1 /*
   2  * Copyright (c) 2023, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2013, 2022, Red Hat, Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "memory/allocation.hpp"
  28 #include "memory/universe.hpp"
  29 
  30 #include "gc/shared/classUnloadingContext.hpp"
  31 #include "gc/shared/gcArguments.hpp"
  32 #include "gc/shared/gcTimer.hpp"
  33 #include "gc/shared/gcTraceTime.inline.hpp"
  34 #include "gc/shared/locationPrinter.inline.hpp"
  35 #include "gc/shared/memAllocator.hpp"
  36 #include "gc/shared/plab.hpp"
  37 #include "gc/shared/tlab_globals.hpp"
  38 
  39 #include "gc/shenandoah/shenandoahBarrierSet.hpp"
  40 #include "gc/shenandoah/shenandoahClosures.inline.hpp"
  41 #include "gc/shenandoah/shenandoahCollectionSet.hpp"
  42 #include "gc/shenandoah/shenandoahCollectorPolicy.hpp"
  43 #include "gc/shenandoah/shenandoahConcurrentMark.hpp"
  44 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp"
  45 #include "gc/shenandoah/shenandoahControlThread.hpp"
  46 #include "gc/shenandoah/shenandoahFreeSet.hpp"
  47 #include "gc/shenandoah/shenandoahPhaseTimings.hpp"
  48 #include "gc/shenandoah/shenandoahHeap.inline.hpp"
  49 #include "gc/shenandoah/shenandoahHeapRegion.inline.hpp"
  50 #include "gc/shenandoah/shenandoahHeapRegionSet.hpp"
  51 #include "gc/shenandoah/shenandoahInitLogger.hpp"
  52 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp"
  53 #include "gc/shenandoah/shenandoahMemoryPool.hpp"
  54 #include "gc/shenandoah/shenandoahMetrics.hpp"
  55 #include "gc/shenandoah/shenandoahMonitoringSupport.hpp"
  56 #include "gc/shenandoah/shenandoahOopClosures.inline.hpp"
  57 #include "gc/shenandoah/shenandoahPacer.inline.hpp"
  58 #include "gc/shenandoah/shenandoahPadding.hpp"
  59 #include "gc/shenandoah/shenandoahParallelCleaning.inline.hpp"
  60 #include "gc/shenandoah/shenandoahReferenceProcessor.hpp"
  61 #include "gc/shenandoah/shenandoahRootProcessor.inline.hpp"
  62 #include "gc/shenandoah/shenandoahSTWMark.hpp"
  63 #include "gc/shenandoah/shenandoahUtils.hpp"
  64 #include "gc/shenandoah/shenandoahVerifier.hpp"
  65 #include "gc/shenandoah/shenandoahCodeRoots.hpp"
  66 #include "gc/shenandoah/shenandoahVMOperations.hpp"
  67 #include "gc/shenandoah/shenandoahWorkGroup.hpp"
  68 #include "gc/shenandoah/shenandoahWorkerPolicy.hpp"
  69 #include "gc/shenandoah/mode/shenandoahIUMode.hpp"
  70 #include "gc/shenandoah/mode/shenandoahPassiveMode.hpp"
  71 #include "gc/shenandoah/mode/shenandoahSATBMode.hpp"
  72 #if INCLUDE_JFR
  73 #include "gc/shenandoah/shenandoahJfrSupport.hpp"
  74 #endif
  75 
  76 #include "classfile/systemDictionary.hpp"
  77 #include "code/codeCache.hpp"
  78 #include "memory/classLoaderMetaspace.hpp"
  79 #include "memory/metaspaceUtils.hpp"
  80 #include "nmt/mallocTracker.hpp"
  81 #include "nmt/memTracker.hpp"
  82 #include "oops/compressedOops.inline.hpp"
  83 #include "prims/jvmtiTagMap.hpp"
  84 #include "runtime/atomic.hpp"
  85 #include "runtime/globals.hpp"
  86 #include "runtime/interfaceSupport.inline.hpp"
  87 #include "runtime/java.hpp"
  88 #include "runtime/orderAccess.hpp"
  89 #include "runtime/safepointMechanism.hpp"
  90 #include "runtime/stackWatermarkSet.hpp"
  91 #include "runtime/vmThread.hpp"
  92 #include "utilities/events.hpp"
  93 #include "utilities/powerOfTwo.hpp"
  94 
  95 class ShenandoahPretouchHeapTask : public WorkerTask {
  96 private:
  97   ShenandoahRegionIterator _regions;
  98   const size_t _page_size;
  99 public:
 100   ShenandoahPretouchHeapTask(size_t page_size) :
 101     WorkerTask("Shenandoah Pretouch Heap"),
 102     _page_size(page_size) {}
 103 
 104   virtual void work(uint worker_id) {
 105     ShenandoahHeapRegion* r = _regions.next();
 106     while (r != nullptr) {
 107       if (r->is_committed()) {
 108         os::pretouch_memory(r->bottom(), r->end(), _page_size);
 109       }
 110       r = _regions.next();
 111     }
 112   }
 113 };
 114 
 115 class ShenandoahPretouchBitmapTask : public WorkerTask {
 116 private:
 117   ShenandoahRegionIterator _regions;
 118   char* _bitmap_base;
 119   const size_t _bitmap_size;
 120   const size_t _page_size;
 121 public:
 122   ShenandoahPretouchBitmapTask(char* bitmap_base, size_t bitmap_size, size_t page_size) :
 123     WorkerTask("Shenandoah Pretouch Bitmap"),
 124     _bitmap_base(bitmap_base),
 125     _bitmap_size(bitmap_size),
 126     _page_size(page_size) {}
 127 
 128   virtual void work(uint worker_id) {
 129     ShenandoahHeapRegion* r = _regions.next();
 130     while (r != nullptr) {
 131       size_t start = r->index()       * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor();
 132       size_t end   = (r->index() + 1) * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor();
 133       assert (end <= _bitmap_size, "end is sane: " SIZE_FORMAT " < " SIZE_FORMAT, end, _bitmap_size);
 134 
 135       if (r->is_committed()) {
 136         os::pretouch_memory(_bitmap_base + start, _bitmap_base + end, _page_size);
 137       }
 138 
 139       r = _regions.next();
 140     }
 141   }
 142 };
 143 
 144 jint ShenandoahHeap::initialize() {
 145   //
 146   // Figure out heap sizing
 147   //
 148 
 149   size_t init_byte_size = InitialHeapSize;
 150   size_t min_byte_size  = MinHeapSize;
 151   size_t max_byte_size  = MaxHeapSize;
 152   size_t heap_alignment = HeapAlignment;
 153 
 154   size_t reg_size_bytes = ShenandoahHeapRegion::region_size_bytes();
 155 
 156   Universe::check_alignment(max_byte_size,  reg_size_bytes, "Shenandoah heap");
 157   Universe::check_alignment(init_byte_size, reg_size_bytes, "Shenandoah heap");
 158 
 159   _num_regions = ShenandoahHeapRegion::region_count();
 160   assert(_num_regions == (max_byte_size / reg_size_bytes),
 161          "Regions should cover entire heap exactly: " SIZE_FORMAT " != " SIZE_FORMAT "/" SIZE_FORMAT,
 162          _num_regions, max_byte_size, reg_size_bytes);
 163 
 164   // Now we know the number of regions, initialize the heuristics.
 165   initialize_heuristics();
 166 
 167   size_t num_committed_regions = init_byte_size / reg_size_bytes;
 168   num_committed_regions = MIN2(num_committed_regions, _num_regions);
 169   assert(num_committed_regions <= _num_regions, "sanity");
 170   _initial_size = num_committed_regions * reg_size_bytes;
 171 
 172   size_t num_min_regions = min_byte_size / reg_size_bytes;
 173   num_min_regions = MIN2(num_min_regions, _num_regions);
 174   assert(num_min_regions <= _num_regions, "sanity");
 175   _minimum_size = num_min_regions * reg_size_bytes;
 176 
 177   // Default to max heap size.
 178   _soft_max_size = _num_regions * reg_size_bytes;
 179 
 180   _committed = _initial_size;
 181 
 182   size_t heap_page_size   = UseLargePages ? os::large_page_size() : os::vm_page_size();
 183   size_t bitmap_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
 184   size_t region_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
 185 
 186   //
 187   // Reserve and commit memory for heap
 188   //
 189 
 190   ReservedHeapSpace heap_rs = Universe::reserve_heap(max_byte_size, heap_alignment);
 191   initialize_reserved_region(heap_rs);
 192   _heap_region = MemRegion((HeapWord*)heap_rs.base(), heap_rs.size() / HeapWordSize);
 193   _heap_region_special = heap_rs.special();
 194 
 195   assert((((size_t) base()) & ShenandoahHeapRegion::region_size_bytes_mask()) == 0,
 196          "Misaligned heap: " PTR_FORMAT, p2i(base()));
 197   os::trace_page_sizes_for_requested_size("Heap",
 198                                           max_byte_size, heap_alignment,
 199                                           heap_rs.base(),
 200                                           heap_rs.size(), heap_rs.page_size());
 201 
 202 #if SHENANDOAH_OPTIMIZED_MARKTASK
 203   // The optimized ShenandoahMarkTask takes some bits away from the full object bits.
 204   // Fail if we ever attempt to address more than we can.
 205   if ((uintptr_t)heap_rs.end() >= ShenandoahMarkTask::max_addressable()) {
 206     FormatBuffer<512> buf("Shenandoah reserved [" PTR_FORMAT ", " PTR_FORMAT") for the heap, \n"
 207                           "but max object address is " PTR_FORMAT ". Try to reduce heap size, or try other \n"
 208                           "VM options that allocate heap at lower addresses (HeapBaseMinAddress, AllocateHeapAt, etc).",
 209                 p2i(heap_rs.base()), p2i(heap_rs.end()), ShenandoahMarkTask::max_addressable());
 210     vm_exit_during_initialization("Fatal Error", buf);
 211   }
 212 #endif
 213 
 214   ReservedSpace sh_rs = heap_rs.first_part(max_byte_size);
 215   if (!_heap_region_special) {
 216     os::commit_memory_or_exit(sh_rs.base(), _initial_size, heap_alignment, false,
 217                               "Cannot commit heap memory");
 218   }
 219 
 220   //
 221   // Reserve and commit memory for bitmap(s)
 222   //
 223 
 224   size_t bitmap_size_orig = ShenandoahMarkBitMap::compute_size(heap_rs.size());
 225   _bitmap_size = align_up(bitmap_size_orig, bitmap_page_size);
 226 
 227   size_t bitmap_bytes_per_region = reg_size_bytes / ShenandoahMarkBitMap::heap_map_factor();
 228 
 229   guarantee(bitmap_bytes_per_region != 0,
 230             "Bitmap bytes per region should not be zero");
 231   guarantee(is_power_of_2(bitmap_bytes_per_region),
 232             "Bitmap bytes per region should be power of two: " SIZE_FORMAT, bitmap_bytes_per_region);
 233 
 234   if (bitmap_page_size > bitmap_bytes_per_region) {
 235     _bitmap_regions_per_slice = bitmap_page_size / bitmap_bytes_per_region;
 236     _bitmap_bytes_per_slice = bitmap_page_size;
 237   } else {
 238     _bitmap_regions_per_slice = 1;
 239     _bitmap_bytes_per_slice = bitmap_bytes_per_region;
 240   }
 241 
 242   guarantee(_bitmap_regions_per_slice >= 1,
 243             "Should have at least one region per slice: " SIZE_FORMAT,
 244             _bitmap_regions_per_slice);
 245 
 246   guarantee(((_bitmap_bytes_per_slice) % bitmap_page_size) == 0,
 247             "Bitmap slices should be page-granular: bps = " SIZE_FORMAT ", page size = " SIZE_FORMAT,
 248             _bitmap_bytes_per_slice, bitmap_page_size);
 249 
 250   ReservedSpace bitmap(_bitmap_size, bitmap_page_size);
 251   os::trace_page_sizes_for_requested_size("Mark Bitmap",
 252                                           bitmap_size_orig, bitmap_page_size,
 253                                           bitmap.base(),
 254                                           bitmap.size(), bitmap.page_size());
 255   MemTracker::record_virtual_memory_type(bitmap.base(), mtGC);
 256   _bitmap_region = MemRegion((HeapWord*) bitmap.base(), bitmap.size() / HeapWordSize);
 257   _bitmap_region_special = bitmap.special();
 258 
 259   size_t bitmap_init_commit = _bitmap_bytes_per_slice *
 260                               align_up(num_committed_regions, _bitmap_regions_per_slice) / _bitmap_regions_per_slice;
 261   bitmap_init_commit = MIN2(_bitmap_size, bitmap_init_commit);
 262   if (!_bitmap_region_special) {
 263     os::commit_memory_or_exit((char *) _bitmap_region.start(), bitmap_init_commit, bitmap_page_size, false,
 264                               "Cannot commit bitmap memory");
 265   }
 266 
 267   _marking_context = new ShenandoahMarkingContext(_heap_region, _bitmap_region, _num_regions, _max_workers);
 268 
 269   if (ShenandoahVerify) {
 270     ReservedSpace verify_bitmap(_bitmap_size, bitmap_page_size);
 271     os::trace_page_sizes_for_requested_size("Verify Bitmap",
 272                                             bitmap_size_orig, bitmap_page_size,
 273                                             verify_bitmap.base(),
 274                                             verify_bitmap.size(), verify_bitmap.page_size());
 275     if (!verify_bitmap.special()) {
 276       os::commit_memory_or_exit(verify_bitmap.base(), verify_bitmap.size(), bitmap_page_size, false,
 277                                 "Cannot commit verification bitmap memory");
 278     }
 279     MemTracker::record_virtual_memory_type(verify_bitmap.base(), mtGC);
 280     MemRegion verify_bitmap_region = MemRegion((HeapWord *) verify_bitmap.base(), verify_bitmap.size() / HeapWordSize);
 281     _verification_bit_map.initialize(_heap_region, verify_bitmap_region);
 282     _verifier = new ShenandoahVerifier(this, &_verification_bit_map);
 283   }
 284 
 285   // Reserve aux bitmap for use in object_iterate(). We don't commit it here.
 286   size_t aux_bitmap_page_size = bitmap_page_size;
 287 #ifdef LINUX
 288   // In THP "advise" mode, we refrain from advising the system to use large pages
 289   // since we know these commits will be short lived, and there is no reason to trash
 290   // the THP area with this bitmap.
 291   if (UseTransparentHugePages) {
 292     aux_bitmap_page_size = os::vm_page_size();
 293   }
 294 #endif
 295   ReservedSpace aux_bitmap(_bitmap_size, aux_bitmap_page_size);
 296   os::trace_page_sizes_for_requested_size("Aux Bitmap",
 297                                           bitmap_size_orig, aux_bitmap_page_size,
 298                                           aux_bitmap.base(),
 299                                           aux_bitmap.size(), aux_bitmap.page_size());
 300   MemTracker::record_virtual_memory_type(aux_bitmap.base(), mtGC);
 301   _aux_bitmap_region = MemRegion((HeapWord*) aux_bitmap.base(), aux_bitmap.size() / HeapWordSize);
 302   _aux_bitmap_region_special = aux_bitmap.special();
 303   _aux_bit_map.initialize(_heap_region, _aux_bitmap_region);
 304 
 305   //
 306   // Create regions and region sets
 307   //
 308   size_t region_align = align_up(sizeof(ShenandoahHeapRegion), SHENANDOAH_CACHE_LINE_SIZE);
 309   size_t region_storage_size_orig = region_align * _num_regions;
 310   size_t region_storage_size = align_up(region_storage_size_orig,
 311                                         MAX2(region_page_size, os::vm_allocation_granularity()));
 312 
 313   ReservedSpace region_storage(region_storage_size, region_page_size);
 314   os::trace_page_sizes_for_requested_size("Region Storage",
 315                                           region_storage_size_orig, region_page_size,
 316                                           region_storage.base(),
 317                                           region_storage.size(), region_storage.page_size());
 318   MemTracker::record_virtual_memory_type(region_storage.base(), mtGC);
 319   if (!region_storage.special()) {
 320     os::commit_memory_or_exit(region_storage.base(), region_storage_size, region_page_size, false,
 321                               "Cannot commit region memory");
 322   }
 323 
 324   // Try to fit the collection set bitmap at lower addresses. This optimizes code generation for cset checks.
 325   // Go up until a sensible limit (subject to encoding constraints) and try to reserve the space there.
 326   // If not successful, bite a bullet and allocate at whatever address.
 327   {
 328     const size_t cset_align = MAX2<size_t>(os::vm_page_size(), os::vm_allocation_granularity());
 329     const size_t cset_size = align_up(((size_t) sh_rs.base() + sh_rs.size()) >> ShenandoahHeapRegion::region_size_bytes_shift(), cset_align);
 330     const size_t cset_page_size = os::vm_page_size();
 331 
 332     uintptr_t min = round_up_power_of_2(cset_align);
 333     uintptr_t max = (1u << 30u);
 334     ReservedSpace cset_rs;
 335 
 336     for (uintptr_t addr = min; addr <= max; addr <<= 1u) {
 337       char* req_addr = (char*)addr;
 338       assert(is_aligned(req_addr, cset_align), "Should be aligned");
 339       cset_rs = ReservedSpace(cset_size, cset_align, cset_page_size, req_addr);
 340       if (cset_rs.is_reserved()) {
 341         assert(cset_rs.base() == req_addr, "Allocated where requested: " PTR_FORMAT ", " PTR_FORMAT, p2i(cset_rs.base()), addr);
 342         _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base());
 343         break;
 344       }
 345     }
 346 
 347     if (_collection_set == nullptr) {
 348       cset_rs = ReservedSpace(cset_size, cset_align, os::vm_page_size());
 349       _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base());
 350     }
 351     os::trace_page_sizes_for_requested_size("Collection Set",
 352                                             cset_size, cset_page_size,
 353                                             cset_rs.base(),
 354                                             cset_rs.size(), cset_rs.page_size());
 355   }
 356 
 357   _regions = NEW_C_HEAP_ARRAY(ShenandoahHeapRegion*, _num_regions, mtGC);
 358   _free_set = new ShenandoahFreeSet(this, _num_regions);
 359 
 360   {
 361     ShenandoahHeapLocker locker(lock());
 362 
 363     for (size_t i = 0; i < _num_regions; i++) {
 364       HeapWord* start = (HeapWord*)sh_rs.base() + ShenandoahHeapRegion::region_size_words() * i;
 365       bool is_committed = i < num_committed_regions;
 366       void* loc = region_storage.base() + i * region_align;
 367 
 368       ShenandoahHeapRegion* r = new (loc) ShenandoahHeapRegion(start, i, is_committed);
 369       assert(is_aligned(r, SHENANDOAH_CACHE_LINE_SIZE), "Sanity");
 370 
 371       _marking_context->initialize_top_at_mark_start(r);
 372       _regions[i] = r;
 373       assert(!collection_set()->is_in(i), "New region should not be in collection set");
 374     }
 375 
 376     // Initialize to complete
 377     _marking_context->mark_complete();
 378 
 379     _free_set->rebuild();
 380   }
 381 
 382   if (AlwaysPreTouch) {
 383     // For NUMA, it is important to pre-touch the storage under bitmaps with worker threads,
 384     // before initialize() below zeroes it with initializing thread. For any given region,
 385     // we touch the region and the corresponding bitmaps from the same thread.
 386     ShenandoahPushWorkerScope scope(workers(), _max_workers, false);
 387 
 388     _pretouch_heap_page_size = heap_page_size;
 389     _pretouch_bitmap_page_size = bitmap_page_size;
 390 
 391 #ifdef LINUX
 392     // UseTransparentHugePages would madvise that backing memory can be coalesced into huge
 393     // pages. But, the kernel needs to know that every small page is used, in order to coalesce
 394     // them into huge one. Therefore, we need to pretouch with smaller pages.
 395     if (UseTransparentHugePages) {
 396       _pretouch_heap_page_size = (size_t)os::vm_page_size();
 397       _pretouch_bitmap_page_size = (size_t)os::vm_page_size();
 398     }
 399 #endif
 400 
 401     // OS memory managers may want to coalesce back-to-back pages. Make their jobs
 402     // simpler by pre-touching continuous spaces (heap and bitmap) separately.
 403 
 404     ShenandoahPretouchBitmapTask bcl(bitmap.base(), _bitmap_size, _pretouch_bitmap_page_size);
 405     _workers->run_task(&bcl);
 406 
 407     ShenandoahPretouchHeapTask hcl(_pretouch_heap_page_size);
 408     _workers->run_task(&hcl);
 409   }
 410 
 411   //
 412   // Initialize the rest of GC subsystems
 413   //
 414 
 415   _liveness_cache = NEW_C_HEAP_ARRAY(ShenandoahLiveData*, _max_workers, mtGC);
 416   for (uint worker = 0; worker < _max_workers; worker++) {
 417     _liveness_cache[worker] = NEW_C_HEAP_ARRAY(ShenandoahLiveData, _num_regions, mtGC);
 418     Copy::fill_to_bytes(_liveness_cache[worker], _num_regions * sizeof(ShenandoahLiveData));
 419   }
 420 
 421   // There should probably be Shenandoah-specific options for these,
 422   // just as there are G1-specific options.
 423   {
 424     ShenandoahSATBMarkQueueSet& satbqs = ShenandoahBarrierSet::satb_mark_queue_set();
 425     satbqs.set_process_completed_buffers_threshold(20); // G1SATBProcessCompletedThreshold
 426     satbqs.set_buffer_enqueue_threshold_percentage(60); // G1SATBBufferEnqueueingThresholdPercent
 427   }
 428 
 429   _monitoring_support = new ShenandoahMonitoringSupport(this);
 430   _phase_timings = new ShenandoahPhaseTimings(max_workers());
 431   ShenandoahCodeRoots::initialize();
 432 
 433   if (ShenandoahPacing) {
 434     _pacer = new ShenandoahPacer(this);
 435     _pacer->setup_for_idle();
 436   }
 437 
 438   _control_thread = new ShenandoahControlThread();
 439 
 440   ShenandoahInitLogger::print();
 441 
 442   return JNI_OK;
 443 }
 444 
 445 void ShenandoahHeap::initialize_mode() {
 446   if (ShenandoahGCMode != nullptr) {
 447     if (strcmp(ShenandoahGCMode, "satb") == 0) {
 448       _gc_mode = new ShenandoahSATBMode();
 449     } else if (strcmp(ShenandoahGCMode, "iu") == 0) {
 450       _gc_mode = new ShenandoahIUMode();
 451     } else if (strcmp(ShenandoahGCMode, "passive") == 0) {
 452       _gc_mode = new ShenandoahPassiveMode();
 453     } else {
 454       vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option");
 455     }
 456   } else {
 457     vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option (null)");
 458   }
 459   _gc_mode->initialize_flags();
 460   if (_gc_mode->is_diagnostic() && !UnlockDiagnosticVMOptions) {
 461     vm_exit_during_initialization(
 462             err_msg("GC mode \"%s\" is diagnostic, and must be enabled via -XX:+UnlockDiagnosticVMOptions.",
 463                     _gc_mode->name()));
 464   }
 465   if (_gc_mode->is_experimental() && !UnlockExperimentalVMOptions) {
 466     vm_exit_during_initialization(
 467             err_msg("GC mode \"%s\" is experimental, and must be enabled via -XX:+UnlockExperimentalVMOptions.",
 468                     _gc_mode->name()));
 469   }
 470 }
 471 
 472 void ShenandoahHeap::initialize_heuristics() {
 473   assert(_gc_mode != nullptr, "Must be initialized");
 474   _heuristics = _gc_mode->initialize_heuristics();
 475 
 476   if (_heuristics->is_diagnostic() && !UnlockDiagnosticVMOptions) {
 477     vm_exit_during_initialization(
 478             err_msg("Heuristics \"%s\" is diagnostic, and must be enabled via -XX:+UnlockDiagnosticVMOptions.",
 479                     _heuristics->name()));
 480   }
 481   if (_heuristics->is_experimental() && !UnlockExperimentalVMOptions) {
 482     vm_exit_during_initialization(
 483             err_msg("Heuristics \"%s\" is experimental, and must be enabled via -XX:+UnlockExperimentalVMOptions.",
 484                     _heuristics->name()));
 485   }
 486 }
 487 
 488 #ifdef _MSC_VER
 489 #pragma warning( push )
 490 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 491 #endif
 492 
 493 ShenandoahHeap::ShenandoahHeap(ShenandoahCollectorPolicy* policy) :
 494   CollectedHeap(),
 495   _initial_size(0),
 496   _used(0),
 497   _committed(0),
 498   _bytes_allocated_since_gc_start(0),
 499   _max_workers(MAX2(ConcGCThreads, ParallelGCThreads)),
 500   _workers(nullptr),
 501   _safepoint_workers(nullptr),
 502   _heap_region_special(false),
 503   _num_regions(0),
 504   _regions(nullptr),
 505   _update_refs_iterator(this),
 506   _gc_state_changed(false),
 507   _gc_no_progress_count(0),
 508   _control_thread(nullptr),
 509   _shenandoah_policy(policy),
 510   _gc_mode(nullptr),
 511   _heuristics(nullptr),
 512   _free_set(nullptr),
 513   _pacer(nullptr),
 514   _verifier(nullptr),
 515   _phase_timings(nullptr),
 516   _monitoring_support(nullptr),
 517   _memory_pool(nullptr),
 518   _stw_memory_manager("Shenandoah Pauses"),
 519   _cycle_memory_manager("Shenandoah Cycles"),
 520   _gc_timer(new ConcurrentGCTimer()),
 521   _log_min_obj_alignment_in_bytes(LogMinObjAlignmentInBytes),
 522   _ref_processor(new ShenandoahReferenceProcessor(MAX2(_max_workers, 1U))),
 523   _marking_context(nullptr),
 524   _bitmap_size(0),
 525   _bitmap_regions_per_slice(0),
 526   _bitmap_bytes_per_slice(0),
 527   _bitmap_region_special(false),
 528   _aux_bitmap_region_special(false),
 529   _liveness_cache(nullptr),
 530   _collection_set(nullptr)
 531 {
 532   // Initialize GC mode early, so we can adjust barrier support
 533   initialize_mode();
 534   BarrierSet::set_barrier_set(new ShenandoahBarrierSet(this));
 535 
 536   _max_workers = MAX2(_max_workers, 1U);
 537   _workers = new ShenandoahWorkerThreads("Shenandoah GC Threads", _max_workers);
 538   if (_workers == nullptr) {
 539     vm_exit_during_initialization("Failed necessary allocation.");
 540   } else {
 541     _workers->initialize_workers();
 542   }
 543 
 544   if (ParallelGCThreads > 1) {
 545     _safepoint_workers = new ShenandoahWorkerThreads("Safepoint Cleanup Thread",
 546                                                 ParallelGCThreads);
 547     _safepoint_workers->initialize_workers();
 548   }
 549 }
 550 
 551 #ifdef _MSC_VER
 552 #pragma warning( pop )
 553 #endif
 554 
 555 class ShenandoahResetBitmapTask : public WorkerTask {
 556 private:
 557   ShenandoahRegionIterator _regions;
 558 
 559 public:
 560   ShenandoahResetBitmapTask() :
 561     WorkerTask("Shenandoah Reset Bitmap") {}
 562 
 563   void work(uint worker_id) {
 564     ShenandoahHeapRegion* region = _regions.next();
 565     ShenandoahHeap* heap = ShenandoahHeap::heap();
 566     ShenandoahMarkingContext* const ctx = heap->marking_context();
 567     while (region != nullptr) {
 568       if (heap->is_bitmap_slice_committed(region)) {
 569         ctx->clear_bitmap(region);
 570       }
 571       region = _regions.next();
 572     }
 573   }
 574 };
 575 
 576 void ShenandoahHeap::reset_mark_bitmap() {
 577   assert_gc_workers(_workers->active_workers());
 578   mark_incomplete_marking_context();
 579 
 580   ShenandoahResetBitmapTask task;
 581   _workers->run_task(&task);
 582 }
 583 
 584 void ShenandoahHeap::print_on(outputStream* st) const {
 585   st->print_cr("Shenandoah Heap");
 586   st->print_cr(" " SIZE_FORMAT "%s max, " SIZE_FORMAT "%s soft max, " SIZE_FORMAT "%s committed, " SIZE_FORMAT "%s used",
 587                byte_size_in_proper_unit(max_capacity()), proper_unit_for_byte_size(max_capacity()),
 588                byte_size_in_proper_unit(soft_max_capacity()), proper_unit_for_byte_size(soft_max_capacity()),
 589                byte_size_in_proper_unit(committed()),    proper_unit_for_byte_size(committed()),
 590                byte_size_in_proper_unit(used()),         proper_unit_for_byte_size(used()));
 591   st->print_cr(" " SIZE_FORMAT " x " SIZE_FORMAT"%s regions",
 592                num_regions(),
 593                byte_size_in_proper_unit(ShenandoahHeapRegion::region_size_bytes()),
 594                proper_unit_for_byte_size(ShenandoahHeapRegion::region_size_bytes()));
 595 
 596   st->print("Status: ");
 597   if (has_forwarded_objects())                 st->print("has forwarded objects, ");
 598   if (is_concurrent_mark_in_progress())        st->print("marking, ");
 599   if (is_evacuation_in_progress())             st->print("evacuating, ");
 600   if (is_update_refs_in_progress())            st->print("updating refs, ");
 601   if (is_degenerated_gc_in_progress())         st->print("degenerated gc, ");
 602   if (is_full_gc_in_progress())                st->print("full gc, ");
 603   if (is_full_gc_move_in_progress())           st->print("full gc move, ");
 604   if (is_concurrent_weak_root_in_progress())   st->print("concurrent weak roots, ");
 605   if (is_concurrent_strong_root_in_progress() &&
 606       !is_concurrent_weak_root_in_progress())  st->print("concurrent strong roots, ");
 607 
 608   if (cancelled_gc()) {
 609     st->print("cancelled");
 610   } else {
 611     st->print("not cancelled");
 612   }
 613   st->cr();
 614 
 615   st->print_cr("Reserved region:");
 616   st->print_cr(" - [" PTR_FORMAT ", " PTR_FORMAT ") ",
 617                p2i(reserved_region().start()),
 618                p2i(reserved_region().end()));
 619 
 620   ShenandoahCollectionSet* cset = collection_set();
 621   st->print_cr("Collection set:");
 622   if (cset != nullptr) {
 623     st->print_cr(" - map (vanilla): " PTR_FORMAT, p2i(cset->map_address()));
 624     st->print_cr(" - map (biased):  " PTR_FORMAT, p2i(cset->biased_map_address()));
 625   } else {
 626     st->print_cr(" (null)");
 627   }
 628 
 629   st->cr();
 630   MetaspaceUtils::print_on(st);
 631 
 632   if (Verbose) {
 633     st->cr();
 634     print_heap_regions_on(st);
 635   }
 636 }
 637 
 638 class ShenandoahInitWorkerGCLABClosure : public ThreadClosure {
 639 public:
 640   void do_thread(Thread* thread) {
 641     assert(thread != nullptr, "Sanity");
 642     assert(thread->is_Worker_thread(), "Only worker thread expected");
 643     ShenandoahThreadLocalData::initialize_gclab(thread);
 644   }
 645 };
 646 
 647 void ShenandoahHeap::post_initialize() {
 648   CollectedHeap::post_initialize();
 649   MutexLocker ml(Threads_lock);
 650 
 651   ShenandoahInitWorkerGCLABClosure init_gclabs;
 652   _workers->threads_do(&init_gclabs);
 653 
 654   // gclab can not be initialized early during VM startup, as it can not determinate its max_size.
 655   // Now, we will let WorkerThreads to initialize gclab when new worker is created.
 656   _workers->set_initialize_gclab();
 657   if (_safepoint_workers != nullptr) {
 658     _safepoint_workers->threads_do(&init_gclabs);
 659     _safepoint_workers->set_initialize_gclab();
 660   }
 661 
 662   _heuristics->initialize();
 663 
 664   JFR_ONLY(ShenandoahJFRSupport::register_jfr_type_serializers();)
 665 }
 666 
 667 size_t ShenandoahHeap::used() const {
 668   return Atomic::load(&_used);
 669 }
 670 
 671 size_t ShenandoahHeap::committed() const {
 672   return Atomic::load(&_committed);
 673 }
 674 
 675 size_t ShenandoahHeap::available() const {
 676   return free_set()->available();
 677 }
 678 
 679 void ShenandoahHeap::increase_committed(size_t bytes) {
 680   shenandoah_assert_heaplocked_or_safepoint();
 681   _committed += bytes;
 682 }
 683 
 684 void ShenandoahHeap::decrease_committed(size_t bytes) {
 685   shenandoah_assert_heaplocked_or_safepoint();
 686   _committed -= bytes;
 687 }
 688 
 689 void ShenandoahHeap::increase_used(size_t bytes) {
 690   Atomic::add(&_used, bytes, memory_order_relaxed);
 691 }
 692 
 693 void ShenandoahHeap::set_used(size_t bytes) {
 694   Atomic::store(&_used, bytes);
 695 }
 696 
 697 void ShenandoahHeap::decrease_used(size_t bytes) {
 698   assert(used() >= bytes, "never decrease heap size by more than we've left");
 699   Atomic::sub(&_used, bytes, memory_order_relaxed);
 700 }
 701 
 702 void ShenandoahHeap::increase_allocated(size_t bytes) {
 703   Atomic::add(&_bytes_allocated_since_gc_start, bytes, memory_order_relaxed);
 704 }
 705 
 706 void ShenandoahHeap::notify_mutator_alloc_words(size_t words, bool waste) {
 707   size_t bytes = words * HeapWordSize;
 708   if (!waste) {
 709     increase_used(bytes);
 710   }
 711   increase_allocated(bytes);
 712   if (ShenandoahPacing) {
 713     control_thread()->pacing_notify_alloc(words);
 714     if (waste) {
 715       pacer()->claim_for_alloc(words, true);
 716     }
 717   }
 718 }
 719 
 720 size_t ShenandoahHeap::capacity() const {
 721   return committed();
 722 }
 723 
 724 size_t ShenandoahHeap::max_capacity() const {
 725   return _num_regions * ShenandoahHeapRegion::region_size_bytes();
 726 }
 727 
 728 size_t ShenandoahHeap::soft_max_capacity() const {
 729   size_t v = Atomic::load(&_soft_max_size);
 730   assert(min_capacity() <= v && v <= max_capacity(),
 731          "Should be in bounds: " SIZE_FORMAT " <= " SIZE_FORMAT " <= " SIZE_FORMAT,
 732          min_capacity(), v, max_capacity());
 733   return v;
 734 }
 735 
 736 void ShenandoahHeap::set_soft_max_capacity(size_t v) {
 737   assert(min_capacity() <= v && v <= max_capacity(),
 738          "Should be in bounds: " SIZE_FORMAT " <= " SIZE_FORMAT " <= " SIZE_FORMAT,
 739          min_capacity(), v, max_capacity());
 740   Atomic::store(&_soft_max_size, v);
 741 }
 742 
 743 size_t ShenandoahHeap::min_capacity() const {
 744   return _minimum_size;
 745 }
 746 
 747 size_t ShenandoahHeap::initial_capacity() const {
 748   return _initial_size;
 749 }
 750 
 751 bool ShenandoahHeap::is_in(const void* p) const {
 752   HeapWord* heap_base = (HeapWord*) base();
 753   HeapWord* last_region_end = heap_base + ShenandoahHeapRegion::region_size_words() * num_regions();
 754   return p >= heap_base && p < last_region_end;
 755 }
 756 
 757 void ShenandoahHeap::maybe_uncommit(double shrink_before, size_t shrink_until) {
 758   assert (ShenandoahUncommit, "should be enabled");
 759 
 760   // Determine if there is work to do. This avoids taking heap lock if there is
 761   // no work available, avoids spamming logs with superfluous logging messages,
 762   // and minimises the amount of work while locks are taken.
 763 
 764   if (committed() <= shrink_until) return;
 765 
 766   bool has_work = false;
 767   for (size_t i = 0; i < num_regions(); i++) {
 768     ShenandoahHeapRegion* r = get_region(i);
 769     if (r->is_empty_committed() && (r->empty_time() < shrink_before)) {
 770       has_work = true;
 771       break;
 772     }
 773   }
 774 
 775   if (has_work) {
 776     static const char* msg = "Concurrent uncommit";
 777     ShenandoahConcurrentPhase gcPhase(msg, ShenandoahPhaseTimings::conc_uncommit, true /* log_heap_usage */);
 778     EventMark em("%s", msg);
 779 
 780     op_uncommit(shrink_before, shrink_until);
 781   }
 782 }
 783 
 784 void ShenandoahHeap::op_uncommit(double shrink_before, size_t shrink_until) {
 785   assert (ShenandoahUncommit, "should be enabled");
 786 
 787   // Application allocates from the beginning of the heap, and GC allocates at
 788   // the end of it. It is more efficient to uncommit from the end, so that applications
 789   // could enjoy the near committed regions. GC allocations are much less frequent,
 790   // and therefore can accept the committing costs.
 791 
 792   size_t count = 0;
 793   for (size_t i = num_regions(); i > 0; i--) { // care about size_t underflow
 794     ShenandoahHeapRegion* r = get_region(i - 1);
 795     if (r->is_empty_committed() && (r->empty_time() < shrink_before)) {
 796       ShenandoahHeapLocker locker(lock());
 797       if (r->is_empty_committed()) {
 798         if (committed() < shrink_until + ShenandoahHeapRegion::region_size_bytes()) {
 799           break;
 800         }
 801 
 802         r->make_uncommitted();
 803         count++;
 804       }
 805     }
 806     SpinPause(); // allow allocators to take the lock
 807   }
 808 
 809   if (count > 0) {
 810     notify_heap_changed();
 811   }
 812 }
 813 
 814 bool ShenandoahHeap::check_soft_max_changed() {
 815   size_t new_soft_max = Atomic::load(&SoftMaxHeapSize);
 816   size_t old_soft_max = soft_max_capacity();
 817   if (new_soft_max != old_soft_max) {
 818     new_soft_max = MAX2(min_capacity(), new_soft_max);
 819     new_soft_max = MIN2(max_capacity(), new_soft_max);
 820     if (new_soft_max != old_soft_max) {
 821       log_info(gc)("Soft Max Heap Size: " SIZE_FORMAT "%s -> " SIZE_FORMAT "%s",
 822                    byte_size_in_proper_unit(old_soft_max), proper_unit_for_byte_size(old_soft_max),
 823                    byte_size_in_proper_unit(new_soft_max), proper_unit_for_byte_size(new_soft_max)
 824       );
 825       set_soft_max_capacity(new_soft_max);
 826       return true;
 827     }
 828   }
 829   return false;
 830 }
 831 
 832 void ShenandoahHeap::notify_heap_changed() {
 833   // Update monitoring counters when we took a new region. This amortizes the
 834   // update costs on slow path.
 835   monitoring_support()->notify_heap_changed();
 836 
 837   // This is called from allocation path, and thus should be fast.
 838   _heap_changed.try_set();
 839 }
 840 
 841 void ShenandoahHeap::set_forced_counters_update(bool value) {
 842   monitoring_support()->set_forced_counters_update(value);
 843 }
 844 
 845 void ShenandoahHeap::handle_force_counters_update() {
 846   monitoring_support()->handle_force_counters_update();
 847 }
 848 
 849 HeapWord* ShenandoahHeap::allocate_from_gclab_slow(Thread* thread, size_t size) {
 850   // New object should fit the GCLAB size
 851   size_t min_size = MAX2(size, PLAB::min_size());
 852 
 853   // Figure out size of new GCLAB, looking back at heuristics. Expand aggressively.
 854   size_t new_size = ShenandoahThreadLocalData::gclab_size(thread) * 2;
 855   new_size = MIN2(new_size, PLAB::max_size());
 856   new_size = MAX2(new_size, PLAB::min_size());
 857 
 858   // Record new heuristic value even if we take any shortcut. This captures
 859   // the case when moderately-sized objects always take a shortcut. At some point,
 860   // heuristics should catch up with them.
 861   ShenandoahThreadLocalData::set_gclab_size(thread, new_size);
 862 
 863   if (new_size < size) {
 864     // New size still does not fit the object. Fall back to shared allocation.
 865     // This avoids retiring perfectly good GCLABs, when we encounter a large object.
 866     return nullptr;
 867   }
 868 
 869   // Retire current GCLAB, and allocate a new one.
 870   PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
 871   gclab->retire();
 872 
 873   size_t actual_size = 0;
 874   HeapWord* gclab_buf = allocate_new_gclab(min_size, new_size, &actual_size);
 875   if (gclab_buf == nullptr) {
 876     return nullptr;
 877   }
 878 
 879   assert (size <= actual_size, "allocation should fit");
 880 
 881   // ...and clear or zap just allocated TLAB, if needed.
 882   if (ZeroTLAB) {
 883     Copy::zero_to_words(gclab_buf, actual_size);
 884   } else if (ZapTLAB) {
 885     // Skip mangling the space corresponding to the object header to
 886     // ensure that the returned space is not considered parsable by
 887     // any concurrent GC thread.
 888     size_t hdr_size = oopDesc::header_size();
 889     Copy::fill_to_words(gclab_buf + hdr_size, actual_size - hdr_size, badHeapWordVal);
 890   }
 891   gclab->set_buf(gclab_buf, actual_size);
 892   return gclab->allocate(size);
 893 }
 894 
 895 HeapWord* ShenandoahHeap::allocate_new_tlab(size_t min_size,
 896                                             size_t requested_size,
 897                                             size_t* actual_size) {
 898   ShenandoahAllocRequest req = ShenandoahAllocRequest::for_tlab(min_size, requested_size);
 899   HeapWord* res = allocate_memory(req);
 900   if (res != nullptr) {
 901     *actual_size = req.actual_size();
 902   } else {
 903     *actual_size = 0;
 904   }
 905   return res;
 906 }
 907 
 908 HeapWord* ShenandoahHeap::allocate_new_gclab(size_t min_size,
 909                                              size_t word_size,
 910                                              size_t* actual_size) {
 911   ShenandoahAllocRequest req = ShenandoahAllocRequest::for_gclab(min_size, word_size);
 912   HeapWord* res = allocate_memory(req);
 913   if (res != nullptr) {
 914     *actual_size = req.actual_size();
 915   } else {
 916     *actual_size = 0;
 917   }
 918   return res;
 919 }
 920 
 921 HeapWord* ShenandoahHeap::allocate_memory(ShenandoahAllocRequest& req) {
 922   intptr_t pacer_epoch = 0;
 923   bool in_new_region = false;
 924   HeapWord* result = nullptr;
 925 
 926   if (req.is_mutator_alloc()) {
 927     if (ShenandoahPacing) {
 928       pacer()->pace_for_alloc(req.size());
 929       pacer_epoch = pacer()->epoch();
 930     }
 931 
 932     if (!ShenandoahAllocFailureALot || !should_inject_alloc_failure()) {
 933       result = allocate_memory_under_lock(req, in_new_region);
 934     }
 935 
 936     // Check that gc overhead is not exceeded.
 937     //
 938     // Shenandoah will grind along for quite a while allocating one
 939     // object at a time using shared (non-tlab) allocations. This check
 940     // is testing that the GC overhead limit has not been exceeded.
 941     // This will notify the collector to start a cycle, but will raise
 942     // an OOME to the mutator if the last Full GCs have not made progress.
 943     if (result == nullptr && !req.is_lab_alloc() && get_gc_no_progress_count() > ShenandoahNoProgressThreshold) {
 944       control_thread()->handle_alloc_failure(req, false);
 945       return nullptr;
 946     }
 947 
 948     // Block until control thread reacted, then retry allocation.
 949     //
 950     // It might happen that one of the threads requesting allocation would unblock
 951     // way later after GC happened, only to fail the second allocation, because
 952     // other threads have already depleted the free storage. In this case, a better
 953     // strategy is to try again, as long as GC makes progress (or until at least
 954     // one full GC has completed).
 955     size_t original_count = shenandoah_policy()->full_gc_count();
 956     while (result == nullptr
 957         && (get_gc_no_progress_count() == 0 || original_count == shenandoah_policy()->full_gc_count())) {
 958       control_thread()->handle_alloc_failure(req, true);
 959       result = allocate_memory_under_lock(req, in_new_region);
 960     }
 961 
 962     if (log_is_enabled(Debug, gc, alloc)) {
 963       ResourceMark rm;
 964       log_debug(gc, alloc)("Thread: %s, Result: " PTR_FORMAT ", Request: %s, Size: " SIZE_FORMAT ", Original: " SIZE_FORMAT ", Latest: " SIZE_FORMAT,
 965                            Thread::current()->name(), p2i(result), req.type_string(), req.size(), original_count, get_gc_no_progress_count());
 966     }
 967   } else {
 968     assert(req.is_gc_alloc(), "Can only accept GC allocs here");
 969     result = allocate_memory_under_lock(req, in_new_region);
 970     // Do not call handle_alloc_failure() here, because we cannot block.
 971     // The allocation failure would be handled by the LRB slowpath with handle_alloc_failure_evac().
 972   }
 973 
 974   if (in_new_region) {
 975     notify_heap_changed();
 976   }
 977 
 978   if (result != nullptr) {
 979     size_t requested = req.size();
 980     size_t actual = req.actual_size();
 981 
 982     assert (req.is_lab_alloc() || (requested == actual),
 983             "Only LAB allocations are elastic: %s, requested = " SIZE_FORMAT ", actual = " SIZE_FORMAT,
 984             ShenandoahAllocRequest::alloc_type_to_string(req.type()), requested, actual);
 985 
 986     if (req.is_mutator_alloc()) {
 987       notify_mutator_alloc_words(actual, false);
 988 
 989       // If we requested more than we were granted, give the rest back to pacer.
 990       // This only matters if we are in the same pacing epoch: do not try to unpace
 991       // over the budget for the other phase.
 992       if (ShenandoahPacing && (pacer_epoch > 0) && (requested > actual)) {
 993         pacer()->unpace_for_alloc(pacer_epoch, requested - actual);
 994       }
 995     } else {
 996       increase_used(actual*HeapWordSize);
 997     }
 998   }
 999 
1000   return result;
1001 }
1002 
1003 HeapWord* ShenandoahHeap::allocate_memory_under_lock(ShenandoahAllocRequest& req, bool& in_new_region) {
1004   // If we are dealing with mutator allocation, then we may need to block for safepoint.
1005   // We cannot block for safepoint for GC allocations, because there is a high chance
1006   // we are already running at safepoint or from stack watermark machinery, and we cannot
1007   // block again.
1008   ShenandoahHeapLocker locker(lock(), req.is_mutator_alloc());
1009   return _free_set->allocate(req, in_new_region);
1010 }
1011 
1012 HeapWord* ShenandoahHeap::mem_allocate(size_t size,
1013                                         bool*  gc_overhead_limit_was_exceeded) {
1014   ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared(size);
1015   return allocate_memory(req);
1016 }
1017 
1018 MetaWord* ShenandoahHeap::satisfy_failed_metadata_allocation(ClassLoaderData* loader_data,
1019                                                              size_t size,
1020                                                              Metaspace::MetadataType mdtype) {
1021   MetaWord* result;
1022 
1023   // Inform metaspace OOM to GC heuristics if class unloading is possible.
1024   if (heuristics()->can_unload_classes()) {
1025     ShenandoahHeuristics* h = heuristics();
1026     h->record_metaspace_oom();
1027   }
1028 
1029   // Expand and retry allocation
1030   result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype);
1031   if (result != nullptr) {
1032     return result;
1033   }
1034 
1035   // Start full GC
1036   collect(GCCause::_metadata_GC_clear_soft_refs);
1037 
1038   // Retry allocation
1039   result = loader_data->metaspace_non_null()->allocate(size, mdtype);
1040   if (result != nullptr) {
1041     return result;
1042   }
1043 
1044   // Expand and retry allocation
1045   result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype);
1046   if (result != nullptr) {
1047     return result;
1048   }
1049 
1050   // Out of memory
1051   return nullptr;
1052 }
1053 
1054 class ShenandoahConcurrentEvacuateRegionObjectClosure : public ObjectClosure {
1055 private:
1056   ShenandoahHeap* const _heap;
1057   Thread* const _thread;
1058 public:
1059   ShenandoahConcurrentEvacuateRegionObjectClosure(ShenandoahHeap* heap) :
1060     _heap(heap), _thread(Thread::current()) {}
1061 
1062   void do_object(oop p) {
1063     shenandoah_assert_marked(nullptr, p);
1064     if (!p->is_forwarded()) {
1065       _heap->evacuate_object(p, _thread);
1066     }
1067   }
1068 };
1069 
1070 class ShenandoahEvacuationTask : public WorkerTask {
1071 private:
1072   ShenandoahHeap* const _sh;
1073   ShenandoahCollectionSet* const _cs;
1074   bool _concurrent;
1075 public:
1076   ShenandoahEvacuationTask(ShenandoahHeap* sh,
1077                            ShenandoahCollectionSet* cs,
1078                            bool concurrent) :
1079     WorkerTask("Shenandoah Evacuation"),
1080     _sh(sh),
1081     _cs(cs),
1082     _concurrent(concurrent)
1083   {}
1084 
1085   void work(uint worker_id) {
1086     if (_concurrent) {
1087       ShenandoahConcurrentWorkerSession worker_session(worker_id);
1088       ShenandoahSuspendibleThreadSetJoiner stsj;
1089       ShenandoahEvacOOMScope oom_evac_scope;
1090       do_work();
1091     } else {
1092       ShenandoahParallelWorkerSession worker_session(worker_id);
1093       ShenandoahEvacOOMScope oom_evac_scope;
1094       do_work();
1095     }
1096   }
1097 
1098 private:
1099   void do_work() {
1100     ShenandoahConcurrentEvacuateRegionObjectClosure cl(_sh);
1101     ShenandoahHeapRegion* r;
1102     while ((r =_cs->claim_next()) != nullptr) {
1103       assert(r->has_live(), "Region " SIZE_FORMAT " should have been reclaimed early", r->index());
1104       _sh->marked_object_iterate(r, &cl);
1105 
1106       if (ShenandoahPacing) {
1107         _sh->pacer()->report_evac(r->used() >> LogHeapWordSize);
1108       }
1109 
1110       if (_sh->check_cancelled_gc_and_yield(_concurrent)) {
1111         break;
1112       }
1113     }
1114   }
1115 };
1116 
1117 void ShenandoahHeap::evacuate_collection_set(bool concurrent) {
1118   ShenandoahEvacuationTask task(this, _collection_set, concurrent);
1119   workers()->run_task(&task);
1120 }
1121 
1122 oop ShenandoahHeap::evacuate_object(oop p, Thread* thread) {
1123   if (ShenandoahThreadLocalData::is_oom_during_evac(Thread::current())) {
1124     // This thread went through the OOM during evac protocol and it is safe to return
1125     // the forward pointer. It must not attempt to evacuate any more.
1126     return ShenandoahBarrierSet::resolve_forwarded(p);
1127   }
1128 
1129   assert(ShenandoahThreadLocalData::is_evac_allowed(thread), "must be enclosed in oom-evac scope");
1130 
1131   size_t size = p->size();
1132 
1133   assert(!heap_region_containing(p)->is_humongous(), "never evacuate humongous objects");
1134 
1135   bool alloc_from_gclab = true;
1136   HeapWord* copy = nullptr;
1137 
1138 #ifdef ASSERT
1139   if (ShenandoahOOMDuringEvacALot &&
1140       (os::random() & 1) == 0) { // Simulate OOM every ~2nd slow-path call
1141     copy = nullptr;
1142   } else {
1143 #endif
1144     if (UseTLAB) {
1145       copy = allocate_from_gclab(thread, size);
1146     }
1147     if (copy == nullptr) {
1148       ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared_gc(size);
1149       copy = allocate_memory(req);
1150       alloc_from_gclab = false;
1151     }
1152 #ifdef ASSERT
1153   }
1154 #endif
1155 
1156   if (copy == nullptr) {
1157     control_thread()->handle_alloc_failure_evac(size);
1158 
1159     _oom_evac_handler.handle_out_of_memory_during_evacuation();
1160 
1161     return ShenandoahBarrierSet::resolve_forwarded(p);
1162   }
1163 
1164   // Copy the object:
1165   Copy::aligned_disjoint_words(cast_from_oop<HeapWord*>(p), copy, size);
1166 
1167   // Try to install the new forwarding pointer.
1168   oop copy_val = cast_to_oop(copy);
1169   ContinuationGCSupport::relativize_stack_chunk(copy_val);
1170 
1171   oop result = ShenandoahForwarding::try_update_forwardee(p, copy_val);
1172   if (result == copy_val) {
1173     // Successfully evacuated. Our copy is now the public one!
1174     shenandoah_assert_correct(nullptr, copy_val);
1175     return copy_val;
1176   }  else {
1177     // Failed to evacuate. We need to deal with the object that is left behind. Since this
1178     // new allocation is certainly after TAMS, it will be considered live in the next cycle.
1179     // But if it happens to contain references to evacuated regions, those references would
1180     // not get updated for this stale copy during this cycle, and we will crash while scanning
1181     // it the next cycle.
1182     //
1183     // For GCLAB allocations, it is enough to rollback the allocation ptr. Either the next
1184     // object will overwrite this stale copy, or the filler object on LAB retirement will
1185     // do this. For non-GCLAB allocations, we have no way to retract the allocation, and
1186     // have to explicitly overwrite the copy with the filler object. With that overwrite,
1187     // we have to keep the fwdptr initialized and pointing to our (stale) copy.
1188     if (alloc_from_gclab) {
1189       ShenandoahThreadLocalData::gclab(thread)->undo_allocation(copy, size);
1190     } else {
1191       fill_with_object(copy, size);
1192       shenandoah_assert_correct(nullptr, copy_val);
1193     }
1194     shenandoah_assert_correct(nullptr, result);
1195     return result;
1196   }
1197 }
1198 
1199 void ShenandoahHeap::trash_cset_regions() {
1200   ShenandoahHeapLocker locker(lock());
1201 
1202   ShenandoahCollectionSet* set = collection_set();
1203   ShenandoahHeapRegion* r;
1204   set->clear_current_index();
1205   while ((r = set->next()) != nullptr) {
1206     r->make_trash();
1207   }
1208   collection_set()->clear();
1209 }
1210 
1211 void ShenandoahHeap::print_heap_regions_on(outputStream* st) const {
1212   st->print_cr("Heap Regions:");
1213   st->print_cr("Region state: EU=empty-uncommitted, EC=empty-committed, R=regular, H=humongous start, HP=pinned humongous start");
1214   st->print_cr("              HC=humongous continuation, CS=collection set, TR=trash, P=pinned, CSP=pinned collection set");
1215   st->print_cr("BTE=bottom/top/end, TAMS=top-at-mark-start");
1216   st->print_cr("UWM=update watermark, U=used");
1217   st->print_cr("T=TLAB allocs, G=GCLAB allocs");
1218   st->print_cr("S=shared allocs, L=live data");
1219   st->print_cr("CP=critical pins");
1220 
1221   for (size_t i = 0; i < num_regions(); i++) {
1222     get_region(i)->print_on(st);
1223   }
1224 }
1225 
1226 void ShenandoahHeap::trash_humongous_region_at(ShenandoahHeapRegion* start) {
1227   assert(start->is_humongous_start(), "reclaim regions starting with the first one");
1228 
1229   oop humongous_obj = cast_to_oop(start->bottom());
1230   size_t size = humongous_obj->size();
1231   size_t required_regions = ShenandoahHeapRegion::required_regions(size * HeapWordSize);
1232   size_t index = start->index() + required_regions - 1;
1233 
1234   assert(!start->has_live(), "liveness must be zero");
1235 
1236   for(size_t i = 0; i < required_regions; i++) {
1237     // Reclaim from tail. Otherwise, assertion fails when printing region to trace log,
1238     // as it expects that every region belongs to a humongous region starting with a humongous start region.
1239     ShenandoahHeapRegion* region = get_region(index --);
1240 
1241     assert(region->is_humongous(), "expect correct humongous start or continuation");
1242     assert(!region->is_cset(), "Humongous region should not be in collection set");
1243 
1244     region->make_trash_immediate();
1245   }
1246 }
1247 
1248 class ShenandoahCheckCleanGCLABClosure : public ThreadClosure {
1249 public:
1250   ShenandoahCheckCleanGCLABClosure() {}
1251   void do_thread(Thread* thread) {
1252     PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
1253     assert(gclab != nullptr, "GCLAB should be initialized for %s", thread->name());
1254     assert(gclab->words_remaining() == 0, "GCLAB should not need retirement");
1255   }
1256 };
1257 
1258 class ShenandoahRetireGCLABClosure : public ThreadClosure {
1259 private:
1260   bool const _resize;
1261 public:
1262   ShenandoahRetireGCLABClosure(bool resize) : _resize(resize) {}
1263   void do_thread(Thread* thread) {
1264     PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
1265     assert(gclab != nullptr, "GCLAB should be initialized for %s", thread->name());
1266     gclab->retire();
1267     if (_resize && ShenandoahThreadLocalData::gclab_size(thread) > 0) {
1268       ShenandoahThreadLocalData::set_gclab_size(thread, 0);
1269     }
1270   }
1271 };
1272 
1273 void ShenandoahHeap::labs_make_parsable() {
1274   assert(UseTLAB, "Only call with UseTLAB");
1275 
1276   ShenandoahRetireGCLABClosure cl(false);
1277 
1278   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1279     ThreadLocalAllocBuffer& tlab = t->tlab();
1280     tlab.make_parsable();
1281     cl.do_thread(t);
1282   }
1283 
1284   workers()->threads_do(&cl);
1285 }
1286 
1287 void ShenandoahHeap::tlabs_retire(bool resize) {
1288   assert(UseTLAB, "Only call with UseTLAB");
1289   assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled");
1290 
1291   ThreadLocalAllocStats stats;
1292 
1293   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1294     ThreadLocalAllocBuffer& tlab = t->tlab();
1295     tlab.retire(&stats);
1296     if (resize) {
1297       tlab.resize();
1298     }
1299   }
1300 
1301   stats.publish();
1302 
1303 #ifdef ASSERT
1304   ShenandoahCheckCleanGCLABClosure cl;
1305   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1306     cl.do_thread(t);
1307   }
1308   workers()->threads_do(&cl);
1309 #endif
1310 }
1311 
1312 void ShenandoahHeap::gclabs_retire(bool resize) {
1313   assert(UseTLAB, "Only call with UseTLAB");
1314   assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled");
1315 
1316   ShenandoahRetireGCLABClosure cl(resize);
1317   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1318     cl.do_thread(t);
1319   }
1320   workers()->threads_do(&cl);
1321 
1322   if (safepoint_workers() != nullptr) {
1323     safepoint_workers()->threads_do(&cl);
1324   }
1325 }
1326 
1327 // Returns size in bytes
1328 size_t ShenandoahHeap::unsafe_max_tlab_alloc(Thread *thread) const {
1329   // Return the max allowed size, and let the allocation path
1330   // figure out the safe size for current allocation.
1331   return ShenandoahHeapRegion::max_tlab_size_bytes();
1332 }
1333 
1334 size_t ShenandoahHeap::max_tlab_size() const {
1335   // Returns size in words
1336   return ShenandoahHeapRegion::max_tlab_size_words();
1337 }
1338 
1339 void ShenandoahHeap::collect(GCCause::Cause cause) {
1340   control_thread()->request_gc(cause);
1341 }
1342 
1343 void ShenandoahHeap::do_full_collection(bool clear_all_soft_refs) {
1344   //assert(false, "Shouldn't need to do full collections");
1345 }
1346 
1347 HeapWord* ShenandoahHeap::block_start(const void* addr) const {
1348   ShenandoahHeapRegion* r = heap_region_containing(addr);
1349   if (r != nullptr) {
1350     return r->block_start(addr);
1351   }
1352   return nullptr;
1353 }
1354 
1355 bool ShenandoahHeap::block_is_obj(const HeapWord* addr) const {
1356   ShenandoahHeapRegion* r = heap_region_containing(addr);
1357   return r->block_is_obj(addr);
1358 }
1359 
1360 bool ShenandoahHeap::print_location(outputStream* st, void* addr) const {
1361   return BlockLocationPrinter<ShenandoahHeap>::print_location(st, addr);
1362 }
1363 
1364 void ShenandoahHeap::prepare_for_verify() {
1365   if (SafepointSynchronize::is_at_safepoint() && UseTLAB) {
1366     labs_make_parsable();
1367   }
1368 }
1369 
1370 void ShenandoahHeap::gc_threads_do(ThreadClosure* tcl) const {
1371   if (_shenandoah_policy->is_at_shutdown()) {
1372     return;
1373   }
1374 
1375   if (_control_thread != nullptr) {
1376     tcl->do_thread(_control_thread);
1377   }
1378 
1379   workers()->threads_do(tcl);
1380   if (_safepoint_workers != nullptr) {
1381     _safepoint_workers->threads_do(tcl);
1382   }
1383 }
1384 
1385 void ShenandoahHeap::print_tracing_info() const {
1386   LogTarget(Info, gc, stats) lt;
1387   if (lt.is_enabled()) {
1388     ResourceMark rm;
1389     LogStream ls(lt);
1390 
1391     phase_timings()->print_global_on(&ls);
1392 
1393     ls.cr();
1394     ls.cr();
1395 
1396     shenandoah_policy()->print_gc_stats(&ls);
1397 
1398     ls.cr();
1399     ls.cr();
1400   }
1401 }
1402 
1403 void ShenandoahHeap::verify(VerifyOption vo) {
1404   if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) {
1405     if (ShenandoahVerify) {
1406       verifier()->verify_generic(vo);
1407     } else {
1408       // TODO: Consider allocating verification bitmaps on demand,
1409       // and turn this on unconditionally.
1410     }
1411   }
1412 }
1413 size_t ShenandoahHeap::tlab_capacity(Thread *thr) const {
1414   return _free_set->capacity();
1415 }
1416 
1417 class ObjectIterateScanRootClosure : public BasicOopIterateClosure {
1418 private:
1419   MarkBitMap* _bitmap;
1420   ShenandoahScanObjectStack* _oop_stack;
1421   ShenandoahHeap* const _heap;
1422   ShenandoahMarkingContext* const _marking_context;
1423 
1424   template <class T>
1425   void do_oop_work(T* p) {
1426     T o = RawAccess<>::oop_load(p);
1427     if (!CompressedOops::is_null(o)) {
1428       oop obj = CompressedOops::decode_not_null(o);
1429       if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) {
1430         // There may be dead oops in weak roots in concurrent root phase, do not touch them.
1431         return;
1432       }
1433       obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj);
1434 
1435       assert(oopDesc::is_oop(obj), "must be a valid oop");
1436       if (!_bitmap->is_marked(obj)) {
1437         _bitmap->mark(obj);
1438         _oop_stack->push(obj);
1439       }
1440     }
1441   }
1442 public:
1443   ObjectIterateScanRootClosure(MarkBitMap* bitmap, ShenandoahScanObjectStack* oop_stack) :
1444     _bitmap(bitmap), _oop_stack(oop_stack), _heap(ShenandoahHeap::heap()),
1445     _marking_context(_heap->marking_context()) {}
1446   void do_oop(oop* p)       { do_oop_work(p); }
1447   void do_oop(narrowOop* p) { do_oop_work(p); }
1448 };
1449 
1450 /*
1451  * This is public API, used in preparation of object_iterate().
1452  * Since we don't do linear scan of heap in object_iterate() (see comment below), we don't
1453  * need to make the heap parsable. For Shenandoah-internal linear heap scans that we can
1454  * control, we call SH::tlabs_retire, SH::gclabs_retire.
1455  */
1456 void ShenandoahHeap::ensure_parsability(bool retire_tlabs) {
1457   // No-op.
1458 }
1459 
1460 /*
1461  * Iterates objects in the heap. This is public API, used for, e.g., heap dumping.
1462  *
1463  * We cannot safely iterate objects by doing a linear scan at random points in time. Linear
1464  * scanning needs to deal with dead objects, which may have dead Klass* pointers (e.g.
1465  * calling oopDesc::size() would crash) or dangling reference fields (crashes) etc. Linear
1466  * scanning therefore depends on having a valid marking bitmap to support it. However, we only
1467  * have a valid marking bitmap after successful marking. In particular, we *don't* have a valid
1468  * marking bitmap during marking, after aborted marking or during/after cleanup (when we just
1469  * wiped the bitmap in preparation for next marking).
1470  *
1471  * For all those reasons, we implement object iteration as a single marking traversal, reporting
1472  * objects as we mark+traverse through the heap, starting from GC roots. JVMTI IterateThroughHeap
1473  * is allowed to report dead objects, but is not required to do so.
1474  */
1475 void ShenandoahHeap::object_iterate(ObjectClosure* cl) {
1476   // Reset bitmap
1477   if (!prepare_aux_bitmap_for_iteration())
1478     return;
1479 
1480   ShenandoahScanObjectStack oop_stack;
1481   ObjectIterateScanRootClosure oops(&_aux_bit_map, &oop_stack);
1482   // Seed the stack with root scan
1483   scan_roots_for_iteration(&oop_stack, &oops);
1484 
1485   // Work through the oop stack to traverse heap
1486   while (! oop_stack.is_empty()) {
1487     oop obj = oop_stack.pop();
1488     assert(oopDesc::is_oop(obj), "must be a valid oop");
1489     cl->do_object(obj);
1490     obj->oop_iterate(&oops);
1491   }
1492 
1493   assert(oop_stack.is_empty(), "should be empty");
1494   // Reclaim bitmap
1495   reclaim_aux_bitmap_for_iteration();
1496 }
1497 
1498 bool ShenandoahHeap::prepare_aux_bitmap_for_iteration() {
1499   assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints");
1500 
1501   if (!_aux_bitmap_region_special && !os::commit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size(), false)) {
1502     log_warning(gc)("Could not commit native memory for auxiliary marking bitmap for heap iteration");
1503     return false;
1504   }
1505   // Reset bitmap
1506   _aux_bit_map.clear();
1507   return true;
1508 }
1509 
1510 void ShenandoahHeap::scan_roots_for_iteration(ShenandoahScanObjectStack* oop_stack, ObjectIterateScanRootClosure* oops) {
1511   // Process GC roots according to current GC cycle
1512   // This populates the work stack with initial objects
1513   // It is important to relinquish the associated locks before diving
1514   // into heap dumper
1515   uint n_workers = safepoint_workers() != nullptr ? safepoint_workers()->active_workers() : 1;
1516   ShenandoahHeapIterationRootScanner rp(n_workers);
1517   rp.roots_do(oops);
1518 }
1519 
1520 void ShenandoahHeap::reclaim_aux_bitmap_for_iteration() {
1521   if (!_aux_bitmap_region_special && !os::uncommit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size())) {
1522     log_warning(gc)("Could not uncommit native memory for auxiliary marking bitmap for heap iteration");
1523   }
1524 }
1525 
1526 // Closure for parallelly iterate objects
1527 class ShenandoahObjectIterateParScanClosure : public BasicOopIterateClosure {
1528 private:
1529   MarkBitMap* _bitmap;
1530   ShenandoahObjToScanQueue* _queue;
1531   ShenandoahHeap* const _heap;
1532   ShenandoahMarkingContext* const _marking_context;
1533 
1534   template <class T>
1535   void do_oop_work(T* p) {
1536     T o = RawAccess<>::oop_load(p);
1537     if (!CompressedOops::is_null(o)) {
1538       oop obj = CompressedOops::decode_not_null(o);
1539       if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) {
1540         // There may be dead oops in weak roots in concurrent root phase, do not touch them.
1541         return;
1542       }
1543       obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj);
1544 
1545       assert(oopDesc::is_oop(obj), "Must be a valid oop");
1546       if (_bitmap->par_mark(obj)) {
1547         _queue->push(ShenandoahMarkTask(obj));
1548       }
1549     }
1550   }
1551 public:
1552   ShenandoahObjectIterateParScanClosure(MarkBitMap* bitmap, ShenandoahObjToScanQueue* q) :
1553     _bitmap(bitmap), _queue(q), _heap(ShenandoahHeap::heap()),
1554     _marking_context(_heap->marking_context()) {}
1555   void do_oop(oop* p)       { do_oop_work(p); }
1556   void do_oop(narrowOop* p) { do_oop_work(p); }
1557 };
1558 
1559 // Object iterator for parallel heap iteraion.
1560 // The root scanning phase happenes in construction as a preparation of
1561 // parallel marking queues.
1562 // Every worker processes it's own marking queue. work-stealing is used
1563 // to balance workload.
1564 class ShenandoahParallelObjectIterator : public ParallelObjectIteratorImpl {
1565 private:
1566   uint                         _num_workers;
1567   bool                         _init_ready;
1568   MarkBitMap*                  _aux_bit_map;
1569   ShenandoahHeap*              _heap;
1570   ShenandoahScanObjectStack    _roots_stack; // global roots stack
1571   ShenandoahObjToScanQueueSet* _task_queues;
1572 public:
1573   ShenandoahParallelObjectIterator(uint num_workers, MarkBitMap* bitmap) :
1574         _num_workers(num_workers),
1575         _init_ready(false),
1576         _aux_bit_map(bitmap),
1577         _heap(ShenandoahHeap::heap()) {
1578     // Initialize bitmap
1579     _init_ready = _heap->prepare_aux_bitmap_for_iteration();
1580     if (!_init_ready) {
1581       return;
1582     }
1583 
1584     ObjectIterateScanRootClosure oops(_aux_bit_map, &_roots_stack);
1585     _heap->scan_roots_for_iteration(&_roots_stack, &oops);
1586 
1587     _init_ready = prepare_worker_queues();
1588   }
1589 
1590   ~ShenandoahParallelObjectIterator() {
1591     // Reclaim bitmap
1592     _heap->reclaim_aux_bitmap_for_iteration();
1593     // Reclaim queue for workers
1594     if (_task_queues!= nullptr) {
1595       for (uint i = 0; i < _num_workers; ++i) {
1596         ShenandoahObjToScanQueue* q = _task_queues->queue(i);
1597         if (q != nullptr) {
1598           delete q;
1599           _task_queues->register_queue(i, nullptr);
1600         }
1601       }
1602       delete _task_queues;
1603       _task_queues = nullptr;
1604     }
1605   }
1606 
1607   virtual void object_iterate(ObjectClosure* cl, uint worker_id) {
1608     if (_init_ready) {
1609       object_iterate_parallel(cl, worker_id, _task_queues);
1610     }
1611   }
1612 
1613 private:
1614   // Divide global root_stack into worker queues
1615   bool prepare_worker_queues() {
1616     _task_queues = new ShenandoahObjToScanQueueSet((int) _num_workers);
1617     // Initialize queues for every workers
1618     for (uint i = 0; i < _num_workers; ++i) {
1619       ShenandoahObjToScanQueue* task_queue = new ShenandoahObjToScanQueue();
1620       _task_queues->register_queue(i, task_queue);
1621     }
1622     // Divide roots among the workers. Assume that object referencing distribution
1623     // is related with root kind, use round-robin to make every worker have same chance
1624     // to process every kind of roots
1625     size_t roots_num = _roots_stack.size();
1626     if (roots_num == 0) {
1627       // No work to do
1628       return false;
1629     }
1630 
1631     for (uint j = 0; j < roots_num; j++) {
1632       uint stack_id = j % _num_workers;
1633       oop obj = _roots_stack.pop();
1634       _task_queues->queue(stack_id)->push(ShenandoahMarkTask(obj));
1635     }
1636     return true;
1637   }
1638 
1639   void object_iterate_parallel(ObjectClosure* cl,
1640                                uint worker_id,
1641                                ShenandoahObjToScanQueueSet* queue_set) {
1642     assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints");
1643     assert(queue_set != nullptr, "task queue must not be null");
1644 
1645     ShenandoahObjToScanQueue* q = queue_set->queue(worker_id);
1646     assert(q != nullptr, "object iterate queue must not be null");
1647 
1648     ShenandoahMarkTask t;
1649     ShenandoahObjectIterateParScanClosure oops(_aux_bit_map, q);
1650 
1651     // Work through the queue to traverse heap.
1652     // Steal when there is no task in queue.
1653     while (q->pop(t) || queue_set->steal(worker_id, t)) {
1654       oop obj = t.obj();
1655       assert(oopDesc::is_oop(obj), "must be a valid oop");
1656       cl->do_object(obj);
1657       obj->oop_iterate(&oops);
1658     }
1659     assert(q->is_empty(), "should be empty");
1660   }
1661 };
1662 
1663 ParallelObjectIteratorImpl* ShenandoahHeap::parallel_object_iterator(uint workers) {
1664   return new ShenandoahParallelObjectIterator(workers, &_aux_bit_map);
1665 }
1666 
1667 // Keep alive an object that was loaded with AS_NO_KEEPALIVE.
1668 void ShenandoahHeap::keep_alive(oop obj) {
1669   if (is_concurrent_mark_in_progress() && (obj != nullptr)) {
1670     ShenandoahBarrierSet::barrier_set()->enqueue(obj);
1671   }
1672 }
1673 
1674 void ShenandoahHeap::heap_region_iterate(ShenandoahHeapRegionClosure* blk) const {
1675   for (size_t i = 0; i < num_regions(); i++) {
1676     ShenandoahHeapRegion* current = get_region(i);
1677     blk->heap_region_do(current);
1678   }
1679 }
1680 
1681 class ShenandoahParallelHeapRegionTask : public WorkerTask {
1682 private:
1683   ShenandoahHeap* const _heap;
1684   ShenandoahHeapRegionClosure* const _blk;
1685 
1686   shenandoah_padding(0);
1687   volatile size_t _index;
1688   shenandoah_padding(1);
1689 
1690 public:
1691   ShenandoahParallelHeapRegionTask(ShenandoahHeapRegionClosure* blk) :
1692           WorkerTask("Shenandoah Parallel Region Operation"),
1693           _heap(ShenandoahHeap::heap()), _blk(blk), _index(0) {}
1694 
1695   void work(uint worker_id) {
1696     ShenandoahParallelWorkerSession worker_session(worker_id);
1697     size_t stride = ShenandoahParallelRegionStride;
1698 
1699     size_t max = _heap->num_regions();
1700     while (Atomic::load(&_index) < max) {
1701       size_t cur = Atomic::fetch_then_add(&_index, stride, memory_order_relaxed);
1702       size_t start = cur;
1703       size_t end = MIN2(cur + stride, max);
1704       if (start >= max) break;
1705 
1706       for (size_t i = cur; i < end; i++) {
1707         ShenandoahHeapRegion* current = _heap->get_region(i);
1708         _blk->heap_region_do(current);
1709       }
1710     }
1711   }
1712 };
1713 
1714 void ShenandoahHeap::parallel_heap_region_iterate(ShenandoahHeapRegionClosure* blk) const {
1715   assert(blk->is_thread_safe(), "Only thread-safe closures here");
1716   if (num_regions() > ShenandoahParallelRegionStride) {
1717     ShenandoahParallelHeapRegionTask task(blk);
1718     workers()->run_task(&task);
1719   } else {
1720     heap_region_iterate(blk);
1721   }
1722 }
1723 
1724 class ShenandoahRendezvousClosure : public HandshakeClosure {
1725 public:
1726   inline ShenandoahRendezvousClosure() : HandshakeClosure("ShenandoahRendezvous") {}
1727   inline void do_thread(Thread* thread) {}
1728 };
1729 
1730 void ShenandoahHeap::rendezvous_threads() {
1731   ShenandoahRendezvousClosure cl;
1732   Handshake::execute(&cl);
1733 }
1734 
1735 void ShenandoahHeap::recycle_trash() {
1736   free_set()->recycle_trash();
1737 }
1738 
1739 class ShenandoahResetUpdateRegionStateClosure : public ShenandoahHeapRegionClosure {
1740 private:
1741   ShenandoahMarkingContext* const _ctx;
1742 public:
1743   ShenandoahResetUpdateRegionStateClosure() : _ctx(ShenandoahHeap::heap()->marking_context()) {}
1744 
1745   void heap_region_do(ShenandoahHeapRegion* r) {
1746     if (r->is_active()) {
1747       // Reset live data and set TAMS optimistically. We would recheck these under the pause
1748       // anyway to capture any updates that happened since now.
1749       r->clear_live_data();
1750       _ctx->capture_top_at_mark_start(r);
1751     }
1752   }
1753 
1754   bool is_thread_safe() { return true; }
1755 };
1756 
1757 void ShenandoahHeap::prepare_gc() {
1758   reset_mark_bitmap();
1759 
1760   ShenandoahResetUpdateRegionStateClosure cl;
1761   parallel_heap_region_iterate(&cl);
1762 }
1763 
1764 class ShenandoahFinalMarkUpdateRegionStateClosure : public ShenandoahHeapRegionClosure {
1765 private:
1766   ShenandoahMarkingContext* const _ctx;
1767   ShenandoahHeapLock* const _lock;
1768 
1769 public:
1770   ShenandoahFinalMarkUpdateRegionStateClosure() :
1771     _ctx(ShenandoahHeap::heap()->complete_marking_context()), _lock(ShenandoahHeap::heap()->lock()) {}
1772 
1773   void heap_region_do(ShenandoahHeapRegion* r) {
1774     if (r->is_active()) {
1775       // All allocations past TAMS are implicitly live, adjust the region data.
1776       // Bitmaps/TAMS are swapped at this point, so we need to poll complete bitmap.
1777       HeapWord *tams = _ctx->top_at_mark_start(r);
1778       HeapWord *top = r->top();
1779       if (top > tams) {
1780         r->increase_live_data_alloc_words(pointer_delta(top, tams));
1781       }
1782 
1783       // We are about to select the collection set, make sure it knows about
1784       // current pinning status. Also, this allows trashing more regions that
1785       // now have their pinning status dropped.
1786       if (r->is_pinned()) {
1787         if (r->pin_count() == 0) {
1788           ShenandoahHeapLocker locker(_lock);
1789           r->make_unpinned();
1790         }
1791       } else {
1792         if (r->pin_count() > 0) {
1793           ShenandoahHeapLocker locker(_lock);
1794           r->make_pinned();
1795         }
1796       }
1797 
1798       // Remember limit for updating refs. It's guaranteed that we get no
1799       // from-space-refs written from here on.
1800       r->set_update_watermark_at_safepoint(r->top());
1801     } else {
1802       assert(!r->has_live(), "Region " SIZE_FORMAT " should have no live data", r->index());
1803       assert(_ctx->top_at_mark_start(r) == r->top(),
1804              "Region " SIZE_FORMAT " should have correct TAMS", r->index());
1805     }
1806   }
1807 
1808   bool is_thread_safe() { return true; }
1809 };
1810 
1811 void ShenandoahHeap::prepare_regions_and_collection_set(bool concurrent) {
1812   assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC");
1813   {
1814     ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::final_update_region_states :
1815                                          ShenandoahPhaseTimings::degen_gc_final_update_region_states);
1816     ShenandoahFinalMarkUpdateRegionStateClosure cl;
1817     parallel_heap_region_iterate(&cl);
1818 
1819     assert_pinned_region_status();
1820   }
1821 
1822   {
1823     ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::choose_cset :
1824                                          ShenandoahPhaseTimings::degen_gc_choose_cset);
1825     ShenandoahHeapLocker locker(lock());
1826     _collection_set->clear();
1827     heuristics()->choose_collection_set(_collection_set);
1828   }
1829 
1830   {
1831     ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::final_rebuild_freeset :
1832                                          ShenandoahPhaseTimings::degen_gc_final_rebuild_freeset);
1833     ShenandoahHeapLocker locker(lock());
1834     _free_set->rebuild();
1835   }
1836 }
1837 
1838 void ShenandoahHeap::do_class_unloading() {
1839   _unloader.unload();
1840 }
1841 
1842 void ShenandoahHeap::stw_weak_refs(bool full_gc) {
1843   // Weak refs processing
1844   ShenandoahPhaseTimings::Phase phase = full_gc ? ShenandoahPhaseTimings::full_gc_weakrefs
1845                                                 : ShenandoahPhaseTimings::degen_gc_weakrefs;
1846   ShenandoahTimingsTracker t(phase);
1847   ShenandoahGCWorkerPhase worker_phase(phase);
1848   ref_processor()->process_references(phase, workers(), false /* concurrent */);
1849 }
1850 
1851 void ShenandoahHeap::prepare_update_heap_references(bool concurrent) {
1852   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "must be at safepoint");
1853 
1854   // Evacuation is over, no GCLABs are needed anymore. GCLABs are under URWM, so we need to
1855   // make them parsable for update code to work correctly. Plus, we can compute new sizes
1856   // for future GCLABs here.
1857   if (UseTLAB) {
1858     ShenandoahGCPhase phase(concurrent ?
1859                             ShenandoahPhaseTimings::init_update_refs_manage_gclabs :
1860                             ShenandoahPhaseTimings::degen_gc_init_update_refs_manage_gclabs);
1861     gclabs_retire(ResizeTLAB);
1862   }
1863 
1864   _update_refs_iterator.reset();
1865 }
1866 
1867 void ShenandoahHeap::propagate_gc_state_to_java_threads() {
1868   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Must be at Shenandoah safepoint");
1869   if (_gc_state_changed) {
1870     _gc_state_changed = false;
1871     char state = gc_state();
1872     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1873       ShenandoahThreadLocalData::set_gc_state(t, state);
1874     }
1875   }
1876 }
1877 
1878 void ShenandoahHeap::set_gc_state(uint mask, bool value) {
1879   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Must be at Shenandoah safepoint");
1880   _gc_state.set_cond(mask, value);
1881   _gc_state_changed = true;
1882 }
1883 
1884 void ShenandoahHeap::set_concurrent_mark_in_progress(bool in_progress) {
1885   assert(!has_forwarded_objects(), "Not expected before/after mark phase");
1886   set_gc_state(MARKING, in_progress);
1887   ShenandoahBarrierSet::satb_mark_queue_set().set_active_all_threads(in_progress, !in_progress);
1888 }
1889 
1890 void ShenandoahHeap::set_evacuation_in_progress(bool in_progress) {
1891   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Only call this at safepoint");
1892   set_gc_state(EVACUATION, in_progress);
1893 }
1894 
1895 void ShenandoahHeap::set_concurrent_strong_root_in_progress(bool in_progress) {
1896   if (in_progress) {
1897     _concurrent_strong_root_in_progress.set();
1898   } else {
1899     _concurrent_strong_root_in_progress.unset();
1900   }
1901 }
1902 
1903 void ShenandoahHeap::set_concurrent_weak_root_in_progress(bool cond) {
1904   set_gc_state(WEAK_ROOTS, cond);
1905 }
1906 
1907 GCTracer* ShenandoahHeap::tracer() {
1908   return shenandoah_policy()->tracer();
1909 }
1910 
1911 size_t ShenandoahHeap::tlab_used(Thread* thread) const {
1912   return _free_set->used();
1913 }
1914 
1915 bool ShenandoahHeap::try_cancel_gc() {
1916   jbyte prev = _cancelled_gc.cmpxchg(CANCELLED, CANCELLABLE);
1917   return prev == CANCELLABLE;
1918 }
1919 
1920 void ShenandoahHeap::cancel_gc(GCCause::Cause cause) {
1921   if (try_cancel_gc()) {
1922     FormatBuffer<> msg("Cancelling GC: %s", GCCause::to_string(cause));
1923     log_info(gc)("%s", msg.buffer());
1924     Events::log(Thread::current(), "%s", msg.buffer());
1925   }
1926 }
1927 
1928 uint ShenandoahHeap::max_workers() {
1929   return _max_workers;
1930 }
1931 
1932 void ShenandoahHeap::stop() {
1933   // The shutdown sequence should be able to terminate when GC is running.
1934 
1935   // Step 0. Notify policy to disable event recording and prevent visiting gc threads during shutdown
1936   _shenandoah_policy->record_shutdown();
1937 
1938   // Step 1. Notify control thread that we are in shutdown.
1939   // Note that we cannot do that with stop(), because stop() is blocking and waits for the actual shutdown.
1940   // Doing stop() here would wait for the normal GC cycle to complete, never falling through to cancel below.
1941   control_thread()->prepare_for_graceful_shutdown();
1942 
1943   // Step 2. Notify GC workers that we are cancelling GC.
1944   cancel_gc(GCCause::_shenandoah_stop_vm);
1945 
1946   // Step 3. Wait until GC worker exits normally.
1947   control_thread()->stop();
1948 }
1949 
1950 void ShenandoahHeap::stw_unload_classes(bool full_gc) {
1951   if (!unload_classes()) return;
1952   ClassUnloadingContext ctx(_workers->active_workers(),
1953                             true /* unregister_nmethods_during_purge */,
1954                             false /* lock_nmethod_free_separately */);
1955 
1956   // Unload classes and purge SystemDictionary.
1957   {
1958     ShenandoahPhaseTimings::Phase phase = full_gc ?
1959                                           ShenandoahPhaseTimings::full_gc_purge_class_unload :
1960                                           ShenandoahPhaseTimings::degen_gc_purge_class_unload;
1961     ShenandoahIsAliveSelector is_alive;
1962     {
1963       CodeCache::UnlinkingScope scope(is_alive.is_alive_closure());
1964       ShenandoahGCPhase gc_phase(phase);
1965       ShenandoahGCWorkerPhase worker_phase(phase);
1966       bool unloading_occurred = SystemDictionary::do_unloading(gc_timer());
1967 
1968       uint num_workers = _workers->active_workers();
1969       ShenandoahClassUnloadingTask unlink_task(phase, num_workers, unloading_occurred);
1970       _workers->run_task(&unlink_task);
1971     }
1972     // Release unloaded nmethods's memory.
1973     ClassUnloadingContext::context()->purge_and_free_nmethods();
1974   }
1975 
1976   {
1977     ShenandoahGCPhase phase(full_gc ?
1978                             ShenandoahPhaseTimings::full_gc_purge_cldg :
1979                             ShenandoahPhaseTimings::degen_gc_purge_cldg);
1980     ClassLoaderDataGraph::purge(true /* at_safepoint */);
1981   }
1982   // Resize and verify metaspace
1983   MetaspaceGC::compute_new_size();
1984   DEBUG_ONLY(MetaspaceUtils::verify();)
1985 }
1986 
1987 // Weak roots are either pre-evacuated (final mark) or updated (final updaterefs),
1988 // so they should not have forwarded oops.
1989 // However, we do need to "null" dead oops in the roots, if can not be done
1990 // in concurrent cycles.
1991 void ShenandoahHeap::stw_process_weak_roots(bool full_gc) {
1992   uint num_workers = _workers->active_workers();
1993   ShenandoahPhaseTimings::Phase timing_phase = full_gc ?
1994                                                ShenandoahPhaseTimings::full_gc_purge_weak_par :
1995                                                ShenandoahPhaseTimings::degen_gc_purge_weak_par;
1996   ShenandoahGCPhase phase(timing_phase);
1997   ShenandoahGCWorkerPhase worker_phase(timing_phase);
1998   // Cleanup weak roots
1999   if (has_forwarded_objects()) {
2000     ShenandoahForwardedIsAliveClosure is_alive;
2001     ShenandoahUpdateRefsClosure keep_alive;
2002     ShenandoahParallelWeakRootsCleaningTask<ShenandoahForwardedIsAliveClosure, ShenandoahUpdateRefsClosure>
2003       cleaning_task(timing_phase, &is_alive, &keep_alive, num_workers);
2004     _workers->run_task(&cleaning_task);
2005   } else {
2006     ShenandoahIsAliveClosure is_alive;
2007 #ifdef ASSERT
2008     ShenandoahAssertNotForwardedClosure verify_cl;
2009     ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, ShenandoahAssertNotForwardedClosure>
2010       cleaning_task(timing_phase, &is_alive, &verify_cl, num_workers);
2011 #else
2012     ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, DoNothingClosure>
2013       cleaning_task(timing_phase, &is_alive, &do_nothing_cl, num_workers);
2014 #endif
2015     _workers->run_task(&cleaning_task);
2016   }
2017 }
2018 
2019 void ShenandoahHeap::parallel_cleaning(bool full_gc) {
2020   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
2021   assert(is_stw_gc_in_progress(), "Only for Degenerated and Full GC");
2022   ShenandoahGCPhase phase(full_gc ?
2023                           ShenandoahPhaseTimings::full_gc_purge :
2024                           ShenandoahPhaseTimings::degen_gc_purge);
2025   stw_weak_refs(full_gc);
2026   stw_process_weak_roots(full_gc);
2027   stw_unload_classes(full_gc);
2028 }
2029 
2030 void ShenandoahHeap::set_has_forwarded_objects(bool cond) {
2031   set_gc_state(HAS_FORWARDED, cond);
2032 }
2033 
2034 void ShenandoahHeap::set_unload_classes(bool uc) {
2035   _unload_classes.set_cond(uc);
2036 }
2037 
2038 bool ShenandoahHeap::unload_classes() const {
2039   return _unload_classes.is_set();
2040 }
2041 
2042 address ShenandoahHeap::in_cset_fast_test_addr() {
2043   ShenandoahHeap* heap = ShenandoahHeap::heap();
2044   assert(heap->collection_set() != nullptr, "Sanity");
2045   return (address) heap->collection_set()->biased_map_address();
2046 }
2047 
2048 size_t ShenandoahHeap::bytes_allocated_since_gc_start() const {
2049   return Atomic::load(&_bytes_allocated_since_gc_start);
2050 }
2051 
2052 void ShenandoahHeap::reset_bytes_allocated_since_gc_start() {
2053   Atomic::store(&_bytes_allocated_since_gc_start, (size_t)0);
2054 }
2055 
2056 void ShenandoahHeap::set_degenerated_gc_in_progress(bool in_progress) {
2057   _degenerated_gc_in_progress.set_cond(in_progress);
2058 }
2059 
2060 void ShenandoahHeap::set_full_gc_in_progress(bool in_progress) {
2061   _full_gc_in_progress.set_cond(in_progress);
2062 }
2063 
2064 void ShenandoahHeap::set_full_gc_move_in_progress(bool in_progress) {
2065   assert (is_full_gc_in_progress(), "should be");
2066   _full_gc_move_in_progress.set_cond(in_progress);
2067 }
2068 
2069 void ShenandoahHeap::set_update_refs_in_progress(bool in_progress) {
2070   set_gc_state(UPDATEREFS, in_progress);
2071 }
2072 
2073 void ShenandoahHeap::register_nmethod(nmethod* nm) {
2074   ShenandoahCodeRoots::register_nmethod(nm);
2075 }
2076 
2077 void ShenandoahHeap::unregister_nmethod(nmethod* nm) {
2078   ShenandoahCodeRoots::unregister_nmethod(nm);
2079 }
2080 
2081 void ShenandoahHeap::pin_object(JavaThread* thr, oop o) {
2082   heap_region_containing(o)->record_pin();
2083 }
2084 
2085 void ShenandoahHeap::unpin_object(JavaThread* thr, oop o) {
2086   ShenandoahHeapRegion* r = heap_region_containing(o);
2087   assert(r != nullptr, "Sanity");
2088   assert(r->pin_count() > 0, "Region " SIZE_FORMAT " should have non-zero pins", r->index());
2089   r->record_unpin();
2090 }
2091 
2092 void ShenandoahHeap::sync_pinned_region_status() {
2093   ShenandoahHeapLocker locker(lock());
2094 
2095   for (size_t i = 0; i < num_regions(); i++) {
2096     ShenandoahHeapRegion *r = get_region(i);
2097     if (r->is_active()) {
2098       if (r->is_pinned()) {
2099         if (r->pin_count() == 0) {
2100           r->make_unpinned();
2101         }
2102       } else {
2103         if (r->pin_count() > 0) {
2104           r->make_pinned();
2105         }
2106       }
2107     }
2108   }
2109 
2110   assert_pinned_region_status();
2111 }
2112 
2113 #ifdef ASSERT
2114 void ShenandoahHeap::assert_pinned_region_status() {
2115   for (size_t i = 0; i < num_regions(); i++) {
2116     ShenandoahHeapRegion* r = get_region(i);
2117     assert((r->is_pinned() && r->pin_count() > 0) || (!r->is_pinned() && r->pin_count() == 0),
2118            "Region " SIZE_FORMAT " pinning status is inconsistent", i);
2119   }
2120 }
2121 #endif
2122 
2123 ConcurrentGCTimer* ShenandoahHeap::gc_timer() const {
2124   return _gc_timer;
2125 }
2126 
2127 void ShenandoahHeap::prepare_concurrent_roots() {
2128   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
2129   assert(!is_stw_gc_in_progress(), "Only concurrent GC");
2130   set_concurrent_strong_root_in_progress(!collection_set()->is_empty());
2131   set_concurrent_weak_root_in_progress(true);
2132   if (unload_classes()) {
2133     _unloader.prepare();
2134   }
2135 }
2136 
2137 void ShenandoahHeap::finish_concurrent_roots() {
2138   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
2139   assert(!is_stw_gc_in_progress(), "Only concurrent GC");
2140   if (unload_classes()) {
2141     _unloader.finish();
2142   }
2143 }
2144 
2145 #ifdef ASSERT
2146 void ShenandoahHeap::assert_gc_workers(uint nworkers) {
2147   assert(nworkers > 0 && nworkers <= max_workers(), "Sanity");
2148 
2149   if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) {
2150     // Use ParallelGCThreads inside safepoints
2151     assert(nworkers == ParallelGCThreads, "Use ParallelGCThreads (%u) within safepoint, not %u",
2152            ParallelGCThreads, nworkers);
2153   } else {
2154     // Use ConcGCThreads outside safepoints
2155     assert(nworkers == ConcGCThreads, "Use ConcGCThreads (%u) outside safepoints, %u",
2156            ConcGCThreads, nworkers);
2157   }
2158 }
2159 #endif
2160 
2161 ShenandoahVerifier* ShenandoahHeap::verifier() {
2162   guarantee(ShenandoahVerify, "Should be enabled");
2163   assert (_verifier != nullptr, "sanity");
2164   return _verifier;
2165 }
2166 
2167 template<bool CONCURRENT>
2168 class ShenandoahUpdateHeapRefsTask : public WorkerTask {
2169 private:
2170   ShenandoahHeap* _heap;
2171   ShenandoahRegionIterator* _regions;
2172 public:
2173   ShenandoahUpdateHeapRefsTask(ShenandoahRegionIterator* regions) :
2174     WorkerTask("Shenandoah Update References"),
2175     _heap(ShenandoahHeap::heap()),
2176     _regions(regions) {
2177   }
2178 
2179   void work(uint worker_id) {
2180     if (CONCURRENT) {
2181       ShenandoahConcurrentWorkerSession worker_session(worker_id);
2182       ShenandoahSuspendibleThreadSetJoiner stsj;
2183       do_work<ShenandoahConcUpdateRefsClosure>(worker_id);
2184     } else {
2185       ShenandoahParallelWorkerSession worker_session(worker_id);
2186       do_work<ShenandoahSTWUpdateRefsClosure>(worker_id);
2187     }
2188   }
2189 
2190 private:
2191   template<class T>
2192   void do_work(uint worker_id) {
2193     T cl;
2194     if (CONCURRENT && (worker_id == 0)) {
2195       // We ask the first worker to replenish the Mutator free set by moving regions previously reserved to hold the
2196       // results of evacuation.  These reserves are no longer necessary because evacuation has completed.
2197       size_t cset_regions = _heap->collection_set()->count();
2198       // We cannot transfer any more regions than will be reclaimed when the existing collection set is recycled because
2199       // we need the reclaimed collection set regions to replenish the collector reserves
2200       _heap->free_set()->move_regions_from_collector_to_mutator(cset_regions);
2201     }
2202     // If !CONCURRENT, there's no value in expanding Mutator free set
2203 
2204     ShenandoahHeapRegion* r = _regions->next();
2205     ShenandoahMarkingContext* const ctx = _heap->complete_marking_context();
2206     while (r != nullptr) {
2207       HeapWord* update_watermark = r->get_update_watermark();
2208       assert (update_watermark >= r->bottom(), "sanity");
2209       if (r->is_active() && !r->is_cset()) {
2210         _heap->marked_object_oop_iterate(r, &cl, update_watermark);
2211       }
2212       if (ShenandoahPacing) {
2213         _heap->pacer()->report_updaterefs(pointer_delta(update_watermark, r->bottom()));
2214       }
2215       if (_heap->check_cancelled_gc_and_yield(CONCURRENT)) {
2216         return;
2217       }
2218       r = _regions->next();
2219     }
2220   }
2221 };
2222 
2223 void ShenandoahHeap::update_heap_references(bool concurrent) {
2224   assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC");
2225 
2226   if (concurrent) {
2227     ShenandoahUpdateHeapRefsTask<true> task(&_update_refs_iterator);
2228     workers()->run_task(&task);
2229   } else {
2230     ShenandoahUpdateHeapRefsTask<false> task(&_update_refs_iterator);
2231     workers()->run_task(&task);
2232   }
2233 }
2234 
2235 
2236 class ShenandoahFinalUpdateRefsUpdateRegionStateClosure : public ShenandoahHeapRegionClosure {
2237 private:
2238   ShenandoahHeapLock* const _lock;
2239 
2240 public:
2241   ShenandoahFinalUpdateRefsUpdateRegionStateClosure() : _lock(ShenandoahHeap::heap()->lock()) {}
2242 
2243   void heap_region_do(ShenandoahHeapRegion* r) {
2244     // Drop unnecessary "pinned" state from regions that does not have CP marks
2245     // anymore, as this would allow trashing them.
2246 
2247     if (r->is_active()) {
2248       if (r->is_pinned()) {
2249         if (r->pin_count() == 0) {
2250           ShenandoahHeapLocker locker(_lock);
2251           r->make_unpinned();
2252         }
2253       } else {
2254         if (r->pin_count() > 0) {
2255           ShenandoahHeapLocker locker(_lock);
2256           r->make_pinned();
2257         }
2258       }
2259     }
2260   }
2261 
2262   bool is_thread_safe() { return true; }
2263 };
2264 
2265 void ShenandoahHeap::update_heap_region_states(bool concurrent) {
2266   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
2267   assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC");
2268 
2269   {
2270     ShenandoahGCPhase phase(concurrent ?
2271                             ShenandoahPhaseTimings::final_update_refs_update_region_states :
2272                             ShenandoahPhaseTimings::degen_gc_final_update_refs_update_region_states);
2273     ShenandoahFinalUpdateRefsUpdateRegionStateClosure cl;
2274     parallel_heap_region_iterate(&cl);
2275 
2276     assert_pinned_region_status();
2277   }
2278 
2279   {
2280     ShenandoahGCPhase phase(concurrent ?
2281                             ShenandoahPhaseTimings::final_update_refs_trash_cset :
2282                             ShenandoahPhaseTimings::degen_gc_final_update_refs_trash_cset);
2283     trash_cset_regions();
2284   }
2285 }
2286 
2287 void ShenandoahHeap::rebuild_free_set(bool concurrent) {
2288   {
2289     ShenandoahGCPhase phase(concurrent ?
2290                             ShenandoahPhaseTimings::final_update_refs_rebuild_freeset :
2291                             ShenandoahPhaseTimings::degen_gc_final_update_refs_rebuild_freeset);
2292     ShenandoahHeapLocker locker(lock());
2293     _free_set->rebuild();
2294   }
2295 }
2296 
2297 void ShenandoahHeap::print_extended_on(outputStream *st) const {
2298   print_on(st);
2299   st->cr();
2300   print_heap_regions_on(st);
2301 }
2302 
2303 bool ShenandoahHeap::is_bitmap_slice_committed(ShenandoahHeapRegion* r, bool skip_self) {
2304   size_t slice = r->index() / _bitmap_regions_per_slice;
2305 
2306   size_t regions_from = _bitmap_regions_per_slice * slice;
2307   size_t regions_to   = MIN2(num_regions(), _bitmap_regions_per_slice * (slice + 1));
2308   for (size_t g = regions_from; g < regions_to; g++) {
2309     assert (g / _bitmap_regions_per_slice == slice, "same slice");
2310     if (skip_self && g == r->index()) continue;
2311     if (get_region(g)->is_committed()) {
2312       return true;
2313     }
2314   }
2315   return false;
2316 }
2317 
2318 bool ShenandoahHeap::commit_bitmap_slice(ShenandoahHeapRegion* r) {
2319   shenandoah_assert_heaplocked();
2320 
2321   // Bitmaps in special regions do not need commits
2322   if (_bitmap_region_special) {
2323     return true;
2324   }
2325 
2326   if (is_bitmap_slice_committed(r, true)) {
2327     // Some other region from the group is already committed, meaning the bitmap
2328     // slice is already committed, we exit right away.
2329     return true;
2330   }
2331 
2332   // Commit the bitmap slice:
2333   size_t slice = r->index() / _bitmap_regions_per_slice;
2334   size_t off = _bitmap_bytes_per_slice * slice;
2335   size_t len = _bitmap_bytes_per_slice;
2336   char* start = (char*) _bitmap_region.start() + off;
2337 
2338   if (!os::commit_memory(start, len, false)) {
2339     return false;
2340   }
2341 
2342   if (AlwaysPreTouch) {
2343     os::pretouch_memory(start, start + len, _pretouch_bitmap_page_size);
2344   }
2345 
2346   return true;
2347 }
2348 
2349 bool ShenandoahHeap::uncommit_bitmap_slice(ShenandoahHeapRegion *r) {
2350   shenandoah_assert_heaplocked();
2351 
2352   // Bitmaps in special regions do not need uncommits
2353   if (_bitmap_region_special) {
2354     return true;
2355   }
2356 
2357   if (is_bitmap_slice_committed(r, true)) {
2358     // Some other region from the group is still committed, meaning the bitmap
2359     // slice is should stay committed, exit right away.
2360     return true;
2361   }
2362 
2363   // Uncommit the bitmap slice:
2364   size_t slice = r->index() / _bitmap_regions_per_slice;
2365   size_t off = _bitmap_bytes_per_slice * slice;
2366   size_t len = _bitmap_bytes_per_slice;
2367   if (!os::uncommit_memory((char*)_bitmap_region.start() + off, len)) {
2368     return false;
2369   }
2370   return true;
2371 }
2372 
2373 void ShenandoahHeap::safepoint_synchronize_begin() {
2374   StackWatermarkSet::safepoint_synchronize_begin();
2375   SuspendibleThreadSet::synchronize();
2376 }
2377 
2378 void ShenandoahHeap::safepoint_synchronize_end() {
2379   SuspendibleThreadSet::desynchronize();
2380 }
2381 
2382 void ShenandoahHeap::try_inject_alloc_failure() {
2383   if (ShenandoahAllocFailureALot && !cancelled_gc() && ((os::random() % 1000) > 950)) {
2384     _inject_alloc_failure.set();
2385     os::naked_short_sleep(1);
2386     if (cancelled_gc()) {
2387       log_info(gc)("Allocation failure was successfully injected");
2388     }
2389   }
2390 }
2391 
2392 bool ShenandoahHeap::should_inject_alloc_failure() {
2393   return _inject_alloc_failure.is_set() && _inject_alloc_failure.try_unset();
2394 }
2395 
2396 void ShenandoahHeap::initialize_serviceability() {
2397   _memory_pool = new ShenandoahMemoryPool(this);
2398   _cycle_memory_manager.add_pool(_memory_pool);
2399   _stw_memory_manager.add_pool(_memory_pool);
2400 }
2401 
2402 GrowableArray<GCMemoryManager*> ShenandoahHeap::memory_managers() {
2403   GrowableArray<GCMemoryManager*> memory_managers(2);
2404   memory_managers.append(&_cycle_memory_manager);
2405   memory_managers.append(&_stw_memory_manager);
2406   return memory_managers;
2407 }
2408 
2409 GrowableArray<MemoryPool*> ShenandoahHeap::memory_pools() {
2410   GrowableArray<MemoryPool*> memory_pools(1);
2411   memory_pools.append(_memory_pool);
2412   return memory_pools;
2413 }
2414 
2415 MemoryUsage ShenandoahHeap::memory_usage() {
2416   return _memory_pool->get_memory_usage();
2417 }
2418 
2419 ShenandoahRegionIterator::ShenandoahRegionIterator() :
2420   _heap(ShenandoahHeap::heap()),
2421   _index(0) {}
2422 
2423 ShenandoahRegionIterator::ShenandoahRegionIterator(ShenandoahHeap* heap) :
2424   _heap(heap),
2425   _index(0) {}
2426 
2427 void ShenandoahRegionIterator::reset() {
2428   _index = 0;
2429 }
2430 
2431 bool ShenandoahRegionIterator::has_next() const {
2432   return _index < _heap->num_regions();
2433 }
2434 
2435 char ShenandoahHeap::gc_state() const {
2436   return _gc_state.raw_value();
2437 }
2438 
2439 ShenandoahLiveData* ShenandoahHeap::get_liveness_cache(uint worker_id) {
2440 #ifdef ASSERT
2441   assert(_liveness_cache != nullptr, "sanity");
2442   assert(worker_id < _max_workers, "sanity");
2443   for (uint i = 0; i < num_regions(); i++) {
2444     assert(_liveness_cache[worker_id][i] == 0, "liveness cache should be empty");
2445   }
2446 #endif
2447   return _liveness_cache[worker_id];
2448 }
2449 
2450 void ShenandoahHeap::flush_liveness_cache(uint worker_id) {
2451   assert(worker_id < _max_workers, "sanity");
2452   assert(_liveness_cache != nullptr, "sanity");
2453   ShenandoahLiveData* ld = _liveness_cache[worker_id];
2454   for (uint i = 0; i < num_regions(); i++) {
2455     ShenandoahLiveData live = ld[i];
2456     if (live > 0) {
2457       ShenandoahHeapRegion* r = get_region(i);
2458       r->increase_live_data_gc_words(live);
2459       ld[i] = 0;
2460     }
2461   }
2462 }
2463 
2464 bool ShenandoahHeap::requires_barriers(stackChunkOop obj) const {
2465   if (is_idle()) return false;
2466 
2467   // Objects allocated after marking start are implicitly alive, don't need any barriers during
2468   // marking phase.
2469   if (is_concurrent_mark_in_progress() &&
2470      !marking_context()->allocated_after_mark_start(obj)) {
2471     return true;
2472   }
2473 
2474   // Can not guarantee obj is deeply good.
2475   if (has_forwarded_objects()) {
2476     return true;
2477   }
2478 
2479   return false;
2480 }