1 /*
   2  * Copyright (c) 2023, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2013, 2022, Red Hat, Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "memory/allocation.hpp"
  28 #include "memory/universe.hpp"
  29 
  30 #include "gc/shared/classUnloadingContext.hpp"
  31 #include "gc/shared/gcArguments.hpp"
  32 #include "gc/shared/gcTimer.hpp"
  33 #include "gc/shared/gcTraceTime.inline.hpp"
  34 #include "gc/shared/locationPrinter.inline.hpp"
  35 #include "gc/shared/memAllocator.hpp"
  36 #include "gc/shared/plab.hpp"
  37 #include "gc/shared/tlab_globals.hpp"
  38 
  39 #include "gc/shenandoah/shenandoahBarrierSet.hpp"
  40 #include "gc/shenandoah/shenandoahClosures.inline.hpp"
  41 #include "gc/shenandoah/shenandoahCollectionSet.hpp"
  42 #include "gc/shenandoah/shenandoahCollectorPolicy.hpp"
  43 #include "gc/shenandoah/shenandoahConcurrentMark.hpp"
  44 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp"
  45 #include "gc/shenandoah/shenandoahControlThread.hpp"
  46 #include "gc/shenandoah/shenandoahFreeSet.hpp"
  47 #include "gc/shenandoah/shenandoahPhaseTimings.hpp"
  48 #include "gc/shenandoah/shenandoahHeap.inline.hpp"
  49 #include "gc/shenandoah/shenandoahHeapRegion.inline.hpp"
  50 #include "gc/shenandoah/shenandoahHeapRegionSet.hpp"
  51 #include "gc/shenandoah/shenandoahInitLogger.hpp"
  52 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp"
  53 #include "gc/shenandoah/shenandoahMemoryPool.hpp"
  54 #include "gc/shenandoah/shenandoahMetrics.hpp"
  55 #include "gc/shenandoah/shenandoahMonitoringSupport.hpp"
  56 #include "gc/shenandoah/shenandoahOopClosures.inline.hpp"
  57 #include "gc/shenandoah/shenandoahPacer.inline.hpp"
  58 #include "gc/shenandoah/shenandoahPadding.hpp"
  59 #include "gc/shenandoah/shenandoahParallelCleaning.inline.hpp"
  60 #include "gc/shenandoah/shenandoahReferenceProcessor.hpp"
  61 #include "gc/shenandoah/shenandoahRootProcessor.inline.hpp"
  62 #include "gc/shenandoah/shenandoahSTWMark.hpp"
  63 #include "gc/shenandoah/shenandoahUtils.hpp"
  64 #include "gc/shenandoah/shenandoahVerifier.hpp"
  65 #include "gc/shenandoah/shenandoahCodeRoots.hpp"
  66 #include "gc/shenandoah/shenandoahVMOperations.hpp"
  67 #include "gc/shenandoah/shenandoahWorkGroup.hpp"
  68 #include "gc/shenandoah/shenandoahWorkerPolicy.hpp"
  69 #include "gc/shenandoah/mode/shenandoahIUMode.hpp"
  70 #include "gc/shenandoah/mode/shenandoahPassiveMode.hpp"
  71 #include "gc/shenandoah/mode/shenandoahSATBMode.hpp"
  72 #if INCLUDE_JFR
  73 #include "gc/shenandoah/shenandoahJfrSupport.hpp"
  74 #endif
  75 
  76 #include "classfile/systemDictionary.hpp"
  77 #include "code/codeCache.hpp"
  78 #include "memory/classLoaderMetaspace.hpp"
  79 #include "memory/metaspaceUtils.hpp"
  80 #include "nmt/mallocTracker.hpp"
  81 #include "nmt/memTracker.hpp"
  82 #include "oops/compressedOops.inline.hpp"
  83 #include "prims/jvmtiTagMap.hpp"
  84 #include "runtime/atomic.hpp"
  85 #include "runtime/globals.hpp"
  86 #include "runtime/interfaceSupport.inline.hpp"
  87 #include "runtime/java.hpp"
  88 #include "runtime/orderAccess.hpp"
  89 #include "runtime/safepointMechanism.hpp"
  90 #include "runtime/stackWatermarkSet.hpp"
  91 #include "runtime/vmThread.hpp"
  92 #include "utilities/events.hpp"
  93 #include "utilities/powerOfTwo.hpp"
  94 
  95 class ShenandoahPretouchHeapTask : public WorkerTask {
  96 private:
  97   ShenandoahRegionIterator _regions;
  98   const size_t _page_size;
  99 public:
 100   ShenandoahPretouchHeapTask(size_t page_size) :
 101     WorkerTask("Shenandoah Pretouch Heap"),
 102     _page_size(page_size) {}
 103 
 104   virtual void work(uint worker_id) {
 105     ShenandoahHeapRegion* r = _regions.next();
 106     while (r != nullptr) {
 107       if (r->is_committed()) {
 108         os::pretouch_memory(r->bottom(), r->end(), _page_size);
 109       }
 110       r = _regions.next();
 111     }
 112   }
 113 };
 114 
 115 class ShenandoahPretouchBitmapTask : public WorkerTask {
 116 private:
 117   ShenandoahRegionIterator _regions;
 118   char* _bitmap_base;
 119   const size_t _bitmap_size;
 120   const size_t _page_size;
 121 public:
 122   ShenandoahPretouchBitmapTask(char* bitmap_base, size_t bitmap_size, size_t page_size) :
 123     WorkerTask("Shenandoah Pretouch Bitmap"),
 124     _bitmap_base(bitmap_base),
 125     _bitmap_size(bitmap_size),
 126     _page_size(page_size) {}
 127 
 128   virtual void work(uint worker_id) {
 129     ShenandoahHeapRegion* r = _regions.next();
 130     while (r != nullptr) {
 131       size_t start = r->index()       * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor();
 132       size_t end   = (r->index() + 1) * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor();
 133       assert (end <= _bitmap_size, "end is sane: " SIZE_FORMAT " < " SIZE_FORMAT, end, _bitmap_size);
 134 
 135       if (r->is_committed()) {
 136         os::pretouch_memory(_bitmap_base + start, _bitmap_base + end, _page_size);
 137       }
 138 
 139       r = _regions.next();
 140     }
 141   }
 142 };
 143 
 144 jint ShenandoahHeap::initialize() {
 145   //
 146   // Figure out heap sizing
 147   //
 148 
 149   size_t init_byte_size = InitialHeapSize;
 150   size_t min_byte_size  = MinHeapSize;
 151   size_t max_byte_size  = MaxHeapSize;
 152   size_t heap_alignment = HeapAlignment;
 153 
 154   size_t reg_size_bytes = ShenandoahHeapRegion::region_size_bytes();
 155 
 156   Universe::check_alignment(max_byte_size,  reg_size_bytes, "Shenandoah heap");
 157   Universe::check_alignment(init_byte_size, reg_size_bytes, "Shenandoah heap");
 158 
 159   _num_regions = ShenandoahHeapRegion::region_count();
 160   assert(_num_regions == (max_byte_size / reg_size_bytes),
 161          "Regions should cover entire heap exactly: " SIZE_FORMAT " != " SIZE_FORMAT "/" SIZE_FORMAT,
 162          _num_regions, max_byte_size, reg_size_bytes);
 163 
 164   // Now we know the number of regions, initialize the heuristics.
 165   initialize_heuristics();
 166 
 167   size_t num_committed_regions = init_byte_size / reg_size_bytes;
 168   num_committed_regions = MIN2(num_committed_regions, _num_regions);
 169   assert(num_committed_regions <= _num_regions, "sanity");
 170   _initial_size = num_committed_regions * reg_size_bytes;
 171 
 172   size_t num_min_regions = min_byte_size / reg_size_bytes;
 173   num_min_regions = MIN2(num_min_regions, _num_regions);
 174   assert(num_min_regions <= _num_regions, "sanity");
 175   _minimum_size = num_min_regions * reg_size_bytes;
 176 
 177   // Default to max heap size.
 178   _soft_max_size = _num_regions * reg_size_bytes;
 179 
 180   _committed = _initial_size;
 181 
 182   size_t heap_page_size   = UseLargePages ? os::large_page_size() : os::vm_page_size();
 183   size_t bitmap_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
 184   size_t region_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
 185 
 186   //
 187   // Reserve and commit memory for heap
 188   //
 189 
 190   ReservedHeapSpace heap_rs = Universe::reserve_heap(max_byte_size, heap_alignment);
 191   initialize_reserved_region(heap_rs);
 192   _heap_region = MemRegion((HeapWord*)heap_rs.base(), heap_rs.size() / HeapWordSize);
 193   _heap_region_special = heap_rs.special();
 194 
 195   assert((((size_t) base()) & ShenandoahHeapRegion::region_size_bytes_mask()) == 0,
 196          "Misaligned heap: " PTR_FORMAT, p2i(base()));
 197   os::trace_page_sizes_for_requested_size("Heap",
 198                                           max_byte_size, heap_alignment,
 199                                           heap_rs.base(),
 200                                           heap_rs.size(), heap_rs.page_size());
 201 
 202 #if SHENANDOAH_OPTIMIZED_MARKTASK
 203   // The optimized ShenandoahMarkTask takes some bits away from the full object bits.
 204   // Fail if we ever attempt to address more than we can.
 205   if ((uintptr_t)heap_rs.end() >= ShenandoahMarkTask::max_addressable()) {
 206     FormatBuffer<512> buf("Shenandoah reserved [" PTR_FORMAT ", " PTR_FORMAT") for the heap, \n"
 207                           "but max object address is " PTR_FORMAT ". Try to reduce heap size, or try other \n"
 208                           "VM options that allocate heap at lower addresses (HeapBaseMinAddress, AllocateHeapAt, etc).",
 209                 p2i(heap_rs.base()), p2i(heap_rs.end()), ShenandoahMarkTask::max_addressable());
 210     vm_exit_during_initialization("Fatal Error", buf);
 211   }
 212 #endif
 213 
 214   ReservedSpace sh_rs = heap_rs.first_part(max_byte_size);
 215   if (!_heap_region_special) {
 216     os::commit_memory_or_exit(sh_rs.base(), _initial_size, heap_alignment, false,
 217                               "Cannot commit heap memory");
 218   }
 219 
 220   //
 221   // Reserve and commit memory for bitmap(s)
 222   //
 223 
 224   size_t bitmap_size_orig = ShenandoahMarkBitMap::compute_size(heap_rs.size());
 225   _bitmap_size = align_up(bitmap_size_orig, bitmap_page_size);
 226 
 227   size_t bitmap_bytes_per_region = reg_size_bytes / ShenandoahMarkBitMap::heap_map_factor();
 228 
 229   guarantee(bitmap_bytes_per_region != 0,
 230             "Bitmap bytes per region should not be zero");
 231   guarantee(is_power_of_2(bitmap_bytes_per_region),
 232             "Bitmap bytes per region should be power of two: " SIZE_FORMAT, bitmap_bytes_per_region);
 233 
 234   if (bitmap_page_size > bitmap_bytes_per_region) {
 235     _bitmap_regions_per_slice = bitmap_page_size / bitmap_bytes_per_region;
 236     _bitmap_bytes_per_slice = bitmap_page_size;
 237   } else {
 238     _bitmap_regions_per_slice = 1;
 239     _bitmap_bytes_per_slice = bitmap_bytes_per_region;
 240   }
 241 
 242   guarantee(_bitmap_regions_per_slice >= 1,
 243             "Should have at least one region per slice: " SIZE_FORMAT,
 244             _bitmap_regions_per_slice);
 245 
 246   guarantee(((_bitmap_bytes_per_slice) % bitmap_page_size) == 0,
 247             "Bitmap slices should be page-granular: bps = " SIZE_FORMAT ", page size = " SIZE_FORMAT,
 248             _bitmap_bytes_per_slice, bitmap_page_size);
 249 
 250   ReservedSpace bitmap(_bitmap_size, bitmap_page_size);
 251   os::trace_page_sizes_for_requested_size("Mark Bitmap",
 252                                           bitmap_size_orig, bitmap_page_size,
 253                                           bitmap.base(),
 254                                           bitmap.size(), bitmap.page_size());
 255   MemTracker::record_virtual_memory_type(bitmap.base(), mtGC);
 256   _bitmap_region = MemRegion((HeapWord*) bitmap.base(), bitmap.size() / HeapWordSize);
 257   _bitmap_region_special = bitmap.special();
 258 
 259   size_t bitmap_init_commit = _bitmap_bytes_per_slice *
 260                               align_up(num_committed_regions, _bitmap_regions_per_slice) / _bitmap_regions_per_slice;
 261   bitmap_init_commit = MIN2(_bitmap_size, bitmap_init_commit);
 262   if (!_bitmap_region_special) {
 263     os::commit_memory_or_exit((char *) _bitmap_region.start(), bitmap_init_commit, bitmap_page_size, false,
 264                               "Cannot commit bitmap memory");
 265   }
 266 
 267   _marking_context = new ShenandoahMarkingContext(_heap_region, _bitmap_region, _num_regions, _max_workers);
 268 
 269   if (ShenandoahVerify) {
 270     ReservedSpace verify_bitmap(_bitmap_size, bitmap_page_size);
 271     os::trace_page_sizes_for_requested_size("Verify Bitmap",
 272                                             bitmap_size_orig, bitmap_page_size,
 273                                             verify_bitmap.base(),
 274                                             verify_bitmap.size(), verify_bitmap.page_size());
 275     if (!verify_bitmap.special()) {
 276       os::commit_memory_or_exit(verify_bitmap.base(), verify_bitmap.size(), bitmap_page_size, false,
 277                                 "Cannot commit verification bitmap memory");
 278     }
 279     MemTracker::record_virtual_memory_type(verify_bitmap.base(), mtGC);
 280     MemRegion verify_bitmap_region = MemRegion((HeapWord *) verify_bitmap.base(), verify_bitmap.size() / HeapWordSize);
 281     _verification_bit_map.initialize(_heap_region, verify_bitmap_region);
 282     _verifier = new ShenandoahVerifier(this, &_verification_bit_map);
 283   }
 284 
 285   // Reserve aux bitmap for use in object_iterate(). We don't commit it here.
 286   size_t aux_bitmap_page_size = bitmap_page_size;
 287 #ifdef LINUX
 288   // In THP "advise" mode, we refrain from advising the system to use large pages
 289   // since we know these commits will be short lived, and there is no reason to trash
 290   // the THP area with this bitmap.
 291   if (UseTransparentHugePages) {
 292     aux_bitmap_page_size = os::vm_page_size();
 293   }
 294 #endif
 295   ReservedSpace aux_bitmap(_bitmap_size, aux_bitmap_page_size);
 296   os::trace_page_sizes_for_requested_size("Aux Bitmap",
 297                                           bitmap_size_orig, aux_bitmap_page_size,
 298                                           aux_bitmap.base(),
 299                                           aux_bitmap.size(), aux_bitmap.page_size());
 300   MemTracker::record_virtual_memory_type(aux_bitmap.base(), mtGC);
 301   _aux_bitmap_region = MemRegion((HeapWord*) aux_bitmap.base(), aux_bitmap.size() / HeapWordSize);
 302   _aux_bitmap_region_special = aux_bitmap.special();
 303   _aux_bit_map.initialize(_heap_region, _aux_bitmap_region);
 304 
 305   //
 306   // Create regions and region sets
 307   //
 308   size_t region_align = align_up(sizeof(ShenandoahHeapRegion), SHENANDOAH_CACHE_LINE_SIZE);
 309   size_t region_storage_size_orig = region_align * _num_regions;
 310   size_t region_storage_size = align_up(region_storage_size_orig,
 311                                         MAX2(region_page_size, os::vm_allocation_granularity()));
 312 
 313   ReservedSpace region_storage(region_storage_size, region_page_size);
 314   os::trace_page_sizes_for_requested_size("Region Storage",
 315                                           region_storage_size_orig, region_page_size,
 316                                           region_storage.base(),
 317                                           region_storage.size(), region_storage.page_size());
 318   MemTracker::record_virtual_memory_type(region_storage.base(), mtGC);
 319   if (!region_storage.special()) {
 320     os::commit_memory_or_exit(region_storage.base(), region_storage_size, region_page_size, false,
 321                               "Cannot commit region memory");
 322   }
 323 
 324   // Try to fit the collection set bitmap at lower addresses. This optimizes code generation for cset checks.
 325   // Go up until a sensible limit (subject to encoding constraints) and try to reserve the space there.
 326   // If not successful, bite a bullet and allocate at whatever address.
 327   {
 328     const size_t cset_align = MAX2<size_t>(os::vm_page_size(), os::vm_allocation_granularity());
 329     const size_t cset_size = align_up(((size_t) sh_rs.base() + sh_rs.size()) >> ShenandoahHeapRegion::region_size_bytes_shift(), cset_align);
 330     const size_t cset_page_size = os::vm_page_size();
 331 
 332     uintptr_t min = round_up_power_of_2(cset_align);
 333     uintptr_t max = (1u << 30u);
 334     ReservedSpace cset_rs;
 335 
 336     for (uintptr_t addr = min; addr <= max; addr <<= 1u) {
 337       char* req_addr = (char*)addr;
 338       assert(is_aligned(req_addr, cset_align), "Should be aligned");
 339       cset_rs = ReservedSpace(cset_size, cset_align, cset_page_size, req_addr);
 340       if (cset_rs.is_reserved()) {
 341         assert(cset_rs.base() == req_addr, "Allocated where requested: " PTR_FORMAT ", " PTR_FORMAT, p2i(cset_rs.base()), addr);
 342         _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base());
 343         break;
 344       }
 345     }
 346 
 347     if (_collection_set == nullptr) {
 348       cset_rs = ReservedSpace(cset_size, cset_align, os::vm_page_size());
 349       _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base());
 350     }
 351     os::trace_page_sizes_for_requested_size("Collection Set",
 352                                             cset_size, cset_page_size,
 353                                             cset_rs.base(),
 354                                             cset_rs.size(), cset_rs.page_size());
 355   }
 356 
 357   _regions = NEW_C_HEAP_ARRAY(ShenandoahHeapRegion*, _num_regions, mtGC);
 358   _free_set = new ShenandoahFreeSet(this, _num_regions);
 359 
 360   {
 361     ShenandoahHeapLocker locker(lock());
 362 
 363     for (size_t i = 0; i < _num_regions; i++) {
 364       HeapWord* start = (HeapWord*)sh_rs.base() + ShenandoahHeapRegion::region_size_words() * i;
 365       bool is_committed = i < num_committed_regions;
 366       void* loc = region_storage.base() + i * region_align;
 367 
 368       ShenandoahHeapRegion* r = new (loc) ShenandoahHeapRegion(start, i, is_committed);
 369       assert(is_aligned(r, SHENANDOAH_CACHE_LINE_SIZE), "Sanity");
 370 
 371       _marking_context->initialize_top_at_mark_start(r);
 372       _regions[i] = r;
 373       assert(!collection_set()->is_in(i), "New region should not be in collection set");
 374     }
 375 
 376     // Initialize to complete
 377     _marking_context->mark_complete();
 378 
 379     _free_set->rebuild();
 380   }
 381 
 382   if (AlwaysPreTouch) {
 383     // For NUMA, it is important to pre-touch the storage under bitmaps with worker threads,
 384     // before initialize() below zeroes it with initializing thread. For any given region,
 385     // we touch the region and the corresponding bitmaps from the same thread.
 386     ShenandoahPushWorkerScope scope(workers(), _max_workers, false);
 387 
 388     _pretouch_heap_page_size = heap_page_size;
 389     _pretouch_bitmap_page_size = bitmap_page_size;
 390 
 391 #ifdef LINUX
 392     // UseTransparentHugePages would madvise that backing memory can be coalesced into huge
 393     // pages. But, the kernel needs to know that every small page is used, in order to coalesce
 394     // them into huge one. Therefore, we need to pretouch with smaller pages.
 395     if (UseTransparentHugePages) {
 396       _pretouch_heap_page_size = (size_t)os::vm_page_size();
 397       _pretouch_bitmap_page_size = (size_t)os::vm_page_size();
 398     }
 399 #endif
 400 
 401     // OS memory managers may want to coalesce back-to-back pages. Make their jobs
 402     // simpler by pre-touching continuous spaces (heap and bitmap) separately.
 403 
 404     ShenandoahPretouchBitmapTask bcl(bitmap.base(), _bitmap_size, _pretouch_bitmap_page_size);
 405     _workers->run_task(&bcl);
 406 
 407     ShenandoahPretouchHeapTask hcl(_pretouch_heap_page_size);
 408     _workers->run_task(&hcl);
 409   }
 410 
 411   //
 412   // Initialize the rest of GC subsystems
 413   //
 414 
 415   _liveness_cache = NEW_C_HEAP_ARRAY(ShenandoahLiveData*, _max_workers, mtGC);
 416   for (uint worker = 0; worker < _max_workers; worker++) {
 417     _liveness_cache[worker] = NEW_C_HEAP_ARRAY(ShenandoahLiveData, _num_regions, mtGC);
 418     Copy::fill_to_bytes(_liveness_cache[worker], _num_regions * sizeof(ShenandoahLiveData));
 419   }
 420 
 421   // There should probably be Shenandoah-specific options for these,
 422   // just as there are G1-specific options.
 423   {
 424     ShenandoahSATBMarkQueueSet& satbqs = ShenandoahBarrierSet::satb_mark_queue_set();
 425     satbqs.set_process_completed_buffers_threshold(20); // G1SATBProcessCompletedThreshold
 426     satbqs.set_buffer_enqueue_threshold_percentage(60); // G1SATBBufferEnqueueingThresholdPercent
 427   }
 428 
 429   _monitoring_support = new ShenandoahMonitoringSupport(this);
 430   _phase_timings = new ShenandoahPhaseTimings(max_workers());
 431   ShenandoahCodeRoots::initialize();
 432 
 433   if (ShenandoahPacing) {
 434     _pacer = new ShenandoahPacer(this);
 435     _pacer->setup_for_idle();
 436   }
 437 
 438   _control_thread = new ShenandoahControlThread();
 439 
 440   ShenandoahInitLogger::print();
 441 
 442   return JNI_OK;
 443 }
 444 
 445 void ShenandoahHeap::initialize_mode() {
 446   if (ShenandoahGCMode != nullptr) {
 447     if (strcmp(ShenandoahGCMode, "satb") == 0) {
 448       _gc_mode = new ShenandoahSATBMode();
 449     } else if (strcmp(ShenandoahGCMode, "iu") == 0) {
 450       _gc_mode = new ShenandoahIUMode();
 451     } else if (strcmp(ShenandoahGCMode, "passive") == 0) {
 452       _gc_mode = new ShenandoahPassiveMode();
 453     } else {
 454       vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option");
 455     }
 456   } else {
 457     vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option (null)");
 458   }
 459   _gc_mode->initialize_flags();
 460   if (_gc_mode->is_diagnostic() && !UnlockDiagnosticVMOptions) {
 461     vm_exit_during_initialization(
 462             err_msg("GC mode \"%s\" is diagnostic, and must be enabled via -XX:+UnlockDiagnosticVMOptions.",
 463                     _gc_mode->name()));
 464   }
 465   if (_gc_mode->is_experimental() && !UnlockExperimentalVMOptions) {
 466     vm_exit_during_initialization(
 467             err_msg("GC mode \"%s\" is experimental, and must be enabled via -XX:+UnlockExperimentalVMOptions.",
 468                     _gc_mode->name()));
 469   }
 470 }
 471 
 472 void ShenandoahHeap::initialize_heuristics() {
 473   assert(_gc_mode != nullptr, "Must be initialized");
 474   _heuristics = _gc_mode->initialize_heuristics();
 475 
 476   if (_heuristics->is_diagnostic() && !UnlockDiagnosticVMOptions) {
 477     vm_exit_during_initialization(
 478             err_msg("Heuristics \"%s\" is diagnostic, and must be enabled via -XX:+UnlockDiagnosticVMOptions.",
 479                     _heuristics->name()));
 480   }
 481   if (_heuristics->is_experimental() && !UnlockExperimentalVMOptions) {
 482     vm_exit_during_initialization(
 483             err_msg("Heuristics \"%s\" is experimental, and must be enabled via -XX:+UnlockExperimentalVMOptions.",
 484                     _heuristics->name()));
 485   }
 486 }
 487 
 488 #ifdef _MSC_VER
 489 #pragma warning( push )
 490 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 491 #endif
 492 
 493 ShenandoahHeap::ShenandoahHeap(ShenandoahCollectorPolicy* policy) :
 494   CollectedHeap(),
 495   _initial_size(0),
 496   _used(0),
 497   _committed(0),
 498   _bytes_allocated_since_gc_start(0),
 499   _max_workers(MAX2(ConcGCThreads, ParallelGCThreads)),
 500   _workers(nullptr),
 501   _safepoint_workers(nullptr),
 502   _heap_region_special(false),
 503   _num_regions(0),
 504   _regions(nullptr),
 505   _update_refs_iterator(this),
 506   _gc_state_changed(false),
 507   _gc_no_progress_count(0),
 508   _control_thread(nullptr),
 509   _shenandoah_policy(policy),
 510   _gc_mode(nullptr),
 511   _heuristics(nullptr),
 512   _free_set(nullptr),
 513   _pacer(nullptr),
 514   _verifier(nullptr),
 515   _phase_timings(nullptr),
 516   _monitoring_support(nullptr),
 517   _memory_pool(nullptr),
 518   _stw_memory_manager("Shenandoah Pauses"),
 519   _cycle_memory_manager("Shenandoah Cycles"),
 520   _gc_timer(new ConcurrentGCTimer()),
 521   _log_min_obj_alignment_in_bytes(LogMinObjAlignmentInBytes),
 522   _ref_processor(new ShenandoahReferenceProcessor(MAX2(_max_workers, 1U))),
 523   _marking_context(nullptr),
 524   _bitmap_size(0),
 525   _bitmap_regions_per_slice(0),
 526   _bitmap_bytes_per_slice(0),
 527   _bitmap_region_special(false),
 528   _aux_bitmap_region_special(false),
 529   _liveness_cache(nullptr),
 530   _collection_set(nullptr)
 531 {
 532   // Initialize GC mode early, so we can adjust barrier support
 533   initialize_mode();
 534   BarrierSet::set_barrier_set(new ShenandoahBarrierSet(this));
 535 
 536   _max_workers = MAX2(_max_workers, 1U);
 537   _workers = new ShenandoahWorkerThreads("Shenandoah GC Threads", _max_workers);
 538   if (_workers == nullptr) {
 539     vm_exit_during_initialization("Failed necessary allocation.");
 540   } else {
 541     _workers->initialize_workers();
 542   }
 543 
 544   if (ParallelGCThreads > 1) {
 545     _safepoint_workers = new ShenandoahWorkerThreads("Safepoint Cleanup Thread",
 546                                                 ParallelGCThreads);
 547     _safepoint_workers->initialize_workers();
 548   }
 549 }
 550 
 551 #ifdef _MSC_VER
 552 #pragma warning( pop )
 553 #endif
 554 
 555 class ShenandoahResetBitmapTask : public WorkerTask {
 556 private:
 557   ShenandoahRegionIterator _regions;
 558 
 559 public:
 560   ShenandoahResetBitmapTask() :
 561     WorkerTask("Shenandoah Reset Bitmap") {}
 562 
 563   void work(uint worker_id) {
 564     ShenandoahHeapRegion* region = _regions.next();
 565     ShenandoahHeap* heap = ShenandoahHeap::heap();
 566     ShenandoahMarkingContext* const ctx = heap->marking_context();
 567     while (region != nullptr) {
 568       if (heap->is_bitmap_slice_committed(region)) {
 569         ctx->clear_bitmap(region);
 570       }
 571       region = _regions.next();
 572     }
 573   }
 574 };
 575 
 576 void ShenandoahHeap::reset_mark_bitmap() {
 577   assert_gc_workers(_workers->active_workers());
 578   mark_incomplete_marking_context();
 579 
 580   ShenandoahResetBitmapTask task;
 581   _workers->run_task(&task);
 582 }
 583 
 584 void ShenandoahHeap::print_on(outputStream* st) const {
 585   st->print_cr("Shenandoah Heap");
 586   st->print_cr(" " SIZE_FORMAT "%s max, " SIZE_FORMAT "%s soft max, " SIZE_FORMAT "%s committed, " SIZE_FORMAT "%s used",
 587                byte_size_in_proper_unit(max_capacity()), proper_unit_for_byte_size(max_capacity()),
 588                byte_size_in_proper_unit(soft_max_capacity()), proper_unit_for_byte_size(soft_max_capacity()),
 589                byte_size_in_proper_unit(committed()),    proper_unit_for_byte_size(committed()),
 590                byte_size_in_proper_unit(used()),         proper_unit_for_byte_size(used()));
 591   st->print_cr(" " SIZE_FORMAT " x " SIZE_FORMAT"%s regions",
 592                num_regions(),
 593                byte_size_in_proper_unit(ShenandoahHeapRegion::region_size_bytes()),
 594                proper_unit_for_byte_size(ShenandoahHeapRegion::region_size_bytes()));
 595 
 596   st->print("Status: ");
 597   if (has_forwarded_objects())                 st->print("has forwarded objects, ");
 598   if (is_concurrent_mark_in_progress())        st->print("marking, ");
 599   if (is_evacuation_in_progress())             st->print("evacuating, ");
 600   if (is_update_refs_in_progress())            st->print("updating refs, ");
 601   if (is_degenerated_gc_in_progress())         st->print("degenerated gc, ");
 602   if (is_full_gc_in_progress())                st->print("full gc, ");
 603   if (is_full_gc_move_in_progress())           st->print("full gc move, ");
 604   if (is_concurrent_weak_root_in_progress())   st->print("concurrent weak roots, ");
 605   if (is_concurrent_strong_root_in_progress() &&
 606       !is_concurrent_weak_root_in_progress())  st->print("concurrent strong roots, ");
 607 
 608   if (cancelled_gc()) {
 609     st->print("cancelled");
 610   } else {
 611     st->print("not cancelled");
 612   }
 613   st->cr();
 614 
 615   st->print_cr("Reserved region:");
 616   st->print_cr(" - [" PTR_FORMAT ", " PTR_FORMAT ") ",
 617                p2i(reserved_region().start()),
 618                p2i(reserved_region().end()));
 619 
 620   ShenandoahCollectionSet* cset = collection_set();
 621   st->print_cr("Collection set:");
 622   if (cset != nullptr) {
 623     st->print_cr(" - map (vanilla): " PTR_FORMAT, p2i(cset->map_address()));
 624     st->print_cr(" - map (biased):  " PTR_FORMAT, p2i(cset->biased_map_address()));
 625   } else {
 626     st->print_cr(" (null)");
 627   }
 628 
 629   st->cr();
 630   MetaspaceUtils::print_on(st);
 631 
 632   if (Verbose) {
 633     st->cr();
 634     print_heap_regions_on(st);
 635   }
 636 }
 637 
 638 class ShenandoahInitWorkerGCLABClosure : public ThreadClosure {
 639 public:
 640   void do_thread(Thread* thread) {
 641     assert(thread != nullptr, "Sanity");
 642     assert(thread->is_Worker_thread(), "Only worker thread expected");
 643     ShenandoahThreadLocalData::initialize_gclab(thread);
 644   }
 645 };
 646 
 647 void ShenandoahHeap::post_initialize() {
 648   CollectedHeap::post_initialize();
 649   MutexLocker ml(Threads_lock);
 650 
 651   ShenandoahInitWorkerGCLABClosure init_gclabs;
 652   _workers->threads_do(&init_gclabs);
 653 
 654   // gclab can not be initialized early during VM startup, as it can not determinate its max_size.
 655   // Now, we will let WorkerThreads to initialize gclab when new worker is created.
 656   _workers->set_initialize_gclab();
 657   if (_safepoint_workers != nullptr) {
 658     _safepoint_workers->threads_do(&init_gclabs);
 659     _safepoint_workers->set_initialize_gclab();
 660   }
 661 
 662   _heuristics->initialize();
 663 
 664   JFR_ONLY(ShenandoahJFRSupport::register_jfr_type_serializers();)
 665 }
 666 
 667 size_t ShenandoahHeap::used() const {
 668   return Atomic::load(&_used);
 669 }
 670 
 671 size_t ShenandoahHeap::committed() const {
 672   return Atomic::load(&_committed);
 673 }
 674 
 675 size_t ShenandoahHeap::available() const {
 676   return free_set()->available();
 677 }
 678 
 679 void ShenandoahHeap::increase_committed(size_t bytes) {
 680   shenandoah_assert_heaplocked_or_safepoint();
 681   _committed += bytes;
 682 }
 683 
 684 void ShenandoahHeap::decrease_committed(size_t bytes) {
 685   shenandoah_assert_heaplocked_or_safepoint();
 686   _committed -= bytes;
 687 }
 688 
 689 void ShenandoahHeap::increase_used(size_t bytes) {
 690   Atomic::add(&_used, bytes, memory_order_relaxed);
 691 }
 692 
 693 void ShenandoahHeap::set_used(size_t bytes) {
 694   Atomic::store(&_used, bytes);
 695 }
 696 
 697 void ShenandoahHeap::decrease_used(size_t bytes) {
 698   assert(used() >= bytes, "never decrease heap size by more than we've left");
 699   Atomic::sub(&_used, bytes, memory_order_relaxed);
 700 }
 701 
 702 void ShenandoahHeap::increase_allocated(size_t bytes) {
 703   Atomic::add(&_bytes_allocated_since_gc_start, bytes, memory_order_relaxed);
 704 }
 705 
 706 void ShenandoahHeap::notify_mutator_alloc_words(size_t words, bool waste) {
 707   size_t bytes = words * HeapWordSize;
 708   if (!waste) {
 709     increase_used(bytes);
 710   }
 711   increase_allocated(bytes);
 712   if (ShenandoahPacing) {
 713     control_thread()->pacing_notify_alloc(words);
 714     if (waste) {
 715       pacer()->claim_for_alloc(words, true);
 716     }
 717   }
 718 }
 719 
 720 size_t ShenandoahHeap::capacity() const {
 721   return committed();
 722 }
 723 
 724 size_t ShenandoahHeap::max_capacity() const {
 725   return _num_regions * ShenandoahHeapRegion::region_size_bytes();
 726 }
 727 
 728 size_t ShenandoahHeap::soft_max_capacity() const {
 729   size_t v = Atomic::load(&_soft_max_size);
 730   assert(min_capacity() <= v && v <= max_capacity(),
 731          "Should be in bounds: " SIZE_FORMAT " <= " SIZE_FORMAT " <= " SIZE_FORMAT,
 732          min_capacity(), v, max_capacity());
 733   return v;
 734 }
 735 
 736 void ShenandoahHeap::set_soft_max_capacity(size_t v) {
 737   assert(min_capacity() <= v && v <= max_capacity(),
 738          "Should be in bounds: " SIZE_FORMAT " <= " SIZE_FORMAT " <= " SIZE_FORMAT,
 739          min_capacity(), v, max_capacity());
 740   Atomic::store(&_soft_max_size, v);
 741 }
 742 
 743 size_t ShenandoahHeap::min_capacity() const {
 744   return _minimum_size;
 745 }
 746 
 747 size_t ShenandoahHeap::initial_capacity() const {
 748   return _initial_size;
 749 }
 750 
 751 bool ShenandoahHeap::is_in(const void* p) const {
 752   HeapWord* heap_base = (HeapWord*) base();
 753   HeapWord* last_region_end = heap_base + ShenandoahHeapRegion::region_size_words() * num_regions();
 754   return p >= heap_base && p < last_region_end;
 755 }
 756 
 757 void ShenandoahHeap::maybe_uncommit(double shrink_before, size_t shrink_until) {
 758   assert (ShenandoahUncommit, "should be enabled");
 759 
 760   // Determine if there is work to do. This avoids taking heap lock if there is
 761   // no work available, avoids spamming logs with superfluous logging messages,
 762   // and minimises the amount of work while locks are taken.
 763 
 764   if (committed() <= shrink_until) return;
 765 
 766   bool has_work = false;
 767   for (size_t i = 0; i < num_regions(); i++) {
 768     ShenandoahHeapRegion* r = get_region(i);
 769     if (r->is_empty_committed() && (r->empty_time() < shrink_before)) {
 770       has_work = true;
 771       break;
 772     }
 773   }
 774 
 775   if (has_work) {
 776     static const char* msg = "Concurrent uncommit";
 777     ShenandoahConcurrentPhase gcPhase(msg, ShenandoahPhaseTimings::conc_uncommit, true /* log_heap_usage */);
 778     EventMark em("%s", msg);
 779 
 780     op_uncommit(shrink_before, shrink_until);
 781   }
 782 }
 783 
 784 void ShenandoahHeap::op_uncommit(double shrink_before, size_t shrink_until) {
 785   assert (ShenandoahUncommit, "should be enabled");
 786 
 787   // Application allocates from the beginning of the heap, and GC allocates at
 788   // the end of it. It is more efficient to uncommit from the end, so that applications
 789   // could enjoy the near committed regions. GC allocations are much less frequent,
 790   // and therefore can accept the committing costs.
 791 
 792   size_t count = 0;
 793   for (size_t i = num_regions(); i > 0; i--) { // care about size_t underflow
 794     ShenandoahHeapRegion* r = get_region(i - 1);
 795     if (r->is_empty_committed() && (r->empty_time() < shrink_before)) {
 796       ShenandoahHeapLocker locker(lock());
 797       if (r->is_empty_committed()) {
 798         if (committed() < shrink_until + ShenandoahHeapRegion::region_size_bytes()) {
 799           break;
 800         }
 801 
 802         r->make_uncommitted();
 803         count++;
 804       }
 805     }
 806     SpinPause(); // allow allocators to take the lock
 807   }
 808 
 809   if (count > 0) {
 810     notify_heap_changed();
 811   }
 812 }
 813 
 814 bool ShenandoahHeap::check_soft_max_changed() {
 815   size_t new_soft_max = Atomic::load(&SoftMaxHeapSize);
 816   size_t old_soft_max = soft_max_capacity();
 817   if (new_soft_max != old_soft_max) {
 818     new_soft_max = MAX2(min_capacity(), new_soft_max);
 819     new_soft_max = MIN2(max_capacity(), new_soft_max);
 820     if (new_soft_max != old_soft_max) {
 821       log_info(gc)("Soft Max Heap Size: " SIZE_FORMAT "%s -> " SIZE_FORMAT "%s",
 822                    byte_size_in_proper_unit(old_soft_max), proper_unit_for_byte_size(old_soft_max),
 823                    byte_size_in_proper_unit(new_soft_max), proper_unit_for_byte_size(new_soft_max)
 824       );
 825       set_soft_max_capacity(new_soft_max);
 826       return true;
 827     }
 828   }
 829   return false;
 830 }
 831 
 832 void ShenandoahHeap::notify_heap_changed() {
 833   // Update monitoring counters when we took a new region. This amortizes the
 834   // update costs on slow path.
 835   monitoring_support()->notify_heap_changed();
 836 
 837   // This is called from allocation path, and thus should be fast.
 838   _heap_changed.try_set();
 839 }
 840 
 841 void ShenandoahHeap::set_forced_counters_update(bool value) {
 842   monitoring_support()->set_forced_counters_update(value);
 843 }
 844 
 845 void ShenandoahHeap::handle_force_counters_update() {
 846   monitoring_support()->handle_force_counters_update();
 847 }
 848 
 849 HeapWord* ShenandoahHeap::allocate_from_gclab_slow(Thread* thread, size_t size) {
 850   // New object should fit the GCLAB size
 851   size_t min_size = MAX2(size, PLAB::min_size());
 852 
 853   // Figure out size of new GCLAB, looking back at heuristics. Expand aggressively.
 854   size_t new_size = ShenandoahThreadLocalData::gclab_size(thread) * 2;
 855   new_size = MIN2(new_size, PLAB::max_size());
 856   new_size = MAX2(new_size, PLAB::min_size());
 857 
 858   // Record new heuristic value even if we take any shortcut. This captures
 859   // the case when moderately-sized objects always take a shortcut. At some point,
 860   // heuristics should catch up with them.
 861   ShenandoahThreadLocalData::set_gclab_size(thread, new_size);
 862 
 863   if (new_size < size) {
 864     // New size still does not fit the object. Fall back to shared allocation.
 865     // This avoids retiring perfectly good GCLABs, when we encounter a large object.
 866     return nullptr;
 867   }
 868 
 869   // Retire current GCLAB, and allocate a new one.
 870   PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
 871   gclab->retire();
 872 
 873   size_t actual_size = 0;
 874   HeapWord* gclab_buf = allocate_new_gclab(min_size, new_size, &actual_size);
 875   if (gclab_buf == nullptr) {
 876     return nullptr;
 877   }
 878 
 879   assert (size <= actual_size, "allocation should fit");
 880 
 881   // ...and clear or zap just allocated TLAB, if needed.
 882   if (ZeroTLAB) {
 883     Copy::zero_to_words(gclab_buf, actual_size);
 884   } else if (ZapTLAB) {
 885     // Skip mangling the space corresponding to the object header to
 886     // ensure that the returned space is not considered parsable by
 887     // any concurrent GC thread.
 888     size_t hdr_size = oopDesc::header_size();
 889     Copy::fill_to_words(gclab_buf + hdr_size, actual_size - hdr_size, badHeapWordVal);
 890   }
 891   gclab->set_buf(gclab_buf, actual_size);
 892   return gclab->allocate(size);
 893 }
 894 
 895 HeapWord* ShenandoahHeap::allocate_new_tlab(size_t min_size,
 896                                             size_t requested_size,
 897                                             size_t* actual_size) {
 898   ShenandoahAllocRequest req = ShenandoahAllocRequest::for_tlab(min_size, requested_size);
 899   HeapWord* res = allocate_memory(req);
 900   if (res != nullptr) {
 901     *actual_size = req.actual_size();
 902   } else {
 903     *actual_size = 0;
 904   }
 905   return res;
 906 }
 907 
 908 HeapWord* ShenandoahHeap::allocate_new_gclab(size_t min_size,
 909                                              size_t word_size,
 910                                              size_t* actual_size) {
 911   ShenandoahAllocRequest req = ShenandoahAllocRequest::for_gclab(min_size, word_size);
 912   HeapWord* res = allocate_memory(req);
 913   if (res != nullptr) {
 914     *actual_size = req.actual_size();
 915   } else {
 916     *actual_size = 0;
 917   }
 918   return res;
 919 }
 920 
 921 HeapWord* ShenandoahHeap::allocate_memory(ShenandoahAllocRequest& req) {
 922   intptr_t pacer_epoch = 0;
 923   bool in_new_region = false;
 924   HeapWord* result = nullptr;
 925 
 926   if (req.is_mutator_alloc()) {
 927     if (ShenandoahPacing) {
 928       pacer()->pace_for_alloc(req.size());
 929       pacer_epoch = pacer()->epoch();
 930     }
 931 
 932     if (!ShenandoahAllocFailureALot || !should_inject_alloc_failure()) {
 933       result = allocate_memory_under_lock(req, in_new_region);
 934     }
 935 
 936     // Check that gc overhead is not exceeded.
 937     //
 938     // Shenandoah will grind along for quite a while allocating one
 939     // object at a time using shared (non-tlab) allocations. This check
 940     // is testing that the GC overhead limit has not been exceeded.
 941     // This will notify the collector to start a cycle, but will raise
 942     // an OOME to the mutator if the last Full GCs have not made progress.
 943     if (result == nullptr && !req.is_lab_alloc() && get_gc_no_progress_count() > ShenandoahNoProgressThreshold) {
 944       control_thread()->handle_alloc_failure(req, false);
 945       return nullptr;
 946     }
 947 
 948     // Block until control thread reacted, then retry allocation.
 949     //
 950     // It might happen that one of the threads requesting allocation would unblock
 951     // way later after GC happened, only to fail the second allocation, because
 952     // other threads have already depleted the free storage. In this case, a better
 953     // strategy is to try again, as long as GC makes progress (or until at least
 954     // one full GC has completed).
 955     size_t original_count = shenandoah_policy()->full_gc_count();
 956     while (result == nullptr
 957         && (get_gc_no_progress_count() == 0 || original_count == shenandoah_policy()->full_gc_count())) {
 958       control_thread()->handle_alloc_failure(req);
 959       result = allocate_memory_under_lock(req, in_new_region);
 960     }
 961 
 962     if (log_is_enabled(Debug, gc, alloc)) {
 963       ResourceMark rm;
 964       log_debug(gc, alloc)("Thread: %s, Result: " PTR_FORMAT ", Request: %s, Size: " SIZE_FORMAT ", Original: " SIZE_FORMAT ", Latest: " SIZE_FORMAT,
 965                            Thread::current()->name(), p2i(result), req.type_string(), req.size(), original_count, get_gc_no_progress_count());
 966     }
 967   } else {
 968     assert(req.is_gc_alloc(), "Can only accept GC allocs here");
 969     result = allocate_memory_under_lock(req, in_new_region);
 970     // Do not call handle_alloc_failure() here, because we cannot block.
 971     // The allocation failure would be handled by the LRB slowpath with handle_alloc_failure_evac().
 972   }
 973 
 974   if (in_new_region) {
 975     notify_heap_changed();
 976   }
 977 
 978   if (result != nullptr) {
 979     size_t requested = req.size();
 980     size_t actual = req.actual_size();
 981 
 982     assert (req.is_lab_alloc() || (requested == actual),
 983             "Only LAB allocations are elastic: %s, requested = " SIZE_FORMAT ", actual = " SIZE_FORMAT,
 984             ShenandoahAllocRequest::alloc_type_to_string(req.type()), requested, actual);
 985 
 986     if (req.is_mutator_alloc()) {
 987       notify_mutator_alloc_words(actual, false);
 988 
 989       // If we requested more than we were granted, give the rest back to pacer.
 990       // This only matters if we are in the same pacing epoch: do not try to unpace
 991       // over the budget for the other phase.
 992       if (ShenandoahPacing && (pacer_epoch > 0) && (requested > actual)) {
 993         pacer()->unpace_for_alloc(pacer_epoch, requested - actual);
 994       }
 995     } else {
 996       increase_used(actual*HeapWordSize);
 997     }
 998   }
 999 
1000   return result;
1001 }
1002 
1003 HeapWord* ShenandoahHeap::allocate_memory_under_lock(ShenandoahAllocRequest& req, bool& in_new_region) {
1004   // If we are dealing with mutator allocation, then we may need to block for safepoint.
1005   // We cannot block for safepoint for GC allocations, because there is a high chance
1006   // we are already running at safepoint or from stack watermark machinery, and we cannot
1007   // block again.
1008   ShenandoahHeapLocker locker(lock(), req.is_mutator_alloc());
1009   return _free_set->allocate(req, in_new_region);
1010 }
1011 
1012 HeapWord* ShenandoahHeap::mem_allocate(size_t size,
1013                                         bool*  gc_overhead_limit_was_exceeded) {
1014   ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared(size);
1015   return allocate_memory(req);
1016 }
1017 
1018 MetaWord* ShenandoahHeap::satisfy_failed_metadata_allocation(ClassLoaderData* loader_data,
1019                                                              size_t size,
1020                                                              Metaspace::MetadataType mdtype) {
1021   MetaWord* result;
1022 
1023   // Inform metaspace OOM to GC heuristics if class unloading is possible.
1024   if (heuristics()->can_unload_classes()) {
1025     ShenandoahHeuristics* h = heuristics();
1026     h->record_metaspace_oom();
1027   }
1028 
1029   // Expand and retry allocation
1030   result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype);
1031   if (result != nullptr) {
1032     return result;
1033   }
1034 
1035   // Start full GC
1036   collect(GCCause::_metadata_GC_clear_soft_refs);
1037 
1038   // Retry allocation
1039   result = loader_data->metaspace_non_null()->allocate(size, mdtype);
1040   if (result != nullptr) {
1041     return result;
1042   }
1043 
1044   // Expand and retry allocation
1045   result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype);
1046   if (result != nullptr) {
1047     return result;
1048   }
1049 
1050   // Out of memory
1051   return nullptr;
1052 }
1053 
1054 class ShenandoahConcurrentEvacuateRegionObjectClosure : public ObjectClosure {
1055 private:
1056   ShenandoahHeap* const _heap;
1057   Thread* const _thread;
1058 public:
1059   ShenandoahConcurrentEvacuateRegionObjectClosure(ShenandoahHeap* heap) :
1060     _heap(heap), _thread(Thread::current()) {}
1061 
1062   void do_object(oop p) {
1063     shenandoah_assert_marked(nullptr, p);
1064     if (!p->is_forwarded()) {
1065       _heap->evacuate_object(p, _thread);
1066     }
1067   }
1068 };
1069 
1070 class ShenandoahEvacuationTask : public WorkerTask {
1071 private:
1072   ShenandoahHeap* const _sh;
1073   ShenandoahCollectionSet* const _cs;
1074   bool _concurrent;
1075 public:
1076   ShenandoahEvacuationTask(ShenandoahHeap* sh,
1077                            ShenandoahCollectionSet* cs,
1078                            bool concurrent) :
1079     WorkerTask("Shenandoah Evacuation"),
1080     _sh(sh),
1081     _cs(cs),
1082     _concurrent(concurrent)
1083   {}
1084 
1085   void work(uint worker_id) {
1086     if (_concurrent) {
1087       ShenandoahConcurrentWorkerSession worker_session(worker_id);
1088       ShenandoahSuspendibleThreadSetJoiner stsj;
1089       ShenandoahEvacOOMScope oom_evac_scope;
1090       do_work();
1091     } else {
1092       ShenandoahParallelWorkerSession worker_session(worker_id);
1093       ShenandoahEvacOOMScope oom_evac_scope;
1094       do_work();
1095     }
1096   }
1097 
1098 private:
1099   void do_work() {
1100     ShenandoahConcurrentEvacuateRegionObjectClosure cl(_sh);
1101     ShenandoahHeapRegion* r;
1102     while ((r =_cs->claim_next()) != nullptr) {
1103       assert(r->has_live(), "Region " SIZE_FORMAT " should have been reclaimed early", r->index());
1104       _sh->marked_object_iterate(r, &cl);
1105 
1106       if (ShenandoahPacing) {
1107         _sh->pacer()->report_evac(r->used() >> LogHeapWordSize);
1108       }
1109 
1110       if (_sh->check_cancelled_gc_and_yield(_concurrent)) {
1111         break;
1112       }
1113     }
1114   }
1115 };
1116 
1117 void ShenandoahHeap::evacuate_collection_set(bool concurrent) {
1118   ShenandoahEvacuationTask task(this, _collection_set, concurrent);
1119   workers()->run_task(&task);
1120 }
1121 
1122 void ShenandoahHeap::trash_cset_regions() {
1123   ShenandoahHeapLocker locker(lock());
1124 
1125   ShenandoahCollectionSet* set = collection_set();
1126   ShenandoahHeapRegion* r;
1127   set->clear_current_index();
1128   while ((r = set->next()) != nullptr) {
1129     r->make_trash();
1130   }
1131   collection_set()->clear();
1132 }
1133 
1134 void ShenandoahHeap::print_heap_regions_on(outputStream* st) const {
1135   st->print_cr("Heap Regions:");
1136   st->print_cr("Region state: EU=empty-uncommitted, EC=empty-committed, R=regular, H=humongous start, HP=pinned humongous start");
1137   st->print_cr("              HC=humongous continuation, CS=collection set, TR=trash, P=pinned, CSP=pinned collection set");
1138   st->print_cr("BTE=bottom/top/end, TAMS=top-at-mark-start");
1139   st->print_cr("UWM=update watermark, U=used");
1140   st->print_cr("T=TLAB allocs, G=GCLAB allocs");
1141   st->print_cr("S=shared allocs, L=live data");
1142   st->print_cr("CP=critical pins");
1143 
1144   for (size_t i = 0; i < num_regions(); i++) {
1145     get_region(i)->print_on(st);
1146   }
1147 }
1148 
1149 void ShenandoahHeap::trash_humongous_region_at(ShenandoahHeapRegion* start) {
1150   assert(start->is_humongous_start(), "reclaim regions starting with the first one");
1151 
1152   oop humongous_obj = cast_to_oop(start->bottom());
1153   size_t size = humongous_obj->size();
1154   size_t required_regions = ShenandoahHeapRegion::required_regions(size * HeapWordSize);
1155   size_t index = start->index() + required_regions - 1;
1156 
1157   assert(!start->has_live(), "liveness must be zero");
1158 
1159   for(size_t i = 0; i < required_regions; i++) {
1160     // Reclaim from tail. Otherwise, assertion fails when printing region to trace log,
1161     // as it expects that every region belongs to a humongous region starting with a humongous start region.
1162     ShenandoahHeapRegion* region = get_region(index --);
1163 
1164     assert(region->is_humongous(), "expect correct humongous start or continuation");
1165     assert(!region->is_cset(), "Humongous region should not be in collection set");
1166 
1167     region->make_trash_immediate();
1168   }
1169 }
1170 
1171 class ShenandoahCheckCleanGCLABClosure : public ThreadClosure {
1172 public:
1173   ShenandoahCheckCleanGCLABClosure() {}
1174   void do_thread(Thread* thread) {
1175     PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
1176     assert(gclab != nullptr, "GCLAB should be initialized for %s", thread->name());
1177     assert(gclab->words_remaining() == 0, "GCLAB should not need retirement");
1178   }
1179 };
1180 
1181 class ShenandoahRetireGCLABClosure : public ThreadClosure {
1182 private:
1183   bool const _resize;
1184 public:
1185   ShenandoahRetireGCLABClosure(bool resize) : _resize(resize) {}
1186   void do_thread(Thread* thread) {
1187     PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
1188     assert(gclab != nullptr, "GCLAB should be initialized for %s", thread->name());
1189     gclab->retire();
1190     if (_resize && ShenandoahThreadLocalData::gclab_size(thread) > 0) {
1191       ShenandoahThreadLocalData::set_gclab_size(thread, 0);
1192     }
1193   }
1194 };
1195 
1196 void ShenandoahHeap::labs_make_parsable() {
1197   assert(UseTLAB, "Only call with UseTLAB");
1198 
1199   ShenandoahRetireGCLABClosure cl(false);
1200 
1201   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1202     ThreadLocalAllocBuffer& tlab = t->tlab();
1203     tlab.make_parsable();
1204     cl.do_thread(t);
1205   }
1206 
1207   workers()->threads_do(&cl);
1208 }
1209 
1210 void ShenandoahHeap::tlabs_retire(bool resize) {
1211   assert(UseTLAB, "Only call with UseTLAB");
1212   assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled");
1213 
1214   ThreadLocalAllocStats stats;
1215 
1216   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1217     ThreadLocalAllocBuffer& tlab = t->tlab();
1218     tlab.retire(&stats);
1219     if (resize) {
1220       tlab.resize();
1221     }
1222   }
1223 
1224   stats.publish();
1225 
1226 #ifdef ASSERT
1227   ShenandoahCheckCleanGCLABClosure cl;
1228   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1229     cl.do_thread(t);
1230   }
1231   workers()->threads_do(&cl);
1232 #endif
1233 }
1234 
1235 void ShenandoahHeap::gclabs_retire(bool resize) {
1236   assert(UseTLAB, "Only call with UseTLAB");
1237   assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled");
1238 
1239   ShenandoahRetireGCLABClosure cl(resize);
1240   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1241     cl.do_thread(t);
1242   }
1243   workers()->threads_do(&cl);
1244 
1245   if (safepoint_workers() != nullptr) {
1246     safepoint_workers()->threads_do(&cl);
1247   }
1248 }
1249 
1250 // Returns size in bytes
1251 size_t ShenandoahHeap::unsafe_max_tlab_alloc(Thread *thread) const {
1252   // Return the max allowed size, and let the allocation path
1253   // figure out the safe size for current allocation.
1254   return ShenandoahHeapRegion::max_tlab_size_bytes();
1255 }
1256 
1257 size_t ShenandoahHeap::max_tlab_size() const {
1258   // Returns size in words
1259   return ShenandoahHeapRegion::max_tlab_size_words();
1260 }
1261 
1262 void ShenandoahHeap::collect(GCCause::Cause cause) {
1263   control_thread()->request_gc(cause);
1264 }
1265 
1266 void ShenandoahHeap::do_full_collection(bool clear_all_soft_refs) {
1267   //assert(false, "Shouldn't need to do full collections");
1268 }
1269 
1270 HeapWord* ShenandoahHeap::block_start(const void* addr) const {
1271   ShenandoahHeapRegion* r = heap_region_containing(addr);
1272   if (r != nullptr) {
1273     return r->block_start(addr);
1274   }
1275   return nullptr;
1276 }
1277 
1278 bool ShenandoahHeap::block_is_obj(const HeapWord* addr) const {
1279   ShenandoahHeapRegion* r = heap_region_containing(addr);
1280   return r->block_is_obj(addr);
1281 }
1282 
1283 bool ShenandoahHeap::print_location(outputStream* st, void* addr) const {
1284   return BlockLocationPrinter<ShenandoahHeap>::print_location(st, addr);
1285 }
1286 
1287 void ShenandoahHeap::prepare_for_verify() {
1288   if (SafepointSynchronize::is_at_safepoint() && UseTLAB) {
1289     labs_make_parsable();
1290   }
1291 }
1292 
1293 void ShenandoahHeap::gc_threads_do(ThreadClosure* tcl) const {
1294   tcl->do_thread(_control_thread);
1295   workers()->threads_do(tcl);
1296   if (_safepoint_workers != nullptr) {
1297     _safepoint_workers->threads_do(tcl);
1298   }
1299 }
1300 
1301 void ShenandoahHeap::print_tracing_info() const {
1302   LogTarget(Info, gc, stats) lt;
1303   if (lt.is_enabled()) {
1304     ResourceMark rm;
1305     LogStream ls(lt);
1306 
1307     phase_timings()->print_global_on(&ls);
1308 
1309     ls.cr();
1310     ls.cr();
1311 
1312     shenandoah_policy()->print_gc_stats(&ls);
1313 
1314     ls.cr();
1315     ls.cr();
1316   }
1317 }
1318 
1319 void ShenandoahHeap::verify(VerifyOption vo) {
1320   if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) {
1321     if (ShenandoahVerify) {
1322       verifier()->verify_generic(vo);
1323     } else {
1324       // TODO: Consider allocating verification bitmaps on demand,
1325       // and turn this on unconditionally.
1326     }
1327   }
1328 }
1329 size_t ShenandoahHeap::tlab_capacity(Thread *thr) const {
1330   return _free_set->capacity();
1331 }
1332 
1333 class ObjectIterateScanRootClosure : public BasicOopIterateClosure {
1334 private:
1335   MarkBitMap* _bitmap;
1336   ShenandoahScanObjectStack* _oop_stack;
1337   ShenandoahHeap* const _heap;
1338   ShenandoahMarkingContext* const _marking_context;
1339 
1340   template <class T>
1341   void do_oop_work(T* p) {
1342     T o = RawAccess<>::oop_load(p);
1343     if (!CompressedOops::is_null(o)) {
1344       oop obj = CompressedOops::decode_not_null(o);
1345       if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) {
1346         // There may be dead oops in weak roots in concurrent root phase, do not touch them.
1347         return;
1348       }
1349       obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj);
1350 
1351       assert(oopDesc::is_oop(obj), "must be a valid oop");
1352       if (!_bitmap->is_marked(obj)) {
1353         _bitmap->mark(obj);
1354         _oop_stack->push(obj);
1355       }
1356     }
1357   }
1358 public:
1359   ObjectIterateScanRootClosure(MarkBitMap* bitmap, ShenandoahScanObjectStack* oop_stack) :
1360     _bitmap(bitmap), _oop_stack(oop_stack), _heap(ShenandoahHeap::heap()),
1361     _marking_context(_heap->marking_context()) {}
1362   void do_oop(oop* p)       { do_oop_work(p); }
1363   void do_oop(narrowOop* p) { do_oop_work(p); }
1364 };
1365 
1366 /*
1367  * This is public API, used in preparation of object_iterate().
1368  * Since we don't do linear scan of heap in object_iterate() (see comment below), we don't
1369  * need to make the heap parsable. For Shenandoah-internal linear heap scans that we can
1370  * control, we call SH::tlabs_retire, SH::gclabs_retire.
1371  */
1372 void ShenandoahHeap::ensure_parsability(bool retire_tlabs) {
1373   // No-op.
1374 }
1375 
1376 /*
1377  * Iterates objects in the heap. This is public API, used for, e.g., heap dumping.
1378  *
1379  * We cannot safely iterate objects by doing a linear scan at random points in time. Linear
1380  * scanning needs to deal with dead objects, which may have dead Klass* pointers (e.g.
1381  * calling oopDesc::size() would crash) or dangling reference fields (crashes) etc. Linear
1382  * scanning therefore depends on having a valid marking bitmap to support it. However, we only
1383  * have a valid marking bitmap after successful marking. In particular, we *don't* have a valid
1384  * marking bitmap during marking, after aborted marking or during/after cleanup (when we just
1385  * wiped the bitmap in preparation for next marking).
1386  *
1387  * For all those reasons, we implement object iteration as a single marking traversal, reporting
1388  * objects as we mark+traverse through the heap, starting from GC roots. JVMTI IterateThroughHeap
1389  * is allowed to report dead objects, but is not required to do so.
1390  */
1391 void ShenandoahHeap::object_iterate(ObjectClosure* cl) {
1392   // Reset bitmap
1393   if (!prepare_aux_bitmap_for_iteration())
1394     return;
1395 
1396   ShenandoahScanObjectStack oop_stack;
1397   ObjectIterateScanRootClosure oops(&_aux_bit_map, &oop_stack);
1398   // Seed the stack with root scan
1399   scan_roots_for_iteration(&oop_stack, &oops);
1400 
1401   // Work through the oop stack to traverse heap
1402   while (! oop_stack.is_empty()) {
1403     oop obj = oop_stack.pop();
1404     assert(oopDesc::is_oop(obj), "must be a valid oop");
1405     cl->do_object(obj);
1406     obj->oop_iterate(&oops);
1407   }
1408 
1409   assert(oop_stack.is_empty(), "should be empty");
1410   // Reclaim bitmap
1411   reclaim_aux_bitmap_for_iteration();
1412 }
1413 
1414 bool ShenandoahHeap::prepare_aux_bitmap_for_iteration() {
1415   assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints");
1416 
1417   if (!_aux_bitmap_region_special && !os::commit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size(), false)) {
1418     log_warning(gc)("Could not commit native memory for auxiliary marking bitmap for heap iteration");
1419     return false;
1420   }
1421   // Reset bitmap
1422   _aux_bit_map.clear();
1423   return true;
1424 }
1425 
1426 void ShenandoahHeap::scan_roots_for_iteration(ShenandoahScanObjectStack* oop_stack, ObjectIterateScanRootClosure* oops) {
1427   // Process GC roots according to current GC cycle
1428   // This populates the work stack with initial objects
1429   // It is important to relinquish the associated locks before diving
1430   // into heap dumper
1431   uint n_workers = safepoint_workers() != nullptr ? safepoint_workers()->active_workers() : 1;
1432   ShenandoahHeapIterationRootScanner rp(n_workers);
1433   rp.roots_do(oops);
1434 }
1435 
1436 void ShenandoahHeap::reclaim_aux_bitmap_for_iteration() {
1437   if (!_aux_bitmap_region_special && !os::uncommit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size())) {
1438     log_warning(gc)("Could not uncommit native memory for auxiliary marking bitmap for heap iteration");
1439   }
1440 }
1441 
1442 // Closure for parallelly iterate objects
1443 class ShenandoahObjectIterateParScanClosure : public BasicOopIterateClosure {
1444 private:
1445   MarkBitMap* _bitmap;
1446   ShenandoahObjToScanQueue* _queue;
1447   ShenandoahHeap* const _heap;
1448   ShenandoahMarkingContext* const _marking_context;
1449 
1450   template <class T>
1451   void do_oop_work(T* p) {
1452     T o = RawAccess<>::oop_load(p);
1453     if (!CompressedOops::is_null(o)) {
1454       oop obj = CompressedOops::decode_not_null(o);
1455       if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) {
1456         // There may be dead oops in weak roots in concurrent root phase, do not touch them.
1457         return;
1458       }
1459       obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj);
1460 
1461       assert(oopDesc::is_oop(obj), "Must be a valid oop");
1462       if (_bitmap->par_mark(obj)) {
1463         _queue->push(ShenandoahMarkTask(obj));
1464       }
1465     }
1466   }
1467 public:
1468   ShenandoahObjectIterateParScanClosure(MarkBitMap* bitmap, ShenandoahObjToScanQueue* q) :
1469     _bitmap(bitmap), _queue(q), _heap(ShenandoahHeap::heap()),
1470     _marking_context(_heap->marking_context()) {}
1471   void do_oop(oop* p)       { do_oop_work(p); }
1472   void do_oop(narrowOop* p) { do_oop_work(p); }
1473 };
1474 
1475 // Object iterator for parallel heap iteraion.
1476 // The root scanning phase happenes in construction as a preparation of
1477 // parallel marking queues.
1478 // Every worker processes it's own marking queue. work-stealing is used
1479 // to balance workload.
1480 class ShenandoahParallelObjectIterator : public ParallelObjectIteratorImpl {
1481 private:
1482   uint                         _num_workers;
1483   bool                         _init_ready;
1484   MarkBitMap*                  _aux_bit_map;
1485   ShenandoahHeap*              _heap;
1486   ShenandoahScanObjectStack    _roots_stack; // global roots stack
1487   ShenandoahObjToScanQueueSet* _task_queues;
1488 public:
1489   ShenandoahParallelObjectIterator(uint num_workers, MarkBitMap* bitmap) :
1490         _num_workers(num_workers),
1491         _init_ready(false),
1492         _aux_bit_map(bitmap),
1493         _heap(ShenandoahHeap::heap()) {
1494     // Initialize bitmap
1495     _init_ready = _heap->prepare_aux_bitmap_for_iteration();
1496     if (!_init_ready) {
1497       return;
1498     }
1499 
1500     ObjectIterateScanRootClosure oops(_aux_bit_map, &_roots_stack);
1501     _heap->scan_roots_for_iteration(&_roots_stack, &oops);
1502 
1503     _init_ready = prepare_worker_queues();
1504   }
1505 
1506   ~ShenandoahParallelObjectIterator() {
1507     // Reclaim bitmap
1508     _heap->reclaim_aux_bitmap_for_iteration();
1509     // Reclaim queue for workers
1510     if (_task_queues!= nullptr) {
1511       for (uint i = 0; i < _num_workers; ++i) {
1512         ShenandoahObjToScanQueue* q = _task_queues->queue(i);
1513         if (q != nullptr) {
1514           delete q;
1515           _task_queues->register_queue(i, nullptr);
1516         }
1517       }
1518       delete _task_queues;
1519       _task_queues = nullptr;
1520     }
1521   }
1522 
1523   virtual void object_iterate(ObjectClosure* cl, uint worker_id) {
1524     if (_init_ready) {
1525       object_iterate_parallel(cl, worker_id, _task_queues);
1526     }
1527   }
1528 
1529 private:
1530   // Divide global root_stack into worker queues
1531   bool prepare_worker_queues() {
1532     _task_queues = new ShenandoahObjToScanQueueSet((int) _num_workers);
1533     // Initialize queues for every workers
1534     for (uint i = 0; i < _num_workers; ++i) {
1535       ShenandoahObjToScanQueue* task_queue = new ShenandoahObjToScanQueue();
1536       _task_queues->register_queue(i, task_queue);
1537     }
1538     // Divide roots among the workers. Assume that object referencing distribution
1539     // is related with root kind, use round-robin to make every worker have same chance
1540     // to process every kind of roots
1541     size_t roots_num = _roots_stack.size();
1542     if (roots_num == 0) {
1543       // No work to do
1544       return false;
1545     }
1546 
1547     for (uint j = 0; j < roots_num; j++) {
1548       uint stack_id = j % _num_workers;
1549       oop obj = _roots_stack.pop();
1550       _task_queues->queue(stack_id)->push(ShenandoahMarkTask(obj));
1551     }
1552     return true;
1553   }
1554 
1555   void object_iterate_parallel(ObjectClosure* cl,
1556                                uint worker_id,
1557                                ShenandoahObjToScanQueueSet* queue_set) {
1558     assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints");
1559     assert(queue_set != nullptr, "task queue must not be null");
1560 
1561     ShenandoahObjToScanQueue* q = queue_set->queue(worker_id);
1562     assert(q != nullptr, "object iterate queue must not be null");
1563 
1564     ShenandoahMarkTask t;
1565     ShenandoahObjectIterateParScanClosure oops(_aux_bit_map, q);
1566 
1567     // Work through the queue to traverse heap.
1568     // Steal when there is no task in queue.
1569     while (q->pop(t) || queue_set->steal(worker_id, t)) {
1570       oop obj = t.obj();
1571       assert(oopDesc::is_oop(obj), "must be a valid oop");
1572       cl->do_object(obj);
1573       obj->oop_iterate(&oops);
1574     }
1575     assert(q->is_empty(), "should be empty");
1576   }
1577 };
1578 
1579 ParallelObjectIteratorImpl* ShenandoahHeap::parallel_object_iterator(uint workers) {
1580   return new ShenandoahParallelObjectIterator(workers, &_aux_bit_map);
1581 }
1582 
1583 // Keep alive an object that was loaded with AS_NO_KEEPALIVE.
1584 void ShenandoahHeap::keep_alive(oop obj) {
1585   if (is_concurrent_mark_in_progress() && (obj != nullptr)) {
1586     ShenandoahBarrierSet::barrier_set()->enqueue(obj);
1587   }
1588 }
1589 
1590 void ShenandoahHeap::heap_region_iterate(ShenandoahHeapRegionClosure* blk) const {
1591   for (size_t i = 0; i < num_regions(); i++) {
1592     ShenandoahHeapRegion* current = get_region(i);
1593     blk->heap_region_do(current);
1594   }
1595 }
1596 
1597 class ShenandoahParallelHeapRegionTask : public WorkerTask {
1598 private:
1599   ShenandoahHeap* const _heap;
1600   ShenandoahHeapRegionClosure* const _blk;
1601 
1602   shenandoah_padding(0);
1603   volatile size_t _index;
1604   shenandoah_padding(1);
1605 
1606 public:
1607   ShenandoahParallelHeapRegionTask(ShenandoahHeapRegionClosure* blk) :
1608           WorkerTask("Shenandoah Parallel Region Operation"),
1609           _heap(ShenandoahHeap::heap()), _blk(blk), _index(0) {}
1610 
1611   void work(uint worker_id) {
1612     ShenandoahParallelWorkerSession worker_session(worker_id);
1613     size_t stride = ShenandoahParallelRegionStride;
1614 
1615     size_t max = _heap->num_regions();
1616     while (Atomic::load(&_index) < max) {
1617       size_t cur = Atomic::fetch_then_add(&_index, stride, memory_order_relaxed);
1618       size_t start = cur;
1619       size_t end = MIN2(cur + stride, max);
1620       if (start >= max) break;
1621 
1622       for (size_t i = cur; i < end; i++) {
1623         ShenandoahHeapRegion* current = _heap->get_region(i);
1624         _blk->heap_region_do(current);
1625       }
1626     }
1627   }
1628 };
1629 
1630 void ShenandoahHeap::parallel_heap_region_iterate(ShenandoahHeapRegionClosure* blk) const {
1631   assert(blk->is_thread_safe(), "Only thread-safe closures here");
1632   if (num_regions() > ShenandoahParallelRegionStride) {
1633     ShenandoahParallelHeapRegionTask task(blk);
1634     workers()->run_task(&task);
1635   } else {
1636     heap_region_iterate(blk);
1637   }
1638 }
1639 
1640 class ShenandoahInitMarkUpdateRegionStateClosure : public ShenandoahHeapRegionClosure {
1641 private:
1642   ShenandoahMarkingContext* const _ctx;
1643 public:
1644   ShenandoahInitMarkUpdateRegionStateClosure() : _ctx(ShenandoahHeap::heap()->marking_context()) {}
1645 
1646   void heap_region_do(ShenandoahHeapRegion* r) {
1647     assert(!r->has_live(), "Region " SIZE_FORMAT " should have no live data", r->index());
1648     if (r->is_active()) {
1649       // Check if region needs updating its TAMS. We have updated it already during concurrent
1650       // reset, so it is very likely we don't need to do another write here.
1651       if (_ctx->top_at_mark_start(r) != r->top()) {
1652         _ctx->capture_top_at_mark_start(r);
1653       }
1654     } else {
1655       assert(_ctx->top_at_mark_start(r) == r->top(),
1656              "Region " SIZE_FORMAT " should already have correct TAMS", r->index());
1657     }
1658   }
1659 
1660   bool is_thread_safe() { return true; }
1661 };
1662 
1663 class ShenandoahRendezvousClosure : public HandshakeClosure {
1664 public:
1665   inline ShenandoahRendezvousClosure() : HandshakeClosure("ShenandoahRendezvous") {}
1666   inline void do_thread(Thread* thread) {}
1667 };
1668 
1669 void ShenandoahHeap::rendezvous_threads() {
1670   ShenandoahRendezvousClosure cl;
1671   Handshake::execute(&cl);
1672 }
1673 
1674 void ShenandoahHeap::recycle_trash() {
1675   free_set()->recycle_trash();
1676 }
1677 
1678 class ShenandoahResetUpdateRegionStateClosure : public ShenandoahHeapRegionClosure {
1679 private:
1680   ShenandoahMarkingContext* const _ctx;
1681 public:
1682   ShenandoahResetUpdateRegionStateClosure() : _ctx(ShenandoahHeap::heap()->marking_context()) {}
1683 
1684   void heap_region_do(ShenandoahHeapRegion* r) {
1685     if (r->is_active()) {
1686       // Reset live data and set TAMS optimistically. We would recheck these under the pause
1687       // anyway to capture any updates that happened since now.
1688       r->clear_live_data();
1689       _ctx->capture_top_at_mark_start(r);
1690     }
1691   }
1692 
1693   bool is_thread_safe() { return true; }
1694 };
1695 
1696 void ShenandoahHeap::prepare_gc() {
1697   reset_mark_bitmap();
1698 
1699   ShenandoahResetUpdateRegionStateClosure cl;
1700   parallel_heap_region_iterate(&cl);
1701 }
1702 
1703 class ShenandoahFinalMarkUpdateRegionStateClosure : public ShenandoahHeapRegionClosure {
1704 private:
1705   ShenandoahMarkingContext* const _ctx;
1706   ShenandoahHeapLock* const _lock;
1707 
1708 public:
1709   ShenandoahFinalMarkUpdateRegionStateClosure() :
1710     _ctx(ShenandoahHeap::heap()->complete_marking_context()), _lock(ShenandoahHeap::heap()->lock()) {}
1711 
1712   void heap_region_do(ShenandoahHeapRegion* r) {
1713     if (r->is_active()) {
1714       // All allocations past TAMS are implicitly live, adjust the region data.
1715       // Bitmaps/TAMS are swapped at this point, so we need to poll complete bitmap.
1716       HeapWord *tams = _ctx->top_at_mark_start(r);
1717       HeapWord *top = r->top();
1718       if (top > tams) {
1719         r->increase_live_data_alloc_words(pointer_delta(top, tams));
1720       }
1721 
1722       // We are about to select the collection set, make sure it knows about
1723       // current pinning status. Also, this allows trashing more regions that
1724       // now have their pinning status dropped.
1725       if (r->is_pinned()) {
1726         if (r->pin_count() == 0) {
1727           ShenandoahHeapLocker locker(_lock);
1728           r->make_unpinned();
1729         }
1730       } else {
1731         if (r->pin_count() > 0) {
1732           ShenandoahHeapLocker locker(_lock);
1733           r->make_pinned();
1734         }
1735       }
1736 
1737       // Remember limit for updating refs. It's guaranteed that we get no
1738       // from-space-refs written from here on.
1739       r->set_update_watermark_at_safepoint(r->top());
1740     } else {
1741       assert(!r->has_live(), "Region " SIZE_FORMAT " should have no live data", r->index());
1742       assert(_ctx->top_at_mark_start(r) == r->top(),
1743              "Region " SIZE_FORMAT " should have correct TAMS", r->index());
1744     }
1745   }
1746 
1747   bool is_thread_safe() { return true; }
1748 };
1749 
1750 void ShenandoahHeap::prepare_regions_and_collection_set(bool concurrent) {
1751   assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC");
1752   {
1753     ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::final_update_region_states :
1754                                          ShenandoahPhaseTimings::degen_gc_final_update_region_states);
1755     ShenandoahFinalMarkUpdateRegionStateClosure cl;
1756     parallel_heap_region_iterate(&cl);
1757 
1758     assert_pinned_region_status();
1759   }
1760 
1761   {
1762     ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::choose_cset :
1763                                          ShenandoahPhaseTimings::degen_gc_choose_cset);
1764     ShenandoahHeapLocker locker(lock());
1765     _collection_set->clear();
1766     heuristics()->choose_collection_set(_collection_set);
1767   }
1768 
1769   {
1770     ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::final_rebuild_freeset :
1771                                          ShenandoahPhaseTimings::degen_gc_final_rebuild_freeset);
1772     ShenandoahHeapLocker locker(lock());
1773     _free_set->rebuild();
1774   }
1775 }
1776 
1777 void ShenandoahHeap::do_class_unloading() {
1778   _unloader.unload();
1779 }
1780 
1781 void ShenandoahHeap::stw_weak_refs(bool full_gc) {
1782   // Weak refs processing
1783   ShenandoahPhaseTimings::Phase phase = full_gc ? ShenandoahPhaseTimings::full_gc_weakrefs
1784                                                 : ShenandoahPhaseTimings::degen_gc_weakrefs;
1785   ShenandoahTimingsTracker t(phase);
1786   ShenandoahGCWorkerPhase worker_phase(phase);
1787   ref_processor()->process_references(phase, workers(), false /* concurrent */);
1788 }
1789 
1790 void ShenandoahHeap::prepare_update_heap_references(bool concurrent) {
1791   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "must be at safepoint");
1792 
1793   // Evacuation is over, no GCLABs are needed anymore. GCLABs are under URWM, so we need to
1794   // make them parsable for update code to work correctly. Plus, we can compute new sizes
1795   // for future GCLABs here.
1796   if (UseTLAB) {
1797     ShenandoahGCPhase phase(concurrent ?
1798                             ShenandoahPhaseTimings::init_update_refs_manage_gclabs :
1799                             ShenandoahPhaseTimings::degen_gc_init_update_refs_manage_gclabs);
1800     gclabs_retire(ResizeTLAB);
1801   }
1802 
1803   _update_refs_iterator.reset();
1804 }
1805 
1806 void ShenandoahHeap::propagate_gc_state_to_java_threads() {
1807   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Must be at Shenandoah safepoint");
1808   if (_gc_state_changed) {
1809     _gc_state_changed = false;
1810     char state = gc_state();
1811     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1812       ShenandoahThreadLocalData::set_gc_state(t, state);
1813     }
1814   }
1815 }
1816 
1817 void ShenandoahHeap::set_gc_state(uint mask, bool value) {
1818   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Must be at Shenandoah safepoint");
1819   _gc_state.set_cond(mask, value);
1820   _gc_state_changed = true;
1821 }
1822 
1823 void ShenandoahHeap::set_concurrent_mark_in_progress(bool in_progress) {
1824   assert(!has_forwarded_objects(), "Not expected before/after mark phase");
1825   set_gc_state(MARKING, in_progress);
1826   ShenandoahBarrierSet::satb_mark_queue_set().set_active_all_threads(in_progress, !in_progress);
1827 }
1828 
1829 void ShenandoahHeap::set_evacuation_in_progress(bool in_progress) {
1830   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Only call this at safepoint");
1831   set_gc_state(EVACUATION, in_progress);
1832 }
1833 
1834 void ShenandoahHeap::set_concurrent_strong_root_in_progress(bool in_progress) {
1835   if (in_progress) {
1836     _concurrent_strong_root_in_progress.set();
1837   } else {
1838     _concurrent_strong_root_in_progress.unset();
1839   }
1840 }
1841 
1842 void ShenandoahHeap::set_concurrent_weak_root_in_progress(bool cond) {
1843   set_gc_state(WEAK_ROOTS, cond);
1844 }
1845 
1846 GCTracer* ShenandoahHeap::tracer() {
1847   return shenandoah_policy()->tracer();
1848 }
1849 
1850 size_t ShenandoahHeap::tlab_used(Thread* thread) const {
1851   return _free_set->used();
1852 }
1853 
1854 bool ShenandoahHeap::try_cancel_gc() {
1855   jbyte prev = _cancelled_gc.cmpxchg(CANCELLED, CANCELLABLE);
1856   return prev == CANCELLABLE;
1857 }
1858 
1859 void ShenandoahHeap::cancel_gc(GCCause::Cause cause) {
1860   if (try_cancel_gc()) {
1861     FormatBuffer<> msg("Cancelling GC: %s", GCCause::to_string(cause));
1862     log_info(gc)("%s", msg.buffer());
1863     Events::log(Thread::current(), "%s", msg.buffer());
1864   }
1865 }
1866 
1867 uint ShenandoahHeap::max_workers() {
1868   return _max_workers;
1869 }
1870 
1871 void ShenandoahHeap::stop() {
1872   // The shutdown sequence should be able to terminate when GC is running.
1873 
1874   // Step 0. Notify policy to disable event recording.
1875   _shenandoah_policy->record_shutdown();
1876 
1877   // Step 1. Notify control thread that we are in shutdown.
1878   // Note that we cannot do that with stop(), because stop() is blocking and waits for the actual shutdown.
1879   // Doing stop() here would wait for the normal GC cycle to complete, never falling through to cancel below.
1880   control_thread()->prepare_for_graceful_shutdown();
1881 
1882   // Step 2. Notify GC workers that we are cancelling GC.
1883   cancel_gc(GCCause::_shenandoah_stop_vm);
1884 
1885   // Step 3. Wait until GC worker exits normally.
1886   control_thread()->stop();
1887 }
1888 
1889 void ShenandoahHeap::stw_unload_classes(bool full_gc) {
1890   if (!unload_classes()) return;
1891   ClassUnloadingContext ctx(_workers->active_workers(),
1892                             true /* unregister_nmethods_during_purge */,
1893                             false /* lock_nmethod_free_separately */);
1894 
1895   // Unload classes and purge SystemDictionary.
1896   {
1897     ShenandoahPhaseTimings::Phase phase = full_gc ?
1898                                           ShenandoahPhaseTimings::full_gc_purge_class_unload :
1899                                           ShenandoahPhaseTimings::degen_gc_purge_class_unload;
1900     ShenandoahIsAliveSelector is_alive;
1901     {
1902       CodeCache::UnlinkingScope scope(is_alive.is_alive_closure());
1903       ShenandoahGCPhase gc_phase(phase);
1904       ShenandoahGCWorkerPhase worker_phase(phase);
1905       bool unloading_occurred = SystemDictionary::do_unloading(gc_timer());
1906 
1907       uint num_workers = _workers->active_workers();
1908       ShenandoahClassUnloadingTask unlink_task(phase, num_workers, unloading_occurred);
1909       _workers->run_task(&unlink_task);
1910     }
1911     // Release unloaded nmethods's memory.
1912     ClassUnloadingContext::context()->purge_and_free_nmethods();
1913   }
1914 
1915   {
1916     ShenandoahGCPhase phase(full_gc ?
1917                             ShenandoahPhaseTimings::full_gc_purge_cldg :
1918                             ShenandoahPhaseTimings::degen_gc_purge_cldg);
1919     ClassLoaderDataGraph::purge(true /* at_safepoint */);
1920   }
1921   // Resize and verify metaspace
1922   MetaspaceGC::compute_new_size();
1923   DEBUG_ONLY(MetaspaceUtils::verify();)
1924 }
1925 
1926 // Weak roots are either pre-evacuated (final mark) or updated (final updaterefs),
1927 // so they should not have forwarded oops.
1928 // However, we do need to "null" dead oops in the roots, if can not be done
1929 // in concurrent cycles.
1930 void ShenandoahHeap::stw_process_weak_roots(bool full_gc) {
1931   uint num_workers = _workers->active_workers();
1932   ShenandoahPhaseTimings::Phase timing_phase = full_gc ?
1933                                                ShenandoahPhaseTimings::full_gc_purge_weak_par :
1934                                                ShenandoahPhaseTimings::degen_gc_purge_weak_par;
1935   ShenandoahGCPhase phase(timing_phase);
1936   ShenandoahGCWorkerPhase worker_phase(timing_phase);
1937   // Cleanup weak roots
1938   if (has_forwarded_objects()) {
1939     ShenandoahForwardedIsAliveClosure is_alive;
1940     ShenandoahUpdateRefsClosure keep_alive;
1941     ShenandoahParallelWeakRootsCleaningTask<ShenandoahForwardedIsAliveClosure, ShenandoahUpdateRefsClosure>
1942       cleaning_task(timing_phase, &is_alive, &keep_alive, num_workers);
1943     _workers->run_task(&cleaning_task);
1944   } else {
1945     ShenandoahIsAliveClosure is_alive;
1946 #ifdef ASSERT
1947     ShenandoahAssertNotForwardedClosure verify_cl;
1948     ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, ShenandoahAssertNotForwardedClosure>
1949       cleaning_task(timing_phase, &is_alive, &verify_cl, num_workers);
1950 #else
1951     ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, DoNothingClosure>
1952       cleaning_task(timing_phase, &is_alive, &do_nothing_cl, num_workers);
1953 #endif
1954     _workers->run_task(&cleaning_task);
1955   }
1956 }
1957 
1958 void ShenandoahHeap::parallel_cleaning(bool full_gc) {
1959   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
1960   assert(is_stw_gc_in_progress(), "Only for Degenerated and Full GC");
1961   ShenandoahGCPhase phase(full_gc ?
1962                           ShenandoahPhaseTimings::full_gc_purge :
1963                           ShenandoahPhaseTimings::degen_gc_purge);
1964   stw_weak_refs(full_gc);
1965   stw_process_weak_roots(full_gc);
1966   stw_unload_classes(full_gc);
1967 }
1968 
1969 void ShenandoahHeap::set_has_forwarded_objects(bool cond) {
1970   set_gc_state(HAS_FORWARDED, cond);
1971 }
1972 
1973 void ShenandoahHeap::set_unload_classes(bool uc) {
1974   _unload_classes.set_cond(uc);
1975 }
1976 
1977 bool ShenandoahHeap::unload_classes() const {
1978   return _unload_classes.is_set();
1979 }
1980 
1981 address ShenandoahHeap::in_cset_fast_test_addr() {
1982   ShenandoahHeap* heap = ShenandoahHeap::heap();
1983   assert(heap->collection_set() != nullptr, "Sanity");
1984   return (address) heap->collection_set()->biased_map_address();
1985 }
1986 
1987 size_t ShenandoahHeap::bytes_allocated_since_gc_start() const {
1988   return Atomic::load(&_bytes_allocated_since_gc_start);
1989 }
1990 
1991 void ShenandoahHeap::reset_bytes_allocated_since_gc_start() {
1992   Atomic::store(&_bytes_allocated_since_gc_start, (size_t)0);
1993 }
1994 
1995 void ShenandoahHeap::set_degenerated_gc_in_progress(bool in_progress) {
1996   _degenerated_gc_in_progress.set_cond(in_progress);
1997 }
1998 
1999 void ShenandoahHeap::set_full_gc_in_progress(bool in_progress) {
2000   _full_gc_in_progress.set_cond(in_progress);
2001 }
2002 
2003 void ShenandoahHeap::set_full_gc_move_in_progress(bool in_progress) {
2004   assert (is_full_gc_in_progress(), "should be");
2005   _full_gc_move_in_progress.set_cond(in_progress);
2006 }
2007 
2008 void ShenandoahHeap::set_update_refs_in_progress(bool in_progress) {
2009   set_gc_state(UPDATEREFS, in_progress);
2010 }
2011 
2012 void ShenandoahHeap::register_nmethod(nmethod* nm) {
2013   ShenandoahCodeRoots::register_nmethod(nm);
2014 }
2015 
2016 void ShenandoahHeap::unregister_nmethod(nmethod* nm) {
2017   ShenandoahCodeRoots::unregister_nmethod(nm);
2018 }
2019 
2020 void ShenandoahHeap::pin_object(JavaThread* thr, oop o) {
2021   heap_region_containing(o)->record_pin();
2022 }
2023 
2024 void ShenandoahHeap::unpin_object(JavaThread* thr, oop o) {
2025   ShenandoahHeapRegion* r = heap_region_containing(o);
2026   assert(r != nullptr, "Sanity");
2027   assert(r->pin_count() > 0, "Region " SIZE_FORMAT " should have non-zero pins", r->index());
2028   r->record_unpin();
2029 }
2030 
2031 void ShenandoahHeap::sync_pinned_region_status() {
2032   ShenandoahHeapLocker locker(lock());
2033 
2034   for (size_t i = 0; i < num_regions(); i++) {
2035     ShenandoahHeapRegion *r = get_region(i);
2036     if (r->is_active()) {
2037       if (r->is_pinned()) {
2038         if (r->pin_count() == 0) {
2039           r->make_unpinned();
2040         }
2041       } else {
2042         if (r->pin_count() > 0) {
2043           r->make_pinned();
2044         }
2045       }
2046     }
2047   }
2048 
2049   assert_pinned_region_status();
2050 }
2051 
2052 #ifdef ASSERT
2053 void ShenandoahHeap::assert_pinned_region_status() {
2054   for (size_t i = 0; i < num_regions(); i++) {
2055     ShenandoahHeapRegion* r = get_region(i);
2056     assert((r->is_pinned() && r->pin_count() > 0) || (!r->is_pinned() && r->pin_count() == 0),
2057            "Region " SIZE_FORMAT " pinning status is inconsistent", i);
2058   }
2059 }
2060 #endif
2061 
2062 ConcurrentGCTimer* ShenandoahHeap::gc_timer() const {
2063   return _gc_timer;
2064 }
2065 
2066 void ShenandoahHeap::prepare_concurrent_roots() {
2067   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
2068   assert(!is_stw_gc_in_progress(), "Only concurrent GC");
2069   set_concurrent_strong_root_in_progress(!collection_set()->is_empty());
2070   set_concurrent_weak_root_in_progress(true);
2071   if (unload_classes()) {
2072     _unloader.prepare();
2073   }
2074 }
2075 
2076 void ShenandoahHeap::finish_concurrent_roots() {
2077   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
2078   assert(!is_stw_gc_in_progress(), "Only concurrent GC");
2079   if (unload_classes()) {
2080     _unloader.finish();
2081   }
2082 }
2083 
2084 #ifdef ASSERT
2085 void ShenandoahHeap::assert_gc_workers(uint nworkers) {
2086   assert(nworkers > 0 && nworkers <= max_workers(), "Sanity");
2087 
2088   if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) {
2089     // Use ParallelGCThreads inside safepoints
2090     assert(nworkers == ParallelGCThreads, "Use ParallelGCThreads (%u) within safepoint, not %u",
2091            ParallelGCThreads, nworkers);
2092   } else {
2093     // Use ConcGCThreads outside safepoints
2094     assert(nworkers == ConcGCThreads, "Use ConcGCThreads (%u) outside safepoints, %u",
2095            ConcGCThreads, nworkers);
2096   }
2097 }
2098 #endif
2099 
2100 ShenandoahVerifier* ShenandoahHeap::verifier() {
2101   guarantee(ShenandoahVerify, "Should be enabled");
2102   assert (_verifier != nullptr, "sanity");
2103   return _verifier;
2104 }
2105 
2106 template<bool CONCURRENT>
2107 class ShenandoahUpdateHeapRefsTask : public WorkerTask {
2108 private:
2109   ShenandoahHeap* _heap;
2110   ShenandoahRegionIterator* _regions;
2111 public:
2112   ShenandoahUpdateHeapRefsTask(ShenandoahRegionIterator* regions) :
2113     WorkerTask("Shenandoah Update References"),
2114     _heap(ShenandoahHeap::heap()),
2115     _regions(regions) {
2116   }
2117 
2118   void work(uint worker_id) {
2119     if (CONCURRENT) {
2120       ShenandoahConcurrentWorkerSession worker_session(worker_id);
2121       ShenandoahSuspendibleThreadSetJoiner stsj;
2122       do_work<ShenandoahConcUpdateRefsClosure>();
2123     } else {
2124       ShenandoahParallelWorkerSession worker_session(worker_id);
2125       do_work<ShenandoahSTWUpdateRefsClosure>();
2126     }
2127   }
2128 
2129 private:
2130   template<class T>
2131   void do_work() {
2132     T cl;
2133     ShenandoahHeapRegion* r = _regions->next();
2134     ShenandoahMarkingContext* const ctx = _heap->complete_marking_context();
2135     while (r != nullptr) {
2136       HeapWord* update_watermark = r->get_update_watermark();
2137       assert (update_watermark >= r->bottom(), "sanity");
2138       if (r->is_active() && !r->is_cset()) {
2139         _heap->marked_object_oop_iterate(r, &cl, update_watermark);
2140       }
2141       if (ShenandoahPacing) {
2142         _heap->pacer()->report_updaterefs(pointer_delta(update_watermark, r->bottom()));
2143       }
2144       if (_heap->check_cancelled_gc_and_yield(CONCURRENT)) {
2145         return;
2146       }
2147       r = _regions->next();
2148     }
2149   }
2150 };
2151 
2152 void ShenandoahHeap::update_heap_references(bool concurrent) {
2153   assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC");
2154 
2155   if (concurrent) {
2156     ShenandoahUpdateHeapRefsTask<true> task(&_update_refs_iterator);
2157     workers()->run_task(&task);
2158   } else {
2159     ShenandoahUpdateHeapRefsTask<false> task(&_update_refs_iterator);
2160     workers()->run_task(&task);
2161   }
2162 }
2163 
2164 
2165 class ShenandoahFinalUpdateRefsUpdateRegionStateClosure : public ShenandoahHeapRegionClosure {
2166 private:
2167   ShenandoahHeapLock* const _lock;
2168 
2169 public:
2170   ShenandoahFinalUpdateRefsUpdateRegionStateClosure() : _lock(ShenandoahHeap::heap()->lock()) {}
2171 
2172   void heap_region_do(ShenandoahHeapRegion* r) {
2173     // Drop unnecessary "pinned" state from regions that does not have CP marks
2174     // anymore, as this would allow trashing them.
2175 
2176     if (r->is_active()) {
2177       if (r->is_pinned()) {
2178         if (r->pin_count() == 0) {
2179           ShenandoahHeapLocker locker(_lock);
2180           r->make_unpinned();
2181         }
2182       } else {
2183         if (r->pin_count() > 0) {
2184           ShenandoahHeapLocker locker(_lock);
2185           r->make_pinned();
2186         }
2187       }
2188     }
2189   }
2190 
2191   bool is_thread_safe() { return true; }
2192 };
2193 
2194 void ShenandoahHeap::update_heap_region_states(bool concurrent) {
2195   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
2196   assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC");
2197 
2198   {
2199     ShenandoahGCPhase phase(concurrent ?
2200                             ShenandoahPhaseTimings::final_update_refs_update_region_states :
2201                             ShenandoahPhaseTimings::degen_gc_final_update_refs_update_region_states);
2202     ShenandoahFinalUpdateRefsUpdateRegionStateClosure cl;
2203     parallel_heap_region_iterate(&cl);
2204 
2205     assert_pinned_region_status();
2206   }
2207 
2208   {
2209     ShenandoahGCPhase phase(concurrent ?
2210                             ShenandoahPhaseTimings::final_update_refs_trash_cset :
2211                             ShenandoahPhaseTimings::degen_gc_final_update_refs_trash_cset);
2212     trash_cset_regions();
2213   }
2214 }
2215 
2216 void ShenandoahHeap::rebuild_free_set(bool concurrent) {
2217   {
2218     ShenandoahGCPhase phase(concurrent ?
2219                             ShenandoahPhaseTimings::final_update_refs_rebuild_freeset :
2220                             ShenandoahPhaseTimings::degen_gc_final_update_refs_rebuild_freeset);
2221     ShenandoahHeapLocker locker(lock());
2222     _free_set->rebuild();
2223   }
2224 }
2225 
2226 void ShenandoahHeap::print_extended_on(outputStream *st) const {
2227   print_on(st);
2228   st->cr();
2229   print_heap_regions_on(st);
2230 }
2231 
2232 bool ShenandoahHeap::is_bitmap_slice_committed(ShenandoahHeapRegion* r, bool skip_self) {
2233   size_t slice = r->index() / _bitmap_regions_per_slice;
2234 
2235   size_t regions_from = _bitmap_regions_per_slice * slice;
2236   size_t regions_to   = MIN2(num_regions(), _bitmap_regions_per_slice * (slice + 1));
2237   for (size_t g = regions_from; g < regions_to; g++) {
2238     assert (g / _bitmap_regions_per_slice == slice, "same slice");
2239     if (skip_self && g == r->index()) continue;
2240     if (get_region(g)->is_committed()) {
2241       return true;
2242     }
2243   }
2244   return false;
2245 }
2246 
2247 bool ShenandoahHeap::commit_bitmap_slice(ShenandoahHeapRegion* r) {
2248   shenandoah_assert_heaplocked();
2249 
2250   // Bitmaps in special regions do not need commits
2251   if (_bitmap_region_special) {
2252     return true;
2253   }
2254 
2255   if (is_bitmap_slice_committed(r, true)) {
2256     // Some other region from the group is already committed, meaning the bitmap
2257     // slice is already committed, we exit right away.
2258     return true;
2259   }
2260 
2261   // Commit the bitmap slice:
2262   size_t slice = r->index() / _bitmap_regions_per_slice;
2263   size_t off = _bitmap_bytes_per_slice * slice;
2264   size_t len = _bitmap_bytes_per_slice;
2265   char* start = (char*) _bitmap_region.start() + off;
2266 
2267   if (!os::commit_memory(start, len, false)) {
2268     return false;
2269   }
2270 
2271   if (AlwaysPreTouch) {
2272     os::pretouch_memory(start, start + len, _pretouch_bitmap_page_size);
2273   }
2274 
2275   return true;
2276 }
2277 
2278 bool ShenandoahHeap::uncommit_bitmap_slice(ShenandoahHeapRegion *r) {
2279   shenandoah_assert_heaplocked();
2280 
2281   // Bitmaps in special regions do not need uncommits
2282   if (_bitmap_region_special) {
2283     return true;
2284   }
2285 
2286   if (is_bitmap_slice_committed(r, true)) {
2287     // Some other region from the group is still committed, meaning the bitmap
2288     // slice is should stay committed, exit right away.
2289     return true;
2290   }
2291 
2292   // Uncommit the bitmap slice:
2293   size_t slice = r->index() / _bitmap_regions_per_slice;
2294   size_t off = _bitmap_bytes_per_slice * slice;
2295   size_t len = _bitmap_bytes_per_slice;
2296   if (!os::uncommit_memory((char*)_bitmap_region.start() + off, len)) {
2297     return false;
2298   }
2299   return true;
2300 }
2301 
2302 void ShenandoahHeap::safepoint_synchronize_begin() {
2303   StackWatermarkSet::safepoint_synchronize_begin();
2304   SuspendibleThreadSet::synchronize();
2305 }
2306 
2307 void ShenandoahHeap::safepoint_synchronize_end() {
2308   SuspendibleThreadSet::desynchronize();
2309 }
2310 
2311 void ShenandoahHeap::try_inject_alloc_failure() {
2312   if (ShenandoahAllocFailureALot && !cancelled_gc() && ((os::random() % 1000) > 950)) {
2313     _inject_alloc_failure.set();
2314     os::naked_short_sleep(1);
2315     if (cancelled_gc()) {
2316       log_info(gc)("Allocation failure was successfully injected");
2317     }
2318   }
2319 }
2320 
2321 bool ShenandoahHeap::should_inject_alloc_failure() {
2322   return _inject_alloc_failure.is_set() && _inject_alloc_failure.try_unset();
2323 }
2324 
2325 void ShenandoahHeap::initialize_serviceability() {
2326   _memory_pool = new ShenandoahMemoryPool(this);
2327   _cycle_memory_manager.add_pool(_memory_pool);
2328   _stw_memory_manager.add_pool(_memory_pool);
2329 }
2330 
2331 GrowableArray<GCMemoryManager*> ShenandoahHeap::memory_managers() {
2332   GrowableArray<GCMemoryManager*> memory_managers(2);
2333   memory_managers.append(&_cycle_memory_manager);
2334   memory_managers.append(&_stw_memory_manager);
2335   return memory_managers;
2336 }
2337 
2338 GrowableArray<MemoryPool*> ShenandoahHeap::memory_pools() {
2339   GrowableArray<MemoryPool*> memory_pools(1);
2340   memory_pools.append(_memory_pool);
2341   return memory_pools;
2342 }
2343 
2344 MemoryUsage ShenandoahHeap::memory_usage() {
2345   return _memory_pool->get_memory_usage();
2346 }
2347 
2348 ShenandoahRegionIterator::ShenandoahRegionIterator() :
2349   _heap(ShenandoahHeap::heap()),
2350   _index(0) {}
2351 
2352 ShenandoahRegionIterator::ShenandoahRegionIterator(ShenandoahHeap* heap) :
2353   _heap(heap),
2354   _index(0) {}
2355 
2356 void ShenandoahRegionIterator::reset() {
2357   _index = 0;
2358 }
2359 
2360 bool ShenandoahRegionIterator::has_next() const {
2361   return _index < _heap->num_regions();
2362 }
2363 
2364 char ShenandoahHeap::gc_state() const {
2365   return _gc_state.raw_value();
2366 }
2367 
2368 ShenandoahLiveData* ShenandoahHeap::get_liveness_cache(uint worker_id) {
2369 #ifdef ASSERT
2370   assert(_liveness_cache != nullptr, "sanity");
2371   assert(worker_id < _max_workers, "sanity");
2372   for (uint i = 0; i < num_regions(); i++) {
2373     assert(_liveness_cache[worker_id][i] == 0, "liveness cache should be empty");
2374   }
2375 #endif
2376   return _liveness_cache[worker_id];
2377 }
2378 
2379 void ShenandoahHeap::flush_liveness_cache(uint worker_id) {
2380   assert(worker_id < _max_workers, "sanity");
2381   assert(_liveness_cache != nullptr, "sanity");
2382   ShenandoahLiveData* ld = _liveness_cache[worker_id];
2383   for (uint i = 0; i < num_regions(); i++) {
2384     ShenandoahLiveData live = ld[i];
2385     if (live > 0) {
2386       ShenandoahHeapRegion* r = get_region(i);
2387       r->increase_live_data_gc_words(live);
2388       ld[i] = 0;
2389     }
2390   }
2391 }
2392 
2393 bool ShenandoahHeap::requires_barriers(stackChunkOop obj) const {
2394   if (is_idle()) return false;
2395 
2396   // Objects allocated after marking start are implicitly alive, don't need any barriers during
2397   // marking phase.
2398   if (is_concurrent_mark_in_progress() &&
2399      !marking_context()->allocated_after_mark_start(obj)) {
2400     return true;
2401   }
2402 
2403   // Can not guarantee obj is deeply good.
2404   if (has_forwarded_objects()) {
2405     return true;
2406   }
2407 
2408   return false;
2409 }