1 /* 2 * Copyright (c) 2023, 2024, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2013, 2022, Red Hat, Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "memory/allocation.hpp" 28 #include "memory/universe.hpp" 29 30 #include "gc/shared/classUnloadingContext.hpp" 31 #include "gc/shared/gcArguments.hpp" 32 #include "gc/shared/gcTimer.hpp" 33 #include "gc/shared/gcTraceTime.inline.hpp" 34 #include "gc/shared/locationPrinter.inline.hpp" 35 #include "gc/shared/memAllocator.hpp" 36 #include "gc/shared/plab.hpp" 37 #include "gc/shared/tlab_globals.hpp" 38 39 #include "gc/shenandoah/shenandoahBarrierSet.hpp" 40 #include "gc/shenandoah/shenandoahClosures.inline.hpp" 41 #include "gc/shenandoah/shenandoahCollectionSet.hpp" 42 #include "gc/shenandoah/shenandoahCollectorPolicy.hpp" 43 #include "gc/shenandoah/shenandoahConcurrentMark.hpp" 44 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp" 45 #include "gc/shenandoah/shenandoahControlThread.hpp" 46 #include "gc/shenandoah/shenandoahFreeSet.hpp" 47 #include "gc/shenandoah/shenandoahPhaseTimings.hpp" 48 #include "gc/shenandoah/shenandoahHeap.inline.hpp" 49 #include "gc/shenandoah/shenandoahHeapRegion.inline.hpp" 50 #include "gc/shenandoah/shenandoahHeapRegionSet.hpp" 51 #include "gc/shenandoah/shenandoahInitLogger.hpp" 52 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp" 53 #include "gc/shenandoah/shenandoahMemoryPool.hpp" 54 #include "gc/shenandoah/shenandoahMetrics.hpp" 55 #include "gc/shenandoah/shenandoahMonitoringSupport.hpp" 56 #include "gc/shenandoah/shenandoahOopClosures.inline.hpp" 57 #include "gc/shenandoah/shenandoahPacer.inline.hpp" 58 #include "gc/shenandoah/shenandoahPadding.hpp" 59 #include "gc/shenandoah/shenandoahParallelCleaning.inline.hpp" 60 #include "gc/shenandoah/shenandoahReferenceProcessor.hpp" 61 #include "gc/shenandoah/shenandoahRootProcessor.inline.hpp" 62 #include "gc/shenandoah/shenandoahSTWMark.hpp" 63 #include "gc/shenandoah/shenandoahUtils.hpp" 64 #include "gc/shenandoah/shenandoahVerifier.hpp" 65 #include "gc/shenandoah/shenandoahCodeRoots.hpp" 66 #include "gc/shenandoah/shenandoahVMOperations.hpp" 67 #include "gc/shenandoah/shenandoahWorkGroup.hpp" 68 #include "gc/shenandoah/shenandoahWorkerPolicy.hpp" 69 #include "gc/shenandoah/mode/shenandoahIUMode.hpp" 70 #include "gc/shenandoah/mode/shenandoahPassiveMode.hpp" 71 #include "gc/shenandoah/mode/shenandoahSATBMode.hpp" 72 #if INCLUDE_JFR 73 #include "gc/shenandoah/shenandoahJfrSupport.hpp" 74 #endif 75 76 #include "classfile/systemDictionary.hpp" 77 #include "code/codeCache.hpp" 78 #include "memory/classLoaderMetaspace.hpp" 79 #include "memory/metaspaceUtils.hpp" 80 #include "nmt/mallocTracker.hpp" 81 #include "nmt/memTracker.hpp" 82 #include "oops/compressedOops.inline.hpp" 83 #include "prims/jvmtiTagMap.hpp" 84 #include "runtime/atomic.hpp" 85 #include "runtime/globals.hpp" 86 #include "runtime/interfaceSupport.inline.hpp" 87 #include "runtime/java.hpp" 88 #include "runtime/orderAccess.hpp" 89 #include "runtime/safepointMechanism.hpp" 90 #include "runtime/stackWatermarkSet.hpp" 91 #include "runtime/vmThread.hpp" 92 #include "utilities/events.hpp" 93 #include "utilities/powerOfTwo.hpp" 94 95 class ShenandoahPretouchHeapTask : public WorkerTask { 96 private: 97 ShenandoahRegionIterator _regions; 98 const size_t _page_size; 99 public: 100 ShenandoahPretouchHeapTask(size_t page_size) : 101 WorkerTask("Shenandoah Pretouch Heap"), 102 _page_size(page_size) {} 103 104 virtual void work(uint worker_id) { 105 ShenandoahHeapRegion* r = _regions.next(); 106 while (r != nullptr) { 107 if (r->is_committed()) { 108 os::pretouch_memory(r->bottom(), r->end(), _page_size); 109 } 110 r = _regions.next(); 111 } 112 } 113 }; 114 115 class ShenandoahPretouchBitmapTask : public WorkerTask { 116 private: 117 ShenandoahRegionIterator _regions; 118 char* _bitmap_base; 119 const size_t _bitmap_size; 120 const size_t _page_size; 121 public: 122 ShenandoahPretouchBitmapTask(char* bitmap_base, size_t bitmap_size, size_t page_size) : 123 WorkerTask("Shenandoah Pretouch Bitmap"), 124 _bitmap_base(bitmap_base), 125 _bitmap_size(bitmap_size), 126 _page_size(page_size) {} 127 128 virtual void work(uint worker_id) { 129 ShenandoahHeapRegion* r = _regions.next(); 130 while (r != nullptr) { 131 size_t start = r->index() * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor(); 132 size_t end = (r->index() + 1) * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor(); 133 assert (end <= _bitmap_size, "end is sane: " SIZE_FORMAT " < " SIZE_FORMAT, end, _bitmap_size); 134 135 if (r->is_committed()) { 136 os::pretouch_memory(_bitmap_base + start, _bitmap_base + end, _page_size); 137 } 138 139 r = _regions.next(); 140 } 141 } 142 }; 143 144 jint ShenandoahHeap::initialize() { 145 // 146 // Figure out heap sizing 147 // 148 149 size_t init_byte_size = InitialHeapSize; 150 size_t min_byte_size = MinHeapSize; 151 size_t max_byte_size = MaxHeapSize; 152 size_t heap_alignment = HeapAlignment; 153 154 size_t reg_size_bytes = ShenandoahHeapRegion::region_size_bytes(); 155 156 Universe::check_alignment(max_byte_size, reg_size_bytes, "Shenandoah heap"); 157 Universe::check_alignment(init_byte_size, reg_size_bytes, "Shenandoah heap"); 158 159 _num_regions = ShenandoahHeapRegion::region_count(); 160 assert(_num_regions == (max_byte_size / reg_size_bytes), 161 "Regions should cover entire heap exactly: " SIZE_FORMAT " != " SIZE_FORMAT "/" SIZE_FORMAT, 162 _num_regions, max_byte_size, reg_size_bytes); 163 164 // Now we know the number of regions, initialize the heuristics. 165 initialize_heuristics(); 166 167 size_t num_committed_regions = init_byte_size / reg_size_bytes; 168 num_committed_regions = MIN2(num_committed_regions, _num_regions); 169 assert(num_committed_regions <= _num_regions, "sanity"); 170 _initial_size = num_committed_regions * reg_size_bytes; 171 172 size_t num_min_regions = min_byte_size / reg_size_bytes; 173 num_min_regions = MIN2(num_min_regions, _num_regions); 174 assert(num_min_regions <= _num_regions, "sanity"); 175 _minimum_size = num_min_regions * reg_size_bytes; 176 177 // Default to max heap size. 178 _soft_max_size = _num_regions * reg_size_bytes; 179 180 _committed = _initial_size; 181 182 size_t heap_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size(); 183 size_t bitmap_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size(); 184 size_t region_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size(); 185 186 // 187 // Reserve and commit memory for heap 188 // 189 190 ReservedHeapSpace heap_rs = Universe::reserve_heap(max_byte_size, heap_alignment); 191 initialize_reserved_region(heap_rs); 192 _heap_region = MemRegion((HeapWord*)heap_rs.base(), heap_rs.size() / HeapWordSize); 193 _heap_region_special = heap_rs.special(); 194 195 assert((((size_t) base()) & ShenandoahHeapRegion::region_size_bytes_mask()) == 0, 196 "Misaligned heap: " PTR_FORMAT, p2i(base())); 197 os::trace_page_sizes_for_requested_size("Heap", 198 max_byte_size, heap_alignment, 199 heap_rs.base(), 200 heap_rs.size(), heap_rs.page_size()); 201 202 #if SHENANDOAH_OPTIMIZED_MARKTASK 203 // The optimized ShenandoahMarkTask takes some bits away from the full object bits. 204 // Fail if we ever attempt to address more than we can. 205 if ((uintptr_t)heap_rs.end() >= ShenandoahMarkTask::max_addressable()) { 206 FormatBuffer<512> buf("Shenandoah reserved [" PTR_FORMAT ", " PTR_FORMAT") for the heap, \n" 207 "but max object address is " PTR_FORMAT ". Try to reduce heap size, or try other \n" 208 "VM options that allocate heap at lower addresses (HeapBaseMinAddress, AllocateHeapAt, etc).", 209 p2i(heap_rs.base()), p2i(heap_rs.end()), ShenandoahMarkTask::max_addressable()); 210 vm_exit_during_initialization("Fatal Error", buf); 211 } 212 #endif 213 214 ReservedSpace sh_rs = heap_rs.first_part(max_byte_size); 215 if (!_heap_region_special) { 216 os::commit_memory_or_exit(sh_rs.base(), _initial_size, heap_alignment, false, 217 "Cannot commit heap memory"); 218 } 219 220 // 221 // Reserve and commit memory for bitmap(s) 222 // 223 224 size_t bitmap_size_orig = ShenandoahMarkBitMap::compute_size(heap_rs.size()); 225 _bitmap_size = align_up(bitmap_size_orig, bitmap_page_size); 226 227 size_t bitmap_bytes_per_region = reg_size_bytes / ShenandoahMarkBitMap::heap_map_factor(); 228 229 guarantee(bitmap_bytes_per_region != 0, 230 "Bitmap bytes per region should not be zero"); 231 guarantee(is_power_of_2(bitmap_bytes_per_region), 232 "Bitmap bytes per region should be power of two: " SIZE_FORMAT, bitmap_bytes_per_region); 233 234 if (bitmap_page_size > bitmap_bytes_per_region) { 235 _bitmap_regions_per_slice = bitmap_page_size / bitmap_bytes_per_region; 236 _bitmap_bytes_per_slice = bitmap_page_size; 237 } else { 238 _bitmap_regions_per_slice = 1; 239 _bitmap_bytes_per_slice = bitmap_bytes_per_region; 240 } 241 242 guarantee(_bitmap_regions_per_slice >= 1, 243 "Should have at least one region per slice: " SIZE_FORMAT, 244 _bitmap_regions_per_slice); 245 246 guarantee(((_bitmap_bytes_per_slice) % bitmap_page_size) == 0, 247 "Bitmap slices should be page-granular: bps = " SIZE_FORMAT ", page size = " SIZE_FORMAT, 248 _bitmap_bytes_per_slice, bitmap_page_size); 249 250 ReservedSpace bitmap(_bitmap_size, bitmap_page_size); 251 os::trace_page_sizes_for_requested_size("Mark Bitmap", 252 bitmap_size_orig, bitmap_page_size, 253 bitmap.base(), 254 bitmap.size(), bitmap.page_size()); 255 MemTracker::record_virtual_memory_type(bitmap.base(), mtGC); 256 _bitmap_region = MemRegion((HeapWord*) bitmap.base(), bitmap.size() / HeapWordSize); 257 _bitmap_region_special = bitmap.special(); 258 259 size_t bitmap_init_commit = _bitmap_bytes_per_slice * 260 align_up(num_committed_regions, _bitmap_regions_per_slice) / _bitmap_regions_per_slice; 261 bitmap_init_commit = MIN2(_bitmap_size, bitmap_init_commit); 262 if (!_bitmap_region_special) { 263 os::commit_memory_or_exit((char *) _bitmap_region.start(), bitmap_init_commit, bitmap_page_size, false, 264 "Cannot commit bitmap memory"); 265 } 266 267 _marking_context = new ShenandoahMarkingContext(_heap_region, _bitmap_region, _num_regions, _max_workers); 268 269 if (ShenandoahVerify) { 270 ReservedSpace verify_bitmap(_bitmap_size, bitmap_page_size); 271 os::trace_page_sizes_for_requested_size("Verify Bitmap", 272 bitmap_size_orig, bitmap_page_size, 273 verify_bitmap.base(), 274 verify_bitmap.size(), verify_bitmap.page_size()); 275 if (!verify_bitmap.special()) { 276 os::commit_memory_or_exit(verify_bitmap.base(), verify_bitmap.size(), bitmap_page_size, false, 277 "Cannot commit verification bitmap memory"); 278 } 279 MemTracker::record_virtual_memory_type(verify_bitmap.base(), mtGC); 280 MemRegion verify_bitmap_region = MemRegion((HeapWord *) verify_bitmap.base(), verify_bitmap.size() / HeapWordSize); 281 _verification_bit_map.initialize(_heap_region, verify_bitmap_region); 282 _verifier = new ShenandoahVerifier(this, &_verification_bit_map); 283 } 284 285 // Reserve aux bitmap for use in object_iterate(). We don't commit it here. 286 size_t aux_bitmap_page_size = bitmap_page_size; 287 #ifdef LINUX 288 // In THP "advise" mode, we refrain from advising the system to use large pages 289 // since we know these commits will be short lived, and there is no reason to trash 290 // the THP area with this bitmap. 291 if (UseTransparentHugePages) { 292 aux_bitmap_page_size = os::vm_page_size(); 293 } 294 #endif 295 ReservedSpace aux_bitmap(_bitmap_size, aux_bitmap_page_size); 296 os::trace_page_sizes_for_requested_size("Aux Bitmap", 297 bitmap_size_orig, aux_bitmap_page_size, 298 aux_bitmap.base(), 299 aux_bitmap.size(), aux_bitmap.page_size()); 300 MemTracker::record_virtual_memory_type(aux_bitmap.base(), mtGC); 301 _aux_bitmap_region = MemRegion((HeapWord*) aux_bitmap.base(), aux_bitmap.size() / HeapWordSize); 302 _aux_bitmap_region_special = aux_bitmap.special(); 303 _aux_bit_map.initialize(_heap_region, _aux_bitmap_region); 304 305 // 306 // Create regions and region sets 307 // 308 size_t region_align = align_up(sizeof(ShenandoahHeapRegion), SHENANDOAH_CACHE_LINE_SIZE); 309 size_t region_storage_size_orig = region_align * _num_regions; 310 size_t region_storage_size = align_up(region_storage_size_orig, 311 MAX2(region_page_size, os::vm_allocation_granularity())); 312 313 ReservedSpace region_storage(region_storage_size, region_page_size); 314 os::trace_page_sizes_for_requested_size("Region Storage", 315 region_storage_size_orig, region_page_size, 316 region_storage.base(), 317 region_storage.size(), region_storage.page_size()); 318 MemTracker::record_virtual_memory_type(region_storage.base(), mtGC); 319 if (!region_storage.special()) { 320 os::commit_memory_or_exit(region_storage.base(), region_storage_size, region_page_size, false, 321 "Cannot commit region memory"); 322 } 323 324 // Try to fit the collection set bitmap at lower addresses. This optimizes code generation for cset checks. 325 // Go up until a sensible limit (subject to encoding constraints) and try to reserve the space there. 326 // If not successful, bite a bullet and allocate at whatever address. 327 { 328 const size_t cset_align = MAX2<size_t>(os::vm_page_size(), os::vm_allocation_granularity()); 329 const size_t cset_size = align_up(((size_t) sh_rs.base() + sh_rs.size()) >> ShenandoahHeapRegion::region_size_bytes_shift(), cset_align); 330 const size_t cset_page_size = os::vm_page_size(); 331 332 uintptr_t min = round_up_power_of_2(cset_align); 333 uintptr_t max = (1u << 30u); 334 ReservedSpace cset_rs; 335 336 for (uintptr_t addr = min; addr <= max; addr <<= 1u) { 337 char* req_addr = (char*)addr; 338 assert(is_aligned(req_addr, cset_align), "Should be aligned"); 339 cset_rs = ReservedSpace(cset_size, cset_align, cset_page_size, req_addr); 340 if (cset_rs.is_reserved()) { 341 assert(cset_rs.base() == req_addr, "Allocated where requested: " PTR_FORMAT ", " PTR_FORMAT, p2i(cset_rs.base()), addr); 342 _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base()); 343 break; 344 } 345 } 346 347 if (_collection_set == nullptr) { 348 cset_rs = ReservedSpace(cset_size, cset_align, os::vm_page_size()); 349 _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base()); 350 } 351 os::trace_page_sizes_for_requested_size("Collection Set", 352 cset_size, cset_page_size, 353 cset_rs.base(), 354 cset_rs.size(), cset_rs.page_size()); 355 } 356 357 _regions = NEW_C_HEAP_ARRAY(ShenandoahHeapRegion*, _num_regions, mtGC); 358 _free_set = new ShenandoahFreeSet(this, _num_regions); 359 360 { 361 ShenandoahHeapLocker locker(lock()); 362 363 for (size_t i = 0; i < _num_regions; i++) { 364 HeapWord* start = (HeapWord*)sh_rs.base() + ShenandoahHeapRegion::region_size_words() * i; 365 bool is_committed = i < num_committed_regions; 366 void* loc = region_storage.base() + i * region_align; 367 368 ShenandoahHeapRegion* r = new (loc) ShenandoahHeapRegion(start, i, is_committed); 369 assert(is_aligned(r, SHENANDOAH_CACHE_LINE_SIZE), "Sanity"); 370 371 _marking_context->initialize_top_at_mark_start(r); 372 _regions[i] = r; 373 assert(!collection_set()->is_in(i), "New region should not be in collection set"); 374 } 375 376 // Initialize to complete 377 _marking_context->mark_complete(); 378 379 _free_set->rebuild(); 380 } 381 382 if (AlwaysPreTouch) { 383 // For NUMA, it is important to pre-touch the storage under bitmaps with worker threads, 384 // before initialize() below zeroes it with initializing thread. For any given region, 385 // we touch the region and the corresponding bitmaps from the same thread. 386 ShenandoahPushWorkerScope scope(workers(), _max_workers, false); 387 388 _pretouch_heap_page_size = heap_page_size; 389 _pretouch_bitmap_page_size = bitmap_page_size; 390 391 #ifdef LINUX 392 // UseTransparentHugePages would madvise that backing memory can be coalesced into huge 393 // pages. But, the kernel needs to know that every small page is used, in order to coalesce 394 // them into huge one. Therefore, we need to pretouch with smaller pages. 395 if (UseTransparentHugePages) { 396 _pretouch_heap_page_size = (size_t)os::vm_page_size(); 397 _pretouch_bitmap_page_size = (size_t)os::vm_page_size(); 398 } 399 #endif 400 401 // OS memory managers may want to coalesce back-to-back pages. Make their jobs 402 // simpler by pre-touching continuous spaces (heap and bitmap) separately. 403 404 ShenandoahPretouchBitmapTask bcl(bitmap.base(), _bitmap_size, _pretouch_bitmap_page_size); 405 _workers->run_task(&bcl); 406 407 ShenandoahPretouchHeapTask hcl(_pretouch_heap_page_size); 408 _workers->run_task(&hcl); 409 } 410 411 // 412 // Initialize the rest of GC subsystems 413 // 414 415 _liveness_cache = NEW_C_HEAP_ARRAY(ShenandoahLiveData*, _max_workers, mtGC); 416 for (uint worker = 0; worker < _max_workers; worker++) { 417 _liveness_cache[worker] = NEW_C_HEAP_ARRAY(ShenandoahLiveData, _num_regions, mtGC); 418 Copy::fill_to_bytes(_liveness_cache[worker], _num_regions * sizeof(ShenandoahLiveData)); 419 } 420 421 // There should probably be Shenandoah-specific options for these, 422 // just as there are G1-specific options. 423 { 424 ShenandoahSATBMarkQueueSet& satbqs = ShenandoahBarrierSet::satb_mark_queue_set(); 425 satbqs.set_process_completed_buffers_threshold(20); // G1SATBProcessCompletedThreshold 426 satbqs.set_buffer_enqueue_threshold_percentage(60); // G1SATBBufferEnqueueingThresholdPercent 427 } 428 429 _monitoring_support = new ShenandoahMonitoringSupport(this); 430 _phase_timings = new ShenandoahPhaseTimings(max_workers()); 431 ShenandoahCodeRoots::initialize(); 432 433 if (ShenandoahPacing) { 434 _pacer = new ShenandoahPacer(this); 435 _pacer->setup_for_idle(); 436 } 437 438 _control_thread = new ShenandoahControlThread(); 439 440 ShenandoahInitLogger::print(); 441 442 return JNI_OK; 443 } 444 445 void ShenandoahHeap::initialize_mode() { 446 if (ShenandoahGCMode != nullptr) { 447 if (strcmp(ShenandoahGCMode, "satb") == 0) { 448 _gc_mode = new ShenandoahSATBMode(); 449 } else if (strcmp(ShenandoahGCMode, "iu") == 0) { 450 _gc_mode = new ShenandoahIUMode(); 451 } else if (strcmp(ShenandoahGCMode, "passive") == 0) { 452 _gc_mode = new ShenandoahPassiveMode(); 453 } else { 454 vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option"); 455 } 456 } else { 457 vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option (null)"); 458 } 459 _gc_mode->initialize_flags(); 460 if (_gc_mode->is_diagnostic() && !UnlockDiagnosticVMOptions) { 461 vm_exit_during_initialization( 462 err_msg("GC mode \"%s\" is diagnostic, and must be enabled via -XX:+UnlockDiagnosticVMOptions.", 463 _gc_mode->name())); 464 } 465 if (_gc_mode->is_experimental() && !UnlockExperimentalVMOptions) { 466 vm_exit_during_initialization( 467 err_msg("GC mode \"%s\" is experimental, and must be enabled via -XX:+UnlockExperimentalVMOptions.", 468 _gc_mode->name())); 469 } 470 } 471 472 void ShenandoahHeap::initialize_heuristics() { 473 assert(_gc_mode != nullptr, "Must be initialized"); 474 _heuristics = _gc_mode->initialize_heuristics(); 475 476 if (_heuristics->is_diagnostic() && !UnlockDiagnosticVMOptions) { 477 vm_exit_during_initialization( 478 err_msg("Heuristics \"%s\" is diagnostic, and must be enabled via -XX:+UnlockDiagnosticVMOptions.", 479 _heuristics->name())); 480 } 481 if (_heuristics->is_experimental() && !UnlockExperimentalVMOptions) { 482 vm_exit_during_initialization( 483 err_msg("Heuristics \"%s\" is experimental, and must be enabled via -XX:+UnlockExperimentalVMOptions.", 484 _heuristics->name())); 485 } 486 } 487 488 #ifdef _MSC_VER 489 #pragma warning( push ) 490 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list 491 #endif 492 493 ShenandoahHeap::ShenandoahHeap(ShenandoahCollectorPolicy* policy) : 494 CollectedHeap(), 495 _initial_size(0), 496 _used(0), 497 _committed(0), 498 _bytes_allocated_since_gc_start(0), 499 _max_workers(MAX2(ConcGCThreads, ParallelGCThreads)), 500 _workers(nullptr), 501 _safepoint_workers(nullptr), 502 _heap_region_special(false), 503 _num_regions(0), 504 _regions(nullptr), 505 _update_refs_iterator(this), 506 _gc_state_changed(false), 507 _gc_no_progress_count(0), 508 _control_thread(nullptr), 509 _shenandoah_policy(policy), 510 _gc_mode(nullptr), 511 _heuristics(nullptr), 512 _free_set(nullptr), 513 _pacer(nullptr), 514 _verifier(nullptr), 515 _phase_timings(nullptr), 516 _monitoring_support(nullptr), 517 _memory_pool(nullptr), 518 _stw_memory_manager("Shenandoah Pauses"), 519 _cycle_memory_manager("Shenandoah Cycles"), 520 _gc_timer(new ConcurrentGCTimer()), 521 _log_min_obj_alignment_in_bytes(LogMinObjAlignmentInBytes), 522 _ref_processor(new ShenandoahReferenceProcessor(MAX2(_max_workers, 1U))), 523 _marking_context(nullptr), 524 _bitmap_size(0), 525 _bitmap_regions_per_slice(0), 526 _bitmap_bytes_per_slice(0), 527 _bitmap_region_special(false), 528 _aux_bitmap_region_special(false), 529 _liveness_cache(nullptr), 530 _collection_set(nullptr) 531 { 532 // Initialize GC mode early, so we can adjust barrier support 533 initialize_mode(); 534 BarrierSet::set_barrier_set(new ShenandoahBarrierSet(this)); 535 536 _max_workers = MAX2(_max_workers, 1U); 537 _workers = new ShenandoahWorkerThreads("Shenandoah GC Threads", _max_workers); 538 if (_workers == nullptr) { 539 vm_exit_during_initialization("Failed necessary allocation."); 540 } else { 541 _workers->initialize_workers(); 542 } 543 544 if (ParallelGCThreads > 1) { 545 _safepoint_workers = new ShenandoahWorkerThreads("Safepoint Cleanup Thread", 546 ParallelGCThreads); 547 _safepoint_workers->initialize_workers(); 548 } 549 } 550 551 #ifdef _MSC_VER 552 #pragma warning( pop ) 553 #endif 554 555 class ShenandoahResetBitmapTask : public WorkerTask { 556 private: 557 ShenandoahRegionIterator _regions; 558 559 public: 560 ShenandoahResetBitmapTask() : 561 WorkerTask("Shenandoah Reset Bitmap") {} 562 563 void work(uint worker_id) { 564 ShenandoahHeapRegion* region = _regions.next(); 565 ShenandoahHeap* heap = ShenandoahHeap::heap(); 566 ShenandoahMarkingContext* const ctx = heap->marking_context(); 567 while (region != nullptr) { 568 if (heap->is_bitmap_slice_committed(region)) { 569 ctx->clear_bitmap(region); 570 } 571 region = _regions.next(); 572 } 573 } 574 }; 575 576 void ShenandoahHeap::reset_mark_bitmap() { 577 assert_gc_workers(_workers->active_workers()); 578 mark_incomplete_marking_context(); 579 580 ShenandoahResetBitmapTask task; 581 _workers->run_task(&task); 582 } 583 584 void ShenandoahHeap::print_on(outputStream* st) const { 585 st->print_cr("Shenandoah Heap"); 586 st->print_cr(" " SIZE_FORMAT "%s max, " SIZE_FORMAT "%s soft max, " SIZE_FORMAT "%s committed, " SIZE_FORMAT "%s used", 587 byte_size_in_proper_unit(max_capacity()), proper_unit_for_byte_size(max_capacity()), 588 byte_size_in_proper_unit(soft_max_capacity()), proper_unit_for_byte_size(soft_max_capacity()), 589 byte_size_in_proper_unit(committed()), proper_unit_for_byte_size(committed()), 590 byte_size_in_proper_unit(used()), proper_unit_for_byte_size(used())); 591 st->print_cr(" " SIZE_FORMAT " x " SIZE_FORMAT"%s regions", 592 num_regions(), 593 byte_size_in_proper_unit(ShenandoahHeapRegion::region_size_bytes()), 594 proper_unit_for_byte_size(ShenandoahHeapRegion::region_size_bytes())); 595 596 st->print("Status: "); 597 if (has_forwarded_objects()) st->print("has forwarded objects, "); 598 if (is_concurrent_mark_in_progress()) st->print("marking, "); 599 if (is_evacuation_in_progress()) st->print("evacuating, "); 600 if (is_update_refs_in_progress()) st->print("updating refs, "); 601 if (is_degenerated_gc_in_progress()) st->print("degenerated gc, "); 602 if (is_full_gc_in_progress()) st->print("full gc, "); 603 if (is_full_gc_move_in_progress()) st->print("full gc move, "); 604 if (is_concurrent_weak_root_in_progress()) st->print("concurrent weak roots, "); 605 if (is_concurrent_strong_root_in_progress() && 606 !is_concurrent_weak_root_in_progress()) st->print("concurrent strong roots, "); 607 608 if (cancelled_gc()) { 609 st->print("cancelled"); 610 } else { 611 st->print("not cancelled"); 612 } 613 st->cr(); 614 615 st->print_cr("Reserved region:"); 616 st->print_cr(" - [" PTR_FORMAT ", " PTR_FORMAT ") ", 617 p2i(reserved_region().start()), 618 p2i(reserved_region().end())); 619 620 ShenandoahCollectionSet* cset = collection_set(); 621 st->print_cr("Collection set:"); 622 if (cset != nullptr) { 623 st->print_cr(" - map (vanilla): " PTR_FORMAT, p2i(cset->map_address())); 624 st->print_cr(" - map (biased): " PTR_FORMAT, p2i(cset->biased_map_address())); 625 } else { 626 st->print_cr(" (null)"); 627 } 628 629 st->cr(); 630 MetaspaceUtils::print_on(st); 631 632 if (Verbose) { 633 st->cr(); 634 print_heap_regions_on(st); 635 } 636 } 637 638 class ShenandoahInitWorkerGCLABClosure : public ThreadClosure { 639 public: 640 void do_thread(Thread* thread) { 641 assert(thread != nullptr, "Sanity"); 642 assert(thread->is_Worker_thread(), "Only worker thread expected"); 643 ShenandoahThreadLocalData::initialize_gclab(thread); 644 } 645 }; 646 647 void ShenandoahHeap::post_initialize() { 648 CollectedHeap::post_initialize(); 649 MutexLocker ml(Threads_lock); 650 651 ShenandoahInitWorkerGCLABClosure init_gclabs; 652 _workers->threads_do(&init_gclabs); 653 654 // gclab can not be initialized early during VM startup, as it can not determinate its max_size. 655 // Now, we will let WorkerThreads to initialize gclab when new worker is created. 656 _workers->set_initialize_gclab(); 657 if (_safepoint_workers != nullptr) { 658 _safepoint_workers->threads_do(&init_gclabs); 659 _safepoint_workers->set_initialize_gclab(); 660 } 661 662 _heuristics->initialize(); 663 664 JFR_ONLY(ShenandoahJFRSupport::register_jfr_type_serializers();) 665 } 666 667 size_t ShenandoahHeap::used() const { 668 return Atomic::load(&_used); 669 } 670 671 size_t ShenandoahHeap::committed() const { 672 return Atomic::load(&_committed); 673 } 674 675 size_t ShenandoahHeap::available() const { 676 return free_set()->available(); 677 } 678 679 void ShenandoahHeap::increase_committed(size_t bytes) { 680 shenandoah_assert_heaplocked_or_safepoint(); 681 _committed += bytes; 682 } 683 684 void ShenandoahHeap::decrease_committed(size_t bytes) { 685 shenandoah_assert_heaplocked_or_safepoint(); 686 _committed -= bytes; 687 } 688 689 void ShenandoahHeap::increase_used(size_t bytes) { 690 Atomic::add(&_used, bytes, memory_order_relaxed); 691 } 692 693 void ShenandoahHeap::set_used(size_t bytes) { 694 Atomic::store(&_used, bytes); 695 } 696 697 void ShenandoahHeap::decrease_used(size_t bytes) { 698 assert(used() >= bytes, "never decrease heap size by more than we've left"); 699 Atomic::sub(&_used, bytes, memory_order_relaxed); 700 } 701 702 void ShenandoahHeap::increase_allocated(size_t bytes) { 703 Atomic::add(&_bytes_allocated_since_gc_start, bytes, memory_order_relaxed); 704 } 705 706 void ShenandoahHeap::notify_mutator_alloc_words(size_t words, bool waste) { 707 size_t bytes = words * HeapWordSize; 708 if (!waste) { 709 increase_used(bytes); 710 } 711 increase_allocated(bytes); 712 if (ShenandoahPacing) { 713 control_thread()->pacing_notify_alloc(words); 714 if (waste) { 715 pacer()->claim_for_alloc(words, true); 716 } 717 } 718 } 719 720 size_t ShenandoahHeap::capacity() const { 721 return committed(); 722 } 723 724 size_t ShenandoahHeap::max_capacity() const { 725 return _num_regions * ShenandoahHeapRegion::region_size_bytes(); 726 } 727 728 size_t ShenandoahHeap::soft_max_capacity() const { 729 size_t v = Atomic::load(&_soft_max_size); 730 assert(min_capacity() <= v && v <= max_capacity(), 731 "Should be in bounds: " SIZE_FORMAT " <= " SIZE_FORMAT " <= " SIZE_FORMAT, 732 min_capacity(), v, max_capacity()); 733 return v; 734 } 735 736 void ShenandoahHeap::set_soft_max_capacity(size_t v) { 737 assert(min_capacity() <= v && v <= max_capacity(), 738 "Should be in bounds: " SIZE_FORMAT " <= " SIZE_FORMAT " <= " SIZE_FORMAT, 739 min_capacity(), v, max_capacity()); 740 Atomic::store(&_soft_max_size, v); 741 } 742 743 size_t ShenandoahHeap::min_capacity() const { 744 return _minimum_size; 745 } 746 747 size_t ShenandoahHeap::initial_capacity() const { 748 return _initial_size; 749 } 750 751 bool ShenandoahHeap::is_in(const void* p) const { 752 HeapWord* heap_base = (HeapWord*) base(); 753 HeapWord* last_region_end = heap_base + ShenandoahHeapRegion::region_size_words() * num_regions(); 754 return p >= heap_base && p < last_region_end; 755 } 756 757 void ShenandoahHeap::maybe_uncommit(double shrink_before, size_t shrink_until) { 758 assert (ShenandoahUncommit, "should be enabled"); 759 760 // Determine if there is work to do. This avoids taking heap lock if there is 761 // no work available, avoids spamming logs with superfluous logging messages, 762 // and minimises the amount of work while locks are taken. 763 764 if (committed() <= shrink_until) return; 765 766 bool has_work = false; 767 for (size_t i = 0; i < num_regions(); i++) { 768 ShenandoahHeapRegion* r = get_region(i); 769 if (r->is_empty_committed() && (r->empty_time() < shrink_before)) { 770 has_work = true; 771 break; 772 } 773 } 774 775 if (has_work) { 776 static const char* msg = "Concurrent uncommit"; 777 ShenandoahConcurrentPhase gcPhase(msg, ShenandoahPhaseTimings::conc_uncommit, true /* log_heap_usage */); 778 EventMark em("%s", msg); 779 780 op_uncommit(shrink_before, shrink_until); 781 } 782 } 783 784 void ShenandoahHeap::op_uncommit(double shrink_before, size_t shrink_until) { 785 assert (ShenandoahUncommit, "should be enabled"); 786 787 // Application allocates from the beginning of the heap, and GC allocates at 788 // the end of it. It is more efficient to uncommit from the end, so that applications 789 // could enjoy the near committed regions. GC allocations are much less frequent, 790 // and therefore can accept the committing costs. 791 792 size_t count = 0; 793 for (size_t i = num_regions(); i > 0; i--) { // care about size_t underflow 794 ShenandoahHeapRegion* r = get_region(i - 1); 795 if (r->is_empty_committed() && (r->empty_time() < shrink_before)) { 796 ShenandoahHeapLocker locker(lock()); 797 if (r->is_empty_committed()) { 798 if (committed() < shrink_until + ShenandoahHeapRegion::region_size_bytes()) { 799 break; 800 } 801 802 r->make_uncommitted(); 803 count++; 804 } 805 } 806 SpinPause(); // allow allocators to take the lock 807 } 808 809 if (count > 0) { 810 notify_heap_changed(); 811 } 812 } 813 814 bool ShenandoahHeap::check_soft_max_changed() { 815 size_t new_soft_max = Atomic::load(&SoftMaxHeapSize); 816 size_t old_soft_max = soft_max_capacity(); 817 if (new_soft_max != old_soft_max) { 818 new_soft_max = MAX2(min_capacity(), new_soft_max); 819 new_soft_max = MIN2(max_capacity(), new_soft_max); 820 if (new_soft_max != old_soft_max) { 821 log_info(gc)("Soft Max Heap Size: " SIZE_FORMAT "%s -> " SIZE_FORMAT "%s", 822 byte_size_in_proper_unit(old_soft_max), proper_unit_for_byte_size(old_soft_max), 823 byte_size_in_proper_unit(new_soft_max), proper_unit_for_byte_size(new_soft_max) 824 ); 825 set_soft_max_capacity(new_soft_max); 826 return true; 827 } 828 } 829 return false; 830 } 831 832 void ShenandoahHeap::notify_heap_changed() { 833 // Update monitoring counters when we took a new region. This amortizes the 834 // update costs on slow path. 835 monitoring_support()->notify_heap_changed(); 836 837 // This is called from allocation path, and thus should be fast. 838 _heap_changed.try_set(); 839 } 840 841 void ShenandoahHeap::set_forced_counters_update(bool value) { 842 monitoring_support()->set_forced_counters_update(value); 843 } 844 845 void ShenandoahHeap::handle_force_counters_update() { 846 monitoring_support()->handle_force_counters_update(); 847 } 848 849 HeapWord* ShenandoahHeap::allocate_from_gclab_slow(Thread* thread, size_t size) { 850 // New object should fit the GCLAB size 851 size_t min_size = MAX2(size, PLAB::min_size()); 852 853 // Figure out size of new GCLAB, looking back at heuristics. Expand aggressively. 854 size_t new_size = ShenandoahThreadLocalData::gclab_size(thread) * 2; 855 new_size = MIN2(new_size, PLAB::max_size()); 856 new_size = MAX2(new_size, PLAB::min_size()); 857 858 // Record new heuristic value even if we take any shortcut. This captures 859 // the case when moderately-sized objects always take a shortcut. At some point, 860 // heuristics should catch up with them. 861 ShenandoahThreadLocalData::set_gclab_size(thread, new_size); 862 863 if (new_size < size) { 864 // New size still does not fit the object. Fall back to shared allocation. 865 // This avoids retiring perfectly good GCLABs, when we encounter a large object. 866 return nullptr; 867 } 868 869 // Retire current GCLAB, and allocate a new one. 870 PLAB* gclab = ShenandoahThreadLocalData::gclab(thread); 871 gclab->retire(); 872 873 size_t actual_size = 0; 874 HeapWord* gclab_buf = allocate_new_gclab(min_size, new_size, &actual_size); 875 if (gclab_buf == nullptr) { 876 return nullptr; 877 } 878 879 assert (size <= actual_size, "allocation should fit"); 880 881 // ...and clear or zap just allocated TLAB, if needed. 882 if (ZeroTLAB) { 883 Copy::zero_to_words(gclab_buf, actual_size); 884 } else if (ZapTLAB) { 885 // Skip mangling the space corresponding to the object header to 886 // ensure that the returned space is not considered parsable by 887 // any concurrent GC thread. 888 size_t hdr_size = oopDesc::header_size(); 889 Copy::fill_to_words(gclab_buf + hdr_size, actual_size - hdr_size, badHeapWordVal); 890 } 891 gclab->set_buf(gclab_buf, actual_size); 892 return gclab->allocate(size); 893 } 894 895 HeapWord* ShenandoahHeap::allocate_new_tlab(size_t min_size, 896 size_t requested_size, 897 size_t* actual_size) { 898 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_tlab(min_size, requested_size); 899 HeapWord* res = allocate_memory(req); 900 if (res != nullptr) { 901 *actual_size = req.actual_size(); 902 } else { 903 *actual_size = 0; 904 } 905 return res; 906 } 907 908 HeapWord* ShenandoahHeap::allocate_new_gclab(size_t min_size, 909 size_t word_size, 910 size_t* actual_size) { 911 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_gclab(min_size, word_size); 912 HeapWord* res = allocate_memory(req); 913 if (res != nullptr) { 914 *actual_size = req.actual_size(); 915 } else { 916 *actual_size = 0; 917 } 918 return res; 919 } 920 921 HeapWord* ShenandoahHeap::allocate_memory(ShenandoahAllocRequest& req) { 922 intptr_t pacer_epoch = 0; 923 bool in_new_region = false; 924 HeapWord* result = nullptr; 925 926 if (req.is_mutator_alloc()) { 927 if (ShenandoahPacing) { 928 pacer()->pace_for_alloc(req.size()); 929 pacer_epoch = pacer()->epoch(); 930 } 931 932 if (!ShenandoahAllocFailureALot || !should_inject_alloc_failure()) { 933 result = allocate_memory_under_lock(req, in_new_region); 934 } 935 936 // Check that gc overhead is not exceeded. 937 // 938 // Shenandoah will grind along for quite a while allocating one 939 // object at a time using shared (non-tlab) allocations. This check 940 // is testing that the GC overhead limit has not been exceeded. 941 // This will notify the collector to start a cycle, but will raise 942 // an OOME to the mutator if the last Full GCs have not made progress. 943 if (result == nullptr && !req.is_lab_alloc() && get_gc_no_progress_count() > ShenandoahNoProgressThreshold) { 944 control_thread()->handle_alloc_failure(req, false); 945 return nullptr; 946 } 947 948 // Block until control thread reacted, then retry allocation. 949 // 950 // It might happen that one of the threads requesting allocation would unblock 951 // way later after GC happened, only to fail the second allocation, because 952 // other threads have already depleted the free storage. In this case, a better 953 // strategy is to try again, as long as GC makes progress (or until at least 954 // one full GC has completed). 955 size_t original_count = shenandoah_policy()->full_gc_count(); 956 while (result == nullptr 957 && (get_gc_no_progress_count() == 0 || original_count == shenandoah_policy()->full_gc_count())) { 958 control_thread()->handle_alloc_failure(req, true); 959 result = allocate_memory_under_lock(req, in_new_region); 960 } 961 962 if (log_is_enabled(Debug, gc, alloc)) { 963 ResourceMark rm; 964 log_debug(gc, alloc)("Thread: %s, Result: " PTR_FORMAT ", Request: %s, Size: " SIZE_FORMAT ", Original: " SIZE_FORMAT ", Latest: " SIZE_FORMAT, 965 Thread::current()->name(), p2i(result), req.type_string(), req.size(), original_count, get_gc_no_progress_count()); 966 } 967 } else { 968 assert(req.is_gc_alloc(), "Can only accept GC allocs here"); 969 result = allocate_memory_under_lock(req, in_new_region); 970 // Do not call handle_alloc_failure() here, because we cannot block. 971 // The allocation failure would be handled by the LRB slowpath with handle_alloc_failure_evac(). 972 } 973 974 if (in_new_region) { 975 notify_heap_changed(); 976 } 977 978 if (result != nullptr) { 979 size_t requested = req.size(); 980 size_t actual = req.actual_size(); 981 982 assert (req.is_lab_alloc() || (requested == actual), 983 "Only LAB allocations are elastic: %s, requested = " SIZE_FORMAT ", actual = " SIZE_FORMAT, 984 ShenandoahAllocRequest::alloc_type_to_string(req.type()), requested, actual); 985 986 if (req.is_mutator_alloc()) { 987 notify_mutator_alloc_words(actual, false); 988 989 // If we requested more than we were granted, give the rest back to pacer. 990 // This only matters if we are in the same pacing epoch: do not try to unpace 991 // over the budget for the other phase. 992 if (ShenandoahPacing && (pacer_epoch > 0) && (requested > actual)) { 993 pacer()->unpace_for_alloc(pacer_epoch, requested - actual); 994 } 995 } else { 996 increase_used(actual*HeapWordSize); 997 } 998 } 999 1000 return result; 1001 } 1002 1003 HeapWord* ShenandoahHeap::allocate_memory_under_lock(ShenandoahAllocRequest& req, bool& in_new_region) { 1004 // If we are dealing with mutator allocation, then we may need to block for safepoint. 1005 // We cannot block for safepoint for GC allocations, because there is a high chance 1006 // we are already running at safepoint or from stack watermark machinery, and we cannot 1007 // block again. 1008 ShenandoahHeapLocker locker(lock(), req.is_mutator_alloc()); 1009 return _free_set->allocate(req, in_new_region); 1010 } 1011 1012 HeapWord* ShenandoahHeap::mem_allocate(size_t size, 1013 bool* gc_overhead_limit_was_exceeded) { 1014 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared(size); 1015 return allocate_memory(req); 1016 } 1017 1018 MetaWord* ShenandoahHeap::satisfy_failed_metadata_allocation(ClassLoaderData* loader_data, 1019 size_t size, 1020 Metaspace::MetadataType mdtype) { 1021 MetaWord* result; 1022 1023 // Inform metaspace OOM to GC heuristics if class unloading is possible. 1024 if (heuristics()->can_unload_classes()) { 1025 ShenandoahHeuristics* h = heuristics(); 1026 h->record_metaspace_oom(); 1027 } 1028 1029 // Expand and retry allocation 1030 result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype); 1031 if (result != nullptr) { 1032 return result; 1033 } 1034 1035 // Start full GC 1036 collect(GCCause::_metadata_GC_clear_soft_refs); 1037 1038 // Retry allocation 1039 result = loader_data->metaspace_non_null()->allocate(size, mdtype); 1040 if (result != nullptr) { 1041 return result; 1042 } 1043 1044 // Expand and retry allocation 1045 result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype); 1046 if (result != nullptr) { 1047 return result; 1048 } 1049 1050 // Out of memory 1051 return nullptr; 1052 } 1053 1054 class ShenandoahConcurrentEvacuateRegionObjectClosure : public ObjectClosure { 1055 private: 1056 ShenandoahHeap* const _heap; 1057 Thread* const _thread; 1058 public: 1059 ShenandoahConcurrentEvacuateRegionObjectClosure(ShenandoahHeap* heap) : 1060 _heap(heap), _thread(Thread::current()) {} 1061 1062 void do_object(oop p) { 1063 shenandoah_assert_marked(nullptr, p); 1064 if (!p->is_forwarded()) { 1065 _heap->evacuate_object(p, _thread); 1066 } 1067 } 1068 }; 1069 1070 class ShenandoahEvacuationTask : public WorkerTask { 1071 private: 1072 ShenandoahHeap* const _sh; 1073 ShenandoahCollectionSet* const _cs; 1074 bool _concurrent; 1075 public: 1076 ShenandoahEvacuationTask(ShenandoahHeap* sh, 1077 ShenandoahCollectionSet* cs, 1078 bool concurrent) : 1079 WorkerTask("Shenandoah Evacuation"), 1080 _sh(sh), 1081 _cs(cs), 1082 _concurrent(concurrent) 1083 {} 1084 1085 void work(uint worker_id) { 1086 if (_concurrent) { 1087 ShenandoahConcurrentWorkerSession worker_session(worker_id); 1088 ShenandoahSuspendibleThreadSetJoiner stsj; 1089 ShenandoahEvacOOMScope oom_evac_scope; 1090 do_work(); 1091 } else { 1092 ShenandoahParallelWorkerSession worker_session(worker_id); 1093 ShenandoahEvacOOMScope oom_evac_scope; 1094 do_work(); 1095 } 1096 } 1097 1098 private: 1099 void do_work() { 1100 ShenandoahConcurrentEvacuateRegionObjectClosure cl(_sh); 1101 ShenandoahHeapRegion* r; 1102 while ((r =_cs->claim_next()) != nullptr) { 1103 assert(r->has_live(), "Region " SIZE_FORMAT " should have been reclaimed early", r->index()); 1104 _sh->marked_object_iterate(r, &cl); 1105 1106 if (ShenandoahPacing) { 1107 _sh->pacer()->report_evac(r->used() >> LogHeapWordSize); 1108 } 1109 1110 if (_sh->check_cancelled_gc_and_yield(_concurrent)) { 1111 break; 1112 } 1113 } 1114 } 1115 }; 1116 1117 void ShenandoahHeap::evacuate_collection_set(bool concurrent) { 1118 ShenandoahEvacuationTask task(this, _collection_set, concurrent); 1119 workers()->run_task(&task); 1120 } 1121 1122 oop ShenandoahHeap::evacuate_object(oop p, Thread* thread) { 1123 if (ShenandoahThreadLocalData::is_oom_during_evac(Thread::current())) { 1124 // This thread went through the OOM during evac protocol and it is safe to return 1125 // the forward pointer. It must not attempt to evacuate any more. 1126 return ShenandoahBarrierSet::resolve_forwarded(p); 1127 } 1128 1129 assert(ShenandoahThreadLocalData::is_evac_allowed(thread), "must be enclosed in oom-evac scope"); 1130 1131 size_t size = p->size(); 1132 1133 assert(!heap_region_containing(p)->is_humongous(), "never evacuate humongous objects"); 1134 1135 bool alloc_from_gclab = true; 1136 HeapWord* copy = nullptr; 1137 1138 #ifdef ASSERT 1139 if (ShenandoahOOMDuringEvacALot && 1140 (os::random() & 1) == 0) { // Simulate OOM every ~2nd slow-path call 1141 copy = nullptr; 1142 } else { 1143 #endif 1144 if (UseTLAB) { 1145 copy = allocate_from_gclab(thread, size); 1146 } 1147 if (copy == nullptr) { 1148 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared_gc(size); 1149 copy = allocate_memory(req); 1150 alloc_from_gclab = false; 1151 } 1152 #ifdef ASSERT 1153 } 1154 #endif 1155 1156 if (copy == nullptr) { 1157 control_thread()->handle_alloc_failure_evac(size); 1158 1159 _oom_evac_handler.handle_out_of_memory_during_evacuation(); 1160 1161 return ShenandoahBarrierSet::resolve_forwarded(p); 1162 } 1163 1164 // Copy the object: 1165 Copy::aligned_disjoint_words(cast_from_oop<HeapWord*>(p), copy, size); 1166 1167 // Try to install the new forwarding pointer. 1168 oop copy_val = cast_to_oop(copy); 1169 ContinuationGCSupport::relativize_stack_chunk(copy_val); 1170 1171 oop result = ShenandoahForwarding::try_update_forwardee(p, copy_val); 1172 if (result == copy_val) { 1173 // Successfully evacuated. Our copy is now the public one! 1174 shenandoah_assert_correct(nullptr, copy_val); 1175 return copy_val; 1176 } else { 1177 // Failed to evacuate. We need to deal with the object that is left behind. Since this 1178 // new allocation is certainly after TAMS, it will be considered live in the next cycle. 1179 // But if it happens to contain references to evacuated regions, those references would 1180 // not get updated for this stale copy during this cycle, and we will crash while scanning 1181 // it the next cycle. 1182 // 1183 // For GCLAB allocations, it is enough to rollback the allocation ptr. Either the next 1184 // object will overwrite this stale copy, or the filler object on LAB retirement will 1185 // do this. For non-GCLAB allocations, we have no way to retract the allocation, and 1186 // have to explicitly overwrite the copy with the filler object. With that overwrite, 1187 // we have to keep the fwdptr initialized and pointing to our (stale) copy. 1188 if (alloc_from_gclab) { 1189 ShenandoahThreadLocalData::gclab(thread)->undo_allocation(copy, size); 1190 } else { 1191 fill_with_object(copy, size); 1192 shenandoah_assert_correct(nullptr, copy_val); 1193 } 1194 shenandoah_assert_correct(nullptr, result); 1195 return result; 1196 } 1197 } 1198 1199 void ShenandoahHeap::trash_cset_regions() { 1200 ShenandoahHeapLocker locker(lock()); 1201 1202 ShenandoahCollectionSet* set = collection_set(); 1203 ShenandoahHeapRegion* r; 1204 set->clear_current_index(); 1205 while ((r = set->next()) != nullptr) { 1206 r->make_trash(); 1207 } 1208 collection_set()->clear(); 1209 } 1210 1211 void ShenandoahHeap::print_heap_regions_on(outputStream* st) const { 1212 st->print_cr("Heap Regions:"); 1213 st->print_cr("Region state: EU=empty-uncommitted, EC=empty-committed, R=regular, H=humongous start, HP=pinned humongous start"); 1214 st->print_cr(" HC=humongous continuation, CS=collection set, TR=trash, P=pinned, CSP=pinned collection set"); 1215 st->print_cr("BTE=bottom/top/end, TAMS=top-at-mark-start"); 1216 st->print_cr("UWM=update watermark, U=used"); 1217 st->print_cr("T=TLAB allocs, G=GCLAB allocs"); 1218 st->print_cr("S=shared allocs, L=live data"); 1219 st->print_cr("CP=critical pins"); 1220 1221 for (size_t i = 0; i < num_regions(); i++) { 1222 get_region(i)->print_on(st); 1223 } 1224 } 1225 1226 void ShenandoahHeap::trash_humongous_region_at(ShenandoahHeapRegion* start) { 1227 assert(start->is_humongous_start(), "reclaim regions starting with the first one"); 1228 1229 oop humongous_obj = cast_to_oop(start->bottom()); 1230 size_t size = humongous_obj->size(); 1231 size_t required_regions = ShenandoahHeapRegion::required_regions(size * HeapWordSize); 1232 size_t index = start->index() + required_regions - 1; 1233 1234 assert(!start->has_live(), "liveness must be zero"); 1235 1236 for(size_t i = 0; i < required_regions; i++) { 1237 // Reclaim from tail. Otherwise, assertion fails when printing region to trace log, 1238 // as it expects that every region belongs to a humongous region starting with a humongous start region. 1239 ShenandoahHeapRegion* region = get_region(index --); 1240 1241 assert(region->is_humongous(), "expect correct humongous start or continuation"); 1242 assert(!region->is_cset(), "Humongous region should not be in collection set"); 1243 1244 region->make_trash_immediate(); 1245 } 1246 } 1247 1248 class ShenandoahCheckCleanGCLABClosure : public ThreadClosure { 1249 public: 1250 ShenandoahCheckCleanGCLABClosure() {} 1251 void do_thread(Thread* thread) { 1252 PLAB* gclab = ShenandoahThreadLocalData::gclab(thread); 1253 assert(gclab != nullptr, "GCLAB should be initialized for %s", thread->name()); 1254 assert(gclab->words_remaining() == 0, "GCLAB should not need retirement"); 1255 } 1256 }; 1257 1258 class ShenandoahRetireGCLABClosure : public ThreadClosure { 1259 private: 1260 bool const _resize; 1261 public: 1262 ShenandoahRetireGCLABClosure(bool resize) : _resize(resize) {} 1263 void do_thread(Thread* thread) { 1264 PLAB* gclab = ShenandoahThreadLocalData::gclab(thread); 1265 assert(gclab != nullptr, "GCLAB should be initialized for %s", thread->name()); 1266 gclab->retire(); 1267 if (_resize && ShenandoahThreadLocalData::gclab_size(thread) > 0) { 1268 ShenandoahThreadLocalData::set_gclab_size(thread, 0); 1269 } 1270 } 1271 }; 1272 1273 void ShenandoahHeap::labs_make_parsable() { 1274 assert(UseTLAB, "Only call with UseTLAB"); 1275 1276 ShenandoahRetireGCLABClosure cl(false); 1277 1278 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1279 ThreadLocalAllocBuffer& tlab = t->tlab(); 1280 tlab.make_parsable(); 1281 cl.do_thread(t); 1282 } 1283 1284 workers()->threads_do(&cl); 1285 } 1286 1287 void ShenandoahHeap::tlabs_retire(bool resize) { 1288 assert(UseTLAB, "Only call with UseTLAB"); 1289 assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled"); 1290 1291 ThreadLocalAllocStats stats; 1292 1293 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1294 ThreadLocalAllocBuffer& tlab = t->tlab(); 1295 tlab.retire(&stats); 1296 if (resize) { 1297 tlab.resize(); 1298 } 1299 } 1300 1301 stats.publish(); 1302 1303 #ifdef ASSERT 1304 ShenandoahCheckCleanGCLABClosure cl; 1305 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1306 cl.do_thread(t); 1307 } 1308 workers()->threads_do(&cl); 1309 #endif 1310 } 1311 1312 void ShenandoahHeap::gclabs_retire(bool resize) { 1313 assert(UseTLAB, "Only call with UseTLAB"); 1314 assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled"); 1315 1316 ShenandoahRetireGCLABClosure cl(resize); 1317 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1318 cl.do_thread(t); 1319 } 1320 workers()->threads_do(&cl); 1321 1322 if (safepoint_workers() != nullptr) { 1323 safepoint_workers()->threads_do(&cl); 1324 } 1325 } 1326 1327 // Returns size in bytes 1328 size_t ShenandoahHeap::unsafe_max_tlab_alloc(Thread *thread) const { 1329 // Return the max allowed size, and let the allocation path 1330 // figure out the safe size for current allocation. 1331 return ShenandoahHeapRegion::max_tlab_size_bytes(); 1332 } 1333 1334 size_t ShenandoahHeap::max_tlab_size() const { 1335 // Returns size in words 1336 return ShenandoahHeapRegion::max_tlab_size_words(); 1337 } 1338 1339 void ShenandoahHeap::collect(GCCause::Cause cause) { 1340 control_thread()->request_gc(cause); 1341 } 1342 1343 void ShenandoahHeap::do_full_collection(bool clear_all_soft_refs) { 1344 //assert(false, "Shouldn't need to do full collections"); 1345 } 1346 1347 HeapWord* ShenandoahHeap::block_start(const void* addr) const { 1348 ShenandoahHeapRegion* r = heap_region_containing(addr); 1349 if (r != nullptr) { 1350 return r->block_start(addr); 1351 } 1352 return nullptr; 1353 } 1354 1355 bool ShenandoahHeap::block_is_obj(const HeapWord* addr) const { 1356 ShenandoahHeapRegion* r = heap_region_containing(addr); 1357 return r->block_is_obj(addr); 1358 } 1359 1360 bool ShenandoahHeap::print_location(outputStream* st, void* addr) const { 1361 return BlockLocationPrinter<ShenandoahHeap>::print_location(st, addr); 1362 } 1363 1364 void ShenandoahHeap::prepare_for_verify() { 1365 if (SafepointSynchronize::is_at_safepoint() && UseTLAB) { 1366 labs_make_parsable(); 1367 } 1368 } 1369 1370 void ShenandoahHeap::gc_threads_do(ThreadClosure* tcl) const { 1371 if (_shenandoah_policy->is_at_shutdown()) { 1372 return; 1373 } 1374 1375 if (_control_thread != nullptr) { 1376 tcl->do_thread(_control_thread); 1377 } 1378 1379 workers()->threads_do(tcl); 1380 if (_safepoint_workers != nullptr) { 1381 _safepoint_workers->threads_do(tcl); 1382 } 1383 } 1384 1385 void ShenandoahHeap::print_tracing_info() const { 1386 LogTarget(Info, gc, stats) lt; 1387 if (lt.is_enabled()) { 1388 ResourceMark rm; 1389 LogStream ls(lt); 1390 1391 phase_timings()->print_global_on(&ls); 1392 1393 ls.cr(); 1394 ls.cr(); 1395 1396 shenandoah_policy()->print_gc_stats(&ls); 1397 1398 ls.cr(); 1399 ls.cr(); 1400 } 1401 } 1402 1403 void ShenandoahHeap::verify(VerifyOption vo) { 1404 if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) { 1405 if (ShenandoahVerify) { 1406 verifier()->verify_generic(vo); 1407 } else { 1408 // TODO: Consider allocating verification bitmaps on demand, 1409 // and turn this on unconditionally. 1410 } 1411 } 1412 } 1413 size_t ShenandoahHeap::tlab_capacity(Thread *thr) const { 1414 return _free_set->capacity(); 1415 } 1416 1417 class ObjectIterateScanRootClosure : public BasicOopIterateClosure { 1418 private: 1419 MarkBitMap* _bitmap; 1420 ShenandoahScanObjectStack* _oop_stack; 1421 ShenandoahHeap* const _heap; 1422 ShenandoahMarkingContext* const _marking_context; 1423 1424 template <class T> 1425 void do_oop_work(T* p) { 1426 T o = RawAccess<>::oop_load(p); 1427 if (!CompressedOops::is_null(o)) { 1428 oop obj = CompressedOops::decode_not_null(o); 1429 if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) { 1430 // There may be dead oops in weak roots in concurrent root phase, do not touch them. 1431 return; 1432 } 1433 obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj); 1434 1435 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1436 if (!_bitmap->is_marked(obj)) { 1437 _bitmap->mark(obj); 1438 _oop_stack->push(obj); 1439 } 1440 } 1441 } 1442 public: 1443 ObjectIterateScanRootClosure(MarkBitMap* bitmap, ShenandoahScanObjectStack* oop_stack) : 1444 _bitmap(bitmap), _oop_stack(oop_stack), _heap(ShenandoahHeap::heap()), 1445 _marking_context(_heap->marking_context()) {} 1446 void do_oop(oop* p) { do_oop_work(p); } 1447 void do_oop(narrowOop* p) { do_oop_work(p); } 1448 }; 1449 1450 /* 1451 * This is public API, used in preparation of object_iterate(). 1452 * Since we don't do linear scan of heap in object_iterate() (see comment below), we don't 1453 * need to make the heap parsable. For Shenandoah-internal linear heap scans that we can 1454 * control, we call SH::tlabs_retire, SH::gclabs_retire. 1455 */ 1456 void ShenandoahHeap::ensure_parsability(bool retire_tlabs) { 1457 // No-op. 1458 } 1459 1460 /* 1461 * Iterates objects in the heap. This is public API, used for, e.g., heap dumping. 1462 * 1463 * We cannot safely iterate objects by doing a linear scan at random points in time. Linear 1464 * scanning needs to deal with dead objects, which may have dead Klass* pointers (e.g. 1465 * calling oopDesc::size() would crash) or dangling reference fields (crashes) etc. Linear 1466 * scanning therefore depends on having a valid marking bitmap to support it. However, we only 1467 * have a valid marking bitmap after successful marking. In particular, we *don't* have a valid 1468 * marking bitmap during marking, after aborted marking or during/after cleanup (when we just 1469 * wiped the bitmap in preparation for next marking). 1470 * 1471 * For all those reasons, we implement object iteration as a single marking traversal, reporting 1472 * objects as we mark+traverse through the heap, starting from GC roots. JVMTI IterateThroughHeap 1473 * is allowed to report dead objects, but is not required to do so. 1474 */ 1475 void ShenandoahHeap::object_iterate(ObjectClosure* cl) { 1476 // Reset bitmap 1477 if (!prepare_aux_bitmap_for_iteration()) 1478 return; 1479 1480 ShenandoahScanObjectStack oop_stack; 1481 ObjectIterateScanRootClosure oops(&_aux_bit_map, &oop_stack); 1482 // Seed the stack with root scan 1483 scan_roots_for_iteration(&oop_stack, &oops); 1484 1485 // Work through the oop stack to traverse heap 1486 while (! oop_stack.is_empty()) { 1487 oop obj = oop_stack.pop(); 1488 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1489 cl->do_object(obj); 1490 obj->oop_iterate(&oops); 1491 } 1492 1493 assert(oop_stack.is_empty(), "should be empty"); 1494 // Reclaim bitmap 1495 reclaim_aux_bitmap_for_iteration(); 1496 } 1497 1498 bool ShenandoahHeap::prepare_aux_bitmap_for_iteration() { 1499 assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints"); 1500 1501 if (!_aux_bitmap_region_special && !os::commit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size(), false)) { 1502 log_warning(gc)("Could not commit native memory for auxiliary marking bitmap for heap iteration"); 1503 return false; 1504 } 1505 // Reset bitmap 1506 _aux_bit_map.clear(); 1507 return true; 1508 } 1509 1510 void ShenandoahHeap::scan_roots_for_iteration(ShenandoahScanObjectStack* oop_stack, ObjectIterateScanRootClosure* oops) { 1511 // Process GC roots according to current GC cycle 1512 // This populates the work stack with initial objects 1513 // It is important to relinquish the associated locks before diving 1514 // into heap dumper 1515 uint n_workers = safepoint_workers() != nullptr ? safepoint_workers()->active_workers() : 1; 1516 ShenandoahHeapIterationRootScanner rp(n_workers); 1517 rp.roots_do(oops); 1518 } 1519 1520 void ShenandoahHeap::reclaim_aux_bitmap_for_iteration() { 1521 if (!_aux_bitmap_region_special && !os::uncommit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size())) { 1522 log_warning(gc)("Could not uncommit native memory for auxiliary marking bitmap for heap iteration"); 1523 } 1524 } 1525 1526 // Closure for parallelly iterate objects 1527 class ShenandoahObjectIterateParScanClosure : public BasicOopIterateClosure { 1528 private: 1529 MarkBitMap* _bitmap; 1530 ShenandoahObjToScanQueue* _queue; 1531 ShenandoahHeap* const _heap; 1532 ShenandoahMarkingContext* const _marking_context; 1533 1534 template <class T> 1535 void do_oop_work(T* p) { 1536 T o = RawAccess<>::oop_load(p); 1537 if (!CompressedOops::is_null(o)) { 1538 oop obj = CompressedOops::decode_not_null(o); 1539 if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) { 1540 // There may be dead oops in weak roots in concurrent root phase, do not touch them. 1541 return; 1542 } 1543 obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj); 1544 1545 assert(oopDesc::is_oop(obj), "Must be a valid oop"); 1546 if (_bitmap->par_mark(obj)) { 1547 _queue->push(ShenandoahMarkTask(obj)); 1548 } 1549 } 1550 } 1551 public: 1552 ShenandoahObjectIterateParScanClosure(MarkBitMap* bitmap, ShenandoahObjToScanQueue* q) : 1553 _bitmap(bitmap), _queue(q), _heap(ShenandoahHeap::heap()), 1554 _marking_context(_heap->marking_context()) {} 1555 void do_oop(oop* p) { do_oop_work(p); } 1556 void do_oop(narrowOop* p) { do_oop_work(p); } 1557 }; 1558 1559 // Object iterator for parallel heap iteraion. 1560 // The root scanning phase happenes in construction as a preparation of 1561 // parallel marking queues. 1562 // Every worker processes it's own marking queue. work-stealing is used 1563 // to balance workload. 1564 class ShenandoahParallelObjectIterator : public ParallelObjectIteratorImpl { 1565 private: 1566 uint _num_workers; 1567 bool _init_ready; 1568 MarkBitMap* _aux_bit_map; 1569 ShenandoahHeap* _heap; 1570 ShenandoahScanObjectStack _roots_stack; // global roots stack 1571 ShenandoahObjToScanQueueSet* _task_queues; 1572 public: 1573 ShenandoahParallelObjectIterator(uint num_workers, MarkBitMap* bitmap) : 1574 _num_workers(num_workers), 1575 _init_ready(false), 1576 _aux_bit_map(bitmap), 1577 _heap(ShenandoahHeap::heap()) { 1578 // Initialize bitmap 1579 _init_ready = _heap->prepare_aux_bitmap_for_iteration(); 1580 if (!_init_ready) { 1581 return; 1582 } 1583 1584 ObjectIterateScanRootClosure oops(_aux_bit_map, &_roots_stack); 1585 _heap->scan_roots_for_iteration(&_roots_stack, &oops); 1586 1587 _init_ready = prepare_worker_queues(); 1588 } 1589 1590 ~ShenandoahParallelObjectIterator() { 1591 // Reclaim bitmap 1592 _heap->reclaim_aux_bitmap_for_iteration(); 1593 // Reclaim queue for workers 1594 if (_task_queues!= nullptr) { 1595 for (uint i = 0; i < _num_workers; ++i) { 1596 ShenandoahObjToScanQueue* q = _task_queues->queue(i); 1597 if (q != nullptr) { 1598 delete q; 1599 _task_queues->register_queue(i, nullptr); 1600 } 1601 } 1602 delete _task_queues; 1603 _task_queues = nullptr; 1604 } 1605 } 1606 1607 virtual void object_iterate(ObjectClosure* cl, uint worker_id) { 1608 if (_init_ready) { 1609 object_iterate_parallel(cl, worker_id, _task_queues); 1610 } 1611 } 1612 1613 private: 1614 // Divide global root_stack into worker queues 1615 bool prepare_worker_queues() { 1616 _task_queues = new ShenandoahObjToScanQueueSet((int) _num_workers); 1617 // Initialize queues for every workers 1618 for (uint i = 0; i < _num_workers; ++i) { 1619 ShenandoahObjToScanQueue* task_queue = new ShenandoahObjToScanQueue(); 1620 _task_queues->register_queue(i, task_queue); 1621 } 1622 // Divide roots among the workers. Assume that object referencing distribution 1623 // is related with root kind, use round-robin to make every worker have same chance 1624 // to process every kind of roots 1625 size_t roots_num = _roots_stack.size(); 1626 if (roots_num == 0) { 1627 // No work to do 1628 return false; 1629 } 1630 1631 for (uint j = 0; j < roots_num; j++) { 1632 uint stack_id = j % _num_workers; 1633 oop obj = _roots_stack.pop(); 1634 _task_queues->queue(stack_id)->push(ShenandoahMarkTask(obj)); 1635 } 1636 return true; 1637 } 1638 1639 void object_iterate_parallel(ObjectClosure* cl, 1640 uint worker_id, 1641 ShenandoahObjToScanQueueSet* queue_set) { 1642 assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints"); 1643 assert(queue_set != nullptr, "task queue must not be null"); 1644 1645 ShenandoahObjToScanQueue* q = queue_set->queue(worker_id); 1646 assert(q != nullptr, "object iterate queue must not be null"); 1647 1648 ShenandoahMarkTask t; 1649 ShenandoahObjectIterateParScanClosure oops(_aux_bit_map, q); 1650 1651 // Work through the queue to traverse heap. 1652 // Steal when there is no task in queue. 1653 while (q->pop(t) || queue_set->steal(worker_id, t)) { 1654 oop obj = t.obj(); 1655 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1656 cl->do_object(obj); 1657 obj->oop_iterate(&oops); 1658 } 1659 assert(q->is_empty(), "should be empty"); 1660 } 1661 }; 1662 1663 ParallelObjectIteratorImpl* ShenandoahHeap::parallel_object_iterator(uint workers) { 1664 return new ShenandoahParallelObjectIterator(workers, &_aux_bit_map); 1665 } 1666 1667 // Keep alive an object that was loaded with AS_NO_KEEPALIVE. 1668 void ShenandoahHeap::keep_alive(oop obj) { 1669 if (is_concurrent_mark_in_progress() && (obj != nullptr)) { 1670 ShenandoahBarrierSet::barrier_set()->enqueue(obj); 1671 } 1672 } 1673 1674 void ShenandoahHeap::heap_region_iterate(ShenandoahHeapRegionClosure* blk) const { 1675 for (size_t i = 0; i < num_regions(); i++) { 1676 ShenandoahHeapRegion* current = get_region(i); 1677 blk->heap_region_do(current); 1678 } 1679 } 1680 1681 class ShenandoahParallelHeapRegionTask : public WorkerTask { 1682 private: 1683 ShenandoahHeap* const _heap; 1684 ShenandoahHeapRegionClosure* const _blk; 1685 1686 shenandoah_padding(0); 1687 volatile size_t _index; 1688 shenandoah_padding(1); 1689 1690 public: 1691 ShenandoahParallelHeapRegionTask(ShenandoahHeapRegionClosure* blk) : 1692 WorkerTask("Shenandoah Parallel Region Operation"), 1693 _heap(ShenandoahHeap::heap()), _blk(blk), _index(0) {} 1694 1695 void work(uint worker_id) { 1696 ShenandoahParallelWorkerSession worker_session(worker_id); 1697 size_t stride = ShenandoahParallelRegionStride; 1698 1699 size_t max = _heap->num_regions(); 1700 while (Atomic::load(&_index) < max) { 1701 size_t cur = Atomic::fetch_then_add(&_index, stride, memory_order_relaxed); 1702 size_t start = cur; 1703 size_t end = MIN2(cur + stride, max); 1704 if (start >= max) break; 1705 1706 for (size_t i = cur; i < end; i++) { 1707 ShenandoahHeapRegion* current = _heap->get_region(i); 1708 _blk->heap_region_do(current); 1709 } 1710 } 1711 } 1712 }; 1713 1714 void ShenandoahHeap::parallel_heap_region_iterate(ShenandoahHeapRegionClosure* blk) const { 1715 assert(blk->is_thread_safe(), "Only thread-safe closures here"); 1716 if (num_regions() > ShenandoahParallelRegionStride) { 1717 ShenandoahParallelHeapRegionTask task(blk); 1718 workers()->run_task(&task); 1719 } else { 1720 heap_region_iterate(blk); 1721 } 1722 } 1723 1724 class ShenandoahRendezvousClosure : public HandshakeClosure { 1725 public: 1726 inline ShenandoahRendezvousClosure() : HandshakeClosure("ShenandoahRendezvous") {} 1727 inline void do_thread(Thread* thread) {} 1728 }; 1729 1730 void ShenandoahHeap::rendezvous_threads() { 1731 ShenandoahRendezvousClosure cl; 1732 Handshake::execute(&cl); 1733 } 1734 1735 void ShenandoahHeap::recycle_trash() { 1736 free_set()->recycle_trash(); 1737 } 1738 1739 class ShenandoahResetUpdateRegionStateClosure : public ShenandoahHeapRegionClosure { 1740 private: 1741 ShenandoahMarkingContext* const _ctx; 1742 public: 1743 ShenandoahResetUpdateRegionStateClosure() : _ctx(ShenandoahHeap::heap()->marking_context()) {} 1744 1745 void heap_region_do(ShenandoahHeapRegion* r) { 1746 if (r->is_active()) { 1747 // Reset live data and set TAMS optimistically. We would recheck these under the pause 1748 // anyway to capture any updates that happened since now. 1749 r->clear_live_data(); 1750 _ctx->capture_top_at_mark_start(r); 1751 } 1752 } 1753 1754 bool is_thread_safe() { return true; } 1755 }; 1756 1757 void ShenandoahHeap::prepare_gc() { 1758 reset_mark_bitmap(); 1759 1760 ShenandoahResetUpdateRegionStateClosure cl; 1761 parallel_heap_region_iterate(&cl); 1762 } 1763 1764 class ShenandoahFinalMarkUpdateRegionStateClosure : public ShenandoahHeapRegionClosure { 1765 private: 1766 ShenandoahMarkingContext* const _ctx; 1767 ShenandoahHeapLock* const _lock; 1768 1769 public: 1770 ShenandoahFinalMarkUpdateRegionStateClosure() : 1771 _ctx(ShenandoahHeap::heap()->complete_marking_context()), _lock(ShenandoahHeap::heap()->lock()) {} 1772 1773 void heap_region_do(ShenandoahHeapRegion* r) { 1774 if (r->is_active()) { 1775 // All allocations past TAMS are implicitly live, adjust the region data. 1776 // Bitmaps/TAMS are swapped at this point, so we need to poll complete bitmap. 1777 HeapWord *tams = _ctx->top_at_mark_start(r); 1778 HeapWord *top = r->top(); 1779 if (top > tams) { 1780 r->increase_live_data_alloc_words(pointer_delta(top, tams)); 1781 } 1782 1783 // We are about to select the collection set, make sure it knows about 1784 // current pinning status. Also, this allows trashing more regions that 1785 // now have their pinning status dropped. 1786 if (r->is_pinned()) { 1787 if (r->pin_count() == 0) { 1788 ShenandoahHeapLocker locker(_lock); 1789 r->make_unpinned(); 1790 } 1791 } else { 1792 if (r->pin_count() > 0) { 1793 ShenandoahHeapLocker locker(_lock); 1794 r->make_pinned(); 1795 } 1796 } 1797 1798 // Remember limit for updating refs. It's guaranteed that we get no 1799 // from-space-refs written from here on. 1800 r->set_update_watermark_at_safepoint(r->top()); 1801 } else { 1802 assert(!r->has_live(), "Region " SIZE_FORMAT " should have no live data", r->index()); 1803 assert(_ctx->top_at_mark_start(r) == r->top(), 1804 "Region " SIZE_FORMAT " should have correct TAMS", r->index()); 1805 } 1806 } 1807 1808 bool is_thread_safe() { return true; } 1809 }; 1810 1811 void ShenandoahHeap::prepare_regions_and_collection_set(bool concurrent) { 1812 assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC"); 1813 { 1814 ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::final_update_region_states : 1815 ShenandoahPhaseTimings::degen_gc_final_update_region_states); 1816 ShenandoahFinalMarkUpdateRegionStateClosure cl; 1817 parallel_heap_region_iterate(&cl); 1818 1819 assert_pinned_region_status(); 1820 } 1821 1822 { 1823 ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::choose_cset : 1824 ShenandoahPhaseTimings::degen_gc_choose_cset); 1825 ShenandoahHeapLocker locker(lock()); 1826 _collection_set->clear(); 1827 heuristics()->choose_collection_set(_collection_set); 1828 } 1829 1830 { 1831 ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::final_rebuild_freeset : 1832 ShenandoahPhaseTimings::degen_gc_final_rebuild_freeset); 1833 ShenandoahHeapLocker locker(lock()); 1834 _free_set->rebuild(); 1835 } 1836 } 1837 1838 void ShenandoahHeap::do_class_unloading() { 1839 _unloader.unload(); 1840 } 1841 1842 void ShenandoahHeap::stw_weak_refs(bool full_gc) { 1843 // Weak refs processing 1844 ShenandoahPhaseTimings::Phase phase = full_gc ? ShenandoahPhaseTimings::full_gc_weakrefs 1845 : ShenandoahPhaseTimings::degen_gc_weakrefs; 1846 ShenandoahTimingsTracker t(phase); 1847 ShenandoahGCWorkerPhase worker_phase(phase); 1848 ref_processor()->process_references(phase, workers(), false /* concurrent */); 1849 } 1850 1851 void ShenandoahHeap::prepare_update_heap_references(bool concurrent) { 1852 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "must be at safepoint"); 1853 1854 // Evacuation is over, no GCLABs are needed anymore. GCLABs are under URWM, so we need to 1855 // make them parsable for update code to work correctly. Plus, we can compute new sizes 1856 // for future GCLABs here. 1857 if (UseTLAB) { 1858 ShenandoahGCPhase phase(concurrent ? 1859 ShenandoahPhaseTimings::init_update_refs_manage_gclabs : 1860 ShenandoahPhaseTimings::degen_gc_init_update_refs_manage_gclabs); 1861 gclabs_retire(ResizeTLAB); 1862 } 1863 1864 _update_refs_iterator.reset(); 1865 } 1866 1867 void ShenandoahHeap::propagate_gc_state_to_java_threads() { 1868 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Must be at Shenandoah safepoint"); 1869 if (_gc_state_changed) { 1870 _gc_state_changed = false; 1871 char state = gc_state(); 1872 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1873 ShenandoahThreadLocalData::set_gc_state(t, state); 1874 } 1875 } 1876 } 1877 1878 void ShenandoahHeap::set_gc_state(uint mask, bool value) { 1879 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Must be at Shenandoah safepoint"); 1880 _gc_state.set_cond(mask, value); 1881 _gc_state_changed = true; 1882 } 1883 1884 void ShenandoahHeap::set_concurrent_mark_in_progress(bool in_progress) { 1885 assert(!has_forwarded_objects(), "Not expected before/after mark phase"); 1886 set_gc_state(MARKING, in_progress); 1887 ShenandoahBarrierSet::satb_mark_queue_set().set_active_all_threads(in_progress, !in_progress); 1888 } 1889 1890 void ShenandoahHeap::set_evacuation_in_progress(bool in_progress) { 1891 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Only call this at safepoint"); 1892 set_gc_state(EVACUATION, in_progress); 1893 } 1894 1895 void ShenandoahHeap::set_concurrent_strong_root_in_progress(bool in_progress) { 1896 if (in_progress) { 1897 _concurrent_strong_root_in_progress.set(); 1898 } else { 1899 _concurrent_strong_root_in_progress.unset(); 1900 } 1901 } 1902 1903 void ShenandoahHeap::set_concurrent_weak_root_in_progress(bool cond) { 1904 set_gc_state(WEAK_ROOTS, cond); 1905 } 1906 1907 GCTracer* ShenandoahHeap::tracer() { 1908 return shenandoah_policy()->tracer(); 1909 } 1910 1911 size_t ShenandoahHeap::tlab_used(Thread* thread) const { 1912 return _free_set->used(); 1913 } 1914 1915 bool ShenandoahHeap::try_cancel_gc() { 1916 jbyte prev = _cancelled_gc.cmpxchg(CANCELLED, CANCELLABLE); 1917 return prev == CANCELLABLE; 1918 } 1919 1920 void ShenandoahHeap::cancel_gc(GCCause::Cause cause) { 1921 if (try_cancel_gc()) { 1922 FormatBuffer<> msg("Cancelling GC: %s", GCCause::to_string(cause)); 1923 log_info(gc)("%s", msg.buffer()); 1924 Events::log(Thread::current(), "%s", msg.buffer()); 1925 } 1926 } 1927 1928 uint ShenandoahHeap::max_workers() { 1929 return _max_workers; 1930 } 1931 1932 void ShenandoahHeap::stop() { 1933 // The shutdown sequence should be able to terminate when GC is running. 1934 1935 // Step 0. Notify policy to disable event recording and prevent visiting gc threads during shutdown 1936 _shenandoah_policy->record_shutdown(); 1937 1938 // Step 1. Notify control thread that we are in shutdown. 1939 // Note that we cannot do that with stop(), because stop() is blocking and waits for the actual shutdown. 1940 // Doing stop() here would wait for the normal GC cycle to complete, never falling through to cancel below. 1941 control_thread()->prepare_for_graceful_shutdown(); 1942 1943 // Step 2. Notify GC workers that we are cancelling GC. 1944 cancel_gc(GCCause::_shenandoah_stop_vm); 1945 1946 // Step 3. Wait until GC worker exits normally. 1947 control_thread()->stop(); 1948 } 1949 1950 void ShenandoahHeap::stw_unload_classes(bool full_gc) { 1951 if (!unload_classes()) return; 1952 ClassUnloadingContext ctx(_workers->active_workers(), 1953 true /* unregister_nmethods_during_purge */, 1954 false /* lock_nmethod_free_separately */); 1955 1956 // Unload classes and purge SystemDictionary. 1957 { 1958 ShenandoahPhaseTimings::Phase phase = full_gc ? 1959 ShenandoahPhaseTimings::full_gc_purge_class_unload : 1960 ShenandoahPhaseTimings::degen_gc_purge_class_unload; 1961 ShenandoahIsAliveSelector is_alive; 1962 { 1963 CodeCache::UnlinkingScope scope(is_alive.is_alive_closure()); 1964 ShenandoahGCPhase gc_phase(phase); 1965 ShenandoahGCWorkerPhase worker_phase(phase); 1966 bool unloading_occurred = SystemDictionary::do_unloading(gc_timer()); 1967 1968 uint num_workers = _workers->active_workers(); 1969 ShenandoahClassUnloadingTask unlink_task(phase, num_workers, unloading_occurred); 1970 _workers->run_task(&unlink_task); 1971 } 1972 // Release unloaded nmethods's memory. 1973 ClassUnloadingContext::context()->purge_and_free_nmethods(); 1974 } 1975 1976 { 1977 ShenandoahGCPhase phase(full_gc ? 1978 ShenandoahPhaseTimings::full_gc_purge_cldg : 1979 ShenandoahPhaseTimings::degen_gc_purge_cldg); 1980 ClassLoaderDataGraph::purge(true /* at_safepoint */); 1981 } 1982 // Resize and verify metaspace 1983 MetaspaceGC::compute_new_size(); 1984 DEBUG_ONLY(MetaspaceUtils::verify();) 1985 } 1986 1987 // Weak roots are either pre-evacuated (final mark) or updated (final updaterefs), 1988 // so they should not have forwarded oops. 1989 // However, we do need to "null" dead oops in the roots, if can not be done 1990 // in concurrent cycles. 1991 void ShenandoahHeap::stw_process_weak_roots(bool full_gc) { 1992 uint num_workers = _workers->active_workers(); 1993 ShenandoahPhaseTimings::Phase timing_phase = full_gc ? 1994 ShenandoahPhaseTimings::full_gc_purge_weak_par : 1995 ShenandoahPhaseTimings::degen_gc_purge_weak_par; 1996 ShenandoahGCPhase phase(timing_phase); 1997 ShenandoahGCWorkerPhase worker_phase(timing_phase); 1998 // Cleanup weak roots 1999 if (has_forwarded_objects()) { 2000 ShenandoahForwardedIsAliveClosure is_alive; 2001 ShenandoahUpdateRefsClosure keep_alive; 2002 ShenandoahParallelWeakRootsCleaningTask<ShenandoahForwardedIsAliveClosure, ShenandoahUpdateRefsClosure> 2003 cleaning_task(timing_phase, &is_alive, &keep_alive, num_workers); 2004 _workers->run_task(&cleaning_task); 2005 } else { 2006 ShenandoahIsAliveClosure is_alive; 2007 #ifdef ASSERT 2008 ShenandoahAssertNotForwardedClosure verify_cl; 2009 ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, ShenandoahAssertNotForwardedClosure> 2010 cleaning_task(timing_phase, &is_alive, &verify_cl, num_workers); 2011 #else 2012 ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, DoNothingClosure> 2013 cleaning_task(timing_phase, &is_alive, &do_nothing_cl, num_workers); 2014 #endif 2015 _workers->run_task(&cleaning_task); 2016 } 2017 } 2018 2019 void ShenandoahHeap::parallel_cleaning(bool full_gc) { 2020 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 2021 assert(is_stw_gc_in_progress(), "Only for Degenerated and Full GC"); 2022 ShenandoahGCPhase phase(full_gc ? 2023 ShenandoahPhaseTimings::full_gc_purge : 2024 ShenandoahPhaseTimings::degen_gc_purge); 2025 stw_weak_refs(full_gc); 2026 stw_process_weak_roots(full_gc); 2027 stw_unload_classes(full_gc); 2028 } 2029 2030 void ShenandoahHeap::set_has_forwarded_objects(bool cond) { 2031 set_gc_state(HAS_FORWARDED, cond); 2032 } 2033 2034 void ShenandoahHeap::set_unload_classes(bool uc) { 2035 _unload_classes.set_cond(uc); 2036 } 2037 2038 bool ShenandoahHeap::unload_classes() const { 2039 return _unload_classes.is_set(); 2040 } 2041 2042 address ShenandoahHeap::in_cset_fast_test_addr() { 2043 ShenandoahHeap* heap = ShenandoahHeap::heap(); 2044 assert(heap->collection_set() != nullptr, "Sanity"); 2045 return (address) heap->collection_set()->biased_map_address(); 2046 } 2047 2048 size_t ShenandoahHeap::bytes_allocated_since_gc_start() const { 2049 return Atomic::load(&_bytes_allocated_since_gc_start); 2050 } 2051 2052 void ShenandoahHeap::reset_bytes_allocated_since_gc_start() { 2053 Atomic::store(&_bytes_allocated_since_gc_start, (size_t)0); 2054 } 2055 2056 void ShenandoahHeap::set_degenerated_gc_in_progress(bool in_progress) { 2057 _degenerated_gc_in_progress.set_cond(in_progress); 2058 } 2059 2060 void ShenandoahHeap::set_full_gc_in_progress(bool in_progress) { 2061 _full_gc_in_progress.set_cond(in_progress); 2062 } 2063 2064 void ShenandoahHeap::set_full_gc_move_in_progress(bool in_progress) { 2065 assert (is_full_gc_in_progress(), "should be"); 2066 _full_gc_move_in_progress.set_cond(in_progress); 2067 } 2068 2069 void ShenandoahHeap::set_update_refs_in_progress(bool in_progress) { 2070 set_gc_state(UPDATEREFS, in_progress); 2071 } 2072 2073 void ShenandoahHeap::register_nmethod(nmethod* nm) { 2074 ShenandoahCodeRoots::register_nmethod(nm); 2075 } 2076 2077 void ShenandoahHeap::unregister_nmethod(nmethod* nm) { 2078 ShenandoahCodeRoots::unregister_nmethod(nm); 2079 } 2080 2081 void ShenandoahHeap::pin_object(JavaThread* thr, oop o) { 2082 heap_region_containing(o)->record_pin(); 2083 } 2084 2085 void ShenandoahHeap::unpin_object(JavaThread* thr, oop o) { 2086 ShenandoahHeapRegion* r = heap_region_containing(o); 2087 assert(r != nullptr, "Sanity"); 2088 assert(r->pin_count() > 0, "Region " SIZE_FORMAT " should have non-zero pins", r->index()); 2089 r->record_unpin(); 2090 } 2091 2092 void ShenandoahHeap::sync_pinned_region_status() { 2093 ShenandoahHeapLocker locker(lock()); 2094 2095 for (size_t i = 0; i < num_regions(); i++) { 2096 ShenandoahHeapRegion *r = get_region(i); 2097 if (r->is_active()) { 2098 if (r->is_pinned()) { 2099 if (r->pin_count() == 0) { 2100 r->make_unpinned(); 2101 } 2102 } else { 2103 if (r->pin_count() > 0) { 2104 r->make_pinned(); 2105 } 2106 } 2107 } 2108 } 2109 2110 assert_pinned_region_status(); 2111 } 2112 2113 #ifdef ASSERT 2114 void ShenandoahHeap::assert_pinned_region_status() { 2115 for (size_t i = 0; i < num_regions(); i++) { 2116 ShenandoahHeapRegion* r = get_region(i); 2117 assert((r->is_pinned() && r->pin_count() > 0) || (!r->is_pinned() && r->pin_count() == 0), 2118 "Region " SIZE_FORMAT " pinning status is inconsistent", i); 2119 } 2120 } 2121 #endif 2122 2123 ConcurrentGCTimer* ShenandoahHeap::gc_timer() const { 2124 return _gc_timer; 2125 } 2126 2127 void ShenandoahHeap::prepare_concurrent_roots() { 2128 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 2129 assert(!is_stw_gc_in_progress(), "Only concurrent GC"); 2130 set_concurrent_strong_root_in_progress(!collection_set()->is_empty()); 2131 set_concurrent_weak_root_in_progress(true); 2132 if (unload_classes()) { 2133 _unloader.prepare(); 2134 } 2135 } 2136 2137 void ShenandoahHeap::finish_concurrent_roots() { 2138 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 2139 assert(!is_stw_gc_in_progress(), "Only concurrent GC"); 2140 if (unload_classes()) { 2141 _unloader.finish(); 2142 } 2143 } 2144 2145 #ifdef ASSERT 2146 void ShenandoahHeap::assert_gc_workers(uint nworkers) { 2147 assert(nworkers > 0 && nworkers <= max_workers(), "Sanity"); 2148 2149 if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) { 2150 // Use ParallelGCThreads inside safepoints 2151 assert(nworkers == ParallelGCThreads, "Use ParallelGCThreads (%u) within safepoint, not %u", 2152 ParallelGCThreads, nworkers); 2153 } else { 2154 // Use ConcGCThreads outside safepoints 2155 assert(nworkers == ConcGCThreads, "Use ConcGCThreads (%u) outside safepoints, %u", 2156 ConcGCThreads, nworkers); 2157 } 2158 } 2159 #endif 2160 2161 ShenandoahVerifier* ShenandoahHeap::verifier() { 2162 guarantee(ShenandoahVerify, "Should be enabled"); 2163 assert (_verifier != nullptr, "sanity"); 2164 return _verifier; 2165 } 2166 2167 template<bool CONCURRENT> 2168 class ShenandoahUpdateHeapRefsTask : public WorkerTask { 2169 private: 2170 ShenandoahHeap* _heap; 2171 ShenandoahRegionIterator* _regions; 2172 public: 2173 ShenandoahUpdateHeapRefsTask(ShenandoahRegionIterator* regions) : 2174 WorkerTask("Shenandoah Update References"), 2175 _heap(ShenandoahHeap::heap()), 2176 _regions(regions) { 2177 } 2178 2179 void work(uint worker_id) { 2180 if (CONCURRENT) { 2181 ShenandoahConcurrentWorkerSession worker_session(worker_id); 2182 ShenandoahSuspendibleThreadSetJoiner stsj; 2183 do_work<ShenandoahConcUpdateRefsClosure>(worker_id); 2184 } else { 2185 ShenandoahParallelWorkerSession worker_session(worker_id); 2186 do_work<ShenandoahSTWUpdateRefsClosure>(worker_id); 2187 } 2188 } 2189 2190 private: 2191 template<class T> 2192 void do_work(uint worker_id) { 2193 T cl; 2194 if (CONCURRENT && (worker_id == 0)) { 2195 // We ask the first worker to replenish the Mutator free set by moving regions previously reserved to hold the 2196 // results of evacuation. These reserves are no longer necessary because evacuation has completed. 2197 size_t cset_regions = _heap->collection_set()->count(); 2198 // We cannot transfer any more regions than will be reclaimed when the existing collection set is recycled because 2199 // we need the reclaimed collection set regions to replenish the collector reserves 2200 _heap->free_set()->move_regions_from_collector_to_mutator(cset_regions); 2201 } 2202 // If !CONCURRENT, there's no value in expanding Mutator free set 2203 2204 ShenandoahHeapRegion* r = _regions->next(); 2205 ShenandoahMarkingContext* const ctx = _heap->complete_marking_context(); 2206 while (r != nullptr) { 2207 HeapWord* update_watermark = r->get_update_watermark(); 2208 assert (update_watermark >= r->bottom(), "sanity"); 2209 if (r->is_active() && !r->is_cset()) { 2210 _heap->marked_object_oop_iterate(r, &cl, update_watermark); 2211 } 2212 if (ShenandoahPacing) { 2213 _heap->pacer()->report_updaterefs(pointer_delta(update_watermark, r->bottom())); 2214 } 2215 if (_heap->check_cancelled_gc_and_yield(CONCURRENT)) { 2216 return; 2217 } 2218 r = _regions->next(); 2219 } 2220 } 2221 }; 2222 2223 void ShenandoahHeap::update_heap_references(bool concurrent) { 2224 assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC"); 2225 2226 if (concurrent) { 2227 ShenandoahUpdateHeapRefsTask<true> task(&_update_refs_iterator); 2228 workers()->run_task(&task); 2229 } else { 2230 ShenandoahUpdateHeapRefsTask<false> task(&_update_refs_iterator); 2231 workers()->run_task(&task); 2232 } 2233 } 2234 2235 2236 class ShenandoahFinalUpdateRefsUpdateRegionStateClosure : public ShenandoahHeapRegionClosure { 2237 private: 2238 ShenandoahHeapLock* const _lock; 2239 2240 public: 2241 ShenandoahFinalUpdateRefsUpdateRegionStateClosure() : _lock(ShenandoahHeap::heap()->lock()) {} 2242 2243 void heap_region_do(ShenandoahHeapRegion* r) { 2244 // Drop unnecessary "pinned" state from regions that does not have CP marks 2245 // anymore, as this would allow trashing them. 2246 2247 if (r->is_active()) { 2248 if (r->is_pinned()) { 2249 if (r->pin_count() == 0) { 2250 ShenandoahHeapLocker locker(_lock); 2251 r->make_unpinned(); 2252 } 2253 } else { 2254 if (r->pin_count() > 0) { 2255 ShenandoahHeapLocker locker(_lock); 2256 r->make_pinned(); 2257 } 2258 } 2259 } 2260 } 2261 2262 bool is_thread_safe() { return true; } 2263 }; 2264 2265 void ShenandoahHeap::update_heap_region_states(bool concurrent) { 2266 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 2267 assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC"); 2268 2269 { 2270 ShenandoahGCPhase phase(concurrent ? 2271 ShenandoahPhaseTimings::final_update_refs_update_region_states : 2272 ShenandoahPhaseTimings::degen_gc_final_update_refs_update_region_states); 2273 ShenandoahFinalUpdateRefsUpdateRegionStateClosure cl; 2274 parallel_heap_region_iterate(&cl); 2275 2276 assert_pinned_region_status(); 2277 } 2278 2279 { 2280 ShenandoahGCPhase phase(concurrent ? 2281 ShenandoahPhaseTimings::final_update_refs_trash_cset : 2282 ShenandoahPhaseTimings::degen_gc_final_update_refs_trash_cset); 2283 trash_cset_regions(); 2284 } 2285 } 2286 2287 void ShenandoahHeap::rebuild_free_set(bool concurrent) { 2288 { 2289 ShenandoahGCPhase phase(concurrent ? 2290 ShenandoahPhaseTimings::final_update_refs_rebuild_freeset : 2291 ShenandoahPhaseTimings::degen_gc_final_update_refs_rebuild_freeset); 2292 ShenandoahHeapLocker locker(lock()); 2293 _free_set->rebuild(); 2294 } 2295 } 2296 2297 void ShenandoahHeap::print_extended_on(outputStream *st) const { 2298 print_on(st); 2299 st->cr(); 2300 print_heap_regions_on(st); 2301 } 2302 2303 bool ShenandoahHeap::is_bitmap_slice_committed(ShenandoahHeapRegion* r, bool skip_self) { 2304 size_t slice = r->index() / _bitmap_regions_per_slice; 2305 2306 size_t regions_from = _bitmap_regions_per_slice * slice; 2307 size_t regions_to = MIN2(num_regions(), _bitmap_regions_per_slice * (slice + 1)); 2308 for (size_t g = regions_from; g < regions_to; g++) { 2309 assert (g / _bitmap_regions_per_slice == slice, "same slice"); 2310 if (skip_self && g == r->index()) continue; 2311 if (get_region(g)->is_committed()) { 2312 return true; 2313 } 2314 } 2315 return false; 2316 } 2317 2318 bool ShenandoahHeap::commit_bitmap_slice(ShenandoahHeapRegion* r) { 2319 shenandoah_assert_heaplocked(); 2320 2321 // Bitmaps in special regions do not need commits 2322 if (_bitmap_region_special) { 2323 return true; 2324 } 2325 2326 if (is_bitmap_slice_committed(r, true)) { 2327 // Some other region from the group is already committed, meaning the bitmap 2328 // slice is already committed, we exit right away. 2329 return true; 2330 } 2331 2332 // Commit the bitmap slice: 2333 size_t slice = r->index() / _bitmap_regions_per_slice; 2334 size_t off = _bitmap_bytes_per_slice * slice; 2335 size_t len = _bitmap_bytes_per_slice; 2336 char* start = (char*) _bitmap_region.start() + off; 2337 2338 if (!os::commit_memory(start, len, false)) { 2339 return false; 2340 } 2341 2342 if (AlwaysPreTouch) { 2343 os::pretouch_memory(start, start + len, _pretouch_bitmap_page_size); 2344 } 2345 2346 return true; 2347 } 2348 2349 bool ShenandoahHeap::uncommit_bitmap_slice(ShenandoahHeapRegion *r) { 2350 shenandoah_assert_heaplocked(); 2351 2352 // Bitmaps in special regions do not need uncommits 2353 if (_bitmap_region_special) { 2354 return true; 2355 } 2356 2357 if (is_bitmap_slice_committed(r, true)) { 2358 // Some other region from the group is still committed, meaning the bitmap 2359 // slice is should stay committed, exit right away. 2360 return true; 2361 } 2362 2363 // Uncommit the bitmap slice: 2364 size_t slice = r->index() / _bitmap_regions_per_slice; 2365 size_t off = _bitmap_bytes_per_slice * slice; 2366 size_t len = _bitmap_bytes_per_slice; 2367 if (!os::uncommit_memory((char*)_bitmap_region.start() + off, len)) { 2368 return false; 2369 } 2370 return true; 2371 } 2372 2373 void ShenandoahHeap::safepoint_synchronize_begin() { 2374 StackWatermarkSet::safepoint_synchronize_begin(); 2375 SuspendibleThreadSet::synchronize(); 2376 } 2377 2378 void ShenandoahHeap::safepoint_synchronize_end() { 2379 SuspendibleThreadSet::desynchronize(); 2380 } 2381 2382 void ShenandoahHeap::try_inject_alloc_failure() { 2383 if (ShenandoahAllocFailureALot && !cancelled_gc() && ((os::random() % 1000) > 950)) { 2384 _inject_alloc_failure.set(); 2385 os::naked_short_sleep(1); 2386 if (cancelled_gc()) { 2387 log_info(gc)("Allocation failure was successfully injected"); 2388 } 2389 } 2390 } 2391 2392 bool ShenandoahHeap::should_inject_alloc_failure() { 2393 return _inject_alloc_failure.is_set() && _inject_alloc_failure.try_unset(); 2394 } 2395 2396 void ShenandoahHeap::initialize_serviceability() { 2397 _memory_pool = new ShenandoahMemoryPool(this); 2398 _cycle_memory_manager.add_pool(_memory_pool); 2399 _stw_memory_manager.add_pool(_memory_pool); 2400 } 2401 2402 GrowableArray<GCMemoryManager*> ShenandoahHeap::memory_managers() { 2403 GrowableArray<GCMemoryManager*> memory_managers(2); 2404 memory_managers.append(&_cycle_memory_manager); 2405 memory_managers.append(&_stw_memory_manager); 2406 return memory_managers; 2407 } 2408 2409 GrowableArray<MemoryPool*> ShenandoahHeap::memory_pools() { 2410 GrowableArray<MemoryPool*> memory_pools(1); 2411 memory_pools.append(_memory_pool); 2412 return memory_pools; 2413 } 2414 2415 MemoryUsage ShenandoahHeap::memory_usage() { 2416 return _memory_pool->get_memory_usage(); 2417 } 2418 2419 ShenandoahRegionIterator::ShenandoahRegionIterator() : 2420 _heap(ShenandoahHeap::heap()), 2421 _index(0) {} 2422 2423 ShenandoahRegionIterator::ShenandoahRegionIterator(ShenandoahHeap* heap) : 2424 _heap(heap), 2425 _index(0) {} 2426 2427 void ShenandoahRegionIterator::reset() { 2428 _index = 0; 2429 } 2430 2431 bool ShenandoahRegionIterator::has_next() const { 2432 return _index < _heap->num_regions(); 2433 } 2434 2435 char ShenandoahHeap::gc_state() const { 2436 return _gc_state.raw_value(); 2437 } 2438 2439 ShenandoahLiveData* ShenandoahHeap::get_liveness_cache(uint worker_id) { 2440 #ifdef ASSERT 2441 assert(_liveness_cache != nullptr, "sanity"); 2442 assert(worker_id < _max_workers, "sanity"); 2443 for (uint i = 0; i < num_regions(); i++) { 2444 assert(_liveness_cache[worker_id][i] == 0, "liveness cache should be empty"); 2445 } 2446 #endif 2447 return _liveness_cache[worker_id]; 2448 } 2449 2450 void ShenandoahHeap::flush_liveness_cache(uint worker_id) { 2451 assert(worker_id < _max_workers, "sanity"); 2452 assert(_liveness_cache != nullptr, "sanity"); 2453 ShenandoahLiveData* ld = _liveness_cache[worker_id]; 2454 for (uint i = 0; i < num_regions(); i++) { 2455 ShenandoahLiveData live = ld[i]; 2456 if (live > 0) { 2457 ShenandoahHeapRegion* r = get_region(i); 2458 r->increase_live_data_gc_words(live); 2459 ld[i] = 0; 2460 } 2461 } 2462 } 2463 2464 bool ShenandoahHeap::requires_barriers(stackChunkOop obj) const { 2465 if (is_idle()) return false; 2466 2467 // Objects allocated after marking start are implicitly alive, don't need any barriers during 2468 // marking phase. 2469 if (is_concurrent_mark_in_progress() && 2470 !marking_context()->allocated_after_mark_start(obj)) { 2471 return true; 2472 } 2473 2474 // Can not guarantee obj is deeply good. 2475 if (has_forwarded_objects()) { 2476 return true; 2477 } 2478 2479 return false; 2480 }