1 /* 2 * Copyright (c) 2023, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2013, 2022, Red Hat, Inc. All rights reserved. 4 * Copyright Amazon.com Inc. or its affiliates. All Rights Reserved. 5 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 6 * 7 * This code is free software; you can redistribute it and/or modify it 8 * under the terms of the GNU General Public License version 2 only, as 9 * published by the Free Software Foundation. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 * 25 */ 26 27 28 #include "cds/aotMappedHeapWriter.hpp" 29 #include "classfile/systemDictionary.hpp" 30 #include "gc/shared/classUnloadingContext.hpp" 31 #include "gc/shared/fullGCForwarding.hpp" 32 #include "gc/shared/gc_globals.hpp" 33 #include "gc/shared/gcArguments.hpp" 34 #include "gc/shared/gcTimer.hpp" 35 #include "gc/shared/gcTraceTime.inline.hpp" 36 #include "gc/shared/locationPrinter.inline.hpp" 37 #include "gc/shared/memAllocator.hpp" 38 #include "gc/shared/plab.hpp" 39 #include "gc/shared/tlab_globals.hpp" 40 #include "gc/shenandoah/heuristics/shenandoahOldHeuristics.hpp" 41 #include "gc/shenandoah/heuristics/shenandoahYoungHeuristics.hpp" 42 #include "gc/shenandoah/mode/shenandoahGenerationalMode.hpp" 43 #include "gc/shenandoah/mode/shenandoahPassiveMode.hpp" 44 #include "gc/shenandoah/mode/shenandoahSATBMode.hpp" 45 #include "gc/shenandoah/shenandoahAllocRequest.hpp" 46 #include "gc/shenandoah/shenandoahBarrierSet.hpp" 47 #include "gc/shenandoah/shenandoahClosures.inline.hpp" 48 #include "gc/shenandoah/shenandoahCodeRoots.hpp" 49 #include "gc/shenandoah/shenandoahCollectionSet.hpp" 50 #include "gc/shenandoah/shenandoahCollectorPolicy.hpp" 51 #include "gc/shenandoah/shenandoahConcurrentMark.hpp" 52 #include "gc/shenandoah/shenandoahControlThread.hpp" 53 #include "gc/shenandoah/shenandoahFreeSet.hpp" 54 #include "gc/shenandoah/shenandoahGenerationalEvacuationTask.hpp" 55 #include "gc/shenandoah/shenandoahGenerationalHeap.hpp" 56 #include "gc/shenandoah/shenandoahGlobalGeneration.hpp" 57 #include "gc/shenandoah/shenandoahHeap.inline.hpp" 58 #include "gc/shenandoah/shenandoahHeapRegion.inline.hpp" 59 #include "gc/shenandoah/shenandoahHeapRegionClosures.hpp" 60 #include "gc/shenandoah/shenandoahHeapRegionSet.hpp" 61 #include "gc/shenandoah/shenandoahInitLogger.hpp" 62 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp" 63 #include "gc/shenandoah/shenandoahMemoryPool.hpp" 64 #include "gc/shenandoah/shenandoahMonitoringSupport.hpp" 65 #include "gc/shenandoah/shenandoahOldGeneration.hpp" 66 #include "gc/shenandoah/shenandoahPadding.hpp" 67 #include "gc/shenandoah/shenandoahParallelCleaning.inline.hpp" 68 #include "gc/shenandoah/shenandoahPhaseTimings.hpp" 69 #include "gc/shenandoah/shenandoahReferenceProcessor.hpp" 70 #include "gc/shenandoah/shenandoahRootProcessor.inline.hpp" 71 #include "gc/shenandoah/shenandoahScanRemembered.inline.hpp" 72 #include "gc/shenandoah/shenandoahSTWMark.hpp" 73 #include "gc/shenandoah/shenandoahUncommitThread.hpp" 74 #include "gc/shenandoah/shenandoahUtils.hpp" 75 #include "gc/shenandoah/shenandoahVerifier.hpp" 76 #include "gc/shenandoah/shenandoahVMOperations.hpp" 77 #include "gc/shenandoah/shenandoahWorkerPolicy.hpp" 78 #include "gc/shenandoah/shenandoahWorkGroup.hpp" 79 #include "gc/shenandoah/shenandoahYoungGeneration.hpp" 80 #include "memory/allocation.hpp" 81 #include "memory/classLoaderMetaspace.hpp" 82 #include "memory/memoryReserver.hpp" 83 #include "memory/metaspaceUtils.hpp" 84 #include "memory/universe.hpp" 85 #include "nmt/mallocTracker.hpp" 86 #include "nmt/memTracker.hpp" 87 #include "oops/compressedOops.inline.hpp" 88 #include "prims/jvmtiTagMap.hpp" 89 #include "runtime/atomicAccess.hpp" 90 #include "runtime/globals.hpp" 91 #include "runtime/interfaceSupport.inline.hpp" 92 #include "runtime/java.hpp" 93 #include "runtime/orderAccess.hpp" 94 #include "runtime/safepointMechanism.hpp" 95 #include "runtime/stackWatermarkSet.hpp" 96 #include "runtime/threads.hpp" 97 #include "runtime/vmThread.hpp" 98 #include "utilities/events.hpp" 99 #include "utilities/globalDefinitions.hpp" 100 #include "utilities/powerOfTwo.hpp" 101 #if INCLUDE_JVMCI 102 #include "jvmci/jvmci.hpp" 103 #endif 104 #if INCLUDE_JFR 105 #include "gc/shenandoah/shenandoahJfrSupport.hpp" 106 #endif 107 108 class ShenandoahPretouchHeapTask : public WorkerTask { 109 private: 110 ShenandoahRegionIterator _regions; 111 const size_t _page_size; 112 public: 113 ShenandoahPretouchHeapTask(size_t page_size) : 114 WorkerTask("Shenandoah Pretouch Heap"), 115 _page_size(page_size) {} 116 117 virtual void work(uint worker_id) { 118 ShenandoahHeapRegion* r = _regions.next(); 119 while (r != nullptr) { 120 if (r->is_committed()) { 121 os::pretouch_memory(r->bottom(), r->end(), _page_size); 122 } 123 r = _regions.next(); 124 } 125 } 126 }; 127 128 class ShenandoahPretouchBitmapTask : public WorkerTask { 129 private: 130 ShenandoahRegionIterator _regions; 131 char* _bitmap_base; 132 const size_t _bitmap_size; 133 const size_t _page_size; 134 public: 135 ShenandoahPretouchBitmapTask(char* bitmap_base, size_t bitmap_size, size_t page_size) : 136 WorkerTask("Shenandoah Pretouch Bitmap"), 137 _bitmap_base(bitmap_base), 138 _bitmap_size(bitmap_size), 139 _page_size(page_size) {} 140 141 virtual void work(uint worker_id) { 142 ShenandoahHeapRegion* r = _regions.next(); 143 while (r != nullptr) { 144 size_t start = r->index() * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor(); 145 size_t end = (r->index() + 1) * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor(); 146 assert (end <= _bitmap_size, "end is sane: %zu < %zu", end, _bitmap_size); 147 148 if (r->is_committed()) { 149 os::pretouch_memory(_bitmap_base + start, _bitmap_base + end, _page_size); 150 } 151 152 r = _regions.next(); 153 } 154 } 155 }; 156 157 static ReservedSpace reserve(size_t size, size_t preferred_page_size) { 158 // When a page size is given we don't want to mix large 159 // and normal pages. If the size is not a multiple of the 160 // page size it will be aligned up to achieve this. 161 size_t alignment = os::vm_allocation_granularity(); 162 if (preferred_page_size != os::vm_page_size()) { 163 alignment = MAX2(preferred_page_size, alignment); 164 size = align_up(size, alignment); 165 } 166 167 const ReservedSpace reserved = MemoryReserver::reserve(size, alignment, preferred_page_size, mtGC); 168 if (!reserved.is_reserved()) { 169 vm_exit_during_initialization("Could not reserve space"); 170 } 171 return reserved; 172 } 173 174 jint ShenandoahHeap::initialize() { 175 // 176 // Figure out heap sizing 177 // 178 179 size_t init_byte_size = InitialHeapSize; 180 size_t min_byte_size = MinHeapSize; 181 size_t max_byte_size = MaxHeapSize; 182 size_t heap_alignment = HeapAlignment; 183 184 size_t reg_size_bytes = ShenandoahHeapRegion::region_size_bytes(); 185 186 Universe::check_alignment(max_byte_size, reg_size_bytes, "Shenandoah heap"); 187 Universe::check_alignment(init_byte_size, reg_size_bytes, "Shenandoah heap"); 188 189 _num_regions = ShenandoahHeapRegion::region_count(); 190 assert(_num_regions == (max_byte_size / reg_size_bytes), 191 "Regions should cover entire heap exactly: %zu != %zu/%zu", 192 _num_regions, max_byte_size, reg_size_bytes); 193 194 size_t num_committed_regions = init_byte_size / reg_size_bytes; 195 num_committed_regions = MIN2(num_committed_regions, _num_regions); 196 assert(num_committed_regions <= _num_regions, "sanity"); 197 _initial_size = num_committed_regions * reg_size_bytes; 198 199 size_t num_min_regions = min_byte_size / reg_size_bytes; 200 num_min_regions = MIN2(num_min_regions, _num_regions); 201 assert(num_min_regions <= _num_regions, "sanity"); 202 _minimum_size = num_min_regions * reg_size_bytes; 203 204 _soft_max_size = clamp(SoftMaxHeapSize, min_capacity(), max_capacity()); 205 206 _committed = _initial_size; 207 208 size_t heap_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size(); 209 size_t bitmap_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size(); 210 size_t region_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size(); 211 212 // 213 // Reserve and commit memory for heap 214 // 215 216 ReservedHeapSpace heap_rs = Universe::reserve_heap(max_byte_size, heap_alignment); 217 initialize_reserved_region(heap_rs); 218 _heap_region = MemRegion((HeapWord*)heap_rs.base(), heap_rs.size() / HeapWordSize); 219 _heap_region_special = heap_rs.special(); 220 221 assert((((size_t) base()) & ShenandoahHeapRegion::region_size_bytes_mask()) == 0, 222 "Misaligned heap: " PTR_FORMAT, p2i(base())); 223 os::trace_page_sizes_for_requested_size("Heap", 224 max_byte_size, heap_alignment, 225 heap_rs.base(), 226 heap_rs.size(), heap_rs.page_size()); 227 228 #if SHENANDOAH_OPTIMIZED_MARKTASK 229 // The optimized ShenandoahMarkTask takes some bits away from the full object bits. 230 // Fail if we ever attempt to address more than we can. 231 if ((uintptr_t)heap_rs.end() >= ShenandoahMarkTask::max_addressable()) { 232 FormatBuffer<512> buf("Shenandoah reserved [" PTR_FORMAT ", " PTR_FORMAT") for the heap, \n" 233 "but max object address is " PTR_FORMAT ". Try to reduce heap size, or try other \n" 234 "VM options that allocate heap at lower addresses (HeapBaseMinAddress, AllocateHeapAt, etc).", 235 p2i(heap_rs.base()), p2i(heap_rs.end()), ShenandoahMarkTask::max_addressable()); 236 vm_exit_during_initialization("Fatal Error", buf); 237 } 238 #endif 239 240 ReservedSpace sh_rs = heap_rs.first_part(max_byte_size); 241 if (!_heap_region_special) { 242 os::commit_memory_or_exit(sh_rs.base(), _initial_size, heap_alignment, false, 243 "Cannot commit heap memory"); 244 } 245 246 BarrierSet::set_barrier_set(new ShenandoahBarrierSet(this, _heap_region)); 247 248 // Now we know the number of regions and heap sizes, initialize the heuristics. 249 initialize_heuristics(); 250 251 // If ShenandoahCardBarrier is enabled but it's not generational mode 252 // it means we're under passive mode and we have to initialize old gen 253 // for the purpose of having card table. 254 if (ShenandoahCardBarrier && !(mode()->is_generational())) { 255 _old_generation = new ShenandoahOldGeneration(max_workers()); 256 } 257 258 assert(_heap_region.byte_size() == heap_rs.size(), "Need to know reserved size for card table"); 259 260 // 261 // Worker threads must be initialized after the barrier is configured 262 // 263 _workers = new ShenandoahWorkerThreads("Shenandoah GC Threads", _max_workers); 264 if (_workers == nullptr) { 265 vm_exit_during_initialization("Failed necessary allocation."); 266 } else { 267 _workers->initialize_workers(); 268 } 269 270 if (ParallelGCThreads > 1) { 271 _safepoint_workers = new ShenandoahWorkerThreads("Safepoint Cleanup Thread", ParallelGCThreads); 272 _safepoint_workers->initialize_workers(); 273 } 274 275 // 276 // Reserve and commit memory for bitmap(s) 277 // 278 279 size_t bitmap_size_orig = ShenandoahMarkBitMap::compute_size(heap_rs.size()); 280 _bitmap_size = align_up(bitmap_size_orig, bitmap_page_size); 281 282 size_t bitmap_bytes_per_region = reg_size_bytes / ShenandoahMarkBitMap::heap_map_factor(); 283 284 guarantee(bitmap_bytes_per_region != 0, 285 "Bitmap bytes per region should not be zero"); 286 guarantee(is_power_of_2(bitmap_bytes_per_region), 287 "Bitmap bytes per region should be power of two: %zu", bitmap_bytes_per_region); 288 289 if (bitmap_page_size > bitmap_bytes_per_region) { 290 _bitmap_regions_per_slice = bitmap_page_size / bitmap_bytes_per_region; 291 _bitmap_bytes_per_slice = bitmap_page_size; 292 } else { 293 _bitmap_regions_per_slice = 1; 294 _bitmap_bytes_per_slice = bitmap_bytes_per_region; 295 } 296 297 guarantee(_bitmap_regions_per_slice >= 1, 298 "Should have at least one region per slice: %zu", 299 _bitmap_regions_per_slice); 300 301 guarantee(((_bitmap_bytes_per_slice) % bitmap_page_size) == 0, 302 "Bitmap slices should be page-granular: bps = %zu, page size = %zu", 303 _bitmap_bytes_per_slice, bitmap_page_size); 304 305 ReservedSpace bitmap = reserve(_bitmap_size, bitmap_page_size); 306 os::trace_page_sizes_for_requested_size("Mark Bitmap", 307 bitmap_size_orig, bitmap_page_size, 308 bitmap.base(), 309 bitmap.size(), bitmap.page_size()); 310 MemTracker::record_virtual_memory_tag(bitmap, mtGC); 311 _bitmap_region = MemRegion((HeapWord*) bitmap.base(), bitmap.size() / HeapWordSize); 312 _bitmap_region_special = bitmap.special(); 313 314 size_t bitmap_init_commit = _bitmap_bytes_per_slice * 315 align_up(num_committed_regions, _bitmap_regions_per_slice) / _bitmap_regions_per_slice; 316 bitmap_init_commit = MIN2(_bitmap_size, bitmap_init_commit); 317 if (!_bitmap_region_special) { 318 os::commit_memory_or_exit((char *) _bitmap_region.start(), bitmap_init_commit, bitmap_page_size, false, 319 "Cannot commit bitmap memory"); 320 } 321 322 _marking_context = new ShenandoahMarkingContext(_heap_region, _bitmap_region, _num_regions); 323 324 if (ShenandoahVerify) { 325 ReservedSpace verify_bitmap = reserve(_bitmap_size, bitmap_page_size); 326 os::trace_page_sizes_for_requested_size("Verify Bitmap", 327 bitmap_size_orig, bitmap_page_size, 328 verify_bitmap.base(), 329 verify_bitmap.size(), verify_bitmap.page_size()); 330 if (!verify_bitmap.special()) { 331 os::commit_memory_or_exit(verify_bitmap.base(), verify_bitmap.size(), bitmap_page_size, false, 332 "Cannot commit verification bitmap memory"); 333 } 334 MemTracker::record_virtual_memory_tag(verify_bitmap, mtGC); 335 MemRegion verify_bitmap_region = MemRegion((HeapWord *) verify_bitmap.base(), verify_bitmap.size() / HeapWordSize); 336 _verification_bit_map.initialize(_heap_region, verify_bitmap_region); 337 _verifier = new ShenandoahVerifier(this, &_verification_bit_map); 338 } 339 340 // Reserve aux bitmap for use in object_iterate(). We don't commit it here. 341 size_t aux_bitmap_page_size = bitmap_page_size; 342 343 ReservedSpace aux_bitmap = reserve(_bitmap_size, aux_bitmap_page_size); 344 os::trace_page_sizes_for_requested_size("Aux Bitmap", 345 bitmap_size_orig, aux_bitmap_page_size, 346 aux_bitmap.base(), 347 aux_bitmap.size(), aux_bitmap.page_size()); 348 MemTracker::record_virtual_memory_tag(aux_bitmap, mtGC); 349 _aux_bitmap_region = MemRegion((HeapWord*) aux_bitmap.base(), aux_bitmap.size() / HeapWordSize); 350 _aux_bitmap_region_special = aux_bitmap.special(); 351 _aux_bit_map.initialize(_heap_region, _aux_bitmap_region); 352 353 // 354 // Create regions and region sets 355 // 356 size_t region_align = align_up(sizeof(ShenandoahHeapRegion), SHENANDOAH_CACHE_LINE_SIZE); 357 size_t region_storage_size_orig = region_align * _num_regions; 358 size_t region_storage_size = align_up(region_storage_size_orig, 359 MAX2(region_page_size, os::vm_allocation_granularity())); 360 361 ReservedSpace region_storage = reserve(region_storage_size, region_page_size); 362 os::trace_page_sizes_for_requested_size("Region Storage", 363 region_storage_size_orig, region_page_size, 364 region_storage.base(), 365 region_storage.size(), region_storage.page_size()); 366 MemTracker::record_virtual_memory_tag(region_storage, mtGC); 367 if (!region_storage.special()) { 368 os::commit_memory_or_exit(region_storage.base(), region_storage_size, region_page_size, false, 369 "Cannot commit region memory"); 370 } 371 372 // Try to fit the collection set bitmap at lower addresses. This optimizes code generation for cset checks. 373 // Go up until a sensible limit (subject to encoding constraints) and try to reserve the space there. 374 // If not successful, bite a bullet and allocate at whatever address. 375 { 376 const size_t cset_align = MAX2<size_t>(os::vm_page_size(), os::vm_allocation_granularity()); 377 const size_t cset_size = align_up(((size_t) sh_rs.base() + sh_rs.size()) >> ShenandoahHeapRegion::region_size_bytes_shift(), cset_align); 378 const size_t cset_page_size = os::vm_page_size(); 379 380 uintptr_t min = round_up_power_of_2(cset_align); 381 uintptr_t max = (1u << 30u); 382 ReservedSpace cset_rs; 383 384 for (uintptr_t addr = min; addr <= max; addr <<= 1u) { 385 char* req_addr = (char*)addr; 386 assert(is_aligned(req_addr, cset_align), "Should be aligned"); 387 cset_rs = MemoryReserver::reserve(req_addr, cset_size, cset_align, cset_page_size, mtGC); 388 if (cset_rs.is_reserved()) { 389 assert(cset_rs.base() == req_addr, "Allocated where requested: " PTR_FORMAT ", " PTR_FORMAT, p2i(cset_rs.base()), addr); 390 _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base()); 391 break; 392 } 393 } 394 395 if (_collection_set == nullptr) { 396 cset_rs = MemoryReserver::reserve(cset_size, cset_align, os::vm_page_size(), mtGC); 397 if (!cset_rs.is_reserved()) { 398 vm_exit_during_initialization("Cannot reserve memory for collection set"); 399 } 400 401 _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base()); 402 } 403 os::trace_page_sizes_for_requested_size("Collection Set", 404 cset_size, cset_page_size, 405 cset_rs.base(), 406 cset_rs.size(), cset_rs.page_size()); 407 } 408 409 _regions = NEW_C_HEAP_ARRAY(ShenandoahHeapRegion*, _num_regions, mtGC); 410 _affiliations = NEW_C_HEAP_ARRAY(uint8_t, _num_regions, mtGC); 411 412 { 413 ShenandoahHeapLocker locker(lock()); 414 for (size_t i = 0; i < _num_regions; i++) { 415 HeapWord* start = (HeapWord*)sh_rs.base() + ShenandoahHeapRegion::region_size_words() * i; 416 bool is_committed = i < num_committed_regions; 417 void* loc = region_storage.base() + i * region_align; 418 419 ShenandoahHeapRegion* r = new (loc) ShenandoahHeapRegion(start, i, is_committed); 420 assert(is_aligned(r, SHENANDOAH_CACHE_LINE_SIZE), "Sanity"); 421 422 _marking_context->initialize_top_at_mark_start(r); 423 _regions[i] = r; 424 assert(!collection_set()->is_in(i), "New region should not be in collection set"); 425 426 _affiliations[i] = ShenandoahAffiliation::FREE; 427 } 428 _free_set = new ShenandoahFreeSet(this, _num_regions); 429 430 431 post_initialize_heuristics(); 432 // We are initializing free set. We ignore cset region tallies. 433 size_t young_cset_regions, old_cset_regions, first_old, last_old, num_old; 434 _free_set->prepare_to_rebuild(young_cset_regions, old_cset_regions, first_old, last_old, num_old); 435 if (mode()->is_generational()) { 436 ShenandoahGenerationalHeap* gen_heap = ShenandoahGenerationalHeap::heap(); 437 // We cannot call 438 // gen_heap->young_generation()->heuristics()->bytes_of_allocation_runway_before_gc_trigger(young_cset_regions) 439 // until after the heap is fully initialized. So we make up a safe value here. 440 size_t allocation_runway = InitialHeapSize / 2; 441 gen_heap->compute_old_generation_balance(allocation_runway, old_cset_regions); 442 } 443 _free_set->finish_rebuild(young_cset_regions, old_cset_regions, num_old); 444 } 445 446 if (AlwaysPreTouch) { 447 // For NUMA, it is important to pre-touch the storage under bitmaps with worker threads, 448 // before initialize() below zeroes it with initializing thread. For any given region, 449 // we touch the region and the corresponding bitmaps from the same thread. 450 ShenandoahPushWorkerScope scope(workers(), _max_workers, false); 451 452 _pretouch_heap_page_size = heap_page_size; 453 _pretouch_bitmap_page_size = bitmap_page_size; 454 455 // OS memory managers may want to coalesce back-to-back pages. Make their jobs 456 // simpler by pre-touching continuous spaces (heap and bitmap) separately. 457 458 ShenandoahPretouchBitmapTask bcl(bitmap.base(), _bitmap_size, _pretouch_bitmap_page_size); 459 _workers->run_task(&bcl); 460 461 ShenandoahPretouchHeapTask hcl(_pretouch_heap_page_size); 462 _workers->run_task(&hcl); 463 } 464 465 // 466 // Initialize the rest of GC subsystems 467 // 468 469 _liveness_cache = NEW_C_HEAP_ARRAY(ShenandoahLiveData*, _max_workers, mtGC); 470 for (uint worker = 0; worker < _max_workers; worker++) { 471 _liveness_cache[worker] = NEW_C_HEAP_ARRAY(ShenandoahLiveData, _num_regions, mtGC); 472 Copy::fill_to_bytes(_liveness_cache[worker], _num_regions * sizeof(ShenandoahLiveData)); 473 } 474 475 // There should probably be Shenandoah-specific options for these, 476 // just as there are G1-specific options. 477 { 478 ShenandoahSATBMarkQueueSet& satbqs = ShenandoahBarrierSet::satb_mark_queue_set(); 479 satbqs.set_process_completed_buffers_threshold(20); // G1SATBProcessCompletedThreshold 480 satbqs.set_buffer_enqueue_threshold_percentage(60); // G1SATBBufferEnqueueingThresholdPercent 481 } 482 483 _monitoring_support = new ShenandoahMonitoringSupport(this); 484 _phase_timings = new ShenandoahPhaseTimings(max_workers()); 485 ShenandoahCodeRoots::initialize(); 486 487 initialize_controller(); 488 489 if (ShenandoahUncommit) { 490 _uncommit_thread = new ShenandoahUncommitThread(this); 491 } 492 493 print_init_logger(); 494 495 FullGCForwarding::initialize(_heap_region); 496 497 return JNI_OK; 498 } 499 500 void ShenandoahHeap::initialize_controller() { 501 _control_thread = new ShenandoahControlThread(); 502 } 503 504 void ShenandoahHeap::print_init_logger() const { 505 ShenandoahInitLogger::print(); 506 } 507 508 void ShenandoahHeap::initialize_mode() { 509 if (ShenandoahGCMode != nullptr) { 510 if (strcmp(ShenandoahGCMode, "satb") == 0) { 511 _gc_mode = new ShenandoahSATBMode(); 512 } else if (strcmp(ShenandoahGCMode, "passive") == 0) { 513 _gc_mode = new ShenandoahPassiveMode(); 514 } else if (strcmp(ShenandoahGCMode, "generational") == 0) { 515 _gc_mode = new ShenandoahGenerationalMode(); 516 } else { 517 vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option"); 518 } 519 } else { 520 vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option (null)"); 521 } 522 _gc_mode->initialize_flags(); 523 if (_gc_mode->is_diagnostic() && !UnlockDiagnosticVMOptions) { 524 vm_exit_during_initialization( 525 err_msg("GC mode \"%s\" is diagnostic, and must be enabled via -XX:+UnlockDiagnosticVMOptions.", 526 _gc_mode->name())); 527 } 528 if (_gc_mode->is_experimental() && !UnlockExperimentalVMOptions) { 529 vm_exit_during_initialization( 530 err_msg("GC mode \"%s\" is experimental, and must be enabled via -XX:+UnlockExperimentalVMOptions.", 531 _gc_mode->name())); 532 } 533 } 534 535 void ShenandoahHeap::initialize_heuristics() { 536 _global_generation = new ShenandoahGlobalGeneration(mode()->is_generational(), max_workers()); 537 _global_generation->initialize_heuristics(mode()); 538 } 539 540 void ShenandoahHeap::post_initialize_heuristics() { 541 _global_generation->post_initialize(this); 542 } 543 544 #ifdef _MSC_VER 545 #pragma warning( push ) 546 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list 547 #endif 548 549 ShenandoahHeap::ShenandoahHeap(ShenandoahCollectorPolicy* policy) : 550 CollectedHeap(), 551 _active_generation(nullptr), 552 _initial_size(0), 553 _committed(0), 554 _max_workers(MAX3(ConcGCThreads, ParallelGCThreads, 1U)), 555 _workers(nullptr), 556 _safepoint_workers(nullptr), 557 _heap_region_special(false), 558 _num_regions(0), 559 _regions(nullptr), 560 _affiliations(nullptr), 561 _gc_state_changed(false), 562 _gc_no_progress_count(0), 563 _cancel_requested_time(0), 564 _update_refs_iterator(this), 565 _global_generation(nullptr), 566 _control_thread(nullptr), 567 _uncommit_thread(nullptr), 568 _young_generation(nullptr), 569 _old_generation(nullptr), 570 _shenandoah_policy(policy), 571 _gc_mode(nullptr), 572 _free_set(nullptr), 573 _verifier(nullptr), 574 _phase_timings(nullptr), 575 _monitoring_support(nullptr), 576 _memory_pool(nullptr), 577 _stw_memory_manager("Shenandoah Pauses"), 578 _cycle_memory_manager("Shenandoah Cycles"), 579 _gc_timer(new ConcurrentGCTimer()), 580 _log_min_obj_alignment_in_bytes(LogMinObjAlignmentInBytes), 581 _marking_context(nullptr), 582 _bitmap_size(0), 583 _bitmap_regions_per_slice(0), 584 _bitmap_bytes_per_slice(0), 585 _bitmap_region_special(false), 586 _aux_bitmap_region_special(false), 587 _liveness_cache(nullptr), 588 _collection_set(nullptr), 589 _evac_tracker(new ShenandoahEvacuationTracker()) 590 { 591 // Initialize GC mode early, many subsequent initialization procedures depend on it 592 initialize_mode(); 593 _cancelled_gc.set(GCCause::_no_gc); 594 } 595 596 #ifdef _MSC_VER 597 #pragma warning( pop ) 598 #endif 599 600 void ShenandoahHeap::print_heap_on(outputStream* st) const { 601 const bool is_generational = mode()->is_generational(); 602 const char* front_spacing = ""; 603 if (is_generational) { 604 st->print_cr("Generational Shenandoah Heap"); 605 st->print_cr(" Young:"); 606 st->print_cr(" " PROPERFMT " max, " PROPERFMT " used", PROPERFMTARGS(young_generation()->max_capacity()), PROPERFMTARGS(young_generation()->used())); 607 st->print_cr(" Old:"); 608 st->print_cr(" " PROPERFMT " max, " PROPERFMT " used", PROPERFMTARGS(old_generation()->max_capacity()), PROPERFMTARGS(old_generation()->used())); 609 st->print_cr(" Entire heap:"); 610 st->print_cr(" " PROPERFMT " soft max, " PROPERFMT " committed", 611 PROPERFMTARGS(soft_max_capacity()), PROPERFMTARGS(committed())); 612 front_spacing = " "; 613 } else { 614 st->print_cr("Shenandoah Heap"); 615 st->print_cr(" " PROPERFMT " max, " PROPERFMT " soft max, " PROPERFMT " committed, " PROPERFMT " used", 616 PROPERFMTARGS(max_capacity()), 617 PROPERFMTARGS(soft_max_capacity()), 618 PROPERFMTARGS(committed()), 619 PROPERFMTARGS(used()) 620 ); 621 } 622 st->print_cr("%s %zu x " PROPERFMT " regions", 623 front_spacing, 624 num_regions(), 625 PROPERFMTARGS(ShenandoahHeapRegion::region_size_bytes())); 626 627 st->print("Status: "); 628 if (has_forwarded_objects()) st->print("has forwarded objects, "); 629 if (!is_generational) { 630 if (is_concurrent_mark_in_progress()) st->print("marking,"); 631 } else { 632 if (is_concurrent_old_mark_in_progress()) st->print("old marking, "); 633 if (is_concurrent_young_mark_in_progress()) st->print("young marking, "); 634 } 635 if (is_evacuation_in_progress()) st->print("evacuating, "); 636 if (is_update_refs_in_progress()) st->print("updating refs, "); 637 if (is_degenerated_gc_in_progress()) st->print("degenerated gc, "); 638 if (is_full_gc_in_progress()) st->print("full gc, "); 639 if (is_full_gc_move_in_progress()) st->print("full gc move, "); 640 if (is_concurrent_weak_root_in_progress()) st->print("concurrent weak roots, "); 641 if (is_concurrent_strong_root_in_progress() && 642 !is_concurrent_weak_root_in_progress()) st->print("concurrent strong roots, "); 643 644 if (cancelled_gc()) { 645 st->print("cancelled"); 646 } else { 647 st->print("not cancelled"); 648 } 649 st->cr(); 650 651 st->print_cr("Reserved region:"); 652 st->print_cr(" - [" PTR_FORMAT ", " PTR_FORMAT ") ", 653 p2i(reserved_region().start()), 654 p2i(reserved_region().end())); 655 656 ShenandoahCollectionSet* cset = collection_set(); 657 st->print_cr("Collection set:"); 658 if (cset != nullptr) { 659 st->print_cr(" - map (vanilla): " PTR_FORMAT, p2i(cset->map_address())); 660 st->print_cr(" - map (biased): " PTR_FORMAT, p2i(cset->biased_map_address())); 661 } else { 662 st->print_cr(" (null)"); 663 } 664 665 st->cr(); 666 667 if (Verbose) { 668 st->cr(); 669 print_heap_regions_on(st); 670 } 671 } 672 673 void ShenandoahHeap::print_gc_on(outputStream* st) const { 674 print_heap_regions_on(st); 675 } 676 677 class ShenandoahInitWorkerGCLABClosure : public ThreadClosure { 678 public: 679 void do_thread(Thread* thread) { 680 assert(thread != nullptr, "Sanity"); 681 ShenandoahThreadLocalData::initialize_gclab(thread); 682 } 683 }; 684 685 void ShenandoahHeap::post_initialize() { 686 CollectedHeap::post_initialize(); 687 688 check_soft_max_changed(); 689 690 // Schedule periodic task to report on gc thread CPU utilization 691 _mmu_tracker.initialize(); 692 693 MutexLocker ml(Threads_lock); 694 695 ShenandoahInitWorkerGCLABClosure init_gclabs; 696 _workers->threads_do(&init_gclabs); 697 698 // gclab can not be initialized early during VM startup, as it can not determinate its max_size. 699 // Now, we will let WorkerThreads to initialize gclab when new worker is created. 700 _workers->set_initialize_gclab(); 701 702 // Note that the safepoint workers may require gclabs if the threads are used to create a heap dump 703 // during a concurrent evacuation phase. 704 if (_safepoint_workers != nullptr) { 705 _safepoint_workers->threads_do(&init_gclabs); 706 _safepoint_workers->set_initialize_gclab(); 707 } 708 709 JFR_ONLY(ShenandoahJFRSupport::register_jfr_type_serializers();) 710 } 711 712 ShenandoahHeuristics* ShenandoahHeap::heuristics() { 713 return _global_generation->heuristics(); 714 } 715 716 size_t ShenandoahHeap::used() const { 717 return global_generation()->used(); 718 } 719 720 size_t ShenandoahHeap::committed() const { 721 return AtomicAccess::load(&_committed); 722 } 723 724 void ShenandoahHeap::increase_committed(size_t bytes) { 725 shenandoah_assert_heaplocked_or_safepoint(); 726 _committed += bytes; 727 } 728 729 void ShenandoahHeap::decrease_committed(size_t bytes) { 730 shenandoah_assert_heaplocked_or_safepoint(); 731 _committed -= bytes; 732 } 733 734 size_t ShenandoahHeap::capacity() const { 735 return committed(); 736 } 737 738 size_t ShenandoahHeap::max_capacity() const { 739 return _num_regions * ShenandoahHeapRegion::region_size_bytes(); 740 } 741 742 size_t ShenandoahHeap::soft_max_capacity() const { 743 size_t v = AtomicAccess::load(&_soft_max_size); 744 assert(min_capacity() <= v && v <= max_capacity(), 745 "Should be in bounds: %zu <= %zu <= %zu", 746 min_capacity(), v, max_capacity()); 747 return v; 748 } 749 750 void ShenandoahHeap::set_soft_max_capacity(size_t v) { 751 assert(min_capacity() <= v && v <= max_capacity(), 752 "Should be in bounds: %zu <= %zu <= %zu", 753 min_capacity(), v, max_capacity()); 754 AtomicAccess::store(&_soft_max_size, v); 755 } 756 757 size_t ShenandoahHeap::min_capacity() const { 758 return _minimum_size; 759 } 760 761 size_t ShenandoahHeap::initial_capacity() const { 762 return _initial_size; 763 } 764 765 bool ShenandoahHeap::is_in(const void* p) const { 766 if (!is_in_reserved(p)) { 767 return false; 768 } 769 770 if (is_full_gc_move_in_progress()) { 771 // Full GC move is running, we do not have a consistent region 772 // information yet. But we know the pointer is in heap. 773 return true; 774 } 775 776 // Now check if we point to a live section in active region. 777 const ShenandoahHeapRegion* r = heap_region_containing(p); 778 if (p >= r->top()) { 779 return false; 780 } 781 782 if (r->is_active()) { 783 return true; 784 } 785 786 // The region is trash, but won't be recycled until after concurrent weak 787 // roots. We also don't allow mutators to allocate from trash regions 788 // during weak roots. Concurrent class unloading may access unmarked oops 789 // in trash regions. 790 return r->is_trash() && is_concurrent_weak_root_in_progress(); 791 } 792 793 void ShenandoahHeap::notify_soft_max_changed() { 794 if (_uncommit_thread != nullptr) { 795 _uncommit_thread->notify_soft_max_changed(); 796 } 797 } 798 799 void ShenandoahHeap::notify_explicit_gc_requested() { 800 if (_uncommit_thread != nullptr) { 801 _uncommit_thread->notify_explicit_gc_requested(); 802 } 803 } 804 805 bool ShenandoahHeap::check_soft_max_changed() { 806 size_t new_soft_max = AtomicAccess::load(&SoftMaxHeapSize); 807 size_t old_soft_max = soft_max_capacity(); 808 if (new_soft_max != old_soft_max) { 809 new_soft_max = MAX2(min_capacity(), new_soft_max); 810 new_soft_max = MIN2(max_capacity(), new_soft_max); 811 if (new_soft_max != old_soft_max) { 812 log_info(gc)("Soft Max Heap Size: %zu%s -> %zu%s", 813 byte_size_in_proper_unit(old_soft_max), proper_unit_for_byte_size(old_soft_max), 814 byte_size_in_proper_unit(new_soft_max), proper_unit_for_byte_size(new_soft_max) 815 ); 816 set_soft_max_capacity(new_soft_max); 817 return true; 818 } 819 } 820 return false; 821 } 822 823 void ShenandoahHeap::notify_heap_changed() { 824 // Update monitoring counters when we took a new region. This amortizes the 825 // update costs on slow path. 826 monitoring_support()->notify_heap_changed(); 827 _heap_changed.try_set(); 828 } 829 830 void ShenandoahHeap::set_forced_counters_update(bool value) { 831 monitoring_support()->set_forced_counters_update(value); 832 } 833 834 void ShenandoahHeap::handle_force_counters_update() { 835 monitoring_support()->handle_force_counters_update(); 836 } 837 838 HeapWord* ShenandoahHeap::allocate_from_gclab_slow(Thread* thread, size_t size) { 839 // New object should fit the GCLAB size 840 size_t min_size = MAX2(size, PLAB::min_size()); 841 842 // Figure out size of new GCLAB, looking back at heuristics. Expand aggressively. 843 size_t new_size = ShenandoahThreadLocalData::gclab_size(thread) * 2; 844 845 new_size = MIN2(new_size, PLAB::max_size()); 846 new_size = MAX2(new_size, PLAB::min_size()); 847 848 // Record new heuristic value even if we take any shortcut. This captures 849 // the case when moderately-sized objects always take a shortcut. At some point, 850 // heuristics should catch up with them. 851 log_debug(gc, free)("Set new GCLAB size: %zu", new_size); 852 ShenandoahThreadLocalData::set_gclab_size(thread, new_size); 853 854 if (new_size < size) { 855 // New size still does not fit the object. Fall back to shared allocation. 856 // This avoids retiring perfectly good GCLABs, when we encounter a large object. 857 log_debug(gc, free)("New gclab size (%zu) is too small for %zu", new_size, size); 858 return nullptr; 859 } 860 861 // Retire current GCLAB, and allocate a new one. 862 PLAB* gclab = ShenandoahThreadLocalData::gclab(thread); 863 gclab->retire(); 864 865 size_t actual_size = 0; 866 HeapWord* gclab_buf = allocate_new_gclab(min_size, new_size, &actual_size); 867 if (gclab_buf == nullptr) { 868 return nullptr; 869 } 870 871 assert (size <= actual_size, "allocation should fit"); 872 873 // ...and clear or zap just allocated TLAB, if needed. 874 if (ZeroTLAB) { 875 Copy::zero_to_words(gclab_buf, actual_size); 876 } else if (ZapTLAB) { 877 // Skip mangling the space corresponding to the object header to 878 // ensure that the returned space is not considered parsable by 879 // any concurrent GC thread. 880 size_t hdr_size = oopDesc::header_size(); 881 Copy::fill_to_words(gclab_buf + hdr_size, actual_size - hdr_size, badHeapWordVal); 882 } 883 gclab->set_buf(gclab_buf, actual_size); 884 return gclab->allocate(size); 885 } 886 887 // Called from stubs in JIT code or interpreter 888 HeapWord* ShenandoahHeap::allocate_new_tlab(size_t min_size, 889 size_t requested_size, 890 size_t* actual_size) { 891 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_tlab(min_size, requested_size); 892 HeapWord* res = allocate_memory(req); 893 if (res != nullptr) { 894 *actual_size = req.actual_size(); 895 } else { 896 *actual_size = 0; 897 } 898 return res; 899 } 900 901 HeapWord* ShenandoahHeap::allocate_new_gclab(size_t min_size, 902 size_t word_size, 903 size_t* actual_size) { 904 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_gclab(min_size, word_size); 905 HeapWord* res = allocate_memory(req); 906 if (res != nullptr) { 907 *actual_size = req.actual_size(); 908 } else { 909 *actual_size = 0; 910 } 911 return res; 912 } 913 914 HeapWord* ShenandoahHeap::allocate_memory(ShenandoahAllocRequest& req) { 915 bool in_new_region = false; 916 HeapWord* result = nullptr; 917 918 if (req.is_mutator_alloc()) { 919 920 if (!ShenandoahAllocFailureALot || !should_inject_alloc_failure()) { 921 result = allocate_memory_under_lock(req, in_new_region); 922 } 923 924 // Check that gc overhead is not exceeded. 925 // 926 // Shenandoah will grind along for quite a while allocating one 927 // object at a time using shared (non-tlab) allocations. This check 928 // is testing that the GC overhead limit has not been exceeded. 929 // This will notify the collector to start a cycle, but will raise 930 // an OOME to the mutator if the last Full GCs have not made progress. 931 // gc_no_progress_count is incremented following each degen or full GC that fails to achieve is_good_progress(). 932 if (result == nullptr && !req.is_lab_alloc() && get_gc_no_progress_count() > ShenandoahNoProgressThreshold) { 933 control_thread()->handle_alloc_failure(req, false); 934 req.set_actual_size(0); 935 return nullptr; 936 } 937 938 if (result == nullptr) { 939 // Block until control thread reacted, then retry allocation. 940 // 941 // It might happen that one of the threads requesting allocation would unblock 942 // way later after GC happened, only to fail the second allocation, because 943 // other threads have already depleted the free storage. In this case, a better 944 // strategy is to try again, until at least one full GC has completed. 945 // 946 // Stop retrying and return nullptr to cause OOMError exception if our allocation failed even after: 947 // a) We experienced a GC that had good progress, or 948 // b) We experienced at least one Full GC (whether or not it had good progress) 949 950 const size_t original_count = shenandoah_policy()->full_gc_count(); 951 while (result == nullptr && should_retry_allocation(original_count)) { 952 control_thread()->handle_alloc_failure(req, true); 953 result = allocate_memory_under_lock(req, in_new_region); 954 } 955 if (result != nullptr) { 956 // If our allocation request has been satisfied after it initially failed, we count this as good gc progress 957 notify_gc_progress(); 958 } 959 if (log_develop_is_enabled(Debug, gc, alloc)) { 960 ResourceMark rm; 961 log_debug(gc, alloc)("Thread: %s, Result: " PTR_FORMAT ", Request: %s, Size: %zu" 962 ", Original: %zu, Latest: %zu", 963 Thread::current()->name(), p2i(result), req.type_string(), req.size(), 964 original_count, get_gc_no_progress_count()); 965 } 966 } 967 } else { 968 assert(req.is_gc_alloc(), "Can only accept GC allocs here"); 969 result = allocate_memory_under_lock(req, in_new_region); 970 // Do not call handle_alloc_failure() here, because we cannot block. 971 // The allocation failure would be handled by the LRB slowpath with handle_alloc_failure_evac(). 972 } 973 974 if (in_new_region) { 975 notify_heap_changed(); 976 } 977 978 if (result == nullptr) { 979 req.set_actual_size(0); 980 } 981 982 if (result != nullptr) { 983 size_t requested = req.size(); 984 size_t actual = req.actual_size(); 985 986 assert (req.is_lab_alloc() || (requested == actual), 987 "Only LAB allocations are elastic: %s, requested = %zu, actual = %zu", 988 ShenandoahAllocRequest::alloc_type_to_string(req.type()), requested, actual); 989 } 990 991 return result; 992 } 993 994 inline bool ShenandoahHeap::should_retry_allocation(size_t original_full_gc_count) const { 995 return shenandoah_policy()->full_gc_count() == original_full_gc_count 996 && !shenandoah_policy()->is_at_shutdown(); 997 } 998 999 HeapWord* ShenandoahHeap::allocate_memory_under_lock(ShenandoahAllocRequest& req, bool& in_new_region) { 1000 // If we are dealing with mutator allocation, then we may need to block for safepoint. 1001 // We cannot block for safepoint for GC allocations, because there is a high chance 1002 // we are already running at safepoint or from stack watermark machinery, and we cannot 1003 // block again. 1004 ShenandoahHeapLocker locker(lock(), req.is_mutator_alloc()); 1005 1006 // Make sure the old generation has room for either evacuations or promotions before trying to allocate. 1007 if (req.is_old() && !old_generation()->can_allocate(req)) { 1008 return nullptr; 1009 } 1010 1011 // If TLAB request size is greater than available, allocate() will attempt to downsize request to fit within available 1012 // memory. 1013 HeapWord* result = _free_set->allocate(req, in_new_region); 1014 1015 // Record the plab configuration for this result and register the object. 1016 if (result != nullptr && req.is_old()) { 1017 old_generation()->configure_plab_for_current_thread(req); 1018 if (req.type() == ShenandoahAllocRequest::_alloc_shared_gc) { 1019 // Register the newly allocated object while we're holding the global lock since there's no synchronization 1020 // built in to the implementation of register_object(). There are potential races when multiple independent 1021 // threads are allocating objects, some of which might span the same card region. For example, consider 1022 // a card table's memory region within which three objects are being allocated by three different threads: 1023 // 1024 // objects being "concurrently" allocated: 1025 // [-----a------][-----b-----][--------------c------------------] 1026 // [---- card table memory range --------------] 1027 // 1028 // Before any objects are allocated, this card's memory range holds no objects. Note that allocation of object a 1029 // wants to set the starts-object, first-start, and last-start attributes of the preceding card region. 1030 // Allocation of object b wants to set the starts-object, first-start, and last-start attributes of this card region. 1031 // Allocation of object c also wants to set the starts-object, first-start, and last-start attributes of this 1032 // card region. 1033 // 1034 // The thread allocating b and the thread allocating c can "race" in various ways, resulting in confusion, such as 1035 // last-start representing object b while first-start represents object c. This is why we need to require all 1036 // register_object() invocations to be "mutually exclusive" with respect to each card's memory range. 1037 old_generation()->card_scan()->register_object(result); 1038 } 1039 } 1040 1041 return result; 1042 } 1043 1044 HeapWord* ShenandoahHeap::mem_allocate(size_t size) { 1045 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared(size); 1046 return allocate_memory(req); 1047 } 1048 1049 MetaWord* ShenandoahHeap::satisfy_failed_metadata_allocation(ClassLoaderData* loader_data, 1050 size_t size, 1051 Metaspace::MetadataType mdtype) { 1052 MetaWord* result; 1053 1054 // Inform metaspace OOM to GC heuristics if class unloading is possible. 1055 ShenandoahHeuristics* h = global_generation()->heuristics(); 1056 if (h->can_unload_classes()) { 1057 h->record_metaspace_oom(); 1058 } 1059 1060 // Expand and retry allocation 1061 result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype); 1062 if (result != nullptr) { 1063 return result; 1064 } 1065 1066 // Start full GC 1067 collect(GCCause::_metadata_GC_clear_soft_refs); 1068 1069 // Retry allocation 1070 result = loader_data->metaspace_non_null()->allocate(size, mdtype); 1071 if (result != nullptr) { 1072 return result; 1073 } 1074 1075 // Expand and retry allocation 1076 result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype); 1077 if (result != nullptr) { 1078 return result; 1079 } 1080 1081 // Out of memory 1082 return nullptr; 1083 } 1084 1085 class ShenandoahConcurrentEvacuateRegionObjectClosure : public ObjectClosure { 1086 private: 1087 ShenandoahHeap* const _heap; 1088 Thread* const _thread; 1089 public: 1090 ShenandoahConcurrentEvacuateRegionObjectClosure(ShenandoahHeap* heap) : 1091 _heap(heap), _thread(Thread::current()) {} 1092 1093 void do_object(oop p) { 1094 shenandoah_assert_marked(nullptr, p); 1095 if (!p->is_forwarded()) { 1096 _heap->evacuate_object(p, _thread); 1097 } 1098 } 1099 }; 1100 1101 class ShenandoahEvacuationTask : public WorkerTask { 1102 private: 1103 ShenandoahHeap* const _sh; 1104 ShenandoahCollectionSet* const _cs; 1105 bool _concurrent; 1106 public: 1107 ShenandoahEvacuationTask(ShenandoahHeap* sh, 1108 ShenandoahCollectionSet* cs, 1109 bool concurrent) : 1110 WorkerTask("Shenandoah Evacuation"), 1111 _sh(sh), 1112 _cs(cs), 1113 _concurrent(concurrent) 1114 {} 1115 1116 void work(uint worker_id) { 1117 if (_concurrent) { 1118 ShenandoahConcurrentWorkerSession worker_session(worker_id); 1119 ShenandoahSuspendibleThreadSetJoiner stsj; 1120 ShenandoahEvacOOMScope oom_evac_scope; 1121 do_work(); 1122 } else { 1123 ShenandoahParallelWorkerSession worker_session(worker_id); 1124 ShenandoahEvacOOMScope oom_evac_scope; 1125 do_work(); 1126 } 1127 } 1128 1129 private: 1130 void do_work() { 1131 ShenandoahConcurrentEvacuateRegionObjectClosure cl(_sh); 1132 ShenandoahHeapRegion* r; 1133 while ((r =_cs->claim_next()) != nullptr) { 1134 assert(r->has_live(), "Region %zu should have been reclaimed early", r->index()); 1135 _sh->marked_object_iterate(r, &cl); 1136 1137 if (_sh->check_cancelled_gc_and_yield(_concurrent)) { 1138 break; 1139 } 1140 } 1141 } 1142 }; 1143 1144 class ShenandoahRetireGCLABClosure : public ThreadClosure { 1145 private: 1146 bool const _resize; 1147 public: 1148 explicit ShenandoahRetireGCLABClosure(bool resize) : _resize(resize) {} 1149 void do_thread(Thread* thread) override { 1150 PLAB* gclab = ShenandoahThreadLocalData::gclab(thread); 1151 assert(gclab != nullptr, "GCLAB should be initialized for %s", thread->name()); 1152 gclab->retire(); 1153 if (_resize && ShenandoahThreadLocalData::gclab_size(thread) > 0) { 1154 ShenandoahThreadLocalData::set_gclab_size(thread, 0); 1155 } 1156 1157 if (ShenandoahHeap::heap()->mode()->is_generational()) { 1158 PLAB* plab = ShenandoahThreadLocalData::plab(thread); 1159 assert(plab != nullptr, "PLAB should be initialized for %s", thread->name()); 1160 1161 // There are two reasons to retire all plabs between old-gen evacuation passes. 1162 // 1. We need to make the plab memory parsable by remembered-set scanning. 1163 // 2. We need to establish a trustworthy UpdateWaterMark value within each old-gen heap region 1164 ShenandoahGenerationalHeap::heap()->retire_plab(plab, thread); 1165 1166 // Re-enable promotions for the next evacuation phase. 1167 ShenandoahThreadLocalData::enable_plab_promotions(thread); 1168 1169 // Reset the fill size for next evacuation phase. 1170 if (_resize && ShenandoahThreadLocalData::plab_size(thread) > 0) { 1171 ShenandoahThreadLocalData::set_plab_size(thread, 0); 1172 } 1173 } 1174 } 1175 }; 1176 1177 class ShenandoahGCStatePropagatorHandshakeClosure : public HandshakeClosure { 1178 public: 1179 explicit ShenandoahGCStatePropagatorHandshakeClosure(char gc_state) : 1180 HandshakeClosure("Shenandoah GC State Change"), 1181 _gc_state(gc_state) {} 1182 1183 void do_thread(Thread* thread) override { 1184 ShenandoahThreadLocalData::set_gc_state(thread, _gc_state); 1185 } 1186 private: 1187 char _gc_state; 1188 }; 1189 1190 class ShenandoahPrepareForUpdateRefsHandshakeClosure : public HandshakeClosure { 1191 public: 1192 explicit ShenandoahPrepareForUpdateRefsHandshakeClosure(char gc_state) : 1193 HandshakeClosure("Shenandoah Prepare for Update Refs"), 1194 _retire(ResizeTLAB), _propagator(gc_state) {} 1195 1196 void do_thread(Thread* thread) override { 1197 _propagator.do_thread(thread); 1198 if (ShenandoahThreadLocalData::gclab(thread) != nullptr) { 1199 _retire.do_thread(thread); 1200 } 1201 } 1202 private: 1203 ShenandoahRetireGCLABClosure _retire; 1204 ShenandoahGCStatePropagatorHandshakeClosure _propagator; 1205 }; 1206 1207 void ShenandoahHeap::evacuate_collection_set(ShenandoahGeneration* generation, bool concurrent) { 1208 assert(generation->is_global(), "Only global generation expected here"); 1209 ShenandoahEvacuationTask task(this, _collection_set, concurrent); 1210 workers()->run_task(&task); 1211 } 1212 1213 void ShenandoahHeap::concurrent_prepare_for_update_refs() { 1214 { 1215 // Java threads take this lock while they are being attached and added to the list of threads. 1216 // If another thread holds this lock before we update the gc state, it will receive a stale 1217 // gc state, but they will have been added to the list of java threads and so will be corrected 1218 // by the following handshake. 1219 MutexLocker lock(Threads_lock); 1220 1221 // A cancellation at this point means the degenerated cycle must resume from update-refs. 1222 set_gc_state_concurrent(EVACUATION, false); 1223 set_gc_state_concurrent(WEAK_ROOTS, false); 1224 set_gc_state_concurrent(UPDATE_REFS, true); 1225 } 1226 1227 // This will propagate the gc state and retire gclabs and plabs for threads that require it. 1228 ShenandoahPrepareForUpdateRefsHandshakeClosure prepare_for_update_refs(_gc_state.raw_value()); 1229 1230 // The handshake won't touch worker threads (or control thread, or VM thread), so do those separately. 1231 Threads::non_java_threads_do(&prepare_for_update_refs); 1232 1233 // Now retire gclabs and plabs and propagate gc_state for mutator threads 1234 Handshake::execute(&prepare_for_update_refs); 1235 1236 _update_refs_iterator.reset(); 1237 } 1238 1239 class ShenandoahCompositeHandshakeClosure : public HandshakeClosure { 1240 HandshakeClosure* _handshake_1; 1241 HandshakeClosure* _handshake_2; 1242 public: 1243 ShenandoahCompositeHandshakeClosure(HandshakeClosure* handshake_1, HandshakeClosure* handshake_2) : 1244 HandshakeClosure(handshake_2->name()), 1245 _handshake_1(handshake_1), _handshake_2(handshake_2) {} 1246 1247 void do_thread(Thread* thread) override { 1248 _handshake_1->do_thread(thread); 1249 _handshake_2->do_thread(thread); 1250 } 1251 }; 1252 1253 void ShenandoahHeap::concurrent_final_roots(HandshakeClosure* handshake_closure) { 1254 { 1255 assert(!is_evacuation_in_progress(), "Should not evacuate for abbreviated or old cycles"); 1256 MutexLocker lock(Threads_lock); 1257 set_gc_state_concurrent(WEAK_ROOTS, false); 1258 } 1259 1260 ShenandoahGCStatePropagatorHandshakeClosure propagator(_gc_state.raw_value()); 1261 Threads::non_java_threads_do(&propagator); 1262 if (handshake_closure == nullptr) { 1263 Handshake::execute(&propagator); 1264 } else { 1265 ShenandoahCompositeHandshakeClosure composite(&propagator, handshake_closure); 1266 Handshake::execute(&composite); 1267 } 1268 } 1269 1270 oop ShenandoahHeap::evacuate_object(oop p, Thread* thread) { 1271 assert(thread == Thread::current(), "Expected thread parameter to be current thread."); 1272 if (ShenandoahThreadLocalData::is_oom_during_evac(thread)) { 1273 // This thread went through the OOM during evac protocol. It is safe to return 1274 // the forward pointer. It must not attempt to evacuate any other objects. 1275 return ShenandoahBarrierSet::resolve_forwarded(p); 1276 } 1277 1278 assert(ShenandoahThreadLocalData::is_evac_allowed(thread), "must be enclosed in oom-evac scope"); 1279 1280 ShenandoahHeapRegion* r = heap_region_containing(p); 1281 assert(!r->is_humongous(), "never evacuate humongous objects"); 1282 1283 ShenandoahAffiliation target_gen = r->affiliation(); 1284 return try_evacuate_object(p, thread, r, target_gen); 1285 } 1286 1287 oop ShenandoahHeap::try_evacuate_object(oop p, Thread* thread, ShenandoahHeapRegion* from_region, 1288 ShenandoahAffiliation target_gen) { 1289 assert(target_gen == YOUNG_GENERATION, "Only expect evacuations to young in this mode"); 1290 assert(from_region->is_young(), "Only expect evacuations from young in this mode"); 1291 bool alloc_from_lab = true; 1292 HeapWord* copy = nullptr; 1293 size_t size = ShenandoahForwarding::size(p); 1294 1295 #ifdef ASSERT 1296 if (ShenandoahOOMDuringEvacALot && 1297 (os::random() & 1) == 0) { // Simulate OOM every ~2nd slow-path call 1298 copy = nullptr; 1299 } else { 1300 #endif 1301 if (UseTLAB) { 1302 copy = allocate_from_gclab(thread, size); 1303 } 1304 if (copy == nullptr) { 1305 // If we failed to allocate in LAB, we'll try a shared allocation. 1306 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared_gc(size, target_gen); 1307 copy = allocate_memory(req); 1308 alloc_from_lab = false; 1309 } 1310 #ifdef ASSERT 1311 } 1312 #endif 1313 1314 if (copy == nullptr) { 1315 control_thread()->handle_alloc_failure_evac(size); 1316 1317 _oom_evac_handler.handle_out_of_memory_during_evacuation(); 1318 1319 return ShenandoahBarrierSet::resolve_forwarded(p); 1320 } 1321 1322 if (ShenandoahEvacTracking) { 1323 evac_tracker()->begin_evacuation(thread, size * HeapWordSize, from_region->affiliation(), target_gen); 1324 } 1325 1326 // Copy the object: 1327 Copy::aligned_disjoint_words(cast_from_oop<HeapWord*>(p), copy, size); 1328 1329 // Try to install the new forwarding pointer. 1330 oop copy_val = cast_to_oop(copy); 1331 oop result = ShenandoahForwarding::try_update_forwardee(p, copy_val); 1332 if (result == copy_val) { 1333 // Successfully evacuated. Our copy is now the public one! 1334 ContinuationGCSupport::relativize_stack_chunk(copy_val); 1335 shenandoah_assert_correct(nullptr, copy_val); 1336 if (ShenandoahEvacTracking) { 1337 evac_tracker()->end_evacuation(thread, size * HeapWordSize, from_region->affiliation(), target_gen); 1338 } 1339 return copy_val; 1340 } else { 1341 // Failed to evacuate. We need to deal with the object that is left behind. Since this 1342 // new allocation is certainly after TAMS, it will be considered live in the next cycle. 1343 // But if it happens to contain references to evacuated regions, those references would 1344 // not get updated for this stale copy during this cycle, and we will crash while scanning 1345 // it the next cycle. 1346 if (alloc_from_lab) { 1347 // For LAB allocations, it is enough to rollback the allocation ptr. Either the next 1348 // object will overwrite this stale copy, or the filler object on LAB retirement will 1349 // do this. 1350 ShenandoahThreadLocalData::gclab(thread)->undo_allocation(copy, size); 1351 } else { 1352 // For non-LAB allocations, we have no way to retract the allocation, and 1353 // have to explicitly overwrite the copy with the filler object. With that overwrite, 1354 // we have to keep the fwdptr initialized and pointing to our (stale) copy. 1355 assert(size >= ShenandoahHeap::min_fill_size(), "previously allocated object known to be larger than min_size"); 1356 fill_with_object(copy, size); 1357 shenandoah_assert_correct(nullptr, copy_val); 1358 // For non-LAB allocations, the object has already been registered 1359 } 1360 shenandoah_assert_correct(nullptr, result); 1361 return result; 1362 } 1363 } 1364 1365 void ShenandoahHeap::trash_cset_regions() { 1366 ShenandoahHeapLocker locker(lock()); 1367 1368 ShenandoahCollectionSet* set = collection_set(); 1369 ShenandoahHeapRegion* r; 1370 set->clear_current_index(); 1371 while ((r = set->next()) != nullptr) { 1372 r->make_trash(); 1373 } 1374 collection_set()->clear(); 1375 } 1376 1377 void ShenandoahHeap::print_heap_regions_on(outputStream* st) const { 1378 st->print_cr("Heap Regions:"); 1379 st->print_cr("Region state: EU=empty-uncommitted, EC=empty-committed, R=regular, H=humongous start, HP=pinned humongous start"); 1380 st->print_cr(" HC=humongous continuation, CS=collection set, TR=trash, P=pinned, CSP=pinned collection set"); 1381 st->print_cr("BTE=bottom/top/end, TAMS=top-at-mark-start"); 1382 st->print_cr("UWM=update watermark, U=used"); 1383 st->print_cr("T=TLAB allocs, G=GCLAB allocs"); 1384 st->print_cr("S=shared allocs, L=live data"); 1385 st->print_cr("CP=critical pins"); 1386 1387 for (size_t i = 0; i < num_regions(); i++) { 1388 get_region(i)->print_on(st); 1389 } 1390 } 1391 1392 void ShenandoahHeap::process_gc_stats() const { 1393 // Commit worker statistics to cycle data 1394 phase_timings()->flush_par_workers_to_cycle(); 1395 1396 // Print GC stats for current cycle 1397 LogTarget(Info, gc, stats) lt; 1398 if (lt.is_enabled()) { 1399 ResourceMark rm; 1400 LogStream ls(lt); 1401 phase_timings()->print_cycle_on(&ls); 1402 if (ShenandoahEvacTracking) { 1403 ShenandoahCycleStats evac_stats = evac_tracker()->flush_cycle_to_global(); 1404 evac_tracker()->print_evacuations_on(&ls, &evac_stats.workers, 1405 &evac_stats.mutators); 1406 } 1407 } 1408 1409 // Commit statistics to globals 1410 phase_timings()->flush_cycle_to_global(); 1411 } 1412 1413 size_t ShenandoahHeap::trash_humongous_region_at(ShenandoahHeapRegion* start) const { 1414 assert(start->is_humongous_start(), "reclaim regions starting with the first one"); 1415 assert(!start->has_live(), "liveness must be zero"); 1416 1417 // Do not try to get the size of this humongous object. STW collections will 1418 // have already unloaded classes, so an unmarked object may have a bad klass pointer. 1419 ShenandoahHeapRegion* region = start; 1420 size_t index = region->index(); 1421 do { 1422 assert(region->is_humongous(), "Expect correct humongous start or continuation"); 1423 assert(!region->is_cset(), "Humongous region should not be in collection set"); 1424 region->make_trash_immediate(); 1425 region = get_region(++index); 1426 } while (region != nullptr && region->is_humongous_continuation()); 1427 1428 // Return number of regions trashed 1429 return index - start->index(); 1430 } 1431 1432 class ShenandoahCheckCleanGCLABClosure : public ThreadClosure { 1433 public: 1434 ShenandoahCheckCleanGCLABClosure() {} 1435 void do_thread(Thread* thread) { 1436 PLAB* gclab = ShenandoahThreadLocalData::gclab(thread); 1437 assert(gclab != nullptr, "GCLAB should be initialized for %s", thread->name()); 1438 assert(gclab->words_remaining() == 0, "GCLAB should not need retirement"); 1439 1440 if (ShenandoahHeap::heap()->mode()->is_generational()) { 1441 PLAB* plab = ShenandoahThreadLocalData::plab(thread); 1442 assert(plab != nullptr, "PLAB should be initialized for %s", thread->name()); 1443 assert(plab->words_remaining() == 0, "PLAB should not need retirement"); 1444 } 1445 } 1446 }; 1447 1448 void ShenandoahHeap::labs_make_parsable() { 1449 assert(UseTLAB, "Only call with UseTLAB"); 1450 1451 ShenandoahRetireGCLABClosure cl(false); 1452 1453 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1454 ThreadLocalAllocBuffer& tlab = t->tlab(); 1455 tlab.make_parsable(); 1456 if (ZeroTLAB) { 1457 t->retire_tlab(); 1458 } 1459 cl.do_thread(t); 1460 } 1461 1462 workers()->threads_do(&cl); 1463 1464 if (safepoint_workers() != nullptr) { 1465 safepoint_workers()->threads_do(&cl); 1466 } 1467 } 1468 1469 void ShenandoahHeap::tlabs_retire(bool resize) { 1470 assert(UseTLAB, "Only call with UseTLAB"); 1471 assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled"); 1472 1473 ThreadLocalAllocStats stats; 1474 1475 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1476 t->retire_tlab(&stats); 1477 if (resize) { 1478 t->tlab().resize(); 1479 } 1480 } 1481 1482 stats.publish(); 1483 1484 #ifdef ASSERT 1485 ShenandoahCheckCleanGCLABClosure cl; 1486 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1487 cl.do_thread(t); 1488 } 1489 workers()->threads_do(&cl); 1490 #endif 1491 } 1492 1493 void ShenandoahHeap::gclabs_retire(bool resize) { 1494 assert(UseTLAB, "Only call with UseTLAB"); 1495 assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled"); 1496 1497 ShenandoahRetireGCLABClosure cl(resize); 1498 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1499 cl.do_thread(t); 1500 } 1501 1502 workers()->threads_do(&cl); 1503 1504 if (safepoint_workers() != nullptr) { 1505 safepoint_workers()->threads_do(&cl); 1506 } 1507 } 1508 1509 // Returns size in bytes 1510 size_t ShenandoahHeap::unsafe_max_tlab_alloc() const { 1511 // Return the max allowed size, and let the allocation path 1512 // figure out the safe size for current allocation. 1513 return ShenandoahHeapRegion::max_tlab_size_bytes(); 1514 } 1515 1516 size_t ShenandoahHeap::max_tlab_size() const { 1517 // Returns size in words 1518 return ShenandoahHeapRegion::max_tlab_size_words(); 1519 } 1520 1521 void ShenandoahHeap::collect_as_vm_thread(GCCause::Cause cause) { 1522 // These requests are ignored because we can't easily have Shenandoah jump into 1523 // a synchronous (degenerated or full) cycle while it is in the middle of a concurrent 1524 // cycle. We _could_ cancel the concurrent cycle and then try to run a cycle directly 1525 // on the VM thread, but this would confuse the control thread mightily and doesn't 1526 // seem worth the trouble. Instead, we will have the caller thread run (and wait for) a 1527 // concurrent cycle in the prologue of the heap inspect/dump operation (see VM_HeapDumper::doit_prologue). 1528 // This is how other concurrent collectors in the JVM handle this scenario as well. 1529 assert(Thread::current()->is_VM_thread(), "Should be the VM thread"); 1530 guarantee(cause == GCCause::_heap_dump || cause == GCCause::_heap_inspection, "Invalid cause"); 1531 } 1532 1533 void ShenandoahHeap::collect(GCCause::Cause cause) { 1534 control_thread()->request_gc(cause); 1535 } 1536 1537 void ShenandoahHeap::do_full_collection(bool clear_all_soft_refs) { 1538 // This method is only called by `CollectedHeap::collect_as_vm_thread`, which we have 1539 // overridden to do nothing. See the comment there for an explanation of how heap inspections 1540 // work for Shenandoah. 1541 ShouldNotReachHere(); 1542 } 1543 1544 HeapWord* ShenandoahHeap::block_start(const void* addr) const { 1545 ShenandoahHeapRegion* r = heap_region_containing(addr); 1546 if (r != nullptr) { 1547 return r->block_start(addr); 1548 } 1549 return nullptr; 1550 } 1551 1552 bool ShenandoahHeap::block_is_obj(const HeapWord* addr) const { 1553 ShenandoahHeapRegion* r = heap_region_containing(addr); 1554 return r->block_is_obj(addr); 1555 } 1556 1557 bool ShenandoahHeap::print_location(outputStream* st, void* addr) const { 1558 return BlockLocationPrinter<ShenandoahHeap>::print_location(st, addr); 1559 } 1560 1561 void ShenandoahHeap::prepare_for_verify() { 1562 if (SafepointSynchronize::is_at_safepoint() && UseTLAB) { 1563 labs_make_parsable(); 1564 } 1565 } 1566 1567 void ShenandoahHeap::gc_threads_do(ThreadClosure* tcl) const { 1568 if (_shenandoah_policy->is_at_shutdown()) { 1569 return; 1570 } 1571 1572 if (_control_thread != nullptr) { 1573 tcl->do_thread(_control_thread); 1574 } 1575 1576 if (_uncommit_thread != nullptr) { 1577 tcl->do_thread(_uncommit_thread); 1578 } 1579 1580 workers()->threads_do(tcl); 1581 if (_safepoint_workers != nullptr) { 1582 _safepoint_workers->threads_do(tcl); 1583 } 1584 } 1585 1586 void ShenandoahHeap::print_tracing_info() const { 1587 LogTarget(Info, gc, stats) lt; 1588 if (lt.is_enabled()) { 1589 ResourceMark rm; 1590 LogStream ls(lt); 1591 1592 if (ShenandoahEvacTracking) { 1593 evac_tracker()->print_global_on(&ls); 1594 ls.cr(); 1595 ls.cr(); 1596 } 1597 1598 phase_timings()->print_global_on(&ls); 1599 1600 ls.cr(); 1601 ls.cr(); 1602 1603 shenandoah_policy()->print_gc_stats(&ls); 1604 1605 ls.cr(); 1606 ls.cr(); 1607 } 1608 } 1609 1610 // Active generation may only be set by the VM thread at a safepoint. 1611 void ShenandoahHeap::set_active_generation(ShenandoahGeneration* generation) { 1612 assert(Thread::current()->is_VM_thread(), "Only the VM Thread"); 1613 assert(SafepointSynchronize::is_at_safepoint(), "Only at a safepoint!"); 1614 _active_generation = generation; 1615 } 1616 1617 void ShenandoahHeap::on_cycle_start(GCCause::Cause cause, ShenandoahGeneration* generation) { 1618 shenandoah_policy()->record_collection_cause(cause); 1619 1620 const GCCause::Cause current = gc_cause(); 1621 assert(current == GCCause::_no_gc, "Over-writing cause: %s, with: %s", 1622 GCCause::to_string(current), GCCause::to_string(cause)); 1623 1624 set_gc_cause(cause); 1625 1626 generation->heuristics()->record_cycle_start(); 1627 } 1628 1629 void ShenandoahHeap::on_cycle_end(ShenandoahGeneration* generation) { 1630 assert(gc_cause() != GCCause::_no_gc, "cause wasn't set"); 1631 1632 generation->heuristics()->record_cycle_end(); 1633 if (mode()->is_generational() && generation->is_global()) { 1634 // If we just completed a GLOBAL GC, claim credit for completion of young-gen and old-gen GC as well 1635 young_generation()->heuristics()->record_cycle_end(); 1636 old_generation()->heuristics()->record_cycle_end(); 1637 } 1638 1639 set_gc_cause(GCCause::_no_gc); 1640 } 1641 1642 void ShenandoahHeap::verify(VerifyOption vo) { 1643 if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) { 1644 if (ShenandoahVerify) { 1645 verifier()->verify_generic(active_generation(), vo); 1646 } else { 1647 // TODO: Consider allocating verification bitmaps on demand, 1648 // and turn this on unconditionally. 1649 } 1650 } 1651 } 1652 size_t ShenandoahHeap::tlab_capacity() const { 1653 return _free_set->capacity(); 1654 } 1655 1656 class ObjectIterateScanRootClosure : public BasicOopIterateClosure { 1657 private: 1658 MarkBitMap* _bitmap; 1659 ShenandoahScanObjectStack* _oop_stack; 1660 ShenandoahHeap* const _heap; 1661 ShenandoahMarkingContext* const _marking_context; 1662 1663 template <class T> 1664 void do_oop_work(T* p) { 1665 T o = RawAccess<>::oop_load(p); 1666 if (!CompressedOops::is_null(o)) { 1667 oop obj = CompressedOops::decode_not_null(o); 1668 if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) { 1669 // There may be dead oops in weak roots in concurrent root phase, do not touch them. 1670 return; 1671 } 1672 obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj); 1673 1674 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1675 if (!_bitmap->is_marked(obj)) { 1676 _bitmap->mark(obj); 1677 _oop_stack->push(obj); 1678 } 1679 } 1680 } 1681 public: 1682 ObjectIterateScanRootClosure(MarkBitMap* bitmap, ShenandoahScanObjectStack* oop_stack) : 1683 _bitmap(bitmap), _oop_stack(oop_stack), _heap(ShenandoahHeap::heap()), 1684 _marking_context(_heap->marking_context()) {} 1685 void do_oop(oop* p) { do_oop_work(p); } 1686 void do_oop(narrowOop* p) { do_oop_work(p); } 1687 }; 1688 1689 /* 1690 * This is public API, used in preparation of object_iterate(). 1691 * Since we don't do linear scan of heap in object_iterate() (see comment below), we don't 1692 * need to make the heap parsable. For Shenandoah-internal linear heap scans that we can 1693 * control, we call SH::tlabs_retire, SH::gclabs_retire. 1694 */ 1695 void ShenandoahHeap::ensure_parsability(bool retire_tlabs) { 1696 // No-op. 1697 } 1698 1699 /* 1700 * Iterates objects in the heap. This is public API, used for, e.g., heap dumping. 1701 * 1702 * We cannot safely iterate objects by doing a linear scan at random points in time. Linear 1703 * scanning needs to deal with dead objects, which may have dead Klass* pointers (e.g. 1704 * calling oopDesc::size() would crash) or dangling reference fields (crashes) etc. Linear 1705 * scanning therefore depends on having a valid marking bitmap to support it. However, we only 1706 * have a valid marking bitmap after successful marking. In particular, we *don't* have a valid 1707 * marking bitmap during marking, after aborted marking or during/after cleanup (when we just 1708 * wiped the bitmap in preparation for next marking). 1709 * 1710 * For all those reasons, we implement object iteration as a single marking traversal, reporting 1711 * objects as we mark+traverse through the heap, starting from GC roots. JVMTI IterateThroughHeap 1712 * is allowed to report dead objects, but is not required to do so. 1713 */ 1714 void ShenandoahHeap::object_iterate(ObjectClosure* cl) { 1715 // Reset bitmap 1716 if (!prepare_aux_bitmap_for_iteration()) 1717 return; 1718 1719 ShenandoahScanObjectStack oop_stack; 1720 ObjectIterateScanRootClosure oops(&_aux_bit_map, &oop_stack); 1721 // Seed the stack with root scan 1722 scan_roots_for_iteration(&oop_stack, &oops); 1723 1724 // Work through the oop stack to traverse heap 1725 while (! oop_stack.is_empty()) { 1726 oop obj = oop_stack.pop(); 1727 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1728 cl->do_object(obj); 1729 obj->oop_iterate(&oops); 1730 } 1731 1732 assert(oop_stack.is_empty(), "should be empty"); 1733 // Reclaim bitmap 1734 reclaim_aux_bitmap_for_iteration(); 1735 } 1736 1737 bool ShenandoahHeap::prepare_aux_bitmap_for_iteration() { 1738 assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints"); 1739 if (!_aux_bitmap_region_special) { 1740 bool success = os::commit_memory((char *) _aux_bitmap_region.start(), _aux_bitmap_region.byte_size(), false); 1741 if (!success) { 1742 log_warning(gc)("Auxiliary marking bitmap commit failed: " PTR_FORMAT " (%zu bytes)", 1743 p2i(_aux_bitmap_region.start()), _aux_bitmap_region.byte_size()); 1744 return false; 1745 } 1746 } 1747 _aux_bit_map.clear(); 1748 return true; 1749 } 1750 1751 void ShenandoahHeap::scan_roots_for_iteration(ShenandoahScanObjectStack* oop_stack, ObjectIterateScanRootClosure* oops) { 1752 // Process GC roots according to current GC cycle 1753 // This populates the work stack with initial objects 1754 // It is important to relinquish the associated locks before diving 1755 // into heap dumper 1756 uint n_workers = safepoint_workers() != nullptr ? safepoint_workers()->active_workers() : 1; 1757 ShenandoahHeapIterationRootScanner rp(n_workers); 1758 rp.roots_do(oops); 1759 } 1760 1761 void ShenandoahHeap::reclaim_aux_bitmap_for_iteration() { 1762 if (!_aux_bitmap_region_special) { 1763 bool success = os::uncommit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size()); 1764 if (!success) { 1765 log_warning(gc)("Auxiliary marking bitmap uncommit failed: " PTR_FORMAT " (%zu bytes)", 1766 p2i(_aux_bitmap_region.start()), _aux_bitmap_region.byte_size()); 1767 assert(false, "Auxiliary marking bitmap uncommit should always succeed"); 1768 } 1769 } 1770 } 1771 1772 // Closure for parallelly iterate objects 1773 class ShenandoahObjectIterateParScanClosure : public BasicOopIterateClosure { 1774 private: 1775 MarkBitMap* _bitmap; 1776 ShenandoahObjToScanQueue* _queue; 1777 ShenandoahHeap* const _heap; 1778 ShenandoahMarkingContext* const _marking_context; 1779 1780 template <class T> 1781 void do_oop_work(T* p) { 1782 T o = RawAccess<>::oop_load(p); 1783 if (!CompressedOops::is_null(o)) { 1784 oop obj = CompressedOops::decode_not_null(o); 1785 if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) { 1786 // There may be dead oops in weak roots in concurrent root phase, do not touch them. 1787 return; 1788 } 1789 obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj); 1790 1791 assert(oopDesc::is_oop(obj), "Must be a valid oop"); 1792 if (_bitmap->par_mark(obj)) { 1793 _queue->push(ShenandoahMarkTask(obj)); 1794 } 1795 } 1796 } 1797 public: 1798 ShenandoahObjectIterateParScanClosure(MarkBitMap* bitmap, ShenandoahObjToScanQueue* q) : 1799 _bitmap(bitmap), _queue(q), _heap(ShenandoahHeap::heap()), 1800 _marking_context(_heap->marking_context()) {} 1801 void do_oop(oop* p) { do_oop_work(p); } 1802 void do_oop(narrowOop* p) { do_oop_work(p); } 1803 }; 1804 1805 // Object iterator for parallel heap iteraion. 1806 // The root scanning phase happenes in construction as a preparation of 1807 // parallel marking queues. 1808 // Every worker processes it's own marking queue. work-stealing is used 1809 // to balance workload. 1810 class ShenandoahParallelObjectIterator : public ParallelObjectIteratorImpl { 1811 private: 1812 uint _num_workers; 1813 bool _init_ready; 1814 MarkBitMap* _aux_bit_map; 1815 ShenandoahHeap* _heap; 1816 ShenandoahScanObjectStack _roots_stack; // global roots stack 1817 ShenandoahObjToScanQueueSet* _task_queues; 1818 public: 1819 ShenandoahParallelObjectIterator(uint num_workers, MarkBitMap* bitmap) : 1820 _num_workers(num_workers), 1821 _init_ready(false), 1822 _aux_bit_map(bitmap), 1823 _heap(ShenandoahHeap::heap()) { 1824 // Initialize bitmap 1825 _init_ready = _heap->prepare_aux_bitmap_for_iteration(); 1826 if (!_init_ready) { 1827 return; 1828 } 1829 1830 ObjectIterateScanRootClosure oops(_aux_bit_map, &_roots_stack); 1831 _heap->scan_roots_for_iteration(&_roots_stack, &oops); 1832 1833 _init_ready = prepare_worker_queues(); 1834 } 1835 1836 ~ShenandoahParallelObjectIterator() { 1837 // Reclaim bitmap 1838 _heap->reclaim_aux_bitmap_for_iteration(); 1839 // Reclaim queue for workers 1840 if (_task_queues!= nullptr) { 1841 for (uint i = 0; i < _num_workers; ++i) { 1842 ShenandoahObjToScanQueue* q = _task_queues->queue(i); 1843 if (q != nullptr) { 1844 delete q; 1845 _task_queues->register_queue(i, nullptr); 1846 } 1847 } 1848 delete _task_queues; 1849 _task_queues = nullptr; 1850 } 1851 } 1852 1853 virtual void object_iterate(ObjectClosure* cl, uint worker_id) { 1854 if (_init_ready) { 1855 object_iterate_parallel(cl, worker_id, _task_queues); 1856 } 1857 } 1858 1859 private: 1860 // Divide global root_stack into worker queues 1861 bool prepare_worker_queues() { 1862 _task_queues = new ShenandoahObjToScanQueueSet((int) _num_workers); 1863 // Initialize queues for every workers 1864 for (uint i = 0; i < _num_workers; ++i) { 1865 ShenandoahObjToScanQueue* task_queue = new ShenandoahObjToScanQueue(); 1866 _task_queues->register_queue(i, task_queue); 1867 } 1868 // Divide roots among the workers. Assume that object referencing distribution 1869 // is related with root kind, use round-robin to make every worker have same chance 1870 // to process every kind of roots 1871 size_t roots_num = _roots_stack.size(); 1872 if (roots_num == 0) { 1873 // No work to do 1874 return false; 1875 } 1876 1877 for (uint j = 0; j < roots_num; j++) { 1878 uint stack_id = j % _num_workers; 1879 oop obj = _roots_stack.pop(); 1880 _task_queues->queue(stack_id)->push(ShenandoahMarkTask(obj)); 1881 } 1882 return true; 1883 } 1884 1885 void object_iterate_parallel(ObjectClosure* cl, 1886 uint worker_id, 1887 ShenandoahObjToScanQueueSet* queue_set) { 1888 assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints"); 1889 assert(queue_set != nullptr, "task queue must not be null"); 1890 1891 ShenandoahObjToScanQueue* q = queue_set->queue(worker_id); 1892 assert(q != nullptr, "object iterate queue must not be null"); 1893 1894 ShenandoahMarkTask t; 1895 ShenandoahObjectIterateParScanClosure oops(_aux_bit_map, q); 1896 1897 // Work through the queue to traverse heap. 1898 // Steal when there is no task in queue. 1899 while (q->pop(t) || queue_set->steal(worker_id, t)) { 1900 oop obj = t.obj(); 1901 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1902 cl->do_object(obj); 1903 obj->oop_iterate(&oops); 1904 } 1905 assert(q->is_empty(), "should be empty"); 1906 } 1907 }; 1908 1909 ParallelObjectIteratorImpl* ShenandoahHeap::parallel_object_iterator(uint workers) { 1910 return new ShenandoahParallelObjectIterator(workers, &_aux_bit_map); 1911 } 1912 1913 // Keep alive an object that was loaded with AS_NO_KEEPALIVE. 1914 void ShenandoahHeap::keep_alive(oop obj) { 1915 if (is_concurrent_mark_in_progress() && (obj != nullptr)) { 1916 ShenandoahBarrierSet::barrier_set()->enqueue(obj); 1917 } 1918 } 1919 1920 void ShenandoahHeap::heap_region_iterate(ShenandoahHeapRegionClosure* blk) const { 1921 for (size_t i = 0; i < num_regions(); i++) { 1922 ShenandoahHeapRegion* current = get_region(i); 1923 blk->heap_region_do(current); 1924 } 1925 } 1926 1927 class ShenandoahParallelHeapRegionTask : public WorkerTask { 1928 private: 1929 ShenandoahHeap* const _heap; 1930 ShenandoahHeapRegionClosure* const _blk; 1931 size_t const _stride; 1932 1933 shenandoah_padding(0); 1934 volatile size_t _index; 1935 shenandoah_padding(1); 1936 1937 public: 1938 ShenandoahParallelHeapRegionTask(ShenandoahHeapRegionClosure* blk, size_t stride) : 1939 WorkerTask("Shenandoah Parallel Region Operation"), 1940 _heap(ShenandoahHeap::heap()), _blk(blk), _stride(stride), _index(0) {} 1941 1942 void work(uint worker_id) { 1943 ShenandoahParallelWorkerSession worker_session(worker_id); 1944 size_t stride = _stride; 1945 1946 size_t max = _heap->num_regions(); 1947 while (AtomicAccess::load(&_index) < max) { 1948 size_t cur = AtomicAccess::fetch_then_add(&_index, stride, memory_order_relaxed); 1949 size_t start = cur; 1950 size_t end = MIN2(cur + stride, max); 1951 if (start >= max) break; 1952 1953 for (size_t i = cur; i < end; i++) { 1954 ShenandoahHeapRegion* current = _heap->get_region(i); 1955 _blk->heap_region_do(current); 1956 } 1957 } 1958 } 1959 }; 1960 1961 void ShenandoahHeap::parallel_heap_region_iterate(ShenandoahHeapRegionClosure* blk) const { 1962 assert(blk->is_thread_safe(), "Only thread-safe closures here"); 1963 const uint active_workers = workers()->active_workers(); 1964 const size_t n_regions = num_regions(); 1965 size_t stride = ShenandoahParallelRegionStride; 1966 if (stride == 0 && active_workers > 1) { 1967 // Automatically derive the stride to balance the work between threads 1968 // evenly. Do not try to split work if below the reasonable threshold. 1969 constexpr size_t threshold = 4096; 1970 stride = n_regions <= threshold ? 1971 threshold : 1972 (n_regions + active_workers - 1) / active_workers; 1973 } 1974 1975 if (n_regions > stride && active_workers > 1) { 1976 ShenandoahParallelHeapRegionTask task(blk, stride); 1977 workers()->run_task(&task); 1978 } else { 1979 heap_region_iterate(blk); 1980 } 1981 } 1982 1983 class ShenandoahRendezvousHandshakeClosure : public HandshakeClosure { 1984 public: 1985 inline ShenandoahRendezvousHandshakeClosure(const char* name) : HandshakeClosure(name) {} 1986 inline void do_thread(Thread* thread) {} 1987 }; 1988 1989 void ShenandoahHeap::rendezvous_threads(const char* name) { 1990 ShenandoahRendezvousHandshakeClosure cl(name); 1991 Handshake::execute(&cl); 1992 } 1993 1994 void ShenandoahHeap::recycle_trash() { 1995 free_set()->recycle_trash(); 1996 } 1997 1998 void ShenandoahHeap::do_class_unloading() { 1999 _unloader.unload(); 2000 if (mode()->is_generational()) { 2001 old_generation()->set_parsable(false); 2002 } 2003 } 2004 2005 void ShenandoahHeap::stw_weak_refs(ShenandoahGeneration* generation, bool full_gc) { 2006 // Weak refs processing 2007 ShenandoahPhaseTimings::Phase phase = full_gc ? ShenandoahPhaseTimings::full_gc_weakrefs 2008 : ShenandoahPhaseTimings::degen_gc_weakrefs; 2009 ShenandoahTimingsTracker t(phase); 2010 ShenandoahGCWorkerPhase worker_phase(phase); 2011 generation->ref_processor()->process_references(phase, workers(), false /* concurrent */); 2012 } 2013 2014 void ShenandoahHeap::prepare_update_heap_references() { 2015 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "must be at safepoint"); 2016 2017 // Evacuation is over, no GCLABs are needed anymore. GCLABs are under URWM, so we need to 2018 // make them parsable for update code to work correctly. Plus, we can compute new sizes 2019 // for future GCLABs here. 2020 if (UseTLAB) { 2021 ShenandoahGCPhase phase(ShenandoahPhaseTimings::degen_gc_init_update_refs_manage_gclabs); 2022 gclabs_retire(ResizeTLAB); 2023 } 2024 2025 _update_refs_iterator.reset(); 2026 } 2027 2028 void ShenandoahHeap::propagate_gc_state_to_all_threads() { 2029 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Must be at Shenandoah safepoint"); 2030 if (_gc_state_changed) { 2031 // If we are only marking old, we do not need to process young pointers 2032 ShenandoahBarrierSet::satb_mark_queue_set().set_filter_out_young( 2033 is_concurrent_old_mark_in_progress() && !is_concurrent_young_mark_in_progress() 2034 ); 2035 ShenandoahGCStatePropagatorHandshakeClosure propagator(_gc_state.raw_value()); 2036 Threads::threads_do(&propagator); 2037 _gc_state_changed = false; 2038 } 2039 } 2040 2041 void ShenandoahHeap::set_gc_state_at_safepoint(uint mask, bool value) { 2042 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Must be at Shenandoah safepoint"); 2043 _gc_state.set_cond(mask, value); 2044 _gc_state_changed = true; 2045 } 2046 2047 void ShenandoahHeap::set_gc_state_concurrent(uint mask, bool value) { 2048 // Holding the thread lock here assures that any thread created after we change the gc 2049 // state will have the correct state. It also prevents attaching threads from seeing 2050 // an inconsistent state. See ShenandoahBarrierSet::on_thread_attach for reference. Established 2051 // threads will use their thread local copy of the gc state (changed by a handshake, or on a 2052 // safepoint). 2053 assert(Threads_lock->is_locked(), "Must hold thread lock for concurrent gc state change"); 2054 _gc_state.set_cond(mask, value); 2055 } 2056 2057 void ShenandoahHeap::set_concurrent_young_mark_in_progress(bool in_progress) { 2058 uint mask; 2059 assert(!has_forwarded_objects(), "Young marking is not concurrent with evacuation"); 2060 if (!in_progress && is_concurrent_old_mark_in_progress()) { 2061 assert(mode()->is_generational(), "Only generational GC has old marking"); 2062 assert(_gc_state.is_set(MARKING), "concurrent_old_marking_in_progress implies MARKING"); 2063 // If old-marking is in progress when we turn off YOUNG_MARKING, leave MARKING (and OLD_MARKING) on 2064 mask = YOUNG_MARKING; 2065 } else { 2066 mask = MARKING | YOUNG_MARKING; 2067 } 2068 set_gc_state_at_safepoint(mask, in_progress); 2069 manage_satb_barrier(in_progress); 2070 } 2071 2072 void ShenandoahHeap::set_concurrent_old_mark_in_progress(bool in_progress) { 2073 #ifdef ASSERT 2074 // has_forwarded_objects() iff UPDATE_REFS or EVACUATION 2075 bool has_forwarded = has_forwarded_objects(); 2076 bool updating_or_evacuating = _gc_state.is_set(UPDATE_REFS | EVACUATION); 2077 bool evacuating = _gc_state.is_set(EVACUATION); 2078 assert ((has_forwarded == updating_or_evacuating) || (evacuating && !has_forwarded && collection_set()->is_empty()), 2079 "Updating or evacuating iff has forwarded objects, or if evacuation phase is promoting in place without forwarding"); 2080 #endif 2081 if (!in_progress && is_concurrent_young_mark_in_progress()) { 2082 // If young-marking is in progress when we turn off OLD_MARKING, leave MARKING (and YOUNG_MARKING) on 2083 assert(_gc_state.is_set(MARKING), "concurrent_young_marking_in_progress implies MARKING"); 2084 set_gc_state_at_safepoint(OLD_MARKING, in_progress); 2085 } else { 2086 set_gc_state_at_safepoint(MARKING | OLD_MARKING, in_progress); 2087 } 2088 manage_satb_barrier(in_progress); 2089 } 2090 2091 bool ShenandoahHeap::is_prepare_for_old_mark_in_progress() const { 2092 return old_generation()->is_preparing_for_mark(); 2093 } 2094 2095 void ShenandoahHeap::manage_satb_barrier(bool active) { 2096 if (is_concurrent_mark_in_progress()) { 2097 // Ignore request to deactivate barrier while concurrent mark is in progress. 2098 // Do not attempt to re-activate the barrier if it is already active. 2099 if (active && !ShenandoahBarrierSet::satb_mark_queue_set().is_active()) { 2100 ShenandoahBarrierSet::satb_mark_queue_set().set_active_all_threads(active, !active); 2101 } 2102 } else { 2103 // No concurrent marking is in progress so honor request to deactivate, 2104 // but only if the barrier is already active. 2105 if (!active && ShenandoahBarrierSet::satb_mark_queue_set().is_active()) { 2106 ShenandoahBarrierSet::satb_mark_queue_set().set_active_all_threads(active, !active); 2107 } 2108 } 2109 } 2110 2111 void ShenandoahHeap::set_evacuation_in_progress(bool in_progress) { 2112 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Only call this at safepoint"); 2113 set_gc_state_at_safepoint(EVACUATION, in_progress); 2114 } 2115 2116 void ShenandoahHeap::set_concurrent_strong_root_in_progress(bool in_progress) { 2117 if (in_progress) { 2118 _concurrent_strong_root_in_progress.set(); 2119 } else { 2120 _concurrent_strong_root_in_progress.unset(); 2121 } 2122 } 2123 2124 void ShenandoahHeap::set_concurrent_weak_root_in_progress(bool cond) { 2125 set_gc_state_at_safepoint(WEAK_ROOTS, cond); 2126 } 2127 2128 GCTracer* ShenandoahHeap::tracer() { 2129 return shenandoah_policy()->tracer(); 2130 } 2131 2132 size_t ShenandoahHeap::tlab_used() const { 2133 return _free_set->used(); 2134 } 2135 2136 bool ShenandoahHeap::try_cancel_gc(GCCause::Cause cause) { 2137 const GCCause::Cause prev = _cancelled_gc.xchg(cause); 2138 return prev == GCCause::_no_gc || prev == GCCause::_shenandoah_concurrent_gc; 2139 } 2140 2141 void ShenandoahHeap::cancel_concurrent_mark() { 2142 if (mode()->is_generational()) { 2143 young_generation()->cancel_marking(); 2144 old_generation()->cancel_marking(); 2145 } 2146 2147 global_generation()->cancel_marking(); 2148 2149 ShenandoahBarrierSet::satb_mark_queue_set().abandon_partial_marking(); 2150 } 2151 2152 bool ShenandoahHeap::cancel_gc(GCCause::Cause cause) { 2153 if (try_cancel_gc(cause)) { 2154 FormatBuffer<> msg("Cancelling GC: %s", GCCause::to_string(cause)); 2155 log_info(gc,thread)("%s", msg.buffer()); 2156 Events::log(Thread::current(), "%s", msg.buffer()); 2157 _cancel_requested_time = os::elapsedTime(); 2158 return true; 2159 } 2160 return false; 2161 } 2162 2163 uint ShenandoahHeap::max_workers() { 2164 return _max_workers; 2165 } 2166 2167 void ShenandoahHeap::stop() { 2168 // The shutdown sequence should be able to terminate when GC is running. 2169 2170 // Step 0. Notify policy to disable event recording and prevent visiting gc threads during shutdown 2171 _shenandoah_policy->record_shutdown(); 2172 2173 // Step 1. Stop reporting on gc thread cpu utilization 2174 mmu_tracker()->stop(); 2175 2176 // Step 2. Wait until GC worker exits normally (this will cancel any ongoing GC). 2177 control_thread()->stop(); 2178 2179 // Stop 4. Shutdown uncommit thread. 2180 if (_uncommit_thread != nullptr) { 2181 _uncommit_thread->stop(); 2182 } 2183 } 2184 2185 void ShenandoahHeap::stw_unload_classes(bool full_gc) { 2186 if (!unload_classes()) return; 2187 ClassUnloadingContext ctx(_workers->active_workers(), 2188 true /* unregister_nmethods_during_purge */, 2189 false /* lock_nmethod_free_separately */); 2190 2191 // Unload classes and purge SystemDictionary. 2192 { 2193 ShenandoahPhaseTimings::Phase phase = full_gc ? 2194 ShenandoahPhaseTimings::full_gc_purge_class_unload : 2195 ShenandoahPhaseTimings::degen_gc_purge_class_unload; 2196 ShenandoahIsAliveSelector is_alive; 2197 { 2198 CodeCache::UnlinkingScope scope(is_alive.is_alive_closure()); 2199 ShenandoahGCPhase gc_phase(phase); 2200 ShenandoahGCWorkerPhase worker_phase(phase); 2201 bool unloading_occurred = SystemDictionary::do_unloading(gc_timer()); 2202 2203 // Clean JVMCI metadata handles. 2204 JVMCI_ONLY(JVMCI::do_unloading(unloading_occurred)); 2205 2206 ShenandoahClassUnloadingTask unlink_task(phase, unloading_occurred); 2207 _workers->run_task(&unlink_task); 2208 } 2209 // Release unloaded nmethods's memory. 2210 ClassUnloadingContext::context()->purge_and_free_nmethods(); 2211 } 2212 2213 { 2214 ShenandoahGCPhase phase(full_gc ? 2215 ShenandoahPhaseTimings::full_gc_purge_cldg : 2216 ShenandoahPhaseTimings::degen_gc_purge_cldg); 2217 ClassLoaderDataGraph::purge(true /* at_safepoint */); 2218 } 2219 // Resize and verify metaspace 2220 MetaspaceGC::compute_new_size(); 2221 DEBUG_ONLY(MetaspaceUtils::verify();) 2222 } 2223 2224 // Weak roots are either pre-evacuated (final mark) or updated (final update refs), 2225 // so they should not have forwarded oops. 2226 // However, we do need to "null" dead oops in the roots, if can not be done 2227 // in concurrent cycles. 2228 void ShenandoahHeap::stw_process_weak_roots(bool full_gc) { 2229 uint num_workers = _workers->active_workers(); 2230 ShenandoahPhaseTimings::Phase timing_phase = full_gc ? 2231 ShenandoahPhaseTimings::full_gc_purge_weak_par : 2232 ShenandoahPhaseTimings::degen_gc_purge_weak_par; 2233 ShenandoahGCPhase phase(timing_phase); 2234 ShenandoahGCWorkerPhase worker_phase(timing_phase); 2235 // Cleanup weak roots 2236 if (has_forwarded_objects()) { 2237 ShenandoahForwardedIsAliveClosure is_alive; 2238 ShenandoahNonConcUpdateRefsClosure keep_alive; 2239 ShenandoahParallelWeakRootsCleaningTask<ShenandoahForwardedIsAliveClosure, ShenandoahNonConcUpdateRefsClosure> 2240 cleaning_task(timing_phase, &is_alive, &keep_alive, num_workers); 2241 _workers->run_task(&cleaning_task); 2242 } else { 2243 ShenandoahIsAliveClosure is_alive; 2244 #ifdef ASSERT 2245 ShenandoahAssertNotForwardedClosure verify_cl; 2246 ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, ShenandoahAssertNotForwardedClosure> 2247 cleaning_task(timing_phase, &is_alive, &verify_cl, num_workers); 2248 #else 2249 ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, DoNothingClosure> 2250 cleaning_task(timing_phase, &is_alive, &do_nothing_cl, num_workers); 2251 #endif 2252 _workers->run_task(&cleaning_task); 2253 } 2254 } 2255 2256 void ShenandoahHeap::parallel_cleaning(ShenandoahGeneration* generation, bool full_gc) { 2257 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 2258 assert(is_stw_gc_in_progress(), "Only for Degenerated and Full GC"); 2259 ShenandoahGCPhase phase(full_gc ? 2260 ShenandoahPhaseTimings::full_gc_purge : 2261 ShenandoahPhaseTimings::degen_gc_purge); 2262 stw_weak_refs(generation, full_gc); 2263 stw_process_weak_roots(full_gc); 2264 stw_unload_classes(full_gc); 2265 } 2266 2267 void ShenandoahHeap::set_has_forwarded_objects(bool cond) { 2268 set_gc_state_at_safepoint(HAS_FORWARDED, cond); 2269 } 2270 2271 void ShenandoahHeap::set_unload_classes(bool uc) { 2272 _unload_classes.set_cond(uc); 2273 } 2274 2275 bool ShenandoahHeap::unload_classes() const { 2276 return _unload_classes.is_set(); 2277 } 2278 2279 address ShenandoahHeap::in_cset_fast_test_addr() { 2280 ShenandoahHeap* heap = ShenandoahHeap::heap(); 2281 assert(heap->collection_set() != nullptr, "Sanity"); 2282 return (address) heap->collection_set()->biased_map_address(); 2283 } 2284 2285 void ShenandoahHeap::reset_bytes_allocated_since_gc_start() { 2286 // It is important to force_alloc_rate_sample() before the associated generation's bytes_allocated has been reset. 2287 // Note that there is no lock to prevent additional alloations between sampling bytes_allocated_since_gc_start() and 2288 // reset_bytes_allocated_since_gc_start(). If additional allocations happen, they will be ignored in the average 2289 // allocation rate computations. This effect is considered to be be negligible. 2290 2291 // unaccounted_bytes is the bytes not accounted for by our forced sample. If the sample interval is too short, 2292 // the "forced sample" will not happen, and any recently allocated bytes are "unaccounted for". We pretend these 2293 // bytes are allocated after the start of subsequent gc. 2294 size_t unaccounted_bytes; 2295 ShenandoahFreeSet* _free_set = free_set(); 2296 size_t bytes_allocated = _free_set->get_bytes_allocated_since_gc_start(); 2297 if (mode()->is_generational()) { 2298 unaccounted_bytes = young_generation()->heuristics()->force_alloc_rate_sample(bytes_allocated); 2299 } else { 2300 // Single-gen Shenandoah uses global heuristics. 2301 unaccounted_bytes = heuristics()->force_alloc_rate_sample(bytes_allocated); 2302 } 2303 ShenandoahHeapLocker locker(lock()); 2304 _free_set->reset_bytes_allocated_since_gc_start(unaccounted_bytes); 2305 } 2306 2307 void ShenandoahHeap::set_degenerated_gc_in_progress(bool in_progress) { 2308 _degenerated_gc_in_progress.set_cond(in_progress); 2309 } 2310 2311 void ShenandoahHeap::set_full_gc_in_progress(bool in_progress) { 2312 _full_gc_in_progress.set_cond(in_progress); 2313 } 2314 2315 void ShenandoahHeap::set_full_gc_move_in_progress(bool in_progress) { 2316 assert (is_full_gc_in_progress(), "should be"); 2317 _full_gc_move_in_progress.set_cond(in_progress); 2318 } 2319 2320 void ShenandoahHeap::set_update_refs_in_progress(bool in_progress) { 2321 set_gc_state_at_safepoint(UPDATE_REFS, in_progress); 2322 } 2323 2324 void ShenandoahHeap::register_nmethod(nmethod* nm) { 2325 ShenandoahCodeRoots::register_nmethod(nm); 2326 } 2327 2328 void ShenandoahHeap::unregister_nmethod(nmethod* nm) { 2329 ShenandoahCodeRoots::unregister_nmethod(nm); 2330 } 2331 2332 void ShenandoahHeap::pin_object(JavaThread* thr, oop o) { 2333 heap_region_containing(o)->record_pin(); 2334 } 2335 2336 void ShenandoahHeap::unpin_object(JavaThread* thr, oop o) { 2337 ShenandoahHeapRegion* r = heap_region_containing(o); 2338 assert(r != nullptr, "Sanity"); 2339 assert(r->pin_count() > 0, "Region %zu should have non-zero pins", r->index()); 2340 r->record_unpin(); 2341 } 2342 2343 void ShenandoahHeap::sync_pinned_region_status() { 2344 ShenandoahHeapLocker locker(lock()); 2345 2346 for (size_t i = 0; i < num_regions(); i++) { 2347 ShenandoahHeapRegion *r = get_region(i); 2348 if (r->is_active()) { 2349 if (r->is_pinned()) { 2350 if (r->pin_count() == 0) { 2351 r->make_unpinned(); 2352 } 2353 } else { 2354 if (r->pin_count() > 0) { 2355 r->make_pinned(); 2356 } 2357 } 2358 } 2359 } 2360 2361 assert_pinned_region_status(); 2362 } 2363 2364 #ifdef ASSERT 2365 void ShenandoahHeap::assert_pinned_region_status() const { 2366 assert_pinned_region_status(global_generation()); 2367 } 2368 2369 void ShenandoahHeap::assert_pinned_region_status(ShenandoahGeneration* generation) const { 2370 for (size_t i = 0; i < num_regions(); i++) { 2371 ShenandoahHeapRegion* r = get_region(i); 2372 if (generation->contains(r)) { 2373 assert((r->is_pinned() && r->pin_count() > 0) || (!r->is_pinned() && r->pin_count() == 0), 2374 "Region %zu pinning status is inconsistent", i); 2375 } 2376 } 2377 } 2378 #endif 2379 2380 ConcurrentGCTimer* ShenandoahHeap::gc_timer() const { 2381 return _gc_timer; 2382 } 2383 2384 void ShenandoahHeap::prepare_concurrent_roots() { 2385 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 2386 assert(!is_stw_gc_in_progress(), "Only concurrent GC"); 2387 set_concurrent_strong_root_in_progress(!collection_set()->is_empty()); 2388 set_concurrent_weak_root_in_progress(true); 2389 if (unload_classes()) { 2390 _unloader.prepare(); 2391 } 2392 } 2393 2394 void ShenandoahHeap::finish_concurrent_roots() { 2395 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 2396 assert(!is_stw_gc_in_progress(), "Only concurrent GC"); 2397 if (unload_classes()) { 2398 _unloader.finish(); 2399 } 2400 } 2401 2402 #ifdef ASSERT 2403 void ShenandoahHeap::assert_gc_workers(uint nworkers) { 2404 assert(nworkers > 0 && nworkers <= max_workers(), "Sanity"); 2405 2406 if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) { 2407 // Use ParallelGCThreads inside safepoints 2408 assert(nworkers == ParallelGCThreads, "Use ParallelGCThreads (%u) within safepoint, not %u", 2409 ParallelGCThreads, nworkers); 2410 } else { 2411 // Use ConcGCThreads outside safepoints 2412 assert(nworkers == ConcGCThreads, "Use ConcGCThreads (%u) outside safepoints, %u", 2413 ConcGCThreads, nworkers); 2414 } 2415 } 2416 #endif 2417 2418 ShenandoahVerifier* ShenandoahHeap::verifier() { 2419 guarantee(ShenandoahVerify, "Should be enabled"); 2420 assert (_verifier != nullptr, "sanity"); 2421 return _verifier; 2422 } 2423 2424 template<bool CONCURRENT> 2425 class ShenandoahUpdateHeapRefsTask : public WorkerTask { 2426 private: 2427 ShenandoahHeap* _heap; 2428 ShenandoahRegionIterator* _regions; 2429 public: 2430 explicit ShenandoahUpdateHeapRefsTask(ShenandoahRegionIterator* regions) : 2431 WorkerTask("Shenandoah Update References"), 2432 _heap(ShenandoahHeap::heap()), 2433 _regions(regions) { 2434 } 2435 2436 void work(uint worker_id) { 2437 if (CONCURRENT) { 2438 ShenandoahConcurrentWorkerSession worker_session(worker_id); 2439 ShenandoahSuspendibleThreadSetJoiner stsj; 2440 do_work<ShenandoahConcUpdateRefsClosure>(worker_id); 2441 } else { 2442 ShenandoahParallelWorkerSession worker_session(worker_id); 2443 do_work<ShenandoahNonConcUpdateRefsClosure>(worker_id); 2444 } 2445 } 2446 2447 private: 2448 template<class T> 2449 void do_work(uint worker_id) { 2450 if (CONCURRENT && (worker_id == 0)) { 2451 // We ask the first worker to replenish the Mutator free set by moving regions previously reserved to hold the 2452 // results of evacuation. These reserves are no longer necessary because evacuation has completed. 2453 size_t cset_regions = _heap->collection_set()->count(); 2454 2455 // Now that evacuation is done, we can reassign any regions that had been reserved to hold the results of evacuation 2456 // to the mutator free set. At the end of GC, we will have cset_regions newly evacuated fully empty regions from 2457 // which we will be able to replenish the Collector free set and the OldCollector free set in preparation for the 2458 // next GC cycle. 2459 _heap->free_set()->move_regions_from_collector_to_mutator(cset_regions); 2460 } 2461 // If !CONCURRENT, there's no value in expanding Mutator free set 2462 T cl; 2463 ShenandoahHeapRegion* r = _regions->next(); 2464 while (r != nullptr) { 2465 HeapWord* update_watermark = r->get_update_watermark(); 2466 assert (update_watermark >= r->bottom(), "sanity"); 2467 if (r->is_active() && !r->is_cset()) { 2468 _heap->marked_object_oop_iterate(r, &cl, update_watermark); 2469 } 2470 if (_heap->check_cancelled_gc_and_yield(CONCURRENT)) { 2471 return; 2472 } 2473 r = _regions->next(); 2474 } 2475 } 2476 }; 2477 2478 void ShenandoahHeap::update_heap_references(ShenandoahGeneration* generation, bool concurrent) { 2479 assert(generation->is_global(), "Should only get global generation here"); 2480 assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC"); 2481 2482 if (concurrent) { 2483 ShenandoahUpdateHeapRefsTask<true> task(&_update_refs_iterator); 2484 workers()->run_task(&task); 2485 } else { 2486 ShenandoahUpdateHeapRefsTask<false> task(&_update_refs_iterator); 2487 workers()->run_task(&task); 2488 } 2489 } 2490 2491 void ShenandoahHeap::update_heap_region_states(bool concurrent) { 2492 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 2493 assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC"); 2494 2495 { 2496 ShenandoahGCPhase phase(concurrent ? 2497 ShenandoahPhaseTimings::final_update_refs_update_region_states : 2498 ShenandoahPhaseTimings::degen_gc_final_update_refs_update_region_states); 2499 2500 final_update_refs_update_region_states(); 2501 2502 assert_pinned_region_status(); 2503 } 2504 2505 { 2506 ShenandoahGCPhase phase(concurrent ? 2507 ShenandoahPhaseTimings::final_update_refs_trash_cset : 2508 ShenandoahPhaseTimings::degen_gc_final_update_refs_trash_cset); 2509 trash_cset_regions(); 2510 } 2511 } 2512 2513 void ShenandoahHeap::final_update_refs_update_region_states() { 2514 ShenandoahSynchronizePinnedRegionStates cl; 2515 parallel_heap_region_iterate(&cl); 2516 } 2517 2518 void ShenandoahHeap::rebuild_free_set(bool concurrent) { 2519 ShenandoahGCPhase phase(concurrent ? 2520 ShenandoahPhaseTimings::final_update_refs_rebuild_freeset : 2521 ShenandoahPhaseTimings::degen_gc_final_update_refs_rebuild_freeset); 2522 ShenandoahHeapLocker locker(lock()); 2523 size_t young_cset_regions, old_cset_regions; 2524 size_t first_old_region, last_old_region, old_region_count; 2525 _free_set->prepare_to_rebuild(young_cset_regions, old_cset_regions, first_old_region, last_old_region, old_region_count); 2526 // If there are no old regions, first_old_region will be greater than last_old_region 2527 assert((first_old_region > last_old_region) || 2528 ((last_old_region + 1 - first_old_region >= old_region_count) && 2529 get_region(first_old_region)->is_old() && get_region(last_old_region)->is_old()), 2530 "sanity: old_region_count: %zu, first_old_region: %zu, last_old_region: %zu", 2531 old_region_count, first_old_region, last_old_region); 2532 2533 if (mode()->is_generational()) { 2534 #ifdef ASSERT 2535 if (ShenandoahVerify) { 2536 verifier()->verify_before_rebuilding_free_set(); 2537 } 2538 #endif 2539 2540 // The computation of bytes_of_allocation_runway_before_gc_trigger is quite conservative so consider all of this 2541 // available for transfer to old. Note that transfer of humongous regions does not impact available. 2542 ShenandoahGenerationalHeap* gen_heap = ShenandoahGenerationalHeap::heap(); 2543 size_t allocation_runway = gen_heap->young_generation()->heuristics()->bytes_of_allocation_runway_before_gc_trigger(young_cset_regions); 2544 gen_heap->compute_old_generation_balance(allocation_runway, old_cset_regions); 2545 2546 // Total old_available may have been expanded to hold anticipated promotions. We trigger if the fragmented available 2547 // memory represents more than 16 regions worth of data. Note that fragmentation may increase when we promote regular 2548 // regions in place when many of these regular regions have an abundant amount of available memory within them. Fragmentation 2549 // will decrease as promote-by-copy consumes the available memory within these partially consumed regions. 2550 // 2551 // We consider old-gen to have excessive fragmentation if more than 12.5% of old-gen is free memory that resides 2552 // within partially consumed regions of memory. 2553 } 2554 // Rebuild free set based on adjusted generation sizes. 2555 _free_set->finish_rebuild(young_cset_regions, old_cset_regions, old_region_count); 2556 2557 if (mode()->is_generational()) { 2558 ShenandoahGenerationalHeap* gen_heap = ShenandoahGenerationalHeap::heap(); 2559 ShenandoahOldGeneration* old_gen = gen_heap->old_generation(); 2560 old_gen->heuristics()->evaluate_triggers(first_old_region, last_old_region, old_region_count, num_regions()); 2561 } 2562 } 2563 2564 bool ShenandoahHeap::is_bitmap_slice_committed(ShenandoahHeapRegion* r, bool skip_self) { 2565 size_t slice = r->index() / _bitmap_regions_per_slice; 2566 2567 size_t regions_from = _bitmap_regions_per_slice * slice; 2568 size_t regions_to = MIN2(num_regions(), _bitmap_regions_per_slice * (slice + 1)); 2569 for (size_t g = regions_from; g < regions_to; g++) { 2570 assert (g / _bitmap_regions_per_slice == slice, "same slice"); 2571 if (skip_self && g == r->index()) continue; 2572 if (get_region(g)->is_committed()) { 2573 return true; 2574 } 2575 } 2576 return false; 2577 } 2578 2579 void ShenandoahHeap::commit_bitmap_slice(ShenandoahHeapRegion* r) { 2580 shenandoah_assert_heaplocked(); 2581 assert(!is_bitmap_region_special(), "Not for special memory"); 2582 2583 if (is_bitmap_slice_committed(r, true)) { 2584 // Some other region from the group is already committed, meaning the bitmap 2585 // slice is already committed, we exit right away. 2586 return; 2587 } 2588 2589 // Commit the bitmap slice: 2590 size_t slice = r->index() / _bitmap_regions_per_slice; 2591 size_t off = _bitmap_bytes_per_slice * slice; 2592 size_t len = _bitmap_bytes_per_slice; 2593 char* start = (char*) _bitmap_region.start() + off; 2594 2595 os::commit_memory_or_exit(start, len, false, "Unable to commit bitmap slice"); 2596 2597 if (AlwaysPreTouch) { 2598 os::pretouch_memory(start, start + len, _pretouch_bitmap_page_size); 2599 } 2600 } 2601 2602 void ShenandoahHeap::uncommit_bitmap_slice(ShenandoahHeapRegion *r) { 2603 shenandoah_assert_heaplocked(); 2604 assert(!is_bitmap_region_special(), "Not for special memory"); 2605 2606 if (is_bitmap_slice_committed(r, true)) { 2607 // Some other region from the group is still committed, meaning the bitmap 2608 // slice should stay committed, exit right away. 2609 return; 2610 } 2611 2612 // Uncommit the bitmap slice: 2613 size_t slice = r->index() / _bitmap_regions_per_slice; 2614 size_t off = _bitmap_bytes_per_slice * slice; 2615 size_t len = _bitmap_bytes_per_slice; 2616 2617 char* addr = (char*) _bitmap_region.start() + off; 2618 bool success = os::uncommit_memory(addr, len); 2619 if (!success) { 2620 log_warning(gc)("Bitmap slice uncommit failed: " PTR_FORMAT " (%zu bytes)", p2i(addr), len); 2621 assert(false, "Bitmap slice uncommit should always succeed"); 2622 } 2623 } 2624 2625 void ShenandoahHeap::forbid_uncommit() { 2626 if (_uncommit_thread != nullptr) { 2627 _uncommit_thread->forbid_uncommit(); 2628 } 2629 } 2630 2631 void ShenandoahHeap::allow_uncommit() { 2632 if (_uncommit_thread != nullptr) { 2633 _uncommit_thread->allow_uncommit(); 2634 } 2635 } 2636 2637 #ifdef ASSERT 2638 bool ShenandoahHeap::is_uncommit_in_progress() { 2639 if (_uncommit_thread != nullptr) { 2640 return _uncommit_thread->is_uncommit_in_progress(); 2641 } 2642 return false; 2643 } 2644 #endif 2645 2646 void ShenandoahHeap::safepoint_synchronize_begin() { 2647 StackWatermarkSet::safepoint_synchronize_begin(); 2648 SuspendibleThreadSet::synchronize(); 2649 } 2650 2651 void ShenandoahHeap::safepoint_synchronize_end() { 2652 SuspendibleThreadSet::desynchronize(); 2653 } 2654 2655 void ShenandoahHeap::try_inject_alloc_failure() { 2656 if (ShenandoahAllocFailureALot && !cancelled_gc() && ((os::random() % 1000) > 950)) { 2657 _inject_alloc_failure.set(); 2658 os::naked_short_sleep(1); 2659 if (cancelled_gc()) { 2660 log_info(gc)("Allocation failure was successfully injected"); 2661 } 2662 } 2663 } 2664 2665 bool ShenandoahHeap::should_inject_alloc_failure() { 2666 return _inject_alloc_failure.is_set() && _inject_alloc_failure.try_unset(); 2667 } 2668 2669 void ShenandoahHeap::initialize_serviceability() { 2670 _memory_pool = new ShenandoahMemoryPool(this); 2671 _cycle_memory_manager.add_pool(_memory_pool); 2672 _stw_memory_manager.add_pool(_memory_pool); 2673 } 2674 2675 GrowableArray<GCMemoryManager*> ShenandoahHeap::memory_managers() { 2676 GrowableArray<GCMemoryManager*> memory_managers(2); 2677 memory_managers.append(&_cycle_memory_manager); 2678 memory_managers.append(&_stw_memory_manager); 2679 return memory_managers; 2680 } 2681 2682 GrowableArray<MemoryPool*> ShenandoahHeap::memory_pools() { 2683 GrowableArray<MemoryPool*> memory_pools(1); 2684 memory_pools.append(_memory_pool); 2685 return memory_pools; 2686 } 2687 2688 MemoryUsage ShenandoahHeap::memory_usage() { 2689 assert(_initial_size <= ShenandoahHeap::heap()->max_capacity(), "sanity"); 2690 assert(used() <= ShenandoahHeap::heap()->max_capacity(), "sanity"); 2691 assert(committed() <= ShenandoahHeap::heap()->max_capacity(), "sanity"); 2692 return MemoryUsage(_initial_size, used(), committed(), max_capacity()); 2693 } 2694 2695 ShenandoahRegionIterator::ShenandoahRegionIterator() : 2696 _heap(ShenandoahHeap::heap()), 2697 _index(0) {} 2698 2699 ShenandoahRegionIterator::ShenandoahRegionIterator(ShenandoahHeap* heap) : 2700 _heap(heap), 2701 _index(0) {} 2702 2703 void ShenandoahRegionIterator::reset() { 2704 _index = 0; 2705 } 2706 2707 bool ShenandoahRegionIterator::has_next() const { 2708 return _index < _heap->num_regions(); 2709 } 2710 2711 char ShenandoahHeap::gc_state() const { 2712 return _gc_state.raw_value(); 2713 } 2714 2715 bool ShenandoahHeap::is_gc_state(GCState state) const { 2716 // If the global gc state has been changed, but hasn't yet been propagated to all threads, then 2717 // the global gc state is the correct value. Once the gc state has been synchronized with all threads, 2718 // _gc_state_changed will be toggled to false and we need to use the thread local state. 2719 return _gc_state_changed ? _gc_state.is_set(state) : ShenandoahThreadLocalData::is_gc_state(state); 2720 } 2721 2722 2723 ShenandoahLiveData* ShenandoahHeap::get_liveness_cache(uint worker_id) { 2724 #ifdef ASSERT 2725 assert(_liveness_cache != nullptr, "sanity"); 2726 assert(worker_id < _max_workers, "sanity"); 2727 for (uint i = 0; i < num_regions(); i++) { 2728 assert(_liveness_cache[worker_id][i] == 0, "liveness cache should be empty"); 2729 } 2730 #endif 2731 return _liveness_cache[worker_id]; 2732 } 2733 2734 void ShenandoahHeap::flush_liveness_cache(uint worker_id) { 2735 assert(worker_id < _max_workers, "sanity"); 2736 assert(_liveness_cache != nullptr, "sanity"); 2737 ShenandoahLiveData* ld = _liveness_cache[worker_id]; 2738 for (uint i = 0; i < num_regions(); i++) { 2739 ShenandoahLiveData live = ld[i]; 2740 if (live > 0) { 2741 ShenandoahHeapRegion* r = get_region(i); 2742 r->increase_live_data_gc_words(live); 2743 ld[i] = 0; 2744 } 2745 } 2746 } 2747 2748 bool ShenandoahHeap::requires_barriers(stackChunkOop obj) const { 2749 if (is_idle()) return false; 2750 2751 // Objects allocated after marking start are implicitly alive, don't need any barriers during 2752 // marking phase. 2753 if (is_concurrent_mark_in_progress() && 2754 !marking_context()->allocated_after_mark_start(obj)) { 2755 return true; 2756 } 2757 2758 // Can not guarantee obj is deeply good. 2759 if (has_forwarded_objects()) { 2760 return true; 2761 } 2762 2763 return false; 2764 } 2765 2766 HeapWord* ShenandoahHeap::allocate_loaded_archive_space(size_t size) { 2767 #if INCLUDE_CDS_JAVA_HEAP 2768 // CDS wants a raw continuous memory range to load a bunch of objects itself. 2769 // This is an unusual request, since all requested regions should be regular, not humongous. 2770 // 2771 // CDS would guarantee no objects straddle multiple regions, as long as regions are as large 2772 // as MIN_GC_REGION_ALIGNMENT. 2773 guarantee(ShenandoahHeapRegion::region_size_bytes() >= AOTMappedHeapWriter::MIN_GC_REGION_ALIGNMENT, "Must be"); 2774 2775 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_cds(size); 2776 return allocate_memory(req); 2777 #else 2778 assert(false, "Archive heap loader should not be available, should not be here"); 2779 return nullptr; 2780 #endif // INCLUDE_CDS_JAVA_HEAP 2781 } 2782 2783 void ShenandoahHeap::complete_loaded_archive_space(MemRegion archive_space) { 2784 // Nothing to do here, except checking that heap looks fine. 2785 #ifdef ASSERT 2786 HeapWord* start = archive_space.start(); 2787 HeapWord* end = archive_space.end(); 2788 2789 // No unclaimed space between the objects. 2790 // Objects are properly allocated in correct regions. 2791 HeapWord* cur = start; 2792 while (cur < end) { 2793 oop oop = cast_to_oop(cur); 2794 shenandoah_assert_in_correct_region(nullptr, oop); 2795 cur += oop->size(); 2796 } 2797 2798 // No unclaimed tail at the end of archive space. 2799 assert(cur == end, 2800 "Archive space should be fully used: " PTR_FORMAT " " PTR_FORMAT, 2801 p2i(cur), p2i(end)); 2802 2803 // All regions in contiguous space have good state. 2804 size_t begin_reg_idx = heap_region_index_containing(start); 2805 size_t end_reg_idx = heap_region_index_containing(end); 2806 2807 for (size_t idx = begin_reg_idx; idx <= end_reg_idx; idx++) { 2808 ShenandoahHeapRegion* r = get_region(idx); 2809 assert(r->is_regular(), "Must be regular"); 2810 assert(r->is_young(), "Must be young"); 2811 assert(idx == end_reg_idx || r->top() == r->end(), 2812 "All regions except the last one should be full: " PTR_FORMAT " " PTR_FORMAT, 2813 p2i(r->top()), p2i(r->end())); 2814 assert(idx != begin_reg_idx || r->bottom() == start, 2815 "Archive space start should be at the bottom of first region: " PTR_FORMAT " " PTR_FORMAT, 2816 p2i(r->bottom()), p2i(start)); 2817 assert(idx != end_reg_idx || r->top() == end, 2818 "Archive space end should be at the top of last region: " PTR_FORMAT " " PTR_FORMAT, 2819 p2i(r->top()), p2i(end)); 2820 } 2821 2822 #endif 2823 } 2824 2825 ShenandoahGeneration* ShenandoahHeap::generation_for(ShenandoahAffiliation affiliation) const { 2826 if (!mode()->is_generational()) { 2827 return global_generation(); 2828 } else if (affiliation == YOUNG_GENERATION) { 2829 return young_generation(); 2830 } else if (affiliation == OLD_GENERATION) { 2831 return old_generation(); 2832 } 2833 2834 ShouldNotReachHere(); 2835 return nullptr; 2836 } 2837 2838 void ShenandoahHeap::log_heap_status(const char* msg) const { 2839 if (mode()->is_generational()) { 2840 young_generation()->log_status(msg); 2841 old_generation()->log_status(msg); 2842 } else { 2843 global_generation()->log_status(msg); 2844 } 2845 } --- EOF ---