2801 
2802   // Hard case: the requested size would cause a humongous allocation.
2803   // We need to make sure it looks like regular allocation to the rest of GC.
2804 
2805   // CDS code would guarantee no objects straddle multiple regions, as long as
2806   // regions are as large as MIN_GC_REGION_ALIGNMENT. It is impractical at this
2807   // point to deal with case when Shenandoah runs with smaller regions.
2808   // TODO: This check can be dropped once MIN_GC_REGION_ALIGNMENT agrees more with Shenandoah.
2809   if (ShenandoahHeapRegion::region_size_bytes() < ArchiveHeapWriter::MIN_GC_REGION_ALIGNMENT) {
2810     return nullptr;
2811   }
2812 
2813   HeapWord* mem = allocate_memory(req);
2814   size_t start_idx = heap_region_index_containing(mem);
2815   size_t num_regions = ShenandoahHeapRegion::required_regions(size * HeapWordSize);
2816 
2817   // Flip humongous -> regular.
2818   {
2819     ShenandoahHeapLocker locker(lock(), false);
2820     for (size_t c = start_idx; c < start_idx + num_regions; c++) {
2821       get_region(c)->make_regular_bypass();
2822     }
2823   }
2824 
2825   return mem;
2826 #else
2827   assert(false, "Archive heap loader should not be available, should not be here");
2828   return nullptr;
2829 #endif // INCLUDE_CDS_JAVA_HEAP
2830 }
2831 
2832 void ShenandoahHeap::complete_loaded_archive_space(MemRegion archive_space) {
2833   // Nothing to do here, except checking that heap looks fine.
2834 #ifdef ASSERT
2835   HeapWord* start = archive_space.start();
2836   HeapWord* end = archive_space.end();
2837 
2838   // No unclaimed space between the objects.
2839   // Objects are properly allocated in correct regions.
2840   HeapWord* cur = start;
2841   while (cur < end) {
2842     oop oop = cast_to_oop(cur);
2843     shenandoah_assert_in_correct_region(nullptr, oop);
2844     cur += oop->size();
2845   }
2846 
2847   // No unclaimed tail at the end of archive space.
2848   assert(cur == end,
2849          "Archive space should be fully used: " PTR_FORMAT " " PTR_FORMAT,
2850          p2i(cur), p2i(end));
2851 
2852   // Region bounds are good.
2853   ShenandoahHeapRegion* begin_reg = heap_region_containing(start);
2854   ShenandoahHeapRegion* end_reg = heap_region_containing(end);
2855   assert(begin_reg->is_regular(), "Must be");
2856   assert(end_reg->is_regular(), "Must be");
2857   assert(begin_reg->bottom() == start,
2858          "Must agree: archive-space-start: " PTR_FORMAT ", begin-region-bottom: " PTR_FORMAT,
2859          p2i(start), p2i(begin_reg->bottom()));
2860   assert(end_reg->top() == end,
2861          "Must agree: archive-space-end: " PTR_FORMAT ", end-region-top: " PTR_FORMAT,
2862          p2i(end), p2i(end_reg->top()));
2863 #endif
2864 }
2865 
2866 ShenandoahGeneration* ShenandoahHeap::generation_for(ShenandoahAffiliation affiliation) const {
2867   if (!mode()->is_generational()) {
2868     return global_generation();
2869   } else if (affiliation == YOUNG_GENERATION) {
2870     return young_generation();
2871   } else if (affiliation == OLD_GENERATION) {
2872     return old_generation();
2873   }
2874 
2875   ShouldNotReachHere();
2876   return nullptr;
2877 }
2878 
2879 void ShenandoahHeap::log_heap_status(const char* msg) const {
2880   if (mode()->is_generational()) {
2881     young_generation()->log_status(msg);
2882     old_generation()->log_status(msg);
2883   } else {
2884     global_generation()->log_status(msg);
2885   }
2886 }