1 /* 2 * Copyright (c) 2023, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2013, 2022, Red Hat, Inc. All rights reserved. 4 * Copyright Amazon.com Inc. or its affiliates. All Rights Reserved. 5 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 6 * 7 * This code is free software; you can redistribute it and/or modify it 8 * under the terms of the GNU General Public License version 2 only, as 9 * published by the Free Software Foundation. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 * 25 */ 26 27 28 #include "cds/archiveHeapWriter.hpp" 29 #include "classfile/systemDictionary.hpp" 30 31 #include "gc/shared/classUnloadingContext.hpp" 32 #include "gc/shared/fullGCForwarding.hpp" 33 #include "gc/shared/gcArguments.hpp" 34 #include "gc/shared/gcTimer.hpp" 35 #include "gc/shared/gcTraceTime.inline.hpp" 36 #include "gc/shared/locationPrinter.inline.hpp" 37 #include "gc/shared/memAllocator.hpp" 38 #include "gc/shared/plab.hpp" 39 #include "gc/shared/tlab_globals.hpp" 40 41 #include "gc/shenandoah/heuristics/shenandoahOldHeuristics.hpp" 42 #include "gc/shenandoah/heuristics/shenandoahYoungHeuristics.hpp" 43 #include "gc/shenandoah/shenandoahAllocRequest.hpp" 44 #include "gc/shenandoah/shenandoahBarrierSet.hpp" 45 #include "gc/shenandoah/shenandoahCodeRoots.hpp" 46 #include "gc/shenandoah/shenandoahCollectionSet.hpp" 47 #include "gc/shenandoah/shenandoahCollectorPolicy.hpp" 48 #include "gc/shenandoah/shenandoahConcurrentMark.hpp" 49 #include "gc/shenandoah/shenandoahControlThread.hpp" 50 #include "gc/shenandoah/shenandoahClosures.inline.hpp" 51 #include "gc/shenandoah/shenandoahFreeSet.hpp" 52 #include "gc/shenandoah/shenandoahGenerationalEvacuationTask.hpp" 53 #include "gc/shenandoah/shenandoahGenerationalHeap.hpp" 54 #include "gc/shenandoah/shenandoahGlobalGeneration.hpp" 55 #include "gc/shenandoah/shenandoahHeap.inline.hpp" 56 #include "gc/shenandoah/shenandoahHeapRegionClosures.hpp" 57 #include "gc/shenandoah/shenandoahHeapRegion.inline.hpp" 58 #include "gc/shenandoah/shenandoahHeapRegionSet.hpp" 59 #include "gc/shenandoah/shenandoahInitLogger.hpp" 60 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp" 61 #include "gc/shenandoah/shenandoahMemoryPool.hpp" 62 #include "gc/shenandoah/shenandoahMonitoringSupport.hpp" 63 #include "gc/shenandoah/shenandoahOldGeneration.hpp" 64 #include "gc/shenandoah/shenandoahPacer.inline.hpp" 65 #include "gc/shenandoah/shenandoahPadding.hpp" 66 #include "gc/shenandoah/shenandoahParallelCleaning.inline.hpp" 67 #include "gc/shenandoah/shenandoahPhaseTimings.hpp" 68 #include "gc/shenandoah/shenandoahReferenceProcessor.hpp" 69 #include "gc/shenandoah/shenandoahRootProcessor.inline.hpp" 70 #include "gc/shenandoah/shenandoahScanRemembered.inline.hpp" 71 #include "gc/shenandoah/shenandoahSTWMark.hpp" 72 #include "gc/shenandoah/shenandoahUncommitThread.hpp" 73 #include "gc/shenandoah/shenandoahUtils.hpp" 74 #include "gc/shenandoah/shenandoahVerifier.hpp" 75 #include "gc/shenandoah/shenandoahVMOperations.hpp" 76 #include "gc/shenandoah/shenandoahWorkGroup.hpp" 77 #include "gc/shenandoah/shenandoahWorkerPolicy.hpp" 78 #include "gc/shenandoah/shenandoahYoungGeneration.hpp" 79 #include "gc/shenandoah/mode/shenandoahGenerationalMode.hpp" 80 #include "gc/shenandoah/mode/shenandoahPassiveMode.hpp" 81 #include "gc/shenandoah/mode/shenandoahSATBMode.hpp" 82 83 #if INCLUDE_JFR 84 #include "gc/shenandoah/shenandoahJfrSupport.hpp" 85 #endif 86 87 #include "memory/allocation.hpp" 88 #include "memory/allocation.hpp" 89 #include "memory/classLoaderMetaspace.hpp" 90 #include "memory/memoryReserver.hpp" 91 #include "memory/metaspaceUtils.hpp" 92 #include "memory/universe.hpp" 93 #include "nmt/mallocTracker.hpp" 94 #include "nmt/memTracker.hpp" 95 #include "oops/compressedOops.inline.hpp" 96 #include "prims/jvmtiTagMap.hpp" 97 #include "runtime/atomic.hpp" 98 #include "runtime/globals.hpp" 99 #include "runtime/interfaceSupport.inline.hpp" 100 #include "runtime/java.hpp" 101 #include "runtime/orderAccess.hpp" 102 #include "runtime/safepointMechanism.hpp" 103 #include "runtime/stackWatermarkSet.hpp" 104 #include "runtime/threads.hpp" 105 #include "runtime/vmThread.hpp" 106 #include "utilities/globalDefinitions.hpp" 107 #include "utilities/events.hpp" 108 #include "utilities/powerOfTwo.hpp" 109 110 class ShenandoahPretouchHeapTask : public WorkerTask { 111 private: 112 ShenandoahRegionIterator _regions; 113 const size_t _page_size; 114 public: 115 ShenandoahPretouchHeapTask(size_t page_size) : 116 WorkerTask("Shenandoah Pretouch Heap"), 117 _page_size(page_size) {} 118 119 virtual void work(uint worker_id) { 120 ShenandoahHeapRegion* r = _regions.next(); 121 while (r != nullptr) { 122 if (r->is_committed()) { 123 os::pretouch_memory(r->bottom(), r->end(), _page_size); 124 } 125 r = _regions.next(); 126 } 127 } 128 }; 129 130 class ShenandoahPretouchBitmapTask : public WorkerTask { 131 private: 132 ShenandoahRegionIterator _regions; 133 char* _bitmap_base; 134 const size_t _bitmap_size; 135 const size_t _page_size; 136 public: 137 ShenandoahPretouchBitmapTask(char* bitmap_base, size_t bitmap_size, size_t page_size) : 138 WorkerTask("Shenandoah Pretouch Bitmap"), 139 _bitmap_base(bitmap_base), 140 _bitmap_size(bitmap_size), 141 _page_size(page_size) {} 142 143 virtual void work(uint worker_id) { 144 ShenandoahHeapRegion* r = _regions.next(); 145 while (r != nullptr) { 146 size_t start = r->index() * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor(); 147 size_t end = (r->index() + 1) * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor(); 148 assert (end <= _bitmap_size, "end is sane: %zu < %zu", end, _bitmap_size); 149 150 if (r->is_committed()) { 151 os::pretouch_memory(_bitmap_base + start, _bitmap_base + end, _page_size); 152 } 153 154 r = _regions.next(); 155 } 156 } 157 }; 158 159 static ReservedSpace reserve(size_t size, size_t preferred_page_size) { 160 // When a page size is given we don't want to mix large 161 // and normal pages. If the size is not a multiple of the 162 // page size it will be aligned up to achieve this. 163 size_t alignment = os::vm_allocation_granularity(); 164 if (preferred_page_size != os::vm_page_size()) { 165 alignment = MAX2(preferred_page_size, alignment); 166 size = align_up(size, alignment); 167 } 168 169 const ReservedSpace reserved = MemoryReserver::reserve(size, alignment, preferred_page_size); 170 if (!reserved.is_reserved()) { 171 vm_exit_during_initialization("Could not reserve space"); 172 } 173 return reserved; 174 } 175 176 jint ShenandoahHeap::initialize() { 177 // 178 // Figure out heap sizing 179 // 180 181 size_t init_byte_size = InitialHeapSize; 182 size_t min_byte_size = MinHeapSize; 183 size_t max_byte_size = MaxHeapSize; 184 size_t heap_alignment = HeapAlignment; 185 186 size_t reg_size_bytes = ShenandoahHeapRegion::region_size_bytes(); 187 188 Universe::check_alignment(max_byte_size, reg_size_bytes, "Shenandoah heap"); 189 Universe::check_alignment(init_byte_size, reg_size_bytes, "Shenandoah heap"); 190 191 _num_regions = ShenandoahHeapRegion::region_count(); 192 assert(_num_regions == (max_byte_size / reg_size_bytes), 193 "Regions should cover entire heap exactly: %zu != %zu/%zu", 194 _num_regions, max_byte_size, reg_size_bytes); 195 196 size_t num_committed_regions = init_byte_size / reg_size_bytes; 197 num_committed_regions = MIN2(num_committed_regions, _num_regions); 198 assert(num_committed_regions <= _num_regions, "sanity"); 199 _initial_size = num_committed_regions * reg_size_bytes; 200 201 size_t num_min_regions = min_byte_size / reg_size_bytes; 202 num_min_regions = MIN2(num_min_regions, _num_regions); 203 assert(num_min_regions <= _num_regions, "sanity"); 204 _minimum_size = num_min_regions * reg_size_bytes; 205 206 // Default to max heap size. 207 _soft_max_size = _num_regions * reg_size_bytes; 208 209 _committed = _initial_size; 210 211 size_t heap_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size(); 212 size_t bitmap_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size(); 213 size_t region_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size(); 214 215 // 216 // Reserve and commit memory for heap 217 // 218 219 ReservedHeapSpace heap_rs = Universe::reserve_heap(max_byte_size, heap_alignment); 220 initialize_reserved_region(heap_rs); 221 _heap_region = MemRegion((HeapWord*)heap_rs.base(), heap_rs.size() / HeapWordSize); 222 _heap_region_special = heap_rs.special(); 223 224 assert((((size_t) base()) & ShenandoahHeapRegion::region_size_bytes_mask()) == 0, 225 "Misaligned heap: " PTR_FORMAT, p2i(base())); 226 os::trace_page_sizes_for_requested_size("Heap", 227 max_byte_size, heap_alignment, 228 heap_rs.base(), 229 heap_rs.size(), heap_rs.page_size()); 230 231 #if SHENANDOAH_OPTIMIZED_MARKTASK 232 // The optimized ShenandoahMarkTask takes some bits away from the full object bits. 233 // Fail if we ever attempt to address more than we can. 234 if ((uintptr_t)heap_rs.end() >= ShenandoahMarkTask::max_addressable()) { 235 FormatBuffer<512> buf("Shenandoah reserved [" PTR_FORMAT ", " PTR_FORMAT") for the heap, \n" 236 "but max object address is " PTR_FORMAT ". Try to reduce heap size, or try other \n" 237 "VM options that allocate heap at lower addresses (HeapBaseMinAddress, AllocateHeapAt, etc).", 238 p2i(heap_rs.base()), p2i(heap_rs.end()), ShenandoahMarkTask::max_addressable()); 239 vm_exit_during_initialization("Fatal Error", buf); 240 } 241 #endif 242 243 ReservedSpace sh_rs = heap_rs.first_part(max_byte_size); 244 if (!_heap_region_special) { 245 os::commit_memory_or_exit(sh_rs.base(), _initial_size, heap_alignment, false, 246 "Cannot commit heap memory"); 247 } 248 249 BarrierSet::set_barrier_set(new ShenandoahBarrierSet(this, _heap_region)); 250 251 // Now we know the number of regions and heap sizes, initialize the heuristics. 252 initialize_heuristics(); 253 254 assert(_heap_region.byte_size() == heap_rs.size(), "Need to know reserved size for card table"); 255 256 // 257 // Worker threads must be initialized after the barrier is configured 258 // 259 _workers = new ShenandoahWorkerThreads("Shenandoah GC Threads", _max_workers); 260 if (_workers == nullptr) { 261 vm_exit_during_initialization("Failed necessary allocation."); 262 } else { 263 _workers->initialize_workers(); 264 } 265 266 if (ParallelGCThreads > 1) { 267 _safepoint_workers = new ShenandoahWorkerThreads("Safepoint Cleanup Thread", ParallelGCThreads); 268 _safepoint_workers->initialize_workers(); 269 } 270 271 // 272 // Reserve and commit memory for bitmap(s) 273 // 274 275 size_t bitmap_size_orig = ShenandoahMarkBitMap::compute_size(heap_rs.size()); 276 _bitmap_size = align_up(bitmap_size_orig, bitmap_page_size); 277 278 size_t bitmap_bytes_per_region = reg_size_bytes / ShenandoahMarkBitMap::heap_map_factor(); 279 280 guarantee(bitmap_bytes_per_region != 0, 281 "Bitmap bytes per region should not be zero"); 282 guarantee(is_power_of_2(bitmap_bytes_per_region), 283 "Bitmap bytes per region should be power of two: %zu", bitmap_bytes_per_region); 284 285 if (bitmap_page_size > bitmap_bytes_per_region) { 286 _bitmap_regions_per_slice = bitmap_page_size / bitmap_bytes_per_region; 287 _bitmap_bytes_per_slice = bitmap_page_size; 288 } else { 289 _bitmap_regions_per_slice = 1; 290 _bitmap_bytes_per_slice = bitmap_bytes_per_region; 291 } 292 293 guarantee(_bitmap_regions_per_slice >= 1, 294 "Should have at least one region per slice: %zu", 295 _bitmap_regions_per_slice); 296 297 guarantee(((_bitmap_bytes_per_slice) % bitmap_page_size) == 0, 298 "Bitmap slices should be page-granular: bps = %zu, page size = %zu", 299 _bitmap_bytes_per_slice, bitmap_page_size); 300 301 ReservedSpace bitmap = reserve(_bitmap_size, bitmap_page_size); 302 os::trace_page_sizes_for_requested_size("Mark Bitmap", 303 bitmap_size_orig, bitmap_page_size, 304 bitmap.base(), 305 bitmap.size(), bitmap.page_size()); 306 MemTracker::record_virtual_memory_tag(bitmap.base(), mtGC); 307 _bitmap_region = MemRegion((HeapWord*) bitmap.base(), bitmap.size() / HeapWordSize); 308 _bitmap_region_special = bitmap.special(); 309 310 size_t bitmap_init_commit = _bitmap_bytes_per_slice * 311 align_up(num_committed_regions, _bitmap_regions_per_slice) / _bitmap_regions_per_slice; 312 bitmap_init_commit = MIN2(_bitmap_size, bitmap_init_commit); 313 if (!_bitmap_region_special) { 314 os::commit_memory_or_exit((char *) _bitmap_region.start(), bitmap_init_commit, bitmap_page_size, false, 315 "Cannot commit bitmap memory"); 316 } 317 318 _marking_context = new ShenandoahMarkingContext(_heap_region, _bitmap_region, _num_regions); 319 320 if (ShenandoahVerify) { 321 ReservedSpace verify_bitmap = reserve(_bitmap_size, bitmap_page_size); 322 os::trace_page_sizes_for_requested_size("Verify Bitmap", 323 bitmap_size_orig, bitmap_page_size, 324 verify_bitmap.base(), 325 verify_bitmap.size(), verify_bitmap.page_size()); 326 if (!verify_bitmap.special()) { 327 os::commit_memory_or_exit(verify_bitmap.base(), verify_bitmap.size(), bitmap_page_size, false, 328 "Cannot commit verification bitmap memory"); 329 } 330 MemTracker::record_virtual_memory_tag(verify_bitmap.base(), mtGC); 331 MemRegion verify_bitmap_region = MemRegion((HeapWord *) verify_bitmap.base(), verify_bitmap.size() / HeapWordSize); 332 _verification_bit_map.initialize(_heap_region, verify_bitmap_region); 333 _verifier = new ShenandoahVerifier(this, &_verification_bit_map); 334 } 335 336 // Reserve aux bitmap for use in object_iterate(). We don't commit it here. 337 size_t aux_bitmap_page_size = bitmap_page_size; 338 339 ReservedSpace aux_bitmap = reserve(_bitmap_size, aux_bitmap_page_size); 340 os::trace_page_sizes_for_requested_size("Aux Bitmap", 341 bitmap_size_orig, aux_bitmap_page_size, 342 aux_bitmap.base(), 343 aux_bitmap.size(), aux_bitmap.page_size()); 344 MemTracker::record_virtual_memory_tag(aux_bitmap.base(), mtGC); 345 _aux_bitmap_region = MemRegion((HeapWord*) aux_bitmap.base(), aux_bitmap.size() / HeapWordSize); 346 _aux_bitmap_region_special = aux_bitmap.special(); 347 _aux_bit_map.initialize(_heap_region, _aux_bitmap_region); 348 349 // 350 // Create regions and region sets 351 // 352 size_t region_align = align_up(sizeof(ShenandoahHeapRegion), SHENANDOAH_CACHE_LINE_SIZE); 353 size_t region_storage_size_orig = region_align * _num_regions; 354 size_t region_storage_size = align_up(region_storage_size_orig, 355 MAX2(region_page_size, os::vm_allocation_granularity())); 356 357 ReservedSpace region_storage = reserve(region_storage_size, region_page_size); 358 os::trace_page_sizes_for_requested_size("Region Storage", 359 region_storage_size_orig, region_page_size, 360 region_storage.base(), 361 region_storage.size(), region_storage.page_size()); 362 MemTracker::record_virtual_memory_tag(region_storage.base(), mtGC); 363 if (!region_storage.special()) { 364 os::commit_memory_or_exit(region_storage.base(), region_storage_size, region_page_size, false, 365 "Cannot commit region memory"); 366 } 367 368 // Try to fit the collection set bitmap at lower addresses. This optimizes code generation for cset checks. 369 // Go up until a sensible limit (subject to encoding constraints) and try to reserve the space there. 370 // If not successful, bite a bullet and allocate at whatever address. 371 { 372 const size_t cset_align = MAX2<size_t>(os::vm_page_size(), os::vm_allocation_granularity()); 373 const size_t cset_size = align_up(((size_t) sh_rs.base() + sh_rs.size()) >> ShenandoahHeapRegion::region_size_bytes_shift(), cset_align); 374 const size_t cset_page_size = os::vm_page_size(); 375 376 uintptr_t min = round_up_power_of_2(cset_align); 377 uintptr_t max = (1u << 30u); 378 ReservedSpace cset_rs; 379 380 for (uintptr_t addr = min; addr <= max; addr <<= 1u) { 381 char* req_addr = (char*)addr; 382 assert(is_aligned(req_addr, cset_align), "Should be aligned"); 383 cset_rs = MemoryReserver::reserve(req_addr, cset_size, cset_align, cset_page_size); 384 if (cset_rs.is_reserved()) { 385 assert(cset_rs.base() == req_addr, "Allocated where requested: " PTR_FORMAT ", " PTR_FORMAT, p2i(cset_rs.base()), addr); 386 _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base()); 387 break; 388 } 389 } 390 391 if (_collection_set == nullptr) { 392 cset_rs = MemoryReserver::reserve(cset_size, cset_align, os::vm_page_size()); 393 if (!cset_rs.is_reserved()) { 394 vm_exit_during_initialization("Cannot reserve memory for collection set"); 395 } 396 397 _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base()); 398 } 399 os::trace_page_sizes_for_requested_size("Collection Set", 400 cset_size, cset_page_size, 401 cset_rs.base(), 402 cset_rs.size(), cset_rs.page_size()); 403 } 404 405 _regions = NEW_C_HEAP_ARRAY(ShenandoahHeapRegion*, _num_regions, mtGC); 406 _affiliations = NEW_C_HEAP_ARRAY(uint8_t, _num_regions, mtGC); 407 _free_set = new ShenandoahFreeSet(this, _num_regions); 408 409 { 410 ShenandoahHeapLocker locker(lock()); 411 412 for (size_t i = 0; i < _num_regions; i++) { 413 HeapWord* start = (HeapWord*)sh_rs.base() + ShenandoahHeapRegion::region_size_words() * i; 414 bool is_committed = i < num_committed_regions; 415 void* loc = region_storage.base() + i * region_align; 416 417 ShenandoahHeapRegion* r = new (loc) ShenandoahHeapRegion(start, i, is_committed); 418 assert(is_aligned(r, SHENANDOAH_CACHE_LINE_SIZE), "Sanity"); 419 420 _marking_context->initialize_top_at_mark_start(r); 421 _regions[i] = r; 422 assert(!collection_set()->is_in(i), "New region should not be in collection set"); 423 424 _affiliations[i] = ShenandoahAffiliation::FREE; 425 } 426 427 // Initialize to complete 428 _marking_context->mark_complete(); 429 size_t young_cset_regions, old_cset_regions; 430 431 // We are initializing free set. We ignore cset region tallies. 432 size_t first_old, last_old, num_old; 433 _free_set->prepare_to_rebuild(young_cset_regions, old_cset_regions, first_old, last_old, num_old); 434 _free_set->finish_rebuild(young_cset_regions, old_cset_regions, num_old); 435 } 436 437 if (AlwaysPreTouch) { 438 // For NUMA, it is important to pre-touch the storage under bitmaps with worker threads, 439 // before initialize() below zeroes it with initializing thread. For any given region, 440 // we touch the region and the corresponding bitmaps from the same thread. 441 ShenandoahPushWorkerScope scope(workers(), _max_workers, false); 442 443 _pretouch_heap_page_size = heap_page_size; 444 _pretouch_bitmap_page_size = bitmap_page_size; 445 446 // OS memory managers may want to coalesce back-to-back pages. Make their jobs 447 // simpler by pre-touching continuous spaces (heap and bitmap) separately. 448 449 ShenandoahPretouchBitmapTask bcl(bitmap.base(), _bitmap_size, _pretouch_bitmap_page_size); 450 _workers->run_task(&bcl); 451 452 ShenandoahPretouchHeapTask hcl(_pretouch_heap_page_size); 453 _workers->run_task(&hcl); 454 } 455 456 // 457 // Initialize the rest of GC subsystems 458 // 459 460 _liveness_cache = NEW_C_HEAP_ARRAY(ShenandoahLiveData*, _max_workers, mtGC); 461 for (uint worker = 0; worker < _max_workers; worker++) { 462 _liveness_cache[worker] = NEW_C_HEAP_ARRAY(ShenandoahLiveData, _num_regions, mtGC); 463 Copy::fill_to_bytes(_liveness_cache[worker], _num_regions * sizeof(ShenandoahLiveData)); 464 } 465 466 // There should probably be Shenandoah-specific options for these, 467 // just as there are G1-specific options. 468 { 469 ShenandoahSATBMarkQueueSet& satbqs = ShenandoahBarrierSet::satb_mark_queue_set(); 470 satbqs.set_process_completed_buffers_threshold(20); // G1SATBProcessCompletedThreshold 471 satbqs.set_buffer_enqueue_threshold_percentage(60); // G1SATBBufferEnqueueingThresholdPercent 472 } 473 474 _monitoring_support = new ShenandoahMonitoringSupport(this); 475 _phase_timings = new ShenandoahPhaseTimings(max_workers()); 476 ShenandoahCodeRoots::initialize(); 477 478 if (ShenandoahPacing) { 479 _pacer = new ShenandoahPacer(this); 480 _pacer->setup_for_idle(); 481 } 482 483 initialize_controller(); 484 485 if (ShenandoahUncommit) { 486 _uncommit_thread = new ShenandoahUncommitThread(this); 487 } 488 489 print_init_logger(); 490 491 FullGCForwarding::initialize(_heap_region); 492 493 return JNI_OK; 494 } 495 496 void ShenandoahHeap::initialize_controller() { 497 _control_thread = new ShenandoahControlThread(); 498 } 499 500 void ShenandoahHeap::print_init_logger() const { 501 ShenandoahInitLogger::print(); 502 } 503 504 void ShenandoahHeap::initialize_mode() { 505 if (ShenandoahGCMode != nullptr) { 506 if (strcmp(ShenandoahGCMode, "satb") == 0) { 507 _gc_mode = new ShenandoahSATBMode(); 508 } else if (strcmp(ShenandoahGCMode, "passive") == 0) { 509 _gc_mode = new ShenandoahPassiveMode(); 510 } else if (strcmp(ShenandoahGCMode, "generational") == 0) { 511 _gc_mode = new ShenandoahGenerationalMode(); 512 } else { 513 vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option"); 514 } 515 } else { 516 vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option (null)"); 517 } 518 _gc_mode->initialize_flags(); 519 if (_gc_mode->is_diagnostic() && !UnlockDiagnosticVMOptions) { 520 vm_exit_during_initialization( 521 err_msg("GC mode \"%s\" is diagnostic, and must be enabled via -XX:+UnlockDiagnosticVMOptions.", 522 _gc_mode->name())); 523 } 524 if (_gc_mode->is_experimental() && !UnlockExperimentalVMOptions) { 525 vm_exit_during_initialization( 526 err_msg("GC mode \"%s\" is experimental, and must be enabled via -XX:+UnlockExperimentalVMOptions.", 527 _gc_mode->name())); 528 } 529 } 530 531 void ShenandoahHeap::initialize_heuristics() { 532 _global_generation = new ShenandoahGlobalGeneration(mode()->is_generational(), max_workers(), max_capacity(), max_capacity()); 533 _global_generation->initialize_heuristics(mode()); 534 } 535 536 #ifdef _MSC_VER 537 #pragma warning( push ) 538 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list 539 #endif 540 541 ShenandoahHeap::ShenandoahHeap(ShenandoahCollectorPolicy* policy) : 542 CollectedHeap(), 543 _gc_generation(nullptr), 544 _active_generation(nullptr), 545 _initial_size(0), 546 _committed(0), 547 _max_workers(MAX3(ConcGCThreads, ParallelGCThreads, 1U)), 548 _workers(nullptr), 549 _safepoint_workers(nullptr), 550 _heap_region_special(false), 551 _num_regions(0), 552 _regions(nullptr), 553 _affiliations(nullptr), 554 _gc_state_changed(false), 555 _gc_no_progress_count(0), 556 _cancel_requested_time(0), 557 _update_refs_iterator(this), 558 _global_generation(nullptr), 559 _control_thread(nullptr), 560 _uncommit_thread(nullptr), 561 _young_generation(nullptr), 562 _old_generation(nullptr), 563 _shenandoah_policy(policy), 564 _gc_mode(nullptr), 565 _free_set(nullptr), 566 _pacer(nullptr), 567 _verifier(nullptr), 568 _phase_timings(nullptr), 569 _monitoring_support(nullptr), 570 _memory_pool(nullptr), 571 _stw_memory_manager("Shenandoah Pauses"), 572 _cycle_memory_manager("Shenandoah Cycles"), 573 _gc_timer(new ConcurrentGCTimer()), 574 _log_min_obj_alignment_in_bytes(LogMinObjAlignmentInBytes), 575 _marking_context(nullptr), 576 _bitmap_size(0), 577 _bitmap_regions_per_slice(0), 578 _bitmap_bytes_per_slice(0), 579 _bitmap_region_special(false), 580 _aux_bitmap_region_special(false), 581 _liveness_cache(nullptr), 582 _collection_set(nullptr) 583 { 584 // Initialize GC mode early, many subsequent initialization procedures depend on it 585 initialize_mode(); 586 } 587 588 #ifdef _MSC_VER 589 #pragma warning( pop ) 590 #endif 591 592 void ShenandoahHeap::print_on(outputStream* st) const { 593 st->print_cr("Shenandoah Heap"); 594 st->print_cr(" %zu%s max, %zu%s soft max, %zu%s committed, %zu%s used", 595 byte_size_in_proper_unit(max_capacity()), proper_unit_for_byte_size(max_capacity()), 596 byte_size_in_proper_unit(soft_max_capacity()), proper_unit_for_byte_size(soft_max_capacity()), 597 byte_size_in_proper_unit(committed()), proper_unit_for_byte_size(committed()), 598 byte_size_in_proper_unit(used()), proper_unit_for_byte_size(used())); 599 st->print_cr(" %zu x %zu %s regions", 600 num_regions(), 601 byte_size_in_proper_unit(ShenandoahHeapRegion::region_size_bytes()), 602 proper_unit_for_byte_size(ShenandoahHeapRegion::region_size_bytes())); 603 604 st->print("Status: "); 605 if (has_forwarded_objects()) st->print("has forwarded objects, "); 606 if (!mode()->is_generational()) { 607 if (is_concurrent_mark_in_progress()) st->print("marking,"); 608 } else { 609 if (is_concurrent_old_mark_in_progress()) st->print("old marking, "); 610 if (is_concurrent_young_mark_in_progress()) st->print("young marking, "); 611 } 612 if (is_evacuation_in_progress()) st->print("evacuating, "); 613 if (is_update_refs_in_progress()) st->print("updating refs, "); 614 if (is_degenerated_gc_in_progress()) st->print("degenerated gc, "); 615 if (is_full_gc_in_progress()) st->print("full gc, "); 616 if (is_full_gc_move_in_progress()) st->print("full gc move, "); 617 if (is_concurrent_weak_root_in_progress()) st->print("concurrent weak roots, "); 618 if (is_concurrent_strong_root_in_progress() && 619 !is_concurrent_weak_root_in_progress()) st->print("concurrent strong roots, "); 620 621 if (cancelled_gc()) { 622 st->print("cancelled"); 623 } else { 624 st->print("not cancelled"); 625 } 626 st->cr(); 627 628 st->print_cr("Reserved region:"); 629 st->print_cr(" - [" PTR_FORMAT ", " PTR_FORMAT ") ", 630 p2i(reserved_region().start()), 631 p2i(reserved_region().end())); 632 633 ShenandoahCollectionSet* cset = collection_set(); 634 st->print_cr("Collection set:"); 635 if (cset != nullptr) { 636 st->print_cr(" - map (vanilla): " PTR_FORMAT, p2i(cset->map_address())); 637 st->print_cr(" - map (biased): " PTR_FORMAT, p2i(cset->biased_map_address())); 638 } else { 639 st->print_cr(" (null)"); 640 } 641 642 st->cr(); 643 MetaspaceUtils::print_on(st); 644 645 if (Verbose) { 646 st->cr(); 647 print_heap_regions_on(st); 648 } 649 } 650 651 class ShenandoahInitWorkerGCLABClosure : public ThreadClosure { 652 public: 653 void do_thread(Thread* thread) { 654 assert(thread != nullptr, "Sanity"); 655 ShenandoahThreadLocalData::initialize_gclab(thread); 656 } 657 }; 658 659 void ShenandoahHeap::post_initialize() { 660 CollectedHeap::post_initialize(); 661 662 // Schedule periodic task to report on gc thread CPU utilization 663 _mmu_tracker.initialize(); 664 665 MutexLocker ml(Threads_lock); 666 667 ShenandoahInitWorkerGCLABClosure init_gclabs; 668 _workers->threads_do(&init_gclabs); 669 670 // gclab can not be initialized early during VM startup, as it can not determinate its max_size. 671 // Now, we will let WorkerThreads to initialize gclab when new worker is created. 672 _workers->set_initialize_gclab(); 673 674 // Note that the safepoint workers may require gclabs if the threads are used to create a heap dump 675 // during a concurrent evacuation phase. 676 if (_safepoint_workers != nullptr) { 677 _safepoint_workers->threads_do(&init_gclabs); 678 _safepoint_workers->set_initialize_gclab(); 679 } 680 681 JFR_ONLY(ShenandoahJFRSupport::register_jfr_type_serializers();) 682 } 683 684 ShenandoahHeuristics* ShenandoahHeap::heuristics() { 685 return _global_generation->heuristics(); 686 } 687 688 size_t ShenandoahHeap::used() const { 689 return global_generation()->used(); 690 } 691 692 size_t ShenandoahHeap::committed() const { 693 return Atomic::load(&_committed); 694 } 695 696 void ShenandoahHeap::increase_committed(size_t bytes) { 697 shenandoah_assert_heaplocked_or_safepoint(); 698 _committed += bytes; 699 } 700 701 void ShenandoahHeap::decrease_committed(size_t bytes) { 702 shenandoah_assert_heaplocked_or_safepoint(); 703 _committed -= bytes; 704 } 705 706 // For tracking usage based on allocations, it should be the case that: 707 // * The sum of regions::used == heap::used 708 // * The sum of a generation's regions::used == generation::used 709 // * The sum of a generation's humongous regions::free == generation::humongous_waste 710 // These invariants are checked by the verifier on GC safepoints. 711 // 712 // Additional notes: 713 // * When a mutator's allocation request causes a region to be retired, the 714 // free memory left in that region is considered waste. It does not contribute 715 // to the usage, but it _does_ contribute to allocation rate. 716 // * The bottom of a PLAB must be aligned on card size. In some cases this will 717 // require padding in front of the PLAB (a filler object). Because this padding 718 // is included in the region's used memory we include the padding in the usage 719 // accounting as waste. 720 // * Mutator allocations are used to compute an allocation rate. They are also 721 // sent to the Pacer for those purposes. 722 // * There are three sources of waste: 723 // 1. The padding used to align a PLAB on card size 724 // 2. Region's free is less than minimum TLAB size and is retired 725 // 3. The unused portion of memory in the last region of a humongous object 726 void ShenandoahHeap::increase_used(const ShenandoahAllocRequest& req) { 727 size_t actual_bytes = req.actual_size() * HeapWordSize; 728 size_t wasted_bytes = req.waste() * HeapWordSize; 729 ShenandoahGeneration* generation = generation_for(req.affiliation()); 730 731 if (req.is_gc_alloc()) { 732 assert(wasted_bytes == 0 || req.type() == ShenandoahAllocRequest::_alloc_plab, "Only PLABs have waste"); 733 increase_used(generation, actual_bytes + wasted_bytes); 734 } else { 735 assert(req.is_mutator_alloc(), "Expected mutator alloc here"); 736 // padding and actual size both count towards allocation counter 737 generation->increase_allocated(actual_bytes + wasted_bytes); 738 739 // only actual size counts toward usage for mutator allocations 740 increase_used(generation, actual_bytes); 741 742 // notify pacer of both actual size and waste 743 notify_mutator_alloc_words(req.actual_size(), req.waste()); 744 745 if (wasted_bytes > 0 && ShenandoahHeapRegion::requires_humongous(req.actual_size())) { 746 increase_humongous_waste(generation,wasted_bytes); 747 } 748 } 749 } 750 751 void ShenandoahHeap::increase_humongous_waste(ShenandoahGeneration* generation, size_t bytes) { 752 generation->increase_humongous_waste(bytes); 753 if (!generation->is_global()) { 754 global_generation()->increase_humongous_waste(bytes); 755 } 756 } 757 758 void ShenandoahHeap::decrease_humongous_waste(ShenandoahGeneration* generation, size_t bytes) { 759 generation->decrease_humongous_waste(bytes); 760 if (!generation->is_global()) { 761 global_generation()->decrease_humongous_waste(bytes); 762 } 763 } 764 765 void ShenandoahHeap::increase_used(ShenandoahGeneration* generation, size_t bytes) { 766 generation->increase_used(bytes); 767 if (!generation->is_global()) { 768 global_generation()->increase_used(bytes); 769 } 770 } 771 772 void ShenandoahHeap::decrease_used(ShenandoahGeneration* generation, size_t bytes) { 773 generation->decrease_used(bytes); 774 if (!generation->is_global()) { 775 global_generation()->decrease_used(bytes); 776 } 777 } 778 779 void ShenandoahHeap::notify_mutator_alloc_words(size_t words, size_t waste) { 780 if (ShenandoahPacing) { 781 control_thread()->pacing_notify_alloc(words); 782 if (waste > 0) { 783 pacer()->claim_for_alloc<true>(waste); 784 } 785 } 786 } 787 788 size_t ShenandoahHeap::capacity() const { 789 return committed(); 790 } 791 792 size_t ShenandoahHeap::max_capacity() const { 793 return _num_regions * ShenandoahHeapRegion::region_size_bytes(); 794 } 795 796 size_t ShenandoahHeap::soft_max_capacity() const { 797 size_t v = Atomic::load(&_soft_max_size); 798 assert(min_capacity() <= v && v <= max_capacity(), 799 "Should be in bounds: %zu <= %zu <= %zu", 800 min_capacity(), v, max_capacity()); 801 return v; 802 } 803 804 void ShenandoahHeap::set_soft_max_capacity(size_t v) { 805 assert(min_capacity() <= v && v <= max_capacity(), 806 "Should be in bounds: %zu <= %zu <= %zu", 807 min_capacity(), v, max_capacity()); 808 Atomic::store(&_soft_max_size, v); 809 } 810 811 size_t ShenandoahHeap::min_capacity() const { 812 return _minimum_size; 813 } 814 815 size_t ShenandoahHeap::initial_capacity() const { 816 return _initial_size; 817 } 818 819 bool ShenandoahHeap::is_in(const void* p) const { 820 if (is_in_reserved(p)) { 821 if (is_full_gc_move_in_progress()) { 822 // Full GC move is running, we do not have a consistent region 823 // information yet. But we know the pointer is in heap. 824 return true; 825 } 826 // Now check if we point to a live section in active region. 827 ShenandoahHeapRegion* r = heap_region_containing(p); 828 return (r->is_active() && p < r->top()); 829 } else { 830 return false; 831 } 832 } 833 834 void ShenandoahHeap::notify_soft_max_changed() { 835 if (_uncommit_thread != nullptr) { 836 _uncommit_thread->notify_soft_max_changed(); 837 } 838 } 839 840 void ShenandoahHeap::notify_explicit_gc_requested() { 841 if (_uncommit_thread != nullptr) { 842 _uncommit_thread->notify_explicit_gc_requested(); 843 } 844 } 845 846 bool ShenandoahHeap::check_soft_max_changed() { 847 size_t new_soft_max = Atomic::load(&SoftMaxHeapSize); 848 size_t old_soft_max = soft_max_capacity(); 849 if (new_soft_max != old_soft_max) { 850 new_soft_max = MAX2(min_capacity(), new_soft_max); 851 new_soft_max = MIN2(max_capacity(), new_soft_max); 852 if (new_soft_max != old_soft_max) { 853 log_info(gc)("Soft Max Heap Size: %zu%s -> %zu%s", 854 byte_size_in_proper_unit(old_soft_max), proper_unit_for_byte_size(old_soft_max), 855 byte_size_in_proper_unit(new_soft_max), proper_unit_for_byte_size(new_soft_max) 856 ); 857 set_soft_max_capacity(new_soft_max); 858 return true; 859 } 860 } 861 return false; 862 } 863 864 void ShenandoahHeap::notify_heap_changed() { 865 // Update monitoring counters when we took a new region. This amortizes the 866 // update costs on slow path. 867 monitoring_support()->notify_heap_changed(); 868 _heap_changed.try_set(); 869 } 870 871 void ShenandoahHeap::set_forced_counters_update(bool value) { 872 monitoring_support()->set_forced_counters_update(value); 873 } 874 875 void ShenandoahHeap::handle_force_counters_update() { 876 monitoring_support()->handle_force_counters_update(); 877 } 878 879 HeapWord* ShenandoahHeap::allocate_from_gclab_slow(Thread* thread, size_t size) { 880 // New object should fit the GCLAB size 881 size_t min_size = MAX2(size, PLAB::min_size()); 882 883 // Figure out size of new GCLAB, looking back at heuristics. Expand aggressively. 884 size_t new_size = ShenandoahThreadLocalData::gclab_size(thread) * 2; 885 886 new_size = MIN2(new_size, PLAB::max_size()); 887 new_size = MAX2(new_size, PLAB::min_size()); 888 889 // Record new heuristic value even if we take any shortcut. This captures 890 // the case when moderately-sized objects always take a shortcut. At some point, 891 // heuristics should catch up with them. 892 log_debug(gc, free)("Set new GCLAB size: %zu", new_size); 893 ShenandoahThreadLocalData::set_gclab_size(thread, new_size); 894 895 if (new_size < size) { 896 // New size still does not fit the object. Fall back to shared allocation. 897 // This avoids retiring perfectly good GCLABs, when we encounter a large object. 898 log_debug(gc, free)("New gclab size (%zu) is too small for %zu", new_size, size); 899 return nullptr; 900 } 901 902 // Retire current GCLAB, and allocate a new one. 903 PLAB* gclab = ShenandoahThreadLocalData::gclab(thread); 904 gclab->retire(); 905 906 size_t actual_size = 0; 907 HeapWord* gclab_buf = allocate_new_gclab(min_size, new_size, &actual_size); 908 if (gclab_buf == nullptr) { 909 return nullptr; 910 } 911 912 assert (size <= actual_size, "allocation should fit"); 913 914 // ...and clear or zap just allocated TLAB, if needed. 915 if (ZeroTLAB) { 916 Copy::zero_to_words(gclab_buf, actual_size); 917 } else if (ZapTLAB) { 918 // Skip mangling the space corresponding to the object header to 919 // ensure that the returned space is not considered parsable by 920 // any concurrent GC thread. 921 size_t hdr_size = oopDesc::header_size(); 922 Copy::fill_to_words(gclab_buf + hdr_size, actual_size - hdr_size, badHeapWordVal); 923 } 924 gclab->set_buf(gclab_buf, actual_size); 925 return gclab->allocate(size); 926 } 927 928 // Called from stubs in JIT code or interpreter 929 HeapWord* ShenandoahHeap::allocate_new_tlab(size_t min_size, 930 size_t requested_size, 931 size_t* actual_size) { 932 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_tlab(min_size, requested_size); 933 HeapWord* res = allocate_memory(req); 934 if (res != nullptr) { 935 *actual_size = req.actual_size(); 936 } else { 937 *actual_size = 0; 938 } 939 return res; 940 } 941 942 HeapWord* ShenandoahHeap::allocate_new_gclab(size_t min_size, 943 size_t word_size, 944 size_t* actual_size) { 945 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_gclab(min_size, word_size); 946 HeapWord* res = allocate_memory(req); 947 if (res != nullptr) { 948 *actual_size = req.actual_size(); 949 } else { 950 *actual_size = 0; 951 } 952 return res; 953 } 954 955 HeapWord* ShenandoahHeap::allocate_memory(ShenandoahAllocRequest& req) { 956 intptr_t pacer_epoch = 0; 957 bool in_new_region = false; 958 HeapWord* result = nullptr; 959 960 if (req.is_mutator_alloc()) { 961 if (ShenandoahPacing) { 962 pacer()->pace_for_alloc(req.size()); 963 pacer_epoch = pacer()->epoch(); 964 } 965 966 if (!ShenandoahAllocFailureALot || !should_inject_alloc_failure()) { 967 result = allocate_memory_under_lock(req, in_new_region); 968 } 969 970 // Check that gc overhead is not exceeded. 971 // 972 // Shenandoah will grind along for quite a while allocating one 973 // object at a time using shared (non-tlab) allocations. This check 974 // is testing that the GC overhead limit has not been exceeded. 975 // This will notify the collector to start a cycle, but will raise 976 // an OOME to the mutator if the last Full GCs have not made progress. 977 // gc_no_progress_count is incremented following each degen or full GC that fails to achieve is_good_progress(). 978 if (result == nullptr && !req.is_lab_alloc() && get_gc_no_progress_count() > ShenandoahNoProgressThreshold) { 979 control_thread()->handle_alloc_failure(req, false); 980 req.set_actual_size(0); 981 return nullptr; 982 } 983 984 if (result == nullptr) { 985 // Block until control thread reacted, then retry allocation. 986 // 987 // It might happen that one of the threads requesting allocation would unblock 988 // way later after GC happened, only to fail the second allocation, because 989 // other threads have already depleted the free storage. In this case, a better 990 // strategy is to try again, until at least one full GC has completed. 991 // 992 // Stop retrying and return nullptr to cause OOMError exception if our allocation failed even after: 993 // a) We experienced a GC that had good progress, or 994 // b) We experienced at least one Full GC (whether or not it had good progress) 995 996 size_t original_count = shenandoah_policy()->full_gc_count(); 997 while ((result == nullptr) && (original_count == shenandoah_policy()->full_gc_count())) { 998 control_thread()->handle_alloc_failure(req, true); 999 result = allocate_memory_under_lock(req, in_new_region); 1000 } 1001 if (result != nullptr) { 1002 // If our allocation request has been satisifed after it initially failed, we count this as good gc progress 1003 notify_gc_progress(); 1004 } 1005 if (log_develop_is_enabled(Debug, gc, alloc)) { 1006 ResourceMark rm; 1007 log_debug(gc, alloc)("Thread: %s, Result: " PTR_FORMAT ", Request: %s, Size: %zu" 1008 ", Original: %zu, Latest: %zu", 1009 Thread::current()->name(), p2i(result), req.type_string(), req.size(), 1010 original_count, get_gc_no_progress_count()); 1011 } 1012 } 1013 } else { 1014 assert(req.is_gc_alloc(), "Can only accept GC allocs here"); 1015 result = allocate_memory_under_lock(req, in_new_region); 1016 // Do not call handle_alloc_failure() here, because we cannot block. 1017 // The allocation failure would be handled by the LRB slowpath with handle_alloc_failure_evac(). 1018 } 1019 1020 if (in_new_region) { 1021 notify_heap_changed(); 1022 } 1023 1024 if (result == nullptr) { 1025 req.set_actual_size(0); 1026 } 1027 1028 // This is called regardless of the outcome of the allocation to account 1029 // for any waste created by retiring regions with this request. 1030 increase_used(req); 1031 1032 if (result != nullptr) { 1033 size_t requested = req.size(); 1034 size_t actual = req.actual_size(); 1035 1036 assert (req.is_lab_alloc() || (requested == actual), 1037 "Only LAB allocations are elastic: %s, requested = %zu, actual = %zu", 1038 ShenandoahAllocRequest::alloc_type_to_string(req.type()), requested, actual); 1039 1040 if (req.is_mutator_alloc()) { 1041 // If we requested more than we were granted, give the rest back to pacer. 1042 // This only matters if we are in the same pacing epoch: do not try to unpace 1043 // over the budget for the other phase. 1044 if (ShenandoahPacing && (pacer_epoch > 0) && (requested > actual)) { 1045 pacer()->unpace_for_alloc(pacer_epoch, requested - actual); 1046 } 1047 } 1048 } 1049 1050 return result; 1051 } 1052 1053 HeapWord* ShenandoahHeap::allocate_memory_under_lock(ShenandoahAllocRequest& req, bool& in_new_region) { 1054 // If we are dealing with mutator allocation, then we may need to block for safepoint. 1055 // We cannot block for safepoint for GC allocations, because there is a high chance 1056 // we are already running at safepoint or from stack watermark machinery, and we cannot 1057 // block again. 1058 ShenandoahHeapLocker locker(lock(), req.is_mutator_alloc()); 1059 1060 // Make sure the old generation has room for either evacuations or promotions before trying to allocate. 1061 if (req.is_old() && !old_generation()->can_allocate(req)) { 1062 return nullptr; 1063 } 1064 1065 // If TLAB request size is greater than available, allocate() will attempt to downsize request to fit within available 1066 // memory. 1067 HeapWord* result = _free_set->allocate(req, in_new_region); 1068 1069 // Record the plab configuration for this result and register the object. 1070 if (result != nullptr && req.is_old()) { 1071 old_generation()->configure_plab_for_current_thread(req); 1072 if (req.type() == ShenandoahAllocRequest::_alloc_shared_gc) { 1073 // Register the newly allocated object while we're holding the global lock since there's no synchronization 1074 // built in to the implementation of register_object(). There are potential races when multiple independent 1075 // threads are allocating objects, some of which might span the same card region. For example, consider 1076 // a card table's memory region within which three objects are being allocated by three different threads: 1077 // 1078 // objects being "concurrently" allocated: 1079 // [-----a------][-----b-----][--------------c------------------] 1080 // [---- card table memory range --------------] 1081 // 1082 // Before any objects are allocated, this card's memory range holds no objects. Note that allocation of object a 1083 // wants to set the starts-object, first-start, and last-start attributes of the preceding card region. 1084 // Allocation of object b wants to set the starts-object, first-start, and last-start attributes of this card region. 1085 // Allocation of object c also wants to set the starts-object, first-start, and last-start attributes of this 1086 // card region. 1087 // 1088 // The thread allocating b and the thread allocating c can "race" in various ways, resulting in confusion, such as 1089 // last-start representing object b while first-start represents object c. This is why we need to require all 1090 // register_object() invocations to be "mutually exclusive" with respect to each card's memory range. 1091 old_generation()->card_scan()->register_object(result); 1092 } 1093 } 1094 1095 return result; 1096 } 1097 1098 HeapWord* ShenandoahHeap::mem_allocate(size_t size, 1099 bool* gc_overhead_limit_was_exceeded) { 1100 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared(size); 1101 return allocate_memory(req); 1102 } 1103 1104 MetaWord* ShenandoahHeap::satisfy_failed_metadata_allocation(ClassLoaderData* loader_data, 1105 size_t size, 1106 Metaspace::MetadataType mdtype) { 1107 MetaWord* result; 1108 1109 // Inform metaspace OOM to GC heuristics if class unloading is possible. 1110 ShenandoahHeuristics* h = global_generation()->heuristics(); 1111 if (h->can_unload_classes()) { 1112 h->record_metaspace_oom(); 1113 } 1114 1115 // Expand and retry allocation 1116 result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype); 1117 if (result != nullptr) { 1118 return result; 1119 } 1120 1121 // Start full GC 1122 collect(GCCause::_metadata_GC_clear_soft_refs); 1123 1124 // Retry allocation 1125 result = loader_data->metaspace_non_null()->allocate(size, mdtype); 1126 if (result != nullptr) { 1127 return result; 1128 } 1129 1130 // Expand and retry allocation 1131 result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype); 1132 if (result != nullptr) { 1133 return result; 1134 } 1135 1136 // Out of memory 1137 return nullptr; 1138 } 1139 1140 class ShenandoahConcurrentEvacuateRegionObjectClosure : public ObjectClosure { 1141 private: 1142 ShenandoahHeap* const _heap; 1143 Thread* const _thread; 1144 public: 1145 ShenandoahConcurrentEvacuateRegionObjectClosure(ShenandoahHeap* heap) : 1146 _heap(heap), _thread(Thread::current()) {} 1147 1148 void do_object(oop p) { 1149 shenandoah_assert_marked(nullptr, p); 1150 if (!p->is_forwarded()) { 1151 _heap->evacuate_object(p, _thread); 1152 } 1153 } 1154 }; 1155 1156 class ShenandoahEvacuationTask : public WorkerTask { 1157 private: 1158 ShenandoahHeap* const _sh; 1159 ShenandoahCollectionSet* const _cs; 1160 bool _concurrent; 1161 public: 1162 ShenandoahEvacuationTask(ShenandoahHeap* sh, 1163 ShenandoahCollectionSet* cs, 1164 bool concurrent) : 1165 WorkerTask("Shenandoah Evacuation"), 1166 _sh(sh), 1167 _cs(cs), 1168 _concurrent(concurrent) 1169 {} 1170 1171 void work(uint worker_id) { 1172 if (_concurrent) { 1173 ShenandoahConcurrentWorkerSession worker_session(worker_id); 1174 ShenandoahSuspendibleThreadSetJoiner stsj; 1175 ShenandoahEvacOOMScope oom_evac_scope; 1176 do_work(); 1177 } else { 1178 ShenandoahParallelWorkerSession worker_session(worker_id); 1179 ShenandoahEvacOOMScope oom_evac_scope; 1180 do_work(); 1181 } 1182 } 1183 1184 private: 1185 void do_work() { 1186 ShenandoahConcurrentEvacuateRegionObjectClosure cl(_sh); 1187 ShenandoahHeapRegion* r; 1188 while ((r =_cs->claim_next()) != nullptr) { 1189 assert(r->has_live(), "Region %zu should have been reclaimed early", r->index()); 1190 _sh->marked_object_iterate(r, &cl); 1191 1192 if (ShenandoahPacing) { 1193 _sh->pacer()->report_evac(r->used() >> LogHeapWordSize); 1194 } 1195 1196 if (_sh->check_cancelled_gc_and_yield(_concurrent)) { 1197 break; 1198 } 1199 } 1200 } 1201 }; 1202 1203 class ShenandoahRetireGCLABClosure : public ThreadClosure { 1204 private: 1205 bool const _resize; 1206 public: 1207 explicit ShenandoahRetireGCLABClosure(bool resize) : _resize(resize) {} 1208 void do_thread(Thread* thread) override { 1209 PLAB* gclab = ShenandoahThreadLocalData::gclab(thread); 1210 assert(gclab != nullptr, "GCLAB should be initialized for %s", thread->name()); 1211 gclab->retire(); 1212 if (_resize && ShenandoahThreadLocalData::gclab_size(thread) > 0) { 1213 ShenandoahThreadLocalData::set_gclab_size(thread, 0); 1214 } 1215 1216 if (ShenandoahHeap::heap()->mode()->is_generational()) { 1217 PLAB* plab = ShenandoahThreadLocalData::plab(thread); 1218 assert(plab != nullptr, "PLAB should be initialized for %s", thread->name()); 1219 1220 // There are two reasons to retire all plabs between old-gen evacuation passes. 1221 // 1. We need to make the plab memory parsable by remembered-set scanning. 1222 // 2. We need to establish a trustworthy UpdateWaterMark value within each old-gen heap region 1223 ShenandoahGenerationalHeap::heap()->retire_plab(plab, thread); 1224 if (_resize && ShenandoahThreadLocalData::plab_size(thread) > 0) { 1225 ShenandoahThreadLocalData::set_plab_size(thread, 0); 1226 } 1227 } 1228 } 1229 }; 1230 1231 class ShenandoahGCStatePropagator : public ThreadClosure { 1232 public: 1233 explicit ShenandoahGCStatePropagator(char gc_state) : _gc_state(gc_state) {} 1234 1235 void do_thread(Thread* thread) override { 1236 ShenandoahThreadLocalData::set_gc_state(thread, _gc_state); 1237 } 1238 private: 1239 char _gc_state; 1240 }; 1241 1242 class ShenandoahPrepareForUpdateRefs : public HandshakeClosure { 1243 public: 1244 explicit ShenandoahPrepareForUpdateRefs(char gc_state) : 1245 HandshakeClosure("Shenandoah Prepare for Update Refs"), 1246 _retire(ResizeTLAB), _propagator(gc_state) {} 1247 1248 void do_thread(Thread* thread) override { 1249 _propagator.do_thread(thread); 1250 if (ShenandoahThreadLocalData::gclab(thread) != nullptr) { 1251 _retire.do_thread(thread); 1252 } 1253 } 1254 private: 1255 ShenandoahRetireGCLABClosure _retire; 1256 ShenandoahGCStatePropagator _propagator; 1257 }; 1258 1259 void ShenandoahHeap::evacuate_collection_set(bool concurrent) { 1260 ShenandoahEvacuationTask task(this, _collection_set, concurrent); 1261 workers()->run_task(&task); 1262 } 1263 1264 void ShenandoahHeap::concurrent_prepare_for_update_refs() { 1265 // It's possible that evacuation succeeded, but we could still be cancelled when we get here. 1266 // A cancellation at this point means the degenerated cycle must resume from update-refs. 1267 set_gc_state_concurrent(EVACUATION, false); 1268 set_gc_state_concurrent(WEAK_ROOTS, false); 1269 set_gc_state_concurrent(UPDATE_REFS, true); 1270 1271 // This will propagate the gc state and retire gclabs and plabs for threads that require it. 1272 ShenandoahPrepareForUpdateRefs prepare_for_update_refs(_gc_state.raw_value()); 1273 1274 // The handshake won't touch worker threads (or control thread, or VM thread), so do those separately. 1275 Threads::non_java_threads_do(&prepare_for_update_refs); 1276 1277 // Now retire gclabs and plabs and propagate gc_state for mutator threads 1278 Handshake::execute(&prepare_for_update_refs); 1279 1280 _update_refs_iterator.reset(); 1281 } 1282 1283 oop ShenandoahHeap::evacuate_object(oop p, Thread* thread) { 1284 assert(thread == Thread::current(), "Expected thread parameter to be current thread."); 1285 if (ShenandoahThreadLocalData::is_oom_during_evac(thread)) { 1286 // This thread went through the OOM during evac protocol. It is safe to return 1287 // the forward pointer. It must not attempt to evacuate any other objects. 1288 return ShenandoahBarrierSet::resolve_forwarded(p); 1289 } 1290 1291 assert(ShenandoahThreadLocalData::is_evac_allowed(thread), "must be enclosed in oom-evac scope"); 1292 1293 ShenandoahHeapRegion* r = heap_region_containing(p); 1294 assert(!r->is_humongous(), "never evacuate humongous objects"); 1295 1296 ShenandoahAffiliation target_gen = r->affiliation(); 1297 return try_evacuate_object(p, thread, r, target_gen); 1298 } 1299 1300 oop ShenandoahHeap::try_evacuate_object(oop p, Thread* thread, ShenandoahHeapRegion* from_region, 1301 ShenandoahAffiliation target_gen) { 1302 assert(target_gen == YOUNG_GENERATION, "Only expect evacuations to young in this mode"); 1303 assert(from_region->is_young(), "Only expect evacuations from young in this mode"); 1304 bool alloc_from_lab = true; 1305 HeapWord* copy = nullptr; 1306 1307 markWord mark = p->mark(); 1308 if (ShenandoahForwarding::is_forwarded(mark)) { 1309 return ShenandoahForwarding::get_forwardee(p); 1310 } 1311 size_t old_size = ShenandoahForwarding::size(p); 1312 size_t size = p->copy_size(old_size, mark); 1313 1314 #ifdef ASSERT 1315 if (ShenandoahOOMDuringEvacALot && 1316 (os::random() & 1) == 0) { // Simulate OOM every ~2nd slow-path call 1317 copy = nullptr; 1318 } else { 1319 #endif 1320 if (UseTLAB) { 1321 copy = allocate_from_gclab(thread, size); 1322 } 1323 if (copy == nullptr) { 1324 // If we failed to allocate in LAB, we'll try a shared allocation. 1325 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared_gc(size, target_gen); 1326 copy = allocate_memory(req); 1327 alloc_from_lab = false; 1328 } 1329 #ifdef ASSERT 1330 } 1331 #endif 1332 1333 if (copy == nullptr) { 1334 control_thread()->handle_alloc_failure_evac(size); 1335 1336 _oom_evac_handler.handle_out_of_memory_during_evacuation(); 1337 1338 return ShenandoahBarrierSet::resolve_forwarded(p); 1339 } 1340 1341 // Copy the object: 1342 Copy::aligned_disjoint_words(cast_from_oop<HeapWord*>(p), copy, old_size); 1343 1344 // Try to install the new forwarding pointer. 1345 oop copy_val = cast_to_oop(copy); 1346 oop result = ShenandoahForwarding::try_update_forwardee(p, copy_val); 1347 if (result == copy_val) { 1348 // Successfully evacuated. Our copy is now the public one! 1349 copy_val->initialize_hash_if_necessary(p); 1350 ContinuationGCSupport::relativize_stack_chunk(copy_val); 1351 shenandoah_assert_correct(nullptr, copy_val); 1352 return copy_val; 1353 } else { 1354 // Failed to evacuate. We need to deal with the object that is left behind. Since this 1355 // new allocation is certainly after TAMS, it will be considered live in the next cycle. 1356 // But if it happens to contain references to evacuated regions, those references would 1357 // not get updated for this stale copy during this cycle, and we will crash while scanning 1358 // it the next cycle. 1359 if (alloc_from_lab) { 1360 // For LAB allocations, it is enough to rollback the allocation ptr. Either the next 1361 // object will overwrite this stale copy, or the filler object on LAB retirement will 1362 // do this. 1363 ShenandoahThreadLocalData::gclab(thread)->undo_allocation(copy, size); 1364 } else { 1365 // For non-LAB allocations, we have no way to retract the allocation, and 1366 // have to explicitly overwrite the copy with the filler object. With that overwrite, 1367 // we have to keep the fwdptr initialized and pointing to our (stale) copy. 1368 assert(size >= ShenandoahHeap::min_fill_size(), "previously allocated object known to be larger than min_size"); 1369 fill_with_object(copy, size); 1370 shenandoah_assert_correct(nullptr, copy_val); 1371 // For non-LAB allocations, the object has already been registered 1372 } 1373 shenandoah_assert_correct(nullptr, result); 1374 return result; 1375 } 1376 } 1377 1378 void ShenandoahHeap::trash_cset_regions() { 1379 ShenandoahHeapLocker locker(lock()); 1380 1381 ShenandoahCollectionSet* set = collection_set(); 1382 ShenandoahHeapRegion* r; 1383 set->clear_current_index(); 1384 while ((r = set->next()) != nullptr) { 1385 r->make_trash(); 1386 } 1387 collection_set()->clear(); 1388 } 1389 1390 void ShenandoahHeap::print_heap_regions_on(outputStream* st) const { 1391 st->print_cr("Heap Regions:"); 1392 st->print_cr("Region state: EU=empty-uncommitted, EC=empty-committed, R=regular, H=humongous start, HP=pinned humongous start"); 1393 st->print_cr(" HC=humongous continuation, CS=collection set, TR=trash, P=pinned, CSP=pinned collection set"); 1394 st->print_cr("BTE=bottom/top/end, TAMS=top-at-mark-start"); 1395 st->print_cr("UWM=update watermark, U=used"); 1396 st->print_cr("T=TLAB allocs, G=GCLAB allocs"); 1397 st->print_cr("S=shared allocs, L=live data"); 1398 st->print_cr("CP=critical pins"); 1399 1400 for (size_t i = 0; i < num_regions(); i++) { 1401 get_region(i)->print_on(st); 1402 } 1403 } 1404 1405 size_t ShenandoahHeap::trash_humongous_region_at(ShenandoahHeapRegion* start) { 1406 assert(start->is_humongous_start(), "reclaim regions starting with the first one"); 1407 1408 oop humongous_obj = cast_to_oop(start->bottom()); 1409 size_t size = humongous_obj->size(); 1410 size_t required_regions = ShenandoahHeapRegion::required_regions(size * HeapWordSize); 1411 size_t index = start->index() + required_regions - 1; 1412 1413 assert(!start->has_live(), "liveness must be zero"); 1414 1415 for(size_t i = 0; i < required_regions; i++) { 1416 // Reclaim from tail. Otherwise, assertion fails when printing region to trace log, 1417 // as it expects that every region belongs to a humongous region starting with a humongous start region. 1418 ShenandoahHeapRegion* region = get_region(index --); 1419 1420 assert(region->is_humongous(), "expect correct humongous start or continuation"); 1421 assert(!region->is_cset(), "Humongous region should not be in collection set"); 1422 1423 region->make_trash_immediate(); 1424 } 1425 return required_regions; 1426 } 1427 1428 class ShenandoahCheckCleanGCLABClosure : public ThreadClosure { 1429 public: 1430 ShenandoahCheckCleanGCLABClosure() {} 1431 void do_thread(Thread* thread) { 1432 PLAB* gclab = ShenandoahThreadLocalData::gclab(thread); 1433 assert(gclab != nullptr, "GCLAB should be initialized for %s", thread->name()); 1434 assert(gclab->words_remaining() == 0, "GCLAB should not need retirement"); 1435 1436 if (ShenandoahHeap::heap()->mode()->is_generational()) { 1437 PLAB* plab = ShenandoahThreadLocalData::plab(thread); 1438 assert(plab != nullptr, "PLAB should be initialized for %s", thread->name()); 1439 assert(plab->words_remaining() == 0, "PLAB should not need retirement"); 1440 } 1441 } 1442 }; 1443 1444 void ShenandoahHeap::labs_make_parsable() { 1445 assert(UseTLAB, "Only call with UseTLAB"); 1446 1447 ShenandoahRetireGCLABClosure cl(false); 1448 1449 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1450 ThreadLocalAllocBuffer& tlab = t->tlab(); 1451 tlab.make_parsable(); 1452 cl.do_thread(t); 1453 } 1454 1455 workers()->threads_do(&cl); 1456 1457 if (safepoint_workers() != nullptr) { 1458 safepoint_workers()->threads_do(&cl); 1459 } 1460 } 1461 1462 void ShenandoahHeap::tlabs_retire(bool resize) { 1463 assert(UseTLAB, "Only call with UseTLAB"); 1464 assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled"); 1465 1466 ThreadLocalAllocStats stats; 1467 1468 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1469 ThreadLocalAllocBuffer& tlab = t->tlab(); 1470 tlab.retire(&stats); 1471 if (resize) { 1472 tlab.resize(); 1473 } 1474 } 1475 1476 stats.publish(); 1477 1478 #ifdef ASSERT 1479 ShenandoahCheckCleanGCLABClosure cl; 1480 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1481 cl.do_thread(t); 1482 } 1483 workers()->threads_do(&cl); 1484 #endif 1485 } 1486 1487 void ShenandoahHeap::gclabs_retire(bool resize) { 1488 assert(UseTLAB, "Only call with UseTLAB"); 1489 assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled"); 1490 1491 ShenandoahRetireGCLABClosure cl(resize); 1492 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1493 cl.do_thread(t); 1494 } 1495 1496 workers()->threads_do(&cl); 1497 1498 if (safepoint_workers() != nullptr) { 1499 safepoint_workers()->threads_do(&cl); 1500 } 1501 } 1502 1503 // Returns size in bytes 1504 size_t ShenandoahHeap::unsafe_max_tlab_alloc(Thread *thread) const { 1505 // Return the max allowed size, and let the allocation path 1506 // figure out the safe size for current allocation. 1507 return ShenandoahHeapRegion::max_tlab_size_bytes(); 1508 } 1509 1510 size_t ShenandoahHeap::max_tlab_size() const { 1511 // Returns size in words 1512 return ShenandoahHeapRegion::max_tlab_size_words(); 1513 } 1514 1515 void ShenandoahHeap::collect_as_vm_thread(GCCause::Cause cause) { 1516 // These requests are ignored because we can't easily have Shenandoah jump into 1517 // a synchronous (degenerated or full) cycle while it is in the middle of a concurrent 1518 // cycle. We _could_ cancel the concurrent cycle and then try to run a cycle directly 1519 // on the VM thread, but this would confuse the control thread mightily and doesn't 1520 // seem worth the trouble. Instead, we will have the caller thread run (and wait for) a 1521 // concurrent cycle in the prologue of the heap inspect/dump operation. This is how 1522 // other concurrent collectors in the JVM handle this scenario as well. 1523 assert(Thread::current()->is_VM_thread(), "Should be the VM thread"); 1524 guarantee(cause == GCCause::_heap_dump || cause == GCCause::_heap_inspection, "Invalid cause"); 1525 } 1526 1527 void ShenandoahHeap::collect(GCCause::Cause cause) { 1528 control_thread()->request_gc(cause); 1529 } 1530 1531 void ShenandoahHeap::do_full_collection(bool clear_all_soft_refs) { 1532 //assert(false, "Shouldn't need to do full collections"); 1533 } 1534 1535 HeapWord* ShenandoahHeap::block_start(const void* addr) const { 1536 ShenandoahHeapRegion* r = heap_region_containing(addr); 1537 if (r != nullptr) { 1538 return r->block_start(addr); 1539 } 1540 return nullptr; 1541 } 1542 1543 bool ShenandoahHeap::block_is_obj(const HeapWord* addr) const { 1544 ShenandoahHeapRegion* r = heap_region_containing(addr); 1545 return r->block_is_obj(addr); 1546 } 1547 1548 bool ShenandoahHeap::print_location(outputStream* st, void* addr) const { 1549 return BlockLocationPrinter<ShenandoahHeap>::print_location(st, addr); 1550 } 1551 1552 void ShenandoahHeap::prepare_for_verify() { 1553 if (SafepointSynchronize::is_at_safepoint() && UseTLAB) { 1554 labs_make_parsable(); 1555 } 1556 } 1557 1558 void ShenandoahHeap::gc_threads_do(ThreadClosure* tcl) const { 1559 if (_shenandoah_policy->is_at_shutdown()) { 1560 return; 1561 } 1562 1563 if (_control_thread != nullptr) { 1564 tcl->do_thread(_control_thread); 1565 } 1566 1567 if (_uncommit_thread != nullptr) { 1568 tcl->do_thread(_uncommit_thread); 1569 } 1570 1571 workers()->threads_do(tcl); 1572 if (_safepoint_workers != nullptr) { 1573 _safepoint_workers->threads_do(tcl); 1574 } 1575 } 1576 1577 void ShenandoahHeap::print_tracing_info() const { 1578 LogTarget(Info, gc, stats) lt; 1579 if (lt.is_enabled()) { 1580 ResourceMark rm; 1581 LogStream ls(lt); 1582 1583 phase_timings()->print_global_on(&ls); 1584 1585 ls.cr(); 1586 ls.cr(); 1587 1588 shenandoah_policy()->print_gc_stats(&ls); 1589 1590 ls.cr(); 1591 ls.cr(); 1592 } 1593 } 1594 1595 void ShenandoahHeap::set_gc_generation(ShenandoahGeneration* generation) { 1596 shenandoah_assert_control_or_vm_thread_at_safepoint(); 1597 _gc_generation = generation; 1598 } 1599 1600 // Active generation may only be set by the VM thread at a safepoint. 1601 void ShenandoahHeap::set_active_generation() { 1602 assert(Thread::current()->is_VM_thread(), "Only the VM Thread"); 1603 assert(SafepointSynchronize::is_at_safepoint(), "Only at a safepoint!"); 1604 assert(_gc_generation != nullptr, "Will set _active_generation to nullptr"); 1605 _active_generation = _gc_generation; 1606 } 1607 1608 void ShenandoahHeap::on_cycle_start(GCCause::Cause cause, ShenandoahGeneration* generation) { 1609 shenandoah_policy()->record_collection_cause(cause); 1610 1611 const GCCause::Cause current = gc_cause(); 1612 assert(current == GCCause::_no_gc, "Over-writing cause: %s, with: %s", 1613 GCCause::to_string(current), GCCause::to_string(cause)); 1614 assert(_gc_generation == nullptr, "Over-writing _gc_generation"); 1615 1616 set_gc_cause(cause); 1617 set_gc_generation(generation); 1618 1619 generation->heuristics()->record_cycle_start(); 1620 } 1621 1622 void ShenandoahHeap::on_cycle_end(ShenandoahGeneration* generation) { 1623 assert(gc_cause() != GCCause::_no_gc, "cause wasn't set"); 1624 assert(_gc_generation != nullptr, "_gc_generation wasn't set"); 1625 1626 generation->heuristics()->record_cycle_end(); 1627 if (mode()->is_generational() && generation->is_global()) { 1628 // If we just completed a GLOBAL GC, claim credit for completion of young-gen and old-gen GC as well 1629 young_generation()->heuristics()->record_cycle_end(); 1630 old_generation()->heuristics()->record_cycle_end(); 1631 } 1632 1633 set_gc_generation(nullptr); 1634 set_gc_cause(GCCause::_no_gc); 1635 } 1636 1637 void ShenandoahHeap::verify(VerifyOption vo) { 1638 if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) { 1639 if (ShenandoahVerify) { 1640 verifier()->verify_generic(vo); 1641 } else { 1642 // TODO: Consider allocating verification bitmaps on demand, 1643 // and turn this on unconditionally. 1644 } 1645 } 1646 } 1647 size_t ShenandoahHeap::tlab_capacity(Thread *thr) const { 1648 return _free_set->capacity(); 1649 } 1650 1651 class ObjectIterateScanRootClosure : public BasicOopIterateClosure { 1652 private: 1653 MarkBitMap* _bitmap; 1654 ShenandoahScanObjectStack* _oop_stack; 1655 ShenandoahHeap* const _heap; 1656 ShenandoahMarkingContext* const _marking_context; 1657 1658 template <class T> 1659 void do_oop_work(T* p) { 1660 T o = RawAccess<>::oop_load(p); 1661 if (!CompressedOops::is_null(o)) { 1662 oop obj = CompressedOops::decode_not_null(o); 1663 if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) { 1664 // There may be dead oops in weak roots in concurrent root phase, do not touch them. 1665 return; 1666 } 1667 obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj); 1668 1669 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1670 if (!_bitmap->is_marked(obj)) { 1671 _bitmap->mark(obj); 1672 _oop_stack->push(obj); 1673 } 1674 } 1675 } 1676 public: 1677 ObjectIterateScanRootClosure(MarkBitMap* bitmap, ShenandoahScanObjectStack* oop_stack) : 1678 _bitmap(bitmap), _oop_stack(oop_stack), _heap(ShenandoahHeap::heap()), 1679 _marking_context(_heap->marking_context()) {} 1680 void do_oop(oop* p) { do_oop_work(p); } 1681 void do_oop(narrowOop* p) { do_oop_work(p); } 1682 }; 1683 1684 /* 1685 * This is public API, used in preparation of object_iterate(). 1686 * Since we don't do linear scan of heap in object_iterate() (see comment below), we don't 1687 * need to make the heap parsable. For Shenandoah-internal linear heap scans that we can 1688 * control, we call SH::tlabs_retire, SH::gclabs_retire. 1689 */ 1690 void ShenandoahHeap::ensure_parsability(bool retire_tlabs) { 1691 // No-op. 1692 } 1693 1694 /* 1695 * Iterates objects in the heap. This is public API, used for, e.g., heap dumping. 1696 * 1697 * We cannot safely iterate objects by doing a linear scan at random points in time. Linear 1698 * scanning needs to deal with dead objects, which may have dead Klass* pointers (e.g. 1699 * calling oopDesc::size() would crash) or dangling reference fields (crashes) etc. Linear 1700 * scanning therefore depends on having a valid marking bitmap to support it. However, we only 1701 * have a valid marking bitmap after successful marking. In particular, we *don't* have a valid 1702 * marking bitmap during marking, after aborted marking or during/after cleanup (when we just 1703 * wiped the bitmap in preparation for next marking). 1704 * 1705 * For all those reasons, we implement object iteration as a single marking traversal, reporting 1706 * objects as we mark+traverse through the heap, starting from GC roots. JVMTI IterateThroughHeap 1707 * is allowed to report dead objects, but is not required to do so. 1708 */ 1709 void ShenandoahHeap::object_iterate(ObjectClosure* cl) { 1710 // Reset bitmap 1711 if (!prepare_aux_bitmap_for_iteration()) 1712 return; 1713 1714 ShenandoahScanObjectStack oop_stack; 1715 ObjectIterateScanRootClosure oops(&_aux_bit_map, &oop_stack); 1716 // Seed the stack with root scan 1717 scan_roots_for_iteration(&oop_stack, &oops); 1718 1719 // Work through the oop stack to traverse heap 1720 while (! oop_stack.is_empty()) { 1721 oop obj = oop_stack.pop(); 1722 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1723 cl->do_object(obj); 1724 obj->oop_iterate(&oops); 1725 } 1726 1727 assert(oop_stack.is_empty(), "should be empty"); 1728 // Reclaim bitmap 1729 reclaim_aux_bitmap_for_iteration(); 1730 } 1731 1732 bool ShenandoahHeap::prepare_aux_bitmap_for_iteration() { 1733 assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints"); 1734 1735 if (!_aux_bitmap_region_special && !os::commit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size(), false)) { 1736 log_warning(gc)("Could not commit native memory for auxiliary marking bitmap for heap iteration"); 1737 return false; 1738 } 1739 // Reset bitmap 1740 _aux_bit_map.clear(); 1741 return true; 1742 } 1743 1744 void ShenandoahHeap::scan_roots_for_iteration(ShenandoahScanObjectStack* oop_stack, ObjectIterateScanRootClosure* oops) { 1745 // Process GC roots according to current GC cycle 1746 // This populates the work stack with initial objects 1747 // It is important to relinquish the associated locks before diving 1748 // into heap dumper 1749 uint n_workers = safepoint_workers() != nullptr ? safepoint_workers()->active_workers() : 1; 1750 ShenandoahHeapIterationRootScanner rp(n_workers); 1751 rp.roots_do(oops); 1752 } 1753 1754 void ShenandoahHeap::reclaim_aux_bitmap_for_iteration() { 1755 if (!_aux_bitmap_region_special && !os::uncommit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size())) { 1756 log_warning(gc)("Could not uncommit native memory for auxiliary marking bitmap for heap iteration"); 1757 } 1758 } 1759 1760 // Closure for parallelly iterate objects 1761 class ShenandoahObjectIterateParScanClosure : public BasicOopIterateClosure { 1762 private: 1763 MarkBitMap* _bitmap; 1764 ShenandoahObjToScanQueue* _queue; 1765 ShenandoahHeap* const _heap; 1766 ShenandoahMarkingContext* const _marking_context; 1767 1768 template <class T> 1769 void do_oop_work(T* p) { 1770 T o = RawAccess<>::oop_load(p); 1771 if (!CompressedOops::is_null(o)) { 1772 oop obj = CompressedOops::decode_not_null(o); 1773 if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) { 1774 // There may be dead oops in weak roots in concurrent root phase, do not touch them. 1775 return; 1776 } 1777 obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj); 1778 1779 assert(oopDesc::is_oop(obj), "Must be a valid oop"); 1780 if (_bitmap->par_mark(obj)) { 1781 _queue->push(ShenandoahMarkTask(obj)); 1782 } 1783 } 1784 } 1785 public: 1786 ShenandoahObjectIterateParScanClosure(MarkBitMap* bitmap, ShenandoahObjToScanQueue* q) : 1787 _bitmap(bitmap), _queue(q), _heap(ShenandoahHeap::heap()), 1788 _marking_context(_heap->marking_context()) {} 1789 void do_oop(oop* p) { do_oop_work(p); } 1790 void do_oop(narrowOop* p) { do_oop_work(p); } 1791 }; 1792 1793 // Object iterator for parallel heap iteraion. 1794 // The root scanning phase happenes in construction as a preparation of 1795 // parallel marking queues. 1796 // Every worker processes it's own marking queue. work-stealing is used 1797 // to balance workload. 1798 class ShenandoahParallelObjectIterator : public ParallelObjectIteratorImpl { 1799 private: 1800 uint _num_workers; 1801 bool _init_ready; 1802 MarkBitMap* _aux_bit_map; 1803 ShenandoahHeap* _heap; 1804 ShenandoahScanObjectStack _roots_stack; // global roots stack 1805 ShenandoahObjToScanQueueSet* _task_queues; 1806 public: 1807 ShenandoahParallelObjectIterator(uint num_workers, MarkBitMap* bitmap) : 1808 _num_workers(num_workers), 1809 _init_ready(false), 1810 _aux_bit_map(bitmap), 1811 _heap(ShenandoahHeap::heap()) { 1812 // Initialize bitmap 1813 _init_ready = _heap->prepare_aux_bitmap_for_iteration(); 1814 if (!_init_ready) { 1815 return; 1816 } 1817 1818 ObjectIterateScanRootClosure oops(_aux_bit_map, &_roots_stack); 1819 _heap->scan_roots_for_iteration(&_roots_stack, &oops); 1820 1821 _init_ready = prepare_worker_queues(); 1822 } 1823 1824 ~ShenandoahParallelObjectIterator() { 1825 // Reclaim bitmap 1826 _heap->reclaim_aux_bitmap_for_iteration(); 1827 // Reclaim queue for workers 1828 if (_task_queues!= nullptr) { 1829 for (uint i = 0; i < _num_workers; ++i) { 1830 ShenandoahObjToScanQueue* q = _task_queues->queue(i); 1831 if (q != nullptr) { 1832 delete q; 1833 _task_queues->register_queue(i, nullptr); 1834 } 1835 } 1836 delete _task_queues; 1837 _task_queues = nullptr; 1838 } 1839 } 1840 1841 virtual void object_iterate(ObjectClosure* cl, uint worker_id) { 1842 if (_init_ready) { 1843 object_iterate_parallel(cl, worker_id, _task_queues); 1844 } 1845 } 1846 1847 private: 1848 // Divide global root_stack into worker queues 1849 bool prepare_worker_queues() { 1850 _task_queues = new ShenandoahObjToScanQueueSet((int) _num_workers); 1851 // Initialize queues for every workers 1852 for (uint i = 0; i < _num_workers; ++i) { 1853 ShenandoahObjToScanQueue* task_queue = new ShenandoahObjToScanQueue(); 1854 _task_queues->register_queue(i, task_queue); 1855 } 1856 // Divide roots among the workers. Assume that object referencing distribution 1857 // is related with root kind, use round-robin to make every worker have same chance 1858 // to process every kind of roots 1859 size_t roots_num = _roots_stack.size(); 1860 if (roots_num == 0) { 1861 // No work to do 1862 return false; 1863 } 1864 1865 for (uint j = 0; j < roots_num; j++) { 1866 uint stack_id = j % _num_workers; 1867 oop obj = _roots_stack.pop(); 1868 _task_queues->queue(stack_id)->push(ShenandoahMarkTask(obj)); 1869 } 1870 return true; 1871 } 1872 1873 void object_iterate_parallel(ObjectClosure* cl, 1874 uint worker_id, 1875 ShenandoahObjToScanQueueSet* queue_set) { 1876 assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints"); 1877 assert(queue_set != nullptr, "task queue must not be null"); 1878 1879 ShenandoahObjToScanQueue* q = queue_set->queue(worker_id); 1880 assert(q != nullptr, "object iterate queue must not be null"); 1881 1882 ShenandoahMarkTask t; 1883 ShenandoahObjectIterateParScanClosure oops(_aux_bit_map, q); 1884 1885 // Work through the queue to traverse heap. 1886 // Steal when there is no task in queue. 1887 while (q->pop(t) || queue_set->steal(worker_id, t)) { 1888 oop obj = t.obj(); 1889 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1890 cl->do_object(obj); 1891 obj->oop_iterate(&oops); 1892 } 1893 assert(q->is_empty(), "should be empty"); 1894 } 1895 }; 1896 1897 ParallelObjectIteratorImpl* ShenandoahHeap::parallel_object_iterator(uint workers) { 1898 return new ShenandoahParallelObjectIterator(workers, &_aux_bit_map); 1899 } 1900 1901 // Keep alive an object that was loaded with AS_NO_KEEPALIVE. 1902 void ShenandoahHeap::keep_alive(oop obj) { 1903 if (is_concurrent_mark_in_progress() && (obj != nullptr)) { 1904 ShenandoahBarrierSet::barrier_set()->enqueue(obj); 1905 } 1906 } 1907 1908 void ShenandoahHeap::heap_region_iterate(ShenandoahHeapRegionClosure* blk) const { 1909 for (size_t i = 0; i < num_regions(); i++) { 1910 ShenandoahHeapRegion* current = get_region(i); 1911 blk->heap_region_do(current); 1912 } 1913 } 1914 1915 class ShenandoahParallelHeapRegionTask : public WorkerTask { 1916 private: 1917 ShenandoahHeap* const _heap; 1918 ShenandoahHeapRegionClosure* const _blk; 1919 size_t const _stride; 1920 1921 shenandoah_padding(0); 1922 volatile size_t _index; 1923 shenandoah_padding(1); 1924 1925 public: 1926 ShenandoahParallelHeapRegionTask(ShenandoahHeapRegionClosure* blk, size_t stride) : 1927 WorkerTask("Shenandoah Parallel Region Operation"), 1928 _heap(ShenandoahHeap::heap()), _blk(blk), _stride(stride), _index(0) {} 1929 1930 void work(uint worker_id) { 1931 ShenandoahParallelWorkerSession worker_session(worker_id); 1932 size_t stride = _stride; 1933 1934 size_t max = _heap->num_regions(); 1935 while (Atomic::load(&_index) < max) { 1936 size_t cur = Atomic::fetch_then_add(&_index, stride, memory_order_relaxed); 1937 size_t start = cur; 1938 size_t end = MIN2(cur + stride, max); 1939 if (start >= max) break; 1940 1941 for (size_t i = cur; i < end; i++) { 1942 ShenandoahHeapRegion* current = _heap->get_region(i); 1943 _blk->heap_region_do(current); 1944 } 1945 } 1946 } 1947 }; 1948 1949 void ShenandoahHeap::parallel_heap_region_iterate(ShenandoahHeapRegionClosure* blk) const { 1950 assert(blk->is_thread_safe(), "Only thread-safe closures here"); 1951 const uint active_workers = workers()->active_workers(); 1952 const size_t n_regions = num_regions(); 1953 size_t stride = ShenandoahParallelRegionStride; 1954 if (stride == 0 && active_workers > 1) { 1955 // Automatically derive the stride to balance the work between threads 1956 // evenly. Do not try to split work if below the reasonable threshold. 1957 constexpr size_t threshold = 4096; 1958 stride = n_regions <= threshold ? 1959 threshold : 1960 (n_regions + active_workers - 1) / active_workers; 1961 } 1962 1963 if (n_regions > stride && active_workers > 1) { 1964 ShenandoahParallelHeapRegionTask task(blk, stride); 1965 workers()->run_task(&task); 1966 } else { 1967 heap_region_iterate(blk); 1968 } 1969 } 1970 1971 class ShenandoahRendezvousClosure : public HandshakeClosure { 1972 public: 1973 inline ShenandoahRendezvousClosure(const char* name) : HandshakeClosure(name) {} 1974 inline void do_thread(Thread* thread) {} 1975 }; 1976 1977 void ShenandoahHeap::rendezvous_threads(const char* name) { 1978 ShenandoahRendezvousClosure cl(name); 1979 Handshake::execute(&cl); 1980 } 1981 1982 void ShenandoahHeap::recycle_trash() { 1983 free_set()->recycle_trash(); 1984 } 1985 1986 void ShenandoahHeap::do_class_unloading() { 1987 _unloader.unload(); 1988 if (mode()->is_generational()) { 1989 old_generation()->set_parsable(false); 1990 } 1991 } 1992 1993 void ShenandoahHeap::stw_weak_refs(bool full_gc) { 1994 // Weak refs processing 1995 ShenandoahPhaseTimings::Phase phase = full_gc ? ShenandoahPhaseTimings::full_gc_weakrefs 1996 : ShenandoahPhaseTimings::degen_gc_weakrefs; 1997 ShenandoahTimingsTracker t(phase); 1998 ShenandoahGCWorkerPhase worker_phase(phase); 1999 shenandoah_assert_generations_reconciled(); 2000 gc_generation()->ref_processor()->process_references(phase, workers(), false /* concurrent */); 2001 } 2002 2003 void ShenandoahHeap::prepare_update_heap_references(bool concurrent) { 2004 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "must be at safepoint"); 2005 2006 // Evacuation is over, no GCLABs are needed anymore. GCLABs are under URWM, so we need to 2007 // make them parsable for update code to work correctly. Plus, we can compute new sizes 2008 // for future GCLABs here. 2009 if (UseTLAB) { 2010 ShenandoahGCPhase phase(concurrent ? 2011 ShenandoahPhaseTimings::init_update_refs_manage_gclabs : 2012 ShenandoahPhaseTimings::degen_gc_init_update_refs_manage_gclabs); 2013 gclabs_retire(ResizeTLAB); 2014 } 2015 2016 _update_refs_iterator.reset(); 2017 } 2018 2019 void ShenandoahHeap::propagate_gc_state_to_all_threads() { 2020 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Must be at Shenandoah safepoint"); 2021 if (_gc_state_changed) { 2022 ShenandoahGCStatePropagator propagator(_gc_state.raw_value()); 2023 Threads::threads_do(&propagator); 2024 _gc_state_changed = false; 2025 } 2026 } 2027 2028 void ShenandoahHeap::set_gc_state_at_safepoint(uint mask, bool value) { 2029 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Must be at Shenandoah safepoint"); 2030 _gc_state.set_cond(mask, value); 2031 _gc_state_changed = true; 2032 } 2033 2034 void ShenandoahHeap::set_gc_state_concurrent(uint mask, bool value) { 2035 _gc_state.set_cond(mask, value); 2036 } 2037 2038 void ShenandoahHeap::set_concurrent_young_mark_in_progress(bool in_progress) { 2039 uint mask; 2040 assert(!has_forwarded_objects(), "Young marking is not concurrent with evacuation"); 2041 if (!in_progress && is_concurrent_old_mark_in_progress()) { 2042 assert(mode()->is_generational(), "Only generational GC has old marking"); 2043 assert(_gc_state.is_set(MARKING), "concurrent_old_marking_in_progress implies MARKING"); 2044 // If old-marking is in progress when we turn off YOUNG_MARKING, leave MARKING (and OLD_MARKING) on 2045 mask = YOUNG_MARKING; 2046 } else { 2047 mask = MARKING | YOUNG_MARKING; 2048 } 2049 set_gc_state_at_safepoint(mask, in_progress); 2050 manage_satb_barrier(in_progress); 2051 } 2052 2053 void ShenandoahHeap::set_concurrent_old_mark_in_progress(bool in_progress) { 2054 #ifdef ASSERT 2055 // has_forwarded_objects() iff UPDATE_REFS or EVACUATION 2056 bool has_forwarded = has_forwarded_objects(); 2057 bool updating_or_evacuating = _gc_state.is_set(UPDATE_REFS | EVACUATION); 2058 bool evacuating = _gc_state.is_set(EVACUATION); 2059 assert ((has_forwarded == updating_or_evacuating) || (evacuating && !has_forwarded && collection_set()->is_empty()), 2060 "Updating or evacuating iff has forwarded objects, or if evacuation phase is promoting in place without forwarding"); 2061 #endif 2062 if (!in_progress && is_concurrent_young_mark_in_progress()) { 2063 // If young-marking is in progress when we turn off OLD_MARKING, leave MARKING (and YOUNG_MARKING) on 2064 assert(_gc_state.is_set(MARKING), "concurrent_young_marking_in_progress implies MARKING"); 2065 set_gc_state_at_safepoint(OLD_MARKING, in_progress); 2066 } else { 2067 set_gc_state_at_safepoint(MARKING | OLD_MARKING, in_progress); 2068 } 2069 manage_satb_barrier(in_progress); 2070 } 2071 2072 bool ShenandoahHeap::is_prepare_for_old_mark_in_progress() const { 2073 return old_generation()->is_preparing_for_mark(); 2074 } 2075 2076 void ShenandoahHeap::manage_satb_barrier(bool active) { 2077 if (is_concurrent_mark_in_progress()) { 2078 // Ignore request to deactivate barrier while concurrent mark is in progress. 2079 // Do not attempt to re-activate the barrier if it is already active. 2080 if (active && !ShenandoahBarrierSet::satb_mark_queue_set().is_active()) { 2081 ShenandoahBarrierSet::satb_mark_queue_set().set_active_all_threads(active, !active); 2082 } 2083 } else { 2084 // No concurrent marking is in progress so honor request to deactivate, 2085 // but only if the barrier is already active. 2086 if (!active && ShenandoahBarrierSet::satb_mark_queue_set().is_active()) { 2087 ShenandoahBarrierSet::satb_mark_queue_set().set_active_all_threads(active, !active); 2088 } 2089 } 2090 } 2091 2092 void ShenandoahHeap::set_evacuation_in_progress(bool in_progress) { 2093 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Only call this at safepoint"); 2094 set_gc_state_at_safepoint(EVACUATION, in_progress); 2095 } 2096 2097 void ShenandoahHeap::set_concurrent_strong_root_in_progress(bool in_progress) { 2098 if (in_progress) { 2099 _concurrent_strong_root_in_progress.set(); 2100 } else { 2101 _concurrent_strong_root_in_progress.unset(); 2102 } 2103 } 2104 2105 void ShenandoahHeap::set_concurrent_weak_root_in_progress(bool cond) { 2106 set_gc_state_at_safepoint(WEAK_ROOTS, cond); 2107 } 2108 2109 GCTracer* ShenandoahHeap::tracer() { 2110 return shenandoah_policy()->tracer(); 2111 } 2112 2113 size_t ShenandoahHeap::tlab_used(Thread* thread) const { 2114 return _free_set->used(); 2115 } 2116 2117 bool ShenandoahHeap::try_cancel_gc() { 2118 jbyte prev = _cancelled_gc.cmpxchg(CANCELLED, CANCELLABLE); 2119 return prev == CANCELLABLE; 2120 } 2121 2122 void ShenandoahHeap::cancel_concurrent_mark() { 2123 if (mode()->is_generational()) { 2124 young_generation()->cancel_marking(); 2125 old_generation()->cancel_marking(); 2126 } 2127 2128 global_generation()->cancel_marking(); 2129 2130 ShenandoahBarrierSet::satb_mark_queue_set().abandon_partial_marking(); 2131 } 2132 2133 void ShenandoahHeap::cancel_gc(GCCause::Cause cause) { 2134 if (try_cancel_gc()) { 2135 FormatBuffer<> msg("Cancelling GC: %s", GCCause::to_string(cause)); 2136 log_info(gc)("%s", msg.buffer()); 2137 Events::log(Thread::current(), "%s", msg.buffer()); 2138 _cancel_requested_time = os::elapsedTime(); 2139 } 2140 } 2141 2142 uint ShenandoahHeap::max_workers() { 2143 return _max_workers; 2144 } 2145 2146 void ShenandoahHeap::stop() { 2147 // The shutdown sequence should be able to terminate when GC is running. 2148 2149 // Step 0. Notify policy to disable event recording and prevent visiting gc threads during shutdown 2150 _shenandoah_policy->record_shutdown(); 2151 2152 // Step 0a. Stop reporting on gc thread cpu utilization 2153 mmu_tracker()->stop(); 2154 2155 // Step 1. Notify control thread that we are in shutdown. 2156 // Note that we cannot do that with stop(), because stop() is blocking and waits for the actual shutdown. 2157 // Doing stop() here would wait for the normal GC cycle to complete, never falling through to cancel below. 2158 control_thread()->prepare_for_graceful_shutdown(); 2159 2160 // Step 2. Notify GC workers that we are cancelling GC. 2161 cancel_gc(GCCause::_shenandoah_stop_vm); 2162 2163 // Step 3. Wait until GC worker exits normally. 2164 control_thread()->stop(); 2165 2166 // Stop 4. Shutdown uncommit thread. 2167 if (_uncommit_thread != nullptr) { 2168 _uncommit_thread->stop(); 2169 } 2170 } 2171 2172 void ShenandoahHeap::stw_unload_classes(bool full_gc) { 2173 if (!unload_classes()) return; 2174 ClassUnloadingContext ctx(_workers->active_workers(), 2175 true /* unregister_nmethods_during_purge */, 2176 false /* lock_nmethod_free_separately */); 2177 2178 // Unload classes and purge SystemDictionary. 2179 { 2180 ShenandoahPhaseTimings::Phase phase = full_gc ? 2181 ShenandoahPhaseTimings::full_gc_purge_class_unload : 2182 ShenandoahPhaseTimings::degen_gc_purge_class_unload; 2183 ShenandoahIsAliveSelector is_alive; 2184 { 2185 CodeCache::UnlinkingScope scope(is_alive.is_alive_closure()); 2186 ShenandoahGCPhase gc_phase(phase); 2187 ShenandoahGCWorkerPhase worker_phase(phase); 2188 bool unloading_occurred = SystemDictionary::do_unloading(gc_timer()); 2189 2190 uint num_workers = _workers->active_workers(); 2191 ShenandoahClassUnloadingTask unlink_task(phase, num_workers, unloading_occurred); 2192 _workers->run_task(&unlink_task); 2193 } 2194 // Release unloaded nmethods's memory. 2195 ClassUnloadingContext::context()->purge_and_free_nmethods(); 2196 } 2197 2198 { 2199 ShenandoahGCPhase phase(full_gc ? 2200 ShenandoahPhaseTimings::full_gc_purge_cldg : 2201 ShenandoahPhaseTimings::degen_gc_purge_cldg); 2202 ClassLoaderDataGraph::purge(true /* at_safepoint */); 2203 } 2204 // Resize and verify metaspace 2205 MetaspaceGC::compute_new_size(); 2206 DEBUG_ONLY(MetaspaceUtils::verify();) 2207 } 2208 2209 // Weak roots are either pre-evacuated (final mark) or updated (final update refs), 2210 // so they should not have forwarded oops. 2211 // However, we do need to "null" dead oops in the roots, if can not be done 2212 // in concurrent cycles. 2213 void ShenandoahHeap::stw_process_weak_roots(bool full_gc) { 2214 uint num_workers = _workers->active_workers(); 2215 ShenandoahPhaseTimings::Phase timing_phase = full_gc ? 2216 ShenandoahPhaseTimings::full_gc_purge_weak_par : 2217 ShenandoahPhaseTimings::degen_gc_purge_weak_par; 2218 ShenandoahGCPhase phase(timing_phase); 2219 ShenandoahGCWorkerPhase worker_phase(timing_phase); 2220 // Cleanup weak roots 2221 if (has_forwarded_objects()) { 2222 ShenandoahForwardedIsAliveClosure is_alive; 2223 ShenandoahNonConcUpdateRefsClosure keep_alive; 2224 ShenandoahParallelWeakRootsCleaningTask<ShenandoahForwardedIsAliveClosure, ShenandoahNonConcUpdateRefsClosure> 2225 cleaning_task(timing_phase, &is_alive, &keep_alive, num_workers); 2226 _workers->run_task(&cleaning_task); 2227 } else { 2228 ShenandoahIsAliveClosure is_alive; 2229 #ifdef ASSERT 2230 ShenandoahAssertNotForwardedClosure verify_cl; 2231 ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, ShenandoahAssertNotForwardedClosure> 2232 cleaning_task(timing_phase, &is_alive, &verify_cl, num_workers); 2233 #else 2234 ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, DoNothingClosure> 2235 cleaning_task(timing_phase, &is_alive, &do_nothing_cl, num_workers); 2236 #endif 2237 _workers->run_task(&cleaning_task); 2238 } 2239 } 2240 2241 void ShenandoahHeap::parallel_cleaning(bool full_gc) { 2242 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 2243 assert(is_stw_gc_in_progress(), "Only for Degenerated and Full GC"); 2244 ShenandoahGCPhase phase(full_gc ? 2245 ShenandoahPhaseTimings::full_gc_purge : 2246 ShenandoahPhaseTimings::degen_gc_purge); 2247 stw_weak_refs(full_gc); 2248 stw_process_weak_roots(full_gc); 2249 stw_unload_classes(full_gc); 2250 } 2251 2252 void ShenandoahHeap::set_has_forwarded_objects(bool cond) { 2253 set_gc_state_at_safepoint(HAS_FORWARDED, cond); 2254 } 2255 2256 void ShenandoahHeap::set_unload_classes(bool uc) { 2257 _unload_classes.set_cond(uc); 2258 } 2259 2260 bool ShenandoahHeap::unload_classes() const { 2261 return _unload_classes.is_set(); 2262 } 2263 2264 address ShenandoahHeap::in_cset_fast_test_addr() { 2265 ShenandoahHeap* heap = ShenandoahHeap::heap(); 2266 assert(heap->collection_set() != nullptr, "Sanity"); 2267 return (address) heap->collection_set()->biased_map_address(); 2268 } 2269 2270 void ShenandoahHeap::reset_bytes_allocated_since_gc_start() { 2271 if (mode()->is_generational()) { 2272 young_generation()->reset_bytes_allocated_since_gc_start(); 2273 old_generation()->reset_bytes_allocated_since_gc_start(); 2274 } 2275 2276 global_generation()->reset_bytes_allocated_since_gc_start(); 2277 } 2278 2279 void ShenandoahHeap::set_degenerated_gc_in_progress(bool in_progress) { 2280 _degenerated_gc_in_progress.set_cond(in_progress); 2281 } 2282 2283 void ShenandoahHeap::set_full_gc_in_progress(bool in_progress) { 2284 _full_gc_in_progress.set_cond(in_progress); 2285 } 2286 2287 void ShenandoahHeap::set_full_gc_move_in_progress(bool in_progress) { 2288 assert (is_full_gc_in_progress(), "should be"); 2289 _full_gc_move_in_progress.set_cond(in_progress); 2290 } 2291 2292 void ShenandoahHeap::set_update_refs_in_progress(bool in_progress) { 2293 set_gc_state_at_safepoint(UPDATE_REFS, in_progress); 2294 } 2295 2296 void ShenandoahHeap::register_nmethod(nmethod* nm) { 2297 ShenandoahCodeRoots::register_nmethod(nm); 2298 } 2299 2300 void ShenandoahHeap::unregister_nmethod(nmethod* nm) { 2301 ShenandoahCodeRoots::unregister_nmethod(nm); 2302 } 2303 2304 void ShenandoahHeap::pin_object(JavaThread* thr, oop o) { 2305 heap_region_containing(o)->record_pin(); 2306 } 2307 2308 void ShenandoahHeap::unpin_object(JavaThread* thr, oop o) { 2309 ShenandoahHeapRegion* r = heap_region_containing(o); 2310 assert(r != nullptr, "Sanity"); 2311 assert(r->pin_count() > 0, "Region %zu should have non-zero pins", r->index()); 2312 r->record_unpin(); 2313 } 2314 2315 void ShenandoahHeap::sync_pinned_region_status() { 2316 ShenandoahHeapLocker locker(lock()); 2317 2318 for (size_t i = 0; i < num_regions(); i++) { 2319 ShenandoahHeapRegion *r = get_region(i); 2320 if (r->is_active()) { 2321 if (r->is_pinned()) { 2322 if (r->pin_count() == 0) { 2323 r->make_unpinned(); 2324 } 2325 } else { 2326 if (r->pin_count() > 0) { 2327 r->make_pinned(); 2328 } 2329 } 2330 } 2331 } 2332 2333 assert_pinned_region_status(); 2334 } 2335 2336 #ifdef ASSERT 2337 void ShenandoahHeap::assert_pinned_region_status() { 2338 for (size_t i = 0; i < num_regions(); i++) { 2339 ShenandoahHeapRegion* r = get_region(i); 2340 shenandoah_assert_generations_reconciled(); 2341 if (gc_generation()->contains(r)) { 2342 assert((r->is_pinned() && r->pin_count() > 0) || (!r->is_pinned() && r->pin_count() == 0), 2343 "Region %zu pinning status is inconsistent", i); 2344 } 2345 } 2346 } 2347 #endif 2348 2349 ConcurrentGCTimer* ShenandoahHeap::gc_timer() const { 2350 return _gc_timer; 2351 } 2352 2353 void ShenandoahHeap::prepare_concurrent_roots() { 2354 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 2355 assert(!is_stw_gc_in_progress(), "Only concurrent GC"); 2356 set_concurrent_strong_root_in_progress(!collection_set()->is_empty()); 2357 set_concurrent_weak_root_in_progress(true); 2358 if (unload_classes()) { 2359 _unloader.prepare(); 2360 } 2361 } 2362 2363 void ShenandoahHeap::finish_concurrent_roots() { 2364 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 2365 assert(!is_stw_gc_in_progress(), "Only concurrent GC"); 2366 if (unload_classes()) { 2367 _unloader.finish(); 2368 } 2369 } 2370 2371 #ifdef ASSERT 2372 void ShenandoahHeap::assert_gc_workers(uint nworkers) { 2373 assert(nworkers > 0 && nworkers <= max_workers(), "Sanity"); 2374 2375 if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) { 2376 // Use ParallelGCThreads inside safepoints 2377 assert(nworkers == ParallelGCThreads, "Use ParallelGCThreads (%u) within safepoint, not %u", 2378 ParallelGCThreads, nworkers); 2379 } else { 2380 // Use ConcGCThreads outside safepoints 2381 assert(nworkers == ConcGCThreads, "Use ConcGCThreads (%u) outside safepoints, %u", 2382 ConcGCThreads, nworkers); 2383 } 2384 } 2385 #endif 2386 2387 ShenandoahVerifier* ShenandoahHeap::verifier() { 2388 guarantee(ShenandoahVerify, "Should be enabled"); 2389 assert (_verifier != nullptr, "sanity"); 2390 return _verifier; 2391 } 2392 2393 template<bool CONCURRENT> 2394 class ShenandoahUpdateHeapRefsTask : public WorkerTask { 2395 private: 2396 ShenandoahHeap* _heap; 2397 ShenandoahRegionIterator* _regions; 2398 public: 2399 explicit ShenandoahUpdateHeapRefsTask(ShenandoahRegionIterator* regions) : 2400 WorkerTask("Shenandoah Update References"), 2401 _heap(ShenandoahHeap::heap()), 2402 _regions(regions) { 2403 } 2404 2405 void work(uint worker_id) { 2406 if (CONCURRENT) { 2407 ShenandoahConcurrentWorkerSession worker_session(worker_id); 2408 ShenandoahSuspendibleThreadSetJoiner stsj; 2409 do_work<ShenandoahConcUpdateRefsClosure>(worker_id); 2410 } else { 2411 ShenandoahParallelWorkerSession worker_session(worker_id); 2412 do_work<ShenandoahNonConcUpdateRefsClosure>(worker_id); 2413 } 2414 } 2415 2416 private: 2417 template<class T> 2418 void do_work(uint worker_id) { 2419 if (CONCURRENT && (worker_id == 0)) { 2420 // We ask the first worker to replenish the Mutator free set by moving regions previously reserved to hold the 2421 // results of evacuation. These reserves are no longer necessary because evacuation has completed. 2422 size_t cset_regions = _heap->collection_set()->count(); 2423 2424 // Now that evacuation is done, we can reassign any regions that had been reserved to hold the results of evacuation 2425 // to the mutator free set. At the end of GC, we will have cset_regions newly evacuated fully empty regions from 2426 // which we will be able to replenish the Collector free set and the OldCollector free set in preparation for the 2427 // next GC cycle. 2428 _heap->free_set()->move_regions_from_collector_to_mutator(cset_regions); 2429 } 2430 // If !CONCURRENT, there's no value in expanding Mutator free set 2431 T cl; 2432 ShenandoahHeapRegion* r = _regions->next(); 2433 while (r != nullptr) { 2434 HeapWord* update_watermark = r->get_update_watermark(); 2435 assert (update_watermark >= r->bottom(), "sanity"); 2436 if (r->is_active() && !r->is_cset()) { 2437 _heap->marked_object_oop_iterate(r, &cl, update_watermark); 2438 if (ShenandoahPacing) { 2439 _heap->pacer()->report_update_refs(pointer_delta(update_watermark, r->bottom())); 2440 } 2441 } 2442 if (_heap->check_cancelled_gc_and_yield(CONCURRENT)) { 2443 return; 2444 } 2445 r = _regions->next(); 2446 } 2447 } 2448 }; 2449 2450 void ShenandoahHeap::update_heap_references(bool concurrent) { 2451 assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC"); 2452 2453 if (concurrent) { 2454 ShenandoahUpdateHeapRefsTask<true> task(&_update_refs_iterator); 2455 workers()->run_task(&task); 2456 } else { 2457 ShenandoahUpdateHeapRefsTask<false> task(&_update_refs_iterator); 2458 workers()->run_task(&task); 2459 } 2460 } 2461 2462 void ShenandoahHeap::update_heap_region_states(bool concurrent) { 2463 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 2464 assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC"); 2465 2466 { 2467 ShenandoahGCPhase phase(concurrent ? 2468 ShenandoahPhaseTimings::final_update_refs_update_region_states : 2469 ShenandoahPhaseTimings::degen_gc_final_update_refs_update_region_states); 2470 2471 final_update_refs_update_region_states(); 2472 2473 assert_pinned_region_status(); 2474 } 2475 2476 { 2477 ShenandoahGCPhase phase(concurrent ? 2478 ShenandoahPhaseTimings::final_update_refs_trash_cset : 2479 ShenandoahPhaseTimings::degen_gc_final_update_refs_trash_cset); 2480 trash_cset_regions(); 2481 } 2482 } 2483 2484 void ShenandoahHeap::final_update_refs_update_region_states() { 2485 ShenandoahSynchronizePinnedRegionStates cl; 2486 parallel_heap_region_iterate(&cl); 2487 } 2488 2489 void ShenandoahHeap::rebuild_free_set(bool concurrent) { 2490 ShenandoahGCPhase phase(concurrent ? 2491 ShenandoahPhaseTimings::final_update_refs_rebuild_freeset : 2492 ShenandoahPhaseTimings::degen_gc_final_update_refs_rebuild_freeset); 2493 ShenandoahHeapLocker locker(lock()); 2494 size_t young_cset_regions, old_cset_regions; 2495 size_t first_old_region, last_old_region, old_region_count; 2496 _free_set->prepare_to_rebuild(young_cset_regions, old_cset_regions, first_old_region, last_old_region, old_region_count); 2497 // If there are no old regions, first_old_region will be greater than last_old_region 2498 assert((first_old_region > last_old_region) || 2499 ((last_old_region + 1 - first_old_region >= old_region_count) && 2500 get_region(first_old_region)->is_old() && get_region(last_old_region)->is_old()), 2501 "sanity: old_region_count: %zu, first_old_region: %zu, last_old_region: %zu", 2502 old_region_count, first_old_region, last_old_region); 2503 2504 if (mode()->is_generational()) { 2505 #ifdef ASSERT 2506 if (ShenandoahVerify) { 2507 verifier()->verify_before_rebuilding_free_set(); 2508 } 2509 #endif 2510 2511 // The computation of bytes_of_allocation_runway_before_gc_trigger is quite conservative so consider all of this 2512 // available for transfer to old. Note that transfer of humongous regions does not impact available. 2513 ShenandoahGenerationalHeap* gen_heap = ShenandoahGenerationalHeap::heap(); 2514 size_t allocation_runway = gen_heap->young_generation()->heuristics()->bytes_of_allocation_runway_before_gc_trigger(young_cset_regions); 2515 gen_heap->compute_old_generation_balance(allocation_runway, old_cset_regions); 2516 2517 // Total old_available may have been expanded to hold anticipated promotions. We trigger if the fragmented available 2518 // memory represents more than 16 regions worth of data. Note that fragmentation may increase when we promote regular 2519 // regions in place when many of these regular regions have an abundant amount of available memory within them. Fragmentation 2520 // will decrease as promote-by-copy consumes the available memory within these partially consumed regions. 2521 // 2522 // We consider old-gen to have excessive fragmentation if more than 12.5% of old-gen is free memory that resides 2523 // within partially consumed regions of memory. 2524 } 2525 // Rebuild free set based on adjusted generation sizes. 2526 _free_set->finish_rebuild(young_cset_regions, old_cset_regions, old_region_count); 2527 2528 if (mode()->is_generational()) { 2529 ShenandoahGenerationalHeap* gen_heap = ShenandoahGenerationalHeap::heap(); 2530 ShenandoahOldGeneration* old_gen = gen_heap->old_generation(); 2531 old_gen->heuristics()->evaluate_triggers(first_old_region, last_old_region, old_region_count, num_regions()); 2532 } 2533 } 2534 2535 void ShenandoahHeap::print_extended_on(outputStream *st) const { 2536 print_on(st); 2537 st->cr(); 2538 print_heap_regions_on(st); 2539 } 2540 2541 bool ShenandoahHeap::is_bitmap_slice_committed(ShenandoahHeapRegion* r, bool skip_self) { 2542 size_t slice = r->index() / _bitmap_regions_per_slice; 2543 2544 size_t regions_from = _bitmap_regions_per_slice * slice; 2545 size_t regions_to = MIN2(num_regions(), _bitmap_regions_per_slice * (slice + 1)); 2546 for (size_t g = regions_from; g < regions_to; g++) { 2547 assert (g / _bitmap_regions_per_slice == slice, "same slice"); 2548 if (skip_self && g == r->index()) continue; 2549 if (get_region(g)->is_committed()) { 2550 return true; 2551 } 2552 } 2553 return false; 2554 } 2555 2556 bool ShenandoahHeap::commit_bitmap_slice(ShenandoahHeapRegion* r) { 2557 shenandoah_assert_heaplocked(); 2558 2559 // Bitmaps in special regions do not need commits 2560 if (_bitmap_region_special) { 2561 return true; 2562 } 2563 2564 if (is_bitmap_slice_committed(r, true)) { 2565 // Some other region from the group is already committed, meaning the bitmap 2566 // slice is already committed, we exit right away. 2567 return true; 2568 } 2569 2570 // Commit the bitmap slice: 2571 size_t slice = r->index() / _bitmap_regions_per_slice; 2572 size_t off = _bitmap_bytes_per_slice * slice; 2573 size_t len = _bitmap_bytes_per_slice; 2574 char* start = (char*) _bitmap_region.start() + off; 2575 2576 if (!os::commit_memory(start, len, false)) { 2577 return false; 2578 } 2579 2580 if (AlwaysPreTouch) { 2581 os::pretouch_memory(start, start + len, _pretouch_bitmap_page_size); 2582 } 2583 2584 return true; 2585 } 2586 2587 bool ShenandoahHeap::uncommit_bitmap_slice(ShenandoahHeapRegion *r) { 2588 shenandoah_assert_heaplocked(); 2589 2590 // Bitmaps in special regions do not need uncommits 2591 if (_bitmap_region_special) { 2592 return true; 2593 } 2594 2595 if (is_bitmap_slice_committed(r, true)) { 2596 // Some other region from the group is still committed, meaning the bitmap 2597 // slice should stay committed, exit right away. 2598 return true; 2599 } 2600 2601 // Uncommit the bitmap slice: 2602 size_t slice = r->index() / _bitmap_regions_per_slice; 2603 size_t off = _bitmap_bytes_per_slice * slice; 2604 size_t len = _bitmap_bytes_per_slice; 2605 if (!os::uncommit_memory((char*)_bitmap_region.start() + off, len)) { 2606 return false; 2607 } 2608 return true; 2609 } 2610 2611 void ShenandoahHeap::forbid_uncommit() { 2612 if (_uncommit_thread != nullptr) { 2613 _uncommit_thread->forbid_uncommit(); 2614 } 2615 } 2616 2617 void ShenandoahHeap::allow_uncommit() { 2618 if (_uncommit_thread != nullptr) { 2619 _uncommit_thread->allow_uncommit(); 2620 } 2621 } 2622 2623 #ifdef ASSERT 2624 bool ShenandoahHeap::is_uncommit_in_progress() { 2625 if (_uncommit_thread != nullptr) { 2626 return _uncommit_thread->is_uncommit_in_progress(); 2627 } 2628 return false; 2629 } 2630 #endif 2631 2632 void ShenandoahHeap::safepoint_synchronize_begin() { 2633 StackWatermarkSet::safepoint_synchronize_begin(); 2634 SuspendibleThreadSet::synchronize(); 2635 } 2636 2637 void ShenandoahHeap::safepoint_synchronize_end() { 2638 SuspendibleThreadSet::desynchronize(); 2639 } 2640 2641 void ShenandoahHeap::try_inject_alloc_failure() { 2642 if (ShenandoahAllocFailureALot && !cancelled_gc() && ((os::random() % 1000) > 950)) { 2643 _inject_alloc_failure.set(); 2644 os::naked_short_sleep(1); 2645 if (cancelled_gc()) { 2646 log_info(gc)("Allocation failure was successfully injected"); 2647 } 2648 } 2649 } 2650 2651 bool ShenandoahHeap::should_inject_alloc_failure() { 2652 return _inject_alloc_failure.is_set() && _inject_alloc_failure.try_unset(); 2653 } 2654 2655 void ShenandoahHeap::initialize_serviceability() { 2656 _memory_pool = new ShenandoahMemoryPool(this); 2657 _cycle_memory_manager.add_pool(_memory_pool); 2658 _stw_memory_manager.add_pool(_memory_pool); 2659 } 2660 2661 GrowableArray<GCMemoryManager*> ShenandoahHeap::memory_managers() { 2662 GrowableArray<GCMemoryManager*> memory_managers(2); 2663 memory_managers.append(&_cycle_memory_manager); 2664 memory_managers.append(&_stw_memory_manager); 2665 return memory_managers; 2666 } 2667 2668 GrowableArray<MemoryPool*> ShenandoahHeap::memory_pools() { 2669 GrowableArray<MemoryPool*> memory_pools(1); 2670 memory_pools.append(_memory_pool); 2671 return memory_pools; 2672 } 2673 2674 MemoryUsage ShenandoahHeap::memory_usage() { 2675 return MemoryUsage(_initial_size, used(), committed(), max_capacity()); 2676 } 2677 2678 ShenandoahRegionIterator::ShenandoahRegionIterator() : 2679 _heap(ShenandoahHeap::heap()), 2680 _index(0) {} 2681 2682 ShenandoahRegionIterator::ShenandoahRegionIterator(ShenandoahHeap* heap) : 2683 _heap(heap), 2684 _index(0) {} 2685 2686 void ShenandoahRegionIterator::reset() { 2687 _index = 0; 2688 } 2689 2690 bool ShenandoahRegionIterator::has_next() const { 2691 return _index < _heap->num_regions(); 2692 } 2693 2694 char ShenandoahHeap::gc_state() const { 2695 return _gc_state.raw_value(); 2696 } 2697 2698 bool ShenandoahHeap::is_gc_state(GCState state) const { 2699 // If the global gc state has been changed, but hasn't yet been propagated to all threads, then 2700 // the global gc state is the correct value. Once the gc state has been synchronized with all threads, 2701 // _gc_state_changed will be toggled to false and we need to use the thread local state. 2702 return _gc_state_changed ? _gc_state.is_set(state) : ShenandoahThreadLocalData::is_gc_state(state); 2703 } 2704 2705 2706 ShenandoahLiveData* ShenandoahHeap::get_liveness_cache(uint worker_id) { 2707 #ifdef ASSERT 2708 assert(_liveness_cache != nullptr, "sanity"); 2709 assert(worker_id < _max_workers, "sanity"); 2710 for (uint i = 0; i < num_regions(); i++) { 2711 assert(_liveness_cache[worker_id][i] == 0, "liveness cache should be empty"); 2712 } 2713 #endif 2714 return _liveness_cache[worker_id]; 2715 } 2716 2717 void ShenandoahHeap::flush_liveness_cache(uint worker_id) { 2718 assert(worker_id < _max_workers, "sanity"); 2719 assert(_liveness_cache != nullptr, "sanity"); 2720 ShenandoahLiveData* ld = _liveness_cache[worker_id]; 2721 for (uint i = 0; i < num_regions(); i++) { 2722 ShenandoahLiveData live = ld[i]; 2723 if (live > 0) { 2724 ShenandoahHeapRegion* r = get_region(i); 2725 r->increase_live_data_gc_words(live); 2726 ld[i] = 0; 2727 } 2728 } 2729 } 2730 2731 bool ShenandoahHeap::requires_barriers(stackChunkOop obj) const { 2732 if (is_idle()) return false; 2733 2734 // Objects allocated after marking start are implicitly alive, don't need any barriers during 2735 // marking phase. 2736 if (is_concurrent_mark_in_progress() && 2737 !marking_context()->allocated_after_mark_start(obj)) { 2738 return true; 2739 } 2740 2741 // Can not guarantee obj is deeply good. 2742 if (has_forwarded_objects()) { 2743 return true; 2744 } 2745 2746 return false; 2747 } 2748 2749 HeapWord* ShenandoahHeap::allocate_loaded_archive_space(size_t size) { 2750 #if INCLUDE_CDS_JAVA_HEAP 2751 // CDS wants a continuous memory range to load a bunch of objects. 2752 // This effectively bypasses normal allocation paths, and requires 2753 // a bit of massaging to unbreak GC invariants. 2754 2755 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared(size); 2756 2757 // Easy case: a single regular region, no further adjustments needed. 2758 if (!ShenandoahHeapRegion::requires_humongous(size)) { 2759 return allocate_memory(req); 2760 } 2761 2762 // Hard case: the requested size would cause a humongous allocation. 2763 // We need to make sure it looks like regular allocation to the rest of GC. 2764 2765 // CDS code would guarantee no objects straddle multiple regions, as long as 2766 // regions are as large as MIN_GC_REGION_ALIGNMENT. It is impractical at this 2767 // point to deal with case when Shenandoah runs with smaller regions. 2768 // TODO: This check can be dropped once MIN_GC_REGION_ALIGNMENT agrees more with Shenandoah. 2769 if (ShenandoahHeapRegion::region_size_bytes() < ArchiveHeapWriter::MIN_GC_REGION_ALIGNMENT) { 2770 return nullptr; 2771 } 2772 2773 HeapWord* mem = allocate_memory(req); 2774 size_t start_idx = heap_region_index_containing(mem); 2775 size_t num_regions = ShenandoahHeapRegion::required_regions(size * HeapWordSize); 2776 2777 // Flip humongous -> regular. 2778 { 2779 ShenandoahHeapLocker locker(lock(), false); 2780 for (size_t c = start_idx; c < start_idx + num_regions; c++) { 2781 get_region(c)->make_regular_bypass(); 2782 } 2783 } 2784 2785 return mem; 2786 #else 2787 assert(false, "Archive heap loader should not be available, should not be here"); 2788 return nullptr; 2789 #endif // INCLUDE_CDS_JAVA_HEAP 2790 } 2791 2792 void ShenandoahHeap::complete_loaded_archive_space(MemRegion archive_space) { 2793 // Nothing to do here, except checking that heap looks fine. 2794 #ifdef ASSERT 2795 HeapWord* start = archive_space.start(); 2796 HeapWord* end = archive_space.end(); 2797 2798 // No unclaimed space between the objects. 2799 // Objects are properly allocated in correct regions. 2800 HeapWord* cur = start; 2801 while (cur < end) { 2802 oop oop = cast_to_oop(cur); 2803 shenandoah_assert_in_correct_region(nullptr, oop); 2804 cur += oop->size(); 2805 } 2806 2807 // No unclaimed tail at the end of archive space. 2808 assert(cur == end, 2809 "Archive space should be fully used: " PTR_FORMAT " " PTR_FORMAT, 2810 p2i(cur), p2i(end)); 2811 2812 // Region bounds are good. 2813 ShenandoahHeapRegion* begin_reg = heap_region_containing(start); 2814 ShenandoahHeapRegion* end_reg = heap_region_containing(end); 2815 assert(begin_reg->is_regular(), "Must be"); 2816 assert(end_reg->is_regular(), "Must be"); 2817 assert(begin_reg->bottom() == start, 2818 "Must agree: archive-space-start: " PTR_FORMAT ", begin-region-bottom: " PTR_FORMAT, 2819 p2i(start), p2i(begin_reg->bottom())); 2820 assert(end_reg->top() == end, 2821 "Must agree: archive-space-end: " PTR_FORMAT ", end-region-top: " PTR_FORMAT, 2822 p2i(end), p2i(end_reg->top())); 2823 #endif 2824 } 2825 2826 ShenandoahGeneration* ShenandoahHeap::generation_for(ShenandoahAffiliation affiliation) const { 2827 if (!mode()->is_generational()) { 2828 return global_generation(); 2829 } else if (affiliation == YOUNG_GENERATION) { 2830 return young_generation(); 2831 } else if (affiliation == OLD_GENERATION) { 2832 return old_generation(); 2833 } 2834 2835 ShouldNotReachHere(); 2836 return nullptr; 2837 } 2838 2839 void ShenandoahHeap::log_heap_status(const char* msg) const { 2840 if (mode()->is_generational()) { 2841 young_generation()->log_status(msg); 2842 old_generation()->log_status(msg); 2843 } else { 2844 global_generation()->log_status(msg); 2845 } 2846 }