1 /*
   2  * Copyright (c) 2023, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2013, 2022, Red Hat, Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "memory/allocation.hpp"
  28 #include "memory/universe.hpp"
  29 
  30 #include "gc/shared/gcArguments.hpp"
  31 #include "gc/shared/gcTimer.hpp"
  32 #include "gc/shared/gcTraceTime.inline.hpp"
  33 #include "gc/shared/locationPrinter.inline.hpp"
  34 #include "gc/shared/memAllocator.hpp"
  35 #include "gc/shared/plab.hpp"
  36 #include "gc/shared/slidingForwarding.hpp"
  37 #include "gc/shared/tlab_globals.hpp"
  38 
  39 #include "gc/shenandoah/shenandoahBarrierSet.hpp"
  40 #include "gc/shenandoah/shenandoahClosures.inline.hpp"
  41 #include "gc/shenandoah/shenandoahCollectionSet.hpp"
  42 #include "gc/shenandoah/shenandoahCollectorPolicy.hpp"
  43 #include "gc/shenandoah/shenandoahConcurrentMark.hpp"
  44 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp"
  45 #include "gc/shenandoah/shenandoahControlThread.hpp"
  46 #include "gc/shenandoah/shenandoahFreeSet.hpp"
  47 #include "gc/shenandoah/shenandoahPhaseTimings.hpp"
  48 #include "gc/shenandoah/shenandoahHeap.inline.hpp"
  49 #include "gc/shenandoah/shenandoahHeapRegion.inline.hpp"
  50 #include "gc/shenandoah/shenandoahHeapRegionSet.hpp"
  51 #include "gc/shenandoah/shenandoahInitLogger.hpp"
  52 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp"
  53 #include "gc/shenandoah/shenandoahMemoryPool.hpp"
  54 #include "gc/shenandoah/shenandoahMetrics.hpp"
  55 #include "gc/shenandoah/shenandoahMonitoringSupport.hpp"
  56 #include "gc/shenandoah/shenandoahOopClosures.inline.hpp"
  57 #include "gc/shenandoah/shenandoahPacer.inline.hpp"
  58 #include "gc/shenandoah/shenandoahPadding.hpp"
  59 #include "gc/shenandoah/shenandoahParallelCleaning.inline.hpp"
  60 #include "gc/shenandoah/shenandoahReferenceProcessor.hpp"
  61 #include "gc/shenandoah/shenandoahRootProcessor.inline.hpp"
  62 #include "gc/shenandoah/shenandoahSTWMark.hpp"
  63 #include "gc/shenandoah/shenandoahUtils.hpp"
  64 #include "gc/shenandoah/shenandoahVerifier.hpp"
  65 #include "gc/shenandoah/shenandoahCodeRoots.hpp"
  66 #include "gc/shenandoah/shenandoahVMOperations.hpp"
  67 #include "gc/shenandoah/shenandoahWorkGroup.hpp"
  68 #include "gc/shenandoah/shenandoahWorkerPolicy.hpp"
  69 #include "gc/shenandoah/mode/shenandoahIUMode.hpp"
  70 #include "gc/shenandoah/mode/shenandoahPassiveMode.hpp"
  71 #include "gc/shenandoah/mode/shenandoahSATBMode.hpp"
  72 #if INCLUDE_JFR
  73 #include "gc/shenandoah/shenandoahJfrSupport.hpp"
  74 #endif
  75 
  76 #include "classfile/systemDictionary.hpp"
  77 #include "code/codeCache.hpp"
  78 #include "memory/classLoaderMetaspace.hpp"
  79 #include "memory/metaspaceUtils.hpp"
  80 #include "nmt/mallocTracker.hpp"
  81 #include "nmt/memTracker.hpp"
  82 #include "oops/compressedOops.inline.hpp"
  83 #include "prims/jvmtiTagMap.hpp"
  84 #include "runtime/atomic.hpp"
  85 #include "runtime/globals.hpp"
  86 #include "runtime/interfaceSupport.inline.hpp"
  87 #include "runtime/java.hpp"
  88 #include "runtime/orderAccess.hpp"
  89 #include "runtime/safepointMechanism.hpp"
  90 #include "runtime/vmThread.hpp"
  91 #include "utilities/events.hpp"
  92 #include "utilities/powerOfTwo.hpp"
  93 
  94 class ShenandoahPretouchHeapTask : public WorkerTask {
  95 private:
  96   ShenandoahRegionIterator _regions;
  97   const size_t _page_size;
  98 public:
  99   ShenandoahPretouchHeapTask(size_t page_size) :
 100     WorkerTask("Shenandoah Pretouch Heap"),
 101     _page_size(page_size) {}
 102 
 103   virtual void work(uint worker_id) {
 104     ShenandoahHeapRegion* r = _regions.next();
 105     while (r != nullptr) {
 106       if (r->is_committed()) {
 107         os::pretouch_memory(r->bottom(), r->end(), _page_size);
 108       }
 109       r = _regions.next();
 110     }
 111   }
 112 };
 113 
 114 class ShenandoahPretouchBitmapTask : public WorkerTask {
 115 private:
 116   ShenandoahRegionIterator _regions;
 117   char* _bitmap_base;
 118   const size_t _bitmap_size;
 119   const size_t _page_size;
 120 public:
 121   ShenandoahPretouchBitmapTask(char* bitmap_base, size_t bitmap_size, size_t page_size) :
 122     WorkerTask("Shenandoah Pretouch Bitmap"),
 123     _bitmap_base(bitmap_base),
 124     _bitmap_size(bitmap_size),
 125     _page_size(page_size) {}
 126 
 127   virtual void work(uint worker_id) {
 128     ShenandoahHeapRegion* r = _regions.next();
 129     while (r != nullptr) {
 130       size_t start = r->index()       * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor();
 131       size_t end   = (r->index() + 1) * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor();
 132       assert (end <= _bitmap_size, "end is sane: " SIZE_FORMAT " < " SIZE_FORMAT, end, _bitmap_size);
 133 
 134       if (r->is_committed()) {
 135         os::pretouch_memory(_bitmap_base + start, _bitmap_base + end, _page_size);
 136       }
 137 
 138       r = _regions.next();
 139     }
 140   }
 141 };
 142 
 143 jint ShenandoahHeap::initialize() {
 144   //
 145   // Figure out heap sizing
 146   //
 147 
 148   size_t init_byte_size = InitialHeapSize;
 149   size_t min_byte_size  = MinHeapSize;
 150   size_t max_byte_size  = MaxHeapSize;
 151   size_t heap_alignment = HeapAlignment;
 152 
 153   size_t reg_size_bytes = ShenandoahHeapRegion::region_size_bytes();
 154 
 155   Universe::check_alignment(max_byte_size,  reg_size_bytes, "Shenandoah heap");
 156   Universe::check_alignment(init_byte_size, reg_size_bytes, "Shenandoah heap");
 157 
 158   _num_regions = ShenandoahHeapRegion::region_count();
 159   assert(_num_regions == (max_byte_size / reg_size_bytes),
 160          "Regions should cover entire heap exactly: " SIZE_FORMAT " != " SIZE_FORMAT "/" SIZE_FORMAT,
 161          _num_regions, max_byte_size, reg_size_bytes);
 162 
 163   // Now we know the number of regions, initialize the heuristics.
 164   initialize_heuristics();
 165 
 166   size_t num_committed_regions = init_byte_size / reg_size_bytes;
 167   num_committed_regions = MIN2(num_committed_regions, _num_regions);
 168   assert(num_committed_regions <= _num_regions, "sanity");
 169   _initial_size = num_committed_regions * reg_size_bytes;
 170 
 171   size_t num_min_regions = min_byte_size / reg_size_bytes;
 172   num_min_regions = MIN2(num_min_regions, _num_regions);
 173   assert(num_min_regions <= _num_regions, "sanity");
 174   _minimum_size = num_min_regions * reg_size_bytes;
 175 
 176   // Default to max heap size.
 177   _soft_max_size = _num_regions * reg_size_bytes;
 178 
 179   _committed = _initial_size;
 180 
 181   size_t heap_page_size   = UseLargePages ? os::large_page_size() : os::vm_page_size();
 182   size_t bitmap_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
 183   size_t region_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
 184 
 185   //
 186   // Reserve and commit memory for heap
 187   //
 188 
 189   ReservedHeapSpace heap_rs = Universe::reserve_heap(max_byte_size, heap_alignment);
 190   initialize_reserved_region(heap_rs);
 191   _heap_region = MemRegion((HeapWord*)heap_rs.base(), heap_rs.size() / HeapWordSize);
 192   _heap_region_special = heap_rs.special();
 193 
 194   assert((((size_t) base()) & ShenandoahHeapRegion::region_size_bytes_mask()) == 0,
 195          "Misaligned heap: " PTR_FORMAT, p2i(base()));
 196   os::trace_page_sizes_for_requested_size("Heap",
 197                                           max_byte_size, heap_alignment,
 198                                           heap_rs.base(),
 199                                           heap_rs.size(), heap_rs.page_size());
 200 
 201 #if SHENANDOAH_OPTIMIZED_MARKTASK
 202   // The optimized ShenandoahMarkTask takes some bits away from the full object bits.
 203   // Fail if we ever attempt to address more than we can.
 204   if ((uintptr_t)heap_rs.end() >= ShenandoahMarkTask::max_addressable()) {
 205     FormatBuffer<512> buf("Shenandoah reserved [" PTR_FORMAT ", " PTR_FORMAT") for the heap, \n"
 206                           "but max object address is " PTR_FORMAT ". Try to reduce heap size, or try other \n"
 207                           "VM options that allocate heap at lower addresses (HeapBaseMinAddress, AllocateHeapAt, etc).",
 208                 p2i(heap_rs.base()), p2i(heap_rs.end()), ShenandoahMarkTask::max_addressable());
 209     vm_exit_during_initialization("Fatal Error", buf);
 210   }
 211 #endif
 212 
 213   ReservedSpace sh_rs = heap_rs.first_part(max_byte_size);
 214   if (!_heap_region_special) {
 215     os::commit_memory_or_exit(sh_rs.base(), _initial_size, heap_alignment, false,
 216                               "Cannot commit heap memory");
 217   }
 218 
 219   //
 220   // Reserve and commit memory for bitmap(s)
 221   //
 222 
 223   size_t bitmap_size_orig = ShenandoahMarkBitMap::compute_size(heap_rs.size());
 224   _bitmap_size = align_up(bitmap_size_orig, bitmap_page_size);
 225 
 226   size_t bitmap_bytes_per_region = reg_size_bytes / ShenandoahMarkBitMap::heap_map_factor();
 227 
 228   guarantee(bitmap_bytes_per_region != 0,
 229             "Bitmap bytes per region should not be zero");
 230   guarantee(is_power_of_2(bitmap_bytes_per_region),
 231             "Bitmap bytes per region should be power of two: " SIZE_FORMAT, bitmap_bytes_per_region);
 232 
 233   if (bitmap_page_size > bitmap_bytes_per_region) {
 234     _bitmap_regions_per_slice = bitmap_page_size / bitmap_bytes_per_region;
 235     _bitmap_bytes_per_slice = bitmap_page_size;
 236   } else {
 237     _bitmap_regions_per_slice = 1;
 238     _bitmap_bytes_per_slice = bitmap_bytes_per_region;
 239   }
 240 
 241   guarantee(_bitmap_regions_per_slice >= 1,
 242             "Should have at least one region per slice: " SIZE_FORMAT,
 243             _bitmap_regions_per_slice);
 244 
 245   guarantee(((_bitmap_bytes_per_slice) % bitmap_page_size) == 0,
 246             "Bitmap slices should be page-granular: bps = " SIZE_FORMAT ", page size = " SIZE_FORMAT,
 247             _bitmap_bytes_per_slice, bitmap_page_size);
 248 
 249   ReservedSpace bitmap(_bitmap_size, bitmap_page_size);
 250   os::trace_page_sizes_for_requested_size("Mark Bitmap",
 251                                           bitmap_size_orig, bitmap_page_size,
 252                                           bitmap.base(),
 253                                           bitmap.size(), bitmap.page_size());
 254   MemTracker::record_virtual_memory_type(bitmap.base(), mtGC);
 255   _bitmap_region = MemRegion((HeapWord*) bitmap.base(), bitmap.size() / HeapWordSize);
 256   _bitmap_region_special = bitmap.special();
 257 
 258   size_t bitmap_init_commit = _bitmap_bytes_per_slice *
 259                               align_up(num_committed_regions, _bitmap_regions_per_slice) / _bitmap_regions_per_slice;
 260   bitmap_init_commit = MIN2(_bitmap_size, bitmap_init_commit);
 261   if (!_bitmap_region_special) {
 262     os::commit_memory_or_exit((char *) _bitmap_region.start(), bitmap_init_commit, bitmap_page_size, false,
 263                               "Cannot commit bitmap memory");
 264   }
 265 
 266   _marking_context = new ShenandoahMarkingContext(_heap_region, _bitmap_region, _num_regions, _max_workers);
 267 
 268   if (ShenandoahVerify) {
 269     ReservedSpace verify_bitmap(_bitmap_size, bitmap_page_size);
 270     os::trace_page_sizes_for_requested_size("Verify Bitmap",
 271                                             bitmap_size_orig, bitmap_page_size,
 272                                             verify_bitmap.base(),
 273                                             verify_bitmap.size(), verify_bitmap.page_size());
 274     if (!verify_bitmap.special()) {
 275       os::commit_memory_or_exit(verify_bitmap.base(), verify_bitmap.size(), bitmap_page_size, false,
 276                                 "Cannot commit verification bitmap memory");
 277     }
 278     MemTracker::record_virtual_memory_type(verify_bitmap.base(), mtGC);
 279     MemRegion verify_bitmap_region = MemRegion((HeapWord *) verify_bitmap.base(), verify_bitmap.size() / HeapWordSize);
 280     _verification_bit_map.initialize(_heap_region, verify_bitmap_region);
 281     _verifier = new ShenandoahVerifier(this, &_verification_bit_map);
 282   }
 283 
 284   // Reserve aux bitmap for use in object_iterate(). We don't commit it here.
 285   size_t aux_bitmap_page_size = bitmap_page_size;
 286 #ifdef LINUX
 287   // In THP "advise" mode, we refrain from advising the system to use large pages
 288   // since we know these commits will be short lived, and there is no reason to trash
 289   // the THP area with this bitmap.
 290   if (UseTransparentHugePages) {
 291     aux_bitmap_page_size = os::vm_page_size();
 292   }
 293 #endif
 294   ReservedSpace aux_bitmap(_bitmap_size, aux_bitmap_page_size);
 295   os::trace_page_sizes_for_requested_size("Aux Bitmap",
 296                                           bitmap_size_orig, aux_bitmap_page_size,
 297                                           aux_bitmap.base(),
 298                                           aux_bitmap.size(), aux_bitmap.page_size());
 299   MemTracker::record_virtual_memory_type(aux_bitmap.base(), mtGC);
 300   _aux_bitmap_region = MemRegion((HeapWord*) aux_bitmap.base(), aux_bitmap.size() / HeapWordSize);
 301   _aux_bitmap_region_special = aux_bitmap.special();
 302   _aux_bit_map.initialize(_heap_region, _aux_bitmap_region);
 303 
 304   //
 305   // Create regions and region sets
 306   //
 307   size_t region_align = align_up(sizeof(ShenandoahHeapRegion), SHENANDOAH_CACHE_LINE_SIZE);
 308   size_t region_storage_size_orig = region_align * _num_regions;
 309   size_t region_storage_size = align_up(region_storage_size_orig,
 310                                         MAX2(region_page_size, os::vm_allocation_granularity()));
 311 
 312   ReservedSpace region_storage(region_storage_size, region_page_size);
 313   os::trace_page_sizes_for_requested_size("Region Storage",
 314                                           region_storage_size_orig, region_page_size,
 315                                           region_storage.base(),
 316                                           region_storage.size(), region_storage.page_size());
 317   MemTracker::record_virtual_memory_type(region_storage.base(), mtGC);
 318   if (!region_storage.special()) {
 319     os::commit_memory_or_exit(region_storage.base(), region_storage_size, region_page_size, false,
 320                               "Cannot commit region memory");
 321   }
 322 
 323   // Try to fit the collection set bitmap at lower addresses. This optimizes code generation for cset checks.
 324   // Go up until a sensible limit (subject to encoding constraints) and try to reserve the space there.
 325   // If not successful, bite a bullet and allocate at whatever address.
 326   {
 327     const size_t cset_align = MAX2<size_t>(os::vm_page_size(), os::vm_allocation_granularity());
 328     const size_t cset_size = align_up(((size_t) sh_rs.base() + sh_rs.size()) >> ShenandoahHeapRegion::region_size_bytes_shift(), cset_align);
 329     const size_t cset_page_size = os::vm_page_size();
 330 
 331     uintptr_t min = round_up_power_of_2(cset_align);
 332     uintptr_t max = (1u << 30u);
 333     ReservedSpace cset_rs;
 334 
 335     for (uintptr_t addr = min; addr <= max; addr <<= 1u) {
 336       char* req_addr = (char*)addr;
 337       assert(is_aligned(req_addr, cset_align), "Should be aligned");
 338       cset_rs = ReservedSpace(cset_size, cset_align, cset_page_size, req_addr);
 339       if (cset_rs.is_reserved()) {
 340         assert(cset_rs.base() == req_addr, "Allocated where requested: " PTR_FORMAT ", " PTR_FORMAT, p2i(cset_rs.base()), addr);
 341         _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base());
 342         break;
 343       }
 344     }
 345 
 346     if (_collection_set == nullptr) {
 347       cset_rs = ReservedSpace(cset_size, cset_align, os::vm_page_size());
 348       _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base());
 349     }
 350     os::trace_page_sizes_for_requested_size("Collection Set",
 351                                             cset_size, cset_page_size,
 352                                             cset_rs.base(),
 353                                             cset_rs.size(), cset_rs.page_size());
 354   }
 355 
 356   _regions = NEW_C_HEAP_ARRAY(ShenandoahHeapRegion*, _num_regions, mtGC);
 357   _free_set = new ShenandoahFreeSet(this, _num_regions);
 358 
 359   {
 360     ShenandoahHeapLocker locker(lock());
 361 
 362     for (size_t i = 0; i < _num_regions; i++) {
 363       HeapWord* start = (HeapWord*)sh_rs.base() + ShenandoahHeapRegion::region_size_words() * i;
 364       bool is_committed = i < num_committed_regions;
 365       void* loc = region_storage.base() + i * region_align;
 366 
 367       ShenandoahHeapRegion* r = new (loc) ShenandoahHeapRegion(start, i, is_committed);
 368       assert(is_aligned(r, SHENANDOAH_CACHE_LINE_SIZE), "Sanity");
 369 
 370       _marking_context->initialize_top_at_mark_start(r);
 371       _regions[i] = r;
 372       assert(!collection_set()->is_in(i), "New region should not be in collection set");
 373     }
 374 
 375     // Initialize to complete
 376     _marking_context->mark_complete();
 377 
 378     _free_set->rebuild();
 379   }
 380 
 381   if (AlwaysPreTouch) {
 382     // For NUMA, it is important to pre-touch the storage under bitmaps with worker threads,
 383     // before initialize() below zeroes it with initializing thread. For any given region,
 384     // we touch the region and the corresponding bitmaps from the same thread.
 385     ShenandoahPushWorkerScope scope(workers(), _max_workers, false);
 386 
 387     _pretouch_heap_page_size = heap_page_size;
 388     _pretouch_bitmap_page_size = bitmap_page_size;
 389 
 390 #ifdef LINUX
 391     // UseTransparentHugePages would madvise that backing memory can be coalesced into huge
 392     // pages. But, the kernel needs to know that every small page is used, in order to coalesce
 393     // them into huge one. Therefore, we need to pretouch with smaller pages.
 394     if (UseTransparentHugePages) {
 395       _pretouch_heap_page_size = (size_t)os::vm_page_size();
 396       _pretouch_bitmap_page_size = (size_t)os::vm_page_size();
 397     }
 398 #endif
 399 
 400     // OS memory managers may want to coalesce back-to-back pages. Make their jobs
 401     // simpler by pre-touching continuous spaces (heap and bitmap) separately.
 402 
 403     ShenandoahPretouchBitmapTask bcl(bitmap.base(), _bitmap_size, _pretouch_bitmap_page_size);
 404     _workers->run_task(&bcl);
 405 
 406     ShenandoahPretouchHeapTask hcl(_pretouch_heap_page_size);
 407     _workers->run_task(&hcl);
 408   }
 409 
 410   //
 411   // Initialize the rest of GC subsystems
 412   //
 413 
 414   _liveness_cache = NEW_C_HEAP_ARRAY(ShenandoahLiveData*, _max_workers, mtGC);
 415   for (uint worker = 0; worker < _max_workers; worker++) {
 416     _liveness_cache[worker] = NEW_C_HEAP_ARRAY(ShenandoahLiveData, _num_regions, mtGC);
 417     Copy::fill_to_bytes(_liveness_cache[worker], _num_regions * sizeof(ShenandoahLiveData));
 418   }
 419 
 420   // There should probably be Shenandoah-specific options for these,
 421   // just as there are G1-specific options.
 422   {
 423     ShenandoahSATBMarkQueueSet& satbqs = ShenandoahBarrierSet::satb_mark_queue_set();
 424     satbqs.set_process_completed_buffers_threshold(20); // G1SATBProcessCompletedThreshold
 425     satbqs.set_buffer_enqueue_threshold_percentage(60); // G1SATBBufferEnqueueingThresholdPercent
 426   }
 427 
 428   _monitoring_support = new ShenandoahMonitoringSupport(this);
 429   _phase_timings = new ShenandoahPhaseTimings(max_workers());
 430   ShenandoahCodeRoots::initialize();
 431 
 432   if (ShenandoahPacing) {
 433     _pacer = new ShenandoahPacer(this);
 434     _pacer->setup_for_idle();
 435   } else {
 436     _pacer = nullptr;
 437   }
 438 
 439   _control_thread = new ShenandoahControlThread();
 440 
 441   ShenandoahInitLogger::print();
 442 
 443   SlidingForwarding::initialize(_heap_region, ShenandoahHeapRegion::region_size_words());
 444 
 445   return JNI_OK;
 446 }
 447 
 448 void ShenandoahHeap::initialize_mode() {
 449   if (ShenandoahGCMode != nullptr) {
 450     if (strcmp(ShenandoahGCMode, "satb") == 0) {
 451       _gc_mode = new ShenandoahSATBMode();
 452     } else if (strcmp(ShenandoahGCMode, "iu") == 0) {
 453       _gc_mode = new ShenandoahIUMode();
 454     } else if (strcmp(ShenandoahGCMode, "passive") == 0) {
 455       _gc_mode = new ShenandoahPassiveMode();
 456     } else {
 457       vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option");
 458     }
 459   } else {
 460     vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option (null)");
 461   }
 462   _gc_mode->initialize_flags();
 463   if (_gc_mode->is_diagnostic() && !UnlockDiagnosticVMOptions) {
 464     vm_exit_during_initialization(
 465             err_msg("GC mode \"%s\" is diagnostic, and must be enabled via -XX:+UnlockDiagnosticVMOptions.",
 466                     _gc_mode->name()));
 467   }
 468   if (_gc_mode->is_experimental() && !UnlockExperimentalVMOptions) {
 469     vm_exit_during_initialization(
 470             err_msg("GC mode \"%s\" is experimental, and must be enabled via -XX:+UnlockExperimentalVMOptions.",
 471                     _gc_mode->name()));
 472   }
 473 }
 474 
 475 void ShenandoahHeap::initialize_heuristics() {
 476   assert(_gc_mode != nullptr, "Must be initialized");
 477   _heuristics = _gc_mode->initialize_heuristics();
 478 
 479   if (_heuristics->is_diagnostic() && !UnlockDiagnosticVMOptions) {
 480     vm_exit_during_initialization(
 481             err_msg("Heuristics \"%s\" is diagnostic, and must be enabled via -XX:+UnlockDiagnosticVMOptions.",
 482                     _heuristics->name()));
 483   }
 484   if (_heuristics->is_experimental() && !UnlockExperimentalVMOptions) {
 485     vm_exit_during_initialization(
 486             err_msg("Heuristics \"%s\" is experimental, and must be enabled via -XX:+UnlockExperimentalVMOptions.",
 487                     _heuristics->name()));
 488   }
 489 }
 490 
 491 #ifdef _MSC_VER
 492 #pragma warning( push )
 493 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 494 #endif
 495 
 496 ShenandoahHeap::ShenandoahHeap(ShenandoahCollectorPolicy* policy) :
 497   CollectedHeap(),
 498   _initial_size(0),
 499   _used(0),
 500   _committed(0),
 501   _bytes_allocated_since_gc_start(0),
 502   _max_workers(MAX2(ConcGCThreads, ParallelGCThreads)),
 503   _workers(nullptr),
 504   _safepoint_workers(nullptr),
 505   _heap_region_special(false),
 506   _num_regions(0),
 507   _regions(nullptr),
 508   _update_refs_iterator(this),
 509   _gc_no_progress_count(0),
 510   _control_thread(nullptr),
 511   _shenandoah_policy(policy),
 512   _gc_mode(nullptr),
 513   _heuristics(nullptr),
 514   _free_set(nullptr),
 515   _pacer(nullptr),
 516   _verifier(nullptr),
 517   _phase_timings(nullptr),
 518   _monitoring_support(nullptr),
 519   _memory_pool(nullptr),
 520   _stw_memory_manager("Shenandoah Pauses"),
 521   _cycle_memory_manager("Shenandoah Cycles"),
 522   _gc_timer(new ConcurrentGCTimer()),
 523   _soft_ref_policy(),
 524   _log_min_obj_alignment_in_bytes(LogMinObjAlignmentInBytes),
 525   _ref_processor(new ShenandoahReferenceProcessor(MAX2(_max_workers, 1U))),
 526   _marking_context(nullptr),
 527   _bitmap_size(0),
 528   _bitmap_regions_per_slice(0),
 529   _bitmap_bytes_per_slice(0),
 530   _bitmap_region_special(false),
 531   _aux_bitmap_region_special(false),
 532   _liveness_cache(nullptr),
 533   _collection_set(nullptr)
 534 {
 535   // Initialize GC mode early, so we can adjust barrier support
 536   initialize_mode();
 537   BarrierSet::set_barrier_set(new ShenandoahBarrierSet(this));
 538 
 539   _max_workers = MAX2(_max_workers, 1U);
 540   _workers = new ShenandoahWorkerThreads("Shenandoah GC Threads", _max_workers);
 541   if (_workers == nullptr) {
 542     vm_exit_during_initialization("Failed necessary allocation.");
 543   } else {
 544     _workers->initialize_workers();
 545   }
 546 
 547   if (ParallelGCThreads > 1) {
 548     _safepoint_workers = new ShenandoahWorkerThreads("Safepoint Cleanup Thread",
 549                                                 ParallelGCThreads);
 550     _safepoint_workers->initialize_workers();
 551   }
 552 }
 553 
 554 #ifdef _MSC_VER
 555 #pragma warning( pop )
 556 #endif
 557 
 558 class ShenandoahResetBitmapTask : public WorkerTask {
 559 private:
 560   ShenandoahRegionIterator _regions;
 561 
 562 public:
 563   ShenandoahResetBitmapTask() :
 564     WorkerTask("Shenandoah Reset Bitmap") {}
 565 
 566   void work(uint worker_id) {
 567     ShenandoahHeapRegion* region = _regions.next();
 568     ShenandoahHeap* heap = ShenandoahHeap::heap();
 569     ShenandoahMarkingContext* const ctx = heap->marking_context();
 570     while (region != nullptr) {
 571       if (heap->is_bitmap_slice_committed(region)) {
 572         ctx->clear_bitmap(region);
 573       }
 574       region = _regions.next();
 575     }
 576   }
 577 };
 578 
 579 void ShenandoahHeap::reset_mark_bitmap() {
 580   assert_gc_workers(_workers->active_workers());
 581   mark_incomplete_marking_context();
 582 
 583   ShenandoahResetBitmapTask task;
 584   _workers->run_task(&task);
 585 }
 586 
 587 void ShenandoahHeap::print_on(outputStream* st) const {
 588   st->print_cr("Shenandoah Heap");
 589   st->print_cr(" " SIZE_FORMAT "%s max, " SIZE_FORMAT "%s soft max, " SIZE_FORMAT "%s committed, " SIZE_FORMAT "%s used",
 590                byte_size_in_proper_unit(max_capacity()), proper_unit_for_byte_size(max_capacity()),
 591                byte_size_in_proper_unit(soft_max_capacity()), proper_unit_for_byte_size(soft_max_capacity()),
 592                byte_size_in_proper_unit(committed()),    proper_unit_for_byte_size(committed()),
 593                byte_size_in_proper_unit(used()),         proper_unit_for_byte_size(used()));
 594   st->print_cr(" " SIZE_FORMAT " x " SIZE_FORMAT"%s regions",
 595                num_regions(),
 596                byte_size_in_proper_unit(ShenandoahHeapRegion::region_size_bytes()),
 597                proper_unit_for_byte_size(ShenandoahHeapRegion::region_size_bytes()));
 598 
 599   st->print("Status: ");
 600   if (has_forwarded_objects())                 st->print("has forwarded objects, ");
 601   if (is_concurrent_mark_in_progress())        st->print("marking, ");
 602   if (is_evacuation_in_progress())             st->print("evacuating, ");
 603   if (is_update_refs_in_progress())            st->print("updating refs, ");
 604   if (is_degenerated_gc_in_progress())         st->print("degenerated gc, ");
 605   if (is_full_gc_in_progress())                st->print("full gc, ");
 606   if (is_full_gc_move_in_progress())           st->print("full gc move, ");
 607   if (is_concurrent_weak_root_in_progress())   st->print("concurrent weak roots, ");
 608   if (is_concurrent_strong_root_in_progress() &&
 609       !is_concurrent_weak_root_in_progress())  st->print("concurrent strong roots, ");
 610 
 611   if (cancelled_gc()) {
 612     st->print("cancelled");
 613   } else {
 614     st->print("not cancelled");
 615   }
 616   st->cr();
 617 
 618   st->print_cr("Reserved region:");
 619   st->print_cr(" - [" PTR_FORMAT ", " PTR_FORMAT ") ",
 620                p2i(reserved_region().start()),
 621                p2i(reserved_region().end()));
 622 
 623   ShenandoahCollectionSet* cset = collection_set();
 624   st->print_cr("Collection set:");
 625   if (cset != nullptr) {
 626     st->print_cr(" - map (vanilla): " PTR_FORMAT, p2i(cset->map_address()));
 627     st->print_cr(" - map (biased):  " PTR_FORMAT, p2i(cset->biased_map_address()));
 628   } else {
 629     st->print_cr(" (null)");
 630   }
 631 
 632   st->cr();
 633   MetaspaceUtils::print_on(st);
 634 
 635   if (Verbose) {
 636     st->cr();
 637     print_heap_regions_on(st);
 638   }
 639 }
 640 
 641 class ShenandoahInitWorkerGCLABClosure : public ThreadClosure {
 642 public:
 643   void do_thread(Thread* thread) {
 644     assert(thread != nullptr, "Sanity");
 645     assert(thread->is_Worker_thread(), "Only worker thread expected");
 646     ShenandoahThreadLocalData::initialize_gclab(thread);
 647   }
 648 };
 649 
 650 void ShenandoahHeap::post_initialize() {
 651   CollectedHeap::post_initialize();
 652   MutexLocker ml(Threads_lock);
 653 
 654   ShenandoahInitWorkerGCLABClosure init_gclabs;
 655   _workers->threads_do(&init_gclabs);
 656 
 657   // gclab can not be initialized early during VM startup, as it can not determinate its max_size.
 658   // Now, we will let WorkerThreads to initialize gclab when new worker is created.
 659   _workers->set_initialize_gclab();
 660   if (_safepoint_workers != nullptr) {
 661     _safepoint_workers->threads_do(&init_gclabs);
 662     _safepoint_workers->set_initialize_gclab();
 663   }
 664 
 665   _heuristics->initialize();
 666 
 667   JFR_ONLY(ShenandoahJFRSupport::register_jfr_type_serializers());
 668 }
 669 
 670 size_t ShenandoahHeap::used() const {
 671   return Atomic::load(&_used);
 672 }
 673 
 674 size_t ShenandoahHeap::committed() const {
 675   return Atomic::load(&_committed);
 676 }
 677 
 678 size_t ShenandoahHeap::available() const {
 679   return free_set()->available();
 680 }
 681 
 682 void ShenandoahHeap::increase_committed(size_t bytes) {
 683   shenandoah_assert_heaplocked_or_safepoint();
 684   _committed += bytes;
 685 }
 686 
 687 void ShenandoahHeap::decrease_committed(size_t bytes) {
 688   shenandoah_assert_heaplocked_or_safepoint();
 689   _committed -= bytes;
 690 }
 691 
 692 void ShenandoahHeap::increase_used(size_t bytes) {
 693   Atomic::add(&_used, bytes, memory_order_relaxed);
 694 }
 695 
 696 void ShenandoahHeap::set_used(size_t bytes) {
 697   Atomic::store(&_used, bytes);
 698 }
 699 
 700 void ShenandoahHeap::decrease_used(size_t bytes) {
 701   assert(used() >= bytes, "never decrease heap size by more than we've left");
 702   Atomic::sub(&_used, bytes, memory_order_relaxed);
 703 }
 704 
 705 void ShenandoahHeap::increase_allocated(size_t bytes) {
 706   Atomic::add(&_bytes_allocated_since_gc_start, bytes, memory_order_relaxed);
 707 }
 708 
 709 void ShenandoahHeap::notify_mutator_alloc_words(size_t words, bool waste) {
 710   size_t bytes = words * HeapWordSize;
 711   if (!waste) {
 712     increase_used(bytes);
 713   }
 714   increase_allocated(bytes);
 715   if (ShenandoahPacing) {
 716     control_thread()->pacing_notify_alloc(words);
 717     if (waste) {
 718       pacer()->claim_for_alloc(words, true);
 719     }
 720   }
 721 }
 722 
 723 size_t ShenandoahHeap::capacity() const {
 724   return committed();
 725 }
 726 
 727 size_t ShenandoahHeap::max_capacity() const {
 728   return _num_regions * ShenandoahHeapRegion::region_size_bytes();
 729 }
 730 
 731 size_t ShenandoahHeap::soft_max_capacity() const {
 732   size_t v = Atomic::load(&_soft_max_size);
 733   assert(min_capacity() <= v && v <= max_capacity(),
 734          "Should be in bounds: " SIZE_FORMAT " <= " SIZE_FORMAT " <= " SIZE_FORMAT,
 735          min_capacity(), v, max_capacity());
 736   return v;
 737 }
 738 
 739 void ShenandoahHeap::set_soft_max_capacity(size_t v) {
 740   assert(min_capacity() <= v && v <= max_capacity(),
 741          "Should be in bounds: " SIZE_FORMAT " <= " SIZE_FORMAT " <= " SIZE_FORMAT,
 742          min_capacity(), v, max_capacity());
 743   Atomic::store(&_soft_max_size, v);
 744 }
 745 
 746 size_t ShenandoahHeap::min_capacity() const {
 747   return _minimum_size;
 748 }
 749 
 750 size_t ShenandoahHeap::initial_capacity() const {
 751   return _initial_size;
 752 }
 753 
 754 bool ShenandoahHeap::is_in(const void* p) const {
 755   HeapWord* heap_base = (HeapWord*) base();
 756   HeapWord* last_region_end = heap_base + ShenandoahHeapRegion::region_size_words() * num_regions();
 757   return p >= heap_base && p < last_region_end;
 758 }
 759 
 760 void ShenandoahHeap::op_uncommit(double shrink_before, size_t shrink_until) {
 761   assert (ShenandoahUncommit, "should be enabled");
 762 
 763   // Application allocates from the beginning of the heap, and GC allocates at
 764   // the end of it. It is more efficient to uncommit from the end, so that applications
 765   // could enjoy the near committed regions. GC allocations are much less frequent,
 766   // and therefore can accept the committing costs.
 767 
 768   size_t count = 0;
 769   for (size_t i = num_regions(); i > 0; i--) { // care about size_t underflow
 770     ShenandoahHeapRegion* r = get_region(i - 1);
 771     if (r->is_empty_committed() && (r->empty_time() < shrink_before)) {
 772       ShenandoahHeapLocker locker(lock());
 773       if (r->is_empty_committed()) {
 774         if (committed() < shrink_until + ShenandoahHeapRegion::region_size_bytes()) {
 775           break;
 776         }
 777 
 778         r->make_uncommitted();
 779         count++;
 780       }
 781     }
 782     SpinPause(); // allow allocators to take the lock
 783   }
 784 
 785   if (count > 0) {
 786     control_thread()->notify_heap_changed();
 787   }
 788 }
 789 
 790 HeapWord* ShenandoahHeap::allocate_from_gclab_slow(Thread* thread, size_t size) {
 791   // New object should fit the GCLAB size
 792   size_t min_size = MAX2(size, PLAB::min_size());
 793 
 794   // Figure out size of new GCLAB, looking back at heuristics. Expand aggressively.
 795   size_t new_size = ShenandoahThreadLocalData::gclab_size(thread) * 2;
 796   new_size = MIN2(new_size, PLAB::max_size());
 797   new_size = MAX2(new_size, PLAB::min_size());
 798 
 799   // Record new heuristic value even if we take any shortcut. This captures
 800   // the case when moderately-sized objects always take a shortcut. At some point,
 801   // heuristics should catch up with them.
 802   ShenandoahThreadLocalData::set_gclab_size(thread, new_size);
 803 
 804   if (new_size < size) {
 805     // New size still does not fit the object. Fall back to shared allocation.
 806     // This avoids retiring perfectly good GCLABs, when we encounter a large object.
 807     return nullptr;
 808   }
 809 
 810   // Retire current GCLAB, and allocate a new one.
 811   PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
 812   gclab->retire();
 813 
 814   size_t actual_size = 0;
 815   HeapWord* gclab_buf = allocate_new_gclab(min_size, new_size, &actual_size);
 816   if (gclab_buf == nullptr) {
 817     return nullptr;
 818   }
 819 
 820   assert (size <= actual_size, "allocation should fit");
 821 
 822   if (ZeroTLAB) {
 823     // ..and clear it.
 824     Copy::zero_to_words(gclab_buf, actual_size);
 825   } else {
 826     // ...and zap just allocated object.
 827 #ifdef ASSERT
 828     // Skip mangling the space corresponding to the object header to
 829     // ensure that the returned space is not considered parsable by
 830     // any concurrent GC thread.
 831     size_t hdr_size = oopDesc::header_size();
 832     Copy::fill_to_words(gclab_buf + hdr_size, actual_size - hdr_size, badHeapWordVal);
 833 #endif // ASSERT
 834   }
 835   gclab->set_buf(gclab_buf, actual_size);
 836   return gclab->allocate(size);
 837 }
 838 
 839 HeapWord* ShenandoahHeap::allocate_new_tlab(size_t min_size,
 840                                             size_t requested_size,
 841                                             size_t* actual_size) {
 842   ShenandoahAllocRequest req = ShenandoahAllocRequest::for_tlab(min_size, requested_size);
 843   HeapWord* res = allocate_memory(req);
 844   if (res != nullptr) {
 845     *actual_size = req.actual_size();
 846   } else {
 847     *actual_size = 0;
 848   }
 849   return res;
 850 }
 851 
 852 HeapWord* ShenandoahHeap::allocate_new_gclab(size_t min_size,
 853                                              size_t word_size,
 854                                              size_t* actual_size) {
 855   ShenandoahAllocRequest req = ShenandoahAllocRequest::for_gclab(min_size, word_size);
 856   HeapWord* res = allocate_memory(req);
 857   if (res != nullptr) {
 858     *actual_size = req.actual_size();
 859   } else {
 860     *actual_size = 0;
 861   }
 862   return res;
 863 }
 864 
 865 HeapWord* ShenandoahHeap::allocate_memory(ShenandoahAllocRequest& req) {
 866   intptr_t pacer_epoch = 0;
 867   bool in_new_region = false;
 868   HeapWord* result = nullptr;
 869 
 870   if (req.is_mutator_alloc()) {
 871     if (ShenandoahPacing) {
 872       pacer()->pace_for_alloc(req.size());
 873       pacer_epoch = pacer()->epoch();
 874     }
 875 
 876     if (!ShenandoahAllocFailureALot || !should_inject_alloc_failure()) {
 877       result = allocate_memory_under_lock(req, in_new_region);
 878     }
 879 
 880     // Check that gc overhead is not exceeded.
 881     //
 882     // Shenandoah will grind along for quite a while allocating one
 883     // object at a time using shared (non-tlab) allocations. This check
 884     // is testing that the GC overhead limit has not been exceeded.
 885     // This will notify the collector to start a cycle, but will raise
 886     // an OOME to the mutator if the last Full GCs have not made progress.
 887     if (result == nullptr && !req.is_lab_alloc() && get_gc_no_progress_count() > ShenandoahNoProgressThreshold) {
 888       control_thread()->handle_alloc_failure(req, false);
 889       return nullptr;
 890     }
 891 
 892     // Block until control thread reacted, then retry allocation.
 893     //
 894     // It might happen that one of the threads requesting allocation would unblock
 895     // way later after GC happened, only to fail the second allocation, because
 896     // other threads have already depleted the free storage. In this case, a better
 897     // strategy is to try again, as long as GC makes progress (or until at least
 898     // one full GC has completed).
 899     size_t original_count = shenandoah_policy()->full_gc_count();
 900     while (result == nullptr
 901         && (get_gc_no_progress_count() == 0 || original_count == shenandoah_policy()->full_gc_count())) {
 902       control_thread()->handle_alloc_failure(req);
 903       result = allocate_memory_under_lock(req, in_new_region);
 904     }
 905 
 906     if (log_is_enabled(Debug, gc, alloc)) {
 907       ResourceMark rm;
 908       log_debug(gc, alloc)("Thread: %s, Result: " PTR_FORMAT ", Request: %s, Size: " SIZE_FORMAT ", Original: " SIZE_FORMAT ", Latest: " SIZE_FORMAT,
 909                            Thread::current()->name(), p2i(result), req.type_string(), req.size(), original_count, get_gc_no_progress_count());
 910     }
 911   } else {
 912     assert(req.is_gc_alloc(), "Can only accept GC allocs here");
 913     result = allocate_memory_under_lock(req, in_new_region);
 914     // Do not call handle_alloc_failure() here, because we cannot block.
 915     // The allocation failure would be handled by the LRB slowpath with handle_alloc_failure_evac().
 916   }
 917 
 918   if (in_new_region) {
 919     control_thread()->notify_heap_changed();
 920   }
 921 
 922   if (result != nullptr) {
 923     size_t requested = req.size();
 924     size_t actual = req.actual_size();
 925 
 926     assert (req.is_lab_alloc() || (requested == actual),
 927             "Only LAB allocations are elastic: %s, requested = " SIZE_FORMAT ", actual = " SIZE_FORMAT,
 928             ShenandoahAllocRequest::alloc_type_to_string(req.type()), requested, actual);
 929 
 930     if (req.is_mutator_alloc()) {
 931       notify_mutator_alloc_words(actual, false);
 932 
 933       // If we requested more than we were granted, give the rest back to pacer.
 934       // This only matters if we are in the same pacing epoch: do not try to unpace
 935       // over the budget for the other phase.
 936       if (ShenandoahPacing && (pacer_epoch > 0) && (requested > actual)) {
 937         pacer()->unpace_for_alloc(pacer_epoch, requested - actual);
 938       }
 939     } else {
 940       increase_used(actual*HeapWordSize);
 941     }
 942   }
 943 
 944   return result;
 945 }
 946 
 947 HeapWord* ShenandoahHeap::allocate_memory_under_lock(ShenandoahAllocRequest& req, bool& in_new_region) {
 948   ShenandoahHeapLocker locker(lock());
 949   return _free_set->allocate(req, in_new_region);
 950 }
 951 
 952 HeapWord* ShenandoahHeap::mem_allocate(size_t size,
 953                                         bool*  gc_overhead_limit_was_exceeded) {
 954   ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared(size);
 955   return allocate_memory(req);
 956 }
 957 
 958 MetaWord* ShenandoahHeap::satisfy_failed_metadata_allocation(ClassLoaderData* loader_data,
 959                                                              size_t size,
 960                                                              Metaspace::MetadataType mdtype) {
 961   MetaWord* result;
 962 
 963   // Inform metaspace OOM to GC heuristics if class unloading is possible.
 964   if (heuristics()->can_unload_classes()) {
 965     ShenandoahHeuristics* h = heuristics();
 966     h->record_metaspace_oom();
 967   }
 968 
 969   // Expand and retry allocation
 970   result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype);
 971   if (result != nullptr) {
 972     return result;
 973   }
 974 
 975   // Start full GC
 976   collect(GCCause::_metadata_GC_clear_soft_refs);
 977 
 978   // Retry allocation
 979   result = loader_data->metaspace_non_null()->allocate(size, mdtype);
 980   if (result != nullptr) {
 981     return result;
 982   }
 983 
 984   // Expand and retry allocation
 985   result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype);
 986   if (result != nullptr) {
 987     return result;
 988   }
 989 
 990   // Out of memory
 991   return nullptr;
 992 }
 993 
 994 class ShenandoahConcurrentEvacuateRegionObjectClosure : public ObjectClosure {
 995 private:
 996   ShenandoahHeap* const _heap;
 997   Thread* const _thread;
 998 public:
 999   ShenandoahConcurrentEvacuateRegionObjectClosure(ShenandoahHeap* heap) :
1000     _heap(heap), _thread(Thread::current()) {}
1001 
1002   void do_object(oop p) {
1003     shenandoah_assert_marked(nullptr, p);
1004     if (!p->is_forwarded()) {
1005       _heap->evacuate_object(p, _thread);
1006     }
1007   }
1008 };
1009 
1010 class ShenandoahEvacuationTask : public WorkerTask {
1011 private:
1012   ShenandoahHeap* const _sh;
1013   ShenandoahCollectionSet* const _cs;
1014   bool _concurrent;
1015 public:
1016   ShenandoahEvacuationTask(ShenandoahHeap* sh,
1017                            ShenandoahCollectionSet* cs,
1018                            bool concurrent) :
1019     WorkerTask("Shenandoah Evacuation"),
1020     _sh(sh),
1021     _cs(cs),
1022     _concurrent(concurrent)
1023   {}
1024 
1025   void work(uint worker_id) {
1026     if (_concurrent) {
1027       ShenandoahConcurrentWorkerSession worker_session(worker_id);
1028       ShenandoahSuspendibleThreadSetJoiner stsj(ShenandoahSuspendibleWorkers);
1029       ShenandoahEvacOOMScope oom_evac_scope;
1030       do_work();
1031     } else {
1032       ShenandoahParallelWorkerSession worker_session(worker_id);
1033       ShenandoahEvacOOMScope oom_evac_scope;
1034       do_work();
1035     }
1036   }
1037 
1038 private:
1039   void do_work() {
1040     ShenandoahConcurrentEvacuateRegionObjectClosure cl(_sh);
1041     ShenandoahHeapRegion* r;
1042     while ((r =_cs->claim_next()) != nullptr) {
1043       assert(r->has_live(), "Region " SIZE_FORMAT " should have been reclaimed early", r->index());
1044       _sh->marked_object_iterate(r, &cl);
1045 
1046       if (ShenandoahPacing) {
1047         _sh->pacer()->report_evac(r->used() >> LogHeapWordSize);
1048       }
1049 
1050       if (_sh->check_cancelled_gc_and_yield(_concurrent)) {
1051         break;
1052       }
1053     }
1054   }
1055 };
1056 
1057 void ShenandoahHeap::evacuate_collection_set(bool concurrent) {
1058   ShenandoahEvacuationTask task(this, _collection_set, concurrent);
1059   workers()->run_task(&task);
1060 }
1061 
1062 void ShenandoahHeap::trash_cset_regions() {
1063   ShenandoahHeapLocker locker(lock());
1064 
1065   ShenandoahCollectionSet* set = collection_set();
1066   ShenandoahHeapRegion* r;
1067   set->clear_current_index();
1068   while ((r = set->next()) != nullptr) {
1069     r->make_trash();
1070   }
1071   collection_set()->clear();
1072 }
1073 
1074 void ShenandoahHeap::print_heap_regions_on(outputStream* st) const {
1075   st->print_cr("Heap Regions:");
1076   st->print_cr("Region state: EU=empty-uncommitted, EC=empty-committed, R=regular, H=humongous start, HP=pinned humongous start");
1077   st->print_cr("              HC=humongous continuation, CS=collection set, TR=trash, P=pinned, CSP=pinned collection set");
1078   st->print_cr("BTE=bottom/top/end, TAMS=top-at-mark-start");
1079   st->print_cr("UWM=update watermark, U=used");
1080   st->print_cr("T=TLAB allocs, G=GCLAB allocs");
1081   st->print_cr("S=shared allocs, L=live data");
1082   st->print_cr("CP=critical pins");
1083 
1084   for (size_t i = 0; i < num_regions(); i++) {
1085     get_region(i)->print_on(st);
1086   }
1087 }
1088 
1089 void ShenandoahHeap::trash_humongous_region_at(ShenandoahHeapRegion* start) {
1090   assert(start->is_humongous_start(), "reclaim regions starting with the first one");
1091 
1092   oop humongous_obj = cast_to_oop(start->bottom());
1093   size_t size = humongous_obj->size();
1094   size_t required_regions = ShenandoahHeapRegion::required_regions(size * HeapWordSize);
1095   size_t index = start->index() + required_regions - 1;
1096 
1097   assert(!start->has_live(), "liveness must be zero");
1098 
1099   for(size_t i = 0; i < required_regions; i++) {
1100     // Reclaim from tail. Otherwise, assertion fails when printing region to trace log,
1101     // as it expects that every region belongs to a humongous region starting with a humongous start region.
1102     ShenandoahHeapRegion* region = get_region(index --);
1103 
1104     assert(region->is_humongous(), "expect correct humongous start or continuation");
1105     assert(!region->is_cset(), "Humongous region should not be in collection set");
1106 
1107     region->make_trash_immediate();
1108   }
1109 }
1110 
1111 class ShenandoahCheckCleanGCLABClosure : public ThreadClosure {
1112 public:
1113   ShenandoahCheckCleanGCLABClosure() {}
1114   void do_thread(Thread* thread) {
1115     PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
1116     assert(gclab != nullptr, "GCLAB should be initialized for %s", thread->name());
1117     assert(gclab->words_remaining() == 0, "GCLAB should not need retirement");
1118   }
1119 };
1120 
1121 class ShenandoahRetireGCLABClosure : public ThreadClosure {
1122 private:
1123   bool const _resize;
1124 public:
1125   ShenandoahRetireGCLABClosure(bool resize) : _resize(resize) {}
1126   void do_thread(Thread* thread) {
1127     PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
1128     assert(gclab != nullptr, "GCLAB should be initialized for %s", thread->name());
1129     gclab->retire();
1130     if (_resize && ShenandoahThreadLocalData::gclab_size(thread) > 0) {
1131       ShenandoahThreadLocalData::set_gclab_size(thread, 0);
1132     }
1133   }
1134 };
1135 
1136 void ShenandoahHeap::labs_make_parsable() {
1137   assert(UseTLAB, "Only call with UseTLAB");
1138 
1139   ShenandoahRetireGCLABClosure cl(false);
1140 
1141   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1142     ThreadLocalAllocBuffer& tlab = t->tlab();
1143     tlab.make_parsable();
1144     cl.do_thread(t);
1145   }
1146 
1147   workers()->threads_do(&cl);
1148 }
1149 
1150 void ShenandoahHeap::tlabs_retire(bool resize) {
1151   assert(UseTLAB, "Only call with UseTLAB");
1152   assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled");
1153 
1154   ThreadLocalAllocStats stats;
1155 
1156   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1157     ThreadLocalAllocBuffer& tlab = t->tlab();
1158     tlab.retire(&stats);
1159     if (resize) {
1160       tlab.resize();
1161     }
1162   }
1163 
1164   stats.publish();
1165 
1166 #ifdef ASSERT
1167   ShenandoahCheckCleanGCLABClosure cl;
1168   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1169     cl.do_thread(t);
1170   }
1171   workers()->threads_do(&cl);
1172 #endif
1173 }
1174 
1175 void ShenandoahHeap::gclabs_retire(bool resize) {
1176   assert(UseTLAB, "Only call with UseTLAB");
1177   assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled");
1178 
1179   ShenandoahRetireGCLABClosure cl(resize);
1180   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1181     cl.do_thread(t);
1182   }
1183   workers()->threads_do(&cl);
1184 
1185   if (safepoint_workers() != nullptr) {
1186     safepoint_workers()->threads_do(&cl);
1187   }
1188 }
1189 
1190 // Returns size in bytes
1191 size_t ShenandoahHeap::unsafe_max_tlab_alloc(Thread *thread) const {
1192   if (ShenandoahElasticTLAB) {
1193     // With Elastic TLABs, return the max allowed size, and let the allocation path
1194     // figure out the safe size for current allocation.
1195     return ShenandoahHeapRegion::max_tlab_size_bytes();
1196   } else {
1197     return MIN2(_free_set->unsafe_peek_free(), ShenandoahHeapRegion::max_tlab_size_bytes());
1198   }
1199 }
1200 
1201 size_t ShenandoahHeap::max_tlab_size() const {
1202   // Returns size in words
1203   return ShenandoahHeapRegion::max_tlab_size_words();
1204 }
1205 
1206 void ShenandoahHeap::collect(GCCause::Cause cause) {
1207   control_thread()->request_gc(cause);
1208 }
1209 
1210 void ShenandoahHeap::do_full_collection(bool clear_all_soft_refs) {
1211   //assert(false, "Shouldn't need to do full collections");
1212 }
1213 
1214 HeapWord* ShenandoahHeap::block_start(const void* addr) const {
1215   ShenandoahHeapRegion* r = heap_region_containing(addr);
1216   if (r != nullptr) {
1217     return r->block_start(addr);
1218   }
1219   return nullptr;
1220 }
1221 
1222 bool ShenandoahHeap::block_is_obj(const HeapWord* addr) const {
1223   ShenandoahHeapRegion* r = heap_region_containing(addr);
1224   return r->block_is_obj(addr);
1225 }
1226 
1227 bool ShenandoahHeap::print_location(outputStream* st, void* addr) const {
1228   return BlockLocationPrinter<ShenandoahHeap>::print_location(st, addr);
1229 }
1230 
1231 void ShenandoahHeap::prepare_for_verify() {
1232   if (SafepointSynchronize::is_at_safepoint() && UseTLAB) {
1233     labs_make_parsable();
1234   }
1235 }
1236 
1237 void ShenandoahHeap::gc_threads_do(ThreadClosure* tcl) const {
1238   tcl->do_thread(_control_thread);
1239   workers()->threads_do(tcl);
1240   if (_safepoint_workers != nullptr) {
1241     _safepoint_workers->threads_do(tcl);
1242   }
1243 }
1244 
1245 void ShenandoahHeap::print_tracing_info() const {
1246   LogTarget(Info, gc, stats) lt;
1247   if (lt.is_enabled()) {
1248     ResourceMark rm;
1249     LogStream ls(lt);
1250 
1251     phase_timings()->print_global_on(&ls);
1252 
1253     ls.cr();
1254     ls.cr();
1255 
1256     shenandoah_policy()->print_gc_stats(&ls);
1257 
1258     ls.cr();
1259     ls.cr();
1260   }
1261 }
1262 
1263 void ShenandoahHeap::verify(VerifyOption vo) {
1264   if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) {
1265     if (ShenandoahVerify) {
1266       verifier()->verify_generic(vo);
1267     } else {
1268       // TODO: Consider allocating verification bitmaps on demand,
1269       // and turn this on unconditionally.
1270     }
1271   }
1272 }
1273 size_t ShenandoahHeap::tlab_capacity(Thread *thr) const {
1274   return _free_set->capacity();
1275 }
1276 
1277 class ObjectIterateScanRootClosure : public BasicOopIterateClosure {
1278 private:
1279   MarkBitMap* _bitmap;
1280   ShenandoahScanObjectStack* _oop_stack;
1281   ShenandoahHeap* const _heap;
1282   ShenandoahMarkingContext* const _marking_context;
1283 
1284   template <class T>
1285   void do_oop_work(T* p) {
1286     T o = RawAccess<>::oop_load(p);
1287     if (!CompressedOops::is_null(o)) {
1288       oop obj = CompressedOops::decode_not_null(o);
1289       if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) {
1290         // There may be dead oops in weak roots in concurrent root phase, do not touch them.
1291         return;
1292       }
1293       obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj);
1294 
1295       assert(oopDesc::is_oop(obj), "must be a valid oop");
1296       if (!_bitmap->is_marked(obj)) {
1297         _bitmap->mark(obj);
1298         _oop_stack->push(obj);
1299       }
1300     }
1301   }
1302 public:
1303   ObjectIterateScanRootClosure(MarkBitMap* bitmap, ShenandoahScanObjectStack* oop_stack) :
1304     _bitmap(bitmap), _oop_stack(oop_stack), _heap(ShenandoahHeap::heap()),
1305     _marking_context(_heap->marking_context()) {}
1306   void do_oop(oop* p)       { do_oop_work(p); }
1307   void do_oop(narrowOop* p) { do_oop_work(p); }
1308 };
1309 
1310 /*
1311  * This is public API, used in preparation of object_iterate().
1312  * Since we don't do linear scan of heap in object_iterate() (see comment below), we don't
1313  * need to make the heap parsable. For Shenandoah-internal linear heap scans that we can
1314  * control, we call SH::tlabs_retire, SH::gclabs_retire.
1315  */
1316 void ShenandoahHeap::ensure_parsability(bool retire_tlabs) {
1317   // No-op.
1318 }
1319 
1320 /*
1321  * Iterates objects in the heap. This is public API, used for, e.g., heap dumping.
1322  *
1323  * We cannot safely iterate objects by doing a linear scan at random points in time. Linear
1324  * scanning needs to deal with dead objects, which may have dead Klass* pointers (e.g.
1325  * calling oopDesc::size() would crash) or dangling reference fields (crashes) etc. Linear
1326  * scanning therefore depends on having a valid marking bitmap to support it. However, we only
1327  * have a valid marking bitmap after successful marking. In particular, we *don't* have a valid
1328  * marking bitmap during marking, after aborted marking or during/after cleanup (when we just
1329  * wiped the bitmap in preparation for next marking).
1330  *
1331  * For all those reasons, we implement object iteration as a single marking traversal, reporting
1332  * objects as we mark+traverse through the heap, starting from GC roots. JVMTI IterateThroughHeap
1333  * is allowed to report dead objects, but is not required to do so.
1334  */
1335 void ShenandoahHeap::object_iterate(ObjectClosure* cl) {
1336   // Reset bitmap
1337   if (!prepare_aux_bitmap_for_iteration())
1338     return;
1339 
1340   ShenandoahScanObjectStack oop_stack;
1341   ObjectIterateScanRootClosure oops(&_aux_bit_map, &oop_stack);
1342   // Seed the stack with root scan
1343   scan_roots_for_iteration(&oop_stack, &oops);
1344 
1345   // Work through the oop stack to traverse heap
1346   while (! oop_stack.is_empty()) {
1347     oop obj = oop_stack.pop();
1348     assert(oopDesc::is_oop(obj), "must be a valid oop");
1349     cl->do_object(obj);
1350     obj->oop_iterate(&oops);
1351   }
1352 
1353   assert(oop_stack.is_empty(), "should be empty");
1354   // Reclaim bitmap
1355   reclaim_aux_bitmap_for_iteration();
1356 }
1357 
1358 bool ShenandoahHeap::prepare_aux_bitmap_for_iteration() {
1359   assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints");
1360 
1361   if (!_aux_bitmap_region_special && !os::commit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size(), false)) {
1362     log_warning(gc)("Could not commit native memory for auxiliary marking bitmap for heap iteration");
1363     return false;
1364   }
1365   // Reset bitmap
1366   _aux_bit_map.clear();
1367   return true;
1368 }
1369 
1370 void ShenandoahHeap::scan_roots_for_iteration(ShenandoahScanObjectStack* oop_stack, ObjectIterateScanRootClosure* oops) {
1371   // Process GC roots according to current GC cycle
1372   // This populates the work stack with initial objects
1373   // It is important to relinquish the associated locks before diving
1374   // into heap dumper
1375   uint n_workers = safepoint_workers() != nullptr ? safepoint_workers()->active_workers() : 1;
1376   ShenandoahHeapIterationRootScanner rp(n_workers);
1377   rp.roots_do(oops);
1378 }
1379 
1380 void ShenandoahHeap::reclaim_aux_bitmap_for_iteration() {
1381   if (!_aux_bitmap_region_special && !os::uncommit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size())) {
1382     log_warning(gc)("Could not uncommit native memory for auxiliary marking bitmap for heap iteration");
1383   }
1384 }
1385 
1386 // Closure for parallelly iterate objects
1387 class ShenandoahObjectIterateParScanClosure : public BasicOopIterateClosure {
1388 private:
1389   MarkBitMap* _bitmap;
1390   ShenandoahObjToScanQueue* _queue;
1391   ShenandoahHeap* const _heap;
1392   ShenandoahMarkingContext* const _marking_context;
1393 
1394   template <class T>
1395   void do_oop_work(T* p) {
1396     T o = RawAccess<>::oop_load(p);
1397     if (!CompressedOops::is_null(o)) {
1398       oop obj = CompressedOops::decode_not_null(o);
1399       if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) {
1400         // There may be dead oops in weak roots in concurrent root phase, do not touch them.
1401         return;
1402       }
1403       obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj);
1404 
1405       assert(oopDesc::is_oop(obj), "Must be a valid oop");
1406       if (_bitmap->par_mark(obj)) {
1407         _queue->push(ShenandoahMarkTask(obj));
1408       }
1409     }
1410   }
1411 public:
1412   ShenandoahObjectIterateParScanClosure(MarkBitMap* bitmap, ShenandoahObjToScanQueue* q) :
1413     _bitmap(bitmap), _queue(q), _heap(ShenandoahHeap::heap()),
1414     _marking_context(_heap->marking_context()) {}
1415   void do_oop(oop* p)       { do_oop_work(p); }
1416   void do_oop(narrowOop* p) { do_oop_work(p); }
1417 };
1418 
1419 // Object iterator for parallel heap iteraion.
1420 // The root scanning phase happenes in construction as a preparation of
1421 // parallel marking queues.
1422 // Every worker processes it's own marking queue. work-stealing is used
1423 // to balance workload.
1424 class ShenandoahParallelObjectIterator : public ParallelObjectIteratorImpl {
1425 private:
1426   uint                         _num_workers;
1427   bool                         _init_ready;
1428   MarkBitMap*                  _aux_bit_map;
1429   ShenandoahHeap*              _heap;
1430   ShenandoahScanObjectStack    _roots_stack; // global roots stack
1431   ShenandoahObjToScanQueueSet* _task_queues;
1432 public:
1433   ShenandoahParallelObjectIterator(uint num_workers, MarkBitMap* bitmap) :
1434         _num_workers(num_workers),
1435         _init_ready(false),
1436         _aux_bit_map(bitmap),
1437         _heap(ShenandoahHeap::heap()) {
1438     // Initialize bitmap
1439     _init_ready = _heap->prepare_aux_bitmap_for_iteration();
1440     if (!_init_ready) {
1441       return;
1442     }
1443 
1444     ObjectIterateScanRootClosure oops(_aux_bit_map, &_roots_stack);
1445     _heap->scan_roots_for_iteration(&_roots_stack, &oops);
1446 
1447     _init_ready = prepare_worker_queues();
1448   }
1449 
1450   ~ShenandoahParallelObjectIterator() {
1451     // Reclaim bitmap
1452     _heap->reclaim_aux_bitmap_for_iteration();
1453     // Reclaim queue for workers
1454     if (_task_queues!= nullptr) {
1455       for (uint i = 0; i < _num_workers; ++i) {
1456         ShenandoahObjToScanQueue* q = _task_queues->queue(i);
1457         if (q != nullptr) {
1458           delete q;
1459           _task_queues->register_queue(i, nullptr);
1460         }
1461       }
1462       delete _task_queues;
1463       _task_queues = nullptr;
1464     }
1465   }
1466 
1467   virtual void object_iterate(ObjectClosure* cl, uint worker_id) {
1468     if (_init_ready) {
1469       object_iterate_parallel(cl, worker_id, _task_queues);
1470     }
1471   }
1472 
1473 private:
1474   // Divide global root_stack into worker queues
1475   bool prepare_worker_queues() {
1476     _task_queues = new ShenandoahObjToScanQueueSet((int) _num_workers);
1477     // Initialize queues for every workers
1478     for (uint i = 0; i < _num_workers; ++i) {
1479       ShenandoahObjToScanQueue* task_queue = new ShenandoahObjToScanQueue();
1480       _task_queues->register_queue(i, task_queue);
1481     }
1482     // Divide roots among the workers. Assume that object referencing distribution
1483     // is related with root kind, use round-robin to make every worker have same chance
1484     // to process every kind of roots
1485     size_t roots_num = _roots_stack.size();
1486     if (roots_num == 0) {
1487       // No work to do
1488       return false;
1489     }
1490 
1491     for (uint j = 0; j < roots_num; j++) {
1492       uint stack_id = j % _num_workers;
1493       oop obj = _roots_stack.pop();
1494       _task_queues->queue(stack_id)->push(ShenandoahMarkTask(obj));
1495     }
1496     return true;
1497   }
1498 
1499   void object_iterate_parallel(ObjectClosure* cl,
1500                                uint worker_id,
1501                                ShenandoahObjToScanQueueSet* queue_set) {
1502     assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints");
1503     assert(queue_set != nullptr, "task queue must not be null");
1504 
1505     ShenandoahObjToScanQueue* q = queue_set->queue(worker_id);
1506     assert(q != nullptr, "object iterate queue must not be null");
1507 
1508     ShenandoahMarkTask t;
1509     ShenandoahObjectIterateParScanClosure oops(_aux_bit_map, q);
1510 
1511     // Work through the queue to traverse heap.
1512     // Steal when there is no task in queue.
1513     while (q->pop(t) || queue_set->steal(worker_id, t)) {
1514       oop obj = t.obj();
1515       assert(oopDesc::is_oop(obj), "must be a valid oop");
1516       cl->do_object(obj);
1517       obj->oop_iterate(&oops);
1518     }
1519     assert(q->is_empty(), "should be empty");
1520   }
1521 };
1522 
1523 ParallelObjectIteratorImpl* ShenandoahHeap::parallel_object_iterator(uint workers) {
1524   return new ShenandoahParallelObjectIterator(workers, &_aux_bit_map);
1525 }
1526 
1527 // Keep alive an object that was loaded with AS_NO_KEEPALIVE.
1528 void ShenandoahHeap::keep_alive(oop obj) {
1529   if (is_concurrent_mark_in_progress() && (obj != nullptr)) {
1530     ShenandoahBarrierSet::barrier_set()->enqueue(obj);
1531   }
1532 }
1533 
1534 void ShenandoahHeap::heap_region_iterate(ShenandoahHeapRegionClosure* blk) const {
1535   for (size_t i = 0; i < num_regions(); i++) {
1536     ShenandoahHeapRegion* current = get_region(i);
1537     blk->heap_region_do(current);
1538   }
1539 }
1540 
1541 class ShenandoahParallelHeapRegionTask : public WorkerTask {
1542 private:
1543   ShenandoahHeap* const _heap;
1544   ShenandoahHeapRegionClosure* const _blk;
1545 
1546   shenandoah_padding(0);
1547   volatile size_t _index;
1548   shenandoah_padding(1);
1549 
1550 public:
1551   ShenandoahParallelHeapRegionTask(ShenandoahHeapRegionClosure* blk) :
1552           WorkerTask("Shenandoah Parallel Region Operation"),
1553           _heap(ShenandoahHeap::heap()), _blk(blk), _index(0) {}
1554 
1555   void work(uint worker_id) {
1556     ShenandoahParallelWorkerSession worker_session(worker_id);
1557     size_t stride = ShenandoahParallelRegionStride;
1558 
1559     size_t max = _heap->num_regions();
1560     while (Atomic::load(&_index) < max) {
1561       size_t cur = Atomic::fetch_then_add(&_index, stride, memory_order_relaxed);
1562       size_t start = cur;
1563       size_t end = MIN2(cur + stride, max);
1564       if (start >= max) break;
1565 
1566       for (size_t i = cur; i < end; i++) {
1567         ShenandoahHeapRegion* current = _heap->get_region(i);
1568         _blk->heap_region_do(current);
1569       }
1570     }
1571   }
1572 };
1573 
1574 void ShenandoahHeap::parallel_heap_region_iterate(ShenandoahHeapRegionClosure* blk) const {
1575   assert(blk->is_thread_safe(), "Only thread-safe closures here");
1576   if (num_regions() > ShenandoahParallelRegionStride) {
1577     ShenandoahParallelHeapRegionTask task(blk);
1578     workers()->run_task(&task);
1579   } else {
1580     heap_region_iterate(blk);
1581   }
1582 }
1583 
1584 class ShenandoahInitMarkUpdateRegionStateClosure : public ShenandoahHeapRegionClosure {
1585 private:
1586   ShenandoahMarkingContext* const _ctx;
1587 public:
1588   ShenandoahInitMarkUpdateRegionStateClosure() : _ctx(ShenandoahHeap::heap()->marking_context()) {}
1589 
1590   void heap_region_do(ShenandoahHeapRegion* r) {
1591     assert(!r->has_live(), "Region " SIZE_FORMAT " should have no live data", r->index());
1592     if (r->is_active()) {
1593       // Check if region needs updating its TAMS. We have updated it already during concurrent
1594       // reset, so it is very likely we don't need to do another write here.
1595       if (_ctx->top_at_mark_start(r) != r->top()) {
1596         _ctx->capture_top_at_mark_start(r);
1597       }
1598     } else {
1599       assert(_ctx->top_at_mark_start(r) == r->top(),
1600              "Region " SIZE_FORMAT " should already have correct TAMS", r->index());
1601     }
1602   }
1603 
1604   bool is_thread_safe() { return true; }
1605 };
1606 
1607 class ShenandoahRendezvousClosure : public HandshakeClosure {
1608 public:
1609   inline ShenandoahRendezvousClosure() : HandshakeClosure("ShenandoahRendezvous") {}
1610   inline void do_thread(Thread* thread) {}
1611 };
1612 
1613 void ShenandoahHeap::rendezvous_threads() {
1614   ShenandoahRendezvousClosure cl;
1615   Handshake::execute(&cl);
1616 }
1617 
1618 void ShenandoahHeap::recycle_trash() {
1619   free_set()->recycle_trash();
1620 }
1621 
1622 class ShenandoahResetUpdateRegionStateClosure : public ShenandoahHeapRegionClosure {
1623 private:
1624   ShenandoahMarkingContext* const _ctx;
1625 public:
1626   ShenandoahResetUpdateRegionStateClosure() : _ctx(ShenandoahHeap::heap()->marking_context()) {}
1627 
1628   void heap_region_do(ShenandoahHeapRegion* r) {
1629     if (r->is_active()) {
1630       // Reset live data and set TAMS optimistically. We would recheck these under the pause
1631       // anyway to capture any updates that happened since now.
1632       r->clear_live_data();
1633       _ctx->capture_top_at_mark_start(r);
1634     }
1635   }
1636 
1637   bool is_thread_safe() { return true; }
1638 };
1639 
1640 void ShenandoahHeap::prepare_gc() {
1641   reset_mark_bitmap();
1642 
1643   ShenandoahResetUpdateRegionStateClosure cl;
1644   parallel_heap_region_iterate(&cl);
1645 }
1646 
1647 class ShenandoahFinalMarkUpdateRegionStateClosure : public ShenandoahHeapRegionClosure {
1648 private:
1649   ShenandoahMarkingContext* const _ctx;
1650   ShenandoahHeapLock* const _lock;
1651 
1652 public:
1653   ShenandoahFinalMarkUpdateRegionStateClosure() :
1654     _ctx(ShenandoahHeap::heap()->complete_marking_context()), _lock(ShenandoahHeap::heap()->lock()) {}
1655 
1656   void heap_region_do(ShenandoahHeapRegion* r) {
1657     if (r->is_active()) {
1658       // All allocations past TAMS are implicitly live, adjust the region data.
1659       // Bitmaps/TAMS are swapped at this point, so we need to poll complete bitmap.
1660       HeapWord *tams = _ctx->top_at_mark_start(r);
1661       HeapWord *top = r->top();
1662       if (top > tams) {
1663         r->increase_live_data_alloc_words(pointer_delta(top, tams));
1664       }
1665 
1666       // We are about to select the collection set, make sure it knows about
1667       // current pinning status. Also, this allows trashing more regions that
1668       // now have their pinning status dropped.
1669       if (r->is_pinned()) {
1670         if (r->pin_count() == 0) {
1671           ShenandoahHeapLocker locker(_lock);
1672           r->make_unpinned();
1673         }
1674       } else {
1675         if (r->pin_count() > 0) {
1676           ShenandoahHeapLocker locker(_lock);
1677           r->make_pinned();
1678         }
1679       }
1680 
1681       // Remember limit for updating refs. It's guaranteed that we get no
1682       // from-space-refs written from here on.
1683       r->set_update_watermark_at_safepoint(r->top());
1684     } else {
1685       assert(!r->has_live(), "Region " SIZE_FORMAT " should have no live data", r->index());
1686       assert(_ctx->top_at_mark_start(r) == r->top(),
1687              "Region " SIZE_FORMAT " should have correct TAMS", r->index());
1688     }
1689   }
1690 
1691   bool is_thread_safe() { return true; }
1692 };
1693 
1694 void ShenandoahHeap::prepare_regions_and_collection_set(bool concurrent) {
1695   assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC");
1696   {
1697     ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::final_update_region_states :
1698                                          ShenandoahPhaseTimings::degen_gc_final_update_region_states);
1699     ShenandoahFinalMarkUpdateRegionStateClosure cl;
1700     parallel_heap_region_iterate(&cl);
1701 
1702     assert_pinned_region_status();
1703   }
1704 
1705   {
1706     ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::choose_cset :
1707                                          ShenandoahPhaseTimings::degen_gc_choose_cset);
1708     ShenandoahHeapLocker locker(lock());
1709     _collection_set->clear();
1710     heuristics()->choose_collection_set(_collection_set);
1711   }
1712 
1713   {
1714     ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::final_rebuild_freeset :
1715                                          ShenandoahPhaseTimings::degen_gc_final_rebuild_freeset);
1716     ShenandoahHeapLocker locker(lock());
1717     _free_set->rebuild();
1718   }
1719 }
1720 
1721 void ShenandoahHeap::do_class_unloading() {
1722   _unloader.unload();
1723 }
1724 
1725 void ShenandoahHeap::stw_weak_refs(bool full_gc) {
1726   // Weak refs processing
1727   ShenandoahPhaseTimings::Phase phase = full_gc ? ShenandoahPhaseTimings::full_gc_weakrefs
1728                                                 : ShenandoahPhaseTimings::degen_gc_weakrefs;
1729   ShenandoahTimingsTracker t(phase);
1730   ShenandoahGCWorkerPhase worker_phase(phase);
1731   ref_processor()->process_references(phase, workers(), false /* concurrent */);
1732 }
1733 
1734 void ShenandoahHeap::prepare_update_heap_references(bool concurrent) {
1735   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "must be at safepoint");
1736 
1737   // Evacuation is over, no GCLABs are needed anymore. GCLABs are under URWM, so we need to
1738   // make them parsable for update code to work correctly. Plus, we can compute new sizes
1739   // for future GCLABs here.
1740   if (UseTLAB) {
1741     ShenandoahGCPhase phase(concurrent ?
1742                             ShenandoahPhaseTimings::init_update_refs_manage_gclabs :
1743                             ShenandoahPhaseTimings::degen_gc_init_update_refs_manage_gclabs);
1744     gclabs_retire(ResizeTLAB);
1745   }
1746 
1747   _update_refs_iterator.reset();
1748 }
1749 
1750 void ShenandoahHeap::set_gc_state_all_threads(char state) {
1751   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1752     ShenandoahThreadLocalData::set_gc_state(t, state);
1753   }
1754 }
1755 
1756 void ShenandoahHeap::set_gc_state_mask(uint mask, bool value) {
1757   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Should really be Shenandoah safepoint");
1758   _gc_state.set_cond(mask, value);
1759   set_gc_state_all_threads(_gc_state.raw_value());
1760 }
1761 
1762 void ShenandoahHeap::set_concurrent_mark_in_progress(bool in_progress) {
1763   assert(!has_forwarded_objects(), "Not expected before/after mark phase");
1764   set_gc_state_mask(MARKING, in_progress);
1765   ShenandoahBarrierSet::satb_mark_queue_set().set_active_all_threads(in_progress, !in_progress);
1766 }
1767 
1768 void ShenandoahHeap::set_evacuation_in_progress(bool in_progress) {
1769   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Only call this at safepoint");
1770   set_gc_state_mask(EVACUATION, in_progress);
1771 }
1772 
1773 void ShenandoahHeap::set_concurrent_strong_root_in_progress(bool in_progress) {
1774   if (in_progress) {
1775     _concurrent_strong_root_in_progress.set();
1776   } else {
1777     _concurrent_strong_root_in_progress.unset();
1778   }
1779 }
1780 
1781 void ShenandoahHeap::set_concurrent_weak_root_in_progress(bool cond) {
1782   set_gc_state_mask(WEAK_ROOTS, cond);
1783 }
1784 
1785 GCTracer* ShenandoahHeap::tracer() {
1786   return shenandoah_policy()->tracer();
1787 }
1788 
1789 size_t ShenandoahHeap::tlab_used(Thread* thread) const {
1790   return _free_set->used();
1791 }
1792 
1793 bool ShenandoahHeap::try_cancel_gc() {
1794   jbyte prev = _cancelled_gc.cmpxchg(CANCELLED, CANCELLABLE);
1795   return prev == CANCELLABLE;
1796 }
1797 
1798 void ShenandoahHeap::cancel_gc(GCCause::Cause cause) {
1799   if (try_cancel_gc()) {
1800     FormatBuffer<> msg("Cancelling GC: %s", GCCause::to_string(cause));
1801     log_info(gc)("%s", msg.buffer());
1802     Events::log(Thread::current(), "%s", msg.buffer());
1803   }
1804 }
1805 
1806 uint ShenandoahHeap::max_workers() {
1807   return _max_workers;
1808 }
1809 
1810 void ShenandoahHeap::stop() {
1811   // The shutdown sequence should be able to terminate when GC is running.
1812 
1813   // Step 0. Notify policy to disable event recording.
1814   _shenandoah_policy->record_shutdown();
1815 
1816   // Step 1. Notify control thread that we are in shutdown.
1817   // Note that we cannot do that with stop(), because stop() is blocking and waits for the actual shutdown.
1818   // Doing stop() here would wait for the normal GC cycle to complete, never falling through to cancel below.
1819   control_thread()->prepare_for_graceful_shutdown();
1820 
1821   // Step 2. Notify GC workers that we are cancelling GC.
1822   cancel_gc(GCCause::_shenandoah_stop_vm);
1823 
1824   // Step 3. Wait until GC worker exits normally.
1825   control_thread()->stop();
1826 }
1827 
1828 void ShenandoahHeap::stw_unload_classes(bool full_gc) {
1829   if (!unload_classes()) return;
1830   // Unload classes and purge SystemDictionary.
1831   {
1832     ShenandoahPhaseTimings::Phase phase = full_gc ?
1833                                           ShenandoahPhaseTimings::full_gc_purge_class_unload :
1834                                           ShenandoahPhaseTimings::degen_gc_purge_class_unload;
1835     ShenandoahIsAliveSelector is_alive;
1836     {
1837       CodeCache::UnlinkingScope scope(is_alive.is_alive_closure());
1838       ShenandoahGCPhase gc_phase(phase);
1839       ShenandoahGCWorkerPhase worker_phase(phase);
1840       bool unloading_occurred = SystemDictionary::do_unloading(gc_timer());
1841 
1842       uint num_workers = _workers->active_workers();
1843       ShenandoahClassUnloadingTask unlink_task(phase, num_workers, unloading_occurred);
1844       _workers->run_task(&unlink_task);
1845     }
1846     // Release unloaded nmethods's memory.
1847     CodeCache::flush_unlinked_nmethods();
1848   }
1849 
1850   {
1851     ShenandoahGCPhase phase(full_gc ?
1852                             ShenandoahPhaseTimings::full_gc_purge_cldg :
1853                             ShenandoahPhaseTimings::degen_gc_purge_cldg);
1854     ClassLoaderDataGraph::purge(/*at_safepoint*/true);
1855   }
1856   // Resize and verify metaspace
1857   MetaspaceGC::compute_new_size();
1858   DEBUG_ONLY(MetaspaceUtils::verify();)
1859 }
1860 
1861 // Weak roots are either pre-evacuated (final mark) or updated (final updaterefs),
1862 // so they should not have forwarded oops.
1863 // However, we do need to "null" dead oops in the roots, if can not be done
1864 // in concurrent cycles.
1865 void ShenandoahHeap::stw_process_weak_roots(bool full_gc) {
1866   uint num_workers = _workers->active_workers();
1867   ShenandoahPhaseTimings::Phase timing_phase = full_gc ?
1868                                                ShenandoahPhaseTimings::full_gc_purge_weak_par :
1869                                                ShenandoahPhaseTimings::degen_gc_purge_weak_par;
1870   ShenandoahGCPhase phase(timing_phase);
1871   ShenandoahGCWorkerPhase worker_phase(timing_phase);
1872   // Cleanup weak roots
1873   if (has_forwarded_objects()) {
1874     ShenandoahForwardedIsAliveClosure is_alive;
1875     ShenandoahUpdateRefsClosure keep_alive;
1876     ShenandoahParallelWeakRootsCleaningTask<ShenandoahForwardedIsAliveClosure, ShenandoahUpdateRefsClosure>
1877       cleaning_task(timing_phase, &is_alive, &keep_alive, num_workers);
1878     _workers->run_task(&cleaning_task);
1879   } else {
1880     ShenandoahIsAliveClosure is_alive;
1881 #ifdef ASSERT
1882     ShenandoahAssertNotForwardedClosure verify_cl;
1883     ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, ShenandoahAssertNotForwardedClosure>
1884       cleaning_task(timing_phase, &is_alive, &verify_cl, num_workers);
1885 #else
1886     ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, DoNothingClosure>
1887       cleaning_task(timing_phase, &is_alive, &do_nothing_cl, num_workers);
1888 #endif
1889     _workers->run_task(&cleaning_task);
1890   }
1891 }
1892 
1893 void ShenandoahHeap::parallel_cleaning(bool full_gc) {
1894   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
1895   assert(is_stw_gc_in_progress(), "Only for Degenerated and Full GC");
1896   ShenandoahGCPhase phase(full_gc ?
1897                           ShenandoahPhaseTimings::full_gc_purge :
1898                           ShenandoahPhaseTimings::degen_gc_purge);
1899   stw_weak_refs(full_gc);
1900   stw_process_weak_roots(full_gc);
1901   stw_unload_classes(full_gc);
1902 }
1903 
1904 void ShenandoahHeap::set_has_forwarded_objects(bool cond) {
1905   set_gc_state_mask(HAS_FORWARDED, cond);
1906 }
1907 
1908 void ShenandoahHeap::set_unload_classes(bool uc) {
1909   _unload_classes.set_cond(uc);
1910 }
1911 
1912 bool ShenandoahHeap::unload_classes() const {
1913   return _unload_classes.is_set();
1914 }
1915 
1916 address ShenandoahHeap::in_cset_fast_test_addr() {
1917   ShenandoahHeap* heap = ShenandoahHeap::heap();
1918   assert(heap->collection_set() != nullptr, "Sanity");
1919   return (address) heap->collection_set()->biased_map_address();
1920 }
1921 
1922 size_t ShenandoahHeap::bytes_allocated_since_gc_start() const {
1923   return Atomic::load(&_bytes_allocated_since_gc_start);
1924 }
1925 
1926 void ShenandoahHeap::reset_bytes_allocated_since_gc_start() {
1927   Atomic::store(&_bytes_allocated_since_gc_start, (size_t)0);
1928 }
1929 
1930 void ShenandoahHeap::set_degenerated_gc_in_progress(bool in_progress) {
1931   _degenerated_gc_in_progress.set_cond(in_progress);
1932 }
1933 
1934 void ShenandoahHeap::set_full_gc_in_progress(bool in_progress) {
1935   _full_gc_in_progress.set_cond(in_progress);
1936 }
1937 
1938 void ShenandoahHeap::set_full_gc_move_in_progress(bool in_progress) {
1939   assert (is_full_gc_in_progress(), "should be");
1940   _full_gc_move_in_progress.set_cond(in_progress);
1941 }
1942 
1943 void ShenandoahHeap::set_update_refs_in_progress(bool in_progress) {
1944   set_gc_state_mask(UPDATEREFS, in_progress);
1945 }
1946 
1947 void ShenandoahHeap::register_nmethod(nmethod* nm) {
1948   ShenandoahCodeRoots::register_nmethod(nm);
1949 }
1950 
1951 void ShenandoahHeap::unregister_nmethod(nmethod* nm) {
1952   ShenandoahCodeRoots::unregister_nmethod(nm);
1953 }
1954 
1955 void ShenandoahHeap::pin_object(JavaThread* thr, oop o) {
1956   heap_region_containing(o)->record_pin();
1957 }
1958 
1959 void ShenandoahHeap::unpin_object(JavaThread* thr, oop o) {
1960   ShenandoahHeapRegion* r = heap_region_containing(o);
1961   assert(r != nullptr, "Sanity");
1962   assert(r->pin_count() > 0, "Region " SIZE_FORMAT " should have non-zero pins", r->index());
1963   r->record_unpin();
1964 }
1965 
1966 void ShenandoahHeap::sync_pinned_region_status() {
1967   ShenandoahHeapLocker locker(lock());
1968 
1969   for (size_t i = 0; i < num_regions(); i++) {
1970     ShenandoahHeapRegion *r = get_region(i);
1971     if (r->is_active()) {
1972       if (r->is_pinned()) {
1973         if (r->pin_count() == 0) {
1974           r->make_unpinned();
1975         }
1976       } else {
1977         if (r->pin_count() > 0) {
1978           r->make_pinned();
1979         }
1980       }
1981     }
1982   }
1983 
1984   assert_pinned_region_status();
1985 }
1986 
1987 #ifdef ASSERT
1988 void ShenandoahHeap::assert_pinned_region_status() {
1989   for (size_t i = 0; i < num_regions(); i++) {
1990     ShenandoahHeapRegion* r = get_region(i);
1991     assert((r->is_pinned() && r->pin_count() > 0) || (!r->is_pinned() && r->pin_count() == 0),
1992            "Region " SIZE_FORMAT " pinning status is inconsistent", i);
1993   }
1994 }
1995 #endif
1996 
1997 ConcurrentGCTimer* ShenandoahHeap::gc_timer() const {
1998   return _gc_timer;
1999 }
2000 
2001 void ShenandoahHeap::prepare_concurrent_roots() {
2002   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
2003   assert(!is_stw_gc_in_progress(), "Only concurrent GC");
2004   set_concurrent_strong_root_in_progress(!collection_set()->is_empty());
2005   set_concurrent_weak_root_in_progress(true);
2006   if (unload_classes()) {
2007     _unloader.prepare();
2008   }
2009 }
2010 
2011 void ShenandoahHeap::finish_concurrent_roots() {
2012   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
2013   assert(!is_stw_gc_in_progress(), "Only concurrent GC");
2014   if (unload_classes()) {
2015     _unloader.finish();
2016   }
2017 }
2018 
2019 #ifdef ASSERT
2020 void ShenandoahHeap::assert_gc_workers(uint nworkers) {
2021   assert(nworkers > 0 && nworkers <= max_workers(), "Sanity");
2022 
2023   if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) {
2024     if (UseDynamicNumberOfGCThreads) {
2025       assert(nworkers <= ParallelGCThreads, "Cannot use more than it has");
2026     } else {
2027       // Use ParallelGCThreads inside safepoints
2028       assert(nworkers == ParallelGCThreads, "Use ParallelGCThreads within safepoints");
2029     }
2030   } else {
2031     if (UseDynamicNumberOfGCThreads) {
2032       assert(nworkers <= ConcGCThreads, "Cannot use more than it has");
2033     } else {
2034       // Use ConcGCThreads outside safepoints
2035       assert(nworkers == ConcGCThreads, "Use ConcGCThreads outside safepoints");
2036     }
2037   }
2038 }
2039 #endif
2040 
2041 ShenandoahVerifier* ShenandoahHeap::verifier() {
2042   guarantee(ShenandoahVerify, "Should be enabled");
2043   assert (_verifier != nullptr, "sanity");
2044   return _verifier;
2045 }
2046 
2047 template<bool CONCURRENT>
2048 class ShenandoahUpdateHeapRefsTask : public WorkerTask {
2049 private:
2050   ShenandoahHeap* _heap;
2051   ShenandoahRegionIterator* _regions;
2052 public:
2053   ShenandoahUpdateHeapRefsTask(ShenandoahRegionIterator* regions) :
2054     WorkerTask("Shenandoah Update References"),
2055     _heap(ShenandoahHeap::heap()),
2056     _regions(regions) {
2057   }
2058 
2059   void work(uint worker_id) {
2060     if (CONCURRENT) {
2061       ShenandoahConcurrentWorkerSession worker_session(worker_id);
2062       ShenandoahSuspendibleThreadSetJoiner stsj(ShenandoahSuspendibleWorkers);
2063       do_work<ShenandoahConcUpdateRefsClosure>();
2064     } else {
2065       ShenandoahParallelWorkerSession worker_session(worker_id);
2066       do_work<ShenandoahSTWUpdateRefsClosure>();
2067     }
2068   }
2069 
2070 private:
2071   template<class T>
2072   void do_work() {
2073     T cl;
2074     ShenandoahHeapRegion* r = _regions->next();
2075     ShenandoahMarkingContext* const ctx = _heap->complete_marking_context();
2076     while (r != nullptr) {
2077       HeapWord* update_watermark = r->get_update_watermark();
2078       assert (update_watermark >= r->bottom(), "sanity");
2079       if (r->is_active() && !r->is_cset()) {
2080         _heap->marked_object_oop_iterate(r, &cl, update_watermark);
2081       }
2082       if (ShenandoahPacing) {
2083         _heap->pacer()->report_updaterefs(pointer_delta(update_watermark, r->bottom()));
2084       }
2085       if (_heap->check_cancelled_gc_and_yield(CONCURRENT)) {
2086         return;
2087       }
2088       r = _regions->next();
2089     }
2090   }
2091 };
2092 
2093 void ShenandoahHeap::update_heap_references(bool concurrent) {
2094   assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC");
2095 
2096   if (concurrent) {
2097     ShenandoahUpdateHeapRefsTask<true> task(&_update_refs_iterator);
2098     workers()->run_task(&task);
2099   } else {
2100     ShenandoahUpdateHeapRefsTask<false> task(&_update_refs_iterator);
2101     workers()->run_task(&task);
2102   }
2103 }
2104 
2105 
2106 class ShenandoahFinalUpdateRefsUpdateRegionStateClosure : public ShenandoahHeapRegionClosure {
2107 private:
2108   ShenandoahHeapLock* const _lock;
2109 
2110 public:
2111   ShenandoahFinalUpdateRefsUpdateRegionStateClosure() : _lock(ShenandoahHeap::heap()->lock()) {}
2112 
2113   void heap_region_do(ShenandoahHeapRegion* r) {
2114     // Drop unnecessary "pinned" state from regions that does not have CP marks
2115     // anymore, as this would allow trashing them.
2116 
2117     if (r->is_active()) {
2118       if (r->is_pinned()) {
2119         if (r->pin_count() == 0) {
2120           ShenandoahHeapLocker locker(_lock);
2121           r->make_unpinned();
2122         }
2123       } else {
2124         if (r->pin_count() > 0) {
2125           ShenandoahHeapLocker locker(_lock);
2126           r->make_pinned();
2127         }
2128       }
2129     }
2130   }
2131 
2132   bool is_thread_safe() { return true; }
2133 };
2134 
2135 void ShenandoahHeap::update_heap_region_states(bool concurrent) {
2136   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
2137   assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC");
2138 
2139   {
2140     ShenandoahGCPhase phase(concurrent ?
2141                             ShenandoahPhaseTimings::final_update_refs_update_region_states :
2142                             ShenandoahPhaseTimings::degen_gc_final_update_refs_update_region_states);
2143     ShenandoahFinalUpdateRefsUpdateRegionStateClosure cl;
2144     parallel_heap_region_iterate(&cl);
2145 
2146     assert_pinned_region_status();
2147   }
2148 
2149   {
2150     ShenandoahGCPhase phase(concurrent ?
2151                             ShenandoahPhaseTimings::final_update_refs_trash_cset :
2152                             ShenandoahPhaseTimings::degen_gc_final_update_refs_trash_cset);
2153     trash_cset_regions();
2154   }
2155 }
2156 
2157 void ShenandoahHeap::rebuild_free_set(bool concurrent) {
2158   {
2159     ShenandoahGCPhase phase(concurrent ?
2160                             ShenandoahPhaseTimings::final_update_refs_rebuild_freeset :
2161                             ShenandoahPhaseTimings::degen_gc_final_update_refs_rebuild_freeset);
2162     ShenandoahHeapLocker locker(lock());
2163     _free_set->rebuild();
2164   }
2165 }
2166 
2167 void ShenandoahHeap::print_extended_on(outputStream *st) const {
2168   print_on(st);
2169   st->cr();
2170   print_heap_regions_on(st);
2171 }
2172 
2173 bool ShenandoahHeap::is_bitmap_slice_committed(ShenandoahHeapRegion* r, bool skip_self) {
2174   size_t slice = r->index() / _bitmap_regions_per_slice;
2175 
2176   size_t regions_from = _bitmap_regions_per_slice * slice;
2177   size_t regions_to   = MIN2(num_regions(), _bitmap_regions_per_slice * (slice + 1));
2178   for (size_t g = regions_from; g < regions_to; g++) {
2179     assert (g / _bitmap_regions_per_slice == slice, "same slice");
2180     if (skip_self && g == r->index()) continue;
2181     if (get_region(g)->is_committed()) {
2182       return true;
2183     }
2184   }
2185   return false;
2186 }
2187 
2188 bool ShenandoahHeap::commit_bitmap_slice(ShenandoahHeapRegion* r) {
2189   shenandoah_assert_heaplocked();
2190 
2191   // Bitmaps in special regions do not need commits
2192   if (_bitmap_region_special) {
2193     return true;
2194   }
2195 
2196   if (is_bitmap_slice_committed(r, true)) {
2197     // Some other region from the group is already committed, meaning the bitmap
2198     // slice is already committed, we exit right away.
2199     return true;
2200   }
2201 
2202   // Commit the bitmap slice:
2203   size_t slice = r->index() / _bitmap_regions_per_slice;
2204   size_t off = _bitmap_bytes_per_slice * slice;
2205   size_t len = _bitmap_bytes_per_slice;
2206   char* start = (char*) _bitmap_region.start() + off;
2207 
2208   if (!os::commit_memory(start, len, false)) {
2209     return false;
2210   }
2211 
2212   if (AlwaysPreTouch) {
2213     os::pretouch_memory(start, start + len, _pretouch_bitmap_page_size);
2214   }
2215 
2216   return true;
2217 }
2218 
2219 bool ShenandoahHeap::uncommit_bitmap_slice(ShenandoahHeapRegion *r) {
2220   shenandoah_assert_heaplocked();
2221 
2222   // Bitmaps in special regions do not need uncommits
2223   if (_bitmap_region_special) {
2224     return true;
2225   }
2226 
2227   if (is_bitmap_slice_committed(r, true)) {
2228     // Some other region from the group is still committed, meaning the bitmap
2229     // slice is should stay committed, exit right away.
2230     return true;
2231   }
2232 
2233   // Uncommit the bitmap slice:
2234   size_t slice = r->index() / _bitmap_regions_per_slice;
2235   size_t off = _bitmap_bytes_per_slice * slice;
2236   size_t len = _bitmap_bytes_per_slice;
2237   if (!os::uncommit_memory((char*)_bitmap_region.start() + off, len)) {
2238     return false;
2239   }
2240   return true;
2241 }
2242 
2243 void ShenandoahHeap::safepoint_synchronize_begin() {
2244   if (ShenandoahSuspendibleWorkers) {
2245     SuspendibleThreadSet::synchronize();
2246   }
2247 }
2248 
2249 void ShenandoahHeap::safepoint_synchronize_end() {
2250   if (ShenandoahSuspendibleWorkers) {
2251     SuspendibleThreadSet::desynchronize();
2252   }
2253 }
2254 
2255 void ShenandoahHeap::entry_uncommit(double shrink_before, size_t shrink_until) {
2256   static const char *msg = "Concurrent uncommit";
2257   ShenandoahConcurrentPhase gc_phase(msg, ShenandoahPhaseTimings::conc_uncommit, true /* log_heap_usage */);
2258   EventMark em("%s", msg);
2259 
2260   op_uncommit(shrink_before, shrink_until);
2261 }
2262 
2263 void ShenandoahHeap::try_inject_alloc_failure() {
2264   if (ShenandoahAllocFailureALot && !cancelled_gc() && ((os::random() % 1000) > 950)) {
2265     _inject_alloc_failure.set();
2266     os::naked_short_sleep(1);
2267     if (cancelled_gc()) {
2268       log_info(gc)("Allocation failure was successfully injected");
2269     }
2270   }
2271 }
2272 
2273 bool ShenandoahHeap::should_inject_alloc_failure() {
2274   return _inject_alloc_failure.is_set() && _inject_alloc_failure.try_unset();
2275 }
2276 
2277 void ShenandoahHeap::initialize_serviceability() {
2278   _memory_pool = new ShenandoahMemoryPool(this);
2279   _cycle_memory_manager.add_pool(_memory_pool);
2280   _stw_memory_manager.add_pool(_memory_pool);
2281 }
2282 
2283 GrowableArray<GCMemoryManager*> ShenandoahHeap::memory_managers() {
2284   GrowableArray<GCMemoryManager*> memory_managers(2);
2285   memory_managers.append(&_cycle_memory_manager);
2286   memory_managers.append(&_stw_memory_manager);
2287   return memory_managers;
2288 }
2289 
2290 GrowableArray<MemoryPool*> ShenandoahHeap::memory_pools() {
2291   GrowableArray<MemoryPool*> memory_pools(1);
2292   memory_pools.append(_memory_pool);
2293   return memory_pools;
2294 }
2295 
2296 MemoryUsage ShenandoahHeap::memory_usage() {
2297   return _memory_pool->get_memory_usage();
2298 }
2299 
2300 ShenandoahRegionIterator::ShenandoahRegionIterator() :
2301   _heap(ShenandoahHeap::heap()),
2302   _index(0) {}
2303 
2304 ShenandoahRegionIterator::ShenandoahRegionIterator(ShenandoahHeap* heap) :
2305   _heap(heap),
2306   _index(0) {}
2307 
2308 void ShenandoahRegionIterator::reset() {
2309   _index = 0;
2310 }
2311 
2312 bool ShenandoahRegionIterator::has_next() const {
2313   return _index < _heap->num_regions();
2314 }
2315 
2316 char ShenandoahHeap::gc_state() const {
2317   return _gc_state.raw_value();
2318 }
2319 
2320 ShenandoahLiveData* ShenandoahHeap::get_liveness_cache(uint worker_id) {
2321 #ifdef ASSERT
2322   assert(_liveness_cache != nullptr, "sanity");
2323   assert(worker_id < _max_workers, "sanity");
2324   for (uint i = 0; i < num_regions(); i++) {
2325     assert(_liveness_cache[worker_id][i] == 0, "liveness cache should be empty");
2326   }
2327 #endif
2328   return _liveness_cache[worker_id];
2329 }
2330 
2331 void ShenandoahHeap::flush_liveness_cache(uint worker_id) {
2332   assert(worker_id < _max_workers, "sanity");
2333   assert(_liveness_cache != nullptr, "sanity");
2334   ShenandoahLiveData* ld = _liveness_cache[worker_id];
2335   for (uint i = 0; i < num_regions(); i++) {
2336     ShenandoahLiveData live = ld[i];
2337     if (live > 0) {
2338       ShenandoahHeapRegion* r = get_region(i);
2339       r->increase_live_data_gc_words(live);
2340       ld[i] = 0;
2341     }
2342   }
2343 }
2344 
2345 bool ShenandoahHeap::requires_barriers(stackChunkOop obj) const {
2346   if (is_idle()) return false;
2347 
2348   // Objects allocated after marking start are implicitly alive, don't need any barriers during
2349   // marking phase.
2350   if (is_concurrent_mark_in_progress() &&
2351      !marking_context()->allocated_after_mark_start(obj)) {
2352     return true;
2353   }
2354 
2355   // Can not guarantee obj is deeply good.
2356   if (has_forwarded_objects()) {
2357     return true;
2358   }
2359 
2360   return false;
2361 }