1 /* 2 * Copyright (c) 2023, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2013, 2022, Red Hat, Inc. All rights reserved. 4 * Copyright Amazon.com Inc. or its affiliates. All Rights Reserved. 5 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 6 * 7 * This code is free software; you can redistribute it and/or modify it 8 * under the terms of the GNU General Public License version 2 only, as 9 * published by the Free Software Foundation. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 * 25 */ 26 27 28 #include "cds/archiveHeapWriter.hpp" 29 #include "classfile/systemDictionary.hpp" 30 31 #include "gc/shared/classUnloadingContext.hpp" 32 #include "gc/shared/fullGCForwarding.hpp" 33 #include "gc/shared/gcArguments.hpp" 34 #include "gc/shared/gcTimer.hpp" 35 #include "gc/shared/gcTraceTime.inline.hpp" 36 #include "gc/shared/locationPrinter.inline.hpp" 37 #include "gc/shared/memAllocator.hpp" 38 #include "gc/shared/plab.hpp" 39 #include "gc/shared/tlab_globals.hpp" 40 41 #include "gc/shenandoah/heuristics/shenandoahOldHeuristics.hpp" 42 #include "gc/shenandoah/heuristics/shenandoahYoungHeuristics.hpp" 43 #include "gc/shenandoah/shenandoahAllocRequest.hpp" 44 #include "gc/shenandoah/shenandoahBarrierSet.hpp" 45 #include "gc/shenandoah/shenandoahCodeRoots.hpp" 46 #include "gc/shenandoah/shenandoahCollectionSet.hpp" 47 #include "gc/shenandoah/shenandoahCollectorPolicy.hpp" 48 #include "gc/shenandoah/shenandoahConcurrentMark.hpp" 49 #include "gc/shenandoah/shenandoahControlThread.hpp" 50 #include "gc/shenandoah/shenandoahClosures.inline.hpp" 51 #include "gc/shenandoah/shenandoahFreeSet.hpp" 52 #include "gc/shenandoah/shenandoahGenerationalEvacuationTask.hpp" 53 #include "gc/shenandoah/shenandoahGenerationalHeap.hpp" 54 #include "gc/shenandoah/shenandoahGlobalGeneration.hpp" 55 #include "gc/shenandoah/shenandoahHeap.inline.hpp" 56 #include "gc/shenandoah/shenandoahHeapRegionClosures.hpp" 57 #include "gc/shenandoah/shenandoahHeapRegion.inline.hpp" 58 #include "gc/shenandoah/shenandoahHeapRegionSet.hpp" 59 #include "gc/shenandoah/shenandoahInitLogger.hpp" 60 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp" 61 #include "gc/shenandoah/shenandoahMemoryPool.hpp" 62 #include "gc/shenandoah/shenandoahMonitoringSupport.hpp" 63 #include "gc/shenandoah/shenandoahOldGeneration.hpp" 64 #include "gc/shenandoah/shenandoahPacer.inline.hpp" 65 #include "gc/shenandoah/shenandoahPadding.hpp" 66 #include "gc/shenandoah/shenandoahParallelCleaning.inline.hpp" 67 #include "gc/shenandoah/shenandoahPhaseTimings.hpp" 68 #include "gc/shenandoah/shenandoahReferenceProcessor.hpp" 69 #include "gc/shenandoah/shenandoahRootProcessor.inline.hpp" 70 #include "gc/shenandoah/shenandoahScanRemembered.inline.hpp" 71 #include "gc/shenandoah/shenandoahSTWMark.hpp" 72 #include "gc/shenandoah/shenandoahUncommitThread.hpp" 73 #include "gc/shenandoah/shenandoahUtils.hpp" 74 #include "gc/shenandoah/shenandoahVerifier.hpp" 75 #include "gc/shenandoah/shenandoahVMOperations.hpp" 76 #include "gc/shenandoah/shenandoahWorkGroup.hpp" 77 #include "gc/shenandoah/shenandoahWorkerPolicy.hpp" 78 #include "gc/shenandoah/shenandoahYoungGeneration.hpp" 79 #include "gc/shenandoah/mode/shenandoahGenerationalMode.hpp" 80 #include "gc/shenandoah/mode/shenandoahPassiveMode.hpp" 81 #include "gc/shenandoah/mode/shenandoahSATBMode.hpp" 82 83 #if INCLUDE_JFR 84 #include "gc/shenandoah/shenandoahJfrSupport.hpp" 85 #endif 86 87 #include "memory/allocation.hpp" 88 #include "memory/allocation.hpp" 89 #include "memory/classLoaderMetaspace.hpp" 90 #include "memory/memoryReserver.hpp" 91 #include "memory/metaspaceUtils.hpp" 92 #include "memory/universe.hpp" 93 #include "nmt/mallocTracker.hpp" 94 #include "nmt/memTracker.hpp" 95 #include "oops/compressedOops.inline.hpp" 96 #include "prims/jvmtiTagMap.hpp" 97 #include "runtime/atomic.hpp" 98 #include "runtime/globals.hpp" 99 #include "runtime/interfaceSupport.inline.hpp" 100 #include "runtime/java.hpp" 101 #include "runtime/orderAccess.hpp" 102 #include "runtime/safepointMechanism.hpp" 103 #include "runtime/stackWatermarkSet.hpp" 104 #include "runtime/threads.hpp" 105 #include "runtime/vmThread.hpp" 106 #include "utilities/globalDefinitions.hpp" 107 #include "utilities/events.hpp" 108 #include "utilities/powerOfTwo.hpp" 109 110 class ShenandoahPretouchHeapTask : public WorkerTask { 111 private: 112 ShenandoahRegionIterator _regions; 113 const size_t _page_size; 114 public: 115 ShenandoahPretouchHeapTask(size_t page_size) : 116 WorkerTask("Shenandoah Pretouch Heap"), 117 _page_size(page_size) {} 118 119 virtual void work(uint worker_id) { 120 ShenandoahHeapRegion* r = _regions.next(); 121 while (r != nullptr) { 122 if (r->is_committed()) { 123 os::pretouch_memory(r->bottom(), r->end(), _page_size); 124 } 125 r = _regions.next(); 126 } 127 } 128 }; 129 130 class ShenandoahPretouchBitmapTask : public WorkerTask { 131 private: 132 ShenandoahRegionIterator _regions; 133 char* _bitmap_base; 134 const size_t _bitmap_size; 135 const size_t _page_size; 136 public: 137 ShenandoahPretouchBitmapTask(char* bitmap_base, size_t bitmap_size, size_t page_size) : 138 WorkerTask("Shenandoah Pretouch Bitmap"), 139 _bitmap_base(bitmap_base), 140 _bitmap_size(bitmap_size), 141 _page_size(page_size) {} 142 143 virtual void work(uint worker_id) { 144 ShenandoahHeapRegion* r = _regions.next(); 145 while (r != nullptr) { 146 size_t start = r->index() * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor(); 147 size_t end = (r->index() + 1) * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor(); 148 assert (end <= _bitmap_size, "end is sane: %zu < %zu", end, _bitmap_size); 149 150 if (r->is_committed()) { 151 os::pretouch_memory(_bitmap_base + start, _bitmap_base + end, _page_size); 152 } 153 154 r = _regions.next(); 155 } 156 } 157 }; 158 159 static ReservedSpace reserve(size_t size, size_t preferred_page_size) { 160 // When a page size is given we don't want to mix large 161 // and normal pages. If the size is not a multiple of the 162 // page size it will be aligned up to achieve this. 163 size_t alignment = os::vm_allocation_granularity(); 164 if (preferred_page_size != os::vm_page_size()) { 165 alignment = MAX2(preferred_page_size, alignment); 166 size = align_up(size, alignment); 167 } 168 169 const ReservedSpace reserved = MemoryReserver::reserve(size, alignment, preferred_page_size); 170 if (!reserved.is_reserved()) { 171 vm_exit_during_initialization("Could not reserve space"); 172 } 173 return reserved; 174 } 175 176 jint ShenandoahHeap::initialize() { 177 // 178 // Figure out heap sizing 179 // 180 181 size_t init_byte_size = InitialHeapSize; 182 size_t min_byte_size = MinHeapSize; 183 size_t max_byte_size = MaxHeapSize; 184 size_t heap_alignment = HeapAlignment; 185 186 size_t reg_size_bytes = ShenandoahHeapRegion::region_size_bytes(); 187 188 Universe::check_alignment(max_byte_size, reg_size_bytes, "Shenandoah heap"); 189 Universe::check_alignment(init_byte_size, reg_size_bytes, "Shenandoah heap"); 190 191 _num_regions = ShenandoahHeapRegion::region_count(); 192 assert(_num_regions == (max_byte_size / reg_size_bytes), 193 "Regions should cover entire heap exactly: %zu != %zu/%zu", 194 _num_regions, max_byte_size, reg_size_bytes); 195 196 size_t num_committed_regions = init_byte_size / reg_size_bytes; 197 num_committed_regions = MIN2(num_committed_regions, _num_regions); 198 assert(num_committed_regions <= _num_regions, "sanity"); 199 _initial_size = num_committed_regions * reg_size_bytes; 200 201 size_t num_min_regions = min_byte_size / reg_size_bytes; 202 num_min_regions = MIN2(num_min_regions, _num_regions); 203 assert(num_min_regions <= _num_regions, "sanity"); 204 _minimum_size = num_min_regions * reg_size_bytes; 205 206 // Default to max heap size. 207 _soft_max_size = _num_regions * reg_size_bytes; 208 209 _committed = _initial_size; 210 211 size_t heap_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size(); 212 size_t bitmap_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size(); 213 size_t region_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size(); 214 215 // 216 // Reserve and commit memory for heap 217 // 218 219 ReservedHeapSpace heap_rs = Universe::reserve_heap(max_byte_size, heap_alignment); 220 initialize_reserved_region(heap_rs); 221 _heap_region = MemRegion((HeapWord*)heap_rs.base(), heap_rs.size() / HeapWordSize); 222 _heap_region_special = heap_rs.special(); 223 224 assert((((size_t) base()) & ShenandoahHeapRegion::region_size_bytes_mask()) == 0, 225 "Misaligned heap: " PTR_FORMAT, p2i(base())); 226 os::trace_page_sizes_for_requested_size("Heap", 227 max_byte_size, heap_alignment, 228 heap_rs.base(), 229 heap_rs.size(), heap_rs.page_size()); 230 231 #if SHENANDOAH_OPTIMIZED_MARKTASK 232 // The optimized ShenandoahMarkTask takes some bits away from the full object bits. 233 // Fail if we ever attempt to address more than we can. 234 if ((uintptr_t)heap_rs.end() >= ShenandoahMarkTask::max_addressable()) { 235 FormatBuffer<512> buf("Shenandoah reserved [" PTR_FORMAT ", " PTR_FORMAT") for the heap, \n" 236 "but max object address is " PTR_FORMAT ". Try to reduce heap size, or try other \n" 237 "VM options that allocate heap at lower addresses (HeapBaseMinAddress, AllocateHeapAt, etc).", 238 p2i(heap_rs.base()), p2i(heap_rs.end()), ShenandoahMarkTask::max_addressable()); 239 vm_exit_during_initialization("Fatal Error", buf); 240 } 241 #endif 242 243 ReservedSpace sh_rs = heap_rs.first_part(max_byte_size); 244 if (!_heap_region_special) { 245 os::commit_memory_or_exit(sh_rs.base(), _initial_size, heap_alignment, false, 246 "Cannot commit heap memory"); 247 } 248 249 BarrierSet::set_barrier_set(new ShenandoahBarrierSet(this, _heap_region)); 250 251 // Now we know the number of regions and heap sizes, initialize the heuristics. 252 initialize_heuristics(); 253 254 assert(_heap_region.byte_size() == heap_rs.size(), "Need to know reserved size for card table"); 255 256 // 257 // Worker threads must be initialized after the barrier is configured 258 // 259 _workers = new ShenandoahWorkerThreads("Shenandoah GC Threads", _max_workers); 260 if (_workers == nullptr) { 261 vm_exit_during_initialization("Failed necessary allocation."); 262 } else { 263 _workers->initialize_workers(); 264 } 265 266 if (ParallelGCThreads > 1) { 267 _safepoint_workers = new ShenandoahWorkerThreads("Safepoint Cleanup Thread", ParallelGCThreads); 268 _safepoint_workers->initialize_workers(); 269 } 270 271 // 272 // Reserve and commit memory for bitmap(s) 273 // 274 275 size_t bitmap_size_orig = ShenandoahMarkBitMap::compute_size(heap_rs.size()); 276 _bitmap_size = align_up(bitmap_size_orig, bitmap_page_size); 277 278 size_t bitmap_bytes_per_region = reg_size_bytes / ShenandoahMarkBitMap::heap_map_factor(); 279 280 guarantee(bitmap_bytes_per_region != 0, 281 "Bitmap bytes per region should not be zero"); 282 guarantee(is_power_of_2(bitmap_bytes_per_region), 283 "Bitmap bytes per region should be power of two: %zu", bitmap_bytes_per_region); 284 285 if (bitmap_page_size > bitmap_bytes_per_region) { 286 _bitmap_regions_per_slice = bitmap_page_size / bitmap_bytes_per_region; 287 _bitmap_bytes_per_slice = bitmap_page_size; 288 } else { 289 _bitmap_regions_per_slice = 1; 290 _bitmap_bytes_per_slice = bitmap_bytes_per_region; 291 } 292 293 guarantee(_bitmap_regions_per_slice >= 1, 294 "Should have at least one region per slice: %zu", 295 _bitmap_regions_per_slice); 296 297 guarantee(((_bitmap_bytes_per_slice) % bitmap_page_size) == 0, 298 "Bitmap slices should be page-granular: bps = %zu, page size = %zu", 299 _bitmap_bytes_per_slice, bitmap_page_size); 300 301 ReservedSpace bitmap = reserve(_bitmap_size, bitmap_page_size); 302 os::trace_page_sizes_for_requested_size("Mark Bitmap", 303 bitmap_size_orig, bitmap_page_size, 304 bitmap.base(), 305 bitmap.size(), bitmap.page_size()); 306 MemTracker::record_virtual_memory_tag(bitmap, mtGC); 307 _bitmap_region = MemRegion((HeapWord*) bitmap.base(), bitmap.size() / HeapWordSize); 308 _bitmap_region_special = bitmap.special(); 309 310 size_t bitmap_init_commit = _bitmap_bytes_per_slice * 311 align_up(num_committed_regions, _bitmap_regions_per_slice) / _bitmap_regions_per_slice; 312 bitmap_init_commit = MIN2(_bitmap_size, bitmap_init_commit); 313 if (!_bitmap_region_special) { 314 os::commit_memory_or_exit((char *) _bitmap_region.start(), bitmap_init_commit, bitmap_page_size, false, 315 "Cannot commit bitmap memory"); 316 } 317 318 _marking_context = new ShenandoahMarkingContext(_heap_region, _bitmap_region, _num_regions); 319 320 if (ShenandoahVerify) { 321 ReservedSpace verify_bitmap = reserve(_bitmap_size, bitmap_page_size); 322 os::trace_page_sizes_for_requested_size("Verify Bitmap", 323 bitmap_size_orig, bitmap_page_size, 324 verify_bitmap.base(), 325 verify_bitmap.size(), verify_bitmap.page_size()); 326 if (!verify_bitmap.special()) { 327 os::commit_memory_or_exit(verify_bitmap.base(), verify_bitmap.size(), bitmap_page_size, false, 328 "Cannot commit verification bitmap memory"); 329 } 330 MemTracker::record_virtual_memory_tag(verify_bitmap, mtGC); 331 MemRegion verify_bitmap_region = MemRegion((HeapWord *) verify_bitmap.base(), verify_bitmap.size() / HeapWordSize); 332 _verification_bit_map.initialize(_heap_region, verify_bitmap_region); 333 _verifier = new ShenandoahVerifier(this, &_verification_bit_map); 334 } 335 336 // Reserve aux bitmap for use in object_iterate(). We don't commit it here. 337 size_t aux_bitmap_page_size = bitmap_page_size; 338 339 ReservedSpace aux_bitmap = reserve(_bitmap_size, aux_bitmap_page_size); 340 os::trace_page_sizes_for_requested_size("Aux Bitmap", 341 bitmap_size_orig, aux_bitmap_page_size, 342 aux_bitmap.base(), 343 aux_bitmap.size(), aux_bitmap.page_size()); 344 MemTracker::record_virtual_memory_tag(aux_bitmap, mtGC); 345 _aux_bitmap_region = MemRegion((HeapWord*) aux_bitmap.base(), aux_bitmap.size() / HeapWordSize); 346 _aux_bitmap_region_special = aux_bitmap.special(); 347 _aux_bit_map.initialize(_heap_region, _aux_bitmap_region); 348 349 // 350 // Create regions and region sets 351 // 352 size_t region_align = align_up(sizeof(ShenandoahHeapRegion), SHENANDOAH_CACHE_LINE_SIZE); 353 size_t region_storage_size_orig = region_align * _num_regions; 354 size_t region_storage_size = align_up(region_storage_size_orig, 355 MAX2(region_page_size, os::vm_allocation_granularity())); 356 357 ReservedSpace region_storage = reserve(region_storage_size, region_page_size); 358 os::trace_page_sizes_for_requested_size("Region Storage", 359 region_storage_size_orig, region_page_size, 360 region_storage.base(), 361 region_storage.size(), region_storage.page_size()); 362 MemTracker::record_virtual_memory_tag(region_storage, mtGC); 363 if (!region_storage.special()) { 364 os::commit_memory_or_exit(region_storage.base(), region_storage_size, region_page_size, false, 365 "Cannot commit region memory"); 366 } 367 368 // Try to fit the collection set bitmap at lower addresses. This optimizes code generation for cset checks. 369 // Go up until a sensible limit (subject to encoding constraints) and try to reserve the space there. 370 // If not successful, bite a bullet and allocate at whatever address. 371 { 372 const size_t cset_align = MAX2<size_t>(os::vm_page_size(), os::vm_allocation_granularity()); 373 const size_t cset_size = align_up(((size_t) sh_rs.base() + sh_rs.size()) >> ShenandoahHeapRegion::region_size_bytes_shift(), cset_align); 374 const size_t cset_page_size = os::vm_page_size(); 375 376 uintptr_t min = round_up_power_of_2(cset_align); 377 uintptr_t max = (1u << 30u); 378 ReservedSpace cset_rs; 379 380 for (uintptr_t addr = min; addr <= max; addr <<= 1u) { 381 char* req_addr = (char*)addr; 382 assert(is_aligned(req_addr, cset_align), "Should be aligned"); 383 cset_rs = MemoryReserver::reserve(req_addr, cset_size, cset_align, cset_page_size); 384 if (cset_rs.is_reserved()) { 385 assert(cset_rs.base() == req_addr, "Allocated where requested: " PTR_FORMAT ", " PTR_FORMAT, p2i(cset_rs.base()), addr); 386 _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base()); 387 break; 388 } 389 } 390 391 if (_collection_set == nullptr) { 392 cset_rs = MemoryReserver::reserve(cset_size, cset_align, os::vm_page_size()); 393 if (!cset_rs.is_reserved()) { 394 vm_exit_during_initialization("Cannot reserve memory for collection set"); 395 } 396 397 _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base()); 398 } 399 os::trace_page_sizes_for_requested_size("Collection Set", 400 cset_size, cset_page_size, 401 cset_rs.base(), 402 cset_rs.size(), cset_rs.page_size()); 403 } 404 405 _regions = NEW_C_HEAP_ARRAY(ShenandoahHeapRegion*, _num_regions, mtGC); 406 _affiliations = NEW_C_HEAP_ARRAY(uint8_t, _num_regions, mtGC); 407 _free_set = new ShenandoahFreeSet(this, _num_regions); 408 409 { 410 ShenandoahHeapLocker locker(lock()); 411 412 for (size_t i = 0; i < _num_regions; i++) { 413 HeapWord* start = (HeapWord*)sh_rs.base() + ShenandoahHeapRegion::region_size_words() * i; 414 bool is_committed = i < num_committed_regions; 415 void* loc = region_storage.base() + i * region_align; 416 417 ShenandoahHeapRegion* r = new (loc) ShenandoahHeapRegion(start, i, is_committed); 418 assert(is_aligned(r, SHENANDOAH_CACHE_LINE_SIZE), "Sanity"); 419 420 _marking_context->initialize_top_at_mark_start(r); 421 _regions[i] = r; 422 assert(!collection_set()->is_in(i), "New region should not be in collection set"); 423 424 _affiliations[i] = ShenandoahAffiliation::FREE; 425 } 426 427 // Initialize to complete 428 _marking_context->mark_complete(); 429 size_t young_cset_regions, old_cset_regions; 430 431 // We are initializing free set. We ignore cset region tallies. 432 size_t first_old, last_old, num_old; 433 _free_set->prepare_to_rebuild(young_cset_regions, old_cset_regions, first_old, last_old, num_old); 434 _free_set->finish_rebuild(young_cset_regions, old_cset_regions, num_old); 435 } 436 437 if (AlwaysPreTouch) { 438 // For NUMA, it is important to pre-touch the storage under bitmaps with worker threads, 439 // before initialize() below zeroes it with initializing thread. For any given region, 440 // we touch the region and the corresponding bitmaps from the same thread. 441 ShenandoahPushWorkerScope scope(workers(), _max_workers, false); 442 443 _pretouch_heap_page_size = heap_page_size; 444 _pretouch_bitmap_page_size = bitmap_page_size; 445 446 // OS memory managers may want to coalesce back-to-back pages. Make their jobs 447 // simpler by pre-touching continuous spaces (heap and bitmap) separately. 448 449 ShenandoahPretouchBitmapTask bcl(bitmap.base(), _bitmap_size, _pretouch_bitmap_page_size); 450 _workers->run_task(&bcl); 451 452 ShenandoahPretouchHeapTask hcl(_pretouch_heap_page_size); 453 _workers->run_task(&hcl); 454 } 455 456 // 457 // Initialize the rest of GC subsystems 458 // 459 460 _liveness_cache = NEW_C_HEAP_ARRAY(ShenandoahLiveData*, _max_workers, mtGC); 461 for (uint worker = 0; worker < _max_workers; worker++) { 462 _liveness_cache[worker] = NEW_C_HEAP_ARRAY(ShenandoahLiveData, _num_regions, mtGC); 463 Copy::fill_to_bytes(_liveness_cache[worker], _num_regions * sizeof(ShenandoahLiveData)); 464 } 465 466 // There should probably be Shenandoah-specific options for these, 467 // just as there are G1-specific options. 468 { 469 ShenandoahSATBMarkQueueSet& satbqs = ShenandoahBarrierSet::satb_mark_queue_set(); 470 satbqs.set_process_completed_buffers_threshold(20); // G1SATBProcessCompletedThreshold 471 satbqs.set_buffer_enqueue_threshold_percentage(60); // G1SATBBufferEnqueueingThresholdPercent 472 } 473 474 _monitoring_support = new ShenandoahMonitoringSupport(this); 475 _phase_timings = new ShenandoahPhaseTimings(max_workers()); 476 ShenandoahCodeRoots::initialize(); 477 478 if (ShenandoahPacing) { 479 _pacer = new ShenandoahPacer(this); 480 _pacer->setup_for_idle(); 481 } 482 483 initialize_controller(); 484 485 if (ShenandoahUncommit) { 486 _uncommit_thread = new ShenandoahUncommitThread(this); 487 } 488 489 print_init_logger(); 490 491 FullGCForwarding::initialize(_heap_region); 492 493 return JNI_OK; 494 } 495 496 void ShenandoahHeap::initialize_controller() { 497 _control_thread = new ShenandoahControlThread(); 498 } 499 500 void ShenandoahHeap::print_init_logger() const { 501 ShenandoahInitLogger::print(); 502 } 503 504 void ShenandoahHeap::initialize_mode() { 505 if (ShenandoahGCMode != nullptr) { 506 if (strcmp(ShenandoahGCMode, "satb") == 0) { 507 _gc_mode = new ShenandoahSATBMode(); 508 } else if (strcmp(ShenandoahGCMode, "passive") == 0) { 509 _gc_mode = new ShenandoahPassiveMode(); 510 } else if (strcmp(ShenandoahGCMode, "generational") == 0) { 511 _gc_mode = new ShenandoahGenerationalMode(); 512 } else { 513 vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option"); 514 } 515 } else { 516 vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option (null)"); 517 } 518 _gc_mode->initialize_flags(); 519 if (_gc_mode->is_diagnostic() && !UnlockDiagnosticVMOptions) { 520 vm_exit_during_initialization( 521 err_msg("GC mode \"%s\" is diagnostic, and must be enabled via -XX:+UnlockDiagnosticVMOptions.", 522 _gc_mode->name())); 523 } 524 if (_gc_mode->is_experimental() && !UnlockExperimentalVMOptions) { 525 vm_exit_during_initialization( 526 err_msg("GC mode \"%s\" is experimental, and must be enabled via -XX:+UnlockExperimentalVMOptions.", 527 _gc_mode->name())); 528 } 529 } 530 531 void ShenandoahHeap::initialize_heuristics() { 532 _global_generation = new ShenandoahGlobalGeneration(mode()->is_generational(), max_workers(), max_capacity(), max_capacity()); 533 _global_generation->initialize_heuristics(mode()); 534 } 535 536 #ifdef _MSC_VER 537 #pragma warning( push ) 538 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list 539 #endif 540 541 ShenandoahHeap::ShenandoahHeap(ShenandoahCollectorPolicy* policy) : 542 CollectedHeap(), 543 _gc_generation(nullptr), 544 _active_generation(nullptr), 545 _initial_size(0), 546 _committed(0), 547 _max_workers(MAX3(ConcGCThreads, ParallelGCThreads, 1U)), 548 _workers(nullptr), 549 _safepoint_workers(nullptr), 550 _heap_region_special(false), 551 _num_regions(0), 552 _regions(nullptr), 553 _affiliations(nullptr), 554 _gc_state_changed(false), 555 _gc_no_progress_count(0), 556 _cancel_requested_time(0), 557 _update_refs_iterator(this), 558 _global_generation(nullptr), 559 _control_thread(nullptr), 560 _uncommit_thread(nullptr), 561 _young_generation(nullptr), 562 _old_generation(nullptr), 563 _shenandoah_policy(policy), 564 _gc_mode(nullptr), 565 _free_set(nullptr), 566 _pacer(nullptr), 567 _verifier(nullptr), 568 _phase_timings(nullptr), 569 _monitoring_support(nullptr), 570 _memory_pool(nullptr), 571 _stw_memory_manager("Shenandoah Pauses"), 572 _cycle_memory_manager("Shenandoah Cycles"), 573 _gc_timer(new ConcurrentGCTimer()), 574 _log_min_obj_alignment_in_bytes(LogMinObjAlignmentInBytes), 575 _marking_context(nullptr), 576 _bitmap_size(0), 577 _bitmap_regions_per_slice(0), 578 _bitmap_bytes_per_slice(0), 579 _bitmap_region_special(false), 580 _aux_bitmap_region_special(false), 581 _liveness_cache(nullptr), 582 _collection_set(nullptr) 583 { 584 // Initialize GC mode early, many subsequent initialization procedures depend on it 585 initialize_mode(); 586 _cancelled_gc.set(GCCause::_no_gc); 587 } 588 589 #ifdef _MSC_VER 590 #pragma warning( pop ) 591 #endif 592 593 void ShenandoahHeap::print_on(outputStream* st) const { 594 st->print_cr("Shenandoah Heap"); 595 st->print_cr(" %zu%s max, %zu%s soft max, %zu%s committed, %zu%s used", 596 byte_size_in_proper_unit(max_capacity()), proper_unit_for_byte_size(max_capacity()), 597 byte_size_in_proper_unit(soft_max_capacity()), proper_unit_for_byte_size(soft_max_capacity()), 598 byte_size_in_proper_unit(committed()), proper_unit_for_byte_size(committed()), 599 byte_size_in_proper_unit(used()), proper_unit_for_byte_size(used())); 600 st->print_cr(" %zu x %zu %s regions", 601 num_regions(), 602 byte_size_in_proper_unit(ShenandoahHeapRegion::region_size_bytes()), 603 proper_unit_for_byte_size(ShenandoahHeapRegion::region_size_bytes())); 604 605 st->print("Status: "); 606 if (has_forwarded_objects()) st->print("has forwarded objects, "); 607 if (!mode()->is_generational()) { 608 if (is_concurrent_mark_in_progress()) st->print("marking,"); 609 } else { 610 if (is_concurrent_old_mark_in_progress()) st->print("old marking, "); 611 if (is_concurrent_young_mark_in_progress()) st->print("young marking, "); 612 } 613 if (is_evacuation_in_progress()) st->print("evacuating, "); 614 if (is_update_refs_in_progress()) st->print("updating refs, "); 615 if (is_degenerated_gc_in_progress()) st->print("degenerated gc, "); 616 if (is_full_gc_in_progress()) st->print("full gc, "); 617 if (is_full_gc_move_in_progress()) st->print("full gc move, "); 618 if (is_concurrent_weak_root_in_progress()) st->print("concurrent weak roots, "); 619 if (is_concurrent_strong_root_in_progress() && 620 !is_concurrent_weak_root_in_progress()) st->print("concurrent strong roots, "); 621 622 if (cancelled_gc()) { 623 st->print("cancelled"); 624 } else { 625 st->print("not cancelled"); 626 } 627 st->cr(); 628 629 st->print_cr("Reserved region:"); 630 st->print_cr(" - [" PTR_FORMAT ", " PTR_FORMAT ") ", 631 p2i(reserved_region().start()), 632 p2i(reserved_region().end())); 633 634 ShenandoahCollectionSet* cset = collection_set(); 635 st->print_cr("Collection set:"); 636 if (cset != nullptr) { 637 st->print_cr(" - map (vanilla): " PTR_FORMAT, p2i(cset->map_address())); 638 st->print_cr(" - map (biased): " PTR_FORMAT, p2i(cset->biased_map_address())); 639 } else { 640 st->print_cr(" (null)"); 641 } 642 643 st->cr(); 644 MetaspaceUtils::print_on(st); 645 646 if (Verbose) { 647 st->cr(); 648 print_heap_regions_on(st); 649 } 650 } 651 652 class ShenandoahInitWorkerGCLABClosure : public ThreadClosure { 653 public: 654 void do_thread(Thread* thread) { 655 assert(thread != nullptr, "Sanity"); 656 ShenandoahThreadLocalData::initialize_gclab(thread); 657 } 658 }; 659 660 void ShenandoahHeap::post_initialize() { 661 CollectedHeap::post_initialize(); 662 663 // Schedule periodic task to report on gc thread CPU utilization 664 _mmu_tracker.initialize(); 665 666 MutexLocker ml(Threads_lock); 667 668 ShenandoahInitWorkerGCLABClosure init_gclabs; 669 _workers->threads_do(&init_gclabs); 670 671 // gclab can not be initialized early during VM startup, as it can not determinate its max_size. 672 // Now, we will let WorkerThreads to initialize gclab when new worker is created. 673 _workers->set_initialize_gclab(); 674 675 // Note that the safepoint workers may require gclabs if the threads are used to create a heap dump 676 // during a concurrent evacuation phase. 677 if (_safepoint_workers != nullptr) { 678 _safepoint_workers->threads_do(&init_gclabs); 679 _safepoint_workers->set_initialize_gclab(); 680 } 681 682 JFR_ONLY(ShenandoahJFRSupport::register_jfr_type_serializers();) 683 } 684 685 ShenandoahHeuristics* ShenandoahHeap::heuristics() { 686 return _global_generation->heuristics(); 687 } 688 689 size_t ShenandoahHeap::used() const { 690 return global_generation()->used(); 691 } 692 693 size_t ShenandoahHeap::committed() const { 694 return Atomic::load(&_committed); 695 } 696 697 void ShenandoahHeap::increase_committed(size_t bytes) { 698 shenandoah_assert_heaplocked_or_safepoint(); 699 _committed += bytes; 700 } 701 702 void ShenandoahHeap::decrease_committed(size_t bytes) { 703 shenandoah_assert_heaplocked_or_safepoint(); 704 _committed -= bytes; 705 } 706 707 // For tracking usage based on allocations, it should be the case that: 708 // * The sum of regions::used == heap::used 709 // * The sum of a generation's regions::used == generation::used 710 // * The sum of a generation's humongous regions::free == generation::humongous_waste 711 // These invariants are checked by the verifier on GC safepoints. 712 // 713 // Additional notes: 714 // * When a mutator's allocation request causes a region to be retired, the 715 // free memory left in that region is considered waste. It does not contribute 716 // to the usage, but it _does_ contribute to allocation rate. 717 // * The bottom of a PLAB must be aligned on card size. In some cases this will 718 // require padding in front of the PLAB (a filler object). Because this padding 719 // is included in the region's used memory we include the padding in the usage 720 // accounting as waste. 721 // * Mutator allocations are used to compute an allocation rate. They are also 722 // sent to the Pacer for those purposes. 723 // * There are three sources of waste: 724 // 1. The padding used to align a PLAB on card size 725 // 2. Region's free is less than minimum TLAB size and is retired 726 // 3. The unused portion of memory in the last region of a humongous object 727 void ShenandoahHeap::increase_used(const ShenandoahAllocRequest& req) { 728 size_t actual_bytes = req.actual_size() * HeapWordSize; 729 size_t wasted_bytes = req.waste() * HeapWordSize; 730 ShenandoahGeneration* generation = generation_for(req.affiliation()); 731 732 if (req.is_gc_alloc()) { 733 assert(wasted_bytes == 0 || req.type() == ShenandoahAllocRequest::_alloc_plab, "Only PLABs have waste"); 734 increase_used(generation, actual_bytes + wasted_bytes); 735 } else { 736 assert(req.is_mutator_alloc(), "Expected mutator alloc here"); 737 // padding and actual size both count towards allocation counter 738 generation->increase_allocated(actual_bytes + wasted_bytes); 739 740 // only actual size counts toward usage for mutator allocations 741 increase_used(generation, actual_bytes); 742 743 // notify pacer of both actual size and waste 744 notify_mutator_alloc_words(req.actual_size(), req.waste()); 745 746 if (wasted_bytes > 0 && ShenandoahHeapRegion::requires_humongous(req.actual_size())) { 747 increase_humongous_waste(generation,wasted_bytes); 748 } 749 } 750 } 751 752 void ShenandoahHeap::increase_humongous_waste(ShenandoahGeneration* generation, size_t bytes) { 753 generation->increase_humongous_waste(bytes); 754 if (!generation->is_global()) { 755 global_generation()->increase_humongous_waste(bytes); 756 } 757 } 758 759 void ShenandoahHeap::decrease_humongous_waste(ShenandoahGeneration* generation, size_t bytes) { 760 generation->decrease_humongous_waste(bytes); 761 if (!generation->is_global()) { 762 global_generation()->decrease_humongous_waste(bytes); 763 } 764 } 765 766 void ShenandoahHeap::increase_used(ShenandoahGeneration* generation, size_t bytes) { 767 generation->increase_used(bytes); 768 if (!generation->is_global()) { 769 global_generation()->increase_used(bytes); 770 } 771 } 772 773 void ShenandoahHeap::decrease_used(ShenandoahGeneration* generation, size_t bytes) { 774 generation->decrease_used(bytes); 775 if (!generation->is_global()) { 776 global_generation()->decrease_used(bytes); 777 } 778 } 779 780 void ShenandoahHeap::notify_mutator_alloc_words(size_t words, size_t waste) { 781 if (ShenandoahPacing) { 782 control_thread()->pacing_notify_alloc(words); 783 if (waste > 0) { 784 pacer()->claim_for_alloc<true>(waste); 785 } 786 } 787 } 788 789 size_t ShenandoahHeap::capacity() const { 790 return committed(); 791 } 792 793 size_t ShenandoahHeap::max_capacity() const { 794 return _num_regions * ShenandoahHeapRegion::region_size_bytes(); 795 } 796 797 size_t ShenandoahHeap::soft_max_capacity() const { 798 size_t v = Atomic::load(&_soft_max_size); 799 assert(min_capacity() <= v && v <= max_capacity(), 800 "Should be in bounds: %zu <= %zu <= %zu", 801 min_capacity(), v, max_capacity()); 802 return v; 803 } 804 805 void ShenandoahHeap::set_soft_max_capacity(size_t v) { 806 assert(min_capacity() <= v && v <= max_capacity(), 807 "Should be in bounds: %zu <= %zu <= %zu", 808 min_capacity(), v, max_capacity()); 809 Atomic::store(&_soft_max_size, v); 810 } 811 812 size_t ShenandoahHeap::min_capacity() const { 813 return _minimum_size; 814 } 815 816 size_t ShenandoahHeap::initial_capacity() const { 817 return _initial_size; 818 } 819 820 bool ShenandoahHeap::is_in(const void* p) const { 821 if (!is_in_reserved(p)) { 822 return false; 823 } 824 825 if (is_full_gc_move_in_progress()) { 826 // Full GC move is running, we do not have a consistent region 827 // information yet. But we know the pointer is in heap. 828 return true; 829 } 830 831 // Now check if we point to a live section in active region. 832 const ShenandoahHeapRegion* r = heap_region_containing(p); 833 if (p >= r->top()) { 834 return false; 835 } 836 837 if (r->is_active()) { 838 return true; 839 } 840 841 // The region is trash, but won't be recycled until after concurrent weak 842 // roots. We also don't allow mutators to allocate from trash regions 843 // during weak roots. Concurrent class unloading may access unmarked oops 844 // in trash regions. 845 return r->is_trash() && is_concurrent_weak_root_in_progress(); 846 } 847 848 void ShenandoahHeap::notify_soft_max_changed() { 849 if (_uncommit_thread != nullptr) { 850 _uncommit_thread->notify_soft_max_changed(); 851 } 852 } 853 854 void ShenandoahHeap::notify_explicit_gc_requested() { 855 if (_uncommit_thread != nullptr) { 856 _uncommit_thread->notify_explicit_gc_requested(); 857 } 858 } 859 860 bool ShenandoahHeap::check_soft_max_changed() { 861 size_t new_soft_max = Atomic::load(&SoftMaxHeapSize); 862 size_t old_soft_max = soft_max_capacity(); 863 if (new_soft_max != old_soft_max) { 864 new_soft_max = MAX2(min_capacity(), new_soft_max); 865 new_soft_max = MIN2(max_capacity(), new_soft_max); 866 if (new_soft_max != old_soft_max) { 867 log_info(gc)("Soft Max Heap Size: %zu%s -> %zu%s", 868 byte_size_in_proper_unit(old_soft_max), proper_unit_for_byte_size(old_soft_max), 869 byte_size_in_proper_unit(new_soft_max), proper_unit_for_byte_size(new_soft_max) 870 ); 871 set_soft_max_capacity(new_soft_max); 872 return true; 873 } 874 } 875 return false; 876 } 877 878 void ShenandoahHeap::notify_heap_changed() { 879 // Update monitoring counters when we took a new region. This amortizes the 880 // update costs on slow path. 881 monitoring_support()->notify_heap_changed(); 882 _heap_changed.try_set(); 883 } 884 885 void ShenandoahHeap::set_forced_counters_update(bool value) { 886 monitoring_support()->set_forced_counters_update(value); 887 } 888 889 void ShenandoahHeap::handle_force_counters_update() { 890 monitoring_support()->handle_force_counters_update(); 891 } 892 893 HeapWord* ShenandoahHeap::allocate_from_gclab_slow(Thread* thread, size_t size) { 894 // New object should fit the GCLAB size 895 size_t min_size = MAX2(size, PLAB::min_size()); 896 897 // Figure out size of new GCLAB, looking back at heuristics. Expand aggressively. 898 size_t new_size = ShenandoahThreadLocalData::gclab_size(thread) * 2; 899 900 new_size = MIN2(new_size, PLAB::max_size()); 901 new_size = MAX2(new_size, PLAB::min_size()); 902 903 // Record new heuristic value even if we take any shortcut. This captures 904 // the case when moderately-sized objects always take a shortcut. At some point, 905 // heuristics should catch up with them. 906 log_debug(gc, free)("Set new GCLAB size: %zu", new_size); 907 ShenandoahThreadLocalData::set_gclab_size(thread, new_size); 908 909 if (new_size < size) { 910 // New size still does not fit the object. Fall back to shared allocation. 911 // This avoids retiring perfectly good GCLABs, when we encounter a large object. 912 log_debug(gc, free)("New gclab size (%zu) is too small for %zu", new_size, size); 913 return nullptr; 914 } 915 916 // Retire current GCLAB, and allocate a new one. 917 PLAB* gclab = ShenandoahThreadLocalData::gclab(thread); 918 gclab->retire(); 919 920 size_t actual_size = 0; 921 HeapWord* gclab_buf = allocate_new_gclab(min_size, new_size, &actual_size); 922 if (gclab_buf == nullptr) { 923 return nullptr; 924 } 925 926 assert (size <= actual_size, "allocation should fit"); 927 928 // ...and clear or zap just allocated TLAB, if needed. 929 if (ZeroTLAB) { 930 Copy::zero_to_words(gclab_buf, actual_size); 931 } else if (ZapTLAB) { 932 // Skip mangling the space corresponding to the object header to 933 // ensure that the returned space is not considered parsable by 934 // any concurrent GC thread. 935 size_t hdr_size = oopDesc::header_size(); 936 Copy::fill_to_words(gclab_buf + hdr_size, actual_size - hdr_size, badHeapWordVal); 937 } 938 gclab->set_buf(gclab_buf, actual_size); 939 return gclab->allocate(size); 940 } 941 942 // Called from stubs in JIT code or interpreter 943 HeapWord* ShenandoahHeap::allocate_new_tlab(size_t min_size, 944 size_t requested_size, 945 size_t* actual_size) { 946 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_tlab(min_size, requested_size); 947 HeapWord* res = allocate_memory(req); 948 if (res != nullptr) { 949 *actual_size = req.actual_size(); 950 } else { 951 *actual_size = 0; 952 } 953 return res; 954 } 955 956 HeapWord* ShenandoahHeap::allocate_new_gclab(size_t min_size, 957 size_t word_size, 958 size_t* actual_size) { 959 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_gclab(min_size, word_size); 960 HeapWord* res = allocate_memory(req); 961 if (res != nullptr) { 962 *actual_size = req.actual_size(); 963 } else { 964 *actual_size = 0; 965 } 966 return res; 967 } 968 969 HeapWord* ShenandoahHeap::allocate_memory(ShenandoahAllocRequest& req) { 970 intptr_t pacer_epoch = 0; 971 bool in_new_region = false; 972 HeapWord* result = nullptr; 973 974 if (req.is_mutator_alloc()) { 975 if (ShenandoahPacing) { 976 pacer()->pace_for_alloc(req.size()); 977 pacer_epoch = pacer()->epoch(); 978 } 979 980 if (!ShenandoahAllocFailureALot || !should_inject_alloc_failure()) { 981 result = allocate_memory_under_lock(req, in_new_region); 982 } 983 984 // Check that gc overhead is not exceeded. 985 // 986 // Shenandoah will grind along for quite a while allocating one 987 // object at a time using shared (non-tlab) allocations. This check 988 // is testing that the GC overhead limit has not been exceeded. 989 // This will notify the collector to start a cycle, but will raise 990 // an OOME to the mutator if the last Full GCs have not made progress. 991 // gc_no_progress_count is incremented following each degen or full GC that fails to achieve is_good_progress(). 992 if (result == nullptr && !req.is_lab_alloc() && get_gc_no_progress_count() > ShenandoahNoProgressThreshold) { 993 control_thread()->handle_alloc_failure(req, false); 994 req.set_actual_size(0); 995 return nullptr; 996 } 997 998 if (result == nullptr) { 999 // Block until control thread reacted, then retry allocation. 1000 // 1001 // It might happen that one of the threads requesting allocation would unblock 1002 // way later after GC happened, only to fail the second allocation, because 1003 // other threads have already depleted the free storage. In this case, a better 1004 // strategy is to try again, until at least one full GC has completed. 1005 // 1006 // Stop retrying and return nullptr to cause OOMError exception if our allocation failed even after: 1007 // a) We experienced a GC that had good progress, or 1008 // b) We experienced at least one Full GC (whether or not it had good progress) 1009 1010 const size_t original_count = shenandoah_policy()->full_gc_count(); 1011 while (result == nullptr && should_retry_allocation(original_count)) { 1012 control_thread()->handle_alloc_failure(req, true); 1013 result = allocate_memory_under_lock(req, in_new_region); 1014 } 1015 if (result != nullptr) { 1016 // If our allocation request has been satisfied after it initially failed, we count this as good gc progress 1017 notify_gc_progress(); 1018 } 1019 if (log_develop_is_enabled(Debug, gc, alloc)) { 1020 ResourceMark rm; 1021 log_debug(gc, alloc)("Thread: %s, Result: " PTR_FORMAT ", Request: %s, Size: %zu" 1022 ", Original: %zu, Latest: %zu", 1023 Thread::current()->name(), p2i(result), req.type_string(), req.size(), 1024 original_count, get_gc_no_progress_count()); 1025 } 1026 } 1027 } else { 1028 assert(req.is_gc_alloc(), "Can only accept GC allocs here"); 1029 result = allocate_memory_under_lock(req, in_new_region); 1030 // Do not call handle_alloc_failure() here, because we cannot block. 1031 // The allocation failure would be handled by the LRB slowpath with handle_alloc_failure_evac(). 1032 } 1033 1034 if (in_new_region) { 1035 notify_heap_changed(); 1036 } 1037 1038 if (result == nullptr) { 1039 req.set_actual_size(0); 1040 } 1041 1042 // This is called regardless of the outcome of the allocation to account 1043 // for any waste created by retiring regions with this request. 1044 increase_used(req); 1045 1046 if (result != nullptr) { 1047 size_t requested = req.size(); 1048 size_t actual = req.actual_size(); 1049 1050 assert (req.is_lab_alloc() || (requested == actual), 1051 "Only LAB allocations are elastic: %s, requested = %zu, actual = %zu", 1052 ShenandoahAllocRequest::alloc_type_to_string(req.type()), requested, actual); 1053 1054 if (req.is_mutator_alloc()) { 1055 // If we requested more than we were granted, give the rest back to pacer. 1056 // This only matters if we are in the same pacing epoch: do not try to unpace 1057 // over the budget for the other phase. 1058 if (ShenandoahPacing && (pacer_epoch > 0) && (requested > actual)) { 1059 pacer()->unpace_for_alloc(pacer_epoch, requested - actual); 1060 } 1061 } 1062 } 1063 1064 return result; 1065 } 1066 1067 inline bool ShenandoahHeap::should_retry_allocation(size_t original_full_gc_count) const { 1068 return shenandoah_policy()->full_gc_count() == original_full_gc_count 1069 && !shenandoah_policy()->is_at_shutdown(); 1070 } 1071 1072 HeapWord* ShenandoahHeap::allocate_memory_under_lock(ShenandoahAllocRequest& req, bool& in_new_region) { 1073 // If we are dealing with mutator allocation, then we may need to block for safepoint. 1074 // We cannot block for safepoint for GC allocations, because there is a high chance 1075 // we are already running at safepoint or from stack watermark machinery, and we cannot 1076 // block again. 1077 ShenandoahHeapLocker locker(lock(), req.is_mutator_alloc()); 1078 1079 // Make sure the old generation has room for either evacuations or promotions before trying to allocate. 1080 if (req.is_old() && !old_generation()->can_allocate(req)) { 1081 return nullptr; 1082 } 1083 1084 // If TLAB request size is greater than available, allocate() will attempt to downsize request to fit within available 1085 // memory. 1086 HeapWord* result = _free_set->allocate(req, in_new_region); 1087 1088 // Record the plab configuration for this result and register the object. 1089 if (result != nullptr && req.is_old()) { 1090 old_generation()->configure_plab_for_current_thread(req); 1091 if (req.type() == ShenandoahAllocRequest::_alloc_shared_gc) { 1092 // Register the newly allocated object while we're holding the global lock since there's no synchronization 1093 // built in to the implementation of register_object(). There are potential races when multiple independent 1094 // threads are allocating objects, some of which might span the same card region. For example, consider 1095 // a card table's memory region within which three objects are being allocated by three different threads: 1096 // 1097 // objects being "concurrently" allocated: 1098 // [-----a------][-----b-----][--------------c------------------] 1099 // [---- card table memory range --------------] 1100 // 1101 // Before any objects are allocated, this card's memory range holds no objects. Note that allocation of object a 1102 // wants to set the starts-object, first-start, and last-start attributes of the preceding card region. 1103 // Allocation of object b wants to set the starts-object, first-start, and last-start attributes of this card region. 1104 // Allocation of object c also wants to set the starts-object, first-start, and last-start attributes of this 1105 // card region. 1106 // 1107 // The thread allocating b and the thread allocating c can "race" in various ways, resulting in confusion, such as 1108 // last-start representing object b while first-start represents object c. This is why we need to require all 1109 // register_object() invocations to be "mutually exclusive" with respect to each card's memory range. 1110 old_generation()->card_scan()->register_object(result); 1111 } 1112 } 1113 1114 return result; 1115 } 1116 1117 HeapWord* ShenandoahHeap::mem_allocate(size_t size, 1118 bool* gc_overhead_limit_was_exceeded) { 1119 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared(size); 1120 return allocate_memory(req); 1121 } 1122 1123 MetaWord* ShenandoahHeap::satisfy_failed_metadata_allocation(ClassLoaderData* loader_data, 1124 size_t size, 1125 Metaspace::MetadataType mdtype) { 1126 MetaWord* result; 1127 1128 // Inform metaspace OOM to GC heuristics if class unloading is possible. 1129 ShenandoahHeuristics* h = global_generation()->heuristics(); 1130 if (h->can_unload_classes()) { 1131 h->record_metaspace_oom(); 1132 } 1133 1134 // Expand and retry allocation 1135 result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype); 1136 if (result != nullptr) { 1137 return result; 1138 } 1139 1140 // Start full GC 1141 collect(GCCause::_metadata_GC_clear_soft_refs); 1142 1143 // Retry allocation 1144 result = loader_data->metaspace_non_null()->allocate(size, mdtype); 1145 if (result != nullptr) { 1146 return result; 1147 } 1148 1149 // Expand and retry allocation 1150 result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype); 1151 if (result != nullptr) { 1152 return result; 1153 } 1154 1155 // Out of memory 1156 return nullptr; 1157 } 1158 1159 class ShenandoahConcurrentEvacuateRegionObjectClosure : public ObjectClosure { 1160 private: 1161 ShenandoahHeap* const _heap; 1162 Thread* const _thread; 1163 public: 1164 ShenandoahConcurrentEvacuateRegionObjectClosure(ShenandoahHeap* heap) : 1165 _heap(heap), _thread(Thread::current()) {} 1166 1167 void do_object(oop p) { 1168 shenandoah_assert_marked(nullptr, p); 1169 if (!p->is_forwarded()) { 1170 _heap->evacuate_object(p, _thread); 1171 } 1172 } 1173 }; 1174 1175 class ShenandoahEvacuationTask : public WorkerTask { 1176 private: 1177 ShenandoahHeap* const _sh; 1178 ShenandoahCollectionSet* const _cs; 1179 bool _concurrent; 1180 public: 1181 ShenandoahEvacuationTask(ShenandoahHeap* sh, 1182 ShenandoahCollectionSet* cs, 1183 bool concurrent) : 1184 WorkerTask("Shenandoah Evacuation"), 1185 _sh(sh), 1186 _cs(cs), 1187 _concurrent(concurrent) 1188 {} 1189 1190 void work(uint worker_id) { 1191 if (_concurrent) { 1192 ShenandoahConcurrentWorkerSession worker_session(worker_id); 1193 ShenandoahSuspendibleThreadSetJoiner stsj; 1194 ShenandoahEvacOOMScope oom_evac_scope; 1195 do_work(); 1196 } else { 1197 ShenandoahParallelWorkerSession worker_session(worker_id); 1198 ShenandoahEvacOOMScope oom_evac_scope; 1199 do_work(); 1200 } 1201 } 1202 1203 private: 1204 void do_work() { 1205 ShenandoahConcurrentEvacuateRegionObjectClosure cl(_sh); 1206 ShenandoahHeapRegion* r; 1207 while ((r =_cs->claim_next()) != nullptr) { 1208 assert(r->has_live(), "Region %zu should have been reclaimed early", r->index()); 1209 _sh->marked_object_iterate(r, &cl); 1210 1211 if (ShenandoahPacing) { 1212 _sh->pacer()->report_evac(r->used() >> LogHeapWordSize); 1213 } 1214 1215 if (_sh->check_cancelled_gc_and_yield(_concurrent)) { 1216 break; 1217 } 1218 } 1219 } 1220 }; 1221 1222 class ShenandoahRetireGCLABClosure : public ThreadClosure { 1223 private: 1224 bool const _resize; 1225 public: 1226 explicit ShenandoahRetireGCLABClosure(bool resize) : _resize(resize) {} 1227 void do_thread(Thread* thread) override { 1228 PLAB* gclab = ShenandoahThreadLocalData::gclab(thread); 1229 assert(gclab != nullptr, "GCLAB should be initialized for %s", thread->name()); 1230 gclab->retire(); 1231 if (_resize && ShenandoahThreadLocalData::gclab_size(thread) > 0) { 1232 ShenandoahThreadLocalData::set_gclab_size(thread, 0); 1233 } 1234 1235 if (ShenandoahHeap::heap()->mode()->is_generational()) { 1236 PLAB* plab = ShenandoahThreadLocalData::plab(thread); 1237 assert(plab != nullptr, "PLAB should be initialized for %s", thread->name()); 1238 1239 // There are two reasons to retire all plabs between old-gen evacuation passes. 1240 // 1. We need to make the plab memory parsable by remembered-set scanning. 1241 // 2. We need to establish a trustworthy UpdateWaterMark value within each old-gen heap region 1242 ShenandoahGenerationalHeap::heap()->retire_plab(plab, thread); 1243 if (_resize && ShenandoahThreadLocalData::plab_size(thread) > 0) { 1244 ShenandoahThreadLocalData::set_plab_size(thread, 0); 1245 } 1246 } 1247 } 1248 }; 1249 1250 class ShenandoahGCStatePropagator : public HandshakeClosure { 1251 public: 1252 explicit ShenandoahGCStatePropagator(char gc_state) : 1253 HandshakeClosure("Shenandoah GC State Change"), 1254 _gc_state(gc_state) {} 1255 1256 void do_thread(Thread* thread) override { 1257 ShenandoahThreadLocalData::set_gc_state(thread, _gc_state); 1258 } 1259 private: 1260 char _gc_state; 1261 }; 1262 1263 class ShenandoahPrepareForUpdateRefs : public HandshakeClosure { 1264 public: 1265 explicit ShenandoahPrepareForUpdateRefs(char gc_state) : 1266 HandshakeClosure("Shenandoah Prepare for Update Refs"), 1267 _retire(ResizeTLAB), _propagator(gc_state) {} 1268 1269 void do_thread(Thread* thread) override { 1270 _propagator.do_thread(thread); 1271 if (ShenandoahThreadLocalData::gclab(thread) != nullptr) { 1272 _retire.do_thread(thread); 1273 } 1274 } 1275 private: 1276 ShenandoahRetireGCLABClosure _retire; 1277 ShenandoahGCStatePropagator _propagator; 1278 }; 1279 1280 void ShenandoahHeap::evacuate_collection_set(bool concurrent) { 1281 ShenandoahEvacuationTask task(this, _collection_set, concurrent); 1282 workers()->run_task(&task); 1283 } 1284 1285 void ShenandoahHeap::concurrent_prepare_for_update_refs() { 1286 { 1287 // Java threads take this lock while they are being attached and added to the list of thread. 1288 // If another thread holds this lock before we update the gc state, it will receive a stale 1289 // gc state, but they will have been added to the list of java threads and so will be corrected 1290 // by the following handshake. 1291 MutexLocker lock(Threads_lock); 1292 1293 // A cancellation at this point means the degenerated cycle must resume from update-refs. 1294 set_gc_state_concurrent(EVACUATION, false); 1295 set_gc_state_concurrent(WEAK_ROOTS, false); 1296 set_gc_state_concurrent(UPDATE_REFS, true); 1297 } 1298 1299 // This will propagate the gc state and retire gclabs and plabs for threads that require it. 1300 ShenandoahPrepareForUpdateRefs prepare_for_update_refs(_gc_state.raw_value()); 1301 1302 // The handshake won't touch worker threads (or control thread, or VM thread), so do those separately. 1303 Threads::non_java_threads_do(&prepare_for_update_refs); 1304 1305 // Now retire gclabs and plabs and propagate gc_state for mutator threads 1306 Handshake::execute(&prepare_for_update_refs); 1307 1308 _update_refs_iterator.reset(); 1309 } 1310 1311 class ShenandoahCompositeHandshakeClosure : public HandshakeClosure { 1312 HandshakeClosure* _handshake_1; 1313 HandshakeClosure* _handshake_2; 1314 public: 1315 ShenandoahCompositeHandshakeClosure(HandshakeClosure* handshake_1, HandshakeClosure* handshake_2) : 1316 HandshakeClosure(handshake_2->name()), 1317 _handshake_1(handshake_1), _handshake_2(handshake_2) {} 1318 1319 void do_thread(Thread* thread) override { 1320 _handshake_1->do_thread(thread); 1321 _handshake_2->do_thread(thread); 1322 } 1323 }; 1324 1325 void ShenandoahHeap::concurrent_final_roots(HandshakeClosure* handshake_closure) { 1326 { 1327 assert(!is_evacuation_in_progress(), "Should not evacuate for abbreviated or old cycles"); 1328 MutexLocker lock(Threads_lock); 1329 set_gc_state_concurrent(WEAK_ROOTS, false); 1330 } 1331 1332 ShenandoahGCStatePropagator propagator(_gc_state.raw_value()); 1333 Threads::non_java_threads_do(&propagator); 1334 if (handshake_closure == nullptr) { 1335 Handshake::execute(&propagator); 1336 } else { 1337 ShenandoahCompositeHandshakeClosure composite(&propagator, handshake_closure); 1338 Handshake::execute(&composite); 1339 } 1340 } 1341 1342 oop ShenandoahHeap::evacuate_object(oop p, Thread* thread) { 1343 assert(thread == Thread::current(), "Expected thread parameter to be current thread."); 1344 if (ShenandoahThreadLocalData::is_oom_during_evac(thread)) { 1345 // This thread went through the OOM during evac protocol. It is safe to return 1346 // the forward pointer. It must not attempt to evacuate any other objects. 1347 return ShenandoahBarrierSet::resolve_forwarded(p); 1348 } 1349 1350 assert(ShenandoahThreadLocalData::is_evac_allowed(thread), "must be enclosed in oom-evac scope"); 1351 1352 ShenandoahHeapRegion* r = heap_region_containing(p); 1353 assert(!r->is_humongous(), "never evacuate humongous objects"); 1354 1355 ShenandoahAffiliation target_gen = r->affiliation(); 1356 return try_evacuate_object(p, thread, r, target_gen); 1357 } 1358 1359 oop ShenandoahHeap::try_evacuate_object(oop p, Thread* thread, ShenandoahHeapRegion* from_region, 1360 ShenandoahAffiliation target_gen) { 1361 assert(target_gen == YOUNG_GENERATION, "Only expect evacuations to young in this mode"); 1362 assert(from_region->is_young(), "Only expect evacuations from young in this mode"); 1363 bool alloc_from_lab = true; 1364 HeapWord* copy = nullptr; 1365 1366 markWord mark = p->mark(); 1367 if (ShenandoahForwarding::is_forwarded(mark)) { 1368 return ShenandoahForwarding::get_forwardee(p); 1369 } 1370 size_t old_size = ShenandoahForwarding::size(p); 1371 size_t size = p->copy_size(old_size, mark); 1372 1373 #ifdef ASSERT 1374 if (ShenandoahOOMDuringEvacALot && 1375 (os::random() & 1) == 0) { // Simulate OOM every ~2nd slow-path call 1376 copy = nullptr; 1377 } else { 1378 #endif 1379 if (UseTLAB) { 1380 copy = allocate_from_gclab(thread, size); 1381 } 1382 if (copy == nullptr) { 1383 // If we failed to allocate in LAB, we'll try a shared allocation. 1384 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared_gc(size, target_gen); 1385 copy = allocate_memory(req); 1386 alloc_from_lab = false; 1387 } 1388 #ifdef ASSERT 1389 } 1390 #endif 1391 1392 if (copy == nullptr) { 1393 control_thread()->handle_alloc_failure_evac(size); 1394 1395 _oom_evac_handler.handle_out_of_memory_during_evacuation(); 1396 1397 return ShenandoahBarrierSet::resolve_forwarded(p); 1398 } 1399 1400 // Copy the object: 1401 Copy::aligned_disjoint_words(cast_from_oop<HeapWord*>(p), copy, old_size); 1402 1403 // Try to install the new forwarding pointer. 1404 oop copy_val = cast_to_oop(copy); 1405 oop result = ShenandoahForwarding::try_update_forwardee(p, copy_val); 1406 if (result == copy_val) { 1407 // Successfully evacuated. Our copy is now the public one! 1408 copy_val->initialize_hash_if_necessary(p); 1409 ContinuationGCSupport::relativize_stack_chunk(copy_val); 1410 shenandoah_assert_correct(nullptr, copy_val); 1411 return copy_val; 1412 } else { 1413 // Failed to evacuate. We need to deal with the object that is left behind. Since this 1414 // new allocation is certainly after TAMS, it will be considered live in the next cycle. 1415 // But if it happens to contain references to evacuated regions, those references would 1416 // not get updated for this stale copy during this cycle, and we will crash while scanning 1417 // it the next cycle. 1418 if (alloc_from_lab) { 1419 // For LAB allocations, it is enough to rollback the allocation ptr. Either the next 1420 // object will overwrite this stale copy, or the filler object on LAB retirement will 1421 // do this. 1422 ShenandoahThreadLocalData::gclab(thread)->undo_allocation(copy, size); 1423 } else { 1424 // For non-LAB allocations, we have no way to retract the allocation, and 1425 // have to explicitly overwrite the copy with the filler object. With that overwrite, 1426 // we have to keep the fwdptr initialized and pointing to our (stale) copy. 1427 assert(size >= ShenandoahHeap::min_fill_size(), "previously allocated object known to be larger than min_size"); 1428 fill_with_object(copy, size); 1429 shenandoah_assert_correct(nullptr, copy_val); 1430 // For non-LAB allocations, the object has already been registered 1431 } 1432 shenandoah_assert_correct(nullptr, result); 1433 return result; 1434 } 1435 } 1436 1437 void ShenandoahHeap::trash_cset_regions() { 1438 ShenandoahHeapLocker locker(lock()); 1439 1440 ShenandoahCollectionSet* set = collection_set(); 1441 ShenandoahHeapRegion* r; 1442 set->clear_current_index(); 1443 while ((r = set->next()) != nullptr) { 1444 r->make_trash(); 1445 } 1446 collection_set()->clear(); 1447 } 1448 1449 void ShenandoahHeap::print_heap_regions_on(outputStream* st) const { 1450 st->print_cr("Heap Regions:"); 1451 st->print_cr("Region state: EU=empty-uncommitted, EC=empty-committed, R=regular, H=humongous start, HP=pinned humongous start"); 1452 st->print_cr(" HC=humongous continuation, CS=collection set, TR=trash, P=pinned, CSP=pinned collection set"); 1453 st->print_cr("BTE=bottom/top/end, TAMS=top-at-mark-start"); 1454 st->print_cr("UWM=update watermark, U=used"); 1455 st->print_cr("T=TLAB allocs, G=GCLAB allocs"); 1456 st->print_cr("S=shared allocs, L=live data"); 1457 st->print_cr("CP=critical pins"); 1458 1459 for (size_t i = 0; i < num_regions(); i++) { 1460 get_region(i)->print_on(st); 1461 } 1462 } 1463 1464 size_t ShenandoahHeap::trash_humongous_region_at(ShenandoahHeapRegion* start) { 1465 assert(start->is_humongous_start(), "reclaim regions starting with the first one"); 1466 1467 oop humongous_obj = cast_to_oop(start->bottom()); 1468 size_t size = humongous_obj->size(); 1469 size_t required_regions = ShenandoahHeapRegion::required_regions(size * HeapWordSize); 1470 size_t index = start->index() + required_regions - 1; 1471 1472 assert(!start->has_live(), "liveness must be zero"); 1473 1474 for(size_t i = 0; i < required_regions; i++) { 1475 // Reclaim from tail. Otherwise, assertion fails when printing region to trace log, 1476 // as it expects that every region belongs to a humongous region starting with a humongous start region. 1477 ShenandoahHeapRegion* region = get_region(index --); 1478 1479 assert(region->is_humongous(), "expect correct humongous start or continuation"); 1480 assert(!region->is_cset(), "Humongous region should not be in collection set"); 1481 1482 region->make_trash_immediate(); 1483 } 1484 return required_regions; 1485 } 1486 1487 class ShenandoahCheckCleanGCLABClosure : public ThreadClosure { 1488 public: 1489 ShenandoahCheckCleanGCLABClosure() {} 1490 void do_thread(Thread* thread) { 1491 PLAB* gclab = ShenandoahThreadLocalData::gclab(thread); 1492 assert(gclab != nullptr, "GCLAB should be initialized for %s", thread->name()); 1493 assert(gclab->words_remaining() == 0, "GCLAB should not need retirement"); 1494 1495 if (ShenandoahHeap::heap()->mode()->is_generational()) { 1496 PLAB* plab = ShenandoahThreadLocalData::plab(thread); 1497 assert(plab != nullptr, "PLAB should be initialized for %s", thread->name()); 1498 assert(plab->words_remaining() == 0, "PLAB should not need retirement"); 1499 } 1500 } 1501 }; 1502 1503 void ShenandoahHeap::labs_make_parsable() { 1504 assert(UseTLAB, "Only call with UseTLAB"); 1505 1506 ShenandoahRetireGCLABClosure cl(false); 1507 1508 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1509 ThreadLocalAllocBuffer& tlab = t->tlab(); 1510 tlab.make_parsable(); 1511 cl.do_thread(t); 1512 } 1513 1514 workers()->threads_do(&cl); 1515 1516 if (safepoint_workers() != nullptr) { 1517 safepoint_workers()->threads_do(&cl); 1518 } 1519 } 1520 1521 void ShenandoahHeap::tlabs_retire(bool resize) { 1522 assert(UseTLAB, "Only call with UseTLAB"); 1523 assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled"); 1524 1525 ThreadLocalAllocStats stats; 1526 1527 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1528 ThreadLocalAllocBuffer& tlab = t->tlab(); 1529 tlab.retire(&stats); 1530 if (resize) { 1531 tlab.resize(); 1532 } 1533 } 1534 1535 stats.publish(); 1536 1537 #ifdef ASSERT 1538 ShenandoahCheckCleanGCLABClosure cl; 1539 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1540 cl.do_thread(t); 1541 } 1542 workers()->threads_do(&cl); 1543 #endif 1544 } 1545 1546 void ShenandoahHeap::gclabs_retire(bool resize) { 1547 assert(UseTLAB, "Only call with UseTLAB"); 1548 assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled"); 1549 1550 ShenandoahRetireGCLABClosure cl(resize); 1551 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1552 cl.do_thread(t); 1553 } 1554 1555 workers()->threads_do(&cl); 1556 1557 if (safepoint_workers() != nullptr) { 1558 safepoint_workers()->threads_do(&cl); 1559 } 1560 } 1561 1562 // Returns size in bytes 1563 size_t ShenandoahHeap::unsafe_max_tlab_alloc(Thread *thread) const { 1564 // Return the max allowed size, and let the allocation path 1565 // figure out the safe size for current allocation. 1566 return ShenandoahHeapRegion::max_tlab_size_bytes(); 1567 } 1568 1569 size_t ShenandoahHeap::max_tlab_size() const { 1570 // Returns size in words 1571 return ShenandoahHeapRegion::max_tlab_size_words(); 1572 } 1573 1574 void ShenandoahHeap::collect_as_vm_thread(GCCause::Cause cause) { 1575 // These requests are ignored because we can't easily have Shenandoah jump into 1576 // a synchronous (degenerated or full) cycle while it is in the middle of a concurrent 1577 // cycle. We _could_ cancel the concurrent cycle and then try to run a cycle directly 1578 // on the VM thread, but this would confuse the control thread mightily and doesn't 1579 // seem worth the trouble. Instead, we will have the caller thread run (and wait for) a 1580 // concurrent cycle in the prologue of the heap inspect/dump operation. This is how 1581 // other concurrent collectors in the JVM handle this scenario as well. 1582 assert(Thread::current()->is_VM_thread(), "Should be the VM thread"); 1583 guarantee(cause == GCCause::_heap_dump || cause == GCCause::_heap_inspection, "Invalid cause"); 1584 } 1585 1586 void ShenandoahHeap::collect(GCCause::Cause cause) { 1587 control_thread()->request_gc(cause); 1588 } 1589 1590 void ShenandoahHeap::do_full_collection(bool clear_all_soft_refs) { 1591 //assert(false, "Shouldn't need to do full collections"); 1592 } 1593 1594 HeapWord* ShenandoahHeap::block_start(const void* addr) const { 1595 ShenandoahHeapRegion* r = heap_region_containing(addr); 1596 if (r != nullptr) { 1597 return r->block_start(addr); 1598 } 1599 return nullptr; 1600 } 1601 1602 bool ShenandoahHeap::block_is_obj(const HeapWord* addr) const { 1603 ShenandoahHeapRegion* r = heap_region_containing(addr); 1604 return r->block_is_obj(addr); 1605 } 1606 1607 bool ShenandoahHeap::print_location(outputStream* st, void* addr) const { 1608 return BlockLocationPrinter<ShenandoahHeap>::print_location(st, addr); 1609 } 1610 1611 void ShenandoahHeap::prepare_for_verify() { 1612 if (SafepointSynchronize::is_at_safepoint() && UseTLAB) { 1613 labs_make_parsable(); 1614 } 1615 } 1616 1617 void ShenandoahHeap::gc_threads_do(ThreadClosure* tcl) const { 1618 if (_shenandoah_policy->is_at_shutdown()) { 1619 return; 1620 } 1621 1622 if (_control_thread != nullptr) { 1623 tcl->do_thread(_control_thread); 1624 } 1625 1626 if (_uncommit_thread != nullptr) { 1627 tcl->do_thread(_uncommit_thread); 1628 } 1629 1630 workers()->threads_do(tcl); 1631 if (_safepoint_workers != nullptr) { 1632 _safepoint_workers->threads_do(tcl); 1633 } 1634 } 1635 1636 void ShenandoahHeap::print_tracing_info() const { 1637 LogTarget(Info, gc, stats) lt; 1638 if (lt.is_enabled()) { 1639 ResourceMark rm; 1640 LogStream ls(lt); 1641 1642 phase_timings()->print_global_on(&ls); 1643 1644 ls.cr(); 1645 ls.cr(); 1646 1647 shenandoah_policy()->print_gc_stats(&ls); 1648 1649 ls.cr(); 1650 ls.cr(); 1651 } 1652 } 1653 1654 void ShenandoahHeap::set_gc_generation(ShenandoahGeneration* generation) { 1655 shenandoah_assert_control_or_vm_thread_at_safepoint(); 1656 _gc_generation = generation; 1657 } 1658 1659 // Active generation may only be set by the VM thread at a safepoint. 1660 void ShenandoahHeap::set_active_generation() { 1661 assert(Thread::current()->is_VM_thread(), "Only the VM Thread"); 1662 assert(SafepointSynchronize::is_at_safepoint(), "Only at a safepoint!"); 1663 assert(_gc_generation != nullptr, "Will set _active_generation to nullptr"); 1664 _active_generation = _gc_generation; 1665 } 1666 1667 void ShenandoahHeap::on_cycle_start(GCCause::Cause cause, ShenandoahGeneration* generation) { 1668 shenandoah_policy()->record_collection_cause(cause); 1669 1670 const GCCause::Cause current = gc_cause(); 1671 assert(current == GCCause::_no_gc, "Over-writing cause: %s, with: %s", 1672 GCCause::to_string(current), GCCause::to_string(cause)); 1673 assert(_gc_generation == nullptr, "Over-writing _gc_generation"); 1674 1675 set_gc_cause(cause); 1676 set_gc_generation(generation); 1677 1678 generation->heuristics()->record_cycle_start(); 1679 } 1680 1681 void ShenandoahHeap::on_cycle_end(ShenandoahGeneration* generation) { 1682 assert(gc_cause() != GCCause::_no_gc, "cause wasn't set"); 1683 assert(_gc_generation != nullptr, "_gc_generation wasn't set"); 1684 1685 generation->heuristics()->record_cycle_end(); 1686 if (mode()->is_generational() && generation->is_global()) { 1687 // If we just completed a GLOBAL GC, claim credit for completion of young-gen and old-gen GC as well 1688 young_generation()->heuristics()->record_cycle_end(); 1689 old_generation()->heuristics()->record_cycle_end(); 1690 } 1691 1692 set_gc_generation(nullptr); 1693 set_gc_cause(GCCause::_no_gc); 1694 } 1695 1696 void ShenandoahHeap::verify(VerifyOption vo) { 1697 if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) { 1698 if (ShenandoahVerify) { 1699 verifier()->verify_generic(vo); 1700 } else { 1701 // TODO: Consider allocating verification bitmaps on demand, 1702 // and turn this on unconditionally. 1703 } 1704 } 1705 } 1706 size_t ShenandoahHeap::tlab_capacity(Thread *thr) const { 1707 return _free_set->capacity(); 1708 } 1709 1710 class ObjectIterateScanRootClosure : public BasicOopIterateClosure { 1711 private: 1712 MarkBitMap* _bitmap; 1713 ShenandoahScanObjectStack* _oop_stack; 1714 ShenandoahHeap* const _heap; 1715 ShenandoahMarkingContext* const _marking_context; 1716 1717 template <class T> 1718 void do_oop_work(T* p) { 1719 T o = RawAccess<>::oop_load(p); 1720 if (!CompressedOops::is_null(o)) { 1721 oop obj = CompressedOops::decode_not_null(o); 1722 if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) { 1723 // There may be dead oops in weak roots in concurrent root phase, do not touch them. 1724 return; 1725 } 1726 obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj); 1727 1728 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1729 if (!_bitmap->is_marked(obj)) { 1730 _bitmap->mark(obj); 1731 _oop_stack->push(obj); 1732 } 1733 } 1734 } 1735 public: 1736 ObjectIterateScanRootClosure(MarkBitMap* bitmap, ShenandoahScanObjectStack* oop_stack) : 1737 _bitmap(bitmap), _oop_stack(oop_stack), _heap(ShenandoahHeap::heap()), 1738 _marking_context(_heap->marking_context()) {} 1739 void do_oop(oop* p) { do_oop_work(p); } 1740 void do_oop(narrowOop* p) { do_oop_work(p); } 1741 }; 1742 1743 /* 1744 * This is public API, used in preparation of object_iterate(). 1745 * Since we don't do linear scan of heap in object_iterate() (see comment below), we don't 1746 * need to make the heap parsable. For Shenandoah-internal linear heap scans that we can 1747 * control, we call SH::tlabs_retire, SH::gclabs_retire. 1748 */ 1749 void ShenandoahHeap::ensure_parsability(bool retire_tlabs) { 1750 // No-op. 1751 } 1752 1753 /* 1754 * Iterates objects in the heap. This is public API, used for, e.g., heap dumping. 1755 * 1756 * We cannot safely iterate objects by doing a linear scan at random points in time. Linear 1757 * scanning needs to deal with dead objects, which may have dead Klass* pointers (e.g. 1758 * calling oopDesc::size() would crash) or dangling reference fields (crashes) etc. Linear 1759 * scanning therefore depends on having a valid marking bitmap to support it. However, we only 1760 * have a valid marking bitmap after successful marking. In particular, we *don't* have a valid 1761 * marking bitmap during marking, after aborted marking or during/after cleanup (when we just 1762 * wiped the bitmap in preparation for next marking). 1763 * 1764 * For all those reasons, we implement object iteration as a single marking traversal, reporting 1765 * objects as we mark+traverse through the heap, starting from GC roots. JVMTI IterateThroughHeap 1766 * is allowed to report dead objects, but is not required to do so. 1767 */ 1768 void ShenandoahHeap::object_iterate(ObjectClosure* cl) { 1769 // Reset bitmap 1770 if (!prepare_aux_bitmap_for_iteration()) 1771 return; 1772 1773 ShenandoahScanObjectStack oop_stack; 1774 ObjectIterateScanRootClosure oops(&_aux_bit_map, &oop_stack); 1775 // Seed the stack with root scan 1776 scan_roots_for_iteration(&oop_stack, &oops); 1777 1778 // Work through the oop stack to traverse heap 1779 while (! oop_stack.is_empty()) { 1780 oop obj = oop_stack.pop(); 1781 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1782 cl->do_object(obj); 1783 obj->oop_iterate(&oops); 1784 } 1785 1786 assert(oop_stack.is_empty(), "should be empty"); 1787 // Reclaim bitmap 1788 reclaim_aux_bitmap_for_iteration(); 1789 } 1790 1791 bool ShenandoahHeap::prepare_aux_bitmap_for_iteration() { 1792 assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints"); 1793 1794 if (!_aux_bitmap_region_special && !os::commit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size(), false)) { 1795 log_warning(gc)("Could not commit native memory for auxiliary marking bitmap for heap iteration"); 1796 return false; 1797 } 1798 // Reset bitmap 1799 _aux_bit_map.clear(); 1800 return true; 1801 } 1802 1803 void ShenandoahHeap::scan_roots_for_iteration(ShenandoahScanObjectStack* oop_stack, ObjectIterateScanRootClosure* oops) { 1804 // Process GC roots according to current GC cycle 1805 // This populates the work stack with initial objects 1806 // It is important to relinquish the associated locks before diving 1807 // into heap dumper 1808 uint n_workers = safepoint_workers() != nullptr ? safepoint_workers()->active_workers() : 1; 1809 ShenandoahHeapIterationRootScanner rp(n_workers); 1810 rp.roots_do(oops); 1811 } 1812 1813 void ShenandoahHeap::reclaim_aux_bitmap_for_iteration() { 1814 if (!_aux_bitmap_region_special && !os::uncommit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size())) { 1815 log_warning(gc)("Could not uncommit native memory for auxiliary marking bitmap for heap iteration"); 1816 } 1817 } 1818 1819 // Closure for parallelly iterate objects 1820 class ShenandoahObjectIterateParScanClosure : public BasicOopIterateClosure { 1821 private: 1822 MarkBitMap* _bitmap; 1823 ShenandoahObjToScanQueue* _queue; 1824 ShenandoahHeap* const _heap; 1825 ShenandoahMarkingContext* const _marking_context; 1826 1827 template <class T> 1828 void do_oop_work(T* p) { 1829 T o = RawAccess<>::oop_load(p); 1830 if (!CompressedOops::is_null(o)) { 1831 oop obj = CompressedOops::decode_not_null(o); 1832 if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) { 1833 // There may be dead oops in weak roots in concurrent root phase, do not touch them. 1834 return; 1835 } 1836 obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj); 1837 1838 assert(oopDesc::is_oop(obj), "Must be a valid oop"); 1839 if (_bitmap->par_mark(obj)) { 1840 _queue->push(ShenandoahMarkTask(obj)); 1841 } 1842 } 1843 } 1844 public: 1845 ShenandoahObjectIterateParScanClosure(MarkBitMap* bitmap, ShenandoahObjToScanQueue* q) : 1846 _bitmap(bitmap), _queue(q), _heap(ShenandoahHeap::heap()), 1847 _marking_context(_heap->marking_context()) {} 1848 void do_oop(oop* p) { do_oop_work(p); } 1849 void do_oop(narrowOop* p) { do_oop_work(p); } 1850 }; 1851 1852 // Object iterator for parallel heap iteraion. 1853 // The root scanning phase happenes in construction as a preparation of 1854 // parallel marking queues. 1855 // Every worker processes it's own marking queue. work-stealing is used 1856 // to balance workload. 1857 class ShenandoahParallelObjectIterator : public ParallelObjectIteratorImpl { 1858 private: 1859 uint _num_workers; 1860 bool _init_ready; 1861 MarkBitMap* _aux_bit_map; 1862 ShenandoahHeap* _heap; 1863 ShenandoahScanObjectStack _roots_stack; // global roots stack 1864 ShenandoahObjToScanQueueSet* _task_queues; 1865 public: 1866 ShenandoahParallelObjectIterator(uint num_workers, MarkBitMap* bitmap) : 1867 _num_workers(num_workers), 1868 _init_ready(false), 1869 _aux_bit_map(bitmap), 1870 _heap(ShenandoahHeap::heap()) { 1871 // Initialize bitmap 1872 _init_ready = _heap->prepare_aux_bitmap_for_iteration(); 1873 if (!_init_ready) { 1874 return; 1875 } 1876 1877 ObjectIterateScanRootClosure oops(_aux_bit_map, &_roots_stack); 1878 _heap->scan_roots_for_iteration(&_roots_stack, &oops); 1879 1880 _init_ready = prepare_worker_queues(); 1881 } 1882 1883 ~ShenandoahParallelObjectIterator() { 1884 // Reclaim bitmap 1885 _heap->reclaim_aux_bitmap_for_iteration(); 1886 // Reclaim queue for workers 1887 if (_task_queues!= nullptr) { 1888 for (uint i = 0; i < _num_workers; ++i) { 1889 ShenandoahObjToScanQueue* q = _task_queues->queue(i); 1890 if (q != nullptr) { 1891 delete q; 1892 _task_queues->register_queue(i, nullptr); 1893 } 1894 } 1895 delete _task_queues; 1896 _task_queues = nullptr; 1897 } 1898 } 1899 1900 virtual void object_iterate(ObjectClosure* cl, uint worker_id) { 1901 if (_init_ready) { 1902 object_iterate_parallel(cl, worker_id, _task_queues); 1903 } 1904 } 1905 1906 private: 1907 // Divide global root_stack into worker queues 1908 bool prepare_worker_queues() { 1909 _task_queues = new ShenandoahObjToScanQueueSet((int) _num_workers); 1910 // Initialize queues for every workers 1911 for (uint i = 0; i < _num_workers; ++i) { 1912 ShenandoahObjToScanQueue* task_queue = new ShenandoahObjToScanQueue(); 1913 _task_queues->register_queue(i, task_queue); 1914 } 1915 // Divide roots among the workers. Assume that object referencing distribution 1916 // is related with root kind, use round-robin to make every worker have same chance 1917 // to process every kind of roots 1918 size_t roots_num = _roots_stack.size(); 1919 if (roots_num == 0) { 1920 // No work to do 1921 return false; 1922 } 1923 1924 for (uint j = 0; j < roots_num; j++) { 1925 uint stack_id = j % _num_workers; 1926 oop obj = _roots_stack.pop(); 1927 _task_queues->queue(stack_id)->push(ShenandoahMarkTask(obj)); 1928 } 1929 return true; 1930 } 1931 1932 void object_iterate_parallel(ObjectClosure* cl, 1933 uint worker_id, 1934 ShenandoahObjToScanQueueSet* queue_set) { 1935 assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints"); 1936 assert(queue_set != nullptr, "task queue must not be null"); 1937 1938 ShenandoahObjToScanQueue* q = queue_set->queue(worker_id); 1939 assert(q != nullptr, "object iterate queue must not be null"); 1940 1941 ShenandoahMarkTask t; 1942 ShenandoahObjectIterateParScanClosure oops(_aux_bit_map, q); 1943 1944 // Work through the queue to traverse heap. 1945 // Steal when there is no task in queue. 1946 while (q->pop(t) || queue_set->steal(worker_id, t)) { 1947 oop obj = t.obj(); 1948 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1949 cl->do_object(obj); 1950 obj->oop_iterate(&oops); 1951 } 1952 assert(q->is_empty(), "should be empty"); 1953 } 1954 }; 1955 1956 ParallelObjectIteratorImpl* ShenandoahHeap::parallel_object_iterator(uint workers) { 1957 return new ShenandoahParallelObjectIterator(workers, &_aux_bit_map); 1958 } 1959 1960 // Keep alive an object that was loaded with AS_NO_KEEPALIVE. 1961 void ShenandoahHeap::keep_alive(oop obj) { 1962 if (is_concurrent_mark_in_progress() && (obj != nullptr)) { 1963 ShenandoahBarrierSet::barrier_set()->enqueue(obj); 1964 } 1965 } 1966 1967 void ShenandoahHeap::heap_region_iterate(ShenandoahHeapRegionClosure* blk) const { 1968 for (size_t i = 0; i < num_regions(); i++) { 1969 ShenandoahHeapRegion* current = get_region(i); 1970 blk->heap_region_do(current); 1971 } 1972 } 1973 1974 class ShenandoahParallelHeapRegionTask : public WorkerTask { 1975 private: 1976 ShenandoahHeap* const _heap; 1977 ShenandoahHeapRegionClosure* const _blk; 1978 size_t const _stride; 1979 1980 shenandoah_padding(0); 1981 volatile size_t _index; 1982 shenandoah_padding(1); 1983 1984 public: 1985 ShenandoahParallelHeapRegionTask(ShenandoahHeapRegionClosure* blk, size_t stride) : 1986 WorkerTask("Shenandoah Parallel Region Operation"), 1987 _heap(ShenandoahHeap::heap()), _blk(blk), _stride(stride), _index(0) {} 1988 1989 void work(uint worker_id) { 1990 ShenandoahParallelWorkerSession worker_session(worker_id); 1991 size_t stride = _stride; 1992 1993 size_t max = _heap->num_regions(); 1994 while (Atomic::load(&_index) < max) { 1995 size_t cur = Atomic::fetch_then_add(&_index, stride, memory_order_relaxed); 1996 size_t start = cur; 1997 size_t end = MIN2(cur + stride, max); 1998 if (start >= max) break; 1999 2000 for (size_t i = cur; i < end; i++) { 2001 ShenandoahHeapRegion* current = _heap->get_region(i); 2002 _blk->heap_region_do(current); 2003 } 2004 } 2005 } 2006 }; 2007 2008 void ShenandoahHeap::parallel_heap_region_iterate(ShenandoahHeapRegionClosure* blk) const { 2009 assert(blk->is_thread_safe(), "Only thread-safe closures here"); 2010 const uint active_workers = workers()->active_workers(); 2011 const size_t n_regions = num_regions(); 2012 size_t stride = ShenandoahParallelRegionStride; 2013 if (stride == 0 && active_workers > 1) { 2014 // Automatically derive the stride to balance the work between threads 2015 // evenly. Do not try to split work if below the reasonable threshold. 2016 constexpr size_t threshold = 4096; 2017 stride = n_regions <= threshold ? 2018 threshold : 2019 (n_regions + active_workers - 1) / active_workers; 2020 } 2021 2022 if (n_regions > stride && active_workers > 1) { 2023 ShenandoahParallelHeapRegionTask task(blk, stride); 2024 workers()->run_task(&task); 2025 } else { 2026 heap_region_iterate(blk); 2027 } 2028 } 2029 2030 class ShenandoahRendezvousClosure : public HandshakeClosure { 2031 public: 2032 inline ShenandoahRendezvousClosure(const char* name) : HandshakeClosure(name) {} 2033 inline void do_thread(Thread* thread) {} 2034 }; 2035 2036 void ShenandoahHeap::rendezvous_threads(const char* name) { 2037 ShenandoahRendezvousClosure cl(name); 2038 Handshake::execute(&cl); 2039 } 2040 2041 void ShenandoahHeap::recycle_trash() { 2042 free_set()->recycle_trash(); 2043 } 2044 2045 void ShenandoahHeap::do_class_unloading() { 2046 _unloader.unload(); 2047 if (mode()->is_generational()) { 2048 old_generation()->set_parsable(false); 2049 } 2050 } 2051 2052 void ShenandoahHeap::stw_weak_refs(bool full_gc) { 2053 // Weak refs processing 2054 ShenandoahPhaseTimings::Phase phase = full_gc ? ShenandoahPhaseTimings::full_gc_weakrefs 2055 : ShenandoahPhaseTimings::degen_gc_weakrefs; 2056 ShenandoahTimingsTracker t(phase); 2057 ShenandoahGCWorkerPhase worker_phase(phase); 2058 shenandoah_assert_generations_reconciled(); 2059 gc_generation()->ref_processor()->process_references(phase, workers(), false /* concurrent */); 2060 } 2061 2062 void ShenandoahHeap::prepare_update_heap_references() { 2063 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "must be at safepoint"); 2064 2065 // Evacuation is over, no GCLABs are needed anymore. GCLABs are under URWM, so we need to 2066 // make them parsable for update code to work correctly. Plus, we can compute new sizes 2067 // for future GCLABs here. 2068 if (UseTLAB) { 2069 ShenandoahGCPhase phase(ShenandoahPhaseTimings::degen_gc_init_update_refs_manage_gclabs); 2070 gclabs_retire(ResizeTLAB); 2071 } 2072 2073 _update_refs_iterator.reset(); 2074 } 2075 2076 void ShenandoahHeap::propagate_gc_state_to_all_threads() { 2077 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Must be at Shenandoah safepoint"); 2078 if (_gc_state_changed) { 2079 ShenandoahGCStatePropagator propagator(_gc_state.raw_value()); 2080 Threads::threads_do(&propagator); 2081 _gc_state_changed = false; 2082 } 2083 } 2084 2085 void ShenandoahHeap::set_gc_state_at_safepoint(uint mask, bool value) { 2086 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Must be at Shenandoah safepoint"); 2087 _gc_state.set_cond(mask, value); 2088 _gc_state_changed = true; 2089 } 2090 2091 void ShenandoahHeap::set_gc_state_concurrent(uint mask, bool value) { 2092 // Holding the thread lock here assures that any thread created after we change the gc 2093 // state will have the correct state. It also prevents attaching threads from seeing 2094 // an inconsistent state. See ShenandoahBarrierSet::on_thread_attach for reference. Established 2095 // threads will use their thread local copy of the gc state (changed by a handshake, or on a 2096 // safepoint). 2097 assert(Threads_lock->is_locked(), "Must hold thread lock for concurrent gc state change"); 2098 _gc_state.set_cond(mask, value); 2099 } 2100 2101 void ShenandoahHeap::set_concurrent_young_mark_in_progress(bool in_progress) { 2102 uint mask; 2103 assert(!has_forwarded_objects(), "Young marking is not concurrent with evacuation"); 2104 if (!in_progress && is_concurrent_old_mark_in_progress()) { 2105 assert(mode()->is_generational(), "Only generational GC has old marking"); 2106 assert(_gc_state.is_set(MARKING), "concurrent_old_marking_in_progress implies MARKING"); 2107 // If old-marking is in progress when we turn off YOUNG_MARKING, leave MARKING (and OLD_MARKING) on 2108 mask = YOUNG_MARKING; 2109 } else { 2110 mask = MARKING | YOUNG_MARKING; 2111 } 2112 set_gc_state_at_safepoint(mask, in_progress); 2113 manage_satb_barrier(in_progress); 2114 } 2115 2116 void ShenandoahHeap::set_concurrent_old_mark_in_progress(bool in_progress) { 2117 #ifdef ASSERT 2118 // has_forwarded_objects() iff UPDATE_REFS or EVACUATION 2119 bool has_forwarded = has_forwarded_objects(); 2120 bool updating_or_evacuating = _gc_state.is_set(UPDATE_REFS | EVACUATION); 2121 bool evacuating = _gc_state.is_set(EVACUATION); 2122 assert ((has_forwarded == updating_or_evacuating) || (evacuating && !has_forwarded && collection_set()->is_empty()), 2123 "Updating or evacuating iff has forwarded objects, or if evacuation phase is promoting in place without forwarding"); 2124 #endif 2125 if (!in_progress && is_concurrent_young_mark_in_progress()) { 2126 // If young-marking is in progress when we turn off OLD_MARKING, leave MARKING (and YOUNG_MARKING) on 2127 assert(_gc_state.is_set(MARKING), "concurrent_young_marking_in_progress implies MARKING"); 2128 set_gc_state_at_safepoint(OLD_MARKING, in_progress); 2129 } else { 2130 set_gc_state_at_safepoint(MARKING | OLD_MARKING, in_progress); 2131 } 2132 manage_satb_barrier(in_progress); 2133 } 2134 2135 bool ShenandoahHeap::is_prepare_for_old_mark_in_progress() const { 2136 return old_generation()->is_preparing_for_mark(); 2137 } 2138 2139 void ShenandoahHeap::manage_satb_barrier(bool active) { 2140 if (is_concurrent_mark_in_progress()) { 2141 // Ignore request to deactivate barrier while concurrent mark is in progress. 2142 // Do not attempt to re-activate the barrier if it is already active. 2143 if (active && !ShenandoahBarrierSet::satb_mark_queue_set().is_active()) { 2144 ShenandoahBarrierSet::satb_mark_queue_set().set_active_all_threads(active, !active); 2145 } 2146 } else { 2147 // No concurrent marking is in progress so honor request to deactivate, 2148 // but only if the barrier is already active. 2149 if (!active && ShenandoahBarrierSet::satb_mark_queue_set().is_active()) { 2150 ShenandoahBarrierSet::satb_mark_queue_set().set_active_all_threads(active, !active); 2151 } 2152 } 2153 } 2154 2155 void ShenandoahHeap::set_evacuation_in_progress(bool in_progress) { 2156 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Only call this at safepoint"); 2157 set_gc_state_at_safepoint(EVACUATION, in_progress); 2158 } 2159 2160 void ShenandoahHeap::set_concurrent_strong_root_in_progress(bool in_progress) { 2161 if (in_progress) { 2162 _concurrent_strong_root_in_progress.set(); 2163 } else { 2164 _concurrent_strong_root_in_progress.unset(); 2165 } 2166 } 2167 2168 void ShenandoahHeap::set_concurrent_weak_root_in_progress(bool cond) { 2169 set_gc_state_at_safepoint(WEAK_ROOTS, cond); 2170 } 2171 2172 GCTracer* ShenandoahHeap::tracer() { 2173 return shenandoah_policy()->tracer(); 2174 } 2175 2176 size_t ShenandoahHeap::tlab_used(Thread* thread) const { 2177 return _free_set->used(); 2178 } 2179 2180 bool ShenandoahHeap::try_cancel_gc(GCCause::Cause cause) { 2181 const GCCause::Cause prev = _cancelled_gc.xchg(cause); 2182 return prev == GCCause::_no_gc || prev == GCCause::_shenandoah_concurrent_gc; 2183 } 2184 2185 void ShenandoahHeap::cancel_concurrent_mark() { 2186 if (mode()->is_generational()) { 2187 young_generation()->cancel_marking(); 2188 old_generation()->cancel_marking(); 2189 } 2190 2191 global_generation()->cancel_marking(); 2192 2193 ShenandoahBarrierSet::satb_mark_queue_set().abandon_partial_marking(); 2194 } 2195 2196 bool ShenandoahHeap::cancel_gc(GCCause::Cause cause) { 2197 if (try_cancel_gc(cause)) { 2198 FormatBuffer<> msg("Cancelling GC: %s", GCCause::to_string(cause)); 2199 log_info(gc,thread)("%s", msg.buffer()); 2200 Events::log(Thread::current(), "%s", msg.buffer()); 2201 _cancel_requested_time = os::elapsedTime(); 2202 return true; 2203 } 2204 return false; 2205 } 2206 2207 uint ShenandoahHeap::max_workers() { 2208 return _max_workers; 2209 } 2210 2211 void ShenandoahHeap::stop() { 2212 // The shutdown sequence should be able to terminate when GC is running. 2213 2214 // Step 0. Notify policy to disable event recording and prevent visiting gc threads during shutdown 2215 _shenandoah_policy->record_shutdown(); 2216 2217 // Step 1. Stop reporting on gc thread cpu utilization 2218 mmu_tracker()->stop(); 2219 2220 // Step 2. Wait until GC worker exits normally (this will cancel any ongoing GC). 2221 control_thread()->stop(); 2222 2223 // Stop 4. Shutdown uncommit thread. 2224 if (_uncommit_thread != nullptr) { 2225 _uncommit_thread->stop(); 2226 } 2227 } 2228 2229 void ShenandoahHeap::stw_unload_classes(bool full_gc) { 2230 if (!unload_classes()) return; 2231 ClassUnloadingContext ctx(_workers->active_workers(), 2232 true /* unregister_nmethods_during_purge */, 2233 false /* lock_nmethod_free_separately */); 2234 2235 // Unload classes and purge SystemDictionary. 2236 { 2237 ShenandoahPhaseTimings::Phase phase = full_gc ? 2238 ShenandoahPhaseTimings::full_gc_purge_class_unload : 2239 ShenandoahPhaseTimings::degen_gc_purge_class_unload; 2240 ShenandoahIsAliveSelector is_alive; 2241 { 2242 CodeCache::UnlinkingScope scope(is_alive.is_alive_closure()); 2243 ShenandoahGCPhase gc_phase(phase); 2244 ShenandoahGCWorkerPhase worker_phase(phase); 2245 bool unloading_occurred = SystemDictionary::do_unloading(gc_timer()); 2246 2247 uint num_workers = _workers->active_workers(); 2248 ShenandoahClassUnloadingTask unlink_task(phase, num_workers, unloading_occurred); 2249 _workers->run_task(&unlink_task); 2250 } 2251 // Release unloaded nmethods's memory. 2252 ClassUnloadingContext::context()->purge_and_free_nmethods(); 2253 } 2254 2255 { 2256 ShenandoahGCPhase phase(full_gc ? 2257 ShenandoahPhaseTimings::full_gc_purge_cldg : 2258 ShenandoahPhaseTimings::degen_gc_purge_cldg); 2259 ClassLoaderDataGraph::purge(true /* at_safepoint */); 2260 } 2261 // Resize and verify metaspace 2262 MetaspaceGC::compute_new_size(); 2263 DEBUG_ONLY(MetaspaceUtils::verify();) 2264 } 2265 2266 // Weak roots are either pre-evacuated (final mark) or updated (final update refs), 2267 // so they should not have forwarded oops. 2268 // However, we do need to "null" dead oops in the roots, if can not be done 2269 // in concurrent cycles. 2270 void ShenandoahHeap::stw_process_weak_roots(bool full_gc) { 2271 uint num_workers = _workers->active_workers(); 2272 ShenandoahPhaseTimings::Phase timing_phase = full_gc ? 2273 ShenandoahPhaseTimings::full_gc_purge_weak_par : 2274 ShenandoahPhaseTimings::degen_gc_purge_weak_par; 2275 ShenandoahGCPhase phase(timing_phase); 2276 ShenandoahGCWorkerPhase worker_phase(timing_phase); 2277 // Cleanup weak roots 2278 if (has_forwarded_objects()) { 2279 ShenandoahForwardedIsAliveClosure is_alive; 2280 ShenandoahNonConcUpdateRefsClosure keep_alive; 2281 ShenandoahParallelWeakRootsCleaningTask<ShenandoahForwardedIsAliveClosure, ShenandoahNonConcUpdateRefsClosure> 2282 cleaning_task(timing_phase, &is_alive, &keep_alive, num_workers); 2283 _workers->run_task(&cleaning_task); 2284 } else { 2285 ShenandoahIsAliveClosure is_alive; 2286 #ifdef ASSERT 2287 ShenandoahAssertNotForwardedClosure verify_cl; 2288 ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, ShenandoahAssertNotForwardedClosure> 2289 cleaning_task(timing_phase, &is_alive, &verify_cl, num_workers); 2290 #else 2291 ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, DoNothingClosure> 2292 cleaning_task(timing_phase, &is_alive, &do_nothing_cl, num_workers); 2293 #endif 2294 _workers->run_task(&cleaning_task); 2295 } 2296 } 2297 2298 void ShenandoahHeap::parallel_cleaning(bool full_gc) { 2299 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 2300 assert(is_stw_gc_in_progress(), "Only for Degenerated and Full GC"); 2301 ShenandoahGCPhase phase(full_gc ? 2302 ShenandoahPhaseTimings::full_gc_purge : 2303 ShenandoahPhaseTimings::degen_gc_purge); 2304 stw_weak_refs(full_gc); 2305 stw_process_weak_roots(full_gc); 2306 stw_unload_classes(full_gc); 2307 } 2308 2309 void ShenandoahHeap::set_has_forwarded_objects(bool cond) { 2310 set_gc_state_at_safepoint(HAS_FORWARDED, cond); 2311 } 2312 2313 void ShenandoahHeap::set_unload_classes(bool uc) { 2314 _unload_classes.set_cond(uc); 2315 } 2316 2317 bool ShenandoahHeap::unload_classes() const { 2318 return _unload_classes.is_set(); 2319 } 2320 2321 address ShenandoahHeap::in_cset_fast_test_addr() { 2322 ShenandoahHeap* heap = ShenandoahHeap::heap(); 2323 assert(heap->collection_set() != nullptr, "Sanity"); 2324 return (address) heap->collection_set()->biased_map_address(); 2325 } 2326 2327 void ShenandoahHeap::reset_bytes_allocated_since_gc_start() { 2328 if (mode()->is_generational()) { 2329 young_generation()->reset_bytes_allocated_since_gc_start(); 2330 old_generation()->reset_bytes_allocated_since_gc_start(); 2331 } 2332 2333 global_generation()->reset_bytes_allocated_since_gc_start(); 2334 } 2335 2336 void ShenandoahHeap::set_degenerated_gc_in_progress(bool in_progress) { 2337 _degenerated_gc_in_progress.set_cond(in_progress); 2338 } 2339 2340 void ShenandoahHeap::set_full_gc_in_progress(bool in_progress) { 2341 _full_gc_in_progress.set_cond(in_progress); 2342 } 2343 2344 void ShenandoahHeap::set_full_gc_move_in_progress(bool in_progress) { 2345 assert (is_full_gc_in_progress(), "should be"); 2346 _full_gc_move_in_progress.set_cond(in_progress); 2347 } 2348 2349 void ShenandoahHeap::set_update_refs_in_progress(bool in_progress) { 2350 set_gc_state_at_safepoint(UPDATE_REFS, in_progress); 2351 } 2352 2353 void ShenandoahHeap::register_nmethod(nmethod* nm) { 2354 ShenandoahCodeRoots::register_nmethod(nm); 2355 } 2356 2357 void ShenandoahHeap::unregister_nmethod(nmethod* nm) { 2358 ShenandoahCodeRoots::unregister_nmethod(nm); 2359 } 2360 2361 void ShenandoahHeap::pin_object(JavaThread* thr, oop o) { 2362 heap_region_containing(o)->record_pin(); 2363 } 2364 2365 void ShenandoahHeap::unpin_object(JavaThread* thr, oop o) { 2366 ShenandoahHeapRegion* r = heap_region_containing(o); 2367 assert(r != nullptr, "Sanity"); 2368 assert(r->pin_count() > 0, "Region %zu should have non-zero pins", r->index()); 2369 r->record_unpin(); 2370 } 2371 2372 void ShenandoahHeap::sync_pinned_region_status() { 2373 ShenandoahHeapLocker locker(lock()); 2374 2375 for (size_t i = 0; i < num_regions(); i++) { 2376 ShenandoahHeapRegion *r = get_region(i); 2377 if (r->is_active()) { 2378 if (r->is_pinned()) { 2379 if (r->pin_count() == 0) { 2380 r->make_unpinned(); 2381 } 2382 } else { 2383 if (r->pin_count() > 0) { 2384 r->make_pinned(); 2385 } 2386 } 2387 } 2388 } 2389 2390 assert_pinned_region_status(); 2391 } 2392 2393 #ifdef ASSERT 2394 void ShenandoahHeap::assert_pinned_region_status() { 2395 for (size_t i = 0; i < num_regions(); i++) { 2396 ShenandoahHeapRegion* r = get_region(i); 2397 shenandoah_assert_generations_reconciled(); 2398 if (gc_generation()->contains(r)) { 2399 assert((r->is_pinned() && r->pin_count() > 0) || (!r->is_pinned() && r->pin_count() == 0), 2400 "Region %zu pinning status is inconsistent", i); 2401 } 2402 } 2403 } 2404 #endif 2405 2406 ConcurrentGCTimer* ShenandoahHeap::gc_timer() const { 2407 return _gc_timer; 2408 } 2409 2410 void ShenandoahHeap::prepare_concurrent_roots() { 2411 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 2412 assert(!is_stw_gc_in_progress(), "Only concurrent GC"); 2413 set_concurrent_strong_root_in_progress(!collection_set()->is_empty()); 2414 set_concurrent_weak_root_in_progress(true); 2415 if (unload_classes()) { 2416 _unloader.prepare(); 2417 } 2418 } 2419 2420 void ShenandoahHeap::finish_concurrent_roots() { 2421 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 2422 assert(!is_stw_gc_in_progress(), "Only concurrent GC"); 2423 if (unload_classes()) { 2424 _unloader.finish(); 2425 } 2426 } 2427 2428 #ifdef ASSERT 2429 void ShenandoahHeap::assert_gc_workers(uint nworkers) { 2430 assert(nworkers > 0 && nworkers <= max_workers(), "Sanity"); 2431 2432 if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) { 2433 // Use ParallelGCThreads inside safepoints 2434 assert(nworkers == ParallelGCThreads, "Use ParallelGCThreads (%u) within safepoint, not %u", 2435 ParallelGCThreads, nworkers); 2436 } else { 2437 // Use ConcGCThreads outside safepoints 2438 assert(nworkers == ConcGCThreads, "Use ConcGCThreads (%u) outside safepoints, %u", 2439 ConcGCThreads, nworkers); 2440 } 2441 } 2442 #endif 2443 2444 ShenandoahVerifier* ShenandoahHeap::verifier() { 2445 guarantee(ShenandoahVerify, "Should be enabled"); 2446 assert (_verifier != nullptr, "sanity"); 2447 return _verifier; 2448 } 2449 2450 template<bool CONCURRENT> 2451 class ShenandoahUpdateHeapRefsTask : public WorkerTask { 2452 private: 2453 ShenandoahHeap* _heap; 2454 ShenandoahRegionIterator* _regions; 2455 public: 2456 explicit ShenandoahUpdateHeapRefsTask(ShenandoahRegionIterator* regions) : 2457 WorkerTask("Shenandoah Update References"), 2458 _heap(ShenandoahHeap::heap()), 2459 _regions(regions) { 2460 } 2461 2462 void work(uint worker_id) { 2463 if (CONCURRENT) { 2464 ShenandoahConcurrentWorkerSession worker_session(worker_id); 2465 ShenandoahSuspendibleThreadSetJoiner stsj; 2466 do_work<ShenandoahConcUpdateRefsClosure>(worker_id); 2467 } else { 2468 ShenandoahParallelWorkerSession worker_session(worker_id); 2469 do_work<ShenandoahNonConcUpdateRefsClosure>(worker_id); 2470 } 2471 } 2472 2473 private: 2474 template<class T> 2475 void do_work(uint worker_id) { 2476 if (CONCURRENT && (worker_id == 0)) { 2477 // We ask the first worker to replenish the Mutator free set by moving regions previously reserved to hold the 2478 // results of evacuation. These reserves are no longer necessary because evacuation has completed. 2479 size_t cset_regions = _heap->collection_set()->count(); 2480 2481 // Now that evacuation is done, we can reassign any regions that had been reserved to hold the results of evacuation 2482 // to the mutator free set. At the end of GC, we will have cset_regions newly evacuated fully empty regions from 2483 // which we will be able to replenish the Collector free set and the OldCollector free set in preparation for the 2484 // next GC cycle. 2485 _heap->free_set()->move_regions_from_collector_to_mutator(cset_regions); 2486 } 2487 // If !CONCURRENT, there's no value in expanding Mutator free set 2488 T cl; 2489 ShenandoahHeapRegion* r = _regions->next(); 2490 while (r != nullptr) { 2491 HeapWord* update_watermark = r->get_update_watermark(); 2492 assert (update_watermark >= r->bottom(), "sanity"); 2493 if (r->is_active() && !r->is_cset()) { 2494 _heap->marked_object_oop_iterate(r, &cl, update_watermark); 2495 if (ShenandoahPacing) { 2496 _heap->pacer()->report_update_refs(pointer_delta(update_watermark, r->bottom())); 2497 } 2498 } 2499 if (_heap->check_cancelled_gc_and_yield(CONCURRENT)) { 2500 return; 2501 } 2502 r = _regions->next(); 2503 } 2504 } 2505 }; 2506 2507 void ShenandoahHeap::update_heap_references(bool concurrent) { 2508 assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC"); 2509 2510 if (concurrent) { 2511 ShenandoahUpdateHeapRefsTask<true> task(&_update_refs_iterator); 2512 workers()->run_task(&task); 2513 } else { 2514 ShenandoahUpdateHeapRefsTask<false> task(&_update_refs_iterator); 2515 workers()->run_task(&task); 2516 } 2517 } 2518 2519 void ShenandoahHeap::update_heap_region_states(bool concurrent) { 2520 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 2521 assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC"); 2522 2523 { 2524 ShenandoahGCPhase phase(concurrent ? 2525 ShenandoahPhaseTimings::final_update_refs_update_region_states : 2526 ShenandoahPhaseTimings::degen_gc_final_update_refs_update_region_states); 2527 2528 final_update_refs_update_region_states(); 2529 2530 assert_pinned_region_status(); 2531 } 2532 2533 { 2534 ShenandoahGCPhase phase(concurrent ? 2535 ShenandoahPhaseTimings::final_update_refs_trash_cset : 2536 ShenandoahPhaseTimings::degen_gc_final_update_refs_trash_cset); 2537 trash_cset_regions(); 2538 } 2539 } 2540 2541 void ShenandoahHeap::final_update_refs_update_region_states() { 2542 ShenandoahSynchronizePinnedRegionStates cl; 2543 parallel_heap_region_iterate(&cl); 2544 } 2545 2546 void ShenandoahHeap::rebuild_free_set(bool concurrent) { 2547 ShenandoahGCPhase phase(concurrent ? 2548 ShenandoahPhaseTimings::final_update_refs_rebuild_freeset : 2549 ShenandoahPhaseTimings::degen_gc_final_update_refs_rebuild_freeset); 2550 ShenandoahHeapLocker locker(lock()); 2551 size_t young_cset_regions, old_cset_regions; 2552 size_t first_old_region, last_old_region, old_region_count; 2553 _free_set->prepare_to_rebuild(young_cset_regions, old_cset_regions, first_old_region, last_old_region, old_region_count); 2554 // If there are no old regions, first_old_region will be greater than last_old_region 2555 assert((first_old_region > last_old_region) || 2556 ((last_old_region + 1 - first_old_region >= old_region_count) && 2557 get_region(first_old_region)->is_old() && get_region(last_old_region)->is_old()), 2558 "sanity: old_region_count: %zu, first_old_region: %zu, last_old_region: %zu", 2559 old_region_count, first_old_region, last_old_region); 2560 2561 if (mode()->is_generational()) { 2562 #ifdef ASSERT 2563 if (ShenandoahVerify) { 2564 verifier()->verify_before_rebuilding_free_set(); 2565 } 2566 #endif 2567 2568 // The computation of bytes_of_allocation_runway_before_gc_trigger is quite conservative so consider all of this 2569 // available for transfer to old. Note that transfer of humongous regions does not impact available. 2570 ShenandoahGenerationalHeap* gen_heap = ShenandoahGenerationalHeap::heap(); 2571 size_t allocation_runway = gen_heap->young_generation()->heuristics()->bytes_of_allocation_runway_before_gc_trigger(young_cset_regions); 2572 gen_heap->compute_old_generation_balance(allocation_runway, old_cset_regions); 2573 2574 // Total old_available may have been expanded to hold anticipated promotions. We trigger if the fragmented available 2575 // memory represents more than 16 regions worth of data. Note that fragmentation may increase when we promote regular 2576 // regions in place when many of these regular regions have an abundant amount of available memory within them. Fragmentation 2577 // will decrease as promote-by-copy consumes the available memory within these partially consumed regions. 2578 // 2579 // We consider old-gen to have excessive fragmentation if more than 12.5% of old-gen is free memory that resides 2580 // within partially consumed regions of memory. 2581 } 2582 // Rebuild free set based on adjusted generation sizes. 2583 _free_set->finish_rebuild(young_cset_regions, old_cset_regions, old_region_count); 2584 2585 if (mode()->is_generational()) { 2586 ShenandoahGenerationalHeap* gen_heap = ShenandoahGenerationalHeap::heap(); 2587 ShenandoahOldGeneration* old_gen = gen_heap->old_generation(); 2588 old_gen->heuristics()->evaluate_triggers(first_old_region, last_old_region, old_region_count, num_regions()); 2589 } 2590 } 2591 2592 void ShenandoahHeap::print_extended_on(outputStream *st) const { 2593 print_on(st); 2594 st->cr(); 2595 print_heap_regions_on(st); 2596 } 2597 2598 bool ShenandoahHeap::is_bitmap_slice_committed(ShenandoahHeapRegion* r, bool skip_self) { 2599 size_t slice = r->index() / _bitmap_regions_per_slice; 2600 2601 size_t regions_from = _bitmap_regions_per_slice * slice; 2602 size_t regions_to = MIN2(num_regions(), _bitmap_regions_per_slice * (slice + 1)); 2603 for (size_t g = regions_from; g < regions_to; g++) { 2604 assert (g / _bitmap_regions_per_slice == slice, "same slice"); 2605 if (skip_self && g == r->index()) continue; 2606 if (get_region(g)->is_committed()) { 2607 return true; 2608 } 2609 } 2610 return false; 2611 } 2612 2613 bool ShenandoahHeap::commit_bitmap_slice(ShenandoahHeapRegion* r) { 2614 shenandoah_assert_heaplocked(); 2615 2616 // Bitmaps in special regions do not need commits 2617 if (_bitmap_region_special) { 2618 return true; 2619 } 2620 2621 if (is_bitmap_slice_committed(r, true)) { 2622 // Some other region from the group is already committed, meaning the bitmap 2623 // slice is already committed, we exit right away. 2624 return true; 2625 } 2626 2627 // Commit the bitmap slice: 2628 size_t slice = r->index() / _bitmap_regions_per_slice; 2629 size_t off = _bitmap_bytes_per_slice * slice; 2630 size_t len = _bitmap_bytes_per_slice; 2631 char* start = (char*) _bitmap_region.start() + off; 2632 2633 if (!os::commit_memory(start, len, false)) { 2634 return false; 2635 } 2636 2637 if (AlwaysPreTouch) { 2638 os::pretouch_memory(start, start + len, _pretouch_bitmap_page_size); 2639 } 2640 2641 return true; 2642 } 2643 2644 bool ShenandoahHeap::uncommit_bitmap_slice(ShenandoahHeapRegion *r) { 2645 shenandoah_assert_heaplocked(); 2646 2647 // Bitmaps in special regions do not need uncommits 2648 if (_bitmap_region_special) { 2649 return true; 2650 } 2651 2652 if (is_bitmap_slice_committed(r, true)) { 2653 // Some other region from the group is still committed, meaning the bitmap 2654 // slice should stay committed, exit right away. 2655 return true; 2656 } 2657 2658 // Uncommit the bitmap slice: 2659 size_t slice = r->index() / _bitmap_regions_per_slice; 2660 size_t off = _bitmap_bytes_per_slice * slice; 2661 size_t len = _bitmap_bytes_per_slice; 2662 if (!os::uncommit_memory((char*)_bitmap_region.start() + off, len)) { 2663 return false; 2664 } 2665 return true; 2666 } 2667 2668 void ShenandoahHeap::forbid_uncommit() { 2669 if (_uncommit_thread != nullptr) { 2670 _uncommit_thread->forbid_uncommit(); 2671 } 2672 } 2673 2674 void ShenandoahHeap::allow_uncommit() { 2675 if (_uncommit_thread != nullptr) { 2676 _uncommit_thread->allow_uncommit(); 2677 } 2678 } 2679 2680 #ifdef ASSERT 2681 bool ShenandoahHeap::is_uncommit_in_progress() { 2682 if (_uncommit_thread != nullptr) { 2683 return _uncommit_thread->is_uncommit_in_progress(); 2684 } 2685 return false; 2686 } 2687 #endif 2688 2689 void ShenandoahHeap::safepoint_synchronize_begin() { 2690 StackWatermarkSet::safepoint_synchronize_begin(); 2691 SuspendibleThreadSet::synchronize(); 2692 } 2693 2694 void ShenandoahHeap::safepoint_synchronize_end() { 2695 SuspendibleThreadSet::desynchronize(); 2696 } 2697 2698 void ShenandoahHeap::try_inject_alloc_failure() { 2699 if (ShenandoahAllocFailureALot && !cancelled_gc() && ((os::random() % 1000) > 950)) { 2700 _inject_alloc_failure.set(); 2701 os::naked_short_sleep(1); 2702 if (cancelled_gc()) { 2703 log_info(gc)("Allocation failure was successfully injected"); 2704 } 2705 } 2706 } 2707 2708 bool ShenandoahHeap::should_inject_alloc_failure() { 2709 return _inject_alloc_failure.is_set() && _inject_alloc_failure.try_unset(); 2710 } 2711 2712 void ShenandoahHeap::initialize_serviceability() { 2713 _memory_pool = new ShenandoahMemoryPool(this); 2714 _cycle_memory_manager.add_pool(_memory_pool); 2715 _stw_memory_manager.add_pool(_memory_pool); 2716 } 2717 2718 GrowableArray<GCMemoryManager*> ShenandoahHeap::memory_managers() { 2719 GrowableArray<GCMemoryManager*> memory_managers(2); 2720 memory_managers.append(&_cycle_memory_manager); 2721 memory_managers.append(&_stw_memory_manager); 2722 return memory_managers; 2723 } 2724 2725 GrowableArray<MemoryPool*> ShenandoahHeap::memory_pools() { 2726 GrowableArray<MemoryPool*> memory_pools(1); 2727 memory_pools.append(_memory_pool); 2728 return memory_pools; 2729 } 2730 2731 MemoryUsage ShenandoahHeap::memory_usage() { 2732 return MemoryUsage(_initial_size, used(), committed(), max_capacity()); 2733 } 2734 2735 ShenandoahRegionIterator::ShenandoahRegionIterator() : 2736 _heap(ShenandoahHeap::heap()), 2737 _index(0) {} 2738 2739 ShenandoahRegionIterator::ShenandoahRegionIterator(ShenandoahHeap* heap) : 2740 _heap(heap), 2741 _index(0) {} 2742 2743 void ShenandoahRegionIterator::reset() { 2744 _index = 0; 2745 } 2746 2747 bool ShenandoahRegionIterator::has_next() const { 2748 return _index < _heap->num_regions(); 2749 } 2750 2751 char ShenandoahHeap::gc_state() const { 2752 return _gc_state.raw_value(); 2753 } 2754 2755 bool ShenandoahHeap::is_gc_state(GCState state) const { 2756 // If the global gc state has been changed, but hasn't yet been propagated to all threads, then 2757 // the global gc state is the correct value. Once the gc state has been synchronized with all threads, 2758 // _gc_state_changed will be toggled to false and we need to use the thread local state. 2759 return _gc_state_changed ? _gc_state.is_set(state) : ShenandoahThreadLocalData::is_gc_state(state); 2760 } 2761 2762 2763 ShenandoahLiveData* ShenandoahHeap::get_liveness_cache(uint worker_id) { 2764 #ifdef ASSERT 2765 assert(_liveness_cache != nullptr, "sanity"); 2766 assert(worker_id < _max_workers, "sanity"); 2767 for (uint i = 0; i < num_regions(); i++) { 2768 assert(_liveness_cache[worker_id][i] == 0, "liveness cache should be empty"); 2769 } 2770 #endif 2771 return _liveness_cache[worker_id]; 2772 } 2773 2774 void ShenandoahHeap::flush_liveness_cache(uint worker_id) { 2775 assert(worker_id < _max_workers, "sanity"); 2776 assert(_liveness_cache != nullptr, "sanity"); 2777 ShenandoahLiveData* ld = _liveness_cache[worker_id]; 2778 for (uint i = 0; i < num_regions(); i++) { 2779 ShenandoahLiveData live = ld[i]; 2780 if (live > 0) { 2781 ShenandoahHeapRegion* r = get_region(i); 2782 r->increase_live_data_gc_words(live); 2783 ld[i] = 0; 2784 } 2785 } 2786 } 2787 2788 bool ShenandoahHeap::requires_barriers(stackChunkOop obj) const { 2789 if (is_idle()) return false; 2790 2791 // Objects allocated after marking start are implicitly alive, don't need any barriers during 2792 // marking phase. 2793 if (is_concurrent_mark_in_progress() && 2794 !marking_context()->allocated_after_mark_start(obj)) { 2795 return true; 2796 } 2797 2798 // Can not guarantee obj is deeply good. 2799 if (has_forwarded_objects()) { 2800 return true; 2801 } 2802 2803 return false; 2804 } 2805 2806 HeapWord* ShenandoahHeap::allocate_loaded_archive_space(size_t size) { 2807 #if INCLUDE_CDS_JAVA_HEAP 2808 // CDS wants a continuous memory range to load a bunch of objects. 2809 // This effectively bypasses normal allocation paths, and requires 2810 // a bit of massaging to unbreak GC invariants. 2811 2812 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared(size); 2813 2814 // Easy case: a single regular region, no further adjustments needed. 2815 if (!ShenandoahHeapRegion::requires_humongous(size)) { 2816 return allocate_memory(req); 2817 } 2818 2819 // Hard case: the requested size would cause a humongous allocation. 2820 // We need to make sure it looks like regular allocation to the rest of GC. 2821 2822 // CDS code would guarantee no objects straddle multiple regions, as long as 2823 // regions are as large as MIN_GC_REGION_ALIGNMENT. It is impractical at this 2824 // point to deal with case when Shenandoah runs with smaller regions. 2825 // TODO: This check can be dropped once MIN_GC_REGION_ALIGNMENT agrees more with Shenandoah. 2826 if (ShenandoahHeapRegion::region_size_bytes() < ArchiveHeapWriter::MIN_GC_REGION_ALIGNMENT) { 2827 return nullptr; 2828 } 2829 2830 HeapWord* mem = allocate_memory(req); 2831 size_t start_idx = heap_region_index_containing(mem); 2832 size_t num_regions = ShenandoahHeapRegion::required_regions(size * HeapWordSize); 2833 2834 // Flip humongous -> regular. 2835 { 2836 ShenandoahHeapLocker locker(lock(), false); 2837 for (size_t c = start_idx; c < start_idx + num_regions; c++) { 2838 get_region(c)->make_regular_bypass(); 2839 } 2840 } 2841 2842 return mem; 2843 #else 2844 assert(false, "Archive heap loader should not be available, should not be here"); 2845 return nullptr; 2846 #endif // INCLUDE_CDS_JAVA_HEAP 2847 } 2848 2849 void ShenandoahHeap::complete_loaded_archive_space(MemRegion archive_space) { 2850 // Nothing to do here, except checking that heap looks fine. 2851 #ifdef ASSERT 2852 HeapWord* start = archive_space.start(); 2853 HeapWord* end = archive_space.end(); 2854 2855 // No unclaimed space between the objects. 2856 // Objects are properly allocated in correct regions. 2857 HeapWord* cur = start; 2858 while (cur < end) { 2859 oop oop = cast_to_oop(cur); 2860 shenandoah_assert_in_correct_region(nullptr, oop); 2861 cur += oop->size(); 2862 } 2863 2864 // No unclaimed tail at the end of archive space. 2865 assert(cur == end, 2866 "Archive space should be fully used: " PTR_FORMAT " " PTR_FORMAT, 2867 p2i(cur), p2i(end)); 2868 2869 // Region bounds are good. 2870 ShenandoahHeapRegion* begin_reg = heap_region_containing(start); 2871 ShenandoahHeapRegion* end_reg = heap_region_containing(end); 2872 assert(begin_reg->is_regular(), "Must be"); 2873 assert(end_reg->is_regular(), "Must be"); 2874 assert(begin_reg->bottom() == start, 2875 "Must agree: archive-space-start: " PTR_FORMAT ", begin-region-bottom: " PTR_FORMAT, 2876 p2i(start), p2i(begin_reg->bottom())); 2877 assert(end_reg->top() == end, 2878 "Must agree: archive-space-end: " PTR_FORMAT ", end-region-top: " PTR_FORMAT, 2879 p2i(end), p2i(end_reg->top())); 2880 #endif 2881 } 2882 2883 ShenandoahGeneration* ShenandoahHeap::generation_for(ShenandoahAffiliation affiliation) const { 2884 if (!mode()->is_generational()) { 2885 return global_generation(); 2886 } else if (affiliation == YOUNG_GENERATION) { 2887 return young_generation(); 2888 } else if (affiliation == OLD_GENERATION) { 2889 return old_generation(); 2890 } 2891 2892 ShouldNotReachHere(); 2893 return nullptr; 2894 } 2895 2896 void ShenandoahHeap::log_heap_status(const char* msg) const { 2897 if (mode()->is_generational()) { 2898 young_generation()->log_status(msg); 2899 old_generation()->log_status(msg); 2900 } else { 2901 global_generation()->log_status(msg); 2902 } 2903 }