1 /*
   2  * Copyright (c) 2023, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2013, 2022, Red Hat, Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "memory/allocation.hpp"
  28 #include "memory/universe.hpp"
  29 
  30 #include "gc/shared/classUnloadingContext.hpp"
  31 #include "gc/shared/gcArguments.hpp"
  32 #include "gc/shared/gcTimer.hpp"
  33 #include "gc/shared/gcTraceTime.inline.hpp"
  34 #include "gc/shared/locationPrinter.inline.hpp"
  35 #include "gc/shared/memAllocator.hpp"
  36 #include "gc/shared/plab.hpp"
  37 #include "gc/shared/slidingForwarding.hpp"
  38 #include "gc/shared/tlab_globals.hpp"
  39 
  40 #include "gc/shenandoah/shenandoahBarrierSet.hpp"
  41 #include "gc/shenandoah/shenandoahClosures.inline.hpp"
  42 #include "gc/shenandoah/shenandoahCollectionSet.hpp"
  43 #include "gc/shenandoah/shenandoahCollectorPolicy.hpp"
  44 #include "gc/shenandoah/shenandoahConcurrentMark.hpp"
  45 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp"
  46 #include "gc/shenandoah/shenandoahControlThread.hpp"
  47 #include "gc/shenandoah/shenandoahFreeSet.hpp"
  48 #include "gc/shenandoah/shenandoahPhaseTimings.hpp"
  49 #include "gc/shenandoah/shenandoahHeap.inline.hpp"
  50 #include "gc/shenandoah/shenandoahHeapRegion.inline.hpp"
  51 #include "gc/shenandoah/shenandoahHeapRegionSet.hpp"
  52 #include "gc/shenandoah/shenandoahInitLogger.hpp"
  53 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp"
  54 #include "gc/shenandoah/shenandoahMemoryPool.hpp"
  55 #include "gc/shenandoah/shenandoahMetrics.hpp"
  56 #include "gc/shenandoah/shenandoahMonitoringSupport.hpp"
  57 #include "gc/shenandoah/shenandoahOopClosures.inline.hpp"
  58 #include "gc/shenandoah/shenandoahPacer.inline.hpp"
  59 #include "gc/shenandoah/shenandoahPadding.hpp"
  60 #include "gc/shenandoah/shenandoahParallelCleaning.inline.hpp"
  61 #include "gc/shenandoah/shenandoahReferenceProcessor.hpp"
  62 #include "gc/shenandoah/shenandoahRootProcessor.inline.hpp"
  63 #include "gc/shenandoah/shenandoahSTWMark.hpp"
  64 #include "gc/shenandoah/shenandoahUtils.hpp"
  65 #include "gc/shenandoah/shenandoahVerifier.hpp"
  66 #include "gc/shenandoah/shenandoahCodeRoots.hpp"
  67 #include "gc/shenandoah/shenandoahVMOperations.hpp"
  68 #include "gc/shenandoah/shenandoahWorkGroup.hpp"
  69 #include "gc/shenandoah/shenandoahWorkerPolicy.hpp"
  70 #include "gc/shenandoah/mode/shenandoahIUMode.hpp"
  71 #include "gc/shenandoah/mode/shenandoahPassiveMode.hpp"
  72 #include "gc/shenandoah/mode/shenandoahSATBMode.hpp"
  73 #if INCLUDE_JFR
  74 #include "gc/shenandoah/shenandoahJfrSupport.hpp"
  75 #endif
  76 
  77 #include "classfile/systemDictionary.hpp"
  78 #include "code/codeCache.hpp"
  79 #include "memory/classLoaderMetaspace.hpp"
  80 #include "memory/metaspaceUtils.hpp"
  81 #include "nmt/mallocTracker.hpp"
  82 #include "nmt/memTracker.hpp"
  83 #include "oops/compressedOops.inline.hpp"
  84 #include "prims/jvmtiTagMap.hpp"
  85 #include "runtime/atomic.hpp"
  86 #include "runtime/globals.hpp"
  87 #include "runtime/interfaceSupport.inline.hpp"
  88 #include "runtime/java.hpp"
  89 #include "runtime/orderAccess.hpp"
  90 #include "runtime/safepointMechanism.hpp"
  91 #include "runtime/vmThread.hpp"
  92 #include "utilities/events.hpp"
  93 #include "utilities/powerOfTwo.hpp"
  94 
  95 class ShenandoahPretouchHeapTask : public WorkerTask {
  96 private:
  97   ShenandoahRegionIterator _regions;
  98   const size_t _page_size;
  99 public:
 100   ShenandoahPretouchHeapTask(size_t page_size) :
 101     WorkerTask("Shenandoah Pretouch Heap"),
 102     _page_size(page_size) {}
 103 
 104   virtual void work(uint worker_id) {
 105     ShenandoahHeapRegion* r = _regions.next();
 106     while (r != nullptr) {
 107       if (r->is_committed()) {
 108         os::pretouch_memory(r->bottom(), r->end(), _page_size);
 109       }
 110       r = _regions.next();
 111     }
 112   }
 113 };
 114 
 115 class ShenandoahPretouchBitmapTask : public WorkerTask {
 116 private:
 117   ShenandoahRegionIterator _regions;
 118   char* _bitmap_base;
 119   const size_t _bitmap_size;
 120   const size_t _page_size;
 121 public:
 122   ShenandoahPretouchBitmapTask(char* bitmap_base, size_t bitmap_size, size_t page_size) :
 123     WorkerTask("Shenandoah Pretouch Bitmap"),
 124     _bitmap_base(bitmap_base),
 125     _bitmap_size(bitmap_size),
 126     _page_size(page_size) {}
 127 
 128   virtual void work(uint worker_id) {
 129     ShenandoahHeapRegion* r = _regions.next();
 130     while (r != nullptr) {
 131       size_t start = r->index()       * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor();
 132       size_t end   = (r->index() + 1) * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor();
 133       assert (end <= _bitmap_size, "end is sane: " SIZE_FORMAT " < " SIZE_FORMAT, end, _bitmap_size);
 134 
 135       if (r->is_committed()) {
 136         os::pretouch_memory(_bitmap_base + start, _bitmap_base + end, _page_size);
 137       }
 138 
 139       r = _regions.next();
 140     }
 141   }
 142 };
 143 
 144 jint ShenandoahHeap::initialize() {
 145   //
 146   // Figure out heap sizing
 147   //
 148 
 149   size_t init_byte_size = InitialHeapSize;
 150   size_t min_byte_size  = MinHeapSize;
 151   size_t max_byte_size  = MaxHeapSize;
 152   size_t heap_alignment = HeapAlignment;
 153 
 154   size_t reg_size_bytes = ShenandoahHeapRegion::region_size_bytes();
 155 
 156   Universe::check_alignment(max_byte_size,  reg_size_bytes, "Shenandoah heap");
 157   Universe::check_alignment(init_byte_size, reg_size_bytes, "Shenandoah heap");
 158 
 159   _num_regions = ShenandoahHeapRegion::region_count();
 160   assert(_num_regions == (max_byte_size / reg_size_bytes),
 161          "Regions should cover entire heap exactly: " SIZE_FORMAT " != " SIZE_FORMAT "/" SIZE_FORMAT,
 162          _num_regions, max_byte_size, reg_size_bytes);
 163 
 164   // Now we know the number of regions, initialize the heuristics.
 165   initialize_heuristics();
 166 
 167   size_t num_committed_regions = init_byte_size / reg_size_bytes;
 168   num_committed_regions = MIN2(num_committed_regions, _num_regions);
 169   assert(num_committed_regions <= _num_regions, "sanity");
 170   _initial_size = num_committed_regions * reg_size_bytes;
 171 
 172   size_t num_min_regions = min_byte_size / reg_size_bytes;
 173   num_min_regions = MIN2(num_min_regions, _num_regions);
 174   assert(num_min_regions <= _num_regions, "sanity");
 175   _minimum_size = num_min_regions * reg_size_bytes;
 176 
 177   // Default to max heap size.
 178   _soft_max_size = _num_regions * reg_size_bytes;
 179 
 180   _committed = _initial_size;
 181 
 182   size_t heap_page_size   = UseLargePages ? os::large_page_size() : os::vm_page_size();
 183   size_t bitmap_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
 184   size_t region_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
 185 
 186   //
 187   // Reserve and commit memory for heap
 188   //
 189 
 190   ReservedHeapSpace heap_rs = Universe::reserve_heap(max_byte_size, heap_alignment);
 191   initialize_reserved_region(heap_rs);
 192   _heap_region = MemRegion((HeapWord*)heap_rs.base(), heap_rs.size() / HeapWordSize);
 193   _heap_region_special = heap_rs.special();
 194 
 195   assert((((size_t) base()) & ShenandoahHeapRegion::region_size_bytes_mask()) == 0,
 196          "Misaligned heap: " PTR_FORMAT, p2i(base()));
 197   os::trace_page_sizes_for_requested_size("Heap",
 198                                           max_byte_size, heap_alignment,
 199                                           heap_rs.base(),
 200                                           heap_rs.size(), heap_rs.page_size());
 201 
 202 #if SHENANDOAH_OPTIMIZED_MARKTASK
 203   // The optimized ShenandoahMarkTask takes some bits away from the full object bits.
 204   // Fail if we ever attempt to address more than we can.
 205   if ((uintptr_t)heap_rs.end() >= ShenandoahMarkTask::max_addressable()) {
 206     FormatBuffer<512> buf("Shenandoah reserved [" PTR_FORMAT ", " PTR_FORMAT") for the heap, \n"
 207                           "but max object address is " PTR_FORMAT ". Try to reduce heap size, or try other \n"
 208                           "VM options that allocate heap at lower addresses (HeapBaseMinAddress, AllocateHeapAt, etc).",
 209                 p2i(heap_rs.base()), p2i(heap_rs.end()), ShenandoahMarkTask::max_addressable());
 210     vm_exit_during_initialization("Fatal Error", buf);
 211   }
 212 #endif
 213 
 214   ReservedSpace sh_rs = heap_rs.first_part(max_byte_size);
 215   if (!_heap_region_special) {
 216     os::commit_memory_or_exit(sh_rs.base(), _initial_size, heap_alignment, false,
 217                               "Cannot commit heap memory");
 218   }
 219 
 220   //
 221   // Reserve and commit memory for bitmap(s)
 222   //
 223 
 224   size_t bitmap_size_orig = ShenandoahMarkBitMap::compute_size(heap_rs.size());
 225   _bitmap_size = align_up(bitmap_size_orig, bitmap_page_size);
 226 
 227   size_t bitmap_bytes_per_region = reg_size_bytes / ShenandoahMarkBitMap::heap_map_factor();
 228 
 229   guarantee(bitmap_bytes_per_region != 0,
 230             "Bitmap bytes per region should not be zero");
 231   guarantee(is_power_of_2(bitmap_bytes_per_region),
 232             "Bitmap bytes per region should be power of two: " SIZE_FORMAT, bitmap_bytes_per_region);
 233 
 234   if (bitmap_page_size > bitmap_bytes_per_region) {
 235     _bitmap_regions_per_slice = bitmap_page_size / bitmap_bytes_per_region;
 236     _bitmap_bytes_per_slice = bitmap_page_size;
 237   } else {
 238     _bitmap_regions_per_slice = 1;
 239     _bitmap_bytes_per_slice = bitmap_bytes_per_region;
 240   }
 241 
 242   guarantee(_bitmap_regions_per_slice >= 1,
 243             "Should have at least one region per slice: " SIZE_FORMAT,
 244             _bitmap_regions_per_slice);
 245 
 246   guarantee(((_bitmap_bytes_per_slice) % bitmap_page_size) == 0,
 247             "Bitmap slices should be page-granular: bps = " SIZE_FORMAT ", page size = " SIZE_FORMAT,
 248             _bitmap_bytes_per_slice, bitmap_page_size);
 249 
 250   ReservedSpace bitmap(_bitmap_size, bitmap_page_size);
 251   os::trace_page_sizes_for_requested_size("Mark Bitmap",
 252                                           bitmap_size_orig, bitmap_page_size,
 253                                           bitmap.base(),
 254                                           bitmap.size(), bitmap.page_size());
 255   MemTracker::record_virtual_memory_type(bitmap.base(), mtGC);
 256   _bitmap_region = MemRegion((HeapWord*) bitmap.base(), bitmap.size() / HeapWordSize);
 257   _bitmap_region_special = bitmap.special();
 258 
 259   size_t bitmap_init_commit = _bitmap_bytes_per_slice *
 260                               align_up(num_committed_regions, _bitmap_regions_per_slice) / _bitmap_regions_per_slice;
 261   bitmap_init_commit = MIN2(_bitmap_size, bitmap_init_commit);
 262   if (!_bitmap_region_special) {
 263     os::commit_memory_or_exit((char *) _bitmap_region.start(), bitmap_init_commit, bitmap_page_size, false,
 264                               "Cannot commit bitmap memory");
 265   }
 266 
 267   _marking_context = new ShenandoahMarkingContext(_heap_region, _bitmap_region, _num_regions, _max_workers);
 268 
 269   if (ShenandoahVerify) {
 270     ReservedSpace verify_bitmap(_bitmap_size, bitmap_page_size);
 271     os::trace_page_sizes_for_requested_size("Verify Bitmap",
 272                                             bitmap_size_orig, bitmap_page_size,
 273                                             verify_bitmap.base(),
 274                                             verify_bitmap.size(), verify_bitmap.page_size());
 275     if (!verify_bitmap.special()) {
 276       os::commit_memory_or_exit(verify_bitmap.base(), verify_bitmap.size(), bitmap_page_size, false,
 277                                 "Cannot commit verification bitmap memory");
 278     }
 279     MemTracker::record_virtual_memory_type(verify_bitmap.base(), mtGC);
 280     MemRegion verify_bitmap_region = MemRegion((HeapWord *) verify_bitmap.base(), verify_bitmap.size() / HeapWordSize);
 281     _verification_bit_map.initialize(_heap_region, verify_bitmap_region);
 282     _verifier = new ShenandoahVerifier(this, &_verification_bit_map);
 283   }
 284 
 285   // Reserve aux bitmap for use in object_iterate(). We don't commit it here.
 286   size_t aux_bitmap_page_size = bitmap_page_size;
 287 #ifdef LINUX
 288   // In THP "advise" mode, we refrain from advising the system to use large pages
 289   // since we know these commits will be short lived, and there is no reason to trash
 290   // the THP area with this bitmap.
 291   if (UseTransparentHugePages) {
 292     aux_bitmap_page_size = os::vm_page_size();
 293   }
 294 #endif
 295   ReservedSpace aux_bitmap(_bitmap_size, aux_bitmap_page_size);
 296   os::trace_page_sizes_for_requested_size("Aux Bitmap",
 297                                           bitmap_size_orig, aux_bitmap_page_size,
 298                                           aux_bitmap.base(),
 299                                           aux_bitmap.size(), aux_bitmap.page_size());
 300   MemTracker::record_virtual_memory_type(aux_bitmap.base(), mtGC);
 301   _aux_bitmap_region = MemRegion((HeapWord*) aux_bitmap.base(), aux_bitmap.size() / HeapWordSize);
 302   _aux_bitmap_region_special = aux_bitmap.special();
 303   _aux_bit_map.initialize(_heap_region, _aux_bitmap_region);
 304 
 305   //
 306   // Create regions and region sets
 307   //
 308   size_t region_align = align_up(sizeof(ShenandoahHeapRegion), SHENANDOAH_CACHE_LINE_SIZE);
 309   size_t region_storage_size_orig = region_align * _num_regions;
 310   size_t region_storage_size = align_up(region_storage_size_orig,
 311                                         MAX2(region_page_size, os::vm_allocation_granularity()));
 312 
 313   ReservedSpace region_storage(region_storage_size, region_page_size);
 314   os::trace_page_sizes_for_requested_size("Region Storage",
 315                                           region_storage_size_orig, region_page_size,
 316                                           region_storage.base(),
 317                                           region_storage.size(), region_storage.page_size());
 318   MemTracker::record_virtual_memory_type(region_storage.base(), mtGC);
 319   if (!region_storage.special()) {
 320     os::commit_memory_or_exit(region_storage.base(), region_storage_size, region_page_size, false,
 321                               "Cannot commit region memory");
 322   }
 323 
 324   // Try to fit the collection set bitmap at lower addresses. This optimizes code generation for cset checks.
 325   // Go up until a sensible limit (subject to encoding constraints) and try to reserve the space there.
 326   // If not successful, bite a bullet and allocate at whatever address.
 327   {
 328     const size_t cset_align = MAX2<size_t>(os::vm_page_size(), os::vm_allocation_granularity());
 329     const size_t cset_size = align_up(((size_t) sh_rs.base() + sh_rs.size()) >> ShenandoahHeapRegion::region_size_bytes_shift(), cset_align);
 330     const size_t cset_page_size = os::vm_page_size();
 331 
 332     uintptr_t min = round_up_power_of_2(cset_align);
 333     uintptr_t max = (1u << 30u);
 334     ReservedSpace cset_rs;
 335 
 336     for (uintptr_t addr = min; addr <= max; addr <<= 1u) {
 337       char* req_addr = (char*)addr;
 338       assert(is_aligned(req_addr, cset_align), "Should be aligned");
 339       cset_rs = ReservedSpace(cset_size, cset_align, cset_page_size, req_addr);
 340       if (cset_rs.is_reserved()) {
 341         assert(cset_rs.base() == req_addr, "Allocated where requested: " PTR_FORMAT ", " PTR_FORMAT, p2i(cset_rs.base()), addr);
 342         _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base());
 343         break;
 344       }
 345     }
 346 
 347     if (_collection_set == nullptr) {
 348       cset_rs = ReservedSpace(cset_size, cset_align, os::vm_page_size());
 349       _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base());
 350     }
 351     os::trace_page_sizes_for_requested_size("Collection Set",
 352                                             cset_size, cset_page_size,
 353                                             cset_rs.base(),
 354                                             cset_rs.size(), cset_rs.page_size());
 355   }
 356 
 357   _regions = NEW_C_HEAP_ARRAY(ShenandoahHeapRegion*, _num_regions, mtGC);
 358   _free_set = new ShenandoahFreeSet(this, _num_regions);
 359 
 360   {
 361     ShenandoahHeapLocker locker(lock());
 362 
 363     for (size_t i = 0; i < _num_regions; i++) {
 364       HeapWord* start = (HeapWord*)sh_rs.base() + ShenandoahHeapRegion::region_size_words() * i;
 365       bool is_committed = i < num_committed_regions;
 366       void* loc = region_storage.base() + i * region_align;
 367 
 368       ShenandoahHeapRegion* r = new (loc) ShenandoahHeapRegion(start, i, is_committed);
 369       assert(is_aligned(r, SHENANDOAH_CACHE_LINE_SIZE), "Sanity");
 370 
 371       _marking_context->initialize_top_at_mark_start(r);
 372       _regions[i] = r;
 373       assert(!collection_set()->is_in(i), "New region should not be in collection set");
 374     }
 375 
 376     // Initialize to complete
 377     _marking_context->mark_complete();
 378 
 379     _free_set->rebuild();
 380   }
 381 
 382   if (AlwaysPreTouch) {
 383     // For NUMA, it is important to pre-touch the storage under bitmaps with worker threads,
 384     // before initialize() below zeroes it with initializing thread. For any given region,
 385     // we touch the region and the corresponding bitmaps from the same thread.
 386     ShenandoahPushWorkerScope scope(workers(), _max_workers, false);
 387 
 388     _pretouch_heap_page_size = heap_page_size;
 389     _pretouch_bitmap_page_size = bitmap_page_size;
 390 
 391 #ifdef LINUX
 392     // UseTransparentHugePages would madvise that backing memory can be coalesced into huge
 393     // pages. But, the kernel needs to know that every small page is used, in order to coalesce
 394     // them into huge one. Therefore, we need to pretouch with smaller pages.
 395     if (UseTransparentHugePages) {
 396       _pretouch_heap_page_size = (size_t)os::vm_page_size();
 397       _pretouch_bitmap_page_size = (size_t)os::vm_page_size();
 398     }
 399 #endif
 400 
 401     // OS memory managers may want to coalesce back-to-back pages. Make their jobs
 402     // simpler by pre-touching continuous spaces (heap and bitmap) separately.
 403 
 404     ShenandoahPretouchBitmapTask bcl(bitmap.base(), _bitmap_size, _pretouch_bitmap_page_size);
 405     _workers->run_task(&bcl);
 406 
 407     ShenandoahPretouchHeapTask hcl(_pretouch_heap_page_size);
 408     _workers->run_task(&hcl);
 409   }
 410 
 411   //
 412   // Initialize the rest of GC subsystems
 413   //
 414 
 415   _liveness_cache = NEW_C_HEAP_ARRAY(ShenandoahLiveData*, _max_workers, mtGC);
 416   for (uint worker = 0; worker < _max_workers; worker++) {
 417     _liveness_cache[worker] = NEW_C_HEAP_ARRAY(ShenandoahLiveData, _num_regions, mtGC);
 418     Copy::fill_to_bytes(_liveness_cache[worker], _num_regions * sizeof(ShenandoahLiveData));
 419   }
 420 
 421   // There should probably be Shenandoah-specific options for these,
 422   // just as there are G1-specific options.
 423   {
 424     ShenandoahSATBMarkQueueSet& satbqs = ShenandoahBarrierSet::satb_mark_queue_set();
 425     satbqs.set_process_completed_buffers_threshold(20); // G1SATBProcessCompletedThreshold
 426     satbqs.set_buffer_enqueue_threshold_percentage(60); // G1SATBBufferEnqueueingThresholdPercent
 427   }
 428 
 429   _monitoring_support = new ShenandoahMonitoringSupport(this);
 430   _phase_timings = new ShenandoahPhaseTimings(max_workers());
 431   ShenandoahCodeRoots::initialize();
 432 
 433   if (ShenandoahPacing) {
 434     _pacer = new ShenandoahPacer(this);
 435     _pacer->setup_for_idle();
 436   }
 437 
 438   _control_thread = new ShenandoahControlThread();
 439 
 440   ShenandoahInitLogger::print();
 441 
 442   SlidingForwarding::initialize(_heap_region, ShenandoahHeapRegion::region_size_words());
 443 
 444   return JNI_OK;
 445 }
 446 
 447 void ShenandoahHeap::initialize_mode() {
 448   if (ShenandoahGCMode != nullptr) {
 449     if (strcmp(ShenandoahGCMode, "satb") == 0) {
 450       _gc_mode = new ShenandoahSATBMode();
 451     } else if (strcmp(ShenandoahGCMode, "iu") == 0) {
 452       _gc_mode = new ShenandoahIUMode();
 453     } else if (strcmp(ShenandoahGCMode, "passive") == 0) {
 454       _gc_mode = new ShenandoahPassiveMode();
 455     } else {
 456       vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option");
 457     }
 458   } else {
 459     vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option (null)");
 460   }
 461   _gc_mode->initialize_flags();
 462   if (_gc_mode->is_diagnostic() && !UnlockDiagnosticVMOptions) {
 463     vm_exit_during_initialization(
 464             err_msg("GC mode \"%s\" is diagnostic, and must be enabled via -XX:+UnlockDiagnosticVMOptions.",
 465                     _gc_mode->name()));
 466   }
 467   if (_gc_mode->is_experimental() && !UnlockExperimentalVMOptions) {
 468     vm_exit_during_initialization(
 469             err_msg("GC mode \"%s\" is experimental, and must be enabled via -XX:+UnlockExperimentalVMOptions.",
 470                     _gc_mode->name()));
 471   }
 472 }
 473 
 474 void ShenandoahHeap::initialize_heuristics() {
 475   assert(_gc_mode != nullptr, "Must be initialized");
 476   _heuristics = _gc_mode->initialize_heuristics();
 477 
 478   if (_heuristics->is_diagnostic() && !UnlockDiagnosticVMOptions) {
 479     vm_exit_during_initialization(
 480             err_msg("Heuristics \"%s\" is diagnostic, and must be enabled via -XX:+UnlockDiagnosticVMOptions.",
 481                     _heuristics->name()));
 482   }
 483   if (_heuristics->is_experimental() && !UnlockExperimentalVMOptions) {
 484     vm_exit_during_initialization(
 485             err_msg("Heuristics \"%s\" is experimental, and must be enabled via -XX:+UnlockExperimentalVMOptions.",
 486                     _heuristics->name()));
 487   }
 488 }
 489 
 490 #ifdef _MSC_VER
 491 #pragma warning( push )
 492 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 493 #endif
 494 
 495 ShenandoahHeap::ShenandoahHeap(ShenandoahCollectorPolicy* policy) :
 496   CollectedHeap(),
 497   _initial_size(0),
 498   _used(0),
 499   _committed(0),
 500   _bytes_allocated_since_gc_start(0),
 501   _max_workers(MAX2(ConcGCThreads, ParallelGCThreads)),
 502   _workers(nullptr),
 503   _safepoint_workers(nullptr),
 504   _heap_region_special(false),
 505   _num_regions(0),
 506   _regions(nullptr),
 507   _update_refs_iterator(this),
 508   _gc_state_changed(false),
 509   _gc_no_progress_count(0),
 510   _control_thread(nullptr),
 511   _shenandoah_policy(policy),
 512   _gc_mode(nullptr),
 513   _heuristics(nullptr),
 514   _free_set(nullptr),
 515   _pacer(nullptr),
 516   _verifier(nullptr),
 517   _phase_timings(nullptr),
 518   _monitoring_support(nullptr),
 519   _memory_pool(nullptr),
 520   _stw_memory_manager("Shenandoah Pauses"),
 521   _cycle_memory_manager("Shenandoah Cycles"),
 522   _gc_timer(new ConcurrentGCTimer()),
 523   _log_min_obj_alignment_in_bytes(LogMinObjAlignmentInBytes),
 524   _ref_processor(new ShenandoahReferenceProcessor(MAX2(_max_workers, 1U))),
 525   _marking_context(nullptr),
 526   _bitmap_size(0),
 527   _bitmap_regions_per_slice(0),
 528   _bitmap_bytes_per_slice(0),
 529   _bitmap_region_special(false),
 530   _aux_bitmap_region_special(false),
 531   _liveness_cache(nullptr),
 532   _collection_set(nullptr)
 533 {
 534   // Initialize GC mode early, so we can adjust barrier support
 535   initialize_mode();
 536   BarrierSet::set_barrier_set(new ShenandoahBarrierSet(this));
 537 
 538   _max_workers = MAX2(_max_workers, 1U);
 539   _workers = new ShenandoahWorkerThreads("Shenandoah GC Threads", _max_workers);
 540   if (_workers == nullptr) {
 541     vm_exit_during_initialization("Failed necessary allocation.");
 542   } else {
 543     _workers->initialize_workers();
 544   }
 545 
 546   if (ParallelGCThreads > 1) {
 547     _safepoint_workers = new ShenandoahWorkerThreads("Safepoint Cleanup Thread",
 548                                                 ParallelGCThreads);
 549     _safepoint_workers->initialize_workers();
 550   }
 551 }
 552 
 553 #ifdef _MSC_VER
 554 #pragma warning( pop )
 555 #endif
 556 
 557 class ShenandoahResetBitmapTask : public WorkerTask {
 558 private:
 559   ShenandoahRegionIterator _regions;
 560 
 561 public:
 562   ShenandoahResetBitmapTask() :
 563     WorkerTask("Shenandoah Reset Bitmap") {}
 564 
 565   void work(uint worker_id) {
 566     ShenandoahHeapRegion* region = _regions.next();
 567     ShenandoahHeap* heap = ShenandoahHeap::heap();
 568     ShenandoahMarkingContext* const ctx = heap->marking_context();
 569     while (region != nullptr) {
 570       if (heap->is_bitmap_slice_committed(region)) {
 571         ctx->clear_bitmap(region);
 572       }
 573       region = _regions.next();
 574     }
 575   }
 576 };
 577 
 578 void ShenandoahHeap::reset_mark_bitmap() {
 579   assert_gc_workers(_workers->active_workers());
 580   mark_incomplete_marking_context();
 581 
 582   ShenandoahResetBitmapTask task;
 583   _workers->run_task(&task);
 584 }
 585 
 586 void ShenandoahHeap::print_on(outputStream* st) const {
 587   st->print_cr("Shenandoah Heap");
 588   st->print_cr(" " SIZE_FORMAT "%s max, " SIZE_FORMAT "%s soft max, " SIZE_FORMAT "%s committed, " SIZE_FORMAT "%s used",
 589                byte_size_in_proper_unit(max_capacity()), proper_unit_for_byte_size(max_capacity()),
 590                byte_size_in_proper_unit(soft_max_capacity()), proper_unit_for_byte_size(soft_max_capacity()),
 591                byte_size_in_proper_unit(committed()),    proper_unit_for_byte_size(committed()),
 592                byte_size_in_proper_unit(used()),         proper_unit_for_byte_size(used()));
 593   st->print_cr(" " SIZE_FORMAT " x " SIZE_FORMAT"%s regions",
 594                num_regions(),
 595                byte_size_in_proper_unit(ShenandoahHeapRegion::region_size_bytes()),
 596                proper_unit_for_byte_size(ShenandoahHeapRegion::region_size_bytes()));
 597 
 598   st->print("Status: ");
 599   if (has_forwarded_objects())                 st->print("has forwarded objects, ");
 600   if (is_concurrent_mark_in_progress())        st->print("marking, ");
 601   if (is_evacuation_in_progress())             st->print("evacuating, ");
 602   if (is_update_refs_in_progress())            st->print("updating refs, ");
 603   if (is_degenerated_gc_in_progress())         st->print("degenerated gc, ");
 604   if (is_full_gc_in_progress())                st->print("full gc, ");
 605   if (is_full_gc_move_in_progress())           st->print("full gc move, ");
 606   if (is_concurrent_weak_root_in_progress())   st->print("concurrent weak roots, ");
 607   if (is_concurrent_strong_root_in_progress() &&
 608       !is_concurrent_weak_root_in_progress())  st->print("concurrent strong roots, ");
 609 
 610   if (cancelled_gc()) {
 611     st->print("cancelled");
 612   } else {
 613     st->print("not cancelled");
 614   }
 615   st->cr();
 616 
 617   st->print_cr("Reserved region:");
 618   st->print_cr(" - [" PTR_FORMAT ", " PTR_FORMAT ") ",
 619                p2i(reserved_region().start()),
 620                p2i(reserved_region().end()));
 621 
 622   ShenandoahCollectionSet* cset = collection_set();
 623   st->print_cr("Collection set:");
 624   if (cset != nullptr) {
 625     st->print_cr(" - map (vanilla): " PTR_FORMAT, p2i(cset->map_address()));
 626     st->print_cr(" - map (biased):  " PTR_FORMAT, p2i(cset->biased_map_address()));
 627   } else {
 628     st->print_cr(" (null)");
 629   }
 630 
 631   st->cr();
 632   MetaspaceUtils::print_on(st);
 633 
 634   if (Verbose) {
 635     st->cr();
 636     print_heap_regions_on(st);
 637   }
 638 }
 639 
 640 class ShenandoahInitWorkerGCLABClosure : public ThreadClosure {
 641 public:
 642   void do_thread(Thread* thread) {
 643     assert(thread != nullptr, "Sanity");
 644     assert(thread->is_Worker_thread(), "Only worker thread expected");
 645     ShenandoahThreadLocalData::initialize_gclab(thread);
 646   }
 647 };
 648 
 649 void ShenandoahHeap::post_initialize() {
 650   CollectedHeap::post_initialize();
 651   MutexLocker ml(Threads_lock);
 652 
 653   ShenandoahInitWorkerGCLABClosure init_gclabs;
 654   _workers->threads_do(&init_gclabs);
 655 
 656   // gclab can not be initialized early during VM startup, as it can not determinate its max_size.
 657   // Now, we will let WorkerThreads to initialize gclab when new worker is created.
 658   _workers->set_initialize_gclab();
 659   if (_safepoint_workers != nullptr) {
 660     _safepoint_workers->threads_do(&init_gclabs);
 661     _safepoint_workers->set_initialize_gclab();
 662   }
 663 
 664   _heuristics->initialize();
 665 
 666   JFR_ONLY(ShenandoahJFRSupport::register_jfr_type_serializers();)
 667 }
 668 
 669 size_t ShenandoahHeap::used() const {
 670   return Atomic::load(&_used);
 671 }
 672 
 673 size_t ShenandoahHeap::committed() const {
 674   return Atomic::load(&_committed);
 675 }
 676 
 677 size_t ShenandoahHeap::available() const {
 678   return free_set()->available();
 679 }
 680 
 681 void ShenandoahHeap::increase_committed(size_t bytes) {
 682   shenandoah_assert_heaplocked_or_safepoint();
 683   _committed += bytes;
 684 }
 685 
 686 void ShenandoahHeap::decrease_committed(size_t bytes) {
 687   shenandoah_assert_heaplocked_or_safepoint();
 688   _committed -= bytes;
 689 }
 690 
 691 void ShenandoahHeap::increase_used(size_t bytes) {
 692   Atomic::add(&_used, bytes, memory_order_relaxed);
 693 }
 694 
 695 void ShenandoahHeap::set_used(size_t bytes) {
 696   Atomic::store(&_used, bytes);
 697 }
 698 
 699 void ShenandoahHeap::decrease_used(size_t bytes) {
 700   assert(used() >= bytes, "never decrease heap size by more than we've left");
 701   Atomic::sub(&_used, bytes, memory_order_relaxed);
 702 }
 703 
 704 void ShenandoahHeap::increase_allocated(size_t bytes) {
 705   Atomic::add(&_bytes_allocated_since_gc_start, bytes, memory_order_relaxed);
 706 }
 707 
 708 void ShenandoahHeap::notify_mutator_alloc_words(size_t words, bool waste) {
 709   size_t bytes = words * HeapWordSize;
 710   if (!waste) {
 711     increase_used(bytes);
 712   }
 713   increase_allocated(bytes);
 714   if (ShenandoahPacing) {
 715     control_thread()->pacing_notify_alloc(words);
 716     if (waste) {
 717       pacer()->claim_for_alloc(words, true);
 718     }
 719   }
 720 }
 721 
 722 size_t ShenandoahHeap::capacity() const {
 723   return committed();
 724 }
 725 
 726 size_t ShenandoahHeap::max_capacity() const {
 727   return _num_regions * ShenandoahHeapRegion::region_size_bytes();
 728 }
 729 
 730 size_t ShenandoahHeap::soft_max_capacity() const {
 731   size_t v = Atomic::load(&_soft_max_size);
 732   assert(min_capacity() <= v && v <= max_capacity(),
 733          "Should be in bounds: " SIZE_FORMAT " <= " SIZE_FORMAT " <= " SIZE_FORMAT,
 734          min_capacity(), v, max_capacity());
 735   return v;
 736 }
 737 
 738 void ShenandoahHeap::set_soft_max_capacity(size_t v) {
 739   assert(min_capacity() <= v && v <= max_capacity(),
 740          "Should be in bounds: " SIZE_FORMAT " <= " SIZE_FORMAT " <= " SIZE_FORMAT,
 741          min_capacity(), v, max_capacity());
 742   Atomic::store(&_soft_max_size, v);
 743 }
 744 
 745 size_t ShenandoahHeap::min_capacity() const {
 746   return _minimum_size;
 747 }
 748 
 749 size_t ShenandoahHeap::initial_capacity() const {
 750   return _initial_size;
 751 }
 752 
 753 bool ShenandoahHeap::is_in(const void* p) const {
 754   HeapWord* heap_base = (HeapWord*) base();
 755   HeapWord* last_region_end = heap_base + ShenandoahHeapRegion::region_size_words() * num_regions();
 756   return p >= heap_base && p < last_region_end;
 757 }
 758 
 759 void ShenandoahHeap::maybe_uncommit(double shrink_before, size_t shrink_until) {
 760   assert (ShenandoahUncommit, "should be enabled");
 761 
 762   // Determine if there is work to do. This avoids taking heap lock if there is
 763   // no work available, avoids spamming logs with superfluous logging messages,
 764   // and minimises the amount of work while locks are taken.
 765 
 766   if (committed() <= shrink_until) return;
 767 
 768   bool has_work = false;
 769   for (size_t i = 0; i < num_regions(); i++) {
 770     ShenandoahHeapRegion* r = get_region(i);
 771     if (r->is_empty_committed() && (r->empty_time() < shrink_before)) {
 772       has_work = true;
 773       break;
 774     }
 775   }
 776 
 777   if (has_work) {
 778     static const char* msg = "Concurrent uncommit";
 779     ShenandoahConcurrentPhase gcPhase(msg, ShenandoahPhaseTimings::conc_uncommit, true /* log_heap_usage */);
 780     EventMark em("%s", msg);
 781 
 782     op_uncommit(shrink_before, shrink_until);
 783   }
 784 }
 785 
 786 void ShenandoahHeap::op_uncommit(double shrink_before, size_t shrink_until) {
 787   assert (ShenandoahUncommit, "should be enabled");
 788 
 789   // Application allocates from the beginning of the heap, and GC allocates at
 790   // the end of it. It is more efficient to uncommit from the end, so that applications
 791   // could enjoy the near committed regions. GC allocations are much less frequent,
 792   // and therefore can accept the committing costs.
 793 
 794   size_t count = 0;
 795   for (size_t i = num_regions(); i > 0; i--) { // care about size_t underflow
 796     ShenandoahHeapRegion* r = get_region(i - 1);
 797     if (r->is_empty_committed() && (r->empty_time() < shrink_before)) {
 798       ShenandoahHeapLocker locker(lock());
 799       if (r->is_empty_committed()) {
 800         if (committed() < shrink_until + ShenandoahHeapRegion::region_size_bytes()) {
 801           break;
 802         }
 803 
 804         r->make_uncommitted();
 805         count++;
 806       }
 807     }
 808     SpinPause(); // allow allocators to take the lock
 809   }
 810 
 811   if (count > 0) {
 812     notify_heap_changed();
 813   }
 814 }
 815 
 816 bool ShenandoahHeap::check_soft_max_changed() {
 817   size_t new_soft_max = Atomic::load(&SoftMaxHeapSize);
 818   size_t old_soft_max = soft_max_capacity();
 819   if (new_soft_max != old_soft_max) {
 820     new_soft_max = MAX2(min_capacity(), new_soft_max);
 821     new_soft_max = MIN2(max_capacity(), new_soft_max);
 822     if (new_soft_max != old_soft_max) {
 823       log_info(gc)("Soft Max Heap Size: " SIZE_FORMAT "%s -> " SIZE_FORMAT "%s",
 824                    byte_size_in_proper_unit(old_soft_max), proper_unit_for_byte_size(old_soft_max),
 825                    byte_size_in_proper_unit(new_soft_max), proper_unit_for_byte_size(new_soft_max)
 826       );
 827       set_soft_max_capacity(new_soft_max);
 828       return true;
 829     }
 830   }
 831   return false;
 832 }
 833 
 834 void ShenandoahHeap::notify_heap_changed() {
 835   // Update monitoring counters when we took a new region. This amortizes the
 836   // update costs on slow path.
 837   monitoring_support()->notify_heap_changed();
 838 
 839   // This is called from allocation path, and thus should be fast.
 840   _heap_changed.try_set();
 841 }
 842 
 843 void ShenandoahHeap::set_forced_counters_update(bool value) {
 844   monitoring_support()->set_forced_counters_update(value);
 845 }
 846 
 847 void ShenandoahHeap::handle_force_counters_update() {
 848   monitoring_support()->handle_force_counters_update();
 849 }
 850 
 851 HeapWord* ShenandoahHeap::allocate_from_gclab_slow(Thread* thread, size_t size) {
 852   // New object should fit the GCLAB size
 853   size_t min_size = MAX2(size, PLAB::min_size());
 854 
 855   // Figure out size of new GCLAB, looking back at heuristics. Expand aggressively.
 856   size_t new_size = ShenandoahThreadLocalData::gclab_size(thread) * 2;
 857   new_size = MIN2(new_size, PLAB::max_size());
 858   new_size = MAX2(new_size, PLAB::min_size());
 859 
 860   // Record new heuristic value even if we take any shortcut. This captures
 861   // the case when moderately-sized objects always take a shortcut. At some point,
 862   // heuristics should catch up with them.
 863   ShenandoahThreadLocalData::set_gclab_size(thread, new_size);
 864 
 865   if (new_size < size) {
 866     // New size still does not fit the object. Fall back to shared allocation.
 867     // This avoids retiring perfectly good GCLABs, when we encounter a large object.
 868     return nullptr;
 869   }
 870 
 871   // Retire current GCLAB, and allocate a new one.
 872   PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
 873   gclab->retire();
 874 
 875   size_t actual_size = 0;
 876   HeapWord* gclab_buf = allocate_new_gclab(min_size, new_size, &actual_size);
 877   if (gclab_buf == nullptr) {
 878     return nullptr;
 879   }
 880 
 881   assert (size <= actual_size, "allocation should fit");
 882 
 883   if (ZeroTLAB) {
 884     // ..and clear it.
 885     Copy::zero_to_words(gclab_buf, actual_size);
 886   } else {
 887     // ...and zap just allocated object.
 888 #ifdef ASSERT
 889     // Skip mangling the space corresponding to the object header to
 890     // ensure that the returned space is not considered parsable by
 891     // any concurrent GC thread.
 892     size_t hdr_size = oopDesc::header_size();
 893     Copy::fill_to_words(gclab_buf + hdr_size, actual_size - hdr_size, badHeapWordVal);
 894 #endif // ASSERT
 895   }
 896   gclab->set_buf(gclab_buf, actual_size);
 897   return gclab->allocate(size);
 898 }
 899 
 900 HeapWord* ShenandoahHeap::allocate_new_tlab(size_t min_size,
 901                                             size_t requested_size,
 902                                             size_t* actual_size) {
 903   ShenandoahAllocRequest req = ShenandoahAllocRequest::for_tlab(min_size, requested_size);
 904   HeapWord* res = allocate_memory(req);
 905   if (res != nullptr) {
 906     *actual_size = req.actual_size();
 907   } else {
 908     *actual_size = 0;
 909   }
 910   return res;
 911 }
 912 
 913 HeapWord* ShenandoahHeap::allocate_new_gclab(size_t min_size,
 914                                              size_t word_size,
 915                                              size_t* actual_size) {
 916   ShenandoahAllocRequest req = ShenandoahAllocRequest::for_gclab(min_size, word_size);
 917   HeapWord* res = allocate_memory(req);
 918   if (res != nullptr) {
 919     *actual_size = req.actual_size();
 920   } else {
 921     *actual_size = 0;
 922   }
 923   return res;
 924 }
 925 
 926 HeapWord* ShenandoahHeap::allocate_memory(ShenandoahAllocRequest& req) {
 927   intptr_t pacer_epoch = 0;
 928   bool in_new_region = false;
 929   HeapWord* result = nullptr;
 930 
 931   if (req.is_mutator_alloc()) {
 932     if (ShenandoahPacing) {
 933       pacer()->pace_for_alloc(req.size());
 934       pacer_epoch = pacer()->epoch();
 935     }
 936 
 937     if (!ShenandoahAllocFailureALot || !should_inject_alloc_failure()) {
 938       result = allocate_memory_under_lock(req, in_new_region);
 939     }
 940 
 941     // Check that gc overhead is not exceeded.
 942     //
 943     // Shenandoah will grind along for quite a while allocating one
 944     // object at a time using shared (non-tlab) allocations. This check
 945     // is testing that the GC overhead limit has not been exceeded.
 946     // This will notify the collector to start a cycle, but will raise
 947     // an OOME to the mutator if the last Full GCs have not made progress.
 948     if (result == nullptr && !req.is_lab_alloc() && get_gc_no_progress_count() > ShenandoahNoProgressThreshold) {
 949       control_thread()->handle_alloc_failure(req, false);
 950       return nullptr;
 951     }
 952 
 953     // Block until control thread reacted, then retry allocation.
 954     //
 955     // It might happen that one of the threads requesting allocation would unblock
 956     // way later after GC happened, only to fail the second allocation, because
 957     // other threads have already depleted the free storage. In this case, a better
 958     // strategy is to try again, as long as GC makes progress (or until at least
 959     // one full GC has completed).
 960     size_t original_count = shenandoah_policy()->full_gc_count();
 961     while (result == nullptr
 962         && (get_gc_no_progress_count() == 0 || original_count == shenandoah_policy()->full_gc_count())) {
 963       control_thread()->handle_alloc_failure(req);
 964       result = allocate_memory_under_lock(req, in_new_region);
 965     }
 966 
 967     if (log_is_enabled(Debug, gc, alloc)) {
 968       ResourceMark rm;
 969       log_debug(gc, alloc)("Thread: %s, Result: " PTR_FORMAT ", Request: %s, Size: " SIZE_FORMAT ", Original: " SIZE_FORMAT ", Latest: " SIZE_FORMAT,
 970                            Thread::current()->name(), p2i(result), req.type_string(), req.size(), original_count, get_gc_no_progress_count());
 971     }
 972   } else {
 973     assert(req.is_gc_alloc(), "Can only accept GC allocs here");
 974     result = allocate_memory_under_lock(req, in_new_region);
 975     // Do not call handle_alloc_failure() here, because we cannot block.
 976     // The allocation failure would be handled by the LRB slowpath with handle_alloc_failure_evac().
 977   }
 978 
 979   if (in_new_region) {
 980     notify_heap_changed();
 981   }
 982 
 983   if (result != nullptr) {
 984     size_t requested = req.size();
 985     size_t actual = req.actual_size();
 986 
 987     assert (req.is_lab_alloc() || (requested == actual),
 988             "Only LAB allocations are elastic: %s, requested = " SIZE_FORMAT ", actual = " SIZE_FORMAT,
 989             ShenandoahAllocRequest::alloc_type_to_string(req.type()), requested, actual);
 990 
 991     if (req.is_mutator_alloc()) {
 992       notify_mutator_alloc_words(actual, false);
 993 
 994       // If we requested more than we were granted, give the rest back to pacer.
 995       // This only matters if we are in the same pacing epoch: do not try to unpace
 996       // over the budget for the other phase.
 997       if (ShenandoahPacing && (pacer_epoch > 0) && (requested > actual)) {
 998         pacer()->unpace_for_alloc(pacer_epoch, requested - actual);
 999       }
1000     } else {
1001       increase_used(actual*HeapWordSize);
1002     }
1003   }
1004 
1005   return result;
1006 }
1007 
1008 HeapWord* ShenandoahHeap::allocate_memory_under_lock(ShenandoahAllocRequest& req, bool& in_new_region) {
1009   // If we are dealing with mutator allocation, then we may need to block for safepoint.
1010   // We cannot block for safepoint for GC allocations, because there is a high chance
1011   // we are already running at safepoint or from stack watermark machinery, and we cannot
1012   // block again.
1013   ShenandoahHeapLocker locker(lock(), req.is_mutator_alloc());
1014   return _free_set->allocate(req, in_new_region);
1015 }
1016 
1017 HeapWord* ShenandoahHeap::mem_allocate(size_t size,
1018                                         bool*  gc_overhead_limit_was_exceeded) {
1019   ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared(size);
1020   return allocate_memory(req);
1021 }
1022 
1023 MetaWord* ShenandoahHeap::satisfy_failed_metadata_allocation(ClassLoaderData* loader_data,
1024                                                              size_t size,
1025                                                              Metaspace::MetadataType mdtype) {
1026   MetaWord* result;
1027 
1028   // Inform metaspace OOM to GC heuristics if class unloading is possible.
1029   if (heuristics()->can_unload_classes()) {
1030     ShenandoahHeuristics* h = heuristics();
1031     h->record_metaspace_oom();
1032   }
1033 
1034   // Expand and retry allocation
1035   result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype);
1036   if (result != nullptr) {
1037     return result;
1038   }
1039 
1040   // Start full GC
1041   collect(GCCause::_metadata_GC_clear_soft_refs);
1042 
1043   // Retry allocation
1044   result = loader_data->metaspace_non_null()->allocate(size, mdtype);
1045   if (result != nullptr) {
1046     return result;
1047   }
1048 
1049   // Expand and retry allocation
1050   result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype);
1051   if (result != nullptr) {
1052     return result;
1053   }
1054 
1055   // Out of memory
1056   return nullptr;
1057 }
1058 
1059 class ShenandoahConcurrentEvacuateRegionObjectClosure : public ObjectClosure {
1060 private:
1061   ShenandoahHeap* const _heap;
1062   Thread* const _thread;
1063 public:
1064   ShenandoahConcurrentEvacuateRegionObjectClosure(ShenandoahHeap* heap) :
1065     _heap(heap), _thread(Thread::current()) {}
1066 
1067   void do_object(oop p) {
1068     shenandoah_assert_marked(nullptr, p);
1069     if (!p->is_forwarded()) {
1070       _heap->evacuate_object(p, _thread);
1071     }
1072   }
1073 };
1074 
1075 class ShenandoahEvacuationTask : public WorkerTask {
1076 private:
1077   ShenandoahHeap* const _sh;
1078   ShenandoahCollectionSet* const _cs;
1079   bool _concurrent;
1080 public:
1081   ShenandoahEvacuationTask(ShenandoahHeap* sh,
1082                            ShenandoahCollectionSet* cs,
1083                            bool concurrent) :
1084     WorkerTask("Shenandoah Evacuation"),
1085     _sh(sh),
1086     _cs(cs),
1087     _concurrent(concurrent)
1088   {}
1089 
1090   void work(uint worker_id) {
1091     if (_concurrent) {
1092       ShenandoahConcurrentWorkerSession worker_session(worker_id);
1093       ShenandoahSuspendibleThreadSetJoiner stsj;
1094       ShenandoahEvacOOMScope oom_evac_scope;
1095       do_work();
1096     } else {
1097       ShenandoahParallelWorkerSession worker_session(worker_id);
1098       ShenandoahEvacOOMScope oom_evac_scope;
1099       do_work();
1100     }
1101   }
1102 
1103 private:
1104   void do_work() {
1105     ShenandoahConcurrentEvacuateRegionObjectClosure cl(_sh);
1106     ShenandoahHeapRegion* r;
1107     while ((r =_cs->claim_next()) != nullptr) {
1108       assert(r->has_live(), "Region " SIZE_FORMAT " should have been reclaimed early", r->index());
1109       _sh->marked_object_iterate(r, &cl);
1110 
1111       if (ShenandoahPacing) {
1112         _sh->pacer()->report_evac(r->used() >> LogHeapWordSize);
1113       }
1114 
1115       if (_sh->check_cancelled_gc_and_yield(_concurrent)) {
1116         break;
1117       }
1118     }
1119   }
1120 };
1121 
1122 void ShenandoahHeap::evacuate_collection_set(bool concurrent) {
1123   ShenandoahEvacuationTask task(this, _collection_set, concurrent);
1124   workers()->run_task(&task);
1125 }
1126 
1127 void ShenandoahHeap::trash_cset_regions() {
1128   ShenandoahHeapLocker locker(lock());
1129 
1130   ShenandoahCollectionSet* set = collection_set();
1131   ShenandoahHeapRegion* r;
1132   set->clear_current_index();
1133   while ((r = set->next()) != nullptr) {
1134     r->make_trash();
1135   }
1136   collection_set()->clear();
1137 }
1138 
1139 void ShenandoahHeap::print_heap_regions_on(outputStream* st) const {
1140   st->print_cr("Heap Regions:");
1141   st->print_cr("Region state: EU=empty-uncommitted, EC=empty-committed, R=regular, H=humongous start, HP=pinned humongous start");
1142   st->print_cr("              HC=humongous continuation, CS=collection set, TR=trash, P=pinned, CSP=pinned collection set");
1143   st->print_cr("BTE=bottom/top/end, TAMS=top-at-mark-start");
1144   st->print_cr("UWM=update watermark, U=used");
1145   st->print_cr("T=TLAB allocs, G=GCLAB allocs");
1146   st->print_cr("S=shared allocs, L=live data");
1147   st->print_cr("CP=critical pins");
1148 
1149   for (size_t i = 0; i < num_regions(); i++) {
1150     get_region(i)->print_on(st);
1151   }
1152 }
1153 
1154 void ShenandoahHeap::trash_humongous_region_at(ShenandoahHeapRegion* start) {
1155   assert(start->is_humongous_start(), "reclaim regions starting with the first one");
1156 
1157   oop humongous_obj = cast_to_oop(start->bottom());
1158   size_t size = humongous_obj->size();
1159   size_t required_regions = ShenandoahHeapRegion::required_regions(size * HeapWordSize);
1160   size_t index = start->index() + required_regions - 1;
1161 
1162   assert(!start->has_live(), "liveness must be zero");
1163 
1164   for(size_t i = 0; i < required_regions; i++) {
1165     // Reclaim from tail. Otherwise, assertion fails when printing region to trace log,
1166     // as it expects that every region belongs to a humongous region starting with a humongous start region.
1167     ShenandoahHeapRegion* region = get_region(index --);
1168 
1169     assert(region->is_humongous(), "expect correct humongous start or continuation");
1170     assert(!region->is_cset(), "Humongous region should not be in collection set");
1171 
1172     region->make_trash_immediate();
1173   }
1174 }
1175 
1176 class ShenandoahCheckCleanGCLABClosure : public ThreadClosure {
1177 public:
1178   ShenandoahCheckCleanGCLABClosure() {}
1179   void do_thread(Thread* thread) {
1180     PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
1181     assert(gclab != nullptr, "GCLAB should be initialized for %s", thread->name());
1182     assert(gclab->words_remaining() == 0, "GCLAB should not need retirement");
1183   }
1184 };
1185 
1186 class ShenandoahRetireGCLABClosure : public ThreadClosure {
1187 private:
1188   bool const _resize;
1189 public:
1190   ShenandoahRetireGCLABClosure(bool resize) : _resize(resize) {}
1191   void do_thread(Thread* thread) {
1192     PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
1193     assert(gclab != nullptr, "GCLAB should be initialized for %s", thread->name());
1194     gclab->retire();
1195     if (_resize && ShenandoahThreadLocalData::gclab_size(thread) > 0) {
1196       ShenandoahThreadLocalData::set_gclab_size(thread, 0);
1197     }
1198   }
1199 };
1200 
1201 void ShenandoahHeap::labs_make_parsable() {
1202   assert(UseTLAB, "Only call with UseTLAB");
1203 
1204   ShenandoahRetireGCLABClosure cl(false);
1205 
1206   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1207     ThreadLocalAllocBuffer& tlab = t->tlab();
1208     tlab.make_parsable();
1209     cl.do_thread(t);
1210   }
1211 
1212   workers()->threads_do(&cl);
1213 }
1214 
1215 void ShenandoahHeap::tlabs_retire(bool resize) {
1216   assert(UseTLAB, "Only call with UseTLAB");
1217   assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled");
1218 
1219   ThreadLocalAllocStats stats;
1220 
1221   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1222     ThreadLocalAllocBuffer& tlab = t->tlab();
1223     tlab.retire(&stats);
1224     if (resize) {
1225       tlab.resize();
1226     }
1227   }
1228 
1229   stats.publish();
1230 
1231 #ifdef ASSERT
1232   ShenandoahCheckCleanGCLABClosure cl;
1233   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1234     cl.do_thread(t);
1235   }
1236   workers()->threads_do(&cl);
1237 #endif
1238 }
1239 
1240 void ShenandoahHeap::gclabs_retire(bool resize) {
1241   assert(UseTLAB, "Only call with UseTLAB");
1242   assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled");
1243 
1244   ShenandoahRetireGCLABClosure cl(resize);
1245   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1246     cl.do_thread(t);
1247   }
1248   workers()->threads_do(&cl);
1249 
1250   if (safepoint_workers() != nullptr) {
1251     safepoint_workers()->threads_do(&cl);
1252   }
1253 }
1254 
1255 // Returns size in bytes
1256 size_t ShenandoahHeap::unsafe_max_tlab_alloc(Thread *thread) const {
1257   // Return the max allowed size, and let the allocation path
1258   // figure out the safe size for current allocation.
1259   return ShenandoahHeapRegion::max_tlab_size_bytes();
1260 }
1261 
1262 size_t ShenandoahHeap::max_tlab_size() const {
1263   // Returns size in words
1264   return ShenandoahHeapRegion::max_tlab_size_words();
1265 }
1266 
1267 void ShenandoahHeap::collect(GCCause::Cause cause) {
1268   control_thread()->request_gc(cause);
1269 }
1270 
1271 void ShenandoahHeap::do_full_collection(bool clear_all_soft_refs) {
1272   //assert(false, "Shouldn't need to do full collections");
1273 }
1274 
1275 HeapWord* ShenandoahHeap::block_start(const void* addr) const {
1276   ShenandoahHeapRegion* r = heap_region_containing(addr);
1277   if (r != nullptr) {
1278     return r->block_start(addr);
1279   }
1280   return nullptr;
1281 }
1282 
1283 bool ShenandoahHeap::block_is_obj(const HeapWord* addr) const {
1284   ShenandoahHeapRegion* r = heap_region_containing(addr);
1285   return r->block_is_obj(addr);
1286 }
1287 
1288 bool ShenandoahHeap::print_location(outputStream* st, void* addr) const {
1289   return BlockLocationPrinter<ShenandoahHeap>::print_location(st, addr);
1290 }
1291 
1292 void ShenandoahHeap::prepare_for_verify() {
1293   if (SafepointSynchronize::is_at_safepoint() && UseTLAB) {
1294     labs_make_parsable();
1295   }
1296 }
1297 
1298 void ShenandoahHeap::gc_threads_do(ThreadClosure* tcl) const {
1299   tcl->do_thread(_control_thread);
1300   workers()->threads_do(tcl);
1301   if (_safepoint_workers != nullptr) {
1302     _safepoint_workers->threads_do(tcl);
1303   }
1304 }
1305 
1306 void ShenandoahHeap::print_tracing_info() const {
1307   LogTarget(Info, gc, stats) lt;
1308   if (lt.is_enabled()) {
1309     ResourceMark rm;
1310     LogStream ls(lt);
1311 
1312     phase_timings()->print_global_on(&ls);
1313 
1314     ls.cr();
1315     ls.cr();
1316 
1317     shenandoah_policy()->print_gc_stats(&ls);
1318 
1319     ls.cr();
1320     ls.cr();
1321   }
1322 }
1323 
1324 void ShenandoahHeap::verify(VerifyOption vo) {
1325   if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) {
1326     if (ShenandoahVerify) {
1327       verifier()->verify_generic(vo);
1328     } else {
1329       // TODO: Consider allocating verification bitmaps on demand,
1330       // and turn this on unconditionally.
1331     }
1332   }
1333 }
1334 size_t ShenandoahHeap::tlab_capacity(Thread *thr) const {
1335   return _free_set->capacity();
1336 }
1337 
1338 class ObjectIterateScanRootClosure : public BasicOopIterateClosure {
1339 private:
1340   MarkBitMap* _bitmap;
1341   ShenandoahScanObjectStack* _oop_stack;
1342   ShenandoahHeap* const _heap;
1343   ShenandoahMarkingContext* const _marking_context;
1344 
1345   template <class T>
1346   void do_oop_work(T* p) {
1347     T o = RawAccess<>::oop_load(p);
1348     if (!CompressedOops::is_null(o)) {
1349       oop obj = CompressedOops::decode_not_null(o);
1350       if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) {
1351         // There may be dead oops in weak roots in concurrent root phase, do not touch them.
1352         return;
1353       }
1354       obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj);
1355 
1356       assert(oopDesc::is_oop(obj), "must be a valid oop");
1357       if (!_bitmap->is_marked(obj)) {
1358         _bitmap->mark(obj);
1359         _oop_stack->push(obj);
1360       }
1361     }
1362   }
1363 public:
1364   ObjectIterateScanRootClosure(MarkBitMap* bitmap, ShenandoahScanObjectStack* oop_stack) :
1365     _bitmap(bitmap), _oop_stack(oop_stack), _heap(ShenandoahHeap::heap()),
1366     _marking_context(_heap->marking_context()) {}
1367   void do_oop(oop* p)       { do_oop_work(p); }
1368   void do_oop(narrowOop* p) { do_oop_work(p); }
1369 };
1370 
1371 /*
1372  * This is public API, used in preparation of object_iterate().
1373  * Since we don't do linear scan of heap in object_iterate() (see comment below), we don't
1374  * need to make the heap parsable. For Shenandoah-internal linear heap scans that we can
1375  * control, we call SH::tlabs_retire, SH::gclabs_retire.
1376  */
1377 void ShenandoahHeap::ensure_parsability(bool retire_tlabs) {
1378   // No-op.
1379 }
1380 
1381 /*
1382  * Iterates objects in the heap. This is public API, used for, e.g., heap dumping.
1383  *
1384  * We cannot safely iterate objects by doing a linear scan at random points in time. Linear
1385  * scanning needs to deal with dead objects, which may have dead Klass* pointers (e.g.
1386  * calling oopDesc::size() would crash) or dangling reference fields (crashes) etc. Linear
1387  * scanning therefore depends on having a valid marking bitmap to support it. However, we only
1388  * have a valid marking bitmap after successful marking. In particular, we *don't* have a valid
1389  * marking bitmap during marking, after aborted marking or during/after cleanup (when we just
1390  * wiped the bitmap in preparation for next marking).
1391  *
1392  * For all those reasons, we implement object iteration as a single marking traversal, reporting
1393  * objects as we mark+traverse through the heap, starting from GC roots. JVMTI IterateThroughHeap
1394  * is allowed to report dead objects, but is not required to do so.
1395  */
1396 void ShenandoahHeap::object_iterate(ObjectClosure* cl) {
1397   // Reset bitmap
1398   if (!prepare_aux_bitmap_for_iteration())
1399     return;
1400 
1401   ShenandoahScanObjectStack oop_stack;
1402   ObjectIterateScanRootClosure oops(&_aux_bit_map, &oop_stack);
1403   // Seed the stack with root scan
1404   scan_roots_for_iteration(&oop_stack, &oops);
1405 
1406   // Work through the oop stack to traverse heap
1407   while (! oop_stack.is_empty()) {
1408     oop obj = oop_stack.pop();
1409     assert(oopDesc::is_oop(obj), "must be a valid oop");
1410     cl->do_object(obj);
1411     obj->oop_iterate(&oops);
1412   }
1413 
1414   assert(oop_stack.is_empty(), "should be empty");
1415   // Reclaim bitmap
1416   reclaim_aux_bitmap_for_iteration();
1417 }
1418 
1419 bool ShenandoahHeap::prepare_aux_bitmap_for_iteration() {
1420   assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints");
1421 
1422   if (!_aux_bitmap_region_special && !os::commit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size(), false)) {
1423     log_warning(gc)("Could not commit native memory for auxiliary marking bitmap for heap iteration");
1424     return false;
1425   }
1426   // Reset bitmap
1427   _aux_bit_map.clear();
1428   return true;
1429 }
1430 
1431 void ShenandoahHeap::scan_roots_for_iteration(ShenandoahScanObjectStack* oop_stack, ObjectIterateScanRootClosure* oops) {
1432   // Process GC roots according to current GC cycle
1433   // This populates the work stack with initial objects
1434   // It is important to relinquish the associated locks before diving
1435   // into heap dumper
1436   uint n_workers = safepoint_workers() != nullptr ? safepoint_workers()->active_workers() : 1;
1437   ShenandoahHeapIterationRootScanner rp(n_workers);
1438   rp.roots_do(oops);
1439 }
1440 
1441 void ShenandoahHeap::reclaim_aux_bitmap_for_iteration() {
1442   if (!_aux_bitmap_region_special && !os::uncommit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size())) {
1443     log_warning(gc)("Could not uncommit native memory for auxiliary marking bitmap for heap iteration");
1444   }
1445 }
1446 
1447 // Closure for parallelly iterate objects
1448 class ShenandoahObjectIterateParScanClosure : public BasicOopIterateClosure {
1449 private:
1450   MarkBitMap* _bitmap;
1451   ShenandoahObjToScanQueue* _queue;
1452   ShenandoahHeap* const _heap;
1453   ShenandoahMarkingContext* const _marking_context;
1454 
1455   template <class T>
1456   void do_oop_work(T* p) {
1457     T o = RawAccess<>::oop_load(p);
1458     if (!CompressedOops::is_null(o)) {
1459       oop obj = CompressedOops::decode_not_null(o);
1460       if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) {
1461         // There may be dead oops in weak roots in concurrent root phase, do not touch them.
1462         return;
1463       }
1464       obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj);
1465 
1466       assert(oopDesc::is_oop(obj), "Must be a valid oop");
1467       if (_bitmap->par_mark(obj)) {
1468         _queue->push(ShenandoahMarkTask(obj));
1469       }
1470     }
1471   }
1472 public:
1473   ShenandoahObjectIterateParScanClosure(MarkBitMap* bitmap, ShenandoahObjToScanQueue* q) :
1474     _bitmap(bitmap), _queue(q), _heap(ShenandoahHeap::heap()),
1475     _marking_context(_heap->marking_context()) {}
1476   void do_oop(oop* p)       { do_oop_work(p); }
1477   void do_oop(narrowOop* p) { do_oop_work(p); }
1478 };
1479 
1480 // Object iterator for parallel heap iteraion.
1481 // The root scanning phase happenes in construction as a preparation of
1482 // parallel marking queues.
1483 // Every worker processes it's own marking queue. work-stealing is used
1484 // to balance workload.
1485 class ShenandoahParallelObjectIterator : public ParallelObjectIteratorImpl {
1486 private:
1487   uint                         _num_workers;
1488   bool                         _init_ready;
1489   MarkBitMap*                  _aux_bit_map;
1490   ShenandoahHeap*              _heap;
1491   ShenandoahScanObjectStack    _roots_stack; // global roots stack
1492   ShenandoahObjToScanQueueSet* _task_queues;
1493 public:
1494   ShenandoahParallelObjectIterator(uint num_workers, MarkBitMap* bitmap) :
1495         _num_workers(num_workers),
1496         _init_ready(false),
1497         _aux_bit_map(bitmap),
1498         _heap(ShenandoahHeap::heap()) {
1499     // Initialize bitmap
1500     _init_ready = _heap->prepare_aux_bitmap_for_iteration();
1501     if (!_init_ready) {
1502       return;
1503     }
1504 
1505     ObjectIterateScanRootClosure oops(_aux_bit_map, &_roots_stack);
1506     _heap->scan_roots_for_iteration(&_roots_stack, &oops);
1507 
1508     _init_ready = prepare_worker_queues();
1509   }
1510 
1511   ~ShenandoahParallelObjectIterator() {
1512     // Reclaim bitmap
1513     _heap->reclaim_aux_bitmap_for_iteration();
1514     // Reclaim queue for workers
1515     if (_task_queues!= nullptr) {
1516       for (uint i = 0; i < _num_workers; ++i) {
1517         ShenandoahObjToScanQueue* q = _task_queues->queue(i);
1518         if (q != nullptr) {
1519           delete q;
1520           _task_queues->register_queue(i, nullptr);
1521         }
1522       }
1523       delete _task_queues;
1524       _task_queues = nullptr;
1525     }
1526   }
1527 
1528   virtual void object_iterate(ObjectClosure* cl, uint worker_id) {
1529     if (_init_ready) {
1530       object_iterate_parallel(cl, worker_id, _task_queues);
1531     }
1532   }
1533 
1534 private:
1535   // Divide global root_stack into worker queues
1536   bool prepare_worker_queues() {
1537     _task_queues = new ShenandoahObjToScanQueueSet((int) _num_workers);
1538     // Initialize queues for every workers
1539     for (uint i = 0; i < _num_workers; ++i) {
1540       ShenandoahObjToScanQueue* task_queue = new ShenandoahObjToScanQueue();
1541       _task_queues->register_queue(i, task_queue);
1542     }
1543     // Divide roots among the workers. Assume that object referencing distribution
1544     // is related with root kind, use round-robin to make every worker have same chance
1545     // to process every kind of roots
1546     size_t roots_num = _roots_stack.size();
1547     if (roots_num == 0) {
1548       // No work to do
1549       return false;
1550     }
1551 
1552     for (uint j = 0; j < roots_num; j++) {
1553       uint stack_id = j % _num_workers;
1554       oop obj = _roots_stack.pop();
1555       _task_queues->queue(stack_id)->push(ShenandoahMarkTask(obj));
1556     }
1557     return true;
1558   }
1559 
1560   void object_iterate_parallel(ObjectClosure* cl,
1561                                uint worker_id,
1562                                ShenandoahObjToScanQueueSet* queue_set) {
1563     assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints");
1564     assert(queue_set != nullptr, "task queue must not be null");
1565 
1566     ShenandoahObjToScanQueue* q = queue_set->queue(worker_id);
1567     assert(q != nullptr, "object iterate queue must not be null");
1568 
1569     ShenandoahMarkTask t;
1570     ShenandoahObjectIterateParScanClosure oops(_aux_bit_map, q);
1571 
1572     // Work through the queue to traverse heap.
1573     // Steal when there is no task in queue.
1574     while (q->pop(t) || queue_set->steal(worker_id, t)) {
1575       oop obj = t.obj();
1576       assert(oopDesc::is_oop(obj), "must be a valid oop");
1577       cl->do_object(obj);
1578       obj->oop_iterate(&oops);
1579     }
1580     assert(q->is_empty(), "should be empty");
1581   }
1582 };
1583 
1584 ParallelObjectIteratorImpl* ShenandoahHeap::parallel_object_iterator(uint workers) {
1585   return new ShenandoahParallelObjectIterator(workers, &_aux_bit_map);
1586 }
1587 
1588 // Keep alive an object that was loaded with AS_NO_KEEPALIVE.
1589 void ShenandoahHeap::keep_alive(oop obj) {
1590   if (is_concurrent_mark_in_progress() && (obj != nullptr)) {
1591     ShenandoahBarrierSet::barrier_set()->enqueue(obj);
1592   }
1593 }
1594 
1595 void ShenandoahHeap::heap_region_iterate(ShenandoahHeapRegionClosure* blk) const {
1596   for (size_t i = 0; i < num_regions(); i++) {
1597     ShenandoahHeapRegion* current = get_region(i);
1598     blk->heap_region_do(current);
1599   }
1600 }
1601 
1602 class ShenandoahParallelHeapRegionTask : public WorkerTask {
1603 private:
1604   ShenandoahHeap* const _heap;
1605   ShenandoahHeapRegionClosure* const _blk;
1606 
1607   shenandoah_padding(0);
1608   volatile size_t _index;
1609   shenandoah_padding(1);
1610 
1611 public:
1612   ShenandoahParallelHeapRegionTask(ShenandoahHeapRegionClosure* blk) :
1613           WorkerTask("Shenandoah Parallel Region Operation"),
1614           _heap(ShenandoahHeap::heap()), _blk(blk), _index(0) {}
1615 
1616   void work(uint worker_id) {
1617     ShenandoahParallelWorkerSession worker_session(worker_id);
1618     size_t stride = ShenandoahParallelRegionStride;
1619 
1620     size_t max = _heap->num_regions();
1621     while (Atomic::load(&_index) < max) {
1622       size_t cur = Atomic::fetch_then_add(&_index, stride, memory_order_relaxed);
1623       size_t start = cur;
1624       size_t end = MIN2(cur + stride, max);
1625       if (start >= max) break;
1626 
1627       for (size_t i = cur; i < end; i++) {
1628         ShenandoahHeapRegion* current = _heap->get_region(i);
1629         _blk->heap_region_do(current);
1630       }
1631     }
1632   }
1633 };
1634 
1635 void ShenandoahHeap::parallel_heap_region_iterate(ShenandoahHeapRegionClosure* blk) const {
1636   assert(blk->is_thread_safe(), "Only thread-safe closures here");
1637   if (num_regions() > ShenandoahParallelRegionStride) {
1638     ShenandoahParallelHeapRegionTask task(blk);
1639     workers()->run_task(&task);
1640   } else {
1641     heap_region_iterate(blk);
1642   }
1643 }
1644 
1645 class ShenandoahInitMarkUpdateRegionStateClosure : public ShenandoahHeapRegionClosure {
1646 private:
1647   ShenandoahMarkingContext* const _ctx;
1648 public:
1649   ShenandoahInitMarkUpdateRegionStateClosure() : _ctx(ShenandoahHeap::heap()->marking_context()) {}
1650 
1651   void heap_region_do(ShenandoahHeapRegion* r) {
1652     assert(!r->has_live(), "Region " SIZE_FORMAT " should have no live data", r->index());
1653     if (r->is_active()) {
1654       // Check if region needs updating its TAMS. We have updated it already during concurrent
1655       // reset, so it is very likely we don't need to do another write here.
1656       if (_ctx->top_at_mark_start(r) != r->top()) {
1657         _ctx->capture_top_at_mark_start(r);
1658       }
1659     } else {
1660       assert(_ctx->top_at_mark_start(r) == r->top(),
1661              "Region " SIZE_FORMAT " should already have correct TAMS", r->index());
1662     }
1663   }
1664 
1665   bool is_thread_safe() { return true; }
1666 };
1667 
1668 class ShenandoahRendezvousClosure : public HandshakeClosure {
1669 public:
1670   inline ShenandoahRendezvousClosure() : HandshakeClosure("ShenandoahRendezvous") {}
1671   inline void do_thread(Thread* thread) {}
1672 };
1673 
1674 void ShenandoahHeap::rendezvous_threads() {
1675   ShenandoahRendezvousClosure cl;
1676   Handshake::execute(&cl);
1677 }
1678 
1679 void ShenandoahHeap::recycle_trash() {
1680   free_set()->recycle_trash();
1681 }
1682 
1683 class ShenandoahResetUpdateRegionStateClosure : public ShenandoahHeapRegionClosure {
1684 private:
1685   ShenandoahMarkingContext* const _ctx;
1686 public:
1687   ShenandoahResetUpdateRegionStateClosure() : _ctx(ShenandoahHeap::heap()->marking_context()) {}
1688 
1689   void heap_region_do(ShenandoahHeapRegion* r) {
1690     if (r->is_active()) {
1691       // Reset live data and set TAMS optimistically. We would recheck these under the pause
1692       // anyway to capture any updates that happened since now.
1693       r->clear_live_data();
1694       _ctx->capture_top_at_mark_start(r);
1695     }
1696   }
1697 
1698   bool is_thread_safe() { return true; }
1699 };
1700 
1701 void ShenandoahHeap::prepare_gc() {
1702   reset_mark_bitmap();
1703 
1704   ShenandoahResetUpdateRegionStateClosure cl;
1705   parallel_heap_region_iterate(&cl);
1706 }
1707 
1708 class ShenandoahFinalMarkUpdateRegionStateClosure : public ShenandoahHeapRegionClosure {
1709 private:
1710   ShenandoahMarkingContext* const _ctx;
1711   ShenandoahHeapLock* const _lock;
1712 
1713 public:
1714   ShenandoahFinalMarkUpdateRegionStateClosure() :
1715     _ctx(ShenandoahHeap::heap()->complete_marking_context()), _lock(ShenandoahHeap::heap()->lock()) {}
1716 
1717   void heap_region_do(ShenandoahHeapRegion* r) {
1718     if (r->is_active()) {
1719       // All allocations past TAMS are implicitly live, adjust the region data.
1720       // Bitmaps/TAMS are swapped at this point, so we need to poll complete bitmap.
1721       HeapWord *tams = _ctx->top_at_mark_start(r);
1722       HeapWord *top = r->top();
1723       if (top > tams) {
1724         r->increase_live_data_alloc_words(pointer_delta(top, tams));
1725       }
1726 
1727       // We are about to select the collection set, make sure it knows about
1728       // current pinning status. Also, this allows trashing more regions that
1729       // now have their pinning status dropped.
1730       if (r->is_pinned()) {
1731         if (r->pin_count() == 0) {
1732           ShenandoahHeapLocker locker(_lock);
1733           r->make_unpinned();
1734         }
1735       } else {
1736         if (r->pin_count() > 0) {
1737           ShenandoahHeapLocker locker(_lock);
1738           r->make_pinned();
1739         }
1740       }
1741 
1742       // Remember limit for updating refs. It's guaranteed that we get no
1743       // from-space-refs written from here on.
1744       r->set_update_watermark_at_safepoint(r->top());
1745     } else {
1746       assert(!r->has_live(), "Region " SIZE_FORMAT " should have no live data", r->index());
1747       assert(_ctx->top_at_mark_start(r) == r->top(),
1748              "Region " SIZE_FORMAT " should have correct TAMS", r->index());
1749     }
1750   }
1751 
1752   bool is_thread_safe() { return true; }
1753 };
1754 
1755 void ShenandoahHeap::prepare_regions_and_collection_set(bool concurrent) {
1756   assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC");
1757   {
1758     ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::final_update_region_states :
1759                                          ShenandoahPhaseTimings::degen_gc_final_update_region_states);
1760     ShenandoahFinalMarkUpdateRegionStateClosure cl;
1761     parallel_heap_region_iterate(&cl);
1762 
1763     assert_pinned_region_status();
1764   }
1765 
1766   {
1767     ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::choose_cset :
1768                                          ShenandoahPhaseTimings::degen_gc_choose_cset);
1769     ShenandoahHeapLocker locker(lock());
1770     _collection_set->clear();
1771     heuristics()->choose_collection_set(_collection_set);
1772   }
1773 
1774   {
1775     ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::final_rebuild_freeset :
1776                                          ShenandoahPhaseTimings::degen_gc_final_rebuild_freeset);
1777     ShenandoahHeapLocker locker(lock());
1778     _free_set->rebuild();
1779   }
1780 }
1781 
1782 void ShenandoahHeap::do_class_unloading() {
1783   _unloader.unload();
1784 }
1785 
1786 void ShenandoahHeap::stw_weak_refs(bool full_gc) {
1787   // Weak refs processing
1788   ShenandoahPhaseTimings::Phase phase = full_gc ? ShenandoahPhaseTimings::full_gc_weakrefs
1789                                                 : ShenandoahPhaseTimings::degen_gc_weakrefs;
1790   ShenandoahTimingsTracker t(phase);
1791   ShenandoahGCWorkerPhase worker_phase(phase);
1792   ref_processor()->process_references(phase, workers(), false /* concurrent */);
1793 }
1794 
1795 void ShenandoahHeap::prepare_update_heap_references(bool concurrent) {
1796   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "must be at safepoint");
1797 
1798   // Evacuation is over, no GCLABs are needed anymore. GCLABs are under URWM, so we need to
1799   // make them parsable for update code to work correctly. Plus, we can compute new sizes
1800   // for future GCLABs here.
1801   if (UseTLAB) {
1802     ShenandoahGCPhase phase(concurrent ?
1803                             ShenandoahPhaseTimings::init_update_refs_manage_gclabs :
1804                             ShenandoahPhaseTimings::degen_gc_init_update_refs_manage_gclabs);
1805     gclabs_retire(ResizeTLAB);
1806   }
1807 
1808   _update_refs_iterator.reset();
1809 }
1810 
1811 void ShenandoahHeap::propagate_gc_state_to_java_threads() {
1812   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Must be at Shenandoah safepoint");
1813   if (_gc_state_changed) {
1814     _gc_state_changed = false;
1815     char state = gc_state();
1816     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1817       ShenandoahThreadLocalData::set_gc_state(t, state);
1818     }
1819   }
1820 }
1821 
1822 void ShenandoahHeap::set_gc_state(uint mask, bool value) {
1823   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Must be at Shenandoah safepoint");
1824   _gc_state.set_cond(mask, value);
1825   _gc_state_changed = true;
1826 }
1827 
1828 void ShenandoahHeap::set_concurrent_mark_in_progress(bool in_progress) {
1829   assert(!has_forwarded_objects(), "Not expected before/after mark phase");
1830   set_gc_state(MARKING, in_progress);
1831   ShenandoahBarrierSet::satb_mark_queue_set().set_active_all_threads(in_progress, !in_progress);
1832 }
1833 
1834 void ShenandoahHeap::set_evacuation_in_progress(bool in_progress) {
1835   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Only call this at safepoint");
1836   set_gc_state(EVACUATION, in_progress);
1837 }
1838 
1839 void ShenandoahHeap::set_concurrent_strong_root_in_progress(bool in_progress) {
1840   if (in_progress) {
1841     _concurrent_strong_root_in_progress.set();
1842   } else {
1843     _concurrent_strong_root_in_progress.unset();
1844   }
1845 }
1846 
1847 void ShenandoahHeap::set_concurrent_weak_root_in_progress(bool cond) {
1848   set_gc_state(WEAK_ROOTS, cond);
1849 }
1850 
1851 GCTracer* ShenandoahHeap::tracer() {
1852   return shenandoah_policy()->tracer();
1853 }
1854 
1855 size_t ShenandoahHeap::tlab_used(Thread* thread) const {
1856   return _free_set->used();
1857 }
1858 
1859 bool ShenandoahHeap::try_cancel_gc() {
1860   jbyte prev = _cancelled_gc.cmpxchg(CANCELLED, CANCELLABLE);
1861   return prev == CANCELLABLE;
1862 }
1863 
1864 void ShenandoahHeap::cancel_gc(GCCause::Cause cause) {
1865   if (try_cancel_gc()) {
1866     FormatBuffer<> msg("Cancelling GC: %s", GCCause::to_string(cause));
1867     log_info(gc)("%s", msg.buffer());
1868     Events::log(Thread::current(), "%s", msg.buffer());
1869   }
1870 }
1871 
1872 uint ShenandoahHeap::max_workers() {
1873   return _max_workers;
1874 }
1875 
1876 void ShenandoahHeap::stop() {
1877   // The shutdown sequence should be able to terminate when GC is running.
1878 
1879   // Step 0. Notify policy to disable event recording.
1880   _shenandoah_policy->record_shutdown();
1881 
1882   // Step 1. Notify control thread that we are in shutdown.
1883   // Note that we cannot do that with stop(), because stop() is blocking and waits for the actual shutdown.
1884   // Doing stop() here would wait for the normal GC cycle to complete, never falling through to cancel below.
1885   control_thread()->prepare_for_graceful_shutdown();
1886 
1887   // Step 2. Notify GC workers that we are cancelling GC.
1888   cancel_gc(GCCause::_shenandoah_stop_vm);
1889 
1890   // Step 3. Wait until GC worker exits normally.
1891   control_thread()->stop();
1892 }
1893 
1894 void ShenandoahHeap::stw_unload_classes(bool full_gc) {
1895   if (!unload_classes()) return;
1896   ClassUnloadingContext ctx(_workers->active_workers(),
1897                             true /* unregister_nmethods_during_purge */,
1898                             false /* lock_codeblob_free_separately */);
1899 
1900   // Unload classes and purge SystemDictionary.
1901   {
1902     ShenandoahPhaseTimings::Phase phase = full_gc ?
1903                                           ShenandoahPhaseTimings::full_gc_purge_class_unload :
1904                                           ShenandoahPhaseTimings::degen_gc_purge_class_unload;
1905     ShenandoahIsAliveSelector is_alive;
1906     {
1907       CodeCache::UnlinkingScope scope(is_alive.is_alive_closure());
1908       ShenandoahGCPhase gc_phase(phase);
1909       ShenandoahGCWorkerPhase worker_phase(phase);
1910       bool unloading_occurred = SystemDictionary::do_unloading(gc_timer());
1911 
1912       uint num_workers = _workers->active_workers();
1913       ShenandoahClassUnloadingTask unlink_task(phase, num_workers, unloading_occurred);
1914       _workers->run_task(&unlink_task);
1915     }
1916     // Release unloaded nmethods's memory.
1917     ClassUnloadingContext::context()->purge_and_free_nmethods();
1918   }
1919 
1920   {
1921     ShenandoahGCPhase phase(full_gc ?
1922                             ShenandoahPhaseTimings::full_gc_purge_cldg :
1923                             ShenandoahPhaseTimings::degen_gc_purge_cldg);
1924     ClassLoaderDataGraph::purge(true /* at_safepoint */);
1925   }
1926   // Resize and verify metaspace
1927   MetaspaceGC::compute_new_size();
1928   DEBUG_ONLY(MetaspaceUtils::verify();)
1929 }
1930 
1931 // Weak roots are either pre-evacuated (final mark) or updated (final updaterefs),
1932 // so they should not have forwarded oops.
1933 // However, we do need to "null" dead oops in the roots, if can not be done
1934 // in concurrent cycles.
1935 void ShenandoahHeap::stw_process_weak_roots(bool full_gc) {
1936   uint num_workers = _workers->active_workers();
1937   ShenandoahPhaseTimings::Phase timing_phase = full_gc ?
1938                                                ShenandoahPhaseTimings::full_gc_purge_weak_par :
1939                                                ShenandoahPhaseTimings::degen_gc_purge_weak_par;
1940   ShenandoahGCPhase phase(timing_phase);
1941   ShenandoahGCWorkerPhase worker_phase(timing_phase);
1942   // Cleanup weak roots
1943   if (has_forwarded_objects()) {
1944     ShenandoahForwardedIsAliveClosure is_alive;
1945     ShenandoahUpdateRefsClosure keep_alive;
1946     ShenandoahParallelWeakRootsCleaningTask<ShenandoahForwardedIsAliveClosure, ShenandoahUpdateRefsClosure>
1947       cleaning_task(timing_phase, &is_alive, &keep_alive, num_workers);
1948     _workers->run_task(&cleaning_task);
1949   } else {
1950     ShenandoahIsAliveClosure is_alive;
1951 #ifdef ASSERT
1952     ShenandoahAssertNotForwardedClosure verify_cl;
1953     ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, ShenandoahAssertNotForwardedClosure>
1954       cleaning_task(timing_phase, &is_alive, &verify_cl, num_workers);
1955 #else
1956     ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, DoNothingClosure>
1957       cleaning_task(timing_phase, &is_alive, &do_nothing_cl, num_workers);
1958 #endif
1959     _workers->run_task(&cleaning_task);
1960   }
1961 }
1962 
1963 void ShenandoahHeap::parallel_cleaning(bool full_gc) {
1964   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
1965   assert(is_stw_gc_in_progress(), "Only for Degenerated and Full GC");
1966   ShenandoahGCPhase phase(full_gc ?
1967                           ShenandoahPhaseTimings::full_gc_purge :
1968                           ShenandoahPhaseTimings::degen_gc_purge);
1969   stw_weak_refs(full_gc);
1970   stw_process_weak_roots(full_gc);
1971   stw_unload_classes(full_gc);
1972 }
1973 
1974 void ShenandoahHeap::set_has_forwarded_objects(bool cond) {
1975   set_gc_state(HAS_FORWARDED, cond);
1976 }
1977 
1978 void ShenandoahHeap::set_unload_classes(bool uc) {
1979   _unload_classes.set_cond(uc);
1980 }
1981 
1982 bool ShenandoahHeap::unload_classes() const {
1983   return _unload_classes.is_set();
1984 }
1985 
1986 address ShenandoahHeap::in_cset_fast_test_addr() {
1987   ShenandoahHeap* heap = ShenandoahHeap::heap();
1988   assert(heap->collection_set() != nullptr, "Sanity");
1989   return (address) heap->collection_set()->biased_map_address();
1990 }
1991 
1992 size_t ShenandoahHeap::bytes_allocated_since_gc_start() const {
1993   return Atomic::load(&_bytes_allocated_since_gc_start);
1994 }
1995 
1996 void ShenandoahHeap::reset_bytes_allocated_since_gc_start() {
1997   Atomic::store(&_bytes_allocated_since_gc_start, (size_t)0);
1998 }
1999 
2000 void ShenandoahHeap::set_degenerated_gc_in_progress(bool in_progress) {
2001   _degenerated_gc_in_progress.set_cond(in_progress);
2002 }
2003 
2004 void ShenandoahHeap::set_full_gc_in_progress(bool in_progress) {
2005   _full_gc_in_progress.set_cond(in_progress);
2006 }
2007 
2008 void ShenandoahHeap::set_full_gc_move_in_progress(bool in_progress) {
2009   assert (is_full_gc_in_progress(), "should be");
2010   _full_gc_move_in_progress.set_cond(in_progress);
2011 }
2012 
2013 void ShenandoahHeap::set_update_refs_in_progress(bool in_progress) {
2014   set_gc_state(UPDATEREFS, in_progress);
2015 }
2016 
2017 void ShenandoahHeap::register_nmethod(nmethod* nm) {
2018   ShenandoahCodeRoots::register_nmethod(nm);
2019 }
2020 
2021 void ShenandoahHeap::unregister_nmethod(nmethod* nm) {
2022   ShenandoahCodeRoots::unregister_nmethod(nm);
2023 }
2024 
2025 void ShenandoahHeap::pin_object(JavaThread* thr, oop o) {
2026   heap_region_containing(o)->record_pin();
2027 }
2028 
2029 void ShenandoahHeap::unpin_object(JavaThread* thr, oop o) {
2030   ShenandoahHeapRegion* r = heap_region_containing(o);
2031   assert(r != nullptr, "Sanity");
2032   assert(r->pin_count() > 0, "Region " SIZE_FORMAT " should have non-zero pins", r->index());
2033   r->record_unpin();
2034 }
2035 
2036 void ShenandoahHeap::sync_pinned_region_status() {
2037   ShenandoahHeapLocker locker(lock());
2038 
2039   for (size_t i = 0; i < num_regions(); i++) {
2040     ShenandoahHeapRegion *r = get_region(i);
2041     if (r->is_active()) {
2042       if (r->is_pinned()) {
2043         if (r->pin_count() == 0) {
2044           r->make_unpinned();
2045         }
2046       } else {
2047         if (r->pin_count() > 0) {
2048           r->make_pinned();
2049         }
2050       }
2051     }
2052   }
2053 
2054   assert_pinned_region_status();
2055 }
2056 
2057 #ifdef ASSERT
2058 void ShenandoahHeap::assert_pinned_region_status() {
2059   for (size_t i = 0; i < num_regions(); i++) {
2060     ShenandoahHeapRegion* r = get_region(i);
2061     assert((r->is_pinned() && r->pin_count() > 0) || (!r->is_pinned() && r->pin_count() == 0),
2062            "Region " SIZE_FORMAT " pinning status is inconsistent", i);
2063   }
2064 }
2065 #endif
2066 
2067 ConcurrentGCTimer* ShenandoahHeap::gc_timer() const {
2068   return _gc_timer;
2069 }
2070 
2071 void ShenandoahHeap::prepare_concurrent_roots() {
2072   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
2073   assert(!is_stw_gc_in_progress(), "Only concurrent GC");
2074   set_concurrent_strong_root_in_progress(!collection_set()->is_empty());
2075   set_concurrent_weak_root_in_progress(true);
2076   if (unload_classes()) {
2077     _unloader.prepare();
2078   }
2079 }
2080 
2081 void ShenandoahHeap::finish_concurrent_roots() {
2082   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
2083   assert(!is_stw_gc_in_progress(), "Only concurrent GC");
2084   if (unload_classes()) {
2085     _unloader.finish();
2086   }
2087 }
2088 
2089 #ifdef ASSERT
2090 void ShenandoahHeap::assert_gc_workers(uint nworkers) {
2091   assert(nworkers > 0 && nworkers <= max_workers(), "Sanity");
2092 
2093   if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) {
2094     // Use ParallelGCThreads inside safepoints
2095     assert(nworkers == ParallelGCThreads, "Use ParallelGCThreads (%u) within safepoint, not %u",
2096            ParallelGCThreads, nworkers);
2097   } else {
2098     // Use ConcGCThreads outside safepoints
2099     assert(nworkers == ConcGCThreads, "Use ConcGCThreads (%u) outside safepoints, %u",
2100            ConcGCThreads, nworkers);
2101   }
2102 }
2103 #endif
2104 
2105 ShenandoahVerifier* ShenandoahHeap::verifier() {
2106   guarantee(ShenandoahVerify, "Should be enabled");
2107   assert (_verifier != nullptr, "sanity");
2108   return _verifier;
2109 }
2110 
2111 template<bool CONCURRENT>
2112 class ShenandoahUpdateHeapRefsTask : public WorkerTask {
2113 private:
2114   ShenandoahHeap* _heap;
2115   ShenandoahRegionIterator* _regions;
2116 public:
2117   ShenandoahUpdateHeapRefsTask(ShenandoahRegionIterator* regions) :
2118     WorkerTask("Shenandoah Update References"),
2119     _heap(ShenandoahHeap::heap()),
2120     _regions(regions) {
2121   }
2122 
2123   void work(uint worker_id) {
2124     if (CONCURRENT) {
2125       ShenandoahConcurrentWorkerSession worker_session(worker_id);
2126       ShenandoahSuspendibleThreadSetJoiner stsj;
2127       do_work<ShenandoahConcUpdateRefsClosure>();
2128     } else {
2129       ShenandoahParallelWorkerSession worker_session(worker_id);
2130       do_work<ShenandoahSTWUpdateRefsClosure>();
2131     }
2132   }
2133 
2134 private:
2135   template<class T>
2136   void do_work() {
2137     T cl;
2138     ShenandoahHeapRegion* r = _regions->next();
2139     ShenandoahMarkingContext* const ctx = _heap->complete_marking_context();
2140     while (r != nullptr) {
2141       HeapWord* update_watermark = r->get_update_watermark();
2142       assert (update_watermark >= r->bottom(), "sanity");
2143       if (r->is_active() && !r->is_cset()) {
2144         _heap->marked_object_oop_iterate(r, &cl, update_watermark);
2145       }
2146       if (ShenandoahPacing) {
2147         _heap->pacer()->report_updaterefs(pointer_delta(update_watermark, r->bottom()));
2148       }
2149       if (_heap->check_cancelled_gc_and_yield(CONCURRENT)) {
2150         return;
2151       }
2152       r = _regions->next();
2153     }
2154   }
2155 };
2156 
2157 void ShenandoahHeap::update_heap_references(bool concurrent) {
2158   assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC");
2159 
2160   if (concurrent) {
2161     ShenandoahUpdateHeapRefsTask<true> task(&_update_refs_iterator);
2162     workers()->run_task(&task);
2163   } else {
2164     ShenandoahUpdateHeapRefsTask<false> task(&_update_refs_iterator);
2165     workers()->run_task(&task);
2166   }
2167 }
2168 
2169 
2170 class ShenandoahFinalUpdateRefsUpdateRegionStateClosure : public ShenandoahHeapRegionClosure {
2171 private:
2172   ShenandoahHeapLock* const _lock;
2173 
2174 public:
2175   ShenandoahFinalUpdateRefsUpdateRegionStateClosure() : _lock(ShenandoahHeap::heap()->lock()) {}
2176 
2177   void heap_region_do(ShenandoahHeapRegion* r) {
2178     // Drop unnecessary "pinned" state from regions that does not have CP marks
2179     // anymore, as this would allow trashing them.
2180 
2181     if (r->is_active()) {
2182       if (r->is_pinned()) {
2183         if (r->pin_count() == 0) {
2184           ShenandoahHeapLocker locker(_lock);
2185           r->make_unpinned();
2186         }
2187       } else {
2188         if (r->pin_count() > 0) {
2189           ShenandoahHeapLocker locker(_lock);
2190           r->make_pinned();
2191         }
2192       }
2193     }
2194   }
2195 
2196   bool is_thread_safe() { return true; }
2197 };
2198 
2199 void ShenandoahHeap::update_heap_region_states(bool concurrent) {
2200   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
2201   assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC");
2202 
2203   {
2204     ShenandoahGCPhase phase(concurrent ?
2205                             ShenandoahPhaseTimings::final_update_refs_update_region_states :
2206                             ShenandoahPhaseTimings::degen_gc_final_update_refs_update_region_states);
2207     ShenandoahFinalUpdateRefsUpdateRegionStateClosure cl;
2208     parallel_heap_region_iterate(&cl);
2209 
2210     assert_pinned_region_status();
2211   }
2212 
2213   {
2214     ShenandoahGCPhase phase(concurrent ?
2215                             ShenandoahPhaseTimings::final_update_refs_trash_cset :
2216                             ShenandoahPhaseTimings::degen_gc_final_update_refs_trash_cset);
2217     trash_cset_regions();
2218   }
2219 }
2220 
2221 void ShenandoahHeap::rebuild_free_set(bool concurrent) {
2222   {
2223     ShenandoahGCPhase phase(concurrent ?
2224                             ShenandoahPhaseTimings::final_update_refs_rebuild_freeset :
2225                             ShenandoahPhaseTimings::degen_gc_final_update_refs_rebuild_freeset);
2226     ShenandoahHeapLocker locker(lock());
2227     _free_set->rebuild();
2228   }
2229 }
2230 
2231 void ShenandoahHeap::print_extended_on(outputStream *st) const {
2232   print_on(st);
2233   st->cr();
2234   print_heap_regions_on(st);
2235 }
2236 
2237 bool ShenandoahHeap::is_bitmap_slice_committed(ShenandoahHeapRegion* r, bool skip_self) {
2238   size_t slice = r->index() / _bitmap_regions_per_slice;
2239 
2240   size_t regions_from = _bitmap_regions_per_slice * slice;
2241   size_t regions_to   = MIN2(num_regions(), _bitmap_regions_per_slice * (slice + 1));
2242   for (size_t g = regions_from; g < regions_to; g++) {
2243     assert (g / _bitmap_regions_per_slice == slice, "same slice");
2244     if (skip_self && g == r->index()) continue;
2245     if (get_region(g)->is_committed()) {
2246       return true;
2247     }
2248   }
2249   return false;
2250 }
2251 
2252 bool ShenandoahHeap::commit_bitmap_slice(ShenandoahHeapRegion* r) {
2253   shenandoah_assert_heaplocked();
2254 
2255   // Bitmaps in special regions do not need commits
2256   if (_bitmap_region_special) {
2257     return true;
2258   }
2259 
2260   if (is_bitmap_slice_committed(r, true)) {
2261     // Some other region from the group is already committed, meaning the bitmap
2262     // slice is already committed, we exit right away.
2263     return true;
2264   }
2265 
2266   // Commit the bitmap slice:
2267   size_t slice = r->index() / _bitmap_regions_per_slice;
2268   size_t off = _bitmap_bytes_per_slice * slice;
2269   size_t len = _bitmap_bytes_per_slice;
2270   char* start = (char*) _bitmap_region.start() + off;
2271 
2272   if (!os::commit_memory(start, len, false)) {
2273     return false;
2274   }
2275 
2276   if (AlwaysPreTouch) {
2277     os::pretouch_memory(start, start + len, _pretouch_bitmap_page_size);
2278   }
2279 
2280   return true;
2281 }
2282 
2283 bool ShenandoahHeap::uncommit_bitmap_slice(ShenandoahHeapRegion *r) {
2284   shenandoah_assert_heaplocked();
2285 
2286   // Bitmaps in special regions do not need uncommits
2287   if (_bitmap_region_special) {
2288     return true;
2289   }
2290 
2291   if (is_bitmap_slice_committed(r, true)) {
2292     // Some other region from the group is still committed, meaning the bitmap
2293     // slice is should stay committed, exit right away.
2294     return true;
2295   }
2296 
2297   // Uncommit the bitmap slice:
2298   size_t slice = r->index() / _bitmap_regions_per_slice;
2299   size_t off = _bitmap_bytes_per_slice * slice;
2300   size_t len = _bitmap_bytes_per_slice;
2301   if (!os::uncommit_memory((char*)_bitmap_region.start() + off, len)) {
2302     return false;
2303   }
2304   return true;
2305 }
2306 
2307 void ShenandoahHeap::safepoint_synchronize_begin() {
2308   SuspendibleThreadSet::synchronize();
2309 }
2310 
2311 void ShenandoahHeap::safepoint_synchronize_end() {
2312   SuspendibleThreadSet::desynchronize();
2313 }
2314 
2315 void ShenandoahHeap::try_inject_alloc_failure() {
2316   if (ShenandoahAllocFailureALot && !cancelled_gc() && ((os::random() % 1000) > 950)) {
2317     _inject_alloc_failure.set();
2318     os::naked_short_sleep(1);
2319     if (cancelled_gc()) {
2320       log_info(gc)("Allocation failure was successfully injected");
2321     }
2322   }
2323 }
2324 
2325 bool ShenandoahHeap::should_inject_alloc_failure() {
2326   return _inject_alloc_failure.is_set() && _inject_alloc_failure.try_unset();
2327 }
2328 
2329 void ShenandoahHeap::initialize_serviceability() {
2330   _memory_pool = new ShenandoahMemoryPool(this);
2331   _cycle_memory_manager.add_pool(_memory_pool);
2332   _stw_memory_manager.add_pool(_memory_pool);
2333 }
2334 
2335 GrowableArray<GCMemoryManager*> ShenandoahHeap::memory_managers() {
2336   GrowableArray<GCMemoryManager*> memory_managers(2);
2337   memory_managers.append(&_cycle_memory_manager);
2338   memory_managers.append(&_stw_memory_manager);
2339   return memory_managers;
2340 }
2341 
2342 GrowableArray<MemoryPool*> ShenandoahHeap::memory_pools() {
2343   GrowableArray<MemoryPool*> memory_pools(1);
2344   memory_pools.append(_memory_pool);
2345   return memory_pools;
2346 }
2347 
2348 MemoryUsage ShenandoahHeap::memory_usage() {
2349   return _memory_pool->get_memory_usage();
2350 }
2351 
2352 ShenandoahRegionIterator::ShenandoahRegionIterator() :
2353   _heap(ShenandoahHeap::heap()),
2354   _index(0) {}
2355 
2356 ShenandoahRegionIterator::ShenandoahRegionIterator(ShenandoahHeap* heap) :
2357   _heap(heap),
2358   _index(0) {}
2359 
2360 void ShenandoahRegionIterator::reset() {
2361   _index = 0;
2362 }
2363 
2364 bool ShenandoahRegionIterator::has_next() const {
2365   return _index < _heap->num_regions();
2366 }
2367 
2368 char ShenandoahHeap::gc_state() const {
2369   return _gc_state.raw_value();
2370 }
2371 
2372 ShenandoahLiveData* ShenandoahHeap::get_liveness_cache(uint worker_id) {
2373 #ifdef ASSERT
2374   assert(_liveness_cache != nullptr, "sanity");
2375   assert(worker_id < _max_workers, "sanity");
2376   for (uint i = 0; i < num_regions(); i++) {
2377     assert(_liveness_cache[worker_id][i] == 0, "liveness cache should be empty");
2378   }
2379 #endif
2380   return _liveness_cache[worker_id];
2381 }
2382 
2383 void ShenandoahHeap::flush_liveness_cache(uint worker_id) {
2384   assert(worker_id < _max_workers, "sanity");
2385   assert(_liveness_cache != nullptr, "sanity");
2386   ShenandoahLiveData* ld = _liveness_cache[worker_id];
2387   for (uint i = 0; i < num_regions(); i++) {
2388     ShenandoahLiveData live = ld[i];
2389     if (live > 0) {
2390       ShenandoahHeapRegion* r = get_region(i);
2391       r->increase_live_data_gc_words(live);
2392       ld[i] = 0;
2393     }
2394   }
2395 }
2396 
2397 bool ShenandoahHeap::requires_barriers(stackChunkOop obj) const {
2398   if (is_idle()) return false;
2399 
2400   // Objects allocated after marking start are implicitly alive, don't need any barriers during
2401   // marking phase.
2402   if (is_concurrent_mark_in_progress() &&
2403      !marking_context()->allocated_after_mark_start(obj)) {
2404     return true;
2405   }
2406 
2407   // Can not guarantee obj is deeply good.
2408   if (has_forwarded_objects()) {
2409     return true;
2410   }
2411 
2412   return false;
2413 }