1 /* 2 * Copyright (c) 2023, 2024, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2013, 2022, Red Hat, Inc. All rights reserved. 4 * Copyright Amazon.com Inc. or its affiliates. All Rights Reserved. 5 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 6 * 7 * This code is free software; you can redistribute it and/or modify it 8 * under the terms of the GNU General Public License version 2 only, as 9 * published by the Free Software Foundation. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 * 25 */ 26 27 #include "precompiled.hpp" 28 29 #include "cds/archiveHeapWriter.hpp" 30 #include "classfile/systemDictionary.hpp" 31 #include "code/codeCache.hpp" 32 33 #include "gc/shared/classUnloadingContext.hpp" 34 #include "gc/shared/fullGCForwarding.hpp" 35 #include "gc/shared/gcArguments.hpp" 36 #include "gc/shared/gcTimer.hpp" 37 #include "gc/shared/gcTraceTime.inline.hpp" 38 #include "gc/shared/locationPrinter.inline.hpp" 39 #include "gc/shared/memAllocator.hpp" 40 #include "gc/shared/plab.hpp" 41 #include "gc/shared/tlab_globals.hpp" 42 43 #include "gc/shenandoah/heuristics/shenandoahOldHeuristics.hpp" 44 #include "gc/shenandoah/heuristics/shenandoahYoungHeuristics.hpp" 45 #include "gc/shenandoah/shenandoahAllocRequest.hpp" 46 #include "gc/shenandoah/shenandoahBarrierSet.hpp" 47 #include "gc/shenandoah/shenandoahCodeRoots.hpp" 48 #include "gc/shenandoah/shenandoahCollectionSet.hpp" 49 #include "gc/shenandoah/shenandoahCollectorPolicy.hpp" 50 #include "gc/shenandoah/shenandoahConcurrentMark.hpp" 51 #include "gc/shenandoah/shenandoahControlThread.hpp" 52 #include "gc/shenandoah/shenandoahClosures.inline.hpp" 53 #include "gc/shenandoah/shenandoahFreeSet.hpp" 54 #include "gc/shenandoah/shenandoahGenerationalEvacuationTask.hpp" 55 #include "gc/shenandoah/shenandoahGenerationalHeap.hpp" 56 #include "gc/shenandoah/shenandoahGlobalGeneration.hpp" 57 #include "gc/shenandoah/shenandoahHeap.inline.hpp" 58 #include "gc/shenandoah/shenandoahHeapRegionClosures.hpp" 59 #include "gc/shenandoah/shenandoahHeapRegion.inline.hpp" 60 #include "gc/shenandoah/shenandoahHeapRegionSet.hpp" 61 #include "gc/shenandoah/shenandoahInitLogger.hpp" 62 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp" 63 #include "gc/shenandoah/shenandoahMemoryPool.hpp" 64 #include "gc/shenandoah/shenandoahMonitoringSupport.hpp" 65 #include "gc/shenandoah/shenandoahOldGeneration.hpp" 66 #include "gc/shenandoah/shenandoahPacer.inline.hpp" 67 #include "gc/shenandoah/shenandoahPadding.hpp" 68 #include "gc/shenandoah/shenandoahParallelCleaning.inline.hpp" 69 #include "gc/shenandoah/shenandoahPhaseTimings.hpp" 70 #include "gc/shenandoah/shenandoahReferenceProcessor.hpp" 71 #include "gc/shenandoah/shenandoahRootProcessor.inline.hpp" 72 #include "gc/shenandoah/shenandoahScanRemembered.inline.hpp" 73 #include "gc/shenandoah/shenandoahSTWMark.hpp" 74 #include "gc/shenandoah/shenandoahUncommitThread.hpp" 75 #include "gc/shenandoah/shenandoahUtils.hpp" 76 #include "gc/shenandoah/shenandoahVerifier.hpp" 77 #include "gc/shenandoah/shenandoahVMOperations.hpp" 78 #include "gc/shenandoah/shenandoahWorkGroup.hpp" 79 #include "gc/shenandoah/shenandoahWorkerPolicy.hpp" 80 #include "gc/shenandoah/shenandoahYoungGeneration.hpp" 81 #include "gc/shenandoah/mode/shenandoahGenerationalMode.hpp" 82 #include "gc/shenandoah/mode/shenandoahPassiveMode.hpp" 83 #include "gc/shenandoah/mode/shenandoahSATBMode.hpp" 84 85 #if INCLUDE_JFR 86 #include "gc/shenandoah/shenandoahJfrSupport.hpp" 87 #endif 88 89 90 #include "memory/allocation.hpp" 91 #include "memory/classLoaderMetaspace.hpp" 92 #include "memory/metaspaceUtils.hpp" 93 #include "memory/universe.hpp" 94 #include "nmt/mallocTracker.hpp" 95 #include "nmt/memTracker.hpp" 96 #include "oops/compressedOops.inline.hpp" 97 #include "prims/jvmtiTagMap.hpp" 98 #include "runtime/atomic.hpp" 99 #include "runtime/globals.hpp" 100 #include "runtime/interfaceSupport.inline.hpp" 101 #include "runtime/java.hpp" 102 #include "runtime/orderAccess.hpp" 103 #include "runtime/safepointMechanism.hpp" 104 #include "runtime/stackWatermarkSet.hpp" 105 #include "runtime/vmThread.hpp" 106 #include "utilities/globalDefinitions.hpp" 107 #include "utilities/events.hpp" 108 #include "utilities/powerOfTwo.hpp" 109 110 class ShenandoahPretouchHeapTask : public WorkerTask { 111 private: 112 ShenandoahRegionIterator _regions; 113 const size_t _page_size; 114 public: 115 ShenandoahPretouchHeapTask(size_t page_size) : 116 WorkerTask("Shenandoah Pretouch Heap"), 117 _page_size(page_size) {} 118 119 virtual void work(uint worker_id) { 120 ShenandoahHeapRegion* r = _regions.next(); 121 while (r != nullptr) { 122 if (r->is_committed()) { 123 os::pretouch_memory(r->bottom(), r->end(), _page_size); 124 } 125 r = _regions.next(); 126 } 127 } 128 }; 129 130 class ShenandoahPretouchBitmapTask : public WorkerTask { 131 private: 132 ShenandoahRegionIterator _regions; 133 char* _bitmap_base; 134 const size_t _bitmap_size; 135 const size_t _page_size; 136 public: 137 ShenandoahPretouchBitmapTask(char* bitmap_base, size_t bitmap_size, size_t page_size) : 138 WorkerTask("Shenandoah Pretouch Bitmap"), 139 _bitmap_base(bitmap_base), 140 _bitmap_size(bitmap_size), 141 _page_size(page_size) {} 142 143 virtual void work(uint worker_id) { 144 ShenandoahHeapRegion* r = _regions.next(); 145 while (r != nullptr) { 146 size_t start = r->index() * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor(); 147 size_t end = (r->index() + 1) * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor(); 148 assert (end <= _bitmap_size, "end is sane: " SIZE_FORMAT " < " SIZE_FORMAT, end, _bitmap_size); 149 150 if (r->is_committed()) { 151 os::pretouch_memory(_bitmap_base + start, _bitmap_base + end, _page_size); 152 } 153 154 r = _regions.next(); 155 } 156 } 157 }; 158 159 jint ShenandoahHeap::initialize() { 160 // 161 // Figure out heap sizing 162 // 163 164 size_t init_byte_size = InitialHeapSize; 165 size_t min_byte_size = MinHeapSize; 166 size_t max_byte_size = MaxHeapSize; 167 size_t heap_alignment = HeapAlignment; 168 169 size_t reg_size_bytes = ShenandoahHeapRegion::region_size_bytes(); 170 171 Universe::check_alignment(max_byte_size, reg_size_bytes, "Shenandoah heap"); 172 Universe::check_alignment(init_byte_size, reg_size_bytes, "Shenandoah heap"); 173 174 _num_regions = ShenandoahHeapRegion::region_count(); 175 assert(_num_regions == (max_byte_size / reg_size_bytes), 176 "Regions should cover entire heap exactly: " SIZE_FORMAT " != " SIZE_FORMAT "/" SIZE_FORMAT, 177 _num_regions, max_byte_size, reg_size_bytes); 178 179 size_t num_committed_regions = init_byte_size / reg_size_bytes; 180 num_committed_regions = MIN2(num_committed_regions, _num_regions); 181 assert(num_committed_regions <= _num_regions, "sanity"); 182 _initial_size = num_committed_regions * reg_size_bytes; 183 184 size_t num_min_regions = min_byte_size / reg_size_bytes; 185 num_min_regions = MIN2(num_min_regions, _num_regions); 186 assert(num_min_regions <= _num_regions, "sanity"); 187 _minimum_size = num_min_regions * reg_size_bytes; 188 189 // Default to max heap size. 190 _soft_max_size = _num_regions * reg_size_bytes; 191 192 _committed = _initial_size; 193 194 size_t heap_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size(); 195 size_t bitmap_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size(); 196 size_t region_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size(); 197 198 // 199 // Reserve and commit memory for heap 200 // 201 202 ReservedHeapSpace heap_rs = Universe::reserve_heap(max_byte_size, heap_alignment); 203 initialize_reserved_region(heap_rs); 204 _heap_region = MemRegion((HeapWord*)heap_rs.base(), heap_rs.size() / HeapWordSize); 205 _heap_region_special = heap_rs.special(); 206 207 assert((((size_t) base()) & ShenandoahHeapRegion::region_size_bytes_mask()) == 0, 208 "Misaligned heap: " PTR_FORMAT, p2i(base())); 209 os::trace_page_sizes_for_requested_size("Heap", 210 max_byte_size, heap_alignment, 211 heap_rs.base(), 212 heap_rs.size(), heap_rs.page_size()); 213 214 #if SHENANDOAH_OPTIMIZED_MARKTASK 215 // The optimized ShenandoahMarkTask takes some bits away from the full object bits. 216 // Fail if we ever attempt to address more than we can. 217 if ((uintptr_t)heap_rs.end() >= ShenandoahMarkTask::max_addressable()) { 218 FormatBuffer<512> buf("Shenandoah reserved [" PTR_FORMAT ", " PTR_FORMAT") for the heap, \n" 219 "but max object address is " PTR_FORMAT ". Try to reduce heap size, or try other \n" 220 "VM options that allocate heap at lower addresses (HeapBaseMinAddress, AllocateHeapAt, etc).", 221 p2i(heap_rs.base()), p2i(heap_rs.end()), ShenandoahMarkTask::max_addressable()); 222 vm_exit_during_initialization("Fatal Error", buf); 223 } 224 #endif 225 226 ReservedSpace sh_rs = heap_rs.first_part(max_byte_size); 227 if (!_heap_region_special) { 228 os::commit_memory_or_exit(sh_rs.base(), _initial_size, heap_alignment, false, 229 "Cannot commit heap memory"); 230 } 231 232 BarrierSet::set_barrier_set(new ShenandoahBarrierSet(this, _heap_region)); 233 234 // Now we know the number of regions and heap sizes, initialize the heuristics. 235 initialize_heuristics(); 236 237 assert(_heap_region.byte_size() == heap_rs.size(), "Need to know reserved size for card table"); 238 239 // 240 // Worker threads must be initialized after the barrier is configured 241 // 242 _workers = new ShenandoahWorkerThreads("Shenandoah GC Threads", _max_workers); 243 if (_workers == nullptr) { 244 vm_exit_during_initialization("Failed necessary allocation."); 245 } else { 246 _workers->initialize_workers(); 247 } 248 249 if (ParallelGCThreads > 1) { 250 _safepoint_workers = new ShenandoahWorkerThreads("Safepoint Cleanup Thread", ParallelGCThreads); 251 _safepoint_workers->initialize_workers(); 252 } 253 254 // 255 // Reserve and commit memory for bitmap(s) 256 // 257 258 size_t bitmap_size_orig = ShenandoahMarkBitMap::compute_size(heap_rs.size()); 259 _bitmap_size = align_up(bitmap_size_orig, bitmap_page_size); 260 261 size_t bitmap_bytes_per_region = reg_size_bytes / ShenandoahMarkBitMap::heap_map_factor(); 262 263 guarantee(bitmap_bytes_per_region != 0, 264 "Bitmap bytes per region should not be zero"); 265 guarantee(is_power_of_2(bitmap_bytes_per_region), 266 "Bitmap bytes per region should be power of two: " SIZE_FORMAT, bitmap_bytes_per_region); 267 268 if (bitmap_page_size > bitmap_bytes_per_region) { 269 _bitmap_regions_per_slice = bitmap_page_size / bitmap_bytes_per_region; 270 _bitmap_bytes_per_slice = bitmap_page_size; 271 } else { 272 _bitmap_regions_per_slice = 1; 273 _bitmap_bytes_per_slice = bitmap_bytes_per_region; 274 } 275 276 guarantee(_bitmap_regions_per_slice >= 1, 277 "Should have at least one region per slice: " SIZE_FORMAT, 278 _bitmap_regions_per_slice); 279 280 guarantee(((_bitmap_bytes_per_slice) % bitmap_page_size) == 0, 281 "Bitmap slices should be page-granular: bps = " SIZE_FORMAT ", page size = " SIZE_FORMAT, 282 _bitmap_bytes_per_slice, bitmap_page_size); 283 284 ReservedSpace bitmap(_bitmap_size, bitmap_page_size); 285 os::trace_page_sizes_for_requested_size("Mark Bitmap", 286 bitmap_size_orig, bitmap_page_size, 287 bitmap.base(), 288 bitmap.size(), bitmap.page_size()); 289 MemTracker::record_virtual_memory_tag(bitmap.base(), mtGC); 290 _bitmap_region = MemRegion((HeapWord*) bitmap.base(), bitmap.size() / HeapWordSize); 291 _bitmap_region_special = bitmap.special(); 292 293 size_t bitmap_init_commit = _bitmap_bytes_per_slice * 294 align_up(num_committed_regions, _bitmap_regions_per_slice) / _bitmap_regions_per_slice; 295 bitmap_init_commit = MIN2(_bitmap_size, bitmap_init_commit); 296 if (!_bitmap_region_special) { 297 os::commit_memory_or_exit((char *) _bitmap_region.start(), bitmap_init_commit, bitmap_page_size, false, 298 "Cannot commit bitmap memory"); 299 } 300 301 _marking_context = new ShenandoahMarkingContext(_heap_region, _bitmap_region, _num_regions); 302 303 if (ShenandoahVerify) { 304 ReservedSpace verify_bitmap(_bitmap_size, bitmap_page_size); 305 os::trace_page_sizes_for_requested_size("Verify Bitmap", 306 bitmap_size_orig, bitmap_page_size, 307 verify_bitmap.base(), 308 verify_bitmap.size(), verify_bitmap.page_size()); 309 if (!verify_bitmap.special()) { 310 os::commit_memory_or_exit(verify_bitmap.base(), verify_bitmap.size(), bitmap_page_size, false, 311 "Cannot commit verification bitmap memory"); 312 } 313 MemTracker::record_virtual_memory_tag(verify_bitmap.base(), mtGC); 314 MemRegion verify_bitmap_region = MemRegion((HeapWord *) verify_bitmap.base(), verify_bitmap.size() / HeapWordSize); 315 _verification_bit_map.initialize(_heap_region, verify_bitmap_region); 316 _verifier = new ShenandoahVerifier(this, &_verification_bit_map); 317 } 318 319 // Reserve aux bitmap for use in object_iterate(). We don't commit it here. 320 size_t aux_bitmap_page_size = bitmap_page_size; 321 322 ReservedSpace aux_bitmap(_bitmap_size, aux_bitmap_page_size); 323 os::trace_page_sizes_for_requested_size("Aux Bitmap", 324 bitmap_size_orig, aux_bitmap_page_size, 325 aux_bitmap.base(), 326 aux_bitmap.size(), aux_bitmap.page_size()); 327 MemTracker::record_virtual_memory_tag(aux_bitmap.base(), mtGC); 328 _aux_bitmap_region = MemRegion((HeapWord*) aux_bitmap.base(), aux_bitmap.size() / HeapWordSize); 329 _aux_bitmap_region_special = aux_bitmap.special(); 330 _aux_bit_map.initialize(_heap_region, _aux_bitmap_region); 331 332 // 333 // Create regions and region sets 334 // 335 size_t region_align = align_up(sizeof(ShenandoahHeapRegion), SHENANDOAH_CACHE_LINE_SIZE); 336 size_t region_storage_size_orig = region_align * _num_regions; 337 size_t region_storage_size = align_up(region_storage_size_orig, 338 MAX2(region_page_size, os::vm_allocation_granularity())); 339 340 ReservedSpace region_storage(region_storage_size, region_page_size); 341 os::trace_page_sizes_for_requested_size("Region Storage", 342 region_storage_size_orig, region_page_size, 343 region_storage.base(), 344 region_storage.size(), region_storage.page_size()); 345 MemTracker::record_virtual_memory_tag(region_storage.base(), mtGC); 346 if (!region_storage.special()) { 347 os::commit_memory_or_exit(region_storage.base(), region_storage_size, region_page_size, false, 348 "Cannot commit region memory"); 349 } 350 351 // Try to fit the collection set bitmap at lower addresses. This optimizes code generation for cset checks. 352 // Go up until a sensible limit (subject to encoding constraints) and try to reserve the space there. 353 // If not successful, bite a bullet and allocate at whatever address. 354 { 355 const size_t cset_align = MAX2<size_t>(os::vm_page_size(), os::vm_allocation_granularity()); 356 const size_t cset_size = align_up(((size_t) sh_rs.base() + sh_rs.size()) >> ShenandoahHeapRegion::region_size_bytes_shift(), cset_align); 357 const size_t cset_page_size = os::vm_page_size(); 358 359 uintptr_t min = round_up_power_of_2(cset_align); 360 uintptr_t max = (1u << 30u); 361 ReservedSpace cset_rs; 362 363 for (uintptr_t addr = min; addr <= max; addr <<= 1u) { 364 char* req_addr = (char*)addr; 365 assert(is_aligned(req_addr, cset_align), "Should be aligned"); 366 cset_rs = ReservedSpace(cset_size, cset_align, cset_page_size, req_addr); 367 if (cset_rs.is_reserved()) { 368 assert(cset_rs.base() == req_addr, "Allocated where requested: " PTR_FORMAT ", " PTR_FORMAT, p2i(cset_rs.base()), addr); 369 _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base()); 370 break; 371 } 372 } 373 374 if (_collection_set == nullptr) { 375 cset_rs = ReservedSpace(cset_size, cset_align, os::vm_page_size()); 376 _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base()); 377 } 378 os::trace_page_sizes_for_requested_size("Collection Set", 379 cset_size, cset_page_size, 380 cset_rs.base(), 381 cset_rs.size(), cset_rs.page_size()); 382 } 383 384 _regions = NEW_C_HEAP_ARRAY(ShenandoahHeapRegion*, _num_regions, mtGC); 385 _affiliations = NEW_C_HEAP_ARRAY(uint8_t, _num_regions, mtGC); 386 _free_set = new ShenandoahFreeSet(this, _num_regions); 387 388 { 389 ShenandoahHeapLocker locker(lock()); 390 391 for (size_t i = 0; i < _num_regions; i++) { 392 HeapWord* start = (HeapWord*)sh_rs.base() + ShenandoahHeapRegion::region_size_words() * i; 393 bool is_committed = i < num_committed_regions; 394 void* loc = region_storage.base() + i * region_align; 395 396 ShenandoahHeapRegion* r = new (loc) ShenandoahHeapRegion(start, i, is_committed); 397 assert(is_aligned(r, SHENANDOAH_CACHE_LINE_SIZE), "Sanity"); 398 399 _marking_context->initialize_top_at_mark_start(r); 400 _regions[i] = r; 401 assert(!collection_set()->is_in(i), "New region should not be in collection set"); 402 403 _affiliations[i] = ShenandoahAffiliation::FREE; 404 } 405 406 // Initialize to complete 407 _marking_context->mark_complete(); 408 size_t young_cset_regions, old_cset_regions; 409 410 // We are initializing free set. We ignore cset region tallies. 411 size_t first_old, last_old, num_old; 412 _free_set->prepare_to_rebuild(young_cset_regions, old_cset_regions, first_old, last_old, num_old); 413 _free_set->finish_rebuild(young_cset_regions, old_cset_regions, num_old); 414 } 415 416 if (AlwaysPreTouch) { 417 // For NUMA, it is important to pre-touch the storage under bitmaps with worker threads, 418 // before initialize() below zeroes it with initializing thread. For any given region, 419 // we touch the region and the corresponding bitmaps from the same thread. 420 ShenandoahPushWorkerScope scope(workers(), _max_workers, false); 421 422 _pretouch_heap_page_size = heap_page_size; 423 _pretouch_bitmap_page_size = bitmap_page_size; 424 425 // OS memory managers may want to coalesce back-to-back pages. Make their jobs 426 // simpler by pre-touching continuous spaces (heap and bitmap) separately. 427 428 ShenandoahPretouchBitmapTask bcl(bitmap.base(), _bitmap_size, _pretouch_bitmap_page_size); 429 _workers->run_task(&bcl); 430 431 ShenandoahPretouchHeapTask hcl(_pretouch_heap_page_size); 432 _workers->run_task(&hcl); 433 } 434 435 // 436 // Initialize the rest of GC subsystems 437 // 438 439 _liveness_cache = NEW_C_HEAP_ARRAY(ShenandoahLiveData*, _max_workers, mtGC); 440 for (uint worker = 0; worker < _max_workers; worker++) { 441 _liveness_cache[worker] = NEW_C_HEAP_ARRAY(ShenandoahLiveData, _num_regions, mtGC); 442 Copy::fill_to_bytes(_liveness_cache[worker], _num_regions * sizeof(ShenandoahLiveData)); 443 } 444 445 // There should probably be Shenandoah-specific options for these, 446 // just as there are G1-specific options. 447 { 448 ShenandoahSATBMarkQueueSet& satbqs = ShenandoahBarrierSet::satb_mark_queue_set(); 449 satbqs.set_process_completed_buffers_threshold(20); // G1SATBProcessCompletedThreshold 450 satbqs.set_buffer_enqueue_threshold_percentage(60); // G1SATBBufferEnqueueingThresholdPercent 451 } 452 453 _monitoring_support = new ShenandoahMonitoringSupport(this); 454 _phase_timings = new ShenandoahPhaseTimings(max_workers()); 455 ShenandoahCodeRoots::initialize(); 456 457 if (ShenandoahPacing) { 458 _pacer = new ShenandoahPacer(this); 459 _pacer->setup_for_idle(); 460 } 461 462 initialize_controller(); 463 464 if (ShenandoahUncommit) { 465 _uncommit_thread = new ShenandoahUncommitThread(this); 466 } 467 468 print_init_logger(); 469 470 FullGCForwarding::initialize(_heap_region); 471 472 return JNI_OK; 473 } 474 475 void ShenandoahHeap::initialize_controller() { 476 _control_thread = new ShenandoahControlThread(); 477 } 478 479 void ShenandoahHeap::print_init_logger() const { 480 ShenandoahInitLogger::print(); 481 } 482 483 void ShenandoahHeap::initialize_mode() { 484 if (ShenandoahGCMode != nullptr) { 485 if (strcmp(ShenandoahGCMode, "satb") == 0) { 486 _gc_mode = new ShenandoahSATBMode(); 487 } else if (strcmp(ShenandoahGCMode, "passive") == 0) { 488 _gc_mode = new ShenandoahPassiveMode(); 489 } else if (strcmp(ShenandoahGCMode, "generational") == 0) { 490 _gc_mode = new ShenandoahGenerationalMode(); 491 } else { 492 vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option"); 493 } 494 } else { 495 vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option (null)"); 496 } 497 _gc_mode->initialize_flags(); 498 if (_gc_mode->is_diagnostic() && !UnlockDiagnosticVMOptions) { 499 vm_exit_during_initialization( 500 err_msg("GC mode \"%s\" is diagnostic, and must be enabled via -XX:+UnlockDiagnosticVMOptions.", 501 _gc_mode->name())); 502 } 503 if (_gc_mode->is_experimental() && !UnlockExperimentalVMOptions) { 504 vm_exit_during_initialization( 505 err_msg("GC mode \"%s\" is experimental, and must be enabled via -XX:+UnlockExperimentalVMOptions.", 506 _gc_mode->name())); 507 } 508 } 509 510 void ShenandoahHeap::initialize_heuristics() { 511 _global_generation = new ShenandoahGlobalGeneration(mode()->is_generational(), max_workers(), max_capacity(), max_capacity()); 512 _global_generation->initialize_heuristics(mode()); 513 } 514 515 #ifdef _MSC_VER 516 #pragma warning( push ) 517 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list 518 #endif 519 520 ShenandoahHeap::ShenandoahHeap(ShenandoahCollectorPolicy* policy) : 521 CollectedHeap(), 522 _gc_generation(nullptr), 523 _active_generation(nullptr), 524 _initial_size(0), 525 _committed(0), 526 _max_workers(MAX3(ConcGCThreads, ParallelGCThreads, 1U)), 527 _workers(nullptr), 528 _safepoint_workers(nullptr), 529 _heap_region_special(false), 530 _num_regions(0), 531 _regions(nullptr), 532 _affiliations(nullptr), 533 _gc_state_changed(false), 534 _gc_no_progress_count(0), 535 _cancel_requested_time(0), 536 _update_refs_iterator(this), 537 _global_generation(nullptr), 538 _control_thread(nullptr), 539 _uncommit_thread(nullptr), 540 _young_generation(nullptr), 541 _old_generation(nullptr), 542 _shenandoah_policy(policy), 543 _gc_mode(nullptr), 544 _free_set(nullptr), 545 _pacer(nullptr), 546 _verifier(nullptr), 547 _phase_timings(nullptr), 548 _mmu_tracker(), 549 _monitoring_support(nullptr), 550 _memory_pool(nullptr), 551 _stw_memory_manager("Shenandoah Pauses"), 552 _cycle_memory_manager("Shenandoah Cycles"), 553 _gc_timer(new ConcurrentGCTimer()), 554 _log_min_obj_alignment_in_bytes(LogMinObjAlignmentInBytes), 555 _marking_context(nullptr), 556 _bitmap_size(0), 557 _bitmap_regions_per_slice(0), 558 _bitmap_bytes_per_slice(0), 559 _bitmap_region_special(false), 560 _aux_bitmap_region_special(false), 561 _liveness_cache(nullptr), 562 _collection_set(nullptr) 563 { 564 // Initialize GC mode early, many subsequent initialization procedures depend on it 565 initialize_mode(); 566 } 567 568 #ifdef _MSC_VER 569 #pragma warning( pop ) 570 #endif 571 572 void ShenandoahHeap::print_on(outputStream* st) const { 573 st->print_cr("Shenandoah Heap"); 574 st->print_cr(" " SIZE_FORMAT "%s max, " SIZE_FORMAT "%s soft max, " SIZE_FORMAT "%s committed, " SIZE_FORMAT "%s used", 575 byte_size_in_proper_unit(max_capacity()), proper_unit_for_byte_size(max_capacity()), 576 byte_size_in_proper_unit(soft_max_capacity()), proper_unit_for_byte_size(soft_max_capacity()), 577 byte_size_in_proper_unit(committed()), proper_unit_for_byte_size(committed()), 578 byte_size_in_proper_unit(used()), proper_unit_for_byte_size(used())); 579 st->print_cr(" " SIZE_FORMAT " x " SIZE_FORMAT"%s regions", 580 num_regions(), 581 byte_size_in_proper_unit(ShenandoahHeapRegion::region_size_bytes()), 582 proper_unit_for_byte_size(ShenandoahHeapRegion::region_size_bytes())); 583 584 st->print("Status: "); 585 if (has_forwarded_objects()) st->print("has forwarded objects, "); 586 if (!mode()->is_generational()) { 587 if (is_concurrent_mark_in_progress()) st->print("marking,"); 588 } else { 589 if (is_concurrent_old_mark_in_progress()) st->print("old marking, "); 590 if (is_concurrent_young_mark_in_progress()) st->print("young marking, "); 591 } 592 if (is_evacuation_in_progress()) st->print("evacuating, "); 593 if (is_update_refs_in_progress()) st->print("updating refs, "); 594 if (is_degenerated_gc_in_progress()) st->print("degenerated gc, "); 595 if (is_full_gc_in_progress()) st->print("full gc, "); 596 if (is_full_gc_move_in_progress()) st->print("full gc move, "); 597 if (is_concurrent_weak_root_in_progress()) st->print("concurrent weak roots, "); 598 if (is_concurrent_strong_root_in_progress() && 599 !is_concurrent_weak_root_in_progress()) st->print("concurrent strong roots, "); 600 601 if (cancelled_gc()) { 602 st->print("cancelled"); 603 } else { 604 st->print("not cancelled"); 605 } 606 st->cr(); 607 608 st->print_cr("Reserved region:"); 609 st->print_cr(" - [" PTR_FORMAT ", " PTR_FORMAT ") ", 610 p2i(reserved_region().start()), 611 p2i(reserved_region().end())); 612 613 ShenandoahCollectionSet* cset = collection_set(); 614 st->print_cr("Collection set:"); 615 if (cset != nullptr) { 616 st->print_cr(" - map (vanilla): " PTR_FORMAT, p2i(cset->map_address())); 617 st->print_cr(" - map (biased): " PTR_FORMAT, p2i(cset->biased_map_address())); 618 } else { 619 st->print_cr(" (null)"); 620 } 621 622 st->cr(); 623 MetaspaceUtils::print_on(st); 624 625 if (Verbose) { 626 st->cr(); 627 print_heap_regions_on(st); 628 } 629 } 630 631 class ShenandoahInitWorkerGCLABClosure : public ThreadClosure { 632 public: 633 void do_thread(Thread* thread) { 634 assert(thread != nullptr, "Sanity"); 635 assert(thread->is_Worker_thread(), "Only worker thread expected"); 636 ShenandoahThreadLocalData::initialize_gclab(thread); 637 } 638 }; 639 640 void ShenandoahHeap::post_initialize() { 641 CollectedHeap::post_initialize(); 642 _mmu_tracker.initialize(); 643 644 MutexLocker ml(Threads_lock); 645 646 ShenandoahInitWorkerGCLABClosure init_gclabs; 647 _workers->threads_do(&init_gclabs); 648 649 // gclab can not be initialized early during VM startup, as it can not determinate its max_size. 650 // Now, we will let WorkerThreads to initialize gclab when new worker is created. 651 _workers->set_initialize_gclab(); 652 if (_safepoint_workers != nullptr) { 653 _safepoint_workers->threads_do(&init_gclabs); 654 _safepoint_workers->set_initialize_gclab(); 655 } 656 657 JFR_ONLY(ShenandoahJFRSupport::register_jfr_type_serializers();) 658 } 659 660 ShenandoahHeuristics* ShenandoahHeap::heuristics() { 661 return _global_generation->heuristics(); 662 } 663 664 size_t ShenandoahHeap::used() const { 665 return global_generation()->used(); 666 } 667 668 size_t ShenandoahHeap::committed() const { 669 return Atomic::load(&_committed); 670 } 671 672 void ShenandoahHeap::increase_committed(size_t bytes) { 673 shenandoah_assert_heaplocked_or_safepoint(); 674 _committed += bytes; 675 } 676 677 void ShenandoahHeap::decrease_committed(size_t bytes) { 678 shenandoah_assert_heaplocked_or_safepoint(); 679 _committed -= bytes; 680 } 681 682 // For tracking usage based on allocations, it should be the case that: 683 // * The sum of regions::used == heap::used 684 // * The sum of a generation's regions::used == generation::used 685 // * The sum of a generation's humongous regions::free == generation::humongous_waste 686 // These invariants are checked by the verifier on GC safepoints. 687 // 688 // Additional notes: 689 // * When a mutator's allocation request causes a region to be retired, the 690 // free memory left in that region is considered waste. It does not contribute 691 // to the usage, but it _does_ contribute to allocation rate. 692 // * The bottom of a PLAB must be aligned on card size. In some cases this will 693 // require padding in front of the PLAB (a filler object). Because this padding 694 // is included in the region's used memory we include the padding in the usage 695 // accounting as waste. 696 // * Mutator allocations are used to compute an allocation rate. They are also 697 // sent to the Pacer for those purposes. 698 // * There are three sources of waste: 699 // 1. The padding used to align a PLAB on card size 700 // 2. Region's free is less than minimum TLAB size and is retired 701 // 3. The unused portion of memory in the last region of a humongous object 702 void ShenandoahHeap::increase_used(const ShenandoahAllocRequest& req) { 703 size_t actual_bytes = req.actual_size() * HeapWordSize; 704 size_t wasted_bytes = req.waste() * HeapWordSize; 705 ShenandoahGeneration* generation = generation_for(req.affiliation()); 706 707 if (req.is_gc_alloc()) { 708 assert(wasted_bytes == 0 || req.type() == ShenandoahAllocRequest::_alloc_plab, "Only PLABs have waste"); 709 increase_used(generation, actual_bytes + wasted_bytes); 710 } else { 711 assert(req.is_mutator_alloc(), "Expected mutator alloc here"); 712 // padding and actual size both count towards allocation counter 713 generation->increase_allocated(actual_bytes + wasted_bytes); 714 715 // only actual size counts toward usage for mutator allocations 716 increase_used(generation, actual_bytes); 717 718 // notify pacer of both actual size and waste 719 notify_mutator_alloc_words(req.actual_size(), req.waste()); 720 721 if (wasted_bytes > 0 && ShenandoahHeapRegion::requires_humongous(req.actual_size())) { 722 increase_humongous_waste(generation,wasted_bytes); 723 } 724 } 725 } 726 727 void ShenandoahHeap::increase_humongous_waste(ShenandoahGeneration* generation, size_t bytes) { 728 generation->increase_humongous_waste(bytes); 729 if (!generation->is_global()) { 730 global_generation()->increase_humongous_waste(bytes); 731 } 732 } 733 734 void ShenandoahHeap::decrease_humongous_waste(ShenandoahGeneration* generation, size_t bytes) { 735 generation->decrease_humongous_waste(bytes); 736 if (!generation->is_global()) { 737 global_generation()->decrease_humongous_waste(bytes); 738 } 739 } 740 741 void ShenandoahHeap::increase_used(ShenandoahGeneration* generation, size_t bytes) { 742 generation->increase_used(bytes); 743 if (!generation->is_global()) { 744 global_generation()->increase_used(bytes); 745 } 746 } 747 748 void ShenandoahHeap::decrease_used(ShenandoahGeneration* generation, size_t bytes) { 749 generation->decrease_used(bytes); 750 if (!generation->is_global()) { 751 global_generation()->decrease_used(bytes); 752 } 753 } 754 755 void ShenandoahHeap::notify_mutator_alloc_words(size_t words, size_t waste) { 756 if (ShenandoahPacing) { 757 control_thread()->pacing_notify_alloc(words); 758 if (waste > 0) { 759 pacer()->claim_for_alloc<true>(waste); 760 } 761 } 762 } 763 764 size_t ShenandoahHeap::capacity() const { 765 return committed(); 766 } 767 768 size_t ShenandoahHeap::max_capacity() const { 769 return _num_regions * ShenandoahHeapRegion::region_size_bytes(); 770 } 771 772 size_t ShenandoahHeap::soft_max_capacity() const { 773 size_t v = Atomic::load(&_soft_max_size); 774 assert(min_capacity() <= v && v <= max_capacity(), 775 "Should be in bounds: " SIZE_FORMAT " <= " SIZE_FORMAT " <= " SIZE_FORMAT, 776 min_capacity(), v, max_capacity()); 777 return v; 778 } 779 780 void ShenandoahHeap::set_soft_max_capacity(size_t v) { 781 assert(min_capacity() <= v && v <= max_capacity(), 782 "Should be in bounds: " SIZE_FORMAT " <= " SIZE_FORMAT " <= " SIZE_FORMAT, 783 min_capacity(), v, max_capacity()); 784 Atomic::store(&_soft_max_size, v); 785 } 786 787 size_t ShenandoahHeap::min_capacity() const { 788 return _minimum_size; 789 } 790 791 size_t ShenandoahHeap::initial_capacity() const { 792 return _initial_size; 793 } 794 795 bool ShenandoahHeap::is_in(const void* p) const { 796 if (is_in_reserved(p)) { 797 if (is_full_gc_move_in_progress()) { 798 // Full GC move is running, we do not have a consistent region 799 // information yet. But we know the pointer is in heap. 800 return true; 801 } 802 // Now check if we point to a live section in active region. 803 ShenandoahHeapRegion* r = heap_region_containing(p); 804 return (r->is_active() && p < r->top()); 805 } else { 806 return false; 807 } 808 } 809 810 void ShenandoahHeap::notify_soft_max_changed() { 811 if (_uncommit_thread != nullptr) { 812 _uncommit_thread->notify_soft_max_changed(); 813 } 814 } 815 816 void ShenandoahHeap::notify_explicit_gc_requested() { 817 if (_uncommit_thread != nullptr) { 818 _uncommit_thread->notify_explicit_gc_requested(); 819 } 820 } 821 822 bool ShenandoahHeap::check_soft_max_changed() { 823 size_t new_soft_max = Atomic::load(&SoftMaxHeapSize); 824 size_t old_soft_max = soft_max_capacity(); 825 if (new_soft_max != old_soft_max) { 826 new_soft_max = MAX2(min_capacity(), new_soft_max); 827 new_soft_max = MIN2(max_capacity(), new_soft_max); 828 if (new_soft_max != old_soft_max) { 829 log_info(gc)("Soft Max Heap Size: " SIZE_FORMAT "%s -> " SIZE_FORMAT "%s", 830 byte_size_in_proper_unit(old_soft_max), proper_unit_for_byte_size(old_soft_max), 831 byte_size_in_proper_unit(new_soft_max), proper_unit_for_byte_size(new_soft_max) 832 ); 833 set_soft_max_capacity(new_soft_max); 834 return true; 835 } 836 } 837 return false; 838 } 839 840 void ShenandoahHeap::notify_heap_changed() { 841 // Update monitoring counters when we took a new region. This amortizes the 842 // update costs on slow path. 843 monitoring_support()->notify_heap_changed(); 844 _heap_changed.try_set(); 845 } 846 847 void ShenandoahHeap::set_forced_counters_update(bool value) { 848 monitoring_support()->set_forced_counters_update(value); 849 } 850 851 void ShenandoahHeap::handle_force_counters_update() { 852 monitoring_support()->handle_force_counters_update(); 853 } 854 855 HeapWord* ShenandoahHeap::allocate_from_gclab_slow(Thread* thread, size_t size) { 856 // New object should fit the GCLAB size 857 size_t min_size = MAX2(size, PLAB::min_size()); 858 859 // Figure out size of new GCLAB, looking back at heuristics. Expand aggressively. 860 size_t new_size = ShenandoahThreadLocalData::gclab_size(thread) * 2; 861 862 new_size = MIN2(new_size, PLAB::max_size()); 863 new_size = MAX2(new_size, PLAB::min_size()); 864 865 // Record new heuristic value even if we take any shortcut. This captures 866 // the case when moderately-sized objects always take a shortcut. At some point, 867 // heuristics should catch up with them. 868 log_debug(gc, free)("Set new GCLAB size: " SIZE_FORMAT, new_size); 869 ShenandoahThreadLocalData::set_gclab_size(thread, new_size); 870 871 if (new_size < size) { 872 // New size still does not fit the object. Fall back to shared allocation. 873 // This avoids retiring perfectly good GCLABs, when we encounter a large object. 874 log_debug(gc, free)("New gclab size (" SIZE_FORMAT ") is too small for " SIZE_FORMAT, new_size, size); 875 return nullptr; 876 } 877 878 // Retire current GCLAB, and allocate a new one. 879 PLAB* gclab = ShenandoahThreadLocalData::gclab(thread); 880 gclab->retire(); 881 882 size_t actual_size = 0; 883 HeapWord* gclab_buf = allocate_new_gclab(min_size, new_size, &actual_size); 884 if (gclab_buf == nullptr) { 885 return nullptr; 886 } 887 888 assert (size <= actual_size, "allocation should fit"); 889 890 // ...and clear or zap just allocated TLAB, if needed. 891 if (ZeroTLAB) { 892 Copy::zero_to_words(gclab_buf, actual_size); 893 } else if (ZapTLAB) { 894 // Skip mangling the space corresponding to the object header to 895 // ensure that the returned space is not considered parsable by 896 // any concurrent GC thread. 897 size_t hdr_size = oopDesc::header_size(); 898 Copy::fill_to_words(gclab_buf + hdr_size, actual_size - hdr_size, badHeapWordVal); 899 } 900 gclab->set_buf(gclab_buf, actual_size); 901 return gclab->allocate(size); 902 } 903 904 // Called from stubs in JIT code or interpreter 905 HeapWord* ShenandoahHeap::allocate_new_tlab(size_t min_size, 906 size_t requested_size, 907 size_t* actual_size) { 908 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_tlab(min_size, requested_size); 909 HeapWord* res = allocate_memory(req); 910 if (res != nullptr) { 911 *actual_size = req.actual_size(); 912 } else { 913 *actual_size = 0; 914 } 915 return res; 916 } 917 918 HeapWord* ShenandoahHeap::allocate_new_gclab(size_t min_size, 919 size_t word_size, 920 size_t* actual_size) { 921 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_gclab(min_size, word_size); 922 HeapWord* res = allocate_memory(req); 923 if (res != nullptr) { 924 *actual_size = req.actual_size(); 925 } else { 926 *actual_size = 0; 927 } 928 return res; 929 } 930 931 HeapWord* ShenandoahHeap::allocate_memory(ShenandoahAllocRequest& req) { 932 intptr_t pacer_epoch = 0; 933 bool in_new_region = false; 934 HeapWord* result = nullptr; 935 936 if (req.is_mutator_alloc()) { 937 if (ShenandoahPacing) { 938 pacer()->pace_for_alloc(req.size()); 939 pacer_epoch = pacer()->epoch(); 940 } 941 942 if (!ShenandoahAllocFailureALot || !should_inject_alloc_failure()) { 943 result = allocate_memory_under_lock(req, in_new_region); 944 } 945 946 // Check that gc overhead is not exceeded. 947 // 948 // Shenandoah will grind along for quite a while allocating one 949 // object at a time using shared (non-tlab) allocations. This check 950 // is testing that the GC overhead limit has not been exceeded. 951 // This will notify the collector to start a cycle, but will raise 952 // an OOME to the mutator if the last Full GCs have not made progress. 953 // gc_no_progress_count is incremented following each degen or full GC that fails to achieve is_good_progress(). 954 if (result == nullptr && !req.is_lab_alloc() && get_gc_no_progress_count() > ShenandoahNoProgressThreshold) { 955 control_thread()->handle_alloc_failure(req, false); 956 req.set_actual_size(0); 957 return nullptr; 958 } 959 960 if (result == nullptr) { 961 // Block until control thread reacted, then retry allocation. 962 // 963 // It might happen that one of the threads requesting allocation would unblock 964 // way later after GC happened, only to fail the second allocation, because 965 // other threads have already depleted the free storage. In this case, a better 966 // strategy is to try again, until at least one full GC has completed. 967 // 968 // Stop retrying and return nullptr to cause OOMError exception if our allocation failed even after: 969 // a) We experienced a GC that had good progress, or 970 // b) We experienced at least one Full GC (whether or not it had good progress) 971 972 size_t original_count = shenandoah_policy()->full_gc_count(); 973 while ((result == nullptr) && (original_count == shenandoah_policy()->full_gc_count())) { 974 control_thread()->handle_alloc_failure(req, true); 975 result = allocate_memory_under_lock(req, in_new_region); 976 } 977 if (result != nullptr) { 978 // If our allocation request has been satisifed after it initially failed, we count this as good gc progress 979 notify_gc_progress(); 980 } 981 if (log_develop_is_enabled(Debug, gc, alloc)) { 982 ResourceMark rm; 983 log_debug(gc, alloc)("Thread: %s, Result: " PTR_FORMAT ", Request: %s, Size: " SIZE_FORMAT 984 ", Original: " SIZE_FORMAT ", Latest: " SIZE_FORMAT, 985 Thread::current()->name(), p2i(result), req.type_string(), req.size(), 986 original_count, get_gc_no_progress_count()); 987 } 988 } 989 } else { 990 assert(req.is_gc_alloc(), "Can only accept GC allocs here"); 991 result = allocate_memory_under_lock(req, in_new_region); 992 // Do not call handle_alloc_failure() here, because we cannot block. 993 // The allocation failure would be handled by the LRB slowpath with handle_alloc_failure_evac(). 994 } 995 996 if (in_new_region) { 997 notify_heap_changed(); 998 } 999 1000 if (result == nullptr) { 1001 req.set_actual_size(0); 1002 } 1003 1004 // This is called regardless of the outcome of the allocation to account 1005 // for any waste created by retiring regions with this request. 1006 increase_used(req); 1007 1008 if (result != nullptr) { 1009 size_t requested = req.size(); 1010 size_t actual = req.actual_size(); 1011 1012 assert (req.is_lab_alloc() || (requested == actual), 1013 "Only LAB allocations are elastic: %s, requested = " SIZE_FORMAT ", actual = " SIZE_FORMAT, 1014 ShenandoahAllocRequest::alloc_type_to_string(req.type()), requested, actual); 1015 1016 if (req.is_mutator_alloc()) { 1017 // If we requested more than we were granted, give the rest back to pacer. 1018 // This only matters if we are in the same pacing epoch: do not try to unpace 1019 // over the budget for the other phase. 1020 if (ShenandoahPacing && (pacer_epoch > 0) && (requested > actual)) { 1021 pacer()->unpace_for_alloc(pacer_epoch, requested - actual); 1022 } 1023 } 1024 } 1025 1026 return result; 1027 } 1028 1029 HeapWord* ShenandoahHeap::allocate_memory_under_lock(ShenandoahAllocRequest& req, bool& in_new_region) { 1030 // If we are dealing with mutator allocation, then we may need to block for safepoint. 1031 // We cannot block for safepoint for GC allocations, because there is a high chance 1032 // we are already running at safepoint or from stack watermark machinery, and we cannot 1033 // block again. 1034 ShenandoahHeapLocker locker(lock(), req.is_mutator_alloc()); 1035 1036 // Make sure the old generation has room for either evacuations or promotions before trying to allocate. 1037 if (req.is_old() && !old_generation()->can_allocate(req)) { 1038 return nullptr; 1039 } 1040 1041 // If TLAB request size is greater than available, allocate() will attempt to downsize request to fit within available 1042 // memory. 1043 HeapWord* result = _free_set->allocate(req, in_new_region); 1044 1045 // Record the plab configuration for this result and register the object. 1046 if (result != nullptr && req.is_old()) { 1047 old_generation()->configure_plab_for_current_thread(req); 1048 if (req.type() == ShenandoahAllocRequest::_alloc_shared_gc) { 1049 // Register the newly allocated object while we're holding the global lock since there's no synchronization 1050 // built in to the implementation of register_object(). There are potential races when multiple independent 1051 // threads are allocating objects, some of which might span the same card region. For example, consider 1052 // a card table's memory region within which three objects are being allocated by three different threads: 1053 // 1054 // objects being "concurrently" allocated: 1055 // [-----a------][-----b-----][--------------c------------------] 1056 // [---- card table memory range --------------] 1057 // 1058 // Before any objects are allocated, this card's memory range holds no objects. Note that allocation of object a 1059 // wants to set the starts-object, first-start, and last-start attributes of the preceding card region. 1060 // Allocation of object b wants to set the starts-object, first-start, and last-start attributes of this card region. 1061 // Allocation of object c also wants to set the starts-object, first-start, and last-start attributes of this 1062 // card region. 1063 // 1064 // The thread allocating b and the thread allocating c can "race" in various ways, resulting in confusion, such as 1065 // last-start representing object b while first-start represents object c. This is why we need to require all 1066 // register_object() invocations to be "mutually exclusive" with respect to each card's memory range. 1067 old_generation()->card_scan()->register_object(result); 1068 } 1069 } 1070 1071 return result; 1072 } 1073 1074 HeapWord* ShenandoahHeap::mem_allocate(size_t size, 1075 bool* gc_overhead_limit_was_exceeded) { 1076 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared(size); 1077 return allocate_memory(req); 1078 } 1079 1080 MetaWord* ShenandoahHeap::satisfy_failed_metadata_allocation(ClassLoaderData* loader_data, 1081 size_t size, 1082 Metaspace::MetadataType mdtype) { 1083 MetaWord* result; 1084 1085 // Inform metaspace OOM to GC heuristics if class unloading is possible. 1086 ShenandoahHeuristics* h = global_generation()->heuristics(); 1087 if (h->can_unload_classes()) { 1088 h->record_metaspace_oom(); 1089 } 1090 1091 // Expand and retry allocation 1092 result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype); 1093 if (result != nullptr) { 1094 return result; 1095 } 1096 1097 // Start full GC 1098 collect(GCCause::_metadata_GC_clear_soft_refs); 1099 1100 // Retry allocation 1101 result = loader_data->metaspace_non_null()->allocate(size, mdtype); 1102 if (result != nullptr) { 1103 return result; 1104 } 1105 1106 // Expand and retry allocation 1107 result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype); 1108 if (result != nullptr) { 1109 return result; 1110 } 1111 1112 // Out of memory 1113 return nullptr; 1114 } 1115 1116 class ShenandoahConcurrentEvacuateRegionObjectClosure : public ObjectClosure { 1117 private: 1118 ShenandoahHeap* const _heap; 1119 Thread* const _thread; 1120 public: 1121 ShenandoahConcurrentEvacuateRegionObjectClosure(ShenandoahHeap* heap) : 1122 _heap(heap), _thread(Thread::current()) {} 1123 1124 void do_object(oop p) { 1125 shenandoah_assert_marked(nullptr, p); 1126 if (!p->is_forwarded()) { 1127 _heap->evacuate_object(p, _thread); 1128 } 1129 } 1130 }; 1131 1132 class ShenandoahEvacuationTask : public WorkerTask { 1133 private: 1134 ShenandoahHeap* const _sh; 1135 ShenandoahCollectionSet* const _cs; 1136 bool _concurrent; 1137 public: 1138 ShenandoahEvacuationTask(ShenandoahHeap* sh, 1139 ShenandoahCollectionSet* cs, 1140 bool concurrent) : 1141 WorkerTask("Shenandoah Evacuation"), 1142 _sh(sh), 1143 _cs(cs), 1144 _concurrent(concurrent) 1145 {} 1146 1147 void work(uint worker_id) { 1148 if (_concurrent) { 1149 ShenandoahConcurrentWorkerSession worker_session(worker_id); 1150 ShenandoahSuspendibleThreadSetJoiner stsj; 1151 ShenandoahEvacOOMScope oom_evac_scope; 1152 do_work(); 1153 } else { 1154 ShenandoahParallelWorkerSession worker_session(worker_id); 1155 ShenandoahEvacOOMScope oom_evac_scope; 1156 do_work(); 1157 } 1158 } 1159 1160 private: 1161 void do_work() { 1162 ShenandoahConcurrentEvacuateRegionObjectClosure cl(_sh); 1163 ShenandoahHeapRegion* r; 1164 while ((r =_cs->claim_next()) != nullptr) { 1165 assert(r->has_live(), "Region " SIZE_FORMAT " should have been reclaimed early", r->index()); 1166 _sh->marked_object_iterate(r, &cl); 1167 1168 if (ShenandoahPacing) { 1169 _sh->pacer()->report_evac(r->used() >> LogHeapWordSize); 1170 } 1171 1172 if (_sh->check_cancelled_gc_and_yield(_concurrent)) { 1173 break; 1174 } 1175 } 1176 } 1177 }; 1178 1179 void ShenandoahHeap::evacuate_collection_set(bool concurrent) { 1180 ShenandoahEvacuationTask task(this, _collection_set, concurrent); 1181 workers()->run_task(&task); 1182 } 1183 1184 oop ShenandoahHeap::evacuate_object(oop p, Thread* thread) { 1185 assert(thread == Thread::current(), "Expected thread parameter to be current thread."); 1186 if (ShenandoahThreadLocalData::is_oom_during_evac(thread)) { 1187 // This thread went through the OOM during evac protocol. It is safe to return 1188 // the forward pointer. It must not attempt to evacuate any other objects. 1189 return ShenandoahBarrierSet::resolve_forwarded(p); 1190 } 1191 1192 assert(ShenandoahThreadLocalData::is_evac_allowed(thread), "must be enclosed in oom-evac scope"); 1193 1194 ShenandoahHeapRegion* r = heap_region_containing(p); 1195 assert(!r->is_humongous(), "never evacuate humongous objects"); 1196 1197 ShenandoahAffiliation target_gen = r->affiliation(); 1198 return try_evacuate_object(p, thread, r, target_gen); 1199 } 1200 1201 oop ShenandoahHeap::try_evacuate_object(oop p, Thread* thread, ShenandoahHeapRegion* from_region, 1202 ShenandoahAffiliation target_gen) { 1203 assert(target_gen == YOUNG_GENERATION, "Only expect evacuations to young in this mode"); 1204 assert(from_region->is_young(), "Only expect evacuations from young in this mode"); 1205 bool alloc_from_lab = true; 1206 HeapWord* copy = nullptr; 1207 1208 markWord mark = p->mark(); 1209 if (ShenandoahForwarding::is_forwarded(mark)) { 1210 return ShenandoahForwarding::get_forwardee(p); 1211 } 1212 size_t old_size = ShenandoahForwarding::size(p); 1213 size_t size = p->copy_size(old_size, mark); 1214 1215 #ifdef ASSERT 1216 if (ShenandoahOOMDuringEvacALot && 1217 (os::random() & 1) == 0) { // Simulate OOM every ~2nd slow-path call 1218 copy = nullptr; 1219 } else { 1220 #endif 1221 if (UseTLAB) { 1222 copy = allocate_from_gclab(thread, size); 1223 } 1224 if (copy == nullptr) { 1225 // If we failed to allocate in LAB, we'll try a shared allocation. 1226 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared_gc(size, target_gen); 1227 copy = allocate_memory(req); 1228 alloc_from_lab = false; 1229 } 1230 #ifdef ASSERT 1231 } 1232 #endif 1233 1234 if (copy == nullptr) { 1235 control_thread()->handle_alloc_failure_evac(size); 1236 1237 _oom_evac_handler.handle_out_of_memory_during_evacuation(); 1238 1239 return ShenandoahBarrierSet::resolve_forwarded(p); 1240 } 1241 1242 // Copy the object: 1243 Copy::aligned_disjoint_words(cast_from_oop<HeapWord*>(p), copy, old_size); 1244 1245 // Try to install the new forwarding pointer. 1246 oop copy_val = cast_to_oop(copy); 1247 oop result = ShenandoahForwarding::try_update_forwardee(p, copy_val); 1248 if (result == copy_val) { 1249 // Successfully evacuated. Our copy is now the public one! 1250 copy_val->initialize_hash_if_necessary(p); 1251 ContinuationGCSupport::relativize_stack_chunk(copy_val); 1252 shenandoah_assert_correct(nullptr, copy_val); 1253 return copy_val; 1254 } else { 1255 // Failed to evacuate. We need to deal with the object that is left behind. Since this 1256 // new allocation is certainly after TAMS, it will be considered live in the next cycle. 1257 // But if it happens to contain references to evacuated regions, those references would 1258 // not get updated for this stale copy during this cycle, and we will crash while scanning 1259 // it the next cycle. 1260 if (alloc_from_lab) { 1261 // For LAB allocations, it is enough to rollback the allocation ptr. Either the next 1262 // object will overwrite this stale copy, or the filler object on LAB retirement will 1263 // do this. 1264 ShenandoahThreadLocalData::gclab(thread)->undo_allocation(copy, size); 1265 } else { 1266 // For non-LAB allocations, we have no way to retract the allocation, and 1267 // have to explicitly overwrite the copy with the filler object. With that overwrite, 1268 // we have to keep the fwdptr initialized and pointing to our (stale) copy. 1269 assert(size >= ShenandoahHeap::min_fill_size(), "previously allocated object known to be larger than min_size"); 1270 fill_with_object(copy, size); 1271 shenandoah_assert_correct(nullptr, copy_val); 1272 // For non-LAB allocations, the object has already been registered 1273 } 1274 shenandoah_assert_correct(nullptr, result); 1275 return result; 1276 } 1277 } 1278 1279 void ShenandoahHeap::trash_cset_regions() { 1280 ShenandoahHeapLocker locker(lock()); 1281 1282 ShenandoahCollectionSet* set = collection_set(); 1283 ShenandoahHeapRegion* r; 1284 set->clear_current_index(); 1285 while ((r = set->next()) != nullptr) { 1286 r->make_trash(); 1287 } 1288 collection_set()->clear(); 1289 } 1290 1291 void ShenandoahHeap::print_heap_regions_on(outputStream* st) const { 1292 st->print_cr("Heap Regions:"); 1293 st->print_cr("Region state: EU=empty-uncommitted, EC=empty-committed, R=regular, H=humongous start, HP=pinned humongous start"); 1294 st->print_cr(" HC=humongous continuation, CS=collection set, TR=trash, P=pinned, CSP=pinned collection set"); 1295 st->print_cr("BTE=bottom/top/end, TAMS=top-at-mark-start"); 1296 st->print_cr("UWM=update watermark, U=used"); 1297 st->print_cr("T=TLAB allocs, G=GCLAB allocs"); 1298 st->print_cr("S=shared allocs, L=live data"); 1299 st->print_cr("CP=critical pins"); 1300 1301 for (size_t i = 0; i < num_regions(); i++) { 1302 get_region(i)->print_on(st); 1303 } 1304 } 1305 1306 size_t ShenandoahHeap::trash_humongous_region_at(ShenandoahHeapRegion* start) { 1307 assert(start->is_humongous_start(), "reclaim regions starting with the first one"); 1308 1309 oop humongous_obj = cast_to_oop(start->bottom()); 1310 size_t size = humongous_obj->size(); 1311 size_t required_regions = ShenandoahHeapRegion::required_regions(size * HeapWordSize); 1312 size_t index = start->index() + required_regions - 1; 1313 1314 assert(!start->has_live(), "liveness must be zero"); 1315 1316 for(size_t i = 0; i < required_regions; i++) { 1317 // Reclaim from tail. Otherwise, assertion fails when printing region to trace log, 1318 // as it expects that every region belongs to a humongous region starting with a humongous start region. 1319 ShenandoahHeapRegion* region = get_region(index --); 1320 1321 assert(region->is_humongous(), "expect correct humongous start or continuation"); 1322 assert(!region->is_cset(), "Humongous region should not be in collection set"); 1323 1324 region->make_trash_immediate(); 1325 } 1326 return required_regions; 1327 } 1328 1329 class ShenandoahCheckCleanGCLABClosure : public ThreadClosure { 1330 public: 1331 ShenandoahCheckCleanGCLABClosure() {} 1332 void do_thread(Thread* thread) { 1333 PLAB* gclab = ShenandoahThreadLocalData::gclab(thread); 1334 assert(gclab != nullptr, "GCLAB should be initialized for %s", thread->name()); 1335 assert(gclab->words_remaining() == 0, "GCLAB should not need retirement"); 1336 1337 if (ShenandoahHeap::heap()->mode()->is_generational()) { 1338 PLAB* plab = ShenandoahThreadLocalData::plab(thread); 1339 assert(plab != nullptr, "PLAB should be initialized for %s", thread->name()); 1340 assert(plab->words_remaining() == 0, "PLAB should not need retirement"); 1341 } 1342 } 1343 }; 1344 1345 class ShenandoahRetireGCLABClosure : public ThreadClosure { 1346 private: 1347 bool const _resize; 1348 public: 1349 ShenandoahRetireGCLABClosure(bool resize) : _resize(resize) {} 1350 void do_thread(Thread* thread) { 1351 PLAB* gclab = ShenandoahThreadLocalData::gclab(thread); 1352 assert(gclab != nullptr, "GCLAB should be initialized for %s", thread->name()); 1353 gclab->retire(); 1354 if (_resize && ShenandoahThreadLocalData::gclab_size(thread) > 0) { 1355 ShenandoahThreadLocalData::set_gclab_size(thread, 0); 1356 } 1357 1358 if (ShenandoahHeap::heap()->mode()->is_generational()) { 1359 PLAB* plab = ShenandoahThreadLocalData::plab(thread); 1360 assert(plab != nullptr, "PLAB should be initialized for %s", thread->name()); 1361 1362 // There are two reasons to retire all plabs between old-gen evacuation passes. 1363 // 1. We need to make the plab memory parsable by remembered-set scanning. 1364 // 2. We need to establish a trustworthy UpdateWaterMark value within each old-gen heap region 1365 ShenandoahGenerationalHeap::heap()->retire_plab(plab, thread); 1366 if (_resize && ShenandoahThreadLocalData::plab_size(thread) > 0) { 1367 ShenandoahThreadLocalData::set_plab_size(thread, 0); 1368 } 1369 } 1370 } 1371 }; 1372 1373 void ShenandoahHeap::labs_make_parsable() { 1374 assert(UseTLAB, "Only call with UseTLAB"); 1375 1376 ShenandoahRetireGCLABClosure cl(false); 1377 1378 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1379 ThreadLocalAllocBuffer& tlab = t->tlab(); 1380 tlab.make_parsable(); 1381 cl.do_thread(t); 1382 } 1383 1384 workers()->threads_do(&cl); 1385 } 1386 1387 void ShenandoahHeap::tlabs_retire(bool resize) { 1388 assert(UseTLAB, "Only call with UseTLAB"); 1389 assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled"); 1390 1391 ThreadLocalAllocStats stats; 1392 1393 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1394 ThreadLocalAllocBuffer& tlab = t->tlab(); 1395 tlab.retire(&stats); 1396 if (resize) { 1397 tlab.resize(); 1398 } 1399 } 1400 1401 stats.publish(); 1402 1403 #ifdef ASSERT 1404 ShenandoahCheckCleanGCLABClosure cl; 1405 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1406 cl.do_thread(t); 1407 } 1408 workers()->threads_do(&cl); 1409 #endif 1410 } 1411 1412 void ShenandoahHeap::gclabs_retire(bool resize) { 1413 assert(UseTLAB, "Only call with UseTLAB"); 1414 assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled"); 1415 1416 ShenandoahRetireGCLABClosure cl(resize); 1417 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1418 cl.do_thread(t); 1419 } 1420 workers()->threads_do(&cl); 1421 1422 if (safepoint_workers() != nullptr) { 1423 safepoint_workers()->threads_do(&cl); 1424 } 1425 } 1426 1427 // Returns size in bytes 1428 size_t ShenandoahHeap::unsafe_max_tlab_alloc(Thread *thread) const { 1429 // Return the max allowed size, and let the allocation path 1430 // figure out the safe size for current allocation. 1431 return ShenandoahHeapRegion::max_tlab_size_bytes(); 1432 } 1433 1434 size_t ShenandoahHeap::max_tlab_size() const { 1435 // Returns size in words 1436 return ShenandoahHeapRegion::max_tlab_size_words(); 1437 } 1438 1439 void ShenandoahHeap::collect(GCCause::Cause cause) { 1440 control_thread()->request_gc(cause); 1441 } 1442 1443 void ShenandoahHeap::do_full_collection(bool clear_all_soft_refs) { 1444 //assert(false, "Shouldn't need to do full collections"); 1445 } 1446 1447 HeapWord* ShenandoahHeap::block_start(const void* addr) const { 1448 ShenandoahHeapRegion* r = heap_region_containing(addr); 1449 if (r != nullptr) { 1450 return r->block_start(addr); 1451 } 1452 return nullptr; 1453 } 1454 1455 bool ShenandoahHeap::block_is_obj(const HeapWord* addr) const { 1456 ShenandoahHeapRegion* r = heap_region_containing(addr); 1457 return r->block_is_obj(addr); 1458 } 1459 1460 bool ShenandoahHeap::print_location(outputStream* st, void* addr) const { 1461 return BlockLocationPrinter<ShenandoahHeap>::print_location(st, addr); 1462 } 1463 1464 void ShenandoahHeap::prepare_for_verify() { 1465 if (SafepointSynchronize::is_at_safepoint() && UseTLAB) { 1466 labs_make_parsable(); 1467 } 1468 } 1469 1470 void ShenandoahHeap::gc_threads_do(ThreadClosure* tcl) const { 1471 if (_shenandoah_policy->is_at_shutdown()) { 1472 return; 1473 } 1474 1475 if (_control_thread != nullptr) { 1476 tcl->do_thread(_control_thread); 1477 } 1478 1479 if (_uncommit_thread != nullptr) { 1480 tcl->do_thread(_uncommit_thread); 1481 } 1482 1483 workers()->threads_do(tcl); 1484 if (_safepoint_workers != nullptr) { 1485 _safepoint_workers->threads_do(tcl); 1486 } 1487 } 1488 1489 void ShenandoahHeap::print_tracing_info() const { 1490 LogTarget(Info, gc, stats) lt; 1491 if (lt.is_enabled()) { 1492 ResourceMark rm; 1493 LogStream ls(lt); 1494 1495 phase_timings()->print_global_on(&ls); 1496 1497 ls.cr(); 1498 ls.cr(); 1499 1500 shenandoah_policy()->print_gc_stats(&ls); 1501 1502 ls.cr(); 1503 ls.cr(); 1504 } 1505 } 1506 1507 void ShenandoahHeap::set_gc_generation(ShenandoahGeneration* generation) { 1508 shenandoah_assert_control_or_vm_thread_at_safepoint(); 1509 _gc_generation = generation; 1510 } 1511 1512 // Active generation may only be set by the VM thread at a safepoint. 1513 void ShenandoahHeap::set_active_generation() { 1514 assert(Thread::current()->is_VM_thread(), "Only the VM Thread"); 1515 assert(SafepointSynchronize::is_at_safepoint(), "Only at a safepoint!"); 1516 assert(_gc_generation != nullptr, "Will set _active_generation to nullptr"); 1517 _active_generation = _gc_generation; 1518 } 1519 1520 void ShenandoahHeap::on_cycle_start(GCCause::Cause cause, ShenandoahGeneration* generation) { 1521 shenandoah_policy()->record_collection_cause(cause); 1522 1523 assert(gc_cause() == GCCause::_no_gc, "Over-writing cause"); 1524 assert(_gc_generation == nullptr, "Over-writing _gc_generation"); 1525 1526 set_gc_cause(cause); 1527 set_gc_generation(generation); 1528 1529 generation->heuristics()->record_cycle_start(); 1530 } 1531 1532 void ShenandoahHeap::on_cycle_end(ShenandoahGeneration* generation) { 1533 assert(gc_cause() != GCCause::_no_gc, "cause wasn't set"); 1534 assert(_gc_generation != nullptr, "_gc_generation wasn't set"); 1535 1536 generation->heuristics()->record_cycle_end(); 1537 if (mode()->is_generational() && generation->is_global()) { 1538 // If we just completed a GLOBAL GC, claim credit for completion of young-gen and old-gen GC as well 1539 young_generation()->heuristics()->record_cycle_end(); 1540 old_generation()->heuristics()->record_cycle_end(); 1541 } 1542 1543 set_gc_generation(nullptr); 1544 set_gc_cause(GCCause::_no_gc); 1545 } 1546 1547 void ShenandoahHeap::verify(VerifyOption vo) { 1548 if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) { 1549 if (ShenandoahVerify) { 1550 verifier()->verify_generic(vo); 1551 } else { 1552 // TODO: Consider allocating verification bitmaps on demand, 1553 // and turn this on unconditionally. 1554 } 1555 } 1556 } 1557 size_t ShenandoahHeap::tlab_capacity(Thread *thr) const { 1558 return _free_set->capacity(); 1559 } 1560 1561 class ObjectIterateScanRootClosure : public BasicOopIterateClosure { 1562 private: 1563 MarkBitMap* _bitmap; 1564 ShenandoahScanObjectStack* _oop_stack; 1565 ShenandoahHeap* const _heap; 1566 ShenandoahMarkingContext* const _marking_context; 1567 1568 template <class T> 1569 void do_oop_work(T* p) { 1570 T o = RawAccess<>::oop_load(p); 1571 if (!CompressedOops::is_null(o)) { 1572 oop obj = CompressedOops::decode_not_null(o); 1573 if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) { 1574 // There may be dead oops in weak roots in concurrent root phase, do not touch them. 1575 return; 1576 } 1577 obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj); 1578 1579 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1580 if (!_bitmap->is_marked(obj)) { 1581 _bitmap->mark(obj); 1582 _oop_stack->push(obj); 1583 } 1584 } 1585 } 1586 public: 1587 ObjectIterateScanRootClosure(MarkBitMap* bitmap, ShenandoahScanObjectStack* oop_stack) : 1588 _bitmap(bitmap), _oop_stack(oop_stack), _heap(ShenandoahHeap::heap()), 1589 _marking_context(_heap->marking_context()) {} 1590 void do_oop(oop* p) { do_oop_work(p); } 1591 void do_oop(narrowOop* p) { do_oop_work(p); } 1592 }; 1593 1594 /* 1595 * This is public API, used in preparation of object_iterate(). 1596 * Since we don't do linear scan of heap in object_iterate() (see comment below), we don't 1597 * need to make the heap parsable. For Shenandoah-internal linear heap scans that we can 1598 * control, we call SH::tlabs_retire, SH::gclabs_retire. 1599 */ 1600 void ShenandoahHeap::ensure_parsability(bool retire_tlabs) { 1601 // No-op. 1602 } 1603 1604 /* 1605 * Iterates objects in the heap. This is public API, used for, e.g., heap dumping. 1606 * 1607 * We cannot safely iterate objects by doing a linear scan at random points in time. Linear 1608 * scanning needs to deal with dead objects, which may have dead Klass* pointers (e.g. 1609 * calling oopDesc::size() would crash) or dangling reference fields (crashes) etc. Linear 1610 * scanning therefore depends on having a valid marking bitmap to support it. However, we only 1611 * have a valid marking bitmap after successful marking. In particular, we *don't* have a valid 1612 * marking bitmap during marking, after aborted marking or during/after cleanup (when we just 1613 * wiped the bitmap in preparation for next marking). 1614 * 1615 * For all those reasons, we implement object iteration as a single marking traversal, reporting 1616 * objects as we mark+traverse through the heap, starting from GC roots. JVMTI IterateThroughHeap 1617 * is allowed to report dead objects, but is not required to do so. 1618 */ 1619 void ShenandoahHeap::object_iterate(ObjectClosure* cl) { 1620 // Reset bitmap 1621 if (!prepare_aux_bitmap_for_iteration()) 1622 return; 1623 1624 ShenandoahScanObjectStack oop_stack; 1625 ObjectIterateScanRootClosure oops(&_aux_bit_map, &oop_stack); 1626 // Seed the stack with root scan 1627 scan_roots_for_iteration(&oop_stack, &oops); 1628 1629 // Work through the oop stack to traverse heap 1630 while (! oop_stack.is_empty()) { 1631 oop obj = oop_stack.pop(); 1632 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1633 cl->do_object(obj); 1634 obj->oop_iterate(&oops); 1635 } 1636 1637 assert(oop_stack.is_empty(), "should be empty"); 1638 // Reclaim bitmap 1639 reclaim_aux_bitmap_for_iteration(); 1640 } 1641 1642 bool ShenandoahHeap::prepare_aux_bitmap_for_iteration() { 1643 assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints"); 1644 1645 if (!_aux_bitmap_region_special && !os::commit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size(), false)) { 1646 log_warning(gc)("Could not commit native memory for auxiliary marking bitmap for heap iteration"); 1647 return false; 1648 } 1649 // Reset bitmap 1650 _aux_bit_map.clear(); 1651 return true; 1652 } 1653 1654 void ShenandoahHeap::scan_roots_for_iteration(ShenandoahScanObjectStack* oop_stack, ObjectIterateScanRootClosure* oops) { 1655 // Process GC roots according to current GC cycle 1656 // This populates the work stack with initial objects 1657 // It is important to relinquish the associated locks before diving 1658 // into heap dumper 1659 uint n_workers = safepoint_workers() != nullptr ? safepoint_workers()->active_workers() : 1; 1660 ShenandoahHeapIterationRootScanner rp(n_workers); 1661 rp.roots_do(oops); 1662 } 1663 1664 void ShenandoahHeap::reclaim_aux_bitmap_for_iteration() { 1665 if (!_aux_bitmap_region_special && !os::uncommit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size())) { 1666 log_warning(gc)("Could not uncommit native memory for auxiliary marking bitmap for heap iteration"); 1667 } 1668 } 1669 1670 // Closure for parallelly iterate objects 1671 class ShenandoahObjectIterateParScanClosure : public BasicOopIterateClosure { 1672 private: 1673 MarkBitMap* _bitmap; 1674 ShenandoahObjToScanQueue* _queue; 1675 ShenandoahHeap* const _heap; 1676 ShenandoahMarkingContext* const _marking_context; 1677 1678 template <class T> 1679 void do_oop_work(T* p) { 1680 T o = RawAccess<>::oop_load(p); 1681 if (!CompressedOops::is_null(o)) { 1682 oop obj = CompressedOops::decode_not_null(o); 1683 if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) { 1684 // There may be dead oops in weak roots in concurrent root phase, do not touch them. 1685 return; 1686 } 1687 obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj); 1688 1689 assert(oopDesc::is_oop(obj), "Must be a valid oop"); 1690 if (_bitmap->par_mark(obj)) { 1691 _queue->push(ShenandoahMarkTask(obj)); 1692 } 1693 } 1694 } 1695 public: 1696 ShenandoahObjectIterateParScanClosure(MarkBitMap* bitmap, ShenandoahObjToScanQueue* q) : 1697 _bitmap(bitmap), _queue(q), _heap(ShenandoahHeap::heap()), 1698 _marking_context(_heap->marking_context()) {} 1699 void do_oop(oop* p) { do_oop_work(p); } 1700 void do_oop(narrowOop* p) { do_oop_work(p); } 1701 }; 1702 1703 // Object iterator for parallel heap iteraion. 1704 // The root scanning phase happenes in construction as a preparation of 1705 // parallel marking queues. 1706 // Every worker processes it's own marking queue. work-stealing is used 1707 // to balance workload. 1708 class ShenandoahParallelObjectIterator : public ParallelObjectIteratorImpl { 1709 private: 1710 uint _num_workers; 1711 bool _init_ready; 1712 MarkBitMap* _aux_bit_map; 1713 ShenandoahHeap* _heap; 1714 ShenandoahScanObjectStack _roots_stack; // global roots stack 1715 ShenandoahObjToScanQueueSet* _task_queues; 1716 public: 1717 ShenandoahParallelObjectIterator(uint num_workers, MarkBitMap* bitmap) : 1718 _num_workers(num_workers), 1719 _init_ready(false), 1720 _aux_bit_map(bitmap), 1721 _heap(ShenandoahHeap::heap()) { 1722 // Initialize bitmap 1723 _init_ready = _heap->prepare_aux_bitmap_for_iteration(); 1724 if (!_init_ready) { 1725 return; 1726 } 1727 1728 ObjectIterateScanRootClosure oops(_aux_bit_map, &_roots_stack); 1729 _heap->scan_roots_for_iteration(&_roots_stack, &oops); 1730 1731 _init_ready = prepare_worker_queues(); 1732 } 1733 1734 ~ShenandoahParallelObjectIterator() { 1735 // Reclaim bitmap 1736 _heap->reclaim_aux_bitmap_for_iteration(); 1737 // Reclaim queue for workers 1738 if (_task_queues!= nullptr) { 1739 for (uint i = 0; i < _num_workers; ++i) { 1740 ShenandoahObjToScanQueue* q = _task_queues->queue(i); 1741 if (q != nullptr) { 1742 delete q; 1743 _task_queues->register_queue(i, nullptr); 1744 } 1745 } 1746 delete _task_queues; 1747 _task_queues = nullptr; 1748 } 1749 } 1750 1751 virtual void object_iterate(ObjectClosure* cl, uint worker_id) { 1752 if (_init_ready) { 1753 object_iterate_parallel(cl, worker_id, _task_queues); 1754 } 1755 } 1756 1757 private: 1758 // Divide global root_stack into worker queues 1759 bool prepare_worker_queues() { 1760 _task_queues = new ShenandoahObjToScanQueueSet((int) _num_workers); 1761 // Initialize queues for every workers 1762 for (uint i = 0; i < _num_workers; ++i) { 1763 ShenandoahObjToScanQueue* task_queue = new ShenandoahObjToScanQueue(); 1764 _task_queues->register_queue(i, task_queue); 1765 } 1766 // Divide roots among the workers. Assume that object referencing distribution 1767 // is related with root kind, use round-robin to make every worker have same chance 1768 // to process every kind of roots 1769 size_t roots_num = _roots_stack.size(); 1770 if (roots_num == 0) { 1771 // No work to do 1772 return false; 1773 } 1774 1775 for (uint j = 0; j < roots_num; j++) { 1776 uint stack_id = j % _num_workers; 1777 oop obj = _roots_stack.pop(); 1778 _task_queues->queue(stack_id)->push(ShenandoahMarkTask(obj)); 1779 } 1780 return true; 1781 } 1782 1783 void object_iterate_parallel(ObjectClosure* cl, 1784 uint worker_id, 1785 ShenandoahObjToScanQueueSet* queue_set) { 1786 assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints"); 1787 assert(queue_set != nullptr, "task queue must not be null"); 1788 1789 ShenandoahObjToScanQueue* q = queue_set->queue(worker_id); 1790 assert(q != nullptr, "object iterate queue must not be null"); 1791 1792 ShenandoahMarkTask t; 1793 ShenandoahObjectIterateParScanClosure oops(_aux_bit_map, q); 1794 1795 // Work through the queue to traverse heap. 1796 // Steal when there is no task in queue. 1797 while (q->pop(t) || queue_set->steal(worker_id, t)) { 1798 oop obj = t.obj(); 1799 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1800 cl->do_object(obj); 1801 obj->oop_iterate(&oops); 1802 } 1803 assert(q->is_empty(), "should be empty"); 1804 } 1805 }; 1806 1807 ParallelObjectIteratorImpl* ShenandoahHeap::parallel_object_iterator(uint workers) { 1808 return new ShenandoahParallelObjectIterator(workers, &_aux_bit_map); 1809 } 1810 1811 // Keep alive an object that was loaded with AS_NO_KEEPALIVE. 1812 void ShenandoahHeap::keep_alive(oop obj) { 1813 if (is_concurrent_mark_in_progress() && (obj != nullptr)) { 1814 ShenandoahBarrierSet::barrier_set()->enqueue(obj); 1815 } 1816 } 1817 1818 void ShenandoahHeap::heap_region_iterate(ShenandoahHeapRegionClosure* blk) const { 1819 for (size_t i = 0; i < num_regions(); i++) { 1820 ShenandoahHeapRegion* current = get_region(i); 1821 blk->heap_region_do(current); 1822 } 1823 } 1824 1825 class ShenandoahParallelHeapRegionTask : public WorkerTask { 1826 private: 1827 ShenandoahHeap* const _heap; 1828 ShenandoahHeapRegionClosure* const _blk; 1829 size_t const _stride; 1830 1831 shenandoah_padding(0); 1832 volatile size_t _index; 1833 shenandoah_padding(1); 1834 1835 public: 1836 ShenandoahParallelHeapRegionTask(ShenandoahHeapRegionClosure* blk, size_t stride) : 1837 WorkerTask("Shenandoah Parallel Region Operation"), 1838 _heap(ShenandoahHeap::heap()), _blk(blk), _stride(stride), _index(0) {} 1839 1840 void work(uint worker_id) { 1841 ShenandoahParallelWorkerSession worker_session(worker_id); 1842 size_t stride = _stride; 1843 1844 size_t max = _heap->num_regions(); 1845 while (Atomic::load(&_index) < max) { 1846 size_t cur = Atomic::fetch_then_add(&_index, stride, memory_order_relaxed); 1847 size_t start = cur; 1848 size_t end = MIN2(cur + stride, max); 1849 if (start >= max) break; 1850 1851 for (size_t i = cur; i < end; i++) { 1852 ShenandoahHeapRegion* current = _heap->get_region(i); 1853 _blk->heap_region_do(current); 1854 } 1855 } 1856 } 1857 }; 1858 1859 void ShenandoahHeap::parallel_heap_region_iterate(ShenandoahHeapRegionClosure* blk) const { 1860 assert(blk->is_thread_safe(), "Only thread-safe closures here"); 1861 const uint active_workers = workers()->active_workers(); 1862 const size_t n_regions = num_regions(); 1863 size_t stride = ShenandoahParallelRegionStride; 1864 if (stride == 0 && active_workers > 1) { 1865 // Automatically derive the stride to balance the work between threads 1866 // evenly. Do not try to split work if below the reasonable threshold. 1867 constexpr size_t threshold = 4096; 1868 stride = n_regions <= threshold ? 1869 threshold : 1870 (n_regions + active_workers - 1) / active_workers; 1871 } 1872 1873 if (n_regions > stride && active_workers > 1) { 1874 ShenandoahParallelHeapRegionTask task(blk, stride); 1875 workers()->run_task(&task); 1876 } else { 1877 heap_region_iterate(blk); 1878 } 1879 } 1880 1881 class ShenandoahRendezvousClosure : public HandshakeClosure { 1882 public: 1883 inline ShenandoahRendezvousClosure(const char* name) : HandshakeClosure(name) {} 1884 inline void do_thread(Thread* thread) {} 1885 }; 1886 1887 void ShenandoahHeap::rendezvous_threads(const char* name) { 1888 ShenandoahRendezvousClosure cl(name); 1889 Handshake::execute(&cl); 1890 } 1891 1892 void ShenandoahHeap::recycle_trash() { 1893 free_set()->recycle_trash(); 1894 } 1895 1896 void ShenandoahHeap::do_class_unloading() { 1897 _unloader.unload(); 1898 if (mode()->is_generational()) { 1899 old_generation()->set_parsable(false); 1900 } 1901 } 1902 1903 void ShenandoahHeap::stw_weak_refs(bool full_gc) { 1904 // Weak refs processing 1905 ShenandoahPhaseTimings::Phase phase = full_gc ? ShenandoahPhaseTimings::full_gc_weakrefs 1906 : ShenandoahPhaseTimings::degen_gc_weakrefs; 1907 ShenandoahTimingsTracker t(phase); 1908 ShenandoahGCWorkerPhase worker_phase(phase); 1909 shenandoah_assert_generations_reconciled(); 1910 gc_generation()->ref_processor()->process_references(phase, workers(), false /* concurrent */); 1911 } 1912 1913 void ShenandoahHeap::prepare_update_heap_references(bool concurrent) { 1914 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "must be at safepoint"); 1915 1916 // Evacuation is over, no GCLABs are needed anymore. GCLABs are under URWM, so we need to 1917 // make them parsable for update code to work correctly. Plus, we can compute new sizes 1918 // for future GCLABs here. 1919 if (UseTLAB) { 1920 ShenandoahGCPhase phase(concurrent ? 1921 ShenandoahPhaseTimings::init_update_refs_manage_gclabs : 1922 ShenandoahPhaseTimings::degen_gc_init_update_refs_manage_gclabs); 1923 gclabs_retire(ResizeTLAB); 1924 } 1925 1926 _update_refs_iterator.reset(); 1927 } 1928 1929 void ShenandoahHeap::propagate_gc_state_to_java_threads() { 1930 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Must be at Shenandoah safepoint"); 1931 if (_gc_state_changed) { 1932 _gc_state_changed = false; 1933 char state = gc_state(); 1934 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1935 ShenandoahThreadLocalData::set_gc_state(t, state); 1936 } 1937 } 1938 } 1939 1940 void ShenandoahHeap::set_gc_state(uint mask, bool value) { 1941 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Must be at Shenandoah safepoint"); 1942 _gc_state.set_cond(mask, value); 1943 _gc_state_changed = true; 1944 } 1945 1946 void ShenandoahHeap::set_concurrent_young_mark_in_progress(bool in_progress) { 1947 uint mask; 1948 assert(!has_forwarded_objects(), "Young marking is not concurrent with evacuation"); 1949 if (!in_progress && is_concurrent_old_mark_in_progress()) { 1950 assert(mode()->is_generational(), "Only generational GC has old marking"); 1951 assert(_gc_state.is_set(MARKING), "concurrent_old_marking_in_progress implies MARKING"); 1952 // If old-marking is in progress when we turn off YOUNG_MARKING, leave MARKING (and OLD_MARKING) on 1953 mask = YOUNG_MARKING; 1954 } else { 1955 mask = MARKING | YOUNG_MARKING; 1956 } 1957 set_gc_state(mask, in_progress); 1958 manage_satb_barrier(in_progress); 1959 } 1960 1961 void ShenandoahHeap::set_concurrent_old_mark_in_progress(bool in_progress) { 1962 #ifdef ASSERT 1963 // has_forwarded_objects() iff UPDATEREFS or EVACUATION 1964 bool has_forwarded = has_forwarded_objects(); 1965 bool updating_or_evacuating = _gc_state.is_set(UPDATEREFS | EVACUATION); 1966 bool evacuating = _gc_state.is_set(EVACUATION); 1967 assert ((has_forwarded == updating_or_evacuating) || (evacuating && !has_forwarded && collection_set()->is_empty()), 1968 "Updating or evacuating iff has forwarded objects, or if evacuation phase is promoting in place without forwarding"); 1969 #endif 1970 if (!in_progress && is_concurrent_young_mark_in_progress()) { 1971 // If young-marking is in progress when we turn off OLD_MARKING, leave MARKING (and YOUNG_MARKING) on 1972 assert(_gc_state.is_set(MARKING), "concurrent_young_marking_in_progress implies MARKING"); 1973 set_gc_state(OLD_MARKING, in_progress); 1974 } else { 1975 set_gc_state(MARKING | OLD_MARKING, in_progress); 1976 } 1977 manage_satb_barrier(in_progress); 1978 } 1979 1980 bool ShenandoahHeap::is_prepare_for_old_mark_in_progress() const { 1981 return old_generation()->is_preparing_for_mark(); 1982 } 1983 1984 void ShenandoahHeap::manage_satb_barrier(bool active) { 1985 if (is_concurrent_mark_in_progress()) { 1986 // Ignore request to deactivate barrier while concurrent mark is in progress. 1987 // Do not attempt to re-activate the barrier if it is already active. 1988 if (active && !ShenandoahBarrierSet::satb_mark_queue_set().is_active()) { 1989 ShenandoahBarrierSet::satb_mark_queue_set().set_active_all_threads(active, !active); 1990 } 1991 } else { 1992 // No concurrent marking is in progress so honor request to deactivate, 1993 // but only if the barrier is already active. 1994 if (!active && ShenandoahBarrierSet::satb_mark_queue_set().is_active()) { 1995 ShenandoahBarrierSet::satb_mark_queue_set().set_active_all_threads(active, !active); 1996 } 1997 } 1998 } 1999 2000 void ShenandoahHeap::set_evacuation_in_progress(bool in_progress) { 2001 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Only call this at safepoint"); 2002 set_gc_state(EVACUATION, in_progress); 2003 } 2004 2005 void ShenandoahHeap::set_concurrent_strong_root_in_progress(bool in_progress) { 2006 if (in_progress) { 2007 _concurrent_strong_root_in_progress.set(); 2008 } else { 2009 _concurrent_strong_root_in_progress.unset(); 2010 } 2011 } 2012 2013 void ShenandoahHeap::set_concurrent_weak_root_in_progress(bool cond) { 2014 set_gc_state(WEAK_ROOTS, cond); 2015 } 2016 2017 GCTracer* ShenandoahHeap::tracer() { 2018 return shenandoah_policy()->tracer(); 2019 } 2020 2021 size_t ShenandoahHeap::tlab_used(Thread* thread) const { 2022 return _free_set->used(); 2023 } 2024 2025 bool ShenandoahHeap::try_cancel_gc() { 2026 jbyte prev = _cancelled_gc.cmpxchg(CANCELLED, CANCELLABLE); 2027 return prev == CANCELLABLE; 2028 } 2029 2030 void ShenandoahHeap::cancel_concurrent_mark() { 2031 if (mode()->is_generational()) { 2032 young_generation()->cancel_marking(); 2033 old_generation()->cancel_marking(); 2034 } 2035 2036 global_generation()->cancel_marking(); 2037 2038 ShenandoahBarrierSet::satb_mark_queue_set().abandon_partial_marking(); 2039 } 2040 2041 void ShenandoahHeap::cancel_gc(GCCause::Cause cause) { 2042 if (try_cancel_gc()) { 2043 FormatBuffer<> msg("Cancelling GC: %s", GCCause::to_string(cause)); 2044 log_info(gc)("%s", msg.buffer()); 2045 Events::log(Thread::current(), "%s", msg.buffer()); 2046 _cancel_requested_time = os::elapsedTime(); 2047 } 2048 } 2049 2050 uint ShenandoahHeap::max_workers() { 2051 return _max_workers; 2052 } 2053 2054 void ShenandoahHeap::stop() { 2055 // The shutdown sequence should be able to terminate when GC is running. 2056 2057 // Step 0. Notify policy to disable event recording and prevent visiting gc threads during shutdown 2058 _shenandoah_policy->record_shutdown(); 2059 2060 // Step 1. Notify control thread that we are in shutdown. 2061 // Note that we cannot do that with stop(), because stop() is blocking and waits for the actual shutdown. 2062 // Doing stop() here would wait for the normal GC cycle to complete, never falling through to cancel below. 2063 control_thread()->prepare_for_graceful_shutdown(); 2064 2065 // Step 2. Notify GC workers that we are cancelling GC. 2066 cancel_gc(GCCause::_shenandoah_stop_vm); 2067 2068 // Step 3. Wait until GC worker exits normally. 2069 control_thread()->stop(); 2070 2071 // Stop 4. Shutdown uncommit thread. 2072 if (_uncommit_thread != nullptr) { 2073 _uncommit_thread->stop(); 2074 } 2075 } 2076 2077 void ShenandoahHeap::stw_unload_classes(bool full_gc) { 2078 if (!unload_classes()) return; 2079 ClassUnloadingContext ctx(_workers->active_workers(), 2080 true /* unregister_nmethods_during_purge */, 2081 false /* lock_nmethod_free_separately */); 2082 2083 // Unload classes and purge SystemDictionary. 2084 { 2085 ShenandoahPhaseTimings::Phase phase = full_gc ? 2086 ShenandoahPhaseTimings::full_gc_purge_class_unload : 2087 ShenandoahPhaseTimings::degen_gc_purge_class_unload; 2088 ShenandoahIsAliveSelector is_alive; 2089 { 2090 CodeCache::UnlinkingScope scope(is_alive.is_alive_closure()); 2091 ShenandoahGCPhase gc_phase(phase); 2092 ShenandoahGCWorkerPhase worker_phase(phase); 2093 bool unloading_occurred = SystemDictionary::do_unloading(gc_timer()); 2094 2095 uint num_workers = _workers->active_workers(); 2096 ShenandoahClassUnloadingTask unlink_task(phase, num_workers, unloading_occurred); 2097 _workers->run_task(&unlink_task); 2098 } 2099 // Release unloaded nmethods's memory. 2100 ClassUnloadingContext::context()->purge_and_free_nmethods(); 2101 } 2102 2103 { 2104 ShenandoahGCPhase phase(full_gc ? 2105 ShenandoahPhaseTimings::full_gc_purge_cldg : 2106 ShenandoahPhaseTimings::degen_gc_purge_cldg); 2107 ClassLoaderDataGraph::purge(true /* at_safepoint */); 2108 } 2109 // Resize and verify metaspace 2110 MetaspaceGC::compute_new_size(); 2111 DEBUG_ONLY(MetaspaceUtils::verify();) 2112 } 2113 2114 // Weak roots are either pre-evacuated (final mark) or updated (final updaterefs), 2115 // so they should not have forwarded oops. 2116 // However, we do need to "null" dead oops in the roots, if can not be done 2117 // in concurrent cycles. 2118 void ShenandoahHeap::stw_process_weak_roots(bool full_gc) { 2119 uint num_workers = _workers->active_workers(); 2120 ShenandoahPhaseTimings::Phase timing_phase = full_gc ? 2121 ShenandoahPhaseTimings::full_gc_purge_weak_par : 2122 ShenandoahPhaseTimings::degen_gc_purge_weak_par; 2123 ShenandoahGCPhase phase(timing_phase); 2124 ShenandoahGCWorkerPhase worker_phase(timing_phase); 2125 // Cleanup weak roots 2126 if (has_forwarded_objects()) { 2127 ShenandoahForwardedIsAliveClosure is_alive; 2128 ShenandoahNonConcUpdateRefsClosure keep_alive; 2129 ShenandoahParallelWeakRootsCleaningTask<ShenandoahForwardedIsAliveClosure, ShenandoahNonConcUpdateRefsClosure> 2130 cleaning_task(timing_phase, &is_alive, &keep_alive, num_workers); 2131 _workers->run_task(&cleaning_task); 2132 } else { 2133 ShenandoahIsAliveClosure is_alive; 2134 #ifdef ASSERT 2135 ShenandoahAssertNotForwardedClosure verify_cl; 2136 ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, ShenandoahAssertNotForwardedClosure> 2137 cleaning_task(timing_phase, &is_alive, &verify_cl, num_workers); 2138 #else 2139 ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, DoNothingClosure> 2140 cleaning_task(timing_phase, &is_alive, &do_nothing_cl, num_workers); 2141 #endif 2142 _workers->run_task(&cleaning_task); 2143 } 2144 } 2145 2146 void ShenandoahHeap::parallel_cleaning(bool full_gc) { 2147 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 2148 assert(is_stw_gc_in_progress(), "Only for Degenerated and Full GC"); 2149 ShenandoahGCPhase phase(full_gc ? 2150 ShenandoahPhaseTimings::full_gc_purge : 2151 ShenandoahPhaseTimings::degen_gc_purge); 2152 stw_weak_refs(full_gc); 2153 stw_process_weak_roots(full_gc); 2154 stw_unload_classes(full_gc); 2155 } 2156 2157 void ShenandoahHeap::set_has_forwarded_objects(bool cond) { 2158 set_gc_state(HAS_FORWARDED, cond); 2159 } 2160 2161 void ShenandoahHeap::set_unload_classes(bool uc) { 2162 _unload_classes.set_cond(uc); 2163 } 2164 2165 bool ShenandoahHeap::unload_classes() const { 2166 return _unload_classes.is_set(); 2167 } 2168 2169 address ShenandoahHeap::in_cset_fast_test_addr() { 2170 ShenandoahHeap* heap = ShenandoahHeap::heap(); 2171 assert(heap->collection_set() != nullptr, "Sanity"); 2172 return (address) heap->collection_set()->biased_map_address(); 2173 } 2174 2175 void ShenandoahHeap::reset_bytes_allocated_since_gc_start() { 2176 if (mode()->is_generational()) { 2177 young_generation()->reset_bytes_allocated_since_gc_start(); 2178 old_generation()->reset_bytes_allocated_since_gc_start(); 2179 } 2180 2181 global_generation()->reset_bytes_allocated_since_gc_start(); 2182 } 2183 2184 void ShenandoahHeap::set_degenerated_gc_in_progress(bool in_progress) { 2185 _degenerated_gc_in_progress.set_cond(in_progress); 2186 } 2187 2188 void ShenandoahHeap::set_full_gc_in_progress(bool in_progress) { 2189 _full_gc_in_progress.set_cond(in_progress); 2190 } 2191 2192 void ShenandoahHeap::set_full_gc_move_in_progress(bool in_progress) { 2193 assert (is_full_gc_in_progress(), "should be"); 2194 _full_gc_move_in_progress.set_cond(in_progress); 2195 } 2196 2197 void ShenandoahHeap::set_update_refs_in_progress(bool in_progress) { 2198 set_gc_state(UPDATEREFS, in_progress); 2199 } 2200 2201 void ShenandoahHeap::register_nmethod(nmethod* nm) { 2202 ShenandoahCodeRoots::register_nmethod(nm); 2203 } 2204 2205 void ShenandoahHeap::unregister_nmethod(nmethod* nm) { 2206 ShenandoahCodeRoots::unregister_nmethod(nm); 2207 } 2208 2209 void ShenandoahHeap::pin_object(JavaThread* thr, oop o) { 2210 heap_region_containing(o)->record_pin(); 2211 } 2212 2213 void ShenandoahHeap::unpin_object(JavaThread* thr, oop o) { 2214 ShenandoahHeapRegion* r = heap_region_containing(o); 2215 assert(r != nullptr, "Sanity"); 2216 assert(r->pin_count() > 0, "Region " SIZE_FORMAT " should have non-zero pins", r->index()); 2217 r->record_unpin(); 2218 } 2219 2220 void ShenandoahHeap::sync_pinned_region_status() { 2221 ShenandoahHeapLocker locker(lock()); 2222 2223 for (size_t i = 0; i < num_regions(); i++) { 2224 ShenandoahHeapRegion *r = get_region(i); 2225 if (r->is_active()) { 2226 if (r->is_pinned()) { 2227 if (r->pin_count() == 0) { 2228 r->make_unpinned(); 2229 } 2230 } else { 2231 if (r->pin_count() > 0) { 2232 r->make_pinned(); 2233 } 2234 } 2235 } 2236 } 2237 2238 assert_pinned_region_status(); 2239 } 2240 2241 #ifdef ASSERT 2242 void ShenandoahHeap::assert_pinned_region_status() { 2243 for (size_t i = 0; i < num_regions(); i++) { 2244 ShenandoahHeapRegion* r = get_region(i); 2245 shenandoah_assert_generations_reconciled(); 2246 if (gc_generation()->contains(r)) { 2247 assert((r->is_pinned() && r->pin_count() > 0) || (!r->is_pinned() && r->pin_count() == 0), 2248 "Region " SIZE_FORMAT " pinning status is inconsistent", i); 2249 } 2250 } 2251 } 2252 #endif 2253 2254 ConcurrentGCTimer* ShenandoahHeap::gc_timer() const { 2255 return _gc_timer; 2256 } 2257 2258 void ShenandoahHeap::prepare_concurrent_roots() { 2259 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 2260 assert(!is_stw_gc_in_progress(), "Only concurrent GC"); 2261 set_concurrent_strong_root_in_progress(!collection_set()->is_empty()); 2262 set_concurrent_weak_root_in_progress(true); 2263 if (unload_classes()) { 2264 _unloader.prepare(); 2265 } 2266 } 2267 2268 void ShenandoahHeap::finish_concurrent_roots() { 2269 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 2270 assert(!is_stw_gc_in_progress(), "Only concurrent GC"); 2271 if (unload_classes()) { 2272 _unloader.finish(); 2273 } 2274 } 2275 2276 #ifdef ASSERT 2277 void ShenandoahHeap::assert_gc_workers(uint nworkers) { 2278 assert(nworkers > 0 && nworkers <= max_workers(), "Sanity"); 2279 2280 if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) { 2281 // Use ParallelGCThreads inside safepoints 2282 assert(nworkers == ParallelGCThreads, "Use ParallelGCThreads (%u) within safepoint, not %u", 2283 ParallelGCThreads, nworkers); 2284 } else { 2285 // Use ConcGCThreads outside safepoints 2286 assert(nworkers == ConcGCThreads, "Use ConcGCThreads (%u) outside safepoints, %u", 2287 ConcGCThreads, nworkers); 2288 } 2289 } 2290 #endif 2291 2292 ShenandoahVerifier* ShenandoahHeap::verifier() { 2293 guarantee(ShenandoahVerify, "Should be enabled"); 2294 assert (_verifier != nullptr, "sanity"); 2295 return _verifier; 2296 } 2297 2298 template<bool CONCURRENT> 2299 class ShenandoahUpdateHeapRefsTask : public WorkerTask { 2300 private: 2301 ShenandoahHeap* _heap; 2302 ShenandoahRegionIterator* _regions; 2303 public: 2304 explicit ShenandoahUpdateHeapRefsTask(ShenandoahRegionIterator* regions) : 2305 WorkerTask("Shenandoah Update References"), 2306 _heap(ShenandoahHeap::heap()), 2307 _regions(regions) { 2308 } 2309 2310 void work(uint worker_id) { 2311 if (CONCURRENT) { 2312 ShenandoahConcurrentWorkerSession worker_session(worker_id); 2313 ShenandoahSuspendibleThreadSetJoiner stsj; 2314 do_work<ShenandoahConcUpdateRefsClosure>(worker_id); 2315 } else { 2316 ShenandoahParallelWorkerSession worker_session(worker_id); 2317 do_work<ShenandoahNonConcUpdateRefsClosure>(worker_id); 2318 } 2319 } 2320 2321 private: 2322 template<class T> 2323 void do_work(uint worker_id) { 2324 if (CONCURRENT && (worker_id == 0)) { 2325 // We ask the first worker to replenish the Mutator free set by moving regions previously reserved to hold the 2326 // results of evacuation. These reserves are no longer necessary because evacuation has completed. 2327 size_t cset_regions = _heap->collection_set()->count(); 2328 2329 // Now that evacuation is done, we can reassign any regions that had been reserved to hold the results of evacuation 2330 // to the mutator free set. At the end of GC, we will have cset_regions newly evacuated fully empty regions from 2331 // which we will be able to replenish the Collector free set and the OldCollector free set in preparation for the 2332 // next GC cycle. 2333 _heap->free_set()->move_regions_from_collector_to_mutator(cset_regions); 2334 } 2335 // If !CONCURRENT, there's no value in expanding Mutator free set 2336 T cl; 2337 ShenandoahHeapRegion* r = _regions->next(); 2338 while (r != nullptr) { 2339 HeapWord* update_watermark = r->get_update_watermark(); 2340 assert (update_watermark >= r->bottom(), "sanity"); 2341 if (r->is_active() && !r->is_cset()) { 2342 _heap->marked_object_oop_iterate(r, &cl, update_watermark); 2343 if (ShenandoahPacing) { 2344 _heap->pacer()->report_updaterefs(pointer_delta(update_watermark, r->bottom())); 2345 } 2346 } 2347 if (_heap->check_cancelled_gc_and_yield(CONCURRENT)) { 2348 return; 2349 } 2350 r = _regions->next(); 2351 } 2352 } 2353 }; 2354 2355 void ShenandoahHeap::update_heap_references(bool concurrent) { 2356 assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC"); 2357 2358 if (concurrent) { 2359 ShenandoahUpdateHeapRefsTask<true> task(&_update_refs_iterator); 2360 workers()->run_task(&task); 2361 } else { 2362 ShenandoahUpdateHeapRefsTask<false> task(&_update_refs_iterator); 2363 workers()->run_task(&task); 2364 } 2365 } 2366 2367 void ShenandoahHeap::update_heap_region_states(bool concurrent) { 2368 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 2369 assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC"); 2370 2371 { 2372 ShenandoahGCPhase phase(concurrent ? 2373 ShenandoahPhaseTimings::final_update_refs_update_region_states : 2374 ShenandoahPhaseTimings::degen_gc_final_update_refs_update_region_states); 2375 2376 final_update_refs_update_region_states(); 2377 2378 assert_pinned_region_status(); 2379 } 2380 2381 { 2382 ShenandoahGCPhase phase(concurrent ? 2383 ShenandoahPhaseTimings::final_update_refs_trash_cset : 2384 ShenandoahPhaseTimings::degen_gc_final_update_refs_trash_cset); 2385 trash_cset_regions(); 2386 } 2387 } 2388 2389 void ShenandoahHeap::final_update_refs_update_region_states() { 2390 ShenandoahSynchronizePinnedRegionStates cl; 2391 parallel_heap_region_iterate(&cl); 2392 } 2393 2394 void ShenandoahHeap::rebuild_free_set(bool concurrent) { 2395 ShenandoahGCPhase phase(concurrent ? 2396 ShenandoahPhaseTimings::final_update_refs_rebuild_freeset : 2397 ShenandoahPhaseTimings::degen_gc_final_update_refs_rebuild_freeset); 2398 ShenandoahHeapLocker locker(lock()); 2399 size_t young_cset_regions, old_cset_regions; 2400 size_t first_old_region, last_old_region, old_region_count; 2401 _free_set->prepare_to_rebuild(young_cset_regions, old_cset_regions, first_old_region, last_old_region, old_region_count); 2402 // If there are no old regions, first_old_region will be greater than last_old_region 2403 assert((first_old_region > last_old_region) || 2404 ((last_old_region + 1 - first_old_region >= old_region_count) && 2405 get_region(first_old_region)->is_old() && get_region(last_old_region)->is_old()), 2406 "sanity: old_region_count: " SIZE_FORMAT ", first_old_region: " SIZE_FORMAT ", last_old_region: " SIZE_FORMAT, 2407 old_region_count, first_old_region, last_old_region); 2408 2409 if (mode()->is_generational()) { 2410 #ifdef ASSERT 2411 if (ShenandoahVerify) { 2412 verifier()->verify_before_rebuilding_free_set(); 2413 } 2414 #endif 2415 2416 // The computation of bytes_of_allocation_runway_before_gc_trigger is quite conservative so consider all of this 2417 // available for transfer to old. Note that transfer of humongous regions does not impact available. 2418 ShenandoahGenerationalHeap* gen_heap = ShenandoahGenerationalHeap::heap(); 2419 size_t allocation_runway = gen_heap->young_generation()->heuristics()->bytes_of_allocation_runway_before_gc_trigger(young_cset_regions); 2420 gen_heap->compute_old_generation_balance(allocation_runway, old_cset_regions); 2421 2422 // Total old_available may have been expanded to hold anticipated promotions. We trigger if the fragmented available 2423 // memory represents more than 16 regions worth of data. Note that fragmentation may increase when we promote regular 2424 // regions in place when many of these regular regions have an abundant amount of available memory within them. Fragmentation 2425 // will decrease as promote-by-copy consumes the available memory within these partially consumed regions. 2426 // 2427 // We consider old-gen to have excessive fragmentation if more than 12.5% of old-gen is free memory that resides 2428 // within partially consumed regions of memory. 2429 } 2430 // Rebuild free set based on adjusted generation sizes. 2431 _free_set->finish_rebuild(young_cset_regions, old_cset_regions, old_region_count); 2432 2433 if (mode()->is_generational()) { 2434 ShenandoahGenerationalHeap* gen_heap = ShenandoahGenerationalHeap::heap(); 2435 ShenandoahOldGeneration* old_gen = gen_heap->old_generation(); 2436 old_gen->heuristics()->evaluate_triggers(first_old_region, last_old_region, old_region_count, num_regions()); 2437 } 2438 } 2439 2440 void ShenandoahHeap::print_extended_on(outputStream *st) const { 2441 print_on(st); 2442 st->cr(); 2443 print_heap_regions_on(st); 2444 } 2445 2446 bool ShenandoahHeap::is_bitmap_slice_committed(ShenandoahHeapRegion* r, bool skip_self) { 2447 size_t slice = r->index() / _bitmap_regions_per_slice; 2448 2449 size_t regions_from = _bitmap_regions_per_slice * slice; 2450 size_t regions_to = MIN2(num_regions(), _bitmap_regions_per_slice * (slice + 1)); 2451 for (size_t g = regions_from; g < regions_to; g++) { 2452 assert (g / _bitmap_regions_per_slice == slice, "same slice"); 2453 if (skip_self && g == r->index()) continue; 2454 if (get_region(g)->is_committed()) { 2455 return true; 2456 } 2457 } 2458 return false; 2459 } 2460 2461 bool ShenandoahHeap::commit_bitmap_slice(ShenandoahHeapRegion* r) { 2462 shenandoah_assert_heaplocked(); 2463 2464 // Bitmaps in special regions do not need commits 2465 if (_bitmap_region_special) { 2466 return true; 2467 } 2468 2469 if (is_bitmap_slice_committed(r, true)) { 2470 // Some other region from the group is already committed, meaning the bitmap 2471 // slice is already committed, we exit right away. 2472 return true; 2473 } 2474 2475 // Commit the bitmap slice: 2476 size_t slice = r->index() / _bitmap_regions_per_slice; 2477 size_t off = _bitmap_bytes_per_slice * slice; 2478 size_t len = _bitmap_bytes_per_slice; 2479 char* start = (char*) _bitmap_region.start() + off; 2480 2481 if (!os::commit_memory(start, len, false)) { 2482 return false; 2483 } 2484 2485 if (AlwaysPreTouch) { 2486 os::pretouch_memory(start, start + len, _pretouch_bitmap_page_size); 2487 } 2488 2489 return true; 2490 } 2491 2492 bool ShenandoahHeap::uncommit_bitmap_slice(ShenandoahHeapRegion *r) { 2493 shenandoah_assert_heaplocked(); 2494 2495 // Bitmaps in special regions do not need uncommits 2496 if (_bitmap_region_special) { 2497 return true; 2498 } 2499 2500 if (is_bitmap_slice_committed(r, true)) { 2501 // Some other region from the group is still committed, meaning the bitmap 2502 // slice should stay committed, exit right away. 2503 return true; 2504 } 2505 2506 // Uncommit the bitmap slice: 2507 size_t slice = r->index() / _bitmap_regions_per_slice; 2508 size_t off = _bitmap_bytes_per_slice * slice; 2509 size_t len = _bitmap_bytes_per_slice; 2510 if (!os::uncommit_memory((char*)_bitmap_region.start() + off, len)) { 2511 return false; 2512 } 2513 return true; 2514 } 2515 2516 void ShenandoahHeap::forbid_uncommit() { 2517 if (_uncommit_thread != nullptr) { 2518 _uncommit_thread->forbid_uncommit(); 2519 } 2520 } 2521 2522 void ShenandoahHeap::allow_uncommit() { 2523 if (_uncommit_thread != nullptr) { 2524 _uncommit_thread->allow_uncommit(); 2525 } 2526 } 2527 2528 #ifdef ASSERT 2529 bool ShenandoahHeap::is_uncommit_in_progress() { 2530 if (_uncommit_thread != nullptr) { 2531 return _uncommit_thread->is_uncommit_in_progress(); 2532 } 2533 return false; 2534 } 2535 #endif 2536 2537 void ShenandoahHeap::safepoint_synchronize_begin() { 2538 StackWatermarkSet::safepoint_synchronize_begin(); 2539 SuspendibleThreadSet::synchronize(); 2540 } 2541 2542 void ShenandoahHeap::safepoint_synchronize_end() { 2543 SuspendibleThreadSet::desynchronize(); 2544 } 2545 2546 void ShenandoahHeap::try_inject_alloc_failure() { 2547 if (ShenandoahAllocFailureALot && !cancelled_gc() && ((os::random() % 1000) > 950)) { 2548 _inject_alloc_failure.set(); 2549 os::naked_short_sleep(1); 2550 if (cancelled_gc()) { 2551 log_info(gc)("Allocation failure was successfully injected"); 2552 } 2553 } 2554 } 2555 2556 bool ShenandoahHeap::should_inject_alloc_failure() { 2557 return _inject_alloc_failure.is_set() && _inject_alloc_failure.try_unset(); 2558 } 2559 2560 void ShenandoahHeap::initialize_serviceability() { 2561 _memory_pool = new ShenandoahMemoryPool(this); 2562 _cycle_memory_manager.add_pool(_memory_pool); 2563 _stw_memory_manager.add_pool(_memory_pool); 2564 } 2565 2566 GrowableArray<GCMemoryManager*> ShenandoahHeap::memory_managers() { 2567 GrowableArray<GCMemoryManager*> memory_managers(2); 2568 memory_managers.append(&_cycle_memory_manager); 2569 memory_managers.append(&_stw_memory_manager); 2570 return memory_managers; 2571 } 2572 2573 GrowableArray<MemoryPool*> ShenandoahHeap::memory_pools() { 2574 GrowableArray<MemoryPool*> memory_pools(1); 2575 memory_pools.append(_memory_pool); 2576 return memory_pools; 2577 } 2578 2579 MemoryUsage ShenandoahHeap::memory_usage() { 2580 return MemoryUsage(_initial_size, used(), committed(), max_capacity()); 2581 } 2582 2583 ShenandoahRegionIterator::ShenandoahRegionIterator() : 2584 _heap(ShenandoahHeap::heap()), 2585 _index(0) {} 2586 2587 ShenandoahRegionIterator::ShenandoahRegionIterator(ShenandoahHeap* heap) : 2588 _heap(heap), 2589 _index(0) {} 2590 2591 void ShenandoahRegionIterator::reset() { 2592 _index = 0; 2593 } 2594 2595 bool ShenandoahRegionIterator::has_next() const { 2596 return _index < _heap->num_regions(); 2597 } 2598 2599 char ShenandoahHeap::gc_state() const { 2600 return _gc_state.raw_value(); 2601 } 2602 2603 ShenandoahLiveData* ShenandoahHeap::get_liveness_cache(uint worker_id) { 2604 #ifdef ASSERT 2605 assert(_liveness_cache != nullptr, "sanity"); 2606 assert(worker_id < _max_workers, "sanity"); 2607 for (uint i = 0; i < num_regions(); i++) { 2608 assert(_liveness_cache[worker_id][i] == 0, "liveness cache should be empty"); 2609 } 2610 #endif 2611 return _liveness_cache[worker_id]; 2612 } 2613 2614 void ShenandoahHeap::flush_liveness_cache(uint worker_id) { 2615 assert(worker_id < _max_workers, "sanity"); 2616 assert(_liveness_cache != nullptr, "sanity"); 2617 ShenandoahLiveData* ld = _liveness_cache[worker_id]; 2618 for (uint i = 0; i < num_regions(); i++) { 2619 ShenandoahLiveData live = ld[i]; 2620 if (live > 0) { 2621 ShenandoahHeapRegion* r = get_region(i); 2622 r->increase_live_data_gc_words(live); 2623 ld[i] = 0; 2624 } 2625 } 2626 } 2627 2628 bool ShenandoahHeap::requires_barriers(stackChunkOop obj) const { 2629 if (is_idle()) return false; 2630 2631 // Objects allocated after marking start are implicitly alive, don't need any barriers during 2632 // marking phase. 2633 if (is_concurrent_mark_in_progress() && 2634 !marking_context()->allocated_after_mark_start(obj)) { 2635 return true; 2636 } 2637 2638 // Can not guarantee obj is deeply good. 2639 if (has_forwarded_objects()) { 2640 return true; 2641 } 2642 2643 return false; 2644 } 2645 2646 HeapWord* ShenandoahHeap::allocate_loaded_archive_space(size_t size) { 2647 #if INCLUDE_CDS_JAVA_HEAP 2648 // CDS wants a continuous memory range to load a bunch of objects. 2649 // This effectively bypasses normal allocation paths, and requires 2650 // a bit of massaging to unbreak GC invariants. 2651 2652 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared(size); 2653 2654 // Easy case: a single regular region, no further adjustments needed. 2655 if (!ShenandoahHeapRegion::requires_humongous(size)) { 2656 return allocate_memory(req); 2657 } 2658 2659 // Hard case: the requested size would cause a humongous allocation. 2660 // We need to make sure it looks like regular allocation to the rest of GC. 2661 2662 // CDS code would guarantee no objects straddle multiple regions, as long as 2663 // regions are as large as MIN_GC_REGION_ALIGNMENT. It is impractical at this 2664 // point to deal with case when Shenandoah runs with smaller regions. 2665 // TODO: This check can be dropped once MIN_GC_REGION_ALIGNMENT agrees more with Shenandoah. 2666 if (ShenandoahHeapRegion::region_size_bytes() < ArchiveHeapWriter::MIN_GC_REGION_ALIGNMENT) { 2667 return nullptr; 2668 } 2669 2670 HeapWord* mem = allocate_memory(req); 2671 size_t start_idx = heap_region_index_containing(mem); 2672 size_t num_regions = ShenandoahHeapRegion::required_regions(size * HeapWordSize); 2673 2674 // Flip humongous -> regular. 2675 { 2676 ShenandoahHeapLocker locker(lock(), false); 2677 for (size_t c = start_idx; c < start_idx + num_regions; c++) { 2678 get_region(c)->make_regular_bypass(); 2679 } 2680 } 2681 2682 return mem; 2683 #else 2684 assert(false, "Archive heap loader should not be available, should not be here"); 2685 return nullptr; 2686 #endif // INCLUDE_CDS_JAVA_HEAP 2687 } 2688 2689 void ShenandoahHeap::complete_loaded_archive_space(MemRegion archive_space) { 2690 // Nothing to do here, except checking that heap looks fine. 2691 #ifdef ASSERT 2692 HeapWord* start = archive_space.start(); 2693 HeapWord* end = archive_space.end(); 2694 2695 // No unclaimed space between the objects. 2696 // Objects are properly allocated in correct regions. 2697 HeapWord* cur = start; 2698 while (cur < end) { 2699 oop oop = cast_to_oop(cur); 2700 shenandoah_assert_in_correct_region(nullptr, oop); 2701 cur += oop->size(); 2702 } 2703 2704 // No unclaimed tail at the end of archive space. 2705 assert(cur == end, 2706 "Archive space should be fully used: " PTR_FORMAT " " PTR_FORMAT, 2707 p2i(cur), p2i(end)); 2708 2709 // Region bounds are good. 2710 ShenandoahHeapRegion* begin_reg = heap_region_containing(start); 2711 ShenandoahHeapRegion* end_reg = heap_region_containing(end); 2712 assert(begin_reg->is_regular(), "Must be"); 2713 assert(end_reg->is_regular(), "Must be"); 2714 assert(begin_reg->bottom() == start, 2715 "Must agree: archive-space-start: " PTR_FORMAT ", begin-region-bottom: " PTR_FORMAT, 2716 p2i(start), p2i(begin_reg->bottom())); 2717 assert(end_reg->top() == end, 2718 "Must agree: archive-space-end: " PTR_FORMAT ", end-region-top: " PTR_FORMAT, 2719 p2i(end), p2i(end_reg->top())); 2720 #endif 2721 } 2722 2723 ShenandoahGeneration* ShenandoahHeap::generation_for(ShenandoahAffiliation affiliation) const { 2724 if (!mode()->is_generational()) { 2725 return global_generation(); 2726 } else if (affiliation == YOUNG_GENERATION) { 2727 return young_generation(); 2728 } else if (affiliation == OLD_GENERATION) { 2729 return old_generation(); 2730 } 2731 2732 ShouldNotReachHere(); 2733 return nullptr; 2734 } 2735 2736 void ShenandoahHeap::log_heap_status(const char* msg) const { 2737 if (mode()->is_generational()) { 2738 young_generation()->log_status(msg); 2739 old_generation()->log_status(msg); 2740 } else { 2741 global_generation()->log_status(msg); 2742 } 2743 } 2744