1 /*
   2  * Copyright (c) 2023, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2013, 2022, Red Hat, Inc. All rights reserved.
   4  * Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
   5  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   6  *
   7  * This code is free software; you can redistribute it and/or modify it
   8  * under the terms of the GNU General Public License version 2 only, as
   9  * published by the Free Software Foundation.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  *
  25  */
  26 
  27 #include "precompiled.hpp"
  28 
  29 #include "cds/archiveHeapWriter.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "code/codeCache.hpp"
  32 
  33 #include "gc/shared/classUnloadingContext.hpp"
  34 #include "gc/shared/fullGCForwarding.hpp"
  35 #include "gc/shared/gcArguments.hpp"
  36 #include "gc/shared/gcTimer.hpp"
  37 #include "gc/shared/gcTraceTime.inline.hpp"
  38 #include "gc/shared/locationPrinter.inline.hpp"
  39 #include "gc/shared/memAllocator.hpp"
  40 #include "gc/shared/plab.hpp"
  41 #include "gc/shared/tlab_globals.hpp"
  42 
  43 #include "gc/shenandoah/heuristics/shenandoahOldHeuristics.hpp"
  44 #include "gc/shenandoah/heuristics/shenandoahYoungHeuristics.hpp"
  45 #include "gc/shenandoah/shenandoahAllocRequest.hpp"
  46 #include "gc/shenandoah/shenandoahBarrierSet.hpp"
  47 #include "gc/shenandoah/shenandoahCodeRoots.hpp"
  48 #include "gc/shenandoah/shenandoahCollectionSet.hpp"
  49 #include "gc/shenandoah/shenandoahCollectorPolicy.hpp"
  50 #include "gc/shenandoah/shenandoahConcurrentMark.hpp"
  51 #include "gc/shenandoah/shenandoahControlThread.hpp"
  52 #include "gc/shenandoah/shenandoahClosures.inline.hpp"
  53 #include "gc/shenandoah/shenandoahFreeSet.hpp"
  54 #include "gc/shenandoah/shenandoahGenerationalEvacuationTask.hpp"
  55 #include "gc/shenandoah/shenandoahGenerationalHeap.hpp"
  56 #include "gc/shenandoah/shenandoahGlobalGeneration.hpp"
  57 #include "gc/shenandoah/shenandoahHeap.inline.hpp"
  58 #include "gc/shenandoah/shenandoahHeapRegionClosures.hpp"
  59 #include "gc/shenandoah/shenandoahHeapRegion.inline.hpp"
  60 #include "gc/shenandoah/shenandoahHeapRegionSet.hpp"
  61 #include "gc/shenandoah/shenandoahInitLogger.hpp"
  62 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp"
  63 #include "gc/shenandoah/shenandoahMemoryPool.hpp"
  64 #include "gc/shenandoah/shenandoahMonitoringSupport.hpp"
  65 #include "gc/shenandoah/shenandoahOldGeneration.hpp"
  66 #include "gc/shenandoah/shenandoahPacer.inline.hpp"
  67 #include "gc/shenandoah/shenandoahPadding.hpp"
  68 #include "gc/shenandoah/shenandoahParallelCleaning.inline.hpp"
  69 #include "gc/shenandoah/shenandoahPhaseTimings.hpp"
  70 #include "gc/shenandoah/shenandoahReferenceProcessor.hpp"
  71 #include "gc/shenandoah/shenandoahRootProcessor.inline.hpp"
  72 #include "gc/shenandoah/shenandoahScanRemembered.inline.hpp"
  73 #include "gc/shenandoah/shenandoahSTWMark.hpp"
  74 #include "gc/shenandoah/shenandoahUncommitThread.hpp"
  75 #include "gc/shenandoah/shenandoahUtils.hpp"
  76 #include "gc/shenandoah/shenandoahVerifier.hpp"
  77 #include "gc/shenandoah/shenandoahVMOperations.hpp"
  78 #include "gc/shenandoah/shenandoahWorkGroup.hpp"
  79 #include "gc/shenandoah/shenandoahWorkerPolicy.hpp"
  80 #include "gc/shenandoah/shenandoahYoungGeneration.hpp"
  81 #include "gc/shenandoah/mode/shenandoahGenerationalMode.hpp"
  82 #include "gc/shenandoah/mode/shenandoahPassiveMode.hpp"
  83 #include "gc/shenandoah/mode/shenandoahSATBMode.hpp"
  84 
  85 #if INCLUDE_JFR
  86 #include "gc/shenandoah/shenandoahJfrSupport.hpp"
  87 #endif
  88 
  89 
  90 #include "memory/allocation.hpp"
  91 #include "memory/classLoaderMetaspace.hpp"
  92 #include "memory/metaspaceUtils.hpp"
  93 #include "memory/universe.hpp"
  94 #include "nmt/mallocTracker.hpp"
  95 #include "nmt/memTracker.hpp"
  96 #include "oops/compressedOops.inline.hpp"
  97 #include "prims/jvmtiTagMap.hpp"
  98 #include "runtime/atomic.hpp"
  99 #include "runtime/globals.hpp"
 100 #include "runtime/interfaceSupport.inline.hpp"
 101 #include "runtime/java.hpp"
 102 #include "runtime/orderAccess.hpp"
 103 #include "runtime/safepointMechanism.hpp"
 104 #include "runtime/stackWatermarkSet.hpp"
 105 #include "runtime/vmThread.hpp"
 106 #include "utilities/globalDefinitions.hpp"
 107 #include "utilities/events.hpp"
 108 #include "utilities/powerOfTwo.hpp"
 109 
 110 class ShenandoahPretouchHeapTask : public WorkerTask {
 111 private:
 112   ShenandoahRegionIterator _regions;
 113   const size_t _page_size;
 114 public:
 115   ShenandoahPretouchHeapTask(size_t page_size) :
 116     WorkerTask("Shenandoah Pretouch Heap"),
 117     _page_size(page_size) {}
 118 
 119   virtual void work(uint worker_id) {
 120     ShenandoahHeapRegion* r = _regions.next();
 121     while (r != nullptr) {
 122       if (r->is_committed()) {
 123         os::pretouch_memory(r->bottom(), r->end(), _page_size);
 124       }
 125       r = _regions.next();
 126     }
 127   }
 128 };
 129 
 130 class ShenandoahPretouchBitmapTask : public WorkerTask {
 131 private:
 132   ShenandoahRegionIterator _regions;
 133   char* _bitmap_base;
 134   const size_t _bitmap_size;
 135   const size_t _page_size;
 136 public:
 137   ShenandoahPretouchBitmapTask(char* bitmap_base, size_t bitmap_size, size_t page_size) :
 138     WorkerTask("Shenandoah Pretouch Bitmap"),
 139     _bitmap_base(bitmap_base),
 140     _bitmap_size(bitmap_size),
 141     _page_size(page_size) {}
 142 
 143   virtual void work(uint worker_id) {
 144     ShenandoahHeapRegion* r = _regions.next();
 145     while (r != nullptr) {
 146       size_t start = r->index()       * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor();
 147       size_t end   = (r->index() + 1) * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor();
 148       assert (end <= _bitmap_size, "end is sane: " SIZE_FORMAT " < " SIZE_FORMAT, end, _bitmap_size);
 149 
 150       if (r->is_committed()) {
 151         os::pretouch_memory(_bitmap_base + start, _bitmap_base + end, _page_size);
 152       }
 153 
 154       r = _regions.next();
 155     }
 156   }
 157 };
 158 
 159 jint ShenandoahHeap::initialize() {
 160   //
 161   // Figure out heap sizing
 162   //
 163 
 164   size_t init_byte_size = InitialHeapSize;
 165   size_t min_byte_size  = MinHeapSize;
 166   size_t max_byte_size  = MaxHeapSize;
 167   size_t heap_alignment = HeapAlignment;
 168 
 169   size_t reg_size_bytes = ShenandoahHeapRegion::region_size_bytes();
 170 
 171   Universe::check_alignment(max_byte_size,  reg_size_bytes, "Shenandoah heap");
 172   Universe::check_alignment(init_byte_size, reg_size_bytes, "Shenandoah heap");
 173 
 174   _num_regions = ShenandoahHeapRegion::region_count();
 175   assert(_num_regions == (max_byte_size / reg_size_bytes),
 176          "Regions should cover entire heap exactly: " SIZE_FORMAT " != " SIZE_FORMAT "/" SIZE_FORMAT,
 177          _num_regions, max_byte_size, reg_size_bytes);
 178 
 179   size_t num_committed_regions = init_byte_size / reg_size_bytes;
 180   num_committed_regions = MIN2(num_committed_regions, _num_regions);
 181   assert(num_committed_regions <= _num_regions, "sanity");
 182   _initial_size = num_committed_regions * reg_size_bytes;
 183 
 184   size_t num_min_regions = min_byte_size / reg_size_bytes;
 185   num_min_regions = MIN2(num_min_regions, _num_regions);
 186   assert(num_min_regions <= _num_regions, "sanity");
 187   _minimum_size = num_min_regions * reg_size_bytes;
 188 
 189   // Default to max heap size.
 190   _soft_max_size = _num_regions * reg_size_bytes;
 191 
 192   _committed = _initial_size;
 193 
 194   size_t heap_page_size   = UseLargePages ? os::large_page_size() : os::vm_page_size();
 195   size_t bitmap_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
 196   size_t region_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
 197 
 198   //
 199   // Reserve and commit memory for heap
 200   //
 201 
 202   ReservedHeapSpace heap_rs = Universe::reserve_heap(max_byte_size, heap_alignment);
 203   initialize_reserved_region(heap_rs);
 204   _heap_region = MemRegion((HeapWord*)heap_rs.base(), heap_rs.size() / HeapWordSize);
 205   _heap_region_special = heap_rs.special();
 206 
 207   assert((((size_t) base()) & ShenandoahHeapRegion::region_size_bytes_mask()) == 0,
 208          "Misaligned heap: " PTR_FORMAT, p2i(base()));
 209   os::trace_page_sizes_for_requested_size("Heap",
 210                                           max_byte_size, heap_alignment,
 211                                           heap_rs.base(),
 212                                           heap_rs.size(), heap_rs.page_size());
 213 
 214 #if SHENANDOAH_OPTIMIZED_MARKTASK
 215   // The optimized ShenandoahMarkTask takes some bits away from the full object bits.
 216   // Fail if we ever attempt to address more than we can.
 217   if ((uintptr_t)heap_rs.end() >= ShenandoahMarkTask::max_addressable()) {
 218     FormatBuffer<512> buf("Shenandoah reserved [" PTR_FORMAT ", " PTR_FORMAT") for the heap, \n"
 219                           "but max object address is " PTR_FORMAT ". Try to reduce heap size, or try other \n"
 220                           "VM options that allocate heap at lower addresses (HeapBaseMinAddress, AllocateHeapAt, etc).",
 221                 p2i(heap_rs.base()), p2i(heap_rs.end()), ShenandoahMarkTask::max_addressable());
 222     vm_exit_during_initialization("Fatal Error", buf);
 223   }
 224 #endif
 225 
 226   ReservedSpace sh_rs = heap_rs.first_part(max_byte_size);
 227   if (!_heap_region_special) {
 228     os::commit_memory_or_exit(sh_rs.base(), _initial_size, heap_alignment, false,
 229                               "Cannot commit heap memory");
 230   }
 231 
 232   BarrierSet::set_barrier_set(new ShenandoahBarrierSet(this, _heap_region));
 233 
 234   // Now we know the number of regions and heap sizes, initialize the heuristics.
 235   initialize_heuristics();
 236 
 237   assert(_heap_region.byte_size() == heap_rs.size(), "Need to know reserved size for card table");
 238 
 239   //
 240   // Worker threads must be initialized after the barrier is configured
 241   //
 242   _workers = new ShenandoahWorkerThreads("Shenandoah GC Threads", _max_workers);
 243   if (_workers == nullptr) {
 244     vm_exit_during_initialization("Failed necessary allocation.");
 245   } else {
 246     _workers->initialize_workers();
 247   }
 248 
 249   if (ParallelGCThreads > 1) {
 250     _safepoint_workers = new ShenandoahWorkerThreads("Safepoint Cleanup Thread", ParallelGCThreads);
 251     _safepoint_workers->initialize_workers();
 252   }
 253 
 254   //
 255   // Reserve and commit memory for bitmap(s)
 256   //
 257 
 258   size_t bitmap_size_orig = ShenandoahMarkBitMap::compute_size(heap_rs.size());
 259   _bitmap_size = align_up(bitmap_size_orig, bitmap_page_size);
 260 
 261   size_t bitmap_bytes_per_region = reg_size_bytes / ShenandoahMarkBitMap::heap_map_factor();
 262 
 263   guarantee(bitmap_bytes_per_region != 0,
 264             "Bitmap bytes per region should not be zero");
 265   guarantee(is_power_of_2(bitmap_bytes_per_region),
 266             "Bitmap bytes per region should be power of two: " SIZE_FORMAT, bitmap_bytes_per_region);
 267 
 268   if (bitmap_page_size > bitmap_bytes_per_region) {
 269     _bitmap_regions_per_slice = bitmap_page_size / bitmap_bytes_per_region;
 270     _bitmap_bytes_per_slice = bitmap_page_size;
 271   } else {
 272     _bitmap_regions_per_slice = 1;
 273     _bitmap_bytes_per_slice = bitmap_bytes_per_region;
 274   }
 275 
 276   guarantee(_bitmap_regions_per_slice >= 1,
 277             "Should have at least one region per slice: " SIZE_FORMAT,
 278             _bitmap_regions_per_slice);
 279 
 280   guarantee(((_bitmap_bytes_per_slice) % bitmap_page_size) == 0,
 281             "Bitmap slices should be page-granular: bps = " SIZE_FORMAT ", page size = " SIZE_FORMAT,
 282             _bitmap_bytes_per_slice, bitmap_page_size);
 283 
 284   ReservedSpace bitmap(_bitmap_size, bitmap_page_size);
 285   os::trace_page_sizes_for_requested_size("Mark Bitmap",
 286                                           bitmap_size_orig, bitmap_page_size,
 287                                           bitmap.base(),
 288                                           bitmap.size(), bitmap.page_size());
 289   MemTracker::record_virtual_memory_tag(bitmap.base(), mtGC);
 290   _bitmap_region = MemRegion((HeapWord*) bitmap.base(), bitmap.size() / HeapWordSize);
 291   _bitmap_region_special = bitmap.special();
 292 
 293   size_t bitmap_init_commit = _bitmap_bytes_per_slice *
 294     align_up(num_committed_regions, _bitmap_regions_per_slice) / _bitmap_regions_per_slice;
 295   bitmap_init_commit = MIN2(_bitmap_size, bitmap_init_commit);
 296   if (!_bitmap_region_special) {
 297     os::commit_memory_or_exit((char *) _bitmap_region.start(), bitmap_init_commit, bitmap_page_size, false,
 298                               "Cannot commit bitmap memory");
 299   }
 300 
 301   _marking_context = new ShenandoahMarkingContext(_heap_region, _bitmap_region, _num_regions);
 302 
 303   if (ShenandoahVerify) {
 304     ReservedSpace verify_bitmap(_bitmap_size, bitmap_page_size);
 305     os::trace_page_sizes_for_requested_size("Verify Bitmap",
 306                                             bitmap_size_orig, bitmap_page_size,
 307                                             verify_bitmap.base(),
 308                                             verify_bitmap.size(), verify_bitmap.page_size());
 309     if (!verify_bitmap.special()) {
 310       os::commit_memory_or_exit(verify_bitmap.base(), verify_bitmap.size(), bitmap_page_size, false,
 311                                 "Cannot commit verification bitmap memory");
 312     }
 313     MemTracker::record_virtual_memory_tag(verify_bitmap.base(), mtGC);
 314     MemRegion verify_bitmap_region = MemRegion((HeapWord *) verify_bitmap.base(), verify_bitmap.size() / HeapWordSize);
 315     _verification_bit_map.initialize(_heap_region, verify_bitmap_region);
 316     _verifier = new ShenandoahVerifier(this, &_verification_bit_map);
 317   }
 318 
 319   // Reserve aux bitmap for use in object_iterate(). We don't commit it here.
 320   size_t aux_bitmap_page_size = bitmap_page_size;
 321 
 322   ReservedSpace aux_bitmap(_bitmap_size, aux_bitmap_page_size);
 323   os::trace_page_sizes_for_requested_size("Aux Bitmap",
 324                                           bitmap_size_orig, aux_bitmap_page_size,
 325                                           aux_bitmap.base(),
 326                                           aux_bitmap.size(), aux_bitmap.page_size());
 327   MemTracker::record_virtual_memory_tag(aux_bitmap.base(), mtGC);
 328   _aux_bitmap_region = MemRegion((HeapWord*) aux_bitmap.base(), aux_bitmap.size() / HeapWordSize);
 329   _aux_bitmap_region_special = aux_bitmap.special();
 330   _aux_bit_map.initialize(_heap_region, _aux_bitmap_region);
 331 
 332   //
 333   // Create regions and region sets
 334   //
 335   size_t region_align = align_up(sizeof(ShenandoahHeapRegion), SHENANDOAH_CACHE_LINE_SIZE);
 336   size_t region_storage_size_orig = region_align * _num_regions;
 337   size_t region_storage_size = align_up(region_storage_size_orig,
 338                                         MAX2(region_page_size, os::vm_allocation_granularity()));
 339 
 340   ReservedSpace region_storage(region_storage_size, region_page_size);
 341   os::trace_page_sizes_for_requested_size("Region Storage",
 342                                           region_storage_size_orig, region_page_size,
 343                                           region_storage.base(),
 344                                           region_storage.size(), region_storage.page_size());
 345   MemTracker::record_virtual_memory_tag(region_storage.base(), mtGC);
 346   if (!region_storage.special()) {
 347     os::commit_memory_or_exit(region_storage.base(), region_storage_size, region_page_size, false,
 348                               "Cannot commit region memory");
 349   }
 350 
 351   // Try to fit the collection set bitmap at lower addresses. This optimizes code generation for cset checks.
 352   // Go up until a sensible limit (subject to encoding constraints) and try to reserve the space there.
 353   // If not successful, bite a bullet and allocate at whatever address.
 354   {
 355     const size_t cset_align = MAX2<size_t>(os::vm_page_size(), os::vm_allocation_granularity());
 356     const size_t cset_size = align_up(((size_t) sh_rs.base() + sh_rs.size()) >> ShenandoahHeapRegion::region_size_bytes_shift(), cset_align);
 357     const size_t cset_page_size = os::vm_page_size();
 358 
 359     uintptr_t min = round_up_power_of_2(cset_align);
 360     uintptr_t max = (1u << 30u);
 361     ReservedSpace cset_rs;
 362 
 363     for (uintptr_t addr = min; addr <= max; addr <<= 1u) {
 364       char* req_addr = (char*)addr;
 365       assert(is_aligned(req_addr, cset_align), "Should be aligned");
 366       cset_rs = ReservedSpace(cset_size, cset_align, cset_page_size, req_addr);
 367       if (cset_rs.is_reserved()) {
 368         assert(cset_rs.base() == req_addr, "Allocated where requested: " PTR_FORMAT ", " PTR_FORMAT, p2i(cset_rs.base()), addr);
 369         _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base());
 370         break;
 371       }
 372     }
 373 
 374     if (_collection_set == nullptr) {
 375       cset_rs = ReservedSpace(cset_size, cset_align, os::vm_page_size());
 376       _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base());
 377     }
 378     os::trace_page_sizes_for_requested_size("Collection Set",
 379                                             cset_size, cset_page_size,
 380                                             cset_rs.base(),
 381                                             cset_rs.size(), cset_rs.page_size());
 382   }
 383 
 384   _regions = NEW_C_HEAP_ARRAY(ShenandoahHeapRegion*, _num_regions, mtGC);
 385   _affiliations = NEW_C_HEAP_ARRAY(uint8_t, _num_regions, mtGC);
 386   _free_set = new ShenandoahFreeSet(this, _num_regions);
 387 
 388   {
 389     ShenandoahHeapLocker locker(lock());
 390 
 391     for (size_t i = 0; i < _num_regions; i++) {
 392       HeapWord* start = (HeapWord*)sh_rs.base() + ShenandoahHeapRegion::region_size_words() * i;
 393       bool is_committed = i < num_committed_regions;
 394       void* loc = region_storage.base() + i * region_align;
 395 
 396       ShenandoahHeapRegion* r = new (loc) ShenandoahHeapRegion(start, i, is_committed);
 397       assert(is_aligned(r, SHENANDOAH_CACHE_LINE_SIZE), "Sanity");
 398 
 399       _marking_context->initialize_top_at_mark_start(r);
 400       _regions[i] = r;
 401       assert(!collection_set()->is_in(i), "New region should not be in collection set");
 402 
 403       _affiliations[i] = ShenandoahAffiliation::FREE;
 404     }
 405 
 406     // Initialize to complete
 407     _marking_context->mark_complete();
 408     size_t young_cset_regions, old_cset_regions;
 409 
 410     // We are initializing free set.  We ignore cset region tallies.
 411     size_t first_old, last_old, num_old;
 412     _free_set->prepare_to_rebuild(young_cset_regions, old_cset_regions, first_old, last_old, num_old);
 413     _free_set->finish_rebuild(young_cset_regions, old_cset_regions, num_old);
 414   }
 415 
 416   if (AlwaysPreTouch) {
 417     // For NUMA, it is important to pre-touch the storage under bitmaps with worker threads,
 418     // before initialize() below zeroes it with initializing thread. For any given region,
 419     // we touch the region and the corresponding bitmaps from the same thread.
 420     ShenandoahPushWorkerScope scope(workers(), _max_workers, false);
 421 
 422     _pretouch_heap_page_size = heap_page_size;
 423     _pretouch_bitmap_page_size = bitmap_page_size;
 424 
 425     // OS memory managers may want to coalesce back-to-back pages. Make their jobs
 426     // simpler by pre-touching continuous spaces (heap and bitmap) separately.
 427 
 428     ShenandoahPretouchBitmapTask bcl(bitmap.base(), _bitmap_size, _pretouch_bitmap_page_size);
 429     _workers->run_task(&bcl);
 430 
 431     ShenandoahPretouchHeapTask hcl(_pretouch_heap_page_size);
 432     _workers->run_task(&hcl);
 433   }
 434 
 435   //
 436   // Initialize the rest of GC subsystems
 437   //
 438 
 439   _liveness_cache = NEW_C_HEAP_ARRAY(ShenandoahLiveData*, _max_workers, mtGC);
 440   for (uint worker = 0; worker < _max_workers; worker++) {
 441     _liveness_cache[worker] = NEW_C_HEAP_ARRAY(ShenandoahLiveData, _num_regions, mtGC);
 442     Copy::fill_to_bytes(_liveness_cache[worker], _num_regions * sizeof(ShenandoahLiveData));
 443   }
 444 
 445   // There should probably be Shenandoah-specific options for these,
 446   // just as there are G1-specific options.
 447   {
 448     ShenandoahSATBMarkQueueSet& satbqs = ShenandoahBarrierSet::satb_mark_queue_set();
 449     satbqs.set_process_completed_buffers_threshold(20); // G1SATBProcessCompletedThreshold
 450     satbqs.set_buffer_enqueue_threshold_percentage(60); // G1SATBBufferEnqueueingThresholdPercent
 451   }
 452 
 453   _monitoring_support = new ShenandoahMonitoringSupport(this);
 454   _phase_timings = new ShenandoahPhaseTimings(max_workers());
 455   ShenandoahCodeRoots::initialize();
 456 
 457   if (ShenandoahPacing) {
 458     _pacer = new ShenandoahPacer(this);
 459     _pacer->setup_for_idle();
 460   }
 461 
 462   initialize_controller();
 463 
 464   if (ShenandoahUncommit) {
 465     _uncommit_thread = new ShenandoahUncommitThread(this);
 466   }
 467 
 468   print_init_logger();
 469 
 470   FullGCForwarding::initialize(_heap_region);
 471 
 472   return JNI_OK;
 473 }
 474 
 475 void ShenandoahHeap::initialize_controller() {
 476   _control_thread = new ShenandoahControlThread();
 477 }
 478 
 479 void ShenandoahHeap::print_init_logger() const {
 480   ShenandoahInitLogger::print();
 481 }
 482 
 483 void ShenandoahHeap::initialize_mode() {
 484   if (ShenandoahGCMode != nullptr) {
 485     if (strcmp(ShenandoahGCMode, "satb") == 0) {
 486       _gc_mode = new ShenandoahSATBMode();
 487     } else if (strcmp(ShenandoahGCMode, "passive") == 0) {
 488       _gc_mode = new ShenandoahPassiveMode();
 489     } else if (strcmp(ShenandoahGCMode, "generational") == 0) {
 490       _gc_mode = new ShenandoahGenerationalMode();
 491     } else {
 492       vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option");
 493     }
 494   } else {
 495     vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option (null)");
 496   }
 497   _gc_mode->initialize_flags();
 498   if (_gc_mode->is_diagnostic() && !UnlockDiagnosticVMOptions) {
 499     vm_exit_during_initialization(
 500             err_msg("GC mode \"%s\" is diagnostic, and must be enabled via -XX:+UnlockDiagnosticVMOptions.",
 501                     _gc_mode->name()));
 502   }
 503   if (_gc_mode->is_experimental() && !UnlockExperimentalVMOptions) {
 504     vm_exit_during_initialization(
 505             err_msg("GC mode \"%s\" is experimental, and must be enabled via -XX:+UnlockExperimentalVMOptions.",
 506                     _gc_mode->name()));
 507   }
 508 }
 509 
 510 void ShenandoahHeap::initialize_heuristics() {
 511   _global_generation = new ShenandoahGlobalGeneration(mode()->is_generational(), max_workers(), max_capacity(), max_capacity());
 512   _global_generation->initialize_heuristics(mode());
 513 }
 514 
 515 #ifdef _MSC_VER
 516 #pragma warning( push )
 517 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 518 #endif
 519 
 520 ShenandoahHeap::ShenandoahHeap(ShenandoahCollectorPolicy* policy) :
 521   CollectedHeap(),
 522   _gc_generation(nullptr),
 523   _active_generation(nullptr),
 524   _initial_size(0),
 525   _committed(0),
 526   _max_workers(MAX3(ConcGCThreads, ParallelGCThreads, 1U)),
 527   _workers(nullptr),
 528   _safepoint_workers(nullptr),
 529   _heap_region_special(false),
 530   _num_regions(0),
 531   _regions(nullptr),
 532   _affiliations(nullptr),
 533   _gc_state_changed(false),
 534   _gc_no_progress_count(0),
 535   _cancel_requested_time(0),
 536   _update_refs_iterator(this),
 537   _global_generation(nullptr),
 538   _control_thread(nullptr),
 539   _uncommit_thread(nullptr),
 540   _young_generation(nullptr),
 541   _old_generation(nullptr),
 542   _shenandoah_policy(policy),
 543   _gc_mode(nullptr),
 544   _free_set(nullptr),
 545   _pacer(nullptr),
 546   _verifier(nullptr),
 547   _phase_timings(nullptr),
 548   _mmu_tracker(),
 549   _monitoring_support(nullptr),
 550   _memory_pool(nullptr),
 551   _stw_memory_manager("Shenandoah Pauses"),
 552   _cycle_memory_manager("Shenandoah Cycles"),
 553   _gc_timer(new ConcurrentGCTimer()),
 554   _log_min_obj_alignment_in_bytes(LogMinObjAlignmentInBytes),
 555   _marking_context(nullptr),
 556   _bitmap_size(0),
 557   _bitmap_regions_per_slice(0),
 558   _bitmap_bytes_per_slice(0),
 559   _bitmap_region_special(false),
 560   _aux_bitmap_region_special(false),
 561   _liveness_cache(nullptr),
 562   _collection_set(nullptr)
 563 {
 564   // Initialize GC mode early, many subsequent initialization procedures depend on it
 565   initialize_mode();
 566 }
 567 
 568 #ifdef _MSC_VER
 569 #pragma warning( pop )
 570 #endif
 571 
 572 void ShenandoahHeap::print_on(outputStream* st) const {
 573   st->print_cr("Shenandoah Heap");
 574   st->print_cr(" " SIZE_FORMAT "%s max, " SIZE_FORMAT "%s soft max, " SIZE_FORMAT "%s committed, " SIZE_FORMAT "%s used",
 575                byte_size_in_proper_unit(max_capacity()), proper_unit_for_byte_size(max_capacity()),
 576                byte_size_in_proper_unit(soft_max_capacity()), proper_unit_for_byte_size(soft_max_capacity()),
 577                byte_size_in_proper_unit(committed()),    proper_unit_for_byte_size(committed()),
 578                byte_size_in_proper_unit(used()),         proper_unit_for_byte_size(used()));
 579   st->print_cr(" " SIZE_FORMAT " x " SIZE_FORMAT"%s regions",
 580                num_regions(),
 581                byte_size_in_proper_unit(ShenandoahHeapRegion::region_size_bytes()),
 582                proper_unit_for_byte_size(ShenandoahHeapRegion::region_size_bytes()));
 583 
 584   st->print("Status: ");
 585   if (has_forwarded_objects())                 st->print("has forwarded objects, ");
 586   if (!mode()->is_generational()) {
 587     if (is_concurrent_mark_in_progress())      st->print("marking,");
 588   } else {
 589     if (is_concurrent_old_mark_in_progress())    st->print("old marking, ");
 590     if (is_concurrent_young_mark_in_progress())  st->print("young marking, ");
 591   }
 592   if (is_evacuation_in_progress())             st->print("evacuating, ");
 593   if (is_update_refs_in_progress())            st->print("updating refs, ");
 594   if (is_degenerated_gc_in_progress())         st->print("degenerated gc, ");
 595   if (is_full_gc_in_progress())                st->print("full gc, ");
 596   if (is_full_gc_move_in_progress())           st->print("full gc move, ");
 597   if (is_concurrent_weak_root_in_progress())   st->print("concurrent weak roots, ");
 598   if (is_concurrent_strong_root_in_progress() &&
 599       !is_concurrent_weak_root_in_progress())  st->print("concurrent strong roots, ");
 600 
 601   if (cancelled_gc()) {
 602     st->print("cancelled");
 603   } else {
 604     st->print("not cancelled");
 605   }
 606   st->cr();
 607 
 608   st->print_cr("Reserved region:");
 609   st->print_cr(" - [" PTR_FORMAT ", " PTR_FORMAT ") ",
 610                p2i(reserved_region().start()),
 611                p2i(reserved_region().end()));
 612 
 613   ShenandoahCollectionSet* cset = collection_set();
 614   st->print_cr("Collection set:");
 615   if (cset != nullptr) {
 616     st->print_cr(" - map (vanilla): " PTR_FORMAT, p2i(cset->map_address()));
 617     st->print_cr(" - map (biased):  " PTR_FORMAT, p2i(cset->biased_map_address()));
 618   } else {
 619     st->print_cr(" (null)");
 620   }
 621 
 622   st->cr();
 623   MetaspaceUtils::print_on(st);
 624 
 625   if (Verbose) {
 626     st->cr();
 627     print_heap_regions_on(st);
 628   }
 629 }
 630 
 631 class ShenandoahInitWorkerGCLABClosure : public ThreadClosure {
 632 public:
 633   void do_thread(Thread* thread) {
 634     assert(thread != nullptr, "Sanity");
 635     assert(thread->is_Worker_thread(), "Only worker thread expected");
 636     ShenandoahThreadLocalData::initialize_gclab(thread);
 637   }
 638 };
 639 
 640 void ShenandoahHeap::post_initialize() {
 641   CollectedHeap::post_initialize();
 642   _mmu_tracker.initialize();
 643 
 644   MutexLocker ml(Threads_lock);
 645 
 646   ShenandoahInitWorkerGCLABClosure init_gclabs;
 647   _workers->threads_do(&init_gclabs);
 648 
 649   // gclab can not be initialized early during VM startup, as it can not determinate its max_size.
 650   // Now, we will let WorkerThreads to initialize gclab when new worker is created.
 651   _workers->set_initialize_gclab();
 652   if (_safepoint_workers != nullptr) {
 653     _safepoint_workers->threads_do(&init_gclabs);
 654     _safepoint_workers->set_initialize_gclab();
 655   }
 656 
 657   JFR_ONLY(ShenandoahJFRSupport::register_jfr_type_serializers();)
 658 }
 659 
 660 ShenandoahHeuristics* ShenandoahHeap::heuristics() {
 661   return _global_generation->heuristics();
 662 }
 663 
 664 size_t ShenandoahHeap::used() const {
 665   return global_generation()->used();
 666 }
 667 
 668 size_t ShenandoahHeap::committed() const {
 669   return Atomic::load(&_committed);
 670 }
 671 
 672 void ShenandoahHeap::increase_committed(size_t bytes) {
 673   shenandoah_assert_heaplocked_or_safepoint();
 674   _committed += bytes;
 675 }
 676 
 677 void ShenandoahHeap::decrease_committed(size_t bytes) {
 678   shenandoah_assert_heaplocked_or_safepoint();
 679   _committed -= bytes;
 680 }
 681 
 682 // For tracking usage based on allocations, it should be the case that:
 683 // * The sum of regions::used == heap::used
 684 // * The sum of a generation's regions::used == generation::used
 685 // * The sum of a generation's humongous regions::free == generation::humongous_waste
 686 // These invariants are checked by the verifier on GC safepoints.
 687 //
 688 // Additional notes:
 689 // * When a mutator's allocation request causes a region to be retired, the
 690 //   free memory left in that region is considered waste. It does not contribute
 691 //   to the usage, but it _does_ contribute to allocation rate.
 692 // * The bottom of a PLAB must be aligned on card size. In some cases this will
 693 //   require padding in front of the PLAB (a filler object). Because this padding
 694 //   is included in the region's used memory we include the padding in the usage
 695 //   accounting as waste.
 696 // * Mutator allocations are used to compute an allocation rate. They are also
 697 //   sent to the Pacer for those purposes.
 698 // * There are three sources of waste:
 699 //  1. The padding used to align a PLAB on card size
 700 //  2. Region's free is less than minimum TLAB size and is retired
 701 //  3. The unused portion of memory in the last region of a humongous object
 702 void ShenandoahHeap::increase_used(const ShenandoahAllocRequest& req) {
 703   size_t actual_bytes = req.actual_size() * HeapWordSize;
 704   size_t wasted_bytes = req.waste() * HeapWordSize;
 705   ShenandoahGeneration* generation = generation_for(req.affiliation());
 706 
 707   if (req.is_gc_alloc()) {
 708     assert(wasted_bytes == 0 || req.type() == ShenandoahAllocRequest::_alloc_plab, "Only PLABs have waste");
 709     increase_used(generation, actual_bytes + wasted_bytes);
 710   } else {
 711     assert(req.is_mutator_alloc(), "Expected mutator alloc here");
 712     // padding and actual size both count towards allocation counter
 713     generation->increase_allocated(actual_bytes + wasted_bytes);
 714 
 715     // only actual size counts toward usage for mutator allocations
 716     increase_used(generation, actual_bytes);
 717 
 718     // notify pacer of both actual size and waste
 719     notify_mutator_alloc_words(req.actual_size(), req.waste());
 720 
 721     if (wasted_bytes > 0 && ShenandoahHeapRegion::requires_humongous(req.actual_size())) {
 722       increase_humongous_waste(generation,wasted_bytes);
 723     }
 724   }
 725 }
 726 
 727 void ShenandoahHeap::increase_humongous_waste(ShenandoahGeneration* generation, size_t bytes) {
 728   generation->increase_humongous_waste(bytes);
 729   if (!generation->is_global()) {
 730     global_generation()->increase_humongous_waste(bytes);
 731   }
 732 }
 733 
 734 void ShenandoahHeap::decrease_humongous_waste(ShenandoahGeneration* generation, size_t bytes) {
 735   generation->decrease_humongous_waste(bytes);
 736   if (!generation->is_global()) {
 737     global_generation()->decrease_humongous_waste(bytes);
 738   }
 739 }
 740 
 741 void ShenandoahHeap::increase_used(ShenandoahGeneration* generation, size_t bytes) {
 742   generation->increase_used(bytes);
 743   if (!generation->is_global()) {
 744     global_generation()->increase_used(bytes);
 745   }
 746 }
 747 
 748 void ShenandoahHeap::decrease_used(ShenandoahGeneration* generation, size_t bytes) {
 749   generation->decrease_used(bytes);
 750   if (!generation->is_global()) {
 751     global_generation()->decrease_used(bytes);
 752   }
 753 }
 754 
 755 void ShenandoahHeap::notify_mutator_alloc_words(size_t words, size_t waste) {
 756   if (ShenandoahPacing) {
 757     control_thread()->pacing_notify_alloc(words);
 758     if (waste > 0) {
 759       pacer()->claim_for_alloc<true>(waste);
 760     }
 761   }
 762 }
 763 
 764 size_t ShenandoahHeap::capacity() const {
 765   return committed();
 766 }
 767 
 768 size_t ShenandoahHeap::max_capacity() const {
 769   return _num_regions * ShenandoahHeapRegion::region_size_bytes();
 770 }
 771 
 772 size_t ShenandoahHeap::soft_max_capacity() const {
 773   size_t v = Atomic::load(&_soft_max_size);
 774   assert(min_capacity() <= v && v <= max_capacity(),
 775          "Should be in bounds: " SIZE_FORMAT " <= " SIZE_FORMAT " <= " SIZE_FORMAT,
 776          min_capacity(), v, max_capacity());
 777   return v;
 778 }
 779 
 780 void ShenandoahHeap::set_soft_max_capacity(size_t v) {
 781   assert(min_capacity() <= v && v <= max_capacity(),
 782          "Should be in bounds: " SIZE_FORMAT " <= " SIZE_FORMAT " <= " SIZE_FORMAT,
 783          min_capacity(), v, max_capacity());
 784   Atomic::store(&_soft_max_size, v);
 785 }
 786 
 787 size_t ShenandoahHeap::min_capacity() const {
 788   return _minimum_size;
 789 }
 790 
 791 size_t ShenandoahHeap::initial_capacity() const {
 792   return _initial_size;
 793 }
 794 
 795 bool ShenandoahHeap::is_in(const void* p) const {
 796   if (is_in_reserved(p)) {
 797     if (is_full_gc_move_in_progress()) {
 798       // Full GC move is running, we do not have a consistent region
 799       // information yet. But we know the pointer is in heap.
 800       return true;
 801     }
 802     // Now check if we point to a live section in active region.
 803     ShenandoahHeapRegion* r = heap_region_containing(p);
 804     return (r->is_active() && p < r->top());
 805   } else {
 806     return false;
 807   }
 808 }
 809 
 810 void ShenandoahHeap::notify_soft_max_changed() {
 811   if (_uncommit_thread != nullptr) {
 812     _uncommit_thread->notify_soft_max_changed();
 813   }
 814 }
 815 
 816 void ShenandoahHeap::notify_explicit_gc_requested() {
 817   if (_uncommit_thread != nullptr) {
 818     _uncommit_thread->notify_explicit_gc_requested();
 819   }
 820 }
 821 
 822 bool ShenandoahHeap::check_soft_max_changed() {
 823   size_t new_soft_max = Atomic::load(&SoftMaxHeapSize);
 824   size_t old_soft_max = soft_max_capacity();
 825   if (new_soft_max != old_soft_max) {
 826     new_soft_max = MAX2(min_capacity(), new_soft_max);
 827     new_soft_max = MIN2(max_capacity(), new_soft_max);
 828     if (new_soft_max != old_soft_max) {
 829       log_info(gc)("Soft Max Heap Size: " SIZE_FORMAT "%s -> " SIZE_FORMAT "%s",
 830                    byte_size_in_proper_unit(old_soft_max), proper_unit_for_byte_size(old_soft_max),
 831                    byte_size_in_proper_unit(new_soft_max), proper_unit_for_byte_size(new_soft_max)
 832       );
 833       set_soft_max_capacity(new_soft_max);
 834       return true;
 835     }
 836   }
 837   return false;
 838 }
 839 
 840 void ShenandoahHeap::notify_heap_changed() {
 841   // Update monitoring counters when we took a new region. This amortizes the
 842   // update costs on slow path.
 843   monitoring_support()->notify_heap_changed();
 844   _heap_changed.try_set();
 845 }
 846 
 847 void ShenandoahHeap::set_forced_counters_update(bool value) {
 848   monitoring_support()->set_forced_counters_update(value);
 849 }
 850 
 851 void ShenandoahHeap::handle_force_counters_update() {
 852   monitoring_support()->handle_force_counters_update();
 853 }
 854 
 855 HeapWord* ShenandoahHeap::allocate_from_gclab_slow(Thread* thread, size_t size) {
 856   // New object should fit the GCLAB size
 857   size_t min_size = MAX2(size, PLAB::min_size());
 858 
 859   // Figure out size of new GCLAB, looking back at heuristics. Expand aggressively.
 860   size_t new_size = ShenandoahThreadLocalData::gclab_size(thread) * 2;
 861 
 862   new_size = MIN2(new_size, PLAB::max_size());
 863   new_size = MAX2(new_size, PLAB::min_size());
 864 
 865   // Record new heuristic value even if we take any shortcut. This captures
 866   // the case when moderately-sized objects always take a shortcut. At some point,
 867   // heuristics should catch up with them.
 868   log_debug(gc, free)("Set new GCLAB size: " SIZE_FORMAT, new_size);
 869   ShenandoahThreadLocalData::set_gclab_size(thread, new_size);
 870 
 871   if (new_size < size) {
 872     // New size still does not fit the object. Fall back to shared allocation.
 873     // This avoids retiring perfectly good GCLABs, when we encounter a large object.
 874     log_debug(gc, free)("New gclab size (" SIZE_FORMAT ") is too small for " SIZE_FORMAT, new_size, size);
 875     return nullptr;
 876   }
 877 
 878   // Retire current GCLAB, and allocate a new one.
 879   PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
 880   gclab->retire();
 881 
 882   size_t actual_size = 0;
 883   HeapWord* gclab_buf = allocate_new_gclab(min_size, new_size, &actual_size);
 884   if (gclab_buf == nullptr) {
 885     return nullptr;
 886   }
 887 
 888   assert (size <= actual_size, "allocation should fit");
 889 
 890   // ...and clear or zap just allocated TLAB, if needed.
 891   if (ZeroTLAB) {
 892     Copy::zero_to_words(gclab_buf, actual_size);
 893   } else if (ZapTLAB) {
 894     // Skip mangling the space corresponding to the object header to
 895     // ensure that the returned space is not considered parsable by
 896     // any concurrent GC thread.
 897     size_t hdr_size = oopDesc::header_size();
 898     Copy::fill_to_words(gclab_buf + hdr_size, actual_size - hdr_size, badHeapWordVal);
 899   }
 900   gclab->set_buf(gclab_buf, actual_size);
 901   return gclab->allocate(size);
 902 }
 903 
 904 // Called from stubs in JIT code or interpreter
 905 HeapWord* ShenandoahHeap::allocate_new_tlab(size_t min_size,
 906                                             size_t requested_size,
 907                                             size_t* actual_size) {
 908   ShenandoahAllocRequest req = ShenandoahAllocRequest::for_tlab(min_size, requested_size);
 909   HeapWord* res = allocate_memory(req);
 910   if (res != nullptr) {
 911     *actual_size = req.actual_size();
 912   } else {
 913     *actual_size = 0;
 914   }
 915   return res;
 916 }
 917 
 918 HeapWord* ShenandoahHeap::allocate_new_gclab(size_t min_size,
 919                                              size_t word_size,
 920                                              size_t* actual_size) {
 921   ShenandoahAllocRequest req = ShenandoahAllocRequest::for_gclab(min_size, word_size);
 922   HeapWord* res = allocate_memory(req);
 923   if (res != nullptr) {
 924     *actual_size = req.actual_size();
 925   } else {
 926     *actual_size = 0;
 927   }
 928   return res;
 929 }
 930 
 931 HeapWord* ShenandoahHeap::allocate_memory(ShenandoahAllocRequest& req) {
 932   intptr_t pacer_epoch = 0;
 933   bool in_new_region = false;
 934   HeapWord* result = nullptr;
 935 
 936   if (req.is_mutator_alloc()) {
 937     if (ShenandoahPacing) {
 938       pacer()->pace_for_alloc(req.size());
 939       pacer_epoch = pacer()->epoch();
 940     }
 941 
 942     if (!ShenandoahAllocFailureALot || !should_inject_alloc_failure()) {
 943       result = allocate_memory_under_lock(req, in_new_region);
 944     }
 945 
 946     // Check that gc overhead is not exceeded.
 947     //
 948     // Shenandoah will grind along for quite a while allocating one
 949     // object at a time using shared (non-tlab) allocations. This check
 950     // is testing that the GC overhead limit has not been exceeded.
 951     // This will notify the collector to start a cycle, but will raise
 952     // an OOME to the mutator if the last Full GCs have not made progress.
 953     // gc_no_progress_count is incremented following each degen or full GC that fails to achieve is_good_progress().
 954     if (result == nullptr && !req.is_lab_alloc() && get_gc_no_progress_count() > ShenandoahNoProgressThreshold) {
 955       control_thread()->handle_alloc_failure(req, false);
 956       req.set_actual_size(0);
 957       return nullptr;
 958     }
 959 
 960     if (result == nullptr) {
 961       // Block until control thread reacted, then retry allocation.
 962       //
 963       // It might happen that one of the threads requesting allocation would unblock
 964       // way later after GC happened, only to fail the second allocation, because
 965       // other threads have already depleted the free storage. In this case, a better
 966       // strategy is to try again, until at least one full GC has completed.
 967       //
 968       // Stop retrying and return nullptr to cause OOMError exception if our allocation failed even after:
 969       //   a) We experienced a GC that had good progress, or
 970       //   b) We experienced at least one Full GC (whether or not it had good progress)
 971 
 972       size_t original_count = shenandoah_policy()->full_gc_count();
 973       while ((result == nullptr) && (original_count == shenandoah_policy()->full_gc_count())) {
 974         control_thread()->handle_alloc_failure(req, true);
 975         result = allocate_memory_under_lock(req, in_new_region);
 976       }
 977       if (result != nullptr) {
 978         // If our allocation request has been satisifed after it initially failed, we count this as good gc progress
 979         notify_gc_progress();
 980       }
 981       if (log_develop_is_enabled(Debug, gc, alloc)) {
 982         ResourceMark rm;
 983         log_debug(gc, alloc)("Thread: %s, Result: " PTR_FORMAT ", Request: %s, Size: " SIZE_FORMAT
 984                              ", Original: " SIZE_FORMAT ", Latest: " SIZE_FORMAT,
 985                              Thread::current()->name(), p2i(result), req.type_string(), req.size(),
 986                              original_count, get_gc_no_progress_count());
 987       }
 988     }
 989   } else {
 990     assert(req.is_gc_alloc(), "Can only accept GC allocs here");
 991     result = allocate_memory_under_lock(req, in_new_region);
 992     // Do not call handle_alloc_failure() here, because we cannot block.
 993     // The allocation failure would be handled by the LRB slowpath with handle_alloc_failure_evac().
 994   }
 995 
 996   if (in_new_region) {
 997     notify_heap_changed();
 998   }
 999 
1000   if (result == nullptr) {
1001     req.set_actual_size(0);
1002   }
1003 
1004   // This is called regardless of the outcome of the allocation to account
1005   // for any waste created by retiring regions with this request.
1006   increase_used(req);
1007 
1008   if (result != nullptr) {
1009     size_t requested = req.size();
1010     size_t actual = req.actual_size();
1011 
1012     assert (req.is_lab_alloc() || (requested == actual),
1013             "Only LAB allocations are elastic: %s, requested = " SIZE_FORMAT ", actual = " SIZE_FORMAT,
1014             ShenandoahAllocRequest::alloc_type_to_string(req.type()), requested, actual);
1015 
1016     if (req.is_mutator_alloc()) {
1017       // If we requested more than we were granted, give the rest back to pacer.
1018       // This only matters if we are in the same pacing epoch: do not try to unpace
1019       // over the budget for the other phase.
1020       if (ShenandoahPacing && (pacer_epoch > 0) && (requested > actual)) {
1021         pacer()->unpace_for_alloc(pacer_epoch, requested - actual);
1022       }
1023     }
1024   }
1025 
1026   return result;
1027 }
1028 
1029 HeapWord* ShenandoahHeap::allocate_memory_under_lock(ShenandoahAllocRequest& req, bool& in_new_region) {
1030   // If we are dealing with mutator allocation, then we may need to block for safepoint.
1031   // We cannot block for safepoint for GC allocations, because there is a high chance
1032   // we are already running at safepoint or from stack watermark machinery, and we cannot
1033   // block again.
1034   ShenandoahHeapLocker locker(lock(), req.is_mutator_alloc());
1035 
1036   // Make sure the old generation has room for either evacuations or promotions before trying to allocate.
1037   if (req.is_old() && !old_generation()->can_allocate(req)) {
1038     return nullptr;
1039   }
1040 
1041   // If TLAB request size is greater than available, allocate() will attempt to downsize request to fit within available
1042   // memory.
1043   HeapWord* result = _free_set->allocate(req, in_new_region);
1044 
1045   // Record the plab configuration for this result and register the object.
1046   if (result != nullptr && req.is_old()) {
1047     old_generation()->configure_plab_for_current_thread(req);
1048     if (req.type() == ShenandoahAllocRequest::_alloc_shared_gc) {
1049       // Register the newly allocated object while we're holding the global lock since there's no synchronization
1050       // built in to the implementation of register_object().  There are potential races when multiple independent
1051       // threads are allocating objects, some of which might span the same card region.  For example, consider
1052       // a card table's memory region within which three objects are being allocated by three different threads:
1053       //
1054       // objects being "concurrently" allocated:
1055       //    [-----a------][-----b-----][--------------c------------------]
1056       //            [---- card table memory range --------------]
1057       //
1058       // Before any objects are allocated, this card's memory range holds no objects.  Note that allocation of object a
1059       // wants to set the starts-object, first-start, and last-start attributes of the preceding card region.
1060       // Allocation of object b wants to set the starts-object, first-start, and last-start attributes of this card region.
1061       // Allocation of object c also wants to set the starts-object, first-start, and last-start attributes of this
1062       // card region.
1063       //
1064       // The thread allocating b and the thread allocating c can "race" in various ways, resulting in confusion, such as
1065       // last-start representing object b while first-start represents object c.  This is why we need to require all
1066       // register_object() invocations to be "mutually exclusive" with respect to each card's memory range.
1067       old_generation()->card_scan()->register_object(result);
1068     }
1069   }
1070 
1071   return result;
1072 }
1073 
1074 HeapWord* ShenandoahHeap::mem_allocate(size_t size,
1075                                         bool*  gc_overhead_limit_was_exceeded) {
1076   ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared(size);
1077   return allocate_memory(req);
1078 }
1079 
1080 MetaWord* ShenandoahHeap::satisfy_failed_metadata_allocation(ClassLoaderData* loader_data,
1081                                                              size_t size,
1082                                                              Metaspace::MetadataType mdtype) {
1083   MetaWord* result;
1084 
1085   // Inform metaspace OOM to GC heuristics if class unloading is possible.
1086   ShenandoahHeuristics* h = global_generation()->heuristics();
1087   if (h->can_unload_classes()) {
1088     h->record_metaspace_oom();
1089   }
1090 
1091   // Expand and retry allocation
1092   result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype);
1093   if (result != nullptr) {
1094     return result;
1095   }
1096 
1097   // Start full GC
1098   collect(GCCause::_metadata_GC_clear_soft_refs);
1099 
1100   // Retry allocation
1101   result = loader_data->metaspace_non_null()->allocate(size, mdtype);
1102   if (result != nullptr) {
1103     return result;
1104   }
1105 
1106   // Expand and retry allocation
1107   result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype);
1108   if (result != nullptr) {
1109     return result;
1110   }
1111 
1112   // Out of memory
1113   return nullptr;
1114 }
1115 
1116 class ShenandoahConcurrentEvacuateRegionObjectClosure : public ObjectClosure {
1117 private:
1118   ShenandoahHeap* const _heap;
1119   Thread* const _thread;
1120 public:
1121   ShenandoahConcurrentEvacuateRegionObjectClosure(ShenandoahHeap* heap) :
1122     _heap(heap), _thread(Thread::current()) {}
1123 
1124   void do_object(oop p) {
1125     shenandoah_assert_marked(nullptr, p);
1126     if (!p->is_forwarded()) {
1127       _heap->evacuate_object(p, _thread);
1128     }
1129   }
1130 };
1131 
1132 class ShenandoahEvacuationTask : public WorkerTask {
1133 private:
1134   ShenandoahHeap* const _sh;
1135   ShenandoahCollectionSet* const _cs;
1136   bool _concurrent;
1137 public:
1138   ShenandoahEvacuationTask(ShenandoahHeap* sh,
1139                            ShenandoahCollectionSet* cs,
1140                            bool concurrent) :
1141     WorkerTask("Shenandoah Evacuation"),
1142     _sh(sh),
1143     _cs(cs),
1144     _concurrent(concurrent)
1145   {}
1146 
1147   void work(uint worker_id) {
1148     if (_concurrent) {
1149       ShenandoahConcurrentWorkerSession worker_session(worker_id);
1150       ShenandoahSuspendibleThreadSetJoiner stsj;
1151       ShenandoahEvacOOMScope oom_evac_scope;
1152       do_work();
1153     } else {
1154       ShenandoahParallelWorkerSession worker_session(worker_id);
1155       ShenandoahEvacOOMScope oom_evac_scope;
1156       do_work();
1157     }
1158   }
1159 
1160 private:
1161   void do_work() {
1162     ShenandoahConcurrentEvacuateRegionObjectClosure cl(_sh);
1163     ShenandoahHeapRegion* r;
1164     while ((r =_cs->claim_next()) != nullptr) {
1165       assert(r->has_live(), "Region " SIZE_FORMAT " should have been reclaimed early", r->index());
1166       _sh->marked_object_iterate(r, &cl);
1167 
1168       if (ShenandoahPacing) {
1169         _sh->pacer()->report_evac(r->used() >> LogHeapWordSize);
1170       }
1171 
1172       if (_sh->check_cancelled_gc_and_yield(_concurrent)) {
1173         break;
1174       }
1175     }
1176   }
1177 };
1178 
1179 void ShenandoahHeap::evacuate_collection_set(bool concurrent) {
1180   ShenandoahEvacuationTask task(this, _collection_set, concurrent);
1181   workers()->run_task(&task);
1182 }
1183 
1184 oop ShenandoahHeap::evacuate_object(oop p, Thread* thread) {
1185   assert(thread == Thread::current(), "Expected thread parameter to be current thread.");
1186   if (ShenandoahThreadLocalData::is_oom_during_evac(thread)) {
1187     // This thread went through the OOM during evac protocol. It is safe to return
1188     // the forward pointer. It must not attempt to evacuate any other objects.
1189     return ShenandoahBarrierSet::resolve_forwarded(p);
1190   }
1191 
1192   assert(ShenandoahThreadLocalData::is_evac_allowed(thread), "must be enclosed in oom-evac scope");
1193 
1194   ShenandoahHeapRegion* r = heap_region_containing(p);
1195   assert(!r->is_humongous(), "never evacuate humongous objects");
1196 
1197   ShenandoahAffiliation target_gen = r->affiliation();
1198   return try_evacuate_object(p, thread, r, target_gen);
1199 }
1200 
1201 oop ShenandoahHeap::try_evacuate_object(oop p, Thread* thread, ShenandoahHeapRegion* from_region,
1202                                                ShenandoahAffiliation target_gen) {
1203   assert(target_gen == YOUNG_GENERATION, "Only expect evacuations to young in this mode");
1204   assert(from_region->is_young(), "Only expect evacuations from young in this mode");
1205   bool alloc_from_lab = true;
1206   HeapWord* copy = nullptr;
1207   size_t size = ShenandoahForwarding::size(p);
1208 
1209 #ifdef ASSERT
1210   if (ShenandoahOOMDuringEvacALot &&
1211       (os::random() & 1) == 0) { // Simulate OOM every ~2nd slow-path call
1212     copy = nullptr;
1213   } else {
1214 #endif
1215     if (UseTLAB) {
1216       copy = allocate_from_gclab(thread, size);
1217     }
1218     if (copy == nullptr) {
1219       // If we failed to allocate in LAB, we'll try a shared allocation.
1220       ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared_gc(size, target_gen);
1221       copy = allocate_memory(req);
1222       alloc_from_lab = false;
1223     }
1224 #ifdef ASSERT
1225   }
1226 #endif
1227 
1228   if (copy == nullptr) {
1229     control_thread()->handle_alloc_failure_evac(size);
1230 
1231     _oom_evac_handler.handle_out_of_memory_during_evacuation();
1232 
1233     return ShenandoahBarrierSet::resolve_forwarded(p);
1234   }
1235 
1236   // Copy the object:
1237   Copy::aligned_disjoint_words(cast_from_oop<HeapWord*>(p), copy, size);
1238 
1239   // Try to install the new forwarding pointer.
1240   oop copy_val = cast_to_oop(copy);
1241   oop result = ShenandoahForwarding::try_update_forwardee(p, copy_val);
1242   if (result == copy_val) {
1243     // Successfully evacuated. Our copy is now the public one!
1244     ContinuationGCSupport::relativize_stack_chunk(copy_val);
1245     shenandoah_assert_correct(nullptr, copy_val);
1246     return copy_val;
1247   }  else {
1248     // Failed to evacuate. We need to deal with the object that is left behind. Since this
1249     // new allocation is certainly after TAMS, it will be considered live in the next cycle.
1250     // But if it happens to contain references to evacuated regions, those references would
1251     // not get updated for this stale copy during this cycle, and we will crash while scanning
1252     // it the next cycle.
1253     if (alloc_from_lab) {
1254       // For LAB allocations, it is enough to rollback the allocation ptr. Either the next
1255       // object will overwrite this stale copy, or the filler object on LAB retirement will
1256       // do this.
1257       ShenandoahThreadLocalData::gclab(thread)->undo_allocation(copy, size);
1258     } else {
1259       // For non-LAB allocations, we have no way to retract the allocation, and
1260       // have to explicitly overwrite the copy with the filler object. With that overwrite,
1261       // we have to keep the fwdptr initialized and pointing to our (stale) copy.
1262       assert(size >= ShenandoahHeap::min_fill_size(), "previously allocated object known to be larger than min_size");
1263       fill_with_object(copy, size);
1264       shenandoah_assert_correct(nullptr, copy_val);
1265       // For non-LAB allocations, the object has already been registered
1266     }
1267     shenandoah_assert_correct(nullptr, result);
1268     return result;
1269   }
1270 }
1271 
1272 void ShenandoahHeap::trash_cset_regions() {
1273   ShenandoahHeapLocker locker(lock());
1274 
1275   ShenandoahCollectionSet* set = collection_set();
1276   ShenandoahHeapRegion* r;
1277   set->clear_current_index();
1278   while ((r = set->next()) != nullptr) {
1279     r->make_trash();
1280   }
1281   collection_set()->clear();
1282 }
1283 
1284 void ShenandoahHeap::print_heap_regions_on(outputStream* st) const {
1285   st->print_cr("Heap Regions:");
1286   st->print_cr("Region state: EU=empty-uncommitted, EC=empty-committed, R=regular, H=humongous start, HP=pinned humongous start");
1287   st->print_cr("              HC=humongous continuation, CS=collection set, TR=trash, P=pinned, CSP=pinned collection set");
1288   st->print_cr("BTE=bottom/top/end, TAMS=top-at-mark-start");
1289   st->print_cr("UWM=update watermark, U=used");
1290   st->print_cr("T=TLAB allocs, G=GCLAB allocs");
1291   st->print_cr("S=shared allocs, L=live data");
1292   st->print_cr("CP=critical pins");
1293 
1294   for (size_t i = 0; i < num_regions(); i++) {
1295     get_region(i)->print_on(st);
1296   }
1297 }
1298 
1299 size_t ShenandoahHeap::trash_humongous_region_at(ShenandoahHeapRegion* start) {
1300   assert(start->is_humongous_start(), "reclaim regions starting with the first one");
1301 
1302   oop humongous_obj = cast_to_oop(start->bottom());
1303   size_t size = humongous_obj->size();
1304   size_t required_regions = ShenandoahHeapRegion::required_regions(size * HeapWordSize);
1305   size_t index = start->index() + required_regions - 1;
1306 
1307   assert(!start->has_live(), "liveness must be zero");
1308 
1309   for(size_t i = 0; i < required_regions; i++) {
1310     // Reclaim from tail. Otherwise, assertion fails when printing region to trace log,
1311     // as it expects that every region belongs to a humongous region starting with a humongous start region.
1312     ShenandoahHeapRegion* region = get_region(index --);
1313 
1314     assert(region->is_humongous(), "expect correct humongous start or continuation");
1315     assert(!region->is_cset(), "Humongous region should not be in collection set");
1316 
1317     region->make_trash_immediate();
1318   }
1319   return required_regions;
1320 }
1321 
1322 class ShenandoahCheckCleanGCLABClosure : public ThreadClosure {
1323 public:
1324   ShenandoahCheckCleanGCLABClosure() {}
1325   void do_thread(Thread* thread) {
1326     PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
1327     assert(gclab != nullptr, "GCLAB should be initialized for %s", thread->name());
1328     assert(gclab->words_remaining() == 0, "GCLAB should not need retirement");
1329 
1330     if (ShenandoahHeap::heap()->mode()->is_generational()) {
1331       PLAB* plab = ShenandoahThreadLocalData::plab(thread);
1332       assert(plab != nullptr, "PLAB should be initialized for %s", thread->name());
1333       assert(plab->words_remaining() == 0, "PLAB should not need retirement");
1334     }
1335   }
1336 };
1337 
1338 class ShenandoahRetireGCLABClosure : public ThreadClosure {
1339 private:
1340   bool const _resize;
1341 public:
1342   ShenandoahRetireGCLABClosure(bool resize) : _resize(resize) {}
1343   void do_thread(Thread* thread) {
1344     PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
1345     assert(gclab != nullptr, "GCLAB should be initialized for %s", thread->name());
1346     gclab->retire();
1347     if (_resize && ShenandoahThreadLocalData::gclab_size(thread) > 0) {
1348       ShenandoahThreadLocalData::set_gclab_size(thread, 0);
1349     }
1350 
1351     if (ShenandoahHeap::heap()->mode()->is_generational()) {
1352       PLAB* plab = ShenandoahThreadLocalData::plab(thread);
1353       assert(plab != nullptr, "PLAB should be initialized for %s", thread->name());
1354 
1355       // There are two reasons to retire all plabs between old-gen evacuation passes.
1356       //  1. We need to make the plab memory parsable by remembered-set scanning.
1357       //  2. We need to establish a trustworthy UpdateWaterMark value within each old-gen heap region
1358       ShenandoahGenerationalHeap::heap()->retire_plab(plab, thread);
1359       if (_resize && ShenandoahThreadLocalData::plab_size(thread) > 0) {
1360         ShenandoahThreadLocalData::set_plab_size(thread, 0);
1361       }
1362     }
1363   }
1364 };
1365 
1366 void ShenandoahHeap::labs_make_parsable() {
1367   assert(UseTLAB, "Only call with UseTLAB");
1368 
1369   ShenandoahRetireGCLABClosure cl(false);
1370 
1371   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1372     ThreadLocalAllocBuffer& tlab = t->tlab();
1373     tlab.make_parsable();
1374     cl.do_thread(t);
1375   }
1376 
1377   workers()->threads_do(&cl);
1378 }
1379 
1380 void ShenandoahHeap::tlabs_retire(bool resize) {
1381   assert(UseTLAB, "Only call with UseTLAB");
1382   assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled");
1383 
1384   ThreadLocalAllocStats stats;
1385 
1386   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1387     ThreadLocalAllocBuffer& tlab = t->tlab();
1388     tlab.retire(&stats);
1389     if (resize) {
1390       tlab.resize();
1391     }
1392   }
1393 
1394   stats.publish();
1395 
1396 #ifdef ASSERT
1397   ShenandoahCheckCleanGCLABClosure cl;
1398   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1399     cl.do_thread(t);
1400   }
1401   workers()->threads_do(&cl);
1402 #endif
1403 }
1404 
1405 void ShenandoahHeap::gclabs_retire(bool resize) {
1406   assert(UseTLAB, "Only call with UseTLAB");
1407   assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled");
1408 
1409   ShenandoahRetireGCLABClosure cl(resize);
1410   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1411     cl.do_thread(t);
1412   }
1413   workers()->threads_do(&cl);
1414 
1415   if (safepoint_workers() != nullptr) {
1416     safepoint_workers()->threads_do(&cl);
1417   }
1418 }
1419 
1420 // Returns size in bytes
1421 size_t ShenandoahHeap::unsafe_max_tlab_alloc(Thread *thread) const {
1422   // Return the max allowed size, and let the allocation path
1423   // figure out the safe size for current allocation.
1424   return ShenandoahHeapRegion::max_tlab_size_bytes();
1425 }
1426 
1427 size_t ShenandoahHeap::max_tlab_size() const {
1428   // Returns size in words
1429   return ShenandoahHeapRegion::max_tlab_size_words();
1430 }
1431 
1432 void ShenandoahHeap::collect(GCCause::Cause cause) {
1433   control_thread()->request_gc(cause);
1434 }
1435 
1436 void ShenandoahHeap::do_full_collection(bool clear_all_soft_refs) {
1437   //assert(false, "Shouldn't need to do full collections");
1438 }
1439 
1440 HeapWord* ShenandoahHeap::block_start(const void* addr) const {
1441   ShenandoahHeapRegion* r = heap_region_containing(addr);
1442   if (r != nullptr) {
1443     return r->block_start(addr);
1444   }
1445   return nullptr;
1446 }
1447 
1448 bool ShenandoahHeap::block_is_obj(const HeapWord* addr) const {
1449   ShenandoahHeapRegion* r = heap_region_containing(addr);
1450   return r->block_is_obj(addr);
1451 }
1452 
1453 bool ShenandoahHeap::print_location(outputStream* st, void* addr) const {
1454   return BlockLocationPrinter<ShenandoahHeap>::print_location(st, addr);
1455 }
1456 
1457 void ShenandoahHeap::prepare_for_verify() {
1458   if (SafepointSynchronize::is_at_safepoint() && UseTLAB) {
1459     labs_make_parsable();
1460   }
1461 }
1462 
1463 void ShenandoahHeap::gc_threads_do(ThreadClosure* tcl) const {
1464   if (_shenandoah_policy->is_at_shutdown()) {
1465     return;
1466   }
1467 
1468   if (_control_thread != nullptr) {
1469     tcl->do_thread(_control_thread);
1470   }
1471 
1472   if (_uncommit_thread != nullptr) {
1473     tcl->do_thread(_uncommit_thread);
1474   }
1475 
1476   workers()->threads_do(tcl);
1477   if (_safepoint_workers != nullptr) {
1478     _safepoint_workers->threads_do(tcl);
1479   }
1480 }
1481 
1482 void ShenandoahHeap::print_tracing_info() const {
1483   LogTarget(Info, gc, stats) lt;
1484   if (lt.is_enabled()) {
1485     ResourceMark rm;
1486     LogStream ls(lt);
1487 
1488     phase_timings()->print_global_on(&ls);
1489 
1490     ls.cr();
1491     ls.cr();
1492 
1493     shenandoah_policy()->print_gc_stats(&ls);
1494 
1495     ls.cr();
1496     ls.cr();
1497   }
1498 }
1499 
1500 void ShenandoahHeap::set_gc_generation(ShenandoahGeneration* generation) {
1501   shenandoah_assert_control_or_vm_thread_at_safepoint();
1502   _gc_generation = generation;
1503 }
1504 
1505 // Active generation may only be set by the VM thread at a safepoint.
1506 void ShenandoahHeap::set_active_generation() {
1507   assert(Thread::current()->is_VM_thread(), "Only the VM Thread");
1508   assert(SafepointSynchronize::is_at_safepoint(), "Only at a safepoint!");
1509   assert(_gc_generation != nullptr, "Will set _active_generation to nullptr");
1510   _active_generation = _gc_generation;
1511 }
1512 
1513 void ShenandoahHeap::on_cycle_start(GCCause::Cause cause, ShenandoahGeneration* generation) {
1514   shenandoah_policy()->record_collection_cause(cause);
1515 
1516   assert(gc_cause()  == GCCause::_no_gc, "Over-writing cause");
1517   assert(_gc_generation == nullptr, "Over-writing _gc_generation");
1518 
1519   set_gc_cause(cause);
1520   set_gc_generation(generation);
1521 
1522   generation->heuristics()->record_cycle_start();
1523 }
1524 
1525 void ShenandoahHeap::on_cycle_end(ShenandoahGeneration* generation) {
1526   assert(gc_cause() != GCCause::_no_gc, "cause wasn't set");
1527   assert(_gc_generation != nullptr, "_gc_generation wasn't set");
1528 
1529   generation->heuristics()->record_cycle_end();
1530   if (mode()->is_generational() && generation->is_global()) {
1531     // If we just completed a GLOBAL GC, claim credit for completion of young-gen and old-gen GC as well
1532     young_generation()->heuristics()->record_cycle_end();
1533     old_generation()->heuristics()->record_cycle_end();
1534   }
1535 
1536   set_gc_generation(nullptr);
1537   set_gc_cause(GCCause::_no_gc);
1538 }
1539 
1540 void ShenandoahHeap::verify(VerifyOption vo) {
1541   if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) {
1542     if (ShenandoahVerify) {
1543       verifier()->verify_generic(vo);
1544     } else {
1545       // TODO: Consider allocating verification bitmaps on demand,
1546       // and turn this on unconditionally.
1547     }
1548   }
1549 }
1550 size_t ShenandoahHeap::tlab_capacity(Thread *thr) const {
1551   return _free_set->capacity();
1552 }
1553 
1554 class ObjectIterateScanRootClosure : public BasicOopIterateClosure {
1555 private:
1556   MarkBitMap* _bitmap;
1557   ShenandoahScanObjectStack* _oop_stack;
1558   ShenandoahHeap* const _heap;
1559   ShenandoahMarkingContext* const _marking_context;
1560 
1561   template <class T>
1562   void do_oop_work(T* p) {
1563     T o = RawAccess<>::oop_load(p);
1564     if (!CompressedOops::is_null(o)) {
1565       oop obj = CompressedOops::decode_not_null(o);
1566       if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) {
1567         // There may be dead oops in weak roots in concurrent root phase, do not touch them.
1568         return;
1569       }
1570       obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj);
1571 
1572       assert(oopDesc::is_oop(obj), "must be a valid oop");
1573       if (!_bitmap->is_marked(obj)) {
1574         _bitmap->mark(obj);
1575         _oop_stack->push(obj);
1576       }
1577     }
1578   }
1579 public:
1580   ObjectIterateScanRootClosure(MarkBitMap* bitmap, ShenandoahScanObjectStack* oop_stack) :
1581     _bitmap(bitmap), _oop_stack(oop_stack), _heap(ShenandoahHeap::heap()),
1582     _marking_context(_heap->marking_context()) {}
1583   void do_oop(oop* p)       { do_oop_work(p); }
1584   void do_oop(narrowOop* p) { do_oop_work(p); }
1585 };
1586 
1587 /*
1588  * This is public API, used in preparation of object_iterate().
1589  * Since we don't do linear scan of heap in object_iterate() (see comment below), we don't
1590  * need to make the heap parsable. For Shenandoah-internal linear heap scans that we can
1591  * control, we call SH::tlabs_retire, SH::gclabs_retire.
1592  */
1593 void ShenandoahHeap::ensure_parsability(bool retire_tlabs) {
1594   // No-op.
1595 }
1596 
1597 /*
1598  * Iterates objects in the heap. This is public API, used for, e.g., heap dumping.
1599  *
1600  * We cannot safely iterate objects by doing a linear scan at random points in time. Linear
1601  * scanning needs to deal with dead objects, which may have dead Klass* pointers (e.g.
1602  * calling oopDesc::size() would crash) or dangling reference fields (crashes) etc. Linear
1603  * scanning therefore depends on having a valid marking bitmap to support it. However, we only
1604  * have a valid marking bitmap after successful marking. In particular, we *don't* have a valid
1605  * marking bitmap during marking, after aborted marking or during/after cleanup (when we just
1606  * wiped the bitmap in preparation for next marking).
1607  *
1608  * For all those reasons, we implement object iteration as a single marking traversal, reporting
1609  * objects as we mark+traverse through the heap, starting from GC roots. JVMTI IterateThroughHeap
1610  * is allowed to report dead objects, but is not required to do so.
1611  */
1612 void ShenandoahHeap::object_iterate(ObjectClosure* cl) {
1613   // Reset bitmap
1614   if (!prepare_aux_bitmap_for_iteration())
1615     return;
1616 
1617   ShenandoahScanObjectStack oop_stack;
1618   ObjectIterateScanRootClosure oops(&_aux_bit_map, &oop_stack);
1619   // Seed the stack with root scan
1620   scan_roots_for_iteration(&oop_stack, &oops);
1621 
1622   // Work through the oop stack to traverse heap
1623   while (! oop_stack.is_empty()) {
1624     oop obj = oop_stack.pop();
1625     assert(oopDesc::is_oop(obj), "must be a valid oop");
1626     cl->do_object(obj);
1627     obj->oop_iterate(&oops);
1628   }
1629 
1630   assert(oop_stack.is_empty(), "should be empty");
1631   // Reclaim bitmap
1632   reclaim_aux_bitmap_for_iteration();
1633 }
1634 
1635 bool ShenandoahHeap::prepare_aux_bitmap_for_iteration() {
1636   assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints");
1637 
1638   if (!_aux_bitmap_region_special && !os::commit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size(), false)) {
1639     log_warning(gc)("Could not commit native memory for auxiliary marking bitmap for heap iteration");
1640     return false;
1641   }
1642   // Reset bitmap
1643   _aux_bit_map.clear();
1644   return true;
1645 }
1646 
1647 void ShenandoahHeap::scan_roots_for_iteration(ShenandoahScanObjectStack* oop_stack, ObjectIterateScanRootClosure* oops) {
1648   // Process GC roots according to current GC cycle
1649   // This populates the work stack with initial objects
1650   // It is important to relinquish the associated locks before diving
1651   // into heap dumper
1652   uint n_workers = safepoint_workers() != nullptr ? safepoint_workers()->active_workers() : 1;
1653   ShenandoahHeapIterationRootScanner rp(n_workers);
1654   rp.roots_do(oops);
1655 }
1656 
1657 void ShenandoahHeap::reclaim_aux_bitmap_for_iteration() {
1658   if (!_aux_bitmap_region_special && !os::uncommit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size())) {
1659     log_warning(gc)("Could not uncommit native memory for auxiliary marking bitmap for heap iteration");
1660   }
1661 }
1662 
1663 // Closure for parallelly iterate objects
1664 class ShenandoahObjectIterateParScanClosure : public BasicOopIterateClosure {
1665 private:
1666   MarkBitMap* _bitmap;
1667   ShenandoahObjToScanQueue* _queue;
1668   ShenandoahHeap* const _heap;
1669   ShenandoahMarkingContext* const _marking_context;
1670 
1671   template <class T>
1672   void do_oop_work(T* p) {
1673     T o = RawAccess<>::oop_load(p);
1674     if (!CompressedOops::is_null(o)) {
1675       oop obj = CompressedOops::decode_not_null(o);
1676       if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) {
1677         // There may be dead oops in weak roots in concurrent root phase, do not touch them.
1678         return;
1679       }
1680       obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj);
1681 
1682       assert(oopDesc::is_oop(obj), "Must be a valid oop");
1683       if (_bitmap->par_mark(obj)) {
1684         _queue->push(ShenandoahMarkTask(obj));
1685       }
1686     }
1687   }
1688 public:
1689   ShenandoahObjectIterateParScanClosure(MarkBitMap* bitmap, ShenandoahObjToScanQueue* q) :
1690     _bitmap(bitmap), _queue(q), _heap(ShenandoahHeap::heap()),
1691     _marking_context(_heap->marking_context()) {}
1692   void do_oop(oop* p)       { do_oop_work(p); }
1693   void do_oop(narrowOop* p) { do_oop_work(p); }
1694 };
1695 
1696 // Object iterator for parallel heap iteraion.
1697 // The root scanning phase happenes in construction as a preparation of
1698 // parallel marking queues.
1699 // Every worker processes it's own marking queue. work-stealing is used
1700 // to balance workload.
1701 class ShenandoahParallelObjectIterator : public ParallelObjectIteratorImpl {
1702 private:
1703   uint                         _num_workers;
1704   bool                         _init_ready;
1705   MarkBitMap*                  _aux_bit_map;
1706   ShenandoahHeap*              _heap;
1707   ShenandoahScanObjectStack    _roots_stack; // global roots stack
1708   ShenandoahObjToScanQueueSet* _task_queues;
1709 public:
1710   ShenandoahParallelObjectIterator(uint num_workers, MarkBitMap* bitmap) :
1711         _num_workers(num_workers),
1712         _init_ready(false),
1713         _aux_bit_map(bitmap),
1714         _heap(ShenandoahHeap::heap()) {
1715     // Initialize bitmap
1716     _init_ready = _heap->prepare_aux_bitmap_for_iteration();
1717     if (!_init_ready) {
1718       return;
1719     }
1720 
1721     ObjectIterateScanRootClosure oops(_aux_bit_map, &_roots_stack);
1722     _heap->scan_roots_for_iteration(&_roots_stack, &oops);
1723 
1724     _init_ready = prepare_worker_queues();
1725   }
1726 
1727   ~ShenandoahParallelObjectIterator() {
1728     // Reclaim bitmap
1729     _heap->reclaim_aux_bitmap_for_iteration();
1730     // Reclaim queue for workers
1731     if (_task_queues!= nullptr) {
1732       for (uint i = 0; i < _num_workers; ++i) {
1733         ShenandoahObjToScanQueue* q = _task_queues->queue(i);
1734         if (q != nullptr) {
1735           delete q;
1736           _task_queues->register_queue(i, nullptr);
1737         }
1738       }
1739       delete _task_queues;
1740       _task_queues = nullptr;
1741     }
1742   }
1743 
1744   virtual void object_iterate(ObjectClosure* cl, uint worker_id) {
1745     if (_init_ready) {
1746       object_iterate_parallel(cl, worker_id, _task_queues);
1747     }
1748   }
1749 
1750 private:
1751   // Divide global root_stack into worker queues
1752   bool prepare_worker_queues() {
1753     _task_queues = new ShenandoahObjToScanQueueSet((int) _num_workers);
1754     // Initialize queues for every workers
1755     for (uint i = 0; i < _num_workers; ++i) {
1756       ShenandoahObjToScanQueue* task_queue = new ShenandoahObjToScanQueue();
1757       _task_queues->register_queue(i, task_queue);
1758     }
1759     // Divide roots among the workers. Assume that object referencing distribution
1760     // is related with root kind, use round-robin to make every worker have same chance
1761     // to process every kind of roots
1762     size_t roots_num = _roots_stack.size();
1763     if (roots_num == 0) {
1764       // No work to do
1765       return false;
1766     }
1767 
1768     for (uint j = 0; j < roots_num; j++) {
1769       uint stack_id = j % _num_workers;
1770       oop obj = _roots_stack.pop();
1771       _task_queues->queue(stack_id)->push(ShenandoahMarkTask(obj));
1772     }
1773     return true;
1774   }
1775 
1776   void object_iterate_parallel(ObjectClosure* cl,
1777                                uint worker_id,
1778                                ShenandoahObjToScanQueueSet* queue_set) {
1779     assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints");
1780     assert(queue_set != nullptr, "task queue must not be null");
1781 
1782     ShenandoahObjToScanQueue* q = queue_set->queue(worker_id);
1783     assert(q != nullptr, "object iterate queue must not be null");
1784 
1785     ShenandoahMarkTask t;
1786     ShenandoahObjectIterateParScanClosure oops(_aux_bit_map, q);
1787 
1788     // Work through the queue to traverse heap.
1789     // Steal when there is no task in queue.
1790     while (q->pop(t) || queue_set->steal(worker_id, t)) {
1791       oop obj = t.obj();
1792       assert(oopDesc::is_oop(obj), "must be a valid oop");
1793       cl->do_object(obj);
1794       obj->oop_iterate(&oops);
1795     }
1796     assert(q->is_empty(), "should be empty");
1797   }
1798 };
1799 
1800 ParallelObjectIteratorImpl* ShenandoahHeap::parallel_object_iterator(uint workers) {
1801   return new ShenandoahParallelObjectIterator(workers, &_aux_bit_map);
1802 }
1803 
1804 // Keep alive an object that was loaded with AS_NO_KEEPALIVE.
1805 void ShenandoahHeap::keep_alive(oop obj) {
1806   if (is_concurrent_mark_in_progress() && (obj != nullptr)) {
1807     ShenandoahBarrierSet::barrier_set()->enqueue(obj);
1808   }
1809 }
1810 
1811 void ShenandoahHeap::heap_region_iterate(ShenandoahHeapRegionClosure* blk) const {
1812   for (size_t i = 0; i < num_regions(); i++) {
1813     ShenandoahHeapRegion* current = get_region(i);
1814     blk->heap_region_do(current);
1815   }
1816 }
1817 
1818 class ShenandoahParallelHeapRegionTask : public WorkerTask {
1819 private:
1820   ShenandoahHeap* const _heap;
1821   ShenandoahHeapRegionClosure* const _blk;
1822   size_t const _stride;
1823 
1824   shenandoah_padding(0);
1825   volatile size_t _index;
1826   shenandoah_padding(1);
1827 
1828 public:
1829   ShenandoahParallelHeapRegionTask(ShenandoahHeapRegionClosure* blk, size_t stride) :
1830           WorkerTask("Shenandoah Parallel Region Operation"),
1831           _heap(ShenandoahHeap::heap()), _blk(blk), _stride(stride), _index(0) {}
1832 
1833   void work(uint worker_id) {
1834     ShenandoahParallelWorkerSession worker_session(worker_id);
1835     size_t stride = _stride;
1836 
1837     size_t max = _heap->num_regions();
1838     while (Atomic::load(&_index) < max) {
1839       size_t cur = Atomic::fetch_then_add(&_index, stride, memory_order_relaxed);
1840       size_t start = cur;
1841       size_t end = MIN2(cur + stride, max);
1842       if (start >= max) break;
1843 
1844       for (size_t i = cur; i < end; i++) {
1845         ShenandoahHeapRegion* current = _heap->get_region(i);
1846         _blk->heap_region_do(current);
1847       }
1848     }
1849   }
1850 };
1851 
1852 void ShenandoahHeap::parallel_heap_region_iterate(ShenandoahHeapRegionClosure* blk) const {
1853   assert(blk->is_thread_safe(), "Only thread-safe closures here");
1854   const uint active_workers = workers()->active_workers();
1855   const size_t n_regions = num_regions();
1856   size_t stride = ShenandoahParallelRegionStride;
1857   if (stride == 0 && active_workers > 1) {
1858     // Automatically derive the stride to balance the work between threads
1859     // evenly. Do not try to split work if below the reasonable threshold.
1860     constexpr size_t threshold = 4096;
1861     stride = n_regions <= threshold ?
1862             threshold :
1863             (n_regions + active_workers - 1) / active_workers;
1864   }
1865 
1866   if (n_regions > stride && active_workers > 1) {
1867     ShenandoahParallelHeapRegionTask task(blk, stride);
1868     workers()->run_task(&task);
1869   } else {
1870     heap_region_iterate(blk);
1871   }
1872 }
1873 
1874 class ShenandoahRendezvousClosure : public HandshakeClosure {
1875 public:
1876   inline ShenandoahRendezvousClosure(const char* name) : HandshakeClosure(name) {}
1877   inline void do_thread(Thread* thread) {}
1878 };
1879 
1880 void ShenandoahHeap::rendezvous_threads(const char* name) {
1881   ShenandoahRendezvousClosure cl(name);
1882   Handshake::execute(&cl);
1883 }
1884 
1885 void ShenandoahHeap::recycle_trash() {
1886   free_set()->recycle_trash();
1887 }
1888 
1889 void ShenandoahHeap::do_class_unloading() {
1890   _unloader.unload();
1891   if (mode()->is_generational()) {
1892     old_generation()->set_parsable(false);
1893   }
1894 }
1895 
1896 void ShenandoahHeap::stw_weak_refs(bool full_gc) {
1897   // Weak refs processing
1898   ShenandoahPhaseTimings::Phase phase = full_gc ? ShenandoahPhaseTimings::full_gc_weakrefs
1899                                                 : ShenandoahPhaseTimings::degen_gc_weakrefs;
1900   ShenandoahTimingsTracker t(phase);
1901   ShenandoahGCWorkerPhase worker_phase(phase);
1902   shenandoah_assert_generations_reconciled();
1903   gc_generation()->ref_processor()->process_references(phase, workers(), false /* concurrent */);
1904 }
1905 
1906 void ShenandoahHeap::prepare_update_heap_references(bool concurrent) {
1907   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "must be at safepoint");
1908 
1909   // Evacuation is over, no GCLABs are needed anymore. GCLABs are under URWM, so we need to
1910   // make them parsable for update code to work correctly. Plus, we can compute new sizes
1911   // for future GCLABs here.
1912   if (UseTLAB) {
1913     ShenandoahGCPhase phase(concurrent ?
1914                             ShenandoahPhaseTimings::init_update_refs_manage_gclabs :
1915                             ShenandoahPhaseTimings::degen_gc_init_update_refs_manage_gclabs);
1916     gclabs_retire(ResizeTLAB);
1917   }
1918 
1919   _update_refs_iterator.reset();
1920 }
1921 
1922 void ShenandoahHeap::propagate_gc_state_to_java_threads() {
1923   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Must be at Shenandoah safepoint");
1924   if (_gc_state_changed) {
1925     _gc_state_changed = false;
1926     char state = gc_state();
1927     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1928       ShenandoahThreadLocalData::set_gc_state(t, state);
1929     }
1930   }
1931 }
1932 
1933 void ShenandoahHeap::set_gc_state(uint mask, bool value) {
1934   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Must be at Shenandoah safepoint");
1935   _gc_state.set_cond(mask, value);
1936   _gc_state_changed = true;
1937 }
1938 
1939 void ShenandoahHeap::set_concurrent_young_mark_in_progress(bool in_progress) {
1940   uint mask;
1941   assert(!has_forwarded_objects(), "Young marking is not concurrent with evacuation");
1942   if (!in_progress && is_concurrent_old_mark_in_progress()) {
1943     assert(mode()->is_generational(), "Only generational GC has old marking");
1944     assert(_gc_state.is_set(MARKING), "concurrent_old_marking_in_progress implies MARKING");
1945     // If old-marking is in progress when we turn off YOUNG_MARKING, leave MARKING (and OLD_MARKING) on
1946     mask = YOUNG_MARKING;
1947   } else {
1948     mask = MARKING | YOUNG_MARKING;
1949   }
1950   set_gc_state(mask, in_progress);
1951   manage_satb_barrier(in_progress);
1952 }
1953 
1954 void ShenandoahHeap::set_concurrent_old_mark_in_progress(bool in_progress) {
1955 #ifdef ASSERT
1956   // has_forwarded_objects() iff UPDATEREFS or EVACUATION
1957   bool has_forwarded = has_forwarded_objects();
1958   bool updating_or_evacuating = _gc_state.is_set(UPDATEREFS | EVACUATION);
1959   bool evacuating = _gc_state.is_set(EVACUATION);
1960   assert ((has_forwarded == updating_or_evacuating) || (evacuating && !has_forwarded && collection_set()->is_empty()),
1961           "Updating or evacuating iff has forwarded objects, or if evacuation phase is promoting in place without forwarding");
1962 #endif
1963   if (!in_progress && is_concurrent_young_mark_in_progress()) {
1964     // If young-marking is in progress when we turn off OLD_MARKING, leave MARKING (and YOUNG_MARKING) on
1965     assert(_gc_state.is_set(MARKING), "concurrent_young_marking_in_progress implies MARKING");
1966     set_gc_state(OLD_MARKING, in_progress);
1967   } else {
1968     set_gc_state(MARKING | OLD_MARKING, in_progress);
1969   }
1970   manage_satb_barrier(in_progress);
1971 }
1972 
1973 bool ShenandoahHeap::is_prepare_for_old_mark_in_progress() const {
1974   return old_generation()->is_preparing_for_mark();
1975 }
1976 
1977 void ShenandoahHeap::manage_satb_barrier(bool active) {
1978   if (is_concurrent_mark_in_progress()) {
1979     // Ignore request to deactivate barrier while concurrent mark is in progress.
1980     // Do not attempt to re-activate the barrier if it is already active.
1981     if (active && !ShenandoahBarrierSet::satb_mark_queue_set().is_active()) {
1982       ShenandoahBarrierSet::satb_mark_queue_set().set_active_all_threads(active, !active);
1983     }
1984   } else {
1985     // No concurrent marking is in progress so honor request to deactivate,
1986     // but only if the barrier is already active.
1987     if (!active && ShenandoahBarrierSet::satb_mark_queue_set().is_active()) {
1988       ShenandoahBarrierSet::satb_mark_queue_set().set_active_all_threads(active, !active);
1989     }
1990   }
1991 }
1992 
1993 void ShenandoahHeap::set_evacuation_in_progress(bool in_progress) {
1994   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Only call this at safepoint");
1995   set_gc_state(EVACUATION, in_progress);
1996 }
1997 
1998 void ShenandoahHeap::set_concurrent_strong_root_in_progress(bool in_progress) {
1999   if (in_progress) {
2000     _concurrent_strong_root_in_progress.set();
2001   } else {
2002     _concurrent_strong_root_in_progress.unset();
2003   }
2004 }
2005 
2006 void ShenandoahHeap::set_concurrent_weak_root_in_progress(bool cond) {
2007   set_gc_state(WEAK_ROOTS, cond);
2008 }
2009 
2010 GCTracer* ShenandoahHeap::tracer() {
2011   return shenandoah_policy()->tracer();
2012 }
2013 
2014 size_t ShenandoahHeap::tlab_used(Thread* thread) const {
2015   return _free_set->used();
2016 }
2017 
2018 bool ShenandoahHeap::try_cancel_gc() {
2019   jbyte prev = _cancelled_gc.cmpxchg(CANCELLED, CANCELLABLE);
2020   return prev == CANCELLABLE;
2021 }
2022 
2023 void ShenandoahHeap::cancel_concurrent_mark() {
2024   if (mode()->is_generational()) {
2025     young_generation()->cancel_marking();
2026     old_generation()->cancel_marking();
2027   }
2028 
2029   global_generation()->cancel_marking();
2030 
2031   ShenandoahBarrierSet::satb_mark_queue_set().abandon_partial_marking();
2032 }
2033 
2034 void ShenandoahHeap::cancel_gc(GCCause::Cause cause) {
2035   if (try_cancel_gc()) {
2036     FormatBuffer<> msg("Cancelling GC: %s", GCCause::to_string(cause));
2037     log_info(gc)("%s", msg.buffer());
2038     Events::log(Thread::current(), "%s", msg.buffer());
2039     _cancel_requested_time = os::elapsedTime();
2040   }
2041 }
2042 
2043 uint ShenandoahHeap::max_workers() {
2044   return _max_workers;
2045 }
2046 
2047 void ShenandoahHeap::stop() {
2048   // The shutdown sequence should be able to terminate when GC is running.
2049 
2050   // Step 0. Notify policy to disable event recording and prevent visiting gc threads during shutdown
2051   _shenandoah_policy->record_shutdown();
2052 
2053   // Step 1. Notify control thread that we are in shutdown.
2054   // Note that we cannot do that with stop(), because stop() is blocking and waits for the actual shutdown.
2055   // Doing stop() here would wait for the normal GC cycle to complete, never falling through to cancel below.
2056   control_thread()->prepare_for_graceful_shutdown();
2057 
2058   // Step 2. Notify GC workers that we are cancelling GC.
2059   cancel_gc(GCCause::_shenandoah_stop_vm);
2060 
2061   // Step 3. Wait until GC worker exits normally.
2062   control_thread()->stop();
2063 
2064   // Stop 4. Shutdown uncommit thread.
2065   if (_uncommit_thread != nullptr) {
2066     _uncommit_thread->stop();
2067   }
2068 }
2069 
2070 void ShenandoahHeap::stw_unload_classes(bool full_gc) {
2071   if (!unload_classes()) return;
2072   ClassUnloadingContext ctx(_workers->active_workers(),
2073                             true /* unregister_nmethods_during_purge */,
2074                             false /* lock_nmethod_free_separately */);
2075 
2076   // Unload classes and purge SystemDictionary.
2077   {
2078     ShenandoahPhaseTimings::Phase phase = full_gc ?
2079                                           ShenandoahPhaseTimings::full_gc_purge_class_unload :
2080                                           ShenandoahPhaseTimings::degen_gc_purge_class_unload;
2081     ShenandoahIsAliveSelector is_alive;
2082     {
2083       CodeCache::UnlinkingScope scope(is_alive.is_alive_closure());
2084       ShenandoahGCPhase gc_phase(phase);
2085       ShenandoahGCWorkerPhase worker_phase(phase);
2086       bool unloading_occurred = SystemDictionary::do_unloading(gc_timer());
2087 
2088       uint num_workers = _workers->active_workers();
2089       ShenandoahClassUnloadingTask unlink_task(phase, num_workers, unloading_occurred);
2090       _workers->run_task(&unlink_task);
2091     }
2092     // Release unloaded nmethods's memory.
2093     ClassUnloadingContext::context()->purge_and_free_nmethods();
2094   }
2095 
2096   {
2097     ShenandoahGCPhase phase(full_gc ?
2098                             ShenandoahPhaseTimings::full_gc_purge_cldg :
2099                             ShenandoahPhaseTimings::degen_gc_purge_cldg);
2100     ClassLoaderDataGraph::purge(true /* at_safepoint */);
2101   }
2102   // Resize and verify metaspace
2103   MetaspaceGC::compute_new_size();
2104   DEBUG_ONLY(MetaspaceUtils::verify();)
2105 }
2106 
2107 // Weak roots are either pre-evacuated (final mark) or updated (final updaterefs),
2108 // so they should not have forwarded oops.
2109 // However, we do need to "null" dead oops in the roots, if can not be done
2110 // in concurrent cycles.
2111 void ShenandoahHeap::stw_process_weak_roots(bool full_gc) {
2112   uint num_workers = _workers->active_workers();
2113   ShenandoahPhaseTimings::Phase timing_phase = full_gc ?
2114                                                ShenandoahPhaseTimings::full_gc_purge_weak_par :
2115                                                ShenandoahPhaseTimings::degen_gc_purge_weak_par;
2116   ShenandoahGCPhase phase(timing_phase);
2117   ShenandoahGCWorkerPhase worker_phase(timing_phase);
2118   // Cleanup weak roots
2119   if (has_forwarded_objects()) {
2120     ShenandoahForwardedIsAliveClosure is_alive;
2121     ShenandoahNonConcUpdateRefsClosure keep_alive;
2122     ShenandoahParallelWeakRootsCleaningTask<ShenandoahForwardedIsAliveClosure, ShenandoahNonConcUpdateRefsClosure>
2123       cleaning_task(timing_phase, &is_alive, &keep_alive, num_workers);
2124     _workers->run_task(&cleaning_task);
2125   } else {
2126     ShenandoahIsAliveClosure is_alive;
2127 #ifdef ASSERT
2128     ShenandoahAssertNotForwardedClosure verify_cl;
2129     ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, ShenandoahAssertNotForwardedClosure>
2130       cleaning_task(timing_phase, &is_alive, &verify_cl, num_workers);
2131 #else
2132     ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, DoNothingClosure>
2133       cleaning_task(timing_phase, &is_alive, &do_nothing_cl, num_workers);
2134 #endif
2135     _workers->run_task(&cleaning_task);
2136   }
2137 }
2138 
2139 void ShenandoahHeap::parallel_cleaning(bool full_gc) {
2140   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
2141   assert(is_stw_gc_in_progress(), "Only for Degenerated and Full GC");
2142   ShenandoahGCPhase phase(full_gc ?
2143                           ShenandoahPhaseTimings::full_gc_purge :
2144                           ShenandoahPhaseTimings::degen_gc_purge);
2145   stw_weak_refs(full_gc);
2146   stw_process_weak_roots(full_gc);
2147   stw_unload_classes(full_gc);
2148 }
2149 
2150 void ShenandoahHeap::set_has_forwarded_objects(bool cond) {
2151   set_gc_state(HAS_FORWARDED, cond);
2152 }
2153 
2154 void ShenandoahHeap::set_unload_classes(bool uc) {
2155   _unload_classes.set_cond(uc);
2156 }
2157 
2158 bool ShenandoahHeap::unload_classes() const {
2159   return _unload_classes.is_set();
2160 }
2161 
2162 address ShenandoahHeap::in_cset_fast_test_addr() {
2163   ShenandoahHeap* heap = ShenandoahHeap::heap();
2164   assert(heap->collection_set() != nullptr, "Sanity");
2165   return (address) heap->collection_set()->biased_map_address();
2166 }
2167 
2168 void ShenandoahHeap::reset_bytes_allocated_since_gc_start() {
2169   if (mode()->is_generational()) {
2170     young_generation()->reset_bytes_allocated_since_gc_start();
2171     old_generation()->reset_bytes_allocated_since_gc_start();
2172   }
2173 
2174   global_generation()->reset_bytes_allocated_since_gc_start();
2175 }
2176 
2177 void ShenandoahHeap::set_degenerated_gc_in_progress(bool in_progress) {
2178   _degenerated_gc_in_progress.set_cond(in_progress);
2179 }
2180 
2181 void ShenandoahHeap::set_full_gc_in_progress(bool in_progress) {
2182   _full_gc_in_progress.set_cond(in_progress);
2183 }
2184 
2185 void ShenandoahHeap::set_full_gc_move_in_progress(bool in_progress) {
2186   assert (is_full_gc_in_progress(), "should be");
2187   _full_gc_move_in_progress.set_cond(in_progress);
2188 }
2189 
2190 void ShenandoahHeap::set_update_refs_in_progress(bool in_progress) {
2191   set_gc_state(UPDATEREFS, in_progress);
2192 }
2193 
2194 void ShenandoahHeap::register_nmethod(nmethod* nm) {
2195   ShenandoahCodeRoots::register_nmethod(nm);
2196 }
2197 
2198 void ShenandoahHeap::unregister_nmethod(nmethod* nm) {
2199   ShenandoahCodeRoots::unregister_nmethod(nm);
2200 }
2201 
2202 void ShenandoahHeap::pin_object(JavaThread* thr, oop o) {
2203   heap_region_containing(o)->record_pin();
2204 }
2205 
2206 void ShenandoahHeap::unpin_object(JavaThread* thr, oop o) {
2207   ShenandoahHeapRegion* r = heap_region_containing(o);
2208   assert(r != nullptr, "Sanity");
2209   assert(r->pin_count() > 0, "Region " SIZE_FORMAT " should have non-zero pins", r->index());
2210   r->record_unpin();
2211 }
2212 
2213 void ShenandoahHeap::sync_pinned_region_status() {
2214   ShenandoahHeapLocker locker(lock());
2215 
2216   for (size_t i = 0; i < num_regions(); i++) {
2217     ShenandoahHeapRegion *r = get_region(i);
2218     if (r->is_active()) {
2219       if (r->is_pinned()) {
2220         if (r->pin_count() == 0) {
2221           r->make_unpinned();
2222         }
2223       } else {
2224         if (r->pin_count() > 0) {
2225           r->make_pinned();
2226         }
2227       }
2228     }
2229   }
2230 
2231   assert_pinned_region_status();
2232 }
2233 
2234 #ifdef ASSERT
2235 void ShenandoahHeap::assert_pinned_region_status() {
2236   for (size_t i = 0; i < num_regions(); i++) {
2237     ShenandoahHeapRegion* r = get_region(i);
2238     shenandoah_assert_generations_reconciled();
2239     if (gc_generation()->contains(r)) {
2240       assert((r->is_pinned() && r->pin_count() > 0) || (!r->is_pinned() && r->pin_count() == 0),
2241              "Region " SIZE_FORMAT " pinning status is inconsistent", i);
2242     }
2243   }
2244 }
2245 #endif
2246 
2247 ConcurrentGCTimer* ShenandoahHeap::gc_timer() const {
2248   return _gc_timer;
2249 }
2250 
2251 void ShenandoahHeap::prepare_concurrent_roots() {
2252   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
2253   assert(!is_stw_gc_in_progress(), "Only concurrent GC");
2254   set_concurrent_strong_root_in_progress(!collection_set()->is_empty());
2255   set_concurrent_weak_root_in_progress(true);
2256   if (unload_classes()) {
2257     _unloader.prepare();
2258   }
2259 }
2260 
2261 void ShenandoahHeap::finish_concurrent_roots() {
2262   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
2263   assert(!is_stw_gc_in_progress(), "Only concurrent GC");
2264   if (unload_classes()) {
2265     _unloader.finish();
2266   }
2267 }
2268 
2269 #ifdef ASSERT
2270 void ShenandoahHeap::assert_gc_workers(uint nworkers) {
2271   assert(nworkers > 0 && nworkers <= max_workers(), "Sanity");
2272 
2273   if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) {
2274     // Use ParallelGCThreads inside safepoints
2275     assert(nworkers == ParallelGCThreads, "Use ParallelGCThreads (%u) within safepoint, not %u",
2276            ParallelGCThreads, nworkers);
2277   } else {
2278     // Use ConcGCThreads outside safepoints
2279     assert(nworkers == ConcGCThreads, "Use ConcGCThreads (%u) outside safepoints, %u",
2280            ConcGCThreads, nworkers);
2281   }
2282 }
2283 #endif
2284 
2285 ShenandoahVerifier* ShenandoahHeap::verifier() {
2286   guarantee(ShenandoahVerify, "Should be enabled");
2287   assert (_verifier != nullptr, "sanity");
2288   return _verifier;
2289 }
2290 
2291 template<bool CONCURRENT>
2292 class ShenandoahUpdateHeapRefsTask : public WorkerTask {
2293 private:
2294   ShenandoahHeap* _heap;
2295   ShenandoahRegionIterator* _regions;
2296 public:
2297   explicit ShenandoahUpdateHeapRefsTask(ShenandoahRegionIterator* regions) :
2298     WorkerTask("Shenandoah Update References"),
2299     _heap(ShenandoahHeap::heap()),
2300     _regions(regions) {
2301   }
2302 
2303   void work(uint worker_id) {
2304     if (CONCURRENT) {
2305       ShenandoahConcurrentWorkerSession worker_session(worker_id);
2306       ShenandoahSuspendibleThreadSetJoiner stsj;
2307       do_work<ShenandoahConcUpdateRefsClosure>(worker_id);
2308     } else {
2309       ShenandoahParallelWorkerSession worker_session(worker_id);
2310       do_work<ShenandoahNonConcUpdateRefsClosure>(worker_id);
2311     }
2312   }
2313 
2314 private:
2315   template<class T>
2316   void do_work(uint worker_id) {
2317     if (CONCURRENT && (worker_id == 0)) {
2318       // We ask the first worker to replenish the Mutator free set by moving regions previously reserved to hold the
2319       // results of evacuation.  These reserves are no longer necessary because evacuation has completed.
2320       size_t cset_regions = _heap->collection_set()->count();
2321 
2322       // Now that evacuation is done, we can reassign any regions that had been reserved to hold the results of evacuation
2323       // to the mutator free set.  At the end of GC, we will have cset_regions newly evacuated fully empty regions from
2324       // which we will be able to replenish the Collector free set and the OldCollector free set in preparation for the
2325       // next GC cycle.
2326       _heap->free_set()->move_regions_from_collector_to_mutator(cset_regions);
2327     }
2328     // If !CONCURRENT, there's no value in expanding Mutator free set
2329     T cl;
2330     ShenandoahHeapRegion* r = _regions->next();
2331     while (r != nullptr) {
2332       HeapWord* update_watermark = r->get_update_watermark();
2333       assert (update_watermark >= r->bottom(), "sanity");
2334       if (r->is_active() && !r->is_cset()) {
2335         _heap->marked_object_oop_iterate(r, &cl, update_watermark);
2336         if (ShenandoahPacing) {
2337           _heap->pacer()->report_updaterefs(pointer_delta(update_watermark, r->bottom()));
2338         }
2339       }
2340       if (_heap->check_cancelled_gc_and_yield(CONCURRENT)) {
2341         return;
2342       }
2343       r = _regions->next();
2344     }
2345   }
2346 };
2347 
2348 void ShenandoahHeap::update_heap_references(bool concurrent) {
2349   assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC");
2350 
2351   if (concurrent) {
2352     ShenandoahUpdateHeapRefsTask<true> task(&_update_refs_iterator);
2353     workers()->run_task(&task);
2354   } else {
2355     ShenandoahUpdateHeapRefsTask<false> task(&_update_refs_iterator);
2356     workers()->run_task(&task);
2357   }
2358 }
2359 
2360 void ShenandoahHeap::update_heap_region_states(bool concurrent) {
2361   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
2362   assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC");
2363 
2364   {
2365     ShenandoahGCPhase phase(concurrent ?
2366                             ShenandoahPhaseTimings::final_update_refs_update_region_states :
2367                             ShenandoahPhaseTimings::degen_gc_final_update_refs_update_region_states);
2368 
2369     final_update_refs_update_region_states();
2370 
2371     assert_pinned_region_status();
2372   }
2373 
2374   {
2375     ShenandoahGCPhase phase(concurrent ?
2376                             ShenandoahPhaseTimings::final_update_refs_trash_cset :
2377                             ShenandoahPhaseTimings::degen_gc_final_update_refs_trash_cset);
2378     trash_cset_regions();
2379   }
2380 }
2381 
2382 void ShenandoahHeap::final_update_refs_update_region_states() {
2383   ShenandoahSynchronizePinnedRegionStates cl;
2384   parallel_heap_region_iterate(&cl);
2385 }
2386 
2387 void ShenandoahHeap::rebuild_free_set(bool concurrent) {
2388   ShenandoahGCPhase phase(concurrent ?
2389                           ShenandoahPhaseTimings::final_update_refs_rebuild_freeset :
2390                           ShenandoahPhaseTimings::degen_gc_final_update_refs_rebuild_freeset);
2391   ShenandoahHeapLocker locker(lock());
2392   size_t young_cset_regions, old_cset_regions;
2393   size_t first_old_region, last_old_region, old_region_count;
2394   _free_set->prepare_to_rebuild(young_cset_regions, old_cset_regions, first_old_region, last_old_region, old_region_count);
2395   // If there are no old regions, first_old_region will be greater than last_old_region
2396   assert((first_old_region > last_old_region) ||
2397          ((last_old_region + 1 - first_old_region >= old_region_count) &&
2398           get_region(first_old_region)->is_old() && get_region(last_old_region)->is_old()),
2399          "sanity: old_region_count: " SIZE_FORMAT ", first_old_region: " SIZE_FORMAT ", last_old_region: " SIZE_FORMAT,
2400          old_region_count, first_old_region, last_old_region);
2401 
2402   if (mode()->is_generational()) {
2403 #ifdef ASSERT
2404     if (ShenandoahVerify) {
2405       verifier()->verify_before_rebuilding_free_set();
2406     }
2407 #endif
2408 
2409     // The computation of bytes_of_allocation_runway_before_gc_trigger is quite conservative so consider all of this
2410     // available for transfer to old. Note that transfer of humongous regions does not impact available.
2411     ShenandoahGenerationalHeap* gen_heap = ShenandoahGenerationalHeap::heap();
2412     size_t allocation_runway = gen_heap->young_generation()->heuristics()->bytes_of_allocation_runway_before_gc_trigger(young_cset_regions);
2413     gen_heap->compute_old_generation_balance(allocation_runway, old_cset_regions);
2414 
2415     // Total old_available may have been expanded to hold anticipated promotions.  We trigger if the fragmented available
2416     // memory represents more than 16 regions worth of data.  Note that fragmentation may increase when we promote regular
2417     // regions in place when many of these regular regions have an abundant amount of available memory within them.  Fragmentation
2418     // will decrease as promote-by-copy consumes the available memory within these partially consumed regions.
2419     //
2420     // We consider old-gen to have excessive fragmentation if more than 12.5% of old-gen is free memory that resides
2421     // within partially consumed regions of memory.
2422   }
2423   // Rebuild free set based on adjusted generation sizes.
2424   _free_set->finish_rebuild(young_cset_regions, old_cset_regions, old_region_count);
2425 
2426   if (mode()->is_generational()) {
2427     ShenandoahGenerationalHeap* gen_heap = ShenandoahGenerationalHeap::heap();
2428     ShenandoahOldGeneration* old_gen = gen_heap->old_generation();
2429     old_gen->heuristics()->evaluate_triggers(first_old_region, last_old_region, old_region_count, num_regions());
2430   }
2431 }
2432 
2433 void ShenandoahHeap::print_extended_on(outputStream *st) const {
2434   print_on(st);
2435   st->cr();
2436   print_heap_regions_on(st);
2437 }
2438 
2439 bool ShenandoahHeap::is_bitmap_slice_committed(ShenandoahHeapRegion* r, bool skip_self) {
2440   size_t slice = r->index() / _bitmap_regions_per_slice;
2441 
2442   size_t regions_from = _bitmap_regions_per_slice * slice;
2443   size_t regions_to   = MIN2(num_regions(), _bitmap_regions_per_slice * (slice + 1));
2444   for (size_t g = regions_from; g < regions_to; g++) {
2445     assert (g / _bitmap_regions_per_slice == slice, "same slice");
2446     if (skip_self && g == r->index()) continue;
2447     if (get_region(g)->is_committed()) {
2448       return true;
2449     }
2450   }
2451   return false;
2452 }
2453 
2454 bool ShenandoahHeap::commit_bitmap_slice(ShenandoahHeapRegion* r) {
2455   shenandoah_assert_heaplocked();
2456 
2457   // Bitmaps in special regions do not need commits
2458   if (_bitmap_region_special) {
2459     return true;
2460   }
2461 
2462   if (is_bitmap_slice_committed(r, true)) {
2463     // Some other region from the group is already committed, meaning the bitmap
2464     // slice is already committed, we exit right away.
2465     return true;
2466   }
2467 
2468   // Commit the bitmap slice:
2469   size_t slice = r->index() / _bitmap_regions_per_slice;
2470   size_t off = _bitmap_bytes_per_slice * slice;
2471   size_t len = _bitmap_bytes_per_slice;
2472   char* start = (char*) _bitmap_region.start() + off;
2473 
2474   if (!os::commit_memory(start, len, false)) {
2475     return false;
2476   }
2477 
2478   if (AlwaysPreTouch) {
2479     os::pretouch_memory(start, start + len, _pretouch_bitmap_page_size);
2480   }
2481 
2482   return true;
2483 }
2484 
2485 bool ShenandoahHeap::uncommit_bitmap_slice(ShenandoahHeapRegion *r) {
2486   shenandoah_assert_heaplocked();
2487 
2488   // Bitmaps in special regions do not need uncommits
2489   if (_bitmap_region_special) {
2490     return true;
2491   }
2492 
2493   if (is_bitmap_slice_committed(r, true)) {
2494     // Some other region from the group is still committed, meaning the bitmap
2495     // slice should stay committed, exit right away.
2496     return true;
2497   }
2498 
2499   // Uncommit the bitmap slice:
2500   size_t slice = r->index() / _bitmap_regions_per_slice;
2501   size_t off = _bitmap_bytes_per_slice * slice;
2502   size_t len = _bitmap_bytes_per_slice;
2503   if (!os::uncommit_memory((char*)_bitmap_region.start() + off, len)) {
2504     return false;
2505   }
2506   return true;
2507 }
2508 
2509 void ShenandoahHeap::forbid_uncommit() {
2510   if (_uncommit_thread != nullptr) {
2511     _uncommit_thread->forbid_uncommit();
2512   }
2513 }
2514 
2515 void ShenandoahHeap::allow_uncommit() {
2516   if (_uncommit_thread != nullptr) {
2517     _uncommit_thread->allow_uncommit();
2518   }
2519 }
2520 
2521 #ifdef ASSERT
2522 bool ShenandoahHeap::is_uncommit_in_progress() {
2523   if (_uncommit_thread != nullptr) {
2524     return _uncommit_thread->is_uncommit_in_progress();
2525   }
2526   return false;
2527 }
2528 #endif
2529 
2530 void ShenandoahHeap::safepoint_synchronize_begin() {
2531   StackWatermarkSet::safepoint_synchronize_begin();
2532   SuspendibleThreadSet::synchronize();
2533 }
2534 
2535 void ShenandoahHeap::safepoint_synchronize_end() {
2536   SuspendibleThreadSet::desynchronize();
2537 }
2538 
2539 void ShenandoahHeap::try_inject_alloc_failure() {
2540   if (ShenandoahAllocFailureALot && !cancelled_gc() && ((os::random() % 1000) > 950)) {
2541     _inject_alloc_failure.set();
2542     os::naked_short_sleep(1);
2543     if (cancelled_gc()) {
2544       log_info(gc)("Allocation failure was successfully injected");
2545     }
2546   }
2547 }
2548 
2549 bool ShenandoahHeap::should_inject_alloc_failure() {
2550   return _inject_alloc_failure.is_set() && _inject_alloc_failure.try_unset();
2551 }
2552 
2553 void ShenandoahHeap::initialize_serviceability() {
2554   _memory_pool = new ShenandoahMemoryPool(this);
2555   _cycle_memory_manager.add_pool(_memory_pool);
2556   _stw_memory_manager.add_pool(_memory_pool);
2557 }
2558 
2559 GrowableArray<GCMemoryManager*> ShenandoahHeap::memory_managers() {
2560   GrowableArray<GCMemoryManager*> memory_managers(2);
2561   memory_managers.append(&_cycle_memory_manager);
2562   memory_managers.append(&_stw_memory_manager);
2563   return memory_managers;
2564 }
2565 
2566 GrowableArray<MemoryPool*> ShenandoahHeap::memory_pools() {
2567   GrowableArray<MemoryPool*> memory_pools(1);
2568   memory_pools.append(_memory_pool);
2569   return memory_pools;
2570 }
2571 
2572 MemoryUsage ShenandoahHeap::memory_usage() {
2573   return MemoryUsage(_initial_size, used(), committed(), max_capacity());
2574 }
2575 
2576 ShenandoahRegionIterator::ShenandoahRegionIterator() :
2577   _heap(ShenandoahHeap::heap()),
2578   _index(0) {}
2579 
2580 ShenandoahRegionIterator::ShenandoahRegionIterator(ShenandoahHeap* heap) :
2581   _heap(heap),
2582   _index(0) {}
2583 
2584 void ShenandoahRegionIterator::reset() {
2585   _index = 0;
2586 }
2587 
2588 bool ShenandoahRegionIterator::has_next() const {
2589   return _index < _heap->num_regions();
2590 }
2591 
2592 char ShenandoahHeap::gc_state() const {
2593   return _gc_state.raw_value();
2594 }
2595 
2596 ShenandoahLiveData* ShenandoahHeap::get_liveness_cache(uint worker_id) {
2597 #ifdef ASSERT
2598   assert(_liveness_cache != nullptr, "sanity");
2599   assert(worker_id < _max_workers, "sanity");
2600   for (uint i = 0; i < num_regions(); i++) {
2601     assert(_liveness_cache[worker_id][i] == 0, "liveness cache should be empty");
2602   }
2603 #endif
2604   return _liveness_cache[worker_id];
2605 }
2606 
2607 void ShenandoahHeap::flush_liveness_cache(uint worker_id) {
2608   assert(worker_id < _max_workers, "sanity");
2609   assert(_liveness_cache != nullptr, "sanity");
2610   ShenandoahLiveData* ld = _liveness_cache[worker_id];
2611   for (uint i = 0; i < num_regions(); i++) {
2612     ShenandoahLiveData live = ld[i];
2613     if (live > 0) {
2614       ShenandoahHeapRegion* r = get_region(i);
2615       r->increase_live_data_gc_words(live);
2616       ld[i] = 0;
2617     }
2618   }
2619 }
2620 
2621 bool ShenandoahHeap::requires_barriers(stackChunkOop obj) const {
2622   if (is_idle()) return false;
2623 
2624   // Objects allocated after marking start are implicitly alive, don't need any barriers during
2625   // marking phase.
2626   if (is_concurrent_mark_in_progress() &&
2627      !marking_context()->allocated_after_mark_start(obj)) {
2628     return true;
2629   }
2630 
2631   // Can not guarantee obj is deeply good.
2632   if (has_forwarded_objects()) {
2633     return true;
2634   }
2635 
2636   return false;
2637 }
2638 
2639 HeapWord* ShenandoahHeap::allocate_loaded_archive_space(size_t size) {
2640 #if INCLUDE_CDS_JAVA_HEAP
2641   // CDS wants a continuous memory range to load a bunch of objects.
2642   // This effectively bypasses normal allocation paths, and requires
2643   // a bit of massaging to unbreak GC invariants.
2644 
2645   ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared(size);
2646 
2647   // Easy case: a single regular region, no further adjustments needed.
2648   if (!ShenandoahHeapRegion::requires_humongous(size)) {
2649     return allocate_memory(req);
2650   }
2651 
2652   // Hard case: the requested size would cause a humongous allocation.
2653   // We need to make sure it looks like regular allocation to the rest of GC.
2654 
2655   // CDS code would guarantee no objects straddle multiple regions, as long as
2656   // regions are as large as MIN_GC_REGION_ALIGNMENT. It is impractical at this
2657   // point to deal with case when Shenandoah runs with smaller regions.
2658   // TODO: This check can be dropped once MIN_GC_REGION_ALIGNMENT agrees more with Shenandoah.
2659   if (ShenandoahHeapRegion::region_size_bytes() < ArchiveHeapWriter::MIN_GC_REGION_ALIGNMENT) {
2660     return nullptr;
2661   }
2662 
2663   HeapWord* mem = allocate_memory(req);
2664   size_t start_idx = heap_region_index_containing(mem);
2665   size_t num_regions = ShenandoahHeapRegion::required_regions(size * HeapWordSize);
2666 
2667   // Flip humongous -> regular.
2668   {
2669     ShenandoahHeapLocker locker(lock(), false);
2670     for (size_t c = start_idx; c < start_idx + num_regions; c++) {
2671       get_region(c)->make_regular_bypass();
2672     }
2673   }
2674 
2675   return mem;
2676 #else
2677   assert(false, "Archive heap loader should not be available, should not be here");
2678   return nullptr;
2679 #endif // INCLUDE_CDS_JAVA_HEAP
2680 }
2681 
2682 void ShenandoahHeap::complete_loaded_archive_space(MemRegion archive_space) {
2683   // Nothing to do here, except checking that heap looks fine.
2684 #ifdef ASSERT
2685   HeapWord* start = archive_space.start();
2686   HeapWord* end = archive_space.end();
2687 
2688   // No unclaimed space between the objects.
2689   // Objects are properly allocated in correct regions.
2690   HeapWord* cur = start;
2691   while (cur < end) {
2692     oop oop = cast_to_oop(cur);
2693     shenandoah_assert_in_correct_region(nullptr, oop);
2694     cur += oop->size();
2695   }
2696 
2697   // No unclaimed tail at the end of archive space.
2698   assert(cur == end,
2699          "Archive space should be fully used: " PTR_FORMAT " " PTR_FORMAT,
2700          p2i(cur), p2i(end));
2701 
2702   // Region bounds are good.
2703   ShenandoahHeapRegion* begin_reg = heap_region_containing(start);
2704   ShenandoahHeapRegion* end_reg = heap_region_containing(end);
2705   assert(begin_reg->is_regular(), "Must be");
2706   assert(end_reg->is_regular(), "Must be");
2707   assert(begin_reg->bottom() == start,
2708          "Must agree: archive-space-start: " PTR_FORMAT ", begin-region-bottom: " PTR_FORMAT,
2709          p2i(start), p2i(begin_reg->bottom()));
2710   assert(end_reg->top() == end,
2711          "Must agree: archive-space-end: " PTR_FORMAT ", end-region-top: " PTR_FORMAT,
2712          p2i(end), p2i(end_reg->top()));
2713 #endif
2714 }
2715 
2716 ShenandoahGeneration* ShenandoahHeap::generation_for(ShenandoahAffiliation affiliation) const {
2717   if (!mode()->is_generational()) {
2718     return global_generation();
2719   } else if (affiliation == YOUNG_GENERATION) {
2720     return young_generation();
2721   } else if (affiliation == OLD_GENERATION) {
2722     return old_generation();
2723   }
2724 
2725   ShouldNotReachHere();
2726   return nullptr;
2727 }
2728 
2729 void ShenandoahHeap::log_heap_status(const char* msg) const {
2730   if (mode()->is_generational()) {
2731     young_generation()->log_status(msg);
2732     old_generation()->log_status(msg);
2733   } else {
2734     global_generation()->log_status(msg);
2735   }
2736 }
2737