1 /* 2 * Copyright (c) 2023, 2024, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2013, 2022, Red Hat, Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "memory/allocation.hpp" 28 #include "memory/universe.hpp" 29 30 #include "gc/shared/classUnloadingContext.hpp" 31 #include "gc/shared/gcArguments.hpp" 32 #include "gc/shared/gcTimer.hpp" 33 #include "gc/shared/gcTraceTime.inline.hpp" 34 #include "gc/shared/locationPrinter.inline.hpp" 35 #include "gc/shared/memAllocator.hpp" 36 #include "gc/shared/plab.hpp" 37 #include "gc/shared/slidingForwarding.hpp" 38 #include "gc/shared/tlab_globals.hpp" 39 40 #include "gc/shenandoah/shenandoahBarrierSet.hpp" 41 #include "gc/shenandoah/shenandoahClosures.inline.hpp" 42 #include "gc/shenandoah/shenandoahCollectionSet.hpp" 43 #include "gc/shenandoah/shenandoahCollectorPolicy.hpp" 44 #include "gc/shenandoah/shenandoahConcurrentMark.hpp" 45 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp" 46 #include "gc/shenandoah/shenandoahControlThread.hpp" 47 #include "gc/shenandoah/shenandoahFreeSet.hpp" 48 #include "gc/shenandoah/shenandoahPhaseTimings.hpp" 49 #include "gc/shenandoah/shenandoahHeap.inline.hpp" 50 #include "gc/shenandoah/shenandoahHeapRegion.inline.hpp" 51 #include "gc/shenandoah/shenandoahHeapRegionSet.hpp" 52 #include "gc/shenandoah/shenandoahInitLogger.hpp" 53 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp" 54 #include "gc/shenandoah/shenandoahMemoryPool.hpp" 55 #include "gc/shenandoah/shenandoahMetrics.hpp" 56 #include "gc/shenandoah/shenandoahMonitoringSupport.hpp" 57 #include "gc/shenandoah/shenandoahOopClosures.inline.hpp" 58 #include "gc/shenandoah/shenandoahPacer.inline.hpp" 59 #include "gc/shenandoah/shenandoahPadding.hpp" 60 #include "gc/shenandoah/shenandoahParallelCleaning.inline.hpp" 61 #include "gc/shenandoah/shenandoahReferenceProcessor.hpp" 62 #include "gc/shenandoah/shenandoahRootProcessor.inline.hpp" 63 #include "gc/shenandoah/shenandoahSTWMark.hpp" 64 #include "gc/shenandoah/shenandoahUtils.hpp" 65 #include "gc/shenandoah/shenandoahVerifier.hpp" 66 #include "gc/shenandoah/shenandoahCodeRoots.hpp" 67 #include "gc/shenandoah/shenandoahVMOperations.hpp" 68 #include "gc/shenandoah/shenandoahWorkGroup.hpp" 69 #include "gc/shenandoah/shenandoahWorkerPolicy.hpp" 70 #include "gc/shenandoah/mode/shenandoahIUMode.hpp" 71 #include "gc/shenandoah/mode/shenandoahPassiveMode.hpp" 72 #include "gc/shenandoah/mode/shenandoahSATBMode.hpp" 73 #if INCLUDE_JFR 74 #include "gc/shenandoah/shenandoahJfrSupport.hpp" 75 #endif 76 77 #include "classfile/systemDictionary.hpp" 78 #include "code/codeCache.hpp" 79 #include "memory/classLoaderMetaspace.hpp" 80 #include "memory/metaspaceUtils.hpp" 81 #include "nmt/mallocTracker.hpp" 82 #include "nmt/memTracker.hpp" 83 #include "oops/compressedOops.inline.hpp" 84 #include "prims/jvmtiTagMap.hpp" 85 #include "runtime/atomic.hpp" 86 #include "runtime/globals.hpp" 87 #include "runtime/interfaceSupport.inline.hpp" 88 #include "runtime/java.hpp" 89 #include "runtime/orderAccess.hpp" 90 #include "runtime/safepointMechanism.hpp" 91 #include "runtime/stackWatermarkSet.hpp" 92 #include "runtime/vmThread.hpp" 93 #include "utilities/events.hpp" 94 #include "utilities/powerOfTwo.hpp" 95 96 class ShenandoahPretouchHeapTask : public WorkerTask { 97 private: 98 ShenandoahRegionIterator _regions; 99 const size_t _page_size; 100 public: 101 ShenandoahPretouchHeapTask(size_t page_size) : 102 WorkerTask("Shenandoah Pretouch Heap"), 103 _page_size(page_size) {} 104 105 virtual void work(uint worker_id) { 106 ShenandoahHeapRegion* r = _regions.next(); 107 while (r != nullptr) { 108 if (r->is_committed()) { 109 os::pretouch_memory(r->bottom(), r->end(), _page_size); 110 } 111 r = _regions.next(); 112 } 113 } 114 }; 115 116 class ShenandoahPretouchBitmapTask : public WorkerTask { 117 private: 118 ShenandoahRegionIterator _regions; 119 char* _bitmap_base; 120 const size_t _bitmap_size; 121 const size_t _page_size; 122 public: 123 ShenandoahPretouchBitmapTask(char* bitmap_base, size_t bitmap_size, size_t page_size) : 124 WorkerTask("Shenandoah Pretouch Bitmap"), 125 _bitmap_base(bitmap_base), 126 _bitmap_size(bitmap_size), 127 _page_size(page_size) {} 128 129 virtual void work(uint worker_id) { 130 ShenandoahHeapRegion* r = _regions.next(); 131 while (r != nullptr) { 132 size_t start = r->index() * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor(); 133 size_t end = (r->index() + 1) * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor(); 134 assert (end <= _bitmap_size, "end is sane: " SIZE_FORMAT " < " SIZE_FORMAT, end, _bitmap_size); 135 136 if (r->is_committed()) { 137 os::pretouch_memory(_bitmap_base + start, _bitmap_base + end, _page_size); 138 } 139 140 r = _regions.next(); 141 } 142 } 143 }; 144 145 jint ShenandoahHeap::initialize() { 146 // 147 // Figure out heap sizing 148 // 149 150 size_t init_byte_size = InitialHeapSize; 151 size_t min_byte_size = MinHeapSize; 152 size_t max_byte_size = MaxHeapSize; 153 size_t heap_alignment = HeapAlignment; 154 155 size_t reg_size_bytes = ShenandoahHeapRegion::region_size_bytes(); 156 157 Universe::check_alignment(max_byte_size, reg_size_bytes, "Shenandoah heap"); 158 Universe::check_alignment(init_byte_size, reg_size_bytes, "Shenandoah heap"); 159 160 _num_regions = ShenandoahHeapRegion::region_count(); 161 assert(_num_regions == (max_byte_size / reg_size_bytes), 162 "Regions should cover entire heap exactly: " SIZE_FORMAT " != " SIZE_FORMAT "/" SIZE_FORMAT, 163 _num_regions, max_byte_size, reg_size_bytes); 164 165 // Now we know the number of regions, initialize the heuristics. 166 initialize_heuristics(); 167 168 size_t num_committed_regions = init_byte_size / reg_size_bytes; 169 num_committed_regions = MIN2(num_committed_regions, _num_regions); 170 assert(num_committed_regions <= _num_regions, "sanity"); 171 _initial_size = num_committed_regions * reg_size_bytes; 172 173 size_t num_min_regions = min_byte_size / reg_size_bytes; 174 num_min_regions = MIN2(num_min_regions, _num_regions); 175 assert(num_min_regions <= _num_regions, "sanity"); 176 _minimum_size = num_min_regions * reg_size_bytes; 177 178 // Default to max heap size. 179 _soft_max_size = _num_regions * reg_size_bytes; 180 181 _committed = _initial_size; 182 183 size_t heap_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size(); 184 size_t bitmap_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size(); 185 size_t region_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size(); 186 187 // 188 // Reserve and commit memory for heap 189 // 190 191 ReservedHeapSpace heap_rs = Universe::reserve_heap(max_byte_size, heap_alignment); 192 initialize_reserved_region(heap_rs); 193 _heap_region = MemRegion((HeapWord*)heap_rs.base(), heap_rs.size() / HeapWordSize); 194 _heap_region_special = heap_rs.special(); 195 196 assert((((size_t) base()) & ShenandoahHeapRegion::region_size_bytes_mask()) == 0, 197 "Misaligned heap: " PTR_FORMAT, p2i(base())); 198 os::trace_page_sizes_for_requested_size("Heap", 199 max_byte_size, heap_alignment, 200 heap_rs.base(), 201 heap_rs.size(), heap_rs.page_size()); 202 203 #if SHENANDOAH_OPTIMIZED_MARKTASK 204 // The optimized ShenandoahMarkTask takes some bits away from the full object bits. 205 // Fail if we ever attempt to address more than we can. 206 if ((uintptr_t)heap_rs.end() >= ShenandoahMarkTask::max_addressable()) { 207 FormatBuffer<512> buf("Shenandoah reserved [" PTR_FORMAT ", " PTR_FORMAT") for the heap, \n" 208 "but max object address is " PTR_FORMAT ". Try to reduce heap size, or try other \n" 209 "VM options that allocate heap at lower addresses (HeapBaseMinAddress, AllocateHeapAt, etc).", 210 p2i(heap_rs.base()), p2i(heap_rs.end()), ShenandoahMarkTask::max_addressable()); 211 vm_exit_during_initialization("Fatal Error", buf); 212 } 213 #endif 214 215 ReservedSpace sh_rs = heap_rs.first_part(max_byte_size); 216 if (!_heap_region_special) { 217 os::commit_memory_or_exit(sh_rs.base(), _initial_size, heap_alignment, false, 218 "Cannot commit heap memory"); 219 } 220 221 // 222 // Reserve and commit memory for bitmap(s) 223 // 224 225 size_t bitmap_size_orig = ShenandoahMarkBitMap::compute_size(heap_rs.size()); 226 _bitmap_size = align_up(bitmap_size_orig, bitmap_page_size); 227 228 size_t bitmap_bytes_per_region = reg_size_bytes / ShenandoahMarkBitMap::heap_map_factor(); 229 230 guarantee(bitmap_bytes_per_region != 0, 231 "Bitmap bytes per region should not be zero"); 232 guarantee(is_power_of_2(bitmap_bytes_per_region), 233 "Bitmap bytes per region should be power of two: " SIZE_FORMAT, bitmap_bytes_per_region); 234 235 if (bitmap_page_size > bitmap_bytes_per_region) { 236 _bitmap_regions_per_slice = bitmap_page_size / bitmap_bytes_per_region; 237 _bitmap_bytes_per_slice = bitmap_page_size; 238 } else { 239 _bitmap_regions_per_slice = 1; 240 _bitmap_bytes_per_slice = bitmap_bytes_per_region; 241 } 242 243 guarantee(_bitmap_regions_per_slice >= 1, 244 "Should have at least one region per slice: " SIZE_FORMAT, 245 _bitmap_regions_per_slice); 246 247 guarantee(((_bitmap_bytes_per_slice) % bitmap_page_size) == 0, 248 "Bitmap slices should be page-granular: bps = " SIZE_FORMAT ", page size = " SIZE_FORMAT, 249 _bitmap_bytes_per_slice, bitmap_page_size); 250 251 ReservedSpace bitmap(_bitmap_size, bitmap_page_size); 252 os::trace_page_sizes_for_requested_size("Mark Bitmap", 253 bitmap_size_orig, bitmap_page_size, 254 bitmap.base(), 255 bitmap.size(), bitmap.page_size()); 256 MemTracker::record_virtual_memory_type(bitmap.base(), mtGC); 257 _bitmap_region = MemRegion((HeapWord*) bitmap.base(), bitmap.size() / HeapWordSize); 258 _bitmap_region_special = bitmap.special(); 259 260 size_t bitmap_init_commit = _bitmap_bytes_per_slice * 261 align_up(num_committed_regions, _bitmap_regions_per_slice) / _bitmap_regions_per_slice; 262 bitmap_init_commit = MIN2(_bitmap_size, bitmap_init_commit); 263 if (!_bitmap_region_special) { 264 os::commit_memory_or_exit((char *) _bitmap_region.start(), bitmap_init_commit, bitmap_page_size, false, 265 "Cannot commit bitmap memory"); 266 } 267 268 _marking_context = new ShenandoahMarkingContext(_heap_region, _bitmap_region, _num_regions, _max_workers); 269 270 if (ShenandoahVerify) { 271 ReservedSpace verify_bitmap(_bitmap_size, bitmap_page_size); 272 os::trace_page_sizes_for_requested_size("Verify Bitmap", 273 bitmap_size_orig, bitmap_page_size, 274 verify_bitmap.base(), 275 verify_bitmap.size(), verify_bitmap.page_size()); 276 if (!verify_bitmap.special()) { 277 os::commit_memory_or_exit(verify_bitmap.base(), verify_bitmap.size(), bitmap_page_size, false, 278 "Cannot commit verification bitmap memory"); 279 } 280 MemTracker::record_virtual_memory_type(verify_bitmap.base(), mtGC); 281 MemRegion verify_bitmap_region = MemRegion((HeapWord *) verify_bitmap.base(), verify_bitmap.size() / HeapWordSize); 282 _verification_bit_map.initialize(_heap_region, verify_bitmap_region); 283 _verifier = new ShenandoahVerifier(this, &_verification_bit_map); 284 } 285 286 // Reserve aux bitmap for use in object_iterate(). We don't commit it here. 287 size_t aux_bitmap_page_size = bitmap_page_size; 288 #ifdef LINUX 289 // In THP "advise" mode, we refrain from advising the system to use large pages 290 // since we know these commits will be short lived, and there is no reason to trash 291 // the THP area with this bitmap. 292 if (UseTransparentHugePages) { 293 aux_bitmap_page_size = os::vm_page_size(); 294 } 295 #endif 296 ReservedSpace aux_bitmap(_bitmap_size, aux_bitmap_page_size); 297 os::trace_page_sizes_for_requested_size("Aux Bitmap", 298 bitmap_size_orig, aux_bitmap_page_size, 299 aux_bitmap.base(), 300 aux_bitmap.size(), aux_bitmap.page_size()); 301 MemTracker::record_virtual_memory_type(aux_bitmap.base(), mtGC); 302 _aux_bitmap_region = MemRegion((HeapWord*) aux_bitmap.base(), aux_bitmap.size() / HeapWordSize); 303 _aux_bitmap_region_special = aux_bitmap.special(); 304 _aux_bit_map.initialize(_heap_region, _aux_bitmap_region); 305 306 // 307 // Create regions and region sets 308 // 309 size_t region_align = align_up(sizeof(ShenandoahHeapRegion), SHENANDOAH_CACHE_LINE_SIZE); 310 size_t region_storage_size_orig = region_align * _num_regions; 311 size_t region_storage_size = align_up(region_storage_size_orig, 312 MAX2(region_page_size, os::vm_allocation_granularity())); 313 314 ReservedSpace region_storage(region_storage_size, region_page_size); 315 os::trace_page_sizes_for_requested_size("Region Storage", 316 region_storage_size_orig, region_page_size, 317 region_storage.base(), 318 region_storage.size(), region_storage.page_size()); 319 MemTracker::record_virtual_memory_type(region_storage.base(), mtGC); 320 if (!region_storage.special()) { 321 os::commit_memory_or_exit(region_storage.base(), region_storage_size, region_page_size, false, 322 "Cannot commit region memory"); 323 } 324 325 // Try to fit the collection set bitmap at lower addresses. This optimizes code generation for cset checks. 326 // Go up until a sensible limit (subject to encoding constraints) and try to reserve the space there. 327 // If not successful, bite a bullet and allocate at whatever address. 328 { 329 const size_t cset_align = MAX2<size_t>(os::vm_page_size(), os::vm_allocation_granularity()); 330 const size_t cset_size = align_up(((size_t) sh_rs.base() + sh_rs.size()) >> ShenandoahHeapRegion::region_size_bytes_shift(), cset_align); 331 const size_t cset_page_size = os::vm_page_size(); 332 333 uintptr_t min = round_up_power_of_2(cset_align); 334 uintptr_t max = (1u << 30u); 335 ReservedSpace cset_rs; 336 337 for (uintptr_t addr = min; addr <= max; addr <<= 1u) { 338 char* req_addr = (char*)addr; 339 assert(is_aligned(req_addr, cset_align), "Should be aligned"); 340 cset_rs = ReservedSpace(cset_size, cset_align, cset_page_size, req_addr); 341 if (cset_rs.is_reserved()) { 342 assert(cset_rs.base() == req_addr, "Allocated where requested: " PTR_FORMAT ", " PTR_FORMAT, p2i(cset_rs.base()), addr); 343 _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base()); 344 break; 345 } 346 } 347 348 if (_collection_set == nullptr) { 349 cset_rs = ReservedSpace(cset_size, cset_align, os::vm_page_size()); 350 _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base()); 351 } 352 os::trace_page_sizes_for_requested_size("Collection Set", 353 cset_size, cset_page_size, 354 cset_rs.base(), 355 cset_rs.size(), cset_rs.page_size()); 356 } 357 358 _regions = NEW_C_HEAP_ARRAY(ShenandoahHeapRegion*, _num_regions, mtGC); 359 _free_set = new ShenandoahFreeSet(this, _num_regions); 360 361 { 362 ShenandoahHeapLocker locker(lock()); 363 364 for (size_t i = 0; i < _num_regions; i++) { 365 HeapWord* start = (HeapWord*)sh_rs.base() + ShenandoahHeapRegion::region_size_words() * i; 366 bool is_committed = i < num_committed_regions; 367 void* loc = region_storage.base() + i * region_align; 368 369 ShenandoahHeapRegion* r = new (loc) ShenandoahHeapRegion(start, i, is_committed); 370 assert(is_aligned(r, SHENANDOAH_CACHE_LINE_SIZE), "Sanity"); 371 372 _marking_context->initialize_top_at_mark_start(r); 373 _regions[i] = r; 374 assert(!collection_set()->is_in(i), "New region should not be in collection set"); 375 } 376 377 // Initialize to complete 378 _marking_context->mark_complete(); 379 380 _free_set->rebuild(); 381 } 382 383 if (AlwaysPreTouch) { 384 // For NUMA, it is important to pre-touch the storage under bitmaps with worker threads, 385 // before initialize() below zeroes it with initializing thread. For any given region, 386 // we touch the region and the corresponding bitmaps from the same thread. 387 ShenandoahPushWorkerScope scope(workers(), _max_workers, false); 388 389 _pretouch_heap_page_size = heap_page_size; 390 _pretouch_bitmap_page_size = bitmap_page_size; 391 392 #ifdef LINUX 393 // UseTransparentHugePages would madvise that backing memory can be coalesced into huge 394 // pages. But, the kernel needs to know that every small page is used, in order to coalesce 395 // them into huge one. Therefore, we need to pretouch with smaller pages. 396 if (UseTransparentHugePages) { 397 _pretouch_heap_page_size = (size_t)os::vm_page_size(); 398 _pretouch_bitmap_page_size = (size_t)os::vm_page_size(); 399 } 400 #endif 401 402 // OS memory managers may want to coalesce back-to-back pages. Make their jobs 403 // simpler by pre-touching continuous spaces (heap and bitmap) separately. 404 405 ShenandoahPretouchBitmapTask bcl(bitmap.base(), _bitmap_size, _pretouch_bitmap_page_size); 406 _workers->run_task(&bcl); 407 408 ShenandoahPretouchHeapTask hcl(_pretouch_heap_page_size); 409 _workers->run_task(&hcl); 410 } 411 412 // 413 // Initialize the rest of GC subsystems 414 // 415 416 _liveness_cache = NEW_C_HEAP_ARRAY(ShenandoahLiveData*, _max_workers, mtGC); 417 for (uint worker = 0; worker < _max_workers; worker++) { 418 _liveness_cache[worker] = NEW_C_HEAP_ARRAY(ShenandoahLiveData, _num_regions, mtGC); 419 Copy::fill_to_bytes(_liveness_cache[worker], _num_regions * sizeof(ShenandoahLiveData)); 420 } 421 422 // There should probably be Shenandoah-specific options for these, 423 // just as there are G1-specific options. 424 { 425 ShenandoahSATBMarkQueueSet& satbqs = ShenandoahBarrierSet::satb_mark_queue_set(); 426 satbqs.set_process_completed_buffers_threshold(20); // G1SATBProcessCompletedThreshold 427 satbqs.set_buffer_enqueue_threshold_percentage(60); // G1SATBBufferEnqueueingThresholdPercent 428 } 429 430 _monitoring_support = new ShenandoahMonitoringSupport(this); 431 _phase_timings = new ShenandoahPhaseTimings(max_workers()); 432 ShenandoahCodeRoots::initialize(); 433 434 if (ShenandoahPacing) { 435 _pacer = new ShenandoahPacer(this); 436 _pacer->setup_for_idle(); 437 } 438 439 _control_thread = new ShenandoahControlThread(); 440 441 ShenandoahInitLogger::print(); 442 443 SlidingForwarding::initialize(_heap_region, ShenandoahHeapRegion::region_size_words()); 444 445 return JNI_OK; 446 } 447 448 void ShenandoahHeap::initialize_mode() { 449 if (ShenandoahGCMode != nullptr) { 450 if (strcmp(ShenandoahGCMode, "satb") == 0) { 451 _gc_mode = new ShenandoahSATBMode(); 452 } else if (strcmp(ShenandoahGCMode, "iu") == 0) { 453 _gc_mode = new ShenandoahIUMode(); 454 } else if (strcmp(ShenandoahGCMode, "passive") == 0) { 455 _gc_mode = new ShenandoahPassiveMode(); 456 } else { 457 vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option"); 458 } 459 } else { 460 vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option (null)"); 461 } 462 _gc_mode->initialize_flags(); 463 if (_gc_mode->is_diagnostic() && !UnlockDiagnosticVMOptions) { 464 vm_exit_during_initialization( 465 err_msg("GC mode \"%s\" is diagnostic, and must be enabled via -XX:+UnlockDiagnosticVMOptions.", 466 _gc_mode->name())); 467 } 468 if (_gc_mode->is_experimental() && !UnlockExperimentalVMOptions) { 469 vm_exit_during_initialization( 470 err_msg("GC mode \"%s\" is experimental, and must be enabled via -XX:+UnlockExperimentalVMOptions.", 471 _gc_mode->name())); 472 } 473 } 474 475 void ShenandoahHeap::initialize_heuristics() { 476 assert(_gc_mode != nullptr, "Must be initialized"); 477 _heuristics = _gc_mode->initialize_heuristics(); 478 479 if (_heuristics->is_diagnostic() && !UnlockDiagnosticVMOptions) { 480 vm_exit_during_initialization( 481 err_msg("Heuristics \"%s\" is diagnostic, and must be enabled via -XX:+UnlockDiagnosticVMOptions.", 482 _heuristics->name())); 483 } 484 if (_heuristics->is_experimental() && !UnlockExperimentalVMOptions) { 485 vm_exit_during_initialization( 486 err_msg("Heuristics \"%s\" is experimental, and must be enabled via -XX:+UnlockExperimentalVMOptions.", 487 _heuristics->name())); 488 } 489 } 490 491 #ifdef _MSC_VER 492 #pragma warning( push ) 493 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list 494 #endif 495 496 ShenandoahHeap::ShenandoahHeap(ShenandoahCollectorPolicy* policy) : 497 CollectedHeap(), 498 _initial_size(0), 499 _used(0), 500 _committed(0), 501 _bytes_allocated_since_gc_start(0), 502 _max_workers(MAX2(ConcGCThreads, ParallelGCThreads)), 503 _workers(nullptr), 504 _safepoint_workers(nullptr), 505 _heap_region_special(false), 506 _num_regions(0), 507 _regions(nullptr), 508 _update_refs_iterator(this), 509 _gc_state_changed(false), 510 _gc_no_progress_count(0), 511 _control_thread(nullptr), 512 _shenandoah_policy(policy), 513 _gc_mode(nullptr), 514 _heuristics(nullptr), 515 _free_set(nullptr), 516 _pacer(nullptr), 517 _verifier(nullptr), 518 _phase_timings(nullptr), 519 _monitoring_support(nullptr), 520 _memory_pool(nullptr), 521 _stw_memory_manager("Shenandoah Pauses"), 522 _cycle_memory_manager("Shenandoah Cycles"), 523 _gc_timer(new ConcurrentGCTimer()), 524 _log_min_obj_alignment_in_bytes(LogMinObjAlignmentInBytes), 525 _ref_processor(new ShenandoahReferenceProcessor(MAX2(_max_workers, 1U))), 526 _marking_context(nullptr), 527 _bitmap_size(0), 528 _bitmap_regions_per_slice(0), 529 _bitmap_bytes_per_slice(0), 530 _bitmap_region_special(false), 531 _aux_bitmap_region_special(false), 532 _liveness_cache(nullptr), 533 _collection_set(nullptr) 534 { 535 // Initialize GC mode early, so we can adjust barrier support 536 initialize_mode(); 537 BarrierSet::set_barrier_set(new ShenandoahBarrierSet(this)); 538 539 _max_workers = MAX2(_max_workers, 1U); 540 _workers = new ShenandoahWorkerThreads("Shenandoah GC Threads", _max_workers); 541 if (_workers == nullptr) { 542 vm_exit_during_initialization("Failed necessary allocation."); 543 } else { 544 _workers->initialize_workers(); 545 } 546 547 if (ParallelGCThreads > 1) { 548 _safepoint_workers = new ShenandoahWorkerThreads("Safepoint Cleanup Thread", 549 ParallelGCThreads); 550 _safepoint_workers->initialize_workers(); 551 } 552 } 553 554 #ifdef _MSC_VER 555 #pragma warning( pop ) 556 #endif 557 558 class ShenandoahResetBitmapTask : public WorkerTask { 559 private: 560 ShenandoahRegionIterator _regions; 561 562 public: 563 ShenandoahResetBitmapTask() : 564 WorkerTask("Shenandoah Reset Bitmap") {} 565 566 void work(uint worker_id) { 567 ShenandoahHeapRegion* region = _regions.next(); 568 ShenandoahHeap* heap = ShenandoahHeap::heap(); 569 ShenandoahMarkingContext* const ctx = heap->marking_context(); 570 while (region != nullptr) { 571 if (heap->is_bitmap_slice_committed(region)) { 572 ctx->clear_bitmap(region); 573 } 574 region = _regions.next(); 575 } 576 } 577 }; 578 579 void ShenandoahHeap::reset_mark_bitmap() { 580 assert_gc_workers(_workers->active_workers()); 581 mark_incomplete_marking_context(); 582 583 ShenandoahResetBitmapTask task; 584 _workers->run_task(&task); 585 } 586 587 void ShenandoahHeap::print_on(outputStream* st) const { 588 st->print_cr("Shenandoah Heap"); 589 st->print_cr(" " SIZE_FORMAT "%s max, " SIZE_FORMAT "%s soft max, " SIZE_FORMAT "%s committed, " SIZE_FORMAT "%s used", 590 byte_size_in_proper_unit(max_capacity()), proper_unit_for_byte_size(max_capacity()), 591 byte_size_in_proper_unit(soft_max_capacity()), proper_unit_for_byte_size(soft_max_capacity()), 592 byte_size_in_proper_unit(committed()), proper_unit_for_byte_size(committed()), 593 byte_size_in_proper_unit(used()), proper_unit_for_byte_size(used())); 594 st->print_cr(" " SIZE_FORMAT " x " SIZE_FORMAT"%s regions", 595 num_regions(), 596 byte_size_in_proper_unit(ShenandoahHeapRegion::region_size_bytes()), 597 proper_unit_for_byte_size(ShenandoahHeapRegion::region_size_bytes())); 598 599 st->print("Status: "); 600 if (has_forwarded_objects()) st->print("has forwarded objects, "); 601 if (is_concurrent_mark_in_progress()) st->print("marking, "); 602 if (is_evacuation_in_progress()) st->print("evacuating, "); 603 if (is_update_refs_in_progress()) st->print("updating refs, "); 604 if (is_degenerated_gc_in_progress()) st->print("degenerated gc, "); 605 if (is_full_gc_in_progress()) st->print("full gc, "); 606 if (is_full_gc_move_in_progress()) st->print("full gc move, "); 607 if (is_concurrent_weak_root_in_progress()) st->print("concurrent weak roots, "); 608 if (is_concurrent_strong_root_in_progress() && 609 !is_concurrent_weak_root_in_progress()) st->print("concurrent strong roots, "); 610 611 if (cancelled_gc()) { 612 st->print("cancelled"); 613 } else { 614 st->print("not cancelled"); 615 } 616 st->cr(); 617 618 st->print_cr("Reserved region:"); 619 st->print_cr(" - [" PTR_FORMAT ", " PTR_FORMAT ") ", 620 p2i(reserved_region().start()), 621 p2i(reserved_region().end())); 622 623 ShenandoahCollectionSet* cset = collection_set(); 624 st->print_cr("Collection set:"); 625 if (cset != nullptr) { 626 st->print_cr(" - map (vanilla): " PTR_FORMAT, p2i(cset->map_address())); 627 st->print_cr(" - map (biased): " PTR_FORMAT, p2i(cset->biased_map_address())); 628 } else { 629 st->print_cr(" (null)"); 630 } 631 632 st->cr(); 633 MetaspaceUtils::print_on(st); 634 635 if (Verbose) { 636 st->cr(); 637 print_heap_regions_on(st); 638 } 639 } 640 641 class ShenandoahInitWorkerGCLABClosure : public ThreadClosure { 642 public: 643 void do_thread(Thread* thread) { 644 assert(thread != nullptr, "Sanity"); 645 assert(thread->is_Worker_thread(), "Only worker thread expected"); 646 ShenandoahThreadLocalData::initialize_gclab(thread); 647 } 648 }; 649 650 void ShenandoahHeap::post_initialize() { 651 CollectedHeap::post_initialize(); 652 MutexLocker ml(Threads_lock); 653 654 ShenandoahInitWorkerGCLABClosure init_gclabs; 655 _workers->threads_do(&init_gclabs); 656 657 // gclab can not be initialized early during VM startup, as it can not determinate its max_size. 658 // Now, we will let WorkerThreads to initialize gclab when new worker is created. 659 _workers->set_initialize_gclab(); 660 if (_safepoint_workers != nullptr) { 661 _safepoint_workers->threads_do(&init_gclabs); 662 _safepoint_workers->set_initialize_gclab(); 663 } 664 665 _heuristics->initialize(); 666 667 JFR_ONLY(ShenandoahJFRSupport::register_jfr_type_serializers();) 668 } 669 670 size_t ShenandoahHeap::used() const { 671 return Atomic::load(&_used); 672 } 673 674 size_t ShenandoahHeap::committed() const { 675 return Atomic::load(&_committed); 676 } 677 678 size_t ShenandoahHeap::available() const { 679 return free_set()->available(); 680 } 681 682 void ShenandoahHeap::increase_committed(size_t bytes) { 683 shenandoah_assert_heaplocked_or_safepoint(); 684 _committed += bytes; 685 } 686 687 void ShenandoahHeap::decrease_committed(size_t bytes) { 688 shenandoah_assert_heaplocked_or_safepoint(); 689 _committed -= bytes; 690 } 691 692 void ShenandoahHeap::increase_used(size_t bytes) { 693 Atomic::add(&_used, bytes, memory_order_relaxed); 694 } 695 696 void ShenandoahHeap::set_used(size_t bytes) { 697 Atomic::store(&_used, bytes); 698 } 699 700 void ShenandoahHeap::decrease_used(size_t bytes) { 701 assert(used() >= bytes, "never decrease heap size by more than we've left"); 702 Atomic::sub(&_used, bytes, memory_order_relaxed); 703 } 704 705 void ShenandoahHeap::increase_allocated(size_t bytes) { 706 Atomic::add(&_bytes_allocated_since_gc_start, bytes, memory_order_relaxed); 707 } 708 709 void ShenandoahHeap::notify_mutator_alloc_words(size_t words, bool waste) { 710 size_t bytes = words * HeapWordSize; 711 if (!waste) { 712 increase_used(bytes); 713 } 714 increase_allocated(bytes); 715 if (ShenandoahPacing) { 716 control_thread()->pacing_notify_alloc(words); 717 if (waste) { 718 pacer()->claim_for_alloc(words, true); 719 } 720 } 721 } 722 723 size_t ShenandoahHeap::capacity() const { 724 return committed(); 725 } 726 727 size_t ShenandoahHeap::max_capacity() const { 728 return _num_regions * ShenandoahHeapRegion::region_size_bytes(); 729 } 730 731 size_t ShenandoahHeap::soft_max_capacity() const { 732 size_t v = Atomic::load(&_soft_max_size); 733 assert(min_capacity() <= v && v <= max_capacity(), 734 "Should be in bounds: " SIZE_FORMAT " <= " SIZE_FORMAT " <= " SIZE_FORMAT, 735 min_capacity(), v, max_capacity()); 736 return v; 737 } 738 739 void ShenandoahHeap::set_soft_max_capacity(size_t v) { 740 assert(min_capacity() <= v && v <= max_capacity(), 741 "Should be in bounds: " SIZE_FORMAT " <= " SIZE_FORMAT " <= " SIZE_FORMAT, 742 min_capacity(), v, max_capacity()); 743 Atomic::store(&_soft_max_size, v); 744 } 745 746 size_t ShenandoahHeap::min_capacity() const { 747 return _minimum_size; 748 } 749 750 size_t ShenandoahHeap::initial_capacity() const { 751 return _initial_size; 752 } 753 754 bool ShenandoahHeap::is_in(const void* p) const { 755 HeapWord* heap_base = (HeapWord*) base(); 756 HeapWord* last_region_end = heap_base + ShenandoahHeapRegion::region_size_words() * num_regions(); 757 return p >= heap_base && p < last_region_end; 758 } 759 760 void ShenandoahHeap::maybe_uncommit(double shrink_before, size_t shrink_until) { 761 assert (ShenandoahUncommit, "should be enabled"); 762 763 // Determine if there is work to do. This avoids taking heap lock if there is 764 // no work available, avoids spamming logs with superfluous logging messages, 765 // and minimises the amount of work while locks are taken. 766 767 if (committed() <= shrink_until) return; 768 769 bool has_work = false; 770 for (size_t i = 0; i < num_regions(); i++) { 771 ShenandoahHeapRegion* r = get_region(i); 772 if (r->is_empty_committed() && (r->empty_time() < shrink_before)) { 773 has_work = true; 774 break; 775 } 776 } 777 778 if (has_work) { 779 static const char* msg = "Concurrent uncommit"; 780 ShenandoahConcurrentPhase gcPhase(msg, ShenandoahPhaseTimings::conc_uncommit, true /* log_heap_usage */); 781 EventMark em("%s", msg); 782 783 op_uncommit(shrink_before, shrink_until); 784 } 785 } 786 787 void ShenandoahHeap::op_uncommit(double shrink_before, size_t shrink_until) { 788 assert (ShenandoahUncommit, "should be enabled"); 789 790 // Application allocates from the beginning of the heap, and GC allocates at 791 // the end of it. It is more efficient to uncommit from the end, so that applications 792 // could enjoy the near committed regions. GC allocations are much less frequent, 793 // and therefore can accept the committing costs. 794 795 size_t count = 0; 796 for (size_t i = num_regions(); i > 0; i--) { // care about size_t underflow 797 ShenandoahHeapRegion* r = get_region(i - 1); 798 if (r->is_empty_committed() && (r->empty_time() < shrink_before)) { 799 ShenandoahHeapLocker locker(lock()); 800 if (r->is_empty_committed()) { 801 if (committed() < shrink_until + ShenandoahHeapRegion::region_size_bytes()) { 802 break; 803 } 804 805 r->make_uncommitted(); 806 count++; 807 } 808 } 809 SpinPause(); // allow allocators to take the lock 810 } 811 812 if (count > 0) { 813 notify_heap_changed(); 814 } 815 } 816 817 bool ShenandoahHeap::check_soft_max_changed() { 818 size_t new_soft_max = Atomic::load(&SoftMaxHeapSize); 819 size_t old_soft_max = soft_max_capacity(); 820 if (new_soft_max != old_soft_max) { 821 new_soft_max = MAX2(min_capacity(), new_soft_max); 822 new_soft_max = MIN2(max_capacity(), new_soft_max); 823 if (new_soft_max != old_soft_max) { 824 log_info(gc)("Soft Max Heap Size: " SIZE_FORMAT "%s -> " SIZE_FORMAT "%s", 825 byte_size_in_proper_unit(old_soft_max), proper_unit_for_byte_size(old_soft_max), 826 byte_size_in_proper_unit(new_soft_max), proper_unit_for_byte_size(new_soft_max) 827 ); 828 set_soft_max_capacity(new_soft_max); 829 return true; 830 } 831 } 832 return false; 833 } 834 835 void ShenandoahHeap::notify_heap_changed() { 836 // Update monitoring counters when we took a new region. This amortizes the 837 // update costs on slow path. 838 monitoring_support()->notify_heap_changed(); 839 840 // This is called from allocation path, and thus should be fast. 841 _heap_changed.try_set(); 842 } 843 844 void ShenandoahHeap::set_forced_counters_update(bool value) { 845 monitoring_support()->set_forced_counters_update(value); 846 } 847 848 void ShenandoahHeap::handle_force_counters_update() { 849 monitoring_support()->handle_force_counters_update(); 850 } 851 852 HeapWord* ShenandoahHeap::allocate_from_gclab_slow(Thread* thread, size_t size) { 853 // New object should fit the GCLAB size 854 size_t min_size = MAX2(size, PLAB::min_size()); 855 856 // Figure out size of new GCLAB, looking back at heuristics. Expand aggressively. 857 size_t new_size = ShenandoahThreadLocalData::gclab_size(thread) * 2; 858 new_size = MIN2(new_size, PLAB::max_size()); 859 new_size = MAX2(new_size, PLAB::min_size()); 860 861 // Record new heuristic value even if we take any shortcut. This captures 862 // the case when moderately-sized objects always take a shortcut. At some point, 863 // heuristics should catch up with them. 864 ShenandoahThreadLocalData::set_gclab_size(thread, new_size); 865 866 if (new_size < size) { 867 // New size still does not fit the object. Fall back to shared allocation. 868 // This avoids retiring perfectly good GCLABs, when we encounter a large object. 869 return nullptr; 870 } 871 872 // Retire current GCLAB, and allocate a new one. 873 PLAB* gclab = ShenandoahThreadLocalData::gclab(thread); 874 gclab->retire(); 875 876 size_t actual_size = 0; 877 HeapWord* gclab_buf = allocate_new_gclab(min_size, new_size, &actual_size); 878 if (gclab_buf == nullptr) { 879 return nullptr; 880 } 881 882 assert (size <= actual_size, "allocation should fit"); 883 884 // ...and clear or zap just allocated TLAB, if needed. 885 if (ZeroTLAB) { 886 Copy::zero_to_words(gclab_buf, actual_size); 887 } else if (ZapTLAB) { 888 // Skip mangling the space corresponding to the object header to 889 // ensure that the returned space is not considered parsable by 890 // any concurrent GC thread. 891 size_t hdr_size = oopDesc::header_size(); 892 Copy::fill_to_words(gclab_buf + hdr_size, actual_size - hdr_size, badHeapWordVal); 893 } 894 gclab->set_buf(gclab_buf, actual_size); 895 return gclab->allocate(size); 896 } 897 898 HeapWord* ShenandoahHeap::allocate_new_tlab(size_t min_size, 899 size_t requested_size, 900 size_t* actual_size) { 901 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_tlab(min_size, requested_size); 902 HeapWord* res = allocate_memory(req); 903 if (res != nullptr) { 904 *actual_size = req.actual_size(); 905 } else { 906 *actual_size = 0; 907 } 908 return res; 909 } 910 911 HeapWord* ShenandoahHeap::allocate_new_gclab(size_t min_size, 912 size_t word_size, 913 size_t* actual_size) { 914 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_gclab(min_size, word_size); 915 HeapWord* res = allocate_memory(req); 916 if (res != nullptr) { 917 *actual_size = req.actual_size(); 918 } else { 919 *actual_size = 0; 920 } 921 return res; 922 } 923 924 HeapWord* ShenandoahHeap::allocate_memory(ShenandoahAllocRequest& req) { 925 intptr_t pacer_epoch = 0; 926 bool in_new_region = false; 927 HeapWord* result = nullptr; 928 929 if (req.is_mutator_alloc()) { 930 if (ShenandoahPacing) { 931 pacer()->pace_for_alloc(req.size()); 932 pacer_epoch = pacer()->epoch(); 933 } 934 935 if (!ShenandoahAllocFailureALot || !should_inject_alloc_failure()) { 936 result = allocate_memory_under_lock(req, in_new_region); 937 } 938 939 // Check that gc overhead is not exceeded. 940 // 941 // Shenandoah will grind along for quite a while allocating one 942 // object at a time using shared (non-tlab) allocations. This check 943 // is testing that the GC overhead limit has not been exceeded. 944 // This will notify the collector to start a cycle, but will raise 945 // an OOME to the mutator if the last Full GCs have not made progress. 946 if (result == nullptr && !req.is_lab_alloc() && get_gc_no_progress_count() > ShenandoahNoProgressThreshold) { 947 control_thread()->handle_alloc_failure(req, false); 948 return nullptr; 949 } 950 951 // Block until control thread reacted, then retry allocation. 952 // 953 // It might happen that one of the threads requesting allocation would unblock 954 // way later after GC happened, only to fail the second allocation, because 955 // other threads have already depleted the free storage. In this case, a better 956 // strategy is to try again, as long as GC makes progress (or until at least 957 // one full GC has completed). 958 size_t original_count = shenandoah_policy()->full_gc_count(); 959 while (result == nullptr 960 && (get_gc_no_progress_count() == 0 || original_count == shenandoah_policy()->full_gc_count())) { 961 control_thread()->handle_alloc_failure(req, true); 962 result = allocate_memory_under_lock(req, in_new_region); 963 } 964 965 if (log_is_enabled(Debug, gc, alloc)) { 966 ResourceMark rm; 967 log_debug(gc, alloc)("Thread: %s, Result: " PTR_FORMAT ", Request: %s, Size: " SIZE_FORMAT ", Original: " SIZE_FORMAT ", Latest: " SIZE_FORMAT, 968 Thread::current()->name(), p2i(result), req.type_string(), req.size(), original_count, get_gc_no_progress_count()); 969 } 970 } else { 971 assert(req.is_gc_alloc(), "Can only accept GC allocs here"); 972 result = allocate_memory_under_lock(req, in_new_region); 973 // Do not call handle_alloc_failure() here, because we cannot block. 974 // The allocation failure would be handled by the LRB slowpath with handle_alloc_failure_evac(). 975 } 976 977 if (in_new_region) { 978 notify_heap_changed(); 979 } 980 981 if (result != nullptr) { 982 size_t requested = req.size(); 983 size_t actual = req.actual_size(); 984 985 assert (req.is_lab_alloc() || (requested == actual), 986 "Only LAB allocations are elastic: %s, requested = " SIZE_FORMAT ", actual = " SIZE_FORMAT, 987 ShenandoahAllocRequest::alloc_type_to_string(req.type()), requested, actual); 988 989 if (req.is_mutator_alloc()) { 990 notify_mutator_alloc_words(actual, false); 991 992 // If we requested more than we were granted, give the rest back to pacer. 993 // This only matters if we are in the same pacing epoch: do not try to unpace 994 // over the budget for the other phase. 995 if (ShenandoahPacing && (pacer_epoch > 0) && (requested > actual)) { 996 pacer()->unpace_for_alloc(pacer_epoch, requested - actual); 997 } 998 } else { 999 increase_used(actual*HeapWordSize); 1000 } 1001 } 1002 1003 return result; 1004 } 1005 1006 HeapWord* ShenandoahHeap::allocate_memory_under_lock(ShenandoahAllocRequest& req, bool& in_new_region) { 1007 // If we are dealing with mutator allocation, then we may need to block for safepoint. 1008 // We cannot block for safepoint for GC allocations, because there is a high chance 1009 // we are already running at safepoint or from stack watermark machinery, and we cannot 1010 // block again. 1011 ShenandoahHeapLocker locker(lock(), req.is_mutator_alloc()); 1012 return _free_set->allocate(req, in_new_region); 1013 } 1014 1015 HeapWord* ShenandoahHeap::mem_allocate(size_t size, 1016 bool* gc_overhead_limit_was_exceeded) { 1017 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared(size); 1018 return allocate_memory(req); 1019 } 1020 1021 MetaWord* ShenandoahHeap::satisfy_failed_metadata_allocation(ClassLoaderData* loader_data, 1022 size_t size, 1023 Metaspace::MetadataType mdtype) { 1024 MetaWord* result; 1025 1026 // Inform metaspace OOM to GC heuristics if class unloading is possible. 1027 if (heuristics()->can_unload_classes()) { 1028 ShenandoahHeuristics* h = heuristics(); 1029 h->record_metaspace_oom(); 1030 } 1031 1032 // Expand and retry allocation 1033 result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype); 1034 if (result != nullptr) { 1035 return result; 1036 } 1037 1038 // Start full GC 1039 collect(GCCause::_metadata_GC_clear_soft_refs); 1040 1041 // Retry allocation 1042 result = loader_data->metaspace_non_null()->allocate(size, mdtype); 1043 if (result != nullptr) { 1044 return result; 1045 } 1046 1047 // Expand and retry allocation 1048 result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype); 1049 if (result != nullptr) { 1050 return result; 1051 } 1052 1053 // Out of memory 1054 return nullptr; 1055 } 1056 1057 class ShenandoahConcurrentEvacuateRegionObjectClosure : public ObjectClosure { 1058 private: 1059 ShenandoahHeap* const _heap; 1060 Thread* const _thread; 1061 public: 1062 ShenandoahConcurrentEvacuateRegionObjectClosure(ShenandoahHeap* heap) : 1063 _heap(heap), _thread(Thread::current()) {} 1064 1065 void do_object(oop p) { 1066 shenandoah_assert_marked(nullptr, p); 1067 if (!p->is_forwarded()) { 1068 _heap->evacuate_object(p, _thread); 1069 } 1070 } 1071 }; 1072 1073 class ShenandoahEvacuationTask : public WorkerTask { 1074 private: 1075 ShenandoahHeap* const _sh; 1076 ShenandoahCollectionSet* const _cs; 1077 bool _concurrent; 1078 public: 1079 ShenandoahEvacuationTask(ShenandoahHeap* sh, 1080 ShenandoahCollectionSet* cs, 1081 bool concurrent) : 1082 WorkerTask("Shenandoah Evacuation"), 1083 _sh(sh), 1084 _cs(cs), 1085 _concurrent(concurrent) 1086 {} 1087 1088 void work(uint worker_id) { 1089 if (_concurrent) { 1090 ShenandoahConcurrentWorkerSession worker_session(worker_id); 1091 ShenandoahSuspendibleThreadSetJoiner stsj; 1092 ShenandoahEvacOOMScope oom_evac_scope; 1093 do_work(); 1094 } else { 1095 ShenandoahParallelWorkerSession worker_session(worker_id); 1096 ShenandoahEvacOOMScope oom_evac_scope; 1097 do_work(); 1098 } 1099 } 1100 1101 private: 1102 void do_work() { 1103 ShenandoahConcurrentEvacuateRegionObjectClosure cl(_sh); 1104 ShenandoahHeapRegion* r; 1105 while ((r =_cs->claim_next()) != nullptr) { 1106 assert(r->has_live(), "Region " SIZE_FORMAT " should have been reclaimed early", r->index()); 1107 _sh->marked_object_iterate(r, &cl); 1108 1109 if (ShenandoahPacing) { 1110 _sh->pacer()->report_evac(r->used() >> LogHeapWordSize); 1111 } 1112 1113 if (_sh->check_cancelled_gc_and_yield(_concurrent)) { 1114 break; 1115 } 1116 } 1117 } 1118 }; 1119 1120 void ShenandoahHeap::evacuate_collection_set(bool concurrent) { 1121 ShenandoahEvacuationTask task(this, _collection_set, concurrent); 1122 workers()->run_task(&task); 1123 } 1124 1125 oop ShenandoahHeap::evacuate_object(oop p, Thread* thread) { 1126 if (ShenandoahThreadLocalData::is_oom_during_evac(Thread::current())) { 1127 // This thread went through the OOM during evac protocol and it is safe to return 1128 // the forward pointer. It must not attempt to evacuate any more. 1129 return ShenandoahBarrierSet::resolve_forwarded(p); 1130 } 1131 1132 assert(ShenandoahThreadLocalData::is_evac_allowed(thread), "must be enclosed in oom-evac scope"); 1133 1134 size_t size = p->forward_safe_size(); 1135 1136 assert(!heap_region_containing(p)->is_humongous(), "never evacuate humongous objects"); 1137 1138 bool alloc_from_gclab = true; 1139 HeapWord* copy = nullptr; 1140 1141 #ifdef ASSERT 1142 if (ShenandoahOOMDuringEvacALot && 1143 (os::random() & 1) == 0) { // Simulate OOM every ~2nd slow-path call 1144 copy = nullptr; 1145 } else { 1146 #endif 1147 if (UseTLAB) { 1148 copy = allocate_from_gclab(thread, size); 1149 } 1150 if (copy == nullptr) { 1151 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared_gc(size); 1152 copy = allocate_memory(req); 1153 alloc_from_gclab = false; 1154 } 1155 #ifdef ASSERT 1156 } 1157 #endif 1158 1159 if (copy == nullptr) { 1160 control_thread()->handle_alloc_failure_evac(size); 1161 1162 _oom_evac_handler.handle_out_of_memory_during_evacuation(); 1163 1164 return ShenandoahBarrierSet::resolve_forwarded(p); 1165 } 1166 1167 // Copy the object: 1168 Copy::aligned_disjoint_words(cast_from_oop<HeapWord*>(p), copy, size); 1169 oop copy_val = cast_to_oop(copy); 1170 1171 if (UseCompactObjectHeaders) { 1172 // The copy above is not atomic. Make sure we have seen the proper mark 1173 // and re-install it into the copy, so that Klass* is guaranteed to be correct. 1174 markWord mark = copy_val->mark(); 1175 if (!mark.is_marked()) { 1176 copy_val->set_mark(mark); 1177 ContinuationGCSupport::relativize_stack_chunk(copy_val); 1178 } else { 1179 // If we copied a mark-word that indicates 'forwarded' state, the object 1180 // installation would not succeed. We cannot access Klass* anymore either. 1181 // Skip the transformation. 1182 } 1183 } else { 1184 ContinuationGCSupport::relativize_stack_chunk(copy_val); 1185 } 1186 1187 // Try to install the new forwarding pointer. 1188 oop result = ShenandoahForwarding::try_update_forwardee(p, copy_val); 1189 if (result == copy_val) { 1190 // Successfully evacuated. Our copy is now the public one! 1191 shenandoah_assert_correct(nullptr, copy_val); 1192 return copy_val; 1193 } else { 1194 // Failed to evacuate. We need to deal with the object that is left behind. Since this 1195 // new allocation is certainly after TAMS, it will be considered live in the next cycle. 1196 // But if it happens to contain references to evacuated regions, those references would 1197 // not get updated for this stale copy during this cycle, and we will crash while scanning 1198 // it the next cycle. 1199 // 1200 // For GCLAB allocations, it is enough to rollback the allocation ptr. Either the next 1201 // object will overwrite this stale copy, or the filler object on LAB retirement will 1202 // do this. For non-GCLAB allocations, we have no way to retract the allocation, and 1203 // have to explicitly overwrite the copy with the filler object. With that overwrite, 1204 // we have to keep the fwdptr initialized and pointing to our (stale) copy. 1205 if (alloc_from_gclab) { 1206 ShenandoahThreadLocalData::gclab(thread)->undo_allocation(copy, size); 1207 } else { 1208 fill_with_object(copy, size); 1209 shenandoah_assert_correct(nullptr, copy_val); 1210 } 1211 shenandoah_assert_correct(nullptr, result); 1212 return result; 1213 } 1214 } 1215 1216 void ShenandoahHeap::trash_cset_regions() { 1217 ShenandoahHeapLocker locker(lock()); 1218 1219 ShenandoahCollectionSet* set = collection_set(); 1220 ShenandoahHeapRegion* r; 1221 set->clear_current_index(); 1222 while ((r = set->next()) != nullptr) { 1223 r->make_trash(); 1224 } 1225 collection_set()->clear(); 1226 } 1227 1228 void ShenandoahHeap::print_heap_regions_on(outputStream* st) const { 1229 st->print_cr("Heap Regions:"); 1230 st->print_cr("Region state: EU=empty-uncommitted, EC=empty-committed, R=regular, H=humongous start, HP=pinned humongous start"); 1231 st->print_cr(" HC=humongous continuation, CS=collection set, TR=trash, P=pinned, CSP=pinned collection set"); 1232 st->print_cr("BTE=bottom/top/end, TAMS=top-at-mark-start"); 1233 st->print_cr("UWM=update watermark, U=used"); 1234 st->print_cr("T=TLAB allocs, G=GCLAB allocs"); 1235 st->print_cr("S=shared allocs, L=live data"); 1236 st->print_cr("CP=critical pins"); 1237 1238 for (size_t i = 0; i < num_regions(); i++) { 1239 get_region(i)->print_on(st); 1240 } 1241 } 1242 1243 void ShenandoahHeap::trash_humongous_region_at(ShenandoahHeapRegion* start) { 1244 assert(start->is_humongous_start(), "reclaim regions starting with the first one"); 1245 1246 oop humongous_obj = cast_to_oop(start->bottom()); 1247 size_t size = humongous_obj->size(); 1248 size_t required_regions = ShenandoahHeapRegion::required_regions(size * HeapWordSize); 1249 size_t index = start->index() + required_regions - 1; 1250 1251 assert(!start->has_live(), "liveness must be zero"); 1252 1253 for(size_t i = 0; i < required_regions; i++) { 1254 // Reclaim from tail. Otherwise, assertion fails when printing region to trace log, 1255 // as it expects that every region belongs to a humongous region starting with a humongous start region. 1256 ShenandoahHeapRegion* region = get_region(index --); 1257 1258 assert(region->is_humongous(), "expect correct humongous start or continuation"); 1259 assert(!region->is_cset(), "Humongous region should not be in collection set"); 1260 1261 region->make_trash_immediate(); 1262 } 1263 } 1264 1265 class ShenandoahCheckCleanGCLABClosure : public ThreadClosure { 1266 public: 1267 ShenandoahCheckCleanGCLABClosure() {} 1268 void do_thread(Thread* thread) { 1269 PLAB* gclab = ShenandoahThreadLocalData::gclab(thread); 1270 assert(gclab != nullptr, "GCLAB should be initialized for %s", thread->name()); 1271 assert(gclab->words_remaining() == 0, "GCLAB should not need retirement"); 1272 } 1273 }; 1274 1275 class ShenandoahRetireGCLABClosure : public ThreadClosure { 1276 private: 1277 bool const _resize; 1278 public: 1279 ShenandoahRetireGCLABClosure(bool resize) : _resize(resize) {} 1280 void do_thread(Thread* thread) { 1281 PLAB* gclab = ShenandoahThreadLocalData::gclab(thread); 1282 assert(gclab != nullptr, "GCLAB should be initialized for %s", thread->name()); 1283 gclab->retire(); 1284 if (_resize && ShenandoahThreadLocalData::gclab_size(thread) > 0) { 1285 ShenandoahThreadLocalData::set_gclab_size(thread, 0); 1286 } 1287 } 1288 }; 1289 1290 void ShenandoahHeap::labs_make_parsable() { 1291 assert(UseTLAB, "Only call with UseTLAB"); 1292 1293 ShenandoahRetireGCLABClosure cl(false); 1294 1295 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1296 ThreadLocalAllocBuffer& tlab = t->tlab(); 1297 tlab.make_parsable(); 1298 cl.do_thread(t); 1299 } 1300 1301 workers()->threads_do(&cl); 1302 } 1303 1304 void ShenandoahHeap::tlabs_retire(bool resize) { 1305 assert(UseTLAB, "Only call with UseTLAB"); 1306 assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled"); 1307 1308 ThreadLocalAllocStats stats; 1309 1310 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1311 ThreadLocalAllocBuffer& tlab = t->tlab(); 1312 tlab.retire(&stats); 1313 if (resize) { 1314 tlab.resize(); 1315 } 1316 } 1317 1318 stats.publish(); 1319 1320 #ifdef ASSERT 1321 ShenandoahCheckCleanGCLABClosure cl; 1322 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1323 cl.do_thread(t); 1324 } 1325 workers()->threads_do(&cl); 1326 #endif 1327 } 1328 1329 void ShenandoahHeap::gclabs_retire(bool resize) { 1330 assert(UseTLAB, "Only call with UseTLAB"); 1331 assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled"); 1332 1333 ShenandoahRetireGCLABClosure cl(resize); 1334 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1335 cl.do_thread(t); 1336 } 1337 workers()->threads_do(&cl); 1338 1339 if (safepoint_workers() != nullptr) { 1340 safepoint_workers()->threads_do(&cl); 1341 } 1342 } 1343 1344 // Returns size in bytes 1345 size_t ShenandoahHeap::unsafe_max_tlab_alloc(Thread *thread) const { 1346 // Return the max allowed size, and let the allocation path 1347 // figure out the safe size for current allocation. 1348 return ShenandoahHeapRegion::max_tlab_size_bytes(); 1349 } 1350 1351 size_t ShenandoahHeap::max_tlab_size() const { 1352 // Returns size in words 1353 return ShenandoahHeapRegion::max_tlab_size_words(); 1354 } 1355 1356 void ShenandoahHeap::collect(GCCause::Cause cause) { 1357 control_thread()->request_gc(cause); 1358 } 1359 1360 void ShenandoahHeap::do_full_collection(bool clear_all_soft_refs) { 1361 //assert(false, "Shouldn't need to do full collections"); 1362 } 1363 1364 HeapWord* ShenandoahHeap::block_start(const void* addr) const { 1365 ShenandoahHeapRegion* r = heap_region_containing(addr); 1366 if (r != nullptr) { 1367 return r->block_start(addr); 1368 } 1369 return nullptr; 1370 } 1371 1372 bool ShenandoahHeap::block_is_obj(const HeapWord* addr) const { 1373 ShenandoahHeapRegion* r = heap_region_containing(addr); 1374 return r->block_is_obj(addr); 1375 } 1376 1377 bool ShenandoahHeap::print_location(outputStream* st, void* addr) const { 1378 return BlockLocationPrinter<ShenandoahHeap>::print_location(st, addr); 1379 } 1380 1381 void ShenandoahHeap::prepare_for_verify() { 1382 if (SafepointSynchronize::is_at_safepoint() && UseTLAB) { 1383 labs_make_parsable(); 1384 } 1385 } 1386 1387 void ShenandoahHeap::gc_threads_do(ThreadClosure* tcl) const { 1388 if (_shenandoah_policy->is_at_shutdown()) { 1389 return; 1390 } 1391 1392 if (_control_thread != nullptr) { 1393 tcl->do_thread(_control_thread); 1394 } 1395 1396 workers()->threads_do(tcl); 1397 if (_safepoint_workers != nullptr) { 1398 _safepoint_workers->threads_do(tcl); 1399 } 1400 } 1401 1402 void ShenandoahHeap::print_tracing_info() const { 1403 LogTarget(Info, gc, stats) lt; 1404 if (lt.is_enabled()) { 1405 ResourceMark rm; 1406 LogStream ls(lt); 1407 1408 phase_timings()->print_global_on(&ls); 1409 1410 ls.cr(); 1411 ls.cr(); 1412 1413 shenandoah_policy()->print_gc_stats(&ls); 1414 1415 ls.cr(); 1416 ls.cr(); 1417 } 1418 } 1419 1420 void ShenandoahHeap::verify(VerifyOption vo) { 1421 if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) { 1422 if (ShenandoahVerify) { 1423 verifier()->verify_generic(vo); 1424 } else { 1425 // TODO: Consider allocating verification bitmaps on demand, 1426 // and turn this on unconditionally. 1427 } 1428 } 1429 } 1430 size_t ShenandoahHeap::tlab_capacity(Thread *thr) const { 1431 return _free_set->capacity(); 1432 } 1433 1434 class ObjectIterateScanRootClosure : public BasicOopIterateClosure { 1435 private: 1436 MarkBitMap* _bitmap; 1437 ShenandoahScanObjectStack* _oop_stack; 1438 ShenandoahHeap* const _heap; 1439 ShenandoahMarkingContext* const _marking_context; 1440 1441 template <class T> 1442 void do_oop_work(T* p) { 1443 T o = RawAccess<>::oop_load(p); 1444 if (!CompressedOops::is_null(o)) { 1445 oop obj = CompressedOops::decode_not_null(o); 1446 if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) { 1447 // There may be dead oops in weak roots in concurrent root phase, do not touch them. 1448 return; 1449 } 1450 obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj); 1451 1452 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1453 if (!_bitmap->is_marked(obj)) { 1454 _bitmap->mark(obj); 1455 _oop_stack->push(obj); 1456 } 1457 } 1458 } 1459 public: 1460 ObjectIterateScanRootClosure(MarkBitMap* bitmap, ShenandoahScanObjectStack* oop_stack) : 1461 _bitmap(bitmap), _oop_stack(oop_stack), _heap(ShenandoahHeap::heap()), 1462 _marking_context(_heap->marking_context()) {} 1463 void do_oop(oop* p) { do_oop_work(p); } 1464 void do_oop(narrowOop* p) { do_oop_work(p); } 1465 }; 1466 1467 /* 1468 * This is public API, used in preparation of object_iterate(). 1469 * Since we don't do linear scan of heap in object_iterate() (see comment below), we don't 1470 * need to make the heap parsable. For Shenandoah-internal linear heap scans that we can 1471 * control, we call SH::tlabs_retire, SH::gclabs_retire. 1472 */ 1473 void ShenandoahHeap::ensure_parsability(bool retire_tlabs) { 1474 // No-op. 1475 } 1476 1477 /* 1478 * Iterates objects in the heap. This is public API, used for, e.g., heap dumping. 1479 * 1480 * We cannot safely iterate objects by doing a linear scan at random points in time. Linear 1481 * scanning needs to deal with dead objects, which may have dead Klass* pointers (e.g. 1482 * calling oopDesc::size() would crash) or dangling reference fields (crashes) etc. Linear 1483 * scanning therefore depends on having a valid marking bitmap to support it. However, we only 1484 * have a valid marking bitmap after successful marking. In particular, we *don't* have a valid 1485 * marking bitmap during marking, after aborted marking or during/after cleanup (when we just 1486 * wiped the bitmap in preparation for next marking). 1487 * 1488 * For all those reasons, we implement object iteration as a single marking traversal, reporting 1489 * objects as we mark+traverse through the heap, starting from GC roots. JVMTI IterateThroughHeap 1490 * is allowed to report dead objects, but is not required to do so. 1491 */ 1492 void ShenandoahHeap::object_iterate(ObjectClosure* cl) { 1493 // Reset bitmap 1494 if (!prepare_aux_bitmap_for_iteration()) 1495 return; 1496 1497 ShenandoahScanObjectStack oop_stack; 1498 ObjectIterateScanRootClosure oops(&_aux_bit_map, &oop_stack); 1499 // Seed the stack with root scan 1500 scan_roots_for_iteration(&oop_stack, &oops); 1501 1502 // Work through the oop stack to traverse heap 1503 while (! oop_stack.is_empty()) { 1504 oop obj = oop_stack.pop(); 1505 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1506 cl->do_object(obj); 1507 obj->oop_iterate(&oops); 1508 } 1509 1510 assert(oop_stack.is_empty(), "should be empty"); 1511 // Reclaim bitmap 1512 reclaim_aux_bitmap_for_iteration(); 1513 } 1514 1515 bool ShenandoahHeap::prepare_aux_bitmap_for_iteration() { 1516 assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints"); 1517 1518 if (!_aux_bitmap_region_special && !os::commit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size(), false)) { 1519 log_warning(gc)("Could not commit native memory for auxiliary marking bitmap for heap iteration"); 1520 return false; 1521 } 1522 // Reset bitmap 1523 _aux_bit_map.clear(); 1524 return true; 1525 } 1526 1527 void ShenandoahHeap::scan_roots_for_iteration(ShenandoahScanObjectStack* oop_stack, ObjectIterateScanRootClosure* oops) { 1528 // Process GC roots according to current GC cycle 1529 // This populates the work stack with initial objects 1530 // It is important to relinquish the associated locks before diving 1531 // into heap dumper 1532 uint n_workers = safepoint_workers() != nullptr ? safepoint_workers()->active_workers() : 1; 1533 ShenandoahHeapIterationRootScanner rp(n_workers); 1534 rp.roots_do(oops); 1535 } 1536 1537 void ShenandoahHeap::reclaim_aux_bitmap_for_iteration() { 1538 if (!_aux_bitmap_region_special && !os::uncommit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size())) { 1539 log_warning(gc)("Could not uncommit native memory for auxiliary marking bitmap for heap iteration"); 1540 } 1541 } 1542 1543 // Closure for parallelly iterate objects 1544 class ShenandoahObjectIterateParScanClosure : public BasicOopIterateClosure { 1545 private: 1546 MarkBitMap* _bitmap; 1547 ShenandoahObjToScanQueue* _queue; 1548 ShenandoahHeap* const _heap; 1549 ShenandoahMarkingContext* const _marking_context; 1550 1551 template <class T> 1552 void do_oop_work(T* p) { 1553 T o = RawAccess<>::oop_load(p); 1554 if (!CompressedOops::is_null(o)) { 1555 oop obj = CompressedOops::decode_not_null(o); 1556 if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) { 1557 // There may be dead oops in weak roots in concurrent root phase, do not touch them. 1558 return; 1559 } 1560 obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj); 1561 1562 assert(oopDesc::is_oop(obj), "Must be a valid oop"); 1563 if (_bitmap->par_mark(obj)) { 1564 _queue->push(ShenandoahMarkTask(obj)); 1565 } 1566 } 1567 } 1568 public: 1569 ShenandoahObjectIterateParScanClosure(MarkBitMap* bitmap, ShenandoahObjToScanQueue* q) : 1570 _bitmap(bitmap), _queue(q), _heap(ShenandoahHeap::heap()), 1571 _marking_context(_heap->marking_context()) {} 1572 void do_oop(oop* p) { do_oop_work(p); } 1573 void do_oop(narrowOop* p) { do_oop_work(p); } 1574 }; 1575 1576 // Object iterator for parallel heap iteraion. 1577 // The root scanning phase happenes in construction as a preparation of 1578 // parallel marking queues. 1579 // Every worker processes it's own marking queue. work-stealing is used 1580 // to balance workload. 1581 class ShenandoahParallelObjectIterator : public ParallelObjectIteratorImpl { 1582 private: 1583 uint _num_workers; 1584 bool _init_ready; 1585 MarkBitMap* _aux_bit_map; 1586 ShenandoahHeap* _heap; 1587 ShenandoahScanObjectStack _roots_stack; // global roots stack 1588 ShenandoahObjToScanQueueSet* _task_queues; 1589 public: 1590 ShenandoahParallelObjectIterator(uint num_workers, MarkBitMap* bitmap) : 1591 _num_workers(num_workers), 1592 _init_ready(false), 1593 _aux_bit_map(bitmap), 1594 _heap(ShenandoahHeap::heap()) { 1595 // Initialize bitmap 1596 _init_ready = _heap->prepare_aux_bitmap_for_iteration(); 1597 if (!_init_ready) { 1598 return; 1599 } 1600 1601 ObjectIterateScanRootClosure oops(_aux_bit_map, &_roots_stack); 1602 _heap->scan_roots_for_iteration(&_roots_stack, &oops); 1603 1604 _init_ready = prepare_worker_queues(); 1605 } 1606 1607 ~ShenandoahParallelObjectIterator() { 1608 // Reclaim bitmap 1609 _heap->reclaim_aux_bitmap_for_iteration(); 1610 // Reclaim queue for workers 1611 if (_task_queues!= nullptr) { 1612 for (uint i = 0; i < _num_workers; ++i) { 1613 ShenandoahObjToScanQueue* q = _task_queues->queue(i); 1614 if (q != nullptr) { 1615 delete q; 1616 _task_queues->register_queue(i, nullptr); 1617 } 1618 } 1619 delete _task_queues; 1620 _task_queues = nullptr; 1621 } 1622 } 1623 1624 virtual void object_iterate(ObjectClosure* cl, uint worker_id) { 1625 if (_init_ready) { 1626 object_iterate_parallel(cl, worker_id, _task_queues); 1627 } 1628 } 1629 1630 private: 1631 // Divide global root_stack into worker queues 1632 bool prepare_worker_queues() { 1633 _task_queues = new ShenandoahObjToScanQueueSet((int) _num_workers); 1634 // Initialize queues for every workers 1635 for (uint i = 0; i < _num_workers; ++i) { 1636 ShenandoahObjToScanQueue* task_queue = new ShenandoahObjToScanQueue(); 1637 _task_queues->register_queue(i, task_queue); 1638 } 1639 // Divide roots among the workers. Assume that object referencing distribution 1640 // is related with root kind, use round-robin to make every worker have same chance 1641 // to process every kind of roots 1642 size_t roots_num = _roots_stack.size(); 1643 if (roots_num == 0) { 1644 // No work to do 1645 return false; 1646 } 1647 1648 for (uint j = 0; j < roots_num; j++) { 1649 uint stack_id = j % _num_workers; 1650 oop obj = _roots_stack.pop(); 1651 _task_queues->queue(stack_id)->push(ShenandoahMarkTask(obj)); 1652 } 1653 return true; 1654 } 1655 1656 void object_iterate_parallel(ObjectClosure* cl, 1657 uint worker_id, 1658 ShenandoahObjToScanQueueSet* queue_set) { 1659 assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints"); 1660 assert(queue_set != nullptr, "task queue must not be null"); 1661 1662 ShenandoahObjToScanQueue* q = queue_set->queue(worker_id); 1663 assert(q != nullptr, "object iterate queue must not be null"); 1664 1665 ShenandoahMarkTask t; 1666 ShenandoahObjectIterateParScanClosure oops(_aux_bit_map, q); 1667 1668 // Work through the queue to traverse heap. 1669 // Steal when there is no task in queue. 1670 while (q->pop(t) || queue_set->steal(worker_id, t)) { 1671 oop obj = t.obj(); 1672 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1673 cl->do_object(obj); 1674 obj->oop_iterate(&oops); 1675 } 1676 assert(q->is_empty(), "should be empty"); 1677 } 1678 }; 1679 1680 ParallelObjectIteratorImpl* ShenandoahHeap::parallel_object_iterator(uint workers) { 1681 return new ShenandoahParallelObjectIterator(workers, &_aux_bit_map); 1682 } 1683 1684 // Keep alive an object that was loaded with AS_NO_KEEPALIVE. 1685 void ShenandoahHeap::keep_alive(oop obj) { 1686 if (is_concurrent_mark_in_progress() && (obj != nullptr)) { 1687 ShenandoahBarrierSet::barrier_set()->enqueue(obj); 1688 } 1689 } 1690 1691 void ShenandoahHeap::heap_region_iterate(ShenandoahHeapRegionClosure* blk) const { 1692 for (size_t i = 0; i < num_regions(); i++) { 1693 ShenandoahHeapRegion* current = get_region(i); 1694 blk->heap_region_do(current); 1695 } 1696 } 1697 1698 class ShenandoahParallelHeapRegionTask : public WorkerTask { 1699 private: 1700 ShenandoahHeap* const _heap; 1701 ShenandoahHeapRegionClosure* const _blk; 1702 1703 shenandoah_padding(0); 1704 volatile size_t _index; 1705 shenandoah_padding(1); 1706 1707 public: 1708 ShenandoahParallelHeapRegionTask(ShenandoahHeapRegionClosure* blk) : 1709 WorkerTask("Shenandoah Parallel Region Operation"), 1710 _heap(ShenandoahHeap::heap()), _blk(blk), _index(0) {} 1711 1712 void work(uint worker_id) { 1713 ShenandoahParallelWorkerSession worker_session(worker_id); 1714 size_t stride = ShenandoahParallelRegionStride; 1715 1716 size_t max = _heap->num_regions(); 1717 while (Atomic::load(&_index) < max) { 1718 size_t cur = Atomic::fetch_then_add(&_index, stride, memory_order_relaxed); 1719 size_t start = cur; 1720 size_t end = MIN2(cur + stride, max); 1721 if (start >= max) break; 1722 1723 for (size_t i = cur; i < end; i++) { 1724 ShenandoahHeapRegion* current = _heap->get_region(i); 1725 _blk->heap_region_do(current); 1726 } 1727 } 1728 } 1729 }; 1730 1731 void ShenandoahHeap::parallel_heap_region_iterate(ShenandoahHeapRegionClosure* blk) const { 1732 assert(blk->is_thread_safe(), "Only thread-safe closures here"); 1733 if (num_regions() > ShenandoahParallelRegionStride) { 1734 ShenandoahParallelHeapRegionTask task(blk); 1735 workers()->run_task(&task); 1736 } else { 1737 heap_region_iterate(blk); 1738 } 1739 } 1740 1741 class ShenandoahRendezvousClosure : public HandshakeClosure { 1742 public: 1743 inline ShenandoahRendezvousClosure() : HandshakeClosure("ShenandoahRendezvous") {} 1744 inline void do_thread(Thread* thread) {} 1745 }; 1746 1747 void ShenandoahHeap::rendezvous_threads() { 1748 ShenandoahRendezvousClosure cl; 1749 Handshake::execute(&cl); 1750 } 1751 1752 void ShenandoahHeap::recycle_trash() { 1753 free_set()->recycle_trash(); 1754 } 1755 1756 class ShenandoahResetUpdateRegionStateClosure : public ShenandoahHeapRegionClosure { 1757 private: 1758 ShenandoahMarkingContext* const _ctx; 1759 public: 1760 ShenandoahResetUpdateRegionStateClosure() : _ctx(ShenandoahHeap::heap()->marking_context()) {} 1761 1762 void heap_region_do(ShenandoahHeapRegion* r) { 1763 if (r->is_active()) { 1764 // Reset live data and set TAMS optimistically. We would recheck these under the pause 1765 // anyway to capture any updates that happened since now. 1766 r->clear_live_data(); 1767 _ctx->capture_top_at_mark_start(r); 1768 } 1769 } 1770 1771 bool is_thread_safe() { return true; } 1772 }; 1773 1774 void ShenandoahHeap::prepare_gc() { 1775 reset_mark_bitmap(); 1776 1777 ShenandoahResetUpdateRegionStateClosure cl; 1778 parallel_heap_region_iterate(&cl); 1779 } 1780 1781 class ShenandoahFinalMarkUpdateRegionStateClosure : public ShenandoahHeapRegionClosure { 1782 private: 1783 ShenandoahMarkingContext* const _ctx; 1784 ShenandoahHeapLock* const _lock; 1785 1786 public: 1787 ShenandoahFinalMarkUpdateRegionStateClosure() : 1788 _ctx(ShenandoahHeap::heap()->complete_marking_context()), _lock(ShenandoahHeap::heap()->lock()) {} 1789 1790 void heap_region_do(ShenandoahHeapRegion* r) { 1791 if (r->is_active()) { 1792 // All allocations past TAMS are implicitly live, adjust the region data. 1793 // Bitmaps/TAMS are swapped at this point, so we need to poll complete bitmap. 1794 HeapWord *tams = _ctx->top_at_mark_start(r); 1795 HeapWord *top = r->top(); 1796 if (top > tams) { 1797 r->increase_live_data_alloc_words(pointer_delta(top, tams)); 1798 } 1799 1800 // We are about to select the collection set, make sure it knows about 1801 // current pinning status. Also, this allows trashing more regions that 1802 // now have their pinning status dropped. 1803 if (r->is_pinned()) { 1804 if (r->pin_count() == 0) { 1805 ShenandoahHeapLocker locker(_lock); 1806 r->make_unpinned(); 1807 } 1808 } else { 1809 if (r->pin_count() > 0) { 1810 ShenandoahHeapLocker locker(_lock); 1811 r->make_pinned(); 1812 } 1813 } 1814 1815 // Remember limit for updating refs. It's guaranteed that we get no 1816 // from-space-refs written from here on. 1817 r->set_update_watermark_at_safepoint(r->top()); 1818 } else { 1819 assert(!r->has_live(), "Region " SIZE_FORMAT " should have no live data", r->index()); 1820 assert(_ctx->top_at_mark_start(r) == r->top(), 1821 "Region " SIZE_FORMAT " should have correct TAMS", r->index()); 1822 } 1823 } 1824 1825 bool is_thread_safe() { return true; } 1826 }; 1827 1828 void ShenandoahHeap::prepare_regions_and_collection_set(bool concurrent) { 1829 assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC"); 1830 { 1831 ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::final_update_region_states : 1832 ShenandoahPhaseTimings::degen_gc_final_update_region_states); 1833 ShenandoahFinalMarkUpdateRegionStateClosure cl; 1834 parallel_heap_region_iterate(&cl); 1835 1836 assert_pinned_region_status(); 1837 } 1838 1839 { 1840 ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::choose_cset : 1841 ShenandoahPhaseTimings::degen_gc_choose_cset); 1842 ShenandoahHeapLocker locker(lock()); 1843 _collection_set->clear(); 1844 heuristics()->choose_collection_set(_collection_set); 1845 } 1846 1847 { 1848 ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::final_rebuild_freeset : 1849 ShenandoahPhaseTimings::degen_gc_final_rebuild_freeset); 1850 ShenandoahHeapLocker locker(lock()); 1851 _free_set->rebuild(); 1852 } 1853 } 1854 1855 void ShenandoahHeap::do_class_unloading() { 1856 _unloader.unload(); 1857 } 1858 1859 void ShenandoahHeap::stw_weak_refs(bool full_gc) { 1860 // Weak refs processing 1861 ShenandoahPhaseTimings::Phase phase = full_gc ? ShenandoahPhaseTimings::full_gc_weakrefs 1862 : ShenandoahPhaseTimings::degen_gc_weakrefs; 1863 ShenandoahTimingsTracker t(phase); 1864 ShenandoahGCWorkerPhase worker_phase(phase); 1865 ref_processor()->process_references(phase, workers(), false /* concurrent */); 1866 } 1867 1868 void ShenandoahHeap::prepare_update_heap_references(bool concurrent) { 1869 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "must be at safepoint"); 1870 1871 // Evacuation is over, no GCLABs are needed anymore. GCLABs are under URWM, so we need to 1872 // make them parsable for update code to work correctly. Plus, we can compute new sizes 1873 // for future GCLABs here. 1874 if (UseTLAB) { 1875 ShenandoahGCPhase phase(concurrent ? 1876 ShenandoahPhaseTimings::init_update_refs_manage_gclabs : 1877 ShenandoahPhaseTimings::degen_gc_init_update_refs_manage_gclabs); 1878 gclabs_retire(ResizeTLAB); 1879 } 1880 1881 _update_refs_iterator.reset(); 1882 } 1883 1884 void ShenandoahHeap::propagate_gc_state_to_java_threads() { 1885 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Must be at Shenandoah safepoint"); 1886 if (_gc_state_changed) { 1887 _gc_state_changed = false; 1888 char state = gc_state(); 1889 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1890 ShenandoahThreadLocalData::set_gc_state(t, state); 1891 } 1892 } 1893 } 1894 1895 void ShenandoahHeap::set_gc_state(uint mask, bool value) { 1896 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Must be at Shenandoah safepoint"); 1897 _gc_state.set_cond(mask, value); 1898 _gc_state_changed = true; 1899 } 1900 1901 void ShenandoahHeap::set_concurrent_mark_in_progress(bool in_progress) { 1902 assert(!has_forwarded_objects(), "Not expected before/after mark phase"); 1903 set_gc_state(MARKING, in_progress); 1904 ShenandoahBarrierSet::satb_mark_queue_set().set_active_all_threads(in_progress, !in_progress); 1905 } 1906 1907 void ShenandoahHeap::set_evacuation_in_progress(bool in_progress) { 1908 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Only call this at safepoint"); 1909 set_gc_state(EVACUATION, in_progress); 1910 } 1911 1912 void ShenandoahHeap::set_concurrent_strong_root_in_progress(bool in_progress) { 1913 if (in_progress) { 1914 _concurrent_strong_root_in_progress.set(); 1915 } else { 1916 _concurrent_strong_root_in_progress.unset(); 1917 } 1918 } 1919 1920 void ShenandoahHeap::set_concurrent_weak_root_in_progress(bool cond) { 1921 set_gc_state(WEAK_ROOTS, cond); 1922 } 1923 1924 GCTracer* ShenandoahHeap::tracer() { 1925 return shenandoah_policy()->tracer(); 1926 } 1927 1928 size_t ShenandoahHeap::tlab_used(Thread* thread) const { 1929 return _free_set->used(); 1930 } 1931 1932 bool ShenandoahHeap::try_cancel_gc() { 1933 jbyte prev = _cancelled_gc.cmpxchg(CANCELLED, CANCELLABLE); 1934 return prev == CANCELLABLE; 1935 } 1936 1937 void ShenandoahHeap::cancel_gc(GCCause::Cause cause) { 1938 if (try_cancel_gc()) { 1939 FormatBuffer<> msg("Cancelling GC: %s", GCCause::to_string(cause)); 1940 log_info(gc)("%s", msg.buffer()); 1941 Events::log(Thread::current(), "%s", msg.buffer()); 1942 } 1943 } 1944 1945 uint ShenandoahHeap::max_workers() { 1946 return _max_workers; 1947 } 1948 1949 void ShenandoahHeap::stop() { 1950 // The shutdown sequence should be able to terminate when GC is running. 1951 1952 // Step 0. Notify policy to disable event recording and prevent visiting gc threads during shutdown 1953 _shenandoah_policy->record_shutdown(); 1954 1955 // Step 1. Notify control thread that we are in shutdown. 1956 // Note that we cannot do that with stop(), because stop() is blocking and waits for the actual shutdown. 1957 // Doing stop() here would wait for the normal GC cycle to complete, never falling through to cancel below. 1958 control_thread()->prepare_for_graceful_shutdown(); 1959 1960 // Step 2. Notify GC workers that we are cancelling GC. 1961 cancel_gc(GCCause::_shenandoah_stop_vm); 1962 1963 // Step 3. Wait until GC worker exits normally. 1964 control_thread()->stop(); 1965 } 1966 1967 void ShenandoahHeap::stw_unload_classes(bool full_gc) { 1968 if (!unload_classes()) return; 1969 ClassUnloadingContext ctx(_workers->active_workers(), 1970 true /* unregister_nmethods_during_purge */, 1971 false /* lock_nmethod_free_separately */); 1972 1973 // Unload classes and purge SystemDictionary. 1974 { 1975 ShenandoahPhaseTimings::Phase phase = full_gc ? 1976 ShenandoahPhaseTimings::full_gc_purge_class_unload : 1977 ShenandoahPhaseTimings::degen_gc_purge_class_unload; 1978 ShenandoahIsAliveSelector is_alive; 1979 { 1980 CodeCache::UnlinkingScope scope(is_alive.is_alive_closure()); 1981 ShenandoahGCPhase gc_phase(phase); 1982 ShenandoahGCWorkerPhase worker_phase(phase); 1983 bool unloading_occurred = SystemDictionary::do_unloading(gc_timer()); 1984 1985 uint num_workers = _workers->active_workers(); 1986 ShenandoahClassUnloadingTask unlink_task(phase, num_workers, unloading_occurred); 1987 _workers->run_task(&unlink_task); 1988 } 1989 // Release unloaded nmethods's memory. 1990 ClassUnloadingContext::context()->purge_and_free_nmethods(); 1991 } 1992 1993 { 1994 ShenandoahGCPhase phase(full_gc ? 1995 ShenandoahPhaseTimings::full_gc_purge_cldg : 1996 ShenandoahPhaseTimings::degen_gc_purge_cldg); 1997 ClassLoaderDataGraph::purge(true /* at_safepoint */); 1998 } 1999 // Resize and verify metaspace 2000 MetaspaceGC::compute_new_size(); 2001 DEBUG_ONLY(MetaspaceUtils::verify();) 2002 } 2003 2004 // Weak roots are either pre-evacuated (final mark) or updated (final updaterefs), 2005 // so they should not have forwarded oops. 2006 // However, we do need to "null" dead oops in the roots, if can not be done 2007 // in concurrent cycles. 2008 void ShenandoahHeap::stw_process_weak_roots(bool full_gc) { 2009 uint num_workers = _workers->active_workers(); 2010 ShenandoahPhaseTimings::Phase timing_phase = full_gc ? 2011 ShenandoahPhaseTimings::full_gc_purge_weak_par : 2012 ShenandoahPhaseTimings::degen_gc_purge_weak_par; 2013 ShenandoahGCPhase phase(timing_phase); 2014 ShenandoahGCWorkerPhase worker_phase(timing_phase); 2015 // Cleanup weak roots 2016 if (has_forwarded_objects()) { 2017 ShenandoahForwardedIsAliveClosure is_alive; 2018 ShenandoahUpdateRefsClosure keep_alive; 2019 ShenandoahParallelWeakRootsCleaningTask<ShenandoahForwardedIsAliveClosure, ShenandoahUpdateRefsClosure> 2020 cleaning_task(timing_phase, &is_alive, &keep_alive, num_workers); 2021 _workers->run_task(&cleaning_task); 2022 } else { 2023 ShenandoahIsAliveClosure is_alive; 2024 #ifdef ASSERT 2025 ShenandoahAssertNotForwardedClosure verify_cl; 2026 ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, ShenandoahAssertNotForwardedClosure> 2027 cleaning_task(timing_phase, &is_alive, &verify_cl, num_workers); 2028 #else 2029 ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, DoNothingClosure> 2030 cleaning_task(timing_phase, &is_alive, &do_nothing_cl, num_workers); 2031 #endif 2032 _workers->run_task(&cleaning_task); 2033 } 2034 } 2035 2036 void ShenandoahHeap::parallel_cleaning(bool full_gc) { 2037 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 2038 assert(is_stw_gc_in_progress(), "Only for Degenerated and Full GC"); 2039 ShenandoahGCPhase phase(full_gc ? 2040 ShenandoahPhaseTimings::full_gc_purge : 2041 ShenandoahPhaseTimings::degen_gc_purge); 2042 stw_weak_refs(full_gc); 2043 stw_process_weak_roots(full_gc); 2044 stw_unload_classes(full_gc); 2045 } 2046 2047 void ShenandoahHeap::set_has_forwarded_objects(bool cond) { 2048 set_gc_state(HAS_FORWARDED, cond); 2049 } 2050 2051 void ShenandoahHeap::set_unload_classes(bool uc) { 2052 _unload_classes.set_cond(uc); 2053 } 2054 2055 bool ShenandoahHeap::unload_classes() const { 2056 return _unload_classes.is_set(); 2057 } 2058 2059 address ShenandoahHeap::in_cset_fast_test_addr() { 2060 ShenandoahHeap* heap = ShenandoahHeap::heap(); 2061 assert(heap->collection_set() != nullptr, "Sanity"); 2062 return (address) heap->collection_set()->biased_map_address(); 2063 } 2064 2065 size_t ShenandoahHeap::bytes_allocated_since_gc_start() const { 2066 return Atomic::load(&_bytes_allocated_since_gc_start); 2067 } 2068 2069 void ShenandoahHeap::reset_bytes_allocated_since_gc_start() { 2070 Atomic::store(&_bytes_allocated_since_gc_start, (size_t)0); 2071 } 2072 2073 void ShenandoahHeap::set_degenerated_gc_in_progress(bool in_progress) { 2074 _degenerated_gc_in_progress.set_cond(in_progress); 2075 } 2076 2077 void ShenandoahHeap::set_full_gc_in_progress(bool in_progress) { 2078 _full_gc_in_progress.set_cond(in_progress); 2079 } 2080 2081 void ShenandoahHeap::set_full_gc_move_in_progress(bool in_progress) { 2082 assert (is_full_gc_in_progress(), "should be"); 2083 _full_gc_move_in_progress.set_cond(in_progress); 2084 } 2085 2086 void ShenandoahHeap::set_update_refs_in_progress(bool in_progress) { 2087 set_gc_state(UPDATEREFS, in_progress); 2088 } 2089 2090 void ShenandoahHeap::register_nmethod(nmethod* nm) { 2091 ShenandoahCodeRoots::register_nmethod(nm); 2092 } 2093 2094 void ShenandoahHeap::unregister_nmethod(nmethod* nm) { 2095 ShenandoahCodeRoots::unregister_nmethod(nm); 2096 } 2097 2098 void ShenandoahHeap::pin_object(JavaThread* thr, oop o) { 2099 heap_region_containing(o)->record_pin(); 2100 } 2101 2102 void ShenandoahHeap::unpin_object(JavaThread* thr, oop o) { 2103 ShenandoahHeapRegion* r = heap_region_containing(o); 2104 assert(r != nullptr, "Sanity"); 2105 assert(r->pin_count() > 0, "Region " SIZE_FORMAT " should have non-zero pins", r->index()); 2106 r->record_unpin(); 2107 } 2108 2109 void ShenandoahHeap::sync_pinned_region_status() { 2110 ShenandoahHeapLocker locker(lock()); 2111 2112 for (size_t i = 0; i < num_regions(); i++) { 2113 ShenandoahHeapRegion *r = get_region(i); 2114 if (r->is_active()) { 2115 if (r->is_pinned()) { 2116 if (r->pin_count() == 0) { 2117 r->make_unpinned(); 2118 } 2119 } else { 2120 if (r->pin_count() > 0) { 2121 r->make_pinned(); 2122 } 2123 } 2124 } 2125 } 2126 2127 assert_pinned_region_status(); 2128 } 2129 2130 #ifdef ASSERT 2131 void ShenandoahHeap::assert_pinned_region_status() { 2132 for (size_t i = 0; i < num_regions(); i++) { 2133 ShenandoahHeapRegion* r = get_region(i); 2134 assert((r->is_pinned() && r->pin_count() > 0) || (!r->is_pinned() && r->pin_count() == 0), 2135 "Region " SIZE_FORMAT " pinning status is inconsistent", i); 2136 } 2137 } 2138 #endif 2139 2140 ConcurrentGCTimer* ShenandoahHeap::gc_timer() const { 2141 return _gc_timer; 2142 } 2143 2144 void ShenandoahHeap::prepare_concurrent_roots() { 2145 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 2146 assert(!is_stw_gc_in_progress(), "Only concurrent GC"); 2147 set_concurrent_strong_root_in_progress(!collection_set()->is_empty()); 2148 set_concurrent_weak_root_in_progress(true); 2149 if (unload_classes()) { 2150 _unloader.prepare(); 2151 } 2152 } 2153 2154 void ShenandoahHeap::finish_concurrent_roots() { 2155 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 2156 assert(!is_stw_gc_in_progress(), "Only concurrent GC"); 2157 if (unload_classes()) { 2158 _unloader.finish(); 2159 } 2160 } 2161 2162 #ifdef ASSERT 2163 void ShenandoahHeap::assert_gc_workers(uint nworkers) { 2164 assert(nworkers > 0 && nworkers <= max_workers(), "Sanity"); 2165 2166 if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) { 2167 // Use ParallelGCThreads inside safepoints 2168 assert(nworkers == ParallelGCThreads, "Use ParallelGCThreads (%u) within safepoint, not %u", 2169 ParallelGCThreads, nworkers); 2170 } else { 2171 // Use ConcGCThreads outside safepoints 2172 assert(nworkers == ConcGCThreads, "Use ConcGCThreads (%u) outside safepoints, %u", 2173 ConcGCThreads, nworkers); 2174 } 2175 } 2176 #endif 2177 2178 ShenandoahVerifier* ShenandoahHeap::verifier() { 2179 guarantee(ShenandoahVerify, "Should be enabled"); 2180 assert (_verifier != nullptr, "sanity"); 2181 return _verifier; 2182 } 2183 2184 template<bool CONCURRENT> 2185 class ShenandoahUpdateHeapRefsTask : public WorkerTask { 2186 private: 2187 ShenandoahHeap* _heap; 2188 ShenandoahRegionIterator* _regions; 2189 public: 2190 ShenandoahUpdateHeapRefsTask(ShenandoahRegionIterator* regions) : 2191 WorkerTask("Shenandoah Update References"), 2192 _heap(ShenandoahHeap::heap()), 2193 _regions(regions) { 2194 } 2195 2196 void work(uint worker_id) { 2197 if (CONCURRENT) { 2198 ShenandoahConcurrentWorkerSession worker_session(worker_id); 2199 ShenandoahSuspendibleThreadSetJoiner stsj; 2200 do_work<ShenandoahConcUpdateRefsClosure>(worker_id); 2201 } else { 2202 ShenandoahParallelWorkerSession worker_session(worker_id); 2203 do_work<ShenandoahSTWUpdateRefsClosure>(worker_id); 2204 } 2205 } 2206 2207 private: 2208 template<class T> 2209 void do_work(uint worker_id) { 2210 T cl; 2211 if (CONCURRENT && (worker_id == 0)) { 2212 // We ask the first worker to replenish the Mutator free set by moving regions previously reserved to hold the 2213 // results of evacuation. These reserves are no longer necessary because evacuation has completed. 2214 size_t cset_regions = _heap->collection_set()->count(); 2215 // We cannot transfer any more regions than will be reclaimed when the existing collection set is recycled because 2216 // we need the reclaimed collection set regions to replenish the collector reserves 2217 _heap->free_set()->move_regions_from_collector_to_mutator(cset_regions); 2218 } 2219 // If !CONCURRENT, there's no value in expanding Mutator free set 2220 2221 ShenandoahHeapRegion* r = _regions->next(); 2222 ShenandoahMarkingContext* const ctx = _heap->complete_marking_context(); 2223 while (r != nullptr) { 2224 HeapWord* update_watermark = r->get_update_watermark(); 2225 assert (update_watermark >= r->bottom(), "sanity"); 2226 if (r->is_active() && !r->is_cset()) { 2227 _heap->marked_object_oop_iterate(r, &cl, update_watermark); 2228 } 2229 if (ShenandoahPacing) { 2230 _heap->pacer()->report_updaterefs(pointer_delta(update_watermark, r->bottom())); 2231 } 2232 if (_heap->check_cancelled_gc_and_yield(CONCURRENT)) { 2233 return; 2234 } 2235 r = _regions->next(); 2236 } 2237 } 2238 }; 2239 2240 void ShenandoahHeap::update_heap_references(bool concurrent) { 2241 assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC"); 2242 2243 if (concurrent) { 2244 ShenandoahUpdateHeapRefsTask<true> task(&_update_refs_iterator); 2245 workers()->run_task(&task); 2246 } else { 2247 ShenandoahUpdateHeapRefsTask<false> task(&_update_refs_iterator); 2248 workers()->run_task(&task); 2249 } 2250 } 2251 2252 2253 class ShenandoahFinalUpdateRefsUpdateRegionStateClosure : public ShenandoahHeapRegionClosure { 2254 private: 2255 ShenandoahHeapLock* const _lock; 2256 2257 public: 2258 ShenandoahFinalUpdateRefsUpdateRegionStateClosure() : _lock(ShenandoahHeap::heap()->lock()) {} 2259 2260 void heap_region_do(ShenandoahHeapRegion* r) { 2261 // Drop unnecessary "pinned" state from regions that does not have CP marks 2262 // anymore, as this would allow trashing them. 2263 2264 if (r->is_active()) { 2265 if (r->is_pinned()) { 2266 if (r->pin_count() == 0) { 2267 ShenandoahHeapLocker locker(_lock); 2268 r->make_unpinned(); 2269 } 2270 } else { 2271 if (r->pin_count() > 0) { 2272 ShenandoahHeapLocker locker(_lock); 2273 r->make_pinned(); 2274 } 2275 } 2276 } 2277 } 2278 2279 bool is_thread_safe() { return true; } 2280 }; 2281 2282 void ShenandoahHeap::update_heap_region_states(bool concurrent) { 2283 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 2284 assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC"); 2285 2286 { 2287 ShenandoahGCPhase phase(concurrent ? 2288 ShenandoahPhaseTimings::final_update_refs_update_region_states : 2289 ShenandoahPhaseTimings::degen_gc_final_update_refs_update_region_states); 2290 ShenandoahFinalUpdateRefsUpdateRegionStateClosure cl; 2291 parallel_heap_region_iterate(&cl); 2292 2293 assert_pinned_region_status(); 2294 } 2295 2296 { 2297 ShenandoahGCPhase phase(concurrent ? 2298 ShenandoahPhaseTimings::final_update_refs_trash_cset : 2299 ShenandoahPhaseTimings::degen_gc_final_update_refs_trash_cset); 2300 trash_cset_regions(); 2301 } 2302 } 2303 2304 void ShenandoahHeap::rebuild_free_set(bool concurrent) { 2305 { 2306 ShenandoahGCPhase phase(concurrent ? 2307 ShenandoahPhaseTimings::final_update_refs_rebuild_freeset : 2308 ShenandoahPhaseTimings::degen_gc_final_update_refs_rebuild_freeset); 2309 ShenandoahHeapLocker locker(lock()); 2310 _free_set->rebuild(); 2311 } 2312 } 2313 2314 void ShenandoahHeap::print_extended_on(outputStream *st) const { 2315 print_on(st); 2316 st->cr(); 2317 print_heap_regions_on(st); 2318 } 2319 2320 bool ShenandoahHeap::is_bitmap_slice_committed(ShenandoahHeapRegion* r, bool skip_self) { 2321 size_t slice = r->index() / _bitmap_regions_per_slice; 2322 2323 size_t regions_from = _bitmap_regions_per_slice * slice; 2324 size_t regions_to = MIN2(num_regions(), _bitmap_regions_per_slice * (slice + 1)); 2325 for (size_t g = regions_from; g < regions_to; g++) { 2326 assert (g / _bitmap_regions_per_slice == slice, "same slice"); 2327 if (skip_self && g == r->index()) continue; 2328 if (get_region(g)->is_committed()) { 2329 return true; 2330 } 2331 } 2332 return false; 2333 } 2334 2335 bool ShenandoahHeap::commit_bitmap_slice(ShenandoahHeapRegion* r) { 2336 shenandoah_assert_heaplocked(); 2337 2338 // Bitmaps in special regions do not need commits 2339 if (_bitmap_region_special) { 2340 return true; 2341 } 2342 2343 if (is_bitmap_slice_committed(r, true)) { 2344 // Some other region from the group is already committed, meaning the bitmap 2345 // slice is already committed, we exit right away. 2346 return true; 2347 } 2348 2349 // Commit the bitmap slice: 2350 size_t slice = r->index() / _bitmap_regions_per_slice; 2351 size_t off = _bitmap_bytes_per_slice * slice; 2352 size_t len = _bitmap_bytes_per_slice; 2353 char* start = (char*) _bitmap_region.start() + off; 2354 2355 if (!os::commit_memory(start, len, false)) { 2356 return false; 2357 } 2358 2359 if (AlwaysPreTouch) { 2360 os::pretouch_memory(start, start + len, _pretouch_bitmap_page_size); 2361 } 2362 2363 return true; 2364 } 2365 2366 bool ShenandoahHeap::uncommit_bitmap_slice(ShenandoahHeapRegion *r) { 2367 shenandoah_assert_heaplocked(); 2368 2369 // Bitmaps in special regions do not need uncommits 2370 if (_bitmap_region_special) { 2371 return true; 2372 } 2373 2374 if (is_bitmap_slice_committed(r, true)) { 2375 // Some other region from the group is still committed, meaning the bitmap 2376 // slice is should stay committed, exit right away. 2377 return true; 2378 } 2379 2380 // Uncommit the bitmap slice: 2381 size_t slice = r->index() / _bitmap_regions_per_slice; 2382 size_t off = _bitmap_bytes_per_slice * slice; 2383 size_t len = _bitmap_bytes_per_slice; 2384 if (!os::uncommit_memory((char*)_bitmap_region.start() + off, len)) { 2385 return false; 2386 } 2387 return true; 2388 } 2389 2390 void ShenandoahHeap::safepoint_synchronize_begin() { 2391 StackWatermarkSet::safepoint_synchronize_begin(); 2392 SuspendibleThreadSet::synchronize(); 2393 } 2394 2395 void ShenandoahHeap::safepoint_synchronize_end() { 2396 SuspendibleThreadSet::desynchronize(); 2397 } 2398 2399 void ShenandoahHeap::try_inject_alloc_failure() { 2400 if (ShenandoahAllocFailureALot && !cancelled_gc() && ((os::random() % 1000) > 950)) { 2401 _inject_alloc_failure.set(); 2402 os::naked_short_sleep(1); 2403 if (cancelled_gc()) { 2404 log_info(gc)("Allocation failure was successfully injected"); 2405 } 2406 } 2407 } 2408 2409 bool ShenandoahHeap::should_inject_alloc_failure() { 2410 return _inject_alloc_failure.is_set() && _inject_alloc_failure.try_unset(); 2411 } 2412 2413 void ShenandoahHeap::initialize_serviceability() { 2414 _memory_pool = new ShenandoahMemoryPool(this); 2415 _cycle_memory_manager.add_pool(_memory_pool); 2416 _stw_memory_manager.add_pool(_memory_pool); 2417 } 2418 2419 GrowableArray<GCMemoryManager*> ShenandoahHeap::memory_managers() { 2420 GrowableArray<GCMemoryManager*> memory_managers(2); 2421 memory_managers.append(&_cycle_memory_manager); 2422 memory_managers.append(&_stw_memory_manager); 2423 return memory_managers; 2424 } 2425 2426 GrowableArray<MemoryPool*> ShenandoahHeap::memory_pools() { 2427 GrowableArray<MemoryPool*> memory_pools(1); 2428 memory_pools.append(_memory_pool); 2429 return memory_pools; 2430 } 2431 2432 MemoryUsage ShenandoahHeap::memory_usage() { 2433 return _memory_pool->get_memory_usage(); 2434 } 2435 2436 ShenandoahRegionIterator::ShenandoahRegionIterator() : 2437 _heap(ShenandoahHeap::heap()), 2438 _index(0) {} 2439 2440 ShenandoahRegionIterator::ShenandoahRegionIterator(ShenandoahHeap* heap) : 2441 _heap(heap), 2442 _index(0) {} 2443 2444 void ShenandoahRegionIterator::reset() { 2445 _index = 0; 2446 } 2447 2448 bool ShenandoahRegionIterator::has_next() const { 2449 return _index < _heap->num_regions(); 2450 } 2451 2452 char ShenandoahHeap::gc_state() const { 2453 return _gc_state.raw_value(); 2454 } 2455 2456 ShenandoahLiveData* ShenandoahHeap::get_liveness_cache(uint worker_id) { 2457 #ifdef ASSERT 2458 assert(_liveness_cache != nullptr, "sanity"); 2459 assert(worker_id < _max_workers, "sanity"); 2460 for (uint i = 0; i < num_regions(); i++) { 2461 assert(_liveness_cache[worker_id][i] == 0, "liveness cache should be empty"); 2462 } 2463 #endif 2464 return _liveness_cache[worker_id]; 2465 } 2466 2467 void ShenandoahHeap::flush_liveness_cache(uint worker_id) { 2468 assert(worker_id < _max_workers, "sanity"); 2469 assert(_liveness_cache != nullptr, "sanity"); 2470 ShenandoahLiveData* ld = _liveness_cache[worker_id]; 2471 for (uint i = 0; i < num_regions(); i++) { 2472 ShenandoahLiveData live = ld[i]; 2473 if (live > 0) { 2474 ShenandoahHeapRegion* r = get_region(i); 2475 r->increase_live_data_gc_words(live); 2476 ld[i] = 0; 2477 } 2478 } 2479 } 2480 2481 bool ShenandoahHeap::requires_barriers(stackChunkOop obj) const { 2482 if (is_idle()) return false; 2483 2484 // Objects allocated after marking start are implicitly alive, don't need any barriers during 2485 // marking phase. 2486 if (is_concurrent_mark_in_progress() && 2487 !marking_context()->allocated_after_mark_start(obj)) { 2488 return true; 2489 } 2490 2491 // Can not guarantee obj is deeply good. 2492 if (has_forwarded_objects()) { 2493 return true; 2494 } 2495 2496 return false; 2497 }